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ABSTRACT

This investigation deals with the use of a wovable
mass control system to stabilize an arbitrarily tumbling
asymmetric vehicle about the maximum inertia axis. A
first-order gradient optimization technique is used to
minimize angular velocity components along the intermediate
and minimum inertia axes. This method permits a wide
range of initial guesses for mass position history. Mo-
tion of the control mass is along a linear track fixed in
the vehicle. The control variable is taken as mass
acceleration with respect to body coordinates. Motion is
limited to defired quantities and a penalty function is
used to insure a given range of positions. Numerical
solutions of the optimization equations verify that
minimum time detumbling is achieved with the largest
permissible movable mass, length of linear track, and
positions of the mass on the twc coordinates perpendicular
to the linear motion. Also, the mass should oscillate,
about the zero point, on an axis parallel to the major
principal axis. A minimum mass soluticn is obtained
by fixing the time at the largest feasible value. The
optimal method permits detumbling in about one-fourth
the time when compared to a force control law formulation
available in the literature. Since stabilization may

require hours, this reduction in time is very significant.
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In regard to minimum mass, the optimization permits the
use of a much smaller mass for detumbling in the same
time. This mass reduction is quite substantial since

very large masses are required. Use of this control
system for actual operations in space is feasible since
the velocity and acceleration of the mass, and the power
requirement, are low. It should be noted that the control
technique utilizes an open loop sclution in real time.

In addition, the technique need not be restricted to
attaining simple spin about the maximum inertia axis;

geometric axes may be specified.
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NOMENCLATURE

Inertial acceleration of the origin of
coordinates which is fixed at the center
of mass of the main body

Force on the control mass

X component of %m

n column vector composed of fi

Functions to which Xg; are equal

Resultant of external forces

Function on which an inequality constraint
is placed

Maximum permitted value of FP
Actual FPmax used in computation

Angular momentum of the system with respect
to the origin of coordinates

Angular momentum of the movable contrcl
mass with respect to the origin of
coordinates

Angular momentum of the main body with
respect to the origin of coordinates

Component of ﬁB along the x, vy, and z
axes, respectively

Angular momentum of the system with
respect to its own center of mass

Orthogonal unit vectors of coordinate framc
fixed in the main body

Moments of inertia of the main body
Products of inertia of the main body
Inertia dyadic of the main body

Maximum moment of inertia of the system
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NOMENCLATURE (Continued)

Minimum moment of inertia of the system

(g x q) matrix required in the first-order
gradient method

q column vector required in the first-order
gradient method

Scalar required in the first~order gradient
method

Performance index to be minimized

Arbitrary constant associated with the
penalty function technique

K for Pl and P2, respectively
Integrand of performance index

Mass of movable object

Mass of main body

n column vector of influence functions

Auxiliary state variable due to penalty
function

P for the two inequality constraints on
Rax and Xoin® respectively

Position vector from center of mass of
main body to the point mass

Position vector from center of mass of
main body to the center of mass of the
system

Position vector from inertial origin to the
center of mass of the main body

Position vector from inertial origin to the
center of mass of the system

M % q) matrix of influence functions
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NOMENCLATURE (Continued)

First moment of mass of the system
Time

Initial time

Final time

Rotational kinetic energy of the system with
respect to its own center of mass

m column vector of control variables
Control variable equal to ¥

(m x m) position definite matrix required in
the first-order gradient method

Coordinates corresponding to I, 3, and i,
respectively

Maximum and minimum permitted mass positions
on the % a:is, respectively

Actual values used for xmax and Xpin,
respectively, during computation

n column vector of state variables
State variable

Coordinate axes fiwxed at the center of mass
of the main body

State variable equal to %
External moment

Constant required in the first-order gradient
method

Equivalent mass equal to mM/(M + m)

q column vector required in the first-order
gradient method
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NOMENCLATURE (Continued)

Terminal constraint
1 and P2, respectively
Angular velocity of spacecraft

Components of w along Z, 3, and i,
respectively

Components of w along the maximum, inter-
mediate, and minimum inertia axes of the
main body, respectively

Maximum values of Wy and w., desired
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CHAPTER I

INTRODUCTION

General Introduction

Future manned spacecraft might be subjected to

tumbling. Such a situation may result from collisi'n

with another vehicle, thruster malfunction, propellant

tank rupture, or escaping atmosphere.

For example, the

Salyut 2 space station orbited by the Soviet Union on

April 3, 1973 went into a tumbling mode which is believed

to be a presult of an explosion or a wildly firing

thruster.l

A study by Kaplan2 on tumbling causes showed

that a future manned space station configuration may be

subjected to a tumbling state with angular velocities

up to two RPM if collision occurs with a space shuttle.

Escaping atmosphere will yield about the same state.

Tank rupture may result in angular velocitles of approxi-

mately one-~half RPM.

This tumbling should be immediately

alleviated for crew safety and minimization of damage to

the vehicle,

Specifically, the crew would be subjected

to oscillating accelerations.

Hard docking by a rescue

vehicle would be very diffi:ult and would require a

large fuel expenditure,

implemented

immediately.

In addition, it could not be

This time constraint also holds

for other external detumbling methods such as fluid im-

pingement.

Hence, an internal control system is desirable.

.

W



R RN Rt R

SN e

T R T et e

RO SO SRS Y s et o MR DR S

Tumbling stabilization of space vehicles may be
achieved by passive or active control devices. Passive
systems are used as wobble dampers. They eliminate the
wobbling motion of spacecraft by using mechanical or fluid
dampers to dissipate energy until the minimum energy state
is reached; their energy dissipation rates are low. This
ultimately results in simple spin about the major principal
axis. However, passive systems are designed for vehicles
with high initial spin rates about the maximum inertia
axis. Hence, they would not be appropriate for the future
manned station mentioned above since it is normally in a
non-spinning mode and a collision will result in the three
angular velocity componenis of the vehicle being of the
same order of magnitude. An active device such as a mass
expulsion system may not be feasible since it requires
long term, onboard storage of propellant. Momentum ex-
change systems probably would saturate in large corrective
maneuvers and may require continuous operation. An active
control device that does not have the restrictions men-
tioned above is an internal movable mass system. Movement
of the mass will not affect the angular momentum vector,
but it will affect the rotational kinetic energy. There-
fore, internal mass motion can be used to decrease the
rotational kinetic energy to a minimum wkich corresponds

to the case of stable spin about the maximum inertia




i axis. Tor the case of the previously mentioned future
manned space station, there will still be need of de-
spinning; but, docking by a rescue vehicle with subsequent

despinning would then be a relatively simple operation.

P
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Also, escape by crewmen, if necessary, will be easier

from a spinning rather than a tumbling vehicle. Movable

ot g Tl

mass control systems, however, have been investigated for
vehicles which fall within the assumption of symmetry, or
small transverse angular velocities relative to the spin
velocity, or both. Stabilization of a vehicle like the
manned space station cited above which is not symmetric
and which may experience angular velocity components of
the same order of magnitude requires further investiga-
tion. A recent study of this general problem by Edwards3

analyzed the rate of change of rotational kinetic energy

in order to obtain stabilization; but, a long detumbling

i T T e T

3 time and a large mass are required. Since it is important

to have a mass as low as possible in space operations and,

O L

specifically for the distressed manned space station, to

R T e

detumble as fast as possible, an optimal solution needs to

be obtained.

i Statement of the Problem

The objective of the research work presented here is
i to develop an optimal time and mass technique for obtain-
§; ing the time history of internal control mass motion

along a linear track in a tumbling space vehicle to achieve

e . R = T A
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simple spin. No assumptions of symmetry or small trans-
verse angular velocities relative to the spin velocity
[ will be made. Specifically., the manned space station

mentioned in the previous section will be used as the

test case. A first-order gradient optimization technique

will be used to obtain motions of the internal mass that
L will result in stabilization about the maximum inertia
. axis. A penalty function method will be used to limit
the extreme positions of the movable mass. Effects on
the solution due to changes of various parameters will
also be investigated. These parameters, all referring to
the movable mass, are: mass, length of the linear track,
positions along the two coordinates perpendicular to the
linear motion, position along the axis of mass motion of
the center of the track, and the direction of the track.
A study of these changes will yield guidelines for obtain-

ing maximum effectiveness from a movable mass control

systen.

Summary of Work

The differential equations of motion for a spacecraft
with one internal movable mass permitted to move along a
linear track were written with respect to an arbitrary
orthogonal coordinate system fixed at the center of mass
of the main body, which is the spacecraft without the

control mass. A first-order gradient method, minimizing

s a B .A\. L .55 . P S ,.__.a::’ .



the magnitudes of oscillations of angular velocity com-
ponents along the intermediate and minimum inertia axes,
was used to obtain control mass motions which yield

simple spin about the maximum inertia axis. An IBM 370/165
computer was used to obtain the results. This quantitative
analysis, along with a gqualitative examination of the
differential equations of motion, permitted evaluation of
various parameters in order to determine values which will
result in minimum time and mass detumbling to simple spin.
For minimum time, the mass, length of the linear track,
and positions of the mass on the two coordinates perpen-
dicular to the linear motion should have magnitudes as
large as possible. Also, the mass should oscillate,

about the zero point, on an axis parallel to the maximum
inertia axis. A minimum mass solution is obtained by
fixing the time at the largest feasible value. Compared
to Edwards, this optimal technique permits detumbling in
about one-~fourth the time. Since stabilization may re-
quire hours, this reduction in time is very significant.
In regard to minimum mass, the optimization permits the
use of a much smaller mass for detumbling in the same
time. This mass reduction is quite substantial since

very large masses are required.




CHAPTER II
PREVIOUS INVESTIGATIONS

Differential equations governing the angular motion
of a space vehicle with moving internal parts have been
obtained and discussed in several papers. Robersonq de-
rives these equations relative to the composite center of
mass of the system. Since the reference point is the
composite center of mass, the inertia dyadic is a function
of time. The equations permit relative translational and
rotational motion within the spacecraft frame. Effects
on the vehicle due to known motions of the parts are then
examined. Grubins’6 also obtains and discusses differen-
tial equations governing the motion of a space vehicle
with moving internal parts. However, his equations are .
referenced to the center of mass of the vehicle without
moving parts. Therefore, the inertia dyadic of the main
body is constant. He examines several two dimensional:
cases of mass translation in a vehiclej; but his examples,
like those of Roberson, deal with effects on the vehicle
due to known motions of internal parts.

A number of papers in the literature deal with active
control over the motion of internal parts in order to
control the angular motion of a space vehicle. Since the

differential equations are highly nonlinear, simplifying
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assumptions are made in order to determine solutions. The
vehicle is assumed to have small angular velocity com-
ponents about two of its axes relative to the angular
velocity along the axis about which final steady spin is
desired, or is assumed to be symmetric, or both.

Kane and Scher7 analyzed the problem of active
attitude control of a space vehicle with internal movable
parts by considering its rotational kinetic energy. They
noted that internal mass motion will not change the
angular momentum vector since the net moment about the
center of mass of the system is zero. However, internal
mass motion will change the rotational kinetic energy of
the system. Since the angular momentum vector is constant,
rotational kinetic energy will be a maximum or a minimum if
the rotation is about the minimum or maximum inertia axis
of the vehicle, respectively. Thus, a tumbling space
vehicle may be stabilized about the maximum or minimum
inertia axis by internally moving a mass to either dissi-
pate or add kinetic energy. If the space vehicle is sym-
metric, they further noted that the kinetic energy of
the vehicle may be used as a guide to determine the motion
of an internal mass in order to have simple spinning motion
or a combination of precession and spin in which the angle
between the inertially fixed angular momentum vector and

the axis of symmetry takes on any preassigned value.
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Specifically, the kinetic energy is written in terms of
this angle and the maximum and minimum kinetic energies.
For a specified angular momentum vector, the initial and
final kinetic energles may now be written by specifying
the initial and desired final angle. A trial and error
procedure is then used in ovrder to find the motion of an
internal mass that will result in a change of the initial
kinetic energy toward the desired final value. This pro-
cedure was applied to a solid uniform right-circular
eylinder with a movable mass attached by a light rod.
Hopper8 investigated the use of internal mass motion
in order *to decrease the precession angle of spacecraft
gpin stabilized about their minimum inertia axis. Energy
dissipating mechanisms are excited during precessional
motion of this type of vehicle, This causes an additional
inerease in the precession angle since spin about the
minimum inertia axis 1s one of maximum kinetic energy. In
order to overcome this effect and have spin about the
minimum inertia axis, energy must be supplied to the sys-
tem. Two active devices are presented: one is a rotary
device and the other is a linear oscillator. Both are
examined for use in an axisymmetric spacecraft. The rotary
device consists of a mass attached to and able to rotate
about the minimum inertia axis. By keeping the rotor at

some constant offset angle relative to its position due to

,/“"m fa .S\-:,_



centrifugal force resulting from precession of the
vehicle, positive work can be done and thereby increase
the kinetic energy of the system. The linear device
consists of a small mass undergoing forced oscillations
along a linear path fixed within the vehicle and per-
pendicular to the spin axis. By oscillating the mass at
the proper frequency and by proper control of phase,

the driving motor will cause the kinetic energy of the
spacecraft to increase.

Childs® investigated the problem of altitude stabili-
zation of artificial-g space stations by a movable mass
control system. The space station has the physical appear-~
ance of two rigid bodies connected by a long, slender tube
and is spinning about its major principal axis. Movement
by the crew may cause wobbling of the space station; that
is, the angular momentum does not coincide with the maximum
inertia axis. In order to damp this wobbling motion, the
author placed a movable mass to the side of one of the two
end pods. The mass was permitted to move inside of a tube
which was parallel to the maximum inertia axis. By assum-
ing small transverse angular velocities relative to the
spin velocity, Childs was able to linearize the differen-
tial equations of motion. This permitted the formulation
of a control law to govern the motion of the movable mass

in order to damp the transverse angular rates. However,

,Mﬁdn» . A
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there was still some angular motion about one oif the trans-
verse axes after the application of the control law; the
control system does not damp both transverse angular

rates to zero.

10 analyzed the use of internal

Lorell and Lange
moving masses to control the spin axis of a spinning
satellite. Many satellites require control over the spin
axis to an accuracy on the order of seconds of arc; two
examples are communications satellites aiming high gain,
narrow beam-width antennas and weather satellites scanning
the surface of the earth for pictures. The control system
has to take care of sensor-vehicle misalignments, motion
of the principal axes of inertia, and body fixed disturb-
ing torques. By assuming that the satellite is spinning
about its axis of inertial symmetry, that the transverse
angular rates are small velative to the spin velocity,
and a specific geometry for four movable masses, the
authors were able to simplify the differential equations
of motion and use a linear control law.

As stated in the introduction, Edwards performed an
independent investigation of the general problem of a
vehicle with avbitrary angular velocity components and
arbitrary principal moments of inertia concurrently with
this thesis. He formulated a control law for the force
on a movable mass, in the direction of motion of the

mass, that will reduce the rotational kinetic energy of a

. A"Lqﬁ\. O e .,___,__._..hg N
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tumbling vehicle and result in simple spin about the

major principal axis. A formulation of a control law

was made feasible by restricting the mass motion to lie
along an axis parallel to the axis of maximum inertia

and to pass through the zero point of that axis. The
extreme mass positions permitted, on both sides of the
zero position, are set in the control law; but, the
formulated control law does not permit the mass to fully
utilize the track available. Initially, the mass does

go to an extreme position, but subsequent position peaks
fall short of the extremes. Whether the extreme position
will occur on the positive or negative side of the axis

of mass motion is dependent on the initial conditions.
Since these initial values are not known prior to instal-
lation of a control system on board a space vehicle, the
tube for mass motion must extend on both sides of the

zero position a distance equivalent to the extreme posi~
tion permitited. The detumbling times and masses obtained
by Edwards are very large. For the manned space station
mentioned previously, over three hours are needed to obtain
stabilization using a movable object whose mass is 0.5% of
the space station mass. An optimal time and mass analysis
of the general problem is needed in order to reduce the

mass and time required.



e T s Lear = vy i AL N P

L AT T T S AT A TS

e,

TR

i
b
i
1
i
b
i
¥
[
P
I
P
P
b

12

CHAPTER III
ANALYTICAL STUDY

Purpose and Procedure

The purpcse of this part of the investigation is to
obtain the differential equations of angular motion for a
gpace vehicle with a small movable internal mass and
present an approach to obtaining mass motions that result
in simple spin about the maximum inertia axis. Specific-
ally, the rates of change of three orthogonal components
of the angular velocity vector of the spacecraft will be
expressed in terms of these angular velocities and the
motion of the movable mass. For these equations, the
center of mass of the main body will be used as the
reference point for an arbitrary body fixed coordinate
frame since this will allow the moments and products of
inertia of the main body to be constant. Also, expressions
will be derived for angular momentum, votational kinetic
energy, and rate of change of this energy. There will be
no assumptions made of symmetry or of small angular
velocities about two of the axes relative to a third:
the space vehicle will be assumed to have three separate
prinecipal moments of inertia and an arbitrary angular
velocity vector such that its three principal axis

components may be of the same order of magnitude.

L
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These equations are highly nonlinear and it is not
obvious what the mass motion should be in order to detumble

a space vehicle to simple spin about its maximum inertia

axis. Whatever the motion should be, it must have reason-
able values for mass displacement, velocity, and accelera-
tion relative to the vehicle; that is, the mass should

stay within the maximum dimensions of the space vehicle

and should not have velocities and accelerations larger

{ than can be supplied by a driving motor. Considering the

I

above and further noting that a tumbling manned vehicle
should be detumbled as quickly as possible, and possibly
an unmanned vehicle from the standpoint of preserving
structural integrity, the use of an optimization technique
seems to be a feasible approach. Specifically, a first-
order gradient optimization technique will b: used since

there are no previous solutions on which to base an

initial guess of the control variable; this optimization
technique does not require the initial guess to be close

%é to the optimal values. Neighboring extremal and quasi-

linearization methods require good initial estimates of
\55 various parameters. Also, a penalty function method
will be used to limit the extreme positions of mass

motion.
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Equations of Motion

The angular momentum equation for a rigid body with

an arbitrary origin of coordinates 15°28

F=f+8x3 (1)

where T is the external moment , H is the angular momentum
of the system, % is the first moment of ma=s of the
system, and Z is the inertial acceleration of the origin
of coordinates. The desired equations of motion for a
spacecraft with one small movable mass may be obtained from
Equation (1) by fixing the origin of coordinates at the
center of mass of the main body, which is the spacecraft
without the movable mass. The geometry of the system is
shown in FPigure 1 where %, v, 2z is a coordinate system,
with 3, 3, % unit vectors, fixed in the main body, whose
origin is at the center of mass of the main body. The
angular momentum, ﬁ, may be separated into two parts:

the angular momentum of the main body relative to its own
center of mass, ﬁB’ and the angular momentum of the mov-
able control mass with respect to the center of mass of
the main bedy, ﬁm' The angular momentum ﬁB may be

expressed as

_ + + >
Hp = Hp I * Hp 3 + Hy K (2)
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where
Hp, = Lo, - Ixywy - I s (3)
HBy = HIxymx + Iymy - Iyz“z’ (4)
Hg, = -1 0, - Iyzmy t I, . (5)
The inertial time derivative of ﬁB is
Bo= [H1+%xH (6)

where [ﬁB] is the time derivative with respect to the
body fixed %, vy, 2z coordinate system of ﬁB which is given
by Equations (2) through (5) and ® is the angular velocity

of the spacecraft which can be expressed as
® = mxz + 3 w0 K. (7)

The angular momentum ﬁm consists of the angular momentum
of the mass about its own center of mass and the angular
momentum of the mass moving about the center of mass of

the main body:

K

ﬁm = ﬁm *me ox v, (8)
about its own
center of mass
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Considering the movable mass, m, as a point mass, the
first term on the right hand side of Equation (8) can be
egquated to zero. The inertial time derivative of ﬁm is
then

i = mpr % D. (39)

The acceleration of the mass with respect to the center of

mass of the main body, %, may be expressed asll

. - £ . N
r=[rl+t+oxoxr+oxs+ 20 x [p] (10)
where
T = x3 4+ y] + zk, (11)
e T 4 T s
[rl = %1 + y] + 2k, (12)
[»1 = %1 + §3 + &k, (13)
and, with o given by Equation (7),
pcal+ed+ak (14)
w = b, B3 b, k.

The first moment of mass of the system, §, is
S = mv. (15)

The main body does not contribute since the reference
origin is its own center of mass. Using Figure 1, the

. « . -+
acceleration of the origin, a, may be expressed as

R .Jﬁam « &N D
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2=R =R_ -7 . (15)
o c c
where
. ¥
R, = 7o (17)
and, from the definition of ceiter of mass,
> m%
T, W (18)
F is the vesultant of external forces and M is the mass
of the main body. Considering the spacecraft to be in a
circular orbit with zevo jet thrusting, F may be set
equal to zero. Using Equations (186) through (18), 3 can
now be written as
—>_"__m 5
d =R, = -pi= 7. (19)
Noting that
B+ 8 (20)
and placing Equations (8), {15), and (19) into Equation
(1) gives
_ 3 m - =
T = ﬁB tHy T g T XL (21)
. Jgﬂﬁnx . &% . - e ¥
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éﬁ For zero external moment and noting that the force on the

control mass is

iy e

FETTI T e e T

b
1]
=]
~
P
o+
53
-~

o o (22)

e e

which, upon using Equation (18), becomes

%m = u:x;‘ . (23)

where

T D (24)

i e S e ] e e T
[T I B R o T

Equation (21) may be written as

et i e e S e s e 1
T TR LT e

ﬁB-= “rx Tt . (25)
n

I Thus, as Equation (25) shows, the force on the control

mass may be considered as causing a moment to act on the

main body. The mass will be permitted to move along a
linear track parallel to the x axis. Placing Equations
(2) through (7), (10) through (14), and (23) into Equa-
tion (25) yields three scalar equations which, when
solved simultaneously, give the differential equations

bz of motion in the desired form:
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b, = &x(wx, Wy W5 X, %, %), (26)
&y = éy(wx, Wos Wy X, %, %), (27)
&; éz = &Z(mx, my, W, X %, %J. : (28)

The full equations for &, , & , and mz are given in

yl
Appendix A. Since the motion is along an axis parallel

to the x axis,

s y=§=2%=%=0 (29)

f and the y, z positions of the mass may be arbitrarily

. fixed. Other constants that have to be specified are
moments and products of inertia, and masses of the main
body and the movable object. The control mass was per-
mitted to have motion parallel to just one axis since then
only one control variable will need to be specified; this
fact will become important in the following section which

= deals with the optimization technique. However, the direc

B tion of the % axis, and, therefore, the direction of mass
motion, relative to the spacecraft may be changed arbi-
trarily by appropriately changing the moments and products
of inertia in the equations of motion given in Appendix A.
The total angular momentum vector with respect to the

center of mass of the system, ﬁcm’ must remain constant

,,,,, .
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during control mass motion. This can be seen by noting

thatll

¥=d

em? (30)

and, since there is no ex*“ernal moment during mass motion,
ﬁcm is constant. An expression for this total angular
momentum vector can be obtained by dividing it into two
parts: that due to the rotation of the main body and that
due to the motions of the centers of mass of the main body
and the movable object about the center of mass of the
system. The former is simply E + & where E is the inertia
dyadic. The latter can be expressed as u% X % by con-
sidering the two-body problem composed of the main body

and the movable mass as an equivalent one-body problem

which is the equivalent mass u moving at a distance T

from the center of mass of the system.ll Thus, we have
A =TI + o+ u% x b (31)

where

1"
-
B
Laad
3
€4
~
By

(323

With this total angular momentum vectoy constant, the
rotational kinetic energy, T, can assume the following

values:
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H H
———— & T & e (33)
2Imax 2Imin

T } . ' i in—
where Liax and Imln are the spacecraft's maximum and min
imum moments of ineprtia. Specifically, using the same
analysis as was used to obtain Hcm’ we can write the
following expression for kinetic energy relative to the

center of mass of the system during mass motion:

T = %5 T - W —u% v, (34)

To have simple spin about the maximum inertia axis, the
tumbling vehicle's rotational kinetic energy, which ini-
tially is some constant value, must be decreased to the
value associated with this simple spin, Hgm/21max' It
should be noted that simple spin about the major principal
axis of the spacecraft can essentially be considered,

in this investigation which uses a small mass, as simple
spin about the major principal axis of the main body.

If the control mass is large and far from the center

of mass of the main body., the orientation relative to
the spacecraft of the muximum inertia axis of the main

body may be quite different from that of the spacecraft.

In that case, the maximum inertia axis of the spacecraft
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gshould be used when referring to simple spin about the
maximum inertia axis. Since the change in the kinetic
energy of the system composed of a rigid main body and a
movable mass requires work to be done and the only source
of work is the force %m acting on the control mass m

which moves a distence d%, we have
d(Work) = ¥_ - dv. (35)

This equation can also be obtained by considering %m

which is given by Equation (23) as acting on the equivalent
mass m and causing a displacement dr. For mass motion
along a linear track parallel to the x axis, the right
hand side of Equation (35) may be written as Finy -
Therefore, we can write the following expression for

tte rate of change of kinetic energy which is equal to

the rate at which work is being done:

T = £ k. (36)

It should be noted that T given by Equation (36) determines

the power that will be required.

Optimal Control

A fivst-order gradient algorithm for the following

12,13 with u and

problem is available in the literature:
X, defined as the column vectors of the control and state
variables, respectively, ul(t), ‘e um(t) must be found

in order to minimize

. /*é‘&h | N _ﬁ,__
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te
J =17 L[xsl(t), . xsn(t), u (), .. um(t), tldt
t
QO

(37)

where

(38)

with xs(to), tys te specified, and terminal equality con-

straints on q of the xg., variables, each represented by
Si

with the g desired terminal values, Xgs » specified.
final
Inequality constraints of the form

FP(XS’ u, t) £ (40)

FPhax

may be handled by using a penalty function technique

which converts inequality constraints to terminal con-

14

straints. Specifically, an auxiliary state variable P

is defined as

2
é - {K[FP(XS, ug t} - ] s F

0, F

FPfixed P 2 FPfixed

(4l)
p ° FPfixed

- Y.A\. L &
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and then the state variable P is forced to approach a
value of zero by specifying the following form of Equa-

tion (39):

Y = P(t.) = 0. (42)

£
In Equation (41), K is an arbitrary constant, and Fpg,. .4
is chosen to be smaller in magnitude than FPhax since,

in the first-order gradient method, P needs to exist in

order to be controlled. If PPfixe is set equal to

d

FPmax’ then some violation of the inequality constraint
will have to be accepted.

The problem specified in the previous section will
now be put into the form required for the application of
the first-order gradient method. The difierential equa-
tions of motion given by Equations (26) tlrough (28) can

be put into the form of Equation (38) by the following

substitutions:
=B (%3)

and, since X is equal to B,

B u (4n)

1l

The state variables, X5y with i =1, ... 5, are Wy W

y
W, ¥ and B, respectively. Th: one control variable is

u,; more control variables would be needed if the mass

e S * J__._A«_‘
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ié was not restricted to move parallel to one axis. The
ii equations of motion can now be written as follows:
;E &X = &x(wx, my, W, s % B, ul), (us5)
L
; wy = my(mx, wy, w, > X B, ul), (46)
* é b, = b Cu, s W5 Xy B, u ), (47)
3
;: % = B, (48)
.
b In order to have simple spin about the maximum inertia
- axis, W, and Wy which are angular velocity components
% along the intermediate and minimum inertia axes need to be
i minimized. Thus, modeling after regulator problems, the
f performance index J given by Equation (37) will be ex-
i pressed as
I
t 0 ©
1§ 0 2 3
b max max
g; where W2ax and W3 ay oFe the maximum magnitudes that are
-i; desired. TIdeally, these values should be zero to have
52 pure, simple spin about the major prinecipal axis. However,
b
i in practice, these maximum values will be set at some very

ks . . - .,w‘x‘ﬂ\ 08N
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small magnitudes. The variables w, and Wy of course,

need to be expressed in terms of the state variables.
L I1f, for example the x, y, and z axes are aligned with the
maximum, intermediate, and minimum inertia axes, respec-
tively, then Wys Wy and Wy are equal to w_, w_, and w_.

X y
The x position of the control mass is limited as follows:

min £ ¥ 3 Fpay (51)

;
i
_,1; with the values X in and Xoaw arbitrarily set. In order
% to apply the penalty function technique, Equation (51)
}
i

will be expressed as

X S X (52)

é and

Thus, there will be two auxiliary state variables, P1

{E and P2, associated with Equations (52) and (53), respec-
tively; state variables Xgy and xg, will refer to P, and
P2. Specifically, we have the following additional

i equations of motion:

2
P ={Kl(""xh)’x2xh
1 0, 2 < =x
® h

(54)

dites . N e ,A\. L ﬁ') Cm e a _4__-*’
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where x, is less t ®
h han max

Using Equation (42),

on the two auxiliary

]

wl Pl(tf)

and

b, = Pylty)
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v

2
* xl) s =X -%q

(55)

< -%

i an .
and X, 1is greater th Xnin
we can now place terminal constraints

state variables as follows:

(56)

H ]
Q

(573

]}
o
N

The steps of the first-order gradient optimization

technique for the problem just specified can be written

as:12’13

1. Estimate Uy

through (495, (5u4),

initial conditions xs(to).

and wz.

(t) and integrate Equations (45)
and (55) forward with the known

Store xs(t), ul(t), wls

2. By backward integration of the following influence

function equations determine and store the n column

vecter p(t) and the

(n x g) matrix R(t) where n equals

seven and q equals two:
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and

with

and

ables P

0, i =1, ... 5and j = 1, 2
1, i=6and § = 1
Rij(tf) =ﬁb, i=6and j = 2
0, 1 =7 and j = 1
1, 1 = 7 and j = 2

1 and P2, respectively.

3. Evaluate the following integrals:

——--)T R dt

(q x Q) matrix,

29

(58)

(59)

(60)

(61)

where 1 = 6 and 7 correspond to the auxiliary state vari-

(62)

(63)
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T of oL -1.,3f T oL T
'5'u—l"l‘ﬁ—i') W [('é-ﬁ-]-.-) P+ (-é-ﬁ-z) ldt

scalar, (64)

where W is just a (1 % 1) positive-~definite matrix since
there is only one control variable.
4, Select a §¥, given by
Gwl

sy = L ~1, (65)
6¢2

which will bring b, and ¥, given by Equations (§6) and
(57), closer to zero on the next iteration. Specifically,

choose

894 sPl(tf) (66)

and

Swz ePZ(tf) (67)
where

0 < e g 1. (68)

Then, determine the g column vector v from

. -1
vo= LT, 17006y ¢ 1. (69)
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5. Repeat steps 1 through 4 with the following

improved ul(t):

[

ul(t)new = ul(t)old * Gul(t) (707

where

3 -1,9L 3f 4T
{ Gul(t) = ~[W(t)1] {.5-{1_]__ + [p(‘t) + R(t)v Bul]} .

(71)

T -1
- I, . I -1
PI Y
to the desired degree of accuracy. These steps have been

Terminate when wl, wz, and IJJ equal zero

speciliazed to the problem consisting of seven state

variables, with terminal constraints on the sixth and

seventh state variables, and one control variable.

Numerical Solution

The five steps of the first-order gradient optimiza-

tion technique were programmed on an IBM 370/165 computer.
The computer program, given in Appendix B, consists of a
'; main program with three subroutines. In the main program,

the necessary variables are specified. The variables

' needed for the specification of a case which is to be

o

studied are listed in the beginning of Appendix B; their
computer language names are also specified. The sub-

routines cavrry out the integrations and changes in the

Aa. . a - .,ldiﬁ\ . L - _ P . L __-{,-"i
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control variable as prescribed in the five steps. The

differential equations are solved by using a fourth-order

T

Runge-Kutta algorithm. Integrals are handled by using
a library program consisting of an extended five-point

Newton-Cotes gquadrature formula.

Implementation and Nature of the Optimal Control

The optimal solution obtained is really a local
optimal. Standard numerical optimization techniques like
the first-order gradient do not necessarily yield the

absolute minimum., Initial guess of the solution will

determine which local optimal is obtained; this optimal
may be the absolute optimal. Of course, for a specific
T problem there may be only one minimum and, therefore, the
solution is the absolute minimum. An examination of

numerical results and a comparison to non-optimal solu-

tions will give an indication of the nature of the solu-
tion obtained. Results of this investigation are pre-
sented and compared to those of Edwards in the next
chapter.

The optimal control may be implemented quite easily.
The first-order gradient method yields a time history of
the mass motion. Thus, the control system need just
monitor and change the position of the mass. The position

may be monitored by a simple mechanical device. It should
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i be noted that any means may be used to move the mass. In

actual space operations, three orthogonal angular veloci-

- .-

i La

ties of a tumbling vehicle will be sensed by rate gyros

ot

e R b e L

and extrapolated to a time a few minutes in the future
using Euler moment equations. These future angular
velocities will then be used as the initial conditions
for the optimization equations. The optimal control will
be numerically obtained and initiated at the chosen

g future time.
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CHAPTER IV

RESULTS

Several parameters need to be specified before
computer simulations may be run for minimum time stablliza-
tion. As will become evident., selection of some of these
parameters will depend upon the specific satellite to
which the movable mass control system is applied; that is,
the dimensions of the satellite and the amount of time
that can be permitted for detumbling. The choices for
minimum time detumbling of the remaining parameters will
also become evident; but, these parameters will not be
dependent on the type of satellite to be controlled.
Specifically, referring to +the differential equations
of motion in Appendix A and noting that the mass moves
along an arbitrary x direction, these parameters are as
follows: mass of the movable object, length of the
linear track, y and z positions of the mass, point about
which the mass oscillates, and direction of the x axis
relative to the spacecraft. By examining Equation (25)
and thinking in terms of moments applied about each axis,
a qualitative preliminary analysis may be made as to the
effect of these parameters on the time needed to detumble.
Increasing the mass of the object will increase the force;
thereby increasing the moment and permitting a decrease in
the detumbling time. Increasing the length of the linear

track or the y and z magnitudes will increase the moment

,..J’iﬁ\. & .

.
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arm, which should tend to increase the moment and result
in a lower minimum time. It should be noted that changes
in these parameters will also effect the force; but, the
overall effect on the moment will probably be due to the
change in the moment arm mentioned previously since the
force consists of the relative difference of various
terms. By increasing the x value of the point about
which the mass oscillates, the moment arm is again in-
creased. However, by permitting the mass to move further
on one side of the zero x position than on the other,
there may arise difficulties due to a larger moment in
one direction than in the opposite. Changing the direction
of the x axis relative to the spacecraft will affect the
moment arms of the force components producing moments
about the intermediate and minimum inertia axes. If the
¥ axis is paralliel with the maximum inertia axis, maximum
control over the moment arms of the moments about the
intermediate and minimum inertia axes will be availabley
this can be seen by noting that now the x axis is per-
pendicular to the intermediate and minimum inertia axes.
This would seem to indicate that the orientation of the
linear track should be parallel to the final spin axis,
which is the major principal axis. However, in this case
as in the other cases that involved changes in the moment

arm, there are also changes in the force itself which are

o BT S
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difficult to specify. The above qualitative analysis
is not sufficient in itself to arrive at minimum time
values for all the parameters being discussed. A
quantitative analysis must be made.

The movable mass control system will be applied to
a manned space station configuration which NASA is con-
sidering for the 1980's. This configuration is shown in
Figure 2 with pertinent data being given in Table 1.
The optimizetion procedure will permit the fastest de-
tumbling possible with the movable mass. Based on the
previous qualitative discussion of various parameters in
the differential equations of motion, we will initially
fix the parameters to yield the best detumbling sequence;
further cases will vary these parameters in order to
quantitatively determine the minimum time solution. The
mass of the movable object will be set at 499 kg, which
is 0.5% the mass of the manned space station. It will be
permitted to travel approximately *3.7 m about the zero
position on the x axis. This axis of motion will be
parallel to and .eave the same sense as the maximum
inertia axis. For convenience, the y and z axes will be
chosen to be parallel to and have the same sense as the
intermediate and minimum inertia axes, respectively.
Choosing the y and z positions are large as possible

within the limits of the space station, we have 5.55 m

- ,,L.J.#;Q\. 4 ﬁ, .
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Table 1. Manned Space Station Data2°15

Mass 98792 kg

Maximum Moment of Inertia L.7H xR 106 kg—m2

6.28 x 106 kg~m2

5,15 x 10° kg-m?

Intermediate Moment cf Inertia

Minimum Moment of Inertia

Transformation matrix, body fixed X, ¥, Z to principal 1,

2, 3, where 1, 2, 3 are the maximum, intermediate, and

minimum moments of inertia axes respectively

0.458 -0.889 0.00676
0.889 0.us8 ~0.00204
~0.00128 0.00695 1.0
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and -13.7 m. The initial angular velocity components
along the l-axis of maximum inertia, the 2-axis of inter-
mediate inertia, and the 3-axis of minimum inertia will
be chosen as 0.103 rad/sec, -0.199 rad/sec, and 0.000286
rad/sec. These values are based on a worst case tumbling
analysis.2 They represent the highest tumbling mode of
the manned space station and are due to a collision
between it and a space shuttle vehicle. If uncontrolled,
the manned space station with a fixed 499 kg internal
control mass would continue to tumble with wy oscillating
between 0.103 rad/sec and 0.192 rad/sec, W, oscillating
between -0.199 rad/sec and 0.199 rad/sec, and Wy oscillat-
ing between -0.118 rad/sec and 0.118 rad/sec. Flexibility
effects, of course, will tend to decrease the rotational
kinetic energy of the vehicle and alter the envelopes of
oscillation. However, in the time periods involved in
control, these limits of oscillation can be used as a
reference for zero control mass motion. The effects of
control by an internal movable mass system on the oscil-
lations of Wys Wy and w, are shown in Figure 3. The
curves in this figure are the envelopes of oscillations
of the principal axes angular velocity components. At
2,845 sec, the limits, for the penalty function, of

mass motion along the x axis were set at -l_-l(J_9 m in

order to zero out the mass position, velocity, and
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acceleration. By 2,893 sec these three variables were
essentially zeroed out, having values of 0.0466 m,
-0.00322 m/sec, and 0.00141 m/secg. After this time, the
mass was kept fixed at the zero x positilon; wy remained

at 0.212 rad/sec, w, oscillated between -0.00152 rad/sec

2

and 0.00142 rad/sec, and w, oscillated between -0.000837

3
rad/sec and 0.000909 rad/sec. It should be noted that the
percentage change from peak to peak of w, and Wy is greater
toward the end of the control time since the absolute de-
crease remains fairly constant. After about 3,000 sec,
then, the peak values of W, and w, were reduced by more
than 99% of their initial value. Of course, the mass con-
trol system could have been left on to reduce the Wy and Wq
oscillations even further. For the manned space station
discussed in this investigation, these values are suffi-
cient since the effect felt by the crewmen is essentially
that of simple spin and docking by a rescue and despinning
vehicle can be made as if with a simple spinning body.
Figure 4 shows the motion of the intermnal movable mass
which results in detumbling of the manned space station.
The mass position, x, at no time exceeds 3.7 mj; after

2,893 sec, it is essentially equal to zero. The mass
oscillates setween its maximum permitted limits, utilizing

the full linear track available to it. The velocity of
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the mass, ¥, vscillates between -0.647 m/sec and 0.654
m/sec. The greatest mass acceleration, ¥, occurs during
the zeroing out of the mass position, velocity, and ac-
celeration; in this period it reaches values of ~0.579
m/sec2 and 0.u465 m/secz. Also during the zeroing out,

the force in the x direction, fmx’ acting on the mass
reaches its largest magnitude, 283 N. These values for
mass velocity and acceleration, and for force, are reason-
able. It should further be noted that the mass velocity
and force maximum magnitudes occur during energy dissipa-
tion, -T. During energy dissipation, the force in the x
direciion and the mass velocity are opposite in direction;
here the control system is actually restraining the mass.
As Kane and S-:.'her7 have pointed out, this energy dissipa-
tion could be used to provide useful power for the vehicle's
systems. Energy has to be provided by the mass only when
T is positive., Figure 5 shows the variation of T, power
with time. The positive power is much less than the nega-
tive. Much more energy is dissipated than added. Also,
as this figure shows, the total energy that is to be
supplied is quite reasconable. The maximum positive power
is 48.4 watt, also a reasonable value; this value could
have been reduced to a value similar to the other peaks

by decreasing the simulation time increment. Time incre-
ments will be discussed later. The -300 watt value at

2,848 sec, during zeroing out, cocrresponds to energy

?
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dissipation; the mass is being vrestrained and the control

& system does not have to supply that energy. Figure b

Ct shows the decrease of rotational kinetic energy from its

initial, before control mass motion, value of 1.62 x 105

joule to the final value for stable simple spin of

P S P

1.5 x 105 joule. At various points in this figure,

the kinetic energy increases slightly and then resumes
its downward curve. These increases, of course, cor-
respond to energy addition to the movable mass control

| system, the positive power points on Figure 5. Further-
‘ more, by superimposing Figure 4 for mass x position with
Figure 5 for power during mass motion, it is seen that
these energy addition points correspond to the points at
which the mass direction of motion needs to be reversed
in order not to exceed the extreme limits of motion that
were previously set. Throughout the period of control
mass motion, the angular momentum of the system relative
to its center of mass remains fixed at the value it had
before control mass motion was initiated, 1.45 x 108
kg—mzlsec. The angular momentum vector remains constant
since there are no external moments on the space vehicle.
Therefore, as is evident, an optimal movable internal
mass control system can be used to reduce the arbitrary

tumbling of a general space vehicle to simple stable spin

about the maximum inertia axis.
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One valid comparison between the optimal control
mass motion described in this investigation and the limited
analysis of the force control law formulation would be
to keep all parameters and initial conditions mentioned
in the previous paragraph the same, including the per-
mitted extreme positions on both the positive and negative
sides of the mass motion axisj; as stated in the previous
investigation, the linear track required by the force
control law method must extend, in the positive and nega-
tive directions, a distance equivalent to the maximum

movement permitted. Doing this, the force control law

yielded a decrease of the W, envelope of oscillation to a
magnitude of 0.00206 rad/sec at 11,050 sec, and the W,

envelope to a magnitude of 0.00124% at 11,005 sec. As was

i mentioned in the previous paragraph, the optimal analysis
of this investigation decreased the magnitudes of the W,

and Wy envelopes to 0.00152 rad/sec and 0.000909 rad/sec

respectively by about 2,800 sec. Thus, the optimal
analysis permits detumbling in approximately one-fourth of

# the time required by the force control law analysis.

Since the one-fourth value means that the crewmen will be
subjected to a tumbling state for less than an hour
compared to over three hours, it is quite significant.
The force control analysis required only about one watt

of peak positive power. As was shown, the power for the
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optimal control is greater, but still within the limits
of production in spacecraft. Another comparison between
the optimal analysis and the formulated Iforce control law

approach can be made by restricting the mass motion

extreme positions in the former method to the actual
extreme positions of the latter, keeping all other ini-
. tial conditions and parameters the same; the values used
in the case mentioned in the previous paragraph will
again be used. The first 160 sec after commencing

control mass motion were investigated. In this time

-

interval, the fdrce control law required mass position

;? peaking of 0.631 m at 35 sec and -3.75 m at 155 secy

gi w, and w, peak at 0.1962 rad/sec and 0.1179 rad/sec. The
?' next peaking of mass position occurs at 295 sec with a

: value of 2.23 m. The optimal mass control system was
started at the 50 sec point of the force control sequence
since, by that time, the mass position had peaked at

only 0.631 m. Using the values at the 50 sec peoint, the

b optimal method peaked the mass position first at the
L largest positive 1limit and then at the negative one.
This motion resulted in an W, peak of 0.1947 rad/sec

and an w, peak of 0.1171 rad/sec. Without any control

3
mass motion, the vehicle would have e¥merienced an w,

peak of 0.1991 rad/sec and an wy peak of 0.1182 rad/sec.
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Thus, the optimal technique yielded about a one and one-

half times greater decrease in the w, value and slightly

2
less than four times greater decrease in the wg value.
The actual effect on the time to detumble will be greater
since the angular velocities are lower for the start of
their next cycles and their pericds are decreasing more;
this is in comparison to the values yielded by the force
control law method. Therefore, the optimal control

mass motion technique, in addition tc not having the
restriction on the direction of mass motion nor on the
point about which the mass oscillates, yields simple spin
in a considerably faster time than the force control

law method.

The effect of a change in the mass of the movable
control object was investigated by using the case initially
studied and only changing one parameter, the mass, from
499 kg to 998 kg; this new value for the mass is one per-
cent that of the manned space station. Specifically, the
control mass will again be permitted to move 3.7 m about
the zero position on the x axis which is parallel to and
has the same sense as the maximum inertia axis, with the
y and z positions fixed at 5.55 m and -13.7 m, respec~
tively. Also, the y and z axes are parallel to and have

the same sense as the intermediate and minimum inertia axes.
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The initial values for w Wo s and w, remain set at 0.103

1° 3

rad/sec, -0.199 rad/sec, and 0.000286 rad/sec. Figure 7
shows the envelopes of oscillation of the principal axis
angular velocity components. Comparing with Figure 3,
it is seen that doubling the mass to one percent of the
space station mass caused about a one-half decrease in
the time to detumble tc simple spin about the maximum
inertia axis. After 1,485 sec, W, is oscillating
between -0.00186 rad/sec and 0.00199% rad/sec, and Wq
between -0.00126 rad/sec and 0.000425 rad/sec. To reach
similar osecillation ranges, the 0.5% mass required about
3,000 sec. Comparing this one percent case to Edwards,
it is again evident that only about one-fourth the time

is required; his force control law reduced w, and W

2
to peak magnitudes of 0.00292 rad/sec and 0.0032 rad/sec
at 5,680 sec and 5,450 sec, with mass set at one percent.
The effect of a change in the length of the linear
track is evident in every computer run. At first, the

peaks of the w, and w, oscillations are lowered in magni-

2 3
tude considerably by having the mass move far out on the
% axis. Each successive iteration improves on the control
variabkles in order to decrease the extreme positions of

the mass to prescribed limits. As the extreme limits are

decreased, the peaks of the W and Wy oscillations increase
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in magnitude. The above examined case of a one percent
control mass will be used to show this effect. The first
100 sec of simulation are shown in Figure 8. After a

few iterations, the mass position extremes are reduced

to *10 m. The resulting Wy Woo and Wg oscillations

are plotted. After additional iterations, the mass posi-
tion limits are -2.8 m and 3.4 m, and it is seen in this
figure that the w, and Wy oscillations have become

larger in amplitude. Comparison to the no mass motion
curves shows that the effect of extreme mass position
change is quite substantial. It should be noted that, as
the extreme limits of mass motion are decreased and cause
an increase in the amplitudes of the w, and Wy oscilla-
tions, an increase in total time to detumble will occur.
and w, due to

2 3

a one-half decrease in the y and z positions of the control

The changes in the oscillations of w

mass are examined by using the one percent mass case men-
tioned above and appropriately changing y and z. A 998

kg mass was permitted to move 3.7 m about the zero posi-
tion on the x axis which is parallel to and has the same
sense as the maximum inertia axis, with v and z fixed at
5.55/2 m and -13.7/2 my the y and z axes are parallel to
and have the same sense as the intermediate and minimum

inertia axes. The only differences between the case that
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will be discussed now and the initially discussed 0.5%
case are an increase in the mass of the movable object to
one percent of the manned space station and a one-half
decrease in the y and z positions which were 5.55 m and

~13.7 m. Figures 9, 10, and 11 show the w Wy o and wg

13

2 and w, oscillations

from the previous one percent case, which had the same

osecillations. For comparison, the w

parameters except for full y and z values of §.55 m and

-13.7 m, are shown. The limits of the w, and w, oscilla-

2 3
tions for no motion of a one percent mass are also noted.
By ccmparing the various curves, it is seen that there
is a definite increase in the magnitudes of the w, and wq
oscillation peaks caused by lowering the y and z mass
position magnitudes. The long term effect will be an in-
crease in total detumble time due to the lower y and z
magnitudes.

The effect of a control mass oscillating about a
non zero position is shown in Figure 12. The dinitial
one percent mass case was again used as a basis and
the only parameter change was letting the mass oscil-
late about +10 m instead of the zero x position. Specific-
ally, a 998 kg mass was permitted to move 3.7 m about the
10 m position on the x axis which is parallel to and has

the same sense as the maximum inertia axis, with y and z

fixed at 5.55 m and -13.7 m; the y and z axes are parallel
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to and have the same sense as the intermediate and minimum
inertia axis. Initial values for Wys Wys and Wy are
still 0.103 rad/sec, -0.199 rad/sec, and 0.000286 rad/sec,

respectively. For both the w, and wy curves, it is evident

2
that one side of the oscillation is decreased faster than
the other. One side of the envelope crosses the time axis
and, along with the other side, tends to a small, but
finite, value. The w, and 0g oscillations, then, will

not be completely zeroed outj but, they will be made quite
small. Comparison to the case shown in Figure 7 which
differs only in that the mass oscillation is about the
zero X position instead of 10 m, shows that the higher

¥ values initially permit a much faster decrease in the

w, and wq envelopes of oscillation. However, having the

control mass move through the zero position on the x axis,

results in the w, and w, oscillations tending to zero

2 3
rather than a finite value.

The movement of the control mass parallel to an axis
other than that of maximum inertia was investigated by
having the mass move parallel to the intermediate inertia
axis. This choice of axis and that of the other parameters
was made in order to let this case be as similar as possi-
ble to the initial one percent mass case; this permits a

more valid observation of the effect of the changs in the

direction of control mass motion relative to the main
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vehicle. The problem arises since a change in the x
direction of mass metion changes the y and z values of the
mass and what they represent relative to the main vehicle.
Therefore, for this case under consideration, a 998 kg
mass was permitted to move 3.7 m about the zero x posi-
tion. The x axis, along which the control mass moves, was
placed parallel to and has the same sense as the inter-
mediate inertia axis. The y and z axes were placed
parallel to and have the same sense as the minimum and
maximum inertia axes. The y and z positions of the mass
were set at ~13.7 m and 5.55 m. Initial values of ml’ wz,
and wa remain at 0.103 rad/sec, -0.199 rad/sec, and
0.000286 rad/sec. Oscillation envelopes for Wy Wos and

Ws are shown in Figure 13. The @, envelope tends to zero.

2

However, the w, envelope is tending to a small, but finite,

3
value. Comparing #. *‘ie case shown in Figure 7 it is
seen that a cont. ¢! mgsz «nving parallel to the maximum
inertia axis pernits, in addition to zero values for

both the w2 and W, envelopes, faster detumbling.

These results were obtained by running the comptuer
program for simvlation times of 100 sec. To bring the
extreme mass positions to the permitted magnitudes, in
this 100 sec simulation time period, required up to about

35 iterations which used about 100 sec of IBM 370/165

computer time. At the end of each 100 sec simulation
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run the end values for w x and % were used as

1> Yo» Ygo
initial conditions for the next 100 sec simulation run.
This time increment of 100 sec for simulation was chosen
since larger time increments made it difficult to bring
the ex*reme mass positions to within the specific limits.
A few times even this time increment was too large; that
is, the mass would initially stay within the limits but
would then move past, where about 35 iterations were the
maximum permitted. Rather than extend the computer time
and thereby increase the number of iterations, the accept-
able initial part of the run was used. For zeroing out
the mass position, velocity, and acceleration in the 0.5%
case that was initially investigated, the simulation time
increment was arbitrarily chosen at 50 sec. Also, the
position limits, as stated previously, were set at ilo"g m
for the zeroing out simulation time. Normally, limits
were set at *2.5 m at the beginning of a case and then
changed to about £3.0 m or higher. As stated previously
in the analytical study on the optimization technique,

the limits of mass position should be set lower than what
is desired since the penalty function comes in when there
is a violation of the set limits. The iteration that was
chosen during each 100 sec simulation time run had the

lowest peak magnitudes for the w, and Wg oscillations for

masg positions within the %3.7 m prescribed extreme

,M.WJ?{L{‘.?\. - S\g -
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limits. There was no need to place constraints in the
optimization technique on mass velocity and acceleration
since, as discussed in the initial 0.5% mass case, these
variables did not reach excessive magnitudes. The values

of other constants, associated with the optimization method,
which were discussed in the analytical study are given in
the main program of the computer program listed in

Appendix B. The time steps in the integrations were set

at 5.0 sec of simulation time.
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CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

An optimal movable mass control system has been
applied to a tumbling spacecraft in order to obtain simple
spin about the major principal axis. The results indicate
that the largest possible magnitudes for the internal mass,
length of the linear track, and positions of the mass on
the y and z axis will yield the fastest detumbling times.
The choice of these values depends upon size and mass of
the spacecraft. Results also indicate that the mass
should oscillate, about a zero point, on a line parallel
to the maximum inertia axis. These results were based on
worst case initial conditions for Wys Wy and Wy
Tumbling situations that might be encountered in actual
space operations will usually be less severe and, there-
fore, will probably require less time to veach simple
spin. Also, these results were based on one vehicle,
the modular space station. However, since this vehicle
was asymmetric, the optimization technique will apply
to any type of spacecraft. The results of various para-

meter changes., furthermore, were based on motions of a

E? one percent mass and the resultant efferts on the peaks of
Wys Wy and Wy3 NO further comments were made about T,
fx’ %, and X. A one percent mass was used to show the

effects of changes of various parameters since the large

. . . “Jﬁ%h T T .
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masg made the effects readily apparent and showed them in

a faster time, compared to smaller masses which may be
more feasible for the space station due to its considerable
mass. The graphs of Wy Wy and Wy were used since the
objective is to reduce the peaks of w, and w,, with wy
tending to one value. Other variables were not discussed
since their behavior and magnitudes were comparable to
the 0.5% mass case which was examined in detail. This
0.5% mass case showed that the velocity and acceleration
of the mass, and the power requirement are low. There-
fore, the use of the optimal control system in actual
operations is feasible. Compared to the force conitrol
law method, detumbling can be achieved in one-~fourth

the time. This decrease is considerable since stabiliza-
tion may require houvrs. It should be noted that the
optimization technique need not only be considered from
the standpoint of minimizing time to detumble. Since
time increases as mass decreases, a minimum mass solution
can be obtained by fixing the time at the largest feasi-
ble value. Viewing the comparison to the force control
law method in relation to this examination of mass and
time changes, it is possible that an object with a mass
much smaller than that used in the force control law
technique may be used to achieve simple spin in the same

time period. When dealing with a mass of about 1,000 kg,
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this decrease will be guite considerable. This idea of
mass decrease for equivalent times by using the optimiza-

tion technique being investigated here can be applied to

wobble damping discussed in Chapter II. Since the
angular velocities to be reduced are quite small, time
may not be the critical variable. However, mass is

always of importance in space applications due to cost

per mass to be placed in orbit. The optimization teche
nique will reduce considerably the mass of the movable
object needed to achieve simple spin in the same time
period of active control,

In regard to the nature of the optimal solutions that
were obtained, the local minimum achieved here permits

a faster detumbling time or a smaller mass when compared

to existing solutions. In addition, the minimum seems

to be an absolute minimum since the slopes of the w, and Wy

2
envelopes of oscillation for the 0.5% case shown in
Figure 3 and the one percent case shown in Figure 7 are
approximately constants. Specifically, noting that the
constant slopes of these cases are comprised of about 100
sec simulation time increments and that various guesses
of the control variable were used, it becomes evident
that there is a definite unique decrease in the peaks of
the Wy and g oscillations for each case. There seems

to be only one minimum for a specific case; hence, it is

an absolute minimum.
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Considering actual operations in space, a hybrid
computer may be more effective since modeling the vehicle
dyramics on an analog will permit faster computation; as
was discussed in the previous chapter, 100 sec of digital
computer time are needed to obtain 100 sec of simulaticn
control time. Comparison between computer predicted
vehicle motions due to mass movement based on the optimiza-
tion method and actual motions could then be continuously
monitored, thereky permitting updating of the initial

conditions for w and v, for the subsequent simula-

1? 72?2 3
tion time increments for optimization. This updating

w

could be done without having to stop active control.

No attempt was made to improve on the first-order
gradient solutioni that is, an optimization method such
as the neighboring extremal, which would utilize and
require the solutions already obtained, was not used to
further reduce the time or mass. If a digital system
similar to the one used in this investigation was
employed, the added computation time would necessitate
periods of no active control since the total computer
time would be greater than the simulation time. Even if
a hybrid system could be used to sufficiently reduce the
time needed for the added computation, the decrease in
time or mass would probably be slight compared to the

quantities already required.
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The optimal control was applied specifically to
stabilize a tumbling vehicle about its major principal
axis., No computer runs were made to achieve simple spin
about a specific geometric axis. However, the technique
presented here can probably be applied to such a case by
appropriately changing the performance index and the
direction of mass motion. An indication of this is given
by noting that the initial one percent mass case was
actually made to spinnabout an axis approximately ten
degrees from the maximum inertia axis of the whole system.
This was due to the fact that the major principal axis of
the main vehicle was chosen as the direction of the linear
track and that the mass is large and far from the center
of mass of the main body. In actual operations with
large masses, the major principal axis of the system
should be used as the direction for the linear track:
this was not done in this study since a close comparison
to the smaller mass case was desired. To have spin about
some geometric axes may, however, necessitate considerably
higher energy input by the control system. This will
probably occur for spin about axes close to the minimum
inertia axis.

I+ was assumed that the principal moments of inertia
of the main body do nct change. However, an explosion may
result in part of the spacecraft blowing off. Also,

tumbling itself may cause loss of part of the vehicle.
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If this mass loss results in a large change in the
moments of inertia, it should be included in the optimiza-
tion. Specifically, the magnitudes of the moments of
inertia should be corrected and the direction of the
linear track should be altered to correspond with the new
major principal axis if spin is desired about this axis.
If direction change is not feasible, a redefinition of
the performance index could be scudied; but, as was
shown, this would result in a longer time or a larger
mass, and residual transverse angular velocity.

Other types of control mass motions could be investi-
gated using the optimization method presented here.
Specifically, a translation other than linear or a
rotation relative to the spacecraft.

The optimal control technique investigated is signi-
ficant in that it uses an open loop solution tc¢ control a
vehicle in real time regardless of initial conditions.
The highly nonlinea ' equations of motion preclude the use
of an optimal closed loop approach. Normally, a non
optimal feedback method like the one proposed by Edwards
would have to be used. The use of such optimal open loop
solutions should be investigated for other active con-
trol devices when optimization is desired. One area of
application is for minimum time thrusting of control jets

with constraints on three orthogonal components.
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APPENDIX A

EQUATIONS OF MOTION FOR A SPACECRAFT

WITH A MOVABLE MASS

The equations of motion are given below. The mass

is permitted to move along the X axis which is fixed in

the main body.

where

VAA

1]

1]

[VAA(x°CMAL + % 'CMA2 + CMA3) +

2

VBB(x CMBL + x2CMB2 + x°CMB3 + CMBu) +

2 3

VCC(x CMC1l + »“CMC2 + x°CMC3 + CMCu)]

[1.0/]A]1

2

[VAA(x CNAL + x2CNA2 + x°CNAZ + CNAL) +

VBB(x CNBL + x2CNB2 + CNB3) +

2

VCC(x CNC1 + x“CNC2 + CNC3)1[1.0/]|A]1

[VAA(x CPAL + x2CPA2 + x°CPA3 + CPAL) +

VBB(x CPBl + %?CPB2 + CPB3) +

2

VCC(x CP™1 + x“CPC2 + CPC3)1{1.0/]A|]

2 2
my CWA1l + mz CWA2 + wxwy(CWAS + x CWAL) +
meZ(CWAS + x CWAB) + mymz CWAT7 +

wy * CWAS8 #* w, * CWAS



VBB

vCC

CA3

CA23

CA?2

CAl12

CAl

1

mi(CWBl + x CWB2) + mg(CWBS + x CWBuM) +

w_w
Xy

y

2

CWBS + mwa(CWBB + x“CWB7) +

® CWB11

w wZ(CWBB + x CWB9) + myxi CWB10O +

mi(cwc1 + x CWC2) + ws(cwcs + x CWCH) +

2

w w {CWCE + x°CWCB) + w_w_ CWC7 +
Xy X Z

® wZ(CWCB + x CWC9) + mzxi CWC1Q +

y
¥ CWCli
4 2 3 2
¥ u"CA3 + x"CA23 + x"uCA2 + =CAl2 + CAlL
I
x
2 2
—2Iqu y - ZIXZu z
2 2 2 2
- - P
Iny + Isz IXy Ixz *+ Ixuy + Ixuz
I uy2 + I u22 - 2T _uyz
y Z vz
21 I uz - 2I. ulyz? - 2I_ I uy -
Xy ya Ry Xy 2
2 3 2 2
ZIxyu yo - ZIYZIXZuy - ZIXZu vy z -
2 3
ZIXZIyuz - QIxzu yA
I.I.1 -1.12 1271 -1%71 -
XYy zZ XYz Xy Z X2y
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Ly
B

CWAl

CWA2

CWA3

CWAL

CWAS

CWA®B

CWAY7

CWAS

CWA9

CWB1l

CWB2

1

n

1

21 I T + I.I uyy + I

XY RZ V2 Xy

211 _uyz + I

I
XYz v z"Y

2 .U 2.2 2
+ I zZ
Iyu y yu y

2 2
I MY Iyzuz

2 3
21 M Y? Xy~ X2

2
Iszxyuyz - Iyggh?

Iyz + uyz

~Iyz - uyz

X2

Uz

-1y

2 + I I

?
+ I’y

2L Wy

2
Iy - Iz - Ny + uz

2uy

2uz

®a

Uz

ZH2

2_2
z

3
A

2
- I, I uwyz - I__uy

Xy

4

+ Izuzz

T4



e i
pisaecon sedrta e rey o]

At

CWB3

CwBL

CWBS

CWBe6

CWB7

CWB8

CWBS

CWB10

CWB11l

CWClL

CWC2

CwWC3

CwCL

CWC5

CwCe

CWC7

CWCS8

]

H

il
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Xz
Lz

—Iyz - Uy=z

I -I_ - uz
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Xy
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CWCs

CWC10

CWC1l1l

CMAL

CMA2

CMA3

CMB1

CMB2

CMB2

CMBU

CMC1

CMC2

CMC3

CMChL

CNAL

CNAZ2

CNA3

n

-1z
..2'“
Tuy
2
I+ Tut u2y2 + uzz
2
U
2 2 pA
+ : ~- - 21 Z
IyIz + Iyuy IZAZ Iyz yzuy

2 2 2.3
+ +
Iy7uz Futzty Iy vy

Ixyu

2
vy

2
+ +
Iszxz ¥ Ixz'Jyz IxyIz Ixy”y
2.2 2.3
T + + I pz + Z
yz”y Ly z yu H
Ixzu
2
U =
I..I + I, uyz + I T + I u22
XY V2 Xy YV XZ XZ
2.2 + 32,8
Iyzuz toutyzt ¢ Loy Wy
Ixy”
2
vy
,,/’CI?\. . .ﬁs
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?' [} = '{" 2
: CNAL Iszxz + Ixzuyz + IxyIz Ixyuy
i,
v
? CNB1 = —QIXZuz
|
7 _ 2 2
;% CNB2 = Ixu Uy
;" 2 2 2.4 2
¥ = 1 +
% CNB3 Isz + ngy + Izuy + Uy o+ Izuz
E 2.2 2 2
: L
% CNC1 = Ixzuy + Ixyuz
;
i _ 2
: CNC2 = u'ya
2
s = + 4
X CNC3 Iszxy + leyz + Ixuyz Iyzuy
: 2.3 2 . 2 3
: utytz + I guz” +utyz
£ - 2.2 2_3
ﬁ CPAl = Iyzuy + wyTe + Iyuz + u-z
kr ?2 =
i CPA2 Ixzu
i CPA3 = u’z
2
= +
CPAL Ixnyz + Ixyuyz + Iylxz Ixzuz
CPB1l = Ixzuy + Ixyuz
_ .2
CPB2 = u'yz
cPB3 = I I + II_ + Tuyz + I ay? + u’y3z +
RZTRY X yz p 4 yZ
I u22 + u2y23

xa . . xgﬂﬁn\ T

[P AU SIS DI
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CPCL = -2L
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1

2.2
CpPC2 pr + puz

2 2.2 2
CPC3 2 + Iyuy + utyTzo ot
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APPENDIX B
,i COMPUTER PROGRAM
3 A listing of the first-order gradient optimization
i program is presented on the following pages. A flow
% chart is given in Figure 14. The following variables
é need to be specified for each case:
k
f EX = IX
L
EY = I
i y
EZ = 1
z
EXY = 1
Xy
f EXZ = I
E XZ
¥
17 EYZ = 1
yz
X2MAX = W2 as
1
’E X3MAY = mgmax

X1INV = wx(to}

X2INV

n

my(to)
X3INV = mz(to)

XYINV

1

x(to)

XSINV = %(t

1]

g) = Bl

. . . . -‘_Jgd-:‘\. W N, L. — e mx A_.‘__..a..ia__
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I

YPO

ZP0

FORDIV
IORDIV

SMAMAS

BIGMAS

YOU

H

y

a

number of time steps
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\ Read /

Start ,\\Input

Data

L

it Integrate Function
o > System Fl
3 Equations

y

|

!

Integrate - Function
Influence F2

Equations 7

&

¥
g Obtain

i Additional
Optimization
Variables

P P PP THE T

(1

gt e

o Update
L Control
£ Variable

Stop

Figure 14. Flow Chart for First-Order Gradient
Optimization
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DIMENSION Ul 500)
KENDY=%+1,00E-20
XKENDZ=+1.00E-Z20
CX=JOTH209317E4+07
EV=o627556T8E+07
EZ=.5152799 £E+ 07
EXY=0,0

EXZ=0.0

EYZ=0.0

E¥YX=EXY

EZ R=EXZ

EZ¥=EYZ
AZMA K=, 001
KIMAX=,001
SOMCOA=0.0

SOMC 1B=1.0
S0MC20=0.0
¥BMAR=1.0
¥1iNV=,103
X2INY=—.199
X3INV=000286
KEINV=0.0
X8INV=0,0
PlINV=0.0
P2INV=0.0

P 3INV=0,0
P&EINV=0.0
PSINV=0.0

WANVAI=10.0

YPO=5,55
ZP0=-13,7
FORDIV=20,0
IDRDIV=20
TF=100.0
PEXLIMN=2.0

(o]
]
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TPAF2U{ 5001, PAF3U{500%s PAFSUIS00) s PAF6UIS00), V {2}, DELTAU{500),
BXSTORS51500), PSTORS5{500} y RSTOR5{500,2)

CAY=E X¢EYHEZ~EXFEYZIHXZ ~EZHEXYH42 ~EYHEX Z¥%2-2 0 EXVREXZ*EYZ +
IEXFE YRYOURYPO®42+E XFEZFYOURZ POF42—-2 ,0FEXEY I3V OUX Y PO* ZPO+EY* EZ*
2YOUH{ YPO#%2+ZPO%*2 )+ EYRYOQU %2 & {Y PO & +Y POFR2RZO0F% 2 ) +EZEYIUR* 2%
ATYPB*F2HZ POXFZTZPOF,L) ~E Y LH#2 XY QUR{Y PO %24+ ZP Ok %: 2 } =2, 0% EY ZEYOUR% 2
&4 YPOF R 3RI POEYPORZ PO%H3 ) =2 o OREXYREX L *YOUHY PORZPO-EXY¥L 2xYOURYPD
Bk 2—E XZ %3 2% YGUSZ PO %#2

CA2=E X¥E Y+E X¥EZ—E XY*¥2-ERXZ%%2 +
1EXFEYOUSYPO® %244 XY OQURZPOHFR2+EY XY CURY PO ZFEZRY QU ZPO%*=2-2. 0% EYZ
2#YOURYPO#ZPO

CA3=EX ’

CAZ23== 2. 0%E XYXYOURI2HYPO-2 o QFEX LY QU X2 % PO
CA12==2.0=E XY#{EYZ*YQUZIPO+YOUXS2RY PO#ZPO%4H2+EZRY QUSYPO®YOURK 2
1RYPO#%3)-2. OFEXZ 2{EYZ X YOURY POV OQUSE2 XY POXR 2% ZPO+EYRYOQUX ZPO+YOU
2%% 2%F PO %3]

CWA 1=EYZ+YOURYPO*ZPO

CWA 2=-CHWAL

CWA3=EXZ

CUWA 4=YDUEZIPOQ

CWA S=-E XY

CUWA &= YOU=YPD

CWA T=EY=-EZ-VOUXYPO*YP4+ YOUXZPO*ZPO

CWA 8=2, 0*YBUXYPO

CWA9=2, 0*YOUxZPO

CWe 1=-EXZ

CUWB 2==YOU*ZPO

CuB3=EXZ

CWB4=YOU=ZPO

{WBS=-CuWAl

CHB 6=EZ—-E X-YOU*ZPO*ZPQ

CWB 7=Y0U

CWB 8=EXY

CWB9=YOU*VPO

CYB 10=-2.0%YOU

h3



<

}

.
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CWB 11=- YOU=ZPQ

CUWC 1=F X¥

CWC 2=YO UxYPD

CWC 3=-E XY

CWE 4=-YOUSYPO

CWC 5=—E Y4E X+ YOURYPO*YPD

CUE 6=- YOU

CWC 7=CWA1

CWC 8=—E XZ

CWC 9= YOUXZPO

CUC 10=~ 2, 0%YQU

CHC 11=YOU*YPO

CMA 1=E Y#YOUE Z ¥ YOUS YOURYOU* (Y POY PO+ ZPO% ZPO)

CMA 2=YD U YOU

CMA 3=E YHEZ+E YHYNUSYPOHY PO+ EZ#Y QU%ZPDO% ZPO-EY I#EY Z-2.0%EY 2*YOU
1%YPO*ZPO

CMB 1=E YZ #YDUSZ PO+ YOUSYDUSZ PC#Z POAY PO+ EZ Y OURY PO+Y QU YOUS YPO#% 3
CMB 2=E XY# VDU

CRB 3=YO U YO URYPD

LMB 4=FEYZXEXZFE XZ#YDURYPO*ZP O+ EXY SEZ+EXY %Y UQUXY PORY PO

CHC 1=E YZ #YQUXYPO+ YOUSYOURYPOXY PO*ZPO+EY #v OU ZPO+Y 0L Y OU* ZP D% 3
CMC 2=E XZ*Y0U

CMC 3=YD USYOUHZPO

CHC4=EXYRE YZ+EXY $YDUXYPOHZ PO+EYREX Z+EX Z¥YOU*ZPO% 2P0

CNA 1=E YZ#YDUKZ PO+ YOURYOURYPO%Z PO%Z PO+E LY DU%Y POSY OLik YOUX YPD¥ % 3
CNA 2=E XY#YOU

CNA 3=YO UXYOURYPO

CNA 4=E YZ+E XZ+E XZ#¥YOURYPORZ PL > EXY #E 7+ EXY %Y QUAY POXY PO

CNB 1=« 2. O%E KE #YOU*2P0

CNB 2=F X+ YO YOUSYOUSFYPO%Y PO

CNB 3= X#EZ +E X¥YOUSYPOHYPO+EZ %Y OU*Y PUHY PO+Y OUAY QUAY PO%* 4

1+EZ #YOUSZ POSZ PO+ YO USYOURYPORY PORZPOLT PO~ EX 2R EX L

CNC 1=E XZ#YOU* YPO+E XY#YOU*ZPO

CNC 2=YDU*YOU*YPOZ PO

CNE 3=E XZ #E XY+E X#E YZ+E X*YOUY POXZPO+EY Z4Y QUAY POFY PO+YOU* VOU* VPO

f
A et e Al e o ey
| e e e o i o e
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P o=

VM U - U B~ ST e ol
: - : S b A T T P L T e A R T e S e R R S R

1%5%3%Z POTEYZAYOURZPO=Z PO YO UKY QURY PORZPO%=3

CPA I=EYZ =YD UEYP O+ YOUSEYOUSY POAY POSZPOYEY Y OL " ZPO+YQURYOUHZPUE®3
CPA 2=EXZ Y0~

CPA B=YDURYOUSZ PO
CPRG=EXY#EYZLE XY *YOURYPOXZPO+EYSEXZFEX ZXVOUFZIPO*Z PO

CPB1=CNC1-

LPB2=CNC2

CPB3=CHNL3

CPC 1=~ 2. D%E XYEYOULYPOD

CPC 2=E XF=YOU= YOURYOUSZPORZIPO

CPL Z=EX*EYF+EXXYOUSZPO*ZPO+EYRY OQUZY PORY POY QUXY OUHY PO:YPOR ZPDX 2P0
L+EY2YOURZPORZ PO+ YOURYOUSRZPO**4~EXYHERY

24 T=0.0 :

DEL TA={ TF~T} /FORDI V

DELTAZ2=DELTA/2.0 -

WRITE{ 60610} .

610 FORMATU 91 , "TIME(SECLY ¢ v4 Ko "UXKERADS/SECI T 2X s WY LRAD/SELCH ' 22X,
L*WZ{RADFSEC T 752X "MASSDI SIFT) ¥92X o "OUWX{RD/SC2) ¥ 2K "DUY {RDSSL2) ?
292X "DUZIRDISC2) "2 Xy PDMASDSIFR/S) 92X s "ULFT/SC2)°% )

XK{1)=X11INY

X{ 21=X2INV
XI3¥I=X3INY
K{&I=R4INY

X 5=X5INY
X{73=0.0
XSTORI(1i=X{i 11
XSTORZ2{ 1}=X{2)
ASTOR3{ 13=X{ 3}
XETOR 4{ 131=X1{ 4)
ASTORS5{ 11=X{ 5}
DO 2 K=1,I0RDIV
DO 3 I=1,.7 ‘
RIT¢11=F1{TIsToXsKeUs ¥YDU, PEXLIM;PECXV A,
OPEXLMH,PEXLML

@
o




ACA14CA24CA3,LA23sCAL2 s CHAL - CWAZ 5 CHAS yCl Al s CHHASy Cli Aby CW ATy CHAS,
BCUAG,CHB 1 4L NB 2oC WBB sCUBE 5 CWES  CHES o CW BT o CHH BB o CH By Cif B10y T B1 1
COWE 15CHE 250 HC 35C HC 4 yCWCS ¢ CHEE 9 CHET 5 CHECS s CHCO o CHC105 CHE 11, CMA L,
DCMA ZoCMA34CMBY yCMB2 yCMB3 o CMB4 s CMCL 2 CMC2 5 CMC3 ¢ CMCho CNAL, CNAZ,
ECNA3,CNA%yCNBLyCNB25CNB3 yCNCL 4CNC25CNC3 3 CPAL,CPA2, CPA3, CPAL,
FCPB1,CPB2,CPB35CPCL,CPC2 4CPC3)
3 XBLI)=X{1)+DELTAZ*R(T 41}
DXSTRI{KI=R{1s1)
DXSTR2{KI=R{ 2,1}
DXSTR3{K j=R{ 351)
DXSTR4{K)=R{%,1)
: TB= T+DELTA2
} T=T+DEL TA
- TIME{ 1)=0.0
d TIME{K+1)=
DO & I=1,7
RU1,21=F1{1,TBsXBsKsUsYOU; PEXLIMyPECKVA,
OPEXLMH 3 PE XLML 4
> ACA1sCA2oCA3sCA23,CAL2 sCHAL sCWAZ » CWAS ¢ Clt A% o CW A5y CHAG, CHATs CHAS,
: BLWA9,CHB1,CHB2,CHB3 ;CWB% ,CUBS 5 CHB6 (CHBT s CWBB, CUBY, CWBLO, CUBL1,
CCHE 12CHE 25C HC3 3G WE & sCHES yCHES s CHCT 9 CHEB o CHED 2 CHC 105 CHE 114 CMA L,
DCMA 2,CMA 3 ,CMBL sCMB 2 4CMB3 9 CMB4 » CMCL CMC2 9 CMC3 , CMC4 ¢ CNALy CNA2,
| ECNA3,CNAZ,CNBI 2CNB2 sCNB3 oCNCI 5 CNC2 s CNC3 o CPAL» CPA2, CPA3, CP ALy
f FCPB 1,CPB 2,CPB3,CPC 1L +CPCZ 2L PC3)
» 4 ¥B1{I)=X(1)}4DELTAZHRII 42) .
| DO & 1=1,7
: REIF31=F{I4TB sXB1 +KsUs¥YOU, PEXLIM,PECKVA,
* OPEXEMHsPEXLML,
* ACATsCA25CA3,CAZ3,CA12 4CHAL sCHAZ yCHAS 3 CH A% s CHAS s CHAB, CHAT, CHAB,
BCWA9sCWR1,CWB2,CHB3 yCWB4G +CHBS5 o CWBG o CWBT » CH BB » CWBO, CHB10, CABLL,
CCHC 170 HE 296 WCB9C HE% yCHES  CWEH s CHCT s CWCB o CHED » CWC10s CHC 11, CMA L,
DCMA 2 ,CMAB,CMBL5CMB 2,CMB3 ,CMB4 » CMCL s CMC2 2 CMC3, CMCl s CNAL, CNAZ,
ECNA3¢CNA47CNB1,CNBZ¢CNB39CNC1eCNCZ9CNCBvCPAlchA2,CPA3,CPAéq
| FCPB 1,CPB2,CPB3,CPCL,CPL2,CPC3Y
4 5 XBUTI=XUT}+DELTA*RII +3)

g d o eSS e it sy . Wy 2T P
R T S SR L S e I L e R i

e ey et PR o e o, a8t gt e b f b
PP B L - : tin - EUSEEIERS IS Mg

L8




i

i
¥
i
i

1
b

PO & I=1.7

6 R{IT441I=FL{I T+ XB,KsUsY0U, PEXLIMyPECXV Ay

-t

SPEXLMH; PE XLML 4
ACAL1,CAZ,CA3,0A234CAL12,CHAL sCWAZ sCWAS s CWAL s CWAS, CHASL, CH AT, CHASB,
BCUWAG,CWB1,CUHB2,CWB3CUWB4 CHBS5,CWBE ,CWBT oCWBB,CWBI,CHBLO,CABLY,
CCHWCL1,CHC 2,CUCB,CUC 4 CHECS o CULH ¢ CHCT o CWCB + CHCI ,CWCI0,CWE LT, CMA T,
DCMA2,CMA3,CMBL ,CMB2 sCMB3 oCMB4oCMC] ,CMC2 o CMC35 CMC4y CNAL, CNAZ,
ECNA3,CNA4,LNBL1;CNB2,CNB3 sCNCL,CNC2 CNC3,CPALLCPAZ2, CPA3,CPA4
FCPB 1,CPB2,LPB3,LPL1,LPL2 ,CPL3}

DO 7 1=147

T XHEIFX{IIv(DELTA/6. Q) ¥ IR{I11#2 0% (RIT4234R1I:3))4R{15 4}

XSTORUK+1I=XL{1)
XSTOR2{K+1)=X[ 2}
XSTOR3IK+1)1=X{3)
KSTORL{K+13=X{4&)
XSTORS{ K+1}=X{ 5]

2 CONTINUE

PENIT1=X{ 6}

PENITZ2=X{ 7}

K=TORDIV+1

TEMPORY 1)=XSTORL{IORDI V+1}

TEMPORT 23=XSTOR2{ I ORDI Vv*1)

TEMPORY 33=XSTOR3{IORDIV+1)

TEMPORT 4} =XSTOR4{IBRDI ¥+1)

i=1 -

DXSTRI{ IORDADY=FI{I ;T TEMPOR,K,UyYOU, PEXLIM,PECKVA,
OPEXLMH,PEXLML
ACAI;CAZ5,CA34CA23,CA12,CHAL sCUHAZ ,CHA3,CWAL,CHAS, CHAG, CHAT, CWAS,
BCWAG,LHWB1,CHB2,CUHB3,CWB4,CWB5 ,L¥BO ,CHB7 LW BB, CW BT, (W B10, CIBL1,
CCHC 1,CHE 2,CUC 3L WC 4 sCWCS o CHCE 5 CWET 5CWEB o CHCI,CWCLO, CHCEL,CMAL,
BCMAZ2,CMA3,C MBI ,CMB2,CMB3 yCMB4L ,CMCL ,LMC2 ,CMC34EMC4,CNAL, CNA2,
ECNA3,CNA4-,CNB1,CNB2,CNB3sCNC1 ,CNC2CNC3,CPALsCPAZ, CPA3, CPAS,
FCPB1,CPB2,CPB3,CPC1,LPC2,CPC3} ’

I=2

DXSTR2{ IGRDAD)=F1(1 T, TEMPOR+K+U,YCU, PEXLIM,PECXVA,

s e [ 2 L LAY ke ke A S e e 4 e s

88



OPEXLMH,PEXLML .
ACALsCA2,CA3,LA23,CA12,CWAY yCWAZ,CHAB s CHAL yCHAS; CiHAG, CWATCWASB,
BCWA9;CUWB 1,CWB2yCWB3 3L WB4 ;CWB5yCWBO ;CWBT s CWEBB s CW B9, CWB10,CWBL1y
CCUWC 1-CHWC2;CHC34CWE4,CUCS sCUHCH 4 CWCT 4CHEB o CHCI s CHCI0,CWCI1,CMAL,
DCMA 2+,CMAZ,CMBL1,CMB2,CMB3 oL MB4yCMCL 4CMC2LME3 LM% CNAL, CNAZ,
ECNA3,CNA&,CNB1,CNB2,CNB3,CNCL yCNC2CNC3 ¢ CPAL,LPA2s CPA3,CPA%L,
FCPB 1,CPB2+CPB3yCPCL1+LCPLC2,0PL3}

1=3

DXSTR3{IORDADI=FLIIT o T, TEMPOR,KsUsYOU, PEXLIM,PECXVA,

9P EXLMH 5 PEXLML
ACAL+CAZ,CA3oCA23 yCAL2 oCHAL ¢CWAZ sCWA3 o CW A% s CW AS; CHAGs CWATs CHAB,

BCWAG,LWB1,CUB2,CWB3 CWB4% 3 CHWB5 ;CWBS yCUBT 5y CWBB , LW D9, CWB10, CHBL 1,
CCUC 1,CHC 2:CUC 3 ¢CWC 4 CUCH 3CWCH o CHET oCWLB ¢ CHET s CHT10, CHC1 L. CMAL,
DCMA2,CMRA3,CMB1 ,CMB2 ,CMB3 yCMB4 oCMLY 4CMC2 4CMC3,CMC4, CNAL,CNAZ,y
ECNA3,CNA4,CNBY ,CNB2,CNB3 CNC1 ,CNC2 CNC3 ;CPAL,CPAZCPA3CPASLs
FCPBlgCP829CP83¢CPC1qCPCZoCPCB!

I=4

DXSTR4{ IORDAD)I=F1 (14T, TEMPOR,K;UsYOUy PEXLIMSPECKV Ay

9PEXLMH.PEXLML
ACAL CA2sCA3,CA235CA12oCHAL 3CHWAZ sCHAS s CWAL ,CHAS CHAS, CWAT CHAB,y

BCUAG:CHB1EWBR2:LWB3,CHBE sCWBS ,CUWBHCWBT 3y CHWBB ,CIBS9 CWBLO,CHBLY,
CCWC 1-CUWCZ2sCUHC3sCHC & oCUHES ;CWLO L CUCT ;CUCB ,CHL9 CWC10,CHCLI,CMAL,
DCMA 2,CMA3,CMBL4CMB2 CMB3 sCMB4 ,CMCL oCMC2,CMC3,CMC4, CNAL, CNAZ,
ECNﬁ31CNA49CNBl?CNBZ?CNBB9CNC19CNCZ@CN(3?CPA11€PAZ,CPA39CPA49
FCPB 1.,CPB2;CPB3,LPC1,LPC2,CPC3)
DO 711 {K=1,TORDAD
WRITE{DH+611) TIME{LK) ¢ XSTORIILK)y XSTORZ2{LK}s XSTOR3{LK),s
1XSTORA{ LK}y DXSTRLILK} sy DXSTR2Z{LK}, DXSTR3IILK)y XASTORS{LK}, UILK)
611 FORMAT{30%,10{1X5E12.53}
711 CONTINUE
WRITE{&,H611) TIME{IORDAD) sy XSTORI{IDRDAD}, ASTOURZ{I10ORDAD},
1 XSTOR3{ YORDAD} » XSTOR4{1IORDAD}s DXSTRI{IDRDAD), DXSTRZ2(IORDADI,
2DXSTRB{ IORDADY ¢ XSTORS{IORDAD) » U{LIGRDADY
WRITE{ 6,612) TF
612 FORMATI "Dt ,F15,6)

L i

68



WRITEI6,7005) PENITL,PENITZ2
TCO0S FORMATI*0',2{3X,E11.4)}
DO 4441 KiK=1,I0RDAD
FORCEX=YOURTUIKTK) +YPO*XSTORL { KIK} 2XSTOR2 {KIKi—XSTOR&LIKIK)}*
IXASTORZ2{KIK}*XSTORZ{KIK)-XSTORA {KI K} *XSTORS {KIK}=XSTORIIKIK}
2+ZPOFXSTORI{KIK) #XSTORI {KIK) +ZPO¥DXSTRZ {KIKI~YPO*DXSTRI{KIK})
TOOT=FBRCEXFASTORS{KIK] '
RINXDN=XSTORS{KIK) +ZPO*XSTORZ (KIKI-YPO*XSTOR3I{KIK}
RINYDN=XSTOR&I{KI K} *XSTOR3 {KIKI -ZPO#XSTORL{KIK}
RINZDN=YPO#XSTORL{ KI K} ~XSTORL { KT K} #XSTOR2 {KIK)
ENEKIN= S*{ EXFXSTORI{KI K} #*XSTORL {KIK) +EY#XSTOR2 {IKIK}* XSTORZ2{KIK )+
H IEZ#= ASTORB{IKIKI¥XSTORBIKIK) 1 4. 55V DU {RINXDN*RTNX DN+R INYDN*R INYDN +
| ZRINZDN*RINZDN] ~XSTORLIKIK)#NSTORS{KIKYHEXI-XSTOR2{KIK}*
3& BXSTORZJ KIKIHEVYZ-XSTORL { KT K} #XSTOR2 { KI K3 =EXY
ANGMOX=E X¥XSTORL{IKIK)-EXY*XSTOR2 (KIKY~EXZHXSTORZ{KIK Y +YOU¥ {YPD*

IR INZDN-ZPO*RINYDN}
ANGMOY=—EXY#*XSTORL{KI KI+EVEXSTORZ {KIK)-EY ZEXSTORZ{K IK I +¥YOUX { ZPO%*
e IRINXDN- XSTOR4IKI K} #RINZDN)
‘ ANGMOZ=—EXZ*XSTORL (KIK) ~EYZ*XSTORZ{KIKI+EZHXSTORI{K IK I +YOU* {
s 1IXASTORAIKIKI*RINYDON-YPO*RINXDN)

' ANGMOT= SORT{ ANG MO X=ANG MOX+ ANGMOY *ANGMOY + ANGMOZ= ANGMOZ 3
: WRITE( 6+4%42) TIME (KIK) sFORCEX; TDOT sENEKIN, ANGMOT ¢ ANGMOX, ANGMB Y
| 1ANGMDZ
L 4642 FORMATL 'G%,8{1X5E12.5))
' 4441 CONTINUE
t TP=TF
TFP=T
PDELTA=—-DEL TA
PDELT2=PDELTA/Z. 0
DO 14 M=1+3
6D TO {15,156+20), M
15 P{1}=PLINV
P{2}=P2INV
| P{31=P3INV
' P{4&¥=P4INY

:

06




186

20

P{S5¥I=P5INV
PSTORI{IDRDIV+1)=P {1}
PSTOR2{ IORDIVF13 =P {2}
PSTORM IORDIWVH1)I=P{3}
PSTOR&G{ IORDIV+1}) =P{ 4}
PSTORSI IDRDIV+1}=P{5)
SOMTCO=SOMCOA

SOMTC 1=S0MC 18
SOMTC 2= SOMC 2C

GO 70 17

Pf1)=0.0

PL231=0:0

PI{33=0.0

Pt4}=0.0

Pi5}=0a0

RSTORI{ IORDIVEL 1) =P{1)
RSTOR2{ICGRDIV+LI <11 =P{2)
RSTOR3{ IDRDIVF1:1)=P{3}
RETOR4L IORDIVE1 41} =P{4}
RSTORSIIORDIVE1 1] =P{5)}
SOMNTCO=0.0

SOMTC1=0.0

SOMTC 2=0.0

G0 T80 17

P{1i=0s0

P1231=0.0

P{33=0:0

P{&£3¥=0.0

P{53i=0.0

RSTORI{ IORDIV+1,2) =P{1}
RSTOR2{ IDRDIV+1,2)=P{2}
RSTOR3{ IORDI V#1271 =P{3}
RSTOR4{ IORDIV+1,2) =P{4}
RSTORS{IGRDIV+1,.,2) =P[5}
SOMTCO=0.0

6




SBMTC 1=0.0
SBMTC 2=0.0
17 B0 8 J=1, IORDIV
DO 9 L=1.5
RPIL131=F2{ L TP,PSOMTCOsJUYOULXASTORS Mg
GPERLMH,PEXLML '
ACAL14CA2sCAZCAZ3,CA12 sCHAL pCHWA2 yCWA3S (CHAL,CHASy CHADLy CHAT, CHAB,
BCUHAGsCHWB1,CUB2,CUBI 3L HWBLoCUB5,CUBE,LWBTY ,CWBB, CHBY, CW B0y CHBL Y,
CCHC 19CHL 2.CUHC3sCUHC &CHES sCHEG o CUHCT o CHEB o CHEY , CHCI0,CWC 1L, CMATL,
DCMA 2:CMA3CMBL4+CMB27,CMB3 sCMB4 sCMCL sCMLC2yCMC3,CMCL o CNAL CNAZ,
ECNA3sCNA%GCNB1 cENB2 ;CNB3 yCNC1 sCNC2 sCNC3,CPAL, CPA2, C A3, CP A4,
FGCPB i-LPB2,LPB3:CPLLL,CPC2,LPC3,
1SOMTC1s
. 250MTC 24
: 4L %STOR1e XSTORZ2, XSTOR3, XSTOR:y IORDIVe PEXLIMy PECXVAY
j\ g PRILI=P{LIF+PDELT2%RP{Ls1}
TPB=TP+PDELT2
TP=TP+PDELTA
00 10 L=1,%
- RP{L - 2)=F2{1 s TPBsPB s SOMTL O, Js U¥YOUASTORS, Me
‘ SPEXLMHPEALML ¢
?’ ACALCAZ3CA34CA23CAL2 sCHAL sCWAZ 3 CUHAS o CH AL ,CHAS o CHAGs CHATL CHAS,
f BCWA9,CWB1,CHB2sCUB3 +CWB4,CHB5,CHBE LHWBYT ; CUBB s CHBO, CHBL10,CHBLY,
: LLUC 1+CHE 2:CHEBoCUHC L& o CHES ¢ CUCH sCUCT SCHCB , CH D, CHCI0, CHLC11,CMA L,
DEMA 2:CMA3CMBL sCHMB2Z2 sCMB3 oCMB4 4CMC1 yCMC2 ;CMC3,CMC49 CNAL, CNA 2,
ECNA3CNA4,CNB1,CNB2,CRNB3,CNCL,CNC2CNC3;CPAL; CPA2,CPA3, CPAYG,
FCPB1l,CPBZ2,CPB3,CPCL,LPC2,CPC3 5
1SOMTC 1.
2S0MTC 2,
r 4%STOR1y XSTORZ. XSTOR3, XSTOR4, 1O0RDIV, PEXLIM, PECXVA)
10 PBIILI=P{LI+PDELT2%RP{L 2}
B0 11 k=1:5
RPELF3ISF2{LsTPRsPBLl s SOMNTCO s Js U YOU XSTORS My
OPEXLMHPEXLML ,
ACAI¢CAZoCA3:,CAZ3,CA312,CHAL,CHAZ,LWAS s CU AL, CHASy CHABy CHAT, CWASS

26



BCWAS,CHWBE,CHWB2,CWB3 ,C B4 ;CUBRS ,CWBG ,CWBT7 »CHUBBsCWBS, CWB10y CWB11y
COCUC L+ WC ZCHE 34C WL A CHCE g CHLAE JCUCT s LWCB s LWL, CW LD, CHLIL, CMAL,
DCMAZ2;CMAZ,CMBL ;CMB2,E MBI sCMBE s CMCL o CML2 (CMC3,CMC&CNAL,CNAZ,
ECNA3,CNA4sCNB1,CNB2sCNB3 ,CNC1,CNC2,CNC3,CPALsCPA2,CPAS,CPAYLy
FCPBLCPB2,CPB3,LPCLLCPC2,CPL3,
1SGMTC L,
250MTC 2,
XSTOR 1y XSTORZ2, HSTOR3; XSTOR4 . IORDIV. PEXLIMy PECXVAY
11 PE{LI=PIL}+PDELTA#RP{L,3}
DG 12 L=1:5
12 RP{Lv&Y=F2IL TP 4PB sSOMTCO,JsUsYOUXSTORS Me
PEXLMHPERLML ¢
: ACAL,CAZCAZ,CA23,CA12 CWAL yCHAZ L UWAS ClAY , CHAS, CHAL, CWAT, CUAB,
BCUWAG,CWBL1,CHB2,CWB3,CWB% s CUBS (C1B6 LWBT s CHBByCHBS,CHBL0, CBLI,
CCUC 14CHE2;CWC3yCHWCEsCHCS gCHWCH sCUCT sCWEB 4 TWES , CWCI0, CHC11, CMAL,
¢ DCMAZEMAZEMBL CMBZ oCMB3 g MB4A CMLL yCML2 pCMLC3,CMC4,CNAT, ENAZ,
ECNA3,CNA4CNBLsCNB2,CNB3,CNCLsCNCZCNC3,CPAL,CPAZ,CPAZ, CPAL,
FCPB 1:CPR2,CPB3,CPCL,CPCZCPL3,

d 1SOMTC 1y

P 250MTC 2,

- 4%STORI, XSTOR2, XSTOR3, XSTOR&G, ICGRDIVs PEXLIM, PECXVA)
DO 13 £=1+5

13 PILI=P{LI+{PDELTA/ 6.0} #{RP{L, 1332, 0%{RP(Ls2)2RP(L+3) 2 +RP{L,4))
60 70 {18+19+21) oM

18 PSTORI{ IBRDIV*1-4) =P{1)
PSTOR2{ JORDI V+1~-3) =P{2)
PSTOR3{ IORDIV+1-3) =P{3}
PSTOR4&! IORDT V¥ 1-4) =P{4&)
PSTORS{ IORDIV+1-J3 =P(5]}
GO 70 8

19 RSTORLI( IORDIV+1-J,1)=P{1}
RSTORZ{ IORDIV+1-J,17=P{2)}
RSTORZ{ IORDIV+1-3,1}=P{3}
RSTORL{ ICRDIV+1-3413 =P{4)
RSTORS{IORDIV:1-3,1)=P(5)

[%7]
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- YT T

G0 7O 8
21 RSTORIU{ TORDIVE1I-J.2)=P{1}
RSTOR2{ IORDIV+1-J42) =P{2)
RSTOR3{ IOROIV+1~-d52)=P{3}%
RSTOR4L IDRDIVE1-Jd525 =Pi4)
RSTORS! §O0RDIVE1I~-J,2) =P{5])
8 CONTINUE ' ’
14 CONTINUE
b0 22 K=1,IDRDAD
COEFAS=CATL+CAZHXSTORS { KI %2 % YOU+C A3 X STORS {K)*¥ 4k Y DU % 2
1+XSTORA{ KIKLAL22 XSTORG {KY %3 %CA23
IF (ABSIWIK).LT.PEULIM) GO TO 33
IF {UiK1.6GT0.0) GO TO 34
IF {UlK}.L7.0.0} GO 70 35
33 PENCD2=0.0
GB 0 36
34 PENCOD2=PECUVA
GO TO 38
2% PENCDZ2=—PECUVA
36 PAFIUIKI={1.0/COEFAS) *{CUBLL*{XSTORA {K) =CMBL+XSTOR&(K }:XKSTOR&{K)
1#CMB 2+ X STOR { K) %%3%CMB3+ CMB4 ) +CWC LI #{XSTORS IKI* CMCL+XSTDRA
2{KIEXSTORSGIKIHCME2+ XSTORL (K) #4323 %L MC3+CMT4)Y )
PAF2U0{KI={ 1. 0/COEFAS) #(CUBL 1 *{XSTORG { X} H#LNBL+ASTORL{K ¥ xXSTORAIK }
IHCNB2+CNB31+CUC 1L+ ( XSTORS { K} *CHNC1+XSTORL [KI=XSTORE {RI*CNC2+CNC3})
PAF3UIKI={1.0/COEFAS) = {CUBLL*{XSTORSG {K}*CPBLIXSTORA4{K I*XSTOR4(K )*
2CPB2+CPB3I+CWC 1L *{ XSTORA I KI*CPCI+XSTORL {KI*XSTORS (K I*CPL2+CPL3))
PAFSU{KI=150 ‘
PAFAUIK $I=2, 0*PENCD2*{ABS{ULK) ) —PEULEIM)
ATITNIE K= {RSTORL (K 1) *PAFLULK)+RSTOR2 {Ky; 1 3% PAF2U{K ) +RSTIR3 (K, 1}
I*PAF UL KI+RSTORS{ K o1 ) #PAFS UIK) +PAFOULIKY ) %%2}3 /U
ATTINZEK)I={RSTORIA K 1) #*PAFTUIKI+RSTORZ (Ko 1 V¥ PAF2U{K) #RSTOR3{Ks 1)
I#PAFIUI KI+RSTORS{ K513 #PAFSUIK) +PAFSUIK) Y {RSTOR1{K; 21 PAFLU{K
21+RSTOR 2{ Ko 23 #¥PAFZUL K)+RSTORI{ Ko 21 *PAF3U{KI +RST ORSIK ¢ 2¥%PAFSUI{K])
4PAFOULK) ) /M
ATTINAIK)={{RSTORL{K,2) *PAF1UIKI+RSTORZ2 (Ko 2V ¥ PAF2U{K ) +RSTOR3 K, 2)*

fiti oy

8 e e
foo.
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r IPAFBUIKY+RSTORS{K 2 #PAFSU(K) + PAFGUIK Y }5%2)/W
ﬂ ATJINL{KI={PSTORLII K} *PAFLULK)+PSTOR2 {IK) #*PAFZUIK I +PSTORBEK ¥*
2PAF BUL KI+PSTORSIKY #PAFSUILK) + PAFOUIKI I X [RSTORLIK, 1 )X PAF LUK
3+RSTOR2{ K, 1) ¥PAF2U{K}+RSTOR3 { Ky 1) #PAF3U (K} +RSTORS{K, 1 §*PAFSUIK )
4+PAFGUIKIF /W S
ATIINZ2{ KI=IBSTORI{K) *PAFT U{K}+ PSTORZ{ KI*PAF2UI {K ) +PSTORIIK I*PAF3ULK
13+P STORSEKY *PAFSUL KI+PAFGUIKI I *{RSTORLIK 22 *PAFLUTK) +RSTORZ2{K,y 2
21#PAF2ULKI+RSTOR3E K21 ¥PAFBU{KI+RSTORS (K2} ¥ PAFSU (K} +PAFO6U{K))/H
AJIINTIKI={{PSTORLIK) #PAFIU{K) +PSTOR2 (K} ¥PAF2UIK I +PSTORZ(K )*PAF3U
2{K3+PSTORBI K} FPAFSU{ K} PAFOULK) ) #3213 /W
22 CONTINUE ‘
ATT{1;13=FNTGRL{IBRDIV+1, DELTA, AILIN1)
ATit¢ 1, 2)=FNTGRL{IORDIV+1l, DELTA, AIIINZ]}
AlT{2,13=A1F{1,2} '
AII{2,2)=FNTGRL{ICRDIV+1l, DELTA, AIIIN4}

\ AiS{1} =FNTGRL{IORDIV2l, DELTA, AIJINL)
jx ATg(2) =FNTGRL{IIGRDIV+1, DELTA, AIJINZ}
v Asd =FNTGRL{TIORDIV+1, DELTA, AJJIINT]

WRITE{ 656147 ATI{1,1)s ATZE1,23¢ AIT{2.2%¢ ALIJi1}y ALJ(2}, AJJ
614 FORMATI Q3,6 5X+E10.3131

- BETMV=ATI{ 1,0 #AT E{2,2) —ATY {1,2) %52
| PLPSI1=—EP®PENITL
s DL §12=—EP*PEN] T2

Yi1i=—1{ 1o0/DETHMYI #{{ATT142,23 )% IDLPSTL+ATJ{1 )44 -AT {1, 23 )5 (DLPSI2
1#AT3§2)%) ‘
VE2i={ 1 O/DETHMYI {{~ATTE{2, 1 13 ={DLPSIL+ATJLLFIS-LATE( L, 12 3 {DLPSI2%
IATSE 231}
IFEATI 1+17.6T.0:0% G0 70 7701
GO0 T4 7303
T701 IF{AITI{2:2}.GF.0.0} 60 70 7702
DETMYV=ATI{3,1}
t DLP S1i=-EPXPENITL
DLPSIZ2=0.0
¥Viti=—{1.0/DETMV] ={DLPSI1+AT J{1))
Vi2)1=0.0

S6



GO 7O 7702
7703 IF{ATI{2¢2}.6T.0., 0} GO TO 7704
- DETHMV=0.0
DLP S11=0.0
DLP S§12=0.0
V{13=0.0
Vi 24=0.0
60 TO 7702
7704 DETHV=ATI{2,2)
DLP SI1=0.0
DLP ST 2=—EP*PENI T2
V{1)=0.0
" V{ 2}=—{ 1. 0/DE THV) #{DLPSI2+AT J12)}
}\?702 CONTINUE
DETIS=ATI(L,1Y#ATE (2,2) —ATT (1,2} %%2
GOTYAI=AJJ—( 1o O/DETIS) #1 (AT J{1S#ATTA2 520 —ATJI2ISATE(2, 13 )5ATS{ 1)+
A TI{11*ATI{ 120 ¢ AT JI2E#ATT[1 (13 I #AT2))
WRITE{ 69361} DETMV. VI1}, V(2)
361 FORMATL $0%¢4{3%sE]0.31)
P IFCABS{ XSTOR2{ IBRDIV+131 . LT. XENDY) GO TQ 25
€D 10 29
25 1FLABS{ XSTOR3{ TORDIV+13).LT.XENDZ) 6O TG 27
G0 TO 29
27 IF{ABSIGOTVAI).LT.WANVAI} GO TO 28
29 CONTINUE
PO 23 K=1,1BRDAD
DEL TAU{ K)=PAF LUTK) #{ PSTORL { K} +RSTORL (Ko 1 3%V {1} +RSTORI{Ks 235V {25 )
13PAE 2Uf K #{ PSTOR2{ K} +RSTORZ (K1) #V{1) +RSTORZ{Ky 2)5V{2) ) +PAF3U (K}
24{P STOR3( K3 +RSTORS {Ko1 ) #V{ 1) +RSTORS (K02 } ¥V (2) } +PAFSY (K 3= {PSTORSIK )
3+RSTORS{ Ko 13 5#VE1) +RSTORGIK,2) %V {2} ) #PAFBUIKISIV {1V {2))
ULK 3=UL K)-DEL TAULK3 /U
23 CONTINUE -
60 .10 2&
28 RETURN
END
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FUNCTION FI(TIsToeHeKeUYOU, PEXLIMGPECXVAy

OPEXLMHPEXLML »
ACAL+CAZ,CABgLAZ3,CAL2 yCWAL yCHAZ o CUWAS yCUAL o CWAS CHAD, CUAT,CHWASB,
BCUAG,CUWB1.,.LUWB2:,CUWB3CUWBL;CUBS sCHBE ,CHBT cCWBBCWBS,CHBIO0CHBI Y,
CCHC LoCWE 24CUWC 3L HC L sCHES qCUHCE o CWCT o CWECB o CHE9, CHCIO0 CHCI1L,CMA L,
DCMA2,CMAS,CMBLl,CMB2sCMB3 pCMBL CMCL 4CME2 o CMC3,CMCLE-CNAT, CNAZ,
ECNASsCNALCNBI ;LNB2sCNB3 sCNCL sCNC2,CNCA,CPAL,CPAZ2,CPAZ,CPAGy
FCPB 1,UPB2,CPB3,CPL1,CPC2 ,LPC3Y

DIMENSION X{T)e U{500}
COEFAS=CAL+CAZE=X{ 4 %F2FVOUFCAISN {4 Y 54 2YOUH 23X T4 IRCALZ2+ X { &%k 3%

1CA23
: VAA=RI 29X 21 #*CHAL= XT3 P &X {31 2CWAZ+ X {1 I #X {2V% {CWA3+X {4 3* CW A4}
" 1+ DIRXE3YIEECWASHE XIS #CHAS I + X2 X I3V *CH AT X (21X (51 CHAB+X{ 3}
}\ 2eX{ 5I*LUWA9
# VBB=XL L3#*XIL}*{CUWB1+ X4} %:CUB2}+X {3 )X {3 ) *{CWB3+X {4 )I*CUBED

T#X{ 13X 23%CUB S+ XL 1) # X3 #{CHBO+ X {4 ) =X (4 D XCUBTI+X{2 )% X {33+ {CUBS
2FXULEIRCUBOY XL 21 #{ K14 X445 #CUBI0I+B{KI*CHBLL

i VCE=XI1¥FX{ 11 +{CUC 1= X{ &I #CUC2) + X {21 #X {2 ) % {CWCReX (41 CH T4 I+ XL 13*
LX{21%{CUHC S+ RI &3+ X4 #CUHCO) + A {1 3 X I3 ) #CUCT XL 21X I3 {CHCB+X{ 4)*

? 2CUC 9+ XIB3 4 X{4) *X (5} *CUWCL1 03 +U(K) +CUC11
: VOMA=X{ 432X &) $CMA L+ X1 &) F:56 ¥CMAZ+CMA3
VEMB=X{ &}3[MB 1+ XU 43%X{4y =LMP2+ X {47 X3 %CMB3+CMB4
VEML=R{ 435%CMC 1+ K492 X{4 ) #CM 2R {4 =63 =CMC3+CMCL
VONA=X{ 43 SCNAT+X{ &34 X84 ) #CNAZ+ X (&) =x3 *CNAS +CNAS
VENB=X{ 41 *CNB1+ X{ &) ¥ X{4)}*CNB2+CNB3
VONC=RIGI*CNCIeX{ &3 5X{&7 =CNC2+CNC3
VOPA=X{ 4} *CPAL& XK{ &4+ {4 =CPAZ - X141 +43 %CPA3+LPASL
r VEPB=X{ &} #C PRI+ X 4 = X{4) *CPB2+CPB3
VOOC=XT 4y *CPCLe X[ 4) :X{4Y%CPC2+CPL3
GO 7O {1,293949596?7’91
1 FI={31.0/COEFASY*{ VAA*VCMA+ VBRFZVCMB+VCCHVCMC)
RETURN-
2 Fi={1.0/COEFASY*{ VAAXVCNA+ YBB*VCNB+VCCEVCNC}
RETURN
3-Fl={1.0/COEFASH*{ VAAXVCPA+VBR*VLPB+YCCHVLPLS
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RETURN

F1=X{5)

RETURN

Fl=UIK}

RETURN

IFEXK{43.LT.PEXLMHY GO 70 7001
Fi=PEC XVA%{ X{ &)~PE XLMH ] *32
GQ-T0 7002

Fi1=0.0

CONTINUE

RETHRN

IFE AL 4} .GT.PEXLMLY GG TO 7003
FI=PECXVA#[ -X{ 43+ PEXLMLY ¥%2
GO ¥0 7004

Fi=0.0

7004 CONTIMNUE

RETURN
END

FUNCTION F2ILeTP P oSOMTC O JoUsYOUXSTORS Mg
OPEXLMRPEXLML
ACAICA2,CA3,LA23, CAlZﬂCWAl9CHA29CWA39CNA49CEQ5?CW&évCHA?vCHASv
BCHAQ:CWB1:CUB2,CUBIsCHBL sCUWB5 9 CHBGCWBT  CHBB o CWBY, CWB10, CWB11,
CCHC 1sCWE 25CWE 35CHCL9CUCS yCUCH 9 CUHCT sCHCB o CHCO s CWCI0TWC 11, CMAL,
DCMA2oCMA3,CMBY (CMB2 ¢CMB3 yCMBL s CMCY CMC2 ¢CMC3sCMC4, CNAT, CNAZy
CN&E:CN&QuCNBE¢CN329CNBBvCNﬂvach9CNC39CPA19CPA29CPA39£?&4v
FCPB1l.,CPB2,CPB3,LPC1:LPL2,CPL3,
1SO0MTC 1
250MTC 2, .
4XSTORLy XSTOR2, XSTOR3 ¢ XSTOR%, IORDIV, PEXLIM; PECXVA}
DIMENSION P{5}s UL{500) s XSTORL {500} ¢ XSTOR2{500), XSTOR3{5001),
LASTOR%E{ 500} » XSTORS5{500})
J3=10RDIV+2-J
VCMA=XSTOR&{ JJ) *XSTORS { 3J) *CMAL+XSTORS L JJ) 4k CMA2+CMA3
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VCMB=XSTOR&{ JJ) ¥CMBL1+ XSTOR4 { JJ) *XSTORG{ J ) *CMB2+XSTOR4L IS 154 3
1#CMB3+CMB 4
VEMC=XSTOR&A! JUYHSCMC I+ XSTORA{ JJ) ¥XSTORSG { JJ) #CMC2+XSTORGLII V5% 3

1#CHC3+CMC &
VCNA=XSTORL{ JIYI #CNAL+XSTORA{ JUY EUSTORSG{ JIIHCNAZHKSTORG IS II*%3

1#CNA3:CMA L :
VCNB=XSTOR&{ JJ}*CNBL+ XSTORG { JJY *XSTOR4( JJ)*CNB2+CNB3
VENC=XSTOR&{ JJT #CNCL+ XSTOR4 { JIY #XSTOR&E {JJ)*CNC2+CNC3

VCPA=XSTOR &L JJ) #C PAL+ XSTORA { JJ¥ #XSTORSG (JJ} *CPAZFXSTOREGLIS 1#%3

1#CPA3+CPAL
VCPB=XSTORA{ JI)FCPRL+ XSTORA { JUY XSTORA{JITHCPRZ+CPR3
VCPC=XSTORL{ JIy*C PCI+ XSTORL [ JJY *¥XSTORG{ JJIFLPC2+LPC3
COEFAS=CA T+CA2EXSTORS 1 JJb #%2 2Y QU+ CA3 (XS TORL{ JU I %4k YQUKE 2
1+XSTORALJIIHCAIZ2+ XSTORA L J Y * =3 2L A23
GO TO {1¢2¢39445) 4L
1 PAFIXI={i1.0/COEFASYRIVCMAF{XSTOR2{ JI} *{CWAS+XSTORE{JJIxLHAL)
I#ASTORSBL IS H CWASE XSTORG (IS #CHAG VA VINB* {2 . GEXSTORELIJI 33 1CHBL
C 2+#XSTOR4A{ JIV*CUB2) + XSTOR2 £ JJ) #CWBS+XSTORI (JJ V= (CHBHEXSTORLTII %
CAASTORSG: JIYHFCUBTYIF VEME {2 O+XSTORL{JIIH{CHCLISXSTOREG{JIVECHLZ)
G+XSTOR2{ 3JY HCUCS= XSTORS 1 J I #XSTORG (JIYCWCHE I +XSTORI{JIIHCHCT))
. PAFZX1I=11.0/COCFASI#{ VCNAR{XSTORZ{JIJY [ CYAZLXSTORG{JJ I=CHAL)
1+XSTOR3{ JJR{CHASH XSTORA{ JJIY 2CWAGT Y +VONB=I2, 0% XSTOR ML IS I+ {CUB]
2FEXSTORE] JA3¥CHB2 3+ XSTORZ {1 JJ #CUBS+NSTORZI{JJ 1= {CUBOLH+ASTOREL{JJ }*
BASTORAL JAINCUBTI Y E VENCH{2. O%XSTORL (JJ R {CUCLI+XSTORSG{JIIECHE2)
GEXSTORZ{JINVHLUCS+ XSTORA L I EXSTORA LI JIRCHCHIFXSTORB{JI IHCUCTY)
PAF3XI={ 1. O/COEFAST I VCPAX{XSTORZ{ JII *{CHASFXSTORLLII I+ CH ALY
1+XSTORI{ JIIFICHWASH+ XSTORG$JII *CWAG T YFVCPEF {2 0%STORY{JJ = {CHB1
2FASTORAT JAYECUB 23+ XSTOR2 1 JJ) #CHBE +XSTORB {J I I+ {CHBO XSTORS{J S I
BXSTORS{I JNIXCWB T I+ VECPL H{ 2. 0#XSTORL LI I {CWCLEXSTORG{JI IHCHLC2)
G+ YSTORZ2{IIIHICHCS+ XSTORG{ JJY ENSTORA {JJ) 2 CWCHAIFXSTORILII I%CUCTI )
F2==P1 13¥#PAFIX1-P{2}*PAF2X1~PI31%PAF3%1
RETURN : s "
2 PAF1X2={ 1. 0/COEFAS) #{VCMAF{2 . 0=XSTORZ{JIIHCHWALIXSTORE(I) ¥ {
ICHASH+RSTORLZL JIY FC WAL #XSTORZI T JJIRCWAT+XSTORS (I I :CHAB I +VEM B {
2RSTOR ML JI I CUBSEXSTORB{ JI) #{CUBB +XSTORSG { JI)HCHBS Y +XSTDOR&{S I 3=

B6
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3XSTORSL JII*CHB1O)+ VOMC *{2. 0*XSTOR2{JJ Y ¥ (CWCI+XSTORA{JJ IEXCHCE Y+
ASTOR1{ JIY#{CWE S+ XSTORL (JJ) #XSTORG {JJ ) *CHCH) +XSTOR3{JIJ % {CHWCE+
S5XSTOR4{ J31#CWC S )}

PAF2X2={1,0/COEFAS) #{VCNA*{2,0%XSTOR2 (JJI}*CWAL+XSTOR1ILJJ I+
ICWABFXSTORAT IS XC WAL+ XSTOR3 ( J ) *CWAT +XSTORS {JJ I+ CWAB I +VINB* {
2XSTORI{ JIVIXCUB S XSTORI{JJ) *[CUWBB+XSTORSA { JJ1:CHBY ) +XSTORSG {J 3 ¥*
IXSTORS{ JJV*CWB 103+ VCNC*{2., 0xXSTORZ2 (JJ)¥{CWC3+XSTOR4E{JIII*CUCEY+
LXSTOR ML JJ) *(CHC 5+ XSTORL { J) #XSTORG (JJV*CWCE ) +XSTOR3{JS 1+ {CHCB+
SASTORA{ JUYHCUHC 2)3)

PAF3X2=(1.0/CCEFASI¥{VCPA*{2 . 0+XSTORZ{IJIXCWAL+XSTORLIJI ¥ (
ICUWAS+XSTORSGE JJ7 #C WAL Y+ XSTORI { I *CHAT+XSTORS {JJI ¥+ CHAB ) +VCP B* (
ZXSTORM{ JJIHCUB S+ XSTORI L JJ) *{CUWBB+XSTORL4 { JJI*CUBI Y EXSTORG (30 I*
3XSTORS{IJIIHCUBLOY+ VCPCH{2. 0XSTOR2(JI I *{CWCI+XSTORG{III* LW LAY+
4XSTORI( JS I #{CUC 5+ XSTORL{ JJV ¥ XSTORG {JS)*¥CHCE6I +XSTOR3{JJ I+ (CHWCB+
S5ASTOR 4L JJY¥*CWC 9 }) '

"F2=—P{ 11¥*PAF1X2-P (2} *:PAFZ2X2-P{3 ) *PAF3X2
1-SOMTC 1¥XSTORZ2{ JJ) /71 X2 MAXa%2 )

RETURN

3 PAFIX3={1.0/COEFASY*{VCMA*{2.0%XSTORI[JJII*CWAZ+XSTORLLIY 3k LCWAS

1+XSTOR 41 JIF L WAL+ XSTOR2 { JJ) *CWAT +XSTORS (JJI*RCH AS ) +V CMB: (2..0%
2XSTORB{ JI¥#{CUB3+ XSTORS{ JJ) #CWB4 ) +XSTORL{JJI*{CHBEHASTOREL(JY i*
BIXSTORSG! JJI*CUB T+ XSTOR2{ 541 *{CHBB+XSTOR4{JJI*CW BT ) ) +VCMCH{
&XSTOR 1{ JJ¥#CHE 7T+ XSTOR2 { JJ) *{CHCB+XSTORSG ¢ JJ)FCUW L) #XSTORG (I I I*
SXSTORS{ 4J¥=CUHCLION)
PAF2X3={1,0/COEFASI*{ VCNA*{2.0%XSTOR3 {JJI*CWA2+XSTORL{JJ }* {CHAD
1+ASTORA{ JJ) *CHAGY + XSTOR2{ JJ) #CWAT+XSTBRS { JJ)*CW A9 ) +VINB: {2,0%
2XSTOR 3 JIYH{CUWB3+ XSTORA{ JI) *CUB& }+XSTORL{JJI*{CHBO+XSTORE (I ¥*
3XSTORAL JA)FCUBTI+ XSTOR2{J3) #{CWBB+XSTOR&{JJI*CWBG) ) +VINC* {
4XSTOR L{ J1YFCUC T+ XSTOR2EJJYI #{CUCBFNSTORG ( JJ)*CWEI Y +XSTORL{JIJ I*
SASTORS{ J31*CWC10) ) '

PAF3X3={ 1. 0/COEFAS}H{ VCPAH{(2. 0 *XSTOR3 {JJE*=CHAZERASTORIL LIS ¥ (CWAS
I+XSTORA{ JJI=CWABLY + XSTORZ{ JIT *CWAT +XSTORSLIII*CHAG IV CPB* {2,0%
ZXSTOR 3] JJY*{CUHB3+XSTORSE JS) #CUBL I +XSTBRL{ I+ (CWBHEXSTORSG I I*
3XSTOR&GL JUIHCUB T+ XSTOR2{JJ) *{CWBB+XSTOR4G{JJI*CH B2 II+VCPLH(
LRSTORL{ JJIHCHC T+ XSTORZ {J N F{CUCB+XSTORSG ( JJI=CHCO 1 +XSTORSG (S I )*

00T
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5XSTOR 5{ J4) %CHC 10} 3
F2=-P{ L1*PAFLIX3A-PI2} *PAFZN3—PI{3}*PAF3X3
1- SOMTC 1#XSTOR3 JJ) 71 X3 MAX#%2 )
RETURN
& TF{ XSTORZ{ JJ)<6E.PEXLMH) 60 TO 31
TF{ XSTOR4{ J3Yo LEo PEXLML) GO TO 32
30 PENCO1=0.0
G0 7033
31 PENCO1=PEC XVA
60 TO {7501, 33, 7501) 3M
7501 PENCO1=0.0
" &0 TO 33
" 32 PENCO1=—PECKVA
3; GO TO {7502, 7502, 33) 3M
7502 PENCDL=0.0 |
33 DVCMA=2.0%XSTORG JJ) CMAL+& . 0%k STORG { JJ} 53X CHAZ
DVCMB=C MB 1# 2. 0% XSTORG{ JJ} #C MB2+3 s0#XS TORS { JJ1#XST OR& {JJ )£ CMB3
DVC MC=E MC 1+ 20 0%XS TOR4{ JJ} #C MC2+3 . 0%XS TORE { JJ}*XST OR% {44 }CHMC 3
DVCNA=CNA 1+ 2. 0#XS TOR4 { JJ) *CNAZ+3 , 0#XS TORG { JJ}#XST OR4{4J Y CNA3
o DVCNB=CNB 1+2. 0¥XSTOR4{ JJ} SCNB2 -
; DVCNC=C NC 14+ 2. 0%XS TOR&{ 443 *CNC2
DVCPA=C PA 142, 0% XS TORL { JJ) #CPA2 +3 . 0%XS TORS { JJ 5% 2% CPA3
DVCPB=C PB 1+ 2. O¥XSTORE{ 447 *CPB2
DVCPEC=CPC 1+ 2, 0% XS TOR% 331 %C PC2
VAA=XSTOR2E J4F #XSTOR2 { JAF*CWAL +XSTOR3 {JJI#XSTOR3Z{JJ 1:CHAZ+XSTORL
1434 1%XSTOR2E I} H(E WAB+ XSTORE 1 343 #CWA% ) +XSTOR1{JJ IRXSTOR3{JJ )
| 2EECHASHXSTORAL $J) CHAS Y+ XSTORZ LI J} #XSTOR3 { JJI*CHATHXSTOR2{J )
r BEXSTORST JJ} 50 WA B+ XSTOR3 § 4 J1 XS TORS { JJ) #CHAD
: VBB=XSTORL JJ) #XSTORE { J33 *{ CHBLEXSTORS € JJ} #CHB2 ) +XSTOR3{JJ }
t 1%XSTOR 3{ 441 #{ CUB3+ XSTOR%{ JJ3 #CWB& } +XSTORL (JJ}#XSTOR2 (I3 )% CHBS
a 2 +XSTOR 1{.043 *XSTORB £ 333 %L CHBE+XSTORS (JJ) #XSTORS { JJ 1%CHB7 ) +XSTOR 2
‘ 3(J4 1#XSTORST J3) #{CWBBEXSTORE {393 #CWED ) #XSTOR2(J )% (XSTORA(4J %
4XSTORSI 331 #CUB10)+ UL JJ) #CWB11
VCC=XSTOR 1{ JJ3 %XSTORL { J4) #{ CHC1+XSTOR% { JJI£CHC2) +XSTOR2(JJ )
1%XSTOR 20 J 4} #{C WC 3+ XSTORA L JJ) %#C HC& ) +XS TORL { JJ I 5XSTORZ {JJ I

=
o
]_l




RSP S 0O Y - s n e e e e g n et s AR Lt ST

2ICHES+XSTOR AL JI} #XSTORSG (JJ) *CUCEYEXSTORLI { JII=XSTORA{II CWCT
A+XSTOR2{ IS} EXSTORIEILYI H{CHWCB+XSTOREG (JJI) #CHCIO ) +XSTORI{IIIF{XSTOR 4L
SO IIVEUSTORSTI I HCWCL O3 UL JII=CHCL]

PAFIXA={1.0/COEBFAS)*{ VAASDVCMA2VEMARIXNSTORI{JJI=NSTORZ2{JI I:CHAL
T+XSTORI{ JJ) EXSTORI{ JJ) #CWAG I +VBB*DVEMBHVOMBH {XSTOR14{J3J I=XSTOR1{JJ
2ECUWB 2+ NSTORSL SN = XSTOR3{ JI) *CUWBG+XSTORL {1 JJ¥=XSTOR3(JJ 1220
3ERSTORA{ JIYFCWRB T+ XSTOR2{ 3J) =XSTORS{JJ ) *CUBI+XSTOR2{JIJ I¥XSTORSL{SY)
£4CWB 10Y+VCCHDVYCMC+ VO MC#{ XSTORL (JJ) RXSTORL{J IV RCUC2+XSTOR2{4I )}
SRUSTOR2{ JI) *C WC A+ XSTORL{ JJF #XSTORZ (I 142, 0EXSTORETII 1#CWLE
EEXSTORZ2{ IIY *XSTNRI(II =CWCOEXSTORI{JIIEXSTORS (U4 I¥=CWC10)Y )

T+ VAAFYC MA+ VBB 2 VO MR+ YO CHYOMCY #{—1 .0/ {COEFAS*COEFAS ) ¥* {4, 0%

BXSTOR AL JJ Y %2 VOURCAZ+3 . OFXSTORG{ JJI=XSTORL (I I IXCAZ2342.0
ORKSTORGL SJ) #YNLHCAZ+ T AL2Y

PAFZ2X4={1.0/COEFAST*{ VAA*DVONA+VCONAR{XSTORL{JIJI®XSTORZ{II )= CWAL
1+XSTOR L J3 Y BXSTOR3 L JJY 2CWAAR) + VBBXDVONB+VONBRIXSTORL{J I 1 XSTORIL{II )
2ECHB 2+ XSTOR3II I I =XSTOR3E JJ) #CUWBG+XSTORL{JII*XSTORI{II 1*2.0
AFKUSTORLET JIIFCUB T+ XSTOR2{ J I #XSTORZ(JIVFCWBRO+XSTOR2LIJ IR XSTORS{JI )
SHCUWB 10+ VOCSDVONCH VENCH{XSTORL {J I KSTORL{JIIXCHCZ2+XSTORZ(IN)
H5RXSTOR 2{ JIFRCWC 44+ XSTORL LI I #XSTORZ{IS) %2, 06XSTORG{JSI 3 CW CO
HEEXASTOR2{ JI) RUSTORIM IS #CHWCO+XSTORILIIFRNSTORS{IIPRCHWC10}) )
T+{VAAFVONA£ VBB HVONB+VYCCEVONCY # (1. 0/ {COEFASHCDEFAS ) ¥ { 4,.0%
S8XSTORGL Y =563 YOURVOUSCAS+3, 0FXSTORG{ JJIEXSTORG4IJIIRCAZI+2.0
GEXSTOR 4 JJ) #YOUSCA2+CAL2) '
PAF3X&={1.0/COEFASIH{VAAXDVCPA+VCPARINSTORI{JIIZASTOR2{J.: VR LHAL
1+XSTORI{ A3} EXSTORI{ JIY =CHAGY + VBBHDVCPBAVLPBX {XSTORL{JIJ¥1# XSTORLILIJI}
2ECHB 2 USTORSLAIY HXSTORS{ JJ) *CWBG+XSTORL{JJIIEXSTORI(II 1% 2.0
ARUSTOREGL JIFXCUHB T+ ASTOR2{ JIY #=XSTORI(JI Y XCHBOFXSTORZ2{I I I*XSTORS{I U}
GECHB IO+ VECH*DVCPC+VCPCH{ XSTORL{JI) =XSTORL{JII*CHWC2+XSTORZ2TJI }
SEZSTOR2{ JJ1FCUCEHFXSTORI{ JJY =XSTORZ{II I 42 0=XSTORG (S IRCW L
6+XSTOR 21 JJIT HHXSTOR3 { JI) FCHCI+XSTORS LSSV #XSTORS {JJ % CUCLG) )

T+ VAARVCPA+ VBB RVCPB+VECRVYCPLY #{—1.0/{ COEFAS*COEFAS ) }%* {4.,0%

SNSTOR 41 JJ Y =53 5Y0UAYDURCAZIT3 . OFXSTORG { JJI#XSTORG {JI VR CAZ34+2,.0
SR XSTOR &L JI Y HYDURCAZ+CAL2)

IF{PENCO1I.6T.0,0) GO TO 9430

IF{PENCD1.L7.0.0] GO TO 9431

01



9430 CONTINUE

EXTPEV=XSTOR&{ JJ)—-PEXLMH
€GB 70 9432

9431 CONTINUE

EXTPEV==XSTOR&{ JJ) +PEXLML

9432 CONTINUE

. ' A
B e |

F2==P{ 1)%PAFLX4—P {2} *PAF2X4—-P {37 ¥ PAFIX4—2 04 PENCOI* EXTPEV-SOMT CO*

IXSTORAT JJY /UPE XLY M2
RETURN
5 PAF1XS={1.0/COEFAS) *{VCMAX[XSTORZ2{JJ}) *CWAB+XSTORZ{JFI*CHA9 } +

LVCMB={ XSTOR2{JJI #XSTORSG{ JIT*CUBLO} +VCHCHIXSTORI(IJ I=XSTORL LIS )
2%CWHC 103 '

PAF2X5={1.0/COEFASY*{VCNAX{XSTORZ{JIVI #¥CHAB+XSTORI{JJ I*CH AT} &
LYCNB*{ XSTOR2{ JJ) #XSTORE{ JJIF*CWBLOI+VCONCHIXSTORI{II I=XSTORL(IJI )
2%CWC 103}

PAF3X5={ 1.0/COEFAS) *{VCPAX{XSTORZ {1 JJ) *CWAB+XSTOGRI{JJ ixCH AT }+
LVCPBH{ XSTOR2{ JJ) *XSTORS{ J3) *CWBLO ) +VCPCH{XSTORI {1 J4J}*XSTOR&1IJ)
2%CUC 103}

F2==P{LI¥PAFIXS-P(2) *PAFZX5-P{3} *PAF3X5-P{4}
1-SOMTC 2 XSTORST JJ) F{X5MAX®%2)

RETURN

END
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