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ABSTRACT

~ Wacker, Arthur Gordon, Ph.D., Purdue University,
January 1972. Minimum Distance Approach to Classification.
Major Professor: D. A. Landgrebe.

. In minimum distance c]assificatioh a group of
vectors (samp]e), known to belong to the same class, is
classified into the class whose known or estimated distri-
bution most closely resembles the estimated distribution of
the sample to be classified. The measure of resemblance is
a distance measure in the space of distribution functions.

The general objective of this work is to advance
the state of the art of minimum distance classification. This
is accomplished through a combination of some theoretical
investigations and a comprehensiVe experimental invéstigat%on
based on multispectral scanner data. A thorough surVey of
the literature for suitable distance measures was conducted
and the results of this survey are presented.

‘Thedretically it is shown that minimum distance.
cfassification, using density estimators and Ku11back¥L¢ib]er
numbers as the distance measure, is equivalent to a_form of
maximum likelihood sample classification. It is also shown
that for the paramétfic case minimum distance classification
is equivalent to nearest'neighbor classification in thé

parameter space.



xiii

A two class univariate normal problem, in which the
set of distributions representing each class is described by
a disfribution over the parameter space, is analysed for‘
various amounts of overlap of the parameter space densities.

A theoretical investigation of a new separébility
measure defined in terms of random samp]es‘provides insight
into some experimentally observed effectsof dimensionality.

The experimental investigation of minimum distance
classification is based on a supervised parametric (normal)
minimum distance classifier PERFIELD and a supervised non-
parametric minimum distance classifier (using histogram
estimaiors) LARSYSDC. Each classifier is capable of using
any one of three distance measures with only one distance
measure common to both classifiers. Classification accuracy
of a parametric (normal) maximum 1ike11hopd vector classifier
is also compared experimentally with minimum distance classi-
fication.

| In cases where the training set contains a large
number of samples, parameter space clustering is experiment-
ally investigated as a technique for combining similar samp]es

The principal experimental results pertaining to
minimum distance classificatjon of mulfispectra] scannef data
are:

1) The Jeffreys-Matusita distance (defined as the
square root of the integral squared difference of the square
root of two densities) appears to be a good general purpose

distance measure.




‘xiv

»2)‘The minimum distahce c]assification accuracy .
(% samples correct) was typically 5 to 10% greater than the
maximum likelihood vector classification accuracy (% vectors
correct). Improvements as great as 15% have,been'observed.
The improvemént depends on the degree of overlap of the
parameter space densities.

3) For the techniques used to define training
samples no distance measure was cbnsistently'superior for
classifying test,sampfes. Neither was the nonparametric
classifier LARSYSDC superior to the pafamétric.CIassifier

PERFIELD in these circumstances. For c]assifying training

samples the nonparametric classifier was slightly superior

as were certain distance measures.

.4) Tﬁe effect on classifier perfokmance of the
number of spectral channels, the number of vectors in a
tésf sample, and the histdgram bin size for the nonpara-

metric classifier LARSYSDC are also experimentally investi-

~gated. For the data considered classifier accuracy can be

improved only slightly by using more than 4 channels and

test samples containing more than 60 vectors. The results
show-that téstvsamples for the nonparametric classifier need
not be larger than for the paramefric classifier. A bin size

of 5§ to 10 is indicated.




CHAPTER 1
INTRODUCTION

Making measurements and categorizing objects on
the basis of these measurements is‘an essential aspect of
knowledge, and consequently an essentia]vaspect of all
sciences. Thus to cite two arbitrary examples from the
science oanstronomy:' A star is classified as a red giant
because of its physical size and spectral characteristics;

a pulsar is identified primarily by the periodicity 1n‘its
radiation. Numerous other examples aboundin astronomy and
all other scientific fields.

A frequent requirement in the categorization brocess
is the ability to manipulate data and cdrry out computations.
Consequently it is not surpfising that with the advenf of
computers man quickly turned to them for assistance in the
classification task. Thus evolved the field of pattern
recognition which is precisely concerned with the'problem
of classification or labeling objects on the‘basis of a set
of measurements, usually with the aid of a machine. Many
different classification schemes have evolved over the years.
Minimum distance classification is one such scheme. In a

certain sense minimum distance classification resembles

what is probably the simplest approach to pattern recognition, -



namely "template matching".. In temp]ate matching a tem-
plate is stored for each class of patterns to be recog-
nized (e.g. letters in the alphabet) and an unknown

pattern (e.g. an unknown letter) is then classified into
"the pattern class whose temp]éte best fits the unknown
pattern on the basis of sbme previously determined similarity
measure. In minimum distance classification the témp]ates
and unknown patterns are distribdtion functions and the
measure of similarity used is a distance measure between
distribution functions. Thus an unknown distribution
function is classified into the class whose distribution
function is nearest to the unknown distribution in terms of
some predetermineddistance measure.

Normally, in practically problems, it is not the
distribution function itself that is observed, rather a
random set of measurement vectors drawn from the distribution
are observed. Consequently; before the distribution function
can be classified it must be estimated from a set of ob-
served vectors. It is possible to adopt the view that when
a distributiqn function is classified then in effect all
the vectors used to estimate that distribution function are
'c1as$ified; Thus minimum distance classification belongs
td a set of classification schemes that we refer to as
"sample classification schemes". A basic premise in sample
classification schemes is that the vectors to be classified

appear in groups or samples, where it is known a priori, or



where it is reasonable to aséume, that each vector in the
group.be1ongs to the same class. Sample E]assification
schemes contrast with the more conventional pdttern recog-
nition schemes where each measurement vector is classified
individually.

Our interest in minimum distance classification was
prompted by work in the field of Remote Sensing of earth
resources. Fu ét a]] state that "remote sensing technology
is primafi]y concerned with the identification or classi-
fication of physical objects through the analysis of these
~ objects made with sensors that are at some distance from-
the objects". A]thdugh not specifically stated it is implied
that theée measurements are made without coming into |
physical contact with the objects, and that the information
is conveyed from the distant object to the sensor by some
force field. ~Specifically it is the variation of some force
field with some parametek such as space, or time, or in the
case of electromagnetic radiation wavelengtﬁ, that conveys
the information. A]tﬁough remote sensing has only recently
been identified as a distinct technology, some remote sensing
techniques have been in use for'many years. - Photography is
an example of one such technique.

At the present time in thé development of remote
sensing techno]ogy it is possible to identify a duality in
the system types utili;ed. Landgrebe2 refers to the two

types as "image-oriented systems" and "numerically-oriented



'systems". The duality exists primarily for historical
reasons as a consequence of the independent development of
photographically oriented and computer oriented technology.
In image-oriented systems a visual image is an essential
part of the analysis scheme, while in numerica]]y-oriented
_systems the visual image plays a secondary role, and may
in facf not even be formed. For example an_astronomér
studying the temporal variation in illumination of a pulsar
might conceivably do so by examining a sequence of photo-
graphé (an image-oriented System). On the other hand a radio
astronomer observing the radio wave-length properties of
the same pulsar wou]d.probab1y never generate an image of
the'star (a numerically oriented system).

In numerically-oriented remote sensing systems it
.is ffequently possible to design the data collection system
in such a manner that classification becomes a problemiin
pattern recognition. This situation prevails if one attempts
- to study earth resources through the utilization of "multi-
spectral daté;images" which is a basic premise on which
the research at Purdue's Laboratory for Applications of
. Remote Sensing (LARS) is based. |

The term multispectral data-image requires
elaboration. By multispectral image, (i.e. without the
modifier "data") we mean two or more spectrally different,
super{mposed, pictorial images of a scene. The modifier

data is added to indicate that the images are stored as




numérica] arrays, as opposed to visual images. To obtain
a mu]tispectral'data-image of a scene, the scene in question
is partitioned into small éel]é and the radiance from each
cell, for egch wave-length band of interest is measured and
stored. We call these cells image resolution elements (IRE's).
In other words a multispectral data-image of a scene is an
array of measuremenf vectors, one from each IRE in the
scene. The components of the measurement vectors are the
radiances observed when viewing the scene through different
spectral windows. The spatial coordinates of the IRE are
of course also recorded to uniquely identify each measure-
ment vector. |
The.method of processing multispectral data-images
depends on the information being sought. A'rafher common
goal is that of segregating the measurement vectors into a
number of classes. For example one may wish to identify
crop species in an agficu]tura] scene. In the more con-.
véntional pattern recognition schemes each measurement vector.
would be ana]ysed individually and classified into one of
the classes of interest on the basis of some classification
rule. In a sémp]e classification schéme; like the minimum
distancé rule, all vectors to be é]assified afé first seg-
regated into groups, such that all the vectors in a group
belong to the same class, and then the group is classified.
Note there are two distinct aspects to the prob]ém of mini-

mum distance classification. The first is concerned with




partitioning measurement vectors into homogeneous dgroups,
while the second is concerned with the C]assifiFation of
the groups. |

It is clear that“for minimum distance Classifi-
cation to be most useful automatic hethOds must be devised
for defining éamples_(i.e. groups of méasurementvvectors).
While we recognize the importance of this problem, and have
‘done SOme wprk on it, we will primari]y'COncérn ourselves
with only the classification aspect of the problem. We do,
hoWever, wish to make a few comments regarding definition
of samples. |
| It frequently occurs for multispectral data-images
that many of the adjacent measufement cells belong to the
same class. For example in an agricultural scene éach
physical field typically C6nta1ns many measurement cells.
In fact it is precisely this condition that prompts the
inveStigation of minimum distancé classification. In such
situatibns the physical field boundaries serve to define
suitable sahp]es for problems like crop species identi-
fication, and it is on this basis that minimum distance
classification is also referred to as per-field classifi-
"cation. It is apparent that for the situation just des-
cribed one method of automatically defining samples is to
devise a scheme that automatiCally locates physical field
boundaries in the multispectral data-imagery. In this in-

vestigation of minimum distance classification physical



7

field boundaries will actually be used to define the
samples, but the field boundaries will be located manually
rather thaﬁ automatically. A second and perhaps more
promising approach to the prbb]em of définingvsamples is
via observation sbace clustering. In this approach vectors
from an arbitrary area are c]ustéred in the observation
space, and all the vectors4aséigned to the same cluster
constitute a sample irrespective of their location in the
arbitrary choosen area. In.this case the term "fields"
no longer seems appropriate and conseq&ent]y the term
sample classification is preferred over the term per-fie]d_
classification. |

| It is apparent that minimum distance classification
(6r any other sample classification scheme) cannot be used
in all situations where a vector by vector appreach is
possible. A basic requirement is that the data to be
classified. can either be segregated into homogeneous samples,
or occurs naturally in this form. Where the minimum-distance
scheme can be applied it has several potential advantgges
over a vector by vector classifier; in particular it %s
potentially faster and more accurate.

It seems logical that provided the time required

to automatically define the samples is not too great, then
a minimum distance classifier should be quter than a vector
by vector classifier. This is of considerable importance

in utilizing a numerically-oriented remote sensing system



to survey earth resources because a characteristic of such
surveys ié fhe'tremendous volume of data invo]ved; One
would also anticipate that the vector classification
accuracy of a vector by vector classifier would be lower
‘than the sampie classificatioh acéurécy for minimum dis-
tance classification. The reason for this is that in
minimum distanée classification all the information conveyed
by a group of vectors is used to establish the classifi-
Cation of each vector whereas in a vector by vector class-
ifier each vector is treated separately without reference
to any other vector. In a sense minimum distance classi-
fication utilizes spatial information because vectors are
classified as groups, which naturally have some spatial
extent. No spatial information is used in vector by vector
classifiers, consequently, minimum distance classification
should perform better since spatial information is certainly
of some value.

The objectives of this investigating of minimum
'distance classification can now be stated. The primary
objective is to experimentally assess minimum distance
classification as a method of classifying multispectral data-
images under the basic assumption that all samples are
manually defined. An important aspect of the investigation
is the compdrison of various distance measures as well as
a limited parametric vs non parametric assessment of minimum

distance classification.
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CHAPTER 2 .
*’f 4§

DISIANCE CLASSIFICATION’

'\” L
§

f'?i;
MINIMUM

In this section we introduce fhe necessary defin-
itions and notation.to formulate the minimum distance
cIa;sification rule in a decision theoretic framework'

The diverse Titerature pertaining to minimum distance
classification and distance measures Is reviewed and dis-

cussed uti]izing consistent notatiqn and terminology.

2.1 Basic Concept of the Minimum Distance
Classification Procedure

Distance between cdf's is the basic concept upon
which the prbposedvclassification scheme is based. In a
‘mathematical sense the terms "distance" and "metric" are
sometimes used interchangeably. A metric on a set S is, of
course, a real valued function § defined on S XS (X indi-

cates cartesian prodqct) such that for arbitrary F,G,H in S

(a) §(F,G) > 0 2.1.
(b)(1) &(F,F) =0 - 2.1.

(2) If §(F,G) = 0 then F.= G 2.1,
(c) §(F,G) = 6(G,F) 2.1.
(d) §(F,G) + &6(G,H) > &(F,H) 2.1.

We will not consider the terms "metric" and

"distance" to be synonomous, rather we will assume that a
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distance has some, though not necessar1]y all, the propert1es
of a metric. Spec1f1ca]]y we will assume a distance on a
set' S is a fea] valued function d on S X S such that for
-arbitrary'F,C,H, in S atllegst metric properties (a), (b)
(1), . and uSda]Jy (c) ho]d;‘ We will specifically point out
thbse insfaﬁcesvwere (c) is assumed}notlto hold.
To describe the'basic concept of thé minimum dis-
ltance mefhod we consider a-particular case. The method 1is
fbrmulatéﬁ in a .more geﬁera] and rigorous manner in the next
section.- We $s$ume5that the ith class is characterized by
-q”knqwh,§¥variate car (), 4 = 1,2, k. Let o = (r(1),
:-ﬁ(z),};f;F(k)}. To classify an unknown sample of N random
7Véctors drawn'from a population with cdf F (where F =‘F(i)
‘for some i) .we compute the emper1c cdf FN and ass1gn the
sample to the ith class in case
d(F F(_i.))' - nvn.ivn-' d(Fy.Fl3)) . 2.1.6
. j=1, A ..k ) _ }
It appears that it shou]d be possible, under

su1tab1e cond1t1ons, ‘to adopt the po1nt of view that this
decision rule is a version of the well known nearest ne1gh—A
bor'rules; exqépt that the items being c}aséified are emperic
cdffs representing.ihe class from which the sample (groub of
vectOrs).okigiﬁated rather than vectbrs.representing 1ﬁdi—
Vidua]bpatternét-'The Va]idity of -this contention is estab-
]ished;iﬁ.chaptér 3 for the parametric cése. The nearest
neighbor vieWpoinf ééems partiédlar1y appea]ihg both theo-

retically and practically. From a theoretical point of view
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it means that theoretica] results in connection with nearest

3 45,6 are directly applicable."

ne1ghbor dec1s1on rules
From a practical point of view it immediately becomes very
logical to view subclasses as different "sample points”
(a "sample point" in this context is an emperic'cdf)'
representing the particular c]ass‘in”question. These con-
cepts will subsequently be fbrmulated'in a formal mannek
and their validity and resultant implications investigated.
The decision rule as given above is comp]eteiy non-
parametric. The intention is, hdwever,‘to iﬁvestigete the
rule in a parametric as we11'es e nohparametric setting
In the parametr1c sett1ng the cdf's are assumed to have some
parametric form (e.g. q- var1ate normal) and hence Q = {F(])
,F(z),..., (k)} becomes a sybset of a parametr1c family (q-
variate normal). |
It mest also be pbiﬁted out_thai in the particdlar
case considered above we assumed thdt the fkue»ciass dis-
tributionswere known. .The'case where they are not knbwn'is‘
discussed in the next section. The basic idea in this
situation is to repiace the unknown class cdf's in 2.1.6
by suitable "estimates" of the_cdf‘s, for-ekampie empiric

cdf's might be used.

2.2 On Estimatigg,Distributibn Functions
As already mentioned, to apply the minimum distance
‘method we must estimate the cumulative distribution function

of the sample to be classified,-and:possibly also the class
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distribution functions if these are unknown. Some of thé
distances we are interested in are expresééd in terms of
probability density functions (pdf's) rather than cdf's. 1In
such cases we will need to estimate pdf's. Consequently,
before we proceed to the formulation of the minimum distance
rule we discuss briefly the estimation of pdf's and cdf's
and make a number of appropriate definitions,.

We will adopt the following conventions regarding
the notation for pdf's, cdf's and their estimates. We will
distinguish between pdf's and cdf's that refer to the same
distributioh by means of corresponding 1owér and upper case
letters respectively. A symbol above a quantity designates
an estimated quantity. Thus ﬁ and % are the "dot" estimates
for F and f respectively. Note that if thé "dot" estimator
is defined in terms of pdf's, then ﬁ is cbmputed by first
"obtaining % and then finding‘the corresponding cdf by
integration. Similarly if the "dot" estimator is defined
in terms of cdf's then'% is obtained by differentiating ﬁ.

We will assume in general that the estimated pdf's
or cdf's are to be based on a random sample of size N (i.e.
Xps X

=2
bution function F(x) and corresponding density f(x) (if it

o LN) from a g-variate population with distri-
exists). Thus the X;'s are q tuples, X, =_(Xi],-X12, ce s
X; ) i=1,2, .., Nand x = (x],sz,...., xq).
Probably the most natural estimators are the so

called empiric estimators.
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Definition 2.2.1

The empiric cdf FNC&) is defined as

?N(ﬁl = % (Number of X;"s such that
xti< xj,j =1,2y.“,q) , 2.2.1
Assuming cdf's are continuous on the right the

corresponding empiric pdf is

Fylxd =g 2

i

—

8(£—§f) , 2.2.2
1 - |

V where's(-) is dirac delta function
There are a number of other estimators of interest
whpse origins are probably heuristic but which cam in general
be motivated by_the.folTowing theoretical result due to Fix
7

and Hodges

Theorem 2.2.1 (Fix and Hodges) ‘
If a density f(x) s continuous at x = z and [yN]is
a sequence of setswith nonzero volume E@M} such

that

(1) Timit sup z - =0 2.2.3
z -y
(2) Timit Noy = = - 2.2.4
N—»oé

and if k(N) is the number of independent variables

Xp» Xps -..» Xy distributed as f(x) which are

N
contained in ®N then if

£

x
fN(i) = 2.2.5

=

on
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*

then f,(x) approaches f(x) in probability. The
*

fN(i) Wi11 be referred to as a local density

estimate of f(x) at x.
Conditions (1) and (2) ensure that asquecreases with N about
Z it does so in such a manner that the expected number of
observations in @N approaches infinity, thus ensuring a
consistent density estimate.

Choosing @N to consist of disjoint cells of equal
size fixed with respect to the coordinate system leads to.

"histogram estimates"

Definition 2.2.2

The cumulative histogram FN(i) is defined as

v ) ,
FN(é) = % (Number of X.'s such that

Xij <b ([xj]b + 1), j ='1,2,77.,q) 2.2.6

Where [x. ]b is the ]argest integer less than or

equa] to xj/b. The pdf correspond1ng to F (x) is.

v
fN(i) is referred to as the pdf of the cumu]at1ve

histogram. In 2.2.6 b is the bin edge.

Definition 2.2.3

The density histogram %N(i) is defined,aé'

Flx) = KN | 2.2.7
Nb9 v '

where b is the bin edge and k(N) is the number of

&i's such that

bx;Jp < Xy5 < bllxzly + 1) § = 1,2,....9 2.2.8
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"where [Xj]b is the largest integer less than or
equal to *j/b' Equation 2.2.8 simply states that
k(N) is the number‘of li‘s in the same bin as x.
The cdf corresponding to %N(i) is ﬁN(é) and is

referred to as the cdf of the density histogram.

Note that %N and ¥N are quite different estimators in that
¥N is the suhmation of N delta functions while %N is the
summation of N step functions. If the bins in the estimators
;N and % are permitted.to become smaller and smaller within
the framework of Fix and Hodges result then at points of
cohtinuity %(5) and ;(5) are consistent asymptotically
unbiased estimates for f(x) and F(x) respectively.

| The idea of selecting yy to consist of an interval
about the estimation point x (as opposed to fixed bins) was
first investigated by Rosenblattg. This concept can be
genera]ized6 by replacing YN by a suitable weighting function,

and considering oy as the volume of the weighting function,

and k(N) as the weighted count of the vectors in @N. That is

we define
oy = {mKN(l’i)dl 2.2.9
k(N) = N[ Ky(y,x) ?N(x)dx 2.2.10

o0
where j indicates an integration over the whole space and
-'00

?N(X) is the emperic pdf. k(N) reduces to

k(N) = = Ky(X:s x) | | 2.2.1
jg=1 %
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which for KN an even function of its argument leads to

Ky(xs X5) | . 2.2.02

T =

k(N) =
1

J
This leads to the following definition:
Definition 2.2.4

The Parzen density estimate FN(é) is

nMm=2

= _ 1

Ky(xs X:) - 2.2.13
N i N L

1

Parzen density estimates were investigated for the unf—

9 and Pariénlo

variate case by Cacoul]os]].

variate case by Whittle and for the multi-

Under relatively weak conditions on KN(-, ) the
Parzen density estimate is consistent and aéymptotica]]y un-
biased at points of continuity of f(x).. The conditions
kN are that it be bounded, absolutely infegrab]e, and that
it abproach zero sufficiently rapidly for large values of
the argument]];
| The estimators of definition é.Z.I'to 2.2.4 can bev
used to obtain estimates for q-variate populations.regardiess
~ of whethef the distribution function F belongs to a.para-
metric family or not. If the family is parametric we may
wish to use pdf'é and cdf's based on.thé,estimated parameters.
Definition 2.2.5 | |
If F(i) is characterized by é (i.e., F(x) = F(x]|g))

~ . ~

then the parametricqlly estimated cdf FN(il“) is

defined as

A

Fy(xlo) = F(xle)
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where § = (e],‘ez, ...;ves) and e js some estimate
- of 6 based on the random sample.
The density.corfesponding to R(x[e) is fv(éjﬁ)

~and is referred to as the E@rametr1ca]1y estimated

pdf. Note that R(ilg) = f(xle)

Frequent]y we will not wish to be specific re-
garding the estimator to be utilized. For this reason we
make the fo]]owiﬁg definition.

Definition 2.2.6

. . . v Y
A sample-based estimate of a cdf (Fy) or pdf (fy)

is any estimate of a cdf or pdf based on a random

sample. |
Ianituations where there appears to be no danger of con-
fusion we will drop the adjective sample-based. Thus the
term éstimate used by itself usually refers to a sample-
based estimate.

2.3 Decision Theoret1c Formulation of Minimum
Dlstance C1ass1f1cat1on

In this section we present what essentially amounts
to a decision theoretic formulation of minimum distance
classification. Two main types of problems will be con-
éidered, each with thrée cases. In Type I problems we assume
that distribution functions for all classes and subclasses
are known agripri while in Type II problems we assume that
estimates of these distributions must be obtained from

appropriate random samples. The three cases considered in
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each prdb]em Type are a consequence of different apriori
assumptions regarding the numbef of subclasses. Case (a)
assumeé each class can be represented bj an infinfte

number of distribution functions (i.e., subclasses) while Case
(b) assumes the number is finite but larger than unity. Case
(c) is concerned with the situation where each class can be
represented by a single distribution function. In every

case we assume that the number of main classes is finite

and greater than unity.

We will be interested not only in determining .
distances between individual dfstribution funcfions but
befween sets of distribution functions as well. Such
djstances are defined in Definition 2.3.1.

Definition 2.3.1 ’

Let the distance d(F,G) be defined for all F,G, in

A, where A is .an arbitfary set of cdf's:of

interest. If A] and A2 are non-empty sﬁbsets of

A then we define the distahce>d(A]; A2) between the

sets A] and.A2 as

d(A,, A.) = Inf d(F,G) | | 2.3.1

1° 2)
FeA]

' GeA2
With regard to the last definition we note that

it applies to finite and infinite sets of distribution

functions._ 0f course,-if the sets are finite then taking

‘the infimum is equivalent to taking the minimum.
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Furthermore, if eachbset consists only of a single distribu-
tion function then the diétance between the Sets is precisely
the disténce between the distribution functions. It is also
important to note that the above definition includes as a
‘special case the disténce between a distribution function
“and a set of distributions functions.

In order to avoid future misunderstandihg it is
necessary to make some comments about notation. In particular
the usage of d(F,G) requires clarification. Some of the
distance measures we will consider are expressed in terms
of pdf's rather than cdf's. The convention we adopt is
that we will use the notation d{(F,G) and refer to this
quantity as the distance between cdf's even though the
distance is expressed in terms of the densities .of F and G.
A‘comment-shou]d perhaps also be made about the class of
.cdf's that are permitted. This in general depends upon the
particular distance measure and the particular estimator
used. All that is required is that the particular distance
used must exist for all cdf's of interest, including
estimated cdf's. This means, for exampié, that if a dis-
tance is expressed in terms of pdf'§ then the densities
must'exist, whereas if the distance is expressed in terms
of cdf's then the densities need not necessarily exist.

We are now in a position to formulate the problem
in a decision theoretic framework. In specifying a statis-

tical problem we must specify
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(a) Z - the sample space of the observed random
variable.

(b) @ - the set of states of nature; that is, the
set of possible qdf's of the random variable.
If the functional form of the cdf is known,
then we can identify Q with the parameter
space.

* v

(c) A - the action space; that is the set of
actions or decisions available to the statis-
'tician.

(d)‘L (a,F) - loss function defined on KXQ which
measures the loss incurred if FeQ is the>true
state of nature and action aeﬁ is the action |
taken. |

The general formulation of the minimum distance

problem in this framework follows:

(a) 2

(b) @ = [Q(]), 9(2),...,Q(k)] where Q(i) is thé

E9 (q-dimensional Euclidean space)

set of possible distribution functions for the
ith class, i = 1, 2, ..., k.

(c) K = [a;» a,, ..., a ] where a, is the decision
to decide the random'sambTe to be classified

belongs to the ith class, i =1, 2, ..., k.

[}]

(d) L(a,F) 0 if FeQ(i) and .action a; was taken

1 otherwise.

A decision rule is a function defined on Z and
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taking values in K. The minimum distance decision ruie is
defined below. |
Definition 2.3 2
Let Y be the vector of all sample obserVations.
The minimum distance decision rule DMD:Z+K is

Y) = a; (i.e., decide the random sample to be

Dyp ( i

classified belongs to class i) in case

v Y]
(i)y . Min (3)
‘ d(FN’ A ) J- - ],..,k d(FN’A )
Where A(i) is the set of cdf's selected to represent
n

the ith class and FN

of the cdf of the random sample to be classified.

is a sample-based estimate

Normally in a parametric problem parametrically
estimated cdf's would be used. It is, of course, always
possible to treat a given parametric problem in a non-
parametric way. That is even if the problem is parametric
one could use Some nonparametric'estimator, but the con-
verse is not true. It is important to note that Y includes
not only the random sample to be classified, but also any
other observations used in the classification procedure. For
example, if training samples are used for each class, these
are included in Y. The sets A(j) also require comment.
A(i) may be the set of all possible distributions for class
i(i.e., A(i) = Q(i)) or it may be a subset of A(i) or the
sample based estimates of a set of cdf's selected to repre-

sent class i.
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As a1ready indicated we will consider a number

of special cases of the above formulation. The special cases

we consider have been selected to assist us in describing

work that has been done on this problem. These special

cases are basically a consequence of making different assump-

tions regarding Q, and A = [A(]), A(Z), cees A(k)]. We

initially deal with Type I problems where the sets of dis-

tribution functions representing the classes are known sets.

Actually, this problem is not of great interest from a

practical point of view, but it is interesting from a theo-

retical point of view because it is relatively simple.

Type I - The 9(1)'5 are known sets of cdf's

Case (a) The sets oli) are infinite and A(i)-= 1)
Case (b) The sets Q(i) are finite and A(j) = Q(i)
Case (c) The set Q(i) = F(i)(single cdf/class)

and (1) = p(1) ' |
If the sets Q(]), 9(2), cees Q(k) are known to

consist of g-variate distributions but are otherwise unknown

then we would like to replace each actual cdf by a corres-

ponding sample-based cdf, and base‘the decision rule on

these distributions. In practice we can of course handle

only a finite number of distributions.” Consequently, if

the sets 9(1)are infinite, we must somehow replace. the

infinite sets with repreSentative finite sets. We are also

forced to adopt a similar attitude if we know apriori that

the sets Q(]) are finite, but do not know precisely how many
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distribution fuhctibns each Q(j) contains (i.e., how many
subclasses of wheat are there?); or even if we know the
precise number, we may not know how to obtain a random
'saﬁp]e for each distribution function (i.e., how do we
‘select samples representing different subclasses of wheat?).
Finally, in the finite case, even if we can obtain a random
sample for each distfibution function of intefest, their-'
numbervmay'be so large that for practical reasons we May

wish to use a smaller number of representative.distributions.
Thus, the need arises for a method to select a representative
set of dfstribution functions from a larger (possibly in-
finite)-set. To do this we will assign a distribution

H*(i) to Q(i), i= 1, 2, ..., k. That is the events to

(1)

which probability mass is assigned by H* are sets of

distributions in Q(j). To select a random set of cdf's
from Q(i).(i.e., to select a random set of training samples
- for the ith class) is now equivalent to selecting a random
sample from H*(i). |

The above formu}ation is rather comp]icated in
that we are dealing with a distribution over a space of
functions. This compféxity can be avoided by restricting
consideration to a parametric family characterized by s real
parameters. Making the logical assumption that a one to
one correspondence exists between cdf's in Q(i) and points

in the parameter space 6(1)(5ES), it is apparent that
(i)

—d

assigning a distribution H* to Q(T) is equivalent to
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assigning some other distribution H(i) to the parameter
space 6(1). Conseduent]y, in the parametric case rather
than deal with H*(i), whfch is a cdf on a set of distribu-
-tion function, we can deal with H(i) which is a cdf in E>.

Actually as far as the minimum distance classifi-
cation scheme itself is concerned we do not have any direct
interest in H*(i) and H(i). These distributions are intro--
duced to enable us to establish a connection between mini-
mum distance and nearest neighbor decision rules.

It is perhaps worthwhile to restate the above
ideas with reference to a‘specifié application, involving
multispectral data-imagery from an agricultural scene,
before stating them in a more formal manner. In the interest
of simplicity and since it is the case of primary interest
Awe will assume @ is a parametric fami]y'chdracterizéd in
E>. That is, we assume that the true q—dimensiona] |
distribution of the radiance measurements from each field
belong to the same paramétric family which can be charac-
terized in the parameter space ES. This family may have a
finite or infinite number of members (i.e., subclasses). We
assume that all the fields in a ciass'(i.e., wheat) can be
‘described by a suitable distribution H(i) oVer the parameter
space. We select at random a set of training fields for
each class. Because of our formulation this is equivalent
to selecting a random samp]eﬁfrom-the paraheter space |

according to the assumed distribution over the parameter
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space for that.class (i}e., H(i)), for each of the randomly
‘selectéd'training fie]ds we use the radiance measurements
to get an estimated cdf for that field. In this way We
obtajn estimated cdf's for a representative set of training
fields for each class. An unknown field is then gésigngd
to the class that has a training field whose estimated cdf
is nearest tg the estimated cdf of the unknown field.
Since the problem as stated is parametric, one would nor-
mally,‘though not.necessarily, use parametrically estimated
cdf's.
| We now formally stéte the Type II problem in
which the (1) 's are unknown, While we are primarily
interested in the case where @ is a parametric family we
will noﬁ restrict ourselves to this case in stating the
problem. Also in Type II problems the description of the
set A(i) is rather involved,
Type 11 - The ﬂ(i)'s are Unknown Sets of cdf's
Casg,(a) - The sets Q(i) are infinite in number
and A(i) = gMgi). We now describe the set Q&j),
First we select a set of population cdf's corres-
ponding to a representative set of Mi training
fields for-class i, i = 1,2,..., k. Let Q&j) be
this sét for the ith class. That is 9&3) is a
random sample of size Mj for H*(i). A égmp]ez
based cdf is then obtained for each c¢df in Qéz)

for i = 1,2,..., k. The resultant set of sample-

AVIPE
based estimated ecdf's is Qég). For the case where
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parametrically estimated cdf's are used (ife.,
~ replaced by “)QéT) can also be considered to be
i

a random sample of size Mi in the parameter
space according to a distribution H{1)

(1) (1).g(i)
Case (b) - The sets & ! -are finite and A T\ op

(i) o olidegli)- (1)

AV = QMi cQ . Normally if the @ are finite
(i.e., finite number of subclasses) we would let

. LAVIPIN N, .
A(1) = 9(1) where 9(1) is the set of sample-based

estimated cdf's in the ith class. In cases where

the number of subclasses is impractically large

or only a random sample of tra{ning fields is

(i) = glideg(i) '

available, we let A = QMi < ‘and proceed as

in case (a). '

Case (c) - The set Q(i) = F(i) (Single cdf per

class) énd A({) = FN(i).

2.4 Distance Measures

The importance in statistics of distances between
cdf's has, of course, long been lr'ecognized.]2 According to

Samuel and Bachi]3

‘their use appears to fall into two broad:
categories. | |
(a) Used for descriptiye purposes. For example, .
~as an indicator to quantitatively specify how
near a given distribution is tb normal dis-
tribution.
(b) Use in'hypothesié'teSting; which is, of cou}sé,

a special case of decision theory.



There is a fenqgncy for distance functions suffi-
ciently Sehsitivé to detect minoy differences in distyri-
bution fgnction§ (i.e., type (a) use) to be somewhat
involved functions of the observations, with the result
that their use as test statistics in hypothesis testing
has péen limited because of-the complicated distribution
theory. @n the other hand, distance functions whose theqry
is simple enough to be readily used as test statistics often
do not distinguish distribution functions sufficiently well.
Since we are interested in good discrimination between
distribution functions, we must somehow circumvent this
problem. We do so by relaxing somewhat our requirements
frgm'fhose usually demanded of test statistics in hypothesis
testing. -Usua]]y in hypothesis testing it is rquiréd |
that at least the asymptotic distribution of the test sta-
tistic under the null hypothesis be known. This is required
to enable the experimentef to determine the‘range of values
of the test statistic (critical region) for which the null
hypothesis is to be rejecged for a specified probabi]ity
of false rejection of the null hypothesis (= probgbility of
Type I error which is also called the size of the test).

Our requivements are somewhat more modest, In particular we
attempt only to establish reasonably tight upper bounds on
the total probability of erfor rather than specifying
spgcificq]]y the probability of Type I error. Actually, this

approach is more meaningful for the classification probliem
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than is the c]assiéa] hypothesis-testing approach. In the
hypothesis testing approach the size of the test is chosen
by the experimenter. Such a procedure controls the pro-
babi]ity of false rejection (Type I error) at the desired
level, but‘]eaves the power of the test or the probability
of false acceptance (Type II.error), and‘cqnsequently the
total probability of error to the mercy of the eXperiment]4.
Such an approach is reasonable if the emphasis is on the
null hypothesis as the case in hypothesis testing. in the
classification problem interest is more naturally centered
on the total pfobabi]ity of error. |

It also appears worthwhile mentioning that
although distance measures are widely used as test statistics
it appears that the distance properties.of such test sta-
tistics afe used rathef 1nfrequent1y, at least directly.
This is probably a consequence of the hypotheéis testing
approach where the emphasis is on fhe appropriate distribu-
tion theory.

We will now turn our attention to specific dis-
tance measures. The literature abounds with references to
distance measures and no attempt will be made to give a
complete bibliography. A representative sampig of distance
measures is given in Table 2.4.1 a]ohg with refer‘enc»es.]s'32
We have attempted to include the most widely used distance

measures because of their obvious importance, as well as

more obscure distance measures whose application to the
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present problem appears reasonable. In addition a few
misce]]ahedus distance measures have been included to give
- an ihdication of the variety of distances that have been
suggested..'Rather than attempt to provide a comprehensive
list of references the attempt has been made to reference,
in addition to the origina1~source, only those papers conQ
taining a number}of addftional.keferences such as survey

17 18

papers. The papers by Darling ", Sahler, and to a certain

vextent Kai]athz3

fall in this latter category.

Table 2.4.1 gives the one dimensional version of
the various distance measures becausé the vast majority of
the references cited deal only with this case. The ex-
tension to multivariate distributions is in most cases quite
nafura1, exéept perhaps for the Samuels-Bachi distance. In
orderkto avoid any misunderstanding the multivariate forms
of the distances measures in Table 2.4.1 are given in Table
2.4.2 ihciuding a possible extension to the multivariate
case for the Samuel-Bachi diStance.

One of the properties of distance measures with
which we shall be concerned is whether or not the distance
is é true metric. Thisvproperty, of course, depends on the
set of distribution functions of interest. 1In Table 2.4.2
the metric properties of the distance measures are shown for
three different families of distributions functions. These
three families are: C the family of gq-variate absolutely

continuous distribution functions, MVN the family of‘q-variate
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normal distribution. functions, and MVNZ the family of q-
variate normal distribution functions with equal covariance
matrices. Since MVN and MVNZ-are subsets of C it is, of
course, true-that a metric in C is also a metric in MVN and
MVNZ. A metric in MVNZ need not, however, be a metric in
MVN or C. |
Because of the importance of the multivariate

normal distribution, expressions for the distance between two
sﬁch distributions are‘given in Table 2.4.3 for each of the
distances measured in Table 2.4.1 for the cases where the
expressions are known. | |

| Probabiy the best known distance measures in.
statistics are the Cramer-VYon Mises distance (CV’distance)]S’

16,17,18 and Kolmogorov-Smirnov distance (KS distahce).]g’

20, 17, 18 Test statistics based directly on;these.distance
measures, as well as closely related distance measures are

in common usage innstatistiés. The most important charac-
teristic of the test statistics derived from these distance
measures is that in the one dimensional case they'are
distribution-free under the null hypothésis. By distribution-
free we mean that the distribution of the test'sfatisfic

is independent of the underlying distribution. It is this
distribution-free property which has lead to widespread

]8'provides

use of CV and KS type of test statistics. Sahler
a comprehensive tabulation of the distribution theory of

these and other distribution-free statistics while Dar]ing]7
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traces their history and development.

21,22,23

The Divergence (D) Bhattacharyya dis-

23,24

tance (B distance), Jefferys-Matusita distance (JM

21,22,25

distance), Kolmogorov variational distance (KV

23,26,27 )28,

distance) and Kullback-Leibler number (KL numbers

23 are the next group of,distance‘measures we will discuss.
They do not'lead to distribution-free statistics even in
the one dimensional case and consequently their use has been
more restricted than CV and KS type statistics. Some of
them, particularly the Divergence and Bhattacharyya distance,
have nevertheless gained a certain degree of acceptance.
There are'sévera] similarities between these five
distance measures. One similarity that is immediately
apparenf is the fact that each of these distances is de-
fined in terms of pdf's rather than cdf‘s.< This means of
course that their use is restricted to a somewhat smaller
class of distributions than the CV and KS distances. As
already mentioned we shall continue to write d(F,G) to in-
dicate an arbitrary distance between cdf's F and G, with
pdf's f and g, even if the distance is expressed in terms of
pdffs. A second similarity, which is somewhat more obscure
but much more important than the first similarity noted, is

that these five distance measures can be written in terms of

the likelihood ratio L(x) where

L(x) = ; ’;g | | ‘ 2.4.1
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(f)

‘In the pérametric case where 6 _characterizes f and
Q(g) characterizes g we will write
f(xle'™)

L(x|8) = EYZTETETT. _ 2.4.

Not only can these 5 distance measures be written in terms
of the likelihood ratio, they can in fact all be written in

the following form .

a'(F.6) = L(E LC(Lx)]) | 2.4.

where the denotes a distance measure of this form.
C is a continuous convex function

Eg is the expectation with respect to g(i); qnd |
I is any strictly increasing real function of -a real
variable. | | |

The importance of this property lies in the fact that it

enables us to prove the following theorem.

Theorem 2.4.1
Let two g-variate parametric pdf's f and g be
characterized by parameters g(f) and g(g) and

prior probabilities Pe and p. respectively. Let

_ , g9
g(f) and g(g) be an alternate set of parameters

for f and'g.' The .theorem then states that if

-dé(F,G)>dé(F,G)

then there exists a set of prior probabilities

R h that
[pf ng suc a

2

3
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Pe(8,p)<P,(8,p)

wherevdé(F,G) is a distance measure of form 2.4.3

using the parameter set [Q(f),ﬁ_(g)], and P (0.p)

is the probability of error using parameter set
Eg(f),g(g)].ahd pripr‘prdbabi]ities [pf,pg].
dé(F,G) and Pe(B,p) are similarily defined.
Esentially Theorem 2.4.1 says that if the
distance betweén'F and G is greater when using the 6 parameter
set then when using the B parameter set, then using proba-
bility of error as a criterion, there exists a set of prior
probabilities for which the o set is better than the B set.
Although thé exisfance of such a set of priors is known, it
has not been established how tb détermjne what this set is.
Nevertheless, it is primarily this property that has
encouraged the use of these distances measures in feature

se]ection.33

34

Karlin and Bradt have proven Theorem 2.4.1 for

3 has proven it for Bhattacharyyé

Divergence, while Kaﬂath2
distance. It has not previously been proven in the general
form stated; for this reason its probf is given in Section
3.1. The proof essentially paraT]e]s Kailath's proof for
the Bhattacharyya distance.

Since a number of commonly used distance measures

have the form of 2.4.3 it is natural to ask whether or not
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2.4.3 could be used to generate other distance measures.

35 Lave in fact shown this to be the case.

Ali and Silvey
Starting with four propertieé that one might reasonably
demand.of a distance measure, they show that distance
measures of the form d'(F,G) possess these properties. In
fact, their result is even somewhat more general than
suggested by the last statement. They permit L(x) to be
infinite on a set of zero measure. This necessitates that
the expectation E is 2.4.3 be replaced by a generalized
expectation E*. This generalized expectation reduces to E
if L(x) is finite.

28,23 have been included

| Kullback-Leibler numbers
~in the tables of distance measures primarily becauée they
turn out to be imporfaht-from a theoretical point of view.
In general, Ku]]back?Leibler numbers are not symmetric with
respect to the densities involved. Consequentiy, it is
necessary to distinguish between the Kullback-Leibler

number of density f with.reSpect to g (Lfg),.ahd that of g
with resbect.to f (Lgf)' A consequence of this lack of
symmetry 1is that Kullback-Leibler numbers are not a metric

in either C or MVN. The asymmetky disappears in the sapce

of MVNE distributions and conéequent]y for this c;se we drop
the subscripts on L. Also in the space of MVN, distributions

L is a metric. The divergence is a symmetrized form of the

KL numbers namely

J =1, +1 . , ‘ ‘ 2.4.4

fg gf
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There are a number of important equalities and
inequalities relating the five distance measures under
discu$sion (i.e., Divergence, B distance, JM distance,

KV distance and KL numbers) to each other; and to the
probability of error 1n.a two class classification problem.
It is convénient to definé the affinity (or Bhattachafyya
‘coefficient) between twOidistributions F and G as

o(F,6) = Im(f(ﬁ)g(i))]/zdé' | 2.4.5

then the Bhattacharyya distance is
B = -Inp | 2.4.6

The Jeffreys-Matusita distance M and Bhattacharyya distance

B are closely related. In fact, from the definition of M

and B (Table 2.4.1) it follows directly that

M= [2(1-p)1V/2 = [2(1-e7B)71/2 2.4.7

The reason for considering both of these measures is because
M is a metric in the space of all absolutely continuous
cdf's but p and consequently B are not. Relationships in

the form of inequalities also exist between the Divergence

J, Kolmogorov variationh] distance K(p) and the affinity.23

These are

p ie—d/4 2.4-8
, 1 ' 1/2

[1 - 4pepgo?1' /% > 2K(p) 2 [1-2(pepge) /%] 2.4.9
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For the two class problem the probability of error

,Pe can be bounded above and below in terms of the affinity
by

2

178 0% < 17201 - (1-05)1/%) < Po 2 1/20 | | 2.4.10

A crude lower bound on the probability of error has also
been obtained in terms of Divergence but an upper bound is

o

unknown. Specifically

P, > 1/8 e™/4 - 2411

The probability of error is intimately related to K(p) in
that '

Pe = Pe - K(p) - | | S 2.4.12

Kai]athz'3 gives a more complete discussion of these and other
inequalities as well as'a number of additional references.

29 differs from all the other

The Swain-Fu distance
distances in Table 2.4.1 in that is defined in terms of the
first and sécond moménts of the distributions, rather than
the pdf's or cdf's themselves. Consequent1y, one would
expect it to be a réason&b]e distance measure only if its
use is restricted to distributions.that can reasonably be.
characterized by their first and second moments. The Swain-
Fu distance can be interpreted geométfica]]y in the following

(f) (9)

way. Let the means of‘distributions F and G be p and p

respectiveTy. Let D, be the distance along (E(g)_g(f)) from
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(f)

H to the surface of the ellipsoid of concentratfbn for
the distribution F; and let Dg be defined in an anologous
manner for the distribution G. 'Then the Swain-Fu distance
N AR

IE(g)_E(f)i‘

U= —r+1;, - - 2.4.13

The ellipsoid of concentration for a distribution F is the
ellipsoid over which a unifofm distribution has the same
first and second moments as the distribution F. Aétua]]y
" the expression given»fdr the Swain-Fu distance for the multi-
variate and normal cases in Tables 2.4.2 and 2.4.3 differs

29. The given

from the original expression-df Swain and Fu
expression is much more compact'than the original and compu-
tationally simpler. In Appendix A we show that the two fbrms
are equivalent.

Lf‘E(f) = 5(9) then T is zero (see Appendix A).
Consequently T is not a metric in C or MVN; It is a metric
in MVN,.

The next distance in Table 2.4.1 is the Mahalanobis

30,31 which has long been used in statistics. The

distance A
use 6f this distance measure is restricted to normal
distributions with equal covariance.matrices (i.e., MVNZ).

It is worthwhile noting that in MVNZ the Bhattacharyya
distance, Kullback-Leibler numbers and Divergence are propof—

tional to Az, in fact from Table III we have

AS for distribution. in MVNZ 2.4.14
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The last two distance measures in Table I-have
been included primarily to demonstrate the variety of
distance measures available. We will not make any further
comments about the Samuel—Bachi]3 distance but a few remarks
about the Kiefer—Wo]fowiz32 distance are in order. Actually
this distance is a special case of a more general distance
used by Kiefer and Wolfowitz. They were prompted to use
this distance as it possessed some theoretical'properties
they desired. It is readily apparent that the Kiefer-
Wolfowitz distance is essentially an exponentially weighted
version of the Kolmogorov variational distance with equal
priors. The technique of using a weighting function td
emphasize certain region of the distribution function, and
consequent]y-generate new distance measures has been used
in conjunction with other distance measures as well,
notably the CV and KS distances. |

- Recognizing the large variety of disfance measures
available, the problem natura]ly_afises as to which dis-
tance measure to use in a given problem. Unfortunately, no
answer 1is avai]able.to this question at present, but some
general comments fegarding the se]ectﬁon of a disténce
measure can be made. The distribution-free properties that
make the CV énd KS distahce so popular in the univariate case
no longer enjoy this advantage in the multivariate case.
Since it is the multivariate case that is of interest these

distances lose their special appeaT. Intuitively a distance



L6

like the KS distance does not appear to be as good a distance
measure as those 1nv01ving integration over the whole space.
It is also more difficuTt to compute'in paramet?ié situations
than some of the integral relations. The Samuels=Bachi
distance suffers a simf]ar computational disédvahtage.

From the theoretical point of view distances based on the

"~ 1likelihood ratio appear to have some desirable pkéﬁé?ties
(for example Theorem 2.4.1). As has already been noted

" these distances are based on pdf's rather than cdf's:. The
tendency; therefore, exists for thése distances to mﬁré.‘
reliably indicéte changes in pdf's rather than cdf's, and

it is probably true that we are more interested in detecting
changes in pdf‘s rather than cdf's, aTthough this is cer-
tainly a rather subjective question.

Of the distances based on likelihood ratios the
Bhattcharyya distance seems to have been gaining in favor.
The prime reason for this seems to be the apparent close
relation between probability of error and Bhattacharyya
distance, as well as the relative ease of computing Bhatta-
charyya distance in theoretical problems. Other properties’
‘of the Bhattacharyya distance which eénhance its prestige

as a distance measure have been pointed out by Laihiotis36

and Ste1n37.

Another property of considerable théoretical
utility is the close relation between the Bhattacharyya
distance {(or affinity) and the Jeffreys-Matusita distance

(Equation 2.4.7). In the minimum distance decision framework
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decisions made on the basis of the Bhaftacharyya distance,
Jeffreys-Matusita distance or éffinity all yield identical
results, and consequently have identical probability of
error. The Jeffreys-Matusita distance is, however, a
metric in a much larger class of distribution (see Table
2.4.2). This means that theoretical derivations regarding
probability of error can be made using the metric properties
of the.Jeffreys-Matusita distance in this larger class, and
the resu]ts'are applicable 1f classification is effected
using Bhattacharyya distance or affinity as well. This
property has been used extehsvieiy by Matusita._v

Based on the general information presented ébové,
énd lacking experimenté] evidenée to the contrafy, the Bhatta-
charyya distance appears to be a reasonable choice for many
problems. An important aspect of the experimehta] work to be
described is to obtain the experimehtai~evidénce as to the
comparative performance of é‘number of distanée measurés in

minimum distance classification of multispectral data-imagery.

2.5 On Minimum Distance C]assification

In this section we discuss work . that has previously
been done on the problem formulated in Section 2.3. Most of

the work on minimum distance methods has been done by

38-45 46,47 ,48,49

Matusita and Wolfowitz. Wolfowitz's work is

primarily concerned with estimation, while much of Matusita's

work deals with the decision problem. Contributions have

50 51,52 53

also been made by Gupta, Cacoullous, and Srivastava.
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In dealing with minimum distance decision rules
a common requirement is to insist that by using arbitrari]y
large samples, the probability of error can be made arbi-
trarily small. This»c0ncept is similar to fhe cohcept of
consistency in estimation -and prompts the following defin-
itidn.

Definition 2.5.1

The minimum distance decision rule DMD(i) is

consistent in Q = [Q(]); 9(2),..;,Q(k)] with

respect to the distance d(-,-) arnd the estimator

~if for any FeQ and ahy i = 1,..,k

Limit ' P(D

A1l Sample Sizessw up{$)=241Fed ? ) booEes

Where  is some family of gq-variate cdfs and Y

contains all samples uséd to obtain the sample-

based cdf's used in the decision rule, including 1
the sample to be classified. Note that P(:) is
Simp1y»the‘probabi]ity'of éorrectiy classifying

a random sample from the ith class.

If the above property holds uniformly for all Feq,.

then the decision rule is uniformly consistent id

@ with respect to the distance d(-,-) and the

estimator .

Note that consistency is defined with respect t6
both a distance, and an estimator for a given set 6f distri-

butions. This is necessary because a change in either the
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distance measure or e§timator~cou1d conéeivab]y make it
impossible to make the probability of error arbitrarily
small by increasing sample sizes for some distributions in
the set.

We will also wish to use the concept of consis-
tency of a distance function.

Definition 2.5.2

A distance function d between cdf's is.said to be

consistent in Q with respect to the estimator ~,

if for an arbitrary cdf Fefand every e>0

n . )
Limit - P(d(Fy,F)>e|F) = 0 x 2.5.2
N~>oo

V)
Where @ is some family of g-variate cdf's, and FN

is a sample baséd estimate of F based on a random
sample of size N from F.
If the above condition holds uniformly for all
FeQ, then the distance is uniformly consistent

in @ with respect to the estimator‘m.‘

For the nonbarametric case whére the distribution
funcfions are unknown and each class can be répresented by
a single distinct fuhction (i.e., problem Type IT case (c))

50 has shown that the minimum distance rule is con-

Gupta
sistent (uniformly consistent) in Q, with respect to distance
d and emperic cdf's,; provided d is a metric that is con-

sistent (uniformly consistent) in Q, with respect to emperic

cdf's. Approximately the same conclusion was apparently



44 who showed that for Type

reached independently by Matusita
IT case (c) problems, the minimum distance ru1evis con-
sistent in Q, witﬁ respect to a distance d and emperic cdf's,
provided d is a metric that is either consistent or uni-
formly consistent in @ with respect to emperic cdf's. Both
Gupta and Matusita assume that d is a metric in QUR where
-5 is the set of emperic cdf's corresponding to Q. Matusita
has also shown that his result holds if the class distri=
butions are known. (i.e., problem Type I case (c¢)). Under
these ;ircumstancés“he points out that the space in whiﬁh d
must be a metric can be somewhat smaller because dﬁstances
betwéen emperic cdf's are not involved in the decision
procedure.

| Matusita also points out that for the nonparametric
case with finitely many subclasses (i.e., problems Type I, II,
case (b))* no additional problems arise_and that the results
of the previous paragraph are still valid provided the sub-
classes are distinct (i.e., d(@'i), ol)ys0, 1 # 45 1.
1,2,...,k) and d is a metric in ﬁﬁﬁ, The reason this is true
is because-under the stated condition each subclass can be
viewed as a separate class in the proof. |

For the case of known but infinitely many sub-

classes Matusita shows that the minimum distance rule is

consistent in Q, with respect to a distance d and emperic

= ,
Excluding the case where random samples from Q
are used.




cdf's, provided d is a metric that is unjform]y'éonsistent
in @ with respect to emperic cdf's. Actually this result
had essentially been obtained earlier by Hoeffding and

WOlfowit254

who were concerned with distinguishability

of sets of distributions. Hoeffding and Wolfowitz assume
two sets of distribution Ay and A, are distinguishable in_

a class 1 of tests if there exists a test in T for which
the'probability of incorrectly c]assifyfng a random sample
from a distribution in A]UA2 can be made arbitfari]y small.
One class of tests they consider is the ciass of tests for
which the maximum sample size is less thén jhfinity.' They
call this set of tests T4 and define distributfons which are.
distinguishable in 75 to be finitely distinguishable. - It is
apparent that Ty included the minimum distance rule."

Hoeffding and Wolfowitz show that the sets A, and'Az‘are

finitely distinguishable (i.e., sufficient condition) if
d(A;, A,y)>0 o . 2.5.3

where d is uniformly consisteht_in A]UA2 with respect to
emperic cdf's. 'They-prove this result by showing that the
minimum distance rule, which is in T3> POSsess this property.
Interestingly enough, the sufficient.condition for finite
diétinguishabi]ity is also a necessary chditibn, subject to
relatively weak restrictions on the set of distributions
involved.

It is important to note that Hoeffding and w61f0w1tz
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assume that d has all the properties of a metric except that
d(F,G) = O does not imply F = G (i.e., metric property (b)
(2) need not hold). It appears that Matusita and Gupta
nowhere use this property of a metric in their proofs.

In some cases of infinitely many subclasses per
class, the approach of Matusita, Susika, and Hudimoto40 can
be used to reduce the comp]eXity of the problem. They

assume that there exists boundary distributions Fg1), FéJ),

for any two Q(1), Q(j) such that

a(Fi1), alidy <o, a(Fl3), @3y <o, a(rlD) fli)yso 2054

0 0

~If these conditions are satisfied then the set of distri-
butions for each class can be relaced by its boundary
distribution; that is, the prob]em reduces to the situation
where éach class is represented by a single cdf.

| For the pafametric case the on]j paper known is
apparently that of Matusifa.45 This paper deals with the two
c]ass’problem where each class is represented by a single
multivariate normal cdf. Various apriori assumptions re-
garding means and covariances are considered including the
general case of unequal and unknown means and covariances.
Matusita showed that for the éase in question, the minimum
distance rule is consistent if the Jeffreys-Matusita dis-
tance (or related affinity) and parametrically estimated

cdf's are used.




Knowing that the minimum distance rule is consistent
is certainly useful. From a practica] poinf of view, it
is of equal, or possibly even of greater importance, to know
how great the probability of error is for a given sample
size in a given situation. It is possible to show that a
lower bound on the probability 6f correct C]assification

depends only on probabilities of the following form
- N
fd(N,e,F) = P(d(FN,F)<e|F) A , . 2.5.5

In fact to verify (uniform) consistency in Q with respect'
to d and v it is only necessary to‘show that for arbitrary
FeQ P(-+) can (uniformly) be made arbitrarily small. .If the
probabilities can be evaluated or bounded from above in
terms of N, then -a lower bound can be obtained for the pro-
bability of correct classification in a givén situation in
terms of N. Both.Gupta and.Matusfta have utilized this
idea in deriving expressions for the lower bound on the
probability of correct classification for the particular
problems they considered. Note that the desjred probabilities
depend 6n d as well as N, € and F. For the case where F

is discrete, a number of useful inéqua]itiés42

for f,(N,e,F)
are availéb]e if d is the Jeffreys-Matusita distance.--
Appérent]y not very much is known aBout the optimum
properties of the minimuﬁ distance decision rule. lThe
admissibility of the minimum distance rule has been inVes—

tigated only for the Mahalanobis distance. This, of course,
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implies the assumption of normal cdf's where all classes
have identical covariance matrices. When the class means
are either known or unknown and common covariance is known,

51,52

Cacoullos proved the admissibility of the minimum

distance rule in a restricted class of procedures. Sriv-

53 gave an admissible rule for the case where the

astava
means and common covariance are unknown. For the two class
problem this rule reduces to the minimum distance rule.

Both Cacoullos and Srivastava used a zero-one loss function.
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CHAPTER 3
THEORETICAL RESULTS

In this chapter'we present some theoretical results
pertaining to distance measurés-and'minimum distance é]assi-
fication. Although all the results preéemﬁed concern some
aspect of distance measures, or minimum distancelc]assifie
cation, théir'subject matter is rather diverse. Consequently,
it seems most appropriate to presentmeach topic individually.

_There'are.essentially ihree themes underlying the
theoretical resths. The first is the'ke]ationship between
distance measures and prdbabi]ity of errdrAin vector classi-
fiers.  Sections 3.1 and 3.2 are concerned with this theme.
In Section 3.1 ‘we establish a‘re1ationsh1p between probability
of error and a éertain class of distance functions. Section
. 3.2 deals with a new separabi]ity measure defined in terms
6f random samples and considers sbmé implications of this
distance_measure regarding probability of error fn vector
classifiers.” The second theme is>tme‘relationship_between
:minimum distance_c]aégification and other classification
‘rules. This is the basis of Section 3.3 and 3.4 1m_which
we establish certain relationships between minimum distance,
nearest neighbor.and_maximum likelihood classification. The

third theme concerns probability of error in minimum distance
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classification, and is developed for a simple case in
Section 3.5.

As méntioned in Chapter 1 thé basic purpose of
the theory developed is to provide guidancé in Conducting
experiménts and interpreting their results. This is |
achieved by considering simpie situations which give ﬁnsight
into the complex situations of practical interest.

3.1 Probability of Error and a Class of Distance
' Measures Involving the Likelihood Ratio

Our objective is to prove Theorem 2.4.1 which we
will not restate. We use the same notation as in Section

5% Lhich

2.4. The proof rests on a theorem of Blackwell's
we state in terms of convex rather than concave functions.
Theorem 3.1.1 (Blackwell)

Po(Bsp) < P (8,p)  for all p if and only if

Elg,p) [CLIx[B)] 2 Eg o) [C(L(x]8))]

for a]f'continuous convex functions C. Where

Pe(s, p) is the prqbabi]ity of error using
parameter set [g(f>,§(g)] and prior probabilities p=
[pf’pg]’%g,s) is the expectation with respect to g
using parameter set [g(f),g(g)] and L(x|B) is the
(f),_B_.(g)]-

likelihood ratio using parameter set [B8

B¢

9.8) and L(x|e) are defined in a similar manner.
b}

Proof of Theorem

It is apparent from Blackwell's theorem that
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[C(L x[8))]

iI(E(g’e)[C(L(ilg))}) for,al],continuous convex functions C,

Pe(B,D)gPe(e,p) for all p if and only if I(E(g 8)
and all strictly increasing real functions of a real variable
I. Negating the last statement we have: There exists some
p such that Pe(B, p)>Pe(6,p) if and only if there exists
'spme'C_and I such that I(E(g,B)[C(L(5|g))]) f I(E(g’e)
[C(L(x|8))]) or equivalently there exists some p such that

P (B p)>P-(e p) if and-on]y if there exists some d{(F G) <

(F G) . ThlS follows d1rect]y from the’ definition of d'.

6
The 1ast statement includes Theorem 2.4.1.

3.2‘ A'Séparébility Measure, Dimensiona]igx
-and Probability of Error

i

‘Mq;h of the theory of pattern recognition is
préﬁCated on the underlying assumption that_thé*observation
sbace is a vector space of fixed dimeﬁsion:q. This approaéh
enables the vést,'powerful and well developed'theory of
vector spaces to bé applied.to the problem. Any patterﬁ
recognitioh journal will testify at a glance to the fruit-
fuiness of this appYoach. _ , oy

Problems in'which_the number of-dimehsions are
variab]e‘dd not readily fit the vector space épproach.
Consequently, it is'not'surprising that results dealing with

"~ the intefre]afionéhip_betwéen dimensionality and other-
factors, such aé Samp]e size and pfobabf]ity of efror,:are
rather‘sparce. Understanding such ré]ationships is of con-

siderable importance in pattern recognition and the result
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we present is in the spirit of fostering such understanding.
"For some time it hés been known that in a classi-
fication problem, in which estimation is involved, the pro-
bébi]ity of error may 'exhibit a minimum as a fﬁnction of
observation space dimensionality. - That is, classification
..accuracy may actually decrease when another féature is added.

56 57,‘Hughe558, Abend et,ang,

The results of Estes™ , Allais
~and Kanal and Chandraéekaranso providé some insight as to
why this occurs. The resulf we‘present provides further
insight into this phenomenon.

We wf]] consider a two class normal problem in
which the covariance matrix ¢ for each class is identical

and of the form
: o= o211 - | | 3.2.1

where I is the q dimensional identity .matrix. <Llet n be the

q dimensional vector with all components equal. That is,

D= (ngangseeang) withmg < i s 1,2,..,9. 3.2.2
We will assume that H(]) the mean for class 1 is

H(]) =g ' ' 3.2.3
and that the H(Z), the mean for class 2 is

u(2) oy | 3.2.4

Consequently, the distance between class means is

2g = Iu(]) - u(2>l = /q (2u). 3.2.5



59

The above assumptioné are juSt_as gene%aT as-éssumihg'the

two densities have idéntica] covariance matrices and arbitrary
means. This fo]ibws because by an affine transformation_
(i.e., linear transformation plus translation)two densities
with identical covariance matrices_and arbitrary mean vectors
can be put in the assumed form.

For the simple two class model described a
separability measure is presént]y.défined in terms of random
samp]es.from each class. This distance measuré involves the
ratio of the expected value of the éverage pairwise distance
between vectors within each class (intra-sample distance)
and the expected value of the average paifwise‘distahce
between vectors from the two classes (inter-sample distance).
The-expectation'invo]véd is with respect td all possible
random samples of a given size. The next section is devoted
to obtaihing the required expectations. '

3.2.1 Expected Value of the Average
Intra- and Inter-Sample Distance

Let L(]);,X(]),..., X(])_be a random sample of size

1 =2 =N
Ny for class 1. That is the igl 's are independent identi-
cally distributed random vafiables_accgrdiﬁg to the density
N(g(]),z), Similarity let L%z), Léz),...;.iéz) be a réndbm
Sample of size N, for class 2 from the distriﬁution N(B(z),z).
Note that because of-the_assumed form.df the éovariance
mafrix, not only are the 51'5 independent but the q components

of each X, are also independent.
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Consider now the average intra-sample distance
1)(‘,Ni;q) for class i defined as

(i) = 1 ( i) .
D (N:,q) = L D3, ? i=1,2 3.2.1.1
W i*d n(N.) 521 k= J+1 J

x‘—l

3 )

where D is theEuclidean distance between ﬁ(i) and Léi)

(i
Jk
and - n(N ) is the number of terms in the summation, That
is Déq)(Ni,q) represents the average pairwise distance
between all vectors in the random sample of size Nj for class
i.

vawe draw a number of random samples of size Nj
for ciass i, we would expect to get a different value of
Déj)(Ni,q),each time. That is, over all possible random
samples that can be drawn forrclass i, D&i)(Ni,Q)

random variable. The éxpected value of this random variable

over all possible random samples is

] N3 N_*-i o
E(D‘fﬂ)( -,q)) _(—73 . 'Jz” E(DJ(}(")‘) i=1,2 3.2.1.2

§;’i) all have the same

ko= j+1, j+2"“’Ni' This

For fixed i the random variab]es D
distribution for j = ]’2""’Ni;
follows since each Dgifi) represents the Euclidean distance
between two random vectors with identical disfributions.

- Furthermore, since class 1 and cTass 2 differ only in lo-
catidn, and the difference of vectors from identical dis-
tributions does not depend on location, it follows fhat the
D§i’i) have the same distribution regardiess of class index
i. If we write Rw(q) for E(Déi)(yi,q))and let D* be a
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random variable distributed as the identically distributed
random variables D§1’1), then noting that 3.2.1.2 contains

excatly n(Ni) terms we have
R, (q) = E(D*) o . 3.2.1.3

Note that D* = |X* - Y*|, where X* and Y* are independent
random vectors with the‘identica] distributions N(E',OZI),
where p' is arbitrary. The notation Rw(q)‘reflects the

fact that this quantity depends only on q and is independent
of sample size and class index.

‘In Appendix B Section B.1 we show that if X*n
N(E s O I) and Y*'\lN(H_ e I) then

R, () = Zo—2— i nil q=1,2,... o 3.2.1.4

r (3)
where r(x) is the Gamma fuhction-defined by
r(x) = [ e tt* 1 gt R  3.2.1.5

By analogy to 3.2.1.1 we define an average
sample distance'DB(N],Né,q) as
' N N s '
1 2 (1,2) _ : ' _
D (N], 2’q) '—(—]—,—')' z Dk - , 3.2.1.6
j=1 k=1
where D§l’2) is the Euclidean distance between L§]) and
iéz) and n(N],Nz) is the humber of terms jn,the summqtion;

That is DB(N],Nz,q) represents the average pairwise distance
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between all vector pairs, with one vector chosen from class
1, the other from class 2.
Taking the expectations with respect to all random

samples we have

| ) ] ' 1,2) .
E(Dy(NysN,a)) = = T, j§1 lz<=]|-:(lJJ.k ) : 3.2.1.7

By arguments similar to those presented in connection with

3.2.1.2 the distribution of D§l’2) is the same for all j =

1,2,...,N]; k = ],2,...,N2, Let RB(q) = E(DB(N]’Nz,q) and

let D** be a random variable distributed as the identically
distributed random variables D§l’2) then noting that the

summation in 3.2.1.6 contains exactly n(N],Nz) terms we have

Rg(q) = E(D**) 3.2.1.8

Note that D** = |X** - Y**|, where X**N(n,02I) and Y**n

N(—ﬂ,Ozi).. Again the notation reflects the fact that Ry
depends only on q and is independent of NT and N2;

Let us define a signal-to-noise ratio (S/N ratio)
S as the square root of the Mahalanobis distance between the

density functions for class 1 and class 2. That is,

s = () - p(@hyeT (1) (204172 3.2.1.9

which for our case reduces to

s - 28 _ Vg (2u) o 3.2.1.10

0] o

Note that for the simple case under consideration

the S/N ratio is simply the distance between the means
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divided by the common standard deviation. In Appendix B
Section B.2 we show that (writing Rg(S,q) for Rg(q))

3.2.1.11

r(a;L 2
RB(S:Q) = 20_%!-)—)9-(5/2) i) (9..‘5_]_’ %’ (5/2)2) q = ]’2’...;
T
2

where ¢ (a,b,x) is the degenerate confluent hypergeometric

function defined by the series

2 B :
- ax_,oatatl) x-
o(asb,x) = 1+ 3 R o R 3.2.1.12
If the signal-to-noise ratio is zero, then
a+l
r(35)

Rg(0,q) = 20 3.2.1.13

r(3)
which is identical to Rw(q).

In Fig. 3;2.1;1 we have plotted thelexpeﬁted
value of the average inter-samplke distance RB(S,q) as a
function of dimensionality with signa]-to4noise ratio as a
parameter. By virtue of 3.2.1.13 the S = 0 curve is also a
plot of the expected value of the average fntra-sample
distance. _

Qualitatively the quantity Rw(q) is a measure of
how_tight‘the distribution in class -1 and 2 are, while RB
(S,q) is a measure of how faf apart.the two classes are.

It is, therefore, reasdnable for thésé 4uantities to be
independent of sample size. The interrelationship between
R, and R

W B
quantities prompts the definition of a measure of seperability

together with a qualitative concebt-of theée
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20f

S/N Ratio S=16

o
L}

- Sample Distance Rg(S.q)/cr
o

Inter
Normalized Expected Average Intra. - Sample Distance Rw(q)/ o

]

- Normalized Expected Average

. ' i 1 .. 1 B .} . N |
0 10 20 30 40 50
Number of Dimensions Q

F%guré 3.2.1.1 Normalized Expected Average Intra- and Inter-
Sample Distance as a Function of Dimension-
ality.



65

R(S,q) between the two classes as

Rp(S,q) 2
- _B _.-(S/2) qtl q 2
R(S,q) = =e o ( s » (S/72)7) 3.2.1.14
Rwlqj 2 2
Utilizing the identity
¢(a,b,x) = e*o(b-a, b,-x) 3.2.1.15

which is known as Kummers identity, an alternate form for

R(S,q) results, namely,
- 1 g 2 '
R(Ssq) - q)("é's 2 - (S/Z) ) 3.2.1.16
In series form this is the alternating series
R(S.q) = 1 + L (s/2)2 1 (s/2)° L (1)@E)  (s/2)8
9 q 1! q(q+2) ~ 2T STer ey 5

- el ” - _ 3.2.1.17

In Fig. 3.2.1.2 R(S,q) is plotted as a function of dimension-
ality with S/N ratio as a parameter.
It follows from Eq. 3.2.1.17 that regardliess of

S/N ratio

limit R(S,q)
S = 3.2.1.18

q >
This fact is also rather evident from ng-A3-2-]~2- Consider
the significance of Eq. 3.2;1.]8. “Assume for convenience
that o is a constant. Then for fixed S/N ratio the distance
between class means is also fixed by virfue of the defin-

~ition of S/N ratio. Equation 3.2.1.18 states that in the
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S/N Ratio S=16

Class Separability R (S,q)

1 i 1 1 — |

o 0 20 30 40 50
o Number of Dimensions q

Figure 3.2.1.2 Class Separabi1ity vs Dimensionality for
Constant S/N Ratio.
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limit, as the dimensionality becomes very large, the

vectors in class 1 are on the average just as close to
véctors in class 2 as they are to vectors in class 1.

This means that if one could view the clusters of vectors
associated witﬁ each class in g dimensional space they would
progressively become less and less distinct clusters as

the dimensionality is increased.

3.2.2 Classification and Probability of Error

"We now present what are essentially some well
. known results regarding probability of,error'for-vector
classifiers for the problem being considered. First we
establish that if no estimation is involved then the average
probability of error is independent of dimensiona]ity. In
the case where estimation of‘fhevmeans is iﬁvo]ved we
qualitatively discuss how an increase in dimensionality can,
in a particular instance, increase the probability of error,
and further suggest that on the average we should expect
such an increase. We also suggest such an increase would be
expected from considering the behavior of the separability
measure R. |

- If the common covariance matrix and class means
ére known, then it is well knbwn that for equal priors and
a zero-one 1os§ function, the minimum risk decision rule for
classifying an unknoWn.vector L(u) into one of the two

61

classes is the maximum ]ike]ihood decision rule. This

rule assigns L(u) to the class whose density-function'is
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largest at L(u). This rule partitions the observation
space ‘into two disjoint regions by a hyperplane. The

hyperplane passes through
uy = 1/2 (w14, (2)) ' 3,2.2.1

and is perpendicular to

op = pl1) -y (2 | 3.2.2.2

In thfs case the probability of error PE is indépendént of

the number of dimensions q and is given by\

P. = 1-Q (&) = 1 - Erf(=5~) | 3.2.2.3
V26 :

where Q(x) is the probability integral

X T2
Qx) = —— [ e W2 tigy 3.2.2.4
Y2t =X

and Erf(x) is the error function

X _ 2 :
Erf(x) = —2 [ e” % dt 3.2.2.5
' /T 0

To show 3.2.2.3 is valid we consider the rotated coordinate
system with axes xi, xé, e x'q centered at Uy with the
positive x; axis oriented along the vector Ap. Let 1' be
the unknown}vector in this coordination system. Since the
separating hyperplane is orthogonal to the xi axis the only
component of the transformed unknown vector that enters
into.the decision rule is the first (i.e., Xi). Now in

the transformed coordinate sSystem
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X{ n N(g,oz) if class 1 is active and
X{ n N(—g,cz) if class 2 is active

Consequently, 3.2.2.3 follows.

Now consider the case where the common covariance
matrix is known but the mean vectors are unknown. We will
not derive an expression for the probability of'efror for
this casé, but only make some Qenera]_obser?ations.' Since
thé class means afe unknown they must be estimated. Let

E(]) 1(2) be the estimated mean vectors for class 1 and

and 'y
class 2 respective1y. “For conVenience assume that each
estimate is basedvon a sample of size N. If the sample

mean is used as the estimator, then

H(i)‘=1ﬁ z [ R Iy s 3.2.2.6

Since the‘ﬁ(1) are a sum of independent gaussian random

variables it follows that u(1) 4" N(H(1), QN.I) i=1,2

For a decision rule we use the maximum likelihood :
rule with the class means replaced by their estimates. As
‘before this'ru]e‘partitjons’the observétion;space into
disjoint régions assocfated'with é]ass-T and ETdss 2. Since
the covar1ance matrices are equal the part1t1on1ng surface

is a hyperp]ane orthogonal to

~ A N

ap = pM oy (2) | | o 3.2.2.7
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which passes through the point ﬁM’ where

Hy = %(LJ_(” + u(2)) | 3.2.2.8
A 02

.Note that EM Y N(E_Ms N I)~
Since ﬁ(]) and g(z) are random.vafiables the par-

titioning hyperplane is random in location and orientation.
The probabi]ity of error PE(N,q) is cohsequently a random
variable sihce it depends on the partitioning hyperplane.
We observe that the expected ya]ue of PE(N,q) over all
bossib]e samples must be larger than the probability of
error for the case where the means as well as the common
coyariance are known. This follows since any hyperplane
must yield a probabi]ity of error that is at least as large
as the probability of error for the optimum hyperplane.
With regard to varying the dimensionality the
fo]]owing observétions can be made as the'dimenéionality
decreaseé from 2 to 1. .Fifst note that the'probability of
deciding a vector came from class 2 when class 1 is active
(i.e., P(2]1)) depends only on I and the perpendicular
distance d (1) between B(]) and the separating hyperplane.
The smaller the distance d(1) the larger is P(2]1). A
similar statement applies to P(1]2) and d(z), Consider now
an arbitrary realization of the random variable EM‘ The
"best" possible hyperplane for the observed value of QM
is the hyperplane perpendfcu]ar to Ay bﬁt the probability

that the separating hyperb]ane which is perpendicular to Ap
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coincides with the "best" hyperp]éne is zero, since a
continuum of possible separating hyperplanes pass through
ﬁM' Suppose now that for every realization of QM the 'hest”
possible hyperplane is used as the discriminant surface
rather than the hyperplane orthogonal to Au. It is clear
that on the average, over all possible realizations of QM’
this procedure reduces the probability of error. But the
collection of the "Best" hyperplanes for the two dimensional
case are precisely the collection of hyperplanes used in
the one dimensional case. Furthermore, the "probability"
of selecting a particular hyperplane from this collection
fs precisely the same in the two cases. This follows since
the distribution of QM projected on the vector Au for
the two dimenéional case is identical to the distribution
of QM for one dimension. It, therefore, follows that the
average probabilfty of error increases as the dimensionality
is incréased from 1 to 2.- Actually the above argument can
be extended to the casé where the dimensionality is increased
from q to q + 1 dimensions. Consequently, the average
probability of correct classification is a monotonically
decreasing function'of dimensiona]ity. |

Returning now to the separability measure R we
note that it is aiso a monotonically decreasing function of
dimensidna]ify, just as is the'aQerage probability of

correct classification. It is not known how c]osé]y R is

related to the average probability of correct classification.
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On the basis of the behavior of R with dimensionality for
fixed S/N ratib one would expect that the probability of
error would in;kease with dimensionality. An alternate
point of view is that as the dimensionality is increased the
estimated location of the separating hyperplane must improve,
or else the probabi]ity‘of error will increase because the
random samples become less distinct. |
3.2.3 Separability for S/N Ratio a.
Function of Dimensionality

Experimentally it is. usually true that the pro-
bability of error decreases with increasing dimensionality,
at least for low values of q. We attribute this to the fact
that the signal-to-noise ratio is usually a rapidly increasing
Function of dimensionality for low values of gq, rather than a
constant as was assumed in the previous section. The
increasing S/N rafio tends to override the effect of
increase in dimensionality. In the absence of an exact
analysis for the average probabf]ity of error, it is not
possible to investigate the 1nterré1ationship between S/N
ratio, probability of error, and diménsionality. We can,
however, investigate such a interrelationship for our
separdbi]ity criterion R since we can incorporate in R a
signal-to-noise ratio which varies in some manner with q.
One reasonable assumption might be to assume a constant
signal-to-noise ratio per dimensfon, rather than a constant

overall signal to noise ratio; By signal-to-noise ratio per
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dimension we mean the quantity.

“§]) ) “,(12) 2y '
Sd = 5 - = =5 J=1,2,...,q 3.2.3.1

Note that by 3.2.1.10
S = /3 Sy ‘ 3.2.3.2

We can use this value for S in the expression for R(S,q)
and determine R(S,q) as a function of q for various fixed

values of Sd. For this situation

@(-%, %, -q(Sd/2)2) ©3.2.3.3

R(S,q)

'Expressed'in series form 3.2.3.3 becomes
2
_ 1 2 4 1-3 q°
R(S,9) = 1+ g7 (54/2)" - gezyzr (5472) * (qvoy(g+a)3]

(Sd/z)s'é e | | 3.2.3.4

Figure 3.2.3.] is a plot of 3.2.3.3 with signal-to-noise
ratio per dimension as a parameter. It may immediately be
noted that for the range of the q-considered R(S,q) given
by Fig. 3.2.3.3 decreases very slowly with q except for low
~values of q. In Appendix B Section B.3 the limit of

3.2.3.4 as q+= is examined. The result obtained is that
' ' 3.2.3.5

L 1 2 1 PYCE 6
imit R(S,q) = 1+ 4 (s/2)% - 1o (s72)t + 312 (5728 ...

Y.> ®

This series converges only if S, < /2. For S, > /2 "the
series oscillates since successive terms ultimately become

larger and larger. Although 3.2.3.4 is not well behaved for
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infinite q, for fixed q it does converge for all Sd.
Consequently no problems are encountered in eva]uating the
series. |

In practice it is probably unrealistic to assume
~that the-total signa]-to-nbise ratio can be increased in-
definitely by adding more and more dimensions as is implied
by a constant signal to noise ratio per dimension. Perhaps
a more reasonable assumption is to assume that there is
some limiting signal -to nbise ratio SL. One possible choice
is an exponential variation of S with q. That is S is

assumed to be of the form
= - e 4
S SL(] e T) , 3.2.3.6‘

The constant 1 reflects how rapidly S approaches its
limiting value SL as a function of q.

Using 3.2.3.6 as S in the expression for R(S,q)
lthe value of R(S,q) has been determined as a function of gq
for various values of SL for T = 5. These resﬁlts are
plotted in Fig. 3.2.3.2. The most intereéting factor about
Vthesebéurves is'that they exhibit a maximum suggesting_th&t.
the'separability first increases and then decreases with
increasing q. The limiting behavior for increasing g is
the same as for fixed signal-to-noise ratio.

Two basic observafions can be made regarding the
development of the separability measure R. The first and

most important is that it is based on the}éxpeCted average
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pairwise distances between all vector pairs, where the vector
pairs originate from one (for the intra-class distance) or

two (for the inter-class distance) random samples. Thus in
essencé the separability measure is completely nonparametric
and in no way depends on the normal assumption. Thé normal
assumption is made to simplify computations. The. second
important observation concerns the definition of signal-to-
noise ratio and the assumed functional relationship between
dimenﬁiona]ity and signal-to-noise ratio. The specific

form here does depend on the normal assumptibn in that signal-
to-noise ratio is defined in terms of the Mahalanobis distance.
This dependence could be removed by defining signal-to-noise
ratio in terms of a hore general distance. For example, if
we used the Bhattacharyya distance, which reduces to the
Mahalanobis distance for the case considered, then the normal
assumption could be removed. We make these comments since
we are interested in extrapolating to more complex cases and
it appears to us that the general behavior of the separa-
bility measure R is in fact not depehdent on the underlying
densities, at least for fairly well behaved densities. In
particular for constaht and'saturating signal to noise ratios
one would expect R to approach 1 as q approached infinity
for'most:densities. Also one would expect fhat R couid
exhibit a haximum'regardless of the densities involved pro-

vided the signal to noise ratio éaturates with dimensionality.



78

While no direct relation between R and probability of error
has been estab]ished we believe that R provides some insight
into the mechanism by which dimensionality affects proba-A
bility of error in a‘c]assificatioh‘problem involving éstj-
‘mation. In particular, the decrease in R with dimension-
ality for fixed signé] to noise ratio suggests that for this
case the estimated location of the discriminant surfaces
used in classification must imprpye with dimensionality or
probability of error will increase.

3.3 A Relationship Between Maximum Likelihood

and Minimum Distance Decision Rules

It is well knowns] that to classify a random vector Y

drawn from one of k known populations, the expected loss
(i.e., risk) is minimized provided we decide Y belongs to

class m if

pil(m, gty = Y0 (Y17 3.3.0a

Zoop;L(3,i)
1

f
Y

o=
I m™x

i=1 1
where Ps is the prior probability that Y belongs to class i,
L\(j,i) is the loss incurred in deciding Y belongs to class
j, when it was drawn from class i, and fﬁi) (y) is the known
probability density for class i. In case 3.3.1a results in
ties these can be broken in an arbitrary manner provided the
probabilities of ties is zero.

For the zero-one loss function (i.e., L(i,j) =0 i = j;
L(i,j) = 1, i # j) and equal priors 3.3.7a reduces to decide y

beTongs to class m if
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(m) Max e (3) : |
fy = o,k fy (D) | 3.3.1b

If Y = (.)S]’ 2(_2’“

random sample of size N from f(x) then 3.3.1b is equivalent

.»Xy) where the X's eEY constitute a

to decide class m active if

N N

ki 1,(m)(~)£i)_= Max

o 3=1seaaak

Glx) 3.3.1¢
i=1

where f(m)(i) is the q dimensional density for class m.
If the class densities are not known it is common to

replace the'unknqwn densities above by appropriate sample-

based estimates. Thus for 3.3.1a we have decided class m

active if

(i)/yy - Min
‘o Jj=1,..,k

i MMx

p. (i i)F T (y)  3.3.2a
i=1 B - ) -

‘and for 3.3.1b decide class m active if

AR = N L R

and for 3.3.1c decide class m active if

N . o, . .
oo Pi0a) e
j= 9 * o 9 =1 -

N ' " ;1 ) : '

In 3.3.2 fﬁJ)(x) and‘f(J)(i)are‘the sample~based estimated

densitiesvfok?fﬁj)(l) and’f(j)(i) respectivély i=1,2, ...
The relationship that is éstab]ished»between minimum

distance and maximum ]1ke]ihhod classification in essence

assefts'thaf if density histograms are uSed to estimate

the densitieé,.and KL numbers are used as the distance mea-

sure in the minimum distance rule; then excluding ties,
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both c]aésificatjon rules produce identical results. This
relationship is now stated more precisely.

Statement of Relationship Between Minimum Distance
and Maximum Likelihood Classification

Let £03)(x) be the pdf for class j = 1,2,...,k and
FlJ(x) the corresponding caf. tet x{3) i =1,2,..,
Nj be a random sample of size Nj from.f(j)(ﬁ). |
Let xgu) i=1,2,...,N be a random sampie from
f(u)(i) where u is an unknown integer between 1

and k. Further let D be the maximum likelihood

ML
decision rule which decides u = m (i.e., unknown
random sample belongs to class m) in case

N

N \ .
¢(m) - Max £ (3)
T f (X;) = 52 T (X;) 3.3.3
ia i i=1, 'fk i=1 i
and let b be the minimum distance decision rule
MD

which decides u = m in case .

a(F() pmly < Min () (0, 3.314

where the distance d(F,G) between arbitrary
densities F and G, with corresponding pdf's and

f and g, is the KL number of density f for g given

by

- (L Hx
Leg [wLn 5%2% f(x) dx | 3.3.5

and the - indicates density histograms are used
as estimators.

Then the relationship established is that, -
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extTuding ties, the maximum likelihood decision

rule 3.3.3 and the minimum distancé decision rule

3.3.4 make the same decisions.

It is relatively simple to prove the above rela-
tionship but first a few comments regarding the assumed be-
havior of 3.3.5 fn regions were one or botﬁ of the denéities
involved are zero. If in E9 there exists a finite region
where g(x) is zero but f(x) is hot zero then Lfg is infinite.
The integral over a region where f(x) is zero, but g(x) is
not zero, is assumed to be zero. This is justified by

-noting that for arbitrary finite c

Limit t Ln(ct)

= { ' . ‘2.2 A
t -> [ v . ’ } -

The_integra] over regions where both denSities aré zero 1is
taken to be zero, because such region should nof'inf1uence
the distance between distributions.

It is important to note that in order for the KL
number of density histogram_%(u) for %(j) to be.ffnite_the
bins occupied by %(u)'must be a_sﬁbset of those occupied by
%(j)._ In most practical minimum diétance-classificatiqn
situations infinite KL numbers would probab]y_occur.so fre-
quenf]y'ﬁhat an unknown density would often be_an infinite
distance from all classes. Modifications to the‘definitidn

of KL numbers would probably be necessary to utilize this

approach in a practical classification scheme. A somewhat
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simi]ér situation prevails with regard to the maximum like-
N ..
lihood rule where m f(J)(X.) = 0 unless all Lfg)'s fall in

=i

the bins where %(j}-}s not zero. Again some modifications
would probably be necessary in a practical situation. ‘In
both minimum distance and maximum ]ike]ihood'c]assificatioﬁs
the modifications would be aimed at alleviating the situation
‘ weré disagreeméﬁt in a few bfhs can comp]été]y dominate the‘
result. While the behavior described above is of consid-
erable practical importance it does not éffect any theo-
retical investigation.

| The stated relationship between minimum distance

and maximum likelihood classification will now be proven.

.Taking logarithms of both sided of 3.3.3 we have

N ) .
~(m) _ Max

nmMm =

(e (x)) 3.3.7

=1

In 3.3.7 the summation is over all vectors in the unknown
sample. This can be written as the summation over the bins
occupied by the unknown sample. Let kgu) be the number of
vectors from the unknown sample that fall in the ith bin

of the unknown'dénsity histogram and let Nb be the number of
nonempty bins in the density histogram of the unknown sample,
and let %(j)(i) be the estimate for the density of the j'th
class, in the i'th bin of the unknown density histogram,

Then 3.3.7 becomes

N

N
(O LaEMayy = Max s W3 ). suss

n ™Mo

i=1
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N is the bin volume then dividing both sides of 3.3.8

If b

by NbN and recognizing that

.- klu) ' |

4“)(1) = _1 0 o 3.3.9
Nb '

we have -
, : 3.3.10

"o c(u) sy nge(m), s Max "b £(u) s (3) sy

z ]f (DLn(F277(1)) = 55 k'Z] fAE0(1) Ln(fYY7(4))

i= . : S .

‘Multiplying 3.3.10 by minus one changes' the Maﬁ operation to
' : 'b.
a Min operation and then adding the constant & f(g)(i) Ln
. , ' ‘ Ci=1
(f(u)(i)) to both sides yields the decision rule to announce

m = u in case

. PR N ' AV :
2> ,%(“)(1)Ln(7—)-(—lf(;) 1)) - Min S D ITS TR ALL COTRPUPR
i=1 B A C IR B B )
But this is precisely the minimum distance decision rule
using density histograms as density estimators and KL numbers,
'of the unknown dénsity for the class density, as the dis-
tance measure. Thus the sfated relation between minimuh
distance-and maximum 1ike11hood has been established.

3.4 On the Equivalence of the Minimum Distance énd, 
Nearest Neighbor Decision Rules

: ) : 3 : :
. By the nearest neighbor rule™ we mean a non-
parametric decision procedure which classifies an unknown

vector X € ES into the category of its‘nearest neighbor in
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. ; .. s - - C
terms of some metric in E°. Actually a number of variations

3,4,5,6 The

of the nearest neighbor rule are in existence.
~type of gquiva1ence we establish is such'that each of the
"nearest neighbor" rules has an equivalent "minimum distance"-
analog. |

We will concern ourselves only with the case where
0 is. a parametric family which can be characterized by s
real parameters. There are sevéra] reasons why equivalénce
betweén minimum distance and nearest neighbor rules would
be useful. Perhaps the most important is that theoretical
results available for nearest neighbor rules would be di-
rectly applicable to our problem. Another egually important
cbhsideration is the fac¢t that this equivalence enables us
to choose reasonable metrics in the parametéer space.

By parameter space we of course mean the space
whose coordinate axes are defined by the parameters of the
fgmi]y of densities involved. For example, for the uni-
variate normal family the parameter space is two dimensional,
as two parameters are required to define a univariate normal
proBabi]ity density function. These two parameters are the
mean and variance (or standard deviation) of the density.
The axes of this two dimensional parameter space correspond’
to these two parameters. Every univariate normal density
is represented by a single point in this parameter space.
-The location of the point corresponds to the mean and

variance of the density in question. For example the
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density in Fig. 3.4.1 is represented by the point z ‘in
Fig. 3.4.2.
No one would argue against the proposition that
‘in a barametric problem characterizable in ES, one could
use a nearest neighbor decision rule in'ES. For example,
to classify univariate normal distribution functions we
could use a nearest neighbor rule in the parameter space
depicted in Fig. 3.4.2. The choice of metric, however,
presents a dilemma. Should the mean and variance be given
équaj weight in calculating distance or not? That is,
should we or should we not use the Euc}idean‘metric.
Clearly a method of choosing a metric is required,. The
equivalence estabiished enabies us to’thossela metric in the
space of distribution functions which in turn genefates a
metric in the parameter space. In the space of distribution
functions, metrics are available which are known to‘have:
some good theoretical properties. For example, Bhattacharyya
distahce is known'to have-the property of Theorem 2.4.1.
We now prove the following theorem invo]vihg the |
equivalence of minimim distance and nearest neighbof rules.
Theorem 3.4.1 |
Let @ be a parametric_family suéh that.thereAexists4
ra one to one correspondence between F(x|8)eQ and
gé&;Es. Here 6 is the parameter vector charac-
terizing F. Let F(5|g) and F(x|B) be arbitrary |

elements of Q@ with parameter o and 8 respective]y.
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3.4.7 A Uhivariate Normal Density.

1%
T

e z=(p, crlz)

Variance o2
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I Mean u

3.4;2 Parameter Spacé Representation of a Univariate
Normal Density.
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Consider a metric 6 in Q. Since Q ié a parametric

family we can viewlﬁ as some functiog §* of the

parameters. That is 6(F(x]|a), F(ilﬁj) = §*(a,B).

The theorem asserts that &* is a metkic in S.
Proof of Theorem 3.4.1

The proof is very simple since we need only - show

that 6* satisfies the metric properties in S. That is we

- need to show for arbitrary u, v, w € S that

(a) 6*(u,v) > 0

(b) 6*(u,v) = 0 if and only if u = v 3.4.1
(c) s*(u,v) = 8*(v,u)

(d) 6*(3,1) + 8% (v,w) > 8*(u,w)

To prove part (a) we note that because of the one to one
correspondence between eiements of S And Q for arbitrary u,
v £ S there exists cdf's F(x|u), F(x]|v) in o with parameters
u and v respectively. By the definition of 6* We have ¢&*
(u,v) = 6(F(xfu), F(x]v)) but 8(F(x]u), F(ilv)) > 0 since &
is a metric in Q. Therefore, &* (u,v) > 0 for arbitrary
u, v € S. Proofs for pafts (b), (c), and (d) follow in
analogous fashion. |

Coro]]éry 3}4.]v | |

- If &6 only satiSfies §ome subset of the metric
axioms in Q, then 6; satiﬁfies the samé subset of

metric asioms in S. In particular, a distance. d

in Q generates a distance d* in S. -
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3.5 Minimum Distance Rule and Expected
Probability of Error--Two Class Problem

Although the theoretical solution for the proba- -
bi]ity of error for most realistic, multispectral analysis
. pfob]éms does-not appear tractable, it is instructive to
‘consider grossly simplified situations which ¢an be solved
analytically. Such examples db provide some insight into
more complex situations and are invaluable in gﬁiding and
interpketing experimenfs.

3.5.1 General Two Class Parametrlc Prob]em--
Known Distributions

| We consider a two class parametric problem in
whi@h'the distributions are known and each class has in-
finitely many subclasses (Type I, case (a)). -We will
assumé that even fhough all the»distributions are known only'
a random subset, selected according to the pérameter space
distribution H(i), will be used to represent each.class.
The objective of this approach is to gain insight into the
practical case where the distributions afe unknown, without
introducing the mathematical complexity that results when
sample based estimates are used. The results should be
approximately valid for the case where consistent estimators
are used and a large number of vectors are aVai]able for
estimating each density.

Let H(i) be the distribution over the parameter
space for class i3y 1 = 1,2. Let the set of distributions

A(1)vse]ected to represent class i be
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A2 gli) g p () ) E )y 3.5.1.1

i i
Here the "training distributions" kF(i) are the cdf's
obtained. by selecting a random sample of size Mi from the
parameter space distribution H(i).» Note that i indexes the
class while k indexes the subclass. The average probability

of error for the two class case can be written as

where Pys P, are the prior probabilities 6f class 1 and class
2 respectively; PE is the total average probability of error,
and Pi'is the average probability of errdheous]y classifying
a distribution into class i. The averaging to obtain PE
and Pi is with'respect_to &11‘rahdom training sets of size
‘M] from H(])'and M2 from H(z), and over all possible
parameter space realizations of the random paraméter vector
Q.

Let Pi(g) be the averége probabi]jty,(ovgr all
random training sets) of misc]assffyihg into class i a
distributfon F characterized by the fixed parameter vector.
6. Then allowing for all possible & the'average'prqbabi]ity

of misclassifying a random sample from class j is
P = [ Pi(g)h(j)(g)dg i, = 1,25 i#3 3.5.1.3

where h(j)(g) is the parameter space density of © for class

J.
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As before let F be the unknown distribution charac-
“terized by the fixed parameter space vector 6. Define the

random variables

(i) | ) o
kD 1‘(g_) - d.(F,kF(”) ko= 1,2,...,M500 = 1,2 3.5.1.4

Note that kD‘i)(g) is'the.distance between the hnknown
_distribution and the k'th subt]ass of the i'th class given
that the unknown distribution is characterized by 9. Also
note that for fixed i and 6 the kD“)(g) are k independent
identically distfibutgd random variables over all random
sets of Mi distributions,se]ected to represent class 1i.

'Lét»G(i)(glg) be the common cdf of D(i)(g) ko= 1,2,...,M,,

k
i =1,2; and Tlet g(T)(glg)'be the common pdf. Define the

random variables U(])(g)_as

U(i)(g).= Min [ko(i)(g)|k :‘]’2"";Mi] i=1,2 3.5.1.5

For fixed i and 6 the random variable U(i)(g) is the first
order statistic of the independent identically distributed
random variables kDh)(_e_) k = 1’2""Mi‘ From the theory of

order statistics the pdf for U(i)(g) is
D uge) = mp1 -6 uge)a™T gl (uje) 1 =1,2.3.5.1.6

Assume now that the distribution F characterized
by & originates from class 1. Then F is misclassified
whenever U(z)(g)<U(])(g), since then F is nearer to class 2

then class 1. Consequently, the average probability of
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classifying F characterized by 6 into class 2, giVen class 1

is active is

P,(8) P(U(Z)(g)<u(1)(g)) . | - 3.5.1.7

'fw } h(u,v[8)du dv

where h(u,v|g) is the joint probability of U(J)(g) and U(z)
- (8). Now U(])(Q) and U(z)(g) are independent because they
originate fromvindependent random samples. Thus from
3.5.1.7 | |

. o v
pyte) = f B jeyd [ M (uje)an  3.5.1.8

where h(]) (ulg)'and h(z)(v|g) are the marginal densities
for U(])(g) and U(Z)(g) respectively as given by 3.5.1.6.

Simi]ari]y
P,(8) = fwh(])(u|g)du‘fuh(2)(v|g)dv | ~3.5.1.9

By substituting 3.5.1.6 in 3.5.1.8 and 3.5.1.9 P](g) and-
P,(8) can be evaluated which via 3.5.1.3 and 3.5.1.2 yields
PE‘ -

If parameter space symmetry exists such that P](g)

?.Pz(g) then regardless of the priors P and Po from 3.5.1.2

Pe = P,(8) = Py(8) . 3.5.1.10

for this case combining 3.5.1.6, 8, 3, and 2 yields
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. | My-1

P‘E = _[

© [+ o]

0 - G(])(u[g)M]-]g(])(UIg) du dv dg 3.5.1.11
| A comment regarding the significance of 3.5.1.11
' appears adviséb]e. Note that to evaluate PE the following
distributions are required; the barameter space distribution,
and the distribution of the first order statistics of the
nearest neighbor to F (characterized by §) for both class
1 and class 2.  Provided it is reasonable to assume a
pafameter §pace distribution then in order to evaluate
'3L5.1.]I all that is required are the appropriate first
order statiétics. Obtaining these statistics is, of course,
ihot necessarily a trivial task.
3.5.2 Univariate Normal Case with Fixed and Equal Variances
and Means Normally Distributed in the Paramgter Space
In this case we assume that the i'th class (i =
1,2) contdins én infinite number of univariate normal sub-
classes all with common variance'oz, but whose means are
distributed in the parameter space according to thé normal
distribution_h(i)(e). That is the sets of states of nature

Q(i) for the ith class are given by

2(1) = (F|FaN(u,0?) where uv N(m{P) p2)1 1 = 1,2 3.5.2.1

Note that this assumes that the parameter space densities

are normal and that they differ only in location.
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For a distance measure we use the Bhattacharyya
distance. Recall that for the case under consideration
(i.e., equal variances) the Divergence, Bhattacharyya
dist&nce, Ku]1back-Leib1er numbers, and the Mahalanobis
distance are all proportional. Our results, therefore,
apply for any of these distance measures. For convenience
we use the Bhattacharyya distance. If f, the pdf to be

classified, has mean py and variance 02 then

(1) 2
(]) o Qu - U) _ .
D = . K = 1,2,...,M 3.5.2.2
k (U)“' 802 | 1
(2) _ )%
kn(z)(u) _ — . ko= 1,2, 3.5.2.3
a ) .

Where the ku(i) are a random sample of size Mi from h(i)(u).

since u{1) & N1, r2) it follows that for k = 1,2,...,M,

2
7 kD

‘ )y 2 |
(])(U)NNCXZ(I,(mi—l:H— ))where NCX2(n,52)-is the Non-

8a
r
r

central Chi-Square distribution with n degrees of fréedom and

noncentrality parameter 8. " The density for a NCXZ(n,BZ)
distribution is given by
;2 ) p(n+2k-2) 1
. -76 N 1-2.k (?X) 8'2 o
f(x) = e z rT 78 ) 1 3.5.2.4
k=0 "° Zr(f(n+2k))

where I(+) is the Gamma function. The corresponding cdf is,

F(x) = é lez 1 1.2,k Y(%("+2k), %x)

t
| —

3.5.2.5

L e
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where ¥(:-, -) is the incomplete Gamma function defined by

-] nxa+n _ | ' .
0 iﬁj%;;ﬁT— 3.5.2.6

Y(a,x) =

it o~ 8

n

Similarly

802 | (2)
Bo o B yex?(r, (k)2
r

Since parameter space symmetry exists such that Pz(g) = Py(8)

the average probability of error is given by 3.5.1.11 with

.6 = u and
. L o 1 _
2 i
9(1)(ulu) = 2x exp(-87) I %T Bfk(xu)k z Eiﬂ—i%il
k= 2r (k+3)
i=1,2, .5.2.7
1 5.
- ® y (k+5,2u) '
6 ) = exp (-82) & Ly a2k 2 i= 1,2
k=0 r(k+§)
(1) 2
() = L exp (_%(m__?_;_g) ) s 3.5.2.9
/2rnr .
where in 3.5.2.7 and 3.5.2.8
| () 2 2 o
g2 = 2(—=Y)" i =-1,2 and 1 = 2% 3.5.2.10
r

The above constitutes a complete theoretical solu-
tion for the case of means normally distributed in the par-
ameter space. It is rather apparent that the practical
evaluation of PE for this éase is by no means a trivial task.
While it is certainly possible to evaluate PE numerically it

appears likely that other assumptions regarding the parameter
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space distribution.hight yield simpler and just as mean-

ingful results. Consequently in the next sectioh the

norha] assumption for the parameter space digtribution is

abandoned in favor of means uniformly distributed in the

parameter space. The theoretical results of this section

were included to facilitate further 1nvestigati§n of normally

distributed means should this prove desirable.

3.5.3 Univariate Normal Case with Fixed and Equal Variances
and Means Uniformly Distributed in the Parameter Space

In this case the sets of states of nature are

(1) > 3.5.3.1
Q = {F|FuN(u,0°) whereuwu(ai,bj)} i=1,2

In addition to assuming that the distribution of
the means for class 1 and c]ass”2_are uniform it is also.
a;sUmed that U(ai; bi) and U(az,bz) differ only in location.
That is, it is assumed that |

ay - b] = a2 - b2 = y.

’Assume also that a, 2 a].' The case where a single distri-
bution ‘is selected to represent each class (M; = M, = 1) is
considered first énd the average probabi]ity‘of error'as a
function of the overlap of the parameter space densities

determined. If m(i) is the mean of'h(i)(u) (i.e., U(ai,bi))

i 1,2 then define the normalized overlap Y as

(2) (1) _
voe L = Am 3.5.3.3

]

Fig. 3.5.3.1 depicts the sitdation.
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Figure 3.5.3.1 Average Classifier Error for Minimum
- Distance Classification. A Simple
Normal Example.
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The distance measure used is
Y k =1; 1 =1,2 | 3.5.3.4

This distance measure is used because for the case under
consideration it gives the same performance as the Bhatta-
charayya distance, or other distances proportional to the
Bhattacharyya distance, but is somewhat Simp]er theoretically.

The symmetry in the parameter space is again such that

Pz(g) = P,(8). Consequently setting M; = M, = 1 and
8 =u 3.5.1.11 reduces to
Pe=f | [ h(])(u)g(z)(VIu)g(])(ulp)du dv du  3.5.3.5

(2)

. 1
For example if a; < u < ﬁ(a1+b]) then

(1)

The densities g and g can be obtained by inspection.

=N

9(”(UIu) 0 <uc< (u- a;)  3.5.3.6

" (u - ay) <u < (by - u)
Similarly 9(2) can be readily obtained.

It is therefore a straightforward but time consuming task
to evaluate 3.5.3.5. Particular care must be exercised to
ensure that all discontinuities in g(]), 9(2) and h(]) are

pfopérly handled. Carrying out the necessary computatfons

the following results are obtained.
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Pely) = %’7 (vy2(10y-15)+6) 0 <y <1 3.5.3.7
= 1z (2% 1<y<2
=0 . v y > 2

This equation is plotted in Figure 3.5.3.1.

o -In Fig. 3.5.3.1 wé have also plotted the expected
probability of efror when each class is represented by a
particular infinite set of distributions (M] =My, = = curve).
More specifically the set of distributions used to represent
each CIass is all the possible distributions in that class.
In this case it is easy to determine the average probability
of error since only samples whose mean falls in the region
where the barameter space densities overlap can be incorrectly
classified. Any sample whose mean falls outside the region
of overlap is correctly classified since it is some finite
distance away from the incorrect class, and a distance of
zero from the correct class. In the region of overlap the
distance to the set of distributions representing each
class is zero. We assume that these ties are broken in
accordance with the relative probability of observing the
given parameter value for each class. For the case under
consideration assuming equal priors, half of the samples
that fall in the overlap region will be incorrectly classi-
fied. Consequently we have immediately for infinite sample

size:
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Pely) ?]g(l-y) 0 <vy<1 3.5.3.8
=0 | Yy > 1

The largest andbsmallest probébi]ity of error that
can result when each class is represented by a single
distribution is also of interest. These probabilities are-
easi]y‘obtained. For the case under consideration the
minimuh distance rule partitions the real axis into two

parts. The partition point Hy is given by

by = 17(]‘“(1)_ + ]H(Z)) ' | 3.5.3.9

Unknqwn sémp]es whose mean u lies on the same side of My as
]u(i) are assigned to class i, i'= 1,2, |

The values over which the partition point My can range is
%(qi+a2) < “Mii %(b]+b2) _ ' - N ' 3.5.3.10
To determine the best'and worst case fof a given situaiion
it is only necessary to examine all possible partitions in.
the permissable range and choose the best and the worst.
Account must alsoc be taken of the fact that if the parameter
space_densities overlap, then for partitibns'Which fa]l.in
the range of overlap, ]u(i) i = 1,2 can lie on either side
of the partition. For examp]é the "minimum” and “"maximum”
insets in Fig. 3.5.3.2 shows both a "best" andAé "worst"
‘situation respectively for a given degree of overlap. of the

parameter space densities. Note that the "best” and "worst”
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Figure 3.5.3.2 Minimum and Maximum Classifier Error for
Minimum Distance €lassification. A Simple
Normal Example.
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cases are not unique. In fact any training set which results
in a partition point that falls in the region of overlap

is either a "best" or "worst" case depending upon which of
the situations depicted in the insets Fig. 3.5.3.2 pertains.

Proceeding in this manner it is easy to show that

—

Min(PE(Y)') = -2—(]-Y) 0 <y <1 3.5.3.11
and
Max (Po(v)) = 2(1+y) 0 <y <1 3.5.3.12
=1 : .
= g(2-v) 1L <yz<2
=0 . > 2

These curves are plotted in Fig. 3.5.3.2. Note the abrupt
drop in the maximum probability of error at Y = 1. This
drop occurs since for y > 1 it is no 1onger'pbssib1e for
the means of the training samples to fall on the "wrong" sfde
of the partition My -

The "best” and "worst" case curves shown in
Fig. 3.5.3.2 have been derived on the basis that each class
is represented by one distribution. A moments consideration
shows that they are also va]id if each class is repre-
sented by an infinite (even'uncountabiy infihite)'set of
distrfbutions; This follows since.it is always pbssible
thaf the means of every distribution chosen to répresent

class 1 falls below (above) the mean of every distribution
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éhosen to represent class 2 leading to the "bést" ("worst")
case curVes depicted in Fig. 3.5.3.2. The likelihood of
observing the best or worst cases of course decreases as
the number of samples selected to represent each class
'increases.

A number of important factors emerge from the
simple example considered. For convenience in referring to
these factors in later sections they will be givén a refer-
ence number.

Observation 1

If the parameter space densities overlap it is
possible for the minimum distance method to perform very
poorly.

Observation 2

The maximum, minimum and average performance for
the case where each class is représented by all the densities
in that case are identical. This follows since in thi;
case the training distributions are always the same.

Observation 3

The average (which by virtue of observation 2
is also thé "best”) performance for the case where each
class is represented by all the densities in that class, is
only moderately better than the average performance achieved
when each class is represented by a single density. This
suggests that the very poor performancevmentioned in

observation 1 occurs rather infrequently. More importantly
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it also suggests that in terms of average performance very
little is gained by using many subclasses. What is gained
by using many subclasses is a significant reduction in
the probability of choosing a very poor training Set, rather
than a significant'decrease in the average performance.

Observation 4

It is relatively easy to imagine situations where
the overall performance (i.e. the overall probability of
correctly classifying a unkndwn sample) changes drastﬁca]]y
in either direction as the number of subclasses used fo
represent each class - increases. For example consider
increasing the number of distributions dsed to represent
each class fromv1 to 2."Let the minimum probabi]ity of
error inset in Fig. 3.5.3,2 depict the situation when each
class is represented by a single density. Let the
densities used to represent each class in the maximum
probab11ity of error inset be the set of densities added to
increase to 2 the number of distributions representing each
class. It is obvious for this case that an increase in the
number of subclasses causes a drastic decrease in_overa]]
performance. ‘The situation described ista rather unlikely
situation and changes would t&pica]]y be much smaller, pdr-‘
ticularly for cases where each class is represented’by a
moderate number of distributions. o

It is also easy to depfct situations for which the

performance by class (as opposed to ovéra]]_perfofmance)
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changes drastically in either direction for one or both
classes as the number of subc]assgs is increased. In fact
drastic changes in class performance would appear to be
more likely to occur than drastic changes.ih overall per-
formance.

Observation 5

The discontinuity of the slope of the average
probability of error curve in Fig. 3.5.3.1 for the M] = M2 =
1 case at y = 1 is due to the discontinuous behavior of the
maximum probability of error in Fig. 3.5.3.2 at y = 1.

It is necessary to remember that observations 1 to
5 pertain specifically to the particular case investigated.
It is impossible to tell to what extent these observations
carry over td more»complex situations. The manner in which

1 to 4 gccur means they will almost certainly have their

counterpart in multiclass multidimensional problems.
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CHAPTER 4
'EXPERIMENTAL RESULTS

In this Chapter the experimental results obtained
in the investigation of minimum distance classification and
- related problems are presented. To faci]ifafe the des-
cription of the experiments performed it 1s.desirab1e to
devise a systematic method of describing an experiment.

Not only does this simplify the description of an experiment
but it also aids in clearly indicating the quantities that
remain fixed throughout the experiment and those that are
variable. In general we use the classification accuracy (or
performance) in evaluating different procedures, distance
measures, etc. For our purpose it is conVenient to con-
sider the performance to be a function of the three quantities
listed at the top of Table 4.1; these are, the Training
Procedure, Classifier Type, and Classifier Parameters. At
present there is no need to be intimately concerned with the
detai]ed>breakdown of these three gategories; it is suffi-
cient to note that to describe an experiment it is oh]y
necessary to describe the three factors inf]ueﬁcing per-
formance.

Table 4.1 is not intended to be a comprehensive

enumeration of all classifier possibilities, nor is it
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necessarily a method that is capable of describing all
classifier problems. In fact oh]y those Training Procedures,
Classifier Types, and Classifier Parameters that are of
direct concern in this work are listed. The sole purpose
of the tab]é is to facilitate description of the particular
experiments performed. We will frequently refer to this
table to assist in describing the organjzation of our work.
Classifiers are usually segregated into two broad
categories, supervised and nonsupervised. A supervised
classifier is characterized by the fact that it uti1iie$
data of'known classification as a basis for c]assifying
unknown data.  In»partitu]ar before cldssification‘étarts
typical daté for every class of interest is made avai]abie
to the cjassifer. Such data is known as training data. In
a nonsupervised classifiér data may also be available to
the classifier before classification commences, but the
‘classification of this data is not known tb.the classifier;
| Only supervised classifiers are used in this
investigation. In such classifiers the process of extracting
the:information from the trainihg datavfor subseqﬁent use
in the classification task is referred to as "training the
classifier". Once the classifier has been trained it can
be used to classify other data drawn from the c1as§es for
which it was trained. Such data is referred to as test data
- and the classification accuracy on such data is the test

performance. It is, of course, also possible to classify the
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training data itself. In this case the resultant correct
classification is known as training performance.

- qu most experiments the performance is determined
for both training and test data. The interpretation of
results for training data is usually easier since the
question of whether thé'training data was typical of the
test data does not arisé. In the final analysis, however,
it is the performance on test data that is important.

Although the detailed subdivisions of Table 4.1
hint at the complexity of the classification problem for
muitispectral data-imagesa few additional comments seem
appropriate. Even if the training proceduré is entirely
ignored the problems are still substantial. The number of
main classes. of interest can range up to 10 or more while
the number of subclasses may be three or four times this
number. The number of channels typically available is 13;
a number that will undoubtedly increase‘in the future.
While it is generally true that in the classification
prdcedure itself very few classifications use all the
available channels, it is equally true that the use of only
one channel is very rare. Consequently, considéring only
the classifier (i.e., ignoring training) itself, the
problem is still a multiclass, multidimensional problem, and
very difficult to handle theoretically. Introduce the
added complexities of different Training Procedures,

various Classifier Parameters and also the difficulty in
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establishing a mathematical model for multispectral data
and it is clear that the best approach is an experimental
~approach.

The chapter commences with a description of the
data used, and a discussion of the programs used to analyse
the data. Some of the analysis progréms were specifically
written to carry out the experiments described, others
were already available. One of the prime investigations
concerns itself with the relative performance 6f different
distance measures and how the number of subclasses affects
performance. In situations where the desirable number of
subclasses becomes impractically large, some method must be
devised for combining subclasses that are ﬁost similar.
Parameter space clustering is used as a method to achieve
this goal for parametric probiems. Since'clustering in
the parameter space is far from routine, considerable space
is devoted tovits evaluation, including its use in more
convential vector by vector classifiers. Fina]]y the effect
of various parameters on performance is éonsidered.

There is a certain experimental philosophy which
pervades this work which should be clarified at the outset
The phi]osophy is one,of comparison. No real systematic
attempt is made to édjust a]]-pertfnent variables in order
to attain "the best" c]assifitation.v Rather the philosophy
is one of trying to establish which of several alternate

procedures is most likely to yield the better classification,
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without expending the time'and energy required to greatly
refine any of the classifications. Thus for example there
vis very little manipulation, purification, etc. of training
sets to achieve the best possible classification. In short
the emphasis is on relatfve performance under controlled
cohditions father.than absolute performance. The justi-
ficatioh for this phi]osobhy,is that the scheme which
provides the best relative performance should in the final

analysis also provide the best absb]ute performance.

4.1 Description of the Experimental Data

| In Chapter 1 we pointed out that we are concerned
primarily with the classification of multispectral data-
imagery. It is, therefore, natural to restrict the exper-
Tmenfa] investigation to such data. ‘It is worthwhile to
again emphasize that the techniques utilized are not re-
stricted in this manner, although experimental conclusions
must,_df course, be interpreted in terms of the data on
which the’conclusions are based. Most of the multispectral
data-imagery available at Purdue's Laboratory for Applica-
tions of Remote Sensing.has been co]iected by an instrument

62 We refer to such

known as a multispectral scanner,
imagery as multispectral scanner imagery or multispectral
scanner data. There is also a small émount of multispectral
data-imagery that has been generated by digitizing photo-
graphs. Although for the purpose of the work herein there

is no essential difference between the scanner and digitized
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photographic data we shall only be concerned with the
former.

A brief description of LARS multispectral scannér
imagery and the scanner collection system appears pertinent.
To obtain multispectral scanner imagery for a particular
scene, the multispectral scanner is pakried above the scene
in question on an aerospace platform (present]y én air-
crgft). The scanner is capab]evof simultaneously recording,
on magnetic tape in analog form, the image of the scene
below as seen through different spectral "windowsh. The
manner in which this is achieved is briefly described. For
each spectral band the electromagnetic radiation from an
area on the ground is collected by an optical system ﬁn'the
scanner and focused onto a detector. The détector generates
an eiectrica] output which depends upon.the radiation in-'
tensity in thqt wavelength band, and which after appropriate
electronic processing is suitable for recording purposes;
The area from which e]ectromagnetic radiation is being
collected is swept across the flight path of the aircraft
by a rotating mirror arrangement in the scénner. At the
same time the scanner is carried along thé flight path by
the forward motion of the aircraft. The combined motion
results in a rastef scan of the scene below. The scan
1ine5 generated in this manner are recorded on analog tape.
Subsequent digitization results in a two dimensional arréy

of measurement vectors in which the components of the vectors
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correspond to the radiation inténsity in the varfous
spectré] bands. Aftér some processing the two dimensional
array of measurement_Vectors is iored on‘a digital tape re-
ferred to as an Aircraft Data Storage Tape, which for our
purposes constitutes the raw data. The area associated
with the measurement Vector will be feferred to as an Image
Reso]ution'E1ement=(IRE). Strictly speaking the spatial
coordinates, or relative spatial‘coordinates designating
the location of each IRE, could also be considered to be
part of the measurement vector. However, since the coor-
dinates are of a different nature than the spectral measure-
ments their usage is different. In fact the spatial
coordinates in the form of Tine and column nﬁmbers are

used to reference the location of the measurement vectors
on the Aircraft Data Storage Tape.

In selecting the particular multispectral scanner
data to be utilized for the experimental investigation
several factors were considered. By far the moét important
factor was that the data should be difficult to analyse,
That is the data should contain some main classes that are
difficult to seperate. It would be pointless to carry out
an extensive investigation on data that is easily segregated
into the classes of interest, since then apparently any
advantage of minimum distance classification would be |
obscured. A second factor of considerable importance

was that the data set should be of adequate size to prdvide
{
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a realistic experimental test of the various procedures
considered. A third factor that was considered was whether
or not the data had previous]y.been analysed by conventibna]
techniques. Such analysis would enable a comparison of
conventional and minimum distance techniques with a minimum
of effort. To be most useful the conventional analysis
should involve a relatively small number of main classes.
The reason for this is that program restrictions of some
eXisting analysis programs are such that the large number
of subclasses anticipated for minimum distnace classifi-
cation could only be accommodated if the number of main
classes was relatively small.

The practice of utilizing existing programs when-

ever possible, in order to minimize the programming effort

is logical and reasonable, as long as this does not place
unrealistic restrictions on the experiments. Since many'
practical classifications do not require a large number of
main classes focusing attention on such classifications was
judged to be a reasonable restriction. An advantageous side
effect of restricting the number of main classes is that
results are somewhat simpler to interpret and much easier
to report. | o

A final factor considered in selecting the multi-
spectral scanner data to be examined experimentally was the
desireability of having available several dafa seté that

were similar, so that meaningful avekages could be taken
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over the data sets.

In 1ight of the requirements outlined in the
previous paragraphs the multispectral scanner data sets
chosen for the experimental 1nvestigat10n‘were runs 70002200,
70002300 and 70002400. The data for these runs was
collected*at an altitude of 3000 ft., between 9:45 and 10:45
a.m. E.D.T., on Juhe 30, 1970, from flightlines 21, 23 and
24 respectively. The exact location and drientation of
these flightlines, which are located in Tippecanoe County,
Indiana, is shown in Fig. 4.1.1. The flightlines extend
the 24 mile length from the north to the south end of the
county and are roughly equally spaced in the east-west
directfon, Since the scanner geometry is such that at an
altitude of 3000 feet the fié]d of view is roughly 1 mile,
Ithe area covered by the three flightlines, approximately 72
square miles, is about 1/7 of the total area in the county.
The scanner resolution and sampling rate are nominally three
and six»mi]]iradiahs respectively. This means that at nadir
the scanner "sees" a circle about 9 feet in diameter and
that the spacing between adjacent IRE's is about 18 feet.
Since the scanner resolution and sampling rate are inde-
pendent of look angle the distance between adjacent IRE's
is approximately 30% larger at the edge of the scanner’
field of view with a corresponding change in the shape
and area "seen" by the scanner. At the sampling rate indi-
cated there are 220 samples across the width of a flight-

line and each flightline contains 5000 to 6000 lines. This
*Data collected by University of Michigan Scanner.
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means each f]ight1ihé contains somewhat more than 106 IRE's.

The data from the flightlines selected met all
the requirements stated above. A conventional ana]ysié of
this déta ‘had been carried out in connection with a crop
_yig]d study. In the yield study the méin'CJasses con-
sidered were wheat., corn, soybeans and other. Furthermore.
this ana1ysis.ihd1céted that the corn and soybeans were not
very separable, a situation that typifies data collected
at this time of year.

Thirteen spectral bands of data were collected
for each of the three runs being,discusSedm It is fre-
quently convenient to refer to these spectral bands by-
channel number rather than specifjcal]y stating the wave-
length bands ‘involved. The correspondence between channel
numbers and spectral tbands is .given in Table 4.1.1.

® IRE's in each flightline

0f the_approximately 10
between 10% and 20% are'typically used as test fields.
There are a nymbek of sets of test and training fields
which are repeatedly used throughout the experiment. These
are descfibed in Appendix C which also contains the
coordinates of the various fields. For continuity of the

discussion it is adequate to recognize that the following

decks are described: (1) Standard Test Field decks for

flightlines 21, 23 and 24; these fields are used primarily

for test purposes; (2) a field deck of Training Acres used

primarily for training purposes, both in this study and the
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Table 4.1.1

Correspondence Between Channel Numbers and Spectral Bands

Channe] Number

1

W N

10
11
12
13

o O O O O o o o o

Spectral

0.

[ T R—

40

.46
.50
.52
.55
.58
.62
.66
.72
.80
.00
.50
.00

o O O o o o o o o

Band (Micrometers)

.44
.48
.52
.55
.58
.62
.66
.72
.80
.00
.40
.80
.60
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crop yield study; (3) a field deck of Flightline 21 Test Areas

‘which are subareas within the Standard Test Fields for
flightline 21 and are used as test fields.

| ‘A few comments regarding the type and extent of
the grodnd cover at the time of the flights appear advisable.
As already mentioned four principle ground cover categories
are considered; wheat, corn, soybeans and other. Although
the class other includes a considerable variety of ground
cover most of the agricultural fields in this category are
either small grains (other than wheat) or forage crops.
There are a]éo some bare soil and a number of diverted acre
fields. Some natural categories such as trees and water are
also included in this class. For most of the subcategories
for the class other the ground cover is fairly complete,
but fhe spectral properties of the ground cover are quite
variable from field to field within a subcategory. Most of
the wheat in the f]ight]ines was mature and ready, or
nearly ready, for harvest. In fact some portion of it had
already been harvested. For corn and soybeans the crop
canopy at flight time was such that a considerable fraction
of the soil was not covered by vegetation when viewed from
above. Some idea regarding the exfent of the ground éover
can be obtained from the color and color infra-red photo-
graphs shown in Fig. 4.1.3. Fig. 4.1.2 indicates the ground
cover for the various fields. These photographs show a

typical section of flightline 24 as it appeared on the day
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of the flight. While the color photograph givés some indi-
cation of gfound cover a much better indication can be
obtained from the color infra-red photograph because of its
_ property of portraying healthy green vegetafion as brigﬁt
red. Even the s]ighteét amount of green vegetation is
sufficient to give a reddish hue to a field. This‘poiht
is_adequate]y demonstrated by most of the soybean fields

in Fig. 4.1.3. The green vegetation is barely observable

on the color photo but shows up much better on the color IR.
The ground cover for most corn fields in the area shown

is considerably greater than for most soybean fields,
however, there are exceptions. Notice the variability of
the fields within oné crop type even over the small region
covered by the photographs. The difference between har-
vested and unharvested wheat is also of importance. Finally
the faét that ground patterns show up duife distfnct]y in
corn and soybean fields provides further evidehce of the

sparce ground cover in these fields.

4.2 Data Analysis Programs

A number of different programs were used in the
analysis of the scanner data. The'purpoée of this section
is to descrjbe these progfams. Some of the programs are
analysis programs that are in general use at LARS and wi]]A
be referred to collectively as LARS System Programs.
Other.programs were written specifically to inVeétigate

minimum distance classification and related problems.
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The description given for each analysis program is
a brief functfona] descripfion. These bfief descfiptions
are augmented by-apprbpriate references for the LARS System
Programs and by Appendix E for those programsAwritten
specifica]]y to investigate minimum distance classification
and related problems. While the brief functional descrip-
tions are adequate for our purpose, the full capabilities of
the programs can only be appreciated by examining the
supplementary material. | .

There is a general philosophy that pervades LARS
System Programs that can best be summed up by stating they
are user oriented. A basic assumption is that the user
should not be required to be very knowledgeable about
computers or programming in ordér to use any of the LARS
System Programs. This goa]bis in effect achieved by designing
for each program what in essence is really a very simple lan-
guage. -The user selects program options and specifies
program parameters by means of "control cards" written in
this simple language. The principles of the language are
very simple and_remaih fixed from program to program. Con-
sequently it is very easy for the user to learn the lan-
guage. In fact if the user has a reasonable understanding
of the programs function, then the control cards seem to
him to be a very natural and easy way of specifying the
prbgram options. For example a éontrol card (whose location

in the control card deck is arbitrary) containing CHANNEL
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1, 2, 7 might mean that spectral channe1s 1, 2, and 7 are to
be used in the program. Contrast this with the conventional
situation where it would be necessary to remember the lo-
cation of the channels card in the data deck as well as its
format. A peripheral advantage of this approach is that
program documentation tends to be simpler, since to des-
cribe the capabilities of a program it is only necessary
to describe the function of each control card. Appendix D
contains a brief description of the control card language.
This description is included so thét the "control card
descriptions” of the programs in Appendix E can be under-
stood. |

Another aspect of the user orientation is that
programs tend to be self documenting during execution. In
other words sufficient information regarding program options,
program parameters, etc., are listed on the printer, which '
together with a user supplied comment, enables the user to
determine exactly what computations were carried out.

A final aspect of LARS:System Programs, which is
of importance to programmers rather than users, is that
the program decks contain a sufficienf numBer of comments
" to be substantially self-documenting. |

The reason for dweiling on the philosophy of the
LARS System Programs is that one is faced with the proﬁlem
of whether or not this philosophy should be adopted,for a

research program. It isAclear that to adopt such a
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phi]osophy‘requires considerable additional programming,
 even though general purpbse control card interpreting
routines exist‘which lighten the programming burden somewhat,
The biggest advantage in adopting this phi]psophy is that
if the program pro?es to be of interest to a number of users
it can be made available to them very quickly, and within
a familiar framewofk. Another advantage is of course that
the programs are also much easier to use during the research
phase, .The sole disédvantage is the additional programming
time reqUiréd,

Some of the programs specifica]]y written for
thi§ investigation were written with the same philosophy as
that underlying the LARS System Programs, except that the
“us¢ of comments in the programs was not as consistenf or
1ib§ra1. On the other hand some programs were written
without much regard to user convenience. On the basis of
thié'experience'it is our feeling that for research programs
the user orientéd approach is worthwhile provided there is
a good possibiiity that a number of users will be interested
in the program; or provided that durihg the research phase
it is anticipated that the program will be used many times.
If heither of these conditions is satisfied the additional
programming effort is simply not jusfified.
4.2;1 LARSYSAA: A Parametric (normal) Maximum

Likelihood Vector Classifier
The primary c]ass1f1cat1on system present]y used

at LARS for class1fy1ng multispectral data-imagery is known
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by the acronym LARSYSAA.':63:64

This is a supervised system
in which it is assumed that the data for each class is

drawn from a multivariate normal population, and classi-
fication of the unknown vectors is affectedAacdordihg to

65

the maximum likelihood principle on a vector by vector

basis. The system is supérvised65

since samples (i.e.,i
sets of méasuremehf vectors) whose classification are known
are used to train the classifier. Because of the'Gaussian
assumption, training simply amounts to U£ilizing the samples
whose classification are known to estimate the mean vector
and covariance matrifoor each class. These estimated
quantities are thén used to compute the likelihood function
upon whfch the classification decisions are based. Facil-
ities exist in the system for selecting a good subset of

the original spectral bands upon which to base the

c]assification.3;

.Such techniques are uéual]y'referred to
as feature selection techniques. The particular feafure
se]eétion technique used in LARSYSAA is based on Divergente
or an exponentially saturating transformation of the
Div'ergence.66 The average transformed Divergence between
all class pairs, or the average Divergence betweeﬁ all class
pairs, is used as a measure of feature effectivéﬁess. The
capability to use the average transformed DiVerQénce rather
than just the average Divergence has only kecént]y'become

available but at present it is the standard option unless

‘the average Divergence is specifically requested.
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LARSYSAA is organized into four processors. A
statistics processor ($STAT), a feature selection processor
($DIVG), a classification processor ($CLASS) and a display
- processor ($DISP). _The purpose of the statistics processor
is to compute, list, store, and punch first and second
order class statistics. It can also display histograms
and spectral plots on the printer. Wherever approriate
these operations can be carried out on either a class or
field basis. The feature selection processor enables the
"best" subset of features to be selected for a given set of
classes. The classification processor classifies the
vectors in a specified area in accordance wifh the maximum
likelihood rule. The class to which every vector in the
‘sbecified area is assigned together with the value of the
lTikelihood function, is stored on a magnetic tape réferred
to as a Map Tape. Finally the display processor enables
the classification to be displayed in map form on the line
printer, and computesand lists performance tables. Except
vfor the divergence processor the program is capable of
accomodatingrup to 60 é]asses and up to 30 channeTs; ai-
though not necessarily simultaneously. The divergence pro-
cessor, which is temporarily a stand alone program, can
accomodate up to 30 classes and 18 channels.

The $DIVG processor in LARSYSAA requires a few
additional comments. This processor is an optimum feature

selection processor in the sense that it carries out a
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comprehensive search of all feature c&mbinations. Under
certain circumstances the number of combinations‘becomes
quite large and the processing time becomes exorbitant.
This is for example the situation that prevails if the best
kb out of kC channels are to be chosenvand kC is in the
vicinity of 13 and kb'in the vicinity of 7. To alleviate
this problem a modified suboptimum form of $DIVG, which we
refer to as $SEQDIVG, was programmed. The $SEQDIVG processor
differs from $DIVG only in that no comprehensive search of
all feature combinations is performed, and in this sense it
is suboptimum. The searchiprocedure used 1is thqt features
are added sequentially, one at a time, in such 5 manner'that
the addition of the next feature results in the greatest
possible increase in the separability'ériterion‘ As in
reqgular $DIVG the separability critérion ié either the
average transformed Divergence or average Divergence. -
4.2;2 PERFIELD: A Parémetric (norma])Minimum

Distance Classifier

PERFIELD is a parametric minimum distance

classifier based on the Jeffreys-Matusita distance*.

67 4id the initial work at LARS which led to the pro-

Huang
gramming of this‘c]assifier. A'statistics deck generated
by the $STAT prdcessor of LARSYSAA is used to define the

classes for PERFIELD. Samples are classified one at a time.

*Strictly speaking PERFIELD is based on the Bhatta-
charyya distance but since the Bhattacharyya and JM distance
produce identical classifications we consistently refer to
the later since it is more convenient for our purpose.
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They are defined by specifying a run number and the coor-
'djnates”(i,e., line and co]dmn.numbers) of a rectangular
field in that run*. The vectors within the field constitute
the sample to be classified. The classification is accom-
pTished by retrieVing fhe pertinent data from an Aircraft
Data Storage Tabe and carrying out the necessary compu-
tations. Details of the classification and performance
tables are listed on the line printer. Since the completion
of our experimental work PERFIELD has been added to LARSYSAA
as a fifth processor.

In order to be able to perform minimum distance
classifications for distances other than the JM distance,
two modified versions of PERFIELD were programmed. The |
first used Divergence as the distance measure and the second
used Kullback-Leibler numbers. Although there are really
three distinct prograhs involved, it is,convenient to treat
them as a single progfam PERFIELD in which the distance

measure is a program option.

*In Chapter 1 it was mentioned that a problem
close]y related to minimum distance classification is the
problem of defining samples to be classified. It was also
pointed out that one way of defining samples was through the
use of closed boundaries. To implement such a technique it is
highly desirable that the boundaries be located by computer
on the basis of the spectral data. BOUND is a program that in
part attains this goal in that it locates boundaries in
multispectral scanner data. However, the boundaries are in
general not closed and further development is needed before
the method could be used to define samples for minimum dis-
tance classification. Appendix F contains a brief functional
description of BOUND as well as pertinent references.



129

4.2.3. .NSCLAS: An Observation Space Clustering brogram

The purpose of NSCLAS is to group together, in the
observation space, vectors which are similar. The measure
of similarity used is Euclidean distance. In principle
NSCLAS is similar to the ISODATA method of Ball and Hall.%®
The exact details of the clustering proceedure ﬁsed in
NSCLAS are identical to those of the c]ustéring algorithm
used by Wacker and Landgrebe to locate field boundaries .89
-Details about various clustering schemes can be found in the
review papers by Ba]]70 and Ro1hf7].

In essence NSCLAS provides the user with the
capability of "classifying" a limited number of IRE's -on a
- nonsupervised basis. It is a nonsqpervised classification
in that no training is involved. The user must identify
the classes after clustering is completed. .

To cluster a set of'vectofs the user designates
the desired vectors by means of a deck of field coordinate
cards. Vectors from the specified rectangular areas are
read from Aircraft Data Storage Tapes and clustered into the
number of classes spécified by the.user. Actually there is
a rudimentary searéh procedure in NSCLAS, whiph at the uéers
option attempts to establish the appropriate nhmber of
classes. In practice this procedure has not worked well for -
multispectral data-imégeronf the earth's surface and in

addition is very slow. Consequently, the search procedure

option is seldom used with the user electing to specify the
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number of classes instead.

After the vectors have been clustered into the
required numbér of classes, mabsvdepicting the areas clus-
tered are displayed 6n the line printer. Téb]es containing
the means and variances of each class as well as the pairwise
separability between all class pairs are listed on the
printer. The separability table is based on the Swain-Fu
distance with the added assumption that the thanne]s.are
independent. ‘ |
| | Usually NSCLAS 15 used during the preliminary in-
véstigation of the data as an aid in defining classes and
subclasses. To assist in this task the number of classes
into which the vectors are clustered is frequently varied.
The output maps generated by NSCLAS are invaluable aids in
~naming the classes and detiding on the correct number of
classes. This is achieved by COmparing the map with the
"ground trUth". The separability table is a valuable

guide in defining spectrally separable classes.

4.2.4 GRPSAM:A Parameter Space (Normal) Clustering Program
C]ustering.is most commonly carried out in the
observation space as opposed to the paraméter space. The
objective of observation space clustering is to group to-
gether observation space vectors that are in sdme sense
similar. An example of an observation space}clusteking
program is NSCLAS which has just been described. The

objective of parameter space clustering is a little different.
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In particular we wish to group together eStimated density
fdhttions that are similar. Since we are assuming para-
metric densities this grouping can be done in the paramefer
space. | ’

“Initially the parameters characferizing the
probabi]ity density function for each training sample are
estimated and uséd to define points in the parémeter space,
one point for each samp]e..‘For the Normal case the par-
ameters that must be estimated are of course the méan
vector and covariance matrix for each samp]e.‘ The hope
is that in the parameter space training samples for a given
main class would tend:to'group tOgethér at a number of
points. Each such group represents a subclass. "The ob-
‘jective is to find these groups by clustering in the
Aparameter space.

A flow chart that is commonly used for clustering
algorithms is that shown in Fig. 4.2.4.1. This flow chart
is for example the basic flow chart for NSCLAS and a]so.
serves as a basis “or the program to be discussed here.

If clustering is done in the Observation:space, as in
NSCLAS, then the objects to be clustered -are observation
space vectors. In the parameter spaée the,ijécts to b§'
c]usteréd are points 1n‘the parameter space, br'parameter
épace vectors, which in essence repreéent probabiTity
dehSity fﬁnctions. |

./ :
A question that arises immediately when clustering
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in the parameter sbace is the problem of how to measuré
similarity or distance in this space. Is Euclidean distaﬁce
a reasonable distance measure in the parameter space or
should some other distance measure be used? Use of Euclidean
distance for example implies that two univariate normal
dehsities with equal variances and a difference of 1 in
their means are just as far apart as two whose means are
equal and whose variancesdiffer by 1. The problem of‘a
parameter space distance is readily solved by recognizing
that what is really required is a distance measure between
deﬁsity'functions. In fact the problem is identical to the
problem of choosing a parameter space distance for nearest
neighbor classification consideréd in Section 3.4. Thusvto
compute the distance between two points'in the parameter |
space we compute the distance between the densities
associated with the two points, using one of the available
distance measures. By v{rtue.of Section 3.4 this.can be: :
viewed as computing the distance between points in the
parametef space,

Another question that arises when clustering in
the parameter space is that of grouping (i;e;;'the "determine
néw mode centers'b]oék in Fig. 4.2.4.1). How does one
group tbgether the densities assigned to a mode center to
arrive at a fepresentative density or new mode center? In
the observation space grouping is dsuql]y on the basis of an

average of all the vectors in the group. Is this also a
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reasonable way of grouping densities? Certainly such a
grouping is vastly different from the grouping carried out
in'LARSYSAA_wheré the statistics for a fgrouped c]éss” are
based on the pooled Vectors of all the samples that are to
be .grouped. |

: The previous paragraphs indicate that there are
a number of unanswered questions régarding clustering in
the parameter space. To answer some of these questions,
and evaluate the usefulness of parameter space clustering
of muiti-spectra] scanner data a program GRPSAM (forbgroup
samb]es) was written. The basic flow chart of the program,
omitting minor details, is shown in Fig. 4.2.4.1. A
discussion of each of the blocks in Fig. 4.2.4.71 is
conta1ned in the following paragraphs.

" The 1nput to GRPSAM, 1n addition to the control
cards, consists of a,stat1st1cs deck conta1n1ng the first
and second order statistics of all the samples to be
grouped.} The format of the statistics deck is the same as
that genérated by the $STAT processor in LARSYSAA.

i The initial mode centers in the parameter space
abé simpfy chosen to coincide with the parameter space
representation of some of the samples to be clustered. If
15 sampTes are to be clustered into 5 modes, then every
third saﬁpie is chosen as an initial cluster center.

- Within the clustering loop the assignment of any

sampTe-td the nearest mode center is on the basis of one of
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four distance measures. The distance measure that can be
selected are the Divergence, Bhattacharyya distance,
Jeffreys-Matusita distance and Swain-Fu distance. Because
of the interrelation between the B and JM distances, the
clusters obtained using these two distance measures are
identical. Both distances have been included to facilitate
the comparison‘of the numerical output in the separability
table with similar output from other programs where either
distance may be used. |

Four grouping methods are also provided. These
are sample-, equal - large-sample-, average-, and product-
grouping. In sample-grouping all the vectors used in
estimating the densities aséigned to a mode are pooled to-
gether and the mode mean and covariénce are estimated from
the poo]éd vectors. Equal-large-sample- grouping is identical
to samp]e-grouping‘EXceptvit is assumed that all samples
grouped contain the same number of vectors and that this
number is large. In average-grouping the location of the
mode center in the parameter space is simply the mean of
all the points in the parameter space associated with that -
mode. For product-grouping the mode center is the Mth
root of the product of the M densitiesVassociated,With the
mode. Appendix E Section E. 1 contains more details on the
grouping methods in GRPSAM including appropr1ate mathematical

express1ons to descr1be the grouping.
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For the distinctness test on the flow chart (Fig.
4.2.4.1) the pairwise distance between é]] class pairs;
using the distance measure selected for clustering, is
compufed. If tﬁe smallest of these pairwise'distances
exceeds a user specified thresho]d then the modes are con-
sfdered to be distinct. If themodes are not distinct the
number of modes is reduced by 1 and clustering is repeated.
If the modes are distinct processing for that request is
complete. The procedure just described is in essence d
simple search procedure which can be utilized to attempt
to establish the number of modes. It is identical to the
procedure used in NSCLAS and has the same disadvantages
described in conjunction with the discussionbof that program.

The output ffom GRPSAM consists of a printout
~depicting the grouping arrived at by the program and if
desired én output statistics deck which reflects this
grouping is bunched. ~In computing the output statistics
' the'uSer has the option of utilizing either the grouping
method that‘is_se]ected for grouping in the clustering loop,
or else utilizing samp]e;grouping. A separability table
whichvgivés the separation between all mode pairs for all
four distance measures is also printed. The maximum,
average and minimum pairwise sep ration for each distance
measure is also shown in this table.

The different grouping methods available require

further discussion. A rough idea of what the different
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grouping options accomplish can be obtained by examining
the univariate example shown in Fig. 4.2.4.2. Two normal
densities which differ in mean and variance are shown as
well as the densities that result if these two densities are
grouped by the four available methods. Equal-large-sample-
and averége-grouping result in identical means but average-
grouping leads to smaller variance for the grouped density.
A still tighter grouped density results from product-
grouping. In addition the mean is biased toward the mean
of the sample density with smaller variance. Sample-
grouping differs from the other three methods in that it
takes into consideration the number of vectors used to
estimate the parameters of the origiha] densities. The
resultant grouped density can be "anywhere between" the fwo
original densities and is biased toward the estimated
density based on the larger number of Vectors} The equal-
large-sample-grouping curve represents the "midrange"'for
sample-grouping, provided sample sizes are large.

The type of grouping choosen will usually affect»
the grouping of the samp1es and consequently the statistics
for each mode. However, even if the grouping remains the
same for the different grouping methods, the mode statistics
for the different grouping methods are quite different.

If re]ativeTy‘broad statistics are desired then sample- or
equal-large-samplie-grouping is most appropriate. To

produce slightly tighter mode statistics average-grouping
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should bg used. Product-grbuping should be used if still
tighter statistics are desired.

It is important to note that the statistics gen-
erated by GRPSAM can be generated by the $STAT processor
of LARSYSAA only if sample-grouping is utilized in com-
puting the statistics. Of course the field grouping used
in LARSYSAA must be that arrived at by GRPSAM if identical
statistics decks are to be produced. For vector by vector
classifiers, éuch as LARSYSAA, it can be argued duite
effectively that the only logical grouping is sample-
grouping. For sample c]aSsificétion the situation is not
as obvious. In particular one would expect that if a number

~of samples all.wiﬁh identical means and covariances are
grouped, then the mean and covariance for the mode center
should be the same as the mean and ;oVariance for each
sample. A1l four grouping methods except sample-grouping
posses this property. For sample-grouping it is approxi-
mately true for large sample size.

Appendix E Section E.T contains additional in-
formation about.the program GRPSAM including a "Control

Card description” of the program.

4.2;5 LARSYSDC= A Nonparametric.Minimum”Distance C]assifier'
LARSYSDC is a nonparametric minimum distance

classifier bésed on the histogram approach of estimating

pdf's and cdf's. Three different distance measures, namely

the Kolmogorov-Smirnov, Kolmogorov-Variational and




Jefferies-Matusita distance can be used in the classifier.

Only é brief functional description of LARSYSDC appears in
'the,énsuing paragraphs. Appendix E Seqtidn E.2 considers
~in greéter detail some aspects of the program, parficu]ar1y
the reasons for selecting histbgram estimators and some of
the problems associafed with thesé éStimators are discussed.
A "control card déscription" of LARSYSDC is also given.

LARSYSDC is divided into three processors under
the control of a monitor as shown in Fig. 4.2.5.1. The
first processor is the nonparametric pdf processorA($NPDF)
which computes density histograms; for the samples speci-
fied*, and storés them in a file on magnetic tape. The
operation is perfofmed for both_fhe training ‘and test
samples, with different tapes used to store the training
and test histograms. Storing bdth training and tést his-
tograms facilities classifying the same data with different
distﬁnce measures. To generate a density histogram for a
given.sample-two passés throdgh the dqta, associated with
that histogram, are necessary. Thié is a result of the
method usedito store histograms which is described in
Appendix E Séction E.2. The first.pass eésentia]]y es-
tablishes the location of the data in E9 while the second
pass generates the density histogram.

Thé second processor in LARSYSDC is the nonpara-

metric cdf processor'($NCDF). This processor converts a

— *There are two methods of specifying samples.
These are described in Appendix E Section E.Z2.
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density histogram fi]é to a cumulative hisfogram file and
is used on]yvfor distahces based on cdf's (i.e., KS dis-
tance). Usually the conversion process can be performed
fairiy quickly but if the number of bins in the density
‘histogram is .quite large the required time can be quite
‘large.

The third processor in LARSYSDC is the classi-
fication processor ($DCLAS). This brocéssor reads his-
tograms from a file of test histograms and compares them
with the training histograms in accordance with the
se]eéted distance measure, and lists the classification
results. Actually the five nearest neighbors to the un-
knowﬁ density are listed. Performance tables are also
prinfed.. The test and training histograms used in the
classification must be compatible aé to type (i.e.;
densfty or cumulative), channels used, and bin size. To
enabie the largest possible number of channels to be used
~(i.e., biggest histograms) only two histograms are stored
in core at a given time. This means that for each sample
to be classified the training histograms must be read into
core one at a time and the appropriate distance computa-
| tions performed. To facilitate this procedure the training
histograms are transferred from tape to disk at the start
of a classification and then read from disk as required.
At the users option the training histograms can be read

repetitively from tape rather than disk. Although tape is
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considerably faster it is much less reljable in that the
excessive tape usage quickly causes frequent read errors td
occur,

The selection of the distance measures available
in LARSYSDC requires comment. The original intention
was to consider most of the distance measures givén in Table
2.4.2. Difficulties arise with some of these measures and
consequently dn]y the Jeffreys-Matusita, Kolmogorov-
Variational and Ko]mogorov-Smfrnov distances were initially
implemented. The classification results obtained with
these distances, in addition to those in the baramétric
classifier PERFIELD suggested that the distance used is
not very critical and consequently oﬁhers were not im-
p]emented.' R

In any case the distances included in LARSYSDC
are adéquate to enable an inVest{gation of most interesting
problem areas. Thus the JM distance is one of the dis-
‘tances implemented in the parémetric as well as the non-‘
parametric classifier. This enables a comparison of-
parametric and nonparametric minfmum distance c]assifiefs.
The KS distance is based on.cdf's and illuminates some of
the problems arising in utilizing distances'based on cdf's.
| The difficulties encountered with some distance
measures, whiéh were referred to in a previous paragraph, -
require discussion. The basic problem is that fof some
distance measures the distance between most estimated diS-

tribution is infinite when histogram estimators are used.
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Practical difficu]tiés of this gehera]_nature have already
been pointed out in Section 3.3 for KL numbers. The
Divergence presents an even greater probiem in that the
Divergence between two density histograms is infinite
unless the bins in whiéh the histograms are not zero are
identical. A somewhat similar ﬁtuatibn preVai]s for the
Cramer-Von Mises distance. In this case the distance be-
tween most distributions is infinite unless the distri-
butions are univariate. Recall that to compute the CV
distance integration is carried out over all of E9. This
means‘that unless the two distributions involved approach
each other rapidly enough as the independent variable
approaches infinitely in most directions the CV distancé
will be'infinite.

~The above djscussion does not mean that the
distances listed could not be used 1nvmin1mum distance
classifiers based on histdgram estimators. It does mean
that some modification to the fundamental definition of the
distance, sqch as restricting the region of integration, is
necessary. Moreover, as already indicated, the resu]ts ob-
tained eliminated the need to consider more distance mea-
sures.

There is one other problem regarding the implemen-

tation of minimum distance classifiers, which are based on
histogram estimators, that must be discussed. This concerns

the region of E9 over which operations must be carried out
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in computing the distance. The basic definifions given in
Table 2.4.2 imply that this is typically all of E9. 1In
practice the region can usually be reduced by virtue of the
fact that density histograms are zero in much of £9, while
cumulative histograms contain regions where they are zero
or one. This problem is conﬁidered in greater detail in
Appendix E where we show that the number of bins fnvo]ved
is typically much smaller for the JM and KV distances
than for the CV distance. Furthermore it is.probably
generally true that distances defined in terms of pdf's
will usually involve smaller "search regions" than those
defined in terms of cdf's. This of course directly affects
computation time, which together with the larger time re-
quired to estimate cdf's places distances based on cdf's
at a definite speed disadvantage in minimum distance
c]assifiefs using histogram estimatoré.
4.3 On Multispectral Scanner Data, Class Selection, and
Training Field Selection

Since multispectral scanner data is to serve as
the vehicle for the investigation of minimum distance class-
ification a brief description of'some of the problems en-
countered ih c]assifying-such daté‘is the'subject-bfbthis
section. The discussion is directed primarily at c]assifyf
ing agricultural scenes since most of the experience}has
been with this type of data. Furfhermore interest in

sample classification schemes is greatest in this context.
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In the agricultural setting the classes of interest
are frequently the various types of ground cover (i.e.,
cbobs). These classes, and indeed in general, any classes
fhat might be considered asipossib]e classes in classifying
multispectral data should possess the following two
characteristics:

4 (a) Classes should be of practical utility. That
is the c]asses'defined should be of interest
to some individual or grbup of individuals.

(b)- Classes should be sufficiently seperable
spectrally so that the established constraints
on probability of error can be achieved.

Requirement (a) can be met without reference to the data
and consequently fits nicely into a supervised systeml
Requirement (b) on the other hand requires that the data
be examined and is essentially of an unsupervised nature.
It is important to note the (a) and (b) may be conflicting
requirements and that it may not be possible to satisfy
‘them simultaneously. Frequently classes are defined (at
least initially) on the basis of their practical utility
and.then tested for separabi1ity; If separability is poor,
as evidenced by a large probability of error, a new set
of classes is defined taking inte account what has been
learned about separability. It is also possible to devise
a classification system that approaches the problem with

the other initial premise. In such a system classes would
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be defined on the basis of their separability. An attempt
would then be made to associate thé resuitant c]assgs with
classes that have some practical utility. Defining classes
on the basis of observation space clustering is such an
approach. The ideal training procedure would effect a
compromise between requirements (a) and (b) prior to the
start of classification. |

Another factor which must be born in mind when
LARSYSAA and PERFIELD are used is that these programs are
based oﬁ the Gaussian assumption. This, of course, does
not mean that they cannot be used if the data is not
Gaussian, but it does mean that.performance'predictions
bésed on the Gaussian assumption are not app]icab]e. In
general one might expect reasonable performance.if the data
is unimodal and symmetrical. Unless c]asseé are very
separable multimodal classes tend to give rise to large
probabilities of error and should be avoided.

With regard to the Gaqssian assumption it appears
.that typically data from an individual field, regardless of
‘crop type, is usually reasonably unimodal and symmetrical. A
The unimoda]ity makes the Gaussian reasonable for an indivi-
~dual field. Occasionally individual fields do exhibit bi- |
modality, but if field bOundéries are chosen with care this
is the exception rather than the rule. On the other hahd,
different fields of the same crop type frequently are

sufficiently different spectrally so that the combined data
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from two such fields exhibits distant bimodality. ' Under
thése circumstances in order that the Gaussian assumption
is approximately satisfied, subc]asseé‘are usually defined
for each main class (e.g., wheat 1, wheat 2, etc.), such
that the distribution of each subclass is unimodal. Perhaps
if training samples could be drawn from sufficient variety
of fields for a given crop type a unimodal distribution would
result for each main class and the definition of subclasses
‘would not be necessary, even for a paramefkic classifier.
The.b1ass_distribution in this'gasé would naturally be broader
than the distribution of ény of the subclasses of which it
is composed. It is presently not known Whether better
classification is achieved by using many subc]asSes whose
distribution are re]atiVe]y narrow or'using fewer subclasses
with_broader distributions, a]though the trend appearé to be
toward the definition of many subclasses.
| From the above discuésion it is apparent that the
defjnition of subclasses is a problem of considerable im-
portance in classifying multispectral scanner data. Con-
seqdent]y,_the usual methods that are used to select sub-
classes will be briefly discussed.
~(a) Histogramming Method - A large number of fields
~are histogrammed for each main class and the
number of subclasses defined in thé basis of

visual examination of these histograms.
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(b) Iterativé Classification Method - The data ié
‘classified on the basis of one or more
classes per crbp type. Fields that are in-
correctly classified are used to help estab]ish
subc]aésés. | |

(c) DiVergencé Method - Every possible training.
field for a given crop type is dgfined as a
subclass. The Divergence computing capability
of the feature selection algorithm ($DIVG) is
then used to décide which of the subclasses
are_sufficiént]y alike so that_they may be
combined. _ | "

i(d) Observation Space C]ustering - Observation
space .vectors all be]onging to the same main
class are clustered into various number of modes
and subclasses established on the basis of the
‘mode separébility.'

(e) Composite Meihbd'- Some combination of (a),
(b), (c) and (d).

A1l of these methods have disadvantagesvof one sort-
or another. The histogramming andAiterative methods require
qonsiderable personal intervention and'judgement.ﬁﬁdVéonse-.
quent]y,'are quite s]ow; Furthermore,fthereAappears to be
no way in»whiéh_the iterative metﬁod'coqld be automated.
~The histogramming method could be automated by defining

"a suitable distance function betwéen histograms. If this -



were done, this method would very much resemble the Diver-
gence method, except that it would appear to be inferior in
that it debends only on the marginal distributions and
ighofés correlation effects. The Divergence method seems to
‘be a usefu] approach. Utilizing LARSYSAA to implement this
appfoéch is somewhat akward in that the available software
is used in a non—sfandard fashion; but this is not a funda-
mental problem. A further extension of the Dﬁvergence
appfoach 1éads to parameter space clustering; in this situ-
ation the manual grouping is replaced by automatic grouping.
| Observatfon space clustering is probably the most
automated and ﬁbestf method of defining subclasses in gen-
eral use at LARS. The rapidity with whfch this method
.gained acceptance clearly teétifiés to its usefulness.
Norha]jy, since the number of separable subclasses is un-
known, it is necessary to cluster the data into various num-
bérs of hodes. This tbgether with the large volume of compu-
tations that must be performed to cluster the data for each
mode specification means that considerab]e computation time
is invo]ved; The method does have the distinct advéntage
that it readily leads to the definition of subclasses whose
histograms are reasonably unimodal and symmetrical.

It is worthwhile noting .that regardless of the
manher‘in which. classes and subclasses are defined,to obtafn
a classification with the parametric classifiers LARSYSAA
‘and PERFIELD is usua11y an iterative process; It is un-

fortunate that this is so, since the iterative approach is
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very time consuming. The crux of the problem is that the
classifiers are supervised systems. Consequént1y, the
assumptions that the number of classes are known apriori,
and that training samples are available for each class are:
inherent in the classifiers. 1In practice these assumptions
are simply not valid for a parametric classifier. One may
know the number of main classes (i.e., claéses of practfca]
utility) but the number of subclasses required to reason-
able satisfy separability requirements and the parametric
assumbtions are not known; and consequently, the total
number of c]aéses is unkndwn. There appears to be no

simple solution to this problem for the parametric case.

The use of clustering programs like NSCLAS and GRPSAM assists
somewhat in a]]eviating'this problem in that somé idea about
classifier performance can be obtained before proceeding to
the c]assffication sfage. 'Ultimately, however, it is the-
classifier that decides the quality of the training and a .
certain amount of_iterative c]assifitatibn appears unavoid-
able. In this regard care must be exercised to avoid the
temptation of using test results fo improve classifier per-
formance. Such a procedure of necessity leads to optimistic
results. Modifications to the training statistics must in
‘most realistic situations be based on the training.results
only. Tést fields servevthe sole purpose of evaluation
classifier performance. In a certain sense‘utilizing'test

results to improve classifier performance is equivalent to
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the uti]ization of the test fields as training fields.

At first glance nonparametric c]assifiers appear
to provide somé.advantage in that the definition of sub-
’c]asses‘ié_po longer necessary, and in fact some favorable
results hqve been obtained with such methods under’very
contkol1ed conditions on exceedingly limited amount of datm73
'In.terms of classifying a large volume of data it is not at
all c]eaf that nonparametric technique simplify the training.
The problem of defining subclasses is simply rep]aced with
the problems of selecting the'samples to be inc1uded_in the
thaining'set; of course, :nonparametric methods should not
be"overlooked but they do have a ndmber of disadvantages.

In general nonparametric méthods tend to be slower and
require more storage than paraﬁetric methods. This is in
'fact a very real problem if one considers classifying the
vast amount of data that becomes available in the remote

- sensing of earth resources. Intuitively one feels that a
simpler system will be achieved if reasonable results can be
obtained and the parametric assumption maintained.

Another factor of considerab]e importaﬁce is that
as flightlines become longer, the need for systems that have
adaptive capabilities will increase. The reason for this
is that the data almost cerﬁain]y will not remain suffi-
ciently uniform over a long flightline so that a single

fixed set of training fields will suffice.
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4.4 Experimental Evaluation of GRPSAM

In describing the program GRPSAM it was pointed
out that a number of options existed wfth regard to the
distance measure and grouping method used durﬁng clustering.
'In this section experiments designed to evaluate the various
grouping methods and distance measures are described. The
eva]qatioh is accomplished by comparing the classification
accuracy acheived on a fixed set of training and test fields,
where the class statistics are generated by clustering the
training fields with GRPSAM using various combinations of
distance measures and grouping methods. |

Before becoming involved in the details of these
comparative ciassifications it is advisable to try and.
estab]ish a "feeling" for the clustering properties of
GRPSAM, as well as the distance measures utilized.
Although observation space clustering is a technique in
common usage this does.notvappear to be trué for parameter
space clustering. In addition the'distan¢es (in some caées
metrics) used in parameter space clustering are rather com-
plicated functions of the coordinates and it would be useful
to obtain a deeper understanding of the‘“metric-properties"
of the distances involved. For examplévit would bé de-
sirable to know if what the eye perﬁeives as.aucluster in
a parameter space scatter plot still appears as a cluéter
in terms of a particular distance measure. After all, the

distance measures used in the parameter space differ
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considerably from the Euclidean metric to which the eye is
attuned. "~ Consequently, before combaring various distance
measures and grouping methods we consider the distance
heasures invo]ved‘in»GRPSAM from a parameter space point of
view.
4.4,1 "Metric-Properties" and Other Characteristics of
Distance Measures used in GRPSAM

For the bivariate case the parameter space is f1ve
dimensiona].v Consequently any graphical aids in under-
standing the distance measures used in GRPSAM are essen-
tially }estricted to the univariate case. For this reason
we focué attention on this case. |

Perhaps the s1mp1est technique for gaining some
understand1ng of the "metric-properties"” of the d1stances‘
involved is to draw constant distance contours in the
parameter space. Actually for the univariate case the
expressions for JM Dfstance, Divergence, and SF distance
can be‘nokmalized and a universal set of Eonstant distance
~contours can be drawn on the resulting normalized axis.
Let (uo,oo) be a point in the parameter space about which
constant distance contours are drawn and let (u,o) be an
arbitrary point at a fixed distance from (u_,o ). Then

0

utilizing table 2.4.3 and defining the normalized mean W, as

M, T (P-“o)/oo : 4.4.1.1

and the normalized standard deviation as
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o, = o/o, 4.4.1.2

we can write for the JM distance, the Divergence, and the SF

distance respective]y;+

20, 1/2 T VY .
M= {2[1 - 2) exp (———+—§—)]} ' - 4.4.1.3
, 4o, 4(1+0n) ,
2 2 4
1-0 1+o -
_ 1 n 1 n, 2
I =5 (—0 + 5 (—D0! | 4.4.1.4
, o, on v
u2
T :____..___!]._ o g - : 4.4.]-5
/3(1+0n) ‘ '

Families of these eeuations are p]etted in Fig. 4.4.1.1 withv
»cbnstant values of M, J, and T as a parameter Constant
distance contours for the Bhattacharyya d1stance are 1den-
tical to those for the JM distance by virtue of<2.4.7,,on1y
the numerieal value for the distence is different.

The constant distance contours for the JM distance
and Divergence have some'points of simiiarity fn thaf they
are closed and have an oval shape. The simf]arity is more
pronounced for densities whose separation is sma]] For.
dens1t1es with large separatlon the d1fferences become
more pronounced and consequent]y the g]oba] properties for

the two distances are quite different as we presently

A +Reca]] that the mathematical symbols used to
represent the JM distance, Divergence and SF distance are
M, Jd and T respect1ve]y :
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demonstrate. The SF cbnstant distance contours obviously
differ .considerably from those for the JM distance and
Divergence.

Another way of demonstrating some of the "metric-
properties" of a distance measure is to plot contours that
are equi-distant from the two selected points (mode centers)
in the parameter space. In fact-equi-distance curves are
more important than constant distance curves from the view
point of clustering. It is of course true that equi-distant
contours can be constructed by using constant distance
contours, but the shape of the equi-distance curves is
extremely difficult to visualize from the constant distnace
contours. Subtle changes in fhe shape of the constant dis-
tacné curves can produce radical changes in the equi-
distance controus. A good example of this is Fig. 4.4.1.2
where équi-distancé contours for the three distances under
consideration are shown. Note the differeﬁce between the
equi-distance contours for JM distance and Divergence even
through their constant distance curves were quite simi]ar;

Normalization of equi-distance curves is not
possible. This means that many examples like thaf shown in
Fig. 4.4.1.2 must be conéidered before a gobd understanding
of the "metric properties" of the distances can be
obtéined. Actually the curves Fig. 4.4.1.2 are fairly
typical of the situation encountered for real mu]tispéctra]

scanner data. Typically in the vicinity of the mode centers
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the curves are all quite similar for the different distances
and roughly at right angles to the mean axis. In regions
of the parameter space that are remote from the mode centers
the curves are drastically different. In practice this is
of little consequence since typically there is no databin-
the remote regions. The fact that in the vicinity of the
mode centefs the curve are roughly orthogonal to the mean
axis implies that the means of the mode centers have con-
siderably greater influence in determining the partition
surface than do.the variances. Furthermore, the investi-
gation of higher dimensiona] cases (by observing ‘
appropriate two dimensionél cross plots) indicates that this
situation also tends to prevail in higher dimensional cases.

The constant distance contours ‘in Fig; 4.4.1.1
can be used to infer the existence of certain bounds in-
volving the three distance measures under consideration. For
example we note that the 5.50 constant Divergence cqrvé _
"appears to lie between thé 0.75 and 1.00 constant JM distance
curQes. This implies that for a Divergence of 5.50 the JM
distance is bounded above by 1.00 and below by 0.75, and in
general suggests the existahce_of a upper and lower bound
‘on the JM distance for a given Divergence.

The upper bound is qﬁickTy established because it

23

is known for the multivariate normal case“” that

J > 8B | | | 4.4.1.6



160

This combined with 2.4.7 yields

M2 < 2(1-e79/8) | 4.4.1.7

It is interesting to note that this upper bound can
be inferred dikect]y from Fig. 4.4.1.1, Let M(un,on) and
J(pn,on) be the JM distance and Divergenée as given by
4.4.1.3 and 4.4.1.4 respectively. A careful examination of
the largest JM distance curve that just fits outside a given
Divergence curve (efg.; JM distance equals 1.00 and Diver-
gence equals 5.50) suggests that thé mathematica1 property

relating such curves is
MJugl>1) = 30 gl 1), 4,4.1.8

That is, the upper bound appears to coincide with the case
where both the constant JM distance and cohstant Divergence
contburs pass through the points (i“n’]) for arbitrary U
It is readily verified that the slope of both contours
passing through these points are identical lending further
- credence to the suggested relation. Using 4.4.1.8 in
Conjunction with the expressions for the JM distance and
Divergence quickly leads to the upper bound given by 4.4.1.7.
A Tower bound can also be jnferrgd from Fig. '
4.4.1,1. For this case the mathematical property that
appears to relate the constant JM distance contour that just
fits inside a given constant Divergence'contour (e.g., the

JM distance equals 0.75 and the Divergence equals 5.50 curves)
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is

M(O,on) = J(O,cn) 4.4.1.9
That is, the ]owér bound appeafs to coincide with the case
where the constant Divergence and constant JM contours pass
throdgh the same points on the g, axis. Thus setting M to

-zero in 4.4.1.3 and 4.4.1.4 and eliminating o, we obtain

1/2 N
M2 > op1 - (2LWA1Z * / 72+ ') - ] 4.4.1.10
(/J/Z + /72 + T)

Utilizing the mathematical identity

‘sinh”! vI7TZ = Ln (JITZ + JITZET) 4.4.1.11
4.4.1.10 can be written as

2

M2 > 2[1 - sech!/2(sinn1/372)]. | 4.4.1.12

The derivation for the 1owér bound given by 4.4.1.12
is not rigorous and we have not been able to rigorously
prove that it is correct. _Exberimentq] results have been
obtained which suggest it is correct even in the multivariate
case. These results are shown in Fig. 4.4.1.3 and 4.4.1.4
where scatter diagrams of the JM distance squared vs.
Divergence are plotted for the univariate and the trivariate
normal cases respectively. The upper and lower bounds given
by equations 4.4.1.7 and 4.4.1.12 have also been plotted.

The data used for the scatter plots are data
from 20 of the wheat Training Acres whose coordinates are

giveh in Table C.4. Statistics were calculated for these
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~acres using LARSYSAA and then GRPSAM was used.to compute the
pairwise JM distance and pairwise Divergence between‘all 20
wheat acre densities. In particular by setting the number
of modes equal to the number of acres, the separability
table in GRPSAM contains the pairsze separation between the
densities of all acre pairs based on the channels selected.
"A11 the data so obtéined for both_the trivariate and uni-
variate cdse fell between the bounds depicted, For the
trivariafe case all data was considerably above the lower
bound. In fact as the number of dimensions increases the
points tend to become'more and more concentrated near the
upper'bound. Whether this is due to an increase in the
Tower bound or-simply due to a generé] increase in separ-
,ébility as the dimensioha]ity increases is not known; but
ft'is believed to be due to the latter factor, In any case

Swain et al. 66

have utilized this property in feature
selection. They observed experimentally that the average
(over class pairs) JM distance provided better feature
selection capabilities than the averagé Divergence, but

was combutationa]]y»moke complex. By utilizing the upper
bound in Fig. 4.4.1.4 as a "transformed Divergence", they
were able to retain the computational simplicity of the
Divergente and attaiﬁ performance approaching that achieved
with the JM distance. .Since for a reasonable number of

dimensions most of the points are near the upper bound the

choice of the upper bound as a transforming relationship
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between Divergence aﬁd JM distance is quite reasonable.

The constant distance contours of Fig. 4.4.1.1
also suggest a bound on the SF distance. In particular one
would expect that for a given Divergence the SF distance
should have a lower bound of zero, and that an upper bound
should also exist. In fact by procedures'similar to those

discussed for the JM distance the relation

T < AI7TTZ _ 4.4.1.13

is obtained as an inferred upper bound for the univariate
normal case.. This result has also been rigorOust
derived. The derivation is given in Appendix A Section A.2

where for arbitrary dimensionality q we show that.

T < /I78(a%2) - : 4.4.1.14

In Fig. 4.4.1.5 and 4.4.1.6 we show scatter plots
of the SF distance vs Divergence for the univariate and
trivariate normal cases respective1y; These plots are based
on the same data and are obtained in the same manner as the
JM distance plots previously described. . In é]] casés the
data conforms with the derived bounds. The most striking
characteristic of these graphs is the decrease in the uppef
bound as the dimensionality increases in accofdance with
4.4.1.14. This means that unless the Divergence inckeases
sufficiently rapidly with dimensionality the SF disfancé

" between distributions will in the 1imit decrease as
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~dimensionality increases. |
The manner in which the Divergence, JM distance and
SF distance vary with dimensionality is a matter of con-
sidéerable practical importance since these distances'may
be used to assess c]ass.separability and in feature selec-
tion. The question that arises is whether or not a given
numerical distance shoﬁld be interpreted in the samé manner
regafd]ess of dimensionalffy. To shed some light on this
question GRPéAM was utilized to calculate the average pair-
wise distance over all class pairs between the parametrically
~estimated dehSitie§ of 20 of the wheat Training Acres for
the JM distance, Divergence and the SF distahce; The results
are p]ottéd‘in Fig. 4.4.1.7. WHi1e these résults were com-
puted for one particulair data set the gross characteristics
Qndoubtédjy apply to most sets of multispectral scanner data.
The manner in whjch ﬁhe average distances in Fig.
4.4.1.7 varies with dimensionality depends very much on the
distance measure involved. Perhaps the most interesting
variation is that of the average SF distance which first
{ncreases and then deéreases as extra dimensions are added.
The behavior is similar to the behavior of the separability
measure of Section 3.2 for a saturating S/N ratio. In fact
the behavior of the SF distahce can be interpréted in terms
of that result. Thus.the increase with dimensionality of
the éverage distance between pairs of vectors in a class

means that the ellipsoids of concentration must get larger
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as the dimensonality increases. Recalling that the Swain
Fu distance is the ratio of the distance between mbde
centers, to the sum of the distances from the mode centers to
the e]]ipsoidsvof concentration dong the line jofning the
mode centers, it is obvious that unless the distance between
the mode centers (essentially S/N ratios) increases rapidly
enough with dimensionality the»SF distance must decrease. The
average separability curve for the SF distance also lends
credence to the earlier contention that the basic results
of Section 3.2. are essentially independent of the re-
strictive assumptions of that section, this follows because
the wheat acre densities certainly did not obey the re-
strictive assumptions of Section 3.2.

The behavior of the average Divergence and average
JM distance in Fig. 4.4.1.7 are also of interest. The aver-
age Divergence continues to increase as the dimensionality
increases while the average JM distance saturates. The
saturation of the average JM distance is easy to explain in
that no pairwise JM distance can exceed 2. The shape of the
JM . distance curve is generally similar to that obtained for»
probability of correct recognition. This in our opinion is
a rathef desirable property in feature selection and other
applications. The properties of the JM distance, Divergence
and SF distance depicted in Fig. 4.4.1.7 in no way restricts
the use of these distance measures. If these distance mea-
sured are used in a situation where the number of dimensions

is variable then the results of this section are essential if
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misinterpretation is to be avoided.
4.4.2 An Example of Parameter Space Clustering
of Mu}tispectra] Scanner Data

In tﬁis section an example of clustering in the
parameter sbace is presented. The wheat Tnainihg Acres
listed in Table C.4 are selected for this example. Statistics
were obtained for each of the 59 wheat Training Acres and
these were then clustered in the parameter space using
various number of channels and each_df'three grouping methods.
The three grouping methods used are sample-, average-, and
product-grouping. Equa]—1arge-samp1é;group1ng is not con-
sidered as all acres were of equal size and moderately large
(121 vectors). Thus the results for‘samp]e— and equal-large-
sample-grouping would be very similar..

Figure 4.4.2.1 shows the'parameter spacé groupings
arrived at when only channel 11 is used to group the data,
with Divergence_as the distance measure. Results are shown
for each of the three grouping methods. The mode centers
obtained are indicated by X's and the'letters S, A, and P
are used to indicate samp]e',averageQ, and product-grouping
respectively. Once the mode centers are known then equi-_
distant contours can be constructed as.de$cr15ed in the
previous section. Such contours are'shOWn_for éach of the
grouping methods. 'These curves partitioﬁ the parameter
space'into disjoint regions associated with each mode.

There are a number of observations that can be

made with regard to Fig. 4.4.2.1 which we list numericalTy.
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Observation 1

There is considerable variability in the data in
that on a scale that ranges between 0 and 255 the means
for the wheat Training Acres ranged between approximately
100 and 175. One is tempted to attribute this variation to
the fact that harvested as well as unharvested fields are
included in the acres. While it is true that the harvested
acres are on the higher end of the 100 to 175 range they also
are spread out over at least half that range.  Furthermore,
there are Unparvested fields whose mean is near 175. Ob-
vious]y'theré_are other important factors. A close inspec-
tion of the data indicates that geometry (i.e., relation of
sun and field to the scanner) ié a very important factor.
In fact it appears to be the most important single factor
contribdtihg to the spread of the data in Fig. 4.4.2.1. To
verify this contention in a statistical sense~is_beyond the
scope of this investigation.

Observation 2

The partitions are.rbugh]y orthogonal to the mean
axis. This is in accordance with the results of the pfevious
section.

Observation 3

The data does not appear to have any distinct clus-
ters even when the "metric properties" of the Divergence are
taken into considération (i.e., partitions roughly at right

angles to the mean axis). This is disappointing in that one
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would hope that at least harvested and unharvested wheat
would tend té be rather distinct. The infiuence of geometry
and other factors appears to be great enough to obscure such
~clusters at least in this particular channel.
| Observation 4

The mode cehtefs_change considerably when. the method
of gfoubing'ié chaﬁged. The changes are largely changes in
the standard deViatidn rather than changes in the means; with
.progreésiVéTy tighter mode centers as grouping goes from S |
to A to P. Since the partitiofs in the vicinity of the mode
centers are controllied primarily by thé means, the parti-
tiOniné of the spacé‘is not greatly influenced by the
grouping method, at least in the vicinity of thé data.

Fig. 4.4.2.2 shows the grouping arrived at when
two chanrels (11 and 12) are used to cluster the wheat
Training Acres:. The curves shown are simply for the purpose
of 1ndicating.the grouping and are not equi-distance
curves. In fact since the parameter space is five dimensional
an equi-disfahce.fCOntour“ is in fact a five dimensional
surface and cannot be shOwn aS a single contour on a two di-
mensional projection. Note that the grouping of the fields
is the same for sample- andvaverage—grOUping. The mode
centers are however lbcated at different points in the
parameter sSpace even though this is not true for the
particular projection of the parameter space shown in Fig.

4.4.2.2, (i.e., covarianceé matrices differ).
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Since it appears that the elements of the co-
variénce matrix are not of great significance in determining
the clusters obtained'it should be possible to roughly vis-
ualize clusters Wheh_the parﬁmeter space is projected onto
the axis df the meaﬁs as shown in Fig. 4.4.2.2. - This tends to
be true although the various curves in Fig. 4,4.2;2'tend to
obscure any'clysters that the eye might pérceive. If only
the data points in Fig. 4.4.2.2 are p]otted, and visually
'grduped 1ﬁtp four groups, the resultant groups are very simi-
lar to those achieved by GRPSAM With sample- and average-
grouping. |

The experﬁméhts'required to obtain Fig. 4.4.2.1

and Fig. 4.4.2.2 were repeated both for thé JM Distance and

the SF distance. FOr the.one channel casé the partitioning
curves for both the JM'distance and SF distance tended to be
more ﬁearly orthogonal to the axis of the means and not as
curved. The curves for the SF distance showed greatér-varia-
bility with grouping method .than those for the Divergence
while the JM distance curves showgd less variabi]ity;

| Fina]lyva11 thirteen channels were used to cluster
the wheat Training Ac¢res usihg the JM distance and'product-
grouping. The grouping was considerab]y different from that
obtained when only one or two channels were used. There were
4; 23, 12 and 20 acres in subclasses 1 to 4 respectively.
LARSYSAA'was used to obtain 13 channel histograms for these

- subclasses. These are shown in Fig. 4.4.2.3. Subclass 1 is

very multimodal. In fact all of the 4 fields are distinctly
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visable in some channels. Some of the other classes exhibit |

some bimodality in some channels. It is apparent that if
all traces of multimodality were to be removed the number
of subclasses would have to be increased considerably. _
It is wofth emphasizing at this point that the -
exampTes presented above are for the sole purpose of obtain-
ing a deeper understanding 6f_the distances and grouping- |
methods consideredf These examples do not form the bas}s 6?
judging the vélue of a distance measure or grouping method.
.&n suhmary there -are two principle results. The first fs
thé{re]ative inSensitivity of the distance measures to the
covariance matrix; the second is that because of this in-
sensitivity the mode centers obtained by different grouping
methods differ largely oh]y,in covariance matrix.
4.4.3 Evaluation of Grouping Methods and Comparison of
Maximum Likelihood and Minimum Djstance.C]assification
A | Now that the preliminaries of parameter space
c]ustering have been discussed the main problem of Section
4.4, namely, that of evaluating GRPSAM, can be considered.
Previously it was mentioned that the criterion to
be'used in comparing procedures, etc., is to compare the
experimentally observed error rates for the procedures, etc.,
unaer consideration. This means that an experiment must be

designed in which the various parémeters of interest can be

varied and their effect on classification accuracy determined.

In particular, the distance measures. and grouping-method are
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specific parameters of interest. Apart from evaluating
different distance measures and grouping methods thé value of
parameter épace clustering as a te;hnique to assist in sub-
class definition for vector by vector and sample classifi-
cation schemes is of prime importahce.

It seems advisab}e to clarify the conditions under
which parameter space clustering should be useful. We do
this in terms of an agricultural example. It is of course
clear that parameter space clustering is a pafametric tech-
niqué (in our case Gaussian). In the agricultural case if
some care is exercised in defining training field boundaries
it s usUa]]y possible to obtain reasonably homogéneous
samples. In terms of subclass definition this means that
the number of subclasses is at most equal to the number of
training fields and classifications could bé performed on
this basis. 1In terms of processing time it is of course
essential to reduce the number of subc]aéses to the lowest
practical number. Thus if two training fields are spectrally
identical it is surely desirable to treat them as one sub-
class. It is in this context that GRPSAM should be of
assistance in that potential subciaﬁses can be Combinéd as
long as all subclasses remain spectrally separable.

The factors discussed in the previous two paragraphs
formed the basis of devising an éxperiment to eva]uafe
GRPSAM, and to determine the relative value of the different

distance measures and grouping methods. As mentioned earlier
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a crop yield study had been carried out uti]iiing June'70
multispectral scanner data from flight lines 21, 23 and 24,
and that in this study the randomly selected Training Acres
of Table C.4 had been used for training. The test fields
used for the yield study are the Standard Test Fields of
Tables C.1, C.2 and C.3.

Part of the objecfive of the yie1d study was to
use the Training Acres,'which were selected on a random
basis from all three f]iéht lines, to generate one set of
statistics suitable for classifying all three flight lines
into four main c]as§es. Yield predictions were then based on
these classifications. The main classes considered were
wheat, corn, soybeans and other.

It is épparent that by classifying the flight lines
used in the yield study with both PERFIELD and LARSYSAA,
using subc]asse§ defined by GRPSAM, an evaluation of GRPSAM
as an aid in subclass definition is possible. By performing
such classifications for various distance measures, and
grduping methods, the effect of these parameters can be
determined. Fina]Ty by comparing the LARSYSAA classifi-
cations obtained in the yieid study with those of the
present study it is possfb]e to reach some conclusions re-
garding the relative performance of parameter and obser-
vation space clustering. Such a comparison is legitimate
since the objectjves and constraints of the two approaches

are essentially the same. Actually the constraints of the
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present study are slightly different in that some slight
modifications of the training set is necessary. Some of

the acres on the yield study were in fact only partial acres.
In this study it waé decided not to use any partial acres |
because every acre is originally treated as. a poésib]e Sub-
class, and it was felt the nuhber of vectors in most partial
acres is tbo small for thekestimétion of 13 channé1 statis-
tics. In fact the number of vectors in a full acre (121) is
marginal. Also since GRPSAM required statistics for each
acre, and since LARSYSAA can only hand]eva maximum of 60
c]dsses, some of the 65 full wheat acres were discarded.
Consequently, for this study the Training Acres consisted

of 59 wheat acres, 44 corn acres, 23 soybean acres and 46

. other acres. This set differs s]ight]y; thbugh not signi-
ficantly, from the set uséd in the yie]d‘study.

To achieve the objective of evaluating GRPSAM the
original intention Qas to carry out PERFIELD and LARSYSAA
classification of all three flight lines on the basis of sta-
tistics obtained by clustering the Training Acres with each
distance measure (i.e., Divergence, JM distance, and SF
distance) and each grouping method (1;e., Sample Avérageland
" Product) available fn GRPSAM._ These intentions were modified
during the course of the experiment as.a conseﬁdencé of some
of the experimental resu]té. Specifically two changes
were made. The SF distance was dropped from consi@eration
and a fourth groupinglmethod was added. The ratfonalvbehind

these changes is ‘described in the sequel.
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The SF distance was dropped from consideration
: because in comparison with the JM distance and Divergence
it waé exceedingly slow computationally. The implementation
of the SF distance in GRPSAM is essentially based on the

29 4s contained in Appendix

expressions given by Swain and Fu
A. This form is'simply not competitiVe timewise with the JM
distance and Divergence. The alternative form derived in
Appendix A and given in Tabie 2.4.3 is competftive but
unfortunately was not known at the time the experiment was
performed. By the time the alternative expression for the
SF distance was derived a considerable body of data had
been collected which suggested that in praétice the choice
of distance is not exceedingly cfitica], consequently, no
attempt was made to perform the SF portion of the experiment.
With regard to the added grouping method partial
experimental results suggested that a grouping method, which
had not originally been included in GRPSAM, might yield better
performance (i.e., classification accuracy). GRPSAM was
modified to inc]udé this grouping method. Speciffca]]y the
experimental evidence suggested that during clustering the
mode centers should be "tight" whereas once the groﬁping
has been'established the samples should be combined using a
grduping method that leads to broader'statistics. The
extreme approach, within the limits of'the grouping methods
provided in GRPSAM, would be to compute the final statistics

using sample-grouping on the basis of the clusters obtained
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with product-grouping. We refer to this groupfng method
asvproduct—sample-grouping (PS grouping). To facilitate
the investigatibn of this grouping method GRPSAM was modi-
fied so that PS grouping could be specified."Average;
sample-grouping was also provided at the same time but has
not been used. Note the statistics generated by GRPSAM for
PS.grouping, are 1denti¢a] to those obtained when LARSYSAA
is used to compute statistics on the basis of the fields.
grouping arrived at by GRPSAM using product-grouping.

As a conseduence of the modificationé just men-
tioned the experimental results we described involve two
distance measures (Divergencé and JM distance) and four
grouping methods (Sahple, Average, Product and Product-
Sample). The procedures fo]]owéd and the various optioné
selected are shown in flow chart form 1n.Fig. 4.4.3.1. The
organization of this flow chart is based on the method of |
~describing ‘experiments given in Table 4.1.

The first task in conducting the experiment is
the task of determining the number of subclasses. The
procedure followed is to use GRPSAM with the JM distance
and sample-grouping to cluster the acres for each class
individually into subt]asséé. USing'oh]y'the-even ngmbered
" channels the fié]ds for each main}cTass ére clusferéd into
each of 2, 3, 4,...,10 subclasses. The separability tables
are then examined with the objective of determining the

"best" nUmbek of subclasses for each class. Both minimum
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= Training Field Selection |
Acres selected on a % basis of acresin flighflines
F for ench main cluss
*Subclass Defunlhon o |
4-wheat, 10 corn, 6 soybean and 10 other subclasses
w selected on the basis of parameter space clustering.
@ Selection based on GRPSAM clustering of acres into
8 2,3,...,10 modes using JM distance, sample grouping
w and even numbered channels. |
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Figure 4.4.3.1 Flow Chart Showing Organization of Experi-
mental Procedure for Evaluating GRPSAM.
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pairwise separébi]ity‘and average pairwise separability are
examined in an attempt to estab]iéh the "best" number of sub-
classes. Unfortunately neither of these indicators seems

to give a clear indication of the appropriate number of
subclasses. To demonstrate the problem the minimum pair-
wise separability, and average pairwise separability are
plotted in Fig. 4.4.3.2 'as a function of the number of modes.
Although these indicators do not give a decisive answer re-
garding the be;t number of subciasses, they are of somé
va1ﬁe'in selecting the number of subclasses. Other factors
must also be considered. For example, since wheat would

be expected to be fairly separab]e‘from other vegetation the
number of wheat subclasses need not be too large. Consid-
ering such factors and recalling that the maximum number of
subclasses that PERFIELD can handle is 30.it was decided to
use 4, 10, 6 and 10 subclasses of wHeat, corn, soybeans and
other‘reépectively.

Note that from Fig.:4.4.3.] only one'distance
measure and one grouping method are involved in defining the
number of subclasses. Since apparently no'real'indication
.as to the number of subclasses results froh the method des-
cribed, it appeared that no purpose would be served to re-
peat this work for various distance measures and grouping
methods. Furthermore, for comparative purposes it is not
essehtia] anyway. In essence the question reduces to one

of finding the best grouping method and distance measure
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given thé number of subé]asses.

' With the humber of subclasses established GRPSAM
is used to cluster the samples and generate a statistic deckA'
for-each EOmbination of distance and grouping method using
all 13 channels. It is important to reca]i that each main
class is clustered individually. This means for example
that samples from cdrn and soybeans are never clustered
simultaneously. It also means that for each combination of
distance measure and grouping méthod four statisticé decksA
are geherated; one for each main class. These decks are |
merged into a single statistics deck suitable for use in
LARSYSAA and PERFIELD. A1l 6 field grdupings acheived in
this manner are indicated in Appendix C Table,C.4. There
are only 6 rather than 8 groupings as P and -PS grouping §1-
‘ways résuit in the Same'fieldvgfouping.

In the next step each %erged statistics deck is
processed by the LARSYSAA'feature selection processor $DIVG
with the objective of éelecting the best 4 of the 13 chan-
nels for c]éssification purpo#es. The decision to use fouf
thanne1s was based on:the}fact that four channels were used
fn.fhe'yield study. To énable comparison of kesuits four
“channels were also used in the present étudy. 'fn4utilizing
$DIVG the weights between all subb]asses fn‘a class were |

set to zero. Consequently the divergence between subclasses

within a class does not affect the feature selection process.
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_ The TraininQ Procedure used for this expériment'
will also be used for‘d number of other_experiments. .A
concise way of»referring.to this particular training
procedure iS'requirEd.' Using the method of describing an
| experimentvodt1ined-in Table 4.1 we note that to describe
a Training Procedure it'is necessary to indicate the
tfaining fields, describe the}subc]ass selection procedure,
and describe the feature selection procédure. The method
used is indicated by an example. Thus, JM-PS ($DIVG).
training meénsythat subclasses were defined with the aid of
GRPSAM using the JM distance and PS grouping; and that
'feature selection was on the basis of $DIVG. The training
fie]ds are understood to be the Training Acres and the
numbér of subclasses are understood to be 4, 10, 6 and 10
for‘Wheat, corn, soybeans, and other respective]y. Neither
of these last twd factofs are reflected in tﬁe notation as
both faétors rémain fixed in all the work reported.

To keep the number of variables that effect
performance as small as possib]e; it is obviously desir-
able to uti]ize‘the'same channels for all classifications,

: prbvided this is at all reasonable. There was no one feature
set.that was clearly the best in all cases, but there were

a number of séts that consistently éhowed up very we]] SO
that any .one of about 4 or 5 features sets could have been
used for our purpose. In all of the eight cases essentially

all of the more optimum feature sets contained channels 8,
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11, 12. The fourth éhanne] tended to vary with the parti-
cular étatistics deck with channels 1, 2, 4, and 5 fre-
quently showing up very well. Tybica]]y one would expect
pérformance to vary only slightly if three channels are
held fixed and the fourth channel is chosen from amongst the
more optimum remaining channels. For this reason selecting
one set of channels for all classifications was judged to
be a reasbnab]e procedure. Channel 2 was chosen as the 4th
~ channel because'the minimum pairwise Divergence was fre-
quently higher for channel 2 than for the other competing.
channels.

~.Using channels 2, 8, 11, 12 the necessary classifi-
cation as indicated in Fig. 4.443.1 were performed. The
results of these classifications are shown in Fig. 4.4.3.3
to Fig. 4.4.3.6. The overall training performance is
shown in Fig. 4.4.3.3 while Fig. 4.4.3.4 displays the train-
ing pérfofmance by class. The test results, which represent
an average over three flight lines, are shown in Fig.'s
4.4.3.5 and 4.4.3.6 for erra]] test performance dnd test
performance by class respectively. The classifications were,
of cdurse, carried out qsing both PERFIELD and LARSYSAA
respectively. 1In the Fﬁgures the terms sampie classifier and
vector c]assifier'identify the PERFIELD and LARSYSAA}resu]ts
respectively. The distance measuré used to group the
training fields is also shown in these figures. For the

PERFIELD classifications the same distance measure was used
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to. classify the data as was originally used to group the
training fields. The PERFIELD results therefore show the
relative value of utilizing JM distance in the whole system
(i.e., clustering and classification) as opposed to the
Divergence. In both these systems feature selection is
based on the Divergence. Consequently, whatevér bias
exfsted in the experiment should favor the Diyergence.
Mention must also be made of thg fact that the performanée
of LARSYSAA is given in terms of % vectors correct while
that fgr PERFIELD %s iﬁ terms of % samples correct,

A comparison of the LARSYSAA results obtained in

the yield study, were observation space clustering was used,

with those of the present study using paraméter space
clustering i§ given fn Table 4,4;3.], The parametef space
re§u1ts are those obtained with the JM distance and sample
grouping. 'The channels used in the yield study were 1, 8,
11, 12 compared with 2, 8, 11, 12 for the present study.

- In comparing the experimental results the emphasis
is placed on the overall performanée rather than the per-
formance by class. The most important reason for doing
this is because of the fact'that it provides one single
number for comparing differeht c]assifications. There is
also a tendency for the overall performance by class to be
"better behaved" than the class performance. Thus if the
performance of one class goes up drastically at the expense
of another class this effect issmoothed out in the overall

performance. While most of the conclusions are based on the
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overall pefformance we do not ignore the performance by
class entirely and comment on some interesting anomolies.
The class performance is also included for the sake of
completeness. On the basis.of the overall training and
overall test performance the following observations can be
madé. |

Observation 1

On the basis of average overall performdnée sample-
grouping is usually superior to either average- or product-
grouping by a few to ébout 12%. In those cases where
product- or average-grouping are superior to sample-grouping
their superiority is only a few pércent.

Product-sample-grouping usually performs slightly
better than sample-grouping but its advantage appears slight
(1 or 2%). 1In an operatfona] system considering the in-
tuitive statistical appeal of sample-grouping, coupled with
educational and interpretational problems that arise if a
multitude of grouping methods are used, and noting that
vector classifiers naturally use sample-grouping; it is
recommended that samplie-grouping be utilized as the

grouping method for parameter space clustefing.

Observation 2

The grouping method used appears to have a
greater influence over the performance of LARSYSAA than
PERFIELD. This is readily explained. Recall from the

wheat acre clustering example that the grouping method
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‘affected primarily the subcTass variance with minor effects
on the means. Thus regardless of grouping method the mode
means are roughly the same and only the'covariances differ.
Classifying samples with PERFIELD, with a distance that is
likewise rather insensitive to the covariance matrix,
suggests that the grouping method used will not drastically
affect PERFIELD performance. In LARSYSAA fhe discriminant
surfaces can be drastically affected by the covariance
matrix implying a greater sensitivity to grouping method.
That the statistics are much too tight when avefage- and
product-groupihg are used can alsobe demonstrafed_by using
a threshold in LARSYSAA. By this we mean a vector is not
c]assified‘(i.e., threého]ded) unless the likelihood functibn
exceeds some predetermined number. This number is computed
so that a specified percentage of vectors from a normal
dfstribution are thresholded rather than classified. The
number of points thresholded for a very light threshold
(theoretically 0.5%) are of the order of 0%, 25%; 50% and
0% for S, A, P and PS grouping respectively. This suggests
that average- and_product-gropping producg statistics that
are much tighter than the distribution of the actual vectors

drawn from that class.
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Observation 3 -

~ For é-given grouping method the performance of the
~ JM distance is generally slightly better than the Divergence
| (by up to about 10%). This tends to be true for all grouping
methods for.both LARSYSAA and PERFIELD and for both training
and test results. The sole exceptions are that the Diver-
genée shows up better in LARSYSAA for P and PS groyping;

On the basis of these results the JM.distahce appears to be
slight]yvbettervfor clustering than the Divergence.A‘Recall
that because of feature selection a bias in favor of
Divergence might have been expected.

Observation 4

The performance for PERFIELD (% Samples correct)
for a given set of 'statistics was typically 5 to 10% greater
than the performance of LARSYSAA (% vectors correct) based
on the same statistics. This is a smaller improvement than
had been anticipated but can be understood in tHe light of
the following two examples. The first example indicates
the basis fdr expecting a Targe improvement, whi]e the
second suggests why the anticipated improvement 1s.not
realized.

In the first example consider a two class problem
in'which each class is representéd by a single distribution‘
function. If the distributions are sufficient]y separable,
sﬁch that LARSYSAA makes essentially no errors, then

essentially no improvement results when PERFIELD is used.
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If the two distributibns‘are'a1most identical then the’
LARSYSAA error is in the vicinity of 50%, but for suffi-
ciently large samples PERFIELD makes essentially no errors.
It is on the basis of this result that one expects a dra-
" matic improvement in PERFIELD performance over LARSYSAA.

| In the second example consider the case discussed
in Section 3.5.3 where the classes are Gaussian (with equal
variance) but the means are distributed uniformly in the
parameter space. For convenience assume.that each class is
represented by all the distributions in that c1ass. For
large separation between the parameter space densities_both_‘
PERFIELD and LARSYSAA are essentially error free. For small
separation of the parameter space densities (i.e., consider-
able overlap) assuming that ties are broken in accordance
-with the pribr class probabilities, it is easily seen that
the probability of error for LARSYSAA is abouf 50%. This is
precisely the same as for PERFIELD. Thus in this example,
for either very large or very small separation between the -
parameter space densities, PERFIELD offers little advanfage
over LARSYSAA. We summarize this discussion by stating that
for data that is very easy or very difficult to ana]ySe
PERFIELD appears to offef lTittle advantage in classification
accuracy over LARSYSAA. It is data of intermediate diffi-
culty for which the potential for increased classification
accuracy is'greafest. | |

[t is important to note that a similar situation

prevails in evaluating the merit of different classification
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Parameters as well as different Trafning Procedures. Thus
for example if c1assffibation accuracies are very high or
ve?y low the advantages of any.parficular barametér br pro-
cedure will tend to be obscured.

Obsérvation 5

The training performance is very muchvgreater than
the test performahce; This suggests that the training fields
are not too representative'of the test fields; Since the
training fields were distributed ovér all the flight lines
it is difficult to see how a more répresentative Set could
be chosen.: | ‘

Observation 6

In performance by class the classification accur&cy
for the class soybeans was lowest. UsQa]]y the‘majority of
the confusion was between corn and soybeans although some
confusion é]so existed between other, and corn and soybeahs.
.It is possible that the humber of soybean subc]asses should
have‘been,somewhat_larger.

Observation 7

From Table 4.4.3.1 it is apparent that parameter
space c]usterihg is a useful technique. Although the training
set classification was considerably befter using observation
space c]ustering the overa]1 test performance (samples for
PERFIELD, vectors for LARSYSAA) was 6% poorer and improvement
was shown in every class. The fact that pérameter space

clustering is probably faster makes it that much more appealing.
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Note, however, if homogeneous fields can not be defined then
parameter space clustering is not applicable; but observa-

tion space clustering is not affected.

4.5 Experimental Comparison of Distance Measures.

The pre&ious section contains a comparative eval-
uation of the Divergence and JM distance in barameter space
clustering. The evaluation of the relative merits‘of the
two distances is based on the performance of minimum distance
classifiers, which are trained on the basis of the clustering
results. The same distance is used in both clustering and
classification. As a consequence of this approach the re-
sults can also be viewed as a comparison of two classifica-
tion systems; one based on the Divergencé the other on the
JM distance. They do not directly give a comparative evalu-
ation as to which distance would perform better in only the
classification phase of a minimum distance classification
system, since in the experiments described training was
purposely biased, supposedly in favor of the distance used
in the classifier. Such bias must be avoided if the compar-
ison is to involve the classifier only. Furthermﬁre, the
systems. were compared only in the parametric case.

The question of comparing various parametric and
nonparametric distance measures in the classification phase
is the main topic of this section. This comparison is
effectively treated in Sections 4.5.1 and 4.5.2 which res-

pectively consider the case of many subclasses and the case
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of no subclasses. . | _

The thrust of Section 4.5.3 is slightly different.
The objectivevof that section is to compare two methods of
defining subclasses. The first méthod is based on random
selection of training fie]dsg.which‘we refer to aé random
training while thé second involves the clustering of randomly
‘selected fields which wevrefer to as nonrandbm tréining.

As before results are presented for both averagev
overall performance and average performahce by class. In
interpreting the results the emphasis is again placed on
average overall performance rather than average performance
by class. Only test results are presented. This is largely
a consequence of the fact that the tfaining method uéed in
Section 4.5.1 ensures that training performance is 100%.
While this is not true of Section 4.5.2 or Section 4.5.3 no
attempt was made to obtain the training performance for
these sections.

4.5.1 Random Training Field Selection - -Each Training
Field Treated as a Subclass

It is convenient to describe the experﬁmeﬂtai pf@—
cedure in terms of the method summarized in Table 4.1. It
is apparent that to accomplish our goal of an unbiased com-
parison of distance measures, a fixed Training Procedure
which is in no way biased in favor of any distance measure,
must be used to train the classifier. The relative value of
any distance measure is then estéb]ismed by considering the

.classificatioon accuracy achieved with that distance measure.
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Both the parametric minimum distance classifier PERFIELD

and the nonparametric implementation LARSYSDC are used. By
utilizing both PERFIELD and LARSYSDC five different distance
measures can be studied and one of these cén be studied in
both parametric and nonparametric form. The distance mea-
sures involved are KL numbers, Divergence and JM distance in
PERFIELD; KS distance, KV distance and JM distance in LAR-
SYSDC.

To remove bias in favor of any distance measure
from the Training Procedure the training fields are se]ecﬁed
at random and the classification channels are fixed and
specified apriori. In this way no known bias is introduced
~either in training or featuke selection. Because of the
random training field selection c]assification accuracy will
be high for some classifications and low for others; in other
words the fact that performance is a random variable will
show up with greatek clarity than is typical. One way of
comparfng such classifications is to perform a number of
similar c]aSsifications under similar conditions, and use
average correct c]assificafion_as the performance index. This
is the procedure. adopted. The Stahdard Tesf Fields of flight-
lines 21, 23, and 24'provide‘the three seté of data on which
the average performance is based. One would berhaps prefer
to have a larger number of data sets over which to take
averages, but it is difficu]t to obtain suitab]é data sets

and the computation time rapidly becomes prohibitive.
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The detaiTed Training Procedure adopted was to
randomly select a set of training fie]dé from .the Standard
Test Fields for that flightline. This was done on a "per-
centage basis by class" to ensure that each main c]éss is
represented and treated in a similar hanner. By selecting
the training fields on a peéercentage basis by c1as§ we méan
that for a given f]ight]iné the same perﬁentége of the
Standard Test Fields for each of the classes wheat, corn,
SOybeans'ahd other are used as training fields fdr that flight
line. The claSsificatioﬁ-channels were a{bitrarily selected
to bé.l, 8, and 11.

The above approach is also ideal for studying the
effect of varying the relativé size of the training set.
With this dbjective in mind three classifications are per-

- forméd for each flight with the training set respectively
COmprising.a nominal 5%, 10%, and 20% of the Standard Tést
Fields in that flightline. Table C.1, €.2, and C.3 which
1ist the Standard Test Fields for flightlines 21, 23 and 24
_a1§o show the fié]ds selected as training fields for these
'?lighﬁlihes_fbr each of 5%, 10%, and 20% training. Note that
the ff@]ds used for 10% training are chosen so that they
tohtéfh the 5% training fields. Similarily the 20% training
fields contain the ﬁb% training fields. The fields in the
Standard Test Field decks that are not selected as training
fié1&s are uwsed as test fields.

As already mentiened all ¢lassifications are based

on channels 1, 8, and 11. The reason for using 3 rather than

[
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the more commonly used 4 channels, is because the use of
more than 3 channels produced some histograms that contained
more bins than could be handled by LARSYSDC for the bin size
used (5). In fact some difficulty is even encountered with
nonrandom training (Section 4.5.3) for this bin size when
only 3 channels are used. A]though the bin size of 5 was
arbitrarily selected it appears to be a reasonable value
based on typical histograms of multispectral scanner data.
Furthermore in Section 4.6.3 this choice is experimentally
shown to be reasonable.

The average overall test performance and the aver-
age test pérformance'by class is given in Fig. 4.5.1.1 and
Fig. 4.5.1.2F Recall that iﬁ interpreting‘the results the
emphasis is placed on the average overall test performance.
Table 4.5.1.1 contains the experimentally observed standard

deviation in the overall test performance.

Table 4.5.1.1

Standard Deviation in Overall Test Performance. Random
Training with Subclasses

Standard Deviation for Standard Deviation for
% Training Parametric Distances Nonparametric Distances

5 - : 6.53 - ©3.31
10  5.87 3.90
20 : L 2.32 ' 4.44
i |

For convenience in these and - i

] ) . : subsequent Fi

ﬁgzggiige;stzggwgh?z % Samgles as Train?ng“. Igugﬁgﬁlshse
erce i ghly

equals 175 fields (cprppe:d?gec;? retghly based on 100%
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Table 4.5.1.1 is of considerab]e fnterest since it gives some
indication of how rad{cally“the average test performance
fluctuates. Notice that’not a1] disfances are considered
separately in this Table. While the variances were originally
computed individually for each distance measure, the data
indicated it:wés reasonab]g to combine all the nonparametric
and all the parametric distances into separate groups;
espeéia]]y since the intended use is primarily qua]itativé
rather than quantitative. The adgaﬁtage of this is that 9
rather thén 3 ¢1assif1cétions are used tokestimaie'each
varfance,_resu]fing in a "better" estimate.
| With the aid of Fig. 4.5.1.1, Fig, 4.5.1.2 and

Table 4.5.1.1 the following observations emerge. .

Observation 1

Average performance is not drastica]]yveffected
by the choice of distance measure. In fact on the basis of
Table 4.5.1.1 it is quite likely that the variations that
do show up are simply statistical variations. |

| Observation 2

.The paramétric and nonpérametric classifiers using
‘the UM distance have essentially the same averaée performance.
This résﬁ]t is to be eXbected provided the trainihg and test
samples are reasonab]y Gaussian. Since each field is treated

separately this condition will tend to exist.
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Observation 3

Increasing the training percentage from 5% to 20%
results in only a slight increase in average performance.
This behaviof is similar to the behavior of the simple two
class univariate example considered in-Section 3.5.3. There
the average performahce also improved only slightly as the
hdmber of subclasses increased. Thus this situation
apparently carries over to the many class mu]tivariafé
problem. In Section 3.5.3 it was suggested 'that increasing
the number of subclasses is of greater importance in reducing
the variance of the pérformance than in actually improving
the perfofmance itself. By using many subclasses one is
more likely to get results near the average-than if the
number of subclasses is small. Tab]e 4.5.1.1 demonstrates
this property for the parametric-distances. The nonparametric
distances actually show a slight increase in standard devia-
tion with an increase in the percentage of fields used as
training. This behavior is largely due to the anomoulous
behavior of the KS distance who;e variance for 5% training
was much less than for 20% training. The KV.and JM distance
behaved in a more normal fashion. Even so the variabiiity in
performance for nonparametric distances does not appéar to
- be as sénsitive to the number of subc]asses as is.the vari-
ability in performance for parametric distances. There is

no known explanation for this behavior.
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Observation 4

“In classifying an individual flightline there were
numerous instances where increasing the number of subclasses
resulted in sigﬁificdnt1y poorer ovérall performance. This
effect.alsq pfevai]s in a few instances_even when average
overa]]‘pérformance is considered, although in_view of the
'standard deviations in Table 4.5.1.1, and the very slight
change in avehage overall performance with percent training,
the decrease would nét appear to be statistically significant.

In light of the results of the simple two class uni-
variate gxamp]e,cpnsidered in Section 3.5.3 it is not sur=
prising that performarce for. an indiviquaT flight line can

deteriorate when the number of subclasses is increased.

(cf Section 3.5.3 Observation 4). Apparently the behavior

of the_many class multivariate problem is in this respect
similar to:the two class univariate problem. In terms of
the results of Section‘3.5.3 a decrease in average overall
performan;e is not expected. As already mentioned the
decrease observed for some.distance measures appears to be
due to statistical variation but-could conceivably a1s§ be a
consequence of the inadequacy of the model  in Section 3.5.3.
v Observation 5 '
The performance by class graphs (Fig. 4.5.1.2)

contain a few itemsléf interest. The main féatures of these
grabhs is that the number of Subglasses fncrease the corn

and soybean results remain essentially constant, the wheat
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results improve and those for the class other deteriorate,
particularily in increasing from 10% to 20% training.
Behavior of this type if a single flight line is involved can
again be readily explained in terms of the two class uni-
variate prob]em of Section 3.5.3 (cf Section 3.5.3 Observa-
tion 4). That this behavfor should occur on the average
is a Tittle more difficult to explain. While a number of
explanations in terms of parameter space densities are
possible the most likely one occurs only in problems in-
volving 3 or more classes. This explanation naturally has
no counterpart in the two class problem of Section 3.5.3.
Explanation of the observed behavior for two class problems
with different parameter space densities is also possible.
Consider the following 3 class unfvariate example
which explains how an increase in average performance can
occur in one class, while that for the other two classes
remain essentially unchanged. Similar examples can also be

devised to explain decreases in average performance. Assume

that the 3 parameter space distributions are all uniform and
that the parameter space density for cfass 1 is identical to
that for class 2, while the parameterAspacé density for class
3 is just barely disjofnt from the class 1 and class 2 den-
sities. It is clear that if the number of subclasses for

each class is very large then on the average essentially all
samples from class 3 will be correctly identified, while only

about 1/2 of class 1 and class 2 samples will be correctly
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identified. If_the number of subclasses is reduced until
class 3 is represented by only one density, whi]é the number
of densities representing class 1 and 2 are still quite
_]arge,_then on the average the number of class 3 samples
corre;t]y identified will have decreased considerably, while
for class 1 and class 2 there will essentially be no change.
This example should make it clear that in a multiclass
problem, an increase in percentage of fields used as
training, may improve the performance for one class without
a.signifiqant change in the performance of other classes.
This example also makes it fairly clear that by appropriate
adjustment of parameter space densities almost any va}iation
of AVerage class performance with increase in the number of
subclasses is possib]é.

The classes corn, soybeans énd wheat behave some-
what 1iké the classes 1, 2 and 3 respectively in the above
"example. Thus the parameter space densities,for corn and
soybeans show considerable overlap whilé the parameter space
density for wheat is somewhat disjoint; Furthermore, the
relative abundance of corn, soybean, and wheat fields means
that corn and soybeans are always repfesented by a consid-
erably larger number of subc]asses than wheat.

The above example is, therefore, a plausible
explanation for the behavior of the wheat performance graphs
of Fig. 4.5.1.2. A similar explanation could be devised for

the class other but there is some doubt as to the correctness
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of this interpretation for the class other. Due to ex-
tenuating circumstances it is likely that the decreasé in
average perfdrmance for the class other, with increase in
subclasses, is not actually real but that the decrease is
simply due to a rather drastic statistical fluctuation. This
problem does not arise for the class wheat since the per-
formance for every distance measure and every flightline
showed an increase in performance.

The decrease in performance for the class o;her as
training increases from 10% to 20% is largely due to the
collapse in performance for flightline 23. For this flight-
line the berformance for the class other decreases from the
vicinity of 70% to the vicinity of 30%. Flightlines 21 and
24 do not exhibit this behavior and the results for these
flightlines is virtually unchanged as the tkéining fields
" increase from 10% to 20%. Since flightline 23 contains a
rather small number of test fields for the class other it
is actually the misclassification of a relatively small num-
ber of fields that is responsible for the decrease in class

other when traihing is increased from 10% to 20%.

4.5.2 Random Training Field Selection - No Subclasses

The experimental ﬁrocedure for this section is iden-
tical with that of Section 4.5.1 except that instead of treat-
ing each field as a subclass all the randomly selected fields
for each main class are combined. Thus each class is repre-

sented by a single distribution function. <Classifications
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are again performed of flightlines 271, 23 and 24 usinQ 5%,

10% and 20% of the Standard Test Fields as training. The
averagé overall test performance and the average performance
by class are given ih Fig. 4.5.2.1 and Fig. 4.5.2.2 fespec—
tive]y; Table 4.5.2.1 shows the variance in the overall per-
formance where parametric and nonpar&metric distances have

again been grouped.

Table 4.5.2.1

Standard Deviation in Overall Tést Performance.
Random -Training with No Subclasses

Standard Deviation for Standard- Deviation for
% Training Parametric Distances Nonparametric Distances
5 4.42 ' 3.11
10 | 6.12 | 1.60
20 8.94 - 2.98

When each field is treated as a subclass then the
classes tend to be unimodal and symﬁetrica] and the Gaussian
assumption shou]d'be.reasonably valid. Consequently, non-
parametric methods have no particular advantage in this
setting. By combining all the training fields into one sub-
: ;1ass the class distributions will almost surely be multi-
modal and the normal assumption would not be very valid. One
would anticipate that in this situation the nonparametric
classifier LARSYSDC would be a better c]assifier.than the
parametric classifier PERFIELD. It was essentially this

contention that prompted the investigation described in this
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section. Thé extent and manner in which these expectations
agree with the experimental results is somewhat different than
anticipatedl B

Based on Fig. 4.5.2.1, Fig. 4.5.2.2 and Table
4.5.2.1 we make the following observations.

Observation 1

Within the limits of statistical fluctuations as
suggested by Table 4.5.2.1 the average performance of all
distance measures is roughly equivalent although, the
Divergence and KS distances appear to perform somewhat poorer
than the other distances. |

Observation 2

In terms of average performance the parametric clas-
sifier using the JM distance does just as well as the non-
parametric version using the JM distance. The typical
variance in performance is, however, much greater for the
parametric than the nonparametric classifier (Table 4.5.2.1).
Furthermore, the variance in performance for the parametric
classifier {ncreases as the percentage training increases
while for the nonparametric classifier this quantity remains
reasonably fixed. These factors are importént.from a classi-
fication viewpoint. They mean in effect that in berforming
a single classification one is more likely to obtain reason-
able results with the nonparametric classifier and that for
the parametric classifier fhe results becomg more erratic as

the number of fields grouped together increases. If the
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results for many c]assifibations are to be averaged then the
parametric classifier does just as well on the avérage as
the nonparametric ;Tassifier.

~ Because of the multimodal nature of thg class
distrfbufions one might expect that on the average the
nonparametric classifier would do better than the parametric
classifier. The basic fallacy in this reqsoning is that
a]thoﬁgh the class distributions are multimodal the samples
to be cTassffied are essentially unimodal. In other words
the distribution of any sample to‘be classified is not really
Based\on a faﬁdom sample froh the distribution of ;ny class.
Instead it simply tends to account for one of the modes in
the class distribution. Furthermore, there is no appérent
way of rectffying this situation within the constraints of
minimum distance c]assification.

We can summarize the results as follows. . For the
parametric classifier better results are obtained if many
subc]asées are used. The result is not-better in terms of
perforhance averaged over many flightlines but in terms of
“the variability in performance from flightline to flightline.
For the nonparametric classifier results With many and no
subclasses are comparable. Therefore it is certainly ad-
vantageous to use no subclasses since computations increase

directly with the number of classes.
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Observation 3
A Increasing the training percentage from 5% to 20%

results in only a slight increase in average performance.
This behavior is éimi]ar to the behavior observed when sub-
classeé are permitted and can be explained in a similar
manner (cf; Section 4.5.1 Observation 3);

Observation 4

Increasing the number of subclasses for a given
distance measure quite often results in a significant de-
crease in performance for thé classification of any f]ight—-
line, and occésiona]]y results in a small (probably not sig-
nificant) decrease in the performance averaged over the
three flight 1iﬁe5. This result is similar to the behavior
observed when subclasses are permitfed and can be explained
in a simiiar manner (cf, Section 4.5.1 Observation 4);

Observation 5

The performance by class is qua1ftative1y similar
to that observed in the case where subclasses are' used,
except that the disparity between different distance measures
is sometiﬁes greater. In particular the KS distance appears

to perform poorly. The reason for this is unknown,

4.5.3..Training-Fie1ds Grouped by Parameter Space Clustering

The objective of this section is to compare'the
random training procedureé in the previous two sections with
‘a training procedure based on parameter space clustering

which we refer to as nonrandom training, more precisely it is
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really the subclass definition that is nonrandom. In partic-
ular results usfng fhe training procedure used in evaluating
GRPSAM are compared with the resu]ts of random trainingzwith
each field treated as a subclass (20% trafnihg). In terms
of the method of describing experiments given in Table 471
we are studying the effect of two Training Procedures with
the distance measure as a Classification Parameter. Both the
parametric and nonparametric implementations of the minimum
distance classifier are again considered. |

It is possible to view the case of nonrandom train-
ing as a 1ogica]'extention of.the case of random trafning
whefe each training fie]d is tre&ted as:a subclass. If the
number of training fields is larger tﬁan the number of sub-
classes the system can handle, then it is ]Qgical to search
for ways of combining subclasses that are sufficiently alike.
Clustering fn the parameter space Serves this‘pufpose. The
training fields that were clustered with GRPSAM using the JM
distance anq PS grouping were the Training Acres of Table
>C.4. As before the Standard Test Fields of flightlines 21,
23, and 24 were classified with all the distance measures
available in both PERFIELD and LARSYSDC using channels 1, 8
and 11. The results of these classifications. together with
the results obtained for 20% random training are'compared in
Fig. 4.5.3.1 and Fig. 4.5.3.2. The first figure compares the
average overall test performance while the second compares

the average test performance by class. The variance
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in the average test performance for nonrandom training was
4.30 and 4.41 for the parametric and nonparametric distances
‘respectively. The histogram bin size used in LARSYSDC was
10 for the nonrandom training results and 5 for the random
training results. This difference was necessitated by the
facf that for a bin size of 5lsome of the training classes
for nonrahdom training contained more than the maximum
allowable number of bfns as determined by progfamming con-
straints. On thebasisof Fig. 4.5.3.1 and Fig. 4.5.3.2 we
make the following observétions. | |

Observation 1

Again no particular distance measure appears to
have any advantage. This was previously observed for random
training ahd is also true for nohrandom training.

Observation 2

Average overall performance for nonrandom training
is slightly better than for random training. This 1is berhaps
to be expected since in effect a training set drawn from a
larger number of fields was used. The Training Acres were,
of course, also chosen on a percentage basis by class but
the percentage vafied from class to class with wheat being
sampled much more densely than corn, soybeans and other.

In interpreting thé_difference between random
and nonrandom Traihing two factors must be considered. For
random training atll téét fields were physica]]y‘disjoinf

from the training fields. - In nonrandom training many of the
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Training Acres are in fact contained within the Test Fields.
This would tend to increase the nonrandom training perfor-
mance. Offsetting this effect is the fact that the bin
sizg for nbnrandom training isllarger which would tend to
f&vor random training.

Observation .3

The average performance by class again shows greater
variability from distance measure to distance measure than the
average overall performance. Nonrandom training shows up
favorably for all classes except soybeans where random train-
ing was superior. . As mentioned previously in connection with
the results on the éva]uation of GRPSAMiit is possible that
the number of subclasses for soybeans shou]dzhave been some-

what. larger.

4.6 Effects of Some Parameters on Performance

It is of considerable interest to know how some of
the Classifier quameters affect performance. Our purpose in
this section is to investigate»some of the more important
parameters. In terms of the method of describing problem
summarizéd in Table 4.1 we focus our attention on determining
the effect on c]éssification accuracy of the Classifier Par-.
ameters listed in that table.

Table 4.6.1 contains a summary of the experiments
performed. This table indicates not only the nature of the
various studies but also depicts the range of the parameter

studied and lists the section number in which the results
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are described. It is convenient to describe the portions
of the experimental procedures that are common to all the
studies in this section relegating to the appropriate sub-
sections those procedures that apply only to that sub-
section. |

To study the effect of different pafameters;it fs
of course necessary to fix the Classifier Type and Training
Pbocedure and then vary the Classifier Parameter of interest.
The only Classifigr Types considered are the minimum dis-'
tance classifiers PERFIELD and LARSYSDC. The training
procedure is based on clustering the Training Acres using
either thé Divergenée or JM distance wifh PS grouping on a
class by class basis; feature selection is via $SEQDIVG (i.e.
JM-PS$SEQDIVG) or D-PS({$SEQDIVG) training). The C]assifier_
Paramefers Studied are numbér of channels, bin size and the

number of vectors used to estimate the test histograms (i.e.,
sample size). Again wherever appropriate the various dis-
tances in LARSYSDC and PERFIELD are compared.

Results in all cases are giVen for both traﬁning
and test fields. The training fields used are the Training
Acres listed in Table C.4. The test fields are derived
from the flightline 21 Test Areas given in Table C.5.

Rather than list the actual test decks used we describe
inétead the method of deriving the test decks from the flight-
line 21 Test Areas. The reason for this approach is that in

the sample size study 12 different decks are used. Half of
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these decks are derived from the flightline 21 Tesf Areas
and half of them from the Training Acres. It is simpler to
‘describe the method of generating these "derived fields"
than to 1ist all the decks. To generate a derived field from
an original field it is necessary to specify the number of
vectors the derived field must contain. The line and column
intervals of the derived fie]d are then adjusted so that
the vectors in the derived fie]d-are spread out.as much as
possible over the original field. For example a derived
test field containing four véctors'wou]d contain the four
vectors located on the corners of thé:origina] field. The
objective of this rather involved procedure is to ensure that
the vectors in the derived field are as independent as
possib]evwithin the constraint that they must be contained
in the original field.

For all the studies except the sample size study
there are 12]'vectors in each training and test field.
The number 121 was chosen because this represents all the
vectors in a Training Acre. Since flightline 21 Test Areas
contain up to 900 vectors the proéedure described aboveAwas
used to select fhe 121 vectors from each Test Area to gen-
ératé a derived test field. In the sample size study the

same procedure was used to sefect "training"+ and test fields

+The full Training Acres were in all cases used
for training purposes. The word "training" is used to desig-
nate test fields derived from the Training Acres.
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from the Training Acres and flightline 21 Test Areas res-
~pectively. | |

A comment regarding the graphs 1in this Section
aﬁpeafs advisable. For most of the graphs the independent
variable is discrete. For convenience in reading thegraphs
exberimenta] points have been joined by straightline seg-
- ments, but these segments do not have meaning except foh
integer values and then only those integer values that were

experimentally investigated (cf Table 4.6.1).

4.6.1 Number of Channels

In discussing the experiments performed to determine
the effect of dimensionality on classification accuracy it
is convenient to segregate the_experimehts into two cate-
gories. The segregation is on thé basis of Classifier Type
(i.e., parametric vs nonparametric). |

With reference to Table 4.6.1 it is apparent that
for the parametric case classifications were performed for
the three available distance measures (KL number, Divergence
and JM_distance) in PERFIELD. The number of channels was
varied from 1 thru 13 for each of the three distance measures.
Both D-PS($SEQDIVG) and JM-PS($SEQDIVG) Training Procedures.
were used.

In other words two sets of statistics were pro-
cessed by the $SEQDIVG pfocessor corresponding to the output
from GRPSAM for JM-PS and D-PS clustering. The channels .

sequences obtained for these two cases were 11, 12, 8, 5,
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10, 1, 2, 7, 13, 3, 9, 6, 4 and 11, 12, 8, 1, 5, 10, 2, 13,
7, 3, 9, 6, 4 and JM-PS and D-PS clustering respectively.
These twd sequences afe really qufte similar with difference
~occuring only near the middle of the sequence.

| For the nonparametric case classifications were
performed for the three distance measures in LARSYSDC (KS,
KV, and JM distances). Resuits‘were obtained f&r the JM-PS
($SEQDIVG) Training Procedure only and the number of channels
was varied between 1 and 3 except for the KS distance where
no 3 channe]lresults were obtained. |

The results of the number of channels study appear
in Figs. 4.6.1.1 through Fig. 4.6.1.12 with the paramefric.
results occupying the first eight figures'and the nohpara-
metric results in the last four. Fig. 4.6.1.1 through Fig.
4.6.1.4 contain the training and test results for the para-
metric case where JM-PS clustering is used in the Training
Procedure while Fig. 4.6.1.5 through Fig. 4.6.1.8 present
similar results for.the case -where D-PS clustering is used.
In each case overall test and training performance together
with test and training performance by class account for the
four figures. A similar set of figures for the nonparametric
case accounts for the four nonparametric figures. For com-
parison purposes the performance of the parametric distance
measures has also been included on'the nonparametric graphs.
It is worthwhile remarking that apart from the

training results presented in connection with the evaluationof
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GRPSAM no other training Eesults have so far been preseﬁted.
fhis must be borne in mind in interpreting the present
results as training and test results tend to differ.

On the basis of Fig. 4.6.1.1 through Fig. 4.6.1.12
we make the following observations. -

Observatioh 1

The overall performance increases rapidly as the
number of channels increases and saturates in the vicinity
of four or five channels (Figs. 4.6.1.1, 4.6.1.3, 4.6.1.5 and
4.6.1.7). The training performance curves saturate somewhat
more rapidly than the test performaﬁce curves. In this re-
-spect'minimum distance classification behaves in essentially
. the same manner as maximum likelihood c]assification33 (i.e.,
LARSYSAA). It is worth noting the similarity between the
performance curves and the plot of‘average JM distance as
a function of dimensionality in Fig. 4.4.1.7.

Observation 2

On the basis of overall test performance, the
performance of all distance measures is appfoximate1y the
same (Figs. 4.6.1.3, 4.6.1.7, and 4.6.1.11). The same is,
. however, not true for traihing performance where in the par-
ametric case the JM distance and KL numbers perform consid-
érably’better than the Divergence (Fig. 4.6.1.1 and Fig.
4.6.1.5), especially when the number of channels is 1arge.'
Furthermore, in the nqnparametric case the KV distance and

nonparametric JM distance perform marginally better than KL
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KL nﬁmbers or the parametricAJM distance (Fig. 4.6.1.9).
The basic difference between training and test fields is,
of course; the fact that there is no guarantee that the
training fields are_real]y representative of the test fields.
The evidence therefore, seems fairly conclusive that if
training is truly representative of the sample to be c]aséi-
fied then the particu1ar di§tance measure used ig important.
Under_these circumstances the nonbarametric JM distance also
appears to perform better than the parametric JM distance.
The last statement is based largely on the 2 channel resu1t§
'since fof 3 channels the performance is too large for any
distance to show any significdnt advantage and in the 1
channel case it is too small (cf; Section 4.4.3 Observation
4). | |

Observation 3

Regardless of whether the JM distance or Diver-
gence is used to cluster the Training Acres, the overall
perfdrmance for PERFIELD using the JM distance is better
than when the Divergence is used. This is also generally
true for the performance by class. This is rather unexpected.
One would certéih]y expect thaf the distance measure used
in clustering the data would have a distinct advantage in
classification. Since this does not océur the logical
conclusion is that the JM distance is a better distance
measure than the Divergence. At least this is true for

‘the training data involved. As noted in Observation 2 there
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is only a hint of this superiority in the test results.

The performance for KL numbers for traihing fields
is very near that of the JM distance but usually slightly
bétte?. For test fields the two distances perform roughly
the same. It is interesting to speculate why KL numbers
seem to perform slightly better than any other parametric
distance considered. And why the Divergence, a symmetrized
form of KL numbers, does not perform nearly as well. Perhaps
on the basis of the theoretical relationship that exists '
between maximum likelihood classification and minimum dis-
tance classification using KL numbér this results is notltoo'
surprising. Recall that thé main facto} that distinguishes
KL numbers from the other distance measures is thaf it is not
symmetrical with respect to the densities involved. This is
probably significant since classification iﬁ_not entirely
a'symmetric procedure. ‘Intuitfvely assigning a field to a
class makes mdre sense than assigning a class to a field.
Expressing in words what the KL number represents provides
further insight. Thus the KL number of the field for the
class is the mean information of discrimination of the field

for the c1ass.33

Intuitively, this rather than the converse
(or some mixture), is a logical basis for classifying a field.
Observation 4
The performance by class results reflect fairly
C]ose]y the overall performance except that as usual the

behavior of the class results is more vériab]e. There do not
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appear to be any distinguishing features that require

comment.

4.6.2 Number of Vectors in the Test Sample

It is of considerable interest to establish how
large the test sample must be to enable a minimum distance
classifier to achieve reasonable performance. In paramétric
(normal) problems a commonly used rule of thumb states thatv
at 1east 10q vectors should be used to get a "good" estimate
of a q dimensional covariance matrix. In nonparametric
problems no such rule is known but it is usﬁa]ly implied that
a large number of vectors are required to adequately estimate
"a nonparametric density. It is the objective of this section
to establish guide lines on the samp]e'size required to
achieve reasonable performance in the par&metfic_c]assifier
PERFIELD and the nonparamétric classifier LARSYSAA. We only
~concern ourselves with the test samples and essentially
assume that the number of vectors used to estimate the
training distribution is large enough so that good estimates
are obtained. This fact must be borne in mind in interpreting
- the results. In other words the question to which an answer
is sought is not how many vectors are in general required to
adequately estimate a distribution,_but rather what is the
minimum number of vectors required to estimate a test
sample distribution in order that the performance of a
minimum diétance classifier will ndt deteriorate. The answer

will, of course, depend on the data and again we restrict
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our consideration to typical multispectral scanner data..

The experiment dévised to explore this problem is
the sample size study described in Table 4.6.1. The training
- method used was the JM-PS($SEQDIVG) method described earlier.
Experiments were performed for é channels (11, 12) as well
as three channels (8, 11, 12). Classifications were per-
formed with both PERFIELD and LARSYSDC using the only
diétance imp]emented in both c]gssifiers (i.e., JM distance).

Both "training" and test results are presented..
Fig. 4.6.2.1 and Fig. 4.6.2.2 contain the graphs depicting
the:overall "training" performance and "training" performanée
by class respectively. Fig. 4.6.2.3 and Fig. 4.6.2.4
contain the corresponding test results. Since the nﬁmber of
vectors used to estimate the distributions of the sample to
be c]assifie& is the quantity being varied tﬁe "training“.'
performance curves are in fact based on a subset of the
vectbrs in the Training Acres rather than all of the'vécfors
as is usually the case for determining training performance.
More specifically to obtain the "training" perfbrmance
curves rather than use a11 the vectors in an acre to estimate
the distribution for that acre for classification purposes,
only the dppropriate number of vectors from the acre are
" selected for estimation purposes. Of course, all the vectors
in the aqfe still form the basis for estimating the training
distribution. Similarily to obtain the test performance
curves the appropriate number of vectors are selected fromthe

Flightline 21 Test Areas. The method of selecting the vectors
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for estimating distribution of the sample to be classified
is the same for both training and test results. This method
‘has been Hescribed in Section 4.6. In essence the vectors
are selected to be spread out as much as possible over the
area from which they are chosén. |
‘ On the basis of the results presented jn Fig.
’4.6.2.] to Fig. 4.6.2.4 the following facts emerge.
Observation 1
The overall training performance definitely
decreases as the sahp]e size decreases but the sample size
must be extremely small before the decrease is significant.
- The overall test performance does not exhibit as definite
a trend. Instead it seems simply to become somewhat erratic
as the samples size decreases. In any case it appears that
the use of 10q vectors is adequate to estimate the distri-
bution of the samples to be classified for both PERFIELD and
LARSYSDC. |
| Observation 2
There.is abso]ute]y no ihdication that the number
of vectors required tb adequately estimate a density histo-
gram for classification purposes need by any larger than
the number required to obtain the corresponding parametri-
éal]y estimated density.
On the basis of this results it.appears likely that
in general the number 6f vectors considered necessary to

adequately represent a density histogram is over estimated.



In fact it appears likely that in a situation where a para-
metric description is reasonable, the number of vectors
required to adequately estimate a density histogram need be
no grgater'than the number required to adequately estimate
the parameters. 'It.appears that for reasonably well behaved
densfties the number of vectors required for nonparametric
estimation purposes is quite reasonable and not as large as
isvtypically implied.
| Observation 3

It is interesting to consider what happens if the
sample size is reduced until only one vector is available
from the field to be classified. In this situation the para-
metric classifier PERFIELD canhot classify the sample since
the covariance matrix cannot be estimated. It is trivial
~to show that the nonparametric classifier, using either the
KV or JM dfstance, becomes a maximum likelihood vector
classifier in which density histograms are used to estimate
the class distributions. Thus as the test sample size is
reduced to its lower 1imit LARSYSDC (with JM or KV distance)
becomes a vector by vector classifier of a rather desireable ”
type. éonsidering that the performance of a parametric
maximum likelihood classifier (LARSYSAA) is only slightly
less than the parametric minimum distance c]assifier PERFIELD
(see section 4.4.3 Observation 4). It is clear that the
performance of LARSYSDC will typically not drop'a large

amount when the sample size is decreased. This result also
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suggests that usually the minimum distance classifier,
based on density histograms, will perform better than the
maximum likelihood classifier based on density hiStogram,
Thié foT]ows because the limiting form of the minimum dis-
tance classifier is the maximum likelihood classifier.
Observation 4 A
The nonparametric JM distance yields auhigher class-
fication accuracy on the Training Aéres than the parametric
JM distance. Not only is this true for the overé]] perfor-
mance but it is also true for each class individually. This
behavior is similar to that observed in the number of channels
study and would in fact be expected on the basis of that
study (cf, Section 4.6.1, Observation 2). As in the number
of channels study the possible superiority of the nonpara-
- metric technique is essentially hot evident in the test
results. While the classification accuracy on test fje]dé.
is slightly larger forvthe nonparametric case the difference

is slight.

4.6.3 Bin Size

A parameter of considerable significance in LARSYSDC
is thé bin size. Certainly if the bin size is too large,
small differences between dénsities wi]]‘be obscured and
performaﬁce will deteriorate. On the other hand a small
bin size implies longer computation times and possibly poorer
estimates as well; since if the bin size is very small, then

the number of bins is very large and more vectors are needed
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. to'adequate1y estimate the distribution.

The.objeCtive of this section is to determine what
effect bin size has on performanéé. Actua11y it is probably
the ratio of number of vectors to the bin volume that is
the important parameter but since the number of vectors is
fixed at ]21, bin size éan be conéidered directly.

With reference to the bin size study portion of
Table 4.6.1 we note the training is again based on JM-PS
clustering of the Training Acres with the number of
subclasses as established in the evaluation of GRPSAM (i.e,

- JM-PS($SEQDIVG) training). Naturally only the LARSYSDC
classifier is involved since PERFIELD does not use density
histograms. Classifications are performed for 1 Channel (11),
2 Channels (11; 12) and 3 Channels (8, 11, 12) for each of
the distance.measures available in LARSYSDC. |

Fig. 4.6.3.1 thru Fig. 4.6.3.8 contain the experi-
mental results. Basically results were obtained for bin
sizes of 1, 5, 10, 20 and 30 with some exceptions necessi-
tated either by exceedingly large histograms or by diffi-
culties in converting'large pdf's to cdf's. These excéptions
are apparent from the figdres and will not be enumerated.

On the basis Fig. 4.6.3.1 thru Fig. 4.6.3.8 we
make the following.

| Observation |
The overall test performance is remarkab}y insen-

sitive to bin size while the overall training performance
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exhibits a greater sensitivity; at least this is true for
the two and three channel classifications. As noted in the
number of channels study for the one channe]lcaSe performance
seems to be so poor, and the parameter space densities over-
lapped to such an extent, that single channel resuits provide
little useful information regarding the superiority of any
parameter studied.

Observation 2

The overall test perfarmance suggests that there
is perhaps an optimum bin size in that the test performance
seems to decrease slightly for very small as well as for
-large bin size. The training performance continues to
improve as the bin size decreases. Because of the limited
number of results the evidence is not too conclusive but
the apparent different5behavior for test énd training is
not necessarily contradictory as the following argument dem-
Qnstrates.‘To simp]ify'the explanation and possibly exagger-
ate the effect, suppose the multispectral scanner data is |
real (as oppbsed to integer) data and that the bin size is
chosgn sma11venough so that every nonempty bin for both test
and training density histoghamg confained only one,véctor.~
Then the JM distanCe'betwéen two distributidnﬁ dépénds onTy“
on the ratio of the number of coincident nonempty bins from
‘the two distributions. to the maximhm number»of‘pbssible coin-
cident bins. In other words it.is 6n]y the spatiai dis- 

tribution of bins that is important. The true shape of the
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distribution (i.e., bimodal, etc.) has no direct influence

on the classification except to the extent thaf this in-
fluences the location of the nonempty bins. Since the train-
ing histograms are derived ffom the Trafning Acres the spafial
correlation between the two is quite large. In fact every
nonempty bin for any particular Training Acre to be classified
coincides with a nonempty bin in the subclass to which that
acre should be assigned. Only if the histograms for two

or more subclasses overlap over the whole region occupied by
the Training Acre can the Training Acre be 1ncorrect1y
classified. This condition does not prevail for test fields
where conceivably the general shape of the densitieﬁ is of

. greater importance to correct classification then the

spatial distribution of nonempty bins. It is not known

if this is the correct explanation of the above phenomena

but the 1nf6rmation in Table 4.6.3.1 tends to support this
explanation. This table gives the average ovef both test

and training hiséograms for the data involved of the average
number of vectors per non empty bin for various combinations

of channels and bin size of interest.
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Table 4.6.3.1

Average Number of Vectors Per Nonempty Bin

Bin Number of Histogram Average Number of Vector
Size ‘ Channels Type : Per Nonempty Bin

1 2 . Train : 2.26

1 2 Test - 1.66

5 2 Train | 16.38

5 24 Test - 9.42

5 3 Train | 5.73

5 3

Test 4.77

Observation 3
The improvement in bérformance with decreasing
~bin size is not as great for'the KS distance as for the KV
and JM distances. This is partiéulari]y true for trafning
results and appears to be true for test results. 'In fact,
‘the percentage of training samples correctly ciassfied when
the KS distance is used falls considerably below the per-
centage ciassified.correct]y by the KV and JM distances.
| Observation 4 |

The behavior of the performance by class curvés
for both test and training results is quite erratic although
the genera1 trends observed in the overall pErfOrmance curveS

are also present in the performance by class curves.
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CHAPTER 5
CONCLUSIONS

Scattered throughout the various sections are
numerous "Observations" most of which 1h essence are really
conc]usions_with discussions pertaining to thé conclusions.
In the current chapter the more significant "Observations" .
are collected from their diverse locations and presented in
a unified mannér. In general the conclusions presented are
" baséd on experimental results obtained with a particular set
of data and strictly speaking the conclusions are really
only valid for that data. It is, of course, extrapolation
of these conclusions to other data sets that is of interest.
We believe that such exfrapolation is valid for most multi-
spectra]'scénner data, at least as long as it bears a rea-
sonable simiiarity to the particular data studied. In fact
the wording of the conclusions is.based on the assumption
that this is the case. O0f course, we recognize that multi-
spectral scanner data sets will be encountered for which not
all of the conclusions will be valid.

Some'of.the'conclusions are based on averages over
three similar f]ighflines. Others are based on a single
flightline. Obviously the conclusions based on the average

of three flightlines should be more reliable than those based
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on a single flightline. However, even if only one flightline
is involved the émount of data upon which the conclusions
are based is always quite substantial. In all cases the
experimental investigations involved problems that in terms
of number of classes and number of subclasses are quite
realistic. |

Probably the most significant conclusion is that
for the traihing methods employed the test performance that
can be achieved with minimum distance classifiers is
"essentially" independent of the distance measures considered,
or on whether the implementation of the classifier is based
on parametrically éstimated densities or density histograms.
The word "essentially" has been inserfed because the non-
parametric classifier using the JM distance gave "hints"
of superiority even for test data but the variability of the
results is sufficientTy iarge that .many more c]a;ﬁifications
would be necessary to establish if this distances had some
small advantage. |

In contrast the training performénce is signifi-
. cantly influenced by the distance measure, and whether or
not the classifier is implemented parametrica11y. More
specifically the nonparamétric implementation utilizing the -
JM distance gave the best performance on test results. In
~the parametric case the JM distance also performed well
with KL numbers doing slightly (but probably not signifi-
cantly) better. | ’



268

A feature common to all the classifications per-
formed in this study, as well as those in the crop yield
study, {s the disparity in classification accuré;y of test
ahd training data. Test pefformancé is typically of the
order of 25% below training performance. Also the behavior
~of the test data does not entirely mirror the behavior of
the training data. Apparently the training data énd/or
Training Procedure results in subclasses that are not really
represenfative of the true data.

Considering simultaneously the test results,
'training results and-the nonrepreéentativeness of the
training data. the implications seem fairly clear. Until
training techniques are developed which ensure that the
training data 15 truly representative of the test data
the choice of distance in a minimum distance classifier is
not critical, and the extra complexity of a nonparametriﬁ
classifier is not warranted.

Although a nonparametric minimum distance classi-
fier based on density histograms at present does not offer
aﬁy'advantage in classification accuracy over a parametric
classifier, it does have two advantages thét should be
mentioned. The first is that if rqndom training is used
subclasses can be eliminated without baying any penalty in
either average perfo}mance or vériabi]ity in performance.
‘This is not true for the parametric minimum distance classi-

fier_where elimination of subclasses leads to a great
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increase in the variability of performance, though appar-
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ently not a‘significant loss in average performance. Since
computatidn time is directly related to the number of sub-
classes this is an important advantage of the nonparametric
approach. It is, however, pfobab]y true that a parametric
(normal) classifier with an adequate number of sﬁbc]asses
will still be competetive in terms of computation time and
storage with a nonparametric classifier without subclasses.
The second advantage of a nonparametric minimum distance
classifier based on density histograms'is that as the sample
size is reduced it becomes a maximum likelihood vector |
classifier, provided an appropriate distance measure is used.
\As a_maximqm likelihood classifier.it should, with proper
programming, be relatively fast.

The main disadvantages of the nonparametric
classifier LARSYSDC are the large storage requirements and
relatively slow speed. Abtual]y the storage problem can be.
alleviated considerably from that encoantered in LARSYSDC
by storing only nonempty histogram bins and the bin index.
It is the storage of too many empty bins in LARSYSDC that
_Creates the main problem. The facility to use a subset of
.channe1s from a given statistics deck is an exceedingly

important capability of parametric normal classifiers.
Perhaps a method could be devised to select a subset of
channels for a stored multidimensiqna] histogram but the

complexity of such a method would certainly greatly exceed
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the analogous procedure for the parametric normal case.

" The nature of the problem of choosing a distance
measure is substantially different than the nature of the
parametric vs nonparametric question. The recommendation
against nonparametric minimum distance classifiers is pri-
marily based on thé inability to signifjcant]y improve test
accuracy with such a c]assffier even though it is slower and
more complex. The added complexity means that for a given
core storage the capabilities of a nonparametric system, in
terms of number of classes and number of channels, would be
considerably below the capabilities of a parametric system.
With regard to the choice of distance a different situation
prevails. The distance measure has only a minor impact
on the complexity of the classifier and on its capabilities,
(i;e., number of classes, number of channels, etc.) except
possibly speed. Consequently, if a distance meésure exhibits
even a slight superiority it is a natural choice provided it
is not unreasonably slow. On the:basis of this investi-

gation our choice for a distance measure for minimum dis-

tance classification, from amongst those distances considered,
would be the JM distance. This choice applies to both the
parametric and nonparametric classifiers. KL numbers are

a close second choice for the parametric case. The choice

of JM distance depends on three factors. (1) There is some
evidence to suggest that the JM distance is superior to the
other distance measures (i.e., training results) and in no

case does the JM distance show up substantially inferior to
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any other distance. (2) The behavior of the JM distance as
a function of dimensinality for multispectral scanner data
tends to resemble the behavior of the brobability of correct
classification. (3) Theoretically it is\among‘the simplest
of the distances to compute and has the important theoreti-
cal property of being a metric in a large space of distri-
bution functions.

Generally as expected the classification accuracy
for minimum distance classification is greater than for
maximum likelihood vector classification. For the data
studied the advantage of minimum distance over maximum
likelihood is not very great. This we attribute to the
general inseparability of the classes for the data classi-
fied and in fact suggest (but do nor verify) that for
the extreme cases of very high and very low class separabil-
ity‘minimum distance classification will afford little if
any improvement in classification accuracy ovér maximum like-
lihood vector classification. The greatést potential for
increased classification accuracy appears to be for data 5n
which the classes are moderately seperab]é. It is probably
important to mention that in the experiments performed no
great care was exercised to ensure that the data in a sample
was reasonably homogeneoué except that each sample originated
from a physical field. Thus a fair number of samples éx-
hibited some bimodality. Greater care ih this regard would

probably increase performanceAsomewhat; Offsetting this
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potential increase is the fact that fn a realistic system
fieldswould have to be defined automaticé]]y which might in
fact result in poorer field definition than was actually
used.

With regard to sample definition it is important
to note the definition of samples by observation space clus-
tering should work quite well. We base this statement pri-
marily on our experience with BOUND and NSCLAS and on the
expefimenta]]y observed fact ‘that in minimum distance |
classification the test sample size need not be very large
to ensure reasonable performance. The reason this latter
'factor is so important is that for a minimum distance
classification scheme based on‘samp]e definition by obser-
vatioﬁ space clustering to be at all competjtive fimewise
with othef classification schemes, it is essential that the
clustering time be reasonably small. This is only possible
if the number 6f vectors clustered simultaneously remains
small. The relatively good pefformance of minimum distance
classifiers for small sample sizes makes this possible. An
‘incidental advantageods by product of using observation space
clustering tb define samples in a parametric classifier is
that such samples tend to be unimodal and symmetrical.

Parameter space clustering was shown to be a useful
technique in the process of defining subclasses. Thus as a
result of parameter space clustering the classification

accuracy of flightlines 21, 23 and 24 was improved slightly
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from that previously obtained for.these flightlines with
observation space c]ustering. With regérd to "best"
distance measure for GRPSAM the JM distance appears superior
to the Divergence. The grouping method that gave the best
results was product-sample-grouping with samp]e-grouping a
very close second. In view of the small difference between
PS and S grouping and the inherent statistical appeal of
sample-grouping, sample-grouping is recommended for any LARS
System Program or other operational programs.

The behavior of sample classification accuracy
with dimensionality for minimﬁm distance classifiers re-
sembles the vector classification accuracy of maximum 1ike-
lihood classifiers. Both typically saturate around 4
channels.

On the basis if Test performance the bin size
study for LARSYSDC indicates that undef the condition of the
experiment (i.e., 2 or 3 channels and 121 vectors per
sample), a bin size of 5 to 10 is reasonable. For training
results a bin size of one appears to give the best perfor-
man@e but this is believed to be due to a phenomena which
typically only occurs for fraining samples.

In conc]uding;it should be mentioned that no com-
parative computation times have been given. The f&ct that
the experiments involved a number of different programs, two
computer systems (one in a time sﬁaring mode) and the in-

herent dependence of processing time on the Classification
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Parameters.énd on the manner in which the data is stored
(i.e., data retrieval time is by no means neg]igib]e) makes
it virfua]]y impossible t0~gfve meaningful comparative
times. Suffice it to séy that to classify a typical flight-
1iné time would be measured in fractions of an hour to hours
on the IBM 360 System Model 44, and that PERFIELD is the
fastest classifier, fo]iowed by LARSYSDC and LARSYSAA in

that order.

4




LIST OF REFERENCES




10.

275

LIST OF REFERENCES

K. S. Fu, D. A. Landgrebe, and T. L. Phillips, "Infor-
mation Processing of Remotely Sensed Agricultural Data,"”
Proc. IEEE, Vol. 57, pp. 639-654, April 1969.

D. A. Landgrebe, "Systems Approach to the Use of Remote
Sensing", LARS Information Note 041571, Purdue University,
Lafayette, Indiana, April, 1971.

T. M. Cover and P. E. Hart, "Nearest Neighbor Pattern
Classification," IEEE Trans. on Information Theory, IT-13,
pp. 21-27, January 1967.

D. W. Peterson, "Some Convergence Properties of a Near-
est Neighbor Decision-Rule,” IEEE Trans. on Information
Theory, Vol. IT-16, pp. 26-31, January 1970.

T. M. Cover, "Rates of Convergence for Nearest Neighbor
Classification,”" Proc. 1st Ann. Hawaii Conf. on Systems
Theory, January 1968.

E. A. Patrick, and F. P.  Fischer II, "K-Nearest Neighbor
Rules," School of Electrical Eng1neer1ng, Purdue
University, Lafayette Indiana, Tech. Report TR-EE10-34.

E. Fix and J. L. Hodges, Jr., "Discriminatory Analysis,
Nonparametric Discrimination: Consistency Properties,
"USAF School of Aviation Medicine, Randolph Field,
Texas, Project No. 21-49-004, Report No. 4, February,

1951.

F. Rosenblatt, Principles of Neurodynamics, Perceptions
and the: Theory of Brain Mechan1sms, Spartan Books,
Washington, D.C., 1962.

P. Wh1tt1e,-“0n the Smoothing of Probab111ty Density
Functions," J. Roy. Statist. Soc. Ser. V, Vol. 20,
pp. 334-343, 1968. -

E. Parzen, "On Estimation of Probabi]ity'Densfty Function
and Mode," Ann. Math. Stat., Vol. 33, pp. 1065-1076,
1962. - _




1.
12,
13.
'j4.
15.

16.

17.
18.
19.
20.
21.

22.

23.

276

T. Cacoullos, "Estimation of a Multivariate Density,"
Ann. Inst. Stat. Math. (Tokyo), Vol. 18, No. 2, pp. 179-
189, 1966. :

Z. W. Birbaum, "Distribution Free Tests of Fit for Con-
tinuous Distribution Functions," Ann. Math. Stat., Vol.
24, pp. 1-8, 1953. :

E. Samuel and R. Bachi, "Measures of Distances of
Distribution Functions and Some Applications," Metron,
Vol. 23, pp. 83-122, December 1964.

E. L. Lehmahn, "Significance Level and Power," Ann.
Math. Stat., Vol. 29, pp. 1167-1176, December 1958.

H. Cramér; "On the Composition of Elementary Erros,"
Skand. Aktuarietids, Vol. 11, pp. 13-74 and 141-180,
1928. :

" R. Von Mises, "Wahrscheinlichkeitsrechnung," Leipzig-
Wien, 1931.

D. A. Darling, "The Kolmogorov-Smirnov, Cramer-Von Mises .
Tests," Ann. Math. Stat., Vol. 28, pp. 823-838, December

'1957.

W. Sahler, "A Survey on Distribution-Free Stat1st1cs
Based on Distances Between Distribution Funct1ons,
Metrika, Vol. 13, pp. 149 169, 1968.

A. N. Kolmogorov, “Su11a Determinazione Empirica Di

"Une Legge Di Distribuzione," Giorn, dell'Insit. degli

att., Vol. 4, pp. 83-91, 1933.

N. V. Smirnov, "On the Estimation of the Discrepancy
Between Empirical Curves of Distribution for Two
Independent Samples," Bull. Math. Univ. Moscow, Vol.
2, pp. 3-14, 1939.

H. Jeffreys, "An Invariant for the Prior Probability in
Estimation Problems," Proc. Roy. Soc. A., Vol. 186,
pp. 454-461, 1946.

H. Jeffreys, "Theory of Probability," Oxford University
Press, 1948.

T. Kailath, "The Divergence and Bhattacharyya Distance
Measures in Signal Selection,"” IEEE Trans. on Comm.
Tech., Vol. COM-15, pp. 52-60, February, 1967.




24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

277

A. Bhattacharyya, "On a Measure of Divergence Between
Two Statistical Populations Defined by Their Proba-
bility Distributions,” Bull. Calcutta Math. Soc., Vol.
35, pp. 99-109, 1943.

K. Matusita, "On the Theory of Statistical Decision
Functions," Ann Instit. Stat. Math. (Tokyo), Vol. 3,
pp. 17-35, 1951,

B. P. Adhikari and D. D. Joshi, "Distance Discrimin-
ation et Resume Exhaustif," Pbls, Inst. Stat., Vol. 5,
pp. 57-74, 1956.

C. H. Kraft, "Some Conditions for Consistency and Uniform
Consistency of Statistical Procedures," University of
California Publications in Statistics, 1955.

S. Kullback and R. A. Leibler, "On Information and
Sufficiency," Ann. Math. Stat., Vol. 22, pp. 79-86,
1951.

P. H. Swain and K. S. Fu, “Nonparametric and Linguistic
Approaches to Pattern Recognition," LARS Information
Note 051970, Purdue University, Lafayette, Indiana. June
1970. ‘

‘P. C. Mahalanobis, "Analysis of Race Mixture in Bengal,"

J. Asiat. Soc. (India), Vol. 23, pp. 301-310, 1925.

P. C. Mahalonobis, "On the Generalized Distance 1in
Statistics," Proc. Nat'l. Inst. Sci. (India), Vol. 12,
pp. 49-55, 1936. _

J. Keifer and J. Wolfowitz, "Consistency of the Maximum
Likelihood Estimator in the Presence of Infinitely Many
Incidental Parameters," Ann. Math. Stat., Vol. 27, pp.
887-906, 1956.

K. S. Fu and P. J. Min, "On Feéture Selection in Multi-
class Pattern Recognition," Tech. Report TR-EE68-17,
Purdue University, Lafayette, Indiana, July 1968.

S. Karlin and R. N. Bradt, "On the Design and Comparison
of Dichotomous Experiments," Ann. Math. Stat., Vol. 27,

'pp. 390-409, 1956.

S. M. Ali and S. D. Sivey, "A General Class of Coeffi-
cients of Divergence of one Distribution From Another,"
J. Roy. Stat. Soc., Ser. B, Vol. 28 pp. 131-142, 1966.




36.

37.

38.
39.
40,

- 41.

42.
43.

a4,

45,
46.
47.

48.

278

D. G. Lainiotis, "On a General Relationship Between
Estimation, Detection, and the Bhattacharyya Coefficient,"
IEEE Trans. on Information Theory, Vol. IT-15, pp. 504-
505, July 1969.

C. Stein, "Approximations of Improper Prior Measures by
Prior Probability Measures," Dept. of Statistics,
Stanford University, Stanford, California, Tech. Report
12, 1964.

K. Matusita, "On the Theofy of Statistical Decision
Functions," Ann. Inst. Stat. Math. (Tokyo), Vol. 3, pp.
17-35, 1951. - .

K. Matusita, "On Estimation by the Minimum Distance
Method," Ann. Inst. Stat. Math. (Tokyo), Vol. 5, pp.
59-65, 1954,

K. Matusita, Y. Suzuki, and H. Hudimoto, "On Testing
Statistical Hypothesis," Ann. Inst. Stat. Math. (Tokyo),
Vol. 6, pp. 133-141, 1954,

K. Matusita and H. Akaike, "Decision Rules Based on the
Distance for the Problems of Independence Invariance and
Two Samples," Ann. Inst. Stat. Math., Vol. 7, pp. 67-80,

~1956.

K. Matusita and M. Motoo, "On the Fundamental Theorem for
the Decision Rule Based on Distance || ||," Ann. Inst.
Stat. Math., Vol. 7, pp. 137-142, 1956.

K. Matusita, "Decision Rule Based on the Distance for
the Classification Problem," Ann. Inst. Stat. Math.
(Tokyo), Vol. 8, pp. 67-70, 1956.

K. Matusita, "Distance and Decision Rules," Ann. Inst.
Math. (Tokyo), Vol. 16, pp. 305-315, 1964.

K. Matusita, "Classification Based on Distance in Multi-
variate Gaussian Case," Proc. 5th Berkeley Symposium on
Math. Stat. and Prob., Vol. 1, pp. 299-304, 1967.

J. Wolfowitz, "Consistent Estimations of the Parameters
in a Linear Structural Relationship," Skand. Aktuarietids,
pp. 132-151, 1952,

'J. Wolfowitz, "Estimation by the Minimum Distance Method,"

Ann. Inst. Stat. Math. (Tokyo), Vol. 5, -p. 9-23,
1953. '

J. Wolfowitz, "Estimation by the Minimum Distance Method
in Nonparametric Difference Equations," Ann. Math. Stat.,
Vol. 25, pp. 203-217, 1954.



49.

50.

51.

52.

'53.

54.

55.

56.

57.

58.

59.

60.

279

J. Wolfowitz, "The Minimum Distance Method," Ann. Math.
Stat, Vol. 28, pp. 75-88, 1957.

S. Das_Gupta, "Nonparametric Classification Rules,"
Sankhya, Indian Jour. of Stat., Series A, Vol. 26, pp.
4-30, 1964. .

T. Cacoullos, "Comparing Mahalanobis Distance I:
Comparing Distances between k Known Populations and
Another Unknown," Sankhya, Indian Jour. Stat., Series A,
Vol. 27, pp. 1-22, March 1965.

T. Cacoullos, "Comparing Mahalanobis Distances II: Bayes
Procedures When the Mean Vector are Unknown," Sankhya,
Indian Jour. Stat., Series A, Vol. 27, pp. 23-32, .
March 1965.

M. S. Srivastava, "Combaring Distances Between Multi-
variate Populations - The Problem of Minimum Distance,"
Ann. Math. Stat., Vol. 38, pp. 550-556, April 1967.

W. Hoeffding and J. Wolfowitz, "Distinguisability of
Sets of Distributions," Ann. Math. Stat., Vol. 29, pp.
700-718, September 1958.

Blackwell, "Comparison of Experiments," Proc. 2nd
Berkeley Symposium on Probability and Statistics,
Berkeley, California, University of California Press,
Vol. 1, pp. 93-102, 1951.

S. E. Estes, "Measurement Selection for Linear Discrim-
inants Used in Pattern Classification," IBM Corporation,
San Jose, Calif., Research Report RJ-331, April 1956.

D. C. Allias, "The Selection of Measurements for Pre-
diction," Stanford Electronics Lab., Stanford, Calif.,
Tech. Report 6103-9, November 1964,

G. F. Hughes, "On the Mean Accuracy of Statistical
Pattern Recognizers," IEEE Trans. Inform. Theory, Vol.
1T-14, pp. 55-63, Jan. 1968. :

K. Abend, T. J. Harley, Jr., B. Chandrasekaran, and G.F.
Hughes, "Comments on 'On the Mean Accuracy of Statistical
Pattern Recognizers'", IEEE Trans, Inform. Theory,

Vol. iT-15, pp. 420-423, May 1969.

L, Kanal and B. Chandrasekaran, "On Dimensionality and
Sample Size in Statistical Pattern Classification,"
Proc. 1968 Nat. Electronics Conf., pp. 2-7.




61.

62.

63.

64.

65.

66 .

67.

68.

69.

70.

71.

72.

73.

280

T. w.'Anderson, "An Introduction to Multivariate Sta-
tistical Analysis," John Wiley & Sons, 1957.

R. A. Holmes and R. B. MacDonald, "The Physical Basis of
System Design for Remote Sensing in Agriculture,"
Proc. IEEE, Vol. 57, pp. 629-639, April 1969.

"Remote Multispectral Sensing in Agriculture," Vol. 3
(Annual Reportg, Laboratory for Agricultural Remote
Sensing, Purdue University, Lafayette, Indiana, 1968.

D. A. Landgrebe and LARS Staff, "LARSYSAA, A Processing
System for Airborne Earth Resources Data," LARS Infor-
mation Note 091968, Purdue University, Lafayette, Indiana
September 1968, :

K. S. Fu, "Sequential Methods in Pattern Recognition and
Machine Learning," New York Academic Press, 1968,

.P. H. Swain, T. V. Robertson, and A. G. Wacker, "Compar-
~ison of the Divergence and B-Distance in Feature

Selection," LARS Information Note 020871, Purdue Uni-

“versity, Lafayette, Indiana, February 1971.

T. Huang, "Per Field Classifier for Agricultural Appli-
cations," LARS Information Note 060569, Purdue University,

Lafayette, Indiana, June 1969.

G. H. Ball and D. J. Hall, "ISODATA, A Novel Method of
Data Analysis and Pattern Classification Stanford
Research Institute, Melno Park, Calif., pp. 1-16.

A. G. Wacker and D. A. Landgrebe, "Boundaries in Multi-
spectral Imagery by Clustering," 1970 IEEE Symposium on
Adaptive Processes (9th) Decision and Control, pp. X14.1-
X14.8, December 1970.

G. H. Ball, "Data Analysis in the Social Sciences: What
About the Details," IEEE Proc. Fall Joint Comp. Conf.,
pp. 533-559. ‘

F. J. Rohlf, "Adaptive Hierarchical Clustering Schemes,"”
Systematic Zoology, Vol. 19, No. 1, pp. 58-82, March
1970.

P. Reddy, P. A. Wintz and D. A. Landgrebe, "A Linear
Transformation for Data Compression and Feature Selection
in Multispectral Imagery" LARS Information Note 072071,
Purdue University, Lafayette, Indiana, July 1971.

E. G. Henrichon, "On Nonparametric Methods for Pattern
Recognition," Ph.D. Thesis, Purdue University, Lafayette,
Indiana, 1969.




APPENDICES



281

Appendix A

Some Results on the Swain-Fu Distance

A.1 Alternate Form of Swain-Fu Distance
For distribution F(]) and F(z) with means E(]) and
E(Z),and nonsingular covariances Z(]) and 2(2) the Swain-Fu

distance is given by29

- uf
T: A.]]
D-l + D2
where ‘
. (M - w082 et (zlk)) (qv2) RPZ I S
KT ) (1) (2),y, (1), (2), o
izl jzl(zij Yy 7= wy )(uj -y )
and Z(k) ijs the ijth cofactor of Z(k) k = 1,2. Since det

iJ _ ‘
(Z(k))#o dividing numerator and denominator by this quantity
we can show by direct expansion that an alternate form of Dk
is

1 (2) 2
D, - {lﬂ( ' -y | (a+2) P2 22

k)
Adj (= g (1)_ (2)y,,(1)_ (2),t
tr{ - . - }
r det (0K (p u )'(u .u‘ )

where Adj (z'%)) is the adjoint of (k) and tr is the trace.

From the definition of the adjoint A.1.3 can alsolbe written

as '
(1) _ (2),°

lu' - g (a+2)

1/2 |
D, = } A.1.4
k {tr{(z(ky)-1(E(1)_E(2))(E(1)_E(?7)t}




(1)

Note that D, is indeterminant if p and g(Z)‘are equal.

The reason for this is that the direction of the line

(1) (k)

joining u and R(Z) is not defined. The distance from p

to the ellipsoid of concentration is, however, not zero

)

: regardless'of the direction, since Z(k is not singular,
Consequently, from A.1.1 the Swain-Fu distance between classes

with equal means is zero} Consequently, we can write

= (1) _  (2)
T =0 -
| : - A.1.5
NN 1 2
T = -c] "2 (q+2)-]/2 ﬁ( : 7 E( )
/eqtv/e,
~where c; = ez T (2 ( (1, (2)) Y

From A.1.5 it follows that T is invariate under linear trans-
format{ons because the trace is invariate under linear trans-
formations. Note also that <y and c, are positive by virtue

. of the fact that D] and-D2 are positive when LJ_(]) # 3(2),

A.2 Upper Bound on SF Distance for Given Divergence

We derive an expression for the upper bound on the SF
distance for a given Divergence. We need only consider the
case where the means are not equal, since otherwise regardless
of the divergence the SF. distance is zerp; which is cer-

tainly not the upper bound. From A.1.5 we can write

(q + 2)1'2 = ]_? - A.2.1
C : A
where . C2 =1 42 + 1

—
no
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Now since the geometric mean of two positive numbers is less

than or equal to their arithmetic mean, it follows that

c c '
R S A B ' A.2.

(cytc,)C

1 72 q sy
Direct minimization of the right hand side of A.2.2 with
respect to cz/c] yields

2 8 - | |
C™ > ——0—: A.2.
Combining A.2.3 and A.2.1 we have
€17¢2

(q+2)T%< 3

But from the definition of c], s and Divergence

¢ + e, =20 - ez @)1 LUyl e,

< 23, B A2,

where the last inequality follows because the tr {-} 1is
greafer than or eqUa] to zero; lfhis ﬁs readily seen by con-
sidering diagonal covariance matrices, which by virtue of
the invariance of the trace .under 1inear'transformatiohs is
equivalent to the general .case. Finally combining A.2.5 and

A.2.4 we have

. J - : o
T < frtevny . R - A2
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Appendix B

Miscellaneous Result Pertaining to the Separability Measure R )

B.1 Expécted Value of D¥
By definition
3 124172 | |
CB* = (z (X% - Y%)°) B.1.1
-1 -

where X*, Y* 4 N(E“,ozi).' Let

then

q*?2 | - 8.1.3
1 |

[eo)

1]
Mo
L
S

o W
‘
<
*
g
N
1]
n Mo

J

2,

), therefore dg o N(O,Zoz)

Now Xg’m N(y“,oz) and ¥; v N{ut,o
and d}/(/?d) v N(0,1). Furthermore, the d;~are independent
since X* and Y* are independent vectors. Consequently
7= D*/(ZOZ) is the sum of the square of q independent
N{(0,1) random variables and- consequently has the Chi-Squére

distribution with q degrees of-freadom. Now

E(D*) = YZoE(VZ) B.1.4

V2o [T ———— 2 &P g
0 ri{qr2)2
This be direct computation yields
B LA
E(D*) = 20— * B.1.5
r (3 | |
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B.2 Expected Value of D**

By definition

Dx* = ( (X§£ - YE*)Z)]/Z B.2.1
. 4

J

™Mo

where X** o, N(Q,ozl) and Y** o N(-Q,ozl). Let

*k = Yk*x _ Y% | _ B.2.2
dJ XJ YJ‘ »
then
q 4 ‘
D**2 = 3 (X**-Y**)z = 3 df*z B.2.3
J‘='l J \] j:] \]

Now X}* n N(p,02) and Yy WN(-u,02), therefore dr+ N(2u,202)

and d}*/(/?b) ~ N(2u,1). Furthermore the d}* are independent

since X** and !** are 1ndependen£ vectors. Therefore Z = D**Z/

(202) is the sum of q independent N(2p,1) variables and con-
sequently has the Noncentral Chi-Square distribution with
parameters q and 2qu2/o2 = (S/fZ‘)2 (i.e., NCXZ(q,(S//?)Z)
with pdf. | | |
'%(5/2)2 1 2 r |
e . T (S /4) fq+2r(?) : o B.2.4

o8

f(z) =
r

where fq+2r(z) is the Chi-Squafe.dénsity with.qur degrees

of freedom. This can be put in a more convenient form
- , -g(sP2z) 5 pe-2)
f(z) = 5 e (2z2/57) I (svz/2) .~ B.2.5
2 : 1 1 _
: AN .

where Iv(x) is the modified Bessels function'
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o0 » +2r
_ (x/2)"
Iv(x) = L YTr(vFTEr) B.2.6
r=0
Now
E(D**) = /20E(VZ) B.2.7
1,02 1
o 1 -p(S°+2z) (9-2) -
N A TesHT T (svEvE) ez
Usihg integral tables this yields
+1 ' :
I ( ) 2 :
E(D**) = 20 —-EZ:F e (87207 o2t 4, (s5/2)%) - B.2.8
() |
B.3 Limiting Form of R(S,q)
From Eq . 3.2.3.3 R(S,q) is given by
. o0 : n
_ 1 2 n+1 1.3.5 ...(2n-3)q
1 G L CE ) RN Ca L AL
(54/72)%" - B.3.1

Since this is a power series in (Sd/2)2, the limit of the
sum as the dimensionality approaches infinity, is the sum of

the 1imits and hence

‘ B.3.2
n+l ,

(N85, (2023) (o0

2 .

Timit R(S,q) = 1 + %7-(Sd/2)2 vz
. q+oo . ' * n=

Let the nth term in B.3.2 be tn; Then since B.3.2 is an

alternating series it converges only if

limitft |= 0 | ' B.3.3

n—+»oo
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But

N-co n-co n!

limit ]tn] limit 1.3.5...(2n-3),(sd/2)2n

_ limit (n)(n+1)(2n)! l(s

imit (n)tn+], /2)%" .34
n- Zn.'(Zn)(Zn-l)(Zn-Z)n!n!

d

Using Stirlings factorial formula for large N

imit [t | Timit vZnm (2n/e)?" (s./2)2 B 35
N->oo n->o n Z2n d’- . T
2"(2n-1) 2nm(n/e)
Timit ] 2n
T now (Sd/z)

2"(2n-1) /01

This 1imit is zero only if S4 < V2.




'Page"Intentiona!ly Left Blang

s — 295 3 2.
A- EVdices C,
preeesc
E‘

{ 4

/¢



Appendices C, Description of Test and Training Field Decks:
B, Control Card Lanquaqe; and E, Program Descriptions have been ‘
omitted in this printing to conserve space. They may be purchased,
beginning February, 1972 from University Microfilms, 300 N. Zeeb
Road, Ann Arbor, Michigan 48106.




| Appendix.F

fBOUND?fA'BbgndaryJTracing_Program"

The principle upon which the progfam BOUND is
baséd is clustering in the observation space. The scene
under 1nvestigatfon is partitioned into square regions called
"Boundary Ce]is" such that the union of the Boundary Cells is
the whole scéne (except for the narrow border). Each Boun-
dary Cell consists of a square array of image resolution
elements (IRE's). Boundaries are found seperately for each
Boundary Cell and the union éf these boundaries constitutes
the bound&ries for the scene. |

‘To locate the boundaries for a given Boundary Cell
a clustering algorithm is used to effect a nonsupervised
classification of the vectors that originate from IRE's in
an area slightly larger (to provide some overlap) than a
Boundary Cell. This results in a spatial "Clustered Array"
in which each IRE is represented by the group number (i.e.,
class number) to which it has been assigned. The "Clustered
Array" is scanned in both directions and a boundary is
assumed to exist whenever k (user specified) or more IRE's
on each side of the boundary belong to a different class.’
This definition of a boundary provides for some spatial
smoothing buf necessitates the overlap énd narrow border

mentioned above.
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Experimentally it is found that for-the 12 to 13
‘channel multispectral scanner data presently available, a
reasonable comprdmiée be;ween'performance and computation
time is achieved by using 3 or 4 channels of data, a Boun-
dary Cell size of about 5 x 5 IRE's and by setting k equal
to-two.69 It is probably not coincidental that principal-
component éna]ysis of‘multispectral scanner data suggests
that 3 or 4 principal: components are sufficient to repre-

sent similar data with small mean squared error.72
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