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ABSTRACT

Reflecting Solutions of High Order Elliptic
Differential Equations in Two Independent

Variables Across Analytic Arcs

by

Oleg Carleton

Consideration is given specifically to sixth order elliptic partial

differential equations in two independent real variables x, y such that

the coefficients of the highest order terms are real constants. It is

assumed that the differential operator has distinct characteristics

and that it can be factored as a product of second order operators of

the form Ak + ak(xyk) xk + bk (xk k)y k + c k xk Yk)

where xk and yk are real variables determined from the character-

22 a2
istics, A k  2 and the coefficients ak , b k , c k are, ink xk 2 k k

general, complex-valued analytic functions of their arguments. This

class of equations includes those examined by Sloss. By analytically

continuing into the complex domain and using the complex character-

istic coordinates of the differential equation, it is shown that its solu-

tions, u, may be reflected across analytic arcs on which u satisfies

certain analytic boundary conditions. Moreover, a method is given

whereby one can determine a region into which the solution is ex-

tensible. It is seen that this region of reflection is dependent on the

vi



original domain of definition of the solution, the arc and the coeffi-

cients of the highest order terms of the equation and not on any "suffi-

ciently small" quantities; i. e., the reflection is global in nature. The

method employed may be applied to similar differential equations of

order Zn. Finally, included are some figures illustrating the region.

of reflection with respect to various arcs for two specific sixth order

equations having no lower order terms.

vii



TABLE OF CONTENTS

page

Introduction 1

Chapter I. Representation of Second Order Equations

§ 1. Continuation into the complex domain 5

§ 2. The Riemann function 8

§ 3. A representation for solutions of Equation (1. 1) 11

Chapter II. Reflection

§ 1. Geometric reflection across an analytic arc 30

§ 2. Statement of the problem and notation 35

§3. Equation (2. 5) as a system 40

§ 4. Reflecting solutions of Equation (2. 5) 42

§ 5. Concluding remarks and illustrations 70

Bibliography 79

viii



LIST OF FIGURES

page

Figure 1. 1 14

Figure 1.2 15

Figure 2. 1 44

Figure 2. 2 49

Figure 2. 3 66

Figure 2.4 68

Figure 2. 5 75

Figure 2.6 76

Figure 2. 7 77

Figure 2. 8 78

ix



INTRODUCTION

In this paper, we wish to examine the reflection problem for

a class of elliptic partial differential equations that generalizes the

type of equations Sloss considered in [7]. Since the geometry of

the problem is better illustrated by equations.of order greater than

four, while equations of order greater than six add nothing new to

the understanding of the reflection process presented here, we

shall limit our discussion to equations of order six. In particular,

we shall consider a sixth order elliptic equation

ai+j
u

(0. 1) L[u] = c.. =
Og i+j: 6 13 xi y j

in two independent real variables x, y such that the coefficients of

the highest order terms are real constants. We assume that this

equation has distinct characteristics and that it can be factored as

3
(0. 2) L[u] A + a + + c  u = 0k=l Pk kbxk ky k u

Here, x k and yk are real variables determined from the com-

a2 a2
plex characteristics, A 2 2 and the coefficients ak'

axk bYk

bk, c k are complex-valued analytic functions of xk and yk We



z

propose to write (0. Z) as a system of three second order equations

and to assign a general first order analytic boundary condition to

each equation of the system. By analytically continuing into the

complex domain and using the complex characteristic coordinates

of (0. 1), we show that solutions, u, of Equation (0. 1) may be re-

flected across analytic arcs on which u satisfies the above-

mentioned boundary conditions and, moreover, that this reflec-

tion can be carried out in the large. That is to say, we present

a method to determine a region into which the solutions can be.

reflected which depends only on the original domain of definition,

the arc, the characteristic coordinates and, possibly, on the

choice of certain simply-connected domains.

The problem of reflecting solutions of elliptic partial dif-

ferential equations in two independent variables by analytic contin-

uation into the complex domain was pioneered by H. Lewy. In a

very nice paper, [5], he thoroughly treated the case of a linear

second order elliptic equation with analytic coefficients. He show-

ed that if D is a simply-connected domain lying in the half-plane,

say y < 0, having a segment K of the x-axis as part of its bound-

ary and such that D contains the portion y < 0 of a neighborhood

of each point of K , then u can be analytically continued as a
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solution into the entire mirror image, D, of D across K. Garabedian

[3] has examined the problem for second order analytic quasi-linear

elliptic equations and indicated how his method may be applied to sys-

tems of such equations. In a recent paper, Kraft [4] modified

Garabedian's techniques to treat first order elliptic quasi-linear

systems in two independent variables. Since both Garabedian and

Kraft dealt with nonlinear equations, their results concerning analytic

continuation were strictly local and shed no light on the domain of re-

flection.

As concerns higher order equations and reflection in the large,

Sloss [6] has continued solutions of the biharmonic equation across

analytic arcs and Brown [1] has investigated the general fourth order

elliptic equation with constant coefficients. However, Brown had to

restrict himself to convex domains and he reflected'only across seg-

ments of the x-axis. In [7], Sloss reflected solutions of elliptic

equations of order Zn with constant coefficients and with no lower

order terms across analytic arcs.

The method of Garabedian and Brown consists of transforming

the original elliptic equation in two real variables.into a hyperbolic

equation in three real variables and then examining certain three

dimensional Cauchy problems. This differs from the method of
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Lewy and Sloss who utilize the complex characteristic coordinates of

the elliptic equation to perform the extension. In this paper, we pro-

pose to adapt the techniques of Lewy and Sloss.

Before proceeding, we would like to introduce some notation.

Let S be a set in the complex plane. We will consistently use the

notation S to denote the set [ z: z E s3 where z is a complex number

and the bar denotes complex conjugation.

Definition 0. 1 . Let D be a simply-connected domain in the x, y-

plane having an arc K as part of its boundary. If every point

Zo = Xo + iy on K can be joined to every point z = x + iy in D by a

rectifiable curve which, except for the end point z , lies entirely in
0

D, then D is said to be adjacent to K.

Finally, unless stated otherwise, we shall deal exclusively

with simply-connected domains whose boundaries are closed recti-

fiable Jordan curves.
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CHAPTER I

§1. Continuation into the Complex Domain.

For the most part, we shall be dealing with differential operators

of the form

L = A + a(x,y) ax + b(x,y) -+ c(x, y)

52 32

where A 2 + is the Laplacian and a, b, c are, in general,
Bx Sy

complex-valued analytic functions of the real variables x, y. For this

reason, we devote the present chapter to a consideration of the

equation

(1. I) L[u] = Au + a(x, y) L + b(x, y)- + c(x, y) u = 0

Our goal is to obtain a suitable representation for the solutions of this

equation in terms of analytic functions of a complex variable. We

shall use as a guide the presentation given by Vekua in [8], chapter 1.

z+z z-z
Let z = x + iy (x and y real) and U(z,z) - u 2 2i = u(x, y)

If we formally define the operations

(1.2) - + i -+
z 2 ax 7y a b 2 N x ay

then Equation (1. 1) can be written as

+2U - ) +B(z,) -
(1.3) z + A(z, z) + B(z, z) + C(z,z) U = 0

where
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A(z, )- . , + ib , . ,-i

1 Fiz+ z-C)\ /z+C z-C)]
4 • 2 zi

(1.4) B (z, C) - a 2 ' 2i 2 2i

C(z, C) = c (z ' Z )

It must be kept in mind that (1.3) is purely a symbolic form of the

Equation (1. 1). If it happens that, U(z, z) is an analytic function of

z and z then the operators -z and _ defined in (1.2) become true

derivatives with respect to z and z ; that is,

SU (z, z) = TU(zC)
C=z

U (z, z) U (z,C)
a=Z

where P is a complex variable independent of z. This prompts us

to consider the following equation:

(1. 5)U] + A(z , C) + B(z, C) 6- + C(z, C) U = 0

Definition 1. 1 . Let Q be a simply-connected domain in the complex

plane such that A(z, C), B(z, C) and C(z, C) given in (1.4) are analytic

functions of the two independent complex variables z, C in the poly-

cylindrical region (0, T) = [ (z, z) : z E, , , . Then 0 is said to

be a fundamental domain for Equation (1. 1) or for Equation (1. 5).
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We remark that if the coefficients of Equation (1.1) are entire

functions of their arguments, then A, B and C of Equation (1. 5) will

be entire functions of z and C and in this case, any simply-connected

domain in the complex plane may serve as a fundamental domain for

(1. 1).

Vekua shows that if Q is a fundamental domain for Equation (l. 1)

and if u(x, y) is given as a regular solution of (1. 1) in Q (i. e., u has

continuous first and second partial derivatives in r ), then u is in

fact analytic in x and y, and the function U (z, ) = u z2 ' zi

is analytic for (z, C) E (0 , ) and satisfies Equation (1.5) in that

region. On the other hand, if U(z, C) is given to be a solution of (1. 5)

in ( (, ) (and so necessarily an analytic function of z and C), then

restriction to the real manifold C = z gives U (z, z) = u (x, y) as an

analytic function of the real variables x, y which satisfies Equation

(1. 1) in C .

Thus, from the preceding discussion, it is evident that Equa-

tions (1. 1) and (1. 5) are in a certain sense equivalent, and that to

investigate the solutions of (1. 1) we may work with Equation (1. 5) and

then restrict the results to the real manifold r = z. We point out

that (1. 5) has the same form as a real hyperbolic equation. We shall

take advantage of this fact to obtain a representation for the solutions

of (1. 1).
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§2. The Riemann Function.

In a manner completely analogous to the real case, the adjoint

equation relative to (1.5) is defined to be

?c 2V b(AV) 6(BV)
(1.6) [V] =-z - - + CV = 0.

A straightforward calculation serves to establish the fundamental

identity

(1.7) vi[u] - ue[v] = U + AUV + U + B UV),

which is valid for any two functions U(z, C) and V(z, C) analytic in a

common region (z, 9) E (S2, 0)

Definition 1. 2. Let be a fundamental domain for Equation (1. I).

The Riemann Function, R (z, C; t, 7), for (1. 1) (or, for Equation

(1. 5)) is an analytic function of four complex variables z , t in 2,

, 7 in ' which satisfies

* 2 R )(AR) 6(BR)
(1.8) [R -R + CR = 0

with respect to the variables z and C, and the conditions

R(t, C; t, 7) = exp A(t, 7) d7 ,

R (z, 7; t, 7) = exp { B(, ) d,
t
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where t and 7 are fixed parameters in and £, respectively.

The existence and uniqueness of the Riemann function may be

established by first writing (1. 8) in the form

(1.10) R (z, ;t, 7) - f A(z, 77)R(z,77; t, 7)d 7

-f B((, ) R((, ;t, T)d

+ f df C(, 77) R (, 7;t, 7)d] = 0
t 7

and then integrating with respect to z and g to get

(1. 11) R (z, ; t, )- f A(z , R(z, 7;t, T)d77 - B( R t, )d
r tzi

+ f d4 f C(, )R( , 77; t, T)d7 = 1

t T

since (1.9) implies that R(t, 7; t, 7) = 1 . In view of the fact that condi-

tions (1. 9) are equivalent to the conditions

R (t, ;t, 7) - A (t, C)R(t, C; t, 7) = 0 ,

(1.12) R(z,7;t,7)- B (z,T)R(z,7;t, 7) = 0

R (t, 7; t, 7) = 1

it is not difficult to verify that any solution of Equation (1. 11) satisfies
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(1. 8) and conditions (1. 9) and so must be the Riemann function for

(1. 1). But, the integral equation (1. 11) is of Volterra type which, as

Vekua shows, has a unique analytic solution for z, t in 02 and , T

in 2. Thus, the existence and uniqueness of the Riemann function

is guaranteed.

Just as in the real case, it can be shown that as a function of

its last two arguments, t and 7, the Riemann function for (1. 5) satis-

fies Equation (1. 5) and the conditions

R (z, r; z,T) + A(z, 7) R(z, C;z,,T) = 0

(1.13) t R(z, ; t, +) + B(t, ) R(z,C;t,C) = 0

R(z,; z, ) = 1

i. e., with respect to the variables t and 7, the function R(z, ; t, 7)

is the Riemann function for the adjoint equation (1. 6).

In case the coefficients a, b, c of Equation (1. 1) are all real

valued, the Riemann function, R(z, C; t, 7), for (1. 5) has the addi-

tional important property that it assumes real values when P = z

and 7 = t (see [8], § 12).



§ 3. A Representation for Solutions of Equation (1. 1).

In order to obtain a representation for the solutions of Equation

(1. 1) that will lend itself to reflection across analytic arcs K, it is

necessary to examine what happens to the solutions of Equation (1.5)

as z and C are allowed to approach K and K, respectively.

Towards this end, we adapt the techniques of Lewy, [5], to establish

the following lemma.

Lemma 1. 1. Let D be a simply-connected domain adjacent to an arc

K such that D U K is contained in a fundamental domain for Equation

(1. 1). Let u(x, y) be given as a regular solution of (1. 1) in D and let

U (z, ) = u ' -2i . If u(x, y) and its first partial derivatives

are continuous in D U K, then for any pair of fixed points z 0 DU K,

0 C DUK, the functions U(z, C ) and U(z, C) (and therefore

U(z, Co) 6 U(zo' C)
az and ) are analytic for z ED and ~ D ,

respectively. Furthermore, U( ) and therefore U(z, o)
8z

is continuous on D UK while U zo, C) and therefore U( zo , ))

is continuous on DUK

Proof: Replace V in Equation (1.7) by the Riemann function

R(z, C ; t, T). Keeping in mind that U (z, C) satisfies (1. 5) in (D, D),

identity (1.7) becomes
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(R +(ARU) + -U +BRU) = 0.

aU a(RU) uR
Using the fact that R - U , we rewrite this relation

as

(1.14) - R(, ; t,-7) ( , (, ) + U - AR

Now interchange the pairs (z, C) and (t, 7) in (1. 14) and set

P(t, T; z , ) = - R (t, 7; z, ) U (t, - U a - BR)

Q(t, 7; z, ) = U(t, 7) - AR)

to obtain

6 0
(1.15) Q(t, 7; z, ) - P(t, 7; z, 0) =  0

where (t, T) varies in (D, D) and (z, C) is arbitrarily fixed in (D, D).

Pick a point C on K and a point z in D and join them by a
o

rectifiable curve, C, lying in D. Let C be the conjugate path lying

in D having C and z as end points. Fix a point ( on C, C not
0

equal to o or z . Denote the part of C joining ( and z by C .

Then C is that part of C joining P and z (see Figure 1. 1). We

2
form the Cartesian product S C x C and define

dr = [(t,t) : t E C .
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2
We shall refer to d as the diagonal of S

:: P Q
We now integrate the functions - and -t which appear in rela-

tion (1.15) over the "triangle" whose sides are d , I(t, ) : tE C and

f(z, 7) : TE C (see Figure 1.2) in the following way:

(1. 16) dt P(t, ;z' dT= z [P(t, t; z, C) - P(t, ; z, C)] dt ,

(1.17z dt t Q(t, T; z, C) d = d(t,7;z, )
(1. 17) dt t t

= [Q(z, 7-; z,)- Q(,d;z,t)]d.

In view of conditions (1. 12) satisfied by the Riemann function, we have

zP(t, ; z, C) dt = - [R(t, ; z, C) U (t, C) dt

=U (z , C) -U(FC, C)R( , C; z, )

and

z Q(z, 7; z, C) d7 = 0

The steps involving integrations over the triangle pictured in

Figure_1. 2 can be fully justified by parametrizing the curves

C and C with respect to two real parameters varying over a

common interval and then decomposing the complex line integrals

in the usual way as a sum of real integrals.
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z

K

C

real axis

Fiure .1

Figure I.1
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Figure 1.2
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Whence, subtracting (1. 16) from (1. 17) and taking into account

(1. 15), we obtain the formula

(1.18) U(z, C) = U(C,C) R( ,C;z, ) + P(t,t;z, C) dt+ Q(t,t;z,C)dt
d

= U(C, C) R (C, C;z,C) + -[R(t, t; z,C) U(t, t)]
d

U(.- - BR) dt + dU(t dt

where

z

(1. 19) P(t,t; z, C) dt + Q(t,t; z, C) dt = P(t,t; z, C)dt
dC C

Q(t, t; z, C) dt

2 -
is a line integral over that part of the diagonal of S from (CC) to

(z, z), and where we have replacedr by t . Reverting to the real

variables x and y through the transformation

t+t t-t

x- 2 ' 2i

and writing dt = dx + i dy, dt = dx - idy, it is seen that (1.19) is

actually a line integral over the path CC in D. Keeping in mind that

i i s- ti + -
at 2 tnx 6y et 2 ox dy

it is then easily checked that the condition
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2 Q(tt; z,) P(t,t; z,~ )
(1.20) dt 0dt i

is equivalent to the familiar condition that (1.19)be independent of

the path. But the truth of (1.20) is immediate from (1. 15) when 7

is restricted to be t

Since U(t, t) = u(x, y) as well as its first partial derivatives

are continuous on D U k, we may let the variable C approach (
o

in Formula (1. 18) to obtain

(1. 21) U(z, C U(C , C ) R(C ,C ;z, C ) + a [R(t, t;z,C )U(t, t)]
o 00 00 0 d t o

at
- UJ\ BR) dt

+ U(t, t) R(t,t;z, ) - AR dt ,

0

where the line integral is independent of the path joing C to z.
o

Formula (1. 21) is valid for all z in D and shows that U(z, C ) is con-
0

tinuous on D U K. To verify the analyticity of U(z, C ) on D, it suf-
a U(z t)

fices to check the Cauchy-Riemann equations, 0. Since

the first two terms of (1.21) depend analytically on z, their deriva-

tives with respect to i are zero. Calculating the derivative of the

last term we get

z z
The line integral / Pdt + Qdt = P(t, t; z,:o)dt + Q(t, t;z,C )dt

0 C 0o

is independent of the path and P is a continuous function of t in D

while Q is a continuous function of t in D. Whence, by Morera's
z

theorem, the integral -7 P(t,t;z, C )dt is an analytic function of
0

its upper limit and P(z,z ;z, C ) is an analytic function of z, while

oQ(t, t;z, C )dt is an analytic function of its upper limit.
0 0



f U(t, t) _t R(t, t; z, )- A(t, )R(t, t; z, ) at
z

o o

0

= U(z, Z) R(z,C;z,C )-A(z,C)R(z,C;z,Co = o,
=Z

where the last equality follows from (1.12). Thus U(z, C) is in-

deed an analytic function of z in D, and therefore so also is

U(z, C ) . Differentiating the right hand side of (1.21) with re-
8z

spect to z gives

)U(z,C ) _ -

= U(C , CP) -R(C , C ;z, C )+ P(z, z; z, )az o o z o o

+1 P(t, t; z, ) dt + - Q(t, t; z, ) dt
+ z o z 0

C C
o o

which is a continuous function of z in D UK.

aU(zo, C)
The desired analyticity and continuity of U(z , C) and

o aa

may be established by replacing z with z in Equation (1. 18) and

interchanging the limits of integration in (1. 19) to get

(1.22) U(z , C) = U(C,)R(C,C; ,o' C) i U(t, t)R (t, t; zC]
z

0

' (-BR dt -_ U(t, t) [R- AR Idt
at f at

z
o

This formula shows that U(z , C) is continuous for C in D U K To
o

check the Cauchy-Riemann equations, differentiate (1.22) with respect

to . Taking into account Condition (1. 12) and the fact that the last
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term on the right hand side is an analytic function of C , this calcu-

aU(zo, ) U(zo, _)

lation gives U(zo 0. Thus, U(z , ) as well as 6U(zo, ) are

analytic functions of C in D. Finally, differentiating (1. 22) with

respect to C shows that bU(zo' C) is continuous for C in D U K

To finish the proof, we point out that when C ED and z E D,
o o

the analyticity of U(z, C ) and U(z , C) follows immediately from the
o o

analyticity of U(z, C) in (D, D). The expressed continuity of aU(zc°)

and (z,,) is seen by replacing C or z by C or.z , respectively,
¢, o

in Formula (1. 18) and then performing the necessary differentiation.

This completes the proof of the lemma.

An important property of the solutions of Equation (1. 5) in case

the coefficients a(x,y), b(x,y), c(x,y) of Equation (1.1) are real-

valued functions is given by the following theorem.

Theorem 1. 1 Let D and K be given as in the statement of Lemma

1.1. Assume that the coefficients a(x, y) and b(x, y) of Equation (1.1)

are real-valued functions. Let u(x, y) be a real-valued regular solu-

tion of (1. 1) in D such that u and its first partial derivatives are

continuous in D U K. Let U(z,r) = u\ z( zi . If z is a fixed

point on K, then

U(z, ) = U(z ,E)

aU(z, zo )  6 U(z, z)

z z

for z in D U K . Whence, the functions (P (z) and p (C ) given by
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S U(z, z )
P (z) + B(z,z )U(z,z )z z o o

U(zo , C)
(C = o + A(z , )U(z , C)

take complex conjugate values when C = z

Proof: We establish the theorem for the case when z is in D
O

and then let z approach K

Fix z = x + i y in D. Then u has a Taylor series re-
o 0

presentation in a neighborhood of the point (Xo, y ) given by.

u(x, ) = a (x-x )m (y_y )n
m, n0 mn 0 0

where the amn are real constants dependent upon (Xo, Y). From

this, we obtain - -
Z __ Z(- CO z o +z z -zo

U(z, u) = u P 2i amn .- /
2 2i amn 2i 2

m, n 0

a (z-z ) °+ -z ) z-z)-( -z )amn m+n \i /L o o o
m, n= 0 2

which is absolutely and uniformly convergent for (z, r) in some poly-

cylindrical neighborhood of (z o , z ). In particular,

0 0

(1. 23) U(z, z ) = a +n - (z - z) n
o m+n=0 mn 2mn i

and CO I I n n-i n

(1.24) ( m+n= 0 mn (7 1 o



2'1
Whence,

(1. 25) U(z ,z) = a n (z -z)
o m+n=0 mn 2m+n 1 o

mOn

= 1 (l\ m+n
m+n= 0 mn Zm+n (z - z

= U(z, z )

o 0

are analytic for z in D (U(z , z) is an antianalytic function of an anti-

analytic function) and since they agree on a set with a limit point,

we may conclude that U(z, z ) = U(z , z) throughout all of D. By

Lemma 1. 1 we can let zo approach K to conclude that U(z, z

U(z , z) for z on K and z in D U K
o 0

After differentiating expressions (1. 23) and (1. 24) with respect

to z and z, respectively, we may apply the same argument as above

to establish that

a U(z, z) = U(z o , z)

for z on K and z in DUK

To prove the last part of the theorem, let a(z, C) =a ,

and b(z, C) = b -- z .i Then a(z,z) = a(x, y) and b(z, z) =b(x, y)

are real analytic functions and so the same argument as above may

be used to establish that (z, z ) = '(z , z) and 1(z, z ) =1 (z ,) .
0 0 0 0
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Whence, by the definition of A(z, () and B(z, () given in (1.4) ,

4 A(z , z) = a (z o , z) + ib (z o , z

and

4 A(z , z) = a (z , z) -ib(z ,z)
o 0 0

= a (z, z ) - ib(z, z )
O o

S4B (z, z )

It is now an easy matter to check that P(z) = P"(z) . This completes

the proof of the theorem.

We are now ready to write down a representation for the solu-

tions of Equation (1. 1).in terms of analytic functions of a complex

variable.

Theorem 1.2. Let D be a simply-connected domain adjacent to an

arc K such that D U K is contained in a fundamental domain for Equa-

tion (1. 1). If u(x, y) is a regular solution of (1. 1) in D and if u and its

first partial derivatives are continuous in D UK and if

(z+ z-) then
U(z, ) = u (z, z then

z

(1. 26) u(x,y) = 0 R(z ,z 0; , )+f P(t)R(t, z ;z,z) dt
z

0

+ f '(7)R(z , ; z, z) d7,
- 0
z
O
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where z = x + iy is in D, z = x + i yo is a fixed point on K,
O 0

S= U(z , z ), R is the Riemann function for (1. 1) and
0 0 0

SU (z, z
p(z) = + B(z, z )U (z,z )

aU (z , 9)
) = + A (z , l )  U (z , I )

C o o

which are analytic functions of z and ( in D and D and continuous

in D UK and D UK respectively.

Conversely, if Oa is an arbitrary constant and 0(z) and 90 ( )
o

are arbitrary analytic functions in D and D, continuous in D U K and

D UK , respectively, then Formula (1. 26) represents the regular

solutions of Equation (1. 1), continuous in DUK

Remark. If the coefficients a(x, y), b(x, y) and c(x, y) of Equation

(1. 1) are real-valued functions and if u(x, y) is a real regular solu-

tion of (1. 1), then O is a real constant, R(z , z , z, z) is a real-
o o o

valued function and from Theorem 1. 1, (P (C) = (P( ) and

R(t,z ;z, z) = R(z ,t ; z, z) In this case, Formula (1. Z6)

may be written as

u(x, y) R(z ,z ;z,z)+ 2 Re [(P(t)R(t,z ;z,z) dt
z
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Proof of theorem: In identity (1.7), replace V by the Riemann func-

tion R(z, C ;t, T), interchange the ordered pairs (z, C) and (t, 7) and

use the fact that U(t, 7) satisfies (1. 5) in t and 7 to get

(1. 7) [U(t, 7)R(t, 7; z, )] - [U(t, r) ) - AR

+ U(t, r) - BR

We wish to integrate the above expression with respect to t from

z to z and with respect to 7 from z to . Note that because of
o o

Lemma 1. 1, z may be taken to be on K
0

In view of Conditions (1. 12), the above integrals may be evalua-

ted as follows:

z 2

(1.28) dt [U(t, T)R(t, 7; z, )] dT
z z

o O

S[U(t(t, )R (t, ;z, ) - U(t,z ) R(t, z ;z, C) dt
= f- 0 0

z
0

=U(z,C) - U(z, z )R (z,z ;0 z,C)- U(z ,0C)R (z ,C; z, C)0 0 0 0

+ U(z ,z )R(z ,z ;z,C) ,
0 0 00
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(1.29) d c U(t, T) - AR)d dr= dT (t,jr A- dt

z z Z z0 0 0 0

S- U(zo,T) ( R(z , 7;z, ) AR d
z

0

- U(zo,7)R(z ,7;z,C) d7

z
o

+ - + AU)R(z, rz,C) d

0

= - U(z , C) R(z , ;z, C) + U(z , z) R(z ,z z;z, )

+ ( + AU) R(z, 7; z, C) d7,
z

0

and

(1. 30) (t, T) - d

z z

z

S- (t Z U(t) R(t, z ; z,) d d
z

0

z
= [+ (t, z ) R(t, zo;z, dt

z
o

+ -U+ BU R(t, zo;z,C) dt

z

00
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Combining (1.28), (1.29), and (1.30) according to the identity (1. 27),

we obtain

z

U(z, ) = U(z , z) R(z ,z ;z, ) +f [TiU(t, z )+ BU R(t, z ;zC)dt
S0 0

o

+ U (zo, 7) + AU R(z , 7;z, C) 7 .

Restricting ( = z in this expression gives Formula (1. 26). And, the

desired analyticity and continuity of (P(z) and 9 ::() -follow directly

from Lemma 1. 1.

The second half of the theorem is easily verified by directly

substituting Formula (1. 26) into Equation (1. 5) with g = z and keeping

in mind Conditions (1. 13). This completes the proof of the theorem.

Consider the nonhomogeneous equation associated with (1.1),

(1.31) L[u] = f(x,y),

where f(x, y) is an analytic function of x and y in some simply-con-

nected domain of the x, y-plane. The equivalent complex form of

this equation is

(1.32) [u] = F(z,) ,

where F(z,)4 f z- . As is wellknown, the general
whreF C,) 4 2 ' 2
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solution of a linear nonhomogeneous differential equation is obtained

by adding a particular solution of the nonhorrmogeneous equation to the

general solution of the homogeneous equation. Taking into account

Conditions (1. 13), it is easily shown by direct substitution that the

function

(1.33) U (z, ) = dt f R(t, T; z, ) F(t, T) dT
z z

0 0

is a particular solution of (1.32). Restricting r= z gives U (z, z)
P

as a particular solution of (1.31). We are thus lead to state the fol-

lowing corollary.

Corollary: Let D and K be given as in the statement of Theorem

1. 2. Assume F(z, () is analytic in (D, D) and that it is continuous in

each variable separately up to and including the boundary K , or K,

as the case may be. If u(x, y) is a regular solution of the nonhomo-

geneous Equation (1. 31) in D and if it and its first partial derivatives

are continuous on D UK and if U(z, ~) = u( z , , then
2 2i

z

(1.34) u(x, y) = 0 R(z ,z ;z, z) + ( (t)R (t, z ;z, z) dt
O O O O

- z
z O

S (d (7) R(z , 7;z, z) d7

zo Zo
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where z = x + iy is in D, zo = Xo + iYo is a fixed point on K,

S= U(z ,- ), F(z, ) = - f ~ ' 2 , and
o o o 2

SU(z,z *)
p(z) + B(z,z ) U (z,z ),(z o o

ULT(z , )
(Cp) + A(z ,) U (z ,)

o0 0

which are analytic functions of z and C in D and D and continuous

in D UK and DU K , respectively.

Conversely, if ac is an arbitrary constant and cp(z) and c D(P)
0

are arbitrary analytic functions in D and D, continuous in D UK and

DUK , respectively, then (1. 34) represents the regular solutions of

Equation (1. 31), continuous in DU K

Proof: If u(x, y) is given as a solution of (1. 31), then the function

uh(x , y) = Uh (z) U(z, z - U (z, z)

satisfies L[uh] = 0 . Therefore, from Theorem 1.2,

(1.35) U(z, -) = Uh(z,z) + U (Z, z)
z

= Uh( , z )R(z , z ;z, z +J P(t)R(t, z ;z, -) dt
z

z z z

0 0 0

wh()R(z ;z, z) dt R (t,;z,)F(t,)d

where
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SUh(z, Z 0)z
P(z) h z + B(z, zo) Uh(Z,)

and
Uh (z , i)

("(h) = + A(z ~) U (z , )

o h o

But, from (1.33) it is seen that Up (z , z ) = 0 and that

aU (z,z)U(zU (Z z
U (zz ) 0 = 0 

p 0 z

U (z, )
U (z ,) 0, o 0

Therefore, U (z ,) = U(z ,z ) and
h 00 0 0

U(ZU (Z, z ) = U(z, z ),zo)

o oo
Uh (zo, C ) = U(zo' h'  C ac

Thus, Formula (1. 35) is identical to Formula (1.34). The second

half of the corollary may be verified by direct substitution. This

completes the proof.
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CHAPTER II

5 1. Geometric Reflection Across an Analytic Arc.

If z = x + iy is a point in the complex plane, then reflecting z

across the x-axis corresponds to the familiar notion of taking its

complex conjugate, z = x - iy. We would like to extend this notion

of reflection to more general types of arcs; in particular, to those

analytic arcs treated by Sloss in [6] and [7].

Let K be an open analytic arc in the xy-plane defined by the

relation F(x, y) = 0, where F is a real analytic function in some

2 2
neighborhood of K and where F (x, y) + F (x, y) 0 along K . Byx y

K being open, we mean that it can be considered as a homeomorphic

image of an open interval. Make the substitutions z = x+iy ,

x= - iy to obtain

g(z, F) = F Z,

as an analytic function in some polycylindrical neighborhood Iz-z 1< r,
0

IC- r of (z ,T )for every z = x + iy on K . Moreover,0 0 0 0 0

z +z z z
0 0 0 0

= - [F(x, y ) + i F (Xo, Yo ) ]  0
C.o
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and

= [F (xo ,y o )-iF (x,yo)] 0
6z 2 x o y

=z
Z = Z 0

Therefore, by the implicit function theorem of complex variables,

there exists a unique function, = G(z), defined on a neighborhood,

N(zo), of each point z on K , whose range is a neighborhood of zo

and which satisfies the relation g[z, G(z)] = 0 for all z E N(z ). Also,

G(z) is single-valued and analytic in a neighborhood of K and

G(z) = z for all z E K. Because -(z , z ) 0 and
o o o oz o o

T(zo, zo) # 0, G(z) is also one-to-one in some neighborhood of K.

Definition 2. 1. The function G(z) introduced above will be referred

to as the reflection function relative to the arc K

Definition 2.2. Let D be a simply-connected domain adjacent to an

analytic arc K such that the reflection function, G, is defined,

analytic and one-to-one in D. If z is a point in D, we define the

point z = G(z) to be the reflection of z across K

A A
Note that z = G(z) = z for all points z on K We let D = G(D)

denote the reflection of D across K
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To justify the above definition of reflection, we show that if z

is not a point of K , but lies in a sufficiently small neighborhood of

A

K , then z must lie on that side of K not containing z. Toward this

end, let K be given as the image of an open interval (a, b) under a

mapping h(() = x(') + iy( ) which is analytic and one-to-one. Then

h can be extended as a one-to-one analytic function of a complex

variable into some sufficiently small simply-connected neighborhood,

R, of (a, b) which is symmetric with respect to the real axis, i. e.,

R = R. Let R+ denote that portion of R which lies in the upper half-

plane, y > 0, and let R be that portion which lies in the lower half-

plane, y < 0. Let N = h(R ) and N_ =h(R_). Then N+ and N are

domains lying on opposite sides of K , since N n N = 0 and K is
+

contained in the boundaries of N and N
+

Without loss of generality, assume G is one-to-one and analy-

tic in NU U N . We wish to show that if z is in N , say, then its

reflected image, z, must lie in N+. It is clear that the latter will be

A -

established if we can show that z = h(C), where C is in R and

A
h(C) = z . However, notice that z = h(C) is equivalent to the

expression

(2. la) G[h(C)] = h() ,

since z = G[h(C)]. But G[h(C)] and h( ) are analytic functions of C in
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1. and they agree along (a, b). Indeed, if E (a, b) then h( ) E K and

G[h()] = h(() or G[h(()] = h(() = h(() . The last equality follows be-

cause ( is real. Thus, (2. la) must be valid for all C in R and so

z = h(C) lies in N .

Intuitively speaking, the above shows that points close to K

have reflected images on the opposite side of K. We will extend

this further by assuming throughout the remainder of the paper that

A

whenever D is given as in Defintion 2. 2, then D n D is empty.

Later, it will be useful to know how the reflection function

A

acts on the reflected region D. Toward this end, consider the

A - A A

function H(z) = z defined for z in D U K . By examining the dif-

A

ference quotient for H(z) it is easily seen that H has a derivative

^ 1
at every point of D; in fact, H (z) = [G (z)] -I. Thus, H is ana-

A A A

lytic in D and it is continuous on D U K and agrees with G for z on
A

K . Therefore, H is the analytic continuation of G into D; i. e.,
A

G(z)= H(z) = z for z in D U K o As a consequence, we have that

z = z in D U K U D. Thus, G(z) is analytic and G '(z) / 0 in D UK U D

A

and G(D) = D.

Of particular interest are the cases where it is possible to

obtain an explicit expression for the reflection function. When K

is a segment of the x-axis, we set F(x, y) = y and obtain
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g(z,) = 2i

Setting the right hand side equal to zero and solving for , we get

A - -

that ( = G(z) = z and that z = G(z) = z . Thus, for the case of the

x-axis, the generalized notion of reflection agrees with the usual

notion of reflecting a point by taking its complex conjugate.

For the case when K is a circle or a circular arc of radius

2 2 2
r centered at the origin, we set F(x, y) = x + y - r Make the

complex substitutions to get

2 2
z+( 2 z-( 2

g(z,) =+ ( - r

2 -1 ^
and then solve g(z, 0)= 0 for to obtain =G(z) =r z and z G(z)

2--1
= r z We see that the reflected point, z, obtained by means of

the reflection function corresponds to the familiar notion of the in-

verse point of z relative to the circle of radius r centered at the

origin.

As another example, we take the ellipse given by

22 22 22
F(x, y) = bx + a y - a b = 0 and calculate the reflection func-

tion to be

2 2 2 2 2
(a +b)z-2 abz +b -a

G(z) =
2 2

a -b

.where the principle branch of the square root function is used; i. e.

2 2 exp arg(z b2 21 -1z +b -a = Iz + -a exp [arg(z 2 +b -a) 2 .
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2Finally, for the parabola F(x, y) = x y = 0 we find that

G(z)= (i- z)- i 4iz +1

where again, the principle branch of the square root is used.

§ 2. Statement of the Problem and Notation.

Consider the elliptic partial differential equation

(2.) Q[u] cy) = 0
i+j:Zn ijx u (x, y) 0

of order 2n where the cij are real constants. Ellipticity implies

that cZn, 0 # 0 and so, without 10ss of generality, we take c Zn 0=1

Further, the elliptic nature of the operator Q allows it to be de-

composed as a product of 2n linear factors as

n

k=l k y x k

where k =3 + i 6 and a=k - i 6 with 6 # 0, are thek k k k k' k

roots of the associated characteristic polynomial

2n
P() = c 2n-k = 0

k=0 2n-k, k

Since 6 0 and since a and k are both involved in the de-k k k

composition of Q, we may choose 6k to always be positive.

Finally, we shall assume that the characteristics of (2. 1) are
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distinct; that is to say, we shall assume that C # o~ if i # j

For each k = 1, 2, ... ,n, introduce the nonsingular coordinate

transformation

-1
(2. 2) Xk = x, = 6 k (y + x)

whose inverse is given by

(2.3) x =x, y = y - P x

Under this transformation, observe that

2 2

x k y :x k = aX 2 a 2 k
k k

which is just the Laplacian with respect to the coordinates, xk, Yk.

Thus, (2. 1) may be written as

n(Z.4) Q[u] (f 1  u(x,y) = 0

k= I

In [7], Sloss showed that it is possible to analytically continue

solutions of Equation (2.4) across analytic arcs by means of reflec-

tion provided the solution satisfies certain analytic boundary condi-

tions along the arc. Furthermore, he was able to explicitly

describe a region into which the solution could be extended. The

region of reflection turned out to be dependent only on the original

domain, the analytic arc and the coefficients, c ij, of Equation (2. 1).
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In this chapter, we would like to examine to what extent Sloss'

results carry over to the case when (2. 1) has lower order terms

present. Because of the reason mentioned in the introduction, we

shall limit our examination to sixth order elliptic equations that

can be factored as

3
(2.5) L[u] = Ii [Ak+ak(xk yk) x +bk (k, Yk)

k=l k k

+ Ck(x k Yk
) ] u (x, y) = 0

where the coefficients ak , b k and ck are complex-valued analytic

functions of their arguments, xk and yk. Before proceeding with an

investigation of this equation, we introduce some transformations

and notation that will be used repeatedly throughout what follows.

Let z = x + iy and set zk = x k + iyk where x k and yk are

given by (2. 2), k = 1, 2, 3. Solve for zk and zk in terms of z and

z to obtain the transformations

zk = 7(z) =A z + B z
(2.6)

zk = (z) = B z + A zk k k k

where the coefficients are uniquely determined as

1 1 1
A I [(1+61 ) +i 6k]

B 1 [ -1(1) + i -1
k 2 k k k



38

Though Tk(z) and Ti (z) are not analytic functions of their argu-

ments, they are continuous one-to-one transformations having con-

tinuous inverses given by

-1
z = 7 (zk) = 6 (A z - B z)

(2.7) k k k k k k(2. 7)

z = k (zk)= 6 (-B z + A z )
k k k k k k k

for all z k k

We now continue Tk and 7 into the domain of two independent

complex variables. Replace z by C in (2. 6) to get

(2. 8) Zk = Ak z + B k

k = B k z + A k

as a nonsingular continuous linear transformation between the

variables (z, C) and (zk, k) whose inverse is given by

(2.9)z = 6 (Ak Zk - Bkk )

(2. 9) k k kk

= 6tk (-Bk Zk + Ak k )

From (2. 8) and (2. 9) the relationship between the pairs (zk, k)

and (z .,.), k # j, can easily be established as a result of straight-
J J

forward algebraic manipulations to be
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z = T (z,() = akj z + b .~.

k T 3 kj j kj C
(2. 10)

= T (,z.) b z. +a .
kk k j kj akj j

where

bj = j(AkAj - B.)
kj k j k j

bkj = 6j (BkA - A k B j)

Again, this is a continuous nonsingular linear change of variables

and T and T k are entire functions of z. and . . We remark that
k k 3

when = z., then T (z.,z.) T. (z) = z and T (z., z.)
Sk j kj k k J J J

' '-1- - T
7= (zj.) = z . This notation will be used
kj J k

interchangeably.

Finally, let D denote a simply-connected domain in the

x, y-plane adjacent to an open analytic arc K. For each j, let

D. = z. = .(z) : z E D

K= z. T.(z) z E K

Since 7. is a homeomorphism, D. will be a simply-connected

domain adjacent to K.. Moreover, the relations defining trans-

formation (2. 3) are analytic and for this reason K. will also be an

analytic arc. For example, if x is part of a nondegenerate conic

given by

F(x,y) = ax + bxy + cy +x + ey + f = 0 ,
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then K will also be part of a nondegenerate conic of the same type

as K.

§ 3. Equation (2. 5) as a System.

We return now to Equation (2. 5) and define operators

Lk = k + ak(xk' Yk) yk + bk(xk Yk) y
k k

+Ck(xk' Yk) k = 1, 2, 3

where, from (2. 3),

)x k ax k ay yk 6y k ay

Then (2. 5) may be written as

(2. 11) L[u] = L1 L2 L 3 u(x,y) = 0

Set

u 3 (x,y)= u(x,y) ,

(2. 12) u 2 (x, y)= L 3 [u 3]

u l (x, y)= L 2 [u 2 ]

Then (2. 11) may be written as the system

L3[u3] = u 2 (x, y)

(2.13) Lz[u 2] = u(x, y)

L 1[u 1] = 0
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From the coordinate transformation (2. 3), we have

(2. 14) u (x, y) = u (x., 6. Yj- .x.)

= vkj (x.j, yj)

= Vkj 2 ' 2i

V . (z. , z.)
kj j )

If we now introduce the operations

) 1 i
Bz k  - y k i k

then system (2. 13) takes the form

+ A 3 (z 3 , z 3 ) az3 + B 3 (z 3 ,z 3 ) -+C(z 3 z

z3 33
1

S V 2 3 (z 3 z 3 )

-- ,+ A 2 (z 2 , z 2)z + B 2 (z 2 , z 2  + C(Zz 2) V 22(zz
-zz z2 2 2

(2. 15) 1

- 4 V12 (2' z2)

1 1

=0 ,

where



1 kk k-_ Zkk Zk k

--
Ak(zk' Zk) 4 ak 2 ' 2i bk 2 'Z

Bk(kk ) 4 k 2i i ' 

1 kk Zi k k- ZkI
B (z z ) [a ( k k kzk ib kk k-k)

k k' k 4 Ck 2 ' Zi

It is System (2. 15) which we shall use to reflect the solutions of

Equation (2. 5). We point out that Vkk(zk, zk) and Vkj(z, )j ,

j = k+l, k = 1, 2, are equal to the same function uk(x, y) and that

they are related by the expression

-1 *(2. 16) V .(z.,_'.) = V [T T (z.), Tk (i.)]

= Vkk [Tk(zj, ), Tk  j z)]

= Vkk(Zk, zk

-1
where z =. T k (zk). If u(x, y) is given as a solution of (2. 5), then

Vkk(xk, Yk) = Vkk(zk, zk) becomes a known analytic function of xk, Yk'

and is a solution of the kth equation of (2. 15), k = 1, 2, 3.

§4. Reflecting solutions of Equation (2. 5).

Suppose f(x 1 , Y
) = F(z 1 z) is a known function defined for

all zI in D 1 such that F(zl, ) is an analytic function of the two

complex variables z E D 1 , I D3 . Upon performing the
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coordinate transformation

F(zl, z) = F[T 1 (z 2 , z 2 ), T I (z 2 , z 2 )] = F (z 2 , z )

-1
where (z) = T 2 (z, zl ) , we obtain a function F(z 2 , z 2 )'

defined for all z 2 in D 2 7= Z  1 (DI) However, the function

F (z2' ) = F[T 1 (z2 ' Z), T1 (CZ z 2 )]

will not, in general, be analytic for all z 2 E D 2 , 2 E D 2 as the

following example suggests.

Take D 1 to be the square whose corners are the points (0, 0),

(1, 0), (1, 1) and (0, 1) and take 6 6z  1, = 0, $z 1. Then
1 2 1 2

1 1
z z =TZ(Z I) = ( +1i) 1 +- i C

2 1 1
C2 =T2C1; z1 2 i z1 + (1- z i) C1

and the inverse of this coordinate transformation is

1 1
z I = T l (z 2  2) = (1 - i) z 2 - -i T2

1 1 2 2 2 2

The set D2 is just z = (1 + i) z I + z i z : z I E D I and is shown

in Figure 2. 1.
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45

3 7 1 1
Consider the pair z 2  4 + i , 8 -i 4in D2 D . Then

3 7 1 1 17 7
z = T1 (+i -i 7i

S 1 4 8 ' 8 4 16 16

: 3 + i 7 3 3
S = T (- -)- + i

1 1 8 4' 4 8 16 16

- + 3 7 1 1
and this pair is not in D X D . Thus F ( + i , - i ) is not

even defined. However, given any point z Z in D2 there does exist

a neighborhood, N, of z 2 contained in D 2 such that F(z 2 , Z) is de-

fined and is an analytic function of the two complex variables

z Z E N, C2 E N . It is the purpose of the following lemma to estab-

lish this fact and to give some idea about the size of N.

We use the notation N(z,p*) to designate an open disc in the

x, y-plane whose boundary is a circle of radius P centered at

z =x + iy.

Lemma 2. i1. Let 2. be an open connected set in the complex

plane and

0 = Tk(z,.) = z : z E SQ
k k(zJ k

Let F(z., C.) be a known analytic function of two complex variables
3 3

for (z., r .) E (Q., ) Then, for every point Zko in 0k there
3ko k

exists an open disc, N(zko,r), centered at Zko and of radius r con-

tained in 0k such that the function F(z k, ) defined by
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F (zk) = F[T (zk'), T(C, z)] =
k T k k j 'k k " j

is an analytic function of the two complex variables zk EN(zko, r),

rk E N(-ko, r). Moreover, the radius, r, of the largest such disc

can be determined explicitly from the choice of the point zko

and from the coefficients ajk and bjk of the transformation

T (zk, .) to be

m(kor(Zo) o
ko ajk + Ib 1

where m(zko) = inf Iz. - z.o :z. T. (z, z k), z. E6
ko I jo ko ko 3

Proof: Arbitrarily fix a point zko in 2 and let z.jo be the point

in fr defined by

Zjo = Tj(Zko, Zko) = ajk ko + bjk Zko

Let N(zko, r) and N (k o , r) be open discs of radius r centered at

Zko and ko respectively. We proceed to find an r satisfying the

conclusions of the lemma.

Replace z. by zko and (. by Ck in the coordinate transforma-

tion (2. 10) and observe that the resulting mappings

T. (k o'k) ak Zko + bkk z
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and

T ( Z k ko jk ak k jj < j

are linear with respect to the single complex variable Lk and so

map circles onto circles. Furthermore,

lz.- z. I = IT. (z , ) - T. (z 1 ,7 )I
j 30 3 j(Zko j zko' ko

= la z +b '-a -b z I
jk ko jk - jk Zko jk Zko'

= Ib jkI Ik- z koI

and

IC. - z IT. ( z , z ) - T. (z , z ) I
j3 3o 3 ko j ko ko

lb-z +a -b -a z I
bjk Zko + ajk - bjk Zko ajk Zko

Ia I Ik- zk I

From this, it is seen that T.(zko, C ) maps N(z ko, r) onto an open

disc, N(z. jo Ibjkl r), of radius Ib I r centered at z. and that
30 jk jk Jo

T. (k' z ) maps N(z , r) onto an open disc, N(z. , jla I r),' of

radius ajk I r centered at z.jo . Thus, transformation (2. 10)
k jo

maps the set z kol X N(z , r) onto a subset of N(z. , lbjk Ir)

X N(z. jo, la. jk r).
JO J( I
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For the next step, arbitrarily pick a point in N(zko, r).

Then, transformation (2. 10) maps the pair (z k, ') onto the pair
ko k

(z .', ') in N(z. jo, lb I r) XN(z. o, ajk I r) given by

z.' = T.(z ,~) Zko + ,S Tj (Zko' k ajk Zko bjk k

k ko jk Zko jk k

Consider now the set N(zko, r) X (k and the linear mappings

T3(zk' k) and T ( , zk) . As functions of zk, they map circles onto

circles and in particular they map N(zko, r) onto open discs centered

at z.' and 9. respectively (see Figure 2.2). Furthermore,
3 3

I z.- z.'l = IT.(z , ) - T.(z , ')
3 3 J k k J ko k

Ia z +b. az- b
jk k jk ajk ko bjk k

I ajl I k Zko I

and

T-I = IT. ( z
J 3 3 k ) - k j ' ko

bjk k + ajk k bjk Zko ajk k

Ibjk Izk zko I



Zj- plane Zk

-N lzjo,Ib,<l o7zko
S0 N z I pnlajke

N [zjo,(akjkl)i ki d N [Zko'

real axis real axis

N Fzko 2
!jON o k 0+I 1

N [ j , Ibjk f k o

Figure 2.2
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Thus, T (zPk) maps N(zko r) onto an open disc N(z, I ajkI r), of

radius I ajkl r centered at z. and T. (' , z ) maps N(z, r) onto
jk j k k ko

an open disc N(C., lbjk r), of radius lb I r centered at And so,
j k -

transformation (2. 10) maps the set N(Zko, r) x I onto a subset of

N(z., Ia I r) XN(., I b I r).

Now form the union of all the open discs N(z', I ajk r) whose

center, z., lies in the disc N(z. jo, I b I r) to get an open disc cen-
3 30 jk

tered at z. and of radius ( ajkl + Ibjl ).r; i.e.,
jo jk + k

U N(z laj r) = N[z , (a. I+1b )r].
, [zjo, 3k k

z. EN(z. lb I r)
3 30 jk

Similarly,

U N(., b. I r) N[~ , (la.jk +lbl I)r]

C N(z. ,la Ir) 3 3K 0 +
j 30 jk

From the preceding construction it is seen that transforma-

tion (2. 10), being a homeomorphism, maps the open set

N(zko, r) X N(zko' r) onto an open subset of

(2.17) N[jo ,(lak I + b jk)r]xN[z jo, (lajk +lb jkl)r].

If we define m(zko) as in the conclusion of the lemma and pick r such

that (Iaj + bj I )r m(z o), then (2. 17) will be contained in

m(Zko)
j. x . It is easily seen that r(zk) = la. I +Ib.l is the
3 3 3o sk
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largest such value for r possible and that for r equal to this

quantity, N[zo, r (ko)] is contained in Q .

It is now a simple matter to check that the function F(zk, % )

= F[T j(zk,), T. (k' Zk) ] is defined for all (zk, k) EN(zko'r)
m(zko)

SN(z ko r), where r Ia +Ib Furthermore, for each fixed

jk jk

(k in N(zko, r),F is analytic in the single variable zk in a neighbor-

hood of each point of N(zko, r) and for each fixed zk in N(zko , r),

F is analytic in the single variable Ck in a neighborhood of each

point of N(Zko, r). Therefore, by Hartog's theorem on the analy-

ticity of functions of several complex vaiables (see [2] Ch. VII),

F (zk, k ) is analytic as a function of two complex variables on the

m(ko)

domain N(zko, r) x N(ko, r), where r . This completes
ko ko ia I+ b I T

jk jk
the proof of the lemma.

In dealing with System (2. 15), the approach will be to work

with each equation separately, extending first the function V 1 1 '

then V22 and finally V33. To avoid needless repetition, the process

we use to reflect solutions of a single second order equation is pre-

sented in the following lemma.

Lemma 2. 2. Let Q be a simply-connected domain in the x, y-plane

adjacent to an open analytic arc K such that the reflection function,

A
G, relative to K is defined, analytic and G'(z) # 0 on 0 UKU 0,
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A

where Q = G(a) . Let V(z, z), for z =x + iy in 2, be given as a

regular solution of the equation

2 V - 3V - V
(2. 18) + A(z, z) - + B(z, z) + C(z, z)V = F(z, z)Sz 10 -z z

A
which has U K U Q as a fundamental domain. Assume that V(z, z)

is in C 1 (QUK) and that along K it satisfies the condition

- V - 6V
(2.19) A (z,z) + B (z, z) + C (z, z)V + F (z, z) 0,

O z o o o

where A (z, i), B (z, C), C (z, r), F (z,C) as well as F(z, ~) are

A A

analytic functions for z E CU K U , r 6 UKUn and A (z,) # 0,
0

B (z, () # 0 . Then V('z, z) can be extended as a solution of Equation
o

(2. 18) across K into all of 0. Replacing z by 5 gives V(z, ) as an

analytic function of the two complex variables z E UKU K U

A
E Q 2U KU Q

Proof: By the corollary to Theorem 1.2, V(z, z) may be expressed

as
z

(2. 20) V(z, z) = V(z, z) R(z, z; z, z) + (t)R(t, z;z, z) dt

z z z

+ '()R (zo, T; z, z)d7 fdtJ R(t, 7;z, z)F(t, 7) dT,

zz z

where z is a fixed point on K and 9 (z), 9 () are uniquely deter-

mined from V(z, z) as analytic functions on Q, 62 and continuous on



53

rU K, 0 UK , respectively. Our aim is to analytically continue the

functions Cp (z), (P(9) across K, K into Q, 0, respectively. Then,

since F(t, 7) and the Riemann function R (t, T; z, z) are known for

A -

z, t CE UK U Q and 7 E0U K U Q , Formula (2. 20) will provide the

unique continuation of the given solution, originally known only in
A

g , into Z UKU C .

The extension of P(z) across K is carried out with the help

of Condition (2. 19). Keeping in mind that

6 V(z, z) - V(z, ) V(z, z) _ V(z, )
z 0z 6---z

C=z z

and in view of Property (1.9) of the Riemann function,Formula (2.20)

gives rise to the following expressions:

(2. 21) V(z ,z )  R(z ,z ;z, z) + (z)expl A(z, )dr?]6z o o a o

zz

+ #(t) --z R(t, z ;z, z) dt

Sz oz

z

+ (f ) dt R (, 7; z, z)F(t, 7) d7

z

z z

+ f dt R(t; z, z)F(tT) d

z z
0 0

and
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(Z. 22) (, z = V(Zo, z R(z,z ; zz)

z

+f (t) _Z R(t, z ;z, z) dt

ozo

+ (P.(z) exp [fo B(z) d~

+ , R(z , 7; z, z) dT
z

0

+ - dt R(t, T;z, )F(t, T) dT
z z

0 0

For z varying in £, substitute Formulas (2. 20), (2.21) and

(2. 22) into the left hand side of (2. 19). Without loss of generality,

take A (z, ) 1 i. Then, the resulting expression may be written

as

z z

o

+ g(z,' ) cP"( )

_ K(zo, 7;z) ' (T)dT - f(z, z) ,
z

where we have set
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- K(t, T;z, ) =exp -A(zT, 7)d] R(;z,)

z
0

+ B (z, ) R(t, 7; , )+ C (z,C,)R (t, 7; , )

z z0

o az 0 0

+ f d R(t, 7; z, ) F(t, 7)d
z z

0 0

z z
o o

+ C (z, ) (z z ) R(z z ;z,

o oo o o

z

+ f dt R(t, 7; z, F (t, 7) d
z z

o0 0

+ F (z, C) ,
o 0

Note that K(t, 7 ; z, C), g(z, P) and f(z, () are analytic functions for

A A
z,t inO2UKU and , Tin 2UKU2.
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To put Expression (2. 23) into a form suitable for reflection,

we need to introduce an analytic mapping of a single complex vari-

able which will establish a one-to-one correspondence between the

points of 2 and the reflected region C and which will map points

z on K onto the corresponding points z on K . The reflection

function, G, relative to K provides this desired connection, since,

A A A -

as seen in 1 of this chapter, if z is a point in Q, then G(z) = z

and G(z) = z for all z on K.

Substitute for z in (2. 23) to obtain the following expression

for the left hand side of (2. 19):

G(z) z

exp A(z, 7) d 19(z) - K[t, G(z );z, G(z)]9(t) dt
G (z) z

A "- A

+ g[z, G(z)]'P [G(z)]

A
z

- K[z , G(();z, G(z)]O" [G(()]G '()d
0

- f[z, G(z] .

In view of Condition (2. 19) and the fact that P(z) and (P [G(z)] are
A

continuous functions of z in P U K and that lim G(z) = G(z), we
z-~K

can let z approach K to get the identity
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z

(2. 24) ( (z) - K[t, G(z0); z, G(z)] 4(t) dt
z

0

= f[z, G(z)] - g[z, G(z)] 4 [G(z)]

+ f [zo, G(();z, G(z)](' [G()] G '() d(
z

0

along K. Thus, along K, 9 (z) satisfies the Volterra integral

equation

z

(2. 25) h(z) - K[t, G(z ); z, G(z)] h(t) dt
z

0

f[z, G(z)] - g[z, G(z)] 9 [G(z)]

z

+ K[zo, G($);z, G(z)] 40[G()] G'(() d(
z

0

in which h(z) plays the role of the unknown.

A

Because 4- [G(z)] is defined and analytic in 0 and continuous

A

in Q U K , the right hand side of Equation (2. 25) is actually a known

A

analytic function for z in 0 and is continuous up to and including

A

K . Similarly, the kernel K [t, G(zo); z, G(z)] is analytic in 0 and

A

is continuous in Q UK . Hence, Equation (2. 25) may be solved by

the usual method of successive approximations to obtain the unique
A

solution in 0 U K given by



z

(2. 26) (z) = R(z) +f F(t, z), (t) dt
z

o

where '(z) denotes the right hand side of (2. 25) and £(t ,z) is the

so-called resolvent kernel defined by the series

co

r (t, z) = K (n)(t, z)
n=

By definition,

K (t, z) = K[t, G(zo); z, G(z)]
z

K(n) (t, z) =f K) (t, 77) K (n- 1) (, z)d?, n = 2, 3,...

t

and it can be shown that the series defining F(t, z) is absolutely

A
and uniformly convergent on compact subsets of 0 U K and that

A

P (t, z) is an analytic function for z, t in 0 and continuous in

A A

0 U K (see [8]). Therefore, b (z) is analytic in C and is con-

tinuous in 2 U K . Moreover, 4 (z) satisfies Equation (2. 25)

along K . But, as seen earlier, the function cp(z) also satisfies

(2.25) along K. Hence, by the uniqueness theorem for Volterra

integral equations, the functions (p(z) and O(z) must assume the

same values at points of K, and so )(z) is indeed the unique

A

analytic continuation of (p (z) into .

If the coefficients A(z, z), B(z, z) and C(z, z) of Equation
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(2. 18) are real-valued functions, then by Theorem 1. 1, cp (()=cp()

and the function :P(() = 0 (P) gives the unique analytic continuation

of ~ across K into 0. Otherwise, rewrite Expression (2. 23) in

the form

z

(2. 27) exp[f B (, z) d 9 (Z)
z

z

- K (zo, 7 ; z, z) (7) dT

z
0

+ g (z, z) P(z)

z

- K (t, z ; z, z) (P(t) dt - f (z, z)

0

where K, g and f differ from K, .g and f only by an exponential
A

A A A - A
factor. Recall that for z in £, G(z) = z ; whence, G(z) = G(z)

A -1 A
z and z = G (z) . Substitute for z in (2. 27) and then let z

approach K to get that (p (z) satisfies a Volterra integral equation

analogous to (2. 25) along K . Now proceed as before to obtain

A

the unique analytic continuation of 0 (z) across K into .

Finally, in Formula (2. 20), replace the functions (O(z) and

(T) by their extensions defined in I U K U n and U K U 0,
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respectively, to obtain V(z, z) as the unique solution of Equation

A
(2. 18) in U KU £ which is identical to the original solution

throughout 02. And, replacing z by C in Formula (2. 20) gives

V(z, C) as an analytic function of two complex variables in

A A
(Q U K U Q, Q U K U. £) This completes the proof.

Remark: Lemma 2. 2 is also valid if the condition A (z, 0) 0,

B (z, ) # 0 is replaced by the condition A (z, ) = B (z, ) = 0 and
o o o

C (z,) 1
0

In preparation for the next theorem, let ak, o(x, y), bk, o(X' y),

ck, o(x y) and fk, o(x, y) be analytic functions in some region of the

real x, y-plane. Apply the change of coordinates (2.3) and then re-
Zk+C Zk-'

place X and yk by the expressions Z and i ., respective-

ly, to obtain the four new functions

(zk +zk- 
kk k+

A (z, )= a ( - +ib1
k,o k0 k k, o ' k Zi k 2 ik, o

zk+ zk___ zk+

B (zk , )= ak 6kk 3 -ib
k, o k' k k, o 2 k 2i k 2 / k, o

(2.28) zk+ zk- z k+

k, Oe k k k,o( 2 m i 2

Fk (z C ( z k + 6 2 k
k, o k k k, o 2 (kZ 2i k 2

We are now ready to present the main reflection theorem.
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Theorem 2.1 . Let D be a simply-connected domain in the

x, y-plane adjacent to an open analytic arc K such that the reflec-

tion function, Gk, relative to the arc = z = Tk(z) : Z KI

(7k(z) given by (2. 6)) is defined, analytic and '(zk) # 0 on

^ 6 5
D U U , k = 1, 2, 3, Let u(x, y) be in C (D) n C (D UK) and

k k

satisfy
3

(2. 29) l [A + bk> x y
k=l k k Y) xk "(k Y-Yk

+ Ck( Yk)] u (x,' ) 0

in D, where the coefficients ak, b k and c k are nonzero analytic

A
complex-valued functions of their arguments and where DkU K UDk

is a fundamental domain for the operator

Lk = A + a b
L k ak(xk k bk(xk yk) yk + c y(xk y ) '

k = 1, 2, 3. Along K, let u(x, y) satisfy the conditions

uk ) OUk
(2. 30) a (x, y) +6 _3a (x, y)k, o x Lk k, o (x ' Y)- k, o by

+ Ck, o(X, Y) u k  fk, o(x, Y) = 0

k = 1, 2, 3, where u 3 = u , u 2 = L 3 [u 3 ], u = L2[u 2 ] nd 9k and 6k
are the same numbers that appear in the coordinate transformation

(2. 2). The functions ak, o, bk, ck, o and f are assumed to be

analytic in x and y andtobe such, that the functions Ak, o(zk, ),
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Bk, o(zk k) , Ck, o(Zk ) and Fk, o(zk, ) given in (2. 28) are

A A

analytic for zk in Dk U Kk U D, r in Dk U Kk U D , and

A k, (z,"k)  0, B (z, o(Zk ) 0 -for k = 1, 2, 3. Then, u(x, y) can

be analytically continued as a solution of (2.29) across K into a

A A

simply-connected domain, R, adjacent to K . The region R can

be explicitly determined and is seen to depend only on the coef-

ficients of the highest order terms of (2. 29) as given in (2. 1), on

the original domain D, .on the arc K and, possibly, on the choice

of a finite number of simply-connected domains. Thus, the ex-

tension is global in nature.

Remark: Theorem 2. 1 remains valid if the condition Ak, o / 0,

B # 0 is replaced by the condition A B = 0, Ck, =
k, o k, o k, o k, o

for any k

Proof of theorem: As seen in §3 of this chapter, Equation (2. 29)

may be written as the system

2 -

(2. 31a) + A 3(z 3 ) z3 z + Bz 3 , z 3 ) az

+ C 3(z3 z3 ) V 33 (z3 , z3)= V 2 3 (z 3 , z 3 ), z3 D3'

2 a
(2. 3ib) 2  + A 2 (z 2 , z 2 )- z + B2(z 2 z 2

+1 (2 0 2  2 2 2 2 E D 2

+ C2 (z 2 , z2 ) V2 2 (z 2 z 2 4 V 1 2 (z 2 , z 2), z 2 D 2
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(2.31c) + A(z ,zI  z + Bi(z1 ,z
11 1

+ C (zl, z l ) V 1 1 (l, z1 ) = 0, zlE D 1

To rewrite Conditions (2.30), rearrange the first two terms as

au I u ku)a

k, o ax - k y k k, o(" Y) 6

and then refer to (2. 14) to see that

V kk(xk k) k uk(x, Y) a k(x, Y)

b xk x k ay

avkk (x k Yk )  6 uk(x, Y)

byk  k ay

Thus, with respect to the variables xk and yk, Conditions (2. 30)

become

_vkk aVkkS - -- + b +c v + -0
ak, O (xk' 6k Yk kxk) k 5x k  bk, o yk k, o kk fk, o 0

Introducing the transformation

Zk+z k  zk - zk
Xk 2 'k 2i

into this last expression, we see that when z, is on Kk,
Vk) must satisfy the condition

V kk(z z k) must satisfy the condition
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- kk - kk
(2.32) A (z ,z ) - + Bk, (Zk Zk)k,o k k zk k, o k k a k

kk

Ck, (Zk, Zk) Vkk Fk, o (z k) = 0

k= 1, 2, 3.

We begin the reflection process with V 1 1 (zl, 1 ). a known

function satisfying Equation (2. 31c) for z I in D 1 and Condition

(2. 32) along K 1. Apply Lemma 2. 2 to extend VI(zl, z ) as a so-
A

lution of (2. 31c) into the entire reflected domain D 1 adjacent to K I

Refering to (2. 14) and (2. 7), transform V11 (z, zl) back to the

x, y coordinates to obtain u (x, y) as defined and satisfying L 1 [ul] = 0

-1 ^A -1 A
in D U KU 1 (DI), where T1 (D) is a simply-connected domain

adjacent to K and disjoint from D.

Next, we consider the function V 2 2 (z 2 , z 2 ), whi ch is known

and satisfies (Z. 31b) in D 2 and Condition (2. 32) along K2 . The

function V 1 2 (z 2 , z2 ) = V 1 1 [T1(z 2 , z 2 ), T 1 (z 2 , z2 ) ] appearing in

the right hand side of (2. 31b), which is originally known only for

z in D2, is now defined for z 2 in 72 1 (Dl U K AU D1
-1 ^  -1 ^

D 2 U K2 U 72 1 (D) , where 72 1 (D I ) is a simply-connected

domain adjacent to K2 and disjoint from D2 . Since, V i(zl 1
A A

is analytic for (zl l) E (D 1 U K U D1, D U K U DI) , then, by

Lemma 2. 1, for each z0 on KZ there is an open disc,
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N[z 2 0 , r(z 2 0 )], of maximum radius r(z 2 0 ) and centered at z20'

-1 i
contained in D2 U K2 U T 72 (DI) such that V1 2 (z 2 , 2

= V 1 1 [T 1 (z 2 2 ), T 1 ( 2 , z2 ) ] is analytic for z 2 N[z 2 0 , r(z20)]

C2 E N[z 2 0 , r(z 2 0 )]. For simplicity, we limit r(z 2 0 ) so that the

boundary of N[z 2 0 , r(z 2 0 )] meets K2 in at most two points. Re-

stricting our attention to the domain N[z 2 0 , r(z 2 0 )], we use Lemma

2. 2 to extend V 2 2 (z2, z2 ) as a solution of (Z. 31b) into that simply-

A

connected component, R(z 2 0 ), of IN[zz0,r(z 2 0)]NDn N[z 2 0 , r(z 2 0 )]

which is adjacent to that portion of K2 contained in N[z 2 0 , r(z 2 0 )]

(see Figure 2. 3).

A A

We proceed to show that if R (z20) 0 R (zz 0 ) is nonempty and

simply-connected for two distinct points z 2 0 and z20 on K2 , then

A A

the extensions of V2 2 (z 2 ,z 2 ) = V2 2 (x 2 , Y2 ) into R(z 2 0 ) and R(z2 0)
A A A A

agree on R(z 0) n R(z ) . First; note that if R(z 2 0 ) N R(z 20
A

is nonempty, then the assumption that G2(z) #0 on D U K U D
2 2 2

implies that N[z 0 , r(z20 ) ]  N[z2 0 , r(z 2 0 ] n D is nonempty.

A A

Indeed, let 77 be a point in R (z 2 0) N R (z20). Then, the fact that

A
" C R (z 2 0 ) c N[z 2 0 , r(z 2 0 )] N D2 f N[z 2 0 , r(z 2 0 )]

and

E 2 R(z0) c IN[zN0, r(z20)] nD 2 N[z 2 0 , r(z 20)]



N [20 ,rZ20)]

D

20

K2

Figure 2.3
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implies that there exist points 4 and 4' in N[z 2 0 , r(Z 2 0 )f D 2

and N[z 2 0,r(z 2 0) ] n D 2 , respectively, such that GZ() = =

= i = G() . But by assumption, G2 is one-to-one on

A
D 2 U K D. Whence

4 = ( E N[zZ ' r(z2)] N[z z0, r (z ' )] n D
20 20 2 20 2

(see Figure 2. 4).

Also, note that the set

N[z 2 0 , r(z20)] N[' 0 , r(z20)] n (Dz U 2) U I (zz0) nR(z20

is a simply-connected domain.

Now let v (x2y 2 ) and v t (x, y) be the extensions of
z20 z20

V 2 2 (z 2 , z 2 = 2 (x2 , Y2 ) in the domain

N[z 2 0 , r(z 2 0)] 0 (D U K2 ) U R(z 2 0 )

and in the domain

A

N[z2o0, r (z n (D2 U Kj)U R(z2 0)

respectively. Then v (x 2 , y 2 ) and v , (x 2 , y 2 ) are analytic func-
z20 z20

tions of x 2 and y 2 which agree on the open set

N[ 2 0 , r(z 20 )] f N[z 20, r(z 0)] n Dz

A A z

and so they must also agree on R (z20) n R (z20
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A

We form the set 0LR(z 2 0 ), which is adjacent to K2 .
20 2

If it is simply-connected, then we set R2 equal to it. Otherwise,

A A
we let R be a simply-connected subdomain of U R(z 0 ) adja-

2*20 2
cent to K2. Now use the preceding argument to analytically con-

tinue V 2 2 (z 2 , z 2 = 2 2 (x 2 , y 2 ) throughout R Z . Then V 2 2 (z 2 , z2)
A

becomes defined throughout D2 U K 2 U R2 as a solution of

Equation (2. 31b) and V2 2 (z 2, 2) is an analytic function of two

complex variables whenever z20 E K2 and

z2 E N[z20, r(z20)l (D2 UK2) U'R (z 0) n R

2 N[z 2o, r(z20) (D2 U 2') U (z20) n R2

Again, referring to (2. 14) and (2. 7), we can transform V 2 2 (z 2 , z 2)

back to the x, y coordinates to obtain u 2 (x, y) as defined and satis-

-1 A -1 A
fying LZ[u 2 ] = u l (x, y) in D U K U 72 (R2). Note, since R2 (D

-1 ^  - ^

then 'r2 (R2)C (D I

Finally, repeat the same argument for V3 3 (z 3 , z 3 ) as we did

for the function V2 2 (z 2 , z 2 ) to obtain a simply-connected domain

A
R 3 adjacent to K3 into which V33(z3, z3) = 33(x3, Y3) can be ex-

tended as a soltuion of (2. 31a). We remark that when applying

Lemma 2. 1, the set dj becomes IN[z 2 0 , r(z 2 0 )] n(DU K2 )
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U R (z ) f R2 and the image of this latter set under the map-

ping 73 TZ becomes 0k . 'Again, perform a change of variables

from the x 3 , y coordinates to the original x, y coordinates to get

u 3 (x, y) as being defined and satisfying L 3 [u 3 ] = u 2 (x, y) in

-1 ^ -1 ^  -1 -1 ^

D U K U 3 (R3 ). As before, T3 (R 3 ) C 2 (R 2 ) c 1 (D1 ). Thus,

keeping in mind that u 3 (x, y) = u(x, y), it is seen that u(x, y) satisfies

A

Equation (2. 29) in D U K U R and agrees with the original solu-

A^ 1
tion in D U K, where R = 7 3 (R3) is a simply-connected domain

adjacent to K and disjoint from D. This completes the proof.

§ 5. Concluding Remarks and Illustrations

Conceptually, it is not difficult to see that the process in-

volved in the proof of Theorem 2. 1 may be continued to include

equations of order higher than s.ix. Thus, with the obvious modi-

fications in the hypotheses, an inductive argument may be adapted

to establish the conclusions of the reflection theorem for elliptic

equations of the form

n( L k) u(xy) = 0
k= 1

where the operators Lk are defined in § 3 of this chapter.

We would like now to point out a couple of differences be-

tween the cases treated here and by Sloss in [7]. First, unlike
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the method used in [7], the reflection process of Theorem 2.1

does not depend on the characteristics of the differential equation

being distinct. That is, it is not necessary that Q c k if j # k
j k

(see 2).

The second and most outstanding difference between the two

cases lies in the Riemann functions used to represent solutions

of second order elliptic equations with analytic coefficients (see

Theorem 1.2). If the given differential equation has no lower

order terms and is of the type considered by Sloss, then it can be

decomposed as a system of second order equations whose Riemann

functions are all identically equal to unity. On the other hand, for

equations of the type considered in this paper, where lower order

terms are present, the Riemann functions depend nontrivially on

four independent complex variables. The introduction of these in-

dependent complex variables complicates the geometry of the

problem considerably by requiring computations to always be per-

formed in certain fundamental domains, namely those which are

determined by Lemma 2. 1.

When the differential equation has no lower order terms pre-

sent, the computations necessary for reflection involve analytic

functions of a single complex variable. In this case, there is a
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method whereby a relatively simple and explicit formula may be

derived for the domain of reflection. In fact, let D be a simply-

connected domain adjacent to an open analytic arc K such that the

reflection function, G, relative to K is defined, analytic and

A

G (z) # 0, G (z) # - A. /B for z in D U K U D. Here, A. and
j J

B. are the constants given in (2. 6a). Let T.(z) be given as in
3 J

(2. 6) and let

or(z) = A z + B. G(z)

A

The function u.(z) is analytic in D U K U D and u'(z) # 0 there,
J

and so it has an inverse. If u(x, y) is given in D to be a solution

of the differential equation

SA . A u(x, y) = 0
12 n

where u(x, y) satisfies certain analytic boundary conditions along K,

then Sloss has shown in [7] that it is possible to continue u as a

solution of the differential equation into the region

n
-1 A A

R 0 n 7 . (R) n 7(D cD
o j=l J 3

-1 i 7(j n
where R = R1  R Z n nR R, R. a= (D) n T D)I and

1 2 " n 3 J Tj

R = G(R)

The following four figures were obtained with the invaluable

aid of the U. C. S. B. on-line system. They were photographed from
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the display scope and then drawn from an enlarged print. The

first three illustrate the region of reflection for solutions of

the specific equation

6 6 6 6 6

+2 + 3 + 6 +6
a x 6 x by ax4by bx 3by x y

6 u  d6u
x5 6-8 +40 6 0

for various choices of the arc. Here, oI 1 + i, Z = 2i and

03 = -2 + i. The last illustration is for the differential equation

having = 1 + . 5i, o = i and 3 = . 5 + .5i . Each figure

shows the original domain D, the arc K , the reflected domain

A

D, and the region of reflection, R , which is the shaded portion

of the drawing. In Figure 2. 5, K is the interval (-1, 1) of the

x-axis and D is the region between the curve whose equation is

2 2
y = x + . 5 and K . Figure 2.6 shows reflection across a por-

tion of an ellipse. The domain D is the intersection of the open

circular disc centered at (0, -. 7) of radius one with the inside of

1
the ellipse cos 9 + i I sin r, - IT < . In Figure 2. 7, K is

part of a parabola whose equation is y = x for .1 <x .

Finally, in Figure 2. 8, D is the annular domain bounded by the

circle of radius .7 centered at the origin and K, which is the



74

unit circle. In this case, since D is not simply-connected, we

must restrict our attention to the single valued solutions of the

differential equation. We emphasize that in these illustrations

A
D contains R and is adjacent to K0
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Figure 2.5
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Figure 2.7
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