FR-5768 31 JULY 1973

PROPERTIES OF MATERIALS IN HIGH PRESSURE HYDROGEN AT CRYOGENIC, ROOM, AND ELEVATED TEMPERATURES

FINAL REPORT

[4

Contract NAS8-26191

Prepared for: George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

NASA-CR-124394)	PROPERTIES OF '	MALENIALS	N/3-31	87
IN HIGH PRESSURE	HYDROGEN AT CEN	CCGENIC,		
ROOM, AND ELEVATI	ED TEMPERATURES	Final		
keport, 29 Jun. '	1970 (Pratt and	Whitney	Unc⊥as	;
lineraft) 120 m	BC 24 53	CSCI 20K	13732 15432	

FR 5768 31 JULY 1973

PROPERTIES OF MATERIALS IN HIGH PRESSURE HYDROGEN AT CRYOGENIC, ROOM, AND ELEVATED TEMPERATURES

FINAL REPORT

Contract NAS8-26191

Prepared for: George C. Marshall Space Flight Center National Aeronautics and Space Administration Marshall Space Flight Center, Alabama 35812

Prepared by:

J. A. Harris, Jr. Responsible Engineer

M C Van Wanderhom M. C. Van Wanderham

Program Manager

FLORIDA RESEARCH AND DE' 'ELOPMENT CENTER BOX 2691, WEST PALM BEACH. FLORIDA 33402

,

PRECEDING PAGE BLANK NOT FILMED Pratt & Whitney Aircraft FR-5768

ł

CONTENTS

SECTION	1	PAGE
	ILLUSTRATIONS	iv x
1	INTRODUCTION	1-1
II	CONCLUSIONS	11-1
	 A. General B. Nickel-Base Alloys C. Iron-Base Alloys D. Titanium-Base Alloys E. Cobalt-Base Alloy F. Environments and Pressure G. Discussion 	II-1 II-1 II-4 II-5 II-5 II-5 II-6
III	MATERIALS AND SPECIMENS	III-1
	 A. Test Material B. Test Gases and Materials C. Test Specimens 	III-1 III-5 III-6
IV	HIGH-CYCLE FATIGUE	IV-1
	 A. General B. Conclusions and Discussion C. Test Procedure 	IV-1 IV-1 IV-3
V	LOW-CYCLE FATIGUE	V-1
	 A. Introduction B. Conclusions and Discussion C. Test Procedures 	V-1 V-1 V-22
VI	FRACTURE MECHANICS TESTING	VI-1
	 A. Introduction. B. Conclusions and Discussion C. Test Procedure 	VI-1 VI-1 VI-2
VII	CREEP-RUPTURE	VII-1
	 A. Introduction. B. Results and Conclusions C. Test Procedure 	VII- 1 VII-1 VII-4
VIII	TENSILE PROPERTIES	VIII-1
	 A. Introduction. B. Results and Conclusions C. Test Procedure 	VIII-1 VIII-1 VIII-14

iii

.

ILLUSTRATIONS

nan

FIGURE		PAGE
III-1	Specimen Blank Preparation Prior to Welding	III-5
III-2	Typical Test Specimens Used to Determine Effect of High Pressure Gaseous Hydrogen Environments on Mechanical Properties of Materials	III-8
III-3	Constant Strain Low-Cycle Fatigue Specimen	I(I-9
III-4	Smooth Axial High-Cycle Fatigue Specimen	III-10
III-5	Compact Tensile Fracture Toughness Specimen (ASTM)	III-11
III-6	Center Slot (Notch) Fracture Mechanics Specimen	III-12
III-7	Flat End Creep-Rupture Specimen	III-13
III-8	Notch Tensile Specimen	III-14
111-9	Smooth Tensile Specimen	III-15
IV-1	High-Cycle Fatigue Life of Inconel 718, 1227°K (1750°F) Solution Plus Age Heat Treatment at 300°K (80°F) and 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	IV-2
IV-2	High-Cycle Fatigue Life of Inconel 718, 1313°K (1900°F) Solution Plus Age Heat Treatment at 300°K (80°F) and 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	IV-2
IV-3	High-Cycle Fatigue Life of IN-100 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	IV-4
IV-4	Macrograph of IN-100 HCF Test Specimen Showing Excessive Micro Shrinkage at Fracture Face	IV-4
IV-5	High-Cycle Fatigue Life of MAR M-200 DS at 951°K (1250°F) and 34.5-MN/m ² (5000-psig) Helium and Hydrogen Gas at 1144°K (1600°F) and 3.45-MN/m ² (500-psig) Hydrogen and Dissociated Hydrazine (Ammonia) Gas	IV-5
IV-6	Typical MAR M-200 DS Cross Section Adjacent to Fracture Face. Specimen Tested in Helium	IV-5
IV-7	High-Cycle Fatigue Life of AISI 347 at 300° K (80° F) and 34.5 MN/m^2 (5000 psig) Pressure	IV-6
IV-8	High-Cycle Fatigue Life of Titanium A-110 at 300°K (80°F) and 34.5 MN/m ² (5000 psig) Pressure	IV-6
IV-9	High-Cycle Fatigue Life of Haynes 188 at 951°K (1250°F) and 3.45-MN/m ² (500-psig) Pressure Dissociated Hydrazine (Ammonia)	IV-7

ILLUSTRATIONS (Continued)

4

I

Ī

E

E

E

L.

I

FIGURE		PAGE
IV-10	High Pressure Gaseous Environment High-Cycle Fatigue Testing Equipment	IV-12
V-1	Typical Load-Strain Hysteresis Curve Obtained During a Specimen Low-Cycle Fatigue Test	V-1
V-2	Low-Cycle Fatigue Life of Inconel 718 With 1227°K (1750°F) Solution Plus Age Heat Treatment at 300°K (80°F) and 34.5 MN/m ² (5000 psig) Pressure	V-3
V-3	Low-Cycle Fatigue Life of Inconel 718 With 1227° K (1750°F) Solution Plus Age Heat Treatment at 951° K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-3
V-4	Effect of Gaseous Hydrogen and Strain Range on Low-Cycle Fatigue Life of Inconel 718 With 1227°K (1750°F) Solution Plus Age Heat Treatment at 34.5 MN/m ² (5000 psig) Pressure	V-4
V-5	Low-Cycle Fatigue Life of Inconel 718 With 1313°K (1900°F) Solution Plus Age Heat Treatment at 111°K (-260°F) and 34.5 MN/m ² (5000 psig) Pressure	V-4
V-6	Low-Cycle Fatigue Life of Inconel 718 With 1313°K (1900°F) Solution Plus Age Heat Treatment at 300°K (80°F) and 34.5 MN/m ² (5000 psig) Pressurc	V-5
V-7	Low-Cycle Fatigue Life of Inconel 718 With 1313° K (1900°F) Solution Plus Age Heat Treatment at 951° K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-5
V-8	Effect of Gaseous Hydrogen and Strain Range on Low-Cycle Fatigue Life of Inconel 718 With 1313°K (1900°F) Solution Plus Age Heat Treatment at 34.5 MN/m ² (5000 psig) Pressure	V-6
V-9	Effect of Gaseous Hydrogen and Temperature on Low-Cycle Fatigue Life of Inconel 718 With 1313°K (1900°F) Solution Plus Age Heat Treatment at 34.5 MN/m ² (5000 psig) Pressure	V-6
V-10	Low-Cycle Fatigue Life of Incond 625 at 300°K (80°F) and 34.5 MN/m^2 (5000 psig) Pressure	V-7
V-11	Effect of Gaseous Hydrogen and Strain Range on Low-Cycle Fatigue Life of Inconel 625 at 34.5 MN/m ² (5000 psig) Pressure	V-7
V-12	Low-Cycle Fatigue Life of Hastelloy X at 300° K (80° F) and 34.5 MN/m^2 (5000 psig) Pressure	V-8
V -1 3	Effect of Gaseous Hydrogen and Strain Range on Low-Cycle Fatigue Life of Hastelloy X at 34.5 MN/m ² (5000 psig) Pressure	V-8

FR-5768

ILLUSTRATIONS (Continued)

į

FIGURE		PAGE
V-14	Low-Cycle Fatigue Life of WASPALOY [®] at 951° K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-9
V-15	Low-Cycle Fatigue Life of IN-100 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-9
V-16	Low-Cycle Fatigue Life of MAR M-200 DS at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-10
V-17	Low-Cycle Fatigue Life of Titanium 6-4 a ⁺ 300°K (80°F) and 34.5 MN/m ² (5000 psig) Presse	V-11
V-18	Low-Cycle Fatigue Life of Titanium 6-4 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	V-11
V-19	Low-Cycle Fatigue Life of Titanium A-110 at 300° K (80°F) and 34.5 MN/m ² (5000 psig) Pressure	V-12
V-20	Low-Cycle Fatigue Life of Titanium A-110 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	V-12
V-21	Low-Cycle Fatigue Life of Haynes 188 at 951° K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V-13
V-22	Low-Cycle Fatigue Life of A-286 at 300° K (80° F) and 34.5 MN/m^2 (5000 psig) Pressure	V -1 3
V-23	Low-Cycle Fatigue Life of A-286 at 951° K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	V -1 4
V-24	Low-Cycle Fatigue Life of AISI 347 at 300°K (80° F) and 34.5 MN/m ² (5000 psig) Pressure	V-14
V-25	High Pressure Gaseous Environment, Low-Cycle Fatigue Test Vessel	V-24
VI-1	Cyclic Flaw Growth (Cyclic Stress Intensity) Data for WASPALOY [®]	VI-3
VI-2	Sustained-Load Flaw Growth Data for WASPALOY 🕏	V I-3
VI-3	Fracture Appearances	VI-5
VI-4	High Pressure Gaseous Environment Fracture Mechanics T · Vessel Installed on Tensile Machine in est Cell	VI-6
VI-5	High Pressure Gaseous Environment Fracture Mechanics Test Vessel With Outer Chamber Removed and Fracture Toughness Specimen With COD Gage Attached	VI-6
VI-6	Actual Load-Displacement Record for a Fracture Toughness Test Conducted in a High Pressure Gaseous Environment (Titanium 6-4, 34.5-MN/m ² (5000-psig) Hydrogen at 300°K (80°F))	VI-7

vi

FR-5768

ALC: N

ILLUSTRATIONS (Continued)

FIGURE		PAGE
VII-1	Stress-Rupture of Inconel 718, 1227° K (1750°F) Solution at 951°K (1250°F), and 34.5 MN/m ² (5000 psig) Pressure	VII-10
VII-2	Stress-Rupture of Inconel 718, 1313° K (1900°F) Solution at 951°K (1250°F), and 34.5 MN/m ² (5000 psig) Pressure	VII-10
VII-3	Stress-Rupture of Inconel 625 at 951°K (1250° F) and 34.5 MN/m ² (5000 psig) Pressure	VII-11
VII-4	Stress-Rupture of WASPALOY ^(R) at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-11
VII-5	Stress-Rupture of Astrolcy at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure; Heat LKKC	VII-12
VII-6	Stress-Rupture of Astroloy in Dissociated Hydrazine at 951°K (1250°F) and 1144°K (1600°F) at 3.45 MN/m ² (500 psig) Pressure; Heat BYQO	VII-1 2
VII-7	Stress-Rupture of IN-100 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-13
VII-8	Stress-Rupture of MAR M-200 DS at 951°K (1250°F), and 34.5 MN/m ² (5000 psig) Pressure; Heat P-9108	VII-13
VII-9	Stress-Rupture of MAR M-200 DS at 1144°K (1600°F) and 3.45 MN/m ² (500 psig) Pressure; Heat P-9199	VII-14
VII-10	Stress-Rupture of A-286 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure; Heat BZCU	VII-14
VII-11	Stress-Rupture of A-286 at 951°K (1250°F) and 3.45 or 34.5 MN/m ² (500 or 5000 psig) Pressure; Heat BXOY	VII-15
VII-12	Stress-Rupture of AISI 347 at 951°K (1250°F) and 34.5 MN/m^2 (5000 psig)	VII-15
VII-13	Stress-Rupture of Titanium 6-4 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-16
VII-14	Stress-Rupture of Titanium A-110 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-16
VII-15	Stress-Rupture of Haynes 188 at 951°K (1250°F) and 34.5 MN/m^2 (5000 psig) Pressure; Heat YFYR	VII-17
VII-16	Stress-Rupture of Haynes 188 at 951 and 1144°K (1250 and 1600°F) at 3.45 MN/m ² (500 psig) Pressure; Heat YGDM	VII-17

FR-5768

ILLUSTRATIONS (Continued)

FIGURE		PAGE
VII-17	Creep/Stress-Rupture of Inconel 718, 1227°K (1750°F) Solution Plus Age Heat Treat at 951°K (1250°F), and 34.5 MN/m ² (5000 psig) Pressure	VII-1 8
VП-18	Creep/Stress-Rupture of Inconel 625 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-1 8
VII-19	Creep/Stress-Rupture of WASPALOY [®] at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-19
VII-20	Creep/Stress-Rupture of Astroloy at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure; Heat LKKC	VII-19
V ∏- 21	Creep/Stress-Rupture of Astroloy at 951 and 1144°K (1250 and 1600°F) and 3.45 MN/m ² (500 psig) Pressure; Heat BYQO	VII-20
VП- 22	Creep/Stress-Rupture of MAR M-200 DS at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure; Heat P-9108	VII-20
VII-23	Creep/Stress-Rupture of MAR M-200 DS at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure: Heat P-9108	VII-21
VII-24	Creep/Stress-Rupture of MAR M-200 DS at 1144°K (1600°F) and 3.45 MN/m ² (500 psig) Pressure; Heat P-9199	VII-21
VII-25	Creep/Stress-Rupture of A-286 at 951°K (1250°F) and ±1.5 MN/m ² (5000 psig) Pressure; Heat BZCU	VII-22
VII-26	Creep/Stress-Rupture of A-286 at 951°K (1250°F) and 3.45 MN/m ² (500 psig) Pressure; Heat BXOY	V 11- 22
VII-27	Creep/Stress-Rupture of A-286 at 951°K (1250°F) and 3.45 MN/m ² (500 psig) Pressure; Heat BXOY	VII-23
VII-28	Creep/Stress-Rupture of AISI 347 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-23
VII-29	Creep/Stress-Rupture of Titanium 6-4 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	VII-24
VII-30	Creep/Stress-Rupture of Titanium A-110 at 366°K (200°F) and 34.5 MN/m ² (5000 psig) Pressure	V ∏- 24
VII-31	Creep/Stress-Rupture of Haynes 188 at 951°K (1250°F) and 34.5 MN/m ² (5000 psig) Pressure; Heat YFYR	VII-25
VII-3 2	Creep/Stress-Rupture of Haynes 188 at 951°K (1250°F) and 3.45 MN/m ² (500 psig) Pressure; Heat YGDM	VII-25

Section Section

ILLUSTRATIONS (Continued)

4.1

£

 $\dot{\gamma}$

ί.

A DESCRIPTION OF THE PARTY OF T

I

FIGURE		PAGE
VII-33	Creep/Stress-Rupture of Haynes 188 at 1144°K (1600°F) and 3.45 MN/m ² (500 psig) Pressure; Heat YGDM	VII-26
VII-34	Creep/Stress-Rupture of Haynes 188 at 1144°K (1600°F) and 3.45 MN/m ² (500 psig) Pressure; Heat YGDM	VII-26
VII - 35	Creep-Rupture Pressure Vessel With Chamber Wall Removed. Specimen, Extensometer, Universal Pin Joints, and Half of Oven in Place	VII-27
VII-36	Creep-Rupture Pressure Vessel Complete Assembly	VII-27
VIII-1	Effect of Temperature and Environment Upon Tensile Strength of AISI 347 at 34.5 MN/m ² (5000 psig) Pressure	VIII-4
VIII-2	Effect of Temperature and Environment Upon Notch ($K_T = 8.0$) Strength of Haynes 188 at 3.45 MN/ m ² (500 psig) Pressure	VIII-4
VIII-3	Effect of Temperature and Environment Upon Smooth Tensile Strength of Astroloy at 3.45 MN/m ² (500 psig) Pressure	VIII-5
VIII-4	Effect of Temperature and Environment Upon Notch (K _T = 8.0) Strength of Astroloy at 3.45 MN/m ² (500 psig) Pressure	VIII-6
VI∏ - 5	Effect of Temperaturc and Environm <i>e</i> nt Upon Notch (K _T = 8.0) Strength of Astroloy at 34.5 MN/m ² (5000 psig) Pressure	VIII-6
VIII-6	Effect of Temperature and Pressure Upon Environmental Degradation of Astroloy Notch (KT = 8.0) Tensile Strength	VIII-7
VIII-7	Tensile Machine and Test Environment Controls and Data Acquisition Equipment	VIII-12
VIII-8	Various Views of Test Vessel	VIII-13
VIII-9	Test Vessel With Outer Chamber Removed, Showing Specimen, Extensometer, and One-Half of Furnace in Place	VIII-14

TABLES

TABLE		PAGE
I-1	Experimental Program Listing Type of Tests and Test Conditions Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	I-3
≟−2	Experimental Program for the Period of June 1970 to June 1971, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted	I-5
I - 3	Experimental Program for the Period of June 1971 to June 1972, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted	I-7
I-4	Experimental Program for the Period of June 1972 to July 1973, Under Contract NAS8-26191, Listing Type Condition, and Number of Tests Conducted	1-8
II-1	Degree of Environmental Degradation of Various Alloys	II-2
III-1	Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	III- 2
III-2	Chemical Composition of Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	III-4
III - 3	Specimens Used to Determine the Susceptibility of Various Alloys to Environmental Degradation	III- 7
IV-1	High-Cycle Fatigue Properties of Materials in High Pressure Gaseous Environme	IV- 8
V-1	Low-Cycle Fatigue Properties in 34.5 MN/m ² (5000 psig) Pressure Gaseous Environment	V-15
VI -1	Fracture Toughness of Materials in 34.5-MN/m ² (5000-psig) Gaseous Environment at 300°K (80°F)	VI-4
VII-1	Degradation Based on Stress Required for a Given Stress-Rupture Life	VII-2
VII-2	Degradation Based on Time Required for a Given	VII-6
VII-3	Creep-Rupture Properties of Materials in Gaseous Environment	VII-7
VIII-1	Degradation of Tensile Properties of Materials in Gaseous Hydrogen and Hydrogen-Water Vapor Environments	VIII-2

X

TABLES (Continued)

14.14

M. Cat

]

Ĩ

I

in de la

ŀ

. .

SECTION I

3

SECTION I INTRODUCTION

This report is submitted in accordance with the requirements of Contract NAS8-26191, "Influence of Elevated Temperature on Metals in Gaseous Hydrogen Environments," and represents the final report covering work performed under this contract for the period 29 June 1970 to 31 July 1973. Experimental efforts in this program have consisted of mechanical property tests of seven nickel-, two iron-, two titanium-, and one cobalt-base alloys in gaseous environments at temperatures from 111 to 1144°K (-260 to 1600°F) and pressures from 3.45 to 34.5 MN/m² (500 to 5000 psig). The objective of this program was to obtain the mechanical properties of specific materials in a pure or partial hydrogen environment at different temperatures and compare with results of tests made in helium at the same conditions. The specific environments included helium, hydrogen, hydrogen and water vapor, and dissociated hydrazine (obtained by dissociating anhydrous ammonia).

The effort under this contract extended over a 3-year period and included 594 various tests. The overall test program is outlined in table I-1. The number of tests and test conditions for each year's effort are specified in table I-2 through I-4. The primary goal of these tests was to document, rather than define, the hydrogen phenomenon and provide data of use in designing structures exposed to pressurized gaseous hydrogen environments.

All testing was conducted on solid specimens exposed to external gaseous pressure. Specific mechanical properties determined and the testing methods used are summarized below:

A MARY & MARY

NO-1

- 1. High-Cycle Fatigue High-cycle fatigue life was established by load (stress) controlled tension-tension testing using smooth specimens and servo-actuated, closed-loop machine.
- 2. Low-Cycle Fatigue Low-cycle fatigue life was established by constant total strain testing using smooth specimens and closed-loop testing machine.
- 3. Fracture Mechanics Fracture toughness, threshold stress intensity, and cyclic stress intensity were determined using center-notched, fatigue-precracked, plate specimens or single-edged, notched, fatigue-precracked, compact tensile specimens.
- 4. Creep-Rupture Creep rate and time to failure were determined using smooth specimens and a standard creep-rupture machine equipped with a recording extensometer.
- 5. Tensile Smooth and notched tensile tests were conducted on solid specimens using ASTM tensile testing techniques.

FR-5768

This report is arranged in sections that cover the program conclusions, materials tested, and results and conclusions of the individual property tests. It includes the information covered in the two annual reports, $FR-4566^{(1)}$ and $FR-5129^{(2)}$, previously issued under the contract.

The International System of Units is used as the primary system of units for reporting specimen and test parameters and results. Customary units are included in parenthesis following the SI units, or in separate columns in data tables. The customary (English) system of units was used for the principal measurements and calculations and results converted to SI units for reporting purposes.

This program was conducted using the Program Manager-Project Group System by the Pratt & Whitney Aircraft, Florida Research and Development Center, Materials Development Laboratory, under the cognizance of Mr. W. B. McPherson, Materials Division, Astronautics Laboratory, Marshall Space Flight Center.

Acknowledgement is given to the following personnel of the Project Group:

Mr. J. L. Bearden	- High-Cycle Fatigue Testing
Mr. R. B. Bogard	- Low-Cycle Fatigue Testing
Mr. J. Doyle	- Tensile Testing
Mrs. A. F. Kirkpatrick	- Proposal and Report Efforts
Mr. T. M. Pruitt	- Test Support, Rocket Test Facility
Mr. J. F. Schratt	- Creep-Eupture Testing and Report Efforts
Mrs. C. B. Stevens	- Metallurgical Investigation
Mr. D. J. Stoddard	- Cost and Planning Efforts
Mr. B. H. Walker	- Fracture Mechanics Testing
Miss M. Zaccagnino	- Proposal and Report Efforts

- (1) Properties of Materials in High Pressure Hydrogen at Cryogenic, Room, and Elevated Temperatures, "Annual Report, Contract NAS8-26191, FR-4506, dated 30 June 1971.
- (2) Properties of Materials in High Pressure Hydrogen at Room and Elevated Temperatures, "Annual Report, Contract NAS8-26191, FR-5129, dated 30 June 1972.

	Notched Tensi'e (NT)	****	×× ×	××× >	<×		хихих	XXX	XXXX	хххх		××
	Smooth Tensile (ST)	~×××	×× ×	××× >	< ×	××		××		XXXX - S	x x x x	
ental	Cyclic Stress Intersity (K ₁ /K _C)					×						
Environm	Threshold Stress Intensity (K _T H)					×						
Alloys to	Fracture Toughness (K _{IE} or K _I C)	**	××	*	х×	××						
Various	Creep Ruptu re ((C-13)	**		NN		× × ×		×	×××		X X X	:KX
ibility of	High-Cycle Fatigue (HCF)	XXXX									× ×	×
Suscepti	Low-Cycle Fatigue (LCF)	*****	;	~~		~~				NN	××	
o Determine the lation	Environment	Helium Hydrogen Helium Hydrogen Hydrogen	He lium Hydrogen	Helium Hydrogen Helium Hydrogen	Helium Hydrogen	Helium Hydrogen Helium Hydrogen Hydrogen and Water Vapor	Helium Hydrogen Helium Hydrogen Hydrogen and Water	Vapor Hydrazine(1) Hydrogen Hydrogen and Water	Vapor Hydra zine Helium Hydrogen Hydrogen	Helium Hydrogen Helium Hydrogen	Heljim Hydrogen Helium Hydrogen and Water Vapor	Helium Hydrogen
Used to Degrad	re, psıg	5000 5000 5000 5000 5000	5000 5000	5000 5000 5000 5000	5000 5000	5009 5000 5000 5000 5000	500 500 500 500	500 500 500	500 5000 5000 5000 4400	5000 5000 5000	5000 5000 5000 5000 5000	500 500
• 	Pressu MN m ²	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	34. 5 34. 5	34. 5 34. 5 34. 5 34. 5	34.5 34.5	មួយខ្លួល សំភូសំភូសំភូ លេខសលេខ		3, 45 3, 45 3, 45 45 45	3.45 3.45 3.45 3.05 3.05 3.05 3.05 3.05 3.05 3.05 3.0	34.5 34.5 34.5	8888 8488 8489 8499 8499 8499 8499 8499	3, 45 3, 45
	ature. F	- 260 - 260 80 80 1250 1250	9 9	40 1250 1250	0 0 X X	20 1250 1250 1250	*0 *0 1250 1250	1250 1600 1600 1600	1600 1250 1600 1600	80 80 1250 1250	40 1230 1250 1250	1600 1600
	Temper .K	111 111 300 351 951	300	300 300 951	300 300	300 300 951 951 951	300 300 951 951	951 1144 1144	1144 951 951 1144 1144	300 300 951	300 300 951 951	1144
	Material	Inconel 718	Inconel 718 Welds	Inconel 625	Inconel 625 Welds	WASPALOY ^a	Astroloy			Hastelloy X	00 1-VI	MAR N-200 DS

Table 1-1. Experimental Program Listing Type of Tests and Test Conditions

Ē

Pratt & Whitney A craft FR-5768

Mutu Turnus Mutu Turnus Mutu Turnus Mutu Turnus Mutu Turnus Mutu	Matrix Table Table <t< th=""><th>Number Number Number<</th><th></th><th></th><th></th><th></th><th>,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>	Number Number<					,									
114 100 3.41 00 Normalian Movement Mov	114 100 3.45 300 Чудлови шей маке. 1144 100 3.45 300 Чудлови шей маке. X X 300 90.345 500 Чудлови шей маке. X X X X 301 90.345 500 Чудлови шей маке. X </th <th>11 10 2.4 00 10 2.4 00 Norwania X X X 101 100 1.4 100 1.4 100 1.4 100 1.4 100</th> <th>Matorial</th> <th>Temper •K</th> <th>ature, . F</th> <th>Pressu MN/m²</th> <th>re, Psig</th> <th>En vironment</th> <th>Low-Cycle Fatigue (LCF)</th> <th>High-Cycle Fatigue (HCF)</th> <th>Creep- Rupture (C-R)</th> <th>Fracture Toughness (KIE or $F_{i\rm C}$)</th> <th>Threshold Stress Intensity (K TH)</th> <th>Cyclic Stress Intensity (K₁/K_C)</th> <th>Smooth Tensile (ST)</th> <th>Notched Fensile (NT)</th>	11 10 2.4 00 10 2.4 00 Norwania X X X 101 100 1.4 100 1.4 100 1.4 100 1.4 100	Matorial	Temper •K	ature, . F	Pressu MN/m ²	re, Psi g	En vironment	Low-Cycle Fatigue (LCF)	High-Cycle Fatigue (HCF)	Creep- Rupture (C-R)	Fracture Toughness (KIE or $F_{i\rm C}$)	Threshold Stress Intensity (K TH)	Cyclic Stress Intensity (K ₁ /K _C)	Smooth Tensile (ST)	Notched Fensile (NT)
	114. 116. 3.4.5 900 Definition 114. 100 3.4.5 900 Definition 114. 1200 3.4.5 900 Definition 111 1200 3.4.5 9000 Definition <td< td=""><td></td><td></td><td>1144</td><td>1600</td><td>3. 45</td><td>500</td><td>Hydrogen and Water Vapor</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td>x</td></td<>			1144	1600	3. 45	500	Hydrogen and Water Vapor				-				x
	Alton Mail Mail Mail Mail Mail 000 100 100 100 100 100 100 011 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 1100 011 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100 1100	Observation		300	1600 80	3.45 34.5	500 5000	Hydra zine Helium		×	×				×>	
Also Number Numer Numer Numer	A-184 Main and the second	0.10 0.10 <th< td=""><td></td><td>00</td><td>88</td><td>1</td><td>6000</td><td>Hydrogen</td><td>×</td><td>×</td><td>×</td><td></td><td></td><td></td><td>< X :</td><td>X</td></th<>		00	88	1	6000	Hydrogen	×	×	×				< X :	X
	A-144 A-144 <th< td=""><td>Allow Bit 110<!--</td--><td></td><td>196 196</td><td>1250</td><td></td><td>2000</td><td>Hydrogen Hydrogen and Water</td><td>×</td><td>×</td><td>××</td><td></td><td></td><td></td><td>×</td><td>××</td></td></th<>	Allow Bit 110 </td <td></td> <td>196 196</td> <td>1250</td> <td></td> <td>2000</td> <td>Hydrogen Hydrogen and Water</td> <td>×</td> <td>×</td> <td>××</td> <td></td> <td></td> <td></td> <td>×</td> <td>××</td>		196 196	1250		2000	Hydrogen Hydrogen and Water	×	×	××				×	××
H-10 100 140 100 140 100 140 100 140 100 140 100 <td>A-286 Delta <th< td=""><td>Hote Bit Distance Dist</td><td></td><td>106</td><td></td><td></td><td></td><td>Vapor</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<></td>	A-286 Delta Delta <th< td=""><td>Hote Bit Distance Dist</td><td></td><td>106</td><td></td><td></td><td></td><td>Vapor</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Hote Bit Distance Dist		106				Vapor								
All 11 120 300 1000	Matrix Matrix<	Other matrix Other matrix Other matrix Other matrix N N Amase 111 250 241 000 100mm X	A-286	951	1250	3. 45 2. 45	200	Helium Hydroian			××					
Mater 111 250 34.5 5000 37.04m 37.04m 111 250 34.4 5000 37.04m 37.04m <td>All 141 111 </td> <td>Observation Observation Notes No Notes Notes</td> <td></td> <td>196 196</td> <td>1250</td> <td>1 1 1 1 1 1</td> <td>202</td> <td>Hydrazine</td> <td>></td> <td></td> <td>x</td> <td>×</td> <td></td> <td></td> <td>×</td> <td>×</td>	All 141 111	Observation Observation Notes No Notes Notes		196 196	1250	1 1 1 1 1 1	202	Hydrazine	>		x	×			×	×
All 141 11 125 344 600 6400mm X All 141 11 125 344 600 940mm X 11 125 344 600 940mm X X X 11 125 344 600 940mm X X X 11 125 344 600 944 600 944 X X X 11 126 344 600 944 600 944 X<	All 1341 Litto 200 Bill 1250 State 3000 Bill 111 Litto 200 Bill 11260 State 2000 Bill 11260 State 200 Bill 112	Matter 10 110 120 3440 100 1640ma X All 141 111 125 344 000 1640ma X X All 141 111 125 344 000 1640ma X X X All 141 111 125 344 000 1640ma X X X X 111 125 344 000 1640ma X X X X X 111 126 344 000 126 344 000 1640ma X		300	33	10 10 10 10 10 10 10 10 10 10 10 10 10 1	5000 5000	Helium Livdroren	< x			:×			××	×>
All 141 Image: Second sec	All 141 The All - 290 34.5 5000 Hydrogen Hydrogen 1111 -290 34.5 5000 Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen and Water No No No No 1111 -290 34.5 5000 Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen and Water 34.5 5000 Hydrogen Hy	Image: bit in the second sec		961 189	1250		5000	Heltum Hvdrogen	××		××				××	< ×
Manual Line Constrained Constrained <thconstraine< th=""> Constaterateration <thc< td=""><td>Marxin Marxin Marxin 200 Marxin Set Set Set Set Set Set Set Set Set Set</td><td>Officient Constrained (11) Constrained (12) Constrained (12)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>×</td><td>×</td></thc<></thconstraine<>	Marxin Marxin Marxin 200 Marxin Set Set Set Set Set Set Set Set Set Set	Officient Constrained (11) Constrained (12)													×	×
11-Ahl-tV 300 34.5 500 94.5 500 <	300 94.6 5000 Holuma 300 94.6 5000 Holuma XX 301 1250 34.5 5000 Holuma XX 301 1250 34.5 5000 Holuma X 301 1250 34.5 5000 Holuma X 301 1250 34.5 5000 Holuma X 301 1250 34.5 5000 Holuma X X 302 34.5 5000 Holuma X X X X 303 34.5 5000 Holuma X X X X X 46.100 34.5 5000 Holuma X	Observation Sector Future Filter X	A181 347		3 9	0 4 0 4 0	2000	Hydrogen	:	:		>			××	××
Th-MAL-2 is 10 100 100 100 100 100 100 100 100 100 100	Ti-thi-tv 300 34.5 5000 Hittman X X 71-thi-tv 300 34.5 5000 Hittman X </td <td>Observation Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,1,0) Constrained (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,</td> <td></td> <td>300</td> <td>8</td> <td>34 G</td> <td>5000</td> <td>Helium Hudmann</td> <td>××</td> <td>××</td> <td></td> <td>< x</td> <td></td> <td></td> <td>×</td> <td>:×;</td>	Observation Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,0) Constrained (1,1,1,1,0) Constrained (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,		300	8	34 G	5000	Helium Hudmann	××	××		< x			×	:×;
Pit T-twi-view 900 Hydrogen Hyd	Pit - Mail	Observe to the state of the state		300 961	1250	1	2000	Hallum			××				××	××
T-takiev 300 84.5 5000 Filum X 71-takiev 300 84.5 5000 Filum X 300 34.5 5000 Filum X X X 71-takiev 300 34.5 5000 Filum X X 71-takiev 300 34.5 5000 Filum X X X 71-takiev 300 34.5 5000 Filum X X X X 71-takiev 300 34.5 5000 Filum X X X X 71-takiev 300 34.5 5000 Filum X	Ti-taki-4V 300 90 34.5 5000 Helium 71-641-4V 300 34.5 5000 Helium X 366 203 34.5 5000 Helium X 366 200 34.5 5000 Helium X 366 200 34.5 5000 Helium X 4(-110) 366 200 34.5 5000 Helium X 366 200 34.5 5000 Hydrogen X X X 4(-110) 366 200 34.5 5000 Hydrogen X X 4(-110) 366 200 84.5 5000 Hydrogen X X 4(-110) 366 200 Hum X X X X 4(-110) 366 200 Helium X X X X 601 12260 3.45 500 Hydrogen X X	The Ath-of (N-11) 300 81-5 (N-11) 5000 Hydrogen (N-11) X X The Ath-2 34.5 5000 Hydrogen (N-11) X X X X X X 10 200 24.5 5000 Hydrogen (N-11) X X X X X X (A-11) 300 24.5 5000 Hydrogen (N-11) X		961	1250	34.5	2000	Hydrogen			<	\$			×	×
Th-M-2. 35. 200 Holium X	Hyperel 18 5000 Helium X	Officient Name Nam Name Name	Ti-6A]-4V	300	88	34.5 34.5	5000 5000	He li um Hydrogen	××			××			:×>	××
Tr-At-2. 553 5000 Harture Automatical Automatical Tr-At-2. 553 3000 34.5 5000 Harture Tr-At-2. 553 3000 34.5 5000 Harture 366 2000 34.5 5000 Harture X 366 2000 34.5 5000 Harture X X 366 2000 34.5 5000 Harture X X X 366 2000 34.5 5000 Harture X X X X 361 12590 3.45 5000 Harture X X X X 951 12590 3.45 5000 Harture X X X X 951 12590 3.45 5000 Harture X X X X 951 12590 3.45 5000 Harture X X X X X X X X <td>Ti-thl-2.85 500 Hellum 71-thl-2.85 300 94.5 5000 Hellum (A-110) 360 200 34.5 5000 Hellum (A-110) 360 200 34.5 5000 Holum X 360 200 34.5 5000 Holum X X X 360 200 34.5 5000 Holum X X X 361 1250 3.45 500 Holum X X X 951 1250 3.45 500 Holum X X X 951 1250 3.45 500 Hodrogen and Water X X X 951 1250 3.45 500 Hodrogen and Water X X X 951 1250 3.45 500 Hodrogen and Water X X X X 951 1250 3.45 500 Hodrogen and Water</td> <td>Observation Second Second</td> <td></td> <td>366</td> <td>200</td> <td>34.5</td> <td>5000</td> <td>Helium Hydrogen</td> <td>××</td> <td></td> <td>××</td> <td></td> <td></td> <td></td> <td>×</td> <td>:×</td>	Ti-thl-2.85 500 Hellum 71-thl-2.85 300 94.5 5000 Hellum (A-110) 360 200 34.5 5000 Hellum (A-110) 360 200 34.5 5000 Holum X 360 200 34.5 5000 Holum X X X 360 200 34.5 5000 Holum X X X 361 1250 3.45 500 Holum X X X 951 1250 3.45 500 Holum X X X 951 1250 3.45 500 Hodrogen and Water X X X 951 1250 3.45 500 Hodrogen and Water X X X 951 1250 3.45 500 Hodrogen and Water X X X X 951 1250 3.45 500 Hodrogen and Water	Observation Second		366	200	34.5	5000	Helium Hydrogen	××		××				×	:×
T-MAI-2 55a 300 34.5 5000 Hallum X X (4-110) 366 200 34.5 5000 Hydrogen X X X 366 200 34.5 5000 Hydrogen X </td <td>T1-±AL-2.55x 300 90 34.5 5000 Hydrout X (A-110) 36.6 200 34.5 5000 Hydrogen X X 36.6 200 34.5 5000 Hydrogen X X X X 36.6 200 34.5 5000 Hydrogen X X X X X 36.6 200 34.5 5000 Hydrogen X X X X X X 36.6 3.45 500 Hydrogen X <td< td=""><td>Tr-Ant-2. 55a 300 314 500 Hydrogen X<!--</td--><td></td><td>000</td><td>8</td><td></td><td></td><td></td><td>></td><td>×</td><td></td><td>×</td><td></td><td></td><td>×</td><td>×</td></td></td<></td>	T1-±AL-2.55x 300 90 34.5 5000 Hydrout X (A-110) 36.6 200 34.5 5000 Hydrogen X X 36.6 200 34.5 5000 Hydrogen X X X X 36.6 200 34.5 5000 Hydrogen X X X X X 36.6 200 34.5 5000 Hydrogen X X X X X X 36.6 3.45 500 Hydrogen X <td< td=""><td>Tr-Ant-2. 55a 300 314 500 Hydrogen X<!--</td--><td></td><td>000</td><td>8</td><td></td><td></td><td></td><td>></td><td>×</td><td></td><td>×</td><td></td><td></td><td>×</td><td>×</td></td></td<>	Tr-Ant-2. 55a 300 314 500 Hydrogen X </td <td></td> <td>000</td> <td>8</td> <td></td> <td></td> <td></td> <td>></td> <td>×</td> <td></td> <td>×</td> <td></td> <td></td> <td>×</td> <td>×</td>		000	8				>	×		×			×	×
366 200 Halum X X 366 200 34.5 5000 Halum X 366 200 34.5 5000 Halum X X 366 200 3.45 500 Halum X X 300 80 3.45 500 Halum X X 301 1250 3.45 500 Halum X X 951 1250 3.45 500 Harum X X 951 1250 3.45 500 Harum X X 951 1250 3.45 500 Harum X X 951 1250 3.45 500 Hydrogen and Water X X X 951 1250 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water X X X X	366 200 34.5 5000 Helum X X 366 200 34.5 5000 Hydrogen X X X 366 200 34.5 5000 Hydrogen X X X 366 200 34.5 500 Hydrogen X X X 361 1250 3.45 500 Hydrogen X X X 951 1250 3.45 500 Hydrogen X X X X 951 1250 3.45 500 Hydrogen X X X X 951 1250 3.45 500 Hydrogen X	Myrae 185 300 34.5 5000 Helum X	Ti-5AI-2. 5Sn (A-110)	300	88	34. 5 34. 5	2000	Hydrogen	×	:×	:	×			××	××
Hypere 186 300 90 3-45 500 Hum 851 1250 3-45 500 Hydrogen N	Haynes 185 300 90 3.45 500 Helium 951 1250 3.45 500 Hydrogen 951 1250 3.45 500 Hydrogen x 951 1250 3.45 500 Hydrogen x x 951 1250 3.45 500 Hydrogen x x x 951 1250 3.45 500 Hydrogen x x 1144 1600 3.45 500 Hydrogen x x 951 1250 3.45 500 Hydrogen x x 951 1250 3.45 500 Hydrogen x x 951 1250 3.45 500 Hydrogen x x	Hypere 186 300 90 3.45 5.00 Hoffman 951 1250 3.45 5.00 Hydrogen and Water X 1144 1600 3.45 5.00 Hydrogen and Water X 1144 1600 3.45 5.00 Hydrogen and Water X 1144 1600 3.45 5.00 Hydrogen Advrogen and Water X 1144 1600 3.45 5.00 Hydrogen Advrogen and Water X X 951 1220 34.5 5.000 Hydrogen Advrogen and Water X X 951 1220 34.5 5.000 Hydrogen Advrogen and Water X X		366 366	200 200	34.5 34.5	5000 5000	Helium Hydrogen	××		< ×				×	×
300 500 Hydrogen Bill 500 Hydrogen Hydrogen Bill Hydrogen Bill Hydrogen Bill <thhydrogen Bill <th< td=""><td>900 80 3.45 500 Hydrogen Helum 961 1250 3.45 500 Hydrogen Hydrogen and Water X 961 1250 3.45 500 Hydrogen Hydrogen and Water X X 961 1250 3.45 500 Hydrogen and Water X X 961 1250 3.45 500 Hydrogen and Water X X 91 1250 3.45 500 Hydrogen and Water X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water<!--</td--><td>00 0.0 0.4drogen Helium X 951 1250 3.45 500 Hydrogen Helium X 951 1250 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 951 1250 34.5 5000 Hydrogen Vapor X X 0.7 Pasociating Antrogen Actorgen and Water X X X X <td>198</td><td>008</td><td>Û</td><td>3. 45</td><td>500</td><td>Helium</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>××</td></td></td></th<></thhydrogen 	900 80 3.45 500 Hydrogen Helum 961 1250 3.45 500 Hydrogen Hydrogen and Water X 961 1250 3.45 500 Hydrogen Hydrogen and Water X X 961 1250 3.45 500 Hydrogen and Water X X 961 1250 3.45 500 Hydrogen and Water X X 91 1250 3.45 500 Hydrogen and Water X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water X X X X 951 1250 3.45 500 Hydrogen and Water </td <td>00 0.0 0.4drogen Helium X 951 1250 3.45 500 Hydrogen Helium X 951 1250 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 951 1250 34.5 5000 Hydrogen Vapor X X 0.7 Pasociating Antrogen Actorgen and Water X X X X <td>198</td><td>008</td><td>Û</td><td>3. 45</td><td>500</td><td>Helium</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>××</td></td>	00 0.0 0.4drogen Helium X 951 1250 3.45 500 Hydrogen Helium X 951 1250 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Halium X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 1144 1600 3.45 500 Hydrogen Hydrogen and Water X X 951 1250 34.5 5000 Hydrogen Vapor X X 0.7 Pasociating Antrogen Actorgen and Water X X X X <td>198</td> <td>008</td> <td>Û</td> <td>3. 45</td> <td>500</td> <td>Helium</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>××</td>	198	008	Û	3. 45	500	Helium								××
951 1250 3.45 500 Helium 951 1250 3.45 500 Hydrogen and water X 951 1250 3.45 500 Hydrogen and water X 951 1250 3.45 500 Hydrogen and water X 911 1250 3.45 500 Hydrogen and water X X 1144 1600 3.45 500 Hydrogen and water X X X 1144 1600 3.45 500 Hydrogen and water X X X X 1144 1600 3.45 500 Hydrogen and water X X X X 951 1250 34.5 500 Hydrogen and water X X X X 951 1250 34.5 500 Hydrogen and water X X X X 951 1250 34.5 500 Hydrogen and water X X X X 951 1250 34.5 5000 Hydrogen x X<	961 1250 3.45 500 Helium 951 1250 3.45 500 Hydrogen and water X 951 1250 3.45 500 Hydrogen and water X X 951 1250 3.45 500 Hydrogen and water X X 951 1250 3.45 500 Hydrogen and water X X 1144 1600 3.45 500 Hydrogen and Water X X 1144 1600 3.45 500 Hydrogen and Water X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 951 1250 34.5 5000 Hydrogen and Water X X X 951 1250 34.5 5000 Hydrogen and Water X X X 951 1250 34.5 5000 Hydrogen and Water X X	061 1250 3.45 500 Helium 2 951 1250 3.45 500 Hydrogen and Water 2 1144 1600 3.45 500 Hydrogen and Water 2 1144 1600 3.45 500 Hydrogen and Water 2 951 1250 34.5 500 Hydrogen and Water 2 951 1250 34.5 5000 Holum 2 951 1250 34.5 5000 Hydrogen and Water 2 951 1250 34.5 5000 Holum 2 2 951 1250 34.5 5000 Hydrogen and Water 2 2 0. Yapor X X X 2 2 951 1250 34.5 5000 Holum 2		300	88	3.45	200	Hydrogen			>					×
931 1250 3.45 500 Hydrogen and Water X 931 1250 3.45 500 Hydrogen and Water X X 931 1250 3.45 500 Hydrogen and Water X X X 1144 1600 3.45 500 Hydrogen and Water X X X X 1144 1600 3.45 500 Hydrogen and Water X X X X X 1144 1600 3.45 500 Hydrogen and Water X <td>931 1250 3.45 500 Hydrogen and Water 931 1250 3.45 500 Hydrogen and Water 931 1250 3.45 500 Hydrogen and Water 1144 1600 3.45 500 Hydrogen and Water X 1144 1500 3.45 500 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X</td> <td>951 1250 3.45 500 Hydrogen and Water 951 1250 3.45 500 Hydrogen and Water 951 1250 3.45 500 Hydrogen and Water 1144 1600 3.45 500 Hydrogen and Water 951 1250 34.5 500 Hydrogen and Water 951 1250 34.5 5000 Hydrogen and Water 0. Yapor X X X X 951 1250 34.5 5000 Hydrogen and Water 0. Yapor X X X X 951 1250 34.5 5000 Hydrogen X</td> <td></td> <td>961</td> <td>1250</td> <td>3.45 2.45</td> <td>200</td> <td>Helium Hvdrogen</td> <td></td> <td></td> <td>< ×</td> <td></td> <td></td> <td></td> <td></td> <td>××</td>	931 1250 3.45 500 Hydrogen and Water 931 1250 3.45 500 Hydrogen and Water 931 1250 3.45 500 Hydrogen and Water 1144 1600 3.45 500 Hydrogen and Water X 1144 1500 3.45 500 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X 951 1250 34.5 5000 Hydrogen and Water X	951 1250 3.45 500 Hydrogen and Water 951 1250 3.45 500 Hydrogen and Water 951 1250 3.45 500 Hydrogen and Water 1144 1600 3.45 500 Hydrogen and Water 951 1250 34.5 500 Hydrogen and Water 951 1250 34.5 5000 Hydrogen and Water 0. Yapor X X X X 951 1250 34.5 5000 Hydrogen and Water 0. Yapor X X X X 951 1250 34.5 5000 Hydrogen X		961	1250	3. 4 5 2.45	200	Helium Hvdrogen			< ×					××
91 1250 3.45 500 Hydrazle X X 1144 1600 3.45 500 Hydrazle X X X X 1144 1600 3.45 500 Hydrazle X X X X X 1144 1600 3.45 500 Hydragen and Water X X X X X 1144 1600 3.45 500 Hydragen and Water X	91 1250 3.45 500 Hydrazine X X 1144 1600 3.45 500 Hydrazine X X 951 1250 34.5 500 Hydrazine X X X 951 1250 34.5 5000 Hydrazine X X X X 951 1250 34.5 5000 Hydrazine X X X X X 951 1250 34.5 5000 Hydrazine X X X X 951 1250 34.5 5000 Hydrazine X X X 951 1250 34.5 5000 Hydrazine X X	91 1250 3.45 500 Hydrasite X X 1144 1600 3.45 500 Helum X X 1144 1600 3.45 500 Hydrasite X X 1144 1600 3.45 500 Hydrasite X X 1144 1600 3.45 500 Hydrasite X X 951 1250 34.5 500 Hydrasite X X 951 1250 34.5 5000 Hydrasite X X 951 1250 34.5 5000 Hydrasite X X X 951 1250 34.5 5000 Hydrasite X X X 951 1250 34.5 5000 Hydrasite X X X 0.7 statuse Environment Obtained by Disporting And Water X X X X X		126	1250	3.45	200	Hydrogen and Water								¢
1144 1600 3.46 500 Heilum X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X X 951 1250 34.5 5000 Helium X X X 951 1250 34.5 5000 Hydrogen and Water X X X X 951 1250 34.5 5000 Hydrogen and Water X X X X X 951 1250 34.5 5000 Hydrogen and Water X X X X 951 1250 34.5 5000 Hydrogen and Water X X X X X 951 1250 34.5 5000 Hydrogen and Water X X X X X	1144 1600 3.45 500 Hellum X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X 951 1250 34.5 500 Hydrogen and Water X 951 1250 34.5 5000 Hellum X X 951 1250 34.5 5000 Hydrogen and Water X X X 951 1250 34.5 5000 Hydrogen and Water X X X X	1144 1600 3.45 500 Hellum X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X 1144 1600 3.45 500 Hydrogen and Water X 951 1250 34.5 5000 Hellum X 951 1250 34.5 5000 Hydrogen X 951 1250 34.5 5000 Hydrogen X 951 1250 34.5 5000 Hydrogen X X 951 1250 34.5 5000 Hydrogen X X X 951 1250 34.5 5000 Hydrogen X X X 0.7 sameria.et V X X X X X X		961	1250	3.45	500	Vapor Hydrazine		×	×					×
1144 1600 3.45 500 Hydrogen and Water ^ 1144 1600 3.45 500 Hydrogen and Water ^ 1144 1600 3.45 500 Hydrogen and Water ^ 951 1250 34.5 500 Hydrogen and Water X	1144 1600 3.45 500 Hydrogen and Water 1144 1600 3.45 500 Hydrogen and Water 951 1250 3.45 500 Hydrogen and Water 951 1250 34.5 5000 Helium X X X X 951 1250 34.5 5000 Hydrogen and Water X X X X X X X X X X X X X X X X X X X	1144 1600 3.45 500 Hydrogen and Water ************************************		H 11	1600	3.45	200	Hellum			×					×
1144 1600 3.45 500 Hydrazine X 951 1250 34.5 5000 Hydrazena X 951 1250 34.5 5000 Hydrazena X	1144 1000 3.45 500 Hydrazine X 951 1250 34.5 5000 Helium X X 951 1250 34.5 5000 Hydrazine X X 951 1250 34.5 5000 Hydrazene X X 951 1250 34.5 5000 Hydragen and Water X X	1144 1000 3.45 5000 Hydrague X X 951 1250 34.5 5000 Hydrogen X X X 0.) Tassoi and Hydrosen and Water X X X X X		1411	1600	0.45 45	200 200 200	Hydrogen Hydrogen and Water			¢					X
1144 1600 3.45 500 Hydra-zule	1144 1600 3.45 500 Hydrazue 951 1250 34.5 5000 Helium X X X 951 1250 34.5 5000 Hydrogen X X X X 951 1250 34.5 5000 Hydrogen and Water X X	1144 1600 3.45 500 Hydrazine X 951 1250 34.5 5000 Hydrogen X X 1250 34.5 5000 Hydrogen and Water X X 1250 34.5 5000 Hydrogen and Water X X 1250 34.5 5000 Hydrogen X X X 1250 34.5 5000 Hydrogen X X X 1250 34.5 Vapor Vapor X X X 1250 34.5 Vapor Vapor X X X 125			M0 1	2		Vapor			>					
951 1250 34.5 5000 Hydrogen X X 951 1250 34.5 5000 Hydrogen and Water X X Vanor	951 1250 34.5 5000 Hydrogen X X X 951 1250 34.5 5000 Hydrogen and Water X X Vanor	951 1250 34.5 5000 Hydrogen and Water X X 951 1250 34.5 5000 Hydrogen and Water X X (1) reasonisted Hydrous Amonia.		1144	1950	3. 45 24 5	200	Hydrazine Helium	×		<×					
951 1250 34.5 5000 Hydrogen and Water X Vanor	951 1250 34.5 5000 Hydrogen and Water Varor	951 1250 34.5 5000 Hydrogen and Water Vapor (1) reasonistad Hydrazine Environment Obtained by Dissociating Ambrous Ammonia.		196	1250	34° 0	2000	Hydrogen	×		×					
		(1) Transmissed Hydrazine Environment Obtained by Dissociating Anthronia.		196	1250	34.5	5000	Hydrogen and Water Vapor			×					

FR-5768

いんかい 御御 たいこう ひがい 離 ねんたい

.

We share the time

points also a

A subject (1988)

Protect Possil

Province and

1.46

A second to be a

N.

Ŵ

Experimental Program for the Period of June 1970 to June 1971, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted Table I-2.

·

A. M. P. S. A. M. M. L. A. 2

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

and governments

	Tempera	ture,	Pressu	Ire, 	Environment	Low-Cycle Fatigue (LCF)	High-Cycle Fatigue (HCF)	Type and N Creep- Rupture (C-R)	umber of lests Fracture Toughness (K _{IE} or K _{IC})	Smooth Tensile (ST)	Notch(1) Tensile (NT)
Material	°К	°F	-m//uw	haig					2	24	51
Inconel 718 ⁽²⁾	300	80	34.5	5000	Heliun Hudmozen	44	1 4		101	¢1 ¢	en c
	300	08	34.5	0000		-4	-11	69		. 1 0	1.0
	951	1250	34.5	2000	Hudmoen	4	.,	¢1		-1	n,
	951	0621	0.40	2000							
(3)		- 760	34.5	5000	Helium	4					
Inconel 718		- 260	34.5	5000	Hydrogen	- 1 4 -	•		6	÷1	¢1
	1000	08	34.5	5000	Helium	.	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1 01	¢1	ŝ
		80	34.5	5000	Hydrogen	d i -	1 4	6		51	¢1
	951	1250	34.5	5000	Helium	t " ▼	# -1	1 01		? 1	n
	951	1250	34.5	5000	Hydrogen	4	۲	I			:
		ç		5000	He' um				¢1 (01 C	-1 07
Inconel 718	300	9 8	34. J	2000					-1	1	
Welds ⁽³⁾	300	9 6	34. 0	oone					c	÷	51
202 [1	300	80	34. 5	5020	Helium	4.			4 01	1 21	m
C70 Iauou	300	8	34. 5	5000	Hvdrogen	4		Ċ1		হা	¢1
	951	1250	34.5	5000	Helium			1 01		¢1	m
	951	1250	34.5	5000	Hydrogen			1			÷
	000	Ua	34.5	5000	Helium				0 I O	21 21	מכני
laconel 625 Welds	300	38	34. 5	5000	Hydrogen				1		
:	000	Ua	34 5	5000	Helium	4				ରା ଚା	51 05
Hastelloy X	300	2 2	34.5	5000	Hydrogen	4				1.01	71
	951	1250	34.5	5000	Helium					21	m
	951	1250	34.5	5000	Hydrogen				¢	•	¢
200 4	300	80	34.5	5000	Helium	+ •			21 01	171	1 m
007-V	300	80	34.5	5000	Hydrogen	4, 4,		01		÷1 ;	51 G
	951 951	1250 1250	34. 5 34. 5	5000	Hydrogen	4		5		· 1	•

Pratt & Whitney Aircraft FR-5768

Table I-2. Experimental Program for the Period of June 1970 to June 1971, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted (Continued)

										•	2
Alsi-347	111 300 951 951	- 260 - 270 - 200 - 200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5000 5000 5000 5000 5000	Helium Hydrogen Helium Helium Helium Hydrogen	4 4	ক ক	01 01	0 0	1 0 0 0 0 N N	1 M M M M M M
Ti-6A!-4V	300 366 366 366	50 8 80 50 8 80 50 8 80	34. 5 34. 5 34. 5 34. 5	5000 5000 5000	Helium Hydrogen Helium Hydrogen	ৰা না বা ৰা		20	01 01	~~~	2 ເຕ 21 ເຕ
Ti-5Al-2.58n (A-110)	300 366 366	506 8 8 5 0 6 8 8	34.5 34.5 34.5 34.5	5000 5000 5000 5000	Helium Hydrogen Hellum Hydrogen	4 4 4 4	4 4	0 0	~ ~	81 61 61 61	~~~~
(1) Notched Tenslie	Strength fc	or KT = 8									
(2) Annealed at 1227	r•K (1750°1	F) and Aged	(See Section	u []])							

Same and the second

1.1

A Property of

1

I--6

(3) Solution Treated at 1313°K (1900°F) and Aged (See Section III)

Table I-3. Experimental Program for the Period of June 1971 to June 1972, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted

									Type and Number	of Fests Threehold	Cvelie		
	Temper	ature, ° t	Pressul VIN/m ²	re, nsig	Environment	Low-Cycle Fatigue (LCF)	High-Cvele Fatigue (HCF)	Creer- Rupture (C-R)	Fracture Toughness (K _{IE} or K _{IC})	Arressourd Stress Intensity (K TH)	Stress Intensity (K ₁ ² K _C)	Smooth Fensile (ST)	Notch ⁽¹⁾ Tensile (N1)
Material	¥,	-	111/2010	9101									I
Astroloy	300 300 951 951	80 250 1250 1600	ម្ពុ ភ្នំ ភ្នំ ភ្នំ ភ្នំ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ ភូមិ	500 500 500 500	Helium Hydrogen Helium Helium Helium								7) 7) 7) -
	951 951 951 951	1600 1250 1600 1600	3, 45 34, 5 34, 5 34, 5 34, 5 (2) 34, 5 (2)	500 5000 5000 5000	Hydrogen Helium Helium Nydrogen			o1 01					- 21 - 21
WASPALOY ^a	300 300 951 951	50 80 1250 1250 1250	ច ១ ១ ១ ១ ១ ទំ ទំ ទំ ទំ ទំ ទំ ១ ១ ១ ១ ១	5000 5000 5000 5000	Helium Hvdrogen Helium Hydrogen Hvdrogen and Water Vapor	01 7 4		71 01 04	- m	۳	ŝ		
IN-100	300 300 951 951	80 80 1250 1250 1250	ು ದಾರ್ಯ ಕೇ ಕೇ ನೇ ಕೇ ನ್ನಡ ಬ್ರಾನ್	5000 5000 5000 5000	Helium Hyd rogen Helium Hydrogen Hydrogen and Water Vapor	া পা	c) -4	01 01 01				n 01 01	
MAR NI-200 DS	300 300 951 951	80 50 1250 1250	स् के स् के स के स् के स ए ए ए ए ए ए ए ए	5000 5000 5000 5000	Helium Hydrogen Helium Hydrogen Hydrogen and Mater Vapor	c) 4	o1 4	01 01 01				e du em Ol	
Haynes 198	951 951	1250 1250 1250	34, 5 34, 5 34, 5	5000 5000 5000	Helium Hydrogen Hydrogen and Water Vapor		01 44	01 01 0 1					
(1) _{Notched} Tensi	ile Strength	for KT 8											

Pratt & Whitney Aircraft FR-5768

 $^{(2)}$ Or Maximum Attainable Pressure at 1144°K (1600° F).

A State of the state

I-7

Matanial	Tempeı •K	aturc. ° F	${ m Pressu} { m MN/m^2}$	re, psig	Environment	Fatigue (HCF)	Rupture (C-R)	Tensite (NT)
Material	4							:
A	951	1250	3.45	500	Hydrogen and Water Vapor		÷	÷
Astroioy	951 951	1250	3.45	500	Hydrazine ⁽²⁾		r	÷
	1144	1600	3.45	500	Hydrogen and Water Vapor		c	÷
	1144	1600	3.45	500	Hydrazine		ŗ	
	t e c	020	3 7 5	5000	Helium			-4
MAR M-200 DS	TCA	0071		5000	Hudrogen			
	951	1250	34.5	0000	traduction and Water Vanne			en.
	951	1250	34.5	5000	Hydrogen and water value		6	I
	1144	1600	3.45	500	Helium	•	1 0	। त
	1144	1600	3.45	500	Hydrogen	4	ç	
	7777	1600	3.45	500	Hydrogen and Water Vapor		4	ç
	1144	1600	3.45	500	Hydrazine	-;*1	n	
							c	
	051	1950	34.5	5000	Hydrogen		n a	
A-286	100		2 45	500	Helium		21	
	106	0621			Нифилер		c,	
	951	1250	3, 43	000				
	951	1250	3.45	000	uyurazılıc			
								-4
Havnes 188	300	80	3.45	500				en
	300	80	3.45	500	Hydrogen		¢	
	051	1250	3.45	500	Helium		4	• •
	051	1950	3.45	500	Hydrogen		ç	
	051	1950	3.45	500	Hydrogen und Water Vapor			ç
	100	1950	3.45	500	Hydrazine	4	م	•
	106	0071	3 45	200	Helium		<u>. 15</u>	
	1144	0001	0, 10 75	500	Hvdrogen		က	n i
	1144	0001		500	Hydrogen and Water Vapor			n
	1144	1600	0.40 2		Hudrozine		n	
	1144	1600	3.45	000	1134142111			

1.0000

5.75.05 X 84794.1

a contraction of the second

(2) Dissociated Hydrazine Environment Obtained by Dissociating Anhydrous Ammonia.

Pratt & Whitney Aircraft FR-5768

Experimental Program for the Period of June 1972 to July 1973, Under Contract NAS8-26191, Listing Type, Condition, and Number of Tests Conducted Table I-4.

I-8

SECTION II CONCLUSIONS

A. GENERAL

The efforts under this contract consisted of conducting various tests to determine mechanical properties of 12 alloys that are commonly used or proposed for use in pressurized gaseous hydrogen or hydrogen containing environments (hydrogen and water vapor and dissociated hydrazine). Properties determined in the hydrogen environments were compared to properties determined in a pure helium environment at the same conditions to establish environmental degradation. In some cases, properties in the hydrogen environments only were determined to establish design information.

The following system was established to determine the degree of degradation and serve as an aid in comparing the various alloys.

- 1. Extremely Degraded (ED) Hydrogen environment(s) 1. 'aced the property or life (in helium) greater than 50%.
- 2. Severely Degraded (SD) Hydrogen environment(s) reduced the property or life (in helium) greater than 25%, but less than 50%.
- 3. Degraded (D) Hydrogen environment(s) reduced the property or life (in helium) greater than 10%, but less than 25%.
- 4. Negligible Degradation (ND) Hydrogen environment(s) reduced the property or life (in helium) less than 10% or had no detrimental effect.

Using this rating system, table II-1 displays the degree of degradation for each alloy and condition tested, where a comparable test in helium was conducted. In the case of the tensile tests, if any property (yield strength, smooth or notch ultimate strength, elongation, and reduction of area) was degraded, the degradation rating was that of the most severely degraded property.

Detailed conclusions are presented in the various sections pertaining to type of test. General conclusions, as pertaining to the various alloys, are presented below.

B. NICKEL-BASE ALLOYS

Tested were:

Inconel 718 (Two Heat Treatments) Inconel 718 Welded Inconel 625 Inconel 625 Welded WASPALOY® Astroloy Hastelloy X IN-100 (Cast) MAR M-200 DS (Cast).

11-1

		Table	II-1. De	gree of	Environmental Deg	radation of	Various Al	loys		
Materiel	Tempe K	erature, °F	Pressu MN/m ²	re, psig	Environment	Low-Cycle Fatigue (LCF)	High-Cycle Fatigue (HCF)	Creep- Rupture (C-R)	Fracture Toughness (KIE or KIC)	Tensile
Inconel 718 1227*K (1750°F)	300 951	80 1250	34.5 34.5	5000 5000	Hydrogen Hydrogen	SD SD	ED	SD	ŊŊ	ED
Inconel 718 1313*K (1900°F)	111 300 951	-260 80 1250	34.5 34.5 34.5	5000 5000	Hydrogen Hydrogen Hydrogen	ND SD SD	ED	SD	ΠN	D ND
Inconel 718 Welds	300	80	34.5	5000	Hydrogen				QN	SD
Inconel 625	300 951	80 1250	34.5 34.5	5000 5000	Hydrogen Hydrogen	ED		SD	ND	EI) D
Inconel 625 Welds	300	80	34.5	5000	Hydrogen				QN	QN
WASPALOY [®]	300 951 951	80 1250 1250	34.5 34.5 34.5	5000 5000 5000	Hydrogen Hydrogen _ Hydrogen and Water Vapor	Q		QN	SD	Q
Astroloy	300 951 951	80 1250 1250	3, 45 3, 45 3, 45	500 500 500	Hydrogen Hydrogen Hydrogen and Water					UN UN UN
	951 1144 1144	1250 1600 1600	3,45 3,45 3,45	500 500	Vapor Hydrazine Hydrogen Hydrogen and Water			ND		UN D
	1144 951 1144	1600 1250 1600	3.45 34.5 30.3	500 5000 4400	v apor Hydrazine Hydrogen Hydrogen			UN UN		UN ND
Hastelloy X	300 951	80 1250	34.5 34.5	5000 5000	Hydrogen Rydrogen	ED				D ND
1N-100	300 951 951	80 1250 1250	34.5 34.5 34.5	5000 5000	Hydrogen Hydrogen Hydrogen and Water Vapor	ED	SD	CI N		ED SD

to state that a set

per result.

01400-100

A THE REPORT

Second Street

10000

and the second

Pratt & Whitney Aircraft FR-5768

II-2

	Tabl	e II-1.	Degree (of Envir	onmental Degradat	ion of Varic	ous Alloys	(Continued	()	
1. otorrial	Tempe °K	erature, °F	Pressu MN/m ²	re, psig	Environment	Low-Cycle Fatigue (LCF)	High-Cycle Fatigue (HCF)	Creep- Rupture (C-R)	Fracture Toughness (KIE or KIC)	Tensile
MAR N-200 DS	HF11	1600 1600	3, 45 3, 45 3, 45	500 500	Hydrogen Hydrogen and Water			D		d d
	1144 300 951	1600 80 1250 1250	3, 45 34, 5 34, 5 34, 5	500 5000 5000 5000	Vapor Nydrazure Nydrogen Hydrogen and Water Vapor	ND	ED	UN UN ÚN		ED SD D
A- 286	95) 951 951	1250 1250 80 1250	3. 45 3. 45 34. 5 34. 5	500 500 5000	Hydrogen Hydrazine Hydrogen Hydrogen	UN ND		dn Dn D	(IN	<u> 2</u> - 1
A'56 347	111 300 951	-260 80 1250	34.5 34.5 34.5	5000 5000 5000	Hydrogen Hydrogen Hydrogen	Ŋ	QN	QN	(IN	
Titanium-6- !	300 366	80 200	34 . 5 34. 5	5000 5000	itydrogen Hydrogen	UN D		G	ND	0 8 0
A-11 0	300 366	200 200	34.5 34.5	5000 5000	Hydrogen Hydrogen	ND ED	ND	ND	QN	n di si
Haynes 188	300 951 951	80 1250 1250	3, 45 3, 45 3, 45	500 500	Hydrogen Hydrogen Hydrogen and Water			ND		QN QN
	951 1144 1144	1250 1600 1600	3,45 3,45 3,45	500 500	Vapor Hydrazinc Hydrogen Hydrogen and Water			QN QN		QN ND
	1144 951 951	1600 1250 1250	3.45 34.5 34.5	500 5000 5000	Vapor Hydrazine Hydrogen Water Vapor	SD		(IN (IN (IN		

-

Į

I

4

í,

は、これはないのである

Pratt & Whitney Aircraft FR-5768

and the second

N-3

The nickel-base alloys as a class were the most suseptible to hydrogen environment degradation. With two exceptions, the low-cycle and high-cycle fatigue life, both strain-controlled and tension-tension load-controlled, was degraded for all nickel-base alloys tested in 34.5-MN/m² (5000-psig) hydrogen. The exceptions were the low-cycle fatigue lives of Inconel 718 with 1313° K (1900°F) solution plus age heat treatment at 111°K (-260°F) and MAR M-200 DS at 951°K (1250°F). At these two conditions, those alloys displayed better lives in the hydrogen than in the helium environments. The degree of degradation was influenced by temperature, being most severe at 300° K (80° F).

The fracture toughness, K_{IE} or K_{IC} was degraded for only one material, WASPALOY. This was the only alloy tested using a center notch specimen. The other alloys were tested using the ASTM compact tensile specimen, and all exhibited negligible degradation (ND).

The rupture life, on a stress for specific life basis, was degraded only by the pure hydrogen environment, with Inconel 718 (both heat treatments) and Inconel 625 being severely degraded, and WASPALOY, IN-100 and MAR M-200 DS slightly degraded (less than 25%). Materials tested in the hydrogen and water vapor and dissociated hydrazine environments were not degraded by those environments. Astroloy was the only material that exhibited negligible degradation in rupture life at any of the conditions tested; however, this was based upon stress level degradation. When compared on time to rupture for a given stress level in helium and hydrogen, Astroloy was degraded (Reference FR-5129).

Tensile property degradation was more evident at room temperature with ductility being most affected. None of the alloys exhibited degradation of smooth tensile yield strength, and only IN-100 and MAR M-200 DS, the cast alloys, smooth tensile ultimates were degraded. Elongation and reduction of area were quite degraded, with IN-100 the most degraded, followed by MAR M-200 DS, Inconel 718 (1227°K solution), Inconel 625, Inconel 718 welded (1313°K solution), and Inconel 718 (1313°K solution) in that order. Smooth tensile properties were not significantly affected for Astroloy, Hastelloy X, or Inconel 625 welds, at any conditions tested, and for Inconel 718 of both heat treatments at 951°K (1250°F). Notch ultimate strengths were degraded in some cases where smooth strength was not. This included Inconel 718 (1227°K solution), Inconel 718 welds (1313°K solution), and Hastelloy X, all at room temperature. Pure hydrogen environment caused no significant degradation of notch strength at elevated temperatures. Astroloy and MAR M-200 DS were tested in the hydrogen and water vapor environment. Notch strength degradation at 951°K (1250°F) occurred for Mar M-200 DS only; however, at 1144°K (1600°F) both alloys were degraded. It was suspected that the oxidation caused by dissociation of the water at the specimen surface at 1144°K (1600°F) and not the hydrogen caused the reduction in strength from the helium environment, as a pure hydrogen environment did not cause degradation at these temperatures.

II-4

C. IRON-BASE ALLOYS

Tested were:

A-286 AISI 347.

FR~5768

These alloys as a class exhibited the least severe degradation of all materials tested. In fact, AISI 347 had negligible property degradation for all tests and conditions investigated during this program. A-286 exhibited negligible property degradation at 300° K (80° F). The elevated temperature (951° K [1250° F]) creep-rupture and smooth tensile properties only were degraded at 34.5MN/m² (5000-psig) pressure. At 3.45-MN/m² (500-psig) pressure, rupture life was not significantly degraded in either the pure hydrogen or dissociated hydrazine (ammonia) environments.

D. TITANIUM-BASE ALLOYS

Tested were:

Titanium 6-4 Titanium A-110.

These two alloys did not exhibit significant degradation in any property at room temperature except tensile properties. The smooth tensile ductilities and notch tensile strength were degraded to severely degraded. At a temperature of 366° K (200°F) the low-cycle fatigue life and tensile properties of both alloys were degraded, with A-110 more severely affected. However, Titanium 6-4 was degraded in creep-rupture at this temperature, whereas A-110 was not. There was also evidence of the formation of surface hydrides on specimens tested at 366° K (200°F).

E. COBALT-BASE ALLOY

Tested was Haynes 188.

This alloy was tested in three hydrogen containing environments. At 3.45-MN/m² (500-psig) pressure, rupture life, based upon stress, was not degraded by hydrogen or dissociated hydrazine (ammonia) at either 951 or 1144°K (1250 or 1600°F), nor was notch tensile strength in the hydrogen or hydrogen and water vapor environments. At 34.5-MN/m² (5000-psig) pressure, creep-rupture, in hydrogen and hydrogen and water vapor environments, was not significantly degraded. The only property evaluated that was degraded was low-cycle fatigue life at 951°K and 34.5-MN/m² (1250°F and 5000-psig) pressure, which was severely degraded.

F. ENVIRONMENTS AND PRESSURE

Four gaseous environments were used during the various phases of this program. They were: pure helium, pure hydrogen, hydrogen with water vapor, and dissociated hydrazine. The dissociated hydrazine environment was obtained by dissociating pure anhydrous ammonia. (Reference Section III.) A post test gas sample of the hydrazine/ammonia verified the almost total dissociation of the ammonia into hydrogen and nitrogen in the proportions indicated by the analytical equations. The experimental test matrix was not complete enough to enable absolute statements as to the effect of the different environments and pressures upon materials properties; however, some general observations can be made. The presence of water vapor in the hydrogen appeared to inhibit or reduce degradation as compared to the pure hydrogen environment. This was true for WASPALOY and IN-100 materials, which were degraded in creep-rupture life in hydrogen, but not in hydrogen and water vapor. However, as temperatures

I**I-5**

increased to 1144°K (1600°F), Astroloy and MAR M-200 DS were both more degraded in the properties tested by the addition of water vapor to the hydrogen. The beneficial effects of water vapor in the hydrogen appear limited to those temperatures at which the water vapor would not dissociate into hydrogen and oxygen, with resulting oxidation of the material. It must be emphasized, however, that 1144°K (1600°F) is normally beyond the operating range of Astroloy, and that MAR M-200 DS is usually given a protective coating to prevent oxidation. Also, this testing was conducted under static pressure conditions and the dynamic conditions existing in a propulsion system could produce different effects.

For materials and properties, where comparisons could be made, the dissociated hydrazine (ammonia) environment had negligible effect in that none of the properties tested were degraded.

Specimens that were tested in the dissociated hydrazine (ammonia) environment were examined for nitride formation on the specimen surfaces. Metallography (light and electron), X-ray diffraction, and electron microprobe analyses did not detect surface nitrides on any of the specimens.

Two pressure levels were used in this program. Comparison of the effect of pressure upon degradation was restricted due to lack of comparable test conditions, or to lack of single material heat results. The most pronounced effect of pressure in this program occurred in the notch tensile properties of Astroloy. While tensile strength at both pressures was rated negligible (10% or less), at 3.45-MN/m² (500-psig) hydrogen degradation was approximately half that at 34.5 MN/m² (5000 psig) for temperatures below 977°K (1300°F). This is in general agreement with other investigators' observations that the effect of hydrogen upon property degradation decreases with decreasing pressure.

G. DISCUSSION

This program was established to determine specific material properties and to enable general observations in regard to the susceptibility of a particular material to hydrogen degradation. The experience of this program has been that creep-rupture and low-cycle fatigue, both of which involve relatively long exposures to the environment at high strain/stress levels, are the most severe tests of a material for hydrogen degradation, followed by high-cycle fatigue, tensile, and fracture toughness tests, in that order.

Certain tests, however, did not indicate any conclusive degradation due to the hydrogen environment on materials known to be degraded. An example of this is the fracture toughness of Inconel 718 with 1227°K (1750°F) solution plus age heat treatment. This test indicated negligible degradation of this material by the hydrogen environment. The low- and high-cycle fatigue, creep-rupture, and tensile tests, however, indicated extreme hydrogen degradation.

A-286 material exhibited negligible degradation at 300°K (80°F) in all tests. At elevated temperature, the creep-rupture test indicated degradation. This emphasizes the fact that no one test will provide enough data to evaluate the degree of hydrogen degradation to be used in analyzing a structure from a designmaterial-life standpoint. For the individual responsible for a structure that must operate in hydrogen environments, there can be no substitute for a test that will supply data appropriate to the particular loading spectrum expected. In this case, a test that simply indicates susceptibility to hydrogen degradation is of no real

11-6

FR-5768

value; the test must also provide some measure of the degree of degradation on a meaningful property. It is felt that this program has contributed to the store of information necessary for the design of structures, as well as providing a measure of the hydrogen degradation of common engineering materials. While answering many questions concerning properties in specific environments, many more questions have been raised. It is hoped that continued work in this area will enable explanation, as well as documentation, of the hydrogen effect on metals.

1

and the second se

North Contra

NAME OF

SECTION III MATERIALS AND SPECIMENS

SECTION III MATERIALS AND SPECIMENS

A. TEST MATERIAL

The purpose of this contract was to determine the susceptibility of various alloys to environmental degradation. The testing evaluated the mechanical properties of wrought and case nickel-base, wrought iron-base, wrought titaniumbase, and wrought cobalt-base alloys in phases over a 3-year period. Table III-1 lists the materials and conditions in which they were received and tested. Also included are the types of tests performed on each material and the phase, or year, of the contract that they were performed. The chemical composition of the materials is listed in table III-2. Wrought material was purchased from commercial sources to industry standard (AMS) specifications where possible. In the absence of industry specifications, the applicable Pratt & Whitney Aircraft specification was used. Cast test bars were produced by the Experimental Foundary of the P&WA Connecticut Operations.

Material was ordered separately for each phase of the testing program in sufficient quantity of single heats to perform the types of tests required. For this reason, materials that were tested in more than one phase of the program were from different heats. All materials were routed through the PWA-FRDC Materials Control Laboratory to ensure compliance with purchasing specifications; all materials were in conformance. The majority of materials were purchased in the form of wrought barstock, except for Astroloy, MAR M-200 DS (directionally solidified) and IN-100. The Astroloy material was purchased in the form of flat pancake forgings. The MAR M-200 DS and IN-100 materials were in the form of short cast test bars, which were judged radiographically sound prior to acceptance.

Some microshrinkage was evident in the cast MAR M-200 DS and IN-100 material. As no industry standard specifications for these materials have been established, acceptable microshrinkage levels were based upon experience with gas turbine engine thin-wall castings. Metallurgical examination of some specimens that produced questionable test results did reveal excessive microshrinkage and/or porosity at or near the fracture surfaces. In these cases, retests were conducted.

Specimen blanks were cut from the barstock and heat treated as required. The Inconel 718 material was received in the annealed condition and was subsequently heat treated according to two contract requirements. The WASPALOY[®], MAR M-200 DS, and IN-100 materials were also received in the annealed condition and subsequently heat treated. The Astroloy pancake forgings and A-286 barstock materials were received fully heat treated. Astroloy specimen blanks were oriented with the axis in the circumferential direction and were taken from the periphery of the forging. All other materials were tested in the solutionannealed (as-received) condition.

				Hast		- 1	Year	(I) Tree of Tree (I)
[eteria]	Base	Form	Specification	Code	As-Received Condition	As-Tested Condition (Heat Treatment)	lested	I Abas of tests
comel 718	Nickel	Wrought	AMS 5662	BVTO	19.05 mm (0.75 in.) Diameter Baratock	1227*K (1750*F) 1 Hr. Air Cool, 993*K (1325*F) 8 hr. Furance Cool 0 999*K (1150*F), Hold at 999*K (1150*F) for Total Age Time of 18 hr. Air Cool	1	LCF, HCF, CR, N [°] , S1
ICOURT 718	Nickel	Wrought	AMS 5662	BVTO	19.05 mm (0.75 in.) Diameter Barstock	1227*K (1750°F) 1 hr. Air Cool, 1313*K (1900°F) 1 hr. Air Cool 23*K (50°F) Per min. 963*K (1323°F) 8 hr. Furace Cool to 893*K (1320°F), Hold at 899°K (1150°F) for Total Age Time of 18 hr. Air Cool	-	LCF, HCF, CR, NT, ST
				AMEG	101 42 mm (4.00 in.) Diameter Barstock	Same as Above Two Conditions	1	KC
acouel 718	Nickel	Wrought	AMS 5662	1070	so of a metal (0.75 h.) Dismeter Barstock	1255°K (1900°F), 1 hr, Air Cool	1	LCF, CR, NT, ST
acozel 625	Nickel	Wrought	AMS 5666	92CV	107 95 mm (4.25 [n.] Djame'er Baratock	1266°K (1900°F), 1 hr, Air Cool	1	KC
doodel 625 Vaspaloy®	Nickel	Wrought	AMS 5066 AMS 5706	L-1266K13	19.05 mm (0.75 in.) Diameter Baratock	1293°K (1870°F), 4 hr. Oll Quench 1116°K (1550°F), 4 hr. Air Cool 1033°K (1400°F), 4 hr. Air Cool	8	LCF, CR, ST
4		1	A MG 6706	RWK.J	50.8 by 10.16 mm (2.00 by 0.40 m) Barstock	Same as Above WASPALOY®	64	КС, К _{ТН} , К _Т /К _С
WASPALOY G	Nickel	Wrought	PWA Specifica- tion	ТККС	447.0 mm (17.6 in.) Diameter 41.9 mm (1.65 in.) Thick Pancake Forging	1380°K (2023°F) 4 hr. Oll Quench 1144°K (1600°F) 8 hr. Alr Cool 1255°K (1800°F) 4 hr. Alr Cool 92°K (1200°F) 24 hr. Alr Cool 1033°K (1400°F) 8 hr. Alr Cool	~	CR, ST NT
Astroloy	Nickel	Wrought	PWA Specifica- tion	BYQO	445.8 mm (17.55 in.) Dlameter 72.4 mm (2.9 in.) Thick Pancake Forvior	Same a ° Ab. * Astroloy Except Sait Quench From 1380*K	e	NT, CR
				4024	10 05 mm (0 25 In.) Diameter Barstock	1451 K (2150 F), 1 hr, Water Quench	1	LCF, NT, ST
Haustelloy X	Nickel	Wrought	ANIS 5754	179		Annealed	1	KC, NT, ST
Incouel 718	Nickel	Wrought	AMS 5832			Annealed	1	KC, NT, ST
Incomel 625	hickel	Wroight	AMS 5837		Weld with	······································	2	LCF, HCF, CR, ST
11-100	Nickel	Cast	PWA Specifica- tion	P-9245	12.7 mm (0.50 it.) Diameter by 139.7 mm (5.5 in.), 19.05 mm (0.75 in.) Diameter by 155.5 mm (6.1 in.) Cast Bars	1144.K (1000 F) 17 B1 400		
MAR M-200 DS	Nickel	Cast	PWA Specifica- tion	90 16- d	Directionally Solid(fied Cast Bar 12.7 mm (0.50 in.) Diameter by 139.7 mm (5.50 in.), 19.05 mm (0.75 in.) Diameter by 155.5 mm (5.12 in.)	1477*K (2200°F), 2 hr, Air Cool 1144*K (1600°F), 32 hr, Air Cool	^ .	HCF. ST

į

III-2

ž

Table III-1. Materials Used to Determine the Susceptibility of Various Alloys to Environmental Degradation (Continued)

ł

1....

Γ.

I

-

ł

							Vear	
Material	Вазе	Form	Purchase Specification	Heat Code	As-Received Condition	As-Tested Condition (Heat Treatment)	Tested	Types of Tests ⁽¹⁾
MAR M-200 DS	Nickel	Cart	PWA Specifica- tion	9619-d	Directionally Solidified Cast Bor. 15, 88 mm (0, 625 in.) Diameter hy 127.0 mm (5.0 in.) 19.05 mm (0. 75 in.) Diameter by 152.4 mm	Same as Above MAR M-200 Df	¢2	HCF. CR. NT
A 286	Iron	Wrought	A MS 5735	BZCV	19.05 (0.75 in.) Djameter Barstock	1255°K (1800°F) 1 hr, Oil Quench 1005°K (1350°F), 16 hr, Air Cool	1	LCF, CR. NT, ST
98 c - 4	Iroa	Wrought	AMS 5735	вхоу	114.3 mm (4.50 in.) Diameter Barstock	Same as Above A-286	1, 3	K _C , CR LCF HCF CR. NT. ST
AISI 347	Iron	Wrought	AMS 5646	BZCT	19.05 mm (0.75 in.) Diameter Barstock	1297°K (1875°F), 1 hr, Air Cool Cold Finished	-	
AISI 347	uori	Wrought	AMS 5646	BUJR	107. 9 mm (4. 25 in.) Diameter Barstock	1297°K (1875°F), 1 hr. Air Cool		KC LCF. CR. NT. ST
Titanium 6AL-	IV Titaniu	m Wrought	AMS 4928	BZCR	19.05 mm (0.75 In.) Dlameter Barstock	1019°K (1375°F), 1 hr. Air Cool 1019°K (1375°F), 1 hr. Air Cool		K _C ,
Titanium 6A Lo	tv Titaniu	um Wrought	AMS 4 928	BZAX	114.3 mm (4.50 hr.) Diameter Barstock 19.05 mm (9.75 in.) Diameter Barstock	922*K (1200°F), 1 hr, Air Cool	1	LCF, HCF, CR, NT, ST
A-110	Titaniu Titaniu	um Wrought um Wrought	AMS 4926 AMS 4926	BZMP	114.3 mm (4.50 in.) Diameter Barstock	922°K (1200°F), 1 hr, Alr Cool	1	KC
A-110 Haynes 188	Count	Wrought	PWA Specifica- tion	YFYR	12.7 mm (0.50 in.) and 15.87 mm (0.65 ln.) Diameter Barstock	1450°K (2150°F) 30 mln. Air Cool	01 6	LCF, CK HCF_CR, NT
Haynes 188	Cobalt	Wrought	PWA Specifica- tion	YGDM	25,4 mm (1.0 in.) Dlameter Barstock	1450*K (2150*F) 30 min, Air Cool	o	
(1) Types of Te	:st							
CCF CCF CCF CCF CCF CCF CCF CCF CCF CCF	Low-Cyrit High-Cyrit Creep-Rui Fracture Threshold Cyric Stri Notch Ten Smooth Ten	e Faulgue e Faulgue pture Toughness Stress Intensity sile maile	neity 1					

Pratt & Whitney Aircraft

FR-5768

A CARACTER AND A CARACTER AND A

Material bconel 718 inconel 718 inconel 718		8	mental (Composit	ton - % by	, Weight							:	i	¢	4	Ę	-	۵	x	H,	ő	ŝ
laconel 718 Laconel 718 Laconel 718	Code Code	Mn	க	Cu	īz	5	٨		ц	°Ľ	Fe	Ţ		2	u g	8		-		,	N	22	
Inconel 718 Inconel 026	BVTO	9.0	0.10	<0.05	53.38	18.18			1.02	0.080 1	18.15	0.48 0.	0056	67	0.0 10.0	48	5.46		0, 003	0,006			
Inconel 026	BZMK	40,10	0.14	0.05	52, 86	19.13			1.04	0.20 1	17.8	9.50 0.	0900	ŝ	.11 0.6	4	5.37						
	BUCV	0.0	0,08		62.91	21.60			0.06	0,05	2, 14	0.17			.10 0.6	62	3. 82		0.005	0. ა:5			
Increal 625	RYAP	0.02	0.10		62.79	21.92			0.20		1.79	0.18		JN.	.05 0.6	7	3.92		0.004	0.005			
PAGING	L1288K13	0.03	0.07	0.01	59.8	18.2			2.9 1	2.3	0.65	1.50 0.	0.05 0	• • •	•				<0.015	<0.015			
WASPALOY®	BWKJ	0.02	0.07	0.03	53.04	18.5			2.89	3.68	0.70	1.39 0.	003 0	• 90	. 58 0.1	ž							
Antmice	TKKC	0_015	0.05	0.02	55.31	15.1			3.31	6.65	0.15	3.99 0.	0255 <0	10.	.3 0.1	98							
Antrolov	BYOO	0.02	0.05	0.02	54.13	15.4			3.3	6.9	0.5	4.45 0.	025 <0	.01	.1 0.1	5							
the loc X	BZCB	0.61	0.71		47. 53	22.31		0.51		1.60	18.36	ò	0014	-	.27 0.1	14			0.016	0.006			
	P-9245	<0.10	<0.10		62, 92	9.02	0.86		4.76	3.59	0.41	5.36 0.	012 U	90.	- B4 0-	18							
MAP M-200 DS	P-9108	40.10	Ø.10	<0.10	60.1	8.62		12.57	1.80	10.54	<0.10	4. 96 0.	010 0	. 05			1.25	đ					
WAR M-200 DS	6616-d	<0. 10	<0.10	<0.10	62.6	8.08		12.0	1.99	9.15	0.14	4.97 0.	0 510	.04			0.92	e					
A-256	BZCU	1.62	0.48		25.1	15.3	u.26		2.2		53.2	U.31 0.	002	-		80							
A-286	YCXE	1.74	0.81		25.9	14.4	0, 29		2.23		53.1	0.27 0.	010		1.25								
AISE 247	BZCT	2.0	0.94	40.10	10.10	18.4					÷7.4				0.26 0.	8	0.83			0.010			
747 BIA	RUR	1.68	0.62	0.17	9.61	17.0					69.7			-	0.22 0.	066	0.61		0.027	0,022			
	BZCS						3.98		89.1		0.21	6.59			•	020					0.007	0.17	0.00
	B7AY						4. 29		HK.9		0.18	6.58			0.	040					0.080	9.11	0.00
									92.1		0.33	5.24			0	01 2.	2				0, 011	0.164	0.013
ATT-V	N 700								92.62		0.029	5.15			0.	04	. 15				0.004	0.18	0.01
0lt-y	1W79	5			29, 70	20.6		13.45		40.1	2.06	0	100			80		0.04	0.010	0,006			
HAYDGe 155	AL II					ā		14 05		34.7	1.56	0	100		•	8		0,05	0.010	0.006			
Haynes 188	YGDM	1.12	0.31		22.30	21.8		14.05		38.7	1.56	د	5		5	3							

A DESCRIPTION

Pratt & Whitney Aircraft

FR-5768

FR-5768

Inconel 718 and Inconel 625 materials were tested in both the parent and welded condition. Specimen blanks were prepared, as shown in figure III-1, and manually gas-tungsten-arc (GTA) welded. The Inconel 718 blanks were welded using AMS 5832 as filler material; Inconel 625 blanks were welded using AMS 5837 filler material. Both materials were welded in the solution-anneal condition. The Inconel 718-welded blanks were then subjected to the heat treatment No. 2 (1313°K [1900°F] solution) described in table III-1. Inconel 625welded specimen blanks were subjected to an 1255°K (1800°F), 1-hr, air-cooled stress-relief cycle.

Figure III-1. Specimen Blank Preparation Prior To FD 51835 Welding

B. TEST GASES AND MATERIALS

Helium, hydrogen, and anhydrous ammonia were used during the testing of specimens, and nitrogen was used as a preliminary purge gas. Hydrogen was provided under Military Specification P-27201, which requires the gas to have an oxygen content of less than 1 part per million. Analyses verified gas to be of this purity. Anhydrous ammonia was provided typically under Federal Specification O-A-445 and was rated 99.95% pure. Both the hydrogen and ammonia were supplied in liquid form and vaporized. The helium and hydrogen gases were used to directly provide the test environments. The hydrogen and water vapor environments were obtained by injecting distilled water into the pressurized hydrogen environment such that the water was vaporized by furnace heat within the test chamber.

FR-5768

The ammonia was used to obtain the environment noted as hydrazine in the test programs. Since hydrazine is considered to dissociate according to the following equations:

$$3N_2H_4 \rightarrow 4NH_3 + N_2 + 1.553 \times 10^7 \text{ KgM} (1.443 \times 10^5 \text{ Btu}) \text{ exothermic}$$

ammonia
 $4NH_3 \rightarrow 2N_2 + 6H_2 - 8.523 \times 10^6 \text{ KgM} (0.792 \times 10^5 \text{ Btu}) \text{ endothermic}$

pure anhydrous ammonia, with the specimen heated to 951°K or 1144°K (1250°F or 1600°F), produced an environment similar to dissociated hydrazine.

Gas handling systems, supplying the test vessels, were equipped to enable sampling before and after specimen tests. The hydrogen was sampled extensively, both dry and saturated with water vapor (wet hydrogen was dried prior to analysis). Samples were analyzed using a modified gas chromatograph with accuracy in the parts per billion range. No appreciable difference was noted between pretest and post-test samples, indicating no gas contamination by the test rig and/or test itself.

C. TEST SPECIMENS

Surfaces of all specimens were machined⁽¹⁾ and finished to an average roughness of 16- μ in. RMS or less except for one outer surface of the compact tensile fracture toughness specimens, which was machined to a roughness of 32- μ in. RMS in accordance with ASTM E-399. Gage sections of specimens were polished prior to testing. The notch used for tensile specimens to obtain a stress concentration factor of 8.0 was designed according to Peterson⁽²⁾ and was machined by grinding. Smooth tensile specimens had a gage section diameter of 6.37 mm (0.251 in.). Two types of specimens were used for the fracture mechanics testing. Compact tensile specimens were used for fracture toughness tests in the contract's first phase. Fracture mechanics tests under the second phase of the contract were conducted on center slot (or flaw) type specimens with a thickness of 2.54 mm (0.10 in.). The slot was machined into the specimen by use of electrical discharge machining (ELOX). The specimen was polished in the area of the slot.

Welded specimens were machined from blanks prepared as previously discussed; manual GTA welding was performed on oversized blanks to ensure specimen finished dimensions. Both the root pass and the finished weld were X-ray inspected and judged radiographically sound. Prior to finish machining, specimens were given a light etch to define weld location. After finish machining, all specimens were polished to produce desired surface finish.

A typical set of specimens is shown in figure III-2; specimen prints are listed in table III-3 and are shown in figures III-3 through III-9. Specimens prints are dimensioned in conventional units only.

⁽¹⁾ Test specimens were machined by both the Pratt & Whitney Aircraft Laboratory Machine Shop and outside vendors operating under Pratt & Whitney Materials Control Laboratory surveillance and control.

⁽²⁾ R. E. Peterson, Stress Concentration Design Factors, John Wiley & Sons, Inc., New York, 1953.

w the set.

Name Print Numbe	er Figure
Constant Strain Low- FML 95500E Cycle Fatigue	з III-3
Smooth Axial Fatigue FML 95212E (High-Cycle Fatigue)	3 III-4
Compact Tensile FML 955590 Fracture Toughness	C III-5
Center Slot (Notch) FML 95810 Fracture Mechanics	III-6
Flat End Creep-Rupture FML 956231	В ІП-7
Notch Tensile FML 956201	в III-8
Smooth Tensile FML 95224	B III-9

Table III-3. Specimens Used to Determine the Susceptibility of Various Alloys to Environmental Degradation

2

I

T

.

i

Barra a series

- HARRING

for the second

I

Typical Test Specimens Used to Determine Fffect of High Pressure Gaseous Hydrogen Environments on Mechanical Properties of Materials Figure III-2.

Pratt & Whitney Aircraft FR-5768

III-8

Pratt & Whitney Aircraft FR-5768 FML 95500B CLABS & GAGE SECTION FINISH TO BE TEN MILLO-IN RINS OR BETTER 3. PART IS SYMMETRIC ABOUT E.S. 5 DUMENSIONS WIMOUT TOLEEMKES ARE \$1010 MCH I GAGE SECTION TO BE .008 CONCENTAL WITH THREADS. Y O V FMK 955008 4. WORK TO DUMENSIONS SNOWN. NO. OF BHELTE STERIN 1 SKETCH NO NOTES NO N SPEC.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

.

Constant Strain Low-Cycle Fatigue Specimen

Figure III-3.

111-9

1

Ì

ł

Ф

FML 95500

UNLESS CTHERWIDE OFECIFIED

4.349.41

FR-5768

III-10

O Martin Down

~

-

A Supplying the second

terranaut

MART - AVENU

1

A. Sara

A second

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

Pratt & Whitney Aircraft

FR-5768

.

Figure III-5.

Low B

III-11

FMI, 95810

1.251

120.00

III-12

Ĺ

n in the second second

Inspirings

t three costs

And a construct

A shear shear a

S. waterstand

Seator seator

ĺ

1. A. H. M.

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

FR-5768

Pratt & Whitney Aircraft

FR-5768

Pratt & Whitney Aircraft

III-14

FML 95620B

;

ļ

and the state of the second second

Pratt & Whitney Aircraft

FR-5768

REPRODUCIBILITY OF THE ORIGINAL PAGE IS POOR.

SECTION IN MON-CICIL FATHORE

SECTION IV HIGH-CYCLE FATIGUE

A. GENERAL

してもようのななかったいないない

Load (stress) controlled high-cycle fatigue tests (HCF) were conducted on three nickel-, one iron-, one titanium-, and one cobalt-base alloys to determine the effect of high-pressure hydrogen and/or dissociated hydrazine (anhydrous ammonia) upon the high-cycle fatigue life of these materials at ambient and elevated temperatures and establish the susceptibility of these alloys to hydrogen and/or dissociated hydrazine degradation.

High-cycle fatigue tests were conducted in 34.5-MN/m² (5000-psig) gaseous helium and hydrogen at 300° K (80° F) on Inconel 718 (two heat treatments), AISI 347, and Titanium A-110, and at 951° K (1250° F) on Inconel 718 (two heat treatments), IN-100 and MAR M-200 DS. Additional HCF tests were conducted on the MAR M-200 DS material in 3.45-MN/m² (500-psig) hydrogen and dissociated hydrazine at 1144° K (1600° F). HCF tests were conducted on Haynes 188 material in 3.45-MN/m² (500-psig) dissociated hydrazine at 951° K (1250° F) only. Comparison of the HCF S-N curves established in helium to those established in other test media determined HCF life degradation due to high pressure hydrogen or dissociated hydrazine. Test stress levels for each material were selected to obtain specimen failure within 1000 to 100,000 test cycles.

B. CONCLUSIONS AND DISCUSSION

As a class, the nickel-base alloys were the most susceptible to environmental degradation of HCF life, with all exhibiting degradation. On a qualitative basis, MAR M-200 DS was most susceptible to HCF life degradation, followed by Inconel 718 (both heat treatments showed approximately the same) and IN-100. The iron- and titanium-base alloys, AISI 347 and titanium A-110, were not affected at 300° K (80° F). The cobalt alloy, Haynes 188, was tested in dissociated hydrazine (ammonia) only, and HCF degradation could not be established.

Inconel 718 alloy, with 1227° K (1750°F) and 1313° K (1900°F) solution plus age heat treatments, was tested at 300°K (80°F) and 951°K (1250°F) in helium and hydrogen atmospheres at 34.5 MN/m² (5000 psig). Both the 1313°K (1900°F) and 1227°K (1750°F) solutioned material were degraded in hydrogen to approximately the same degree, indicating microstructure did not significantly affect the high-cycle fatigue life in hydrogen of this material. Cyclic stress level had some influence on the degree of degradation as indicated by the slopes of the S-N curves (figures IV-1 and IV-2). However, both heat treatments show approximately the same degradation at both 300°K (80°F) and 951°K (1250°F), indicating HCF life degradation of this material in hydrogen atmosphere was not as dependent upon temperature as some of the other properties obtained in this program.

IV-1

Pratt & Whitney Aircraft FR-5768

IV-2

FR-5768

Ż

IN-100 material was tested in 34.5-MN/m² (5000-psig) hydrogen at 951° K (1250° F) only and exhibited the lowest HCF life degradation of all the nickelbase alloys tested. The slope of the S-N curves in helium and hydrogen indicate the HCF life degradation of this material is not stress-level sensitive since the degree of degradation appears constant with increasing cyclic stress level (figure IV-3). Specimens tested in both helium and hydrogen were examined metallurgically after test, and one specimen tested in the hydrogen atmosphere exhibited excessive microshrinkage (figure IV-4).

MAR M-200 DS material was tested in 34.5-MN/m² (5000-psig) helium and hydrogen at 951°K (1250°F) (heat P9108) and in 3.45-MN/m² (500-psig) hydrogen and dissociated hydrazine at 1144°K (1600°F) (heat P9199). The HCF life of this alloy was degraded at 951°K (1250°F). Since there was not a helium baseline established at 1144°K (1600°F), nor any testing in 3.45-MN/m² (500-psig) hydrogen at 951°K (1250°F), the degradation due to 3.45-MN/m² (500-psig) hydrogen or dissociated hydrazine at 1144°K (1600°F) could not be established. Cyclic stress level and temperature influence the degree of degradation of this alloy in a hydrogen atmosphere as indicated by the S-N curves shown in figure IV-5.

Because of the test data scatter, all specimens tested in helium atmosphere were examined metallurgically after failure. The specimens showed numerous small fractures along the gage section, cracks through MC carbides and some incipient melting resulting from the 1477°K (2200°F) solution heat treat cycles. However, all specimens showed satisfactory grain orientation with some, but not excessive, micro-shrinkage evident (figure IV-6). The slope of the helium HCF baseline S-N curve was established by the half-cycle ultimate tensile strength ($1208.7 MN/m^2$ (175.3 ksi)) at 951°K (1250°F) in helium and the cycles-to-failure for a HCF specimen at the average maximum stress level ($1068.7 MN/m^2$ (155 ksi) tested.

AISI 347 alloy was tested in 34.5-MN/m² (5000-psig) helium and hydrogen atmospheres at 300°K (80°F) only. This material exhibited no HCF life degradation at these conditions (figure IV-7).

Titanium A-110 material was tested in 34.5-MN/m² (5000-psig) helium and hydrogen atmospheres at 300°K (80°F) only. Test results indicate no HCF life degradation within the 10,000- to 100,000-cycle test range (figure IV-8). Since all testing was accomplished at one pressure and temperature, no conclusions regarding degradation versus temperature or pressure can be made.

HCF testing of Haynes 188 alloy was accomplished in 3.45-MN/m² (500-psig) dissociated hydrazine (obtained by dissociating anhydrous ammonia) at 951°K (1250°F) only (figure IV-9). Since no comparable data are available, conclusions as to degree, if any, degradation of HCF life resulting from this media and temperature can only be speculative.

Test data are listed in table IV-1 for all materials and test conditions.

C. TEST PROCEDURE

Smooth, round specimens were used for the high-cycle fatigue tests discussed in this report. The test specimen is shown in Section III and is detailed by print FML 95212B.

Pratt & Whitney Aircraft FR-5768

DF 96477

Figure IV-4. Macrograph of IN-100 HCF Test Specimen Showing Excessive Micro Shrinkage at Fracture Face FD 72601

Figure IV-5. High-Cycle Fatigue Life of MAR M-200 DS at 951°K (1250°F) and $34.5-MN/m^2$ (5000-psig) Helium and Hydrogen Gas at 1144°K (1600°F) and 3.45 MN/m² (500 psig) Hydrogen and Dissociated Hydrazine (Ammonia) Gas

I

Ţ

Landare sull

Burner and

Series S 1

1

Figure IV-6. Typical MAR M-200 DS Cross Section Adjacent to Fracture Face. Specimen Tested in Helium

FD 72602

5

120

100

80

10

827.4

689.5

551,6

100

1,000

CYCLES-TO-FAILURF

DF 96480

100,000

≙

IV-6

10.000

Figure IV-9. High-Cycle Fatigue Life of Haynes 188 at DF 96481 351° K (1250°F) and 3.45-MN/m² (500psig) Pressure Dissociated Hydrazine (Ammonia)

After machining, specimen material was verified, and each specimen was inspected visually for machining discrepancies. Prior to testing, each specimen gage diameter (minimum cross section) was measured to the nearest 0.012 mm (0.0005 in.) with a micrometer and then cleaned with acetone.

The HCF life data were established by an axial load (stress) controlled tension-tension test. The test cycle was a tensile load that varied sinusoidally about a constant tensile preload at a cyclic rate of 20 Hz. All specimens were tested at an R ratio (minimum stress/maximum stress) of 0.1.

FR-5768

ł

1.1.1.1.1.1.1

Tat	'9 IV-1. Hig En	gh-Cyc vironi	cle Fatigue Pro ment	perties of M	laterials	in High Pr	essure G	aseous		
					Test Coi	nditions St	ves Lev	el(1)		
Material	Test Temperatu °K °]	rre, F	Environ- ment	Pressu MN/m ²	re, psi	Maximu MN/m ²	um, ksi	Minin MN/m ²	aum., ksi	to- Failure
Inconel 718	300	80	Helium	34.5	5000	1069.00	155.0	106.90	15.5	100,000 - Did Not
1227°K (1750°F)			:		6000	1906 59	175.0	120.66	17.5	Fail 50, 900
Solution + Age Heat Treatment	300	80	Helium	34.0 24 F	5000	1241.06	180.0	124.11	18.0	48,800
lical i leamicut	300	080	Helium	24 5 24 5	5000	1275.53	185.0	127.55	18.5	37, 800
	200		Helium	34,5	5000	1310.01	190.0	131.00	19.0	17,000
	200	000	Hvdrogen	34.5	5000	1123.85	163.0	112.39	16.3	25,600
	000	000	Hvdrogen	34.5	5000	1151.43	167.0	115.14	16.7	30, 500
	300	80	Hydrogen	34.5	5000	1172.11	170.0	117.21	17.0	12, 500
	300	80	Hydrogen	34.5	5000	1206.59	175.0	120.05 22 50		10 900
	951 1	250	Helium	34.5	5000	965.27	140.0	96. 53 20 23	14.0	10,200
	1 120	250	Helium	34.5	5000	999.74	145.0	99.97	14.0	13,400
	051 1	250	Helium	34.5	5000	1034.22	150.0	103.42	10.0 10.1	2,400
	1 120	950	Helium	34.5	5000	954.93	137.5	95.49	12,75	8,400
	1 100	000	Hwdrogen	34.5	5000	792.90	115.0	79.29	11.5	6, 100
	T TCA	200	IIJULUECII Uridnoron	34.5	5000	861.85	125.0	86.19	12.5	16, 800
	r 106	0020	nyurugen Hydrogen	34.5	5000	896.32	130.0	89.63	13.0	4,900
	951 1 951 1	250	Hydrogen	34.5	5000	930.80	135.0	93.08	13.5	800
			:	L G	5000	1906 59	175.0	120.66	17.5	42,400
Inconel 718	300	80	Helium	34.0 7 n	2000	1241.06	180.0	124.11	18.0	35,800
1919°K /1000°E)	300	08	Helium	0. 1 .0	2000	1975 53	185.0	127.55	18.5	20,700
	300	80	Helium	0. 4 .0	2000	1310.01	190.0	131.00	19.0	13,200
Solution + Age usat Treatment	300	08 0	Helium	04.0 7 n	2000	10.82.48	157.0	108.25	15.7	46,400
lical I Laure	300 300	08 08 08	Hydrogen Hydrogen	o≇• u 34.5	5000	1116.95	162.0	111.70	16.2	43, 500

(1) Stress Lavels for R ratio $\frac{\text{Minimum Stress}}{\text{Maximum Stress}} = 0.1$

1.11

1.11

100 million (100 million)

A starte water

I

Table IV-1. High-Cycle Fatigue Properties of Materials in High Pressure Gaseous Environment (Continued)

					m	l'est Conc	ditions	tross Le	(1)		Cveles-
		Temper K	st ature, °F	Environ- ment	Press MN/m ²	ure, psi	Maxim MN/m ²	um, ksi	Minin MN/m ²	num, ksi	to- Failure
					2 F C	5000	1151.43	167.0	115.14	16.7	19,540
	Inconel 718	300	08 08	Hydrogen		5000	1206.59	175.0	120.66	17.5	16,820
	1313°K (1900°F)	300	000	Hydrogen	31.5	5000	965.27	140.0	96.53	14.0	9,600
	Solution · Ago	951 I	250	Hellum	 	5000	982.51	142.5	98.25	14.25	4,530
	Heat Treatment	951 I 1 169	250	Hellum	5 F 6	5000	1034.22	150.0	103.42	15.0	100
		1 1 c 6	0.2			5000	1103.17	160.0	110.32	16.0	20
		951 1	250	Hellum	0.1.0 1.1.0	5000	792.90	115.0	79.29	11.5	37,200
		951 1	250	Hyarogen		2000	861.85	125.0	86.19	12.5	6,500
w		951 I	250	Hyarogen	0.4.0 5.1.0 5.1.0	5000	930.80	135.0	93.08	13.5	5, 560
-9		951 1	0027	Hydrogen	0 1 0	5000	896.32	130.0	89.63	13.0	6,200
•		951 1	1250	Hydrogen		0000	10.000		ı		
					12 	5000	689,48	100.0	68.95	10.0	50,600
	IN-100	951	[250]	Hellum		5000	723, 95	105.0	72.40	10.5	43,000
		951 1	[250]	Hellum		0002	758 49	110.0	75.84	11.0	11, 100
		951 1	1250	Helium	34• 0 • • •	0000	00 HUU	010	65 50	9.5	60.700
		951 1	1250	Hydrogen	34.5	0000	00.000	100.0	68 95	10.0	24.400
		951 1	1250	Hydrogen	34.5	0009	089.40 200 01			10 10	2,860
		051	1950	Hvdrogen	34.5	5000	723.95	10.c.01	12.40	. • • • •	
		951	1250	Hydrogen	34, 5	5000	758.42	110.0	75.84	11.0	6, 900
							17 000	1.15 0	49 97	14.5	2.630
	MAR M-200 DS	951	1250	Helium	34.0	0000	1000 FI 000	150 0	103 .12	15.0	3.100
	Heat Code P-9108	951	1250	Helium	34.5	0000	10/04.44	155 0	106 90	121	2.200
		951	1250	Helium	34.5	0009	1008.00	101.0	119 0C		9 800
		951	1950	Helium	34.5	5000	1138.63	169.0	113.00		
		100	1950	Hvdrogen	34.5	5000	896.32	130.0	89.63	13.0	1, 1000
			1050	lludroron		5000	930.00	135.0	93.00]	890
		160	10101	nyui ogen Uydrogon		5000	965.26	1.40.0	96.53	14.0	935
		168	0c21	nyau ogen	•						
			Minin	num Stress							
	(1)Stress Levels fo	r R ratic	Mavir	num Stress	0.1						
			TTVDTA.								

Pratt & Whitney Aircraft

FR-5768

Ø

T;	l-VI alda	L. High Envi	-Cycle Faugue ronment (Contir	ined)						
				Te	st Cond	itions St	ress Lev	rel(1)		Cycles-
-	Tempel vk	st rature, °F	Environ- ment	Pressu MN/m ²	ire, psi	MN/m ²	num, ksi	Maxii MN/m ²	mum, ksi	to- Failure
Material MAR M-200 DS	951 1	1250	Hydrogen Hydrogen	34.5 34.5	5000 5000	999.74 1034.22	145.0 150.0	99.97 103.42	14.5 15.0	680 80
Heat Code P-9108	TCA	0071				06 400	190.0	82.74	12.0	1,530
MAR M-200 DS	1144	1600	Hydrogen	3, 45 3, 45	200 200	758.43	110.0	75.84	11.0	4,430
Heat Code P-9199	1144	1600 1600	Hydrogen	3.45	500	689.48 690 53	100.0 90.0	63.95 62.05	9.0 9.0	49,400
	1144	1600	Hydrogen	3.45	000	020.030				
			Dissociated	3.45	500	827.38	120.0	82.74	12.0	813
	1144	1000	Dissociated	3.45	500	758.43	110.0	75.84	11.0	1,630
10	1144	1000	Dissociated	7	500	689. 48	100.0	68,95	10.0	23,700
	1144	1600	Hydrazine	0.4.0		•			0	53 000
	1144	1600	Hydrazine	3.45	500	620.53	90.0	62.05	a. 0	
0 151 9 47	300	80	Helium	34.5	5000	620.53	90.0	62.05	9.0	100,000 + (did not fail)
	006	BO	Helium	34.5	5000	689.48	105.0	68.95 79 40	10.0 10.5	70,800 3,640
	300	80	Helium	34.5	5000	758.43	110.0	75.84	11.0	200
	300	00 00	Helium Evdrogen	34. 5 34. 5	5000	655.00	95.0	65.50	9. 0	100,000 + (did not fail)
	300	00	maga mán			00 40	100.0	68, 95	10.0	20,500
	300	80	Hydrogen	34.5 24 F	5000	723.95	105.0	72.40	10.5	1,620
	300	80 80	Hydrogen Hvdrogen	34. 5 34. 5	5000	792.90	115.0	79.29	11.5	00 T
	200))) 1							
	•	Minin	num Stress	0.1						
(1)Stress Levels for	or R rau	^o Maxi	mum Stress							

(2) Dissociated Anhydrous Ammonia

, interest of the second se

• ţ

• • • • •

i

				L	est Cone	litions	Strace 1	, 1) (1)		Cvcles-
Material	T Temp K	est erature, °F	Environ- ment	Press MN/m ²	ure, psi	Max MN/m ²	imum, ksi	Maxi MN/m ²	mum, ksi	to- Failure
A-110	300	80	Helium	34.5	5000	827.38	120.0	82.74	12.0	196, 600 (did not fail)
		00	Halium	34.5	5000	861.85	125.0	86.19	12.5	51,900
	300	00	Helium	34.5	5000	896.32	130.0	89.63	13.0	46,900
	000	ŝ	Helium	34.5	5000	930.80	135.0	93.08	13.5	17,500
	006		Hvdrogen	34.5	5000	896.32	130.0	89.63	13.0	73,600
		00	Hvdrogen	34.5	5000	913.66	132.5	91.37	13.25	17,200
	008		Hvdrogen	34.5	5000	930.80	135.0	93.08	13.5	3,200
	300	80	Hydrogen	34.5	5000	965.27	140.0	96. 53	14.0	5,300
Haynes 188	L C		Dissociated	3 45 2	500	517.11	75.0	51.71	7.5	90,900
	951	1Z2U	nyurazmev-/ Diagooioted	0F •0						
	951	1250	Hydrazine	3.45	500	551.58	80.0	55.16	8.0	13,300
	0 6 1	1950	Dissociated Hvdrazine	3.45	500	565.37	R2. 0	56.54	8.2	6, 690
	Tre	2017	Dissociated	- 			e L		и 0	100
	951	1250	Hydrazine	3.45	500	586, 05	85. U	38. 01	n•0	100
	951	1250	Dissociated Hydrazine	3.45	500	586.05	85.0	58.61	8 . 5	120
	951	1250	Dissociated Hydrazine	3.45	500	606.74	88.0	60, 67	8.8	0.5
All Tests Conduc	sted at a (Cyclic Ra	te of 20 Hz							
(1) Stress levels	for R rati	o Maxir	num Stress num Stress	0.1						
(2) Dissociated A	nhydrous	Ammonia	١.							

68 , -

High-Cycle Fatigue Properties of Materials in High Pressure Gaseous ę 117

I

Contraction of

Ĩ

1.11.14

Pratt & Whitney Aircraft FR-5768

IV-11

FR-5768

Tests were conducted using a closed loop on load, servohydraulic test machine located in an isolated test cell (figure IV-10). The test specimen was mounted in a heavy walled pressure vessel attached to the upper platen of the test machine. Test specimens were mounted in the pressure vessel load frame by threading each end into tapped loading rods (top and bottom) and securing with locknuts. The specimen and the sealed pressure vessel were subjected to a purge cycle, consisting of nitrogen purge, evacuation, two successive pop purges with the test media and final pressurization to test pressure.

Test Machine Located in Isolated Test Cell

Test Vessel Open

Test Vessel Closed

Specimen load was measured by a strain-gage load cell, integral with the specimen load rod and inside the pressure vessel. Before the initial test and periodically throughout the test program, the load cell calibration was checked (using an instrumented and calibrated specimen) at 34.5 MN/m2 (5000 psig) pressure, so that axial tensile loads on the specimen due to high pressure acting over differential specimen and loading rod areas could be compensated for by the loading system. Since the load cell was adjacent to, and calibrated to give absolute specimen load, friction loss through the loading rod O-ring seals was

IV-12

FR-5768

of no consequence. Electrical connections to all internal strain gages, load cell, thermocouples, and heating devices were made through the bottom of the pressure vessel via an instrumentation manifold and high pressure bulkhead connectors. During testing, the load cycle and number of cycles-to-failure were constantly monitored on a calibrated oscilloscope and electronic counter using the internal load cell output.

Elevated temperature testing was accomplished using a dc power supply and high-power-density, single-zone furnace mounted inside the pressure vessel around the test specimen. Analysis of hydrogen gas samples, before and after the specimen tests, indicated required gas purity was obtained. Ther nocouples looped around the specimen minimum cross section were used to monitor and control specimen temperature during each test.

Test system shutdown was provided at the instant of specimen failure by a linear variable differential transformer, which sensed load rod position, in combination with a meter relay. This proved an accurate method of determining the total number of cycles-to-failure.

2. Hereite States and 1999.

SECTION V LOW-CYCLE FATIGUE

A. INTRODUCTION

Low-cycle fatigue (LCF) tests were conducted to determine degradation due to high pressure gaseous hydrogen of six nickel-base, two iron-base, two titanium-base, and one cobalt-base alloys. Comparison of results of axial strain tests in a high pressure hydrogen environment to results of similar tests in a helium environment established the degradation in cyclic life due to the hydrogen environment. The low-cycle fatigue tests performed under the contract were of the strain-controlled type, with the material cycling through a constant total (elastic plus plastic) strain range (figure V-1) until complete specimen fracture.

FD 48672

Figure V-1. Typical Load-Strain Hysteresis Curve Obtained During a Specimen Low-Cycle Fatigue Test

B. CONCLUSIONS AND DISCUSSION

Except for AISI 347 and MAR M-200 DS, materials tested exhibited some degradation in LCF life due to high-pressure hydrogen in at least one of the conditions tested. This degradation was dependent upon both temperature and strain range. As a class, the nickel-base alloys were most susceptible to hydrogen effects, followed by the titanium-base and cobalt-base alloys, with the iron-base alloys tested the least susceptible. It must be emphasized that the conclusions made herein were based on limited numbers of tests, particularly in the cases of IN-100, MAR M-200 DS, WASPALOY®, Haynes 188, and on extrapolated data. For these reasons, the conclusions must be viewed in a qualitative rather than quantitative manner.

FR-5768

Two alloys, Inconel 718 at 111°K (-260°F) and MAR M-200 DS at 951°K (1250°F), had greater LCF life in hydrogen than in belium, indicating a beneficial effect of the hydrogen environment at those conditions. Metallurgical and surface evaluations of the failed specimens did not reveal conditions that would significantly contribute to this occurrence. It is believed that additional work to define the environmental degradation mechanism would explain this occurrence; unfortunately that work was beyond the scope of this program.

Inconel 718 material was the most thoroughly investigated. Two heat treatments, differing in solution temperature only, were applied to specimens from the same stock. The base material was fine grained, fully recrystallized. The primary difference in microstructure was the larger grain size produced by the 1313° K (1900°F) solution treatment than by the 1227° K (1750°F) solution treatment.

The 1313°K (1900°F) solutioned material was slightly more degraded in hydrogen than the 1227°K (1750°F) solutioned material, indicating that microstructure affects LCF performance with small grain, recrystallized structures more desirable. (Investigations by Harris and VanWanderham $^{(1)}$ have also described this relationship.) Cyclic strain level and temperature also influenced the degree of degradation (figures V-2 through V-9). The 1227°K (1750°F) solutioned material had increased degradation at increased cyclic strain levels. The 1313°K (1900°F) solutioned material did not exhibit this trend. The most influential effect on LCF life resulted from temperature. Both materials were less susceptible to life degradation at 951° K (1250° F) than at 300° K (80° F). The 1313°K (1900°F) solutioned material was tested at 111, 300, and 951°K (-260, 80, and 1250°F). A plot of degradation vs temperature (figure V-9) indica es that degradation is most severe in the range of temperatures around 300°K (80°F), with decreasing degradation with decreasing temperature. In fact, at a temperature of 111°K (-260°F) LCF life in hydrogen was significantly better than LCF life in helium at that temperature. The reason for this great improvement in LCF life at cryogenic temperature is not presently understood. It is believed that the 1227°K (1750°F) solutioned material and perhaps other nickel-base alloys will also show similar influences of temperature. It is clear, however, that Inconel 718 LCF life is most severely degraded in the room temperature range. Additional testing at temperature ranges between 266 and 589°K (-100 and 600°F) would define the point of inflection in the temperaturedegradation curve.

The remaining nickel-base alloys, IN-100, WASPALOY, Inconel 625, Hastelloy X, and MAR M-200 DS, were tested at only one temperature; therefore, no conclusions as to effect of temperature were reached. Inconel 625 and Hastelloy X were tested at 300°K (80°F), and LCF life of both was degraded (figures V-10 through V-13). In fact, Inconel 625 was the most severely degraded of all materials tested at room temperature. IN-100 (cast), WASPALOY, and MAR M-200 DS (cast) (figures V-14 through V-16) were tested at 951°K (1250°F) and were ranked in that order as to degree of degradation. IN-100 was the most severely degraded of all materials tested at 951°K (1250°F).

⁽¹⁾VanWanderham, M., and J. A. Harris, Jr., "Low-Cycle Fatigue of Metals in High Pressure Gaseous Hydrogen at Cryogenic, Ambient, and Elevated Temperatures," presented to the 1971 WESTEC Conference, Los Angeles, California.

FR-5768

Ì

Figure V-2. Low-Cycle Fatigue Life of Inconel 718 DF 96401 With 1227°K (1750°F) Solution Plus Age Heat Treatment at 300°K (80°F) and 34.5 MN/m² (5000 psig) Pressure

Figure V-3.Low-Cycle Fatigue Life of Inconel 718DF 96402With 1227°K (1750°F) Solution Flus
Age Heat Treatment at 951°K (1250°F)
and 34. 5 MN/m2 (5000 psig) pressureDF 96402

Pratt & Whitney Aircraft

FR-5768

DF 96404

DF 96403

FR-5768

. .

1

DF 96406

FR-5768

ŧ

No. of Concession, Name

1 SER. 1

10 x 4 x

V-6

FR-5768

FR-5768

Figure V-12. Low-Cycle Fatigue Life of Hastelloy X DF 96411 at 300°K (80°F) and 34.5 MN/m² (5000 psig) Pressure

Figure V-13. Effect of Gaseous Hydrogen and Strain Range on Low-Cycle Fatigue Life of Hastelloy X at 34.5 MN/m² (5000 psig) Pressure DF 96412

Į

Ī

F3-5768

Figure V-14. Low-Cycle Fatigue Life of WASPALOY[®] at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

DF 96414

FR-5768

Figure V-16. Low-Cycle Fatigue Life of MAR M-200 DF 96415 DS at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

The two titanium alloys (titanium 6-4 and A-110) were tested at room temperature and 366°K (200°F). (See figures V-17 through V-20.) There appeared to be little or no degradation of LCF life of titanium 6-4 at either temperature. The titanium A-110 did exhibit severe degradation at 366° K (200°F) with the degree of degradation dependent upon cyclic strain level. There appeared to be no degradation of A-110 at 300° K (80° F). There was, however, considerable data scatter for these alloys at room temperature.

The cobalt-base alloy, Haynes 188, was tested at 951° K (1250° F) only and did not display a marked influence of strain level upon degree of degradation (figure V-21), with severe degradation over the entire cyclic strain range of 1 to 2% at this temperature.

The two iron-base alloys, AISI 347 and A-286, exhibited the least degradation of all alloys tested. Neither alloy was degraded at room temperature 300° K (80° F), and A-286 was only slightly degraded at 951° K (1250° F). (See figures V-22 through V-24.)

Test results are listed in table V-1 for all alloys and conditions tested. Curves of strain range (both total and plastic, where applicable) vs cycles-tofailure are plotted for each material. Plots of percent change from helium vs cyclic strain range were obtained by comparing the helium and hydrogen LCF curves, which were extrapolated, if necessary.

FR-5768

Figure V-17. Low-Cycle Fatigue Life of Titanium 6-4 at 300°K (80°F) and 34.5 MN/m² (5000 psig) Pressure

Ĺ,

parties of

1

DF 96417

FR-5768

Figure V-19. Low-Cycle Fatigue Life of Titanium A-110 at 300°K (80°F) and 34.5 MN/m² (5000 psig) Pressure

DF 96419

ŝ,

FR-5768

DF 96423

DF 96422

Table V-1. Low-Cycle Fatigue Properties in 34.5-MN/m² (5000-psig) Pressure Gaseous Environment

1		Tempe	st rature,	<u> Environment</u>	Total Strain Bange, 🖗	Cycles-to- Failure	Plastic Strain Range, ∰ *(1)	Heat Code
	Material	۶K	4		- Comme			
I	Nickel Base							
				11 - 11 - 11 - 11 - 11 - 11 - 11 - 11	1 0	15,000	0.02	BVTO
	Inconel 718	300	80	Henum	-	19 650	0.03 to 0.5	
		300	80	Helium	0. X	10,000		
	1227°K (1750°F)	006	0x	Helium	1.5	1,500	U. 13 to U. 20	
	Solution + Age		0 o	Halium	2.0	1,220	0.35 to 0.54	
		300	00		0	6.310	0.07 to 0.08	
		300	80	Hydrogen	> • •	0.000	0.05 to 0.08	
		300	80	Hydrogen	1.0	00,00		
		006	80	Hvdrogen	1.5	450	0, 12 10 0, 19	
			00	Hudroren	2.0	55	0.41 to 0.46	
۲		300	20			9 950	0.02 to 0.04	
/-		300	80	Hydrogen	0 .0		0 = 0 + 0 + 0	
15		951	1250	Helium	2.0	140		
5			1950	Helium	1.45	570	0.15 to 0.28	
		100		Uclium	1.25	940	0.04 to 0.16	
		TCA	0C7T			1.820	0.03 to 0.10	
		951	1250	Hellum			0 45 to 0.59	
		951	1250	Hydrogen	1.75	C 1 1		
		051	1950	Hvdrogen	1.50	330	0. 21 W U 23	
			1950	Hydroren	1.25	815	0.05 to 0.18	
		106	1950	Hvdrogen	1.0	1,810	0.05	
		TCA	1400					
				II a li	с. -	5.140	0.06 to 0.14	BVTO
	Inconel 718	111	-260		0 1 1 1	1,630	0.41 to 0.61	
		111	-260	нецип		000	0 45 to 0.32	
	1313°K (1900°F)	111	-260	Helium	2.0	7,000		
	Solution + Age		-260	Helium	2.5	1,300	0. 10 00 TC -0	
	}		000	Hydrogen	1.5	22,300	0.04 to 0.07	
		111	007-	III decent	2.0	3.460	0.21 to 0.31	
		111	-260	uadoindu	່ດ	3 580	0.15 to 0.32	
		111	-260	Hydrogen			0 44 to 0, 72	
		111	-260	Hydrogen	2.23	1,000		

Pratt & Whitney Aircraft FR-5768

Î

1

5

ł

ę,

6

and a star three

	Heat Code	BZCV
Pressure Gaseous	Plastic Strain Range, %*(1)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
2 (5000-psig)	Cycles-to- Failure	21, 500 5, 450 2, 360 2, 360 2, 220 2, 220 300 300 300 1, 730 1, 730 1, 730 1, 730 1, 730 1, 730 1, 730 1, 730 320 285 1, 730 1, 890 1, 890 340 340 340 360 360 1, 730 1, 890 1, 800 1,
i in 34.5-MN/m ⁵	Total Strain Range, %	1.0 1.25 1.25 1.25 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
atigue Properties (Continued)	Environment	Helium Helium Helium Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Helium Helium Helium Hydrogen Helium Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen
ow-Cycle F Invironment	st rature, °F	80 80 80 80 80 80 80 80 80 80 80 80 80 8
able V-1. L E	Tes Tempe °K	300 300 300 300 300 300 300 300 300 300
Т	Material	Linconel 625

Although the

١

	Tes Tempei °K	st rature, °F	Environment	Total Strain Range, $\frac{\Re}{\kappa}$	Cycles-to- Failure	Plastic Strain Range, $\pi^{\star(1)}$	Heat Code
Material	4	•					UC 200
	000	00	Helium	1.5	3, 500	0.73 to 0.79	BZUR
Hastelloy X	300	00	Helium	1.4	3, 300	0.58 to 0.66	
	300	Do S		1 85	1, 720	1.02 to 1.08	
	300	80	Helium		500	0.91 to 1.08	
	300	80	Helium		0 0 0 0	0 44 to 0 46	
	300	80	Hydrogen	1. U	000 0		
	300	80	Hvdrogen	1.25	L, 904		
		00	Hydrogen	1,5	810	0°.18 to 0. 97	
	300	00	Hvdrogen	2.0	405	0.82 to 0.92	
	300	00					
(сх С	202	0.34 to 0.36	L1288K13
WASPALOY ^(B)	951	1250	Helium	0 0	080	0 14 to 0.17	
	951	1250	Helium	1• 2			
	051	1 2.50	Hvdrogen	1.8	COT		
			Hudrogen	1.5	260	0.24 to 0.30	
	TCA	ACZT			600	0.16 to 0.20	
	951	1250	Hydrogen	••• •	1 050	0 10 to 0 13	
	951	1250	Hydrogen	n.1	T, JUU		
		1	:	-	630	< 0.05	P-9245
IN-100	951	1250	Helium) • •		/ 0 0E	
	951	1250	Helium	0.8	1, 82U		
	951	1250	Hvdrogen	1.0	TAC		
	081	1950	Hvdrogen	0.9	315		
	100	1050	Hudroan	0.8	650	< 6.05	
	TCA	002T	II.duocon	0.6	1.450	< 0.05	
	951	1250	nagoroth	•••	ĩ		

Low-Cycle Fatigue Properties in 34.5-MN/m² (5000-psig) Pressure Gaseous Environment (Continued) Table V-1.

Ĭ

I

I

I

Pratt & Whitney Aircraft

FR-5768

(

NASPA A-12

FR-5768

Tab	le V-1. I F	Low-Cycle] Environmen	Fatigue Propertie t (Continued)	s in 3 4. 5-MN/m	2 (5000-psig)	Pressure Gaseous	
Material	Tes Tempe °K	st rature, °F	Envi ronment	Total Strain Range, %	Cycles-to- Failure	Plastic Strain Range, $\Re^*(1)$	Heat Code
SC 000 M CAM	951	1 950	Helium	1.00	006	<0.05	P-9108
COLONS THE VIEW	951	1250	Helium	1.00	2, 250	<0.05	
	951	1250	Helium	0.75	6, 600 <u>2</u>	<0.05	
	951	1250	Hydrogen	1.70	85	<0.05 20.05	
	951	1250	Hydrogen	1.50	250	<0.05 20.05	
	951	1250	Hydrogen	1.25	1, 330	<0.05	
	951	1250	Hydrogen	1.00	10,640	<0.05	
	951	1250	Hydrogen	1.00	4,950	< 0.05	
(2)	951	1250	Argon	1.00	>1,000	<0.05	
	951	1250	Argon	1.00	2, 500	< 0. 05	
Iron Base							
A986	300	80	Helium	1.0	4,930	0.12 to 0.19	BZUU
	300	80	Helium	1.25	4,012	0.20 to 0.37	
	300	80	Helium	1.5	1,950	0.36 to 0.50	
	300	80	Helium	2.0	870	0.93 to 0.98	
	300	80	Hydrogen	1.0	6, 550	0.12	
	300	80	Hydrogen	1.3	4,030	0.22 to 0.31	
	300	80	Hydrogen	1.5	2,200	0.30 to 0.42	
	300	80	Hydrogen	2.0	200	0.90 to 0.95	
	951	1250	Helium	2.0	405	0.82 to 0.89	
	951	1250	Helium	1.5	1,000	0.31 to 0.42	
	951	1250	Helium	1.25	1,600	0.08 to 0.14	
	951	1250	Helium	1.0	2, 290		
	951	1250	Hydrogen	2.0	410		
	951	1250	Hydrogen	1.6	65U	0.33 10 V. U.	
	951	1250	Hydrogen	1.25	1,260	0, 01 10 0, 00 0, 03 10 0, 14	
	951	1250	Hydrogen	1.0	2, 050	1° U 3 10 V 14	

Louis at

V-18

	Heat Code	BZCT	BZCS
	Plastic Strain Range, $\tilde{n}(1)$	0.25 to 0.29 0.33 to 0.39 0.60 to 0.77 0.96 to 1.05 0.26 to 0.33 0.47 to 0.58 0.42 to 0.58 0.90 to 1.10	$\begin{array}{c} 0.05 \ \text{to} \ 0.10 \\ 0.21 \ \text{to} \ 0.26 \\ 0.28 \ \text{to} \ 0.37 \\ 0.09 \ \text{to} \ 0.10 \\ 0.04 \ \text{to} \ 0.10 \\ 0.05 \ \text{to} \ 0.15 \\ 0.012 \ \text{to} \ 0.15 \\ 0.03 \ \text{to} \ 0.05 \\ 0.04 \ \text{to} \ 0.05 \\ 0.14 \ \text{to} \ 0.08 \\ 0.14 \ \text{to} \ 0.19 \\ 0.14 \ \text{to} \ 0.19 \\ 0.14 \ \text{to} \ 0.19 \\ 0.12 \ \text{to} \ 0.26 \\ 0.14 \ \text{to} \ 0.32 \\ 0.04 \ 0.03 \ \text{to} \ 0.03 \\ 0.04 \ 0.03 \ \text{to} \ 0.03 \ \text{to} \ 0.03 \\ 0.04 \ 0.03 \ \text{to} \ 0.$
1 + (Sted-0000)	Cycles-to- Failure	3,100 1,450 905 460 2,200 1,120 380	$\begin{array}{c} 2,370\\ 950\\ 360\\ 4,850\\ 2,940\\ 5,130\\ 11,270\\ 1,650\\ 1,650\\ 1,050\\ 3,020\\ 1,050\\ 1,050\\ 1,050\\ 1,050\\ 3,020\\ 070\end{array}$
	Total Strain Range, $\frac{1}{26}$	0.9 1.25 1.35 2.03 2.03 2.03 2.03 2.03 2.03 2.03 2.03	1.6 1.9 1.2 1.2 1.2 1.2 2.1 2.1 2.1 2.2 2.1 2.2 2.2
atigue Properties (Continued)	Environment	Helium Helium Helium Hydrogen Hydrogen Hydrogen Hydrogen	Helium Helium Hydrogen Hydrogen Hydrogen Hydrogen Helium Hydrogen Hydrogen Hydrogen
w-Cycle F vironment	ature, ° F	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{smallmatrix} & 8 \\ & 8 \\ & 8 \\ & 5 \\ & $
e V-1. Lo	Test Temper °K	300 300 300 300 300 300 300 300	300 300 300 300 366 366 366 366 366 366
Table	Material	AISI 347	Titanium Base Titanium 6-4

V-19

Low-Cycle Fatigue Properties in 34.5-MN/m² (5000-psig) Pressure Gaseous 5 -11

Pratt & Whitney Aircraft

ì

ť . **4**

FR-5768

l

I

	Heat Code	ҮҒҮВ	
	Plastic Strain Range, $\frac{\pi}{2}(1)$	0.88 to 1.00 0.33 to 0.65 0.79 to 1.09 0.71 to 0.95 0.50 to 0.84 0.22 to 0.41 0.31 to 0.53	
	Cycles-to- Failure	1, 050 1, 151 765 470 1, 106 1, 423	
	Total Strain Range, $\%$	1.8 1.25 1.45 1.3 1.15	
t (Continued)	Environment	Helium Helium Helium Hydrogen Hydrogen Hydrogen	
Environmen	erature, F	1250 1250 1250 1250 1250 1250	
	Temp °K	951 951 951 951 951 951	
	Material	Cobalt Base Haynes 188	

Table V-1. Low-Cycle Fatigue Properties in 34.5-MN/m² (5000-psig) Pressure Gaseous

(1) Includes Strain Hardening-Softening Effects

(2) Additional Tests Conducted at Atmospheric Pressure for Comparison Purposes.

Cyclic Rates for Tests Were: Less Than 1.0% Total Strain Range - 5 Cycles/min 1.0% to <1.5% Total Strain Range - 4 Cycles/min 1.5% and Higher Total Strain Range - 3 Cycles/min

Pratt & Whitney Aircraft

FR-5768

(

V-21

FR-5768

C. TEST PROCEDURES

Smooth, round, solid specimens were used for the strain-controlled LCF tests conducted under this contract. The test specimen used is described in Section III and detailed in figure III-3. The specimen configuration incorporated integral machined extensometer collars. A calibration procedure was established for each material to relate the maximum strain-to-collar-deflection during both the elastic and plastic portion of the strain cycle. The specimen design and calibration procedure were verified both experimentally and analytically.

After machining, specimen gage sections were polished and dimensions measured. Prior to installation in the test rig, specimens were cleaned with a nonchlorinated solvent.

Tests were conducted on a P&WATM-designed and built, closed-loop-type, hydraulically actuated test machine, located in an isolated test cell, utilizing the strain control mode. Specimen axial strain was measured and controlled by means of a proximity probe extensometer. A heavy walled pressure vessel made of AISI-type 347 stainless steel was mounted on the upper platen of the test machine. This vessel (shown in figure 25) incorporated a Grayloc-type flange and seal because of the relative ease of assembly and the reliability of the seal in high pressure. The base of the vessel included a pressure-compensating device to eliminate the axial tensile load acting over the differential specimen and adapter areas. Both internal (to the pressure vessel) and external load cells were used; thus the effect of friction at the seals, where the load rods enter the vessel, was known and accounted for. During testing, load strain hysteresis curves were plotted using the extensometer and internal load cell outputs. Electrical connections to the load cell, extensometer system, furnace (for elevated temperature tests), and thermocouples were made through the vessel wall via high-pressure bulkhead connectors. Cryogenic temperatures were obtained by surrounding the test chamber with a liquid nitrogen bath. The test gas passed through a heat exchanger coil submersed in the liquid nitrogen bath and into the test chamber. Thermocouples attached to the specimen were used to monitor temperature during test.

Elevated temperatures were obtained with a resistance furnace surrounding the specimen internal to the pressure vessel. This furnace is also shown in figure V-25. A dc power supply and controller were used to drive the furnace. Thermocouples attached to the specimen were used to monitor and control temperature during test. Because of the short specimen gage section, a singlezone furnace was adequate to maintain a uniform gage section temperature. The high thermal conductivities of high-pressure helium and hydrogen gases enabled the load cell and strain measuring transducer of the extensometer to operate at safe temperatures because of their location in the bottom of the vessel.

After inserting the prepared specimen in the test vessel and attaching the extensometer, the vessel was sealed and subjected to a purge cycle consisting of a nitrogen purge, evacuation, test gas (helium or hydrogen) purge, and finally a pressurized test gas pop purge. The pop purge consisted of rapidly pressurizing the vessel to a low pressure and releasing while maintaining a minimum positive gas pressure. The pop purge was found to result in significant increases in the purity of the gaseous environment in the vessel over that obtained by normal flow purging. In fact, analysis of gas samples taken

during rig checkout early in the program indicated that the pop purge was as effective in reducing gaseous environment contamination as evacuating the test vessel prior to normal purging. For this testing, however, both an evacuation and pop purge were used.

After purging, high-pressure gas was introduced and maintained in the vessel until specimen temperature and gas pressure were stabilized at the desired level and testing conducted. The test machine control provided automatic system shutdown upon specimen fracture. Test gas was then vented (and vessel purged with nitrogen in the case of hydrogen tests), vessel opened, and specimen removed. The test vessel and test procedure used for the low-cycle fatigue testing were similar to those used for all types of testing under this contract and are also discussed in the sections of this report dealing with tensile, fracture mechanics, high-cycle fatigue, and creep-rupture.

Specimen and Extensometer in Place

Specimen, Extensometer and Half Furnace in Place

Specimen, Extensometer and Furnace in Place

FE 100025

Closed Pressure Vessel, Cooling Jacket Not Shown

FD 53147

Figure V-25. High Pressure Gaseous Environment, Low-Cycle Fatigue Test Vessel

V-24

SECTION VI FRACTURE MECHANICS TESTING

2

- 7

-

2.4 m.

SECTION VI FRACTURE MECHANICS TESTING

A. INTRODUCTION

Fracture mechanics tests were conducted in $34.5-MN/m^2$ (5000-psig) hydrogen and helium on three nickel-, two iron-, and two titanium-base wrought alloys at a temperature of 300°K (80°F). The materials tested included Inconel 718, Inconel 625, WASPALOY®, A-286, AISI 347, Titanium 6-4, and Titanium A-110. Two of the nickel-base alloys, Inconel 718 and Inconel 625, were also tested in the welded condition.

The fracture mechanics tests used two types of specimens. Materials evaluated in the first year of this program to determine fracture toughness were tested using the ASTM compact tensile specimen. The WASPALOY tests of the second year were conducted using a center notch (flaw) type specimen. The compact tensile specimen supplied fracture toughness information, either K_{IC} or K_{IE} for precracks parallel to grain flow (longitudinal) and transverse to the grain flow. The center slot specimen supplied fracture toughness K_{IE}, threshold stress intensity, K_{TH}, and cyclic stress intensity, K_I/K_{IC}, information for WASPALOY.

B. CONCLUSIONS AND DISCUSSION

Only one alloy, WASPALOY, indicated a significant effect due to the hydrogen environment. Fracture toughness values of 63 to 74 MN/m^2 / m (57 to 67 ksi / in.) occurred in hydrogen compared to 103 MN/m^2 / m (93 ksi / in.) in helium. This material was the only one tested using the center flaw specimen. The other alloys were tested using the ASTM compact tensile specimen, and there was no severe hydrogen degradation in any of the materials tested. Only slight sensitivity was evident in Inconel 718, as indicated by slightly lower fracture toughness values and the smoother fracture face in hydrogen than in helium.

Although there was no evidence of hydrogen degradation in fracture toughness of Titanium 6-4 and Inconel 625, the metallographic examination indicated some sensitivity to hydrogen in both materials. In fact, from the metallographic examination, it was concluded that Inconel 625 was the post severely hydrogenembrittled alloy. This was not consistent with the compact tension fracture toughness values obtained, as, if anything, they showed a slight increase in hydrogen. An R_{SC} analysis, discussed on the next page, does tend to show hydrogen degradation.

A comparison of welded Inconel 718 and Inconel 625 to parent material revealed a general decrease in magnitude of the fracture toughness values, but no susceptibility to hydrogen degradation. GTA-welded Inconel 718 with the 1313°K (1900°F) solution was less ductile than the parent material, as was evidenced by the appearance of the fracture face and the attained K_{IE} values. This was not the case with Inconel 625, in that it remained very ductile and retained approximately the same K_{IE} values. Comparing longitudinal to transverse fracture toughness values, there was generally no difference, although there was a slight increase in magnitude in the transverse direction in both titanium materials tested. There was a significant increase in R_{SC} of welded Inconel 625 over the parent material. This increase is mostly due to the decrease in yield strength. This increased R_{SC} indicates the welded Inconel 625 is significantly tougher than parent material.

FR-5768

Cyclic flaw growth data and sustained load flaw growth data for WASPALOY center flaw specimens are presented in figures VI-1 and VI-2, respectively. An initial stress intensity value of approximately 27.9 MN/m² \sqrt{m} (25 ksi $\sqrt{in.}$) would be required for 100 cycle life in 34.5-MN/m² (5000-psig) hydrogen at 300°K (80°F). This is a ratio of initial stress intensity to critical stress intensity (KI/KC) of approximately 0.45. Sustained-load threshold stress intensity, K_{TH}, of approximately 33 MN/m² \sqrt{m} (30 ksi $\sqrt{in.}$) would yield no flaw growth in 100 hr at 300°K (80°F) and 34.5-MN/m² (5000-psig) hydrogen pressure.

Fracture toughness values are reported in table VI-1 for all materials (except WASPALOY) that were tested using the ASTM compact tensile specimen. Originally, the tests were conducted per ASTM E-399-70T, and results were reported accordingly in progress reports. These data have been re-evaluated according to ASTM E-399-72, and most K_{IC} values downgraded to K_{IE} (an engineering estimate of K_{IC}) since they did not meet the more stringent requirements. The new specification adds the evaluation factor, R_{SC} , which is the catio of stress at the crack tip to yield stress.

In the analysis and reporting of fracture toughness test results, fracture appearance is valuable supplementary information. The present ASTM standard for fracture toughness testing assumes that all crack front constraint, due to the free surfaces, will be evidenced by the formation of shear lips (illustrated in figure VI-3 as type A). This is not always the case, as was found in very ductile materials, such as Inconel 625 and AISI 347. In these cases, there was such a large amount of plastic flow constraining the crack front along the free surfaces that the result was only a reduction in thickness of the specimen (type B), instead of the formation of shear lips. Therefore, reporting the fracture-appearance in terms of percent oblique (implying the percentage of shear lip) is misleading when dealing with very ductile materials.

Following testing, metallographic investigations of the fracture characteristics of the materials were conducted. It was reported that rough fibrous, transgranular fractures indicated a tough material, whereas brittle failures were characterized by intergranular and cleavage fractures. Investigations also disclosed that the material orientation was quite evident in all of the specimens except the welds. The fibrous appearance of the fracture was oriented parallel to the longitudinal direction (grains parallel to direction of forging) of the material.

C. TEST PROCEDURE

Two different specimen configurations were used; compact tensile to determine fracture toughness values and center slot (notch) to determine fracture toughness values, threshold stress intensity, and cyclic stress intensity.

For the compact tensile specimens, longitudinal and transverse blanks were cut from round bar stock, heat treated, and machined per ASTM specifications for compact tensile specimens. The specimens were 19.05 mm (0.750 in.) thick and are detailed in Section III, figure III-5.

For the center slot (notch) specimens, blanks were cut from rectangular bar stock, heat treated, and machined into center-flawed specimens. The specimens were 2.45 mm (0.109 in.) thick in the gage section, and are detailed in Section III, figure III-6.

DF 91090

Figure VI-1. Cyclic Flaw Growth (Cyclic Stress Intensity) Data for WASPALOY®

Figure VI-2. Sustained-Load Flaw Growth Data D for WASPALOY[®]

FR-5768

Material	Test Co Notch Orienta- tion	nditions Environ- ment	(Thickne: mm	Speci as 'B' in,	men Patan Depth " mm	eters W [*] 1	Cruck Len _t nm	th in	Fracture Appearance († Obligae)	2.5 $\left(\frac{K_{Q_{1}}}{\bullet_{YS}}\right)^{2}$	MN m ² v m	Testuri Kif ¹ D Fracturi _{ksi} <i>A</i> n.	Results - Tougnness MN n ² , m - kee	ખેતે.	Ĭ,	l k-at 1 ode
Wrought Nickel Base																
Inconel 718 1227°K (1750°F)	Long	Helium Helium Budroster	19, 050 18, 920 19, 075	0, 750 0, 745 0, 751	35.125 34.150 38.100	1. 501 1. 502 1. 500	21.640 19.940 21.720	0. 552 0. 785 0. 455		0, 686 0, 841 0, 613	93.2 106.0	0 - 7 % C 			2633	BZMK
Solution · Age	Long	Hydrogen	18, 800	0.740	38,000	1.496	21, 539	0. H 4 .s	ŗ	0.620				-		0.2345
Inconei 718	Long Trang	ile lium ile lium	18.974 19.075	0.747 0.751	38, 125 38, 100	1.501 1.500	21.967	0. 865 U. 868	4 12	1.270	123. x 119.4	111.5 107.6 101 0			222	41670
Solution - Age	Love	ilydrogen Hydrogen	19.050 18.999	0.750 0.748	38, 100 38, 100	1.500	21.641 22.149	0.452 0.872	G	1.029	112.1	95.2			£	
Welded Inconel 718 1313" K (1900" F)	Long	Helium Helium	19.100 19.125	0.752 0.753	34.175 38.075 34.050	1.503	21.640 22.947 22.047	0. 452 0. 905 0. 868	লা গোলা	0, 660 0, 503 0, 550	96.3 21.4 24.1	26. 2 73. 2 75. 0			1.00 1.00 1.01	BZMK
Solution · Age	Long	Hydrogen	19.075	0.751	34.175	1.503	22.479	0.485	3	0, 531	× 75 ×	74.6			R	
laconel 623	Long Trans Long	Helium Helium Hydrogen	19.075 19.025 18.999	0.749 0.749 0.748	38.325 38.200 38.100	1.509 1.504 1.500	22.047 24.765 22.479 21.895	0, 868 0, 975 0, 885 0, 862	2408 8408	0, 954 1, 142 0, 888 0, 731	59.2 62.8 66.3 60,2	n ⇒ ⊢ N n - 0 0 0 n - 0 0 0 n - 0 0 0 n - 0			1, 59 42 1, 17 1, 17	4 V 8
Welded Incovel 625	Long Long Long Long	Hydrogen Helium Hydrogen Hydrogen	15, 9/4 19, 000 19, 025 19, 025 19, 075	0.750 0.752 0.749 0.751	38, 150 38, 150 38, 200 38, 200	1.502 1.503 1.504	23, 165 22, 657 23, 165 24, 333	0.912 0.692 0.912 0.958	16 13 12	2.260 2.150 2.730 2.560	56. 6 55. 3 61. 1 59. 3	ດ4 ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ ເດີຍ			- 22 E 2 E 22 2 E 22	втар
Wrought Iron Base		;										-				7.178
A-296	Long Trans Long	Helium Helium Hydrogen Hydrogen	19.100 19.025 19.025 19.025	0, 752 0, 749 0, 749 0, 749	38.225 38.050 38.100 37.800	1.505 1.496 1.509 1.488	21. 694 22. 555 21. 539 22. 301	0.462 0.888 u.548 0.878	5 10 4 4	1.740 2.000 1.485 1.403	99. 1 106. 1 94. 7 92. 0	າ ອຸດສ ສູ່ມີທີ່ຊີ ອີອີສີ			2423 2523	
A158 347	Long Long Long Trans	Helium Helium Hydrogen Hydrogen	19.025 19.020 19.050 19.974	0.749 0.750 0.750 0.747	38, 075 38, 100 38, 025 38, 050	1. 499 3. 500 1. 497 1. 498	22.149 23.495 22.911 22.047	0.872 0.925 0.902 0.869	21 5 10 6 0	0,925 0,582 0,559 0,815	45.2 35.7 34.6 41.9	4 0, 7 32, 2 31, 2 37, 7			98. क 98. क 98. ज	HL 18
Wrought Titanium Base														-	t 2 17	NAN
Titanium 6-4	Long Trans Long	Helium Helium Hydrogen Hydrogen	18.847 18.390 19.000 18.796	0, 742 0, 748 0, 748 0, 740	38. 125 38. 050 38. 075 38. 075	1.501 1.49% 1.499	20.371 20.117 22.809 18.999	0,802 0,792 0,898 749	16 17 17	0.368 0.515 0.681 0.522	ж3.0 40.4	75. 7 72. 4	13°.7	•		
Titanium A-110	Long Long Long Trans	Helium Helium Hydrogen Hydrogen	18.974 19.075 18.920 18.847	0.747 0.751 0.745 0.745	37, 973 35, 075 38, 075 37, 948	1.495 1.499 1.494 1.494	20.955 22.047 21.387 21.437	0.858 0.868 0.844 0.844	জাৰণ হয় হয	0, 433 0, 433 0, 343 0, 505	70.3 52.2 59.5	63, 5 47, 0 62, 6	50 . 8	-1		влян
⁽¹⁾ Dees not Meet ASTM	Designation E	399-72.														

(2) Rgc not calculated due to absence of maximum load which was not required by ASTM 399-707 under which tests were conducted. All Fatigue Precracking Accomptished per ASTM Designation E399-72. Specimens Tested at 88, s $MN/m^2\sqrt{m}$ (30, 0 kai \sqrt{m} , \sqrt{m}) 1.004 Hate

The same

Rethone Street

Party And and

Married House

FD 51883

The thicknesses were chosen to stay within the load limits of the high pressure tensile testing rig. All specimens were precracked in axial tension-tension fatigue using a Sonntag fatigue machine, which operates at 30 Hz (1800 cpm). Precracking was conducted in air at approximately 300°K (80°F) at load levels (K_F), which later were verified not to exceed 60% of K_Q. Precracking was per ASTM Designation E-399.

Compact tensile and center slot fracture toughness tests were conducted on a 266.8 KN (60,000 lb) Tinius Olsen testing machine. The basic procedure and pressure vessel described in Section VIII were used. An internal load cell was used to eliminate the effects of friction on the load rod. The vessel is shown mounted in the tensile machine load frame in figure VI-4. The compact tensile specimen used a clip gage (figure VI-5) in conjunction with the load cell to record a load-displacement curve for each test. The center slot (notch) specimen used the load cell to record a load-time curve for each test.

Fracture mechanics testing was conducted on a P&WATM-designed test machine. Dead-weight loading was attained by constant gas pressure applied to an actuator from a large reservoir of 11.6-MN/m² (1700-psig) nitrogen. Both internal and external load cells were used to compensate for the effects of friction on the load rod. Crack propagation with time was monitored during K_{TH} testing by following the crack front with crack propagation continuity gages.

Fracture toughness values for the compact tensile specimens were calculated from the load (PQ) established by a 5% deviation from the linear portion of the recorded load-displacement curve, the specimen thickness (B), width (W), and crack length (a) after fracture by the equation:

$$K_{Q} = \frac{P_{Q}}{BW^{1/2}} \left[29.6 \ (a/W)^{1/2} - 185.5 \ (a/W)^{3/2} + 655.7 \ (a/W)^{5/2} - 1017.0 \ (a/W)^{7/2} + 638.9 \ (a/W)^{9/2} \right]$$

1124 4 8020

High Pressure Gaseous Mechanics Test Vessel Environment Fracture Installed on Tensile Figure VI-4.

Machine in the Test Cell

ALC: NO

FC 21268

With Outer Chamber Re-Mechanics Test Vessel Environment Fracture moved and Fracture Figure VI-5.

Toughness Specimen With COD Gage Attached

A typical chart record of a fracture toughness test in high pressure hydrogen is shown in figure VI-6.

Fracture toughness values and initial stress intensities for the center slot (notch) specimens were calculated using the Brown and Srawley equation, reported in ASTM STP-410, from the load (P), the specimen thickness (B), width (W), and total crack length (2a) by the equation:

Figure VI-6. Actual Load-Displacement Record for a Fracture Toughness Test Conducted in a High Pressure Gaseous Environment (Titanium 6-4, 34.5-MN/m² 5000-psig) Hydrogen at 300°K (80°F))

SECTION VII CREEP-RUPTURE

A. INTRODUCTION

Į

Creep-rupture properties were evaluated in gaseous environments of helium, hydrogen, hydrogen/water vapor, and dissociated hydrazine (anhydrous ammonia) under pressures of 3.45 MN/m^2 (500 psig) and 34.5 MN/m^2 (5006 psig) at 366°K (200°F), 951°K (1250°F), and 1144°K (1600°F). Creep rate, rupture life, percent elongation, and percent reduction of area were determined for four wrought nickel-, two cast nickel-, two wrought iron-, two wrought titanium-, and one wrought cobalt-base alloys.

B. RESULTS AND CONCLUSIONS

Degradation was determined from the percentage reduction in stress for the hydrogen environments, compared to the helium environment, to obtain a given stress-rupture life. Degradation percentages are listed in table VII-1, for all alloys tested. The influence of hydrogen environments was not consistent upon the different heats of the Astroloy, MAR M-200 DS, A-286, and Hayes 188 tested, indicating the need for additional testing before an alloy can be completely classified.

All the wrought nickel-base alloys were degraded by the hydrogen environment. Inconel 718 and Inconel 625 materials were severely degraded while WASPALOY® and Astroloy materials were only slightly degraded. Hydrogen degradation was reduced for WASPALOY when water vapor was mixed with the hydrogen. Astroloy appeared to have slightly better life in dissociated hydrazine than in hydrogen. However, this was comparing two heats of Astroloy material at two different pressures; therefore, a definite conclusion cannot be stated as to the effect of the dissociated hydrazine environment upon this material.

The cast nickel-base alloys, IN-100 and MAR M-200 DS, were degraded appreciably by the hydrogen environment. However, degree of degradation was inconsistent between the two heats of MAR M-200 DS material. One heat exhibited greater rupture life in hydrogen than in helium. Metallurgical investigation did not reveal any material anomalies. Hydrogen and water vapor mixture and dissociated hydrazine environments both gave greater life than that obtained when these materials were tested in helium.

The wrought iron-base AISI 347 material was not degraded by the hydrogen environment. The A-286 material was degraded by the hydrogen environment at 34.5 MN/m^2 (5000 psig) and 951°K (1250°F), but a second heat of this material exhibited no degradation at 3.45 MN/m^2 (500 psig) at the same temperature.

The results of the wrought titanium-base alloys were inconsistent because of the narrow margin between the test stress level and the ultimate tensile strength. It was necessary to test at high stress levels to obtain rupture lives in the 10- to 100-hr range. Hydrogen influence was evident by surface flaking of the material. Metallurgical investigation identified this as hydriding.

VII-1

	Table VII-1.	Degradatic Stress-Ruj	m Based on Stre pture Life	ess Requ	uired for	a Given			
		Find mut	ment		Deg	radation (%) f	or Life (ır) of:	
Materis:	Heat Code	Temperature, °K (°F)	, Pressure, MN/m ² (psig)	H ₂	10 hr H ₂ /H ₂ O	N ₂ H4	$^{\rm H_2}$	100 hr H ₂ /H ₂ O	N2H4
Wrought Nickel-Base Alloy.							1		
Inconel 718 1227°K (175.)°F) Solution - Age	BVTO	951 (1250)	34. 5 (5000)	31			33		
inconel 718 1313°K (1900°F) Solution - Age	BVTO	951 (1250)	34.5 (5000)	27			28		
Inconel 625	BZCV	951 (1250)	34.5 (5000)	28			32		
WASPALOY®	L1288K13	951 (1250)	34.5 (5000)	ND(1)	(2)		14	(2)	
Astroloy	LKKC	951 (1250)	34.5 (5000)	QN			QN		
Astroloy	ΒΥΩΟ	951 (1250) 1144 (1600)	3.45 (500) 3.45 (500	See Sect	tion VII, P	aragraph B,	Results a	nd Conclusions	
Cast Nickel-Base Alloys									
IN-100	P-9245	951 (1250)	34.5 (5000)	20	QN		26	Ŋ	
MAR M-200 DS	P-9108	951 (1250)	34. 5 (5000)	See Sec	tion VII, P	aragraph B,	Results a	nd Conclusions	
MAR M-200	66 I 6-d	1144 (1600)	3.45 (500)	11		QN	17		QN
Wrought Iron-Base Alloys									
A286	BZCU	951 (1250)	34.5 (5000)	11			23		
A286	вхоү	951 (1250)	3.45 (500) 34.5 (5000)	ND (2)		QN	ND (2)		0

Pratt & Whitney Aircraft

FR-5768

47 BZCT 951 (1250) 34.5 (5000) ND 0 ght Titamium-Base Alloys um 6-4 BZCS 366 (200) 34.5 (5000) (2) (2) um 6-4 BZCS 366 (200) 34.5 (5000) (2) (2) (2) um 6-4 BZCS 366 (200) 34.5 (5000) (2) (2) (2) alloy BZCW 366 (200) 34.5 (5000) (2) (2) (2) sht Cobalt- Alloy 951 (1250) 34.5 (500) ND ND ND sht Silloy yrWR 951 (1250) 3.45 (500) ND ND ND ND sht Cobalt- Alloy 951 (1250) 3.45 (500) ND ND ND ND sht Cobalt- ND ND ND ND ND ND ND sht Cobalt- ND ND </th
--

omired for a Given 0 ī £

-

ľ

. .

-

Non-

(manual states)

-

T

hereast

Pratt & Whitney Aircraft FR-5768

ŧ,

The wrought cobalt-base alloy, Haynes 188, was slightly degraded in hydrogen at 34.5 MN/m^2 (5000 psig). The addition of water vapor to the hydrogen environment lessened this influence. A second heat of the material showed no degradation at 3.45 MN/m^2 (500 psig) in either hydrogen or dissociated hydrazine. Several tests of specimens from the second heat of material ran out at approximately 100 hr, with no rupture and minimal creep. To obtain rupture life in the 10- to 100-hr range required operating beyond the yield point that produced initial elongation beyond the range of the creep measuring extensometry. Tests of the second heat of material were to obtain creep data only, with the knowledge that rupture would not occur. To obtain supplementary stressrupture data in hydrogen, three specimens were prestrained and then tested in hydrogen to obtain both creep and rupture life.

The creep measuring extensometry was later modified for the dissociated hydrazine environment, which allowed the system to be reset after initial loading. This made it possible to operate at the high stress levels without prestraining the specimen. Results compared favorably with the prestrained specimens tested in hydrogen.

The influence of the hydrogen environment was also evidenced by increased creep rates, compared to the helium environment. A comparison of times required to obtain 1 and 2% creep is listed in table VII-2.

Test results are listed in table VII-3. Stress-rupture life is plotted in figures VII-1 through VII-16. Creep-to-rupture data are plotted in figures VII-17 through VII-34.

C. TEST PROCEDURE

Creep-rupture tests were conducted on a modified 53. 4-KN (12,000-lb) capacity Arcweld Model JE creep-rupture machine. The test machine was explosion-proofed and located in a test cell open to the atmosphere. Controls and data recording equipment were located in an adjacent blockhouse. A high pressure test vessel (figures VII-35 and VII-36) contained the test specimen, furnace, and extensometry. The pressure vessel was suspended in the creep-rupture machine and counter-balanced to maintain the load lever arm in a level position.

The design of the test specimen included integral collars for positive location and gripping of creep-measuring extensometer heads. The ends of the specimen were flat pin joints, rather than conventionally threaded joints, and acted as part of a two pin joint. Load rods and adapters also incorporated pin joints, which, in effect, formed universal joints at the ends of the specimen to eliminate alignment errors and resulting bending stresses upon the specimen.

The extensometer was a dual proximity probe averaging type and was contained inside the pressure vessel. The extensometer output was recorded in the adjacent blockhouse as elongation vs time. An elapsed time meter validated the rupture life indicated on the strip chart.

The specimen heater was a resistance-wire, two-zone, split-clamshell configuration. Independent zone control provided even temperature over specimen gage length. Temperature was monitored and controlled by three chromelalumel thermocouples looped around the gage section. The entire system was contained inside the pressure vessel.

The pressure vessel used a Grayloe high pressure hub connector to facilitate assembly/disassembly. The assembled pressure vessel was mounted in the creep-rupture machine with load rod adapters and bulkhead connections for the furnace, thermocouples, and extensometer. Test stand plumbing and pressure vessel were purged and leak checked. The system was evacuated to 100μ mercury.

The procedure at this point varied, depending on the environment required. Helium or hydrogen test gas was introduced directly. The hydrogen and water vapor environment was obtained by injecting water from a separately purged system prior to pressurization with hydrogen. Water concentration was 3% by weight. Ammonia was introduced as a gas-liquid mixture, and the pressure vessel heated above the critical temperature to completely vaporize the ammonia. The ammonia environment required some substitutions in system components to avoid material reactions. It was also necessary to relocate the extensioneter probe system out of the chamber, as the sersing element of the probe was not compatible with the environment. Creep information was obtained for these tests by measuring differential movement between the specimen upper chapter and the vessel base.

The specimen was heated while pressure increase, due to temperature increase, was monitored and vented as necessary. Stable temperature and pressure were obtained in 1-1/2 to 2 hr. An initial room temperature calibration with a strain gaged specimen had established the load induced in the specimen due to the gas pressure acting over the differential areas. The test load applied was adjusted for this induced load and for seal frictional losses. The test system was secured for automatic control and monitoring. When the specimen failed, and final gage length and diameter were measured and recorded to determine the percent elongation and percent reduction of area.

FR-5768

Material	Heat Code	Finvironn Temperature, •K (*F)	nent Pressure, MN/m ² (psig)	Stress, MN/m ² (ks:)	He	1.0 ⁷ H2	Time (hr) to	Creep (?) c H4 He	H ju	2.0 ^{\7} 2 32/H2 ⁽	N2H4
rought Nickel-Base Alloys								1			
aconel 718 227•K (1750•F) Alution - Age	BVTO	951 (1250)	34.5 (5000)	758. 4 (110) 558. 5 (81)	4 . 0	1.6		ю́	., ,	٥.	
occorel 718 conel 718 313°K (1900°F)	BVTO	951 (1250)	34.5 (5000)		Insuffici	ient Data					
bconel 625	BZCV	951 (1250)	34.5 (5000)	434.4 (63) 286.1 (41.5)	2.0	1.3		m	. 5	e	
VA SPALOY ®	L1288K13	951 (1250)	34.5 (5000)	606.7 (88)	21.0	12.5		36	.3 19	0.0	
strolov	LKKC	951 (1250)	34. 5 (5000)	792.9 (115)	17.5	18.0		49	0,	0.	
stroloy	BYQO	951 (1250) 1144 (1600)	3.45 (500) 3.45 (500)		See Sec	tion VII, P.	aragraph B, Res	ults and Co	onclusic	su	
ast Nickel-Base Alloys											
N-100	P-9245	951 (1250)	34.5 (5000)		0.5% Tc	otal Creep					
AAB M-200 DS	P-9108	951 (1 250)	34.5 (5000)	792. 9 (115)	See Sec	tion VII, P	aragraph B, Res	ults and Co	onclusio	suc	
AAR 34-200 DS	p-9199	1144 (1600)	3.45 (500)	482.6 (70) 399.9 (58)	3.6 41.5	1.9 1	121.0	51		3.7 >140	
Vrought Iron-Base Alloys											
1286	BZCL	951 (1250)	34.5 (5000)	368, 2 (53, 4) 362 (52, 5)	90.0	15.0		12(0.0 2	2.0	
4 286	BKOY	951 (1250)	3.45 (500) 34.5 (5000)	534. 4 (77. 5) 444. 7 (64. 5)	0.7 40.0 Insuffic	clent Data		6	1.0		
AIST 347	BZCT	351 (1250)	34.5 (5000)	133. 8 (19. 4) 136. 5 (19. 8)	9.0	14.0		Ţ	6.5 2	1.0	
Wrought Titanium-Base Alloys Titanium 6-4	BZCS	366 (200)	34.5 (5000)	930, 8 (135)	45.0	0.6		< 14	0.0	1.7	
A-110	BZCW	366 (200)	34.5 (5000)	792. 9 (115)	3.0	0.35		13	0.0	3.6	
Wrought Cobalt-Base Alloy									u •	0 0 7 7	
Haynes 188	YFYR	951 (1250)	34.5 (50'-0)	482.6 (70)	0.7	0.4	0.9		с• т	e • 0	3
Haynes 185	YGDM	951 (1250) 1144 (1600)	3.45 (500) 3.45 (500)	395.1 (57.3) 110.3 (16) 131 (19)	2.0 0.95	2.0 0.9	91 (1 0	. 7 • 45 • 35	6.4 6.3	0.0 1.9	1.

ŝ

10.02

N

Î

Creep-Rupture Properties of Materials in Gaseous Environment

;

Pratt & Whitney Aircraft

FR-5768

(2) (2) 1.4 3.0 31.2 26.8 30.5 8.7 13.1 10.6 12.1 13.0 11.5 7.7 13.0 25.2 16.212.7 51.5 52.5 52.4 76.7 78.4 9,8 38.2 36.4 43.5 52.3 47.5 38.8 4.7 Ϋ́. (5) (5) (5) (5) ن: ت 10.4 8.8 9.0 7.9 14.7 39.2 18.9 17.6 4.5 3.7 5.4 1.8 5.5 9.9 9.9 13.7 6.0 10.7 19.5 2.1 9.5 5.3 7.8 10.2 $\begin{array}{c}
 6.4 \\
 (2) \\
 (2) \\
 1.2 \\
 1.2
 \end{array}$ 1.5 7.6 0.2 1.6 1.6 Time to hr 5.6 58.2 13.8 25.1 0.3(5) 140.0(1) $\begin{array}{c} 32.2\\ 0.3\\ 0.3\\ 6.2\end{array}$ 4.0⁽³⁾ 21.7 25.7 86.5(1) 57.2 ¢ 41.8 87.8 3.8 4.5 59.6 34.7 5.0 49.2 5.6 31.4 5.2 100.0⁽¹ 7.2 118.6 0.4 3.1 5.3 103.0 2.2 2.2 1.15 37.0 16.3 18.2 2.5 3.040.0 49.0 36.3 19.0 03 1.6 3.5 1.2 c 24.5 Time to Creep, hr. 5% 1.0% 2. 10.5 17.5 24 <0.3% Total Creep <0.1% Total Creep <0.5% Total Creep <0.5% Total Creep Failed on Loading Total Creep Total Creep Total Creep Total Creep Total Creep 4.0 79.0 0.15 1.6 0.6 1.0 1.2 2.0 1.2 0.7 Failed on Loading Failed on Loading < 0.25% Total Creep 1.0 2.0 9.0 21.0 6.4 10.5 7.5 12.5 < 0.2% Total Creep 3.8 17.5 No Measurement 0.8 1.5 < 0. 2% Total Creep No Measurement No Measurement 1.65 0.85 24.0 1.5 6.9 0.4 7.7 < 0.2%
< 0.3%
< 0.3%
< 0.2%
< 0.2%
< 0.3% 0.75 0.250.15 12.5 <0.2% 2.5 53.0 0.1 1.0 3.5 8 3.5 1.4 0 53. 5 63. 0 63. 0 45. 4 45. 6 38. 0 38. 0 41. $5^{(5)}$ 80.0 80.0 80.0 9**0°**0 115.0 135.0 130.0 115.0 55.0 50.0 40.0 110.0 88.0 95.5 88.0 95.5 135.0 126.0 130.0 88.0 92.3 110.0 65.4 85.2 81.0 90.5 55.4 70.4 85.5 Stress Level, MN/m² ksi 551.6 620.5 620.5 551.6 551.6 620.5 , 15.8 792.9 930.8 896.3 792.9 896.3 379.2 331.0 930,8 868.7 636.4 758.4 450.9 587.4 558.5 782.6 382.0 486.1 589.5 758.4 606.7 658.4 606.7 658.4 606.7 365.9 **\$34.4 \$34.4 \$13.0** 314.4 262.0 286.1 624.0 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 500 500 500 500 500 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 5000 500 5000 5000 5000 5000 2000 usig Pressure, MN/m² p 3.45 3.45 3.45 3.45 3.45 3.45 34.5 Helium Helium Fydrogen Hydrogen Hydrogen/ Kivdrogen/ Water Vapor Water Vapor Helium Eydrogen Hydrogen Hydrogen/ Water Vapor Hydrogen/ Hydrazine Dissociated Hydrazine Dissociated Hydr szine Dissociated Hydrazine Dissociated Hydrazine Dissociated Hydrazine **Water Vaper** Environment DIssociated Helium Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Helium Helium Hydrogen Hydrogen Hydrogen Helium Helium Hydrogen Hydrogen Hellum Helium Helium Helium fe li um 1250 1250 1250 1250 1600 1250 Temperature, °K °F 1600 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1600 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 1250 Test Table VII-3. 1144 1144 951 951 951 951 951 951 951 951 951 951 1144 951 951 951 951 951 951 951 951 951 951 951 951 951 951 951 951 951 951 951 1227°K (1750°F) Solution Age Heat Treat 1313°K (1900°F) waspaloγ® Solution Age Inconel 718 Inconel 718 Inconel 625 Heat Treat Material Astroloy Astroloy IN-100 L1286K13 P-9245 LKKC BYQO BVTO BZCV BVTO Heat Code

VII-7

Sauth and the second second

14 14

÷ 1.1.4.

FR-5768

		Tabl	le VII-(3. Creep-F Environ	apture ment (C	Prope ontinu	rties o ed)	f Mate	erials :	n Gaseo	SU			
												Time to		
Heat	-	Te Tempe	st rrature. ° r	Environment	Pressure MN/m ²	, psig	Stress Le MN/m ²	vel, ksi	Time 0.5%	to Creep. h 1.0%	r, 2.0%	Rupture	ЕI, З	RA.
Code	Materiul	4	-		7 10	2000	861.8	125.0	No Meas	urement		5.6 ⁽⁵⁾	1.5	6.3
P-9108	MAR M-200 DS	951 951	1250	Helium Helium	34.0 34.5	5000	861.8	125.0	6.0	8.3		9,6 36,7	2.5	4 2 2 2
		621	1250	Helium	34.5	5000	792.9	115.0	21. U	80 80	11.1	35.6	6.7	6.9
		951	1250	Hydrogen	34. U	2000	801.8 561.8	125.0	No Meas	urement		56. 2 ⁽⁵⁾	5.0	6. 6. 1
		951	1250	Hydrogen Hydrogen	34.5 34.5	2000	792.9	115.0	22.0	24.6	31.8	49.9 15.4	6°6	7.3 6.0
		126 126	1250	Hydrogen and	34.5	5000	861.8	125.0	7.5	13.5		F • 6 T		
		951	1250	Water Vapor Hydrogen and Water Vapor	34. 5	5000	792.9	115.0	29.6	45,0		64.5	80 21	5.9
				Matci A alor				4 4	9	26	10 G	18.4	9.9	25.1
n_0100	MAR M-200 DS	1144	1600	Hellum	3, 45	200	482.6	70.0	2 4 .0	3.0 41.5	55. 3	67.2	9.1	21.4
cete-J		1144	1600	Helium	3. 45	200	139.5 469.6	10.02	8.0	1.9	3.7	7.9	10.4	20.5
		1144	1600	Hydrogen	3.45 2.45	2009	310.3	45.0	5.9	28.0	70.0	113.0	10.8	28°-1
		11 14	1600	Hydrogen	3.45	200	324.1	47.0	15.0	39.5 11.0	59. U 18. 35	30.7	8.0 8.0	22.6
		1144	1600	Dissociated	3.45	200	402.0	~ **	2			10.	,	0
			1001	Hydrazine Dicenciated	3.45	500	399.9	58.0	47.4	121.0	< 2. 0%	141.0'11	1.2	2.0
		#11	COOT	Hydrazine	5			5	A 011	180 5	1 OCAL	238. 4(1)	1.6	3.2
		1144	1600	Dissociated Hvdrazine	3. 45	200	324.1	o •2.₩	0.011	0.401	Total			
		į	000	Hell	34, 5	5000	368.2	53. 4	66.0	90.0	120.0	159.8	9.6 2	36.6 44.2
BZCU	A-236	105	0271	Helium	34.5	5000	444.0	6 4. 4	10.4	16.6	10 0 N N	31. 6	27.5	27.8
		196	1250	Helium	34.5	5000	444.0	8 4 .4	0 C 0 0	15.0	22.0	35.6	7.4	26.0
		951	1250	Hydrogen	3 4 .5	2000 2000	362.0	54.4 64.4	1.8	2.8	4.2	8.6	12.1	40.0
		106	062T	nage máu				6 2 2	•	0 7	1.0	2.4	18.5	36.8
RXOY	A-286	136	1250	lielium	3.45 2.45	200	534.4	64.5	31.0	40.0	51.3	69.7	19.2	60, 8 5 9
		951	1250	Helium	3. 45	38	534.4	77.5	No Mes	Igurement		0°2'	27.8	47.0
		196	1250	Hydrogen	3.45	500	477.8	69.3	No Mer	isurement		145.8	13.3	48.7
		951	1250	Hydrogen	3.45	200	426.1	6 1. 5 6 4 5	No Mes	isurement		15.2,1	22.3	39 . 3
		951	1250	Hydrogen	ರೆ. ಕ್ರಾಂಗ್ ಗೆ	2000	- 0 	52.5	No Me	surement		137.5 ⁽¹⁾	1.5	1. 0
		951	1250	Hydrogen Hydrogen	34.5	5000	310.3	45.0	No Mei	Laurement	u a 1	216.0(1)	0 7.21	47.0
		196	1250	Discociated	3.45	500	534. 4	7.0	2.5	3.55	Co •#	-		
				lydrazine	2 45	200	477.8	69.3	6.25	15	10.5	16.8	11.7	37.4
		951	1250	DIBBOCIANCU Hvdrazine	2# •0	5						75 1	13.2	50.0
		16.	1250	Dissoclated	3.45	500	444.7	64.5	30.5	43.0	20. 2	1.01		
		}		Hydrazine									1	0
		r c	1050	Helium	34.5	5000	278.6	40.4	< 0.1	0.15	0.2	0.3	⊳ч х°а	43.7
BZCT	AISI 347	951	1250	Helium	34.5	5000	133.8	19.4	0°0	9.0 115.0	187.0	187, 0(1)		
		951	1250	Hydrogen	34.5	5000	81.4 9.69 9	11.8	Falled	on Loading			8.5	4 .7.
		951 051	1250	Hydrogen Hydrogen	34. 5 34. 5	5000	136.5	19.8	8.0	14.0	21.0	23.9	2.6	14.3
		TCA	1400	n-90 mfm		0000	0 200	0 07 1	Failed	on Loading				
BZCS	Titanium 6-4	366 366	2 00 200	Helium Helium	34.5 34.5	5000	930. 8	135.0	2.75	45.0	1.13% Total	140.3 ⁽¹⁾		
			2		2 4 C	5000	965.3	140.0	< 0, 1	0.3	0.67	0.67	4.2(4)	17.9
		366 366	200 200	Hydrogen Hydrogen	34. 5 34. 5	2000	930.8	135.0	< 0, 1	0.6	1.7	1.7	3, 217	11.0

1

Ę

A65.14 - 1

Table VII-3. Creep-Rupture Properties of Materials in Gaseous Environment (Continued)

Ľ

{ }

-

Anna and

The state of the s

.

i

1.12.14

.

												Time		
		f										3		
Heat Code	Material	Tempe K	rature. °F	Environment	Pressu MN/m ²	re, psig	Stress Lo MN/m ²	evel, kai	T1m 0.5%	e to Creep, 1.0%	hr, 2.0%	Rupture, hr	Еl, Ж	5 .€*
mobe	Titantum A.110	30.6	200	Helium	3 4 . 5	5000	813.6	118.0	Failed o	on Loading		(1)0 001		
BELW		366	200	Helium	34.5	5000	792.9	115.0	0.18	0.0	130.0	130.0(1)	с 1(4)	10.01
		366	200	Hvdrogen	34.5	5000	792.9	115.0	<0.1	0.35	0 1 10		0. T (4)	0.01 0.02
		366	200	Hydrogen	34.5	5000	813.6	118.0	< 0.1	0.25	c). 7	1.12		
									4	e 6	u •	0 4	ан ₈ (2)	33.2
Veva	Hames 188	126	1250	Helium	34.5	5000	482.6	10.0	0.3				on 7(2)	1.00
111 111		951	1250	Helium	34.5	5000	365.4	53.0	o				200 E (2)	5 00
		136	1250	Hvdrogen	34.5	5000	365. 4	53.0	9 . 0	1.4	4 , 0	40,2	10. 0(S)	
		120	1250	Hvdrogen	34.5	5000	482.6	70.0	0.15	• •0	0.9	5.4	30.97	0 7 7 0 0 7 7 0
		651	1250	Hydrogen and	34.5	5000	365.4	53.0	No Mea	surement		55.5	10. EV-1	
				Water Vapor						•		10 0	01 o(2)	3 0 5
		951	1250	Hydrogen and Water Vanor	34.5	5000	482.6	70.0	••	R*0	7	0, 10		
												00 0(1)		<
		0.61	1250	Helium	3.45	500	193.1	28.0	< 0. 2%	Total Ci	reep	88° 0'-'	0.21	0 0
YGDM	Haynes 100	120	1250	Helium	3.45	500	244.8	35.5	< 0.4%	Total C1	reep	(1) ⁰ .88	0.37	0 C
		051	1950	Hvdmoen	3.45	500	244.8	35.5	< 0.3%	Total Ci	reep	94.2(1)	c'.u	5 3 N 6
		120	1950	Hudmoren	3.45	500	275.8	40.0	30.0	70.0		118.3(-)	3.4	2 C 7
				non-public	3.45	500	193.1	28.0	< 0. 2%	Total C	ceeb	89. 5(1)	0.16	
		951	1200	nyarogen	0		164 0	6) 47.3	No Mer	aurement	•	14.6	25.7	28.6
		8 91	1250	Hydrogen	2			6) 67 9	0	2.0	5.0	41.4	20.0	24.8
		95 1	1250	Hydrogen	3.40		1.000			20.0	8.25	72.9	17.6	22.0
		1961	1250	Hydrogen	3.45	200	310.01		3.			16.4	22.8	25.1
		951	1250	Dissociated	3.45	200	466.3	0.50	•	•••	2			
				Hydrazine					•	0 75	0 a	79.8	17.5	24.2
		951	1250	Dissociated	3.45	200	395.1	57.3	T .U	C) • 7				
				Hydrazine	4	001		90	73.0	108017	240	$112.2^{(1)}$	1.3	1.9
		951	1250	Dissociated	3.45	000	0.447	00.00			400			
				Hydrazine		001	0.101	0.01	• •	0.95	2.3	29.7	44.5	58.0
		1144	1600	Helium	0. 1 0	000	0.161	5 C		0.5	4	66.2	34.6	50,4
		1144	1600	Helium	3.40	000	1.10.5)) 1 1	1		6 - 1	25.4	41.5	55.3
		1144	1600	Hydrogen	3.45	200	131.0	19.U			9 OF	30.4	37.1	51.0
		1144	1600	Hydrogen	3.45	500	110.3	16.0	•••	a .	0 - 20 C	256.0 (1)		6.1
		1144	1600	Hvdrogen	3, 45	500	82.7	12.0	4	18.3	0.622		0.00	60 0
		1144	1600	Dissociated	3.45	500	151.7	22.0	0.05	0.25	0. 0	1 - 7 1	0.00	
				Hvdrazine							•	0.00	1 66	ម ស ម
		1144	1600	Dissociated	3.45	500	131.0	19.0	0.1	0.35	1.0	22. 0	1.00	
				Hydrazine						:		0 4 2	30.6	50.5
		1144	1600	Dissociated	3.45	500	110.3	16.0	1.25	2.45	5.4	04.0	0.00	
				Hydrazine										
Elong	ation Measured Over 25.	4 mm (1 i	n.) Origin	al Gage Length										

Notes: ⁽¹⁾Did not Fail; Test Discontinued

⁽²⁾l_{laci}udes Yielding Upon Losding

⁽³⁾Rig Shutdown Due to Temperature Loss Immediately Prior to Fallure

(4) Failure Mode Precludes Accurate Measurement

(5)_Failed in Radius

(3) Prestrained in Argon at Temperature and Streas Prior to Test

FR-5768

a that a **dealer and the second se**

Figure VII-5. Stress-Rupture of Astroloy at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure; Heat LKKC

Figure VII-7. Stress-Rupture of IN-100 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

<u>VП-13</u>

Ł

ţ

ţ

VII-14

FR-5768

÷

E

VII-15

1241.3

(5000 psig) Pressure

DF 96664

1.000

ž

Number of States of

1

Figure VII-15. Stress-Rupture of Haynes 188 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure; Heat YFYR

1

[

Ì.

1

ţ

ţ

Figure VII-16. Stress-Rupture of Haynes 188 at 951 D and 1144°K (1250 and 1600°F) at 3.45 MN/m² (500 psig) Pressure; Heat YGDM

VII-17

DF 96666

Figure VII-17. Creep/Stress-Rupture of Inconel 718, DF 96667 1227°K (1750°F) Solution Plus Age Heat Treat at 951°K (1250°F), and 34.5 MN/m² (5000 psig) Pressure

É

Figure VII-18. Creep/Stress-Rupture of Inconel 625 DF 96668 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

Figure VII-19. Creep/Stress-Rupture of WASPALOY[®] DF 96669 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

FR-5768

Figure VII-23. Creep/Stress-Rupture of MAR M-200 DS DF 96673 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure; Heat P-9108

Figure VII-24. Creep/Stress-Rupture of MAR M-200 DS DF 96674 at 1144°K (1600°F) and 3.45 MN/m² (500 psig) Pressure; Heat P-9199

FR-5768

Figure VII-25. Creep/Stress-Rupture of A-286 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure; Heat BZCU

DF 96677

; 1

> Figure VII-27. Creep/Stress-Rupture of A-286 at 951°K (1250°F) and 3.45 MN/m² (500 psig) Pressure; Heat BXOY

Figure VII-28. Creep/Stress-Rupture of AISI 347 at 951°K (1250°F) and 34.5 MN/m² (5000 psig) Pressure

VII-23

4

FR-5768

Figure VII-29. Creep/Stress-Rupture of Titanium 6-4 DF 96679 at 366°K (200°F) and 34.5 MN/m² (5000 psig) Pressure

Figure VII-30. Creep/Stress-Rupture of Titanium DF 96680 A-110 at 366°K (200°F) and 34.5 MN/m² (5000 psig) Pressure

いるがたいである

VII-25

1 6

Pratt & Whitney Aircraft

FR-5768

G

Figure VII-33. Creep/Stress-Rupture of Haynes 188 D at 1144°K (1600°F) and 3.45 MN/m² (500 psig) Pressure; Heat YGDM

DF 96684

FR-5768

SECTION VIII TENSILE PROPERTIES

A. INTRODUCTION

Tensile properties of 12 alloys were investigated at pressures of 3.45 or 34.5 MN/m^2 (500 or 5000 psig) and at temperatures ranging from 111 to 1144°K (-260 to 1600°F). Nickel-, iron-, titanium-, and cobalt-base alloys were tested in the parent condition, and two nickel-base alloys (Inconel 718 and Inconel 625) were tested in the welded condition. Smooth tensile tests established the 0.2% yield and ultimate strengths, elongation, and reduction of area. The notched (K_T = 8.0) tensile tests established ultimate strength. Results of tests in hydrogen and/or hydrogen and water vapor environments were compared to those in helium to determine property degradation.

B. RESULTS AND CC CLUSIONS

The tensile test data were subjected to a statistical analysis to determine if the measured mechanical properties of the various alloys reflected true environmental degradation or simply data scatter. The results of these analyses were used as the basis for the conclusions herein. In some cases, the experimental test matrix did not have sufficient tests to enable determination of degradation on a statistical basis. This does not mean that there was no degradation; only that it could not be established from a statistical approach.

The individual tensile properties (yield, ultimate, elongation, reduction of area, and notch tensile ultimate) of the alloys tested did not reflect the influence of the hydrogen environments to the same degree. The relative degree of environmental degradation is summarized in table VIII-1. None of the alloys tested exhibited degradation in the 0.2% yield strength, with the possible exception of MAR M-200 DS at 300°K (80°F). Based upon the limited tests conducted, a degradation of approximately 11% in 0.2% yield strength in the hydrogen environment was indicated. The statistical analysis could not attach significance to this degradation due to the small sample size.

The ultimate strength, either smooth or notched, was degraded at one of the test conditions for seven of the alloys. Only the two cast nickel-base materials, IN-100 at 300°K (80°F) and MAR M-200 DS at both 300 and 951°K (80 and 1250°F), exhibited smooth tensile strength degradation. The titanium allovs, Titanium 6-4 and Titanium A-110, and the nickel alloys, Inconel 718 (1227°K solution), Inconel 718 welded (1313°K solution), and Hastelloy X, were degraded in notch ultimate strength for at least one of the temperature/pressure combinations tested. Astroloy and MAR M-200 DS notch tensile strengths were degraded by the hydrogen and water vapor environment at 1144°K (1600°F). The yield and ultimate strengths of the iron-base alloys A-286 and AISI 347 (figure VIII-1) and the ultimate strength of the cobalt-base alloy Haynes 188 (figure VIII-2) were not degraded.

VIII-1

FR-5768

	Table VII	II-1.	Degrada Hydroge	tion of T n and Hy	ensile droge	Proper n-Water	ties o Vapo	f Matei r Envii	rials in Garonments	aseous		
						Deg (Change Fr	radation om Heli in.	um, ⁽),	Rati Ultir J	io of the Strength	Ratio Noteh S Ultimat	of Smooth e Strength
	Stress Concentration Factor	Tcm] K	oerature, °F	Press MN m ²	ure, psig	Ultimate Strength	EI	RA	<u>Hydrogen</u> Heflum	<u>Hydrogen - H₂O</u> Hellum	Helium	Hydrogen
Martia		006	ş	34.5	5000	ND(1)	16	67	0, 91		1.26	0.74
inconel 719 Learner Affect IV	5mootn 4.0	000	98	12	5000 5000	45	0N	dN	0.33 0.99		1.33	1.27
1227 h (1130 h) Solution - Age	Smooth 3.0	951 951	1250	34.5	0000	ND ND			0.94			
	Smooth	001	07	34, 5	5000	ND	2	đ	0,99		1.61	1.54
Inconel (15 1313'K (1900'F)	0.5	300	40 1250	34.5 34.5	5000 5000	QN QN	ΟN	ND	1.0		1.29	1.17
Solution - Age	4,0 4,0	951	1230	34.5	0000	ND			0.92			
	Smooth	300	90	34.5	5000	ΩN	ŝ	11	0.97		1.03	ŭ. 75
incohel /15	9*6	300	09	34.5	3000	67			0.71			
weids 1313°K (1900°F) Solution - Age												
		001	C,	34.5	5000	(IN	10	55	0.97		1.25	1.26
Incor el 625		000	9	34.5	5000	(IN		:	0.93		1.20	1.19
	Smooth	951	1250	34. 5 34. 5	5000 5000	<u>9</u> 2		17	0.1			
	•					22	42	QN	1.0		1.33	1.15
Inconel 625	Smooth 4.0	000 000	99 Ç	2 (7 4 4 7 (7	5000	Î.			0,90			
Welds						:			:		1.39	1. 20
Hastellov X	Smooth	001	<u>.</u>	0. 	5000	0.1	<u>,</u>		0. 57			
	0 * C	001			0000	ÎN N	(IN)	0N	1.0		1.14	1.12
	11 Marine 1	951	1250	34.5	5000	QN			0 86			
W ASPALO	Smooth	106	1250	34.3	0005	ND	ŕ	ND	1,0			
	t month	951	1250	5 1 .5	200	(IN	ΩN	(IN	1.0		5 i 1	1.50
Astroiov	Smooth	1144	1600	54 °C	500	UN N	0N N	QN N	1.1		*	
	0.1	000	ç	3.45	200	<u> </u>			0			
	¢,	126	1230	<u>;</u>	000				1.0			
	0 0 7 1	1141	1600		0005	QN N			0.90			
		154	1250	11 B	0005	22			16 . 0			
	e.,	1144	16.00		5000	2,2				0,94		
<u>ମ</u> ଶ୍	 * *	951 1144	15.0	14 14		1				0° 30		

Ð

the second second

State of the second

Ì

÷Ś

	Table V	VIII-1.	Degrad	lation of gen and H	Tensil	e Proper en-Water	ties c Vapc	of Mate or Env	erials in (ironmenta	Gaseous s (Continued)		
						Degr (Change Fro	adation m Heliu in.	"("	Rai Ultimat	tio of c Strength	Ratio Notch S Ultimate	of mooth Strength
Material	Stress Concentration Factor	Temper °K	ature, F	Pressu MN ² m ²	re, psig	Ultimate Strength	EI	RA	llydrogen Helium	Hydrogen - H ₂ O Hehum	Helium	Hydrogen
001-NI	Smooth Smooth	300 951	80 1250	34.5 34.5	5000 5000	1× ND	71 13	70 32	0.82 1.0			
MAR M-200DS	Smooth Smooth 3.0	300 951 951	80 1250 1250	ភលល [ា] កំពាំកំពោះ កំពាំកំពោះ	5000 5000 5000	51 11 12 12 12 12 12 12 12 12 12 12 12 12	15	54	0.75 0.86 0.93		0, 95	1.03
(2)	C C C * * * *	1144 951 1144	1600 1250 1600	3 4 .5 3 4. 5 3.45	900 9009 900	- S A				0.78 0.82		
A-286	Smooth °.0 Smooth	300 300 951	80 30 1250	34. 5 34. 5 34. 5	5000 5000	Q Q Q Q	UN H	ND 15	1.0 1.0 0.94		1. 4x 1. 44	1. 14 1. 59
AISI 347	s. 0 Smooth * 0	951 111	1250 - 260 - 260	ດ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ ເ	7000 7000 5000	R RR	(IN	QN	0.92 0.98		1.15 1-70	1. 22
	Smooth 3.0 8.0	300 951 951	80 1250 1250	34.5 34.5 34.5 34.5	5000 5000 5000		QN QN		1.0 0.91 1.0 0.97		1.63	1. 72

1N-100

. .

ן : נ

Ì

Pratt & Whitney Aircraft FR-5768

1.0

 $\begin{array}{c} \mathbf{0.9} \\ \mathbf{1.0} \\ \mathbf{1.0} \\ \mathbf{1.0} \end{array}$

500 500 500 500

ជូម្មម្ម ជំមុំមុំមុំមុំ

1.23

1.37

1,32

1.3~

1.0 0.89 0.97 0.93

30 우

27

5000 5000 5000

34.5 34.5 34.5

000 266 366

Smooth 8.0 Smooth 8.0

Smooth 9.0

VIII-3

(2) (2) A-286

1.21 1.31

16.1 1.44

1.0 0.83 0.98 0.99

S 7

00 <u>x</u>

5000 5000 5000 5000

1.000 1.000 1.000 1.000

300 366 366 366 366 366 1144 1144 1144

Smooth *.0 *.0 *.0 *.0 *.0 *.0

Haynes 185

ର୍ଷ

A-110

0, 2% Yield Strength Did Not Reflect IMstinct Property Reduction. (2) Hydrogen-Water Vapor Environment.

(1) ND - Negligible Degraviation, Less Than 10^{6} .

Titanium 6-4

Pratt & Whitney Aircraft

FR-5768

Figure VIII-1. Effect of Temperature and Environment DF 96691 Upon Tensile Strength of AISI 347 at 34.5 MN/m² (5000 psig) Pressure

VIII-4

The tensile properties of Astroloy were the most thoroughly investigated, with smooth and notch strengths determined at three temperatures and notch strength at two pressures. The effect of temperature upon smooth tensile strength of Astroloy at 3.45 MN/m^2 (500 psig) is shown in figure VIII-3, with no evidence of hydrogen degradation. The notched tensile strength was degraded at room temperature and 951°K (1250°F), but not at 1144°K (1600°F), in both 3.45- and 34.5-MN/m² (500- and 5000-psig) pressure hydrogen (figures VIII-4 and VIII-5). (1

The hydrogen and water vapor environment at 3.45 MN/m^2 (500 psig) degraded the notch strength at both 951 and 1144°K (1250 and 1600°F). The effects of temperature, pressure, and environment upon degree of degradation of Astroloy are shown in figure VIII-6. While the degradation at both pressures is approximately 10% or less and is classified as ND (negligible degradation), there is a definite effect of pressure upon degradation at temperatures below 977°K (1300°F). The strength is degraded approximately twice as much at 35.4 MN/m² (5000 psig) as at 3.45 MN/m² (500 psig). The reversal in properties at 1144°K (1600°F) (that is, higher strengths in hydrogen than in helium) was verified, but no specific reason for this reversal could be established (Reference FR-5129).

Figure VIII-3. Effect of Temperature and Environment DF 96693 Upon Smooth Tensile Strength of Astroloy at 3.45 MN/m² (500 psig) Pressure

⁽¹⁾ Astroloy tests at 1144°K and 34.5 MN/m² (1600°F and 5000 psig) were attempted on a best effort basis. The maximum hydrogen pressure at which a temperature of 1144°K (1600°F) could be maintained with the tensile test pressure vessel and furnace was 30.3 MN/m² (4400 psig).

Pratt & Whitney Aircraft FR-5768

ſ

-

Upon Notch ($K_T = 8.0$) Strength of Astroloy at 34.5 MN/m² (5000 psig) Pressure

Figure VIII-6. Effect of Temperature and Pressure Upon Environmental Degradation of Astroloy Notch (K_T = 8.0) Tensile Strength

ensile

DF 96656

The increase in degradation in the hydrogen and water vapor environment at 1144°K (1600°F) is attributed primarily to the occurrence of oxides on the metal. At 1144°K (1600°F), the water vapor dissociates at the specimen surface into hydrogen and oxygen. The oxygen immediately reacts with the metal to form oxides, and the hydrogen remains in the environment. The occurrence of oxides on the specimen surfaces was also noted for the MAR M-200 DS and Haynes 188 tests in the 1144°K (1600°F) hydrogen and water vapor environment. In the case of Haynes 188, however, these oxides did not contribute to a property degradation.

The most prominent and consistent indicator of hydrogen degradation in the tensile tests was the loss of ductility for smooth specimens. In the case of some alloys, ductility was extremely degraded, while the ultimate strength showed negligible degradation. The elongation and reduction of area were degraded for most of the nickel-base alloys, with IN-100 and MAR M-200 DS (both cast alloys) and Inconel 71 \hat{s} (1227°K [1750°F] solution plus age) the most severely degraded. Generally, ductility was affected at 300°K (80°F) more than at the elevated temperatures. Of all the materials evaluated, only the iron-base alloy, AISI 347, appeared completely immune to degradation in any smooth or notch tensile property for the conditions tested. The cobalt-base alloy, Haynes 188, was not tested for smooth tensile properties, but was not degraded in notch strength at any of the conditions tested.

Complete test results are listed in table VIII-2.

				Test Conditi	ons				4	Test Results	Distri	2
	Test Tempera	ture,	Stress Concentration	E	M N/m ²	Pressure, nsig	MN/m ²	Yield, ksi	Surengun MN/m ²	Ultimate, ksi	ы, (1) %	RA, ⁽²⁾
Material	4	1	r actur Smooth	Hellum	34.5	5000	1094.2	158.7	1352.8	196.2	23.5	35.8
Inconel 718	300	808	Smooth	Helium	34.5	5000	1111.4	161.2	1387.2	201.5	23.5	35.3
Solution · Age	300	08	Smooth	Hellun	34.5	5000			1752.7	254.2		
	200	88	0.8	Helium	34.5	5000	0 1101	161 1	1241.7	180.1	5.5	9 .4
	300	80	Smooth	Hydrogen	34.5	5000	1083.9	157.2	1254.9	182.0	4.5	10.9
	88	80	Smooth	Hydrogen Hydrogen	34.5	5000		1	756.7	114.1		
	88	88	0.0	Hydrogen	34.5	5000			1063.2	133.6		
	300	80	3.0	Hydrogen	34.5	5000	040 5	136.7	1074.9	155.9	20.0	19.7
	196	1250	Smooth	Helium	0 4 7	2000	905.3	131.3	1063.9	154.3	25.0	47.5
	951 of	1250	Smooth 8.0	Helium	34.5	5000	1		1396.2	202.5		
	126	1250	8.0	Helium	34.5	5000	0 970	197 6	1036.3	150.3	22.0	46.8
	951	1250	Smooth	Hydrogen	34.5	5000	946.0	136.0	1072.1	155.5	21.5	34.9
	95 1	1250	Smooth	Hyd vogen Hydrogen	34.5	5000			1292.8	187.5		
	951	1250	0.8	Hydrogen	34.5	500 #000			1374.8	199.1		
	951	1250	8.0	Hydrogen	0.440						0.76	51 3
0 11 1 mm	ω.	90	Smooth	Helium	34.5	5000	1083.9	157.2	1306.6	189.5	26, U 25, 5	6°64
	800	8	Smooth	Hellum	34.5	5000	1072.8	155.6	2087.7	302.8		
1313'K (1906'F)	300	80	0.0	Hellum	0.400 1400	2000			2083.6	302.2	1	0.01
ABU MOMMOO	800	0.9	8. U Smooth	Hydrogen	34.5	5000	1091.4	158, 3	1283.8	186.2	21.5	36.6
	8 8 8	808	Smooth	Hydrogen	34.5	5000	1078.3	156.4	1911.2	277.2	5	
	300	80	0.8	Hydrogen	34.5 34.5	2000			2009.1	291.4		
	300	0 e	0.0	Hydrogen	34.5	5000		0 10	1931.2	288.1	17.5	31.5
	951	1250	Smooth	Helium	34.5	5000 5000	930. I 974. 2	141.3	1037.0	150.4	11.5	18.0
	951	1250	Smcoth	Hellum Hellum	34.5	5000			1310.0	190.0		
	196 196	1259	8.0	Helium	34.5	5000		6 661	1355.5	150.3	17.0	27.0
	951	1250	Smooth	Hydrogen	34.5	5000	9,77. 4	134.5	1046.0	151.8	15.5	19.6
	951 951	1250	Smooth 5.0	Hydrogen	34.5	5000			1214.9	176.2		
	951	1250	0.8	Hydrogen Hydrogen	3 4.5 3 4.5	5000 5000			1246.6	180.8		
	106	0071				6000	0 8011	160.7	1212.8	175.9	2.5	7.8
Inconel 718	88	80 08	Smooth	Helium Helium	34.5 34.5	5000	1152.1	167.1	1308.6	189.8	12.0	14. ×
Welds 1313*K	90 00	80	8.0	Hellum	34.5	5000			1494.1	216.7		
(1900" F) Solution	300	808	8.0 Supply	Hellum Hudmann	34.5	5000	1113.5	161.5	1264.5	183.4	6.0 9	15.2 K E
	900 900	88	Smooth	Hydrogen	34.5	5000	1123.2	162.9	1186.6 954 2	138.4	0.0	•
	300	80	8.0	Hydrogen	34.5	5000 5000			1176.9	170.7		
	800	8 9	8.0 8	Hydrogen	34.5	5000			624.0	90.5		
Tancon 625	300	80	Smooth	Hellum	34.5	5000	635.0	92.1	1018.4	147.7	46.5 48.0	62.5 61.5
12000U	300	80	Smooth	Helium	34.5	5000	522.6	0.61	1192.8	173.0		
	300	80	0.0	Helium Helium	34.5 5	5000			1311.4	190.2	0 61	101
	88	88	Smooth	Hydrogen	34.5	5000	704.6	102.2	968.7	142.3	13.0 13.0	30.1
	88	80	Smooth	Hydrogen Hvdrogen	34°0 34°0	5000 5000		1	1208.0	175.2		
	300	88	8.0	Hydrogen	34.5	5000			1219.0	171.6		
	300	80	8.0	Hydrogen	34.5 34.5	5000	519.2	75.3	×06.0	116.9	62.5	70.4
	951 951	1250	Smooth	Hellum	34.5	5000	494.4	71.7	832.9	120.8	0.80	2.444

Table VIII-2. Tensile Properties of Materials in High Pressure

astroccute the second secon

Pratt & Whitney Aircraft

FR-5768

ł

				Test Conditi	suo				Strength	Test Results	Ductil	ity
Material	Tea Tempe 'K	t rature, °F	Sress Concentration Factor	Fnvtronment	MN/m ²	Pressure, psig	MN m ²	Yield, ksi	MN/m ²	Ultimate, ksi	Е1, (1) 7	RA, ⁽²⁾
	951	1250	8.0	Helium	34.5	5000 5000			1034. 2 936. 3	150.0 135.9		
	95 1 951	1250	8.0 Smooth	Helium Hvdrogen	34.5 34.5	2000	501.3	72.7	821.2	119.1	57 . 5	64. 2 00. 9
	651	1250	Smooth	Hydrogen	34, 5 34, 5	566.0	533. 6	71 . 4	1006.6	146.0	ļ	
	951 951	1250	0.0	Hydrogen	34.5	50 V0 51 20			1016.3 1020.4	147.4 148.0		
	951	1250	8.0	Hydrogen	0.4.0				5	110 4	26.0	42.5
Inconel 625	300	80	Smooth	Helium	34.5	5000	375.8 363.4	54. J	710.2	103.0	22.5	33.9
Welds	300	08 08	Smooth 8. 0	Helium Belium	34.5	5000	, ,		1017.7	147.6 136.7		
	8 <u>8</u>	98	A. 0	Helium	34.5 34.5	5000 5000	363.4	52.7	786.0	114.0	27.5	40.1
	900 002	08	Smooth	Hydrogen Hydrogen	ut. 0 34. 5	5000	363.4	52.7	746.0	108.2	23.0	35.1
	3	ç	0	Hydrogen	34.5	5000 5000			908.0	131.7		
	306 300	. 08	0°8	Hydrogen Hydrogen	34.5	5000			884.6	122. 5		
		ġ	+	Helium	34.5	5000	335.1	43. 6	735.7	106.7	54.0	63.0
Hastellov X	300 300	28	Smooth	Helium	34.5	5000	307.5	41.6	710.2 H80.5	103.0	e.te	c • 70
	300	08	8°0	Helium Helium	44.0 24.0	2000			1129.4	163.4		и С
	300	2 2 2	Smooth	Hydrogen	34.5	5000	335.1	48,6	727.4	105.5	54,0 54,0	56 .4
	300	80	Smooth	Hydrogen Hydrogen	34.5 34.5	5000	0#0. F		855.0	124.0		
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 Q	x. 0	Hydrogen	34.5	5000			865.3 901.8	130.8		
	300	80 1960	8.0 Smooth	Hydrogen Hellum	34.5 34.5	5000 5000	242.7	35.2	566.1	82.1 77 E	53.0 53.0	57.6 57.6
	16e 621	1250	Smooth	Helium	34.5	5000	225.2	33.1	534. 3 621. 9	90.2		
	951	1250	8°0	Helium Helium	34.5 34.5	0 0 09			628.8	91.2	e F	
	196 706	1250	S looth	Hydrogen	34.5	5000 5000	233.7	33, 9 34, 1	553. 6	80.3 80.3	51.0	4.9
	951 951	1250	5. aooth 8. 0	Hydrogen Hydrogen	34.5	2000	-	ŀ	610.9 626 0	83, 6 90, 8		
	951	1250	8.0	Hydrogen	34.5	5000			401.4	0'16	1	i
	951	1250	R. O Smooth	Helium	34, 5	5000	910.1	132.0	1,99.7	179 5	6 	- n. 65
WASPALUY	169	1250	Smooth	Hvdrogen Hvdrogen	34.5 34.5	5000 5000	930. 4 942. 5	136.7	1244.5	180.5	19.0	43.4
	106	140			One Atmo	sphere	1014.9	147.2	1434.8	20H. I	5 a a	
Astrolov Heat Code	300 300	808	Smooth	Air	One Almo	sphere	1051.5	152.5	1452.7 1744.4	210.7 253.0	2	ŝ
LKKC	300	979	0.8	Helium Evdrogen	3, 45 3, 45	50C			1654.4	240.0		
	300	0.00	0.0	livdrogen	3.45 2.45	500 500	×34.3	121.0	1154.9	167.5	21.0	
	951	1250	Smooth	Helium	3.45	300		1	1441.0	209.0	0 f.t.	32.1
	169 169	1250	Smooth	Hydrogen	3.45	500 500	844.6	122.5	1148.0	200.0		
	951	1250	0.8 0.7	Hydrogen	3.45	500		1	1427.2	207	14.6	40.1
	10e	1600	Smooth	Helium	3.45	500 500	398. 5 465. 4	51.5	510.2 610.2	2.4°	21.0	1.01
	1144	1600	Smooth 8. 0	Helium	0.45 3.45	200			972. 2 1007 - 2	141.0		
	111	1600	0.8	Helium	3.45 2.45	500 500			1068.7	155.0		
	1144	1600	6, 63 Smooth	Hvdrogen	3.45	500	569.5	9 . 20 20	735.0	109.3	0.00 0.00	
	411	1600	Smooth	Hydrogen	3.45 3.45	500 500	470.9 447.5	70.7	587.4	24.05	15.0	B.*.B
	1 I 44	1000	11100117									

Table VIII-2. Tensile Properties of Materials in High Pressure Gaseous Environment (Continued)

I

E

I

E

ľ

L

I

AND A MARKED Į

「「「「「「「」」」」」「「「「」」」」」」」」

N N C 2805

17

VIII-9

Pratt & Whitney Aircraft FR-5768

				Table VI	II-2. Ten Gas	sile eous	Propert Enviro	ties of M nment ((laterials Continued	in High	Pressure			
					Test Cond	iticus					Strength	Fest Results	Ducti	цц.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Material	Temperat K	.F	Stress Concentration Factor	Environment	N	х m²	Pressure, psig	MN. m ²	Yield. kai	MN m ²	('Itimate, ksi	E1, (1)	RA, ⁽²⁾
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				0	Hvdrogen		3.45	300			1079.0	156, 5 160, 5		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1144	1600	0.0	Hydrogen		3.45	300			986.0	143.0		
Open to the second state of the second stat		114	1600	8.0	Hydrogen		3.45	500 2000			1744.4	253.0		
Matrix Matrix<		300	96	8.0	Helium	, c		5000			1554.8	225.3		
Matrix Matrix<		300	08	0.0	Hvdrogen	, eo		5000			1565.1	227.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		000	0201		Helium	ċ	4.5	2000			1 5051	214.0		
Open Dist Dist <thdist< th=""> Dist Dist <thd< td=""><td></td><td>901 051</td><td>1 250</td><td>6.6 6</td><td>Helium</td><td>ŝ</td><td>4.5</td><td>5000</td><td></td><td></td><td>1365.2</td><td>198.0</td><td></td><td></td></thd<></thdist<>		901 051	1 250	6.6 6	Helium	ŝ	4.5	5000			1365.2	198.0		
101 101 <td></td> <td>196</td> <td>1250</td> <td>0.0</td> <td>Hydrogen</td> <td>τ, c</td> <td>.</td> <td>5000</td> <td></td> <td></td> <td>1372.1</td> <td>199.0</td> <td></td> <td></td>		196	1250	0.0	Hydrogen	τ, c	.	5000			1372.1	199.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		951	1250	8.0	Hydrogen	, ب	4.0 Dec Armosn	here			1021.8	148.2		
114 100 50 640 50 <td></td> <td>1144</td> <td>1600</td> <td>5.8</td> <td>Air</td> <td></td> <td>Jac Atmospi</td> <td>here</td> <td></td> <td></td> <td>1020.4</td> <td>14×.0</td> <td></td> <td></td>		1144	1600	5.8	Air		Jac Atmospi	here			1020.4	14×.0		
Image: Note of the second se		1144	1600	8.0	Alr		and Autoraly	5000			1130.7	164.0		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		1144	1600	8°0	Helium	•	• • •	4400(3)			1085.9	157.5		
Motion 11 100 5.0 Network 30.1 4001 100 1		1144	1600	0.0	Hvilmen	• ~	0.3	4400(3)			1185.9	1 87.5		
Off 11 123.		1144	1600	0	Hydrogen	e	0.3	4400(3)			0 10071	•		
Allow 51 139 50 Waterwand (114) 50 137.1 190 0 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>34 6</td><td>300</td><td></td><td></td><td>1323. 8</td><td>192.0</td><td></td><td></td></td<>							3 4 6	300			1323. 8	192.0		
	volov	951	1250	8.0	Hydrogen an	Ξ.	0					0.001		
O Dist Late Non-Yoper List Non-Yoper Mon-Yoper Mon-Yop	ut Code		1 050	0.0	Hvdrogen and	, g	3.45	500			1372.1	0.44I		
91 1230 5.0 Nutrogen and Nutrogen and 1144 100 5.0 Nutrogen and Nutrogen and 145 143 00 78.4 116.0 1144 100 5.0 Nutrogen and Nutrogen and Nut	8	TCA	1021	•	Water Vapo	. '	-	100			1379.0	203.0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		951	1250	8°.0	Hydrogen af Water Vano	3.	3.4.)	0 00				110.0		
114 100 5.0 Water Value: 37.4 12.0 114 100 5.0 Water Value: 3.45 50 87.4 12.0 114 100 5.0 Water Value: 3.45 50 87.4 12.0 114 100 5.0 Water Value: 3.45 50 87.4 12.0 114 100 5.0 Water Value: 3.45 500 54.1 50.0 54.1 54.0 54.1 54.1 54.0 54.1 54.0 54.1 54.0 54.1 54.1 54.0			1 600	0.8	Hydroger. ar	. 3	3.45	300			189.4	0.011		
114 100 5.0 Nutryer and Nutryer 1.4 100 5.0 Nutryer Nutryer 1.4 100 5.0 Nutryer Nutryer 1.4 100 5.0 Nutryer Nutryer 1.4 100 5.0 Nutryer Nutryer 1.4 100 5.0 Nutryer 1.4 100 5.0 100		1			Water Vapo	ч.		005			827.4	120.0		
114 1.00 5.0 Bytachemic 1.45 300 59.1 99.6 71.0 11.4 1.00 5.0 100 300 30 30 30 30 30.4 30.0 31.1 31.1 31.1 31.1 31.1 31.1 31.1 31.1		1144	1600	9.0	Hydrogen af Water Vann	ğ.	J. #J.	200				1 92 5		
10 300 9 Shorth Helum 34.5 5000 734.3 10.6 74.1 11.3 1		1144	1 (00	8. U	Hydrogen a	rd.	3.45	300			934.2	C * P * T		
100 300 8%.1 9%.8 71.2 10%.2 71.2 10%.2 71.2 10%.2 71.2 10%.2 71.2 10%.2 71.2 10%.2 71.2					Water Vapo	F					:	H 3 .	17 37	14.7
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		000	00	dr. oms	Helium	.,	34.5	5000	688.1	8.66 9	117.0	107.5		3.3
300 500 5000 711.5 711.	100	88	2 2	Smooth	Hydrogen		34.5	5000	734.3	100° D	603.3	87.3	0.5 0	10.1
65: 1250 Smooth Helum 34.5 5000 662.5 99.0 622.6 94.0 14.0 24.0 931 1230 Smooth Hydrogen 34.5 5000 632.6 94.0 14.0 24.0 931 1230 Smooth Helum 34.5 5000 632.6 144.0 24.0 931 1230 Smooth Helum 34.5 5000 751.4 134.1 1000.4 144.0 24.0 931 1230 Smooth Helum 34.5 5000 751.4 134.1 114.2 24.0 144.0 24.3 2000 141.1 134.2 24.3 2000 751.5 144.0 24.3 200 211.3 134.3 134.3 24.3		8 9 9 E	08	Smooth	Hydrogen	•••	14.5	0000	701.9	101.8	711.5	103.2	0 ·	1- C 2- 2
931 1250 Smooth Hydrogen 34.5 500 731.5 106.1 760.0 114.0 331 1250 Smooth Hydrogen 34.5 500 731.5 106.1 760.0 114.0		951	1250	Smooth	Hellum			5000	682.6	99.0	682.6	0.66		
If M-200 DS 300 84.5 300		951 22	1250	Smooth	Hydrogen		34.5	2000	731.5	106.1	786.0	114.0		
R. M-200 DS 300 80		Ten	1400					1000	924.6	134.1	1090. 8	136.2	00 ***	ເ- : ກ
It Code P-9108 300 60 5mooth Smooth Hidrogen Heltum 34.5 5000 56.1.5 123.0 131.5 171.5 7.5 931 1250 Smooth Hidrogen 34.5 5000 56.1.5 133.5 171.5 7.5 931 1250 Smooth Hidrogen 34.5 5000 56.1.3 139.0 96.1.3 139.5 1.0 134.5 1.0 931 1250 Smooth Hidrogen 34.5 5000 56.1 139.0 96.1.3 139.0 1.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5 100.0 134.5	R M-200 DS	300	9 8	Smooth	Helium Hydrogen		04.0 34.0	5000	787.4	114.2	787.4	114.2		ະ 65 • •
930 1250 Smooth smooth Helum 34.5 5000 96.1 130.0 140.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 </td <td>at Code P-9108</td> <td>300</td> <td>2 9</td> <td>Smooth</td> <td>Hydrogen</td> <td>-</td> <td>34.5</td> <td>5000</td> <td>851.5</td> <td>2 961</td> <td>1182.5</td> <td>171.5</td> <td>7.5</td> <td>11.</td>	at Code P-9108	300	2 9	Smooth	Hydrogen	-	34.5	5000	851.5	2 961	1182.5	171.5	7.5	11.
931 1230 Smooth Hydrogen 34.5 5000 938.4 139.0 105.2 134.5 4.4 951 1250 smooth Hydrogen 34.5 5000 938.4 139.0 105.2 134.5 4.4 951 1250 s.0 Helum 34.5 5000 938.4 139.0 1057.7 135.4 4.4 951 1250 s.0 Hydrogen 34.5 5000 938.4 139.0 1057.7 135.4 4.4 951 1250 s.0 Hydrogen 34.5 5000 934.4 139.0 105.7 135.4 4.4 951 1250 s.0 Hydrogen 34.5 5000 934.4 131.2 199.0 105.7 135.4 4.4 500 951 1250 s.0 Hydrogen 34.5 5000 934.4 131.2 199.0 134.5 146.5 134.5 109.0 114.5 131.2 146.5 134.5		951	1250	Smooth	Helium		34.5	5000	841.1 1466 3	130.0	961.8	139.5	4.0	10 I
951 1250 Smooth Hydrogen 54.5 5000 1123.8 1133.4 AR M-200 DS 931 1250 ×.0 Reduction 34.5 5000 1037.7 153.4 951 1250 ×.0 Reduction 34.5 5000 1037.7 153.4 951 1250 ×.0 Reduction 34.5 5000 1037.7 153.4 951 1250 ×.0 Reduction 34.5 5000 1134.2 109.0 951 1250 ×.0 Reduction 34.5 5000 1134.2 109.0 951 1250 ×.0 Reduction 34.5 5000 1134.2 109.0 951 1230 ×.0 Reduction 34.5 5000 1134.2 109.0 951 1230 ×.0 Reduction 3.4.5 5000 1131.2 104.0 951 1230 ×.0 Reduction 3.4.5 5000 900.2 114.1 <td< td=""><td></td><td>156</td><td>1250</td><td>Smooth</td><td>Hydrogen</td><td></td><td>34. 0</td><td>0000</td><td>938.4</td><td>139.0</td><td>1065.2</td><td>134.5</td><td>-</td><td></td></td<>		156	1250	Smooth	Hydrogen		34. 0	0000	938.4	139.0	1065.2	134.5	-	
AR M-200 DS 931 2250 ×,0 Hellum 34.5 5000 1057.7 153.4 153.4 153.5 art Code P-9199 9.51 1250 ×,0 Hydrogen 34.5 5000 1057.7 153.4 9.54.9 13*.5 951 1250 ×,0 Hydrogen 34.5 5000 954.9 13*.5 104.5 951 1250 ×,0 Hydrogen 34.5 5000 1134.2 104.5 13*.5 104.5 951 1250 ×,0 Hydrogen 34.5 5000 1134.2 104.5 145.5 951 1250 ×,0 Hydrogen 34.5 5000 114.5 145.5 104.0 951 1250 ×,0 Hydrogen 3.45 5000 101.1 145.5 114.5 951 1250 ×,0 Hydrogen 3.45 5000 900.2 112.7 317.9 114.5 114.5 114.5 114.5 114.5 114.5		951	1250	Smeoth	Hydrogen						8 8011	163.0		
M. Markever 34.5 3000 954.9 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 131.5 113.5 113.5 113.5 113.5 113.5 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1134.2 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 1127.5 114.5 127.5 114.5 127.5 114.5 127.5 114.5 127.5 114.5 127.5 100.5 1127.5 101.5 127.5 101.5 127.5 101.5 1127.5 111.6 127.5 101.5 111.2 111.6 127.5 101.5 1012.5 1012.5		126	1250	0 ° x	Helium		34.5	5000			1057.7	153.4		
951 1230 5.0 Hydrogen $H_2^{(1)}$ 34.5 5000 1134.2 104.2 951 1250 8.0 Hydrogen $H_2^{(1)}$ 34.5 5000 731.5 104.2 951 1250 8.0 Hydrogen $H_2^{(1)}$ 34.5 5000 731.5 104.0 951 1250 8.0 Hydrogen $H_2^{(1)}$ 34.5 5000 794.1 127.5 104.0 951 1250 8.0 Hydrogen 3.45 5000 909.4 114.1 100.6 $1.27.5$ 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 127.5 1127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 114.6 127.5 127.5 127.5 <td>at Code P-9199</td> <td>17</td> <td>1250</td> <td>0**</td> <td>Hydrogen</td> <td></td> <td>34.5 34.5</td> <td>5000</td> <td></td> <td></td> <td>9.4.9</td> <td>13.5</td> <td></td> <td></td>	at Code P-9199	17	1250	0**	Hydrogen		34.5 34.5	5000			9.4.9	13.5		
9.1 1.250 5.0 1166 34.5 5000 1161.1 146.5 9.51 1250 8.0 Hydrogen $H_2^{(1)}$ 34.5 5000 909.4 127.5 9.51 1250 8.0 Hydrogen $H_2^{(1)}$ 34.5 5000 909.4 127.5 951 1250 8.0 Hydrogen 3.45 5000 909.4 131.9 951 1250 8.0 Hydrogen 3.45 500 909.4 131.9 951 1244 1000 8.0 Hydrogen 3.45 500 909.2 131.0 1144 1000 8.0 Hydrogen 3.45 500 903.2 131.2 1144 1000 8.0 Hydrogen 3.45 500 903.2 131.2 1144 1000 8.0 Hydrogen 3.45 500 903.2 131.2 1144 1000 8.0 Hydrogen 3.45 500 754.0 127.5 111.0 1144 <td></td> <td>951</td> <td>1250</td> <td>່ວດ</td> <td>Hvdrogen</td> <td></td> <td>34.5</td> <td>5000</td> <td></td> <td></td> <td>751 5</td> <td>109.0</td> <td></td> <td></td>		951	1250	່ວດ	Hvdrogen		34.5	5000			751 5	109.0		
951 1250 8.0 Hydroxen H ₂ () 34.5 5000 951 1230 8.0 Hydroxen H ₂ () 34.5 500 951 1230 8.0 Hydroxen H ₂ () 34.5 500 951 1230 8.0 Hydroxen H ₂ () 34.5 500 1144 1600 8.0 Hydroxen 3.45 500 903.2 131.2 1144 1600 8.0 Hydroxen 3.45 500 903.2 131.2 1144 1600 8.0 Hydroxen 3.45 500 903.2 131.2 1144 1600 8.0 Hydroxen 3.45 500 756.3 111.0 1144 1600 8.0 Hydroxen 3.45 500 756.4 101.0		106	1250	0.8	livdrogen	H ₂ ()	34.5	5000			1010.1	146. 5		
951 1230 8.0 Hydroxen 73.15 300 908.4 131.9 1144 1600 8.0 Hydroxen 3.45 300 903.2 131.0 1144 1600 8.0 Hydroxen 3.45 300 903.2 131.0 1144 1600 8.0 Hydroxen 3.45 300 914.4 131.2 1144 1600 8.0 Hydroxen 3.45 300 914.4 131.2 1144 1600 8.0 Hydroxen 3.45 300 914.4 131.2 1144 1600 8.0 Hydroxen 3.45 300 765.3 111.0 1144 1600 8.0 Hydroxen 3.45 300 754.0 107.6 1144 1600 8.0 Hydroxen 3.45 300 754.0 107.6 1144 1600 8.0 Hydroxen 14.5 300 754.0 107.6 1144 1600 8.0 Hydroxen 3.45 300 754.0 107.6 1144 1600 8.0 Hydroxen 3.45 300 754.0 107.6		951	1250	к.0	Hydrogen	0 C	34.0 54.5	0000			1.67+	127.5		
1144 1600 8.0 Wedrogen 3.45 500 99.4.2 13.1.2 1144 1600 8.0 Wedrogen 3.45 500 91.4.2 13.1.2 1144 1600 8.0 Wedrogen 3.45 500 91.4.2 13.1.2 1144 1600 8.0 Wedrogen 3.45 500 879.1 127.5 1144 1600 8.0 Wedrogen 3.45 500 879.1 127.5 1144 1600 8.0 Hedrogen 3.45 500 765.3 111.0 1144 1600 8.0 Hedrogen 3.45 500 754.0 105.6 1144 1600<		951	1250	8°0	Hydrogen	Del H	3.45	200			908° 4	101.0		
1144 1000 8.0 Hydrogen 3.45 500 579.1 127.5 1144 1600 8.0 Hydrogen 3.45 500 579.1 127.5 1144 1600 8.0 Hydrogen 3.45 500 765.3 111.0 1144 1600 8.0 Hydrogen 3.45 500 765.3 111.0 1144 1600 8.0 Hydrogen 3.45 500 754.0 105.6 1144 1600 8.0 Hydrogen 3.45 500 724.0 105.6 1144 1600 8.0 Hydrogen 3.45 500 724.0 105.6		1144	1600	0 C	Hvdrogen		3.45	500			903°2	133.2		
1144 1600 8.0 Hydrogen H ₂ () 3.45 500 765.3 111.0 1144 1600 8.0 Hydrogen H ₂ () 3.45 500 724.0 105.6 1144 1600 8.0 Hydrogen H ₂ () 3.45 500 751.5 109.0		1144	1600		Hydrogen		3, 45	500			579.1	127.5		
1144 1600 8.0 Every 120 3.43 3.00 751.5 199.0		1141	1600	8.0	Hvdrogen	0-11	3,45	200			765.3	0.111		
		1	1600		Hvdrogen	H ² O	3.45	200			751.5	109.0		

1473 ST. 444

Freekown.

Pratt & Whitney Aircraft FR-5768

STATE STATE

VIII-10

				Teet Conditio	uis.					fest Results	Turot	.411
			t						Strength		Duci (1)	111(X) 11, (2)
Material	Tempera °K	ature.	Stress Concentration Factor	Environment	MN m ²	Pressure, psig	MN m ²	Yield, ksl	MN m ²	l ltimate, ksi	11	ŝ
		9	s	Helium	34.5	.5000	719. ×	104.4	1044.6	151.5	10 ° 10 7 10 7 10 7 10	10 1 10 1 10 10 10
A-286	80	2 8	Smooth	Helium	34.5	5000 5000	754.3	109.4	1044.0	222. H		
	300	80	8.0	Helium	64.0 2.1	5000			1534.8	225. 5	ı e	-
	300	29	5. U Smooth	livdrogen	34.5	5000	739.5	110.2	1074.2	133. N 135. C		r / 107
	005	23	Smooth	Hydrogen	34.5	5000	766.7	2.111	1 7221	1 100 1 100		
	000	2 9	8.0	Hydrogen	34.5	1000			1046.0	224.3		
	300	80	8.0	Hydrngen	34.5	0000			1554.1	225.4		
	300	80	8.0	Hyd rogen	34°0	0000	721.2	104.6	\$20.5	0.011	23.5	1.1
	951	1250	Smooth	Hellum	34.5	2000	717.1	104.0	N43.9	122.4	29,0	0.40
	951	1250	Smooth P 0	Helium	34.5	3000			1143.0	166.0		
	108	1 250		Helium	34.5	5000	:		1204. 4	118 9	0.00	44.6
	106	1950	Smooth	Hvdrogen	34.5	5000	735.7	106.7	0 470	1. 911	10.00	44.6
	150	1250	Smooth	Hvdrogen	34.5	5000	x43. 2	122.3	1196.9	173.5		
	120	1250	9.0	Hydrogen	34.5	000- -000			1272.1	194.5		
	951	1250	8.0	Hydrogen	34.3	000-			1283.8	146.2		
	951	1250	8.0	Hydrogen	34.5	nnt						
			•	the fit ways	34.5	5000	6×3, 1	99.8	1357.6	196.5		
AISI 347	11	-260	Smooth	Helium	34.5	3000	751.5	109.0	1395. 3	105	42.0	147
		0.92 -	amouu 4 0	Helium	34.5	5000			1388.6	+ •ne-7		
	111	- 200	0.6	Helium	34.5	5000	1		1507.9 0 0101	0.001	42.5	1. 1 .1.
	11	-260	Smooth	Hydrogen	34.5	2000	663.7	60° 00	8 1601	177. *		62
		-260	Smooth	Hydrogen	34.5	5000	6 .135	96. 0	1595.4	221.3		
	H	-260	8.0	Hydrogen	34.5	3000			15.7.5	225.9		
	111	-260	8,0	Hydrogen	0. 4 .0	0002			1534.8	222. 6		•
	111	-260	8°0	Hydrogen	0 4 5 0	2000	4×0, 6	69.7	703.3	102.0	.	1.1
	300	80	Smooth	Helium	34.5	5000	440.6	63.9	685.3	96.4	54. • .	· · ·
	005	00	R. O	Helium	34.5	5000			11/2-1	1.0.0		
		808	.0.8	Helium	34.5	5000		0 40	170 A	109.7	41.5	71.1
	300	Ŷ	Smooth	Hydrogen	34.5	5000			746.7	104.3	39.0	10.4
	300	80	Smooth	Hydrogen	34.5	0000	404.1		1150.1	166. 1		
	300	80	8.0	Hydrogen	3 4. .	0005			1186.6	172.1		
	300	80	×.0	HVGTOREN		5000			481.2	127. 1		
	300	80	8.0	Hydrogen	34. 5 5 1 5	2000	398. 5	51, 3	416.4	199* 4		500 S
	951	1250	Smooth	Helium	14.5	5000	395. 8	57.4	410.9	60	12.11	1.4
	951	1250	Smooth	nehum U-lium	5.45	5000			717.1	104.0		
	951	1250	ດ ສິ	Helium	34.5	5000			705.1	102.7		
	951	1250	4. U	Hudmon	34.5	5000	377.1	54.7	405.4			
	951	1250	Smooth	Hudrogen	34.5	5000	415.4	60.3	442.6		0.62	
	106	027		Hydrogen	34.5	5000			1.99.1	101.4		
	951	1021		Hydrogen	34.5	5000			6.49.3	00 - 100		
	106	1050		Hydrozen	34.5	5000			1.43			
	TOE	1 400										

Table VIII-2. Tensile Properties of Materials in High Pressure

R.

VIII-11

W

÷,

Pratt & Whitney Aircraft FR-5768

FR-5768

ŝ

			Table VIII-2.	Tensile	Propertie Environn	is of Mat	teriais in ntinued)	High Pi	ressure			
						-						
				The formulation				ð	rendtb	Test Results	Duct	llity
	Teet		9. ros a		Press	ure.	Yield	•	THIN .	mate	EI, ⁽¹⁾	RA. ⁽²⁾
•	Tempen	sture.	Concentration	Environment	MN/m ²	Paig	MN/m ²	ksi	MN/m ²	kai	۴	6 °
Material	4	•				5000	1009.5	145.4	1041.8	151.1	15.0	45.4
Pitenium A-4	300	60	Smooth	Hellum	0. .	0005	1011.5	146.7	1041.1	151.0	15.0	44. 0
	300	8	Smooth		24.5	5000			1415.5	205.3		
	300	8	8.0			5000			1444.5	209.5	3 6 6	0.40
	300	8	8.0	the second	34.5	000	983.5	144.1	1019.1	147.8		37.8
	906 8	23		Hydrogen	34.5	5000	1004.6	145.7	1052.8	1 32. 1		
	33	2		Hydrogen	34.5	5000			1 10CT	1.83.5		
	3	8 8		Hvdrogen	34.5	5000			1999 8	178.8		
	35	82		Hydrogen	34.5	5000			1061.5	152.5	15.0	46.6
		21,0	Smooth	Helium	34.5	5000	9.70A	0.001	1017.7	147.6	16.0	47.0
		007	Smooth	Helium	34.5	2000	202° 0		1430.7	207.5		
	366	00	8.0	Helium	34.5	2000			1430.7	207.5		
	366	8	8.0	Helium	34.5	0000			1423.8	206.5		1
	366	200	8.0	Helium	34.5		072.2	141.0	1008.7	146.3	10.5	22.6
	366	8	Smooth	Hydrogen			974.9	138.5	7.798	144.7	12.0	31.4
	366	8	Bunooth	Hydrogen		5000			1441.0	209.0		
	366	ខ្ល	0,0	riya rogan	24.5	2000			1271.4	184.4		
	366	88	0°0	Hydrogen	34.5	5000			1265.8	163.3		
	2000	8							919 2	132.5	20.0	44.6
A-110	906	80	Bmooth	Helium	34.5	5000	197.0	0.011	917.7	133.1	16.5	43.9
	005	8	Smooth	Hellum	34.5	0005	1.040	0.001	1412.7	204.9		
	300	80	0	Helium		0008			1359.6	197.2		
	300	8	8.0			1000	834.3	121.0	929.4	134.8	14.0	
	000	23		Redensen	34.5	5000	921.1	133.6	957.7	150.3		
	300	2		Rutner	34.5	5000			1080 B	7.001		
	3	8 8		Hydrogen	34.5	5000			1 0211	1.67.1		
	5	8 2		Hydrogen	34.5	5000			110011	127.6	20.5	45.4
	366	8	Smooth	Heltum	34.5	5000	0°0//	119 6	914.9	132.7	17.5	46.6
	366	00	Smooth	Helium	34.5	0000	3 .00		1313.5	190.5		
	366	<u>8</u>	8.0	Hellum	34 .5	2000			1277.6	185.3		
	366	ଛ୍	6.0	Hellum					1289.3	167.0		
	366	00	8.0	Hellum		0003	768.8	114.4	868.7	126.0	14.0	20.8
	366	20	Bimooth	Hydrogen		5000	775.7	112.5	896.3	130.0	17.0	a*10
	366	8	Senooth	Hydrogen Undrogen	34.5	5000			1104.5	160.2		
	366	8		Linden gan	34.5	5000			1158. U			
	996 996			Hydrogen	34.5	5000			1210.0	C 10:1		
	560	š	•									

Lunio de Carlos

P. CASSING

3

										Test Results		
				Test Conditions	-				Strength		Duc 5	tility ,a,
	Test Tempera	ture,	Stress Concentration Factor	En vironn en t	Press MN/m ²	ure, Paig	Yield MN∕m ²	, kai	Ultim MN/m ²	ate kai	ЕІ, П	RA. ⁽²⁾
Harves 168	\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$ \$\$\$\$\$\$\$\$\$\$		ဆိုဆိုဆို ဆို ဆို ဆို ဆိုဆို ဆို ဆိုဆို ဆို	Hellum Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen Hydrogen	9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9	ଟି କି			1120. 4 1082. 4 1082. 8 1084. 1 675. 0 675. 0 680. 8 590. 9 551. 6 551. 6 551. 6 551. 6 551. 6 551. 6 555. 0 555. 0	162, 5 166, 5 156, 8 156, 8 156, 8 86, 5 101, 0 102, 8 82, 6 82, 6 82, 6 82, 0 82, 0 83, 00, 00, 00, 00, 00, 00, 00, 00, 00, 0		
	11	1000	9.9	Hydrogen + H2O	3. 45	200						
Notes:												

Table VIII-2. Tensile Properties of Materials in High Pressure Gaseous Environment (Continued)

1000

I

Ľ

I

ĺ

I

1.4 14534

⁽²⁾Reduction of Area.

(1) Elongation Measured Over 25. 4-mm (1-in.) Original Gage Length.

(3) Maximum Prossure Obtainable at 1144 K (1600°F).

Contraction of the second

Strain Hate for 3mooth Tenslie Specimens was 0.005 mm/mm/min (in./ln./min) Through Yield and 0.010 mm/mm/min (in./ln./mln) From Yield Through Ultimate. Crosshead Speed for Notched Tensile Tests was 0.127 mm/min (0.050 in./min).

Pratt & Whitney Aircraft FR-5768

VIII-13

FR-5768

C. TEST PROCEDURE

Two types of tensile specimens, smooth and notched, were used for this testing. Smooth tensile specimens had a 6.40-mm (0.252-in.) gage diameter and a gage length of 25.4-mm (1.00-in.). Notched specimens (K_T of 8.0) had a larger diameter of 12.70-mm (0.500-in.) and a notch diameter of 8.00-mm (0.315-in.) machined in the center of the specimen gage at a 60-deg angle, with a 0.051-mm (0.002-in.) radius at the apex of the notch. The specimens are described in Section III and detailed by figures III-8 and III-9.

Tensile testing was done with a Tinius Olsen 133.4-KN (30,000-lb) capacity tensile machine, equipped with a P&WA designed pressure vessel. All controls and instrumentation readout equipment were located inside an adjacent blockhouse. This equipment is shown in figures VIII-7 and VIII-8a. The pressure vessel is shown open with a notched specimen in place in figure VIII-8b and in figure VIII-8c, with a smooth specimen and room temperature extensometer in place. The vessel is made of AISI 347 stainless steel and incorporates a high pressure GrayLoc connector. A compensating device built into the base of the vessel eliminates the effect of load resulting from differential specimen and adapter cross-sectional areas.

Figure VIII-7. Tensile Machine and Test Environment FC 21272 Controls and Data Acquisition Equipment

VIΠ-14

- AND AND A LAND

I

ſ

ľ

I

I

ľ

ľ

ľ

l

I

a) Test Vessel Installed on Tensile Machine in Remote Test Cell

b) Test Vessel Open With Notch Tensile Specimen in Place

c) Test Vessel Open With Smooth Specimen in Place and Room Temperature Extensometer Attached

FE 107940 d) Test Vessel With Cryogenic Jacket Installed

Figure VIII-8. Various Views of Test Vessel

FD 53125

FR-5768

Figure VIII-9. Test Vessel With Outer Chamber Removed, Showing Specimen, Extensometer, and One-Half of Furnace in Place FE 107943

After the initial series of 300° K (80° F) tests were completed, the tensile machine was upgraded from a 133.4 (30,000) to a 266.8-KN (60,000-lb) capacity, and the extensometer system was converted to a proximity probe type similar to those systems in use for the creep-rupture and low-cycle fatigue tests. Specimen load was determined by both the tensile machine load measuring system and an internal strain gage-type load cell; thus, absolute specimen load was known and friction at the pressure vessel seals was of no consequence. Electrical connections to the internal load cell, extensometer, thermocouples, and furnace were made through the bottom of the pressure vessel via high pressure bulkhead connectors.

To conduct cryogenic tests, the pressure vessel was modified by the addition of an insulated jacket placed over the upper portion. (See figure VIII-8d.) This jacket has provisions for filling with and flowing LN_2 , thus providing cryogenic temperature inside the pressure vessel. To enhance cooling, the test gas passed through a heat exchanger coil, located inside the LN_2 jacket, before passing into the pressure vessel.

FR-5768

To conduct elevated temperature tests, a two-zone furnace with separate control systems for each zone was used that minimized any heat gradient due to the high thermal conductivity of the gases. This furnace fit within the pressure vessel load frame. Thermocouples looped around the specimen gage section (or notch) were used to control and monitor specimen temperature during each test. Temperature variation over the 24.5-mm (1-in.) gage length of the smooth specimen was less than 2% during testing. The high temperature extensometer system is shown, with thermocouples installed on a smooth specimen and half of the furnace in place in the test vessel, in figure VIII-9. For the hydrogen and water vapor tests, a thin wall retort was constructed to fit inside the existing furnace. This was possible because of the relatively large space available and the absence of extensionetry for notched tensile tests. Pressure inside the retort and the heavy wall pressure vessel was equalized; therefore, the retort contained the hydrogen-water vapor environment only and did not withstand the pressure loading. Distilled water was injected into the base of the retort, and the percent of water vapor content in the environment regulated by controlling the temperature at the bottom of the retort. This temperature was adjusted to obtain approximately 50% by weight water vapor, which simulated the hydrogen-water vapor environment present in the preburner area of a staged combustion rocket engine.

The following procedure was used during testing:

.+

しておこれないない

- 1. Chamber is opened and prepared specimen installed. In the case of a smooth specimen, the extensometer is attached.
- 2. Instrumentation continuity checks are conducted.
- 3. Chamber is closed, sealed, and vessel/plumbing evacuated.
- 4. Chamber is backfilled with nitrogen and purged.
- 5. Chamber is filled and "pop" purged six times in succession with the test gas to 3.45 MN/m^2 (500 psig). A prerun test gas sample is taken.
- 6. Chamber is pressurized with test gas to 3.45 (500) or 34.5 MN/m² (5000 psig).
- 7. In the case of either cryogenic or elevated tests, the temperature is attained and the specimen soaked at test temperature for 10 min.
- 8. Test is conducted. During the test, specimen load is obtained from both internal and external load cells. Specimen strain, for smooth specimens, is obtained from an extensometer attached directly to the specimen.
- 9. After specimen failure, a post-run gas sample is taken, and the chamber is then vented (and purged with nitrogen in the case of a hydrogen test), opened, and failed specimen removed.

NOV 13 1973