
A SURVEY OF COMPILER
OPTIMIZATION TECHNIQUES

Paul B. Schneck

Goddard Instituteof ,'-
Space Studies

This survey describes the major optimization techniques of corn- Even in that very first FORTRAN compiler, 25 percent of the
pilers and groups them into three categories: machine dependent, instructions were for optimization.
architecture dependent, and architecture independent. Machine-
dependent optimizations tend to be local and are performed OPTIMIZATION TECHNIQUES
upon short spans of generated code by using particular properties The following three sections describe various optimization
of an instruction set to reduce the time or space required by a techniques that have been used in compilers or have been sug-
program. Architecture-dependent optimizations are global and gested for compilers. Very little has been done to classify optimi-
are performed while generating code. These optimizations con- zations; they are grouped here by function.
sider the structure of a computer, but not its detailed instruction Compiler optimization techniques operate on three levels:
set. Architecture-independent optimizations are also global but machine dependent, architecture dependent, and architecture
are based on analysis of the program flow graph and the depend- independent. Machine dependent is used to describe the
encies among statements of source program. The paper also pre- instruction-level sensitivities of a compiler. Architecture depend-
sents a conceptual review of a universal optimizer that performs ent denotes those parts of a program that relate to the general
architecture-independent optimizations at source-code level. hardware implementation, but not to a specific machine.

KEYWORDS AND PHRASES: compiler, optimization, flow Architecture independent (used. in lieu of the more familiar

graph, connectivity, interval analysis, common subexpression, -phrase-machine independent) indicates those aspects of program
architecture independent, global flow analysis, code motion, con- formulation that do not depend on a particular computer system
stant propagation, dead variable- elimination, tree height minimi- or even on a. type of implementation (e.g. pipeline processing).
zation, parallel processor, vector processor. Optimizations originating in the academic and scientific com-

munity tend to be global, while, until recently, manufacturers
CR CATEGORIES: 4.12,4.22 have concentrated on local and machine-dependent techniques.

INTRODUCTION Machine-Dependent Optimization

Most computer systems support a multiplicity of program- One of the earliest references o; compilation techniques
ming languages; for a particulr language, the translators or com- concerns the Project for the Advancement of Coding Techniques
pilers often exist in three versions. The first version is a small, (PACT), an experimental compiler. The target machine was the

fast compiler, which is for program development and has exten- IBM 701, and the PACT compiler, described by Miller and
sive diagnostics and debugging aids. The second version is a re- Oldfield (2), produced code sensitive to the register-placement
entrant conversational compiler, which is used for online curiosities of that machine. No formal techniques were em-

development of programs and has comprehensive editing ployed; rather, a set of rules was coded in tabular form to control
facilities. The third compiler is the optimizing compiler, which is code generation. To a large extent, this same technique is appli-
used for translating production programs into efficient object cable today for machine-dependent code optimization. The
code and is larger and slower than the others. In this paper, we FORTRAN I compiler contained a sophisticated arithmetic trans-
examine the techniques employed in optimizing compilers and lator by Sheridan (3) that performed association and commuta-
make some quantitative comparisons between the programs of tion to take advantage of the AC/MQ relationship on the
the optimizing compilers and other compilers. A large number of IBM 704. For example, a string of multiplications and divisions
the examples and references in the paper are FORTRAN-related, was reordered to minimize the number of register transfers

because FORTRAN is the most widely used production program- (exchanges) that had to be performed.

ming language. McKeeman (4) proposes a postprocessing technique for

The history of optimizing compilers dates back at least as optimization, which can be considered as a window traversing the

far as FORTRAN I (1). At that time, most programming was sequence of generated (unoptimized) code. If the instructions

done in machine language, and a compiler that offered con- visible is the window match one of a number of patterns, the
venience at the expense of machine time would not have been code is tr ansformed. In thister transfer reduncat stores, multipica-

acceptable. The following quotation from an International Busi- tions by two, and register transfers can easily be optimized.

ness Machines Corporation (IBM) specification reveals that the Bagwell (5) describes a set of clever coding tricks (special cases)
convenience of the new language was believed insufficient to that may be implemented for almost any machine. Although

cause its widespread acceptance. performed during code generation, this is essentially McKeeman's

...FORTRAN may apply complex, lengthy techniques in approach. These machine-dependent optimizations are the most

coding a problem which the human coder would have descriptive of available techniques.
neither the time nor inclination to derive or apply. Thus, in Architecture-Dependent Optimization
many cases, FORTRAN may actually produce a better pro-
gram than the normal human coder would be apt to prow Three optimization techniques are classified here as archi-
duce. (1) tecture dependent. These techniques are used for machines

(NASA-TM-X-69499) A SURVEY OF COMPILER N73-3014
OPTIMIZATION TECHNIQUES (NASA) 8 p HC

CSCL 09B
Reproduced by Unclas
NATIONAL TECHNICAL G3/08 15181
INFORMATION SERVICE I

US Department of Commerce
Springfield, VA. 22151



NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM

THE BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

,I



having one or more of the following general characteristics: This class of computer, capable of parallel-instruction execution,
1. The computer has n accumulators. has independent functional units that operate simultaneously.
2. The computer can execute several independent instruc- The programmer (or compiler) need not be explicitly aware of

tions in parallel. the parallel-execution capability; it will be used when possible.
3. The computer executes arithmetic and logical instruc- However, if the instructions are ordered to maximize parallel

tions upon multiple data streams. execution, a performance advantage of up to a factor of three
The evolution of computer architecture has followed a path from can be obtained. Allard, Wolf, and Zemlin (12) describe the par-
the single-accumulator IBM 704 to the multiple-accumulator allel capabilities of the CDC 6600 and briefly mention the speed
CDC 6600, which is capable of executing several instructions in advantage gained by reordering instructions. Thorlin (13) de-
parallel, to the ILLIAC IV, which operates on up to 64 data scribes the technique used in CDC FORTRAN, which is based on
items simultaneously. Optimization techniques have had a par- a PERT-like analysis of dependency and -timing for ordering
allel evolution. CDC 6600 instructions. The machine's independent-functional
The n Accumulator Computer units are kept busy by placing unrelated instructions together

and sequencing the longest activities first. A similar instruction-
Straightforward code generation of expressions involving scheduling technique was implemented by Blum, et al. (14) in

noncommutative operations poses a special difficulty for a one- the IBM FORTRAN H compiler. It constructs a dependency
accumulator computer. In an expression such as (a+b)/(c-d), the array that defines the area within which each instruction may be
denominator should be computed first to be available for division moved. A weight is assigned to each instruction by adding a base
when the numerator is computed and is in the accumulator. weight (a function of the instruction time) and the .weight of
Anderson (6) discusses a technique that implements this proce- every instruction which is dependent on it; instructions are then
dure and eliminates the need to store and recover the values of ordered by decreasing weight.
many subexpressions. Anderson's technique for a one- However, the improvement attainable by instruction re-
accumulator computer looks ahead and delays code generation ordering is limited by the parallelism inherent in the original
for the left-side expression of a noncommutative operator until instruction sequence. Stone (15) summarizes techniques that
code generation for the right side occurs. One a multiple- may be used to translate arithmetic expressions to achieve a high
accumulator machine, the technique is also valuable because it degree of inherent parallelism. His process corresponds to a tree
decreases the number of registers required to evaluate an structure with minimal height. This is the opposite result from
expression. that of the n accumulator, where minimizing the number of regis-Nakata (7) extends this procedure to handle n accumula- ters increased the tree height. Figure I shows two different trees
tors. The procedure is enhanced by the fact that some heuristic for evaluating an expression. The first tree employs only one
observations are included to make the output similar to ordinary register for evaluating the expression; the second tree results in
coding practices. The programming problem of using a minimum minimum evaluation time on a machine with at least four simul-
number of accumulators is equivalent to a graph-theoretic tree taneous multipliers. Because of the effects of data store/load in-
transformation proposed by Redziejowski (8). He proposes an structions, the second tree may not result in minimum time on
algorithm for performing the tree transformation and proves it machines with fewer multipliers. Figure 2 shows two different
equivalent to that of Nakata. A study by Schneider (9) of the sets of instructions for evaluating the expression corresponding
properties of tree-structure representations of arithmetic expres- to the two trees, which result in serial and parallel execution.
sions yields the number of required registers: For k nested
parenthetical subexpressions with n operator precedence levels

Finkelstein (10) describes a technique, deferred store, which H.
eliminates much of the unnecessary storing and loading of partial G
results within loops on multiple-register machines. (Register is G
used here to indicate either an accumulator or index register.) F
When an assignment statement is executed, the accumulator is E
not actually stored in the result variable. Instead, other registers
replace those containing data for deferred stores. If a result varia-
ble is to be modified before the deferred store has been per- C ((((((AB)*C)*D)*E)-F)*G)*H
formed, the value. of the variable is in place and need not be
fetched. The following example indicates a common situation A B
where the deferred store saves a significant amount of time:

n DO I I = I,N a) TREE YIELDING MINIMUM NUMBER OF REGISTERS
ai 1 SUM = SUM + A(1)

i=l ((AB)n(C*D))*((E*F)*(G*H))

A special case of the n accumulator machine is one where
the accumulator is the top element of a pushdown stack. The IA \B D
Burroughs 5000 and English Electric KDF9 are examples of such
a machine. Randell and Russell (11) describe a one-pass proce-
dure for translation of arithmetic expressions into a Reverse-
Polish form suitable for a stack machine. An interesting point is
their architecture-independent optimization that calculates a A B C D E F G H
constant during compilation when both operands are constants.
Generalizations of this technique are discussed in the next
section.
Parallel-Instruction Execution b) TREE YIELDING MAXIMUM INHERENT PARALLELISM

The CDC 6600 computer was the first commercially avail- Figure 1. Tree Structure for Serial and Parallel
able machine to overlap the execution of several instructions. Computation of an Expression.



Lamport and Presberg (20) gives a detailed description of the
IL 1. A D algorithms and techniques used to permit parallel execution of
2 213B1 1 1 DO loops.
3* 1.C *1 2 3 4 5 6 7 8 Schneck (21) developed a simplified algorithm for the

4 I, 0 2 detection of parallelism in standard FORTRAN programs and
defined the concept of feedback which prevents parallel execu-

5 I. E tion. Testing for feedback involves a flow analysis of the source

6 I.F program and a search for subscript forms that cause feedback. In
the absence of feedback, statements are rewritten to indicate

7 l, G parallel execution. Additionally, scalar variables that might bar
8 1., H parallel .execution are expanded to vectors. Thus, the following

statement may be performed entirely in parallel.
a) SERIAL EXECUTION, TIME=22 CYCLES

DO 1 I= 1,20
IL I,A NI 6 19 A = (B(I) + B(I+1)) * .5
2* 1,B C(I) C(I) + A

3 L 2, C 2 5 10 12 1 D(I)= D(I)- A3L 2,C 1 1 1,+2 4 7 II
4 * 2, D Kuck, Muraoka, and Chen (22) performed an analysis simi-
5 * I1,2 lar to Schneck's. Their orientation was to define a machine archi-

6 L 2,E tecture to process ordinary programs. They conclude that, even
for simple programs, a multiple-processor organization, consisting

7 * 2,F of 16 processors, is of value.

8 ST I,T Architecture-Independent Optimization
9 L 1,G Architecture-independent optimization techniques are
10* I,H global in nature; they perform a flow analysis on the source
11 * 2, T program to obtain necessary information. This section summa-

12* 1, 2 rizes major architecture-independent optimizations, which are
illustrated in Figure 3. The most widely applied optimization is

b) PARALLEL EXECUTION,TIME 18 CYCLES common subexpression elimination. When a calculation is per-

Figure 2. Resonances Used in Serial and Parallel formed, a.search is made to determine if the calculation was
F igure 2. Resonances Used in Serialof an d Paralle l performed previously and need not be repeated; if so, the prior

result replaces the calculation. Dead variable elimination removes
Han (16) examines the general problem of minimizing the statements that assign values to unused variables in the program.

tree height of a set of expressions. His procedure for determin- These unused variables most frequently result from program
ing an expression's minimum tree height can be used by a modifications, but may also be due to common subexpression
compiler to measure the degree of parallelism obtainable in a elimination. Code motion refers to the rearrangement of expres-
program. Ramamoorthy and Gonzalez (17) describe a method sions permitting a calculation to occur in a low-frequency pro-
for attaining themaximum amount of parallel execution on a . gram segment and to be available for use in a high-frequency
machine with a fixed number of processing units. Their method segment. Finally, constant propagation removes calculations con-
orders subexpressions so that some expressions can be delayed if taining only known constants from the program and performs
insufficient processing units are available to perform all compu- them in the compiler. This is certainly code motion to a low-
tations in parallel. frequency segment.

Multiple Data Streams Frequency Analysis

The preceding section discussed some techniques relevant to The original FORTRAN compiler (23) contained an opti-
computers whose architecture permitted parallel execution of in- mizer that gathered information on'the source program's stric-
structions while maintaining the standard instruction set. This ture. The source program was analyzed and broken down into a
section discusses the optimization techniques applicable to com- set of basic blocks,l and a table listing the predecessors of each
puters where the instruction set reflects the computer's capacity basic block was created. This table was then used in a Monte
to perform a single instruction on many data items. Two com- Carlo simulation to find the relative frequency execution of each
puters are in this category: the CDC STAR and the Burroughs basic block. A random number generator, augmented by pro-
ILLIAC IV. The STAR, a pipeline computer, processes operands grammer estimates supplied in FREQUENCY statements,2 was
sequentially, but with a high degree of overlap. The ILLIAC, a used to traverse paths in the program flow graphs, and a count
parallel computer, processes 64 operands simultaneously. The was kept for each basic block. Figure 4 shows a program flow
instruction sets of the two machines are remarkably similar, and graph, which is used as an example throughout this section, and
high-level language programs must be designed from the same Table I shows the relative frequencies obtained by simulation.
viewpoint for both machines. Next, the source program blocks were optimized in order

For programs written in a procedural language, from highest to lowest frequency. The target computer, an
Burkhardt (18) describes some occurrences of inherent paral- IBM 704, had only three index registers, and much of the com-
lelism. He points out that parallelism may occur from the arith- piler's optimization centered on assigning them efficiently in the
metic-expression level, through independent iterations of a loop, most frequently executed blocks of the program. Code genera-
to parallel-task execution within an operating system environ- tion was performed for a machine assumed to have as many
ment. Millstein (19), reporting on the design of a FORTRAN
compiler for the ILLIAC IV, discusses a compiler that will detect 1
parallelism in the use of subscripted variables in DO loops. This A basic block is the fundamental program flow unit; it is a
three-step procedure first determines data dependencies and segment of code with only one entry and one exit point.

then, if there are more dependencies between loop iterations, 2 According to John Cocke, the FREQUENCY statement was
examines flow within the loop and determines an expression removed from the language after it was discovered to have been
ordering. The first two steps are analyzed by graph-theoretic incorrectly implemented (frequencies were being computed in-
techniques; the last by ad hoc methods. A later report by versely) without having encountered any user reaction.



A=B+C

Y=Y+i.
Z=C

Q = (Z +B)nSIN (.7854)
DO Ir=1,100I 2

1 P(I)= P(I)M(A+B)

sample program

A=B+C 3

1/2
" ---- b

4 3/, 5Q=A*.7071 ---- c,d. 4/2
TOOOO1= A+B --- e

DO I1,100 1/4 7 6

1 P(I)=P(I)*TO0001 1/7

optimized program 8
a. ELIMINATION OF DEAD VARIABLE
b. ELIMINATION OF DEAD VARIABLE, CAUSED BY c /7

C- COMMON SUBEXPRESSION ELIMINATION 9
d. CONSTANT PROPAGATION
e. CODE MOTION Figure 4. Program Flow Graph with

Figure 3. Architecture-Independent Optimization Branch Probabilities

index registers as required. Then, the optimizer efficiently as-
signed the 704's three index registers within the highest fre-
quency block of the program, while interpolating instructions to
save and restore index register values when necessary. As other
blocks were processed, index register assignments were made to In another study, Horwitz (24) describes a graph-theoretic
match those of adjacent (immediate predecessor or successor) procedure for index-register allocation? An optimal index-register
higher frequency blocks. When no adjacent blocks had already allocation may be obtained for straight-line (loop-free) programs.
been processed, no matching of index registers was necessary. Horwitz's algorithm is a practical procedure for carrying out the
When just one. adjacent block had already been processed, it was highly combinatorial assignment process similar to that employed
necessary only to choose a matching permutation of the index by FORTRAN I. Also, Luccio (25) provides a further reduction
registers. If two or more adjacent blocks had already been proc- of the enumeration required for an optimal allocation. The pro-
essed, the possibility of matching all index registers was uncer- gram graph is partitioned, and the allocation problem may be
tain. Therefore, it became necessary to add instructions for solved separately for each subgraph and then combined.
loading index registers with the values required by adjacent Day (26) discusses an alternate linear-programming ap-
blocks. The progression of processing from high-frequency to proach for assignment of registers. He demonstrates an optimal
low-frequency blocks caused the added instructions to be located algorithm and gives two others which provide good approxima-
in the later low-frequency blocks. tions, but are fast enough for use in a compiler.

Table 1. Relative Frequencies Obtained Matrix Analysis
by Simulation Prosser (27) describes a Boolean-matrix approach to flow-

graph analysis that avoids the lengthy Monte Carlo techniquesRELATIVE used in FORTRAN I. The predecessor information obtained by
BLOCK FREQUENCY analysis of the program is used to construct a connection matrix

(Table 2). The connection matrix Chas a I at Cii if, and only if,
S1.0 program block / is a direct successor of program block i. By

2 8.2 repeated matrix multiplication, the connection matrix may be
used to determine the sets of blocks participating in loops.3 33.0 Prosser also introduces the dominance relation to indicate that a

4 16.5 particular block (dominator) must be traversed before another
block (dominee) can be reached. This construct is extremely5 16.5 valuable. When a calculation is moved out of a block, it must be

6 28.9 moved to a dominator block to assure that it will be performed.
These matrix operations yield valuable, if lengthy, methods for7 4.1 obtaining program-flow information. Warshall (28) describes a

8 7.1 simplification of the multiplication of n x n Boolean matrices
9 1.0 that reduces the time required from O(n3 ) to O(n 2 ), which

makes matrix techniques practical.



Table 2. Boolean Connection Matrix C or kept track of local multiple uses of a subscript (e.g., within an
assignment statement). In an article, Ryan (33) considers the

SUCCESSOR BLOCK problem of determining where a common subscript (or any com-
mon expression) may be computed with minimum frequency to

1 2 3 4 5 6 7 8 9 be available when required. Ryan's algorithm may be used with a
multipass compiler and permits locating computations within a

P 1 0 1 0 0 0 0 0 0 0 lower frequency region at a distance from the point of use.
R In the 1960s, the advent of new hardware brought a new
E 2 0 0 1 0 0 0 0 0 0 class of compilers and optimization techniques. In an IBM tech-
D nical report, Medlock and Lowry (34) describe the optimization
E 3 0 0 0 1 1 0 0 0 0 techniques that are the foundation of the IBM FORTRAN H
C compiler. These techniques extend the dominance relationship
E 4 0 0 0 0 0 1 1 0 0 introduced by Prosser. In addition, a new defining relationship
S makes it possible to replace the dominance array with four vec-
S 5 0 0 0 0 0 1 0 0 0 tors and reduce the space required. Frequency information is
O obtained by inverting the probability connection matrix p, where
R. 6 ,0 0 1 0 0 0 0 1 0 pii indicates the probability that program block j will succeed

block i. Table 3 shows the probability connection matrix for the
B 7 1 0 0 0 0 0 0 1 0 example flowchart and its inverse. In Table 4, row one indicates
L frequency relative to block one.
0 8 1 0 0 0 0 0 0 0 1
C Table 3. Probability Connection Matrix P
K 9 0 0 0 0 0 0 0 0 0

SUCCESSOR BLOCK
P

For some general results on what may be obtained from the 1 2 3 4 5 6 7 8 9
connectivity matrix of a program flow graph, Ramamoorthy (29)
presents algorithms that identify unessential nodes, enumerate P 1 o 1 0 0 0 0 0 0 0

R
the maximum strongly connected regions (i.e. loops), and parti- E 2 0 0 1 0 0 0 0 0 0
tion the flow graph into disjoint subgraphs. These matrix manip- o
ulations are basic to obtain the information required for program E 3 0 0 0 0 0 0 0

optimization. Unessential nodes may be discarded from a pro- C 3 1
E 4 0 0 0 0 0 - - 0 0

gram because they will never be executed. The identification of s 4 4

the maximum strongly connected regions permits locating rela- s s o o o 1 o o o
tive-constant expressions and moving them to lower frequency o
regions, as well as indicating on which blocks the optimization R 6 o o 0 o o o0. o

7 7

process should concentrate. Partitioning the flow graph into dis- 7 1 o o 0 0 0 0
joint subgraphs permits working with smaller units at a time, 0 0 4
which results in a significant decrease in the combinatorial efforts o a 1 o a o ao o o a
expended in optimization. c

In a FORTRAN optimizer, Allen (30) uses matrix methods K 9 0 0 0 0 0 0 0 0 0

for the analysis of a program's flow graph. The connection ma-
trix is used to obtain a set of strongly connected regions which
the optimizer processes from the inside out. Within a basic block, Table 4. Frequency Matrix
redundant expressions are evaluated only once and then elimi-
nated. Constant propagation is performed, and expressions are SUCCESSOR BLOCK
replaced by their computed values. Within a loop, invariant in- 0p}
structions are moved out, strength reduction is performed, and 1 2 3 4 6 6 7 8 9

tests are simplified. Unused definitions and computations are
eliminated where the flow information indicates this is possible. P 1 0.00 8.00 32.00 16.00 16.00 28.00 4.00 7.00 1.00

The procedures to effect these optimizations take advantage of E 2 0.00 7.00 32.00 16.00 16.00 28.00 4.00 7.00 1.00
the bit-parallel operations found in most machines and perform D
logical operations, a word at a time. Allen's article is extremely E 3 0.00 7.00 31.00 16.00 16.00 28.00 4.00 7.00 1.00

comprehensive and shows the details involved in applying each of C
the optimizing techniques. E 4 0.00 7.02 30.65 15.33 15.33 27.57 4.08 7.00 1.00
the optimizing techniques. s

Following Allen's optimization techniques, Kleir and S 5 0.00 6.98 31.35 15.67 15.67 28.43 3.92 7.00 1.00
Ramamoorthy (31) describe optimization procedures for micro- 0
programs, which may be viewed simply as another source lan- R 6 0.00 6.98 31.35 15.67 15.57 27.43 3.92 7.00 1.00

guage requiring translation to machine language. The connec- B 7 0.00 7.14 28.57 14.29 14.29 25.00 3.57 7.00 1.00
tivity matrix is used to find strongly connected regions which are L
processed innermost to outermost, and code motion is performed 0 8 0.00 6.86 27.43 13.71 13.71 24.00 3.43 6.00 1.00
to decrease instruction execution frequency. Within a basic c
block, common-subexpression elimination and dead-variable K 9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

elimination is performed (referred to by the authors as redundant
actions and negated actions, respectively). Determination of relative frequencies again permits ordering

In his book, Gries (32) devotes an entire chapter to a dis- the processing of blocks from highest to lowest frequency. With-
cussion of code optimization techniques. He views optimization in that order, common subexpressions may be eliminated and
at three levels: within a basic block, within a loop, and globally. expressions may be moved from high- to low-frequency blocks.
The global optimization techniques are patterned after Allen. The dominator relationships are used to ensure availability of an

In FORTRAN I, subscript calculations were performed at expression when needed. When profitable, strength reduction will
any definition of a variable used in the subscript, which led to be performed with initialization instructions placed in a domi-
inefficient codes when many definitions occurred with few uses. nator block. Subsumption, or substituting one variable for
Mostother compilers simply recomputed a subscript for each use another if they are equal at each reference, minimizes the



number of simple replacement operations in a program. In
another. report, Lowry and Medlock(35) describe the
FORTRAN H production compiler, discuss the compiler's imple- I
mentation, and suggest several additional optimizations. An inter-
esting point about the compiler is that it is written primarily in
FORTRAN. First run on the IBM 7094, the compiler was used to
create a new version of itself for the IBM 360. When the 24
optimizer had been tested, it was used to translate the compiler, 71/8.86/77/8 6.
which resulted in a 25 percent decrease in size and a 35 percent 2.34.
decrease in compilation time. To achieve a reasonable processing 5.6
speed, the compiler uses bit-vectors which can be processed by 345 END
the bit-parallel logical instructions available on the IBM 360. 678
Lowry and Medlock also discuss register assignment and code 3/4 END
generation techniques.

Graph-Theoretic Analysis END

Busam (36) reviews the UNIVAC 1100 series, which em-
ploys a three-pass optimizing compiler. The first pass encodes all INTERLS FIRST ITERTED SECOND
operations into a uniform tabular format. To achieve maximum INTERVALS ITERATED
recognition of common subexpressions, redundant information INTERVAL
may be added to the table, while flow information is maintained
in a list containing all statement numbers and references. The
second pass scans the code in reverse order and performs com- FREQUENCY =
mon-subexpression elimination and movement of loop-invariant I-P
computations. The compute point of each expression is deter- P= Pimined, and the expression evaluation is moved to that (lower P
frequency) point. In contrast, IBM FORTRAN H will succes-
sively move a computation out of each loop level until it can no
longer be moved. The determination of an expression's compute
point permits high-speed compilation because an expression need DETERMINATION OF
not be moved more than once. The second and third passes of FREQUENCY
the compiler are also concerned with register assignment and
code generation. Figure 5. Interval Analysis and Frequency Determination-Relative

In the USSR, the ALPHA automatic programming system Frequency of a Loop May Be Determined from the Probability of a
(Yershov 37 and 38) for the M-20 computer produces object Loop-Closing Branch
code that in some cases is nearly the equal of hand coding. The
major architecture-independent optimizations include optimiza-
tion of subscripts within FOR loops and the elimination of
redundant subexpressions within a basic block. A feature of the In the proceedings of the Association of Computing Machin-
ALPHA compiler, not found elsewhere, is the attempt to mini- ery SIGPLAN'S Symposium on Compiler Optimization,
mize the number of locations occupied by data within a program. Allen (41) indicates that over 90 percent of the program graphs
While many optimizations result in a decrease in the size of a subject to analysis -were reducible. She gives algorithms that
program because fewer instructions are generated, ALPHA specif- determine the back dominator of each node in an interval, theically minimizes the storage requirements for data and variables articulation blocks of an interval, and the maximum stronglyby permitting several variables to share a storage location if their connected region within an interval. The use of interval analysisuses do not interfere with one another. This is a generalization of for global optimization is shown with an example that demon-subsumption, which coalesces two variables into one if they con- strates how information is relayed through successive iterationstain the same value whenever used. of the interval construction. In the same proceedings, Cocke (42)

Much of the work in the past two years has centered around describes a method for common-subexpression elimination based
the use of the Cocke-Allen interval analysis technique, which was upon interval analysis. The information required to determinedescribed first by Cocke and Schwartz (39). This technique is whether a computation is redundant may be coded as a largebased on the interval, a partially ordered set of basic blocks with system of Boolean equations. The interval technique permits
the following properties: solution of this system without having to perform a tedious1. An interval is a set function of a distinguished block Gauss elimination. Only two passes through the system of equa-

called the head. tions are required. A later paper by Allen and Cocke (43) sum-2. All blocks in an interval, except the head, have all their marizes techniques for identifying intervals and properties ofimmediate predecessor blocks in the interval. blocks within intervals. The concept of node splitting to permit
Intervals are easily and rapidly constructed, and they readily reduction of an arbitrary program flow graph is discussed inidentify inner loops and a possible processing order within each detail.

loop. The ordering induced by the interval construction is valu- Kennedy (44) has built upon Allen and Cocke's work. Heable because dominators always precede their dominees. has divided questions concerning data flow into two classes:
Common subexpression elimination is simplified in this context 1. Those referring to the status of variables on entry to abecause the redundancy of a computation is indicated by its block
presence in a dominator block. The interval construction process 2. Those referring to the effect of computations within amay be iterated (treating intervals as basic blocks), and higher block on later computations
order loops will then be identified. Most program graphs will be Since the first class of problems has been solved, Kennedy givesreduced to a single node by repetition of this procedure. Those an approach to the second. An algorithm for the identification offew program graphs which are not reducible may be transformed dead variables is shown, which, like Cocke's common subexpres-into reducible graphs by the process of.node splitting (Cocke and sion elimination algorithm, requires only two passes. The twoMiller (40)). Figure 5 shows the intervals obtained from the passes perform logical operations on bit-vectors, which may be
example flowchart and how they may be used to compute performed in parallel on most machines, resulting in a very high-relative frequencies. speed algorithm.



S The value number technique described by Cocke and
Schwartz assigns a unique identifier to each calculation in a pro-gram. Whenever a calculation is to be performed, a table lookupdetermines whether it is currently available. Because a numeric
identifier is associated with each calculation, formal identity isnot required to find a common subexpression (Figure 3). Pro-
gram-flow properties that render a match impossible are reflected 2by assigning new identifiers at statement labels.

Schneck and Angel (45) have combined the interval analysisand value number techniques in an optimizer which accepts andproduces FORTRAN programs. AU of the techniques referred toat the beginning of this section are implemented, and new opti- 8/9 8/9mizations are introduced. Strict ordering of nodes within an 7/8/9interval permits the value number technique to be applied glob-ally and eliminates virtually all common subexpressions. A
second pass over the program, in the manner of Cocke andKennedy, permits global constant propagation to be performed. TI (3/4/7/5/6) TI (3/4/7/5/6/8/9) Ti (1,2/3/4/5/The efficacy of optimization at the level of a programming lan- T2 (3/4/7/5/6,8/9) T2 (2,3/4/7/5/6/8/9) 6/7/8/9)guage is also discussed.

A recent paper by Hecht and Ullman (46) introduces a pair Figure 6. Collapsibility-Repeated Applications of Twoof transformations which may be used in flow-graph analysis. Transformations Yield a Single Node in O(n log n) StepsTransformation Tdrjemoves an edge which begins and ends at the
same node. Transformation T 'condenses node a into its uniqueimmediate predecessor b resulting in a/b. A flow graph is called CONCLUSIONcollapsible if, and only if, repeated application of Tj and T2results in a single node. Figure 6 indicates the collapsibility of the The powerful architecture-independent optimizations areexample flow graph. Collapsibility is shown to be equivalent to responsible for most of the increased speed obtained by aninterval reducibility. The time to determine collapsibility is optimizing compiler. Schneck and Angel (45) have shown thatO(n log n), while the time to determine interval reducibility may these optimizations may be applied before compilation andbe O(n2 ). Information obtained by interval analysis may also be achieve almost all that a compiler can. With IBM's FORTRAN H,obtained by application of Tj and T2 . architecture-independent optimization accounts for 80 percentof the speed increase. With the CDC compiler for the 6600,

external optimization produces code faster than the compiler
can. In summary, an external architecture-independent compiler,
supplemented by a machine-oriented compiler, is the most cost-effective technique. This is true for the manufacturer, who maydevote less time to the compiler, as well as for the programmer,
who will find debugging easier in this environment because he
can see what changes have been effected.
REFERENCES

2 2 1. International Business Machines Corporation, The IBM
Mathematical Formula Translating System, FORTRAN,
1954.

2. R. C. Miller and B. J. Oldfield, "Producing Computer In-
structions for the PACT I Compiler," Journal of the ACM,3/4/7/5 )3/4/7/5/6 3, 1956.

3. P. B. Sheridan, "The Arithmetic Translator-Compiler ofthe IBM FORTRAN Automatic Coding System," Communi-
cations of the ACM, 2, 1959.

4. W. M. McKeeman, "Peephole Optimization," Communica-
tions of the ACMI, 8, 1 965.

6 8/9 5. J. T. Bagwcll, Jr., "Local Optimizations," ACM SIGPLANNotices, 5, No. 7, 1970.
6. J. P. Anderson, "A Note on Some Compiling Algorithms,"

Communications of the ACM, 7, 1964.
7. I. Nakata, "On Compiling Algorithms for Arithmetic Ex-pressions," Communications of the ACM, 10, 1967.
8. R. R. Redziejowski, "On Arithmetic Expressions andTrees," Communications of the A CM, 12, 1969.9. V. Schneider, "On the Number of Registers Needed ToEvaluate Arithmetic Expressions," BIT, II, 1971.9 

10. M. Finkelstein,"A Compiler Optimization Technique," TheComputer Journal, II, 1968.
11. B. Randell and L. J. Russell, Single-scan Techniques forthe Translation of Arithmetic Expressions in ALGOL 60."T (4,7) T (3/4/7/5,6) Journal of the ACM, I 1, 1964.

TI (3,4/7) TI (8,9) 12. R. W. Allard, K. A. Wolf, and R. A. Zemlin, "Some Effectsof the 6600 Computer on Language Structures," Communi-
TI (3/4/7,5) 

cations of the A CA, 7, 1964.
13. J. F. Thorlin, "Code Generation for PIE (Parallel Instruc-

tion Execution) Computers," Proceedings of the SpringJoint Computer Conference, 1967.

C-



14. International Business Machines Corporation, TR 00.2240, 30. F. E. Allen, "Program Optimization," Annual Review of

Current Technologies in FORTRAN Object Code Automatic Programming, New York: Pergamon Press, 1969.

Optimization, D. Blum, S.K. Brown, A.G. Calavano, 31. R. L. Kleir and C. V. Ramamoorthy, "Optimization Strate-

H. O. Hempy, and J. Suez, 1971. gies for Microprograms," IEEE Transactions on Computers,

IS. H. S. Stone, "One-Pass Compilation of Arithmetic Expres- C-20, 1971.

sions for a Parallel Processor," Communications of the ACM, 32. D. Gries, Compiler Construction for Digital Computers,

1967. New York: John Wiley and Sons, 1972.

16. J. C. Han, Tree Height Reduction for Parallel Processing of 33. J. T. Ryan, "A Direction-Independent Algorithm for Deter-

Blocks of FORTRAN Assignment Statements, National mining the Forward and Backward Compute Point for a

Technical Information Service, PB-207985, 1972. Term or Subscript During Compilation," The Computer

17. C. V. Ramamoorthy and M. J. Gonzalez, "Subexpression Journal, 9, 1966.

Ordering in the Execution of Arithmetic Expressions," 34. International Business Machines Corporation, TR 00.1330,

Communications of the ACM, 14, 1971. Global Program Optimization, C.W. Medlock and

18. W. H. Burkhardt, "Automation of Program Speed-Up on E. S. Lowry, 1965.

Parallel-Processor Computers," Computing, 3, 1968. 35. E. S. Lowry and C. W. Medlock, "Object Code Optimiza-

19. R. E. Milstein, Compiler Design for the ILLIACIV, Na- tion," Communications of the ACM, 12, 1969.

tional Technical Information Service, AD 719417, 1971. 36. V. A. Busam and D. E. Englund, "Optimization of Expres-

20. L. Lamport and D. Presberg, Concurrent Compiling, Na- sions in FORTRAN," Communications of the,ACM, 12,

tional Technical Information Service, AD 742279, 1972. 1969.

21. P. B. Schneck, "Automatic Recognition of Parallel and 37. A. P. Yershov, "ALPHA-An Automatic Programming

Vector Operations in a Higher Level Language," Proceedings System of High Efficiency," Journal of the ACM, 13, 1966.

of the ACM National Conference. 1972. 38. A. P. Yershov, The ALPHA Automatic Programming Sys-

22. D. J. Kuck, C. Muraoka, and S. C. Chen, "On the Number tem, New York: Academic Press, 1971.

of Operations Simultaneously Executable in FORTRAN- 39. J. Cocke and J. T. Schwartz, Programming Languages and

Like Programs and Their Resulting Speedup," IEEE Trans- Their Compilers, New York: New York University, 1969.

actions on Computers, C-21, 1972. 40. J. Cocke and R. E. Miller, "Some Analysis Techniques for

23. J. W. Backus, et al. "The FORTRAN Automatic.. Coding Optimizing Computer Programs," Proceedings of the Sec-

System," Proceedings of the Western Joint Computi957. ond Hawaii International Conference of System Sciences,

24. L. P. Horwitz, R. M. Karp, R. E. Miller, and S. Winograd, 19.69.
"Index Register Allocation," Journal of the ACM, 13, 1966. 41. F. E. Allen, "Control Flow Analysis," ACM SIGPLAN

25. F. Luccio, "A Comment on Index Register Allocation," Notices, 5, 1970.

Communications of the ACM, 10, 1967. 42. J. Cocke, "Global Common Subexpression Elimination,"

26. W. H. E. Day, "Compiler Assignment of Data Items to ACMSIGPLANNotices, 5, 1970.

Registers," IBM Systems Journal, 9, 1970. 43. F. E. Allen and J. Cocke, "Graph Theoretic Constructs for

27. R. T. Prosser, "Applications of Boolean Matrices to the Program Control Flow Analysis," Unpublished paper.

Analysis of Flow Diagrams," Proceedings of the Eastern 44. K. Kennedy, "A Global Flow Analysis Algorithm," Inter-

Joint Computer Conference, 1959. national Journal of Computer Mathematics, 3, 1971.

28. S. Warshall, "A Theorem on Boolean Matrices," Journal of 45. P. B. Schneck and E. Angel, "A FORTRAN to FORTRAN

the ACM, 9, 1962. Optimizing Compiler," The Computer Journal, to be

29. C. V. Ramamoorthy, "Analysis of Graphs by Connectivity published in 1973.

Considerations," Journal of the ACM, 11, 1964. 46. M. S. Hecht and J. D. Ullman, "Flow Graph Reducibility,"
SIAM Journal of Computing, 1, 1971.


