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INTRODUCTION - This note considers the feature selection problem resulting

from the transformation x = Bz where B is a k by n matrix of rank k

and k < n. Such a transformation can be considered to reduce the dimension

of each observation vector z, and in general, such a transformation results

in a loss of "information". In terms of the divergence, this information

loss is expressed by the fact that the average divergence DB computed using

variable x is less than or equal to the average divergence D computed

using variable z. If DB = D, then B is said to be a sufficient statistic

for the average divergence D. If B is a sufficient statistic for the

average divergence, then it can be shown that the probability of misclassification

computed using variable x (of dimension k ' n) is equal to the probability

of misclassification computed using variable z.

In actual practice, DB can be somewhat less than D and yet retain

enough information (as measured by the probability of misclassification). Although

the necessary ratio of DB/D is problem dependent, empirical

results seem to indicate that this ratio lie in the range .8 < DB/D <1. The

global or absolute maximum value of DB over the class of all k by n

matrices B is a function of k. Let DB* denote this global maximum. The

main purpose of this note is to develop an upper bound fk (a function of k)

which necessarily satisfies in general

DB* < ~k 5 D

It is shown that ck can be rather easily obtained for 1 < k < n by solving

for the eigenvalues of m distinct n by n matrices, where m is the



2

number of distinct classes. Thus only mn distinct eigenvalues, obtained but

once, are adequate to determine ~k for any k • n. (If channel selection is

desired and k/D is small, then more than k channels should be selected to

process the data).

Also included in this note is what is believed to be a new proof of the

well known fact that D 2 DB. Using the techniques necessary to prove-the

above fact, it is shown that the '"lrattacharra distance" as measured by

variable e is less than or equal to the Brattacharra distance as measured by

variable z. Finally,. upper and lower bounds on the Bratacharyya distance as

measured by x are derived. The expression for the gradient of the Bratacharyya

distance with respect to the matrix B is also derived. Although all the

Bratacharyya results are for the two class problem, they can easily be extended

to the situation of m-distinct classes.

DISCUSSION

We are interested in comparing n-dimensional information measures with

k-dimensional information measures algebraically; that is by using various

matrix operations. All the necessary algebraic relationships will be discussed

and considered below. Also, these algebraic properties will be related to the

interclass divergence (Reference 1) and the Bratacharra distance (Reference 2).

The following theorem from Reference 3 is essential to the discussion.

Theorem 1 - Consider the sequence of symmetric matrices

Ar = (aij) i,j r

for r = 1,2,...,n. Let Xk(Ar) denote the k'th characteristic root of

Ar, where

Xl(Ar) . X2(Ar) ... Xr(Ar)
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Then
%k+l(A+l) X(A) i k(i+l)

The following corollary follows immediately from Theorem 1 and will be used

frequently.

Corollary 1 - Xk+ i)(An) + 1k(Ai) k(Ai+) k()

Lemma 1 - Let A and Q be real

and A is symmetric. Then if X

eigenvector of A, then X and

eigenvector of QAQT .

Proof: (QAQT)Qx = QA(QTQ)x

= QAx

= XQx

n by

and x

Qx are

n square matrices where QQT = I

are an eigenvalue and corresponding

an eigenvalue with corresponding

Q.E.D

we define:

B ;

A ;

S ;

a real k

a real n

an n by

by n matrix of rank k ' n.

by n symmetric positive definite matrix.

n symmetric matrix.

Define the function

= ~ tr{(BABT)l (BSBT)}

where tr denotes the trace of a matrix. We use the notation t to denote

the matrix whose i-j'th element is the a where b.. is the element in
bij 13

the i'th row and j'th column of B. The following three Lemmas are proved

in Reference 2 and are included for completeness.
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Lerma 2 - (B)T = [SBT - ABT(BABT)-l(BsBT)](BABT)-1

Lemma 3 - B()T = O

Lemma 4 - If B = QB where Q is a k by k matrix of rank k, then

( T (. )T Qi

aB

Remark: Lemma 3 shows that p, considered as a function of B, is invariant

under a non-singular transformation, and also that ~ essentially

depends only on the subspace spanned by the row vectors of B.

The following theorem is proved in Reference 2.

Theorem 2: Given two real symmetric matrices A and S with A positive

definite, there exists a nonsingular n by n matrix R such that

pRT = I

T
RSR = D

where I is the identity and D is a diagonal matrix.

Remark: The elements of D are the eigenvalues of A -1S.
k

Theorem 3- _i Xi where Al X2 ... 2 Sk are the k-largest eigen-

values of A- S. Thus p is maximized by letting the row vectors of B

correspond to the eigenvectors associated with the k-largest eigenvalues of

A S.

Proof: By Theorem 2, there exists a non-singular n by n matrix R such
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that RART = I and PSRT = D, where the eigenvalues of A S are

the diagonal elements of D.

hAWe assume B is the the form B = B R where B is a k by n matrix

of rank k (certainly this is no restriction, as evidenced if B is chosen

to be BR ). Then

= ~ tr{(BABT) - (BSBT)}2

1 " TAT -lA TT
- jtr{(BRAR B )(BRSRTB )}

1 4hT
= tr{(BB ) i(BDB )}

By Lemma 3, i now depends only on the subspace spanned by the row

A ANT
vectors of B; thus we can assume B B = Ik (the k by k identity) and

the problem becomes one of maximizing

C= tr{(B D B )}

^AT NT AT
subject to the constraint B B = Ik . But given B satisfying B B = Ik'

"extend B to an orthogonal n by n matrix

Q = )

where Q Q = I. By Lemma 1, the eigenvalues of Q D Q are those of D. But

T
by theorem 1, the V'th largest eigenvalue of B D B is less than or equal

to the Z'th largest eigenvalue of Q D Q , 1 -< < k. Thus,

- i= wi'where A1 >'... > Sk
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are the k-largest eigenvalues of A iS, with equality being obtained if

the rows of B are chosen to correspond to the eigenvectors associated with

-1
the k-largest eigenvalues of A S. QED

k

Corollary 1 -t j+(k) _ and thus p is bounded below by the k smallest
- j=l j+(n-k)

eigenvalues of A- S.

Proof: Follows immediately from the proof of Theorem 3 and Corollary 1 of

Theorem 1.

Remark: In particular, note from Corollary 1 of Theorem 1, the smallest eigenvalue

of A S is less than or equal to the smallest eigenvalue of (BAB T)- (BSBT), the

second smallest eigenvalue of A-iS is less than or equal to the second smallest

eigenvalue of (BAB ) -(BSB ), etc,

We use theorem 3 to obtain a tighter upper bound on the so called average

divergence, defined by (Reference 4)

m-1

B i=l j=i+l DB(ii)

m

= tr{ii[(BAiBT (BiBT) } m(m-l) k
2 i=l i i 2

where

A. ; an n by n symmetric positive definite covariance matrix

for class i.

i ; n-dimensional mean vector for class i.

im ; number of distinct classes.j

m ; number of distinct classes.
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m

Si ; = (Aj + 6ijij
T

)

j~i

k ; the number of rows of B.

Thus let

i,l 7 i,2 
-

i,k

be the k largest eigenvalues of AilS
i
. Then

Corollary 2: m k m k

>tS r X m 2(2<1) k m(m-D)2
1=1 j=l i,j+n-k 2 B i, 2

It is shown in Reference 1 that D
B

< D. We now derive this result

algebraically. Clearly, by definition of DB, it suffices to show

DB(i,j) < D(i,j)

where the interclass divergence between classes i and j is defined as

=1 1 1 1 1 -ljT
D(i,j) = tr{Ai A + AA.} - n + tr + A

2 1 J 1 2 i J 1J

and the transformed divergence DB(i,j) ' is defined as

oD(i,j) = 1 trBAiB.T)- (BAjBT) + (BABT) (BAiBT)} _ k

+ 2 tr{[(BAiB T) + (BABT)
- 1

](B 6ij6ij B )

Theorem 4 - D(i,j)Z DB(i,j)

Proof: By theorem 3, it suffices to show

1 tr{Ai A; + A Ai} -tr{(BAi BT) + (BBT) + (BABT) (BA B T)} n-k
2~~~~~~~~~



Let 1 > ... >2 A > 0 be the eigenvalues of A Aj and let Y1 > > Yk >1 n i1

be the eigenvalues of (BAiBT)- (BAjBT)

It suffices to show
n k

2 iz(X + !/i) - 2 =l(Yj + l/yj) 2 n-k

First note that the function f(x) = x + l/x is greater or equal to 2

for x > 0, and that f(l) = 2 so that f(x) is strictly decreasing in the

interval (0,1] and strictly increasing in the interval [1,c). Thus assume

Y1 Y2 r' o Yo f 1 f Yo+1 > .' b Yk

and the proof follows by noting

Aj + 1/Aj > yj + 1/yj

1 1

n-j + n kj k-j

X + 2 
n-j+(Z+l) An-j+(g+l)

j = 1, ..., .

j = 0, ..., (k-(Q+l))

j = k+l, ..., n

Q.E.D.

We now review briefly the concept of the square root of a positive

definite symmetric matrix A. Since A is positive definite, it follows that

A = Q Q
1.,,
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Twhere QQ = I and the Ai are the strictly positive eigenvalues of A.

Then, as in Reference 2, we define the matrix Ai as

Al = Q ,T
QT

It is readily verified that A/ A' =- A, and also that A'A A AAd Now,

consistent with the previous notation, let A
1

and A2 be n by n

positive definite symmetric matrices.

Consider the ratio of the determinants

= JA1 + A2 1

It follows from the previous discussion of "square roots of a matrix" that

X = A 1A 24 + A2 A1

= + A-1

where A. denotes the inverse of A. and A is defined as
1 1

Note that if x is an eigenvector of A with eigenvalue X, then x is

also an eigenvector of A- 1 with eigenvalue 1/X.
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Thus if A1 2
A .. Xn > 0 are the eigenvalues of
1 2' ~n. A, it readily follows

that

;7 = (A1 + 1/X1)(A2 + 1/A2) .... (An + l/An)

n

= i (xi + 1/A i )

Now if B is a k by n matrix of rank k, we define

B = I (BA1B (BA 2 BT) + (BA 2BT)- ' (BA1 BT)4 'IB 

k

= iI (Yi + l/Yi
)i=1 1 

where Y1 > Y2 ... > Yk > 0

We prove

are the eigenvalues of (B. Bl)- 2(B 2Bt
1

> > 2

Proof: It is shown in the next theorem that Thus we can

assume as in Theorem 3

B=BR

where

RAR = I
1 and RA2RT = D where

elements corresponding to the eigenvalu

D is a diagonal matrix with diagonal

ues of Al A2. Then

TB =|( j(BDB T ) + (B D BTT- (B T)A B I('B) (BD) +(BD B) (BB-) I

Theorem 5

a_)= 0.3B
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and since by the initial remark ikB depends only

by the row vectors of B, it suffices to consider

T B = I. In this case

B I (B D B ) + (B D B)l

on the subspace spanned

only those B satisfying

2 2 2 T
if Y1 > Y2 ... - k > 0 are the eigenvalues of B D

... 2 > 0 are the eigenvalues of AllA2, it follc

Y1 > Y2 '' > Yk are the eigenvalues of (B D BT);

. A are the eigenvalues of (All A
n 1 2

as in Theorem 4, make the following association, with

Y2 ... 2> y > 1 Yg+l ... > Yk

Aj + 1/j > yj + l/y j =

n
j
+ / j -> k-j + 1/ k-j J 

=
0,...,(k-(+

Xn-j+(Z+l) +

In particular

B - jyil(Aj +

< 2 (n-k)jfil ( +
l(%j

n-j+ (-> 2

(k- (+l))

1/Xj) jTo

(k- (+l))

1/Xj) jno

B and if

ows by definition

and that

j = k+l,...,n

(Xn-j + l/A. )n

(A% + 1/A _) <
-J -J

Q.E.D.

Now define the function A1

H(1,2) = ¥1n~ Al 1]A21

Thus

2 >
11 -

that

A1 >

Thus

Y1 >

+l) )
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and B(A + A2)B I

1 12
HB(1,2 ) = -ln I BA2 BI

Then by Theorem 5 it is true that

HB(1,2 ) < H(1,2)

HB(1,2_ ) thWe use the notation B to denote the k by n matrix whose i-j
aHB(1,2)

element is ab where bij is the i-j'th element of B. Then
ijij

Lemma 5: aH (1,2)T
( B = (A1 + A2 )BT[B(A1 + A2 )BT]-i

2 [A
1
BT(BA

1
BT)- i + A2BT(BA

2
BT)-]

/'HB(1,2) T
so that B- ~B 1 =0

Proof: If dA denotes the matrix each element of which is the differential

of the corresponding element of the matrix A, then from Reference 2,

d in IAl = tr{A-l d A}

Now considering only the variation in B,

d ln.BA1BTI = tr{(BA
1
BT ) (dBA

1
BT + BA1 dBT)}

= 2 tr{dBA1 BT(BA1 BT)-}1 1LBT-l
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so that

(aBi nj BA1 BTI) = 2[A1B (BA1BT l]

so that

(Bl12) = (A1 + A2 )BT[B(A1 + A2 )BT-
1

-1 [BT2BBT- 1 
2 [A 1BT (BA 1BT)l 1+ A2BT(BA2 B T)-1]

Lemma 6: Let the row vectors of B correspond to k of the eigenvectors of

-1 aHB(1,2)
All A2 . Then aB = (

Proof: We choose B such that

T T
BABT = I and BA2BT = D where I is identity and D is a k by k
1 2

diagonal matrix of k eigenvalues of A 1 A2. The proof follows immediately
2 proof follows imediately

by noting that

A2B = A1BTD

2 2 > 2>l2> 1 2
Remark: Let A 2 2 * 2 > 2 1> X

2
Q+ * 2 be the eigenvalues of1 2 ... .-+l n

-1
A1 A2, and suppose that

+ k-j-1
i = {.((X + 1/)}{ ( + 1/ }--max :1=(xi I 1=O n-i n-+

maximizes the product of any k factors of the form (A
i
+ 1/Ai); then by

Theorem 5 HB(1,2 ) attains a global maximum by choosing the row vectors of

B to correspond to the eigenvectors of A 1 A2 with eigenvalues

2

Xi i = 1,...,j

n-ii = 0, ,k-n-i
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with the maximum value of HB(1,2) given by

HB(1,2 ) - 1n x)

Using previous notation, we now define the interclass Bratfacharra distance

for two multivariate normal distributions as

C = 8 tr{ A 2 612]61T} + H(1,2)
18 2 12 12 -

and the transformed Bratachara distance CB

r. f A _ A ATI-I

as

(B6 1 261 2TBT)} + HB(1,2 )

Let y1 be the only non-zero eigenvalue of

-1

612 61212 12

-1

Note that y1 =
612

+
with

-1

612.

Thus by the remark following lemma 6, it follows

CB < 8 61 2 62 + ln max< C

We now prove

Theorem 6: Let B be a k by n matrix of rank k which extremizes CB .
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Then it is necessary B satisfy an equation of the form

fHB(1,2) T( B' 1) ~16 B
412 12 - (A+A2,BT [B(A1+A2 )BT- (B6 6 T2BT)}[B(A+A)BT]- l

+ (A1+A2
)B [B(A 1+A2 )B [AB (BAB + A(BBT

-
A2B )l]

= 0

Proof: Immediate by Lemmas 3 and 5
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INTRODUCTION - This note considers one particular aspect of the feature

selection problem, that resulting from the transformation x = Bz, where B

is a k by n matrix of rank k and k ' n. Such a transformation can be

considered to reduce the dimension of each observation vector z. It is shown

that in general, such a transformation results in a loss of information. In

terms of the divergence, this is equivalent to the fact that the average

divergence computed using the variable x is less than or equal to the average

divergence computed using the variable z. Similarly, a loss of information

in terms of the probability of misclassification is shown to be equivalent to

the fact that the probability of misclassification computed using variable x

is greater than or equal to the probability of misclassification computed using

variable z.

First, the necessary facts relating k-dimensional and n-dimensional

integrals are derived. Then the above mentioned results about the divergence

and probability of misclassification are derived. Finally it is shown that if

no information is lost (in x = Bz) as measured by the divergence, then no

information is lost as measured by the probability of misclassification.

The above results suggest that the increase in probability of misclassification

resulting from the transformation x = Bz can be minimized by minimizing the

information loss as measured by the average divergence. Thus the equations

necessary to maximize the average divergence as a function of B are presented.

It is shown that the information loss between each class pair, as measured by

the divergence, can be conveniently displayed by a "Class Separability to be

Gained Map". If this information loss is small enough for each distinct class

pair, then there is essentially no increase in probability of misclassification

resulting from the transformation x = Bz.
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FUNDAMENTAL LEMMAS

We are interested in relating integrals over k-dimensional regions to

integrals over n-dimensional regions. In particular, given some n-dimensional

space , we are interested in comparing the divergence or probability of

misclassification computed in r.' with the divergence or probability of mis-

classification computed in /, where / is any k-dimensional subspace of

Consider the following:

x = Bz

y = Sz

Such that

z = = Qz = 

where

Q : a real

B : a real

S : a real

to the

z : a real

x : a real

y : a real

nonsingular n by n matrix

k by n matrix

(n-k) by n matrix, chosen such that the rows of S are orthogonal

rows of B.

n-dimensional vector

k-dimensional vector

(n-k)-dimensional vector

Script letters will denote a real vector space, so that

{z} ; a real n-dimensional vector space
,I /



= {z'} ; a real n-dimensional vector space

= {x} ; a real k-dimensional vector space

= {y} ; a real (n-k)-dimensional vector space

The symbol 0

Note that any

where

will denote Cartesian Product, so that

.' / 7
non zero z "" can be expressed uniquely as

z= ZB+ ZS

k

ZB = i=aibi

Zs j=k+l jSj

b1

b2
B= i

\ b\ k

J'

/Sk+l )

S - IS --

and BS = (and of course =
and BST = 0 (and of course SB - 0) by choice of S.

I

I

3



T
Note that the condition BS = 0 implies

(i) B(z) = B(zB)

(ii) B(z
s
) = 0

(iii) S(z) = S(Zs)

(iv) S(zB) = 0

Using the above definitions and notation, we prove

Lemma 1. If R1 SB(i), then

Q -1(R1 Sj)) = B (R1)

Proof: (1) Since Q is non singular, it suffices to show

R1 · S() = QB
- I

(R1 )1. (-)( 1

(2) Let z' E R1 · Si ). Then from
'.1

(i) - (iv) above,

z' =1
s(z2)

IB(z ) ' I B(zl + Z2 )
S 

+ z )
2S ;

(3) Since B(zlB + z2) = B(z1) c R1 , we have (Zl + Z2 ) E B-1(R1),

so that

R1 S(j) c QB 
-

(R1)

4

+z )
S
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(4) Now let z' C QB -(R1), so that there exists z, a member

of B (R
1
) and Q(z) = z'

(5) But z = ZB + ZS, and thus B(z) = B(zB) C R1, so that

Z' = Q(z) = ( E Ri S(1 )
S(z

Thus QB-l (R1) C R S()

By (3) and (5), it follows R1 S(i) = QB-l (R 1)

Q.E.D

Thus Lemma 1 relates k-dimensional regions R 1 B('!) with n-dimensional

regions Q (R1 e S(f ). It is convenient at this time to consider the following

density functions, all related, for fixed i, in a sense, by the transformations

Q and B. Define:

pi(z) the density function of the i'th class. We write pi(z) =(i(pi,)

to denote that the i'th class is normally distributed with mean pi

and covariance 2-i.

fi(z') the transformed density function for the i'th class resulting from

the transformation z' = Qz. Thus fi(z') = N(Qli,QIiQT) and we will

use somewhat inconsistent notation in denoting fi(z') by fi(x,y)

where z' =(yx)

gi(x) the transformed density function for the i'th class resulting from

the transformation x = Bz. Thus gi(x) = N(BIi,BiBT ).

It is shown in Reference 1 that

gi(x) fi (x,y)dy = 5 fi(x,y)dy

.'I ,
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so that gi(x) is the marginal density of x. This fact is expressed in

Reference 1 as:

THEOREM 2.4.3 - If z' (a random variable) is distributed according to

N(Qli,Q iQT), the marginal distribution of any set of components of z' is

multivariate normal with means, variances, and covariances obtained by taking

the proper components of Qvpi and Q iQT respectively.

Note that since
iQT = B BT

B2ST

i

s~.sT

I
j~

the proper component of QiQT is B.B T , and the proper component of Qpi

is B1i.

LEMMA 2 - Let R1 c B ~-). Then g.(x)dx =

= R. S fi(XY)dxdy

R' fi(z')dz'
= R1S Pz

Q (Rie S j))

= p. (z)dz
B (R

B-1 R1) pi(z)dz.B (R1)

(by definition of gi(x)

(by definition of the integral)

(by definition of fi(z') and Pi(z))

(by LEMMA 1)
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SUFFICIENT STATISTICS AND THE PROBABILITY OF MISCLASSIFICATION

We assume the existence of m-classes, each N(pk.i ). Let the vector

spaces ' , and be as in the previous section. Using a maximum liklihood

classification procedure, it is possible to partition each of the above spaces

into disjoint sets, and thus compute the probability of misclassification.

Thus let

pmc

pmcQ

pmcB

: the probability of misclassification in e;' resulting from a

maximum liklihood classification procedure.

: the probability of misclassification in ~ resulting from a

maximum liklihood classification procedure.

: the probability of misclassification in " resulting from a

maximum liklihood classification procedure.

We are interested in comparing pmc, pmcQ, and pmcB. It will be shown

that

pmcB > pmc = pmcQ

REMARK: If pmcB = pmc, then B is said to be a sufficient statistic (for

the probability of misclassification)

It is convenient to define the following sets:

Ni(z) = {ZIPi(z) >p(z) z) j=l,...,m and j # i}

Ni(z') = {z'lfi(z') > fj(z');j=l,...,m and j $ i}

K(x) = {xg(x) > gj(x) ; j=l,...,m and j # i'

Initially, consider the two class problem corresponding to the case m = 2,

and assume (to be true up to a set of measure zero) that
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:' =N N 2

' = N1 u N

~'~ = K1 UK 2

Then by the definition of the probability of misclassification as dis-

cussed above (Reference 1)

Cm f~

pmc = '2P (z)dz + 9 P (z)dz
pmc N 1 N 2

2 1

pmc =
Q fl(Z)dz'

+ ) f (z')dz'

1

pmcB K2 gl (x)dx + Kg 2(x)dx

REMARK - We have omitted the apriori probabilities, as they will be assumed equal.

Moreover, it is shown in Reference 1 that if -= M1 M2, '

and' = LL UL 2, then
1 2'

= M1U M2,

pmc < Sl(z)dz + P2 (z )dz

pmcQ Mfl(Z')dz' + f2(z)dz'

pmcB < K2gl(x)dx + 1 g2 (x)dx

REMARK - Since Q is nonsingular, it is easily verified that

p (z) fi(z!) fi(Qz)

pj(z) - fj(z') fj (Qz)
i,j = l,...,m

so that the "liklihood ratio" is invariant under a non-singular transformation,

and thus



N. = Q(Ni), which results in

pmc = pmcQ ,

since for an arbitrary set M,

(z)dz = Q f(z')dz'M i Q

THEOREM 1 - Assuming the existence of 2 distinct classes, then

pmcB > pmc = pmcQ

with equality <-> -1(K2) = N
2

-(K1
)

= N
1

a.e. (a.e. denotes almost every-and B (K
1
) = N

1
a.e. (a.e. denotes almost every-

where). s =

Proof: pmcB = K gl(x)dx + K g2 (x)dx
B 2 K19

~(z)dz + -1S 2(z)dz
B (K

1
)

(by Lemma 2)

where the last inequality follows from the definition of pmc and the fact

B- (K2) u B ( B-K1(K u K2 )

= B-1c)

= :4

9

= -1)
B (K2 )

> pmc
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It is immediate that pmcB > pmc with equality <=> B- (K2) = N2 and

B 

-

( K
1
) = N1 a.e.

Q.E.D.

COROLLARY 1 - Assuming the existence of m distinct classes, then

pmcB 2 pmc = pmcQ

with equality <=> B (K
i)

Proof: Let - Ki denote

in Reference 1), by

= Ni ; i = l,...,m, a.e.

the set theoretical compliment of K
i
. Then (as

definition of pmcB,

m r
PmcB = l _gi (x) dx

i= 1_Ki 1 .2 - pi(z)dz

i-1 -1 (KPi(z)dz-

2 ' N5pi(z)dz = pmc

Q.E.D.

REMARK - Note that

which is certainly

-1
B (Ki) = Ni is equivalent to

1 I

Pi(z) > pj(z) <=> gi(Bz) > gj (Bz)

a.e.

implied whenever

Pi(z) gi(Bz)

pj (z) g(Bz) a.e.~~j i~

j = l,...,m

j#i

j = l,...,m

joi
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COROLLARY 2 Assuming the existence of m distinct classes, then

pmcB 2 pmc

with equality <=> the following holds a.e.

Pi(z) > pj(z) <= (Bz)> gi(Bz) j =.... 

j i

Lemma 2 and Corollary 2 suggest that in a sense, (with respect to probability

of misclassification) we have never left the original space/ !. The trans-

formation x = Bz, combined with the gi(x) and the maximum liklihood

classification procedure can be thought to define a decision function which

partitions the original space / into disjoint sets. The transformation B,

in this sense is used essentially to quicken the classification procedure.

Equivalently, the transformation B can be considered as a rule which results

in the grouping together of points (vectors) in the spacer. For example,

let x c and define

S = {zlz s and Bz =x }

so that members of the space t are grouped together in the set S. Yet

associated with S is only one particular class, namely that class into

which x
o

is classified using a given classification procedure (assumed to

take place in2 ). Thus we can express Theorem 1 verbally by saying that in

general, the grouping together of vectors results in a loss of information.

The above discussion suggests the possibility of defining (conceptually)

general classification functions of the form
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hi.((z)) i=l,...,m

where ¢(z) is a vector, with ~ not necessarily being a linear transformation.

Certainly, to be useful, such functions must possess the following properties

(i) The class of functions hi(c(z)) i=l,...,m

is more easily evaluated than the

class of functions pi(z)

(ii) Pi= (z) h((z)) Idz is small for all i,j.

Note that the size of hij can be thought of representing the information less
between classes i and j, resulting from the transformation ¢(z). Certainly

•i. = V i,j implies
Ij

Pi(z) hi(¢(z)) a.e.

pj (z) hj(~(z))

Thus if a classification rule is defined by

¢(z) be classified into class i if and only if

hi(~(z)) > hj(4(z))

jii

1 < i < m

no information is loss by using the generalized classification functions

h.(4(z)) whenever jt = Vi,j.
i I~~~j
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SUFFICIENT STATISTICS AND THE DIVERGENCE

We begin with the necessary definitions, with all notation consistent

with the previous two sections. Consider the existence of two distinct classes,

and define as in Reference 2 the mean information for discrimination in favor of

population one against population two (for a particular vector space) as

pi(z) P1 (Z)
I(1,2) = Jpl(z)log dz E p1 (z () dz

fl(z') fl(z' )
IQ(1,2) = ffl(z')logf2 ) dz' jfl(z ')lo( 2( dz'

g 1 (X) gl(X)
IB(1,2) - gl(x)lo dx = g (x)lo dx

Then the interclass divergence (again in a particular vector space) is defined

(Reference 2) as

D(1,2) = I(1,2) + I(2,1)

DQ(1,2) = IQ(1,2) + IQ(2 ,1)

DB(1,2 ) = IB(1,2 ) + IB(2 ,1)

We will show that

DB(1,2 ) < D(1,2) = DQ(1,2); with equality

P1 (z) gl(Bz)
if and only if p2(z) g2(Bz) a.e.

P2(z) g2 (Bz)

It follows immediately from Corollary 2 of Theorem 1 that DB(1,2 ) = D(1,2)
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implies that pmcB = pmc

To prove the desired inequality, it is necessary to state the following

theorem and corollary from Reference 2.

THEOREM 2 (KULLBACK): I(1,2) is almost positive definite, ie I(1,2) > 0

with equality <> pl(z) = p
2
(z) a.e.

COROLLARY 1 2pl(z) YPi(z)dz
pl(z)lo g z) dz - (jpl (Z)dz)log Sp2(z)dz with

pequality iff (z) 
equality iff 1 a.e.

P2(z)

REMARK: The above Theorem and Corollary also hold if IB(1,2) or IQ(1,2 )

and the corresponding density functions are considered.

We now prove

fl(z') gl(Bz)
THEOREM 3 - IQ(1,2) > IB(1,2) with equality if and only if f( g(Bz) a

fQ2(z) g2 (Bz) a.e.

Thus in particular IQ(1, 2 ) = I(1,2).

PROOF: (1) IQ(1,2 ) = f 
1 (z')logfl(,) dz'

f 1 (xy)
- f- (f1 x,y) logy-y------7 5 -dxdy

2 f~ (x,y)
S( ( f (x, y)loy)dx

(2) It is shown in Reference 2 that Corollary 1 of Theorem 2 holds

for any pair of density functions. Thus define

f1 (x,y) fl(x,y)

hi, x(Y) f7 (xy)dy = gl(x)

Y.;' 
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and

f2 (x,Y)

h2,x) = g2(x)

(3) It follows from the corollary that

.hl, x(Y) hlog 
( y

)
In l1lx h2 ,x (y)

V11
ll,x(y)dy

dy / 'ihh (y)

.i
' -r 

so that

and for all

fl ( x ' y )

fl ( x y ) f (x ,y) dy >

x, we have

fl(x,Y)

f2(x,y) d
gl(x)log

gl(x)

g2(x)

(4) Thus from (1) and above, we have

gl(x)log ()
g2(x )

IQ(1,2 ) 2

fl(x,Y)
(5) Now, if f (x,y)

f2(xY)

gl1 (x)

g2 (x)

dx = IB(1,2)

we have

fl(x,Y)
f1 (x,y)log f (x,y) dxdy

2
- . fl(xy)log g dxdy

f11a l g 2 (x>

'I

.. gl ( x) /
"" '>= '-log g I*(X)-ii-'-f (x,y)dy! dx

% 91g (x)

= gl(x) log dx

IIi

Q.E.D.

)
(x,y)dy

.i

S

12
S
it'

Sfl(x,y)log

?71



COROLLARY 1 DQ(1,2 ) = D(1,2) > DB(1,2 )

p1 (z)
with equality if and only if (z)

P2(z)

Remark: If DQ(1,2) = DB(1,2 ), then B is said to be a sufficient statistic

for the divergence.

We now investigate the condition

Pl(z) g gl(Bz)

P2 (z) g2 (Bz)
a.e.

Note that if 1 

gB Z 1B

Q- iQT = 

1

T

S 1B1

is the covariance for the first class, then

B 21ST 

S >-2S T-
21

f C1 1

C21

C12

C2222

T
where C = C

12 Similarl21

Similarly,

/ )2JBT

2
QT (II 2 BT

D12 \

S 2S2 .'-i

where D = D21 Letting
12 - 21 I Q-1QT I denote the determinant, it follows

IQ QTI = IC1 1' c22 C2 1 c2 j c1 2 1

IQ.2 QTI = ID2 2 1-ID 2 2 - D2 1 Dll D
12

1

16

gl(Bz)

g2(Bz)
a.e.

D21
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To see this, consider Ql-1 QT under the nonsingular transformation

Q -1 Q - . RQQ-1TRT

where

and

IQ 1Q I = IRQ 1QTRTI =

Also, since RQ ZQTRT

0 >

n-k 

K1o

so that IRI = 1

0

22C 21CC12

is positive definite, so is the symmetric matrix

-1
C22-C21 Cll C12-

Now define the positive
J

definite matrices

-1
22.1 =C22 - C21 C11 C12

-1
22.1 = D22 - D21 11 12

so that

IQ QTI = IC ll Ic22.11

IQ1
2QTI = ID111 ID22 11

Now define the matrices H1 and H2 by



-1- -1 
1 1 C1 2 C2 2 e1 C2 1 C1l

H =

-1 -1
22l C21 11

-1 -1
-C 1 1 C1 2 C2 2 w1

-1
2 2t1

(D-l D11 D12
H2 =

-D1
22.1

D-1 -1
22.1 21 11

-1 -1
-D11 12 22.1

-1
22el

-1
D21 D11

It is easily verified that

(Q2 QT)-l + H
1

00
O0

and that

(Q 2QT)-2
O F

2

Now let P 'i Qi and =i Bpi~x
i
~~

so that

(z' - Il')T(Q -QT) -l'
)

_ =
1 ) (Z' i 1) (x - p )C TC1l (x

+ (z' - P' 1 ) H1 (z' - '1)

and also

(z' - p2)T (Q 2QT)- (z' - ' 2 ) = - 11
(x -B2I)D D

1

+ (z' - i'2) H2

18

\

I
I/
!

- 1 )x1

(x - ix2 )
x2

(zt - '2)



19

Now, by definition,

IQ -2QT I

IQ --1QT I

exp r-i (z T- pT(Ql QT) W-l(z )
~~~exp 1- -(z-l2) (Q EZT) ;)

Ep[- if Iz -~)T(Q lQT>-~z
ex- - P2 _2)]

(X-x.) TC 11 -1 (x-_i)xliI

2"T -1 
x2 11 xX-F~~,2 Dx 2

exp L- l(z'- t ) l H(z'- p)j

exp -

fl(z')
Since f )

f2(z')

pl(z)

P2 (z)
it follows from Corollary 1 of Theorem 3;

THEOREM 4 -. DB(1,2) = D(1,2) if and only if

I D22,11' exp L_- ·i(z'-D)THi(z'-B{) 

C 2 2
'
1 expL- ?'(z'-I2)T H2(z-p2)_

= 1

for all z' = Q(z).

Corollary 1 - DB(1,2 ) = D(1,2) if and only if H
1
= H2 and H1Q(1p-p2) = 0

Corollary 2 -1 =22 => D (1,2) = D(1,2), where aT =-1(1- 1 ~~2 L1 112

1= 2->
1 2

by selecting each row vector of S orthogonal to pl-p2'

that C12 = D12 = 0

Q.E.D.

fl(z)r qm2-

expL-

exp L-

gl(x)

g 2 (x)

exp L -
expL- ! (z'- (z' i]

Proof: f-

((z -P2H22(Z p2)

(z 1-1) H1 (z '-{.PI)
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REMARK - Theorem 3 reveals the importance of the equality:

fl(z')

f2(z')

gl(Bz)

g2(Bz)

we note the following Lemma, proved initially by Halmos:

LEMMA 3 - If g is a real-valued function on then

g(x)gi(x)dx = .5 g(Bz)Pi(z)dz
1 1, 

i=1,2

Using Lemma 3, it is easily verified that

P2(Z)gl(Bz)
= _ 1() log p(Z))g(Bz)Yo~~~~ 

p2 (z)gl(Bz) dz

p2(Z)log pl (z) 2
(Bz)(B

we now prove

LEMMA 4 ~5gl(Bz)p2(z)-g2(Bz)pl(z)) dz = 0

Proof: gl(Bz)p2(z)dz = igl)g2 (x)dx

,j

= S g2 (Bz)pl(z)dz

Q.E.D.

D(1,2)-DB(1,2)
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THE AVERAGE DIVERGENCE

The interclass divergence is a measure of the degree of difficulty of

discriminating between two classes or populations. However, the general

feature selection-classification problem involves measuring the separation

between m-classes. This section presents the average divergence of m-classes

as a natural generalization of the interclass divergence. The average

divergence is shown to be a measure of the separation between m-classes.

Finally, the average divergence is related to the probability of misclassificatioon.

We assume three distinct classes, normally distributed, although the

generalization to m distinct classes is immediate. Following a procedure

similar to that of Reference 2 for the interclass divergence, define:

P(HilZ) =
qiPi(z)

qlPl(Z) + q2P 2(Z) + q3P3(z)
i = 1,2,3

where qi is the apriori probability of z

follows:

belonging to class i. Thus it

pt(z)
log p2(z) =

pl(Z)
log p(z) =

p3(z) 

log P(H 1 Iz)
log P(H2 j

z)

P(H 1Iz)
log

P(H31 z)

Now define the functions:

sl(Z) = log

s2 (z) = log

s3 (z) = log

p1 (z)
2 (z) + log

P2 (z)

pl(z)p3 (z)
p2(z)

Pl(z)P2(z)

p1 (Z) p2 (z)
= log

P3(z) P2(z)P3(
z )

ql
- log L

ql
- log q

q3
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It is easily verified that sj(z) = max {sl(z), s2 (z), s3 (z)} if and only if

pj(z) = max {p1 (z), P2(z), P3(z)}.

Thus sj(z) > si(z) i = 1 to 3 implies it

i 1~ ~ (is )

is more likely z belongs to class j. We define sl(z) as the information

in z for discrimination in favor of class 1 against class 2 or 3.

The mean information for discrimination in favor of class 1 against class 2 or

3 as measured by class 1 is

1(1:2) + I(1:3) = 1 pi(z)si(z)dz

Similarly, the mean information for discrimination in favor of class 2 against

1 or class 3 as measured by class 2 is

1(2:1) + 1(2:3) = ip2(z)s 2(z)dz

Finally, the mean information for discrimination in favor of class 3 against

class 1 or class 2 as measured by class 3 is

1(3:1) + 1(3:2) = Sp3(z)s3(z)dz

Thus we define the average divergence D as

D = 1(1:2) + 1(1:3) + 1(2:1) + 1(2:3) + 1(3:1) + 1(3:2)

= [I(1:2) + I(2:1)] + [I(1:3) + 1(3:1)] + [I(2:3) + 1(3:2)]

= D(1,2) + D(1,3) + D(2,3)
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where D(i,j) is the interclass divergence between classes i and j. In

general, for m distinct classes,

m m

i=l j=i+l D(ij)

Thus the average divergence D is a measure of the total divergence between

the classes 1 thru m, and as such is a measure of the difficulty of discriminating

between them.

Using the notation of the previous section, it follows the k-dimensional

B-average divergence resulting from the transformation x = Bz is

m-l m

D D
B ( i j )B i=l j=i+l (ij)

We now prove

THEOREM 5 - D = D
B
= pmc = pmc

B

Proof: (1) Assume D = DB. By Corollary 1 of Theorem 3, D(i,j) > DB(i,j) Vi,j

so that is must be true D(i,j) = DB(i,j) Vi,j

(2) By Corollary 1 of Theorem 3

Pi(z ) gi( B z )

D(i,j) = DB(ii) j() > p(Bz)

(3) By Corollary 2 of Theorem 1

pmc = pmcB
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FEATURE SELECTION - AN EXAMPLE FROM THE C1 FLIGHT LINE.

Theorems 3 and 5 suggest that a possible feature selection criterion is

the B-average divergence DB. Since D-DB 2 0, the difference D-DB is a

measure of the information lost in performing the transformation x = Qz.

Moreover, Theorem 5 suggests that the difference D-DB is a measure of the

difference of two classification maps (for the same field) - one generated

using maximum likelihood classification on the gi(Bz). By Theorem 5, the two

classification maps will be the same if D-DB = 0. Also, by Theorem 1, the

classification map generated using pi(z) is the best classification map

possible (with respect to probability of misclassification), so it makes

sense to try and make the classification map generated by the gi(Bz) agree

with that map generated by the Pi(z). Thus our feature selection criterion

is stated simply as

max DB

where B is a k by n matrix of rank k. If the m classes are normally

distributed with means p and covariances Ai, then it is shown in Reference

3 that

B i=l j=i+l DB(ij)

m

D r=l i i 2

where
m

Si [ j=l[i sijT ]ij
j#i

6ij = pi - j
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IDB IDB
Let 3B denote the matrix whose i-j th element is bi , where bij is

ij

the i-j th element of B. Then it is shown in Reference 3 that

m

(DB T -i= [iB - A.iB (BAiBT) (BSiBT)](BAiBT)

/ D B' T
Using the above expressions for DB and it is possible to

maximize DB using any of the many existing optimization algorithms. One

can graphically display "separability" using what we will call a "Class

Separability to be Gained Map" (Reference 5). Consider a coordinate system

whose ordinate (for a given value of k) is DB(i,j) where now B is assumed

to maximize DB . The abscissa is the value of D(i,j), in the original

space, and for a given i-j pair, represents the separability between classes

i and j. Since D(i,j) 2 DB(i,j), the distance of a given point from the

diagonal line D(i,j) = DB(i,j) represents the separability to be gained for

that class pair. Thus for a given class pair, its location along the abscissa

is fixed, and as k increases, the point corresponding to that class pair can

only move vertically toward the diagonal boundary. Obviously, for large

enough k, all the points will lie on the diagonal boundary.
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SYMAT, COVAR - TEST PROCEDURES FOR MATRIX CALCULATIONS

W. L. Morris

University of Houston

The following is a description of the FORTRAN subroutine SYMAT and

related FORTRAN subroutines. This description is intended to supplement the

comment statements that appear in the accompanying FORTRAN program listing.

Included in this listing is a DEMO PROGRAM in which various applications of

subroutine SYMAT are illustrated by particular examples.

Subroutine SYMAT operates on a real symmetric matrix A(N,N) and

produces an orthogonal matrix W(N,N) of approximate eigenvectors of A

along with two vectors C(N) and R(N). The components of C are approxi-

mate eigenvalues of A and the components of R are absolute error bounds

for the approximate eigenvalues. For example, if for some index I the

values of C(I) and R(I) are 10.0 and 0.0001 respectively then there

is an eigenvalue of A in the interval (9.9999,10.0001), or, equivalently,

the maximum relative error in C(I) is R(I)/C(I) which in this case is

0.00001, that is, C(I) is correct to within one part in 100,000. The unit

eigenvector associated with C(I) is the Ith column of W. In the output of

SYMAT the entries in C are ordered with C(1) the largest and C(N) the

smallest in absolute value. The entries in R as well as the columns of W

are arranged to correspond with the indexing of C.

Another input parameter in SYMAT, denoted by REL, allows the user to

specify a desired relative error in the approximate eigenvalues of A. The

actual relative errors produced by SYMAT are a function of the matrix A and

the word length of the computer in which SYMAT is executed. The best relative

errors are produced by assigning to REL the value of zero. When executed on

an IBM-360 using single word (four byte) arithmetic the smallest values of the

relative errors that can be expected consistently are on the order of

0.000005, but this could be improved by executing SYMAT in a computer with a

longer word length or by coding SYMAT to operate in double word arithmetic.
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The theoretical basis for SYMAT is presented in the reference:

W. L. Morris, Inclusion theorems for a section of a matrix,

Numer. Math. 18(1972), 457-464.

In essence SYMAT is an iterative algorithm in which the problem of finding

eigenvalues and eigenvectors of a real symmetric matrix is transformed into

an equivalent problem of finding eigenvalues and eigenvectors of an infinite

sequence of matrices of order two. Within SYMAT it is important that rounding

errors be carefully controlled, especially in computing inner products of

vectors. For this reason function SUPSUM is used to add the components of a

vector which are ordered by subroutine ORDER. These subroutines are used

within subroutine MATMUL which computes matrix products. In addition to being

used with SYMAT, each of the above subroutines can be used in other applications.

The remaining subroutine called by SYMAT is subroutine MINDEX which is used to

select the order of operations within SYMAT.

The DEMO PROGRAM also contains a subroutine COVAR which uses subroutine

MATMUL to compute the covariance matrix (denoted by A) of a data matrix

(denoted by X). Since a covariance matrix is symmetric it can be analyzed

by using subroutine SYMAT. Also the DEMO PROGRAM displays the following

applications of the output of subroutine SYMAT:

1. an approximate inverse of A is computed;

2. a condition number of A is computed;

3. an approximate determinant of A is computed along with a bound

for the absolute error in the computed det(A); and

4. the row norm of W TW - I is computed.

These four items are computed in a straightforward way. If W is an orthogonal

matrix of eigenvectors of A and D is a diagonal matrix of (properly ordered)

eigenvalues of A then AW = WD so that A = WD T . The spectral condition

number of A is the ratio of the largest to the smallest eigenvalue of A.

The magnitude of the condition number indicates the quality of the computed

inverse of A. The determinant of A is the product of the eigenvalues of

A so that the approximate eigenvalues, C(I), along with the error bounds,

R(I), can be used to compute det(A) and its associated error bound. Finally,

since W is orthogonal the row norm of W TW - I is computed and indicates

the quality of the computed eigenvectors of A.
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ABSTRACT

The Nearest Neighborhood (NN) rule is nonparametric,

or distribution free, in the sense that it does not depend

on any assumptions about the underlying statistics for its

application. The k-NN rule is a procedure that assigns

an observation vector z to a category F if most of the k

nearby observations xi are elements of F. The Condensed

Nearest Neighbor (CNN) rule may be used to reduce the

size of the training set required to correctly catagorize

all the elements of the training set.

The Bayes risk serves merely as a reference-the limit

of excellence beyond which it is not possible to go. The

NN rule is bounded below by the Bayes risk and above by

twice the Bayes risk.



Let us begin with a brief explaination of the dis-

crimination problem. For convenience let us consider the

two population case. Let xl,x2,...xm be samples from the

q-variate distribution F ; Yl,Y2,...yn be samples from the

q-variate distribution G, and z be an observation vector

such that z is an element of the union of F and G. The

problem is to decide whether z is an element of F or of G.

In [1] the discrimination problem is classified in three

catagories:

1.) F and G are completely known.

2.) F and G are known except for the values of one
or more parameters.

3.) F and G are completely unknown, execpt possibly
for assumptions about existance of densities,ect.

In this paper we will concern ourselves with the sol-

ution of category three of the discrimination problem by

means of the minimum distance classifier, commonly referred

to as the nearest neighbor (NN) rule. Fix and Hodge [1]

and [2] investigated the kn-nearest neighbor rule. It

assignes to an unclassified observation vector the class-

ifacation most heavily represented amoung it's k nearest

neighbors from a previously classified set of points.

They established the consistency of this rule for sequences

k-woo in such a manner that kn/n-Oas n-po. In [3]n n
T. M. Cover and P. E. Hart showed that for any number

n of samples the single-NN rule (kn=l) has a strictlyn

t1



lower probability of error than any other k -NN rule in

those distributions for which simple decision boundries

provide complete separation of the samples into their

respective catagories. In [4] P. E. Hart proposes the

use of the Condensed Nearest Neighbor rule (CNN) which

retains the basic approach of the NN rule without imposing

the stringent storage requirements of the NN rule.

What are the best results we can possibly obtain

from these procedures? In [2-6] in one way or another

the authors concluded that the minimum probability of

error of the NN rule is bounded below by the Bayes

probability of error and above by twice the Bayes pro-

bability of error. Where the Bayes probability of error

is the minimum probability of error over all decision rules

taking the underlying probability structure into account.

Then if the density functions f and g corresponding to

F and G are known, the discrimination should depend only

on f(z)/g(z)where z is an observation vector. With the

following rule for some c) 0

If f(z)/g(z)> c then z F

If f(z)/g(z)< c then z G

If f(z)/g(z)c c then the decision may be made in an
arbitrary manner.

This procedure known as the likelihood ratio procedure,

L(c), is known to have optimum properties with regard to

control of probability of misclassification. The two



choices of c suggested are:

1.) Take c-l

2.) Choose c so that the probabilities of error
are equal.

In [1] Fix and Hodge define the idea of consistency

in the sense of performance characteristics, in the sense

of decision function, and with the likelihood ratio. They

also proved the following theorem:

If f(z) and g(z) are consistent estimates for f(z)

and g(z) for all z except possibly ZEZf, where
* f, g

Pi(Zf g)=0 i=1,2, then L (c,f,g ) is consistent with
L(c).

Where L (c,f,g^) is the likelihood ratio of the estimated

values f(z) and g(z) of the density functions f(z),g(z).

The problem now is to find consistent estimates for

f and g. In [1] on pages 13 - 20 two procedures are pro-

posed and of the two proposed the second or alternate

procedure is recommended by the authors. This is a quote

of the paragraph on page 20 of [1] in which the authors

explain the alternate procedure.

"Choose k; a positive integer which is large but small

compared to the sample sizes. Specify a metric in the

sample space for example ordinary Euclidean distance.

Pool the two samples and find, of the k values in the pooled

samples which are nearest to z, the number M which are X's.

Let N = k-M be the number which are Y's. Proceed with the

likelihood ratio discrimination, using however M/m in place

of f(z) and N/n in place of g(z). That is, assign Z to



IA

F if and only if

M N "
- (c
m n

If the above procedure is combined with the CNN rule

proposed by P. E. Hart we develop the following algorithm.

Before describing the CNN rule let us define a consistent

subset as a subset of the training set which, when used as

a training set for the NN rule, correctly classifies all

of the remaining points in the training set. A minimal

consistent subset is a consistent subset with the minimum

number of elements. The CNN rule uses the following al-

gorithm to determine a consistent subset of the original

sample set. It should be noted, however, that this sub-

set is not necessarily minimal. We assume that the

original sample set is arranged in some order; then we

set up bins called STORE and GRABBAG and proceed as follows.

1.) The first sample is placed in STORE.

2.) The second sample is classified by the NN rule,
using as a reference set the current contents
of STORE. If the sample is classified correctly
it is placed in GRABBAG; otherwise it is placed
in STORE.

3.) Proceeding inductively; the ith sample is clas-

sified by the current contents of STORE. If

classified correctly it is placed in GRABBAG;

otherwise it is placed in STORE.

4.) After one pass through the original sample set,

I



the procedure continues to loop through GRABBAG
until termination which, which can occur in one
of two ways:

a.) The GRABBAG is exhausted, with all its
members now transferred to STORE.

b.) One complete pass is made through GRABBAG
with no transfers to STORE.

5.) The final contents of STORE are used as training
points for the NN rule; the contents of GRABBAG
are discarded.

Next we choose a positive odd integer k which is large but

small compared to the sample sizes. With the Euclidean

distance we find the k values in the pooled samples which

are nearest to z. Let M denote the number of samples

belonging to F, and N=k-M be the number of samples belonging

to G. Proceed with the likelihood ratio discrimination,

using however M/m in place of f(z) and N/n in place of g(z).

That is, assign z to F if and only if

M N
mi n.



Some of the advantages of the NN rule are that under

very mild regularity assumptions on the underlying statistics,

for any metric, and for a variety of loss functions, the

large-sample risk incurred is less than twice the Bayes

risk, and if the populations are either not well known;

or have very different covariance matrices; or if the

discrimination is one in which small decreases in probability

of error are not worth extensive computations, then the

k-NN rule with k ? 3 should be used.

Some of the disadvantages of the NN rule are that if

the population to discriminated are well known, and have

been investigated to establish that the normal distribution

gives a good fit and that the variance and correlations do

not change much when the means are changed then better

results can be obtained by the linear discriminant function.

From a practical point of view, however, the NN rule is not

a prime candidate for many applications because of the

storage requirements it imposes. Also in using the CNN

rule to find a consistent subset and if the Bayes risk is

high then STORE will contain essentially all the points in

the original sample set.
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Computational Forms for the Transformed Covarience

Matrix of Multivariate Normal Population

Let B be a kxn matrix and use the notation ( )* for the conjugate trans-

pose. In our case the conjugate transpose is simply the transpose, denoted

by ( )T. The properties of the conjugate transpose used here are:

B** = B

(A + B) = A* + B*

(aB)* = aB* where a is a scalar, a, its conjugate

(BA)* = A*B*

BB* = O => B = O

The following matrix equations will define the generalized inverse of B. Let

X be an nxk matrix having the properties that:

BXB = B

XBX = X

(XB)* = XB

(BX)* = BX

Then X is called the generalized inverse of B, denoted by X = B*. It

can be proved that for any B there is such an X, in fact a unique X. [1]

Some of the properties of B are:

B = B
*O +*
B = B

BB = I if B is kxn of rank k

BB and B B are each idempotent (XX = X)

(aB) = a B. where a is any non zero scalar



2

(B B) = B+B

If B is normal (BB = B B) then B+B = BB+ and (Bn)+ = (B+)n

(BB*)+BB = BB

B+ = (B B) B = B(BB )+

AB = O B A = 0

A+ = A71 if A is non-singular

We are interested in (BEBT) 1 , which exists if we restrict ourselves to a

-l -1-1
matrix B which is kxn of rank k. For non-singular matrices (AB) = B A

but unfortunately this result does not hold in general for generalized inverses.

A necessary condition that (AB)+ = B+A+ is that A A and BB commute. A

sufficient condition that the equation hold is that A be of full column

rank and B be of full row rank. The following are necessary and sufficient

conditions that (AB) = B A+:

+ ** * +* *
A ABB A = BB A and BB A AB = A AB

A+ABB+ and A*ABB are hermitian (X* = X)

ABBA ABBA =A BB A A

A AB = B(AB) AB and BB A = A AB(AB)

Noting the symmetry of B+B and BB we have B+B = BTBT+ and BT+BT = BB = .

Thus in our case some matrices for which the reversal rule does hold are:

(BTB)+= B+B T +

(BBT)+ = BT+B+

( LB)+ = B+ Z- 1 for non-singular £ .

(Z BT+)+ = BT -1 for nonsingular .

(B £)+ = r- B+ if 7 is unitary and B is rank k.

(BT+ )+ = - BT if 2 is unitary and B is rank k.
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If Z commutes with B+B then B BTBT + r-lB+ = B B+B B -.B+ =

BB+B Z -lB = BB+BB+ = I. Thus in the case of (BZf BT) -
1

we have a

sufficient condition for the reversal rule to hold. The question becomes,

how far off is BT + -lB+ from (B E BT)
-

1 . The following theorem is a

useful tool in answering this question:

A necessary and sufficient condition for the equation AXB = C to have
a solution is that

AA CB+B = C

in which case the general solution is given by

X = A+CB+ +Y - A+AYBB+

where Y is an arbitrary matrix of the same dimension as X.

Applying this theorem to the equation (B Z BT)(B I BT) 1 = I and using

the preceeding facts yields:

(1) (B I BT)-
1
= BT + -lB+ + BT+ L-1(I B+B)Y for some Y. [7]

Using the fact that A 1A = I we find that Y must satisfy the equation:

(B
T + Z -lB+ + BT L -' _ BT+ L 1B+BY)(B z BT ) = I

which simplifies to

(2) BT+ -l(I - B+B)Y(B [ BT) = I - BT + -1B+B LB T

-1
while, since also AA = I,Y must satisfy:

(B BST )(BT+ -l1+ + BT+ -l T B+BY) I

which can be written as

(3) B B+B - 1(I - B+B)Y = I - B Z B+B -l B .
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Applying the same theorem to (B L B+ )(B Z B+) 1 = I it can be shown that:

(B BT)
1
- BT+ E-lB+ = (B Z B+) - B Z B+.

In the case of divergence we would be satisfied to solve the problem for

B = BT or even for B = (Ik,cp where Ik is the kxk identity and 0 is

the kx(n-k) zero matrix, since in [5] it is shown that in the equivalence

class where maximum divergence occurs there is a B such that B+ = BT and

A A
from [6] we know that any such B can be written as B = IU where I = (Ik,O)

and U is an nxn unitary matrix.

Theorem: Let B = I

matrix, Z -1 L4 5 

5 /

3 and 6 are (n-k)

Tso that B and Y are

= (IkO),

Y = 1

2

x (n-k),

kxn and

\r( T ) X '

where Y 1 'E

a positive definite

and 24 are kxk, and

the other matrices being appropriate sizes

7 is nxn. Then Y = 1-1 T satisfies
6 5

(3) above.

Proof: First note that B+ = I = By substitutionthe equation

i+A £-A 0\^A -lA+

(In - tY = I
k

I I I + 

becomes i

(I kO) ' )( ) (Ik' ) ( 'kT O)) Y(
Tk ( i ° T n 5k 0) 
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Completing the multiplication we have

(0, L1 5)(Y) = Ik - l1 4

Since I.- 1 = I, 'l 4 + 2f5 = I and 2-15 + Z2 6 = 0 this yields :

2 6 2 2 5

Since ' is

Appendix 1)

choice for 5

positive definite so also is I- and thus i26

Thus Y = (Z -1 Z T satisfies (3). Note that i

Y will be acceptable.

exists. (See

any k x k

Corollary: If B = IU where U is a unitary matrix and II and Z are

as in the theorem, then

Z =U U-1z.= UF U

u-l(
o TA

6 51
2\

\ /

an 1 -1-and Z -1=U U =

A

satisfies (3)

4 5
4 5

T 
5 6

Proof: Since I is rank k and U, unitary, the reversal rule holds and

B+ = U I . By substitution (3) becomes:

( (-VT) (A-U) 1 I_ r A
(IU) ,(U -I )(IU) -l[I-(U-I )(IU)]

(A -1-T A -I -VT
= I -(II0 _ (U )(I L (IT)

Writing I as U-1 U, factoring and reassociating we have:

-^ AT ^ -1U1) AT
I(ULU U) I I(UL )[I-I I)UY

= I - I(U E U-1)I I(u -%U-l)f
~

whereY=
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Since 2= U U 1 is a similarity transformation 2 is positive positive

definite if and only if f is positive definite. Thus 6 1 exists and6

the result of the corollary is immediate.

Note that U U1 = U UT is the known covarience for the transformation

Y = U X. Thus the problem of finding a B which maximizes divergence can be

treated as a variational problem on U since I is a constant. This may

further simplify the problem since the set of unitary matrices form a group.

Appendix 1:

There are several equivalent definitions of a positive definite symmetric

matrix. The definition used in [8] is:

A hermitian matrix is said to be positive definite if all its characteristic

roots are positive.

From this definition the following theorem is proved [8].

A hermitian matrix is positive definite if and only if the determinants

of all its principal submatrices are positive.

Using this theorem we will prove the following: I

Theorem: If 7 is positive definite where 2 = 1 2) where Z1 if
T

k, i3 is (n-k) x (n-k) and 2 is (n-k) x k then 3-1 exists.

nk Consider K = where I and I are identities off: Consider K Ir where 11_ and are identities of
Ik Z / 1K

and (n-k) x (n-k) respectively and

x k. The inverse of the matrix K is

dimension k x k

dimension (n-k)

s

Z is a zero matrix of

n-k Ik

\In-k Z

kx 

Proof



-1 -K K 
( Z I n-k' )

zT

-l3 z2 I

1 Z2 n-k Z 2 1

K X K
-

1 is a similarity transformation on 2 so the eigenvalues are

preserved. Thus since X is positive definite so also is K I K 
- 1 Hence

as 3 is a principal submatrix of K K-
1 by the theorem quoted from [8]

,3 -1 exists since it has positive determinant.
3/ \

Corollary: If Z is positive definite and X 1£T 4 5 then

exists. /
5 ~6

Y6 - 1

Proof: If the characteristic roots of f are Xl' t2' '*' Xk then the

characteristic roots of 2-1 are Al 1, .2 Xkk . Thus if E is positive

definite, Xi > 0 for i = 1, ..., k which implies that Ai > 0 in-which case

~-1 is positive definite. Hencei8-l exists by the previous theorem.

7

k Z
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In handling expressions which involve matrix inversion and multi-

plication, the following theorems are often useful:(l)

Theorem: If A is a positive definite matrix, there exists a non-

singular matrix F such that FAFT = I

Theorem: If B is positive semidefinite and A is positive definite,

there exists a nonsingular matrix F such that FBFT = D and

FAFT = I, where D is a diagonal matrix whose diagonal ele-

ments are the roots of the equation det (B - XA) = O. If

B is positive definite, then the X's are all greater than

zero.

The expression for the interclass divergence between two classes is

(1) D(1,2) = ½ tr [(Al-A2)(A2 -A 1 )] + ½ tr [(A- +A2 )66T]

where Ai (i = 1,2) is the covariance matrix for class i and 6 is

the difference between the mean vectors for classes 1 and 2.

The second of the above theorems has been used(2) to simplify (1).

In (1), the covariance matrices are positive definite. However, the

term 66T is not. If results such as the two theorems above could be

applied to any of the matrices in (1), the simplifications might be more

useful. To that end we prove the following:

Theorem 1 - If 6 is an nxl matrix and e > 0, then 6 6T + eI is

positive definite.

(1)_
T()T. W. Anderson, An Introduction to Multivariate Statistical Analysis

(New York: John Wiley and Sons, Inc., 1955), pp. 339-341.

(2)C. Chitti Babu, "On the Application of Divergence to Feature Selection
in Pattern Recognition," IEEE Transactions On Systems, Man, and Cyber-
netrics (November 1972), 667-670.

/ -13



Proof: 66T is obviously symmetric and for every nxl vector x

(2) xT66Tx = (x T6)T(6Tx) = (Tx)(6 Tx) > 0

The symmetry of 6 6T + eI is obvious and

(3) x (66T+eI)x = xT 66Tx + exx > 0

The desired result follows from the fact that ex x = 0 if and

only if x = 0.

We will denote the divergence with 66T replaced by 66T + eI by

De (1,2).

Theorem 2 - For a> O, there is an e> 0 such that IDe(1,2)-D(1,2)1< a

Proof: IDe(1,2)-D(1,2)I = 1½ tr [(Al-A2 )(A2 -Al )] +
-l -i -l -l

2 tr [(Al +A2 )(6 6T+eI)] - tr [(Al-A2)(A2 -Al )] -2 tr1r -l ½ 1 -2 ½ 2

[(ATl+A2 l)66T]I = ½(tr [(All+A21)68T] + tr [(A1 -A2 1)I]

- tr [(Ai+Al)566T]= e I tr (Ail+A2l)I. Given Ca > 0

choose 0 < e < 2 a and the result follows.

Itr(AT1 +A1 ) I

The usefulness of Theorem 2 is that when considering the divergence

expression D (1,2), it may be replaced by an expression, De (1,2), involving

only positive definite matrices, the numerical value of which differs from

D (1,2) by an arbitrarily small amount.
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Introduction

The technique development that follows is concerned with selecting from

n-channel multispectral data some k combinations of the n-channels upon

which to base a given classification technique so that some measure of the

loss of the ability to distinguish between classes using the compressed

k-dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of

classifying into one of m distinct n-variate classes (each distributed

according to N(liZ
i
) i=l, ... m) an arbitrary n-channel multispectral

measurement vector x. The classification procedure will be the maximum

likelihood procedure. Information loss in compressing the n-channel data

to k channels will be taken to be difference in the average interclass

divergences (or probability of misclassification) in n-space and in k-space.

We will assume that data compression will be accomplished by kxn linear

transformation i.e., multiplication of the spectral n-vector by a kxn

matrix of rank k. It should be noted that perhaps the only reason (beyond

that of generalizing the idea of "feature selection") for restricting trans-

formations to be linear transformations of rank k seems to be that of

convenience. The idea of information, divergence and invariance under trans-

formation of variables (for example as discussed by Kullback [1]) is limited

only to measurable transformations.



B-AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

n-dimensional mean vector for class i.

Ai
n by n covariance for class i, assumed to

bd positive definite.

Let 6iJ m ji so that 6ij ij
T - 6i iT

iJ "]i -ij ij ii i

The interclass divergence between classes i and J is

D(i,j) - tr{A1 (Aj + 6 6ij )} + 2tr(A1 (A + ijT)n

Note that when Ai M Aj and pi = ajp

D(i,J) - 0

so that D(i,j) is in a sense, a measure of the degree of difficulty of

distinguishing between classes i and J, with the larger the value of

D(i,J), the less the degree of difficulty of distinguishing between classes

i and J.
Ca L J-

There is a discussion in Reference [1],[41 of a natural generalization

of the interclass divergence i.e., the average interclass divergence, defined by



..m-l : m

ri

D - i-i j--il D(i,j)

M1t{ -l A+ 6j j T) -m(m-1) n
2 -ii j _ 2

m
1 tr{A A - m(m-1)

t' =i i 2

where
m

Si l [Aj + 6ij 6 ij
T ]

We are interested in performing the transformation

y = Bx

where

x ; an n-dimensional observation vector

B ; a k by n matrix of rank k, with k < n

y ; the k-dimensional transformed observation vector

.It is known [3] that corresponding to the transformation y - Bx,

the means transforms,

and teoa c Bti

and the covariances transforms,

Ai ---- BA BTi i



Thus subsequent to performing the transformation y - Bx,

we have m classes with means and covariances

BPi ; k-dimensional mean vector for class i
r

BABT ; k by k covariance for class i, (which is positive

definite by the assumptions on B and Ai).

Thus in k-dimensional space, the B-induced interclass divergence DB(1i,),

is, by definition of the interclass divergence;

I T-l T )BTI
DB(iJ) tr{(BAlB ) B(Aj + 6 ij 61j)B }

+ 1 tr{ (BAjBT)-lB(A + 6 6 )BT - k

Similarly, in k-dimensional space, we can define the B-average interclass

divergence, DB, as

m-l m

DB iil =i+lDB( i
'J

)

m

1 tr{i [(BA1 BT) I(BSiBT)] m(m-1) k2 IPB B(Bn, i 2

where, as defined previously

m

s [hiA~ + j 6'j]Ji 6j j ij
jij

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.

It is shown in Reference t2] that a measure of the information lost is given

by the difference

D - D
B
2 0

We are interested in minimizing the information lost, as measured by the

average interclass divergence. Thus, it is desired to maximize the B-average

interclass divergence, or equivalently, minimize - DB.

For p and k integers (p < k) it is shown in [1] for measurable

transformations (in general non linear) B :E n to EP and Bk: onto Ek

that D
B

' D . This fact, of course, orders (according to dimension) the
Bp BkB
P K

transformed divergence and, thus, one cannot "gain information" by "compressing"

or "reducing" the dimension of the data. It is, under certain conditions,

possible that there is no loss of information in compression i.e., DB = D

in which case we say that B
k

is a sufficient (relative to divergence) statistic

[1]. The question of the existence of sufficient statistics has not been resolved

to any workable degree.

In an attempt to analyze the problem of maximizing (if possible) DB as a

function of B
k

we begin by making the following definition.

Definition: If k is an integer and Bk:En ont-oEk is measurable then Bk

will be called a rank-k maximal statistic provided that for every measurable

An ont k

k k
In other words a rank-k maximal statistic is a measurable mapping of

En onto Ek that makes the transformed divergence as large as possible for a

given compression to a k-dimensional subspace. Note that this concept (as



well as the concept of sufficient statistic) does not depend on linear trans-

formations. Since the current problem setting is that of multivariate normal

variables we will first examine the multivariate normal case and pursue the

problem in more generality later. The merit of pursuing the non linear problem

would be the discovery of conditions under which nonlinear rank-k maximal

statistics are sufficient statistics. Moreover, it is not known whether or not

nonlinear sufficient statistics exist whenever there do not exist linear

sufficient statistics.

We will first determine (in the multivariate normal case) whether or not

there exist linear rank-k maximal statistics for a given k < n. Note in

this case, that in the definition the term "rank-k..." can actually be

interpreted as "matrix of rank-k" since, for linear transformations, B is

kxn and rank (Bk) = k if and only if Bk maps En onto Ek.

In what follows we will drop the subscript k on the transformations

B
k

unless the meaning of the symbol B is not clearly implied by context.

Definition: 8 will denote the set of all kxn matrices of rank k for a

given integer k. We will regard 8 as a metric (topological) space whose
topology is given by the metric induced by the norm:

II BU 1.(b i )b

First observe that if B B is a rank-k maximal statistic

(i.e., B maximizes DB) then there exists some B C £ such that BBT = I

and DB = DB. This follows from the fact that there exists a non singular

kxk matrix P) (pB)(pB) = I. Noting that divergence is invariant under

non-singular transformations, Dpt = D~ and B = PS will satisfy the



required conditions. Again, this says that if there is a B that maximizes

DB then there is some normalized B"(i.e., BB = I) which produces the

same maximum value of D
B
. In other words the-maximum value of DB is attained

on the set:

o = {B EC : BBT = I}

and we may therefore limit our search for the optimum B to the set o'

The fact that there actually is at least one B that maximizes D is

established as follows. First note that o is a compact subset of a

Indeed, it is easy to see that P is a bounded set (with respect to /.//)

since for B 1C B /IBI= tr BBT -= = . Moreover, is a

closed set since for any sequence of elements B in converging to
s o

B e Lwe have, BsB T I has limit I. On the other hand, matrix multiplication
ss

is a continuous mapping so that I = lim B BT = (lim B ) (lim B T) = BBT and
swSS s s , s-

hence B e W. £6 is both topologically and algebraically equivalent to

Ek n so that viewing ~ as a subset of Eken and recalling that closed

and bounded subsets of Ekn are compact, we have the desired result.

Now, again, the continuity of matrix multiplication and addition implies

that DB is a continuous scalar valued functions on a compact set i so

that, in addition to being bounded above, DB must attain its maximum value

at some point of Ao. This guarantees the existence of a rank-k maximal

statistic and a solution to the problem.

This solution is by no means unique. As in [5] there is at least an

entire equivalence class of matrices B that produce the same maximum divergence.

For example in the equivalence class determined by a given solution B, any



unitary transformation of B, say UB has the property that DUB = D
B

and

UB(UB)T = UBBT U
T
= I so that there are infinitely many different "normalized"

solutions.

Basicaally these results allow the search for the optimum B to be

limited to the set o rather than the entire class of matrices tv The

following results restricts the region to be searched even further and given

some geometrical insight into the character of a solution. Keep in mind that

these conditions are eventually going to be used in finding the form of a

B that satisfies the expression for the gradient of D
B

with respect to B

that appears in [4].

The following theorem will be useful in effecting the reduction of the

class of matrices to be searched for the optimum B.

Theorem: (Singular Value Decomposition) For each real kxn matrix B there

exist unitary matrices V(kxk) and U(nxn) such that:

B = V Q U

where Q is a kxn matrix Q = (wij) such that wiJ = 0 if i # j and

Wij is an eigenvalue of BB
T

for i = j.

Corollary: If BBT = I then for k < n

B = V(Ik I Z)U

where Ik is the kxk identity and Z denotes a k X(n-k) matrix of zeros.

Using the corollary and the rank-k maximal statistic B, note that

V-1B = (Ik I Z)U and that the V-l B--transformed divergence is the B-trans-

formed divergence is the (IkI Z)U-transformed divergence. i.e.,

DB DV l1 B D(IkI Z)U



This says that there exists a unitary matrix U for which the B = (Ik Z)U -

transformed divergence is maximum. Another way of looking at it is as follows.

"BestY linear combination of features can be selected by applying, for the

proper choice of unitary matrix U, the transformation

Y = (Ikl Z)U X

kxn nxn nxl

which amounts to "rotating" or "reflecting" the original coordinates of the

spectral measurement space (i.e., X---UX) then selecting the first k

components of the resulting vector (i.e., Y = (Ikl Z)(UX).

There are several questions related to these results and they are directly

related to the discovery of how they may simplify the calculations of the

gradient of D
B

with respect to B.

1. Find the expression for the gradient of D(IkI Z)U

with respect to U.

2. Examine decompositions of U (spectrally, Householder

transformations, etc.)

3. Relate U to the normalized eigenvectors of the population

covariance matrices.

4. The set of all unitary U form a compact group in

Examine the group representation applications.

5. The group in 4 is globally parameterizable. Examine

applications from theory of Lie groups.
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ON rT'.Z DE'IVATIVE OF THE GENERALIZED INVERSE OF A IMATRIX

by

Henry P. Decell, Jr.

A-n c-:)'rc-ssion for the1 deivative of thile C - inverse of a different-

ae ra;-;rix ^. is given wherever that inverse is indeed differentiable.

1. Introduction

It is wall known that if A is a complex matrix whose entries are

dl-ffrentiable functions of t, then

cdA _A AA (1)dt dt

dA- 1 - 1 d A-1
-- = - A7 (2)

dt dt

in t;ia case ;;at A is singular or perhaps even rectangular, Hearon [i]

_ giv necessary and suff-icien conditions that a differentiabie such A

;.-ve a diferentiale gcsneralized inverse. In addition, necessary and

-1
scuflai.e-a conditions are given that (1) and (2) remain valid when A is

relcac by a differentiable generalized inverse of A. Of course, this

Xki: of subs.titution does not always preserve (1) and (2) and it will be the

--:,ose c, this paper to give a general expression for the derivative of

:c 4 - nverse of A (whenever that derivative, as well as the derivative

of A, exists).

:an:y v. De , cel r., Ma, thematics Department, University of Houston, Houston,
_::a$s 77004.



-.. c2 A.(.A- X %- A X )XA 0 and post muljtiplication of this expression by

X )yiids

LA ' X = - A X (i.e. (7)).

ne conjugate t-ranspose of the latter e-r.,ession is

X )X. S = - X XA

a.d, of course, holds for any A that is dif-erentaible and has a dI-era.t-

iabol C, - inverse. It is clear that A satisfies these properties si.zce

(A ) = (A) and (A+) = (A ) . It follows that,

2 XX. A-A -= -) XA (i.e. (8))

'..Oal. 7.f ,A is con;nlex and if A and A' are differentiable then

A+ = - A' + (AA+ + AA' A)
* *

- AA(A A A + AA A )AA

Proof: Formal differentiation of (4), (5), (6) yields;

X = XAX + XAX + XAX (4)'

,X A -- X A = AX + AX (5)'

A X + A X = XA + XA (6)'

w.:kare X denotes the generalized inverse A
+

of A. Moreover, appropriate

:.:u-_iplications of (6)' and (5)' by X yields;

~',: ' ,, ' .'
X2X = - XAX + A X X + A X X

XAX = - XaAX + XX A + XX A

so -hat (4) implies,

X = A X X + A X X - XAX + XX A + XX A

I



-4-
. ac Corollary implies

X = - XAX - XAA X X + A X X - XX A AX + XX A

~a-.d since X = A we have

(A') = - A'AA - (A AA + AAki A")

- A A(A. A' A+ A A A )AA

4. Concluding Re.-arks

It is interesting to note that the theorem implies (A') is a solution

of the ecqution A, A -= A which, of course, is analogus to (2). In fact,

xwe kno;w t-hz; wien this equation has a solution, all solutions are given by

+L +
Z -- A '.' -- A YAA for arbitrary Y havin

S
the dima.oo:; s of - f2].

'l;his observation would prompt one to construct the particular Y for

which Z = (A) (whenver (A') exists) if (2) were to be preserved in

so.:a recogzizable eway. This is in fact, what was done and, although the

+ .+ + +A
ar-u..e;nt o'- he theorem follows other lines, Y = A A A + A A A

It would also be interesting to know the significance, if any, of the

expression

- AA T* + (AA A A ) - A A(A A A' + A'A A )AA

whenever A exists and (A') does not. To write the expression only

_,cuires the existence of A.

Finally, we have omitted any restatement or generalizations of the re-

sauls in fl1 since the application of the results herein to [11 seem rather

s traight f orward.
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Introduction

The technique development that follows is concerned with selecting from

n-channel multispectral data some k combinations of the n-channels upon

which to base a given classification technique so that some measure of the

loss of the ability to distinguish between classes using the compressed

k-dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of

classifying into one of m distinct n-variate classes (each distributed

according to N(pi.i) i=1, ... m) an arbitrary n-channel multispectral

measurement vector x. The classification procedure will be the maximum

likelihood procedure. Information loss in compressing the n-channel data

to k channels will be taken to be difference in the average interclass

divergences (or probability of misclassification) in n-space and in k-space.

We will assume that data compression will be accomplished by kxn linear

transformation i.e., multiplication of the spectral n-vector by a kxn

matrix of rank k. It should be noted that perhaps the only reason (beyond

that of generalizing the idea of "feature selection") for restricting trans-

formations to be linear translformations of rank k seems to be that of

convenience. The idea of information, divergence and invariance under trans-

formation of variables (for example as discussed by Kullback [1]) is limited

only to measurable transformations.



2

B-AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

n-dimensional mean vector for class i.

Ai n by n covariance for class i, assumed to

De positive definite.

T 6 6 T
Let ij i 1 so that 6ij 6ij ji ji

The interclass divergence between classes i and j is

D(i,j) = 1 tr{Ail(Aj + 6 6ij T)} + 1 tr{Al(A + 6iT)} n
~2 i j iij 2 ji ijij

Note that when Ai = Aj and pi = Pj'

D(i,j) = 0

so that D(i,j) is in a sense, a measure of the degree of difficulty of

distinguishing between classes i and j, with the larger the value of

D(i,j), the less the degree of difficulty of distinguishing between classes

i and j.
L1

There is a discussion in Reference, [1],[4] of a natural generalization

of the interclass divergence i.e., the average interclass divergence, defined by



3

.m-1 : m

D z D(ij
i=l j=i+l D(iJ)

1 tr{ A1 A + T m(m-1)
2 i=l I j1j =ij ij 2

joi

m

1 tr{Ai1 i m(m-1) n
2 i=- i i 2

where
m

Si = [Aj +6ij ij

j#i

We are interested in performing the transformation

y = Bx

where

x ; an n-dimensional observation vector

B ; a k by n matrix of rank k, with k s n

y ; the k-dimensional transformed observation vector

It is known [3] that corresponding to the transformation y = Bx,

the means transforms,

andi the covariaces trasfors

and the covariances transforms,

A --- O BA BTi i



4

Thus subsequent to performing the transformation y = Bx,

we have m classes with means and covariances

Bpi ; k-dimensional mean vector for class i

BA.B ; k by k covariance for class i, (which is positive

definite by the assunptions on B and A i).

Thus in k-dimensional space, the B-induced interclass divergence DB(i,j),

is, by definition of the interclass divergence;

1 T )B }
DBti'J) = 2 tr{(BAiBT)-B(Aj + 6 j 6ij)BT

2 tr{(BAjBT)- B(A) + 6 6TB k
2 B(Ai ij ij)-

Similarly, in k-dimensional space, we can define the -B-average interclass

divergence, DB, as

m-l m

B i=l j=i+lDB( i

m

tr{ i [(BA BT)- (BSBT)} m(m-1) k

where, as defined previously

m

= r[A + 6 6 1.T
i j=l_ ij ij

joi

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.

It is shown in Reference [2] that a measure of the information lost is given

by the difference

D - DB > O

We are interested in minimizing the information lost, as measured by the

average interclass divergence. Thus, it is desired to maximize the B-average

interclass divergence, or equivalently, minimize - DB.

It is known that if P is any kxk nonsingular transformation then the

transformed B-average interclass divergence is an invariant under the trans-

formation P (i.e., DB = DpB) DB is not invariant under singular transformations.

One can define an equivalence relation on the set of all kxn (rank k)

matrices s as follows. Call B14 B2 (for B1 Ed and B2 e if and only1: B2 1 ~ and B2 s~) if and only

if there is some nonsingular kxk matrix P such that B1 = PB
2
. It is an

easy task to verify that this relation is reflexive, symmetric and transitive

so that the set B is partitioned into disjoint equivalence classes whose

union is B. We will denote the set of equivalences by T/'C . Note (by

definition of an equivalence class in j~/ ) that the value of the divergence

at each representative element of a given equivalence class is constant. This

indicates that if there is a "best" kxn transformation B (in the sense of

maximizing DB) then each element of the equivalence class determined by that

B is also an element of I that is "best". Note further that each equivalence

class contains infinitely many elements so that if there is a "best" B then

there are infinitely many so (there may even be more outside of the equivalence

class in question (i.e., distinct equivalence classes may have same divergence)

This problem is of great importance in actual computation of a "best"



B sC. The expression for the quantity DB is non linear in B and

iterative schemes that might be used to calculate the "best" B may well

tend to exhibit convergence problems due to the large number of B C L

maximizing (or producing a relative extremum) of DB.

Several problems are currently under study:

1. Determine a workable form for the variation of DB

with respect to B.

2. Characterize (by some workable computational means) a

single representative element in each equivalence class

some one or more of which account for all relative extremums

of DB.

3. Determine the number (or cardinality) of aCn .
4. Determine some ordering _ on '/C (or subset thereof)

LA LA

on which B1,B
2

C /c and B1 B2 => DB1 DB2 for

every B
1

B
1

and B2 B
2
.

5. Determine whether or not DB actually attains its maximum

value at some (and hence at infinitely many) B C L

6. Characterize proper subsets of t on which DB attains

its maximum (or relative extremum) value.
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Introduction

The technique development that follows is concerned with selecting from

n-channel multispectral data some k combinations of the n-channels upon

which to base a given classification technique so that some measure of the

loss of the ability to distinguish between classes using the compressed

k-dimensional data is minimized.

In what follows we will assume that we are dealing with the problem of

classifying into one of m distinct n-variate classes (each distributed

according to N(piCi) i-l, ... m) an arbitrary n-channel multispectral

measurement vector x. The classification procedure will be the maximum

likelihood procedure. Information loss in compressing the n-channel data

to k channels will be taken to be difference in the average interclass

divergences (or probability of misclassification) in n-space and in k-space.

We will assume that data compression will be accomplished by kxn linear

transformation i.e., multiplication of the spectral n-vector by a kxn

matrix of rank k. It should be noted that perhaps the only reason (beyond

that of generalizing the idea of "feature selection") for restricting trans-

formations to be linear transformations of rank k seems to be that of

convenience. The idea of information, divergence and invariance under trans-

formation of variables (for example as discussed by Kullback [11) is limited

only to measurable transformations.



B-AVERAGE INTERCLASS DIVERGENCE

Assume the existence of m distinct classes with means and covariances

Vi n-dimensional mean vector for class i.

A
i

n by n covariance for class i, assumed to

be positive definite.

.iT 6 TLet 6ij i j so that 6ij 6 6ji i

The interclass divergence between classes i and j is

D(ij) - tr{A'(A +6 6 + f t 1 1 (Ai + 61 6ijT) n

Note that when Ai - Aj and p i a Pji

D(ij) = 0

so that D(i,j) is in a senses a measure of the degree of difficulty of

distinguishing between classes i and f, with the larger the value of

D(i,j), the less the degree of difficulty of distinguishing between classes

i and J.
o-) iJ

There is a discussion in Reference' [1],[43 of a natural generalization

of the interclass divergence i.e., the average interclass divergence, defined by



3

..m-l ' m

D Z Z D(i,j
i=l J=i+ D(i )

m

2 1 t Ai (jE + i6j 6 JT ])} m-2
jSi

m

2 tr{ i i 2

where

Si [AAj + tij T

joi

We are interested in performing the transformation

y - Bx

where

x ; an n-dimensional observation vector

B ; a k by n matrix of rank k, with k s n

y ; the k-dimensional transformed observation vector

.It is known [3] that corresponding to the transformation y = Bx,

the means transforms,

and the covariances transforms, , 

A ,- BA iBT



Thus subsequent to performing the transformation y - Bx,

we have . m classes with means and covariances

BP
i
; k-dimensional mean vector for class i

BAiBT k by k covariance for class i, (which is positive

definite by the assumptions on B and Ai)

Thus in k-dimensional space, the B-induced interclass divergence DB (ij),

is, by definition of the interclass divergence;

DB(i,) 1 tr(BAiBT) -B(A j + 6j)BT

+ l tr{(BAjBT)- B(Ai + 6tj 6 )BT) - k

Similarly, in k-dimensional space, we can define the B-average interclass

divergence, DB , as

m-I m

DB = i-l -i +lD(i B 
)

m , .

tr{ [(BAT BT)-i(BSiBT)]} _ ( ) k2 il 2

where, as defined previously

m

[Aj ,+ 6i ij .
j~i

Note that in performing the transformation y = Bx, the dimension of each



observation is reduced from n to k, so that in a sense, information is lost.

It is shown in Reference [2] that a measure of the information lost is given

by the difference

D - DB 2 0

We are interested in minimizing the information lost, as measured by the

average interclass divergence. Thus, it is desired to maximize the B-average

interclass divergence, or equivalently, minimize -DB.

When the criterion for "feature selection" is based upon the probability

of misclassification for n-variate normal classes N(piZi) i = 1,....M

one encounters the problem (as in the expression for B-average interclass

divergence) of handling an expression of the form (BEiB T)- i.e., the

inverse of the covariance of the transformed n-variate spectral variables.

This expression appears in each class density in the quadratic form (BX-Bpi)T

(BiB T)- (BX-Bli) where B is the rank k, kxn matrix to be selected that
1 1

minimize the probability of misclassification. Note that if k = n then

(BiB T) = B- 1i-1B
- 1

and the quadratic form above then remains invariant

under the transformation B.

Since B is rectangular (kxn) and of rank k, we can at most generally

guarantee that (BEiB ) is indeed an invertible kxk matrix. We cannot,

however, hope that the relation between the inverse of BEiBT and the inverse

of Zi is as simple as that in the case k = n. Indeed, it makes no sense

to talk about the "inverse of B" to start with. It is possible to develop

an expression for the inverse of BZ.B
T

in term of the generalized inverse

of B and the inverse of i..
1



To this end we will recall the definition of the generalized inverse of

an arbitrary real matrix A, and a theorem applicable to the derivation of

the expression for the inverse of BE.B .

Theorem: (Penrose) [5] For each real matrix A there exists one and only

one matrix X that simultaneously satisfies the four equations

1. AXA A

2. XAX=X

3. (XA)T = XA

4. (AX)T = AX

The unique X in this theorem is called the generalized inverse of A and

is denoted X = A
+

.

Theorem (Penrose) [5] Any matrix equation A X B = C has a solution X

if and only if

AA+ C B+B = C

The general solution (if there are any solutions (s)) is given by

X = A+CB + Y - A+AYBB+

where Y is any matrix having the dimension of X.

We apply the latter theorem in the following way.

It is certainly true that BZ.B
T

has an inverse since B has rank

k < n and E. has rank n. Hence we must have

(BEiB T)(BiBT)- 1 = I.
i i
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This establishes the fact that the matrix equation

BX = I

has a solution

and that (by the second theorem) there must be some Y such that

iBT(BE BT)- = B + (I - B+B)Y

or

BT(BEiBT) - = Zi B + Z1(I - B+B)Y

Now since B is of rank k, it follows that BTBT = BB = I so that

multiplying the latter equation by B +T we find that

(BEiBT)-i = B+T ilB+ + B+T Zi(I - B+B)Y

The problem now is to find out just what Y looks like and to examine

conditions under which Y = Z (the zero matrix) will work.

This problem will be attacked in a later work.
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INTRODUCTION

This paper considers the problem of feature selection or reducing the
dimension of the data to be processed from n to k. By reducing the dimen-
sion of the data from n to k, classification time is generally reduced.
Yet the dimension reduction should not be so great that classification
accuracy is impaired. Thus, consider the general problem of classifying
an n-dimensional observation vector x into one of m-distinct classes

,i' i=1,2,...,m where each class Ti is normally distributed with mean pi
and covariance Ai, so that we write Ti = i(Aji Ai). As shown in Reference 1,
the probability of misclassification is minimized if a maximum likelihood
classification procedure is used to classify the data. Thus, the notation
PMC is used to denote this minimal probability of misclassification. The
dimension of each observation vector to be processed can be conveniently
reduced by performing the transformation y = Bx, where B is a k by n
matrix of rank k. Thus, the n-dimensional classification problem transforms
into a k-dimensional classification problem. The problem becomes one of
classifying each k-dimensional observation vector y into one of m-.distinct

classes ·rl wherenow 1Ti Ti lT, Tclasses ri, where now ri = ri(Bi, BAiB ). In this k-dimensional space
determined by the rolw vectors of B, the minimal probability of misclassifica-
tion resulting from applying a maximum likelihood classification procedure is
denoted by PMCB. Since the transformation y = Bx produces a linear combin-
ation of the components of the observation vector x, it can be shown that, in
general, infonrmation is lost and

PMC
B
> PMC

Thus, for a fixed k, the feature selection problem could be stated as:
select a k x n matrix B from the class of all k by n matrices of rank k
such that

PMC- - min PMCB

where PMCB represents the probability of misclassification resulting from
applying a maximum likelihood classification procedure on the transformed
data Bx.



The problem of evaluating and minimizing PMCB is handled indirectly.

Let D(i,j) denote the interclass divergence between classes i and j

(Reference 2), as determined using n-dimensional information. Similarly,

let DB(i,J) represent the interclass divergence between classes i and j

resulting from performing the transformation y = Bx. It is noted that

the interclass divergence is a measure of the "degree of difficulty" of

discriminating between classes ai and ij, with in general, the larger

the interclass divergence, the greater the "separation" between classes

ni and rj. Since (Reference 2) it is true that

D(ij) > DB(i,j)

it follows that the difference

D(i,j) - DB(ij) 0

can be considered as a measure of the separation to be gained for classes

ri and 7j. If the average divergence for m classes is defined by

m-l m
D D(i,j)

i=lj=i+l

it follows that the "B-average divergence", DB, satisfies

m-1 m )DD
DB = E DB(i,) < D(ij) D

i=l j=i+l i-= j=i+l

i.e., that DB < D for every k x n matrix B; k = l,...,n.

We will prove the following theorem.

Theorem: If D = DB, then PMC
B
= PIC.

These results suggest for fixed k less than n, that one should select B

so as to maximize DB.
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An initial approach to the problem of selecting the "best" k could be

obtain the "best" B for various values of k less than n. Then select an

"adequate': value of k by computing the difference D - DB, and comparing

D(i,j) with DB(i,j) for all distinct class pairs, where now, B is assumed

to maximize DB for a fixed k. The comparison of D(i,j) with DB(i,j) for

all distinct class pairs will constitute what we will call a "Class Separa-

bility to be Gained Map". For a given set of classes ri and Tj, the value

of DB(i,j) can be considered to represent the separability between classes

"i and aj resulting from the transformation y = Bx. The difference D(i,j)
- DB(i,j) > 0 represents the separation to be gained for this class pair.
Thus, we desire to find an integer k (preferably as small as possible) and

corresponding optimal B such that the difference D(i,j) - DB(i,j) is "small"

for all distinct class pairs.

Tou and Heydorn (Reference 3) proposed a procedure to maximize DB(i,j),

as a function of B. However, this procedure is valid only in case m = 2,

i.e., the two class problem. Babu (Reference 4) extended the above procedure

to the multi-class problem by proposing a procedure for maximizing DB. Both

procedures amount to computing the gradient of the appropriate function DB

or DB(i,j) with respect to B. Babu's expression for the gradient of the

average divergence DB with respect to B is (in addition to being incorrect)

rather lengthy and numerically unattractive since it is expressed in terms

of many eigenvalues and eigenvectors.

In this paper, we derive a simple expression for the gradient of DB

with respect to B. This expression for the gradient is free of any require-

ment for computation of eigenvectors or eigenvalues, and, in addition, all

matrix inversions necessary to evaluate the gradient are available from com-

puting DB. Thus, the feature selection problem becomes one of maximizing

DB over the class of all k by n matrices of rank k. We will further show that

the maximum value of DB is attained on the compact set, B = [B:BBT = I] and,

further, that the maximum value of DB is attained on [Bc,: B = (IklZ)U where U

is an isometry.] Geometrical interpretations of the results will be discussed

as in References 6 & 7.
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It will be shown that it is convenient to write DB as

DB = 1/2 tr (BAiBT)-I (BSjBT) i _ k(m)(m-l)
2

where S
i

denotes the positive definite symmetric matrix:

Si := (Aj + ij6ijT)

j=l
jfi

6ij = pi - lj

We will show with that, the gradient of DB with respect to B is

)T = E- AB(BAjBT (B ]i=l (BAjB

The theoretical development of these techniques was an outgrowth of
University of Houston Mathematics Department Seminars in Pattern Recognition

and Classification Theory. The expression for the gradient DB and the re-

lated results appear in References (5-8).

A computer program based on these results was subsequently developed

to maximize DB for a given k (Reference 9). The program utilizes (in the

iterative solution of the variational ecquation for B) the Davidon Iterator

(based on the Davidon-Fletcher-Powell technique) generously provided by

Ivan Johnson, Johnson Space Center (Reference 10).

RESULTS

This section summarizes the results for a 12-dimensional data set

obtained from the.C1 flight line. In particular, nine distinct classes
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are considered corresponding to soybeans, corn, oats, red-clover, alfalfa,

rye, bare soil, and two distinct classes of wheat. The 12 by 12 covar-

iances and 12 by 1 means for each crop are as defined in Reference 11 and:

obtained by actually sampling the C1 flight line data. (Additional

results for different data sets are presented in the paper). Three

particular cases corresponding to k = 2, 3 and 6 are considered. Let

Bk denote that matrix B of rank k which maximizes DB for a given k less

than n. Then the results for this data set are summarized in Table 1

below:

Table 1.

k 2 3 6

*

D' 57.1 67.1 72.6

kRATIO .78 .92 .99
RATIO .78 .92 .99

In Table 1., DB represents the maximum value of DB for a

given k and is obtained numerically, as discussed previously. The term

RATIO denotes the ratio DB /D, where as discussed previously, D > DB.
k

Note that when k = 6, this RATIO is .99, the implication being that almost

no information is lost by performing the transformation y = Bx, where

B is a 6 by 12 matrix which maximizes DB. Since no information is lost,

it will be shown that for this B, PHCB - P14C, so that B also essentially

minimizes the probability of misclassification.

The other values appearing in Table 1 corresponding to DEX are

obtained as follows. Let k be fixed with n equal to 12, so that each

observation vector x constitutes a tuple

x = (x1 , x 2 .. .,x12 )T

The numbers appearing in Table 1 or discussed in this report are scaled
corresponding to DEX/1 80 or DB /180.

Dk
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Now by selecting the first k components of every observation vector x

a k-dimensional subspace is generated. Mathematically, selecting the

first k components, for the particular case of k=3, is equivalent to

performing the operation

1 0 0 0 0 0 0 0 0 0 0 0

y= 0 1 0 0 0 0 0 0 0 0 0 0 x

O O 1 0 0 0 0 0 0 0 0 0

= Bx

Thus associated with the selection of the first k components of x is a cor-

responding B matrix, so that the B-average divergence DB can be computed.

This process can be repeated for each distinct set of k components, with

the total number of distinct sets being the number of combinations of n

objects taken k at a time. Thus to each distinct set of k components cor-

responds a distinct matrix B.

In particular, when k = 6, 924 distinct evaluations of the B-average

divergence must be performed. For a fixed k, the evaluation of all the

distinct B-average divergences, corresponding to the number of distinct

combinations of n elements taken k at a time, constitutes what is called

an exhaustive search procedure.

Referring back to Table 1, the value of DEX with k = 3 is obtained

by selecting the ninth, eleventh, and twelfth components of each obser-

vation vector and evaluating the resulting B-average interclass diver-

gence. Evaluating the B-average interclass divergence for all other

distinct three component colnbinations is found to result in a smaller

value of the B-average divergence (Again, it should be recalled that

associated with each distinct 3 component combination is a distinct

3 by 12 B matrix). By repeating the exhaustive search procedure fcr

k = 2 and k = 6, it is possible to generate the values of DEX presented

in Table 1. Note that for the corresponding values of k, DB is signi-

ficantly larger than DEX. Also the value 67.1 attained by DB (when
e exhustive serch procedure until k = 7,

k = 3) is not attained with the exiiaustive search procedure until k = 7,



so that it would take the seven "best" components of each observation

vector to retain information equivalent to that retained by B3 (as meas-
ured by the average divergence). Recall the time to classify data is
proportional to n(n+l), so that the time to process the data in the three-

dimensional feature space would be approximately 3/14 the computational
time required to process the 7-dimensional data using the best 7 components

of each observation vector - yet the performance would be approximately

the same in that similar classification maps would be generated.

It is noted that for a given k, the optimal Bk which maximizes DB
is obtained in less time than is necessary to execute an exhaustive search

procedure. Also, less than three minutes of Univac 1108 computer time

is necessary to obtain B2, B3 and B6, with an average for any given k, of
about 120 evaluation of DB and 25 evaluations of aDB/aB being necessary.

The problem of selecting the best k- namely the smallest integer k

such that adequate class separation is maintained is handled by construct-

ing a so-called "Class Separability to be Gained Map," and is shown in
Figure 1. In general, this map compares the k-dimensional interclass diver-
gence DB(i,j) with the 12-dimensional interclass divergence D(i,j) for each
distinct i-j pair, where as shown in Reference 2.

D(i,j) > DB(i,j)

In particular, Figure 1 compares the three-dimensional feature space

interclass divergence DB (i,j) with D(i,j), with the vertical distance
.3

from each point to the solid diagonal line representing the interclass

separability to be gained for each distinct class pair. Thus for a given
i-j pair, its abscissa on the class separability to be gained map is fixed,

and as k is allowed to increase, its ordinate will increase until finally
it attains the diagonal line when k = 12. In an interactive system, by

displaying the class separability to be gained map on a console for a

fixed k, the user could decide if he is satisfied with both the separabil-
ity and the separability to be gained for all distinct class pairs. A
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critical situation can be assumed to occur when for a given class pair,

the separability is "small" and the separability to be gained is "large",

or equivalently, when DBk (i,j) is small and the difference

D(i,j) - DB (iij)
k

is large. Such a critical situation could possibly be indicated by the

circled point appearing on Figure 1, which corresponds to the classes,

oats and wheat. Such a situation could be handled by increasing k (in

this case from 3 to 4). By resolving the optimization problem for B4,

a new class separability to be gained map could be generated and displayed.

Finally, the symbols A appearing in Figure 1 represent the separa-

tion between particular class pairs resulting from the "best" three channel

combination as obtained from the exhaustive search procedure (i.e.,

channels 9, ll,-and 12). The increase in class separation for these

class pairs resulting from B3 is clearly significant.
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