

PROJECT/SPACE SHUTTLE

SPACE SHUTTLE GUIDANCE, NAVIGATION, AND CONTROL DESIGN EQUATIONS

> VOLUME III GUIDANCE

A State State State

SYSTEMS ANALYSIS BRANCH GUIDANCE AND CONTROL DIVISION MANNED SPACECRAFT CENTER HOUSTON, TEXAS MARCH 15, 1973 DOCUMENT DISTRIBUTION LIST

AC/Technical Assistant AP/Public Affairs Office AT/P. Fitzgerald J. Loftus BC4/S. Armstrong CA/Director of Flight Crew Operations CA/Asst. Director for Space Shuttle CB/K. Bobko C. Duke J. Engle C. Fullerton T. Mattingly D. Peterson R. Parker J. Swigert J. Young CD12/J. Bigham CE/Chief, Crew Training & Simulation Division CE3/A. Nolting 0. Olasky CF/D. Lang CG¹/M. Contella P. Kramer EA/Director of Engineering and Development EA3/Asst. Director for Electronic Systems EB/Chief, Information Systems Division EB5/Asst. Chief for Spacecraft Data Systems EE/Chief, Telemetry & Communications Systems Division EE/J. Sheppard W. Zrubek EE6/J. Griffin J. Lamoreaux EE8/R. Moorehead EG/Chief, Guidance and Control Division' EG/Asst. Chief, Guidance and Control Division EG2/Systems Analysis Branch (25) EG3/J. VanArtsdalen J. Lawrence EG4/E. Chevers J. T. Edge

TO SEVERATE STREET, ST. P. ST. ST.

EG4/G. Rice H. Shelton J. Vernon A. Turley EG5/T. Barry M. Jones C. Manry W. Swingle EG6/D. Gilbert R. Reid H. Smith EG7/C. Wasson EG8/P. Kurten R. Wilson EG13/R. Kennedy J. Klinar EJ/W. Bradford R. Burghduff J. Brown G. Holloway R. Lewis C. McCullough R. Swint ER/H. Davis ER4/F. Casey ES/D. Wade ES2/P. Glynn C. Modlin EX/J. Hondros B. Jackson B. Redd EX2/F. Garcia D. Howes C. Teixeira P. Thomas EX3/I. Fossler EX4/R. Barton J. Gamble EW/W. Petynia FA/Office of Director for Flt Operations FA/R. Ernull FA3/R. Rose FA12/L. Dunseith FC/Chief, Flight Control Division FC4/H. Loden D. Thorson FC5/J. Bostick J. Ferguson W. Middleton

FC5/C. Parker FD7/C. Hackler A. Hambleton T. Keeton FM/Chief, Mission Planning & Analysis Div. FM/T. Gibson C. Huss S. Mann F. Suler FM2/C. Graves FM3/C. Hyle FM4/M. Jenkins P. Pixley FM5/R. Savely FM7/A. Bordano A. Long 'R. Nobles T. Murtagh FM9/E. Fridge E. McHenry W. Sullivan FS/Chief, Flight Support Division FS/J. Satterfield L. Hamilton FS6/J. Garman G. Sabionaki J. Williams FS7/J. Watkins KA/Manager, Skylab Program LA/Manager, Space Shuttle Program · LA2/H. Dotts LA3/H. Gartrell LC/B. Gay LF/B. Evans V. Neshyba LP/J. Heberlig MA/Aaron Cohen 0. Morris ME/S. Andrich R. Bradley P. Deans J. Defife C. Frasier R. Kubicki M. Silveira MO/D. Cheatham W. Koons NA2/Planning & Assessment Office

SA/Flight Safety Office ZR1/C. Essmeier

XRZT/Capt. D. G. Keach USAF Unit Postal Office Los Angeles, CA 90045

NASA Hqs/MD/-P/Deputy Associate Administrator/OMSF NASA Hqs/USS-1-Library (2) NASA Hqs/MHE/R. Murad NASA Hqs/MTG/R. Livingston

NASA Centers Technical Libraries: Ames Research Center/Moffett Field, CA (2) Flight Research Center/ Edwards, CA Goddard Space Flight Center, KSC, FL (2) John F. Kennedy Space Center (2) Lewis Research Center/Cleveland, O (2) Langley Research Center/Langley, VA (2) Marshall Space Flight Center, Huntsville, AL (2)

Ames Research Center/Moffett Field, CA FSM/B. Creer FSN/H. Lessing Flight Research Center/Edwards, CA/ CA/R/Shu Gee John F. Kennedy Space Center/IS-CAS-12/Chief, Mail & Reports Management Sec/KSC, FL

John F. Kennedy Space Center/KSC, FL/FP-A/R. Smith John F. Kennedy Space Center/KSC, FL/LS-ENG-6/ Thomas Walton

Marshall Space Flight Center/Huntsville, AL/ S&E-ASTR-SGA/H. Brown

R. Byan

S. Winder

G. Gillino

SP-EM/C. Griswold S&E-ASTR-SD/H. Mink S&E-CSE-1/L. Thionnet PD-RV-V/H. Hight S&E-ASTR-SD/H. Scofield

Honeywell, Inc./13350 US Hwy 19, St. Petersburg, FL 33733/

(818-3) Pete Smith (2)

N. Berlage

R. Omoth

Intermetrics, Inc. 701 Concord, Cambridge, MA 02133 J. Miller F. Martin W. Widnall MIT/DL/EG/JSC, Houston, TX E. Olsson (10)T. Lawton MIT/DL/Cambridge,MA 02142 73 DL7-211/G. Levine (5) 63 DL7-150/N. Sears (5) 60 DL7-215H/D. Fraser 73 DL7-210/B. Kriegsman 63 DL7-159/R. McKern NR/Downey, CA AE55/G. Anderson C. Chadwick C. Conrad D. Engels R. Epple FC04/W. Fouts AA60/G. Fraser AE55/S. Githens J. Jansen D. Levine EB09/G. Lindewall GE24/J. Ling AE55/K. McQuade AA60/G. Minott AC60/R. Newman SF-34/G. Peller AC84/S. Rubenstein AA60/W. Schleich

JSC-04217 Revision D

NASA SPACE SHUTTLE PROGRAM WORKING PAPER

()

SPACE SHUTTLE GUIDANCE, NAVIGATION AND CONTROL DESIGN EQUATIONS

VOLUME III

Revised March 15, 1973

H. Cember 1 111

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Prepared by Systems Analysis Branch Guidance and Control Division

K.J. Cox

K. J. Cox, Chief Systems Analysis Branch

Authorized for Distribution

Maxime A. Faget Director of Engineering and Development

VOLUME III

 \bigcirc

6

(

TABLE OF CONTENTS

1.	Introduction	3-1
2.	Multi-Stage Boost Control	S53-1
3.	Rendezvous Targeting	S37-1
4.	Rendezyous Terminal Phase	
	Automatic Braking Sequence	
	and Targeting	541 - 1
5.	Station-Keeping Guidance	546-1
6.	Deborbit Targeting	S28-1
7.	Powered Flight Guidance	S25-1
8.	Entry Guidance	S44-1, S59-1
9.	Approach Guidance	S58-1, S60-1
10.	Final Approach Guidance	S29-1
11.	Conic State Extrapolation	s6-1
12.	Required Velocity Determination,	· .
	Conic	S24-1
13.	Required Velocity Determination	
•	Precision	S27-1
14.	Boost Abort Guidance	S51-1
15.	Sequence	3-9

The other Volumes of this document are:

Vol	I	STATUS
Vol	II	NAVIGATION
Vol	IV	CONTROL

GUIDANCE

Introduction

()

御寺様

Guidance activity generally relates to the perturbation of spacecraft trajectory or state by the application of translational control effectors. The Space-Shuttle mission includes three relatively distinct guidance phases: Atomospheric Boost (characterized by an adaptive guidance law), Extra-Atmospheric Activities and Re-Entry Activities (where aerodynamic surfaces are the principal effectors). Guidance tasks include pre-maneuver targeting and powered flight guidance (where powered flight is defined to include the application of aerodynamic forces as well as thruster forces). Figure 3.1 is a flow chart which follows guidance activities throughout the mission from the Pre-launch phase through touchdown. Table 3.1 lists the main guidance programs and subroutines used in each phase of a typical rendezvous mission. A brief description of each such program and routine follows. Detailed software design requirements are presented in Vol. III.

1. Atmospheric Boost Guidance

This program, when completed, will (at a minimum) provide a programmed pitch over and attitude hold until sometime after max-q. It may also include some minimal closed-loop guidance to limit dispersion in the presence of wind and gust disturbances. This program (not yet submitted) will fulfill functional requirement 2G1*.

2. Multi-Stage Boost Guidance

These powered ascent guidance equations provide inertial steering commands during boost to insertion. The equations accommodate to engine throttle capability and to discontinous boost, i.e., PSR shutdown and jettison with controlled thrust from the MPS. These equations fulfill requirement 2G2.

3. <u>Rendezvous Targeting</u>

This Targeting Routine has the capability of constructing inflight the rendezvous maneuver sequence which satisfies the requirements of the particular mission. The routine can handle sequences with any given number of maneuvers, each of which can have a variety of constraints. These equations fulfill requirements 3G2.

4. <u>Rendezvous Braking</u>

()

This Targeting Routine has the capability to bring the vehicle into the station-keeping zone by automatic line-of-sight corrections and braking corrections. These equations fulfill requirements 3G3.

*Functional Requirement Module (See App. I).

C. Station Keeping Guidages

This targeting Routine is for use during the station-keeping phase and is designed to maintain 1. Orbiter in a small zone which may be arbitrarily located with respect to the target vehicle. The orbiter is maintained in the none by the periodic applies from of small velocity corrections computed so as to maintain the average constitute of propellant per orbit. These equations

6. Deorbit Targeting

This targeting Routine is for the computation of an optional phasing maneuver to place the vehicle in a phasing orbit prior to landing, and an in-plane minimum fuel deorbit maneuver satisfying entry-interface and landingsite constraints. The program is designed to allow the crew to determine constraints deorbit of point if is and to select one desired. The program satisfies requirement 326.

7. Powered Flight Guidance

These Guidance Routines are for use in computing steering and engine cutoff commands during either a maneuver with a specified velocity change, or a Lambert aim point maneuver, or a deorbit maneuver. The concepts of a current positic offered a line of state-vector navigation are used for the Lambert and deo it is concepted. Cross product steering is used for all maneuvers. These equations satisfy the requirements 3GL.

8. Entry and Transition Guidance

This routine will provide guidance commands from entry interface through the heat control phase, through transition, to 40,000 feet altitude. The requirements for this phase are 4GL.

9. Approach (Terminal Area) Guidance

This routine provides steering commands which guide the S/S from an artitude of 40,000 ft to a coint on the final approach (glide) path at an artitude of approximately) ft. These requirements are listed as 4G2.

10. Final Approach Guidance

This routine provides steering commands which maintain the shuttle on the two-flare approach path through touchdown. These equations satisfy requirements 4G3.

11. Conic State Extrapolation Subroutines

These subroutines are for conic state vector extrapolation as a function of time (Kepler) or as a function of angle (Theta), and are required both for fundance targeting and for a figation.

A STATE A STATE

3-2

12. Precision State and Filter Weighting Matrix Extrapolation

This subroutine has an Encke integration scheme which includes the capability for precision extrapolation of a vehicle state vector and the associated submatrix of the Navigation filter weighting matrix in the earth's J_2 gravity field. Additional perturbing accelerations due to higher order gravity terms, lunar and solar gravity, and atmospheric forces have not been included since the requirements for them have not been established. This subroutine is presented in Navigation Volume II.

13. Conic Required Velocity

()

This subroutine is for the solution to the multi-revolution Lambert required velocity determination problem.

14. Precision Required Velocity

This subroutine is for use by a targeting routine to compute the parameters needed by the Powered Flight Guidance Routines to perform a Lambert aim point or de-orbit maneuver.

15. Abort Guidance Targeting

This program, available only in preliminary form, provides guidance targeting for the transition from booster failure to acquisition of the nominal entry trajectory with virtually empty OMS fuel tanks. This program fulfills some of the requirements of 2G3.

The Multi-Stage Boost Guidance presentation is by R. F. Jaggers of the Boeing Co. There are other designs under consideration, but none differ significantly from the Linear Tangent Guidance which is the basis of Jagger's presentation.

The On-Orbit guidance submittals are the work of C. S. Draper Laboratory. Rendezvous Targeting is documented by W. H. Templeman, Rendezvous Braking by P. M. Kachmar, Station Keeping Guidance by Gustafson and Kreigsman, Deorbit Targeting by Brand and Brennan, Powered Flight Guidance by Brand, Brown, Higgins and Pu, the Precision Required Velocity routine by T. J. Brand and the Conic State routine, the Precision State routine and the Conic Required Velocity routine by W. M. Robertson. An alternative Rendezvous design has been published by D. J. Jezewski of the NASA/MSC Mission Planning and Analysis Division. It is anticipated that the Linear Tangent Guidance, in a modified form, will replace the Powered Flight Guidance design documented herein.

3-3

÷

-

		SUBROUTINES
MISSION PHASE	MAIN PROGRAM	KEPLER C-ST THETA C-ST PRECISION STATE CONIC REQ. VEL. PREC. REQ. VEL.
BOOST	ATM. BOOST GUIDANCE MULTI-STAGE BOOST GUID.	
RENDEZVOUS	* RENDEZVOUS TARG.* POW. FLIGHT GUID.	
TERMINAL RENDEZVOUS	* RDZ BRAKING * POW. FLIGHT GUID,	
STATION KEEPING	* S-K GUIDANCE * POW. FLIGHT GUID.	· · · ·
DEORBIT	* DEORBIT TARGETING * POW. FLIGHT GUID.	
ENTRY LANDING	ENTRY GUIDANCE APPROACH GUIDANCE FINAL APPR. GUID.	

*TARGETING AND POWERED FLIGHT GUIDANCE USED SEQUENTIALLY FOR EACH MANEUVER

..

TABLE 3.1 SHUTTLE GUIDANCE

The Entry through Landing guidance submittals are produced by Kriegsman (CSDL) and Harpeld (MPAD) for Entry, NASA/MSC Crew Procedures Division (documented by Tao) and Elias (CSDL) for Approach, and D. Dyer of GCD for Final Approach. Other Entry guidance designs include Fast Time Integration by Sunkel (G&CD). The Harpold design and the Kriegsman design for Entry Guidance are both included in this volume because both have outstanding features and it is conjectured that the final design will represent a combination of the best features of each. Likewise both the Crew Procedures and the Elias designs are presented in expectation that the final design will include features of each. An alternate Terminal Area Approach design by T. Moore (GCD) is more complicated, but is a strong contender for implementation because it includes capability for low-altitude redesignation.

The preliminary Boost Abort Targeting submittal is by G. McSwain of G&C Div., NASA/MSC.

Except for Boost Abort Targeting all Guidance submittals are complete, according to the requirements of Appendix I.

Introduction

()

1000000

\$2.29T

The purpose of the powered ascent guidance equations is to provide inertial steering commands during the boost to orbit maneuver. Throttle setting can also be provided if this is a requirement of boost guidance, however, this feature is not incorporated in the equations presented here.

The linear tangent guidance law presented here was developed to meet at least the following requirements: multi-stage capability, ability to handle flight perturbations and maintain orbital insertion accuracy, abort to alternate conditions, engine out capability, and throttle for constant acceleration.

77236878

Computational Flow of Multi-Stage Guidance Equations

Guidance input and output parameters are listed and defined below. Essentually, guidance input is the present state vector and orbital parameters defining the desired terminal state vector, and the output is steering commands and timeto-go.

Guidance Pres	settings (PREFLIGHT INPUT)
^R D	Magnitude of desired terminal radius vector
V _D	Magnitude of desired terminal velocity vector
) D	Desired terminal flight path angle
G ₂₁	X component of unit vector normal to desired orbit plane*
G ₂₃	Z component of unit vector normal to desired orbit plane*
V _{ex}	Effective exhaust velocity of stage i
$ au_{i}$	Initial m to m ratio of stage i
т _{ві}	Nominal burn time of stage i
T _{Ci}	Coast time between stage i and stage i + 1
^a Li	Acceleration limit of stage i
n	Number of guided stages
Navigational	Quantities (INFLIGHT MEASURED INPUT)
a p	Inertial platform measured acceleration vector
\overline{v}_{p}	Inertial platform velocity vector
R _p	Inertial platform radius vector
	•

Inertial platform gravity vector (Calculated function of $\frac{R}{p}$)

 \overline{g}_{p}

* Optional inputs are $i_D^{},$ desired inclination, and $\theta_D^{},$ desired longitude of descending node.

S53-2

Guidance Output

θ _c	Commanded inertial pitch angle
¢ _c	Commanded inertial yaw angle
T _{GO}	Time-to-go till orbital insertion
f	Throttle setting if applicable (to be determined)

Guidance Precalculations

(Coordinate transformation from platform system to desired orbit system)

Input G_{21} and G_{23} , X and Z components of unit vector normal to desired orbit plane. Compute unit vector in desired orbit plane normal to launch vertical, and unit vector defined by intersection of desired orbit plan and the plane containing launch vertical and vector normal to desired orbit.

$$G_{22} = (1 - G_{21}^{2} - G_{23}^{2})^{1/2}$$

$$G_{11} = (G_{22}^{2} + G_{23}^{2})^{1/2}$$

$$G_{31} = 0$$

$$G_{32} = -G_{23}/G_{11}^{1}$$

$$G_{33} = G_{22}/G_{11}$$

$$G_{12} = -G_{21}G_{33}$$

$$G_{13} = G_{21}G_{32}$$

NOTE: For due East launch , [G] = and no plane change , [G] =	1 0 0	0 1 0	0 0 1	
--	-------------	-------------	-------------	--

12.00

CALLER AND A STREET AND A STREET

S53-3

1920 - 20 P. 20

15.522 51.52

2862 12 - 14 - 14

ENTER GUIDANCE PRE-TURN ON

2.3.219 Store 2 Con

C

ENTER GUIDANCE (MAJOR CYCLE LOOP) $\bar{R}_{c} = [G] \bar{R}_{p}$ INITIAL RANGE ANGLE $= \tan^{-1} (Z_4/X_4)$ ¢₀ $\hat{U}_{Z} = \text{Unit}(\hat{R}_{p} \times \hat{U}_{y})$ $\hat{U}_{X} = \hat{U}_{y} \times \hat{U}_{Z}$ LOCAL GUIDANCE $\begin{bmatrix} U_{\chi 1} & U_{\chi 2} & U_{\chi 3} \\ U_{\gamma 1} & U_{\gamma 2} & U_{\gamma 3} \\ U_{Z 1} & U_{Z 2} & U_{Z 3} \end{bmatrix}$ COORDINATE SYSTEM [E] 1, [E] R_G = Rp RADIUS AND VELOCITY IN ν_G = [E] LOCAL GUIDANCE FRAME MEASURED ACCELERATION $a = ABS (a_p)$ R = ABS (R_p) MAGNITUDE $g_r = -(\overline{g}_p \cdot \overline{R}_p)/R$ $g_{AV} = .5 g_r \left[1 + \left(\frac{R}{R_D} \right) \right]$ AVERAGE RADIAL GRAVITY MAGNITUDE S53-5

 $F_{G} = V_{13} + V_{13}$ GRAVITY MODEL RAVI - Pat RAV2 * .5 RG2 R_{AV2} = R $R_{AV3} = R_{T3} (2F_{G} + 1)/6$ $R_{AV3} = P^{(1)}, (1 + 1)/3$, $R_{AV} = UNIT (R_{AV})$ AVERAGE GRAVITY VECTOR FOR VELOCITY LOSSES RAV = U.T. CAY $g_{R} = g_{AV} \hat{R}_{AV}$ AVERAGE GRAVITY VECTOR . $\bar{g}_{V} = g_{AV} \bar{R}_{AV}$ FOR DISTANCE LOSSES i = k ÷ YES ^Tli≤ 0 ւ $T_{Li = 0}$ $T_{Li} = \tau_i - V_{exi}/a_{Li}$ TIME TILL ACCELERATION LIMIT TIME FROM LIMIT TO BURN OUT $= T_{Bi} - T_{Li}$ YES LSi[>]0 -110 T_{Li=} T_{Bi} T_{LSi=0}, NO i=n æ i=i+1 **L**YES S53-7 1977 1977 1976

. -

1. INTRODUCTION

The rendezvous of the Orbiter (primary vehicle) with a target vehicle (e.g. the Space Station) is accomplished by maneuvering the Orbiter into a trajectory that intercepts the target vehicle orbit at a time that results in the rendezvous of the two vehicles. The function of rendezvous targeting is to determine the targeting parameters for the powered flight guidance for each of the maneuvers made by the Orbiter during the rendezvous sequence.

In order to construct the multimaneuver rendezvous trajectory, sufficient constaints must be imposed to determine the desired trajectory. Constraints associated with the Orbiter mission will involve such considerations as fuel, lighting, navigation, communication, time, and altitude. The function of premission analysis is to convert these—which are generally qualitative constraints-into a set of secondary quantitative constraints that can be used by the onboard targeting program. By judicious selection of the secondary constraints, it should be possible to determine off-nominal trajectories that come close to satisfying the primary constraints.

The proposed onboard rendezvous targeting program consists primarily of a main program and a generalized multiple-option maneuver subroutine. The driving program automatically and sequentially calls the maneuver subroutine to construct the rendezvous configuration from a series of maneuver segments. The main program is capable of handling rendezvous sequences involving any given number of maneuvers. Enough different types of maneuver constraints are incorporated into the subroutine to provide the flexibility required to select the best set of secondary constraints during premission planning. In addition, the astronaut has a large, well defined list of maneuver options if he chooses to modify the selected nominal rendezvous scheme.

As the new approach represents, in essence, just one targeting program, there is considerable savings in computer-storage requirements compared to former approaches in which each maneuver used in the rendezvous scheme had a separate targeting program. The programming and verification processes of this unified approach will also result in implementation efficiencies.

1.1 <u>Number of Independent Constraints Involved in a</u> <u>Rendezvous Sequence</u>

During the Gemini and Apollo flights and in the design of the Skylab rendezvous scheme various numbers of maneuvers were utilized in the rendezvous sequence. The range went from two (Apollo 14 and 15) to six (Skylab).

A CONTRACTOR

The number of independent constraints (i.e., the number of explicitly satisfied constraints) in each rendezvous sequer β must equal the number of degrees of freedom implicitly contained in the sequence. To establish this number, a rendezvous configuration can be constructed by implicitly constraints until the configuration is uniquely defined. For establish the four maneuver coplanar sequence is shown in Figure 1, followed by by the four maneuver coplanar sequence is virtually implicitly magnitude), r_i as the four maneuver has been establish that the total number involved is 12, assuming the time of the first maneuver has been established. Removing one maneuver will reduce the number of degrees of freedom by three. Hence, the number of independent constraints necessary to uniquely determine the maneuver sequences are

Number of maneu a state in sequence	Number of independent constraints required
1	3
2	6 .
3	9
4	12
etc	

If the above rendezvous are not coplanar, one additional constraint has to be added to each sequence to allow for the out of-plane component.

In some cases the number of \cdot and \cdot constraints may be insufficient to uniquely determine a rendezvous trajectory for the desired number of maneuvers. One way of overcoming this deficiency in constraints is by introducing sufficient variables to complete the determination of the rendezvous trajectory and then determining values for these variables by minimizing the fuel used.

In order to take advantage of updated state vectors due to navigation or ground updates, the rendezvous targeting program is called prior to each maneuver to compute the upcoming maneuver. In general, each maneuver computation will involve a multimaneuver sequence as the nature of the targeting constraints do not allow the maneuvers to be independently computed. The relationship between the rendezvous sequence involving n maneuver and the maneuver sequences is shown below. Maneuver Segments

\$37-2

Each maneuver $s \in \mathbb{R}^{n}$ is composed of a number of maneuver segments and is basically independent of the other maneuver sequences. These sequences must have the same negative independent constraints as tabulated above.

1.2 The Construction of a Maneuver Segment

Each n-n. Each sequence can be divided into n-1 maneuver segments. Each set $n \to 1^+$, basically, the addition of a maneuver to the primary vehicle's velocity vector and an update of both vehicle's state vectors to the next maneuver point.

A maneuver segment is herein generated in one of three ways:

A maneuver $\Delta \underline{v}$ is computed and added to the velocity vector in a specified direction. The state vector of the primary vehicle is then updated through a specified amount to arrive at the next maneuver position.

Target generation

Forward generation

The target vehicle is updated through a specified amount and then offset to establish a target vector. An option is available at this point to compute a coelliptic velocity vector and update through Δt to establish a new target vector as shown below.

The maneuver is then computed by uniquely specifying the nature of the traverse between the primary vehicle's position and the target vector.

Integrated generation

In this case, the maneuver segment is computed as an integral part of a maneuver sequence involving more than one maneuver segment. The nature of the constraints are such that the maneuver sequence cannot be subdivided into uniquely defined maneuver segments. The maneuver segment will usually have one degree of freedom, which will generally be assumed to be the magnitude of the maneuver.

Each of the above methods is defined by specifying trajectory constraints by setting certain switches and parameter values. Specifying a trajectory constraint is equivalent to specifying one or more independent constraints. On the other hand, specifying an independent constraint can also be equivalent to specifying one or more trajectory variables. (See Ref. 9) A trajectory constraint common to all three of the above methods is the state vector update switch s_{update} . The options associated with this switch are:

 $s_{update} = \begin{cases} 1 & Update from time t to time t_{F} \\ 2 & Update through time interval \Delta t \\ 3 & Update through n revolutions \\ 4 & Update through \theta radians \\ 5 & Update to be collinear with a specified position vector \end{cases}$

In the next three sections, the trajectory constraints associated with each of the above methods will be listed.

S37-5

1.2.1 Maneuver Options in Forward Generation of Maneuver Segment

The forward generation of a maneuver segment is accomplished in one of two ways. Either the maneuver magnitude is uniquely determined in terms of the state vector at the maneuver time or the maneuver is determined by an iterative search to satisfy a terminal constraint.

The maneuver magnitude Δv is either calculated or assumed depending on the maneuver switch s man, and it is applied in a direction controlled by the direction switch s direct. The options associated with the maneuver switch are:

 Δv is assumed specified

 $\begin{array}{c|c}s_{man} = \\ & \begin{array}{c}2\\ & \Delta v \text{ is computed based on a post maneuver}\\ & \text{velocity vector being "coelliptic" with the}\\ & \text{state vector of the target vehicle}\\ & 3\\ & \Delta v \text{ is computed from the conic circular}\\ & \text{velocity constraint} \end{array}$

 Δ v is computed based on a Hohmann type transfer resulting in a Δh change in altitude

The options associated with the maneuver direction switch are:

 $\mathbf{s}_{direct} = \begin{cases} Apply \Delta v \text{ is horizontal direction in plane} \\ & Apply \Delta v \text{ in horizontal direction parallel} \\ & to orbital plane of the target vehicle} \\ & -2 & Apply \Delta v \text{ along velocity vector in plane} \\ & of primary vehicle} \\ & 2 & 1 \\ \end{cases}$

Apply Δv along velocity vector parallel to orbital plane of the target vehicle

The selection of the update switch $s_{update D}$ determines the update of the primary vehicle's trajectory following the maneuver to the position of the next maneuver. A terminal constraint can be imposed at this point by setting the terminal switch s term:

 $s_{term} = \begin{cases} 1 & Terminal constraint is a height constraint$ -1 & Terminal constraint is a phasing constraint

Following the computation of the height/phasing error, the maneuver magnitude is varied in an iterative search to satisfy the height/phasing constraint.

1.2.2 Maneuver Options in Target Generation of Maneuver Segment

The target generation of a maneuver segment starts with the selection of the update switch for the target vehicle. If this switch equals four, θ will be augmented by the central angle between the primary and target vehicles before being used. The position of the target vehicle is then offset through either (e_1 , Δh) or ($\Delta\theta$, Δ h), depending on whether s_{tar} is negative or positive, to obtain a target vector. The "TPI offsets" (e_L , Δh) are discussed in Section 5 (see Figure 2 for definition of e_L). If $|s_{tar}|$ equals two, a coelliptic velocity vector is computed based on the target vector, and a new target vector is defined by updating the coelliptic state vector through Δt . The options associated with s_{tar} are:

> $\mathbf{s_{tar}} = \begin{cases} -2 & \text{Offset target } (\mathbf{e}_{L}, \Delta \mathbf{h}), \\ \text{velocity and update three} \\ -1 & \text{Offset target } (\mathbf{e}_{L}, \Delta \mathbf{h}) \\ 0 & \text{No target offset} \\ 1 & \text{Offset target } (\Delta \theta, \Delta \mathbf{h}) \\ 2 & \text{Offset target } t \end{cases}$ Offset target (e_L, Δ h). Compute coelliptic velocity and update through (negative) Δt .

Offset target ($\Delta\theta$, Δ h). Compute coelliptic velocity and update through (negative) Δt

The nature of the traverse between the primary vehicle's initial state vector and the target vector is controlled by the maneuver switch sman:

Lambert - the trajectory is time constrained

 Sman =
 Horizontal - the maneuver is constrained to be in the horizontal direction
 Tangential - the maneuver is constrained to be in the direction of the velocity vector Horizontal - the maneuver is constrained to

Apogee/Perigee - the trajectory has an apogee/ perigee occurring at the target point.

There is a minimum Δv option associated with the above maneuvers which is controlled with the optimization switch sont :

S37-7

i = Unit horizontal in forward direction for primary vehicle
 LOS = Line of Sight

1. If the LOS projection on i is positive :

a. When the LOS is above the horizontal plane. $0 < e_{L} < \pi/2$

b. When the LOS is below the horizontal plane, $3\pi/2 < e_L < 2\pi$

2. If the LOS projection on i is negative :

a. When the LOS is above the horizontal plane, $\pi/2 < e_{L} < \pi$

b. When the LOS is below the horizontal plane, $\pi < e_L < 3\pi l 2$

S37-8

Minimize the sum of the magnitude of the first and the next maneuver (based on a coelliptic parting velocity) by varying Δt , the time of update of the target vehicle.

1 Minimize the magnitude of the first maneuver by varying Δt , the time of update of the target vehicle.

1 Minimize the magnitude of the first maneuver by varying Δ !, the time between the next maneuver and the initial offset position. (See sketch on page 1-4)

2 Minimize the sum of the magnitudes of the first and the next maneuver (based on a coelliptic parting velocity) by varying Δt , the time between the next maneuver and the initial offset position (see sketch on page 1-4).

This minimization is accomplished by driving the slope (Δv / independent variable) to zero using a Newton Raphson iteration scheme.

1.2.3 Maneuver Options in Integrated Generation of Maneuver Segment

- 2

^sopt

a Maranananananananananan

The integrated generation of a maneuver segment involves an iterative solution to determine a maneuver sequence which cannot be sequentially solved for its maneuver segment components. The maneuver is computed by guessing its magnitude, assigning a direction and plane through selection of the direction switch s_{update} , updating the primary vehicle's state vector after selecting switch s_{update} and then calling additional maneuver segments until reaching the point at which the terminal constraint is to be attained. The maneuver is then iteratively determined by satisfying the terminal constraint. The number of additional maneuver ver segments and the nature of the terminal constraint are controlled by the terminal constraint switch s_{term}

and the second secon

-2, -3, The terminal constraint is a phasing constraint and it occurs at the sterm maneuver point from the start of the maneuver segment. ^sterm⁼ 2,3., The terminal constraint is a height .. <10 constraint and it occurs at the sterm maneuver point from the start of the maneuver segment. (10<s_{term} Both a height and phasing constraint < 100) occur at the same maneuver point. The first digit n of s term represents a phasing constraint that occurs at the n_1 maneuver point from the start of the phasing maneuver segment. The last digit n₂ of s_{term} represents a height constraint that occurs at the n, maneuver point from the start of the height maneuver segment.

1.2.4 Summary of the Maneuver Segment Constraints

The maneuver and trajectory constraints that can be imposed on a maneuver

segment can be divided into the following catagories (see Figure 3).

Primary vehicle update constraints

Target vehicle update constraints

- Initial velocity constraints
- Offset constraints

Terminal constraints

Traverse constraints

Table 1 contains a detailed listing of the constraints. The three independent constraints (four in the case of noncoplanar traverses) which govern a maneuver segment cannot be chosen arbitrarily from this list for two reasons:

 There is not a one-to-one correspondence between the trajectory constraints and the independent constraints.

and the second second

(2) Selecting some constraints negates the need for some others (e.g. selecting a Lambert constraint negates the need for a maneuver direction constraint).

In the case of a straight forward rendezvous profile, a basic understanding of the nature of the constraints should allow the constructor of the rendezvous sequence to choose a set of trajectory constraints which determine the required number of independent constraints. For a complex rendezvous profile, such as Skylab a more formal approach such as presented in Reference 11 should be used. One of the justifications for presenting the three methods of generating a maneuver segment was to aid the constructor of the rendezvous sequence in choosing compatible sets of constraints.

THEFT THE PARTY AND A CO

TABLE 1

DETAILED LISTING OF CONSTRAINTS (Sheet 1 of 2)

Primary and Target Vehicle Update Constraints

Delta time

in Kat

Initial and final time

Central angle

Number of revolutions

Terminal position vector

Initial Velocity Constraints

Plane

Parallel to target orbit

Parallel to primary orbit

Direction

Horizontal

Along velocity vector

Magnitude

Circular

Coelliptic

Altitude change

Specified

Offset Constraints

Angle

Altitude

Elevation angle

Terminal Constraints

Height Phase

and the second secon

S. 1999

S37-13

WARRAN CALLER

TABLE 1

DETAILED LISTING OF CONSTRAINTS

(Sheet 2 of 2)

Traverse Constraints

Minimum Fuel

One maneuver optimization

Two maneuver optimization

.

Apogee/Perigee designation

Horizontal maneuver

Tangential maneuver

Lambert (time)

NOMENCLATURE

م المراجع المر مراجع	axis of a conic
a i	Alarm code i
a 1	Failure in fuel optimization loop
a 2	Failure in height loop
a 3	phasing loop
a 4	Fatter in obtaining Lambert solution in General Maneuver Routine
a ₅	Failure to find perigee/apogee in Search Routine
^a 6	Incompatible altitudes and elevation angle
a 7	Failure to find time corresponding to elevation
9.2 A	All and the second s
a 8	Desired Position Routine
a 9	Failure to update through θ in Update Routine
с	Iteration counter
^C h	Height iteration counter
с _р	Phase iteration counter
c ₁ , c ₂ , c ₃	h ; ; ; ; diate variables
Δh	Dena aititude
∆r _{proj}	Delta projected position

S37-15

21.77

Δt	Delta time
∆t _{max}	Maximum time step allowed in Search Routine iteration
$\Delta \underline{v}$	Maneuver velocity
∆ <u>v</u> LOS	Maneuver in line-of-sight coordinates
∆⊻ _{LV}	Maneuver in local vertical coordinates
Δv _h	Δv used during height maneuver
Δv _p	∆v used during phasing maneuver
$\Delta \mathbf{v}_{\mathrm{T}}$	Delta velocity used in fuel minimization loop
Δ x	Delta independent variable
Δ6	Delta central angle
e	Error
^е с	Eccentricity
e _h	Height error
e p	Phasing error
е L	Elevation angle (defined in Figure 2)
<u>i</u>	Unit vector
ⁱ N	Unit normal to the plane used in powered flight guidance
i .	Number of the maneuver
ⁱ max	Number of the last maneuver in the maneuver sequence
m	Estimated vehicle mass
Μ	Rotational matrix
<u>n</u>	Vector normal to the orbital plane
n r	Number of revolutions

and the second second

þ	Partial used in Newton Raphson iteration					
r	Distance ratio					
<u>r</u>	Position vector					
^r _D	Desired position vector					
$\frac{r}{-}$ lc	Target vector used in powered flight guidance					
S	Switch used in Desired Position Routine					
^s astro	Astronaut overwrite switch					
s coplan	Coplanar switch					
^s direct	Maneuver direction switch					
s eng	Engine select switch					
^s exit	Program exit switch					
^s fail	Failure switch					
s _{man}	Maneuver switch					
s _{opt}	Maneuver optimizing switch					
s _{outp}	Out-of-plane switch					
s _{pert}	Perturbation switch					
^s phase	Phase match switch					
^s proj	Projection switch					
^s rdes	Desired position switch					
^s soln	Solution switch					
s _{search}	Search switch					
s _{tar}	Target offset switch					
^s term	Terminal constraint switch					
^s update	Update switch					

 \bigcirc

 \bigcirc

0

S37-17

.

t	 ame ame
^t F	: .1 time
<u>v</u>	ity vector
v v	Vertical component of velocity
v _c	Circular velocity
x	Independent variable in Iteration Routine
у _Р , у _Р ,	Out-of-plane parameters (see Figure 6a)
^у т	
α	Radial component of velocity divided by v _C
β	\mathbf{B} ontal component of velocity divided by $\mathbf{v}_{\mathbf{C}}$
[€] 1	Tolerance on time in fuel optimizing loop
¢2	Tolerance on height in height loop
€ ₃	Tolerance on central angle in phasing loop
۴ ₄	Tolerance on central angle in Search Routine
¢ 5	Tolerance on elevation angle in Search Routine
[€] 6	Altitude increment in Search Routine
٤ ₇	Tolerance on central angle in Desired Position Routine
۴ 8	Tolerance on central angle in Update Routine
γ	Flight path angle
μ	Gravitational constant
θ	Central angle
θp	Perigee angle
	•••

3

S37-18

an de la constante de la const

19 A - S

1.15

and the second s

Subscripts

()

 \bigcirc

 \bigcirc

F	Final
i	Number of the maneuver
I	Initial
LOS	Line-of-sight
LV	Local vertical
N	New
0	Oid
Р	Primary
S	Stored
Т	Target
ТА	Target for primary vehicle

19. and 19. and

CONTRACTOR OF

1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

মন্দ্রমান ম মন্দ্রমান ম

2. FUNCTIONAL FLOW DIAGRAMS

The rendezvous targeting program consists of two major parts—a generalized maneuver subroutine which basically computes a maneuver and updates the state vectors of both vehicles to the time of the next maneuver and a main program which sequentially calls the subroutine to assemble a rendezvous sequence. These programs call a number of subroutines which are briefly described below and in detail in Section 5.

Search	-	To update the state vectors to either a
		specified apsidal crossing, a time, or
		an elevation angle.
Phase	-	To phase match the target vehicle's
Match		state vector to the primary vehicle's
		position vector.
Desired	-	To compute an offset target vector or a desired
Position		position to be used in a phasing constraint.
Update	-	To update a state vector through a speci-
		fied interval.
Coelliptic	_	
Maneuver		To compute a coefficient velocity vector.
Iteration	_	To determine a new astimate of the in
		derer het en internet an ew estimate of the in-
		dependent variable in a Newton Raphson
		iteration scheme.

The functional flow diagram for the main program is shown in Figure 4. The main function of this program is to sequentially call the General Maneuver Routine to compute each maneuver segment for maneuvers numbered from i to i_{max} . There are three major options that can be exercised prior to the calculation of the first maneuver segment:

- A search for the time of the first maneuver.
 This time can be specified by:
 - (a) An elevation angle, which is to be attained at the maneuver time.

- (b) Whether the next maneuver should occur at the next apsidal crossing, the next perigee
 crossing or the nth apsidal crossing.
- (2) A phase matching of the state vector.
- (3) A rotation of the primary vehicle's state vector into the plane of the target vehicle.

There are three separate iterative loops built around the call to the general maneuver routine. One loop serves to minimize the fuel used during a maneuver segment with the options determined by the optimizing switch.

The other two iterative loops involve maneuver segments which contain constraints that do not allow the explicit calculation of the maneuver. These constraints are height and phasing constraints imposed at the end of a maneuver segment and controlled with the terminal switch. The iterative loop will involve several maneuver segments if sufficient constraints are not imposed to solve each segment uniquely.

The functional flow diagram for the general maneuver routine is shown in Figure 5. This routine generates the departure velocity at the initial point in one of two ways:

- (1) As an explicit function of the initial state vectors.
- (2) By defining a target vector and then computing an intercept trajectory based on a specified constraint (as indicated by the setting of s_{man}). The target vector is determined by offsetting the updated position vector of the target vehicle. Depending on the setting of the switch s_{tar} , a coelliptic velocity vector is computed at the offset point and the coelliptic state vector is updated through Δt to obtain a target vector.

Following an update of both vehicle's state vectors to the time of the next maneuver, the Δv used or the terminal height/phase errors are calculated as required.

A CARE A CONTRACT OF A CONTRACT

3. INPUT AND OUTPUT VARIABLES

The inputs to the orbiter rendezvous targeting program can be divided into five catagories.

Pre-Maneuver Switches

Upon selecting a maneuver from the rendezvous sequence, these switches (specified for each maneuver) serve in determining the state vectors at the maneuver point, the out-of-plane parameters and the calculation of a desired position vector. These inputs can also be used in determining the time of a specified apsidal crossing or the time at which a specified elevation angle is to be attained.

	~	Coplanar switch
c	6	Bypass
coplan	1	Rotate primary state vector into place
	L	of target vehicle's orbit
	-	Exit switch
e =	∫ 0	Bypass
°exit) 1	Exit from routine
* 14 C	~	Out-of-plane switch
	0	Bypass
^s outp -	$\int 1$	Compute out-of-plane parameters
	2	Compute out-of-plane parameters and
• .	L	modify maneuver by $-\dot{y}_{P}$
·-	_	Perturbation switch
(0	Do conic state vector updates
$s_{pert} = \langle$	1	Include oblateness based on J
		Other perturbations as required
		Phase match switch
ſ	0	Bypass
	1	Phase match state vectors (target leading
		primary)
	2	Phase match state vectors based on target
$s_{phase} = \langle$		leading primary by more than 360°
	-1	Phase match state vectors (primary
		leading target)
	-2	Phase match state vectors based on primary
Ĺ		leading target by more than 360°

S37-24

A DESCRIPTION OF THE OWNER OF THE

ALL DESCRIPTION OF THE OWNER OF T

Desired position switch

$$s_{rdes} = \begin{cases} 0 \\ -1 \end{cases}$$

 $\begin{cases} 0 & \text{Bypass} \\ -1 & \text{Compute desired position vector based on (e_L, \Delta h)} \\ 1 & \text{Compute desired position vector based on (e_L, \Delta h)} \end{cases}$

Compute desired position vector based on ($\Delta\theta$, Δh)

Search switch

- s_{search} = $\begin{cases}
 -4 \quad \text{Compute elevation angle} \\
 -3 \quad \text{Search for elevation angle} \\
 -2 \quad \text{Update to time } t_i \\
 -1 \quad \text{Search for next perigee crossing} \\
 0 \quad \text{Bypass} \\
 n \quad \text{Search for the nth apsidal crossing} \\
 (n>0)
 \end{cases}$

Maneuver Switches

1

These switches (specified for each maneuver) set the constraints employed in determining the maneuver segments.

Direction switch

	-2	Δv in direction of primary's velocity
		vector, parallel to primary's orbital
		plane
	-1	$\Delta\mathrm{v}$ in horizontal direction, parallel
^s direct ⁼ <	/	to primary's orbital plane
	0	Bypass
	. 1	$\Delta \mathrm{v}$ in horizontal direction, parallel to
		target's orbital plane
	2	Δv in direction of primary's velocity
	l	vector, parallel to target's orbital plane
		Maneuver switch
ſ	- 1	Δ v is specified
	2	Δv is based on coelliptic velocity
	3	Δv is based on circular velocity

- sman = 4 Δv is based on altitude change
 5 Lambert maneuver to offset target vector
 6 Horizontal maneuver to offset target vector
 7 Tangential maneuver to offset target vector

 - Perigee/apogee insertion at offset target vector

Ganeuver optimizing switch

 $\mathbf{s}_{opt} = \begin{cases} 1 & \text{coass} \\ 1^{\circ} & \text{coinimize } \Delta \mathbf{v}_i \\ 2 & \text{Minimize } \Delta \mathbf{v}_i + \Delta \mathbf{v}_{i+1} \\ 1 & \text{constant} \end{cases}$ s soln = Solution with smallest initial flight path angle (measured from local vertical) 1 Solution with largest initial flight path angle -2 Offset target ($e_L^{}$, Δh). Compute coelliptic s_{tar} = $\begin{cases}
velocity and update through (negative) Δt$ -1.2 constanget (e_L, Δh)0 contarget offset1 Offset target (Δθ, Δh)Offset target ($\Delta \theta$, Δh). Compute coelliptic velocity and update through (negative) Δt Terminal constraint switch (< 0) Compute phasing error and back up</p> $s_{term} = \begin{cases} n = (0,0) \text{ Compute phasing error and back up} \\ (n+1) \text{ maneuvers for start of phase loop} \\ 0 = 0 \text{ product} \\ 10 \text{ product$ for start of phase loop. For height loop back up y - 1 (where y is last digit of n) maneuvers for start of height loop Update switch $s_{update} = \begin{cases} 0.01 \text{ pass} \\ 1 \text{ Update through } t_F - t \\ 2 \text{ Update through } \Delta t \\ 3 \text{ Update through } n_F \\ 4 \text{ Update through } \theta \\ \hline t_F - t \\ 1 \text{ Update through } \theta \\ \hline t_F - t \text{ transformed points of the through } t_F - t \\ 1 \text{ Updat$ Update to be colinear with \underline{r}_{D}

Parameter Values

The parameter values (specified for each maneuver) are values for the constrained parameters.

S37-26

Δh	Delta altitude
Δh _F	Delta altitude, final
-Δ9 ¯	Delta central angle
Δt	Delta time
Δv	Maneuver magnitude
ⁿ r	Number of revolutions
t _F	Final time
eL	Elevation angle

Post-Maneuver Switch

This switch determines the options available following the calculation of the maneuver.

Maneuver Call Variables

NATES STREET

The maneuver call variables have to be specified for each call to the maneuver sequence.

<u>r</u> p, <u>v</u> p	State vector of the primary vehicle
$\frac{\mathbf{r}}{\mathbf{T}}$, $\frac{\mathbf{v}}{\mathbf{T}}$	State vector of the target vehicle
i	Maneuver number
t	Current time
t _{i.}	Time of the i th maneuver
seng	Engine select switch
m	Estimated vehicle mass

Depending on the rendezvous sequence, there may also be some switches that have to be modified as a function of the maneuver number.

Excluding the maneuver call variables, all the input variables can be set prior to the flight.

The output parameters for the initial maneuver in the sequence are more complete than for the succeeding maneuvers.

S37-27

an the second second

Output Parameters for the Initial Maneuver

Δv _i	Maneuver magnitude
Δ <u>v</u> los i	Maneuver in line of sight coordinates
$\Delta \underline{v}_{LVi}$	Maneuver in local vertical coordinates
$\frac{\mathbf{r}}{1}$ 1c	Target vector used in Powered Flight Guidance Routine (See Ref. 5)
<u>i</u> N	Unit normal to plane used in same routine

Other parameters such as delta altitude, phasing angle, elevation angle and perigee altitude can be computed as required.

Output Para	meters for th	ne Other	Maneuvers	in	the Sequence
-------------	---------------	----------	-----------	----	--------------

t	Time of the maneuver
Δv	Maneuver magnitude

Illustration of Inputs

Table 2 contains a set of inputs for the Orbiter targeting program based on the five maneuver Skylab rendezvous configuration. The following switches and parameters are not used as inputs to the Orbiter program:

 $s_{astro}, s_{exit}, s_{opt}, s_{outp}, s_{soln}, \Delta\theta$

The inputs in Table 2 are set prior to the mission so they will not have to be inserted by the astronaut. The astronaut will have to modify the following quantities upon resetting the maneuver number as well as inserting the time of the next maneuver.

i = 2: $s_{term_2} = 0$, $s_{term_4} = 32$ i = 3: $s_{man_3} = 5$, $\Delta t_3 = -\Delta t_{NSR-TPI}$ i = 4: $s_{term_4} = 0$

TABLE 2

C

٢

Sugar Contraction

100 C 100 C 10

INPUT VARIABLES FOR SKYLAB RENDEZVOUS CONFIGURATION

			Maneuve	ı.	
Input Variable	1 (NC1)	2 (NC2)	3 (NCC)	4 (NSR)	5 (TPI)
^s coplan	1	l	0	1	0
^s direct	1	1	1	0	0
^s man	1	1	1	2	5
s pert	1	1	1	0	1
^s phase	1	1	0	0	0
^s rdes	- 1	- 1	0	0	0
^s search	-2	-2	-2	-2	- 3
s _{tar}			-2		0
s term	0	l	0	42	0
^s update _P	3	3	2	1	2
^s update _T			1		4
^е L	е _L	\mathbf{e}_{L}	е _L		
max	4	4	3	4	5
r	ⁿ rNC1-NC	2 ⁿ rNC2-NG	cc		
t _F	t _{TPI}	t _{TPI}	t _{TPI}	^t TPI	
θ					⁰ TPF-T
∆t.			∆t _{NSR-NCC}		
∆h ti		$\Delta h_{\rm NCC}$	Δh_{TPI}	Δh_{TPI}	
∆ ^h F	Δ^{h}_{TPI}	Δh _{TPI}			
	Δ.y.	Δv _{NCO}	Δv_{NCC}		

and a stand of the second of the second of the second second second second second second second second second s I second secon

4. DESCRIPTION OF EQUATIONS

The only equation is contained in this document which are not trivial are those involved in computing the traverse between two specified position vectors. The required equations can be derived from the equation of the conic expressed in the form

$$\mathbf{r} = \mathbf{r}_{\mathrm{F}} / \mathbf{r}_{\mathrm{I}} = \beta_{\mathrm{I}}^{2} / \left[1 + e_{\mathrm{c}} \cos \left(\theta + \theta_{\mathrm{P}} \right) \right]$$

where

$$e_{c} = \left[\alpha_{I}^{2} \beta_{I}^{2} + (\beta_{I}^{2} - 1)^{2} \right]^{1/2}$$

$$\theta_{p} = \cos^{-1} \left[(\beta_{I}^{2} - 1)/e_{c} \right] \text{ (perigee angle)}$$

$$v_{c} = (\mu / r_{I})^{1/2}$$

 $\alpha_{\rm I}$ and $\beta_{\rm I}$ are the normalized (with respect to v_c) radial and horizontal components of velocity.

The above equation can be expressed

$$p_{\rm s}/r_{\rm I} = \beta_{\rm I}^2 = c_2/(\alpha_{\rm I}\sin\theta/\beta_{\rm I} - c_1)$$
(1)

where

 $c_1 = \cos \theta - 1/r$ $c_2 = 1 - \cos \theta$ $p_s = semilatus rectum$

For a maneuver that is constrained to be in a horizontal direction, Eq. (1) can be solved for β_I as a function of the specified α_I .

$$\beta_{I} = [\alpha_{I} \sin \theta \pm (\alpha_{I}^{2} \sin^{2} \theta - 4 c_{1} c_{2})^{1/2}]/2 c_{1}$$

As there has to be both a positive and negative β_I solution to this equation (one trajectory in each rotational direction), the sign choice is resolved in favor of plus β_I .

For a maneuver that is applied along the velocity vector, the flight path angle γ_1 is to be held fixed. Using Eq. (1)

$$\tan \gamma_{\mathrm{I}} = \alpha_{\mathrm{I}} / \beta_{\mathrm{I}} = (c_{1} \beta_{\mathrm{I}}^{2} + c_{2}) / \beta_{\mathrm{I}}^{2} \sin \theta$$

Therefore,

$$\beta_{I} = [c_2/(\sin\theta \tan\gamma_{I} - c_1)]^{1/2}$$

By interchanging the $\,I\,$ and $\,F\,$ subscripts, Eq. (1) can be expressed

$$p_s = r_F c_2 / (\alpha_F \sin \theta / \beta_F - \cos \theta + r_F / r_I)$$

Combining with Eq. (1) using the apogee/perigee constraint $\alpha_{\rm F}/\beta_{\rm F}$ = 0 results in

$$\tan \gamma_0 = \alpha_1 / \beta_1 = (1 - 1/r) / \tan(\theta/2)$$

Inserting into Eq. (1) gives the required horizontal component of velocity for apogee/ perigee designation maneuvers.

$$\beta_{\rm I} = \left[r c_2 / (r - \cos \theta) \right]^{1/2}$$

The derivation of the equation

$$\theta = \cos^{-1} \left[r_{\rm P} \cos \left(e_{\rm L}' \right) / r_{\rm T} \right] - e_{\rm L}'$$

where

$$\mathbf{e}_{\mathrm{L}}^{\mathsf{I}} = \begin{cases} \mathbf{e}_{\mathrm{L}} \text{ if } \mathbf{e}_{\mathrm{L}} \leq \pi \\ \\ \mathbf{e}_{\mathrm{L}} - \pi \text{ if } \mathbf{e}_{\mathrm{L}} > \pi \end{cases}$$

for computing the desired central angle θ between two positions (r_P, r_T) which satisfies the TPI constraints $(e_L, \Delta h)$ is discussed in Ref. 12. This equation is used in the Desired Position Routine.

S37-31

हर्ष हुन्दु न देगा यह

5. DETAILED FLOW DIAGRAMS

Figures 6 and 7 contain the detailed flow diagrams of the main Orbiter rendezvous targeting program and the general maneuver routine, respectively. The following six routines are called by these two programs.

Iteration Routine

This routine contains a Newton Raphson iterative driver based on numerically computed partials. The routine computes a new estimate of the dependent variable x and returns the old values of the error e and x. If the iteration counter c exceeds 15, a convergence switch s_{conv} is set equal to one.

Coelliptic Maneuver Routine

This routine computes a coelliptic velocity vector \underline{v}_N based on a target vehicle's state vector and a delta altitude.

Phase Match

This routine phase matches the target state vector to the primary state vector. The controlling switch (s phase) equals two if the leading vehicle leads the other vehicle by more than one revolution: otherwise the switch equals one. If the primary vehicle leads to target vehicle, the switch is negative.

Desired Position Routine

This routine updates a specified state vector to the time t_F and then offsets the updated state vector through either ($\Delta \theta$, Δh) or (e_L , Δh), depending on the setting of the switch s, to obtain \underline{r}_D . The routine contains an iterative search to solve the (e_L , Δh) offset problem, where e_L is defined in Figure 2 and Δh (positive when the target orbit is above the primary) is defined as shown below. (This represents the TPI geometry used in Apollo and Skylab.)

Sector Sector

न (स.) हर कर 1935 मुझ्यु जिन्द्र होन

Update Routine

This rough the dates a state vector based on the update switch supdate

^s update		. =	1	Updates through the time $t_{\mathbf{F}}$ - t
	`	•••		Updates through the time Δt
		Ĩ	. Updates through n_r revolutions	
		=	4	Updates through the angle θ
		=	5	Updates to where the orbit intersects
		• .		the line defined by \underline{r}_{D}

Search Routine

l

ŝ

This row \cdot is the following computations depending on the setting of the search switch \cdot search

	ſ	= n (>0)	Finds the time of the n th apsidal crossing and updates the state vector to that time
search		= -1	Finds the time of the next perigee crossing and updates the state vector to that time
	$\left\{ \right\}$	= -2	Updates the state vector through the time $t_{F}^{}$ - t and computes the elevation angle
	7		Finds the time associated with a specified elevation angle and updates the state vector to that time

The detailed flow charts for these routines are shown in Figures 8 to 13. The iterative algorithm used to determine the time associated with the elevation angle is described in Ref. 8.

Each input and output variable in the routine and subroutine call statements can be followed by a symbol in brackets. This symbol identifies the notation for the corresponding variable in the desired description and flow diagrams of the called routine. When identical notation is used, the bracketed symbol is omitted.

-34

.

. .

C.

(____

Figure 7d. General Maneuver Routine - Detailed Flow Diagram

INPUT VARIABLES

Figure 10. Phase Match Routine - Detailed Flow Diagram

\$37-45

Submittal A1: RENDEZVOUS TERMINAL PHASE AUTOMATIC BRAKING SEQUENCE AND TARGETING

INTRODUCTION

1.

1 2 N 2 1

The purpose of the Rendezvous Terminal Phase Braking Program is to provide the means of automatically bringing the primary vehicle (Orbiter) within desired station-keeping boundaries relative to the target vehicle (or satellite). To accomplish this task, the program of necessity contains navigation, targeting and guidance functions.

The program is initiated subsequent to the last midcourse maneuver of the rendezvous targeting sequence. Line-of-sight corrections, braking corrections, and filtering of rendezvous measurement sensor data to improve vehicle and target state estimates are performed in a sequential manner. At program initiation, the relative range is on the order of three to five miles.

When the primary vehicle has achieved a position (and velocity) relative to the target which places it within the desired station-keeping boundaries so that the station-keeping function can be initiated and maintained, the program is terminated.

S41-1

REPARTORED FROM THE

And water a constraint the states

NOMENCLATURE

ça. Nəve

b	Number of biases to be estimated in Unified Navigation Filter program
c _i .	Measurement code identifying i th measurement at t _m
f _i	Thrust of the engine selected for the maneuver; used in the Powered Flight Guidance Routines
ⁱ prev	Previous range gate passed; subscript used in braking (range) gate loop
$\frac{1}{\rho}$	Unit vector in direction of relative position vector, \underline{P}
i-s	Unit vector which defines center of station-keeping boundary, relative to target vehicle
^k l	Constant used to determine the range at which each range gate search starts when approaching that particular range gate
k ₂	Constant used to determine how often the line- of-sight targeting loop is entered; integer number of terminal phase program cycles
k ₃	Constant value of range rate added to the mini- mum range rate at a given range to insure primary vehicle intercept of target vehicle
k 4	Constant used to determine how often the range-rate correction targeting loop is entered
m	Current estimated primary vehicle mass
M _{R-B}	Transformation matrix from reference coordinate frame to body axes coordinate frame

S41-2

77 - 5-3

M _{R-LOS}	Transformation matrix from reference coordinate frame (in which vehicle states are expressed) to LOS coordinate frame axes
M _{R-M}	Transformation matrix from reference coordinate frame to measurement coordinate frame
M _{R-SM}	Transformation matrix from reference coordinate frame to stable member coordinate frame
M _{NB-B}	Transformation matrix from navigation base frame to body axes
M _{NB-M}	Transformation from navigation base to measurement coordinate frame
M _{SM-NB}	Transformation matrix from stable member coordinate . frame to navigation base
n	Number of discrete braking gates in the range/ range rate correction schedule
q _i	i th measured relative parameter at t _m
$^{q}_{\rm PN}$	Process noise acceleration
<u>r</u> L	Local vertical relative position vector (target vehicle local vertical)
<u>r</u> P	Primary vehicle position vector
$\frac{\mathbf{r}}{\mathbf{T}}\mathbf{T}$	Target vehicle position vector
$\underline{r}(t_A)$	Aimpoint vector used in Lambert targeting calcula- tions
^s B.	Switch which controls braking gate targeting cycle
seng	Engine select switch
^s freq	Switch which controls measurement processing (navigation) cycle
	· ·

 \bigcirc

0

S41-3

^S GM	Switch which indicates guidance mode to be used in Powered Flight Guidance Routine; "2"- two axis thrusting; "3"- modified Delta-v mode; -"4" -
	modified Lambert mode
^s init	Signifies first entry into Unified Navigation Filter program
^S LAM	Switch used to select type of targeting scheme used in the Terminal Phase Braking Sequencing Program
^s los	Switch which controls line-of-sight targeting cycle
s _{search}	Indicates target search routine is needed in the Unified Navigation Filter program
s mk	Switch which controls navigation cycle
^s Δv	Switch which indicates if a velocity correction is to be made or not
^s ∆v LOS	Switch which indicates LOS correction is to be made
^t c	Current time
^t ig	Maneuver ignition time
^t m	Measurement time
t .	Time associated with primary and target vehicle state vectors
tγ	Time of bias estimate
⊻ L	Relative velocity vector in target vehicle local vertical frame

a de la construction de la constru La construction de la construction d

<u>್ಷಿಗ್ರಿಸಿದೆ ಕಾರ್ಯಕ್ರಮ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ್ರಿಸಿದ್ದಿ ಕ</u>

57

an a hand the state of the state of the second s

P. St. Tappy

	$\frac{\mathbf{v}}{\mathbf{P}}$ P	Primary vehicle velocity vector
	⊻ T	Target vehicle velocity vector
	w _I	Initial filter weighting matrix
	$\frac{1}{\alpha_{i}^{2}}$	Measurement variance used in filter to process i th measurement data
	β	Elevation angle of line-of-sight in measurement frame
	δι _Β	Delta time to ignition for a range-rate correction maneuver
	δ ¹ LOS	Delta time to ignition for a line-of-sight correction
	δt _m	Time between successive measurements within the measurement loop
	∆t _m	Basic sequencing cycle time
-	∆ <u>v</u> _B	Velocity change expressed in the body coordinate frame
	Δv _{LIM}	Magnitude of velocity change below which no maneuver will be applied
	$\Delta \underline{v}_{LOS}$	Velocity change expressed in line-of-sight coordinate frame
	γ	Value of station-keeping boundary cone angle
	$\gamma_{ m b}$	Current estimate of bias
·	μ	Gravitational constant of the earth
	<u>ν</u>	Relative velocity vector

0

 \bigcirc

S41-5

	^µ u	Upper bound on station-keeping velocity		ര
	^r '£	Le und on station-keeping velocity		U
	[∞] LIM	Ar. Survey ity lower limit below which no line- of the contraction is made; value to which line- of-type parts a velocity is driven if a line-of- sign wave to lon is made		
	[™] LOS	Angular velocity vector of the line-of-sight between the primary and target vehicle		
	ωLOS	Magnitude of $\underline{\omega}_{LOS}$		-
	ρ	Magnum of relative position vector, \underline{P}		•
	ė	Range rate between the primary and target vehicles		
	<u>p</u>	Relative position vector		
	ρ _{Bi}	Range of the i th braking gate	• •	0
	٩	Lov		
	; max i	Range rate desired at <i>ith braking gate</i> and maximum between braking gates <i>i</i> and <i>i</i> + 1		
	ė _{min i}	Minimum range rate desired between braking gates i and $i + l$. •
÷	₽ _{off(LV)}	Offset aimpoint relative to target point expressed in target local vertical frame	· .	-
	ρ	Upper and on station-keeping position	· .	
•	θ	Azimuth angle of line-of-sight in measure- ment frame		
	[] _m	Vector expressed in measurement coordinate frame		
	()'	Prime indicates previous values of a variable, e.g. prior measurement parameters, prior measurement time, etc.		0
		S41-6		

.

1.25.1

このに、大学はないたいでであるないないのでのないのである

ŝ

FUNCTIONAL FLOW DIAGRAM

2.

The functional flow diagram for the Rendezvous Terminal Phase Braking Program is shown in Figure 1. The program is initiated after the last rendezvous midcourse correction maneuver of the rendezvous targeting sequence. The relative range between the primary and target vehicle at this point is on the order of three to five miles and closing.

The program sequencing begins with the updating of the estimated primary and target vehicle relative state parameters with the appropriate sensor data.

These relative parameters are then used in the Terminal Phase Targeting Program where the necessary calculations are performed to see if a line-ofsight and/or a braking correction is required to maintain the desired character istics of the rendezvous trajectory. The line-of-sight corrections (if performed) maintain the intercept by nulling out line-of-sight rates which exceed a desired rate. At selected ranges between the primary and target vehicles, braking corrections are performed to reduce the closing rate to that specified in the terminal range/range rate profile, if the closing rate exceeds the desired value. During the program sequencing a continuous check is made to insure that the closing rate is sufficiently high so that the primary vehicle will intercept the target.

If either a line-of-sight correction and/or range-rate correction is necessary, the velocity correction is applied using the appropriate guidance mode.

The program sequencing is then repeated. The program is terminated when the desired relative position and velocity conditions are achieved so that the station-keeping mode can be initiated and maintained.

ENTER

Station-Keeping Mode

S41-8

and the second

INPUT AND OUTPUT VARIABLES

З.

فتتقار ويتغرب ومتعصفه

1.1

The Terminal Phase Braking Program consists of three basic functionsnavigation, targeting and guidance. The following is a description of the input and output variables for the basic sequencing program, the navigation program and the targeting program. The Powered Flight Guidance Program is described in Ref. 3.

3.1 Terminal Phase Braking Sequencing Program

Input Variables

$\frac{\mathbf{r}}{\mathbf{v}} \mathbf{P}^{(t_s)},$ $\frac{\mathbf{v}}{\mathbf{P}}^{(t_s)}.$	Estimated primary vehicle state vector at time t_s
<u>r</u> (t _s), <u>v</u> _T (t _s)	Estimated target vehicle state vector at time t_s
n	Number of discrete range gate corrections
^ρ Β0, ^β Βn	Range values of the n braking gates
, B0, ^ρ Bn	Range rates desired at the n braking gates
^s freq	Switch which controls navigation cycle
^S LAM	Switch used to select type of targeting scheme used in the Terminal Phase Braking Program
	Output Variables
<u>r</u> p, <u>v</u> p	Primary vehicle state vector for use in station- keeping phase
<u>r</u> _T , ⊻T	Target vehicle state vector for use in station- keeping phase
t _s	Time tag of above state vectors (can be different for active and passive vehicles)

S41-9

Terminal Phase Targeting Routine

Input Variables

<u>r</u> p, <u>v</u> p	Primary vehicle state vector
$\frac{\mathbf{r}}{\mathbf{T}}\mathbf{T}$, $\frac{\mathbf{v}}{\mathbf{T}}\mathbf{T}$	Target vehicle state vector
ρ	Relative range between primary and target vehicle
ρ	Range rate between primary and target vehicle
<u>-</u> ρ	Unit vector in direction of relative range vector
^ω LOS	Angular velocity vector of the line-of-sight be- tween the primary and target vehicles
ωLOS	Magnitude of $\frac{\omega}{-LOS}$
M _{R-B}	Matrix transformation between the reference coordinate frame and body coordinates
M _{R-LOS}	Matrix transformation between the reference coordinate frame and the line-of-sight coordinate frame
^s LAM	Switch used to select type of targeting scheme
t _c	Current time
	Output Variables
ⁱ N	Unit normal to the trajectory plane (in the direction of the angular momentum at ignition)
r	Offset target position

t ig	Time of upcoming maneuver
$\Delta \underline{v}_B$	Velocity change of upcoming maneuver in body coordinates
Δ <u>v</u> LOS	Velocity change of upcoming maneuver in line- of-sight coordinates
$\Delta \underline{v}_{LV}$	Velocity correction in local vertical coordinates
^s eng	Engine select switch
^S Δv	Switch which indicates if velocity correction is to be performed during this sequencing of the Ter- minal Phase Braking Program
^s proj	Switch set when the target vector must be projected into the plane defined by $\frac{i}{N}$
^S GM	Switch which indicates guidance mode to be used in the Powered Flight Guidance Sequencing Program

S41-11

 \bigcirc

0

 \bigcirc

DESCRIPTION OF COLATIONS

4.

4.1 Terminal Physic Red Sequencing Program

The Terminal Phase Braking Sequencing Program (Figure 4), which is the main sequencing program for the terminal phase, is initiated after the last midcourse correction in the rendezvous targeting sequence.

The range/range rate terminal braking schedule used in the program is determined prior to the initiation of the program and consists of discrete range gates and their associated elemented range rates. A minimum range rate is also specified throughout the command phase to insure primary vehicle intercept of the target vehicle. An example of such a braking schedule is shown in Figure 2.

The sequencing begins with the processing of rendezvous sensor data to obtain estimates of range, range rate, line-of-sight rates, etc. These estimates are derived from processing the sensor data in the Relative State Updating Routine (which is also used throughout the rendezvous sequence, Ref. 2)

These relative the eter estimates are then used in the Terminal Phase Targeting Routine to determine if a maneuver (either a braking maneuver, line-of-sight correction or a combination of both) is to be performed. The associated maneuver time and guidance parameters are also computed.

If a maneuver is to be performed, the Powered Flight Guidance Sequencing Program (similar to the Servicer Routine in Apollo) is entered with the appropriate inputs to accomplish the maneuver.

This basic sequencing is repeated until the primary vehicle is within desired station-keeping boundaries relative to the target vehicle (Figure 3).

4.2

Terminal Phase Fargeting Routine

The Terminal Phase Targeting Routine (Figure 6) computes the necessary maneuvers to maintain the primary vehicle on an intercept with the target vchicle while keeping the range/range rate profile within the desired boundaries.

Two modes of operation are available. The first mode is referred to as automatic line-of-sight control braking and the second automatic Lambert braking.

NOTE: Change of scale on range axis.

- S41-13

Cone angle of station-keeping zone

ρ_u,ρ_l -

Upper and lower values of station-keeping **boundaries**

 $\underline{\rho}_{off}(LV)$ -

Relative offset vector in target vehicle local vertical, used to target Lambert braking corrections; primary vehicle will intercept this point in the station-keeping zone

Figure 3. Station-Keeping Boundaries-Station-Keeping Above

When s_{LAM} is set to zero, the automatic line-of-sight control braking mode is used. If the line-of-sight rate as determined from processing the sensor data is above a set limit (typically 0.1mr/sec), the line-of-sight correction necessary to drive the line-of-sight rate to some level is computed and the appropriate ignition time, engine selection and guidance mode switches are set. Since these line-of-sight corrections are made frequently, the maneuver magnitudes are small (several feet/second or less) and hence the small RCS thrusters are used to effect the maneuver. The maneuver is accomplished by using two-axis thrusting normal to the line-of-sight.

The line-of-sight correction check is typically made every two cycles of the main program. (Line-of-sight cycling is determined by k_2)

The range/range rate checks, to insure that the desired terminal profile. is being followed, are made after the line-of-sight checks. If the range rate at certain pre-selected ranges exceeds the desired range rate a braking maneuver is performed to reduce the closing rate. Continuous checks are made to insure that the closing rate is above the minimum value to maintain intercept. If it is not, then the closing rate is increased.

The ignition time which is set δt_B seconds from the present time allows the necessary burn preparations to be made before ignition since these corrections typically involve significant maneuver sizes.

The second mode of operation, the automatic Lambert braking, targets for an intercept point (either the target vehicle or a point offset from the target vehicle indicated by $\underline{\rho}_{off}$, Figure 3) at each pre-selected braking gate. Line of sight rate is implicitly corrected to maintain the intercept trajectory when using this mode of operation.

When the range between the vehicles reaches $(1 + k_1)$ times the preselected range gate, the time of arrival at the range gate is computed. The calculation assumes the present range-rate remains constant until the range gate is reached. The primary and target vehicle state vectors are then advanced to this ignition time.

The time of arrival at the intercept point is redefined by the equation

t_{go} = (Des

(Range at ignition) (Desired range rate at this range gate)

S41-15

This t_{go} is then used to calculate a new target vector for use in the Lambert routine to determine the necessary velocity correction.

By redefining the intercept point in this manner, the Lambert solution forces a reduction in range rate to the desired range rate, insuring intercept in a length of time equivalent to the time it would take to travel the present range at the constant desired range rate. The line-of-sight rate is automatically corrected in the Lambert solution to assure intercept.

The new target vector, time-of-arrival, ignition time and guidance mode switches are then used in the Powered Flight Guidance Routines (Ref. 3) to effect the maneuver.

Between braking gates, line of sight corrections are made when necessary (as in the first mode of operation) to insure arrival at subsequent braking gates and to insure intercept, based on the latest navigated state estimates. (These additional line of sight corrections are not normally needed until the last braking gates has been passed since the Lambert targeted corrections at each gate are adequate to maintain rendezvous intercept.) DI THED FLOW DIAGRAMS

This is the contains detailed flow diagrams of the Terminal Phase Braking Sequencing Program, and the Terminal Phase Targeting Routine.

Each input and output variable in the routine and subroutine call statments can be followed by a symbol in brackets. This symbol identifies the notation for the corresponding variable in the detailed description and flow diagrams of the called r_{c} . Then identical notation is used, the bracketed symbol is omitted.

S41-17

5.

Figure 4b. Terminal Phase Braking Sequencing Program, Detailed Flow Diagram

S41-19

Figure 4c. Terminal Phase Braking Sequencing Program, Detailed Flow Diagram

S41-20

1.51

S41-21

5.0 **5** 5 5 7 15

S41=22

The second second second second second

A REAL PROPERTY OF THE REAL PROPERTY OF THE PR

(_____

S41-24

SUPPLEMENTARY INFORMATION

6.

The Rendezvous Terminal Phase Braking Targeting and Sequencing Programs utilize an inertial state vector formulation of both the target and primary vehicle. This formulation is the same as that employed throughout the rendezvous phase and therefore the navigation filter used to process the relative measurements is the same in both phases.(see Ref. 1).

The Targeting Program contains two options; (1) "Lambert" maneuvers at the discrete braking gates with line of sight corrections performed as needed and (2) corrections down the line of sight at the discrete braking gates with line of sight corrections as needed.

Powered flight guidance studies have shown that for reduced thrust capability in the terminal phase powered flight guidance is required. Thus, in this situation, option 1 above would be preferred.

Final studies are presently being done to answer the following questions.

- What is the relative range between the target and primary vehicle below which it is necessary to switch to a relative state formulation of the problem as is done in the station-keeping phase?
- 2. What modification of the Powered Flight Guidance Routine (if any) is necessary to improve performance in the reduced thrust situation and provide the best performance in the nominal thrust case ?
- 3. What modification is necessary to a standard (nominal) range, range rate braking schedule for reduced thrust cases to provide adequate time between range gates for thrusting and navigation functions ?

S41-27

REFERENCES

- Muller, E. S., "Shuttle Unified Navigation Filter", Space Shuttle GN&C Equation Document, No. 21, MIT/DL.
- Brand, T. J., et al, "Powered Flight Guidance", Space Shuttle GN&C Equation Document, No. 11, (Rev. 2), MIT/DL.
- Robertson, W. M., "Precision State and Filter Weighting Matrix Extrapolation", Space Shuttle GN&C Equation Document, No. 4 (Rev. 2), MIT/DL.

Submittal 46: Station-Keeping Guidance

1. INTRODUCTION

The purpose of the station-keeping guidance system is to automatically keep one orbiting vehicle within a prescribed zone fixed with respect to another orbiting vehicle. The active vehicle, i.e. the one performing the station-keeping maneuvers, is referred to as the shuttle. The other passive orbiting vehicle is denoted as the workshop. The passive vehicle is assumed to be in a low-eccentricity near-earth orbit.

The primary navigation sensor considered is a gimballed tracking radar located on board the shuttle. It provides data on relative range and range rate between the two vehicles. Also measured are the shaft and trunnion axes gimbal angles. An inertial measurement unit (IMU) is assumed to be provided on board the orbiter. The IMU is used at all times to provide an attitude reference for the vehicle. The IMU accelerometers are used periodically to monitor the velocity-correction burns applied to the shuttle during the station-keeping mode.

The guidance system presented here is capable of station-keeping the shuttle in any arbitrary position with respect to the workshop. This objective is accomplished by periodically applying velocity-correction pulses to the shuttle. These velocity corrections are computed by the guidance routine with the objective of minimizing the average expenditure of propellant (by the shuttle) per orbit.

2. FUNCTIONAL FLOW DIAGRAM

A functional flow diagram for the station-keeping guidance routine is shown in Figure 1. The overall structure of the routine is simple and straight-forward. There are two basic subroutines: one is used for computing the normal velocity corrections ($s_{mode} = 1$) and the small midcourse corrections ($s_{mode} = 2$); the other is used for computing boundary-avoidance velocity corrections. The guidanceroutine call times and mode selection are accomplished by the Station-Keeping Executive Routine (Ref. 7).

Both subroutines use relative position and velocity (shuttle w.r.t. workshop) from the Station-Keeping Navigation Routine (Ref. 6) as a basis for computing the required velocity corrections. Local-vertical coordinates are used in the normal and midcourse-correction modes, workshop fixed coordinates are used in the boundary-avoidance mode. In-plane and out-of-plane velocity corrections are computed separately in the normal and midcourse correction modes.

Figure 1. Station-Keeping Guidance Routine, Functional Flow Diagram

NOMENCLATURE

Notational Conventions

- Upper-case letters represent matrices
- Lower-case and Greek letters reserved for scalars and vectors
- Vector quantities are underlined, e.g. \underline{x}
- Vectors are assumed to be column vectors unless explicitly noted

Symbols

A

а

B

b

С

с

d

Dummy 2 × 2 matrix used in velocity-correction computations

Elements of A

Dummy 2 x 2 matrix used in velocity-correction computations

Elements of B

Dummy 2 x 2 matrix used in velocity-correction computations

Elements of C

A LEAST FOR THE REPORT OF A LEAST AND A LEAST A

Dummy variable used in velocity-correction computations

h_{lc}

Height of desired station-keeping limit cycle

<u>i</u>RL

Unit vector along \underline{r} (local-vertical coordinates)

	-
<u>i</u> RW	ni .ector along <u>r</u> (workshop-fixed coordinates)
<u>i</u> NW	Contraction normal to station-keeping cone boundary • (www.heliop-fixed coordinates)
<u>i</u> XWL' <u>i</u> YWL' <u>i</u> ZWL	Workshop-fixed frame unit vectors (local-vertical coordinates)
k	Midcourse-correction fractions
M _{L-W}	Transformation matrix from local-vertical to workshop-
M _{L-P}	Transformation matrix from local-vertical to stable- member coordinates
q, ġ	Dummy test variables used in boundary avoidance calculations
<u>1'</u>	Shade position w.r.t. workshop (stable-member coordinates)
<u>r</u> L	Shuttle position w.r.t. workshop (local-vertical coordinates)
rw	Shuttle position w.r.t. workshop (workshop coordinates)
r _{XZ}	Magnitude of component of \underline{r} in workshop frame X-Z plane
rMIN	Lower limit on r _W along workshop Y-axis for which boundary-avoidance velocity corrections may be required
<u>r</u> dl	Desired target position for orbiter w.r.t. workshop at terminal time $t_{\overline{F}}$

S46-4

510---

^s OPG	Switch used to select out-of-plane guidance mode
^s vcorr	Switch set at unity if velocity correction is required
^s mode	Switch to select current mode of operation of routine
^s nut _F	Switch set at unity when new $t_{\mathbf{F}}^{}$ is required
t	Current time
^t F	Terminal time for current guidance limit cycle
⊻ L	Shuttle velocity w.r.t. workshop (local-vertical coordinates)
^v DN	Velocity-correction level used for boundary avoidance
^y min	Lowest part on desired limit cycle w.r.t. workshop (along vertical axis)
^z max	Maximum desired out-of-plane distance for orbiter
^z MIN	Minimum desired out-of-plane distance for orbiter
^z 0	Dummy variable
$\underline{\omega}_{\mathrm{W}}$	Workshop angular velocity (stable-member coordinates)
θ	Dummy variable equal to $\omega_W (t_F - t)$
τ	Dummy time interval $(t_n - t_{n-1})$
δv _{min}	Lower limit on computed velocity-correction magnitude
δ <u>v</u> L	Required velocity correction (local-vertical coordinates)
θz	Station-keeping cone half angle

(

٢

and the second second

And the second second

1000

a little sector in the sector of the sector

507.0

1997

° VXL'		
δvYL'	Components of	ο <u>v</u> L
⁸ vzl		

Special Notation

1.33

11.2.5

() '	A-priori estimated value prior to measurement incorporation
()	Ensemble average of ()
	Magnitude of ()
() ^T	Transpose of ()

unit (___) Unit vector for (___)

ার্কার্ কার্বিয়ার
4. DESCRIPTIO

4.1 General Infor-

 $\left(\begin{array}{c}3\\3\end{array}\right)$

The station-k (1, 2, 2) idance routine is capable of maintaining an active vehicle (shuttle) in a small zone which may be arbitrarily located with respect to a passive orbiting vehicle (workshop). The passive vehicle is assumed to be in a low-eccentricity orbit around the earth. The station-keeping is accomplished by the periodic application (1, 2) small velocity-correction pulses. The size and location of the station-keeping zone are specified as program constants and input variables (e.g. h_{lc} , y_{min} , f_{lc} , z_{min} , r_{DL}).

The guidance retaine has three primary modes: (1) normal station-keeping, (2) midcourse correction, and (3) boundary avoidance. In the normal mode the velocity corrections required to hold the shuttle in the specified zone w.r.t. the workshop are computed. In typical situations these corrections are relatively small (e.g. 2-5 ft/sec or less). The magnitude and frequency of these corrections is dependent on the size and location of the station-keeping zone. The midcoursecorrection mode uses essentially the same relations as the normal mode. The basic idea here is that be applying small velocity corrections in between the normal velocity-correction for the total velocity-correction propellant expenditure may be reduced. In the between the total velocity correction propellant expenditure may be reduced. In the between the station-keeping away from it. Appropriate velocity-correction pulses are applied to the orbiter to return it to the desired zone.

The times at which each mode of the station-keeping guidance routine is called are determined by the Station-Keeping Executive Routine (Ref. 7).

Three coordinate systems are used in the station-keeping guidance routine: (1) stable-member, (2) local-vertical, and (3) workshop-fixed coordinates. All three systems are orthogonal right-handed systems. The relationships between these frames are shown in Figure 2. The stable-member system is fixed w.r.t. the inertial measure and unit (IMU). The local-vertical system rotates with the workshop, as shown in Figure 2, with its X-axis along the local vertical and its Z-axis along the workshop-orbit angular-momentum vector. The normal-mode and midcourse-correction computations in the guidance routine are done primarily in this local-vertical frame. The workshop-fixed frame is fixed w.r.t. the desired station-keeping zone. The boundary-avoidance mode computations in the guidance routine are performed in this frame.

4.2 Normal Guidance Mode

The analytical development of the basic guidance concept has been extensively documented in Refs. 1 and 3 for AAP missions, and in Ref. 2 for SSV missions.

Figure 2. Station-keeping System Relative Geometry

Figure 3. Geometry for Guidance Limit Cycles

Extensive performance data is given in these references. It is most convenient to consider the in-plane and out-of-plane guidance equations separately. This approach will be f for ed here.

The in-plane problem will be considered first. The basic idea is to put the shuttle on a transform that will terminate at a specified position w.r.t. the workshop (\underline{r}_{DL}) at a fixed terminal time (t_F) . A typical limit-cycle trajectory is shown in Figure 3 for the case where the station-keeping zone is above and in front of the workshop.

The terminal time (t_F) is based on the desired limit-cycle trajectory height (h_{lc}) and desired minimum altitude of shuttle w.r.t. the workshop (y_{min}) . The basic relation is (Ref. 2):

$$t_{\rm F} = t + \frac{2}{\omega_{\rm W}} \sqrt{\frac{6 y_{\rm lc}}{9 y_{\rm min} + 4 h_{\rm lc}}}$$
 (1)

where t is the current time, and ω_W is the workshop's angular velocity.

The required correction $(\delta \underline{v}_L)$ that must be made to the current shuttle velocity (\underline{v}_L) in order for the vehicle to arrive at the position (\underline{r}_{DL}) at the terminal time t_F is computed in a straight-forward manner (Refs. 1 and 2). The basic relatic is

$$\delta \underline{\mathbf{v}}_{\mathrm{L}} = \Phi_{\mathrm{RV}}^{-1} (\mathbf{t}, \mathbf{t}_{\mathrm{F}}) [\underline{\mathbf{r}}_{\mathrm{DL}} - \Phi_{\mathrm{RR}} (\mathbf{t}, \mathbf{t}_{\mathrm{F}}) \underline{\mathbf{r}}_{\mathrm{L}}] - \underline{\mathbf{v}}_{\mathrm{L}}$$
(2)

where \underline{r}_{L} and \underline{v}_{L} represent the position and velocity of the shuttle w.r.t. the workshop, expressed in local-vertical coordinates.

The matrices Φ_{RV} and Φ_{RR} are submatrices of the matrix Φ , which is used to extrapolate the shuttle state w.r.t. the workshop forward in time, using local-vertical coordinates. The relation is

$$\frac{\frac{\mathbf{r}}{\mathbf{L}} \left(\mathbf{t}_{n} \right)}{\frac{\mathbf{v}}{\mathbf{L}} \left(\mathbf{t}_{n} \right)} = \begin{bmatrix} \frac{\Phi_{\mathrm{RR}}}{\Phi_{\mathrm{VR}}} \left(\frac{\dot{\tau}}{\tau} \right) & | & \frac{\Phi_{\mathrm{RV}}(\tau)}{\Phi_{\mathrm{VV}}(\tau)} \end{bmatrix} \begin{bmatrix} \frac{\mathbf{r}}{\mathbf{v}} \frac{\mathbf{L}(\mathbf{t}_{n-1})}{\mathbf{v}} \\ \frac{\mathbf{v}}{\mathbf{L}} \left(\mathbf{t}_{n-1} \right) \end{bmatrix}$$
(3)

where t_{n-1} and t_n are arbitrary times $(t_n > t_{n-1})$. The detailed relations for Φ_{RR} , Φ_{RV} , Φ_{VR} and Φ_{VV} are given in Refs. (1) and (2) as a function of workshop angular velocity (ω_W) and the time interval from t_{n-1} to t_n (referred to as τ).

In the detailed flow diagram for the guidance routine (Figure 4) the required elements of Φ_{RV}^{-1} and $\Phi_{RV}^{-1} \Phi_{RR}$ are represented by the matrices A, B, C, and the dummy variable d.

Two out-of-plane guidance modes are provided (Ref. 2). If the desired station-keeping zone is centered in the workshop orbital plane, then Eqs. (2) and (3) can be used to compute the required velocity correction (δv_{ZL}). The basic equation in this case is simply:

$$\delta^{v}ZL = -\omega_{W}r_{L,2} \quad \cot\theta = v_{L,2} \tag{4}$$

where $r_{L,2}$ and $v_{L,2}$ are the out-of-plane components of shuttle position and velocity w.r.t. the workshop. The quantity ω_W is the workshop's angular velocity w.r.t. the earth. The dummy variable θ is given by:

$$\theta = \omega_{W} (t_{F} - t)$$
 (5)

where $t_{\mathbf{F}}$ is the desired arrival time at the terminal or target point.

If, on the other hand, it is desired that the station-keeping zone be displaced from the workshop orbital plane, then the required velocity correction (Ref. 2) is given by

$$\delta v_{ZL} = \omega_W \sqrt{z_{max}^2 - r_{L,2}^2} \omega_W \operatorname{sign}(z_{min}) - v_{L,2}$$
(6)

The parameters z_{max} and z_{min} specify the desired maximum and minimum displacements of the shuttle w.r.t. the workshop in the out-of-plane direction. A velocity correction is applied only if $|r_{L,2}|$ is less than z_{min} and the relative velocity is such as decreases $|r_{L,2}|$ still further (i.e. $v_{L,2}$ $r_{L,2}$ is negative).

The boundary-avoidance guidance scheme assumes an inverted truncated cone as the desired station-keeping zone. The apex of the cone is at the workshop, and the cone's axis (\underline{i}_{YWL}) is assumed fixed w.r.t. the workshop. The lower boundary of the zone is specified by the parameter r_{min} which is its minimum distance from the workshop. The size of the station-keeping zone is specified by the cone half angle θ_Z .

S46-10

Two boundary-avoidance tests are made. First, if the shuttle is too close to the workshop $(r_{W,l} < r_{min})$ and its velocity is taking it towards the shuttle, then a correction is required. The shuttle in this case is given a preselected velocity (v_{DN}) away from the workshop. This is accomplished by a velocity correction (δv_{L}) of

$$\delta \underline{\mathbf{v}}_{\mathrm{L}} = (\mathbf{v}_{\mathrm{DN}} - \mathbf{v}_{\mathrm{W},1}) \underline{\mathbf{i}}_{\mathrm{YWL}}$$
(7)

where i_{YWL} is a unit vector along the workshop-frame Y-axis (station-keeping zone cone axis), and $r_{W,1}$ and $v_{W,1}$ are the components of relative position and velocity along this axis.

Next, a test is made to see if the shuttle is inside the desired zone. The test quantity (q) is computed from:

$$q = i_{BW} + \cos \theta_Z \tag{8}$$

A second test is now made to see if the shuttle's velocity is directed away from the zone's center line, i.e. the angle between \underline{r}_W and the cone's axis is increasing. The test quantity \dot{q} is given by:

$$\dot{\mathbf{q}} = [\mathbf{v}_{W,1} - (\underline{\mathbf{v}}_{W} \cdot \underline{\mathbf{i}}_{RW}) \mathbf{i}_{RW,1}]$$
(9)

If both q and q are negative, then the shuttle's component of velocity (w.r.t. the workshop) in the direction normal to the station-keeping cone boundary (\underline{i}_{NW}) is given a prespecified value of v_{DN} , directed in towards the cone axis. The required velocity correction to accomplish this is (Ref. 1).

(

$$\delta \underline{\mathbf{v}}_{W} = (\mathbf{v}_{DN} - \underline{\mathbf{v}}_{W} \cdot \underline{\mathbf{i}}_{NW}) \underline{\mathbf{i}}_{NW}$$
(10)

where the required velocity correction $\delta \underline{v}_W$ is in workshop-fixed coordinates as is the relative velocity (\underline{v}_W) .

5. DETAILED FLOW DIAGRAMS

A detailed flow diagram is shown for the Station-Keeping Guidance Routine in Figure 4. To operate this routine, navigation information is required from the Station-Keeping Navigation Routine. The mode selection and routine-call times for both the Station-Keeping Guidance and Navigation Routines are controlled by the Station-Keeping Executive Routine.

A REAL PROPERTY OF A REA

iand with the set water as a maintener strength of the set of the s

Submittal 28: Deorbit Targeting

1. INTRODUCTION

The large entry crossrange capability of the shuttle permits deorbit to a specified landing site to be accomplished with a single maneuver. Since the required velocity change is smallest when no plane change is made, the equations presented here are designed to target the Powered Flight Guidance Routines (Reference 3) for an in-plane maneuver. The ignition time for this maneuver is selected to satisfy entry interface and landing site constraints with minimum fuel expenditure.

If the shuttle had no crossrange capability, then an in-plane deorbit maneuver to a specified landing site could only occur when that landing site, which rotates with the earth, intersects the orbital plane of the vehicle. Assuming the landing site latitude is less than the orbital inclination angle, and neglecting the effects of precession, the landing site will intersect the orbital plane twice every twenty-four hours. However, the time difference between these two intersections is in general not twelve hours. In the case when the landing site latitude is equal to the orbital inclination there will be only one intersection every twenty-four hours.

Since the shuttle has a high crossrange capability, deorbit does not require intersection of the landing site vector and the orbital plane. It is possible whenever the angle between the landing site vector and the orbital plane is less than approximately 20 deg. In general, there will be two sets of opportunities every twenty-four hours. Within each set, there may be several deorbit opportunities occurring on consecutive orbits with varying crossrange requirements. When the latitude of the landing site approaches the inclination of the orbit, these two sets merge to become one. It should be noted, in addition, that if the landing site latitude is greater than the orbital inclination, the landing site may still fall within the crossrange capability of the vehicle. With these facts in mind, this routine has been designed to continue stepping through successive solutions, allowing the crew to select a particular deorbit opportunity based upon entry crossrange. time-to-ignition, required velocity change, landing site lighting conditions, urgency of the return, etc.

The desired entry range and flight path angle will be considered inputs to this routine, since available data relating to footprint size and shape, entry heating at various ranges, and optimal entry flight path angle are only preliminary. In future revisions, consideration should be given to computing the optimum values of these quantities for the particular situation.

2. FUNCTIONAL FLOW DIAGRAM

A functional flow diagram presenting the basic approach to the deorbit targeting problem can be found in Figure 3. In addition to the state vector, the primary inputs to the routine are the landing site location (latitude and longitude), the entry downrange distance, the entry angle (at 400,000 ft) and the earliest desired time of landing. Since the high crossrange capability may make deorbit possible on two or more consecutive orbits, after each solution the crew has the option to recycle the program to determine the next possible deorbit opportunity. To give the crew the flexibility to evaluate solutions in the future without stepping through all earlier opportunities, the earliest desired time-of-landing is included as an input. However, the vehicle is assumed to be in coasting flight until the deorbit maneuver, and therefore the effects of any maneuvers prior to deorbit are not accounted for.

After the vehicle state vector is extrapolated forward to the earliest desired time-of-landing, the solution process is initiated. This consists of three major steps. During the first step the vehicle state is further advanced until the landing site, which rotates with the earth, lies sufficiently near the orbital plane so that it is within the crossrange (or out-of-plane) capability of the entry phase. During the next step an iterative process is used to select the ignition time for this deorbit opportunity which requires the smallest velocity change, thus minimizing the fuel expenditure. Since the first two steps involve several conic approximations to minimize the computer time used, the third step fine tunes the solution by generating a precision trajectory which satisfies the constraint on the desired entry angle while accounting for gravitational perturbations and the non-impulsive nature of the deorbit maneuver. After completion of this step the results are displayed to the crew. They may then elect to accept the solution, recycle the routine to solve for the next deorbit opportunity, or exit. If they accept the solution, a few minor computations are required to initialize the Powered Flight Guidance Routines for a modified Lambert aimpoint maneuver.

To aid the reader in understanding the functional flow diagram, each of the three major steps in the solution process is discussed in more detail below.

2.1 Determination of the Next Deorbit Opportunity (Step 1)

To determine the next possible deorbit opportunity, it is necessary to calculate the inertial location of the landing site (which rotates with the earth) at the time-of-landing. Then the angle between the orbital plane and the landing site can be used to estimate the crossrange required during entry. To accomplish this, an estimate of the time-of-flight difference Δt_{DE} between (1) the interval from deorbit through entry to landing, and (2) the time spent in orbit over the same total

S28-2

central angle is used. Analysis has shown that a constant is probably adequate to represent this difference since more precise calculations in the following step will compensate for any error.

Upon completion of the initialization process, the state vector is extrapolated forward to the earliest desired time-of-landing. Then the inertial location of the landing site at the present state vector time, biased by the time difference Δt_{DE} , is computed. This landing site vector is projected into the orbital plane, allowing the in-plane central angle θ_{IP} between the vehicle position and the projection of the landing site to be determined.

Figure 1. Out-of-plane Geometry

The conic routines can now be used to determine the time-of-flight Δt_{IP} required to coast in orbit through the central angle θ_{IP} . If the state was then propagated through this central angle, its position vector would be aligned with the previously determined projection of the landing site vector. Unfortunately, the landing site will move slightly due to earth rotation while the vehicle transfers through the central angle. Therefore, the inertial location of the landing site must be recomputed, accounting for the time difference Δt_{DE} explained previously. Thus, an iterative process is required to precisely determine the location of the landing site at the expected time-of-landing. During the first pass through the deorbit targeting routine, the previously described steps are repeated once to insure convergence. However, on subsequent passes no iteration is required, since the initial guess achieved by extrapolating the state vector one orbit beyond the previous solution guarantees a small value for the time-of-flight correction Δt_{IP} .

Assuming the deorbit maneuver is in-plane, the angle between the orbital plane and the landing site location at the estimated time-of-landing can be used to measure the crossrange required during the entry phase. If the crossrange is within the capability of the vehicle, the solution process continues on to the next

S28-3

step. If not, the vehicle state is extrapolated forward one revolution to the next potential deorbit opportunity and the process of estimating the crossrange is repeated.

It should be noted that the process used to determine the crossrange requirement is only approximate, and therefore a small increment is added to the tolerance used in the crossrange check to allow for this. A small number of cases which pass this check will actually lie outside the vehicle crossrange capability, however, a more precise check later will screen these out.

2.2 Ignition Time Selection (Step 2)

During this step in the solution process, an ignition time is selected which minimizes the impulsive velocity change required. For these computations the projection of the landing site into the orbital plane is assumed to be the real landing site. Then, based upon the desired entry downrange distance, a target position at entry interface which also lies in the orbital plane can be defined. This target position is set 400,000 ft above the Fischer ellipsoid.

Figure 2. In-plane Geometry

Using this entry interface target, and the desired entry flight path angle, a search is made on the central angle θ_D traversed between the deorbit maneuver and entry interface to locate the position and time of the minimum Δv maneuver.

Then the time-of-flight required for the deorbit and entry phases can be accurately determined. Using this time-of-flight, an accurate calculation of the inertial location of the landing site at the time-of-landing can be made, and the entry interface target can also be updated. To preserve the central angle of the deorbit phase, the impulsive maneuver time is adjusted. Then the ignition time is biased from the impulsive time by half the expected length of the maneuver and the state vector is extrapolated to this time.

Since the location of the landing site at the time-of-landing is now known accurately, the angle between the orbital plane and the landing site is recomputed to precisely measure the entry crossrange required. Then a precision check is made, and any solution exceeding the crossrange capability is rejected, thus returning the routine to step one to search for the next opportunity.

2.3 Precision Solution (Step 3)

During this step a precision integrated trajectory from deorbit to entry interface is generated which accounts for both the finite length of the thrusting maneuver and the effects of gravitational perturbations. Since the time-of-flight from deorbit to entry interface is known, the Precision Required Velocity Determination Routine can be used to generate this trajectory. However, the effects of conic approximations in the previous steps and the finite length of the maneuver can cause significant error in the reentry angle. Therefore, the resulting entry angle is checked and if it is in error, a slight modification is made in the time-of-flight from the deorbit maneuver to entry interface to adjust the entry angle. Then the precision trajectory is recomputed. After satisfying the flight path angle constraint, pertinent data relating to the maneuver can be displayed to the crew or transferred to the Mission Planning Module.

S28-5

T MARKET NOT THE ALL DEPENDENT, AND A DEPENDENT OF THE ALL THE PROPERTY AND THE ALL THE ALL THE ALL THE ALL THE

NOMENCLATURE

Semimajor axis

а

a l

 a_2

^a F

^a T

ъ ч

d

 d CR

^d DR

^fACS

^hEI

f

Alarm code-failure in Δv minimization loop

Alarm gales failure in Precision Required Velocity Determination Routine

Semimajor axis of Fischer Ellipsoid

Estimated magnitude of the thrust acceleration

Semiminor axis of Fischer Ellipsoid

Number of columns of navigation filter weighting matrix (solid of in this routine since the matrix is not required)

^dACR Maximum acceptable crossrange distance of Orbiter

Estimated entry crossrange distance

Entry downrange distance

Magnitude of the engine thrust

Magnitude of the attitude control system translational thrust

fOMS Magnitude of the orbital maneuvering system engine thrust

Entry interface altitude (400,000 ft)

<u>i</u>	Unit vector formed by the cross product of the angular momentum and the landing site vectors
<u>i</u> EI	Unit vector in the direction of \underline{r}_{EI}
<u>i'</u> EI	First estimate of $\frac{i}{EI}$.
i' _{EI, z}	Z-component of the unit vector $\underline{i}_{EI}^{\prime}$ (z-axis assumed North)
<u>i</u> h	Unit vector in the direction of the angular momentum
ⁱ LSP	Unit vector in the direction of the landing site projection into the orbital plane
i N	Unit normal to the trajectory plane (in the direction of the angular momentum at ignition)
kγ	Sensitivity coefficient used to compute adjustment to time-of-arrival at entry interface
m	Estimated vehicle mass
n ·	Iteration counter
n max	Iteration limit
n rev	Integral number of complete revolutions to be made in the transfer (set to zero in this routine)
₽ _D	Semilatus rectum of deorbit trajectory
Ρ _γ ,	Secant squared of the desired entry flight path angle
P _{PFγ}	Secant squared of the offset entry angle used by the Powered Flight Guidance Routine
$\frac{r}{0}$	Precision position vector

0

÷

 \bigcirc

S28-9

Entry indefension from Precision Required $\frac{r''}{2}$ Velocity Determination Routine · · · · · · · · · · · · Position of the impulsive deorbit maneuver $\frac{r}{D}$ Entry interface position $\frac{r}{-EI}$ Position vector at ignition $\frac{r}{d}$ ig Estimate classing site position at the time of r_LS landing Powered flight offset target vector r_{PFT} Engine select switch ^s eng Switch set a ladinate non-convergence of Pre-^s fail cision Readerelocity Determination Routine Switch set equal to one after the first pass through step one SFP Switch indicating which perturbations are to be ^s pert included in the Precision State and Filter Weighting Matrix Extrapolation Routine (See Reference 5) Switch set when the target vector must be projected ^s proj into the plane defined by $\frac{i}{N}$ Precision state sector time to Time of impulsive deorbit maneuver t_1 Time-of-arrival at entry interface t_{2} Estimated time at which in-orbit position vector is t 3 coincident with the landing site projection into the orbital plane

^t ETL	Determined earliest time-of-landing
t ist ist	- attaison none
	ime-of-landing
^t LTL	Desired latest time-of-landing
<u>v</u> ₀	Providen velocity vector
<u>v</u> "2	Entry interface velocity from Precision Required
<u>v</u> D	Pre-impulse velocity
⊻ EI	Entry interface velocity
<u>V</u> ig	Ignition velocity vector
^v PFT	Maxily associated with the powered flight
^v RD	Post-impulse radial component of velocity
<u>v</u> req	Required velocity
<u>v</u> 'req	Required velocity on the coasting trajectory
^v HD	Post-impulse horizontal component of
δt ₀₁	Adjustment to Δt_{01}
∆dACR	Increment added to the acceptable crossrange, end in rough crossrange check
Δp _γ	Difference between the predicted and desired p_{γ}

÷

S28-11

. . .

∆r _{proj}	Out-of-plane target miss due to the projection of the target vector	0
Δt ₀₁	Transfer time $(t_1 - t_0)$	
∆t ₁₂	Transfer time (t ₂ - t ₁)	
Δt ₂₃ .	Transfer time (t ₃ - t ₂)	
Δt _B	Estimated duration of the powered maneuver	
Δt _{DE}	Time-of-flight difference between (1) the interval from deorbit through entry to landing, and (2) the time spent in orbit over the same total central angle	•
Δt IP	Time-of-flight required to transfer through the central angle θ_{IP}	
$\Delta \underline{\mathbf{v}}_{.}$	Required velocity change	
Δv _P	Previous value of $\Delta \underline{v}$	0
Δθ	Increment in in-plane angle $\theta_{\rm D}$	
$\Delta \theta_0$	Initial increment in in-plane angle $\theta_{\rm D}$.	
^ε pγ.	Convergence criterion on Δp_{γ}	•
¢θ	Convergence criterion on angle $\Delta \theta$	
γ _l	Post-impulse flight path angle	-
$\gamma_{\rm EI}$	Desired entry flight path angle measured from the horizontal	
λLS	Landing site longitude	· · · - <u>-</u> ·
θ	In-plane angle between precision state vector and entry interface	
		ALC: ALC: ALC: ALC: ALC: ALC: ALC: ALC:

.

a thirt a

122

and the second second shift

In-plane angle between precision state vector and deorbit position

In which angle over which search is made to $\frac{1}{2} \int_{-\infty}^{\infty} dx$ minimum deorbit Δv

In-plane central angle traversed during entry

Angle between precision state vector and the projection of the landing site into the orbital

Previous value of $\theta_{\rm D}$

Gravitational parameter of the earth (product of the earth's mass and universal gravitation constant)

S28-13

[¢]LS

τ

 θ_{01}

θ_D

 $\theta_{\rm E}$

 $\theta_{\rm IP}$

 $\theta_{\rm P}$

μ

Landing site latitude

Orbital period

4. DESCRIPTION OF EQUATIONS

To minimize the size of the Deorbit Targeting Routine, extensive use is made of other routines. Therefore, this routine consists primarily of simple equations, logical operations, and calls to other routines. Since most of the complicated equations requiring detailed explanation are contained in the description of the other routines, this section will be limited to a list of items not covered in the text describing the functional flow diagram. These items will be listed in their order of occurence, and are intended to supplement the detailed flow diagram in subsection 5.

4.1 <u>Selection of Perturbing Acceleration during</u> Precision State Extrapolation

During the first step in the solution process, which may require long term state vector extrapolation, it is desirable to maximize accuracy by including all significant perturbing accelerations in the extrapolation process. Therefore, the switch s_{pert} , which controls the selection of perturbing accelerations in the Precision State Extrapolation Routine, is set to 2. During the later portion of the routine, referred to as step three, the switch is reset to 1, thus limiting the disturbing acceleration. Since extrapolation during step three is limited to the interval from the deorbit maneuver to entry interface, the effects of smaller perturbing accelerations are not significant. In addition, extrapolation over this interval lies within an iterative loop, and thus may be repeated several times. The simplified model can therefore significantly reduce the running time of this step.

4.2 Selection of $\theta_{\rm IP}$ Quadrant

During the discussion of the functional flow diagram, it was mentioned that successive solutions to the deorbit problem (when successive solutions exist) are about one revolution apart. To find succeeding solutions to the problem, the state vector is extrapolated forward one revolution and then the in-plane central angle $\theta_{\rm IP}$ between the state vector and the projection of the landing site into the orbital plane is computed. Analysis has shown that for some selections of orbital inclination and landing site, the correction to the assumption of one revolution may be as large as 29°. A lower limit on $\theta_{\rm IP}$ of -30° was chosen, thus allowing a small margin from the empirically determined limit of -29°. The upper limit on $\theta_{\rm IP}$ is +330°. Large positive values for $\theta_{\rm IP}$ only occur in situations where no solution existed on the previous revolution.

To determine θ_{IP} , the following equation is used, $\theta_{IP} = \cos^{-1} \left[\text{unit} (\underline{r}_0) \cdot \underline{i'}_{LSP} \right] \operatorname{sign} \left[(\underline{r}_0 \times \underline{i'}_{LSP}) \cdot \underline{i}_h \right]$

S28-14

where

 $\underline{r}_0 =$ vehicle position vector \underline{i}_{LSP}^{i} with vector in the direction of the \underline{i}_{LSP}^{i} with angular momentum vector

This places $\theta_{\rm IP}$ between -180° and +180° and therefore an additional test, shown in Figure 4b, is made to force $\theta_{\rm IP}$ between -30° and +330°.

In order to make the first entry into step one compatible with subsequent entries, the state vector is initially extrapolated forward beyond the earliest desired time-of-landing t_{E^+L} one-twelfth of the orbital period, to the time t_3 , where

 $t_3 = t_{FTI} + \tau / 12$

One-twelfth of the period is nearly equivalent to a central angle of 30° for typical (near circular) orbits, and hence makes the first entry into step one compatible with later entries.

4.3 Effect of Approximate Entry and Deorbit Timesof-Flight on Fntry Crossrange Calculation

During the fi st step in the solution process, an estimate of the time of landing is necessary to compute the inertial location of the landing site and the associated entry crossrange. Since the parameters of the deorbit trajectory have not been computed, the deorbit and entry times-of-flight are not known. To estimate the landing time, a constant Δt_{DE} is used to approximately represent the difference between the sum of the deorbit and entry times-of-flight and the time spent in orbit over the same total central angle. Preliminary analysis has shown that if an average value is selected for this time difference, the maximum error will be about 6 minutes. This analysis, described in Reference 7, did not include variations in entry time-of-flight for the particular entry range, but further analysis is expected to show this effect is small.

During the first step in the solution, this error will affect the calculation of the inertial landing site vector and subsequent entry crossrange computation. This effect on the crossrange estimate will be largest for deorbit from a polar orbit, and result in a maximum error of less than 90 n.mi. To insure that potentially acceptable solutions are not rejected due to errors in the initial crossrange estimate, the rough check on crossrange during the first step uses a test criterion 90 n.mi. larger than the acceptable crossrange input to the routine. In step two, after the time-of-landing has been refined, the crossrange is recomputed and a precision check is made. Thus a few cases which pass the first test will be rejected later.

4.4 Velocity Change Minimization Method

Step two of the routine includes an iterative search to determine the location of the impulsive maneuver which minimizes the velocity change Δv . As shown in Figure 4d, this iteration uses θ_D , the central angle traversed between the impulsive maneuver and entry interface, as the independent variable. A very simple halving step iterator is used to search for the minimum. Although this does not converge quickly, it is safe and reliable. The more efficient technique of using a slope iteration was not selected because analysis has shown that inflection points exist in the relationship of Δv and θ_D . These inflection points would greatly complicate any iteration designed to determine the minimum by driving the slope to zero.

4.5 Required Velocity Equations

The equations used in the previously described iterative loop to determine the required velocity can be found in Reference 2. These equations, shown in Figure 4d of the detailed flow diagram, use the initial vehicle position \underline{r}_{D} , the entry interface position \underline{r}_{EI} , and the desired entry angle γ_{EI} as follows. First the tangent of the initial (post-impulse) flight path angle γ_1 is computed by

$$\tan \gamma_{1} = (1 - r_{D}/r_{EI}) \cot (\theta_{D}/2) - r_{D}/r_{EI} \tan(\gamma_{EI})$$

where θ_D is the central angle between \underline{r}_D and \underline{r}_{EI} and also the independent variable in the search. The semilatus rectum p_D of the deorbit trajectory can then be determined from

$$p_{D} = \frac{2r_{D}(r_{D}/r_{EI} - 1)}{(r_{D}/r_{EI})^{2}p_{\gamma} - (1 + \tan \gamma_{1}^{2})}$$

The parameter p_{γ} , the secant squared of the desired entry angle, is computed once during initialization of the routine.

The horizontal and radial components of the required velocity are then obtained from

$$v_{HD} = \sqrt{\mu p_D} / r_D$$

 $v_{RD} = v_{HD} \tan \gamma_1$

The required velocity is then formed and differenced with the premaneuver velocity to obtain the impulsive Δv .

$$\frac{\mathbf{v}}{\mathbf{req}} = \frac{\mathbf{v}}{\mathbf{RD}} \operatorname{unit} \left(\underline{\mathbf{r}}_{D}\right) + \mathbf{v}_{HD} \operatorname{unit} \left[\left(\underline{\mathbf{r}}_{D} \times \underline{\mathbf{v}}_{D}\right) \times \underline{\mathbf{r}}_{D} \right]$$
$$\Delta \underline{\mathbf{v}} = \underline{\mathbf{v}}_{req} - \underline{\mathbf{v}}_{D}$$

4.6 Entry Time-of-Flight Computation (TBD)

In Figure 4e of the detailed flow diagram, the time-of-flight Δt_{23} from entry interface to landing is shown as a function of entry velocity, flight path angle, and range. Functionalization of this time-of-flight will be included later when entry guidance analysis is complete.

4.7 In-Plane Effect of Approximate Deorbit and Entry Times-of-Flight

As discussed in subsection 4.3, the first estimate of the inertial location of the landing site is dependent upon an estimate of the time-of-landing. A constant time difference Δt_{DE} , used to estimate the landing time, may be in error by as much as 6 minutes. This led to a significant error in the crossrange estimate for a high inclination orbit. For orbits of lower inclination, where the movement of the landing site can be nearly parallel to the orbital plane, this same error can affect the definition of the entry interface location used in the Δv minimization iteration.

The entry interface location, computed early in step two, is based upon the projection of the landing site vector into the orbital plane and the desired entry range. After the minimization process is complete, the deorbit and entry times-of-flight can be accurately calculated. As shown in Figure 4e, another calculation of the inertial landing site position is made, thus removing the error due to the Δt_{DE} approximation. To maintain the desired entry range input to the routine, the entry interface position is recalculated. This new position will be, at most, 1.5° (equivalent to 6 minutes of earth rotation) from the entry interface used in the Δv minimization. To maintain the geometry of the deorbit phase, the time of the deorbit maneuver is adjusted accordingly so that the central angle from deorbit to entry interface is preserved. This adjustment in deorbit time δt_{01} is computed from the following equation

 $\delta t_{01} = \left[\left(\underline{i'}_{EI} \times \underline{i}_{EI} \right) \cdot \underline{i}_{h} \right] \frac{\tau}{2\pi}$

where \underline{i}_{EI} is a unit vector in the direction of the entry interface position used during minimization, \underline{i}_{EI} is the new value, \underline{i}_{h} is a unit angular momentum vector, and $\tau/2\pi$ is the inverse of the mean orbital rate. The cross product of the unit vectors is nearly equivalent to the angle between them, and the dot product gives the proper sign. The mean orbital rate is used to calculate the deorbit time adjustment from the angular adjustment. Following this adjustment to the impulsive deorbit time, the ignition time for the maneuver is biased from the impulsive time by one-half the expected length of the maneuver, thus centering the finite thrust maneuver about the impulsive maneuver. 4.8

Compensati Component Oblateness and Finite Maneuver I (a) th

Step three C the solution process contains calculations which account for the finite length of the unrulting maneuver on the required velocity change, and compensate for the City of the J_2 gravitational perturbation on the deorbit trajectory. The Precision Required Velocity Determination Routine is used to accomplish these objectives, and the reader should refer to Reference 1 for a description of the technique. That routine, however, is designed to maintain the terminal (entry interface) time-of-arrival, and this can cause changes in the entry angle. Preliminary analysis, described in Reference 7, has shown that the nominal entry flight path angle error resulting from the oblateness and finite maneuver length is about 0.2° , the can be as large as 0.6° in extreme cases. Therefore, to preserve the desired entry angle, the time-of-arrival at entry interface is adjusted slightly. Delaying the time-of-arrival tends to loft the trajectory and thus increase the entry angle. An earlier time-of-arrival will depress the trajectory and result in a shallower flight path angle.

To determine the time-of-arrival adjustment, the approximate sensitivity of changes in time-of-flight to changes in entry angle is used. Analysis has shown that this sensitivity varies by a factor of about 13, depending on the characteristics of the pre-maneuver diajectory. However, the sensitivity divided by the deorbit time-of-flight varies $1 \le 4$ factor of less than 3. This variation is sufficiently small such that a constant can be used as the sensitivity coefficient for all cases.

To reduce the computations required to constrain entry angle, both here and in the Powered Flight Guidance Routines^{*}, the secant squared of the entry angle p_{γ} is used rather than the actual angle. In particular, no inverse trigonometric function evaluations are required.

The sequence of calculations designed to reduce the entry angle error are shown in Figures 4f and 4g. First the error Δp_{γ} in the secant squared of the entry flight path angle is computed from the following equation:

$$\Delta_{\mathbf{p}\cdot\boldsymbol{\gamma}} = \frac{1}{1 - \left[\text{unit}\left(\underline{\mathbf{r}}_{2}^{"}\right) \cdot \text{unit}\left(\underline{\mathbf{v}}_{2}^{"}\right) \right]^{2}} - \mathbf{p}_{\boldsymbol{\gamma}}$$

where $\underline{r}_{2}^{"}$ and $\underline{v}_{2}^{"}$ are the terminal position and velocity determined by the Precision Required Velocity Determination Routine and p_{γ} is the desired value. If the error is too large, the entry interface time-of-arrival t_{2} is adjusted as follows:

 $t_2 = t_2 - k_\gamma \Delta t_{12} \Delta p_\gamma$

The Powered Flight Guidance Routines, described in Reference 3, use the same basic technique described here to maintain entry angle in the event of off-nominal thrusting conditions.

S28-18

where k_{γ} is the sensitivity coefficient described earlier and Δt_{12} is the time-offlight from deorbit to entry interface. After adjusting the time-of-arrival, 'the Precision Required Velocity Determination Routine is recalled with the adjusted time-of-arrival and the results are checked.

4.9 Offset Entry Angle

In the process of computing a required velocity, the Precision Required Velocity Determination Routine computes an offset target for use during the powered flight. For the deorbit maneuver, the powered flight guidance also requires an offset entry angle. This offset entry angle, actually the secant squared of the angle, is computed from the following equation

$$P_{PF\gamma} = \frac{1}{1 - \left[\text{unit} \left(\underline{r}_{PFT} \right) \cdot \text{unit} \left(\underline{v}_{PFT} \right) \right]^2}$$

where \underline{r}_{PFT} is the offset target for the powered flight guidance and \underline{v}_{PFT} is the associated velocity.

Figure 4a. Detailed Flow Diagram

S28-20

S28-21

S28-22

n = n + 1

n = 1

 $\theta_{\rm IP} - \theta_{\rm E}$

 $\Delta \theta_0$

Δv

Yes

θ

θD

STEP 2

S28-24

and the second of the second second

Figure 4g. Detailed Flow Diagram

S28-26

Submittal 25: Powered Flight Guidance

1. INTRODUCTION

The objective of the Powered Flight Guidance Routines is to issue the proper steering and engine cutoff commands such that the desired terminal conditions of the maneuver are satisfied. The basic powered flight guidance law used in the orbiter is a velocity-to-be-gained concept with cross-product steering.

The two principle modes of the Powered Flight Guidance Routines are:

- 1. Delta-V Maneuver Guidance Mode
- 2. Real-Time Required Velocity Updating Guidance Mode.

The Delta-V Maneuver Guidance Mode is essentially equivalent to the External Delta-V Maneuver Guidance Mode used in APOLLO. The input desired velocity change is modified to compensate for the estimated central angle to be traversed during the maneuver. Then the object of the powered phase is simply to steer the vehicle to achieve this velocity change.

The Real-Time Required Velocity Updating Mode is a generalized version of the Lambert Aim Point Maneuver Mode used in APOLLO. The object of these maneuvers is to place the vehicle on a coasting trajectory which will intercept a specified target at a specified time. Two new concepts which greatly improve the accuracy of these maneuvers are introduced. First, guidance during the maneuver is based on a state vector navigated from ignition in a spherical (Keplerian) gravity field. Second, the required velocity is not determined using the present vehicle position but rather an offset position which accounts for the finite length of the maneuver. Since this is primarily an equations document, these new concepts are treated only briefly in the text. A detailed description and derivation can be found in Reference 5.

Because the calculation of required velocity can be a lengthy process, the ability to update the required velocity every major cycle is dependent upon the speed of the computer. The APOLLO Guidance Computer required portions of several major cycles to complete the solution. The guidance equations described here will assume that the orbiter computer will also need portions of several major cycles to complete the solution for required velocity. A faster computer would not alter the basic concepts presented here, but would simplify the mechanization somewhat.

The Real-Time Required Velocity Updating Mode may select a specific required velocity routine to accomplish one of the following maneuvers:

S25-1

- 1. Lambert Aim Point Maneuver
- 2. Deorbit Maneuver
- 3. Other maneuvers such as a maneuver to an
 - orbit with certain specified constraints (TBD).

The required velocity routines will be subjects of separate documents. Since this report is mainly concerned with the documentation of guidance equations, logic or computations concerned with monitoring or controlling system operation will not be presented.

FUNCTION LINE LOW DIAGRAM

Powered Flight Guidance involves both the prethrust and thrusting phases of the first rust computations, shown in Figure 1, are a single step process period of the maneuver to prepare the vehicle icontarium of the state of the maneuver to determine the desired vehicle attitude at ignition. In addition, the state vector is advanced to a specified time prior to ignition. At this time, an integral number of major cycles prior to ignition, the thrusting phase computations, including Powered Flight Navigation, are initiated. Of course, the attitude maneuver necessary to align the vehicle to the desired attitude at ignition should be completed before entering the thrusting phase at a specified.

20) answer and an antipatron and for the 2. M. C. 1. Marked

The sequence is illustrated in Figure 2. The guidance computer program known as the Servicer Routine, which controls the various subroutines to create a powered flight sequence, is not included in this document. The Servicer Routine will call the main branch every guidance cycle until engine shutdown has occurred.

Each guidance cycle begins with the reading of the accelerometers and is followed by the updating of the state vector in the Powered Flight Navigation Routine. Then the velocity of the state updated in the Cross-Product Steering Routine. If steering is a contract of a latter also computes the time-to-go and the steering command beginning is contract time after ignition.

The targeting calculations used to predict and compensate for gravitational perturbations establish an offset target which assumes that the vehicle is under the influence of only a spherical gravity field after the expected ignition time. Therefore, in the Real-Time Required Velocity Updating Mode, it is necessary to maintain an additional state vector navigated in a spherical gravity field. This dual navigation should begin at the ignition time assumed in the targeting program if it differs from the actual.

In the Reaching Required Velocity Mode, another branch of the Powered Flight Guidance, to involving the calculation of required velocity is operated independent of the main guidance branch. This separate branch, called the Velocityto-be-Gained Routine, is initiated and controlled by the Servicer Routine and may require portions of several major guidance cycles to complete its solution. Of course, simple velocity-to-be-gained updates computed by decrementing the previous value by the velocity change continue in the Cross-Product Steering Routine every major is the Normally, the Velocity-to-be-Gained Routine operates on a lower priority than the main guidance loop so that the new velocity-to-be-gained vector is not used by the Cross-Product Steering Routine until the next guidance cycle.

S25-3

AND THE REAL PROPERTY OF A DESCRIPTION OF A

4

2.

and the same side

The characteristic of the transfer in the Real-Time Required Velocity Updating Mode in relation to the singularity cone of the Lambert problem is determined by the targeting program before the powered phase is initiated. This information is passed on to this guidance program through the s_{proj} switch and is used by the Conic Required Velocity Determination Routine to define the transfer plane. (See Ref. 3 for a detailed explanation of the singularity cone and Ref. 6 for the targeting procedure).

If the s_{proj} switch has been set, the transfer will take place in the plane defined by the unit vector \underline{i}_N in the direction of the angular momentum vector at ignition. If this switch has not been set, there are two possibilities. Under normal circumstances the transfer will take place in the plane defined by the vehicle and target position vectors. However, unexpected degradation in engine performance during flight may prolong the powered maneuver to such an extent that the input position vector to the Conic Required Velocity Determination Routine is inside the singularity cone. The procedure to cope with this situation is presented below.

If the s_{proj} switch has not been set by the targeting program, the s_{cone} switch, which is an output of the Conic Required Velocity Determination Routine, is checked at each guidance cycle. If it is found that this switch has been set, indicating that the input position vector is inside the singularity cone, the Servicer Routine is directed to bypass the Velocity-to-be-gained Routine for the remainder of the powered maneuver. In other words, the remaining powered maneuver will be completed simply by decrementing the previous value of the velocity-to-be-gained by the sensed velocity change as is done in the Delta-V Mode.

When the time-to-go becomes less than some predetermined value, active steering is suspended and an engine cut-off command is set to be issued at the proper time.

NOMENCLATURE

(:

জন উপেয়া বাহুৱ

1.0

1005-15-16-18

75

^a T	Estimated magnitude of thrust acceleration
С	Matrix to rotate the target vector to compensate for earth rotation due to change in time of flight during deorbit maneuver
d	Dimension of navigation filter weighting matrix (d = 0 in this routine since the matrix is not used)
f	Thrust
f OMS	Magnitude of orbital maneuvering system engine thrust
^f ACS	Magnitude of attitude control system engine trans- lational thrust
£	Gravity vector in the oblate gravity field
gs	Gravity vector in the spherical gravity field
<u>i</u> N	Unit vector in the direction of the angular momentum vector normal to the transfer plane
<u>i</u> x' <u>i</u> y' <u>i</u> z	Unit vectors of local vertical coordinates
<u> </u>	Unit vector of desired thrust direction
k	Iteration counter in acceleration computation
k y	Sensitivity used in computing the desired change in flight time to control entry angle during deorbit
^k steer	Steering gain
^k tgo	Intermediate variable in t _{go} computation
m	Current estimated vehicle mass
ⁿ min	Number of guidance cycles used in thrust acceleration magnitude filter

S25-7

2.2.6

n rev	Integer number of 360 ⁰ revolutions used in Conic Required Velocity Determination Routine
р _N	Normalized semi-latus rectum of conic transfer orbit
pγ	Parameter defining the desired terminal flight path angle
Ρ _γ '	Parameter defining the projected terminal flight path angle
r	Position vector navigated in the oblate gravity field
r	Position vector on the coasting trajectory
<u>r</u> s	Position vector navigated in the spherical gravity field
$\underline{r}(t_2)$	Offset target vector at t ₂
Δ <u>r</u>	Initial position offset
^s accel .	Switch indicating whether the acceleration is computed from sensed Δv 's $\begin{pmatrix} = 0 & \text{prethrust estimate} \\ = 1 & \text{sensed } \Delta v$'s
^S cone	Switch in the Conic Required Velocity Determina- tion Routine to indicate if the transfer is near 180 ⁰ (see Ref. 3 for details)
s _{eng}	Engine select switch
⁵ guess	Switch to indicate whether estimate of independent variable Γ will be input to the Conic Required Ve- locity Determination Routine (see Ref. 3 for details)
. s _{pert}	Switch indicating the perturbing accelerations to be included in Precision State and Filter Weighting Matrix Extrapolation Routine (see Ref. 2 for details)
⁵ proj	Switch indicating whether the initial and target position vectors are to be projected into the plane defined by \underline{i}_{N} (see Ref. 6 for details)
	S25-8

e,

Ē

Gradin de Carrol de C

Section and

222-8

a nor in the constraint of the

A STATES

	s _{soln}	Switch inducting which of two possible solutions is the multi-revolution case (see Ref. 3 for the first sector of the solution case (see Ref. 3)
	s _{steer}	Steering enable switch $ \begin{pmatrix} = 0 \text{ inhibit} \\ = 1 \text{ enable} \end{pmatrix} $
	^s tgo	Switch indicating whether initial t_{go} computation har derive whether $= 0 t_{go}$ not yet computed $= 1 t_{go}$ computed
	t	Current state vector time (during thrusting phase, this is the time at which the accelerometers are read)
	Δt	Guidance cycle time step
	Δt'	Dumme teansfer time set to 0
	∆t _{cut-off}	Value used to define time to issue engine cut- off conversed and terminate active steering
	Δt_{enable}	Value of t which distinguishes between long or go short maneuver
•	Δt _{t0}	Time interval before t_{ig} to start thrusting phase computations
	Δt _{t1}	Time interval prior to t_{ig} when initial t_{go} prediction is made
	Δt _{t 2}	Time $\frac{1}{1}$ is after t_{ig} when steering is permitted
•	∆t _{tail} -off	Time interval representing the duration of a burn at maximum thrust equivalent to the tail-off impulse after the engine-off signal is issued
	∆t _{tail-off,} OMS	$\Delta t_{tail + aff}$ of orbital maneuvering system engine

0

 \bigcirc

S25-9

a and the second se

Δt _{tail-off,} ACS	$\Delta t_{tail-off}$ of attitude control system engine for translational maneuver
δt 2	Change in time of arrival required to satisfy ter- minal flight path angle in a deorbit maneuver
^t 2	Time of arrival at $r(t_2)$
t go	Time-to-go before engine cut-off
t ig	Nominal engine ignition time
v	Velocity vector navigated in the oblate gravity field
^V s	Velocity vector navigated in the spherical gravity field
<u>⊻</u> g	Velocity-to-be-gained vector
v _g	Magnitude of \underline{v}_g
<u>v</u> 'req	Required velocity vector at the offset initial posi- tion (defines the coasting trajectory)
<u>v</u> req	Required velocity at current position (no initial position offset)
Δ <u>ν</u> .	Measured velocity increment vector due to thrust in one guidance cycle
Δÿ	Magnitude of $\Delta \underline{v}$
Δv_k	kth value of sensed Δv saved for acceleration computation
Δ <u>v</u> LV	Desired velocity change vector input to Delta-V Guidance Mode
Δv_{min}	Minimum sensed Δv which will allow acceleration filter computations to be made
Δv _N	$\sum \Delta v_k$ for n_{min} cycles

1.0

S25-10

•	
$\Delta \underline{\mathbf{v}}_{\mathbf{X}_{2}}$	In-plane components of $\Delta \underline{v}_{LV}$
$\Delta \underline{v}_{c}$. Compensated in-plane components of $\Delta \underline{v}_{LV}$
$\Delta v_x, \Delta v_z$	Components of $\Delta \underline{v}$ LV
v _{exh}	Exhaust velocity
v _{exh} ' Cavis	Exhaust velocity of the orbital maneuvering system engine
vexh' A	engine for translational maneuver
α _N	Reciprocal of normalized semi-major axis of conic transfer orbit
¢θG	Tolerance criterion establishing a cone around the negative target position di- rection inside of which the Conic Required Velocity Determination Routine will define the transfer plane by \underline{i}_N
γ _{t2}	Projected terminal flight path angle with respect to local horizontal (negative downward)
Г	Converged value of iteration variable used in Conic Required Velocity Determination Routine
Γ _P	Previous value of Γ
Г guess	Estimated value of $\dot{\Gamma}$
ŕ	Time rate of change of F
κ	Ratio of $ \underline{r}(t_2) $ to $ \underline{r}'(t) $
θ _T	Estimated central angle traversed during thrusting maneuver in Delta-V Guidance Mode
μ	Earth's gravitational constant

0

6

 \mathbb{C}

S25-11

 $\gamma \gamma \gamma \gamma$

 τ Time associated with current required velocity τ_P Previous value of τ ω_c Angular velocity command ω_{earth} Magnitude of the earth's angular velocity

A CONTRACTOR OF A CONTRACTOR OF

S25-13

500 10

.

S25-15

•

Figure 6c. Prethrust Phase, Detailed Flow Diagram

S25-17

.

S25-18

Figure 9c. Velocity-to-be-Gained Routine, Detailed Flow Diagram

S25-24

3 - 174 - M T 47, 11 14 14 14

de line of the

Car and a starting of

60.4

Submittal 4 Cury Guidance

1. INTROP

The Entry-Guidance Routine presented here is designed to take the orbiter vehicle from $entry (h \approx 400,000 \text{ ft})$ through the critical heating phase of entry down to the start of the approach phase (h $\approx 100,000 \text{ ft}$). The basic ideas are outlined in Re(pref)(1). Simulation results demonstrating the feasibility of the concept are given in Ref. (2).

There are three basic guidance modes:

- (2.) A constant heating-rate mode during which the stagnation-point heating rate is held constant at a preselected value, chosen essentially to minimize heat loads on the vehicle without violating maximum temperature constraints.
- (3.) A reference trajectory mode during which the vehicle follows a prestored stored trajectory designed to get
 A reference is the terminal point with a minimum reference is

Thermal control is provided by varying the magnitude of the roll angle so as to follow a density-vs.-speed profile. Density information is derived from IMU measurements of the aerodynamic specific force acting on the vehicle. A-priori knowledge of the vehicle's mass, effective aerodynamic area, and drag coefficient (c_D) are required in the process.

Range control is provided by changing the angle-of-attack of the vehicle. Upper and lower limits on angle-of-attack are required in order not to violate operational conservations on the vehicle. Lateral trajectory control is obtained by reversing the d rection of the roll angle.

2. FUNCTIONAL FLOW DIAGRAM

The basic information flow in the Entry Guidance Routine is shown in Figure 1. This is based on the guidance concept of Ref. (2.).

After the routine is entered, a series of targeting computations are made. This involves the computation of quantities such as the current vehicle heading (ψ) , the desired great-circle heading to the target point (ψ_D) , range to the target point (θ) , cross-track distance to the target point $(\theta_{\rm CT})$, and down-range distance to the target point $(\theta_{\rm DR})$.

The particular guidance mode to be entered is next determined. There are three possible guidance modes:

(1.) Initial programmed maneuver

(2.) Constant stagnation-point heating rate guidance

(3.) Stored reference-trajectory guidance

The constant heating-rate mode is entered when the vehicle's vertical velocity is greater (more positive) than a preselected value. The reference-trajectory mode is entered when the magnitude of the vehicle's relative velocity is less than a preselected value.

In the programmed maneuver mode the vehicle is oriented with a zero roll angle (wings up) and an angle-of-attack corresponding to the maximum aerodynamic lift coefficient. This orientation is maintained until the heating-rate mode is entered.

In the constant heating-rate mode, the density altitude (h_D) required to attain the desired stagnation point heating rate (\dot{q}_D) is first computed. An angle-of-attack command (α_C) is next computed, based on the desired range-to-go for the heatingrate mode. Finally, roll-angle magnitude commands (ϕ_C) are computed to control the vertical-plane motion of the vehicle so as to follow a density-altitude vs. speed profile. No roll reversals take place in this mode.

In the reference-trajectory mode,the required reference-trajectory quantities are first obtained from the stored table at the current speed. These include angle-of-attack (α_D), altitude (h_D), range-to-go (r_{GD}), and the ratio of cross-track to down-range distance-to-go (η). The angle of attack command (α_C) is then computed as a perturbation from the reference value (α_D) based on the difference between the stored and measured values of range-to-go. Roll-angle magnitude commands are computed in the same manner as for the constant heating-rate mode, except that the desired density altitude (h_D) is from the stored table. Roll-angle direction is based on a comparison between the current estimate of η and the reference-trajectory value.

S44-2

NOMENCLATURE

Notational Conventions

Upper-case letters represent matrices

Lower-case and Greek letters reserve for scalars and vectors

Vector quantities are underlined, e.g. \underline{x}

Vectors are assumed to be column vectors unless explicitly noted

Symbols

°۵

d

1 I	Effective	aerodynamic	area ior	venicie
				•

 c_0, c_1 Coefficients used to compute α_C from c_D

c_D Aerodynamic drag coefficient for vehicle

Coefficient in desired-density relation for constant heatingrate mode

 $c_{\dot{a}}$ Coefficient used in relation for desired c_D

 c_{D} . Desired value of c_{D} for constant heating-rate mode

 $c_{D_{MIN}}$ Lowest permissible value of c_{D} for constant heating-rate mode

 $c_{D_{MAX}}$ Highest permissible value of c_{D} for constant heating-rate mode

Drag force per unit mass

f Aerodynamic force per unit mass on vehicle

 \underline{h}_{N} Stored array of reference trajectory altitudes

h Vehicle altitude above Fischer ellipsoid

The second s

h o Density altitude

S44-4

	^h Fprog	Vertice second ty at which programmed mode is terminated.
	hyphy	entry altitude and derivative w.r.t. time
	hilling and	with the vertical velocity and derivatives w.r.t. time
	h _s	Scale height for exponential density-variation model
	h _F	Filtered and velocity
• •	h _o , h _o	Altimeter which ρ would occur and its derivative w.r.t. time
	$\frac{1}{-1}$ RE	Unit vector along \underline{r}_{E} (earth-fixed coordinates)
	<u>i</u> pole	Unit vector along North pole (earth-fixed coordinates)
	<u>i</u> ee	Unit vector directed towards local East (earth-fixed coordinates)
	ⁱ SE	Unit vector directed towards local South (earth-fixed coordinates)
-2	<u>i</u> GCE ·	fixed involutes)
	ⁱ RDE	Unit vector along desired terminal position (earth-fixed coordinates)
	$\frac{1}{-}$ VR	Unit vector along $\underline{v}_{\mathrm{R}}$ (stable-member coordinates)
	<u>i</u> xa '	Unit vector along vehicle longitudinal axis (stable member coordinates)
	<u> </u>	Unit versions vehicle lateral axis (stable-member coordinates)
	$\frac{i}{-}$ HOR	Unit vector normal to plane of vehicle's position and relative velocity vectors
	k	Indus variable used for reference-trajectory lookup
¹⁴		

A 14 10 20

• •

A DEAL OF LAND

No. of Concession, Name

1997 (PP)

• -

). @

S44-5

.

WWW. CONTRACTOR OF THE STATE OF

· · · ·

1.1

kα	Sensitivity factor in angle-of-attack relation
^k aTC	Value used for k_{α} in thermal control portion of ref. traj. mode
^k αPC	Value used for k_{α} in final position control portion of ref. traj. mode
^k ø0 ^{, k} ø1 _{kø2} , k _{ø3}	Coefficients used in roll-command relation
^k η	Fraction of η at which roll angle should be reversed
ℓ _{AD}	Desired latitude at the end of entry
[£] OD	Desired longitude at the end of entry
^M SM-E	Transformation matrix from stable member to earth- fixed coordinates
m	Mass of vehicle
n	Index for computation-cycle time
n _{mach}	Mach number
<u>r</u>	Vehicle position (stable-member coordinates)
<u>r</u> de	Target-point position vector (earth-fixed coordinates)
^r e	Earth radius (nominal)
<u>r</u> _E	Vehicle position (earth-fixed coordinates)
r _G	Range to go to target point
r _{GD}	Desired value of $r_{\mathrm{G}}^{}$ at current $v_{\mathrm{R}}^{}$ (from stored trajectory)
rGġ	Desired range to be covered in the constant heating- rate mode

S44--6

^r G _{REF}	Nominal range to be covered in the reference trajectory mode
^r G _{APP}	Nominal range to be covered in approach phase
r _{GMIN}	Lower limit for $r_{G_{\dot{q}}}$ in angle-of-attack computation
r [*] G	Range-to-go used in reference-trajectory mode guidance computations
^r GN	Stored array of reference-trajectory range-to-go
s _ø	Dummy variable used in roll-reversal logic
sġ	Switch used to start constant heating rate mode
s _{REF}	Switch used to start reference-trajectory mode
s _v	Vertical component of specific force on vehicle
$\mathbf{v}_{\dot{\mathbf{v}}_{\dot{\mathbf{D}}}}$	Desired vertical component of specific force
• t	Current time
<u>v</u>	Vehicle velocity (absolute in stable-member coordinates)
v a	Speed factor used in angle-of-attack command relation
v _₽ ġ	Relative velocity at which constant heating-rate mode is terminated
<u>v</u> N	Reference-trajectory array of vehicle speed w.r.t. air mass (22 elements)
v _H	Horizontal component of vehicle's velocity (absolute)

S44-7

- ..

[⊻] R	Vehicle velocity w.r.t. air mass (stable-member coordinates)
^v _{RE}	Vehicle velocity w.r.t. air mass (earth-fixed coordinates)
^v RHE	Horizontal component of \underline{v}_{RE}
^v RLO	Lower limit on v_{α}
αC	Angle-of-attack command
α _C L _{MAX}	Angle-of-attack corresponding to maximum c_L
^α CMAX	Maximum permissible value of α_{C}
$^{\alpha}$ CMIN	Minimum permissible value of $\alpha_{\rm C}$
αD	Desired value of α at current v _R (from stored trajectory)
^α MAX,	Maximum permissible angle-of-attack in constant heating- rate mode
αMIN.	Smallest permissible angle of attack in constant heating- rate mode
$\frac{\alpha}{-}$ N	Stored array of reference-trajectory angle of attack
^ф С	Roll angle command
¢т	Computed vehicle roll angle
$\Delta \psi$	Different between current and desired heading of vehicle w.r.t. air mass
$\Delta \psi_0$	Value of $\Delta \psi$ on first pass
Δ <u>ν</u>	Accelerometer-measured velocity change from previous to present computation-cycle time
Δt	Time interval from previous to present computation-cycle time
ψ	Local heading (w.r.t. South)

2.571

S44-8

द्वार्ग्य कर सामग्री सम्पन्न

1.255

1979 - M

"你不好你的你……"

ψ _D	When heading (w.r.t. South)
ω_{f}	Recentator in vertical velocity filter
^{¢*} MAX' ^{¢*} MIN	Levels used in ϕ_C computations
^Φ MAX' ^Φ MIN Φ [*]	Levels used in ϕ_C computations Computer variable used in roll-angle computations
[¢] OLD	Previous value of φ_{C}
θ	Great-circle angle from the current position to the desired target point
θ _{CT}	Cross track component of θ
θ _{DR}	$\mathbf{D}_{\mathbf{G}_{\mathcal{H}},\mathcal{H}}$ range component of $\boldsymbol{\theta}$
η	Ratio of θ_{CT} to θ_{DR}
η _D	Desired value of η at current ${ m v}_{ m R}$ (from stored trajectory)
<u>n</u> _N	Stored array of reference-trajectory η
۹ ₀	Sea-level value of earth's density
ρ	Estimated density from specific force measurements
ρ _ġ	Desired density for constant heating-rate mode
μ .	Earth's gravitational constant
ζ	Dummy variable used in reference trajectory lookup

Sugar Barris Contractor

2 2 2 1 1

الالمترجية ا

A Martine Contra

CONTRACTOR CONTRACTOR

1.5 2.5

1.2

Special Notation

I BIG TO

S. S. S. S. L.

()'	A-priori estimated value prior to measure- ment incorporation
()	Ensemble average of ()
[(_)] .	Magnitude of ()
() ^T	Transpose of ()

unit (__) Unit vector for (___)

sign () Algebraic sign associated with (). Value is +1 or -1, with sign (0) $\stackrel{\Delta}{=}$ +1

S44-10

3.	INPUT	AND OUTPUT VARIABLES
		Input Variables
i XA		Unit vector along vehicle longitudinal axis
<u>i</u> ya		Unit vector along vehicle lateral axis
M _{SM}	[-E	Transformation matrix from stable-member to earth-fixed coordinates
<u>r</u>		Vehicle position (stable-member coordinates)
^v −R		Vehicle velocity w.r.t. air mass (stable- member coordinates)
<u>v</u>		Vehicle velocity (stable-member coords.)
∆ <u>v</u>		IMU-measurement velocity change
Ĺt		Time interval over which $\Delta \underline{v}$ is taken
		Output Variables
α _C		Angle-of-attack command
¢с		Roll angle command

States and the states and the states and

6

1.1.7 2.7650

Sime and a single and

a subscription of the second second

This section contained determined flow diagrams of the Entry Guidance Routine.

A TO MANY A STATE OF THE STATE OF

Figure 2a. Entry Guidance Routine, Detailed Flow Diagram

Figure 2b. Entry Guidance Routine, Detailed Flow Diagram

S44-13

Figure 2e. Entry Guidance Routine, Detailed Flow Diagram

S44-17

The second second second second

(

 $\frac{i}{VR} = unit(\underline{v}_R)$ $d = \left| \Delta \underline{v} \cdot \underline{i}_{VR} / \Delta t \right|$ $\alpha_{\rm T} = \cos^{-1}(\underline{i}_{\rm XA} \cdot \underline{i}_{\rm VR})$ = $unit(\underline{v}_R \times \underline{r})$ <u>i</u>HOR Compute c_D From Table B Input: $\alpha_{\rm T}$, n_{mach} Output: c_D $\hat{\rho} = 2 \operatorname{J} \left(\frac{\dot{m}}{c_{\mathrm{D}}a} \right) / v_{\mathrm{R}}^2$ Compute h_{ρ} From Table C ô Input: Output: h.p

Figure 2i. Entry Guidance Routine, Detailed Flow Diagram

S44-20

A CONTRACT OF A CONTRACT OF

REFERENCES

- Marcus, F., "A Heat-Control Phase Guidance Law for Entry Based on a Density-vs. Speed Profile", MIT Draper Lab 23A STS Memo No. 16-72, March 17, 1972.
- Kriegsman, B., "Entry Guidance System for Shuttle Orbiter", MIT Draper Lab 23A STS Memo No. 54-72, October 24, 1972.
- Marcus, F., "A Simple Entry Guidance System for the Heat-Control Phase of Entry", MIT Draper Lab 23A STS Memo No. 7-72, January 28, 1972.
- Kriegsman, B., "Shuttle Entry-Guidance System---Design Rationale", MIT Draper Lab 23A STS Memo No. 56-72, November 7, 1972.

Submittal 59

CLOSED FORM ENTRY GUIDANCE LOGIC FOR

THE HIGH CROSS-RANGE ORBITER

1.0 SUMMARY

Entry guidance logic has been developed for the space shuttle which controls the entry trajectory by roll modulation while using a preselected angle of attack profile, which is a function of velocity. Range predictions are based upon an analytic solution to the equation of motion for equilibrium glide and constant load factor profiles. Inplane range errors are nulled by changing the magnitude of the roll angle and cross-range errors are nulled by roll reversals.

The basic guidance concept consists of three phases: a constant temperature phase, an equilibrium glide phase, and a constant load factor phase. The constant temperature phase is entered first and is designed to control the trajectory to a constant temperature profile until an inertial velocity of 25 000 fps is reached. At this point in the trajectory, the initial descent rate has been controlled and near equilibrium flight conditions exist. At this point, the equilibrium glide phase is entered and entry range predictions are initiated. These range predictions are based on an equilibrium glide trajectory until a load factor of 1.5g is reached, followed by a constant load factor trajectory of 1.5g until transition.

The roll angle during the equilibrium glide phase is selected to null the inplane range errors. When the resultant equilibrium glide trajectory intersects the constant g trajectory required to reach the target, control is transferred from the equilibrium glide phase to the constant g phase. At Mach 6, the entry guidance is terminated and control is transferred to the transition guidance.

2.0 INTRODUCTION

2

are at the second s

Analysis of entry trajectory shaping studies of the high cross-range orbiter has resulted in an understanding of the relationship between trajectory shaping and entry constraints and objectives (such as temperature limits, minimum TPS weight requirements, and load factor constraints). This analysis indicated that all know orbiter constraints and objectives could be met through proper entry targeting, and therefore, direct control of the trajectory to minimize constraint parameters is not necessary. This analysis also indicated that ranging could be accomplished early in the entry with negligible effect on the trajectory shape. In fact, indications are that delaying ranging until after the major aerodynamic heating has been passed could cause an impact on other constraints, such as load factor, later in the entry.

The analysis further indicated that several simple control modes can be used to satisfactorily control the orbiter trajectory. Analysis of these modes indicated that a combination equilibrium glide and constant g mode will not only produce a satisfactory trajectory but can also be used as a basis for closed-form guidance logic. This document presents an analytical guidance technique based on this concept. Roll angle is used to control inplane ranging and roll reversals are used to control cross range. The angle of attack profiles are predefined functions of velocity. Section 4 discusses the guidance concept and subsequent sections present a description of the guidance logic. Equation derivations, guidance flow charts, and a detailed description of the guidance logic are presented in the appendixes.

3.0 SYMBOLS

\$59-2

3 a? factor for constant g range prediction ATMM Clibr gain on drag term. Clcontroller gain on R term C2 C_{D}^{*} gor Sinient c^{EFT} mation matrix from EFF to EFT frame conversion from feet to n. mi. C_{FNM}* conversion from radians to n. mi. Crnm* $\cos \sin \theta$ CTH drag D* de in this g level for constant g range prediction $^{\mathrm{D}}$ cg drag required to reach target D_{o} D_{ref}* drag reference gravity acceleration of earth g* drag limit G2* Н altitude altity rate H almos pairie density altitude constant HS* 1450 vector orientation flag ro preentry H *

* These symbols appear in the guidance flow charts in appendix D

S59-3

4

Le Tani Salar Miller

2× 3 2

IFT*	flar for first pass through range prediction
IG*	flag to transfer to constant g phase
ISTP*	flag to determine sequence in range prediction
K10*	constant in D equation in constant heat rate
K2ROL*	roll direction indicator
L	lift force magnitude in the vertical plane
L/D	lift to drag ratio of the orbiter
$\frac{L}{D}_{V}$ command	commanded L/D in the vertical plane
$\frac{L}{D}_{V}$ ref	reference L/D in the vertical plane
LATSW*	flag to inhibit roll reversals through 180°
LMN*	L/D command for 5 ⁰ deviation from lift vector up for cross-range control
LOD*	vehicle L/D
LOD1*	desired inplane L/D
m	vehicle mass
N	total load factor
રં	stagnation point heat rate
ఢ ౖ*	commanded Q
R*	radius vector

* These symbols appear in the guidance flow charts in appendix D

359-4

₽¥	altitude rate
R _{CG} *	predicted constant g range
REQ*	predicted equilibrium glide range
RPT*	predicted transition range
RT*	total range to target
RTD*	conversion from radians to degrees
RTG	total range to transition point
R _{ref} *	reference R
Select*	flag to determine guidance phase
TPS	thermal protection system
UR	unit position vector
UT	unit target vector
V	velocity
·V	time derivative of velocity
v _{cg} *	inertial velocity to enter constant g phase
v _E *	relative velocity
v_{EI}	inertial velocity at entry interface
v _I *	inertial velocity
V _Q *	relative velocity to start transition
V _{Q2} *	inertial velocity to start transition
	· · ·

ie le se suiveire dans et le

0

 \bigcirc

WILLIAM STREET

<u>ور او</u>

* These symbols appear in the guidance flow charts in appendix D

S59-5

v _s *	local satellite velocity
v_{sat}	local satellite velocity
VS₩ ×	velocity to start range prediction
v _{XX} *	velocity to start transition α modulation
x _E x _E z _E	earth fixed frame (EFF)
x _T x _T z _T	earth fixed topocentric frame (EFT)
е К *	earth rotation rate
WT*	vehicle weight
Y*	lateral deadband switch point
α	angle of attack
α _c *	angle of attack command
Y	flight-path angle
Ŷ	time derivative of Y
Y _{EI}	inertial flight-path angle at entry interface
θ	central angle to target

* These symbols appear in the guidance flow charts in appendix D

S59--6

SHOW TO THE

pi π* density ρ density at sea level ρ₀* density at sea level $\rho_{\rm S}$ roll angle Ø roll angle command ø_c* ψ¥ relative azimuth relative azimuth to target ¥_π* flag to begin guidance O5GSW*

6.5

* These symbols appear in the guidance flow charts in appendix D

4.0 GUIDANCE CONCEPT

The entry guidance must keep peak acceleration levels, maximum temperatures, and heat loads within limits while maintaining ranging capability. The guidance must operate over a wide.range of initial conditions and vehicle lift to drag ratios with a minimum of changes to the guidance software. The guidance must also be insensitive to navigation system errors. One means of accomplishing this is to develop a set of analytic trajectory prediction equations based on a flight profile that satisfies the objectives previously mentioned. Trajectory shaping studies showed that two control modes can be combined to satisfy the trajectory limits and objectives, and would also be amenable to analytic solutions of trajectory parameters for constant and near optimum angle of attack profiles. These modes are equilibrium glide and constant g. This document presents the guidance logic for both a constant and a near optimum variable angle of attack profile. A detailed description of the guidance logic can be found in section 5.0, however, a brief overview of the guidance concept follows.

From 0.05g to an inertial velocity of 25 000 fps, the guidance controls the trajectory to a constant temperature profile. This profile controls the initial descent rate and stabilizes the trajectory prior to initiating ranging at an inertial velocity of 25 000 fps. Between an inertial velocity of 25 000 fps and a load factor of 1.5g, the entry trajectory is controlled to an equilibrium glide flight mode. During this phase the roll angle for equilibrium flight is analytically computed to satisfy the entry ranging requirements. The resultant equilibrium glide trajectory is maintained from the point in the trajectory where the equilibrium glide drag level is greater than the constant heat rate drag level (point 1 in fig. 1) to the point in the trajectory where the constant drag level required to reach the target is equal to the drag level resulting from the equilibrium glide trajectory (point 2 in fig. 1). From this point until transition, the guidance commands the roll angle required to maintain the constant g level required to reach the target. At Mach 6, the guidance transfers to the transition guidance mode.

\$59-8

Figure 1.- Guidance concept for the high cross-range orbiter.

5.0 GUIDANCE LOGIC DESCRIPTION

The basic guidance logic must perform three primary functions, these are trajectory parameter prediction, targeting, and attitude command generation. The guidance first performs trajectory and range predictions and then the controller converts these data into attitude commands which are provided to the autopilot for execution. An analytic reference trajectory is recomputed each computer cycle to correct for range errors. Based on this recomputed reference trajectory, a reference lift to drag ratio (L/D), drag level, and altitude rate are analytically computed and provided to the controller.

The total guidance logic can be divided into four major phases as depicted in figure 2. These phases are preentry, constant heat rate, equilibrium glide ranging, and constant g ranging. Several service routines are used during each phase such as targeting, lateral logic, roll command, and controller. The major phases are described in sections 5.1 through 5.4, and the service routines are described in section 5.5. A complete derivation of the range prediction equations and math flow is presented in the appendixes.

9

S59-9

5.1 Preentry Phase

The primary activity of the preentry phase is the computation of the attitude hold momentum prior to the atmospheric entry and the beginning of the computation of the entry targeting data. This computation defines a total range to target (RT) and the current heading to target $\psi_{\rm m}$. The equations used for targeting are discussed in

section 5.5.2. Until 0.05g, the spacecraft will be in a three axis attitude hold mode. At 0.05g, rate damping will be initiated and the guidance will transfer to the constant heat rate phase.

5.2 Constant Heat Rate Phase

During the constant heat rate phase a stable trajectory is established at an acceptable temperature prior to the initiation of ranging. A roll command is generated which will control the spacecraft along a desired constant temperature profile through pullout ($\dot{\gamma} = 0$). This phase is required to stabilize the trajectory prior to entering the equilibrium glide phase. The equilibrium glide ranging phase is entered after pullout at an inertial velocity of 25 000 fps. Appendix A presents the derivation of the guidance equations for the constant heat rate phase.

5.3 Equilibrium Glide Ranging Phase

At an inertial velocity of 25 000 fps, the guidance enters the equilibrium glide ranging phase. During this phase entry range predictions and reference trajectory parameters are computed which are required by the trajectory controller to eliminate range errors. However, trajectory control is not transferred to the equilibrium glide mode until the drag command from the reference equilibrium glide profile is greater than the drag command from the constant heat rate phase. This control mode transfer prevents a discontinuity in the total drag reference trajectory, thus eliminating an undesirable transient in the trajectory.

Closed form solutions of the equations of motion are used to predict the entry range and the reference trajectory parameters. These parameters are based upon an equilibrium glide flight at constant bank angle. If the equilibrium glide profile is flown at low speeds, higher than desired load factors may result; therefore, the trajectory profile is based upon a constant load factor starting when the load factor reaches 1.5g. The range prediction is accomplished by analytically

S59-10

predicting the inertial velocity at which the equilibrium glide trajectory will reach a total load factor of $1.5g~(V_{CG})$, and then

analytically predicting the range from the current orbiter velocity to V_{CG} based upon an equilibrium glide trajectory, and analytically predicting the range from V_{CG} to transition by assuming a constant 1.5g trajectory. The equilibrium glide roll angle is selected to make the resultant range prediction equal to the current range to the target.

Once the desired equilibrium glide roll angle has been determined, a reference trajectory is analytically computed and a reference vertical L/D, a drag reference, and an altitude rate reference is computed and sent to the controller. The controller then computes a vertical L/Dcommand based upon the difference between the reference drag and altitude rate commands and the actual trajectory drag and altitude rate. This vertical L/D command is converted into a roll command in the ROLL COMMAND service routine (section 5.5.4).

A new equilibrium glide roll angle is computed each pass through the guidance logic until the constant g ranging phase is entered. In addition to the equilibrium glide and constant g reference trajectory, a constant g reference profile is analytically computed based on the constant g level required to reach the target from the current spacecraft velocity. This constant g level is compared to the g reference level from the equilibrium glide trajectory. When the equilibrium glide drag reference is greater than the constant g reference profile required to reach the target, the equilibrium glide phase is terminated and control is transferred to the constant g ranging phase. Appendixes B and C present the derivation of the equations used in the equilibrium glide ranging phase.

5.4 Constant g Ranging Phase

The constant g phase predicts the constant g level required to reach the target and then computes the reference parameters required by the controller to fly the desired constant g profile. The range prediction is based on an analytic solution of the equations of motion which predicts the range flown from the current velocity to transition (assumed to start at Mach 6). The L/D reference, the desired drag reference, and the altitude rate reference is computed and sent to the controller. The constant g phase is terminated at the velocity for beginning transition. Appendix D presents the derivation of the equations used in this phase.

S59-11

5.5 Service Routines

Four service routines are used by the guidance system: controller, targeting, lateral logic, and roll command.

5.5.1 <u>Controller</u>.- The controller generates an L/D command in the vertical plane based upon the reference L/D, the reference drag level, and the reference altitude rate computed in the guidance phases previously described. The basic controller equation is defined as follows.

$$\frac{L}{D_{v}} \text{ command} = \frac{L}{D_{v}} \text{ ref} + Cl(D - D_{ref}) + C2(\dot{R} - \dot{R}_{ref})$$
(1)

The constants Cl and C2 vary depending on the particular guidance phase.

5.5.2 <u>Targeting</u>.- The targeting program computes the total range to target, the spacecraft heading to target, and the initial roll direction. These computations are made in the earth relative coordinate system. The total range is computed as the great circle range between the present vehicle position and the target position. As shown in appendix E, the current heading to target ψ_m is computed based upon

the current position and the target position. Knowing the heading to target, the initial roll direction is chosen to reduce the angle between the present heading and the heading to the target.

5.5.3 Lateral logic.- The lateral logic consists of a lateral deadband about the spacecraft heading. When the magnitude of the difference between the spacecraft heading and the heading to the target exceeds the lateral deadband and the roll direction is such that this difference will increase, the guidance commands a roll reversal. The azimuth deadband method of cross-range control was chosen because a cross-range deadband technique will cause a high L/D vehicle to spiral above Mach 1. Direct control of azimuth eliminates the spiral. For vehicles with a low roll response, it may be necessary to prevent a roll through negative lift at high g levels. This capability has been included in the guidance logic as presented in appendixes E and F.

5.5.4 Roll and alpha command. The roll and alpha command subroutine generates angle of attack and roll commands for the autopilot. This subroutine also converts the vertical L/D command from the controller into a roll command. The direction of the roll command is determined by the lateral logic.

\$59-12

6.0 CONCLUSIONS

An entry guidance logic for preselected angle of attack trajectories has been developed and initial studies using this guidance demonstrate excellent performance. This guidance logic combines control of load factor and temperature with ranging by means of an analytically computed reference trajectory. Analysis of this guidance concept has indicated the following:

a. Closed loop ranging can be provided by an analytical guidance logic while implicitly controlling temperatures and load factor.

b. The guidance system affords at appropriate times close control of all critical constraints (i.e., temperatures, load factor, and heat load).

c. The closed form range predictions afford fast computational capability which is desirable for an onboard guidance system.

d. Preliminary navigation error analysis indicates that this system is sensitive to navigation system errors.

S59-13

APPENDIX A - CONSTANT HEAT RATE PHASE

The constant heat rate phase computes a reference trajectory which is used until the ranging solution from the equilibrium glide and constant g phases is valid. The purpose of the constant heat rate phase is to stabilize the trajectory at a constant temperature during the initial entry into the atmosphere prior to the initiation of ranging which begins at an inertial velocity of 25 000 fps. This reference trajectory consists of a vertical L/D reference, a drag level reference, and an altitude rate reference. These reference trajectory parameters are used by the controller during the constant heat rate phase.

Stagnation point heat rate for a 1-foot radius sphere is defined as

$$\dot{Q} = 17\ 600 \sqrt{\frac{\rho}{\rho_o}} \left(\frac{V_E}{26\ 000}\right)^{3.15}$$
 (A1)

Specific aerodynamic drag is along the negative velocity vector with the magnitude computed as follows:

$$D = \frac{\rho V_E C_D S}{2m}$$
(A2)

Solving (Al) for p

$$\rho = \frac{\dot{Q}^2 \rho_0}{(17\ 600)^2 (V_E/26\ 000)^{3.15}}$$
(A3)

Substituting (A3) into (A2) gives

 $D = D_{ref} = \frac{26\ 000^{6.3} \rho_0 C_D SQ^2}{(2 \times 17\ 600^2) m V_E^{4.3}}$ (A4)

Equation (A4) provides an expression for constant heat rate in terms of a reference drag force. The reference drag is used in the controller. The altitude rate reference term used by the controller can be derived as follows:

S59-14

Assume $\rho = \rho e^{-H/HS}$

$$\dot{\rho} = \frac{\partial \rho}{\partial H} \frac{\partial H}{\partial t} = \left(-\frac{1}{HS}\right) \rho_{S} e^{-\frac{H}{HS}} (\dot{H}) = -\frac{\dot{H}}{HS} \rho_{S} = -\frac{\dot{R}}{HS} \rho$$
(A5)

$$D = \frac{\rho V_E^2 C_D^S}{2m}$$

$$\rho = \frac{2mD}{V_E^2 C_D^2 S}$$

Then taking the derivative assuming that C_{D} is a constant gives

 $\dot{\rho} = -\frac{4mD\dot{V}}{V_{\rm E}^{3}C_{\rm D}S} + \frac{2m\dot{D}}{V_{\rm E}^{2}C_{\rm D}S}$ (A6) $\dot{\rho} = -\frac{2\rho\dot{V}}{V_{\rm E}} + \frac{\rho\dot{D}}{D}$ $\frac{\dot{\rho}}{\rho} = -\frac{2\dot{V}}{V_{\rm F}} + \frac{\dot{D}}{D}$ Since $\dot{V} = -D$ $\frac{\dot{\rho}}{\rho} = \frac{2D}{V_{\rm E}} + \frac{\dot{D}}{D}$ Since $\dot{R} = -\frac{\dot{\rho}}{\rho}_{HS}$ $\dot{R} = -HS\left(\frac{2D}{V_E} + \frac{\dot{D}}{D}\right)$ (A7) $\dot{R}_{ref} = -HS\left(\frac{2D_{ref}}{V_E} + \frac{\dot{D}_{ref}}{D_{ref}}\right)$ (A8) S59-15

Equation (A4) gave

$$D_{ref} = \frac{26\ 000^{4} \cdot {}^{3}\rho_{O}C_{D}S\dot{Q}^{2}}{(2 \times 17\ 600^{2})mV_{E}^{4} \cdot 3} = K10V_{E}^{-4} \cdot 3$$
(A9)

where

Contraction of the second

2.66.

$$Kl0 = \frac{26\ 000^{6.3}\rho_{0}C_{D}SQ^{2}}{(2 \times 17\ 600^{2})m}$$
(Alo)

$$\dot{D}_{ref} = \frac{\partial D_{ref}}{\partial V} \frac{\partial V}{\partial t}$$

$$\dot{D}_{ref} = -4.3K10V_{E}^{-5.3}\dot{V}$$

$$\dot{D}_{ref} = 4.3K10V_{E}^{-5.3}D_{ref} = \frac{4.3D_{ref}^{2}}{V_{F}}$$
(A11)

Substituting (A4) and (A11) into (A8) gives

A CONTRACTOR OF THE OWNER OF THE

$$\dot{R}_{ref} = -HS\left(\frac{2D_{ref}}{V_E} + \frac{\dot{D}_{ref}}{D_{ref}}\right)$$
$$= -HS\left(\frac{2D_{ref}}{V_E} + \frac{4.3D_{ref}}{V_E}\right)$$

$$\dot{R}_{ref} = -6.3HS \frac{D_{ref}}{V_{E}}$$
(A12)

The nominal L/D required to fly the desired profile, $\frac{L}{D}$, reference is derived in the following manner:

$$V_{Y} = \frac{V_{I}^{2} \cos \gamma}{R} + L - g \cos \gamma$$

S59-16

or

 $(\)$

$$V_{\Upsilon} = \frac{V_{I}^{2} \cos \gamma}{R} + \left(\frac{L}{D_{V}}\right)D - g \cos \gamma$$

therefore,

$$\frac{L}{D_{V}} = \left(g \cos \gamma - \frac{V_{I}^{2} \cos \gamma}{R} + V_{Y}^{2}\right)/D$$
(A13)

Assume $\cos \gamma = 1$, $Rg = V \frac{2}{sat}$

 $\frac{L}{D_V} = \frac{g}{D} \left(1 - \frac{V_I^2}{V_{\text{sat}}^2} \right) + \frac{V_Y}{D}$ (A14)

(A15)

77.57.27.47

Since

$$\dot{h} = V \sin \gamma \approx V\gamma$$

 $\ddot{h} = V\dot{\gamma} + \dot{V}\gamma$
 $V\dot{\gamma} = \ddot{h} - \dot{V}\gamma$

for constant heat rate

त लगज्यक्षराज्य

100

$$\dot{h} = -6.3HS\frac{D}{V}$$

 $\dot{h} = -6.3HS\left(\frac{VD - D\dot{V}}{V^2}\right)$

therefore

$$V\dot{\gamma} = -6.3HS\left(\frac{\dot{D}}{V} - \frac{\dot{D}\dot{V}}{V^2}\right) - \dot{V}\gamma$$
 (A16)

S59-17

Since $\gamma = \frac{h}{v}$

$$\dot{\mathbf{v}}_{\mathbf{Y}} = \frac{\dot{\mathbf{h}}\dot{\mathbf{v}}}{\mathbf{V}} = \left(-6.3\text{Hs}\frac{D}{V}\right)\left(-\frac{D}{V}\right) = 6.3\text{Hs}\frac{D^2}{V^2}$$
 (A17)

Combining (A16) and (A17) gives

$$\dot{v_{Y}} = -6.3 \text{Hs} \left(\frac{\dot{D}}{V} + 2 \frac{D^2}{V^2} \right)$$
(A18)

Therefore

$$\frac{L}{D_V} = \frac{g}{D} \left(1 - \frac{V_I^2}{V_{\text{sat}^2}} \right) - 6.3 \frac{HS}{D} \left(\frac{\dot{D}}{V} + 2 \frac{D^2}{V^2} \right)$$
(A19)

However, since $\dot{D} = 4.3 \frac{D^2}{V}$ for constant heat rate

$$\frac{L}{D_{V}} = \frac{R}{D} \left(1 - \frac{V_{I}^{2}}{V_{sat}^{2}} \right) - 6.3 \frac{HS}{D} \left(4.3 \frac{D^{2}}{V^{2}} + 2 \frac{D^{2}}{V^{2}} \right)$$
(A20)

or

$$\frac{L}{D_V} = \frac{g}{D} \left(1 - \frac{V_1^2}{V_{Bat^2}} \right) - 39.69 \text{HS} \frac{D}{V^2}$$
(A21)

Therefore

$$\frac{L}{D_{v}ref} = \frac{g}{D_{ref}} \left(1 - \frac{V_{I}^{2}}{V_{Bat^{2}}} \right) - 39.69 \text{Hs} \frac{D_{ref}}{V^{2}}$$
(A22)

Evaluating the second term in the $\frac{L}{D}$ equation for the constant angle of attack case produces a maximum change in $\frac{L}{D_V}$ of 0.0097 units and for the variable angle of attack case 0.0216 units. Since this term is negligible

 $\frac{I}{v_{\rm v}} = \frac{R}{D_{\rm ref}} \left(1 - \frac{V_{\rm I}^2}{V_{\rm sat}^2}\right)$ (A23)

Equations (A+), (A12), and (A23) provide the D reference, R reference, and L/D reference that are required by the controller to maintain a constant heat rate trajectory. Figure A-1 shows a time history of the commanded and actual heat rate during the constant heat rate phase.

28

(_____

The second s

S59-20

APPENDIX B - EQUILIBRIUM GLIDE PHASE FOR

A CONSTANT ANGLE OF ATTACK

The purpose of the equilibrium glide phase is to predict the range capability of the spacecraft and to compute a reference trajectory which will terminate at the target point. This is accomplished by predicting analytically the range flown from the current orbiter velocity to the velocity at which a load factor of 1.5g is reached. Then the resultant range for a constant 1.5g trajectory is predicted in the remainder of the entry. The initial range prediction assumes an equilibrium glide trajectory with a roll angle selected to correct for range errors. Once the equilibrium roll angle has been predicted that will satisfy the range requirements, a reference drag trajectory is commanded that will correspond to the desired equilibrium glide trajectory.

The basic equilibrium glide equation is

$$V_{\Upsilon}^{2} = \frac{V_{I}^{2} \cos \gamma}{R} + L - g \cos \gamma \qquad (B1)$$

For equilibrium glide, $\dot{\gamma} = 0$; therefore

and the first states of tanks is an interesting a serie field when

 $0 = \frac{V_{I}^{2} \cos \gamma}{R} + L - g \cos \gamma$

Assuming $\cos \gamma = 1$, equation (B1) reduces to

$$0 = g\left(\frac{V_{I}^{2}}{Rg} - 1\right) + L$$
 (B2)

Since $Rg = V_{Bat}^{2}$, this equation reduces further to

$$0 = g \left(\frac{V_{I}^{2}}{V_{\text{sat}}^{2}} - 1 \right) + \left(\frac{L}{D_{V}} \right) D$$
 (B3)

Solving for D gives

 $D = \frac{g}{\frac{L}{D_V}} \begin{pmatrix} 1 - \frac{V_I^2}{V_{Bat}^2} \\ Bat \end{pmatrix}$ (B4)

Since L/D in the vertical plane = L/D × cos ϕ , equation (B4) becomes

 $D = \frac{B}{\frac{L}{D}\cos\phi} \left(1 - \frac{V_{I}^{2}}{V_{sat}^{2}} \right)$ (B5)

Using equation (B5), it is possible to predict the range that will be flown during the equilibrium glide phase by means of the following equations.

Assume that the equilibrium glide trajectory will be based on a constant roll angle, ϕ , and will be flown to the inertial velocity at which the predicted trajectory reaches 1.5g (V_{CG}). V_{CG} can be predicted by solving for V_T in equation (B5).

$$V_{CG} = \sqrt{V_{Bat}^2 - \frac{D_{Cg}V_{Bat}^2 \frac{2L}{D}\cos\phi}{g}}$$
(B6)

Where $D_{r,r}$ is the drag along the velocity vector equivalent to 1.5g

 $D_{cg} = \frac{1.5g}{\sqrt{1 + (L/D)^2}}$ (B7)

Equation (B6) is valid for all equilibrium glide roll angles that result in trajectories that reach 1.5g. However, trajectories based on small equilibrium glide roll angles do not obtain 1.5g. For this class of trajectories, the guidance can determine this by checking for a negative square root in equation (B6). When this occurs, the guidance must assume that the constant g phase is eliminated and the equilibrium glide trajectory required to reach the target is flown all the way to transition at Mach 6.

S59-22

The range flow degrad in the equilibrium glide phase can be predicted by the following equations:

$$\frac{\partial R}{\partial V} = \frac{\partial R}{\partial T} \frac{\partial T}{\partial V} = -\frac{V}{D} = -\frac{V_{I}}{D_{ref}}$$
(B8)

Using equation (B5)

$$\frac{\frac{L}{D}\cos\phi V_{sat}^{2}}{g} \left(\frac{V_{I}}{V_{I}^{2} - V_{sat}^{2}} \right)$$
(B9)

$$R = \frac{(L/D) \cos \phi V_{sat}^2}{g} \int_{V_I}^{V_{CG}} \frac{V_I}{V_I^2 - V_{sat}^2} dV \qquad (B10)$$

Integrating equation (22.0)

adden in a harden

$$R = \frac{(I/D) \cos \phi V_{sat}^{2}}{2g} LN \left(\frac{V_{CG}^{2} - V_{sat}^{2}}{V_{I}^{2} - V_{sat}^{2}} \right) = R_{EQ}$$
(B11)

The range from $\rm V_{CG}$ to transition can be analytically predicted by the equations

$$\frac{\partial R}{\partial V} = \frac{\partial R}{\partial T} \frac{\partial T}{\partial V} = -\frac{V}{D} = -\frac{V_{I}}{D_{cg}}$$
(B12)

$$R = -\frac{1}{D_{cg}} \int_{V_{CG}}^{V_{TRAN}} V \, dV = \frac{V_{CG}^2 - V_{TRAN}^2}{2D_{cg}}$$
(B13)

S59-23

Therefore equations (Bll) and (Bl3) represent the total predicted range for the entry from the current orbiter velocity to transition.

$$R_{\rm P} = R_{\rm EQ} + R_{\rm CG} \qquad (B14)$$

A comparison between R_p and the actual range to the target

(assumed to be the transition point) will produce a range error which can be nulled by changing ϕ , the equilibrium glide roll angle. Figure B-l presents the range correction capability as a function of the equilibrium glide roll angle. This figure shows that for an equilibrium glide roll angle below 43.5°, the equilibrium glide trajectory will not intersect 1.5g. Thus for targets that require these roll angles, an equilibrium glide trajectory will be flown throughout entry. This figure also shows that for large equilibrium glide roll angles (to the right of the line marked V_{CG} greater than V_{I} in fig. B-1), the desired equilibrium glide roll angle will intersect 1.5g prior to the current velocity. So for these cases, the guidance will immediately transfer into the constant g ranging phase whenever V_{CG} is computed to be greater than V_{T} .

Once the equilibrium glide roll angle has been determined, the controller reference parameters must be computed in order to fly the desired equilibrium glide trajectory. The controller requires a L/D reference, a drag reference, and an altitude rate reference. The drag reference term is simply equation (B5).

$$D_{ref} = \frac{g}{\frac{L}{D}\cos\phi} \left(1 - \frac{V_{I}^{2}}{V_{sat}^{2}}\right)$$

The L/D reference term is simply

$$\frac{L}{D_V} ref = \frac{L}{D} \cos \phi$$
 (B15)

where $\frac{L}{D} \cos \phi$ is the inplane $\frac{L}{D}$ required to reach the target.

The altitude rate reference can be derived as follows:

From equation (A8)

$$\dot{R}_{ref} = -HS \left(\frac{2D_{ref}}{V_E} + \frac{\dot{D}_{ref}}{D_{ref}} \right)$$

S59-24

$$D_{ref} = \frac{R}{\frac{L}{D}\cos\phi} \left(1 - \frac{V_{L}^{2}}{V_{eat}^{2}}\right)$$

Taking the derivative of D ref

n se anna a fhairte

1000

$$\dot{D}_{ref} = \frac{\frac{2g D_{ref} V_{I}}{\frac{L}{D} \cos \phi V_{gat}^{2}}$$
(B16)

Combining equation (A8) with equations (B5) and (B16) gives

$$\dot{R}_{ref} = -\frac{2gHS}{\frac{L}{D}\cos\phi} \left[\frac{\left(1 - \frac{V_{I}^{2}}{V_{sat}^{2}}\right)}{V_{E}} + \frac{V_{I}}{V_{sat}^{2}} \right]$$
(B17)

Equations (B5), (B15) and (B17) are sufficient to establish an equilibrium glide trajectory.

a in the second seco

(a) V₁ = 20 000 fps to 25 000 fps,

Figure B1. - Equilibrium glide range predictions.

S59-26

A CARE AND A

an star

(]

「「「「「「「「」」」

1.4. 1.1.1.1

19 10

 A.Y. 4

Figure B1.- Concluded.

APPENDIX C - CONSTANT & PHASE

53

The purpose of the constant g phase is to predict the constant g level required to reach the target and to generate a D_{ref} , R_{ref} , and a $\frac{L}{D}$ for the controller.

Equation (B13) presents the equation that analytically predicts the range that will be flown if a constant g profile (D_{cg}) is flown between V_{CG} and transition. This equation is as follows:

$$R_{CG} = \frac{V_{CG}^2 - V_{TRAN}^2}{2D_{cg}}$$

The range to the transition point is obtained from the targeting logic and is equal to the total range to target minus the desired range to the target at transition

$$R_{TG} = R_{T} - R_{PT}$$

The constant g level to reach the target becomes

$$D_{o} = \frac{V_{CG}^{2} - V_{TRAN}^{2}}{2R_{TG}}$$
(C1)

The constant g trajectory is controlled by means of the drag controller where

$$\dot{R}_{ref} = -HS \left(\frac{2D_{ref}}{V_E} + \frac{\dot{D}_{ref}}{D_{ref}} \right)$$

For constant $g \overset{i}{D}_{ref} = 0$, therefore

 $D_{nof} = D_{nof}$

$$\dot{R}_{ref} = -2HS \frac{V_{ref}}{V_{E}}$$

and the construction of the second states of the second second second second second second second second second

(c2)

As was the case for constant heat rate, a L/D reference term can be derived from the equation of motion

 $V_{Y}^{*} = \frac{V_{COS}^{2} Y}{R} + L - g \cos \gamma$

 $V\dot{Y} = \ddot{H} - \dot{V}Y$

 $\dot{H} = -2HS \frac{D}{V}$.

or

 \bigcirc

 $\frac{L}{D_V} = \frac{g}{D} \left(1 - \frac{V^2}{V_{sat}^2} \right) + \frac{V\dot{Y}}{D}$

(A14)

:(06)

and from equation (A15)

For constant g

 $\ddot{H} = -2HS \left(\frac{\dot{D}}{V} - \frac{D\dot{V}}{V^2}\right) = -2HS \frac{D^2}{V^2}$ (C3)

$$V\dot{\gamma} = -2HS \frac{D^2}{V^2} - \dot{V}\gamma \qquad (C4)$$

$$\dot{\mathbf{v}}_{\gamma} = \frac{\dot{\mathbf{H}}\dot{\mathbf{v}}}{\mathbf{v}} = \left(-2\mathrm{HS}\ \frac{\mathrm{D}}{\mathrm{v}}\right)\left(-\frac{\mathrm{D}}{\mathrm{v}}\right) = \frac{2\mathrm{HSD}^2}{\mathrm{v}^2}$$
 (C5)

$$J\dot{Y} = -4HB \frac{D^2}{V^2}$$

Therefore,

80

 $\frac{L}{D_V} = \frac{g}{D} \left(1 - \frac{V^2}{V_{Bat}^2} \right) - \frac{4HSD}{V^2}$ (77)

$$\frac{L}{D_V ref} = \frac{g}{D_{ref}} \left(1 - \frac{V_E^2}{V_{sat}^2} \right) - \frac{D_{ref}}{4HS} \frac{V_E^2}{V_E^2}$$
(C8)

S59-29

AND A DESCRIPTION OF A DES

Relative velocity was assumed for the constant g phase because of the requirement to switch from inertial velocity to relative velocity late in the entry when velocity is approximately equal to $V_{\rm sat}/2$.

S59-30

A CARE OF THE SAME AND A CARE OF THE SAME

987 (C. 1987)

' 55 ATTACK GUIDANCE

All necessary equations have been developed in the main text and in appendixes A through C. The final step is to connect these equations with decision logic to convert trajectory data from the navigation into a commanded roll angle and a commanded angle of attack for the autopilot. This appendix prover the guidance flow logic and all necessary equations and constants for the constant angle of attack case. Table D-I presents the constants and initial variable values for the guidance. Flow charts 1 through 13 presents the math flow logic for the guidance.

and the second secon

Contractor of the second second

TABLE E-I.- CONSTANTS AND INITIAL VARIABLE VALUES

ALMN C _D	1.5 0.336	g . n.d.
C _{EDEN}	0.000164578836	n. mi./ft
C _{RNM}	3437.7468	n. mi./rad
g G2 HS	32.2 2.5 28 500.	ft/sec ² g fps
H up IFT IG ISTP LATSW		n.d. n.d. n.d. n.d. n.d.
LOD	1.497 80.	n.d. Btu/ft ² /sec
R RPT RTD SELECT VQ VS VSW VXX WE WT Y T R	21 041 776. 182.4 57.29577951 1 6443. 25 766.1976 25 000. 6443. .72921149 E-4 140 000. 20./RTD 3.14159265 0.076474	ft n.mi. rad/deg n.d. fps fps fps rad/sec lb rad n.d. lb/ft ²
05GSW	0	n.d.

S59-32

1.4. 12

S59-34

 \bigcirc

Flow chart B2. - Targeting - Continued.

S59-35

Flow chart \$2.- Targeting - Concluded.

(186) (A

1.03

A 100

\$59**-**36

Flow chart D 4. - Constant heat rate.

S59-38

-

an the least of the

S59-40

Flow chart \$5. - Equilibrium glide ranging - Continued,

S59-41

69

. .

WALL THE TAKE OF ALL AND A

Flow chart 05. - Equilibrium glide ranging - Concluded,

s59-42

Flow chart D9. - Roll command.

19. C. 29. C.

S59-46

Submittal 58-Approach Guidance

1. INTRODUCTION

A MARKAN AND PARAMETERS AND A MARKAN STRUCTURES AND A MARKAN STRUCTURES AND A MARKAN AND A MARKAN AND A MARKAN

()

The Approach Guidance Routine presented here is designed to take the orbiter vehicle from the end of the entry phase (altitude $\approx 100,000$ ft) down to the start of the terminal guidance phase 5.9 n.mi. from the runway at an altitude of 6900 ft. and a velocity of 480 ft/sec. It is based on the ideas of Refs. (1) and (2).

The guidance routine consists of six modes: Acquisition, Energy Dissipation, Turn-in, Initial Approach, Heading Alignment, and Final Approach. The horizontal geometry is illustrated in Figure 1 in which the circled numbers refer to the various modes. The Acquisition Mode begins at 100,000 ft altitude, contains an angle-of-attack transition maneuver, and ends when the vehicle is within about 15 n. mi. of the runway. Energy dissipation involves flight in the vicinity of the runway around a cylinder of radius 13.5 n. mi. During this mode the vehicle descends from about 50,000 ft altitude to 26,000 ft. This helical flight usually comprises less than one half of a revolution around the cylinder. The next three modes, i.e. Turn-in, Initial Approach, and Heading Alignment, constitute a two-turn maneuver to place the vehicle on the appropriate final approach path. The Final Approach Mode establishes the proper interfaces with the Terminal Guidance Routine for the final maneuvers required to land on the runway.

Figure 1. Horizontal Geometry, Approach Guidance

S58-1

Contraction of the Article States and the second s

2. FUNCTIONAL FLOW DIAGRAM .

The basic flow of the Approach Guidance Routine is shown in Figure 2.

After the routine is entered and initialized, targeting computations are made to obtain the current values of position and velocity, and direction parameters of the vehicle relative to the desired touchdown point. Next, the mode is selected based on the current trajectory conditions, and quantities unique to the specific mode are computed.

The angle-of-attack command is used for vertical control and is computed during the first part of Mode 1 so as to accomplish a constant (-0.3 deg/sec) angleof-attack transition maneuver. During the remainder of Mode 1 and for Modes 2 and 3, an angle-of-attack which will yield a constant $(210 \frac{\text{lb}}{\text{ft}^2})$ dynamic pressure is commanded. Finally, during the last three modes, the angle-of-attack which will cause the vehicle to fly at a constant flight path angle (-11 deg) is commanded.

The roll-angle command is used for horizontal control and is computed for the various modes as shown in the following table.

Table 1

Geometric Criteria for Roll-Angle Command

Mode	Geometric Criterion	
1	Tangent to Energy Dissipation Cylinder (EDC)	
2	Fly on EDC	
3	Turn toward center of EDC	
4	Tangent to Heading Alignment Cylinder (HAC)	
5	Fly on HAC	
6	Align into vertical runway plane	

Finally, the rudder flare or speed brake is deployed during the last three modes in order to achieve a speed of 480 f/s at the end of approach guidance.

Notational Conventions

Upper-case letters represent matrices

Lower-case and Greek letters reserved for scalars and vectors

Vector quantities are underlined, e.g. \underline{x}

Vectors are assumed to be column vectors unless explicitly noted

Symbols Effective aerodynamic area of vehicle а Acceleration (RW coordinate) a c l Coefficient of lift $\partial(c l)/\partial(\alpha)$ cl_a Rudder-flare command d_c Distance between touchdown point and ED center ^dRT Turning factor f Gravity g Altitude h 'n dh/dt dh/dt h Altitude at beginning of Initial Approach h₁ Reference altitude h_R $d(h_R)/dt$ h_R

S58-4

^k 1	Contral gain	
^k 2	stars ol gain	
^k 11	Leit or right HA selector	
^ℓ D	Desired in specific force	
. m	Vehicle mass	
m _v	Mach no.	
M _{R-NED}	Run-way to NED Coordinate Transformation Matrix	
q	Breasure	
q _{old}	Dynamic pressure at last guidance call	
d ^D	Desired dynamic pressure	
ġ	dq/dt	
q _v	26 / 36	
rad .	Radians into degree	
^r DME	Distance from vehicle to Tacan	
^r ED	Radius of ED cylinder	
<u>r</u> NED	Horizontal component of vehicle position vector (NED-Tacan Coord.)	
<u>r</u> RT	Horizontal component of position vector (RN-Tacan coord.)	
s _{HE}	Integration of steady state heading error in Mode 2	
s _m	Mode selector	
t _c	Clock time	

Car.

S58-5

Δt	Time interval between guidance updates
<u>u</u> 1	Unit vector (1,0,0)
<u>u</u> 2	Unit vector (0, 1, 0)
<u>u</u> 3	Unit vector (0,0,1)
v	Vehicle velocity w.r.t. air mass
⊻NED	Horizontal component of vehicle velocity (NED Coord.)
ĽR	Vehicle velocity vector (R.W. Coord.)
[⊻] RT	Horizontal component of vehicle velocity (R.W Tacan Coord.)
у	Cross range to runway
ý	dy/dt
α.	Current angle-of-attack
α _c	Angle-of-attack command
¢	Roll angle command magnitude
¢c	Roll angle command
$\Delta \alpha_{\rm D}$	Desired angle-of-attack change
^{∆ ψ} C	Desired azimuth change
ψ.	Azimuth ($0 \sim 360^{\circ}$)
ψ_{c}	Azimuth command ($0 \sim 360^{\circ}$)
[¢] RW	Runway azimuth
θ _{HA}	Azimuth of $(-\rho_{HAR})$ vector

S58-6

θ _N	Angle to Tacan w.r.t. north (from vehicle) ($0-360^{\circ}$)
θ _T	Angle to Tacan w.r.t. velocity (from vehicle) ($0 - 180^{\circ}$)
ρ	Air density
۹ _P	Predicted range to go to key point
<u></u> <u> </u> <i>μ</i> AN	Vector from proper HA to vehicle (NED Coord.)
PHAR	Vector from proper HA to vehicle (RW-Tacan Coord.)
$-\rho'_{\rm HAR}$	Vector from other HA to vehicle (RW-Tacan Coord.)
<u>ρ</u> R	Vehicle position vector in (RW Coord.)
ρ _{RD}	Distance to touchdown point
PHAT	Vector from Tacan to proper HA center (RW-Tacan Coord.)

Coordinates:

(RW Coord.)

Runway coordinates, centered at touchdown point

z in runway landing direction, i.e. directed down-range and forward

x up

y x, y, z from right hand orthogonal coordinates

(RW - Tacan Coord.)

Runway coordinates, centered at Tacan or center of EDC (NED Coord.)

Local North, East, down coordinates at point of Tacan

Angle Measurements

 $(0, 360^{\circ})$ or $(0 \le \theta < 360^{\circ})$

 θ between 0 and 360⁰, measured clockwise

(0,180°) or $(-180^{\circ} < \theta \le 180^{\circ})$

 θ between (0 180°) if measured (clockwise)

 $(0 - 180^{\circ})$ if measured (counter clockwise)

S58-7

3.	INPUT AND OUTPUT VARIABLES
	Input Variables
₽ _R	Vehicle and the vector (RW Coord.)
⊻R	Vehicle vehicles of the ctor (RW Coordinate)
<u>a</u>	Vehicle service of n vector (RW Coord.)
ψ _{RW}	Runway azimuth (0 - 360 ⁰)
∆t	Time interventen guidance updates
	Output Variables
¢c	Command soil engle
. ^α c	Command angle-of-attack
d _c	Command rudder flare

•

الاحد المتريدة والمرابق يعلق الحافظ

i interaction

ele.

1

S58--8

•

18 S

5. DETAILED FLOW DIAGRAMS

This section contains detailed flow diagrams of the Approach Guidance Routine.

Figure 4a. Detailed Flow Diagram, Approach Guidance Routine

\$58-9

an all all the second and second states

Market States Inte

0

s59-11

CONTRACTOR STOR

28.

S58-14

ANGLE OF ATTACK COMMAND

S58-17

al designed and a second second

and the second secon

200 C

1.1

\$58-18

2. 19 A. 19

cerenter al antipart and a second a se

REFERENCES

- Deyst, J., Tao, M., "Approach Phase Guidance System", MIT Draper Lab, 23A STS Memo No. 11-A, September 1972.
- 2. Eterno, J., "Terminal Area Guidance for the Delta-Wing Orbiter", CG43-71M-89.

1. A. C. A. C.

1. INTRODUCTION

The Approach-Guidance Routine presented here is designed to take the orbiter vehicle from the end of the Entry Phase (altitude $\approx 100,000$ ft) to the start of the Final Landing maneuver (altitude ≈ 7000 ft). A detailed description of the guidance concept along with simulation results demonstrating its feasibility is given in Ref. (1).

The Approach-Guidance system is a closed-feedback-loop scheme. The vehicle energy is managed by controlling the rate at which energy is dissipated during a straight-in approach flight. Energy dissipation rate is controlled by flying at a constant value of dynamic pressure and varying the vehicle's lift to drag ratio with the Rudder Flare and or other available drag-increasing devices (e.g. body flap).

The complete approach flight consists of straight, fixed-length segments from the vehicle's initial position to the airport's main navigational facility (VOR, TACAN) or a suitable artificial checkpoint, then to a point in the final approach plane (intersection point) where the final flight path is intercepted, then straight towards the runway until the Final Landing Guidance System takes over (Outer Marker). Constant-bank turns link the straight flight segments.

The closed-loop energy management policy automatically compensates for any wind component that may affect the energy dissipation rate of the vehicle.

POINT

NOMENCLATURE

Notational Conventions

Lower-case and Greek letters reserved for scalars and vectors Vector quantities are underlined, e.g. \underline{x} Components of a vector \underline{x} are denoted x_1, x_2, x_3

Symbols

^a TAC	Azimuth of VORTAC
d _{INT}	Distance from touchdown point to final approach plane intersection point
^d OM	Distance from touchdown point to initiation of landing guidance system
^d TAC	Distance from touchdown point to VORTAC
e	Current vehicle energy
^e 1, ^e 2, ^e 3	Desired vehicle energy at target points
^e OLD	Value of vehicle energy at previous guidance pass
ė	Current vehicle energy dissipation rate
ė _D	Desired value of vehicle energy dissipation rate
ė _{IN}	Value of \dot{e}_{D} at which flyover mode is entered
ė _{OUT}	Value of \dot{e}_{D} at which flyover mode is left

ė _{MIN}	Upper limit of preferred e _D region
ė _{MAX}	Lower limit of preferred e _D region
g	Gravitational constant at sea level
i	Current target index variable
<u>i</u> dh	Unit vector in direction of difference between horizontal components of vehicle and target position vectors
<u>i</u> vh	Unit vector in direction of horizontal component of velocity w.r.t. touchdown point
k _E	Longitudinal channel coefficient
k _L	Roll channel coefficient
k _P	Vertical (pitch) channel coefficient
l ₁ , l ₂ , l ₃	Horizontal distances from target points at which target switching is to occur
đ	Current value of dynamic pressure
q _D	Desired value of dynamic pressure
$\frac{\mathbf{r}}{\mathbf{RT}}$	Vehicle position vector w.r.t, the touchdown point
$\frac{\mathbf{r}}{1}, \frac{\mathbf{r}}{2}, \frac{\mathbf{r}}{3}$	Target points position vectors w.r.t. the touchdown point
<u>r</u> DH	Vector difference between the horizontal components of vehicle and target position vectors
<u>r</u> old	Vehicle position vector at previous guidance pass
S FO	Switch indicating flyover mode is in effect

0

S60-3

C.C. C.C. SZAMA

s _{FP}	Switch indicating this is the first pass					
⊻RT	Vehicle velocity w.r.t. the touchdown point					
⊻H	Horizontal projection of velocity vector					
^α CMAX	Maximum permissible angle of attack					
^α CMIN	Minimum permissible angle of attack					
γ	Flight path angle					
ό _{RC}	Command Rudder Flare deployment angle rate					
δ _{RCL}	Maximum Rudder Flare deployment angle rate					
$\Delta \psi$	Heading error					
θ _C	Command vehicle pitch angle					
^θ CMINT	Minimum pitch angle during transition					
θ _{CMC}	Current lower limit for command pitch angle					
θ _{CM}	Corrected minimum limit for command pitch angle					
θ _{CMAX}	Maximum command pitch angle					
[¢] С	Command roll angle					
¢CMAX	Maximum command roll angle magnitude					
Special Not	ation					
Sign ()	Algebraic sign associated with (). Value is +1 or -1, with sign (0) = +1					
max ()	The maximum of all element enclosed in ()					

Sec. 1

ALLE LARGEMENT IN THE PERSON ALL A

- - -

min () The minimum of all elements enclosed in ()

() Magnitude of ()

ल गर स्ट्रा स्ट्रा

S60-5

and the second second

Server a state of the server of the server

2.

FUNCTIONAL FLOW DIAGRAM

The basic information flow for the Approach Guidance Routine is shown in Figure 1. This is based on the guidance concept of Ref. (1).

The guidance task is made up of three independent channels:

- 1. The pitch angle command is proportional to the difference between the desired and measured dynamic pressure. This command is limited so as to limit the pitch-down during the transition maneuver and the maximum and minimum angles of attack.
- 2. The desired energy dissipation rate is computed as the ratio of energy-to-be-dissipated to the distanceto-go. The Rudder Flare deployment angle rate is proportional to the difference between the desired and the actual energy dissipation rates. A discrete rate controller is superposed in order to drive the desired dissipation rate to a "preferred" value range.
- 3. The roll angle command is proportional to the difference between the horizontal velocity direction and the horizontal direction from the vehicle position to the target point.

The three channels guide the vehicle sequentially to three target points. Switchover from one target to the next is made at a predetermined horizontal distance from the current target.

The longitudinal channel (No. 2) is inhibited when the vehicle is initially too close to the first target (desired energy dissipation rate exceeds the maximum available). The guidance is then in "flyover" mode. Target switching is also inhibited in this mode.

1. Elias, A., "New Approach Guidance Concept for Shuttle", 23A STS Memo No. 58-72, 4 December 1972, MIT/C3DL.

3. INPUT AND OUTPUT VARIABLES

Input Variables

 \underline{r}_{RT} Vehicle position w.r.t. touchdown point (touchdown point coordinates: x-up, z-down page, y-crosstrack)

 \underline{v}_{RT} Vehicle velocities, r.t. touchdown point (touchdown point coordinates)

q Measured value of Dynamic Pressure

Output Variables

- θ_{C} Pitch angle command
- $\dot{\delta}_{C}$ Rudder Flare Alection angle rate command
- ${}^{\phi}C$ Roll angle command

4. DESCRIPTION OF EQUATIONS

4.1 Initial Target Calculations

During the initial pass, the target point horizontal position vectors are constructed from their distances to the touchdown point and the VORTAC azimuth w.r.t. the localizer direction:

> <u>VORTAC</u>: $\underline{r}_1 = (0, -d_{TAC} \sin a_{TAC}, -d_{TAC} \cos a_{TAC})$ <u>Intersection</u>: $\underline{r}_2 = (0, 0, -d_{INT})$ <u>Outer Marker</u>: $\underline{r}_3 = (0, 0, -d_{OM})$

Also, the following initialization tasks are performed:

- 1. Flyover mode switch off $-s_{FO} = 0$,
- 2. Initial pass switch on $-s_{FP} = 1$,
- Pitch limit = transition pitch limit (it is assumed that the guidance system is initiated with the vehicle flying on the back side of the L/D curve),
- 4. The target index i is set to 1 (VORTAC)
- 5. The "old" values of e and \underline{r}_{RT} are set to zero. This makes the back-difference algorithm of section 4.4 invalid during the first pass, so commands are not issued until the second pass.

4.2 Preliminary Calculations

At the beginning of every guidance pass, the flight path angle and horizontal vector from vehicle to target are computed:

$$\gamma = \tan^{-1} \left(v_{RT_{1}} / \sqrt{v_{RT_{2}}^{2} - v_{RT_{3}}^{2}} \right)$$

$$\underline{r}_{DH} = (0, r_{i_{2}} - r_{RT_{2}}, r_{i_{3}} - r_{RT_{3}})$$

4.3 Vertical Channel

The command pitch angle is:

REAL PARTY AND A PARTY AND A

 $\theta_{C} = k_{P}(q_{\dot{D}} - q)$

s60-9

The lower limit for the command pitch angle is the largest of:

- 1. The current absolute pitch minimum, θ_{CMC}
- 2. The pitch angle corresponding to the minimum angle of collector $\gamma + \alpha$ CMIN .

The upper limit for the second and pitch angle is the pitch angle corresponding to the maximum angle of attack, $\gamma + \alpha_{CMAX}$.

The current absolute pitch minimum is set to θ_{CMINT} during the transition maneuver, and to an arbitrary low value (e.g. -1 rad.) after the dynamic pressure reaches the desired value for the first time (i.e. at the end of the transition pitch-down).

4.4 Longitudinal Control

The current vehicle energy is computed from the position and velocity:

$$e = r_{RT_1} - (\underline{v}_{RT} \cdot \underline{v}_{RT})/2g$$

The current energy dissipation rate is computed as the back-difference:

$$\dot{e} = \sqrt{(r_{RT_2} - r_{OLD_2})^2 - (r_{RT_3} - r_{OLD_3})^2}$$

then the values of e_{OLD} and \underline{r}_{OLD} are updated.

The desired value of the energy dissipation rate is then calculated.

$$\dot{e}_{D} = (e_{i} - e) / | \underline{r}_{DH} |$$

and a Rudder Flare rate is commanded proportional to the difference between desired and actual dissipation rates:

$$\dot{\delta}_{RC} = k_E (\dot{e}_D - \dot{e})$$

this rate is then limited to the $-\dot{\delta}_{RCL}$, $\dot{\delta}_{RCL}$ range. This command is overriden if the value of e_D falls outside of a "preferred" range:

if
$$\dot{e}_{D} > \dot{e}_{MIN}$$
, $\dot{\delta}_{RC} = -\dot{\delta}_{RCL}$
if $\dot{e}_{D} < \dot{e}_{MAX}$, $\dot{\delta}_{RC} = \dot{\delta}_{RCL}$

S60-10

The "flyover" mode is enabled when \dot{e}_D is lower than \dot{e}_{IN} , and is disabled when \dot{e}_D reaches \dot{e}_{OUT} . When the "flyover" mode is enabled, the command rudder flare rate is zero.

4.5 Lateral Channel

Two unit vectors are computed:

$$\frac{i}{VH} = \frac{\frac{V}{RT}}{\left|\frac{V}{RT}\right|}$$
 is in the current vehicle heading direction

$$\frac{1}{DH} = \frac{1-DH}{|r-DH|}$$
 is in the direction from the vehicle to the target

The dot product of these vectors is the cosine of the angle difference between the desired and the actual headings. In order to resolve the sign indetermination of the \cos^{-1} function, the single component of the cross product

$$\underline{i}_{DH} \times \underline{i}_{VH} = i_{DH_2} + i_{VH_3} - i_{DH_3} + i_{VH_2}$$

is computed. This is the sine of the heading difference, and its sign is used to resolve the indetermination.

This command roll angle is then calculated:

$$\phi_{\rm C} = k_{\rm L} \Delta \psi$$

This command is limited to the $-\phi_{CMAX}$, ϕ_{CMAX} range.

4.6 Target Switching

The target index variable, is incremented when the horizontal distance to the current target reaches the target's switching value. When the last target's switching distance is reached, (i = 4), the Approach Guidance is terminated. Target switching is inhibited during the "flyover" mode ($s_{\rm FO} = 1$).

Commands are not issued during the first pass.

S60-12

and the second secon

$$\frac{1}{\theta_{CM} = -1}$$

$$\frac{1}{P_{CM} = \max(\theta_{CMC}, \alpha_{CMIN} + \gamma)}$$

$$\frac{1}{\theta_{CMAX} = \gamma + \alpha_{CMAX}}$$

$$\frac{1}{\theta_{C} = k_{P}(q_{D} - q)}$$

$$\frac{1}{\theta_{C} = \max(\theta_{C}, \theta_{CMAX})}$$

$$\frac{1}{\theta_{C} = \max(\theta_{C}, \theta_{CM})}$$

$$\frac{1}{\theta_{C} = \sum_{r=1}^{r} \frac{1}{r_{r}} \sum_{r=1}^{r} \frac{1}{r_{r}}$$

×1.13

Ć

Transference and the

10.00

HE NOT THE PARTY OF

Figure 2b. Approach Guidance Routine, Detailed Flow Diagram

.

7. 77. 77. 77.

ar an a real and the second second

Figure 2c. Approach Guidance Routine, Detailed Flow Diagram

S60-14

Submittal 29: Final Approach Guidance

Introduction

These equilibrium are submitted as candidates to fulfill the unpowered Final Approach Guidance's equivaments for the space-shuttle Orbiter. They include Autoland lateral and long indinal guidance equations. The scheme is all inertial; navigations aids are reacted by to update the navigated vehicle state. Pitch rate and speed-brake commands are computed and issued to control in-plane approach. Lateral position error and its integral plus heading-angle error are used to form the vehicle roll command. (There is no decrab or wings level maneuver; the assumption is made that the gear is designed to accommodate the stress of crabbed landings in design winds).

Functional Diff. Cam

Figure 1 is Functional diagram. Figure 2 is a block diagram. (For general information, the autopilots being used in simulation runs are included in Figure 2.)

Inputs to the Guidance module are from the Final Approach and Guidance Navigation module; the inputs are the navigated state in the Earth-fixed landing coordinate system. From this are calculated the range to touchdown target, altitude, velocity magnitude, flight-path angle lateral position and heading angle. Outputs are pitch cate command, speed-brake position command and vehicle roll command to the amount of the guidance roll command drives a roll-rate aileronautopilot inner loop with roll attitude outer loop. Roll rate command is interconnected to a rate command rudder autopilot with turn coordination and normal acceleration inputs. The acceleration and heading-angle signals are instrumental in holding the orbiter to the final approach plane in crosswinds.

Coordinate System

The autoland guidance uses vehicle position and velocity relative to a runway coordinate system, as shown in Figure 3. Figure 3 also indicates longitudinal sign convention for the equations. The "altitude of the IMU" at touchdown is represented in the equations as touchdown altitude.

Equations and Flow

Figure 4 presents the detailed guidance equations. Autoland guidance is initiated with the vehicle established on the final approach path near the plane of the runway at 3000 to 10000 feet altitude. It is currently entered 8 times per second although little performance degradation is evident at half that frequency.

S29-1

On the first call, an initialization and targeting section is entered. Targeting variables are used to define the flare, shallow glide, pull up and steep sections of the reference trajectory. A steep reference flight path angle is calculated such that the trajectory passes through the initial vehicle position. If, during the steep phase, navigation updates cause large vehicle altitude errors, the steep portion of the reference trajectory is retargeted to pass through the new vehicle position. A linear desired velocity profile is also computed from the vehicle's current velocity to a target value at the beginning of pull up.

Reference and actual values of h and & are differenced and drive the guidance loops shown in Figure 2. Since altitude is approximately equal to the integral of V_j , the velocity term in the denominator of the altitude error gain makes that loop insensitive to velocity variations. The inner loop controls & which is proportional to h and provides damping for the outer loop. It is compensated with a second order digital filter which effectively cancels two undesirable pole-zero pairs arising from the autopilot-vehicle dynamics. This allows stable operation of the inner loop at a higher gain level and tighter closed loop control. The accuracy of the autoland maneuver is improved by injecting the open loop pitch rate commands i_r and q_{cop} . The q_{cop} signal is composed of three parts (q_{cv} , q_{cm} , q_{cge}) all of which are tuned to the specific vehicle being flown. The q_{cm} term is a sinusodial pitch rate term added during pull up and again, with a different amplitude and period, during flare to lead the vehicle through these maneuvers. The q_{cv} term ramps up to a constant value after the pull up maneuver and provides the increasing angle-of-attack necessary to maintain lift as the vehicle decelerates along the shallow slope. The q_{cge} term ramps down to a constant value during the flare maneuver which helps the vehicle drive through the ground effects and minimizes runway float. Typical plots of these terms are sketched in Figure 2.

Lateral Guidance

Practice and their present of the

and the second second second second

The lateral guidance is all-inertial. A decrab maneuver was not studied; the assumption being that the gear is stressed for crabbed landings in design winds. The roll gain is halved during flare which levels the wings somewhat in steady-state crosswinds.

The lateral guidance equations are presented in Figure 4. On the initial pass, the roll gain, crossrange integral gain, and the heading gain are stored. On a normal pass the crossrange gain, K_y , is calculated as a function of velocity. When altitude becomes less than 50 ft, the roll command gain is decreased from 6 to 3 over a 2-second period. The roll command is the sum of a crossrange,

integral of crossrange, and velocity heading angle term. It is limited and issued to the autopilot.

Velocity Control

The speed brake is commanded to a position proportional to the sine of the velocity error. Zero error is at 30 degrees brake for bi-directional control. At the beginning of pull op the brake is completely retracted to eliminate pitch rates from transients near touchdown.

Constants/Variables Summary

Figure 6 summarizes variables and constants.

S29-3

a series and the series of the s

FIGURE I FUNCTIONAL DIAGRAM

Le mille alle alle a

New Market Contraction of the second second

	bç d, bê X	DATE	LOCKHEED	ELECTRONICS COMPANY	Poon PER	•
Frepared	Peters		TITLE		-1	
Chackad		<u> </u>	FIGURE	Z= Z D BLOCK DIACRAM	Model	
pproved		<u> </u>	AUTOLAN	D DLOCK DIAGRAM	Report No.	
	$K_{kV} = .$	4	,			
		2 /2 - 92	5) / 3 - RHA	1 - 1 - 1		
	$D_{\gamma} = -$	(2-88	3)(2-745)	for 1 - 8 sec		
	Sec / = -	1.4 (Z) Z	9I) 	DAP T= YB		1
	19e					
	8e/ =	<u> </u>		actuator		
	dec .	1 + .1 \$		~		
	a .	2.695 (1.	+ . 5 (188)) linearized at	V = 350 fps	
	1/se 1	+ 2 (.552	$\left(\frac{1}{10586}\right)^{2}$	used in a a	in	
	N .	······································	$\frac{1}{2} \left(1 - \frac{1}{2} \frac{1}{2} \right)$	determinatio	n only	
	1/q = 1	<u>(1 + 2.36</u> <u>S (1 +</u>	$\frac{5}{2}$	-)	-	
	•	1.1.4	. 6 / 8 8]	• • •		
				••	•	
			·			
				×		
	-					
	-				•	
			•		•	
			S29-6			
1						

AUTOLAND EQUATIONS

AT 8 13

IN THE REAL PROPERTY CONTRACTOR STRATEGY CONTRACTOR

-0. A. C. T.

الم والمدادما إلى

FIGURE 4-2 AUTOLAND EQUATIONS

N.

NPHASE= 5

του « Ωα≠ Hare over

addadada a ha haaraa a

FIGURE 4-4 AUTOLAND EQUATIONS

CALC

A CONTRACTOR OF A CONTRACTOR OF

AUTOLAND EQUATIONS

a contra property of the

14.16

CANTER AND THE REAL PARTY IN A PARTY IN

FIGURE 4-6 AUTOLAND EQUATIONS

1.10

۰,

FIGURE 4-7 AUTOLAND EQUATIONS

S29-15

The state State A. State State

all rear se

्र प्रसार के दुस्त रहा

WY FALLER THE PARTY OF THE PARTY OF

			FIGURE 6-1 VARIABLE SUMMARY		
	MNERION I	04115	DEFINITION	NUMINAL VALUE UN Eapecieu Rahge	Рхсбаарыгас Касбрь Н 503 Сх 0+ 10 503
ſ	אל הבנואן	SEC	. GUIÜAHCE TIME INTERVAL	.125UU	2+84400
2 c c	MOVU XX	FT/SEC	DESTRED DERIVATIVE OF VEL• MRI MAMGE	00019	±.1000
212	С ₂₂ ЕН4	FΤ	UESIKED ALF. AT END OF FLAKE	12.	20.
260	n. F.M.	NOVE - 240	TAAGETING CONSTANT # P48 - FAG	00090.	±1.00000
267	MA FMA	NOHE - RAU	DESIKEU TUUCHUOMN FLIGHT PATH ANGLE	- c - c - c	¢uuuo•1∓
514	Ko4 F 48	ي بو	KANGE AT ENU OF FLARE	•	1 UUU -
209	C+ FR+U	F T	RANGE COVERED DURING FLARE	2400	1000.
4.4	J' WAMA	RAU	FLIGHI PATH ANGLE	-1.000001 1.00000	±2.00000
୍ରି 529-	12 GAMC	J A L	CUMMANUED FLIGHT PATH ANGLE	-1-00008- 1-UAUDO	*z.00000
-18	P GAMUT	KAU/SEC	TIME DERIVATIVE OF FLIGHT PATH ANGLE	174531 -17453	t .17453
404	GAMDII	RAU/SEC	TIME DERIVATIVE OF FLIGHT PATH ANGLE	1745317453	t.17453
69	ż, GAMUTR	RAU/SEC	TIME DERIVATIVE OF REF FLIGHT PATH ANGLE	•• 17453• •17453	±.17453
с С	AMK X	KAU	KLFERLNCE FLIGHT PATH ANGLE	50000; -00000	±1.00000
207	Yse GAMSH	RAU	FLIGHT PATH ANGLE FUR SHALLO" PHASE	- • US 236	±1.0000
208	GAMST	RAU	FLIGHT PATH ANGLE FUR STEEP PHASE	42689	1.0000
٤Ÿ	ja, GUTLÁG	SEC	TIME LAG FROM G TU GAMA DOT	1 • 60000	10.0000
U ¢	Ye at	RAU	GAMA LAROA	34907; -34907	±1.euuuu
- 7	Jee GEMI	RAU	PREVIJUS VALUE OF GE	3494734907	
7 7 7	Ver GEM2	4 4 U	PREVIUUS VALUE OF GEMI	34907.	
23	KY GKG	1 / > ¢ C	uana galn	J. UDUDU	1 06040

and the same state

(

0	-	·	÷		0
	•.		FIGURE 6-2 VARIABLE SUMMARY		
	1 N E 1 C 1	c1140 21	JEF 1 M I T 10%	אסאזאר עארטר טא באפרכונט אאיקנ	РАССААТМ 1.14 Кансе, 4 2.07 Са 0. 10 2.03
4	1. K (j. J.	バイド/ ビイド	GATA UUT GAIP,	1 • Janau	14.00000
17	Part of the second	1 / 1	ALTITUUE GAIN = SKHAV DIVIDED BY V	• UV16U1 • UuzQu	• 0100
	LAHAN LA	1/skC	Cu.istant = VELOCITY TIMES ALLITUE GAIN	- 40n0t	10.0000
40	44, 68.PHIC	イムシノドムレ	WULL AUGLE GALS	1.0000	10.00000
<u>د ک</u>	Ky GKY	RAUZET	CHUSS RANGE GAIN	•04020• •4444	• 06160
0 7	ALL GRYI	1/360	CROSS RANGE INTEGRAL GAIN	• 46/00	1.04440
220	162 GACIAN	3202	LAUDING GLAR COMMAND (18002N; 080F)	•00000•1•0000•	1.0000
٥٤	I .c	FT	ALTITUVE	U] U.UU	10000.
9 77 529	ЦŮН	FT/SÉC++2	ALTITUDE ACCFLERATION	-10., 10.	1+ 1 2 0 .
° 77)-19	1004	FI/SEC	ALTITUDE RATE .	*3u., 0.	±104.
5.03	2-с н0ТЭ	FT/SEC	UESIRED TOUCHUNWN ALTITUDE RAIE	00000	£10.04040
ۍ ۲ ک	ře hE	F T	ALTITUUE EAROA AA-A	* lu., IB.	ן עטט.
248	J HEUING	RAU	HEAUING ANGLE = ATAN(VYLS/VXLS)		±2.0u000
412	C HEDHEC	4 A U	CUMMANDED HEAUING ANGLE	0000	2.64440
504	her MERTHG	61	ALT. ENHOR TO RETARGET PHASE 1	1 u O •	1040.
177	hiss HGERUM	L 1	ALTITUDE TO CUMMAND LANDING GEAM JOHN	• D D C	10440.
479	I JANMA	FT	ИАХІАЧМ ОЕ МРЦІ АЧР НКРЦТ	•0	10000
124	нмхРц]	F T	МАХІМИМ ОЕ МРЦТ АЧО НКРЦІ	140.	10434.
774	н Р., 1	FT	ALTITUDE LIMIJED FOR PLOTS	с•, 1 ⁴ 0.	1000.
0	***	F 4	11.2.4.2.4.6.4.4.4.1.1.1.0.4.	• ו' אסל	וייי.

· · · · · ·

		-		FIGURE 6-3 VARIABLE SUNMARY			
	τ	INÉMUN]	LC UNITS	DEFLUITION	NOM NAL EAPECI	VALUE ОК Еи Май б е	PACGAAFMI2 Xange, H 2 0x 0. 10 2
217	r 1	1001	FT/Stc.	KEFERENCE ALTITUDE MATE	-34.	• 5 -	4100.
423	¥	KPL T	FT	KLF ALTITUDE LIMITEU FOR PLOIS	• 	140.	1000.
201	Ь., н Г	a	و ل	100C4004N ALT1100E		12.	
513	Ъ Т	5441	н Н	ALT TAKESHOLD FOR CROSS RANGE INTEGRATION	1 1.	•	1.70C.
-	2	111	JNONE	IHITIALIZATION Switch	• 00000	1• 6000	1.0000
4 J U	Fri NF	HZRF	NONE	FREEZE RUDDER FLARE S#ITCH	•00000•	1.0000	1.0000
t 7	a ₽	HASE	NONE	FLIGHT PHASE SWITCH	1.00000	000°nu•S	, 5+0000
11	0. 2	TINE	NONE	PAINT SWITCH	1	• ០០០០ 1	10000.
5 5 20-20	50 ¹ ".√	٨	КАИ	PREVIOUS VALUE OF GAMA	•00000•1_	1-0000	±z•00005
439	<i>έ</i> , ι ο Κ	Ĵ	RAD	Previous value of Rfc	• 00000	1.50000	1.50000
440	υŢ		SEC	PREVIDUS VALUE OF TIME	• • 7 7	160.	1000
1+1	χ, υΥ		F T	PREVIUUS VALUE OF CROSS RANGE	•••	1 4 4 9	10000
211	hy PH.	æ	۶T	UESIKE ALTITUUE AT ENU OF Flane <i>Pull up</i>		202 •	1000.
114	4с рн	1 C	KAU	RULL COMMAND	•[7453•	. 5236U	±1,00000
413	е, н	۱cL	Х A U	KULL COMMAND LIMIT	• 62471•	0957¢.	1•0000
265	Ed €		NONE - KAU	TARGELING CONSTANT # CAMSH # GAMST	•	7591	1.00000
265	nd do.u	œ	NONE - RAD	NEG. UF SHALLUN SLOPE FLIGHT ANGLE	•	5236	1.0000
202	RAF PH	т	FT	KANGE AT END UF PULL UP	Ť	• 00 •	10040.
210	P d	ס ד	ЕŢ	KANGE COVERED DULING PULL UP	5 L	• 000	1000.
205	, , , , , , , , , , , , , , , , , , ,	ŗ	FT/SEC	ULSIRED VELOCITY AT SIART OF PULL UP		345.	1000

100

1.00

æ

				-	•		0
				FIGURE 6-4 VARIABLE SUMMARY			
		ANEMONI	- 1 I N I L 2	DEFINITION	MOMINAL EAPECIE	KALUE OR Bange	PRCGRAMMING Kange H 20M 04 0. 10 20M
7	3	ر. ج	RAUZSEC	PITCH KATE COMMANU	04727.	.14727	t,17453
, 4U 2	Seve	uCGÉ	RAUISEL	GROUND EFFECT COMPENSATION FIICH HAIL CMU	00000	57410.	t e17453
5 U #	9.6	acgEU T	KAU/SEC++2	UGGE HATE	00873.	• 0000	• 0000
ר כ ד). Se L	m C L I M	RAU/SEC	LIMIT FOR PITCH RATE COMMAND	• 18	1725	t •17453
430	S c.m.	, DCMAN	KADISEC	MANUVER PITCH RATE COMMAND	• 00000 •	.01745	•17453
104	· %	ia C.M. I	RAD/SEC	PREVIJUS VALUE UF QC		.08727	t .17453
19 77 77	2 3S	1 4CM2	RAU/SEC	PREVIDUS VALUE OF ACMI		.04727	t. 17453
S 215	2.01	, acopen	RAD/SEC	OPEN LOOP PITCH RATE CMD # QCV+4,CGE+4CMAN	08727.	.08727	t •17453
29-2	, ,	o CP	RAU/SEC	CLOSED LODP PITCH RATE COMMAND	08727.	.08727	±.17453
104	5	βCV	RAU/SEC.	PITCH RATE CMU TO CUMPENSATE FOR V UUT	•00000•	• UU 6 9 8	•17453
435	 2 ,	ACVUOT	RAD/SEC++2	TIME RATE OF CHANGE OF QCV	•00000•	. U0873	.17453
213	9647	r acvīkg	RAU/SEC	MAXIMUM GOV	• 00	0698	1+00000
431	7.90	, ogetre	RAD/SEC	ALAUT OCCE		1571	1.0000
424	9 10	NAMG .	RAD/SEC	MAXIMUM MANUVER PITCH RATE COMMANU	•00000•	• U1745	.17453
429	9 9	WANSW	NONE	MANUVER SALTCH	• 00000	1.00000	1 • 00000
5 D	×	x	۶ ۲	KANGE	-1001-	30000	10000
243	ۍ م	, RFC	RAU	RUDDER FLARE COMMANU	•00000•	1 • Suudu	2 • 00000
250	۲۰	REDV	FT/SEC	KUDDER FLARE GAIN		7.	50.
284	K.	K KFCMAX	KAU	TAXIAUM RFC	1 - 5	onan	2 • 0 0010
592	×.	RECHIN	K A U	MINIMUX RFC	·	nana	
					-		

· •

10%的 10%

CA

			FIGURE 6-5 VARIABLE SUMMARY			
	4 A F F 2 C N	IC UNITS'	DEFINITION	NOMINAL VALUE EAPECTEU HAN	רד ה כ ג	РКОСКАНТ 174 Кагог н 70 Ск 0+ 10 70 Ск 0+ 10 70
299	RFCPLT	. р Ш С	KUUDE4 FLARE COMMANU BIASED at 300	300.	• 0 7	1 upu -
286	· L RFCRAT	RAU/SEC	MAXIMUM RUDDER FLARE HATE	.34907		1.00000
430	P. RHUMAN	FT	KANGE COVERED DURING MANUVER	2400., 501	• 0 7	10040
+2+	JANPLI	FT	MININUM OF RPLT	-1000-		±1u0000.
4 2 5	RMXPLT	ار لا	MAXIMUM OF RPLT	4000		±100000.
טטג	Pro HNTU	F T	ULSIRED RANGE AT TOUCHDOWN	•0		±10000.
124	K. RUMAN	FT	APPROX. RANGE AT START OF MANUVER	2000.1 Suú	• 00	10000
421	RPLT	FT	RANGE LIMITED FOR PLOTS	-1000. 400	• 0 0	±10000.
\$57 529-2	RHFC	FT	RANGE BIAS FOR RUNDER FLARE CUMMAND	U•• 96U	•00	1000.
22	TIME	SEC	TIME	0 • • 18	÷0	10000.
10	TPACHG	SEC	TIME OF THE LAST PHASE CHANGE		۹ 0 •	1 40000
10	> >	FI/SEC	VEHICLE VELOCITY MAGNITUDE	25u., 45	5 0.	1000.
243	V, VÜ	FT/SEC	ULSIRE VELOCITY	300+ 40	• 0 ウ	100.
255	Vr+c VRFC	FI/SEC	VELOCITY BIAS FOR RUDDER FLAKE COMMANU	300.1	• 0 ח	1006.
202	V ₁₀ VTD	FT/SEC	DESTRED TOUCHUOWN VELOCITY	303.		50U.
7	VXLS	FT/SEC	VEHICLE VELOCITY DOWN RUNWAY	25U+• 4u	• 0 •	1000.
10	۷۴۵۶	FT/SÉC	VEHICLE VELOCITY CRUSSRANGE	50	• D <	1000.
ι γ	× 12 ک	FT/SEC	VEHICLE VELOCITY DOWN	•	- 57	•0.01.
	x L S	FT.	X VEH. POS. POSITIVE DOWN RUNAAY	-1000- 3000	•00	10000
249	* *	FT	CROSS RANGE	-1000. 1000	• 0 •	±10000.

-

۰.

		·	- -	-	0
			FIGURE 6-6 VARIABLE SUNMARY		
	ММЕНОМ I	C 1 M D .	05F441T10M	NOMIMAL VALUE UN Eàpérieu Mangé	РАС6КАМИ 12 Калег. 1 70 Ст 0. 10 25
у. У	1 ×	FT	INTÉGRAL UF CAGSS RANGE	-500u., suud.	• 10n01+
л	7 L S	FT .	Y VEH. POS.	• 0 n n 1 • • • n a 1 •	*10000.
201	Y I HRES	۶ ۲	Y THRESHOLD FUR CROSS RANGE Lut	EGAA110N	100.
ø	115	FT	Z VEH• POS•, POSITIVE DOAN	-500.	•1u0000
17	7 4:0 1	NONE	FIRST DENOMINATUR Z-PLANE RUUT	, 48300	00000-1
19	7402	NONE	SECONU DENOMINATOR 2-PLANE RUUT	00442.	1.00000
10	7801	NONE	FIRST NUMERATOR Z-PLANE ROUT	• 93500	1-00000
P	2 K 4 2	NOVE	SECONU NUMERATOR Z-PLANE KUUT	• 44600	1.00000
		•			
S29-23					
				·	· · ·
			•		

Submittal 6: CONIC STATE EXTRAPOLATION

×.

I. INTRODUCTION

The Conic State Extrapolation Routine provides the capability to conically extrapolate any spacecraft inertial state vector either backwards or forwards as a function of time or as a function of transfer angle. It is merely the coded form of two versions of the analytic solution of the two-body differential equations of motion of the spacecraft center of mass. Because of its relatively fast computation speed and moderate accuracy, it serves as a preliminary navigation tool and as a method of obtaining quick solutions for targeting and guidance functions. More accurate (but slower) results are provided by the Precision State Extrapolation Routine.

S6-1

ALC: NOT OF

	N-DMENCLATURE
а	Semi ser axis of conic
c ₁	First contrarameter ($(\underline{r}_0 \cdot \underline{v}_0) / \sqrt{\mu}$)
°2	Second contract parameter $(r_0 v_0^2 / \mu - 1)$
с ₃	Third conic parameter $(r_0 v_0^2 / \mu)$
С(ξ)	Power series in ξ defined in text
Е	Eccentric omaly
f	True anomaly
H	Hyperbe w analog of eccentric anomaly
i	Counter
i max	Maximum permissible number of iterations
ⁱ ro	Unit vector in direction of r_0
i_v0	Unit vector in direction of \underline{v}_0
р	Semilatu, ectum of conic
^p N	Normalized semilatus rectum (p/r_0)
Р	Period of conic orbit
r ₀	Magnitude of <u>r</u> 0
<u>r_0</u>	Inertial position vector corresponding to initial time
• •	^t 0 .
r .	Magnitude of $r(t)$
<u>r</u> (t) ·	Inertial position vector corresponding to time t
S	Switch used in Secant Iterator to determine whether secant method or offsetting will be performed

S6-2

S(ξ)	Power series in ξ defined in text
ť	Final time (end of time interval through which an extrapolation is made)
^t o	Initial time (beginning of time interval through which an extrapolation is to be made)
^t err	Difference between specified time interval and that calculated by Universal Kepler Equation
^v o	Magnitude of <u>v</u> 0
<u>v</u> 0	Inertial velocity vector corresponding to initial time ^t 0
<u>v</u> (t)	Inertial velocity vector corresponding to time t
X	Universal eccentric anomaly difference (independent variable in Kepler iteration scheme)
x'	Previous value of x
×c	Value of x to which the Kepler iteration scheme con- verged
xť	Previous value of x c
× _i	The "i-th" value of x
× min	Lower bound on x
xmax	Upper bound on x
^α 0	Reciprocal of semi-major axis at initial point r_0
^a N	Normalized semi-major axis reciprocal (αr_0)
ŶO	Angle from \underline{r}_0 to \underline{v}_0

<u>s6-</u>3

Δt

∆t_c

Specified transfer time interval $(t - t_0)$

Value of the transfer time interval calculated in the Universal Kepler Equation as a function of x and the second parameters

∆t_c'

Previous value of Δt_c

 $\Delta t_{c}^{(i)}$

€t

€t'

۴x

Ð

ξ

STATE STATES

The "i-th" value of the transfer time interval calcula-Wed in the Universal Kepler Equation as a function of the "i-th" value x_i of x and the conic parameters

Δt_{max} Maximum time interval which can be used in computer due to scaling limitations

Δx Increment in x

Primary convergence criterion: relative error in transfer time interval

Secondary convergence criterion: minimum permissible difference of two successive calculated transfer time intervals

Tertiary convergence criterion: minimum permissible size of increment Δx of the independent variable

Transfer angle (true anomaly increment)

Gravitational parameter of the earth

Product of α_0 and square of x

 $\boldsymbol{\varkappa}_{0}, \boldsymbol{\varkappa}_{1}, \boldsymbol{\varkappa}_{2}, \boldsymbol{\varkappa}_{3}$ Coefficients of power series inversion of Universal Kepler Equation

1100 35 TA B

Press States

2. FUNCTIONAL FLOW DIAGRAM

The Conic State Extrapolation Routine basically consists of two parts – one for extrapolating in time and one for extrapolating in transfer angle. Several portions of the formulation are, however, common to the two parts, and may be arranged as subroutines on a computer.

2.1 <u>Conic State Extrapolation as a Function of Time (Kepler</u> Routine)

This routine involves a single loop iterative procedure, and hence is organized in three sections: initialization, iteration, and final computations, as shown in Fig. 1. The variable "x" is the independent variable in the iteration procedure. For a given initial state, the variable "x" measures the amount of transfer along the extrapolated trajectory. The transfer time interval and the extrapolated state vector are very conveniently expressed in terms of "x". In the iteration procedure, "x" is adjusted until the transfer time interval calculated from it agrees with the specified transfer time interval (to within a certain tolerance). Then the extrapolated state vector is calculated from this particular value of "x".

2.2 Conic State Extrapolation as a Function of Transfer Angle (Theta Routine)

This routine makes a direct calculation (i.e. does not have an iteration scheme), as shown in Fig. 2. Again, the extrapolated state vector is calculated from the parameter "x". The value of "x" however, is obtained from a direct computation in terms of the conic parameters and the transfer angle θ . It is not necessary to iterate to determine "x", as was the case in the Kepler Routine.

S6-5

A CONTRACTOR OF THE OWNER OF THE

AN A COMPANY OF A CONTRACTOR OF A CONTRACT OF

S6-7

3. INPUT AND OUTPUT VARIABLES

The Conic State Extrapolation Routine has only one universal constant: the gravitational parameter of the earth. Its principal input variables are the inertial state vector which is to be extrapolated and the transfer time interval or transfer angle through which the extrapolation is to be made. Several optional input variables may be supplied in the transfer time case in order to speed the computation. The principal output variable of both cases is the extrapolated inertial state vector.

3.1 <u>Conic State Extrapolation as a Function of Transfer Time</u> Interval (Kepler Routine)

Input Variables

- $(\underline{r}_0, \underline{v}_0)$ Inertial state vector which is to be extrapolated (corresponds to time t_0).
 - Transfer time interval through which the extrapolation is to be made.

Guess of independent variable corresponding to solution in Kepler iteration scheme. (Used to speed convergence). [If no guess is available, set x = 0, and the routine will generate its own guess].

 $\mathbf{x}_{\mathbf{c}}^{\mathsf{t}}$

Δ.t

х

Value of dependent variable (the transfer time interval) in the Kepler iteration scheme, which was calculated in the last iteration of the previous call to Kepler.

Value of the independent variable in the Kepler iteration scheme, to which the last iteration of the previous call to Kepler had converged.

Output Variables

(<u>r</u>, <u>v</u>)

Extrapolated inertial state vector (corresponds to time t).

Value of the dependent variable (the transfer time interval) in the Kepler iteration scheme, which was calculated in the last iteration (should agree closely with Δ t).

Value of the independent variable in the Kepler iteration scheme to which the last iteration converged.

3.2 <u>Conic State Extrapolation as a Function of Transfer Angle</u> (Theta Routine)

Input Variables

 $(\underline{r}_0, \underline{v}_0)$ Inertial state vector which is to be extrapolated. θ Transfer angle through which the extrapolation is to be made.

Output Parameters

S6-9

A MARKET AND A CONTRACT OF A CONTRACT OF

Extrapolated inertial state vector.

Δt_c

(<u>r</u>, <u>v</u>)

26

Transfer Time Interval corresponding to the conic • extrapolation through the transfer angle θ .

Δt_c

DESCRIPTION O QUATIONS

4.1 Conic State Extracted Gon as a Function of Time (Kepler Routine)

The universal for the universal for the universal eccentric anomaly difference is used. This variable, usually denoted by x, is defined by the relations:

 $\mathbf{x} = \begin{cases} \sqrt{\mathbf{a}} (\mathbf{E} - \mathbf{E}_0) \text{ for ellipse} \\ \sqrt{\mathbf{p}} (\tan f/2 - \tan f_0/2) \text{ for parabola} \\ \sqrt{-\mathbf{a}} (\mathbf{H} + \frac{1}{2}) \text{ for hyperbola} \end{cases}$

where a is the semi-major axis, E and H are the eccentric anomaly and its hyperbolic analog, p is the semi-latus rectum and f the true anomaly. The expressions for the transfer time interval $(t - t_0) = \Delta t$, and the extrapolated position and velocity vectors $(\underline{r}, \underline{v})$ in terms of the initial position and velocity vectors $(\underline{r}_0, \underline{v}_0)$ as functions of x are:

$$\Delta t = \frac{1}{\sqrt{\mu_E}} \left[\frac{r_0 \cdot v_0}{\sqrt{\mu_E}} x^2 c(\alpha_0 x^2) + (1 - r_0 \alpha_0) x^3 S(\alpha_0 x^2) + r_0 x \right]$$

$$\underline{\mathbf{r}}(t) = \left[1 - \frac{x^2}{r_0} C(\alpha_0 x^2) \right] \underline{\mathbf{r}}_0 + \left[(t - t_0) - \frac{x^3}{\sqrt{\mu_E}} S(\alpha_0 x^2) \right] \underline{\mathbf{v}}_0$$
$$\underline{\mathbf{v}}(t) = \frac{\sqrt{\mu_E}}{r_0} \left[\alpha_0 x^3 S(\alpha_0 x^2) - x \right] \underline{\mathbf{r}}_0 + \left[1 - \frac{x^2}{r} C(\alpha_0 x^2) \right] \underline{\mathbf{v}}_0$$

S6-10

where

$$r_0 = \frac{1}{a_0} = \frac{2}{r_0} - \frac{v_0^2}{\mu}$$

and

TA SALA DE LETT

$$S(\xi) = \frac{1}{3!} - \frac{\xi}{5!} + \frac{\xi^2}{7!} - \dots$$
$$C(\xi) = \frac{1}{2!} - \frac{\xi}{4!} + \frac{\xi^2}{6!} - \dots$$

Since the transfer time interval Δt is given, it is desired to find the x corresponding to it in the Universal Kepler Equation, and then to evaluate the extrapolated state vector $(\underline{r}, \underline{v})$ expression using that value of x. Unfortunately, the Universal Kepler Equation expresses Δt as a transcendental function of x rather than conversely, and no power series inversion of the equation is known which has good convergence properties for all orbits, so it is necessary to solve the equation iteratively for the variable x.

For this purpose, the secant method (linear inverse interpolation/extrapolation) is used. It merely finds the increment in the independent variable x which is required in order to adjust the dependent variable Δt_c to the desired value Δt based on a linear interpolation/extrapolation of the last two points calculated on the Δt_c vs x curve. The method uses the formula

$$(x_{n+1} - x_n) = - \frac{\Delta t_c^{(n)} - \Delta t}{\Delta t_c^{(n)} - \Delta t_c^{(n-1)}} (x_n - x_{n-1})$$

s6-11

where $\Delta t_c^{(i)}$ denotes the evaluation of the Universal Kepler Equation using the value x_i . In order to prevent the scheme from taking an increment back into regions in which it is known from past iterations that the solution does not lie, it has been found convenient to establish upper and lower bounds on the independent variable x which are continually reset during the course of the iteration as more and more values of x are found to be too large or too small. In addition, it has also been found expedient to damp by 10% any increment in the independent variable which would (if applied) take the value of the independent variable past a bound.

To start the iteration scheme, some initial guess x_0 of the independent variable is required as well as a previous point $(x_{-1}, \Delta t_c^{(-1)})$ on the Δt_c vs x curve. If no previous point is available the point (0, 0) may be used as it lies on all Δt_c vs x curves. The closer the initial guess x_0 is to the value of x corresponding to the solution, the faster the convergence will be. One method of obtaining such a guess x_0 is to use a truncation of the infinite series obtained by direct inversion of the Kepler Equation (expressing x as a power series in Δt). It must be pointed out that this series diverges even for "moderate" transfer time intervals Δt ; hence an iterative solution must be used to solve the Kepler equation for x in the general case. A third order truncation of the inversion of the Universal Kepler Equation is:

$$x = \sum_{n=0}^{3} \chi_n \Delta t^n$$

where

$$\begin{split} \chi_{0} &= 0, \quad \chi_{1} = \sqrt{\mu} / r_{0}, \\ \chi_{2} &= -\frac{1}{2} \frac{\mu}{r_{0}^{3}} \left(\frac{r_{0} \cdot v_{0}}{\sqrt{\mu}} \right), \\ \chi_{3} &= \frac{1}{6r_{0}} \left(\frac{\sqrt{\mu}}{r_{0}} \right)^{3} \left[\frac{3}{r_{0}} \left(\frac{r_{0} \cdot v_{0}}{\sqrt{\mu}} \right)^{2} - \left(1 - r_{0} \alpha_{0} \right) \right], \\ \alpha_{0} &= 2 / r_{0} - v_{0}^{2} / \mu . \end{split}$$

with

S6-12

4.2 <u>Conic State Extrapolation as a Function of Transfer Angle</u> (Theta Routine)

As with the Kepler Routine, the universal formulation of Stumpff-Herrick-Battin in terms of the universal eccentric anomaly difference x is used in the Theta Routine. A completely analogous iteration scheme could have been formulated with x again as the independent variable and the transfer angle θ as the dependent variable using Marscher's universally valid equation:

$$\cot \frac{\theta}{2} = \frac{r_0 \left[1 - \alpha_0 x^2 S(\alpha_0 x^2)\right]}{\sqrt{p^2 x C(\alpha_0 x^2)}} + \cot \gamma_0$$

where

$$p = \left(\frac{r_0 v_0}{\sqrt{\mu}}\right)^2 \sin^2 \gamma_0$$

and

$$\gamma_0 = \text{angle from } \underline{r}_0 \text{ to } \underline{v}_0.$$

However, in contrast to the Kepler equation, it is possible to invert the Marscher equation into a power series which can be made to converge as rapidly as desired, by means of which x may be calculated as a universal function of the transfer angle θ . Knowing x, we can directly calculate the transfer time interval Δt_c and subsequently the extrapolated state vectors using the standard formulae.

The sequence of computations in the inversion of the Marscher Equation is as follows:

Let

$$p_N = p/r_0, \alpha_N = \alpha r_0$$

and

S6-13

repart of the second second

$$W_{1} = \sqrt{p_{N}} \left(\frac{\sin \theta}{1 - \cos \theta} - \cot \gamma_{0} \right).$$

$$|W_1| > 1$$
, let $V_1 = 1$.

Let

Iſ

ំអង់តំនៃកំព័ន៌នៃសំនេះនៃកំព័ន៌នៃសំនេះនៅក្នុងសំនេះនៅលើកំព័ន៌នៃកំព័ន៌នៃកំព័ន៌នៃកំព័ន៌នៃកំព័ន៌នៃកំព័ន៌នៃកំព័ន៌នៃកំ លោកនិត្តសំនើលោកនិត្តនៃសំនេះនៅនៃតំនៃសំនេះនៅទំនាំងនេះនៅទំនាំង

4

a bala anala a ana a ana

$$W_{n+1} = + \sqrt{W_n^2 + \alpha_N} + |W_n| \quad (|W_1| \le 1)$$

 \mathbf{or}

$$V_{n+1} = + \sqrt{V_n^2 + \alpha_N (|1/W_1|)^2} + V_n \quad (|W_1| > 1) .$$

$$\omega_n = W_n \quad (|W_1| \le 1)$$

or

Let

$$1/\omega_{n} = (|1/W_{1}|)/V_{n} \quad (|W_{1}| > 1).$$

Let

$$\Sigma = \frac{2^n}{\omega_n} \sum_{j=0}^{\infty} \frac{(-1)^j}{2j+1} (\frac{\alpha_N}{\omega_n})^j$$

where n is an integer ≥ 4 . Then

$$x / \sqrt{r_0} = \begin{cases} \Sigma & (W_1 > 0) \\ 2\pi / \sqrt{\alpha_N} - \Sigma & (W_1 < 0) \end{cases}$$

The above equations have been specifically formulated to avoid certain numerical difficulties.

10 State 1 Sta

CHARGE STR

1000 200

A. South

DETAILED FLOW DIAGRAMS

5.

The second second

This section contains detailed flow diagrams of two Conic State Extrapolation Routines (Kepler and Theta) and the subroutines used by them.

Each input and output variable in the routine and subroutine call statements can be followed by a symbol in brackets. This symbol identifies the notation for the corresponding variable in the detailed description and flow diagrams of the called routine. When identical notation is used, the bracket symbol is omitted.

S6-15

CAN THE REPORT OF A DESCRIPTION OF A DESCRIPANTA DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPO

Figure 3a. Kepler Routine, Detailed Flow Diagram

S6-16

2 24

12 2765

ENVIRONT A CONTRACTOR AND

Figure 3b. Kepler Routine, Detailed Flow Diagram

S6-17

「「「「「「「」」」

S6-18 ·

Figure 4a. Theta Routine, Detailed Flow Diagram

122.77

S6-20

BOOT STATES

NEW CONTRACTOR STATES

ন **প্রাক্তরের বিরাগের** জার

s6-22

1. 1. 1.

-11.25

COUNTRY CAR

775

5.3

(Es

Subroutines Used By The Transfer Time or Transfer Angle

Conic Extrapolation Routines

5.3.1 Universal Kepler Equation Subroutine

Figure 5. Universal Kepler Equation, Detailed Flow Diagram

A STATE OF STATES OF STATES

S6-25

an har he had the first first and many are seen and the first of the first of the second second second second s

5.3.4 Marscher Equation Inversion Subroutine

The second s

3. CT 1 (M

5-14-14-1 (* 17-54)

S6-27

and the first and the start of the second start of the

6. SUPPLEMENTARY INFORMATION

The analytic expressions for the Universal Kepler Equation and the extrapolated position and velocity vectors are well known and are given by Battin (1964). Battin also outlines a Newton iteration technique for the solution of the Universal Kepler Equation; this technique converges somewhat faster than the secant technique but requires the evaluation of the derivative. It may be shown that if the derivative evaluation by itself takes more than 44% of the computation time used by the other calculations in one pass through the loop, then it is more efficient timewise to use the secant method.

Marscher's universal equation for $\cot \theta/2$ was derived by him in his report (Marscher, 1965), and is the generalization of his "Three-Cotangent" equation:

$$\cot \frac{\theta}{2} = \frac{r_0}{\sqrt{p a}} \cot \frac{(E - E_0)}{2} + \cot \gamma_0$$

Marscher has also outlined in the report an iterative method of extrapolating the state based on his universal equation. The inversion of Marscher's universal equation was derived by Robertson (1967a).

Krause organized the details of the computation in both routines.

A derivation of the coefficients in the inversion of the Universal Kepler Equation is given in Robertson (1967 b) and Newman (1967).

ST. St. Constants

References

- 1. R.H., 1964, Astronautical Guidance, McGraw-Hill.
- Value and Boundary Value Conic Trajectory Problems, TRW Interoffice Correspondence #3424.9-15 (January 1968).
- 3. Hauscher, W., 1965, <u>A Unified Method of Generating Conic</u> Sections, MIT/IL Report R-479, February 1965.
- 4. C. M., 1967, <u>The Inversion of Kepler's Equation</u>, C. M., 1967, <u>The Inversion of Kepler's Equation</u>, C. M., 1967, <u>The Inversion of Kepler's Equation</u>,
- Robertson, W. M., 1967a, Explicit Universal Series Solutions for the Universal Variable x, MIT/IL Space Guidance Analysis Memo #8-67.

6. Robertson, W. M., 1967b, <u>Time-Series Expansions of the</u> <u>Universal Variable x</u>, MIT/IL Space Guidance Analysis <u>Mem.</u>#13-67.

S6-29

-
. . .

1. INTRODUCTION

The Conic Relation I Velocity Determination Routine provides the capability to solve the following two astrodynamic problems:

"The Multiple, the solution, Lambert Required Velocity Determination <u>Problem</u>": conjunctive the velocity vector required at an initial position to transfer through an inverse square central force field from the initial position to a specified target position in a specified transfer time interval by making a specified number of complete revolutions (which done fraction of another one). Also optionally compute the velocity vector at the target position and various parameters of the conic transfer orbit.

"The De-orbit Required Velocity Determination Problem": compute the velocity vector required at an initial position to transfer through an inverse square central force field from the initial position to a specified target radius (which is less than the initial radius) with a specified flight-path angle at that radius in a specified transfer time interval. Also optionally compute the velocity vector at the target position and various parameters of the conic transfer orbit.

The Conic Replace Velocity Determination Routine basically consists of two major parts—one is requiring the multi-revolution Lambert's problem and one for solving the De-orbit problem—which are quite similar. In fact, certain subsections of the parts are identical as well as being identical to certain subsections of the Conic State Extrapolation Routine (Ref. 7) and these may of course be arranged as subroutines on a computer.

The Conic Lambert and De-orbit Required Velocity Determination Routines each involve a single loop iterative procedure, and hence are organized in three sections: initialization, iteration, and final computations, as shown in Figure 1. The independent variable in the iteration in both routines is the cotangent of the flight-path angle a dependential position measured from local vertical, or equivalently the cotangened between the initial position vector (extended) and the as yet unknown required velocity vector. The dependent variable is the transfer time interval; it is a function solely of the independent variable and certain other quantities which depend explicitly on the input and which are thus constant in any one problem. In the iterative procedure, the independent variable (denoted by Γ_0) is adjusted between upper and lower bounds by a secant technique until the

transfer time interval computed from it agrees with the specified transfer time interval (to within a certain tolerance). Then the velocity vector at the initial position (i.e., the required velocity), as well as the velocity vector at the terminal position, is calculated from the last adjusted value of the independent variable.

In the less-than-one-complete revolution case in both routines, the upper and lower bounds on the independent variable are explicitly computed since the dependent and independent variables are monotonically related. However, in the multirevolution case in the Lambert routine, there are two distinct physically-meaningful transfers which solve the problem, and an iterative procedure (entirely separate from, and not containing nor contained in the previously described iteration scheme) must be used to solve for the value of the independent variable which separates the two regions in each of which exactly one solution lies so that upper and lower bounds may be established corresponding to the unique solution desired. The multi-revolution case for the de-orbit problem is not considered in this document.

A CONTRACT OF A CONTRACT OF

NOMENCLATURE

--- --- .

1

a S	Semi-major axis of conic
°1	First conic parameter [$c_1 = \sqrt{r_0 p_N} \Gamma_0 = (\underline{r}_0 \cdot \underline{v}_0) / \sqrt{\mu_E}$]
^c 2	Second conic parameter [$c_2 = 1 - \alpha_N = r_0 v_0^2 / \mu_E - 1$]
C or C(ξ)	Power series in ξ defined in the text
E	Eccentric anomaly
f	True anomaly
H	Hyperbolic analog of eccentric anomaly
i I	Iteration counter
<u>i</u> _c-	The negative unit chord vector connecting \underline{r}_0 and $\underline{r}_1 \cdot [\underline{i}_{c} = -\text{unit} (\underline{r}_1 - \underline{r}_0)]$.
ⁱ max	Maximum allowable number of iterations
ⁱ Ν	Unit vector in direction of angular momentum vector of the transfer and normal to the transfer plane. In the Lambert Foutine the vector \underline{i}_N always determines the direction of the transfer, and will also determine the plane of the transfer when either the switch $s_{proj} = 1$, or the switch $s_{proj} = 0$ but the initial position vector \underline{r}_0 is inside one of the cones. In the De-orbit Routine, the vector \underline{i}_N always determines the plane and direction of the transfer.
ⁱ r ₀	Unit vector in direction of \underline{r}_0
<u>i</u> r ₁	Unit vector in direction of r_1

- 1

Intermediate variable equal to either kbg or ksm

Constant establishing by what fraction of its permissible range $(\Gamma_{max} - \Gamma_{min})$ the independent variable Γ_0 will be biased in the first iteration when no guess Γ_{guess} is available, in order to establish a second point for the secant iteration

^ksm

m

n

D

p₁

 P_2

 P_N

q

^kbg

Constant establishing by what fraction of its permissible range $(\Gamma_{max} - \Gamma_{min})$ the independent variable Γ_0 will be biased in the first iteration when a guess Γ_{guess} is available in order to establish a second point for the secant iteration.

The slope of the line joining two successive points on the transfer time interval vs. independent variable curve.

m' Previous value of m

merrDifference between desired value of the slope m (namely
zero) and the value calculated on most recent iteration.

Loop counter in the Marscher Equation Inversion

 n_{rev} Integer number of complete 360⁰ revolutions to be made in the desired transfer. [Hence the transfer will be between n_{rev} and $n_{rev} + 1$ revolutions].

<u>N</u> Intermediate vector variable normal to transfer plane

Semi-latus rectum of conic

Intermediate variable in the Lambert problem equal to $1 - \cos \theta$

Intermediate variable in the Lambert problem equal to $\cos \theta - (r_0 / r_1)$

Normalized semi-latus rectum of conic transfer orbit $(p_N = p/r_0)$.

Intermediate variable equal to $\lambda/\sin^2 \gamma_1$

S24-5

12 1 1 1 2 1 1 1

Terminal or target inertial position vector (corresponds to time t_1).

Radius at terminal or target position (corresponds to time t_1).

Switch used in Secant Iterator to determine whether secant method or offsetting (biasing) will be performed.

^scone

 \underline{r}_0

 $\frac{r}{1}$

r 1

s

Switch indicating whether the outcome of the cone test involving the tolerance criterion ϵ_{cone} was that initial position \underline{r}_0 lies outside both of the cones around the positive and negative target position vector \underline{r}_1 (s_{cone} = 0), or inside one of these cones (s_{cone} = 1). [See Section 4.7.]

^s guess

Switch indicating whether the routine is to compute its own . guess of the independent variable Γ_0 to start the iterative procedure (s guess = 0), or is to use a guess Γ_{guess} supplied by the user (s guess = 1)

sproj

Switch indicating whether the initial and target position vectors, \underline{r}_0 and \underline{r}_1 , are to be projected into the plane defined by the unit normal \underline{i}_N before the main Lambert computations are performed. If $\underline{s}_{proj} = 0$, no projection will be made unless the initial position \underline{r}_0 is found to lie within one of the cones defined by ϵ_{cone} , in which case \underline{s}_{cone} will be set equal to 1. If $\underline{s}_{proj} = 1$, the projections will be carried out immediately, and no cone test will be made. Switch indicating which of the two physically possible solutions is desired in the multi-revolution case.
[Not used in the less-than-360^O transfer case]. In particular, s = -1 indicates the solution with the

particular, $s_{soln} = -1$ indicates the solution with the smaller initial flight path angle γ_0 measured from local vertical, and $s_{soln} = +1$ indicates the one with the larger γ_0 .

^s180

^ssoln

Switch indicating whether the central transfer angle is between 0° and 180° (s₁₈₀ = +1), or between 180° and 360° (s₁₈₀ = -1). The determination of which one of the above two possibilities is desired is made automatically by the routine on the basis of the direction of the unit normal vector \underline{i}_{N} .

[In the multiple-revolution case, the number of complete 360° revolutions is neglected; i.e., s_{180} is the sign of the sine of the transfer angle.]

 $S \text{ or } S(\xi)$

terr

<u>v</u> 0'

 \underline{v}_1

Power series in ξ defined in the text.

Difference between specified time interval and that calculated by Universal Kepler Equation [$t_{err} = \Delta t - \Delta t_{c}$]

Inertial velocity required at the initial position \underline{r}_0 to transfer to the terminal point in exactly the specified time interval Δt .

Inertial velocity at the terminal position \underline{r}_1 .

 V_n . Intermediate scalar variables used in Marscher Equa-(n=1, 2, .) tion Inversion

W_n Intermediate scalar variables used in Marscher Equa-(n=1, 2..) tion Inversion

S24-7

A STATISTICS AND CONTRACT

Universal eccentric anomaly difference corresponding to the transfer from \underline{r}_0 to \underline{r}_1 .

- Reciprocal of normalized semi-major axis of conic transfer orbit $(\alpha_N = r_0 / a)$.
 - Flight path angle at initial position \underline{r}_0 measured from local vertical, i.e., angle from \underline{r}_0 to \underline{v}_0 .

Flight-path angle at terminal or target position measured from local vertical (corresponds to time t₁).

Cotangent of flight-path angle γ_0 at the initial position \underline{r}_0 measured from local vertical; i.e., cotangent of the angle between \underline{r}_0 and \underline{v}_0 . [Independent variable in iterative scheme].

Previous value of Γ_0

The "i-th" value of $~\Gamma_0$

Cotangent of flight path angle γ_1 at the terminal or target position \underline{r}_1 measured from local vertical

 Γ_{guess} Guess of independent variable Γ_0 corresponding to solution (disregarded when $s_{guess} = 0$).

Fparab Val

х

×N

 $\alpha_{\rm N}$

 γ_0

 γ_1

 Γ_0

 Γ_0'

 $\Gamma_0^{(i)}$

 Γ_1

Value of Γ_0 corresponding to the physically realizable parabolic transfer

 $\Gamma_{\rm max}$ Upper bound on Γ_0

 $\Gamma_{\rm ME}$ Value of Γ_0 corresponding to the minimum energy transfer

S24-8

E hand and the second of the second second

ALC: NO. OF ALC: NO. OF ALC: NO.

Lower bound on Γ_0

Specified transfer time interval $(t_1 - t_0)$ between \underline{r}_0 and \underline{r}_1

Value of the transfer time interval calculated in the Universal Kepler Equation from the current value of Γ_0 and the conic parameters

Previous value of Δt_{c}

The "i-th" value of the transfer time interval calculated in the Universal Kepler Equation as a function of the "i-th" value $\Gamma_0^{(i)}$ of Γ_0 and the conic parameters

 $\Delta \Gamma_0$ Increment in Γ_0

Increment in Λ $\Delta \Lambda$

^e cone

٤t

€ **†** '

ε_T

¢Γ

THE BUILD AND A STREET STREET, STREET, STREET, ST. TO BE

 Γ_{min}

∆t

Δt

Δt_c

Δt_c(i)

ality is the latest fact of a data where we are

ALL PORT AND ALL AND

Tolerance criterion establishing small cones around both the positive and negative target position directions inside of which the Lambert routine will define the plane of the transfer by the unit normal $\frac{i}{N}$ rather than the cross product of the initial and target position vectors, \underline{r}_0 and \underline{r}_1 . [$\epsilon_{cone} = \sin$ (the half cone angle)].

Primary convergence criterion: relative error in transfer time interval

Secondary convergence criterion: minimum permissible difference of two successive calculated transfer time in-tervals.

Convergence criterion in iteration to adjust Γ_{\min} and Γ_{\max} in multiple revolution case: absolute precision to which transfer time interval minimum is to be determined

Tertiary convergence criterion: minimum permissible size of increment $\Delta \Gamma_0$ of the independent variable

S24-9

Tolerance criterion in iteration to adjust Γ_{\min} and Γ_{\min} in multiple revolution case: absolute dif-

Therefore of two successive values of independent variable to prevent division by zero

Basedies angle (frue anomaly increment)

Ratio of initial position radius to terminal position radius

Average of the two most recent values of Γ_0 . [Λ is used as the independent variable in the Multiresolution Bounds Adjustment Coding Sequence Resolution].

Previous value of Λ

÷.,

۴۸

θ

λ

Λ

 Λ

μ

ξ

Gravitational parameter of the earth (product of earth's mass and universal gravitation constant)

The dimensionless variable $\alpha x^2 = x^2 / a = \alpha_N x^2 / r_{2}$. [Equivalent to square of standard eccentric or operbolic anomaly difference].

S24-10

5. DETAILED FLOW DIAGRAMS

5.1 <u>Multiple-Revolution Lambert Required Velocity</u> Determination Routine

This routine utilizes the following subroutines or coding sequences, which are diagrammed in Section 5.3:

• Lambert Transfer Time Interval Subroutine

- Marscher Equation Inversion Subroutine
- Universal Kepler Equation Subroutine

• Secant Iterator

•Multi-revolution Bounds Adjustment Coding

Sequence

•Secant Minimum Iterator

S24-11

. . .

S24-14

100 TO 10 TO 10

5.2 De-orbit Required Velocity Determination Routine

This routine utilizes the following subroutines which are diagrammed in Section 5.3:

- De-orbit Transfer Time Interval Subroutine
 - Marscher Equation Inversion Subroutine
 - Universal Kepler Equation Subroutine
- Secant Iterator

Figure 4a. De-orbit Routine Detailed Flow Diagram

3 Subroutines or Coding Sequences used by the Conic Requires Velocity Determination Routines

S24-18

CARLES REALFY TO A THE REAL OF THE PARTY OF THE

5.3

5.3.1

Figure 6. De-orbit Transfer Time Interval Subroutine Detailed Flow Diagram

5. 3. 3 Universal Kepler Equation Subroutine

This subroutine is identical to the one used in the Kepler and Theta problems.

Figure 7. Universal Kepler Equation Subroutine Detailed Flow Diagram

S24-20

STAR STAR

6.

This subrout the identical to the one used in the Theta problem.

S24-22

1. 1. 1. 1. 1. 1.

THE CONTRACTOR OF A DESCRIPTION OF A DESCRIPANTE A DESCRIPANTE A DESCRIPANTE A DESCRIPTION OF A DESCRIPTIONO

5, 3, 5 Secant Iterator

A STATE OF A

(

This subroutine is identical (when k = 1/4) to the one used in the Theta problem.

INPUT VARIABLES s, Δt_c , Δt_c ', t_{err} , $\Delta \Gamma_0$, Γ_0 , Γ_{min} , Γ_{max} , k = 0 = 1 \mathbf{s} $\Delta \Gamma_0 = \frac{t_{err}}{\Delta t_c - \Delta t_c} \Delta \Gamma_0$ $\Delta \Gamma_0^{=} \operatorname{sign}(t_{err}) k (\Gamma_{max} - \Gamma_{min})$ s = 0 >0 ≤ 0 $\Delta \Gamma_0$ - Γυ $\Gamma_{\max} = \Gamma_0$ Γ_{min} $\Gamma_0^{+\Delta}\Gamma_0^{\leq}$ Yes Yeş $\Gamma_0 + \Delta \Gamma_0 \\ \geq \Gamma_{\min}$ No No $\Delta \Gamma_0 = 0.9 (\Gamma_{\min} - \Gamma_0)$ $\Delta \Gamma_0 = 0.9 (\Gamma_{\max} - \Gamma_0)$ OUTPUT VARIABLES $\Delta \Gamma_0, \Gamma_{\min}, \Gamma_{\max}, s$ Figure 9. Secant Iterator Detailed Flow Diagram

S24-23

S24-24

ERROR EXIT

(No solution possible to this Lambert problem: too many revolutions for too short a specified transfer time interval)

Figure 10c. Multi-Revolution Bounds Adjustment Coding Sequence Detailed Flow Diagram

S24-26

 \bigcirc

This subroutine is very similar, though not identical, to the Secant Iterator. They can easily be combined into one routine, although they have been diagrammed separately here for purposes of clarity.

Figure 11. Secant Minimum Iterator Detailed Flow Diagram

nondina number and

S24-27

State State State State

24.524

CARLES AND THE REAL PROPERTY OF A DESCRIPTION OF A DESCRI

Submittal 27: Required Velocity Determination, Precision

INTRODUCTION

1.

Calculation of the precision required velocity which satisfies terminal position and time-of-flight constraints in a non-Keplerian gravity field is a computation time consuming process, especially in an on-board computer. Therefore, targeting calculations prior to a maneuver are customarily used to predict and compensate for the effects of the perturbations from a conic gravity field, so that during the maneuver only the much simpler conic related computations will have to be performed.

For Lambert aim point maneuvers (described in Reference 2) an adjustment to the terminal (target) position vector will suffice to provide this compensation. This adjusted terminal position, referred to as an offset target, must compensate for gravity perturbations throughout both the maneuver and subsequent coasting flight. Then the required velocity determined by the Lambert routine to intercept the offset target in a conic gravity field is identical to the velocity required to intercept the true target in the non-Keplerian field.

The traditional technique of predicting the effects of gravitational perturbations over the trajectory involves approximating the maneuver by an impulsive velocity change, and hence assuming a coasting trajectory between the initial (ignition) and target positions. However, due to the non-zero length of the maneuver, the actual trajectory will not follow the path predicted by the impulsive approximation, but rather a neighboring path. The difference in the perturbing acceleration between the two paths accumulates over the entire trajectory, resulting in a miss at the target. Since the coasting portion of the trajectory is generally much longer than the thrusting portion, it is important to accurately predict the perturbing effects over this portion of the trajectory. This is accomplished by determining the initial conditions for a coasting trajectory which is coincident with the actual trajectory after thrust termination. A detailed derivation of this technique can be found in Brand (1971) (Reference 1), and a functional description of the procedure follows.

FUNCTIONAL FLOW DIAGRAM

A functional flow diagram describing the calculations necessary to determine the precision reactived velocity and offset target is presented in Figure 1. Since this technique contributed is for the non-impulsive nature of the maneuver, it requires an estimate of the contributed thrust acceleration. Then the initial position can be offset from the actual position such that a coasting trajectory which is coincident with the actual trajectory after thrust termination can be defined. Figure 2 illustrates the concept.

The calculation of the coasting trajectory initial position requires an estimate of the required velocity change, and therefore two passes are made through the Lambert rout the before numerically integrating to determine the effects of gravitational perturbations. The first Lambert solution is used to determine the impulsive velocity change required. Based upon this, an estimate of the initial position for the coasting trajectory can be calculated. Then the second Lambert solution determines the velocity required from the adjusted initial position, thus defining the coasting trajectory.

For transfers angles which are odd multiples of 180°. Lambert's problem has a partial physical singularity in that the plane of the transfer becomes indeterminate. A detailed detailed on of this singularity can be found in Reference 4. To prevent possible problem in both targeting and guiding a maneuver whose transfer angle lies near this singularity, logic has been included in this routine to determine whether the transfer angle approaches this singularity at any time during the maneuver. If this is the case, the target vector is projected into the orbital plane defined by the premaneuver position and velocity, thus preventing any plane change.

If only conic calculations are desired, the routine is exited after the two Lambert solutions are completed. If not, subsequent numerical integration determines the target miss resulting from the effects of gravitational perturbations over this path. To compensate for these effects, the target vector for the Lambert routine is offset from the actual target by the negative of the miss vector. Since the adjusted initial position, target offset, and effects of gravitational perturbations are all interdependent, the process is repeated until changes in the offset target position are small enough to indicate convergence. Three passes (two iterations) are normally sufficient to establish the offset within a few feet.

2.

S27-2

The second s

Figure 1b. Functional Flow Diagram

S27-4

Estimated mathematic contrast acceleration
Number of complete of navigation filter weighting matrix (set to 0 in this routine since the matrix is not required)
Thrust
Magnitude of the attitude control system translational thrust
Magnitude of his sourcenal orbital maneuvering system engine thrust
Unit normal to the trajectory plane (in the direction of the angular momentum at ignition)
Current estimated vehicle mass
Iteration count
Iteration limit
Integral number of complete 360 ⁰ revolutions to be made in the desired transfer
Initial (ignition) position
Adjusted initial position used to define coasting trajectory
Target position apput to the routine)
Terminal position (output of the routine)
Offset target position
Switch set in the Lambert routine to indicate transfer is near 180 ⁰ (see Reference 4 for complete description)

S27-6

73 - F. F

1.75

	international de la construcción de Terrar de la construcción de la cons Terrar de la construcción de la cons
seng	Engine select switch
s fail	Switch set to indicate non-convergence
s guess	Switch set to indicate an estimate of independent variable Γ will be input to the Conic Required Velocity Determination Routine
^S pert	Switch set to indicate which perturbing accelerations should be included in the offset target calculation (s _{pert} = 0 indicates only conic calculations; see Reference 3 for complete descrip- tion of other switch settings)
s proj	Switch set when the target vector must be projected into the plane defined by $\frac{i}{N}$
^s soln	Switch indicating which of two physically possible solutions is desired in the multi-revolution transfer (see Reference 4 for complete description)
t ₀	Ignition time
t ₁	Target time of arrival
⊻ ₀	Initial (ignition) velocity
<u>v</u> ¹ 0	Initial (and required) velocity on the coasting trajectory
\underline{v}_{lc}	Terminal velocity of a conic trajectory
<u>v'</u> 1	Terminal velocity (output of the routine)
Γ _{guess}	Guess of the independent variable F used in the Conic Required Velocity Determination Routine
Δ <u>r</u> .	Target miss resulting from perturbations
∆r _{proj}	Out-of-plane target miss due to projection of the target vector

0

 \bigcirc

S27-7

. .

-

4

θ

θ

ω

a state of the second second

- Transfer time $(t_1 t_0)$
- Argo Required velocity change

Magnitude of the required velocity change Δv_0

Convergence criterion: target miss of the numerically integrated trajectory

Tolerance criterion establishing a cone around the minus \underline{r}_0 direction inside of which the target vector will be projected into the plane $\underline{i}_N \begin{bmatrix} \epsilon_{\theta T} = \sin (\text{half cone angle}) \end{bmatrix}$

Transfer angle (true anomaly difference) at the start of the thrusting maneuver

 θ_{T} Approximate central angle traversed during the thrusting maneuver

Approximate transfer angle to the target at the termination of the thrusting maneuver $\begin{bmatrix} \theta_1 &= \theta &= \theta_T \end{bmatrix}$

Approximate orbital rate

•

1. 1. S. S. S.

and the second second

Submittal 51: Boost Abort Guidance

Equations and flow diagrams are presented in this Section which fulfill requirements for abort from boost to an entry path which achieves satisfactory landing at the launch site. Constraints and guidelines are presented in Fig. 1. The trajectory and nomenclature are presented in Figs. 2 and 3. A general flow diagram is presented in Figs. 4 and 5.

As shown in Fig. 2, landing is achieved in four phases: An open loop phase of powered flight wherein propellant is expended, powered-flight constraints are observed and conditions are reached where available ΔV equals ΔV required to get on the entry trajectory. A closed-loop phase of powered flight achieves entry target conditions with very little fuel. An unpowered flight phase follows where unpowered flight constraints are observed and the trajectory approaches the nominal entry trajectory. The final unpowered phase consists of holding the entry trajectory, i.e., controlling to the trajectory through satisfactory landing. These phases and their Guidance Equations are presented in Figs. 6 thru ll.

Figs. 12 thru 18 are the detailed program flow diagrams. Thereafter follows a definition of terms used in this section.

9.5.1 Aborts (continued)

BOOST ABORT - CONSTRAINTS / GUIDELINES

- USE NOMINAL MISSION TECHNIQUES
- POWERED PHASE
- ACHIEVE. A SAFE LANDING WEIGHT
- AVOID LARGE ANGLES-OF-ATTACK/SIDESLIP ANGLES DURING HIGH Q ENVIRONMENT
- DO NOT EXCEED 3G TOTAL ACCELERATION

S51

1

- SATISFY TANK/ORBITER SEPARATION REQUIREMENTS
- TANK IMPACT POINT MUST SATISFY RANGE SAFETY REQUIREMENTS
- UNPOWERED PHASE

6

AVOID LARGE NORMAL DECELERATIONS (2.5G) AND DYNAMIC PRESSURES (300 PSF) Figure 1

S51-4

1. - X - M

DEPLETE PROPELLANT AND ACHIEVE TARGET SIMULTANEOUSLY AVOID VIOLATION OF POWERED PHASE CONSTRAINTS TERMINATE PHASE WHEN PROPELLANT IS DEPLETED POWERED PHASE OF SUBORBITAL MANEUVER TERMINATE PHASE WHEN $\Delta V_R \approx \Delta V_A$ 9 Figure **USE EXCESS PROPELLANT** COMPOSED OF TWO GUIDANCE PHASES ANALOGOUS TO ASCENT PHASE ^N 0 0 PHASE PHASE S51-6

Figure 7 PHASE I GUIDANCE EQUATIONS RADIAL (PLATFORM X) 0 $ATC(1) = K_1(RDG - RG) + K_2(VDG(1) - VG(1)) - G_{EFI}$ RETURN TO LAUNCH SITE 0 ATC(2) = 0ATC(3) = AH AH = $(AT^2 - ATC(1)^2)^{\frac{1}{2}}$ VDG(3) > VBOZD DOWNRANGE 0 AGC(2) = 0AGC(3) = AHDOWNRANGE VDG(3) < VBOZD 0 $AGC(2) = AH \cdot VG(2) / |VG(2)|$ AGC(3) = 0TRANSFORMATION 0 . ATC(2) = AGC(2)UYGP(2) + AGC(3)UZGP(2)ATC(2) = AGC(2)UYGP(3) + AGC(3)UZGP(3)S51-7

PHASE 2 GUIDANCE EQUATIONS

 $AGC(1) = \frac{6}{TBO^2} (RDG(1)) - \frac{2}{TBO} (VDG(1) + 2VG(1)) - GEFF$

AGC(3) = (VDG(3) - VG(3))/TBO

 $AGC(2) = YSIGN(A)^2 - AGC(3)^2)^{\frac{1}{2}}$

 $\underline{ATC} = AGC(1) \underline{UXGP} + AGC(2) \underline{UYGP} + AGC(3) \underline{UZGP}$

UNPOWERED PHASE OF SUBORBITAL MANEUVER

- ANALOGOUS TO NOMINAL ENTRY FROM ~600 N. M. UPRANGE OF LANDING SITE
- COMPOSED OF TWO GUIDANCE PHASES

PHASE 3

SEPARATE FROM EMPTY PROPELLANT TANK

AVOID VIOLATION OF UNPOWERED PHASE CONSTRAINTS

S51-9

TERMINATE PHASE WHEN CONDITIONS SUITABLE FOR ENTRY GUIDANCE TAKEOVER ARE ACHIEVED

PHASE 4

STEER ORBITER TO ABORT LANDING SITE

Figure '

Figure 10

PHASE III GUIDANCE EQUATIONS

 $\alpha_{\rm c} = \Theta_{\rm D} - \chi$ $g_n < g_n \text{ LIMIT}$ $\propto_{c} = \propto -\dot{\theta} \Delta t$ $g_n > g_n$ LIMIT

BUT

∝MIN ≤ ∝c ≤∝MAX

$$\begin{split} \emptyset_{VC} &= -15^{\circ} \cdot VG(2)/|VG(2)| & \forall v > \gamma_1 \\ \\ \emptyset_{VC} &= -7.5^{\circ} \cdot VG(2)/|VG(2)| & \forall 1 > \gamma_V > \gamma_2 \\ \\ \emptyset_{VC} &= 0 & \forall v < \gamma_2 \end{split}$$

RATE LIMIT - .5⁰/SEC IN PITCH Ø_V IS TBD

S51-10

NOMINAL ENTRY AND TERMINAL AREA GUIDANCE EQUATIONS

S51-11

Figure 11

1967-1977-1747 1967-1977-1747

THO .

1997 (P. 1997)

CP U. Stemps

and the second se

A CONTRACT

r wit, Wijere oor

A. The second second second

DEFINITION OF STREELS DBT Entry guidance takeover SEM Solid rocket notor Variables <u>7.00</u> Thrust acceleration command in guidance coordinates, EPSS 13 Horizontal acceleration, FPSS 11771. Angle-of-attack, deg ALPHAC Commanded angle-of-attack, deg LPC The ast acceleration command in platform coordinates, FPSS EANK Bank angle, roll about velocity vector, dog EANKO Bank angle command, deg DVA Delta-V available, FPS DVG Delta-V required, velocity to be gained, FPS DVŻBO Predicted Z_{μ} component of burnout velocity minus previous value G Acceleration due to gravity, FFSE CAMMA Relative flight path angle, deg GEEF Effective gravity acceleration, MTSS GFIN Predicted effective gravity acceleration at terrinus of powered phase, FPSS GLAT Latitude of abort landing site, degrees GLONĠ Lougitude of abort landing site, degrees COCHO T Time rate of change of normal acceleration, FPSS-

QUOPM Normal accoleration, FPES Altitude, ft

HDOT Altitude rate, FPS

Н

S51-19

a his sector of the sector

DEFINITION OF SMABOLS

North Participation

Variables (continued)

HEAD	Velocity heading angle, degrees	
LZZ	Leunch azimuth, deg	
насн	Mach number	
FILCH	Platform pitch, degrees	
FITCHC	Platform pitch command, degrees	
Q	Intermediate variable	
Q1	Interzediate variable	-
ହ୍ୟ	Intermediate variable	
QBAR	Dynamic pressure, PSF	
QBDOT	Time rate of change of dynamic pressure, PSFS	
rg .	Altitude used in guidance equation, Ft	-
RISE	Position vector to abort landing site in geographical coordinates, Ft	0
RISI	Position vector to abort landing site in inertial (geocentric) coordinates, Ft	
<u>FLSP</u>	Position vector to abort landing site in platform coordinates, F	t
RP	Position vector to vehicle in platform coordinates, Ft	•
SP30	Surface range to burnout, Ft	
SRCST	Surface range from burnout to abort lending site, Ft	
SRLS	Surface range from current vehicle position to abort landing site, ft	
130	Time-to-go until burnout (fuel depletion), Sec	
1760	Time-from-burnout, Sec	
TIME	Time-from-liftoff, Sec	
TROT	Time to rotate from current acceleration vector to commanded acceleration	· .

S51-20

DEFINITION OF STREELS

3

(

Variables (Concluded)

TTL	Time to thrust limiting
T70	Time required to null lateral (VG(2)) velocity
UXCP	Unit vector representing X-guidance axis in platform coordinate
<u>UYGP</u>	Unit vector representing Y-guidance logic in platform coordinates
<u>UZGP</u>	Unit vector representing Z-guidance axis in platform coordinates
VE	Exhaust gas velocity, FPS
VG	Relative velocity in guidance coordinates, FPS
VP	Inertial velocity in platform coordinates, FPS
VRP	Relative velocity in platform coordinates, FPS
VZBO	Intermediate variable used in targeting
VZBOD	A desired value of burnout velocity used in phase I guidance
VZBON	Intermediate variable used in targeting
W	Weight of vehicle, Lb
WDOT	Time rate of change of vehicle weight, Lb/sec
WDIR	Wind vector in platform coordinates, FPS
KEAP	Enpty weight of orbiter, 1bs
WOMS	Weight of OMS propellant, 1bs
WORB	Weight of orbiter (including main propellant)

S51-21

AT Magnitude of thrust acceleration, FPSS Present thrust acceleration vector, FPS3 $\underline{V}\underline{V}$ Thrust accaleration command in platform coordinates, FFSS <u> ATC</u> Κ Coefficient used in determining when to change from phase I to phase II guidance (70) 34 <u>U1</u> Unit vectors of an orthogonal triad used in steering angle computation when angle between commanied thrust <u>15</u> vector and present thrust vector is greater than FORLEM.DT <u>U3</u>

S51-22

and the second second

DEFINITION OF STABOLS Variable Constants

ALIM	Thrust acceleration limit, FPSS
XAMA X	Maximum angle-of-attack limit, radian
AMIN	. Minimum angle-of-attack limit, radian
LSEP	Desired angle-of-attack for orbiter-tank separation
BANKO	Bank angle commanded during orbiter maneuver away from tank (45 deg)
BAIK1	Possible magnitude of bank angle command during phase III guidance (15 deg)
BANK2	Possible magnitude of bank angle command during Phase III guidance
BDOT	Bank angle rate limit during orbiter-tank separation
BDOT2	Bank angle rate limit during entry (phase III)
BSEP	Desired bank angle for orbiter-tank separation
01 02 03	Coefficients used in burnout targeting routine
DT1	Powered guidance (phase I and II) cycle time, 1 sec
DT2	Unpowered guidance (phase III) cycle time, 2 sec
GLAT1	Latitude of landing site near launch pad
GLAT2	Latitude of a downrange landing site
GLONG1	Longitude of landing site near launch pad
GLONG2	Longitude of a downrange landing site
GNLIM	Normal acceleration limit (1.8 G)
EB01	Burnout altitude for return to the launch site, 200,000 ft
HB02	Eurnout altitude for downrange landing site, 250,000 ft
HE03	Booster burnout altitude, TBD

S51-23

121105

11.1

4.26.5

7. C. G.

A STATISTICS AND A STATISTICS AND A STATISTICS

DEFINITION OF SWEDLS

Variable Constants (continued)

HEAD1	IF HEAD HEADI 3°, BANK C = BANKI
FEAD2	IF HEAD2 (1°) HEAD HEAD1, BANKC = BANK2
EGANT	Height of gantry
HIMJ	Distance from IMU to tail of orbiter
IP	Inertial to platform transformation matrix
E1	Altitude gain used in phase I guidance
K2	Altitude rate gain used in phase I guidance
K3	Altitude gain used in final portion of phase II guidance
к,	Altitude rate gain used in final portion of phase II guidance
UM	Earth gravitational constant
PDOT	Pitch rate limit during orbiter tank separation
PDOT2	Pitch rate limit during orbiter reentry
PITCH1	Platform pitch required to clear gantry for orbiter pad abort
PITCHD	Desired angle between X body axis and local horizontal plane during entry after powered abort raneuver
PORLIM	Attitude rate limit during powered abort
ÇBLIM	Dynamic pressure limit used for guidance purposes only
RDG	Desired burnout altitude, ft
RE .	Radius of the earth, ft
Shift1	Shift in latitude, degree
SHIFT2	Shift in longitude, degree
SHIFT3	Shift in latitude, degree
Shift4	Shift in longitude, degree
SMINI	Acceptable angle-of-attack error for orbiter tank separation
S12112	Acceptable bank angle error for orbiter tank separation
	S51-24

- 1

2470 A. C.Z

æ

DEFINITION OF SYMBOLS

Variable Constants (concluded)

....

S51-25

and a second state of the second state of the

TEOSW	TBO for satisfin guidance equations (10 sec)
VE1	Exhaust state city for booster
VE2	Exhaust gas velocity for orbiter
VXB01	Desired altitude rate at burnout for return to the launch site (0) Had
VXE02	Desired altitude rate at burnout for downrange landing site (0)
VXB03	Desired altitude rate at booster burnout orbiter TBD
MPO	Desired orliter burnout weight weight, TBD
WE	Angular rotation rate of earth, deg/sec
VEP	Angular velocity of earth in platform coordinates, deg/sec
WORB	Orbiter lithoff weight, 1b (for parallelleurn weight of orbiter after separation from booster; (), (variable)

 \bigcirc

	• • · · ·
RBST	Set to 1 when booster is attached
HINIT	Set to 1 if initial conditions for booster-orbiter are used
KNONTS	Set to 1 if nominal mission can not be continued
KURBIT	Set to 1 if orbit can be achieved .
NP1.SS	Flag used to insure one pass through 2. loop
ITHASE	Flag indicating guidance phase
IPROP1	Set to 1 when booster propellant is depleted
KEOP2	Set to 1 when orbiter propellant is depleted
KRETRN	Set to 1 for return to the launch site following an abort
MICRIT	Set to 1 if abort is time-critical

Flags