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ABSTRACT

Wacker, Arthur Gordon, Ph.D., Purdue University,
January 1972. Minimum Distance Approach to Classification.
Major Professor: D. A. Landgrebe.

: In minimum distance classification a group of

vectors (sample), known to belong to the same class, is

classified into the class whose known or estimated distri-

bution most closely resembles the estimated distribution of

the sample to be classified. The measure of resemblance is

a distance measure in the space of distribution functions.

The general objective of this work is to advance

the state of the art of minimum distance classification. This

is accomplished through a combination of some theoretical

investigations and a comprehensive experimental investigation

based on multispectral scanner data. A thorough survey of

the literature for suitable distance measures was conducted

and the results of this survey are presented.

Theoretically it is shown that minimum distance

classification, using density estimators and Kullback-Lei bier

numbers as the distance measure, is equivalent to a form of

maximum likelihood sample classification. It is also shown

that for the parametric case m i n i m u m distance classification

is equivalent to nearest neighbor classification in the

parameter space.
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A two class univariate normal problem, in which the

set of distributions representing each class is described by

<a distribution over the parameter space, is analysed for

various amounts of overlap of the parameter space densities.

A theoretical investigation of a new separability

measure defined in terms of random samples .provides insight

into some experimentally observed effects of dimensionality.

The experimental investigation of minimum distance

classification is based on a supervised parametric (normal)

minimum distance classifier PERFIELD and a supervised non-

parametric minimum distance classifier (using histogram

estimators) LARSYSDC. Each classifier is capable of using

any one of three distance measures with only one distance

measure common to both classifiers. Classification accuracy

of a parametric (normal) maximum likelihood vector classifier

is also compared experimentally with m i n i m u m distance classi-

fication.

In'cases where the training set contains a large

number of samples, parameter space clustering is experiment-

ally investigated as a technique for combining similar samples.

The principal experimental results pertaining to

minimum distance classification of multispectral scanner data

are:

1) The Jeffreys-Matusita distance (defined as the

square root of the integral squared difference of the square

root of two densities) appears to be a good general purpose

distance measure.
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2) The minimum distance classification accuracy

(% samples correct) was typically 5 to 10% greater than the

maximum likelihood vector classification accuracy (% vectors

correct). Improvements as great as 15% have been observed.

The improvement depends on the degree of overlap of the

parameter space densities.

3) For the techniques used to define training

samples no distance measure was consistently superior for

classifying test samples. Neither was the nonparametric

classifier LARSYSDC superior to the parametric classifier

PERFIELD in these circumstances. For classifying training

samples the nonparametric classifier was slightly superior

as were certain distance measures.

4) The effect on classifier performance of the

number of spectral channels, the number of vectors in a

test sample, and the histogram bin size for the nonpara-

metric classifier LARSYSDC are also experimentally investi-

gated. For the data considered classifier accuracy can be

improved only slightly by using more than 4 channels and

test samples containing more than 60 vectors. The results

show that test samples for the nonparametric classifier need

not be larger than for the parametric classifier. A bin size

of 5 to 10 is indicated.



CHAPTER 1

INTRODUCTION

Making measurements and categorizing objects on

the basis of these measurements is an essential aspect of

knowledge, and consequently an essential aspect of all

sciences. Thus to cite two arbitrary examples from the

science of astronomy: A star is classified as a red giant

because of its physical size and spectral characteristics;

a pulsar is identified primarily by the periodicity in its

radiation. Numerous other examples abound in astronomy and

a l l o t h e r s c i e n t i f i c f i e l d s .

A frequent requirement in the categorization process

is the ability to manipulate data and carry out computations.

Consequently it is not surprising that with the advent of

computers man quickly turned to them for assistance in the

classification task. Thus evolved the field of pattern

recognition which is precisely concerned with the problem

of classification or labeling objects on the basis of a set

of measurements, usually with the aid of a machine. Many

different classification schemes have evolved over the years.

Minimum distance classification is one such scheme. In a

certain sense minimum distance classification resembles

what is probably the simplest approach to pattern recognition,



namely "template matching". In template matching a tem-

plate is stored for each class of patterns to be recog-

nized (e.g. letters in the alphabet) and an unknown

pattern (e.g. an unknown letter) is then classified into

the pattern class whose template best fits the unknown

pattern on the basis of some previously determined similarity

measure. In m i n i m u m distance classification the templates

and unknown patterns are distribution functions and the

measure of similarity used is a distance measure between

distribution functions. Thus an unknown distribution

function is classified into the class whose distribution

function is nearest to the unknown distribution in terms of

some predetermineddi stance measure.

Normally, in practically problems, it is not the

distribution function itself that is observed, rather a

random set of measurement vectors drawn from the distribution

are observed. Consequently, before the distribution function

can be classified it must be estimated from a set of ob-

served vectors. It is possible to adopt the view that when

a distribution function is classified then in effect all

the vectors used to estimate that distribution function are

classified. Thus m i n i m u m distance classification belongs

to a set of classification schemes that we refer to as

"sample classification schemes". A basic premise in sample

classification schemes is that the vectors to be classified

appear in groups or samples, where it is known a priori, or



where it is reasonable to assume, that each vector in the

group belongs to th.e same class. Sample classification

schemes contrast with the more conventional pattern recog-

nition schemes where each measurement vector is classified

i n d i v i d u a l l y .

Our interest in mi n i m u m distance classification was

prompted by work in the field of Remote Sensing of earth

resources. Fu et al . state that "remote sensing technology

is primarily concerned with the identification or classi-

fication of physical objects through the analysis of these

objects made with sensors that are at some distance from

the objects". Although not specifically stated it is i m p l i e d

that these measurements are made without coming into

physical contact with the objects, and that the information

is conveyed from the distant object to the sensor by some

force field. Specifically it is the variation of some force

field with some parameter such as space, or time, or in the

case of electromagnetic radiation wavelength, that conveys

the information. Although remote sensing has only recently

been identified as a distinct technology, some remote sensing

techniques have been in use for many years. Photography is

an example of one such technique.

At the present time in the development of remote

sensing technology it is possible to identify a duality in
2

the system types utilized. Landgrebe refers to the two

types as "image-oriented systems" and "numerically-oriented



systems". The duality exists primarily for historical

reasons as a consequence of the independent development of

photographically oriented and computer oriented technology.

In image-oriented systems a visu a l image is an essential

part of the analysis scheme, w h i l e in numerically-oriented

systems the visual image plays a secondary role, and may

in fact not even be formed. For example an astronomer

studying the temporal variation in i l l u m i n a t i o n of a pulsar

might conceivably do so by examining a sequence of photo-

graphs (an image-oriented system). On the other hand a radio

astronomer observing the radio wave-length properties of

the same pulsar would probably never generate an image of

the star (a numerically oriented system).

In numerically-oriented remote sensing systems it

is frequently possible to design the data collection system

in such a manner that classification becomes a problem in

pattern recognition. This situation prevails if one attempts

to study earth resources through the utilization of "multi-

spectral data-images" which is a basic premise on which

the research at Purdue's Laboratory for Applications of

Remote Sensing (LARS) is based.

The term multispectral data-image requires

elaboration. By multispectral image, (i.e. without the

modifier "data") we mean two or more spectrally different,

superimposed, pictorial images of a scene. The modifier

data is added to indicate that the images are stored as



numerical arrays, as opposed to visual images. To obtain

a multispectral data-image of a scene, the scene in question .

is partitioned into small cells and the radiance from each

cell, for each wave-length band of interest is measured and

stored. We call these cells image resolution elements (IRE's)

In other words a multispectral data-image of a scene is an

array of measurement vectors, one from each IRE in the

scene. The components of the measurement vectors are the

radiances observed when viewing the scene through different

spectral windows. The spatial coordinates of the IRE are

of course also recorded to uniquely identify each measure-

ment vector.

The method of processing multispectral data-images

depends on the information being sought. A rather common

goal is that of segregating the measurement vectors into a

number of classes. For example one may wish to identify

crop species in an agricultural scene. In the more con-

ventional pattern recognition schemes each measurement vector

would be analysed i n d i v i d u a l l y and classified into one of

the classes of interest on the basis of some classification

rule. In a sample classification scheme, like the minimum

distance rule, all vectors to be classified are first seg-

regated into groups, such that all the vectors in a group

belong to the same class, and then the group is classified.

Note there are two distinct aspects to the problem of m i n i -

mum distance classification. The first is concerned with



partitioning measurement vectors into homogeneous groups,

while the second is concerned with the classification of
i .

the groups.

It is clear that for minimum distance classifi-

cation to be most useful automatic methods must be devised

for defining samples (i.e. groups of measurement vectors).

W h i l e we recognize the importance of this problem, and have

done some work on itj we w i l l primarily concern ourselves

with only the classification aspect of the problem. We do,

however, wish to make a few comments regarding definition

of samples.

It frequently occurs for multispectral data-images

that many of the adjacent measurement cells belong to the

same class. For example in an agricultural scene each

physical field typically contains many measurement cells.

In fact it is precisely this condition that prompts the

investigation of minimum distance classification. In such

situations the physical field boundaries serve to define

suitable samples for problems l i k e crop species identi-

fication, and it is on this basis that m i n i m u m distance

classification is also referred to as per-field classifi-

cation. It is apparent that for the situation just des-

cribed one method of automatically defining samples is to

devise a scheme that automatically locates physical field

boundaries in the multispectral data-imagery. In this in-

vestigation of m i n i m u m distance classification physical
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field boundaries w i l l actually be used to define the

samples, but the field boundaries w i l l be located manually

rather than automatically. A second and perhaps more

promising approach to the problem of defining samples is

via observation space clustering. In this approach vectors

from an arbitrary area are clustered in the observation

space, and all the vectors assigned to the same cluster

constitute a sample irrespective of their location in the

arbitrary choosen area. In this case the term "fields"

no longer seems appropriate and consequently the term

sample classification is preferred over the term per-field

classi fication.

It is apparent that minimum distance classification

(or any other sample classification scheme) cannot be used

in all situations where a vector by vector approach is

possible. A basic requirement is that the data to be

classifled.can either be segregated into homogeneous samples,

or occurs naturally in this form. Where the m i n i m u m distance

scheme can be applied it has several potential advantages

over a vector by vector classifier; in particular it is

potentially faster and more accurate.

It seems logical that provided the time required

to automatically define the samples is not too great, then

a minimum distance classifier should be faster than a vector

by vector classifier. This is of considerable importance

in u t i l i z i n g a numerically-oriented remote sensing system
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to survey earth resources because a characteristic of such

surveys is the tremendous volume of data involved. One

would also anticipate that the vector classification

accuracy of a vector by vector classifier would be lower

than the sample classification accuracy for minimum dis-

tance classification. The reason for this is that in

m i n i m u m distance classification all the information conveyed

by a group of vectors is used to establish the classifi-

cation of each vector whereas in a vector by vector class-

ifier each vector is treated separately without reference

to any other vector. In a sense minimum distance classi-

fication utilizes spatial information because vectors are

classified as groups, which naturally have some spatial

extent. No spatial information is used in vector by vector

classifiers, consequently, minimum distance.classification

should perform better since spatial information is certainly

of some value.

The objectives of this investigating of m i n i m u m

distance classification can now be stated. The primary

objective is to experimentally assess minimum distance

classification as a method of classifying multispectral data-

images under the basic assumption that all samples are

manually defined. An important aspect of the investigation

is the comparison of various distance measures as well as

a limited parametric vs non parametric assessment of minimum

distance classification.
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CHAPTER 2 -

MINI MUM'°D i STANCE' ac'LA'S s iV i CAT M1

In this section we introduce the necessary defin-

itions and notation to formulate the minimum distance

classification rule in a decision theoretic framework

The diverse literature pertaining to minimum distance

classification and distance measures is reviewed and dis-

cussed u t i l i z i n g consistent notation and terminology.

2.1 Basic Concept of the Mi n i m u m Distance
Classification Procedure

Distance between cdf's is the basic concept upon

which the proposed classification scheme is based. In a

mathematical sense the terms "distance" and "metric" are

sometimes used interchangeably. A metric on a set S is, of

course, a real valued function 6 defined on S X S (X i n d i -

cates cartesian product) such that for arbitrary F,G,H in S

(a) 6(F,G) >: 0 2.1.1

(b)(l) 6(F,F) = 0 2.1.2

(2) If 6(F,G) = 0 then F = G 2.1.3

(c) 6(F,G) = 6(G,F) 2.1.4

(d) 6(F,G) + 6(G,H) >_ $(F,H) 2.1.5

We w i l l not consider the terms "metric" and

"distance" to be synonomous, rather we w i l l assume that a
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distance has some, though not necessarily a l l , the properties

of a metric. Specifically we w i l l assume a distance on a

set"S is a real valued function d on S X S such that for

arbitrary F,G,H, in S at least metric properties (a), (b)

(l), and usually (c) hold. We w i l l specifically point out

those instances were (c) is assumed not to hold.

To describe the basic concept of the minimum dis-

tance method we consider a particular case. The method is

formulated in a more general and rigorous manner in the next

section. We assume that the ith class is characterized by

a known q-variate cdf F^1', i = 1 ,2,. . . ,k. Let tt = {F^ ' ,

P ,...,F^ '}. To classify an unknown sample of N random

vectors drawn from a population with cdf F (where F = • F^1'

'for some i) we compute the emperic cdf FN and assign the

sample to the ith class in case

d(FN, F(.i}) = min d(FN,F
(j)) 2.1.6

N - j=l,...,k N

It appears that it should be possible, under

suitable conditions, to adopt the point of view that this

decision rule is a version of the well known nearest neigh-

bor rule , except that the items being classified are emperic

cdf's representing the class from which the sample (group of

vectors) originated rather than vectors representing indi-

vidual patterns. The validity of this contention is estab-

lished in Chapter 3 for the parametric case. The nearest

neighbor viewpoint seems particularly appealing both theo-

retically and practically. From a theoretical point of view
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it means that theoretical results in connection with nearest

neighbor decision rules ' ' ' are directly a p p l i c a b l e .

From a practical point of view it immediately becomes very

logical to view subclasses as different "sample points"

(a "sample point" in this context is an emperic cdf)

representing the particular class in question. These con-

cepts w i l l subsequently be formulated in a formal manner

and their validity and resultant implications investigated.

The decision rule as given above i s completely non-

parametric. The intention is, however, to investigate the

rule in a parametric as well as a nonparametric setting.

In the parametric setting the cdf's are assumed to have some

parametric form (e.g. q-variate normal) and hence ft = (M ',

P ',...,F^ '} becomes a subset of a parametric family (q-

variate normal).

It must also be pointed out that in the particular

case considered above we assumed that the true class dis-

tributions were known. The case where they are not known is

discussed in the next section. The basic idea in this

situation is to replace the unknown class cdf's in 2.1.6

by suitable "estimates" of the cdf's, for example empiric

cdf s might be used.

2.2 On Estimating Distribution Functions

As already mentioned, to apply the minimum distance

method we must estimate the cumulative distribution function

of the sample to be classified, and possibly also the class
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distribution functions if these are unknown. Some of the

distances we are interested in are expressed in terms of

probability density functions (pdf's)' rather than cdf's. In

such cases we w i l l need to estimate pdf's. Consequently,

before we proceed to the formulation of the m i n i m u m distance

rule we discuss briefly the estimation of pdf's and cdf's

and make a number of appropriate definitions.

We w i l l adopt the following conventions regarding

the notation for pdf's, cdf's and their estimates. We w i l l

distinguish between pdf's and cdf's that refer to the same

distribution by means of corresponding lower and upper case

letters respectively. A symbol above a quantity designates
• •

an estimated quantity. Thus F and f are the "dot" estimates

for F and f respectively. Note that if the "dot" estimator

is defined in terms of pdf's, then F is computed by first
•

obtaining f and then finding the corresponding cdf by

integration. Similarly if the "dot" estimator is defined
• •

in terms of cdf's then f is obtained by differentiating F.

We w i l l assume in general that the estimated pdf's

or cdf's are to be based on a random sample of size N (i.e.

Xn , Xo XM) from a q-variate population with distri-

bution function F(xJ and corresponding density f(x_) (if it

exists). Thus the X.'s are q tuples, X- = (X.-,,-X,.01 — I II \ c.

X. ) i = 1, 2, .., N and x = (x,, x9, ..., x ).i q — I iL q

Probably the most natural estimators are the so

called empiric estimators.
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Definition 2.2. T

The empiric cdf FN(X_) i'
s defined as

fV*.) = ft (Number of X- ' s s-uch that

X:ij < Xj' j = T'2' ..... 'q) ' 2 > 2 > 1

Assuming cdf s are continuous on the rigiht the

corresponding empiric pdf is

i N

fN.(x) = ft .2- 6(,x-xt) 2.2.2

where S-( • ) is dirae delta, function

There are a number o-f other estimators o-f interest

whose origins are probably heuristic but which can; in general

be motivated by the following theoreticaT result duse to Fix

and Hodges .

Theorem 2.2.1 (Fix and Hodges)

If a density f(x) is continuous at x - z: and [y^Jis

a sequence of sets with nonzero' volume [$'̂1 such

that

(1) l i m i t sup z - y_ = 0 2..2.3
N ^ co

(.2) l i m i t N$N =• » 2.2.4

N •*• °°

and if k(N) is the number of independent variables

XT, X.2> .... XM distributed as f(x)- wh^ich are

contained in $M then if
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*
then fw(x_) approaches f(x) in probability. The
* "
fN(>0 will be referred to as a local density

estimate of f(x_) at x^

Conditions (1) and (2) ensure that as ̂ .decreases with N about

z_ it does so in such a manner that the expected number of

observations in $,, approaches infinity, thus ensuring a

consistent density estimate.

Choosing $., to consist of disjoint cells of equal

size fixed with respect to the coordinate system leads to

"histogram estimates".

Def in i t ion 2 . 2 . 2

The cumulative histogram FN(X.) is defined as

Fw(x.) = M (Number of X. ' s such that

X^ < b ([x..]b + 1), j ='l,2,...,q) 2.2.6

Where [x,]. is the largest integer less than or
v

equal to x./b. The pdf corresponding to FN(X_) is
v J

fN(x.) is referred to as the pdf of the cumulative

histogram . In 2.2.6 b is the bin edge.

Definition 2.2.3

The density histogram fN(x_) is defined as

where b is the bin edge and k(N) is the number of

X^. 's such that

b[X j ] b < X... < b ( [ X j ] b + 1) j = 1.2. . ...q 2 . 2 . 8
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where [x.]b is the largest integer less than or

equal to x./b. Equation 2.2.8 simply states that
J

k(N) is the number of X, ' s in the same bin as x_.
* *

T.he cdf corresponding to f N ( x_ ) is F N (XJ and is

referred to as the cdf of the density histogram.
v

Note that f^ and f^ are quite different estimators in that
• • •

f^ is the summation of N delta functions while f., is the

summation of N step functions. If the bins in the estimators
v
F.. and f are permitted to become smaller and smaller w i t h i n

the framework of Fix and Hodges result then at points of
v

continuity f(;<) and F(xJ are consistent asymptotically

unbiased estimates for f(xj and F(xj respectively.

The idea of selecting YM to consist of an interval

about the estimation point x^ (as opposed to fixed bins) was
P

first investigated by Rosenblatt . This concept can be

generalized by replacing YM by a suitable weighting function,

and considering $;, as the volume of the weighting function,

and k(N) as the weighted count of the vectors in $M. That is

we def i he

*N = / KN(y_,x)dy_ 2.2.9
-00

k(N) = N / KM(y_,x) ?N(y_)dy_ 2.2.10
-co

CO

where / indicates an integration over the whole space and
-00

is the emperic pdf. k(N) reduces to

N
k(N) = Z KM(X,, x) 2.2.11

= N ~° ~
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which for KM an even function of its argument leads toN
N

k(N) = Z. KN(x, X.) 2.2.12
j = l N J

This leads to the following definition:

Definition 2.2.4
•

The Parzen density estimate 7N(x_) is

KN(x. Xj) 2.2.13

Parzen density estimates were investigated for the uni-
9 10variate case by Whittle and Parzen and for the m u l t i -

variate case by Cacoullos .

Under relatively weak conditions on K.,(-, •) the

Parzen density estimate is consistent and asymptotically un-

biased at points of continuity of f(x). The conditions

KN are that it be bounded, absolutely integrable, and that

it approach zero sufficiently rapidly for large values of

the argument

The estimators of definition 2.2.1 to 2.2.4 can be

used to obtain estimates for q-variate populations regardless

of whether the distribution function F belongs to a para-

metric family or not. If the family is parametric we may

wish to use pdf's and cdf's based on the estimated parameters

Definition 2.2.5

If F(x_) is characterized by _e (i.e., F(xJ = F(xjjo))

then the parametri cal 1y estimated cdf FN(X_|O) is

defi ned as

FNU|QJ = F(x|e_)
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where 9 = (Q -,, .Q 0, ... , 9 _) and 9 is s.pme esti.m.ate
*~ I " L. S __

of Q_ based on the random sample.
<"» /N /\ /">.

The density corresponding to (̂ .(xĵ ) 1S 'fN (*.]£)

and is referred to as the parametri cal ly estimated

pdf. Note that f(x|e) = f(x|e)-
n — — — —

Frequently we w i l l not wish to be specific re^

garding the estimator to be utilized. For this reason we

/nake the following definition.

Definition 2.2.6
^ 'V

A sample-based estimate of a cdf (F^) or pdf (f^)

is any estimate of a cdf or pdf based on a random

sample.

In situations where there appears to be no danger ,of con-

fusion we w i l l drop th.e adjective sample-based. Thus the

term estimate used by itself usually refers to a sample-

based estimate.

2.3 Decision Theoretic Formulation of Minimum
Distance C1 assi ficatiolT

In this section we present what essentially amounts

to a decision theoretic formulation of m i n i m u m distance

classification. Two main types of problems w i l l be con-

sidered, each with three cases. In Type I problems we assume

that distribution functions for all classes and subclasses

are known apri ori while in Type II problems we assume that

estimates of these distributions must be obtained from

appropriate random samples. The three cases considered in
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each problem Type are a consequence of different a p r i o r i

assumptions regarding the number of subclasses. Case (a)

assumes each class can be represented by an infinite

number of distribution functions (i.e., subclasses) w h i l e Case

(b) assumes the number is finite but larger than unity. Case

(c) is concerned with the situation where each class can be

represented by a single distribution function. In every

case we assume that the number of main classes is finite

and greater than unity.

We w i l l be interested not only in determining

distances between i n d i v i d u a l distribution functions but

between sets of distribution functions as well. Such

distances are defined in Definition 2.3.1.

Definition 2.3.1

Let the distance d(F,G) be defined for all F,G, in

A, where A is an arbitrary set of cdf's of

interest. If A-, and A? are non-empty subsets of

A then we define the distance d(A-, , Ap) between the

sets A-, and Ap as

d(A1 , A2) = Inf d(F,G) 2.3.1

FeA1

GeA2

With regard to the last definition we note that

it applies to finite and infinite sets of distribution

functions. Of course, if the sets are finite then taking

the infimum is e q u i v a l e n t to taking the minimum.
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Furthermore, if each set consists only of a single distribu-

tion function then the distance between the sets is precisely

the distance between the distribution functions. It is also

important to note that the above definition includes as a

special ease the distance between a distribution function

and a set of distributions functions.

In order to avoid future misunderstanding it is

'necessary to make some comments about notation. In particular,

the usage of d(F,G) requires clarification. Some of the

distance measures we wi l l consider are expressed in terms

of pdf's rather than cdf's. The convention we adopt is

th-at we will use the notation d(F.,G) and refer to this

quantity as the distance between cdf's even thoug!h the

distance is expressed in terms of the densities of F and G.

A comment should perhaps also be made about the class of

cdf's that are permitted. This in general depends upon the

particular distance measure and the particular estimator

used. All that is required is that the particular distance

used must exist for all cdf's of interest, i n c l u d i n g

estimated cdf's. This means, for example, that if a dis-

tance is expressed in terms of pdf's then the densities

must exist, whereas if the distance is expressed in terms

of cdf's then the densities need not necessarily exist.

We are now in a position to formulate the problem

in a decision theoretic framework. In specifying ^a statis-

tical problem we must specify
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(a) Z - the sample space of the observed random

variable.

(b) n - the set of states of nature; that is, the

set of possible cdf's of the random variable.

If the functional form of the cdf is known,

then we can identify £2 with the parameter

space.
*

(c) A - the action space; that is the set of

actions or decisions a v a i l a b l e to the statis-

tician.
*

(d) L (a,F) - loss function defined on AXft which

measures the loss incurred if Fefi is the true
*

state of nature and action aeA is the action

taken.

The general formulation of the m i n i m u m distance

problem in this framework follows:

(a) Z = E^ (q-dimensional Euclidean space)

(b) n = [ft(1), n(2) fi(k)] where fi(i) is the

set of possible distribution functions for the

i th class , i = 1, 2, ..., k.

(c) A = [a, , a2» • • • > a.] where an- is the decision

to decide the random sample to be classified

belongs to the ith class, i = 1, 2, ..., k.

(d) L(a,F) = 0 if FeJr1' and action a. was taken

= 1 otherwise.

A decision rule is a function defined on Z and
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*
taking values in A. The minimum distance decision rule is

defined below.

Definition 2.3 2

Let Y^ be the vector of all sample observations.
*

The m i n i m u m distance decision rule DMD:Z->-A is
DMnW = ai ( i - e - > decide the random sample to be

classified belongs to class i) in case

Where A^ 1' is the set of cdf's selected to represent
'Xy

the ith class and F^ is a sample-based estimate

of the cdf of the random sample to be classified.

Normally in a parametric problem parametri cal ly

estimated cdf's would be used. It is, of course, always

possible to treat a given parametric problem in a non-

parametric way. That is even if the problem is parametric

one could use some nonparametri c estimator, but the con-

verse is not true. It is important to note that Y^ includes

not only the random sample to be classified, but also any

other observations used in the classification procedure. For

example, if training samples are used for each class, these

are included in Y_. The sets A^1' also require comment.

A may be the set of all possible distributions for class

i(i.e., A^1' = Jr M or it may be a subset of A^1' or the

sample based estimates of a set of cdf's selected to repre-

sent cl ass i .
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As already indicated we w i l l consider a number

of special cases of the above formulation. The special cases

we consider have been selected to assist us in describing

work that has been done on this problem. These special

cases are basically a consequence of making different assump-

tions regarding n, and A = [Â , A^, ..., Â ]. We

in i t i a l l y deal with Type I problems where the sets of dis-

tribution functions representing the classes are known sets.

Actually, this problem is not of great interest from a

practical point of view, but it is interesting from a theo-

retical point of view because it is relatively simple.

Type I - The ^^''s are known sets of cdf's

Case (a) The sets n'1') are infinite and A^ 1' = Jr1'

Case (b) The sets Jrn' are finite and A^ 1' = Jr1'

Case (c) The set n^ = F^^(single cdf/class)

and A(i) = F ( 1>

If the sets £r] ̂  , fr2) £rk' are known to

consist of q-variate distributions but are otherwise unknown

then we would like to replace each actual cdf by a corres-

ponding sample-based cdf, and base the decision rule on

these distributions. In practice we can of course handle

only a finite number of distributions." Consequently, if

the sets ft^'are infinite, we must somehow replace the

infinite sets with representative finite sets. We are also

forced to adopt a s i m i l a r attitude if we know a priori that

the sets fr n ' are finite, but do not know precisely how many



distribution functions each f^^1' contains (i.e., how many

subclasses of wheat are there?); or even if we know the

precise number, we may not know how to obtain a random

sample for each distribution function (i.e., how do we

select samples representing different subclasses of wheat?).

Finally, in the finite case, even if we can obtain a random

sample for each distribution function of interest, their

number may be so large that for practical reasons we may

wish to use a smaller number of representative distributions.

Thus, the need arises for a method to select a representative

set of distribution functions from a larger (possibly in-

finite) set. To do this we w i l l assign a distribution

H*^1' to n'1), i .= 1 , 2 , ..., k. That is the events to

which probability mass is assigned by H*^1' are sets of

distributions in ft^'1'. To select a random set of cdf's

from tt^ ' (i.e., to select a random set of training samples

for the ith class) is now equivalent to selecting a random

sample from H*^1' .

The above formulation is rather complicated in

that we are dealing with a distribution over a space of

functions. This complexity can be avoided by restricting

consideration to a parametric family characterized by s real

parameters. Making the logical assumption that a one to

one correspondence exists between cdf's in ̂  ' and points

in the parameter space e'1'^5), it is apparent that

assigning a distribution H*^1' to Jr1' is equivalent to



assigning some other distribution H^1' to the parameter

space 9*1'. Consequently, in the parametric case rather

than deal with H*^1 , which is a cdf on a set of distribu-

tion function, we can deal with H^ 1' which is a cdf in Es.

Actually as far as the minimum distance classifi-

cation scheme itself is concerned we do not have any direct

interest in H*^1' and HP1'. These distributions are intro-

duced to enable us to establish a connection between m i n i -

mum distance and nearest neighbor decision rules.

It is perhaps worthwhile to restate the above

ideas with reference to a specific application, i n v o l v i n g

multispectral data-imagery from an agricultural scene,

before stating them in a more formal manner. In the interest

of simplicity and since it is the case of primary interest

we w i l l assume fl is a parametric family characterized in

Es. That is, we assume that the true q-dimensional

distribution of the radiance measurements from each field

belong to the same parametric family which can be charac-

terized in the parameter space Es. This family may have a

finite or infinite number of members (i.e., subclasses). We

assume that all the fields in a class (i.e., wheat) can be

described by a suitable distribution H^ ' over the parameter

space. We select at random a set of training fields for

each class. Because of our formulation this is equivalent

to selecting a random sample from the parameter space

according to the assumed distribution over the parameter
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space for that class (i.e., fcP1'), For each of the randomly

selected training fields we use the radiance measurements

to get an estimated cdf for that field. In this way we

obtain estimated cdf's for a representative set of training

fields for each class. An unknown field is then assigned

to the class that has a training field whose estimated cdf

is nearest to the estimated cdf of the unknown field.

Since the problem as stated is parametric, one would norr

mally, though not necessarily, use parametri cal ly estimated

cdf's.

We now formally state the Type II problem in

which the £2^ -'s are unknown, W h i l e we are primarily

interested in the case where Q is a parametric family we

will not restrict ourselves to this case in stating the

problem. Also in Type II problems the description of the

set A-' is rather involved.

Type II - The n'-^'s are Unknown Sets of cdf's

Case (a) - The sets fr1' are infinite in number

and A' = flM .
 We now describe the set

'Mi "
First we select a set of population cdf's corres-

ponding to a representative set of M. training

f ie lds for c l ass i, i = 1,2, . . . , k. Let fti1 ' be
" " ; ""i

this set for the ith c l a s s . That is fli is a
r>i

random sample of size M^ for H*^1 . A samplert

based cdf is then obtained for each cdf in ^V

for i = 1,2,..., k. The resultant set of sample-
^, . X

based estimated edf's is ^ • fr°r *N ease where
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parametrically estimated cdf's are used (i.e.,

^ replaced by " )«.•]' can also be considered to be

a random sample of size M. in the parameter

space according to a distribution H^1'.

Case (b) - The sets Jr1' are finite and A^^Jr1' or
/ -; \ ^ I 4 \ % / ,• \ (4\

'. Normal ly if the £2V ' are f inite

(i.e., finite number of subclasses) we would let
/ . > <\i, . * a-, . .

A ^ 1 J = JT1' where Jr n' is the set of sample-based

estimated cdf's in the ith class. In cases where

the number of subclasses is impractically large

or only a random sample of training fields is
i ' \ ^ ( ' \ ̂  ( ~ \

available, we let A^ 1' = ft^Vcjr1' and proceed as

i n c a s e (a).

Case (c) - The set ft^ = F^ (Single cdf per
( ~ \ ^ I ' \

class) and A* 1' = FN
n;.

2.4 Distance Measures

The importance in statistics of distances between
1 p

cdf's has, of course, long been recognized. According to
1 3Samuel and Bachi their use appears to fall into two broad

categories.

(a) Used for descriptive purposes. For example,

as an indicator to quantitatively specify how

near a given distribution is to normal dis-

tribution.

(b) Use in hypothesis testing, which is, of course,

a special case of decision theory.



There is a tendency for distance functions suffi-

ciently sensitive to detect minor differences in distri-

bution functions (i.e., type (a) use) to, be somewhat

i n v o l v e d functions of the observations, with the result

that their use as test statistics in hypothesis testing

has been limited because of the complicated distribution

theory. On the other hand, distance functions who,se theory

is simple enough to be readily used as test statistics often

do. not d i s t i n g u i s h distribution functions sufficiently well.

Since we are interested in good discrimination be.tween

distribution functions, we must somehqw circumvent this

problem. We do so by relaxing somewhat our requirements

from those usually demanded of test statistics in hypothesis

testing. Usually in hypothesis testing it is required

that at least the asymptotic distribution of the 1-est sta-

tistic under the null hypothesis be known. This is required

to enable the experimenter to determine the range of values

of the test statistic (critical region) for which the n u l l

hypothesis is to be rejected for a specified probability

of false rejection of the nu l l hypothesis (= probability of

Type I error which is also called the size of the test).

Our requirements are somewhat more modest. In. particular we

attempt only to establish reasonably tight upper bounds on

the total probability of error rather than specifying

specifically the probability of Type I error. Actually, this

approach is more meaningful for the classification, problem
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than is the classical hypothesis testing approach. In the

hypothesis testing approach the size of the test is chosen

by the experimenter. Such a procedure controls the pro-

bability of false rejection (Type I error) at the desired

level, but leaves the power of the test or the probability

of false acceptance (Type II error), and. consequently the
1 4total probability of error to the mercy of the experiment

Such an approach is reasonable if the emphasis is on the

nul l hypothesis as the case in hypothesis testing. In the

classification problem interest is more naturally centered

on the total probability of error.

It also appears worthwhile mentioning that

although distance measures are widely used as test statistics

it appears that the distance properties of such test sta-

tistics are used rather infrequently, at least directly.

This is probably a consequence of the hypothesis testing

approach where the emphasis is on the appropriate distribu-

tion theory.

We w i l l now turn our attention to specific dis-

tance measures. The literature abounds with references to

distance measures and no attempt w i l l be made to give a

complete bibliography. A representative sample of distance •
15-32measures is given in Table 2.4.1 along with references.

We have attempted to include the most widely used distance

measures because of their obvious importance, as well as

more obscure distance measures whose application to the
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present problem appears reasonable. In addition a few

miscellaneous distance measures have been included to give

an indication of the variety of distances that have been

suggested. Rather than attempt to provide a comprehensive

list of references the attempt has been made to reference,

in addition to the original source, only those papers con-

taining a number of additional references such as survey
17 18papers. The papers by Darling , Sahler, and to a certain

23extent Kailath fall in this latter category.

Table 2.4.1 gives the one dimensional version of

the various distance measures because the vast majority of

the references cited deal only with this case. The ex-

tension to multivariate distributions is in most cases quite

natural, except perhaps for the Samuels-Bachi distance. In

order to avoid any misunderstanding the multivariate forms

of the distances measures in Table 2.4.1 are given in Table

2.4.2 including a possible extension to the multivariate

case for the Samuel-Bachi distance.

One of the properties of distance measures with

which we shall be concerned is whether or not the distance

is a true metric. This property, of course, depends on the

set of distribution functions of interest. In Table 2.4.2

the metric properties of the distance measures are shown for

three different families of distributions functions. These

three families are: C the family of q-variate absolutely

continuous distribution functions, MVN the family of q-variate
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normal distribution functions, and M V N _ the family of q-

variate normal distribution functions with equal covariance

matrices. Since MVN and MVN V are subsets of C it is, of
LJ

course, true that a metric in C is also a metric in MVN and

MVN,,. A metric in MVN,, need not, however, be a metric in

MVN or C.

Because of the importance of the multivariate

normal distribution, expressions for the distance between two

such distributions are given in Table 2.4.3 for each of the

distances measured in Table 2.4.1 for the cases where the

expressions are known.

Probably the best known distance measures in

statistics are the Cramer-Von Mises distance (CV distance) '

' ' and Kolmogorov-Smirnov distance (KS distance). '
2 0 1 7 1 8' ' Test statistics based directly on these distance

measures, as well as closely related distance measures are

in common usage in statistics. The most important charac-

teristic of the test statistics derived from these distance

measures is that in the one dimensional case they are

distribution-free under the n u l l hypothesis. By d i s t r i b u t i o n -

free we mean that the distribution of the test statistic

is independent of the underlying distribution. It is this

distribution-free property which has lead to widespread
18use of CV and KS type of test statistics. Sahler provides

a comprehensive tabulation of the distribution theory of

these and other distribution-free statistics w h i l e Darling
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traces their history and development.

The Divergence (D), ' ' Bhattacharyya dis-

tance (B distance),23'24 Jefferys-Matusita distance (JM
p I p p p r

distance), ' ' Kolmogorov variational distance (KV

distance)23'26'27 and Kul1 back-Leibler number (KL numbers)28'
23 are the next group of distance measures we w i l l discuss.

They do not lead to distribution-free statistics even in

the one dimensional case and consequently their use has been

more restricted than CV and KS type statistics. Some of

them, particularly the Divergence and Bhattacharyya distance,

have nevertheless gained a certain degree of acceptance.

There are several similarities between these five

distance measures. One similarity that is immediately

apparent is the fact that each of these distances is de-

fined in terms of pdf's rather than cdf's. This means of

course that their use is restricted to a somewhat smaller

class of distributions than the CV and KS distances. As

already mentioned we shall continue to write d(F,G) to in-

dicate an arbitrary distance between cdf's F and 6, with

pdf's f and g, even if the distance is expressed in terms of

pdf's. A second similarity, which is somewhat more obscure

but much more important than the first similarity noted, is

that these five distance measures can be written in terms of

the likelihood ratio L(x_) where

j . 2.4.1
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In the parametric case where Q^ -characterizes f and

jr9' characterizes g we w i l l write

L(x|8) = ~~la\ . 2.4.2
g(x|e(9))

Not only can these 5 distance measures be written in terms

of the l i k e l i h o o d ratio, they can in fact all be written in

the followi ng form

d'(F.G) = I(Eg[C(L(x))3) 2.4.3

where the ' denotes a distance measure of this form.

C is a continuous convex function

E is the expectation with respect to g(x_), and

I is any strictly increasing real function of a real

variable.

The importance of this property lies in the fact that it

enables us to prove the following theorem.

Theorem 2.4.1

Let two q-variate parametric pdf's f and g be

characterized by parameters e. and e. and

prior probabilities pf and p respectively. Let

£/ ' and B/9' be an alternate set of parameters

for f and g. The theorem then states that if

then there exists a set of prior p r o b a b i l i t i e s

[Pf> P ] such that



Pe(e,p)<Pe(3,p)

where d'(F,G) is a distance measure of form 2.4.3t)

using the parameter set [§/ ,6_- ], and P (6,p)

is the probability of error using parameter set

[ § _ > £ ] ancl prior probabilities [pf,Pq].

d'(F,G) and P.(3,p) are s i m i l a r i l y defined.p e •
Esentially Theorem 2.4.1 says that if the

distance between F and G is greater when using the 6 parameter

set then when using the 3 parameter set, then using proba-

b i l i t y of error as a criterion, there exists a set of prior

probabilities for which the e set is better than the 3 set.

Although the existence of such a set of priors is known, it

has not been established how to determine what this set is.

Nevertheless, it is primarily this property that has

encouraged the use of these distances measures in feature

s e l e c t i o n . .
34Karlin and Bradt have proven Theorem 2.4.1 for

23 'Divergence, w h i l e Kailath has proven it for Bhattacharyya

distance. It has not previously been proven in the general

form stated; for this reason its proof is given in Section

3.1. The proof essentially parallels Kailath's proof for

the Bhattacharyya distance.

Since a number of commonly used distance measures

have the form of- 2.4.3 it is, natural to ask whether or not
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2.4.3 could be used to generate other distance measures.
35Ali and Silvey have in fact shown this to be the case.

Starting with four properties that one might reasonably

demand of a distance measure, they show that distance

measures of the form d'(F,G) possess these properties. In

fact, their result is even somewhat more general than

suggested by the last statement. They permit L(xJ to be

infinite on a set of zero measure. This necessitates that

the expectation E is 2.4.3 be replaced by a generalized

expectation E*. This generalized expectation reduces to E

i f L ( x ) is finite.
28 23Kul1 back-Lei bier numbers ' have been included

in the tables of distance measures primarily because they

turn out to be important from a theoretical point of view.

In general, Kul1 back-Leibler numbers are not symmetric with

respect to the densities involved. Consequently, it is

necessary to distinguish between the Kul1 back-Leibler

number of density f with respect to g (Lf ), and that of g

with respect to f (l-af)- A consequence of this lack of

symmetry is that Kul1 back-Leibler numbers are not a metric

in either C or MVN. The asymmetry disappears in the sapce

of MVN V distributions and consequently for this case we drop
Lt

the subscripts on L. Also in the space of MVN y distributions
o

L is a metric. The divergence is a symmetrized form of the

KL numbers namely

J = Lfg + Lgf 2.4.4



There are a number of important equalities and

i n e q u a l i t i e s relating the five distance measures under

discussion (i.e., Divergence, B distance, JM distance,

KV distance and KL numbers) to each other; and to the

probability of error in a two class classification problem.

It is convenient to define the affinity (or Bhattacharyya

coefficient) between two distributions F and G as

p(F,G) = J°°(f(xjg(x))1/2dx 2.4.5
-oo

then the Bhattacharyya distance is

B = - I n p 2.4.6

The Jeffreys-Matusita distance M and Bhattacharyya distance

B are closely related. In fact, from the definition of M

and B (Table 2.4.1) it follows directly that

M = [2(1-P)]1/2 = [2(l-e'B)]1/2 .2.4.7

The reason for considering both of these measures is because

M is a metric in the space of all absolutely continuous

cdf's but p and consequently B are not. Relationships in

the form of i n e q u a l i t i e s also exist between the Divergence
23J, Kolmogorov variational distance K(p) and the affinity.

These are

p > e - J / 4 2.4.8

[1 - 4p fp p2 ]1 /2 > 2 K ( p ) > [ l -2(p fp P) W 2 ] 2 . 4 . 9



For the two class problem the probabi1ity of error

P can be bounded above and below in terms of the affinity

by

1/4 p2 < 1/2(1 - (l-p2)1/2) < P < l/2p 2.4.10
— C "—"

A crude lower bound on the probability of error has also

been obtained in terms of Divergence but an upper bound is

unknown. Specifically

Pe >_ 1/8 e"J/4 2.4.11

The probability of error is intimately related to K(p) in

that

Pe = Pf - K(p) . 2.4.12

23Kailath gives a more complete discussion of these and other

inequalities as well as a number of additional references.
29The Swain-Fu distance differs from all the other

distances in Table 2.4.1 in that is defined in terms of the

first and second moments of the distributions, rather than

the pdf's or cdf's themselves. Consequently, one would

expect it to be a reasonable distance measure only if its

use is restricted to distributions that can reasonably be

characterized by their first and second moments. The Swain-

Fu distance can be interpreted geometrically in the following

way. Let the means of distributions F and G be .jo/ ' and p/9'

respectively. Let Of be the distance along (u. -.y. ) from



p ' to the surface of the e l l i p s o i d of concentration for

the distribution F; and let D be defined in an anologous

manner for the distribution G. Then the Swain-Fu distance

is

T ' D f + D g -'

The ellipsoid of concentration for a distribution - F is the

ell.ipsoid over which a uniform distribution has the same

first and second moments as the distribution F. Actually

the expression given for the Swain-Fu distance for the multi-

variate and normal cases in Tables 2.4.2 and 2.4.3 differs
29from the original expression of Swain and Fu . The given

expression is much more compact than the original and compu-

tationally simpler. In Appendix A we show that the two forms

are equi val ent .

I.f ja = ]i then T is zero (see Appendix A).

Consequently T is not a metric in G or MVN. It is a metric

in MVNZ.

The next distance in Table 2.4.1 is the Mahalanobis

distance A ' which has long been used in statistics. The

use of this distance measure is restricted to normal

distributions with equal covariance matrices (i.e., MVN^,).

It is worthwhile noting that in MVN V the Bhattacharyya
Li

distance, Kul 1 back-Leibl er numbers and Divergence are propor-
2

tional to A , in fact from Table III we have

B = I = {j- = g- A2 for distribution in MVN Z 2.4.14



The last two distance measures in Table I have

been included primarily to demonstrate the variety of

distance measures a v a i l a b l e . We w i l l not make any further
1 3comments about the Samuel-Bachi distance but a few remarks

32about the Kiefer-Wolfowiz distance are in order. Actually

this distance is a special case of a more general distance

used by Kiefer and Wolfowitz. They were prompted to use

this distance as it possessed some theoretical properties

they desired. It is readily apparent that the Kiefer-

Wolfowitz distance is essentially an exponentially weighted

version of the Kolmogorov variational distance with equal

priors. The technique of using a weighting function to

emphasize certain region of the distribution function, and

consequently generate new distance measures has been used

in conjunction with other distance measures as well,

notably the CV and KS distances.

Recognizing the large variety of distance measures

available, the problem naturally arises as to which dis-

tance measure to' use in a given problem. Unfortunately, no

answer is available to this question at present, but some

general comments regarding the selection of a distance

measure can be made. The distribution-free properties that

make the CV and KS distance so popular in the univariate case

no longer enjoy this advantage in the multivariate case.

Since it is the multivariate case that is of interest these

distances lose their special appeal. Intuitively a distance



l i k e the KS distance does not appear to be as good a distance

measure as those i n v o l v i n g integration over the whole space.

It is also more difficult to compute in parametric situations

than some of the integral relations. The Samuels-Bachi

distance suffers a similar computational disadvantage.

From the theoretical point of view distances based on the

l i k e l i h o o d ratio appear to have some desirable properties

(for example Theorem 2.4.1). As has already been noted

these distances are based on pdf's rather than cdf's; The

tendency* therefore, exists for these distances to more

reliably indicate changes in pdf's rather than cdf's, and

it is probably true that we are more interested ih detecting

changes in pdf's rather than cdf's* although this is cer-

tain! y a rather subjective quest ion.

Of the distances based on l i k e l i h o o d ratios the

Bhattcharyya distance seems to have been gaining in favor.

The prime reason for this seems to be the apparent close

relation between probability of error and Bhattacharyya

distance, as well as the relative ease of computing Bhatta-

charyya distance in theoretical problems. Other properties

of the Bhattacharyya distance which enhance its prestige

as a distance measure have been pointed out by Laihidtis

and Stein . Another property of considerable theoretical

utility is the close relation between the Bhattacharyya

distance (or affinity) and the Jeffreys-Matusita distance

(Equation 2.4.7). In the minimum distance decision framework



decisions made on the basis of the Bhattacharyya distance,

Jeffreys-Matusita distance or affinity all yield identical

results, and consequently have identical probability of

error. The Jeffreys-Matusita distance is, however, a

metric in a much larger class of distribution (see Table

2.4.2). This means that theoretical derivations regarding

probability of error can be made using the metric properties

of the Jeffreys-Matusita distance in this larger class, and

the results are ap p l i c a b l e if classification is effected

using Bhattacharyya distance or affinity as well. This

property has been used extensviely by Matusita.

Based on the general information presented above,

and lacking experimental evidence to the contrary, the Bhatta-

charyya distance appears to be a reasonable choice for many

problems. An important aspect of the experimental work to be

described is to obtain the experimental evidence as to the

comparative performance of a number of distance measures in

minimum distance classification of multispectral data-imagery,

2.5 On Minimum Distance Classification

In this section we discuss work that has previously

been done on the problem formulated in Section 2.3. Most of

the work oh mi n i m u m distance methods has been done by

Matusita38"45 and Wolfowitz.46'47>48>49 Wolfowitz's work is

primarily concerned with estimation, w h i l e much of Matusita's

work deals with the decision problem. Contributions have

also been made by Gupta, Cacoullous, ' and Srivastava.



In d e a l i n g With m i n i m u m distance decision rules

a common requirement is to insist that by using arbitrarily

large samples, the probability of error can be made arbi-

trarily small. This concept is s i m i l a r to the concept of

consistency in estimation and prompts the following defin-

ition .

Def i ni tiori 2. 5; 1

The m i n i m u m distance decision rule DMn(,l) is

consistent in ft = [jr1 % JT 2 ',-... ,Jrk''] with

respect to the distance d( •,•) arid the estimator

'vif for any Feft and any i = l,..,k

Limit p(DMn(I)
 = an iFeft ) = 1 2.5.1

: All Sample Sizes+°° nu i

Where ft is some family of q-variate cdf 's and Y..

contains all samples used to obtain the sample-

based cdf's used in the decision rule* i n c l u d i n g

the sample to be classified. Note that P(-) is

simply the probability of correctly classifying

a random sample from the ith class.

If the above property holds uniformly for" all Feft,.

then the decision rule is uniformly, consistent i ri

ft with respect to the distance d ( - , - ) and the

estimator ^.

Note that consistency is defined with respect to

both a distance, and an estimator for a given set of distri-

butions. This is necessary because a. change in e-it:lrer the



distance measure or estimator could conceivably make it

impossible to make the probability of error arbitrarily

small by increasing sample sizes for some distributions in

the set.

We w i l l also wish to use the concept of consis-

tency of a distance function.

Definition 2.5.2

A distance function d between cdf's is said to be

consistent in n with respect to the estimator ^,

if for an arbitrary cdf Feftand every e>0

^Limit P(d(FN,F)>e|F) = 0 2.5.2
N+co IN

a,
Where fi is some family of q-variate cdf's, and FN

is a sample based estimate of F based on a random

sample of size. N from F.

If the above condition holds uniformly for all

Fefl, then the distance is uniformly consistent

in tt with respect to the estimator ^.

For the nonparametric case where the dis t r i b u t i o n

functions are unknown and each class can be represented by

a single distinct function (i.e., problem Type II case (c))

Gupta has shown that the minimum distance rule is con-

sistent (uniformly consistent) in fl, with respect to distance

d and emperic cdf'si provided d is a metric that is con-

sistent (uniformly consistent) in ft, with respect to emperic

cdf's. Approximately the same conclusion was apparently



reached independently by Matusita who showed that for Type

I.I case (e) problems, the minimum distance rule is con-

sistent in Ji, with respect to a distance d and emperic cdf's,

provided d is a metric that is either consistent or uni-

formly consistent in n with respect to emperic cdf's. Both

Gupta and Matusita assume that d is a metric in fiy^ where

n is the set of emperic cdf's corresponding to fl. Matusita

has also shown that his result holds if the class distri-

butions are known. (i.e., problem Type I case (c)). Under

these circumstances he points out that the space in which d

must be a metric can be somewhat smaller because distances

between emperic cdf's are not involved in the decision

procedure.

Matusita also points out that for the nonparametric

case with finitely many subclasses (i.e., problems Type I, II,

case (b)) no additional problems arise and that the results

of the previous paragraph are sti l l v a l i d provided the sub-

classes are distinct (i.e., dffr1', JrJM>0, i f j; i.J =

l,2,...,k) and d is a metric in Jiŷ .. The reason this is true

is because under the stated condition each subclass can be

viewed as a separate class in the proof.

For the case of known but infinitely many sub-

classes Matusita shows that the minimum distance rule is

consistent in fi, with respect to a distance d and emperic

*
E x c l u d i n g the case where random samples from

are used.
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cdfs, provided d is a metric that is uniformly consistent

in ft with respect to emperic cdf's. Actually this result

had essentially been obtained earlier by Hoeffding and
54Wolfowitz who were concerned with d i s t i n g u i s h a b i 1 i t y

of sets of distributions. Hoeffding and Wolfowitz assume

two sets of distribution A-, and A^ are d i s t i n g u i s h a b l e in

a class T of tests if there exists a test in T for which

the probability of incorrectly classifying a random sample

from a distribution in A^l/Ap can be made arbitrarily small.

One class of tests they consider is the class of tests for

which the maximum sample size is less than infinity. They

call this set of tests T3 and define distributions which are

d i s t i n g u i s h a b l e in T, to be finitely d i s t i n g u i s h a b l e . It is

apparent that TO included the minimum distance rule.

Hoeffding and Wolfowitz show that the sets A, and Ap are

finitely distinguishable (i.e., sufficient condition) if

d(A], A2)>0 2.5.3

where d is uniformly consistent in A-]UA2 with respect to

emperic cdf's. They prove this result by showing that the

minimum distance rule, which is in T3, possess this property.

Interestingly enough, the sufficient condition for finite

d i s t i n g u i s h a b i 1 i t y is also a necessary condition, subject to

relatively weak restrictions on the set of dist r i b u t i o n s

i nvolved.

It is important to note that Hoeffding and Wolfowitz



assume that d has all the properties of a metric except that

d(F,G) = 0 does not imply F = G (i.e., metric property (b)

(2) need not hold). It appears that Matusita and Gupta

nowhere use this property of a metric in their proofs.

In some cases of infinitely many subclasses per
40class, the approach of Matusita, Susika, and Hudimoto can

be used to reduce the complexity of the problem. They

assume that there exists boundary distributions F! » FQ »

for any two Jr 1 ' , £r' such that

= 0 , d ( F , f l ) = 0 , d ( p , F ) > 0 2.5.4

If these conditions are satisfied then the set of distri-

butions for each class can be relaced by its boundary

distribution; that is, the problem reduces to the situation

where each class is represented by a single cdf.

For the parametric case the only paper known is
45

apparently that of Matusita. This paper deals with the two

class problem where each class is represented by a single

multivariate normal cdf. Various a p r i o r i assumptions' re-

garding means and covariances are considered i n c l u d i n g the

general case of unequal and unknown means and covariances.

Matusita showed that for the case in question, the minimum

distance rule is consistent if the Jef f reys-Matusi ta dis-

tance (or related affinity) and parametrically estimated

cdf ' s are used .



Knowing that the minimum distance rule is consistent

is certainly useful. From a practical point of view, it

is of equal, or possibly even of greater importance, to know

how great the probability of error is for a given sample

size in a given situation. It is possible to show that a

lower bound on the probability of correct classification

depends only on probabilities of the following form

fd(N,e,F) = P(d(FN,F)<e|F) 2.5.5

In fact to verify (uniform) consistency in ft with respect

to d and ^ it is only necessary to show that for arbitrary

Feft P(-) can (uniformly) be made arbitrarily small. if the

probabilities can be evaluated or bounded from above in

terms of N, then a lower bound can be obtained for the pro-

bability of correct classification in a given situation in

terms of N. Both Gupta and Matusita have utilized this

idea in deriving expressions for the lower bound on the

probability of correct classification for the particular

problems they considered. Note that the desired p r o b a b i l i t i e s

depend on d as well as N, e and F. For the case where F

is discrete, a number of useful inequalities for fd(N,e,F)

are available if d is the Jeffreys-Matusita distance.

Apparently not very much is known about the optimum

properties of the minimum distance decision rule. The

admissibi1ity of the minimum distance rule has been inves-

tigate donly for the Mahalanobis distance. This, of course,



implies the assumption of normal cdf's where all classes

have identical covariance matrices. When the class means

are either known or unknown and common covariance is known,
r -I r p

Cacoullos ' proved the admissibi1ity of the minimum

distance rule in a restricted class of procedures. Sriv-
53astava gave an admissible rule for the case where the

means and common covariance are unknown. For the two class

problem this rule reduces to the minimum distance rule.

Both Cacoullos and Srivastava used a zero-one loss function.
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CHAPTER 3

THEORETICAL RESULTS

In this chapter we present some theoretical results

pertaining to distance measures and minimum distance classi-

fication. Although all the results presented concern some

aspect of distance measures, or m i n i m u m distance classifi-

cation, their subject matter is rather diverse. Consequently,

it seems most appropriate to present each topic i n d i v i d u a l l y .

There are essentially three themes underlying the

theoretical resul'ts. The first is the relationship between

distance measures and probability of error in vector classi-

fiers. Sections 3.1 and 3.2 are concerned with this theme.

In Section 3.1 we establish a relationship between probability

of error and a certain class of distance functions. Section

3.2 deals with a new separability measure defined in terms

of random samples and considers some implications of this

distance measure regarding probability of error in vector

classifiers. The second theme is the relationship between

minimum distance classification and other classification

rules. This is the basis of Section 3.3 and 3.4 in which

we establish certain relationships between m i n i m u m distance,

nearest neighbor and maximum 1ikelihood classification. The

third theme concerns probability of error in minimum distance



classification, and is developed for a simple case in

Secti on 3.5.

As mentioned in Chapter 1 the basic purpose of

the theory developed is to provide guidance in conducting

experiments and interpreting their results. This is

achieved by considering simple situations which give insight

into the complex situations of practical interest.

3. 1 Probability of Error and a Class of Distance
Measures I n v o l v i n g the Likelihood Ratio

Our objective is to prove Theorem 2.4.1 which we

w i l l hot restate. We use the same notation as in Section

2.4. The proof rests on a theorem of Blackwell's which

we state in terms of convex rather than concave functions.

Theorem 3.1.1 (Blackwell)

p
e(3»P) 1 Pe(e,p) for all p if and only if

for all continuous convex functions C. Where

Pe(3» p) is the probability of error using

parameter set [3. ,$.• ] and prior probabi 1 i ti es p

[P-P.P ]>E/ 0\ is the expectation with respect to g
T 9 v9 » P 1

using parameter set [3/ ,3. ] and L(x_|3j is the

lik e l i h o o d ratio using parameter set [3/ ,3/9'].

E, Qv and L(xle) are defined in a similar manner.
( 9 » y I ~

Proof of Theorem

It is apparent from Blackwell's theorem that
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Pe(0.p)5Pe(e,P-)
 for a11 p if and on1y if I(E(gfB

^I(E/ 0\[C(L(x|9))J) for all continuous convex functions C,
\ 9 >" I

and all strictly increasing real functions of a real variable

I. Negating the last statement we have: There.exists some

p such that Pe(3, p)>Pe(8,p) if and only if there exists

some C and I such that I (E^ ^ [C(L(xJ 3.)) ]) < HE^ 0j

[C(L('x_|6_))]) or equivalently there exists some p such that

Pp.(.3»p)>Pg(0 »p) if and only if there exists some dg(F,G) <

clo(F»G) . This follows directly from the definition of d1.
• " ' : ' . ' ' . '

The'last statement includes Theorem 2.4.1.

3.2 A Separability Measure, Dimensionality
and Probability of Error

Much of the theory of pattern recognition is

predicated on the underlying assumption that the observation

space is a vector space of fixed dimension q. This approach

enables the vast, powerful and well developed theory of

vector spaces to be applied to the problem. Any pattern

recognition journal w i l l testify at a glance to the fruit-

fulness of this approach. ,

Problems in which the number of dimensions are

variable do not readily fit the vector space approach.

Consequently, it is not surprising that results dealing with

the interrelationship between dimensionality and other

factors, such as sample size and probability of error, are

rather sparce. Understanding such relationships is of con-

siderable importance in pattern recognition and the result



we present is in the spirit of fostering such understanding.

For s.ome time it has been known that in a classi-

fication problem, in which estimation is involved, the pro-

bability of error may 'exhibit a minimum as a function of

observation space dimensionality. That is, classification

accuracy may actually decrease when another feature is added

The results of Estes56, Allais 5 7, Hughes58, Abend et al59,

and Kanal and Chandrasekaran provide so.me insight as to

why this occurs. The result we present provides further

insight into this phenomenon.

We w i l l consider a two class normal problem in

which the covariance matrix z for each class is identical

a.nd of the form

Z = a 2 I 3.2.1

where I is the q dimensional identity -matrix. Let r^ be the

q dimensional vector with all components equal. That is,

H = (n-| » n 2 » • • >nq) with TI]. = y i = l,2,..,q. 3.2.2

We w i l l assume that y_/ ' the mean for class 1 is

(1 ) T ? iii = n. 3.C.6

to]
and that the y_ , the mean for class 2 is

= -a 3.2.4

Consequently, the distance between class means is

2? = |U
(1) - u(2)| = /q (2y). 3.2.5



The above assumptions are just as general as assuming the

two densities have identical covariance matrices and arbitrary

means. This follows because by an affine transformation

(i.e., linear transformation plus trans!ation)two densities

with identical covariance matrices and arbitrary mean vectors

can be put in the assumed form.

For the simple two class model described a

separability measure is presently defined in terms of random

samples from each class. This distance measure involves the

ratio of the expected value of the average pairwise distance

between vectors within each class (intra-sample distance)

and the expected value of the average pairwise distance

between vectors from the two classes (inter-sample distance).

The expectation involved is with respect to all possible

random samples of a given size. The next section is devoted

to obtaining the required expectations.

3.2.1 Expected Value of the Average
Intra- and Inter-Sample Distance

Let x!1), X9^ X.J;1) be a random sample of size
— I —L. —\\ 1

MI for class 1. That is the X* ''s are independent identi-

cally distributed random variables according to the density

'2

f - \ ) (o) (2) (2)
N(pv ',£). Similarity let X] ' , Xi ' XM ' be a random

— — I —C. —IN -
( 2 )sample of size N2 for class 2 from the distribution N(]av ,E).

Note that because of the assumed form of the covariance

matrix, not only are the X.'s independent but the q components

of each X- are also independent.
I
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Consider now the average in t ra-sample distance

=DW (;N. ,'q) for c l ass i .defined as

D w 1 ) ( N i ' ^ = FTTTT -Z -Z D l k * i ) ' = 1>2 3 . 2 . 1 . 1

whe-re D\'* ' is the Eucl idean distance between xi ' and XV '
J K —J —K

and n(N.j) is the number of terms in the summation. That

is D^^N-.q) represents the average pairwise distance

between all vectors in the random sample of size N, for class

i.

If we draw a number of random samples of size N.

for class i, we would expect to get a different value of

D,, (N . , q) each time. That is, overall possible random
.W I • .

samples that can be drawn for class i, D^MN.jq) is aw i
random variable. The expected value of this random variable

over all possible random samples is

F(D'IMN a}) = , ' v v F (n *1 ' ̂  H i = l? ^ ? 1 2L \ w U',• »H / / n I M T L <- c-\ uil/ / ' '»^ 3. c. .-\ . t-
i j = l k = j + l ^

For fixed i the random variables D.?'1' all have the sameJ K
distribution for j = 1 ,2 ,. . . ,N^ ; 'k - j + 1 , j + 2,...,N.. This

follows since each D}?'1' represents the Euclidean distance
J K

between two random vectors with identical distributions.

Furthermore, since class 1 and class 2 differ only in lo-

cation, and the difference of vectors from identical dis-

tributions does not depend on location, it follows that the

D-£' have the same distribution regardless of class index
J K

i. If we wr i t e R w ( q ) for £(0^ ; (N i ,q)) and let D* be a
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random variable distributed as the identically distributed

random variables D:?'1', then noting that 3.2.1.2 contains
J K

excatly n(N.) terms we have

Rw(q) = E(D*) 3.2.1.3

Note that D* = |X* - Y_* | , where X.* and Y_* are independent

random vectors with the identical distributions N(_M',a I),

where ^' is arbitrary. The notation R..(q) reflects thew

fact that this quantity depends only on q and is independent

of sample size and class index.

In Appendix B Section B.I we show that if X;
/ 2 / 2N(u', a I) and Y*^N(u',cr I) then

Rw(q) = 2a — q = 1,2,... 3.2.1.4
r (f)

where r(x) is the Gamma function defined by

r(x) = / e"ttx"1 dt 3.2.1..5
o

By analogy to 3..2.1.1 we define an average

sample di stance Dg(N-, ,Np»q) as

i !!•
k=l

where D}.' ' is the Euclidean distance between X_v ' and
J K J

(2)Xi and n(N-,,N2) is the number of terms in the summation.

That is Dg(N 1,N 2»q) represents the average pairwise distance
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between all vector pairs, with one vector chosen from class

1, the other from class 2.

Taking the expectations with respect to all random

samples we have

1 ^ "2 (1 2)E / r\ / M M ,•• \ \ I v* f r " / P ^ V ' 4 ^ 7 \ * ^ O T " 7
ill iW I M ' O l l ~ \ v r" I I J 1 ^ r \ I

By arguments sim i l a r to those presented in connection with
M ?\

3.2.1.2 the distribution of DV' ' is the same for all j =
J K

1,2,...,!^; k = 1,2 N2. Let Rg(q) = E(Dg(N1 \\2 ,q) and

let D** be a random variable distributed as the identically
(1 2)distributed random variables DV' ' then noting that the
J K

summation in 3,2.1.6 contains exactly n(N,,N2) terms we have

RB(q) = E(D**) 3.2.1.8

Note that D** = |X_** - Y_**|, where X**^N(r]_,a2I) and Y_**^
2

N(-rL,a I). Again the notation reflects the fact that Rn

depends only on q and is independent of N-, and Np.

Let us define a signal-to-noise ratio (S/N ratio)

S as the square root of the Mahalanobis distance between the

density functions for class 1 and class 2. That is,

S - [(E(1) - E^JVVU- y(2))]1/2 3.2.1.9

which for our case reduces to

S = 2£ = v̂ Ĵ y) 3,2.1.10
a a

Note that for the simple case under consideration

the S/N ratio is simply the distance between the means
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divided by the common standard deviation. In Appendix B

Section B.2 we show that (writing RB(S,q) for RB(q))

1 3.2.1.11

RB(-S.q) = 2o
 F 7" e"(S/2)2<E (S+l. f, (S/2)2) q = 1,2,...;

*

where $ (a,b,x) is the degenerate confluent hypergeometric

function defined by the series

*(a,b,x) = 1 + + £ ! > + ... 3.2.1.12

If the signal-to-noise ratio is zero, then

RD(0,q) = 2a - - — 3.2.1.13
B r(f)

which is identical to Rw(q).

In Fig. 3.2.1.1 we have plotted the expected

value of the average inter-sample distance Rn(S,q) as a

function of dimensionality with signal-to-noise ratio as a

parameter. By virtue of 3.2.1.13 the S '= 0 curve is also a

plot of the expected value of the average i ntra-sampl e

distance.

Qualitatively the quantity R (q) is a measure ofw

how tight the distribution in class 1 and 2 are, while Rg

(S,q) is a measure of how far apart the two classes are.

It is, therefore, reasonable for these quantities to be

independent of sample size. The interrelationship between

R., and RD together with a qualitative concept of these
W D

quantities prompts the definition of a measure of seperability
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Figure 3.2.1.1 Normalized Expected Average Intra- and Inter-
Sample Distance as a Function of Dimension-
ality.
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R(S,q) between the two classes as

R(S.q, - = e-( , , (S/2)2) 3.2.1.14
w

Utilizing the identity

$(a,b,x) = ex$(b-a, b,-x) 3.2.1 .15

which is known as Kummers identity, an alternate form for

R(S,q) results, namely,

R(S,q) = *(-!, J, - (S/2)2) 3.2.1.16

In series form this is the alternating series

4 6- 1 + 1 (S'?) -J _ r (S/2) + (DJ3) (S/2)
I •*• q 1 I - q(q + 2) 2! q(q + 2)(q+4) 3!

- ... 3.2.1.17

In Fig. 3.2.1.2 R(S,q) is plotted as a function of dimension-

ality with S/N ratio as a parameter.

It follows from Eq. 3.2.1.17 that regardless of

S/N ratio

limit R(S,q)
= 1- 3.2.1.18

q -»• oo

This fact is also rather evident from Fig. 3.2.1.2. Consider

the significance of Eq. 3.2.1.18. Assume for convenience

that a is a constant. Then for fixed S/N ratio the distance

between class means is also fixed by virtue of the defin-

ition of S/N ratio. Equation 3.2.1.18 states that in the
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l i m i t , as the dimensionality becomes very large, the

vectors in class 1 are on the average just as close to

vectors in class 2 as they are to vectors in class 1.

This means that if one could view the clusters of vectors

associated with each class in q dimensional space they would

progressively become less and less distinct clusters as

the dimensionality is increased.

3.2.2 Classification and Probability of Error

We now present what are essentially some Well

known results regarding probability of error for vector

classifiers for the problem being considered. First we

establish that if no estimation is involved then the average

probability of error is independent of dimensionality. In

the case where estimation of the means is involved we

qualitatively discuss how an increase in dimensionality can,

in a particular instance, increase the probability of error,

and further suggest that on the average we should expect

such an increase. We also suggest such an increase would be

expected from considering the behavior of the separability

measure R.

If the common covariance matrix and class means

are known, then it is well known that for equal priors and

a zero-one loss function, the minimum risk decision rule for

classifying an unknown vector X/' into one of the two

classes is the maximum l i k e l i h o o d decision rule. This

rule assigns X^u' to the class whose density function is
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largest at X/u'. This rule partitions the observation

space into two disjoint regions by a hyperplane. The

hyperplane passes through

1 / O / \ * / _ i _ \ ^ / \ * 5 O O T
y_M ~ * I *• (]L +JJ. ) 3 . 2 . 2 . 1

arid is perpendicular to

A \ • / • \ ̂ ™ / O O O ' OAtL = IL LL 3.2.2.2

In this case the probability of error PE is independent of

the number of dimensions q and is given by

PF •= 1-Q (") = 1 - Erf(- 3.2.2.3•

where Q(x) is the probability integral

Q(x) = — I e"1/2' *• dt 3.2.2.4
/"2TT -x

and Erf(x) is the error function

o x .2
Erf(x) = -3; / e."* dt 3.2.2.5

/TT 0

To show 3.2.2.3 is valid we consider the rotated coordinate

system with axes xj, x^, ..., x1 centered at jj^ with the

positive Xs axis oriented along the vector Ay_. Let _X be

the unknown vector in this coordination system. Since the

separating hyperplane is orthogonal to the xj axis the only

component of the transformed unknown vector that enters

into the decision rule is the first (i.e., X-,). Now in

the transformed coordinate system
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X-j ^ N(£,a ) if class 1 is active and

X-j * N(-£,a2) if class 2 is.active

Consequently, 3.2.2.3 follows.

Now consider the case where the common covariance

matrix is known but the mean vectors are unknown. We w i l l

not derive an expression for the probability of error for

this case, but only make some general observations. Since

the class means are unknown they must be estimated. Let

IJK and y/ ' be the estimated mean vectors for class 1 and

class 2 respectively. For convenience assume that each

estimate is based on a sample of size N. If the sample

mean is used as the estimator, then

*~ N
lJ1 ^ ' = i Z x!1 '^ i = 1 ,2. 3.2.2.6

j = l J

Since the y/ ' are a sum of independent gaussian random
Xs

variables it follows that y ̂ 1 ̂  ̂  N(y^^, ^ • I) i = 1,2

For a decision rule we use the maximum li k e l i h o o d

rule with the class means replaced by their estimates. As

before this rule partitions the observation space into

disjoint regions associated with class 1 and class 2. Since

the covariance matrices are equal the partitioning surface

is a hyperplane orthogona.1 to
S± ^ /\

Ay_ = y(]) - ij2) 3.2.2.7
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which passes through the point y_M, where

^ = 1(̂ .(1) + y(2)) 3.2.2.8

2
Note that i^ ̂  N(y_M, ^ I ) . '

Since £/ ' and y/ ' are random variables the par-

titioning hyperplane is random in location and orientation.

The probability of error P'E(N,q) is consequently a random

variable since it depends on the partitioning hyperplane.

We observe that the expected value of PE(N,q) over all

possible samples must be larger than the probability of

error for the case where the means as well as the common

covariance are known. This follows since any hyperplane

must yield a probability of error that is at least as large

as the probability of error for the optimum hyperplane.

With regard to varying the dimensionality the

following observations can be made as the dimensional i ty

decreases from 2 to 1 . First note that the probability of

deciding a vector came from class 2 when class 1 is active

(i.e., P(2 1 1 )) depends only on Z and the perpendicular

distance d * ' between y/ 'and the separating hyperplane.

The smaller the distance d^ the larger is P(2|l). A
( 2 }similar statement applies to P(l|2) and d^ '.. Consider now

XV

an arbitrary realization of the random variable y^. The
/\

"best" possible hyperplane for the observed value of y..

is the hyperplane perpendicular to Ay_; but the probability
/\

that the separating hyperplane which is perpendicular to Ay_
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coincides with the "best" hyperplane is zero, since a

continuum of possible separating hyperplanes pass through
/\

y.i. Suppose now that for every realization of vL. the 'best"

possible hyperplane is used as the discriminant surface

rather than the hyperplane orthogonal to Ay_. It is clear
/\

that on the average, over all possible realizations of £ ,

this procedure reduces the probability of error. But the

collection of the "best" hyperplanes for the two dimensional

case are precisely the collection of hyperplanes used in

the one dimensional case. Furthermore, the "probability"

of selecting a particular hyperplane from this collection

is precisely the same in the two cases. This follows since
/\

the distribution of y_M projected on the vector Ay_ for

the two dimensional case is identical to the distribution
s*.

of y.. for one dimension. It, therefore, follows that the

average probability of error increases as the dimensionality

is increased from 1 to 2. Actually the above argument can

be extended to the case where the dimensionality is increased

from q to q + 1 dimensions. Consequently, the average

probability of correct classification is a monotonically

decreasing function of dimensionality.

Returning now to the separability measure R we

note that it is also a monotonically decreasing function of

dimensionality, just as is the average probability of

correct classification. It is not known how closely R is

related to the average probability of correct classification.
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On the basis of the behavior of R with dimensionality for

fixed S/N ratio one would expect that the probability of

error would increase with dimensionality. An alternate

point of view is that as the dimensionality is increased the

estimated location of the separating hyperplane must improve,

or else the probability of error w i l l increase because the

random samples become less distinct.

3.2.3 Separability for S/N Ratio a
Function of Dimensionality

Experimentally it is usually true that the pro-

bability of error decreases with increasing dimensionality,

at least for low values of q. We attribute this to the fact

that the signal-to-noise ratio is usually a rapidly increasing

function of dimensionality for low values of q, rather than a

constant as was assumed in the previous section. The

increasing S/N ratio tends to override the effect of

increase in dimensionality. In the absence of an exact

analysis for the average probability of error, it is not

possible to investigate the interrelationship between S/N

ratio, probability of error, and dimensionality. We can,

however, investigate such a interrelationship for our

separability criterion R since we can incorporate in R a

signal-to-noise ratio which varies in some manlier with q^

One reasonable assumption might be to assume a constant

signal-to-noise ratio per dimension, rather than a constant

overall signal to noise ratio. By signal-to-noise ratio per
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dimension we mean the quantity.

Sd = -J —J— = ̂  j = 1 ,2 q 3.2.3.1

Note that by 3.2.1.10

S = /q Sd 3.2.3.2

We can use this value for S in the expression for R(S,q)

and determine R(S,q) as a function of q for various fixed

values of S.. For this situation

R(S,q) = $(-1, ̂  -q(Sd/2)
2) 3.2.3.3

Expressed in series form 3.2.3.3 becomes

R(S,q) = 1 + |T (Sd/2)
2 - ( ;2)2, (Sd/2)

4 + 1>3 q

(Sd/2)
6 - .... 3.2.3.4

Figure 3.2.3.1 is a plot of 3.2.3.3 with signal-to-noise

ratio per dimension as a parameter. It may immediately be

noted that for the range of the q considered R(S,q) given

by Fig. 3.2.3.3 decreases very slowly with q except for low

values of q . In Appendix B Section B.3 the limit of

3.2.3.4 as q->°° is examined. The result obtained is that
3.2.3.5

l i m i t R(S,q) = 1 + |r (S./2)2 - L- (S./2)4 +. if̂ - (Sd/2)
6 -...

y •* oo

This series converges only if S. <_ S2. For $d > /2 the

series oscillates since successive terms ultimately become

larger and larger. Although 3.2.3.4 is not well behaved for
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infinite q, for fixed q it does converge for all S..

Consequently no problems are encountered in evaluating the

series.

In practice it is probably unrealistic to assume

that the total signal-to-noise ratio can be increased in-

definitely by adding more and more dimensions as is i m p l i e d

by a constant signal to noise ratio per dimension. Perhaps

a more reasonable assumption is to assume that there is

some l i m i t i n g signal to noise ratio S.. One possible choice

is an exponential variation of S with q. That is S is

assumed to be of the form

S = SL(1 - e 3.) 3.2.3.6

The constant T reflects how rapidly S approaches its

li m i t i n g value SL as a function of q.

Using 3.2.3.6 as S in the expression for R(S,q)

the value of R(S,q) has been determined as a function of q

for various values of S. for T = 5. These results are

plotted in Fig. 3.2.3.2. The most interesting factor about

these curves is that they exhibit a maximum suggesting that

the separability first increases and then decreases with

increasing q. The l i m i t i n g behavior for increasing q is

the same as for fixed signal-to-noise ratio.

Two basic observations can be made regarding the

development of the separability measure R. The first and

most important is that it is based on the expected average
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pairwise distances between all vector pairs, where the vector

pairs originate from one (for the intra-class distance) or

two (for the inter-class distance) random samples. Thus in

essence the separability measure is completely nonparametric

and in no way depends on the normal assumption. The normal

assumption is made to simplify computations. The second

important observation concerns the definition of signal-to-

noise ratio and the assumed functional relationship between

dimensionality and signal-to-noise ratio. The specific .

form here does depend on the normal assumption in that signal-

to-noise ratio is defined in terms of the Mahalanobis distance

This dependence could be removed by defining signal-to-noise

ratio in terms of a more general distance. For example, if

we used the Bhattacharyya distance, which reduces to the

Mahalanobis distance for the case considered, then the normal

assumption could be removed. We make these comments since

we are interested in extrapolating to more complex cases and

it appears to us that the general behavior of the separa-

bility measure R is in fact not dependent on the underlying

densities, at least for fairly well behaved densities. In

particular for constant and saturating signal to noise ratios

one would expect R to approach 1 as q approached infinity

for most densities. Also one would expect that R could

exhibit a maximum regardless of the densities involved pro-

vided the signal to noise ratio saturates wi^dimensionality.
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W h i l e no direct relation between R and probability of error

has been established we believe that R provides some in s i g h t

into the mechanism by which dimensionality affects proba-

b i l i t y of error in a classification problem i n v o l v i n g esti-

mation. In particular, the decrease in R with dimension-

ality for fixed signal to noise ratio suggests that for this

case the estimated location of the discriminant surfaces

used in classification must improve with dimensionality or

probability of error w i l l increase.

3.3 A R e l a t i o n s h i p B.etween Maximum Likelihood
and Minimum Distance Decision RuleT

It is well known that to classify a random vector Y^

drawn from one of k known populations, the expected loss

(i.e., risk) is minimized provided we decide Y^ belongs to

class m i f

k k
Z p.L(m,i)fy

(1)(Y) = "!" k[ -I p4L(j.1)fj1)(Y)] 3.3.la•j = 1 ' y ~ j - i > • • » K .j _ i i y ~

where p. is the prior probability that Y^ belongs to class i,

L (j,i) is the loss incurred in deciding Y^ belongs to class

j, when it was drawn from class i, and f ̂  ' (y_) is the known
•j

probability density for class i. In case 3.3.la results in

ties these can be broken in an arbitrary manner provided the

probabilities of ties is zero.

For the zero-one loss function (i.e., L(i,j) = 0 i = j;

L(i»j) = 1. i ^ J) and equal priors 3.3.la reduces to decide y_

belongs to class m if
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r V J / / y \ T 3 1 h
' \_1/ - ,• _ I k T (V_) J . J. I Dy j ' » • • • > * • y

If Y_ = (X.J , X.2>. .. ,_X_N) where the X."s eEq constitute a

random sample of size N from f(x_) then 3.3.1b is equivalent

to decide class m active if

TT f(m)(X.) = "J" . 7T f^^Xj 3.3. 1C
•i=l ' J ~ l » . . . j K 1=1

where f^m^(x^) is the q dimensional density for class m.

If the class densities are not known it is common to

replace the unknown densities above by appropriate sample-

based estimates. Thus for 3.3.la we have decided class m

active if

k ^ / -'\ • k ' ^ / • \
Z MiL(m,-;}fy

(l)(Y) -- Jif k r. n . I. (j ; i )f^ ' (Y_) 3.3.2a

and for 3.3.1b decide class m active if

% / \ M ^/'\

f(m)/Y) = ^ax f'^MY^ 3 3 2b

and for 3.3.Ic decide class m active if

TT f̂ X̂.̂  = j^ k TT f̂ ^̂ .) 3.3.2c

In 3.3.2 f- J^(y) and f^(x)are the sample-based estimated
y —

densities for f , (y) and f^J^(x) respectively j = 1, 2, ...k

The relationship that is established between minimum

distance and maximum l i k e l i h h o d classification in essence

asserts that if density histograms are used to estimate

the densities, and KL numbers are used as the distance mea-

sure in the minimum distance rule; then excluding ties,
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both classification rules produce identical results. This

relationship is now stated more precisely.

Statement of Relationship Between Minimum Distance
and Maximum Likelihood Classification

Let f^J'(xJ be the pdf for class j = 1,2,...,k and

F^(x_) the corresponding cdf. Let X..- i = 1,2,.

N. be a random sample of size N. f rom f ̂ J ' (x).
J J

Let X_. ' i = 1,2,...,N be a random sample from

f^u'(x_) where u is an unknown integer between 1

and k. Further let DM. be the maximum likelihood

decision rule which decides u = m (i.e., unknown

random sample belongs to class m) in case

TT f(m>(X.) = Ma? ' TT f(J)(X.n-) 3.3.3
. i..] -1 3 i .. .. ,* 1=1 i

and let DMn be the minimum distance decision ruleMU
which decides u = m in case

d(F^u',F^m') = .].? . d(F^u',F^J') 3.3:4
J ' » • • » K

where the distance d(F,G) between arbitrary

densities F and G, with corresponding pdf's and

f and g, is the KL number of density f for g given

by

Lfg = / Ln
3 -00

and the • indicates density histograms are used

as estimators.

Then the relationship established is that,
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excluding ties, the maximum 1ikelihood'decision

rule 3.3.3 and the minimum distance decision rule

3.3.4 make the same decisions.

It is relatively simple to prove the above rela-

tionship but first a few comments regarding the assumed be-

havior of 3.3.5 in regions were one or both of the densities

involved are zero. If in Eq there exists a finite region

where g(x_) is zero but f(xj is not zero then Lf is infinite

The integral over a region where f(x_) is zero, but g(x_) is

not zero, is assumed to be zero. This is justified by

noting that for arbitrary finite c

Limit t Ln(ct)
= 0 •"* "* fit ->• oo

The integral over regions where both densities are zero is

taken to be zero, because such region should not influence

the distance between distributions.

It is important to note that in order for the KL

number of density histogram f^u' for f^J' to be finite the

bins occupied by f^u' must be a subset of those occupied by

f^J'. In most practical minimum distance classification

situations infinite KL numbers would probably occur so fre-

quently that an unknown density would often be an infinite

distance from all classes. Modifications to the definition

of KL numbers would probably be necessary to u t i l i z e this

approach in a practical classification scheme. A somewhat
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s i m i l a r situation prevails with regard to the maximum l i k e -

lihood rule where TT f^J^(X,) = 0 unless all X^'s fall in
/ i=l• / •; \ '

the bins where f v < J J is not zero. Again some modifications

would probably be necessary in a practical situation. In

both minimum distance and maximum likelihood'classifications

the modifications would be aimed at a l l e v i a t i n g the situation

were disagreement in a few bins can completely dominate the

result. W h i l e the behavior described above is of consid-

erable practical importance it does not affect any theo-

retical investigation.

The stated relationship between minimum distance

and maximum l i k e l i h o o d classification w i l l now be proven.

Taking logarithms of both sided of 3.3.3 we have

Z Ln(f(m)(X.)) = Nax E Ln(f(j)(X.)) 3.3.7
•j = I ~~' j~ i > • • »* .j_•] i

In 3.3.7 the summation is over all vectors in the unknown

sample. This can be written as the summation over the bins

occupied by the unknown sample. Let k. be the number of

vectors from the unknown sample that fall in the ith bin

of the unknown density histogram and let N. be the number of

nonempty bins in the density histogram of the unknown sample,

and let f'J'(i) be the estimate for the density of the j'th

class, in the i'th bin of the unknown density histogram.

Then 3.3.7 becomes
N. N,
I k(u> Ln(f(m)(i)) = Nax z k(u)Ln(f(J)(1)). 3.3.8

1=1 • J ' » - ' » K . j = 1 I



NIf b is the bin volume then d i v i d i n g both sides of 3.3.8
Nb y N b and recognizing that

k(u)

(i)=^ 3.3.9

we have

Nb
E f(u>(i)Ln(f(m)(i)) = "ax ^ '(u)(i) Ln(f(J)(i))
i=l J l > - " K i = l

Multiplying 3.3.10 by minus one changes the Max operation to
D . / \

a Min operation and then adding the constant E f^u'(i) Ln
• ( u ) . 1 = 1 ' .

(f (i)) to both sides yields the decision rule to announce

m = u i n c a s e

3.3.11

But this is precisely the m i n i m u m distance decision rule

using density histograms as density estimators and KL numbers,

of the unknown density for the class density, as the dis-

tance measure. Thus the stated relation between m i n i m u m

distance and maximum likelihood has been established.

3.4 On the Equivalence of the Minimum Distance and
Nearest Neighbor Decision Ru1"eT "

3
By the nearest neighbor rule we mean a non-

parametric decision procedure which classifies an unknown

vector X. e ES into the category of its nearest neighbor in
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of the nearest neighbor rule are in existence. ' ' ' The

type of equivalence we. establish is such that each of the

"nearest neighbor" rules has an equivalent "minimum distance"

analog.

We w i l l concern ourselves only with the case where

fi is a parametric family Which can be characterized by s

real parameters. There are several reasons why equivalence

between minimum distance and nearest neighbor rules would

be useful. Perhaps the most important is that theoretical

results available for nearest neighbor rules would be di-

rectly applicable to our problem. Another equally important

consideration is the fact that this equivalence enables us

to choose reasonable metrics in the parameter space.

By parameter space we of course mean the space

whose coordinate axes are defined by the parameters of the

family of densities involved. For example, for the uni-

variate normal family the parameter space is two dimensional,

as two parameters are required to define a univariate normal

probability density function. These two parameters are the

mean and variance (or standard deviation) of the density.

The axes of this two dimensional parameter space correspond

to these two parameters. Every univariate normal density

is represented by a single point in this parameter space.

The location of the point corresponds to the mean and

variance of the density in question. For example the



density in Fig. 3.4.1 is represented by the point z in

Fig. 3.4.2.

No one would argue against the proposition that

in a parametric problem character!'zabl e in Es, one could

use a nearest neighbor decision rule in Es. For example,

to classify univariate normal distribution functions we

could use a nearest neighbor rule in the parameter space

depicted in Fig. 3.4.2. The choice of metric, however,

presents a dilemma. Should the mean and variance be given

equal weight in calculating distance or not? That is,

should we or should we not use the Euclidean metric.

Clearly a method of choosing a metric is required. The

equivalence established enables us to choose a metric in the

space of distribution functions which in turn generates a

metric in the parameter space. In the space of distribution

functions, metrics are available which are known to have

some good theoretical properties. For example, Bhattacharyya

distance is known to have the property of Theorem 2.4.1.

We now prove the following theorem i n v o l v i n g the

equivalence of minimim distance and nearest neighbor rules.

Theorem 3.4.1

Let n be a parametric family such that there exists

a one to one correspondence between F(x_|9jefi and

£eScEs. Here 9_ is the parameter vector charac-

terizing F. Let F(x_|a) and F(x_|£) be arbitrary

elements of ft with parameter a and £ respectively.
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Consider a metric 6 in ft. Since ft is a parametric

family we can view 6 as some function 6* of the

parameters. That is 6(F(x_|a), F(xj3.)) = 6*(o,3.).

The theorem asserts that 6* is a metric in S.

Proof of Theorem 3.4.1

The proof is very simple since we need only show

that 6* satisfies the metric properties in S. That is we

need to show for arbitrary u_, y_, w e S that

(a) 6*(u.,y_) >_ 0

(b) S*(u.,y_) = 0 if and only if u_ = y_ 3.4.1

(c) 6*(u.,y_) = 6*(v.,u.)

(d) 6*(£,y_) + 6*(y_,w) >_ <S*(u..w)

To prove part (a) we note that because of the one to one

correspondence between elements of S and ft for arbitrary u^,

y_ e S there exists cdf's F(xju_), F(x_|y_) in ft with parameters

u^ and y_ respectively. By the definition of 6* we have 6*

(û yj = 6(F(xJu_), F(x|v.)) but 6(F(x_|u_), F(x^jv)) >^ 0 since 6

is a metric in ft. Therefore, 6* (u_,y_) >^ 0 for arbitrary

ju, y_ e S. Proofs for parts (b), (c), and (d) follow in

analogous fashion.

Corollary 3.4.1

If 6 only satisfies some subset of t h e m e t r i c

axioms in ft, then 6* satisfies the same subset of

metric asioms in S. In particular, a distance d

in ft generates a distance d* in S.
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3.5 Minimum Distance Rule and Expected
Probability of'Error — Two Class Problem

Although the theoretical solution for the proba-

bility of error for most realistic, multispectral analysis

problems does not appear tractable, it is instructive to

consider grossly simplified situations which can be solved

analytically. Such examples do provide some insight into

more complex situations and are i n v a l u a b l e in g u i d i n g and

interpreting experiments.

3.5.1 General Two Class Parametric Problem--
Known Distributions

We consider a two class parametric problem in

which the distributions are known and each class has in-r

finitely many subclasses (Type I, case.(a)). We will

assume that even though all the distributions are known only

a random subset, selected according to the parameter space

distribution H^ , w i l l be used to represent each class.

The objective of this approach is to gain insight into the

practical case where the distributions are unknown, without

introducing the mathematical complexity that results when

sample based estimates are used. The results should be

approximately v a l i d for the case where consistent estimators

are used and a large number of vectors are av a i l a b l e for

estimating each density.

Let H^ 1' be the distribution over the parameter

space for class i; i = 1,2. Let the set of distributions

A^1 . selected to represent class i be
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Here the "training distributions" .F are the cdf's

obtained by selecting a random sample of size M. from the

parameter space distribution H^1 . Note that i indexes the

class while k indexes the subclass. The average probability

of error for the two class case can be written as

PE = p]P1 + p2P2 3.5.1.2

where p, , p2 are the prior probabilities of class 1 and class

2 respectively; Pr is the total average probability of error,

and P. is the average probability of erroneously classifying

a distribution into class i. The averaging to obtain PP

and P.J is with respect to all random training sets of size

M-| from H^ ' and M,, from FT ', and over all possible

parameter space realizations of the random parameter vector

Let P-(£) be the average probability (over all

random training sets) of mi scl assi fyi ng into class i a

distribution F characterized by the fixed parameter vector

6_. Then al l o w i n g for all possible- 6_ the average probability

of mi scl assifyi ng a random sample from class j is

00 i ~ \
PI = / P^jDh^fiJdi i,j = 1,2; i t j 3.5.1.3

. oo

where lvJ'(0J is the parameter space density of 0 for class
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As before let F be the unknown distribution charac-

terized by the fixed parameter space vector ;0_. Define the

random vari ables

n^1 ) ' m
ku (ej = d(F,kF

u;) k = 1,2,.,.^;- i = 1,2 3.5.1.4

Note that kD (§J is the distance between the unknown

distribution and the k ' th subclass of the i ' th class given

that the unknown distribution is characterized by 9_. Also

note that for fixed i and 9_ the kD^'(eJ are k independent

identically distributed random variables over all random

sets of M.J distributions selected to represent class i.

Let G^^ule) be the common cdf of bD^^(e) k = 1,2,. ..,M.,__i K _ 1

i = 1,2; and let g -(uJ0_). be the common pdf. Define the

ra ndom variables [̂ '(ej as

U^?(e.) = Min [D^^(i)|k = 1,2,...,!.] i = 1,2 3.5.1.5

For fixed i and o_ the random variable I T ^ ) is the first

order statistic of the independent identically distributed

random variables .D̂ (6j k = 1,2...,M-. From the theory of

order statistics the pdf for U^1'^) is

h(i)(u|0.) = M.[-l - •G(1)(u|eJ]M1'1 g(i)(u|6) i = 1,2.3.5.1.6

Assume now that the distribution F characterized

by Q_ originates from class 1. Then F is mi scl assi f i ed

whenever IT ' (9_)<IT ^ (6_) , since then F is nearer to class 2

then class. 1. Consequently, the average probability of
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classifying F characterized by j3 into class 2, given class 1

is active is

P9(0) = P(U
(2)(9)<U(1)(6)) 3.5.1.7

£. *~ _ . —

oo V

= / / h(u,v|e_)du dv
_oo -co

where h(u,v|§_) is the joint probability of IT ' (6_) and IP '

(§_). Now IT '(§_) and IT ' (6_) are independent because they

originate from independent random samples. Thus from

3.5,1.7

P2(6.) = /°°h
(2)(v|6_)d / h(1)(uje.)du 3.5.1.8

-CD ' -00

where Iv ' (u|e^) and h^ ^(v|0^) are the marginal densities

for IT '(ej and u' ' (Q_) respectively as given by 3.5.1.6.

Similarily

Pi(l) = / h(1)(u|9_)du / h(2)(v|9,)dv 3.5.1.9
_00 -00

By substituting 3.5.1.6 in 3.5.1.8 and 3.5.1.9 P-j (§_) and

P2(9j can be evaluated which via 3.5.1.3 and 3.5.1.2 yields

PE'

If parameter space symmetry exists such that PI(§_)

= Po(i) then regardless of the priors p, and p2 from 3.5.1.2

>E = P2(6.) = P^i) 3.5.1.10

for this case combining 3.5.1.6, 8, 3, and 2 yields



-00 _00 _OO

92

J[l - -G(2)(v|i)] 2 g(2)(v|i)>
?

n) Mi"] m{M,[l - G '(u|0_) g (u|§.) du dv d£ 3.5.1.11

A comment regarding the significance of 3.5.1.11

appears advisable. Note that to evaluate P£ the following

distributions are required; the parameter space distribution,

and the distribution of the first order statistics of the

nearest neighbor to F (characterized by 6_) for both class

1 and class 2. Provided it is reasonable to assume a

parameter space distribution then in order to evaluate

3.5.1.11 all that is required are the appropriate first

order statistics. Obtaining these statistics is, of course,

not necessarily a trivial task.

3.5.2 Univariate Normal Case with Fixed and Equal Variances
and Means Normally Distributed in the Parameter Space

In this case we assume that the i'th class (i =

1,2) contains an infinite number of univariate normal sub-
2

classes all with common variance a , but whose means are

distributed in the parameter space according to the normal

d i s t r i b u t i o n Iv1'(e) . That is the sets of states of nature

fr1' for the ith class are given by

fi^) = {F|F^N(u,a2) where p^ N(m^1'^,r2)} i = 1,2 3.5.2.1

Note that this assumes that the parameter space densities

are normal and that they differ only in location.
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For a distance measure we use the Bhattacharyya

distance. Recall that for the case under consideration

(i.e., equal variances) the Divergence, Bhattacharyya

distance, Kul Iback-Leibl er numbers, and the Mahalanobis

distance are all proportional. Our results, therefore,

apply for any of these distance measures. For convenience

we use the Bhattacharyya distance. If f, the pdf to be
2classified, has mean u and variance a then

k = 1,2,. ...M, 3.5.2.2
'

.y - - -9 - k = 1,2,...,M~ 3.5.2.3
K 8a •

Where the ^y are a random sample of size M^ from Iv^Cu).

Since ky^^ ^ N(m^^,r
2) it follows that for k = 1,2,...,M1

2 ( 1 ) 2
8a n(D/. \,M^v2p ̂ m I_y_ ))where Ncx

2(n,g2) is the Non-

r

central Chi-Square distribution with n degrees of freedom and
2 2noncentrality parameter $. The density for a NCX (n,0 )

distribution is given by

1

f(x) = e ̂  Z rr(i-32)k — i 3.5.2.4
k=0 K< *' 2r(-^(n+2k))

where it') is the Gamma function. The corresponding cdf is,
i , . i . . i .

-•5-32. «> i i ? k Y(7(n + 2k), yx)
F(x) = e * E |y (ifc ) —̂ -j — 3.5.2.5

k = 0 K> ^ r(^-(n+2k))



where y( • , •) is the incomplete Gamma function defined by

- n 0 n a n )

Similarly

Since parameter space symmetry exists such that P2(i) = p-| (i)

the average probability of error is given by 3.5.1.11 with

and

-B^) z iU- pfk (Xu)1 k=o k< n

i = l , 2 , 3.5.2.7

m ? °° i ?t vtk^tXu)
G(l)(u|y) = exp (-3?) Z IT 3?k - ^, - 1 - 1 , 21 k=o k! n r(k+l)

( 1 } 2
h(1)(U) = Jr- exp (-l(

m
 r "

 P) ). 3.5.2.9
/2irr ^ r

where in 3.5.2.7 and 3.5.2.8

' i (i) 2 .2
p = ( - —) i = 1,2 and \ = 3.5.2.10

The above constitutes a complete theoretical solu-

tion for the case of means normally distributed in the par-

ameter space. It is rather apparent that the practical

evaluation of PE for this case is by no means a trivial task.

While it is certainly possible to evaluate P^ numerically it

appears likely that other assumptions regarding the parameter
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space distribution might yield simpler and just as mean-

ingful results. Consequently in the next section the

normal assumption for the parameter space distribution is

abandoned in favor of means uniformly distributed in the

parameter space. The theoretical results of this section

were included to facilitate further investigation of normally

distributed means should this prove desirable.

3.5.3 Univariate Normal Case with Fixed and Equal Variances
and Means Uniformly Distributed in the Parameter Space

In this case the sets of states of nature are

m o 3.5.3.1
ftu; = {F|F^N(vi,a ) wherey^U(a1 ,b.)} i = 1,2

In addition to assuming that the distribution of

the means for class 1 and class 2 are uniform it is also

assumed that U(a^ , b..) and U(a2,b2) differ only in location.

That is, it is assumed that

a, - fa-, = a2 - b2 = w.

Assume also that a2 -
 al* T^e case where a single distri-

bution is selected to represent each class (M, = M2 = 1) is

considered first and the average probability of error as a

function of the overlap of the parameter space densities

determined. If m^ 1' is the mean of h^'(y) (i.e., U(a'f »&..))

i = 1,2 then define the normalized overlap Y as

v nr• ' - nr ' Am o c o •>
Y = = _ 3.5.3.3

Fig. 3.5.3.1 depicts the situation.
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Parameter Space Densities
of the Means

Class I Class 2

m<2)

Parameter Space Sample Size MI = M2= I

0 1.0 20

Normalized Separation of Parameter Space Densities ĵ™-

Figure 3.5.3.1 Average Classifier Error for M i n i m u m
Distance Classification. A Simple
Normal Example.
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The distance measure used is

.D^^(y) = (a/1) - y| k = 1; i = 1 , 2 3.5.3.4
lx K

This distance measure is used because for the case under

consideration it gives the same performance as the Bhatta-

charayya distance, or other distances proportional to the

Bhattacharyya distance, but is somewhat simpler theoretically,

The symmetry in the parameter space is again such that

Po(9.) = P-|(§_). Consequently setting M, = M2 = 1 and

9 = y 3.5.1.11 reduces to

PE
 c / / / h(1)(y)g(2)(v|y)g(1)(u|y)du dv dy 3.5.3.5

« GO ~ OO — OO

The densities g^ ' and g^ ' can be obtained by inspection.

For example if a-, < y < -^(a-j+b-j) then

g^(u|y) =4 0 < u < (y - a,) 3.5.3.6
W I

= ^ (y - a^ < u < (b] - y)

(2)
Similarly gv ' can be readily obtained.

It is therefore a straightforward but time consuming task

to evaluate 3.5.3.5. Particular care must be exercised to

ensure that all discontinuities in g^ , g^ ' and Iv ' are

properly handled. Carrying out the necessary computations

the following results are obtained.
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PE(Y) = Ij (Y
2OOY-15)+6) 0 <_ Y £ 1 3.5.3.7

(2-Y)
3 1 1 Y 1 2

= 0 Y 1 2

This equation is plotted in Figure 3.5.3.1.

In Fig. 3.5.3.1 we have also plotted the expected

probability of error when each class is represented by a

particular infinite set of distributions (M, = M« = °° curve).

More specifically the set of distributions used to represent

each class is all the possible distributions in that class.

In this case it is easy to determine the average probability

of error since only samples whose mean falls in the region

where the parameter space densities overlap can be incorrectly

classified. Any sample whose mean falls outside the region

of overlap is correctly classified since it is some finite

distance away from the incorrect class, and a distance of

zero from the correct class. In the region of overlap the

distance to the set of distributions representing each

class is zero. We assume that these ties are broken in

accordance with the relative probability of observing the

given parameter value for each class. For the case under

consideration assuming equal priors, half of the samples

that fall in the overlap region w i l l be incorrectly classi-

fied. Consequently we have immediately for infinite sample

size:
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PE(Y) = 3-0-Y) o < Y i i 3.5.3.6

= 0 Y > 1

The largest and smallest probability of error that

can result when each class is represented by a single

distribution is also of interest. These probabilities are

easily obtained. For the case under consideration the

minimum distance rule partitions the real axis into two

parts. The partition point yM is given by

,, = J_( ,, ( ' i + ,, (2) \ 3 5 3 9MM o » i M i M / <j * -j t \j * j

Unknown samples whose mean y lies on the same side of yM as

iM are assigned to class i, i = 1,2.

The values over which the partition point y.. can range is

2-(a-]+a2) 1 PM 1 I(b-|+b2) 3.5.3.10

To determine the best and worst case for a given situation

it is only necessary to examine all possible partitions in

the permissable range and choose the best and the worst.

Account must also be taken of the fact that if the parameter

space densities overlap, then for partitions which fall in

the range of overlap, iU i = 1>2 can lie on either side

of the partition. For example the "minimum" and "maximum"

insets in Fig. 3.5.3.2 shows both a "best" and a "worst"

situation respectively for a given degree of overlap, of the

parameter space densities. Note that the "best" and "worst"
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Minimum Maximum

I Class 2 ! Class 2

Normalized Separation of Parameter Space Densities —-
' - - - • - . • • • • - - < - - • • - «- - - Yt

Figure 3.5.3.2 Minimum and Maximum Classifier Error fo.r
Mini m u m Distance Classification. A Simple
Normal Example.
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cases are not unique. In fact any training set which results

in a partition point that falls in the region of overlap

is either a "best" or "worst" case depending upon which of

the situations depicted in the insets Fig. 3.5.3.2 pertains.

Proceeding in this manner it is easy to show that

and

Min(PE(y)) = 1(1

= 0

Max (PE(Y)) = ?(

= 0

0 <_ Y <_ 1

>_ 1

0 1 Y 1 1

1. <_ Y < 2

> 2

3.5.3.11

3.5.3.12

These curves are plotted in Fig. 3.5.3.2. Note the abrupt

drop in the maximum probability of error at Y = 1. This

drop occurs since for y ^. 1 i t is no longer possible for

the means of the training samples to fall on the "wrong" side

of the partition yM-

The "best" and "worst" case curves shown in

Fig. 3.5.3.2 have been derived on the basis that each class

is represented by one distribution. A moments consideration

shows that they are also v a l i d if each class is repre-

sented by an infinite (even uncountably infinite) set of

distributions. This follows since it is always possible

that the means of every distribution chosen to represent

class 1 falls below (above) the mean of every distribution
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chosen to represent class 2 leading to the "best" ("worst")

case curves depicted in Fig. 3.5.3.2. The likelihood of

observing the best or worst cases of course decreases as

the number of samples selected to represent each class

i ncreases.

A number of important factors emerge from the

simple example considered. For convenience in referring to

these factors in later sections they w i l l be given a refer-

ence number.

Observation!

If the parameter space densities overlap it is

possible for the minimum distance method to perform very

poorly.

Observation 2

The maximum, minimum and average performance for

the case where each class is represented by all the densities

in that case are identical. This follows since in this

case the training distributions are always the same.

Observation 3

The average (which by virtue of observation 2

is also the "best") performance for the case where each

class is represented by all the densities in that class, is

only moderately better than the average performance achieved

when each class is represented by a single density. This

suggests that the very poor performance mentioned in

observation 1 occurs rather infrequently. More importantly
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it also suggests that in terms of average performance very

little is gained by using many subclasses. What is gained

by using many subclasses is a significant reduction in

the probability of choosing a very poor training set, rather

than a significant decrease in the average performance.

Observation 4

It is relatively easy to imagine situations where

the overall performance (i.e. the overall probability of

correctly classifying a unknown sample) changes drastically

in either direction as the number of subclasses used to

represent each class increases. For example consider

increasing the number of distributions used to represent

each class from 1 to 2. Let the minimum probability of

error inset in Fig. 3.5.3.2 depict the situation when each

class is represented by a single density. Let the

densities used to represent each class in the maximum

probability of error inset be the set of densities added to

increase to 2 the number of distributions representing each

class. It is obvious for this case that an increase in the

number of subclasses causes a drastic decrease in overall

performance. The situation described is a rather unlikely

situation and changes would typically be much smaller, par-

ticularly for cases where each class is represented by a

moderate number of distributions.

It is also easy to depict situations for which the

performance by class (as opposed to overall performance)



changes drastically in either direction for one or both

classes as the number of subclasses is increased. In fact

drastic changes in class performance would appear to be

mqre likely to occur than drastic changes in overall per-

formance.

Observation 5

The discontinuity of the slope of the average

probability of error curve in Fig. 3.5.3.1 for the M, - M2 =

1 case at y = 1 1S due to the discontinuous behavior of the

maximum probability of error in Fig. 3.5.3.2 at y = 1-

It is necessary to remember that observations 1 to

5 pertain specifically to the particular case investigated.

It is impossible to tell to what extent these observations

carry over to more complex situations. The manner in which

1 to 4 occur means they w i l l almost certainly have their

counterpart in multiclass multidimensional problems.
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CHAPTER 4

EXPERIMENTAL RESULTS

In this Chapter the experimental results obtained

in the investigation of minimum distance classification and

related problems are presented. To facilitate the des-

cription of the experiments performed it is desirable to

devise a systematic method of describing an experiment.

Not only does this simplify the description of an experiment

but it also aids in clearly indicating the quantities that

remain fixed throughout the experiment and those that are

variable. In general we use the classification accuracy (or

performance) in evaluating different procedures, distance

measures, etc. For our purpose it is convenient to con-

sider the performance to be a function of the three quantities

listed at the top of Table 4.1; these are, the Training

Procedure, Classifier Type, and Classifier Parameters. At

present there is no need to be intimately concerned with the

detailed breakdown of these three categories; it is suffi-

cient to note that to describe an experiment it ics only

necessary to describe the three factors influencing per-

formance.

Table 4.1 is not intended to be a comprehensive

enumeration of all classifier p o s s i b i l i t i e s , nor is it
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necessarily a method that is capable of describing all

classifier problems. In fact only those Training Procedures,

Classifier Types, and Classifier Parameters that are of

direct concern in this work are listed. The sole purpose

o f t h e table is to facilitate description of the particular

experiments performed. We w i l l frequently refer to this

table to assist in describing the organization of our work.

Classifiers are usually segregated into two broad

categories, supervised and nonsupervised. A supervised

classifier is characterized by the fact that it utilizes

data of known classification as a basis for classifying

unknown data. In particular before classification starts

typical data for every class of interest is made a v a i l a b l e

to the classifer. Such data is known as training data. In

a nonsupervised classifier data may also be a v a i l a b l e to

the classifier before classification commences, but the

classification of this data is not known to the classifier.

Only supervised classifiers are used in this

investigation. In such classifiers the process of extracting

the information from the training data for subsequent use

in the classification task is referred to as "training the

classifier". Once the classifier has been trained it can

be used to classify other data drawn from the classes for

which it was trained. Such data is referred to as test data

and the classification accuracy on such data is the test

performance. It is, of course, also possible to classify the
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training data itself. In this case the resultant correct

classification is known as training performance.

For most experiments the performance is determined

for both training and test data. The interpretation of

results for training data is usually easier since the

question of whether the training data was typical of the

test data does not arise. In the final analysis, however,

it is the performance on test data that is important.

Although the detailed subdivisions of Table 4.1

hint at the complexity of the classification problem for

multispectral data-images a few additional comments seem

appropriate. Even if the training procedure is entirely

ignored the problems are still substantial. The number of

main classes* of interest can range up to 10 or more w h i l e

the number of subclasses may be three or four times this

number. The number of channels typically a v a i l a b l e is 13;

a number that w i l l undoubtedly increase in the future.

W h i l e it is generally true that in the classification

procedure itself very few classifications use all the

available channels, it is equally true that the use of only

one channel is very rare. Consequently, considering only

the classifier (i.e., ignoring training) itself, the

problem is s t i l l a multiclass, multidimensional problem, and

very difficult to handle theoretically. Introduce the

added complexities of different Training Procedures,

various Classifier Parameters and also the difficulty in
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establishing a mathematical model for multispectral data

and it is clear that the best approach is an experimental

approach.

The chapter commences with a description of the

data used, and a discussion of the programs used to analyse

the data. Some of the analysis programs were specifically

written to carry out the experiments described, others

were already available. One of the prime investigations

concerns itself with the relative performance of different

distance measures and how the number of subclasses affects

performance. In situations where the desirable number of

subclasses becomes impractically large, some method must be

devised for combining subclasses that are most similar.

Parameter space clustering is used as a method to achieve

this goal for parametric problems. Since clustering in

the parameter space is far from routine, considerable space

is devoted to its evaluation, including its use in more

convential vector by vector classifiers. Finally the effect

of various parameters on performance is considered.

There is a certain experimental philosophy which

pervades this work which should be clarified at the outset

The philosophy is one of comparison. No real systematic

attempt is made to adjust all pertinent variables in order

to attain "the best" classification. Rather the philosophy

is one of trying to establish which of several alternate

procedures is most likely to yield the better classification,
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without expending the time and energy required to greatly

refine any of the classifications. Thus for example there

is very l i t t l e m a n i p u l a t i o n , purification, etc. of training

sets to achieve the best possible classification. In short

the emphasis is on relative performance under controlled

conditions rather than absolute performance. The justi-

fication for this philosophy is that the scheme which

provides the best relative performance should in the final

analysis also provide the best absolute performance.

4.1 Description of the Experimental Data

In Chapter 1 we pointed out that we are concerned

primarily with the classification of multispectral data-

imagery. It is, therefore, natural to restrict the exper-

imental investigation to such data. It is worthwhile to

again emphasize that the techniques utilized are not re-

stricted in this manner, although experimental conclusions

must, of course, be interpreted in terms of the data on

which the conclusions are based. Most of the multispectral

data-imagery a v a i l a b l e at Purdue's Laboratory for Applica-

tions of Remote Sensing has been collected by an instrument
fi?known as a multispectral scanner. We refer to such

imagery as multispectral scanner imagery or multispectral

scanner data. There is also a small amount of multispectral

data-imagery that has been generated by d i g i t i z i n g photo-

graphs. Although for the purpose of the work herein there

is no essential difference between the scanner and digitized
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photographic data we shall only be concerned with the

former.

A brief description of LARS multispectral scanner

imagery and the scanner collection system appears pertinent.

To obtain multispectral scanner imagery for a particular

scene, the multispectral scanner is carried above the scene

in question on an aerospace platform (presently an air-

craft). The scanner is capable of simultaneously recording,

on magnetic tape in analog form, the image of the scene

below as seen through different spectral "windows". The

manner in which this is achieved is briefly described. For

each spectral band the electromagnetic radiation from an

area on the ground is collected by an optical system in the

scanner and focused onto a detector. The detector generates

an electrical output which depends upon the radiation in-

tensity in that wavelength band, and which after appropriate

electronic processing is suitable for recording purposes.

The area from which electromagnetic radiation is being

collected is swept across the flight path of the aircraft

by a rotating mirror arrangement in the scanner. At the

same time the scanner is carried along the flight path by

the forward motion of the aircraft. The combined motion

results in a raster scan of the scene below. The scan

lines generated in this manner are recorded on analog tape.

Subsequent digitization results in a two dimensional array

of measurement vectors in which the components of the vectors
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correspond to the radiation intensity in the various

spectral bands. After some processing the two dimensional

array of measurement vectors is stored on a digital tape re-

ferred to as an Aircraft Data Storage Tape, which for our

purposes constitutes the raw data. The area associated

with the measurement vector will be referred to as an Image

Resolution Element (IRE). Strictly speaking the spatial

coordinates, or relative spatial coordinates designating

the location of each IRE, could also be considered to be

part of the measurement vector. However, since the coor-

dinates are of a different nature than the spectral measure-

ments their usage is different. In fact the spatial

coordinates in the form of line and column numbers are

used to reference the location of the measurement vectors

on the Aircraft Data Storage Tape.

In selecting the particular multispectral scanner

data to be utilized for the experimental investigation

several factors were considered. By far the most important

factor was that the data should be difficult to analyse.

That is the data should contain some main classes that are

difficult to seperate. It would be pointless to carry out

an extensive investigation on data that is easily segregated

into the classes of interest, since then apparently any

advantage of m i n i m u m distance classification would be

obscured. A second factor of considerable importance

was that the data set should be of adequate size to provide
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a realistic experimental test of the various procedures

considered. A third factor that was considered was whether

or not the data had previously been analysed by conventional

techniques. Such analysis would enable a comparison of

conventional and minimum distance techniques wi th a minimum

of effort. To be most useful the conventional analysis

should involve a relatively small number of main classes.

The reason for this is that program restrictions of some

existing analysis programs are such that the large number

of subclasses anticipated for minimum distnace classifi-

cation could only be accommodated if the number of m a i n

classes was relatively small.

The practice of u t i l i z i n g existing programs when-

ever possible, in order to minimize the programming effort

is logical and reasonable, as long as this does not place

unrealistic restrictions on the experiments. Since many

practical classifications do not require a large number of

main classes focusing attention on such classifications was

judged to be a reasonable restriction. An advantageous side

effect of restricting the number of main classes is that

results are somewhat simpler to interpret and much easier

to report.

A final factor considered in selecting the m u l t i -

spectral scanner data to be examined experimentally was the

desireabi1ity of having a v a i l a b l e several data sets that

were similar, so that meaningful averages could be taken



over the data sets.

In light of the requirements outlined in the

previous paragraphs the multispectral scanner data sets

chosen for the experimental investigation were runs 70002200,

70002300 and 70002400. The data for these runs was

collected*at an altitude of 3000 ft., between 9:45 and 10:45

a.m. E.D.T., on June 30, 1970, from flightlines 21, 23 and

24 respectively. The exact location and orientation of

these flightlines, which are located in Tippecanoe County,

Indiana, is shown in Fig. 4.1.1. The flightlines extend

the 24 mile length from the north to the south end of the

county and are roughly equally spaced in the east-west

direction. Since the scanner geometry is such that at an

altitude of 3000 feet the field of view is roughly 1 m i l e ,

the area covered by the three flightlines, approximately 72

square miles, is about 1/7 of the total area in the county.

The scanner resolution and sampling rate are nominally three

and six m i l l i r a d i a n s respectively. This means that at nadir

the scanner "sees" a circle about 9 feet in diameter and

that the spacing between adjacent IRE's is about 18 feet.

Since the scanner resolution and sampling rate are inde-

pendent of look angle the distance between adjacent IRE's

is approximately 30% larger at the edge of the scanner's

field of view with a corresponding change in the shape

and area "seen" by the scanner. At the sampling rate i n d i -

cated there are 220 samples across the width of a flight-

li n e and each f l i g h t l i n e contains 5000 to 6000 lines. This
*Data collected by University of Michigan Scanner.
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Figure 4.1.1 Location of Tippecanoe County F l i g h t l i n e s 21,
23, and 24.
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means each f l i g h t l i n e contains somewhat more than 10 IRE's

The data from the flight!ines selected met all

the requirements stated above. A conventional analysis of

this data .'had been carried out in connection with a crop

yield study. In the yield study the main classes con-

sidered were wheat., c.orn, soybeans and other. Furthermore

this analysis indicated that the corn and soybeans were not

very separable, a situation that typifies data collected

at this time of year,.

Thirteen spectral !ba>nds of data were collected

for each of the three runs being discussed. It is fre-

quently convenient to refer to these spectral bands by

channel number rather than .specifically stating the wave-

length bands involved. The correspondence between channel

numbers and spectral bands is given in Table 4.1.1.

Of the approximately 10 IRE's in each flight!ine

between 10% and 20% are typically used as test fields.

There are a number of sets of test and training fields

which are repeatedly used throughout the experiment. These

are described in Appendi/x C which also contains the

coordinates of the various fields. For continuity of the

discussion it is adequate to recognize that the following

decks are described: (!) Standard Test Field decks for

flight!ines 21, 23 and 24; these fields are used primarily

for test purposes; (2) a field deck of Training Acres used

primarily for training purposes, both in this study and th>e
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Table 4.1.1

Correspondence Between Channel Numbers and Spectral Bands

Channel Number Spectral Band (Micrometers)

1 0.40 - 0.44

2 0.46 - 0.48

3 0.50 - 0.52

4 0.52 - 0.55

5 0.55 - 0.58

6 0.58 - 0.62

7 0.62 - 0.66

8 0.66 - 0.72

9 0.72 - 0.80

10 0.80 - 1.00

11 1.00 - 1.40

12 1.50 - 1.80

13 2.00 - 2.60
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crop yield study; (3) a field deck of F l i g h t l i n e 21 Test Areas

which are subareas within the Standard Test Fields for

fli g h t l i n e 21 and are used as test fields.

A few comments regarding the type and extent of

the ground cover at the time of the flights appear advisable.

As already mentioned four pr i n c i p l e ground cover categories

are considered; wheat, corn, soybeans and other. Although

the class other includes a considerable variety of ground

cover most of the agricultural fields in this category are

either small grains (other than wheat) or forage crops.

There are also some bare soil and a number of diverted acre

fields. Some natural categories such as trees and water are

also included in this class. For most of the subcategories

for the class other the ground cover is fairly complete,

but the spectral properties of the ground cover are quite

variable from field to field within a subcategory. Most of

the wheat in the flightlines was mature and ready, or

nearly ready, for harvest. In fact some portion of it had

already been harvested. For corn and soybeans the crop

canopy at flight time was such that a considerable fraction

of the soil was not covered by vegetation when viewed from

above. Some idea regarding the extent of the ground cover

can be obtained from the color and color infra-red photo-

graphs shown in Fig. 4.1.3. Fig. 4.1.2 indicates the ground

cover for the various fields. These photographs show a

typical section of f l i g h t l i n e 24 as it appeared on the day
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(PH)Part Harvested

Figure 4.1.2 "Ground Truth" for Figure 4.1.3,



Original in
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Fig. 4.1.3. Color and Color Infrared Photographs of
Part of Flightline 24.
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of the flight. Wh i l e the color photograph gives some indi-

cation of ground cover a much better indication can be

obtained from the color infra-red photograph because of its

property of portraying healthy green vegetation as bright

red. Even the slightest amount of green vegetation is

sufficient to give a reddish hue to a field. This point

is adequately demonstrated by most of the soybean fields

in Fig. 4.1.3. The green vegetation is barely observable

on the color photo but shows up much better on the color IR.

The ground cover for most corn fields in the area shown

is considerably greater than for most soybean fields,

however, there are exceptions. Notice the variability of

the fields within one crop type even over the small region

covered by the photographs. The difference between har-

vested and unharvested wheat is also of importance. F i n a l l y

the fact that ground patterns show up quite distinctly in

corn and soybean fields provides further evidence of the

sparce ground cover in these fields.

4.2 Data Analysis Programs

A number of different programs were used in the

analysis of the scanner data. The purpose of this section

is to describe these programs. Some of the programs are

analysis programs that are in general use at LARS and w i l l

be referred to collectively as LARS System Programs.

Other programs were written specifically to investigate

minimum distance classification and related problems.
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The description given for each analysis program is

a brief functional description. These brief descriptions

are augmented by appropriate references for the LARS System

Programs and by Appendix E for those programs written

specifically to investigate minimum distance classification

and related problems. While the brief functional descrip-

tions are adequate for our purpose, the full capabilities of

the programs can only be appreciated by examining the

supplementary material.

There is a general philosophy that pervades LARS

System Programs that can best be summed up by stating they

are user oriented. A basic assumption is that the user

should not be required to be very knowledgeable about

computers or programming in order to use any of the LARS

System Programs. This goal is in effect achieved by designing

for each program what in essence is really a very simple lan-

guage. The user selects program options and specifies

program parameters by means of "control cards" written in

this simple language. The principles of the language ar.e

very simple and remain fixed from program to program. Conr

sequently it is very easy for the user to learn the lan-

guage. In fact if the user has a reasonable understanding

of the program's function, then the control cards seem to

him to be a very natural and easy way of specifying the

program options. For example a control card (whose location

in the control card deck is arbitrary) containing CHANNEL
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1, 2, 7 might mean that spectral channels 1, 2, and 7 are to

be used in the program. Contrast this with the conventional

situation where it would be necessary to remember the lo-

cation of the channels card in the data deck as well as its

format. A peripheral advantage of this approach is that

program documentation tends to be simpler, since to des-

cribe the capabilities of a program it is only necessary

to describe the function of each control card. Appendix D

contains a brief description of the control card language.

This description is included so that the "control card

descriptions" of the programs in Appendix E can be under-

stood.

Another aspect of the user orientation is that

programs tend to be self documenting during execution. In

other words sufficient information regarding program options,

program parameters, etc., are listed on the printer, which

together with a user supplied comment, enables the user to

determine exactly what computations were carried out.

A final aspect of LARS System Programs, which is

of importance to programmers rather than users, is that

the program decks contain a sufficient number of comments

to be substantially self-documenting.

The reason for dwe l l i n g on the philosophy of the

LARS System Programs is that one is faced with the problem

of whether or not this philosophy should be adopted for a

research program. It is clear that to adopt such a
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philosophy requires considerable additional programming,

even though general purpose control card interpreting

routines exist which lighten the programming burden somewhat

The biggest advantage in adopting this philosophy is that

if the program proves to be of interest to a number of users

it can be made a v a i l a b l e to them very quickly, and within

a familiar framework. Another advantage is of course that

the programs are also much easier to use during the research

phase. The sole disadvantage is the additional programming

time required.

Some of the programs specifically written for

this investigation were written with the same philosophy as

that underlying the LARS System Programs, except that the

use of comments in the programs was not as consistent or

liberal. On the other hand some programs were written

without much regard to user convenience. On the basis of

this experience it is our feeling that for research programs
t

the user oriented approach is worthwhile provided there is

a good possibility that a number of users w i l l be interested

in the program; or provided that during the research phase

it is anticipated that the program w i l l be used many times.

If neither of these conditions is satisfied the additional

programming effort is simply not justified.

4.2.1 LARSYSAA: A Parametric (normal) Maximum
Likelihood Vector Classifier

The primary classification system presently used

at LARS for classifying multispectral data-imagery is known
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by the acronym LARSYSAA. '' This is a supervised system

in which it is assumed that the data for each class is

drawn from a multivariate normal population, and classi-

fication of the unknown vectors is affected according to

the maximum likelihood principle on a vector by vector

basis. The system is supervised since samples (i.e.,

sets of measurement vectors) whose classification are known

are used to train the classifier. Because of the Gaussian

assumption, training simply amounts to u t i l i z i n g the samples

whose classification are known to estimate the mean vector

and covariance matrix for each class. These estimated

quantities are then used to compute the likelihood function

upon which the classification decisions are based. Facil-

ities exist in the system for selecting a good subset of

the original spectral bands upon which to base the
33classification. Such techniques are usually referred to

as feature selection techniques. The particular feature

selection technique used in LARSYSAA is based on Divergence

or an exponentially saturating transformation of the

Divergence. The average transformed Divergence between

all class pairs, or the average Divergence between all class

pairs, is used as a measure of feature effectiveness. The

capability to use the average transformed Divergence rather

than just the average Divergence has only recently become

av a i l a b l e but at present it is the standard option unless

the average Divergence is specifically requested.
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LARSYSAA is organized into four processors. A

statistics processor ($STAT), a feature selection processor

($DIVG), a classification processor ($CLASS) and a display

processor ($DISP). The purpose of the statistics processor

is to compute, list, store, and punch first and second

order class statistics. It can also display histograms

and spectral plots on the printer. Wherever approriate

these operations can be carried out on either a class or

field basis. The feature selection processor enables the

"best" subset of features to be selected for a given set of

classes. The classification processor classifies the

vectors in a specified area in accordance with the maximum

likelihood rule. The class to which every vector in the

specified area is assigned together with the value of the

likelihood function,, is stored on a magnetic tape referred

to as a Map Tape. Finally the display processor enables

the classification to be displayed in map form on the l i n e

printer, and computesand lists performance tables. Except

for the divergence processor the program is capable of

accomodating up to 60 classes and up to 30 channels; al-

though not necessarily simultaneously. The divergence pro-

cessor, which is temporarily a stand alone program, can

accomodate up to 30 classes and 18 channels.

The $DIVG processor in LARSYSAA requires a few

additional comments^ This processor is an optimum feature

selection processor in the sense that it carries out a
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comprehensive search of all feature combinations. Under

certain circumstances the number of combinations becomes

quite large and the processing time becomes exorbitant.

This is for example the situation that prevails if the best

k, out of k channels are to be chosen and k is in the
D C C

vicinity of 13 and kb in the vicinity of 7. To alleviate

this problem a modified suboptimum form of $DIVG, which we

refer to as $SEQDIVG, was programmed. The $SEQDIVG processor

differs from $DIVG only in that no comprehensive search of

all feature combinations is performed, and in this sense it

is suboptimum. The search procedure used is that features

are added sequentially, one at a time, in such a manner that

the addition of the next feature results in the greatest

possible increase in the separability criterion. As in

regular $DIVG the separability criterion is either the

average transformed Divergence or average Divergence.

4.2.2 PERFIELD: A Parametric (normal) Minimum
Distance Classifier

PERFIELD is a parametric mi n i m u m distance

classifier based on the Jeffreys-Matusita distance*.

Huang did the i n i t i a l work at LARS which led to the pro-

gramming of this classifier. A statistics deck generated

by the $STAT processor of LARSYSAA is used to define the

classes for PERFIELD. Samples are classified one at a time.

*Strictly speaking PERFIELD is based on the Bhatta-
charyya distance but since the Bhattacharyya and JM distance
produce identical classifications we consistently refer to
the later since it is more convenient for our purpose.
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They are defined by specifying a run number and the coor-

dinates (i.e., line and column numbers) of a rectangular

field in that run*. The vectors within the field constitute

the sample to be classified. The classification is accom-

plished by retrieving the pertinent data from an Aircraft

Data Storage Tape and carrying out the necessary compu-

tations. Details of the classification and performance

tables are listed on the l i n e printer. Since the completion

of our experimental work PERFIELD has been added to LARSYSAA

as a fifth processor.

In order to be able to perform minimum distance

classifications for distances other than the JM distance,

two modified versions of PERFIELD were programmed. The

first used Divergence as the distance measure and the second

used Kul1 back-Leibler numbers. Although there are really

three distinct programs involved, it is convenient to treat

them as a single program PERFIELD in which the distance

measure is a program option.

*In Chapter 1 it was mentioned that a problem
closely related to minimum distance classification is the
problem of defining samples to be classified. It was also
pointed out that one way of defining samples was through the
use of closed boundaries. To implement such a technique it is
highly desirable that the boundaries be located by computer
on the basis of the spectral data. BOUND is a program that in
part attains this goal in that it locates boundaries in
rriultispectral scanner data. However, the boundaries are in
general not closed and further development is needed before
the method could be used to define samples for minimum dis-
tance classification. Appendix F contains a brief functional
description of BOUND as well as pertinent references.
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4.2.3. NSCLAS: An Observation Space Clustering Program

The purpose of NSCLAS is to group together, in the

observation space, vectors which are similar. The measure

of similarity used is Euclidean distance. In p r i n c i p l e

NSCLAS is similar to the ISODATA method of Ball and Hall.68

The exact details of the clustering proceedure used in

NSCLAS are identical to those of the clustering algorithm

used by Wacker and Landgrebe to locate field boundaries.69

Details about various clustering schemes can be found in the

review papers by Ball and Rolhf

In essence NSCLAS provides the user with the

capability of "classifying" a limited number of IRE's on a

nonsupervised basis. It is a nonsupervised classification

in that no training is involved. The user must identify

the classes after clustering is completed.

To cluster a set of vectors the user designates

the desired vectors by means of a deck of field coordinate

cards. Vectors from the specified rectangular areas are

read from Aircraft Data Storage Tapes and clustered into the

number of classes specified by the user. Actually there is

a rudimentary search procedure in NSCLAS, which at the users

option attempts to establish the appropriate number of

classes. In practice this procedure has not worked well for

multispectral data-imagery of the earth's surface and in

addition is very slow. Consequently, the search procedure

option is seldom used with the user electing to specify the
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number of classes instead.

After the vectors have been clustered into the

required number of classes, maps depicting the areas clus-

tered are displayed on the line printer. Tables containing

the means and variances of each class as well as the pairwise

separability between all class pairs are listed on the

printer. The separability table is based on the Swain-Fu

distance with the added assumption that the channels are

independent.

Usually NSCLAS is used during the preliminary in-

vestigation of the data as an aid in defining classes -and

subclasses. To assist in this task the number of classes

into which the vectors are clustered is frequently varied.

The output maps generated by NSGLAS are i n v a l u a b l e aids in

naming the classes and deciding on the correct number of

classes. This is achieved by comparing the map with the

"ground truth". The separability table is a valuable

guide in defining spectrally separable classes.

4.2.4 GRPSAM:A Parameter Space (Normal) Clustering Program

Clustering is most commonly carried out in the

observation space as opposed to the parameter space. The

objective of observation space clustering is to group to-

gether observation space vectors that are in some sense

similar. An example of an observation space clustering

program is NSCLAS which has just been described. The

objective of parameter space clustering is a little different,
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In particular we wish to group together estimated density

functions that are similar. Since we are assuming para-

metric densities this grouping can be done in the parameter

space.

Initially the parameters characterizing the

probability density function for each training sample are

estimated and used to define points in the parameter space,

one point for each sample. For the Normal case the par-

ameters that must be estimated are of course the mean

vector and covariance matrix for each sample. The hope

is that in the parameter space training samples for a given

main class would tend to group together at a number of

points. Each such group represents a subclass. The ob-

jective is to find these groups by clustering in the

parameter space.

A flow chart that is commonly used for clustering

algorithms is that shown in Fig. 4.2.4.1. This flow chart

is for example the basic flow chart for NSCLAS and also

serves as a basis cor the program to be discussed here.

If clustering is done in the observation space, as in

NSCLAS, then the objects to be clustered are observation

space vectors. In the parameter space the objects to be

clustered are points in the parameter space, or parameter

space vectors, which in essence represent probability

density functions.
j

A question that arises immediately when clustering
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Figure 4.2.4.1 Flow Chart for Clustering
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in the parameter space is the problem of how to measure

similarity or distance in this space. Is Euclidean distance

a reasonable distance measure in the parameter space or

should some other distance measure be used? Use of Euclidean

distance for example implies that two univariate normal

densities with equal variances and a difference of 1 in

their means are just as far apart as two whose means are

equal and whose variancesdiffer by 1. The problem of a

parameter space distance is readily solved by recognizing

that what is really required is a distance measure between

density functions. In fact the problem is identical to the

problem of choosing a parameter space distance for nearest

neighbor classification considered in Section 3.4. Thus to

compute the distance between two points in the parameter

space we compute the distance between the densities

associated with the two points, using one of the a v a i l a b l e

distance measures. By virtue of Section 3.4 this can be

viewed as computing the distance between points in the

parameter space.

Another question that arises when clustering in

the parameter space is that of grouping (i.e., the "determine

new mode centers" block in Fig. 4.2.4.1). How does one

group together the densities assigned to a mode center to

arrive at a representative density or new mode center? In

the observation space grouping is usually on the basis of an

average of all the vectors in the group. Is this also a
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grouping is vastly different from the grouping carried out

in LARSYSAA where the statistics for a "grouped class" are

based on the pooled vectors of all the samples that are to

be grouped.

The previous paragraphs indicate that there are

a number of unanswered questions regarding clustering in

the parameter space. To answer some of these questions,

and evaluate the usefulness of parameter space clustering

of multi-spectral scanner data a program GRPSAM (for group

samples) was written. The basic flow chart of the program,

omitting minor details, is shown in Fig. 4.2.4.1. A

discussion of each of the blocks in Fig. 4.2.4.1 is

contained in the following paragraphs.

The input to GRPSAM,in addition to the control

cards, consists of a statistics deck containing the first

and second order statistics of all the samples to be

grouped. The format of the statistics deck is the same as

that generated by the $STAT processor in LARSYSAA.

The initial mode centers in the parameter space

are simply chosen to coincide with the parameter space

representation of some of the samples to be clustered. If

15 samples are to be clustered into 5 modes, then every

third sample is chosen as an in i t i a l cluster center.

; W i t h i n the clustering loop the assignment of any

sample to the nearest mode center is on the basis of one of
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four distance measures. The distance measure that can be

selected are the Divergence, Bhattacharyya distance,

Jeffreys-Matusita distance and Swain-Fu distance. Because

of the interrelation between the B and JM distances, the

clusters obtained using these two distance measures are

identical. Both distances have been included to facilitate

the comparison of the numerical output in the separability

table with similar output from other programs where either

distance may be used.

Four grouping methods are also provided. These

are sample-, equal -large-sample-, average-,and product-

grouping. In sample-grouping all the vectors used in

estimating the densities assigned to a mode are pooled to-

gether and the mode mean and covariance are estimated from

the pooled vectors. Equal-1arge-sample- grouping is identical

to sample-grouping except it is assumed that all samples

grouped contain the same number of vectors and that this

number is large. In average-grouping the location of the

mode center in the parameter space is simply the mean of

all the points in the parameter space associated with that

mode. For product-grouping the mode center is the Mth

root of the product of the M densities associated with the

mode. Appendix E Section E.I contains more details on the

grouping methods in GRPSAM including appropriate mathematical

expressions to describe the grouping.
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For the distinctness test on the flow chart (Fig.

4.2.4.1) the pairwise distance between all class pairs,

using the distance measure selected for clustering, is

computed. If the smallest of these pairwise distances

exceeds a user specified threshold then the modes are con-

sidered to be distinct. If the modes are not distinct the

number of modes is reduced by 1 and clustering is repeated.

If the modes are distinct processing for that request is

complete. The procedure just described is in essence a

simple search procedure which can be utilized to attempt

to establish the number of modes. It is identical to the

procedure used in NSCLAS and has the same disadvantages

described in conjunction with the discussion of that program

The output from GRPSAM consists of a printout

depicting the grouping arrived at by the program and if

desired an output statistics deck which reflects this

grouping is punched. In computing the output statistics

the user has the option of u t i l i z i n g either the grouping

method that is selected for grouping in the clustering loop,

or else u t i l i z i n g sample-grouping. A separability table

which gives the separation between all mode pairs for all

four distance measures is also printed. The maximum,

average and minimum pairwise sep ration for each distance

measure is also shown in this table.

The different grouping methods available require

further discussion. A rough idea of what the different
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grouping options accomplish can be obtained by examining

the univariate example shown in Fig. 4.2.4.2. Two normal

densities which differ in mean and variance are shown as

well as the densities that result if these two densities are

grouped by the four available methods. Equal-1arge-sample-

and average-grouping result in identical means but average-

grouping leads to smaller variance for the grouped density.

A still tighter grouped density results from product-

grouping. In addition the mean is biased toward the mean

of the sample density with smaller variance. Sample-

grouping differs from the other three methods in that it

takes into consideration the number of vectors used to

estimate the parameters of the original densities. The

resultant grouped density can be "anywhere between" the two

original densities and is biased toward the estimated

density based on the larger number of vectors. The equal-

large-sample-grouping curve represents the "midrange" for

sample-grouping, provided sample sizes are large.

The type of grouping choosen w i l l usually affect

the grouping of the samples and consequently the statistics

for each mode. However, even if the grouping remains the

same for the different grouping methods, the mode statistics

for the different grouping methods are quite different.

If relatively broad statistics are desired then sample- or

equal-large-sample-grouping is most appropriate. To

produce slightly tighter mode statistics average-grouping
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should be used. Product-grouping should be used if s t i l l

tighter statistics are desired.

It is important to note that the statistics gen-

erated by GRPSAM can be generated by the $STAT processor

of LARSYSAA only if sample-grouping is utilized in com-

puting the statistics. Of course the field grouping used

in LARSYSAA must be that arrived at by GRPSAM if identical

statistics decks are to be produced. For vector by vector

classifiers, such as LARSYSAA, it can be argued quite

effectively that the only logical grouping is sample-

grouping. For sample classification the situation is not

as obvious. In particular one would expect that if a number

of samples all wi.th identical means and covar-iances are

grouped, then the mean and covariance for the mode center

should be the same as the mean and covariance for each

sample. All four grouping methods except sample-grouping

posses this property. For sample-grouping it is approxi-

mately true for large sample size.

Appendix E Section E.I contains additional in-

formation about the program GRPSAM incl u d i n g a "Control

Card description" of the program.

4.2.5 LARSYSDC: A Nonparametric Minimum Distance Classifier

LARSYSDC is a nonparametric minimum distance

classifier based on the histogram approach of estimating

pdf's and cdf's. Three different distance measures, namely

the Kolmogorov-Smirnov, Kolmogorov-Variational and



Jefferies-Matusita distance can be used in the classifier,

Only a brief functional description of LARSYSpC appears in

the ensuing paragraphs. Appendix E Section E,2 considers

in greater detail some aspects of the program, particularly

the reasons for selecting histogram estimators and some of

the problems associated with these estimators are discussed.

A "control card description" of LARSYSDC is also given.

LARSYSDC is divided into three processors under

the control of a monitor as shown in Fig. 4.2.5.1. The

first processor is the nonparametric pdf processor ($NPDF)

which computes density histograms, for the samples speci-

fied*, and stores them in a file on magnetic tape. The

operation is performed for both the training and test

samples, with different tapes used to store the training

and test histograms. Storing both training and test his-

tograms facilities classifying the same data with different

distance measures. To generate a density histogram for a

given sample two passes through the data, associated with

that histogram, are necessary. This is a result of the

method used to store histograms which is described in

Appendix E Section E.2. The first pass essentially es-

tablishes the location of the data in E^ while the second

pass generates the density histogram.

The second processor in LARSYSDC is the nonpara-

metric cdf processor ($NCDF). This processor converts a

*There are two methods of specifying samples.
These are described in Appendix E Section E.2.
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density histogram file to a cumulative histogram file and

is used only for distances based on cdf's (i.e., KS dis-

tance). Usually the conversion process can be performed

fairly quickly but if the number of bins in the density

histogram is quite large the required time can be quite

1arge.

The third processor in LARSYSDC is the classi-

fication processor ($DCLAS). This processor reads his-

tograms from a file of test histograms and compares them

with 'the training histograms in accordance with the

selected distance measure, and lists the classification

results. Actually the five nearest neighbors to the un-

known density are listed. Performance tables are also

printed. The test and training histograms used in the

classification must be compatible as to type (i.e.,

density or cumulative), channels used, and bin size. To

enable the largest possible number of channels to be used

(i.e., biggest histograms) only two histograms are stored

in core at a given time. This means that for each sample

to be classified the training histograms must be read into

core one at a time and the appropriate distance computa-

tions performed. To facilitate this procedure the training

histograms are transferred from tape to disk at the start

of a classification and then read from disk as required.

At the users option the training histograms can be read

repetitively from tape rather than disk. Although tape is
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considerably faster it is much less reliable in that the

excessive tape usage quickly causes frequent read errors to

occur.

The selection of the distance measures a v a i l a b l e

in LARSYSDC requires comment. The original intention

was to consider most of the distance measures given in Table

2.4.2. Difficulties arise with some of these measures and

consequently only the Jeffreys-Matusita , Kolmogorov-

Variational and Kolmogorov-Smirnov distances were i n i t i a l l y

implemented. The classification results obtained with

these distances, in addition to those in the parametric

classifier PERFIELD suggested that the distance used is

not very critical and consequently others were not im-

plemented.

In any case the distances included in LARSYSDC

are adequate to enable an investigation of most interesting

problem areas. Thus the JM distance is one of the dis-

tances implemented in the parametric as well as the non-

parametric classifier. This enables a comparison of

parametric and nonparametric minimum distance classifiers.

The KS distance is based on cdf's and illuminates some of

the problems arising in utilizing distances based on cdf's.

The difficulties encountered with some distance

measures, which were referred to in a previous paragraph,

require discussion. The basic problem is that for some

distance measures the distance between most estimated dis-

tribution is infinite when histogram estimators are used.
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Practical difficulties of this general nature have already

been pointed out in Section 3.3 for KL numbers. The

Divergence presents an even greater problem in that the

Divergence between two density histograms is infinite

unless the bins in which the histograms are not zero are

identical. A somewhat simi 1 ar situation prevails for the

Cramer-Von Mises distance. In this case the distance be-

tween most distributions is infinite unless the distri-

butions are univariate. Recall that to compute the CV

distance integration is carried out over all of Eq. This

means that unless the two distributions involved approach

each other rapidly enough as the independent variable

approaches infinitely in most directions the CV distance

w i l l be infinite.

The above discussion does not mean that the

distances listed could not be used in m i n i m u m distance

classifiers based on histogram estimators. It does mean

that some modification to the fundamental definition of the

distance, such as restricting the region of integration, is

necessary. Moreover, as already indicated, the results ob-

tained eliminated the need to consider more distance mea-

sures .

There is one other problem regarding the implemen-

tation of m i n i m u m distance classifiers, which are based on

histogram estimators, that must be discussed. This concerns

the region of E^ over which operations must be carried out



in computing the distance. The basic definitions given in

Table 2.4.2 imply that this is typically all of Eq. In

practice the region can usually be reduced by virtue of the

fact that density histograms are zero in much of Eq, while

cumulative histograms contain regions where they are zero

or one. This problem is considered in greater detail in

Appendix E where we show that the number of bins involved

is typically much smaller for the JM and KV distances

than for the CV distance. Furthermore it is probably

generally true that distances defined in terms of pdf's

w i l l usually involve smaller "search regions" than those

defined in terms of cdf's. This of course directly affects

computation time, which together with the larger time re-

quired to estimate cdf's places distances based on cdf's

at a definite speed disadvantage in minimum distance

classifiers using histogram estimators.

4.3 On Mul[tispectral Scanner Data, Class Selection, and
Training Field Selection

Since multispectral scanner data is to serve as

the vehicle for the investigation of minimum distance class-

ification a brief description of some of the problems en-

countered in classifying such data is the subject of this

section. The discussion is directed primarily at classify-

ing agricultural scenes since most of the experience has

been with this type of data. Furthermore interest in

sample classification schemes is greatest in this context.
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In the agricultural setting the classes of interest

are frequently the various types of ground cover (i.e.,

crops). These classes, and indeed in general, any classes

that might be considered as possible classes in classifying

multispectral data should possess the following two

characteristics:

(a) Classes should be of practical utility. That

is the classes defined should be of interest

to some i n d i v i d u a l or group of i n d i v i d u a l s .

(b) Classes should be sufficiently seperable

spectrally so that the established constraints

on probability of error can be achieved.

Requirement (a) can be met without reference to the data

and consequently fits nicely into a supervised system.

Requirement (b) on the other hand requires that the data

be examined and is essentially of an unsupervised nature.

It is important to note the (a) and (b) may be conflicting

requirements and that it may not be possible to satisfy

them simultaneously. Frequently classes are defined (at

least initially) on the basis of their practical utility

and then tested for separability. If separability is poor,

as evidenced by a large probability of error, a new set

of classes is defined taking into account what has been

learned about separability. It is also possible to devise

a classification system that approaches the problem with

the other i n i t i a l premise. In such a system classes would
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be defined on the basis of their separability. An attempt

would then be made to associate the resultant classes with

classes that have some practical utility. Defining classes

on the basis of observation space clustering is such an

approach. The ideal training procedure would effect a

compromise between requirements (a) and (b) prior to the

start of classification.

Another factor which must be born in mind when

LARSYSAA and PERFIELD are used is that these programs are

based on the Gaussian assumption. This, of course, does

not mean that they cannot be used if the data is not

Gaussian, but it does mean that performance predictions

based on the Gaussian assumption are not a p p l i c a b l e . In

general one might expect reasonable performance if the data

is unimodal and symmetrical. Unless classes are very

separable multimodal classes tend to give rise to large

probabilities of error and should be avoided.

With regard to the Gaussian assumption it appears

that typically data from an i n d i v i d u a l field, regardless of

crop type, is usually reasonably unimodal and symmetrical.

The unimodality makes the Gaussian reasonable for an i n d i v i -

dual field. Occasionally i n d i v i d u a l fields do exhibit bi-

modality, but if field boundaries are chosen with care this

is the exception rather than the rule. On the other hand,

different fields of the same crop type frequently are

sufficiently different spectrally so that the combined data



from twp such fields exhibits distant bimpdality. Under

these circumstances in order that the Gaussian assumption

is approximately satisfied, subclasses are usually defined

for each main class (e.g., wheat 1, wheat 2, etc.), such

that the distribution of each subclass is unimodal. Perhaps

if training samples could be drawn from sufficient variety

of fields for a given crop type a unimodal distribution would

result for each main class and the definition of subclasses

would not be necessary, even for a parametric classifier.

The class distribution in this case would naturally be broader

than the distribution of any of the subclasses of which it

is composed. It is presently not known whether better

classification is achieved by using many subclasses whose

distribution are relatively narrow or using fewer subclasses

with broader distributions, although the trend appears to be

toward the definition of many subclasses.

From the above discussion it is apparent that the

definition of subclasses is a problem of considerable im-

portance in classifying multispectral scanner data. Con-

sequently, the usual methods that are used to select sub-

classes w i l l be briefly discussed.

(a) Histogramming Method - A large number of fields

are histogrammed for each main class and the

number of subclasses defined in the basis of

visual examination of these histograms.
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(b) Iterative Classification Method - The data is

classified on the basis of one or more

classes per crop type. Fields that are in-

correctly classified are used to help establish

subclasses.

(c) Divergence Method - Every possible training

field for a given crop type is defined as a

subclass. The Divergence computing capability

of the feature selection algorithm ($DIVG) is

then used to decide which of the subclasses

are sufficiently alike so that they may be

combined.

(d) Observation Space Clustering - Observation

space .vectors all belonging to the same main

class are clustered into various number of modes

and subclasses established on the basis of the

mode separabi1i ty.

(e) Composite Method - Some combination of (a),

(b), (c) and (d).

All of these methods have disadvantages of one sort

or another. The histogramming and iterative methods require

considerable personal intervention and judgement and conse-

quently, are quite slow. Furthermore, there appears to be

no way in which the iterative method could be automated.

The histogramming method could be automated by defining

a suitable distance function between Histograms. If this
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were done, this method would very much resemble the Diver-

gence method, except that it would appear to be inferior in

that it depends only on the marginal distributions and

ignores correlation effects. The Divergence method seems to

be a useful approach. U t i l i z i n g LARSYSAA to implement this

approach is somewhat akward in that the a v a i l a b l e software

is used in a non-standard fashion; but this is not a funda-

mental problem. A further extension of the Divergence

approach leads to parameter space clustering; in this situ-

ation the manual grouping is replaced by automatic grouping.

Observation space clustering is probably the most

automated and "best" method of defining subclasses in gen-

eral use at LARS. The rapidity with which this method

gained acceptance clearly testifies to its usefulness.

Normally, since the number of separable subclasses is un-

known, it is necessary to cluster the data into various num-

bers of modes. This together with the large volume of compu-

tations that must be performed to cluster the data for each

mode specification means that considerable computation time

is involved. The method does have the distinct advantage

that it readily leads to the definition of subclasses whose

histograms are reasonably unimodal and symmetrical.

It is worthwhile noting that regardless of the

manner in which classes and subclasses are defined,to obtain

a classification with the parametric classifiers LARSYSAA

and PERFIELD is usually an iterative process. It is un-

fortunate that this is so, since the iterative approach is
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very time consuming. The crux of the problem is that the

classifiers are supervised systems. Consequently, the

assumptions that the number of classes are known apriori,

and that training samples are a v a i l a b l e for each class are

inherent in the classifiers. In practice these assumptions

are simply not v a l i d for a parametric classifier. One may

know the number of main classes (i.e., classes of practical

utility) but the number of subclasses required to reason-

able satisfy separability requirements and the parametric

assumptions are not known; and consequently, the total

number of classes is unknown. There appears to be no

simple solution to this problem for the parametric case.

The use of clustering programs like NSCLAS and GRPSAM assists

somewhat in alleviating this problem in that some idea about

classifier performance can be obtained before proceeding to

the classification stage. Ultimately, however, it is the

classifier that decides the quality of the training and a

certain amount of iterative classification appears unavoid-

able. In this regard care must be exercised to avoid the

temptation of using test results to improve classifier per-

formance. Such a procedure of necessity leads to optimistic

results. Modifications to the training statistics must in

most realistic situations be based on the training results

only. Test fields serve the sole purpose of evaluation

classifier performance. In a certain sense u t i l i z i n g test

results to improve classifier performance is equivalent to
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the utilization of the test fields as training fields.

At first glance nonparametric classifiers appear

to provide some advantage in that the definition of sub-

classes is no longer necessary, and in fact some favorable

results have been obtained with such methods under very
73controlled conditions on exceedingly limited amount of data.

In terms of classifying a large volume of data it is not at

all clear that nonparametric technique simplify the training.

The problem of defining subclasses is simply replaced with

the problems of selecting the samples to be included in the

training set. Of course, nonparametric methods should not

be overlooked but they do have a number of disadvantages.

In general nonparametric methods tend to be slower and

require more storage than parametric methods. This is in

fact a very real problem if one considers classifying the

vast amount of data that becomes a v a i l a b l e in the remote

sensing of earth resources. Intuitively one feels that a

simpler system w i l l be achieved if reasonable results can be

obtained and the parametric assumption maintained.

Another factor of considerable importance is that

as flightlines become longer, the need for systems that have

adaptive capabilities w i l l increase. The reason for this

is that the data almost certainly w i l l not remain suffi-

ciently uniform over a long flightline so that a single

fixed set of training fields w i l l suffice.
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4.4 Experimental Evaluation of GRPSAM

In describing the program GRPSAM it was pointed

out that a number of options existed with regard to the

distance measure and grouping method used during clustering.

In this section experiments designed to evaluate the various

grouping methods and distance measures are described. The

evaluation is accomplished by comparing the classification

accuracy acheived on a fixed set of training and test fields,

where the class statistics are generated by clustering the

training fields with GRPSAM using various combinations of

distance measures and grouping methods.

Before becoming involved in the details of these

comparative classifications it is advisable to try and

establish a "feeling" for the clustering properties of

GRPSAM, as well as the distance measures utilized.

Although observation space clustering is a technique in

common usage this does not appear to be true for parameter

space clustering. In addition the distances (in some cases

metrics) used in parameter space clustering are rather com-

plicated functions of the coordinates and it would be useful

to obtain a deeper understanding of the "metric-properties"

of the distances involved. For example it would be de-

sirable to know if what the eye perceives as a cluster in

a parameter space scatter plot s t i l l appears as a cluster

in terms of a particular distance measure. After a l l , the

distance measures used in the parameter space differ



considerably from the Euclidean metric to which the eye is

attuned. "Consequently, before comparing various distance

measures and grouping methods we consider the distance

measures involved in GRPSAM from a parameter space point of

view.

4.4.1 "Metric-Properties" and Other Characteristics of
Distance Measures used in GRPSAM

For the bivariate case the parameter space is five

dimensional. Consequently any graphical aids in under-

standing the distance measures used in GRPSAM are essen-

t i a l l y restricted to the univariate case. For this reason

we focus attention on this case.

Perhaps the simplest technique for g a i n i n g some

understanding of the "metric-properties" of the distances

in v o l v e d is to draw constant distance contours in the

parameter space. Actually for the univariate case the

expressions for JM Distance, Divergence, and SF distance

can be normalized and a universal set of constant distance

contours can be drawn on the resulting normalized axis.

Let (u ,0 ) be a point in the parameter space about which

constant distance contours are drawn and let (y,a) be an

arbitrary point at a fixed distance from (y ,0 ). Then

u t i l i z i n g table 2.4.3 and defining the normalized mean pn as

4.4.1.1

and the normalized standard deviation as
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o = a/a 4.4.1.2n o

we can write for the JM distance, the Divergence, and the SF

distance respectively;

2a 1/2 -y 1/2
M = {2[1 - ( - ) exp ( - -V)]} 4.4.1.3

i 1+an 9
— 4.4.1.4

n n
y2

T = - — 4.4.1 .5

Families of these equations are plotted in Fig. 4.4.1.1 with

constant values of M, J, and T as a parameter. Constant

distance contours for the Bhattacharyya distance are iden-

tical to those for the JM distance by virtue of 2.4.7, only

the numerical value for the distance is different.

The constant distance contours for the JM distance

and Divergence have some points of similarity in that they

are closed and have an oval shape. The similarity is more

pronounced for densities whose separation is small. For

densities with large separation the differences become

more pronounced and consequently the global properties for

the two distances are quite different as we presently

Recall that the mathematical symbols used to
represent the JM distance, Divergence and S F d i stance are
M, J and T respectively.
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demonstrate. The SF constant distance contours obviously

differ considerably from those for the JM distance and

Divergence.

Another way of demonstrating some of the "metric-

properties" of a distance measure is to plot contours that

are equi-distant from the two selected points (mode centers)

in the parameter space. In fact equi-distance curves are

more important than constant distance curves from the view

point of clustering. It is of course true that equi-distant

contours can be constructed by using constant distance

contours, but the shape of the equi-distance curves is

extremely difficult to visualize from the constant distnace

contours. Subtle changes in the shape of the constant dis-

tacne curves can produce radical changes in the equi-

distance controus. A good example of this is Fig. 4.4.1.2

where equi-distance contours for the three distances under

consideration are shown. Note the difference between the

equi-distance contours for JM distance and Divergence even

through their constant distance curves were quite s i m i l a r .

Normalization of equi-distance curves is not

possible. This means that many examples like that shown in

Fig. 4.4.1.2 must be considered before a good understanding

of the "metric properties" of the distances can be

obtained. Actually the curves Fig. 4.4.1.2 are fairly

typical of the situation encountered for real multispectral

scanner data. Typically in the vicinity of the mode centers
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the curves are all quite s i m i l a r for the different distances

and roughly at right angles to the mean axis. In regions

of the parameter space that are remote from the mode centers

the curves are drastically different. In practice this is

of little consequence since typically there is no data in

the remote regions. The fact that in the vicinity of the

mode centers the curve are roughly orthogonal to the mean

axis i m p l i e s that the means of the mode centers have con-

siderably greater influence in determining the partition

surface than do the variances. Furthermore, the investi-

gation of higher dimensional cases (by observing

appropriate two dimensional cross plots) indicates that this

situation also tends to prevail in higher dimensional cases.

The constant distance contours in Fig. 4.4.1.1

can be used to infer the existence of certain bounds in-

v o l v i n g the three distance measures under consideration. For

example we note that the 5.50 constant Divergence curve

appears to lie between the 0.75 and 1.00 constant JM distance

curves. This i m p l i e s that for a Divergence of 5.50 the JM

distance is bounded above by 1.00 and below by 0.75, and in

general suggests the existence of a upper and lower bound

on the JM distance for a given Divergence.

The upper bound is quickly established because it
23is known for the multivariate normal case that

J > 8B 4.4.1 .6
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This combined with 2.4.7 yields

M2 < 2(l-e"J/8) 4.4.1.7

It is interesting to note that this upper bound can

be inferred directly from Fig. 4.4.1.1. Let M(u ,a ) and

J(|j ,a ) be the JM distance and Divergence as given by

4.4.1.3 and 4.4.1.4 respectively. A careful examination of

the largest JM distance curve that just fits outside a given

Divergence curve (e.g., JM distance equals 1.00 and Diver-

gence equals 5.50) suggests that the mathematical property

relating such curves is

M(|nJ.D = J(|yn|.])'. 4,4.1.8

That is, the upper bound appears to coincide with the case

where both the constant JM distance and constant Divergence

contours pass through the points (+y ,1) for arbitrary y .

It is readily verified that the slope of both contours

passing through these points are identical lending further

credence to the suggested relation. Using 4.4.1.8 in

conjunction with the expressions for the JM distance and

Divergence quickly leads to the upper bound given by 4.4.1.7..

A lower bound can also be inferred from Fig.

4.4.1.1. For this case the mathematical property that

appears to relate the constant JM distance contour that just

fits inside a given constant Divergence contour (e.g., the

JM distance equals 0.75 and the Divergence equals 5.50 curves)
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i s

M(0,on) = J(0,on) 4.4.1.9

That is, the lower bound appears to coincide with the case

where the constant Divergence and constant JM contours pass

through the same points on the a axis. Thus setting y to

zero in 4.4.1.3 and 4.4.1.4 and e l i m i n a t i n g a we obtain

M2
(/J/2-+ /J/2 + lr+1

U t i l i z i n g the mathematical identity

Sinh"1 /J7? = Ln (/J7? + /J/2+1 ) 4 . 4 . 1 . 1 1

4 .4 .1 .10 can be wr i t ten as

M2 >_ 2[1 - Sech 1 / 2 (S inh" 1 /J72) ] . 4 . 4 . 1 . 1 2

The derivation for the lower bound given by 4.4.1.12

is not rigorous and we have not been able to rigorously

prove that it is correct. Experimental results have been

obtained which suggest it is correct even in the multivariate

case. These results are shown in Fig. 4.4.1.3 and 4.4.1.4

where scatter diagrams of the JM distance squared vs.

Divergence are plotted for the univariate and the trivariate

normal cases respectively. The upper and lower bounds given

by equations 4.4.1.7 and 4.4.1.12 have also been plotted.

The data used for the scatter plots are data

from 20 of the wheat Training Acres whose coordinates are

given in Table C.4. Statistics were calculated for these
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acres using LARSYSAA and then GRPSAM was used to compute the

pairwise JM distance and pairwise Divergence between all 20

wheat acre densities. In particular by setting the number

of modes equal to the number of acres, the separability

table in GRPSAM contains the pairwise separation between the

densities of all acre pairs based on the channels selected.

All the data so obtained for both the trivariate and uni-

variate case fell between the bounds depicted. For the

trivariate case all data was considerably above the lower

bound. In fact as the number of dimensions increases the

points tend to become more and more concentrated near the

upper bound. Whether this is due to an increase in the

lower bpund or simply due to a general increase in separ-

ability as the dimensionality increases is not known; but

it is. believed to be due to the latter factor. In any case

Swain et al. have utilized this property in feature

selection. They observed experimentally that the average

(over class pairs) JM distance provided better feature

selection capabilities than the average Divergence, but

was computationally more complex. By u t i l i z i n g the upper

bound in Fig. 4.4.1.4 as a "transformed Divergence", they

were able to retain the computational simplicity of the

Divergence and attain performance approaching that achieved

with the JM distance. Since for a reasonable number of

dimensions most of the points are near the upper bound the

choice of the upper bound as a transforming relationship
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between Divergence and JM distance is quite reasonable.

The constant distance contours of Fig. 4.4.1.1

also suggest a bound on the SF distance. In particular one

would expect that for a given Divergence the SF distance

should have a lower bound of zero, and that an upper bound

should also exist. In fact by procedures s i m i l a r to those

discussed for the JM distance the relation

T < / J7T2" 4.4.1.13

is obtained as an inferred upper bound for the univariate

normal case. This result has also been rigorously

derived. The derivation is given in Appendix A Section A. 2

where for arbitrary dimensionality q we show that.

T < /J/4(q+2) 4.4.1.14

In Fig. 4.4.1.5 and 4.4.1.6 we show scatter plots

of the SF distance vs Divergence for the univariate and

trivariate normal cases respectively. These plots are based

on the same data and are obtained in the same manner as the

JM distance plots previously described. In all cases the

data conforms with the derived bounds. The most striking

characteristic of these graphs is the decrease in the upper

bound as the dimensionality increases in accordance with

4.4.1.14. This means that unless the Divergence increases

sufficiently rapidly with dimensionality the SF distance

between distributions w i l l in the l i m i t decrease as
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dimensionality increases.

The manner in which the Divergence, OM distance and

SF distance vary with dimensionality is a matter of con-

siderable practical importance since these distances may

be used to assess class separability and in feature selec-

tion. The question that arises is whether or not a given

numerical distance should be interpreted in the same manner

regardless of dimensionality. To shed some li g h t on this

question GRPSAM was utilized to calculate the average pair-

wise distance over all class pairs between the parametrically

estimated densities of 20 of the wheat Training Acres for

th;e JM distance, Divergence and the SF distance. The results

are plotted in Fig. 4.4.1.7, While these results were com-

puted for one particular data set the gross characteristics

undoubtedly apply to most sets of multispectral scanner data.

The manner in which the average distances in Fig.

4.4.1.7 varies with dimensionality depends very much on the

distance measure involved. Perhaps the most interesting

variation is that of the average SF distance which first

increases and then decreases as extra dimensions are added.

The behavior is similar to the behavior of the separability

measure of Section 3.2 for a saturating S/N ratio. In fact

the behavior of the SF distance can be interpreted in terms

of that result. Thus the increase with dimensionality of

the average distance between pairs of vectors in a class

means that the e l l i p s o i d s of concentration must get larger
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as the dimensonality increases. Recalling that the Swain

Fu distance is the ratio of the distance between mode

centers, to the sum of the distances from the mode centers to

the e l l i p s o i d s of concentration al ong the l i n e j.oining the

mode centers, it is obvious that unless the distance between

the mode centers (essentially S/N ratios) increases rapidly

enough with dimensionality the SF distance must decrease. The

average separability curve for the SF distance also lends

credence to the earlier contention that the basic results

of Section 3.2. are essentially independent of the re-

strictive assumptions of that section, this follows because

the wheat acre densities certainly did not obey the re-

strictive assumptions of Section 3.2.

The behavior of the average Divergence and average

JM distance in Fig. 4.4.1.7 are also of interest. The aver-

age Divergence continues to increase as the dimensionality

increases while the average JM distance saturates. The

saturation of the average JM distance is easy to explain in

that no pairwise JM distance can exceed 2. The shape of the

JM.distance curve is generally similar to that obtained for

probability of correct recognition. This in our opinion is

a rather desirable property in feature selection and other

applications. The properties of the JM distance, Divergence

and SF distance depicted in Fig. 4.4.1.7 in no way restricts

the use of these distance measures. If these distance mea-

sured are used in a situation where the number of dimensions

is variable then the results of this section are essential if
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misinterpretation is to be avoided.

4.4.2 An Example of Parameter Space Clustering
of Multispectral Scanner Data

In this section an example of clustering in the

parameter space is presented. The wheat Training Acres

listed in Table C.4 are selected for this example. Statistics

were obtained for each of the 59 wheat Training Acres and

these were then clustered in the parameter space using

various number of channels and each of three grouping methods

The three grouping methods used are sample-, average-, and

product-grouping. Equal-1arge-sample-grouping is not con-

sidered as all acres were of equal size and moderately large

(121 vectors). Thus the results for sample- and equal-large-

sample-grouping would be very similar.

Figure 4.4.2.1 shows the parameter space groupings

arrived at when only channel 11 is used to group the data,

with Divergence as the distance measure. Results are shown

for each of the three grouping methods. The mode centers

obtained are indicated by X's and the letters S, A, and P

are used to indicate sample", average-, and product-grouping

respectively. Once the mode centers are known then equi-

distant contours can be constructed as described in the

previous section. Such contours are shown for each of the

grouping methods. These curves partition the parameter

space into disjoint regions associated with each mode.

There are a number of observations that can be

made with regard to Fig. 4.4.2.1 which we list numerically.
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Observati on 1

There is considerable variability in the data in

that on a scale that ranges between 0 and 255 the means

for the wheat Training Acres ranged between approximately

100 and 175. One is tempted to attribute this variation to

the fact that harvested as well as unharvested fields are

included in the acres. W h i l e it is true that the harvested

acres are on the higher end of the 100 to 175 range they also

are spread out over at least half that range. Furthermore,

there are unharvested fields whose mean is near 175. Ob-

viously there are other important factors. A close inspec-

tion of the data indicates that geometry (i.e., relation of

sun and field to the scanner) is a very important factor.

In fact it appears to be the most important single factor

contributing to the spread of the data in Fig. 4.4.2.1. To

verify this contention in a statistical sense is beyond the

scope of this investigation.

Observation 2

The partitions are roughly orthogonal to the mean

axis. This is in accordance with the results of the previous

secti on.

Observation 3

The data does not appear to have any distinct clus-

ters even when the "metric properties" of the Divergence are

taken into consideration (i.e., partitions roughly at right

angles to the mean axis). This is disappointing in that one
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would hope that at least harvested and unharvested wheat

would tend to be rather distinct. The influence of geometry

and other factors appears to be great enough to obscure such

clusters at least in this particular channel.

Observation 4

the mode centers change considerably when, the method

of grouping is changed. The changes are largely changes in

the standard deviation rather than changes in the means; with

progressively tighter mode centers as grouping goes from S

to A to P. Since the partitions in the vicinity of the mode

centers are controlled primarily by the means, the parti-

tioning of the space is not greatly influenced by the

grouping method^ at least in the vicinity of the data.

Fig. 4,4.2*2 shows the grouping arrived at when

two channels (11 and 12) are used to cluster the wheat

Training. Acres-* The curves shown are simply for the purpose

of indicating the grouping and are not equi-distance

curves. In fact since the parameter space is five dimensional

an equi-distance "contour" is in fact a five dimensional

surface and cannot be shown as a single contour on a two di-

mensional projection. Note that the grouping of the fields

is the same for sample- and average-grouping. The mode

centers are however located at different points in the

parameter space even though this is not true for the

particular projection of the parameter space shown in Fig.

4.4.2.2. (i.e., covarianee matrices differ).
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Since it appears that the el emehts of the co-

variance matrix are not of great significance in determining

the clusters obtained it should be possible to roughly vis-

ualize clusters when the parameter space is projected onto

the axis of the means as shown in Fig. 4.4.2.2. This tends to

be true although the various curves in Fig. 4.4.2.2 tend to

obscure any clusters that the eye might perceive. If only

the data points in Fig. 4.4.2.2 are plotted, and visually

grouped into four groups, the resultant groups are very simi-

lar to those achieved by GRPSAM with sample- and average-

grouping.

The experiments required to obtain Fig. 4.4.2.1

and Fig. 4*4.2.2 were repeated both for the JM Distance and

the SF distance. For the one channel case the partitioning

curves for both the JM distance and SF distance tended to be

more nearly orthogonal to the axis of the means and not as

curved. The curves for the SF distance showed greater varia-

bility with grouping method than those for the Divergence

while the JM distance curves showed less variability.

Finally all thirteen channels were used to cluster

the wheat Training Acres using the JM distance and product-

grouping. The grouping was considerably different from that

obtained when only one or two channels were used. There were

4, 23, 12 and 20 acres in subclasses 1 to 4 respectively.

LARSYSAA was use'd to obtain 13 channel histograms for these

subclasses. These are shown in Fig. 4.4..2.. 3. Subclass 1 is

very mill trmodal . In fact all of the 4 fields are distinctly
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v i s a b l e in some channels. Some of the other classes exhibit

some bimodality in some channels. It is apparent that if

all traces of multimodality were to be removed the number

of subclasses would have to be increased considerably.

It is worth emphasizing at this point that the

examples presented above are for the sole purpose of obtain-

ing a deeper understanding of the distances and grouping

methods considered, These examples do not form the basis of

judging the value of a distance measure or grouping method.

In summary there are two p r i n c i p l e results. The first is

the relative insensitivity of the distance measures to the

covariance matrix; the second is that because of this in-

sensitivity the mode centers obtained by different grouping

methods differ largely only in covariance matrix.

4.4,3 Evaluation of Grouping Methods and Comparison of
Maximum Likelihood and Minimum Distance Classification

Now that the preliminaries of parameter space

clustering have been discussed the main problem of Section

4.4, namely, that of evaluating GRPSAM, can be considered.

Previously it was mentioned that the criterion to

be used in comparing procedures, etc., is to compare the

experimentally observed error rates for the procedures, etc.,

under consideration. This means that an experiment must be

designed in which the various parameters of interest can be

varied and their effect on classification accuracy determined,

In particular, the distance measures and grouping method are
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specific parameters of interest. Apart from evaluating

different distance measures and grouping methods the value of

parameter space clustering as a technique to assist in sub-

class definition for vector by vector and sample classifi-

cation schemes is of prime importance.

It seems advisable to clarify the conditions under

which parameter space clustering should be useful. We do

this in terms of an agricultural example. It is of course

clear that parameter space clustering is a parametric tech-

nique (in our case Gaussian). In the agricultural case if

some care is exercised in defining training field boundaries

it is usually possible to obtain reasonably homogeneous

samples. In terms of subclass definition this means that

the number of subclasses is at most equal to the number of

training fields and classifications could be performed on

this basis. In terms of processing time it is of course

essential to reduce the number of subclasses to the lowest

practical number. Thus if two training fields are spectrally

identical it is surely desirable to treat them as one sub-

class. It is in this context that GRPSAM should be of

assistance in that potential subclasses can be combined as

long as all subclasses remain spectrally separable.

The factors discussed in the previous two paragraphs

formed the basis of d e v i s i n g an experiment to evaluate

GRPSAM, and to determine the relative value of the different

distance measures and grouping methods. As mentioned earlier
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a crop yield study had been carried out u t i l i z i n g June'70

multispectral scanner data from flight lines 21, 23 and 24,

and that in this study the randomly selected Training Acres

of Table C.4 had been used for training. The test fields

used for the yield study are the Standard Test Fields of

Tables C.1 , C.2 and C.3.

Part of the objective of the yield study was to

use the Training Acres, which were selected on a random

basis from all three flight lines, to generate one set of

statistics suitable for classifying all three flight lines

into four main classes. Y i e l d predictions were then based on

these classifications. The main classes considered were

wheat, corn, soybeans and other.

It is apparent that by classifying the flight lines

used in the yield study with both PERFIELD and LARSYSAA,

using subclasses defined by GRPSAM, an evaluation of GRPSAM

as an aid in subclass definition is possible. By performing

such classifications for various distance measures, and

grouping methods, the effect of these parameters can be

determined. Finally by comparing the LARSYSAA classifi-

cations obtained in the yield study with those of the

present study it is possible to reach some conclusions re-

garding the relative performance of parameter and obser-

vation space clustering. Such a comparison is legitimate

since the objectives and constraints of the two approaches

are essentially the same. Actually the constraints of the
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present study are slightly different in that some slight

modifications of the training set is necessary. Some of

the acres on the yield study were in fact only partial acres.

In this study it was decided not to use any partial acres

because every acre is originally treated as a possible sub-

class, and it was felt the number of vectors in most partial

acres is too small for the estimation of 13 channel statis-

tics. In fact the number of vectors in a full acre (121) is

marginal. Also since GRPSAM required statistics for each

acre, and since LARSYSAA can only handle a maximum of 60

classes, some of the 65 full wheat acres were discarded.

Consequently, for this study the Training Acres consisted

of 59 wheat acres, 44 corn acres, 23 soybean acres and 46

other acres. This set differs slightly, though no.t signi-

ficantly, from the set used in the yield study.

To achieve the objective of evaluating GRPSAM the

original intention was to carry out PERFIELD and LARSYSAA

classification of all three flight lines on the basis of sta-

tistics obtained by clustering the Training Acres with each

distance measure (i.e., Divergence, JM distance, and SF

distance) and each grouping method (i.e., Sample Average and

Product) a v a i l a b l e in GRPSAM. These intentions were modified

during the course of the experiment as a consequence of some

of the experimental results. Specifically two changes

were made. The SF distance was dropped from consideration

and a fourth grouping method was added. The rational behind

these changes is described in the sequel.
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The SF distance was dropped from consideration

because in comparison with the JM distance and Divergence

it was exceedingly slow computationally. The implementation

of the SF distance in GRPSAM is essentially based on the
29expressions given by Swain and Fu as contained in Appendix

A. This form is simply not competitive timewise with the JM

distance and Divergence. The alternative form derived in

Appendix A and given in Table 2.4.3 is competitive but

unfortunately was not known at the time the experiment was

performed. By the time the alternative expression for the

SF distance was derived a considerable body of data had

been collected which suggested that in practice the choice

of distance is not exceedingly critical, consequently, no

attempt was made to perform the SF portion of the experiment.

With regard to the added grouping method partial

experimental results suggested that a grouping method, which

had not originally been included in GRPSAM, might yield better

performance (i.e., classification accuracy). GRPSAM was

modified to include this grouping method. Specifically the

experimental evidence suggested that during clustering the

mode centers should be "tight" whereas once the grouping

has been established the samples should be combined using a

grouping method that leads to broader statistics. The

extreme approach, within the limits of the grouping methods

provided in GRPSAM, would be to compute the final statistics

using sample-grouping on the basis of the clusters obtained
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with product-grouping. We refer to this grouping method

as prpduct-sample-grouping (PS grouping). To facilitate

the investigation of this grouping method GRPSAM was modi-

fied so that PS grouping could be specified. Average-

sample-grouping was also provided at the same time but has

not been used. Note the statistics generated by GRPSAM for

PS grouping, are identical to those obtained when LARSYSAA

is used to compute statistics on the basis of the fields

grouping arrived at by GRPSAM using product-grouping.

As a consequence of the modifications just men-

tioned the experimental results we described i n v o l v e two

distance measures (Divergence and JM distance) and four

grouping methods (Sample, Average, Product and Product-

Sample). The procedures followed and the various options

selected are shown in flow chart form in Fig. 4.4.3.1. The

organization of this flow chart is based on the method of

describing experiments given in Table 4.1.

The first task in conducting the experiment is

the task of determining the number of subclasses. The

procedure followed is to use GRPSAM with the JM distance

and sample-grouping to cluster the acres for each class

i n d i v i d u a l l y into subclasses. Using only the even numbered

channels the fields for each main class are clustered into

each of 2, 3, 4,...,10 subclasses. The separability tables

are then examined with the objective of determining the

"best" number of subclasses for each class. Both minimum
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•Subclass Definition
4'wheat, 10 corn, 6 soybean and 10 other subclasses
selected on the basis of parameter space clustering.
Selection based on GRPSAM clustering of acres into
2,3,..., 10 modes using JM distance, sample grouping
and even numbered channels.

•Statistics Generation
Using subclass numbers obtained above GRPSAM was
used to generate 8 statistics decks using all 13
channels and the distance measures and grouping
methods indicated below.

JM distance
S A P PS

Divergence
S A P PS

•Feature Selection
Best 4 of 13 channels selected using $DIVG.
Subclasses within each main class weighted to zero

PERFIELD

"JM distance
-Channels 2,8,11,12

LARSYSAA

-Channels 1,8,11,12

PERFIELD

Divergence
Channels 2,8,11,12

Training acres and flightlines 21,23,24 classified for
each case

Figure 4.4.3.1 Flow Chart Showing Organization of Experi
mental Procedure for E v a l u a t i n g GRPSAM.



185

pairwise separability and average pairwise separability are

examined in an attempt to establish the "best" number of sub-

classes. Unfortunately neither of these indicators seems

to give a clear indication of the appropriate number of

subclasses. To demonstrate the problem the minimum pair-

wise separability, and average pairwise separability are

plotted in Fig. 4.4.3.2 as a function of the number of modes

Although these indicators do not give a decisive answer re-

garding the best number of subclasses, they are of some

value in selecting the number of subclasses. Other factors

must also be considered. For example, since wheat would

be expected to be fairly separable from other vegetation the

number of wheat subclasses need not be too large. Consid-

ering such factors and recalling that the maximum number of

subclasses that PERFIELD can handle is 30 it was decided to

use 4, 10, 6 and 10 subclasses of wheat, corn, soybeans and

other respectively.

Note that from Fig. 4.4.3.1 only one distance

measure and one grouping method are involved in defining the

number of subclasses. Since apparently no real indication

as to the number of subclasses results from the method des-

cribed, it appeared that no purpose would be served to re-

peat this work for various distance measures and grouping

methods. Furthermore, for comparative purposes it is not

essential anyway. In essence the question reduces to one

of finding the best grouping method and distance measure
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given the number of subclasses.

With the number of subclasses established GRPSAM

is used to cluster the samples and generate a statistic deck

for each combination of distance and grouping method using

all 13 channels. It is important to recall that each main

class is clustered i n d i v i d u a l l y . This means for example

that samples from corn and soybeans are never clustered

simultaneously. It also means that for each combination of

distance measure and grouping method four statistics decks

are generated; one for each main class. These decks are

merged into a single statistics deck suitable for use in

LARSYSAA and PERFIELD. All 6 field groupings acheived in

this manner are indicated in Appendix C Table C.4. There

are only 6 rather than 8 groupings as P and PS grouping al-

ways result in the same field grouping.

In the next step each merged statistics deck is

processed by the LARSYSAA feature selection processor $DIVG

with the objective of selecting the best 4 of the 13 chan-

nels for classification purposes. The decision to use four

channels was based on the fact that four channels were used

in the yield study. To enable comparison of results four

channels were also used in the present study. In util i z i n g

$DIVG the weights between all subclasses in a class were

set to zero. Consequently the divergence between subclasses

within a class does not affect the feature selection process.
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The Training Procedure used for this experiment

w i l l also be used for a number of other experiments. A

concise way of referring to this particular training

procedure is required. Using the method of describing an

experiment outlined in Table 4.1 we note that to describe

a Training Procedure it is necessary to indicate the

training fields, describe the subclass selection procedure,

and describe the feature selection procedure. The method

used is indicated by an example. Thus, JM-PS ($DIVG)

training means that subclasses were defined with the aid of

GRPSAM using the JM distance and PS grouping; and that

feature selection was on the basis of $DIVG. The training

fields are understood to be the Training Acres and the

number of subclasses are understood to be 4, 10, 6 and 10

for wheat, corn, soybeans, and other respectively. Neither

of these last two factors are reflected in the notation as

both factors remain fixed in all the work reported.

To keep the number of variables that effect

performance as small as possible, it is obviously desir-

able to utilize the same channels for all classifications,

provided this is at all reasonable. There was no one feature

set that was clearly the best in all cases, but there were

a number of sets that consistently showed up very well so

that any one of about 4 or 5 features sets could have been

used for our purpose. In all of the eight cases essentially

all of the more optimum feature sets contained channels 8,
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11, 12. The fourth channel tended to vary with the parti-

cular statistics deck with channels 1, 2, 4, and 5 fre-

quently showing up very well. Typically one would expect

performance to vary only slightly if three channels are

held fixed and the fourth channel is chosen from amongst the

more optimum remaining channels. For this reason selecting

one set of channels for all classifications was judged to

be a reasonable procedure. Channel 2 was chosen as the 4th

channel because the minimum pairwise Divergence was fre-

quently higher for channel 2 than for the other competing

channels.

Using channels 2, 8, 11, 12 the necessary classifi-

cation as indicated in Fig. 4.4.3.1 were performed. The

results of these classifications are shown in Fig. 4.4.3.3

to Fig. 4.4.3.6. The overall training performance is

shown in Fig. 4.4.3.3 w h i l e Fig. 4.4.3.4 displays the train-

ing performance by class. The test results, which represent

an average over three flight lines, are shown in Fig.'s

4.4.3.5 and 4.4.3.6 for overall test performance and test

performance by class respectively. The classifications were,

of course, carried out using both PERFIELD and LARSYSAA

respectively. In the Figures the terms sample classifier and

vector classifier identify the PERFIELD and LARSYSAA results

respectively. The distance measure used to group the

training fields is also shown in these figures. For the

PERFIELD classifications the same distance measure was used
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to. classify the data as was originally used to group the

training fields. The PERFIELD results therefore show the

relative value of u t i l i z i n g JM distance in the whole system

(i.e., clustering and classification) as opposed to the

Divergence. In both these systems feature selection is

based on the Divergence. Consequently, whatever bias

existed in the experiment should favor the Divergence.

Mention must also be made of the fact that the performance

of LARSYSAA is given in terms of % vectors correct w h i l e

that for PERFIELD is in terms of % samples correct,

A comparison of the LARSYSAA results obtained in

the yield study, were observation space clustering was used,

with those of the present study using parameter space

clustering is given in Table 4.4.3.1, The parameter space

results are those obtained with the JM distance and sample

grouping. The channels used in the yield study were 1, 8,

11, 12 compared with 2, 8, 11, 12 for the present study.

In comparing the experimental results the emphasis

is placed on the overall performance rather than the per-

formance by class. The most important reason for doing

this is because of the fact that it provides one single

number for comparing different classifications. There is

also a tendency for the overall performance by class to be

"better behaved" than the class performance. Thus if the

performance of one class goes up drastically at the expense

of another class this effect is smoothed p.ut in the overall

performance. W h i l e most of the conclusions are based on the
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overall performance we do not ignore the performance by

class entirely and comment on some interesting anomolies.

The class performance is also included for the sake of

completeness. On the basis of the overall training and

overall test performance the following observations can be

made.

Observation 1

On the basis of average overall performance sample-

grouping is usually superior to either average- or product-

grouping by a few to about 12%. In those eases where

product- or average-grouping are superior to sample-grouping

their superiority is only a few percent.

Product-sample-grouping usually performs slightly

better than sample-grouping but its advantage appears s l i g h t

(1 or 2%). In an operational system considering the in-

tuitive statistical appeal of sample-grouping, coupled with

educational and interpretational problems that arise if a

multitude of grouping methods are used, and noting that

vector classifiers naturally use sample-grouping; it is

recommended that sample-grouping be utilized as the

grouping method for parameter space clustering.

Observation 2

The grouping method used appears to have a

greater influence over the performance of LARSYSAA than

PERFIELD. This is readily explained. Recall from the

wheat acre clustering example that the grouping method
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affected primarily the subclass variance with minor effects

on the means. Thus regardless of grouping method the mode

means are roughly the same and only the coyariances differ.

Classifying samples with PERFIELD, with a distance that is

likewise rather insensitive to the covariance matrix,

suggests that the grouping method used w i l l not drastically

affect PERFIELD performance. In LARSYSAA the discriminant

surfaces can be drastically affected by the covariance

matrix implying a greater sensitivity to grouping method.

That the statistics are much too tight when average- and

product-grouping are used can also be demonstrated by using

a threshold in LARSYSAA. By this we mean a vector is not

classified (i.e., thresholded) unless the likelihood function

exceeds some predetermined number. This number is computed

so that a specified percentage of vectors from a normal

distribution are thresholded rather than classified. The

number of points thresholded for a very l i g h t threshold

(theoretically 0.5%) are of the order of 0%, 25%, 50% and

0% for S, A, P and PS grouping respectively. This suggests

that average- and product-grouping produce statistics that

are much tighter than the distribution of the actual vectors

drawn from that class.
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Observation 3

For a given grouping method the performance of the

JM distance is generally slightly better than the Divergence

(by up to about 10%). This tends to be true for all grouping

methods for both LARSYSAA and PERFIELD and for both training

and test results. The sole exceptions are that the Diver-

gence shows up better in LARSYSAA for P and PS grouping.

On the basis of these results the JM distance appears to be

slightly better for clustering than the Divergence. Recall

that because of feature selection a bias in favor of

Divergence might have been expected.

Observation 4

The performance for PERFIELD (% Samples correct)

for a given set of 'statistics was typically 5 to 101 greater

than the performance of LARSYSAA (% vectors correct) based

on the same statistics. This is a smaller improvement than

had been anticipated but can be understood in the l i g h t of

the following two examples. The first example indicates

the basis for expecting a large improvement, while the

second suggests why the anticipated improvement is not

realized.

In the first example consider a two class problem

in which each class is represented by a single distribution

function. If the distributions are sufficiently separable,

such that LARSYSAA makes essentially no errors, then

essentially no improvement results when PERFIELD is used.
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If the two distributions are almost identical then the

LARSYSAA error is in the vicinity of 50%, but for suffi-

ciently large samples PERFIELD makes essentially no errors.

It is on the basis of this result that one expects a dra-

matic improvement in PERFIELD performance over LARSYSAA.

In the second example consider the case discussed

in Section 3.5.3 where the classes are Gaussian (with equal

variance) but the means are distributed uniformly in the

parameter space. For convenience assume that each class is

represented by all the distributions in that class. For

large separation between the parameter space densities both

PERFIELD and LARSYSAA are essentially error free. For small

separation of the parameter space densities (i.e., consider-

able overlap) assuming that ties are broken in accordance

with the prior class probabilities, it is easily seen that

the probability of error for LARSYSAA is about 50%. This is

precisely the same as for PERFIELD. Thus in this example,

for either very large or very small separation between the •

parameter space densities, PERFIELD offers l i t t l e advantage

over LARSYSAA. We summarize this discussion by stating that

for data that is very easy or very difficult to analyse

PERFIELD appears to offer little advantage in classification

accuracy over LARSYSAA. It is data of intermediate diffi-

culty for which the potential for increased classification

accuracy is greatest.

It is important to note that a s i m i l a r situation

prevails in evaluating the merit of different c l a s s i f i c a t i o n
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Parameters as well as different Training Procedures. Thus

for example if classification accuracies are very h i g h or

very low the advantages of any particular parameter or pro-

cedure w i l l tend to be obscured.

Observation 5

The training performance is very much greater than

the test performance. This suggests that the training fields

are not too representative of the test fields. Since the

training fields were distributed over all the f l i g h t lines

it is difficult to see how a more representative set could

be chosen.

Ob s e r v a t i o n s

In performance by class the classification accuracy

for the class soybeans was lowest. Usually the majority of

the confusion was between corn and soybeans although some

confusion also existed between other, and corn and soybeans.

It is possible that the number of soybean subclasses should

have been somewhat larger.

Observation 7

From Table 4.4.3.1 it is apparent that parameter

space clustering is a usefu] technique. Although the training

set classification was considerably better using observation

space clustering the overall test performance (samples for

PERFIELD, vectors for LARSYSAA) was 6% poorer and improvement

was shown ifl every class. The fact that parameter space

clustering is probably faster makes it that much more appealing.
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Note, however, if homogeneous fields can not be defined then

parameter space clustering is not a p p l i c a b l e ; but observa-

tion space clustering is not affected.

4.5 Experimental Comparison of Distance Measures

The previous section contains a comparative eval-

uation of the Divergence and JM distance in parameter space

clustering. The evaluation of the relative merits of the

two distances is based on the performance of m i n i m u m distance

classifiers, which are trained on the basis of the clustering

results. The same distance is used in both clustering and

classification. As a consequence of this approach the re-

sults can also be viewed as a comparison of two classifica-

tion systems; one based on the Divergence the other on the

JM distance. They do not directly give a comparative evalu-

ation as to which distance would perform better in only the

classification phase of a minimum distance classification

system, since in the experiments described training was

purposely biased, supposedly in favor of the distance used

in the classifier. Such bias must be avoided if the compar-

ison is to involve the classifier only. Furthermore, the

systems were compared only in the parametric case.

The question of comparing various parametric and

nonparametric distance measures in the classification phase

is the main topic of this section. This comparison is

effectively treated in Sections 4.5.1 and 4.5.2 which res-

pectively consider the case of many subclasses and the case
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of no subclasses. ,

The thrust of Section 4.5.3 is slightly different.

The objective of that section is to compare two methods of

defining subclasses. The first method is based on random

selection of training fields, which we refer to as random

training while the second involves the clustering of randomly

selected fields which we refer to as nonrandom training.

As before results are presented for both average

overall performance and average performance by class. In

interpreting the results the emphasis is again placed on

average overall performance rather than average performance

by class. Only test results are presented. This is largely

a consequence of the fact that the training method used in

Section 4.5.1 ensures that training performance is 100%.

While this is not true of Section 4.5.2 or Section 4.5.3 no

attempt was made to obtain the training performance for

these sections.

4.5.1 .Random Training Field Selection - Each Training
Field Treated as a Subclass

It is convenient to describe the experimental pro-

cedure in terms of the method summarized in Table 4.1. It

is apparent that to accomplish our goal of an unbiased com-

parison of distance wea'sures, a fixed Training Procedure

which is in no way biased in favor of any distance me.a:sure,

must be used to train the classifier. The relative value <of

any distance measure is then established by considering the

c-la'ssi fi cation .accuracy achieved with that distance measure.
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Both the parametric minimum distance classifier PERFIELD

and the nonparametric implementation LARSYSDC are used. By

u t i l i z i n g both PERFIELD and LARSYSDC five different distance

measures can be studied and one of these can be studied in

both parametric and nonparametric form. The distance mea-

sures involved are KL numbers, Divergence and JM distance in

PERFIELD; KS distance, KV distance and JM distance in LAR-

SYSDC.

To remove bias in favor of any distance measure

from the Training Procedure the training fields are selected

at random and the classification channels are fixed and

specified apriori. In this way no known bias is introduced

either in training or feature selection. Because of the

random training field selection classification accuracy w i l l

be high for some classifications and low for others; in other

words the fact that performance is a random variable w i l l

show up with greater clarity than is typical. One way of

comparing such classifications is to perform a number of

sim i l a r classifications under similar conditions, and use

average correct classification as the performance index. This

is the procedure adopted. The Standard Test Fields of flight-

lines 21, 23, and 24 provide the three sets of data on which

the average performance is based. One would perhaps prefer

to have a larger number of data sets over which to take

averages, but it is difficult to obtain suitable data sets

and the computation time rapidly becomes p r o h i b i t i v e .
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The detailed Training Procedure adopted was to

randomly select a set of training fields from the Standard

Test Fields for that flightline. This was done on a "per-

centage basis by class" to ensure that each main class is

represented and treated in a similar manner. By selecting

the training fields on a percentage basis by class we mean

that for a given f l i g h t l i n e the same percentage of the

Standard Test Fields for each of the classes wheat, corn,

soybeans and other are used as training fields for that flight-

line. The classification channels were arbitrarily selected

to be 1, 8, and 11.

The above approach is alsio ideal for studying the

effect of varying the relative size of the training set.

With this objective in mind three classifications are per-

formed for each flight with the training set respectively

comprising a nominal 5%, 10%, and 20% of the Standard Test

Fields in that flightline. Table C.I, C.2, and €.3 which

l i s t the Standard Test fields for flightlines 21, 23 a:nd 24

also show the fields selected as training fields for these

flightlines for each 'of 5%, 10%, a^nd 20% training. Note that

the fields used for 10% training are chosen so that they

contain the 5% training fields,. Similarily the 2fO.% training

fields contain t;he Jl:0% training fields. Tire fields in the

Standard Test Fieil'd 'decks that are not selected as training

fields are 'u;se d as t e s t f i-e 1 ds .

'As already mehti<oned all cla'ssi.f i cati'ons are basred

on channels 1, 8, an'd 11. The 'reason for using 3 rather than
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the more commonly used 4 channels, is because the use of

more than 3 channels produced some histograms that contained

more bins than could be handled by LARSYSDC for the bin size

used (5). In fact some difficulty is even encountered with

nonrandom training (Section 4.5.3) for this bin size when

only 3 channels are used. Although the bin size of 5 was

arbitrarily selected it appears to be a reasonable value

based on typical histograms of multispectral scanner data.

Furthermore in Section 4.6.3 this choice is experimentally

shown to be reasonable.

The average overall test performance and the aver-

age test performance by class is given in Fig. 4.5.1.1 and

Fig. 4.5.1.2* Recall that in interpreting the results the

emphasis is placed on the average overall test performance.

Table 4.5.1.1 contains the experimentally observed standard

deviation in the overall test performance.

Table 4.5.1.1

Standard Deviation in Overall Test Performance. Random
Training with Subclasses

Standard Deviation for Standard Deviation for
% Training Parametric Distances Nonparametric Distances

5

10

20

6.5.3

5.87

2.32

3.31

3.90

4.44
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Table 4.5.1.1 is of considerable interest since it gives some

in d i c a t i o n of how radically the average test performance

fluctuates. Notice that'not all distances are considered

separately in this Table. W h i l e the variances were o r i g i n a l l y

computed individually for each distance measure, the data

indicated it was reasonable to combine all the nonparametric

and all the parametric distances into separate groups;

especially since the intended use is primarily qualitative

rather than quantitative. The advantage of this is that 9

rather than 3 classifications are used to estimate each

variance, resulting in a "better" estimate.

With the aid of Fig. 4.5.1.1, Fig, 4.5.1.2 and

Table 4.5.1.1 the following observations emerge.

Observation 1

Average performance is not drastically effected

by the choice of distance measure. In fact on the basis of

Table 4.5.1.1 it is quite likely that the variations that

do show up are simply statistical variations.

Observation 2

The parametric and nonparametric classifiers using

the JM distance have essentially the same average performance.

This result is to be expected provided the training and test

samples are reasonably Gaussian. Since each field is treated

separately this condition w i l l tend to exist.
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Observations

Increasing the training percentage from 5% to 20%

results in only a slight increase in average performance.

This behavior is similar to the behavior of the simple two

class univariate example considered in Section 3.5.3. There

the average performance also improved only slightly as the

number of subclasses increased. Thus this situation

apparently carries over to the many class m u l t i v a r i a t e

problem. In Section 3.5.3 it was suggested 'that increasing

the number of subclasses is of greater importance in reducing

the variance of the performance than in actually i m p r o v i n g

the performance itself. By using many subclasses one is

more likely to get results near the average than if the

number of subclasses is small. Table 4.5.1.1 demonstrates

this property for the parametric distances. The nonparametric

distances actually show a slight increase in standard devia-

tion with an increase in the percentage of fields used as

training. This behavior is largely due to the anomoulous

behavior of the KS distance whose variance for 5% training

was much less than for 20% training. The KV and JM distance

behaved in a more normal fashion. Even so the v a r i a b i l i t y in

performance for nonparametric distances does not appear to

be as sensitive to the number of subclasses as is the vari-

ability in performance for parametric distances. There is

no known explanation for this behavior.
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Observation 4

In classifying an i n d i v i d u a l flightline there were

numerous instances where increasing the number of subclasses

resulted in significantly poorer overall performance. This

effect also prevails in a few instances even when average

overall performance is considered, although in view of the

standard deviations in Table 4,5.1.1, and the very slight

change in average overall performance with percent training,

the decrease would not appear to be statistically significant,

In light of the results of the simple two class u n i -

variate example considered in Section 3.5.3 it .is not sur-^

prising that performance for.an i n d i v i d u a l flight line can

deteriorate when the number of subclasses is increased,

(cf Section 3,5.3 Observation 4). Apparently the behavior

of the many class multiyariate problem is in this respect

similar to the two class univariate problem. In terms of

the results of Section. 3.5.3 a decrease in average overall

performance is not expected. As already mentioned the

decrease observed for some distance measures appears to be

due to statistical variation but could conceivably also be a

consequence of the inadequacy of the model in Section 3.5.3.

Observation 5

The performance by class graphs (Fig. 4.5.1-.2)

contain a few items, of interest. The main features of these

graphs is that the number of subclasses increase the corn

arid soybean results remain essentially constant* the wheat
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results improve and those for the class other deteriorate,

particularily in increasing from 10% to 20% training.

Behavior of this type if a single flight l i n e is involved can

again be readily explained in terms of the two class uni-

variate problem of Section 3.5.3 (cf Section 3.5.3 Observa-

tion 4). That this behavior should occur on the average

is a little more difficult to explain. W h i l e a number of

explanations in terms of parameter space densities are

possible the most likely one occurs only in problems in-

v o l v i n g 3 or more classes. This explanation naturally has

no counterpart in the two class problem of Section 3.5.3.

Explanation of the observed behavior for two class problems

with different parameter space densities is also possible.

Consider the following 3 class univariate example

which explains how an increase in average performance can

occur in one class, while that for the other two classes

remain essentially unchanged. Similar examples can also be

devised to explain decreases in average performance. Assume

that the 3 parameter space distributions are all uniform and

that the parameter space density for class 1 is identical to

that for class 2, w h i l e the parameter space density for class

3 is just barely disjoint from the class 1 and class 2 den-

sities. It is clear that if the number of subclasses for

each class is very large then on the average essentially all

samples from class 3 w i l l be correctly identified, w h i l e only

about 1/2 of class 1 and class 2 samples w i l l be correctly
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identified. If the number of subclasses is reduced until

class 3 is represented by only one density, while the number

of densities representing class 1 and 2 are s t i l l quite

large, then on the average the number of class 3 samples

correctly identified w i l l have decreased considerably, wh i l e

for class 1 and class 2 there will essentially be no change.

This example should make it clear that in a multiclass

problem, an increase in percentage of fields used as

training, may improve the performance for one class without

a significant change in the performance of other classes.

This example also makes it fairly clear that by appropriate

adjustment of parameter space densities almost any variation

of average class performance with increase in the number of

subclasses is possible.

The classes corn, soybeans and wheat behave some-

what l i k e the classes 1, 2 and 3 respectively in the above

example. Thus the parameter space densities for corn and

soybeans show considerable overlap while the parameter space

density for wheat is somewhat disjoint. Furthermore, the

relative abundance of corn, soybean, and wheat fields means

that corn and soybeans are always represented by a consid-

erably larger number of subclasses than wheat.

The above example is, therefore, a plausible

explanation for the behavior of the wheat performance graphs

0:f Fig. 4.5,. 1.2. A similar explanation could be devised for

the class other but there is some doubt as to the correctness
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of this interpretation for the class other. Due to ex-

tenuating circumstances it is likely that the decrease in

average performance for the class other, with increase in

subclasses, is not actually real but that the decrease is

simply due to a rather drastic statistical fluctuation. This

problem does not arise for the class wheat since the per-

formance for every distance measure and every f l i g h t l i n e

showed an increase in performance.

The decrease in performance for the class other as

training increases from 10% to 20% is largely due to the

collapse in performance for f l i g h t l i n e 23. For this f l i g h t -

line the performance for the class other decreases from the

v i c i n i t y of 70% to the v i c i n i t y of 30%. F l i g h t l i n e s 21 and

24 do not exhibit this behavior and the results for these

flightlines is virtually unchanged as the training fields

increase from 10% to 20%. Since f l i g h t l i n e 23 contains a

rather small number of test fields for the class other it

is actually the misclassification of a relatively small num-

ber of fields that is responsible for the decrease in class

other when training is increased frbm 10% to 20%.

4.5.2 Random Training Field Selection - No Subclasses

The experimental procedure for this section is iden-

tical with that of Section .4.5.1 except that instead of treat-

ing each field as a subclass all the randomly selected fields

for each main class are combined. Thus each class is repre-

sented by a single distribution function. Classifications
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are again performed of flightlines 21, 23 and 24 using 5%,

10% and 20% of the Standard Test Fields as training. The

average overall test performance and the average performance

by class are given in Fig. 4.5.2.1 and Fig. 4.5.2.2 respec-

tively. Table 4.5.2.1 shows the variance in the overall per-

formance where parametric and nonparametric distances have

again been grouped.

Table 4.5.2.1

Standard Deviation in Overall Test Performance.
Random Training with No Subclasses

Standard Deviation for Standard Deviation for
% Training Parametric Distances Nonparametric Distances

5 4.42 3.11

10 6.12 1.60

20 8.94 2.98

When each field is treated as a subclass then the

classes tend to be unimodal and symmetrical and the Gaussian

assumption should be reasonably v a l i d . Consequently, non-

parametric methods have no particular advantage in this

setting. By combining all the training fields into one sub-

class the class distributions will almost surely be multi-

modal and the normal assumption would not be very v a l i d . One

would anticipate that in this situation the nonparametric

classifier LARSYSDC would be a better classifier than the

parametric classifier PERFIELD. It was essentially this

contention that prompted the investigation described in this
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section. The extent and manner in which these expectations

agree with the experimental results is somewhat different than

anti cipated.

Based on Fig. 4.5.2.1, Fig. 4.5.2.2 and Table

4.5.2.1 we make the following observations.

Observation 1

W i t h i n the limits of statistical fluctuations as

suggested by Table 4.5.2.1 the average performance of all

distance measures is roughly equivalent although, the

Divergence and KS distances appear to perform somewhat poorer

than the other distances.

Observation2

In terms of average performance the parametric clas-

sifier using the JM distance does just as well as the non-

parametric version using the JM distance. The typical

variance in performance is, however, much greater for the

parametric than the nonparametric classifier (Table 4.5.2.1).

Furthermore, the variance in performance for the parametric

classifier i ncreases as the percentage training increases

w h i l e for the nonparametric classifier this quantity remains

reasonably fixed. These factors are important from a classi-

fication viewpoint. They mean in effect that in performing

a sin g l e classification one is more likely to obtain reason-

able results with the nonparametric classifier and that for

the parametric classifier the results become more erratic as

the number of fields grouped together increases. If the
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results for many classifications are to be averaged then the

parametric classifier does just as well on the average as

the nonparametric classifier.

Because of the multimodal nature of the class

distributions one might expect that on the average the

nonparametric classifier would do better than the parametric

classifier. The basic fallacy in this reasoning is that

although the class distributions are multimodal the samples

to be classified are essentially unimodal. In other words

the distribution of any sample to be classified is not really

based on a random sample from the distribution of any class.

Instead it simply tends to account for one of the modes in

the class distribution. Furthermore, there is no apparent

way of rectifying this situation within the constraints of

mi n i m u m distance classification.

We can summarize the results as follows. For the

parametric classifier better results are obtained if many

subclasses are used. The result is not better in terms of

performance averaged over many f l i g h t l i n e s but in terms of

the variabi1ity in performance from fli g h t l i n e to f l i g h t l i n e .

For the nonparametric classifier results with many and no

subclasses are comparable. Therefore it is certainly ad-

vantageous to use no subclasses since computations increase

directly with the number of classes.
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Observation 3

Increasing the training percentage from 5% to 20%

results in only a slight increase in average performance.

This behavior is similar to the behavior observed when sub-

classes are permitted and can be explained in a similar

manner (cf, Section 4.5.1 Observation 3).

Observation 4

Increasing the number of subclasses for a given

distance measure quite often results in a significant de-

crease in performance for the classification of any flight-

line, and occasionally results in a small (probably not sig-

nificant) decrease in the performance averaged over the

three flight lines. This result is similar to the behavior

observed when subclasses are permitted and can be explained

in a similar manner (cf, Section 4.5.1 Observation 4).

Observation 5

The performance by class is qualitatively s i m i l a r

to that observed in the case where subclasses are- used,

except that the disparity between different distance measures

is sometimes greater. In particular the KS distance appears

to perform poorly. The reason for this is unknown.

4.5.3 Training Fields Grouped by Parameter Space Clustering

The objective of this section is to compare the

random training procedures in the previous two sections with

a training procedure based on parameter space clustering

which we refer to as nonrandom training, more precisely it is
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really the subclass definition that is nonrandom. In partic-

ular results using the training procedure used in evaluating

GRPSAM are compared with the results of random training with

each field treated as a subclass (20% training). In terms

of the method of describing experiments given in Table 4.1

we are studying the effect of two Training Procedures with

the distance measure as a Classification Parameter. Both the

parametric and nonparametric implementations of the minimum

distance classifier are again considered.

It is possible to view the case of nonrandom train-

ing as a logical extention of the case of random training

where each training field is treated as a subclass. If the

number of training fields is larger than the number of sub-

classes the system can handle, then it is logical to search

for ways of combining subclasses that are sufficiently alike.

Clustering in the parameter space serves this purpose. The

training fields that were clustered with GRPSAM using the JM

distance and PS grouping were the Training Acres of Table

C.4. As before the Standard Test Fields of flightlines 21,

23, and 24 were classified with all the distance measures

available in both PERFIELO and LARSYSDC using channels 1, 8

and 11. The results of these classifications together with

the results obtained for 20% random training are compared in

Fig. 4.5.3.1 and Fig. 4.5.3.2. The first figure compares the

average overall test performance while the second compares

the average test performance by class. The variance
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in the average test performance for nonrandom training was

4.30 and 4.41 for the parametric and nonparametric distances

respectively. The histogram bin size used in LARSYSDC was

10 for the nonrandom training results and 5 for the random

training results. This difference was necessitated by the

fact that for a bin size of 5 some of the training classes

for nonrandom training contained more than the maximum

allowable number of bins as determined by programming con-

straints. On the basis of Fig. 4.5.3.1 and Fig. 4.5.3.2 we

make the following observations.

Observation 1

Again no particular distance measure appears to

have any advantage. This was previously observed for random

training and is also true for nonrandom training.

Observation 2

Average overall performance for nonrandom training

is slightly better than for random training. This is perhaps

to be expected since in effect a training set drawn from a

larger number of fields was used. The Training Acres were,

of course, also chosen on a percentage basis by class but

the percentage varied from class to class with wheat being

sampled much more densely than corn, soybeans and other.

In interpreting the difference between random

and nonrandom Training two factors must be considered. For

random training all test fields were physically disjoint

from the training fields. In nonrandom training many of the



22k

Training Acres are in fact contained within the Test Fields.

This would tend to increase the nonrandom training perfor-

mance. Offsetting this effect is the fact that the bin

size for nonrandom training is larger which would tend to

favor random training.

Observation 3

The average performance by class again shows greater

variability from distance measure to distance measure than the

average overall performance. Nonrandom training shows up

favorably for all classes except soybeans where random train-

ing was superior. As mentioned previously in connection with

the results on the evaluation of GRPSAM it is possible that

the number of subclasses for soybeans should have been some-

what 1arger.

4.6 Effects of Some Parameters on Performance

It is of considerable interest to know how some of

the Classifier Parameters affect performance. Our purpose in

this section is to investigate some of the more important

parameters. In terms of the method of describing problem

summarized in Table 4.1 we focus our attention on determining

the effect on classification accuracy of the Classifier Par-

ameters listed in that table.

Table 4.6.1 contains a summary of the experiments

performed. This table indicates not only the nature of the

various studies but also depicts the range of the parameter

studied and lists the section number in which the results
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î
_i

- — -
CO
>
I-H

0
o-
LU
co
V9-

- — '
CO
a.

2:
•-3

cu
o
c: c
rO T-

-4-> CO
(/>
•r- "
C3 -̂»

^
"CM

— — HI-

CO —

"
CM CU

« N
i— «r-
— 'CO » — »

O
to cu co

^—i— "
CU Q-O
C E CM
p" ^3
(O {/) •*

J= C3
CJ "•—

*—* "
*f- 21 LO

0 -TJ »
"r—

t "^^ ̂  ,

CU -̂
^3 " a>
E CO N
— ̂  ^^ •r™*

^ CO

CJ
0
CO
^«
co
o:

_̂i

~— •>.
CO
>
I-H

o
o-
LU
CO
4A-
^~~
CO
a.

2!
-3

co
•

LO
•

*d-

CU
C M

•r— •!—
CQ CO

1
.O
3
</>

S-
cu

<^~** ^^

10 4->
CU 0
S-
o 2: o
=t ^ I—

co
C71 Q. t̂
C CC C

•f- CO ro
C
•i- .C "
CO 4-> to
S- T- C

1— 2 ro
CU

" 10 J3
to >,

CU ra O
i — tO

•1- (J
N X tO

>)
to J3. -
to c
ro a> s-

•— CO
CJ -i- O

s-
>, cu o
.0. -Mi—

to
C/> 3 "
CU •— +J
S- U ro
u cu

«-C E co -c
o a, 3

4J -0 1
C £= 2: 'i-
CU rd --3
O i-
s_ c: i
cu o
a. z:

1 1

c
o

•r—
4J
(J
cu c

i— O
CU -r-
co +J

•I—
-a c:

CU t(-
^^^•1 — CU
CD Li- O

^>
i— i cr> to
o c to
O*-i- ro
LU C i —
CO -i- <J
V* ra jQ
• — J- 3
co I— co
Q_

1
2:
1-3

*

1
c
cu
3 CO
CT Q-
CU 1
co ^~~a

CO
^: > c
-(-> i— i O
•i- Q
2 0"0

LU CU
cu co to
<J«*»- rO
C » — ' -Q
CU
o> to c
s- c o
cu o ••-
> -i- 4->
•.- -M ••—
O ra C

C ••-
-O -r- «4-
<U Jd CU
E E Q •
i- o en
O CJ to C

<4- «O T-
10 O) rO S-
C S- i — CU
fO 3 O -»->
i_ -M .a to

r— rO 3 3
CU CO •—

cu u. u
en +->
ra <*- Q.CO

-̂ ^ i- O CU 0_
to cu u i
cu > jc x 2:
toe-C O CU <~3
U) S-
ra C ro^^ C

r— O CU CD ro
o co >• ̂ r

-a H-. 4J
CU r— Q
w ra cy i-
rO -r- LU CU

CO -4-> CO .C
•fa*)- +->

1 ra
CO J-
o_

1 O>
2: c
•"3 •!-

J_

s- cu
O •!->

c *«- «o
O 3
•i- IO i —
•u <=t o
0
CU t

f—
<u -̂̂

CO CO

CU >-H

S_ 0
3 cr
4J LU
ro CO
O) *«»•

Ll_ '
co -
Q_

1
o

s_
0

14-

O)
C31
c
ro
S-

r—
1̂
3

M-

cu
JZ
4-)

c-

0)
3
0
s-
.̂;

-M

-o
CU

•i—
S-
ra
>

4->
o
c

cu
s_
cu
2

(/>
cu

f—
.Q

ro
•r—
i_
ro
>

CU
.C
•IJ

IS) •
cu -a
(J CU
C -i-
ro M-
4J -t-
(/) (J
c cu
•i- CX

<t—
O (/)

cu
i- CJ
cu c
J3 ra
E -i->
3 I/)
C -r-

-Q

ra
r—

c ̂ ~
i— i co

*•K



226

are described. It is convenient to describe the portions

of the experimental procedures that are common to all the

studies in this section relegating to the appropriate sub-

sections those procedures that apply only to that sub-

section.

To study the effect of different parameters, it is

of course necessary to fix the Classifier Type and Training

Procedure and then vary the Classifier Parameter of interest.

The only Classifier Types considered are the minimum dis-

tance classifiers PERFIELD and LARSYSDC. The training

procedure is based on clustering the Training Acres using

either the Divergence or JM distance with PS grouping on a

class by class basis; feature selection is via $SEQDIVG (i.e.

JM-PS$SEQDIVG) or D-PS($SEQDIVG) training). The Classifier

Parameters studied are number of channels, bin size and the

number of vectors used to estimate the test histograms (i.e.,

sample size). Again wherever appropriate the various dis-

tances in LARSYSDC and PERFIELD are compared.

Results in all cases are given for both training

and test fields. The training fields used are the Training

Acres listed in Table C.4. The test fields are derived

from the flightline 21 Test Areas given in Table C.5.

Rather than list the actual test decks used we describe

instead the method of deriving the test decks from the flight-

line 21 Test Areas. The reason for this approach is that in

the sample size study 12 different decks are used. Half of
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these decks are derived from the flightline 21 Test Areas

and half of them from the Training Acres. It is simpler to

describe the method of generating these "derived fields"

than to list all the decks. To generate a derived field from

an original field it is necessary to specify the number of

vectors the derived field must contain. The line and column

intervals of the derived field are then adjusted so that

the vectors in the derived field are spread out as much as

possible over the original field. For example a derived

test field containing four vectors would contain the four

vectors located on the corners of the original field. The

objective of this rather involved procedure is to ensure that

the vectors in the derived field are as independent as

possible within the constraint that they must be contained

in the original field.

For all the studies except the sample size study

there are 121 vectors in each training and test field.

The number 121 was chosen because this represents all the

vectors in a Training Acre. Since flightline 21 Test Areas

contain up to 900 vectors the procedure described above was

used to select the 121 vectors from each Test Area to gen-

erate a derived test field. In the sample size study the

same procedure was used to select "training"* and test fields

The full Training Acres were in all cases used
for training purposes. The word "training" is used to desig-
nate test fields derived from the Training Acres.
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from the Training Acres and f l i g h t l i n e 21 Test Areas res-

pectively.

A comment regarding the graphs in this Section

appears advisable. For most of the graphs the independent

variable is discrete. For convenience in reading the graphs

experimental points have been joined by straightline seg-

ments, but these segments do not have meaning except for

integer values and then only those integer values that were

experimentally investigated (cf Table 4.6.1).

4.6.1 Number of Channels

In discussing the experiments performed to determine

the effect of dimensionality on classification accuracy it

is convenient to segregate the experiments into two cate-

gories. The segregation is on the basis of Classifier Type

(i.e., parametric vs nonparametric).

With reference to Table 4.6.1 it is apparent that

for the parametric case classifications were performed for

the three available distance measures (KL number, Divergence

and JM distance) in PERFIELD. The number of channels was

varied from 1 thru 13 for each of the three distance measures.

Both D-PS($SEQDIVG) and JM-PS($SEQDIVG) Training Procedures

were used.

In other words two sets of statistics were pro-

cessed by the $SEQDIV6 processor corresponding to the output

from GRPSAM for JM-PS and D-PS clustering. The channels .

sequences obtained for these two cases were 11, 12, 8, 5,
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10, 1, 2, 7, 13, 3, 9, 6, 4 and 11, 12, 8, 1, 5, 10, 2, 13,

7, 3, 9, 6, 4 and JM-PS and D-PS clustering respectively.

These two sequences are really quite similar with difference

occuring only near the middle of the sequence.

For the nonparametric case classifications were

performed for the three distance measures in LARSYSDC (KS,

KV, and JM distances). Results were obtained for the .JM-PS

($SEQDIVG) Training Procedure only and the number of channels

was varied between 1 and 3 except for the KS.distance where

no 3 channel results were obtained.

The results of the number of channels study appear

in Figs. 4.6.1.1 through Fig. 4.6.1.12 with the parametric

results occupying the first eight figures and the nonpara-

metric results in the last four. Fig. 4.6.1.1 through Fig.

4.6.1.4 contain the training and test results for the para-

metric case where JM-PS clustering is used in the Training

Procedure while Fig. 4.6.1.5 through Fig. 4.6.1.8 present

similar results for the case where D-PS clustering is used.

In each case overall test and training performance together

with test and training performance by class account for the

four figures. A similar set of figures for the nonparametric

case accounts for the four nonparametric figures. For com-

parison purposes the performance of the parametric distance

measures has also been included on the nonparametric graphs.

It is worthwhile remarking that apart from the

training results presented in connection with the evaluationof
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GRPSAM no other training results have so far been presented.

This must be borne in mind in interpreting the present

results as training and test results tend to differ.

On the basis of Fig. 4.6.1.1 through Fig. 4.6.1.12

we make the following observations.

Observation 1

The overall performance increases rapidly as the

number of channels increases and saturates in the vicinity

of four or five channels (Figs. 4.6.1.1, 4.6.1.3, 4.6.1.5 and

4.6.1.7). The training performance curves saturate somewhat

more rapidly than the test performance curves. In this re-

spect minimum distance classification behaves in essentially
33the same manner as maximum likelihood classification (i.e.,

LARSYSAA). It is worth noting the similarity between the

performance curves and the plot of average JM distance as

a function of dimensionality in Fig. 4.4.1.7.

Observation 2

On the basis of overall test performance, the

performance of all distance measures is approximately the

same (Figs. 4.6.1.3, 4.6.1.7, and 4.6.1.11). The same is,

however, not true for training performance where in the par-

ametric 'case the JM distance and KL numbers perform consid-

erably better than the Divergence (Fig. 4.6.1.1 and Fig.

4.6.1.5), especially when the number of channels is large.

Furthermore, in the nonparametric case the KV distance and

nonparametric JM distance perform marginally better than KL
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KL numbers or the parametric JM distance (Fig. 4.6.1.9).

The basic difference between training and test fields is,

of course, the fact that there is no guarantee that the

training fields are really representative of the test fields.

The evidence therefore, seems fairly conclusive that if

training is truly representative of the sample to be classi-

fied then the particular distance measure used is important.

Under these circumstances the nonparametric JM distance also

appears to perform better than the parametric JM distance.

The last statement is based largely on the 2 channel results

since for 3 channels the performance is too large for any

distance to show any significant advantage and in the 1

channel case it is too small (cf, Section 4.4.3 Observation

4).

Observation 3

Regardless of whether the JM distance or Diver-

gence is used to cluster the Training Acres, the overall

performance for PERFIELD using the JM distance is better

than when the Divergence is used. This is also generally

true for the performance by class. This is rather unexpected

One would certainly expect that the distance measure used

in clustering the data would have a distinct advantage in

classification. Since this does not occur the logical

conclusion is that the JM distance is a better distance

measure than the Divergence. At least this is true for

the training data involved. As noted in Observation 2 there



is only a hint of this superiority in the test results.

The performance for KL numbers for training fields

is very near that of the JM distance but usually slightly

better. For test fields the two distances perform roughly

the same. It is interesting to speculate why KL numbers

seem to perform slightly better than any other parametric

distance considered. And why the Divergence, a symmetrized

form of KL numbers, does not perform nearly as well. Perhaps

on the basis of the theoretical relationship that exists

between maximum likelihood classification and minimum dis-

tance classification using KL number this results is not too

surprising. Recall that the main factor that distinguishes

KL numbers from the other distance measures is that it is not

symmetrical with respect to the densities involved. This is

probably significant since classification is not entirely

a symmetric procedure. Intuitively assigning a field to a

class makes more sense than assigning a class to a field.

Expressing in words what the KL number represents provides

further insight. Thus the KL number of the field for the

class is the mean information of discrimination of the field
33for the class. Intuitively, this rather than the converse

(or some mixture), is a logical basis for classifying a field.

Observation 4

The performance by class results reflect fairly

closely the overall performance except that as usual the

behavior of the class results is more variable. There do not
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appear to be any distinguishing features that require

comment.

4.6.2 Number of Vectors in the Test Sample

It is of considerable interest to establish how

large the test sample must be to enable a minimum distance

classifier to achieve reasonable performance. In parametric

(normal) problems a commonly used rule of thumb states that

at least lOq vectors should be used to get a "good" estimate

of a q dimensional covariance matrix. In nonparametric

problems no such rule is known but it is usually implied that

a large number of vectors are required to adequately estimate

a nonparametric density. It is the objective of this section

to establish guide lines on the sample size required to

achieve reasonable performance in the parametric classifier

PERFIELD and the nonparametric classifier LARSYSAA. We only

concern ourselves with the test samples and essentially

assume that the number of vectors used to estimate the

training distribution is large enough so that good estimates

are obtained. This fact must be borne in mind in interpreting

the results. In other words the question to which an answer

is sought is not how many vectors are in general required to

adequately estimate a distribution, but rather what is the

minimum number of vectors required to estimate a test

sample distribution in order that the performance of a

minimum distance classifier w i l l not deteriorate. The answer

w i l l , of course, depend on the data and again we restrict
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our consideration to typical multispectral scanner data.

The experiment devised to explore this problem is

the sample size study described in Table 4.6.1. The training

method used was the JM-PS($SEQDIVG) method described earlier.

Experiments were performed for 2 channels (11, 12) as well

as three channels (8, 11, 12). Classifications were per-

formed with both PERFIELD and LARSYSDC using the only

distance implemented in both classifiers (i.e., JM distance).

Both "training" and test results are presented.

Fig. 4.6.2.1 and Fig. 4.6.2.2 contain the graphs depicting

the overall "training" performance and "training" performance

by class respectively. Fig. 4.6.2.3 and Fig. 4.6.2.4

contain the corresponding test results. Since the number of

vectors used to estimate the distributions of the sample to

be classified is the quantity being varied the "training"

performance curves are in fact based on a subset of the

vectors in the Training Acres rather than all of the vectors

as is usually the case for determining training performance.

More specifically to obtain the "training" performance

curves rather than use all the vectors in an acre to estimate

the distribution for that acre for classification purposes,

only the appropriate number of vectors from the acre are

selected for estimation purposes. Of course, all the vectors

in the acre still form the basis for estimating the training

distribution. Similarily to obtain the test performance

curves the appropriate number of vectors are selected from the

Flightline 21 Test Areas. The method of selecting the vectors
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for estimating distribution of the sample to be classified

is the same for both training and test results. This method

has been described in Section 4.6. In essence the vectors

are selected to be spread out as much as possible over the

area from which they are chosen.

On the basis of the results presented in Fig.

4.6.2.1 to Fig. 4.6.2.4 the following facts emerge.

Observation 1

The overall training performance definitely

decreases as the sample size decreases but the sample size

must be extremely small before the decrease is significant.

The overall test performance does not exhibit as definite

a trend. Instead it seems simply to become somewhat erratic

as the samples size decreases. In any case it appears that

the use of lOq vectors is adequate to estimate the distri-

bution of the samples to be classified for both PERFIELD and

LARSYSDC.

Observation 2

There is absolutely no indication that the number

of vectors required to adequately estimate a density histo-

gram for classification purposes need by any larger than

the number required to obtain the corresponding parametri-

cally estimated density.

On the basis of this results it appears likely that

in general the number of vectors considered necessary to

adequately represent a density histogram is over estimated.
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In fact it appears likely that in a situation where a para-

metric description is reasonable, the number of vectors

required to adequately estimate a density histogram need be

no greater than the number required to adequately estimate

the parameters. It appears that for reasonably well behaved

densities the number of vectors required for nonparametric

estimation purposes is quite reasonable and not as large as

is typically implied.

Observation 3

It is interesting to consider what happens if the

sample size is reduced until only one vector is available

from the field to be classified. In this situation the para-

metric classifier PERFIELD cannot classify the sample since

the covariance matrix cannot be estimated. It is t r i v i a l

to show that the nonparametric classifier, using either the

KV or JM distance, becomes a maximum likelihood vector

classifier in which density histograms are used to estimate

the class distributions. Thus as the test sample size is

reduced to its lower l i m i t LARSYSDC (with JM or KV distance)

becomes a vector by vector classifier of a rather desireable

type. Considering that the performance of a parametric

maximum likelihood classifier (LARSYSAA) is only slightly

less than the parametric minimum distance classifier PERFIELD

(see section 4.4.3 Observation 4). It is clear that the

performance of LARSYSDC w i l l typically not drop a large

amount when the sample size is decreased. This result also



253

suggests that usually the minimum distance classifier,

based on density histograms, will perform better than the

maximum likelihood classifier based on density histogram.

This follows because the l i m i t i n g form of the minimum dis-

tance classifier is the maximum likelihood classifier.

Observation 4

The nonparametric JM distance yields a higher class-

fication accuracy on the Training Acres than the parametric

JM distance. Not only is this true for the overall perfor-

mance but it is also true for each class i n d i v i d u a l l y . This

behavior is similar to that observed in the number of channels

study and would in fact be expected on the basis of that

study (cf, Section 4.6.1, Observation 2). As in the number

of channels study the possible superiority of the nonpara-

metric technique is essentially not evident in the test

results. While the classification accuracy on test fields

is slightly larger for the nonparametric case the difference

is slight.

4.6.3 Bin Size

A parameter of considerable significance in LARSYSDC

is the bin size. Certainly if the bin size is too large,

small differences between densities wil l be obscured and

performance will deteriorate. On the other hand a small

bin size implies longer computation times and possibly poorer

estimates as well; since if the bin size is very small, then

the number of bins is very large and more vectors are needed
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to adequately estimate the distribution.

The objective of this section is to determine what

effect bin size has on performance. Actually it is probably

the ratio of number of vectors to the bin volume that is

the important parameter but since the number of vectors is

fixed at 121, bin size can be considered directly.

With reference to the bin size study portion of

Table 4.6.1 we note the training is again based on OM-PS

clustering of the Training Acres with the number of

subclasses as established in the evaluation of GRPSAM (i.e,

JM-PS($SEQDIVG) training). Naturally only the LARSYSDC

classifier is involved since PERFIELD does not use density

histograms. Classifications are performed for 1 Channel (11),

2 Channels (11, 12) and 3 Channels'(8, 11, 12) for each of

the distance measures available in LARSYSDC.

Fig. 4.6.3.1 thru Fig. 4.6.3.8 contain the experi-

mental results. Basically results were obtained for bin

sizes of 1, 5, 10, 20 and 30 with some exceptions necessi-

tated either by exceedingly large histograms or by diffi-

culties in converting large pdf's to cdf's. These exceptions

are apparent from the figures and will not be enumerated.

On the basis Fig. 4.6.3.1 thru Fig. 4.6.3.8 we

make the following.

Observation 1

The overall test performance is remarkably insen-

sitive to bin size while the overall trai ning performance
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exhibits a greater sensitivity; at least this is true for

the two and three channel classifications. As noted in the

number of channels study for the one channel case performance

seems to be so poor, and the parameter space densities over-

lapped to such an extent, that single channel results provide

little useful information regarding the superiority of any

parameter studied.

Observation 2

The overall test performance suggests that there

is perhaps an optimum bin size in that the test performance

seems to decrease slightly for very small as well as for

large bin size. The training performance continues to

improve as the bin size decreases. Because of the limited

number of results the evidence is not too conclusive but

the apparent different behavior for test and training is

not necessarily contradictory as the following argument dem-

onstrates. To simplify the explanation and possibly exagger-

ate the effect, suppose the multispectral scanner data is

real (as opposed to integer) data and that the bin size is

chosen small enough so that every nonempty bin for both test

and training density histograms contained only one vector.

Then the JM distance between two distributions depends only

on the ratio of the number of coincident nonempty bins from

the two distributions to the maximum number of possible coin-

cident bins. In other words it is only the spatial dis-

tribution of bins that is important. The true shape of the
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distribution (i.e., bimodal , etc.) has no direct influence

on the classification except to the extent that this in-

fluences the location'of the nonempty bins. Since the train-

ing histograms are derived from the Training Acres the spatial

correlation between the two is quite large. In fact every

nonempty bin for any particular Training Acre to be classified

coincides with a nonempty bin in the subclass to which that

acre should be assigned. Only if the histograms for two

or more subclasses overlap over the whole region occupied by

the Training Acre can the Training Acre be incorrectly

classified. This condition does not prevail for test fields

where conceivably the general shape of the densities is of

greater importance to correct classification then the

spatial distribution of nonempty bins. It is not known

if this is the correct explanation of the above phenomena

but the information in Table 4.6.3.1 tends to support this

explanation. This table gives the average over both test
i

and training histograms for the data involved of the average

number of vectors per non empty bin for various combinations

of channels and bin size of interest.
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Table 4.6.3.1

Average Number of Vectors Per Nonempty Bin

Bin
Si ze

1

1

5

5

5

5

Number of
Channel s

2 .

2

2

2

3

3

Histogram
Type

Train

Test

Train

Test

Train

Test

Average Numbe
Per Nonemp

2.26

1 .66

16.38

9.42

5.73

4.77

Observation 3

The improvement in performance with decreasing

bin size is not as great for the KS distance as for the KV

and JM distances. This is particularily true for training

results and appears to be true for test results. In fact,

the percentage of training samples correctly classfied when

the KS distance is used falls considerably below the per-

centage classified correctly by the KV and JM distances.

Observation 4

The behavior of the performance by class curves

for both test and training results is quite erratic although

the general trends observed in the overall performance curves

are also present in the performance by class curves.
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CHAPTER 5

CONCLUSIONS

Scattered throughout the various sections are

numerous "Observations" most of which in essence are really

conclusions with discussions pertaining to the conclusions.

In the current chapter the more significant "Observations"

are collected from their diverse locations and presented in

a unified manner. In general the conclusions presented are

based on experimental results obtained with a particular set

of data and strictly speaking the conclusions are really

only v a l i d for that data. It is, of course, extrapolation

of these conclusions to other data sets that is of interest.

We believe that such extrapolation is v a l i d for most m u l t i -

spectral scanner data, at least as long as it bears a rea-

sonable similarity to the particular data studied. In fact

the wording of the conclusions is based on the assumption

that this is the case. Of course, we recognize that m u l t i -

spectral scanner data sets w i l l be encountered for which not

all of the conclusions w i l l be v a l i d .

Some of the conclusions are based on averages over

three s i m i l a r f l i g h t l i n e s . Others are based on a s i n g l e

f l i g h t l i n e . Obviously the conclusions based on the average

of three f l i g h t l i n e s should be more reliable than those based
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on a single flightline. However, even if only one f l i g h t l i n e

is involved the amount of data upon which the conclusions

are based is always quite substantial. In all cases the

experimental investigations involved problems that in terms

of number of classes and number of subclasses are quite

realistic. " .

Probably the most significant conclusion is that

for the training methods employed the test performance that

can be achieved .with minimum distance classifiers is

"essentially" independent of the distance measures considered,

or on whether the implementation of the classifier is based

on parametrically estimated densities or density histograms.

The word "essentially" has been inserted because the non-

parametric classifier using the JM distance gave "hints"

of superiority even for test data but the v a r i a b i l i t y of the

results is sufficiently large that many more classifications

would be necessary to establish if this distances had some

small advantage.

In contrast the training performance is s i g n i f i -

cantly influenced by the distance measure, and whether or

not the classifier is implemented parametrically. More

specifically the nonparametric implementation u t i l i z i n g the

JM distance gave the best performance on test results. In

the parametric case the JM distance also performed well

with KL numbers doing slightly (but probably not s i g n i f i -

cantly) better.
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A feature common to al1 the classifications per-

formed in this study, as well as those in the crop yield

study, is the disparity in classification accuracy of test

and training data. Test performance is typically of the

order of 25% below training performance. Also the behavior

of the test data does not entirely mirror the behavior of

the training data. Apparently the training data and/or

Training Procedure results in subclasses that are not really

representative of the true data.

Considering simultaneously the test results,

training results and the nonrepresentativeness of the

training data the im p l i c a t i o n s seem fairly clear. Until

training techniques are developed which ensure that the

training data is truly representative of the test data

the choice of distance in a m i n i m u m distance classifier is

not critical, and the extra complexity of a nonparametric

classifier is not warranted.

A l t h o u g h . a nonparametric m i n i m u m distance classi-

fier based on density histograms at present does not offer

any advantage in classification accuracy over a parametric

classifier, it does have two advantages that should be

mentioned. The first is that if random training is used

subclasses can be eliminated without paying any penalty in

either average performance or variability in performance.

This is not true for the parametric minimum distance classi-

fier where elimination of subclasses leads to a great



269

increase in the variability of performance, though appar-

ently not a significant loss in average performance. Since

computation time is directly related to the number of sub-

classes this is an important advantage of the nonparametric

approach. It is, however, probably true that a parametric

(normal) classifier with an adequate number of subclasses

w i l l s t i l l be competetive in terms of computation time and

storage with a nonparametric classifier without subclasses.

The second advantage of a nonparametric minimum distance

classifier based on density histograms is that as the sample

size is reduced it becomes a maximum l i k e l i h o o d vector

classifier, provided an appropriate distance measure is used
v,

As a maximum l i k e l i h o o d classifier it should, with proper

programming, be relatively fast.

The main disadvantages of the nonparametric

classifier LARSYSDC are the large storage requirements and

relatively slow speed. Actually the storage problem can be

alleviated considerably from that encountered in LARSYSDC

by storing only nonempty histogram bins and the bin index.

It is the storage of too many empty bins in LARSYSDC that

creates the m a i n problem. The facility to use a subset of

channels from a given statistics deck is an exceedingly

important capability of parametric normal classifiers.

Perhaps a method could be devised to select a subset of

channels for a stored multidimensional histogram but the

complexity of such a method would certainly greatly exceed
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the analogous procedure for the parametric normal case.

The nature of the problem of choosing a distance

measure is substantially different than the nature of the

parametric vs nonparametric question. The recommendation

against nonparametric m i n i m u m distance classifiers is pri-

marily based on the inability to significantly improve test

accuracy with such a classifier even though it is slower and

more complex. The added complexity means that for a given

core storage the capabilities of a nonparametric system, in

terms of number of classes and number of channels, would be

considerably below the capabilities of a parametric system.

With regard to the choice of distance a different situation

prevails. The distance measure has only a minor impact

on the complexity of the classifier and on its c a p a b i l i t i e s ,

(i.e., number of classes, number of channels, etc.) except

possibly speed. Consequently, if a distance measure exhibits

even a slight superiority it is a natural choice provided it

is not unreasonably slow. On the basis of this investi-

gation our choice for a distance measure for minimum dis-

tance classification, from amongst those distances considered,

would be the JM distance. This choice applies to both the

parametric and nonparametric classifiers. KL numbers are

a close second choice for the parametric case. The choice

of JM distance depends on three factors. (1) There is some

evidence to suggest that the JM distance is superior to the

other distance measures (i.e., training results) and in no

case does the JM distance show up substantially inferior to
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any other distance. (2) The behavior of the JM distance as

a function of dimensinality for multispectral scanner data

tends to resemble the behavior of the probability of correct

classification. (3) Theoretically it is among the simplest

of the distances to compute and has the important theoreti-

cal property of being a metric in a large space of distri-

bution functions.

Generally as expected the classification accuracy

for m i n i m u m distance classification is greater .than for

maximum l i k e l i h o o d vector classification. For the data

studied the advantage of minimum distance over maximum

l i k e l i h o o d is not very great. This we attribute to the

general inseparability of the clas.ses for the data classi-

fied and in fact suggest (but do nor verify) that for

the extreme cases of very high and very low class separabil-

ity minimum distance classification w i l l afford little if

any improvement in classification accuracy over maximum l i k e -

lihood vector classification. The greatest potential for

increased classification accuracy appears to be for data in

which the classes are moderately seperable. It is probably

important to mention that in the experiments performed no

great care was exercised to ensure that the data in a sample

was reasonably homogeneous except that each sample originated

from a physical field. Thus a fair number of samples ex-

hibited some bimodality. Greater care in this regard would

probably increase performance somewhat. Offsetting this
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potential increase is the fact that in a realistic system

fieldswould have to be defined automatically which might in

fact result in poorer field definition than was actually

used.

With regard to sample definition it is important

to note the definition of samples by observation space clus-

tering should work quite well. We base this statement pri-

marily on our experience with BOUND and NSCLAS and on the

experimentally observed fact that in m i n i m u m distance

classification the test sample size need not be very large

to ensure reasonable performance. The reason this latter

factor is so important is that for a m i n i m u m distance

classification scheme based on sample definition by obser-

vation space clustering to be at all competitive timewise

with other classification schemes, it is essential that the

clustering time be reasonably small. This is only possible

if the number of vectors clustered simultaneously remains

s m a l l . The relatively good performance of m i n i m u m distance

classifiers for small sample sizes makes this possible. An

incidental advantageous by product of using observation space

clustering to define samples in a parametric classifier is

that such samples tend to be unimodal and symmetrical.

Parameter space clustering was shown to be a useful

technique in the process of defining subclasses. Thus as a

result of parameter space clustering the classification

accuracy of flightlines 21, 23 and 24 was improved s l i g h t l y
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from that previously obtained for these fl i g h t l i n e s with

observation space clustering. With regard to "best"

distance measure for GRPSAM the JM distance appears superior

to the Divergence. The grouping method that gave the best

results was product-sample-grouping with sample-grouping a

very close second. In view of the small difference between

PS and S grouping and the inherent statistical appeal of

sample-grouping, sample-grouping is recommended for any LARS

System Program or other operational programs.

The behavior of sample classification accuracy

with dimensionality for minimum distance classifiers re-

sembles the vector classification accuracy of maximum like-

lihood classifiers. Both typically saturate around 4

channel s.

On the basis if Test performance the bin size

study for LARSYSDC indicates that under the condition of the

experiment (i.e., 2 or 3 channels and 121 vectors per

sample), a bin size of 5 to 10 is reasonable. For training

results a bin size of one appears to give the best perfor-

mance but this is believed to be due to a phenomena which

typically only occurs for training samples.

In concluding it should be mentioned that no com-

parative computation times have been given. The fact that

the experiments i n v o l v e d a number of different programs, two

computer systems (one in a time sharing mode) and the in-

herent dependence of processing time on the Classification
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Parameters and on the manner in which the data is stored

(i.e., data retrieval time is by no means n e g l i g i b l e ) makes

it virtually impossible to g i v e meaningful comparative

times. Suffice it to say that to classify a typical flight-

l i n e time would be measured in fractions of an hour to hours

on the IBM 360 System Model 44, and that PERFIELD is the

fastest classifier, followed by LARSYSDC and LARSYSAA in

that order.
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Appendix A

Some Results on the Swain-Fu Distance

A.I Alternate Form of Swain-Fu Distance

For distribution F^ ' and F^ ' with means \r ' and
(2} C\] (2}y_v ' .and nonsingular covariances Z^ ' and zv ' the Swain-Fu

distance is given by29

T = — A . 1 .1
Dl + D2

where

|u - u | d e t ( Z ) ( q + 2 ) 17?

K Q Q /i\ / - i \ /o\ /T\ /o\

and z is the ijth cofactor of Z k = 1,2. Since det
' j

( k )(Zv ')̂ 0 d i v i d i n g numerator and denominator by this quantity

we can show by direct expansion that an alternate form of D.

is

. . k .

det(ZVK;)

Where Adj (Z^k^) is the adjoint of Z^ and tr is the trace.

From the definition of the adjoint A. 1.3 can also be written

as

, _ ,

°k " ' ^ ' - ' O ' ^ ' 1 1 ' ' 2 ' 1
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Note that D, is i ndetermi nant if y/ ' and y/ ' are equal,

The reason for this is that the direction of the line

joining jo/ ' and jj/ ' is not defined. The distance from y/ '

to the e l l i p s o i d of concentration is, however, not zero
( k }regardless of the direction, since ZA ' is not singular.

Consequently, from A. 1.1 the SwainrFu distance between classes

with equal means is zero. Consequently, we can write

* ' *
/cT/̂ 2 I/? U(D * u(2)

T = __ J - £_ (q + 2)-'/
2 14 T H

where c. = trKz^))'1 (y ( ] } -M(2) ) (y ( ] } -W
( 2) )

*""" ~~" ~~"

From A. 1.5 it follows that T is inyariate under linear trans-

formations because the trace is invariate under linear trans-

formations. Note also that c, and c2 are positive by virtue

of the fact that D, and D2 are positive when y_^ ' ^ U- •

A. 2 Upper Bound on SF Distance for Given Divergence

We derive an expression for the upper bound on the SF

distance for a given Divergence. We need only consider the

case where the means are not equal, since otherwise regardless

of the divergence the SF. distance is zero, which i.s cer.^

tainly not the upper bound. From A. 1.5 we can write

(q + 2)T2 = i . A. .2,1

2 1 ? 1
where C = — + - - +



283

Now since the geometric mean of two positive numbers is less

than or equal to their arithmetic mean, it follows that

(c-.+cJC2 = 6 + ̂  + ̂ -- A. 2. 2I t c1 c2

Direct minimization of the right hand side of A. 2. 2 with

respect to c2/c, yields

C2 > — § -- A. 2. 3
- C1+C2

Combin ing A. 2. 3 and A. 2.1 we have

? c,+c9
^ ' * • A. 2. 4

But from the definition of c-, , c? and Divergence

c1 + c2 = 2J - tr{[Z
(1)-Z(2)][(Z(2))"1 - Û )'1]} A. 2. 5

<_ 2J, A. 2. 6

where the last inequality follows because the tr {•} is

greater than or equal to zero. This is readily seen by con-

sidering diagonal covariance matrices, which by virtue of

the invariance of the trace .under linear transformations is

equivalent to the general case. Finally combining A.2.5 and

A. 2. 4 we have

- /4Tq+2) A.2 . 7
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Appendix B

Mn' seel 1 aneous Result Pertaining to the Separability Measure R

B.I Expected Value of D*

By d!ef i ni ti on

D* = ( £ (X* - Y})2)1/2 B..1.1
3-1 J J

where X*, Y;* v N(.y_" ,a2!.).. Let

dt = ;x* - Y* B.I .2
J J J

the n

1 * <X> «!.-,'/ ' 4r /

•= Z ;(X* - Yjr = I 'd* B.I .3

•'Nlu"..fa'2} and Y* ^ !N(p ' ,a2 ) , , therefore d* ^ N{0,2a 2 )
j J J

and •d*/(/2:or;) ^ 'N (0 , l ) . Furtherrn'ore, the d* are independent
vJ J

since ^X* and Y_* are independent vectors. Consequently

I = iD*/(2a ) is t;he sum of the square of q independent

••N:.(-0> 1.) rando;m variables and- consequently has the Chi -Square

distribution With q degrees of freedom. Now

B . 1 . 4

— • 7-0— ̂  e2 dz

Tbis be direct computation yields
r(S±l)

E'(D*) = 2a 3- B.I .5
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B.2 Expected Value of D**

By definition

D** = ( Z (X** - Y**)2)1/2 B.2.1
= J J

where X** * N(n_,a2I) and Y** ̂  N(-a,o2I). Let

d** = X** - Y** B.2. 2
J J J

then

? q o q **o
D**^ = Z (X**-Yt*) = Z d. B.2. 3

j=l J J j=l J

Now X*.* * N(y,a2) and Y** ̂ N(-y,a2), therefore d^* ^N(2p,2o2)
J J J

and d**/(/2a) ̂  N(2y,l). Furthermore the d** are independent
j j

2since X_** and Y_** are independent vectors. Therefore I = D** /
p

(2a ) is the sum of q independent N(2y,l) variables and con-

sequently has the Noncentral . Chi -Square' distribution with

parameters q and 2qy2/a2 = (S//2")2 (i.e., NCX2(q , (S//2") 2)

with pdf .

-l(S/2)2 cc 2
f(z) = e 2 Z Ip (S2/4)r fq + 2r(z) B.2. 4

where f +2 (z) is the Chi-Square density with q+2r degrees

of freedom. This can be put in a more convenient form

1 -i(S2+2z) 2 i(q-2)
f(z) = i e * (2z/S^)4 I (S/z/2) B.2. 5

where I (x) is the modified Bessels function
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Vx) •

Now

E(D**) = /7oE(/7) B.2.7

„ 1 4(S2+2z) 2 i(q-2) _ _
= /7a //z ? e ̂  (2z/sV I, (S/z//2)dz

0 . , 1

Using integral tables this yields

E(p**) = 2a —~£— e ~(S/2) *(S£L, |, (S/2)2) B.2.8

B.3 Li m i t i n g Form of R(S,q)

From Eq . 3.2.3.3 R(S,q) is given by

1.3.5 ...(2n-3) q
...(q+2n-2)n

(Sd/2)
2n B.3.1

Since this is a power series in ($d/2) , the l i m i t of the

sum as the dimensionality approaches infinity, is the sum of

the l i m i t s and hence
B.3.2

l i m i t R(S,q) = 1 + fr (Sd/2)
2 + I H)n+ 1 .3.5. . . (2n~3) ($ /2)2rv

q-»-oo • n = 2

Let the nth term in B.3.2 be t . Then since B.3.2 is an

alternating series it converges only if

l i m i t | t |= 0 B.3.3
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But

l i m i t |t |_ l i m i t 1.3.5...(2n-3) /<- \2n
n ~ f f l ^

_ l i m i t (n)(n+l)(2n)! . (s /2)2n
n"°° 2n-2(2n)(2n-l)(2n-2)n!n! d

Using St i r l ings fac tor ia l fo rmula for large N

limit |t |_ limit /TnrF (2n /e )"
2nr /$ /2)

2 n ( 2n - l ) 2n7 r (n /e ) 2 n d

2n
B 3 5

_ l imit~ <- / o \
d/ }

2 n

This l i m i t is zero only if S. < /?.d —



I t

r •

/ i
e.
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D,
Appendices

Control Card
C, Description of Test and Training Field Decks;

beenLanguage; and E, Program Descriptions have
omitted in this printing to conserve space.They may be purchased,
beginning February, 1972 from University Microfilms, 300 N. Zeeb
Road, Ann Arbor, Michigan 48106.
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Appendix F

BOUND- A Boundary Tracing Program

The principle upon which the program BOUND is

based is clustering in the observation space. The scene

under investigation is partitioned into square regions called

"Boundary Cells" such that the union of the Boundary Cells is

the whole scene (except for the narrow border). Each Boun-

dary Cell consists of a square array of image resolution

elements (IRE's). Boundaries are found seperately for each

Boundary Cell and the union of these boundaries constitutes

the boundaries for the scene.

To locate the boundaries for a given Boundary Cell

a clustering algorithm is used to effect a nonsupervised

classification of the vectors that originate from IRE's in

an area slightly larger (to provide some overlap) than a

Boundary Cell, This results in a spatial "Clustered Array"

in which each IRE is represented by the group number (i.e.,

class number) to which it has been assigned. The "Clustered

Array" is scanned in both directions and a boundary is

assumed to exist whenever k (user specified) or more IRE's

on each side of the boundary belong to a different class.

This definition of a boundary provides for some spatial

smoothing but necessitates the overlap and narrow border

mentioned above.
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Experimentally it is found that for the 12 to 13

channel multispectral scanner data presently a v a i l a b l e , a

reasonable compromise between performance and computation

time is achieved by using 3 or 4 channels of data, a Boun-

dary Cell size of about 5x5 IRE's and by setting k equal

to two. It is probably not coincidental that principal-

component analysis of multispectral scanner data suggests

that 3 or 4 p r i n c i p a l - components are sufficient to repre-
72sent similar data with small mean squared error.
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