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ABSTRACT

This investigation deals with the use of a movable
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mass control system to stabilize an arbitrarily tumbling

asymmetric vehicle about the maximum inertia axis. A

first--order gradient optimization technique is used to

minimize angular velocity components along the intermediate

and minimum inertia axes. This method permits a wide

range of initial guesses for mass position history. Mo-

tion of the control mass is along a linear track fixed in

the vehicle. The control variable is taken as mass

acceleration with respect to body coordinates. Motion is

limited to defined quantities and a penalty function is

used to insure a given range of positions. Numerical

solutions of the optimization equations verify that

minimum time detumbling is achieved with the largest

permissible movable mass, length of linear track, and

positions of the mass on the two coordinates perpendicular

to the linear motion. Also, the mass should oscillate,

about the zero point, on an axis parallel to the major

principal axis. A minimum mass solution is obtained

by fixing the time at the largest feasible value. The

optimal method permits detumbling in about one--fourth

the time when compared to a force control law formulation

available in the literature. Since stabilization may

require hours, this reduction in time is very significant.
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In regard to minimum mass, the optimization permits the

use of a much smaller mass for detumbling in the same

time. This mass reduction is quite substant=al since

very large masses are required. Use of this control

system for actual operations in space is feasible since

the velocity and acceleration of the mass, and the power

requirement, are low. It should be noted that the control

technique utilizes an open loop solution in real tame.

In addition, the technique need not be restricted to

attaining simple spin about the maximum inertia axis;

geometric axes may be specified.
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NOMENCLATURE

a = Inertial acceleration of the origin of
coordinates which is fixed at the center
of mass of the main body

= Force on the control massm

fmx = x component of

f = n column vector composed of fi

fi W Functions to which xs i are equal

^r Resultant of external forces
t-;

?-
i.".

FP = Function on which an inequality constraint
.k is placer

i=

Fp = Maximum permitted value of Fpmax

Fpfixed r Actual Fpmax used in computation

H = Angular momentum of the system with respect
;. to the origin of coordinates

r.

^Hm = Angular momentum of the movable control
mass with respect to the origin of
coordinates

HB = Angular momentum of the main body with
respect to the origin of coordinates

H$x ,HEy ,Haz = Component of ^B along the x, y, and z
axes, respectively

- Angular momentum of the system withcm respect to its own center of mass

1,3,k = Orthogonal unit vectors of coordinate fra y: ;.
fixed in the main body

Tx ,ly5 1 z = Moments of inertia of the main body

# Ixy'lxz'lyz = Products of inertia of the main body

Z = Inertia dyadic of the main body

lmax Maximum moment of inertia of the system
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lmin = Minimum moment of inertia of the system
x = (q x q) matrix required in the first-order

gradient method

ICJ = q column vector required in the first-order
gradient method

Iii = Scalar required in the first-order gradient
method

J = Performance index to be minimized

K = Arbitrary constant associated with the
penalty function technique

Kl ,K2 = K for P l and P 2 , respectively

L = Xntegrand of performance index

m = Mass of movable object

M = Mass of main body

p = n column vector of influence functions

P = Auxiliary state variable due to penalty
function

Pl ,P 2 = P for the two inequality constraints on
xmax and x min , respectively

r = Position vector from center of mass of
main body to the point mass

r  = Position vector from center of mass of
main body to the center of mass of the
system

R0 = Position vector from inertial origin to the
center of mass of the main body

c = Position vector from inertial origin to the
center of mass of the system

R = (n x q) matrix of influence functions
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NOMENCLATURE (Continued)

= First moment of mass of the system

t = Time

to = Initial time

tf = Final time

T = Rotational kinetic energy of the system with
respect to its own center of mass

u = m column vector of control variables

u 	 = Control variable equal to x

W = (m x m) position definite matrix required in
the first-order gradient method

x,y,z = Coordinates corresponding to i, 3, and k,
respectively

x	 ,xmax min = Maximum and minimum permitted mass positions
on the x a.is, respectively

xh ,xl = Actual values used for xmax and xmin,
respectively, during computation

xs = n column vector of state variables

xs i = State variable

X,Y,Z = Coordinate axes fixed at the center of mass
of the main body

S = State variable equal. to

= External moment

s = Constant required in the first--order gradient
method

u = Equivalent mass equal to mM/(M + m)

V = q column vector required in the first-order
gradient method
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NOMENCLATURE (Continued)

= Terminal constraint

for P 1 and P 2 , respectively

i = Angular velocity of spacecraft

wx ,wy ,wz = Components of w along i, j, and k,
respectively

w V w 2 ,w 3 = Components of w along the maximum, inter-
mediate, and minimum inertia axes of the
main body, respectively

W2	 ,w3	 = Maximum values of w 2 and w 3 desired
max Max
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CHAPTER I

INTRODUCTION

General Introduction

Future manned spacecraft might be subjected to

tumbling. Such a situation may result from collisi',n

with another vehicle, thruster malfunction, propellant

tank rupture,, or escaping atmosphere. For example, the

Salyut 2 space station orbited by the Soviet Union on

April 3, 1973 went into a tumbling mode which is believed

to be a result of an explosion or a wildly Firing

thruster. 1 A study by Kapl.an 2 on tumbling causes stowed

that a future manned space station configuration may be

subjected to a tumbling state with angular velocities
^,.	

up to two RPM if collision occurs with a space shuttle.

Escaping atmosphere will yield about the same state.

Tank rupture may result in angular velocities of approxi-

mately one--half RPM. This tumbling should be immediately

alleviated for crew safety and minimization of damage to

the vehicle. Specifically, the crew would be subjected
L'

to oscillating accelerations. Hard docking by a rescue

'	 vehicle would be very diffi2ult and would require a

large fuel expenditure. In addition, it could not be

implemented immediately. This time constraint also holds

i'

	 for other external detumbling methods such as fluid im-

pingement. Hence, an internal control system is desirable.

i;
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Tumbling stabilization of space vehicles may be

achieved by passive or active control devices. Passive

systems are used as wobble dampers. They eliminate the

wobbling motion of spacecraft by using mechanical or fluid

dampers to dissipate energy until the minimum energy state

is reached; their energy dissipation rates are low. This

ultimately results in simple spin about the major principal

axis. However, passive systems are designed for vehicles

with high initial spin rates about the maximum inertia

axis. Hence, they would not be appropriate for the future

manned station mentioned above since it is normally in a

non-spinning mode and a collision will result in the three

angular velocity components of the vehicle being of the

same order of magnitude. An active device such as a mass

expulsion system may not be feasible since it requires

long term, onboard storage of propellant. Momentum ex-

change systems probably would saturate in large corrective

maneuvers and may require continuous operation. An active

control device that does not have the restrictions men-

tioned above is an internal movable mass system. Movement

of the mass will not affect the angular momentum vector,

but it will affect the rotational kinetic energy. There--

fore, internal mass motion can be used to decrease the

rotational kinetic energy -to a minimum which corresponds

to the case of stable spin about the maximum inertia

1
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axis.	 For the case of the previously mentioned future

manned space station, there will still be need of de--

xspinning; but, docking by a rescue vehicle with subsequent

Y	 €^	 w despinning would then be a relatively simple operation.
r

Also, escape by crewmen, if necessary, will be easier

from a spinning rather than a tumbling vehicle. 	 Movable

mass control systems, however, have been investigated for

vehicles which fall within the assumption of symmetry, or

} small transverse angular velocities relative to the spin

velocity, or both. 	 Stabilization of a vehicle like the
N

manned space station cited above which is not symmetric

and which may experience angular velocity components of
t.

x
the same order of magnitude requires further investiga-

tion.	 A recent study of this general problem by Edwards3

analyzed the rate of change of rotational kinetic energy
r

in order to obtain stabilization; buts a long detumbling
f-y

time and a large mass are required.	 Since it is important
r,

to have a mass as low as possible in space operations and,

f specifically for the distressed manned space station, to.. 	 =

detumble as fast as possible, an optimal solution needs to

be obtained.
F

f"

` Statement of the Problem
s.

The objective of the research work presented here is

to develop an optimal time and mass technique for obtain-

ing the time history of internal control mass motion

along a linear track in a tumbling space vehicle to achieve	 � -N
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simple spin. No assumptions of symmetry or small trans-

verse angular velocities relative to the spin velocity

will be made. Specifically, the manned space station

mentioned in the previous section will be used as the

test case. A first--order gradient optimization technique

will be used to obtain motions of the internal mass that

will result in stabilization about the maximum inertia

axis. A penalty function method will be used to limit

the extreme positions of the movable mass. Effects on

the solution due to changes of various parameters will

also be investigated. These parameters, all referring to

the movable mass, are: mass, length of the linear track,

positions along the two coordinates perpendicular to the

linear motion, position along the axis of mass motion of

the center of the track, and the direction of the track.

A study of these changes will yield guidelines for obtain-

ing maximum effectiveness from a movable mass control

system.

Summary of Work

The differential equations of motion for a spacecraft

with one internal movable mass permitted to move along a

linear track were written with respect to an arbitrary

orthogonal coordinate system fixed at the center of mass

of the main body, which is the spacecraft without the

control mass. A first-order gradient method, minimizing

_4.
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the magnitudes of oscillations of angular velocity com-

ponents along the intermediate and minimum inertia axes,

was used to obtain control mass motions which yield

simple spin about the maximum inertia axis. An IBM 370/165

computer was used to obtain the results. This quantitative

analysis, along with a qualitative examination of the

differential equations of motion, permitted evaluation of

various parameters in order to determine values which will

result in minimum time and mass detumbling to simple spin. J

For minimum time, the mass, length of the linear track,

and positions of the mass on the two coordinates perpen-

dicular to the linear motion should have magnitudes as

large as possible.	 Also, the mass should oscillate,

about the zero point, on an axis parallel to the maximum

inertia axis.	 A minimum mass solution is obtained by

fixing the time at the largest feasible value. 	 Compared

to Edwards, this optimal technique permits detumbling in

about one-fourth the time. 	 Since stabilization may re-

quire hours, this reduction in time is very significant.

In regard to minimum mass, the optimization permits the j

use of a much±, smaller mass for detumbling in the same -

time.	 This mass reduction is quite substantial since

very large masses are required.
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CHAPTER II

PREVIOUS INVESTIGATIONS

Differential equations governing the angular motion

of a space vehicle with moving internal parts have been

obtained and discussed in several papers. Roberson4 de-

rives these equations relative to the composite center of

mass of the system. Since the reference point is the

composite center of mass, the inertia dyadic is a function

of time. The equations permit relative translational and

rotational motion within the spacecraft frame. Effects

on the vehicle due to known motions of the parts are then

examined. Grubin516 also obtains and discusses differen-

tial equations governing the motion of a space vehicle

I

with moving internal parts. However, his equations are,

referenced to the center of mass of the vehicle without

moving parts. Therefore, the inertia dyadic of the main

body is constant. He examines several two dimensional

cases of mass translation in a vehicle; but his examples,

like those of Roberson, deal with effects on the vehicle

due to known motions of internal parts.

A number of papers in the literature deal with active

control over the motion of internal parts in order to

control the angular motion of a space vehicle. Since the

differential equations are highly nonlinear, simplifying

i

s	 '
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assumptions are made in order to determine solutions. The

vehicle is assumed to have small angular velocity com-

ponents about two of its axes relative to the angular

velocity along •the axis about which final steady spin is

desired, or is assumed to be symmetric, or both.

Kane and Scher ? analyzed the problem of active
attitude control of a space vehicle with internal movable

parts by considering its rotational kinetic energy. They

noted that internal mass motion will not change the

angular momentum vector since the net moment about the

center of mass of the system is zero. However, internal

mass motion will change the rotational kinetic energy of

the system. Since the angular momentum vector is constant,

rotational kinetic energy will be a maximum or a minimum if

the rotation is about the minimum or maximum inertia axis

of the vehicle, respectively. Thus, a tumbling space

vehicle may be stabilized about the maximum or minimum

inertia axis by internally moving a mass to either dissi-

pate or add kinetic energy. If the space vehicle is sym-

metric, they further noted that the kinetic energy of

the vehicle may be used as a guide to determine the motion

of an internal mass in order to have simple spinning motion

or a combination of precession and spin in which the angle

between the interially fixed angular momentum vector and

the axis of symmetry takes on any preassigned value.

ti
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Specifically, the kinetic energy is written in terms of

this angle and the maximum and minimum kinetic energies.

For a specified angular momentum vector, the initial and

final kinetic energies may now be written by specifying

the initial and desired final angle. A trial and error

procedure is then used in order to find the motion of an

internal mass that will result in a change of the initial

kinetic energy toward the desired final value. This pro-

cedure was applied to a solid uniform right--circular

cylinder with a movable mass attached by a light rod.

Hopper s investigated the use of internal mass motion

in order to decrease the precession angle of spacecraft

spin stabilized about their minimum inertia axis. Energy

dissipating mechanisms are excited during precessional

motion of this type of vehicle. This causes an additional

increase in the precession angle since spin about the

minimum inertia axis is one of maximum kinetic energy. In

order to overcome this effect and have spin about the

minimum inertia axis, energy must be supplied to the sys-

tem. Two active devices are presented: one is a rotary

device and the other is a linear oscillator. Both are

examined for use in an axisymmetric spacecraft. The rotary

device consists of a mass attached to and able to .rotate

about the minimum inertia axis. By keeping the rotor at

some constant offset angle relative to its position due to
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centrifugal force resulting from precession of the

vehicle, positive work can be done and thereby increase

the kinetic energy of the system. The linear device

consists of a small mass undergoing forced oscillations

along a linear path fixed within the vehicle and per-

pendicular to the spin axis. By oscillating the mass at

the proper frequency and by proper control of phase,

the driving motor will cause the kinetic energy of the

spacecraft to increase.

Childs 9 investigated the problem of altitude stabili-

zation of artificial-g space stations by a movable mass

control system. The space station has the physical appear-

ance of two rigid bodies connected by a long, slender tube

and is spinning about its major principal axis. Movement

by the crew may cause wobbling of the space station; that

is, the angular momentum does not coincide with the maximum

inertia axis. In order to damp this wobbling motion, the

author placed a movable mass to the side of one of the two

end pods. The mass was permitted to move inside of a tube

which was parallel to the maximum inertia axis. By assum-

ing small transverse angular velocities relative to the

spin velocity, Childs was able to linearize the differen-

tial equations of motion. This permitted the formulation

of a control law to govern the motion of the movable mass

in order to damp the transverse angular rates. However,

k
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verse axes after the application of the control law; the

control system does not damp both transverse angular

rates to zero.

Lorell and Langer analyzed the use of internal

moving masses to control the spin axis of a spinning

satellite. Many satellites require control over the spin

axis to an accuracy on the order of seconds of arc; two

examples are communications satellites aiming high gain,

narrow beam.-width antennas and weather satellites scanning

the surface of the earth for pictures. The control system

has to take care of sensor-vehicle misalignments, motion

of the principal axes of inertia, and body fixed disturb-

ing torques. By assuming that the satellite is spinning

about its axis of inertial symmetry, that the transverse

angular rates are small relative to the spin velocity,

and a specific geometry for four movable masses, the

authors were able to simplify the differential equations

of motion and use a linear control. law.

As stated in the introduction, Edwards performed an

independent investigation of the general problem of a

vehicle with arbitrary angular velocity components and

arbitrary principal moments of inertia concurrently with

this thesis. He formulated a control law for the force

on a movable mass, in the direction of motion of the

mass, that will reduce the rotational kinetic energy of a
ii
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tumbling vehicle and result in simple spin about the

major principal axis. A formulation of a control law

was made feasible by restricting the mass motion to lie

along an axis parallel to the axis of maximum inertia

and to pass through the zero point of that axis. The

extreme mass positions permitted, on both sides of the

zero position, are set in the control law; but, the

formulated control law does not permit the mass to fully

utilize the track available. Initially, the mass does

go to an extreme position, but subsequent position peaks

fall short of the extremes. 	 Whether the extreme position

will occur on the positive or negative side of the axis

of mass motion is dependent on the initial conditions.

Since these initial values are not known prior to instal-

lation of a control system on board a space vehicle, the

tube for mass motion must extend on both sides of the

zero position a distance equivalent to the extreme posi-

tion permitted.	 The detumbling times and masses obtained
z

by Edwards are very large.	 For the manned space station

mentioned previously, over three hours are needed to obtain f
tY.

stabilization using a movable object whose mass is 0.5% of
z.j

the space station mass.	 An optimal time and mass analysis

of the general problem is needed in order to reduce the
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CHAPTER III

ANALYTICAL STUDY

Purpose and Procedure

The purpose of this part of the investigation is to

obtain the differential equations of angular motion for a

space vehicle with a small movable internal mass and

present an approach to obtaining mass motions that result

in simple spin about the maximum inertia axis. Specific-

ally, the rates of change of three orthogonal components

of the angular velocity vector of the spacecraft will be

expressed in terms of these angular velocities and the

motion of the movable mass. For these equations, the

center of mass of the main body will be used as the

reference point for an arbitrary body fixed coordinate

frame since this will allow the moments and products of

inertia of the main body to be constant. Also, expressions

will be derived for angular momentum, rotational kinetic

energy, and rate of change of this energy. There will be

no assumptions made of symmetry or of small angular

velocities about two of the axes relative to a third;

the space vehicle will be assumed to have three separate

principal moments of inertia and an arbitrary angular

velocity vector such that its three principal axis

components may be of the same order of magnitude.
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These equations are highly nonlinear and it is not

obvious what the mass motion should be in order to detumble

a space vehicle to simple spin about its maximum inertia

axis. Whatever the motion should be, it must have reason-

able values for mass displacement, velocity, and accelera-

tion relative to the vehicle; that is, the mass should

stay within the maximum dimensions of the space vehicle

and should not have velocities and accelerations larger

than can be supplied by a driving motor. Considering the

above and further noting that a tumbling manned vehicle

should be detumbled as quickly as possible, and possibly

an unmanned vehicle from the standpoint of preserving

structural integrity, the use of an optimization technique

seems to be a feasible approach. Specifically, a first-

order gradient optimization technique will bi used since

these are no previous solutions on which to base an

initial guess of the control variable; this optimization

technique does not require the initial guess to be close

to the optimal values. Neighboring extremal and quasi-

linearization methods require good initial estimates of

various .parameters. Also, a penalty function method

will be used to limit the extreme positions of mass

motion.
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Equations of Motion

The angular momentum equation for a rigid body with

an arbitrary origin of coordinates is 5,6

Tf = H+^xa
	

(1)

where ^ is the external moment, P is the angular momentum

of the system, ^ is the first moment of mats of the

system, and a is the inertial acceleration of the origin

of coordinates. The desired equations of motion for a

spacecraft with one small movable mass may be obtained from

Equation (1) by fixing the origin of coordinates at the

center of mass of the main body, which is the spacecraft

without the movable mass. The geometry of the system is

shown in Figure 1 where x, y, z is a coordinate system,

with 1, 
I. k unit vectors, fixed in the main body, whose

origin is at the center of mass of the main body. The

angular momentum, ^, may be separated into two parts:

the angular momentum of the main body relative to its own

center of mass, BI and the angular momentum of the mov-

able control mass with respect to the center of mass of

the main body, Pm. The angular momentum AB may be

expressed as

B = HBxz + HBy1 + HBzk
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Figure 1. Geometry of System
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where

HBx - Ixwx y Ixywy 4 Ixz m Z , (3)

HBy - - Ixywx + Iywy - IyZW Z , (4)

HBz W -Ixzmx	 IyzWy + IzwZ. (5)

The inertial time derivative of 	 is

=C^HB]+-mxiB (6)

where[ B 	is the time derivative with respect to the

body fixed x, y, z coordinate system of 3 B which is given

by Equations (2) through (5) and w is the angular velocity

of the spacecraft which can be expressed as

w = c^xi 	 mZk. (7)

The angular momentum	 consists of the angular momentum -_
m

of the mass about its own center of mass and the angular

momentum of the mass moving about the center of mass of

the main body:

I-I W-IT	 +mrxr. (8)m mabout its own
center of mass

asi
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Considering the movable mass, m, as a point mass, the

first term on the right hand side of Equation (8) can be

equated to zero. The inertial time derivative of rim is

then

mr x r.	 (9)
m

The acceleration of the mass with respect to the center of

mass of the main body !) r	 be expressed as 11-^; 
5 may

-7-	
W
-).-

r = [r] + W X x r + 
4
W x r = 2W x [r

4
 ]	 (10)

where

r = X1 + Y3 +

4-	 . -t-	 -tIrl = Al + r̂3 + zk,	 (12)

Er
4
 l = R2.

1.
 + 91 + zk,	 (13)

and, with w given by Equation (7),

+	 . -i-

W = W x I + W y I + w z	
(14)

The first moment of mass of the system, ^' is

The main body does not contribute since the reference

origin is its own center of mass. Using Figure 1, the

acceleration of the origin, a, may be expressed as



is the resultant of external forces and M is the mass	
r

of the main body. Considering the spacecraft to be in a

circular orbit with zero jet thrusting, may be set

equal to zero. Using Equations (16) through (18), a can

now be written as
i

j<
I =

i;.

a
m

o	 rM + m

Noting that

n	 ^;
i(

^i = ri	 ^• (20)
-:;^	 is B	 m

s,

and placing Equations	 (9),	 c15), and (19) into Equation

(1) gives

MM
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For zero external moment and noting that the force on the

control mass is

= m(^ + r)
	

(22)
m	 o

which, upon using Equation (19), becomes

m = lir

	
(23)

t

I

where

MM
9 m'

Equation (21) may be written as

E _ --r x rm.

Thus, as Equation (25) shows, the force on the control

mass may be considered as causing a moment to act on the

main body. The mass will be permitted to move along a

linear track parallel to the x axis. Placing Equations

(2) through (7), (10) through (14), and (23) into Equa-

tion (25) yields three scalar equations which, when

solved simultaneously, give the differential equations

of motion in the desired form:
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^x = 
Wx (wx	 y  Wz X, x,),	 (26)

wy = my {wx , ^y  Wz' X , x, x),	 (27)

Ulz 	6)Z (W x wy ^ ^z x, X, ^R).	 (28)

The full equations for wx , 63y , and 6  are given in

Appendix A. Since the motion is along an axis parallel

to the x axis,

y= y= z= z= 0	 (29)

and the y, z positions of the mass may be arbitrarily

fixed. Other constants that have to be specified are

moments and products of inertia, and masses of the main

body and the movable object. The control mass was per-

mitted to have motion parallel to just one axis since then

only one control variable will need to be specified; this

fact will become important in the following section which

deals with the optimization technique. However, the direc-

tion of the x axis, and, therefore, the direction of mass

motion, relative to the spacecraft may be changed arbi-

trarily by appropriately changing the moments and products

of inertia in the equations of motion given in Appendix A.

The total angular momentum vector with respect to the

center of mass of the system, AHcm , must remain constant
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during control mass motion.

that 11

P = cm,

This can be seen by noting

(30)

and, since there is no external moment during mass snotion,

Iicm is constant. An expression for this total angular

momentum vector can be obtained by dividing it into two

parts: that due to the rotation of the main body and that

due to the motions of the centers of mass of the main body

and the movable object about the center of mass of the

system. The former is simply T w where T is the inertia

dyadic. The latter can be expressed as pr x r by con-

sidering the two--body problem composed of the main body

and the movable mass as an equivalent one-body problem

which is the equivalent mass p moving at a distance r

from the center of mass of the system. 11 Thus, we have

^cm ^ T w+ ur x r	 ( 31)

where

r = Irl + w x r.	 (32)

-^I
5

c

With this total angular momentum vector constant, the

rotational kinetic energy, T. can assume the following
a	 -

values:	 ra
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H2	H2cm5	 S
21 

cm	
T

max	 21 min
(33)

i

~	 r

f

x

where Imax and Imin are the spacecraft's maximum and min-

imum moments of inertia. Specifically, using the same

analysis as was used to obtain Hcm , we can write the

following expression for kinetic energy relative to the

center of mass of the system during mass motion:

T = 2 • I • W * 2^r • r.	 (34)

To have simple spin about the maximum inertia axis, the

tumbling vehicle's rotational kinetic energy, which ini-

tially is some constant value, must be decreased to the

value associated with this simple spin, H 2 /2IItcm max'

should be noted that simple spin about the major principal

axis of the spacecraft can essentially be considered,

in this investigation which uses a small mass, as simple

spin about the major principal axis of the main body.

If the control mass is large and far from the center

of mass of the main body, the orientation relative to

the spacecraft of the maximum inertia axis of the main

body may be quite different from that of the spacecraft.

In that case, the maximum inertia axis of the spacecraft

i
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should be used when referring to simple spin about the

maximum inertia axis. Since the change in the kinetic

energy of the system composed of a rigid main body and a

movable mass requires work to be done and the only source

of work is the force I nA acting on the control mass m

which moves a distence dr, we have

d(Work) = rm • dr. 	 (35)

This equation can also be obtained by considering m

which is given by Equation (23) as acting on the equivalent

mass m and causing a displacement dr. For mass motion

along a linear track parallel to the x axis, the right

hand side of Equation (35) may be written as fmxdx.

Therefore, we can write the following expression for

the rate of change of kinetic energy which is equal to

the rate at which work is being done:

T = fmxx.	 (36)

It should be noted that T given by Equation (36) determines
the power that will be required.

Optimal Control

A first-order gradient algorithm for the following

problem is available in the literature: 12,13 with u and

x  defined as the column vectors of the control and state

variables, respectively, u 1 (t), ... um(t) must be found

in order to minimize

'	 L	 L ,6	
-	 _ 10

I
1

1

S
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t f

J = f 1 LCxs l (t), ... xs n (t), ul (t), ... um (t), t]dt
t
o	 (37)

where

As  = f i (xs i , ... xs n , ul , ... um , t), i=l, ... n

(38)

with xs (t 0 ), t o , t  specified, and terminal equality con-

straints on q of the xs i variables, each represented by

*[x$i (t f )] = xsi (t5 )	 xs i 	= 0	 (39)

final

with the q desired terminal values, x $ .	 , specified.
'final

Inequality constraints of the form

FP (x
s , U.,
	
S 

FP max	
(40)

may be handled by using a penalty function technique

which converts inequality constraints to terminal con--

straints. l4 Specifically, an auxiliary state variable P

is defined as

P = 
^X[FP (xs , u, t) - FPfixed]2 ' FP ^ FPfixed (41)

0, FP < Fpfixed

1

i

=gym

s..
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f

and then the state variable P is forced to approach a

value of zero by specifying the following form of Equa-

tion (39):

V = P(tf ) = Q.
	 (42)

In Equation (41), K is an arbitrary constant, and Fpfixed

is chosen to be smaller in magnitude than FP max since,

in the first-order gradient method, P needs to exist in

order to be controlled. If Fpfixed is set equal to

FPmax' then some violation of the inequality constraint

will have to be accepted.

The problem specified in the previous section will

now be put into the form required for the application of

the first-order gradient method. The dif^ -erential equa-

tions of motion given by Equations (26) tYrough ;28) can

be put into the form of Equation (38) by the following

substitutions:

x =	 (43)

and, since x is equal to

= U

The state variables, xs l with i = ], ... 5, are wx , wy,
}	 y

tai , x, and 	 respectively. Ma one control variable is

u1 ; more control variables would be needed if the mass

s	 ti	 L	 _	 ,^
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was not restricted to move parallel to one axis. The

equations of motion can now be written as follows:

	

6x = 6x (wx 9 wy , wz ^ x 1 ^ e u1 ) -^	 (45)

	

6  = wy (wx , wy , w Z , x, R, ul ),	 (46)

	

z = wz (wx
  wy , wz') x, ^, u1 ),	 (47)

	x = 5,	 (48)

	

= u1 .	 (49)

ik^^

L

-E

Lmum inertia

components

axes need to be

problems, the

will be ex-

In order to have simple, spin about the max:

axis, w 2 and w 3 which are angular velocity

along the intermediate and minimum inertia

minimized. Thus, modeling after regulator

performance index J given by Equation (37)

pressed as

tf 	w2	 w2

J= 1 J'	 ( 2 2 + 
2 3 )dt	 (50)

to 
w2max w3max

where w2max and w3max are the maximum magnitudes that are

desired. Ideally, these values should be zero to have

pure, simple spin about the major principal axis. However,

in practice, these maximum valuers will be set at some very
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small magnitudes. The variables w 2 and w 3 , of course,

need to be expressed in terms of the state variables.

If, for example the x, y, and z axes are aligned with the

maximum, intermediate, and minimum inertia axes, respec-

tively, then w l , w 2 , and w3 are equal to wx , wy , and wz.

The x position of the control mass is limited as follows:

xmin :S x < xmax	 (51)

with the values xmin and xmax arbitrarily set. In order

to apply the penalty function technique, Equation (51)

will be expressed as

x < xmax	
(52)

and

-x e, -x min .	 (53)

Thus, there will be two auxiliary state variables, Pi

and P 2 , associated with Equations (52) and (53), respec-

tively; state variables xs 6 and xs7 ;all,l refer to Pl and

P 2 . Specifi cally, we have the following additional

equations of motion:

K1 (x - xh )2 0 x ? Xh
Pl = ^

0, x < xh
(54)

ter, -	 -	 ,	 L	 . -	 ^. -	 _. ..	 __A0
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and

P _ 
; K2 (--x + xl ) 2 y -X 

> -Xl

2	
0, -x < -x7
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(55)

where x  is less than xmax and x  is greater than xmin'

Using Equation (42), we can now place terminal constraints

on the two auxiliary state variables as follows:

l = Pl (tf ) = 0	 (56)

and

*2 = E 2 (tf ) = 0.	 (57)

The steps of the first-order gradient optimization

technique for the problem just specified can be written

as:l2,13

1. Estimate ul (t) and integrate Equations (45)

through (49), (54), and (55) forward with the known

initial conditions xs (t 0 ). Store xs (t), ul (t), IPV

and V2.

2. By backward integration of the following influence

function equations determine and store the n column

vectcr p(t) and the (n x q) matrix R(t) where n equals

seven and q equals two:

a .h_

I

;f.

t

j	 ,
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1

f

p = -df Tp - (a1 )T 	(58)
ax

o	 s

S

and

with

p(tf) = 0	 (60)
t
t.;

f.

s:

r€
4.
L'-

and

0, i = 1 1 ... 5 and j = 1 1, 2

1, i = 6 and j = 1

	

R
ij 

( tf ) = b, i = 6 and j = 2	 (61)

0, i= 7 and j= l

1, i = 7 and j = 2

where i = 6 and 7 correspond to the auxiliary state vari-

ables P 1 and P 2 , respectively.

3. E=valuate the following integrals:

tf

`	 R  Sul W^l(au1)TR dt

0
(q x q) matrix,	 (62)

tf	 ^l

	

1T - I	 (PT 3f ^, 8L ) W ( af )T R dt
IpJ 	 t	 Sul	 Sul 	Sul	 j

0

q row vector,	 (63)



f
= f	

(P T DE	 +	 I-.	 W-l[ (—) 
Tp +

a u	 3 u	 3 u
(LL	 T Idt3 u

to	 1

scalar, (64)

where W is just a (1 x 1) positive-definite matrix since

there Is only one control variable.

4.	 Select a 6*, given by

sip1
7,

2

which will bring	 and	 25 given by Equations* (56) and

(57), closer to zero on the next iteration. Specifically,

choose

6*1	epl (tf ) (66)
A

and

CP2 (t f2
(67)

where

0	 <	 s	 :5	 1. (68)

Then, determine the q column vector V from

V	 + (69)

4L .71
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S. Repeat steps 1 through 4 with the following

improved u1(t):

A

t.	 ul(t)new " ul(t)old + Su1(t)
	

(70)

where

Sul (t) = - CW(t)7-1{3u + [p(t) + R(t)v ^f a
}T.

1	 1
(71.)

Terminate when * l , ^ 25 and Iji - I^j I..,I,J equal zero

to the desired degree of accuracy. These steps have been

speciliazed to the problem consisting of seven state

variables, with terminal constraints on the sixth and

seventh state variables, and one control variable.

tl)

3

4

Numerical Solution

The five steps of the first--order gradient optimiza-

tion technique were programmed on an ISM 370/165 computer.

The computer program, given in Appendix B, consists of a

main program with three. subroutines. In the main program,

the necessary variables are specified. The variables

needed for the specification of a case which is to be

studied are listed in the beginning of Appendix B; their

computer language names are also specified. The sub-

routines carry out the integrations and changes in the

E y

k

4-L. -	 L . A.	 30
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control variable as prescribed in the five steps. The

differential equations are solved by using a fourth-order

Runge-Kutta algorithm. Integrals are handled by using

a library program consisting of an extended five-point

Newton--Cotes quadrature formula.

Implementation and Nature of the O ptimal Control

The optimal solution obtained is really a local

optimal. Standard numerical optimization techniques like

the first-order gradient do not necessarily yield the

absolute minimum. Initial guess of the solution will

determine which local optimal is obtained; this optimal

may be the absolute optimal. Of course, for a specific

problem there may be only one minimum and, therefore, the

solution is the absolute minimum. An examination of

numerical results and a comparison to non-optimal solu-

tions will give an indication of the nature of the solu-

tion obtained. Results of this investigation are pre-

sented and compared to those of Edwards in the next

chapter.

The optimal control may be implemented quite easily.

The first-order gradient method yields a time history of

the mass motion. Thus, the control system need just

monitor and change the position of the mass. The position

may be monitored by a simple mechanical device. It should
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be noted that any means may be used to move the mass. In

actual space operations, three orthogonal angular veloci-

ties of a tumbling; vehicle will be sensed by rate gyros

and extrapolated to a time a few minutes in the future

using Euler moment equations. These future angular

velocities will then be used as the initial conditions

for the optimization equations. The optimal control will

be numerically obtained and initiated at the chosen

future time.
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CHAPTER IV

RESULTS

Several parameters need to be specified before

computer simulations may be run for minimum time stabiliza-

tion. As will become evident, selection of some of these

parameters will depend upon the specific satellite to

which the movable mass control system is applied; that is,

the dimensions of the satellite and the amount of time
i

that can be permitted for detumbling. The choices for

minimum time detumbling of the remaining parameters will

also become evident; but, these parameters will not be

dependent on the type of satellite to be controlled.

Specifically, referring to the differential equations

of motion in Appendix A and noting that the mass moves

along an arbitrary x direction, these parameters are as

follows: mass of the movable object, length of the

linear track, y and z positions of the mass, point about

which the mass oscillates, and direction of the x axis

relative to the spacecraft. By examining Equation (25)

and thinking in terms of moments applied about each axis,

a qualitative preliminary analysis may be made as to the

effect of these parameters on the time needed to detumble.

Increasing the mass of the object will increase the force;

thereby increasing the moment and permitting a decrease in

the detumbling time. Increasing the length of the linear

track or the y and z magnitudes will increase the moment
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arm, which should tend to increase the moment and result

in a lower minimum time. 	 It should be noted that changes

in these parameters will also effect the force; but, the

overall effect on the moment will probably be due to the

change in the moment arm mentioned previously since the

force consists of the relative difference of various

terms.	 By increasing the x value 	 of the point about

which the mass oscillates., the moment arm is again in-

creased.	 However, by permitting the mass to move further

on one side of the zero x position than on the other,

there may anise difficulties due to a larger moment in

one direction than in the opposite.	 Changing the direction

of the x axis relative to the spacecraft will affect the

moment arms of the force components producing moments x

about the intermediate and minimum inertia axes. 	 If the

x axis is parallel with the maximum inertia axis, maximum

control over the moment arms of the moments about the

intermediate and minimum inertia axes will be available;
r

this can be seen by noting that now the x axis is per-
;Y

pendicular to the intermediate and minimum inertia axes.

This would seem to indicate that the orientation of the

linear track should be parallel to the final spin axis,
;f

which is the major principal axis. 	 However, in this case

as in the other cases that involved changes in the moment
g ;,.	 .

arm, there are also changes in the force itself which are

f t

Jay	e	 _ 
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difficult to specify. The above qualitative analysis

is not sufficient in itself to arrive at minimum time

values for all the parameters being discussed. A

quantitative analysis must be made.

The movable mass control system will be applied to

a manned space station configuration which NASA is con-

sidering for the 1980's. This configuration is shown in

Figure 2 with pertinent data being given in Table 1.

The optimization procedure will permit the fastest de--

tumbling possible with the movable mass. Based on the

previous qualitative discussion of various parameters in

the difrferential equations of motion, we will initially

fix the parameters to yield the best detumbling sequence;

further cases will vary these parameters in order to

quantitatively determine the minimum time solution. The

mass of the movable object will be set at 499 kg, which

is 0.5% the mass of the manned space station. It will be

permitted to travel approximately ±3.7 m about the zero

position on the x axis. This axis of motion will be	
i

parallel to and s«ve the same sense as the maximum	
k

inertia axis. For convenience, the y and z axes will be

chosen to be parallel to and have the same sense as the

intermediate and minimum inertia axes, respectively. 	
3,

Choosing the y and z positions are large as possible	 \

within the limits of the space station, we have 5.55 m
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1

Mass	 99792 kg

Maximum Moment of Inertia	 1.74 x 10 6 kg--m2

Intermediate Moment of Inertia	 6.28 x 10 6 kg--m2

Minimum Moment of Inertia	 5.15 x 10 6 kg-m2

Transformation matrix, body fixed X, Y, Z to principal 1,

2, 3, where 1, 2, 3 are the maximum, intermediate, and

minimum moments of inertia axes respectively

	

0.458	 -0.889	 0.00676

	

0.889	 0.458	 -0.00204

	

--0.00128	 0.00695	 1.0

L



39

and -13.7 m. The initial angular velocity components

along the 1-axis of maximum inertia, the 2-axis of inter-

mediate inertia, and the 3-axis of minimum inertia will

be chosen as 0.103 rad/sec, -0.199 rad/sec, and 0.000286

rad/sec. These values are based on a wozst case tumbling

analysis. 2 They represent the highest tumbling mode of

the manned space station and are due to a collision

between it and a space shuttle vehicle. If uncontrolled,

the manned space station with a fixed 499 kg internal,

control mass would continue to tumble with w l oscillating

between 0.103 rad/sec and 0.192 rad/sec, w 2 oscillating

between -0.199 rad/sec and 0.199 rad/sec, and w 3 oscillat-

ing between -0.118 rad/sec and 0.118 rad/sec. Flexibility

effects, of course, :ill tend to decrease the rotational

kinetic energy of the vehicle and alter the envelopes of

oscillation. However, in the time periods involved in

control, these limits of oscillation can be used as a

reference for zero control mass motion. The effects of

control by an internal movable mass system on the oscil-

lations of w 1 w2 , and w 3 are shown in Figure 3. The

curves in this figure are the envelopes of oscillations

of the principal axes angular velocity components. At

2,845 sec, the limits, for the penalty function, of

mass motion along the x axis were set at ±10
-9
 m in

order to zero out the mass position, velocity, and
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toward the end of the control time since the absolute de--

crease remains fairly constant.	 After about 3,000 sec,

then, the peak values of w 2 and w 3 were reduced by more

than 99% of their initial value.	 Of course, the mass con-

trol system could have been left on to reduce the w 2 and w3

k oscillations even further.	 For the manned space station

discussed in this investigation, these values are suffi-'	 f'
cient since the effect felt by the crewmen is essentially

that of simple spin and docking by a rescue and despinning

vehicle can be made as if with a simple spinning body.
i

Figure 4 shows the motion of the internal movable mass

which results in detumbling of the manned space station.

The mass position, x, at no time exceeds 3.7 m; after

2,893 sec, it is essentially equal to zero. 	 The mass
i'

oscillates .^etween its maximum permitted limits, utilizing

k

I^

the full linear track available to it. The velocity of

I- . ^	 to

t

a
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acceleration. By 2,893 sec these three variables were

essentially zeroed out, having values of 0.0466 m,

-0.00322 m/sec, and 0.00141 n/sec t . After this time, the

mass was kept fixed at the zero x position; w  remained

at 0.212 'rad/sec, w 2 oscillated between --0.00152 rad/sec

and 0.00142 rad/sec, and w 3 oscillated between -0.000837

rad/sec and 0.000909 rad/sec. It should be noted that the

percentage change from peak to peak of w 2 and w 3 is greater
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the mass, :t, oscillates between -0.647 m/sec and 0.654

m/sec. The greatest mass acceleration, x, occurs during

the zeroing out of the mass position, velocity, and ac-

celeration; in this period it reaches values of --0.579

m/sec t and 0.465 m/sec t . Also during the zeroing out,

the force in the x direction, fm x , acting on the mass

reaches its largest magnitude, 283 N. These values for

mass velocity and acceleration, and for force, are reason-

able. It should further be noted that the mass velocity

and force maximum magnitudes occur during energy dissipa-

tion, -T. During energy dissipation, the force in the x

direction and the mass velocity are opposite in direction;

here the control system is actually restraining the mass.

As Kane and Scher ? have pointed out, this energy dissipa-

tion could be used co provide useful power for the vehicle's

systems. Energy has to be provided by the mass on i,y when

T is positive. Figure 5 shows the variation of T, power

with time. The positive power is much less than the nega-

tive. Much more energy is dissipated than added. Also,

as this figure sh-)ws, the total energy that is to be

supplied is quite reasonable. The maximul~in positive power

is 48.4 watt, also a reasonable value; this value could

have been reduced to a value similar to the other peaks

by decreasing the simulation time increment. Time incre- 	 qi

ments will be discussed later. The --300 watt value at

2,848 sec, during zeroing out, corresponds to energy

&.&,	 ti	 L	 _fs, -	 - - -	 -- - _-.
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dissipation; the Mass is being restrained and the control

system does not have to supply that energy. Figure 6

shows the decrease of rotational kinetic energy from its

ii>itial, before control mass motion, value of 1.62 x 105

joule to the final value for stable simple spin of

1.5 x 1.0 5 joule. At various points in this figure,

the kinetic energy increases slightly and then resumes

its downward curve. These increases, of course, cor-

respond to energy addition to the movable mass control

f	
system, the positive power points on Figure 5. Further-

more, by superimposing Figure 4 for mass x position with

Figure 5 for power during mass motion, it is seen that

these energy addition points correspond to the points at

which the mass direction of motion needs to be reversed

in order not to exceed the extreme limits of motion that

were previously set. Throughout the period of control

mass motion, the angular momentum of the system relative

to its center of mass remains fixed at the value it had

before control mass motion was initiated, 1.45 x 105

kg-m2 /sec. T'ne angular momentum vector remains constant

since there are no external moments on the space vehicle.

Therefore, as is evident, an optimal movable internal

mass control system can be used to reduce the arbitrary

tumbling of a general space vehicle to simple stable spin

about the maximum inertia axis.

j

k s:

{'7
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One valid comparison between the optimal control

mass motion described in this investigation and the limited

analysis of the force control law formulation would be

to keep all parameters and initial conditions mentioned

in the previous paragraph the same, including the per-

mitted extreme positions on both the positive and negative

sides of the mass motion axis; as stated in the previous

investigation, the linear track required by the force

control law method must extend, in the positive and nega-

tive directions, a distance equivalent to the maximum

movement permitted. Doing this, the force control law

yielded a decrease of the w 2 envelope of oscillation to a

magnitude of 0.00206 rad/sec at 11,050 sec, and the w3

envelope to a magnitude of 0.00124 at 11,005 sec. As was

mentioned in the previous paragraph, the optimal analysis

of this investigation decreased the magnitudes of the w2

and w3 envelopes to 0.00152 rad/sec and 0.000909 rad/sec

respectively by about 2,900 sec. Thus, the optimal

f

analysis permits detumbling in approximately one-fourth of

the time required by the force control law analysis.

Since the one--fourth value means that the crewmen will be

subjected to a tumbling state for less than an hour

compared to over three hours, it is quite significant.

The force control analysis required only about one watt

of peak positive power. As was shown, the power for the
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optimal control is greater, but still within the limits

of production in spacecraft. Another comparison between

the optimal analysis and the formulated Force control law

approach can be made by restricting the mass motion

extreme positions in the former method to the actual

extreme positions of the latter, keeping all other ini-

tial conditions and parameters the same; the values used

in the case mentioned in the previous paragraph will	 W

again be used. The first 160 sec after commencing

control mass motion were investigated. In this time

interval, the force control law required mass position

peaking of 0.631 m at 35 sec and -3.75 m at 155 sec;

W 2 and w 3 peal- at 0.1962 rad/sec and 0.1179 rad/sec. The

next peaking of mass position occurs at 295 sec with a

value of 2.23 m. The optimal mass control system was

started at the 50 sec point of the force control sequence

since, by that time, the mass position had peaked at

only 0.631 m. Using the values at the 50 sec point, the

optimal method peaked the mass position first at the

largest positive limit and then at the negative one.

This motion resulted in an w 2 peak of 0.1947 rad/sec 	
4

and an w3 peak of 0.1171 rad/sec. Without any control

mass motion, the vehicle would have e ynerienced an w 2	4

peak of 0.1991 rad/sec and an w 3 peak of 0.1182 rad/sec.
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Thus, the optimal technique yielded about a one and one-

half times greater decrease in the w 2 value and slightly

less than four times greater decrease in the w 3 value.

The actual effect on the time to detumble will be greater

since the angular velocities are lower for the start of

their next cycles and their periods are decreasing more;

this is in comparison to the values yielded by the force

control law method. Therefore, the optimal control

mass motion technique, in addition to not having the

restriction on the direction of mass motion nor on the

point about which the mass oscillates, yields simple spin

in a considerably faster time than the force control

law method.

The effect of a change in the mass of the movable

control object was investigated by using the case initially

studied and only changing one parameter, the mass, from

499 kg to 998 kg; this new value for the mass is one per-

cent that of the manned space station. Specifically, the

control mass will again be permitted to move 3.7 m about

the zero position on the x axis which is parallel to and

has the same sense as the maximum inertia axis, with the	 k

y and z positions fixed at 5.55 m and -13.7 m, respec-

tively.Also, the y and z axes are parallel to and have

the same sense as the intermediate and minimum inertia axes.

y'j1
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The initial values for m l , W 2 , and w 3 remain set at 0.103

rad/sec, --0.199 rad/sec, and 0.000286 rad/sec. Figure 7

shows the envelopes of oscillation of the principal axis

angular velocity components. Comparing with Figure 3,

it is seen that doubling the mass to one percent of the

space station mass caused about a one-half decrease in

the time to detumble to simple spin about the maximum

inertia axis. After 1,485 sec, w 2 is oscillating

between -+0.00186 rad/sec and 0.00199 rad/sec, and w3

between -0.00126 rad/sec and 0.000425 rad/sec. To reach

similar oscillation ranges, the 0.5% mass required about

3,000 sec. Comparing this one percent case to Edwards,

it is again evident that only about one--fourth the time

is required; his force control law reduced w 2 and w3

to peak magnitudes of 0.00292 rad/sec and 0.0032 rad/sec

at 5,580 sec and 5,450 sec, with mass set at one percent.

The effect of a change in the length of the linear

track is evident in every computer run. At first, the

peaks of the w 2 and w 3 oscillations are lowered in magni-

tude considerably by having the mass move far out on the

x axis. Each successive iteration improves on the control

variables in order to decrease the extreme positions of

the mass to prescribed limits. As the extreme limits are

decreased, the peaks of the w 2 and w 3 oscillations increase

.	 _._	 1.
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in magnitude. The above examined case of a one percent

control mass will be used to show this effect. The first

100 sec of simulation are shown in Figure 8. After a

few iterations, the mass position extremes are reduced

to ±10 m. The resulting cal , w 2 , and w 3 oscillations

are plotted. After additional iterations, the mass posi-

tion limits are --2.B m and 3.4 m, and it is seen in this

figure that the w2 and w3 oscillations have become

larger in amplitude. Comparison to the no mass motion

curves shows that the effect of extreme mass position

change is quite substantial. It should be noted that ? as

the extreme limits of mass motion are decreased and cause

an increase in the amplitudes of the w 2 and w 3 oscilla-

tions, an increase in total time to detumble will occur.

The changes in the oscillations of w 2 and w3 due to

a one-half decrease in the y and z positions of the control

mass are examined by using the one percent mass case men-

tioned above and appropriately changing y and z. A 998

kg mass was permitted to move 3.7 m about the zero posi-

tion on the x axis which is parallel to and has the same

sense as the maximum inertia axis, with y and z fixed at

5.55/2 m and -13.7/2 m; the y and z axes are parallel to

and have the same sense as the intermediate and minimum

inertia axes. The only differences between the case that
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will be discussed now and the initially discussed 0.5%

case are an increase in the mass of the movable object to

one percent of the manned space station and a one--half

decrease in the y and z positions which were 5.55 m and

•-13.7 m. Figures 9, 10, and 11 show the wl , m 2 , and w3

oscillations, For comparison, the w 2 and w 3 oscillations

from the previous one percent case, which had the same

parameters except for full y and z values of 5.55 m and

--13.7 m, are shown. The limits of the w 2 and w 3 oscilla-

tions for no motion of a one percent mass are also noted.

By comparing the various curves, it is seen that there

is a definite increase in the magnitudes of the w2 and w3

oscillation peaks caused by lowering the y and z mass

position magnitudes. The long term effect will be an in-

crease in total detumble time due to the lower y and z

magnitudes.

The effect of a control mass oscillating about a

non zero position is shown in Figure 12. The initial

one percent mass case was again used as a basis and

the only parameter change was letting the mass oscil-

late about +10 m instead of the zero x position. Specific-

ally, a 996 kg mass was permitted to move 3.7 m about the

10 m position on the x axis which is parallel to and has

the same sense as the maximum inertia axis, with y and z

faxed at 5.55 m and -13.7 m; the y and z axes are parallel
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to and have the same sense as the intermediate and minimum

inertia axis. Initial values for w 1 w2 , and w 3 are

still 0.103 rad/sec, -0.199 rad/sec, and 0.000286 rad/sec,

respectively. For both the w 2 and w 3 curves, it is evident

that one side of the oscillation is decreased faster than

the other. One side of the envelope crosses the time axis

and, along with the other side, tends to a small, but

finite, value. The w 2 and w 3 oscillations, then, will

not be completely zeroed out; but, they will be made quite

small. Comparison to the case shown in Figure 7 which

differs only in that the mass oscillation is about the

zero x position instead of 10 m, shows that the higher

x values initially permit a much faster decrease in the

w2 and w 3 envelopes of oscillation. However, having the

control mass move through the zero position on the x axis,

results in the w 2 and w 3 oscillations tending to zero

rather than a finite value.

The mov=ent of the control mass parallel to an axis

other than that of maximum inertia was investigated by

having the mass move parallel to the intermediate inertia

axis. This choice of axis and that of the other parameters

was made in order to let this case be as similar as possi-

ble to the initial one percent mass case; this permits a

more valid observation of the effect of the change in the

direction of control mass motion relative to the main
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vehicle. The problem arises since a change in the x

direction of mass motion changes the y and z values of the

mass and what they represent relative to the main vehicle.

Therefore, for this case under consideration, a 998 kg

mass was permitted to move 3.7 m about the zero x posi-

tion. The x axis, along which the control mass moves, was

placed parallel to and has the same sense as the inter-

mediate inertia. axis. The y and z axes were placed

parallel to and have the same sense as the minimum and

maximum inertia axes. The y and z positions of the mass

were set at -13.7 m and 5.55 m. Initial values of w1 , W2'

and W3 remain at 0,103 rad/sec, -0.199 rad/sec, and

0.000286 rad/sec. Oscillation envelopes for w l , W 2 , and

w3 are shown in Figure 13. The w2 envelope tends to zero.

However, the w3 envelope is tending to a small, but finite,

value. Comparing ?!,. `;,e case shown in Figure 7 it is

seen that a cont, o !	, oving parallel to the maximum

inertia axis permits, in .addition to zero values for

both the w2 and w3 envelopes, faster detumbling.

These results were obtained by running the compuuer

program for simulation times of 100 sec. To bring the

extreme mass positions to the permitted magnitudes, in

this 100 sec simulation time pexiod, required up to about

35 iterations which used about 100 sec of IBM 370/165

computer time. At the end of each 100 sec simulation
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run the end values for w15 W 2 , w 3 , x and x were used as

initial conditions for the next 100 sec simulation run.

This time increment of 100 sec for simulation was chosen

since larger time increments made it difficult to bring

the extreme mass positions to within the specific limits.

A few times even this time increment was too large; that

is, the mass would initially stay within the limits but

would then move past, where about 35 iterations were the

maximum permitted. Rather than extend the computer time

and thereby increase the number of iterations, the accept-

able initial part of the run was used. For zeroing out

the mass position, velocity, and acceleration in the 0.5%

case that was initially investigated, the simulation time

increment was arbitrarily chosen at 50 sec. Also, the

position limits, as stated previously, were set at x-10 -0 m

for the zeroing out simulation tinge. Normally, limits

were set at ±2.5 m at the beginning of a case and then

changed to about ±3.0 m or higher. As stated previously

in the analytical study on the optimization technique,

the limits of mass position should be set lower than what

is desired since the penalty function comes in when there

is a violation of the set limits. The iteration that was

chosen during each 100 sec simulation time run had the

lowest peak magnitudes for the w 2 and w 3 oscillations for

mass positions within the x-3.7 m prescribed extreme

,LL&-	 .F	 ^	 L 1^ . - . --- - - L - -- - ...	 -- .31f
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limits. There was no need to place constraints in the

optimization technique on mass velocity and acceleration

since, as discussed in the initial 0.5% mass case, these

variables did not reach excessive magnitudes. The values

of other constants, associated with the optimization method,

which were discussed in the analytical study are given in

the main program of the computer program listed in

Appendix B. The time steps in the integrations were set

at 5.0 sec of simulation time.

S. r.
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CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

An optimal movable mass control system has been

applied to a tumbling spacecraft in order to obtain simple

spin about the major principal axis. The results indicate

that the largest possible magnitudes for the internal mass,

length of the linear track, and positions of the mass on

the y and z axis will yield the fastest detumbling times.

The choice of these values depends upon size and mass of

the spacecraft. Results also indicate that the mass

should oscillate, about a zero point, on a line parallel

to the maximum inertia axis. These results were based on

worst case initial conditions for w l , w2 , and w3.

Tumbling situations that might be encountered in actual

space operations will usually be less severe and, there-

fore, will probably require less time to reach simple

spin. Also, these results were based on one vehicle,

the modular space station. However, since this vehicle

was asymmetric, the optimization technique will apply

to any type of spacecraft. The results of various para-

meter changes, furthermore, were based on motions of a

one percent mass and the resultant effects on the peaks of

wl , w 2 , and w 3 ; no further comments were made about T,

fx , x, and x. A one percent mass was used to show the

effects of changes of various parameters since the large
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mass made the effects readily apparent and showed them in

a faster time, compared to smaller masses which may be

more feasible for the space station due to its considerable

mass. The graphs of wl , w 2 , and w 3 were used since the

objective is to reduce the peaks of w 2 and w 3 , with w1

tending to one value. Other variables were not discussed

since their behavior and magnitudes were comparable -to

the 0.5% mass case which was examined in detail. This

0.5% mass case showed that the velocity and acceleration

of the mass, and the power requirement are low. There-

fore, the use of the optimal control system in actual

operations is feasible. Compared to the force control

law method, detumbling can be achieved in one-fourth

the time. This decrease is considerable since stabiliza-

tion may require hours. It should be noted that the

optimization technique need not only be considered from

the standpoint of minimizing time to detumble. Since

time increases as mass decreases, a minimum mass solution

can be obtained by fixing the time at the largest feasi-

ble value. Viewing the comparison to the force control

law method in relation to this examination of mass and

time changes, it is possible that an object with a mass

much smaller than that used in the force control law

technique may be used to achieve simple spin in the same

time period. When dealing with a mass of about 1,000 kg,
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this decrease will be quite considerable. This idea of

mass decrease for equivalent times by using the optimiza-

t-ion technique being investigated here can be applied to

wobble damping discussed in Chapter 11. Since the

angular velocities to be reduced are quite small, time

may not be the critical variable. However, mass is

always of importance in space applications due to cost

per mass to be placed in orbit. The optimization tech-

nique will reduce considerably the mass of the movable

object needed to achieve simple spin in the same time

period of active control.

In regard to the nature of the optimal solutions that

weve obtained, the local minimum achieved here permits

a faster detumbling time or a smaller mass when compared

to existing solutions. In addition, the minimum seems

to be an absolute minimum since the slopes of the w 2 and w3

envelopes of oscillation for the 0.5% case shown in

Figure 3 and the one percent case shown in Figure 7 are
1

approximately constants. Specifically, noting that the

constant slopes of these cases are comprised of about 100

sec simulation time increments and that various guesses

of the control variable were used, it becomes evident

i
r

h

.1.

i	 .

that there is a definite unique decrease in the peaks of

the w 2 and w 3 oscillations for each case. There seems

to be only one minimum for a specific case; hence, it is

an absolute minimum.
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Considering actual operations in space, a hybrid

computer may be more effective since modeling -he vehicle

dynamics on an analog will permit faster computation; as

was discussed in the previous chapter, 100 sec of digital

computer time are needed to obtain 100 sec of simulation

control time. Comparison between computer predicted

vehicle motions due to mass movement based on the optimiza-

tion method and actual motions could then be continuously

monitored, thereby permitting updating of the initial

conditions for w 1 '2' 
and w 3 for the subsequent simula-

tion time increments for optimization. This updating

could be done without having to stop active control.

No attempt was made to improve on the first-order

gradient solution; that is, an optimization method such

as the neighboring extremal, which would utilize and

require the solutions already obtained, was not used to

further reduce the time or mass. If a digital system

similar to the one used in this investigation was

employed, the added computation time would necessitate

periods of no active control since the total computer

time would be greater than the simulation time. Even if

a hybrid system could be used to sufficiently reduce the

time needed for the added computation, the decrease in

time or mass would probably be slight compared to the

quantities already required.

F
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The optimal control was applied specifically to

stabilize a tumbling vehicle about its major principal

axis. No computer runs were made to achieve simple spin

about a specific geometric axis. However, the technique

presented here can probably be applied to such a case by

appropriately changing the performance index and the

direction of mass motion. An indication of this is given

by noting that the initial one percent mass case was

actually made to spin about an axis approximately ten

degrees from the maximum inertia axis of the whole system.

This was due to the fact that the major principal axis of

the main vehicle was chosen as the direction of the linear

track and that the mass is large and far from the center

of mass of the main body. In actual operations with

large masses, the major principal axis of the system

should be used as the direction for the linear track;

this was not done in this study since a close comparison

to the smaller mass case was desired. To have spin about

some geometric axes may, however, necessitate considerably

higher energy input by the control system. This will

probably occur for spin about axes close to the minimum

inertia axis.

It was assumed that the principal moments of inertia

of the main body do not change. However, an explosion may

result in part of the spacecraft blowing off. Also,

tumbling itself may cause loss of part of the vehicle.

?4
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If this mass loss results in a large change in the

moments of inertia, it should be included in the optimiza-

tion. Specifically, the magnitudes of the moments of

inertia should be corrected and the direction of the

Linear track should be altered to correspond with the new

major principal axis if spin is desired about this axis.

If direction change is not feasible, a redefinition of

the performance index could be studied; but, as was

shown, this would result in a longer time or a larger

mass, and residual tranEverse angular velocity.

Other types of control mass motions could be investi-

gated using the optimization method presented here.

Specifically, a translation other than linear or a

rotation relative to the spacecraft.

The optimal control technique investigated is signi-

ficant in that it uses an open loop solution to control a

vehicle in real time regardless of initial conditions.

The highly nonlinea r equations of motion preclude the use

of an optimal closed loop approach. Formally, a non

optimal feedback method like the one proposed by Edwards

would have to be used. The use of such optimal open loop

solutions should be investigated for other active con-

trol devices when optimization is desired. One area of

application is for minimum time thrusting of control jets

with constraints on three orthogonal components.

{
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APPENDIX A

EQUATIONS OF MOTION FOR A SPACECRAFT

WITH A MOVABLE MASS

The equations of motion are given below. The mass

is permitted to move along the x axis which is fixed in

the main body.

cox = [VAA(x 2 CMAl + x 4CMA2 + CMA3) +

VBB(x CMBI + x2CMB2 + x 3CMB3 + CMB4) +

VCC(x CMCl + x 2CMC2 + x 3CMC3 + CMC4)3

Cl.o/jAj1

wy = CVAA(x CNAl + x 2CNA2 + x 3CNA3 + CNA4) +

VBB(x CNBI + x 2CNB2 + CNB3) +

VCC(x CNCI + x 2CNC2 + CNC3)3C1.0 /111]

Co z = CVAA(x CPA1 + x 2CPA2 + x 6CPA3 + CPA4) +

VBB(x CPBI + x 2CPB2 + CPB3) +

VCC(x CP^1 + x 2CPC2 + CPC3)3[1.0/1A13

where VAA = W 2 CWAI + w 2 CWA2 + wxwy (CWA3 + x CWA4) +

Wxwz (CWA5 + x CWA6) + wywz CWAI +

W  -k CWAS + wz x CWA9

1/1	 k d
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VBB = w 2 (CWBI + x CWB2) + w 2 (CWB3 + x CW134) +

wxwy CWB5 + wxwz (CWB6 + x 2 CWB7) +

wywz (CWB8 + x CWB9) + wyxx CWB10 +

x CWBll

VCC = w 2 (CWC1 + x CWC2) + w 2 (CWC3 + x CWC4) +

wxwy (CWC5 + x 2CWC6) + w 
x 
w 
z 

CWC7 +

wywz (CWC8 + x CWC9) + wzXA CWC10 +

x CWC11

iA! = x u 2CA3 + x3CA23 + x 2uCA2 + XCAl2 + CAI

CA3 = Ix

CA23 = -21xyu 2y - 21xz112z

CA2 = Ixly + Ixl z -- 1 2 - 12 + IxuY2 + Ixuz2 +
xy

IyUY 2 + Izuz 2 - 21yzuyz

CAl2 = -21xyIyzuz - 21xyu 2yz 2 -- 21xylz uy -^

21xyu 2y 3 - 21yzIxzuY - 2IXzu 2y 2 z -

21xz Iyuz - 21xz112z3

CAI = Ixlyl z
 - Ixiyz - 1

2 1z - 1 2 1 -
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CWB4 = Utz

CWB5 = -Iyz - uyz

CWB6 = I 	
-	 I x --	 liz2

CWB7 = p

CWB8 - 'Xy

CWB9 _ py

CWB10 = --2p

CWBll - -pz

CWCI = Ixy

CWC2 - py

CWC3 = -1XY

CWC4 = -py

CWC5 = -Iy + Ix + ky2

CWC6 =

CWC7 = Iyz + 'PYz

CWC8 = -Ixz
i

i

A

75
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CWC9 = -pz

CWCIO = -2p

cwcll = +py

CMAI = I y p + I 
z p + p 

2 y 2 + p 2 z 
2

CMA2 = li 2

CMA3 = I y I z + I y 
PY 2 + I z ,1z 2 _ 1 2 z  - 21 yz Ilyz

y

CmBl = I Y7 IAZ + 11 
2 z 2y + I z uy + 11 2y3

CMB2 = I
xyp

CMB3	 11 2y

CMB4 = I yz I 
xz + I xz PYZ + I 

xy 
I z + I xypy 

2

CMCJ = T 
yz Ily 

+ 11 2y 2z + I yIl z + u 2 z 3

CMC2 = I xZ11

CMC 3 = 11 2 zz

CMC4 = I xy I 
yz + I xy pyz + I y I xz + I xz liz 2

CNAl = I yz pz + 11 2 yz 2 + I zpy + 11 2y3

CNA2 = I xyll

CNA3 = 11 2y
I^j



CNC1 xz -
py + lizxy

2
CNC2 p YZ

CNC3 I	 I	 +
2

+	 )+	 pyPYZ
xz xy x yz	 xyz

2	 3

11y z
	 +

3I	 pz 2 + p2 yz
yz

C9A1 Ily	 +
3-P2 y 2 Z	 11 z + &2z3

y z y

C PA'-1 xz

CPA3 )22

I E

I



f
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APPENDIX B

COMPUTER PROGRAM

A listing of the first-order gradient optimization

program is presented on the following pages. A flow

chart is given in Figure 14. The following variables

need to be specified for each case:

EX = T x

EY = I
Y

EZ = I z
Ft

EXY = Ixy

EXZ = Yxz

EYZ - I
Y z	f

X2MAX w2max

i

t

^f

i

X3MAX = w3 Max

X1lNV = wx(t0)

X21NV = wy(t0)

X3INV = wz(t0)

X41NV = x (t 0 )

XSINV = x(t 0 ) = V to)



^L
so

P	 ,_

x°

YPO = y

` ZPO = z
y

FORDIV =
number of time steps

IORDIV =

TF =
t 

PEXLMH

PEXLML = x 

i,

^`
PECXVA = K	 = K

1	 2
n

W W

EP - E

` SMAMA S - m

SIGMAS = M

YOU = U

t

'' Y

.t

U -	 uI.

1.

(C
I

t_ .

y nnAl



^rb	 _

d

81

Read
Start	 Input

Data

Integrate Function
System F1

Equations

Integrate Function
Influence F2
Equations

Obtain
Additional r
Optimization
Variables

Print
Values

Update	 NO	 Is
Control MassPositionVariable Limited?

YES

Stop
•	 a



DIMENSION Ul500)
XENlD Y=+ l .* 0 ©E— 2 0
XENDZ=+1.00E-20
E X= .674209317E+ 07
EY=,62755678E+07
EZ= .5152799 EE+ 07
EXY=000
E XZ =0.O
EYZ 0.0
EY X= E XY
EZ X=E XZ
EZYwEYZ
X2MA X=. ool
X3MA X= 001
SQMCDA-0. o
SOM c 1B =1.0
SOT4C 2C = 0.0
?CSM A X= I.0
YIINV=.103
XZINV=—.199
X-3INV= e000286
X41NV=0. o
X5INV=GeO
P I I i

^

^
f t

V
'

=0.0
2 

P

n

 31 

N 

V

t r

--0. 0

P 
A

5
^

I N
tp

V =O.0 
//^^WAN VA I=10.0

YPO = 5.5 5
ZPO =--13e 7
FOR D I V= 20 o O

IOROIV=20
TF=100. O

PEXLIM=2.0

0)
N
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I+A IOUDI= (IV 0^801
ISVWO?8+5VWVwSI^SvwE)19 S-vwVWS=f)OA
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096 "IRatr=S VWVWS

0 *6"E=Wz-ln3d
0°O=VAnOgd
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-0,0I=f
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7PAF2Ui500)9 PAF3Ul5004 9 PAF5U(500)9 PAF6U1500), V(2)9 OELTAU(500)9
8XSTOR51 500) , PSTOR5( 540) v R5TOR5 {500 92)
CAI=EX*EY*EZ-EX*EYZ**2-EZ*EXY**2-EY*EXZ**2-2.0*EXY*EXZ*EYZ	 +

lE X*E Y*YOU*YPO**2+E X*E Z*YOU*Z PO**2-2.0*EX*EYZ*YOU*YPO* ZPO+EY* EZ*
2YOU*t YPD**Z+ZPO**2)+EY*YOU**2*(YPC* -4+YPO**2*Z"0**2)+F-Z*YJU4-*2*
3X YP .O**2*ZPO**2+ZP0**4) -E'r Z**2*Y©U*tYPO**2+ZPO**21-2.0*EYZ*YOU** 2
4*t YPO**3*ZPG+YP©*ZPO**31-2.0*EXY*EXI "YOU*YPO*ZP©--EXY** 2*YGU*YPO
5** 2— E.YZ**2*YDU*Z PO **2
CA 2=E X*E Y+E X*EZ—E XY**2—E XZ**2 +

lE X* YDU* YPD **2+E X*YOU*Z P©**2+EY*YCU*Y P ©T *2+E Z*YOU* ZPO#M2— 2.0* EYZ
2*YOU*YPO*ZP0

CA3=EX
CA 23---2.0*E XY 'Yl'Y0U**2*YPO-2 o O*EXZ*YCU**2*ZPC
CA 12=— 2.0*E XY*( E YZ *YOU*ZPO+YOU**2*Y PO*ZPO**2+EZ*Y OV*YPO+YC)U** 2

I*YPO**3)-2.O*EX7"-t EYZ*YOLI*YPO+YOU**2 *°YPO**2*ZPO+EY*YGU* ZPO+YOU
2**2*ZPO** 3)

C WA I=E YZ+YOU*YPO*Z PO

C WA 2--C WA 1
C WA 3=E XZ
CWA 4=YOU*ZP0
CWAS--EXY
C Wyk 5=- YO U* Y P D

CWA7=EY EZ-YOU*YP© *YPrl+ YOU*ZPO*ZPO
CWA 8=2p 0*YOU*YPO
C WA 9=2.0*YCU*ZPO
C WB 1=- E XZ
CWB 2=-Y©U*ZPO
C pis 3=E XZ
CWB4=YOU*ZPO
GWB 5=-C WA 1
CW3 6=EZ-E X-YOU*ZPO*ZPO
C WB 7= YO U
C WB 8=E XY	 ao
C SIB 9=Yo U* YP Q
CWB IO=— 2.0*YO U

h



CWB II=- Y0UrZP0
C WC Z—E X-Y
CWC 2 =YO Lj*YP0
CWC 3=— E XY
CWC 4=— YO U* YP O
CWC 5=— E Y+E X+YOU*YPO*YPD
CWC 6=— YOU
C WC 7-C WA 1
C WC 8=— E XZ
CWC 9=—YQU*ZPG
C WC I0=— ?,p O*YO U
CWG ll=YOU*YPO
CMA i=E Y*YOU+E Z * YO UR- YQ U*YOU*t Y P©*Y PC+Z PU* ZPOI
CMA 2=Y0U*YOU

CMA 3=E Y'rEZ+EYMYnU* YPG*YPO+E Z*YCU*ZPfl*ZPD-EY Z*EY Z-2.0*E'YZ*YOU
1*YPO*ZPO

CMB I=E YZ*YOU*ZPO+YOU'-YOU Y Z_PC*Z PC*Y PC1+EZ*YOU*YP©+YOU*YOU,k YPO** 3
CMB 2=EXY*YOU
C MB 3='Y©U*YOU*YPO
CMB 4=EYZ*ErXZ-*E XZi*'9 OU*YPO*ZP O+ EXY *E Z+EXY *Y i3U*Y'P£3*Y PO
CMC I-E YZ*Y]3U*YPD+ YOU*Y0U*YP0*Y PG*ZP0+EY *YOU* ZPO+YOU* ^'OU* ZP plc* 3
CMC 2=EXZ*YaU
CMC 3- YD U*YDU*ZPO
CMC4^-C XV*E YZ+EXV`VyOU*YP(3*Z PO+E Y*EX Z+EX z*YOU * ZPO* Z PO
CNA I=EYZ .*YDiJ*ZPC+YOU*YOU*YPO*ZPC*ZPO+EZ*YOU*YPo+ y o *You*YPD**3
CNA 2=E XY*YOU
CNA 3=Y0U*YOU;YP0
CNA 4=EYZ*E XZ+E XZ*YOU*Y'PO*Z Pr: ^ EXY*E Z+EXY *Y OU*Y PD*Y PO
CN81=-2,^ 4*E XZ*YOU*ZPO
CNB 2=ESC*YiDIJ+YDU*YOU-nYPi3TYPt?
CNB 3=E X*EZ+E X*Y€3U*YP0*YP0+E Z*Y 0U*Y PC*V Pfl+YOU*YOU*Y PO** 4

1+EZ *YO UMZ PO*ZPG+YDU*YOU*YPO*Y PC*ZPC*Z Pn — EX Z* Ex Z
CNC 1=EXZ*YOU*YPO+E XY*YDU*ZP0
CNC 2=Y0U*YOU*YPO*ZP0
CNC 3-E XZ *E XY+E X*E YZ+E X*YDUMY P0* ZP0+EY Z*Y OU*Y PD*Y PC+YOU*YOGI* YPO

00
u.



i
.	 f

F

1**3*ZPO+E YZ*YCU—'ZPC*Z P©+YOU*YDU*Y PQ*ZP,7**3
CPAI=EYZ*YDU*YPO+Yf}U*Y(3U*YPC*YPO*ZPO+EY*Y(Y-^- ZPO+YOU*Y0U ZPO**3
CPA 2=EXZ*YOU
CPA 3=YCU*YOU*ZPO
CPA 4=E XY*EYZ+E XY*YOU*YP©*ZPC+E Y*FX Z+EX Z*YOU * ZPO* ZPC
CPS I=C NC I
CPS 2=C NC 2
CPS 3=CNC 3
CPC 1---2.0*EXY*YOU*YPD
CAC 2=E X*YDU+YDU*Y ©U*ZPC*ZPO
CPC 3=E X*E Y+E X*YOU*ZPO*ZPO+EY*YOU*Y PQ*Y Pi)--Y ©U*Y OU*Y PC*Y PO* ZPO* ZPD

I+EY*YOU*ZP(3*Z PO+ Y©U*YOU*ZPO**4—EXY*EXY
24 T=0.0

DEL TA-t TF— T) /FORD I V
r	 DELTA2=DELTAf2. 0

WRITE( 69 610)
610 FORMAU 10 1 0 1 'TIME( SEC) *vti-Xa°WXtRAD/SECI$_s2X9°WY(RAD/SEC)172X9

'	 1wWZ1PAD/SEC3gs2XT'MASSDI SIFT) '92X9oDWX(RD?YSC2)°92X9°DWYIRD/SC2)°
29 2Xv f DWZtRDfSC2) "ip2Xv *DMASDS$F/S) ° F2X 9 t U (FT/SC2) p 1J

Xt 1)_XI,IN-V
X( 2)=X2INV
Xt 3 )= X31 N V

`	 X(4)=X41NV
Xt 53=X51NV
X{ 6 1 =0. 0
X(71=0.0
XSTCR H 1) =Xt 11.
XSTDRV 1)=X42)
XSTOR3t 1)=X1 3)
XSTOR 4( 1) = X1 4)
XSTOR5111 =X( 5)
00 2 K=l.g lGRDI V
D4 3 i=1g7
R(Iv1l =F1i1}TrXgK-pUvYOUq	 PEXLIM9PECXVA4

9PEXLMHg PEXLML s



ACA 1 PCA2vCA3 tf A23 vCAl2 9CWA1 9 CWA2 9003 9r-WA4,CW A5, CWA6v CWA7, CWA81
BCWA99CWBIvCAB2vCW53,CWB49CWB59CW66,CWB7,CWB89CW$9,CWB109UBl1,
CCWCIvCWC29CWC39CWC4vCWC5vCWCb7CWC7,CWCB vCWC99CWClOvCWC117CMA19
DCMA29CMA3vCMBA. 9 CMB2 9CMB3 9CMB4,CMC1rCMC2 vCM(;39CMC49 CNA17 CNA29
ECNA39CNA4 9 CNB19CN82sCNB3 9 CNCI 9 CNC2,CNC3 9 CPAIvCPA2v CPA3v CPA49
FCPBl,CPS2vCPB3vCPC1 CPC29CPIC33

3 XB1 I ) = X( L )+DELTA2*R(L 91)
DXSTRI( ii)=R(l,t.)
DXSTR21K) =R(-291)
DXSTR3tK)=R(39l)
DXSTR4(K)=R(4,1)
TB= T+DE L. TA 2
T=T+DELTA
TIME( I.) =00- 0
TIME(K+I)=T
DO-4 I=1,7
Rt I f2)=FlfJ iTBvXB9 K .#Ua, YOUv PEXLYMvPECXVAv

9PEXLMHOEXLML9
ACA). vCA2vCA39CA23vCAl29CWAL PCWA2 ,PCWA3vCWA49CWA ,p CWA69CWA7¢CWA89
BCWA 99CWB 1:C VIB2 9 CWB3 9 CWB4 9CWBS .sCWB6 v.CW B7 9 CWBB, CW B

-
99 CW BIOp CW B119

t.,aCCIvCWCZ9CiWC39CiWC44CWC59CiWC6TC4'C74CWC89CWC9vCWCIOsCVlCllvCMA1v
DCMA 2,CMA3 .Y CMB1 gCMB2,CMB3.CMB4 vCMC1 vCMC2 vCMC3 9 CMC4, CNAIv CNA2y
ECNA3.) CNA4,CNB1 9 CNB2,CNB39CNCI 9CNC2,CNC3tCPA1vCPA29CPA3,CPA4,
FCPB IICPB2,CP839CPCIvCPC2,CPC3)

4 XBI( I ) = X( i )+DELTA2 *RtI 9 2) .
D13 5 I=I-P7
R( 19'3) =E1(l,tTB,XBI vK ,PUvYOU., PEXLIM,PECXVA,

9PEXLMH9PEXLML.v
ACA 19CA 2 9CA 3 7 CA23 9 CAl2 aCWA1 9 CWA2 9CWA3 v CWA4 9 CW A59 CW A6 9 CVl A7, CWABv
BCWA9vCWBIICWB2,CW83vCW64,CWB5vCWB69CWB79CWBB,CWB9vCW6109CW811,
CC"WCI-i CWC2 9 CWC3,CWC49CWC5 9 CWC6vCWC7 * CWC8 vCWC99CWC1flvCWCII9CMA1,
DCMA2,CMA39CMBItCMB2sCMB3 9CMB4sCMC19CMC2,CMC3,CMC49CNAI,CNA29
ECNA 3,CNA4vCNB1,CN62gCNB3 9CNC), vCNC2 vCNC3 v CPAI9 CPA2, CPA3, CPA4,
FCPB l9CPB2vCPB3vCPC19CPC2,CPC3)

5 XB(I)=X(I )+DELTA*R(I ,3)

co



F

00 b I = 1v7	 x
6 R(1 9 4) =FI(IiTyXB 9 K9u t yOU,	 PEXLIMyPECXVA,

9PEXLMH4 PE XLML,
ACA13CA29CA3ICA23vCAl29001 9 CWA2,CWA3,CWA49 WA5,CWA6,CWA7,CWA8,
BCWA9vCWB1iCWB29CWB3 9 CWB4,CWB5,CWS6,CWB7 9CWB89CW89,CWB101CaBUt
CCWCI,CWC29CWC3 9 CWC4,CWC59CWC6 9 CWC7vCWC8 vCWC9,CWC10,CWC13,CMAl,
DCMA 2-PUM 3 v MB 1 ;CMB2,YCMB3 vc MB49 CMC19CMC2 9 CMC39 CMC4v CNA It CNA2v
ECNA39CNA44MIBIvCNB2vCNB3,CNCI,CNC2 vCNC37CPAI.,CPA29CPA3vCPA49
FCPB 1 9CPB29CPB3XPCI PCPC2 9CPC3)
DO 7 1=137

7 Xf-l)=X( I)+(DELTA/6.0) *IR(1 v1)+2e0*(R( 1 1 2)+R(1,3) )+RI I, 4) I
XSTOR 11 K+I)=X11)
XSTOR2( K+I.) =X( 2)

`	 XSTOR3(K+I)=X133
XSTOR41 K+I.) =X14)
XSTOR5( K+1) =X{ 5)

2 CONTINUE
PEN 173.= X( 6)

r	 PENIT2=X(71
K=IORDI V+l
TEMPER( I)=XSTORIIIURDIV+1)
TEMPGR(-2) = XST0R2(I0RDI V+I,)
TEMPOR13)=X5TOR31 I ORD1 V+I I
TEMPOR1 43=XSTI9R41 I ORDI Va-1I

DXSTRI.1 IORDAD}=Fi1Z 9 T,TEMP0RgK 9 U,Y€7Uq PEXLIM9PECXVA9
9PEXLMH?PEXLML;

r

	

	 ACA1v'CA2,CA3,CA23RCAl29CWA19CWA29CWA39CWA4,CWA5vCWA6vCWA79CWA$,
BCWA9vCWB 19CWB2 i C WB3 vC WB4 9 CWB5 , CWB6 vCW B7 9 CW B8 9 CW B9, CW B10, Cll 811q
CCWC I -vCWC 2vC WC39CWC49CWC5 9 CWC6,CWC7 9CWC8 vCWC9,CWC109 CWCIIv CMAIv
DCMA 2,C MA 3 vC MB 19C MB2 9 C MB3 ,CM84 vCMC19CMC2 9 CMC3 iCMC4, CNA 1v CNA29
ECNA 3,vCNA4iCNBI9CNB2vCNB3 9 CNC1 vCNC2 9CNC3 9 CPA1v CPA2.F CPA3 9 CPA4,
FCP619CPB 29CPB3,CPC 1 9 CPC2 9C PC33

I=2
I;	 DXSTR21 [ORDADI=F3.1i 9 T 9 TEMPORgK,U 9 YC'iU, PEXLIM,PECXVA9

00
W

^	 ..::.	 ^	 ..acs-,^..,,,w...v...^.^......._ .. _......

f1	

a	
.^ h^



9PEXLMH9PEXLML,
ACAI.9CA2,YCA3vCA239 CAI 2 9 CWAI vCWA2,CWA3,CWA4,CWA5,CWA69 CWA77CWA8v
BCWA 9vCWB 1v  WB 2,C WB3 v  WB4 9 CWB5 9 CWB6 v CW B7 9 CW B8 p CW B99 CW BIOv CW B 119 -
CCWC 1sCWC29CWC 3,C WC  jCWC5 9 CVIC6 9CWC7,CWC8 9CHC9 v CWCIOv CW CI Iv C M A 1,

D C M A 2vCMA 3 vC MB 19CMB29CMB3 vCMB4 9 CMC1 ,CMC2 9 CMC39 CMC4v C N A 19 C N A 2 v
E C N A 3,CNA49CNBI vCNB2 9 CN83 9 CNC1 9CNC2 9CNC3 9 CPA19CPA2v CPA3v CPA49
F C P B 19CPB 29C PB3 9 C PC 1,C PC2 9C PC 3)

I=3
DXSTR3( 10RDAD) =FII 1 9 T ip TEMP0RvK9UvYOU, PEXLIM9PECXVA9

9PEXLNHvPEXLML9
ACAIRCA2vCA3 9 CA23 9 CAl2 9CWAI 9CWA2 9 CWA3 9 CW A49 CWA59 CWA6, CW A7, CWA8 v

BCWA99CWB17CWB2 9 CWB3vCWB4,1 C	 9	 giroWB59CWB6vCWB7CWB89CWB9C8 10TCWB119
CCWC 19CWC 2sCWC39CWC 49 CWC'5vCWC69C14C79CWC6 9 CWC9 9 CWC10-PCWC119 CMA1v
DCMA .2aCMA 39C MB 1 9 CMB2 vCMB3 vC MB4 9CMC1 9 CMC2 B CHIC3 v CMC49 CNAI.9 CNA29
ECNA3vCNA4,CNBI.,CNB29Cr4B3 9CNC1 9 CNC2 9 CNC3 9 CP A19 CPA2v CPA3 9 CPA4v
FCPB 19CPB29CPB3 ,CPC 19CPC2 9C PC31

I=4
DXSTR4( IORDAD) =F1 ti vT,TEMPOR,K,U,YOU 9 PEXLIM,PECXVA,

9P EXLMHv PE XLML 9
ACAI 9 CA2 9 CA39CA239CAl2 9 CWA1 vCWA2vCWA39CWA4,CWA5vCWA6oCWAT, CWAB v

BCWA99CWB19CWB2 9 GWB3 v CWB4,CWB59CWB6,CW879CWB8 9 CWB99 CW B10, CW 8119
CCWCIvCWC2 9 CWC39CWC49CWC 5vCWC6,CWC7 9C WC8 v CWf,99CWC10 , CWC1I1,C M A19
DCMA 2,CMA3,Ct4BI ,sCMB29CMB3,CMB4 4CMC1 9CMC29CMC3vCMC4, CNA1 9 CNA29
ECNA3,CNA4 9CNB19CNB2vr-NB39CNCI.9CNC29CNC34CPA1tCPA29CPA39 CPA49
FCPB 1,CPS 29CP83 9 C PC 1,CPC2 vCPC3 )
DO 711 LK=1910RDAD
WRITE(6 1 611) TIME(LK) 9 XSTORI-ILK), XSTOR2ILK), XSTOR3(LK )9

1XSTOR4jLK)9 DXSTRI(LK), DXSTR2{Ll() g DXSTR3(LK) 9 XSTOR51LK), UILK)
611 FORMAT( 00'vl0(lX;EI2.5)1
711 CONTINUE

WRITE(6 9 611) TIME(IORDAD), XSTORIIIORDAD39 XSTORMORDAD99
IXSTOR3( TORDAD) , XSTCR41I ORDAD) 9 DXSTRI. 11ORDAD) 9 DXSTR2(IORDAD),
2DXSTR3( IDRDAD) 9 XSTOR5UORDAD) 9 U4113RDAD)
WRITE (6, 612) TF

512 FORMAT$ 9fl49FI5.6)

CD
co

^	 r



r

r

WRITE ( 6,7005) PENiTI , PENIT2
7005 FORMAT[ 101,2(3X,E11.4)

00 4441 KIK= I,I ©RDAD
FtIRCEX= YOU*I .U(KI K) +YPO*XST©RI t KIK) *XSTOR2 ( KI K)-XSTUR4(KIK )*

IXSTOR2I KIK)*XSTOR2 i KI K) -XSTOR4IKIK)*XSTOR3 ( KIK)*XST OR3(KIK )
2+ZPO*XSTORI # KIK$ ^rXSTOR3 ( KIK)+ZPO*DXSTR2 ( KIK)-YPO*DXSTR3(KIK) )

TDO T=FORGE X*XSTOR5 (KI KI
R IN XDN= XSTORS ( KI K) +ZPO*XST OR2 (KIK')-YPO*XSTOR3(K IK)
R 14YDN=XSTOR4( KIK) *XST0R3 (KI KI -ZPO*XSTORI ( KIK)
R I-NZDN=YPO*XSTORI I KI K) -XSTOR4 (KIK) *XSTOR2 (KIK)
ENEKIN=m 5*(EX*XSTORI ( KI K) *XSTORI. ( KIK)+EY*XSTOR2 ( KIK)*XSTOR2(K IK )+

IEZ*XSTOR3(KIK) *XSTOR3tKIK) ) +.5*YOU*IRINXDN*RINXDN+RINYDN*RI N YDN+
ZRINZDN*RINZ O N) --XSTORI(KIK)*XSTOR3 ( KIK)*EX:-XSTOR2(KIK )*
3XST©R3(KI K) *EYZ-XSTiDR1 (KI KI *XSTORZ i KI KI *EXY

ANGMO X=E X*XSTORI I KI K) -E XY*XSTOR2 ( KI K) -EX Z*XST ©R3I K IK) +YOU* ('YPO*
IR INZDN-ZPO*RI N'YDNI

ANGM© Y=-E XY^XST©R i (KI K) +EY*X STOR2- (KIK) -EY Z*XST OR3 (K IK) +Y©U* I ZP O*
iR IN-XD N- XSTOR41 KI K) *RI NZDN)

ANGMOZ--EXZ*XSTDRI ( KI K)--EYZ*XSTOR2IKIKI+EZ*XSTOR3 ( K IK) -YOU* (
IX5TaR4( KIK)*RINYDN-YPO*RINXDN)

ANGMOT=SQRT ( ANGMO X*ANGMOX+ANGM(3Y*ANGMOY+ANGMOZ* ANGMOZ )
WRITE( 6,44423 TIME ( KI K) QFORCEX ,TDOT, ENEKIN , ANGMOTv ANGMDX, ANGMRYI
IANGM0Z

4442 FORMAT( ' O' , 8(I X g E 12.5) )
4441 CONTINUE

TP= TF
TFP =T
POELTA=-DELTA
PDE1.T2=PDELTA/2.0
D© 14 M=1,3
GO TO i 15,16,20) , M

15 P(I.) =PIINV
P12)=P2INV	 CD
Pt 3)=P3INV
	 0

'.	 P(4)=-P41NV



Pt 5)WP5INV
P STOR I( IORDI V+1)=P (1)
P STOR 21 IORD I V+ 1) =P (21
P STOR 3( 10R- D  I V+ 1) =P (31
PSTORM IORDIV+I)=P(4)
PSTORM IORDIV+I) =P(5)
SOM TC0= SO MC OA
SOMTC 1= SOMC 1B
SOMTC 2= SflPiC 2C
GO TO 17

16 Pi 1)=000
Pi- 2) =4efl
PI 3)=O. D
PI4)t±OaU
P(5)=0m0
RSTORI( I0RDIV+Lfl) =P(I)
RSTOR2t IORDIV+I v1) =P{2)
R STOR 3I IORDI V*- 1 s 1) =P13)

r

	

	 RSTOR4I IORDIVs1v1) =P(4)
RSTOR5I IORDI V+I. vl) =P(-5)
SOM TCO=0.0
SOM Tf, 1= O: 0
SomTC2--0.0
GO TO 17

20 Pi i)=0.0
P(21=0.0
P(3)=0,60
P(4)=OeO

r	 P # 5) =0a O
R STOR U IORDI V+l s2) =P{1)
R STOR 2I IORD I V+l v 2) =P(2)
RST0R3I T0RDI V+1v2) =PI3)

h	 RSTOR41 IORDIV+l 72) =P(4)

R STOR 5( IORDIV+112) =PT 5)
I	 S©M TCD= Oo G



Sam TC1= 0Q 0
SOM TC 2=0.0

17 OO 8 J =1: 13RD I V
DO 9 L= 1, 5
RPI L ,tl) =F2( LrtYPvP.,S©MTCO9J-U9YOUaXSTOR5v 	 My

9PEXLMH V PE XLML 9
ACA I, CA 2 .9CA 3 gCA 23 94 Al2 9 CWAI v CWA2 , CwA3 9CW A49 CW A59 CW A69 CW A7v CW A89
BC VIA 99 CWBI9CUB29CWB39CWB4vCWB59CW86,PCWB79CWB8vCWB9vCWB109CWBIIV
CC WC I.9CW(;29CWC3 9CWC49CWC59CWC69CWC79CWC8 9CWC99CW CIO, CWCIL9CMAIV
DCMA 2vCMA3vCMB I IY CMB2 9CMB3 9CMB4 9 CMC1 9 CMC2 vCMC3,CMC4v CNAIv CNA29
ECNA3sCNA4vCNBI.9CNBZ9CNB3vCNCI PC NC29CNC39CPAI vCPA29 C-•A3vCPA49
FCPBI-rCPB2 vC PB3,CPCI iCPC29CPC3 9
1SOMTC-19
2SOMTC2.t
4XSTORI.v XSTOR2 9 XSTOR39 XSTOR4v IORDIV9 PEXLIMv PECXVA)

9 PBfL)=P(L)+PDELT2*RP(L41)
TPB=TP+PDELT2
TP=TP+P.DELTA
DO 10 L=I 9 5

RP( Lr I =F2( LQTPB9PB9SCMTCOIPJgU ,7YOUPXSTO P,5$	 MV
'3PEXLMH9 PE XL ML V
ACAI. iP CA 29CA3 .,CA23vCAl2 9CWA1 9 CWAZvCWA3 9CW A4 sCW A5 9 CWA69 CW A7v CWA89
BCWA9,CWBItCWB29CWB39CW64vCWB59CWB69CWB79CWBS9CWB99CiBIOVCWBIIv
CCWCI..sCWC29.CWC34CWC49CWC59CWC6,CWC71CWC89CWC99CWC109CWCI.I9CMAIv
DCMA 2gCMA3,C MB3:,CMB2 vCMB3 9 CMBfr vCMCI. 9 CMC2 9CMC3 9 CMC4v CNA I.P CNA29
ECNA 3vCNA4 ,tCNB 19CNB29CN63 9CNCI s CNC2 9CNC3 9 CPAI.9 CPA29 CPA39 CP A49
FCPB IvCP829CPB 39CPC 19CPC2 vC PC3 v
ISOMTC Iv
2SOM TC 2,
4XSTORI9 XSTOR2v XSTOR3 9 XSTO R4 9 IORDIV 9 PEXLIM 9 PECXVA)

10 PB^(L)=P(L),+PDELT2*RP(L92)
DO 11 L =10
RP(( 3)=F2ILvTPB.,PB1vSOMTCOvJvUvYOUvX5TOR5v	 M9	 co

9PEXLMH9PEXLML 9
	 N

ACA19CA29CA3 ,9CA23vCAl2 9 CWA19CWA2 ,PCWA39CWA4 ,vCWA59 CWA69 CWA7v CWA89



BC. WA 9, C WB I v C WB 2, C WB 3 v CWB4 9 CWB5 v CWB6 v CW B7 9 CW BB v CW B9 v CW B l Ow U B117
CCWC1, WC27CWC3,CWC^-9CWC5vCWC67CWC79CWC8,CWC9vCWC10,CWC11,CMA1v
DCMA2,CMA39CMBIvCMB2,CMB3,CMB4vCMC19CMC2 v CMC39CMC4,CNAI.,CNA29
FCNA3vCNA4vCNB 1 vCNB2 9CNB3 sCNCi v CNC2 9 CNC3 v CPAs, CPA2v CPA3v CPA49
FCPB 1 9 CP82vCP83 vC PC 1 vC PC2 vCPC3,
i som TC 11,
2SOM TC 27
4XSTOR1, XSTCIR2, XSTOR3, XSTOR49 IORDIV, PEXLIM, PECXVA)

11 PBt L }=P$ L)+PDELTA*RP(L,3)
DO 12 L T 1, 5

12 RPIL v4) =F2(L,3PsPBvSOMTCOpJ,U,YOU9XSTOR5v 	 M,
9PEXLMH 9 PE XLML9
ACA I.9CA29CA3sCA239CAl21CWA19CWA2,CWA39Can1AlrvCWA59CWA69CWA79CWABv
BCWA9 9 CWB1 7 CWB29CWB39CWB49CWB5 9CW06 9 CWB7 9 CWB89CWB99CWB10, ChBII,
CC WC 19CWC 2 v WC 3 vC WC4vC WC5 9 CWC6 9CWC7 gCWC8 7 CW C9 9 CW C1Ov CWC119 CM A 19
DCMA 2 9C MA 3 9 C MB I. v C MB 2 9C MB3 9 C MB4 9 CMC 1 9 CMC2 9 CMC3 9 CMC49 CN A 19 CN A 29
ECNA 3vCNA4 9 CNB 1 9.CNB2 9 CNB3 vCNCI v CNC2 9CNC39CPA19 CPA29 CPA3, CPA49
FCPB 1 9CP329CPB39CPCI vCPC2 9CPC3 9
1 SOM TC 1 1
2SOMTC 2v
4XSTCRlt XSTOR2v XSTOR3, XSTOR4 v TORDIV, PEXLIM9 PECXVA)
00 , 13 L=gv5

13 PIL)=PIL)
+

(PDELTA/6o01*(RP(L91)+2.0*(RP(Lv2I+RP(L93)1+RP(Lv4)1
GO TO ( IS, 19,21) 9M

18 P STOR V FORD I V+ I— J) =P I I I
P STOR 2( ;ORD I V-1 1— ,) 9 =P 1 2)
P STOR 3( IORDI V+1—.3) =P13)
P STORM I€7RDT V+1 — J) =P(43
PSTOR5( I©RDIV+1—J) =P(5)
GO TO 8

19 R STOR It IGRDIV+I— J 11=P(13
R STOR 2( IORDIV+1 — J 91) =P(2)
RSTOR3( IORDIV+I—.391)=P13)
R STOR 4( YORD I V+ I— J v I. I =P 14)

	 w

RSTOR5( I0RDIVL1—J91)=P(5)



}

G0 TO 8
21 R STOR 1( IORDIV+I — J,2)=PII I

R STOR 2( TURD I V-t I. —J 2) =P (2)
R STOR 3( IORD I V+1 — J v2) =P (31
RSTORM IORDIV+1 — J921 =P(4)
RSTOR5( IORDIV+1—Js2)=Pl5)

8 CONTINUE
14 CONTINUE

DO 22 K=ITIORDAD
COEFAS=CAI+CA2*XSTOR4( KI **2*YOU+CA3*XSTOR4(K)**4*YOU** 2

I+XSTflR4(K)*CAl2+XSTOR4(K) **3*CA23
IF (ASST U(K) ). LTcPEU1.I M) GO TO 33
IF (U(-K ).GT.0. 0) GO TO 34
IF (U(K AT. 0.0) GO TO 35

33 PENCO2=0.0
GO TO 36

34 PENC#32=PECUVA
GO TO 36

35 PENCO2W—PECUVA
36 PAF IU(KI=€ 1.0/C©EFAS) *tCWBI I*IXSTOR4 (K) ^CMSI +XSTOR4(K)*XSTOR4(K )

1*CM3 2+X STOR4(K) **3 ^CMS3+C MB4) +CWC 11. *( .XS T OR4 ! K) * CMC 1+XSTO R4
2(K)*XST€3R4(-K) *CMC2+XSTOR4(K) **3*C.MC3+CMC4) )
PAF 2U(K)_( I.4/C©EF ASI *(CWBI I*(XSTOR4 a K) *CNBI+XST OR4(K)*XSTOR4(K )

I*CNB 2+CNB 3I +C WC I1* (XSTOR4 (K) *CNCI+XSTOR4 (K)*XST OR4 (K)*CNC2+CNC3) )
PAF3U€K)=I 1o0PCOEFAS)*IC'J811*(XSTOR4(K)mCPB1+XSTOR4(K)*XSTOR4(K )*

2CPB2+CPB31+CWCII*I XSTOR4(K)*CPCI:+XSTOR4 (K)*XSTOR4(K1*CPC2+CPC3) )
€C AF 5U(K)=1a 0
PAF6U(K) = 2.O1PENCO2T(ABS€ U(K)) — PEUL i t4)
AIIINI.IK)=I(R5TOR1(KvI)*PAFLU(K)+RSTOR2(Kvl)*PAF2UIK)+RSTOR3(Kg 1)

E*PAF3U(K)+RSTOR51Kv1)*PAF5U(K)+PAF6U(K) )**2)/W
AIIIN2(K)=IRSTORI:(Kvl)*PAFIUIKI+RSTOR2(K ' 1)*PAF2U(K)+RSTOR3(Kv 1)

I*PAF3U(K)+RSTOR5(K 9 1)*PAF5U(K)+PAF6UIK) )*(RSTORI.(K92l*PAFIU(K
2$+RSTOR21 K ,92)*PAF2UI K)+RSTOR3(K,,2) *PAF3UII()+RS —fCR54Kq 2)*PAF5U(K ) 	 ro
3+PA F 6U( K)) /W
AIIIN41K)=i (RSTORI(Ks2)*PAF1U(K)+RST©R2(Kg2)*PAF2U(K)+RSTOR31Ka 2)^



1PAF3U(K)+RSTtlR5(Kv2)*PAF5U(K)+PAF6UIK))**2)/W
A1J1N1(K) = (PSTOR1( K)* PAFIUtK)+PSTOR2(K)*PAFZU(K)+PSTOR3(K)*

2PAF3U(K)+PSTOR5(K) *PAF5U( K) +PAF6U(K))*(RSTORI(Kv1)*PAFIUIK )
3+RSTflR2(Kr1)TPAF2U(K)+RStOR3 (K9I) *PAF3U (K)+RSTOR5lK9 1I*PAFSU(K )
4+PA F 6Uf K) 3 /W

AIJ1142( KI =IPSTORI.I K) *PAFI: U(K)+ PSTOR2 (K) *PAF2i4(K)+PSTOR3(K)*PAF3U(K
1)+PSTOR%K)*PAF5U( K)+PAF6U[K)1 *1RSTORI(K921*PAF1U(K)+RSTOR2(K9 2
2 WAF2U3 K I+RSTOR31 K42) *PAF3U# K) -c-RSTOR5 (K 9 2)*PAF5U (K I+PAF6U (K )) 1W

AJJ IN Tf K)=( (PST€3R1(K) *PAFIU( K)+PSTOR2 (K)*PAF2UIKI+PSTOR3(K )*PAF3U
2( K )+P STOR5i K) *PAF 5U1 K)+PAF6 U1 K) ) **2) / W

22 CONTINUE
A I I ( 1v1) =FNTGRL(IORDIV+19 DELTA, A11INi)
A I I ( U2-) =FNTGRL(IORD1V+19 DELTA, A1IIN2)
AlH2,1)=AII(1921
A Ili 29 2)=FNTGRL( IORDI V+19 DELTA S Al I I N4 )
A?.l(1) =FNTGRLt1OR01V+1 ,p DELTA S RIJINI)
A IJ(2) =FNTGRLi 1ORD1 V+1 v DELTA 9 AI JI N2 )
AJJ	 =FNTGRL0ORDTV+19 DELTA S AJJINT)
WRITE( 69+614) All (1 91) 9 All ii 92) v A11(292) v AIJ11)9 AIJ (2) 9 AJJ

614 FORMAT( g 0 -p615K,E10.311-
r

	

	 DETMV=A I1(1911 *A1 i Q 929 —Al I (1921 **2
DLP SI 1=—EP*PENI T1
DLP SI2=—EP*PENT TZ
V1Ii=--( 1d 0/DETMV)*1. (Al1Q72)1*(DLPS11+A1J(1) 1+1—Al1(1921)*(DLPS12

I+ATJ(21)1
V(2) --(1.0/D'ETMV)*[€--AII$291))*(DLPSTI+AI3(1))+(AI 1(19111*(DLPSI2+

Ip	 IAIJ( 2)1 )
IFfAT11-191).GT.0,m0) GO TO 7701

'	 GO TO 7703
7701 1F(A II(2a Z).GT.0. 0) GO TO 7702

DETMV=A1I1191)
t	 DLP S11=--EP*PENT T1

W P S12=0.0
V )=-(1.0/DETMV)*(DLPSII+AIJ(1))

{	 V1 2) = 0® 0

f

co



GO TO 7702
7703 TRAIII 292I.GT.0* 03 GO TO 7704

DE T
^ 

M
C Y

V= 0, 0
DLP ST I=0.0

DLP S12=0.0
VI 1)=0n 0
V(21=0  a 0
GO TO 7702

7704 DETMV-A%1(2v2)
DLP SI 1=0.0
DLP Si 2=—E P*PE N I T2
V( 1 1=0. 0
V( 2)--[ I.O/DETMV) *fDLPSI2+AI J(2)

7702 CON TINUE -
DE3IS=All(lv1)*ATI (2 9 Z) —AII 13.923*+*Z
GOTVAI=AJJ— I I . G /DE TI S? *I IAI J; I I *AI I (?_ 92i — AI J (2 ) *A 11( 29 1 3 )* AIJ ^ I) f

1( —AIJ(11*A Ii(l ,p2)+AIJ(21*AYI Il s-l))*AIJ12) )
WRITE( 68361) DETMV9 V[1) 9 V121

361 FORMAT( l 0'v4I3X9E10®31 )
TF('ABS(XSTOR2410RDIV+L))dLToXENDY) GO TO 25
GO TO 29

25 iF#ABS( XST€1R3( TURDIV+I)) d LT. XENDZ) GO TO 27
GO TO 29

27 IF(AB SI G€3T'VA 13 . LTs WANVAT) GO TO 28
29 CONTINUE

k	 DO 23 K=1910RDAD
DELTAU(K) = PAFI U% K) *tPSTORI i K)+RSTORI (Kv l)*V(I)+RST€1RI(K9 23*V (2) )

I+PAF2U[ K) *(PST©R24 K)+RSTOR2 t K 9 11 *Vt 13 +RSTOR2(K$, 2)*V i 2))+PAF3U t ,( )
Z*1 .PSTOR34K3 +RSTOR3(K9I.)*V(l)+RST[ (K?2)*V(21)+PAF5U(K)*4PST0R59K)
3+RSTOR5(K91)*V(1)+RSTOR5(K921*V( ))+PAF6S.I(K)*(Vil)+V(233

UI K )=Ul K) —DE LTAU( K) 1W
23 CONTINUE-

G13 -TO 24
28 RETURN

END

co
rn



.T.

F

FUNCTION F1(I vTvX,KvU,Y0Uv PEXLIM,PECXVAv
9P E XLMH s PE XL ML 9
ACA19CA?pCA3vCA239CAl2,CWAl vCWA2,CWA3 vCWA4,CW A5 9 CWA6v CWA7, CWA8v
BCWA9,Cti81,CWB2 *CWB39CWB4 9 CWB5 pCWB69CWB79CWBB9CWB99CWB109CWBily
CC WC1vCWC29CWC3PCWC4vCWC59CWC6vCWC7 ?CWC89CWC99CWC10vCWC119CMA19
DCMA 2 4 CMA3 vC MB1 sCMB2 vC-MB3 9 CM84 9CMC1 gCMC2 v CMC3 v CMCr: s CNA19 CNA2,
ECNA3 1CNA44CNBI 9 CN629CNB3 vCNC), vCNC2,CNC3 9 CPA1v CPA2 9 CPA3, CPA4v
FCPB 19CPB29CPB3vCPC19CPC29CPC31

DIMENSION v.(7) 9 U( 500)
COEFAS=CAI+CA2*XI 4) **2*YOU+C A3*X (4) **4*YOU**2+X' 4)*CA 12 +X (4)** 3*
ICA23

VAA = X{ 21*XI 2) *CWAI +XI3) *X (33 *CWA2+X (1) *X (2) * (CW A3+X (41*CWA4 )
I+X# 1)*X(3)*(LWA5+X(4)*CWA6)+X(Z)*XI3)*CWA7+X(2)*X(5)*Cb)A8+X(3)
2* X€ 5) *C WA 9

VBB=X( 1.)*Xt 1)*(CWB1+X(4) *CW62)+X(3)*X I3)*ILW83+X(4)*CW841
i+X( I.)*XI2)*CWB5+X(1)*X(3)^(CWB6+X(4)TX(41mCWB7)+XI2)TX(3)*(CWBS
2+Xt 4)*CWB9)+XI2) *( X(4) *X(5) *CWBIOI+U(K)*CWBI1

VCC = Xt 1)mX€i)*(CWCI+X(4)*CWC2)+X(2)*X(2)*(CWC3(-X(4)*CWC4)+X(1)*
1X(2)*(CWC5+Xt4) *X(4) *CWC6)+X€1) *X t3)*CWC7+X(2)*X (3)* ICWC8+X( 4)*
2CWC 9)+X(3) *t X{ 41 MX (S) *CWCI OI +U (K) *CWC 11

VCMA = X( 4I *Xt 4) l ;Z MA 1+X(4) **4 *CMA2+CMA3
VCMB=X( 4)*CMBI+Xt4)*X(41.*CMP2+XI41**3*CM83+CMB4
VCMC=X(4)*CMCI+X(4)*X.I4)*CMS 2+X(4)**3*CMC3+CMC4
VCNA= X( 4) *CNAI+X(4)*X(4) *CNA2+X t4) **3 *CNA3+CNA4
VCNB=X( 41 *.CNBl+X(4),XI4) *CNB2+CNB3
VCNC= X14) *CMC I+X(4) *XI4) *CNC2+CNC3
VCPA = X(4)*CPAI+X( 4),X(4) *CPA2+X(49**3*CPA3+CPA4
VCPB = XI 4) *CPBI+XI41*X(49 *CPB2+CPB3
VC?C=X( 41 *CPC I+X(4) *XI4) *C PC2+CPC3
GO- TO ( 19293v495969 7) 9I

1 Fl=( 1.0/C£IEFAS) *( VAA*VCMA+VBB*VCMiB+VCC*VCMC)
RETURN

2 FI=(Ii.O/COEFASI*IVAA*VCNA+VBB*VCNB+VCC*VCNC)
RETURN

3 -F1( IQO/COEFAS) *( VAA*-VCPA+VBB*VCPB+VCC*VCPCI

1
f

f

v



RE -1 URN
4 F1=X(51

RETURN
5 F1=UtK)

RETURN	
gb IF(' X{ 4) ®LT.PEXLMH) .GO TO 7001

F 1= PEC XVA*( X(4) — PE XLMH1 **2
GO - TO 7002

7001 F1=0o0
7002 CONTINUE

RETURN
7 IF( Xi 4) .GT. PE XLML) GO TO 7003

F I=PEC XVA*(—X(4)+PE XLMI.I **2
GO TO 7[04

7003 F1=0.0

r 7004 CONTINUE
RETURN
END

FUNCTION F2(LvTPvP9SUMTCO,JvUvYOU9XSTOR5v	 My
9PEXLMH' 9 PE XLMLv
ACA1-2CA2vCA3vCA239CAl29CWAl 9 CWA29CWA3 9 CWA4 9.CWA59 CW A6 s- CW A7  CWA89
BCWA9 1 CW8IvCWD2 9 CWB3vCWB49CWB59CWB69CWB79CW889CWB9v CW010 9 CWBIIj?
CCWC1 CWC2 9 CWC3vCWC4vCV3C5 9 CWC59CWC79CWC89CWC99CWC109 WC119CMAly
DC MA 29CMA 3,C MB I. sCMB2 9 CMB3 9CMB4 v CMC1 9CMC2 9 CMC39 CMC49 CNA1 9 CNA29
Z.CNA3vCNA49CNB1 vCNB 2vC NB3vC NCI vCNC2 9 CNC39 CPA1v CPA29 CPA3v CPA49
FCPB IvCPB29CPB39CiPCi19CPC29CAC3 9
lSOMTC 19
2SOMTC 2 9
4XSTOR1v XSTOR2 9 XSTOR3 9 XSTOR4v I©RDIV 9 PEXLIM9 PECXVA)

DIMENSION P159 9 U(500)9 XST€1R1 (5009 9 XSTOR2(5001 9 XSTOR3(500 )9
I XSTOR4( 5009 9 XST©R 5 (5 00)

JJ=IORD I V+2—J	 co

VCMA=XSTOR4(JJ) -XSTQR4(3J! *CMAI+XSTOR4(JJ) **4*CMA2¢CMA3

'ice! ==	 -- - -	 '„.^. ^	 ----	 - ^	 - _ -^-^	 ^•-- ^ ^	 c1^



A.

VCM6=XS TOR 4( J A *C MBI+ XSTQR4 ( J  ) *XSTOR4I J A *CMB2+XSTOR4(JJ 	 3
I*CMB 3+C MB 4

VCMC=XSTOR4( JA *C MCI+XST0R4 ( JJ) *XSTflR4 ( J J I *CMC2+XST0R4(JJ) 3
1*CM C 3+C MC 4
VC NA= XSTOR41 JJ) *CNA1+XSTOR4 ( J J I *XST0R4( JJ)*CNA2+XST0R4(JJ 	 3

I*CNA 3-iC MA 4
VCNB=XSTQR41 JJ) =CNB1+XSTOR4 (JJ) *XSTOR4(JJ)*CN82+CNB3
VCMC=XS TOR 4( JJ) *CNC1+XSTOR4 `i JA *`XSTQR4 (JJI*CNC2+CNC3
VCPA=XS TOR 41 JA *C PAI+ XSTQR4 ( JA *XST©R4 ( JA 	 *CPA2+XSTQR4(JJ I** 3

I*CPA 3+CPA 4
VCPB=XSTOR4( JJ) *CP8I+XSTQR4 (JJ)*XSTOR4(JJ)*CPB2+CPB3
VCPC=XSTOR4(JJ)i*CPCI+XSTOR4 (JJ)*XSTOR4(JJ)*CPC2+CPC3
COEFAS=CA I+CA2*XSTOR4(JJ) T*2*YOU+CA3*XSTOR4(JJ)**4*YOU**2

1+XS TOR 4( JA *CA 12+XSTOR4I JJ) **3 *CA23
GO TO ( 1429394 ,p5) yL

I PAFIXl=t1.O/COEFAS)*IVCMAT(XSTOR2(JJ)*(CWA3+XSTOR4(JJ)*CWA4)
1+XS TOR 3€'JJ1*1CWA5+XSTOR4IJA*CWA6) )+VCMB*g2,.G*XSTORI(JJ1:(CWB1
2+XSTOR 4(J JI *C W82) + XSTOR2 (JJ) *CWB5+XST OR31 J J) * (CW B6+X STOR4 (J J )*

r	 3XSTOR4tJJI*CWB71)+VCMC*(2.O*XSTORI(JJ)*(CWC-I+XSTOR4tJJI*CWC2)
4+XSTOR213J)*(CWC5+XSTOR4(JJ) *XSTflR4(JJ)*CWC6)+XSTOR3(JJ )*CWC7) )

PAF2X1= (I.O/COEFAS)*(VCNA*(XSTOR21JJ) *(CWA3+XSTOR4(JJ )*CWA4)
T.TXSTOR3I JJ# r(CWA5r XSTUR4(JJ) *CWA6) )+V CNB*(2oO*XSTORI(JJ )*ICWBI
2+XSTQR4(JJ)'*C•WB2)+XSTOR2(JJ)*CWB5+XSTOR3(JJ)*[CWB6+XSTOR4(JJ )*
3XST0R4(JJ)*CWB7))+VCNCm(2aO*XSTORI(JJ$*(CWCI+XSTOR4(JJ)*CWC2)
4^XSTOR2(JJ) *(CWC5+XSTOR4(JJ) *XSTOR4 (JJ) *CWC6)+XSTOR3(JJ I*CWC7) )`	

PAF3X1=1 1.0/COEFAS) *( VCPA*(XSTOR2(J.)) *(CWA3+XSTOR4[JJ)*CWA4)
i

	

	 1+XSTf7R3(JJ)*(CWA5+XSTQR4(JJ)*CWA6))+VCPB*(2.0*XSTORI(JJ).1CWB1
2+XSTOR4(JJ) *CWB2)+XSTOR2 (JJ) *CW85+XSTOR3 (JJ)*(CWB6+XSTOR4(JJ )*

r	 3XSTOR4(JJ)*CWB7) )+VCPC*(2a0*XSTORI (JJ)*(CWC1+XSTOR4(JJ)*CWC2)
i	 4+XSTOR2(JJ)*ICWC5+XSTOR4(JJ)*XSTOR4(JJ)*CWC6)+XSTOR3(JJ)*CWC7))

F 2--P1 l)*PAFI X1 — P (21 *PAF2 Xl —Pia) *PAF3X I
RETURN

2 PAFIX2=(IoO/COEFAS)*(VCMA*(2.0*XSTOR2-(JJ)*wWAI+XSTORI(JJ)*(
ICWA3+XSTOR4(JJI *CWA4) +XSTOR3 (JJ1 *CWA7+XSTOR5 (JJ)*CWAB I +VCM B* (
2XSTOR I(JJ I *CWB5+XSTOR3(JJI *1CWBB+XSTOR4-I JJ)*CWB9)$XSTQR4(JJ )*

r a ..
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3XSTOR 5( JJI*CWB10)+VCMC*(2.O *X STOR2 (JA *(CWC3+XSTOR4(JJ )*CWC4)+
4XSTOR I( JJ) *(CWC5+XSTOR4(JJ) *XSTOR4(JJ) *CWC6)+XSTOR31JJ )* ICWC8+
5XSTDR41 JJ)*C WC 9) ) )
PAF2X2=( 1.0/COEFAS) *IVCNA*(2.OYXSTOR2 (JJ)*CWAI+XSTORI(JJ )*(

).CWA3+XST0R4tJJ *CWA4I+XSTOR3(JJ)*CWA7+XSTOR5(JJ)'CWA8)+VCNB*t
2XSTOR1( JJI*CWB5+XSTOR31JJ) *(CWBB+XSTOR4tJJ)*CW89)+XSTOR41JJ I
3XSTOR 5( JJ)*CWB1 OI+VCNC*(2.0*XSTOR2 (JJ)*ICWC3+XS i OR4(JJ )t-CWC4)+
4XSTORIt JJ) *( CWC5+XSTOR4( JJI'XSTOR4(JJ)*CWC6I+XSTOR3(JJ )* (CWCB+
5XSTOR4( JJ)*CWC9) ) )

RAF3X2=( I&O/CCEF AS) *IVCPA*t2 * 0*XSTOR2 (JJ)*CWAI+XSTORI(JJ 1^ 4
`

	

	 ICWA3+XSTOR41 JJ) *CWA4)+XST OR3 i JA *CWA7+XSTOR5 IJJ )*CWAB )+VCPB* (
2XSTORIIJJ)*CWB5+XSTOR3(-JJ) *(CWB8+XST0R4(JJ)*CWB9I+XSTOR4(JJ 9
3XSTOR5(JJ) *CWB-10)+VCPC*(2.0*XSTOR2 (JJ ) * (CW C3+XSTOR4 (JJ )* CW C4 )+
4XSTOR1( JJ)*(CWC5+XSTOR41 JJ) *XSTOR4(JJ)*CWC6)+XSTOR3(JJ )i c (CWC8+
5XSTOR Q JA *C WC 9) ) )

r	 -F2=—P( I)*PAFIX2— P(2) *PAF2X2 — P13) *PAF3X2
I— SOMTC 1*XSTOR21 JA /t X2 MAX**2 )

r	 RETURN
3 PAFIX3= t 1.0/COEFAS)*IVCMAM(2.0*XSTOR3 (JJI*CWA2+XSTORI(JJ I* (CWA5

I+XSTOR 4(J JI *C WA6) + XSTOR2 (JJI *C WA7+X STOR5 (JJ) *CW A9) +V CMB* (2.0*
2XSTOR3(JJ)*(CWB3+XSTOR-eiJJ)*CWB4)+XSTORI(JJ)*ICWB6+XSTOR4(JJ I*
3XST0R4( JJ)*CWB7)+XST0R2(JJ) rtCWBB+XSTOR41JJ1*CWB9))+VCMC*(
4X.STORI( JJ)*CWC7+XSTOR2(JJ)*(CNCB+XSTOR4#JJ)*CWC9I+XSTOR4(JJ)*
5XSTORS( JJ)*CWCIO) )
PAF2X3=i la0/CQEFAS) *(VCNAM12.0*XSTOR3 (JJ)*CWA2+XSTORIIJJ )* (CWA5

I+XSTOR4(JJ) *C WA b) + XST©R2 (JJ) *C WA7+X ST (IR5 3 J J l *CW A9) +V CN B i" ( 2.0*
2XSTOR31 JJI*^(CWB3+XS30R4t3J1*CWB4)+XST©RIIJJI*ICWB6+XST©R4(JJ )*

r

	

	 3XS— OR4i JJ)*C IAB7)+XSTOR2(JJ) *tCWBB+XSTOR4(JJI*CWB91)+VCNC*(
4XSTQR I( J,f) *CWC 7+XSTOR2 (JJ) *(CWCS+XSTOR4 4 JJ) m CWC9 )+XSTOR4 (JJ )*
5XST©R5( JJ)*CWCID) )

'l	 -PAF3X3=1 )..0/C0EFAS)*(VCPA*(2.0*XST©R3 (JJI*CWA2+XSTORI(JJ )* (CWA5
I+XSTOR4(J J I *C WA 6) + X STOR21 J J1 *C WAT+XST ORS (J J I *CW A9) +V CP B* 12 a 0*

Ik 	 2XSTOR31 JJ) • *(CWS3+XSTOR4t-JJI *CWC4)+XSTORI(J-3)T(CW36+XSTOR4(JJ I 	 Fj
3XSTOR4( JJ)*CWB7)+XSTOR2(JJ) *(CWBB+XSTOR4(JJI*CWB9))+VCPC*(

	 0
CJ

4XSTOR 1(JJ) *CWC7+XSTOR2 (JJ) * (CWCB+XSTOR4 (JJ )"CWC9)+XSTOR4(JJ )*

T



5XSTOR 5( JJ) *C VIC 10) )
F2=—P(1)*PAFIX_3—P(2)*PAFZX3— P(3)*PAF3X3

i— SOMTC I*XSTOR31 JJ) It X3MAX**2 )
RETURN

4 1F(:XSTOR4(JJ):GE.PEXLMH) GO TO 31
IF$ XSTOR 4(J J T. LE, PE XLML) GO TO 32

30 PENC01-0.0
GO TO ' 3 3

31 PENCOI=PEC XVA
GO TO 17501s, 33 9 7501)9M

7501 PENCO k=0.0
GO TO 33

32 PENC©1--PEC XVA
GO TO ( 7502 F 75 02 9 33) 9 M

7502 PENC01=0.0
r	 33 DVCMA=2.0*XSTOR4(JJI*CMAI+4dOml^STOR41JJ)**3*CMA2

DVCMB=C MB 1+2.O*XSTOR4-1JJ) *CMB2+3at3*XSTOR44 JJ)*XSTOR4WJ CM B3
r DVCMC=CMCI+2.0*XSTOR4(J:J)*CMC2+3.0*XSTOR4(JJ)*XSTOP,4(JJ)*CMC3

DVCNA=CNAI+2,.O*XSTOR4(JJ) *CNA2+3o0*XSTOR4(JJ)*XSTOR4(JJ)*CNA3
D VC NB =C NB I+ Z. O*X ST'OR4 ( JA *C NB2
DVCNC=C NC 1+2.O*XSTOR41 JJ) *CNC2
DVCPA =C PA1+2p 0*XSTOR4(ii) *CPA2+3.O*XSTOR4(JJ)**2*CPA3
DVCPB=CPB 1+2.O XSTOR41 J.)) *C PB2
DVCPC=CPC 1+24 0:^XS I OR4(.JJ1'CPC2
VAA =XSTOR2(JJ)-* ST€R2dJJI*CWAI+XSTOR3(J,J)*XSTDR3(JJ}*CWA2+XSTORI

1(.JJ *X.ST©R2tJJ1	 WA3+XSTOR4(JJI*CWA4)+XSTORII JJ)*XSTOR3(JJ)
2*1, CWA5+X-ST©R4(JJ) *CWA61'+X5TOR2 -JJ)*XSTOR3IJJ)*CWA7+XSTOR2(Ji )

r	 3*XSTOR5tJJI*C,WAB+XSTOR3( JJ) *XSTOR5(JJ)*CWA9
VBB =XSTORJ(.JJ)*XST€JRI(JJ)*{CWBI+XSTOR4{JJ)*CW82)+XSTOR3(JJ 1

E	 1*XSTOlt3f-JJ)*(GWR3+XST©R4( JJ) *GWB41+-ASTORI(JJ)*XSTOR2 (JJ )*CWB5
2+XSTOR II.J.J) *XSTOR3(JJ) *(-CWB6+XSTOR4 (JJ) *XSTOR4(JJ)*CWB7) +XSTOR 2
3(J;J )*XSTUR31 JJ) *(CWBB+XSTOR4(JJ)*CW69)+XSTOR2(JJ)* (XSTOR4(JJ 1
4XSTOR 5( J J) *C WB 10) + U( J J1' *C WB 11

VCC-XSTDR 1(JJ) *XSTOR1 1 JJ) *(CWCi+XSTOR4 (J J I *CWC2) +XSTOR2(JJ )
I*XS TOR 21 J.J) *(C WC3+ XSTOR41 JJ) *CWC41-^-XSTORI I JA*XSTDR2 (JJ 1*

r30N

r
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2(CWC5+XSTOR4(JJ) *XSTOR4(JJ) *CWC6)+XSTCRI (JJI*XSTOR3(JJ )*CWCT
3+XSTOR2(iJ)*XSTOR3tJJI*(CWC8+XST0R4(JJ) CWC9)+XST0R31JJI iXST0R4
4(JJ)*XSTOR5(JJ) *CWC10)+U(JJ) *CWC11

PAF IX4--(1.0/CDEFAS)*( VAA*DVCMA+VCMA$(XSTORI (JJ)*XSTOR2(JJ )*CWA4
I+XSToRIi JJ) *XSTOR3tJA *CWA6)+V88*DVCMB+VCMB*4XST0R1(JJ I*XST0RIIJJ )
2*CWB2+XSTOR3(JJ) *XSTOR3t JJ) *CWB4+XSTORI (JJ)*XSTOR3 (JJ )*2,0
3*XSTOR4( J J ) *C WB7{ X S T 0 R 2 1 JA *XST0R3 ( J J ) * C W 89+XSTOR2 ( J J )*1 XST0R51JJ )
4*CWB 10)+VCC*D VC MC+VC N AC*( X S T 0 R I t J J I *XST0RI IJJ)*CWC2+XST0R21JJ
5*XSTOR2(JJ) *CWC4+XSTORI ( JJ) *XSTOR2 (JJI *2.O*XSTOR4(JJ I*CW'C6
6+XSTOR2(JJ) *XSTR riI (JJ) *CWC9+XSTOR3(JJ)*XSTOR5(JJ)*CWCIO) )
7+( VAA*VCMA+VBB*VC MR +VCC*VCMC) *(-100/(COEFAS*COEFAS) I* (4. 0^
BXSTOR4( JJ)**'2 yrll*vlDtj*CA3+3.0*XSTOR41JJ)*XSTOR4(JJ)*CA23+2.0
9*XSTOR4t J.))	 ^^; fCl2CAi29
PAF2X4=( I.O/COEFAS) *t vAA*^VCNA+VCNA*(XSTORI.(JJ)*XSTOR2(JJ )*CWA4

I+XSTORI(JJ)"XSTII,R3i.)J) *CWA6)+VBB=OVCNB+VCNB*(XSTORI(JJ)*XSTOR1(JJ)
2TCWB2+XSTOR3(JJ) *XSTOR3(JJ) *CWBtf+XSTORIIJJ)*XSTOR3IJJ)*2.0
3*XSTOR4(JJI *CWB7+XS`POR2 (JJ) mXSTOR3(JJI*CWB9+XSTOR2 (JJ D*XSTOR5(JJ )
4*C,WBIO)+VCC*DVCNC+VCNC*IXSTCR1(JJI*XSTORIIJJ)*CWC2+XSTOR2(JJ )
S*XSTOR 2(JJ) *C WC 4+ XSTORL f JJ) *XSTOR2 (J J I *2 oO*XST OR4 (JJ I*CW C6

"	 6+XST©R2(JJ)*XSTOR3(JJ)*CWC9+XSTOR3(JJ)*XSTOR5(JJI*CWC10))
7+I VAA*VCNA+VBB*VCNB+VCC*VCNC) * (-1nO/ (COEFAS*CCEFAS) )* (4.0*
BXSTOR4(JJ) **3"O-VOi *YOU*CA3+3a O*XST©R4 ( JJ) *XSTOR4 (JJ I*CA23+2'.0
9TXST0R4(JJ) *YOU*CA2+CAl2)
PAF3X4=(-I:..©/COEFASI*(VAA*DVCPA+VCPA*(XSTORI(JJ)*XSTOR2(J. , )*CWA4

I+XSTORI(JJI, *XSTOR3(JJ) *CWA61+VSB*DVCPB+VCPBT(XSTORi(JJ)*XSTORI(JJ i
2MCWB2+XSTOR3(-JJl*XST0R3t JJ) *CWB4+XSTORI(JJ)*XSTOR3(JJ)
3*XSTUR4I.JJI*CWB7+XSTt3R2(JJ)*XSTOR3(JJI*CWB9+XSTOR2(JJ )*XSI'OR5(JJ)
4*CWBI:O)+VCC*D-VCPC+VCPC*(XSTORI (JJ) mXSTORI (JJ)*CWC2+XSTJR2(JJ I
5*XSTO?,2(JJI*CWC4+XST©RI(JJ) *XSTOR2IJJ)*2.0*XSTflR4(JJ )I"CWC6

Ir	 6+XSTOR2(JJI:^^kSTOR31JJ)*CUC9+XSTOR3(JJ)*XST©R5(JJ)*CWCIO))
7+I VAA*VCPA+VBB*VCPB+VCC*VCPC) *(-140/ (COEFAS*COEFAS) )* 44.0*
BXSTBR 4( JJ) **3*YOU*YCU*CA3+3 o O*X STOR4 (JJ I *XST OR4 (JJ )* C A23+2.0
9*XSTOR4(JJ) t-YOU*C-A2*CAl2 )

IF(PENCOI..GT.Oc O) GO TO 9430
IE{ PENCOI..1.T. O.:O) GO TO 9431
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9430 CONTINUE
EXTPE V=XSTOR4( JJ) — PE XLMH
GO TO 9432

9431 CONTINUE
EXTPEV=— XSTOR4( JJI+PEXLML

9432 CONTINUE
F2=—P( I)$PAFLX4—P(2)*PAF2X4—P(31*PAF3X4-2o0*PENCOI*EXTPEV—SOMTCO*

I X STOR 4( J J) /t PE XLI M*r2 )
RETURN

5 PAF 1X5=( 1.0/COEFAS) *(VCMA*(XSTOR2IJJ) *CWAB+XSTOR3(JJ)*CWA9 )+
IVCMB*I XSTOR2(JJI ^XSTOR4(JJ)*CWB10)+VCMC*(XSTOR3 (JJI I*XSTDP,41JJ )
2*CVIC I01 )
PAF2X5=( 1.O/COEFAS)*( VCNA*( XSTOR24JJJ *CWAB+XSTOR3(JJ )*CWA9 )A

1VCN8*( XSTOR2(JJ) *XSTOR4(JJ) *CWB10)+VCNC=IXSTOR3(JJ I*XSTOR4(JJ )
2*CWCIO))

PAF3X5=( 1.01COEFAS) *( VCPA*(XSTOR2IJJ) *CWAB+XSTOR3(JJ )*CWA9 )+
I.VCPB*(XSTOR2(JJ) *XSTOR4(JJ) *CWBIO) ¢VCPC*(XSTOR3IJJ)*XSTOR4(JJ )
2*CHIC 103 )

r	 F2=—P(I:)*PAFIX5—P(2) *PAF2X5--P(3) *PAF3X5-sPI4)
I— SOMTC2*XSTOR5(JJ) /IX5MAX**21

RETURN
ENO

i-
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