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FOREWORD

Auburn Research Foundation submitted a proposal which resulted

in Contract NAS8-28262 being awarded on March 16, 1972. The contract

was awarded to the Auburn University Engineering Experiment Station

by the George C. Marshall Space Flight Center, National Aeronautics

& Space Administration, Huntsville, Alabama, and was active until

June 15, 1973.

This report is the final technical report of the work accomplished

by the Electrical Engineering Department, Auburn University, in the

performance of the contract.
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SUMMARY

This report contains the results of research into the effects on

system operation of signal quantization in a digital control system.

The investigation considered digital controllers (filters) operating

in floating-point arithmetic in either open-loop or closed-loop systems.

An error analysis technique is developed, and is implemented by a digital

computer program that is based on a digital simulation of the system.

As an output the program gives the programing form required for minimum

system quantization errors (either maximum or rms errors), and the maximum

and rms errors that appear in the system output for a given bit config-

uration. The program can be integrated into existing digital simulations

of a system.
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I. INTRODUCTION

The introduction of a digital controller (filter) into a continuous

data system presents problems to the design engineer that do not exist

with the use of analog controllers. A major problem in the design of

digital control systems is the determination of the effects, on system

performance, of signal quantization within the digital controller. This

report presents the results of an investigation into the determination of

the quantization errors, for filters using floating-point arithmetic,

and the development of design techniques to minimize these errors.

Throughout this report the terms digital filter and digital controller

will be used interchangeably.

A problem in the implementation of a digital filter is the choice

of the programing form (method of programing) used to realize the filter.

Generally the use of different programing forms leads to different system

error magnitudes, caused by signal quantization within the digital filter.

A considerable amount of research has been published on this topic [See

References and Bibliography]. In [2], a technique was reported for

choosing programing forms for filters using fixed-point arithmetic.

This report presents a technique for choosing programing forms for

filters using floating-point arithmetic. The research listed in the

References and Bibliography is concerned generally with digital filters

in an open-loop configuration. The error analysis techniques require
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the use of transfer functions, which is not a problem for low-order

open-loop filters. However, for high-order digital control systems,

the development of the required transfer functions can be a major

undertaking. The technique developed in this report is based on a

digital simulation of the closed-loop system, and thus the pulse

transfer function of the continuous parts of the system are not required.
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II. FLOATING-POINT ARITHMETIC

In this chapter quantization errors that result from arithmetic

performed in a floating-point format in digital devices are investigated.

In Chapter III, the results will be applied to the analysis of digital

control systems to determine system errors resulting from the quantization.

Floating-Point Format

In floating-point arithmetic [1], a number xm is represented as

the product of two terms,

xm = E*F (2-1)

where a part of the bit configuration of the computer word is used to

represent E, and the remainder to represent F. The term E is the

exponent and is of the form 2Y for a base 2 computer, 16Y for a base

16 computer, etc., where y is a signed integer. The bit configuration

for E yields the value of y. The term F is the fraction, and is normally

set such that

1/2 < F < 1, (2-2)

for a base 2 computer. If the base of the computer is 2
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1/2 k < F < 1 (2-3)

The number zero is a special representation. The bit configuration

for F yields F directly, where the first bit in F represents 1/2, the

second bit 1/4, etc.

Let s be the number of bits assigned to the exponent, and t the

number assigned to the fraction (excluding the sign bit for the

fraction). Also let

s+ t=n

Thus there is a total of n + 1 bits in the computer word configuration,

with the additional bit used to give the sign of the number represented.

The maximum magnitude of the exponent for a base 2 computer is

Em = 2 s l] (2-4)

and, for a base 2k computer, is

Em = 2k[2 (s-(2-5)

The factor (s-1) appears since one bit of s must be used to give the

sign of the exponent. The maximum magnitude of the fraction, F, is
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F = 1 - 1/2t  (2-6)m

Thus the maximum magnitude that can be represented by the n bits is

Mf = 2k[2(s--1] -1/2t .2k[2(s
- )- 1] (2-7)

for a base 2kcomputer. Table 2-1 lists the numbers that can be

represented in a base 2 computer by a bit configuration with n equal

to five. In this configuration, s is equal to three, and is the first

three bits. Then t is two, and F is represented by the last two bits.

If F satisfies (2-2), the fourth bit from the left in the configuration

is always 1. These values are indicated by an asterisk. The bit

representation for zero is also shown by an asterisk. The truncation

quantization characteristic is shown in Figure 2-1 for this case.

Quantization Errors

The characteristics of the quantization errors will be determined

in this section [3]. Let xm be the floating-point machine representation

of x. Then

xm = [x] = 2ky.F, (2-8)

where Qfe['] indicates the floating-point representation

(which is quantized) of the number. Suppose that truncation, as shown
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TABLE 2-1
EXAMPLE OF QUANTIZATION

bit floating-point

configuration number

11111 6*
11110 4*
11101 2
11100 0
11011 3*
11010 2*
11001 1
11000 0

10111 3/2*
10110 2/2*
10101 1/2
10100 0
10011 3/4*
10010 2/4*
10001 1/4
10000 0

01111 3/32*
01110 2/32*
01101 1/32
01100 0
01011 3/16*
01010 2/16*
01001 1/16
01000 0

00111 3/8*
00110 2/8*
00101 1/8
00100 0
00011 3/4*
00010 2/4*
00001 1/4
00000 0*
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output

6

5

4

3

1 1/2

1

1/2

i I I I I I I I I

1/2 1 1 1/2 2 3 4 5 6 input

Figure 2-1. Truncation quantization for floating-point arithmetic.
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in Figure 2-1, is used in quantizing x. Then the maximum magnitude of

the quantization error is seen to be

em = 2 ky( 1/2t) (2-9)

and this error is always negative. For roundoff quantization, the

maximum error is one-half that of (2-9). Then, from (2-8) and (2-9),

em = xm '2- t/F (2-10)

Thus the quantization error is maximum if F is minimum. For a base

2 computer, from (2-2),

em = xm'2-(t-1) (2-11)

For a base 16 computer,

em = xm'2-(t-4) (2-12)

Thus for a base 2k computer, where

1/2k < F < 1, (2-13)

then
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em = x*m2-(t-k) (2-14)

For round-off quantization, the maximum error is one-half that given

in (2-14). It is necessary that x and xm be approximately equal, or

else all calculations are meaningless. Thus xm may be replaced with

x in (2-14), with very little resulting error. Thus

em .= x 2-(t-k) (2-15)

In general, the error introduced by truncation quantization is

e = 2kYI ; B < 1/2t  (2-16)

as is seen from Figure 2.1. Thus, from (2-8),

e = xm'B/F = xm* 6  (2-17)

where

6 < 2-(t-k) (2-18)

for truncation, and

-2 - (t - k+l) < 6 < 2 -(t-k + l )  (2-19)
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for round-off. Generally in this type of analysis, it is assummed that

all errors in the ranges given by (2-18) and (2-19) are equally likely

to occur. This approach was first taken in this investigation, but the

results were grossly in error when compared to actual errors obtained

from simulation. Thus it was found to be necessary to use a more accurate

representation. For floating-point quantization, the probability density

functions for round-off and for truncation are given in Figure 2-2 [3].

These density functions will be used in the analysis developed in

Chapter III.

Signal quantization errors occur during four operations in a digital

filter. These four operations are: (1) analog-to-digital conversion,

(2) digital-to-analog conversion, (3) multiplication, and (4) addition.

The errors in (1) and (2) are described above. For multiplication and

addition [1],

Qf ~xy] = (xy)(1 + 6), (2-20)

and

QfZ[x + y] = (x + y)(l + 6), (2-21)

where 6 is given by (2-18) and (2-19). However, care must be exercised

[3] in the utilization of (2-21). Consider the addition of two numbers

in base 10, with the numbers limited to three decimal places.
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.115 x 103 .115 x 102

.173 x 103 .173 x 103

.288 x 103 .184:5 x 103

In the first case, with the exponents equal, these is no error in the

addition. In the second case, with the exponents unequal, there is

a quantization error. Thus, in a digital filter, if the exponents of

the numbers being added are equal, there will probably be no error in

the addition. If the exponents are unequal, the density functions for

the errors are given in Figure 2-2.

f (6) f (6)

6m -6m/2 6m -6m/2k 6m/2k 6m 6

(a) Truncation (b) Round-off

Figure 2-2. Probability density function for 6.
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III. SYSTEM ERROR ANALYSIS

In this chapter, the error models derived in Chapter II will be

utilized to develop a technique for determining system errors due to

quantization in a digital control system. The technique will be

implemented using a computer simulation of the control system.

System Errors

It was shown in Chapter II that the quantized representation of a

number in floating-point format can be written as

Qft(x) = x(l + 6) (3-1)

or

x = Qff(x) - x6 (3-2)

Thus the quantization operation may be modeled as shown in Figure 3-1.

x6

SQf (x)
x

Figure 3-1. Model of floating-point quantization.
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Consider now an otherwise linear discrete system that contains a

single quantizer. Let the

r(k (k)
system 

System

;k Q[ ]x(k) Q [x(k)]
x( k) Qfklx(k)]

x(k)6
k

(a) (b)

Figure 3-2. Discrete system containing quantization.

system be represented as shown in Figure 3-2. The system (b) of

Figure 3-2 can be considered to be linear if the sequence x(k)6k,

the error at the kth sampling instant, is determined in advance. The

output y(k) then can be expressed as

y(k) = Yr(k) + yq(k), (3-3)

where yr(k) is the response from the input r(k), and yq(k) is the

response from x(k)6k. Thus yq(k) is the error in the output due to the

quantization. Let G(z) be the transfer function from r(k) to x(k).

Then

X(z) = R(z)G(z) = x(O) + x(l)z-1 + ... (3-4)

13



Let

X (z ) = 80 x(0) + s61(1)z-1 + 62x(2)z - 2 + ... , (3-5)

Also let H(z) be the transfer function from the error source x(k)6k to

the output y(k). Then

Yq(z) = H(z) XS(z)

= 60 x(O)H(z) + 6 1x(l)z-1H(z) + 62x(2)z-2R(z) + ... (3-6)

At the kth sampling instant,

yq(k) = 60 x(0)h(k) + 61x(1)h(k-1) + ... + 6kx(k)h(O), (3-7)

where {h(k)} is the impulse response from the error source to the output,

given by

H(z) = h(O) + h(l)z-1 + h(2)z - 2 + ... (3-8)

Assume that the quantization is round-off. Then 6i is given by (2-19),

which is repeated as (3-9) below.

-2 - (t-k+1) < 6 < 2 -(t-k+1) (3-9)
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Thus it is seen from (3-7) that the maximum magnitude of the error in the

output is given by

IYqmax(k) = 6max[x(O)h(k)I + Ix(l)h(k-1) + .. + x(k)h(O) ],

(3-10)

where

6 max = 2-(t-k+l) (3-11)

For a base 2 machine,

max = 2 -t (3-12)

Consider now truncation quantization. For truncation, the error

is alway negative or zero. Thus, in (3-7), each 6i is either negative

or zero. The maximum possible value for yq(k) is obtained from (3-7)

by allowing 61 to assume its maximum magnitude, and first summing all

positive terms, and then summing all negative terms. The maximum

possible magnitude of yq(k) is then the larger of the two sums, in

magnitude. It is seen that larger of the two sums is at least one-half

the sum of (3-10). However, it is to be recalled that 6max for trunca-

tion is twice that for round-off, for a given t and k.
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To determine the mean-square error, consider equation (3-7). The

output Yq (k) can be considered to be the output of a system whose input

is given by

A(z) = 60 + -1 + 62 z -2 + (3-13)

and whose tranfer function is given by

F(z) = h(0)x(k) + h(l)x(k-l)z-l + h(2)x(k-2)z- 2 +

= f(O) + f(1)z-1 + f(2)z - 2 + ... (3-14)

The 6i of (3-13) are assumed to be independent, and to have the density

functions given in Figure 2-2. The following development will be for

both round-off and truncation quantization. Let m I be the expected

1
value of 6i, and m2 be the second moment, i.e.,

E[6i] = m 1 ; E[62] = m 2 ; for all i (3-15)

Consider now (3-7), (3-13), and (3-14). The expected value of the output

error resulting from a single quantizer is

E[yq(k)] = E[6 0 f(O) + 61 f(l) + ... + 6kf(k)]

k
= mI I f(i) (3-16)

i=0

1mi and m2 are derived in Appendix A.
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The mean-square output error is given by

Ey 2 (k)] = E[16 f(0) + 6 f(1) + ... + 6kf(k)} 2 ] (3-17)
q 0 O 1

Thus

E[y2(k)] = E[62]f2(O) + ... + E62 ]f2(k) + 2f(O)f(1)E[6(O)]E[6(1)1

+ 2f(0)f(2)E[6(0)]E[6(2)] + ... + 2f(k-l)f(k)E[6(k-l)]E[6(k)]

(3-18)

Or

k k-I k
E[y2 (k)] = m 2  f2(i) + 2m2  f(i)f(j) (3-19)

i=O i=O j=i+l

But

k-i k k k
2 1 1 f(i)f(j) = [ I f(i)2 _ f 2 (i) (3-20)
i=O j=i+l i=1 i=1

Then (3-19) becomes

k k
Elyq(k)] = f 2 (k)m 2 - m2 ] + f(i) ]2m2 (3-21)

i=O i=l

Consider now the case that n quantization points contribute to the output

error. Let yt(1 be the total error in the output, and let yqi(k) be that

17



part of yt(k) due to the ith quantization point. Then, the mean output

error is

Elyt(k)] = E[Yql(k) + Yq2(k) + ... + Yqn(k)]

= Elyql(k)] + Elyq2 (k)] + ... + Elyqn(k)], (3-22)

where E[yqi(k)] is given by (3-16). The mean-square output error is

given by

Eyt2(k)] = EI{Yql(k) + ... + Yqn(k)} 2 ] = EIYql(k)}2+

+ EL{Yqn(k)} 2 ] + 2 E[Yql(k)]E[yq2(k)] +

+ 2 E[yq(nl) (k) E[Yqn(k)] (3-23)

The terms of (3-23) are given by either (3-21) or (3-16).

Error Calculations by Digital Simulation

Both the maximum error of (3-10) and the mean-square error of (3-21)

can be obtained from digital simulations of the system. First, with the

input of the system of Figure 3-2 equal to the desired input {r(k)} and

all initial condition set of zero, the sequence {x(k)} can be calculated

and stored. Next, with zero input and zero initial conditions, the

impulse response sequence {h(k)} can be obtained by applying are input

60x(0) = 1, and 6ix(i) = 0, i > 0. The system output sequence is then

18



the desired impulse response sequence {h(k)}. The indicated sums of

(3-10) and (3-21) can then be evaluated, yielding the maximum error

and the mean-square error for the system. The total maximum error

is then the sum of the maximum errors from each quantizer, and the total

mean-square error is given by (3-23).

Computer Evaluation of Errors

A computer program has been developed for determining system

quantization errors in a digital control system, with the digital filter

realized by various programing forns. The utilization of this program

will allow the choice of the programing form that will yield the smallest

system error due to quantization. This computer program will be

described in this section.

All programing forms in the computer program realize the transfer

function

D(z) = a2z + alz + aO

z2 + blz + b0

Consider first the canonical programing form, shown in Figure 3-3. It

is assumed that this filter form is connected in a digital control system.

Each point at which quantization occurs is indicated by an X. The input

and output quantization points are omitted, and are considered separately,

since the errors from these points are the same for all programming

forms. Let X2(z) be the signal at quantization point 1 as indicated in

19



Figure 3-3. Further, let Hl(z) be the transfer function from the

error source at quantization point 1 to the system output. Then the

errors resulting from quantization point 1 are obtained using X2(z)

and H1 (z) in (3-10) and (3-21). The errors resulting from quantization

point 2 are obtained using blz-1 X2(z) and -H1 (z) in (3-10) and (3-21).

All necessary signals and transfer functions to determine system errors

from the eight points of quantization are given in Figure 3-3.

The sums indicated in (3-10) and (3-21) are evaluated using the

computer program given in Appendix B of this report. The value of k

in these equations is Nl of the program, and must be given in the main

program. The canonical programing form is simulated in subroutine

FIL2. Three different simulations of the system are required. In the

first simulation (JJ = 1), the sequence {x2(k)} of Figure 3-3 is obtained

and stored. Note that the system input is R, and is a unit step in

this case. In the second simulation (JJ = 2), the impulse response

{hl(k)} is obtained, and Ef(i) and Ef2 (i) are evaluated for quantization

points 1, 2, 3, and 4. In the third simulation (JJ = 3), the impulse

response {h2 (k)} is obtained, and the required sums are evaluated for

quantization points 5,6,7and 8

The quantization error at any point is assumed to be statistically

independent of that at any other point. Thus the maximum system error

for the filter form is the sum of the maximum system errors for each

quantization point, and the mean-square system error is given by (3-23).

The total system errors are evaluated using these relationships. The

20



X

6 4

signal at transfer function
error point error point to output

3 X2(z) Hl(z)

4 blz-1X2(z) -H1(Z )

5 b0z-2X2(z) -H1 (z)

6 (blz-1 +b 0 z-2)X2 (z) -H (z)

7 a2X2(z) H2(z)

8 alz- 1X2 (z) H (z)
-22

9 a0z- X2(z) H2(z)

-110 (a +a z )X2(z) H (z)
21 2

Figure 3-3. Canonical form.
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program prints out the maximum error and the root-mean-square error

for each filter form with each divided by 6max of (3-10) and (3-19).

Since no errors occur in multiplication if a signal is multiplied by

a coefficient equal to unity, logic is included in the program to zero

the multiplication errors for this case. To obtain the errors for a

given system, the results of the computer program must be multiplied

by 6max*

Consider now the modified canonical programing form. This form

is shown in Figure 3-4, and is realized as subroutine FlLl in the com-

puter program. This form is also used in determining the errors from

both input and output quantization. For this programing form the

sequences {X2(k)} and {EI(k)} are calculated and stored for JJ = 1.

For JJ = 2, the impulse response from X2 to the system output is

obtained. For JJ = 3, the impulse response from the filter output is

obtained; and for JJ = 4, the impulse response from the filter input

is obtained. These responses are used in the manner indicated in

Figure 3-4 to calculate system errors.

All filter forms consider are listed in Table 3-1. It is noted

that the direct form gives the same system errors as does the canonical

form 14], and thus is not considered separately. The parallel form can

realize filters containing only real poles, and the XI and XII, forms

can realize filters containing only complex poles. Logic is included

in the program to insure that these forms are considered only at the

appropriate times.
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7 +10

X1 X a (z)El + FT1

X2

bl bo

6 
4

signal at transfer function
error point error point to output

3 X2(z) H 1 (z)

4 bz-1X2(z) -H1(z)

5 b -2X2(z) -H1 (z)

6 4 + 5 -H1(z)

7 a2EI(z) H2 (z)

8 (al-bla2) -
1 X2(z) H2 (z)

9 (a0-boa2 ) 2-2X2 (z) H2 (z)

10 7 + 8 H2 (z)

2 9 + 10 H2(z)

1 EI(z) H3 (z)

Figure 3-4. Modified canonical form
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TABLE 3-1

FILTER FORMS

filter form Figure Subroutine

modified canonical 3-4 FILi

canonical 3-3 FlL2

modified direct 3-5 FlL3

direct errors same as canonical

modified standard 3-6 FlL4

standard 3-7 FIL5

parallel 3-8 FlL6

XI 3-9 FlL7

XII 3-10 FlL8
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EI EO

o T C T -

signal at transfer function

error point error point to output

3 X2 () H1 (z)

4 blX2(z) -z'IH1 (z)

-1 -1
5 b0z.I X2(z) -z HI)

-1
6 4 + 5 -z- HI(z)

7 a2EI(z) H1(Z)

10 7+8 H (Z)

11 9 + 10 H1(z)

Figure 3-5. Modified direct form.
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El
O

2

4 X1 7 XO 8
+ X3 + + EO

T T

X2 6 11 9

10

signal at transfer function
error point error point to output

3 X2(z) H1(Z )

4 a0EI(z) H1 (z)

5 bo0 z - [X3(z)+alEI(z)]+a 2 EI(z)} -H 1 (Z)

6 X3(Z) H2(z )

7 alEI(z) H2 ()

8 a 2 EI(z) z-1H2(2)

9 z- [X3(z) + a-EI(z)] + a 2 EI(z) z H2 (Z)

10 bl{z-1[X3(z) + alEI(z)] + a 2 EI(z)} -H 2 (Z)

11 6 + 7 H2(z)

Figure 3-6. Modified standard form.
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El

a-a b0-bl(al-a2b l) -a b, a2

5 8 10
+ X1 X3 + EO

T T

3 X2 9 X4

6

signal at transfer function

error point error point to output

3 X2 ( z) H1()

4 bl z - X 2(Z) -H 1 (z)

5 [ao-a 2b0-bl(a l -a2bI)]EI(s) H1 (z)

6 bo[(a - a2bl)z-,EI(z) + z-2X 2(z)] -H(

7 4 + 6 -H( )

8 (al-a 2 bl)EI() H2 (z)
-1

9 z-X2(z) + (al-a 2bl )EI(z) H2 (z)

10 a2EI(z) H3 (z)

Figure 3-7. Standard form.
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10

E0 + EO

E 4 i + +

3 -1

8 X14 X + ,9

+ 5 7 X3 X2

82 T

6 8

signal at transfer function

error point error point to output

3 glEI(z) H1(Z)

4 X1(r) H1(z)

5 plz-lxl(s) -H I (z)

6 g2EI(k) H2(z)

7 X3(z) H2 (z)
-1

8 p2 za' X3(z) -H 2 (Z)

9 t-1Xl(z) + z-iX3(z) H3(s)

10 a2EI(E) H3 ()

Figure 3-8. Parallel form.
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2X

13

signal at transfer function
error point error point to output

3 X(z) H (z)

4 p3 z-z1l(z) -H1 (z)

5 2g 3 EI(z) H (z)

13

6 P4 z-1 X3(( z) -H1 (Z)

2

8 x3(,) H (z)

10 2g4 EI(Z )  H2(z )

11 P4 z-1 Xl(z) H2(z)

12 10 + 11 H2(Z )

13 a2EI(Z )  H3(Z )

Figure 3-9. XI form.
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SX3

signal at transfer function
error point error point to output

3 Xl(z) H1(Z)
4 p3,tXl() -H1 (

5 EI(z) + P4 -1X3(z) H1 (Z)

-0
6 p4 -lX3(z) H1(z)

7 X3(t) H2(z)

8 P3 - 1X3 (z) -H2 (Z)

9 p4 -1x1( ) H2(z)

10 2g 3 -X3(z) H3 ()

11 2g 4 -Ix1() H3 (z)

12 10 + 11 H3 (Z)

13 a2EI(z) H3 (2)

Figure 3-10. XII form.
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Higher Order Filters

In the previous sections, it was assumed that the digital filter

was of at most second order. In this section it will be shown that

the program given in the appendix is applicable to higher order filters.

Consider, for example, a fourth-order filter, with all poles

complex. This filter should be realized as two second-order sections,

as shown in Figure 3-11, because of coefficient sensitivities. There

are two questions to be answered with respect to this filter. First,

which section should be placed first, and second, which programing form

should be used for each section? To answer these questions, four

different computer runs must be made. The filter section Dl(z) must

2nd order 2nd order

section section plant

D1 (Z) ) 1 D2(z) G(z)

Figure 3-11. Digital control system.

be simulated in the program first as shown in Figure 3-11, and then with

its position reversed with that of D2 (z). Then the same simulations

must be made with D2(z). An examination of the results of these runs

will indicate not only the placement of Dl(z) and D2(z), but also the

filter forms required. For the system of Figure 3-11, an addition
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subroutine must be added to the program to simulate the additional

filter section.

Example

As an example, consider the system of

filter plant

+z 2-1.25z +.32 z + .5

z -.75z + .035 z -1.6z + .63

Figure 3-12. System for example

Figure 3-12. This system is simulated in the program of Appendix B,

and the predicted errors from quantization were calculated. To check

these results, the system was simulated with first the filter in single

precision and the remainder of the system in extended precision and then

with the entire system in extended precision on an IBM 360/50 computer.

The difference in the outputs of these two simulations is then the system

quantization error. The IBM 360/50 computer is a base 16 machine, has

24 bits in the fraction, and used tuncation quantization. Thus, in (2-18),

t is equal to 24 and k is equal to 4. The maximum error at the point of

quantization is

6m = 2--20, 0.95 x 10- 6  (3-24)
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Consider first the modified canonical form. The predicted rms

error for the system was found to be 0.80 x 10
- 6 , with k of (3-21)

equal to 100 and the input a step function.
1 Sixteen different simulations

with step-function inputs yielded a total rms error of 0.33 x 10
- 6

which is lower than the predicted result. However, it is to be recalled

that probably no error will occur in the addition of two numbers if

the exponents of the two numbers are equal. Since the IBM 360/50 is

a base 16 computer, two numbers can be different by a factor of almost

16 and still have the same exponent. To approximately compensate for

this effect, the errors from all additions were set to zero, and the

predicted rms error was calculated to be 0.28 x 10-6. It is then seen

that additions do contribute very little to the total system errors.

Next the canonical form was used in the simulations, with the

resultant rms error of 0.20 x 10
-6 . With addition errors included, the

-6
predicted rms error was 0.27 x 10 ; and without additional errors, the

predicted rms error was 0.24 x 10
- 6 .

With the standard form, the result of the simulations was an rms

error of 0.135 x 10- 6 . With addition errors included, the predicted

rms error was 0.21 x 10-6; and without addition errors, the predicted

rms error was 0.125 x 10
- 6 .

From the above results it is seen that the developed technique

yields accurate results. However, problems do occur with the errors

I Computer run time for the program of appendix B was approximately

30 seconds, using the WATFIV version of FORTRAN.
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caused by addition. In a base 2 computer, these errors would be

much more likely to occur, since the exponents of the numbers are

not as likely to be equal. Additional research is needed to develop

a better technique for the inclusion of errors due to addition.

34



IV Conclusions

In this report the problem of floating-point quantization errors

in a digital control system is investigated. A technique is developed

which yields the maximum possible system output error and the mean-

square system output error caused by quatization in a digital controller

operating with floating-point arithmetic. A deterministic system in-

put is assumed. The technique is implemented by a digital computer

program, which is based on a simulation of the control system. The

program requires as input the number base of the digital controller,

the digital controller coefficients, the system input function, and the

sampling period for which the errors are desired. The system plant

must be simulated in a subroutine of the program. As an output, the

program gives the maximum error and the mean-square error in the system

output for the digital controller realized by nine different programming

forms. Thus the programming form can be chosen for the controller that

yields the smallest errors.
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APPENDIX A

In this appendix the first and second moments of the probability

density functions for both roundoff and truncation errors will be derived.

Consider first the roundoff density function

h

-6 - 6m 6m 6m
r r

Figure A-i. Roundoff quantization

given in Figure A-i. Let r = 2k be the base of the computer. The

first moment is zero. The second moment is

m2 62f(6)d6 = 2J m 62f(6)d6 (A-1)
0

Or

m2 = 2 fr h 62d6 + 2 -h r (6 - 6)6 2d6 (A-2)

0 6m m(rl)
r

Since the area under the curve in Figure A-i is equal to unity, then

h = r (A-3)
(r + 1 )6m
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Substituting (A-3) into (A-2) and evaluating the integrals, we find that

6 (r + r + r + )
m m (A-4)2 6r2 (r + i)

Consider now the truncation density function given in Figure A-2.

h

6m -6m
r

Figure A-2. Truncation quantization
The first moment is given by a

m

S- hr 6
m i = 6f(6)d6 6 m(r-1) (6 6m)d6, (A-5)

where

2r
h = (A-6)

(r+1)6m

Evaluation of (A-5) yields

2
6m(r + r + 1)m = (A-7)

1 3r(r + 1)

The second moment is given by

- -

r m -h r 62

m2 0 6 2hs + 6 (r-1) (6 - 6m)d6 (A-8)
m

r
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Evaluation of (A-8) yields

= 6m 2 (r3 + r 2 + r + 1)
m2 ' m(A-9)

6r 2 (r + 1)

Note that (A-4) and (A-9) are the same. However, 6m for roundoff is

one-half that for truncation.
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APPENDIX B

TABLE. B-1

SYMBOLS IN PROGRAM

Symbol Description

BK base of computer

BSR use to determine if poles of filter
are complex

El(I) signal amplitude at quantization point

EE(I) I x(N1-i)h(i)

EER used in calculating rms errors

EI input to filter

EIl used in finding impulse response

EMM total maximum error for form

EM(I) jx(N1-i)h(i) I

EO output of filter

ERMS total RMS error for form

ERR used to calculate total RMS error for form
2

ER(I) X[x(Nl-i)h(i)]

F(I) x(Nl-i)h(i)

IO IO=0 .zeros errors from input quantizer

Ii Ii=0 zeros errors from output quantizer

JJ number count for simulations for each form

JJJ number of simulations for each form

JT JT=O for roundoff, JT=l for truncation

KK used to choose form

KK1 initial value of KK
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Table B-i
(continued)

KK2 Final value of KK

MM stops program at correct point
for filter with complex poles

N1 number of iterations in each
simulation

R system input

XM first moment (expected value)
for errors

XM2 used to calculate rms errors

XM3 second moment for errors

YO system output
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START

READ BK

CALCULATE

XM, XM2, XM3

READ ALL CO
FFICIENTS

ETERMINE NO
F FILTER POLE

YES KK1 =1
KK2 = 5

KK = I1
KK2 - 6

SET N1

LOOP FOR ALL
4 FILTER FORMS

SET JJJ

LOOP FOR EACH
2 FILTER FORM

ZERO ALL STAT
REQUIRED

FUNCTIONS

SET INPUT AS

Figure B-1. Flow-chart for program
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CALL PLANT

CALL FILTER

SUBROUTINE

SIMULATE
FILTER

CALCULATE
F (I)

CALCULATE
EE (tIfI)F I),

SIMULATION COM-

PLETE

YES

IMULATIONS FOR
LTER COMPLET

YES

Figure B-1 (continued)
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ZERO ERRORS FOR
UNITY COEFFICIENT1

CALCULATE ALL

SYSTEM ERRORS

PRINT RESULTS

IS

NO

TAR
ILTER POLES NO

REAL

KK1 =7

YES

STOP

Figure B-i (continued)
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PROGRAM

DIMENSION E1(150),E2(1502,E3(150),F(13),ER(13),EM(13),EE(13)
COMMON/Cl/A2t A tAO BI,BO, XO, Xl, X2,X3,X4,.X 5, E I 1, E2, EI3
COMMON/C2/E1,E2,E3, F, EREMEE, IIJJKK.N1tYOt JTXMXM2
COMMON/C3/PIP2,P3tP4,G1,G2,G3 G4
COMMON/C4/A22,AllAOO,822,611,BOOG,X31 ,X41X51

C JT=0O FOR ROUNDOFFtJT=1 FOR TRUNCATION
JT = 1
JT = 0

C BASE OF COMPUTER IS BK
BK = 16.

C XM IS FIRST MOMENT OF ERROR SOURCE
C XM3 IS SECOND MOMENT OF ERROR SOURCE
C XM2 IS USED IN CALCULATING RMS ERRORS

XM=(BK**2+3.*BK+3.)/(BK**23.*BK+2.) /34
KM3(8BK**3+4.*BK**2+6.*BK+4.)/(BK**3+4.*BK**2+5.*BK+2.1/6.
IF(JT.NE.1) XM=O.
XM2 = XM3 - XM**2

C COEFFICIENTS OF PLANT
G = 1.0
A22 = 1.
All = 0.5
AO = 0.
B22 = -1.6
B11 = 0.63
BOO = 0.

C COEFFICIENTS OF FILTER
AO = 0.315
Al = -1.25
A2=1.0
BO = 0.035
B1 = -0.75
MM = 1

C TO DETERMINE IF FILTER POLES ARE COMPLEX
BSR = (Bl**2)/4. - 80

600 IF(BSR.GT.O.) GO TO 601
C FORMS FOR COMPLEX POLES

KKI = 1
KK2 = 5
GO TO 603

601 CONTINUE
C FORMS FOR RBAL POLES

BSSR = SQRT(BSR)
PI = 81/2. 4 BSSR
P2 = 81/2. - BSSR
G1 = (AI*P1 - A2*Pl**2 - AO)/(IP - P2)
G2 = (AO-Al*P2 + A2*P2**2)/(PI-P2)
KKI = 1
KK2 = 6
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GO TO 603
604 IF(BSR.GE.O.) GO TO 606

MM = 2
C FORMS FOR COMPLEX POLES

P3 81/2.
P4 9 SQRT(-8SRi)
G4 = Al/2. - P3*A2
G3 = (AO - A2*BO - 2.*G4*P3)/(2.*P4)
KKI = 7
KK2 = 8

603 CONTINUE
C NI IS TOTAL ITERATIONS FOR SIMULATIONS

N1 = 100
C KK USED TO CHOOSE FILTER FORM

DO 501 KK=KI ,I K2
C JJJ SETS NUMBER OF SIMULATIONS REQUIRED FOR EACH FORM

JJJ = 4
IF(KIK.EQ.2) JJJ=3
IF(KK.EQ.3) JJJ=2
IF(KK.EQ.4) JJJ=3

C JJ COUNTS THE NUMBER OF SIMULATIONS FOR EACH FORM
DO 50 JJ=1,JJJ
YO = 0.

C ZERO INITIAL CONDITIONS FOR FILTER
XO = 0.
X1=O.
X2=O.
X3=0.
X4=0.
X5=0.

C ZERO INITIAL CONDITIONS FOR PLANT
X31 = 0.
X41 = 0.
X51 = 0.

C EI1tEI2,EI3 USED TO CALCULATE IMPULSE RESPONSES
ElI = 0.
EI2 = 0.
EI3 = 0.

C E1(I),E2(I),E3(I) ARE SIGNALS AT POINTS IN FILTER
El(1) = 0.
E1(2) = O.
E2(1) = 0.
E2(2) = 0.
E3(I) = 0.
E3(2) = 0.

C JJ=2 YIELDS FIRST IMPULSE RESPONSE
C JJ=3 YIELDS SECOND IMPULSE RESPONSE
C JJ=4 YIELDS THIRD IMPULSE RESPONSE
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IF(JJ.EQ.2) EII = 1.
IF(JJ.EQ.3) EI2 = 1.
IF(JJ.EQ.4) EI3=1.

C JJ=l YIELDS SIGNAL AMPLITUDES IN FILTER
IF(JJ.GT.2) GO TO 102
IF(KK.GT.1) GO TO 10

C ER(I) USED TO CALCULATE RMS ERROR
C EE(I) USED TO CALCULATE RMS ERROR
C EM(I) USED TO CALCULATE MAXIMUM ERROR

DO 1 1=1,2
EE(I) = 0.
ER(I) = 0.

1 EM(I) = 0.
10 DO 2 I=3,13

EE(I) = 0.
ER(I) = 0.

2 EM(I) = 0.
C R IS SYSTEM INPUT

102 R = 0.
IF(JJ.EQ.1) R I.
IF(JJ.EQ.2) NI = NI - 2
DO 40 II=1,Nl
CALL PLANT(BIE60R)

40 CONTINUE
50 CONTINUE
501 CONTINUE

IF(MM.EQ.1) GO TO 604
606 CONINUE

STOP
END
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SUBROUTINE PLANT(EIEOvR)
C PLANT OF CONTROL SYSTEM

DIMENSION E(150),E2(150),63(150)tF(13),ER(13),EM(13)tEE(13)
COMMON/C2/E ,E2tE3,FER,EMEEIIJJtKKN1IYOJTXMXM2
COMMON/C4/A22,AllAOO0B22,Bl1BOOG*X31,X41,X51

C YO IS PLANT OUTPUT
YO = AOO*X31 + All*X41 + A22*X51
El = R - YO

C El IS FILTER INPUT
C EO IS FILTER OUTPUT

IF(KK.EQ.1) CALL FIL1(EIEO)
IF(KK.EQ.2) CALL FIL2(EI,EO)
IF(KK.EQ.3) CALL FIL3(EIEOt
IF(KK.EQ.4) CALL FIL4tEIEO)
IF(KK.EQ.5) CALL FIL5(EIEO)
IF(KK.EQ.6) CALL FIL6(EIEO)
IF(KK.EQ.7) CALL FIL7(EIEO)
IF(KK.EQ.8) CALL FIL8(EIEO)
X61 = G*EO - BOO*X31 - 811*X41 - 822*X51
X31 = X41
X41 = X51
X51 = X61
RETURN
END
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SUBROUTINE FILIEIEOI
C MODIFIED CANONICAL FORM

DIMENSION E1(150),E2(150),E3(150)Fi(13),ER(13)EM(13),EE(13)
COMMON/Cl/A2,AIAO1,BIBOXOXI1t.X2tX3tX4,X5,EIIlEIE13
COMMON/C2/ElE2,E3tFEREMiEEIIJJ,KK.N1,YOJT,XM,XM2

C El IS FILTER INPUT
C Eli USED TO CALCULATE FIRST IMPULSE RESPONSE
C EI2 USED TO CALCULATE SECOND IMPULSE RESPONSE
C E13 USED TO CALCULATE THIRD IMPULSE RESPONSE

El = El + EI13
X2 = El - B1*X1 - BO*XO + Ell

C El(I) IS SIGNAL AT A POINT IN FILTER
C E2(I) IS SIGNAL AT A POINT IN FILTER

IF(JJ.EQ.1) E1(II+2)=X2
IF(JJ.EQ.1) E2(II+2) = EI

C EO IS FILTER OUTPUT
EO = A2*EI+IAL-B1*A2)*XL+(AO-BO*A2)*XO+EI2
EI1.= 0.
EI2 = 0.
EI3 = 0.
XO = X1
X1 = X2
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203

C F(J) IS X(NI-I)H(I)
C El IS X(N1-I)
C YO IS H(I)

F(3) = YO*EIfN1+3-II)
F(4) = YO*E1(NI+2-II)*(-B1)
F(5) = YO*EI(NI+1-II)*(-BO)
F(6) = F(4) + F(5)

C EE(I) USED TO CALCULATE RMS ERROR
C ER I) USED TO CALCULATE RMS ERROR
C EM(I) USED TO CALCULATE MAXIMUM ERROR

DO 2 I=3,6
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + F(I)**2

2 EM(I) = EM(I) 4 ABS(F(I))
GO TO 201

202 F(7) = YO*E2(N1+3-II)*A2
F(8) = YO*EI(N1+2-II)*(AI-B1*A2)
F(9) = YO*EI(NI+1-II)*(AO-80*A2)
F(10) = F(7) + F(8)
F(2) = F(9) + F(10)
00 3 I=7,10
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + F(I)**2
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3 EM(I) = EM(I) 4 ABS(F(I))
EE(2) = EE(2) f F(2)
ER(2) = ER(2) + F(2)**2
EM(2) = EM(2) + ABSIF(2))
GO TO 201

203 F(1) YO*E2(N1+3-II)
EE(1) = EE(1) + F(1)
ER(1) = ER(L) + F(l)**2
EM(1) = EM(1) + ABS(F(1))
IF(II.LT.N1) GO TO 201

C SETS MULTIPLICATION ERROR TO ZERO IF COEFFICIENT=1
IF(B1.EQ.1.) EE(4)=0.
IF(B1.EQ.1.) EM(4)=0.
IF(B1.EQ.1.) ER(4)=O.
IF(BO.EQ.1.) EE(5)=O.
IF(BO.EQ.1.) EM(5)-O.
IF(BO.EQ.1.) ER(5)=0.
IF(A2.EQ.1.) EM(7)=0.
IF(A2.EQ.1.) EE(7)0.
IF(A2.EQ.1.) ER(7)=O.
IF((Al-B1*A2).EQ.1.) EE(8)=0.
IF((Al-BI*A2).EQ.1.) EM(8)90.
IF((Al-BI*A2).EQ.1.) ER(8)*0.
IF((AO-BO*A2).EQ.1.) EE(9)*O.
IF((AO-BO*A2).EQ.1.) EM(9)O.
IFI(AO-BO*A2).EQ.1.) ER(9)&O0
DO 50 1=1,10

50 ER(I) = ER(I)*XM2 + EE(I)**2*XM**2
PRINT 300

300 FORMAT('-','FORM',23X,'MAX ERROR*,7X,'RMS ERROR')
C CALCULATES ERRORS FOR INPUT QUANTIZER

ERMI = SQRT(ER(1)*XM2)
C CALCULATES ERRORS FOR OUTPUT QUANTIZER

ERM2 = SQRT(ER(2)*XM2)
PRINT 304,EM(1),ERM1

304 FORMAT('-*vINPUT'15X,2F16.5)
PRINT 305,EM(2)tERM2

305 FORMAI('-','OUTPUT,14X92F16.5)
C SET Il=0 TO EXCLUDE INPUT ERROR POINT FROM TOTAL ERROR

II = 1

C SET 10=0 TO EXCLUDE OUTPUT ERROR POINT FROM TOTAL ERROR
10 = 0
IO 10 1
IF(II.EQ.0) EE(1)=0.
IF(II.EQ.0) EM(1)=O.
IF(II.EQ.0) ER(1)=O.
IF(IO.EQ.0) EE(2)=O.
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IF(IO.EQ.0) EM(2=0O.
IF(IO.EQ.0) ER(2)=O.

C EER IS USED IN CALCULATNG RMS ERROR FOR TRUNCATION
C EMM IS TOTAL MAXIMUM ERROR FOR FILTER FORM

EER = 0.
EMM = 0.
ERR = 0.
DO 10 I=1,10
EMM = EMM+ EM(I)

10 ERR = ERR + ER(I)
IF(JT.NE.1) GO TO 40
DO 30 Il1,9
K = I+1
DO 30 J=K,10

30 EER = EER + EE(I)*EE(J)
EER = 2.*EER

C ERMS IS TOTAL RMS ERROR FOR FILTER FORM
40 ERMS = SQRT(ERR + EER*XM**2)

PRINT 302,EMMvERMS
302 FORMAT(-',*MODIFIED CANONICAL',2X,2F16.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL2(EItEO)
C CANONICAL FORM

DIMENSION E1(150)tE2(150hE3(150),FI13),ER(13),EM(13)tEE(13)
COMMON/C1/A2,AIAOB1,tBOXOXIX2,X3,X4tX5,EI 1EI2 EI3

COMMON/C 2 /EiE2,E3,FEREMEE,IIJJKK.N YOJTXMtXM
2

X2 = El - 81*X1 - BO*XO + E11
El = 0.
IF(JJ.EQ.1) E1(II+2) = X2
EO = A2*X2 +. Al*X1 + AO*XO + EI2

EI2 = 0.
XO0 = X1
XI = X2
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202
F(3) = YO*EI(NI13-L.II
F(4) = YO*E1(N1+2-II)*(-B1)
F(5) = YO*E1(Nl+1-II)*(-BO)
F(6) = F(4) + F(5)
DO 2 I=3,6
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + F(I)**2

2 EM(I) = EMcI) + ABS(F(I))
GO TO 201

202 F(7) = YO*E1(Nl+3-I)*A2
F(8) = YO*EI(N1+2-II)*A1
F(9) = YO*E(NI+1-II)*AO
F(10) = F(7) + F(8)
DO 3 I=7,10
EE(I) = EE(I.) + F(I)
ER(I) = ER(I) + F(I)**2

3 EM(I) = EM(I) + ABS(F(I))
IF(II.LT.Nl). GO TO 201
IF(B1.EQ.1.) EE(4) = 0.
IF(B1.EQ.1.) EM(4) = 0.
IF(B1.EQ.i.) ER(4) = 0.
IFIBO.EQ.1.) EE(5) = 0.
IF(BO.EQ.1.) EM(5) = 0.
IF(BO.EQ.1.) ER(5) = 0.
IF(A2.EQ.1.) EE(7) = 0.
IF(A2.EQ.1.) EM(f7 = 0.
IF(A2.EQ.1.) ER(7) = 0.
IF(AI.EQ.1.) E6(8) = 0.
IF(AI.EQ.1.) EM(8) = 0.
IF(AI.EQ.1.) ER(8) = 0,
IF(AO.EQ.1.) EE(9) = 0.
IF(AO.EQ.1.) EM(9) = 0.
IF(AO.EQ.1.) ER(9) = 0.
DO 50 I=1,10
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50 ER(I) = ER(I)*XM2 + EE(I)**2*KM**2
EER = 0.
EMM = 0.
ERR = 0.
DO 10 I=1,10
EMM = EMM + EM(I)

10 ERR = ERR + ER(I)
IF(JT.NE.1) GO TO 40
DO 30 1=1,9
K = I+1
DO 30 J=K,10

30 EER = EER + EE(I)*EE(J)
EER = 2.*EER

40 ERMS = SQRT(ERR + EER*XM**2)
PRINT 302,EMM,ERMS

302 FORMAT('-','CANONICAL',lIX62F16.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL3(EIEO)
C MODIFIED DIRECT FORM

DIMENSION E1(150),E2(150)1E3(150)tF(13)tER(131,EM4131,EE(
13 )

COMMON/Cl/A2,A1,AOBBOXO,Xl,.X2,X39X4,X5,EIlIEI
2 ,EI 3

COMMON/C2/E1,E2,E3,FtERPEM*EE,1IJJKKN1,YOJTXMXM
2

X2 = A2*EI + Al X5 + AO*X4 - X3+EII

Ell = 0.
IF(JJ.EQ.1) E14II+2) = X2
IF(JJ.EQ.1) E2(II+2)=El
EO = X2
X3 = 81X2 41 BO*X1
X1 = X2
X4 = X5
X5 = EI
IF(JJ.EQ.1) GO TO 201
F(3) = YO*EI(Nl+3-I.I)
F(4) = YO*E1(NL+2-II)*(-813
F(5) = YO*EI(NI+1-II)*(-BOJ
F(6) = F(4) + F(5)
F(7) = YO*E2(N1+3-II)*A2
F(8) = YO*E2(NI+2-II)*A1
F(9) = YO*E2(NI+1-1l)*AO
F(10) = F(7) + F(8)
F(11) = F(9) + F(10)
DO 2 I=3,11
EE(I) = EE(I) + F(I)
ER(I) = ER(I) 41 F(I)**2

2 EM(I) = EMIl) 4 ABS(F(I))
IF(I.LT.NI) GO TO 201
IF(B1.EQ.L.) EE(4)=0.
IF(BI.EQ.1.) EM(4)=0.
IF(BI.EQ.1.) ER(4)=O,.
IFiBO.EQ.1.) EE(51=0.
IF(BO.EQ,1.) EM(5)=O.
IF(BO.EQ.1.) ER(5)=0.
IF(A2.EQ.1.) EB(7)=0.
IF(A2.EQ.1.) EM(7)=0.
IF(A2.EQ.1.) ER(7)=O.
IF(Al.EQ.1.1 EE(8)=0.
IF(AI.EQ.1.) EM(8)=0.
IF(A1.EQ.1.) ER(8)=O.
IF(AO.EQ.1,) EE(9)=0.
IF(AO.EQ.1.1 EM(9)=0.
IF(AO.EQ.1.) ER(9)=0.
DO 50 I=1.10

50 ER(I) = ER(I)*XM2 + EE(I)**2*XM**2
EER = 0.
EMM = 0.
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ERR = 0.
DO 10 1=1,11
EMM = EMM + EM(I)

10 ERR = ERR + ER(II
IF(JT.NE.1) GO TO 40
00 30 I=1,10
K = I+1
DO 30 J=K11

30 EER = EER + EEfI)*EE(J)
EER = 2.*EER

40 ERMS = SQRTIERR + EER*XM**2)
PRINT 302,EMM,ERMS

302 FORMAT(-1,'MODIFIED DIRECT',5Xt2F16.5)
201 CONTINUE

RETURN
END

56



SUBROUTINE FIL4(EIlEO)
C MODIFIED STANDARD FORM

DIMENSION E1(150),E2(150),E3(150),F(13),ER(13),EM(13),EE(13)
COMMON/Cl/A2,AIAOB1,80,XOtXX2,X3,X4,X5,EIIEI2tEI3
COMMON/CZ/ELE2 E3,FEREMiEE, IIJJKKt N1 ,YOJTXMXM2
EU = A2*EI +~ XO
X2 = AO*EI - BO*EO + Ell
X3 = Al*EI + XL - Bl*EO + E12
Eli = 0.
EI2 = 0.
IF(JJ.EQ.1) E1(II+2) = X2
IF(JJ.EQ.1) E2(II+2) = El
IF(JJ.EQ.1) E3(II+2) = X1 - BI*EO
XO = X3
X1 = X2
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202
F(3) = YO*EI(NI+3-II)
F(4) = YO*E2(NI+3-II)*AO
F(5) = YO*(AI*E2(N1+2-II)+E3(NI+2-II)+A2*E2INI+3-Il))*(-BO)
DO 2 I=3,5
EE(I) = EE(I) + F(I)
ER(I) = ER(I) 4 F(I)**2

2 EM(Il) = EM(I) 4: ABS(FII))
GO TO 201

202 F(6) = YO*E3(Ni+3-II)
F(7) = YO*E2(NI+3-II)*AI
F(8) = YO*E2(NI+2-LI)*A2
F(9) = YO*(E3(N+1+1-II) + A*E2(Ni+1-II)+A2*E2(NI+2-II))
F(10) = YO*(A1*E2(N1+2-II)+E3(NL+2-II)+A2*E2(Ni4,3-II)*(-1)
F(11) = F(6) + F(7)
DO 3 I=6911
EE(I) = EE(I) +: F(I)
ER(I) = ER(I) + F(I)**2

3 EM(I) = EM(Il) + ABS(F(I))
IF(II.LT.Ni) GO TO 201
IF(AO.EQ.1.) EE(4)=O.
IF(AO.EQ.1.) EM(4)=O.
IF(AO.EQ.1.) ER(4)=0.
IF(BO.EQ.1.) EE(5)=0.
IF(BO.EQ.1.) EM(5)=0.
IF(BO.EQ.1.) ERI5)=O.
IF(AI.EQ. 1. EB(7)=0.
IFIA1.EQ.1.) EM(7)=0,
IF(Al.EQ.1.) ER(7)=0.
IF(A2.EQ,1.) EE(8)=O.
IF(A2.EQ.1.) EM(8)=0.
IF(A2.EQ.1.) ER(8)=O,
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IF(BI.EQ.1.) EE(10)=0.
IF(B1.EQ.1.) EM(101=0.
IF(Bl.EQ.1.) ER(10=0.
DO 50 I=1,11

50 ER(I) = ER(I)*XM2 + EE(I)**2*XM**2
EER = 0.
EMM = 0.
ERR = 0.
DO 10 I=1,11
EMM = EMM + EMII)

10 ERR = ERR + ERII)
IF(JT.NE.1) GO TO 40
00 30 I=1,10
K = I+1
DO 30 J=K,11

30 EER = EER + EEI)*EE(J)
EER = 2.*EER

40 ERMS = SQRT(ERR + EER*XM**2)
PRINT 302,EMM,ERMS

302 FORMAT('-','MODIFIED STANDARD'~*3X2FI6.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL5(EIEO)
C STANDARD FORM

DIMENSION EI(150),E2(150),E3(150),F(13),ER(13),EM(131,EE(13)
COMMON/CI/A2tA1,AOtBIBOtXOXltX2tX3,X4tX5,EIlEI2,EI3
COMMON/C2/EtE2,E3, FERtEM4EEIlJJtKK.NIYOtJTXMXM2
X2 = (AO-A2*BO-Bl*(Al-A2*81))*EI-BI*XI-BO*X3+EI1
X4 = X1+(Al-A2*Bl)*EI+EI2
EO = X3+A2*EI+EI3
Ell = 0.
EI2 = 0.
EI3 = 0.
IF(JJ.EQ.1) E1(II+2)=X2
IF(JJ.EQ. 1) E2(I11+2)=El
X1 = X2
X3 = X4
IF(JJ.EQ.I) GO TO 201
IF(JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203
F(3) = YO*EI(N1+3-11
F(4) = YO*EI(NI+2-11)*(-BI)
F(5) = YO*E2(NI+3-II)*(AO-A2*BO-BI*Al-A2*B1))
F(6) = YO*((Al-A2*BI)*E2(NI+2-11)+EI(Nl+1-II))*(-BO)
F(7) = F(4) + F(6)
DO 2 I=3,7
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + F(I)**2

2 EM(I) = EM(I) . ABS(F(I))
GO TO 201

202 F(8) = YO*E2(NI+3-II11)*(A-A2*1)
F(9) = F(8) + YO*E1(NI+2-I)
DO 3 I=8,9
EE(I) = EE(I) + F(I)
ER(I) = ER(I) 4 F(I)**2

3 EM(I) = EM(I) + ABS(F(I))
GO TO 201

203 F(10) = YO*62(N1+3-II)*A2
EE(1) =E(10O) + F(10)
ER(10) = ERI10). + F(10)**2
EM(10) = EMI10) + ABS(F(10))
IF(II.LT.N1) GO TO 201
IF(81.EQ. 1.) EE(4)O.
IF(B1.EQ.1.) EM(4)=0.
IF(BI.EQ.1.) ERI4)=0.
IF((AO-A2*BO-BI*(Al-A2*Bl)).EQ.1.) EE(5)=O.
IF((AO-A2*BO-Bl*(Al-A2*BI) ).EQ.1.) EM(5)=0.
IF((AO-A2*B0-81*(Al-A2*Bl)).EQ.1.) ER(5)=0.
IF((Al-A2*B1).EQ.1.) EEf8)=O.
IF((Al-A2*B1).EQ.1.) EM(8)*0.
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IF((Al-A2*BI).EQ.1.) ER(8)*O.
IF(BO.EQ.1.) EE(6)=0.
IF(BO.EQ.1.) EM(6)=0O.
IF(BO.EQ.1.) ER(6)0O.
IF(A2.EQ.1.1 EE(10)=0.
IF(A2.EQ.1.) EM(10)=O.
IF(A2.EQ.1.) ER(10)=O.
DO 50 I=1,10

50 ER(I) = ER(1)*XM2 + EE(I)**2*XM**2
EER = 0.
EMM = 0.
ERR = 0.
DO 10 I=110
EMM = EMM + EM(I)

10 ERR = ERR + ER(I)
IF(JT.NE.1) GO TO 40
DO 30 I=1,9
K = I+1
DO 30 J=K,10

30 EER = EER + EE(I)*EE(J)
EER = 2.*EER

40 ERMS = SQRT(ERR + EER*XM**2)
PRINT 302,EMMERMS

302 FORMAT('-',tSTANDARD',12Xt2F16.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL6(EI,EO)
C PARALLEL FORM

DIMENSION EL(150),E2(150),E3(150),F(13) ER(13),tEM(13),EE(13)
COMMON/C1/A2,Al AO1,80BOXO, XlX2,X3tX4tX5,EI1,EI2EI3
COMMON/C2/EItE2 E3,FEREMiEE, I JJgKKpN1YOtJTXMXM2
COMMON/C3/PItP2tP3,P4,G1,G2,G3,G4
X1l = Gl*EI - Pl*XO + ElI
X3 = G2*EI - P2*X2 + EI2
EO = A2*EI + XO + X2 + E13
EII = 0.
EI2 = 0.
EI3 = 0.
IF(JJ.EQ.1) E(.11I+2 = X1
IF(JJ.EQ.1) E2(11+2) = X3
IF(JJ.EQ.1) E3(II1+2) = El
XO = X1
X2 = X3
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.31 GO TO 202
IF(JJ.EQ.41 GO TO 203
F(3) = YO*E3(NI+3-II)*Gl
F(4) = YO*EI(NI+3-1I)
F(5) = YO*E1(NI+2-II)*(-P14)
00 2 1=3,5
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + F(I)**2

2 EMII) = EM(I) + ABS(FII))
GO TO 201

202 F(6) = YO*E3(N+*3-II)*G2
F(7) = YO*E2(N1+3-II)
F(8) = YO*E2(NI+2-II)*(-P2)
DO 3 I=6,8
EE(I) = EE(I) + F(I)
ER(I) = ER(I) + FIl)**2

3 EMIl) = EMIl) + ABS(F(I))
GO TO 201

203 F(9) = YO*(El(NI+2-II)+E2(NI+2-II))
F(10) = YO*E3(N1+3-II)*A2
00 8 1=9,10
EE(I) = EE(L) + F(I)
ER(I) = ERII) + F(I)**2

8 EM(I) = EM(I) + ABS(F(I))
IF(II.LT.Nl) GO TO 201
IFIGl.EQ.1.1 EE(3)=0.
IF(Gl.EQ.1.) EM(3)=0.
IF(GI.EQ.1.1 ER(3)=O.
IF(PI.EQ.1.) EE(5)zO0
IF(PI.EQ. .) EMI5)=O.
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IF(P1.EQ.1.) ER(5)=0.
IF(G2.EQ.1.) EE(6)=0.
IF(G2.EQ.1.) EM(6)=0.
IF(G2.EQ.1.) ER(6)=0.
IF(P2.EQ.1.) EE(8)=0.
IF(P2.EQ.1.) EM(8)=0.
IF(P2.EQ.1.) ER(8)=0.
IF(A2.EQ.1.) EE(10)=0.
IF(A2.EQ.1.) EM(10)=O.
IF(A2.EQ.1.) ER(10)=0.
00 50 1=1,11

50 ER(I) = ER(L)*XM2 + EE(I)**2*XM**2
EER = 0.
EMM = 0.
ERR = 0.
00 10 I=1,10
EMM = EMM + EM(I)

10 ERR = ERR + ER(I)
IF(JT.NE.1) GO TO 40
DO 30 1=1,9
K = I+1
DO 30 J=K,10

30 EER = EER + EE(I)*EE(J)
EER = 2.*EER

40 ERMS = SQRT(ERR + EER*XM**2)
PRINT 302,EMM,RMS

302 FORMAT(I-','PARALLELt,12X,2F16.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL7(EIEO)
C XI FORM

DIMENSION EI(1501,E2(150),E3(150),F(13),ER(13),EM(13),EE(13)
COMMON/Cl/A2,AlAOB1,BO,XO,XlX2,X3,X4,X5,EIl,EI2,EI 3

COMMON/C2/E1,E2,E3,F,EREMEElIJJKK,NIYOJTXMXM2
COMMON/C3/P1,P2,P3,P4,GItG2,G3G4
X1 = 2.*G3*EI - P3*XO - P4*X2 4 Ell
X3 = 2.*G4*BI - P3*X2 + P4*XO + EI2

EO = X2 + A2*EI + EI3
ET1 = 0.
EI2 = 0.
EI3 = 0.
IF(JJ.EQ.1) EI(II+2) = Xl
IF(JJ.EQ.1) E2(II+2) = X3
IF(JJ.EQ.1) E3(11+2) = El
XO = XL
X2 = X3
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203
F(3) = YO*Ei(Ni+3-II)
F(4) = YO*EI(NL+2-II)*(-P3)
F(5) = YO*E3(N1+3-I)*2.*G3
F(6) = YO*E2(NI+2-LI)*(-P4)
F(7) = F(5) + F(61
DO 2 I=3,7
EE(I) = EE(I) + F(I
ER(I) = ER(I) + F(I)**2

2 EM(I) = EM(Il) + ABS(F(I))
GO TO 201

202 F(8) = YO*E2(N1+3-II)
F(9) = YO*E2(NL+2-II)*(-P3)
F(10) = YO*E3(N1+3-II)*2.*G4
FIll) = YO*EIINI2-II)*P4
F(12) = F(10O) + F(11)
DO 3 I=8,12
EE(I) = EE(I) + F(I)
ER(I) = ER(I) .+ F(I)**2

3 EM(I) = EM(I) + ABS(F(I))
GO TO 201

203 F(13) = YO*E3N1l+3-lI)*A2
EE(13) = EEL13). + F(13)
ER(13) = ER(13). + F(13)**2
EM(13) = EM(13) + ABS(F(13))
IF(II.LT.N1) GO TO 201
IF(P3.EQ.1.) EE(4)=O.
IF(P3.LQ.1i) EM(4)=0.
IF(P3.EQ.1.) ER(4)=O.
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IF (2.*G3).Q0.1.) EE(5)=0.
IF((2.*G3).EQ.1.) EM(5)=0.
IF((2.*G3)°EQ.1e] ER{5)=O.
IF(P4.EQ.1.) EE(6)=0.
IF(P4.EQ.1.) EM(6)=O.
IF(P4.EQ.1.) ER(6)=.O
IF(P3.EQ.1.) EE19)=0.
IF(P3.EQ.1.) EM(9)=0.
IF(P3.EQ.1.) ER(9)=O.
IF((2.*G4).BQ.1.) EE(10)=0.
IF((2.*G4).EQ.1.) EM(10)=0&
IF((2.*G4).BQ.1.) ER(10)=0.
IFIP4.EQ.1.) EE(11)=O.
IF(P4.EQ.1.1 EM(11)=0.
IF(P4.EQ.1.). ER(11)=0.
IF(A2.EQ.l.) EE(13)=O.
IF(A2.EQ.1.1 EM(13)-O.
IF(A2.EQ.1.) ER(13)=O.
DO 50 1=1,13

50 ER(I) = ER(L)*XM2 + EEII)**2*XM**2
EER = 0.
EMM = 0.
ERR = 0.
DO 10 1=1,13
EMM = EMM + EM(I)

10 ERR = ERR + ER(I)
IF(JT.NE.1) GO TO 40
DO 30 I=1,12
K = I+1
00 30 J=K,13

30 EER = EER + EE(I)*EE(J)
EER = 2.*EER

40 ERMS = SQRT(ERR + EER*XM**2)
PRINT 302,EMMERMS

302 FORMAT('-',*XI*,18Xq2F16.5)
201 CONTINUE

RETURN
END
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SUBROUTINE FIL8IEIEO)
C XII FORM4

DIMENSION Eli150)E2(150),E3(150),F(13),ER(13)tEM(13),EE(13)
COMMON/CI/A2,AliAOBIBO,XOtXlX2tX3,X4tXSEI EI21,EI3
COMMON/C2/E1,E2,E3,FEREM'EE,IIJJKKtN1YOtJTXMtXM

2

COMMON/C3/PlP2,P3,P4,G1,G2tG3,G4
X1 = El - P3*XO + P4*X2 + Ell

X3 = -P3*X2 - P4*XO + EI2
EO = 2.*G4*XO - 2.*G3*X2 + A2*EI + EI3

Eli = 0.
EI2 = 0.
EI3 = 0.
IF(JJ.EQ.1) EI[II+2) = Xl
IF(JJ.EQ.1) E2(II+2) = X3
IF(JJ.EQ.1) E3(II+2) = El
XO = X1
X2 = X3
IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203
F(3) = YO*EI(NI+3-I)
F(4) = YO*E1(Nl+2-II)*(-P3)
F(5) = YO*(E3(NI+3-II)+P4*E2(NI+2-II))
F(6) = YO*E2(N1+2-II)*P4
00 2 1=3,6
EE(I) = EE(I) + F(I)
ERII) = ERII) + F(I)**2

2 EM(I) = EM(I) + ABS(F(II))
GO TO 201

202 F(7) = YO*E2(NI+3-II)
F(8) = YO*E2(NI+2-II)*(-P3)
F(9) = YO*Ei(NI+2-II)*P4
DO 3 1=7,9
EE(I) = EEII) + F(I)
ERII) = ERII) + F(I**2

3 EM(I) = EM(I) + ABSIF(I))
GO TO 201

203 F(10) = YO*E2(Ni+2-II)*2.*G3
F(Il) = YO*EI(Ni+2-II)*2.*G4
F(12) = F(10) + F(11)
F(13) = YO*E3(N+3-II)*A2
DO 8 I=10,13
EE(I) = EE(I.) + F(I)
ERII) = ERII) + F(I)**2

8 EM(I) = EM(I) + ABS(F(I))
IF(II.LT.N1) GO TO 201
IF(P3.EQ.1.) EE(4)=0.
IF(P3.EQ.1.) EM(4)=O.
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IF(P3*EQ. 1.) ERf41=O.
IF(P4.EQ.1.) Efi(6)=0.
IF(P4.EQ.1o. EM(6)0O.
IF(P4*EQ.l.) ER(6)s*O.
IF(P3.EQ. 1.) EE(8)=0.

I(P3.EQ.1.) ER(8)0O.
IF(P4.EQ. 1.) EM(8)0O.

IF(P4.EQ.1.) ER(9)=O.

IF(P2.E*3). E.1.) EM10

IF((2.*G3)*.Q.l.) EE( 10)=O1
IF( (2.*G3).EQ.1.) EM( 11)0.

IF( (2.*G4) .EQ.1.) ER(11)0o
IF(A2.*GEQ.1.) E (1i3)0
IF(A2*EQ.1.) EM(13)0O.
[F(A2.EQ. 1.) ER( 13)20.

D0 50 1=1913
50 ERM - ER(I)*XM2 + EE(I)**2*XM**2

EER = 0.
EMM =0.
ERR = 0.
DO 10 1=1,13
EMM = EMM + EMMl

10 ERR = ERR + ERMI
IF(JT.NE.1) GO TO 40
DO 30 1=1,12
K = 1+1
DO 30 J=K,13

30 EER = EER + EE(1)*EE(J)
EER =2**EER

40 ERMS =SQRT(ERR + EER*XM**2)
PRINT 302,EMM96RMS

302 FORMAT('-OtXIl'97X2Fl6.5)
201 CONTINUE

RETURN
END
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