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(ABSTRACT)

A stochastic model of the atmosphere between 30 and 90 km was de-

veloped for use in Monte Carlo Space Shuttle entry studies. The model

is actually a family of models, one for each latitude-season category

as defined in the 1966 U. S. Standard Atmosphere Supplements. Each

latitude-season model generates a pseudo-random temperature profile

whose mean is the appropriate temperature profile from the Standard

Atmosphere Supplements. The standard deviation of temperature at each

altitude for a given latitude-season model is estimated from sounding-

rocket data. Departures from the mean temperature at each altitude are

produced by assuming a linear regression of temperature on the solar

heating rate of ozone. A profile of random ozone concentrations is

first generated using an auxiliary stochastic ozone model, also develop-

ed as a part of this study, and then solar heating rates are computed

for the random ozone concentrations.

Pressure and density profiles are calculated from each temperature

profile by solving simultaneously the hydrostatic equation and the

-t



equation of state. Isopynic layers, regions where atmospheric density

is almost constant, are created at 24 and 90 km altitudes by using these

two altitudes as boundary points in integrating the hydrostatic equation.

A computer tape of 442 sounding-rocket measurements of the atmos-

phere above 35 km was used to estimate parameters in the temperature

distribution, and to compare the data's statistical characteristics with

those of the model. The rocket soundings were sorted according to lat-

itude-season categories and adjustments were made to assure independence

of profiles. Because the resultant sample sizes were small, confidence

intervals associated with the sample statistics were so wide that com-

parisons of these statistics with model statistics were inconclusive.

The model was used in Monte Carlo simulations of Shuttle entries to

study the effect of atmospheric variability on the Shuttle entry para-

meters: maximum dynamic pressure, maximum stagnation-point heating

rate, maximum g-load, final down-range distance, and final cross-range

distance. A sample of 1000 entries was generated for each of the four

seasons in the 300 latitude band, and the resultant parameter distri-

butions were analyzed to determine parameter values. In general, autumn

and winter parameter distributions showed more dispersion than spring

and summer distributions, because the autumn and winter atmosphere models

were more variable than the spring and summer models. Pearson distri-

butions were fitted to the empirical distributions, and design values

obtained in this manner were compared with the traditional "three-sigma"

design values.
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I. INTRODUCTION

In evaluating the performance of various aerospace entry vehicle

designs, a major tool has been the use of entry trajectory computer

programs. The majority of these programs use the U. S. Standard Atmos-

phere, [1], to furnish atmospheric temperatures, densities, and pres-

sures as a function of altitude. These tables, published in 1962 by

the Committee on Extension to the Standard Atmosphere (COESA) represent-

ing 29 U. S. scientific and engineering organizations, were developed

as a means of standardizing aircraft and spacecraft engineering calcu-

lations. The basis of the tables is an annual mean temperature profile

located at 450 N. latitude. Thus, the atmospheric properties furnished

by the U. S. Standard Atmosphere are reasonably close to conditions

during the spring and fall months at 450 N. latitude but are not repre-

sentative of winter and summer properties nor those at different lati-

tudes. In 1966, COESA published the U. S. Standard Atmosphere Supple-

ments, [2], which contains seasonal atmospheric tables for 300, 450,

600, and 750 N. latitudes and a set of annual mean profiles for 150 N.

latitude.

Although these standard atmospheric tables are valuable for calcu-

lating nominal trajectories and for providing a basis of comparison for

engineering calculations made by different individuals, they are inade-

quate for determining the impact of extreme atmospheres on a vehicle's

performance. In designing a spacecraft it is necessary to establish

a performance envelope within which all flight parameters are expected

1
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to lie with high probability regardless of environmental extremes. Once

this envelope is determined, one can establish a set of design criteria

stating the extreme loads or stresses which an entry vehicle must be able

to withstand.

In past design studies on atmospheric entry vehicles, a common

method for obtaining a performance envelope (e.g., [3) and [4]), was to

calculate trajectories using both maximum and minimum atmospheric density

profiles as shown in Figure 1.1. Generally these are profiles in which

athnospheric density is three standard deviations above or below its mean

at all altitudes simultaneously. This method has two major disadvantages.

One is that since density profiles such as these never occur in any real

atmosphere, a design parameter based on this method might be overly con-

servative and, thereby, require unnecessary expense. A second disadvan-

tage, more critical than the first, is that these extreme density pro-

files do not produce extremes in all entry parameters. For example, with

some spacecraft a more severe total heat load is produced when atmospher-

ic density is extremely low during the initial phase of entry and sudden-

ly becomes extremely high at lower altitudes [5). The reason for this

severity is that the initial low density causes less deceleration than

is normal, and thus the spacecraft encounters an extremely dense atmos-

phere while traveling at an unusually high velocity.

To account for the fact that extremes in the various entry parameters

are produced by different atmospheric situations, an alternate determin-

istic approach, [6], has been to determine analytically for each perfor-

mance parameter the atmospheric profile which produces an extreme in
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that parameter, and then design the vehicle 
to withstand that extreme.

As with any deterministic approach, however, this 
has the disadvantage

that any specific atmospheric profile has 
a zero probability of occur-

rence, and thus the design may be overly conservative. 
Furthermore,

the degree of conservatism cannot be ascertained since 
no knowledge is

provided as to the probability of encountering 
atmospheric profiles

similar to the design atmosphere.

The disadvantages associated with deterministic 
methods are strong

justification for using statistical 
methods in establishing design cri-

teria. A Monte Carlo entry study based on realistic 
random atmospheres

can be used to estimate the statistical distribution 
of any entry para-

meter. Then a parameter's design value can be selected 
for any desired

risk or exceedance probability. The optimum design criterion is one in

which the risk associated with its design 
value is a compromise between

safety and cost. That is, its risk should be low enough to provide a

high measure of safety but not so 
low as to make the design impossible

or unnecessarily expensive.

The next major space transportation system of the future, the

Space Shuttle, is currently in the design stage. One major innovation

in this new system is that the Shuttle will be capable 
of returning from

orbit and landing much like today's conventional 
aircraft. Thus, the

Shuttle can be reused, and the waste of 
disposing with spacecraft will

be eliminated. With the advent of this reusable spacecraft, 
however,

it has become much more important to have 
a good estimate of the proba-

bility of exceeding any design value. For example, when a spacecraft
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was used only once it was not so critical to distinguish between 
a fail-

ure probability of .005 and one of .001. With the Shuttle having an ex-

pected lifetime of 100 missions, however, the difference between single-

flight failure probabilities of .005 and .001 makes the 
difference between

a 40 percent and a 10 percent chance of at least one failure during the

lifetime of the Shuttle. This, therefore, is further justification for

using the best available statistical techniques in design 
studies to ac-

quire as much confidence as possible in reliability estimates.

In order to do Monte Carlo simulations of Shuttle entries, it was

necessary to develop a stochastic atmosphere model capable of rapidly

generating realistic atmospheric profiles. The author has accomplished

this for the altitude region between 30 and 90 km, the region of great-

est impact on Shuttle entry design considerations. This model uses a

combination of empirical and theoretical techniques to derive a pseudo-

random altitude profile of atmospheric temperature. The mean tempera-

ture at each altitude is defined empirically, and variations about 
the

mean are explained, in part, by theoretical considerations. An auxil-

iary stochastic model of atmospheric ozone concentrations, also develop-

ed as a part of this study, is used to produce variations in solar

heating rates, which are then linked to temperature variations via a

linear regression model. Since the three thermodynamic properties of

the atmosphere, temperature, density, and pressure, are related by two

physical equations, it is possible to calculate any two quantities 
given

an altitude profile of the third. Therefore, this model is fundamental-

ly a stochastic model of atmospheric temperature, and pressure and
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density profiles are obtained by using the pseudo-random temperature

profiles provided by the model to solve two deterministic 
equations.

A review of atmospheric modeling techniques and current models 
is

presented in Chapter II. Chapter III describes the development of the

temperature model, and Chapter IV presents the auxiliary stochastic

ozone model mentioned above. Chapter V presents the statistical char-

acteristics of all three atmospheric profiles generated by the model

(i.e., temperature, density, and pressure), and compares 
these with data

obtained from Meteorological Rocket Network soundings. Chapter VI

describes a Monte Carlo Shuttle entry study based on the present 
model.

The model was used to furnish one pseudo-random density profile 
at the

beginning of each entry simulation. In order to be realistic, since

the Shuttle follows a long shallow entry path, it was necessary 
to add

a horizontal variation to atmospheric density. This is also discussed

in Chapter VI. Chapter VII begins with a summary of what has been

accomplished, points out directions for improvement and future work,

and states several conclusions regarding the overall approach.



II. ATMOSPHERIC MODELS AND MODELING TECHNIQUES
SURVEY OF LITERATURE

A general description of the atmosphere

For the purposes of entry studies it will be assumed that the

atmosphere extends to an altitude of 90 km (~300,000 ft). Aside from

the fact that only .0001 percent of the atmosphere lies outside this

radius, 90 km is a convenient upper limit for the atmosphere because at

that altitude the relative proportions of the various constituents begin

to vary, making it more complicated to relate temperature, density, and

pressure. Below 90 km the molecular weight of air is essentially con-

stant (28.964 kg), reflecting a constancy in the relative proportions

of its principal constituents (see Table 2.1). As the molecular weight

of air begins to vary above 90 km, this quantity becomes a fourth vari-

able in the equation of state. Furthermore, the hydrostatic equation

relating pressure and density begins to fail, and, therefore, the math-

ematical relationships between temperature, density and pressure used

below 90 km become invalid above that altitude.

Figure 2.1 shows a general schematic diagram of the atmosphere 
and

its various layers. The temperature profile shown here is that which

forms the basis of the U. S. Standard Atmosphere, [1]. It is a piece-

wise linear approximation to a mean temperature profile obtained by

averaging over temperatures from all seasons and latitudes. The various

layers of the atmosphere indicated in Figure 2.1 are distinguished

according to whether the rate of change of temperature with height is

7
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Table 2.1 - Composition of Dry Air

Below 90 km

Constituent gas and Content, Content variable Molecular

formula percent by relative to its weight*

volume normal

Nitrogen (N2 ) 78.084 - 28.0134

Oxygen (02) 20.9476 31.9988

Argon (Ar) 0.934 - 39.948

Carbon dioxide (CO2 ) 0.314 t 44.00995

Neon (Ne) 0.001818 - 20.183

Helium (He) 0.000524 - 4.0026

Krypton (Kr) 0.000114 - 83.80

Xenon (Xe) 0.0000087 - 131.30

Hydrogen (H2 ) 0.00005 ? 2.01594

Methane (CH4) 0.0002 t 16.04303

Nitrous oxide (N20) 0.0005 - 44.0128

Ozone (03) 0 to .00002 t 47.9982

Sulfur dioxide (SO2) 0 to 0.0001 t 64.0628

Nitrogen dioxide (NO2) 0 to 0.000002 t 46.0055

Ammonia (NH3 ) 0 to trace t 17.03061

Carbon monoxide (CO) 0 to trace t 28.01055

Iodine (12) 0 to 0.000001 t 253.8088

On basis of carbon-12 isotope scale for which C
1 2 = 12.

tThe content of the gases marked with a dagger may undergo signifi-

cant variations from time to time dr from place to place relative to the

normal indicated for those gases.
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negative or positive.

The troposphere is the region beginning at the earth's surface in

which temperatures decrease as altitude increases. This region contains

approximately 99.8 percent of the atmosphere's precipitable water and,

accordingly, contains the weather systems which affect surface conditions.

The stratosphere is the region of increasing temperatures between -10 km

(the tropopause) and ~50 km (the stratopause), and the mesosphere, ex-

tending to -90 km (the mesopause), is a second region of decreasing

temperatures. The lowest temperatures in the atmosphere occur at the

mesopause. Up to an altitude of about 65 km, summer temperatures exceed

winter temperatures. However, between 65 and 110 km summer temperatures

are lower than winter temperatures with an annual difference of as much

as 600 K occurring at the mesopause.

The isothermal tropopause, stratopause and mesopause regions de-

picted on Figure 2.1 do not represent the shape of 
real temperature

profiles. They result from the averaging of temperature profiles 
in

which the tropopause, stratopause and mesopause occur at distinct 
varia-

ble altitudes.

The thermosphere begins at the mesopause and extends upward to an

undefined height. Here temperatures increase exponentially with alti-

tude until they reach an asymptotic value, known as the exospheric

temperature, which ranges between 600 and 20000 K depending 
on the

amount of solar activity.

This partioning of the atmosphere into a troposphere, stratosphere,

mesosphere, and thermosphere is based on the temperature structure.
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Another classification dividing the atmosphere into an ionosphere and a

neutrosphere, above and below 80 km, respectively, is based on the fact

that above -80 km the air is highly ionized by high-frequency solar

radiation. Another dual system divides the atmosphere at 90 km accord-

ing to whether the molecular weight of air is constant (homosphere) or

variable (heterosphere). In this study, the temperature-based system

will be used.

The shape of the temperature profile can be explained in terms of

the various heating and cooling mechanisms which exist at different

altitudes. The temperature "bulge" in the stratosphere and mesosphere

results from the absorption of solar radiation by ozone, a gas which is

formed by photochemical processes in that region of the atmosphere. Al-

though ozone is a minor constituent, in terms of its relative concentra-

tion, it plays a vital role in controlling the nature of our atmosphere.

It absorbs virtually all of the sun's extremely high frequency radiation,

O

wavelengths less than ~3000 A , and thereby shields the earth's surface

from potentially harmful ultraviolet radiation, X-rays, and gamma rays.

Mechanisms which create the tropospheric temperature structure are

more complicated than those in the stratosphere and mesosphere. Approx-

imately 50 percent of all solar radiation reaches the earth's surface,

and 90 percent of this incident radiation is absorbed. Heat from the

surface is then transfered to the air adjacent to the surface, and water

at the surface evaporates. As this moist heated air rises, it cools,

becomes saturated, and eventually its moisture condenses, thus releasing

heat into the atmosphere. These vertically moving air masses, together
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with horizontal winds and radiative processes, govern the temperatures

in the troposphere.

This combination of conductive, convective, and radiative processes,

plus the heat exchanges resulting from evaporation and condensation, make

the troposphere an extremely difficult region to model. Fortunately,

however, the region of most importance for Shuttle entry considerations

is the region between 30 and 90 km, the upper stratosphere and mesosphere,

where maximum heating rates, g-loads, and dynamic pressures occur. The

present discussion of modeling techniques and current models will be

limited to those which pertain, at least partially, to this region.

Physical laws relating atmospheric temperature, pressure, and density

There are two well-established laws relating the thermodynamic

properties of temperature, T , pressure, P , and density, p . The

equation of state of an ideal gas (Perfect Gas Law) is given by

p = (2.1)
KT

where K is the universal gas constant and M is the molecular weight

of air. The hydrostatic equation, relating the rate of change in atmos-

pheric pressure to density, is expressed as

dP = -gp dz (2.2)

where z is altitude and g is the acceleration due to gravity, a

deterministic quantity which depends on the distance from its point of

application to the center of the earth. The hydrostatic equation
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expresses the fact that the difference in pressure between two altitudes

is equal to the weight of air in a vertical column of unit cross-section-

al area contained between those altitudes. This relationship assumes

that the atmosphere is static relative to the earth, an assumption which

may be made below ~90 km.

Appendix A gives the simultaneous solution of (2.1) and (2.2) which

is used to derive the pressure and density profiles corresponding to a

given temperature profile. It also contains an equation used in this

study for calculating g as a function of latitude and altitude.

Most atmospheric models either assume or derive one atmospheric

profile (e.g., temperature, density, or pressure) and then calculate the

remaining two using the equation of state, (2.1), and the hydrostatic

equation, (2.2). The models vary according to which profile is the one

used as a basis and according to whether that profile is empirically

constructed from experimental data or is derived from a set of theoretical

laws. The two latter classifications, empirical versus theoretical, will

be discussed separately.

Deterministic empirical models

Probably the best known empirical atmosphere models are the 1962 U.

S. Standard Atmosphere, [1], and the 1966 U. S. Standard Atmosphere

Supplements, [2]. These are temperature-based models which assume

piecewise linear temperature profiles approximating the means of exper-

imental data. These assumed temperature profiles are then used to tabu-

late values of pressure, density, speed of sound, coefficient of viscosity,
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thermal conductivity and other gas properties for altitudes at one-

kilometer intervals between 0 and 120 km. These tables are used for

general engineering purposes. For more specialized applications such

as trajectory analyses of launches from Cape Kennedy, Vandenburg, Wallops

Island, etc., reference atmospheres for these and other sites have been

tabulated, (e.g., [7], [8], and [91).

Empirical models are sometimes called "statistical" models when, 
in

addition to including means of the various properties, they also include

standard deviations and other sample statistics. An example of such a

"statistical" model is reference [10] where Theon, et al., present a

summary of statistics based on 208 temperature soundings made between

1960 and 1968.

Many so-called "models" are actually data summaries 
such as

reference (11]. This is an example of the monthly data reports on

Meteorological Rocket Network soundings at selected sites around the

world. Besides giving the individual profiles measured during the

month, they also list, for each site, the means and standard deviations

of all the accumulated data taken during that month since 1961. The

various Meteorological Rocket Network sites are shown in Figure 2.2.

As the quantity of data increases each year, global atmosphere

models are being developed which account not only for seasonal and

latitudinal variations, but also for longitudinal or time-of-day vari-

ations. The model presented by Weidner, Chambers and Lou, [12] is a

preliminary one resulting from a study initiated in 1968 to develop a

global model of the atmosphere above 25 km for NASA design criteria
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purposes. This can be used with another global model developed by

Spiegler and Fowler, [13], for the first 25 km. Another model develop-

ed specifically to provide a three-dimensional atmosphere for long hori-

zontal Shuttle trajectories is that of Bowman [14].

Deterministic theoretical models

The models described above were classified as "empirical" because

they rely largely on experimental data to provide values of temperature,

density and pressure as a function of height. In some cases, [11], they

are simple tabulations of data, whereas in other cases, [14], polynom-

ials or other such curves have been fitted to the data to give mathemat-

ical representations of the atmospheric profiles. Such empirical models

are valuable as engineering tools in that they provide the best estimate

of atmospheric conditions. Theoretical models, on the other hand, such

as those of Goody, [15], Harris and Priester, [16], and Kuhn, [171,

attempt to explain observed properties using physical laws and hypotheses.

Although good representations of the atmosphere are achieved, these

models never completely reproduce the atmosphere's structure, many

characteristics of which are not yet fully understood. Such models

are important to the physicist as they enable him to explain observed

phenomena, but as engineering tools, theoretical models are, in general,

computationally too cumbersome, and the properties they predict are not

as accurate as those of empirical models. Only those theoretical

techniques and models which influenced this development will be discussed

here. For an excellent general history of atmospheric temperature
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modeling techniques, the reader is referred to Kuhn, [17].

Probably the most common approach to describing the atmosphere

theoretically has been to calculate a temperature profile using the

assumption that the atmosphere is in radiative equilibrium (e.g.,

Manabe and M6dller, [18), and Manabe and Strickler, [19]). Although

equilibrium temperature profiles of this type approximate observed

temperature profiles, (see Figure 2.3), they cannot agree perfectly

because the atmosphere is not actually in radiative equilibrium. 
In

reality, there are regions which act as heat sources and 
sinks thus

accounting for known global circulation patterns. The atmosphere is,

however, close to radiative equilibrium, particularly 
in the strato-

sphere [15], and thus radiative processes explain, 
to a great extent,

the temperature structure.

Instead of calculating equilibrium temperatures, an alternate

approach was that used by Kuhn, [17]. He assumed a mean temperature

profile and then calculated the corresponding infrared heating and

cooling rates in the upper stratosphere and mesosphere. 
His infrared

heating and cooling rates added to the solar heating rates of Murgatroyd

and Goody, [20), give a net heat balance for the atmosphere which agrees

well with known circulation patterns.

One major characteristic of any modeling technique based on radia-

tion theory is its computational difficulty. The radiative transfer

equation is a multiple integral equation requiring 
a numerical solution.

Seemingly minor simplifying assumptions can often have disastrous effects

on the pedicted temperature profile or heating and cooling rates, [17].
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Thus, radiative transfer calculations, in general, are not suitable for

use in a stochastic model required to generate large numbers of temp-

erature profiles rapidly. However, energy transfer calculations in-

volving only solar radiation are much simpler, and these have been in-

corporated into the present stochastic model.

Stochastic models

Historically one of the first statistical treatments of atmospheric

properties was made by Dines, [21], in 1919. Using the equation of state

of an ideal gas, (2.1), and the assumption that in the atmosphere

departures from the mean temperature, density and pressure are small in

comparison with these means, Dines derived the approximate relations

CP = Cpr(Pp) - CTr(pT)

CT = Cr(PT) - C r(pT) (2.3)

Cp = C r(Pp) + CTr(PT)

where C , C , and Cp are the coefficients of variation of p , T ,

and P , respectively, and r( * * ) denotes a correlation coefficient

between the two indicated quantities.

In 1954, Buell, [22], used these relationships in conjunction with

the hydrostatic equation to derive an expression for the vertical gradient

of a(P) , the standard deviation of pressure. His expression is given

by

da(P) = -g a(p) r (Pp) (2.4)
dz
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where o(p) is the standard deviation of density. According to this

relationship, a(P).should be maximum or minimum at altitudes where

r(Pp) = 0.

Dine's work has recently been applied by Smith, et al., [231, to

a modern problem relating to aerospace vehicle design criteria. Smith

and his associates solved equations (2.3) for the correlation coeffi-

cients r(pT), r(Pp), and r(PT), using experimental measurements of

C , CT , and Cp at different altitudes. Their results are shown in

Figure 2.4. They propose that these correlation coefficients be used

to determine the appropriate combination of P, p, and T when one of

these properties is taken to be extreme. For example, r(PT) can be used

to determine the appropriate value of temperature to accompany an ex-

treme pressure. This approach is valuable in design problems where

atmospheric properties are needed at a fixed altitude, e.g., along

horizontal flight paths. In such cases, vertical atmospheric profiles

are not known, and hence the hydrostatic equation is not applicable.

A number of authors have fitted polynomials to various atmospher-

ic profiles and, by estimating the statistical distributions of the co-

efficients in their polynomials, they are able to generate random pro-

files. One example of this is the work of Essenwanger, [24], in which

he approximates temperature and wind profiles below 25 km using

Fourier series and density profiles below 25 km using Tchebycheff

polynomials. He uses only one random coefficient in each approximation

and assumes a Weibull distribution for that coefficient.

Another example of this approach is the recent work of Engler and
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Goldschmidt, [25]. Using a set of 67 experimentally measured pressure

profiles, they fitted polynomials of order k = 2,...,6 to profiles of

log(P) and found that for most profiles a third-order fit was 
adequate.

They then determined that the four coefficients, 80 , 81 , 82 and

83 , used in their third-order polynomials were highly 
correlated, and

so they expressed 80 , 81 and 82 as linear functions of 83 . The

distribution of 83 was estimated to be normal. Using their third-order

polynomial for log(P) , Engler and Goldschmidt were able to express the

pressure at altitude z as

P = P1(83 , z) P2 (z) (2.5)

where they call the factor P2(z) the steady-state pressure, since it

is independent of 83 , and they called P1(83 , z) the perturbation

factor.

As Engler and Goldschmidt point out, one limitation of their model

is that the 67 profiles used as their data base were for different

seasons and locations. They speculate that if the data were for a single

season and location, the correlations between the coefficients 80 ,

81 82 , and 83 would increase. However, this author believes that

just the opposite would be true. That is, high correlations among the

i.'s reflect a systematic variation in the 
shape of the log(P) profiles

which may be due to season and latitude effects. If that is the case,

then in a single season and latitude the variation in log(P) would be

smaller and more irregular (i.e., less systematic). Hence, the $i's

would be less correlated. Nevertheless, the necessity of using as many
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as four random variables instead of one would not be a serious disadvan-

tage, and this model appears to be quite attractive for Monte Carlo

simulations.

Justus and Woodrum, [26], have estimated the statistical distribu-

tion of "irregular" variations in atmospheric properties. They assumed

that an atmospheric parameter such as density or pressure can be expres-

sed as

F(z) = Fo(z) + f(z) (2.6)

where the term F (z) is made up of diurnally repeating components

and steady-state components persisting over a period of several days.

That is, two values of Fo(z) measured 24 hours apart would be identical.

The component f(z) is called the irregular variation, and measurements

of this were obtained by differencing profiles made at the same time of

day on consecutive days. Knowing the distribution of f(z) , a random

F(z) profile could then be generated for any fixed F (z) . However,

the variation in f(z) is not sufficient to account for all the variation

in F(z) even within the same season and location. One would also need

a model to provide the temporal and spacial variation in F (z) .

A final stochastic model of interest is a multiple regression model

for atmospheric density between 30 and 110 km developed by Morgenstern

and Orner, [27]. A stepwise regression procedure was used in selecting

the optimum set of independent variables which significantly affect

density. It has been shown by Jacchia, [28], that a number of variables

have a strong influence on atmospheric density above 200 km. Using the
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variables in Jacchia's model as a starting point, Morgenstern and Orner

determined a set of 14 independent variables which have a significant

correlation with density in the 30 - 110 km region. These are various

measurements of solar flux, latitude, annual and semi-annual cycles.

They divided the atmosphere into three quasi-homogeneous regions and

used a different subset of these 14 parameters in their regression equa-

tion for each region. Their low altitude density model (30 - 50 km)

required five independent variables; their middle region model (50 - 65

km) required six, and their high region model (65 - 110 km) required

two parameters. They claim that their model accounts for 50 percent

of the variability in density data between 30 and 75 km.

This model is.not complete enough, as given, for generating

pseudo-random density profiles. It is of interest, however, because,

unlike the stochastic models discussed above, it is an effort to

account for atmospheric variation by identifying the major causes of

that variation. This was the approach taken in the development of the

present stochastic temperature model.



III. THE ATMOSPHERIC TEMPERATURE MODEL

The single most dominant feature of the altitude region between 30

and 90 km is the temperature "bulge" caused by the absorption of solar

energy by ozone. Thus, the temperature profile appears to be a logical

starting point in attempting to model this region. It is for this reason,

primarily, that the author has chosen to use temperature as the basis of

the present atmosphere model. Another reason is that it is difficult to

perturb a standard pressure or density profile and still have the associ-

ated temperature profile retain its characteristic shape as shown in

Figure 2.1.

The source of temperature variation

To begin modeling variations in atmospheric temperature in the 30 -

90 km region, the first step is to identify the underlying processes

which cause that variation and determine which ones are random. Any

variable which can readily be ascertained without error at the time of

the spacecraft's entry will be considered nonrandom. Variables which can

only be estimated statistically at the time of entry will be considered

random.

Among the nonrandom causes of temperature variation, a major one

is nearness to the sun as determined by season and latitude. The present

model accounts for this source of variation by requiring that season

and latitude be fixed before estimating the various model parameters.

That is, the model furnishes pseudo-random temperature profiles

25
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characteristic of a specified season and latitude range.

Another nonrandom source of variation is time of day., The tempera-

ture model is based on rates of absorption of solar radiation; therefore,

it is only representative of profiles during daylight hours. At the

present time there is insufficient data to estimate model parameters for

specific times of day. However, the standard deviation of atmospheric

temperature at each altitude level is specified by the user of the model,

and thus the model includes all observed variability in daylight tempera-

tures for a given season and latitude band.

There are two major sources of temperature variation which are

considered random. One is the creation and destruction of constituents

which absorb and/or emit radiation, and the other is the random movement

of air masses. Since the atmosphere is not in radiative equilibrium

there are regions which act as heat sources (have a positive radiative

heating rate) and other regions which act as heat sinks (have a negative

radiative heating rate). Figure 3.1 shows the heating and cooling rates,

in degrees per day, in the 30 - 100 km region as calculated by Kuhn, [17].

These gradients set up global circulation patterns which maintain an

overall balance in the atmosphere's heat budget. Superimposed on these

steady-state circulation patterns are winds or small-scale random air

movements. A great amount of attention has been focused on random wind

modeling, (e.g., [29], [30], [31], and [32]). The present temperature

model does not include the effects of winds explicitly, although there

is a random error term which might be considered as resulting from winds.

It may be possible to include winds more directly by combining the present
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model with the random wind model described in [29].

The radiative heating rate at any point is a function of the radiant

energy being absorbed and emitted at that point. These absorptions and

emissions depend largely on the amounts of various radiatively active

gases present. Electromagnetic radiation in the atmosphere has two major

sources as illustrated in Figure 3.2. Radiation from the sun, with almost

all wavelengths less than 4 p, lies primarily in the optical spectral

region, whereas radiation from the earth and its atmosphere, with most

wavelengths greater than 4 p, lies in the infrared spectral region. The

two types of radiation are generally treated separately.

Solar energy is absorbed primarily by oxygen in the thermosphere,

ozone in the stratosphere and mesosphere, and water vapor in the trop-

osphere. Terrestrial radiation (including that from the atmosphere) is

absorbed by water vapor, carbon dioxide, and ozone. Of these four

radiatively active gases only water vapor and ozone have concentrations

which vary significantly from day to day, and of these ozone is the

major influence in the upper stratosphere and mesosphere. Thus, it was

decided to model the variations in ozone and use these to produce varia-

tions in temperature between 30 and 90 km.

One advantage in linking atmospheric temperatures to radiative

processes is that radiation, particularly solar radiation, is the only

obvious means by which temperatures in two widely separated altitude

regions can be correlated. For example, suppose the ozone in a high

altitude region absorbs more solar energy than is normal. This means

that less radiation reaches the ozone below that altitude and, as a
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consequence, less is absorbed. Since temperatures vary according to

the amount of energy absorbed, then an increase in temperature (high

absorption) at a high altitude would tend to be associated with a de-

crease in temperatures (low absorption) at some lower altitude, and

vice versa.

The difficulty in modeling temperature profiles, or any other at-

mospheric profile, lies in modeling these interlayer correlations.

Since pressures and densities are obtained by integrating over the

temperature profile, it is important to generate temperature profiles

with realistic shapes, i.e., temperature profiles whose deviations from

the mean in one region are realistic relative to those in other regions.

Otherwise, it is possible, for example, to construct a temperature model

having a correct temperature distribution at each individual altitude

which, at the same time, produces a very unrealistic distribution for

the integrated temperature profile (i.e., temperature integrated 6ver

altitude). Since pressure and density depend on this integral, their

distributions would be adversely affected.

Radiative heating rates

A basic premise underlying the development of the present model

is that there is a strong positive linear correlation between the temper-

ature at altitude z , T(z) , and the radiative heating rate at that

altitude, I(z) . The heating rate, in degrees per unit time , is given

by

I(z) 1 dF (3.1)
pcp dz
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where p is atmospheric density, cp is the specific heat at constant

pressure (a constant), and F is the energy flux (the amount of energy

per unit time passing through a unit area perpendicular to the z di-

rection).

The change in F across a layer of incremental depth dz is

dF = rate of emission - rate of absorption (3.2)

The total flux F can be separated into two disjoint spectral

terms, the flux of optical or solar radiation S and that of infrared

radiation R . Thus, one can write F = S + R or dF = dS + dR.

Since the optical energy is basically solar radiation and the atmosphere,

for most practical purposes, does not emit energy at those wavelengths,

one can write

dS = - rate of absorption of solar energy (3.3)

The solar energy absorbed by a layer depends on the quantity of any

absorbing gases in that layer (e.g., oxygen, ozone, water vapor) and

on the amount of direct andreflected solar radiation which is incident

on that layer. This latter dependency means that dS at altitude z

depends not only on the quantity of an absorbing gas at altitude z ,

but also on the amounts of that gas at other altitudes, particularly

at altitudes above z . Thus, in the 30 - 90 km region, variations in

dS can be determined largelyby modeling variations in the ozone

profile.

The change in infrared (IR) flux is given by
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dR = rate of IR emission - rate of IR absorption (3.4)

The infrared emission rate depends on both the temperature and pressure

of the emitting gas as well as on its relative concentration. The ab-

sorption rate depends not only on these properties for the absorbing gas,

but also on these properties for the surrounding gases. Thus, dR at

one altitude is a function of the temperature profile, the pressure

profile, and the appropriate constituent density profiles.

For a given ozone profile, a calculation of dS is reasonably

straight-forward. One reason for this is that absorption coefficients

needed in the calculation are well-behaved functions of wavelength in

the visible and ultraviolet spectral regions and are virtually indepen-

dent of atmospheric temperatures and pressures. An average absorption

coefficient can be assumed to apply over a fairly wide wavelength band

without sacrificing much accuracy in the resulting calculations. In

the infrared region of the spectrum, on the other hand, calculations are

very difficult. Thousands of overlapping absorption lines, each with

its own absorption coefficient, are contained in any small spectral

band. As it is impossible to treat each line separately, a number of

band models representing various levels of approximation are used,

(e.g., [33], [34], and [35]). Besides being mathematically formidable,

these models involve parameters which are dependent on pressure and

temperature. As a consequence, calculations involving the infrared

radiative flux in the atmosphere are highly complex, time consuming,

and poorly suited for the present purposes.
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Fortunately, it is possible to concentrate on correlating tempera-

tures to the solar heating rate

T (z) = - c dS (3.5)
s pCp dz

and ignore the effect of the infrared processes on the variation of

temperature. Theoretically, such an omission is justifiable provided

that either dR is insignificant relative to dS, or dR is closely

correlated to dS so that the partial correlation of T on dR, given

dS, is small. The former justification is not valid, in general, since

the atmosphere is close to radiative equilibrium so that dR = -dS.

However, according to Kuhn's calculations, an increase in ozone produces

a decrease in dR above 40 km and an increase in dR between 30 and

40 km. Calculations made in the present investigation indicate that the

same is true of dS. That is, when ozone is increased, dS decreases

above 40 km and increases between 30 and 40 km. Thus, it appears that

changes in dS and dR resulting from ozone variations are

positively correlated in the regions between 30 and 90 
km.

Calculations of Ts in the present study are based on a three-

step non-gray radiative model of the atmosphere used by F. Y. Su, [36].

Details of these calculations are presented in Appendix B.

Model linking temperatures to solar heating rates

The decision to relate variations in atmospheric temperature to

variations in the solar heating rate of ozone required first the

development of a stochastic model for ozone. Details of this

development are described in the next chapter. By using this model to



generate pseudo-random ozone profiles, it is possible to vary the

heating rates Ts(z), and thus effect changes in the temperature

profile T(z).

To relate T(z) and T (z), a linear regression model is assumed.

That is, it is assumed that the temperature at altitude z is given

by a linear function of the general form

T(z) = Bo(Z) + Bl(Z)T (z) + E(z) (3.6)

where 80(z) and 81(z) are regression coefficients and e(z) is a

random component representing unmodeled variation (error).

Equation (3.6) can be written in a more definitive form as

[T (z) - si (z)
T(z) = 1T(Z) + XaT(Z) As)  + E(z) (3.7)

where 1T(z) and aT(Z) are the mean and standard deviation of T(z),

respectively; Us(z) and a s(z) are the mean and standard deviation of

T (z); X is the coefficient of correlation between T(z) and T (z),
s •

and E(z) is a normal random number with zero mean and variance given by

a (z) = (1 - X2 )a2 () (3.8)

There are no data available which provide simultaneous measurements

of T(z) and Ts (z), or of T(z) and ozone, in the 30 - 90 km region.

Thus, it is not possible to use the usual least-squares methods for
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estimating the regression coefficients. Instead, T(Z) and aT(z)

were estimated from sounding-rocket temperature data. A large volume

of data is available, [37], on ozone concentrations in the troposphere

and stratosphere. These data were utilized to develop a random ozone

model which was then programmed to generate a large sample of Ts(z)

profiles from which Us(z) and a s(z) could be estimated.

The choice of X-= .9 in the present model was based on two consider-

ations. First, a qualitative comparison was made between real measured

profiles and model-generated profiles using a range of X values between

0 and 1. As seen in Figure 3.3, the choice of X determines the amount

of small scale random scatter in modeled temperature profiles. A value

of X = 1 eliminates E(z) in equation (3.7) and, therefore, results

in smooth temperature profiles influenced only by changes in Ts . A

value of X = 0, on the other hand, eliminates the dependence.of T

on T and accounts for all temperature variation with E(z) , thus

producing a "white noise" type of variation. That is, with X = 0,

temperatures at any two altitudes would be uncorrelated regardless of

how close the altitudes are. This comparison of model with data indicat-

ed that a choice of X between .7 and .9 gave the model an amount of

small-scale random fluctuation resembling that in the data.

A second consideration in the choice of X was based on the need

for a sufficiently high correlation between temperatures at adjacent

altitudes. In the present model pseudo-random temperatures are generated

at one-kilometer intervals; thus, "adjacent" altitudes are one kilometer

apart. It follows from equation (3.7) that the correlation between
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temperatures at any two altitudes cannot exceed X . In the data,

temperatures at adjacent altitudes generally had very high correlations.

Thus, to maximize these correlations in the model within the constraint

.7 < X < .9 , the value X = .9 was selected. Figure 3.4 shows a

comparison of two measured profiles with two pseudo-random temperature

profiles using X = .9 . Statistical characteristics of the model are

compared with those of experimental data in Chapter V.

Before proceeding to a description of the ozone model, one further

word of explanation is in order. It will be noticed in the next chapter

that the ozone model gives ozone concentrations as a function of atmos-

pheric pressure, P . Quite often atmospheric pressure instead of alti-

tude is used as a vertical scale. This is possible because P is a

strictly monotonic (decreasing) function of altitude. In the present

model, it was found to be more convenient to use P or, more exactly,

log(P) as the independent variable instead of altitude z . This is

because the ozone model is based on log(P) . Thus, all the quantities

dependent on z in equation (3.7) were transformed so as to be functions

of log(P) so that the model gives a temperature-log(P) profile. Using

the equation of state and the hydrostatic equation, it is possible to

solve for z and p as functions of the T-log(P) profile. Details

are explained in Appendix A.
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IV. THE OZONE MODEL

Atmospheric ozone has been the subject of much scientific scrutiny

since its existence was first hypothesized by Schobein in 1840, (see

historical discussion in [38]). Ozone is formed by photochemical proces-

ses at altitudes where molecular oxygen 02 and atomic oxygen 0 exist

simultaneously. Atomic oxygen is formed in the upper atmosphere by the

dissociation of 02 when the latter is exposed to high-frequency solar

radiation. Collisions between 02 and 0 produce ozone, 03 . Ozone

is subsequently destroyed when either 03 and 0 collide, forming two

02 molecules, or when 03 is dissociated into 0 and 02 by solar

radiation.

In the mesosphere and upper stratosphere, the rates by which

ozone is produced and destroyed through these processes balance one

another so that it should be possible to predict concentrations using

photochemical equilibrium theory. Unfortunately, however, vpry few

measurements of ozone have been made in this region, and consequently

the necessary reaction rates have not been clearly established.

Beginning at the stratopause and extending downward, photochemical

equilibrium gradually disappears, and hence theoretical prediction

methods become less applicable for modeling these ozone concentrations.

In this region the best predictions of ozone appear to be empirical

ones based on measured profiles.

In the present statistical model of ozone, it has been assumed

that ozone profiles can be described by empirical expressions requiring

39
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only a small set of parameters to define any specific profile. It is

further assumed that the statistical distributions of these parameters

can be estimated from data. Pseudo-random ozone profiles can then be

generated by randomly sampling parameters from their respective distri-

butions.

The ozone model below 50 km

In 1963 a network of observation stations was established by the

Air Force Cambridge Research Laboratories (AFCRL) to systematically

measure the vertical distribution of ozone in the troposphere and strat-

osphere. Figure 4.1 shows the stations making up this "ozonesonde"

network.

Figure 4.2 is a typical "ozonagram" published by the AFCRL in a

four-volume series entitled "Ozonesonde Measurements over North America",

[37]. The partial pressure of ozone, P03 , is plotted on the left as

a function of total atmospheric pressure P . PO3 reaches a maximum

between approximately 20 and 25 km. Above that point the PO3 profile

decreases smoothly as it approaches a photochemical equilibrium profile.

Below its maximum the PO3 profile is characterized by large irregular

fluctuations in the lower stratosphere and by a constancy or sometimes

a slight increase in the troposphere. The curve on the right in Figure

4.2 is a simultaneous reading of atmospheric temperature. Unfortunately

these curves usually end somewhere between 30 and 35 km, and, thus cannot

be used for estimating the regression coefficients in equation (3.6)

where the region of interest is 30 < z < 90 km
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Station Lat. (Deg.N) Long. (Deg.W)

Albrook Field, Canal Zone 9.0 79.6
Colorado State University, Fort Collins 40.6 105.1

Eielson AFB, Fairbanks, Alaska 64.8 147.9

Florida State University, Tallahassee 30.4 84.3
Fort Churchill, Manitoba, Canada 58.8 94.1
Goose Bay, Labrador 53.3 60.4
L. G. Hanscom Field, Bedford, Mass. 42.5 71.3
Thule AFB, Greenland 76.5 68.8
University of New Mexico, Albuquerque 35.0 106.6

University of Washington, Seattle 47.4 122.3
University of Wisconsin, Madison 43.1 89.4
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Figure 4.1 - Location of Ozonesonde Network stations.
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Although ozone concentrations below 25 km do have some effect on

solar heating rates above that altitude, because of reflected solar

radiation passing upwards through the atmosphere, emphasis in the present

investigation is placed on modeling the ozone profile above 25 km. For

this reason it was not considered necessary to include the large irregu-

lar variations below the maximum PO3 level.

An excellent empirical formula was used by Green, [391, for

approximating PO3 profiles such as the one in Figure 4.2. The formula,

expressing PO3 as a function of P , is given by

* eX
P0 = 4 P 3 (l+e (4.1)

3 3 x( 2

where

x = A log (P/P*) (4.2)

PO3 is the maximum partial pressure of ozone; P* is the total

atmospheric pressure at the altitude where PO 3 is maximum, and A is

a shaping parameter. Equation 4.1 will hereafter be referred to as

Green's formula. Examples of how well Green's formula fits ozonagram

data are shown in Figure 4.3. In each case the parameters PO and

P* were selected so as to match the data above the ozone maximum as

closely as possible. The four ozonagram shapes are typical of their

respective stations. In general, both P0 3 and P* increase with

latitude.

By integrating over the ozone profile, it is possible to derive

an approximate expression for total ozone, TO3 , as a function of PO3
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Figure 4.3 - Examples of Green's formula fitted to Ozonagram data.



and the shaping parameter A . Setting this expression equal to the

measured total ozone indicated on each ozonagram, one can solve for 
A

* * P and A are
in terms of PO3 and TO 3 . Details as to how P0 3 , , andA are

calculated for each ozonagram are contained in Appendix C.

*

The statistical distributions of PO3 and P* were estimated from

the ozonesondenetwork data in volumes 2 and 3 of reference [37]. Each

ozone network station was assigned to one of five latitude bands, and

within each latitude band (except the 150 band), the ozonagrams were

divided into four seasonal groups. These season-latitude definitions

conform to those established by the Meteorological Rocket Network and

are shown in Table 4.1. This classification results in 17 latitude-

season categories, and the parameter distributions for each must be es-

timated. This is a tedious job, and, to date, has only been accomplished

for the ozonagrams in the 300 latitude band, the band in which the Shuttle

landing site (Cape Kennedy) is located. If the need arises it can be

completed for all 17 categories, and the data in volumes 1 and 4, [37],

can also be included.

The parameters PO3 and P* have been estimated for each ozonagram

using the procedure outlined in Appendix C. Samples of these 
parameters

and the TO3 values read directly from the ozonagrams have been tabulat-

ed for the four season categories in the 300 latitude band, and their

means, standard deviations and correlations have been estimated. These

statistics are listed in Table 4.2.

Since most of the variation in total ozone results from large ir-

regular fluctuations in the lower stratosphere, variations which are
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Table 4.1 - Season - Latitude Definitions

Meteorological Rocket Network Latitude Band Definitions

150 Band 0.000 - 22.500

300 Band 22.510 - 37.500

450 Band 37.510 - 52.500

600 Band 52.510 - 67.500

750 Band 67.510 - 90.000

Meteorological Rocket Network Season Definitions: Northern Latitudes

Spring April - May

Summer June - August

Autumn September - October

Winter November - March

Meteorological Rocket Network Season Definitions: Southern Latitudes

Spring October - November

Summer December - February

Autumn March - April

Winter May - September



Table 4.2 Ozone Statistics in 300 Latitude Band

Parameter1 Mean t n Correlations Parameter Mean daCorrelationsp Deviation Correlations

PO3  P* TO3  log(PO 3 ) log(P*) PO3  P* TO3  log(PO 3 ) log(P*)

FLORIDA - SPRING (sample size = 19) FLORIDA - ALTUMN (sample size = 6)

PO 3  0.0167 0.001951 1.00 0.51 -0.04 0.53 PO; 0.0136 0.001519 1.00 0.13 -0.51 0.14

p* 3386 726.4 0.51 1.00 0.12 0.53 P* 3258 164.3 0.13 1.00 -0.45 0.19

TO3  0.315 0.0177 -0.04 0.12 1.00 TO3  0.283 0.0194 -0.51 -0.45 1.00

log(PO;) -4.101 0.1176 0.53 1.00 0.55 log(PO3) -4.306 0.1121 0.19 1.00 0.20

log(P*) 8.106 0.2115 0.53 0.55 1.00 log(P*) 8.088 0.0510 0.14 0.20 1.00

NEW MEXICO - SPRING (sample size = 25) NEW MEXICO - AUTUMN (sample size = 7)

P03 0.0146 0.001422 1.00 -0.01 0.04 0.04 P0 3  0.0132 0.001463 1.00 0.13 0.39 0.14

P* 3224 660.6 -0.01 1.00 0.30 0.01 P* 2661 164.4 0.13 1.00 0.11 0.16

TO3  0.321 0.0206 0.04 0.30 1.00 TO3  0.259 0.0119 0.39 0.11 1.00

log(PO3 ) -4.233 0.0952 0.01 1.00 0.05 lag(PO3) -4.329 0.1102 0.16 1.00 0.17

log(P*) 8.058 0.2051 0.04 0.05 1.00 log(P*) 7.885 0.0597 0.14 0.17 1.00

FLORIDA - SUMMER (sample size = 12) FLORIDA - WINTER (sample size = 14)

PO3 0.0144 0.001537 1.00 -0.12 0.28 -0.12 PO 0.0155 0.002146 1.00 0.46 0.60 0.48

P* 3248 398.6 -0.12 1.00 0.68 -0.14 P* 3151 419.6 0.46 1.00 0.39 0.48

T03 0.305 0.0135 0.28 0.68 1.00 TO3  0.303 0.0286 0.60 0.39 1.00

og(PO) -4.243 0.1070 -0.14 1.00 -0.14 log(PO3 ) -4.175 0.1426 0.48 1.00 0.49

log(P*) 8.079 0.1256 -0.12 -0.14 1.00 log(P*) 8.047 0.1354 0.48 0.49 1.00

NEW MEXICO - SUMMER (sample size = 24) NEW MEXICO - WINTER (sample size - 22)

PO 3  0.0136 0.001234 1.00 0.46 0.31 0.50 P0 I 0.153 0.002519 1.00 0.48 0.55 0.51

P* 2935 595.4 0.46 1.00 0.24 0.47 P* 3349 812.6 0.48 1.00 0.81 0.48

TO3  0.292 0.0154 0.31 0.24 1.00 TO3  0.316 0.0443 0.55 0.81 1.00

log(PO3 ) -4.304 0.0886 0.47 1.00 0.51 log(PO) -4.191 0.1778 0.48 1.00 0.52

log(P*) 7.968 0.1747 0.50 0.51 1.00 log(P') 8.091 0.2255 0.51 0.52 1.00

Units for PO§ and P* are N/m
2
: units for TO3 are atm-cm.
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not accounted for by Green's formula, it was decided to use a fixed

value for TO in our model. Accordingly, TO was set equal to its

latitude-season average and was not allowed to vary.

The empirical cumulative frequencies of both PO3 and P* were

compared with normal and log-normal cumulative distribution functions.

This was done by plotting both the parameter and its natural logarithm

on normal probability paper, obtaining a least-squares fit, and then

comparing the sums of squared errors (errors being defined as differ-

ences between empirical cumulative frequencies and the normal cumulative

distribution function). Neither the normal nor the log-normal distribu-

tion emerged as a clear choice, although the log-normal fit appeared to

be slightly better in most cases for both PO 3 and P* . Furthermore,

the log-normal distributions for both PO 3 and P* produced smaller,

more realistic, variances for PO3 at each altitude than did normal

distributions for either or both parameters. Thus, log-normal distribu-

*
tions for PO3 and P* were used. In most dases there was insufficient

data to warrant fitting a Pearson distribution or attempting a more so-

phisticated estimate of the parameter distribution.

The ozone model above 50 km

Six hundred pseudo-random ozone profiles were generated by sampling

from the P* and PO distributions as described above. Solar heating

rate profiles Ts(z) corresponding to each ozone profile were calculated,

and the mean and standard deviation of T were estimated at each alti-

tude. It was found that the profiles of heating rate averages agreed



49

quite well with deterministic T profiles predicted by Su, [36],

and Manabe and Strickler, [19]. Comparisons are shown in Figure 4.4.

On the other hand, Green's formula and the above parameter distributions

produced unrealistically large variations in T at altitudes above

approximately 50 km. At these altitudes, the heating rate is almost

directly proportional to PO3 , and although the latter is quite small

in magnitude, the variations in PO3 and P" caused PO3 to vary by

several orders of magnitude. For example, using Green's formula at an

altitude of 75 km, the parameter variations result in a range of

PO3 /PO 3 ratios between 10- 2 and 10 - 5 . This is sufficient to produce

a three-order-of-magnitude variation in heating rates at that altitude

resulting in heating rates as high as 300 per day, a physically un-

realistic value.

In reality, ozone in the mesosphere (above 50 km) is in photo-

chemical equilibrium, for most practical purposes, and its concentrations

are not as variable as those in the stratosphere. In fact, it is

unrealistic to allow variations in PO3 and P* to cause appreciable

changes in P0 3 above 50 km. For this reason, it was decided to mod-

ify the ozone model in the mesosphere so as to reduce the variation in

PO3 in that region.

In Green's formula, (4.1), the term ex  approaches 0 as altitude

increases such that ex << 1 above 50 km. Hence,

PO ~ hPO ex (4.3)
3 3
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Model Means Deterministic Predictions

Spring
-Summer 0 Su, [36]

... Autumn Manabe and Strickler , [19
Winter

100-

75 -

E -

< 50 .

I I I I I

0 1 2 3 4 5 6

Ts . degs per day

Figure 4.4 - Comparison of model-generated mean T profiles with

deterministic predictions of Ts
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Substituting from equations (4.1) and (4.2), this becomes

P0O exp [A log (p/p*) + B] (4.4)

where A is the shaping parameter given in Appendix C as

A = A PO /T0 3  (4.5)
S3 3

(for constants Ao  and TO 3 ), and

B = log (4PO3 ) (4.6)

The ozone model above 50 km was modified as follows: The partial

pressure of ozone above 50 km is given by

PO3 = exp [A log (P/P*) + B] (4.7)

where now P* is assumed to be constant and serves strictly as a non-

dimensionalizing factor. Furthermore, it is now assumed that

A - N (A ' (4.8)

and

B N (B , 2)  (4.9)

Thus, PO3 has a log-normal distribution with mean

2 2

E(P) = exp Alog (P/P*) + log2 (P/P) + B + - (4.10)3E-PA 2
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and variance

Var(PO) = E(P) 2 exp A log2 (p/pB) + a -1 (4.11)

The quantity log(P*), which is a normal random number below 50 km,

is set equal to its expected value above 50 km.

To maintain continuity with Green's forumula below 50 km, the

means of A and B are, respectively,

S-= Ao E (PO*)/TO3  (4.12)

and

pB = log(4) + E [log (PO*)] (4.13)

Since P/P* approaches 0 as altitude increases, log(P/P*) + -ao,

and, therefore, the coefficient of variation of PO3 ,

CV(PO 3) = ex log2 (p/p*) + 2 - 1 1/2 x 100% (4.14)

increases monotonically with altitude. The rate by which this coefficient

2 2
of variation increases is controlled by the selection of 

0A and aB

2 2
Accordingly, 0A and aB were selected so as to satisfy two boundary

conditions placed on CV (PO3) . At the 50 km boundary the coefficient

of variation was set equal to the coefficient of variation produced by

Green's formula, a value which varied between 48% and 83% depending on

the season-latitude model. At the upper boundary, z = 90 km, PO3 was

assumed to have a coefficient of variation of 100%. These two boundary
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conditions resulted in a pair of simultaneous equations which were

2 2
solved to give A and aB

The four mean PO 3 profiles produced by this model for the 300

latitude band are shown in Figure 4.5. The dashed lines are loci of

maxima and minima occurring in a pseudo-random sample of size 600. Figure

4.6 compares histograms of P03 values produced by the model at the

pressure height of 1000 N/m
2 with corresponding histograms from the data

in reference [37]. Four mean heating-rate profiles corresponding to the

PO3 means in Figure 4.5 are shown in Figure 4.7, again with loci of

maxima and minima. Table 4.3 lists the mean and coefficient of variation

of heating rate as a function of altitude for these four seasons.

It should be remembered that this ozone model was developed as a

tool for modeling temperature variations in the stratosphere and meso-

sphere. For a large enough X in equation (3.7), the shape of the

temperature distribution at any altitude will essentially be 
that of the

heating-rate distribution at that altitude. However, the actual magni-

tudes of the mean and standard deviation of heating rate will not affect

the mean or standard deviation of temperature, since the two latter

quantities are built into the model. Thus, further fine-tuning of the o-

zone model to reduce its variance was not considered necessary. The

only type of modification which could significantly improve 
the model

for its present purposes would be a change affecting the shape of the

heating-rate distribution; this could only be accomplished by changing

the distribution of PO . For example, if the distribution of P* is

estimated to be something other than log-normal, then the PO3
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Figure 4. 5 - Mean and extreme PO3  profiles based on sample of 600

model-generated P03 profiles.
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Figure 4.6 - Comparison of model and data histograms of P03  at

a pressure height of 1000 N/m2.
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Figure 4.7 - Mean and extreme Ts profiles based on sample of 600

model-generated s profiles.



Table 4.3 - Means and Coefficients of Variation Ts at discrete altitudes

Spring Sumer Autumn Winter Spring Summer Autumn Winter

Altitude, Mean Mean Mean C Mean Altitude, Mean Mean Mean CV Meanc/Altitude, Mean cvl cvL CVMe C, an CV, CV da ,km o/day odo/day O/day oday/day

0 .000 48.038 .000 39.850 .000 48.359 .000 58.489 46 4.770 47.259 5.338 37.431 4.219 38.740 4.806 64.968
47 4.649 50.571 5.256 40.394 4.069 41.822 4.744 70.067

1 .0ooo0 46.546 .000 38-515 .000 46.390 .000 55.959 48 4.511 53.754 5.147 43.229 3.910 44.793 4.666 75.139
2 .000 45.045 .000 37.156 .000 44.384 .000 53.421 49 4.361 56.830 5.019 45.957 3.746 47.677 4.574 80.208
3 .000 43.533 .000 35.780 .000 42.336 .000 50.880 50 3.940 52.963 4.683 42.806 3.447 45.886 3.756 71.653
4 .001 42.008 .001 34.388 .000 40.236 .001 48.282
5 .001 40.469 .001 32.982 .001 38.079 .001 45.631 51 3.741 54.393 4.493 44.326 3.250 47.160 3.552 73.338

52 3.543 55.696 4.299 45.742 3.059 48.355 3.348 74.799
6 .001 38.917 .001 31.562 .001 35.862 .001 42.970 53 3.348 56.896 4.103 47.073 2.873 49.489 3.148 76.069
7 .002 37.350 .001 30.127 .001 33.577 .002 40.286 54 3.157 58.009 3.90T 48.335 2.693 50.574 2.953 77.177
8 .002 35.768 .002 28.675 .002 31.213 .002 37.592 55 2.972 59.051 3.713 49.538 2.521 51.622 2.764 78.145
9 .003 34.170 .003 27.210 .002 28.765 .003 34.906
10 .005 32.559 .004 25.735 .003 26.227 .005 32.254 56 2.792 60.034 3.522 50.692 2.356 52.639 2.582 78.995

57 2.620 60.969 3.336 51.807 2.200 53.634 2.408 79.745
11 .007 30.935 .006 24.258 .005 23.595 .007 29.678 58 2.455 61.866 3.156 52.890 2.051 54.613 2.243 80.413
12 .010 29.297 .008 22.785 .007 20.866 .010 27.236 59 2.298 62.733 2.981 53.949 1.911 55.582 2.086 81.012
13 .014 27.653 .011 21.330 .010 18.057 .014 25.029 60 2.129 63.578 2.813 54.991 1.778 56.547 1.938 81.555
14 .020 26.006 .016 19.906 .015 15.201 .020 23.163
15 .029 24.350 .024 18.528 .021 12.347 .029 21.720 61 2.007 64.411 2.651 56.026 1.653 57.514 1.798 82.053

62 1.871 65.238 2.495 57.060 1.535 58.491 1.666 82.517
16 .041 22.689 .034 17.233 .031 9.625 .042 20.745 63 1.743 66.064 2.346 58.099 1.423 59.479 1.541 82.954
17 .058 21.027 .048 16.056 .045 7.307 .060 20.213 64 1.622 66.893 2.202 59.146 1.318 60.482 1.425 83.370
18 .082 19.356 .067 14.995 .064 5.883 .084 19.998 65 1.507 67.730 2.065 60.206 1.219 61.503 1.315 83-770
19 .111 17.678 .092 14.031 .090 5.867 .116 19.893
20 .148 16.002 .123 13.137 .122 6.987 .155 19.666 66 1.399 68.578 1.934 61.281 1.127 62.545 1.212 84.160

67 1.297 69.441 1.810 62.375 1.040 63.610 1.115 84.542
21 .192 14.368 .161 12.286 .162 8.482 .201 19.145 68 1.201 70.320 1.691 63.492 .959 64.700 1.027 84.922
22 .241 12.861 .204 11.467 .208 9.834 .252 18.278 69 1.111 71.219 1.578 64.634 .883 65.818 .943 85.301
23 .295 11.611 .253 10.691 .260 10.777 .307 17.169 70 1.027 72.140 1.472 65.803 .812 66.966 .866 85.882
24 .351 10.726 .306 10.001 .316 11.205 .364 16.121
25 .410 10.222 .362 9.47 .374 11.190 .425 15.804 71 .948 73.086 1.370 67.004 .746 68.146 .793 86.068

72 .874 74.058 1.275 68.237 .685 69.360 .726 86.460
26 .475 10.254 .421 9.104 .438 11.094 .497 17.807 73 .804 75.059 1.184 69.507 .628 70.609 .664 86.860
27 .553 11.765 .488 9.318 .516 11.681 .592 22.441 74 .740 76.090 1.099 70.815 .575 71.896 .606 87.269
28 .660 15.552 .574 10.972 .625 13.756 .726 28.473 75 .679 77.155 1.018 72.164 .525 73.223 .553 87.690
29 .812 20.244 .692 14.380 .790 16.980 .913 32.753
30 1.028 23.568 .863 18.175 1.033 19.715 1.165 33.801 76 .623 78.254 .942 73.557 .479 74.592 .504 88.122

77 .571 79.389 .871 74.995 .437 76.004 .458 88.567
31 1.319 24.298 1.103 20.610 1.565 20.585 1.479 31.538 78 .522 80.563 .804 76.483 .398 77.462 .416 89.027
32 1.684 22.547 1.423 20.837 1.779 19.339 1.847 27.862 79 .477 81.778 .741 78.023 .362 78.969 .378 89.501
33 2.110 19.145 1.818 19.078 2.248 16.494 2.250 23.017 80 .435 83.035 .682 79.617 .328 80.525 .342 89.992
34 2.574 15.129 2.275 16.020 2.736 12.759 2.668 18.482
35 3.046 11.704 2.767 12.487 3.207 8.869 3.080 15.624 81 .396 84.332 .637 81.269 .298 82.129 .310 90.498

82 .360 85.665 .575 82.983 .270 83.775 .280 91.010
36 3.499 10.417 3.267 9.462 3.630 5.992 3.4 7 15-879 83 .328 87.029 .427 84.744 .244 85.455 .254 91.554
37 3.908 12.060 3.747 8.321 3.984 6.270 31815 18.510 84 .298 88.416 .483 86.537 .221 87.163 .230 92.067
38" 4.256 15.553 4.182 9.820 4.259 9.342 4.116 22.923 85 .272 89.927 .443 88.358 .200 88.897 .208 92.611
39 4.535 19.726 4.557 12.929 4.454 13.239 4.363 28.010
40 4.741 24.047 4.863 16.594 4.572 17.259 4.557 33.337 86 .247 91.261 .406 90.207 .181 90.656 .188 93.1 4

87 .225 92.718 .373 92.084 .164 92.442 .170 93.727
41 4.878 28.309 5.096 20.354 4.622 21.206 4Aoo 38.717 88 .205 94.199 .342 93.990 .149 94.253 .154 94.300
42 4.950 32.433 5.258 24.068 4.616 25.018 4.794 44.074 89 .187 95.702 .314 95.924 .135 96.091 .140 94.883
43 4.967 36.392 5.356 27.641 4.582 28.675 4.847 49.381 90 .170 97.224 .288 97.887 .123 97.949 .127 95.473
44 4.937 40.179 5.396 31.061 4.473 32.176 4.663 54.830
45 4.869 43.798 5.387 34.323 4.358 35.528 4.847 59.824
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distribution, and, consequently, the temperature distribution, would be

changed. This approach could be a fruitful area for additional investi-

gation when more data are available.



V. COMPARISON OF THE MODEL WITH DATA

The MRN data tape

In order to estimate the various statistical parameters of the

temperature distribution at each altitude as required in the temperature

model, a computer tape containing experimentally measured temperature

profiles was obtained from the Aero-Astrodynamics Laboratory at the NASA

Marshall Space Flight Center. The tape consists of 442 sounding-rocket

measurements of atmospheric temperature, pressure and density made at

altitudes above 35 km by 25 Meteorological Rocket Network stations in

different parts of the world. Of the 25 stations, seven are in the 300

latitude band, but only five of these had temperature profiles. (A

number of stations reported only density or pressure profiles.) These

five stations and their longitudes are listed in Table 5.1. The columns

under the heading "number of useable profiles" give the total number of

independent daylight profiles at each site in the season indicated. In

order to have even the small numbers listed here, "daylight" was defined

as being between 5 a.m. and 7 p.m. If, for example, the winter daylight

hours were redefined to be between 7 a.m. and 5 p.m., six of the 20

winter measurements would have been disqualified.

In several instances two or more firings from a single station were

made on the same day, sometimes only minutes apart. Since measurements

cannot be considered independent in such circumstances, all temperature

profiles made on the same day, at the same site, were first averaged to

give a single profile which was then counted as a part of the sample of

59



Table 5.1 - Meteorological Rocket Network Stations in 300 Latitude Band

Number of Useable Profiles

Site Latitude Longitude Spring Summer Autumn Winter

Holloman AFB, 32.850 N 106.100 N 1 0 1 2
New Mexico

Eglin AFB, F 30.380 N 86.700 W 6 5 10 4
Florida

Point Mugu, 34.120 N 119.120 W 0 0 0 1

California

Woomera, 31.110 S 136.970 E 2 0 5 9
Australia

Carnarvon, 24.820 S 113.870 E 0 0 0 4
Australia

TOTALS 9 5 16 20



independent profiles.

Each profile consisted of a set of measurements made at one-kilo-

meter intervals, but the range of altitudes covered varied from one

profile to the next. Consequently, the number of observations at each

altitude level varied as shown in Table 5.2.

In addition to their use in estimating statistical parameters of

the temperature distribution, the MRN data were used for comparison

with model-generated temperatures, pressures and densities in an effort

to evaluate the model. For each of the four seasons in the 300 latitude

band, a sample of 500 pseudo-random atmospheres was generated (i.e.,

500 consistent sets of temperature, density and pressure profiles).

The means and standard deviations of each property were computed at

one-kilometer altitude intervals between 0 and 90 km. In addition,

histograms of temperatures were constructed at various altitudes, and

interlayer correlations among temperatures were computed. These model

characteristics were then compared with corresponding characteristics

of the MRN data.

Comparison of model temperatures with data

In order to compare trajectories computed using the present model

with those based on the 1966 Standard Atmosphere Supplements, [2], it

was decided to use temperatures prescribed by the latter as mean

temperatures in the model. That is, the mean temperature at altitude

z , for a particular season and latitude band, is defined as



Table 5.2 - Number of MRN measurements at each altitude, 36 < z < 90

Altitude Spring Summer Autumn Winter Altitude Spring Summer Autumn Winter

36 0 C 0 2 64 9 5 10 15

37 0 0 0 2 65 9 4 9 15

38 0 0 0 3
39 1 0 1 4 66 9 4 9 14
40 4 0 3 6 67 7 3 10 14

68 7 2 8 13
41 4 1 4 6 69 5 1 8 12

42 6 2 6 9 70 5 0 7 11

43 8 2 9 12
44 8 2 10 13 71 5 0 6 11

45 8 3 10 15 72 4 0 6 12
73 3 0 6 12

46 8 3 13 15 74 3 0 6 12

47 8 4 13 15 75 2 0 6 12

48 9 4 13 15
49 9 4 13 17 76 2 0 6 12

50 9 4 13 17 77 2 0 6 12
78 2 0 6 12

51 9 5 13 17 79 2 0 6 12

52 9 5 13 17 80 2 0 6 11

53 9 5 13 17
54 9 5 13 18 81 2 0 6 11

55 9 5 13 17 82 2 0 6 11
83 2 0 6 10

56 9 5 13 17 84 2 0 6 9
57 9 5 13 17 85 2 0 6 9
58 9 5 13 18
59 9 5 13 18 86 2 0 6 9

60 9 5 13 18 87 2 0 6 9
88 2 0 6 9

61 9 5 12 17 89 2 0 6 7

62 9 5 12 17 90 2 0 5 7

63 9 5 11 15
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T(z) = T6 6 (z; season, latitude) (5.1)

where T66 (z; season, latitude) is the temperature at altitude z

given by the 1966 Standard Atmosphere Supplements, [2], for the season

and latitude indicated. For the 300, 600, and 750 latitude bands,

reference [2) provides only summer and winter models. In these cases,

the spring/fall temperature profile is defined as the average of summer

and winter profiles.

Figure 5.1 compares model temperature means (solid curve) with

the means of temperatures in the MRN data sample (circles). Ninety-

five percent confidence intervals are drawn for each data point. The

dashed curve on each plot is the temperature profile from the 1962

Standard Atmosphere, [1], drawn here as a fixed reference to aid in

comparing the four seasonal means. Seasonal variations are not as

pronounced in the 300 latitude band as they are in more northern lati-

tudes.

The standard deviation of temperature at each altitude was estimated

from the MRN data. As one might suspect from Figure 5.2, the amount of

variation in the data estimates of aT() (circles) over the altitude

range is within the amount expected for such small samples if one were

sampling from populations with the same standard deviation. In other

words, there is no significant difference between the standard deviations

of temperatures at different altitudes in the MRN data. Therefore, it

was assumed that, for a particular season-latitude model, the standard

deviation of temperature is the same at all altitudes. Its value was
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Figure 5.1 - Comparison of mean temperature profiles from model

with mean temperatures in MRN data.
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estimated by sp , the usual pooled estimate of a standard deviation,

given by

s = i 1 (5.2)
P (n 1)

where n. is the number of data points at altitude z. (see Table 5.2);

s.i is the standard deviation of sample temperatures at altitude zi

based on the MRN data, and the summation is only over i's where ni # 0.

The four values of s used in the 300 latitude model (dashed lines on
p

Figure 5.2) are s p(spring) = 7.45 K, s p(summer) = 6.820 K, s (autumn) =

10.4140 K, and s p(winter) = 10.890 K.

Figures 5.3 - 5.6 show histograms of model-generated temperatures

at 10-km altitude intervals between 40 and 90 km. Each histogram

represents a sample of 500 temperatures, and within each histogram

class or subdivision, the circles represent data points lying in that

interval.

Perhaps the most important feature of the current temperature

model - that which distinguishes it from any other model - is its inter-

layer correlation structure (i.e., the correlations between temperatures

at different altitudes). This correlation structure is linked directly

to the behavior of the heating-rate profile Ts(z) as affected by the

ozone variation. Letting rT(zl,z2 ) be the coefficient of correlation

between T(zl) and T(z2) , then in the present model

rT (z 1 22 ) = 2 r (z 1, z2 ) (5.3)
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where rs(z , z 2 ) is the correlation between heating rates Ts(z )

and Ts(z 2), and X is the correlation between T(z) and Ts(z),

(see equation (3.7)). As atmospheric ozone varies according to its

distribution, the T profile follows a distinct pattern. The segment

of the Ts curve above its maximum at -50 km altitude, (see Figure

4.7), shifts to the right and left in such a manner that it produces

either a simultaneous increase or a simultaneous decrease in all T
s

values above 50 km. Thus, if z1  and z 2  are both greater than 50

km, rs(z I , z2 ) is approximately equal to +1, and hence rT(l, z2 ) is

approximately equal to X2

The solid curves in Figure 5.7 are plots based on the winter model,

of rT(zl, z2 ) versus z2  for nine values of zl between 35 and 90

km. The winter model was chosen for comparison purposes because there

are more MRN data for this season; plots of rT(zl, z2 ) for the other

three seasons are quite similar. In the plots for zl = 60, 70, and

80 km, note that rT( (, z 2 ) , 50 < z2 < 90, is approximately equal

to X2 = .81.

Below the stratopause, ~50 km, the behavior of Ts is more

irregular. In the upper stratosphere (40 - 50 km), Ts values are

virtually uncorrelated to those above 50 km but have a strong negative

correlation with heating rates in the lower stratosphere (20 - 30 km).

This structure is reflected in the temperature correlations for z I

40 and 45 km in Figure 5.7.

The data symbols (circles) in Figure 5.7 are estimates of rT (z , 2 )

based on the MRN data. The solid circles are those whose 95 percent
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confidence intervals do not cover the model value of rT(zl, z 2 )

Because of the small sample sizes involved, it is difficult to make

meaningful statements about the true nature of rT(zl, z2 ) based on

the data; nevertheless, there is reason for disappointment in the poor

agreement seen in Figure 5.7. In contradicting the model, these data

estimates of r T(Zl z2) tend to imply that there is no strong linear

correlation between T and T . One possible explanation for this is

that 10 of the 20 MRN profiles used to estimate r T(zl, z2) were mea-

sured either before 9 a.m. or after 4 p.m., times of day when the

heating effects of the sun (particularly in winter) are not as pronounced

as they are nearer to midday. Furthermore, the data represent varying

sun zenith angles whereas the model-generated sample used a fixed

zenith angle. Allowing this angle to vary in the model might produce

a different statistical distribution for the Ts profile, thus

affecting the distribution of temperatures. For these reasons, the

comparison of model with data in Figure 5.7 is believed to be 
inconclu-

sive. More data will be necessary in order to either validate or in-

validate the model.

The value of X = .9 used in this model determines the location

of the model rT(Zl, z2 ) curves at points where z1 and z2 are

between 50 and 90 km. A smaller value of X , say X = .7 , gives

better agreement with data points (circles) to the left of the curve

where rT(z l z2 )  
X 
2 , but it also results in significant differences

between model and data at virtually all points where Iz1 - z2 1 is

small.
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Comparisons of model densities and pressures with data

As explained in Chapter III, the natural logarithm of atmospheric

pressure, log(P) , is the independent variable used as a vertical 
scale

in the model. The reason for this is that the ozone model gives the

partial pressure of ozone as a function of log(P) , and , hence, the

solar heating rate profiles are based on this scale.

To be more exact, the vertical scale used in the model is

U E log(P/Po ) (5.4)

where P is sea-level pressure. A set of fixed U values {U0 , U,..

.. , Ug90 } is defined by

U = log(P66 (zi)/P6 6 (Zo)) (5.5)

where P66 (zi) is the pressure at altitude z. , (z = 0, ,..., 90 km),

as defined by the 1966 Standard Atmosphere Supplements, [2], for the

appropriate season and latitude. Then at each Ui a pseudo-random

temperature is given by

[Ts(U.i) - s(U )]

T(Ui) = T(U ) + XGT(U ) (Ui) + E (Ui )  (5.6)
5 1

where IT(Ui) is the mean temperature at Ui defined by

PT(Ui) = T66 (zi) (5.7)

and a T(Ui ) = T is a constant estimated from the MRN data, as explained
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above.

From the T(Ui) profile, one can then compute the geometric altitude

0
z(Ui ) as T(u) du

1

z(U ) 0 (5.8)

oK 1 T(u) du

where M, go , K, and Ro are constants. (See Appendix A for derivation

of 5.8).

Next, using linear interpolation, the profile {T(Ui), z(Ui)} is

converted to {T(z), z.i ) where the zi's are even altitude increments

{0, 1, ... , 90 km)

Pressure and density profiles are then calculated for the even

altitude increments as

P(zi) = Pb exp [ M dz] (5.9)

zb KT

and
M P(zi.)

p(zi) = K T(z ) '

where Pb and zb  in equation (5.9) are pressure and altitude, respect-

ively, at some boundary point. It is customary to take zb = 0 and,

hence, Pb is sea-level pressure. However, since this is a statistical

model, one must specify the statistical distribution of Pb at the

boundary altitude zb , and then sample a value of Pb from that
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distribution. It was found that, provided the same mean was used for

Pb , the variance and shape of the Pb distribution had negligible ef-

fects on the means of pressures and densities. These choices did, how-

ever, have a fairly sizable impact on the variances of pressure and

density. The selection of zb and its associated Pb distribution will

be discussed in more detail shortly.

Figure 5.8 shows mean density profiles (solid curves) corresponding

to the four 300 latitude models. The actual quantity plotted here is

the percent departure from the 1962 Standard density P6 2 (z) as defined

by

y(z) - 16212)
6 (z) = 62(z) x 100% (5.11)
P P62 J

where P(z) is the average of 500 pseudo-random density values generated

by the model at altitude z . Since densities and pressures vary by

about six orders of magnitude between sea level and 90 km, pressures

and densities are customarily plotted as a percent departure from the

1962 Standard pressures and densities, thus avoiding the use of 6-cycle

log paper.

The dashed lines on Figure 5.8 represent the 1966 Standard densities

for the four seasons, the density profiles which correspond to the mean

temperature profiles used in the model. As one can see, there is close

agreement between the 1966 Standard and the model's mean densities.

However, perfect agreement between the Standard density and the model's

mean density should not be expected. Indeed, such agreement would be

surprising, since, in general, if F is a function of a random variable
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X , the mean of which is pX , the mean of F(X) is not necessarily

equal to F(pX).

The data symbols (circles) on Figure 5.8 show the percent departures

of the MRN density averages from the 1962 Standard density. Again 95

percent confidence intervals are drawn. At best one can say that the

data averages and model averages exhibit the same seasonal trends.

Figure 5.9, similar to Figure 5.8, is a comparison of the percent de-

partures of pressure means from the 1962 Standard Pressure.

As stated earlier, the choice of the Pb distribution at the

boundary point zb has a significant impact on the variances of pres-

sures and densities. Consequently, this choice could not be arbitrary,

but had to be justifiable in terms of physical reality. Accordingly,

it was decided to select as a boundary point an altitude where density

variation is minimal. There are certain altitudes, called isopynic

layers, [h0], where atmospheric density is almost constant throughout

the year. These isopynic layers lie at altitudes of approximately 8,

24, and 90 km. By taking zb to be one of these altitudes and by

letting pb , atmospheric density at altitude zb , be a constant,

then the distribution of Pb is determined by the distribution of

T(zb) since the equation of state gives

K Pb T(zb) (5.12)
b M

Two boundary points, zb = 24 km and zb = 90 km ,were used in

the present model. When z. < 80 km, in equation (5.9), the boundary
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point zb = 24 km is used, and when zi > 80 km, zb = 90 km is used.

The selection of 80 km as a dividing point was made because at zi = 80

km the variance of atmospheric density is the same using either zb 
= 24

or zb = 90 km.

Although it was only necessary to select oneboundary point, the two

were chosen here to force the existence of isopynic layers at those

altitudes. The 8 km isopynic layer, on the other hand, has been omitted

since it does not affect the 30 - 90 km region of primary interest. If

the model were perfect, then isopynic layers would be created naturally

at 8, 24, and 90 km even if only one of these is used as the boundary

point. However, in the present model, the use of only one boundary

point resulted in the disappearance of isopynic layers at non-boundary

points.

In Figure 5.10 the ratio of the standard deviation of density to

the 1962 Standard density is plotted for each season. The solid curves

represent standard deviations calculated from samples 
of 500 model-

generated density profiles. The data symbols are the corresponding

standard deviations in the MRN samples, and 95 percent confidence

intervals are drawn. Note the isopynic layers at .z = 24 km and 90

km. The peak in standard deviations at 80 km is a result of using this

altitude as a dividing point, as explained above, but the peak at around

30 km results solely from the way the temperatures vary and is not re-

lated to the integration boundaries.

Figure 5.11 is analogous to Figure 5.10 except that here standard

deviations of pressure are plotted. The solid curves, representing the
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model standard deviations, resemble those on Figure 5.10. However, the

minimum points appear to be approximately 5 km below the isopynic levels,

and the peak at approximately 35 km is less pronounced. There is a

discontinuity in the standard deviations of model pressures at 80 km,

which is caused by the use of 80 km as an integration boundary.

Conclusions

In comparing the model with data, a distinction should be drawn

between model characteristics which are estimated from the data and

those which are not. Temperature means and standard deviations are

examples of the former, whereas, the statistical properties of pressure

and density are of the latter type.

Since temperature means and standard deviations are selected by the

model user, the amount of disagreement between these and their counter-

parts in the data is a matter of choice. It was decided, for example,

to use the 1966 Standard Atmosphere temperatures as model means instead

of estimating means from the data. In the case of temperature standard

deviations, a constant standard deviation was used for all altitudes,

and this value was obtained by pooling standard deviations in the MRN

data sample. Thus, any differences between model and data seen in

Figures 5.1 and 5.2 do not constitute errors in the model.

The means of model pressures and densities agree well with their

corresponding 1966 Standard Atmosphere values even though such agree-

ment was not guaranteed a priori. As in the case of temperature, the

data estimates of pressure and density means differ from the 1966



84

Standard and, therefore, cannot be expected to match model means.

The standard deviations of model pressures and densities, which

ideally should agree with data about as well as do temperature standard

deviations, instead show slightly poorer agreement. If the integration

scheme could be modified so as to remove the artificial peak at 80 km,

agreement between model and data standard deviations would be signifi-

cantly improved.

The most serious discrepancy between model and data lies in the

interlayer temperature correlations, rT(Zl, z2 ) . Although some of

this error can perhaps be explained in terms of zenith-angle differences,

it still may be necessary to alter the model. One possible solution

would be to extract from the unmodeled error term a source of variation

which correlates temperatures at adjacent altitudes. Winds would be

such a source, for example. Thus, X could be reduced and most model

rT(Zl, z2) values made smaller without decreasing the correlation 
be-

tween temperatures at adjacent altitudes.

Another possible method of improving the agreement between the data

and model r T(zl, z2) values would be to allow X to vary as a function

of altitude. There is physical justification for this since X , the

correlation between temperature and the solar heating rate of ozone,

is smaller at altitudes where there is absorption by other gases (e.g.,

water vapor) than where 03 is the only absorber. Before attempting

to improve the agreement between model and data, however, the data

base should be enlarged so as to increase the confidence in estimates

of rT(zl, z2)



VI. THE EFFECT OF ATMOSPHERIC VARIABILITY

ON FIVE IMPORTANT SPACE SHUTTLE ENTRY PARAMETERS:
AN APPLICATION OF THE MODEL

A Monte Carlo entry trajectory program was developed by modifying

a rapid, three-dimensional point-mass entry program to use pseudo-random

atmospheric density profiles instead of the 1962 U. S. Standard density

profile, [1]. Large samples of entry trajectories were then generated,

and the statistical behavior of five major performance indicators was

studied.

The five entry parameters selected for study were:

(1) maximum dynamic pressure

(2) maximum stagnation-point heating rate

(3) maximum g-load

(4) final down-range distance

(5) final cross-range distance

The objective of the study was to analyze the statistical distributions

of these five parameters and, thereby, determine "three-sigma" design

values for each. The adjective "three-sigma" is used here to refer to

a value which will be exceeded with a probability of .0013. If the

statistical distribution of the parameter is normal (Gaussian), then

this design value will, in fact, lie a distance of three standard de-

viations (three sigma's) away from the mean. In general, however,

this .0013-probability design value is not three standard deviations from

the mean, and hence, the quotation marks on "three-sigma".

85
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A two-dimensional random density model

Instead of entering along a steep trajectory easily described by

one atmospheric profile, the Space Shuttle will actually fly back from

orbit along a shallow trajectory which takes it a distance of several

thousand kilometers down range. (See Figure 6.1.) Thus, a stochastic

atmosphere model used to simulate Shuttle entries should provide vari-

ation in atmospheric properties along horizontal flight paths; one

random atmospheric profile per entry assigning a single set of properties

at each altitude is not adequate.

In the present simulation the model described in the preceeding

chapters was used to generate one pseudo-random atmospheric density

profile at the location where entry began. Density profiles at locations

down-range differ from this initial profile but are not completely un-

correlated. Therefore, at a location 110 km down range from the initial

entry point, it would have been wrong to generate a new independent

atmospheric density profile using the same model. Instead, the initial

profile was perturbed slightly to give a new profile 110 km down range.

An explanation will be given below as to how this was done and why the

110 km increment was used. At a point 220 km down range a new density

profile was obtained by perturbing the previous profile, (i.e., 
the one

at 110 km down range), and this was continued until a sequence of density

profiles spaced 110 km apart was generated. The Shuttle orbiter was

then flown through this array of densities, and the value of atmospheric

density at any point along its trajectory was found by linear interpolation
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Figure 6.1 - Illustration of shallow entry path of Space Shuttle Orbiter.
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between nearby density profiles.

Let po(z) denote a pseudo-random value of atmospheric density at

altitude z (z = 0, 1,..., 90 km) generated by the stochastic atmosphere

model described in the preceeding chapters. The profile {Po(z): z =

0, ... , 90 km} is located at the point where down-range distance 
DR

is 0. Let {pl(z)} be the density profile located where DR = 110 km,

and in general, let {p (z)} be located where DR = J x 110 km. Then

the density Pj+ 1 (z) was given by

Pj+l(z) = pj(z) + 6 (z) j = 0, 1, 2,... (6.1)

where

6(z) ~ N(O, a (z)) (6.2)

The variance of 6(z) , a (z) , was based on a set of maximum hori-

zontal density gradients given in reference [231. This reference

places an upper limit on the horizontal change in atmospheric 
density

between two locations 110 km apart (hence the use of 110 km intervals).

Since p (z) and pj+1(z) , as defined above, are two densities at

altitude z located 110 km apart, then according to [23] the following

must hold:

-y(z)p6 2 (z) < Pj+l(z) - pj(z) < y(z)p6 2 (z) (6.3)

where P6 2(z) is the 1962 Standard atmospheric density at altitude z ,

and y(z) is obtained by linear interpolation from Table 6.1.

In the present situation p +l(z) - pj(z) = 6(z) is a normal
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Table 6.1 - Design Horizontal Density Gradients

300 Latitude Band

Altitude Spring/Autumn Summer Winter
--------------------------------------------------

0 0.35 0.20 0.50

30 0.35 0.20 0.50

40 0.70 0.30 1.10

50 0.95 0.40 1.50

60 1.25 0.50 2.00

70 1.40 0.60 2.20

80 1.25 0.50 2.00

90 0.20 0.10 0.30

------------------------------------------------------------------

If pl and p2 are two values of density at the same altitude z

but 110 km apart, then 1pl - P21 must be less than yp62 , where y

is interpolated from this table, and P62 is the 1962 Standard Atmo-

sphere density at altitude z .

Table 6.2 - Shuttle Characteristics used in Simulations

Orbiter weight = 870000 N (196000 lbs)

Reference area = 268 m2 (2890 ft2

Angle of attack = 34 deg

Lift-to-drag ratio = 1.25

Drag coefficient = 0.572

Lift coefficient = 0.457



random variable and, hence, does not have strict upper and lower limits

as required by reference [23], equation (6.3). However, by chosing

06 (z) such that

y(z)p6 2 (z) = 3a6 (z) 
(6.4)

the absolute limit in equation (6.3) was replaced by

Pr [-Y(z)P62 (z) < Pj+l(z) - pJ(z) < y(z)P 62 (z)] 
= .997 (6.5)

a probabilistic limit. The design horizontal density gradients of

reference [23] then became "three-sigma" design values.

Procedure

The vehicle and aerodynamic characteristics used in this study

(see Table 6.2) are based on the current Shuttle design, [41]. Four

samples of 1000 pseudo-random entries were generated, each sample

representing a different season in the 300 latitude band. 
Within

each sample, the only difference between any two entry trajectories

was their respective atmospheres. The five entry parameters listed

above were recorded for each entry. Sample means and standard devia-

tions were calculated; histograms were constructed, and empirical

cumulative frequencies were plotted on normal probability paper. The

first four moments of each parameter were used to fit a Pearson

distribution, [42], to the empirical distributions (see Appendix D).

For comparison purposes, a number of different methods were used
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to determine "three-sigma" design values. The methods used were the

following:

Method A (Traditional Method). The parameter was assumed to have a

normal distribution, and its design value was given by

(A) design value = X + 3s (6.6)

where X and s are the sample mean and sample standard deviation,

respectively. A plus or minus sign was chosen depending on the nature

of the parameter.

Method B (Probability Paper Method). Again, the parameter was assumed

to have a normal distribution. However, by this method, a normal

cumulative frequency curve F(x) was fitted to the empirical cumulative

frequencies, using probability paper, and the design value was the

parameter value, x = (B) design value, satisfying F(x) = .9987

(or .0013 if it is a minimum).

Method C (Non-parametric Method). The "three-sigma" design value,

as defined above, is a value which will be exceeded approximately once

in a sample of size 1000. Letting .xn  and Xn-1 denote the largest

and next largest values, respectively, in the parameter sample of size

1000, then any value between x and x has been exceeded once inn-1 n

that sample and could justifiably be chosen as the "three-sigma" design

value. Method C took the design value to be

(C) design value = x (6.7)
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the most conservative choice between n_l and xn . (In the case

where a design value was a minimum the smallest sample value was used).

Method D (Pearson Distribution Method). By this method, the first four

sample moments were used to fit one of the Pearson distributions to the

observed distribution. Then the "three-sigma" design value was that

value which satisfied F (x) = .9987 (or .0013) where F p(') was the

cumulative distribution function of the Pearson distribution which best

fitted the data.

Results and Discussion

Table 6.3 lists various sample statistics computed from the four

entry samples. Values in the "Deterministic Prediction" column are

values of the parameters obtained from non-random trajectories using

the appropriate atmosphere from the 1966 Standard Atmosphere Supplements,

[2].

The coefficients of variation, defined by,

CV = x 100% (6.8)

can be used to estimate confidence intervals for the means. A 95 percent

confidence interval for any mean in Table 6.3 is

S(1 + .0006 CV) (6.9)

For example, since the coefficient of variation of autumn down-range

distances is 3%, one can state with 95 percent confidence, that the
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Table 6.3 - Entry Parameter Statistics Based on 1000 Entries

Parameter Deterministic Mean Standard Coefficient of

Prediction Deviation Variation, %

---------------------------------------------------------------

(a) Maximum dynamic pressure, N/m2

Spring 5305 5505 104.1 1.9

Summer 5296 5431 86.4 1.6

Autumn 5305 5592 158.3 2.8

Winter 5307 5674 168.5 2.9

(b) Maximum stagnation-point heating rate, x 10 - 5, W/m2

Spring 9.910 9.897 0.353 3.6

Summer 10.059 10.069 0.375 3.7

Autumn 9.910 9.915 0.462 4.7

Winter 9.749 9.863 0.414 4.2

(c) Maximum g-load

Spring 1.165 1.206 0.0251 2.1

Summer 1.150 1.185 0.0180 1.5

Autumn 1.165 1.223 0.0346 2.8

Winter 1.152 1.247 0.0412 3.3

(d) Down range, km

Spring 13610 13630 294.1 2.2

Summer 13450 13470 396.3 2.9

Autumn 13610 13650 415.2 3.0

Winter 13790 13760 394.1 2.9

(e) Cross range, km

Spring 1290 1288 22.46 1.7

Summer 1295 1297 26.80 2.1

Autumn 1290 1286 32.87 2.6

Winter 1283 1279 31.56 2.5
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estimated mean down-range distance in autumn, X = 13650 km, is accurate

to within ± .0018 X (i.e., to within + .18%).

Figures 6.2 - 6.6 show histograms of the five entry parameters.

The dashed lines are the Pearson probability density functions 
fitted

to each distribution. One general characteristic of each parameter is

that its autumn and winter distributions have more dispersion 
(greater

variance) than its spring and summer distributions. This reflects the

fact that the variances of temperature, density and pressure in the

autumn and winter atmosphere models were greater than those of the spring

and summer models. The down-range distributions appear to be skewed

to the left, whereas all other distributions appear to be skewed 
to the

right.

In the cases of the summer maximum dynamic pressure, down-range,

and cross-range distributions, it was not possible to find Pearson

distributions using the usual moments fit. This is because B1  and

e2 were inadmissible (see definitions 
in Appendix D). It was possible

to modify the B1  and 2 values for maximum dynamic pressure to get

the "closest" Pearson fit. (See Appendix D). This is the dashed curve

in Figure 6.2 (summer). The same modification when applied to the

summer down-range and cross-range distributions resulted in J-shaped

Pearson Type VI distributions which did not resemble the sample

distributions at all. Therefore, no Pearson fits were obtained for the

summer down-range and cross-range distributions. ;

Table 6.4 lists the various "three-sigma" design values obtained

by Methods A, B, C, and D, as described above. If a design value lies
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Figure 6.2 - Seasonal distributions of maximum dynamic pressure based

on samples of 1000 pseudo-random Shuttle entries.
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Figure 6.3 - Seasonal distributions of maximum stagnation-point heating

rate based on samples of 1000 pseudo-random Shuttle entries.
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Figure 6.4 - Seasonal distributions of maximum g-load based on samples

of 1000 pseudo-random Shuttle entries.
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Figure 6.5 - Seasonal distributions of final down-range distance based

on samples of 1000 pseudo-random Shuttle entries.
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Figure 6.6 - Seasonal distributions of final cross-range distance based

on samples of 1000 pseudo-random Shuttle entries.
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Table 6.4 - Parameter Design Values

A B C D
Parameter X±3s Probability Sample Pearson

Paper Extreme Distribution

(a) Maximum dynamic pressure, N/m2

Spring 5817 5903 6192 5997

Summer 5690 5772 6131 5913

Autumn 6067 6201 6298 6310

Winter 6180 6305 6421 6345

(b) Maximum stagnation-point heating rate, x 10 - 6 , W/m2

Spring 1.096 1.126 1.226 1.161

Summer 1.119 1.150 1.3192 1.174

Autumn 1.130 1.169 1.204 1.192

Winter 1.111 1.150 1.317 1.225

(c) Maximum g-load

Spring 1.281 1.302 1.325 1.312

Summer 1.239 1.254 1.273 1.265

Autumn 1.327 1.355 1.390 1.377
Winter 1.371 1. 401 1.421 1.409

(d) Maximum down range, km

Spring 14510 14680 14310 14260

Summer 14650 14830 21830 *

Autumn 14900 15090 14780 14610
Winter 14940 15230 14800 14690

(e) Minimum down range, km

Spring 12750 12550 11900 12420

Summer 12280 12200 12140 *

Autumn 12410 12200 12060 12130

Winter 12580 12330 11450 12100

(f) Maximum cross range, km

Spring 1355 1374 1431 1393
Summer 1377 1398 1407 *
Autumn 1385 1407 1416 1415
Winter 1374 1400 1482 1428

(g) Minimum cross range, km

Spring 1221 1223 1233 1230

Summer 1217 1224 905 *
Autumn 1187 1191 1203 1205
Winter 1184 1191 1206 1208
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in the direction of skewness (i.e., in the long tail), then the tradi-

tional use of X ± 3s as a design value will, in general, lead to an

exceedance probability (risk) higher than the intended .0013 . Because

of the positive skewness in the maximum dynamic pressure, maximum

stagnation-point heating rate, and maximum g-load distributions, it is

not surprising, therefore, that the (A) design values ( +± 3s) are

less conservative (more "risky") than the (B), (C), or (D) design

values which are based on sample cumulative frequencies. In other

words, the latter three methods estimate the true cumulative distribution

function F(x) and select a design value x satisfying F(x) = .9987,

whereas the (A) design value, xA , generally has a cumulative frequency

F(xA ) less than .9987. Taking the autumn maximum stagnation-point

heating rate distribution as an example, and assuming the Pearson

distribution shown in Figure 6.3 is the true distribution, the probability

of exceeding the (A) design value (11.301), is .0119 instead of .0013

as desired. The chance of exceeding this design value at least once

in 100 missions (the anticipated Shuttle lifetime) is 70 percent,

whereas the chance of exceeding the (D) design value (11.919) at least

once is only 13 percent.

In the cases of the minimum cross-range and the maximum down-range

design values, the traditional Method (A) is actually more conservative

than the (D) method. This is because these design values lie in the

short tails of their respective skewed distributions. Nevertheless,

over-conservatism is still not a desirable trait since it adds to the

cost of the design.
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If' it is decided that the optimum exceedance probability for a

design value should be .0013, and both greater and smaller exceedance

probabilities are to be avoided, then the use of a Pearson fit is

recommended whenever possible. Accordingly, the (D) design values

listed in Table 6.3 are preferred to those given by the other methods.

A pilot study similar to the present study was made by the author,

[43], to determine if random fluctuations in atmospheric density, on the

order of those observed, could have an appreciable effect on Shuttle

entry parameters. (The same five parameters were studied). In that

study a fairly crude stochastic atmosphere model was used. However,

in spite of its deficiencies, the pilot study did produce some useful

information. It showed, for example, that the shape of a parameter's

distribution persisted over a wide range in entry angles of attack,

and the coefficient of variation for a particular parameter remained

quite constant even though the magnitude of its mean varied considerably

for different angles of attack.

There is every reason to believe that these same consistencies

would apply in the present study. Therefore, even though angles of

attack or other trajectory characteristics may change, thus changing

magnitudes of the entry parameters, the shape of a parameter's distri-

bution and its percentage variation due to atmospheric effects should

not be seriously affected. For this reason, design values expressed

as "design factors" to be multiplied by the parameter's mean are

perhaps more valuable than strict design values. Table 6.5 lists

these factors based on the (D) design values in Table 6.4. The latter
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Table 6.5 - Parameter Design Factors Based on Pearson Distributions

Parameter Factor

--------------------------------"""'

(a) Maximum dynamic pressure

Spring 
1.09

Summer 1.09

Autumn 1.13

Winter 1.12

(b) Maximum stagnation-point heating rate

Spring 1.17

Summer 1.17

Autumn 1.20

Winter 1.24

(c) Maximum g-load

Spring 
1.09

Summer 1.07

Autumn 1.13

Winter 1.13

(d) Maximum down range

Spring 1.05

Summer
Autumn 1.09

Winter 1.06

(e) Minimum down range

Spring 0.91

Summer
Autumn 0.89

Winter 0.88

(f) Maximum cross range

Spring 
1.08

Summer
Autumn 1.10

Winter 1.12

(g) Minimum cross range

Spring 0.95

Summer
Autumn 0.94

Winter 0.94
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are obtained by multiplying the design factors in Table 6.5 by the

parameter's mean given in Table 6.3.

Conclusions

This study has shown that significant variations can occur in entry

parameters as a result of day-to-day atmospheric variability. Parameter

distributions showed seasonal trends in both their means and their vari-

ances. Largest and smallest means occurred in the summer and winter

distributions and intermediate means in the spring and fall. Autumn

and winter variances were larger than spring and summer variances in all

parameter distributions because the autumn and winter atmosphere models

were more variable than the spring and summer models.

Using the design factors in Table 6.5, general conclusions can be

drawn about the relative amount of variation one might expect to result

from atmospheric variability. Design values for maximum dynamic pressure

and maximum g-load range from 7 to 13 percent higher than nominal (mean)

values; design values for maximum stagnation-point heating rate range

between 17 and 24 percent higher than their nominal values; down-range

design values are between +9 and -12 percent, and cross-range design

values are between +12 and -6 percent of their nominal.

Interpretation of the design values for maximum dynamic pressure

and maximum g-load is straight-forward. The significance of maximum

stagnation-point heating rate, however, is its impact on the total

integrated heat load and its impact on the maximum stagnation-point

surface temperature, Tma x . The total heat load was not recorded
max
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during the simulations, and hence, its variation is not known. A

surface temperature at any point on the vehicle is proportional 
to

the fourth root of the heating rate at that point. Therefore, Tmax

is proportional to the fourth root of the maximum stagnation-point

heating rate. This means that a design value for the latter which is

24 percent higher than its nominal is equivalent 
to a design maximum

temperature approximately 6 percent higher than its nominal 
(i.e., 1.24

= 1.06).

Departures from the nominal down-range and cross-range 
distances

are not to be interpreted as miss distances since on-board guidance

systems will allow the Shuttle orbiter to correct for flight 
path

errors. The down-range and cross-range design values obtained here

imply that these guidance systems must be capable of correcting for

errors of as much as 12 percent caused by natural variations in at-

mospheric density.

The present study has shown that atmospheric variability 
is an

important source of error to consider in Shuttle 
entry design studies.

It is not the only error source, on the other hand, since uncertainties

in the vehicle's weight, aerodynamic coefficients and initial 
orbital

elements will all cause errors in the entry trajectory. Past error

analyses have often either ignored atmospheric variability 
or else

used "extreme" atmospheres as described in Chapter I. It is recommended

that future error analyses include atmospheric variations and 
that a

statistical approach such as the present one be used.



VII. SUMMARY AND CONCLUSIONS

Summary

A stochastic model of the atmosphere between 30 and 90 km was

developed for use in Monte Carlo Shuttle entry studies. The model is

actually a family of models, one for each latitude-season category as

defined in the 1966 U. S. Standard Atmosphere Supplements, 2 ],

Each latitude-season model generates a pseudo-random temperature

profile whose mean is the appropriate temperature profile from the 1966

Standard Atmosphere Supplements. The standard deviation of temperature

for a given latitude-season model is assumed to be the same at all

altitudes and is estimated from sounding-rocket data. Departures from

the mean temperature at each altitude are produced by assuming a linear

regression of temperature T(z) on Ts(z) , the solar heating rate of

ozone. First, a profile of random ozone concentrations is generated

using an auxiliary stochastic ozone model, which was also developed as

a part of this study. The solar heating rate Ts is random since it

is a function of the random ozone concentrations. The steps taken in

generating a random temperature profile are illustrated schematically

in Figure 7.1.

Pressure and density profiles are calculated from each temperature

profile by solving simultaneously the hydrostatic equation and the e-

quation of state. Thus, each pseudo-random atmosphere consists of a

consistent set of temperature, pressure and density profiles. Isopynic

layers, regions where atmospheric density is almost constant, are created

106
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at 24 and 90 km altitudes by using these two altitudes as boundary 
points

in integrating the hydrostatic equation.

A computer data tape of 442 sounding-rocket measurements of the

atmosphere above 35 km was obtained to use in estimating parameters

of the temperature distribution. These data were also used for compar-

ing their statistical characteristics with those of the 
model. After

the data were sorted according to latitude-season categories and adjust-

ments were made to assure independence of profiles, the sizes of resul-

tant samples were quite small. For example, in the 300 latitude bend,

sample sizes ranged from 5 in the summer sample to 20 in the winter

sample. Because of such small samples, confidence intervals 
associated

with the sample statistics (e.g., means, standard deviations, and

correlations) were so wide that comparison of these statistics with

model statistics were inconclusive.

The four 300 latitude models were used in Monte Carlo simulations

of Shuttle entries to study the effect of atmospheric variability on

five Shuttle entry parameters. The simulations were of point-mass

trajectories, and the five parambters studied were maximum 
dynamic

pressure, maximum stagnation-point heating rate, maximum g-load, final

down-range distance and final cross-range distance. A sample of 1000

entries was generated for each of the four seasons, and the resultant

parameter distributions were analyzed to determine design 
values. Pearson

distributions were fitted to the empirical distributions, and design

values obtained from these distributions were compared to the traditional

"three-sigma" design values which are based on assumptions that parameter
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distributions are normal. Pearson design values were defined as those

parameter values with exceedance probabilities equal to .0013 based

on the fitted Pearson distribution. (The value .0013 is the exceedance

probability associated with a normal random variable located a distance

of three standard deviations from its mean.)

In general, the design values based on fitted Pearson distributions

were more conservative (farther from the mean) than those obtained

with the assumption of normality. This is because all of the empirical

distributions were skewed, and most design values lay in the direction

of skewness (long tail). Pearson design values ranged from being 24

percent greater than the mean, in the case of winter maximum stagnation-

point heating rates, to being within 5 percent of the mean, in the case

of spring minimum cross-range distances.

Autumn and winter parameter distributions showed more dispersion

than spring and summer distributions, because the autumn and winter

atmosphere models were more variable than the spring and summer models.

It is apparent from this fact that parameter design values are quite

sensitive to the estimates of variances used in the atmosphere models.

In particular, two factors contribute to the observed dispersion dif-

ferences between summer and winter histograms. One is the difference

between a T(summer) = 6.820 K and T (winter) = 10.890 K, and the other

is the difference between summer and winter design density gradients

(Table 6.1). Because of this sensitivity, Shuttle parameter design values

are only as reliable as these estimates. This further underscores the

need to increase the data base used in estimates of atmosphere model
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parameters.

Concluding observations

There are two basic philosophies one can use in developing a

stochastic model of some random phenomenon. By far the most common

approach is to observe the available data relating to that phenomenon

and then model that data empirically without any regard to cause-and-

effect relationships. By using the data to estimate means, variances,

correlations, and higher moments, one can generate artificial data

samples with all the statistical characteristics of the original sample.

A second alternate approach is to attempt to identify and model

the fundamental random processes which bring about the observed random-

ness in the phenomenon being modeled. For example, in the case of

atmospheric temperature, one would look for underlying random processes

which cause temperature to vary.

Believing that a good theoretical model is preferable to a good

empirical model, if both were attainable, the author chose the theoret-

ical approach in setting out to model atmospheric variations. Although

the development of a workable theoretical model is a much greater

challenge, such a model would provide physical insight into the nature

of atmospheric variations. A purely empirical model, on the other hand,

is strictly limited to describing a particular set of data, and its

user must be cautious when projecting the model beyond the range of

the original data. Furthermore, empirical models generally are time

consuming and require the storage of large correlation matrices.
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The fact that the microscopic nature of any gas is basically

random was further encouragement for taking a theoretical approach

to modeling the atmosphere. For example, the temperature of a gas

is actually a direct measure of the variance of molecular velocities

in that gas. That is, the velocity of a molecule of gas in any one

direction is a normal random variable with mean 0 and variance equal

to KT/M, where K is the universal gas constant, M is the molecule's

weight, and T is the gas temperature, [44].

In accordance with the "theoretical" philosophy, one fundamental

random process, the creation and destruction of atmospheric ozone, was

identified as the major cause of temperature variation in the 30-90 km

region. An attempt to model it on a microscopic level, using collision

rates, etc., lead to the immediate realization that variations in a

macroscopic gas property could not be accounted for by modeling random

events occurring on a microscopic scale. The law of large numbers

steps into play so that, if N is the number of molecules in the gas

volume, the collective effect of N random events is virtually non-

random at altitudes below 90 km where N is greater than 1020 molecules

per cubic meter.

Thus, the initial effort to model the causes of temperature variation

using purely theoretical considerations failed. It led, instead, to an

empirical model of atmospheric ozone based on experimental measurements

of ozone concentrations, [37]. Pseudo-random ozone profiles were used

to calculate the solar heating rate of ozone at each altitude, and these

in turn were linked to temperatures via a linear regression model.
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A reasonable question at this point might be, "Why avoid the use

of an empirical temperature model and at the same time resort to the

use of an empirical ozone model?" Admittedly, this is a compromise,

and a theoretical model for ozone variation would be preferable.

However, even though the present model contains no insight into the

nature of ozone variations, it still uses these to explain, at least

partially, the variations in temperature, and particularly the corre-

lations between temperatures at different altitudes. The particular

ozone model used here determines the shape of the temperature distribu-

tion at each altitude. However, any ozone model showing the same uniform

increase and decrease in ozone above 30 km, as exhibited by the data,

will give the same interlayer correlation structure for temperatures;

it is this feature - the correlation structure - which largely governs

the pressure and density distributions. Thus, the pressure and density

distributions and the interlayer temperature correlations are somewhat

robust to the choice of ozone models.

A number of improvements can and should be made in order to obtain

better agreement between the temperature model and data. A better,

more quantitative, means of estimating A should be devised; other

sources of variation should be included (e.g., winds, water vapor ab-

sorption, etc.), and a more acceptable means of estimating boundary

conditions in the hydrostatic equation should be sought. A prerequisite

to any improvement attempt, however, is the enlargement of the data

base. As it stands now, the model represents an encouraging "first cut"

at a workable theoretical model.
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APPENDIX A. EQUATIONS FOR CALCULATING ATMOSPHERIC PROPERTIES

List of Symbols

Symbol Definition Units/Constants

g acceleration due to gravity m/sec2

go acceleration due to gravity at sea level m/sec2

K universal gas constant 8.314x10 3 J/OK

M molecular weight of air 28.964 kg

P atmospheric pressure N/m2

P atmospheric pressure at sea level N/m2

R radius of earth m
o

T atmospheric temperature OK

U log(P/Po)

z geometric altitude m

p atmospheric density kg/m3

earth latitude degrees

Governing equations

Atmospheric temperature, density and pressure are related by the

equation of state

p MP (A.1)KT

and the hydrostatic equation

dP = -gp dz (A.2)

The molecular weight of air M can be considered constant, for the
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present purposes, at altitudes below 90 km.

The acceleration due to gravity g , a function of altitude z ,

is given by

R2

o (A.3)
0 (R + z)

0

where go , the value of g at sea level, is

go = 9.780356 [ + .0052885 sin 2 0 -.0000059 sin2 (2)] (A.4)

and R , the earth's radius,is

R = 6356798 (.9933070 + .0066930 sin 03 (A.5)
o

Equations (A.3) - (A.5) are actually approximations, but they give.

sufficient accuracy for the model calculations in this study. Equations

(A.3) and (A.4) are those used for the calculations in the 1966 Standard

Atmosphere Supplements, [2]. The earth's radius Ro(#) at latitude

0 , (A.5), is based on the assumption that the earth is an ellipsoid

with an equatorial radius Ro(0) = 6378178 m, and a polar radius Ro(90)

= 6356798 m.

Solving for P and p given a temperature-altitude profile

Let the given temperature-altitude profile be of the form

(Ti, zi): zi = 0, 1, ... , 90 km (A.6)

and assume that for z between z i and zi+I , T(z) is found by
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linear interpolation. That is,

T(z) = Ti + (z - zi) ATi/Az (A.7)

where AT. = T - Ti  and Az = zi+1 - zi . (Az does not have a

subscript since Az = 1 km for all i , i = 0, ... , 90). Assume further

that between zi and zi+1  g is constant and is given by (A.3)

with z = z i .

In order to solve (A.1) and (A.2) for pressures {Pi and densities

{pi } it is necessary to have a value of pressure Pb or density pb

at some boundary point b . Assume that zb = z i for some i between

0 and 90 , and that Pb is known at that altitude.

Substituting for p from (A.1), equation (A.2) becomes

dP. = - M dz (A.8)
P KT

If Pi is known at zi then, integrating from zi to zi+1 , one gets

Pi+1 Pi exp - K - T) (A.9)

Using T(z) from (A.7), the integral in equation (A.9) can be integrated

to give
r g(z )MAz

P+l = Pi i (A.10)
i+1

if AT. 0 . or
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SP exp g(ziMAZ (A.11)
i+l Pi expKT i  

(A11)

if ATi = 0

Once the pressures {P i are obtained, the equation of state is used

to get densities.

p = - (A.12)
Pi = KT

Solving for z and p given a temperature-pressure profile

Let the temperature-pressure profile be of the form

I (T, U): j = 0, 1, ... , 90 (A.13)

where U = log(P /P ) and Po is sea-level pressure. Po can

actually be the pressure at any boundary point zb , not necessarily

zb = 0 . Values of Uj ranging from Uo = 0 to Ug0 = -6.4 cover

the atmosphere up to approximately 90 km.

It is assumed that for any U between Uj and Uj+1 , T(U)

can be obtained by linear interpolation. That is,

T(U) = TJ + (U - UJ) ATj/AU (A.14)

where ATj = Tj+ 1 -T and AUj = Uj+ - U .

Equation (A.8) can now be written

g R

KT du= - o dz (A.15)
M(R 

+ z)2
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Integrating from U = 0 to Uj, (zb = 0 to z) , one gets

JU
K f T(u) du g 0 ) (A.16)

0

and solving for z yields 0

goM T(u) du

z = 0 (A.17)

1- K T(u) du
goMRo

where the integral is approximated by

0 J-i (Ti+1 + Ti)i' T(u) du = E AUji 2 (A.18)

i=o

The density p at z is again found by using the equation of state.



APPENDIX B. EQUATIONS FOR CALCULATING SOLAR HEATING RATES

List of Symbols

Symbol Definition Units/Constants

A shaping parameter in 03 model

a surface albedo = reflected radiation/
incident radiation

B parameter in 03 model

Cp specific heat at constant pressure 1004.7 J/kg/OK

g acceleration due to gravity m/sec2

go acceleration due to gravity at sea m/sec2

level

K universal gas constant 8.3143x103 J/oK

-1
k. linear absorption coefficient for m

step i

14 molecular weight of air 28.964 kg

M03  molecular weight of ozone 47.9982 kg

P atmospheric pressure N/m2

P atmospheric pressure at sea level N/m2
o

P0 3  partial pressure of ozone N/m2

PO* maximum PO (model parameter) N/m2

3  3

R earth's radius m
o

S flux of solar energy W/m2

S. flux of solar energy in step i W/2

2
S . portion of solar constant in step i W/m

sR  contribution of Rayleigh scattering
to planetary albedo
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Symbol Definition Units/Constants

T atmospheric temperature OK

T solar heating rate of ozone oK/sec
s

U height parameter = log(P/Po )

U* value of U where PO3 = PO3
(model parameter)

z altitude m

e cosine of the sun's zenith angle

K mass absorption coefficient for step i m2/kg

x wavelength micron V = 106 m

p atmospheric density kg/m3

p3  ozone density kg/m3

Ozone absorption coefficients

There are three spectral bands in which ozone absorbs solar radiation.

These are the Hartley band with .2 < X1 .3 V , the Huggins band with

.3 < X < .37 P , and the Chapius band with .4 < X < .7 V

The present study uses an absorption coefficient model, 136],

in which these spectral bands are divided into three "steps" each having

a constant mass absorption coefficinet K , i = 1, 2, 3. The three

steps and their respective mass absorption coefficients are listed in

Table B.1 . The K.'s given here are based on ratios of step heights

Kl: K2: K3 = 1: .02: .0005 calculated from data in Inn and Tanaka, [451.

The value of K1 was selected to give:.a linear absorption coefficient

k. (z) , defined by
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Table B.1

THREE STEPS IN OZONE ABSORPTION MODEL

Mass Absorption, Fraction of

Step Wavelengths, Coefficient, Solar Constant*

m2/kg
---------------------------------------------------------------

1 .200 - .300 1292.0 .01203

2 .300 - .335 25.84 .02113

3 .335 - .370; .400 - .700 0.6460 .40982

i ------------ I-------------- ---- L------- -------- J

*Solar Constant = flux of solar energy incident on the "top" of
the atmosphere = 1353 W/m2
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ki(z) = Ki P3 (z) (B.1)

-1

equal to .0005 m at the altitude where ozone density is maximum.

This value was chosen by Su, [36], to yield local heating rates in good

agreement with those of an earlier model by Manabe and Strickler, [19].

The value of maximum ozone density used for calculating K was

3.87 x 10 - 7 kg/m3 as given by the Mid-Latitude Ozone Model in reference

[2].

Solar heating rates

The solar heating rate of ozone at altitude z is

(z) = 1 dS (B.2)
s PCp dz

where the solar energy flux S(z) is the sum of three components S i(z)

corresponding to the three steps in the model. These components are

S (z) =-S i(1 - 8R)e exp - i(x)dx

- a exp- ki(x) dx] exp [- f ki(x) dx]

where the values of Sm i are based on Table B.1; sR and a are

respectively, 0.07 and 0.10, as used by Su, [36], and 6 = .5 is the

cosine of the effective mean zenith angle.

Taking the derivative of (B.3) with respect to z , one gets
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dS. 1
= - Si(- s) ki(z) exp ki(x) d

dz Oi R i fJ i~ dx

+ ae r3 exp [-f k,(x) dx] exp . / k (x) dx

Letting ki(z) = KiP 3(z) and summing (B.4) over all values of i , one

gets

(1- sR P 3(z) 3 P(
T (z) = p(z) ilS K exp (x)

+ a r exp - 1 p3(x) dx exp [- Ki P3 (x) dx

(B.5)

The present model uses U = log(P/P ) as its independent variable,

and, therefore, (B.5) must be expressed as a function of U . The

equation of state for a constituent density is

MO PO
p 3 K° (B.6)3 KT

and, therefore, the mixing ratio of 03 is

p MO PO
-3 = (B.7)
p MP

Then, utilizing (B.7) and the hydrostatic equation, one can write

z2 MO U 2j P3 (x) dx =- 3 PO3(u) du (B.8)

1 1
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The acceleration due to gravity g , which actually varies slightly

with altitude (i.e., by about 3 percent between sea level and 90 km), is

replaced by a constant

R

g = go (R + 90)B.9)

which represents its effective mean between sea level and 90 km.

Using (B.7), (B.8), and (B.9), the heating rate can now be written

as a function of U . That is,

S (1- sR) M0  PO0 (U) 3 I U
T (U) = M Po ex (U) i E S i K exp PO (u) du

P 0 exp(U 
-00

+ a ex - PO(u) du exp -Qi PO3(u) dul

(B.10)

where
K MO
i . o. (B.11)

Qi =

The use of a constant g = g , and a constant sea-level pressure

P in (B.10) introduces a small error in the T (U) profile. However,

in the temperature model, Ts(U) is standardized so as to become a

random variable with mean equal to zero and standard deviation equal to

one. Thus, any error which affects the mean and/or standard deviation

of Ts(U) does not affect the temperature model.

Calculating optical thicknesses

The quantity
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1 fU i(x) dx = - - PO3 (u) du (B.12)

1 1

is called the optical thickness or opacity of the ozone between z1 and

z2 '

The following calculations are based on the ozone model explained

in Chapter IV. A value of U located at approximately 50 km altitude,

denoted U50 , is used as the dividing point for the two different P03

formulas. For U < U50 (i.e., at altitudes above the dividing point),

PO3 is given by

P0 (U) = exp(AU - AU* + B) (B.13)

where for a particular profile A , B , and U* are constants. Thus,

when U < U50 , the optical thickness above z(U) is

1 ki(x) dx = PO3(U) (B.14)

If U > U50 , Green's formula (Chapter IV) gives

eL(U)
P03(U) = 4PO eL(U) (B.15)
3 3 (1 + e L(U))2

where

L(U) = A (U - U*) (B.16)

Thus, for U > U50 ,
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o ki(x) dx = exp [L(Uo5 ) B]

PO3 Qi 1 1
A 1 + eL(U50 (B.17')



APPENDIX C. ESTIMATING THE PARAMETERS IN GREEN'S FORMULA
USING OZONAGRAMS

List of Symbols

Symbol Definition Units/Constants

A shaping parameter in Green's formula

dq/du2  slope of the ozonagram at a point above U*
where PO0 = q2

M molecular weight of air 28.964 kg

MO3 molecular weight of ozone 47.9982 kg

P atmospheric pressure N/m2

P atmospheric pressure at sea level N/m2
o

P* atmospheric pressure where P0 = PO0 N/m2

P03 partial pressure of ozone 
N/m2

PO maximum partial pressure of ozone N/m2
3

ql ozonagram value of PO0 at height ul  N/m2

q2 arbitrarily selected value of PO3 where N/m 2

slope dq/du2 is estimated

TO3 total ozone atm-cm

U height parameter = log(P/Po)

u1  arbitrarily selected value of U above U*
where P03 = ql is measured

U* value of U where P = P"

p3  ozone density kg/m3
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Criteria for a good fit

In fitting Green's formula,

PO = 4PO* ex (C.1)

3 43 (1 + ex)

where x = A log(P/P*) , to an ozonagram, ideally one could read the

coordinates (PO , P*) off the curve at the location where P03 is

maximum. Unfortunately, however, the data usually have an appreciable

amount of scatter at that point, and, consequently, it is sometimes

difficult to determine values of P03 and P* which produce a good

fit.

In the present study, a "good" fit of Green's formula is one which

(1) fits the smooth segment of the P03 profile above its maximum and

(2) has the correct total ozone TO3 as reported on each ozonagram.

Calculating the shaping parameter A

If P03 is known, the shaping parameter A can be selected to

satisfy this latter criterion regarding total ozone. Total ozone,

in atmosphere-centimeters, is given by

2240
TO3  MO P3(x) dx (C.2)

The ozone density p3 can be expressed in terms of P03 to give

0

TO3 = 2240 PO3 (u) du (C.3)
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where U = log(P/Po ) . (See equations (B.6) - (B.9) in Appendix B).

Using Green's formula for PO3 , one gets

*
8960 P0 -AU* 1

TO [1 - (1 +e] (c.)
A

and since Po >> P* (i.e., U* is a large negative number), then

8960 Po
TO 3 (c.5)

3

This approximate expression is used to calculate A for any P03 and

TO3 . That is,

8960 P03
A = (c.6)

gM TO3

(The Ao mentioned in Chapter IV is 8960/ M).

* *

Calculating PO and P

Since the portion of the measured PO3 curve above the maximum

is generally smooth, points on this portion can be read with little

difficulty. The following information, read from each ozonagram, is

* *

used to calculate PO and P :

(a) a point (ql,ul) on the curve above (PO3,P) , where

P0 3PO3 = q and log(P/Po) Ul , and

(b) the slope dq/du2 = APO3 /U at a second point PO3 = q2

above (PO31P)

From this information, i.e., (ql ,ul) and (q2 ,dq/du2 ) , values

of PO3 and P are calculated such that the fitted curve passes
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through (q1 ,ul) and has a slope equal to dq/du2  at the point above

the maximum where P03 = q2

The derivative of Green's formula with respect to U is

dPO A PO3 (l - e2x )

3, 3 (c.7)
du 4PO eX

3

Substituting for A from equation (C.6) and letting dPO /dU = dq/du2

and P03 = q2, (C.7) becomes

2 2x
2240o q (1 - e 2)2a - (c.8)

du2 gM TO3 ex2

x2
Solving for e one gets

X2 =1y+ (C.9)

where
gM TO3 dq/du2y . 2 2 (C.10)

4180 Q2
xX 2

Thus, the value of ex at PO3 = q2 , e2 , is a function of known

quantities and can be calculated. Then, substituting this into Green's

formula for q2 , it is possible to solve for

2

P q2 (l + e 2 ) 2

PO = (C.11)
3 4 ex 2

x2
where e is given be (C.9).

Now, a value for A can be calculated from (C.6), and P* = Po e
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can be found by solving Green's formula at (ql,u)

x1

q = 4PO* e (C.12)

3 (1 + ex l )2

x1
for U* = u -xl/A Solving (C.12) for e gives

e x_ rEl_ l] 2  (C.13)

where r = PO 3/q1  Thus,

P P e (U - /--) -2/A (C.14)



APPENDIX D. EQUATIONS FOR FITTING PEARSON DISTRIBUTIONS TO DATA

Let X be a continuous random variable and let f(x) be its

probability density function. Karl Pearson, [42], c3laimed that the

probability density functions of most statistical distributions arising

in practice belong to the family of density functions satisfying the

differential equation

AdL (x - a) f (D.1)
dx b + bl x + b2x 2

where a , b , b I , and b2 are population parameters (constants).

Pearson identified thirteen distribution types which satisfy

(D.1). These consist.of the normal distribution plus twelve types

which are designated Type I - Type XII. Of these, the normal distri-

bution, and the Type I, Type III, Type IV, and Type VI distributions

are considered the major Pearson distributions, whereas the other

eight are called transitional distributions, [46], and can usually

be treated as special degenerate cases of the five major Pearson dis-

tributions. Methods are presented here for fitting the five major

distributions to empirical distributions(data). In instances where

a transitional distribution is identified, it is assigned to one of the

five major distribution types.

Any probability density function of the Pearson family can be

completely determined by its f6ur moments ,i , i = 1, ... , 4,

defined by

135
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x i f W d (D.2)i = f x f(x) d (D.2)

Assume that a random sample of size n is drawn from the X

population, and let the population moments 1i be estimated by the

sample moments Mi as defined by

i = 1 i (D.3)
i n j

j=1

Let M' denote the it h  central moment in the sample as defined by
i

i n j (D.4)3J=1

where X = M is the sample mean. Then M = 0 , and M2 2

is the sample variance.

The major Pearson distributions are characterized by three

parameters 01 , a2 , and K which are defined as follows:

(M)2
S= (M4) (D.5)

(M2)3

M,
= (D.6)

2  (M)2

and

81 (82 + 3)2
K = 4(48 2 - 381 )(22 - 361 - 6) (D7)

If the sample variance s2 0 0 ,then, 81 > 0 , 2 > 0 , and
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K = 0 if and only if 1 = 0 .

In most cases, the values of 81 ,2 , and K determine the

Pearson distribution to which the sample belongs. A fourth parameter

is sometimes required to distinguish the transitional distributions. Figure

D.1 illustrates the various regions in the 81 - 82 plane which are

associated with the first seven Pearson distributions. The normal dis-

tribution corresponds to the point labeled"N" where 81 = 0 and 82 = 3

These first seven Pearson distributions plus the normal distribution are

listed below with the criteria for their selection and equations for

estimating their parameters.

There are two circumstances in which 81 and 82 are inadmissible-

and cannot be used to estimate Pearson distributions. The first is the

violation of a constraint on all frequency functions which requires

that

82 - a1 > 0 (D.8)

The second circumstance is the violation of a constraint necessary

in order for 81 and 82 to lead to a Pearson distribution. This

constraint requires that

15 81 - 8 82 + 36 > 0 (D.9)

Three instances arose in the Monte Carlo Shuttle entry study in

which constraint (D.9) was violated. In these cases an attempt was

made to find the "closest" Pearson distribution fitting the data.

To accomplish this, a line L was drawn through the inadmissible point
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22

Pr distri iionso 2

3 N -3

0 -4

5 -5
6 -3

7-

0 .2 .4 .6 .8 1.0 1.2 1.4 1.6

Figure D.1 - Regions of the 61 " 2 plane associated with the various

Pearson distributions.
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(81 , 2) perpendicular to the line 15 81 - 8 82 + 36 = 0 . (See

Figure D.1) . A point on the line L just inside the admissible region

was then selected, and its coordinates (81 , 2 ) were used as new

adjusted values for 81 and 2 . The third and fourth central moments,

M' and M, were then adjusted to be consistent with the definitions

of a1 and 82 in equations (D.5) and (D.6), respectively.

In the case of one parameter (i.e., maximum dynamic pressure during

the summer entries) this method succeeded in producing a reasonable

Pearson fit for the empirical distribution. In the two other cases of

inadmissible Bi's, (i.e., summer down range and cross range), this

adjustment produced J-shaped Type VI distributions with poor resemblances

to the parameter histograms.

The following summaries explain the criteria used for selecting

each Pearson distribution and the methods used in estimating their

parameters. No effort is made to show derivations of the formulas.

If the reader is interested, a good explanation can be found in Kendall

and Stuart, Vol. 1, [42].

The Pearson Type I Distribution

(A) Criterion for selection: K < 0

(B) Probability density function:

S xm2 x x
You + - ) (1 - -) -> - <1

f(x) a 2  a a2  (D.10)

elsewhere
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where x = X - l "

(C) Equations for estimating parameters:

Let

R = 6(82 -1 - 1)/(6 + 381 - 282) (D.11)

S = [81(R + 2)2 + 16(R + 1)]1/2 (D.12)

and

T = R(R + 2) 81 / 2 /S (D.13)

The estimates of ml, m2 , al , a2 , and Yo are, respectively,

A (R- 2 + T)/2 if M < 0

(R- 2 -T)/2 if M > 0

2 = R - 2 - 1 (D.15)

a =.5 s s( + 1)/(^ + 2 + 2) (D.10)

a2 =.5 s S( 2 + 1)/(n1 + 2 + 2) (D.17)

and r(^1 + 2 + 2) (S M^2+*) 1 + 2

Yo = r( + r((R + 1) ) 1 12

(D.18)

The Pearson Type II Distribution

(A) Criterion for selection: K = 0, 82 < 3

This is one of the transitional distributions, and is treated as

a subclass of the Type I distribution.
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The Pearson Type III Distribution

(A) Criterion for selection: K = -O

(B) Probability density function:

Y (1 + xa- exp(-bx) x> -1
a a

f(x) = (D.19)

0 elsewhere

(C) Equations for estimating parameters:

The equations for estimating a , b , a , and Y are, respectively,

= /8 (D.20)

^ 2
b = 2s /M' (D.21)

a = a/ (D.22)

and A 1 (-)

o II) exp(-) (D.23)

The Pearson Type IV Distribution

(A) Criterion for selection: 0 < K < 1

(B) Probability density function:

x v 2 -m 1
f(x) Y [1 + ( -) I exp [ -v tan-  (- ) (D.24)a r a r

where x = X - 1

(C) Equations for estimating parameters:

Let
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R = 6(82 - 81 - 1)/(202 - 381 - 6) (D.25)

S = [16(R - 1) - B1 (R - 2)2 ]1/2 (D.26)

and T = R(R - 2) 81/2 /S (D.27)

Then the equations for estimating m,, a , v , r , and Yo are ,

respectively,

= (R + 2)/2 (D.28)

a = ss/4 (D.29)

T if M3 < 03 CD. 30)

I-T if > 0

F =R (D.31)

and

_- s3989432 P c - - -~ (D.32)
Y F 1 3 31(12r3

where = tan-1 () (D.33)

The Pearson Type V Distribution

(A) Criterion for selection: K = 1

This is one of the transitional distributions and is treated as a

subclass of the Type VI distribution.
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The Pearson Type VI Distribution

(A) Criterion for selection: K > 1

(B) Probability density function:

Y (1 + E2 x x> -1 (D.34)

f(x) =2 1

elsewhere

where x = X - l

(C) Equations for estimating parameters:

Let

R = 6(a2 - 81 - 1)/(6 + 381 - 282) (D.35)

S = [8 1 (R + 2) 2 + 16 (R + 1) ]/2 (D.36)

and T = R(R + 2) 80/2 /S (D.37)

Then the equations for estimating ml , m2 , a , a 2 , and Yo are,

respectively:

= (T - + 2)/2 (D.38)

m2 = (T + R - 2)/2 (D.39)

-. 5 s s(- - 1)l(1 - A2 - 2) if M3 < 0

.5 s S( - 1)/(. - - 2) if M> 0

2 = + s S/2 if M' < 0
a2  3 (D.41)

a, - s S/2 if M' > 0
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and

Sr(m) s (ml%-'2 - l)  -ml % m2 (D.42
o r( 2 + 1)r(- - 2--1) T a 2 (D. 2)

The Pearson Type VII Distribution

(A) Criterion for selection: K = 0 ,2 > 3

This is one of the transitional distributions and is treated as a

subclass of the Type IV distribution.

The Normal Distribution

(A) Criterion for selection: 01 = 0 B2 
= 3

(B) Probability density function:

f(x) = exp (-x2/2a2) (D.43)

where x = X - pl

(C) Equations for estimating parameters

An estimate of a is s , the sample standard deviation.
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