NASA CR-134458

* NAS 1S DATA BASE MANAGEMENT SYSTEM - IBM 360 TS5 .ITPLEN\ENTATION
[V - PROGRAM DESIGN SPECIFICATIONS .

| PMAGRumyy '959) Wass p,o .
/ UPLENEN Dy p s TEH: 4 ggg PASE oo
ESIGN (q VoLgy T5S
Soter; 4: PRog ¥73-301
P_'f‘iC‘,ﬁ“‘?:,.?s ’ II!C.' Clevelafgﬂ Ohi 42‘1
B2 ¢+ Ohio,) .
. Cscr 09y Unc)y
S 83,08 43,35
R 483p !

NEOTERICS, INC.

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

‘, . hl\ia mduc;?.’b R _J,.
" NATIONAL TECHNICAL
. INFORMATION SERVICE .

-~ US Pepstment of-Commar
- " Spngleld, YA, 22151,

NASA Lewis Research Center
Contract NAS 3-14979

o

, 5(/\“/

a—

http:nN)~vC'7344.5a

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE
BEST COPY FURNISHED US BY THE SPONSQRING
AGENCY,. ALT-HOUGH IT IS RECOGNIZED THAT CER-
TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-
LEASED IN TH]é INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE,

1. Report No, 2. Government Accession No., 3. Recipient’s Catalog No.

NASA CR-134458
4. Title and Subtitle NASIS DATA BASE MANAGEMENT SYSTEM - IBM| 5 Repott Date

’ September 1973
360 TSS IMPLEMENTATION -
8. Perforring Organization Code

IV - PROGRAM DESIGN SPECIFICATIONS

7. Author{s} 8. Performing Organization Report No,
None
- 10. Work Unit No.

9. Performing Organization Name and Address

Neoterics, Inc. 11. Contract or Grant No,

2800 Euclid Avenue NAS 3-14979

Cleveland, Ohio 44115 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Contractor Report

National Aeronautics and Spare Administration 14. Sponsoring Agency Code

- Washington, D.C. 20546

15,

Supplementary Notes

Final Report. Project Manager, Charles M. Goldstein, Computer Services Division, NASA
Lewis Research Center, Cleveland, Ohio

Abstract

The NABSIS development workbook contains all the required system documentation. The workbaook

includes the following eight volumes:

I - Installation Standards (CR-134455)
O - Overviews {CR-1344586)
II - Data Set Specifications (CR-13445')
IV - Program Design Specifications {CR-134458)

V - Retrieval Command System Reference Manual (CR-134459)

VI - NASIS Message File (CR-134460)
VII - Operating Specifications (CR-134461)

VIII - Data Base Administrator User's Guide (CR-134462)

17.

Key Words {Suggested by Author(s))

18. Distribution Staternent

Unclassified ~ unlimited

18. Security Classif. {of this report)

" Unclassified

20. Security Classif. (of this_page)
Unclassified

21. No. of Pages

22, Price”
595 $10.75

* For sale by the National Technical Information Service, Springfield, Virgmia 22151

http:Report.No

TAELE GF CONTENTS

TOPIC A - HULTI-TERMNINAL TASKIKG

PAGE 2

Ao1 BMTTSUP - HTT ﬂonitor- » L] » & ® - . - [I | - u
R.2 RDBNIT - Initial Entry Routine . .+ + « o » + + 48
3.3 NASISY - Single Terminal Monitor « + « o0 « o 58
TOPIC B - DATA BASE EXECUTIVE
B.1 Data Base PreproCeSS0OT « » » » » s 1 ¢ » o.0" s 73
B.Z RDBPAC - 0» * » » a & & » s % & ® B 8 3 % ® s a 88
B.3 RDBTSSIO - BAssembler RoutinesS. o« o« s » » o & <104
B.4 RDBEXITS ~ Ccnversion and Formatting Routines,., 117
B.5 RDBLIST — 1LisSt PLOCESSOL « o s o » ¢ » + s o 121
B.6 RCCLIST - Parent-Children List Procassor . « » 125
TOPIC C - BIILITIES
C.1 RDBJOTIN — JOIN HASTIS USECYS & o s o s s 2 » - 2128
C.2 RDBHIF ~ Message File EdItOT 4+ » » » » ¢ = - 133
C,3 RDEDEIVE - Conv, and Form. Routine Test Driveri42
c.l RUSERTID - Got TSS USERID . 4 o o s o« « + « »- » 187
TOPIC D -« MATNTENANCE
D.1 RDBMERGE - TransaCtiGn Merge « & = s 3 = @® 5150
D.2 RDBMNTN - Maintenance Bainline + » s « o s » 156
D.B RDBCOFB - CGFRECT Commando *» & = 2 ® T 8 & = 016?
D. 4 RDECLHMN - Mainpnline Tnvocation., ., « s s » « » +177
D.5 RDBMAIN — Maintenance DirectOor .+ « » +« = « o » 181
D.6 RDBLOAD = LOHa/CIeate. w 3 = v = % » » 2 = s =186
D.7 RDBIFVRET ~ File Invert + s o o 2 s 5 » 2 s s 192
D.3 RDELLRK — Load File BaCkup s s & % » s s » s «199
D.S RDBEDAC — ALD-CHANGE CommandSe « « o ¢ o o+ » 203
D. 10 RDBEDAR — ADDLIKE~-RENAME ContandsS. = « = ¢ s 2711
D, 11 RDBEDCP ~ CHEPOIRT Command ., « + s s + 2 » o 210
D.12 ERDBETLCS — CREZTSUB ComMand « « o o +-9-s s » 227
D.13 RDBEDDE - END Commands « « » # & s 5 » 2 3 0226
D, 14 RDBELDI - DISPLAY Internal Command + + + + + +232
Do15 RDBEDDL — DELETE Field Command + ¢ o + o + » .238
D.16 RIBEIDP - DISPLAY Field Conmmand. « + + o« s o »243
D.17 RDBEDCH - Ccoamon ROUtInNeS. + o s s s 3 & & 02&9
D,18 RIBELFL - FIFRLDS Command « s s« + 2 5.2 o o o- 32686
Dt‘lg EDBEDFI - .FIIE Comﬁlanﬂ . a w e ¢ & a [» * » .2?1
D.20 RDBELFS - Field Security Routine ., 4+ + o+ & o 2278
D.21 RDBEDLD - Load Descriptors Routine . . . » . .284
D,22 RDBEEMO — MOVE CoRDand + « o s s o » » s » 2 291
D423 RDBEBPA bl FATCH Commanda s 2 = » 3 e . 8 s 8 9296
D.2u RDBEBPB - PRlNT Commandn s 2 ® @ " s % a2 = » 1301
D.25 RDBEDIRS - Record Security Routine., « + + + + 306
D926 RDEEILRT - RESTORE Commanﬂ. M T T T T T] 031?

PAGE 3

D.2'? RDBELRY - REVIEW Command- e 2 8 2 4 & 8 B8 0315
D028 RDBEESS - SVASTET Commanda *» a4 2 ¥ 2 & B o = .323
b, 29 REDEELSU -~ SUPERTFLD Command s + 2 & 2 27 s & w 0330
D.30 RDBCONB - Index File Merge . s « » s » » o« » 2335
D, 31 RBBELIN - Initialization Routine « .« " +7 ¢ o 4342
TOPIC E - TERMIKAL SUPPORT
E.1 Terminal Suprort PIEDIOCESSOTs « » -2 s » s 2347
E.2 RTSUPER - Terminal Support Supervisor, » « « «356
B.3 RDBELINK -~ PLI/Assenhler Linkage Routine . ., 402
B. b4 RTSATEN - Attention Interface., « « = o o o « 4086
Es5 EDEATTN - Attention Prompting Routine. . .+ +» 410
TO0PIC F - DATA RETRIEVAL
Fal RUDBINIT ~ Retrieval Initialization . . . & & ..414
F.2 RDBTFLDS = FIELDS Command . ¢ o o s o » +-92 »« U419
F-3 RDBXPND - EXPANB‘ COmmand " 2 & & = @ . ® *» =" "42"‘
F.l4 RDBSLCT — SEARCH/SELECT Commands + 7« o » » 2428
F’S BDEDSPL - DIS?LAY Commando s 8 o 2 5 s s 8 = au!‘]’1
F.6 RDBPRNT = PRINT Commands &« o« s s « o = o » =« 449
F-? BDEEXSR - EXECUTE Commanﬁ. s 8 3 # 8 8 #° & » .{459
F.8 RDBSETS - SETS Management Routines . o« + o o 465
F.9 EDBGENRE — GENERATE Command + « » a- s s o a o -+873
F.'!O RDBFGRE! - ?GBHAT Command s 8 2 B2 5 + 8 & = 8- .ﬂ?B
F.11 RDESFNT - Store Formats Routine, » « 2"« + +" 1488
.1'.‘:?2 RDBGFLDS - GFIELDS Command " B # % B ® % B .ﬂ93
F.13 RDEPRINT -~ Eatch Print Moniior o « o ¢ o « o 097
F.14 RDBWRIT - Batch Print Output Module « « « » » 500
Fo 15 BDBLNT - LIMIT Command [. 2 8] [. » s = » 4503
TOPIC G - USAGE STATISTICS e
Ga1 RDBACUCUM ~ Statistics AccumulatoT. « « « o » 2508
G.2 EDBPRNTR — Print Retrieval Statistics Routine,513
G.3 RDBUFDST - Update Maint, Statistics Routine, .518
G.u RTIMERS - Clock Routines . 4 8 & 2 & 8 3 = » 0525
Ge5H RDBPRNTH - Print Maint, Statistics Routine: , .528
G.5 RDBSTAT - Retrieval Statistics Director, « « 533

TOPIC H - IMMEDIATE COHMANDS

. ® . s @

bromtotmoro b oem i
> ®
AN WK -

RDBEXPL ~ EXPLAIN FAcCility o e o- 4 o o« 2 » » 538
RDBSTRT - Strategy Interface a & 3 5 9 & ® » .5ﬂll
RTSSTRT - Strategy Assembler Routlne s » o » #5503
RDBUSER - User Verlt Table. ¢ s s 2 ¢ e o 2 » 967
RDBEFRO -~ User Profile Routine. + o o-» o »- s 560
RTSPRC -~ User Profile Assenbler Routines + ., .571
TRSTEST - Testing ?aCility P L ¢578

» + «DB83

RTSTESTX - Testing Facility I/0 Interface

PAGE 4

TOPIC A,T - NT/T MCONWITOR

A,

B.

c.

D.

MODULE NANE

¥ulti-Terminal Tasking Monitor
Program~ID - BNTTSUP
Hodule-ID - MTTSUP

ANALYST

Rohert L. Rutledge
Neoterics, Inc,

MODULE FUNCTION

The MT/T HMoniter is the single program which effects
conmunication among the NASIS application program, the
TSS/360 cperating systen and the NASIS user
connunity. This progranm is responsible for the
allocation of the NASTIS resources to +the user
community, the handling of all terminal input/output
for the wuser ccenmmunity and the processing of those
NASIS functions which require more or 1less direct
interface with T55/360. ¥In addition, +the Monitor
supports processors for those NASIS user commands which
pertain tc the Honitor itself (such as commpunicating
with other users, listing active users and so cn)s

The NT/T Monitor is written completely in 360/67
machine code via the TSS5/360 OAssembler. The TSS user
macro library {SYSMAC) and the TSS system programmer
macro Jlibrary (ASMMAC) are used to obtain the TSS
system facility macros (for terminal communication,
data management and. so on) =and some m@mAacros 1in the
Monitor dtself are used for convenience in <coding,
{These particular macros are described below.)

Althoughk the primary consideration in the coding of the
Monitor is execution time, special effort has been nade
to make the coding itself as lucid and informative to
the reader as possible. Profuse self-documentation .and
comments make it quite probable that specific questions
left unanswered by this document may be answered by a
guick look at the listing of the Monitor.

Finally, all +the facilities of the MHonitor have heen
incorporated into one program. This is done merely to
get everything in the same place for convenience: it
iz felt +that. nothing would be Teally gained by
splitting the HMonitor into several prograunms.

DATA REQUIRENMENTS

E,

PAGE 5

Not Applicalble

PROCESSING REQUIREMENTS

Te

2,

Top Level Flowchart

Not Applicable

Narrative

da

¥eonitor Hacros

The macros incorporated 1into the Monitor
itself (they are the first things in the
rrogram) are used only for ease of coding and
reading, They are in no way necessary in the
sense that they could bhe <tTeplaced by the
expanded coding with no detremental effect to
the execution of the Honitor.

Each macro included 3in the Momitor is now
descriked - along with the parameters it
exrects and its precise function,

1. FMT

This mactTo is used to convert an
internal hexadecimal data item into a
corresponding EBCDIC data iten (i.e.,
convert internal hex 4into ©printable
characters)., It is used mostly for
formatting error codes and so on for
the operator. The operands for this
macro are the target £ield address and
length and the source field address and
length.

2, RTRN

The RBTRN nacro is used to cause control
to ke returned to a point describked by a
TS5/360 interrupt push-down area. This
macro merely points a register at - the
push-down area ({the only operand) and
issued the svc +which causes control to
be transferred to the HTTRTRN routipe to
switch push-down areas. {For a €further
discussion of +this +technique, see the
description of the MTTRTRN routine.)

3. M3G

This macro is the means the Monitor uses

5,

PAGE 6

to send messages to the {NASTIS)
cperator, The operands for this macro
are the messadge, nessaqge and
{optionally) a return address. This
address is branched to after the message
is sent if it is specified to the nacro,
This macro sets-up the messaqe pointer
in register one, the message length .in
register zeroc and the return address {if
any) in register fourteen and calls the
MTTERMNPT routine. {In addition, if
ocperator response 1is expected, this
macro negates register zero.) See the
MTTERMPT routine description for farther
infcrmation,

TINME

This macre is a more usefyl version of
the (TSS} EBCDBTIME macro, It accepts
the same operands as EBCDTIME hut also
accepts defaulted operands and
register~notation operands. This macro
sets-up parameter registers and calls
the NTTTIME routine so as to conserve
=Epace in the PSECT,. For more
information, see the description of the
BEITIME Toutine,

MOVE

This is +the macro vwhich every progran
written having tc move data around has
in it in some form or another, Ours
puts the operands for the nmacro (target
field pointer, source field length and
source field pointer) in registers and

calls the MTTHOVE routine, the
description of which later im this
docunent will give you nore
information,

TRAN

This macro is analogous to the MOVE
macto except +that it translates instead
of moving. The operands for this macro
are the field pointer, the field length
and the address of the translation
table., After setting-up the parameters
this macro calls +the HITTRAN rcutine to
actually translate the text,

be

PAGE 7

7. .»ENIR

8,

9.

This important macro is used +to take
care of all +the linkage conventions,
setting-up hase registers, terminating
timers and S0 on each time the
application c¢alls one of +the MHoniter's
service routines, Basically, it saves
all the calling registers {including the
flocating-point Tegisters), the return
address and the program mask in the
push~down area in the task control table
{see the description of the TCTE table
helcw), kills the user's time-slice
timer by calling MITUNTIM and sets-up
all the ©base registers for the Monitor.
There are no operands for this macro
which is %kind of the mirror image of the
REIN macro discussed next.

RETR

This macro is used to cause return.to
the caller of a Monitor service
routine, It expects the registers and
S0 on +tc have been saved by a
corresponding ENTR nacro and effects
return by wmerely flagging the sub-task
as dispatchable and branching to the
quene-scanning routine (MTTFNDQ1). {By
and by the guene-scanner will find this
sub-task waiting for dispatch and issue
a RTRN macro 7pointing to the push-down
area in the user's task control table,) -

RECQORD

This macro is used +to record an event
and/or data within the Monitor, It uses
a VHNHOOK-like mechanism to cause the
Systen Internal Performance Evaluation
{SIPF) processors to record a data area
onto the systemn's recording tape.,
There are various and sundry operands to
this wmacro which describe +the animal
being recorded. You are referred to the
section on event recording {below) for
details on this and the rest of the data
recording mechanism within the
Monitor.

Cverview

PAGE 8

The MT/T Monitor, with +the exception of the
code to set-ur NASYIS and to take it back
down, ccnsists of one main routine +to0 scan
the work-to-do gueues which the program uses
to keep track of what's going on and a bunch
of subroutines to actually do the indicated
¥ork. Thus, the flow of control throngh the
Fonitor is queue-scanner +to subroutine to
handle a reguested function to queue-scanner
and so on, When the gueue-scanning routine
finds nothing whatsoever to be done, it
enters the (TSS) *"WAIT" condition.

As most of the WMonitor consists of the
subroutines to perform specific functions for
the Monitor, a guick list of these functions
is in order. First, +there are +the task
controlling functions: dispatching and
time=-slice-ending a sub-task. There are
several routines for performing idinput/output
cn a sub~task terminal, There are guite a
few routines to handle NASIS *user" commands
which are more easily processed by the
¥onitor than by any other part of NASIS, And
there are the normal subroutines which can be
called by anybody for the ' grunge tasks:
roving text, translating text, sending
messages and sC On.

One €inal secticn of the Monitor doesn't
quite fit the description above. This is the
asynchronous {SYSIN) attenticn interrupt
rrocessing Toutine, This is the program
which gains ccntrol when the {MT/T) operatox
hits the ATTN key om the operator's terminal,
Thus, this 3is the trToutine which actnally
ceommunicates with the operator, 211 it does
is read {(Monitor) commands £from him and
exeunte then,

External Specifications
Te Hodule Name - RMNTISUP
2a FSECT Name - MITSUPP
3. CSECT Name - HTTSUPC
4, Entry Point Names
a, NASIS {To initialize and set-up

for execution the antire HNASIS
systen,

e,

£,

1.

MW

Tia

t. .

Qs

Ve

We

PAGE @

METRRITE (To Hrite text to a
sub-task terminal.)

MTTREAD ({To read text from a
sub~task terminal.)

MTTRREAD {To first vwrite +text to
and then read text from a sub-task
terminal,)}

MPTFLUSH {To empty the output text
buffer by writing it to a sub-task
terminal.)

MTTXTER {To obtain various
information about a sub-task.) -
MITEASS (To prompt a sub-task: user
for his VYsecurity codet,)

MTITGETIM {To obtain the elapsed
time statistics for a sub-task.,)
MTTHUST {To enter "must-conplete®
mode for a sub-task.)

UTTTSE {fo force a time-slice-end
ccondition on a sub=-task.)

HTTLMT {To obtain the current
NASIS lipits for printing,
searching and so on.)

MTTPGHIN {To process a progran
interruption,)

MTTSPEAX {To process an operator

asynchronous attention
interruption.)
HMETTISEND {To process a
time~slice-end timer
interruption,)

NTTRTRN (To process a "retura™ SVC
interruption,)
MTTRESET {Tc process the operator

attenticn resetting {Is5)
command,)
HTTKA {Tc ©process the user "EKA"
compand,)
MTTKB {To process the user "EBY

command,)

MTITMSG {To process the user "HNSGY
command,)

MTTHELE ({To process the user
HYHELPY conmand,)

MTTUSERS {To process the user
"USERS" command.) ’
MTTNUSER (To process the user
MNUSERS™ command,)

MTTDATIN (To process the user
WDATETINME" command.)

MTTHAIT (To process the user
YHAITHY conmand.)

NPTUTAB {Pointer to the NT/T User

PAGE 10

Information Table for the executing
sth-task (if any).) -

Zw MNTTTCT {(Pointer to the start of
the terminal table.)

aa. MTITTRQ {Pointer to the executing
terminal table entry (if any).)

bb, MTTICTE {Pointer to the executing
task control table (if any).)

5. Fxternal References

a, SYSINDCB (Pointer to the data
control block for SYSIN.)

L. TSATIN {Pointer to the NASIS
attention interrupt handling
routine.)

Datasets

" The Monitor requires two datasets which are

used in its initialization phase. One
contains the 1list of ©NASISIDs vwhich are
allowed on the syster and the other comntains
Monitor commands which are to bhe exscuted
automatically before NASIS 1is opened up to
the uvser communitvy,

1. NASIS, USERIDS

This dataset is +the one containing the
list of allowable ¥NASISIDs. It also
contains information about which NASISID
is allowed to look at which <file, but
the Monitor only uses the first four
fields in each record: the NASISID, the
password (if any}, the time-slice value
to be initially assigned to the NASISID
and the authority code to be initially
assigned +to the NASISID, -{This 1last
field is not used at the present.)

2., NASIS.COMMANDS(0) .

This TSS/360 "line" dataset contains any
Monitor commands which +the operators
wishes +to have automatically executed
each time NASIS is brounght up, Examples
of such ccrmands are "limit", "pgmstop”,
"neys", and so on,

CONTROL TABLES

The follcewing section discusses +the tables

PAGE 11

which the Monitor uses to drive itself, Only
general descriptions are given here for the
formats of the tables; we ywounld rather you
know what their functions are., Fach of these
tables is described by a DSECT in the listing
¢f the Monitor, so you are referred there for
the formats of these tables,

T

Terminal Table (TRQ) (DSECT "TRQDSECTM)

This is the most basic table used by the
Menitor. It 1is a list and count of the
users attached to NASIS at any
particular time, TSS, through the %Q©
macros {(WRITEQ and READY) return a
terminal identifier entitled the
“relative terminal number®, This is a
number from =zerc to the current number
of attached users and this is the number
which is used +to index the +terminal
takle to find the entry for a particular
user, All the pointers to information
tables for the user originate in the
terminal table. The things contained in
this table are: +the pointer to the task
control table, the pointer to any
nessage control blocks for this
subk-task, the symbolic device address of
the terminal, the NASISID of the user
attached to this terminal (if any, this
field is filled in during logom), the
flag indicating whether the sub-task is
waiting for dispatch and the N"RAIT®
tiner for the sub-task, if any.

Task Cecntrol Table (ICT)
{DSECT WECTDSECT™)

This is the tahle that contains all the
infermation about and working storage
for a sub-task, 211 the {normal)
register saveareas, task-related
temporaries, task indicators, Momnitor
saveareas, timing information, I/0
tuffer information and so on are in this
table. In addition, all +he user
infcrmatieon is here: NASISID, password,
task=-id and so on. When the Monitor can
locate this table for a particular user,
it Xnows all +there is to know: about
himo

Message Control Block (NCB)

4,

6.

PAGE 12

{DSECT "MCEDSELCTY)

This control block is constructed each
time a message is to be sent to a
sub-task, 211 it contains are the
message text and length and a pointer to
the next message control - block on the
chain, if there is one.

Attention Table (ATH)
{DSECT YATNDSECTW)

This +table is dynamically built each
tize a user hits the ATTENTION ({or
BREAK) key at his terminal., The +table
contains all the information about the
interrupt {which is almost asynchroncus)
to pass on +to the NASIS -attentiom
processing Troutine, In addition, it
contains a savearea <for that routine to
tenporarily save the contents of the
4nterrupted DSA. In addition, if the
attention interruption processor wishes
to nodify the address to which control
is tc bhe returned after the interrupt is

processed, it so notifies the Monitor

through this table.
FINTQ Return List (DSECT “CHAFNQMW

This is a contrel block constructed and
naintained by TSS. It is the
informaticn returned to the Monitor
after it executed a READD or WRITEQ and
contains the terminal number mentioned
earlier plus information about any text
read in and some indicators for 1line
hang and attention,

User Table Entry (DSECT "IOSRDSECT™) .

This thing is really only a descriptor
for +he format of a <record 1in the
HASISIDs list dataset,
MNASIS,USERIDSY,

Paraneter List {(DSECT "PRLDSECT™)

This is the control table passed to the
Mcnitor vhenever +the application calls
it to process a terminal I/0 request.
It describes the parameter 1list expected
frem and returned to the caller., {This

10.

11.

PAGE 13

parameter 1list is identical to . the one
used by IT55/360 GATE except that there
is no ADCON pointing - to control
information in the first 'word.)

Operator Attenticn Savearea
{DSECT “SAVDSECTY)

This table is built by the Nonitor each
time the operator hits ATTENTION and
causes entry +to the operator attention
interrupt processor (MTTSPEAK). This
table contains =all +the registers and
VYPSH as of the interrupt and is kept {in
a chain) because the operator is allowed
to hit ATTENTION again while in this
routine and we wish to be recursive.
Thus, this table contains only the
registers and VPSW as of the interrupt
and a pointer tc the next table on the
chain, if any.

Lipit Table (DSECT "LIKDSECTM)

This table 3is where the Monitor keeps
all its information about NASIS limits,
{(The things which may be 1limited are
total number of users, number of users
of a particular class, number of records
in a set which may be searched on or
printed and so forth,) This table
consists of a header containing the
limiting nunbers for +those things which
are always limited ard entries for each
class of NASISID which has been manually
1imited by the operator. .

Recording Area {DSECT “RECDSECT")

This table 1is +the area in which the
Eonitor posts the data which it recorids
{via the TS5 "SIPE" mechanism, see the
section on recording below), This table
is also used to pass the data along to
the recording mechanism in the TSS
Supervisor. It consists of the actual
data to be recorded plus some control
and save areas which +the recording
mechanism expects.

Data Control Block {DCB)
(DSECT T"CHADCEY)

12.

PAGE 14

This table is used by the Monitor to
interface with the TSS access methods
used 3in the handling of the various
datasets the Monitor uses ({see the
section on datasets abovel. One DCB is
set-up by the Nonitor and serves for all
the datasets it uses, Por more
infermation on the Data Control Block,
you are referred to +the "Systenm Control
Blocks" Progran Logic Manual
{GYZ8-2011) .

Interrupt Storage 2Area (1ISA)
{DSECT CHAISAY

This control tatle is really page zero
in virtual memorys., The DSECT supplied
by 1TSS is used to direct the Monitor- to
the correct nemory locations
corresponding to the items it wishes to
refaerence, {For fuarther information on
+he TInterrupt Storage Area, you avse
referred to’ the YSystem Control Blocks"
Program ‘Logic Manual (G¥28-2011).

Tetailed Description

The

following section contains a detailed

descripticn of +the MT/T Monitor, It is
assumed that the reader has a firm grasp of
360/67 machine language and the principles of
the T1S5/360 Operating Systen,

1.

MTISTART routine

HTTSTART (with the entry point NASIS) is
the <zToutine which +the MT/T Interface
Bodule {CZCTC) calls when the MT/T
operator enters the MTT comnmand at the
cperator +terminal. On entry, this
routine establishes linkage and sets-up
all the program base registers (R13 for
t+he PSECT, R8-R12 for +the CSECT). It
next initializes some of the more
important ©program variables--the flags,
user counter, table pointers etc, It
then initializes the . (Monitor?'s)
recording mechanism and obtains a
twe-page pool +to build the limit table,
newvs text area and +terminal table in,
The terminal table is aligned ¢n a page
boundary so as to minimize paging later
OT. Coincident with building these

2.

PAGE 15

tables, their pointers are posted in the
ESECT, VNext, the (operator) -attentiomn
is specified and enabled, as is the
program interrupt routine and the SVC 53
interrupt routine {for the RETURN SVC).
In all cases, the 'SIR function.is used
to actually specify the interrupt
routine, it this point, the
Ni5ISIb-containing dataset
{NASIS,USERIDS) is read and the four
fields mentioned earlier <fronm each
reccrd are posted in an in-cere table
(this dis dcne so that the Monitor
doesn't have +to waste time reading the
dataset each time a user logs on}.
After this dataset 1is processed, the
command dataset {NASIS,CONMANDS{(0}) is
read 3in and the commands 3in it arse
executed., This is the last function for
+his routine, and after it is conpleted,
it sends a message to the operator (MSG) -
to the effect that it is finished and
conmences execution of NASIS by exitting
to the MTTFINDQ routine at MTTFNDQ1.

MTIEND Rcutine

This routine 1is the 3inverse of the
MTTSTART routine and is entered by being
the targst of the STIMER issued 1in the
shutdown <rountine (MNTTSHUT). (It nay
also he entered by a direct branch +to
MTTEND1 in the case of an immediate
shutdown regquest.) Upon entry in either
case 1t first scans through the terminal
‘table Jlooking for active users and
calling the MITTQUIT routine to log +then
-0off after sending them messages telling
them +that the system is shutting down.
After it has gotten rid of all the users
in this fashion, it returns the storage:
for the userid takle and deletes all the
interrupt zToutines via the TSS DIR
function, After this is done, the
routine sets a timer such that it sits
idle for f£ifteen seconds, This is done
so that all the user terminals have time
to finish +typing their FREEQ messages
before the Meonitor Teturns control to
the PSS system which will terminate any
I/C going on each terminal is it gets a
chance, After the wait is over, the
routine frees the pool of memory used to

3.

PAGE 16

build the three tables mentioned earlier
and Teturns to the systen through
standard return linkage.

MTTFINDQ Routine

This is the routine which scans through
the various gueues looking for work for
‘the Monitor to do, It has two entriess:
MTITFINDQ for callers who wish control
returned to them at the termination of
the I/0 operation for the sub-task and
NTTFNDQ1 for callers who ~are merely
finished with a task. The only
difference is that at HTTFINDQ, the
ragisters are saved in the TCT for the
suk-task in question and at MNITFNDQY
they are not., The first thing either
routine does is to zeroc out the pointers
for the current TCE and TRO so as not to
confuse any of the interrupt rountines.
It then sets-up the pointers and indices
+to the terminal table 1in registers {for
speed, it may have to scan +the terminal
takle several times). The £first scan
through the +terminal +table is to look
for sub-tasks with outstanding messages,
If any are found, +they are send via
calls to the MTTHRITE routine at
MTTHEIT1. (211 internal <calls ~ on
MTTHRITE are made to HTTHRIT1.) Before
a message is sent, however, the MNCB for
the sub-task is locked out so +that we
don't +try to send two messages +to the
task at the same time (this would
confuse +the ¢ 1routines which- - dJdon*t
gquite %know what to do with a busy
condition from, a terminal). &lso, =no
nessages are sent to +terminals with the
"7/0 active" flag on in the TCT for the
Same reason, After the +terminal table
has been scanned for messages, it is
scanned for sub-tasks waiting to be
forced. For each that is found, a
message is sent and the MNITQUIT routine
is «called +to actually disconnect the
terminal, Care is taken so that this
routine doesn't try to force a task wmore
thar once., These two scans are not
particularly functionally iamportant, but
they nmust be done £irst because if they
are done after the TI/0 and execute
scans, the terminals would always appear

PAGE 17

to be busy and both these functions rely
on the termimal keing free,

The next scan is done with the aid of
the 7SS FINDQ function, This facility
gcans through the terminals attached to
NASIS and returns a non-zero returm code
if there are any with I/0 completion
status., If the ¥onitor finds one such,
it recoxds the return code (REC) and
then checks for a hung-up phone 1line {a
flag in +the FINDQ 1list) and performs a
logical disconnect on the terminal
{(MTTQUIT) if it £finds this +to be-the
case, It also manunally checks for an
indication of attention in addition to
vhatever code it has and calls the
MTTCLEAR routine fo YEflush ocut™ all
other outstanding attentions from +the
terminal (because RTAM has the nasty
habit of telling us that there were 1-3
attentione when there was in Ffact only
¢ne)}, After these checks are made (if
it was a 1line thang, control has gone
somevhere e£lse) the routine locates the
TCT for the terminal with the completion
status by indexing into the <terminal
tabls with the relative terminal number
and locating +the TCT pointer in the
terminal takle entry. Tt then posts the
terminal in question as the currently
running +task, 7tTestores the registers
which it must have saved in the TCT
{because everyhody calls MNTTFINDO to
awalt the conpletion of all 1/0
operations) and returns t¢ the original
caller through register 14.. .

If no terminal completion =stati were
foung, the final scan through the
terninal table is made. This scan looks
for sub-tasks waiting to be dispatched.
These will have the work-to-he<~done flag
on in the TRQ entry, After one of these
is found, guick checks for terminal busy
{it's receiving a message) and systenm
down {=zomebody did a shutdown) are
nade., If the terminal is busy, the task
i= merely skipped overy if the system is
shutting down, the task is marked as not
waiting for dispatch and the scan is
centinued. If the sub-task is found to
be 0K to be dispatched, the pointers are

Ga

PAGE 18

set to reflect the +task now . executing
and that task is returned to by a direct
branch to the dispatching routine
{MTTDISPER) .

If absolutely no work is found to be
done, the MWonitor relinguishes exscution
by telling TSS it must wait fcr sone
event +to complete related to the NASIS
task, This is done by merely issuing a
{TSS} ¥AIT macro, Upon returh from the
WAIT control 1is +transferred to the
beginning of the gueue~scanner to
determine what event it was which
congleted,

MTTLISPR routine

This is +the routine which transferrs
control to a sub~task using the sSaved
registers and vpsw in +the task control
table, 211 it does is start the user's
time=-slice timer hy calling the HTTTIMER
routine and then execute an RTRNWN
pointing to the push-down area in. the
TCT

MTTTIMER routine

This routine handles +the initiation of
the STIMER which starts a sub-task?s
time-slice execution +time timer. Upon
entry, it saves a few working registers
in the TCT for the sub-task, picks-up
the value to be used for the time-slice
this time (TICTNTS), adds one to it
(figoring that the coding in the Mopitor
plus the SYC processing tine for the

‘RETUBE will add up to a nillisecond) and

issues +the STIMER using timer nunber
seven. If the STIMER fails, the task is
forced since we can*t rTun without
time-slicing., Return from this routine
is to the caller through register 14,

MTTONTIM routine

The MTTUNTIY¥ routine is called when a
Monitor service routine has bheen entered
and there is still a time-slice timer
running., It turns off that timer as the
Bonitor does not want +to be time-sliced
while it is handling a service request

PAGE 19

for +the applcation, Upon entry, some
registers are saved in the TCT for the
task and a TTINER {CANCEL c¢ption) is
issued to turn off the timer and return
the amount of unused time 3in it. This
unused time subtracted £rom the amount
of time the last time slice started with
is added to +the user's total CPU time
used {after the same one wmillisecond
added in MNTTTINER is subtracted off}.
21so, a check is made here for a recent
call on MTTNUST (flag TCTMUST), If this
has happened, the next-time-slice value
is reset to the user's time slice value
{as it was originally set to an hour by
MITMUST). An error from the TTIMER does
not kill the task, but the coperator is
notified of the anamoly. Return 1is,
again, through register 14 to the
caller.

MTTTSEND routine

MTTTESEND is the entry point specified as
the exit <routine to be called when the
tine-slice timer runs out. Thus, it is
the routine which is called to recognize
the fact that a time slice is finished
and cleans-up and updated the timing
statistics and places the
time~slice-ended user back in the
dispatch gueue, After it is entered, it
lcads all the base registers including .
the bases for +the terminal table entry
and TCT for the executing task. It then
checks to see if the timer interrupt
occured in the Monitor and if it did it
ignores the interrupt by mnmerely there
was indeed a user executing at the time
of the interrupt by seeing of the TCT
pointer is zero., If it is, a branch is
taken to the code to ignere the
interrupt (below).

At this point, MNTTTSEND updates the
user's timing statistics by adding the
value used to dinitiate the last
time-gslice {TCTNTS) into the accumulated
CPU time for the task (TCICPUTH).
TCTNTS is also rTeset to the user's
timne-slice value (TCTTIMER).

Now +the routine <checks to see 1if the

PAGE 20

interrupt occured while +the Monitor was
executing by checking the intserrupt VPSW
address against the lower and upper
hounds of the Monitor. If the
interrupt occured within the Monitor, it
is ignored by undoing the Ilinkage and
returning to the Task Monitoxr by
branching through register 14, If the
interrupt was legitimate, all the
registers and VPS¥ as of the interrupt
are saved by moving +the push-down area
provided by the Task Monitor into the
user's TCT, The routine then places the
task in the dispatch gueue by turning on
that flag in his terminal +tatle entry
{TCTY¥ESW) . It now overlays the
registers and VPSY¥ in the push-down area
with the registers for +the Monitor and
address of NTTFNDQ1 and causes control
to return to the gqueue-scannexr by
returning to the Task Monitor, {This
mneans of transferring control is used
+throughout the MNonitor because the Task
Monitor will get confused if we dont't
return to it after each interrupt so it
can dequeue them from its interrupt
chains.)

MTTTASKI routine

The MTTTASKI routine 1is the Troutine
which is branched to directly when the
gqueue scanner finds an Hipnitial
connection® interrupt as a return from-a
FINLCQ operation. It means that a user
has Just typed BEGIN NASIS at a
terminal, 2fter some initialization,
this routine checks to see if the
application is shutting down (DOWNSW on)
and if this is the case, it pretends the
terminral hung up and calls HTTQUIT +to
disconnect it, At this point, the
numker of active users {(MTTUSER#) is
incremented by one.

MTTTASKI now checks to see if the
terminal 4is one of the CRTs recognized
by the application--a 2260 or CCI CC-30.
If it is, the size of the area for the
TCT is increased as these devices
require a larger iso buffer for their
sCTreens, {CC-30s are located by
examining the 1list of CC-30 Symbolic

PAGE 21

Device Addresses hard-coded into the
Monitor; 2260s are located by checking
the device-type f£field in the FINDQ
Teturn list,) Now that it knows how
nuch space it needs, this routine
cbtains space for the task control table
via GETMAIN, As in all cases within
this routine, failure to obtain space
for one of the tables results in the
terminal being disconnected via the
MTTQUIT routine. After the table is
gotten, its pointer is posted in the
terminal table entry for this sub-~task
and as many fields are filled in in the
TCT as the Monitor can, for example all
the buffer pointers and counters,
terminal type, and =so on, The sign-on
time for the user is obtained via the
REITIM macre {this is +the number of
micreseconds since March 1, 1900) and
posted in the TCT,

As this peint, +the limit table is
investigated +to see if this wuser is
allowed on, the criterion being the
numbexr of {total) users allowed on and
the number that are already on., If this
user overflows the 1limit, he 1is so
notified and kicked off by calling
MTTQUIT, If he is allowed on {sc far)
his NASISID and password are prompted
for and read by calls on the MTTREAD and
MTTERITE routines {at MTTWRITY and
MTTREAD1, respectively}. After the
user!s NASISID is obtained, the limit on
the menbers of his class (which is the
first two characters of the NASISID) are
checked and he is kicked off as before
if the 1limit for his class has been
reached, Also, only three tries +to
enter a correct NASISID or passvord are
allowed. After all the information
about +the wuser 1is gathered in, his
tersinal table entry and TCT are filled
in the rest of the way., At this point,
a message 1is sent to the operator
telling him (her) that somebody is
logging on,

¥ow that the user is properly connected,
he is informed of several things. If a
shutdown has been requested, the user is
informed of the time at which +the

9.

PAGE 22

application will terminate. He is also
sent any news that has been typed in
{this is *aken from +thes NEWSLTH and
NEWSTEXT fields), Finally, a call to
BITFLUSH at MTTFISH]T is made to enmnpty
all this information plus his Monitor
logon message to his terminal, Now the
user is given virgin registers and a
VYPSW pointing +to the application entry
point {these are posted in his ITCT) and
he 3is placed din the dispatch gueue,
This routine exits to +the gueune scanner
at NTTFNIDO1,

MTIQUIT routine

This is the logoff processor for the
aprlication. It also is used +to force
users off the system for one of a number
of reasons, There are two entries to
this routine: MTTQUIT for callers who
dont*t wish +tc¢ be rTeturned to and
MTIQUIT1 for those who do, This routine
first gets itself a safe place to save
registers and then decrements the count
of active users by one (tc match -the
early processing of this counter by the
HTTTASKT routine) and flags the uaser as
being ditched by vposting the TCTQUIT
flag din his TCT (if he has a TCT,
remenbher he could have done something
like hung up his terminal during the
logen process). After cleaning-up the
user, killing off any gquene switches,
turning off his time-slice timer, and so
On, a messadge indicating the logoff is
sent to the operator.

Now all MCBs and attention tables left
un~-released are gotten rid of by
FREEMAINiIng them., (This is done because
it is guite 1ltkely that attention tables
in particular were not released during
the user's session because some
attention processing is of the GOTO fornm
instead of the RETUORN form.) Now the
total elapsed CPU and connect times are
calculated and formatted 1into a logoff
message for the user., The user's TCT is
noy freed (after the terminal number is
saved from 3it) and his termninal table
entry is zeroed out, The logoff message
is transmitted t¢ the userts ternminal as

10,

PAGE 23

an option on the FREEQ macro which is
used to disconnect his terminal. This
is the last operation this routine has
to perform and when it is finished, it
either returns to +the <caller through
Tegister 14 or to MITFNDO1 (gueue
scanner) depending on which entry was
originally called.

MTTRRITE routine

This is +the routine which is used +to
write text to a sub-task termimpal. It
has +two entry points: MTTHRITE for
calls from the application progranm {it
assunes standard TSS/360 type I linkage
and performs initialization with +the
ENTR macre) and MTTHRIT1 for calls fronm
within the Monitor itself (it assumes
register 14 to contain the rTeturn
address and all the other hase registers
to be already set-up),. For external
callers, +the parameters +to the routine
{text pointer and 1length) are taken
frem the parameter 1list pointed to by
register 1 and for internal callers they
are noved from registers 0 -and 1, This
is all the dnitialization that MTTHRITE
does,

Checks are now made for one of the
accepted CRTs and if one is found,
control is transferred to one of the two
routines to process these <terminals,
They are described below., At this
point, all the registers used throughout
the troutine are set-up., They include
registers containig constants, input
string and ocuotput buffer pointers and
counters and zeroed-out registers for
character noving. The first thing
checked for is a ':? at the end of the
input =string signifying that the caller
wishes to inhibit +the carriage-returm
that 3is normally added +o the end of
eachk 1line of output. A flag is turned
on to remenber about this later if the
character 1is found,. In addition, the
colcn 1is removed from the text. al11
trailing blanks are also stripped fron
the end of +the text to be outpnt (for
neatness)., A final check is made to see
if the task's I/0 buffer is completely

PAGE 24

f£illed and if it is, it is emptied out
by calling HTTFLSH1 to send the bhuffer
to the usert's terrinal,

If the last operation completed at the
terminal was a read, idles are added to
the front of +the +text to give the
carriage time +to conmplete returning to
the left margin, Also in this case, a
linefeed is added to the front of text
going to teletypes ({as then do not
autoratically add a linefeed to their
Ynew line® sequence). If the 1last
operation to the terminal was a write
and the terminal is a teletype and the
last-uritten line ¥as not
carriage-hanged, a linefeed is added to
the front of the text for the sane
reason, At this point, the caller's
text is processed,

311 processing of the <callert's output
‘text is domne character by character, 2
character is fetched, examined, possibly
given special treatment and then placed
in the I/0 buffer in the sub-task's TCT,
Special treatment is given +to the
following text characters:)

A Idle characters are ignored
conpletely {becanse they are used
for special applications in the
Monitor,

b, Linefeed characters are followed by

idle characters for some
terminals.,
Ca Backspace characters cause the

distance across the carriage (for
calculating the mnumber o¢f idles
required after a carriage~return)
to be decremented by two,

d, Carriage-return characters are
followed by enough idles to allow
the carriage to return +to the left
margin. 2Also, the distance across
the paper is zeroed,

e. Tah characters are followed by an
estimated number of idles {(we don't
know how far the tab is gecing +to

11.

12,

PAGE 25

move the carriage). The distance
across +the paper 1is also given an
estimated increment,

If at any time during the moving of text
the I/0 bhuffer is filled, it is f£lushed
to the +terminal by a call to the
MTTF¥LUSH routine at MTTFLSHI1,

After all the text has been processed, a
carriage return 1is added to the end of
the line if +the <caller did not regquest
the carriage to be hanged. Idles are
added after +this <carriage returm +to
allcw the carriage to return to the left
margin, If +the TCT I/0 buffer has heen
exactly £illed by this write, it is
flushed out by calling MTTFLSH1, After
all +this is done, all %he buffer
pointers and counters and distances are
updated in the TCT and flags indicating
whether the 1ine was hanged or not and
that the last operation was a write are
posted in the TCT, The method of return
to the caller is determined by the entry
roint called,

The two special routines for writing to
CRTs merely move the text to the TCT TI/0
‘buffer, call the NTTHWRQ routine to write
it out, call MTTFINDG +to wait for the
write +to corplete and branch to the
common exitting code for MTTWRITE.

MTTCHARS subroutine

This subroutine is used to insert
characters into the TCT I/0 buffer. It
is used extensively by the HTTWRITE
routine to move idles, linefeeds and so
on., 7Tt determines wvhether there is roon
for the characters it has been requested
to post in the buffer and i1f thexe is it
merely moves them in, If there is not
roecm, it <flushes +the buffer +to the
user's terminal by calling MTTFLSH?1 and

+then moves +the characters 3into the

buffer. Return is to the caller
through register 14,

MTTREAD routine

This is +the routine which reads text

PAGE 26

from a sub-task terminal, it too has
two entry points, one for the
application to call and one for the
Mcnitor to call, HTTREAD, the external
entry, does its linkage/base register
initialization via the ENTR MACTO,
MTITREAD1, the Monitor's entry, merely
moves the parameters to +the appropriate
registers. The parameters in the case
of a call to MTTREAD are in a standard
TSS parameter list, This routine first
sees whether there is any output text in
the TCT I/0 buffer. If there is, it is
written t¢ the terminal and then text is
read from the terminal by a call to the
MTTHROAR routine., If there is no text
in the buffer, the terminal is merely
read by a <call +t¢ the MTTRDO routine,
If there are mno error tTeturns from the
0" routine, <+the MTTFINDQ routine is
called to await completion of the I/0
operation,

After ~the text has been read from the
ternpinal -and presented to the MTTREAD
routine Ly pointers in the PFINDQ return
list, it is translated from line code to
EBCDIC with the TRAN macro., If the auser
is in "¥folded® (XB) mode, the text 1is
translated once more to "fold" his lower
case input te upper case, If there is a
carriage return on the end of the input
string, it is stripped off.,. If the line
3if input ends with either a "#" or a
ny/nm_ the user has cancelled the line and
control <returns to the common entry to
read anocther 1line from +the terminai.
Otherwise, the l1ine is scanned for
backspace characters which are processed
by moving the text +to the right of +the
backspace character +two spaces left
(over +the backspace and the character
preceeding it)}, Under no circumstances
if the line backspaced over the "left
nargin®, After the backspaces are
processed, a check is made to determine
whether or not the line ends with a "-%,
indicating continuation. If it does,
the continuation flag is turned on in
the return codes being built and the
section for processing trailing bhlanks
is skipped OVET, If there is no
continuation indicator, all +trailing

13.

14,

PAGE 27

blanks at the end of the line are
deleted.

Now the length of the text input is
checked against the length reguested by
the caller, If the user typed in more
+text than the caller allowed for, the
truncation indicator is +turned on in
the teturn code being built and oaly the
amcunt of text reguested by the caller
is moved, Otherwise all the text the
user typed is moved to +the caller's
target area. Now the terminal buffers
and controls are released back to the
system via the CLEARQ facility and the
returns from the CLEARQ are checked for
attention., If an attention is detected
during the CLEARQ, the attention
indicator is posted 3in the xreturn codes
being huilt,

At this point, all the flags indicating
what has happened are posted in the TCT,
the length of the user?!s inpot text is
posted in the caller's parapeter list
and the caller is returned to e€ither by
a branch through register 14 for
internal callers or a RETK macro for
external callers.

MTTHREAD routine

This routine is mostly a conveniencse
item for the application, A1l it does
is internally call MTTWRRITE and then
MTTREAD (at MTTWRITT and MTTREADT) to
effect a "GTHAR"-type function., There
is no internal entry to +this routine,
After the routine has performed
initialization with +the ENTR pmacro it
moves the parameters from +the T85
parameter 1list to the registers the
internal entries to MTTWRITE and MTTREAD
expect and calls each of the routines.
Checks for errors from HITWRITE are made
before the call to MNTTREAD is made and
if any are found, the call to MTTREAD is
skipped and the error indicators are
returned to the caller, Return to the
caller from this routine is wade via the
RETN macro.

MTTFLUSH routine

15.

PAGE 28

This routine is the routine which
empties the I/0 buffer (in the TCT) to
the nser's +terminal and resets all the
buffer vpointers in the TCT +to reflect
the now-empty bunifer., It has an entry
for external callers {(MTTFLUSH)Y which
initializes with the ENTR macro, and an
entry for internal callers (NTTFLSH1)
which merely saves some working
registers.

After initializaior 3if <£inished, this
routine checks to see 1if there is
anything at all in the buffer, If there
isnt't, it merely branches to the code to
Teturn to the caller., If there is, the
routine checks to see iIf the terminal
tyre is a 1050. If it is, an
end-of-hlock character is added to +the
end of the text in the bhuffer. (This
routine relies on there being an extra
character in the buffer at the end of
same in case the buffer is £illed,) 1In
the case of an external «c¢aller, the
MTTRRQ routine is called to empty the
buffery in the case of an internal
caller, the "Q" routine is one of the
parameters to this routine and that is
the rountine which 1is called, After
return from +he HQW routine, the
NTTFINDQ routine is called to await the
congletion of the I/0° operation. After
this is finished, the caller is returned
to sither by ‘Ybranching through register
14 or by a RETN macro.

MTTEDQ, MTTWRQ and HTTWROAR routines

These +three routines are the routines
which perforr the actuval I/0 requests on
user terminals., After performing the
initialization unigue to each operation
and issuing the I/0 request, they all
user conpnon coding to analyse the
results and return (labesl QCONNON).

HTTEDQ saves some working registers and
then issues a READQ regunest +to the
appropriate relative terminal nunber
with the operand TRNSL=N {(because %e do
cur own translating). It then Jjoins the
common finalization code.

16.

PAGE 29

MTTHRQ saves registers and translates
the text to be writtem te 1line code by
using the TRAN macro. (In the case of a
2260, no translation is done as of yet.)
It then issnes a ¥RITEQ regquest pointing

+0 the appropriate relative +terminal

number, output +text and output text
length with the additional operand
TRESOUT=N (since we Jjust translated the
text ourselves), It +then Jjoins the
common finalization code,

MTTWEQAR behaves almost +the same as
NTTHRQ except that the operands RESP=Y
and TRNSIN=N are added to the ¥WRITED
request., It then falls through to the
conmon finalization code,

2fter the ng" operation has been
requested, QCOMMON eXecutes into a
branch table indexing on the return code
from the operation, This +table either
adjusts the return code to the Monitor's
internal code set, branches to an error
routine which +tells the operator about
the unexpected "QO" return code and then
pretends it was an I/0 error, or leaves
a zero {gocd) return code alocne. I+
then restores all the ‘working registers
{except +the one with the Teturn code)
and returns to the caller through
register 14,

MTTATTN routine

MTTATTN is the routine which is branched
to directly by +the gueuve~scanner when
that routine finds a "naked" attention
return code from one of +the terminals
after a FINDQ operation, This mneans
that we have received almost an
asychkrouncus interrupt from the sub-task
and it requires some special processing,
{It is almost an asychronous interrupt
because we are assured that it can only
bhe found at the end of a time-slice, so
we really have available the "interrupt®
Tegisters and - VPSW.) - Alsqo, the
aprlication has set-up routines - which
are to he called when attention
interrupts (this kind, not +the Xkind
which merely add a bit to the I/0
request return code) occur apd the

PAGE 39

Toutine itself requires special
preccessing,

On entry, MTTATTN locates the TCT for
the terminal which got the interrupt by
indexing into the terminal tablie on the
relative terminal number in the TINDQ
list, If there is no TCT, the terminal
is hung-up by the issuance of a FREEQ
operation with no operands. After the
TCT is found, it is markef not busy and
the terminal table entry and TCT pointer
are posted as being the currently
executing ones, At this point, the
MTTCLEAR routine is called to ™flush
cut" any nore attention indicaters from
the terminal.

Now, the routine has to check a bunch of
special cases, If any of the following
events are happening, the attention will-
be ignored:

a. The application is shutting itself
down (MTTEND has been entered},

b, -The user is not completely logged
on {TCTONS® is zero},

C. The wuser is being logged off
{ICTQUIT has been entered for
himy,

d. The user is waiting to be forced
(ICTFORC is on),

Also, if this routine can determine that
there is a set of saved registers for
the MTTFINDQ Tontine, it fcheats" and
merely signals to the caller of NTTFINDO
that it got an attention return code
frem whatever I/0 operation was going
on. This is done because it is simpler
than calling the application attention
rountine and accomplished the sane
thing,

If control gets this far, the attention
is deemed wvalid and +the application
attention processing routine has to he
called. MTTATTN first obtains an area
in which it can post all the information
about the ipterrupt to be sent along to

17.

PAGE 31

+the attention routine, If theres is no
space for this attention +takle, the
operator is notified and +the attention
is ignored. Otherwise, this nev -’
attention table is added to the end of
the chain of attention tables for this
sub~-task {the chain starts at label
TCTATTN in the TCT}. After the table is
1inked in, all the interrupt information
{push—down area) 1is moved <£ron the TCT
to the attention table, Now all +the
Tegisters necessary for the
applicationts attention routine are
set~-up in the TCT (in the interrupt
register/vpsw slots). After this is
finished, the dispatch flag is turned on
in the terminal table entry and the
gueue-scanner 1is exitted to so the task
will be dispatched in turn later. (When
it is dispatched, it will be dispatched
to the application attention routine.)

Upon return from the attention
processing return (it is not necessarily
going to come back to us, remember), the
registers from the attention table are
moved back to the TCT, the attention
table is un-chained from +the attention
table c¢hain, the task's dispatch flag
is +turned on again and the control is
returned to the queune-scannar at
NTTFEDQ1.. {(This will cause the sub-task
to either take up vwhere it was
interrupted or to take up where the
application attention routine wants it
to go, having nodified +the interrupt
registers and VPSE 3in the atteation
table.)

MTTCLEAR routine

MTTCLEAR is a fudge which is necessary
because +the TSS supervisor terminal
routine (CEATC) tends to tell us lies
about the number of times a user hits
his attentian key. This routine merely
issues TFINDQs to the terminal din
guestion uvntil it guits returning stati.
Tt indexes into a branch table with each
return code frow the FINDO until either
the status becomes zero or an error
cccurs, din which case it «calls the
Toutine in the gueue-scanner tc¢ hang up

18.

19,

PAGE 32.

the terminal. After a zero status is
found, +the caller is returned to by
branching through register 14,

MTTGETIM routine

This routine is called by the
application when it wishes to obtain the
elapsed CPU and connect times used by a
sub-task thus far. After initializing
the linkage by an ENTR macro it.issunes a
REDTIHN macro +to obtain the current
system tipe«stamp and subtracts the
sign-on +time from the result, {(This is
done in 6U-bit fixed-point arithmetic.,)
The other result sent back by this

routine is merely +the TCTCPUTH field

which already contains +the sub-task!s
elapsed CPU +time, Return is nade via
the RETN macro,

MTTYTR routine

Thig routine is called by the
application to o¢btain the following
information about a particular
subk-task: .

a. The NASISID of the user,

b. The passvword (if any) for the
user,

c. The taskid of the sub-task,

d. The indicator for +whether the
application is running in MT/T node
or in standalone mode,

e, The indicater for whether the user
is conversational or
nogn=-conversational.

i, The indicator for whether or not

usage statistics is to be
disabhled, ’
After this routine performs its

initialization with +the ENTR macro it
starts looking at the parameter list
sent to it by the caller, It only fills
in the pcesitional output fields as long
as there are available target spots in
the parameter list, The first output is

20,

21,

PAGE 33

the NASISID which is put into a string
dope vector {(SDV) pointed to by the
first parameter, The password in put
into the SDV pointed to by the second
paraneter. The taskid is a 32-bit fixed
nunker which is pointed to by the third
parameter. {Note: This output used to

be a character string also,) The next
two parameters, the flags, are always
set ugnpn {one) and are put into

bit-string dope vectors as pointed to by
the last +two parameters, The last flag
{usage statistics disabled) is first
turned off then the internal f£flag for
this condition is checked and if it is
;on, the parameter f£flag is turned on,
After it dis all finished, this routine
‘returns to the caller by using the RETN
nacro.

MTTHOST routine

MTTEUST is the routine which the
application can call when it wishes to
perform a function without being
time-sliced., A1l it does is initialize
with ENTR and then overlay the
next-time-slice value in the TCT
{TCTNTS) with 2 +value of one hour and
turn on the indicator vhich .says NTTHUST
has been called so that the MTTUNTIM can
make +the appropriate corrections the
next time it is called. The caller is
returned to with the RETN macro.

MTTEASS routine

This routire is calied to prompt the
user for his Tsecurity code", This
rountine is used instead of in-iine code
becaunse it already has the mechanism in
it to prompt for a parameter with
“"hlack-out", {It uses this mechanisn to
prompt the user for his password at
logcn time,) After this TrToutine is
entered, it perforns linkage and
base-register initialigation with the
ENTE pacro. Calls to MTTWRITT1 and
MTTREAD1 are used to actually perforn
the prompting I/0 at the user's terminal
and this routine does not check the
entered string. It nerely sends
vhatever it gets back *to +the caller,

22,

23,

24,

PAGE 34 -

Return is made with a RETY macro.
MTTTSE routine

This routine is used by the application
program to force a time~-slice~end on a
suk-task (for exanple, to get out of
"pust-conplete" node), All .it does is
ENTR, REC and then RETN which has the
effect of +taking the user oat of
execution mode, setting him up +to be
dispatched again later and calling the
gueue~scanner to see if there is
anything to he done before
re-dispatching this user.

WTTLMT routine

This ‘routine is called by the
application to obtain the current limits
on the NASIS resources {prints,

searches, sorts and records). Lfter
initializing with the ERTR macro, this
routine rwerely moves those four words
from +the 1limit +table header {1abel
LIMERNTS in LIMDSECT) to +the 16-byte
field pointed to by the callier's
parameter list, Return to the caller is
made via the RETN macro,.

MITSPERK routine

NPTSPERK is the entry point specified in
the interrupt contrel bklock which
handles attention interrupts from +the
SY¥YSIN terminal ({operator's +terminal).
When it is called, it conforms to the
linkage Jlaws and sets-up all the base
registers for the HMonitor, In addition,
if there was an executing sub-task, its
time-slice timer is turned off, This
routine then obtains an area to save all
the interrupt registers and VPSW in and
chains this area to a chain of similar
Ssaveare€as. This is done because the
operator 1is allowed to hit attention
while a previcus attention is being
serviced, BAfter the table is chained in
and the interrupt information moved into
it, +the Task Monitor is returned to
briefly so it can dequeuye the interrupt
frem its own chains, At this point, the
operator is permitted to hit attention

PAGE 35

again--before this time, the attention
will be ignored by TSS.

After all its initialization is done,
HTISPERK prompts the operator to enter a
Mcnitor command by typing a question
mark at his terminal and unlocking: the
keyboard, If +the response from the
operator 1is dJjust a carriage return, he
is leaving "debug" mode and a branch is
made to the code to return to the point
of interruption., If text was typed in,
MTTSCAN is called <+¢o parse it into a
conwand name and operands. Errors from
that routine cause a message to he sent
t0 the operator and a branch taken to
the exitting code, Otherwise, the
OPERCOM (operator conmmand} - table is
searched <for a match with +the command
entered by the operator., TIf a match is
found, the appropriate command
processing rowtine pointer is picked ont
of the table and the routine is called.
If no match was found, a check is made
to. see if the Monitor is in "debug"®
mode, If it is, the line entered by the
operator is fed to an OBEY macrc in case
it is a TSS command. If the Monitor is
not in "debug" mode, an error message is
sent to the operator and the exitting
code is branched to.

After a command has been accepted one
way or another and control returns fron
either the command processor or the OBEY
macro, another check is made to see if
the Monitor is in "dehug" mode, If it
is, the operator is prompted again {(he
will be prompted until he enters a null
1ine)--if it isn't, the exitting code is
fallen through to,

At exitting +ime, the atterntion routine
is deleted and re-specified {(CLATT, DIR,
STIR, USATT) so that TSS doesn't lose it,
After this is done, all task interrupts
are disables by turning om a flag in the
ISA and the interrupt information is
noved from the current savearea to the
Monitor*s PSECT. The savearea 1S noy
un-chained and returned to the systen
(FREENAIN), any sub-task time~slice
timer is Testarted, task interrupts are

25,

26,

PAGE 36

re-enables and the routine returns to
the point of interruption by executing a
RTREN wmacrco pointing %o the interrupt
push-down area which it moved into the
‘Monitorts PSECT.

NTTPGHMIN routine

This is the entry point specified in the
interrupt control block for program
interruptions. On entry, it saves the
interrupt 1egisters and VYESW 1in the
Monitor's PSECT and caunses the Task
Monitor to degueue the interrupt from
jts lists by returning to it and telling
it to return to the MNonitor instead of
the point of interruption. If a
‘sub-task was executing, his time~-slics
timer is turned off. 1In addition, if a
user was ruaning, his dispatch flag 1is
zerced, Jjust in case somebody decides to
dispatch him later.

Now . this routine composes an operator
message containing the program interrupt
VPS®¥ and all +the interrupted general
registers. After this message is
composed and <formatted, it is sent to
the operator via +the MSG macro. After
the message is sent, thePGMSW switch
ig interrogated to determine whether to

‘pause so that the operator camn "look

around®?, If that switch is on, a CLIC
macro 1is issued, causing control +to
return to TSS command language until the
operator enters a "GO0 command.

Opon return from the CLIC or if no CLIC
¥as issued, the routine checks to see if
a user Was responsible for the
interrupt. If no user was running, exit
is made directly to MTTFNDO1. If a user
was responsible, he is sent a message
via MTTHEIT? telling what happened to
him and then he is forced off with a
call to NTTQUIT.

BTTSCAN subroutine

This subroutine is called by sections of
the Nonitor that wish +t0 parse a string
containing a Monitor conmand. It merely
separates the line into €lenents

27.

28.

29,

PAGE 37

delimited by commas or (strings of)
blanks and posts pointers and counters
for esach so-delimited operand into a
tabkle called PARANS, In addition, it
recognizes the gquote-mark convention
used by TSS itself to ailow the use of
compas, blanks or quote marks inside of
operands. If it finds an unmatched
guote mark somewhere in the string, it
sets the condition code %0 1noOn~-zZero
hefore returning, othervise the
condition <code is set to =zZero, Return
in either case is through register 14,

MITKA routine

This routine is +the routine =which the
application calls to process a user "KAY
command. After initializing the entry
(ENTR} it merely turns on the TCTKA flag
in the user?'s TCT and returns via the
RETN macro.

MTTKRE routine

This routine iIs the processor for the
user YEKB" command and turns the TCTKA
flag off ingtead of on, The sane
linkage is used as for MTTKR.

MTTHMSG routine

This 4is +the routine which is used +to
send a message from one user to another
{where one of the users in gquestion is
allowed to be the HNT/T operator). Entry
at MTTHMSG is <for the application to use
when it finds a user "MSG" comnmand and
entry at MTTHSG1 is used by the Monitor
£0 process an operator Y“MSGY command.

At KTTHSG, initialization is
accomplished by +the ENTR nmacro. The
userid of the message recipient is then
verified by a <call to the HTTGTUSR
spbroutine, A check is then made to see
if there is any text +to be sent. If
there 1is, the HNTTHANG subroutine is
called +to place the nmessage on the
receiving user's MCB queue or to send
the message inmediately +to the operator
{vhose userid is OPERATOR). Return to
the application is made by the BRETH

30.

31,

PAGE 38

Bacro.

At MTTHMSG1, the parameters {from PARANS) -

‘are picked-up and the userid 1is checked

by a call to MTTGTUSR. The text length.
is also checked and if there is sone
text to be sent, it is attached to the
appropriate user's WNCB chain by a call
to the NTTHANG subroutine., Return fronm
this routine is via register 114,

MTTHANG subroutine

This is the subroutine which actually
causes a message to get sent to either a
nser or the MT/T operator. In the case
of a user, it obtains space for an HCH,
puts the message into it and hangs the
MCB to the end of the chain of HMCBs
pointed +to by a word imn the tersmimal
table entry {TRQMSGPT) and turns on the
flag in the +terminal table entry
indicating that there is at least one
message in that gueus.

In +the case of a message intended for
the NT/T operator {userid OPERATOR), the
message text is mnoved to a {Monitor)
nessage area {after =2 tima=-stamp field)
and the whole thing is sent ipmediately
to the operator via the MSG macro.

Return from either section of <+this
subroutine is through register 14, .

BTTHELE routine

MNTTHELP 3is the entry <called by the
applicaticn to process a user WHELPY
conmand. This command is a "MSG" with
the receiving userid assumed to be the
-operator, After performing
initialization with the ENTR macro, this
routine locates the text of the message
to be sent and sends it to the operator
by calling the MTTHANG subroutine with a
userid of OPERATOR, Retarn to +the
application is effected with the RETN
macro.

MTTBCST rtoutine

This is +the rToutine which haandles the

33.

PAGE 39

{operator) W"BCST" command, It is- used
to send a message to all attached users,
Upon entry and after the text of +the
nessage to be sent is verified, the
terminal table is searched for active
users, For each, the MTTHANG subroutine
is called +to hang an MCB containing the
message text onto the MCB chain for the
nser. After they are all <£inished,
return to the caller is made through
{saved} register 14,

MTIUSERS rontine

This is the routine which processes
either the user or operator "USERSY
conmand, Entry +to HTTUSERS is for the
application +to «c¢all for the user
command, +the operator command causes
entry MTTUSER1 to be called,

After MTTUOSERS is called, normal
initialization is accomplished by the
ENTR macro. For users, a header message
is composes stating +the time and that
following will be a 1list of NASISIDs.
This is sent to +the user by a call to
MTTHRIT, Then a colunmn pointer and
character counter are set-up and control
transferrs to the common accumulating
routine,

At entry to MTTUSER1, no header message
is sent (it is assumed the operator
knows what the 1line of output consists
of). Only the colunmn - pointer and
character pointer are initialized. They
are different for the operator since his
message has to start with the time-stamp
field, Control falls through +to the
common accupulation- code,

Now MTTUSERS adds a border {(W&®k") - to
the left part of the 1line if a user
message is being conposed. It then
searches the +terminal table for active
users, moving the NASISID of each one it
finds intoc the print line with trailing
blanks stripped off and separating each
WASISID by a blank,. Again, if a user
messade 1is being processed, the border
is put on the Tight-hand end of the

‘Message., In the case of a user,

34,

35,

36.

PAGE 40

HTTHRITT is used to send the list; in
the case of the operator, the MSGC macro
is used. Return 1is either through
{saved) register 14 {for the operator)
or via +the RETN mechanism (for a user
cally.

MITFORCE routine

This rToutine 1is the processor for the
{operator) "YORCE" command. Upocn entry,
it merely looks for the NASISID which it
was passed in <the terminal table (by
calling the MNITTGTUSE subroutine) and
turns on the force flag in the user's
TCT {TCTFORC) if the NASISID can he
located., (The user will actually be
forced +the next time the queune-scanner
checks through the terminal table for
users to be forced.) Return to the
caller is through {saved) register 14..

MNTTNUSER Toutine

MPTTYXUSER contains the +two routines to
handle the user and operator "NUSERSY
conmands. Entry to MTTNUSER is for the
application +to call when it £inds the
user conmand, Initialization is
performed with the ENTR macro., Then the
nucker of users is picked-up £fron
MITGSER%#, made decimal and formatted
into a message. The message is sent to
the user via a call to HTTWRIT1. Return
is made with the RETN macro,

MTTNUSR1.is +the entry +o the MNITNUSER
Toutine for processing an operator
"NUSERSY command. It +takes the number
of users from MTTUSER# and formats it
into +the appropriate operator message
which is sent via the MNSG macro. Return
from +this section is through (saved)
register 14.

MTFSHUT routine

This routine processes the HT/T operator
SHUTDOYWN command, RAfter it is called,
it exapines the parameter it was given,
If this operand is defaulted, the value
five 1is used as a default (number of
minutes)., After locating or defaulting

http:MTTNUSR1.Is

37.

PAGE 41

the operand, this routine converts +the
EBCHIC for it into binary amnd converts
the number into milliseconds for use bhy
+he STIMER. A REAL timer ({(number six)
is set for the resultant interval if the
operand had a positive value, XIf the
value of the operand was =zero, the
HTTEND1 routine dis branched to directly
to effect an immnediate shutdown. After
the timer for a non-zero operand has
been successfully set, the caller is
returned to through Tegister 14, ‘

MTTKILL routine

This voutine is used to sloppily kill
off an application user, If the auser
specified by the operand to the command
can be located {MTTGTUSR) and if he is
in control (execution), his resuming
VYPSW from the attention routine is
overlaid to transfer control to¢ newmory
location as scon as the attention
routine transfers control back to the
roint of interruption. If the userid is
nct found or is not in control, an error
message is sent to the operator with the
MsSG facility, BReturn from this routine
is to the caller through register 14, .,

HTTLINIT routine

ETTLIMIT is the ©processor for ' the
operator LIMIT command which can bhe used
tc 1limit certain application facilities
as well as various numbers of users
allowed onto +the system at one time,
After it is called, this routine
attempts to £ind out what manners of
operands it was given. If the first of
two operands is not two characters long,
it is considered to be a keyword (for
one of the facilities) and the table of
keywords in the Monitor's CSECT is
searched to find a match, (If none are
found, an error message is sent to the
operator.) If one 3is found, it is
pointed to and control is passed to the
nunber scanning code.

If +the first of two parameters is two
characters, it is a <class name (where
class is the first two characters of the

39,

40.

41i.

PAGE 42

userid), The portion -of the limit table
beycond the header area is searched until
the entered class name is located or the
end is reached., TIf the end of the table
is rteached, the entered class name is
added to the bottom and pointed to for
the nunber scanner. If +the entered
¢lass name is found, it is merely
pointed +to and control falls +to the
ngnber scanning code,

After +the appropriate class name is
Jocated, the second parameter is scanned
if it is present. (If it is defaulted,
the nurber 32767 (infinity, in this
case) 1is used for the default,) The
nunker is scanned left to right digit by
digit, TInvalid decimal digits cause an
error message to be sent to the operator
and the enterprise to he abandoned.
After +the number is scanned, it is
posted in the slot in +the header table
{for keywords) or after the class name
{for class names). Return from this
routine is to the caller through
register 14,

MTITEBUG routine

This routine is the processor £for the
operator DEBRUG command and consists of
+wo instructions, The <first cone turas
the debug switch (DEBUGSW) on and the
second one returns to the <caller
through register 14,

HTTZATIN routine

MTTDATIM is the processor for the user
DATETIME comnmnand. It performs its
initialization and entry code with the
ENIR macro, fills in +the message to be
sent to the user with the current date
and time with the TIME macro and then
calls MTTH¥RIT1 +o send +this message to
the user. It then returns to its caller
with the RETN macro.

MTTHAIT routine
2fter it is written sometime in the

future, this routine will he +the
prcecessor for the user WAIT command,. .

52.

43,

4y,

PAGE 43

MTEPGMS routine

This Toutine processes the c¢perator
PGMSTOP command, This comnmand alters
the status of the
program-interrupt-stopping switch, On
entry, this routine <turns off that-
switch and checks the operand to the
conmand for a length of tyo {(for %“on%),
If the length is not +two, +the routine
Teturns to its caller +through TrTegister
14, TIf it is two, the character string
¢g¥ is checked for, If it 1is ON, the
switch is +turned ony othexrwise the
caller is merely returned to.

HTTNEWS routine

This routine processes the operator NEWS
command, After it is called, it checks
4+he entered operand for the character
string QFF., If it finds it as the first
three ©bytes of +the operand, it causes
the news buffer to be emptied by merely
setting its length to zero. If the
operand is real news text, it is added
t0o +the bottom of +the news buffer if
there 1is enough room in it, TIf there
isn't, an error message is sent to the
operator and the command 1is ignored.
After the text ig moved to the buffer,
the length of that buffer is updated and
the caller returned to through register
14,

MTPREC routine

This is the routine which allows the
operator to manipulate the recording
level by processing the RECORD conmmand
for him. ({See the section on event
recording for a description of what the
recording Jlevel actually means,) The
numeric operand to this command is
processed much the same way +that the
numker for the LINIT conpand is
processed except that an error message
is alsoc sent to the operator if +the
number 1is greater +tham 255, If +the
nuamber is valid, it is posted as a
one-byte value in the field MTTRECSW in
the PSECT, Return to the caller is
through register 14.

45,

46,

47,

48,

PAGE 44

MTTISTATS subroutine

This routine is called o process the
gperator STATS command, A1l it does is
verify that the operand to the command
is either the string Yon" or Voff" and
set a flag in the PSECT. Return is to
the caller through Tegister 14,

MTTETUSR subroutine

This is the subroutine which is called
whenever sonebody wants to see if a
particular userid is -currently connected
to the application. After verifying the

:length of the operand {between 1 and 8),

the operand is moved to a tenmporary and
right-padded with blanks., ¥ow +the
terminal tabkle is searched top to bottom
for the userid passed to NTTGTUSR (field
TEQUSRID in the terminal - table), ZRfter
{if) the .entry containing the 1userid is
found, the logged-on field in the TCT
for the termipal table entry is
interrogated, Tf the user 1is not yet
logged on, the userid is considered
invalid, Valid userids are indicated by
returning the terminal table entry
pointer and a condition cede of zero.
Invalid userids are flagged by a
condition <c¢ode of +two 1if the error
Teturn address (R6) is zero.. {In both
+he precesding cases, the caller 1is
returned to through register 14,) If
there is an error return address {R6
ncn-zero), the MTTBUSR tToutine dis
¢branched to. (It will make use of the
error return address after sending the
operator an error message.)

NTEETRUSR subroutine

This subroutine merely sends the
‘operator an error message about an
invalid userid and then causes control
to be transferred to an error routine by
branching through register six.

MTTBMSG routine
This routine does the same thing as

NETBUSR except that the error message is
for a missing message.

49,

50.

PAGE 45

MTTERMPT routine

This routine is used to send a message
to the operator., It is called by the
%SG macro after that macro located the
message pointer and length, This
routine first puts a time~stamp £ield
intc the message and causes it to be
filled in by use of the TIME macro. It
then posts the length of the message in
core and uses GATHWR or GTWAR +o send it
to tHe operator depending upon vwhether
or not response fron the operator is
expected, (If response was eXxpected,
the receiving £ield is blanked oat
before text is read.) - Return from this
routine is to the caller through
register 14,

MTTTIME routine

This is the routine called by the TINE
macro t¢c cause an EBCDTIME +to be
performed on some text.. This routine
merely moves the descriptors of the
field and does a register-form EBCDTIME
on the field, Return is to the callex
threugh register 14,

NTTHOVE subroutine

This subroutine merely moves text fron
here to there and is called by the HOVE
racro, Yt is coded +to be as guick as
possible under the unnaligned text case
on a 360/67,. It makes no special
efforts to detect aligned fields so it
can use tegister moves on them, After
the text specified is moved, the caller
is returned to through register 14,

MTTIRAN subroutine

This routine is called by the TRAN macro
and does for +translating text the . sanme
+hing that HTTHMOVE does for moving text.
Return is again to the caller through
register 14,

MTTETREN routine

This routine is actually the processor
specified for WSVC &30 instructions

PAGE 46

which are 1issued +to cause transfer of
control from one push-down area to
ancther, Since this routine is provided
with a push-down area by +the system, it
can merely overlay it with +the one to
+transfer control to. After doing this,
it just returns through the linkage to
+the task mnonitor to cause the desired
push-down area to receive control.

54, MTTRESET routine

This routine is called from the TSS
command language by +the operator when
the attention processing routine is
somehow disccnnected {by TSS)Y., After is
has observed type I linkage conventions
to get itself dinitialized, it merely
re-specifies the attention routine in
the same manner as the MTTSTART defined
it to start with, If it is unadle to do
so, MSG 1is used to send indication to
the operator, In either case, return is
to the caller {T5S) through +the exit
linkage.

Recording Mechanism Description

The event recording mechanism is inccecrporated
into +the Monitor to allow events and sone
data +to te recorded onto the (TSS) systen
SIPE {System Internal Performance Evaluation)
tape. There are some fields which may be
recorded in addition +to the data area which
may ‘be specified. A+ present, +the +things
which are recorded are input/output +o user
terminals, dispatches, time-slice ends,
%AITs and returns from WAITs, Any event nmay
be recorded in the Monitor by the insertion

¢f a EBECORD macro at the event +t0 be

recorded. (RECORD is described below,) Each
event recorded must thave a unigque Tkey" so
the ‘events can be retrieved from the tape
with identification, Furthermore, each
recorded event (RECORD) must have a recording
level attached to it. . This level is used to
determine whether or not the event ig
actually going to be recorded, The level
correspends to the numeric parameter to the
RECORD cperator command. If the event level
at tlie event felng recorded is higher.than
the 1level set at HNTTRECSY by +the RECORD
conmand, the event 1is not recorded. Thus,

PAGE 47

all the recording levels are higher than zero
so that recording can be disabled by entering

ZEero as the parameter to the RECORD
conmand,
T RECORD macro description

This macro is the only one which is used
by record events., Its format is:

TSVAL=,NTSVAL=,CPOTIN=,REG=,
DATA=,DATALTH=

where KEY 1is +the key npumber *to bhe
assigned to the event (they actually
start at 4000 but <£for this mnmacro we
start at zerc and it remembers what the
base 4is) and LEVEL isg the level to be
used in determining whether ox not the
event is to be recorded as discassed
akove, TERM¥# is +the relative terminal
munher (TCTTERM# or FNQPDV) for the user
in gquestion, #USERS is +the numbex of
‘uEers attached <o the application
{UTTUSER#) . TSVAL is the user's
time-slice value, usually from TCTTIMER,
NTISVAL is the <field containing the
nunbker of milliseconds he was
dispatched wmith last time or is going to
be dispatched with next time, taken from
TCINTS and CPUTIH is the amount of CPU
time the wuser has used s¢ far, taken
from TCTCPUTH. EKEG is a register which
may be recorded if vyou wish; it is
useful for dunping return codes and
suchlike. DATA is the pointer to a data
area which you need recorded
{input/output text, for exanmple} and
DATALTH 4is the length of that £ield,
KEY and LEVEL must always be specified
and if DATA is specified, DATALTH nmust
also bhe specified. Any of these field
may be =specified 3in register notation
and any register may be used, Thus,. if
you have the elapsed CPU time sitting in
a register, you could code CPUTIN={R7)
instead of CPOTIM=TCTCPUTHM, In
addition, the DATALTH field wmay be
either an address of a length field, a
register containing the length or am
absolute {or undefined) syxpression
containing the length,

http:Thus,.if

PAGE 48

2. Expanded code

The RECORD macro expands code to collect
the fields specified into either
registers (USERID, TERM#, #USERS, TSVAL,
NTSVAL and CPUTIM) or intc an area in
the recording area itself {DATH,
DATALTH, KEY). Since SIPE records the
Tegisters as well as the recording area,
they are used to ' hold as much of the
Tecarded data as possible, Puture
fields will have to be put into +the
recording area, however, as there are no
nore registers available for
data-holding., Code is alsc expanded to
test the level specified against
UTTRECSW and +to check the return code
frcm SIPE itself to nmake sure it
intercepts the SVC issued to activate
it. The SVC itself is in the beginning
of the recording area (which is always
pointed to by register 1 during RECORDs)
and is +the target of an EXECUTE
instruction (so that STPE is insured
that the area is in physical core).

F.. CODING SPECIFICATICNS

Te.

Source Language
T55/360 -Assemblexr langunage
Suggestions and Techaniques

Not Applicable

PAGE 49

TOPIC A.2 - INITIAL ENTRY ROUTINE

a, MODULE NANME
Initial Entry Routine
Program~ID - RDBMTT
Modnle-ID - DBMTIT

B, ANALYST

John A. Lozan
Neoterics, Inc,

Ce MODULE FUNCTION
The function of this module is to perform allocations
of the external data items used by the system. It also
issues the initial prowmpt, which is used to determine
wvhich NASIS sub-system the wuser wishes to invoke, and
then calls the proper module for that sub-systen.
D. DATA REQUIRENENTS
Te I/0 Block Diagranms
See Figure 1
2. Input Data Sets
a. Parameter Cards
Not Applicable
b. Punclied Card Input Files
Nect Applicable
C. Input Files
Not ZApplicable
3. Output Data Sets
A Qutput Piles
Not Applicable
b. Gn-line Terminal Displays
Ret Applicable

Ca Formatted Print-outs

E.

4.

PAGE 50

Not Applicakle

Reference Tahles

The precgram makes yse of the following tabless

da

b.

USERTAB

VERETAR

PROCESSING REQUIRENMENTS

1.

2,

Top Level Flowchart

See Figure 2

Narrative

e

b,

Ca

Initialize

This rToutine initializes the interrupt {(ATTN
and END) processing routines and the PL/I
error handler, It allocates and initializes
the user data table, The pregram also
allocates and 1initializes the verk +table
{including user specified commands) which it
gses in the prompt routine,

Tefine

This routine performs all of the file control
block allocations and initializations for the
proper operation of the rest of the NASIS
systen,

Frompt

This routine sets a temporary END condition
handler which results in a newy prompt on an
END condition., It cprompts the user for a
conmand and searches the verd table for a
matching entry. If =no match is found a
diagnostic message 1s writtem to the user and
the promrt is re-issued,

The verd table entry is analyzed and if an
immediate conmand has been entered, the
progran branches +t¢ +the routine whick
processes that comrand. Otherwise, the
progran optiomnally establishes a new strategy
and then calls +the entry point of the
processer for the coannand entered. ¥hen
control is retwrned to DBNTT, the user is

F.

PAGE 51

prompted for - the disposition of the current
strategy and it is either renewed or
erased,

When the compand entered has been completely
rrocessed, control 1is passed back +to the
prompting routine,. The entry of an END
conmand canses the program to be
terninated.

. CODING SPECIFICATIQNS

1.

2,

Source Language
TSS/360 PL/I
Suggestions and Technigues

¥ot Applicable

TYPEWRLTER
TERMINAT

DBMTT

Figure 1.

I/0 Block diagram

[

Wope]

INLTTALTZE

DEFINE

PROMPTER

NASTS
COMMAND

Figure 2. Top level flowchart

W v

PAGE 54

TOPIC R.3 - SINGLE TERMINAL TASK MONITOR

a.

B. .

C.

D. .

MODULE NRME
Terminal Support - Single Terminal Task Monitor
Program~ID ~ NASISX
Hodule-ID - MTTSUPX
Entry Points - ¥NASIS1, MNTTHRITE, MTTREAD, MNITHREAD,
BTTGETIY¥, MTTXTR, MNTTMUST, NTTPASS, MTTATTN, MTTPGHIN,
MTTSVC1, MITSVC2, FIXATTN, MTTRKA, MTTKSB
ANATLYST
Frank Reed
Robert L. Rutledge
Neoterics, Inc.
MODOULE FUNCTIONS
1o Organization Chart
See Figure 1
2. Overvievw
The function of this module is to - provide the MTT
monitor services to the non-MTT user of the NASIS
systen, allcwing ¥ASIS +to be invoked in
i'standalone? ' mode,
DATA REQUIREMENTS
1. I1/C Block Diagram
See Figure 2
2. Input Data Sets
e Paraneter Cards
ot applicable
b Punched Card Input Files
Not applicable
Ca Inrut Files
LISRIDS

d. On~line Terminal Entries

PAGE 55

The user €nters his NA3Is+-ID and his
security-code when prompted.

3. Output Yata Sets
¥ot applicable
4, Reference Tables
as External Tables

1. MTTUTAB
Za MTTLCAD

b. Internal Tables
Not Applicakble
E. PROCESSING REQUIREMENTS
1. Top Level Flowcharts
A Entry Points
1. NASIST1 - See Figure 3
2 'ﬁTTEBITE - See Figure 4
3. MTTREAD - See Figure 4
4, WTTHREEAD - See Figure &
5. MTTCGETIN - See Fiqure 5
B MTTXIR - See Figure 6
7. MTTHNUST - See Figure 7
8. MTTEASS - See Figure 8
c. MTTATTN - See Figure 9
10, MITSVC1 ~ See Figure 10
11. MWTTPGMIN - See Figure 11
12. EBTTSYCZ - See Figure 12
13. PIXATTN - See Figure 13
14, MTTER - See Figure 14

15. MNITEB - See Figure 14

PAGE 56

2, Narrative

Qe

b.

Cs

de

=1

f.

Entry Pcint NASIS?

This section of code Ybegins -a NASIS
application in standalone node., . The
rreliminary <functiomns it performs include
specifying interrupt rontines, initializing
tinmers and checking +the user's userid and
security code, After these have been
successfully completed, the location of
EDBMTT is retrieved from +the table MNTTLOAD
and control is passed to it. On return, the
interrupt routines are deleted and ceontrol is
returned to the caller {terminal 'user),

Entry Points MTTREAD, MTTWRITE and HYTHREAD

These routines are the ones which de actual
i/c to the user terninal, This 1is
accomplislied by an ENTER to the GATE ijunction
using a control block initialized by the
calling program.,

A TWAIT is executed for write-only outputs to
insure a coherent interchange should the user
press the attention Xkey before the output is
cooplete, On return from all I/0 functions,
the GATE return code is placed in register 15
and control is passed to the caller,

Entry Pcint NTIGETINM

METGETIM returns elapsed connect and CPU tine
tc its caller. 211 times are kept via the
REDTIN AND XTRTH wmacras.

Entry Pcint NTTXTE

This =routine returns information about the
terminal user to its caller, Specifically,
the userid, security code, taskid, MT/T and
conversational wmecde flags are returned,

Entry Pcint MTTIMUST T

This entry point is not reguired in
standalcne mode, hence, it is a no-or.

Entry Pcint MTTPASS

MTTPASS prompts the +termimal user for his
password {security code) and returns the

Je

he

PAGE 57

response to its caller,
Eptry Points HTTKA and MTTKB.

These <xToutines are used to get the pser into
either XA or KB mode. The OBEY macro is
vtilized to accomplish this- feat.

Entry Point FIXATTN

This entry point is called by a2 terminal user
to re-activate the attention routine whenever
it goes away {which occurs frequently during
debugging). The attention rontines are
deleted and re-specified to TSS and control
is returned to the user,

Entry Point HITATTN

This rcutine gains control of attention
interrupts from the system and passes then
aleng to the attention routine specified in
the NTTLCAD table. Two savereas are reserved
in +the NASISY PBSSCT to hold the interrupted
registers and VPSW,.

On entry the interrupted registers and VPSW
are moved to one of the saveareas and the
interrupt is deguened, Then, the processor
is called with 7register 1 pointing to the
savearea, On zTeturn from the processor,
HTTSVC1 is invoked to return control to the
point of interrupt.

MTTSVC

This <routine moves +the registers from a
NASISX savearea to the system savearea
pcinted to by register 0 {zero}, Control is
returned to the systenm, which loads the moved
registers and VESY and passes control to the
point where execution was interrupted by the
VSel, .

MTTPGNIN

This routine is called by the syster whenever
a program interrupt occurs within the
application, The user is notified and the
interrupted registers are displayed at the
terminal. VNext, the user is- prompted via the
CLIC macro. If his response is 1'GOT'Y,
control is returned to the point of interrupt

. Ee

i.

PAGE 58

by invoking entry point MTTSVC
MTTSVC2

This rcutine noves +the registers-active at
the time of a program interrupt from a NASISX
savearea to the system savearea pointed to by
register O ({(zero). Control is returned to
the system, which ipn turn returns control to
the point of interrupt.

CODING SPECIFICATIQHRS

1.

2,

Source lLanguage

T5SS/360 Assembler Language.

Suggestions and Techniques

Bot Arplicabls

MOMITOR MITWREAD - MTITREAD MTTHRLTE

A A ?

MTTKA MITKEB

Y

~
J

RTSATTH

TSATIN TSPROMPT TSREAD

ar

TSFLUSH. |

RDBATTN

S

oN-, U . IMMEDTATE
CONDITION: |’ COMMANDS
END St

" oN 1. l\j,\{/ ‘ DATA BASE .|,
.| cowprTION : > PROGRAMS ™ .
ATTENTION ; N AT

3 i

R “r L ™ e
- gy . J%' Yl - 1 P
1 .

N 1

oo ben

t e

<y

I LN
a2l e

B
[

- . . N - * . .
Figure.l, Terminal Support Organization Chart

NASTISX =

USER'S
TERMINAT

Figure 2.

LISRIDS

I/0 Block Diagram

¢0

(' " ENTER)

v

-

INIT
TIMERS

¥

GET USERID
AND DEVICE
TYPE FROM
55

Y

SPECILFY
INTERRUPT
ROUTINES

PROMPT
FOR
USER'S
NASIS-ID

DISPLAY
INVALID

~{ USERID
MESSAGE

PROMPT
FOR USER'
PASSWORD

DISFLAY
INVALID

PASSWORD
MESSAGE

DISPLAY

LOGON RDBMTT

MESSAGE

DELETE
INTERRUPT
ROUTINES

Figure 3. Entry Point NASIS1

(ENTER)

¥

SAVE
CATLER'S
REGISTERS

¥
CALL
TEESADA
TO GET A
DSA

CALL
GATE

TO DO AN
1/0

WATT F¥OR
COMPLETTON

CALL
THESAFA
TO RETURN
A DSA

Figure 4, Entry Points MITREAD, MTTWRITE, MITWREAD

—

VW

A

s

-
"
a——

(ENTER)

¥

SAVE
CALLER'S
REGISTERS

|

CAT.CULATE
ELAPSED
CONNECT
TIME

|

CALCULATE
ELAPSED
CPU TIME

Figure 5. Entry Point MTTGETIM

BT
V vt

A Momeme

(ENTER)

{

PASS USERID
T0 CALLER

PASS
PASSWORD
TO CALLER

PASS
TASKID
TO CALLER

TURN OFF
MIT FLAG

SET
CONVERSA-~
TIONAL
USER FLAG

y

(RETURN)

Figure 6. Entry Point MTTXTR

A=
W

ENTER

Figure 7. Entry Point MTTMUST

¢

/l\); e

ENTER

SAVE
CALLER'S
REGISTERS

PROMPT
FOR USER'S
SECURILITY
CODE

PASS
SECURITY
CODE TO
CALLER

Figure 8. Entry Point MTTPASS

R
AD
-3

%

POINT R2
TO THE
FIRST
SAVE AREA

i

MOVE THE
INTERRUFPTED
REGLSTERS

| TG SAVE AREA

POINT R2
70 THE
SECOND
SAVE AREA

9

CALL
INTINQ

TO DEQUEUE
INTERRUPTS

[

RETURN TO
SYSTEM TO
DEQUEUE

THIS ONE

¥

CALL
TEHMATIN
TO
PROCESS

1

CALL
MTTSVCT
TO
RETURN

!

CALL
ABEND
IF IT
GETS HERE

Mgure 9.

Entry Point MITATTHN

i RETURN

L {
Gl |

I RE-9
—

ENTER

i
MOVE ATTN
REGS TO
SYSTEM
SAVE AREA

ki
(RETURN)

Figure 10. Entry Point MITSVCI

[et A i | , g e
f M"{aﬁ":«?‘\‘fi ﬁlg

2

z

(ENTER)

MOVE INT.
REGISTERS
TO A

SAVE AREA

RETURN TO
SYSTEM TO
DEQUEUE

INTERRUPT

¥
MOVE REGS
TO PROGRAM
INTERRUPT
MESSAGE

]

CALL

GATE TO
DISPLAY

MESSAGE

CALL

CLIC

TO RETURN
TO USER

¥

CATL
MTTSVC2

TO RETURYN
TO PROGRAM

¥
CALL
ABEND

FOR 3VC
FATLURE

Figure 11. ; MTTBGMIN

P

-,

-

-1

ENTER

MOVE PGM.
REGS TO
SYSTEM
SAVE AREA

¥
(RETURN }

Figure 12. Entry Point MTTSVCZ

-\
Al AR

Figure 13,

ACTIVATE
USER
ATTENTION
ROUTINE

Entry Point FIXATTN

71

(MTTHA)

MITKB

SAVE

Figure 14.

|

CALLER'S
REGISTERS

¥

CHANGE
MODE TO
KA OR KB

i

{ RETURN }

Entry Point MTTKA and MTTKRB

97

v

/
D
N

PAGF 73

TOPIC B.1 - EXECUTIVE EEE~-FROCESSOR

a,

B.

cC.

.

MODULE NAME

Data Base Executive = Preprocessor
Program~ID - DB
Module-IL -~ DB

ANALYST

Garth B, ¥Wyman
Neoterics, Inc.

MODULE FUNCTION

DB analyzes Data Base FL/I languwage extension (DBPL/I)
statements and generates, in their place, in a source
program, PL/T - statements <for communication with the
DPata Base Executive (BDBFAC OR RDBLIST). Diagnostic
conments are generated for errors that can be detected
by DB during prerrccessing,

DATA REQUIREMENTS

1. I/0 Block Diagranm
See Figure 1

2. Input Data Sets
A Parameter Carxds

Jok control parameters for operaticn under
TSS are those required for PL/I
precompilation and immediate compilation,
Refer to the appropriate IBN PL/I
Programmer's Guide (Form C28-2049 for TSS).
The PL/I compiler parameters-¥ACRG, SOURCE2,
and COME {among others) are specified to
indicate that precompiling, precompiler input
listing and compiling are desired.

b, Punched Card Input Files
1. DB Text

The DE Text deck is text for insertion
intec the source program as a result of a
% INCLUDE DB; statement in the socurce
program. This text 1is composed of the
source statements of the DB preprocessor
function procedure, itself, and any PL/I

3.

Ce

d,

PAGE T4

statements to be upconditionally
inserted at the % INCLUDE DBy point in
the source program, DB Text is coded as
specified in +this report, formatted
according to PL/I sonrce langnage
standards and catalogued once in a data
set for compile-tinme use by all progranms
using DB.

2. Source Teck

The SOURCE Deck is any- - PL/I spurce
pregram using »B8 for its DBPL/I
statements., It is prepared according to
the DBPL/I User's Manual (DWB Section 7V,
Topic B.2) to access a self-describing
data Dase and formatted according to
P1L/1 source language standards.

Input Files

DB Text is catalogued as a member, named DB,
of a partitioned direct access data set for
retrieval by the IBM PL/I ©precompiler. The
data set is accessed via ddname LISRMAC,
On~Line Terminal Entries

Fect Bpplicable

Qutput Bata Sets

Ae

b.

Ce

Cutput Files

The object module consists of the relocatable
machine instructions and constants generated
by the PL/I ccmpiler for the source program,.
It is stored as a member of a program library
{Partiticned data set) for subsequent loading
by the TSS systen loader,

On-Line Terminal Displays

¥ot Applicakle

Formatted Print~ounts

1. Precompiler Listings
Two precompiler Yistings are produced:
a source listing before precompilation,

and any precompliler diagnostics {these
diagnostics are any errors in the use of

d.

PAGE 75

preprocessor FPL/X, not DBPL/I), The
appropriate IYBM PBL/I Programmer?!s Guide
explains the listing formats.

2. Compiler Listings

The compiler listings include an
intermediate source 1listing {between
precompiling and compiling) - and any
conpiler diagnostics., Any errors in the
use of DBPL/I generate diagnostic PL/I
comments in the intermediate source
listing. Serious DBPL/I errors may
result in compiler diagnostics,
particularly for undeclared gqualified
names when DB has suppressed augtomatic
generation of a decilare statement. The
appropriate 1IBM/I Programmer's Guide
explains the listing formats.

Punched Card Cutput Files

Not Applicakble

4, . Reference Tables

MFCB -~ Mainline file control block.

See Section III,. Topic B.i4, of the DHB.,

DBPL/I - Diagnostic conmments.

See Section III, Topic B.1, of the DWB.

DBPL/Y - DBPAC Interface.

See Section III, Topic B.2, of the DWB..

DBPL/LI - DBLIST Interface.

See Section III, Topic B, 10,

E. PROCESSING REQUIREMENTS

1. Top Level Flouchart

See Figure 2

2, Narrative

Qe

Top Level

The mainline BL/I source progran is regquired,
according to the DBPL/X User's MNanual (DWB
Section V, Topic B.2), to have a% INCLUDE DB1
statement once in the program bhefore all DB
LLepPTrocessor function references. This
statement directs the PL/TI precompiler +to
take text from member DB of +the partitioned
data set accessed via ddname TLISRMAC and

PAGE 76

incorporate it into the source program. (See
the T/0 Block Diagram in Figure 1.}

The DB text includes the following
statementse

ON FINISH GO TO FINISH;

for Maytomatic® data base file closing.
LEPL/I reguires that the PL/X FINISH
OCB~condition be reserved for this purpose.

The DR text declares and activates the DB
Preprocessor nhame by:

% DECLARE DB ENTRY {CHARACTER)
EETURNS (CHARACTER) 5

The DB text f£ollowing the end of +the DB
preprocessor function procedure invokes DB
once as follows:

DB{INITIALIZE)

This statenent is a special function
reference to be recognized by DB as the first
reference {directing DB to initialize
itselfy.

The remainder of this narrative specifies the
DB preprocessor function procedure which is
depicted in the Top Level Flowchart - in Figure
2.

BB receives one argument from a preprocessor
function reference: a varying length
character string consisting, in general, of
labels, comments, +valid DBPL/YI statements
and, possibly, invalid text. DB's objective
is +to analyze the argument and generate a
varying length character string, called the
generated text", consisting of wvalid PL/X
labels, conments and PL/I statements for
communication with the Data Base Executive.

If the special argument, 'INIPIALIZE', is
received, {(i.e., the first reference +to DB},
the Tnpitialize DB routine is performed and a
comment, such as:

/% DB001 INITIALIZATION COMPLETE. */

'is returned for insertion into the source

Ce

PAGE 77

program and DB is terminated. Otherwise, the
Argument Initialization routine is
rerformed,

Following the Argument Initialization routine
IB is logically between DBPL/I statements in
its processing of +the argument, The Find
Subargument routine is performed there, If
it finds the right parenthesis at the end of
the argument, the generated text is returned
for insertion into the source program, and DB
is terminated. If Find Subargument finds an
inter~statement comment, a statement label,
or a null statement (simply a semicolomn),
then the subargument is concatenated to the
right end of the generated text (i.e.,
vpassed through® to the intermediate source

texty, and PTLeprocessor control is
transferred back to the inter~statement
point, Otherwise, the Process Statement
routine is terforned, and preprocessor
control is transferred back to the

inter-statement point.
Piagnostic Comment Generation

Hherever this narrative specifies the
generation of ‘' a diagnostic comment, the
following specifications apply. 12 diagnostic
comment is concatenated to the right end of
the generated text for 4insertion into the
intermediate source progran, If the
diagnostic is for an error, the precompiler
count of diagnoestics is incremented, If more
t+han four errors are detected in one DB
reference further processing of that
réference is stopped to prevent the
possibility of unpaired guotes, parentheses
or copment delimiters looping the
rreprocessor. A diagnostic has the following
general format:

/*% DBnnn diagnostic-message., */

The “DB" preceding the message nunber
indicates that the comment was generated by
the DB preprocessor. The three~digit message
number guides the wuser to a mnore detailed
explanation of the message ' which is
documented in the DWB Section 1III, Topic
E\l-‘i

Initialize DB

d.

Sy

PAGE 78

Precompiler variables for £ile attributes,
file usages and diagnostic counts are
appropriately initialized. These variables
are subsegquently set or incremented as DBPL/I
statements are processed and are examined
vhen the finish statement is processed, A
precompiler indicator is set to indicate that
the FINISH statement has not yet been
procassed,

Argument Initialization

The argument 1is examined to <find the left
parenthesis at dits beginning., If any other
nen-bhlank character is found, a diagnostic
conment is generated and DB is terminated. 2
precompiler variable pointing to the "current
argument character?" is initialized %o point
to the character following the beginning left
rarenthesis., The generated text is
initialized as one blank character,

Find Subargument

2 snbargument, as used in this specificatiomn,
is a substring of the argument that is one of
the follcewing classes of syntactic units:

Te The right parenthesis at the end of the
arganent,

2+ A label, including its colon,.
3. In inter-statement PL/I comnent, .

4, A2 TNull statement consisting only of a
sericolon,

5. A LBPL/Y statement terminated by a
semicolon,.

6. A syntaxX error; i,e,, none of the
above,

A c¢lass {5) subargument may contain paired
parenthesis {(possibly nested) or string
constants enclosed in string gquotes. 1A class
{6) -subargument will be terminated by a
senricolon if one is found but will never
include the right parenthesis at the end of
the argument.

The Find Subargument routine is used at the

PAGE 79

ipter-statement point in the Top ILevel
Flowchart, The | argument is exanined
beginning at the current argument character
and ignoring leading bklanks to find the next
subargument, 2 precompiler variable pointing
to the beginning character of the
subargument, and another dindicating its
length in <characters, 1is set, The current
argument pointer is advanced to point to the
character following the subargument.

Process Statement

This <rToutine analyzes a single DBPL/X
statement body {i.e., apart from any
statenment 1labels), generates suitable PL/T
statements for comnunication with the data
base executive and returns preprocessor
control to the inter-statement point, The
PL/Y statements and comments that are
generated are concatenated to the right end
0of the generated text string for subseguent
insertion into the intermediate source
pProgran.)

a diagnostic comment containing the
subargument and any intra-statement comnments
is generated for documentation and for
reference in case of other diagnostics, If
the FINISH statement has already been
processed or if the subargument -has’ a syntax
error, an appropriate diagnostic comment is
generated, and ccntrol is returned to the
inter-statement point,

IEf the Find Reyword routine does not find a
keyword that identifies a DBPL/I statement,
then a diagnostic comment is generatsd and
coptrol 3is rTeturned to the inter-statement
roint, If the keyword 3identifies a SET,
FINISH, TREE or ON statement, control is
transferred to . the relevant specific
statement routine, The Find PFile clause
routine is performed if the second clause is
not a FILE clause then a diagnostic comment
is generated, and control is returned to the
inter-statement point., The Find Pile routine
is performed, and control 1is transferred to
the relevant specific statement routine.

1. Find Keyword Routine

A c¢lause, as used in this specification,

2.

3.

PAGE 80

Is a substring of the subargument that
is one of the following classes of
syntactic units:

~tke semicolon at the end of the
svhargument,

-a comnpa separating DBPL/I
substatenents;

€.9., in a nultiple OPEN,

-a keyword with an associated
parenthesized argument,

-a keyword without a parenthesized
argument,

a keyword-with-argument clause may
contain paired paventhesis (prossibly
nested), or string constants enclosed in
string quotes,

The Find Keyword routine is used to find
the keyword that will identify a
statement tc¢ branch to the specific
statement routines,

¥ind File Routine

The Find File subroutine extracts the
file name from a given FILE clause. If
the file-name is not a valid PL/T
external name, a diagnostic message is
generated, and the statement abandoned
by control being transferred +to the
inter-statenent gpoint, Otherwise, the
rrecompiler?s file table is searched to
determine if the file-name has been used
previously in the program, If 4t has
not, a new entry is appended to the file
table. In either case, a precompiier
variable 1iIs set to indicate the current
file, and controel is returned to the
point from which Find File was
invcked,

Specific Statement Routines

Fach specific statement routine exanines
the statewent from left +to right unptil
the semicolon is found. {The CILOSE and
OPEN statement routines recognize a

PAGE 81

conma as separating substatements and
loosp accordingly). The keywords are
verified for correct spelling and order.
The FREE LIST routine for specific lists
recognizes a comnma separating
list=-pointers and loops accordingly.
Routines that process a staterent having
a FIELD clause recognize a comma
separating field-name expressions, find
the corresponding element in the FROM or
INIC clause and loop accordingly. If
any error 1is detected, a diagnostic
comnment is generated, and the statement
abandoned by control being +transferred
to the inter-statement point, .

For +those statements having a FILE
clause, +the precompiler's file table is
rosted to record the <file usage (for
analysis in the FINISH routine).

Following successfal analysis, each
specific statement routine generates
PL/1I statements for communication - with
the DBPAC or DBLIST executive and then
loops back either to process another
FIELID or FREE LIST element, to process
another OPEN or CLOSE substatement, or
to the inter-statement point, Special
processing for the ON- and FINISH
statementes is specified after the
general specifications for -all other
specific statement routines,

For those statements having an entry in
the PBPL/I ~ DBPAC Interface table
(Section ITI, Topic B.2, of the DWB), an
assignment statement is generated in the
following formats:

filename.OPERATICN = *operation'B;

For example, when processing the
following arguments:

LOCATE TFILE{SAMEF) TXKEYFROM{BECH#) 3
The following assignment is generated:
SAMNPF,OPERATION = *'110100001'B;

For statements having a FIELD clause,
the operaticn assignment need only be

PAGE 82

generated once for the statenent, even
if it contains multiple €£ield names,

For an OPEN statement having a TITLE
clayse the following assignment is
gencrated:

filenane.ONFILE = title-expression;

If it has no TITLE clause the following
is generateds

filenane .ONFILE = *filename'

For an OPEN statement having an "access"
option and/or a "function™ option, a
bit-string value is assigned to
filename.ATTRIBUTES according to the
definition of a Mainline TFile Control
Block {described in Section IIXI, Topic
B. U of the DVWB) 3 otherwise, the
following .assignment is generated for'an
QPEN¢®

filename ,FONCTION = *10'B;

For each field-name in a FIELL clause,
an assignment statement 1is generated as
follousz

filename,ONFIELD = fieldnane:

There the field-nanme may be an
expression, for example, when processing
the following argument:

GET FILE {EXAMP) FIELD {* DATEPUB')
INTC (DE) 3

The following assignpent is generated:
EXAMP,ONFIELD = 'DATEPUB';

Por those statements having an entry inm
the DBPL/I - DBPAC Interface table, a
CALL statement 1is generated in one of
the folleowing formats, depending on
whether the “Argi® and "Arg2" columns of
the takle have entries:

CALL entrypoint {argtl);

CALT entrvonint faragi. ara?l =

PAGE 83

CALL entrypoint (arg1; arg2, arg3d) s

For exanple, when processing this
statement:

LOCATE FILE{(DAHMPF) KEYFROM{(RECH#); -
This CALL is generated:
CAIY DBPACFV {SAMPF, RECH#)}):
For those statements having an entry in
the DBPLI/I-DELIST Interface Table
{Sectiecn 11T, Topic B.10y, a CALL
statement 1s generated according to the
tatle,
The ON statement routine examines the
second clauwse, If an ERRORFILE clause
is found, the Find File subroutine is
performed, The statements shown below
at the =tTight are generated for the OF
statement shown at the left.
ON ERROEFILE{f) GO T0O label;
£.ERRORLROUTINE = label;
f£f.SYSTEN = 'Q'Bs
GN EBRORFILE({f) SYSTEH:
£f.SYSTEY = *'1'B3
ON LISTERRCR GO TO label;
LISTERR.ERROR,ROUTINE = labels
LISTERE,.SYSTEM = Q"B
ON LISTEEEOR SYSTEN;
LISTERR,SYSTEM = '1vB;
The FINISH statement routine sets a
precompiler indicator to indicate that a
FINISH statement has been processed,
ilsc, the following statement is
generateds:

FINISH: ON FINISH SYSTEN:

Then each entry in the precompiler's

PAGE 8Y

file table is analyzed. If the file was
used dinconsistently in the programn, a
diagnostic comnment is generated and the
next file analyzed. Otherwise, a
Mainline File Control Block {MECB)
declaration 1is generated, using the
file-name as the major structure name
and as the initial value of the title.
Any file attributes inplisd by the usage
of +he file are generated into the
initial value of the filename.,ACCESS and
filename,FONCTION £fields. Statements
are generated +to Tautomatically" CLOSE
the file, just the same as for a CLOSE
statement.,

after all {files have been analyzed, the
following statement is gemerated:

BETUORN;

In all programs, a declaration of the
entry points +to the Data Base Executive
{DEEACY is generated.

In all cases, a sunnhary diagnostic
comment is generated giving the number
of DB diagnostic error conments in the
Frogram,

F. CODING SPECIFICATICHNS

1..

T 2

source ianguage

The TIB preprocessor function procedure is coded
using the preprocessor PL/I statements permitted
in preprocesscr PL/I procedures,

Statements to be INCLUDEd or generated into the
intermediate source progran are coded using

PL/L.
Suggestions and Technigues

The DR preprocessor function proceflure is coded in
a modular manner so that the syntax analysis of
the argument is separate from the ' generation of
statements., This modularity will allow much of
the DB coding to be usable for any octher
extensions to PL/I that may be designed, such as a
Terminal Suprort PL/I language extension.

The coding of the specific statement routines are

PAGE 85

"table-driven" where possible +to facilitate any
future changes in the generated text for a
particular statement,

SOURCE DECK

IBM PLL
PRECOMPILER

DETEXT 4

Y

PRECOMPILER

IBM PUL
COMPILER

LISTINGS

"

COMPILER

OBJECT
MODULE

LISTINGS

Figure 1. - 110 Block diagram.

DBTEXT

FRST
REFERENCE

INITIALIZE BB : RETURN

ARGUMENT
INITLALIZATION
<+ 3 A
A
FIND CONCATENATE T0
SUBARGUMENT GENERATED TEXT

PROCESS
STATEMENT

RETURN
GENERATED TEXT

Figure 2. - Top’ievel flowchart.

T

PAGE 88

TOPIC B.2 - DATA BASE EXECUTIVE EXECUIION PROCESSOR

a.. HODULE NAME

Data Base Executive Execution Processor

Program-ID. - RLDBPAC

Hodnle-ID ~ DBPAC

Procedure Entry Point {control section name).: #FIELD

Other Entry Points - #XREF,DBPACFR,DBEACFP
DBPACP¥?,DBPACFYV,DBPFLDT

B. ANALYST

Garth B, ¥Wyman
Neoterics, Inc.

C, HODULE FUNCTTION

RDBPAC executes all data base input/output for mainline
pPrograns.,

Bainline PIL/X programs are written with DBPL/X
statements for data base input/output. (See the DBPL/I,
User's Guide, Section 8, Topic B.2). These statenents
are processed daring compilation and CALL statements
are generated (according to the DBPL/I-DBPAC Interface
Svecification, Section 3, Topic B.2). The first
parameter passed in a CALL to RDBPAC is a Mainline File
Control Blcck (see Secticn 3, Topic B, H).

RDBPAC executes the Tregquest indicated by the operation
code in the HMFCB. For physical input/output operations
it CALLs appropriate entries in the RDBTSSIO nmodule.
Whenever RDBPAC detects either a logical error or a
physical input/outrut error it posts an error code in
the MFCB, {See DEPAC Error Codes, Section 3, Topic
B3}

D. DATA REQUIRENENTS
1. I/0 Block Diagram
See Figure 1

The RDBPAC nodule does not do any terminal
input/output or print any reports.

2. Input Data Sets
Yhen a mainline progranm is accessing the

descriptor data set of a data base, Ydescriptor
descriptor®™ +tables coded in RDBPAC are used

3..'

PAGE B89

instead of an input descriptor data set.

Cntput Data Sets

The descriptor data set is updated as part of OPEN
and CLOSE processing (setting and reseting the
HNTNABLE and METRING switches).

Reference Tables

A PBPL/I - DBPAC Interface (see Section 3,
Topic E.2)

b. DRPAC Error Codes (see Section 3, Topic B.3)

C, Mainline File Control . Block {see Section 3,
Topic B.H)

da List Structure (see Section 3, Topic B,5)

e, . Dataplex Descriptor File (see Section 3,
Topic B.T)

£, Inverted Index Format {(see Section 3, Topic
D15) N

ge FI1DTAB Table {see Section 3, Topic F.10)

E. PROCESSING REQUIREMENTS

Te..

Top Level Flowchart
See Figure 2
Narrative

A Teceive Control

The entries at the beginning of the module
are described heres; entry DBPLDT is described
in paragraph "f¥ below. All entries receive
a Hainline ¥ile Control Block (MFCB) -as their
first parameter. RDBPAC +treats the HNFCB as
a simple parameter; that is, RDBPAC does not
krniow that the MFCB is a CONTROLLED structure
allocated by the wmainlines RDBPAC mever
ALLOCATEs or FREEs an MFCH.

For the #FIELD and #XREF function entries, an
appropriate operation code is posted in the
MFCB and +the second parameter, which is a
file name, is copied into the MFCB., This is
necessary because the function references in

b,

PAGE 90

the mainliine have not been expanded by the DB
PTeprocCessSOor,

‘The TIBEACFR entry handles a user record in

the form of a character string as its second
raraneter.

The DEPACFP and DBPACEF entries both handle a
user 1ist pointer as their second parameter,
DBPACPF additionally accepts a user subscript
as its third parameter. A switch indicating
the ah=ence or presence of a user =ubscript
is set.

The DBEPACFY entry handles a user field value
in the form <¢f a varying length character
string as its second parameter. The DBPACFYV
entry 1is also used for all statement calls
that - only pass an NPCB without a second
tarameter.

Common Code

Hand¥ing for PL/I errors that may cccur in
RDBPAC is initialized so that they will cause
a Junmp to paragraph "a" below bhefore
Teturning to the mainline,

If tle MFCB 1is closed and a redundant CLOSE
cperation is attempted +then contrcl branches
directly to the common return paragraph "mH,
If an OPEN operation or an operation that can
imply opening {(most record level operatioms) -
is encountered then control branches +to the
open routine -~ ©paragraph van, If the
operation can not imply opening then an error
is raised: a specific error code is posted in
the MFCE and control Junps +to the connmon
Teturn - paragraph "m¥, This is an exanple
of the general method RDBPAC uses when it
detects an error,

If +the HFCB is open the operation code is
checked for validity. Close and open {which
is re-oren in this case) operations tranch to
the close rcutine-paragrapk Yc%, Recorxd
cperations branch +to paragraph YeW", Get
operations branch to paragraph "h®*, Put aad
Reput orerations branch to paragraph "i%, An
invalid operation ccde raises an error and
Jumps to the commen return - paragraph "a®,

Close Routine

d,

PAGE 91

For esach data set in the data base the upnlock
subhrontine is called and +he ASMCLOS 1is
called.

For a simple close operation control branches
to the commen 1xeturn, For a close erase
operation, RASMERSE 1is called either for the
descriptor data set or for the "data” data
sets and control branches %0 the conpon
retuzrn.

Cpen Routine

The PSS userid is obtained by calling ASMID,
For a re-cpen operation on the ‘same data base
¥ith the same security password, the
following descriptor read-in and File Control
Block {FCB) initialization A steps are
bypassed, . For an open operation om a
descriptox data set, a pointer to the
hard-coded descriptor descriptor table in
main storage is posted in the HNFCB and the
following descriptor read-in step is
‘bypassed.

To read in the descriptor records, ASMDCB,
ASHFRDS, and ASHOPEN are called. Then for
each regicn (describing one date set) ASMGETK
is called to read the file descriptor record
and ASMGET is called repeatedly to read the
field descripter <rTecords, 2 descriptor for
+he RECLEN field is bypassed except on the
first data set., W%When the descriptor for the
key field is found, it is stored at the top
c¢f the DESC +table, other descriptors are
stored seguentially which is alphabetical by
field name. Superfield descriptors are
reread (by calling ASMGETK) so that their
component fields may be checked (if a
conponent has failed secnrity checking then
the superfield also fails). Finally ASHCLOS
is called to close the descriptor data set.

Next for each data set a File Ceontrol Block
{FPCBY is @allocated and a skeleton Data
Control EBElock is copied into it and ASHPNDS
is called, TFor OUTPUT or UPDATE mode a null
record is composed in the FCB by finding the
prinary field descriptors. After +the FCBs
are all dinitialized, then file and field
subscripts {INVFLCUR,ASSOCCUR,SUBRFLCUR, and
RELFLDSS) are determined,

PAGE 92

If a .non~descriptor <file is being opened for
output or update then the HNTNABLE or MNINING
switch in the anchor file descriptor record
is wupdated. For output or update, any
subfile data set in the data base is opened
and the highest 1id~key in wuse is found by
calling ASMOEEN and ASMGETK. If the
operation was an explicit open then control
branches to the common return. Otherwise it
was an implicit open and centrol proceeds to
the record routine.

Kacord Routine

The record-level routine 3is used for ¥RITE,
LCCATE, ZREAD and U¥NLOCK operations. The
RRITE operation is handled separately by
calling ASMPUTKE and branching to the common
return.

For LOCATE and ©READ operations, the element
GET curscrs are reset for the particular data
set or for the anchor and associate data
sets, The ILOCATE SUBFILE operation is
handied separately at this point: control
branches 1into the Put routine +to f£find the
anchor or associate control field for the
snhfile, 3 subrecord id-key is determined
from the hidhest id-key in +the control file
or, if it 4is null, from the highest id key
previously used in the subfile, A current
subrecord is built by copying the null record
built by the open routine, posting the new
jd-key and posting the parent key field by
copying the anchor key field. Control
‘branches into the Put routine again to put
the new element into +the control field. To
tetter ensure data base integrity, the anchor
cr asscciate record containing the control
field is immediately written or rewritten
and reread by calling ASHMPUTK and ASMGETK,
If the control field is on an associate and
the anchor record was newly located then it
is written and reread too,

An anchor LOCATE operation is handled
separately at this point: control branches to
the Validate key routine (described with and
also uged by the READ KEY operation) and then
an attempt is made to read the new key using
ASHMGETK., If the new key is found, the record
is mnmade current {Jjust as if a READ KEY
cperation had heen regunested) and an error is

PAGE 93

raised. Normally, the new key will not bhe
found and a current anchor record is built by
coping the nnll record built by +the Open
routine (or, for a descriptor data set, a
hard-coded null file or field descriptor
record 1is copied) and the new key valve is
rosted in it.

Spanned index reads are handled separately at
this point: their fondamental cobjective is to
rake the last 1Tecord of a spanned rTegion
current. For read JINDEX BACK¥WARDS either
ASHSTLP (if the o0ld suffix was 0) or ASHMSTLK
{to read the 0ld region suffixd) are called
and the ASMSTLPE is called to position at the
last record of the previous region: For read
INDEX forwards ASNGET is called to read the
first record of +the next region and then
ASMSTLK is called with suffix FF to position
at the last record of the new tTegion, For
read INDEX XEY +the validate key routine
{described later) is used and then ASMSTILK is
called with suffix FF to position at the last
record of the mew region, Then for all types
of read INDEX, ASHGET is called to read the
last record of the new region,

Normal {un-spanned) reads are processed as
follows, . For «read BACKVARDS, ASHSETL is
called with the P! option to position to the
previous record. For read forwards, it is
unnecessary to do any £ile positioning, For
read ©PER SUBFILE, the parent key value is
taken frocm the current subrecord for use
without validation. For read by XEY, the
Yalidate key routine is used, The Validate
key routine {alsc used for LOCATE KEYFORHN)
calls the generic conversion routine, if
specified 3in the key field descriptor, and
then calls the validation rToutine, if
specified, using "CALL CALL"™ service for hoth
purposes, For read LIST, the appropriate key
value is taken from the list (next forward,
next backward, or by subscript) for use
without validation, Then for all non-locking
direct reads (PER SUBFILE, by KEY, or fronm
TIST), ASNSTEEK is called to position to the
desired record, Now the file is pesitioned
fcr all reads (except direct locking) - and
ASHGET is called to actually read the desired
record. Then if the record is to he locked
and for direct locking reads, ASHNGETK is
called to reread or read the record and lock

PAGE 94

it for exclusive use. Next, for INPUT nodes,
any reccrd level security checking is dones
if it fails and it was a sequential Tread
{forvards or backwards), control loops back
to do another sequential read until a record
that rasses security or end-of-file is
encountered. If record security fails for a
direct read, a key-not-founnd error is raised.
For reading a descriptor data set only, the
region is compared to determine if the read
stayed within the region that was opened and
the key is checked to determipne if a file or
a field descripter was read so that the
fointer to the appropriate hard-coded
descriptor descriptor table can be posted in
the MNFCB to govern subsequent £ield 1level
operations, If an anchor record was read,
then all subfiles are checked: any having a
current subrecord with a different parent key
to the new anchor key are marked '“not
currentY, If a subfile record was read, then
the anchor and all other subfiles are
checked: any having a carrent (sub) record
¥ith a different (parent) key to the new
subrecord's parent key are marked ‘''mot
current”,

LBEFLDT Entry

The DEPFLDT {(Post FLDTAB) entry is provided
to build a Field name Table by reference to
RDBPAC's main storage descriptor tables built
by the Open routine, This entry is not
supported by a DBPL/Y statement a mainline
program pust:

i. execute =a DBEPL/I OPEN statement or a

record level statement implying
opening,

ii, TCAILIL DBPFLDT(nfcb): where mfch is the
file name of the data base +that was
opened,

iii, have a "% INCLUDE TIISRMAC{FLDTAB) ;"

statement to copy in the declaration for
FLDTAB. Use of this entry is optionalj;
RDBRPAC makes no use of FLDTAB.,

FLDTAB Routine

FIDTAB 1is allcocated or freed and reallocated
with its size adjusted to hold the number of

PAGE 95

field names in the data base. RECLEN and the
key £field npame are posted.,. - The anchor
descriptors are searched to find anchor field
names to post ¥for Format 2, The anchor
descriptors are searched again to find
associate field names to post for Format 3.
Fach subkfile's descriptors are searched in
turn +to post subfile field names for Format
4, If any superfields were noticed 1in the
anchor or assoc¢iate searches, they are found
again aund their components analyzed to
determine whether to post the superfield in
Format 2 {all components <from anchor) - or
Format 3 {one or more assoclate components
but no subfile components) or Format 4 {one
¢t more subfile components).

Get Routine

The Get routine is psed for all GET
cperations and for the #FIELD and #XYBEF
fanctions,

¥hen a field name has been passed or posted
in the MFCB, it 1is found 3in the DESC table
to determine +the data set for the GET3
otherwise, +the first data set (the one
specified by the OPER TITLE cluse) is
implyed. .

If +that data set does mnot have a current
record, then for the #XREF function a zero is
returned. JT£f it is the anchor data set and
any subfile has a current record, its parent
key will be used to read {(using ASMGETK).
The anchor record whose record security will
bte checked: if it fails, a null valoe will be
returned and control branches to the common
return or, for #FIELD, a zero is returned,

The GET RECORD operations 3Is handled by
coping the record <from the FCB to the user's
string and tranching to the common return,

For the GET 1LTIST SET statement {DRI) aund GET
INDEX LIST SET statement {DR2) the
cross-reference field descriptor is founnd and
control bYdranches down +to the Get TField
Toutine,

For the GET KEY S5ET, GET SUBPILE KEY SET and
GET INDEX KEY statements the appropriate key
descriptor is found and control branches down

PRAGE 96

+0 the Get Field routine,

For the #XREF function +the cross-reference
field descriptor is found and control
ranches down to the Get Field routine.

For GET FIELD, #FIELD and GET SUBFILE LIST
SET if the descriptor found previously was a
dumny, then the corresponding real descriptor
nust be found in an associate descriptor
table, For GET PFIELD and 4¥IELD of a
superfield, .a loop is initialized to take’
each conponent field, starting with +the
first, £ind its read descriptor and record
{using ASMOPEN and ASHMGETK for an associate
record 1if necessary) and perform the Get
Field routine repeatedly until the superfield
has been composed or its count determined,

Get Field handles a bit field, a fixed length
byte field, a simple variable field, a fixed
length element of a multi-elenent field or a
variable lengt element o©of a multi~-element
field. g

GET KEY SET operations are handled separately
after the fixed 1length key has been
extracted, If necessary, a list segpent is
allocated and chained and imitialized.

For ‘the SUBFILE option +the subfile id-key
field name is found in the subfile descriptor
table. For an index option, if the index is
spanned and the last suffix is greater than
zero, the first record 1im the region is read
using ASHMGETK and control branches back to
the Get Field routine, 2 list segment is
allocated, with its size governed by the
field's 1length, and chained and initialized
and posted with the whole multi-element field
value. For a spanned index, if the suffix is
less than the last in the region, them the
next index record is read using ASHGET and
controel branches back to the Get Field
routine; this repeats wuntil the whole region
has been copied into list segments and the
data set is positioned at the last record of
the regicm again.

The #FIELD function is handled for the null
and real value cases of all five types of
direct fields and for the case of an enmpty
associate data set or an absent associate

PAGE 97

record. Superfields are handled by
effectively evaluating #FIELD for each
component +to determine the net count. The
#XREF functicn for a spanned index calculates
the nunber of cross-references on records
preceding the last in the region by assumning
full ‘maximum length records and adds the
nurber cf cross~references on the last
record, The #FIELD and #XREF functions are
thus cvomplete and vetnrn their function value
directly (withont branching to +the commonr
return),

The GET INTO operations are handled for +the
null and real value cases of all five types
of direct fields ard for the case of an empty
associate data set or an absent associate
record., Superfields are handled by 1looping
kack to get each component field and
concatenating them together.

Tunt Routine

The field name passed in the MFCB is fonnd in
the DESC table to determine the data set
implicated. If it is an associate data set,
it is opened, if necessary, by calling ASOPEN
and read, if necessary, by calling ASMGETK
and if the record 1is absent a current
associate record is built by copying the null
record built by the open routine and the
anchor .key value is copied into it., If an
anchor key or a subfile id-key is bheing REPUT
0o null, then control bBranches to the Delete
routine described in paragraph "j% below.

For a fixed length figld or element, the new
valne is justified right or left depending on
the NUMALIGN switch in the field descriptor,.
For a variable length or multi-element field,
the field length and record length {RECLEN.
field) are adjusted as necessary. If the
field is indexed and had a ©non-null valne,
then +the Delete YREF snbrountine (described
in paragraph ™17 below) is called, If the
ne¥ value is non-null and the £ield is
indexed, then the XREF subroutine (described
in paragraph Yk" below) is called.

Delete Routine

Nulling a subfile id-key 3indicates that a
subrecord is to be deleted. The subfile

k.

PAGE 98

control field descriptor is found and if it
is on an associate, the associate data set is
cpened, 1if necessary, by calling ASOPEN and
read, if necessary, by calling ASMGETK. The
centrol field element is found and excised
and the £ield length and RECLEW are,
decrenented. Then the subfile descriptors,
are searched: for all indexed fields, the

Delete XREF subroutine {described in
paragraph ™1" below) is called for each,
element value. Finally the subrecord is,

deleted by calling ASMDELR.

¥ulling an anchor key indicates that an
anchor record and its associated and’
sutordinate records are to be deleted. The’
anchor descriptors are searched for subfile
control fields and for 3indexed anchor or
associated fields. If a control or indexed
field is found on an associate data set, it
is opened, if necessary, by calling ASMOPEN
and read, if necessary, by calling ASMGETE.
For each control field, the subfile is
cpened, if mnecessary, by calling ASMOPEN and’
each element is used to read a subrecord
using ASMGETK, The subfile descriptors are
searched for every subrecord: for all indexed'
fields, the Delete XREF subroutine is called.
Each subrecord is deleted by calling ASHMDELR,
Turing the anchor descriptor search, when an
indexed anchor or associate field is found,
the Delete XREF subroutine is called.,

XREF Subroutine

The XREF subroutine is' called from the Put
routine when a non-null valus is PUT or REPUT
to an indexed field., The inverted index data
set 1s opened, if necessary, by calling
ASHOPEN, Then an dindex read is attempted
using ASHGETK (with a suffix of zero if it is;
spanned)., If the record is not found, then
the null record built by the Opesn rouvtine is
copied, the cross~reference and the indexed
value are copied in, it is written by calling
ASHPUTK and control returns +to the calling
progran,

If an index record is found, then its highest
{rightmost} cross-reference value is compared
with +the new cross-reference, If the new
reference is lower, then the insertion point
is found by a binary search and the new

1.

PAGE 99

reference inserteds ctherwise the newv,
reference 4is appended. If +the index is not
cspanned or 3if +the region only needs one
record, the cross-reference field length and
RECLEN are incremented, the index Tecord is
rewritten wusing ASHPUTK and control returns
to the calling progran,

In a spanned index region when thée zero
suffix record is full, if its last reference

is 1less than or egqual to the new reference
then it is released by calling ASHREL:
otherwise the insertion point is found by a
binary search, the new reference is inserted,
the last Teference overflows +to become +the
new reference to be propagated forward, and
the record is rewritten wusing ASMPUTK. The
suffix is dincremented and control loops bkack
to attempt a read of the next record of the,
region. This continues as long as full
records are found. f£finally a short record is
found +t¢ append to or a fresh record is
created and the process is comnpleted 1like a
non~spanned case and control returns t£o the
calling program.

Delete YIEKEF Subroutine

The Delete XREF subroutine is called from the
Fut routine when an indexed field that had a
non-null value is being REPUT. It is also’
called exhaustively by the Delete routine for
indexed fields, The 1inverted index data set
is opened, if necessary, by calling ASMOPEN.
If the index 1is spanned, the last suffix of
the region is determined by calling ASHSTILIK
¥ith a suffix of "FFM" and ASMGET. Vhether or
not +the index is spanned, ASMGETK is called; '
to read +the index record {with +the highest
suffix if it is spanned), If the index is
not spanned or if the region only has one
record, then the cross reference is found by
a binary search and excised, the -
cross-reference field lergth and RECLEN are’
decremented, ¢the index record is rewritten
using ASMPUTK and control returns to the
calling program. In the exceptional case of-
the 3index record only having the one
cross-reference, it is -deleted using ASMDELR
and control returns to the calling program.

In a spanned index region having nore than'
one record, the lovwest {leftmost)

e

PAGE 100

cross~-reference value is examined before the
tinary search, If it is greater than the
cress-reference to be, deleted, then the whole
cross~reference falls off to be rolled
backward in the region., The record 1is +then
rewritten (with the field length and RECLEN
decrenented if necessary) using ASMBUTK or
deleted wusing RSMDELR, Then the gprevious
record is read using ASMGETK with the next
lower suffix and the lowest cross-referencse
examined. This process repeats rolling one
cress-reference backward in the region until
the record is found with a lowest
cross-reference less than or egual to the one
to be deleted, The cross+reference is found
by a binary search and excised, the rolled
cross-reference from the Tecoxrd Just
processed is posted at the right end, +the
Tecord is rewritten using ASHPUTK and control
returns to the calling program. If the cross
reference is not found icn the <trecord, it
kelongs on then the record is released using
ASHMREL and in the sinple case conirol returns
to the calling progran, However, if rolling
tack had been started in a spanned region,
one cross-reference igs still in limbo, so
control kranches into the XBEF subroutine
which will rcil one cross-reference forward
from that point to reconstruct the region
before returning to the calling-program; this

should be an extremely infregquent
cccurraence.
Return

The commen Return 1is used by all routines,
The only exception is +that when the #FIELD
or #YREF functions complete successfully they
return directly,

%¥hen an error has been detected, an error
code is posted in the MFCB, The address of
the MFCB 1is posted 1in DBEFCBP to assist any
mainline having nultiple MNFCBs,. if the
mainline has a current DBPL/I ON ERRORFILE GO
TO ... action, then RETRNPT is called to post
NFCB.OXRETURN and RDEPAC is left by Yranching
to the mainline label in -NFCB.ERROR.ROUTINE,
Otherwise RDBPAC is left by signalling the
PL/Y EEROR condition which, unless the
painline catches it, will terminate the
mainline progran.

PAGE 101

Normally, RDBPAC is 1left by a simple RETURN
statement and control returns to the mainline
that called.

F. CODING SPECIFICATIOCNS

1.

2,

Source langduage

RDEPAC is writtem in PL/I. The DB preprocessor
and OIDBPL/I are not used in RDBPAC. Various

Assembler language subroutines are used as
mentioned in the Processing Requirenents
Narrative,

Suggestions and Technigues

When a desired field descriptor has been found by
subscript in +the tables, its address is held in a
pointer wvariatle and based structure references
are used to avoid frequent re-evaluation of the
subscript. Similar technigues are used whenever
possible,

Binary search techniques are used to maintain the
cress-reference lists in inverted index records in
ascending segquence, ’

The facilities available in the RDETSSI0O medule
are used to the best possible advantage with the
TSS operating system VISAM access method.

The BRBBPAC module is designed and implemented to
be reentrant under nmulti-programming; automatic,
controlled and based storage are used
appropriately, One %nown exception is that - the .
nain storage descriptor descriptor +tables are
static for efficiency; if +two or more users
attempt to access the same descriptor data set
region concurrently they nay encounter
interference on the nulti-element £field cursors
{only RSECTYCD, NAMEFLD and SECURITY fields are
affected).

RDBPAC

RPBTSSTO

DATA

Figure 1.

L/0 Block didgram

BASE

/62

(:#FIELD: f#iXREF: DBPACFR: DBPACFP: DBPACPF: DBPACFY)

¥

COMMAND
CODE

CLOSE
ROUTINE

OPEN
ROUTINE T

}

RECORD
ROUTINE

FLDTAR

GET
ROUTINE

PUT
ROUTINE

DELETE
ROUTINE =

DELETE
XREF YREF

SUBROUTINE SUBROUTINE

- Figure 2. Top level flowchart

PAGE 104

TOPIC B.3 - EXECUTIVE ASSEMBLER PROGRAMS

3.

B,

C.

D.

HODULE NAME

Executive Assembler Program
Program=ID - RDETSSIO
Module-ID -~ RDBTSSIO
ANALY¥ST

Phillip D. Pritchard
Neoterics, -Inc,

MODULE FUNCTIOXN
This progran works in conjanction with the Data Base
Executive Program (RDBEAC) -and provides the assenmbler
language macros required to thandle the input, output
and updating of VISAM files, as well as the handling of
error conditions,
These VISAE files are the files of a data base and the
Data Base Fxecutive will call the Executive Assenmbler
Program when it meeds am I/0 operation performed.
DATA REQUIREMENTS
1. I/0 Block biagram
See Figure 1
2. Input Data Sets
A Parameter Cards
¥ot Applicakle
b, . Punclied Card Input Files
Not Applicable
Te Input Files
211 of +the files whichk make up a vare pase
conld conceivably be input, including
descriptor files, The only real restriction
is tlhat the f£iles be VISAHN.

da. On-line Terminal Entries

Not Applicable

.

3.

b,

PAGE 105

Qutput Tata Sets

A Qutput Files
Sare as input files,

b. On-line Terminal BDisplays
Not Applicakle

Ca Formatted Print-outs
Yot Applicable

d. Punclied Card Output Files
Not Applicable

Reference Tables

Not Applicable

PROCESSING REQUIREMENTS

1.

Top .Level ¥lowchart

-

See Fiqure 2
Narrative

This program is designed +to handle the input and
output functions for +the Data Base Executive
{RDBPAC). It deals strictly with VISaN files,

The ©program is divided into many vToutines, and
each of +these routines has a unigue function
{Tllustrated in Table 1). The Data Base Executive
(RDBPAC) calls these routines 3individually +to
perform the varicus functions which are reqguired.
Associated with each of +these c¢alls is the
passing of the reguired parameters,

The abilities of these assembler Toutipnes are
comprehensive enough toc handle any sitvation which
might arise in +the Data Base Executive. This
includes the abilities to: open files for input,
output, or update; <vread the file sequerntially,
read the file by key, exclusively or
non-exclusively; position the file to ‘the
beginning, +the end, +the previcus record or the
next record: and close the file, For exanmple, if
the Tata BPBase Executive were reguired tc open a
data base in the update mode and process records,

PAGE 106

the sequence of calls would be as follows:

CALL ASMDCB {parameters)
establish the files DTB {data
control block).

CALL ASMFNDS ({parameters)
l1ink the DPCB with the JFCB (Jjob
file control block}y.

CALL ASNMOPEN ({parameters)
open the file.

CALL ASMGETK ({(parameters)
read a record by key.

CALL ASNEFUTE {parameters)
reyrite the record,

CALL ASHECLGS ({paranmeters)
close the file.

The Executive Assembler Routines {(RPBTSSIO) is
called from the Data Base Executive (RDBPAC). If
no errors are detected by the assembler routines,
the error switch (cne of +the parameters) is set
equal to zerc upon return to RDBPAC and the return
is to the specified 'Good' return address: {one of
the parameters). If an error is detected by the
assembler routines, the error switch is set with
the proper error code and the return is +to the
next sequential instruction in RDBPAC, The error
codes will have the fellowing values when an error
occurs in ASMOEEN, ASMPUTK, ASMGETE, ASHGET,
ASMPUT, ASMSETL, ASHKESTL, ASMREL, ASHCLOS, ASMDELR
Or ASESTLK:

a. 04 - keys equal {segquence error)
b, {8 -~ key not found

C, 12 - key out of sequence
d. 15 - keys do not coincide
e, 20 ~ keys coincide

£, 24 - invalid retrieval address

Lo g8 28 - invalid record length

h. 31 - position past end of data set

i. 36 - rasition before start of data set

.. U0 - exceed maximum number of overflow pages
Ke 44 - exceed maximum size of stored data set

The assenbler routines will add 100 to all of +the
above error codes prior tc returning to the Data
Base Executive {RDBEAL). The end of data exit
sets the error switch to 99, The error switch is

PAGE 107

a fixed binary half-word.

The first parameter is always the DCB address {DCB
means Data Control Block). The seccnd parameter
is the record area, except for:

as The open {ASMOPEN) - in this instance, it is
a one hyte function code —
I = input
08 = output
U = update

b. The close {ASMNCLOS)
ESETIL {ASHESTIL)
STLK {ASMSTLK) .
REL {ASMREL} - in these instances, it
is a one tbyte dunny character {(no
meaning.)

Ca The DEIREC (ASHMDELR) - in this instance, it
is the key.

d. The SETL (ASMSETL) - in this instance, it is
a one byte function code -

B = heginning
E = end

N = next

P = previous

The third parameter indicates the routine to which
return is made if there are no errors.,

NOTE: The error switch parameter for the
followinc routines must be preset.

a, ASMGETK -~ 01 if KY(Read by key)
00 if KX {Read by key exclusive)

b. ASHPOTK - 01 if ET (Hrite)
00 if ES{(Rewrite)

The routines and their functions are as follows:

2 BASMFNDS: This <routine obtains the location
cf +the JFCB corresponding to a given data
set name. If the data set name specified is
not 1in the +task definition table {(DDEF'ed)
tut is in the catalog, the JFCB is created,

If the data set name specified is in the task
definition table (DDEFed), the JFCB is
already in existance, TIf the data set nanme
is neither ©DDEFed nor cataloged and the key

b.

Ce

d.

PAGE 108

length is passed as a parameter in the error
switch, the £ile is DDEFed and the JFCR is
created.

The DDNAME used 3is posted from the JFCB to
the DCB, and the owner-ID is posted from the
JEFCB o the usert's area.

The parameters vreguired for successful
execution of the FINDDS are as follows:

1. The DS name (35 characters)
Ze The DCB address

3. The owner's ID

i, The error switch (key length)

ASHCAT: This routine does a standard catalog
of the string passed as the first parameter,
The string has the standard CAT macr¢ format.
The parameters are as follows:

1. The catalog parameter

Ze The return code

ASHPR: This routine tries to do a macro
print on the string that 1is passed as the
first parameter. It has the format of a
standard PRINT nacro parameter., The
rarameters are as follows:

1. The PRINT rparameter
2, The return code

ASHERSE: This routine erases the
direct-access storage for a data set, 1In
addition, it will remove the entry for a
catalogued data set from the catalogq, The
DSWNAME rtassed is padded with blanks to 35
characters, If a stored data set is opened
ty many users concurrently, a particular user
cannot erase that data set until every other
sharer actively using that data set issues a
close.

Once a user is the oﬂly currently active task
using the data. set, he may erase it
regardless of whether he thas closed it or
not,.

The parameters required are the DSNAME and
the error switch. :

NGTE: TFor hoth ASMNFNDS and ASHNERSE, the

2

£.

ge

PAGE 109

error switch upon return to the Data
Base Executive is equnal to zero only if
no error occurred,

ASMOPEN: This routine connects the data set
to the system by completing the DCB
{containing the attributes), indicates the
manner in which the data set 1is to be
processed and positions the data set for
processing. The address of the SYNAD routine
{SYNADRTN} and the address of the EODAD
routine {EODADRTN) are ©posted to the DCE,
The address of the save area is also posted
to the DCB.

The parameters are as follows:

1. The DCR address

2 The function code

3. The *'Gocd' return address
i, The error swuitch

ASHPUTK: This routine moves a selected
record from a user specified area to an
cutput buffer, The system then includes the
Tecord in the output data set by key. This
cperates in one of two modes: Rewrite (X3)
or Write (KT). Write releases any page level
interlocks set for the data set, The
parameters are as follows:

1. The DCB address
2, The record area {address)
3. The 'Gocd! return address
y, The error switch (preset:
0 means Rewrite {K3),
1 means ¥Write (KT)).
S. The key {address)

ASMGETK: This routine obtains a selected
logical records from an input data set and
noves it to a user specified area., There are
tvwo modes, <tTead with interlock (XX) and read
with no interlock {(KY), both by key. The
parameters are as follows:

1. The DCB address

2. The record area {address)

3. The 'Good' return address

, The error svwitch (Preset: 071 ncans tead
with interlock (X¥), 00 means read with
no interlock (K¥)).

5. The key (address)

h.

i.

k..

1,

PAGE 110

ASNGET: This routine obtains +the next
sequential record and moves it from an input
buffer to a user specified area, The

parameters are as follows:

Te The DCB address
2. The record area
3. The 'Goed! return address
y, The error switch

ASMPUT: This routine has the same paraneters
as the ASMGET routine, However, instead of
reading a record, it writes a record.

ASMSTLE, ASMSETL: These routines pcesition a
data set. The parameters for both routines
are as follows:

1. The DCB address
Za The code : K {(by Xkey)
B (beginning)
E (end)
N {next)
P (previous)
NOTE: the 'P' actually does two
SETL 'P's in order to allow for
reading the file backward.
3. The 'Good' return address
4, The error switch
S. The key (address, for ASHSTLK only)

ASMSTLP: This routine has the sane
praranmeters as the ASMSTLK and ASMSETL
routines. It does one SETL P71,

ASHESTL: This routine releases a page level
interlock imposed by another macroc.

The parameters are as follows:

1, The DCB address

2. A dummy character

3. The 'Good' return address
4, The error switch

ASMDELR: This routine deletes a record from
a TISAM file. The parametersg ara as
follows:

1. The DCE address

Z. The key

3, The 'Good! return address
q, The error switch

Na

O

Is

PAGE 111

ASMREL: This routine makes +the record
available to other users.

The paranmeters are the same as in the ASMESTL
routine,

ASHCLCS: This routine closes the file
(VISAHM),

ASHMDEs This routine does a general purpose
DDEF after +trying to release the 'UNIQUE®
DDNAME it creates, It then passes the DDNAMNE
to the calling program. The parameters are
as follows:

1. The DDEF parameter string
2, The returned DDNAME
3. The return code

The first parameter is the 'DDEF information,
identical to the parameter string for the
DDEF macro, less the leading 'DDNANEY, '

The seccond parameter like +the first is a
varying character string, It is the variable
to which the DDNAME 1is returned. The third
parameter is the return code for the DDEF.

SYNADRTY, ECDADRTN: When an end of file or
some error is detected during any of the
routines in this program, these routines set
the proper errcr code in the error switch and
return control to the Data Base Executive for
appropriate action.

- GETRECRD, OTHGET: F¥hen a read by key,

non-exclusive, is executed and an ercor is
detected, they will function as follows:

When the ASMGETK is called to read
non—-exclusively and the record is not found
{ERROR X'08') then a SETLK to the mnct-found
ey is performed. This action positions the
data set to: The last record if the key is
beyond the end of the data set, to the next
lovest Xkey if +the key is 3in the central
portion of +the data set, and +to the first
record if the key is prior to the beginning
cf the data set, The SETLK returns to the
SYNAD routine. At this point, +the Tecord
indicated 1is read. An error code of X*108¢
is returned +to the c¢alling module {RDBPAC),
bat in fact, the vecord indicated is

S

t.

Vs

W

.

PAGE 112

current.

ASMDCB: This routine takes the DCB creatad
in +this pregram and moves it to the user's
specified area. The only parameter 1is the
user specified area (address).

ASMID: This routine determines the user - ID
{1SS -~ ID) of the task and places it in the
user specified area. The onmly paranmeter
rassed 1is the address of the user specified
area.

ASHRELS: This routine is used to release the

JFCB created by the DDEFing of a particular
file, The only parameter passed is the
DDNANE associated with the DDEPF, Any errors
that occur are ignored, .

CALL: This routine allows a PL/I program to
call an external routine by specifying its
nare at execution time. Any parameters other
than the called routine name, are passed on
to the «called routine for dnterpretation.
The nape specified must conform to the name
construction standards of TSS/360.

BETRNPT: This routine is wused by the Data
Base Executive error routine, It posts the
double word in +the MFCB so that the user (of
DBPACY can return +to the next sequential.
instruction in bis progran after the
cccurrence of an error. The first word is
the dinvocation ccunts the second word is the
address,

ASMMODE: This rountine is nsed +to determine
if the maintenance task is running in a batch
rcde. it returns a 1c if running
conversationally; or it returns a 'B? if
net,

IBUCHFEK: This routine 3is +used to validate
the construction of an external nane, The
rules used are:

1. the name wmust begin with an alphabetic
character {including %, $, @),

24 the name nmust be eight characters or
less,

3. the second and subsequent characters of
the name must be alphanuweric (including
#, %, 2, %},

PAGE 113

The paraneters passed are the name and the
name lengtk {(in the event that <the user
wishes to restrict it to less +than eighty. .
If the name is invalid, the length paramter
will ‘be set to one, as anm error indicator,
otherwise it will be set to zero.

Z. ASMXTR, ASMPASS, ASMMUST: These entry points
simply transfer control to the MTT monitor
to maintain linkage conventions,

Fs CODING SPECIFICATIOCNS

1,

2

Source language

Unlike most c¢ther modules for the NASIS systen,
the Executive assembler program {RDBTSSIO) is
written entirely in Assembly language, .

Suggestions and Techniques

a. Special attention 3is paid to the 1linkage
conventicns of the current PL/I compiler,

b, The Data Base Executive, by design, is the
primary wuser of this program., However, the
program 1is written so that programs other
than the Data Base Executive can use it,

RDBPAC

DBTSSIO

<>

DATAPLEX

Wiks

s

A

NN SY
. A

RDBPAC

DATA BASE EXECUTIVE

s

ENTRY ASMID
| routing
EXIT]
EMTRY ASMERSE
ROUTINE
BT i
ENTRY ASMENDS
ROUTINE
| EXIT T
ENTRY ASMOPEN
ROYTINE FROM VISAM
EXIT ! ERROR
< DETECTION
ENTRY ASMPUTK
> roure .
EXIT I
INTRY | | ASMGETK FODADRTN
> | rouTiNg ROUTINE
EXIT e]
ENTRY ASMGET SYNADRTN
ROUTINE ROUFINE
B I I
ENTRY _{ [ASMPUT GETRECRD
ROUTINE ROUTINE
1. B . !
ENTRY ASMSTLY
T ™ { RoUTINE
EXIT]
ENtRY || Asmsert
ROUTINE
EXIT !
ENTRY _ { { ASMESTL
ROUTINE
EXIT i
ENTRY ASMDELR
ROUTINE
L EXIT]
ETRY P L AsmrrL
ROUTINE
XY]
ENTRY | | ASMCLOS
T =1 | RoumNE
0 211]
ENTRY . { 1 Asmnea
ROBTINE
o EXIT !

Figure] - Tﬁg‘:evel flow civar
\

PARAMETER | REGISTER
NUMBER NUMBER PARAMETER
1 2 DCB ADDRESS
RECORD AREA
? 3 FUNCTION
puMmY
KEY
3 4 1GOOD" RETURN
4 5 ERROR SWITCH
5 6 KEY

TABLE I. - PARAMETERS,

iz

Tws>

EAGE 117

TOPIC B.4 - DATA BASE EXECUTIVE CONVERSION AND REFORMATTING

3.

B.

Cs

D.

ROUTINES

MODULE BNAHNE
Standard Conversion and Reformatting routines for the
Descripter Editor and the DPata
Base Executive,
Progran-ID - RDBEXITS
Module~ID - DBEXITS
Entry Points ~ See Table 1.
ANALYST

Garth B, ¥Wyman
Neoterics, Inc.

HODULE FUNCTION
This module provides 31 standard general field
conversion and reformatting routines, They are called
by +the Data Base Executive fisld processing routines
(PUT, GET, and JEPUT) if they are specified in the
field descriptor record, The routines are sritten
according to +the DBPAC Exit TRoutines User's Guide
{Section 8, Topic B.1) and may be used for user's
database fields, if desired.
DATA REQUIREMNENTS
Te I/0 Block Piagram
¥Not Applicable
2a Input Data Sets
a. Farameter Cards
Nct Applicable
b. Punched Card Input Files
Not Applicable
€,. Input Files
¥ot 2Applicable
3. output Data Sets

ade Cutput Files

B, .

F,

4,

PAGE 118

Not Applicalble

b. On-line Terminal Displays
Not Applicable

Ca Formatted Print-cuts
Not Applicable

Reference Tables

Wot Arplicable

PROCESSING REQUIREBENTS

1.

2,

Top Level Flowchart
¥ot Applicable
Narrative

The conversion routines (DBCVT__) are for use
during PU? or REPUT field processing. They all
accept a varying length character string argument
and all allow the value +to have 1eading and
trailing blanks, They check +the argument value
according to the Notes im Table 1. If +the
arqgument valve is invalid, they return with the
BAD parameter left set, Otherwise they copy the
value or convert it to +the internal form and
length shown in Table 1, reset +the BAD parapeter
switch and returnm.

The reformatting rcutines (DBFMT__} are for use
during GET <£field processing, They all accept a
varying length character string arqument (from the
dataplex). If the argument length is not as shoun
ander "Internal bytes" in Table 1, +then the
routine is being misused and the value "BAD, HEX=WM
is gemnerated followed by the hexadecimal expansion
of up to eight bytes of +the argument, Normally
the internal form of the value is reformatted to
the external form and control is returned., These
routines all produce exact length output (i.e.
without leading or traiiing blanks).

CODING SPECIFICATICHS

1.

Source language

PL/I with no LBPL/I statements,

PAGE 119

. 2 Suggestions and Techniques

Not Applicable

INTERNAT. REFORMATTING

ROUTINE

DBFMTS
DBFMTSS
DBFMTLN
DBFMTSD
DBEMTSN
DBFMIBN
DBFMIRL
DBEMTID
DBEMTFT
DBFMTFV
DBFMTO0
DBFMTRS
DBFUINF

(DBFMISB)
DBFMTSB

_ DBFMTHX

TABLE I

CONVERSTON NOTES PURPOSE
ROUTINE BYTES
DBCVIS 1 Scientific (long float) g
DBCVTSS 1 Short Scientific (short float) 4
DBCVTLN 1 Long Numeric (fullword binary) 4
DBCVRSD 1 Scaled Decimal) 5
DBCVTSN 1 Short Numeric (halfwoxrd binary) 2
DBCVTBN 1 Byte Numeric (quarterword binary) 1
DBCVTRIL, 1,2 RECLEN ‘ 4
DBCVTID 1 subfile ID key 3
DBCVTHET 3 header deseriptor FILETYPE 1
DBCVTEFV 4 field descriptor Fixed or Varying s
DBCVTOO 5 Off or On %
DBCVTRS 6 header descriptor RSECTYCD 9 .
DBCVTNF 7 super—field descriptor NAMEFLD 9
DBCVTEN 8 External Name 1-8
DBCVTSE Strip Blanks variable
DBCVTHX 9 HeXadecimal variable

1. Arethmetic conversion and size checking,

2. Value between 4 and 4000.

3. Valid values are: anchor, 1: associate, 2; subfile, 3;-

index, 4.

LA &~

true, t, 1.
. Has the form: nasis-id <{=> hexmask.

RSN

9,"}A, B, C, b, E, F.

Valid values are: fixed, £, 03 varying, v, 1.
- Valid values are: off, no, n, false, £, 0; on, yes, v,

Has the form: <externallelinternalli} component-field-name.
First non-blank alphabetic; other characters alphanumeric.
Valid non-blank characters are: 0, 1, 2, 3, 4, 5, 6,7, 8,

/20

PAGE

TOPIC B.5 - DATA BASE EXECUTIVE LIST PROCESSOR

A, HODULE NAME

Data Base Bxecutive IList Functions and Statements

Program-ID - RBBLIST

Module-ID ~ #LIST

Entry points - DBEAC,DBEACP,DBGLKN,DBGLIK,DBGLKI,
DEGLKO,DBSLLYL, DBGLKS,DBPLIK ,DUPLIST,
UiIsT,LIST

B. ANBRLYST

Garth B. Wyman
Keoterics, Inc.

C. MODULE FUNCTION:

RDBLIST performs services on 1lists {of keys in

121

main

storage) which do not require access to a data Dbase.
{Services requiring access to a data base are done by

module,RDBPAC} The list services ares:’
1. Getting the number of keys in a list,
2. Getting a key from a list in various ways,

3. Building a new list 1like or from an
’ list,

4, Boolean combination of two lists, and

5,. Freeing a list or all lists,.

T

oild

There are two means by which mainline PIL/I prograns use

the DBLIST services:

1, By function reference., The #LIST, DUPLIST, ULIST
and LIST functions are invoked by reference in a

PL/I expression.

2.,.. By use of DBPL/I, The other services are all used
by having BDBPL/I statements in a PL/I progranm.,
{See +the DEPL/I Language Extension User's Guide,
Secticn 8, Topic B.2.) These are processed at
compilation +time by the DB preprocessor function
vhich +transferms DBEL/Y statenents dinto normal
PL/I CALL =statements, {See the DBPL/T - DBIIST
Interface, Section 3, Topic B, 10.} At executiomn
time the various entries ¢of DBLIST are called for

the various services.,

D.

E.

PAGE 122

DATA REQUIREMENTS

See the DBPL/T lLanguage Extension User's Guide,
Section 8, Topic B.2.

PROCESSING REQUIREMENTS

1.

2,

Top Level Flouwchart
Not Applicable
Narrative

The routines all receive their parameter values as
specified in the DBPL/I ~ DBLIST Interface because _
the DE preprocessor function generates a DECLARE
of the entry points and their paraneter
attributes. .

The routines all recognize if a list pointer
parameter has the NULL value and process
accordingly,.

The routines all handle lists having continuation
segments by stepping from segment to segment as
necessary. In this regard DBLIST has three
internal subroutines:

a, GET which gets the next sequentlal key from a
{segmented) 1list. —

b. PUT which appends a new key to a (segmented)
list possibly allocating and CHAINing a new
segnent,

o, CHAIN which connects a new 1list segment to
the previous segnent,

When the routines detect any logic error, they
post an error code number in
LISTERER. ERROR.ONCODE., Then if the user has done a
DEPL/I ON LISTERROR statement, a Teturn is made to
the user's error routine, Otherwise, the PL/I
ERROR conditicn is raised.

#1.IST is a function entry that accumulates and
then returers +the current count of keys in a
{segnented) list.

LIST is a function entry that compares the keys inm
two given (segmented) lists and builds a
{segmented) list to return consisting of the union
{the OR operation) or the iptersection {the AND

PAGE 123

operation) or the difference (the MINUS operation)
of the two given lists. For the OR operation, if
one Jist 1is well then the cther 1list pointer is
returned immediately. For the HINUS operation, if
either list is null then the first list pointer is
returned immediately without building a copy.

DBPAC is an entry that systematically deallocates
all 1list segments for a subtask +thus freeing all
lists,

DBPACP is an entry that deallocates the segments
of one list and unchains them f£rom the chain for
the subtask, Deallocation is not done if +the
LIST,.PERMANENT f£flag has been turned on,

DBGLEKN is an entry that gets the key specified hy
a subscript from a (segmented) list. I£ the
subscript is zero or too high, the list is reset
and a null string returned., If the subscript is
any negative value, +then the previous key is
retarned ({except AFf the list was reset thenm +the
last key is returned or if the first key was
current then the list is reset and a nvill string
returned).

DBGLKI and DBGLIEK are entries that get the next
key Zfrom a (segmented) list (except if the list
vas reset then the first Xey is returned or if the
last key was current then +the list is reset and a
null string returned). DBGLKI will call a
conversion routine <for +the key value {if
specified); DBEGLIK always returns the unconverted
interval key value,

DEGLKC is an entry that resets a {segmented) 1list
SO that the £irst (or last) key will be
availaltle,

DBSLLL 1is an entry that allocates the first
segment for a new 1list and initializes it to be
1ike an existing list (except +that it has no keys
yat).

DBGLEKS 1is an entry that copies the current
internal ey from a {segmented) 1list +tc the end
of ancther ccmpatible (segmented) list.

DBPLIK is an entry that puts an internal key value
at the end of a (segmented) list.

DUPLIST is a function entry that returns a copy of
a {segmented) list. The copy is Ycondensed", that

F.

PAGE 124

is, it has full pmaximum size segments,

ULIST is a function entry that steps through the
keys of a -{sequented) list checking for
duplicated intermnal key values, If none are
found, i,e. the keys are unigue, the list pointer
is returned without building a copy. if
duplicated keys were found, a copy of the list
having only a single instance of any keys that
were duplicated is returned. The copy is
"condensed”, i.e, it kas full maximum size
segmnents,

CODING SPECIFICATICHNS

e

2,

Source Language
PL/I.

The LIST and LISTERR declarations are included
from the SOURCER.LISEMAC dataset,

¥o Assembler routines are used,
Suggestions and Techniques
The internal procedures GET, PUT and CHAIN

simplify, standardize and expedite key by key
processing of segmented lists,

PAGE 125

TOPIC B,5 - DATA BASE EXECUTIVE EARENT - CHILDREK PROCESSOR

Al

Be

C.

D,

E, .

MODULE NAME

Data

Base Executive Parent and Children List Functions,

Progran-ID - RCCLIST
todule-ID - CCLIST
Entry points - UPLIST,CPLIST

ANALYST

Garth B, Hyman
Neoterics, Inc.

MODULE FUNCTION

RCCLIST builds a 1ist of children (or parent) keys in

main
keys.

storage frem a list of parent (or children)

Mainline P1/I programs use the RCCLIST services by
function reference in a PL/I expression.

DATA

REQUIREMENTS

See the DBPL/I language Extension User's Guide,
Section 8. Topic B.2,.

PROCESSIRG REQUIREMENTS

Te

2. .

Fop Level Flowchart
Not Applicable
Narrative

The 7routines all receive a MFCBR (Mainline File
Control Block) as their first parameter, They
pass it though when +they call RDBPAC, BRCCLIST's
second parameter, a subfile control field name,
is posted in MFCB.ONFIELD for RDBPAC, The
routines all receive a list pointer parameter, If
it has the NULL +value, they return a ¥NULL 1ist
pointer immediately.

Then READ FILE LIST KEY {0)}; is done to reset the
READ cursor of the input 1list and the list's key
field name is compared with the anchor key field
name in +the core descriptor tables, For CCLIST
they shounld be egual {the input list should be an
anchor key 1list): if wunegual, the 3input 1list
pointer is returned immediately, For CPLIST and

BAGE 126

UPLIST they should differ (the dinput list should
be a subfile key list); if equal, the input list
pointer is returned immediately,

The #LIST function is invoked on the input list to
obtain the count to govern further processing,

For the CCLIST function READ FILE LIST NOLOCK is
done diteratively +to process all ({parent) records
in the input set,. From each one a GET FILE
SUBFILE LIST SET is done using the second
parameter for the subkfile nane, This returns a
list rpointer to a temporary set consisting of the
subfile control field, If it is null, control
loops back to the next READ and GET. If it is the
first non-nnll control <field encountered, it is
made the basis for the output list., If it is a
subsequent ncon-pull control field it onust bhe
merged with the previous ountput. If its first key
is higher than the last key of the previcus output
fusually) the temporary set segment is appended or
the last segment., Otherwise {(rarely) the OR LIST
function of the RDBLIST module must be invoked to
perfornm the merge and then the temporary sets nust
be <freed, Ccntrol loops back until all the READ
and GET's have been processed. The output list
pointer is returned.

Por the UPLIST and CPLIST functions a switch is
set indicating whether duplicate-keys are +to bhe
dropped after +the parent list has been built by
code common +to both entry points, One O nore
list segments of up to 32767 bytes of keys are
allocated and initialized as necessary to hold as
many parent keys as there are subrecord keys in
the input list. READ FILE LIST ©NOLOCK is done
iternatively to process all swobrecords in +the
input set., From each one the internal parent key
value 1is e3xtracted and posted to the output
list,

If the ocutput list has only one key, 3its pointer
is returned for either UPLIST or CPLIST.
Otherwise +the output 1list must be sorted into
ascending c¢cllating seguence, For the CPLIST
function the ocutput 1list pointer is returned at
this point.,

For -+he UPLIST function a f£inal pass over the
output 1ist 1is made +to detect any duplicate
keys., Each time a duplicate key 1is found it is
deleted by shifting the remainder of +the segment
to the left and decrementing the segment count,

PAGE 127

{This leaves a non-compressed list,) The output
list pointer is returned,

F. CODING SPECIFICATICONS

1.

2.

Source language
PL/I

The I1IST and LISTERR declarations are included
from the SOURCE,TLISRMAC dataset, Declarations
for HNFCB, DESC, DESC_FLD and TFCB structures have
heen taken from the scouwrce for RDBPAC,

¥o assenmbhler routines are used,
Suggestions and Technigues

The name conflict betveen the LIST structure and
the IIST entry +o RDBLIST (which may be invoked
from RCCLIST) <can te circumvented by wusing PL/I
PTEepProcessor facilities to renane the LIST
structure LISS during the compilation.

BAGE 128

TOPIC C,1 - UTITITIES JOIN {(RDBJOIN)

B. .

B.

o

D.

MODULE MAME

Joining new NASIS users

Program-ID -~ RDBJCIN

Nodule-entries - LEJOIN, JOIND, PAGERR
ANALYST

Edward J. Scheboth, Jr.
N=otericg, Inc,

HODULE FUNCTION
This program gives +the NASIS DBA the ability to creatse
and maintaip the data set NASIS.USERIDS., This data set
contains the NASISIDS under which users of the NASIS
system are given access to MT/T, the Retrieval systen
and the various data bases., The data set NASIS,USERIDS
is organized under VISAM, and has as a key composed of
eight byte NASISID of each joined user, with a variable
record format containing his password, timeslice, user
anthority, and 1ist of permitted files,
This prcgram has as a secondary function the task of
displaying for rdbinit the files available for
retrieval to a specific user,
DATA REQUIEREMERNTS
1. I/0 Bleck Diagranm

See Fiqure 1
2. Input Bata sets

A Parameter cards

Nct RApplicable
b, EFunched Card Input Files
Not Applicable
Ca Input Files

The NASISIDS data set, {For conplete
detailed specifications of +this £ile see
Section III of the Development Workbook).

ds Cn—-line Terminal Entries

E.

¥,

3.

4.

PAGE 129

Valid JOIN conmands,

Ontput Data Sets

as Qutput Files
See 2.cC

b. On-line Terminal Disgplays
See 2,d

Ca Formatted Print Quts
Not Applicable

da funched Card CQutput Files
Not Applicable

Reference Tahles

Not applicable

PROCESSING REQUIRENMENTS

T

Top Level Flowchart
See Figure 2
Narrative

The primary entry point of this program (DBJOIN)
is responsible for maintenance and display of the
NASIS,USERIDS file,

The rmain rcutine has a prompt validation loop
which c¢alls the subordinate functions such: as
Join, Quit.., etc, making the program more modular
and much easier to modify.

Program termination is thru the comnmon END
convention set up in TS/2. All parameters to the
commands shall e obtained wusing +the new TS/2
facilities.,

The secondary entry point of +this routine (JOIND)
displays the available files for DBINIT, ., This is
really a sub function of the main <routine's
Display function and paging entry and should be
coded as such to facilitate coding.,

CODING SPECIFICATIGNS

PAGE 13¢

Source Lahguage

As much as possible of the RDBJOIN module is coded
in +the IBM PL/1 programming language. The inpat
and output coding for accessing the file
NASIS,USERIDS is handled by a direct call to the
DEPAC assembler routines, A1l terminal access is
handled by TS/2,.

Suggestions and Techmigues

Refer to Section III of the Development Workbook
for all data =et specificatiomns.

TERMINAT,
CONTROL

RDBJOIN

NASIS
USKRIDS

Figure 1.

RDBINLT

I/0 BLOCK DIAGRAM

/31

%

J)#

(Comaem) (D

q

PROMPT
AND

VALTDATE
PASSWORD

\
PROMPT
FUNCTION

3

VALIDATE
OR END

IS THIS | DISPLAY
UPDATE? SUB FUNCTION
UPDATE
SUB
FUNCTIONS

Figure 2. Top Level ?lowchart

o

PAGE 133

TOPIC C.2 - NESSAGE FILE EDITCR

A,

Be

C.

D.

MODULE ¥AME

Enter new EXPLAIN text into LISRMLF
Program~ID - ROBHLE
Hodule-ID - DBMLF

ANALYST

George F. Uswald
Neoterics, Inc.

HODULE FUNCTION

DBMLT will enable a systems progranmer to enter NASIS
EXPLATIN text into a libtrary similar and replaceable
with LISRLIB{1ISRMLIF). A person may copy LISRMLF into
a VISAM file, BDEF it with the DDNAME of IISRMLF,
perform editions +to it with DBMLF, and test the new
editions. Upon approval, +the editions may replace the
original LISEMLF msnber of LISRLIB,

The module will perform interactive editions consistent

. with TS2 conventicns., The edit commands will provide

the user the capatility +o 2DD, TDELETE, REPLACE, and
DISPLAY a nmessage; tc PREFIX (set the filter prefixis:
and to END {terminate editicns).
DATA REQUIREMENTS
1, I/0 Block Diagran
See Figure 1
2. Input Data Paraneter Cards
Not Rpplicable
a. Parameter Cards
Not Applicable
b. Pynched Cerd Input Files
Not Applicable
C. Input Files

The input file will be a VISAM copy of the
current LISRLIB{LISRMLF)Y.

E,

d.

PAGE 134

Cn-Line Terminal Entries

211 entries will te either cormand and
parameters or command only; the form of the
entries is either £ul}l words, codes, or
no-entry. & default is made, where possible,
when no-entry is made. Prompting £for new
ccmmand or paranmeters will occur vwhenever
necessary.

Output Data Sets

-

b.

Ce

Cutput Files

Not Applicable

Cn-Line Terminal Display

A2l c¢n-line +terminal displays for DBMLF
follow the same format., All such displays
are handled by TSPL/I comnands,

Formatted Print-Outs

Fot Applicable

Puncled Card Cutput Files

¥ot Applicable

PROCESSING REQUIREMNENTS

Te

2,

Top Level Flowchart

See Figure 2

Rarrative

aas

The purpcse of DBHLF is to provide a systen
programmer the capability to 2ADD, DELETE,
REPLACE, and DISPLAY, 'NASIS EXPLAIN text.
The program is an interactive command-driven
raintenance routine which creates a librfary
similar and replaceable with LISRLIB
{LISRMLF}.

Mainline (Prompt and Validation Routine)
This routine 4is entered extermnally from
program execution and internally upon command

conpletion and error detection,

1. Program Execution

Ce

PAGE 135

The wuser will e prompted +to enter a
command. The user has the option of
entering either a cormand plus
parameters or only a command. The
routine will then validate the entire
copnmpand string. However, i1f a parameter
is in error, the user will be notified
and prompted to rTe-enter the particular
paraneter., If a no-entry is detected
for a parameter, the parameter will be
defaunlted, or if it is a mandatory
parameter, the user will be prompted for
the reguired parameter, is each
patameter is accepted or defaulted, an
entry will be made in the command
argument data string, The command
itself will ke used to determine which
conmand processor is to be invoked.

2, Command Completion

Ugon conpletion of a command the user
will be notified of its success full
termination, and prompted for a new
commangd or parameters, If the new entry
contains a command keyword (ADD, DELETE,
etc,), then execution will continue as
describsd above {(E.2.b.1). . If the new
entry is not a command keyword, then the
Pprogran will assume the new entry is to
be processed as prescribed by the
previous conmand,

3. Error Detection

If an error has occurred during
subsequent processing of the command
argument data string, the user will be
notified of the error and the user will
be rrompted for a new entry as described
in 2 above.

Command Processor Routines

There are two unigue forms of the command
processors: Group 1 contains the commands
that cause £file access: they are ADD,
REPLACE, DISELAY, and DELETE., Group 2
contains program or data ccntrol; they are
EREFIX vwhich sets +the filter prefix but
causes no access +to the file, and END which
causes program termination,

1.,

PAGE 136

File Access

The f£ile access comrmands have twe forms:

thoz=a

which vwrite or rewrite data and

those which read or delete data.,

., ¥Write or Rewrite

These commands require a source Key
plus new text information.

1.

ADD

The ADD command will specify
witk +the type parameter the
position into which the new
text is to be placed; example,
within Ib, MSG paraneter
preemnpts line numbers 0
through 99 3in increments of
5, EXP parameter preempts line
nunbers 100 through 199 in
increments of 10, and the RESP
parameter preenpts line
numbers 400 through 9999959,
The lack of one of the above
qualifying params designates
the +type and text of the
command argument data string
designates an -explanation of

‘a file oriented term or a

global term. This form causes
a default to the next
availatle 1ine number within
that region,

Note that when positicning for
adding a Tecord to +the file .
and a line number is not
specified, a read will Dbe
attempted wusing the highest
line number possible within
the above-mentioned
specification and thus provide
the 1line number of the last
record within type or term
within the region. '

In conbination with the type
param the line number may be
specified; this comnbination
denotes a line to be inserted
within type or term, and

PAGE 137

within region, .

Rhen the new line nunber has
been established, the socurce
key will be complete and a
write of the new line will be
initiated. Notes the writing
of a new data line c¢an cause a
duplicate key error condition;
this condition will be handled
by a separate routine,

2. REP

When a reguest is made for a
line to be replaced, all
params are mandatory. The
routine will <£irst construct
the source key and then
initiate a read. Successful
completicon of the read
determines that there is an
existing line +to be replaced,
).} key-not-~found condition
denotes that an 3invalid line
number was supplied in the
compmand argunent data
string.

Note: The existence of a
key-not-found condition will
cause - an entrance into the
error handling routine,

The data line obtained by the
read will be replaced as
denoted in the command
argument data string, and a
Tewrite will be initiated.
Note: There are no valid
exceptions for the failure or
the rewrite statement.

Read and Delete

These conmands d4¢ not manipulate
the data file per se, hut provide
for deleting or displaying of text
within +the delimeters provided by
the command argument data string,.

In both commands only the ID param
is mandatory; therefore, it is

Ce

PAGE 138

possible for a command to request
the deletion or display K of text

" from a single line numnber +to an

entire 1IN,

1

DELETE

Delete will obtain the
delimeters from the comnmand
argument data string and
remove all references to the
text as specified by the
delimeters. Note: Thare are
no valid exceptions for +the
failnre of the delete
statement,

DISPLAY

Display will cbtain the .
delimeters from +the command
argument data string and
display all references to the
text as specified by the
delimeters. When expiration
0f the delimeters occur and/or
no data 1is availakle for
displaying, a message will
return notifying the user of
the condition,. DNote: The
key-not-found condition will
bhe used to determine the
expiration of the
delimeters.

Centrol Conmmnands

There

are +*wo control commands

provided,

'10

PREFIX

The PREFIX command provides
for the setting of the filterx
prefix for each lins +to be
added or replaced.

Note: The prefix code in +the
copmand argument data string
will be ignored by all other
command processor routines,
Once +the prefix comnmand is
issued, it will Temain 4dn

PAGE 139

affect for all ADDs and RSPs
cemmands until a subsequent
prefix conmand alters the
setting of the filter
prefix,
2. END
An orderly close of all files
will occur and the progranm
will terminate,
¥, CODING SPECIFPICATIONS
T Source Language
Not Applicable
2.. Suggestions and Techniques

Not Applicable

USER

Figure 1.

LISRMLF

I/0 Block Diagram

PRCMPT

i

ALID
COMMAND
TRING?

FORMATTED
DATA STRING

/
GOTO COM.PROC

< DIS COM)
}

SUBPLY DIS
CRITERIA
TO DATA

(aop com.)
¥

SUPPLY ADD
CRITERIA
TO DATA
STRING

WRITE
NEW
DATA
STRING

DUPLICATE
KEY

INVALTD

STRING

Y

READ
DATA

TO BE
DISPLAYED

DISPLAY
REQUESTED
DATA.

STRING

PROCEDURE

(DEL COM)
¥

SUPPLY DEL
CRITERILA
TO DATA)
STRING

DELETE
RECORDS

REP COM

SUPPLY REP
CRLITERIA
TO DATA
STRING

READ DATA
STRING
TO BE
REPLACED

REWRITE
CORRECTED
DATA

STRING

|
GO TO
PROMPT

Figure 2. Top Level Flowchart

- PREFIX
N
y
SUPPLY PREFIX
CRITERIA

TO DATA
STRING

¥
GO TO
PROMPT

M

(END cOM |

TERMINATE
BEDITIONS

Wt

PAGE 142

TOPIC C,3 - CORVERSION AND FORMATTING ROUTINE TEST DRIVER

A.

b,

MODULE NAME

Conversicn and Formatting Routine Test Driver
Program-ID - RDBIDERIVE

Module~ID. -« DBDRIVE

ANALYST

dames A, Wesley
¥eoterics, Inc.

MODULE FUNCTIORN
RDBDRIVE 3is a facility to allow the application
programmers to test conversion, validation and
reformatting routines ccnversationally, The user can
specify the routine pames and input data values +to
simulate the activities of RDBPAC,
DATA REQUIREMENTS
1. 1/0 Bleck Diagranm
See Figure 1
2 Input Data Sets
Qe Parameter Cards
¥ot Applicable
b. Punched Card Input Files
Not Applicalkls
C, Input Files
Not Applicable

de. Cn=-line Terminal Entries

The user is prompted for all the input data
reguired.

3. Output Data Sets
A, Cutput Files

¥ot Applicable

E.

4,

PAGE 143

bs - Tn-line Terminal Displays
231 dinput data is displayed to the user for
verification 1in +two forms:y 1in the form as
entered, and after any necessary conversion,
The output from each routine is displayed in
hexadecimal, and the cutput from reformatting
routinpes is also displayed in 1its character
form.

C. Formatted Print-outs
Kot Applicable

d. Punchled Card Qutput Files
Not Applicakle

Reference Tables

¥Not Arplicable

PROCESSING REQUIREMENTS

1.

2.

Top Level Flouwchart
See Figure 2
Jarrative -

The user is prompted to enter the input mode, this
is the node %hich the character string he enters
at his ternipal will be converted into before
inputing it +to his selected routine{s). The
possibie input modes ares

alphanunmeric,

£full word,

half yoxd,

packed decinal,

long flcating point,
short floating point,
Hexadecinal,

LI}

M S b bha

Woowon

A null response to this prompt is the only way out
of the module. Null responses to any cother prompt
#will eventually filter back to this prompt.

The +type ¢f input mode selected determines the
setting of a labkel subscript which is later used
to branch to the routine necessary to convert the
input data to the selected mode,

PAGE 144

The user 3is next prompted for the routine names,
They nust be entered in one string, separated by
commas, and must not exceed eight characters. A
null responge here rTeturns to the prompt for
input nrode. Also, the routine names must be
entered 4in the order; conversion, validation,
reformatting, and any missing routines nust be
defaulteds; eq:

LBCVISR, ,DBFUISN
or
2 sDBFHIHX

If a validation routine has been specified, the
user is premgpted for +the validation arguments.,
These can be any character string, up to a maximum
of 50 characters; or null,

The wuser is nov rrompted for input data., A null
response here returns to the prompt for routine
names., The input data is converted +to the mode
selected by the user,

The data 3is ncw passed +to all the routines
specified, in the order; conversion, validatiom,
reformatting., The cutput from one routine is used
as the input to the next routine.

The optput £roem each routine 1is displayed in
hexadecimal and the output from the reformatting
routine is also displayed in character.

Successful coempletion Teturns the wuser to the
prompt for data, Any error results in a
diagnostic message and the return to the pronmpt
for data.

E. CODING SPECIFICATICNS

1.

2.

Source Language

This module is coded in the IBM/360 PLI language,
The TSPL/Y Language Extension 1iIs used for all
terminal I1/0.

Suggestions and Techniques

Not Applicable

/55~

I

TERMINAL

2

RDBDRIVE

EXILT
ROUTINES

Figure 1. 1/0 Block Diagram

; DBDRIVE (:éj)

PROMPT

FOR

MORE PROMPT FOR
INPUT DATA

CONVERT

DATA TO
INPUT
MODE
SET -
LABEL . N
VARTABLES / %
CALL DISPLAY /[.
L e CONVERSION OUTPUT ¢
ROUTINE L /
PROMPT p
FOR,
ROUTINE
CALL
|- DISP
| |[VALIDATION oumpé%Y
ROUTINE
CALL RE- DISPLAY
FORMATTING OUTPUT
ROUTINE,
{| PROMPT
s FOR™,_
: \\{ALIDARG ‘ Figure 2. Top Level Flowchart

"\“ A
LN

SN e

Cc

=
M
L)

PAGE 147

TOPIC C.4 -~ UTILITIES FUSERID

A

B.

Ce

D.

MODULE RAMNME

Get the TSS USERTID
Progfan-ID - RUSEERID
Hodule-ID - USERIT
ANALYST

John A. Lozan
Neoterics, Inc,

MODULE FUNCTION
This program is used to obtain the TSS userid and save
its wvalue in +the TS5 profile as a default for the
synbol USERID, This synbol 3is then used during
USERJOIN +to create +the +transaction and statistics
files.,
DATA REQUIREMENTS
1. I/0 Block Diagranm
Not Applicahkle
2 Input Data Sets
. Parameter Cardis
Not Applicalble
b. Punclied Card Input Files
Nect Applicable
Ce Input Files
Not Applicable
d. ¢n~-1line Terminal Entries
Not Applicap}e
3. Output Data Sets
A Cutput Files
Net Applicable

b. Cn~-line Terminal Displays

4.

PAGE 148

Not Applicable
C. Formatted Print-Outs
Not Applicable
Reference Tables

Not Applicable

E. PROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart
See Figure 1
Narrative

Upon entry, normal TSS linkage requirements are
fulfilled. Next, the programn uses the XTRCT
macro to obtain the userid of the task being
executed. The trailing asterisks are removed from
the userid and the resultant valune is assigned to
the default symbol USERID and posted in the
user?s TSS profile by neans of the OBEY nwmacro.
The progranm then returns to its caller,

F. CODING SPECIFICATICNS

1.

2,

Souwrce language

Because of its use of TSS system functions, this
nodule is coded in the 1I55/360- assembler
langnage.

Suggestions and Techniques

Not Applicabple

| ENTRY }

EXTRACT
USERID

POST-
DEFAULT
VALUE

Figure 1.

EXIT

Top level flowchart

Y ,,C/'\\‘\

PAGE 150

TOPIC D, 1 -~ MAINTENANCE TRANSACTION MERGE

A.

C.

D. .

MODULE NAME

Maintenance - Transaction Merge
Program-ID - RLEMERGE

Module-ID - DBMERGE

ANALYST

Richard B. Graven
Neoterics, Inc.

MODULE FUNCTION
This module is responsible for taking the contents of
the varicus userids' transaction data bases and merging
all of the +transactions affecting a particular data
base into the transaction data pase of the dJata base
owner. The resultant combined set of transactions is
then processed by Maintenance itself.
The inpuat +fransaction data basees are shared with
read/vrite access to the data base owner to enpable hin
to delete each transaction as he copies it over,
DATA REQUIRENENTS
1. I/0 Block Biagram
See Pigure 1
2, ~ Input Data Sets
A Parameter Cards
Not Applicable
b. Punched Card Input Files
Net Applicable
Ce Input Files
The +two possible sources of input for this
pregram are, (1) the VISAM dataset which
contains the list of TSS wuserids which have
been joined +to the NASIS system, and (2} the
transaction data bases of the NASIS system

UEESTS.

d, on=line Terpinal Entries

Ea

PAGE 151

Not Applicable

3. Output Data Sets

de

b.

de

Cutput Files

The only output file used by the program is
the transaction dJata base of the cuner of
the data base whose transactions are being
merged,

Cn-line Terminal Displays

Standard promnpting nessages are directed to
SYSOUT, as are all error messages written by
the progranm.

Formatted Print-ounts

Not Applicakble

Punclied Card Qutput Files

Yot Applicadble

4, Reference Takbles

:

the

special table is used by the program to control

input £iles to be processed. This table is

built by the program at initial entry <£rom the
special input file containing the names of all TSS
userids wvhich have bheen joined to the system,

PROCESSING RBEQUIREMENTS

Te Top Level Flouchart

See Figure 2

2. Narrative

N

Initialize

The <routine opens the dataset containing the
list of TSS userids Jjoined to the systen,
This dataset 1is read sequentially and each
entry is placed in the name table for future
reference, ¥hen the end-of-file is sensed
for this dataset, 4t is closed and normal
executicn continued,)

The final function of this routine is to open
the transaction data base of this userid for

PAGE 152

direct ocutput.
C. Cpen Input

This routine uses the data base name and the
next entry in the pame table to comstruct the
name of a transaction data base, which it
then attempts to cpen for direct update. Any
errors cause a diagnostic to be written and a
typass cof that file, The routine then
constructs +the lowest value key possible for
that nserid and the specified data base and
attempts to read that record.

d. Copy Record

This routine performs a seguential read of
the input +transaction data base., The record
key of the +transaction read is exanmined to
ensure that it applies to the data bhase
specified. If not, control is passed to the
Close Input routine, Once the +transaction
has been validated it is written to the data
tase owner's transaction data base and then
deleted from the input data base. Control is
t+hen rassed to the beginning of +this routine
for +the next record. Any DBPAC errors that
are encountered, except end-of-file on the
input data base, cause program termination,
fcllowing amn appropriate diagnostic
message.

2. Close Ingput

This routine <closes the input transaction
data Lase. If the entries in the name list
have not been exhausted, control is passed
tack to the Open Input routine to process the
next user's transactions, Otherwvise, control
flows to the next section.

£, End-of~-Jch
This routine closes +the owner's +transaction
data tase. It then returns to the c¢alling
redule.
F. CODING SPECIFICATIGHNS

Te Source Language

The Merge prcgrar employs the IBM PL/X programming
language., The special extensions of that

PAGE 153

language, called DBPL/T and TSPL/I, are utilitzed
for all access to files in the data base and for
2ll terrinal communication, respectively,
Suggestions and Technigues

Fot Applicable

DISPLAY
SCREEN

TYPEWRITER
TERMINAL

QUEUE
. MERGER

DISPLAY
SCREEN

TYPEWRITER
TERMINAL

Figure 1. 1JO Block diagram

OWNER
TRANS-
ACTION

BATCH
sysourt

15+

ewas oy

4 ENTRY ’

v

CONTROL-
ROUTINE

INITIALIZE

OPEN-
INPUT

CoPY-
RECORD

END
OF
REGICN

CLOSE-
INPUT

END-OF-10B

Figure 2. Top level flowchart

= EXIT

T

PAGE 156

TOPIC D,2 - MATNTENANCE MAINLIINE

2.

Be

C.

MODULE NAME

Maintenance Mainline
Program-ID - RDBHNKNIN
Module-ID - DBMNTH

ANALYST

Richard D, Graven
Neoterics, Inc.

MODULE FUNCTIONW

The HMaintenance Fainline program is an independent
nodule which carries out any actual changes necessary
to correct, update, or expand the files comprising a
data base. The specific changes, which can be
additions, deletions, or replacements, are accepted by
tlaintenance in the forp of transactions. The
transactions are kept .on a data base named ?*TRNSCT' and
are created and maintained by the CORRECT command.

The transactions can be applied to the data base on a
record, field, or element basis., Those transactions
which are successfully applied +to the data base are
deleted. Therefore, after the successful completion of
a naintenance run, the only +transactions remaining on
the 'TRNSCT?! data base are those which need correcting.
The HMaintenance Hainline acgquires the necassary
statistics while executing and causes the *'STATIC' data
base to be updated (via a call to RDBUPDST). The
Maintenance Mainline is run only in background or batch
mode, The restart capability of the maintenance run is
inherant because ¢f the deleting transactions as they
are applied and because +the statistics are updated
after the successful processing of each transaction
record,

The Maintenance Mainline +then has external interfaces
withk modules of the usage statistics, The RDBUPDST
modale is called after the successful processing of
each transaction in order to update the maintenance
statistics,

DATA REQUIREHMENTS

1. I/0 Block Diagram

See Fiqure 1

PAGE 157

24 Input Data Sets

Qe

b.

Ca

d.

Farameter Cards
¥ot Applicable
Punched Card Input Files

While +the Haintenance Mainlipe is normally
invoked from a terminal and, therefore, has
no punched card input, it is also possible to
initiate the task in the non-conversational
node. The maintenance is always a batch
task. The Maintenance User’s Guide describes
conpletely the procedure for invokation,

Input Files

The maintenance program reqguires all of the
files which make up a data base as input to
the nmodule,

The files in a data base are the source. of
the o014 or current data for maintenance, the
transacticn data base {TRNSCT) is the source
of +the new or replacement data (i.s., the
changes) . The conplete description of the
transaction gueue is found in the dataset
specifications. The transaction data base
{TRNSCT) contains information concerning the
data base, file, record, field and element to
be maintained, as well as +the +type of
maintenance and the new data,

gn-lLine Terminal Entries

There is basically only one terminal entry to
the wadintenance routine and +that 1is the
conwmand entered to initiate the program. The
complete explanation of +this procedure is
available in the Maintenance Usert's Guide.

3. Output Data Sets

Qa

‘Cutput Files

211 of the files of a data base may be used
as output files for maintenance., 2s in the
case where +the files of a data base are used
for input, the individual data files are
cuntput f£iles only if specific +transactions
reguire them,

E.

4,

C

d.

PAGE 158

On-line Terminal Displays
Not Applicable

Formatted Print-outs

Kot Applicable

Punched Card Output Files

Kot Applicable

Reference Takles

Since DBPL/I 1is used extensively in this module,
the various combinations of DBPAC errors should be
handled properly. These are 3in amn array to
determine program processing after error occurs,

PROCESSTING REQUIREMENTS

T

2.

Top Level Floxkchart

See Figure 2

Narrative

R

b.

RDBMNTN {DBMNTN-entry pointy

The Maintenance Mainline program is an
maintenance module which carries cut changes
t6 the files comprising a data base, The
program receives directives to modify a data
base file or files from the maintenance
transaction data hase (TRNSCT).

Initialization

A table ¢f +the fields which are inverted is
created from FLDTAB, The key fields
descriptor is read and wupon finding it, the
key field's length is saved,

If any errors are incurred while reading the
descriptor file, the proper message is
emitted and the run terminated. If not, then
the use of the descriptor file is at an end
and it is closed.

It is now time +to initialize the transaction
file by opening it, positioning it and making
the first record to be processed available.

Ce

PAGE 159

An error on opening of the transaction data
base could mean that there is no data on the
TPENSCT?' data hase, or that +the *TRNSCT!
dataplex is already opened for update or
cutput, In either case, appropriate error
ressages are dissued and the ran is
terminated,

To position the data base (after opening), we
do a Read by Xey NOLCGCK, The key we create
consists of the data base name ccncatenated
¥ith the cwners-ID contatenated with all bits
off, This shculd represent a low key value,
This yields either a successfal read or a
LBPAC error of 148, ¥e expect the error to
cccur, Then a sequential read is performed
and wve obtain +the first +transacticn %o be
rrocessed., BRefore continuing a get field is
executed on the ey and its contents are
checked, If the key does not represent the
proper data tase name, cowner-ID conbination
an error message 1is emnitted and the run is
terminated.

Otherwise, we are prepared for the final
stage of initialization, '

The regular transaction data base (TRNSCT)
routine is set, the data base which is being
updated has its error routine set and it is
opened for direct update or sequential
cutput,

The initjialization process 1is complete,
Updating Statistics

The 1ules for gathering and keeping the
statistics for maintenance are as follows:

1. Add transactions with a field name equal
to the anchor files (TRANCNEW).

2. Add transactions with a field name of
T¥RNE¥ SUDB¥? ywill post the new subfile
record count for subfiles (TRSUBNEW).

3. Delete +transactions with a £fieldname
egqual to the anchor key name will post
the delete record count for the anchor
files (TRANCDELY.

4, Delete transactions with a subkey field

d.

PAGE 160

will post the delete subfile record
count (TRSUBDEL).

5. 3dd transactions with a field name other
than the key field name will post the
update ccunt for the ancher file
{TRANCUFD) .

6, Add transactions with a field name other
than tbe key <field name and a SUBKEY
field will post the update count for the
subfile file {TRSUBUPD). '

T Change transactions will post the update
count for the anchor file {TRANCUPD).

a, Change transactions with a SUBKEY <field
will post +the =subfile count for the
subfile file {(TRSUBUPD). .

S, It the filed is inverted then
appropriate index file count will be
posted.

These statistics are accunmulated only if the
transaction was successfully used to update
the data base: The statistics data base is
updated after each +transaction has been
rrocessed. This wmeans that if +the systen
crashes or otherwise fails during execution
of a given maintenance 7run, the statistics
will ke correct, Since each tramsaction
{after it has successfully updated the data
base)y is deleted from the TRNSCT data base,
then the restart procedure is automatic.. The
call to the module to update the statistics
is as follous:

CALYI [CBUPDST {UPDTFLAG,DATAPLEX,
TRANCNEW, TRANCDEL,TRANCUPD,
TRSUBNER,TRSUBDEL,TRSUBUPD,
TRINVNEW,TRINVDEL ,TRINVUPD) 3

If +the statistics are updated successfully,
the DBUPLST module returns a 'G' in UPDTFLAG.
If the statistics are NOT updated
successfully, the DBUEDST wmodule <retunrns a
'EY in the UPDTFLAG.

Lelete the Transaction

If the transaction is successfal, it is now
deleted from the TRNSCT data base.

=1

f.

de

PAGE 161

Fead Tramnsaction

The +transaction file is a data base which
consists of only an anchor file and no
associated or inverted files. The
transactions are read sequentially. The Data
Fase Executive performs all of the necessary
I/C operations, After a +transaction record
is located by the Data Base Executive, GETS
are executed con all of the desirakle fields.
These fields are disseminated +to various
work areas, Then, checking is performed
kased on the presence and/or absence of data.
The validation of this data is based upon the
following:

See Figure 3

If there 4is an error detected during this
initial ©processing, then +the transactién is
in error.

£.0,3, {end-of-data)

The end-of-data 1is only detected on the
transaction data base. When this condition
is detected, all the files are closed,
appropriate messages are issued and the
processing continnes at the TrTeset the
switches, section (g}.

Reset the Switches

This section of code is executed antecegdgent
to the occurence of an and-of~data
conditicn, The files of the data Lase are
manipulated to detect the existence or
non~-existence of data and the 'DATA' switches
of the corresponding files are set
accordingly.

DEL_RTN: Delete field routine,

This rtoutine uses +the #PIELD function +o
reput all the elements in the f£ield to =null,
If it 1is the key field, then the entire
record ic deleted.

ADD_RTK: Add routine.
This 3is the add record and add element

reutine, If the field name 3is the key field
then this name is stored to indicate to the

BAGE 162

maintenance <Toutine that a new record is to
he added +to the file, If the f£ield is not
the key field, then a test is made to see if
the transaction key is already present, If
not, then the XkXey is compared to the stored
key from the last add transaction with a Key
field., If they do not match, an error has
cccurred and is flagged; otherwise, a record
is created with the stored key. The new
element 3is then put to the record. Control
is passed bhack to section () on completion
¢f this transaction,

FOTEs: I1f subfile key 4is present in
transaction then subfile tecord is obtained.
TIf SUBCTI field is present then new subfile
record is located,

CHG_RTN: Change Routine,

If no start or end field, given element is
replaced. Using the key passed in the
transaction record, the appropriate record is
read in from the data base. 4t that point,
the value of the returned field element is
compared to the 'old?! data element 3in the
transaction. If no match is made, a test is
made as to vwhether the returned element is
null, +thereby signifying the end of +the
field, If that is the case, then an error
has c¢ccurred and is indicated, If the null
€lement was not detected, then the next
element is obtained and the PLoOcCess
repeated. If a match does occur, then the
new' data element £rom the transaction
record is reput to the record, If the ‘new!
data element 3is null, +then the element is
deleted, Continue ©processing with section
{e)., If a start and enrd £field 1is present
then a field context operation is
rerformed,

The maintenance program can carry out changes
t¢ portions of large <fields without the
entire field on the transaction entry record.
To begin, the record 1is read into a large
encugh area to hold the maximum record using
the key provided in the transaction, The
field in question will +then be ottained and
an interactive process is applied wherein the
old data value is compared sequentially
across the field from the starting location
to the ending location. Whenever a match is

PAGE 163

found, the ‘*new' data value is used +to
replace the '01d' in the field- and a count is
kept of the number of replacements. When the
end of the search range is reached, the count
is +tested., If no matches were made, then
that error is recorded. The processing will
continue with section {e).

F. CODING SPECIFICATICNS

Te-

Source Language

As nmuch as possible of the Maintenance Hodule is
coded in the IBM programming language PL/I., The
input and output coding for access to files in a
data base is handled through an extension to that
language, known as DBPL/I, VWhere indicated in the
narrative, it was necessary to use the assenbler
language for IBM System/360 in order to interface
with the command processor and the DDEF
instructions. a1l terminal communication is
handled through the terminal support preprocessor,
TSPL/I1.

Suggestions and Techniqgues

2 Much of the verification of correct access to
files in a data base is handled within the
DBPAC routines.

b, Earing implementation, all appropriate
nessages are included to increase the
understanding cf the user.

Ta ¥hile nct noted in the narrative, it is
necessary to test the return codes from
€very input and output operation. In +those
cases where errors cccur, nessages atre
written cut and the task terminated unless a
correction can be applied, in which case the
processing can then continue,

d. Whenever it becomes necessary to terminate
the maintenance routine at any point, it is
desirable to make every attempt to restore
+the data hase to a normal condition. In most
cases, this action involves resetting control
switches found in the header records of the
descriptor file., This action makes possible
subsequent processing on the data base which
might correct the original problem and alsoc
allows continued Tetrieval from all usable
portions of the data base,

=

_*___,/

TRNSCT

AN
/’”“““f?/////ﬁ

STATIC

—

DBMNTN

SYSEN

_ DBMNTN

FIGURE 1 I/0 BLOCK DIAGRAM

\ =

<

DATA-
BASE

s

(65

) <§§§>___b__ ADD RIN ‘__%_If;“\
_

INITIALIZE
THE
PROGRAM
o o [~
UPDATE
STATISTICS :
IF SUCCESS ' 7| CHERIN | > F
L
DELETE
TRANS.
ERROR
¥]
READ
NEXT ERROR
TRANS. HANDLE
RESET A
PLEX
SWITCHES
i
OPCODE RESET
PROGRAM
| AND GET
i . OUT CLEAN
ofc

3

RETURN

Figure 2. Top-level flowchart

™oL Sl

v : REQUIRED FPARAMETER

X : NOT REQUIRED

ADD DEL CHG
v v Y
J J v
Vv / v
X J v

START AND END X X X
X VX v
/X X 4
VX /X /X
VX JX X

Figure 3.

Parameter table

760

VY>>

PAGE 167

TOPIC D.,3 - MAINTENANCE CORRECT COMHAND

2,

B. .

D. .

MODULE NAME

Maintenance, COHRRECT Comnmand
Retrieval, CORRECT Command
Program-ID - RIBCOER
Hodule-ID - DBCORER
Entry Point {LBCORR) HAINTENANCE
(DBCOER1) RETRIEVAL

ANALYST

Richard B. Graven
Neoterics, Inc.

MODYULE FUNCTION

The CORRECT command is a routine, called by +the
RETRIEVAL system, whose purpose is to allow the
retrieval system user +to create certain maintenance
transactions during retrieval., When a user observes an
error during a display, he is able to have any or ail
of the fields of a given 1record displayed and then bhe
able to specify any deletions, additions, or changes to
those. fields, The +transactions created are not
executed, but are placed in a transaction data base
which 4is examined by the data base owner before the
actual maintenance takes place. The calling seguence
is: CORRECT field,key.

The CORRECT ccmmand, when invoked through the
maintenance sub-system, performs on-line creation and
updating of files,
DATA REQUIREMENTS
1. 1/0 Block Diagram
See Figure 1
2 Input Data Sets
a. Parameter Cards
Rot Applicable
b. Punched Card Input Files
¥ot Applicable

Cs Inpaut Files

PAGE 168

Not épplicable
On-line Terminal Entries

‘The paraneters available to the CORRECT
conmand are "Ykey" and "fieldnane", The
Terminal Support systen applies default
values to +the paraneters, if they are
availakle, when no original values are
entered,

Additional terminal entries are reguested of
the userx, These responses 1indicate what
alterations, 1if any, to the field are
desired. These entries take the form of
sub=-commands available +to the aser while
Tunning under control of CORRECT. The
sunb-conmands are:

ADD data

CANCEL

CORRECT field,<key>

IELETE <¢lement

DISPLAY

END

FIELDS

INSERT field,...

REPLACE <lementi,<elenent?>,o0lddata<d,nevdata>
VERIFY

3. OQutput Data Sets

Qs

Gutput Files

The 'only output file from the CORRECT command
is the transaction data base, This file is a
YISAN data set containing maintenance
transactions from all sources for all data
‘hases. The fields of the +transaction data
tase and their format are completely
described in the Dataset Specifications,

On-1ine Terminal Displays

The CORRECT conmand outputs a formatted
display of +the specified field on the
terminal, Each field to be processed begins
¢ a new screen image with appropriate header
information. Fach element of wnulti-element
fields begins on a new 1ine, No attempt is
made to end lines cof <+the display on word
koundaries, In addition +to the display of
the f£ield in question, a prompting message

E.

d.

PAGE 159

requesting the action to be taken 1ic issued
in tle ioput area of the screen.

Formatted Print-outs
Not Applicable
Punched Card Output Files

Not Applicable

n, Reference Tatles

Not Applicable

PROGRAN REQUIREMENTS

1. Flowchart

See Figure 2

2, Narrative

A

b,

Ce

CORRECT

The CORRECT command is called by the
maintenance sab-systenm at entry point DBCORR,
The Retrieval subsystem calls CORRECT at the
entry point DBCORR1. Any default parameters
which are applicable are supplied by terminal
support,

Real Entry

This rcutine initializes the routines for
kandling the exceptional error and interrupt
conditions. Attention dinterrupts cause the
user tc he prompted for a decision, If the
defaults, execution continues from the point
of interruption, Terminal support prorpting
€TTOors cause progranm termination, unless the
error 1is for input +transaction, in vwhich
case, a varning message is issued to the user
and execution continued, Any cothexr eirors
cause progran termination, following an
appropriate diagnostic message.

Fain Line

The routine allocates the screen buffers, if
not already done, and obtains the julian date
fcr +tire stamping the transactions. The
current retrieval data base 1is then opened

d.

£.

PAGE 170

for input, unless that data base 1is the
user's transaction data base, in which case,
it is orened for update,

Get Record

If necessary, this routine reads a new record
from the input data base and gets the wvalue
cf the key field. Again, if necessary, the
routine Teads 1in the values for all elements
cf the field, maintaining a count of the
nunber of elements processed. Finally, the
routine copies the input data to a temporary
storage area for the user to process
against.

Format Screen

This rountine, unless running from -a
typewriter with the verify option equal to
no, formats and displays the status of the
data most recently referenced by bhinm. It
first constructs a heading, composed of the
record ey, data base nane, field name and
€lement count. It then proceeds to £ill the
renainder of the screen with data beginning
at the element dindicated by the calling
routine, If +the element length is less than
the length of the data portion of the line,
the element 3is writtemn on a single line
preceeded by the element number, If the
element is too large, the first 1line is
processed as above, but the remaining data is
split across succeeding lines,

Re~-prompt

This routine cprompts the user for his next
reguest, It extracts the command keyword,
and if valid, calls the arppropriate calling
routine, If any type of error is
encountered, +the routine re-prompts for the
correct informationm.

1dd PRoutine

This routine takes the input data and uses it
to create a nev element for the field being
processed, If FIELD 1is key field, then new
Tecord 1is created. If there is no data
entered, or if the maximum allowable number
of elements has been reached, a diagnostic is
written and processing bypassed. After

h.

Je

Ke

PAGE 171

Frccessing, +that data control is rassed to
Format Screen to display the updated data.

Replace Routine

This routine expects four parameters to be
entered, a starting point, ending point, old
data value and a npew data value, The
starting and ending points are expressed in
terms o©of element numbers, If the element
numbers are invalid, or if no old data value
is entered, a diagnostic is written and
processing bypassed. The data is then
searched, character by character, from the
starting pcint to the ending point. If any
cccurrence of the o0ld data value is found,
it is replaced by the new data value. If no
gccurrence of the o0ld data value was found, a
diagncstic is srittem, Otherwise, control is
passed +to Format Screen to display the
updated data.

Cancel ERoutine,

This routine re-initializes +the data in the
field +tc¢ its initial status when read from
the data base, Control is then passed to
Format Screen,

Page Rountine

This routine expects one parameter, which it
ugses to adjust the current element pointers
to adjust the segment of +the data which is
displayed on the screen, The parameter may
be a default for forward paging, a 'B? for
backward paging, a number for a specific
element nunber, If the data is ipvalid ot
the 7reguest cannot be honored, a diagnostic
is written and processing bypassed,
GCtherwise, control is transferred to Format
Screen to display the data,

Verify Rcutine

This routine sets the switch that determines
vhether the user, operating from a
typevwriter, receives a verification display
0of the data following each command. The data
entered should be 'YES' for verificationm or
¥H0* for none. If the data is 3invalid, a
diagnostic is written and processing
Lypassed. Otherwise, control passes to

1.

Ma

n,

PAGE 172

¥Fcocrmat Screen,
Lelete Routine

If the field is to be deleted, it is done and
control passed to Fcrmat Screen, If the
record is to bhe deleted, it is done and
control passed to BEnd Routine, If elements
are to Le deleted, the routine will accept a
list of elements or element ranges as input,
For each, it analyses the element number to
determine its wvalidity. An invalid element
will cause a diagnostic +to be written and
further processing bypassed,

Insert Routine

This routine allows the user to specify the
fields of subfile records to be inserted into
the data base, If no field is specified, a
diagnostic is written and processing 1is
bypassed. If the previous £field's data has
been <changed, Output Routine is called to
create the necessary transactioans, Control
is then passed to the Correct Routine for
further processing,

Correct ERoutine

This routine allows the user to specify the
key of a new record to be processed, the nanme
of +the next field to be processed, or both,
If +the previous field's data has been
changed, Output Rcutine is called to create
the necessary transactions. The routine
first checks for a signed numeric valme in
the key operand, and if found, reads the file
seguentially forward or backward +to the
desired record. If sequential processing is
not indicated, +he routine extracts the new
key and the new field name, if present, and
transfers control +to Get Record for further
rrocessing,

Fields Routine - CALL DBFLDS

This routine displays a list of the field
names for the data base for the user. It
calls DBFLDS +to extract the field nanmes.. It
also checks each field until it has
identified +the key £ield, whose npane it
maintains separately, It then moves the
field names into the cutput area, fitting as

BPAGE 173

rany as possible on each line, and displays
them tc the user. If more names exist than
may be displayed on the screen at once, the
routtine prompts the user for a decision as to
vhether he wants to see the remaining names
¢r to continue correcting,

Pa Cutput Routine

This routine analyses the data maintained for
the £field being processed, and for each
element whose data has heen changed, creates
transactions +to represent the change, The
routine calls Write Tranplx to actuvally write
the transactiomns, The routine handles three
cases, an added elenment, deleted element and
a changed element, Opon completion, the
routine returns to its caller.

qe Write Tranplx

This routine performs the actual creation of
transactions, based upon the data supplied to
it, If the user is corracting the
transaction data base ditself, the routine
updates the data directly, otherwise it
generates transactions. If any DBPAC errors
are encountered, this routine calls End
Routine; otherwise, it returns +to its
caller,

T fnd Routine

This routine processes any transactions
repaining +to be written. It closes all of
the <files, Tesets switches, restores the
KASIS status to whkat it was when the progranm
vas invoked and Teturns to +the calling
Trogranm,

F. CODING SPECIFICATICNS

1.

2,

Source Language

The correct ccanmand progran employs the IBM PL/I
programnmning language. The special extensions of
that 1language, called DBPL/I and TSPL/I,. are
utilized for all access to files in the data hase
and for all terminal communication,
respectively.

Suggestions and Techniques

PAGE 174

¥ot Applicable

TERMINAL
DISPLAYS

TERMINAL ENTRIES

DBCORR

—

TRANSACTION
DATAPLEX

Figure 1. - 1/8 Block diagram

~.
<>

RETRIEVAL
DATAPLEX

/73

CORRECT

/76

DBCORR1
REAL-
ENTRY
!
3
MAIN-
LINE
=0
GEi- e
RECORD
i
3
FORMAT-
SCREEN
PROMPT-
USER
¥ s I 14
ADD- —
ROUTINE DELETE- INSERT- FIELDS-
REPLACE- ROUTINE ROUTINE ROUTINE
RTN
1 -
CANCEL- y
RTN ;
PAGE- CORRECT-
AT ROUTINE | ~
VERIFY- A
RTN X
¥
g N /\Y { .
s | END-ROUTINE{ et OUTPUT
RECORD ROUTINE
r
¥
g
WRITE-
(RETURN) TRANPLX

Figure 2. - Top level flowchart.

P

AV

TS

PAGE 177

TOPIC D.4 ~ MATNILINE MAYNTENANCE INVOCATION

2.

B,

C.

MODULE NAME

Mainiine - Maintepance Invocation
Prograun-ID - RDBCLHE
flodule~ID - DBCLMN

ANALYST

Richard D,
Neoterics,

Graven
Inc.

MODULE FUNCTIION

The maintenance is always run in a batch mode., A data
mast be created to execute, This progranm
accomplishes tlie creation of the regquired data set.

set

DATA BEQUIRENENTS

1.

2,

3.

I/0 Block Dbiagram

See Fiqure 1

Input Data Sets

A

Ca

Parameter Cards

¥ot Applicable

Pynched Card Input Files
¥ot Applicable

Input Files

The data bhase descriptor £file {lefined
elseyhere).

gutpat Data Sets

ads

Catput Files

The output file is a 1line data set whose name
is CLDBNMAIN, /PLEX3$/. Vhere PLEX$$ is the
data lase nane, It 4ds a VISAM data set
RKp=4, IBECL=132, KEYLEN=7, RECFM=V, It
contains +the necessary TSS commands to rum
maintenance in batch,

CGn-1line Terminal Displays

u,

Not Zpplicable
C, Formatted Print-outs
Kot Applicable
Reference Tables

Not Applicable

E. PROCESSING REQUIRENENTS

1.

2,

Top Level Flouchart
See Figure 2
Narrative

This module the

parametar,
as follovs:

accepts

The execution of this module

PAGE 178

data base name as =a

proceeds

= Write output line data set consisting of:

1. EBASE CLDEXEAIN, 'FILENANE!
Ze LOGON QHWER-ID{TSS-1ID)
3. CALL RDBMNIN,'FILENAME?

4, LOGCYF

b. Close files and gunit.

F, CODING SPECIFICATICHS

Te

2.

Source Langduage

T8S PL/I,

Suggestions and Techniques

Not Applicable

Figure 1.

RDBMNTHN

CLDBMAIN

I/0 Block Diagram

i

/0

ENTER
MAINTATN
COMMAND

GET
FILENAME

CALL
RDBCLMN

WRITE
CLDBMAIN
FILE

]

EXECUTE
CLDBMAIN
DATASET

]

=)

Figure 2. Top Level Flowchart

iy,

AV

N &

PAGE 181

TOPIC D.5 - MAINTENANCE DIRECTOR

A,

B,

MODULE NAME

Program—-1ID - RDBMAIN
Hodula~TID - DBMAIN

ANALYST

Jdohn A. Lozan
Weoterics, Inc.

MODULE FURCTION
This mnodule serves as the initializer and comnand
director for the maintenance sub-system, It pronpts
the user for the file name and invokes the maintenance
function requested,
DATA REQUIREMENTS
1. I1/0 Block Diagram
See Figure 1
2, Inpnt Data Sets
s Parameter Cards
¥ot Applicalle
b. Punched Card Input Files
¥ot Applicable
Ts Input Files
The module opéns the file specified by the
user for wupdate, for those wmodules which
reguire it,
d,. Onr-line terminal Entries,
The program initially prompts the user for
the name of +the file to be maintained,
Subseguently, the program prompis +the user
for his nmaintenance conmmands.

3. Output Data Sets

A Gutput Files

BAGE 182

Nct Applicable
b Cn-line Terminal Displays.

The progran displays various diagnostic
ressages to the user,

C, Formatted Print-outs
¥ot Applicable

d. Puncled Card Output Files
¥ot Applicable

Reference Takbles

The following tables are referenced by the
progran,

USERTAB
VERETRE
PLDIAE

E. PROCESSING REQUIRENENTS

1

2

Top Level Flowchart

See Figqure 2

Narrative

Opon entry, the program establishes control of

attention interrupts and 1initializes terminal
support. It then prompts for the file name., If a

-null value is returned, the program is terminated,

Otherwise, the name is validated and the strateqy
is posteds, If +the name is invalid the user is
reprorpted for a valid file nane,

The program then allocates and initialigzes its
verbh table, including any user defined commands.
¥ext, the program prompts the user for a
naintenance copmand. If the command 3is not valid
a diagnostic message is dissued and the user is
reprompted for +the maintenance command, Five
successive dinvalid commands cause the progran to
be terminated,

If the command entered was CORRECT or UPDATE, the
file specified is opened for update and FLDTAB is
initialized., Otherwvise, the file name i=s posted
in the NFCB named PLEX, The entry point

PAGE 183

specified for the command is then called to effect
the processing requested. Upen return, the
program prompts for the next maintenance
command, .

¥hen an END ccmmand is entered, the program closes
the file, releases VERBTABR and returns.

F.. CODING SPECIFICATIONS

1.

2,

Source Language

The mgdule is written using +the TSS 360 PL/X
language,)

Suggestions and technigques

¥ot Applicable

SYSIN

< >

DATAPLEX

RDBMATN

\

Figure 1.

1/0 Block Diagram

Es

Y

'\b
| S
-

| DBMATW }

INITTALIZE

SET UP
VERB
TABLE

k-

PROMPT
FOR
COMMAND

END
COMMAND

CALL
PROGRAM

Figure 2. Top Level Flowchart — DEMATN

/195

TOPIC D,6 - MATNTENANCE LOAD/CREATE

d.

B.

C.

D.

MODULE NANE

lL.cad/Create
Program~1D - RDBLOAD
Module~-ID - DBLCAD

ANALYST

Richard L. Graven
Neoterics, Inc,

MODULE FUNCTION

This

nodule provides a generalized file

capability for WASIS,

+ DATA REQUIREMENTIS

1.

2.

I/0 Block Diagramn

See Figure 1

Input Data Sets

A Paraneter Cards
Kot Bpplicable

b, Punclied Card Input Files
Kot Applicable

Cs Input Files

1. The primary input £file is the

PAGE 186

loading

data set

containing the records to he loaded to

+the data base., This file

may be

indexed, with the keys having the sane
format and value as that of the final

data base, or sequential.

2. The only other input £ile

is +the

descriptor data set for the data base

being loaded,

‘ds On-1ine %ferminal Entries

The parameters reguired by +the program must

te entered with +the command, or
values will be assumed,

defanlt

E.

3,

q,.

PAGE 187

Qutput Data Sets

= 3

d.

Cutput Files

1. The primary output f£ile is the data base
which is being loaded.

Ze The other output file is the error file,
on which is written exact duplicates of
any input records that cannot be
successfully loaded..

Gn-1ine Terminal Displays

The only output +to +the +terminpal is the

informatiocnal and diagnostic messages that

are displayed as the program executes,

Formatted Print-outs

Kot Applicable

Punclied Card Cutput Files

Not Applicable

Reference Tables

The
which

rodule cecntains a +able of error switches
control the action to be taken for each

possible DEPAC error; abend, skip record, or skip
field,

PROCESSING REQUIREMNENTS

1.

24

Top Level Flcuwchart

See Fiqure 2

Narrative

A

b,

Ce

Upon entry the program establishes interrupt
handling routines which will terminate if any
PL/I errors coccur, terminate 1if any PROMPT
€IrTors cccur, or display statistical data and
prorept the user if an attention dinterrupt
cccurs,

The progran next prompts for +the input
parameters applying defaults for any
Farameters that are not entered,

The next step is to open the descriptors for

E.

d.

S

PAGE 188

the file specified. The file header switches
are reset in case the system crashed, The
index file headers are read, and if the field
is not set for inversion, the loadable switch
is furned off,

The next function performed is the definition
and opening of the input file, the error file
and the data tase itself, At this point, the
rrogram checks the anser's mode parameter, and
if it 3is restart passes control to section
{g) before cortinuing.

Finally, the ©program 3is ready +to process
data, It reads an input record, passes the
record to the user written exit routine for
separation into its component fields. Upon
return from the exit routine, the progranm
tests the status bits, and if set properly,
begins writing the input data +to the dats
base, field by £Field, If any errors are
detected, and appropriate diagnostic is
written to the user and the action indicated
ty that error's code in the ERROR_COLE table
is taken., The options are +to abend the
rrogram, to skip the remainder of the record,

or to skip the field. When the field has

been corpletely processed, the routine
continues with the next input Tecord, until
the data is exhausted,

¥hen all of +he data has heen processed or
when a terminal error has been datected,
statistical counts are written on the user's
terminal along with a termination nessage,
211 of the files are closed, and the status
bits of the descriptor leader records of each
cf the compecnent files of +the data base are
posted to indicate whether date exists on the
file or not. The program then terminates,

If the user specified a restart, the progranmn
retrieves the last record written to the data

‘base, It then accesses the next record to he

wyritten Zfrom the input data set. Checkpoint
backup is auvtomatically done after every 1000
records are processed, ¥V¥hen the operation is
conplete, processing continues with section
(e) .

CODING SPECIFICATIONS

e

Source Language

2-‘

PAGE 183

This mcdule should be writtenm in the TSS/360 PL/X
Language.

Suggestions and Techniques

2.

d.

Fecause of the <function of this module,
extreme care should be taken to code it as
efficiently yet as indestructibly as
rossible,

2ny place ip the program where there is any
remote possibility cof an error, there should
Te a meaningful diagnostic.

The ERROR_CODES table was designed toc be used
in’ conjunction with a -lakel array. The
digits in the +table are to be converted to
index values and an indexed branch taken
Lased onthe label array.

The user~written exit routine is respomsible
for assigning field »rames, field off-sets,
and field lengths,

SYSIN -
ERROR
DATA
SET
i
RDBLOAD

DATAPLEX
DATA
FILES

DATAPLEX
DESCRIP-
TORS

Figure 1. /O Block diagram

/90

=V

4 DBLOAD >

3

SETUP
PROGRAM

l

READ
DESCRIPTORS

L

INATIAREZE
FILES

RESTART . M LOAD
. ROUTINE - wns
Y

: -

i 7

¥

EXIT
ROUTINE

PROCESS
DATA

4]

L

ANY WRITE
ERRORS DEAGNOSTIC
N
“ TERMINAL
» ¥ MORE
DATA
N

e

-

FINISH
PROCESSING

iy

EXIT

Figre 2. Top level flowchart

19/

W e

PAGE 192

TI0PIC D.,7 TFILE INVERTER

A, MODULE NAME
Maintenance =~ TFile Inverter
Program~ID - RDBSIVRT
Module~-ID - DBSIVERET

B. . ANALYST

Richard D. Graven
Neoterics, Inc.

Cc. MHODULE FUNCTION
The purpose of the program is to take data from certain
fields of =a data base and +o post this data to an
inverted index file,
b, DATA REQUIREMENTS
1, 1I/0 Block Diagram
See Figure 1
2. Input Data Sets
. Parameter Cards
Not Applicakle
b, Punched Card Input Files

¥ct Applicable

C, Input Files

e Data bases The primary input to +the
Inversicn module 1is the file being
inverted,

Ze Data base Descriptors: The file
descriptors are needed to provide
infermation,

3. Restart file: If the progran is invoked

in restart mode, a restart file with
the restart key is needed.

d. Cn-Line Terminal Entries

A1l of +he terminal entries to-the Inversion

PAGE 193

program, except one, are in +the form of
responses to prompting messages from the
rrogram itself. The exception is the entry
of the initial command with its parameter to
invoke the procedure. The purpose of
terminal entries are to establish field
panes, tc establish the mode of operation, to
establish number cf <records to process, and
to establish range of keys to process.

3. Output Data Sets

ds

b.

Qutput Files

1. Sortin ¥File: This file 1is . credted by
the first step and is a VSAM file with
the value of +the field bheing inverted
ccncatenated with +the f£ile key, This
file hecomes the input for step two, the
s=0xr i,

2e Sortout File: This file is the sorted
cutput from step two, the TS5 sort
untility., The file becomes the input to
the third step.

3. Plex File: This file is the output of
step three in the form of an index file
with the dinternal field value as the
key. This <£ile becomes the Jdnput to
step four, the translation step,

b, Range Filez 7This £file is the output of
step three if field is indexed with
internal format, and 1is the output of
step four if £field is indexed with
external format. Range of keys to
invert must have been specified for this
file to be produced, This £ile becomes
the input to the index merge program,

5. Database Index File: This is +the final
index file, It is the output of step
three if £ield is indexed with internal
format, and is the output of step four,
if field is indexed with external
format.

Cn-Line Terminal Displays
a1l cn-line terminal displays for the

Inversion program follow the same format.
The TSPL/Y faciiity of the system is utilized

E.

d.

PAGE 194

to reguest entires at a terminal and display
progress ‘information,

Formatted Print-Outs
Not Applicable
Punched Card Output Files

Kot 2pplicakle

Reference Tables

Not Agpplicable

PROCESSING REQUIREIMNENTS

1.

2,

Top Level Flowchart

See Figure 2

Narrative

de

b,

Farameter Prompting routine

Frompt the wuser for program paraneters,
Initialize program swtiches and tables, Read
appropriate field descriptor for each field
name, saving field length. If applicable,
£il1ll external indexing table, inverted suffix
table, and spanned table, If field is
indexed external, read 3index file header
descriptor and get external field length.
Read appropriate region descriptor and save
the file key length and key name, Check the
cperating mede and go to appropriate
section,

FTield stripping routine ({step one)

Loop through fieldname table and DDEF the
sortin files, DDEF the restart file, If
restart run, read in restart ey and read
this file record., If range Tun, read first
file key to start at. TRead seguentially the
input file, save the internal file key, Loop
through the index file suffixes. Loop
through the £ield nane table. Loop through
the #PIELD for +this f£field. Write out a
sortin f£ile record. If end of file reached,
go to next section. If end range key reached
go to mnext section., If number of records to
process is reached, write out restart f£ile

PAGE 165

and terminate.
Ca Sort step {step two)

IDEF the sortin file, sortout file and invoke
the TSS sort utility.

d. Write VISAM file {step three)

Find the key length of the VISAM output file,
This will be the maximum length of the fields
bPeing inverted o¢n the same index file, If
field is 3indexed external, use external-
length. TIf index file is spanned, increase
ty one, If external 1indexing, ZTIDEF the
output file as 'PLEX.?', if range keys and no
external dindexing, DDEF output file as
TRANGE,!' If not a range run, and no external
indexing DDEF output file as final index
ESNAME, BRead input file., If Xkeys are the
sane, concatenate file Xxey onto 1list of
keys, If 1ist has reached maximum list
length, up the span character and initialize
list +to null, If keys .are different, write
cut index record. If end of input file
reaclied, write out 1last index record and
check to see if external indexing, If
external indexing, proceed +0 next section.
Display record counts for user and post the
index file descriptor data bit,

e, Translate Keys routine

DDEF the input file and the output VISAM
file, Read input file seguentially, Search
Key <for first blank character after <£irst
non-blank character. Use this parsed string
to pass to field formatting routine. Replace
internal value in key with external value.
If end of £ile reached, post data bit in
inpdex tkeader descriptor record. If nore
field npames 3in table, go to sort step,
Terminate the program.

F, CODING SPECIFICATIONS

1.

Source language

The TInversion program employs the IB¥ PL/X
pregramming language., The special extensions of
that language, <c¢alled DBPL/I and TSPL/I, are
utilized for all access to files in the data base
and for all terminal conmunication,

2.

PAGE 196

respectively.
Suggestions and Technigques

The module can very easily be broken up into four
separate modules, step one - strips the fields
from file; step +two - the TSS sort step; step
three - the internal index file creating step;
step four = the external or translation step.

This could he a wmajor enhancement for core
consideraticen and storage reguirements,

DESCRP
FILE

SORTOUT.
FILE

_____/

<>y

DATAPLEX

<>y

RESTART
FILE

A2

TERMINAL

PARAMETERS

TERMINAL

DBSIVRT

L

SORTIN.
FILE

____“___/

S

INTERNAL
KEYED
INDEX

FILE

DISPLAYS
PROMPTS

EXTERWAL
KEYED
- INDEX
FTILE

\,__‘______/

FIGURE 1. I/0 BLOCK DIAGRAM

—

77!

e

J"{'
o

M
&

o
7 i
READ
DATAPLEX |

38

READ
INTERNAL
INDEX

SORT

RESTART
’tsl

BUILD
SORTIN

TRANSLANTE
REY
¥
WRITE
EXTERNAL
BUTLD INDEX
LIST OF ;
REYS ;

' WRITE
INTERNAL
INDEX

READ
DATAPLEX
BY KEY

Figure 2. Top level flowchart

W DT

PAGE 199

TOPIC D.B - DBLOAD FILES BACKUP

X,

B.

C.

MODULE RAME

Maintenance - DBILGAD Files Backup
Progran=-I0 - RIBLLEK

Module~ID - DBLDBK

ANALYST

Richard T. Graven
Neoterics, Inc.

MODULE FUNCTION
This module is a utility called by DBLOAD to backup all
files ¢of a data base being loaded at a checkpoint of
every {1,000) records.
1. I/0 Block biagram
See Figure 1
2. Input Data Sets
A Parameter Cards
Not ZApplicable
b. BPnched Card TInput Files
Not Applicable
Ca Input Files
The inrut files are all £iles of the data
base heing loaded (such as anchor.
associated, index, subfile).
d, On-1ine Terminal Entries
Not 3pplicadie
3. Outpnt Data Sets
R Cutput Files
The outrut files are backup generation data
group {2 levels) of all <£files of +the data

tase teing loaded. The DSHAME will be
CYNERTID, *BACKUP?!',PLEXII file suffix.

E.

4,

FAGE 200

Fxanmple:
SAFETYL.EACKUF,COMATSY

be On~line Terminal Displays
¥ot Applicable

C. Formatted Print-out
Not Applicalle

d. Punched Card Output Files
¥ot Applicable

Reference Talles

Not Applicable

PROCESSING REQUIREYENTS

1.

2,

Top Level Flowuwchart
Not Applicable
Narrative

This module is coded as a sub-procedure to DBLOAD,
It deals with three parameters:

a, The ownerid of the file,

b, The data base name.

" Ca The claracter string of file suffixes,

The ownerid is a 1-8 character string of the file
cewper such as: SAFETY

The data Yase name is a six {6} character string
of the file name padded with v§° such as:
COMATS,

The string of file suffixes to be backed up looks
like: * 1,A,B,Y,%'.

The string c¢f file suffixes is searched and
concatenated to +the data base name to construct
the backup £ile DSNAME, Index £ile 2 £for the
COMAT file cwned by +the TSSid SAFETY would bhe
backed up with a DSNAME of SAFETY,BACKUP,COMATSA

PAGE 201

The PL/I routine SYSOBP is used to CATALOG a level
2 dgeneration data group, DDEF the £ile, CDS the
file, and RELEASE the DDNAME,

¥. CODING SPECIFICATIONS
1. Sonrée Language
PL/T with mo ﬁBPL/I statenents,
2. Suggestions and Technigues
Depending on storage available under a given

userid, it might be advantageous to copy the files
to a data cell or private disc pack.

>

DATAPLEX| -

DBLOAD

Figure 1.

Lot DBLDBK

<>

—1

BACKUP

DATAPLEX

—

I/0 Block diagram

747

U b

PAGE 203

TOPIC D.9 - DESCRIPTOR EDITOR - ADD - CHANGE COMHANDS

a,

B.

D.

MODULE NANME

Program~ID - RDBELAC
Module-Name ~ DBREILIAC
Entry Points
DEEDACY - ADD Command
DBEDAC2 - CHANGE Command

ANALYST

Barry G. Hazlett
Neoterics, Inc.

MODULE FUNCTION

Those conmands allow the user to create and modify
field descriptors.

DATA REQUIREMENTS
1. 1/0 Block Diagranm
See Figure 1
2. Inpnt Data Sets
Not Arplicable
3. Output Data Sets
A gutput Files
Not Applicakle
b. On-Line Terminal Dbisplays
Not Applicable
Co Formatted Print-Outs
Not Applicable
4. Reference Tables

The +followind external tables are referenced by

RDEEDAC:
Ta FIELD
2. FLD

3. FLL_STRING

3AGE 204

4, HDR
5, ' HDE_STRING
€. X

3 description of these tahles can be found in +the
dataset specificatiocns of the D¥B,

E. PROCESSING REQUIREMENTS

T

2

Top Level Flowchart
See Figqure 2

Narrative

Upon entry into RDBEDAC a flag is set to indicate
if the ALD or CHANGE command was entered. The
routine DBEDGF dis called +to obtain a wvalid
fieldname. In ADD mode it must dbe a walid
non—existent and non-reserved fieldname, In
CHANGE mode it must be an existent non reserved
fieldname with the exception of the fields
FREEFORM and CONMENTS and it must not »e a
superfield nor a subfile control field. If in
ADD mecde a FLI structure is allocated, initialized
and pecsted xith the fieldname.

The user is prompted for the field type and the
input is validated., If it is invalid, the user is
given a diagnostic and prompted for a new value,
If in update mode, +the user 1is not allowed to
change the field type if it affects the field
length-a2and the field appears in the fixed part of
the recoxrd. The user is also not allowed to make
the key field a bit fielid,

If there is more data in the parameter list 'TYPE!?
the user is prompted for an alignment value. If
it 4is invalid, the user is given a diagnostic and
prompted for a new value. If no value is entered
a built in default value is assumed and posted in

‘PLD.

The field form is prompted for and validated. If
invalid, the user dis given a diagnostic and
prompted for a new value, The anchor file key
field and bit field can only be of fixed form. In
Update mofle, the user can not change fixed field
te a varying or elemental field. the necessary
values are posted in FLD,

The user is prompted for a field 1length and the
value 1is validated against prestored maximun

PAGE 205

values for single and multielement fields, If it
is invalid, the unser is given a diagnostic and
prompted for a new value. The correct values are
posted in FLE.

If the field is non-elemental, go prompt the user
for a conversion vroutine, otherwise the user 1is
pronpted for an element length value if necessary.
For several field +types the only element length
value is posted in FLb. If the element value is
invalid, the user is given a diagnostic and
pronpted for a new value,

The guser is prompted for the number of elenents
and the input validated, If the value is invalid,
the user is given a diagnostic and prompted for a
nev value. A correct value is posted in FLD. The
parameter unique <element is prompted £for and
processed in the same panner,

The routine IEFEDGR is called to obtain and process
the conversion, formatting, validationm routine
names and validation argument.,

At this point of adding the key fiesld or in update
node, the 1rest of the parameters are ignored. in
update mode the changed information is posted to
the descriptor dataset by calling DBEDFL, and then
go save the command string.,. The use is prompted
if the field is to be indexed, If the answer is
ne then go prompt the user for associated file
information, ctherwise the user 3is prompted as to
which dindex file the field is to appear. If no
defining fieldname is entered, a new indey file is
created for this field. Otherwise the field is
placed on the same index as that of the defining
field. In the CHANGE command, if the field was
already indexed on a different file, it nust be
deleted from that index <file before it is placed
on the new index file,

The user is prompted as +to whether the index key
is to be 1in either internal or external form. If
no value is entered, internal is assumed. TIf the
value is external then the wuser is prompted for
and must enter the maximum length of the external
value,

The user is prompted if the 3index d1is to be
spanned. If no value is entered, it is assumed
not te¢ be spanned. 1At this point, the index is
ready to be setup. If it is a new index a header
descriptor is allocated and setup £for the index,

F.

PAGE 206

else +the new information is posted to the
existing header,

The tcutine IBEDGA is called to determine if the
field is to be placed on an associate file,

The user is prompted if the field is to be on a
subfile., If not go prompt +the user for a subfile
value as obtained, the subfile header 1is updated
accordingly.

The user is prompted for the defining base field
name if the field is to be a subfield. If no
value 1is entered, the field will not be 2
subfield. If it is to be a subfield, the user is
prompted for an offset value., If none is entered,
a value cf 0 is assuned. In case the defining
base field is either RECLEN or the anchor key
field the user 1is prompted for the particular
file on which this subfield is +to be placed. The
user can specify the actual £ile name if known or
indicate the type of file on which the subfield is
to be placed. It ASSOCIATE or SUBFILE is
specified +the user 1is vprompted for a field
defining which associate £file or vwhich subfile,
the subfield information is posted in FID,

At +this point all of +the parameters have been
entered, processed and the information posted. It
is now determined which file list the £ield is to
be placed and if not in the proper place already,
threaded onto the end of that file list.

If adding the anchor key field then +the fields
FILEKEY, FREEFORM, and COMMENTS are setup on the
appropriate files and an index file is setup for
FREEFORN,

The command string 3is =aved in +the current
strategy and control is returned to the calling
routine,

CODING SPECIFICATIONS

T

2,

Source langnage
PL/I with TSPL/I statements,
Suggestions and Technigues

Not Applicable

TERMINAL

RDBEDAC -t

Figure 1. I/0 Block diagram

DESCRIPTOR
TABLES

e

N>
S
»‘f ‘ \

("
X,
"

‘L‘DBEDACI)

(DﬁEDACZ)

N

!

GET AND
PROCESS
VALIDATION

ROUTINE

v

GET AND
PROCESS
VALIDATION
ARGUMENT

il;?i(

.

ADDING
KEY

UFDATE
D >

' w3
<

V.

GET AND
PROCESS
INDEX

| INIPTALIZE
INITIALIZE
J&
GET AND
PROCESS
FIELDNAME
DBEDGE
] ()
GET AND i
PROCESS)
FIELDTYPE GET AND
PROCESS
ELEMENT
l LENGTH
T GET AND 'i
PROCESS GET AND
ALIGNMENT PROCESS
ELEMENT
NUMBER
J J
GET AND GET AND
PROCESS PROCESS
FIELD UNIQUE
FORMAT ELEMENTS
: ()—
QET AND
PROCESS :
FIELD GET ROUTINES
LENGTH & ARGUMENT
DBEDGR

Figure 23.

Top level flowchart

=)

FILE
CHANGES

()

\’

GET AND
PROCESS
WHICH
INDEX

\

GET AND
PROCESS
INTERNAL
EXTERNAL

-

v

| GET AND
PROCESS
EXTERNAL
LENGTH

W

GET AND
PROCESS
SPANNED

Y

SETUP
INDEX

Figure 2b.

PROCESS
ASSOCIATED
PAREM

DBEDGH

l

GET AND
PROCESS

SUBFILE

L

GET AND
PROCESS
WHICH

SUBFILE

Top level flowchart

A2

SETUP

SUBFILE

GET AND
PROCESS
SUBFIELD

i

GET AND
PROCESS
OFFSET

§

GET AND
PROCESS
FILE

i

GET AND

PROCESS

DEFINING
FIELD

y

SETUP
SUBFIELD

THREAD
FIELD

POST
FIELD

ADDING
KEY

SETUP
FILEKEY
FREEFORM
COMMENTS

©)

SAVE
COMMAND
STRING

¥

{ EXIT)

Figure 2¢. Top level flowchart

ZI0

R -
DAL

PAGE 211

TOPIC D.10 - DESCRIPTCR EDITOR -~ ADDLIKE - RENANE CCMHANDS

A, MODULE NAME
Program-=ID - RDBELAR
Module~-II - DBEDAR
Entry Points:
DBEDAR? - ADDLIKE Ccemmand
DBEDAR2 - RENANE Comnand
B, . ANALYSYT

Barry G. Hazlett
Neoterics, Inc,

C. MODULE FUNCTIOR
The ADDLIKE command creates a mnew field descriptér
exactly l1like an existing descriptor with a different
namne. The RENAME command changers the name of an
existing descriptor, .
. DATA REQUIREMENTS
1. I/0 Block biagram
See Figure 1
2. Input Data Sets
2, Paraneter Cards
Nct Applicable
b. Funched Card Input Piles
Not Applicable
C. Input Files
Kot Applicalbie
3. Output Data Sets
Ao ‘Cutput Files
Not Applicable

bh. Cn-Line Terminal Displays

Not Applicakle

E.

4,

PAGE 212

Ce Formatted Print-outs
Net Applicable
Reference Tables

The following external +tables are referenced by
RDBEDAR:,

T ¥IELD

Z. FLD

3. FLD_STRING
u, HDR

S. SECURITY
7 SUPER

€. SUEBER_STR
8. SUPEE_STR
e, VALID

10. X

2 description of these tables can be found in the
dataset specificaticns of the DEB.

PROCESSING EREQUIREMENTS

1.

2.

Top Level Flowchart
See Figure 2
Narrative

The entry pcints are ADDLIKE command - DBEDAR?T and
RENAME command - DEBEDAR2., Upon entry into either
conmand a flag is set indicating which command was
called, After which the two commands share common
code for parameter processing,

Routine DBEDGF is called to obtain a valid new
field nane. To be valid the new field name must
be of alphanumeric of at most eight characters
lcng, must not already exist and mnust not be a
reserved field name,

Routine DBEDGF is called +to obtain a valid
existing fieldname. This field nust exist and
nuast not appear in the reserved fieldname list.

If in the RENAME command, then the name of the
specified existing field is changed to +the
specified new field name and the field name change
is pested in the FIELD structured At this point
the command string is =stored in the current
strateqy anrd then control is returned to the

F.

PAGE 213

calling routine,

If in the ATLTLIKE copmand the existing field is
duplicated, +the new fieldname posted in the copy.
The new fieldname is posted in the FIELD
structure, The ADDLIKE command string is saved
in the current strateqy, after which control is
returned to the calling routine,

" CODINE SPECIFICATICHS

1.

2,

Source Language
PL/I with TSFL/I statements.
Suggestions and Technigques

Not Applicable

RDBEDAR . K——> DE%E%%'%OR

Figure 1. I/0 Block Diagram

v

(DBEDARL) (DBEDAR2

Vi |
SET RENAME| |SET RENAME GET OLD
FLAG ON FLAG OFF FIELDNAME
o DBEDGF
_ i
I
GET NEW RENAME
FIELDNAME RENAME
OR >
DBEDGF D
ADDLIKE
- 7
. \L ADDLIKE ,
e DUPLICATE CHANGE
FIELD FIELDNAME
\} ,
POST NEW
NAME POST FIELD

N

POST FIELD (EXIT)
I
(EXIT)

Figure 2. Top Level Flowchart

PAGE 216

TOPIC D.11 - DESCRIPICR EDITOR - CHXPCINT COMMAND

.

C.

MODULE NAHNE

Program—ID -~ ROBELCP
Module-ID - DBEDCY

ANALYST

Barry G, Hazlett
Neoterics, Inc,

MODULE FUNCTIQNS
This command is used to save the descriptor tables as

they exist in memcry in a VSAM data set as that they
may be retrieved at a future time by use of the RESTIORE

~ command and then continue to create the descriptors

from that point,.
1. I/0 Bleock Diagram
.See Figure 1
2. Input Data Sets
A Farameter Caxds
Fot Applicable
b, Funched Card Input Files
Not Applicable
Ce Input Files
Bot Applicable
3. Sutput Data Sets
A Cutput Files

The cutput file is a TSS VSAM data set named

DESCRE.CHKPCINT, Refer to the data set
specifications for a descripticn o¢f this data
set.,

b. On-Line Terminal Displays
Kot Applicable

C. Formatted Print-Outs

4.

PAGE 217

Not Applicable
Reference Tables

The following external tabhles are referenced by
RDBEDCP:

1. EIELD

Z » 'FLD

3. FLD_STRING
q, HDR

3, HDER_STRING

§, RECSEC_STR

7. SECURITY_STR

8. SUPER_SIR

Q. VAIYD

10. X
The descripticn of these tables is specifications
in the dataset of the D¥B,

E. PROCESSING REQUIRENENTS

1, .

Top Level Flowchart
See Figure 2
¥arrative

Tpon entry into CHKPOINT, any previously existing
checkpoint dataset is erased by use of ASMERSE
routine, The data set record length is
dynamically determined by calculating +he length
of that part of +the X structure that -must DYe
saved, the current length of the FIELD structure
and using the larger 6f the two values.

The data set CHXPOINT,DATASET 1is created and
initialized by use of the routine ASHDCB to
create the TCE for the data set, routine ASHMDD to
data def the dataset routine ASMENDS to
initialize the JFCB, and routine ASMOPEN to open
the checkpoint data set.

The variable part of the X structure is puot into
the data set by use of the ASMPUT routine, and
likewise the FIELD structure.

Fach of the fields are saved through use of ASHPUT
rocutine by creating the following <¢haracter
string: the FLD_STRIKG concatenated +to SUPER_STR
if it is a superfield, concatenated to
SECURITY_STR if there is field security on this

F.

PAGE 218

field, concatenated to VALID,ARGUMENT if the field
has a validation argument.

Each cf +the headers are saved +through use of
ASHNPUT routine by creating the following
character string: +the HDR_STRING concatenated to
RECSEC_STR if the file has record security.

The <checkpoint dataset is closed by 1use of the
routine ASHCLOS, after which control is returned
+o the calling routine.

CODING SPECIFICATIGNS

1,

Sonrce Language
PL/I with TSPL/I =statements,
Suggestions and Technigues

Not Applicable

TERMINAL

DESCRIPTOR
TABLES
a

RDBEDCP

Figure 1. I/0 Block diagram

P

DESCRE.

CHKPOINT

\.‘_‘_-_._/

\\)"‘”
,,/

}1\)

{ DBEDCP ’

¥

CLEANUP

ASMERSE

i

CREATE
CHECKPOINT
DATA SET .

SAVE
FIELD
STRUCTURE

SAVE X
STRUCTURE

;

SAVE
FIELDS

SAVE
HEADERS

!

CLOSE
DATA SET

Tigure 2.

¥
{ EXIT }

Top level flowchart

-

PAGE 221

TOPIC D, 12 - DESCRIPTCOR EDITOE - CREAT SUB COMMAND

A, .

C.

D.

MODULE RAMF

Program—=1ID - RDEBEICS
Module~ID « DBEDCS

ANALYST

Barry G, Hazlett
Neoterics, Inc.

MODILE FUNCTION

This routine is used to define and setup the necessary
field tc create a subfile,

DATR REQUIREMENTS
Te I/0 Block Diagram
See Figure 1
2, Input Data Sets
A Parameter Cards
Not Applicable
b, Punched Card Input Files
¥ot Applicable
C, Input Files
Not Applicable
3. Output Data Sets
ae ‘Gutput Files
Kot Applicable
b, On-Line Terminal Displays
¥ect Applicable
Ce Foermatted Print-Guts
Not Applicable

4, Reference Tables ...

E.

PAGE 222

The £following external tables are referenced by
RDEEDRCS:

1. FIELD

2, PiD

3, ELD_STRING
4, HDR

5., HDE_STRING
6. X

A description of these +tables can be found in the
dataset specificaticns of the D¥WB.

PROCESSING REQUIRENENTS

1.

Top Level Flowchart
See Figure 2
Narrative

Upon entry into CREATSUB, wodule DBEDNGF is called
to obtain a valid subfile control fieldname, ToO
be valid this £field name must not be longer than
six characters long and be a wvalid alphanumeric
character string, The following <field names are
then created, The subfile key field name, the
snbfile parent key field name, and +the subfile
record security <fielad name, of the above
menticned four fieldnames, none nust exist and
none pust be a reserved f£ield name for the entered
subfile contrcl field mame to be valid,

The user is prompted for the maximum ©pumber of
subfile records per anchor file record that may
be loaded intc +the subfile. The number must bhe
less than or equal to 1325, If the number Ais
valid, processing continues, else the user is
given a diagnostic and prompted for a new number,
This number then becomes the nunber of elements on
the subfile ccntrol field.

Routine TDBEDGA is called to determine if the
subfile control field is to appear on an associate
file,

The subfile ccntrol field, the subfile key field,
and the subfile parent key £field are now created
and posted with the proper values. The subfile
contrcl field is placed in the varying field list
0of either the anchor file or +the appropriate
associated file. The subfile key field and the
parent field are placed in the fixed 1list of the

F.

BAGE 223

approrriate sukfile.

The afore mentioned £field mnames are placed in the
reserved fieldé name list., The command string is
saved in the current strategy, after which control
is returned to the calling routine,.

CODING SPECIFICATIONS

1.

2.

Source Language
P1L/T with TSPL/I statements, .
Suggestions and Technigues

et Applicable

TERMINATL

S

RDBEDCS et

Figure 1.

I/0 Block diagram

DESCRIPTOR
TABLES

W
SR

\/’5.
) /{.;

()
7

CREATE
FIELDS
GET FIELD
NAME
DBEDGF J

THREAD

(: } S FIKLDS

f,

3
GET NUMBER J;
OF RECORDS

' POST
FIELD
RESERVED

N
—3| DIAGNOSTIC \[/
') EXIT
GET

ASSOCIATED
PARAMETERS
DBEDGA

i

BAGE 226

TORPIC D,13 - DESCRIPTCR EDITCR - END CONMMANDS

:

Be

D.

MODULE NAME

Program~ID -~ RLDBELDE
Module-ID ~ DBEDDE

ANALYST

Barry G. Hazlett
Neoterics, Inc.

MODULE FUNCTION
This module is the entry point into +the Descriptor
Editor. It prompits for and processes Descriptor Editor
commands and <c¢alls the appropriate command vroutine,
The END command is used to terminate Descriptor Editor
processing and return contrel to the maintainence
directcer,
DATRE REQUIREMNENTS
T. I/0 Block Tiagqran
See Figure 1
2. Input Data Sets
A Paraneter Cards
Not Applicable
b, Punched Card Input Files
Not Applicable
Ca Input Files
Not Applicable
3. gutput Data Sets
2. Cutput Files
Not Applicatle
b, Cn-Line Terminal Displays

Kot Applicable

c, Formatted Print-Quts

E,

F.

5,

PAGE 227

Not Applicatle
Reference Tables

The fcllowing external +tables are rtTeferenced by
RLEEDLE:

1. FIELD
2. X
3, VYEEETAEB

2 descripticn of these tables is found 3in the
dataset specificaticns of the DVWB.,

PROCESSTNG REQUIREMENTS

1.

2.

Top Level Flowchart
See Figure 2
Narrative

¥odule DBEDIN is called to set up mode of
operation and all of the tables necessary to the
running of the descriptor editor.

The user 1is prompted for his next Descriptor
Editor command. If +the command 1is invalid as
determined by a search of the verb table, the user
is given a diagnostic and prompted for a command
string,

If the command is not END, then the appropriate
conmand is called by use of the CALL routine when
control is returned, the user is prompted for his
next <comnand,

If the command is END then if +the user has not
filed his corrections, additions, or changes, he
is prempted informing him such and asked if he
really wants to terminate the Descriptor Editor.
If the anser is no then the user is prompted for
bkis next Descriptor Editor command, else the
Descriptor Editor raun is terminated.

At termination each field storage and each header
storage area is released, The PFIELD and X
structures are then released, Control is then
returned to the calling routine.

CODING SPECIFICATIORS

Te

Source language

PAGE 228

PL/T with DBEL/I and TSPL/I statements,
2. Suggestions and Technigunes

Not Applicable

DESCRIPTOR
RDBEDDE [TABLES

IN
-

TERMINAL

Figure 1. I/0 Block diagram

DBEDDE

INITIALIZE
DBEDIN

O——

GET AND
PROCESS
COMMAND

END CALL
COM%AND COMMAND
N

USER WANT
TO QUIT?
QUIT Y MCLEANUP
?

v
) EXIT

Figure 2. Top level flowchart

PAGE 232

TOPIC D, 14 - DESCRIPICR EDITOR — DISPLAY INTERNAL COMMAND

A, .,

B.

c.

MODULE NAME

Program-ID - ROBEERT
¥odule~-ID - DBEDDI

ANALYST

Bar:y'G. Razlett
Keoterics, Inc.

MODULE FUNCTION

This module is a debugging toel used +to display the
various external descriptor tables (DESCTAB), by their
internal name, field descriptors by their field nanme
and header descriptors by their file ids.

DISPLAYY DISTYPE=<I,F,H>,DISKANE=structure-name

wherez

DISTYPE is the type of variable to be displayed I for
internal, F for field descriptor and H for file or
header descriptor.

DISNAME is the name of the variable to be displayed.
For internal node the following structures may be
displavyed.

ERRORFILE
FIELD

FLD

HDR

RECSEC
SECURITY
SUPER

VALID
F1D_COMMENTS
FLD_FRERFCRM
FLD_RS
FLD_SUBCHNTRL
FLD_SUBID
FLD_SOBEK
HDR_ASSOC
HDR_TINDEX
INIT_FLB
INIT_HDR
INIT_RECSEC
INIT_SECURITY
INIT_SUPBER

D. .

DATA

2.

For

PAGE 233

IO_FLD
10_HDR
T0_RECSEC
IC_SECURITY
FLEX
RESERVEC

XS

X

field node the name of the field +to be

displayed is supplied. For header mode the file
suffix id is entered.

REQUIREMENTS

I/0 Blcck Diagranm

See Figure 1

Input Data Sets

de

Ce

Parametexr Cards

¥ot Applicable

Funched Card Input Files
Hot Applicable

Input Files

Net Applicable

gutput Data Sets

=

Gutput Files

Nct Rpplicable

Cn-Line Terminal Displays
Net Applicable

Formatted Print-oOuts

N¥ot Applicable

Reference Tahles

1. FIELD
2. FLD
3. HDR

PAGE 234

4, , RECSEC
5, SECURITY

6. SUPER
T YAIID
8, X

2 descripticn of these tables can be found in the
dataset specificaticns of the DW3B.

E. PROCESSTING REQUIRBEMENTS

1,

2, .

Top lLevel Flowchart
See Figure 2
Harrative

Upon entry into RIDBEDDYI the user is prompted for
the display +type. If the display type value is
not YIv, YF1, or 'H' +the wuser 1is given a
diagnecstic and prompted for a new value,

Depending on the display type the user is prompted
for either am interpal structure nanme, a £ield
name, or a header 3id., If the internal structure
name is not contained in the list of mnames in the
nodule function section, or the field does not
exist or the £file does not exist, +the user is
given a diagnostic and prompted for a new display
name value.

¥hen displaying an internal name, a label wvariable
is used, one label for each structure that may be
displayed. Bt each of +these pieces of code, a
generalized display subroutine is cailed +to
display the desired type of structure passing the
address of the particular structurse to be
displayed. This is done for all structures except
for the structures ELEX, ERRORFILE, and XS. A
wvord about these display procedures later. The
inforration from the structures PLEX and
ERRORFILE is setup and displayed. The display of
the X structure 1is a service of calls +to the
different display procedures, one for each minor
structure of X to be displayed.

Fhen displayving a field descriptor, a call to the
procedure DIS_FLD is called to display the proper
FLD structure, If the field is a superfield, has
a validation argument, or has field security,
calls are made to the routines DIS_SUPER,
DIS_VALID, and DIS_SECURITY to display the proper
structures, This is done to display all of the

F, .

PAGE 235

information associated with the fielad.

#hen display a header descriptor, a call is made
to BIS_HDR to display the proper HDR structure and
if the file has record security, a call is made to
DYIS_RECSEC to display the appropriate record
security information,

After the information has been displayed, control
is returned tc the calling routine,

For displaying the actual desired data several
internal procedures are set up, one for each type

of structure. They are DIS_FIELD, DIs_FLD,
DIS_HBR, DIS_RECSEC, DIS_RESERVED, DIS_SECURITY,
PIS_SUPER, BIS_VALID, and DIS_XS. These

procedures build the ocutput dinformation in a work
area in predefined formats. The information is
output to the terminal thru use of the TS PROMPT
facility. The output consists of a title line
followed by the data usuvally displayed bensath the
title line,

CODING SPECIFICATIQES

1.

2,

Source language
PL/T with TSFL/I and DBPL/T statements,
Suggestions and Techaigues

Not Applicable

TERMINAL

¥

RDBEDDT

Figure 1.

I/0 Block diagram

DESCRIPTOR

TABLES |

5

234

| DBEDDIL)

/

GET DISPLAY
TYPE

()

s DIAGNOSTIC -~—#»<:::>

INTERNAL

FIELD HEADER
DISP%éY DISPLAY DISPLAY
O—= ORI
y §

|

GET FIELD GET HEADER
NAME ID .

DIAGNOSTIC

DIAGNOSTIC DIAGNOSTIC

o

Figure 2a. Top level flowchart

T s

WL e

DISPLAY
INTERNAL
STRUCTURE

Figure 2b.

DISPLAY
FIELD
DESCRIPTOR

Top level flowchart

27

DISPLAY
HEADER
DESCRIPTO

PAGE 238

TOPIC D.15 - DESCRIPTCR EDITOR - DELETE FIELD COMMAND

a.

c.

D,

MODULE NAME

Program=-10 - RDBEEDRL
Hodule-ID - DBEDDL

ANALYSTY

Barry G, Hazlett
Neoterics, Inc,

MODULE FUNCTION

This module is wused +to delete a previously defined
field descriptor.

DATA REQUIFEMENTS

1.

3.

I/0 Block Diagram

See Figure 1

Input Data Sets

Not Applicable

Ontput Data Sets

A gutput Files
Not Applicable

b, Cn-line Terminal Displays
Not Applicadble

C, Forratted Print-Out:
Neot Applicable

Reference Tables

The following extermnal takles
RDBEDDI,

1s FIELD
Z, FLD
+ 3. HDR
L, SUPER

5. X

are referenced by

PAGE 239

2 description of these +tables 1is found in the
dataset specificaticns of the D¥B.

E, PROCESSING REQUIREMENTS

1.

24

Top Level ¥lowchart
See Figure 2
Narrative

Routine DBEDGF is called to obtain a valigd
fieldname, Tc¢ be valid, the field must exist, If
the £ield name appears in the reserved list, then
it muset be a subfile control field and there must
be no other ficlds on this subfile to be valid,

2 further check is made +o determine 1if the field
to be deleted is a component of any superfields or
is the defining base field for any subfields. If
so, +the user is told of all superfields and all
subfields that make use of +this field. The user
is then prompted for a new field name value, If
kere then the field can he deleted,

3t this point, the internal delete entry point is
defined, If the field name to be deleted does not
exist, contrel is returned to the calling routine,
Otherwise a pcinter is set to the field to be
deleted. At +this point delete forms connon
code,

If the field appears on an associate or subfile ox
is indexed, +then the appropriate file descriptor
counts are updated. If the associated file or
index file is depleted of £fields, the file
headers are deleted, and +the file ids nmade
available for reassignment.

At this pecint the field is deleted by the internal
delete f£ield routine. If the deleted field is a
subfile control field, +the subfile key field and
the parent key field are also deleted. .

The next £ield 3in the 1list to be deleted is now
processed in the afore mentioned manner, ifter
all of the fields have been processed, the command
string is saved in the current strategy, if it was
the delete command that was called. Control- is
then returned to the calling routine,

The internal procedure DELETE FIELD is used to
release the work areas containing +the field

PAGE 240

information, and to post the deleted field list if
this field exists on the disc storage version of
the descriptor f£ile,

CODING SPECIFICATICGHS

1. Sourceblanguage
PL/I %ith TSPL/T statements,

2. Suggestions and Technigques

Not Applicable

TERMINAL

RDBEDDL

Figure 1,

I/0 Block diagram

DESCRIPTOR
TABLES

24

e 2

S

/

..,\\]\5——] \

DEEDLD

COMMAND, N
MODE .~ 7

CALL
FIELDNAME

DBEDGF

CALL
DELETE_FIELD

=)

J

| EXIT

\&___._..._.__

Figure 2. Top level flowchart

! N
DELETE FTELD
Ne— - S

|

DELETE
FLD

POST
FIELD

J

-

Z4L

PAGE 243

TOPIC D,16 — DESCRIPTCR EDITOR - DISPLAY FIELD COMMAND

a.

B.

c.

MODULE NAME

Program-ID - RDBEDDP
Module~ID ~ DBEDDP
Entry Foints
DBEDDET1 - DISEILAY Cemmand
LEERDPZ - Paging Entry

ANALYST

Barry G. Hazlett
Neoterics, Inc,

MODULE FUNCTION

This routine is used +to display the information

defining a field,
DATA REQUIREHENTS
1, 1,0 Block biagram
See Figure 1
2. Input Data Sets
ED BParameter Cards
¥ot Applicable
b, Pnnched Card Input File
Not Applicable
C. Input Files
Kot Applicable
3. Output Bata Sets
A Qutput Files
Not Applicable

b, On-Line Terminal Displays

The various pieces of information
displayed on the screen one item per

rreceded by a descriptive title,

are
line
Refer to

the dataset specifications for a description

4.

PAGE 244

cf this display format. .
Cs Formatted Print-Outs

Not Applicable
Reference Tables

The following external tables are referenced by
RDBEDLP:

1, FIELD

2. FLD

3. HDER

4, SECURITY
5. SUEER

Gs VALID

T X

A description of +these tables is found in the
dataset specifications of the D¥BR,

E. PROCESSING REQUIREMENTS

1,

Top Level Flowchart
See Figure 2
Narrative

At the command entry point the paging information
structure is allccated and initialized and routine
DBEDGF is called to obtain the fieldname to he
displayed.

At the pagicng entry point, the paging informatiom
is set to point to the proper page to be displayed
and then join common code with the command entry
point,

At the start of the common code the number of the
next item to be displayed is retrieved from the
paging information and a branch is taken to the
appropriate code to obtain the next piece of field
information. If there is no information for this
item number, the next item is pointed to and
processed as above, After the line of information
is built, it is placed in the screen buffer.

If there is mcre room in the buffer, the next iten
is pointed +t¢ and processed as above, Cnce the
screen is full and there is more informaticn to be
output in the forward direction, a paging entry

F.

PAGE 245

point is setup and next page information is posted
in +the paging information structure., The buffer
is then flashed to the screen after which control
is returned tc the calling routine.

CODING SPECIFICATIONS

1s

Source Language

PL/I with TSFL/I -statements,

Suggestions and Techniques

Not 2Applicable

TERMINAL

[

RDBEDDP -

Figure 1.

SCREEN

I/0 Block Diagram

DESCRIPTOR
TABLES

(_omsooe)

\

INITIALIZE

GET
FIELDNAME

DBEDGF

Pigure Za.

N

BUILD
DATA

MORE

DATA
?

i

SETUP FOR
PAGING

[

e and

POST PAGE
INFORMATION

DISFLAY
DATA

4
. EXIT

Top Level Flowchart

S Ny T

Figure 2b.

DBEDDPZ2

SETUP

Top Level Flowchart

A
T

A

o —

R

-1’6" w
S LS

PAGE 249

TOPIC D.17 - DESCRIPTICR EDITOR -~ COMMON ROUTINES MODULE

A.

B,

c.

Program=1D -~ RLBELCH
Module-ID - DBEDCE
Entry Points CBEDDA

DEEDDS
IBEDDX
LBEDEF
EBEDFA
DBEDGA
LBEDGF
DBEDGER
BBEDPG
DBEDPG2

ANALYST

Barry G. Hazlett
Feoterics, Inc.

MODULE FOUNCTION

This module consists of several routines commonly used
by the Descriptcr Editor, They are:

1.

2,

3.

4,

5.

7

8.

9.

10.

DEEDDA is used to delete a field from an associate
file,

DEEDRDS is used to delete a field from a subfile. .

DEEDDX is used to delete a f£field from an inverted
index file,

DBEDEF is used to expand the f£ield structure when
it is full.

DBEDFA is used +to release the =work areas
containing all of the field descriptor and file
descriptor information,

DBEDGA is wused to get and process +the ASSOCED
parameter grocup.

DEEDGE 1is used to get and process a valid
fieldname.

DBEDGR is used to get and process the conversion,
formatting, and validation routine mnames and
validation arqument.

DBEDPG1 is used for a common paging antry point,

DBEDPG2 is used to flush the buffer to the screen

3.

h,

PAGE 250

and setup to allow paging.

REQUIREMENTS

I/0 Block Diagram

See Figure 1

Input Data Sets

A

b.

Eafameter Cards

Yot Applicable

Punclied Card Input Files
¥ot Applicable

Input Files

Not Appiicahle

Output Data Sets

de

b.

Cs

Cutput Files

Not Applicable

Cn-Line Terminal Displays

The disrlays outpuot to the screen by DBEDPG2
are those setup by the DISPLAY, REVIEN, and
FIELBES conmands., Their descriptor can bhe
found 3in the Dataset Specifications section
cf the TWE,

Formatted Print-Outs

¥ot Applicable

Reference Tables

The following external tables are referehced by
RIBEDCH=

1. FIELD

2. FLY

3, EDR

4, RECSEC

E.

PAGE 251

5. SECURITY

b, SUPER
7. VALID
8. X

A description of +these tables can be found in the
Dataset Specifications of the DUWB,

PROCESSING REQUIREMENTS

T

2.

Top lLevel Flowchart
See Fiqure 2
Narrative

Upon entry into DBEDDS +the appropriate subfile
header table is addressed., The count of records
on this sutfile is decremented.

If the deleted subfile field exists on disc, then
X.DELETE is posted so that the appropriate
descriptor will bte deleted. The field descriptor
table is then updated after which control is
returned to the calling routine.

Upon entry 3into DBEDDA the appropriate associate
header table is addressed., The count of records
on this associated file 1is decremented. If no
fields are 1left on the associats file, the
associate file header is released and the
associate file-id made available for
reassignment.

If the deleted associated field exists on disc,
then X.DELETE is posted so that the appropriate
descriptor will be deleted. The field descriptor
table is then wupdated after which control is
returned to the calling routine,

Upon entry 3into DBEDDX the appropriate dindex
header table is addressed. The count of records
onp the index file dis decremented., If no fields
are left on the index file, the index file header
is 1released and the index file-id made available
for reassignment.

If the deleted indexed field exists on disc, then
X.DELETE is posted so that the appropriate
descriptor will be deleted, The field descriptor

PAGE 252

table is +then updated after which control is
returned to the calling routine,

Upon entry intoc DBEDEF, the number of permissable
items in FIELD is raised by 700 and a new larger
FIELD structure 1is allocated.. The information
from the 0ld field structure is moved to the new
structure and then the old structure is
released. Control is then returned to the calling
routine,

Upon entry into DBEDFA, a control loop is set up
to step ‘through all of the existing fielgd
descriptor takle., If the field descriptor has a
validation argument, then the YALID pointer is
setup and the VALID area released. If the field
descriptor has field security, the SECURITY
pointer is setup and the SECURITY area released.
Tf the field descriptor defines a super field, the
SUPER pointer 1is setup and +the SUPER area
released. The FLD area is released. After all
the field descriptor areas have been released, the
FIELD structure is released.

2 control loop is setup to step through =each
header descriptor table, If +the file has record
security, the RECSEC pointer is setup and the
RECSEC area released. The HDR area is +then
releacsed,

After all file descriptors have been treleased if
the BRECLEN field has field security, the SECURITY
pointer is setup and the SECURITY area is
released, Control is then returned to the calling
routine,

Upon entry into DBEDGA, the wuser is prompted
whether or not the f£ield is to be placed on an
asscciate file, If the respomse is not an
acceptahble boolean value, he is given a diagnostic
or prcempted fcr an acceptable boolean response,
If the Tespcense is no and in UPDATE mode, if the
field 1is already on an associate file, the field
is deleted from the associate file by calling
DBEDDA, Control is then returned to the calling
routine. ’

If the user wants the field to be associated, he
is pronmpted c¢n which associated file the field is
+o be placed, If no field name is entered, a new
associate file header is created and posted. If a
fieldname was entered, it must exist and be
asscciated. If the entered name does npot meet

PAGE 253

this criteria, the user is given a diagnostic and
reprompted for which associated file, If the
entered field is associated, then this associated
file header record is addressed, and posted.

The field descriptor structure 3is then updated
after which control is returned to the calling
Toutine,

Upon entry dinto DBEDGF the user is prompted for a
fieldname. The field name is then verified.

If +he name is invalid, +the user 1is given a
diagncstic and rTeprompted £for a correct field
name, The field name validation criteria is set
up by the calling routine., It consists of the
message id to prompt with, whether it is to0 be a
new field name or if it must already exist and
whether or not it can be a reserved fieldnane,

If it is a new fieldname and the caller so
requests, a new FLD structure will be allocated
and the fieldname posted therein,

If the entered name is unacceptable for any of ‘the
prestated reasons, +the errcor flag 1is turned on,.
Ccontrcl is then returned to the calling routine,

Upon €ntry into DBEDGR, a control loop is setnp to
proupt for each of the 3 routine namess
conversion, fcrmatting, and validation <rToutines
names, If a name is entered, it is verified, Tor
conversion and formatting routines 4if no name is
entered and if thbhe field type is not alphanumeric,
a default routine name is supplied., The routine
names are posted in the FLD structure.

if a validation routine was specified, a
validation argument is prompted for, To be valid
it must contain an even nunber of hexadecimal
characters. If an argument is entered, the value
is saved in a VALID structure, the pointer of
which is posted in the FLD structure., Control is
then returned to the calling routine,

Upon entry into DBEDPG1 the user is prompted for a
paging direction and it is validated., If it is in
error the user is given a diagnostic and
reprompted £fcr the direction,. If in the desired
direction, there is ne nore information to output,
the user is given a diagnostic and control is
returned to the c¢alling routine. The appropriate
routine 1is called +to setup the next page of

PAGE 254

information te¢ be displayed, after which control
is returned to the calling routine.

Tron erntry into DBEDPGZ 1if there is more
information to output the MORE DATA flag is turmed
Onls If it is possible to page in either
direction, a paging entry point is setup, The
information is f£lushed <from the buffer to the
screen after which control is returned +to the
calling Toutine.

TERMINAL

> DBEDCM

N

l

~

DESCRIPTOR
TABLES

Figure 1 - I1/0 Block Diagram

Y
W

™
v \-1

DBEDDA

POINT TO
PTILE

!

POST
HEADER
DESCRIPTOR

-

POST
DELETE
FIELD

N/

POST
FIELD
DESCRIPTOH

{ RETURN)

CM4

\\];m';;:—? VL ¥

(DBEDSS)

s\
POINT TO

FILE

N

POST
HEADER
DESCRIPTION

|

POST
DELETE
FIELD

N

POST
FIELD
DESCRIPTOR

A

(RETURN)

CM5

25

S\ 77,2

_/(J?*"-
Lt

L 4

(DBEDDX)

/

POINT TO
FILE

v

POST
HEADER
DESCRIPTOR

v

POST
DELETE
FIELD

4

POST
FIELD
DESCRIPTCR

(RETURN)

CM6

157

~’:T)T.\\) ‘L
NS i /(;!

Figure 2.

(DBEDEF)

9

RATSE
LIMIT

ALLOCATE
NEW FIELD

MOVE
OLD FIELD
INFORMATION

I

FREE
GLD FIELD

i

EXIT

Top Level Flowchart

2

V1.

o=

- HEADER

.\ DBEDTA

POINT TO
FIRST
FIELD

FREE
VALID

Jr

FREE
SECURITY

N

FREE
SUPER

N

FREE
FLD

MORF,
FIELDS
?
J N
POINT TO
FIRST

POINT TO
NEXT
FIELD

FREE
RECSEC

POINT TO
NEXT HEADER

T w1

(DBEDGA)

@.

GET ASSOCIATED

i i

i Y

N
Y

I N
[¥

CREATE
NEW FILE

|
N | SETUP
| DIAGNOSTIC
I

RETURN

SETUP
 DTAGNOSTIC

POST
INFORMATION

RETURN

CM9

v

DBEDGF

i

?ET FPTELDNAME

CM1i

e

SETUP
DIAGNOSTIC

N

POST
i LTELDNAME

i

RETURHN

|

®

WLl

o

AR

: CM11
{ DBEDGR)

GET ROUTINE

O

SETUP
DIAGNOSTIC
ROUTTINE ‘
NAME
POINT TO
B NEXT
‘ RED ROUTINE
O—¥
©
ARGUMENT
SETUP - _
DIAGNOSTIC

B 1

POST

ARGUMENT

AN
(RETURN)

({ DBEDPG1 }

© \
?ET DIRECTIIN

l

" POST
- DIRECTION

N/ ‘
CALL ROUTINE

CALL

RETURN

CcMiz

SETUP

DIAGNOSTIC |

iﬁ S 1 {.*°

DBEDPG2

‘l/Y

ALLOW USER
TO PAGE

A

POST
PAGING
INFORMATION

l

RETURN

CM13

E{‘\’—f
’__’:::;
2‘ h
\f_(
}, :Mr,
C

PAGE 266

TOPIC D, 18 - DESCRIPTCR EDITCR - FIELDS COMHBAND

A, MODULE NANE
Program—iD - RBBEDED
Module~ID - DBEDFD
Entry Points
DBEDFL1 -~ FIFIDS Command
DEEDFL2 - Paging Entry
B, . ANALYST

Barry G. Hazlett
Neoterics, Inc.

Cs MODULE FONCTION
In CREATE mode the FIELDS command outputs the names of
the fields thus far created, In UPBATE mode the
descriptor descriptor names are displayed.
D. DATA‘REQUIBEMENIS
1. I/0 Block Ppiagram
See Figure 1
2, Input Data Sets
de Parameter Cards
¥ot Applicable
b. Punched Card Ipput Files
Net nppiicable
C. Input Files
Yot Applicable
3. Output Data Sets
. Cutput Files
Not Applicable
b. ‘On-Line Terminal bisplays
The fieldnanmes are placed on the screen, the

nunber of names per 1line determined by
dividing the sc¢reen width by 20.

‘E. .

F.

4,

PAGE 267

Ce Formatted Print-Outs
¥ot Applicable
Reference Tables

The following external +tables are referenced by
RDBEDFD: '

1... FIELD
Z. X

1 descripticen of these tables can be fonnd in the
dataset specificaticns of the DUB,

PROCESSING REQUIREMENTS

1.

2s

Top Level Flowchart
See Figure 2
Narrative

Tf in CREATE mode, a pointer is set to the TFIELD
structure’, cothervise in UPDATE mode the pointer
is set to an internal list containing the
descriptor descriptor £field names, ’

it the paging entry the proper page number is set
ug in the paging information structure,

At this peint, the code becomes common for both
the command and paging entry points. The nunber
of the next field name to be displayed is chtained
from the paging information structure. Two
contrcl lcops are set up, one to build every iine
to £ill the screen and the other to £ill each line
0f the screen.

If there is more information to be displayed, the
paging entry point is set up. The paging
information structure 1is posted, the buffer is
flushed to +the screen and control 1is then
returned to the calling routine,

CODING SEECIFICATIONS

1.

24

Source language
PL/I with TSPL/I statements,

Suggestions and Techniques

PAGE 268

Not Applicable

DESCRIPTOR
RDBEDFD K 2 TABLES
o
SCREEN

TMigure 1.

I/0 Block Diagram

749

“jj%\%'\

DBEDFD1

INITIALIZE

MODE
9

UPDATE

J

| CREATE

{
BUILD SCREET

FROM FIELD

le

BUILD SCREE&
. FROM

TNTERNAL LI%T

MORE N

DATA
5

SETUP FOR
PAGING

[
POST PAGLNG
INFORMATION

OUTPUT
DATA

)

EXIT

Figure 2.

DBEDFDZ2

SETUP

Top Level Flowchart

2770

PAGE 271

TOPIC D, 19 - LESCREIPTCR EDITOR ~ FILE COMNAND

A, MODULE NAME

Program-ID - RDBEDFI
Module~IT - DBEDFI

B. ANALYST

Barry 6. Hazlett
Neoterics, Inc..

C. HODULE FUNCTION
This module is used. to place +those additions and/or
changes from the descriptors in core to the descriptor
file.
B. DATA REQUIREMNENTS
Te I/0 Block Diagranm
.See Figure 1
2, . Input Data Sets
a. Parameter Cards
Not Applicable
b. Punclied Card Input Files
Not Applicable
C, Input Files
Not Applicable
3. Output Data Sets
a. Cutput Files
The descripter file is a région TSS VISAN
dataset containing all the information
necessary to conmpletely define +the data
Ease.
b On-Line Terminal Displays
Not Applicable |

C. Formatteé Print-Cuts

E.

4.

PAGE 272

Not Applicable
Reference Tables

The fcollowing external tables are referenced by
RDEEDFI:

1. FIEID

2, ‘FLB

3. FLD_STRING
q, HDR

5. HDR_STRING
6, RECSEC
7. SECURITY

g8, SUEER
9. VALID
10, X

A descripticn of these tables can be found in the
dataset specifications of the DWB.

PROCESSING REQUIREMNENTS

1.,

2.

Top Level Flowchart
See Figure 2
Narrative

Upon entering FILE command, if just one descriptor
Ttecerd is to he updated, the appropriate file
identified is setup, the £ile opened and the
descriptor record is unpdated after which control
is returned tc¢ the calling routine., . Otherwise all
the descriptor information is to be filed to the
descriptor file, The user is pronpted for +the
parameter DESCOK and +the value saved for posting
each header record. If the input wvaluve is in
error the user is given a diagnostic and prompted
for a nevw .value,

If the anchor key field needs to be deleted, it is
deleted <£from the anchor and all associate files,
The delete £ile 1list is then processed deleting
the header, RECLEN key field and when applicable
the parent key field of all files listed.

For outputting descriptor informatiom, the files
are precessed in the following order: anchor, all
agscciate files, then all subfiles. . If the file
does not exist on disc the RECLEN field is
written ount., If it 4is a new region and the file
is either the anchor file or an associate file the

F. .

PAGE 273

anchor key field wmust be written oat for a mnew
subfile the subfile key field and parent key field
are written cut, If these or any other fields
already exist on the file then only the changes if
any, to these fields are written out, Record
security if any is then written out.

2s these fields are output +the field position
value for each field in wmaintained and updated.
This value ic then placed in the FLDPOSIT 9051t10n
for esach field.

The packed bhit £fields for the file are then
processed. in the order in which they appear 1in
the list, They are packed four to a byte and the
field position and field length indicating which
byte and where in the byte respectfully the field
can be found. After all packed bits fields are
processed, the fixed fields for the £file are
processed shipping over the key field, parent key
field and record security field where applicable,
Then all varying fields are processed in order.

If it is an anchor or associate file all
descriptors if any are set up and ©processed,
Then the header record is setnp and processed and
the file «c¢losed. The next file is processed in
this manmer until +the anchor file, all associate
files and all subfiles are processed.

The 3index files are processed next, If it is a
new file the EECLEN field is written out. Each
field to be indexed on this file ig Yocated, setup
and written cut. The anchor or key field on the
appropiate sukfile key field is setup and written
out, If the index file already exists then only
those changes applicable are writtem out to the
dataset, Each dindex <£file is ©processed in this
manner until all index files have been
processed,

After all +the fields have been processed the
various external structures are marked indicating
that the descriptor data is on the dataset. The
command string is saved in the current strategy
and ccntrol is retuorned to the calliing routine.

CODING SPECIFICATICNS

1.

Source Language

PL/T w%with DBPL/TI and TSPL/I statements,

PAGE 274

2. Suggestions and Techniques

Nct Applicable

TERMINAL

RDBEDFL

Figure 1.

—]
—]
_______/

DESCRIPTCR
FILE

\,\‘_-___/

I/0 Block Diagram

DESCRIFPTOR
TABLES

{'; ~ f :’ :
YAy)

A\
WA

i

SETUP
FILE ID

|

GET DESCOKI

OPEN
FILE

DELETE
ANCHOR -
KEY PIELDS

v

&

N

OUTPUT
DESCRIPTOR
RECORD

DELETE
FIELDS

\5/

\
EXIT

DELETE
REGIONS

DIAGNOSTIC

Figure 2.

POINT TO SETUR1AND i
NEXT FILE OUTPUT Vi
FIELDS -
% J
- | SETUP AND
OPEN FILE ouTPUT
. HEADER
%
SETUP AND
OUTRUT
FIELDS
SETUP AND SAVE
OUTPUT COMMAND
HEADER STRING
¥ L’
MORE: ()
FILES e EXIT
2
()
W
 POINT TO
NEXT INDEX
FILE

Top Level Flowchart

SR 2
Il

PAGE 278

TOPIC D.20 - BESCRYPTCR EDITOR -~ FIELD SECURITY COMMAND

A, HODULE NAME

Progran-ID - RDBEDFS
Module=-1IB - DBEDFS

B, . ANALYST

Barry G. Hazlett
Neoterics, Inc,

C. MODULE FUNCTION

This command is used to define and setup field security
for a field or a group of fields.

D DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2 Input Data Sets
a. Parameter Cards
KXot Applicable
b, Punclied Card Input Files
Not Applicable
C. Input Files
Net Applicable
3. Output Data Sets
a. . ‘Output Files
Not Applicable
b, Cn-Line Terminal Displays
Not Applicable

Ce Formatted Print-Outs

Not Applicable
4, Reference Tables Preceding page blank

E.

PAGE 279

The following external tables are referenced by
RDBEDFS:

1. FIELD

2. FLD

3. SECURITY
4. . X

4 description of these tables can be found in the
dataset specificaticns of the D¥WB.

PROCESSING REQUIREMENTS

1'.;

2s

Top Level Flowuchart
See Figure 2
Narrative

Routine DBEDGF is called to obtain an existing
field name,

If CREATE mode the user may enter up to 18 field
names at one time, TIf several field names are
entered, they are processed as above,

The user is then prompted for a security code and
an add-delete indicator, If no indicator is
present, add is assumed., If the indicator is
invalid or the security code is not an
alphanumeric character string, the user is given a
diagnostic and ©prompted for a new security code
value.

The used may enter up to 18 security codes in a
parenthesesed list.

If the field already has field security a pointer
is set to it, otherwise a SECURITY work area is
allocated,

If the security code is to be added to the list,
and it is onot already there, it is added at the
end of the list., Otherwise it is ignored. TIf the
security c¢ode is to be deleted, a search is made
through the existing codes deleting all
occurrenhces of the code if any. .

Once all of the entered security codes have been
processed a -check is made 1if any security codes
are 1lift on this field. If none, then the
SECUORITY work area is released, else the pointer
to SECURITY is posted ir the FILD structure.

¥, .

PAGE 280

If in UPDATE nmode, routine DBEDFI 1is called to
post the security codes to the descriptor file,

The connand string is saved in the current

i
strategy and contrel is +then returned +o the
calling module,

CODING SPECIFICATIONS

T,

2a.

Source language
PL/I with TSPL/TI statements,
Suggestions and Techniques

Not Arplicable

TERMINAY,

RDBEDFS =

Figure 1.

I/0 Block Diagram

DESCRIPTOR
TABLES

o0~ 2.0
(N

(DBEDFS)
: A

X

GET
FIELDNAME
DBEDGF

AY

SAVE
FIELDNAME

UPDAT
MODE

P

GET SECURITY

CODE

DIAGNOSTIC

SAVE
SECURITY
CODE

rOST
SECURITY
CODES

{

{ EXTT)

Figure 2b. Top Level Flowchart

T e
WA S

o, &

PAGE 284

TOPIC D.21 -~ DESCRIPTOR EDITOR -~ LOAD DESCRIPTORS MODULE

. .

B,

Ce.

D,

MODULE NAME

Progran~ID -~ RDBEDILD
Module-IDl - BBEDLE

ANALYST

Barry G, Hazlett
Neoterics, Inc.

MODULE FUNCTION
In create mode the 1load module loads and sets up all
field and header descriptor information. In update
mode +the load nmodule loads the desired descriptor
record, including file descriptors and dummy descriptor
records, -
DATA REQUIRENENTS
1. I/0 Block Diagranm
Sea Figure 1
2, Input Data Sets
a. Parameter Cards
Not Applicable
b. Funched Card Input Files
Not Applicable
c, Input Files
The dJescriptor file 1is a 7region TSS VISAY
dataset containing all the information
necessary to completely define the data
‘base,
3. Output Data Seis
a, Cutput Files
Nect Applicable

b. Cn-Line Terminal Displays

Not Applicable

g,

PAGE 285

Cce . Formatted Print-Outs
Not Applicable
Reference Talkles

The following external tables are referenced by
RBBEDILD:

1, FIELD

Z. FLD

3. FLD_STRING
4, HDR

S. HDE_STRING
6. RECSEC

7. SECURITY

8. SECURITY_STR

9. SUPER
10, VALID
11. X

A description of these tables can be found in the
dataset specifications of the DWB,

E, PROCESSING REQUIREMENTS

T1s

Top Level Flouwchart
See Fiqure 2
Narrative

Upon entry intce DBEDLD if all descriptors are.to
bhe loaded, the anchor file is first pointed to,
otherwise the appropriate file identifier is set
up. If call from REVIEW ccommand branch +to
retrieve the appropriate header on field
descriptor fields as the file has been opened aand
the appropriate descriptor read into core.

Iin update mode any fields which have been loaded
and still exist in work areas are released, This
is a control so that no more +than one field
descriptor can be locaded at.any one time. Note:
this is not true for header descriptor.

The next descriptor regicn is opened starting with
the anchor region and the descriptor header record
read 3in, The header fields are obtained and all
bit switches converted to an alphabetic character.
A HDR structure 1is allocated and the header
information saved therein, If the file has record
security, the security codes obtained, placed in a

PAGE 286

RECSEC structure and hooked up +to +the HDR
structure,

If in uypdate mode, the desired field descriptor
record is read in, otherwise the next sequential
field descriptor 1is read in,. If not in review
mode, it nmust be determined if the field is =a
dummy descriptor., If it 1is then a list of file
ids is built eventuwally containing all of the
descriptor regions on the file once all of the
field descriptors on the anchor file have been
processed. This 1list 1is built from noen-blank
entries in the ASSOCFIL, INYFILE and SUBFILE
descriptor fields, If the £field is a dummny, and
in update mode, the correct file is pointed to aand
a branch goes +to open the file and read the
desired field descriptor. In create mode, this
record is skipped and the next descriptor record
in the region is read.

If +this field descriptor is saved, all of the
field descriptor bit field values are translated
to an alphabetic character,

The £ield validation argument, if any, is obtained
and saved, If +the f£ield is a superfield, the
component values are obtained and saved,
Likewise, if the field has security, the secarity
ccdes are c¢htained and saved.

A FILD structure 3is allocated and the field
information saved therein. The field name and
pcinter are pested in the next available slot in
the FIELD structure, and if in create mode, the
F1D structure is chained to the end of the proper
file list.

When the anchor region is finished, & 1list of all
existing descriptor regions is complete., The next
descriptor region in that 1list is selected and
lcaded as described,

Tn review mede once the desired descriptor record
from the desired descriptor region has Dbeen
processed, as the correct non dammy field
descrlptor has been loaded in update nmode, control
is returned to the calling routine.

In create mode a search is made +through all -file
lists to locate all subfields. For each
subfield, the defining base field is located and
the tase field mname and offset are posted in the
subfield FID structure,

F.

PAGE 287

The fields within the file 1ists are ordered by
their field —rositions within each £file list with
all subfields and superfields appearing at the =nd
of the ordered lists, Control is then returned to
the calling routine.

CODING SPECIFICATICNS

1.

.2‘

Source Language
PL/I with DBPL/I statements, -
Suggestions and Technigues

Not Applicable

< >

_______./
~—]

DESCRIPTCR—

FILE

\‘\‘*____—/

RDBEDLD <t

Figure 1.

I/0 Block Diagram

DESCRIPTOR
TABLES

-

A8

—

T TR
Wasa

DBEDLD

SETUP
FOR
LOADING

v

CLEANUP

SET TO
ANCHOR FILE

Ficure 2a. Top Level Flowchart

P
TSN\ L L O

o

‘T

OPEN FILE
AND
READ HDR

GET, PROCESS
AND SAVE
HDR FIELDS

?

BEEAD FIELD
DESCRIFTOR

e nsc]

¥
3

~ GET FIFLD
INFORMATION

7]

PROCESS AND
SAVE FIELD
- INFORMATION

ANCHOR™_§
REGION
?

SETUP
LIST OF
FILES

[
e
MORE
REGIONS
?

SAVE FILE
INFORMATION

SETIDP
READ ONLY
BASE FIELDS

ORDER FIELDS
WITHIN
FILE LISTIS

¥

{ EXIT -)

Figure 2b. Top Level Flowchart

POINT TO
NEXT REGION

TOPIC D,22 - DESCRIFICR EDITCR - MOVE CONMAND

a,

Cs

D.

MODULE NRME

Program-ID - RDBELMO
Module-ID - DBEDNG

ANALYST

Barry 6.

Hazlett

Neoterics, Inc,

MODULE FUNCTION

The

MOVE

command permits the user to

within any field list.

DATA REQUIREMENTS

Te. -

3.

4,

170 BELGCK DIAGRAN

See'Figure 1

Input Data Sets

dae

b.

Ca

FParameter Cards

Xot Applicable

Purcled Card Input Files
Not Applicable

Input Files

Not 2pplicakle

Qutput Data Sets

T

b.

Cutput Files

Not Applicable

¢n-Line Terminal Displays
¥et Applicable

Formatted Print~Quts

Not Applicable

Reference Takles

PAGE 291

reorgder fields

E,

F.

PAGE 292

The following external tables are referenced by
RDBEDHG:

Ts FLD
2, HDR
3. X

X descripticn of these tables can be fonmnd in the
dataset specificaticns of the DYB,

PROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart
See Figure 2
Narrative

The vuser is prompted for the new position £ield
name, I1f the entered field name does not exist,
the user is given a diagnostic and prompted for a
new fieldname, The new position field name cannot
be, the anchor key field if the anchor £ile has
reccrd security, the subfile parent key field if
the subfile has record security or the subfile key
field, or +the RECLEN field, If any of these
conditions are met, the user is given a diagnostic
and <reprompted for a new position £ieldnane. A
superfield has no field position, If a subfield
is specified, the defining base field is located
and nsed as the new position fieldname. 3A1ll other
fields are unacceptable,

The user is prompted for the £ield to be moved,
To be valid, the field must exist and must not be
a reserved fieldname, must appear in the same
field 1ist as the new position field name and
nust not be a superfield or a subfield., If the
field is invalid, the user is given a diagnostic
and rerrompted for the field to be moved.

The £ield to be moved is decoupled from the list
by Tecsetting the appropriate forward and backward
pointers. It is +then threaded into its new
position by setting the appropriate forward and
backward pointers.

The command string 3is saved im the current
strategy and then control is returned to the
calling Toutine,

CODING SPECIFICATICHNS

Source language

PL/T with TSPL/I statements,
Suggestions and Techniques

Fot Arplicahble

PAGE 293

TERMINAL

RDBEDMO

Figure 1.

I/0 Block diagram

DESCRIFPTOR
TABLES

244

71

(opeEMo)
(y—r

——/'_._‘-—
GET NEW POSI-
 TEON FIELDNAM;

3

DIAGNOSTIC

GET FEILD TQ
BE MOVED

DTAGNOSTIC
DECOUPLE
OLD FIELD
3
THREAD
FIELD

‘ EXIT)

Figure 2. Top level flowchart

U, e

PAGE 296

TOPIC D.23 - DESCRIPTCRE EDITCR - PATCH COMMAND

2.

B.

C.

D.

MGDULE NAME

Program~ID - EDBEDERA
Hodule-ID - DBEDPA

ANALYST

Barry G, .Hazlett
Neoterics, Inc.,

MODUGLE FUNCTION
The Patch command permits the user to patch the value
in any descriptor record in any description region im
the descriptor file. The record to be patched. must be
identified by use of the REVIEW conmand.
DATA REQUIREMENIS
1. 1/0 Block Diagram
See Figure 1
2. Input Data Sets
Qo Parameter Cards
Yot Applicakble
b. Punclied Card Input Files
Not Applicable
C. Input Files
Not Applicable
3. Dutpot Data Sets
e Cutput Files
Not Applicable
. Cn-Line Terminal Displays
¥ct Applicabie

Cs Formwatted Print-Outs

Not Applicable

E,

4.

PAGE 297

Reference Tables

The folleowing external tables are referenced by
RUBEDEA:

1. FLD

2. HDE

3. RECSEC
g, SECURITY
Se SUPER

6, VALID

7' X

2 descripticn ¢f these tables can be found in the
dataset specifications of the DWB.

PROCESSING REQUIREMENTS

T.

24

Top Level Flowchart
See Figqure 2
Harrative

The REVIEW command indicates in X that a REVIEW
has been done and it 3is alright to patch, REVIEW
also indicates whether the field to be patched is
a field or header descriptor.. If a BEVIE¥ has not
been done the user 1is given a diagnostic and
contrcl is returned to the calling routine,

The wuser 1is prompted for his patch in the form
"keywcrd=test", The keyword is checked to see if
valid, If net, +the patch is 1ignored, the user
given a diagunostic and reprompted for tle patch.
If +the pame 1is valid, a branch is taken to the
piece of coded wvhich actually posts the
approrriate field,

In each of +the sections of code, one for each
descriptor £ield name, a 7resonableness check is
nade on ‘the patch text, to assure that the data
will be accepted by the validation routines when
posting the information to the descriptor file,

Refer to the Lescriptor EBditor Users Guide for the
acceptable range and form of the patch texts.

The user may enter a parenthesesed 1list of
patches,

After all +the patches have been posted in +the
descriptor table work areas, they must then be

F.

PAGE 298

posted to the descriptor data sets The routine
DBEDFL3 is called to post the appropriate field
descriptor, or the routine DBEDFI 3is called to
post the appropriate theader descriptor. The
routine called depends on vwhether the user is
patching a field descriptor or a header
descriptor. Contrel 3is then returned to the
calling routine.

CODING SPECIFICATICNS

1.

2

Source language
PL/I with USTEI/I statements.
Suggestions and Techniques

¥ct Applicable

TERMINAT,

RDBEDPA oy

Figure 1.

1/0 Block diagram

DESCRIPTOR
TABLES

249

W s

P DBEDPA

HEADER

POINT TO Flﬁ;l
DESCRIPTOR
FIELD NAMES

POINT TO
HEADER
DESCRIPTOR
FIELD NAMES

—
i

GET NEXT
PATCH

")
-/

DIAGNOSTIC

PATCH
FIELD

MORE

PATCHES
?

@
-0

DIAGNOSTIC

FILE PATCHES

DBEDFD3

FILE PATCHES

DBEDFI4

EXIT

PAGE 301

TOPIC D.24 - DBESCRIPTCR EDITOR — PRINT COMMAND

3, MODULE NAME

Program-ID - RDBEDER
Module-IL -DREDER

B, ANALYST

Barry G. Hazlett
Neoterics, Inc.

Ce MODULE FUNCTION
The PRINT command gives the user a formatted printout
of +the descriptor information as it exists in core at
the time the print is issued.
D, DATA REQUIREMENTS
Ts I/0 Block Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards
Not Applicable
b, Punched Card Input Files
Not aApplicable
Ca Input Files
Not Applicable
3. Output Data Sets
a. Qutput Files
The output data from RDBEDPR is placed in the
VSAM data set LIST,DESC{0) from where it is
rrinted on +the high speed pripnter by TSS,
For the details of the data set refer to the
dataset specifications,
b. ‘On=Xine Terminal Displays

Not Applicakle

E, .

r

PAGE 302

Cs Formatted Print-Outs
The infermation stored 1im LISTLDESC(DY is
printed using columm one of each record as a
carriage control.

Reference Tabkles

The <fcllowing external +tables are referenced bv
RDBEDER:

1. FIELD
2, FLD
3. HDER

4, RECEEC
Sa SECURITY
€. SUEER

7. VALID

8. X

A2 description of these +tables can be found
dataset specifications in the of the D¥WB. .

PROCESSING REQUIRENENTS

1.

2.

Top Level Flowchart
See Figure 2
Narrative -

The generaticn data group LIST,DESC 1is created
using the routine ASHMCAT. The next generation is
created using the routine ASHMDD. A DCB is created
for +the output £ile by the routine ASHDCB, the
J¥CB set up by the <vToutine ASHFEDS, and the
dataset opened by the routine ASHOPEW.

The title 1lines for the data bhase name are output
by the routine ASHPUT, The data base name is
output followed by two trailing title lines,

The title 1lines for the field descriptors are
outpat, The lines of field information for each
£field are Tuilt and output.

Lfter the field information 1is processed, the
title lines for the header descriptor information
are written out, The lines of header information
for each descriptor region are built and written
out,

The LIST.DESC dataset is closed by calling the

F.

PAGE 303

routine ASMCILIOS and a printer 1listing of the
information 3is generated by using the routine
ASHMPR after sxhich control 1is returned to the
calling routine,

CODING SPECIFICATIOCRS

1. .

2.

Source Language
PL/I with TSEL/I statenments,
Suggestions and Techniques

Not Arplicable

DESCRTPTOR
TABLES

RDBEDPR

A

‘‘____’/

LIST.
DESC

Figure 1.

FRINTER
LISTING

I/0 Block diagram

Zott

A2

{ DBEDTR)

-

CREATE
LIST.DESC (+1)

OPEN
LIST.DESC(0)

)

OUT DATA~-
PLEX NAME
AND HEADER

QUTPUT
FIELD
HEADER

OUTPUT
FIELDS

Figure 2. Top level flowchart

)

i

OUTPUT
FILE
HEADER

QUTPUT
FILE

DESCRIPTORS

CLOSE _
FILE

PRINT
LIST.DESC(0)

7

‘ EXIT ’

305

PAGE 306

TORIC D, 25 = LESCRIFTOR EDITOR - RECORD SECURITY COMHAND

A,

B.

C,

D.

HODULE NANME

Program-ID - RDBELRS
Module-IL - DBERDES

ANRALYST

Barry G. Hazlett
Neoterics, Inc.

RODULE FUNCTION

This compmand 3is used +to

create and define record

security for any data base file except for indicies. .

DATA REQUIREMENTS

1. I/0 Blcck Diagram
See Figure 1

2 Input Data Sets
2. Parameter Cards

Not Applicable

b, Punched Card Input Files

Not ZApplicable
C. Input Files

Not Applicable

3. Output Pata Sets ‘
2. Cutput Files

Not Applicable

b, Gn-Line Terminal Displays

Not Applicable

Coe Formatted Print-Outs

Not Applicable

4, Reference Tables

PAGE 307

The following external tables are referenced by
RDBEDRS:

1. FIELD

2. FLD

3. FLD_STRING
4, WUBR

5., ERECSEC

€, X

A description of these tables can be found in the
dataset specificaticns of the DR,

E. PROCESSING REQUIREMENTS

Te

2,

Top Level Flowchart
Seg Figure 2
Narrative

Routine DBEDGF is called +to obtain a fieldname
used to define on which file record security is to
be placed. If in update mode and the header
record is not loaded, UBEDID is called to load the
header. If there is no <record security currently
defined for the file in UPDATE mode, the user is
given a diagnostic and control is returned to the
calling routine.

The user is prompted for a record security code,
The add-delete indicator is removed Ifrom the code
and validated. If it is invalid, the security
code 1is rejected, the user is given a diagnostic
and repromnpted for the security coded. If no
indicator is entered, "ADD" is assumed.

The security code is removed from the parameter,
If this 3is not an alphanumeric character string,
the security parameter is rejected, the user is
given a diagnostic and reprompted for the
security ccde,

The security mask to be valid must be a two digit
hexadecimal character string. If it is invalid,
the security paraneter is rejected, the user is
given a diagnostic and Teprompted for the
security parameter,

Once the security parameter is validated, it is
saved in an internal work area. The wuser may
enter a list of security parameters as a list in
parentheses, Each security parameter is obtained

F.

PAGE 308

fron the user and processed as above.

If record security has heen previously defined for
the file, a pcinter is set up to the file header
and record security information, Otherwise a
record security field is created and placed in
the appropriate position in +the fixed field list
of the £file. 32 record security save area is
allocated apnd initialized,

2 cecrtrol locop is set up to process each enterad
security code. The existing secprity list if any
is searched for the entered security code. If the
security code exists and the new code 1is to be
added, the two security masks are logically OR‘ed
together and the result posted in record security
structure., If the code is to - bs deleted, the iwo
security mask are Jogically exclusively OR'ed and
the resalt placed in the record security
structure. If the security code is mnot in the
existing list and 1t is te be added, it is placed
at the end of the existing 1ist, If the code to
be deleted and it does not appear in the 1list, it
is ignored. Each security code is processed in
this manner,

After all security code have been processed and
the Tecord security list 1is empty, the area is
released and the record security field deleted
from the file.

If in UPDATE routine DBEDFI is called to post the
record security +tc¢ the descriptor file, The
conpanpd string is saved in the current strategy
and then control 1is returned +to +the calling
module,

CODING SPBECIFICATIGNS

Te

.2’

Sonrce Language
PL/I with TSPL/I statements.
Ssuggestions and Techningues

Not Applicable

TERMINAL

RDBEDRS

4

Figure 1.

I/0 Block diagram

DESCRIPTOR
TABLES

DBEDRS

N

‘GET
FIELDNAME -

DBEDGF

EADER S X
LOADED '
9

N4

T L.OAD
HEADER

. DBEDLD3

DIAGNOSTIC

bl

‘ET SECURITY
CODE __

J

DIAGNOSTIC-

T &

SAVE
SECURITY
CODE

SETUP 5
SECURITY

L

N

POST
SECURITY
CODES

Figure 2, Top level flowchart

PAGE 311

TOPICS D.26 - DESCRIFTOR EDITOR - RESTORE COHMAND

A,

B,

C.

D

HODULE NAME

Program-ID - RDBEDET
Hodule~IL - DBEDRT

ANALYST

Barry G, Hazlett
Feoterics, Inc.

MODULE FUNCTION
This command is used to restore the descriptor tables
from a VSAN data set to memory, so that the user may
continue tc create and/or modify the descriptors from
their point of existence dt the time the checkpoint was
issued.
DATA REQUIREMENTS
1. I/0 Elock riagram
See Fiqure 1
2. Input Data Sets
A Parameter Cards
Rot Applicable
b, Punched Caxrd Input Files
Not Applicable
C. Input Files

The input £ile is =a ISS VSAM data set naned

CESCRY,CHEPOINT. Refer to the dataset
specifications for a description of this data
set.

3. Ountput Data Sets
a, ‘Cutput ¥iles
Nct Agpplicable
b. Cn Line Terminal Displays

Not Applicable

4.

PAGE 312

Ca Formatted Print-Outs
Not Applicabhle
Reference Tahbles

The fellowing. external tables arxe referenced by
RDBEDERT:

1. FIELD
2. FLD
3, FLD_STRING
4., HDR

S. HDR_STRING

6, RECSEC_STR

7. SECUORITY_STR

8., SUPER_STR

<. VALID

0. X
The description of these tables is in the
specifications of the dataset D¥B,.

E. . PROCESSING FEQUIREMENTS

T

2,

Top Level Flowchart
See Figure 2
Narrative

Upen entry into RDBEDRT a DCB is set up for the
dataset DESCHEP,CHKFOINT by calling the routine
ASWMDCE, ASHDD is then <called to create a JFCB for
the data set and ASMFNDS is called to setup the
J¥CB., Any and all existing field descriptors and
file descriptcrs are rteleased and then the FIELD
structure itself is released,

ASMOPEN is called to open the dataset, That part
of the X structure which was saved is read in over
top of the same part of the existing X strucure.

The FIELD structure is allocated next. Note that
the variable defining the size of FIELD structure
is in that part of X which has just been restored.
The FIELD structure is read in overlaying the Jjust
allocated existing FIFELD structure,

2 field descriptor is read into a work area,. A
FLD structure is allocated on the field
information moved into it. TIf the FLD has field
security, a validation argument, or is a super

F.

PAGE 313

field, the appropriate structures are allocated,
the informaticn. moved intc them, and the pointers
in FID setup accordingly. The changed flags im
F1D are setup so that all of the field descriptor
informaticn will be forced out to disc vwhen the
FILE command is issued. Fach field descriptor is
processed in this mpanner.

3 file descriptor is Tead into a work area. Anm
HBR structure is allocated and the header
information moved into it., If the file has record
security, a RECSEC structure is allocated, the
informaticn moved into it, and the pointer posted
into the HDR structure. The HDR pointer is posted
into the proper slot in X.HEAD_TAB, Each header
descriptor is processed in this manner,

The dataset DESCRP.CBKPOINT is then closed and
control is returned to the calling program,

CODING SPECIFICATICHNS

1.

2.

Source Langquage
PL/T ®ith TSPL/I statements,
Suggestions and Techniques

Not Applicable

-

DESCRP.,
CHKPOINT

e

DBEDRT

DESCRIPTOR
TABLES

TERMINAL

1y

)
I

INITTALIZE

¥

OPEN
DESCREP.
CHKPOINT

{

READ X

READ FIELD

READ FIELD
DESCRIPTORS

i

READ FILE
DESCRIPTORS

]

CLOSE
DESCRE.
CHKPOINT

EXIT

Fiéure 2. Top level flowchart

ENNCY: A =
e

PAGE 376

TOPIC D.27 - DESCRIPTCR EDITOR - REVIEW COMMAND

i,

C.

HODULE NAME
Program-ID - RDEEDRY
Module-ID - DBEDRYV
Entry Points:
DBEDRV1 - Review Command
DBEDRV2 = Paging Entry
ANALYST

Barry G. Hazlett
Neoterics, Inc.

MODULE FUNCTION
This conmand is used to present +the descriptor
information to the user of any descriptor record in any
descriptor rTegicn in the descriptor file, Review
points to the record to be patched by means of the
PATCH command,.
DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2 Input Data Sets
a. Parameter Cards
Not Applicakble
b. Tunched Card Input File
Yot Applicable
Cs Input files
The data base descriptor file is a TSS VISAN
file maintained by DBPAC, containing the
information defining and detailing the
information contained in the data base.
3. Ontput Data Sets
A, Cutput Files

Not Applicable

E.

4.

PAGE 317

b, On-Line Terminal Displays

The varicus pieces of information contained
in the descriptor record are displayed on the
screen preceeded by the descriptor descriptor
field name. All fixed fields are displayed
within a 20 character string. The number of
items per line for fixed field items is
determined by dividing the screen width by
20. The varying elemnents are display .Ore per
line, with continuation lines if necessary..

Cs Formatted Print~Outs
Not Applicable
References

The Zfollowing external +ables are referenced by
RDBEDRV:

1. FLD

2, HDR

3. RECSEC
4, SECURITY

5, SUFER
€, VALID
7. X

3 descripticn of these tables is— found 3in the
dataset specificaticns of the dataset DEB.

PROCESSING REQUIREMENTS

1.

2,

Top Level Flowchart

s

See Figure 2
Narrative

At the command entry point the paging information
structure is allocated and initialized. The user
is precmpted for the descriptor file a region id
that he wishes to review from. If the region id
is invalid, the user dis given a diagnostic and
prompted for a new region id.

The user is prompted for the name of the
descriptor record he wishes to review <from the
descriptor region., If the descriptor mname is
invalid, the user is given a diagnostic and
prompted for a new descriptor nane, If the
descriptor exists the routine DBEDLD is called to

F.

PAGE 318

load the descriptor data, If a loading error
occured, the user dis given a dJdiagnostic and
proonpted for a new descriptor value,

The paging information structure is setup to point
tc the first page of information to be displaved,
At which point the command entry and paging entry
join in commeon code.

At the paging entry point, +the paging information
is set to peoint to the proper page to be displayed
and then Jjoin common code with the command entry
point,

At the start ¢f the common code, the nunmber of the
next item to te displayed is retrieved £from the
paging information and a branch is taken to the
approprate code to obtain the next piece of
descriptor information. Seperate pieces of code
exist for each field descriptor and £file
descriptor descriptor fields., 2After the piece of
information is built, it is inserted in the output
line, If there is sufficient room in +the output
line for more 4data, the next item of information
is obtained as above. If the line is foll, it is
put into the TS scresnr buffer,

If there are more lines of screen available, they
are built and processed as above, This continues
until either the screen buffer is full or all of
the information has been exhausted. If +the
screen is full and there is more information +to
cutput in +the forward direction, a paging entry
point is setup and the next page of information is
posted in the paging information. The buffer is
then flashed to the screen,

The X structure is posted as the descripter regiomn
and field name of the record REVIEW'ed so that the
user may use the PATCH command if he desires,
after vwhich control 1is then returned to +he
calling routine,

CODING SPECIFICATIONS

1.

2.

Source Language
PL/I with TSPL/T and DBPL/I statements,
Suggestions and Techniques

Not Agpplicable

TERMINAL

<

DESCRIP-
TOR FILE

RDBEDRV ﬂ

Figure 1.

SCREEN
DISPLAY

I1/0 Block diagram

DESCRIPTOR
TABLES

319

Wy

{ DBEDRVL)

INITTALIZE
PAGING
INFORMATION

(A'} o
GET FILE ID

FIELDNAME

LOAD
FIELD

DBEDLD3

POINT TO
FIRST PAGE

®

DIAGNOSTIC

LOADING_Y
ERROR j
?

DIAGNOSTIG

\

POINT TO
NEXT ITEM

A70

SETUP FIELD SETUP FILE
DESCRTETOR DESCRIPTOR
ITEM ITEM

i
FUT DATA IN
OUTRUT LINE

Figure 2a. Top level flowchart

.

A

—dl“z’o—_’

“PAGE 320~

:
£

(DBEDRV2')

o,

POINT TO
PAGE

®

Figure 2b.

ROOM !

IN LINE
o

Y

©

POINT TO
NEXT LINE

PUT LINE
INTO SCREEN

SETUP
PAGING
ENTRY

DATA TO
SCREEN

Top level flowchart

|

®

e

BAGE 323

TOPIC D,28 — DESCRIPTCR EDITOR - SAVE STRATEGY COMMAND

MODULE NAME

Program—-ID - RDBEDSS
Module~1ID - DBEDSS

B. ANALYST

Barry G.- Hazlett
Neoterics, Inc.

c. MODULE FUNCTION
The command is used to create and save in the strateqy
data set, a 1list of Descriptor Editor commands which
when executed at any £future time will create a set-of
-fescriptors exactly like those that exist in core at
the time the SAVSTRT command is issued.
D, DATR REQUIRENENTS
1. .I/0 Block Diagranm
See Figure 1
2. Input Data Sets
a. Parameter Cards
Rot Applicable
b, Puncled Card Input Files
Not Applicable
Cc.. JInput Files
¥ot Applicable
3, Output Data Sets
de Cutput Files
Not Applicable

b. Cn-Line Terminal Displays

Not Arpplicable
. Tormatted Print-outs ﬁrecedmg page blank. | .

E,

4.

PAGE 324

Not Applicable
Reference Tatles

The following external tables are vreferenced by
RDBEPSS:

T FLb

2, HDR

3. RECEEC
g, SECURITY

S, SOUPER
6. VALID
T X

A descripticn of these tables can be found in the
dataset specifications of the D¥B.

PROCESSING EEQUIRFMENTS

1.

2.

Top Level Flowchart
See Figure 2
Warrative

Upon entry into SAVSTRT, the user is prompted for
the strategy name in vwhich the Descriptor Editor
commands are to be saved, If the name is not of
the gproper form or a =strategy by that nane
already exists, the user is given a diagnostic and
pronpted for a ney strategy nane,

Once a valid strategy name 1is obtained, the
HATINTAIN and EDIT command strings are saved in
the strategy. This initializes the strategy. The
internal subroutine SAVE_FLD is called to save
the ABD command to create the anchor file key
field,)

A control lcoop is set up to process each of the 20
possible files in the order of anchor file,
associate file and then subfiles. ¥ith each
existing <file each field list is processed in the
order of packed bit fields, fixed fields, and then
varying fields, F¥ach field list is processed fronm
the start of the list to the end of the list. ’

The SAVE_FLD command is called for each field to
create and save the appropriate command string,

The fields COMMENTS, FREEFORM, the subfile key
field, and the subfile parent key fields are

F.

PAGE 325

skipped as they are created thru the adding of the
anchor ey field or +the CREATSUB command. The
record security field is skipped if encountered
and processed after all other. fields on the file
have been prccessed. Bl1 the fields omn all of the
files are processed in the manner and order.

If +the RECLEN field has field security, the
SAVE_¥S is called +o build and save the FLDSEC
conmand,

After all of the fields and f£iles have been
processed, the FILE and END commands are saved in
the strategy, after which time control is returned
tc the calling rountine.

In the SAVE_TFID internal procedure, if the field
is a subfile control field +the CREATSUB command
string is built else of the field is a superfield
the SUPERFLD conmmand string is built, othervwise
the ADP command string is built., The appropriate
conmand string is saved thru use of the routine
TSPUTG.

The internal entry SAVE_FS is - defined at this
point to save the field security if any. This
code is also part of the SAVE_FLD procedure., If
the field has field security defined on it, a
FLDSEC command string 4is built or saved in the .
strategy through use of the routine TSPUTG,
Contrcl is then returned to the calling point in
SAYSTET.

CODING SPECYTICATICHNS

1,

2,

Source Language
PL/T with TSPL/T statewments,
Suggestions and Techniques

Nct Applicable

TERMINAT,

RDBEDSS et

T

Figure 1,

\'--._.____./

STRATEGY
DATA SET

___/

I/0 Block diagram

DESCRIPTOR
TARLES

Eri

B2

(opBEpss) o
(A —
1){’
GET STRATEGY POINT TO
. NAME NEXT

FILE

Y

]

SAVE
DIAGNOSTIC FIELDS

SAVE ¥LD

SAVE FIELD
INITIALIZE SEGURLTY
| SAVE S | ¢
g
'S AVE ANCHOR
KEY FTELD _ CREATE
AND SAVE
SAVE_FLD RECSEC
COMMAND -

Figurve 2a. Top level flowchart-

p——

s e
R F A

4"‘

SAVE_FS

E

FUBFILE
CONTROL
FIELD

;

_ SAVE_FLD

BUILD AND
SAVE)
CREATSTB
COMMAND

BULLD AND
SAVE
SUPERFLD
COMMAND

BUILD AND
SAVE ADD
COMMAND

TEL

HAVE
SECURITY

BUILD AND
SAVE
FLDSEC
COMMAND

|

EXIT

Figure 2b. Top level flowchart

E{wbm,z .

PAGE 330

TOPIC D, 29 - DESCRIPTCR EDITOR - SUPERFIELD COMMAND

a, -

‘B

C.,

D. .

MCDULE NAME

Programn~-ID - RDBEDSU
Module~-ID -~ DBEDSU

ANATYST

Barry G. Hazlett
Neoterics, Inc.

MODULE TUNCTION

The SUPERFID conmands
superfield descriptor.

DATA REQUIRENENTS

Te I/0 Block Diagram
See Figufe 1

2, Input Data Sets
a. Farameter Cards

Net Applicable

allow the

nser to define a

b. Punched Card Input Files

Not Applicable
C. Input Files

Ncot Applicable
3. Dutput Data Sets
A cutput Files

Net Applicable

b. Cn-Line Terminal Displays

Not Applicable
Cs Formatted Print-Outs
Not Applicable

4, Reference Tables

Preceding page hlankj

E,

PAGE 331

The following external tables are referenced by
RDBEDEU:

1. FIELD

Z. F1D

3, FLD_STRING
4, BDR

5., SUPER

6. VALID

7. X

A description of these takles can be found in the
dataset specificaticns of the DUB.

PROCESSING REQUIREMENTS

1,

2,

Top Level Flowchart
See Figure 2
Narrative

Upon entry into SUBERFLD, routine DBEDGF is called
to obtain a new fieldname.

A FLD structure is allocated and initialized.
Routine DBEDGR is called to obtain any conversion,
formatting and validation routines and validatiom
argunent.,

The wuser is prompted for a 1list of field names
which are to ke +the superfield components, Each
component is processed in the following manner,
If no internal external dindicator is present,
external fecrm iz assuned, If an indicator is
present, it 1is seperated from the field name, If
the 3indicator is invalid, the wuser is given a
diagnostic and prompted for a new component value.
To ke valid the component fieldname must be the
name of an existing field, In addition, for a
field having more than one conponent, the
component 1list is 1limited to at nmost one
multielement field and all if any subfile
components must be frop the same subfile., If the
conmponent fieldname is invalid, the user is given
a diagnostic and prompted for a new component
value.

After all the conponents are entered, and
processed, they are saved in a SUPER structure and
the rcinter stored in the FLD structure.

Next it is determined on which descriptor file the

F. .

PAGE 332

superfield is to te placed. If all the components
are <from one file, then the superfield descriptor
is placed in +he descriptor Tegion. Tf +the
components are all f£rom one associate f£ile and one
subfile and the subfile is defined off of that
associate file, the superfied descriptor is placed
in +that associate descriptor region., All other
superfield descriptors are placed in the anchor
descriptor file.

The SUPERFLD command string is saved 3in the
current strategy and control is then-returned to
the calling routine,

CODING SPECIFICATIONS

1.

2,

' Source Language

PL/Y with TSEL/I statements,
Suggestions and Technigues

¥ct Applicable

TERMINAL

RDBEDSU

Figure 1.

1/0 Block diagram

DESCRTPTOR
TABLES

333

/—-

DBEDSU)
Ne——

a

GET
TTELDNAME

] DBEDGF

7

GET
ROUTINES

DBEDGR

- GET
COMPONENT

N

SETUP
SUPERFIELD

b

THREAD TN
LIST

A

EXIT

DIAGNOSTIC

O

Figure 2. Top le%el flowchart

. 334

PAGE 335

TOPIC D.30 - INDEX FILE MERGE

a.

Be

C,

D.

MODULE NAME

Maintenance - File Merger
Program-Id - RDBINDYN
Hodule~Id - DBINDHM

ANALYST

Edward NMcIntire
Neoterics, Inc.

NODULE FUNCTION

The merge module 3is an 3independent program whose
function is to create an updated index file for a data
base., The updating of the index file can be done in
place or to a new index f£ile, This new index file will
be mnamed'? 'INDMRG.' //FILE NAME//:'//FIELD NANE'f'.
This module will also allow for -the processing of
duplicate records if deemed necessary.

DATR REQUIRENENTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
a, Earameter Cards
Not Applicable
b, Punclied Card TInput Files

The merging utility is most often invoked
from a terminal in .conversational mode,
However, it is possible to initiate the task
in the non-conversational mode. In batch
rcde, the Format of the punched card input is
the same as when terminal input is used +to
invoke the routine.

C. Input Files

1. Index File: The primary input tc the
conmhine program is the current index
file that dis +o be updated, and the
update index file that is to be combined
{with the curreat index. The anchor

3.

4,

d.

PAGE 336

descriptor file is needed to provide
field information.

2. Parameter File: If the user wishes to
stop processing he may do so by pressing
atteation and responding 'y' to the
prompt message. Thus a parameter file
is created for input to further
restarts, This file consists of the
last Xey processed on the current index
file, This file is a VSAM file used
only in the combine program,

gn-Tine Terminal Entries

211 of the terprinal entries to +the merge
rrcgram are in the form of Tresponses to
prompting messages from the program itself,
The one exception to this rule is the initial
conmand with 3its parameter to invoke the
procedure,

Output Data Sets

Qe .

b.

Cutput Files

The output data set is the index file created
by the combine progran. This data set can
take two forms:

Te The current index file updated
inplace,

2. A ney file created by the merging of the
current index with the update index, .

Cn-Line Terminal Displays

211 on-line termipal displays for the combine
rrogram follow the same format. The TSPL/I
facility of the system is utilized to request
entries at the terminal and display progress
information,

Formatted Print-Quts

Not Applicakle

Punched Card Output Files

¥ot Applicable

Reference Tables

E.

PAGE 337

Not Applicable

PROCESSING EEQUIREMENTS

1. .

2,

Top lLevel Flowchart

See Figure 2

Narrative

Qe

b.

Prompting

Prompt the user for first pass. If it is not
the Tfirst pass, go and read the parameter
fiYe, Prompt +the user for the anchor file
nrane, for new file creation or merge in
rlace, for the processing of duplicates or
not, and for the Iinverted field nane, The
user must enter a valid response to all of
the prompts or he will be reprompted. 1A read
sequentially of +the anchor descriptors is
done - until a fixed field with an offset of
four (4) is found., That, in fact, is the key
descriptor and its length is saved, The
index field is also checked <for validity, if
it is not a valid index, then a reprompt is
initiated, Following this the index
descriptors are opened and read sequentially
until the index field length is obtained, and
the spanned indicator is checked and it's
value is saved., In all of the above cases if
a critical error is encountered an error
message is displayed and +the program 1is
terminated.

¥rite Parameter File

I1f the user deems it necessary to stop
processing during the combine operation, he
can press the attention button and the total
records processed will be displayed., Alse, a
pessage will be displayed asking if he wishes
to guit processing, When the user replys
with a quit processing command the following
ceccurs:

T1a guit switch is set,

2, Processing is continued until a clean
close can be carried out, .

3. Parameter f£ile is opened and "~ the key of
the last record written is written to

da

S

f.

PAGE 338

the parameter file,
L, Parameter file is closed.,

5. Progran branches to end of job
routines,

Read Anchor Descriptors

DBPAC is .utilized +to read sequentially the
anchor €£ile descriptors and retrieve the
field +that is indexed and +the anchor key
lengti,

Read Index Descriptors

DBPAC is utilized to read seguentially the
index file descriptors and retrieve the index
key length ard the spanned indicator,

Read Parameter File

1f not the first pass, the paraneter file is
read to get the needed key for the restart.
The restart key is used as the Xey and a get
by key is done on the current index file.
Also a read by key is done on the update file
to £find its starting position, From here we
go to normal —reads on the input files for
further processing.

¥rite Index File

The writing of the index file can take two
different forms.

T Merge Inplace,

If the user decides tog merge to the
current index f£ile the new records will
be bnilt in core and +tabled there wuntil
a unigque record is read. If a record is
longer than the maximum allowable
length, then create a spanned rtecord.
Then rewrite any existing records and
write any new records that may have bheen
created., Vhen an update record does not
natch a current record, the update
recoréd and any with the same key are
written to the current file,

2 Kerge to New File,

PRGE. 339

The merge t0 a new file is much the sane
as the merge inplace. The differences
are listed below:

a. An out put file is created with the
same attributes as +the current
index file,

b. There will be no rewrites +o the
new file,

C, A1l current and update records wiil
be written to the new file,

Je Ittenticn Interrupts
2ttenticn interrupt handling was discussed in

section YEY, sub-section '2°, Item T'B?
{Write Parameter File),

F, CODING SPECIFICATIONS

1.

2,

Source language

The comnbine progran emnploys the IERH PL/T
Programming Language. The special extensions of
that 1language, called DBEL/I and TSPL/I, are
utilized for access to file descriptors in +the
data base and for all terminal commanication,
respectively. 3lso, the nmnerge program enploys
assenbler trToutines to handle all I/0 during the
execution of this program, except for the writing
of the parameter file which is handled exclusively
hy PL/T,

Suggestions and Techniques

¥ot Applicable

TS > S

CURRENT UPDATE
= TINDEX INDEX DESC.
FILE FILE

~— :

TERMINAL
FPARAMETERS

[
TERMINAL
DISPLAYS
PROMPTS

L MERGE |
— —Inpypracet — —— IDXMERGE >
| i

L__J

—

RENAME MERGE

'NEW
" FILE®

Figure 1. TI/0 Block Diagram

L] 3"

3T
- .‘.’;}- ,,}:f,

=

\ .

"PROMET READ READ
FIRST PARAMETER UPD
PASS FILE INDEX

READ
MASTER
INDEX BY
KEY

}

PROMPT
PARAMETERS

MERGE ALL

MATCHING
RECORDS

MERGE

INPLACE
?

WRITE
NEW FILE

Figure ZA. Top Level Flowchart

W ze e B

- Fetn
©

WRITE ALL
CLOSE MATCHING
FILES UPD'S TO

NEW FILE

WRITE ALL
MATCHING

NEW FILE

UPD =
MASTER
?

N WRITE UPD
BY KEY
TO MASTER

MERGE ALL
MATCHING
RECORDS

¥

WRITE
INPLACE

WRITE
NEW FILE

o -
i Figure-2B.- Top Level Flowchart
o

Nl

TOPIC D.31 -

2,

Ce

D.

BAGE 342

DESCRIPTCR EDITOR - INITIALYI ATION

MODULE KAME

Program-ID - RDBEDIN

Module-ID - DREDIN’

ANALYST

Barry G.

Hazlett

Neoterics, Inc.

HODULE FUNCTION

This

nodule performs all of the initialization

necessary for the running of the Descriptor Editor. It
is called by the Lescriptor Editor director.,

DATA REQUIREMENTS

1.

2,

3.

I,0 Block Diagram

See Figure 1

Input Data Sets

Ao

b,

Parameter Cards

Net Applicablae

Punclied Card Input Files
¥ot ApplicaSle

Inpunt Files

There are no input files for the Descriptor
Editor when in the CREATE mode and the user
is creating a new set of descriptors.
However, when in UPDATE nmode, or when the
user is continuing the creation of a
previously entered set of descriptors, the
rreviously created descriptor file is msed as
an input file, The description of this file
is found in the dataset specifications of the
¥R,

Output Data Sets

QA

Cutpnt Files

Kot Applicable

E.

PAGE 343

b. 0n Line Terminal Displays
Not Applicable

C, Formatted Print-Outs
Not Applicable

Reference Tables

The following external tables are referenced by
RDBEDIN:

Te FIELD
2. F1p
3. HIR

4. RECSEC

5. SECURITY

6. SBPER
7. YALID
8. X

A description of these tables 3is found in the
dataset specificaticns of the DWB.

PROCESSING REQUIREMENTS

1

2

Top Level Flowchart
See Figure 2
Narrative

The descriptor £ile indicated is opened for ianput
to determine if the file exists. If the file
exists and in CREATE mode, xToutine DBEDIDT is
called to load the descriptors. If in UPDATE nrode
and the file does not exist, the user is given a
diagnestic and prompted for a new file name.

The verb table is allocated and initialized to the
proper verb takle copy. The Toutine DBUSER is
called to setup any additional user defined,
conmmangs.,

If in CREATE mode and no file exists, the user is

F.

PAGE 344

prompted for the anchor key field, The routine
DEEDACT is <called to process and setup the anchor
key field.

The user is prompted for the descriptor mode, If
the response 1is valid, flags are set indicating
the mcde, and a pointer is set to the appropriate
verb table copy. If the mode is invalid, the user
is given a diagnostic and pronpted for-a new mode
value,

The ¥ structure is allocated and initialized. The
initialization consists of setting the various
pointers in X to NULL.. he PFIFLD structure is
allocated and its pointers set to NULIL,

If RESTORE mode is indicated, DBEDRT is -called to
restore the checkpointed descriptor. If no
restore errors occurred, the - go setup the verd
table. If there were restore errors, or CREATE or
UPDATE mode were indicated, the file name is
retrieved from the MFCE,

Contrcl is then returned to the calling routine, .

CODING SPECIFICATIGNS

Ts

Source Language
PL/T with DFPRL/I anrd TSPL/I statements
Suggestions and Techniques

Not Applicable

DESC.
FILE

A

l TERMINAL

Figure 1.

~

DBEDIN

I/0 Block Diagram

N

DESCRIPTOR
TABLES

35"

‘\‘\)‘5\.\

CREATE
RESTORE

N

POINT TO
CREATE
VERBS

{ DBEDIN)

LN

GET AND
PROCESS
MODE

b

ALLOCATE
AND
INITIALIZE

UPDATE

N2

POINT TO
UPDATE -
VERBS

RESTORE
DESCRIPTOR

DBEDRT

LOAD
DESCRIPTORS

DBEDLD1

Je

GET AND

'PROCESS

ANCHOR KEY
DREDAC

(RETURN)

Figure 2,

FILE
EXTIST
9

GET NEW
FILE NAME

L

Top level flowchart

34

>

3.

PAGE 347

TOPIC E.1 - TERNINAL SUOPPORT - PREPROCESSOR

a.

B.

Do‘

BODULE NAME

Terminal Support ¥L/I Preprocessor
Program-ID -~ TSELT
Hodele-ID - TS

ANALYST

John 34, Lozan
Neoterics, Inc.

HODULE FUNCTION

TSPLT analyzes terminal 3input/output PL/I 1language
extension statements and produces statements acceptable
to the PL/TI conmpiler, These statements call the
terminal support module allowing the program +to
commuynicate with the wuser's SYSIN and SYSQUT or,
pending TSS support, an on-line display station. The
user's SYSIN and SYSOUT are a terminal if the task is
conversaticnal, or data sets, if non-conversational,
Diagnostic messages are generated for errors which can
be detected by TSEL/I during preprocessing.

DATA REQUIREMENTS

1. I/0 Block Diagram

See FPigure 1
2. Input Data Sets
a. Parameter Cards

The Jobh Control cards neefed to invoke the
PL/T compiler in TSS are described in the
IBM TSS/Command Systenm User's Guide, Form ¥No.
C28-2001, More detailed information will be
provided in the IBM PL/I Programmer's Guide,
Form No. C28-2049,

b, Punched Card Input Files
1. TSPFLI Text
The TSPLYI text deck is all text for
insertiocn into the source program

following a "% INCLUDE LISRMAC{TS)3"
statement in the source program, This

d.

PAGE 348

text consists of the source statements
of the TSPLI preprocessor function and
"any PL/I statements to be ‘inserted at
+the "% INCLUDE LISRMAC{TS):" statement
in the source program. The TSPLI text
is coded as specified in this report,
formatted according *o PL/1I source
language standards, and catalogued in a
data set for compile ¢time use by all
programs using TSPLI,

Za Sonrce Deck

The sounrce deck is any PL/T source
proegram using TSPILI statenents to
interface with the ugert's SYSIN and
SYSOUT or any on-line display station.
The statement formats and their use are
described in the TSPLI 1Usert's HManual
{Section 8, Topic E.2 of the DWB).

Input Files

The TSPLI text 'statements are catalogued as a
nenber o¢f a partitioned direct access data
set for retrisval hy the IBHM PL/I
rrecompiler. This data set is accessed via
ddname LISRMAC,

gn-line Terminal "Entries

¥ct Applicable

Output Data Sets

Ce

b.

Cw

Cutput Files

The object module consists of the relocatable
machine Iinstructions and constants generated
bty the PL/I conpiler for the source progranm,
It is stored in a partitioned data set. This
data set is +the last DATADEFed JOBILIB. If
the user has not DATADEFed any JOBLIBs, it is
stored in the user's USERLIB data set, The
rcdule is loaded by TSS when called by the
USer.

Cn-line Terminal Displays
Not Applicable

Formatted Print-outs

E.

LN

d.

PAGE 349

1. Precompiler listings
Two precompiler listings are produced:

-{ay =& source listing before
precompilation and

{b) Any precompiler diagnostics {i.e.,
errors in the unse of preprocessor PL/I,
not ISPLY error messages.

2, Conpiler Listings

The compiler 1listings produced include
an intermediate source listing {between
preccempiling and compiling) and any
compiler diagnostics, Serious TSPLIY
PL/I errors may result in compiler
diagnostics also,

Punched Card gGutput Files

¥ot Applicable

HReference Tables

e

b,

IC - terminal control block

TSPL/I - diagnostic comments,

PROCESSING BEQUIREMENTS

Ts

2.

Top Level Flouchart

See Figure 2

Narrative

Qe

Top lLevel

The mainline PL/I source program is required
to have a "% INCLUDE LISRMAC{TS)3:" statement
cnce in the program before all TSPLY
PTEpPIOCEessoT function references, This
statement dJdrects +the PL/I precompiler +to
take text from member TS of +the 1library
accessed via ddname LISRMAC and incorporate
it into the source program. (Refer teo the
TSPLI block diagram in Section D.1 of this
write~up).

The TSPLI function receives one argument from
a preprocessor functicn reference; i.,e., a

]

PAGE 350

variable 1length character string, It is
TSPLI's functicen to scan and parse this input
string to determine if it is in the correct
format and then to generate a string called
the Mgenerated text.” This string consists
¢f wvalid PL/I statements and comnents for
comprunication with the terminal support
modules,

The processing of TSPL/I is closely analogous
to +the processing of DBPL/I described in
Secticn IV, Topic B3 of the DWB and is only
sumnarized here, The TS text declares and
activates the TS preprocessor function.
Argument initialization, finding a
subargurent, passing labels and comments
through, and finding the statement keyword to
select the specific statement routine are all
done analogously to the DBPL/I preprocessor
function, Diagnostic comnments are generated
for any errors detected., (See Section IIX,
Topic E.?1 of the D¥B.) There are no files to
e analyzed,

In all ©programs a declaration of +the entry
roint +to +the +terminal support modules is
generated and a declaration of TC - +the
Terminal <Control block (See Section III,
Topic E.2 of the DUB.)

Speclfic Statement Routines

EFach stecific statement routine exanines the
statement from left to right until +the
semicolon clause 1is found., The keywords are
verified for correct spelling and order, If
any error is detected, a diagnostic comment
is generated and the statement abandoned by
control being transferred to the
inter-statement point, Following successful
analysis, each specific statement routine
generates PL/I statements for communication
with the +terminal support modules and loops
tack to the inter~statement point,

The ON PAGE statement routine generates the
following statement:

TC,PAGING_ENTRY=expression;

Hhere "expression" is taken from +the CRALL
clause of the TS ON PAGE statement,

PAGE 351

The ENTEY statement routine generates the
following statements:

TS_ENTRY_RETURN_POINT=TS_ENTRY_LABEL_n;
60 TO TS_ENTRY_CODING:
TS_ENTRY_LABEL_ns

Rhere ®n? is a numeric value assigned
sequentially tc each ENTRY statement as it
iz encountered.

The ENAELE statement routine generates the
following statements:

DCIL TS_ENTRY_RETURN_PGINT LABEL;
TS_ENTRY_RETURN_POINT=T5_ENTRY_LABEL_T1:.
TS_ENTRY_CODING:
‘GN CONDITIGN (END)
G0 TO TS_EXIT_CODING;
ON CONDITION {ATTN) 3
TC, FUNCTION=*ENTRY';
CALL TSCHTRIL (TC) ;
G0 TO TS_ENTRY_RETURN_POINT;
TS_EXTT_CODINGS
RETURN;
TS_ENTRY_LABEL_1;

Lines 4-6 and 10-11 of <the above taxt are
only generated when the user specifiss the
appropriate option on the ENABLE statement,

The TS5 1logic is such that the ENABLE
statement, if it appears, mnust appear before
the first ENTRY statement, and in fact,
implies an ENTRY statement. Likewise, the
first ENTRY statement implies a defanlt -
ENABLE statement, if none are present,

THe PROMPT statement trToutine generates the
fellowing statements:

PC.EFUNCTICUN=*PROMNET~g?;
TC.PRONET, MESSAGE_KEY=expressions;
TC. FROMPT,,KEYIWORD=valunes

CALI TSPEMNTe (TC,variable,list);

Rhere Meypression™ is taken from the MSG
clause of the statement, "value" is taken
from the KFEYWORD clause {(if presenty,
"yariable® is taken from the INTO clause {if
rresent) and "list" is taken from the USING
clanse (if present)., The value of "e" is
generated according to the following table:

PAGE 352

1. INTO clause - none
Nty

24 KEYWORD clause - none
ﬂeﬂ=c

3, KEYWORD clause = yes
"eﬂzn

The REARL statement routine generates the
fcllowing statementss:

TC,FUNCTION="READ';
CALL TSREAD (TC,variable);

Hhere Myariable® is +taken from the INTO
clause cf the TS READ statement,

The WRITE statement routine generates the
following statenents:

TC.FUNCTICN=YWRITEET":
CALL TSWRITE({TC,variable);

Where Mvariable® dis taken from +the TFRGH
clause cf the TS HRITE statement.,.

The PUT statement routine generates the
following statements:

TC,FUNCTION=*PUT!?;

1C,0UTEUT, PGSITICGN="a"3
TC.0UTPUT,DIRECTION='h';

CALL TSPUT{TC,variable,value):

Rhere Vvariable"® 1is taken <£from the FROHN
clause of the TS PUT statement and "value® is
taken frem the TAG clause {if present). The
value for Ta" will be generated according to
the follcwing table:

1. position clause - none

Han={(

2. position clause -LINE
1 a “—_-0

3. position clause - PAGE
ﬂaﬂ=1

The value for "b"™ will be generated according
to the fcllowing table:

PAGE 353

1. direction clause - none
npn=0

2 direction clause - FORWARD
"h ";:0

3. direction clause - BACKRARD
Nh1=q

The FLUSH statement routine generates the
fcllowing statements:

IC,F¥UNCTIGN='FLUSH";
CALL TSFLUSH({TC};

The FINIsH routine sets a precompiler
variable to indicate that a PINISH statement
has bezen processed and to prevent the
processing ¢f any further TSPL/I -statements.
A diagnostic ccmment indicating the nunber of
TSPL/I exrrors is generated, If there have
been any errors detected, the following
statement will be generated causing an
IEN0512I PL/T error:

BCL TS_DUMMY_VARIABLE IABEL
INIT{TS_ERRS_nn};

Fhere "nn" 3is the number of TSPL/I errors
detected,

311 statements and comments generated will he
aligned as seventy-one byte strings, for ease
of analysis,

SOURCE DECK

1BM PLI
PRECOMPILER

15

TEXT N

=

TSTEXT

PRECOMPILER

{BM PLN
COMPILER

] COMPILER

LISTING

¥
T —

OBJECT
MODULE

<

LISTING

——

Figure1. 1JO Block diagram.

354

ARGUMENT
INITIALIZA}
TION
| 1
CONCATEN-
FIND ATE TO
ARGUMENT GENERATE
TEXT

END OF
ARGUMENT
?

RETURM
ENERATED TE

Figure 2. Top level flowchart

PROCESS
STATEMENT

TOPIC E,2 - TERNINAYL SUBPCRT SUFERVISOR

2. MODULE NAME

Perminal Support - Termipal Support Supervisor
Program-ID - RTSUPER

Modulie-ID ~ TSUPER

Entry Points - TSATIN, TSCNTRL, TSPLUSH,

PAGE 356

ISGETKY,

TSPRMTC, TSPRMTD, TSPRMTE, TSPUT, TSREAD, TISWRITE

‘B, ANALYST

Frank Reed
Heoterics, Inc,

C, MODULE FURNCTIONS
1. Organization Chart
See Figure 1

2 gverview

RTSUPER is the primary vehicle of communications
hetween the NASIS monitor (MTT or stand-alone)

and the NHASIS PL/YI data Base pregrans,
functions RTSUPER performns are:

Among the

a, Issues I/0 requests from data base programs.

This includes conmand, data and

fTrompts and ordinary Tead and

requests,

nessage
write

b. Initializes the Terminal Control Block ({TC)
for each PL/I program. Supplies information
abont the current display area dimensions and

rTesets all bit switches to zZero,

c. Controls asynchronous interrupt processing.
Detects APOFF, END and GO conditions and

issues that asynchromous activities do not
interfere with normal processing,
d. Maintains a push-down stack of message key

references to support the EXPLAIN facility.

€. Scans and passes user 1input strings for
ccemands and data. Information entered at
the terminal is interpreted and passed to
Teqguesting programs 1in useful segments. The
IC Block is utilized to enhance . interprogranm
communication,

D,

PAGE 357

DATA REQUIREMENTS

T.

2.

4.

I/0 Block Diagram

See Figure 2

Input Bata Sets

Ao

Ce

Parameter Cards

¥eot applicable

Funclied Card Input Files
Not applicatle

Input Files

1. DBAKLF
. LISRELF

On~1ine Terminal Fntries

311 responses to command and data prompis by
¥ASIS prcgrams pass through RTSOUPER.

Output Data Sets

de

be

Ce

G

Cutput Files
Not applicatble
On-line Terminal Displays

211 output from NASIS data base prodgrams
passes through RTISUPER.

Formatted Print-Outs
Not applicable
Punched tard_Outpnt Files

Not applicable

BEeference Tables

da

External Tables

1. TSCTL

2. USERTARB
3. TSCREEN
4, MTTUTAB

E,

PROCESSING REQUIREMENTS

1.

b,

Internal Tables

1,

EXELIST

An area

in

which

a

PAGE 358

push-down list of

message keys is saved, .

Top Level Flowcharts

- a.

b.

HAINLINE:

Entry Pcintss

1.
2.
3.
4,
6o
7.
8.
g,

See Figure 3

TSATIN ~ See Figure 4§

TSCNTRL

TSFLUSH

TSGETRY

TSPRNTC

TSPEETD

TSPRMTHM

TSEUY

TESWRRITE

——

i

Sece

See

See

See

See

See

See

See

Figurs
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Program Subroutines:

Te
2.

3.

GETER -~ See Figure 13

DELEFR - See Figure 14

GETSYN and GETDFALT -

BULINEND ~ See Figure

SDBEIVITL and SDGIVITC

SDPASS and SDYSNCHK -

RESETBUF - See Figure

(U~ TR S + - B N « A ¢ |

10
11

See Figure 15

16

- See Figure 17

See Figure 18

18

SDSTEIF and STRIP - See Figure 20

PRREYSAV - See Figure 21

2. .

PAGE 359

10. IECEECK - See Figure 22

11, SICKNAL and SIGNALC - Ses Figure 23
12. -SETLDAB - See Figure 24

13, GETHLF - See Figure 25

14, MCVYE - See Pigure 26

15, PRCMPT -~ Sse ¥Figure 28

16, EXIT - See Figure 29
Harrative
A. BAINLINE

311 calls to RTSUPER entry points pass
through +the MAINLINE code, The purpose of
this code is to insure that each user has the
correct work- areas, to initialize base
registers ard +to restrict TS usage duriag
APOFF and ATTENTION processing.

Executicn proceeds by calling the PLI service
routine THESADA to obtain a Dynamic Storage
Area {DSA)., Next, registers are initialized
and useful pointers are saved in aunigue
locations, The PLI Psendo Register Vector
{PRV} draws special attention since it is not
maintained in register 12, as is the norm for
cther precgrams.,

Osing the PRV, MAINLINE determines if a copy
cf the TS Psect has been allocated for this
USer.. If not, the routine GETPR is invoked
to obtain one. On return, data 1ifted from
MTTUTAR 1is utilized to compute the user's
Ylogical and physical device dimensions and
this information is saved for future
reference,

The one-~byte switch I0S¥ is checked to find
out which entry point was entered. If entry
was through TSATIN, control goes directly to
the interrupt processing code, TFor any other
entry, the contents of the userts TC Block
{passed as a parameter} is moved to the DSA
for easy addressability. If an APOFF has
Feen reguested by the user only calls to
TSPRMTY and TSCNTRL are allowed +to execute
nermally, all others being short circuited to

the

PAGE 360

routine which signals an END condition.

If not in APCFF mode, control is passed to
the routine specified at entry.

Entry Points

1,

2.

TSATIN

This entry point is <called by module
RTSATTN whenever it determines that a
user attentions should be processed, If
the user has previously entered APOFF,
the attention is ignored. If an
immediate comnand is currently
processing, condition END is signaled
vhich terminates the compand, If this
is the second successive attention and
processing of the first is sufficiently
advanced, copdition END is signaled:
otherwise, this interrupt is ignored.

On return, a second copy of the userx
psect is allocated, the string dinput
buffer is initialized to null input and
the PL/I routine RDBATTN is called %o
issue the $¥¥=-2TTN:!'' prompt.

On return fromn RDBATTHN, all user
requests have been staisfied and the
user is ready to continue. After
clesing +the duplicate DCBs for the
message files, the duplicate unser psect
is released. If the user entered END or
APOF¥ in response +to '?-ATTN:'', then
tointers are set to cause execution to
resume at the PL/T signal routine for
END condition: otherwise, execution
resumes at the point of interrupt.

TSCNTRL

Its function is to dinitialize the TC
Block for use and pass the user's
terminal dimensions. Terminal
dimensions are obtained from the user's
profile by repetitive c¢alls +to TSGDEF.
If no defaunlits are specified, the

necessary information is taken from

MTTUTARB.

Control is rTeturned +to the caller
thrcugh the EXIT routine,

4,

5.

PAGE 3861

TSFLUSH

TSFLUSH is the display output routine
for terminal support. It is mnormally
called after consecutive calls to TSPUT
have caused an output buffer to be
filled. If a Dbuffer has overflowed and
AUTOWRITE is indicated, this rcoutipe is
called from TSPUT and a flag is set to
cause the ''MORE:*' gmessage tc replace
+the next grompt.

The nawe of +the paging entry for the
program doing a PUT or TFLUSH should
always be in the TC Block as it is saved
by TSFLUSH Fust prior -to +the write,
DPata is output one line at a time for
typevriters and in a block for screens,
The most current display is saved in the
external controlied storage named
TSCREEN,

TSEETKY

This entry point 1is «called with three
parameters: {1y TC Block, {2} nessage
key or list reference or list reference
pointer in the range -7 < pointer < o ,
{3) varying length data area to hold the
nessage text read from the file, On
entry, pointers to these parameters are
placed 1in registers and the type of
request 1is determined (either key orv
rointer).

If it is a pointer, the key is obtained
from EXPLIST {(a push-down stack of
keys), If the user wants -just the key,
coptrol is returned to the caller,
Otherwise, and if the second parameter
is a key, the nessage file is sesarched
for the Kev.

If the key is not found, error flags are
set and control returned to the caller.
Else, the text of +the message is read
inte the user's area and the message key
ig reset to point to the next record of
the file, if any, and control is
returned to the caller,

TSERENTC

c.

PAGE 362

This is the entry point called by any
data base program desiring to request a
comnand from the user,. On entry, and
internal bhuffer is checked for the
presence of a previously entered
conmand. if one is there, it is
Teturned to the caller as satisfying the
prompt. If +the buffer is enpty, a
nessage key ©passed as a calling
parameter is used to access a message
file tc obtain the text of the message
which describes the context o0f the
prompt to the unser, This nessage is
displayed in the prompt area of " the
user's I/0 device and the terminal’ is
opened for input.

The response to thisg prompt must be a
command., It may be the one requested by
the calling prodram, in which case it is
passed along, Or, alternatively, it may
be any of the **immediate?t comnmands
which cause one of the immediate command
processors to be invoked, After all
activities associated with the immediate
command are conpleted, the execution
cycle beginning on enty to TSPRMTC is
repeated until a satisfactory response
is returned to the caller or antil APOFE
or END processing is initiated,

Consult the Command System User's Guide
for details of command syntaX.

TSPRMTD

This entry point is called by a data
base progran wishing to obtain
user-entered data. On entry, +the . save
internal buffer that holds conmands is
checked for a parameter string that may
have been entered with a comnand. If
data is there, it is passed out of +the
string {in accordance with the syntactic
unless outlined 4in the Command Systen
Tsexr's Guide) and returned to the
calling program, If the buffer is empty
or the next item in it is a command, a
message key rassed as a calling
parareter is used to access a nessage
file to oktain the text of the nessage
which will explain to the user what data
is regquested. The message is displayed

PAGE 363

in the prompt area of the user's I/0
device and it is opened for input, .

The response to this pronpt may be data
or any of the immediate copmands. If it
is d&ata, it is passed as above and
returned +t¢ +the user. The terminal
Control BRlock sewer as a center for
compmunicating information about the data
betseen TSPRMTD and its caller, .

If the response is an immediate command,
this command and its associated
paraneters are treated separately from
any user input intended for a data base
program. When processing of the
immediate command is complete, the cycle
beginming on entry to TSPENTD is
repeated until a satisfactory response
is received or until APOFF or END
processing is initialed.

Consult the Compand System User's Guide
for the details of parameter syntax.

TSPRETHM

This entry point is called to display a
mnessage from ILISRHLF on +the user's
terminal. No -reply -dis- asked for,.
Auxiliary subroutine entry points are
called from various locations in RTSOPER
to perform prompting tasks,

The message <filter MSGLEVEL 1in the
user's profile determines wether or not
informational {I-level) messages are
displayed, ¥arning {W-level) messages
are always transmitted. .

The message ID filter MSGIDS specifies
insertion of the message key between the
message prefix 'and the +text, MNSGIDS=Y
requests display of nessage keys,
#s6IDS=N implies no keys.

If the last output to the dJdisplay area
left residual data undisplayed, the
'TMORE?' message is substituted for any
cormand or data prompt message. The key

of every message (except explanations)

is vplaced in the EXPLIST area for
reference by the EXPLAIN command.

2.

PAGE 364

TSPUT

TSEUT may be called one or more times by
data base programs to format data
{passed as a parameter) in a buffer for
output. The data consists of a string
of characters +to be displayed on the
user's terminal anpd an opticnal tag
field which is appended to the beginning
of the string, Pormatting consists of
sanipulating the data so that it appears
in a consistent and logical pattern on
the screen.

On entry, TSPUT initializes pointers and
work areas based on whether a restart,
continuation orT backwards pat is
indicated. After insuring there is
sufficient Toor in the buffer to insert
newy data, a subroutine is called to move
the tag and data string to the output
tuffer, This step is repeated until all
data 3is in the buffer or the tuffer is
filled. in attenpt is mnade to
terminate 1ines between words and at
punctuation.

On bhuffer overflow, if the caller does
not want overflowed records inserted,
all pointers are reset and control is
returned +to the caller. If partial
records are inserted, control characters
are appended, a TC Block variable is set
to 1indicate the number of characters
taken and the AUTOYRITE switch is
checked., - If it's on control passes to
+he FLUSH routine, otherwise control is
Teturned to the caller,

If all data is inserted with no
overflow, the +railing position of the
reccrd 1is padded with blanks (to £ill
out a screen line) and control is
returned to the caller,

TSWRITE

This routine is called +to £lush the
contents of the external storage nanmed
TSCREEN, After locating the araa
control is passed to FLUSH, which
outputs the data and returns control to
‘the caller,

PAGE 365

Cs Subroutines

1.

4,

GEYEFR

This routine calls +the PIL/T controlled
storage allocation routine ?*IHESADD*!
to obtain space into which +the master
psect may be copied. The caller's
registers are saved in area comnmon to
the copy routine so after the area is
obtained a branch is taken to HMOVECOPY
and from there control is returned to
the caller.

DELPR

This routine simply deallocates the
external controlled storage allccated by
GETER, The PL/I service routine
*PTHESAFF'Y is called to perform this
function.

On <returm, register 12 is set to point
to the next area in +the chain and
control is returned to the caller,

GETSYN and GETDFALT

These two subroutines primarily the save
code, the differences being in the
lengths of +the parameter 1list used in
the eventsal call to an external progran
and +he v-core which is posted in
register 15 and points to the progran
which is called, GETSYN calls TSGSYN to
obtain a synoym for a term. GETDFALT
calls TSGDPEF to obtain a default value
for a parameter. On return from the
respective calls, the length of the
returned data is checked, If nothing
came back, the data ©pointers are reset
to point to the data used as a calling
paraneter,

PULINEND

This subroutine is called by TSPUOT to
insert the proper end-control characters
cn each line of display output as it is
moved into the output buffer, Screen
lines are padded with blanks to Fill out
the line, Typewriter lines are
terminated with an interpretive hex

8.

10,

PAGE 366

15.
GIVITD and GIVITC

These two subroutines are called by the
prempting routine to pass data to the
user. JIf the prompt processing is in
skiy mode or the c¢all was inadvertently
done before an item-was found, the pass
is not done. Otherwise SDPASS is called
to move the data to the usert's area.

On teturn, the passed data is excised
from the input buffer., If it came from
a crarenthesized list, the list flag is
set in the terminal Control Block and
control is returned to the user,

SDPASS

SDPASS compares the length of the data
©or conmand passed from the input string
with the receive area., If the item will
fit the area, it's moved, otherwise a
syntax error is noted and error
processing is begun,.

SDSINCHK

This routime 1is c¢alled o check for
certain syntax errors., If an error is
detected, control is +transferred %o
SYNNEE to Ainitiate an error control
sequence, Otherwise, control is
returned to the point of call.

RESETBUF

Preparing a buffer for input and
initializing all flags associated with
input passing is performed here,.

SDSTRIP and STRIP

SDSTRIP is called to delete leading and
trailing guotes and leading and trailing
blanks from an item passed as input to a

calling program. If only blanks are to
be deleted, entry is at STRIP.

PREKEYSAY

Inserts the key of a prompting message

11.

12.

13,

14,

15.

BAGE 367

into a push-down 1list of message keys
for reference by the EXYPLAIN conmand. .

IMCHECK

Whenever the user enters an immediate
command, it is discovered by this
subroutine, Comparing the entered
command against a table of valid
imrediate commands, a **hit'' leads to
either signalling **'END'T or calling an
external program to initiate processing.
On <teturn, the prompt rTountine is
informed of +the occurrences and the
prompting cycle begins again.

SIGHAL and SIGNALC

Entry at SIGNAL causes preparations to
call the PL/I service routine IHEERRD,
Control then £alls through to SIGNALC,
vhich calls a pre~indicated routine and,
cn return, itself returuns.

SETLDBA

This routine opens and 3initializes the
DCEBs for the prompt nmessage libraries,
Rlsc, it issues a SETL to f£ipd a
particular message key—in the file,
Hember LISRNLF of DBALIB 1is searched
first, followed by nember LISRMLF of
LISRLIB, If the Key is not fcond in
gither DBRALIR or LISRLIB, a substitute
message 1is written which indicates the
nessage vas not found.

GETELY

Its function is to read the text of a
message record pointed to by a message
key. Each record read is check for the
prescence of a minas sign (-} or plus
sign {+) is its last character,

If there is a wminus sign, the next
record 1is read and appended to +the
first, If the last is a plus sign, the
truncation bit in the TC Block is set to
one {1 and control is returned to the
caller.

MOVE

Te .

16,

17.

PAGE 368

311 extended data Taelocations are
performed by this routine. In addition
it is also unsed *to blank-fill a data
area and copy from one area .to
another,

PRONPT

On entry, if the wuser is in RESTART or
RERUN mode the next record of input is
obtained from the strategy dataset named
in the external control block USERTAB,
Otherwvise ypointer and constants are set
in the I/C contreol block and MTT 1is
called to do am I/D.

Cn return from HTT, the return code in
register 15 is checked, IE£ there was an
error, attention interrurt or
coentinuvation the I/0 is retrieda
Otherwise, +the data.is moved +to a work
area and control is returned to the
caller.,

EXTE

Returning +to any program calling an
RTSUPER entry point 1is accomplished by
passing through this code. The caller’s
TC Block is updated by moving cur copy.
of it back into the caller?'s area. The
PRV 1is restored in register 12 and
control is returned by calling the PL/T
service routine IHESAFA vwhich releases
our Dynanic Storage Area {DSA} and
restores the callers registers.,

CODING SPECIFICATIONS

1.

2.

Scurce language
TSS/360 Assenltler Landguage,
Suggestions and Techniques

Not Arplicable

369,

. MONTTOR MTTWREAD MITREAD MPTWRITE
a a A
() MTTKA MITKE
A F
¥
RTSATTR ()
¥
TSATIN -t TSPROMPT TSREAD TSWRITE
A i _h
L
RDBATTH TSCNTRL TSFLUSH TSPUT - |
C
A A \
/l\/ g
_/ y
TSGETKY
v]
oN IMMEDIATE Va
CONDITION COMMANDS ~
END
¥
oN - DATA BASE
CONDITION > PROGRAMS
ATTENTION

7

et T Figure 1, Terminal Support Organization Chart

USER'S

TERMINAL

MONITOR

RTSUPER

{

DATA BASE
PROGRAMS

Figure 2.

DBAMLF

I/0 Block diagram

V2t

el

ENTER

CALL
THESADA - igVE PRV
TO GET A
oA MTTUTAB
|
¥ ¥
SAVE THE CALL
PRV & GETPR
ENTRY TO GET A
REGISTERS WORK AREA
a g
INITIALIZE | SET DEVICE
DYNAMIC TYPE FROM
VARTABLES MTTUTAR
1
COMPUTE
OUTPUT AND
PROMPT AREA
SIZES
¥
GET OLD RESET SET ENTRY
CALLER'S o
PSECT SWITCH
POTNTER PARAMETER - 10SW
REGISTERS
GO TO
GO TO ATTENTION |l Y E§g§2
TMENDED PROCESSING TN
ROUTINE . 7
N
MOVE USER'S
TC BLOCK
TO OUR
DSA

GO TO
SPECIFIED
PROCESSING
ROUTINE

Figure 3. Terminal Support MAINLINE

APOFF
ACTIVE?

IMMED.

COMMAND
2

CALL
STGNAL

TO SIGNAL
ATTN

§

CALT,
GETIPF

TO GET
NEW PSECT

;

CALL
RESETBUF

y

CALL

Y

RESETBUF

A

" CALL
SIGNALC

TO CALL
DBATTN

¥

CLOSE THE
MESSAGE
FILES

CALL
DELPR

TO0 DELETE
A PSECT

Figure 4.

Y

END?

Entry Point TSATIN

SET
POINTERS GO TO
TO SIGNAL EXITY
END

4

» szc;mN

373

ENTER

¥

CALL
GETDFALT
FOR
SCRNWTH

ANY? USE 40

CALL
GEIDFALT
FOR
SCENHGT

ANY? = USE 12

INIT ALL
TC BIT -
SWLTCHES
TO ZERD

GO TO
EXIT

Figure 5. Entry Point TSCNTRL

ENTER

SET FLAG
FOR
"MORE"
MESSAGE

SAVE
PAGING

ENTRY
NAME

CALL
MOVE COPY
TO ADJUST
DATA

CALL

BLANKET
TO FAD
BOTTOM

¥

Y

CALT,

MOVE COPY
TOQ SAVE
IN TSCREEN

i

BUILD A
TRANSLATE
TABLE

FIND END
OF A LINE
OR SCREEN

CALL
WRITE
TO
OUTPUT

Figure 6.

END OF

SCREEN
?

Entry Point TSFLUSH

GO TO
EXIT

ENTER

¥

POINT

REGS "T0
USER'S
DATA AREAS

MOVE
REGION XKEY
FROM
EXPLIST

CALL
SETLDBA

TO FIND
MESSAGE

CATL

GETMLF
TO READ
MESSAGE

375

F

COMPUTE
NEXT LINE
POINTER
FOR CALLER

SET KEY SET RECORD
TO ZERO LENGTH

TO FLAG REGISTER
AN ERROR TO ZERO
GIVE GO TO
CALLER THE EXTT
LENGTH OF T0

THE RECORD RETURN

Figure 7. Entry Point TSCETXY

TSPRMTD (ISPRMIC) 237&;

¥

TURN OFF TURN OFF
NULL DATA™ 7= ATTENTION
SWITCH ‘ TRAP
3
INIT ALL
INTERPRETIVE |et N
SWITCHES

PREVIOUS
ERROR?

DATA

PROMET
?

FIND THE

NEXT
COMMAND

POSITIONAL
LEST

RETRIEVE
OLD KEY'S
LOCATION
IN STRING

SET SKIP
TO FIND
NEXT DATA

|

SET DATA

Figure 8,

SCAN
POINTER

SET NEW

KEYWORD

FROM

TC BLOCK

SET
NO-KEY
SWITCH

Entry Points TSPRMTC and TSPRMTD

377

SAVE

STARTING .
SCAN ¢ 7« 7p
POINTERS

i

SCAN

=
Y
!
)

SET
SoRING < FLAGS AND c
OR SWITCHES

DELTMITERS

.
QUOTE ™\ Y
FOUND

?

1§

COMPUTE
LENGTH OF
ITEM FOUND

o

&

]

&

]

Figure 8A. Entry Points TSPRMTC and TSPRMTD

W2 B A

PAGE 377

o)

CALL CALL |
R
SDSYNCHK gg;?gggOR
FOR ERROR
CHECK
CHECK Pl

SET
KEYWORD
LIST FLAG

- POSITIONAL
LIST FLAG
CALL
SDSYNCHK
FOR "ERROR
CHECK
v
SET SWITCH
TO IGNORE
EQUAL
REMEMBER
WHERE IT B
I3

Figure 8B, Entry Points TSPRMIC and TSPRMTD

37

- PUT A
C COMMA IN
THE STRING

CATL

o | SDGIVITC
TO PASS
A COMMAND

SET ALL
LIST FLAGS

!

CALL

| SDSYNCHK
FOR ERROR
CHECK

CALL /
SDSTRIP P
TC REMOVE A
BLANKS ' j}

PROMPT?

-t
o

k-

CALL
IMCHECK
FOR IMED.
COMND. CHK.

$x

CAL

END OF

TO PASS EXIT
DATA

a

Figure 8C. Entry Points TSPRMTC and TSPRMTD .

53¢

SCAN INPUT
WITHOUT
PARSING

CALL ,
RESETBUF | |
T0 CLEAN | [+ | €
UP INPUT
TURN CALL
SCAN SKIP PRZINGN
SWITCH TO SEND
ERROR MSG
Y |
) B
FLAG AN
> IMMEDTATE e
COMMAND

Figure 8D. Entry Points TSPRMTC and TSPRMTD

H
ANYTHING_Y
PASSED
[n

%

CALL,
SDSTRIP
T3 REMOVE
BLANKS

291

CALL

GETDFALT
FOR USER
PROFILE

@

N

gN

G0 TO
EXIT

-
=

FLAG IT
IN TC
BLOCK

CALL
SDPASS

TO GILVE
TO CALLER

TUEN ON
SWITCH
TO
REMEMBER

Figure 8E.

CALL
SDSTRIP
TO REMOVE
BLANKS

Entry_.Points TSPRMTC and TSPRMTD

f 3%

I 7z +{ PRNULDAT PREPRMPT
o g
CALL _ CALL
GETDFALT GO TO RESETBUF
FOR MSG EXLT : TO INIT
FILTER BUFFER
{
MOVE
MSG KEY
FROM TC
BLOCK
k-
USE »{ PRCETMSG
TRUNCATION :
MESSACE
KEY
g
TURN OFF
MORE-DATA -
SWITCH
g
CALL
USE
SETLDBA JMORE' MSG
TO FIND REY
A RECORD
¥
CALL APPEND
CETMLE 5 ggTT}IIESERTS REPLY TO
TO READ MESSAGE HEUT
A RECORD STRING
¥ ¢
CALL PUT MSG r
GETDFALT KEY IN
FOR EXPLAIN RETURN
MSGIDS LIST
¥ [
PREFIX CALL
MESSAGE PROMPT
WLITH BLANK T0
OR MINUS DISPLAY

Figure 9. Entry Point TSPRMTM

PAGE 382

373

PICK UP
OLD
POINTERS

INIT
POINTERS
TO WORK
AREA

%
BACKWARDS

CALL CALL
PUTAG = | CHECKLTH
TO MOVE TO POINT
TAG FIELD IO DATA
GO TO
EXIT
ADJUST
POINTERS

Figure 10, Entry Point TSPUT

POINT TO
BACKWARDS
BUFFER

CALL

MOVE

TG INSERT
A LINE

N

354

S

FIND A
BREAK
CHARACTER

MOVE
BROKEN
DATA TO
NEXT LINE

CALL
PULINEND
FCR CONTROL

CHARACTER

Figure 10A." Enfry Point TSPUT

¥

TURN OFF
MORE~DATA _
SWITCH

%
\

T

%

CALL
PULINEND
FOR CONTROL
CHARACTER

395

FIND A
LINE TO
MOVE

|

COMPUTE

B
PAD LENGTH OF | gUgFER
G
EVERYTHIN BACKWARD POINTERS
DATA

SWITCH DATA

FROM BACK |
T0 FORWARD
BUFFER
] PUT
H e FORWARDS
CALL
| CALL PULINEND
PUT PULINEND FOR CONTROL | |
(:; FORWARDS CHARACTER
!
] SET
v TCWRITEN
MID-BUFFER IN TC
POLNTER BLOCK
TO HEADER
pyes GO TO
T FLUSH
WORK B :
POINTER ¥
y ///////\\\\\\ SET THE
Y
SAVE OVERFLOW APPROPRIATE
| NUMBER 9 FLAGS
"1 LINES LEFT
ON SCREEN

GO TO
EXTT B

‘s
“ Figur? 10B. Entry Point TSPUT

LI

Ej A

POINT TO
TSCREEN -
SAVE AREA

|

GO TO
FLWRITE
TO FLUSH
TSCREEN

Figure 11. Entry Point WRITE

| ENTRY)

}

GET Q-CON
OF ADEA (cauzp)
TO BE
ATLOCATED |
¥y SAVE
R 1
PUT ITS RBCISDERS
LENGTH IN
REGISTER
ZERO ,
! _ SET
REGISTER
12 TO PLI
CALL PRV
CALLDD ;
: SET
¥ REGISTER
RETURN 1 To PR
TO CALLER OF AREA
FROM
MOVE COPY r
CALL
THESADD
¥
RESTORE
CALLER'S
REGISTERS

Figure 13, Subroutine GETPR

SAVE
CALLER’S
REGISTERS

%

GET Q-CON

OF AREA
TO BE
DELETED

[

SET PRV
IN
REGISTER
12

¥

CALL
IHESAFF
IO
DELETE IT

¥

SET
REGISTER
12 T0 NEXT
ARFA

ki

RESTORE
CALLER'S
REGISTERS

Figure 14,

Subroutine DELPR

3y

Z¥4

(GETSYN } { GETDFALT)
¥

. SAVE
CALLER'S
REGISTERS

SET UP

CALLING
PARAMETERS

4

CALL
CETDFALT TSGDEF
~|| FoR A
DEFAULT
CALL
TSGSYN
FOR A
SYNONYM
Y
RESTORE
CALLER'S =
REGISTERS
POINT
=~ BACK TO
CALLING
PARAMETER

Figure 15. Subroutines GETSYN and GETDFALT

390

INSERT END
CHARACTER
AS LINE
TERMINATION

RETURN \,

Figure 16. Subroutine PULTINEND

P

SDGIVITD

39)

START OF

STRING

CALL

4

SDEPASS

KEYWORDED

% SDGIVITC]

FIND THE
PRIMARY
KRY

TURN ON
LIST FLAG
IN IC
BLOGK

L

COMPUTE
LENGTH 10
BZCISE

q

EXCISE AN
ITEM
¥ROM THE
STRING

\

Figure 17,

Subroutines SHEIVITH gand SBGIVITC

™ RETURN ‘L

27T

SDPASS SDSYNCHK

DATA TOONL GO TO
LONG SYNNER
?
N
DATA N Y SET NULL
ENGTH=07 DATA SWITCHE

MOVE TO
USER'S AREA

‘ RETUBRN };:

GO To
=t | RESTART
SCAN

GO TO
SYNNER

Figure 18, Subroutines SDPASS and SDSYNCHK

3

(ENTER)

FUT SEMI-
COLON 1IN
FIRST BUFFER
POSITION

¥

SET
BUFFER
LENGTH
TO 1

|

RESET ALL
FLAGS AND
SWITCHES

i

{ RETURH ,

Figure 19. Subroutine RESETBUF

(SDSTRIP)

b

TO CHECK
FOR QUOTES

SET SWLTCH.

SET
POINTERS
TO DATA

-

DELETE
LEADING
BLANKS

i

DELETE
TRATLING
BLAWKS

QUOTES
?

N

(STRIP)

SAVE NEW
ITEM
LENGTH

A

DELETE
LEADING &
TRATILING

QUOTES

G0 TO
MOVE

Figure 20.

Subroutines SDSTRIP and STRIP

395

(ENTER)

¥

POINT TO
LIST OF
MSG KEYS

PUSH EACH
ENTEY
DOWN ONE
S1OT

¥

INSERT
_ NEW KEY

AT TOP

OF TIST

¥

‘ RETURY)

Figure 21. Subroutines PRKEYSAV

IN

396

PROFILE

LOAD ADDRESS
OF PAGE
ENTRY NAME

CALL CALL
RESETBUF SIGNALC

SET
IMMEDTATE
COMMAND
SWITCH

Figure 22. Subroutine IMCHECK

397

(sieNaL) (sionarc)

X

PREPARE TO
CALL PL/I
ROUTINE

"THEERRD"

¥

‘SAVE
CALLING st
REGISTERS

¥

CALL AN
EXTERNAL
PROGRAM

h:

RESTORE
CALLING
REGISTERS

RETURN

Figure 23. Subroutines SIGNAL and SIGNALC

(ENTER }

5

SAVE
REGISTERS

Y

CALL
MTTGEN
TO INIT
DGES

GPEN
DBALIB &
LISRLIB

§

DC A SETL
TO FIND A
RECORD

SET
RETURN
CODE -

RETURN

Figure 24, Subroutina SETLDBA

379,

{ ENTER)
/

SAVE
CALLER'S
REGISTERS

]

ISSUE GET
TO OBTATN
A RECORD

MOVE IT
TO OUR
AREA

TURNTON
TRUNCATION
FLAG

y

RELEASE
FILE
INTERLOCKS

{ RETURN)

Figure 25. Subroutine GETMLF

|

BLANKET

¥

PUT BLANK
IN FIR3T
POSITION

¥

ADJUST
POINTERS
FOR MOVE

¥

PUT LENGTH
iN
REGIBTER 6

s MOVE COPY

SAVE
CALLER'S
REGISTERS

o MOVE

¥

SET
POINTERS
FOR MOVE

MOVE
REMATINDER
MOVE 256
BYTES RETURN
¥
REDUCE
COINT BY
256

" "Figure-26. Subroutine MOVE
"

oo

http:Fingre.26

GET INPUT
FROM
STRATEGY
DATASET

?N,

SET CODES
IN CONTROL
BT.OCK

¥

CALL
MTT
FOR I/0

Figure 28, Subroutine PROMPT

BAGE 402

TOPIC E.3 - PLI/ASSEMBILER LINKAGE MODULE

A...

B.

C.

D.

MODULE NAME

Program~ID - RDBPLINK
Hoduls~IT - DBPLIRK

ANALYST

John A. Lozan
Neoterics, Inc.

BODUOLE FUNCTEION
This nodule completes +the linkage bhetween a PL/T
program and an assembkler subroutine, It does so0 in
suach a way that the assembler routine may in turn call
a PL/I subroutine and yet maintain +the continuity of
control necessary for proper PL/X linkage and
communication., Another aspect of the linkage methed is
that it not only makes +the module reentrant, £rom an
HTT standpoint, but also recursive,
DATA REQUIREMENTS
1. I/0 Block Diagranm
Not Aprplicable
2. Input Data Sets
- Parameter Cards
Not Applicable
b, Punched Card Input Files
Not Applicable
Ce Input Files -
Not 2Applicable
d. Cn-line Terminal Entries
Not Applicable
3. fgutput Data Sets
ad. Cutput Files

Yot Applicable

Hsra

(. EvN®TER)

i

COPY TC
BLOCK BACK
TO USER'S
AREA

4

REPLACE
PRV IN
REGISTER 12

!

—_—
POINT
REGISTER
15 To
THESAFA

Figure 29. Subroutine EXTT

k.

PAGE 403

b, Cn-line Terminal Displays
Rot Applicable ‘

Ce Formatted Print-Cuts
Rot Applicakle

d. Punclied Card OQutput Files
Not Applicable

Reference Takles

Not Applicable

E, . PROCESSING REQUIREMENTS

1.

2.

Top Level Flowchart
See Figure 1
Narrative

Upon entry, the program initializes the variables
it needs from the parameter 1list passed by the
calling modulis. This data is used to obtain from
PL/YT 1idbrary routine THESABA a dynamic storage
area (DS3A) large enough to contain the register
save area and a copy of the calling routine's
psect,

Once this has been done, the program copies the
calling programs PSECT to the DSA, chains the DSA
into the pseudo register vector {PRV) and posts
the DSA address 1in register 13. The program then
initializes all of the base registers required,

Before exiting the program restores the remaining
registers from the c¢alling programs caller's
saveaTrea. It thenr <chains the BSA into the
savearea chain and returns to the caller,’

F. CODING SPECIFICATICNS

1.

2. M

Source Langnade

The mcdule is written using the TSS 360 Assembler
language,

Suggestions and Techniques

Extreme care must he taken to ensure the fact that

PAGE 404

this progran is conpletely reantrant and
recursive., 211 operations should be performed in
registers, or in the DSRA obtained from PL/I.

{ DBPLINKE ,

3

INITIALIZE

GET DSA

CoPY
PSECT

¥

RELOAD
REGISTERS

EXIT

Figure 1. Top Level Flowchart — DBPLINK

405

PAGE 406

TOPIC E.! - ASYNCHRONOUS INTERRUPT PROCESSOR

B.

B.

C.

D..

E.

MODULE NAHE

Terminal Support - Attention Interface
Program—-ID - RTSATTH

#odule-ID -~ TSATTN

Entry Point - TSHATTN

ANALYST

Frank Reed
Neoterics, Inc,

MODULE FUNCTIONS

AP

2. -

Organization Chart
See Figure 1
Cverview

RTSATTN is the dinterface retween whatever. monitor
is running (NASIS or NASISX) and the terminal
support supervisor RTSUPER. Its function is to
1ink the monpitor to the RTSUPER attention routine
TSATIN, RTSATTN is only called after are
asynchronous interrupt resulting f£from the user
depressing the attention key at his terminal,

DATA REQUIREMENTS

Not Applicable

PROCESSING REQUIREMNENTS

1a

Top Level Flowchart
See Figure 2
Narrative

On entry, RTISATIN performs TSS standard linkage
except that +the address it picks up as its PSECT
register points to a table of r~cons which are {inm
order): TSATIN and MTITUTAB, TSATIN is the entry
point to terminal Supports' attention processing
routine MTTUTAB is a table which holds the user?s
pseudc~Tregister vector (PRV).

After 1linking, RTSATTN checks the interrupted
register 13 to determine if it points to a PL/X

Fa

PAGE 407

Dynamic Storage Area [DBA). If not, no further
attemrt is wmade to process +the attention. That
is, RTSATTN returns +to +the monitor, effectively
ignoring the interrupt,

#hen a valid DSA is found, the PRV is checked and
if it is OK the DS2 registers are saved in an area
provided by +the monitor, RTSATIN next calls
TSATIN using the interrupted DSA as a savearea.

Or return frecm TSATIN, the DSA regs are restored,
the caller's registers are restored and control is
returned to the monitor,

CODING SPECIFICATIONS

1.

2,

Source Language

TSS5/360 Assembler Langquage,

Suggestions and Techniqnes'

The NASIS assembler macro library RSOURCE must be
used +to reference +the User Information Table

{RTSUTAR). Also, entry linkage is standard
T85/360 while calling linkage is standard PL/I1.

]

Lo

" MONITOR MTTWREAD MTTREAD MTTWRITE
[A A
MTTEA MTTER
5)
¥
RTSATTIN /\ . \) —
i
TSATIN TSPROMPT TSREAD TSWRITE - |
i t
. i3
)\ 3]
/
.)) :
RDBATTN TSCNTRL TSFLUSH TSPT.{TI'
! /T\/ Aly !" | |
) . A
TSGETKY
¥ $
ON TMMEDIATE /
CONDITION COMMANDS o
END
i : Fy
ON . DATA BASE &
CONDITLON ol s PROGRAMS
ATTENTION _/ A

Figure 1.

=

Terminal Support Organfzation Chart

o9

(ENTER)
3

SAVE
REGISTERS

%

SAVE REGS
FOUND IN
THE DSA

|

CALL
TSATIN
ATTENTION
ROUTINE

1

PUT BACK
SAVED REGS
IN OLD DSA

|

RESTORE
CALLER'S e
REGISTERS

RETURN

B

e SR
figure 2. Top-Lével Flowchart - RTSATTN

PAGE 410

TOPIC E.5 - ATTENTICN PFEONPTING FROGRAN

i HMODULE NAME
Terminal Support-~Attention Prompting Program
Program-ID - RDBATTN
Module-ID - DBATTN
Entry Point - DBATIN
B. ANALYST

Frank Reed
Neoterics, Inc.

C. MODULE FUNCTIONS
1. Organization Chart
See Figure 1
2. Overvieyw
DBATTN is called by BRTSUPEER to issue the command
prompt *'-ATIN:*'?' and check the user's -response
thereto,
D, DATA RIEQUIREMENTS
1. I/0 Block Diagram
Not Applicable
2 Input Bata Sets
Not Applicable
3. Output Data Sets
Not Applicabile
4, Reference Tables
A External tables
LISRMAC {USERTAB)
b. Internal Tables
Not BEpplicable

E» PROCESSING REQUIREMENTS

F.

1o

2.

PAGE 411

Top Level Flowchart
See Figure 2
Narrative

On entry, DBATTN checks +the DISABLED switch in
USERTAR. If attentions have been disabled,
TSPRMTH is called to inform the user at the
terminal and execution returns %o the caller, If
attentions are enabled, DBATTN sends a blank
character out to insure that the carriage is in
its home position, then issues a command pronpt
with the message "*-ATTN:'' +to allow asynchronous
commands to be entered by the user,

RTSUPER intercepts all T'vinpmediater? commands
except G0 and calls the appropriate routine, If
the user enters GO0, null or any non-imnediate
command, DEATTH takes the following action:

A G0 or null - returns control to the caller,
thus signifying +the end of the prompting
sequence,

b. Non~-immediate command -~ ignores +the usert's

Tesponse and reprompts as above,

If +the END condition is raised while executing
this module, execution control is returned to the
caller.

CODING SPECIFICATIGNS

T

2.

Source Language
T55/360 PL/I
Suggéstions and Technigues

Not Arplicable

r

17

MONITOR MITWREAD MITREAD ~ MTTWRITE
2 JL ,iL
MTTKA MTTKB
a .
¥
RTSATTN r_\
TSATIN TEPROMPT ‘TSREAD TSWRITE
i) a
RDBATTH T3CNTRL TSFLUSH TSPUT
i g
TSGETKY
: 1
ON TMMEDIATE (
CONDITION COMMANDS e
END
¥ !
ON DATA BASE
CONDITTION >~ PROGRAMS °
3 ATTENTION \—/
Figure 1. Terminal Support Organization Chart

CALL
TSPRMTM
MSG =
TS000

§

CALL
TSPRMTC
MSG =
TS5999

CALL
TSPRMTM
MSG =
TS0GQ3

Figure 2.

Top Level Flowchart

3

PAGE 414,

TOPIC F.1 - RETRIEVAL INITIALIZATION

A, HODOLE NAME:

Program~ID - REBINIT
Hodule-ID - DBINIT

B. ANALYST

John 1, Lozan
Neoterics, Inc,

C. HODULE FUNCTION
This module performs the initialization functions for
the retrieval system and 3is the commpand director
{prompting module) for retrieval.
D. DATA REQUIREHENTS
1. I/0 Block Diagram
Ses Figure 1
2, Input Data Sets
a., . Parameter Cards
_ Not Applicable
b, Funched Card Input Files
Not 2Applicable
c. Input Files
Rot Applicable
d. On-Line Terminal Entries
The program initially prompis for - the FILE,
BAME and ADDRESS parameters, and 1later,
prompts for the retrieval commands.,
3. Dutput Data Sets
A Cutput Files
Not Applicablle

b, Cn-Line Terminal Displays

g, .

PAGE 415

The program issues various diagnostic
messages, where appropriate,

C. Formatted Print-Outs
Not Applicable

de Puncled Card Output Files
Not Applicable

Reference Tables

The program references and optiomally initializes
the fcllowing tables, -

USERTAE
FLDTAE
COLFCRY
SEQFORY
SRCHTARB
VERETZE
RETIDATA
SETAERE

E. PROCESSING REQUIRENENTS

1.

2,

TOP LEVEYL FLCWCHART
See Figure 2
Harrative

It calls DBJOIND +to process the file parameter and
prompts for the HAME and ADDRESS parameters, The
parameters are all verified and saved for later
reference, '

The program then defines +the print data set and
the save data set and initializes the retrieval
data table, RETDATR. The set table, SETAR is then
initialized, the data base is opened for input and
the field table, FLDTAB, is initialized.

The . progranm +then initializes its verb +table,
including ke addition of any user defined
comnmands, Ncw the program proanpts the user for a
retrieval command,

If the command entered was not END or BEGIN, the
program calls +the entry point specified for that
command and than Y»ranches back t¢ prompt the user
for his mnext command.. If the user entered END or

PAGE 418

BEGIN, the retrieval session is terminated by
closing +the data base, erasing +the sets, the
formats and the save data set, The print data set
is printed., A1l searches are cancelled, TIf the
user entered BEGIN, +the program branches back to
initialize itself for a nev retrieval session,
Otherwise, the program is terminated,

F. CODING SPECIFICATICHNS

1.

2.

Source Language

The meodule is written wusing the TS5 360 PL/X
language.

Suggestions and Techunigues

Not Applicable

2%

SYSIN

RDBINIT

SYS0UT

Figure 1. 1I/0 Block diagram

‘ DBINIT }

2

INTTIALIZE

5

GET
PARAMETERS

INITTALIZE
RETRIEVAL

. WRITE
MESSAGE

TERMINATE
RETRIEVAL

COMMAND
ROUTINE

Figure 2. Top level flowchart

TOPIC F,2 =~ RETRIEVAL FIELDS COHNMAND

Ba

B.

C.

b.

. HODULE NANE

Progran-ID - RDBFILDS
Nodule-ID -~ DBFLDS

ANALYST

John A,
Neoterics, Inc.

LozZan

MODULE FUNCTION

This

user.

PAGE 419

module displays a formatted listing of +the field
names of +the file currently being accessed by the

DATA REQUIREMENTS

1.

3.

I/0 BFlock DLiagram

See Figure 1

Input Data Sets

Q.

C.

Parameter Cards

Not Applicable

Punched Card Input PFiles
¥ot Applicable

Input Files

Not Applicable

gn-Line Terminal Entries

The routine prompts for the
assoclated with a PAGE command.

Output Data Sets

2o

b.

‘Gutput Files
Not Applicable

Cn~Line Terminal Displays

The program produces a formatted

parameter

list of

E.

.

vu.

Ce

d.

PAGE 420

field name,

Formatted Print Outs

Not Applicaklie

Funched Card Output Files

Not Applicable

Reference Takbklss

FLDTAE~-The program extracts all of its information
from FLDTAB,

PROCESSING REQUIREMENTS

1.

Top lLevel Flowchart

See FPigure 2

Narrative

Y

b.

LRFLDS

At this entry point the programp initializes
the =screen and paging status data. It
extracts the data base name from FLDTAB, The
progranm then, repetitively, extracts the
field names £rom FLDTAB, It flags each field
that has an inverted index. It posts the
field names to the screen. Fhen the list of
mames has keen exhausted, or the screen has
heen filled, the screen is displayed +o the
user, the paging status data is posted and
the program is terminated.

LBFLDSP

At this entry point the program is
re-initialized using the paging status data.
If more data remains, the program branches to
the proper routine to build the next screen
inage. Otherwise, a diagnostic message is
written +to the user and +the program 1is
terminated.

CODING SPECIFICATICNS

Ta.

Source Language

The module 1is written wusing +the TSS 360 PL/I
Language.

PAGE 421

2. suggestions and Techniques

Not Applicable

SYSIN

RDBFLDS

Figure 1.

I/0 Block Diagram

L4422

PAGE 422

(DBFLDS)

»

y

INITIALIZE

GET A

.

{ DBFLDSE }

f

INITIALIZE

FIELD

i

BOST
SCREEN

‘ Y
_ ¥

SAVE
STATUS

WRITE
MESSAGE

3
{ EXIT)

Figure 2.

Top Level Flowchart — DBFLDS

PAGE 423

PAGE 424

TOPIC F.3 -~ RETRIEVAL EXPAND COMMAND

3.

B.

C.

D. .

HODULE NAHME

Program-ID - RUBXEND
Hodule-ID - DBXPND

ANALYST

John A., Lozan
Neoterics, Inc.

NODULE FUNCTION
This module displays to the retrieval user, a formatted
listing of =a <cross section of an dinverted index
surrounding a specified term,
DATA REQUIREMENTS
Ta I/0 Block Diagram
S5ee Figure 1
2. Input Data Sets
A Parameter Cards
Not Applicable
b, Funched Card Input Files
Not Applicable

Cs Input Files

The inverted index files of a dataplax are
used as a source of data by the progran,

d. . On-Line Terminal Entries

The program prompts for the TERE and INDEX
parameters,

3. Output Data Sets
Q. Qutput Files
¥ot Applicable

b, Cn-Line Terminal Displays

E.

q‘s"

Cs

PAGE 425

The program profiluces a formatted listing of
the index records read.

Forratted Print Outs
Yot Applicable
Punched Card Output Files

Kot Applicable

Reference Tables

The program uses the following tables as a source
of data and as a means of data control,

USERTAB
FLDTAB
EXPEAERE

PROCESSING REQUIRERENTS

1.

2,

Top Level Flowchart

See Fiqure 2

Rarrative

=

EBSPEND

At this entry point the program initializes
itself t¢ perform a new expansion of an index
file. The program initializes the screen and
the data storage tahle EXPTAER.,

The program then prompts the user for the
TERM and INDEX parameters. The parameters
are validated and the progran gets ready *o
Tead +the 1index (or anchor) file specified.
The first read of the file is for
pesiticning, based upon the term entered by
the user. The program then attenmpts to read
the previous three records in the file, As
each reccrd is read the term is posted into
EXPTAB along with the number of cross
references, The relative E-number is
computed and is also posted.

If more space remains on the screen and more
data remains on the file, +the progranm
rositicng itself and begins reading records,
saving the data in EXPTAB and posting them on
the sCTeen. If an end-of-£file is

PAGE 1426

encountered, an indication is posted on the
screen, At this point, or when the screen is
filled, it is displayed to the wuser, the
paging status data is posted and the program
terminates.,

* If any errors are encountered, a diagnhostic
ressage is written +to +the user and the
rrogram is terminated,

b. LBXPNDP

At this entry point the progranm
re-initializes itself using the paging status
data. If more data remains to be displayed
the program branches to the appropriate point
to begin reading the index and building the
nev screen image. If nc more data remains, a
diagnostic message is written to the user and
the program is terminated.

o IBXPNDE

At +this entry point the program initializes
itself tc decode an E-number reference., If
the E-number parameter is valid, the data
associated with it is passed back to the -
caller, Otherwise, an error indicator is
- passed back to the caller and the program is
terminated.

F. CODINEG SPECIFICATIONS

Te

2,

Source language

The podule 4is writtemn using the TSS 360 - PL/I
languaqge. .

Suggestions and Techniques
The AREA facilities of PL/I should be used to

organize the +term data storxed in EXPTAB to
optimize file access and data storage.

4y

SYSIH

RDBXPND

INPEX

Figure 1. I/0 Block Diagram

P F’B\\

PAGE 427

DBXPND

0

INITIALIZE

)

GET
PARAMETERS

READ
INDEX

1

DEXPNDP

INITTALTZE

f

PROCESS
RECORD

$

POST
.SCREEN

ANY
MORE ROOH

SAVE
STATUS

MORE DATA
?

WRITE
MESSAGE

INITIALTZE

POST
DATA

EXIT

Figure 2.

-

Top Level Flowchart

(-

PAGE 429

TOPIC F,4 - REIRIEVAL, Select Comnrand

I..

SELECT

A,

C.

MODULE NAME

Retrieval, SELECT Ccemmand
Program - ID - RDBSLCT
Module - ID - DBSICT
Entry Pcints (DBSICTO,DBSLCTT,DBSLCT2)

ANALYST

0. Kirt Hearne
¥eoterics; Inc,

MODULE FUNCTICN
The SELECT ccmmand format is:
SELECT expression,field,replace,method

The SELECT ccamand outputs the expression and the
number of citations (record keys) for which the
axpression applies. 2 set number or S-number is
assigned to the expression, and the command string
is entered into +the mnext available line in the
current search strategy.

The expression parameter (keyword=EXPR) is a
boolean combination of terms which define a set.
It all fields referenced are indexed, the
expression is evaluated immediately and a
set-nunber assigned, If a field in the expression
is not indexed or a previous S-number is
referenced, a search entry 1is constructed and
saved, and an S-nunber assigned,

Only a single non-indexed £ield is allowed in a
single SELECT expression,

The f£ield parameter ({Keyword=FIELD) is used by
SELECT to Tesolve any values in the expression
which are not directly related to a fieldnanme
within the expression.

The replace parameter (keyword=REPLACE) is a
previously defined S-number which 1is to have its
expression rerlaced by the current expression,

The nethod rparameter {(keyword=METHOD) 1is used to
force a search on indexed fields, To do this,
"SEARCHY" pust ke entered as the method parameter.

_D'

PAGE 430

Note that only a single f£ield may be referenced in
this case,.

SELECT will prompt the user if the expression is
missing, ox the field vparameter is missing and
found to be needed.

DATA EBEQUIREMENTS

1.

2.

3.

I/0 Blcck Diagram

See Fignre 1

Input Data Sets

Q.

Ca

Parameter Cards

Not Applicable

Punched Card Input Files
ot Applicable

Input Files

The descriptor files and the index files
nay be referenced by the SELECT comnmand,
The descriptor file is used to obtain
the data set name of +the subject ternm
index file, The index files are used to
obtain a 1list of accession nunbers
associated with a particular subject
term.

On~-line Terminal Entries

¥ot Applicable

Qutpat Data Sets

Qe

Cutput Files

The command string, as it is entered, is
saved in the region containing the
current strategy of the VISAM menmber
DBSTRAT of the VPAM data set USERLIB.
This action is accomplished using the
roptine ESTRAT.

On~line Terminal Displays.

The following is displayed if a set is

Ca

PAGE 431

successfoully produced from the
expression:
{1y, A anique set number or S-number,

{2.) The number of citations {or Xkeys)
in the set

{3.) The expression, with:

{a.) E~-numbers replaced with the
corresponding
*fieldname=value",

{b.) Values which return a null are
notated with special symnbols,
ast AGE =>>'99901<<,

{c.) If the resultant set consists
of subfile keys, the
expression will be displayed
with the subfile name, as:
{FRON*subfilename) expression

Formatted Print-outs
Not Applicable
Punched Card oOutput Files

Not Applicable

4, Reference Tables

a.
k.

Co

9
h.

EXPTAB

FLDTASB

RECH

PARSED

SEIAB

SRCHTAB

TC

ISEFTAB

E. PROCEESSING EEQUIREMENTS

1.

2.

PAGE 432

Top level Flowchart
See Tigurs 2
NARRATIVE

The SELECT command outputs the expression and
the mnurker of citations {recoxrd keys)
associated with that expression, A unigue
set-nunker or S-pumber is assigned. .

The input expression is a boolean expression
made up of set-numbers, S-numbers, values,
E-nunbers or range forms of these terms,

The SELECT command Is processed in three
rhases:

Te Parsing
2. Exrression analysis
3. Execution of SELECT ¥instructions®

SELECT parses the expression in-three passes.
The first pass recognizes and marks as such,
letter strings, digit strings, operators,
special characters and delimiters. Quoted

-gtrings are recopied +to remove any double

quotes,

The ‘second pass recognises primary elements
gsuch as S—-numbers, E-numbers, set-numbers,
values, and field nanes. Field names are
rarked as indexed or non-indexed,

The +third. ©pass recognises groupings of
elements such as tTange forms and associates
each valye in the expression with the proper
field name., If necessary a prompt with +the
keyword "FIELD"™ 3is done to obtain the field
name. This pass also sets up SELECT execute
rthase instructions for the creaticon of sets
from basic terms such as a set-nunber.

Also, during the third pass, a non-indexed
field name appears in the expression, “the
rroper entries are made in SRCHTAB tc provide
for the search to be executed later, .

211 information found during the first three
rasses is entered into PARS_TAB and
PTAB_INFO. The original expression, recopied
quoted strings, and other necessary character
strings are all contained in TWAS. Each

PAGE 433

element in PARS_TAB contains an index {IDX)
into was to note the pesition o©f the iten
described.

The next phase of SELECT analyses the
expression algebraically and builds execute
rhase instructions to perform +the proper
operations. 1f a search is required
instractions are bunilt to post final entries
in SRCHTAB, bYefore +the search, and to
retrieve information from SRCHTAB, after the
search, for final evaluation of the
€Xpressicn,

Turing expression analysis, the ANDing of a
search term with another set is noted, and
instructions are created to cause the search
to occur only within the set ANDed with the
search ternm,

ifter the second phase all is ready for f£inal
evaluaticn of the expression by execution of
the previously created instructions, At this
time the input command, with parameters, is
reconstructed and posted in the
CURRENT_STRATEGY data set,

1f a search is rtequired, all SELECT tables
and inmstructions are stored for use at the
time of search execution. in S-number is
assigned and this numnber, with the
expression, is output to the terminal,

If no search is reguired, the execntion
rhases of SELECT is invoked, The
instructions built earlier are now executed.
Sets are created, combined, and a altered as
the expression dictated, until +the £inal
resultant set 1is obtained. This set is
assigned a unigue number and posted into
SETAB through the use of the DBPSET routine
vhich also sends a line describing the set
{set- number, size, expression) to the
terminal,

#hen the user enters the EXECUTE command to
invoke the search, +the DBEXSR program is
given ccntrol., This routine contains all of
the actual search logic, however repetitive
calls to SELECT (DBSLCT2 entry point) . are
pade. The execute phase instructions are
used by SELECT to control the search,

F.

PAGE 434

Turing a search each previously defined
S=-nunber has associated with - it an
instruction 1list. The first instruction in
the list for each S-number is a "branch®?
initialized to point to the second
instruction in the 1list. $hen SBLECT is
first given control, each instruction list is
executed until an S-number or a search term
instruction is encountered, The search
instruction posts proper final information to
SRCHTAR and in both cases executicn of the
instruction list is suspended, . 2 new branch
point indicating where to resume execution is
stored in the "branch"™ instruction at the top
of the list,

When all instruction lists have heen executed
as far as possible, control is returned to
TBEXSR for +the actual search to take place.
After +this SELECT is called .again angd
instruction execntion is restarted, Sone
S=numbers and searches may now be evaluated.
Again each instruction list is execnted until
an undefined S-number or search term is
encountered or an actual set is created and
posted, Again control returns +to DBEXSR.
this process continues until all -instruction
lists terminate by posting a set,

The SEARCH is implemented simply as an
additional entry (DBSLCT1) into SELECT. The
command format is the same as that for the
SELECT commnand, +hus a valid SELECT
expressicn may be used.

DESLCT1 is the entry point for the SEARCH,
This ccmmand first gets and verifies the set
number o¢r S-number on which a 1linear search
is to be performed. SEARCH then preompts the
vser for the rest of the search expression to
be performed to the specified set. Once the
search expression 1is entered, +then SEARCH
prasses this information to the search option
rart :0of the SELECT command. ¥hen control is
Teturned to SEARCH, it then prompts the user
for ancther search to bhe perforned on the
same set as before, This 1loop continues
yntil the user enters a null response to the
search expression rprompt, at which time
control is passed to the calling routine,

CODING SPECIFICATIONS

2.

PAGE 435

"Source Language

The SELECT command nodule is written in the
I8M/360 T5S PL/I programming language. The
DBPL/I language extension is used to handle
all access to the files in the data base and
+the TSFL/I language extension is- used +to
handle all communication with the terminad,

Suggestions and Techniques

Kot Applicable

IT.

PAGE 436

SELECT, THE SEARCH GPTICN

A.

B, .

C.

MODULE ¥AME

Retrieval, SELECT Search Option
Program - ID - RDBSLCT.

¥odule - ID - DBSLCT

ANALYST

0. Kirt Hearne
Neoterics, Inc,

Module Function
The SELECT search option is a feature of the
SELECT command which guides +the user through a
search strategy. The SEARCH command is - used to
define a set or pseudo-set to be wused as the
search universe.

The wuser is ther prompted £for 1linear search
expressions with the phrase: :

SELECT {Set~number S-number) IF:

The reply is of +the same format as the SELECT
command itselfs

expression, field,replace,nethod

vhere the parameters have the same meaning as with
the SELECT Ccmmand.

The set-number or S-number defined by the SEARCH
ccnpmand is added along with an AND boolean
operator to the left end of the expression entered
in respomse to the SELECT I¥ prompt. The .
resultant expression is then sent directly to the
SELECT conmmand processor.
1s Reference Tables

A EXETAB

b, FLDTAB

Ce MFCEB

d. EARSED

D,

E.

DATA

T

2.

3.

PAGE 437

€. SETAB
£, SECHTAB
g, IC

h, USERTAB
REQUIREMENTS

3¥/0 Bleck Diagram

See Figure 1

Input Data Sets

do»

Ty

d.

Parameter Cards

¥ot Applicable

Punched Card Input files

Hot Applicakle

Input Files

Not Applicable

On-l1line Terminal Entries

If & terminal is the source of search
parameters as previously defined, the
TSS parameters as previously defined,
the TSS system will apply default

values, if available, to the parameters
yhen no values are entered,

Cutput Lata Sets

Q.

Output Files

¥sing the PSTRAT routine, the command
string, as it is entered and validated,
will be saved in the Tegion
CURRENT_STRATEGY,

PROCESSING REQUIREMENTS

Te

2.

- Top level Flowchart

Sse Figure 2

Yarrative

PAGE 438

The SELECT Sea;ch command format is:

SEAECH expression,field,replace,nethod

whicli results in a set-number or S-numnber,
The user is then prompted for a 1linear
searchs:

SELECT ({Set-number S-Number) IFf:
expression
field,replace,method

The set-number or S-number is added, along
with an AND coperator to the expression and
the result is sent to +the SELECT command
processor. Thereafter all processing is the
same as for any SELECT expression,

After the expression 4is processed, the user
is again prompted with the SELECT IF
yrompt. This continues until a null - is
entered,

F. CODING SPECIFICATIONS

1.

2,

Source Language

The SELECT Search command is written in the -
IBH/360 TSS PL/I programming language. The
IBPL/TI language extension is used to handle
all access +to the files in +the data base,
and the TSPL/Y language extensicn is used to
handle all communications . with the
terminal,

Suggesticns and Techniques

Net Applicable

EXPTAR
FLDTAB

SETAB
SRCHTAB

PAGIAB

TERMINAL
KEYBOARD

SELECT

<5

Figure 1. Block diagram.

e

N

DBSTRAT

DATA-
PLEX

PAAR L249

{ SELECT }

-

o

DB3LCTO

PARSE
EXPRESSION

A4
ANALYZE

EXPRESSION
AND BUILD

INSTRUCTION

v

/;OST
STRATEGY

BXECUTE
INSTRUCTIONS

v

PO3T
- SET

SEARCH

SELECT
PROCESSOR

SAVE
SET-NUMBER
OR

S—-NUMBER

ELECT IF
PROMPT

EXPRESSION

A7

SELECT
PROCESSOR

lpBSLCT2

DBSLCT2

@

BX&CQ
INSTRUCTIO

S-NUMBER A

FAR AS POS

LIST #OR gCH

f}

CALLED FROM
EXSEA?GH

IBLE

H
i

-";‘ . .
(RETURN) Figure 2. Top Level Flowchart — SELECT

PAGE 441

TOPIC F,5 RETRIEVAL DISELAY CCHMAND

A. MODULE NANE

Retrieval, DISPLAY Command
Progranm~1ID -~ RDBDSPL
Module~ID -~ DBDSPL
Primary Entry Point (DBDSPL)
Secondary Entry Point {(DBDSPLP)

B. ANALYSTS

John A. Lozan
Neoterics, Inc,

Ca MODULE FUNCTION

The DISPIAY command is a routine, c¢alled by +the TS5,
systen, whose purpose is tc allow the retrieval system
user +to have designated data for a given set to be
displayed omn a terminal., Like the PRINT command, the .
user wmay specify the <format of +the output as the
citation number, the citation, the abstract, or the
full text for any item contained in a set which- has
been previocusly selected, Optionally, the user may
prespecify a fermat of his own, using +the FORMAT,
command, to govern the DISPLAY command. One set-nunher
is reserved for special purposes in the systen.:
Set-number 0 is a 1laogical reference to the entire
anchor file., The FAGE command also calls the DISPLAY -
conmand in order to create additional displays,’
logically, before and beyond +the current one. The .
calling seguence is: DISPLAY set-number, forpat, iten,
type or, alternately, DISPLAY citation#, format. '

D, DATA REQUIREMENTS
1. I70 Block Diagran
See Figure 1
2, Inpnt Data Sets
2. Parameter Cards
Not Applicatle
b. Punclied Card Input Files
Yot Applicable

Co Input Files

3.

4.

d.

PAGE 442

The anchor and associated files of a data
base will be input to the DISPLAY command.

gn-1line Terminal Entries

The parameters available to the DISPLAY
cormand are set or citation number, format,
items, and type. The NASIS system will apply
default values to the parameters, if they
are available, when mno original values are
entered.

Cutput Data Setis

de

b.

Ce

d.

Cutput Files

Not Applicable

Gn-line Terminal Displays

The DISPLAY command will output a
partially-formatted display of the items in a
set or for a specific citation nunber, The
content of the display depends wupon the
format code entered as the second
parameter,

Formatted Print-outs

Not Applicable

Punched Card Ountprut Filss

Nct Applicable

Reference Tables

N

ba

Cs

COLFORN

The DISEIZY command refers to a COLFORM table
when a columnar format is referenced,

USERTAR

This tatle contains user-oriented and status
information,

FLDTARB

The DISFLAY command refers to FLDTAB +to
locate the appropiate sequential (SEQFORM) of
columnar {COLFORM) format table and for a
table of data base field names ordered

£.

PAGE 443

according to format numbers 1-4,

EETDATA

This takle contains data fields unique to the
retrieval sub-systemnm.

PLEX
The DISFLAY command uses a DBPL/T f£ile called
FLEX for all of its retrievals from the data
base.

SEQFORH

The DISPFLAY command refers to a SEQFORM table
when a seguential format is referenced,

E. PROCESSING REQUIREMENTS

1.

2.

Top Levél Flowchart

See Figure 2

Karrative

s

b,

Display

The DISFLAY command is called by the ©NASIS
system by the director,

Accept Parameters

Since +the paraneters are mnot passed to the
DISPLAY comnmand, by the director, they are
retrieved via Terminal Support (TS). The
first parameter is either a Vset-number", or
a "gitation #%v, The second parameter is
"format"™ code, the third is an "item™ nunber
and the fourth 1is the "type" code., The last
three rarameters are optional, The
"set-number" is a one or two digit number and
is mnot likely a defauvlt wvalue since it will
change for every command, The Ycitation #®
is a character string, which is not likely to
have a default. If no entry is nmade and no
default exists, then an error is reported and
control passed back to the calling routine,
The M"format" code is a value of 1 to 25
designating a sequential format or F1 to F25
designating a c¢olumnar format, or a format
nane representing one of +the above format
values or a fieldname, If no entry or

T

ds

2,

PAGE {44

defanlt is present, the value ¥2" is provided
for anchor key sets or "5%" for subfile sets,
The "iten" parameter designates the member of
the specified set. The entry is a character
string having a numeric value, If no entry
or defanlt is given for this parameter, the
first item in +the set 1is displayed. The
"type" code indicates whether the user wants
subfile information to be displaved
continually following the anchor data, and if
0, vhether the data fields of egach subfile
record are to be exhausted seguentially or
the data field values =are +to be exhausted
across subkfiles before proceeding to the next
field. An invalid entry is reported hefore
returning control to the calling routine., If
all vparameters have valid values, then
execution continues with the next section.,

The DISPLAY comnand is placed as the next
record in the strategy data set by a call to
the save strategy routine. The parameters to
this subrouvtine are the word DISPLAY and its
parameters in their normal order.

First Page Initialization

Depending on the nciass" of the Ffirst
parameter, certain specific initialization is
necessary. If the parameter is a data base
key {class 1), e.9., a citation number, then
the anchor record is read and a heading
prepared. If the parameter is a set number
{class 2}, the relative key is taken from the
set and used to read the anchor record and-a
heading prepared. Control is transferred to
Section {f) helow.

Page DISFLAY

The DISPLAY command is entered at +this
secondary entry point from the PAGE command.
The ©paging direction and mode are indicated
by the PAGE parameters,

Validate Next Page

¥f the page requested has been seen before,
it mneéed not e regenerated, but may be
retrieved from based storage, vhere it was
saved, and control car be +transferred to
‘Section (q) below to display it. ¥hen
non-contiguous skip paging is being done, the

f.

PAGE 445

relative key is taken from the set and the
anchor record read.

Euild Screen Image

This is a commen <xToutine for building a
TTSPTAY screen image either for an original
IISPLAY command or for a PAGE command.

For a sequential forwat, <field names are
taken successively from the SEQFORH down to
the nunker of field names,

In the most general case, each field consists
of pultiple elements and each element value
is so long as to require multiple lines of a
buffer, The first line for the first element
of a field is tagged with the fieldname and a
colon, The first line for an element after
the first of a field is tagged with only the
colon. Successive lines after the first for
an element have their tag entirely
suppressed, The degenerate cases of a single
elemnent field ands/or ar element short enough
to £it on one line of the buffer are handled,
2nd if the field 4is mull {nc data present),
nothing 1is posted to the buffer at all for
that field namne.

Subfile resident fields are displayed similar
to multiple‘ elements: however, the first
element of the field per subfile record has
the field name tag duplicated, and a special
heading is displayed {depending on the ¥type"
rarameter}) as each new subfile record is
processed,

If +the field names are not all processed
before +the bottom 1line of the huffer is
reached, the routine is left in such a state
that it will resume where it left off if
normal forward paging is attempted. But if
the field names are all used, then the
remaining lines are cleared,

For a columnar format, +the optional page
nuamber, title, and header lines are copied
into the buffer. Then field names are taken
successively f£from the COLFORN, and ugsed +to
retrieve the field values which are arranged
across a line of the buffer. If +there are
any multiple element fields, futher lines of
the FIDTRAB buffer are used for rTemaining

F.

3.

PAGE 446

elements until +the record's desired fields
‘have all been retrieved, If there are any
further records in the set, the next record
is read and the process repeated. When the
buffer is full, the routine is left in such a
state that it will resume where it Jleft off
if norrmal or skip paging is attempted, But
if the data is exhausted, then the remaining
lines are cleared.

Ja ¥rite Screen
Using the full screen mode of output, the
current screen image is displayed on the
terminal,
h. Return
Do a normal Teturn to the calling routine,
Submodules Required
a. DB - data base package
b. ESTRAT - save strategy

C. TS - terminal support package

ds . SETS - set informatiocn package

CODING SPECITICATIONS

1.

2

Sonrce language

The DISPLAY command is coded entirely with the IBH
PL/Y programming language, The DBPL/I 1langvage
extension 3is used +to hanrdle all access to the
files in the data Dbase. The TSPL/I 1language
extension handles all instances of communication
with the terrinal.

Suggestions and Technigues

Nct Applicable

TERMINAL
ENTRY

DISPLAY

TERMINAL
DISPLAY

KEPTAR

<>

USERTAB s

FLDTAB

RETDATA lwe—

DATAPLEX|

SAVEFILE

Figure 1.

I/0 Block diagram

(DISPLAY)

(PAGE DISPLAY)

Figure 2,

Top level flowchart

. ACCEPT VALIDATE
PARAMETERS NEXT PAGE
| ¥
FIRST PAGE NEXT PAGE
INITTALTZA~ INITTATIZA-
TION TION

¥
BUILD
SCREEN
ITMAGE

[
WRITE
SCREEN

PAGE 449

TOPIC F.6 -~ RETRIEVAL ERINT CONNAND

a, .

B,

C.

MODULE NAME

Retrieval, PRINT conmnmand
Program-ID - RDBEPENT
Module-ID -~ DBPRNT

Entry Peint (DBERNT)

ANBRLYSTS

Garth B, ®Wyman
®illiam H, Petrarca
Neoterics, Inc.

MODULE FUNCTION

The PRINT command is a routine whose purpose is to
allow the retrieval systemr user to have designated data
for a given set listed on a high-speed printer. Like
the DISPLAY command, the user may specify the format of
the output as the citation number, the citation, the
abstract, or +the full text for any item or range of
items contained in a set which has been previously
selected, Optionally, the user may prespecify a format
of his own, using the FORMAT command, +to govern the
PRINT command. A1l of +the uses of the PRINT command
during a single +terminal session will be accupulated
and printed out as one <continucus output for the user
to pick wuwyr at a later tipe. Three set numbers are
reserved for special purroses in the retrieval system, .
Set-number 99 is an array in core used by the KEEP

" command to store parameter lists for +he DISPLAY and

PRINT commands, Set~number 98 is a data set used by
the SAVE command +to store screen images for later
processing by the DISPLAY and PRINT ccmmpands,
Set-number 0 3is a 1logical reference to the entire
anchox file. The calling sequence is: PRINT
set-nunber, <format, ditem{s) or, alternately, PRINT
citation#, format.
DATA BEQUIREMENTS
1. I/0 Block Diagram

See Figure 1
2. Inpunt Data Sets

A Parameter Cards

Rot Applicable

4.

Ce

d.

PAGE 450

Funched Card Input Files
Not Applicable
Input Files

The =anchor and associated files of a data
fase are input to the PRINT command., The
SAYVFILE containing display screen images
stored by the SAVE compand is also dinput to
the PRINT comnand.

gn~line Terminal Entries

The parameters available to the PRINT comnmand
are "set-number®, or Ycitation number”,
Pformat", and "itenms," NASIS will ‘apply
default values to the parameters if +they are

-available, when no original values are

entered,

Output Data Sets

D

ba

Ce

d.

Cutput Files

The output of the PRINT command consists of a
data set containing +the line images to bhe
sent to the bhigh-speed vprinter at the
conclusicn of the current terminal session.
The 1line images consist of wup to 132
characters, preceded by a carriage control
character.

On-line Terminal Displays

Not Applicable

Formatted Print-outs

When the current strategy is terminated, then
the actual printing process is initiated.
The descripticn of this output is contained
in the Data Set Specifications Section of the
Tevelopment Workbook.

Punched Card Output Files

¥ot Applicable

Reference Tables

3

COLFORH

Ca

d,

2.

i.

PAGE 451

The PRINT command refers to a COLFORHN table
when a colunnar format is referenced,

FLIDTAB

The PRINT command refers to FORHMTIAB to locate
the aprroriate sequential {SEQFORM)} or
columnar {COLFORM) <format +table and for a
table o¢f data base field names ordered
according to fcrmat numbers 1-i4,

USERTAB

This table contains user-oriented and status
information.

KEPTAB

The PRIET command refers to KEPTRE when the
special set 99 is used for a PRINE
specification that was previously stored by
the KEFP command.,

PLEX

The PRINT command uses a DBPL/YI file called
PLEX for all of its retrievals from +the data
tkazse,

PRINTER '

The PRINT command wuses a PL/I £file called
ERINTER +to write all of its printer 1line
images fcxr ultimate off-1ine printing,

PRIUSED irn RETDATA

The PRINT conmmand tests +this switch +o
determine whether to write line images for a
lead page didentifying the report and then
sets the PRTUSED switch +to ipdicate that
there are line images for off-line
Frinting.

SRCHTAB |

This table contains S-number information,.
SAYFILYE

The PRINT command uses a PL/T file called

SAVFILE for all of its retrievals from the
special set 98 of screen images previously

Ko

1.

M

PAGE 452

stored by the SAVE command.
SEQFORY

The. PRINT conmmand refers to a SEQFORNM table
when a sequential format is referenced,

RETDATA

This tabkle contains data fields unigue to the
retrieval system.

ADDRESS in RETDATA

The PRINT .command refers to ADDRESS vwhen
writing line images <for the lead page of the
report.! ’

NAME in RETDATA
The PRINT connand refers to NAME when writing

line irages for the 1lead page of +the
report.

E. PROCESSING REQUIREKENTS

1. Top Level Flowchart

See Figure 2

2, Narrative

a.

Record

The PRINT command is called Dby the
director,

Accept Parameters

Since the parameters are passed to the PRINT
command through Terminal Support, they are
arranged in a keyword or predefined order,.
The first parameter is either a "set-number?®,
as defined by a SELECT or LIMIT command, or a
Ucitation #Y or an "S-numberY as defined by 2
SELECT-IF comnand. The second parameter is a
vformat"™ code, and the +third is an Vviten"
number or range of numbers. "The latter two
parameters are optional. The set numnber will
be a ome- or two-digit number and will not
likely have a defanlt value since it changes
for every connmand. The M"citation #%" is a
character string which also will not likely

Ce

PAGE U453

have a defauvlt, If no entry is made and no
defaunlt exists, then +the error 1is reported
and control vpassed back +to +the c¢alling
rontine. The "format™ code only applies t0 a
PRINT of a "citation®#” or of set 0 - 97, It
is a valpe of 1 to 25 designating a
sequential format or F1 to F25 designating a
columnar format or a format name representing
one of the akove format nuzbers. If no entry
cr default is present, the value of two is
provided for anchor key sets or four for
subfile sets. The "item"™ parameter is not
required when the “citation #Y is entered as
the first parameter; otherwise, it designates
the member or range of nembers of the
specified set, The entry is a character
string <¢f one to eleven positions. When a
range of 1items is entered, the two values
are separated by a hyphen. If no entry or
default is given for this parameter, all of
the items in the set are printed. Ap invaliad
entry %ill be reported before control is
Teturned +to the calling routine. If all
parameters have a valid value, then execution
continues with the next section,

The PRINT command 3is placed as the next
record in the strategy data set by a call to
the save strategy routine. The parameters to
this subroutine are +the word PRINT and its
parameters in their normal order.

If +the £first parameter was an S-nunber,
processing continues with Section {g}.
kelow, '

Initialization

The data set for the printer £file will have
been defined 3in a procdef before the PRINT
command is called., The first time the PRINT
conmand is used, it writes 1line images for a
leader page identifying the user's name and
mail stor for distribution.

If the first parameter specifies the special
set 98 of saved screen images, processing
continues at Section (£) below, If it
specifies a data base key, e.g., a citation
nunber, then the anchor record is read and
rrocessing continues at Section (D) below.
If the paraneter is a set number, then it is
examined for validation and the first

G

=1

PAGE 454

relative key specified by the 3item range
parameter is taken from the set and used +to
read the first anchor record. If the
paraneter refers to the special set 29 of
kept items, then KEPTAB is examined to find
the first relative item specified by the itenm
range parameter and the first relative key
specified by the item range 1in XEPTAB is
taken frocm the set and used to read the first
anchor recozrd.

Process from Data Base

For a seguential format, £ield names are
taken successively from the SEQFORN beginning
with the key field name down to the number of
field names.

In the most general case, each field consists
of wmultiple elements and each element value
is so 1long as to require multiple lines on
the ©printer file.. The first line for ' the
first element of a-field is +tagged with the
fieldname and a colon. The first line for an
element after the first of a field is tagged
with only the colon, The first subfile fielad
value per =subfile record retains the field
pane as a tag; however, subseguent elements
are nevertheless +tagged with only a colon.
Successive lines after the first for an
element will be auntomatically wrapped around
to new lines by the PL/I stream ocutpat and

-are tagged. If +the field is null {no data

present), nothing is written at all- for that
field name. The PL/I stream output will
detect the lcgical end of page condition so
that page heading 1lines can be inserted and
then normal cutputting resumed.

Re~-initialization

If a data base Xey is specified by the user,
this Section 1is bypassed and control 'is’
returned at Section {(g) below,

If there are more keys in the set within the
range specified by +the user or in the KEPTAB
item, then the new Xey is +taken and used to
read another anchor record and contrel loops
hack %o Section (d). When +this loop is
conpleted, control is returned at Section ()
below unless the user had specified a range
of Xept items from set 99. In that case, the

3.

PAGE 455

next kert item dis taken £from KEERTAB and the
first relative key specified by the iten
range in XEPTAER is taken from the set and
used to read another anchor record and
control Jloops back to Section {(d}. TFinally,
control is returned at Section (g) below.

For a cclumnar format, the optional page
number, title, and header lines are put out
at the top of each page of output. Field
names are taken successively from the COLFORM
and wused to retrieve the £ield wvalues which
are arranged across the output line. I1f
there are any multiple element fields, futher
lines are put out until +the record's desired
fields have been retrieved,

£. Process from SAVFILE
One or a contiguous range of saved screen
images are successively retrieved frem
SAVFILE (set 98B), Tor each screen image, a
page heading 1line is written followed by the
screen image subdivided into lines the sane
length as the display screen width so that
the appearance is identical,.

¢ I Return
When all processing for the PRINT conmmand has
been completed, control is returned +to the
calling routine,

Subroutines Reguired

a. DB - data base package

b. PSTRAT - save strategy

C. TS - terminal support package

d, SETS - set information package

Fa CODING SPECIFICATIGNS

1,

Source Language

The PRINT command is coded entirely with the IBN
PL/T prograrming language, The DBPL/I language
extension is used to handle all access to the
files in the data base, and the TSPL/I extension
handles all instances o0f communication with the
terminal.

PAGE 456

2. Suggestions and Technigues

ds

D

Normal PL/TI statements are used to write the

Jine images to the print data set,

The many external variables required 3in the
PRINT command are combined into external
data structures, in many cases, This
requires only one name +to be an external
synbol,

" TERMINAL
ENTRY

PRINT

<

PRINTER
FILE

REPORT

USERTASB

DATAPLEX

RETDATA

<

Figure 1. I/0 Block diagram

SAVEFILE

457

(PRINT)

ACCEPT
PARAMETERS

TNITIALLZA~
TION

o

PROCESS
FROM
DATAPLEX

RE-
INITLIALIZA~
TION

|

PROCESS
FROM
SAVFILE

Pigure 2.

Top level flowchart

PAGE 459

TOPIC F.7 - BETRIEVAL EXECUTE COMMNAND

i,

B,

C,

D.

MODULE NAME

Retrieval, EXECUTE Command
Program-ID - RDBEXSR
Module~ID - DBEXSR

ANALYSTS

Barry G. Hazlett
¥illiam H, Petrarca
Neoterics, Inc,

MODULE FUNCTION

Use of the EXECUTE command informs the KASIS systen
that =uaser has specified all of his SELECT-IF and/or
PRINT commands for his linear search and is now ready
to have thenm executed,)

The format of the Execute-Search command is as
follows:

EXECUTE

Use of the EXECUTE command informs the NASIS systen
that the user has specified all of his search requests
on a set and is new ready to have them-executed, When
an attenticn interrupt is made, the EXECUTE command
will return the user with its current status; i.e., the
number of processed records and the nunber of records
to be prccessed, To continue any further im the
executiqn of the 1linear search, the user must then
enter:

G0 which will resume the search at the
point of executicn, or

EWD which will cancel the search in
progress, returning the nuser +to the
point of his strategy immediately before
the last EXYECUTE.

DATA REQUIREMENTIS
1. I/0 Block Diagranm

See Figure 1

2. Input Data Sets

A

b.

da

PAGE U460

Parameter Cards

Not Applicakle

Funched Card Input Files
Not Applicable

Input files

The dJdata base anchor file is accessed to
obtain the records for the linear search.

gn-Line Terminal Entries

If a Terminal is the source of EXECUTE
rarameters,

3. Output Data Sets

Qe

b.

Cutput Files

Using the PSTRAT routine, the cemmand string,
as it is entered (modified if any by prompt
responses) and validated, 1is saved in the
region CURRENT-STRATEGY of the VISAM member
BBSTRAT of the VEAM data set USERLIB. Tor a
complete description of the data set DBSTRAT,
refer +to the Specifications for the mnodule
LBGPS (D¥B, Section IV, Topic F.8).

On-Line Terminal Displays

The follewing is displayed at the output
interface:

Te nevw set number,

2 items contained in a new set, and

3, the {(combined) expression describing the
neyw set,

for each set created as +the result of the
linear se<arch.

Formatted Print-outs
Not Applicatle
Punched Card Output Files

Kot AZpplicable

b, Reference Tables

PAGE 461

a. FLDTAB is the descriptor field table
teferenced +to determine vwhether a search
field name is an inverted index. The anchor
file key field name is used from FLDTAB.

ba SRCHTAB is the search table referenced +to
maintain search testing criteria, pseundo-set
information, and search list pointers.

E. PROCESSING REQUIREMENTS

1.

Top Level Flowchart

See Figure 2

Narrative

The EYECUTE calling sequence is as follows:
CALL EBEXSR

Search processing will follow. the following
steps:

1. Notify STATISTICS of the search and what
data hase.

2, Identify a search sety group - tests on
that set.

3, Read in records of the the search set
one at a time.

4, For each record test each field against
its corresponding test criterion as
defined in the LS strategy.

5. Each successful record 3is added to a
search list associated with the
pertinent test pseudo-set.

6. After all records have been tested, new
sets are made wvith the lists for
pseudo~sets defined by the SELECT-IF
command,

7. Each pseudo-set defined by a Booolean
SELECT is made into a set via a call to
a special entry point in the SELECT
command.,

8. If there is another set +to sgearch
continue at step 2.

PAGE 462

g, 311 pseudo=-sets reguiring a “PBEINT" are
printed via a <¢all to the PRINT comnmand
{DBERNTS).

At the search termination all unnecessary dynamic
storage will be £freed, In addition a special
entry point into the EXECUTE module for the CANCEL
comnmand will accomplish the same function,

F. CODING SPECIFICATICNS

1.

2.

Source Language

The EXECUTE command is written in the IBM/360 TSS
PL/I progranmeing language. The DBPL/I and TISPL/T
language extensions are used for data base file
accessing and terminal comnunication,
respectively.

Suggestions and Techniques

It is suggested that considerable analysis be nmade
0of search universes +t¢ determine the final search
universe for the EXECUTE command due to the tather
large data bases that may exist., The success of
reducing a search universe to its minimal size is
reflected to the user in response tine,

COMMANDS

SEARCH
LISTS

EXSEARCH <

SEARCH
TABLE
{SRCHTAB}

¥

TERMINAL
DISPLAY

Figure 1. 10 Block diagrarm

FIELD
TABLE
{FLDTAB)

SET
TABLE.
(SETAB)

(EXSEARCH >

r CALL
IDENTIFY SELECT FOR
A SEARCH BOOLEAN
SET S#'S

I
(:) ’ ¥
‘ UPDATE
PSEUDO SET
GROUP S#'s AND SET
ON SEARCH TABLES
SET FOUND |
¥
é -1 | POST AWD
ALLOCATE A DISPLAY
LIST FOR EACH NEW SETS
PSEUDO SET IN j
GROUP :
MORE
¥ SEARCHES
?
EVALUATE
SEARCH
REQUESTS ;
CALL
RECORD
WHERE
NEEDED

Figure 2. Top level flowchart

PAGE 465

TOPIC F.8 RETRIEVAL SETS CONMAND

g

B,

C.

D.

MODULE NANME

SETS Command and Sets Managenent

Program-ID - RDBSETS

Module-ID - DBSETS

Entry Points - {(DBSET™S, DBGSET, DBPSET, DBPAGST)
ANALYST

James 3, Wesley
Neoterics, Inc.

MODULY FUNCTIION

The primary function of the DBSETS module is to display
to the ¥ASIS Retrieval Sub-system user a list of the
sets or s-numbers he has formed during the current
strateqy segsion, The list is displayed in the formg
set number or s—-number (incluyding the subfile suffix,
if present}, the nunber of items in the set, and the
expression that formed the set,
The entry points DBGSET and DEPSET are called €£rom
application programs +t¢ GET SETS and POST SETS,
respectively,
The entry point DBEAGST is called by the PAGE command
to display the next ‘'page' of sets in the user's
current strategy.
DATA REQUIREMENTS
1. I/70 Block Diagram

See Figure 1
2. Input Data Sets

A Parameter Cards

Not 2Applicable
b, Punched Card Input Files
Not Applicable
Ce Input Files

SETAB and STRATEGY.LIBRARY

4.

PAGE U566

On-line Terminal Entries

¥ct Applicable

3. Ontput Data Sets

Aa

Cutput Files

SETAB and STRATEGY.LIBRARY

Cn-line 7Terminal Displays

The +erminal display from this module uill
consist of a 1list of the set numnbers or
s=-numbers {including the subfile suffix, if
applicable), the number of items in the set
and the expression that formed the set.
Formatted Print-Quts

¥ot Applicable

Funched Card Output Files

Not Applicable

4, Reference Tables

A
‘p,
C.
d.

=1

SETAB

5

B

STRATEGY,LIERARY

SRCHTAE

Es. . PBROCESSING REQUIREEKENTS

1. Top Level Flouwchart

See Figqure 2

2. Narrative

da

DBSETS

Upon entry at the DBSETS entry point, it
allocates and idnitializes a controlled area
for the current unser tc keep track of bhis
paging oreratioms,

‘b,

PAGE U467

The module looks for any parameters that were
rassed with the command. TIf thers are none,
the module will default to set numbers and
start displaying at the begianing of SETAB.

If a number between 1 and 97 is passed, the
rodule verifies that as a valid set nunher
and starts the displaying with that number,

I1f +the parameter is an 'S' the module will
display s-numbers (pseudo-sets). A second
parameter may be included here to indicate
starting at a specific s-number,

This processing continues until the bottom of
SETAB or SRCHTARE is encountered or the TS
superviscr indicates the cutput screen 1is
full and auvtomatically writes the screen.

PBSETS saves the set number or s-number, that
would have caused the screen overflow, in the
user control +table, This set number or
s-number is then used as the first number to
appear c¢n the next page forward,

LBPAGST

This entry point is called by the TS5
superviscr when the user wishes to page in
either a forvard or backward direction
through his list of sets.

Upon entry DBPAGST vaidates the ccammand and
(re)constructs a page in +the appropriate
direction, Only the letter *B' will cause a
Yackwards page operationg anything else
defaults to forward.

LBPSET

This entry point is available +to the
application programmer who wishes to post-a
new set and its corresponding data to SETAB.
The calling seguence followss

CALL DBPSET{POINTER,EXPRESSION,SET#)3

Where:

FOINTER - is a pointer variable passed by the
user. It points to the list to be posted.

EXPRESSIGN - is a varying 1length character

de .

PAGE 468

string, maximum 256 bytes, It 1is passed by
the user as the expression that formed the
set to be posted,

SET# - is a varying character string, naximum
2 bytes 1long. It 1is passed by the user as
the one hyte subfile suffix character for the
set being posted and is returned by DBPSET as
the 2 byte set nunber cn a successful posting
cr a null string to indicate an I/0 errcor ot
no more sets available,

This entry point first checks for a slot in
SETAB; if none are available, it sets the set
number variable t¢ null and returns to the
USer.

If a set number is availadble,it verifies the
suffix as being between 0 and Z or it assigns
a blank suffix.. DBPSET +then collects and
posts the data to SETAB and +the STRATEGY
LIBRARY. It posts the set nunber for the
user and returns, .

DRGSET

This entry point is available to the
application programmer who wishes to get and
verify a given set number, The calling
sequence follows: '

CALL DBGSET{SET#,POINTER, #LIST,SUFFIX);
Fhere:

SET# - is a varying length character string,
paxinum 3 bytes long. The user passes this
variable as the set number, and optionally
the subfile gsuffix, to be gotten and
verified. If either +the set number or the
suffix is invalid, that 1is, & non-existent
ot number or a wrong suffix, this variable
is returned as null,

POINTER =« 4is a pointer variable.‘ It is
Teturned by DBGSET as a pointer to the set
(list).

#LIST -~ 1is a integer full word. It is
returned by DBGSET as the number of XREFS in
the set.

SUFFIX - is a single character, It is always

PAGE 468

returned as the correct suffix for the set-
reguested, In the event an invalid svffix is
specified in the set number, the set number
is returned as null and the correct suffix is
returned here.

DBGSET first separates the set nuanber from
the suffix and verifies both, If either is
invalid, set number is returned as null and
the correct suffix, if available, is put in
SUFFIX. If the validation is successfal, the
set number, the 1list peinter, +the number of
XREFS and the suffix are returned +o the
caller,

F. CODING SPECIFICATIQNS

T,

2.

Source Language
The RDBSETS command module is written in +the
IBN/360 TSS PL/I programming language. The DBPL/I

and TSPL/I language extensions are used for data
hase access and terrinal I/0, respectively.

Suggestions and Technignes

Not Applicable

70

TERMINAT

SETAB

RDBSETS e SR | SRCHTAR

STRATEGY
LIBRARY

DISPLAY

Figure 1. 1/0 Block Diagram

DBSETS

ALLOCATE
USER
TABLE

SET
PAGING
BACKBWARD

SET
STARTING
S—-NUMBER

SET
STARTING
SET NUMBER

GET
NUMBER,
XREFS,
EXPRESSION

SAVE
NEXT
NUMBER

[

g}

PUT
'MORE"

1'4.
(rermy)

Figure 2A.

UBPAGST -

SET
PAGING
FORWARD ;.

RETURN

Top Level Flowchart

SET
STARTING
NUMBER

DBPSET

PR S

YL

SET -
INDICATOR
SET TO
BLANK
|
POST SPLIT
& SUFFIX, NUMBER
XREFS, AND SUFFIX
EXPRESSION
SET ERROR
SHOW INDICATOR
USER
]
RETURN SET GOOD

SUFFIX

PGST FOR
USER

|
(RETURN)

Figure 2B. Top Level Flowchart

TOPIC F. 9 - GENERIC KEY LISTS

A,

C,

B.

MODULE NANME

Program-ID - RDBGENR
Module—-IL - DBBGENER

ANALYST

John A.
Neoterics,

LozZan

Inc.

MODULE FUNCTION

PAGE 473

This module expands or contracts lists of generic keys
based wupon +the user!'s specifications and the §eneric
key description table, '

DATR RFQUIREMENTS

T

2

I/0 Block Diagram

See Figure 1

Input Data Sets

A

b.

Coe

d.

Parameter Cards
¥ot 3Applicable
Punchled Card Input Files
¥ot Applicable

Input Files

The anchor and index files of a data base may

be used for input by the
On~Line Terminal Entries

The program prompts the
{sub-level name) and SET

Qutput Data Sets

A

b,

Output Files
Not Applicable

Gn-Line Terminal Displays

prografs.

user for +the FIELD
parameters.

E.

PAGE 474

The program writes diagnostic messages to the
user for amy errors encountered,

Ca Formatted Print Ogts
Not Applicable
d. Punched Card Qutput Files
Not Applicable
b, Reference Tables

The frrogram uses the following tables to obtain
information necessary to perform its function,

FLDTARB
GENERIC

PROCESSING REQUIREMENTS
1. Top Level Flowchart
See Figure 2
2. Narrative
@ IBGENR1

2t this eptry point the program initializes
itself +to process data passed by another
program. A switch is set to indicate this
fact, sc¢ that parameter prompting and the
posting of SETAR can be bypassed.

b DBGENR

At this entry point the program initializes
itself +o process the user?'s GENERATE
copmand, It extracts the current file name
from FLDTAB and calls the generic key routine
to obtain the gemeric key description table,
The program then prompts for and verifies the
two parameters., If the SET parameter is not
a valid set number, the program uses it as a
key and 1reads the anchor file to verify it.
If any errors are detected during the above
cperations, +the program terminates with an
appropriate diagnostic message,

The list described by the second parameter is
analysed to determine the generic sub~level
represented by its keys. This result is

PAGE 475

conpared against the sub-level defined by the
first parameter to determine whether this is
a request for parent or children
processing.

For parent processing, the list of keys is
analyzed, one at a time, and +the unigue
rarent or rcot records are derived and posted
to a resultant list. This processing is done
by tlHe structural analysis of the keys, based
upon the sub-levels determined above,

For children processing, the generic key
index f£field mname 1is extracted <from the
generic key description table. The dinput
list of keys is used to read this index file
Ty key, 2As each record is read, the list of
cross references is Y'orted?'' logically to
the previous list of cross references
.creating an aggregate list, %hen the end of
the input list is reached, the sub-levels are
coppared, and if pore sub-levels remain to be
processed, the resultant cross reference list
is used as the new input list and the process
is repeated,

At +the completion of list processing, for
either parent or children lists, the program
rosts the resultant list, If entry was +to
DBGENR, this involves a call to DBESET +to
port SETAB. If entry was to DBGENR1 this
involves the posting of the caller's
parameter list. The progranm then returns to
the caller,

F, CODING SPECIFICATICNS

1.

2e.

Source Language

This podule dis written using the TSS 360 PL/I
Language.,

Suggestions and Technigues

Not Applicable

476

SYSIN

RDBGENR

Q/’ T~

DATAPLEX

Figure 1. 1I/0 Block Diagram

t DBGENR } (DBGENRL)
’ ¥ .

/

INITIALIZE INITIALIZE

FIND
LEVELS

GET N
PARENTS

?

¥

PROCESS
CHILD KEY

PROCESS
XREFS LIST

POST
SETAB -

KEY LISTS

Figure 2. Top Level Flowchart - DBGENR, DBGENRI

PAGE 77\

PAGE 478

TOPIC F,10 -~ RETRIEVAL FORMAT CONMAND

A,

B.

MODULE NANME

Retrieval, FORMAT Command

Program—-ID - RLBFOEM

Module-ID - DBFOEM. Entry points: DBFORM (primary)
and DEFORM {for PAGEing a format DISPLAY).

ANALYST

Garth B. Wyman
Neoterics, Inc,

MODULE FUNCTION

The DBFORHM nodule is the FORMAT command routine, called
by the RETRIEVEal system, whose purpose is to allow the
retrieval system user to define, revise and/or display
the content and <format <£or suabsequent 1information
retrievals using the DISPLAY or PRINT retrieval
comumands. Sequential and columnar formats may he
defined.

Sequential formats extend the series of predefined
formats 1-4 by allowing the user to select a set of
fields +to he displayed cne under another with no more
than cne record's fields per output page.

Columnar formats are a separate series allowing the
user to select a set of fields +to be displayed im
tabular format, OGptionally, the user may define screen
or printer output, page numbering, titles, column
headers, <coluonn positions, and element tallying,
summing and averaging,

After a current format has been established, the DBFORHM
modale functions as a command director processing the
FIELD, FIELDS, MNAME, STORE, FORMATS, DISPLAY, PAGE,
TITLE, HEADER, FOREAT and END subcommands of the FORMNAT
conmand, ’

The user may review +the appearance of the ultimate
display (paging through screen-width portions, if
necessary}. The user has complete revision and storing
capability.

BATA REQUIREMENTS

1. I/0 Block Diagranm

See Figure 1

PAGE 479

2. Input Data Sets

A

b, .

de.

Parameter Cards

Not Applicakle

Punched Card Input Files

Not Applicable

Input Files

¥ot Applicable

Cn~Yine Terminal Entries

X terminal is +the most likely source of the
parameters which are passed +to the FORMAT
comnmand by the Terminal Support system. The
fondamental parameters are the format number
and the field names, Default values for the
fundamental parameters are unlikely, The

FORHAT command then accepts the FORMAT
subcommands and their parameters.

3. OCutput Data Sets

doe

gutput Files
Not Applicable
Cn-line Terminal Displays

For seguential formats, the DISPLAY
subcommand will display the field names
vertically in +the order they will ultimately
he displayed. The PAGE subcommand will
display any field names that do not appear on
the first screen,

Tor columnar formats, +the DISPLAY subcommand
¥111 display the title and header values and
field colunmn positions as they will
ultimately be displayed. In the case of
rrinter <formats wider than the display
screen, the left-most portion will bhe

displayed initially. The PAGE sub-command: .

yill display subseguent portions. These
displays vill show the positioning and length
of the field values for the first data line;
ctheryise, +they have the samne format as the
TISPLAY and PRINT retrieval commands produce
{see Section III, Topic F.4 of the DWB),

E.

L

Coe

PAGE 480

Formatted Print-outs
Not Applicalkle
Punched Card Qutput Files

Not Applicable

Reférence Takles

de

ba

Ce

COL_FORH

When "~ the FORMAT command processes a heyw
columnar format, it allocates and initializes
a COL_¥CRM structure and posts its base
address in the COL_FORMAT array in FLDTAB,.
When the TORMAT command processes a TITLE or
HEADER sub-compand or any other revision to a
columpar format, it updates the appropriate
COL_FORHN structure. Thus, a COL_FORH
structure specifies a columnar format for use
by the DISPLAY and PRINT commands.

FLDTAB

The FORMAT command refers to +the DATA BASE
and FIEID portions of FLDTAB for descriptor
information previously posted by RDBINIT.
The FORMAT command posts the SEQ_TFORMAT and
COL_FYORMAT arrays as it Processes new
formats,

SEQ_YORM

¥hen the FOEMAT command Pprocesses a new
seguential fornmat, it allocates and
initializes a SEQ_FORM structure and posts
its base address and field name count in the
SEQ_TORMAT array in FLDTAB. Thus, a SEQ_FORHM
structure specifies a sequential format for
use by the DISPLAY and PRINT commands.

USERTAB
The FORMAT command checks the

USERTAB,.RETRIEVE switch to verify that it is
teing called properly.

PROCESSING REQUIREMNENTS

1.

Top level Flowchart

See Figure 2

PAGE 481

2. Narrative

de .

b.

Ce

Format

The FORNAT command is recogaized by the
retrieval system director module RDBINIT
which calls the DBFORYM entry point,

Process FHUMBER paraneter

If null or blanks are entered, the FORMAT
cormand 1is cancelled, The value is checked
for proper syntax and for range and
duplication of the number; @LEOTS are
diagnosed and +the user allowed to re-enter,
1f the value 3is a name, the external GETSFNT
routine dis called to obtain +the stored
format. For a'new format, a SEQ_FORM or
COL_FORH structure is allocated and
initialized according to given and default
cptions and the structure's base address
rosted in FLDTAB. For a rTevised columnar
format, any options given will result in the
COL_FORHM structure being modified oT
re~allocated and initialized accordingly.
Reroval of page numbering may be specified
and/or expansion to printer width or
contraction to screen width, If the width
changes, any titles are re-centered, If the
width changes and the colinns are
proportional, +they are re-proportioned and
their beaders {if any) re-centered. If the
width expands and +the columns are explicit,
the rightmost column will have dits width
expanded and its headers (if anyy
re-centered., If the width contracts and the
columns are explicit, columns to the right of
a screen width are dropped <from the format
with their headers (if any) and the renmaining
rightmost column will have its width reduced
and its headers (if any) re-centered,

If a FLGSPEC parameter was entered explicitly
by the user with the FORMAT command, control
passes to {d.) below where the parameter is
processed. Otherwise, processing continues
at {c.).

Process subcommand
4 comnmand is obtained from the Terminal

Support system. If it 1is a valid FORMAT
subcommand, it is processed by one of the

S

£.

T

PAGE 482

routines {d.) through {k.} below, Otherwise,
it is diagnosed as an invalid subcommand and
the user allowed to re-enter..

Process FIELD conmmand

The field names are checked for existence in
the current data base by lookup in the FIELD
portion of FLDTAB. I€f a field name o
porition is invalid, a diagnostic is issued
and +the Kkeyboard unleocked for re-entry of
that field name with any options or default
for that field to be ignored, WNormally, for
sueguential formats, the field name is posted
in SEQ_FORM, or for c¢olumnar formats the
field name, position (proportioned, if not
specified by the user) and options are posted
cr updated in COIL_FORHN.

Process FIFLDS or FORNATS command

These commands are Tecognized as a
caonvenience to the user to save him having to
Jeave FORMAT and later re-enter it.
Erocessing consists only of a calil +to the
external entry point DBFLDS or DBSTRTZ
respectively,

Frocess NANE or STORE command

An FHTNAXE parameter value is obtained fron
the Terminal Support systen, validated
syntactically by calling the external DBUCHEK
routine, and checked for duplication of the
name of any .cther current format. For a NAME
command, the value is simply posted in
FLDTAB. TFor a STORE command, +the value is
posted in FLDTAB or it is verified that a
name value was posted +there previously and
the external PUTSFMT routine is called to
store the format for availability in later
sessions, If the FMTNAME value is invalid or
missing or if PUTSFMT returns an error code,
a diagnostic is issued and the user allowed
to re-enter it.

Process TITLE command
If the current format is not codlumnar, +the
TITLE c¢cmmand is cancelled with a diagnostic

message,

A TTLLINE parameter value 1is obtained fron

h.

PAGE 483

the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative title line number. The value
is checked for syntax, range, duplication,
and space in COL_FORM.TOP, Eny error is
diagnosed and the user allowed to re-enter
the parameter, For a title 11line deletion,
any lower title and header line images are
shifted up and COIL_FORM,TOP, #TITLES is
decremented and control branches to {C.).
For a new title 1line, any lower title and
header line 3images are shifted down and
intervening lines blanked in
COL_¥ORM.TOP,LINE and COL_FORM.TOP,#IITLES is
posted.

A TPTLSEEC parameter value 1is obtained from
the Terminal Support system, if +the auser
entered it explicitly, or by taking the
FLDT2B,LATA BASE name value and stripping any
trailing dollar sign characters. The wvalue
is posted centered in the particular
COL_FORK, TOP,LINE,

Process HEADER command

If the current format is not columnar, the
HEADER command is cancelled with a diagnostic
message.

2 HDRLINE parameter valnme 3is obtained £from
the Terminal Support system, if the user
entered it explicitly, or by assuming the
next relative header line number. The value
is checked for syntax, Trange, duplication,
and space 1in C(CL_FOEHM, TOP,. Any error is
diangosed and +the user allowed to re-enter
the parameter, For a header 1line deletion,
any lower header 1line images are shifted up
and COI_FORHK,TOCTH#HEADERS is decremented and
contrcl branches to {c.}. For a new header
line, any Jlower header line 1images are
shifted down and intervening lines blanked in
COL_¥ORE,TOP,LINE and COL_TORM.TO?, #HEADERS
is posted, Thus a current header line is
determined for the following processing.

I1f no HDBSPEC parameter values vwere entered
explicitly b»v the user, every column accross
the current header lipne has its field name
value centered over it and contrcl branches
to (Cu)

PAGE 484

Otherwise, HDRSEEC parameter values are
obtained one by one from the Terminal Support
system and processed individeally, If only a
literal valne is given, it is centered over
the next column +to the <right, If only a
rarenthesized £field name is given, it 1is
centered over the column for the field
name., If thoth a literal valne and a
rarenthesized field mame are given, the ralue
is centered over the column for the specified
field pame. Any syntax, field name, or past
tightmnost column error results in a
diagnostic message allowing the wuser +to
re-enter one value or to default for - that
value t¢o bhe igqnored.

Process DISPLAY ccommand

The display simulates the appearance produced
by the retrieval system DISPLAY command if it
was used with the current format,

If a sequential format display overflows the
screen at the bottom or if a columnar format
display overflows the screen at the right
cide, M"MOREY dig indicated and the Terminal
Support - system is reguested to call DBFORMP
if the user enters the PAGE immediate
comrand, . .

When the modnle 3is entered at the DBFORHNP
paging entry a DIRECTON parameter value is
obtained from the Terminal Support system, if
the user entered it explicitly, or by
assuming forward paging. If the value starts
with "B" the previous display screen image is
re~composed, ctherwise the next display
screen image {down or +to the <right} is
composed. Screen overflow 1is rechecked to
reset the "HMOREY indication and the Terminal
Support system transmits +the screen image to
the vpser's terminal,

FORMAT conmand

If UFORMATY is detected as a sub-command,
control simply branches up to (b.) where its
parameters are obtained and it is processed.
{(This dis more efficient <than VYEND;FORMAT®
because the DBFCORM module stays active,)

END command: RETURN

PAGE 485

If the END condition is raised by the user
entering the END immediate command in blocks
{a.) or (b.), control returns toc the RDBINIT
rodule, If it is raised after bdlock (bh.)
control branches to block {c.}, that is, the
subcomnmand is aborted and another taken,

Submodules required

DBFLDS - FIELLIS command
DBSTRT2 - TFOBMATS ccmmand
DBUCHEK - check name routine
GETSFMT - get stored format
PUTSFHTE - put stored format
PSTRAT - save strategy

TS - terminal support package

F. CODING SPECIFICATICKES

te

2.

Source Language

The FORMAT command is coded in TSS PL/T. The
ISPL/I language extension is wused for all
communication with the terminal.

Suggestions and Technigues

The PSTRAT external routine shall e called
vhenever a valid command or subcommand with wvalid
parancters is detected,

Subroutine facilities shall be coded to handle the
general case of re-proportioning columns and
re-centering headers. {DUP_COL, RE_PRO_COL,
RE_BE2D).

FORMAT

1

PROCESS

FEUMBER
PARAMETER

PROCESS

SUBCOMMAND

¥

PROCESS

FIELD
COMMAND

Y

PROCESS
o FIELDS/

FORMATS
COMMAND

PROCESS
ol NAME/

STORE
COMMAND

¥

PROCESS

e TITLE
COMMAND

PROCESS

S HEADER
COMMAND

PROCESS
o DISPLAY

COMMAND

FORMAT

END COMMAND:
RETURN

COMMAND :

Figure 2,

Top level flowchart

et

TERMINAL
ENTRIES

SEQ-FORM

FORMAT

TERMINAL
DiSPLAYS

Figure 1, 1/0 Block diagram

FLDTAB

COL-FORM

e

PAGE 488

TOPIC F, 11 .- STORED FORMATS

A,

B. .

C.

D.

HODULE NAME

Program~ID ~ RDBSFET
Hodule-ID - DBSFMT

ANALYST

John A,

Lozan

Reoterics, Inc.

HODULE FUNCTION

The functicn of this nedule is to provide generalized
GET/PUT <routines for the processing of stored

formats.

DATRAR REQUIREMENTS

1. . I/0 Block Diagran

See Figure 1

2. Input Data Sets

ds

.,

Ce

Farameter Cards

Not Applicable

Punched Card Input File
Not Applicable

Input Files

Not Applicable

On~time terminal Entries

Not Applicable

3. Output Data Sets

de

Cutput Files
Not Applicable
On-Line Terminal Displays

The program produces diagnostic messages
the varicus errors that may cccurx,

for

E. .

4.

Ca .

d.

PAGE 489

Formatted Print Outs
Not Applicable
Punched Card Qutput Files

Not BApplicable

Reference Tables

The following +tables are referenced, used in the
construction of new formats and uased to output
exiting formats.

FLDTAE
SEQFORHN
COLFORH

PROCESSING REQUIREMENTS

1.

2,

Top Level Flowchart

See Figure 2

Narrative

de

GETSFHMT

At this entry point +the program initializes
itself t¢ read in a previously-stored fornmat,
It verifies the name of the format and checks
to see if the format is already in the format

table., 1t S0, the program returns
inrediately with the appropriate
information.

If the fcrmat must be read, +the first record
cf the format is obtained by calling TSGETRG.
This xecord is analyzed to determine if the
format is colupnar or sequential, The
appropriate format tables are then searched
for a slot into which +the format can be
placed and +he format is allocated and
initialized,

The program then obtains the remaining format
records and posts the data obtained into the
appropriate locations within the format
entry. If any errors are encountered, an
appropriate diagnostic message is written to
the wuser and the partial format 1is freed.
After an error, or when the <format has bheen
conpleted, the required information is

PAGE 490

updated and the program returns +to the
calier,

PUTSFUT

At this entry point the program initializes
itself +to write out one of the currently
defined formats., It verifies the name of the
format and checks to see of the format exists
in the format tables., If not, the progran
terminates with a diagnostic.

If everything is 1in order, the progran
constructs the first format record {(FORNHAT),
indicating the format nane, type, the
intended -file npame and ,other descriptive
information and writes it to the data set by
calling TSPUTRG.

The remaining format data 1is organized into
TITLE, READER and FIELDS records and written
to the data SET in the same fashion as the
FORHNAT record, If any errors are
€ncountered, an appropriate diagnostic
message is written to the user and the
partially stored format is erased. . After an
e€rror, cr vhen the format has been completely
written out, +the reguired information is
rosted and the program returns +o the
<caller,

¥, CODING SPECIFICATICNS

1.

2.

Source language

The module 1is written using the TS5S 360.PL/I
Language.

suggestions and Techniques

Not Applicable

RDBSFMT

Figure 1.

SYSOUT

170 Block Diagram

LAl

L]

(. GEISEMT)

%

TNITTALLZE

g

READ
FIRST
RECORD

[

ALLOCATE
FORMAT

-

WRITE

j MESSAGE [

¥

(PUTSIMT’)

¥

INITTALTZE

WRITE
FIRST
RECORD

" FORMAT
" DATA

WRITE
NEXT
RECORD

Figure 2.

POST
PARAMETERS

EXIT

3

MORE DATA

L4 7

Top Level ¥iowchart - GEISFMT, PUTSEMT

PAGE 493

TOPIC F.12 ~ GENERIC KEY DISPLAY

A,

B.

Cs

D.

MODULE NAME

Program-~1ID -~ RDBGFLDS
Modnle-ID - DBGFLDS

ANALYST

John i, Lozan
Neoterics, Inc,

MODULE FUNCTION

This module displays a formatted 1isting of the nanmes
assigned to the sut-levels of the key for a gensric key
file,

DATZ REQUIREMENTS

1. I70 Block Diagran

See Figqure 1
2. Input Data Sets
de Parameter Cards
Not Applicalkle
b, Punched Card Input Files
ﬁct Applicable
c. . Input Files
Not Applicable
d. On-Line Terminal Entries
Not Applicable
3. oOutput Data Sets
A Output Files
Yot Applicable
b. Cn-Line Terminal Displays

The program produces a formatted list- of the
suh-level names, '

.u‘

BAGRE 494

Ca Fermatted Print Outs
ot Applicable

d. Punched Card Qutput Files
Not Applicable

Reference Tables

The program references the following +tables +to
ohtain the informaticn which it displays,

FLDTAB
GENERIC

E. PROCESSING REQUIREMENTS

1.

24 .

Top Level Flowchart
See Figure 2
Narrative

Upon entry the program initializes the screen and
other data necessary to construct the display. It
extracts the current file name from TFLDTAB and
uses it +to construct the generic table definition
routine { XXXXXXX, where xxxxxx is the file nane).
It calls this rcutine +to obtain the generic key
description. If any errors are indicated, =a
diagnostic message is written to the user and the
program is terminated.

The program thenm extracts each name from the
generic key dsscription table and posts is to the
screen., ¥When the list is exhausted, the screen-is
displayed to the user and the ©program returns to
the caller,

Fa CODING SPECIFI&ATIONS

1.

2,

Source Lanquage

The rodule 1is written using the TSS 360 PL/T
language.

Suggestions and Technigues

Not Applicable

H45

RDBGFLDS

S5YSOUT

Figure 1, I/0 Block Diagram

<>

NASIS,
USERIDS

DATA-
BASE

W

DBPRINT

———

< 7| TERMINAL

NASIS STRATEGY, DATASET

Fig. 1 I/0 Block Diagram

5%

o 7E:ﬁ ‘:.};"*‘::2.;

£ i\

GV

He L

(DBGFLDS)

§

INITIALTZE

GET
GENERIC
STRUCTURE

ANY N v WRLTE
ERRORS &/ MESSAGE r

GET a
FIELD

POST EXIT
SCREEN

Figure 2. Top Level Flowchart - DBGFLDS

ENTER

INITIALIZE
VARIABLES

I L 1
CALL PROMPT °

COMMAND

FOR A l

|
’ I

] T
CALL PROMPT
FOR 1D

o

ALL

iDs
?;D
2

NO PROMPT

YES
RETURN

CLEAR

DISPLAY)
TINFORMATION
)

ACCUMULATE
TATTSTICS
FROM

COUNTERS

CALL

FOR
RANGE

STRATEGY

FIG. 2 TOP LEVEL FLOWCHART

WOr 1N e

GET DATA

CALL
DBPAC TO
OPEN FILE
FILE

CALL
DBPAC TO
CREATE A

LIST CF KEYS

CALL
DBWRIT
TO DO
PRINTING

©

PAGE 497

TOPIC -~ BATCH PRINT MCNITOR

A,

B,

D.

MODULE NAME

Program — ID - RDBERINT
Module - IL - DBERINT

ANALYST

Frank Reed
¥eoterics, Inc.

BRODULE FUONCTION
This program controls the execution of the batch print
system in much the same way that RDBINIT controls the
retrieval system. That is, it initializes file-related
tables and issues compand prompts to activate batch
sub-system cperaticns.
DATA REQUIREMENTS
1. I/0 Block Diagran
See Figure 1.
2, Input Data Sets
Qe Parameter Cards
Rot Applicakle
b, Punched Card Input Files
Not Applicable
Cs Input Files
NASIS.USERIDS
d. On-line Terminal Entries
The user of the batch print systen
comnunicates with the system through a series
cf command and data prompts. The commands
and parameters are:
1. END

Terminate the terminal session

2., DPRINT NASISID=,BSN=

3.

5.

B

8,

9.

3.

PAGE 498

Produce a formatted print-out of data from a file
utilizing information saved in the print gueue for
Nasis ID with Batch Seguence HNunmber (BSN)
specified.

HOLD NASISID=,8S5N8=

Place a print job in "hold" status,

RELEASE NASISID=,BSN=

Place a print Job in Yactive" status so that it
can be executed.

EXHIBIT NASISID=,BSH=

Display a formatied description of the contents of
the batch print queue at the user's terminal.

NUMBER NASISID=

Tally the nunber of print tasks in the gueue,
CANCEL NASISID=,BSN=

Remove a print task f£rom the guene,

KEYS NASISID= ,BSN=

Display the file name and record keys reccrded for
a print task.

COPIES WNASISID=,BSN=,CCGPIES=

Overide +the user srecified value for number of
copies of a printed report,

Output Data Sets

A Output Files
Not Applicahle

b, Gn-ling Terminal Displays
Not Applicable

Ce Formatted Print-outs
Hot Applicable

d, FPunched Card Qutput Files

L

PAGE 499

Not Applicable
Reference Tables

Not Applicable

E.. PROCESSING REQUIREHENTS

Ts

2,

Top Level Flowcharts
See Figure 2.
Farrative

DBPRINT gets control from DBMTT, then prompts for
one of the ccmmands outlined in section 2D, If
the command is PRINT, the information relating to
the wuser?s print gueue is retrieved <from the
strateqy data set and used to open the file from
which data is to be printed. After =all
initialization is complete, control is passed to
DBHRIT +to perform the actunal data retrieval and
printing.

A1l other ccemmands provide various operations on
the 1user's print gueue as described above, except
END, which rteturns control to DBNTT,

F. CODING SPBECIFICATICHS

1.

2

Source Language
PL/I
Suggestions and Technigues

Vot Applicable

BAGE 500

TOPIC - BATCH PRINT WRITER

4.

B.

D.

BMODULE NAME

Program - ID - EBDBERIT
Module ~ IL - DBWERIT

ANALYST

Frank Reed
Neoterics, Inc.

MODULE FUNCTION
This program retrieves data from a user - specified
data base and prints a listing in either a predefined
sequential format or a wuser-defined seguential or
columnar format.
DATA REQUIREMNENTS
1a 1/0 Blecck Diagram
See Figure t1.
2. Input Data Sets
a. Parameter Cards
Not Applicakble
b, Punched Card Input Files
Not Applicable
Ca Input Files
Any NASIS data base,
d.. ©Cn-line Terminal Entries
None
3. Ontput Data Sets
a, Cutput Files
Print file (PRINTER)
b. On-1line Terminal Displays

Noct Applicable

E,

4,

PAGE 501

Ca FYormatted Print OCuts

‘User ~ defined sequential or columnar
Frints,

d. Puncled Card Qutput PFiles
Not 2pplicable
Reference Tahles

Not Applicable

PROCESSING REQUIREBENTS

1.

2.

Top Level Flowcharts
See Figure 2,
Narrative

BBRRIT gets contrel from DBPRINT, then opens the
PRINTER output file and creates the title page,.
Next, a record from the data base being retrieved
from is read and either sequential or columnar
formatting 4is begun based on a +table of field
names specified by the user, For sequential
formats, the field names and associated data are
displayed on successive lines with the field names
to the left cf the data. Columnar formats require
the printing of header and +title dinformation
{saved by the PRINT and FORMAT functions) -along
with the field names or other identifier for each
column of data across the top of each page. The
data for each field is presented under the
appropriate column heading until the 1list of
record keys is exhausted,

¥hen all printing of data is completed, a sunmmary
0of dinformaticn contained therein is displayed.
For sequential prints this is simply a count of
the number c¢f records displayed. For columnar
prints, this can be, optionally, a tally, sum, and
average of the numerical values of items occurring
in one or more of the columns.

After <closing the PRINTER file, control is
returned to DBPRINT with a return code of X' for
a print terminated by the operator of ¢ for a
print terminated by a data base error. The return
code is wunchanged if the print completes
successfully,

F. CODING SPECIFICATICNS

1.

Source Languagse

PL/T

Suggestions and Techniques

Not Arplicable

PAGE 502

DATA-
BASE

DBWRIT

PRINTER

FIGURE 1 I/0 BLOCK DIAGRAM

Q_T,.P WM

ENTER

OPEN
PRINT
FILE

fINITIALTIZE |
VARTABLES

vEg| DISPLAY
DATA UNDER
COLUMN
HEADIN

COLUMNAR
PRINT

DISPLAY AST No

FIELD NAME | RECORD
AND DAT

FPRINT ANY YES | POST
SUMMARY ERROR RETURN
INFORMATION CODE

{ RETURN >

FIGURE 2 TOP LEVEL FLOWCHART

PAGE 503

TOPIC F.15 - LINKIT Command

A. MODULE NAME
Retrieval LIMIT Ccmmand
Program-ID - RDBLHET
Modunle-IB - DBLMT

Ba ARALYST

Barry G. Hazlett
Neoterics, Inc,

C. MODULE FUNCTION
This module lipits an existing set of anchor file keys
according +to the specified criteria thereby creating a
new set,
b, DATA REQUIREMNENTS
1. I/0 Block Diagran
See Figure 1
2. Input Data Sets
£ Farameter Cards
Not Applicakle
b, Punchled Card Input Files
Net Applicable
‘Ce Input Files
Not Applicable
d. OnfLine Terminal Entries
Not 2Applicable
3, Qutput Data Sets
A, Gutput Files
Not Applicable
b, Cn-Line Terminal Displays

The new s=et created by the ILIMIT ccommand is
displayed on the output screen through use of

PAGE 504

the routine DBPSET, Refer to +the dataset
gpecification section of +the DWB for a
writeup cf this display.

Ca Pormatted Print-oOuts

Not Applicakble

E, PROCESSING REQUIREMENTS

1.

2,

Pop Level Flowchart
See Figure 2
Narrative

Upon entry intoc DBIMT, of the IINIT structure has
nct been allccated, a module name is derived by
concatenating "L¥" +to the data tase name., If-the
module dogs not. exist, the user 1is given a
diagnestic and control is returned to the calling
routine,

After determining a valid LIMIT stracture exists,
the user is rrompted for +the set to be limited.
To be valid the set nust exist and must consist of
anchor file %keys. If the set number is invalid,
the user is given a diagnostic and prompted for a
new set number,

After obtaining a valid set number, the user is
rrompted for a list of limits to apply against the
set., To be wvalid the specified fieldname must be
present in the LIMNIT table and the values must be
less than 51 characters long and the two values
must bte separated by a colon. If the limit is
invalid the user is given a diagnostic and
reprompted for the limit, If the limit is wvalid,
a flag is set in LIMIT indicating which subfield
to test along with the two values indicating the
value range, If more 1limits are in the inpat
streem, they are prompted for and processed as
above, -

Once all of the 1limit criteria have been
established, a contrcl loop is setup to obtain
the keys o¢nre by one from the input set, Each
subfield to be tested is extracted from the XKey
and ccompared against +the acceptable values for
this field., If a key fails any of the specified
tests, it is ignored and the mnext k€y from the
list is obtained and processed as above. If the
key is acceptable, it is posted in a new list.)

F. -

PAGE 505

After all the keys in the imput list have been
processed, the new set is posted in SETAB and the
rTesults posted to the wuser screer through use of
the routine DRPSET, after which control is
returned to the calling progran.

CODING SPECIFICATIGHS

1.

2,

Source lLanguage
IBHM/360 PL/I Langunage
Suggestions and Techniques

Not Applicable

FLDTAB

N

DBLMT

-

LIMIT

Screen

SETAB

DBLMT

SETUP
-LIMIT

GTP0T .

N__/ pracnos- POST

TAGNO . KEY |

@ Y] : ! "
GET SET# (__merumy) Y;(::)

N
N .| SETUP
\.
VALID 7 MESSAGE POST SET
? | DBPSET

® S
RETURN

GET TEST
g

|

SETUP
“MESSAGE

=
Y [

TOPIC 6.1 - ACCUMULATICR

-9

B. .

C.

D.

MODULE NAMYE

Statistics Accunulator
Program~ID ~ RDBACCUM
Module-TID - DBACCUHM
ANALYST

James A. Wesley
Neoterics, Inc.

MODILE FUNCTION

Primarily, +this module is used +to

PAGE 508

accunulate the

maintenance statistics on +those data bases which have

already bheen loaded,

This program reads an existing data base anchor file
and accumulates the number of records on it. Then, it
posts this record count to the STATIC data base.

DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards
Kot Applicable
b. Punched Card Input Files
Not Applicable

Ca Input Files

The data base which is to have the statistics
accumulated, and the STATIC dataplex.

da Qn=-1ine Terminal Entries

¥ot Applicable

E.

3.

b,

PAGE 509

Output Data Sets

a, Cutput Files
The STATIC Dataplex

be Cn-line Terminal Displays
Not Applicable

c, Formatted Print-outs
Not Applicakble

Reference Tables

Not Applicable

PROCESSING REQUIRENENTS

1.

2.

Top YLevel Flowchart
See Figure 2
¥arrative
Error HMessage:
ERROR OKX 301 OF 302,

Rhere:
$01 is the QNFILE,
$0Z2 is the ONCODE.

The program %11l accept the data hase name as a
paraneter and will proceed to count the anchor
files records. When this task is completed, it
will cpen the STATIC data base for update and post
the record count.

The posting of the STATIC data base assumes that
no record <for this data base currently exists,
Therefore, if .an error occurs on the LOCATE
Statement for the posting, the joh is
terninated. The key's value for the locate
statement is as followus:

2 value of 10! concatepated to the data base
nane and filled with $'s to 24 characters.

The field 'ANCOUNT! is posted with the number
of anchor records.

PAGE 510

The field 'MAINDATE(1)' is ©posted with the
jobs rtun date, i.e., this 3is assumed to be
the creation date for statistics.

The field *TOTAL RON' is posted with a '17,

The field *'TRANCHEEW' 1is posted with the
number ¢f anchor records.

The following <fields are posted to 1'0's
'TOTALTENT, fTRANCDEL?', YTRANCUPD®,
*PRINVNE®', 'TRINVDEL', and fTRINVUPLY,

F, . CODING SPEICIFCATICGNS

1s .

Source Langnage

The RDBACCUOM module is coded in the TIBM
programming language PFL/I. The DBPL/T and TSPL/I
language extensions are used for data base access
and terminal I/0, respectively.

Suggestions and Technigues

It is important +to remember that the executive
error '99* ipdicates an end of file <c¢ondition,
Special attention is made for the handling of the
data base executive errors. :

DATAPLEX
ANCHOR
FILE

o STATIC

- RDBACCUM DATAPLEX

PARAMETER
PLEX NAME

PAGE 511

‘ DBACCUM ,

Y

OPEN ANCHOR
DATAPLEX BY
PARAMETER
NAME

P

READ A
RECORD

COUNT =
COUNT 1

¥

‘ ERROR ’

ABEND

)

OPEN
STATIC
DATAPLEX

LOCATE
THE
RECORD

POST
FIELDS,
CLOSE

END

Figure 2. Top fevel flowchart

512

PAGE 513

TOPIC G,2 - REBORT PRINT

:

B,

C.

D

MODULE NANE
Print the Hetrieval Statistics
Program-ID - RD¥ERNRTR
Modnle-IL - DBPENTER
ANALYST
Rdward J. Scheboth, Jr.
James A, Wesley
Neoterics, Inc,
MODULE FUNCTION
The purpose of +this program 1is to present a detailed
listing of the contents of +the STATIC data base
pertaining to retrieval statistics.
DATA REQUIREMENTS
1. I/0 Bleck Diagram
See Figure 1
2 Input Data Sets
a, Paraneter Cards
Kot Applicalble
b. Punched Card Input Files
Not Applicable
Ca Input Files
The STATIC data base, {for full details on
this data base see Section III of +the
Levelopment Workbook).
d. On—line Jerminal Entries
Not Applicalle
3. Output Data Sets
A Cutput Files

Not Applicable

PAGE 514

b, Cn-line Yerminal Displays
Not Applicable

¢, . Formatted Print-outs
The retrieval statistics' report, {for full
details of this report {listing} see Section
IITI of the Development Workbook}.

Reference Tahles

Not Applicable

E. PROCESSING REQUIREMNENTS

1.

2.

Flowchart
See Figqure 2
Narrative

This rocdule performs the following logic in order
to prcduce the retrieval statistics' report

A, Open the STATIC data base for seguential
input {use DBPL/I).

b, Read the STATIC file sequentially record by
record and while reading, comstruct from the
current information on the STATIC data base
the regquired listing.

C. Ontput the print file regquired to produce the
retrieval statisticst' report.

d. Close all files: Terninate,.

Note: It will be necessary for this program to
accumulate various dinformation so that it
can output the Sumnary of retrieval
statistics, representing all of the
statistics on the STATIC data base.

F. CODING SPECIFICATICYS

1.

Source Language

The EDBPRNTR module is coded in the IBM
programming Jlangnmage PL/I. The DBPL/T and TSPL/I
language extensions are used for dJata hase access
and terminal I/0, respectively.

PAGE 515

Snggestions and Techniques

Refer to Section III

of the Development WHorkbook

for all data set specifications and all data base

executive errors,

574

STATIC

DATAPLEX

RDBPRNTR

¥

RETRIEVAL
STATISTICS
REPORT

Figure 1, /O Block dtagram

READ
STATIC

‘ DEPRNTR }

‘f
INITIALIZE
OPENM STATIC,
REPORTFILE,
SPACE 10
RETRIEVAL

-

v

PRINT
HEADINGS
READ STATIC

BUILD A
LINE AND
WRITE

tigure 2. Top Jevel Howehart

517

‘PAGE 518

TOPIC G.3 - USAGE STATISTICS UPDATE

A. .

E.

C.

D.

MODULE NAME
Update Maintenance Statistics
Program-ID - RDBUPDST
Module-ID - DBUPDST
ANALYST
Edward J, Scheboth, Jx,
James A, Wesley
Neoterics, Inc.
MODULE FUNCTION
This program updates the statistics data base (STATIC)
with +the maintenance statistics from the load/create
prograpm (RDBLOAD) or from +the maintenance painline
(RDBMNTNY .
DATA REQUIREMENTS
1. I/0 Blceck Diagranm
See Figuore 1
2, Input Tata Sets
8. Parametexr Cards
Net Applicable
b, Funched Card Input Files
Not Applicakble
C, Input Files
The STATIC Dataplex
d. On-line Terminal Entries
Not Applicable
3. Dutput Data Sets
A Cutput Files

The STATIC Data Base

E.

PAGE 518

b, Cn-1line Terminal Displays
Not Applicable

Ce Formatted Print-outs
Xot Applicable

Reference Tables

Not Applicable

PROCESSING REQUIRENENTS

1.

Top Level Flouchart
See Figure 2
Narrative

The parameters are passed via standard PL/I
procedure/preocedure linkage key calls from
RDBUNTN and RLELCAD.

The parameters which are passed are as follows:

s Calling program identifier character 2.
First Character
C = first call,
M = subsequent call, —
Second character,
L = c¢alled from LOAD,
anything else signifies - called from
elsevhere.

b. File being updated.
Ca Manber ¢f new anchor records, character 6.

d. ¥unber of deleted anchor records, character
6.

e, Number of updated anchor records, character
6.

£, NYunber of new subfield records, character 6.

ga Fumnber ¢f deleted sukfile records, character
6.

ha Ronber ¢f updated subfile records, character
6.

PAGE 520

i, Number of new inverted records, character 6. .
Fe Rumber ¢f deleted inverted records, character
6.

K Number of updated inverted records, character
6.

The load/create nmodule {RDBLOAD) invokes this
module conly conce, and thkis is at the end of the
create <rTun, Therefore, this module opens the
STATIC data base for direct (update or ontput) and
locates the ney rTecord. The data is put and the
file closed.

The maintenance mainline (RDBMNTN) is calling the
module continuously while processing (this is +to
preclude the possibility of a system crash causing
a loss of statistics). Therefore, upon the first
invocation <from the maintenance w®mainline, the
STATIC data tase is opened for direct update, The
proper record is read and written, and control is
returned to the maintenance mainline.

The final <c¢all from the maintenance mainline will
have an 'EF' posted to the c¢alling progranm
identifier,

If the wupdating of the STATIC data base is
successful, a '6! is posted to the <calling
program identifier vpon return: vhereas, if the
results are nct successful, a 'B' is posted,

If the results of the attempted posting are dad,
the calling programs will resolve the disposition
of the non-pe=sted dJata,.

The details of the contents of the STATIC data
base can be found in Section IIT of the
Development Werkbook,

The fcllowing illustrates the parameters passed
and +the associated fields which are updated; they
are in the form "parameter - static field name":
A. . Maintenance date -~ MAINDATE

be Numnber of new anchor records —~ TRANCNEW

C. Number cf deleted ~ TRANCDEL

d, Number cf update - TRANCUPD

PAGE 521

2, Kurber of new subfile records - THSUBNEW
£. Nember of deleted - TRSUBDEL

Ja Hunber of updated - TRSUBUPD

he Nurber of new inverted records - TRINVNEW
i, Nunber of deleted - TRINVDEL

Ja Number of update ~ TRINVUPD.

K Calling program identifier - #*-none~*

It is important to remember that +there is a one
for c¢ne correspondence hetveen all of the
previously mentioned STATIC data base fields. For
Exanple:?

If HATINDATE = *33/16/70' and this is the
actual date of the maintenance run, then if
the MAINDATE value of *03,/16/70*" i=s the third
€lement in +the +variable length field, then
all updates to the other eslemental fields of
the record are made to the third element.

The table which follows will thelp to
jllustrate this more clearly.

KAINDATE 01/16/70 02/16/70 03/16/70 null

TRANCNEW S 3 1
TRANCDETL 18 i 1
TRANCUPD 3 7 1
TRSUBNEW 7 S 1
TESUBGEL 3 12 6
TRSUBUFD 1 9 2
TRINVNEW 16 3 1
TRINVDEL i 4 1
TRINVUPL 12 7 1

The fields %e aTre concerned with are: HAINDATE,
TRANCNEW, TRANCDEL, TRSUBNEW, TRSUBDEL, TRSUBUPD,
TRANCUPD, TRINVNEW, TRINVDEL, TRINVUPD,

These fields are all variable 1length fields with
nultiple =£ixed 1length elenments, The maximun
sumber of elements is 13, The £first element in
the array is used as ap accumulator. Elements 2
through 13 are used to represent individual
maintenance runs.

This is sinpple enough--when this wmodule is called

EAGE 522

from EDBMNTN, it sinply locates the maindate which
is the same as the paraneter and does the posting
into that given element,

The guestion is what does this module do when it's
calied for the first time from +the maintenance
program (RDBMNTN) and the date is not =sgual to any
of the posted dates and all 13 elements have data
so that there 45 no additional elemental slot
where the data can be placed,

The solution is as follows: First, the second
elemental =slct is 'REPUT' +o null, Which causes
the data base executive to auntomatically slide all
of +the other elements ({(logically), Then, the new
raintenance data will be 'POUOT?! as the thirteenth
element,

7. CODING SPECIFTICATICNS

1.

Source .lLanguage

The RDBUPDST module is coded in the 1IBRH
programning language PL/X, The DBPL/I and TSPL/Y
language extensions are used for data base access
and terminal 1/0, respectively.

Sugyestions and Techniques
Refer +to Section III of the Development Workbhook

for all data set specifications and all data base
executive errcrs,

MODULE
- CALLWITH
PARAMETERS

RBBUPDST

STATIC

DATAPLEX

4 23

PAGE 523

RDBUPDST

CREATE

¥

ANALYZE

PARAMETERS
AND
VALIDATE

ANALYZE

SUMS

AND

VALIDATE ¥

LOCATE NEW
RECORD AND
POST COUNT,
DATE FIELDS

READ RECORD
AND POST
COUNT, DATE
FIELDS

POST THE
COMMAND
COUNT
FIELDS

Y

RETURN

Figure 2. Tap level flowchart

PAGE 524

PAGE 525

P0PIC G.4 - CLOCK ROUTINES

A,

B,

C.

HODULE KAME

Clock Routines
Program=-ID - RTIMERS
Module-ID -~ RTIMEES
ANALYST

Edward Jd. Scheboth, Jx,.
Neoterics, Inc.

HODULE FUNCTICN
This modugle initializes two T5S clocks, one for CPU
time and the other for CONNECT +time. These clocks may
be read at a later time +o provide the elapsed time
plus initial values,
DLT2 REQUIREMENES
1. I/0 Block Diagram
Not Applicable
2, Input Data Sets
a. Parameter Cards
Kot Applicagle
b. Punched Card Imput Files
Not Applicable
C, Input Piles
Xet Applicable
d. Cp~-line Terminal Entries
Not Applicahle
3, Output Data Sets
Qe Cutput Files

Not Applicakle

"E.

F,

PAGE 526

b. Cn-line Terminal Displays
Not Applicable

C, Formatted Print-outs
Bot Applicable

Reference Tables

Not Applicable

PROCESSING RBEQUIRENENTS

1.

24

Top Level Flowchart
See Figure 1
¥arrative

In the START entry, the initial values are
assianed to +the total clock value and an even odd
pair ¢f «clocks are started even {0) with task
option 0DD{1) with <real option and two counters
are set with these values,

In the READ entry, a flag is set to on at entry.
The clocks are read and the initialized totals are
updated, The clocks are stopped and restarted %o
prevent expiration, +the values are provided to
caller the ¢-1 pair of clocks started, the
indicator turned off and return made to caller,

In the STOP entry, the two counters of clock
nunbers are deducted by 2 and each pair of active
clocks stopped.

If either clock should expire, the expiration
routing post £full values to total and starts a
new clock with value +2 and returns.

CODING SPECIFICATIONS

1.

24

Source lLanguage
Assemnkler
Suggestions and Techniques

Not Afrplicable

START
ENTRY

v

¥

VALIDATE
INITIAL
PARAMETERS

INITIALIZE
CLOCKS

START
CLOCK

INDICATE
READ ON

READ
CLOCKS

IS
LAST CLOCK
STOPPED

Y

‘ RETURN ,

ADD
TO
TOTAL

CPUEXPIRE

UPDATE
TOTALS

¥

STOP
CLOCKS

v

RETURN
VALUE
0
CALLER

RESTART
CLOCKS

¥

START
NEW
CLocK

INDICATE
READ OFF

¥

{(rerew e

v

l RETURN ’

Figure 1. Top level flowchart

CONNECT EXPIRE
ENIRY

UPDATE
TOTALS

START
NEW
CLOCK

v

‘ RETURN }.,_‘J

527

PAGE 527

PAGE 528

TOPIC G«5 - STATIC REPORT

A,

B, .

C.

D.

MODUOLE NAMNE

Haintenance Statistics' Report
Program—ID ~ RDBFENTM
Module-IT - DBPRNTH

ANALYST

Edward J. Scheboth, Jr.

James A, Wesley
Neoterics, Inc,

MODULE FUNCTICN
This progran opens and reads +the STATIC data base
{sequential input) s analyzing, accunulating and
formatting (for printing) the maintenance statisticst
information which is currently posted. The end result
is a maintenance statistics'! report. It has the added
function of snapshot dump and re-initializing -the
seven variable element fields which are the running
totals of the maintenance statistics.
DATA REQUIREMNENTS
1. I/0 Block Diagram
See Figure 1
2, Input Bata Sets
da Paranmneter Cards
Not Applicable
b, Punched Card Input Files
¥ot Applicadble
Ca Input Files
ThHe STATIC data base (for detailed and
complete information on +this data base refer
to Section IIT of the Development
Horkbook).
d. Gn-line Terminal Entries

Not Applicable

E. .

PAGE 528

Cutput bata Sets

a. QOutpnt Files
¥ot Applicalkls

b, Cn-line Terminal Displays
Not Applicable

C. Formatted Print-outs
The maintenance statistics report {for
conplete detailed information on this listing
refer to Section III of the Development
¥orkbooky.

Reference Tables

Not Applicable

PROCESSING REQUIREMENTS

Ta

2.

Top Level Flowchart
See Figure 2
Varrative

This recdule performs the following logic in order
to produce the maintenance statistics' report:

Ao Opens the STATIC data base for sequential
input (use DBPL/J).

ba Read the STATIC £file sequentially, record by

record, and while reading constructs from
the <current infermation on the STATIC data
kase, the required listing.

¢, Outputs the print file regquired to produce
the maintenance statistics' report.

d.. Snapshots the ten variable element fields if
they are full,

a, Close A1} Files: ‘'erninate,

Note: T+ is necessary for this progranm to
accunulate varicus information so that it
can output the sunEary of maintenance
statistics,

PAGE 530

F., CODING SPECIFICATICNS

\1 »

Source Language

The TEKDBPRNTH module is coded in the IBHN
programming language PL/I. The DBPL/Y and TSPL/I
language extensions are used for data base access
and terminal I/0, respectively.

Suggestions and Technigues
Refer +to Section III of +the Developnent Workbook

for all data set specifications and all data base
executive errors.

53|

STATIC

DATAPLEX

RDBPRNTM

Y

MAINTENANCE
STATISTICS
REPORT

Figure 1. 1O Block diagram

‘ DBPRNTM)

3

OPEN
STATIC, -
REPORT

READ
STATIC
DATAPLEX

FORMAT

Figure 2. Top level flowchart

TOPIC G,6 ~ RETRIEVAL STATISTICS DIRECTOR

A.. NODULE NAME
Retrieval Statistics -
Program-ID - RDBSTAT
Hodule-ID - DBSTAT

B. ANALYST

James A. Wesley
Neoterics, Inc.

C. MODULE FUNCTION

This module is the heart of the retrieval

It has an entry point for each retrieval

included in the statistics,
D. DATA REQUIREMENTS
T I/0 Block Bbiagram
See Figure 1
2, Input Bata Sets
a, Parameter Cards
Bot Applicable
h; Funcled Card Input Files
Hot Applicable
Ca Input Files
¥ot Applicable
d. Cn-line Terminal Entries
Not Applicatble
3. Output Data Sets
R Cutput Files
The Static data base,
b. On-line Terminal Displayé

Not Applicable

PAGE 533

statistics,

module

E.

4.

PAGE 534

C. Formatted Print-outs
Not Applicable

d, Puncled Card Output Files
Not Applicable

Reference Takles

tFLITAB' is used to convert inverted indices to
data hase file namnes.

PROCESSING REQUIREMENTS

Ta -

2.

Top Level Flowchart
See Figure 2
Narrative

The INIT entry checks to see if there was a crash
during the last session by the existence of the
ONES record and then write one if there wasn't one
or after BRLECHKPT deletes it. INTIT initializes
statistics that like INIT in the command systenm
setting up the necessary +tables or pointers for
later use,

Each command entry, one each for EXPAND, SELECT,
SEARCHE and CORRECT, pushes its infcrmation,
comrrand type, NASISYD OWNERID and £ill, into the
stack and then checks to see if it is time to
update the statistics by checking the command
count and entry count for critical level.

The DBSTATF entry call on termination of a
sessicn, just indicates that this is to be the end
and- provides strategy informwation and branches to
the PUTSTAT routine,

The DESTATD entry deletes this strategy from the
statistics if it is there.

The PUTSTAT routine always updates the CPU and
connect time by <calling the RTIMERS routines for
their wvalues. It =also always pops the command
stack and wupdates each cowmand <ount and the
set-date for the srecified file. The stack is a
FIF0 stack, a one dimensional structured array.
If +this 3is a DBSTATF entry, then the strategy
information *STRATNMEY, 'STRATSTR,' and *STRATLEN?
and usage dinformaticn 'LASTDATE' are complete

PAGE 535

updated. Finally, for the DBSTATF entry to update
the =storage allocation is freed and the ones
record deleted from STATIC.
T, CODING SPECIFICATIONS
1. Source language
PL/I and DBFL/I

2.. Suggestions and Techniques

Not Applicable

-

DBSTAT

STATIC
2 &~ DATAPLEX

Figure 1. 1/0 Block diagram

53¢

/m
i

oo

, COMMAND ———-}. Expaup, o
o ENTRY SELECT,
ENRY CORRECT, ;o
SEARCH L

. PUSH
v COMMAND UPDATE
AND PARAMS STRATLEN
OPEN }N STACK
STATIC !
|
UPDATE Y —
CPU AND :
CONN. TIME UPDATE \
ON STATIC STRATNME
" ‘
— /
RETURN L
_ UPDATE \ f
SESSDATE FOR
s
UPDATE
FIN{SH STACK STRATSTR
CLOSE ENTRY
STATIC
g UPDATE ¥
INDICATE FOR EACH
g COMMAND) UPDATE
THIS IS IN STACK
EINISH LAST DATE
CALL
RDBCHKPT
ARE Y
MORE |N CLOSE
¥ STACK STATIC
CALL
OPEN RDBCHKPT
STATIC
DELSTRAT i
y -
'l! T
N FINISH :
INDICATED FREE . 5
v ALLOCATIONS |¢
! ‘I
INITIALIZE
AND Y
ALLOCATE RETURN v .
(RETURN)
v v '
FT
WRITE DELETE IT
ONES
F A—
g :
/

[“ RETURN ;
RETURN

.

Figure 2. Top level flowchart

TOPIC H,1 - EXPIATIN FACILITY

2.

B. .

C.

D.

MODULE NAMNE

Progran-ID - RDBEXEL
MODULE-IT - DBEX?PL

ANALYST

John A, Lozan
¥eoterics, Inc,

MODULE FUNCTION

This module allows the user
of a message o¢r term, the
responses to a prompt, that
or, the text of any of the

on the message file,

DATA REQUIREMENTS

1. I/0 Bleck Diagran
See Figure 1

2. Input Data Sets

A Farameter Cards

Kot Applicable

to display the explanation
origin of a message or the
has appeared on the screen,
standard prompting messages

b, Punched Card Input Files

Not Applicakle
C, Input Files

Not Aprlicable

d. On~line Terminal Entries

This module receives its input in the form of
tarameters passed with the EXPLAIN or PROMPT

commands.
3. Cutput Data Sets
ae Cutput Files

Not Applicable

E.

4,

Ce

PAGE 539

Cn~line Terminal Displays

This rodule displays the reguested
information for the user on the terminal,

Formatted Print-Outs
Kot Applicable
Punched Card Cutput Files

Hot Applicable

Reference Tables

Not Applicable

PROCESSING REQUIRENMENTS

T

2,

Top Level Flowchart

See Figqure 2

Qs

. Narrative

TREXPL

Upon entry, +the program initiallirzes Toe
variables that control execution and the
displaying of data to the nser, Tt also sets
up the mechanism by which paging is to be
accomplished.

Rext the program prompts for the OPTION and
KESSAGE parameters reguired for the EXPLAIN
function, It verifies that the option
selected is valid, and if so, branches to the
appropriate routine,

For simple explains, i.g., nessage
gxplanations, the OPTION is +treated as an
index, verified, and the line npunber set to a
value of 100, If the OPTION is not a valid
index, the regquest 3is +treated as a term
explanation. The OPTION is then treated as a
qualified +term and used to construct the
ressage key which is used to locate the
ternis explanation. For response
explanations the live number is set to a
value of 400.

In each of the above instances, control is
passed tc a routine which attempts to read a

Cs

PAGE 540

data record. If successful, the record is
written to the screen and +the process
repeated, until the data has been exhausted,
or the screen filled, At this time, the
raging controls are set, the screen is
displayed to the user and -+the program 1is
terminated, If no data was found, the
routine hranches %o an error routine which
displays a message to the user and terminates
the program.

If tie original regquest was for a nmessage
origin, the OPTICN is treated as an index,
and if valid, the appropriate message key is
chtained, displayed to the user, and the

progran is terminated.

DBEXPL2

2t this entry point, the program initializes
t+he varriables that control execution and
rrompts for the MESSAGE parameter, It then
prompts for the INSERTS parameter list,

Cnce complete, the program attenpts to
display the message indicated with the
specified inserts.

DBEXPLP

At this entry point the progranm
re-inmitialiges +the variables that control
execution and the displaying of data +to the
USEY. 1f the paging status data indicates
that more data rTemains, the program uses this
data to restore the proper progran status and
then branches to the routine which posts data
tc the screen, If no data remains to be
displayed, the program simply terminates,

F. CODING SPECIFICATIONS

1.

2

The

Source Language

rcdule is written using‘ the TS85 360 PL/I

language.

Suggestions and Technignes.

¥ot Applicable.

SYSIN

DBALIB

RDBEXPT,

LISRLIB

[

Figure 1.

I/0 Block Diagram

{ DREXPLL)

¥

TNTTTALIZE
FOR
EXPLATIN
¥
PROMPT
FOR
PARAMETERS
i K : ; ¥
POSITION TO POSITION TO LOCATE cxr
LINE 100 LINE 400 TERM NESSACE
TO EXPLAIHN TO EXPLAIN TO BE ORTGIN &
MESSAGE RESPUNSE EXPLATNED , ¥
4 '
1 - GET ¥
DATA LINE
N

DISPLAY
ERROR
HESSACE

DISPLAY
MESSAGE
ORIGIN

ANY.

ERRORS
?

SAVE
STATUS DATA

EXIT

Fievrs %A. Ton Tewvel Flowchart ~ DBREXPLL

DBEXPL2

INITIATIZE
FOR
PROMPT

|

i
PROMPT
FOR
PARAMETERS

|
| WRITE
- THE
MESSAGE

EXIT

-
Ol

Figure 2B,

(DBEXPLP)

]

INITIALTZE
FOR
PAGING

RESTORE
STATUS DATA

Top Level Flowchart - DBEXPL2, DBEXPLP

543

PAGE 544

TOPIC H.2 = STRATEGY INTERFACT

A,

B.

Cs

n,

MODULE KAME

Program—ID ~ RUBSTET
Modul=~-II - DRSTRT

ANALYST

John A, lLozan
Meoterics, Inc.

MODULE FUNCTION
This module serves as an interface between the strateqgy
data set service routines and the rtest of the NASIS
system, Irn additicn, it is the module which performs
the fuanctions specified hy +the FORMAT? and STRRTEGY
commands, i.e., the 1listing of format and strateqy
names, the listing of strategies and the deletion of
strateqgies,
DATA REQUIREMENTIS
T1s I/0 Block Tiagram
See Fiqure 1
2. Input Pata Setis
A, Parameter Cards
Kot Anplicatrle
b, Punched Card TInput Files
Nect Applicadle
Cs Input Files
Not Apnlicatle
1, Cn-1ine Terminal Entries
¥hen serving ag the processor for the FORMAT?
and STRATEGY commands, +the program reads in
the ceomeand and paranmeters specified by the
uger to invoke those commands,

3. Nutput hata Sets

A, Cntrut Files

E.

b.

Ce

d.

PAGE 545

Not Applicable
Cn=-line Terminal Displays
Hhen serving as the processor for the PORMAT?
and STRATEGY commrands, +the program produces
the follcwing formatted screen images,
1. Format names display
2 Strategy names display
3. Strategy display
formatted Print Outs
Not Applicable
Funcled Card Output Files

Not Applicable

Reference Takles

USERTAB-is used to obtain the NASIS-id and to test
the task status as represented by the various bit
switches,

FLDTAE —-is used to reference the formats currently
defined for this user,

PROCESSING REQUIREMENTS

1.

Top Level Flcuchart

See Fiqure 2

Narrative

de

GS5TRAT and GFORH

At these entry points the program initializes
the -parameter 1lists necessary to obtain a
line frcm the strategy data set, and calls
TSGRTRG to do it, If an error occurs, and it
is the first error for that region, a
diagnostic message will be written to the
user. Ctherwise, the program simply returns
to the caller,

ESTRAT and PFORY

At these entry points the paragram

C,

PAGE 546

initializes the parameter lists necessary to
write a 1line to the strategy data set,
including the generation of +the strategy or
format nanme, It then calls TSPUTRG +to
perform the write. If PSTRAT is called and
the FTESTNODE, RERUY or RESTACT flags are set,
the prcgram immediately returns +to +the
caller. If an error occurs while writing out
the receord, a diagnostic message is written
to the user and the TESTHNODE switch is turned
cho, The program then returns to the
caller,

CSTRAT and CFORM

At these entry points the program initializes
the parameter lists necessary to change the
name of a region, It then calls TSCHMOGR6 to
accomplish the change. If any errors are
encountered, a diagnostic message is written
to the mser. The proqram then returns to the
caller,

LSTRAT and DFORY

2t these entry points the program isitializes
the ©parameter lists necessary to delete a
region of the strategy data set. It then
calls TISDELR6 %o perform the deletion. If
any errors are detected, a diagnostic message
is written to the user., The program then
returns to the caller,

DBSTRT1

2t this entry point the program initializes
itself to process the strategy conmmand., It
Teads in the OPTION and STRATEGY parameters,
The program then branches to the routine used
to process the +type of request specified by
the QPTICON parameter, If +that parameter is
not valid, +the program writes a diagnostic
message and terminates immediately.

If +the 1user reguested a strategy deletion,
the ©program calls TSDELRG to delete the
strategy specified., If an error occurs, a
diagnostic nessage is written to the user,
The program then checks for any additional
panes, and processes each in the same way.
#hen all processing has been completed the
pragram terminates,

f.

I»

PAGE 547

If the wuser reguested a listing of the
strategy mnames, the program initializes the
screen amnd paging control data. It +then
repetitively calls TSGETSN to <retrisve the
names of the strategies, As each name is
obtained, it is added to the outpunt line and
the line 1is written to the screen., ¥When the
screen is filled or when the strategies names
are exhausted, the screen is displayed to the
user, the paging status data is posted and
the program is terminated.

If +the user regquested a listing of a
particular strategy, the program initializes
the screen and paging control data. The
first strategy name specified is selected,
and TSGRTRG is repetitively called to obtain
the lines comprising the strategy. Each line
is posted to the screen. When the screen - is
filled or when the last 1l1ine has Ybeen
written, the screen is displayed to the user,
the paging staters data is posted and the
program is terminated., The paging status
data must indicate when a strategy has been
completely listed, so that the next name from

‘the list can be used.

DBSTRT2

At this entry point the program initializes
itself to display the names of +the formats
available +to the user. It ipnitializes the
screen - and the paging status data. The
program then extracts the identifiers for all
of +the formats curxrently specified in the
format tables, It then calls TSGETFN +to
retrieve the name of a stored format, It
places the names of the formats on a line and
writes the line out to the screen. The names
are processed alphabetically, =and as each
stored format name is processed, a new one is
read in, Stored formats that are -also
present in the format tables are only showun
¢nce, WBhen the screen is filled, or when the
list of pnames 1is exhausted, the scresn is
displayed to the user, the paging status data
is posted and the program is terminated.

LDBSTRTP

At this entry point the programn
re-indtializes itself +o the status, saved
before the last - termination. If nmore data

PAGE 548

remains to be displayed, the program branches
to the proper routine to produce the next
display screen., If no more data remains, a
diagnostic message is written to the user and
the program is terminated,

F. . CODING STECIFICATIGHS

1.

2,

Source Language

The rwpodule is written using the TSS 360 -PL/T
language.

Suggestions and Techniques

Not Applicable

SYSIN

RDBSTRT

Figure 1. 1I/0 Block Diagram

PAGE 549

INITIALIZE

INITIALIZE

GET
DATA LINE

ERROR
SWITCH
oN?

INITTALIZE

Y

T S [Y e

PUT
DATA LINE. »

SET
ERROR
SWITCH

®

DFORM

EXIT
{ CSTRAT) _ { DSTRAT)
v -]
INITTALIZE INITTALIZE INITIALIZE
|
] v
CHANGE DELETE
REGION REGION —
NAME
. I
ANY v
ERRORS
?
Figure 2A. Top Level Flowchart

4

INITTALIZE

AL

{ DBSTRTL)
(DBSTRTP)
|

i {
INITIALIZE
INITIALIZE
¥
GET
PARAMETERS WRITE
MESSAGE

|
¥
¥ LIST
STRATEGY RESTORE
STATUS

LIST
STRATEGY
NAMES

DELETE
STRATEGY =

WRITE
MESSAGE

WRITE
MESSAGES

EXIT

Figure 2B, Top Tewel Flawchart

() LIST
° 'DBSTRT? NAMES
¥ 7
INITIALIZE INITIALIZE
! A B
¥
COR‘EENTAMS GET A
NAME -
¥
GET
DISK. NAMES
i
UT NAME
GET A F oN
NAME SCREEN
¥ ANY
NO MORE MORE ROOM
NAMES \‘\\\\<
?
'
PUT NAME SAVE
ON STATUS
SCREEN
ANY
MORE ROOM
?
¥
SAVE
STATUS
Figure 2C.

Top Level Flowchart

s 552
LIST ¢
LINES)

¥

INITTALIZE

GET A
LINE

PUT LINE
7 ON
SCREEN

SAVE
STATUS

PAGE 553

TOPIC H.3 - STRATEGY ASSENBILEER RCUTINES

a. NODULE NAME

Program-ID - RTSSIRT
Module-ID - TSSTRT

B, ANALYST

John A, Lozan
¥eoterics, Inc,

C. MODULE FUNCTIOR
These toutines act as the assembler service <routines
for the strategy library. They pernit the retrieval,
nodification and storing of +the saved strategies and
formats,
D. DATA REQUIREMNENES
Te I/0 Elock Diagram
See Figure 1
2. Input Data Sets
a. Parameter Cards
¥ot Applicakle
b, Punclied Card Input Piles
¥ot Applicable
C. Input Files

Strategy data set - 1is -used for input for
bcth stored strategies and stored formats,

TBALIE-member FORMATS is used for input for
=stored formats only.

d. Cn-line Terminal Entries
Nct Applicable
3. Output Data Sets
a. Cutput Files

Strategy Data Set-is used for output for both

E.

4.

b.

Ca

d.

PAGE 554

stored strategies and stored formats.
On-line Terminal Displays
Not Applicablse

Formatted Print Outs

'Not Applicable

Punclied Card Cutput Files

Not Bpplicakble

Reference Takles

USERTAB-1s used to obtain the NASIS-ID.

PROCESSING REQUIREMENTS

1.

Top Level Flowchart

See Figure 2

Barrative

Qs

TSPELRG

2t this entry peint the program initializes
itself to delete a strategy or format region,
It opens the strateygy data set, if necessary,
and extracts the region name passed by the
caller, The program then proceeds +to delete
the regicen, one line at a tinme, If any
errors are encountered, +the region name is
set to pull, The program then returns to the
caller.,

TSGETRG

At +this entry point the program initializes
itself to get a line from a strategy or
format region, It opens the strategy data
set and member FORMATS of DBALIB{0) 3if
necessary. It extracts the parameter passed
‘ty the user, and if a null line number is
rassefl, sets up to read the first line of the
region., If +the high order bit of the line
nunber is off, it sets up to read the line
following that indicated by the line number,
Gtherwise, it positions the pile to the line
number passed.

PAGE 555

The ‘procgram then attempts to read the limne
requested, If successful, it posts the line
number, posts the data {(with trailing blanks
rempoved) and returns to the caller,

If an error occurs, the program sets the
region name to null before returning,
Iikewise, if an end-of-region occurs, the
line number is set to null before returning,
If +the =region cannot be located in the
strategy data set, +the progranm checks the
region name, and if it is a format request,
tries +to locate the region in wnemnber FORMATS
cf DBMLIB({) and +then processes the request
as indicated akove,

TSPUTRG

At this entry point the program initializes
itself to put a 1ine to a strategy or format
regicn, It opens the strategy data set, if
necessary, and extracts the «region, 1live
nunher and data parameters passed by the
caller, If the line number is null, it sets
up to add the line at +the end of the region.
In any case, it positions +the file to the
proper Tregion and live within +the region,
The ©progran then attempts to vwrite out the
Tew line from the data passed by the caller.
If successful the program simply returas to
the caller. If an error occurs, the progranm
sets the region name to null bhefore
returning,

TSCHGRG

'At this entry point the progran initializes

itself to change the name of a strategy or
format region, It opens the strategy data
get if necessary, and extracts the old and
new region names passed by the caller,

The program firsts attenpts to delete any
existing region with the new region name, If
an error occurs, - other than region unknown,
the program terminates and sets the ol1d
region, reads a line, positions itself to the
new region and writes out the live, This
process is repeated until all of the data
lines have been copied. If any errors occur,
the new region is deleted, the o0ld region
name is set to pull and the program returns
t0 the caller., If no errors have cccurred,

f.

PAGE 556

the prcgram deletes the ¢ld region and
returns to the caller,

TSGEESY

At this entry point, the prograns initializes
itself ta get a strategy region nane, It
cpens the strategy data set, if necessary,
and extracts the strategy name passed by the
caller, If the mname is null, +the progran
sets up to get +the first strategy nanme,
Otherwise, it sets up to get the strategy
rame following that passed by the caller,

The program then attempts to read a line from
the strategy data set. If saccessfnl, it
extracts the region name and passes that back
to the caller. If an error occurs, or if an
end-of-file is sensed, the region name is set
to null and +the program returns to the
caller.

TSGETEN

At this entry point, the program initializes
itself tc get a format region name. It opens
the strategy data set and member FORMATS of
DBALIB(0), if necessary, and extracts the
Tegion name passed by the caller, If the
region name is null, the program sets up to
get -the first <fcrmat nanme. Otherwise, it
sets up to get the format name following that
rassed by the caller,

The program then attempts to read a line from
both data sets. If an error occurs, or if
toth files indicate end-of~-file, the —region
name is set to null and the program returns
to the caller, Otherwvise, the progran
compares the region names of the tvwo lines,
It posts the =name, Icwest in value, in the
Tegion nane and returns to the caller,

F. CODING SPECIFICATICN

1.

24

Source Language

The mcdule is written using the TSS 360 Assembler
language

Suggestions and techniques

Any output operation +to the strategy data set

PAGE 557

results 1in the tepporary closing of-the data set,
tc ensure data set integrity in +the event of a
system crash,

==

|

RISSIRT [P~ | |
"‘N\

| |sTRATEGY| DBALIE | |

| DpaTa |

I SET g

:_ S N

—_——e

Figure 1,

1/0 Block Diagram

557

‘ TSDELRG .

|

(TSGETRG)

i

(TSPUTRG)

INIFIALIZE INITIALIZE INITIALTZE
, %)
DELETE POSITION POSITION
REGION DATA SET DATA SET

GET PUT
LINE LINE
A

POST

ERROR

INDICATOR

POST

EOF -

INDICATOR

L mranam A Trawm Tawral BElarmrrhavi

551

PAGE 558

(Tscmere)

]

Yoy

INITTALIZE

v

POSITION
OLD
REGION

l
¥

GET
LINE

END OF

REGION
?

1]

POSITION
NEW
REGION

é

PUT

LINE

i

TSGETSH

INITIALIZE

i

POSITION
DATA
SET

;

GET LINE

(TSPUTFN)

k

INITIATIZE

i

POSITION
DATA
SETS

;

GET LINES

END OF

OLD

DELETE

REGION

Figure 2B.

Top Level Flowchart

FORMATS

SET
DUMMY
EOF

—-—

5¢0

— -

W

—

2

J

PAGE 561

TOPIC H.4 - USEE VERE TRBLE

a.

B.

Cs

D.

MODULE NAME

Program-ID - RDBUSER
Modunle~ID - DBUSER

ANALYST

John 1.

Lozan
Neoterics,

Inc,.

MODULE FUNCTION

This routine wuses the currently defined wverb table to

locate any
any have

user defined commands for that table, If
teen defined, +they are appended to the list

already existing in the takle.

DATR REQUIREMNENTS

1. I/0 Block Diagram

Not Applicable

2, Input Data Sets

A
b,
C.

d.

Parameter Cards

Not Applicable

Punclied Card Input Files
Not Applicable

Input Files

Kot Applicabie

Cn-line Terminal Entries

Nct RApplicable

3. Output Bata Sets

A

Cutput Files
¥eot Applicable
Cn-line Terminal Displays

Mot Applicable

4,

PAGE 562

C. Formatted Print Outs.
Not Applicable

d. Punched Card Cutput Files

Reference Tables

VERETAE

E, PROCESSING REQUIREMENTS

1.

2,

Top Level Flowchart
See Figure 1
Narrative

Upon entry, +the program tests for the presence of
a VERBTAR, If none is found, it exits
immediately. Otherwise, the program extracts the
defaunlt symbcl from the table and gets the default
value for that symbol,

The program then begins analyzing the data, until
none remains, at which time it returns to +the
caller, The data is expected in comnmand-name and
entry peint ©pairs, Each pair is extracted from
the data, analyzed for valid construction and then
posted to the mext available slot in the table,

If there are any syntax errors, invalid names, or
i1f the table is £filled, the program will return to
the caller, bypassing the remaining entries,

F. CODING SPECIFICATICHNS

1,

2. .

Source Language

The rocdule 3is written using the TS8S 360 PL/I
language,

Suggestions and Technigues

Not Applicable

513
(DBUSER)

|

INITIALTZE

EXTRACT
DEFAULT
VALUE

Figure 1., Top Level Flowchart - DBUSER

T

—

TOPIC

1,

B.

C.

PAGE 564

H.5 - USEER PROFILE ROUTINE

MODULE NAME

Progran=-ID - RDBPEC
Module-ID - DBPRO

ANALYST

John A. Lozan
Neoterics, Inc.

MODDLE FUNCTION
This module performs the processing necessary for the
implementation of the PROFILE, SYNONYM, DEFAULT,
SINONYM and DEFAULT conmmands.
DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
24 Input Data Sets
a. Parameter Cards
Not Applicable
b. Punched Card Input Files
Not Applicable
. Input Files
Not 2Applicable
a, Cn-Line Terminal Entries
The program prompts the user for the
parameters required by the various
commands,
3. Output Data Eets
A Cutput Files

Nct Applicable

b. ¢n~line Terminal Displays

E.

I,

Ca

PAGE 565

The display of +the wuser?'s defaunlts and
Synonymns rroduce formatted terminal
displays.

Formatted Print Outs

Not RApplicakble

Punched Card Output Files

Not Applicable

RBeference Takles

JSERTAE-the program extracts the user’s NASIS-id
from the user data table,

PROCESSING REQUIREMNENTS

1.

2.

Top Level Flowchart

See Figure 2

Narrative

A

b.

Co

d.

LBPROF

At this entry point the program sinply calls
TSBPROF t¢ write ocut . a copy of +the usert's
current profile. If any errors are detected,
an appropriate diagnostic message is written
to the user the program then terminates.

BRDEF

3t this entry point the program initializes
itself to process defaults, It repetitively
rrompts for data and calls TSPDEF %0 process
the request, If any errors are encountered,
an appropriate diagnostic message is writtenm
to the user. The program then terminates,

DBSYN

At this entry point the program initializes
itself +to process synonyms, It repetitively
trompts for data and calls TSPSYN to process
the request, If any errors are detected, an
appropriate diagrostic message is written to
the user., The progranm then terminates.

DBDEFS

F.

f.

BAGE 566

At this eptry point +the program dinitializes
itself to display the data values
corresponding +to a set of default symbols.,
The program also initializes +the screen and
paging control data. The program +then
attempts to read 3in the list of symbols., If
no data was entered, the program sets up to
display all of the default values, Otherwise
it saves the 1ist of symbols entered.

The program themn repetitively calls TSGDEF
for each entry in the list, to obtain its
default value., The values are formatted and
rosted to the screen, When the screen is
filled, or when the list of mnames is
exhausted, the program displays the screen to
the user, posts the paging status data and
terninates.

TBSYNS

it this entry point +the program initializes
itself t¢ display the time values for a set
of synonym terms. The progranm also
initializes the screen and the paging control
data, The ©program then attempts tc read in
the list of symbols,

If no data was entered, +the program sets up
to display all of the synonym values.,
Qtherwise, it =saves the 1list of synmbols
entered.

The program then repetitively calls TSGSY¥N
for each entry in +the 1list, to obktain its
tine value, The values are formatted and
posted to the screen, When the screen is
filled, or when the list of pames is
exhausted, the progranm dispiays the screen to
the user, posts the paging status data and
terminates,

DEPROFPG
At this entry point the progran
re-initializes itself using the paging status
data. If data remains, the progranm branches

to the proper <routine to produce the next
screen image, Otherwise, the progranm writes
a diagnestic message and terminates.

CODING SPECIFICATIONS

Te .

2,

Source Language

The program is written using
Language.

Suggestions and Techniques

Not Applicable

the 1TSS

PAGE 567

360 PL/I

SYSIN

RDBPRO

Figure 1.

1/0 Block Diagram

EA

(DBFROF)

]

DBDEF

WRITE
" QUT INITIALIZE
PROFILE
| ;
ANY N GET
ER%?RS PARAMETERS
| ;
WRITE POST
MESSAGE DEFAULT

¥
(ExIT)

INITTALIZE

]

GET
PARAMETERS

POST
SYNONYM

DBPROPG

INITTALIZE

SYNONYMS

Figure 24,

?

Top Level Flowchart - DRPROF, DBDEF, DBSYN

s A

578

{ DBDEFS) DBSYNS

‘ ¥
INITIALIZE INITIALIZE
r)
GET CET
PARAMETERS PARAMETERS
N s—— : !_¢
1
GET GET:
DEFAULT SYNONYM
VALUE VALUE

POST POST
SCREEN SCREEN
Y ANY
MORE ROOM
l?
SAVE SAVE
STATUS STATUS
|

g
{ EXIT }

Figure 2B. Top Level Flowchart - DBDEFS, DBSYNS

PAGE 571

TOPIC H.6 - USER PROFILE ASSENBLER ROUTINES

A, MODULE NAME

Progran-ID - RTSPRO
Module=-ID - TSPRO

B. ANALYST

John A. Lozan
Neoterics, Irnc.

C. MODULE FUNCTICH
These routines act as the assembler service routines
for the user's profile. They permit the retrieval,
modification and storing of all synonym and default
values,
D, DATA REQUIRENENTS
1. I/0 Block Diagram
See Figure 1
2, Input Data Sets
A Parameter Cards
Not Applicable
b. Punched Card Input Files
¥ot Rpplicable
C, Input Files
PROFILE LIBRARY or DBALIB{0) (NASISPRO) or
LISRLIB{0) {NASISPRO) is used +to initially
chtain a profile for the user,
d. On-line Terminal Entries
Not Applicadble
3. Cutput Data Sets
-1 Cutput Files
PROFILE LIBRARY - the user's profile will be

written out as a member of this library with
. the name of his NASIS-id,

E.

b,

b.

PAGE 572

Gn-1line Terminal Displays

Vot Applicable

Formatted Print Cuts

Bot Applicable

Punched Card Output Files

Rct Applicable

Return Code

2 return code will be posted with a value

whose nmeaning is dependent upon the entry
point cdlled,

Reference Tables

USERTAB-the ©program extracts the user's NASIS-~id
from the user data table.

PROCESSING REQUIREMENTS

1.

2,

Top lLevel Flowchart

See Fiqure 2

Narrative

da

b,

ISPROF

At this entry point the program initializes
jtself +tc¢ write out the current user's
profile, It first allocates a new 1list and
moves over all of the synonym entries not
pmarked for deletion, It next poves over all
of the default entries and re-orders the
default data values. The progran then
attempts to locate an o0ld profile for this
user 3in the profile library. If opne is
found, it is deleted, The program then
writes out +the new profile and gives it the
name of +the userls NASIS~-id, If any errors
are encountered the error code 1is posted.
The program then returns to the caller.

TS3GSYH
At this entry point the program initializes

itself to retrieve a synonym value, It first
searches the synonym entries until it locates

Ca

=1

PAGE 573

the logical location for the symbol
specified. If the entry is present and has
nct been deleted, or if the entry located is
the symbol whose abbreviation was specified,
the synonym value is extracted and passed
kack to the caller, If +the entry located
did not correspond to the symbol specified, a
null value is returned to the caller.

ITSGDEF

2t this entry point the program initializes
itself to retrieve a default valupe. It first
searches the defaunlt entries until it locates
the logical locaticn for the symbol
specified., If the entry is present, the data
value offset is located and the data value is
mcved 3into +he caller's area. The program
then returns to the caller,

TSPSYN

2t -this entry point the program initializes
itself to post a synonym value, It first
checks to see if +this is a delete reguest,
If not, the program builds the new entry. It
then searches the synonym entries until it
locates +the 1logical location for the synbol
specified, If the symbol is to be deleted
and it dis not present, the program returns
imnediately. Otherwise, it perforas the
deletion by copying the entries prior to the
deleted entry and those following the deleted
entry, to a new profile similarly.
Similarly, adds are processed by Iinserting
the added entry between the two 1list
segments, Modifications, 1if allowed, are
perforwed in place. If a 1new profile was
created, the o¢ld list is deleted, If the
Tequest was not for a deletion, the program
conputes the mininum abbreviation length, If
it was a deletion, all synonyms for the entry
deleted are flagged as deleted, The program
then returns to the caller,

TSTDEF

3t this entry point the program initializes
itself +to post a default walua. It first
checks to see 3if this is a delete regquest.
If not, the program huilds the new entry. It
then searches +the default entries until it
locates the logical location for the symbol

PAGE 574

specified. If the symbol is to be deleted
and it is not present, the program returns
impediately. Otherwise, it performs the
deleticen by copying the entries preceding the
one to be deleted and those following it to a
new profile, Similarly, adds are processed.
by inserting the added entry between the two
list segments and appending the data value at
the end of the profile, Hodifications are
rerformed in place, if possible, if not, the
data value is simply added to the end of the
grofile. The program then returns to the
caller,

¥, CODING SPECIFICATIONS

1.

24

Source language

The module 1s written using the TSS 360 Assembler
language.

Suggestions and Technigques
The entry searching routine should be coded as a

hinary search and the 1ist moving routine should
be coded as efficiently as possible.

RTSPRO

Figure 1,

| PROFILE
LIBRARY

s&o S—

I/0 Block Diagram

< >

LISRLIB

IS

575

.
NG
R

{ TSPROF) { TSGSYN)

| ¥

INITIALIZE INTTIALLZE INITIALIZE
!
- ¥ t ¥
CONDENSE
— SYNONM LOCATE LOCATE
LIST ENTRY ENTRY
i

¥

REORDER
DEFAULT
LIST

WRITE POST
ouT SYNONYM LOCATE
PROFILE VALUE DATA
g
] . g
POST
DEFAULT
VALUE
g
POST
ERROR
CODE
et
|
EXTT

Figure 2A. Top Level Flowchart ~ TSPROF, TSGSYN, TSGDEF

(Tsesyn)
h ¥

INITIALIZE

{ TSPDEF)

|

INITIALIZE

27777

BUILD
SYNONYM
ENTRY
-]
LOCATE
ENTRY
GOPY &
UPDATF,
PROFILE
COMPUTE
HMINTIMUM
LENGTH

FLAG
- DELETED
SYNONYMS

- ¥

BUTLD
DEFAULT
ENTRY
i
LOCATE
ENTRY
1
COPY &
UPDATE
PROFILE
&
Fi
A
ADD A
A DELETE DEFAULT >
VALUE

EXTIT

Figu;e’Z?E Top Level Flowchart - TSPSYN, TSPDEF

T {) }] La VN>

v

PAGE 578

TOPIC H.7 - TESTING FACILITY

e

B,

C,

D.

MODULE NAME

Program=-ID - RTSTEST
Module-IP - TSTEST

AHALYST

John A, Lozan
Neoterics, Inc.

MODULE FUNCTION
This module provides a set of debugging services to be
used din the testing and debugging of the TSS
functicns,
DATA REQUIRENENTS
1. I/0 Block Diagran
See Figure 1
2. Input Data Sets
B Parameter Cards
Kot Applicable
b, Punched Card Input Files
Not Applicable
C, Input Files
Not Applicable

d. Cn-Line Terminal Entries

The program can execute any of the TSS input
functions.

3. Cutput Data Sets
a. gutput Files
Not Applicable
ba 'On-Line Terminal Displays

The program can execute any of the TSS output

E.

i,

PAGE 579

functions,
C. Formatted Print Quts

¥ot Arplicable

~d. Punched Card Cuntput Files

Not Applicalble
Reference Tables

The program cptionally allocates and initializes
USERTIE,.

PROCESSING REQUIREHMENTS

1.

2.

Top Lewvel Flowchart
See Figqure 2
Narrative

Upon entry, the program initializes the variables
that it uses, including the TC block. The program
then calls TSTESTR to rprompt +the user for a
debugging request, It verifies that +the users
input 1s one of the valid reguests and +that the
associated parameters are also valid. If not,
the program calls TSTESTH to issue a diagnostic
message and then re-prompts the user,

If +the regquest was END, +the program simply
terninates. If the zrequest was TSS the progran
calls TSTESTE +o allow the user to enter TS5
command mode, If the reguest was PAD, the program
moves dinto the output bnffer the number of
characters of prestored text specified by the
user's parameter,

If the request was D0, +the program compares the
parameter to the list of valid ¥S2 functions and
abbreviaticns and calls the one specified.

If the reguest was SET, the program passes the
parameters passed dinto A=B pairs., The &
conponent is compared %o the list of valid data
fields and abbreviations and the appropriate data
field is assigned the value indicated by the B
component,

If the request was EXP, the program displays a
list ¢of the abbreviations recognized and their

PAGE 580

corresponding data field or function names.

If +the regquest was DR, +the program passes the
parameters and displays the addresses of those
data fields vhose names or abbreviations were
entered,

If the rTequest was DIS, +the program passes the
parameters and displays the current walues of the
data fields whose names or abbreviaticons were
entered,

If any of the requests are improperly specified or
reference unknown data fields, a diagnostic
message is issued to the user. Following this, or
at the conpletion of the trequest, +the user is
prompted for his next reguest,

F. CODING SPECIFICATICNS

1.

2,

Source Language

The modunle is written using +the TS5 360 PL/I
language,

Suggestions and Technigues

Proper use of data field redefinition will
simplify the processing of some of the requests,

A function will have to be written to return 'the
string dope vectors as processable data in
certain instances,

SYSIN

RTSTEST

Figure 1.

1/0 Block Diagram

(TSTEST)

¥

- INITIALIZE

PROMPT
USER

ANALYSE
REQUEST

PROCESS
REQUEST

ISSUE

DIAGNOSTIC

Fionra 7 Tarm T oavenT TV oaao_t - _.a

e .-

TOPIC H.,8 - TESTING FACILITY I/0 INTERFACE

A,

E.

C.

D.

MODULE NAME

Programr-ID ~ RTSTESTX
Module-ID - TSTESTX

ANALYST

John A, Tozan
Keoterics, Inc.

MODULE FUNCTION

This prcgram serves as the input/output
between the +terminal support test driver

terminal,
DATA REQUIREMENTS
1. I/0 Block Diagram
See Figure 1
2. Input Data Sets
A Parameter Caxrds
¥ot RApplicable
b. Punched Card Input Files
Kot Applicaktle
C. Input Files
¥ot Applicable

d. On-Line Terminal Entries

2t tle read entry point the program

input freom-the terminal.
3. Qutput Data Sets
A. Cutput Files
Kot Applicable

D Gn-Line terminal displays

PAGE 583

interface

and the

accepts

At the write entry point the program displays

PAGE 584

the informaticn passed by the caller.
C. Formatted Print Outs
¥ot Applicable
d. Punched Card CQutput Files
Not 2applicable
4, Reference Tables
Nct Arplicable
E. PBOCESSING_HEQUIREHENTS
1. Top Level Flouchart
See Figure
2, ¥arrative
At each entry point the program initializes itself
to vrerform these appropriate functions.. The
program then completes the entry linkage by
calling the PL/I linkage module IHESADA,
If a read was requested, the program issues a
GTWAR macro to read from the +terminal, Any data
that is entered is moved to the callert's parameter

and its dope vector is adjusted to reflect the
length of the data. .
If a write was requested, the data contained in
the <caller's pavrameter 1is noved to the output
area and written to the user by means of a GATHNR
mACYO.,.

If a panse was reguested, the program issues a
CLIC wmacro to place the +task back into TSS
¢c¢omnmand mode, -
Yhen the requested function has been completed and
the parameter posted, if necessary, the progranm
returns to the caller,

F. CODING SPECIFICATICONS

1, Source Language

The mcdule is written using the TSS 360 Assenmbler
language,

PAGE 585

2. Suggestions and Technigues

Not Applicable

SYSIN

RISTESTX

Figure 1.

I/0 Block Diagram

() < .,)
TSTESTR TSTESTW TSTESTP

5 ’ 5

INITIALIZE INLTTALTZE INITIALIZE
i
" COMPLETE
LINKAGE
|
READ WRITE
TERMINAL TERMINAL

—— i

-EXIT

Figure 2. Top Level Flowchart - TSTESTR, TSTESTW, TSTESTP

