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ABSTRACT

Reflecting Seolutions of High Order Elliptic
Differential Equations in Two Independent
Variables Across Analytic Arcs

by
Oleg Carleton
Consideration is given specifically to sixth order elliptic partial
differential equations in two independent real variables x, y such that
the coefficients of the highest order terms are real consta.nts.l It is
assumed that the differential operator has distinct characteristi;s

and that it can be factored as a product of second order operators of

2 3
A _— e ‘
the form " + ak (x.k, yk) - + bk (Xk. Yk) ayk + €1 (xk’ Yk)

k
"where % and Y, are real variables determined from the character-
. A 32 a2
istics, K = 3 > + : 5 and the coefficients a.k, bk’ ck are, in
Y
J'Llc k

general, complex-valued analytic functions of their arguments. This
class of equations includes those examined by Sloss. By analytically
continuing into the complex domain and using the complex character-
istic coordinates of the differential equation, it is shown that its solu-
tions, u, may be reflected across analytic arcs on which wu satisfies
certain analytic boundary conditions, Moreover, a method is given
whereby one can determine a region into which the solution is ex-

tensible. It is seen that this region of reflection is dependent on the

vi



original domain of definition of the solution, the arc and the coeffi-
cients of the highest order terms of the equation and not on any "suifi-
ciently small'’ quantities; i.e., the reflection is global in nature. The
method employed may be applied to similar differential equations of
order 2n, Finally, included are some figures illustrating the region.
of reflection with respect to various arcs for two specific sixth order

equations having no lower order terms.
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INTRODUCTION

In this paper, we wish to examine the reflection problem for
a class of elliptic partial differential equations that generalizes the
type of equations Sloss considered in [7]. Since the geometry of
the problem is better illustrated by equations of order greater than
four, while equations of order greater than six add nothing new to
the understanding of the reflection process presented here, we
shall limit our discussion to equations of order six. In particular,

”

we shall consider a sixth order elliptic equation

al+3u

C.. : :
0si+js6 1 axtay?

(0.1) Liu] = = 0

in two independent real variables x,y such that the coefficients of
the highest order terms are real constants. We assume that this

equation has distinct characteristics and that it can be factored as

3
3 3
(0.2) Lul = 0, [Ak+ ak%..}§_k+b1{a—;;+ ck}“" 0

Here, Xk and Yy are real variables determined from the com-

A 32 32
plex characteristics, Al\ = > + > and the coefficients .
< axl ay]:( <
<

bk’ ¢, are complex-vglued analytic functions of x and Yy o We

-
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propose to write (0,2) as a system of three second order equations
and to assign a general first order a.ﬂa.lytic boundary condition to
each equation of the system. By analytically continuing into the
complex domain and using the complex characteristic coordinates
of (0.1), we show that solutions, u, of Equation {0.1) may be re-
flected across analytic arcs on which u satisfies the above-
mentioned boundary conditions and, moreover, that this reflec-
‘tion can be carried out in the large. That is to say, we present
a method to determine a region into which the solutions can be.
reflected which depends only on the origi.n‘al domain of definition,
the arc, the characteristic coordinates and, possibly, on the

choice of certain simply-connected dormains.

The problem of reflecting solutions of elliptic partial dif-
ferential equations in two independent variables by analytic contin-
uation into the complex domain was picneered by H. Lewy. Ina
very nice paper, [5], .he thoroughly treated the case of a linear
second order elliptic equation with analytic coefficients, He show-
ed that if D is a simply-connected domain lying in the half-plane,
say vy <0, having a segment K of the x-axis as part of its bound-
ary and such that D contains the portion y < 0 of a neighborhood

of each point of K , then wu can be analytically continued as a



solution into the entire mirror image, D, of D across 4. Garabedian
(3] has examined the problem for second order analytic quasi-linear
elliptic equations and indicated how his method may be applied to sys-
tems of such equations. In a recent paper, Kraft [4] modified
Garabedian's techniques to treat ﬂqrst order elliptic quasi-linear
systems in two independent variables. Since both Garabedian and
Kraft dealt with nonlinear equations, their results concerning analytic
continuation were strictly local and shed no light on the domain of re-

flection,

As concerns higher order equations and reflection in the large,
Sloss [6] has continued solutions of the biharmonic equation across
analytic arcs and Brown [1] has ;.nvestigated the general fourth order
elliptic equation with constant coefficients. Ho'_ovever, Brown had to
restrict himself to convex domains and he reflected only across seg-
ments of the x-axis. In [7], Sloss reflected solutions of elliptic

equations of order 2n with constant coefficients and with no lower

order terms across analytic arcs.

The method of Garabedian and Brown consists of transforming
~ the original elliptic equation in two real variables. into a hyperbolic
equation in three real variables and then examining certain three

dimensional Cauchy problems. This differs from the method of



4
Lewy and Sloss who utilize the complex characteristic coordinates of
the elliptic equation to perform the extension., In this paper, we pro-

pose to adapt the techniques of L.ewy and Sloss.

Before proceeding, we would like to introduce some notation.
Let S be a set in the complex plane. We will consistently use the
notation S to denote the set {; z € S} where z is a complex number

and the bar denotes complex conjugation,.

Definition 0,1. Let D be a simply-connected domain in the x, y-

plane having an arc K as part of its boundary. 1If every point
z =X + iyo on K can be joined to every point z=x+iyin D by a

rectifiable curve which, except for the end point z lies entirely in

D, then D is said to be adjacent to K.

Finally, unless stated otherwise, we shall deal exclusively
with simply-connected domaiﬁs whose boundaries are closed recti-

fiakle Jordan curves,



CHAPTER I

1. Continuation into the Complex Domain,

T'or the most part, we shall be dealing with differential operators
of the form
| L = A+ alty)— + blxy) — +
™ a'(x'r y) ax (}"’ Y) BY c(x, Y) )
a2 aZ
where A=z — + —— is the Laplacian and a, b, ¢ are, in general,

5:{2 ayz

complex-valued analytic functions of the real variables x,y. For this
reason, we devote the present chapter to a consideration of the

equation

{1.1) Liu] = Au+a(x,y)-§—;~i— +b(x,y)%§: +c(x,y)u=0

Qur goal is to obtain a suitable representation for the solutions of this
equation in terms of analytic functions of a complex variable. We

shall use as a guide the presentation given by Vekua in [8], chapter 1.

- (z+_2.:. z---z-)= u(x, y) .

Let z = x + iy (x and y real) and U(z,z) = u T
If we formally define the operations
o L 1(2 2y 2 13,
(1.2) oz 2 aquay) ' ai—Z(ax+lay)

then Eguation (l.1) can be written as

2
3% - 3U = 23U -
(1.3) 5=+ Alzoz) 5, +Blz,z) 5 +Clz,z) U = 0,

where



sen= L REE (= 50
wa oee =g (AR ) e )
om0 =g (555

It must be kept in mind that (1. 3) is purely a symbolic form of the
Equation {1, 1). If it happens that U(z, -;) is an analytic function of

— )
z and z then the operators 3. and 5% defined in (1. 2) become true

derivatives with respect to z and z ; that is,

3
a——U(z,z) = aT_'U(Z,C)l s
=z b
==z
2 U(z37) =<2 Ul C)I
‘ 5% LT e=%

where ¢ is a complex variable independent of z. This prompts us

to consider the following equation:

) .
3 3
(1.5) ﬂU]r—éaz—g&-i-A.(z,C)-a-g+B(z, t)g-g%-C(z,C)U = 0

Definition 1, 1. Let £ be a simply-connected domain in the complex

plane such that A(z, ), B(z, {) and C(z, £} given in (1.4) are analytic
functions of the two independent complex variables =z, { ifl the poly-
cylindrical region (€2, ﬁ) = {(z,L):z¢€ Q, ¢ Gﬁ} . Then £ is said to

be a fundamental domain for Egquation (1.1) or for Equation (1. 5).
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We remark that if the coefficients of Equation {1.1) are entire
functions of their arguments, then A, B and C of Equation (l.5) will
be entire functions of z and £ and in this éa.se, any simply-connected
dormain in the complex plane may serve as a fundamental domain for
(1.1).

Vekua shows that if € is a fundamental domain for Equation-(1.1)

and if u(x,y) is given as a regular solution of (1.1) in £ (i.e., u has

continuous first and second partial derivatives in £2), then u is in

_+_ﬁ,__.§)

fact analytic in x and y, and the function Uz, {) = u( 5= o1

is analytic for (z, {) € (&2 ,‘ﬁ) and satisfies Egquation (1_. 5) in that
region. On the other hand, if U(z, ) is given to be a solution of (1. 5)
in (£2, ﬁ) {and so necessarily an analytic function of z and [}, then
restriction to the real manifold £ = z gives U (z, ;) =ulx,y) as an

analytic function of the real variables x, y which satisfies Equation

(1.1)in &,

Thus, from the preceding discussion, it is evident that Equa-
tions (1.1) and (1.5) are in a certain sense equivalent, and that to
investigate the solutions of (1.1) we may work with Equation (1. 5) and
then restrict the results to the real manifold £ =z. We point out
that {1.5) has the same form as a real hyperbolic equation. We shall
take advantage of this fact to obtain a representation for the solutions

of (1.1).



32, The Riemann Function.

In a manner completely analogous to the real case, the adjoint
equation relative to (1.5) is defined to be

2
< a3V 5] 3
{L.6) ;ﬁﬂ[v]:azaz- (aAZV) - (gsg/‘) +CV = 0,

A straightforward calculation serves to establish the fundamental
identity

(1.7) v2[u] - UL [V] = a% (v %—g + AUY) +é%- (- U%’# BUVY),

which is valid for any two functions U(z, {) and V(z, {) analytic in a

common region {(z, {) € (£, 5)

Definition 1,2, Let § be a fundamental domain for Equation (1.1),

The Riemann Function, R (z, £; t, 7}, for (1.1) (or, for Equation

(1.5)) is an analytic function of four complex variables z, t in £,

¢,T in & which satisfies

-2
e a a
(1. 8) Z[R] = azaR§ - (SZR) - a———-—-(aBKR} + CR = 0

with respect to the variables z and ¢, and the conditions

£
Rit, &;t, T) = exp [.f Alt, M) dT}],
T
(1.9 z
Ri{z, T; t,T) = exp [f B(&,T)dg],
t
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where t and T are fixed parameters in £ and ﬁ, respectively.
The existence and uniqueness of the Riemann function may be

established by first writing (1. 8) in the form

2 ¢

e

(1.10) 557 [R(z, Gt M- [ A, MRz, 75t 7))
T

o

f B(£, L) R(E, Cst, T)AE

t
;I
+th d&{ c(&,mR(t::,n;t,'r)ch= 0

and then integrating with respect to z and £ to get

4 2
(1.11) Rz Gt - [ A, mR(zmtnan - [ BE ORE, Lt 1de
T t

Z o
* f dg f CE, MR, mt,Tdn = 1,
since (1.9) implies that R(t, 7; t, T) = 1 . In view of the fact that condi-

tions (1.9) are eguivalent to the conditions

R, £;t,7) -~ AL, OIRE Gt 7)) = 0,

o o

(1.12) R(z, T;t,7T) - B(z,T)R{z,T;t,7) = 0 ,
R, m¢,7) =1 ,

it is not difficult to verify that any solution of Equation {1.11) satisfies
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(1. 8) and conditions (1.9) and so must be the Riemann function for
(1.1) But, the integral equation (1.11) is of Velterra type which, as
Vekua shows, has a unique analytic solution for z, tin £ and C,f'

in . Thus, the existence and uniqueness of the Riemann function

is guaranteed.

Just as in the real case, it can be shown that as a function of
its last two arguments, t and T, the Riemann function for {(1.5) satis-

fies Equation (1.5) and the conditions

S ‘;;R(Z,C;z,‘r) + Az, ) R(z, L;z,7) = 0
(1.13) 'éa-t- R{(z,{;t, & + Bt R{(z,&¢t L) = 0,
R(z,C;z,8) = 1 ;

t

i.e., with respect to the variables t and 7, the function R(z, {;t, T)

is the Riemaunn function for the adjoint equation (1. 6).

In case the coefficients a, b, ¢ of Equation (1.1) are all real
valued, the Riemann function,- R{z,C;t, T), for {1.5) has the addi-
tional important property that it assumes real values when £ = B

and T =t (see [8], § 12).
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§3. A Representation for Solutions of Equation (1. 1).

In order to obtain a represcntation for the solutions of Equation
(1.1) that will lend itself to reflection across analytic arcs kK, it is
necessary to examine what happens to the solutions of Equation (1.5)
as z and { are allowed to approach K and ;l-, respectively.
Towards this end, we adapt fhe techniques of Lewy, [5], to establish

the following lemma,

Lemma 1.1. Let D be a simply-connected domain adjacent to an arc

K such that D UX is contained in a fundamental domain for Equation
(1.1). Let u(x,y) be given as a regular solution of (1.1) in D and let
U(z,} = u (Eg-——z . ‘Z-Z—}-z':) . Ifu(x,y)and its first partial derivatives

are continuous in DU &, then for any pair of fixed points z € DUKX,

io ¢ DUX, the functions Ul{z, CO} and U(zo, C)(and therefore

e U(z, L) BU(ZO, L) -
— 57 and _‘a-'c‘f_—') are analytic for z€ D and €D,

3 .
respectively, Furthermore, ——Uéi—c;-o—} (and therefore U{=z, EO))
z

.a U(zg, &)

5 (a.nd therefore U(zo, ﬁ))

is continuous on D UK while

is continucus on DUKX
Proof: Replace V in Equation (1.7) by the Riemann function
R{z, £;t, 7). Keeping in mind that U (z, {) satisfies (1.5) in (D, D),

identity (1.7) becomes



3 3U d dR ' _
= (= % +ARU)+ag (-uss+BRU) = 0
, , 2U  3(RU) 3R . . .
Using the fact that R 5 C o - u Yl we rewrite this relation
a8
Ci d 3R ]
(1.14) - Bzaﬁ [R(Z, C; £, TYU {z, )1 +'a—';_‘" [U (a_t-— AR)

Now interchange the pairs (z, {) and (t, 7) in {1.14) and set

P, T 2, &) = 5= [R(t,r;z, §)U(t,'r)] -u( - BB,
QT % B = UL (& - AR)

to obtain

1,15 2 o, 7; 2 B, T = 0

(-l ) at (ts'rszai)"a,r (t,T,Z,C) - ]

where (£, T) 'varies in {D, —f)) and (z, £)is arbitrarily fixed in (D, D).

Pick a point Co on K and a peoint z in D and join them by a
rectifiable curve, C, lying in D. Let C be the conjugate path lying

in D having Co and z as end points, Fix a point { on C, ¢ not

equal to £ or Zz . Denote the part of C joining { and Zz by C..
q o J Y r

Then C, is that part of C joining { and z (see Figure 1.1). We

Y
2 —
form the Cartesian product SC = CCX CC and define

dC = {(t,t):tECc]
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We shall refer to dC as the diagonal of Sg

P

! P a
We now integrate thefunctions 5 and S?:Q which appear in rela~
tion (1,15} over the 'triangle' whose sides are dC , {(t,C):t€ CC} and

{(z, TY: Te EC} (see Figure 1.2} in the following way:

A
(1.16) f dtj' 22 Tinl - [ (P £)- Pl Gz O]

g
2 t z ”
(1.17) j: dtf aQ(t,atT, Z:C) d'T:f dT_[ BQ(éC;’T‘,z,!:)dt
L c C T
; :
=f [Q(z, T; 2,0)- Q(T,T;2,)]dT.
£

In view of conditions (1.12) satisfied by the Riemann function, wehave

f P(t, Lz, L) dt =_[ "é'at—[R(t,C;Z.C)U(t,C)] dt
g g

= U(z,8) -UCORE. L2, L) ,

and

The steps involving integrations over the triangle pictured in
Figure 1.2 can be fully justified by parametrizing the curves

C and C with respect to two real parameters varying over a
common interval and then decomposing the complex line integrals
in the usual way as a sum of real integrals.



real axis

Figure 1.1
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(z,Z) ‘
C
7 (z é)
(Emgo} C

Figure .2
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Whence, subtracting (1.16) from (1.17) and taking into account

{1.15)}, we obtain the formula

(1.18) Uz €)= UE, 0 RE. Lz, O) + [ Pt s, €) dbt Q% 2,0

d

C
=UCORE, &z + fl%[R(t,a 2,0 Ult, t)]
d
£

o(E-mr) @+ fuen(E - ar) @@,
dg

where
. _ Z _
(1.19) f Pt T 2, C) dt + Q(t,T; z, £) dt :f Bt, t; 2, £)dt
d 3
¢
f _ _
+f ot 2 b) a
c

' 2
is a line integral over that part of the diagonal of SC from (£, ) to

{z, z), and where we have replaced”T by_t . Reverting to the real

variables x and y through the transformation

X_1:+? t-t
2 YT

and writing dt = dx + 1 dy, dt = dx - idy, it is seen that (1.19) is

actually a line integral over the path CC in D, Keeping in mind that

3 1 /3 3 3 3 3

s=zlem-in) w3 (fa:*i'a‘;,) :

it is then easily checked that the condition



120y 28LE w0 2EuaL)
dt dt

is equivalent to the familiar condition that (1.19)be independent of
the path. But the truth of (1. 20) is immediate from (1,15) when T

is restricted to be t

Since U(t,_t) = u(x,vy) as well as its first partial derivatives
are continuous on D U &, we may let the variable { approach Co

in Formula (1.18) to obtain

Q o}

(1.21) Ule,8) = UE_, 0 ) RELE ;L) + [ | ;—t (R, £52,8 )U(t, ©)]
d

t?(z—f-BR)l at

v f v [E reE0) - AR |,

where the line integral is independent of the path joing Co to =z,

Formula (1.21) is valid for all z in D and shows that U(z,ﬁo) is con-
\

tinuous on D U K. To verify the analyticity of U(z,{ ) on D, it suf-

3 .
fices to check the Cauchy-Riemann equations, __H?—’O—CQL = 0. Since

the first two terms of (1.21) depend analytically on z, their deriva-

tives with respect to'z are zero. g Calculating the derivative ofthe

last term we get
o

—_ Z — Z
* The line integral é‘ Pdt + Qdt = -tC Pit, t; =z, )dt +.€ Q(t,?;z,z)
ﬁo o o] o]
is independent of the path and P is a continuous function cf £t in D
while Q is a continuous function of T in D. Whence, by Morera's

theorem, the integral _é—' P(t,t;z, L )dt is an analytic function of
- .
its upper limit and P(z, 2 (% ﬁ is an analytic function of z, while

fC Q(t, t z, Z: dt is an a.nalytlc function of its upper limit.

dt



— 79
= U{z,z)[g"g R(Z,C;Z,CO)—A(Z,C) (z,0;2 ﬁ] =0,

where the last equality follows from (1.12). Thus U(z, ?ﬁo) ig in-
deed an analytic function of z in D, and therefore so also is

o) :

: ———E%—:;’ACL) . Differentiating the right hand side of {l.21) with re-

spect to z gives

aU(Z:CO) — a
—“—“—=U(C,C)“—R‘: C ZCH‘PZ Z; z, E}
Oz o’ "o’ Oz
4
ST raTa e fownal)E,
=1 dz o}
¢ i
o)
which is a2 continuous function of z in D UK

aU(Zos C)
The desired analyticity and continuity of U(zo, £) and “_a&—

ray be established by replacing z with z, in Equation (1.18) and

interchanging the limits of integration in (1.19} to get
_ [ _
(1.22) Ulz_,&) = UL, DR R({EL;z o 'é Ig—[ TR, tz ,‘f)]

i U(%tfi- BR)I dt _j: U(t,?)[g-?_ AR} dt
=z

o
This formula shows that U(zo, ) is continuous for £ in DU XK. To
check the Cauchy-Riemann equations, differentiate (1.22) with respect

to L. Taking into account Condition {1.12) and the fact that the last
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term on the right hand side is an analytic function of £, this calcu-

% Uz, £) 0Uo, 8 e

lation gives = 0, Thus, U(ZO,C) as well as

analytic functions of { in 5 Finally, differentiating (1.22) with
oU(z , L)

of

respect to { shows that is continuous for £ in DU X

To finish the proof, we point out that when Co €D and zoe D,

the analyticity of U(z, Co) and U(zo, {) follows immediately from the

. - 3
analyticity of U(z,{) in (D, D}). The expressed continuity of _U_(\Z’CO)
cy
3
and _Ed{.z_ﬂi.g) is seen by replacing £ or = by Co or.zo, respectively,

ol

in Formula (1,18) and then performing the necessary differentiation.

This completes the proof of the lemma.

An important property of the solutions of Equation (1.5) in case

the coefficients a(x, v), bix, v}, c(x,vy) of Equation (1,1} are real-

valued functions is given by the following theorem.

Theorem 1,1, Let D and & be given as in the statement of Lemma

1.1. Assume that the coefficients a(x, y) and b(fz, y) of Equation (1.1}
are real-valued functions., Let u(x,y} be a real-valued regular solu-

tion of (1,1) in D such that u and its first partial derivatives are
z-’ri z-L
2 72

continucus in D U X, Let U(z,l) = u‘( ) If z is a fixed
point on K, then
Uz, z ) = Ulz ,=z)
o )
3 ™ 3 z
Ulz, zo) U(zo, Z)
g 3z

-.k

for z in D U k. Whence, the functions ¢ {z) and QD’ {£) given by
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3 Ulz, z_) _ N
#(z) = ——y—Z— + Bls, % )Ulz %)
N 0 Uz _, &)
@ L = 5 A(zo,lf}U(zO,C)

take complex conjugate values when { = z

Proofl: We establish the theorem for the case when zo is in D

and then let z approach K |

Fix z =X +i Yo in D. Then u has a Taylor series re-

presentation in a neighborhood of the point (xo, yo) given by

ufx, y) = Z a (x-xo)m (y-yo)n

m, =0 mn
where the a are recal constants dependent upon {(x ,y ). From
mn o' ‘o

this, we obtain

ca z+zm n
0.0 o (B, 5) - T a-m( )( )
m, n=

which is absolutely and uniformly convergent for (z, ) in some poly-
cylindrical neighborhood of (zo,;o). In particular,

[2=]

n

S, % L (1], e
(1.23) Uz, zo) T mim=0 mn 2zmtn o\ (z - zo)
and @ n

—_ 1 (—_1_) - —  min
(1.24}) U{Zo"&) - m%zo mn 2mFn i (z - 40)
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Whence,

[ha)

‘ T
5 - 2 L (LG
(1.25) U(zo’é} T min=0 *mn 2Mmin i (z -z )

Ii 1 (_1__) ( )m+n
m¥fn=0 amn pmtn \ gy

= Uz, z )
o)

for all 2 in some neighborhood for z- Since Ulz, zo} and U(zo, 2)

areanalytic for z inD (U(zo, z) is an antianalytic function of an anti-

analytic function) and since they agree on a set with a limit point,

we may conclude that U(z, Zo) = U(zo, z) throughout all of D, By

Lemma 1.1 we can let z, approach X to conclude that U(z, zo) =

U(Zo’;) for zo on Kand z in D UK,

After differentiating expressions (l.23) and {1.24) with respect
to z and E, respectively, we may apply the same argument as above

to establish that

for z on K and z in DUK .

To prove the last part of the theorem, let :‘:(z, &) :a(_Z_;_C . zz-f)
. 1
-~ r-'+ - ~ —_ ~ —
and bz, £) = b(fz—ﬁ 2 22_16) Then a(z,z) = a(x,y) and b(z, z) =b(x, y)

are real analytic functions and so the same argument as above may

be used to establish that a‘(z,Eo) =%(z_, z) and Bz, 7?0) ='B(zo,z) ]
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Whence, by the definition of A(z, L) and B(z, {) given in (1.4) ,

4 A(zo,z) = a {zo, z) + 1b(zo, z }

and

"
B 7
)
N
]
-
o3
N
N

4 Az, =)

It is now an easy matter to check that ¥{z) = @*( } . This completes

the proof of the theorem.

We are now ready to write down a representation for the solu-
tions of Equation {1.1) in terms of analytic functions of a complex

variable.

Theorem 1.2, Let D be a simply-connected domain adjacent to an

arc k¥ such that D UX is contained in a fundamental domain for Equa-
tion (1.1), If u{x,v) is a regular sclution of {1.1) in D and if u and its
first partial derivatives are continuous in D UK and if

U0 =u (55, ZF), then

2 2i
(1.26) ulx, y) = @ R(zo,zo;z,-z')+f qo(t)R(t,Zo;z,Z) dt
— ZO
Z
+ f TRz, T2,%) T,
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where z =x +ivisin D, = =x +iy is a fixed point on K,
0 o e

o = Ulz ,; ), R is the Riemann function for (1.1) and
o o o
3U (Z,Eb) B B
= — Uiz, o
QD(Z) 32 + B(Z’ZO) (%, 40) s
L 3, 0
(L) = g Al £) Utz , )

which are analytic functions of z and € in D and D and continuous

in DUK and D UK respectively.

Conversely, if Odo is an arbitrary constant and @(z) and ¢ 3:C(C}

are arbitrary analytic functions in D and 5, continuous in DU KX and

D UK, respectively, then Formula (1, 26) represents the regular

solutions of Equation (1.1), continuous in DUK ,

Remark: If the coefficients a(x, y}, b(x, y) and c(x, y} of Eqguation

(1.1) are real-valued functions and if u(x,y) is a real regular solu-

tion of {l.1l}, then & 1is a real constant, R(z ,—2.7 , %, %) is a real-
o o o

sk

valued function and from Theorem 1.1, ¢ () = (P(E) and

R{(t, 2o % z} = R(Zo:t i Z,%}) . In this case, Formula (1,26)

may be written as

= R , ; ,—+2R
u(x, v) o _(zo 2 ;2 z) e

=
f PR, 7 iz, =) dt
Z
o)
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Proof of theorem: In identity (1.7}, replace V by the Riemann func-

tion R{z, £ ;t, T), interchange the ordered pairs {z,{ ) and (t, T) and
use the fact that U, T) satisfies (1.5) int and T to get

2 r y

a
121 xss WETRETZO) = 5 U (5

Ult, 7 (a—R'— BR) .

i)
oT 9t ]

We wish to intcgrate the above expression with respect to t from
z to z and with respect to T from Eo to L. Note that because of

Lemma 1.1, z  may be taken to be on K .

In view of Conditions (1.12), the above integrals may be evalua-

ted as follows:

z ¢ 52
a2 fa f sm e mRETD] AT
ZO 20

v}

e}

=f ~a-a~ [U(t,C)\R(t.C;Z.i} - U(t,EO)R{t.; yz, )] dt
Z
o]

= U(z,0) - Ulz, = _)R(2,Z_;zL) - Uz LR (2 L5z, L)

+ Uz ,—'; }R{z ,_z- 1z, C),
oo o o



"‘i\mo

L
G \
f U{ZO,T}(ETR(Z ,T32,0) - AR) a7

—Zo
¢ 3
é 37 [U(z . T (zO,T;z,C)} dar

(g-q-_q + AU)R(z_, Tiz, L) 47

Z
O

- Ulz_, ) Riz, Lz, £) + Ulz, ) Rz, 232, 0)
<
+j- (%‘g + AU) R(zo, T; z, £) dT,

Z

(1.30) f dtJ{ —a—i— [U(t, T) (%? - BR)] ar
; .

. _
Ult, zo) (g‘t—R(t, z i z, L} - BR) dt
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Combining (1.28), (1.29),and (1.30) according to the identity (1.27),

we obtain

.z
— - 3 - _
Uz, 0} =U{z ,z Y R(z ,z ;2,0) +f [-a"U(t,z )+BU:]R(t,z;z,§)dt
C o o t o} o
%o
¢ 3
g .
+£ [a'r (z ,T)+ AU] R(zo,‘r,z,t;’} dT.
z
0
Restricting § = z in this expression gives Formula (1.26). And, the

desired analyticity and continuity of ©(z) and f,D*(C) follow directly

from Lemma 1.1.

The second half of the theorem is easily verified by directly
substituting Formula (1.26) into Equation (1.5) with £ = z and keeping

in mind Conditions (1.13). This completes the proof of the theorem.

Consider the nonhomogeneous equation associated with {1.1),

(1.31) ' Llul = i(x,v),

where f{x,y) is an analytic function of x and y in some simply-con-
nected domain of the x, y-plane. The equivalent complex form of

this equation is

(1.32) Z2[U] = ¥z, ) ,

As is well known, the general

Ztl -l ) .

1 ’
where F(z,EFZf( 7 o
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solution of a linear nonhomogeneous differential equation is obtained
by adding a particular solution of the nonhomogeneous equation to the
general solution of the homogeneous equation. Taking into account

Conditions (1.13}, it is easily shown by direct substitution that thé

function
st
{1.33) U (z, 1) =fdtf R{t, T;2,0) (¢, T) dT
P z z
o o)

is a particular solution of (1.32). Restricting {= z gives Up(z, z)
as a particular solution of (1.31). We are thus lead to state the fol-

lowing corollary,

Corollary: L.et D and K be given as in the statement of Theorem

1.2. Assume F(z,{) is analytic in (D, D) and that it is continuous in
each variable separately up to and including the boundary K, or E,

as the case may be. I u(x,y) is a regular solution of the nonhomo-

geneous Equation (1, 31) in D and if it and its first partial derivatives

+ -
are continuous on D UK and if U(z, {) = u(iz—ti . %) , then
(1.34)  ulx,y) =& R(z ,z_;z,2) _[qs (t,z_iz, 2) dt

(MR (= ,'T;z z) dT

f (t, T;z,z) F(¢, T) dT,

Zn

/e
f s
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where z = x + iy is in D, = :x I-1y is a fixed point on K,

(e}
@ =Ulz ,7 ) Flzl) (zlj ié;g

) , and

8 U(z,z )
——

@z} = 3z + Bz, ZO) U (=, ZO)’
. Uz,
PO - g + Al DU LD

which are analytic functions of z and { in D and D and continuous

in DUK and DUK , respectively,

Conversely, if Oto is an arbitrary constant and ©{z) and ‘P*(C)

are arbitrary analytic functions in D and D, continuous in D UK and

DUk, respectively, then (1.34}) represents the regular solutions of

Equation (1.31), continuous in DU X .|

Proof: If u{x,y) is given as a solution of (1.31), then the function
(X, ) = U (Z,_Z—) = U(Z: Z) = U (ZJ Z)
Y P
satisfies L[uh] = 0. Therefore, from Theorem 1.2,

{1.35) U(z,z)=U (z,z) + U (z z)

h
=Uh(zo,zo) (z,.a 12, z) +f§0 Rit,z 2 Z) 4t
z z
f (z o Ti2s z) dT +fd R(t,Tz,2)F (t,7)dT,
'5 z z
Q [»]

where



aUh(z,E )
Pz) = 32 + Bz, z ) Uh(z,EO)
and :
y aUh(zo,ﬁ)
L) s s T AL U (L0

But, from (I1.33) it is seen that Up(zo, zo) = 0 and that

. 8y (z,;o)
U(zz)=0, —H—2=0,
o) o _ z
oyU (ZO,C)
U (z,0)=0, gt’ = 0
Therefore, U, (z ,2 ) = Ulz ,z ) and
h "o o o o

h o o dz dz ’
e Tl CAURCINS i 38Uz, L)
Uh (Z ) )'_ (AO, ): at: - ai

- Thus, Formula (1.35) is identical to Formula {1. ?;4). The second
half of the coroliary may be verified by direct substitution. This

completes the proof.
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CHAPTER II

1. Geometric Reflection Across an Analytic Arc.

If z=x+ 1y is a point in the complex plane, then reflecting =
acrass the x-axis corresponds to the familiar notion of taking its
complex conjugate, z = x ~ iy, We would like to extend this notion
of reflection to more gene-ra.l types of arcs; in particular, to those

analytic arcs treated by Sloss in [6] and [7].

Let K be an open analytic arc in the xy-plane defined by the
relation F{(x,y) = 0, where F 1is a real analytic function in some
neighborhood of k¥ and where FXZ {x, y) + Fi {x, v} # 0 along ¥ . By
K being open, we mean that it can be considered as a homeomorphic

image of an open interval, Make the substitutions z = x+iy,

A

_ z+{ Z_.C;]
g(z, &) = F[z Y]

as an analytic function in some polycylindrical neighborhood lz.-zol <r,

£=x- iy to obtain

If-zl<rof{z ,Z )foreveryz ==x +iy on X . Moreover,
o o o o o o}

[F ligpy ) #1F G,y )1# 0,
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and

é—g- = —1~ : w 1T
P 2 [Fx(ho’ yo) 1I‘y(}\:o'yc)] # 0

A
_0

=z

O

(L S

Thérefore, by the implicit function theorem of complex variables,
there exists a unique function, £ = G(z), defined on a neighborhood,‘
N(zo), of ecach point z on K , whose range is a neighborhood of _Z—o
and which satisfies the relation gz, G(z)] = 0 for all z € N(zo), Also,

G(z) is single-valued and analytic in a neighborhood of & and

o

- 3 _
(z )=z forall z € K., Because :'g' {(z ,2 ) # 0 and
o o o) dz o o

Qs

[eg

:

{zo, ;o) # 0, G(z) is also one-to-one in some neighborhood of «.

o/
g

Definition 2.1. The function G(z) introduced above will be referred

to as the reflection function relative to the arc k.

Definition 2.2. Let D be a simply-connected domain adjacent to an

analytic arc K such that the reflection function, G, is defined,

analytic and one-to-one in D. If z is a point in D, we define the

A
point 2 = G(z) to be the reflection of z across K,

A —
Note that z = G(z) = z for all points z on K. We let D= G{D)

denote the reflection of D across K ,
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To justify the above definition of reflection, we show that if =z
is not a point of X, but lies in a sufficiently small neighborhood of
K , then ; must lie on that side of K not containing z. Toward this
end, let X be given as the image of an open interval (a, b) under a
mapping h(¢) = %(¢) + iy(§) which is analytic and one-to-one. Then
h can be extended as a one-to-one analytic function of a complex
variable into some sufficiently small simply-com\lected neighborhood,
R, of {a,b) which is symmetric with respect to the real axis, i.e.,
R = R, Let R-I- denote that portion of R which lies in the upper hali-
plane, y > 0, and let R- be that portion which lies in the lower hali-
plane, y < 0. Let N+ = h(R+} and N,. zh(R_). Then N+ aﬁd N‘ are

domains lying on opposite sides of &, since N+ AN =¢ and & is

contained in the boundaries of N+ and N

Without loss of generality, assume G is one-to-one and analy-
tic in N+U KU N . We wish to show that if z is in N , say, then its

reflected image, £, must lie in N+. It is clear that the latter will be

A
established if we can show that z = h{{), where £ isin R and

A
h(€) = z . However, notice that =z

1]

h(f) is equivalent to the

exXpression

RE) |

@2.12) G[h(¢)]

L e S
since z = G[h({}]. But G[h(£)] and h(f) are analytic functions of £ in



33

R and they agree along {a, b). Indeed, if £ € {(a, b) then h(§) € K and

[N -

G{h{£&)] = h(&) or GIh(E)] = hWi€) = h(&) . The last equality follows be-
cause £ is real, Thus, (2. 1la) must be valid for all £ in R and so

A e
z = h({€} lies in N_l_..

Intuitively speaking, the above shows that points close to K
have reflected images on the opposite side of K, We will extend
this further by assuming throughout the remainder of the paper that

A
whenever D is given as in Defintion 2.2, then D ND is empty.

Later, it will be useful to know how the reflection function
A
acts on the reflected region D. Toward this end, consider the
A — A A
function H(z) = 2z defined for z in DUK . By examining the dif-

A
ference quotient for H(z) it is easily seen that H has a derivative

A A -1
at every point of D; in fact, H’(Z) = [G '(z)] . Thus, H is ana-
A A A
lytic in D and it is continuous on D U K and agrees with G for z on
. A
K . Therefore, H is the analytic continuation of G into D; 1i.e.,

A A A

G(z)= H(z) =z for z in DUK , As a consequence, we have that
A
A
Z

A . A
- zinD UK UD. Thus, G(z)is analyticand G (2) # 0in DUKUD

A
and G(D) = D.

Of particular interest are the cases where it is possible to
obtain an explicit expression for the reflection function. When «

is a segment of the x-axis, we set ¥F(x, y) =y and obtain
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Setting the right hand side equal“to zero and solving for £, we get

A
that { = G(z) = =z and that =z = G(z) = z . Thus, for the case of the
x-axis, the generalized notion of reflection agrees with the usual
notion of reflecting a point by taking its complex conjugate.

For the case when K is a circle or a circular arc of radius

. 2 2 2
r centered at the origin, we set F(x,y} =x +vy - r . Make the
complex substitutions to get
2 2

Az (z-t) 2
glzt) = (B2) + (32) - -
' _ A

and then solve g(z,{)=0 for £ to obtain £ = G(z) = rzz 1a,ncfl z = G{z)

21 ' A
=r =z . We see that the reflected point, Z, obtained by means of

the reflection function corresponds to the familiar notion of the in-
verse point of =z relative to the circle of radius r centered at the
origin,

As another example, we take the ellipse given by

2 2 2 2
b

2 2 ‘
g, y)=b x +a y -a = 0 and calculate the reflection func-

tion to be

2z 2 2 2 2

{a +b)z-—2ab\/zc'+b-a

Glz) = 5 > ;
' a =-bh

where the principle branch of the square root function is used; i.e.

2, .2 ' 2 .2 2 2 -
\/z + b -az = lz  +b -a | explarg(z +b2—a2)' 21],
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: 2
Finally, for the parabola F(x, v} =% - vy =0 we find that

Glz) = (i-2)- ivdiz +1 .

where again, the principle branch of the square root is used,

§ 2, Statement of the Pfoblerﬁ and Notation,

Consider the elliptic partial differential equation
3 2n

(2.1) Q[u] = u(x,y}= 0

c
itj=2n  ij 5x15y]
of order 2n where the c,,are recal constants, Ellipticity implies

] .

that om0 # 0 and so, without loss of generality, we take ¢ 1.

2,0

Further, the elliptic nature of the operator O allews it to be de-

composed as a product of 2n lincar factors as

" 3 34v/3 —
Q=7 (ﬂ’alcg)(&?"aké‘;)

k=1

: o = e, o = - 16 , with 6 0, th
where 3 ’Bk + 1 ” and X ﬁk 10, , wi e # are the
roots of the associated characteristic pelynomial

Zn
g 21’1—- k

c = 0
Z2n-k, k

k=0
Since 51( # 0 and since ozk and Ek are both involved in the de-
composition of Q, we may choose 61{ to always be positive,

Finally, we shall assume that the characteristics of (2.1) are
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distinct; that is to say, we shall assume that @ # O!j if 1#7.

For each k =1,2,...,n, introduce the nonsingular coordinate

transformation

(2.2) Cx o=x,
whose inverse is given by

y=6 y -8 x

(2.3) *EE Tk T Tk ke

K’

Under this transformation, observe that

‘ 2 2
3 3 3 — ¢ 3 3
— - — = - —) = = A
(ax ak 3 Max ak ay) 7 T 2 k
4 o 3y,

which is just the Laplacian with respect to the coordinates, X 0 Yy

Thus, (2.1) may be written as

(2. 4) Qlul = (ﬂ Ak> u(x,y) = 0
k=1

In [7], Sloss showed that it is possible to analytically continue
solutions of Equation (2.4} across analytic arcs bif means of reflec-
tion provided the solution satisfies certain analytic boundary condi-
tions along the arc. Furthermore, he was able to explicitly
describe a region into which the solution could be extended, The
region of reflection turned out to be dependent onlyxlon the original

domain, the analytic arc and the coefficients, c

i of Equation (2.1).
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In this chapter, we would like to examine to what extent Sloss’
results carry over to the case wheﬁ (2.1} has lower order terms
present. Because of the reason mentioned in the introduction, we
shall limit our examination to sixth order elliptic equations that

can be factored as .

3
3 3
(2.5) Llu] = IT [A +a (x,y,) 357 +b (x,7 I
=1 k KR Tk Xk k' k' Tk Yk

te b, Yk)] u (x, y) =0 3

where the coefficients 2 bk and c, are complex valued analytic

functions of their arguments, Xy and Ve Before proceeding with an

investigation of this equation, we introduce some transformations

and notation that will be used ‘repeatedly‘ throughout what follows.

= 3 - + 1 r
Let z = x+ iy and set 7 = X T Ay where. X and ¥, are

given by (2.2), k=1, 2, 3. 8Solve for =z and z. in terms of z and

k
":; to obtain the transformations
z. = T{z) = A =z+ B 2
k |5 k
(2. 6) K )
pu— _ T:Ic— _ —_ ) — _—
Z " {z) Bk z + Ak Z

where the coefficients are uniquely determined as

1 -1 -1
A = S [+6 HY+1d " B]
2. 6a) k2 k kT
" -1 ca-1
B ® 2[(1"61<)+161< Bk] '
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Though Tk(z) and Tls(z) are not analytic functions of their argu-
ments, they are continuous one-to-one transformations having con-

tinuous inverses given by

(2.7)

I
!
-3
-———

[
It
Cn

i il .
or a %

We now continue Tk and Tl' into the domain of two independent
A

complex variables. Replace z by £ in (2.6) to get

[
1l
>
N
+
o

(2. 8) k Kk K
£

[l ¥
I
)
N
+
> |

Iz k 5
as a nonsingular continuous linear transformation between the

variables {z,{) and (zk, €.) whose inverse is given by

k

(2. 9) | z = O (A z - B L)

= 61( (-Bk Zk+A]:{C:k) .

From (2. 8) and (2. 9) the relationship between the pairs (Zk’ ﬁk)

and (zj,tj), k # j, can easily be established as a result of straight-

forward algebraic manipulations toc be



z =T (z,0.) = a_. +b. L
4 k k
(2.10) 1 i Jo) o K]
_ sk . :— L ’
£, Tk(Cj,A) by %5 T2,
where .
= 5 (ALA -B, B.
S T T S
- § .
bkj 5 (BkAj Ak Bj)

Again, this is a2 continuous nonsingular linear change of variables

and Tl' and T; are entire functions of z. and .. We remark that

. _ — _l .
when C. =%, then T {(z.,z.)=T7T T. (z) ==z and T (z.,z.)
BN k i‘l ] k j ] k kU7
e d - — —
= T T, (z) =12z, . This notation will be used
ko J k

interchangeably,

Finally, let D denote a simply-connected domain in the

x, y-plane adjacent to an open analytic arc «. Tor each j, let

D. = z.=7‘.(z):z€D],
] J J

K = lz_:r,(z); zEKI
J J J

Since Tj is a homeomorphism, Dj will be a simply-connected
domain adjacent to Kj. Moreover, the relations defining trans-
formation (2.3) are analytic and for this reason Kj will also be an
analytic arc. For example, if & is part of 2 nondegenerate conic

given by

2 y
F(x,y) =ax +bxy+tcy +dx+tey+f=0,
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then K. will also be part of a nondegenerate conic of the same type
J

as K‘.

§ 3. Equation {2,5) as a System.

We return now to Equation (2. 5) and define operators

3 3
= A . = . 2
Lo = B T abe vy ox b Gy 2y,

+ =
ck(xk, Vk), k=1,2,3

where, from (2.3),

s 9 3 3 3 5 3

3% 8x  kay ' vy Sy

axk Ox k Oy Vi k Oy
Then (2.5) may be written as
(2.11) L[u}l = Ll L2 I...3 ufx,y) = 0
Set

ua (%, y) = ulxy)

(2.12) uz(x, y) = LS[U3] ,

ul(x, y) = LZ[uZ]

Then (2,11) may be written as the system

L3[u3] = us(x, vy)
{(2.13) LZ[uZ] = u, (=, v)

1
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From the coordinate transformation (2. 3), we have

(2. 14) w (5, y) = u (x.,6 v -8 x)
; 7Y k] JYJ joJ
= v, . {x,v.)
ki "] YJ
. zj +F£J zj -;J
1] 2 ! 2i
= V. . (z., ;.)
kj j J

If we now introduce the operations

3 _1<a ‘ a) 3 1(a+_ a)
82 2 \ax T tay ) T 32 t :
zZy 2 axk Yk a":‘k 2 axk Byk

then system (2.13) takes the form

& _ -

+ A {z_,=z_) +B (z_,z,Y—+C_ {2z, ,z )V,  (z.,z.)
- 3737737 32 3’73

513323 3 3

2
3 — 3 3 - -
[ T Az, zz)azz +B,(z,,2,) BEZ+ Coplzgs Zz)Jvzz(ZZ’zz)
, .

l —
1 V12 (750 25)

& Az E bt Bz.2 )t C.z..3 ~
[——— 1'%17 %1 5z, (20 2 o7 (zys 2y WV L2y 2y)
3

where



It is Systerm (2.15) which we shall use to reflect the solutions of

Equation (2.5). We point out that V(= Ek) and ij(zj,gj) ,

k'K’

j=ktl, k=12, are equal to the same function uk(x, y) and that

they are related by the expression

-1 cok Ho ]
= = T T
{2.16) ij(zj,zj) ka[k ; (2.}, T, T, Z.)]

kk LTk % Tk
T ViaEee 7t
-1
where z. = ’r'J Tk (zk). If u(x, y) is given as a solution of (2.5}, then
a - - 1 - f . .
ka{hk’ yk) ka(zk’ zk) becomes a known analyvtic function of X0 Y

th
and is a solution of the k' eguation of (2.15}, k =1, 2, 3,

54, Reflecting solutions of Equation (2.5).

)= F{z . ,z.}is a known function defined for

Suppose f(xl,y 17 %1

1

all z_ in Dl such that I(z

. £ ) is an analytic function of the two

1=

complex variables 7y € Dl' il € D1 .  Upon performing the
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coardinate transformation

F(ZI’ZI) = F[Tl(zz, ZZ)’ Tl (ZZ’ZZ)] = F =z

21 Zz) *

o1 — -

=T = ‘ 3 1 1 -:-
where Z, 5 11 {Zl) T2 (zl, Zl)’ we obtain a function F(z.z, Z
defined for all Z, in DZ = ’r"2 1‘51 (Dl) . However, the function

Sz

’;ﬂ (ZZ, CZ) = F[TI (Zzi Cz): rl-‘lp (ﬁzl Zz)]

will not, in general, be analytic for all z EDZ’ CZ € D. as the

2 2

following example suggests.

)

Take D1 to be the square whose corners are the points (G, 0),

(1,0), (1,1 and {0, 1} and take 61 =6 =1, B1 =0, BZ'=1. Then

2

N
1l

T, (=

oo [

The set DZ is just =

in Figure 2.1.

1., —
1 -é-lzl:zl EDl and is shown



.
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3 7 1 1 —
'l - an - .E‘ 5, e e e oy — s =3 ,..,h‘
Cona‘ldcz the pair % 4*! i3 CZ g- iz in D2 X D2 Then
3 7 1 1 17 7
= Zhi—=, = i=) = e i —
2p 7 T gt T Y 1e
# 0 1 1 3 7 3 3
= —_— -1 —_—t =)= - — -
R B - L YA T

= ~ 3 7 1 H
L. . « ] T A IR S
and this pair is not in Dl D1 Thus F {4 i 3’ g iy ) is not

even defined, However, given any point z, in D2 there does exist

a neighborhood, N, of z, contained in D, such that F(ZZ’ £.)is de-

2 2 2

fined and is an analytic function of the two complex variables
zs € N, CZ € N . Itis the purpose of the following lemma to estab-
lich this fact and to give some idea about the size of N,

We use the notation N(z,0) to designate an open disc in the

x, y-plane whose boundary is a circle of radius £ centered at

Z=XT1y,

Lemma 2.1.  Let Qj be an open connected set in the complex

plane and

0 = =) = - . <y}
< Tk(zj' Aj) Zy zj i

Let F(z,, Cj) be a known analytic function of two complex variables

j .

for (z.,£.) € (Q.,ﬁ.} . Then, for every point z in £, there
37 i3 - ko k

exists an open disc, N(z, ,r}), centered at z, and of radius r con-
< ko

ko

tained in Q}\ such that the function F(Zk, (ﬁl ) defined by ‘
< <
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" - L0, THE - Tz,
F(z,,8,) F[’I‘J.(?k Ck) TJ.{ N F(fj CJJ
is an analytic function of the two complex variables 2 EN(ZPO, r),

:1- € N(El_o, r}. Moreover, the radius, r, of the largest such disc

can be determined explicitly from the choice of the point z

ko
and from the coefficients ajk and bjk of the transformation
} .
Tj(zk’ gk) to be
( m(zko)
r (7 = s
|
ko lajkl + !b.k
h ; = inf |z, - s 2. =T.(z. ,z EdQ
where m(&ko) in Iaj Ljo‘ zJ0 j(éko zko), zJ ;

Proof: Arbitrarily fix a point Z) o in Qk and let Zjo be the point

in Qj defined by

Zjo - Tj(zko’ “Lo

= + b, z
) = 25 1o T Pk ko

Let N(Zko’ r) and N(Eko, r) be open discs of radius r centered at

Z o and —Z—ko respectively. We proceed to find an r satisfying the

conclusions of the lemma,

Replace zj by z. and Cj by Ek in the coordinate transforma-

ko

tion (2,10) and observe that the resulting mappings

Tola o b) = e 2 bjka -
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and

T &,z )=b, =z +a = (.
j {Jl'\' /lco) ij /kq ajk t"'k CJ

are linear with respect to the single complex variable Ck and so

map circles onto circles., Furthermore,

1
o
jad
+

e
ik “ko T Pk T %k Pk Pjk Zko!

and

1
o |

» &) maps N{z

ko’ ok o r) onto an open

From this, it is seen that 'I‘J_{z

disc, N(z. , b, | r}, of radius Ib_ 1 r centered at z_. and that
joo jk Jk jo
; 'o) maps N(-z_ko, r) onto an open disc, N(;jo’ Iajk' r), of

radius la,kl r centered at —Z—jo . Thus, transformation (2.10)
J

X N(z ' i
maps the set ’zkol N(Zko’ r} onto a subset c?f N(Zjo' |bjk r)

X N{z. , la. | r).
jo ik
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For the next step, arbitrarily pick a point Cli in N(Zko’ r).

Then, transformation {(2.10) maps the pair (z1 0,{,”1;) onto the pair
<

Fd ! o
. i { | bt 1
(Aj, ij ) in N(zjo, bjk r) N(Zjo’ tajkl r) given by

] 7 !
z! = T {z. , =a. + b,
ZJ 'lJ{sz gk) ajk “Xo ka Ck
e/ = * ! = N o + a !
>3 L € r 2p) Pae %xo Fik Cre

Consider now the set N{z

C 4

k

/ . .
X
ko’ r) ‘Ck] and the linear mappings

T { they map circles onto

Z }. As functions of %
ik

aT e,
Jand T (L, 2, X’

circles and in particular they map N(z. , r} onto open discs centered

ko
at z and Cj’ respectively (see Figure 2,2}, Furthermore,
/

F4 N . !
-z = | , - . ,
;zj Aj Tj(zk Ck} TJ (Zko Ck) !

= 7, |
Iajkl 12]{ yko ’
and
1L =T @, m ) - T, e )
VI i kK Tk j 7k’ Tko
N T
Pk Px chk ik “xo Jkgk



zj= plane

““"‘ﬁa[?jo ,ijklr]

i !
N[z, 1y

real axis

z - plane

N[zjo,(lqjk]-l-!bjkl)i"]

real axis

6%

Figure 2.2
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Thus, Tj( £ ’) maps N(zko’ r) onto an open disc N(zjf, ja.1r), of

KK ik

ate
o

J

an open disc N{ﬁj’, ijl*l r), of radius ib_kl r centered at 2. And so,
‘ ’ |

transformation (2.10) maps the set N(Zko’ r) X lﬁé i onto a subset of

) 4
radius ta, | r centered at =z, and T
e

i (Cll : Zk) maps N{z. ,r) onto

ko

N(z., ta. ! r) XN(?‘:, th., 1 1),
] jke 3 jk

Now form the union of all the open discs N(z;, ! a,kl r) whose
J

center, z_’, lies in the disc N(Zjo’ 1bjkl r) to get an open disc cen-

tered at =, .and of radius {|a.
o

+ o Py r: i, e.
JkI bjk)r,l e, ,

v N(z,, 1a, ) )" = N[z _, (la,l+b, 1)r]
2 €Nz, b1y 0 K jor ik gk
J joo jk
Similarly,
y - N, b1 ) = N[Z , (a1 +Vb, hr]
£lEN(z ,a,0r) )% joi ik ik
J jo = jk

From the preceding construction it is seen that transforma-

tion (2.10), being a homeomorphism, maps the open set

) X N{z ,r)onto an open subset of

N(z ko

2 I +1b. el Nz L4lb |
(2.17) I\[zjo, (la,jk\ bjk yr] N[zjo. (IaLJ.k + bjk )rl.

If we define m(zko) as in the conclusion of the lemma and pick r such.,

that (la.l +1b_ ! Jr = m{z, ), then (2,17) will be contained in
jk jk ko
m(zy,)

£ x E} . Tt is easily seen that r{z }= . is the
P ¥ {2y 2l 1By ]
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largest such value for r possible and that for r equal to this

)] is contained in £ .

quantity, N[Zko’ r (Zko .

~

It is now a simple matter to check that the function F(zk,Ck)

- . 5% . . ) E
F{’I‘j(zk, Ck), Tj €., Zk)] is defined for all (gk, ﬁk) N(Zko’ r)

"k
_ < m(zko)

X N{z : —
N(zko,r), where 1 = T o !

~ ko ok

, ) F is analytic in the single variable Zk in a neighbor-

Furthermore, for each fixed

zo . II
}\ ( 1&0
in IJ(Z N I‘),

. . .
hood of cach point of 1\(sz, r) and for each fixed z Ko

k
ﬁl%‘ is analytic in the single variable Ck in a neighborhood of each

point of N(Zko’ r). Therefore, by Hartog's theorem on the analy-

ticity of functions of several complex vaiables (see [2] Ch. VII),

¥ (Zl*' Cl_) is analytic as a function of two complex variables on the
m(zko)
dornain Nz, ,r) ¥ Nz, ,r), where r £ ———— This completes
ko <o lajl'lﬂbjll
N

the proof of the lemma.

In dealing with System (2.15), the approach will be to work

with cach equation separately, extending first the function Vll’

then V. and finally V To avoid needless repetition, the process

22 33°

we use to reflect solutions of a single second order equation is pre-

sented in the following lemma.

Lemma 2.2, Let £ be a simply-connected domain in the x, y-plane

adjacent to an open analytic arc & such that the refiection function,

A
G, relative to K is defined, analytic and G {z) # 0 on QUK U &,
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A

where & = E}M(ﬁ) . Let V(z,;), for z =x +1iy in £, be given as a

regular solution of the eguation

%y A ~ 3V -~ -
(2.18) 5 5% + A{z,z)'—“+B(z,z)g:;-i-C[z,z)V:F(z,z)-

A
which has QU K U§l as a fundamental domain. Assume that V(z, z)

1
is in C {QUK) and that along X it satisfies the condition

(2.19) Az, z) —35 + B (z,Z)am\é+ C (z,z)V + FO(Z,Z) = 0,

where AO{Z,?:}, Bo(z, £, Co(z, ), Fo(z,f:) as well as F{z,{) are

A T R
analytic functions for z € QUK UQ, L QUK UL and Ao(z, ¢y # 0,

Bo(z, )4 0. Then V(fz,_z_) can be extended as a solution of Equation

A -
{2,18) across K into all of £. Replacing z by £ gives V(z,{) as an

analytic function of the two complex variables z €QU « U & )

———p
CEQUKUQ.,

Proof: By the corollary to Theorem 1.2, V{z, z) may be expressed

a5
=

(2.20)  V(z,z) = v<zO,Z YR(z ,z ; z, z) +f OIE)R (£, z ;z,2z) dt
Z
Q

=
+f 0¥ (TIR( /,TLZdTﬂf}‘ (t, Tiz, 2)F{t, T) &r ,
z 2
(&)

B
wherc z is a fixed point on k¥ and ®{z), @ ({) are uniguely deter-

mined from V{z, z) as analytic functions on £, { and continuous on
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QU «, QUk, respectively. Our aim is to analytically continue the
B b A —’;
functions @ (z), ® ({) across K, K into &, &, respectively. Then,

since I'(t, T} and the Riemann function R{t, T; z,;) are known for

A T
7, LEQUAKUQ and TEQUKU , Forrmula {2.20) will provide the
unique continuation of the given solution, originally known only in

A
Q, intoQUKUG.

The extension of @{z) across K is carried out with the help

of Condition (2.19)., Keeping in mind that

8Vi(z,z) _ dViz,8) | = 3Vizz)  3V(z,l)
Ry 32 — T es T o —
L=z =z

and in view of Property (1.9) of the Riemann function, Formula @.20)

gives rise to the following expressions:

=z
. 3V (z,z) _ -2 — f
{2.21) 5, = V(zo, Zo)az R(z IRE IR +9rJ yexp| A , 7]
= .
3 -
‘|‘jf QL) ‘“é“—R(t,A jz, z) dt
=
%
o
Z
" 3 _
+[ ©"(T) o™ R(zo,'r, %, z) dT
z
o

and



a..V. (Z’E.) = . - _é_ . Y - ™
(Z.22) = Viz ,z ) 5 Rz ,z ; z,2)
Z
3
+ (,D(t)'-a'% R,z ; z,z) dt
z
o
Zo
+ @ h(z) exp[f B, =z) dE:\
. z
Z
+j--qo"(r)a_ Rz , T; z,z) dT
z
0
zZ z
+ai_ fdt[ R(t, T,z, z)F(t, T) dT
2 4 Z
o o

For =z varying in {2, substitute Formulas (2.20), {2.21) and

(2. 22) into the left'hand side of (2.19). Without loss of generality,

take AO(Z,C) = 1. Then, the resulting expression may be written
as —
ZO 7
(2.23) exp [ _}f A(z,fi)d??} ©{z) - fK(t,EO;z,E}QD(t) dt
z z
o
+ glz, 7)) P¥(z)
.'E‘ " .
-f K(z,Ti2,%) @ ()T~ £(z,2) | ,
z
o

where we have set
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g
- K, Tz, 0) =-exp[f Alz,m )d?‘}]

_a— R(t’ T; %, C}
Jz

[

+ ( C) ae: R{t, T; -’5:€ + C {Z:C)R(t:T;Z:C)} 3
o

g{z,L) = Bo(z,C) eXPl:-jr B(E,C)dé“] eXpM A(z,n)d??} )

0 %5

Viz ,Z )5—Riz ,z 3% C)
o ¥ ¢ 0O

z L
+ a%jf dm_&[R(t,T;z, 0 F(t,T).dT]

+ C (z,8) {:V(z ,;)R(z ,z 3z, C)
o o' "o o

(8]
Z o
+£dtf§ R, T; 2z, ) F )dT:i
el (e}

Note that K(t, T ;2,8), g(z,{) and £{(z, &) are analytic functions for

A —_—
z,t in QURKUQ and £, T in Q UkU .
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To put Expression (2.23) into a form suitable for reflection,
we need to introduce an analytic mapping of a single complex vari-
able which will establish a one-to-one correspondence between the
points of Q and the reflected region 63 and which will map points
z on K onto the corresponding points zon K. The reflection
function, G, relative to K provides this desired connection, since,
as seen in § 1 of this chapter, if ;\:. is a point in fl, then G{;} =z

and Giz) = % for all z on K.

Substitute for z in (2.23) to obtain the following expression

for the left hand side of (2.19):
Glz ) ) z

. 0 - A
exp {f o AlzeT dﬂ] ®(=) —ij[t, G(z )iz, Glz)Je(t) at
G(z) ZO

A

+ gz, GA]O [Glz)]

Klz_, G(E);2, Gl [GIE)1G (€)aé

1
ON"EE%N)

- 1z, G(z]

B A
In view of Condition (2.19) and the fact that ©{(z) and © [G{z)] are
A
continuous functions of z in & UK and that lim G{z) = G{z), we
z—K
can let z approach K to get the identity
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7z

(2. 24) wz)-_,f K[t, Glzg); 2, Gl2)] @) dt

=
]

= iz, G(z)] - g[z, Gz ]<P[ z)]

Z

+ j: Klz_, G(€);z, G(z)] 0 [GE)] G (&) ag
o

along x. Thus, along &, ¢ (z) satisfies the Volierra integral

equation

(2, 25) f K[t, G(/ ; Giz)l hit) dat
z

flz, G(2)] - glz, G(z)] @ [Glz]
+f Klz_, G(§);z, Glz 10 [GE)] G'E) a8

in which hi{z) plays the role of the unknown,

EA i A .
Because ¢ [G{z)] is defined and analytic in {? and continuous

A

in {2U X, the right hand side of Equation (2.25) is actually a known
A

analytic function for =z in Q and is continuous up to and including

A
K. Similarly, the kernel XK [, G(zo); 7, Gl{z)] is analytic in {2 and

A
is continuous in QU K ., Hence, Equation {2.25) may be solved by

the usual method of successive approximations to obtain the unique

A
solution in & U K given by .



58
, 7

(2. 26) biz) = R(z) +f Tit, z) Rl) dt
e

where K {z) denotes the right hand side of {2.25) and I'(t,z) is the

so-called resolvent kernel defined by the series

Tit,2) = 9, k™, o)
n=1

By definition,

KV, ) = Kt G{zo); z, G(z)]
_ 7
kg, 4 :.[ Me,m k™ Vg, syan, n=2,3,...
£

and it can be shown that the series defining T'(t, z) is absolutely
A
and uniformly convergent on compact subsets of £ U X and that

4
(¢, z) is an analytic function for z, tin { and continuous in

!

i
A A

Q U K (see [8}). Therefore, ¥ (z) is analytic in 2 and is con-
tinuous in & U K, Moreover, ¥ (z) satisfies Equation (2.25)
along K. But, as seen earlier, the function ©(z) also satisfies
(2.25) along K, Hence, by the uniqueness theorem for Volterra
integral equations, the functions ¢@(z) and Y{z) must assume the

same values at points of K, and so ¥(z) is indeed the unique

A
analytic continuation cf ©(z) into £ .

If the coefficients A(z, z), B(z,z) and C(z, z) of Equation
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{2.18) are real-valued functions, then by Theorem 1.1, (,D'P(C):HQ-C‘TET)

BY
and the function ¥ (€) = ¥ (£} gives the unique analytic continuation

=k — A
of © across K into £, Otherwise, rewrite Expression (2.23) in

the form
&

(2.27) exp[fo B2 at] | o @

=
jf K (2,75 2,2) @ (T)ar
z

[}

N

- —_

f f{tz,z:)cp(t)dt-f(z,z) ,
g |

where %, E and I differ from X, g and f only by an exponential
A A A — A
factor. Recall that for z in &, G(z) = z ; whence, G(z) = G(z)

A 1 A —
= z and = =G l(z). Substitute for =z in {2.27) and then let =

approach K to get that (,f;‘(;n) satisfies a Volterra integral equation
analogous to (2.25) along K . Now procced as before to obtain

B — A
the unique analytic continuation of © (z) across X into £ .

Finally, in Formula (2.20), replace the functions ©{z) and

B A A
& (£) by their extensions defined in & UX U @ and U K U Q,
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respectively, to obtain V(z, z) as the unique solution of Equation
{2.18)in & UK U d which is identical to the original solution
throughout . And, replacing z by  in F;ormula {2, 20) gives’
Viz, L) as an analytic function of two complex variables in

N T '
@QUKkUQ, QU K U &) . This completes the proof.

Remark: Lemmma 2.2 is also valid if the condition Ao(z, &) #0Q,
Bo(z,nf) # 0 is replaced by the condition Ao(z, £) = Bo(z,?:) =0 and

C {z,0)=1 .
o

In preparation for the next theorem, let 2 (= v):, b (5, ¥h

Tk, o k, o

< O(X, v} and fl O(x, y) be analytic functions in some region of the
<, <,

real x, y-plane. Apply the change of coordinates (2,3} and then re-

Z +Ck z -CL\
. k k 'k >
place . and Vi by the expressions 5 and —T, respective-

ly, to obtain the four new functions

- 4
A - (szrt:Lc 6'Zk§k i Ck)+.b
Ko 5 T o\ T % T T 2 /7,0
+C - +£
B (s F) - (Zkﬁcﬁzkék_ﬁzk%)_ib
Lok "k T *,k,o\ 2 *k 21 'k 2 K, o

2.2 -
(2.28) - e (ZkHZk 5 “x Ck_ 2 o
X, 0k °k k,o\ 2 " k 21 k2

)
(Zk:?%( 5 Zk-tk Zk+ck)

'k 21 k2

¢

N

o
I

F z , = f
k,o(‘ﬁ{ Ck) K, 0

We are now ready to present the main reflection theorem,
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Theorem 2.1 . Let D be a simply-connected domain in the

s, v-plane adjacent to an open analytic arc k such that the reflec-

tion function, G., relative to the arc Kl\ =

= cw EK
K Tk(z.).z

lzk
(Tk(z) given by (2,6)) is defined, analytic and Gk'{zk} # 0 on

A
Dk U Kl’ U Dk , k=1,2,3, Letulx,vy)bein Cé(D) n CS(D Ux) and

satisfy
e 3

3
H u . - —_
(2. 29) k=1 [A}_{ + 3.1<(3kk1 Yk) axl, + bk.(ﬁ(’ Yk) ayk

te fx,y )] wiky) = 0

in D, where the coeifficients Ay bk and ¢y Are nonzero analytic

A
complex-valued functions of their arguments and where D, UKk UD
k' k k

is a fundamental domain for the operator

-

qui\_ +a1(x Yl\}j\ xkyk

k

k=1,2,3. Along K, let u(x,y) satisfy the conditions

du o]
k Y
2.3 —=.0s ) . ]
(2.30) ak, o(X’ y) Fop's ¥ [ k bk, o(x’ y) ﬁk ak, O(X’ y) 3y
+ ck’ {(x, y) . + f1 {x,v) = 0 .
k=1,2,3, where U, T, u, = L3 [u3], u = LZ[U’Z] and Bk and 6k

are the same numbers that appear in the coordinate transformation

(2.2). The functions ak’ o bk, o’ Ck, o and. fk, o are assumed to bhe

analyticin x and y andto be such, thatthe functions Ak O(zk, Ck),
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B -
K, o %1 o “k, o (P by @nd F ok

A '
i U x i K
1nDk kUDk'CklnDkU kUDk,am.cE

(z. , Ck) given in (2,28) are

analytic for .

. £ 40 for k = . .
Ak, o(‘d, . C’k) #0, Bk, O(zk, Ck) # 0 for 1 1,2,3. Then, u(x y) can

be analytically continued as a solution of {2.29) across K into a
A A '
simply-connected domain, R, adjacent to K. The region R can
be explicitly determined and is seen to depend only on the coef-
ficients of the highest order terms of (2.29) as given in (2.1), on
the original domain D, on the arc X and, possibly, on the choice

of a finite number of simply-connected domains, Thus, the ex-

tension is global in nature,

Remark: Theorerm 2,1 remains valid if the condition Ak o # 0,
: ?
B 0 i iti =B =0, =
X o # 0 is replaced by the condition Ak, o X, o Ck, o 1
for any k

Proof of theorem: As seen in §3 of this chapter, Equation (2.29}

may be written as the system

(2.31a) | 3o=s= t As(E5 2505 423 23057
37 5 3 3
— —_— 1 —_—
* C3(23’23)} Viya(23.23) = 7 Voolag, 250, 258D,
a’ - —



To rewrite Conditions (2, 30), rearrange the first two terms as

Suy duy Su,
- 5 — B 5 b ) —
a‘k,o(”“’y)( 5% 'k ay)+ P, oY) 5y

and then refer to (2.14) to see that

Sy 3 (x 3 c
= ka(xk’ Yk) _ uk(x, y) ) uk(h, y)
8}:1_ dx k dy ’
3 B *
ka(xk, Yk) s uk(x, v)
ayk L Oy

Thus, with respect to the variables X and Vi Conditions (2.30)
become
a 3
Kk, "——vkk+c v, +f =0
3 ' a ot
xk k, o Yk k,o kk k,o

2 o % Vi - B ®)

Introducing the transformation

into this last expression, we see that when Z, is on Kk’
Vi By Zk) must satisfy the condition
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(2.32) A, (z,7) hEE + B (z,z) e
: k,o k'K &z k,o "X Tk 'z
k IS
+ z + z .z ) =0,
Cr, 0t 210 Viae T Py, o P z, )

1.

=1,2,3.
We begin the reflection process with Vll(zl,zl), a known

function satisfying Eguation (2.31lc) for z in D1 and Condition

l’zl) as a so-

(2.32} along Ky Apply Lemma 2.2 to extend Vll{z

A

lution of (2.31c) into the entire reflected domain D, adjacent to X, .

1 1

(z ,; y back to the

Refering to (2,14) and (2.7}, transiorm V“ 1" %1

X, y coordinates to obtain u, (2, y) as defined and satisfying Ll[ui} =Q

-1 A _1 A
in DUKLU 'l'1 (Dl), where Tl (Dl) is a simply-connected domain

adjacent to ¥ and disjoint from D,

Next, we considerdthe function VZZ(ZZ’ ;7}, whi ch is known

and satisfies (2,31b) in DZ and Condition (Z.32) along Koo The

(2, 2,), T, (7, ZZ)] appearing in

=V[T}Ld

function VIZ(ZZ’ zz) 11

the right hand side of (2.31b), which is originally known only for

-1 A
. . e a e P _
z, in DZ’ is now defined for z, in 7'27'1 (D1 U lU Dl)
-1 A -1 A
Uwr UT.T > T,T i i -
DZ ) 5Ty (Dl) , where 'TZ 1 (Dl) is a simply-connected

domain adjacent to KZ and disjoint from DZ' Since_Vll(zl, Cl)

& A §
3 : o & K -
is analytic for (41,C1) {Dl U k.’l U Dl'_Dl U ) U ,Dl}’ then, by

on K., there is an open disc,

Liemma 2.1, for each Z,50 5
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"} and centered at z .,

:
Niz 20 20

, T )], of maximum radius r{z

20’ " '¥20
1 A

tai i x Ut : .
contained in D2 U 5 TZ . (Dl) such that Vlz(az, CZ)

= Vll[Tl(ZZ’C ), T1 (CZ, zz}] is analytic for z, & N[zzo, r(zzo}],

E 'r_' " . . » . -
CZ N[Jﬂzo, r(zzo)]. For simplicity, we limit r(azo) so that the

meets K. in at most two points. Re-

boundary of N[ZZO’

stricting our attention to the domain Nz r )], we use Lemma

20° T %20

2,2 to extend V__ (= ) as a solution of {2.31b) irto that simply-

27 %2

22

A
: o 5 no N
connected component, R(z,zo), of IN[ZZO,I'(,:ZO)] Dzl N[ZZO’ r(zzo)]
which is adjacent to that portion of KZ contained in N[ZZO’ r(ZZO)]

(see Figure 2, 3).

A A
We proceed to show that if R (zzo) R (zéo) is nonempty and

simply-connected for two distinct points Zoo and ZéO on Ko, then

— A A

. - _ .. !
the extensions of sz(zz, ZZ) = VZZ(XZ’ yz) into R(ZZO) and R(ZZD)
A

) ﬂR(zzo)

A

A A
agree on R(z_ ) N R{z ‘ )} . TFirst, note that if R(z

20 20 20

A
is nonempty, then the assumption that Gz'(zz) £ 0 onD2 U KZ U D2
. ' ? £ \ .

implies that N[ZZO’ r(zzo)] N N[ZZO’ r(zzo,] n D, is nonempty.

A
N R{z.' ). Then, the fact that

A
Indeed, let 77 be a point in R (zzo) 20

A
M ER (2,) S |Nlzyg 2(2,0)] ND,INNz, o, 2(z, )]

and /\ )
A ; I / / /
N €R(x]) S |Nlaj . vlz;)] ND,) ANLz) ), w(z) )]
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N[220:(220)

A
7,7, (D)

Figure 2.3
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implies that there exist points £ and &’ in N[ZZO’ r(zzg)]ﬂ D2

[ A

and N[z;o,r(zzlo)] 1 D,, respectively, such that GZ(E) =& =7

2!
A —_—
=& = Gz(ﬁ) . But by assumption, G2 is one-to-one on

A
K
DZU U DZ. Whence

£ = e'eN[z g TlEy )] NNz 2'0)]'n D,

(see Figure 2.4).
Also, note that the set

Nz, 7(2,0)] 0 N[22’0 ’r(zzfo)] o,V Kz)]u lﬁ(zzomR(ZZO)
is a simply-connected domain,

Now let 'v s yz) and v, (%, yz) be the extensions of

5

B “20 20 #
VZZ(ZZ’ 22)_ = vz{ 53 yz) in the domain
| n |
Nlzgg vlzy) ] N (D U Kz)’ U R(zy0)
and in the domain
Y KU
II\[ZO )10 D, U IRZO)’
respectively. Then v, (x X, yz) and v, (= Xos yz) are analytic func-
#20 “20
tions of Xy and Y, which agree on the open set

r, ; /

NLAZO’ r(zzol] ﬂ N[ZZ s r(Z )] ﬂ ]:)2 3
A

and so they must also agree on R (z

)ﬂR( )

20 ZO
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N[zag,r(zgo)] N N[zéogrfz’go )] N Ds

ﬁ(zfao}

R(z,0) N Rizhe)

Figure 2.4
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A
L) 2 i i i K
We form the set ZZQE K:ZZR(AZG), which is adjacent to -

' A
If it is simply-connected, then we set RZ equal to it. Otherwise,
il A :

A
we let R, be 2 simply-connected subdomain of U, Rz
2 .ZZOEKZ

cent to &, . Now use the preceding argument to analytically con-

20) adja-

A
throughout R2 . Then sz{z

tinue VZZ(ZZ’ ZZ) = VZZ(XZ’ yz) 59 Zz)

A
becomes defined throughout D, U Kz U R, as a solution of

2 2
Equation (2.31b) and VZZ(ZZ’ CZ) is an analytic function of two
complex variables whenever 2,54 S K, and
€ n | u|B . )0 R
2 K
% [N[zzo’ r{z, 1N (D, UK} UIR (2, ) Rzl ’
E n U A ﬂ A
K im)
<, IN[ZZO’ r(z,)1 N0, z)l -U‘R(zzo) k‘z\
Apgain, referring to (2.14) and (2.7), we can transform sz(zz,zz)
back to the %,y coordinates to obtain uz(x, v} as defined and satis~
ying L nDUK UL (& ince R.Crr " YD
t = 11 3
fying Z[uz] Ll (g, y) in D TZ (RZ)' Note, since R2 ’1"2‘71 (Dl)’
" -1 A - -1 A
then T, (RZ) T (Dl) .

Finally, repeat the same argument for V33(z3,-z_3) as we did

for the function V_. (=

25 ’—Z-Z) to obtain a simply-connected domain

2

A —
R3 adjacent to K3 into which V33(z3, z3) = V33(X3I, y3) can be ex-

tended as a soltuion of (2.31a}. We remark that when applying

U &)

Lemma 2.1, the set Qj becomes [N[z 5 5

2 Tl#5g)10HD
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>

A )
U R(ZZ(}) n R,y and the image of this latter set under the map-

. -1 . .
ping T372 becomes ﬂl* . 'Again, perform a change of variables
N

frora the x_, v coordinates to the original x,y coordinates to get
- 3

o)

u?}{x, vy} as being defined and satisfiying Ls[u:’} = uz(x, v} in

1 1.2 -1 4 -1 4
C .
(33) T, (RZ) o 71 (D.): Thus,

K U7
DU J‘7'3 .

A -
. 5 Tye T
(RB) As before, 5

keeping in mind that u_{x, y} = u{x, g}), it is seen that u{x, y) satisfies

3
A
Equation {2.29)in D U K UR and agrees with the original solu-

i} A

tion in D U k, where R = 7. (R

3 ) is a simply-~connected domain

3

adjacent to k and disjoint from D. This completes the proof.

§ 5, Concluding Remarks and Illustrations .

Conceptually, it is not difficult to see that the process in-
volved in the proof of Theorem 2.1 may be continued to include
equations of order higher than six, Thus, with the Iobvious modi-
fications in the hypotheses, an inductive argument may be adapted
to establish the conclusions of the reflection theorem for elliptic\
equations of the form

(k}i L) sbuy) = 0,

where the operators L{ are defined in  §3 of this chapter.

1
We would like now to point out a couple of differences be-

tween the cases treated here and by Sloss in [7]. First, unlike
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the method used in [7], the reflection process of Theorem 2.1
does not depend on the characteristics of the differential equation
being distinct, That is, it is not necessary that ij # o if 3£k

{see §2},

The second and most outstanding difference between the two
cases lies in the Riemann funciions used to represent solutions
of second order elliptic equations with analytic coefficients (see
Theorem 1.2), If the given differential equation has no lower
orderx te;*:ms and is of tl;le type considered by Sloss, then it can be
decomposed as a system of second order equations whose Riemann
fﬁnctioﬁs are all identically equal to unity. On the other hand, for
equations of the type considered in this paper, where lower order
terms are present, the Riemann functions depend nontrivially on
four independent complex variables, The introduction of these in-
dependent complex variables complicates the geometry of the
problem considerably by requiring computations to always be per-
formed in cértain fundamental dornains, namely those which are

determined by Lemma 2.1.

When the differential equation has no lower order terms pre-
sent, the computations necessary for reflection involve analytic

functions of a single complex variable, In this case, there isa
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method whereby a relatively simple and éxplicit formula may be
derived for the domain of reflection. In fact, let D be a simply-
connected domain adjacent to an open analytic arc x such that the
reflection function, G, relative to x is defined, analytic and
Gz) # 0, G’(z) £ - Aj /Bj for =z inDU K U ]S Here, 'Aj and
Bj are the constants given in (2, 6a). Let 73(2) be given as in

(2.6) and let
gz} =A. z + B. G(z)
J ] ]

. A )
The function Gj(z) is analytic in D UKU D and c'tz) £ 0 there,
and so it has an inverse. If u(x,y) is given in D to be a solution

of the differential equation

A A A Ul v) =0
R nu(h,y) o,

where u(x, yv) satisfies certain analytic boundary conditions along x,
then Sloss has shown in [7] that it is possible to continue u as a

solution of the differential equation into the region

o -1 A A A
R = n 7' lem)n T_(D)l c D
O J:l J J ]
where R=R. N R_N... TR, R, = O’TI!U.(D)H T (DY and
1 2 n’ ] o] j

A
R = GR)
The following four figures were obtained with the invaluable

aid of the U, C. 8. B. on-line system. They were photographed from
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the display scope and then drawn from an enlarged print, The
first three illustrate the region of reflection for solutions of

the specific equation

o &) 6 & &
3 3 ¢ 3 o
12+2°‘5JL + 3 &u2+6 3”‘3+6 u4
3 x Sx"dy Ox By 8x Jy 8x Oy
5 6
3 a
. g2 L +40 —~z‘ = 0
Jxdy Sy
for various choices of the arc. Here, OCl =1 + i, 052 = 21 and
&’3 = .2 + 1, The last illustration is for the differential equation

having \C'él =1+ 1,54, o, =i and o = .5+ .5 . Each figure
shows the original domain D, thé arc K, the reflected domain
%), and the region of reflection, RO, which is the shaded portion
of the drawing. In Figure 2.5, K is the interval (-1,1) of the
x-axis and D is the region between thé curvé whose equation is
y =x + .5 and K, Figure 2,6 shows reflection across a por-
tion of an ellipse. The domain D is the intersection of the open
circular disc centered at (0, -.7) of radius one with the inside of
the ellipse cos &+ i% sin 8, - 7=6 £ 7. In Figure 2.7, K is
part of a parabola whose equation is vy = xz for .1 sx = \/7_
Finally, in Figure 2.8, D is the annular domain bounded by the

circle of radius .7 centered at the origin and K, which is the



T4
unit circle. In this case, since D is not simply-connccted, we
must restrict our attention to the siﬁgle valued solutions of the
differential equation, We emphasize that in these illustrations

A
D  contains RO and is adjacent to & .
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)

Figure 2.3



/4

Figure 2.6



Figure 2.7
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