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FOREWORD

Auburn Research Foundation submitted a proposal which resulted
in Contract NAS8-28262 being awarded on March 16, 1972. The contract
was awarded to the Auburn University Engineering Experiment Station
by the George C. Marshall Space Flight Center, National Aeronautics
& Space Administration, Huntsville, Alabama, and was active until
June 15, 1973,

This report is the final technical report of the work accomplished

by the Electrical Engineering Department, Auburn University, in the

performance of the contract.
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SUMMARY

This report contains the results of research into the effects on
system operation of signal quantization in a digital control system.
The investigation considered digital controllers (filters) operating
in floating-point arithmetic in either open-loop or closed-loop systems.
An error analysis technique is developed, and is implemented by a digital
computer program that is based on a digital simulation of the system.
As an output the program gives the programing form required for minimum
system quantization errors {either maximum or rms errors}), and the maximum
and ™ms errors that appear in the system output for a given bit config-
uration. The program can be integrated into existing digital simulations

of a system.
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I, INTRODUCTION

The introduction of a digital contreller (filter) inte a continuous
data system presents problems to the design engineer that do not exist
with the use of analog controllers. A major problem in the design of
digital control systems 1s the determination of the effects, on system
performance, of signal quantization within the digital controller. fThis
report presents the results of an-investigation into the determination of
the quantization errors, for filters using floating-point arithmetic,
and the development of design techniques to minimize these errors.
Throughout this report the terms digital filter and digital controller
will be used interchangeably.

A problem in the implementation of a digital filter is the choice
of the programing form {(method of programing) used to realize the filter.
Generally the use of different programing forms leads to different system
error magnitudes, caused by signal quantization within the digital filter.
A considerable amount of research has been published on this topic [See
References and Bibliography]. In [2], a technique was reported for
choosing programing forms for filters using fixed-point arithmetic.

This report presents a technique for choosing programing forms for
filters using floating-point arithmetic. The research listed in the
References and Bibliography is concerned generally with digital filters

"in an open-loop configuration. The error analysis techniques require



the use of transfer functions, which is not a problem for low-order
open-loop filters. However, for high-order digital control systems,
the development of the required transfer functions can be a major
undertaking. The technique developed in this report is based on a
digital simulation of the closed-loop system, and thus the pulse

transfer function of the continuous parts of the system are not required.



II., FLOATING-POINT ARITHMETIC

In this chapter quantization errors that result from arithmetic
performed in a fleoating-point format in digital devices are investigated.
In Chapter III, the results will be applied to the analysis of digital

control systems to determine system errors resulting from the quantization.

Floating-Foint Format
In floating-point arithmetic [1], a number x; is represented as

the product of two terms,
Xp = E-F (2-1)

where a part of the bit configuration of the computer word is used to
represent E, and the reméinder to represent F. The term E is the
exponent and is of the form 2Y for a base 2 computer, 16Y for a base

16 computer, ete., where ¥y is a signed integer. Tﬁe bit configuration
for E yields the value of y. The term F is the fraction, and is normally

set such that
1/2‘5 F<1, . (2-2)

for a base 2 computer. If the base of the computer is Zk,



1/2k <F<1 (2-3)

The number zero is a special representation. The bit configuration
for F yields F directly, where the first bit in F represents 1/2, the
second bit 1/4, etc.

. Let s be the number of bits assigned to the exponent, and t the
number assigned to the fraction {(excluding the sign bit for the

fraction). Also let

Thus there is a total of n + 1 bits in the computer word configuration,
with the additional bit used to give the sign of the number represented.
The maximum magnitude of the exponent for a base 2 computer is

(s—l)_l

E_ = 2l2 J | (2-4)

m
k .
and, for a base 2 computer, is

(S"lj b
B = 2k[2 . -i] | (2-5)

The factor (s-1) appears since one bit of s must be used to give the

sign of the exponent. The maximum magnitude of the fraction, F, is



F =1- 1/2% (2-6)
Thus the maximum magnitude that can be represented by the n bits is

(s-1 -1

for a base chomputer. Table 2-1 lists the numbers that can be
represented in a base 2 computer by a bit confipuration with n equal

to five. 1In this configuration, s is equal to three, and is the first
three bits. Then t is two, and F is represented by the last two bits.
If F satisfies (2-2), the fourth bit from the left in the configuration
is always 1. These values are indicated by an asterisk. The bit
representation for zero is also shown by an asterisk. The truncation

quantization characteristic is shown in Figure 2-1 for this case.

Quantization Errors
The characteristics of the quantization errors will be determined

in this section [3]. Let x; be the floating-point machine representation

of x. Then
xp = Qp [x] = ¥ 5, (2-8)

where Qfﬂ['] indicates the floating-point representation

(which is quantized) of the number. Suppose that truncation, as shown



TABLE 2-1
EXAMPLE OF QUANTIZATION

bit floating-point
configuration number
11111 6%
11110 4%
11101 2
11100 0
11011 3%
11010 2%
11001 1
- 11000 0
10111 3/2%
10110 2/2%
10101 1/2
10100 0
10011 3/4%
10010 2/4%
10001 1/4
10000 0
01111 3/32%
01110 2/32%
01101 1/32
01100 0]
01011 3/16*
01010 2/16%
01001 1/16
01000 0
00111 3/8%
00110 2/8%
00101 1/8
00100 0
00011 3/4%
00010 2/4%
00001 1/4

00000

Q%
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Figure 2-1. Truncation quantization for floating-point arithmetic.



in Figure 2-1, is used in quantizing x. Then the maximum magnitude of

the quantization error is seen to be

= T2t (2-9)

and this error is always negative. For roundoff quantization, the
maximum error is one-half that of (2-9). Then, from (2-8) and (2-9),

= .o—t -
= Xy 2 H/F (2-10)

Sm

Thus the quantization error is maximum if F is minimum. For a base

2 computer, from (2-2),

en = xm'z_(t"'l) (2"11)
For a base 16 computer,

ey = %‘2_(':_4) (2-12)

k
Thus for a base 2 computer, where
k
1/2% < F <1, (2-13)

then



e, = xm.z_(t'k)

(2-14)

For round-off quantization, the maximum error is one-half that given

in (2-14). It is necessary that x and x, be approximately equal, or

else all calculations are meaningless.

x in (2-14), with very little resulting error.

a = x‘Z-(t-k)
m .

In general, the error introduced by truncation quantization is

e=2kTB; B(

as is seen from Figure

e = xm‘B/F = xm'B

where

< 2-(t~k)

for truncation, and

o~ (t=k+l) o

1/2t

2.1. Thus, from (2-8),

-(t=k+1)

Thus xp may be replaced with

(2-15)

(2-16)

(2-17)

(2-18)

(2-19)



for round-off, Generally in this type of analysis, it is assummed that
all errors in the ranges given by (2-18) and (2-19) are equally likely
to occur. This approach was first taken in this investigation, but the
results were grossly in error when compared to actual errors obtained
from simulation. ‘Thus it was found to be necessary to use a more accurate
representation. For floating-point quantization, the probability density
functions for round-off and for truncation are given in Figure 2-2 [3].
These density functions will be used in the analysis developed in
Chapter III.

8ignal quantization errors occur during four operations in a digital
filter. These four operations are: (1) analog-to-digital conversionm,
(2) digital-to-analog conversion, (3) multiplication, and (4) addition.
The errors in (1) and (2) are described above. For multiplication and

addition [1],

Qep[xv] = () + 8), (2-20)

and

fo‘Ix + Y] = (x+ Y)(l + 6), (2—21)

where § is given by (2-18) and (2-19). However, care must be exercised

[3] in the utilization of (2-21). Consider the addition of two numbers

in base 10, with the numbers limited to three decimal places;

10



115 x 103 .115 x 102
.173 x 103 .173  x 103
.288 x 103 18415 x 103

In the first case, with the exponents equal, these is no error in the
addition. 1In the second case, with the exponents unequal, there is

a quantization error. Thus, in a digital filter, if the exponents of
the numbers being addeéd are equal, there will probably be no error in
the addition. If the exponents are unequal, the density functions for

the errors are given in Figure 2-2.

RO, T o)

K| su/2k A

oW

1

O

=]

Nry PP

=3 ~Sm/ 2K “om/

(a) Truncation (b) Round-off

Figure 2-2, Probability density function for &.
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ITII. SYSTEM ERROR ANALYSIS

In this chapter, the error models derived in Chapter IT will be
utilized to develop a technique for determining system errors due to
quantization in a digital control system. The technique will be

implemented using a computer simulation of the control system.

System Errors
It was shown Iin Chapter IT that the qguantized representation of a
number in floating-peint format can be written as
Qee/® = x(1 + 8) (3-1)
or

x = Qpp(x) - %6 (3-2)

Thus the quantization operation may be modeled as shown in Figure 3-1.

Figure 3-1. Model of floating-point quantization.

12



Congider now an otherwise linear discrete system that contains a

single quantizer. Let the

gsystem System

' ' k
(k) Qg [X(1) ] x(K) Qfg [x(k)]
x(k)Gk

(a) (b)

Figure 3-2. Discrete systenm containing quantization.

system be represented as shown in Figure 3-2, The system (b) of
Figure 3-2 can be considered to be linear if the sequence x(k)&k,
the error at the kth sampling instant, is determined in advance. The

output y(k) then can be expressed as

Y(k) = Yr(k) + Yq(k) ’ (3"3)
where y (k) is the response from the input r(k), and yq(k) is the
response from x(k)§y. Thus yq(k) is the error in the output due to the

quantization. Let G(z) be the transfer function from r(k) to x(k).

Then

X(z) = R(2)G(z) = x(0) + x(1)z~1 + ... (3-4)

13



Let
X s(2) = 60x(0) + Glx(l)z_l + 62}|'.(2)z-2 + ey (3-5)

Also let H(z) be the transfer function from the error source x(k)Gk to

the ocutput y{k). Then

Yq(2) = H(z) X 5(2)

= §gx(OMH(2) + 6;x(1)z TH(z) + 8,x(2)z"2H(z) + ... (3-6)
At the kth sampling instant,
yq(€) = 60x(Oh(K) + §1x(1h(k=-1) + ... + §x(k)h(0), (3-7)

where {h(k)} is the impulse response from the error gource to the output,

given by
H(z) = h(0) + h(Dz L + h(2)z"2 + ... (3-8)

Assume that the quantization is round-off. Then §; is given by (2-19),

which is repeated as (3-9) below.

g~ (E=ktl) o o o= (t=k+1) (3-9)

14



Thus it is seen from (3-7) that the maximum magnitude of the error in the

output is given by

|quax(k)| = Spax[[x@n) | + [x(DhE-1)] + ... + |x()u() |1,

(3-10)
where
o = 2 D (3-11)
For a base 2 machine,
8 = 2=t (3-12)

max

Consider now truncation quantization. For truncation, the error
is alway negative or zero. Thus, in (3-7), each §; is either negative
or zero. The maximum possible value for yq(k) is obtained from (3-7)
by allowing §; to assume its maximum magnitude, and first summing all
positive terms, and then summing all negative terms. The maximum
possible magnitude of yq(k) is then the larger of the two sums, in
magnitude. It is seen that larger of the two sums is at least one-half
the sum of (3-10). However, it 1is to be recalled that S8pzy for trunca-

tion is twice that for round-off, for a given t and k.

15



To determine the mean-square error, consider equation (3-7). The
cutput yq(k) can be considered to be the output of a system whose input

is given by
= -1 -2
A(z) = &g + dlz + 622 + .. (3-13)
and whose tranfer function is given by

h(0)x(k) + h(Dx(k-1)z"L + h(2)x(k-2)2"2 + ...

F(z)

£(0) + £z T + £(@272 + ... (3-14)

The Gi of (3-13) are assumed to be independent, and to have the density
functions given in Figure 2~2. The following development will be for
both round-off and truncation quantization. Let m; be the expected

1
value of Gi, and m; be the second moment, i.e.,
E[6;] = m;  E[62] = my; for all i (3-15)

Consider now (3-7), (3-13), and (3-14). The expected value of the output

error resulting from a single quantizer is

E[yq(k)] E[ﬁof(O) + 81F(1) + ...+ §pf(k)]

k

m; } £(1) (3-16)
=0

1

my and m, are derived in Appendix A.

16



The mean-square output error is given by

E[yi(k)] = E[{50£(0) + 6,£(1) + ... + 8E(R)}PY ' (3-17)
Thus
E[yé(k)] = E[Sg]fz(O) oot E[Gi]fz(k) + 26(0)E(LELS(O) JE[S (D) ]
+ 28(0)E(DE[S (O IEIS(2)] + +.. + 2f(k-1)f(K)E[S(k-1)JE[S (k)]
(3-18)
Or
k k-1 K
Ely200] =mp ) £2() + 20§ ] § EDEQ) (3-19)
1=0 i=0 j=it+l r
But
k-1 k Kk , ko,
2} ] f@WE@ =11 I £@) 1°- [ @) (3-20)
i=0 j=i+1 i=1 i=1
Then (3-19) becomes
2 ¥ 2 2 X 2 2
Elyg()l = [ £2()my - m{] + [ [ £1) Jmy (3-21)

i=0 i=1

Congider now the case that n quantization points contribute to the output

error. Let yt(lg be the total error in the output, and let yqi(k) be that

17



part of y¢(k) due to the ith quantization point. Then, the mean output

error is

Ely (k)] = Elyg (k) + yqo(k) + ... + y,,()]
= EIyql(k)] t Elygo (k)] + ... + Elyga(K)1, (3-22)

where E[yqi(k)] is given by (3-16). The mean-square output error is

given by

Ely2(0)] = Ellyq () + «v + ygq(F1 = El{y1 0121 + ...
+ Ely () }2] + 2E[yq1 () JElyg2 ()] + ...

+ 2E[yq (n-1) &) [E[ygn (k) ] (3-23)

The terms of (3-23) are given by either (3-21) or (3-16).

Error Calculations by Digital Simulation
Both the maximum error of (3-10) and the mean-square error of (3-21)
can be obtained from digital simulations of the system. First, with the
input of the system of Figure 3-2 equal to the desired input {r(k)} and
all initial condition set of zero, the sequence {x(k)} can be calculated
and stored. Next, with zero input and zero initial conditions, the
impulse response sequence {h(k)} can be obtained by applying are input

80x(0) = 1, and éix(i) =0, 1 > 0. The system cutput sequence is then

18



the desired impulse response sequence {h(k)}. The indicated sums of
(3-10) and (3-21) can then be evaluated, yielding the maximum error

and the mean-square error for the system. The total maximum error

is then the sum of the maximum errors from each quantizer, and the total

mean-square error is given by (3-23).

Computer Evaluation of Errors

A computer program has been developed for determining system
quantization errors in a digital control system, with the digital filter
realized by various programing forms. The utilization of this program
will allow the choice of the programing form that will yield the smallest
system error due to quantization. This computer program will be
described in this section.

All programing forms in the computer program realize the transfer

function

3222 + ajz + a5

D(z) =
z2 + byz + by
Consider first the canonical programing form, shown in Figure 3-3. It
is assumed that this filter form is connected in a digital control system.
Each point at which quantization occurs is indicated by an )(. The input
and output quantization points are omitted, and are considered separately,
since the errors from these points are the same for all programming

forms. Let X2(z) be the signal at quantization point 1 as indicated in

19



Figure 3-3. Further, let Hj(z) be the transfer function from the
error source at quantization peint 1 to the system output. Then the
errors resulting from quantization point 1 are obtained using X2(z)
and Hy(z) in (3-10) and (3-21). The errors resulting from quantization
point 2 are obtained using blz'lXZ(z) and ~Hy(2z) in (3-10) and (3-21).
All necessary signals and transfer functions to determine system errors
from the eight points of quantization are given in Figure 3-3.

The sums indicated in (3-10) and (3-21) are evaluated using the
computer program given in Appendix B of ﬁhis report. The value of k
in these equations is N1 of the program, and must be given in the main
program. The canounical programing form i3 gimulated in subroutine
F1L2, Three different simulations of the system are required. In the
first simulation (JJ = 1), the sequence {x2(k)} of Figure 3-3 is obtained
and stored. Note that the system input 1is R, and is a unit step in
this case. In the second simulation (JJ = 2), the impulse response
{hl(k)} is obtained, and Zf(i) and Zfz(i) are evaluated for quantization
peints 1, 2, 3, and 4. In the third simulation (JJ = 3), the impu;se
response {hz(k)} is obtained, and the required sums are evaluated for
quantization points 5,6,7and 8

The quantization error at any point is assumed to be statistically
independent of that at any other point. Thus the maximum system error
fof the filter form is the sum of the maximum system errors for each
quantization point, and the mean-square system error is given by (3-23).

The total system errors are evaluated using these relationships. The

20



EI +

error point
3

4

10

% X 0
7 10
8 9
Pof = &
L v -[?
6 ;( 5
signal at transfer function
error point to output
X2(z) Hl(z)
bz X2 (2) -H, (2)
bz X2(2) -H, (2)
(b 2 b2 ) K2 (2) H (2)
aZXZ(z) Hz(z)
a 2 1x2(2) o (2)
aoz-2X2(z) Hz(z)
(az+alz-l)X2(z) HZ(Z)
Figure 3-3. Canonical form.
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program prints out the maximum error and the root-mean-square error
for each filter form with each divided by 4 .,y of (3-10) and (3-12).
Since no errors occur in multiplication if a signal is multiplied by

a coefficient equal to unity, logic is included in the program to zero
the multiplication errors for this case. To obtain the errors for a
given system, the results of the computer program must be multiplied

by Gmax'
Consider now the modified canonical programing form. This form

is shown in Figure 3-4, and is realized as subroutine F1L1l in the com-—
puter program. This form is also used in determining the errors from

both input and output quantization. TFor this programing form the
sequences {X2(k)} and {EI(k))} are calculated and stored for JJ = 1.

For JJ = 2, the impulse response from X2 to the system output is
obtained. For JJ = 3, the impuilse response from the filter output is
obtained; and for JJ = 4, the impulée response from the filter input

is obtained. These responses are used in the manner indicated in

Figure 3-4 to calculate system errors.

All filter forms consider are listed in Table 3-1. It 1s noted
that the direct form gives the same system errors as does the canonical
form [4], and thus is not considered separately. The parallel form can
realize filters containing only real poles, and the XI and XI1, forms

can realize filters containing only complex poles, Leogic is included

in the program to insure that these forms are considered only at the

appropriate times.

22



EX

EO

3

4

error point

+ 2
7 + 10
8 9
a,-b,s a -b.a
1 7172
X1 %0 0 02
3 X2 1
b1 bo
4
6 as x
5
signal at transfer function
error point to output
X2(z) Hy (2)
blz_lXZCZ) 'Hl(Z)
b7 ~2x2(2) -H; (2)
4+ 5 -—Hl(z)
a,EI(z) Hy{z)
(al-—blaz)'z—lXZ(z) Hz(z)
(ag-boaz) 2™ 2%2(z) Hy(2)
7+ 8 Ho(z)
9 + 10 Ha{z)
EI(z) Hy(z)
Figure 3-4., Modified canonical form
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TABLE 3-1

FILTER FORMS
filter form Figure Subroutine
modified canonical 3-4 F1L1
canonical 3-3 F1L.2
modified direct 3-5 F1L3
direct errors same as canonical
modified standard 3-6 Fi1L4
standard 3-7 F1L5
parallel 3-8 F1L6
XI 3-9 F1L7
X1 3-10 F1L3

24



XQ
7 +W 8
X &
+ 6
éignal at transfer function
error point error point to output
3 . X2(=) Hl(z)
2 !
4 : ‘ b, X2(2) -2 7H, {2)
5 bo2 T X2(2) ~2 7, ()
6 4+5 -z 1y (2)
7 azEI(Z) Hl(Z)
-1 N
8 a3z EI(Z) Hl(z)
=2
10 7+ 8 Hl(z)
11 9 + 10 Hl(z)

Figure 3-5. Modified direct form.
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O
+ 7 X0 + 8 EO
T 0
11 9
H—11 ]‘:
10 '
signal at transfer function
error point error point to output
3 X2(z) Hl(z)
4 aOEI(z) Hl(z)
5 bolz [X3(=)+a B (2) J+a,E1(2) ) -ty (2)
6 X3(z) H,(2)
7 alEI(z) Hz(?)
8 a,E1(2) . Zﬁle(”)
9 27 [X3(z) + ayEI(2)] + a,EI(2) 2 My (2)
10 by (z71(X3(2) + aEI(z)] + a,EL(z)} ~H, (%)
11 6 +7 HZ(Z)

Figure 3-6. Modified standard form.
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O JL | l

an"azbo_bl(al'aZbl)i p1-a by
5 8 3 10
+ ;1 ++ - + M, EOQ
O
b
4
T (o
6*
gignal at transfer function
error point error point to output
-1 .
4 byz X, (%) -8, (z)
5 [ao-azbo-bl(al—azbl)]EI(a) Hy (2)
-1 -2
6 bo{(ala azbl)z- EI(z) + z Xz(z)] -H, (2)
7 b+ 6 -H, (£)
8 (al-azbl)EI(z) Hy (2)
-1
9 z X2(z) + (al-azbl)EI(z) Hz(z)
10 a,EI(2) Hy(2)

Figure 3-7. Standard form.
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L

error point

10

o ,

+ 7 x3 _

—— >}
6 8

! a3 P2

aignal at
error point

g,E1(2)

Xi(z)
plz"1x1(z)
szEI(z)

X3(2)

-1
pzzf X3(z)
z-lXi(z) + z_1X3(z)

azEI(z)

Figure 3-8, Parallel form.
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transfer function
to output

H, (%)
Hy (2)
-H,(?)
Hy (2)
Hy(2)
-H, (2)
B, (%)

Hy(2)



‘ X0
3!233 %% T
S
PA
EI
10 2 +
{22, >{7]
Pl !
signal at transfer function
error point error point to output
3 X1(z) H (%)
4 pyz 1Z1(2) -H, (2)
5 2g4ET(%) | Hl(z)
6 P,z X3(%) ~H, (2)
7 5-6 Hl(z)
8 X3(®) B, (%)
~1 ' z
9 P2 X3(z) wHZ(Z)
10 z z
ZgAEI( ) Hz( )
-1

12 10 + 11 HZ(Z)
13 a,EI(%) Ha (%)

Figure 3-9, XI form.
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B
7 x3 X2 10
St ——{ 28,
E, o 12+
LA
- +
2P, =5
EI + X1 - 3 11
O— T B4
4 . P
13
signal at transfer function

error point

10
11
12

13

error goint

- X1(2)
p32'1x1(2)
EI(z) + PA:.’;*]'XJ(Z)
P2 X3(2)
X3(%)

Pyz 1x3(2)

P, 2'1x1(z)
2g,% 1X3(2)
2342"1x1(Z)

10 + 11

aZEI(Z)

Figure 3-10, XII form.-
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to output

i,(2)
Hy (2)
Hy(2)
HZ(Z)
‘H2 (z)
Hz(z)
Hq(2)
H,(2)
H3(%)

H,(2)



Higher Order Filters

In the previous sections, it was assuﬁed that the digital filter
was of at most second order. In this section it will be shown that
the program given in the appendix is applicable to higher order filters.

Consider, for example, a fourth-order filter, with all poles
complex. This filter should be realized as two second-order sections,
as shown in Figure 3-11, because of coefficient sensitivities. There
are two questions to be angwered with respect to this filter. First,
which section should be placed first, and second, which programing form
should be used for each section? To answer these questions, four

different computer runs must be made. The filter section Dl(z) must

2nd order 2nd order

_ gection section plant
+ LY
Dl {z) Dz(z) G(Z) -
- e e o o e

Figure 3-11. Digital control system.

be simulated in the program first as shown in Figure 3-11, and then with
its position reversed with that of D3(z). Then the same simulations
must be made with Dp(z). An examination of the results of these runs
will indicate not only the placement of D;(z) and Dp(z), but also the

filter forms required. For the system of Figure 3~11, an addition
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subroutine must be added to the program to simulate the additional

filter section.

Example

As an example, consider the system of

filter nlant
+ 2
z°-1.25z +.32 > z + .5 >
_ 22,75z + .035 22 1.6z + .63

Figure 3-12. System for example

Figure 3-12. This system is simulated in the program of Appendix B,

and the predicted errors from quantization were calculated. To check
these results, the system was simulated with first the filter in single
precision and the remainder of the system in extended precisioh and then
with the entire system in extended precision on an IBM 360/50 computer.

The difference in the outputs of these two simulations is then the system
quantization error. The IBM 360/50 computer is a base 16 machine, has

24 bits in the fraction, and used tuncation quantization. Thus, in (2-18),
t 1s equal to 24 and k is equal to 4. The maximum error at the point of

quantization is

8y = 2720 0.95 x 1076 (3-24)
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Consider first the modified canonical form. The predicted rms
error for the system was found to be 0.80 x 10“6, with k of (3-21)
equal to 100 and the input a step function.l Sixteen different simulations
with step-function inputs yielded a total rms error of 0.33 x 10_6,
which is lower than the predicted result. However, it is to be recalled
that probably no efror will occur in the additfon of two numbers if
the exponents of the two numbers‘are equal, Since the IBM 360/50 is
a base 16 computer, two ﬁumbers can be different by a factor of almost
16 and still have the same exponent. To approximately compensate for
this effect, the errors from all additions were set to zero, and the
predicted fms ervor was calculated to be 0.28 x 106, It is then seen
that additions do contribute very little to the total system errors.
Next the canonical form was used in the simulations, with the

6

resultant rms error of 0.20 x 107 . With addition errors included, the

-6
predicted rms error was 0.27 x 10 ; and without additional errors, the
predicted rms error was 0.24 x 1076,

With the standard form, the result of the simulations was an rms
error of 0.135 x 10™°. With addition errors included, fhe predicted
rms error was 0.21 x 10‘6; and without addition errors, the predicted
rms error was 0.125 x 1076,

From the above results it is seen that the developed technique

yields accurate results. However, problems do occur with the errors

! Computer run time for the program of appendix B was approximately
30 seconds, using the WATFIV version of FORTRAN.
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caused by addition. In a base 2 computer, these errors would be
much more likely to occur, since the exponents of the numbers are
not as likely to be equal. Additional research is needed to develop

a better technique for the inclusion of errors due to additiom.
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IV Conclusions

In this report the problem of floating-point quantization errors
in a digital control system is investigated. A technique is developed
which yields the maximum possible system output error and the mean-
square system output error caused by quatization in a digital controller
operating with floating-point arithmetic. A deterministic system in-
put is assumed. The technique is implemented by a digital computer
progrém, which is based on a simulation of the control system. The
program requires as input the number base of the digital controller,
the digital controller coefficients, the system input function, and the
sampling period for which the errors are desired. The system plant
must be simulated in a subroutine of the program., As an ocutput, the
program gives the maximum error and the mean-square error in the system
output for the digital controller realized by nine different programming
forms. Thus the programming form can bechosen for the contreller that

yields the smallest errors.
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APPENDIX A

In this appendix the first and second moments of the probability
density functions for both roundoff and truncation errors will be derived.

Congider first the roundoff density function

A
h
i — >
S0 - fm Sm ém
r r

Figure A-l. Roundoff quantization

given in Figure A-1. Let r = 2k be the base of the computer. The

first moment is zero. The second moment is

© 6!11
m, = [ L 8%e(8ras = zjo §2£(s)ds (A-1)
Or
fs...‘E Sm
r 2 2
m2 = Zf hé d8 + Zj =h r ¢ - Gm)cS ds (A-2)
0 Gm m(r_l)

Since the area under tHe curve in Figure A-1 is equal to unity, then

h = r . -
(r + Uam | (A~-3)
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Substituting (A-3) into (A-2) and evaluating the integrals, we find that

5m2(r3 +ri 4+ 1)
m, = — - (A-4)
6r2(r + 1)

Consider now the truncation density function given in Figure A-2.
A h

/ i

Sm -8m

r
Figure A-2, Truncation quantization
The first moment is given by

6‘
m
j °° f“ F -hr$
= §£(8)ab = - - d A-5
o ©¢)d o 5, (r-1) (6 = 8,048, (a-5)
where
2r (A6
= A
b (x+1)8 )
Evaluation of (A-5) vields
2'+ + 1)
x gm(r * T (a-7)
1 3r(r + 1)
The second moment is given by
o Py 2
m .
_ 2 -=h ré°. _
mz-jo § “hdd +-[6 W(Gfﬁm)dé‘ {A-8)
.
r
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Evaluation of (A-8) yields
- dmz(r3 +ri+r+ 1)

- (a-9)
6r2 (r + 1)

Note that (A-4) and (A-9) are the same. However, 8 for roundoff is

one-half that for truncation.
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APPENDIX B

TABLE. g1

SYMBOLS IN PROGRAM

Symbol Description
BK base of computer
BSR use to determine if poles of filter
are complex
E1(I) signal amplitude at quantization point
EE(I) } x(N1-1)h(i)
EER . used in calculating rms errors
EI input to filter
EIl used in finding impulse response
EMM total maximum error for form
EM(I) T @1-1)h(1) |
EO output of filter
ERMS total RMS error for form
ERR used to calculate total RMS error for form
ER(I) Z[x(m-i)h(i)]2
F(I) x(N1-i)h(i)
I0 I0=0 zeros errors from input quantizer
Il I11=0 zeros errors from 9Qutput gquantizer
JJ number count for simulations for each form
J33 number of simulations for each form
JT JT=0 for roupdoff, JT=1 for truncation
KK used to choose form
KK1 initial value of KK
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m2
XM3

YO

Table B-1
(continued)

42

Final value of KK

stops program at correct point
for filter with complex poles

number of iterations in each
simulation

system input

first moment (expected value)
for errors

used to calculate rms errors
second moment for errors

system output



NO

f:

[

.

KKl = 1
KK2 = 6§

¥

SET Nl }1&
¥

LOOP FOR ALL
FILTER FORMS

]

SET JJJ

K]

LOOP FOR EACH
FILTER FORM

ZERO ALL STATHS

REQUIRED
. FUNCTIONS

¥

SET INPUT AS

Figure B-1. Flow-chart for program
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LOOP FOR
SIMULATION

CALL PLANT

¥

CALL FILTER
SUBROUTINE

¥

. SIMULATE

T

CALCULATE
F(I)

'

CALCULATE
EE(I)EH%§§I),

I8 ‘
SIMULATION COM-

PLETE

ARE
IMULATIONS FOR
EILTER COMPLETE

Figure B-1 (centinued)
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ZERO ERRORS FOR
UNITY COEFFICIENTSY

y
CALCULATE ALL

SYSTEM ERRORS

T

PRINT RESULTS

ILTER POLES NO

REAL

3

Figure B~1 (centinued)
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OoOCO

PROGRAM

DIMENSION E1{150),E2(150),E3{150),FU13),ER(L13),EM{13),EE(13}
COMMON/CL/A24AL sAQBLyBOsXOp X1 o X2¢X34X49X5,EIL,ET2,ET3
COMMON/C2/ELyE2 ¢ E3 s FoERJEMGEEZ I 3 JJ s KK N1 s YDy JT o XM, XM2
COMMON/C3/PLyP23P33P44GLl3G2+G34G4
COMMON/C&/A22:A114,A004B224811,B00,G¢X%X31,X41,X51

J¥=0 FOR ROUNDOFF,JT=1 FOR TRUNCATION

JT = 1

JT = 0

BASE OF COMPUTER I[S BK

8K = 16.

XM IS FIRST MOMENT OF ERROR SOURCE

XM3 IS SECOND MOMENT OF ERRCR SOURCE

XM2 IS USED IN CALCULATING RMS ERRORS

XM= (BK*%243 ,#BK4+3, )}/ {(BK*% 243, +BK+2,7 /3.

XMI={BK2E3+4 kB EX24+E6  FBK ¢4, )/ (BEK**344 kB E*2+5,%¥BK+2.1/6,
IF{JUT.NE. 1) XM=0,

XMZ2 = XM3 - XMxx2

COEFFICIENTS OF PLANT

G = 1.0

A22 = 1.

All = 0.5

AOO = 0.

B22 = —-1.6

Bll = 0.63

BOO = Q.

COEFFICIENTS OF FILTER
AQ = 0.315

Al = =1.25

A2=1.0

BO = C.035

Bl = =0.75

MM = ]

TC DEYERMINE IFf FILTER POLES ARE COMPLEX
BSR = (Bl*%2}/4. - BO

600 IF(BSR.GT.0.) GO YO 601
FORMS FOR COMPLEX POLES

KKl = 1
KK2 = 5
G0 TD 603

601 CONTINUE
FORMS FOR RBAL POLES
BSSR = SQRT{BSR)

Pl = Bl1/2. ¥ BSSR

P2 = Bl/2. =~ BSSR

Gl = (A1%P1 ~ A2%P1**2 - AQ)/(Pl1L - P2)
G2 = (AQ-AL*P2 ¢ A2%P2%%2)/({Pl-P2)

KKl = 1

KKZ = &
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OO0

604

603

GO TO 603

IF{BSR.GE.D.) GO TO 606
MM = 2

FORMS FOR COMPLEX POLES
P3 B1/2.

P4 = SQRT{-BSR});

G4 = Al/2. — P3%A2

G3 = (AD = A2%B0 = 2.%G4%P3)/(2.%P4)
KK1 = 7 \

KK2 = 8

CONTINUE

Nl IS TOTAL ITERATIONS FOR SIMULATIONS
NL = 100

KK USED TO CHOOSE FILTER FORM

DO 501 KK=KK1l,KK2

JJJ SETS NUMBER OF SIMULATIONS REQUIRED FOR EACH FORM
JJJ = 4

IFIKK.EQ.2) JJJ=3

IF{KK.EQ.3) JJJ=2

IFIKK.EQ. %) JJJ=3

JJ COUNTS THE NUMBER OF SIMULATIONS FOR EACH FOURM
00 50 JJd=1,444JJ

YO = 0. .

ZERD INITTAL CONDITIONS FOR FILTER

X0 = 0.

X1=0.

X2=0.,

X330,

X4=0.

X5=0.,

ZERD INITIAL CONDITIONS FOR PLANT

X31 = 0.

X41 = 0,

X51 = 0.

EILl.EIZ2+EI3 USED TO CALCULATE IMPULSE RESPONSES
Ell = 0.

£12 = 0.

EI3 = Q.

EI(I)LE2(I)E3(I) ARE SIGNALS AT POINTS IN FILTER
E1(1} = O.

El1(2) = O.

E2(1) = O.

E2(2) = 0.

E3(1) = 0.

E3(2) = 0.

JJ=2 YIELDS FIRST IMPULSE RESPONSE
JJ=3 YIELDS SECOND IMPULSE RESPONSE
JJ=4 YIELDS THIRD IMPULSE RESPONSE
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OO0

102

40
50
501

606

IF{JJ.EQ.2) EI1l = 1,

IFIJJ.EQ.3) EIZ2 = 1.

IF{JJ.EQ.4) EI3=1.

JJ=1 YIELDS SIGNAL AMPLITUDES IN FILTER
IFIJJ.GT. 2} GO TO 102
[F(KK.GT.1) GO TO 10

ER{I) USED TO CALCULATE RMS ERROR
EE(1) USED TO CALCULATE RMS ERROR
EM(I) USED TO CALCULATE MAXIMUM ERROR
D01 I=1,2

EELI) = 0.

ER{I) = 0.

EMII) = O,

DO 2 I=3,13

EELI} = 0.

ER(I) = 0.

EMIIY = Q.

R IS SYSFEM INPUT

R = 0.

IF{JJ.EQ.1} R = 1.

IFtJJ.EQ.2) N1l = N1 - 2

DO 40 TI=1,.N1

CALL PLANT(BI,EO.R)

CONTINUE

CONTINUE

CONTINUE

IFIMM.EQ. 1) GO TO 604

CONT INUE

sTap

END
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SUBROUTINE PLANT(EI.EO4R)

PLANT OF CONTROL SYSTEM

DIMENSION EL(150)4,E2(150),63(150),F{13),ER({L13),EM{13},EE{13)
COMMON/CZ/ELyE24ED s FoERGyEMGEE s IT v JJgKKeNL YOy JT ¢ XM,y XM2
COMMON/C4/A224AL1 +A004822,B11+B00,G¢X314X41,4X51
YO IS PLANT OUTPUT

YO = AQO*X31 + AlLLl%*X&4] + A22%X5]

Ef = R - YO

El IS FILTER INPUT

EO IS FILTER CUTPUY

IF{KK.EQ.1) CALL FILLI(EI,EQD)

[FIKK.EQ.2} CALL FILZ2{EI,ED)}

IF(KK.EQ.3) CALL FIL3tEI,EO}

IFIKK.EQa4) CALL FIL4IEI,LED)

[F{KK.EQ.5) CALL FILS(EI,ED)

IF(KK.EQ.6) CALL FIL&{EILE0D)

IF{KK.EQ.7) CALL FILT(EI,ED)

IFIKK.EQ.8) CALL FILB{EI,ED)

X61 = G*EQ - BOO*X31 - Bll*X4l - B22%X51

X3l = X4l

X4l = X5]

X51 = X6l

RETURN

END
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OO0

202

SUBROUTINE FILLIEI.EQ)

MODIFIED CANONICAL FORM

DIMENSION EL1(150)4,E2(150)4E3(150)4F{13)+ER(L3),EM{13)}4EE(LD)
COMMON/CL/A2,AL3ACsBLloBO X0pX1 oX24X3 3 X4y XS,ETLHyET2,E13
COMMON/C2/ELeE24E3oF ¢ERJEMUEEpIT 3 JJ e KK NL YOy JT XMy XM2
E1 IS FILTER INPUT

€11 YSED TO CALCULATE FIRST IMPULSE RESPONSE

EI2 USED TO CALCULATE SECOND IMPULSE RESPONSE

ET3 USED TO CALCULATE THIRD IMPULSE RESPONSE

€l = EI + EI3

X2 = EI - Bl*Xl - BO¥X0O + EIl1

El1{1) IS SIGNAL AT A POINT IN FILTER

E2(1) IS SIGNAL AT A POINT IN FILTER

IF{JJ.EQ.1) ELLIT+2)=X2

IF(JJ.EQ. 1} E2{1142) = EI

EG IS FILTER OQUTPUT

EQ = AZ*¥EI+(AL-Bl*A2)%X1+(A0-BO*AZ2)%X0+EI2

EIlL. = 0.
EIZ2 = 0.
EI3 = 0.
X0 = X1
Xl = X2

IF(JJ.EQ.)) GO TO 201
IF{JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO YO 203
F{J) IS XIN1-D)H(I)
El1 IS X(N1-T)

YD IS H{I)

F{3) = YO*EL{(N1+3-11)

Fl4e) = YO®EL(N1+2-11)%*(-B1l)
F(S5) = YO*EL(NL+1-11)%(-80)
F{&) = F{4) + FI(5)

EE(I) USED TO CALCULATE RMS5 ERROR
ER(1) USED TO CALCULATE RMS ERROR
EM(I) USED TO CALCULATE MAXIMUM ERROR
DO 2 I=3,6

EE(I) = EELI) + F(1I)

ER{I} = ER(I) + F{I)*%2

EM{T) = EM{I) &% ABS(F(I}}

GO TO 201

F(T) = YO*E2(N1+3-11)1%A2

Fi8) = YO*E1(NLl+2-11)*(Al-Bl*A2)

FI9) = YO*EL(N1+1-TT)*(AO-BO*A2)
FL1C) = FLT) + F{8)

F(2) = F(9) + F(10)

DG 3 I=7,10
EE{I) = EE(I)}
ER(I) = ER(I)
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3 EM{I) = EMIL) & ABS(F(I))
EE(2) = EE(2) * F(2)
ER(2) = ERL2) + F{2)*%2
EM{2) = EM{2) ¥ ABS{F(2))
GO TO 201

203 F(1l) = YO*EZ2(N1+3-1I1)
EE(1) = EE(L) + F(1)}
ER{1) = ER{L) + F({l)**2
EM(1) EM{L1l) + ABS(F(1)})
IFtIT.LT.N1Y GO TO 201
SETS MULTIPLICATION ERROR TO ZERO IF COEFFICIENT=1
IF{Bl.EQ.1l.)} EE(4)=0.
IF{Bl.EQsls) EM(4)=2D.
IF(Bl.EQels) ER(4)=0.
IF(BO.EQ.1.) EE(5)=0.
IF{BDO.EQ.ls) EMI5)=0.
IF(BOJLEQ. L1} ER(S5)=0.
IF{AZ.EQ.1.) EMIT)=O0,.
IF{A2.EQ.1.) EE{T)=0.
IF{AZ2.EQa1a) ER{T)I=D.
IF({Al~-Bl*A2).EQ.1.) EE(8)=0,
IF({Al-Bl*A2).EQ.1.) EM(B)*0,
IF({A}-B1*A2).EQ.1.) ERI(B)=0.
IF{{AQ~-BO*A2).EQsle) EE(9)%0.
IF{{AD-BO*AZ).EQ.1.) EM(9)=0.
IF((AO-BO*A2).EQs1l.) ER(9}EQ,
DO 50 I=1,10

50 ER{I) = ER(T)I*XMZ2 4+ EE(I)®e2)M%%x2
PRINT 300

300 FORMAT(*=1*,YFORM? 423X, *MAX ERROR®',7X, *RMS ERROR')
CALCULATES ERRORS FOR INPUT QUANTIZER
ERM1 = SQRT(ER(1)®XM2}
CALCULATES ERRDRS FOR OUTPUT QUANTIZIER
ERMZ = SQRTIER(2)*XM2)
PRINT 304,EM(]1),ERM]

304 FORMAT{*-=*,%INPUT',15X,2F16.5}
PRINT 30S5,EM(2),ERM2

305 FORMAT{'—*,'0UTPUT Yy 14X,2F16.5)
SET 11=0 TOD EXCLUDE INPUT ERROR POINT FROM TOTAL ERRGR

Ir =1
1 =0
SEYT 10=0 TO EXCLUDE OUTPUT ERROR POINTYT FROM TOTAL ERROR
10 =0
10 = 1

IF(I1.EQ.0) EE(1)=0.
IF{I1.EQ.O0) EM(1})=0.
IF(I1.EQ.0) ER(1}=0.
IF(I0.EQ.OQ) EE{2)=0,
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10

30

40

302
201

IFII0.EQ.0) EM(2)=0.

IF(10.EQ.O0) ER(2)=0,

EER IS USED IN CALCULATNG RMS ERROR FOR TRUNCATION
EMM IS TOTAL MAXIMUM ERROR FOR FILTER FORM

EER = Q.
EMM = 0.
ERR = 0.

DD 10 I=1,10

EMM = EMM+ EM(I)

ERR = ERR + ER{I)

IF{JT.NE.1) GO TQ 40

DO 30 I=1,9

K = I+1

DO 30 J=K,10

EER = EER + EE(I)*EE(J)

EER = 2,.%EER ‘

ERMS 1S TOTAL RMS ERROR FOR FILTER FORM
ERMS = SQRT{(ERR ¢+ EER®XM¢x%2)

PRINY 302.EMM,ERMS

FORMAT(®*-*, *MODIFIED CANONICAL®',2X,2F16.5)
CONTINUE
RETURN
END
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SUBROUTINE FIL2{EI,EQ)

CANONICAL FORM

DIMENSION 81(1501'E211501-531150)'F!13l'ERll3l'EH{13l.EE|13)
COMMDNICIIAZ.AInAOfBl.BO'XO.Xl-XZ,KB,K%,XS,EII.EIZ.EIB
CUMHON/CZ!ElvEZtE3ngER'EM'EE,II.JJ'KK. NIQYU' JT'XM'XMZ

X2 = EI - B8l#%x1 ~ BO*X0 + EIl

€11 = 0.

IF(JJ.EQ. 1) EL{I[+2) = X2

ED = A2%X2 + Al*X]1 + AO*X0 ¢ EIZ

EI2 = 0.
X0 = X1
XL = X2

IF(JJ.EQ.1) GO TO 201
IF(JJ.EQ.3) GO TO 202

F(3) = YO*ELlINL1+3-11)
Fl4) YO*EL(NL+2~-]1)*{~-B1)
F(5) YO*EL{NL+]1-11)}*(-BO)

F{e) = F{4) + F{(5)
I

DO 2 =346
EE(I) = EELI) £ FLlI)
ER(I) = ER{1) + F{l)#s2

2 EMII) = EM(I) « ABS{F(I))
GC TOo 201

202 F(T) YO*E1(NL+3-11)%A2

F(8) YO*EL(NL142-IT)*Al
F{9) YO*€EL(NL1+1-I1)*AD
F(10)} = FI{7) + Fi(8)

DO 3 I=7,10

[

EE(I) = EE{(1) ¥ F(I)
ER(I) = ER{I) & F(I)*%2
3 EM{I) = EM(I)} + ABSIF(I))

IF(IT.LT.NL) GO TO 201

IF(BlL.EQsle) EE(4) = 0.
IF(Bl.EQ.1l.) EML&G)} = 0.
IF(Bl.EQ.1.) ER{%) = 0.
IF(B0.EQ.1.) EE(5) = O.
IF{B0.EQ.1.) EM(5) = 0.
1F{BO.EQ.1.) ER{(5) = 0.
IF(A2.EQels) EELT)Y = D,
IF{A2.EQ. 1.} EMLT)Y = 0.
TF(A2.EQ.1.) ERLT) = 0.
IF(AL.EQels) EE(8) = 0.
[F(Al.EQ.1.) EM(B) = O,
IFIAL.EQ.1le) ER{(B) = 0.
IF{AD.EQ.s1.) EE(9) = 0.
IF{AQ.EQ.1l.) EM{9) = 0.
IF(AD.EQels) ER(I) = 0.

Do 50 1=1,10
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50

10

30
40

302
201

ER(I) = ER(I)®XM2 & EE(I)*%2%x)XMk¥2
EER = 0.

EMM = 0.

ERR = 0O,

DO 10 1=1,10

EMM = EMM + EM{T)

ERR = ERR + ERI(I}

IF{JT.NE. 1} GO TOD 40

00 30 I=1,9

K = I+1

00 30 J=K,10

EER = EER + EE(I)*EE(4)

EER = Z2.%EER

ERMS = SQRTIERR + EER#XM*¥x2)}

PRINT 302,EMM,ERMS

FORMAT ('~ , "CANDONICAL* lIX42F1l6.5)
CUNTINUE

RETURN

END
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SUBROUTINE FIL3(EI,ED)

MODIFIED DIRECT FORM

DIMENSION El(150}'52(150"53(150),FI13’nER(13"EM‘13IoEE(13'
CUHMUN/Cl/AZ'AlpAO;BloBOgXO'XIpXZ.X3'X4ox5gEI1yEi2mEI3
COMMON/C2/ELyE24E3¢F+ERyEMAEE s [T 9 JJsKKyNL Y05 JT 9 XMeXM2

X2 = A2%EI + AL%X5 4 AQD#X4& — X3+¢EIll

€Efl = Q.

IFLJJ.EQe 1) ELL{TI*2) =
IF(JJ.EQe 1} E21T1¢2)=EI
E0Q = X2

X3 Bl*xx2 & BO*X1

X1l X2

X4 X5

X5 = EI

IF{JJ.EQe 1} GO TO 201}
Fi3) YO*EL(NL+3~11)
Fi4a) YO*EL(NL+2-I1)%(~-B1)
F{5) YOSEL(NL+1—11)*(-B0J
Fié6) Fi4) + F{5)

FLT) YO*E2(N1+3—~-11)%A2
F{8) YOxE2(N1+2-11)*Al
F{9) YO*E2({N1+1-1T)%*A0
F{10) F(7) ¢« FL8)

F{1l1) F(9)} + F(10}

DO 2 1I=3,11

EELL) EE(I) « FLI)

ER(I) ER(I) # F(I)*%2
EM(I) = EM(I) % ABS(F(I))
IF(IT.LT.N1)Y GO TO 201
IF(Bl.EQ.1ls) EE{#)=0.
IF(B1.EQ.1.) EM(4)}=0.

X2

|1 I O T I ]

nonw

]

50

IF{Bl.EG.1.)
IF{BO.EQ.l.)
IF(BO.EQ. 1.}
IF(BO.EQ.1.)
[FLA2.EQ.1.)
IF(A2.EQs14}
IF(A2.EQ.1l.)
IF(Al.EQ.1l.)
IF{Al.EQ.1.)
IF{Al.EQ. 1.}
IF{AO.EQ. 1.)
IF{AO.EQ.1.)
IF{AD.EQ.1.)
DO 50 I=1,10
ERII) =
EER 0.
EMM 0.

Hon

ER({4}=0.
EE(51=0.
EM(5)=0.
ER(5}=0D,
EBLT)=0.
EM(T)=0.
ER{7)=0.
EE(8)=0.
EM(8)=0,
ER{8)=0.
EE(9)=0.
EM(9)=0.
ER(91=0,

ER{I)*XM2 + EE(])*&2xXM¥*2
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10

3o
40

302
201

ERR = 0.

DO 10 I=1,11

EMM = EMM + EM{I]}

ERR = ERR + ER{I)
IF{JT«NE. 1) GO TO 40

DO 30 I=1,10

K = 1+1

DO 30 J=K,11

EER = EER + EE{1)*EE{J)

EER = Z.*EER

ERMS = SQRT{ERR + EER®XM%%2)
PRINT 302.EMMyERMS
FORMAT(*~*,*MODIFIED DIRECT*y5X,2F16.5)
CONTINUE

RETURN

END
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202

SUBRDUTINE FIL4LEILED)

MODIFIED STANDARD FORM

DIMENSION EL1{150),E2(150),E3{150),F(13},ER(13),EM(L13),EE(L3)
COMMON/CL/AZ4AL3A0,B1,B0s X0 X1l eX24X39XGX5,EIL14,EI2,EI3
COMMON/C2/EL+EZ+EI4FsERyEMIEE s [T s JUp KKy NI 3Y0 JT XM, XM2

£E0 = A2%E] + X0

X2 = AQ*EI - BOD#EQ + EI1l

X3 = ALl*EIl # X1 — Bl*EQ + E[2

E1l = Q.

ETZ2 = 0.

IF{JJ.EQ.L) EL(TI#+2)
IF{JJILEQ.]1]) E21TI+2)
IF{JJ.EQ.]l) E3(II+2)
X0 = X3

X1 = X2

IF{JJ.EQ.1) GO TO 201
IF{JJ.EQ. 3) GO TQ 202

X2
El
X1 - B1*EO

H W N

F(3) = YO*EL(NL+3-11)

Fl4) = YOXE2(NL1+3-11}*A0

F(5) = YO*(ALI*E2{NL42=-TII4E3(NL+2-11)+A2%E2({N1+3~1])}%(-B0O)
DO 2 I=3,5

EE(I) = EE(TE) + F(I)
ER(E) = ER(I)} & F(1)%%2
EM{IY = EMIL) & ABSIF{I})
GO TO 201

F{6) YO*E3{NL+3-1IT)

=
FU7) = YO®E2(NL+3-111%Al
F(8) = YO*E2{NL+2-L1)=%A2
FU(F) = YOR{E3(NL+1-11) + ALl*E2(NL1+1-T1)+A2%E2(NL1+2-11))

FELO) = YO®(AL%EZ2(NL142-T1)4E3(NL+2-1T1)+A2%E2(NL#3-11})%(-B1)
F{11) = F(6) + F(T)

DO 3 I=6.11

EE(TI) = EE(I} +« F(1)
ER(ID) = ER(I) « F(I)®%2
EM{I) = EM(TI)Y ¢ ABS(F(I})
IF{IT.LT.N1) GO TO 201
IF(AC.EQ.1.) EE(4}=0.
IF{AQ.EQ.1l.) EM({4)=0,
IF(AD.EQ.1.) ER{4)=0,
IF{BO.EQels) EE(S5)=0,
IF{BO.EQ. 1.} EM(5)=0.
IF(BO.EQ.1.) ER{(S5)a0,
IF(AL.EQ.1.) EB(T7)=0.
IF{AL.EQ.s1.) EM(T)=0,.
IF(Al.EQ.1l.) ER{T)=0,
IFLAZ.EQsl.) EE(B)=0,
IF{A2.EQ.1.) EM(B)=0,
IFIAZ.EQ. 1.} ER(8B)=0,

57



+

IF{Bl.EQ.1s) EE({LO)=0,
IF(Bl.EQ.1.} EMI(10)=0,
IF{Bl.EQ.1.) ER{10)=0D.
DO S0 I=1,11
50 ER(I) = ER(IVI*XMZ2 + EE(1)*%2&XMe%?
EER = 0,
EMM = 0.
ERR = 0.,
DO 10 [=1,11
EMM = EMM & EMILI)
10 ERR = ERR + ERI(I}
IF{JT.NE. 1) GO TO 40
DO 30 I=1,10
K = J+1
DO 30 J=K,1l
30 EER = EER + EE{T1)*EE(J)
EER = 2.®*EER
40 ERMS = SQRT(ERR + EER#¥XM¥x¥2)
PRINT 302,EMM,ERMS
302 FORMAT(*~*,"MODIFIED STANDARD' o3X42F1645)
201 CONTINUE
RETURN
END

58



202

203

SUBROUTINE FILS{EI,EOQ)

STANDARD FORM

DIMENSION EL(150)4E2(15014E3{150),F(13),ER(13),EM(13},EE(13)
COMMON/CL1/A23A13A0,B1,B0yX0pX1gX24X3,X4sX5,ET14+EIZ2,EI3
COMMON/C2/ELyE2yE3oFoyEREMIEE o B 1 9 JJoKKnNL s YO JT 4 XMy XM2

X2 = {AD-A2%BO~B1l*(Al1-A2%B1l})*EI-B1*X1-BO*X3+E]1

X4 = X1+(Al-A2#Bl)I*ET+EI2

EQ = X3+AZ2*EI+EI3

ElIl = Q.
g1z = 0.
El13 = C.

IF{JJ.EQ. 1) EL(TII+2)=X2
[IF{JJ.EQe1) E2(I]+2)=E1L
X1 = X2

X3 = X4

IF{JJ.EQ.1) GO TO 201
IFtJJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203

F(3) = YO*EL{N1+3-11}

Fl(4) = YOREL(NL+2=-11)%x{-B1]

F(5) = YO®E2{NL+3-I1)*{A0-A2*BO~-Bl*(Al~A2%B1}))
F{(6) = YOR({AL-AZ*BLl)I%E2(NL+2-TT)+EL{NL4+]1-I1))%{~-BO)
FIT) = F(4) + F(&6)

DO 2 1=3,7

EE(I) = EE(I) + FI(I)

ER(L)Y = ER(I) + F(I)%x%x2

EMITIY = EM(I}) + ABS(FII})

GO TO 201

F{8) = YO%E2(NLl+3-11)*x(Al1-A2*81)

FI9) = F{8) + YO*ELl{N1+2-11)

DO 3 [=8,+9

EE{I) = EE(I) + F(I)

ER{I) = ER{I)} + F(I)*#%2

EM{I) = EMII) + ABS(F(I))

GO TO 201

F(10) = YO*BE2{N1+3-11)%A2

EE(10) = EE(10) + F(10)

ER(10) = ER{10) + F{10)*%x2

EM{10) = EML10) + ABS(F(10))

[F(IT.LT.N1) GO TO 201

IF{Bl.EQ. 1) EM{4)=0.

IF(Bl.EQ.1s) ER{%)=0.
IFI{AQ-AZ2xBO-Blx{Al-A2%Bl)).EQ.1l.) EE{(5)=0,
IF((AQ0-AZ2%BO-B1*({Al~A2%B1l}).EQ.1.)} EM(5)=0,
IFI{AQC-A2%BO-51*{A1-A2%Bl)).EQ.l.) ER{5]}=0.
IF((ALl-A2*Bl).EQ.L.} EE(B)=0.
IF((A1-AZ2%8]1}.EQ.l.) EM{8)=0.

59



50

10

30
40

302
201

IF{(Al-A2*Bl).EQ.1.) ER(B)=0,
IF(BO.EQ.1l.) EE(6)=0.
IF(BO.EQ.1.]) EM(6)=0.
IF(BO.EQ.1l.) ER(6)=0,
1F{A2.EQ.1.) EE(10)=0.
IF(A2.EQ.1.) EME10)=0.
[F{A2.EQ.1.) ER(1Q)=0,

DD 50 I=1,10

ER{I) = ER(I)*XM2 + EE([)»%2%XM%x%2
EER = 0. .

EMM = 0.

ERR = 0.

DO 10 I=1,10

EMM = EMM + EM(I)

ERR = ERR + ERI(I)
IF{JT.NE. 1) GO TO 40

DO 30 I=1,9

K = 1+1

DO 30 J=K,10

EER = EER + EE(I1}*EE(J)

EER = 2.*EER

ERMS = SQRT(ERR + EER®XM%*k2)
PRINT 302,EMM,ERMS
FORMAT{®*-"*,*STANDARD' y12X42F16u5)
CONTINUE

RETURN

END
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SUBROUTINE FILG6{EIED)

PARALLEL FORM

DIMENSION ELIL150) 6211501 ,E3(150),F(13),ER{13},EM{L13),EE(13)
COMMON/CL/AZ3Al 3AOsBLyBO X0y X1y X29 X34 XG4 XS54ETL,EI2,E12
COMMON/C2/EL 2 E23E3 o FyERJEMGEE ¢ 1Ty JU KKy NL YDy JT XMy XM2
COMMON/CA/PLyP24P34P4,614G2yG3,6G4

X1 = Gl*El -~ P1*X0 + EI1
X3 = G2%E] - P2%*XZ2 + EIZ2
EO = A2#El + X0 + X2 + EI3
EIL = 0.

EI2 = 0.

EI3 = 0.

IF(JJ.EQ. 1) EL(II+2) = X1
IF{JJ.EUG.1) E2(I1I+2) = X3
TF{JJ.EQ. 1) E3(II+2) = EI
Xg = X1

X2 = X3

IF{JJ.EQ.1) GO TO 201
IF{JJ.EQ.3) GO TO 202
IF(JJ.EQ.4) GO TO 203

F(3) = YO*E3{(NL+3~-11)%*Gl1
F(4) = YO*EL(NL+3-11)

F{5} = YO%EL(NLl+2-11)*{-Pl}

DD 2 I=3.,5
EE(I) = EE(I) « F(I)
ER(I) = ER(I) & F(I)**2

2 EM{I) = EM(I) ¢+ ABS{(F(1}}
GO TO 201

202 F(6) = YO*E3(N1+3-11)%G2
FIT) = YO*E2(N1+43-11}
F(8) = YO*EZ2(Nl+2-]])*(=-P2)
DO 3 I=6+8

EE(I) = EE(I) + F{I)
ER(I) = ER(I) & F(I)*%2
3 EM{I) = EM(1) ¢ ABS(F(I))
GO TO 201
203 F(9) = YO*{EL{(N1+2=IT)+E2{(N1+2-11))
FO1O0} = YO*E3(NL1+3-11)%A2

0D 8 [=9,10
EE(I) = EE(L) + F(I)
ER(I) = ER(I) « F{I)%x2
8 EMII) = EM(I) & ABS(F(I})

IF(IT.LT.NL) GO TO 201
IF(Gl.EQ.1.) EE(3)=0,
IF(Gl.EQ.1.) EM{3)=0,
IF{Gl.EQ.1.) ER(3}=0,
IF(Pl.EQ.1l.) EE(5)=0,
IF{Pl.EQ. 1.} EM{5)=0.

61



IF(Pl.EQs1.) ER(S5}=0.
IF{G2.EQs 1} EE{6}=0.
{F{G2.EQ. 1.} EM(6)=0.
IF!Gz.EQ-l.) ER(6)=0,
IFIP2.EQ.1.) EE(B}=0.
IFIP2.EQ. 1.} EM(8}=0.
IFIP2.EQ.1.) ER(B)=0.
IF(A2.EQ.1.) EE(10)=0.
IF{A2.EQ.1.} EM(10)=0.
TF{A2.EQels) ER(10)=0.
DO S0 1=1.,11

50 ER(I) ER{L)*XMZ + EE{I)*®2%)XMx%2
EER = 0.
tEMM = 0.
ERR = 0.
o0 10 I=1,10
EMM = EMM + EMI(T)

10 ERR = ERR + ER{(I)
IFIJT.NE. 1) GD TO 40
DO 30 I=1,49
K = I+1
De 30 J=K.10

30 EER = EER + EE(I)*EE(J)
EER = 2.%EER

40 ERMS = SQRT{ERR + EER*®XM*%2)
PRINT 302,EMM,ERMS

302 FORMAT{ 9=~ ,YPARALLEL*,12X,2F16.5)}

201 CONTINUE
RETURN
END
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202

203

SUBROUTINE FILT{EI.EOD)

XI FORM

DIMENSION EL(150),E21150),E3(150),F(13),ER(13),EM(L3),EE(13)
COMMON/C1/A2,A14A04B13BO0yX0sX194X2)X39Xb9X5¢EI1,EI2,EI3
COMMON/C2/EY4E24E34FyERGEMJEE ¢ IT g JJoKK o NL ¢ YO »JT 9 XMy XM2
COMMON/C3/P1,P2,P34sP4+GLle52:G3eG4

X1 = 2.%G3I*E] — PIwX0D — P4*X2 4 EIl
X3 = 2.%G4*B] — P3xX2 + P4¥X0 + €12
EQ0 = X2 + A2*EI + EI3

ETI1 = Q.

EIZ2 = 0.

£13 = Q.

IF{JJ.EQel) EL(II+2) = X1
TF{JJEQ. 1} E2(II+2) = X3
IF(JJ.EQ. 1) E3(I1+2} = El

X0 = X1

X2 = X3

IF{JJ.EQ. 1) GO TO 201
IFtJJ.EQ. 3} GO TO 202
IFtJJ.EQ.%} GO TO 203

F(3) = YO*EL(NL1+3-11)

Fi4) = YO*EL(NL+2=-TI)*(~P3)
F(5) = YOXE3(N1+43-11)%*2,.%G3
F(6) = YO®EZ(NL142-11)*(~P4)
FLT) = Fi(5) + F(6)

DO 2 I=3,7

EE(]) EE(IY + F{I}

ER{I) = ER{I) & F(I)*%2
EM({I) = EM{I) + ABSI{F(I))}
G0 TO 201

F(8) = YO*E2{N1+3-11)

F(g} YO*E2(N142-I1)*{-P3)
FULO) = YO*E3(N1+3-111%2,.%G4
FIll) = YO*ELINL%2=-[1)%*P&4
FL12} = F{10) + FL11)

DO 3 I=8412

EE(I} = EE(I) ¥ F(1l)

ER(I)} = ER(I) % FLI)**%2
EM{T) = EM(I) + ABSIF(I)}

GO TO 201

F{l13) = YO*E3{(N1+3—-1])*A2

EELL3) = EELL3) + F{13)
ER(L3) = ER(13) + F(l3)*%2
EM(L3} = EM(13) + ABS(F(13))

IF(II.LT.N1) GO TO 201
IF(P3,EQ.1.) EEL4)=0.
IF(P3.tQ. 1.} EM(4)=0.
IF(P3.EQ.1.) ER(4}=0.
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IF{i{2.*%G3).EBQ.1.) EE(5)=0.
IF({2.%G3).60Q.1.) EM{5)=0.
IF({2.%G3)EQ.1s) ERI5)=0.
IF(P4.EQ.1.) EE{6)=0,
IF{P4.EQ.1.) EM(6)=0.
IF{P4.EQ.1.) ER{6)=0.
IF(P3.EQ.1.) EE(9])=0,
IFIP3.EQ.1e) EM{9)=0.
IFIP3.EQ.1ls) ER(9)=0.
IF{{2.%G4).BQ.1.) EE(10)=0.
IF((2.3G4).€EQ.1.) EM{10)=0,
IF{(2.%G4).B2Q.1.) ER(107=0.
IFIP4.EQ.1.) EE(11)=0,
TF(P4.EQa.1.) EM{]112=0,
IF{P4.EQsls) ER(L11)=0.
IF(A2.EQ.1.} EE(13)=0.
TF{A2.EQ.1.) EM(13)=0,
IF{A2.EQe14) ER(13}=0,
DO 50 I=1,13

50 ER{IY = ER(L)*XM2Z + EE(I)%%2%) Mk%2

EER = 0O,
EMM = 0.
ERR = 0.

00 10 ¥=l,13
EMM = EMM + EMLI)
10 ERR = ERR + ERtI)
IF{JT.NE.1) GO TO 40
DO 30 I=1,12
K = J+1
DO 30 J=K,13
30 EER = EER + EE(I)*EE(J)
EER = 2.%FER
40 ERMS = SQRT{(ERR + EER#*XM%x*2)
PRINT 302,EMM,ERMS
302 FORMAT('—*,*X1%,18X,2F16.5)
201 CONTINUE
RETURN
END
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202

203

SUBROUTINE FIL8{EI,EOD)

X11 FORM

DIMENSEON E1{150) sE2(1503,E3(150),F(13),ER(13),EM{13),EEL13)
COMMON/CL/A2,A13A05BL,BOyX0¢X1sX2, X33 X4 XSy ET1,EI2,E13
COMMON/C2/ELyE2,E3sFyER9EMPEEy LTy JJ s KKoNL YDy JT 9 XMy XM2
COMMON/C3/P1oP23P3,P4,Gly62,63,G4

X1 = EI = PAxX0 + P4*X2 + EI1
X3 = -P3xX2 ~ P4*X0 + EI2

ED = 2.%G4%X0 - 2.%G3%X2 + A2%El + EI3
EIl = Q.

El12 = 0.

EI3 = 0.

TF(JJ.EQe1) EL(II#2) = X1
IF(JJEQel) E2{I1#2) = X3
[IF(JJ.EQ.1) E3(TI+2) = EI

X0 = X1

X2 = X3

IF{JJ.EQ. 1) GO TO 201
IFIJJ.EQ. 3) GO ¥O 202
iF(JJ.EQ.4) GO TO 203

FU3) = YO#EL{N1+3~[1}

F(4) = YOSEL(NL+2-T1)*(-P3)

FIS5) = YOR(EI(NL+3-TT)+P4*E2(NL+2-11))
FL6) = YO*E2(N1+2-11)*P4&

Do 2 I=3,6

EE(I) = EE(1) + FLI)

ER(I) = ER(I) + F(I)*%*2
EM{I) = EM(I) & ABS(F(I)}

GO0 TO 201

FE7) = YO*E2(N1+3-11)

F(8) = YD*E2(N1+2-[1)*{~-P3)
F(9) = YO*EL(N1+42-11)*P4

Do 3 137'9

EE(I) = E&(I) + FLI)

ER([) = ER(I) & FU{l}**2
EM(I) = EM{T) + ABSIFI(IY))

GO TC 201

F{10) = YO*E2(NL+2-11)%2.%63
F(11) = YO*®EL(NL#2=11)%*2,%G4
F(l2) = F{10) + F(11)

FI13) = YO*E3{NL1+3-11)%A2

DO 8 I=10,13

EE{T) = EE(L) + F(I)

ER(I) = ER{I) « F{I)#x2
EM{I) = EM{I) + ABS(F({I))

IF(IT.LT.N1Y GO TO 201
IF{P3.EQ.1.) EEL4)=0,
[F{P3.EQ.1.) EM(4)=0,
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IF{P3.,EQ.1l.} ERI[%4]=0.
IF(P4.EQ.1l.) EB{6)=0.
IFIP4.EQ.Ll.) EM{6)=0.
IFtP4.EQsls) ER{6)}=0.
IF(P3.EQ.1.) EE18)=0,
IF(P3.EQuels) EM(8)=0.
[F(P3.EQ.1.) ER(8)=D.
TF(P4.,EQ.1,) EMI9}=0,
IF(P4.EQ.1.) EE(9)=0,
IF(P4,EQel.e) ER{9)=0.
IFI{2.*G3).6Q.1.) EE(10)=0.
IF((2.%G3).EQ.1.) EM(10)=0.
IF{(2.%G3).8Q.1.) ER{10)=0.
IFL{2.%G4).6Q.1.) EE{11)=03
IF((2.%G4).EQ.1l.) EM(11}=0,
IF({2.%G4) .EQ.1ls) ER(11}=0.
IF(A2.EQ.ls) EELL3)=0,
IF(AZ.EQ.1a) EM(13)=0.
IF{A2.EQ.1s) ER{13)=0.
DO 50 I=1,13

SO ERCI) = ERLI}®XM2Z & EE{])RxZ2EXME¥/

EER = 0.
EMM = Q.
ERR = 0.

DO 10 I=1413
EMM = EMM + EM(T)
10 ERR = ERR + ER{I)
IF(JT.NE.1) GO TO 40O
DG 30 I=1,12
K= I+l
DU 30 J=K,13
30 EER = EER + EE(I)%EELJ)
EER = 2.%EER
40 ERMS = SQRT{ERR + EER®XM##2)
PRINT 302,EMM,ERMS
302 FORMAT('—*,9XI1%,17X,2F16.5)
201 CONTINUE
RETURN
END
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