AC/Technical Assistant
$A P /$ Public Affairs Office
AT/P. Fitzgerald
J. Loftus
$\mathrm{JC} 4 / \mathrm{S}$. Armstrong
CA/Director of Flight
Grew Operations
CA/Asst. Director for
Space Shuttle
CB/K. Bobko
C. Duke
J. Engle
C. Fullerton
T. Mattingly
D. Peterson
R. Parker
J. Swigert
J. Young

CDI2/J. Bigham
CE/Chicf, Crew Training
\& Sinulation Division
CE3/A. Nolting
O. Olasky

CF/D. Lang
CGl/M. Contella
P. Kramer

EA/Director of Engineering
and Development
EA3/Asst. Director for
Electronic Systems
EB/Chief, Information
Systems Division
EB5/Asst. Chief for
Spacecraft Data Systems
EE/Chicf, Telemetry \&
Communications Systems
Division
EE/J. Sheppard
W. Zrubek

E®6/J. Griffin
J. Lamorcaux

EES/R. Woorehead
EG/Chicf, Guidance end
Control Division"
EG/Asst. Chief, Guidance
and Control Division
EGc/systems Analysis Branch (25)
EG3/J. VanAxtsdalen
J. Jawrence

LGlt/E. Chevers
J. T. Edge

EG4/G. Rice
H. Shelton
J. Vernon
A. Turley

EG5/T. Marry
M. Jones
C. IVanry
W. Swingle

EG6/D. Gjilbert
R. Reid
H. Smith

EG7/C. Wasson
EG8/P. Kurten
R. Wilson

EG13/R. Kennedy J. Klinar

EJ/W. Bradford
R. Burghduff.
J. Brown
G. Holloway
R. Lewis
C. McCulLough
R. Swint

ER/H. Davis.
ERL/F. Casey
ES/D. Wade
ESE/P. Glynn
C. Modlin

EX/J. Hondros
B. Jackson
B. Redd

EX2/F. Garcia
D. Howes
C. Teixeira
P. Thomas

EX3/I. Fossler
EX4/R. Barton
J. Gamble

EW/W. Petynia
FA/Office of Director
for Flt operations
FA/R. Ermuli
$\mathrm{FA} 3 / \mathrm{R}$. Rose
FAle/L. Dunsejth
FC/Chief, Flight
Control Division
$\mathrm{FCl}_{4} / \mathrm{H}$. Loden
D. Thorson

FC5/J. Boctick
J. Ferguson
W. Midaleton

FO5/C. Parker
ID7/C. Hackler
A. Hambleton
T. Kecton

FM/Chief, Mission
Planning \& Analysis Div.
FM/T, Gibson
C. Huss
S. Mann
F. Sulcr

FM2/C. Graves
FM3/C. Hyle
mp/M. Jenkins
P. Pixley

FM5/R. Savely
FMT/A. Bordano
A. Long
-R. Nobles
T. Murtagh

FM9/E. Fridge
E. MeHenry
W. Sullivan

FS/Chief, Flight Support
Division
FS/J. Satterfield
I. Hamilton

FS6/J. Garman
G. Sabionaki
J. Williams

FS7/J. Watkins
KA/Manager, Skylab Program
IA/Manager, Space
Shuttle Program
IA2/H. Dotts
LA3/H. Gartrell
LC/B. Gay
LF/B. Evans
V. Neshyba

LP/J. Heberlig
MA/Aaron Cohen
O. Morris

ME/S. Andrich
R. Bradley
P. Deans
J. Defife
C. Frasier
R. Kubicki

M, Silvejia
MO/D. Cheathain
W. Koons

NA2/Planning \& Assesment office

SPACE SHUTTLE GUIDANCE, NAVIGATION
 AND CONTROL
 DESIGN EQUATIONS

VOLUME III

Revised
March 15, 1973

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION MANNED SPACECRAFT CENTER HOUSTON, TEXAS

Prepared by
Systems Analysis Branch
Guidance and Control Division

$$
\frac{\text { K.J. Cox }}{\text { K.J. Cox, Chief }} \text { Systems Analysis Branch }
$$

Authorized for $\%$ Distribution - $1 / \mathrm{li}$ gm
fr Maxime A. Faget
Director of Engineering and Development

VOLUME TII
 TABLE OF CONTENTS

1. Introduction 3-1
2. Multi-Stage Boost Control S53-1
3. Rendezvous Targeting S37-1
4. Rendezvous Terminal FhaseAutomatic Braking Sequenceand TargetingS41-1
5. Station-Keeping Guidance S46-1
6. Deborbit Targeting S28-1
7. Powered Flight Guidance S25-1
8. Entry Guidance S44-1, S59-1
9. Approach Guidance S58-1 , S60-1
10. Final Approach Guidance S29-1
11. Conic State Extrapolation S6-1
12. Required Velocity Determination, Conic S24-1.
13. Required Velocity DeterminationPrecisionS27-1
14. Boost Abort Guidance S51-1
15. Sequence 3-9
The other Volumes of this document are:
Vol I STATUS
Vol II NAVIGATION
Vol IV CONTROL

Introduction

Guidance activity generaliy relates to the perturbation of spacecraft trajectory or state by the application of translational control effectors. The Space-Shuttle mission incluçes three relatively distinct, guidance phases: htomospheric Boost (characterized by an adaptive guidance law), Extra-Atmospheric Activities and Rementry Activities (where aerodynamic surfaces are the principal effectors). Guidsnce tasks include pre-maneuver targeting and powered flight guidance (where powered flight is defined to include the application of aerodynamic forces as well as thruster forces). Figure 3.1 is a flow chart which follows guidance activities throughout the mission from the Pre-launch phase through touchdown. Table 3.1 lists the main guidance programs and subroutines used in each phase of a typical rendezvous mission. A brief description of each such program and routine follows. Detailed software design requirements are presented in Vol. III.

1. Atmospheric Boost Guidance

This program, when completed, will (at a minimum) provide a progrenmed pitch over and attitude hold until sometime after max-q. It may also include some mirimal closed-loop guidance to limit dispersion in the presence of wind and gust disturbances. This program (not yet submitted) will. fulfill functional requirement $2 G l^{*}$.

2. Multi-Stage Boost Guidance

These powered ascent guidance equations provide inertial steering commands during boost to insertion. The equations accommodate to engine throttle cap-

- ability and to discontinous boost, i.e., PSR shutdown and jettison with controlled thrust from the MPS. These equations fulfill requirement $2 G 2$.

3. Rendezvous Targeting

This Targeting Routine has the capability of constructing inflight the rendezvous maneuver sequence which satisfies the requirements of the particular nission. The routine can handle sequences with any given number of maneuvers, each of which can have a variety of constraints. These equations fulfill requirements $3 G 2$.
4. Rendezvous Braking

This Targeting Routine has the capability to bring the vehicle into the station-keeping zone by automatic line-of-sight corrections and braking corrections. These equations fulfill requirements 363.
*Tunctional Requirement Module (See App. I).

\therefore Station Keeping Guidonce

This targeting Routine is for use during the station-keeping phase and \therefore designed to maintain 1.. orbiter in a small zone which may be arbitrarily Located with respect to t... aarget vehicle. The orbiter is maintained in the :on by tha perionic anm? fol of small velocity corrections computed so as

6. Deorbit Targeting

This targeting Foutine is for the computation of an optional phasing maneuver to place the vehisla in a phasing orbit prior to landing, and an in-plane minimum fuel deorbit maneuver satisfying entry-interface and landingsite constraints. The propram is designed to allow the crew to determine deorit $\mathrm{o}_{1}, \therefore$ and to select one desired. The program satisfies requirement $3 \div 6$.

7. Powered Flight Guidance

These Guidance Routines are for use in computing steering and engine cutoff commands during either a maneuver with a specified velocity change, or a Lambert aim point mancuver, or a deorbit maneuver. The concepts of a curt. positir off a l state-vector navigation are used for the Lem: and deo it : G Cross product steering is used for all maneuvers. These equations saiasfy the requirements 3 Gl.

8. Entry and Transition Guidance

This routine will provide guidance commands from entry interface through the heat control phase, through transition, to 40,000 feet altitude. The requirements for this phase are $4 G 1$.
9. Approach (Terminal Area) Guidance

This routine provides steering commands which guide the S / S from an \therefore. t tude of $40,000 \mathrm{ft}$ to f - n int on the final approach (glide) path at an N: ade of approximately....) ft. These requirements are listed as 4 G 2. 10. Final Approach Guidrce

This routine provide; steering commands which maintain the shuttle on the two-flare approach path through touchdown. These equations satisfy requiroments 4 G 3.

11. Gonic State Extranoition Subroutines

These subroutines are for conic state vector extrapolation as a function of time (Kepler) or as a funtion of angle (Theta), and are required both for rud nce targeting and for : igation.

12. Precision State and FiJtor Heighting Motrix Extrapolation

This subroutine has an Encke integration scheme which includes the capability for precision extrapolation of a vehicle atate vector and the associated submatrix of the Navigation filter weighting matrix in the earth's J_{2} erevity field. Additionsl perturbing acceJerations due to higher order gravity terms, lunar and solar gravity, and atmospheric forces have not been included since the requirements for them have not been established. This subroutine is presented in Navigation Volume II.
13. Conjc Required Velocity

This subroutine is for the solution to the multi-revolution Lambert required velocity determination problem.

14. Precision Required Velocity

This subroutine is for use by a targeting routine to compute the parameters needed by the Powered Flight Guidance Routines to perform a Lambert aim point or de-orbit maneuver.

15. Abort Guidance Targeting

This program, available only in preliminary form, provides guidance targeting for the transition from booster failure to acquisition of the nominal entry trajectory with virtually empty OMS fuel tanks. This program fulfills some of the requirements of $2 G 3$.

The Multi-Stage Boost Guidance presentation is by R. F. Jaggers of the Boeing Co. There are other designs under consideration, but none differ significantly from the Linear Tangent Guidance which is the basis of Jagger's presentation.

The On-Orbit guidance submittals are the work of C. S. Draper Laboratory. Rendezvous Targeting is documented by W. H. Templeman, Rendezvous Braking by P. M. Kachmar, Station Keeping Guidance by Gustafson and Kreigsman, Deorbit Targeting by Brand and Brennan, Powered Flight Guidance by Brand, Brown, Higgins and Pu , the Precision Required Velocity routine by T. J. Brand and the Conic State routine, the Precision State routine and the Conic Required Velocity routine by W. M. Robertson. An alternative Rendezvous design has been published by D. J. Jezewski of the NASA/MSC Mission Planning and Analysis Division. It is anticipated that the Linear Tangent Guidance, in a modified form, will replace the Powered Flight Guidance design documented herein.

Figure $3.1 \quad$ Guidance

TABLE 3.1 SHUTTLE GUIDANCE

The mity through Landing guldance subnittals are produced by Kriegsman (CSDL) na Barpold (MAD) for Entry, NASA/MSC Crew Procedures Division (documented by Teo) a.A Gins (CSDL) for Approach, and D. Dyer of GCD for Final Appronch. Other Entry fiddance designs include Fast Time Integration by Sunkel (G\&CD). The Harpold design crd the Kriegsman desfgn for Entry Guidance are both included in this volume because both have outstanding features and it is conjectured that the final design will represent a combination of the best features of each. Likewise both the Crew Procadures and the Elfas designs are presented in expectation that the final design will include features of each. An alternate Terminal Area Approsch design by T. Moore (GCD) is more complicated, but is a strong contender for implementation because it includes capability for low-altitude redesignation.

The preliminary Boost Abort Targeting submittal is by G. McSwain of GbC Div., NASA/MSC.

Except for Boost Abort Targeting all Guidance submittals are complete, according to the requirements of Appendix I.

Introduction

The purpose of the powered ascent guidance equations is to provide inertial steering commands during the boost to orbit maneuver. Throttle setting can also be provided if this is a requirement of boost guidance, however, this feature is not incorporated in the equations presented here.

The linear tangent guidance law presented here was developed to meet at least the following requirements: multi-stage capability, ability to handle flight perturbations and maintain orbital insertion accuracy, abort to alternate conditions, engine out capability, and throttle for constant acceleration.

Gudance input and output parameters are listed and defined below. EssenI:Nlu, guidance input is the present state vector and orbital parameters defining lho dosired terminal state vector, and the output is steering commands and time-:a-go.

Guidance Presettings (PREFLIGITT INPUT)

R_{D}	Magnitude of desired terminal radius vector
V_{D}	Magnitude of desired terminal velocity vector
${ }^{1} \mathrm{D}$	Desired terminal flight path angle
${ }^{\mathrm{G}} 21$	X component of unit vector normal to desired orbit plane*
G_{23}	Z component of unit vector normal to desired orbit plane*
$V_{e x}$	Effective exhaust velocity of stage i
$\tau_{\text {j }}$	Initial m to m ratio of stage i
T_{Bi}	Nominal burn time of stage i
T_{Ci}	Coast time between stage i and stage i +1
${ }^{\text {a }} \mathrm{Li}$	Acceleration limit of stage i
n	Number of guided stages
Navigational	Quantities (INFLIGHT MEASURED INPUT)
$\overline{\mathrm{a}} \mathrm{p}$	Inertial platform measured acceleration vector
$\overline{\mathrm{V}}_{\mathrm{p}}$	Inertial platform velocity vector
R_{p}	Inertial platform radius vector .
$\overline{\mathrm{g}}_{p}$	Inertial platform gravity vector (Calculated function of \bar{R}_{p})

* Optional inputs are i_{D}, desired inclination, and ${ }^{0} \mathrm{D}$ ' desired longitude of des-
cending node.

Guidance Output

θ_{c}	Commanded inertial pitch angle
ψ_{c}	Commanded incrtial yaw angle
T_{GO}	Time-to-go till orbital insertion
f	Throttle setting if applicable (to be determined)

Guidance Precalculations

(Coordinate transformation from platform system to desired orbit system)

Input G_{21} and G_{23}, X and Z components of unit vector normal to desired orbit plane. Compute unit vector in desired orbit plane normal to launch vertical, and unit vector defined by intersection of desired orbit plan and the plane containing launch vertical and vector normal to desired orbit.

$$
\begin{aligned}
& G_{22}=\left(1-G_{21}{ }^{2}-G_{23}{ }^{2}\right)^{1 / 2} \\
& G_{11}=\left(G_{22}{ }^{2}+G_{23}{ }^{2}\right)^{1 / 2} \\
& G_{31}=0 \\
& G_{32}=-G_{23} / G_{11} \\
& G_{33}=G_{22} / G_{11} \\
& G_{12}=-G_{21} G_{33} \\
& G_{13}=G_{21} G_{32}
\end{aligned}
$$

NOTE: $\begin{aligned} & \text { For due East launch } \\ & \text { and no plane change }\end{aligned},[G]=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

E

S53-11

S53-12

1. INTHODUCTION

The rendezrous of the Orbiter (primary vehicle) with a target vehicle (e.g. the Space Station) is accomplished by mancuvering the Orbiter into a trajectory that intercepts the target vehicle orbit at a time that results in the rendezvous of the two vehicles. The function of rendezvous targeting is to detcrmine the targeting parameters for the powered flight guidance for each of the maneuvers made by the Orbiter during the rendezvous sequence.

In order to construct the multimaneuver rendezvous trajectory, sufficient constaints must be imposed to determine the desired trajectory. Constraints associated with the Orbiter mission will involve such considerations as fuel, lighting, navigation, communication, time, and altitude. The function of premission analysis is to convert these - which are generally qualitative constraints-into a set of secondary quantitative constraints that can be used by the onboard targeting program. By judicious selection of the secondary constraints, it should be possible to determine off-nominal trajectories that come close to satisfying the primary constraints.

The proposed onboard rendezvous targeting program consists primarily of a main program and a generalized multiple-option maneuver subroutine. The driving program automatically and sequentially calls the maneuver subroutine to construct the rendezvous configuration from a series of maneuver segments. . The main program is capable of handling rendezvous sequences involving any given number of maneuvers. Enough different types of maneuver constraints are incorporated into the subroutine to provide the flexibility required to select the best set of secondary constraints during premission planning. In addition, the astronaut has a large, well defined list of maneuver options if he chooses to modify the selected nominal rendezvous scheme.

As the new approach represents, in essence, just one targeting program, there is considerable savings in computer-storage requirements compared to former approaches in which each maneuver used in the rendezvous scheme had a separate targeting program. The programming and verification processes of this unified approach will also result in implementation efficiencies.
1.1 Number of Independent Constraints Involved in a

Rendezvous Sequence
During the Gemini and Apollo flights and in the design of the Skylab rendezvous scheme various numbers of maneuvers were utilized in the rendezvous sequence. The range went from two (Apollo 14 and 15) to six (Skylab).

The number of independent constraints (i.e., the number of explicitly satisfied constraits) in each rendezvous sequer : must equal the number of degrees of freedom implicitly contained in the sequence. To establish this number, a rendezvous configuration can be constructed by in em arbitrary constraints until the configuredion is uniquely defined. For far four maneuver coplanar sequence is shown in Figure 1, followed by terminal point. Using the constraints v_{i} (velocity magnitude), r_{i} a easy to establish that the comber involved is 12 , assuming the time of the first maneuver has been established. Removing one maneuver will reduce the number of degrees of freedom by three. Hence, the number of independent ennetraints necessary to uniquely determine the maneuver sequences are

Number of mane in sequence	Number of independent constraints required
1	3
2	6
3	9
4	12

If the above rendezvous are not coplanar, one additional constraint has to be added to each sequence to allow for the on. i-plane component.

In some cases the number of a constraints may be insufficient to uniquely determine a rendezvous tr tory for the desired number of maneuvers. One way of overcoming this deficiency in constraints is by introducing sufficient variables to complete the determination of the rendezvous trajectory and then determining values for these variables by minimizing the fuel used.

In order to take advantage of updated state vectors due to navigation or ground updates, the rendezvous targeting program is called prior to each maneuver to compute the upcoming maneuver. In general, each maneuver computation will involve a multimaneuver sequence as the nature of the targeting constraints do not allow the maneuvers to be indepen' ntly computed.' The relationship between the rendezvous sequence involving $n \pi \because$ ers and the maneuver sequences is shown below.

Figure 1. A Possible Set of Constraints Involved in
a Four Maneuver Rendezvous Sequence

Each maneuver s : \quad is composed of a member of maneuver segments and is basically indeper : :som the other maneuver sequences. These sequences must have the same $n=\cdots r$ independent constraints as tabulated above.
1.2 The Con. \because writing of a Maneuver Segment

Each ṇ-1. . $\because \because$ sezvous sequence can be divided into $n-1$ maneuver eegments. Each se, $\because \quad$, basically, the addition of a maneuver to the primary vehicle's velocity $v i \cdots i$ and an update of both vehicle's state vectors to the next maneuver point.

A maneuver segment is herein generated in one of three ways:

Forward gencration

Target generation

A maneuver $\Delta \underline{v}$ is computed and added to the velocity vector in a specified direction. The state vector of the primary vehicle is then updated through a specified amount to arrive at the next maneuver position.

The target vehicle is updated through a specified amount and then offset to establish a target vector. An option is available at this point to compute a coelliptic velocity vector and update through Δt to establish a new target vector as shown below.

In this case, the maneuver segnent is computed as an integral part of a maneuver sequence involving more than one mancuver segment. The nature of the constraints are such that the mancuver sequence cannot be subdivided into uniquely defined maneuver segments. The maneuver segment will usually have one degree of freedom, which will generally be assumed to be the magnitude of the maneuver.

Each of the above methods is defined by specifying trajectory constraints by setting certain switches and parameter values. Specifying a trajectory constraint is equivalent to specifying one or more independent constraints. On the other hand, specifying an independent constraint can also be equivalent to specifying one or more trajectory variables. (See Ref. 9) A trajectory constraint common to all three of the above methods is the state vector update switch supdate. The options associated with this switch are:

$$
s_{\text {update }}= \begin{cases}1 & \text { Update from time to time } t_{F} \\
2 & \text { Update through time interval } \Delta t \\
3 & \text { Update through n revolutions } \\
4 & \text { Update through } \theta \text { radians } \\
5 & \begin{array}{l}
\text { Update to be colinear with a } \\
\text { specified position vector }
\end{array}\end{cases}
$$

In the next three sections, the trajectory constraints associated with each of the above methods will be listed.

1.2.1 Manevver Options in Forward Generation of

The forward generation of maneuver segment is accomplished in one of two ways. Either the maneuver magnitude is uniquely determined in terms of the state vector at the maneuver time or the maneuver is determined by an iterative search to satisfy a terminal constraint.

The maneuver magnitude Δv is either calculated or assumed depending on the maneuver switch s man, and it is applied in a direction controlled by the direction switch s direct. The options associated with the maneuver switch are:
$s_{\text {man }}= \begin{cases}1 & \Delta v \text { is assumed specified } \\ 2 & \begin{array}{l}\Delta v \text { is computed based on a post maneuver } \\ \text { velocity vector being "coelliptic" with the } \\ \text { state vector of the target vehicle }\end{array} \\ 3 & \begin{array}{l}\Delta v \text { is computed from the conic circular } \\ \text { velocity constraint }\end{array} \\ 4 \quad \begin{array}{l}\Delta v i s \text { computed based on a Hohmann type } \\ \text { transfer resulting in a } \Delta h \text { change in } \\ \text { altitude }\end{array}\end{cases}$

The options associated with the maneuver direction switch are:
\mathbf{s} direct $= \begin{cases}-1 & \begin{array}{l}\text { Apply } \Delta v \text { is horizontal direction in plane } \\ \text { of primary vehicle }\end{array} \\ 1 . & \begin{array}{l}\text { Apply } \Delta v \text { in horizontal direction parallel } \\ \text { to orbital. plane of the target vehicle }\end{array} \\ -2 & \begin{array}{l}\text { Apply } \Delta v \text { along velocity vector in plane } \\ \text { of primary vehicle }\end{array} \\ 2 & \begin{array}{l}\text { Apply } \Delta v \text { along velocity vector parallel } \\ \text { to orbital plane of the target vehicle }\end{array}\end{cases}$

The selection of the update switch s update p determines the update of the primary vehicle's trajectory following the maneuver to the position of the next maneuver. A terminal constraint can be imposed at this point by setting the terminal switch s term:

Following the computation of the height/phasing error, the mancuver magnitude is varied in an iterative search to satisfy the height/phasing constraint.

1.2.2 Maneuver Options in Target Generation
 of Naneuver Segment

The target generation of a maneuver segment starts with the selection of the update switch for the target vehicle. If this switch equals four, θ will be augmented by the central angle between the primary and target vehicles before being used. The position of the target vehicle is then offset through either (e $L, \Delta h$) or ($\Delta \theta, \Delta h$), depending on whether $s_{t a r}$ is negative or positive, to obtain a target vector. The "TPI offsets" ($e_{1}, \Delta h$) are discussed in Section 5 (see Figure 2 for definition of e_{L}). If $\left|s_{\text {tar }}\right|$ equals two, a coelliptic velocity vector is computed based on the target vector, and a new target vector is defined by updating the coelliptic state vector through Δt. The options associated with $s_{\text {tar }}$ are:

$$
\begin{aligned}
& {\left[-2 \text { Offset target }\left(e_{L}, \Delta h\right)\right. \text {. Compute coelliptic }} \\
& \text { velocity and update through (negative) } \Delta t \text {. } \\
& -1 \quad \text { Offset target }\left({ }_{\mathrm{L}}^{\mathrm{L}}, \mathrm{\Delta h}\right) \\
& 0 \quad \text { No target offset } \\
& 1 \text { Offset target }(\Delta \theta, \Delta h) \\
& 2 \text { Offset target }(\Delta \theta, \Delta h) \text {. Compute coelliptic } \\
& \text { velocity and update through (negative) } \Delta t \\
& \text { The nature of the traverse between the primary } \\
& \text { vehicle's initial state vector and the target vector is } \\
& \text { controlled by the maneuver switch } s_{\text {man }} \text { : }
\end{aligned}
$$

There is a minimum Δv option associated with the above maneuvers which is controlled with the optimization switch $s_{o p t}$:

i = Unit horizontal in forward direction for primary vehicle LOS = Line of Sight

1. If the LOS projection on \underline{i} is positive:
a. When the LOS is above the horizontal plane. $0<e_{L}<\pi / 2$
b. When the LOS is below the horizontal plane, $3 \pi / 2<\mathrm{e}_{\mathrm{L}}<2 \pi$
2. If the LOS projection on $\underline{\mathrm{i}}$ is negative:
a. When the LOS is above the horizontal plane, $\pi / 2<e_{L}<\pi$
b. When the LOS is below the horizontal plane, $\pi<\mathrm{e}_{\mathrm{L}}<3 \pi / 2$

Figure 2. Definition of the Elevation Angle ${ }^{e}$ L
$s_{\text {opt }}$
the first and the next mancuver (based
on a coelliptic parting velocity) by
varying Δt, the time between the next
maneuver and the initial offset position
(see sketch on page 1-4).
This minimization is arcommished by driving the slope ($\Delta v /$ independent variable)
to zero using a Newton Riphson iteration scheme.
The integrated gencration of a maneuver segment involves an iterative sulu-
tion to determine a mancuter sequence which cannot be sequentially solved for its
mancuver segment compurents. The maneuver is computed by guessing its magni-
tude, assigning a direction and plane through selection of the direction switch
s direct, updating the primary vchicle's state vector after selecting switch s
and then calling additional Hamenver segments until reaching the point at which
the terminal constraint is w he: attained. The maneuver is then iteratively de-
termined by satisfying the terminal constraint. The number of additional maneu-
ver segments and the nature of the terminal constraint are controlled by the ter-
minal constraint switch $s_{\text {tiom }}$

1.2.4 Summary of the Maneuver Segment Constraints

The maneuver and trajectory constraints that can be imposed on a maneuver segment can be divided into the following catagories (see Figure 3).

Primary vehicle update constraints
Target vehicle update constraints
Initial velocity constraints
Offset constraints
Terminal constraints
Traverse constraints

Table 1 contains a detailed listing of the constraints. The three independent constraints (four in the case of noncoplanar traverses) which govern a maneuver segment cannot be chosen arbitrarily from this list for two reasons:
(1) There is not a one-to-one correspondence between the trajectory constraints and the independent constraints.
. 0

(2) Selecting some constraints negates the need for some others (e.g. selecting a Lambert constraint negates the need for a maneuver direction constraint).
In the case of a straight forward rendezvous profile, a basic understanding of the nature of the constraints should allow the constructor of the rendezvous sequence to choose a set of trajectory constraints which determine the required number of independent constraints. For a complex rendezvous profile, such as Skylab a more formal approach such as presented in Reference 11 should be used. One of the justifications for presenting the three methods of generating a maneuver negmint was to aid the constructor of the rendezvous sequence in choosing compatible sets of constraints.

TABLE 1

DETAILED LISTING OF CONSTRAINTS

(Sheet 1 of 2)

Primary and Target Vehicle Update Constraints
Delta timeInitial and final time
Central angle
Number of revolutions
Terminal position vector
Initial Velocity Constraints
Plane
Parallel to target orbit
Parallel to primary orbit
Direction
Horizontal
Along velocity vector
MagnitudeCircularCoelliptic
Altitude change
Specified
Offset Constraints
Angle
Altitude
Elevation angle
Terminal Constraints
Height
Phase

TABLE 1

DETAILED LISTING OF CONSTRAINTS
(Sheet 2 of 2)

Traverse Constraints
Minimum Fuel
One maneuver optimization
Two maneuver optimization
Apogee/Perigee designation
Horizontal maneuver
Tangential maneuver
Lambert (time)

	a_{i}
a_{1}	Failure in fuel optimization loop

	Δt	Delta time
	$\Delta t_{\text {max }}$	Maximum time step allowed in Search Routine iteration
	$\Delta \underline{v}$	Maneuver velocity
	$\Delta \underline{v}_{\text {LOS }}$	Maneuver in line-of-sight coordinates
	$\Delta \underline{Y}_{\text {LV }}$	Maneuver in local vertical coordinates
	Δv_{h}	Δv used during height maneuver
	Δv_{p}	Δv used during phasing maneuver
	ΔV_{T}	Delta velocity used in fuel minimization loop
	$\Delta \mathrm{x}$	Delta independent variable
	$\Delta 6$	Delta central angle
	e	Error
	${ }^{\text {c }}$	Eccentricity
	e_{h}	Height error
	e_{p}	Phasing error
,	${ }^{\text {e }}$ L	Elevation angle (defined in Figure 2)
	$\underline{1}$	Unit vector
	$\underline{\underline{i}}_{\mathrm{N}}$	Unit normal to the plane used in powered flight guidance
	i	Number of the maneuver
	$i_{\text {max }}$	Number of the last maneuver in the maneuver sequence
	m	Estimated vehicle mass
	M	Rotational matrix
,	\underline{n}	Vector normal to the orbital plane
	${ }^{\text {r }}$	Number of revolutions

${ }^{\mathrm{t}} \mathrm{F} \quad: \quad .1 \mathrm{itme}$
$\underline{v} \quad \therefore$ ity vector
$v_{v} \quad$ Vertical component of velocity
${ }^{v}{ }_{c} \quad$ Ci, w... velocity.
$x \quad$ Laveundent variable in Iteration Routine
$y_{p}, \dot{y}_{P}, \quad$ Out-of-plane parameters (see Figure 6a)
\dot{y}_{T}
$\alpha \quad$ Radial component of velocity divided by v_{C}
$\beta \quad \mathrm{B} \quad$ ontal component of velocity divided by v_{C}
ϵ_{1} Tolerance on time in fuel optimizing loop
ϵ_{2} Tolerance on height in height loop
ϵ_{3} Tolerance on central angle in phasing loop
ϵ_{4} Tol:rance on central angle in Search Routine
$\epsilon_{5} \quad$ Tol: ance on elevation angle in Search Routine
${ }_{\epsilon} 6$
ϵ_{7}. . Tolerance on central angle in Desired Position Routine
${ }^{6} 8$ Tolerance on central angle in Update Routine
γ
$\mu \quad$ Gravitational constant
θ Central angle
$\theta_{\mathrm{p}} \quad$ Perigee angle

Subscripts

"

O
都

2. FUNCTIONAI, FLOW DIAGRAMS

The rendezvous targeting program consists of two major parts-a generalized maneuver subroutine which basically computes a maneuver and updates the state vectors of both vehicles to the time of the next mancuver and a main program which sequentially calls the subroutine to assemble a rendezvous sequence. These programs call a number of subroutines which are briefly described below and in detail in Section 5.

Search - To update the state vectors to either a specified apsidal crossing, a time, or an elevation angle.
$\frac{\text { Phase }}{\text { Match }}-$ To phase match the target vehicle's state vector to the primary vehicle's position vector.

Desired Position

- To compute an offset target vector or a desired position to be used in a phasing constraint.

Update - To update a state vector through a specified interval.
$\frac{\text { Coelliptic }}{\text { Maneuver }}$ - To compute a coelliptic velocity vector.
Iteration - To determine a new estimate of the independent variable in a Newton Raphson iteration scheme.

The functional flow diagram for the main program is shown in Figure 4. The main function of this program is to sequentially call the General Maneuver Routine to compute each maneuver segment for maneuvers numbered from i to i max . There are three major options that can be exercised prior to the calculation of the first mancuver segment:
(1) A search for the time of the first mancuver. This time can be specified by:
(a) An elevation angle, which is to be attained at the maneuver time.

Figure 4. Main Program - Function Flow Diagram
(b) Whether the next maneuver should occur at the next apsidal crossing, the next perigee crossing or the nth apsidal crossing.
(2) A phase matching of the state vector.
(3) A rotation of the primary vehicle's state vector into the plane of the target vehicle.

There are three separate iterative loops built around the call to the general mancuver routine. One loop serves to minimize the fuel used during a maneuver segment with the options determined by the optimizing switch.

The other two iterative loops involve maneuver segments which contain constraints that do not allow the explicit calculation of the maneuver. These constraints are height and phasing constraints imposed at the end of a maneuver segment and controlled with the terminal switch. The iterative loop will involve several maneuver segments if sufficient constraints are not imposed to solve each segment uniquely.

The functional flow diagram for the general mancuver routine is shown in Figure 5. This routine gencrates the departure velocity at the initial point in one of two ways:
(1) As an explicit function of the initial state vectors.
(2) By defining a target vector and then computing an intercept trajectory based on a specified constraint (as indicated by the setting of $s_{m a n}$). The target vector is determined by offsetting the updated position vector of the target vehicle. Depending on the setting of the switch $s_{\text {tar }}$, a coelliptic velocity vector is computed at the offset point and the coelliptic state vector is updated through Δt to obtain a target vector.

Following an update of both vehicle's state vectors to the time of the next maneuver, the Δv used or the terminal height/phase errors are calculated as required.

3. INPUT AND OUTPUT VARIABLES

The inputs to the orbitor reactezvous targeting program can be divided into five catagories.

Pre-Maneuver Switches

Upon selecting i manewver from the rendezvous sequence, these switches (specified for each manouver) serve in determining the state vectors at the maneuver point, the out-of-plane parameters and the calculation of a desired position vector. These inputs can also be used in determining the time of a specified apsidal crossing or the time at which a specified elevation angle is to be attained.
Phase match switch

$$
s_{\text {phase }}= \begin{cases}0 & \text { Bypass } \\
1 & \text { Phase match state vectors (target leading } \\
2 & \begin{array}{l}
\text { primary) }
\end{array} \\
-\begin{array}{l}
\text { Phase match state vectors based on target } \\
-1
\end{array} & \begin{array}{l}
\text { Phase match state vectors (primary } \\
\text { leading target) }
\end{array} \\
-2 & \begin{array}{l}
\text { Phase match state vectors based on primary } \\
\text { leading target by more than } 360^{\circ}
\end{array}\end{cases}
$$

$$
\begin{aligned}
& s_{\text {coplan }}= \begin{cases}0 & \text { Coplanar switch } \\
1 & \text { Bypass } \\
\text { Rotate primary state vector into plats } \\
\text { of turget vehicle's orbit }\end{cases} \\
& \text { Exit switch } \\
& s_{\text {exit }}= \begin{cases}0 & \text { Bypass } \\
1 & \text { Exit from routine }\end{cases} \\
& \therefore \quad \text { Out-of-plane } 5 \text { witch } \\
& s_{\text {outp }}= \begin{cases}0 & \text { Bypass } \\
1 & \text { Compute out-of-plane param } \\
2 & \text { Complite out-of-plane par } \\
\text { modify maneuver by }-\dot{y}_{p}\end{cases} \\
& s_{\text {pert }}=\left\{\begin{array}{cl}
0 & \text { Perturbation switch } \\
1 & \text { Do conic state vector updates } \\
\ldots & \text { Other perturbations as required }
\end{array}\right.
\end{aligned}
$$

Mancuver Switches

'These switches (specified for each maneuver) set the constraints employed in determining the maneuver segments.

$$
\left\{\begin{aligned}
-2 & \underline{\text { Direction switch }} \\
& \text { vector, parallel to primary's orbital } \\
& \text { plane } \\
-1 & \Delta v \text { in horizontal direction, parallel } \\
& \text { to primary's orbital plane } \\
0 & \text { Bypass } \\
1 & \Delta v \text { in horizontal direction, parallel to } \\
& \text { target's orbital plane } \\
2 & \Delta v \text { in direction of primary's velocity } \\
& \text { vector, parallel to target's orbital plane }
\end{aligned}\right.
$$

Maneuver switch

$$
s_{\text {man }}= \begin{cases}1 & \Delta v \text { is specified } \\ 2 & \Delta v \text { is based on coelliptic velocity } \\ 3 & \Delta v \text { is based on circular velocity } \\ 4 & \Delta v \text { is based on altitude change } \\ 5 & \text { Lambert maneuver to offset target vector } \\ 6 & \text { Horizontal maneuver to offset target vector } \\ 7 & \text { Tangential maneuver to offset target vector } \\ 8 & \text { Perigee/apogee insertion at offset target vector }\end{cases}
$$

The parameter values (specified for each maneuver) are values for the constrained parameters.

Δv_{i}	Maneuver magnitude
$\Delta \underline{V}_{\text {LOS }}$	Mancuver in line of sight coordinates
$\Delta \underline{y l v i}^{\text {L }}$	Maneuver in local vertical coordinates
$\mathrm{r}_{1 \mathrm{l}}$	Target vector used in Powered Flight Guidance Routine (See Ref. 5)
$\underline{\mathrm{i}}$ N	Unit normal to plane used in same routine

Other parameters such as delta altitude, phasing angle, elevation angle and perigee altitude can be compuied as required.

Output Parameters for the Other Maneuvers in the Sequence

\mathbf{t}	Time of the maneuver
Δ_{v}	Maneuver magnitude

Illustration of Inputs

Table 2 contains a set of inputs for the Orbiter targeting program based on the five maneuver Skylab rendezvous configuration. The following switches and parameters are not used as inputs to the Orbiter program:

$$
s_{\text {astro }} s_{\text {exit }} s^{\text {opt' }} s_{\text {outp }} s_{\text {soln }}, \Delta \theta
$$

The inputs in Tabte 2 are set prior to the mission so they will not have to be inserted by the astronaut. The astronaut will have to modify the following quantities upon reseting the mancuver number as well as inserting the time of the next maneuver.

$$
\begin{aligned}
& \mathbf{i}=2: \quad \mathbf{s}_{\text {term }_{2}}=0, \mathbf{s}_{\text {term }_{4}}=32 \\
& \mathbf{i}=3: \\
& \mathbf{s}_{\text {man }_{3}}=5, \Delta t_{3}=-\angle t_{\mathrm{NSR}}-\mathrm{TPI} \\
& i=4: \\
& \mathbf{s}_{\text {term }_{4}}=0
\end{aligned}
$$

TABLE 2
INPUT VARIABLES FOR SKYLAB RENDEZVOUS CONFIGURATION

Input Variable	Maneuver				
	$\begin{gathered} 1 \\ (\mathrm{NCl}) \end{gathered}$	$\stackrel{2}{(\mathrm{NC} 2)}$	$\begin{gathered} 3 \\ (\mathrm{NCC}) \end{gathered}$	$\begin{gathered} 4 \\ (\mathrm{NSR}) \end{gathered}$	$\begin{gathered} 5 \\ (\mathrm{TPI}) \end{gathered}$
${ }^{5}$ coplan	I	1	0	1	0
${ }^{\text {direct }}$	I	1	1	0	0
$s_{\text {man }}$	1	1	1	2	5
$s_{\text {pert }}$	1	1	1	0	1
${ }^{\text {sphase }}$	1	1	0	0	0
${ }^{\text {s rdes }}$	-1	-1	0	0	0
$s_{\text {search }}$	-2	-2	-2	-2	-3
$s_{\text {tar }}$			-2		0
sterm	0	1	0	42	0
${ }^{\text {supdate }} \mathrm{P}$	3	3	2	1	2
${ }^{S_{u p d a t e}}{ }_{T}$			1		4
${ }^{e} \mathrm{~L}$	e_{L}	${ }^{\mathrm{c}} \mathrm{L}$	e_{L}		
${ }^{i}$ max	4	4	3	4	5
${ }^{n} \mathbf{r}$	nrNC1-NC2	$\mathrm{n}_{\mathrm{rNC} 2-\mathrm{N}}$			
${ }^{\text {t }}$ F	${ }^{t} \mathrm{TPI}$	${ }^{\text {t }}$ TPI	${ }^{\text {t }}$ TPI	${ }^{t} \mathrm{TPI}$	
θ					$\theta_{\text {TPF-TPI }}$
Δt			$\mathrm{t}_{\mathrm{NSR}}-\mathrm{N}$		
$\Delta h^{\prime} \quad \because$		$\Delta h_{\text {ACC }}$	$\Delta h_{\text {TPI }}$	$\Delta h_{\text {TPJ }}$	
Δh_{F}	$\Delta h_{\text {TPI }}$	$\Delta h_{\text {TPI }}$			
Δv	$\Delta \mathrm{v}_{\mathrm{NCl}}$	$\Delta v_{N C 2}$	$\Delta v_{N C C}$		

4. DESCIRIPTION OI QQUATIONS

The only equai. .. Atained in this document which are not trivial are those involved in computing ne traverse between two specified position vectors. The required equations can be derived from the equation of the conic expressed in the form

$$
r=r_{F} / r_{I}=\beta_{I}^{2} /\left[1+e_{c} \cos \left(\theta+\theta_{p}\right)\right]
$$

where

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{c}}=\left[\alpha_{\mathrm{I}}^{2} \beta_{\mathrm{I}}^{2}+\left(\beta_{I}^{2}-1\right)^{2}\right]^{1 / 2} \\
& \theta_{\mathrm{p}}=\cos ^{-1}\left[\left(\beta_{\mathrm{I}}^{2}-1\right) / e_{\mathrm{c}}\right] \quad \text { (perigee angle) } \\
& \mathrm{v}_{\mathrm{c}}=\left(\mu / \mathrm{r}_{\mathrm{I}}\right)^{1 / 2}
\end{aligned}
$$

α_{I} and R_{I} are the normalized (with respect to v_{c}). radial and horizontal components of velocity.

The above equation can be expressed

$$
\begin{equation*}
\left.\mathrm{p}_{\mathrm{S}} / \mathrm{r}_{\mathrm{I}}=\beta_{\mathrm{I}}^{2}={c_{2}}_{2} / \gamma_{\mathrm{I}} \sin \theta / \beta_{\mathrm{I}}-c_{1}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& c_{1}=\cos \theta-1 / \mathrm{r} \\
& \mathrm{c}_{2}=1-\cos \theta \\
& \mathrm{p}_{\mathrm{s}}=\text { semilatus rectum }
\end{aligned}
$$

For a maneuver that is constrained to be in a horizontal direction, Eq. (1) can be solved for β_{I} as a function of the specified α_{I}.

$$
\beta_{I}=\left[\alpha_{I} \sin \theta \pm\left(\alpha_{I}^{2} \sin ^{2} \theta-4 c_{1} c_{2}\right)^{1 / 2}\right] / 2 c_{1}
$$

As the re has to be both a positive and negative β_{I} solution to this equation (one trajectory in each rotational direction), the sign choice is resolved in favor of plus R_{r}.

For a maneuver that is applied along the velocity vector, the flight path angle γ_{1} is to be held fixed. Using Eq. (1)

$$
0 \quad \quad \tan \gamma_{I}=\alpha_{1} / \beta_{\mathrm{I}}=\left(c_{1} \beta_{\mathrm{I}}^{2}+c_{2}\right) / \beta_{1}^{2} \sin \theta
$$

Therefore,

$$
\beta_{I}=\left[c_{2} /\left(\sin \theta \tan \gamma_{I}-c_{1}\right)\right]^{1 / 2}
$$

By interchanging the I and F subscripts, Eq. (1) can be expressed

$$
p_{s}=r_{F} c_{2} /\left(\alpha_{F} \sin \theta / \beta_{F}-\cos \theta+r_{F} / r_{I}\right)
$$

Combining with Eq. (1) using the apogee/perigee constraint $\alpha_{F} / \beta_{F}=0$ results in

$$
\tan \gamma_{0}=\alpha_{1} / \beta_{\mathrm{I}}=(1-1 / \mathrm{r}) / \tan (\theta / 2)
$$

Inserting into Eq. (1) gives the required horizontal component of velocity for apogee/ perigee designation mancuvers.

$$
R_{\mathrm{I}}=\left[r c_{2} /(r-\cos \theta)\right]^{1 / 2}
$$

The derivation of the equation

$$
\theta=\cos ^{-1}\left[r_{P} \cos \left(e_{L^{\prime}}\right) / r_{T}\right]-e_{L^{\prime}}
$$

where

$$
e_{L}^{\prime}=\left\{\begin{array}{l}
e_{L} \text { if } e_{L} \leq \pi \\
e_{L}-\pi \text { if } e_{L}>\pi
\end{array}\right.
$$

for computing the desired central angle θ between two positions (r_{P}, r_{T}) which satisfies the TPI constraints ($e_{L}, \Delta h$) is discussed in Ref. 12. This equation is used in the Desired Position Routine.
5. DETAILED FLOW DIAGRAMS

Figures 6 and 7 contain the detailed low diagrams of the main Orbiter rendervols targeting program and the general maneuver routine, respectively. The following six routines are called by these two programs.

Iteration Routine

This routine contains a Newton Raphson iterative driver based on numerically computed partials. The routine computes a new estimate of the dependent variable x and returns the old values of the error e and x. If the iteration counter c exceeds 15 , a convergence s witch s^{c} cony is set equal to one.

Coelliptic Maneuver Routine

This routine computes a coelliptic velocity vector \underline{v}_{N} based on a target vehicle's state vector and a delta altitude.

Phase Match
This routine phase matches the target state vector to the primary state vactor. The controlling switch ($s_{\text {phase }}$) equals two if the leading vehicle leads the other vehicle by more than one revolution: otherwise the switch equals one. If the primary vehicle leads to target vehicle, the switch is negative.

Desired Position Routine
This routine updates a specified state vector to the time t_{F} and then offsets the updated state vector through either $\left(\Delta \theta, \Delta h\right.$) or ($e_{L}, \Delta h$), depending on the setting of the switch s, to obtain $\underline{r}_{\mathrm{D}}$. The routine contains an iterative search to solve the ($e_{L}, \Delta h$) offset problem, where e_{L} is defined in Figure 2 and Δh (posifive when the target orbit is above the primary) is defined as shown below. (This represents the TPI geometry used in Apollo and Skylab.)

TPI point on target orbit

S37-32

Update Finutine

This 1 . $: \quad$ dates a state vector based on the update switch supdate

$$
\begin{aligned}
& \left\{=1 \text { Updates through the time }{ }^{1} F_{F}-t\right. \\
& \text { Updates through the time } \Delta t \\
& s_{\text {update }} \quad \text { Updates through n revolutions } \\
& =4 \text { Updates through the angle } 8 \\
& =5 \text { Updates to where the orbit intersects } \\
& \text { the line defined by } \underline{r}_{\mathrm{D}}
\end{aligned}
$$

Scarch Routine

This rou. \therefore is the following computations depending on the setting of the search swi? search
ssearch $\begin{cases}=n & \text { Finds the time of the } n^{t h} \text { apsidal crossing } \\ (>0) & \text { and updates the state vector to that time } \\ =-1 & \text { Finds the time of the next perigee crossing } \\ =-2 & \begin{array}{l}\text { and updates the state vector to that time }\end{array} \\ \begin{array}{l}\text { Updates the state vector through the time }\end{array} \\ & \text { and computes the elevation angle }\end{cases}$
-- 3 Finds the time associated with a specified elevation angle and updates the state vector to that time

The detailed flow charts for these routines are shown in Figures 8 to 13. The iterative algorithm used to determine the time associated with the elevation angle is described in Ref. 8.

Each input and output variable in the routine and subroutine call statements can be followed by a symbol in brackets. This symbol identifies the notation for the corresponding variable in the desired description and flow diagrams of the called routine. When identical notation is used, the bracketed symbol is omitted.

Figure 6a. Main Program - Detailed Flow Diagram

Figure 6b. Main Program - Detailed Flow Diagram

0

Figure 6d. Main Program - Detailed Flow Diagram

Figure 7a. General Mancuver Routine - Detailed Flow Diagram

Figure 7t. General Maneuver Routine - Detailed Flow Diagram

Figure 7c. C... Maneuver Routine - Detailed Flow Diagram
S37-40

Figure 7d. General Maneuver Routine - Detailed Flow Diagram

Figure 8. Iteration Routine - Detailed Flow Diagram

Figure 9. Coelliptic Maneuver Routine - Detailed Flow Diagram

Figure 10. Phase Match Routine - Detailed Flow Diagram

Figure 11. Desired Position Routine - Detailed Flow Diagram

Figure 12a. Update Routine - Detailed Flow Diagram

Figure 12b. Update Routine - Detailed Flow Diagram

UNIVERSAL PROGRAN CONSTANTS CONSTANTS

Figure 13a. Search Routine - Detailed Flow Diagram

Figure 13b. Search Routine - Detailed Flow Diagram

1. INTRODVCTION

The purpose of the Rendezvous Terminal Phase Braking Program is to provide the means of automatically bringing the primary vehicle (Orbiter) within desired station-keeping boundaries relative to the target vehicle (or satellite). To accomplish this task, the program of necessity contains navigation, targeting and guidance functions.

The program is initiated subsequent to the last midcourse maneuver of the rendezvous targeting sequence. Line-of-sight corrections, braking corrections, and filtering of rendezvous measurement sensor data to improve vehicle and target state estimates are performed in a sequential manner. At program initiation, the relative range is on the order of three to five miles.

When the primary vehicle has achieved a position (and velocity) relative to the target which places it within the desired station-keeping boundaries so that the station-keeping function can be initiated and maintained, the program is terminated.
b
$c_{i} \quad$ Measurement code identifying $i^{\text {th }}$ measurement at t^{m}
f_{i}
${ }^{i}$ prev Previous range gate passed; subscript used in braking (range) gate loop
$-\rho$
is $_{s} \quad$ Unit vector which defines center of station-keeping boundary, relative to target vehicle
$k_{1} \quad$ Constant used to determine the range at which each range gate search starts when approaching that particular range gate
$\mathrm{k}_{2} \quad$ Constant used to determine how often the line-of-sight targeting loop is entered; integer number of terminal phase program cycles
$\mathrm{k}_{3} \quad$ Constant value of range rate added to the minimum range rate at a given range to insure. primary vehicle intercept of target vehicle
$k_{4} \quad$ Constant used to determine how often the range-rate correction targeting loop is entered

Current estimated primary vehicle mass
$M_{R-B} \quad$ Transformation matrix from reference coordinate frame to body axes coordinate frame

$$
541-2
$$

3	Mr-ios	Transformation matrix from reference coordinate frame (in which vehicle states are expressed) to LOS coordinate frame axes
	$\mathrm{M}_{\mathrm{R}-\mathrm{M}}$	Transformation matrix from reference coordinate frame to measurement coordinate frame
	$\mathrm{M}_{\mathrm{R}-\mathrm{SM}}$	Transformation matrix from reference coordinate frame to stable member coordinate frame
	$\mathrm{M}_{\mathrm{NB}-\mathrm{B}}$	Transformation matrix from navigation base frame to body axes
	$\mathrm{M}_{\text {NB-M }}$	Transformation from navigation hase to measurement coordinate frame
	$\mathrm{M}_{\text {SM-NB }}$	Transformation matrix from stable member coordinate frame to navigation base
	n	Number of discrete braking gates in the range/ range rate correction schedule
	q_{i}	$i^{\text {th }}$ measured relative parameter at t_{m}.
3	q_{PN}	Process noise acceleration
	$\underline{r}_{\text {L }}$	Local vertical relative position vector (target vehicle local vertical)
	\underline{r}_{P}	Primary vehicle position vector
	$\underline{-r}_{T}$	Target vehicle position vector
-	$\underline{r}\left(t_{A}\right)$	Aimpoint vector used in Lambert targeting calculations
	${ }^{5} \mathrm{~B}$	Switch which controls braking gate targeting cycle
	${ }^{\text {s eng }}$	Engine select switch
	$s_{\text {freq }}$	Switch which controls measurement processing (navigation) cycle

$\because G M$	Switch which indicates guidance mode to be used in Powered Flight Guidance Routine; ' 2 "- two axis thrusting; "3" roodifiec' Delta-v mode; "4" modified Lambert mode
$s_{\text {init }}$	Signifies first entry into Unified Navigation Filter program
${ }^{\text {S LAM }}$	Switch used to solect type of targeting scheme used in the Terminal Phase Braking Sequencing Program.
${ }^{5}$ LOS	Switch which controls line-of-sight targeting cycle
${ }^{\text {search }}$	Indicates target search routine is needed in the Unified Navigation Filter program
s_{mk}	Switch which controls navigation cycle
$S^{\text {S }} \Delta v$	Switch which indicates if a velocity correction is to be made or not
${ }^{\mathbf{s}} \mathrm{AVVLOS}^{\text {L }}$	Switch which indicates LOS correction is to be made
${ }^{t} \mathrm{c}$	Current time
${ }^{\text {t }}$ ig	Maneuver ignition time
${ }^{t} \mathrm{~m}$	Measurement time
${ }^{t}{ }_{s}$	Time associated with primary and target vehicle state vectors
${ }^{t} \gamma$	Time of bias estimate
$\underline{\underline{v}} \mathrm{~L}$	Relative velocity vector in target vehicle local vertical frame

$\underline{\mathrm{V}}$ P	Primary vohicle velocity vector
${ }^{\text {V }}$ T	Target vehicle velocity vector
$W_{\text {I }}$	Initial filter weighting matrix
$\bar{\alpha}{ }_{i}^{2}$	Measurement variance used in filter to process i th measurement data
β	Elevation angle of line-of-sight in measurement frame
$\delta \mathrm{t}_{\mathrm{B}}$	Delta time to ignition for a range-rate correction maneuver
${ }^{\delta t_{\text {LOS }}}$	Delta time to ignition for a line-of-sight correction
$\delta \mathrm{t} \mathrm{m}$	Time between successive measurements within the measurement loop
Δt^{m}	Basic sequencing cycle time
$\Delta \underline{v i}^{\text {B }}$	Velocity change expressed in the body coordinate frame
$\Delta V_{\text {LIM }}$	Magnitude of velacity change below which no maneuver will be applied
$\triangle \underline{V}$ LOS	Velocity change expressed in line-of-sight coordinate frame
$\boldsymbol{\gamma}$	Value of station-keeping boundary cone angle
γ_{b}	Current estimate of bias
μ	Gravitational constant of the earth
\underline{v}	Relative velocity vector

${ }^{\prime}$	Upe: bound on station-keeping velocity
${ }^{\prime}$	\cdot
LC. $\quad \therefore$ und on station-keeping velocity	

$\underline{\omega}_{\text {LIM }} \quad$ Ar. ". ". $\cdot \stackrel{r}{ }$ ity lower limit below which no line-
of \because ition is made; value to which line-
of \because ar velocity is driven if a line-of
sig. \because : on is made
${ }_{\omega}^{\omega}$ LOS \quad Angular velocity vector of the line-of-sight
betwon the primary and target vehicle
Magnitude of $\underline{\omega}_{\text {LOS }}$
Ma. Erelative position vector, D
Range rate between the primary and target
vehicles
อ Relative position vector
$\rho_{\mathrm{Bi}} \quad$ Range of the $\mathrm{i}^{\text {th }}$ braking gate
$\rho_{\ell} \quad$ Low. .ad on station-keeping position
$\dot{F}_{\max } \quad$ Range rate desired at $\mathfrak{i}^{\text {th }}$ braking gate
and maximum between braking gates i and $i+1$
$\dot{\rho}_{\min } \quad$ Minimum range rate desired between
braking gates i and $i+1$
$\rho_{\text {off (LV) }} \quad$ Offset aimpoint relative to target point expressed in
target local vertical frame
$\rho_{\mathrm{u}} \quad$ Uppe:....d on station-keeping position
$\theta \quad$ Azimuth angle of line-of-sight in measure-
ment frame
Vector expressed in measurement coordinate frame
()' Prime indicates previous values of a variable,
e.g. prior measurement parameters, prior
measurement time, etc.
S41-6
2.

FUNCTIONAL FLOW DLAGRAM
The functional flow diagram for the Rendezvous Terminal Phase Braking Program is shown in Figure l. The program is initiated after the last rendezvous midcourse correction maneuver of the rendezvous targeting sequence. The relative range between the primary and target vehicle at this point is on the order of three to five miles and closing.

The program sequencing begins with the updating of the estimated primary and target vehicle relative state parameters with the appropriate sensor data.

These relative parameters are then used in the Terminal Phase Targeting Program where the necessary calculations are performed to see if a line-ofsight and/or a braking correction is required to maintain the desired character istics of the rendezvous trajectory. The line-of-sight corrections (if performed) maintain the intercept by nulling out line-of-sight rates which exceed a desired rate. At selected ranges between the primary and target vehicles, braking corrections are performed to reduce the closing rate to that specified in the terminal range/range rate profile, if the closing rate exceeds the desired value. During the program sequencing a continuous check is made to insure that the closing rate is sufficiently high so that the primary vehicle will intercept the target.

If either a line-of-sight correction and/or range-rate correction is necessary, the velocity correction is applied using the appropriate guidance mode.

The program sequencing is then repeated. The program is terminated when the desired relative position and velocity conditions are achieved so that the station-kecping mode can be initiated and maintained.
$=$
-

Figure 1. Rendezvous Terminal Phase Braking Program, Functional Flow Diagram

S41-8

The Terminal Phase Braking Program consists of three basic functionsnavigation, targeting and guidance. The following is a description of the iriput and output variables for the basic sequencing program, the navigation program and the targeting program. The Powered Flight Guidance Program is described in Ref. 3.
3.1 Terminal Phase Braking Sequencing Program

Input Variables

$\underline{r}_{P}\left(t_{s}\right)$,
Estimated primary vehicle state vector at time t_{s}
$\underline{v}_{P}\left(t_{s}\right)$.

$n \quad$ Number of discrete range gate corrections
${ }^{\rho} \mathrm{BO}_{\mathrm{B}}, \cdots$
Range values of the n braking gates
${ }^{\mu} \mathrm{Bn}$
$\dot{p}_{\mathrm{BO}}, \ldots$
$\dot{\rho}_{\mathrm{Bn}}$
Range rates desired at the n braking gates
$s_{\text {freq }} \quad$ Switch which controls navigation cycle
$s_{\text {LAM }} \quad$ Switch used to select type of targeting scheme used in the Terminal Phase Braking Program

Output Variables

$\underline{r}_{P}, \underline{v}_{P} \quad$ Primary vehicle state vector for use in stationkeeping phase
$\underline{r}_{T}, \underline{v}_{T} \quad$ Target vehicle state vector for use in stationkeeping phase
$\mathrm{t}_{\mathrm{s}} \quad$ Time tag of above state vectors (can be different for active and passive vehicles)

${ }^{\text {tig }}$	Time of upcoming maneuver
$\Delta \underline{V}_{B}$	Velocity change of upcoming maneuver in body coordinates
$\Delta \underline{V}_{\text {LOS }}$	Velocity change of upcoming maneuver in line-of-sight coordinates
$\Delta \underline{v}_{\text {LV }}$	Velocity correction in local vertical coordinates
${ }^{5} \mathrm{eng}$	Engine select switch
${ }_{s}{ }_{\Delta v}$	Switch which indicates if velocity correction is to be performed during this sequencing of the Terminal Phase Braking Program
${ }^{5}$ proj	Switch set when the target vector must be projected into the plane defined by in
${ }^{\text {s GM }}$	Switch which indicates guidance mode to be used in the Powered Flight Guidance Sequencing Program

4.

DESCRIPTION OH. ATMTIONS
4.1 Terminal $11, \therefore \quad \therefore \quad, \quad$ Sequencing Program

The Terminal Phase Braking Sequencing Program (Figure 4), which is the main sequencing program for the terminal phase, is initiated after the last midcourse correction in the rendezvous targeting sequence.

The range/rat ow terminal braking schedule used in the program is determined prior to the initiation of the program and consists of discrete range gates and their associat + d range rates. A minimum range rate is also specified throughout the, , Uiml phase to insure primary vehicle intercept of the target vehicle. An example of such a braking schedule is shown in Figure 2.

The sequencing begins with the processing of rendezvous sensor data to obtain estimates of range, range rate, line-of-sight rates, etc. These estimates are derived from processing the sensor data in the Relative State Updating Routine (which is also used throughout the rendezvous sequence, Ref. 2)

These relativ : . .. oter estimates are then used in the Terminal Phase Targeting Routine • tetermine if a maneuver (either a braking maneuver, line-of-sight correction or a combination of both) is to be performed. The associated maneuver time and guidance parameters are also computed.

If a maneuver is to be performed, the Powered Flight Guidance Sequencing Program (similar to the Servicer Routine in Apollo) is entered with the appropriate inputs to accomplish the maneuver.

This basic sequercing is repeated until the primary vehicle is within desired station-keeping boundaries relative to the target vehicle (Figure 3).

4.2 Terminal Pha Largeting Routine

The Terminal Phase Targeting Routine (Figure 6) computes the necessary maneuvers to maintain the primary vehicle on an intercept with the target vehicle while keeping the range/range rate profile within the desired boundaries.

Two modes of operation are available. The first mode is referred to as automatic line-of-sight control braking and the second automatic Lambert braking.

Figure 2. Typical Range/Range Rate Schedule

When sham is set to zero, the automatic line-of-sight control braking mode is uscd. If the line-of-sight rate as determined from processing the sensor data is above a set limit (typically $0.1 \mathrm{mr} / \mathrm{sec}$), the line-of-sight correction necessary to drive the line-of-sight rate to some level is computed and the appropriate ignition time, engine selection and guidance mode switches are set. Since these line-of-sight corrections are made frequently, the maneuver magnitudes are small (several feet/second or less) and hence the small RCS thrusters are used to effect the maneuver. The maneuver is accomplished by using two-axis thrusting normal to the line-of-sight.

The line-of-sight correction check is typically made every two cycles of the main program. (Line-of-sight cycling is determined by k_{2})

The range/range rate checks, to insure that the desired terminal profile. is being followed, are made after the line-of-sight checks. If the range rate at certain pre-selected ranges exceeds the desired range rate a braking maneuver is performed to reduce the closing rate. Continuous checks are made to insure that the closing rate is above the minimum value to maintain intercept. If it is not, then the closing rate is increased.

The ignition time which is set δt_{B} seconds from the present time allows the necessary burn preparations to be made before ignition since these corrections typically involve significant maneuver sizes.

The second mode of operation, the automatic Lambert braking, targets for an intercept point (either the target vehicle or a point offset from the target vehicle indicated by $\underline{\rho}_{\text {off }}$, Figure 3) at each pre-selected braking gate. Line of sight rate is implicitly corrected to maintain the intercept trajectory when using this mode of operation.

When the range between the vehicles reaches $\left(1+k_{1}\right)$ times the preselected range gate, the time of arrival at the range gate is computed. The calculation assumes the present range-rate remains constant until the range gate is reached. The primary and target vehicle state vectors are then advanced to this ignition time.

The time of arrival at the intercept point is redefined by the equation

$$
t_{\text {go }}=\frac{\text { (Range at ignition) }}{\begin{array}{c}
\text { (Desired range rate at } \\
\text { this range gate) }
\end{array}}
$$

This t go is then used to calculate a new target voctur for use in the Lambert routine to determine the necessary velocity correction.

By redefining the inteicept point in this manner, the Lambert solution forces a reduction in range rate to the desired range rate, insuring intercept in a length of time equivalent to the time it would take to travel the present range at the constant desired range rate. The line-of-sight rate is automatically corrected in the Lambert solution to assure intercept.

The new target vector, time-of-arrival, ignition time and guidance mode switches are then used in the Powered Flight Guidance Routines (Ref, 3) to effect the maneuver.

Between braking gates, line of sight corrections are made when necessary (as in the first mode of operation) to insure arrival at subsequent braking gates and to insure intercept. based on the latest navigated state estimates. (These additional line of sight corrections are not normally needed until the last braking gates has been passed since the Lambert targeted corrections at each gate are adequate to maintain rendezvous intercept.)

Figure 4a. Terminal Phase Braking Sequencing Program, Detailed Flow Diagram

Figure 4b. Terminal Phase Braking Sequencing Program, Detailed Flow Diagram

Figure 4c. Terminal Phase Braking Sequencing Program, Detailed Flow Diagram

Figure 4d. Terminal Phase Braking Sequencing Program, $\begin{aligned} & \text { Detailed Flow Diagram }\end{aligned}$
Figure 4d. Terminal Phase Braking Sequencing Program, $\begin{aligned} & \text { Detailed Flow Diagram }\end{aligned}$ Detailed Flow Diagran

Figure 5b. Terminal Phase Targeting Routine. Detailed Flow Diagram

Figure 5c. Terminal Phase Targeting Routine, Detailed Flow Diagram

Figure 5d. Terminal Phase Targeting Routine. Detailed Flow Diagram

$$
541-25
$$

Figure 5e. Terminal Phase Targeting Routine, Detailed Flow Diagram

REFERENCES

1. Muller, E. S., "Shuttle Unified Navigation Filter", Space Shuttle GN\&C Equation Document, No. 21, MIT/DL.
2. Brand, T. J., et al, "Powered Flight Guidance", Space Shuttle GN\&C Equation Document, No. 11, (Rev. 2), MIT/DL.
3. Robertson, W. M., "Precision State and Filter Weighting Matrix Extrapolation", Space Shuttle GN\&C Equation Document, No. 4 (Rev. 2), MIT/DL.

1. INTRODUCTION

The purpose of the station-keeping guidance system is to automatically keep one orbiting vehicle within a prescribed zone fixed with respect to another orbiting vehicle. The active vehicle, i.e. the one performing the station-keeping maneuvers, is referred to as the shuttle. The other passive orbiting vehicle is denoted as the workshop. The passive vehicle is assumed to be in a low-eccentricity near-earth orbit.

The primary navigation sensor considered is a gimballed tracking radar located on board the shuttle. It provides data on relative range and range rate between the two vehicles. Also measured are the shaft and trunnion axes gimbal angles. An inertial measurement unit (IMU) is assumed to be provided on board the orbiter. The IMU is used at all times to provide an attitude reference for the vehicle. The IMU accelerometers are used periodically to monitor the velocity-correction burns applied to the shuttle during the station-keeping mode.

The guidance system presented here is capable of station-keeping the shuttle in any arbitrary position with respect to the workshop. This objective is accomplished by periodically applying velocity-correction pulses to the shuttle. These velocity corrections are computed by the guidance routine with the objective of minimizing the average expenditure of propellant (by the shuttle) per orbit.

2. FUNCTIONAL FLOW DIAGRAM

A functional flow diagram for the station-keeping guidance routine is shown in Figure 1. The overall structure of the routine is simple and straight-forward. There are two basic subroutines: one is used for computing the normal velocity corrections ($s_{\text {mode }}=1$) and the small midcourse corrections ($s_{\text {mode }}=2$); the other is used for computing boundary-avoidance velocity corrections. The guidanceroutine call times and mode selection are accomplished by the Station-Keeping Executive Routine (Ref. 7).

Both subroutines use relative position and velocity (shuttle w. r.t. workshop) from the Station-Keeping Navigation Routine (Ref. 6) as a basis for computing the required velocity corrections. Local-vertical coordinates are used in the normal and midcourse-correction modes, workshop fixed coordinates are used in the boundary-avoidance mode. In-plane and out-of-plane velocity corrections are computed separately in the normal and midcourse correction modes.

Figure 1. Station-Keeping Guidance Routine, Functional Flow Diagram

NOMENCLATURE

Notational Conventions

- Upper-case letters represent matrices
- Lower-case and Greek letters reserved for scalars and vectors
e Vector quantities are underlined, e.g. \underline{x}
- Vectors are assumed to be column vectors unless explicitly noted

Symbols

A
Dummy 2×2 matrix used in velocity-correction computations
a
Elements of A

B Dummy 2×2 matrix used in velocity-correction computations
b Elements of B

C Dummy 2×2 matrix used in velocity-correction computations
c Elements of C
d Dummy variable used in velocity-correction computations
$h_{\text {lc }} \quad$ Height of desired station-keeping limit cycle
\underline{i} RL Unit vector along $\underset{\sim}{r}$ (local-vertical coordinates)

$\underline{1}$ RW	.if ector along r (workehop-fixed coordinates)
$\underline{\mathrm{i}}$ NW	```In . (%)'top-fixed coordinates)```
\underline{i} XWL,	
- YWL,	Workshop-fized frame unit vectors (local-vertical
$\underline{i} \mathrm{ZWL}$	$r \text { dinates) }$
k	Midcourse-correction fractions
M_{L-W}	Tr. formation matrix from local-vertical to workshopfixed coordinates
M_{L-P}	Transformation matrix from local-vertical to stablemember coordinates
q. \dot{q}	Dummy test variables used in boundary avoidance calculations
$\underline{1}$	Shi. . se positicil w.r.t. workshop (stable-member coordinates)
\underline{r}_{L}	Shuttle position w.r.t. workshop (local-vertical coordinates)
\underline{r} W	Shuttle position w.r.t. workshop (workshop coordinates)
${ }^{\text {r }} \mathrm{XZ}$	Magnitude of component of r in workshop frame X-Z plane
${ }^{\text {MiIN }}$	Lower limit on r_{W} along workshop Y-axis for which boundary-avoidance velocity corrections may be required
${ }^{\mathrm{r}} \mathrm{DL}$	Desired target position for orbiter w. r.t. workshop at terminal time ${ }^{t_{F}}$

${ }^{5} \mathrm{OPG}$	Switch used to select out-of-plane guidance mode
${ }^{\text {S VCORR }}$	Switch set at unity if velocity correction is required
${ }^{s}$ mode	Switch to select current mode of operation of routine
${ }^{s}{ }_{n u t}{ }_{F}$	Switch set at unity when new ${ }^{t} \mathrm{~F}$ is required
t	Current time
${ }^{t} \mathrm{~F}$	Terminal time for current guidance limit cycle
$\underline{V}_{\mathrm{V}}$	Shuttle velocity w.r.t. workshop (local-vertical coordinates)
${ }^{\text {v }}$ DN	Velocity-correction level used for boundary avoidance
$\mathrm{y}_{\text {min }}$	Lowest part on desired limit cycle w. r.t. workshop (along vertical axis)
${ }^{2}$ MAX	Maximum desired out-of-plane distance for orbiter
${ }^{2}$ MIN	Minimum desired out-of-plane distance for orbiter
z_{0}	Dummy variable
- ${ }^{\prime} W$	Workshop angular velocity (stable-member coordinates)
θ	Dummy variable equal to $u_{W}\left({ }^{(} F^{-t}\right)$
τ	Dummy time interval ($t_{n}-t_{n-1}$)
$\delta v_{\min }$	Lower limit on computed velocity-correction magnitude
$\delta^{\underline{V}} \mathrm{~L}$	Required velocity correction (local-vertical coordinates)
θ_{Z}	Station-keeping cone half angle

4. DESCRIPTIO: \because ATIONS

4.1 General Infor:

The station-k , . . idance routine is capable of maintaining an active vehicle (shuttle) in a small zone which may be arbitrarily located with respect to a passive orbiting vehicle (workshop). The passive vehicle is assumed to be in a loweccentricity orbit arnund the earth. The station-keeping is accomplished by the periodic application .. sinal velocity-correction pulses. The size and location of the station-keeping zone are specified as program constants and input variables (e.g. $h_{\ell c}, y_{\min }, r_{\because}, \ldots x^{\prime} z_{\min } \underline{r}_{D I}$).

The guidance icuine has three primary modes: (1) normal station-keeping, (2) midcourse correction, and (3) boundary avoidance. In the normal mode the velocity corrections required to hold the shuttle in the specified zone w. r.t. the workshop are computed. In typical situations these corrections are relatively small (e.g. 2-5 ft/sec or less). The magnitude and frequency of these corrections is dependent on the size and location of the station-keeping zone. The midcoursecorrection mode uses essentially the same relations as the normal mode. The basic idea here is the: $\because f$ xpplying small velocity corrections in between the normal velocity-correction $\because \because$ the total velocity-correction propellant expenditure may be reduced. In the $L u:$ ary-avoidance mode, special tests are made to see if the shuttle is outside of the station-keeping zone and heading away from it. Appropriate velocity-correction pulses are applied to the orbiter to return it to the desired zone.

The times at which each mode of the station-keeping guidance routine is called are determined by the Station-Keeping Executive Routine (Ref. 7).

Three coordinate systems are used in the station-keeping guidance routine: (1) stable-member, (2) local-vertical, and (3) workshop-fixed coordinates. All three systems are orthogonal right-handed systems. The relationships between these frames are shown in Figure 2. The stable-member system is fixed w.r.t. the inertial measurf : nt unit (IMU). The local-vertical system rotates with the workshop, as shown in Figure 2, with its. X-axis along the local vertical and its Z-axis along the workshop-orbit angular-momentum vector. The normal-mode and midcourse-correction computations in the guidance routine are done primarily in this local-vertical frame. The workshop-fixed frame is fixed w. r.t. the desired station-kecping zone. The boundary-avaidance mode computations in the guidance routine are performed in this frame.

4. 2 Normal Guidance Mode

The analytical development of the basic guidance concept has been extensively documented in Refs. 1 and 3 for AAP missions, and in Ref. 2 for SSV missions.

Figure 2. Station-keeping System Relative Geometry

Station-Keeping Above Workshop ($\mathrm{Y}_{\mathrm{CL}}>0$)

Figure 3. Geometry for Guidance Limit Cycles

Extensive pe. \therefore nce data is given in these references. It is most convenient to consider the in-plane and out-of-plane guidance equations separately. This approach will be f "ed here.

The in-pl. \because moblem will be considercd first. The basic idea is to put the shuttle on a tre ary that will terminate at a specificd position w. r.t. the workshop ($\underline{r}_{\mathrm{DL}}$) at a fixed terminal time (t_{F}). A typical limit-cycle trajectory is shown in Figure 3 for the case where the station-keeping zone is above and in front of the workshop.

The terminal time (t_{F}) is based on the desired limit-cycle trajectory height ($h_{l c}$) and desired minimum altitude of shuttle w. r.t. the workshop ($y_{\text {min }}$). The basic relat. \because is (Ref. 2):

$$
\begin{equation*}
t_{F}=t+\frac{2}{\omega_{W}} \sqrt{\frac{6 y_{\ell c}}{9 y_{\mathrm{min}}+4 h_{\ell c}}} \tag{1}
\end{equation*}
$$

where t is the current time, and ω_{W} is the workshop's angular velocity.
The required correction ($\delta \underline{v}_{L}$) that must be made to the current shuttle velocity (\underline{v}_{L}) in order for the vehicle to arrive at the position ($\underline{r}_{\mathrm{DL}}$) at the terminal time t_{F} is computed in a straight-forward manner (Refs. 1 and 2). The basic relatic is

$$
\begin{equation*}
\delta \underline{v}_{L}=\Phi_{R V}{ }^{-1}\left(t, t_{F}\right)\left[\underline{r}_{D L}-\Phi_{R R}\left(t, t_{F}\right) \underline{r}_{L}\right]-\underline{v}_{L} \tag{2}
\end{equation*}
$$

where \underline{r}_{L} and \underline{v}_{L} represent the position and velocity of the shuttle w.r.t. the workshop, expressed in local-vertical coordinates.

The matrices $\Phi_{R V}$ and $\Phi_{R R}$ are submatrices of the matrix $\Phi_{\text {, which is }}$ used to extrapolate the shuttle state w. r.t. the workshop forward in time, using local-vertical coordinates. The relation is

$$
\begin{equation*}
\left[-\frac{r_{L}}{\underline{v}_{L}} \frac{\left(t_{n}\right)}{\left(t_{n}\right)}\right]=\left[\frac{\Phi_{R R}}{\Phi_{V R}} \frac{(i)}{(\tau)} \frac{1}{1} \frac{\Phi_{R V}}{\Phi_{V}} \frac{(\tau)}{(\tau)}\right]\left[\frac{\underline{r}_{L}}{\bar{v}_{L}} \frac{\left(t_{n-1}\right)}{\left(t_{n-1}\right)}\right] \tag{3}
\end{equation*}
$$

where t_{n-1} and t_{n} are arbitrary times $\left(t_{n}>t_{n-1}\right)$. The detailed relations for $\Phi_{R R}, \Phi_{R V}, \Phi_{V R}$ and $\Phi_{V V}$ are given in Refs. (1) and (2) as a function of workshop angular velocity $\left(\omega_{W}\right)$ and the time interval from t_{n-1} to t_{n} (referred to as T).

In the detailed flow diagram for the guidance routine (Figure 4) the required elements of $\Phi_{R V}^{-1}$ and $\Phi_{R V}^{-1} \Phi_{R R}$ are represented by the matrices A, B, C, and the dummy variable d.

Two out-of-plane guidance modes are provided (Ref. 2). If the desired sta-tion-keeping zone is centered in the workshop orbital plane, then Eqs. (2) and (3) can be used to compute the required velocity correction ($\left.\delta v_{Z L}\right)$. The basic equation in this case is simply:

$$
\begin{equation*}
\delta v_{Z L}=-\omega_{W} r_{L, 2} \quad \cot \theta-v_{L, 2} \tag{4}
\end{equation*}
$$

where $r_{L, 2}$ and $v_{L, 2}$ are the out-of-plane components of shuttle position and velocity w. r.t. the workshop. The quantity ω_{W} is the workshop's angular velocity w.r.t. the earth. The dummy variable θ is given by:

$$
\begin{equation*}
\theta=\omega_{W}\left(t_{F}-t\right) \tag{5}
\end{equation*}
$$

where ${ }^{t}{ }_{F}$ is the desired arrival time at the terminal or target point.
If, on the other hand, it is desired that the station-keeping zone be displaced from the workshop orbital plane, then the required velocity correction (Ref. 2) is given by

$$
\begin{equation*}
\left.\delta v_{Z L}=\omega_{W} \sqrt{z_{\max }^{2}-r_{L, 2}^{2}}\right] \omega_{W} \operatorname{sign}\left(z_{\min }\right)-v_{L, 2} \tag{6}
\end{equation*}
$$

The parameters $z_{\text {max }}$ and $z_{\text {min }}$ specify the desired maximum and minimum displacements of the shuttle w.r.t. the workshop in the out-of-plane direction. A velocity correction is applied only if $\left|r_{L, 2}\right|$ is less than $z_{\text {min }}$ and the relative velocity is such as decreases $\left|r_{L, 2}\right|$ still further (i.e. $v_{L, 2} r_{L, 2}$ is negative).

The boundary-avoidance guidance scheme assumes an inverted truncated cone as the desired station-keeping zone. The apex of the cone is at the workshop, and the cone's axis (1 YWL) is assumed fixed w. r.t. the workshop. The lower boundary of the zone is specified by the parameter $r_{\text {min }}$ which is its minimum distance from the workshop. The size of the station-keeping zone is specified by the cone half angle θ_{Z}.

Two boundary-avoidance tasts are made. First, if the shuttle is too close to the workshop ($r_{W, 1}<r_{m i n}$) and its velocity is taking it towards the shuttle, then a correction is required. The shuttle in this case is given a preselected velocity ($v_{D N}$) away from the workshop. This is accomplished by a velocity correction $\left(\delta \underline{v}_{\mathrm{L}}\right.$) of

$$
\begin{equation*}
\delta \underline{v}_{L}=\left(v_{D N}-v_{W, l}\right) \frac{i_{Y}}{-Y W} \tag{7}
\end{equation*}
$$

where $-\underset{Y}{ } Y W$ is a unit vector along the workshop-frame Y-axis (station-keeping zone cone axis), and $r_{W, l}$ and $v_{W, l}$ are the components of relative position and velocity along this axis.

Next, a test is made to see if the shuttle is inside the desiredzone. The test quantity (q) is computed from:

$$
\begin{equation*}
\mathrm{q}=\mathrm{i}_{\mathrm{RW}, \mathrm{l}}-\cos \theta_{\mathrm{Z}} \tag{8}
\end{equation*}
$$

A second test is now made to see if the shuttle's velocity is directed away from the zone's center line, i.e. the angle between $\underline{r} W$ and the cone's axis is increasing. The test quantity \dot{q} is given by:

$$
\begin{equation*}
\dot{\mathrm{q}}=\left[\mathrm{v}_{\mathrm{W}, 1}-\left(\underline{\mathrm{v}}_{\mathrm{W}} \cdot \underline{\mathrm{i}}_{\mathrm{RW}}\right) \mathrm{i}_{\mathrm{RW}, \mathrm{I}}\right] \tag{9}
\end{equation*}
$$

If both q and \dot{q} are negative, then the shuttle's component of velocity (w. r.i. the workshop) in the direction normal to the station-keeping cone boundary (i NW) is given a prespecified value of v_{DN}, directed in towards the cone axis. The required velocity correction to accomplish this is (Ref. 1).

$$
\begin{equation*}
\delta \underline{v}_{W}=\left(v_{D N}-\underline{v}_{W} \cdot \underline{i}_{N W}\right) \underline{i}_{N W} \tag{10}
\end{equation*}
$$

where the required velocity correction $\delta \underline{\mathrm{v}} \mathrm{W}$ is in workshop-fixed coordinates as is the relative velocity (\underline{v}_{W}).

5. DETAMIFD FLOW DLAGRAMS

A detailed flow diagram is shown for the Stakion-Keeping Guidance Routine in Figure 4. To operate this routine, navigation information is required from the Station-Keeping Navigation Routine, The mode selection and routine-call times for both the Station-Keeping Guidance and Navigation Routines are controlled by the Station-Keeping Executive Routine.

0

Figure 4a. Station-Keeping Guidance, Detailed Flow Diagram

Figure 4b. Station-Keeping Guidance, Detailed Flow Diagram

Figure 4c. Station-Keeping Guidance, Detailed Flow Diagram

Figure 4d. Station-Keeping Guidance, Detailed Flow Diagram

Figure 4e. Station-Keeping Guidance, Detailed Flow Diagram

1. INTRODUCTION

The large entry crossrange capability of the shuttle permits deorbit to a specified landing site to be accomplished with a single maneuver. Since the required velocity change is smallest when no plane change is made, the equations presented here are designed to target the Powered Flight Guidance Routines (Reference 3) for an in-plane maneuver. The ignition time for this maneuver is selected to satisfy entry interface and landing site constraints with minimum fuel expenditure.

If the shuttle had no crossrange capability, then an in-plane deorbit maneuver to a specified landing site could only occur when that landing site, which rotates with the earth, intersects the orbital plane of the vehicle. Assuming the landing site latitude is less than the orbital inclination angle, and neglecting the effects of precession, the landing site will intersect the orbital plane twice every twenty-four hours. However, the time difference between these two intersections is in general not twelve hours. In the case when the landing site latitude is equal to the orbital inclination there will be only one intersection every twenty-four hours.

Since the shuttle has a high crossrange capability, deorbit does not reguire intersection of the landing site vector and the orbital plane. It is possible whenever the angle between the landing site vector and the orbital plane is less than approximately 20 deg. In general, there will be two sets of opportunities every twenty-four hours. Within each set, there may be several deorbit opportunities occurring on consecutive orbits with varying crossrange requirements. When the latitude of the landing site approaches the inclination of the orbit, these t wo sets merge to become one. It should be noted, in addition, that if the landing site latitude is greater than the orbital inclination, the landing site may still fall within the crossrange capability of the vehicle. With these facts in mind, this routine has been designed to continue stepping through successive solutions, allowing the crew to select a particular deorbit opportunity based upon entry crossrange. time-to-ignition, required velocity change, landing site lighting conditions, urgency of the return, etc.

The desired entry range and flight path angle will be considered inputs to this routine, since available data relating to footprint size and shape, entry heating at various ranges, and optimal entry flight path angle are only preliminary. In future revisions, consideration should be given to computing the optimum values of these quantities for the particular situation.

2. FUNCTIONAL FLOW DIAGRAM

A functional flow diagram presenting the basic approach to the deorbit targeting problem can be found in Figure 3. In addition to the state vector, the primary inputs to the routine are the landing site location (latitude and longitude), the entry downrange distance, the entry angle (at $400,000 \mathrm{ft}$) and the earliest desired time of landing. Since the high crossrange capability may make deorbit possible on two or more consecutive orbits, after each solution the crew has the option to recycle the program to determine the next possible deorbit opportunity. To give the crew the flexibility to evaluate solutions in the future without stepping through all earlier opportunities, the earliest desired time-of-landing is included as an input. However, the vehicle is assumed to be in coasting flight until the deorbit maneuver, and therefore the effects of any maneuvers prior to deorbit are not accounted for.

After the vehicle state vector is extrapolated forward to the earliest desired time-of-landing, the solution process is initiated. This consists of three major steps. During the first step the vehicle state is further advanced until the landing site, which rotates with the earth, lies sufficiently near the orbital plane so that it is within the crossrange (or out-of-plane) capability of the entry phase. During the next step an iterative process is used to select the ignition time for this deorbit opportunity which requires the smallest velocity change, thus minimizing the fuel expenditure. Since the first two steps involve several conic approximations to minimize the computer time used, the third step fine tunes the solution by generating a precision trajectory which satisfies the constraint on the desired entry angle while accounting for gravitational perturbations and the non-impulsive nature of the deorbit maneuver. After completion of this step the results are displayed to the crew. They may then elect to accept the solution, recycle the routine to solve for the next deorbit opportunity, or exit. - If they accept the solution, a few minor computations are required to initialize the Powered Flight Guidance Routines for a modified Lambert aimpoint maneuver.

To aid the reader in understanding the functional flow diagram, each of the three major steps in the solution process is discussed in more detail below.

2. 1 Determination of the Next Deorbit Opportunity (\$tep 1)

To determine the next possible deorbit opportunity, it is necessary to calculate the inertial location of the landing site (which rotates with the earth) at the time-of-landing. Then the angle between the orbital plane and the landing site can be used to estimate the crossrange required during entry. To accomplish this, an estimate of the time-of-flight difference Δt DE between (1) the interval from deorbit through entry to landing, and (2) the time spent in orbit over the same total
central angle is used. Analysis has shown that a constant is probably adequate to represent this difference since more precise calculations in the following step will compensate for any error.

Upon completion of the initialization process, the state vector is extrapolated forward to the earliest desired time-of-landing. Then the inertial location of the landing site at the present state vector time, biased by the time difference $\Delta t E^{\prime}$, is computed. This landing site vector is projected into the orbital plane, allowing the in-plane central angle $\theta_{\text {IP }}$ between the vehicle position and the projection of the landing site to be determined.

Figure 1. Out-of-plane Geometry

The conic routines can now be used to determine the time-of-flight Δt IP required to coast in orbit through the central angle $\theta_{I P}$. If the state was then propagated through this central angle, its position vector would be aligned with the previously determined projection of the landing site vector. Unfortunately, the landing site will move slightly due to earth rotation while the vehicle transfers through the central angle. Therefore, the inertial location of the landing site must be recomputed, accounting for the time difference $\Delta t D E$ explained previously. Thus, an iterative process is required to precisely determine the location of the landing site at the expected time-of-landing. During the first pass through the deorbit targeting routine, the previously described steps are repeated once to insure convergence. However, on subsequent passes no iteration is required, since the initial guess achieved by extrapolating the state vector one orbit beyond the previous solution guarantees a small value for the time-of-flight correction Δt IP

Assuming the deorbit maneuver is in-plane, the angle between the orbital plane and the landing site location at the estimated time-of-landing can be used to measure the crossrange required during the entry phase. If the crossrange is within the capability of the vehicle, the solution process continues on to the next
step. If not, the vehicle state is extrapolated forward one revolution to the next potential deorbit opportunity and the process of estimating the crossrange is repeated.

It should be noted that the process used to determine the crossrange requirement is only approximate, and therefore a small increment is added to the tolerance used in the crossrange check to allow for this. A small number of cases which pass this check will actually lie outside the vehicle crossrange capability, however, a more precise check later will screen these out.

2.2 Ignition Time Selection (Step 2)

During this step in the solution process, an ignition time is selected which minimizes the impulsive velocity change required. For these computations the projection of the landing site into the orbital plane is assumed to be the real landing site. Then, based upon the desired entry downrange distance, a target position at entry interface which also lies in the orbital plane can be defined. This target position is set $400,000 \mathrm{ft}$ above the Fischer ellipsoid.

Figure 2. In-plane Geometry

Using this entry interface target, and the desired entry flight path angle, a search is made on the central angle θ_{D} traversed between the deorbit maneuver and entry interface to locate the position and time of the minimum Δv maneuver.

Then the time-of-flight required for the deorbit and entry phases can be accurately determined. Using this time-of-flight, an accurate calculation of the inertial location of the landing site at the time-of-landing can be made, and the entry interface target can also be updated. To preserve the central angle of the deorbit phase, the impulsive maneuver time is adjusted. Then the ignition time is biased from the impulsive time by half the expected length of the maneuver and the state vector is extrapolated to this time.

Since the location of the landing site at the time-of-landing is now known accurately, the angle between the orbital plane and the landing site is recomputed to precisely measure the entry crossrange required. Then a precision check is made, and any solution exceeding the crossrange capability is rejected, thus returning the routine to step one to search for the next opportunity.

2. 3 Precision Solution (Step 3)

During this step a precision integrated trajectory from deorbit to entry interface is generated which accounts for both the finite length of the thrusting maneuver and the effects of gravitational perturbations. Since the time-of-flight from deorbit to entry interface is known, the Precision Required Velocity Determination Routine can be used to generate this trajectory. However, the effects of conic approximations in the previous steps and the finite length of the maneuver can cause significant error in the reentry angle. Therefore, the resulting entry angle is checked and if it is in error, a slight modification is made in the time-of-flight from the deorbit maneuver to entry interface to adjust the entry angle. Then the precision trajectory is recomputed. After satisfying the flight path angle constraint, pertinent data relating to the maneuver can be displayed to the crew or transferred to the Mission Planning Module.

Figure 3a. Functional Flow Diagram

Figure 3b. Functional Flow Diagram

\qquad

$\mathrm{r}_{2}{ }^{\prime}$	Entry i Velocity immon Routine
${ }^{\mathrm{r}} \mathrm{D}$	Position of the impulsive deorbit maneuver
$\underline{r}_{\text {r }}^{\text {E }}$	Entry interfor masition
$\underline{\mathrm{r}} \mathrm{ig}$	Position vector at ignition
${ }^{\mathbf{r}} \mathrm{LS}$	Estimaterlas site position at the time of landing
${ }^{\text {r }}$ PFT	Powered flight offset target vector
${ }^{\text {s }}$ eng	Engine select switch
${ }^{\text {s fail }}$	Switch sc , Nate non-convergence of Precision $R \in \cdots \cdots$ elocity Determination Routine
${ }^{\text {S }}$ FP	Switch set equal to one after the first pass through step one
$s_{\text {pert }}$	Switch indicating which perturbations are to be included in the Precision State and Filter Weighting Matrix Extrapolation Routine (See Reference 5)
${ }^{5}$ proj	Switch set when the target vector must be projected into the plane defined by \mathbf{i}_{N}
${ }^{\text {t }} 0$	Precision ector time
${ }^{\text {t }} 1$	Time of impulsive deorbit maneuver
${ }^{t} 2$	Time-of-arrival at entry interface
${ }^{\text {t }} 3$	Estimated time at which in-orbit position vector is coincident with the landing site projection into the orbital plane

${ }^{t}$ ETL	D. learliest time-of-landing
t_{i}	gosente
4	额
${ }^{\text {t }}$ LTL	Desired latest time-of-landing
v_{0}	Furimen velocity vector
$\underline{v}_{2}^{\prime \prime}$	Entry interface velocity from Precision Required Mation letermination Routine -
$\underline{v}_{\text {D }}$	Pre-impulse velocity
$\underline{v}_{\text {EI }}$	Entry interface velocity
$\underline{v}_{\text {ig }}$	Ignition velocity vector
$\underline{\mathrm{v}}_{\mathrm{PFT}}$	Wecicassociated with the powered flight ب, \therefore et vector
$\mathrm{v}_{\text {RD }}$	Post-impulse radial component of velocity
\underline{v} req	Required velocity
$\mathrm{v}^{\prime} \mathrm{req}$	Required velocity on the coasting trajectory
${ }^{\text {v }} \mathrm{HD}$	Post-impulse horizontal component of yes: t:
$\delta^{t} 01$	Adjustment to $\Delta^{\text {t }} 01$
$\triangle d_{A C R}$	increment added to the acceptable crossrange, ed in rough crossrange check \because
Δp_{γ}	Diffreice between the predicted and desired ${ }^{\text {p }} \gamma_{\gamma}$

$\Delta r_{\text {proj }}$	Out-of-plane target miss due to the projection of the target vector
Δt_{01}	Transfer time ($\mathrm{t}_{1}-\mathrm{t}_{0}$)
Δt_{12}	Transfer time ($\mathrm{t}_{2}-\mathrm{t}_{1}$)
Δt_{23}	Transfer time ($\mathrm{t}_{3}-\mathrm{t}_{2}$)
Δt_{B}	Estimated duration of the powered maneuver
$\Delta t \mathrm{DE}$	Time-of-flight difference between (1) the interval from deorbit through entry to landing, and (2) the time spent in orbit over the same total central angle
$\Delta t_{\text {IP }}$	Time-of-flight required to transfer through the central angle $\theta_{\text {IP }}$
$\Delta \underline{v}$	Required velocity change
$\Delta{ }^{\circ}{ }^{\text {P }}$	Previous value of $\|\Delta \underline{V}\|$
$\Delta \theta$	Increment in in-plane angle ${ }^{\theta} \mathrm{D}$
$\Delta \theta_{0}$	Initial increment in in-plane angle ${ }^{\theta} \mathrm{D}$
${ }^{\epsilon} \mathrm{p} \gamma$.	Convergence criterion on $\Delta \mathrm{p}_{\gamma}$
${ }^{\epsilon} \theta$	Convergence criterion on angle $\Delta \theta$
γ_{1}	Post-impulse flight path angle
$\gamma_{E I}$	Desired entry flight path angle measured from the horizontal
$\lambda_{\text {LS }}$	Landing site longitude
θ	In-plane angle between precision state vector and entry interface

4. DESCRIPTION OF EQUATIONS

To minimize the size of the Deorbit Targeting Routine, extensive use is made of other routines. Therefore, this routine consists primarily of simple equations, logical operations, and calls to other routines. Since most of the complicated equations requiring detailed explanation are contained in the description of the other routines, this section will be limited to a list of items not covered in the text describing the functional flow diagram. These items will be listed in their order of occurence, and are intended to supplement the detailed flow diagram in subsection 5 .

4.1 Selection of Perturbing Acceleration during

Precision State Fxtrapolation
During the first step in the solution process, which may require long term state vector extrapolation, it is desirable to maximize accuracy by including all significant perturbing accelerations in the extrapolation process. Therefore, the switch $s_{\text {pert }}$, which controls the selection of perturbing accelerations in the Precision State Extrapolation Routine, is set to 2 . During the later portion of the routine, referred to as step three, the switch is reset to 1 , thus limiting the disturbing acceleration to the J_{2} term, the second harmonic of the earth's gravitational potential function. Since extrapolation during step three is limited to the interval from the deorbit maneuver to entry interface, the effects of smaller perturbing accelerations are not significant. In addition, extrapolation over this interval lies within an iterative loop, and thus may be repeated several times. The simplified model can therefore significantly reduce the running time of this step.

4.2 Selection of $\theta_{\text {IP }}$ Quadrant

During the discussion of the functional flow diagram, it was mentioned that successive solutions to the deorbit problem (when successive solutions exist) are about one revolution apart. To find succeeding solutions to the problem, the state vector is extrapolated forward one revolution and then the in-plane central angle $\theta_{\text {IP }}$ between the state vector and the projection of the landing site into the orbital plane is computed. Analysis has shown that for some selections of orbital inclination and landing site, the correction to the assumption of one revolution may be as large as 29°. A lower limit on $\theta_{\text {IP }}$ of 30° was chosen, thus allowing a small margin from the empirically determined limit of -29°. The upper limit on ${ }^{\theta}$ IP is $+330^{\circ}$. Large positive values for $\theta_{\text {IP }}$ only occur in situations where no solution existed on the previous revolution.

To determine $\theta_{\text {IP }}$, the following equation is used,

$$
\theta_{\mathrm{IP}}=\cos ^{-1}\left[\text { unit }\left(\underline{r}_{0}\right) \cdot \underline{\mathrm{i}}_{\mathrm{LSP}}\right] \operatorname{sign}\left[\left(\underline{r}_{0} \times \underline{\mathrm{i}}_{\mathrm{LSP}}\right) \cdot \underline{i}_{\mathrm{h}}\right]
$$

where

$$
\begin{aligned}
& \underline{r}_{0}=\text { vehicle position vector } \\
& \text { I'LSP } \quad \text { vector in the direction of the } \\
& \therefore \quad \therefore \quad \text { ring site projection } \\
& \text { in } n \text { Litit angular mornentum vector }
\end{aligned}
$$

This places θ IP between -180° and $+180^{\circ}$ and therefore an additional test, shown in Figure 4 b , is mrde to force θ IP between -30° and $+330^{\circ}$.

In order to make the first entry into step one compatible with subsequent entries, the state vectnr is initially extrapolated forward beyond the earliest desired time-of-landing $t \frac{1}{}$,

$$
t_{3}=t_{E T L}+r / 12
$$

One-twelfth of the period is nearly equivalent to a central angle of 30° for typical (near circular) orbits, and hence makes the first entry into step one compatible with later entries.

4.3 Effect of Approximate Entry and Deorbit Times-
 of-Flight on Fntry Crossrange Calculation

During the $f_{1}{ }^{\circ}$ st step in the solution process, an estimate of the time of landing is necessary to compute the inertial location of the landing site and the associated entry crossrange. Since the parameters of the deorbit trajectory have not been computed, the deorbit and entry times-of-flight are not known. To estimate the landing time, a constant $\Delta t D E$ is used to approximately represent the difference between the sum of the deorbit and entry times-of-flight and the time spent in orbit over the same total central angle. Preliminary analysis has shown that if an average value is selected for this time difference, the maximum error will be about 6 minutes. This analysis, described in Reference 7, did not include variations in entry time-of-flight for the particular entry range, but further analysis is expected to show this effect is small.

During the first step in the solution, this error will affect the calculation of the inertial landing site vector and subsequent entry crossrange computation. This effect on the crossrange estimate will be largest for deorbit from a polar orbit, and result in a maximum error of less than $90 \mathrm{n} . \mathrm{mi}$. To insure that potentially acceptable solutions are not rejected due to errors in the initial crossrange estimate, the rough check on crossrange during the first step uses a test criterion 90 n.mi. larger than the acceptable crossrange input to the routine. In step two. after the time-of-landing has been refined, the crossrange is recomputed and a precision check is made. Thus a few cases which pass the first test will be rejected later.

Step two of the routine includes an iterative search to determine the location of the impulsive maneuver which minimizes the velocity change Δv. As shown in Figure $4 d$, this iteration uses θ_{D}, the central angle traversed between the impulsive maneuver and entry interface, as the independent variable. A very simple halving step iterator is used to search for the minimum. Although this does not converge quickly, it is safe and reliable. The more efficient technique of using a slope iteration was not selected because analysis has shown that inflection points exist in the relationship of Δv and ${ }^{\theta} D_{D}$. These inflection points would greatly complicate any iteration designed to determine the minimum by driving the slope to zero.

4.5 Required Velocity Equations

The equations used in the previously described iterative loop to determine the required velocity can be found in Reference 2. These equations, shown in Figure 4 d of the detailed flow diagram, use the initial vehicle position \underline{D}, the entry interface position $\underline{r}_{E I}$, and the desired entry angle $\gamma_{\text {EI }}$ as follows. First the tangent of the initial (post-impulse) flight path angle γ_{1} is computed by

$$
\tan \gamma_{1}=\left(1-r_{D} / r_{E I}\right) \cot \left(\theta_{D} / 2\right)-r_{D} / r_{E I} \tan \left(\gamma_{E I}\right)
$$

where θ_{D} is the central angle between \underline{r}_{D} and $\underline{r e I}$ and also the independent variable in the search. The semilatus rectum P_{D} of the deorbit trajectory can then be determined from

$$
P_{D}=\frac{2 r_{D}\left(r_{D} / r_{E I}-1\right)}{\left(r_{D} / r_{E I}\right)^{2} p_{\gamma}-\left(1+\tan \gamma_{1}^{2}\right)}
$$

The parameter p_{γ}, the secant squared of the desired entry angle, is computed once during initialization of the routine.

The horizontal and radial components of the required velocity are then obtained from

$$
\begin{aligned}
v_{\mathrm{HD}} & =\sqrt{\mu \mathrm{P}_{\mathrm{D}}} / \mathrm{r}_{\mathrm{D}} \\
\mathrm{v}_{\mathrm{RD}} & =\mathrm{v}_{\mathrm{HD}} \tan \gamma_{1}
\end{aligned}
$$

The required velacity is then formed and differenced with the premaneuver velocity to obtain the impulsive Δv.

$$
\begin{aligned}
& \underline{v}_{r e q}=\underline{v}_{R D} \text { unit }\left(\underline{r}_{D}\right)+v_{H D} \text { unit }\left[\left(\underline{r}_{D} \times \underline{v}_{D}\right) \times \underline{r}_{D}\right] \\
& \Delta \underline{v}=\underline{v}_{\text {req }}-\underline{v}_{D}
\end{aligned}
$$

4.6 Entry Time-of-Flight Computation (TBD)

In Figure 4 e of the detailed flow diagram, the time-of-flight $\Delta t 23$ from entry interface to landing is shown as a function of entry velocity, flight path angle, and range. Functionalization of this time-of-flight will be included later when entry guidance analysis is complete.

4.7 In-Plane Effect of Approximate Deorbit and Entry Times-of-FTight

As discussed in subsection 4. 3, the first estimate of the inertial location of the landing site is dependent upon an estimate of the time-of-landing. A constant time difference Δt DE, used to estimate the landing time, may be in error by as much as 6 minutes. This led to a significant error in the crossrange estimate for a high inclination orbit. For orbits of lower inclination, where the movement of the landing site can be nearly parallel to the orbital plane, this same error can affect the definition of the entry interface location used in the Δv minimization iteration.

The entry interface location, computed early in step two, is based upon the projection of the landing site vector into the orbital plane and the desired entry range. After the minimization process is complete, the deorbit and entry times-of-flight can be accurately calculated. As shown in Figure 4e, another calculation of the inertial landing site position is made, thus removing the error due to the $\Delta \mathrm{t}{ }_{\mathrm{DE}}$ approximation. To maintain the desired entry range input to the routine, the entry interface position is recalculated. This new position will be, at most, 1.5° (equivalent to 6 minutes of earth rotation) from the entry interface used in the Δv minimization. To maintain the geometry of the deorbit phase, the time of the deorbit maneuver is adjusted accordingly so that the central angle from deorbit to entry interface is preserved. This adjustment in deorbit time $\delta \mathrm{t} 01$ is computed from the following equation

$$
\delta t_{0 l}=\left[\left(\underline{i}_{E I} \times \underline{i}_{E I}\right) \cdot \underline{i}_{h}\right] \frac{\tau}{2 \pi}
$$

where ${ }^{\text {i' }} \mathrm{EI}$ is a unit vector in the direction of the entry interface position used during minimization, $\underline{i}_{-E I}$ is the new value, \underline{i}_{h} is a unit angular momentum vector, and $\tau / 2 \pi$ is the inverse of the mean orbital rate. The cross product of the unit vectors is nearly equivalent to the angle between them, and the dot product gives the proper sign. The mean orbital rate is used to calculate the deorbit time adjustment from the angular adjustment. Following this adjustment to the impulsive deorbit time, the ignition time for the maneuver is biased from the impulsive time by one-half the expected length of the maneuver, thus centering the finite thrust maneuver about the impulsive maneuver.

4.8
 Componsat $\because: \because$ Oblateness and Finite
 Maneuver I
 내

 the finite length of $\quad n i n i n g$ maneuver on the required velocity change, and compensate for the A of the J_{2} gravitational perturbation on the deorbit Irajectory. The Precision Required Velocity Determination Routine is used to accomplish these objectives, and the reader should refer to Reference 1 for a description of the technique. That routine, however, is designed to maintain the terminal (entry interf \quad) time-of-arrival, and this can cause changes in the entry angle. Preliminary analysis, described in Reference 7, has shown that the nominal entry flight path angle error resulting from the oblateness and finite maneuver length is about $0.2^{\circ}, \cdots$ can be as large as 0.6° in extreme cases. Therefore, to preserve the desir: ". entry angle, the time-of-arrival at entry interface is adjusted slightly. Delaying the time-of-arrival tends to loft the trajectory and thus increase the entry angle. An earlier time-of-arrival will depress the trajectory and result in a shallower flight path angle.

To determine the time-of-arrival adjustment, the approximate sensitivity of changes in time-of-flight to changes in entry angle is used. Analysis has shown that this sensitivity varies by a factor of about 13 , depending on the characteristics of the pre-maneuver sijectory. However, the sensitivity divided by the deorbit time-of-flight varies $1 \cdot a$ factor of less than 3 . This variation is sufficiently small such that a constant can be used as the sensitivity coefficient for all cases.

To reduce the computations required to constrain entry angle, both here and in the Powered Flight Guidance Routines*, the secant squared of the entry angle P_{γ} is used rather than the actual angle. In particular, no inverse trigonometric function evaluations are required.

The sequence of calculations designed to reduce the entry angle error are shown in Figures $4 f$ and $4 g$. First the error Δp_{γ} in the secant squared of the entry flight path angle is computed from the following equation:

$$
\Delta_{F_{\gamma}}=\frac{1}{1-\left[\text { unit }\left(\underline{r}_{2}^{\prime \prime}\right) \cdot \text { unit }\left(\underline{v}_{2}^{\prime \prime}\right)\right]^{2}}-p_{\gamma}
$$

where $\underline{r}_{2}^{\prime \prime}$ and $\underline{v}_{2}^{\prime \prime}$ are the terminal position and velocity determined by the Precision Required Velocity Determination Routine and p_{γ} is the desired value. If the error is too large, the entry interface time-of-arrival t_{2} is adjusted as follows:

$$
\mathrm{t}_{2}=\mathrm{t}_{2}-\mathrm{k}_{\gamma} \Delta \mathrm{t}_{12} \Delta \mathrm{p}_{\gamma}
$$

[^0]where k_{γ} is the sensitivity coefficient described earlier and Δt_{12} is the time-offlight from deorbit to entry interface. After adjusting the time-of-arrival, the Precision Required Velocity Determination Routine is recalled with the adjusted time-of-arrival and the results are checked.

4.9 Offset Entry Angle

In the process of computing a required velocity, the Precision Required Velocity Determination Routine computes an offset target for use during the powered flight. For the deorbit maneuver, the powered flight guidance also requires an offset entry angle. This offset entry angle, actually the secant squared of the angle, is computed from the following equation

$$
\operatorname{PPF}_{\mathrm{PF}}=\frac{1}{1-\left[\text { unit }\left(\underline{\mathrm{r}}_{\mathrm{PFT}}\right) \cdot \text { unit }\left(\underline{v}_{\mathrm{PFT}}\right)\right]^{2}}
$$

where $\underline{r}_{\text {PFT }}$ is the offset target for the powered flight guidance and $\underline{v}_{\text {PFT }}$ is the associated velocity.

Figure 4a. Detailed Flow Diagram

Figure 4b. Detailed Flow Diagram

Figure 4c. Detailed Flow Diagram

Figure 4d. Detailed Flow Diagram

Figure 4e. Detailed Flow Diagram

Figure 4f. Detailed Flow Diagram

Figure 4g. Detailed Flow Diagram

Submittal 25: Powered Flight Guidance

1. INTRODUCTION

The objective of the Powered Flight Guidance Routines is to issue the proper steering and engine cutoff commands such that the desired terminal conditions of the maneuver are satisfied. The basic powered flight guidance law used in the orbiter is a velocity-to-be-gained concept with cross-product steering.

The two principle modes of the Powered Flight Guidance Routines are:

1. Delta-V Maneuver Guidance Mode
2. Real-Time Required Velocity Updating Guidance Mode. External Delta-V Maneuver Guidance Mode used in APOLLO. The input desired velocity change is modified to compensate for the estimated central angle to be traversed during the maneuver. Then the object of the powered phase is simply to steer the vehicle to achieve this velocity change.

The Real-Time Required Velocity Updating Mode is a generalized version of the Lambert Aim Point Maneuver Mode used in APOLLO. The object of these maneuvers is to place the vehicle on a coasting trajectory which will intercept a specified target at a specified time. Two new concepts which greatly improve the accuracy of these maneuvers are introduced. First, guidance during the maneuver is based on a state vector navigated from ignition in a spherical (Keplerian) gravity field. Second, the required velocity is not determined using the present vehicle position but rather an offset position which accounts for the finite length of the maneuver. Since this is primarily an equations document, these new concepts are treated only briefly in the text. A detailed description and derivation can be found in Reference 5.

Because the calculation of required velocity can be a lengthy process, the ability to update the required velocity every major cycle is dependent upon the speed of the computer. The APOLLO Guidance Computer required portions of several major cycles to complete the solution. The guidance equations described here will assume that the orbiter computer will also need portions of several major cycles to complete the solution for required velocity. A faster computer would not alter the basic concepts presented here, but would simplify the mechanization somewhat.

The Real-Time Required Velocity Updating Mode may select a specific required velocity routine to accomplish one of the following maneuvers:

1. Lambert Aim Point Maneuver
2. Deorbit Maneuver
3. Other maneuvers such as a maneuver io an orbit with certain specified constraints (TBD).

The reguired velocity routines will be subjects of separate documents. Since this report is mainly concerned with the documentation of guidance equations, logic or computations concerned with monitoring or controlling system operation will not be presented.

2. FUNCTION: LOW DIAGRAM

Powered Flish Guidance involves both the prethrust and thrusting phases $\therefore \because$ 解 \because, are a single step , in and desired vehicle attitude at ignition. In addition, the state vector is advanced to a specified time prior to ignition. At this time, an integral number of major cycles prior to ignition, the thrusting phase computations, including Powered Flight Navigation, are ibititiod. Of course, the attitude maneuver necessary to align the vehicle to the desired attitude at ignition should be completed before entering the trestir ph:

The sequed thenctions performed during the main branch of the power flight phase is illustrated in Figure 2. The guidance computer program known as the Servicer Routine, which controls the various subroutines to create a powered flight sequence, is not included in this document. The Servicer Routine will call the main branch every guidance cycle until engine shutdown has occurred.

Each guidance cycle begins with the reading of the accelerometers and is followed by the updeting of the state vector in the Powered Flight Navigation Routine. Then the vriod. If steering $, \ldots, \ldots$ latter also computes the time-to-go and the steering command beginhing

The targeting calculations used to predict and compensate for gravitational perturbations establish an offset target which assumes that the vehicle is under the influence of only a spherical gravity field after the expected ignition time. Therefore, in the Real-Time Required Velocity Updating Mode, it is necessary to maintain an additional state vector navigated in a spherical gravity field. This dual navigation should begin at the ignition time assumed in the targeting program if it differs from the actual.

In the Rertane Required Velocity Mode, another branch of the Powered Flight Guidance, nvolving the calculation of required velocity is operated independent of the main guidance branch. This separate branch, called the Velocity-to-be-Gainer Reutine, is initiated and controlled by the Servicer Routine and may require portion of several major guidance cycles to complete its solution. Of course, simple r locity-to-be-gained updates computed by decrementing the previous value by then alocity change continue in the Cross-Product Steering Routine every maju on a lower priority than the main guidance loop so that the new velocity-to-be-gained vector is not used hy the Cross-Product Steering Routine until the next guidance cycle.

Figure 1. Powered Flight Program
 of Thrust in the Oblate Gravity

Figure 2. Powered Flight Guidance Routines

The characteristic of the transfer in the Real-Time Required Velocity Updating Mode in relation to the singularity cone of the Lambert problem is determined by the targeting program before the powered phase is initiated. This information is passed on to this guldance program through the $s_{\text {proj }}$ switch and is used by the Conic Required Velocity Determination Routine to define the transfer plane. (See Ref. 3 for a detailed explanation of the singularity cone and Ref. 6 for the targeting procedure).

If the ${ }^{s}$ proj switch has been set, the transfer will take place in the plane defined by the unit vector $\underline{i}_{\mathrm{N}}$ in the direction of the angular momentum vector at ignition. If this switch has not been set, there are two possibilities. Under normal circumstances the transfer will take place in the plane defined by the vehicle and target position vectors. However, unexpected degradation in engine performance during flight may prolong the powered maneuver to such an extent that the input position vector to the Conic Required Velocity Determination Routine is inside the singularity cone. The procedure to cope with this situation is presented below.

If the $s_{\text {proj }}$ switch has not been set by the targeting program, the ${ }^{s}$ cone switch, which is an output of the Conic Required Velocity Determination Routine, is checked at each guidance cycle. If it is found that this switch has been set, indicating that the input position vector is inside the singularity cone, the Servicer Routine is directed to bypass the Velocity-to-be-gained Routine for the remainder of the powered maneuver. In other words, the remaining posered mancuver will be completed simply by decrementing the previous value of the velocity-to-begained by the sensed velocity change as is done in the Delta-V Mode.

When the time-to-go becomes less than some predetermined value, active steering is suspended and an engine cut-off command is set to be issued at the proper time.

${ }^{\text {a }}$ T	Estimated magnitude of thrust acceleration
C	Matrix to rotate the target vector to compensate
	for earth rotation due to change in time of flight during deorbit maneuver
d	Dimension of navigation filter weighting matrix ($d=0$ in this routine since the matrix is not used)
f	Thrust
${ }^{\text {f }}$ OMS	Magnitude of orbital maneuvering system engine thrust
${ }^{\text {f }} \mathrm{ACS}$	Magnitude of attitude control system engine translational thrust
g	Gravity vector in the oblate gravity field
g_{s}	Gravity vector in the spherical gravity field
\underline{i}^{N}	Unit vector in the direction of the angular momentum vector normal to the transfer plane
$\underline{-i}_{x}, \underline{i}_{y}, \underline{i}_{z}$	Unit vectors of local vertical coordinates
$\underline{\mathrm{i}}$ TD	Unit vector of desired thrust direction
k	Iteration counter in acceleration computation
${ }^{\mathrm{k}} \gamma$	Sensitivity used in computing the desired change in flight time to control entry angle during deorbit
$\mathrm{k}_{\text {steer }}$	Steering gain
$k_{\text {tgo }}$	Intermediate variable in \dot{t} go computation
m	Current estimated vehicle mass
$n_{\min }$	Number of guidance cycles used in thrust acceleration magnitude filter

$\mathrm{s}_{\text {soln }}$	Swithre ting which of two possible solutions is in te multi-revolution case (see Ref. 3 for 3
$s_{\text {steer }}$	Steering enable switch ..
	$\therefore \quad\left(\begin{array}{lll} =0 & \text { inhibit } \\ =1 & \text { enable } \end{array}\right)$
$s_{\text {tgo }}$	Switch indicating whether initial $t_{g o}$ computation har, 优
	$\because\left(\begin{array}{lll} = & 0 & t_{\text {go }} \text { not yet computed } \\ =1 & t_{\text {go }} \text { computed } \end{array}\right)$

t
$\Delta t \quad$ Guidance cycle time step
$\Delta t^{\prime} \quad$ Dumm: $: n$ nsfer time set to 0
$\Delta t_{\text {tail-off, }} \quad \Delta t_{\text {tail }}$ of orbital maneuvering system engine
OMS

$\begin{gathered} \Delta t \text { tail-off } \\ A C S \end{gathered}$	$\Delta t_{\text {tail-off }}$ of attitude control system engine for transtational maneuver
δt_{2}	Change in time of arrival required to satisfy terminal flight path angle in a deorbit maneuver
${ }^{\text {t }} 2$	Time of arrival at $\underline{\underline{r}}\left(\mathrm{t}_{2}\right)$
$t_{\text {go }}$	Time-to-go before engine cut-off
${ }^{\text {t }} \mathrm{ig}$	Nominal engine ignition time
$\underline{\text { v }}$	Velocity vector navigated in the oblate gravity field
\underline{V}_{5}	Velocity vector navigated in the spherical gravity field
$\underline{V}^{\mathrm{V}}$	Velocity-to-be-gained vector
v_{g}	Magnitude of $\underline{v}_{\mathrm{g}}$
\underline{V}^{\prime} req	Required velocity vector at the offset initial position (defines the coasting trajectory)
$\underline{V}_{\text {req }}$	Required velocity at current position (no initial position offset)
$\Delta \underline{v}$	Measured velocity increment vector due to thrust in one guidance cycle
$\Delta \dot{v}$	Magnitude of $\Delta \underline{v}$
Δv_{k}	k th value of sensed Δv saved for acceleration computation
Δv LV	Desired velocity change vector input to Delta-V Guidance Mode
$\Delta v_{\text {min }}$	Minimum sensed Δv which will allow acceleration filter computations to be made
Δv_{N}	$\sum \Delta v_{k}$ for $n_{m i n}$ cycles

```
\DeltaVX:* In-plane components of }\Delta\underline{v
\Delta\underline{v}
\Deltav
vexh Exhaust velocity
vexh'riss Exhaust velocity of the orbital maneuvering
system engine
vexh'A
                                    *haust velocity of the attitude control system
                                    engine for translational maneuver
=
\Gamma
\Gamma}\quad\mathrm{ Time rate of change of }
\kappa
0
                                    in Delta-V Guidance Mode
\mu
Reciprocal of normalized semi-major axis of
                                    conic transfer orbit
                                    Tolerance criterion eștablishing a cone
                                    around the negative target position di-
                                    rection inside of which the Conic Required
                                    Velocity Determination Routine will define
                                    the transfer plane by i
                                    Projected terminal flight path angle with respect
                                    to local horizontal (negative downward)
                                    Converged value of iteration variable used in Conic
                                    Required Velocity Determination Routine
                                    Previous value of \Gamma
                                    Ratio of |r (t, |})|\mathrm{ to |[r'(t)|
                                    Earth's gravitational constant
```

${ }^{\tau} \mathrm{P} \quad$ Previous value of τ
$\underline{\omega}_{\mathrm{c}} \quad$ Angular velocity command
$\omega_{\text {earth }}$
Magnitude of the earth's angular velocity

Time associated with current required velocity

Figure 6a. Prethrust Phase,
Detailed Flow Diagram

Figure 6b. Prethrust Phase, Detailed Flow Diagram

Figure 6c. Prethrust Phase, Detailed Flow Diagram

Figure 7a. Powered Flight Routines, Detailed Flow Diagram

Figure 7b. Powered Flight Routines, Detailed Flow Diagram

Figure 7c. Powered Flight Routines, Detailed Flow Diagram

Figure 8b. Cross-Product Steering Routine, Detailed Flow Diagram

Figure 9a. Velocity-to-be-Gained Routine, Detailed Flow Diagram

Figure 9b. Velocity-to-be-Gained Routine, Detailed Flow Diagram

Figure 9c. Velocity-to-be-Gained Routine, Detailed Flow Diagram

1. INTROI :

The Entry-Guidance Routine presented here is designed to take the orbiter vehicle from ert: $\quad:(h \approx 400,000 \mathrm{ft})$ through the critical heating phase of entry downtc t fot of the approach phase ($h \approx 100,000 \mathrm{ft}$). The basic ideas are outlined in $R e, \cdots$. Simulation results demonstrating the feasibility of the concept are given in Ref. (2).

There are three basic guidance modes:
(1.) when programmed-mancuver mode in which the vehicle is oriented with a zero roll angle (wings up), and an angle-of-attack corresponding to maximum y in the point of pullup.
(2.) A constant heating-rate mode during which the stag -nation-point heating rate is held constant at a preselected value, chosen essentially to minimize heat loads on the vehicle without violating maximum temperature constraints.
(3.) A reference trajectory mode during which the vehicle folluws a prestored stored trajectory designed to get \because le to the terminal point with a minimum re$\because{ }^{\prime} P S$ weight, and without violating operational constraints on the vehicle.

Thermal control is provided by varying the magnitude of the roll angle so as to follow a density-vs. -speed profile. Density information is derived from IMU measurements of the aerodynamic specific force acting on the vehicle. A-priori knowledge of the vehicle's mass, effective aerodynamic area, and drag coefficient (c_{D}) are required in the process.

Range control is provided by changing the angle-of-attack of the vehicle. Upper and lower limits on angle-of-attack are required in order not to violate operational conres s on the vehicle. Lateral trajectory control is obtained by reversing the d recion of the roll angle.

2. FUNCTIONAL FLOW DIAGRAM

The basic information flow in the Entry Guidance Routine is shown in Figure 1. This is based on the guidance concept of Ref. (2.).

After the routine is entered, a series of targeting computations are made. This involves the computation of quantities such as the current vehicle heading (ψ), the desired great-circle heading to the target point (ψ_{D}), range to the target point (θ), cross-track distance to the target point $\left(\theta_{\mathrm{CT}}\right)$, and down-range distance to the target point (θ_{DR}).

The particular guidance mode to be entered is next determined. There are three possible guidance modes:
(1.) Initial programmed maneuver
(2.) Constant stagnation-point heating rate guidance
(3.) Stored reference-trajectory guidance

The constant heating-rate mode is entered when the vehicle's vertical velocity is greater (more positive) than a preselected value. The reference-trajectory mode is entered when the magnitude of the vehicle's relative velocity is less than a preselected value.

In the programmed maneuver mode the vehicle is oriented with a zero roll angle (wings up) and an angle-of-attack corresponding to the maximum aerodynamic lift coefficient. This orientation is maintained until the heating-rate mode is entered,

In the constant heating-rate mode, the density altitude (h_{D}) required to attain the desired stagnation point heating rate ($\dot{\mathrm{q}}_{\mathrm{D}}$) is first computed. An angle-of-attack command (α_{C}) is next computed, based on the desired range-to-go for the heatingrate mode. Finally, roll-angle magnitude commands (ϕ_{C}) are computed to control the vertical-plane motion of the vehicle so as to follow a density-altitude vs. speed profile. No roll reversals take place in this mode.

In the reference-trajectory mode,the required reference-trajectory quantities are first obtained from the stored table at the current speed. These include angle-of-attack (α_{D}), altitude (${ }^{\mathrm{D}} \mathrm{D}$), range-to-go (r_{GD}), and the ratio of cross-track to down-range distance-to-go (η). The angle of attack command (α_{C}) is then computed as a perturbation from the reference value (α_{D}) based on the difference between the stored and measured values of range-to-go. Roll-angle magnitude commands are computed in the same manner as for the constant heating-rate mode, except that the desired density altitude (h_{D}) is from the stored table. Roll-angle direction is based on a comparison between the current estimate of η and the reference-trajectory value.

Notational Conventions

Upper-case letters represent matrices
Lower-case and Greek letters reserve for scalars and vectors
Vector quantities are underlined, e.g. \underline{x}
Vectors are assumed to be column vectors unless explicitly noted

Symbols
a Effective aerodynamic area for vehicle
$c_{0}, c_{1} \quad$ Coefficients used to compute α_{C} from c_{D}
$c_{D} \quad$ Aerodynamic drag coefficient for vehicle
$c_{\rho} \quad$ Coefficient in desired-density relation for constant heatingrate mode
$c_{\dot{q}} \quad$ Coefficient used in relation for desired c_{D}
${ }^{c^{D_{\dot{q}}}} \quad$ Desired value of c_{D} for constant heating-rate mode
${ }^{c_{\text {D }}}{ }_{\text {MIN }}$ Lowest permissible value of c_{D} for constant heating-rate mode
$c_{D_{\text {MAX }}}$ Highest permissible value of c_{D} for constant heating-rate mode
d Drag force per unit mass
$f \quad$ Aerodynamic force per unit mass on vehicle
$\underline{h}_{\mathrm{N}} \quad$ Stored array of reference trajectory altitudes
h Vehicle altitude above Fischer ellipsoid
$h_{\rho} \quad$ Density altitude

k_{α}	Sensitivity factor in angle-of-attack relation
${ }^{\text {cTC }}$	Yalue used for k_{α} in thermal control portion of ref. traj. mode
${ }^{\mathrm{k}} \mathrm{PrC}$	Value used for k_{α} in final position control portion of ref. traj. mode
$\begin{aligned} & k_{\phi 0}, k_{\phi 1} \\ & k_{\varphi 2}, k_{\varphi 3} \end{aligned}$	Coefficients used in roll-command relation
k_{η}	Fraction of η at which roll angle should be reversed
$\ell_{\text {AD }}$	Desired latitude at the end of entry
${ }^{2} \mathrm{OD}$	Desired longitude at the end of entry
$\mathrm{M}_{\text {SM-E }}$	Transformation matrix from stable member to earthfixed coordinates
m	Mass of vehicle
n	Index for computation-cycle time
$n_{\text {mach }}$	Mach number
\underline{r}	Vehicle position (stable-member coordinates)
${ }^{\mathrm{r}} \mathrm{DE}$	Target-point position vector (earth-fixed coordinates)
r_{e}	Earth radius (nominal)
$\underline{r}^{\text {E }}$	Vehicle position (earth-fixed coordinates)
${ }^{\text {r }}$ G	Range to go to target point
${ }^{\text {r GD }}$	Desired value of r_{G} at current v_{R} (from stored trajectory)
${ }^{r_{G}} \dot{q}$	Desired range to be covered in the constant heatingrate mode

${ }^{r_{G}}{ }_{\text {REF }}$
$r_{G_{A P P}}$

${ }^{r_{G}}$| MIN |
| :--- |
| r_{G}^{*} |

${ }^{\mathrm{r}} \mathrm{GN}$
${ }^{5}$
$\mathbf{s}_{\dot{q}}$
$\mathbf{s}_{\text {REF }}$
${ }^{s}$

[^1]Nominal range to be covered in the reference trajectory mode

Nominal range to be covered in approach phase
Lower limit for $r_{G_{\dot{q}}}$ in angle-of-attack computation
Range-to-go used in reference-trajectory mode guidance computations

Stored array of reference-trajectory range-to-go

Dummy variable used in roll-reversal logic
Switch used to start constant heating rate mode
Switch used to start reference-trajectory mode
Vertical component of specific force on vehicle

Desired vertical component of specific force

Current time

Vehicle velocity (absolute in stable-member coordinates)

Speed factor used in angle-of-attack command relation

Relative velocity at which constant heating-rate mode is terminated

Reference-trajectory array of vehicle speed w.r.t. air mass (22 elements)

\underline{V}_{R}	Vehicle velocity w.r.t. air mass (stable-member coordinates)
$\underline{V}_{\text {RE }}$	Vehicle velocity w. r.t. air mass (earth-fixed coordinates)
$\underline{V}_{\text {RHE }}$	Horizontal component of v RE
${ }^{\text {RLIO }}$	Lower limit on v_{α}
${ }^{\alpha} \mathrm{C}$	Angle-of-attack command
${ }^{\alpha} \mathrm{c}_{\mathrm{L}_{\mathrm{MAX}}}$	Angle-of-attack corresponding to maximum ${ }^{\text {c }}$ L
${ }^{\alpha}$ CMAX	Maximum permissible value of $\alpha \mathrm{C}$
${ }^{\alpha}$ CMIN	Minimum permissible value of $\alpha^{\text {c }}$
${ }^{\text {D }}$	Desired value of α at current v_{R} (from stored trajectory)
${ }^{\alpha} \mathrm{MAX}_{\dot{\mathrm{q}}}$	Maximum permissible angle-of-attack in constant heatingrate mode
${ }^{\alpha} \operatorname{MIN}_{\dot{\mathrm{q}}}$	Smallest permissible angle of attack in constant heatingrate mode
$\underline{\alpha}^{N}$	Stored array of reference-trajectory angle of attack
${ }^{\dagger} \mathrm{C}$	Roll angle command
${ }^{\varphi} \mathrm{T}$	Computed vehicle roll angle
$\Delta \psi$	Different between current and desired heading of vehicle w. r.t. air mass
$\Delta \psi_{0}$	Value of $\Delta \psi$ on first pass
$\Delta \underline{v}$	Accelerometer-measured velacity change from previous to present computation-cycle time
Δt	Time interval from previous to present computation-cycle time
ψ	Local heading (w.r.t. South)

ψ_{D}	i. . . .ed heading (w.r.t. South)
ω_{f}	F.
*	
${ }^{\circ}$ MAX'	Levels used in ϕ_{C} computations
${ }^{\dagger}$ MIN	
$\begin{aligned} & \Phi \text { MAX } \\ & \phi \text { MIN } \end{aligned}$	Levels used in ϕ_{C} computations
	8
0^{*}	Dininy variable used in roll-angle computations
${ }^{\oplus}$ OLD	Previous value of ${ }^{\varphi^{C}}$
θ	Great-circle angle from the current position to the desired target point
${ }^{\theta} \mathrm{CT}$	Cr., track component of θ
${ }^{\theta}{ }_{\text {DR }}$	Le range component of θ
η	Ratio of θ_{CT} to θ_{DR}
$\eta_{\text {D }}$	Desired value of η at current v_{R} (from stored trajectory)
η_{N}	Stored array of reference-trajectory η
ρ_{0}	Sea-level value of earth's density
ρ	Estimated density from specific force measurements
$\rho_{\dot{q}}$	Desired density for constant heating-rate mode
μ	Earth's gravitational constant
ξ	Dummy variable used in reference trajectory lookup

```
( )' A-priori estimated value prior to measure-
    ment incorporation
(F) Ensemble average of ( )
|( )|. Magnitude of ( )
( )T
unit (_) Unit vector for ( __)
sign( ) Algebraic sign associated with( ). Value is
    +1 or -1, with sign (0)\triangleq \
```

3. INPUT AND OUTPUT VARIABLES

Input Variables
ixA
Unit vector along vehicle longitudinal axis
$\underline{i}_{Y A}$
Unit vector along vehicle lateral axis
$\mathrm{M}_{\mathrm{SM}-\mathrm{E}}$
\underline{r}
\underline{v}_{R}
\underline{V}
Vehicle velocity (stable-member coords.)
$\Delta \underline{\mathrm{v}} \quad \mathrm{IMU}$-measurement velocity change
Δt
Time interval over which $\Delta \underline{v}$ is taken
Output Variables
${ }^{\alpha} \mathrm{C}$
Angle-of-attack command
$\Phi_{\mathrm{C}} \quad$ Roll angle command
4. DETAILED FLOW DIAGRAMS

This section contain low diagrams of the Entry Guidance Routine.

Figure 2a. Entry Guidance Routine, Detailed Flow Diagram

Figure 2b. Entry Guidance Routine, Detailed Flow Diagram

Figure 2c. Entry Guidance Routine, Detailed Flow Diagram

(Fig. 2 g)
Figure 2d. Entry Guidance Routine, Detailed Flow Diagram

Figure 2e. Entry Guidance Routine, Detailed Flow Diagram

Figure 2f. Entry Guidance Routine, Detailed Flow Diagram

Figure 2g. Entry Guidance Routine, Detailed Flow Diagram

Figure 2h. Entry Guidance Routine, Detailed Flow Diagram

Figure 2i. Entry Guidance Routine, Detailed Flow Diagram

Figure 2j. Entry Guidance Routine, Detailed Flow Diagram

S44-21

REFERENCES

1. Marcus, F., "A Heat-Control Phase Guidance Law for Entry Based on a Density-vs. Speed Profile". 'MIT Draper Lab 23A STS Memo No. 16-72, March 17, 1972.
2. Kriegsman, B., "Entry Guidance System for Shuttle Orbiter", MIT Draper Lab 23A ST'S Memo No. 54-72, October 24, 1972.
3. Marcus, F., "A Simple Entry Guidance System for the Heat-Control Phase of Entry", MIT Draper Lab 23A STS Memo No. 7-72, January 28, 1972.
4. Kriegsman, B., "Shuttle Entry-Guidance System--Design Rationale", MIT Draper Lab 23A STS Memo No. 56-72, November 7, 1972.

CLOSED FORM ENIRY GUIDANCE LOGIC FOR

THE HIGH CROSS-RANGE ORBITER

1.0 SUMMARY

Entry guidance logic has been developed for the space shuttle which controls the entry trajectory by roll modulation while using a preselected angle of attack profile, which is a function of velocity. Range predictions are based upon an analytic solution to the equation of motion for equilibrium glide and constant load factor profiles. Inplane range errors are nulled by changing the magnitude of the roll angle and cross-range errors are nulled by roll reversals.

The basic guidance concept consists of three phases: a constant temperature phase, an equilibrium glide phase, and a constant load factor phase. The constant temperature phase is entered first and is designed to control the trajectory to a constant temperature profile until an inertial velocity of 25000 fps is reached. At this point in the trajectory, the initial descent rate has been controlled and near equilibrium flight conditions exist. At this point, the equilibrium glide phase is entered and entry range predictions are intiated. These range predictions are based on an equilibrium glide trajectory until a load factor of 1.5 g is reached, followed by a constant load factor trajectory of 1.5 g until transition.

The roll angle during the equilibrium glide phase is selected to null the inplane range errors. When the resultant equilibrium glide trajectory intersects the constant g trajectory required to reach the target, control is transferred from the equilibrium glide phase to the constant g phase. At Mach 6, the entry guidance is terminated and control is transferred to the transition guidance.

2.0 INIRODUCTION

Analysis of entry trajectory shaping studies of the high cross-range orbiter has resulted in an understanding of the relationship between trajectory shaping and entry constraints and objectives (such as temperature limits, minimum. TPS weight requirements, and load factor constraints). This analysis indicated that all know orbiter constraints and objectives could be met through proper entry targeting, and therefore, direct control of the trajectory to minimize constraint parameters is not necessary. This analysis also indicated that ranging could be accomplished early in the entry with negligible effect on the trajectory shape. In fact, indications are that delaying ranging until after the major aerodynamic heating has been passed could cause an impact on other constraints, such as load factor, later in the entry.

The analysis further indicated that several simple control modes can be used to satisfactorily control the orbiter trajectory. Analysis of these modes indicated that a combination equilibrium glide and constant g mode will not only produce a satisfactory trajectory but can also be used as a basis for closed-form guidance logic. This document presents an analytical guidance technique based on this concept. Roll angle is used to control inplane ranging and roll reversals are used to control cross range. The angle of attack profiles are predefined functions of velocity. Section 4 discusses the guidance concept and subsequent sections present a description of the guidance logic. Equation derivations, guidance flow charts, and a detailed description of the guidance logic are presented in the appendixes.

3.0 SYMBOLS

S59-2

IFT*	flar for first pass through range prediction
IG*	flag to transfer to constant g phase
ISTP*	flag to determine sequence in range prediction
KlO^{*}	constant in $D_{r e f}$ equation in constant heat rate
K2ROL*	roll direction indicator
L	Lift force magnitude in the vertical plane
I/D	lift to drag ratio of the orbiter
$\frac{\mathrm{L}}{\mathrm{D}}_{\mathrm{V}} \text { command }$	commanded L / D in the vertical plane
$\frac{L_{D}}{D_{V}}$	reference L / D in the vertical plane
LATSW*	Clag to inlibit roll reversals through 180°
IMN*	L/D command for 5° deviation from lift vector up for cross-range control
LOD*	vehicle L / D
LODI*	desired inplane L / D
m	vehicle mass
N	total load factor
\dot{Q}	stagnation point heat rate
$\dot{Q}_{\mathrm{c}}{ }^{*}$	commanded \dot{Q}
R^{*}	radius vector

[^2]

$\mathrm{V}_{S}{ }^{*}$	local satellite velocity
$\mathrm{V}_{\text {sat }}$	local satellite velocity
VSW*	velocity to start range prediction
$\mathrm{V}_{\mathrm{XX}}{ }^{*}$	velocity to start transition α modulation
X_{E}	
$\left.\begin{array}{c}\chi_{E} \\ z_{E}\end{array}\right\}$	earth fixed frame (EFF)
X_{T}	
$\left.\begin{array}{l} \mathrm{Y}_{\mathrm{T}} \\ \mathrm{Z}_{\mathrm{T}} \end{array}\right\}$	earth fixed topocentric frame (EFT)
we^{*}	earth rotation rate
ITT*	vehicle weight
Y*	lateral deadband switch point
α	angle of attack
α_{c}^{*}	angle of attack command
Y	flight-path angle
$\dot{\gamma}$	time derivative of Y
$\gamma_{E I}$	inertial flight-path angle at entry interface
θ	central angle to target

[^3]| $\pi *$ | pi |
| :--- | :--- |
| ρ | density |
| ρ_{0}^{*} | density at sea level |
| ρ_{S} | density at sea level |
| ϕ | roll angle |
| ϕ_{C}^{*} | roll angle command |
| ψ^{*} | relative azimuth |
| ψ_{T}^{*} | relative azimuth to target |
| 05GSW* | flag to begin guidance |

*These symbols appear in the guidance flow charts in appendix D

4.0 GUIDANCE CONCEPT

The entry guidance must keep peak acceleration levels, maximum temperatures, and heat loads within limits while maintaining ranging capability. The gididance must operate over a wide.range of initial conditions and vehicle lift to dras ratios with a minimum of changes to the guidance software. The guidance must also be insensitive to navigation system errors. One means of accomplishing this is to develop a set of analytic trajectory prediction equations based on a flight profile that satisfies the objectives previously mentioned. Trajectory shaping studies ahowed that two control modes can be combined to satisfy the trajectory iimits and objectives, and would also be amenable to analytic solutions of trajectory parameters for constant and near optimum angle of attack profiles. These modes are equilibrium glide and constant g. This document presents the guidance logic for both a constant and a near optimum variable angle of attack profile. A detailed description of the guidance logic can be found in section 5.0, however, a brief overview of the guidance concept follows.

From 0.058 to an inertial velocity of 25000 fps ; the guidance controls the trajectory to a constant temperature profile. This profile controls the initial descent rate and stabilizes the trajectory prior to initiating ranging at an inertial velocity of 25000 fps . Between an inertial velocity of 25000 fps and a load factor of 1.5 g , the entry trajectory is controlled to an equilibrium glide flight mode. During this phase the roll angle for equilibrium flight is analytically computed to satisfy the entry ranging requirements. The resultant equilibrium glide trajectory is maintained from the point in the trajectory where the equilibrium glide drag level is greater than the constant heat rate drag level (point 1 in fig. l) to the point in the trajectory where the constant drag level required to reach the target is equal to the drag level resulting from the equilibrium gilde trajectory (point 2 in fig. 1). From this point until transition, the guidance commands the roll angle required to maintain the constant g level required to reach the target. At Mach 6, the guidance transfers to the transition guidance mode.

Figure 1.- Guldance concept for the high cross-range orblter.

5.0 GUIDANCE LOGIC DESCRIPTION

The basic guidance logic must perform three primary functions, these are trajectory parameter prediction, targeting, and attitude command generation. The guidance first performs trajectory and range predictions and then the controller converts these data into attitude commands which are provided to the autopilot for execution. An analytic reference trajectory is recomputed each computer cycle to correct for range errors. Based on this recomputed reference trajectory, a reference lift to drag ratio (I/D), drag level, and altitude rate are analytically computed and provided to the controller.

The total guidance logic can be divided into four major phases as depicted in figure 2. These phases are preentry, constant heat rate, equilibrium glide ranging, and constant g ranging. Several service routines are used during each phase such as targeting, lateral logic, roll command, and controller. The major phases are described in sections 5.1 through 5.4 , and the service routines are described in section 5.5. A complete derivation of the range prediction equations and math flow is presented in the appendixes.

5.1. Preentry Phase

The prima : n tivity of the preentry phase is the computation of the attitude hor. as prior to the atmospheric entry and the beginning of the cuiputation of the entry targeting data. This computation defines a total range to target ($R T$) and the current heading to target ψ_{T}. The equations used for targeting are discussed in
section 5.5.2. Intil 0.05 g , the spacecraft will be in a three axis attitude hold mol. At 0.05 g , rate damping will be initiated and the guidance will transfer to the constant heat rate phase.

$\therefore 3.2$ Constant Heat Rate Phase

During the constant heat rate phase a stable trajectory is established at an acceptable temperature prior to the initiation of ranging. A roll command is generated which will control the spacecraft along a desired constant temperature profile through pullout ($\dot{\gamma}=0$). This phase is required to stabilize the trajectory prior to entering the equilibrium glide phase. The equilibrium glide ranging phase is entered after pullout at an inertial velocity of 25000 fps . Appendix A presents the derivetion of the guidance equations for the constant heat rate phase.

5.3 Equilibrium Glide Ranging Phase

At an inertial velocity of 25000 fps , the guidance enters the equilibrium glide ranging phase. During this phase entry range predictions and reference trajectory parameters are computed which are required by the trajectory controller to eliminate range errors. However, trajectory control is not transferred to the equilibrium glide mode until the drag command from the reference equilibrium glide profile is greater than the drag comand from the constant heat rate phase. This control mode transfer prevents a discontinuity in the total dras reference trajectory, thus eliminating an undesirable transient in the trajectory.

Closed form solutions of the equations of motion are used to predict the entry range and the reference trajectory parameters. These parameters are based upon an equilibrium glide flight at constant bank angle. If the equilibrium glide profile is flown at low speeds, higher than desired load factors may result; therefore, the trajectory profile is based upon a constant load factor starting when the load factor reaches 1.5 g . The range prediction is accomplished by analytically
predicting the inertial velocity at which the equilibrium glide trajectory will reach a total loed factor of $1.58\left(V_{C G}\right)$, and then analytically predicting the range from the current orbiter velocity to $V_{C G}$ based upon an equilibrium glide trajectory, and analytically predicting the range from $V_{C G}$ to transition by assuming a constant 1.58 trajectory. The equilibrium glide roll angle is selected to make the resultant range prediction equal to the current range to the target.

Once the desired equilibrium glide roll angle has been determined, a reference trajectory is analytically computed and a reference vertical L / D, a drag reference, and an altitude rate reference is computed and sent to the controller. The controller then computes a vertical L/D command based upon the difference between the reference dras and altitude rate commands and the actual trajectory drag and altitude rate. This vertical L/D command is converted into a roll command in the ROLL COMMAND service routine (section $5 \cdot 5.4$).

A new equilibrium glide roll angle is computed each pass through the guidance logic until the constant g ranging phase is entered. In addition to the equilibrium glide and constant g reference trajectory, a constant g reference profile is analytically computed based on the constant g level required to reach the target from the current spacecraft velocity. This constant g level is compared to the g reference level from the equilibrium glide trajectory. When the equilibrium glide drag reference is greater than the constant g reference profile required to reach the target, the equilibrium glide phase is terminated and control is transferred to the constant g ranging phase. Appendixes B and C present the derivation of the equations used in the equilibrium glide ranging phase.

5.4 Constant g Ranging Phase

The constant g phase predicts the constant g level required to reach the target and then computes the reference parameters required by the controiler to fly the desired constant g profile. The range prediction' is based on an analytic solution of the equations of motion which predicts the range flown from the current velocity to transition (assumed to start at Mach 6). The L/D reference, the desired dras reference, and the altitude rate reference is computed and sent to the controller. The constant g phase is terminated at the velocity for beginning transition. Appendix D presents the derivation of the equations used in this phase.

5.5 Service Routines

Four service routines are used by the guldance system: controller, targeting, lateral logic, and roll comand.
5.5.1 Controller.- The controller generates en L/D command in the vertical plane besed upon the reference L / D, the reierence drag level, and the reference altitude rate computed in the guidance phases previously described. The basic controller equation is defined as follows.

$$
\begin{equation*}
\frac{L}{D_{V}} \text { command }=\frac{L}{D_{V}} \text { ref }+C l\left(D-D_{\text {ref }}\right)+C 2\left(\dot{R}-\dot{R}_{r e f}\right) \tag{1}
\end{equation*}
$$

The constants $C 1$ and $C 2$ vary depending on the particular guidance phase.
5.5.2 Targeting.- The targeting program computes the total range to target, the apacecraft heading to target, and the initial roll direction. These computations are made in the earth relative coordinate sybtem. The total range is computed as the great circle range between the present vehicle position and the target position. As shown in appendix E, the current heading to target ψ_{T} is computed based upon the current position and the target position. Knowing the heading to target, the initial roll direction is chosen to reduce the angle between the present heading and the heading to the target.
5.5.3 Lateral logic.- The lateral logic consists of a lateral deadband about the spacecraft heading. When the magnitude of the difference between the spacecraft heading and the heading to the target exceeds the lateral deadband and the roll direction is such that this difference will increase, the guidance commands a roll reversal. The azimuth deadband method of cross-range control was chosen because a cross-range deadband technique will cause a high L/D vehicle to spiral above Mach 1. Direct control of azimuth eliminates the spiral. For vehicles with a low roll response, it may be necessary to prevent a roll through negative lift at high g levels. This capability has been included in the guidance logic as presented in appendixes E and F.
5.5.4 Roll and alpha command. - The roll and alpha command subroutine generates angle of attack and roll commands for the autopilot. This subroutine also converts the vertical L/D command from the controller into a roll command. The direction of the roll command is determined by the lateral logic.

6.0 CONCLUSIONS

An entry guidance logic for preselected angle of attack trajectories has been developed and initial studies using this guidance demonstrate excellent performance. This guidance logic combines control of load factor and temperature with ranging by means of an analytically computed reference trajectory. Analysis of this guidance concept has indicated the following:
a. Closed loop ranging can be provided by an analytical guidance logic while implicitly controlling temperatures and load factor.
b. The guidance system affords at appropriate times close control of all critical constraints (i.e., temperatures, load factor, and heat load).
c. The closed form range predictions afford fast computational capability which is desirable for an onboard guidance system.
d. Preliminary navigation error analysis indicates that this system is sensitive to navigation system errors.

APPENDIX A - CONSTANT HEAT RATE PHASE

The constant heat rate phase computes a reference trajectory which is used until the ranging solution from the equilibrium glide and constant E phases is valid. The purpose of the constant heat rate phase is to stabilize the trajectory at a constant temperature during the initial. entry into the atmosphere prior to the initiation of ranging which begins at an inertial velocity of 25000 fps. This reference trajectory consists of a vertical L/D reference, a drag level reference, and an altitude rate reference. These reference trajectory parameters are used by the controller during the constant heat rate phase.

Stagnation point heat rate for a l-foot radius sphere is defined as

$$
\begin{equation*}
\dot{Q}=17600 \sqrt{\frac{\rho_{0}}{\rho_{0}}}\left(\frac{V_{E}}{26000}\right)^{3.15} \tag{Al}
\end{equation*}
$$

Specific aerodynamic drag is along the negative velocity vector with the magnitude computed as follows:

$$
\begin{equation*}
D=\frac{\rho V_{E} C_{D} S}{2 m} \tag{A2}
\end{equation*}
$$

Solving (Al) for ρ

$$
\begin{equation*}
\rho=\frac{\dot{Q}^{2} \rho_{o}}{(17600)^{2}\left(V_{E} / 26000\right)^{3.15}} \tag{A3}
\end{equation*}
$$

Substituting (A3) into (A2) gives

Equation (A4) provides an expression for constant heat rate in terms of a reference drag force. The reference drag is used in the controller. The altitude rate reference term used by the controller can be derived as follows:

Assume $\rho=\rho e^{-H / H S}$

$$
\begin{align*}
& \dot{\rho}=\frac{\partial \rho}{\partial H} \frac{\partial H}{\partial t}=\left(-\frac{1}{H S}\right) \rho_{S} e^{-\frac{H}{H S}}(\dot{H})=-\frac{\dot{H}}{H S^{p}}=-\frac{\dot{R}}{H S} \rho \tag{AS}\\
& D=\frac{\rho V_{E}{ }^{2} C_{D} S}{2 m} \\
& \rho=\frac{2 m D}{V_{E}{ }^{2} C_{D} S}
\end{align*}
$$

Then taking the derivative assuming that C_{D} is a constant gives

$$
\begin{aligned}
& \dot{\rho}=-\frac{4 m D \dot{V}}{V_{E}{ }^{3} C_{D} S}+\frac{2 m \dot{D}}{V_{E}^{2} C_{D}{ }^{S}} \\
& \dot{\rho}=-\frac{2 \rho \dot{V}}{V_{E}}+\frac{\rho \dot{D}}{D} \\
& \frac{\dot{\rho}}{\rho}=-\frac{2 \dot{V}}{V_{E}}+\frac{\dot{D}}{D}
\end{aligned}
$$

Since $\dot{V}=-D$

$$
\frac{\dot{\rho}}{\rho}=\frac{2 D}{V_{E}}+\frac{\dot{D}}{D}
$$

Since $\dot{R}=-\frac{\dot{\rho}_{\mathrm{H}}}{\mathrm{H}}$

$$
\begin{gather*}
\dot{R}=-H S\left(\frac{2 D}{V_{E}}+\frac{\dot{D}}{D}\right) \tag{AT}\\
\dot{R}_{r e f}=-H S\left(\frac{2 D_{r e f}}{V_{E}}+\frac{\dot{D}_{r e f}}{D_{r e f}}\right) \tag{AB}
\end{gather*}
$$

Equation (A4) gave

$$
\begin{equation*}
D_{\text {ref }}=\frac{26000^{4.3} \rho_{0} C_{D} S \dot{Q}^{2}}{\left(2 \times 17600^{2}\right)_{\mathrm{mV}}^{\mathrm{E}}} \mathrm{H.3}=\mathrm{KlOV}_{\mathrm{E}}^{-4.3} \tag{A9}
\end{equation*}
$$

where

$$
\begin{align*}
& K 10=\frac{26000^{6.3} \rho_{\rho_{0} C_{D}} D^{2} \dot{Q}^{2}}{\left(2 \times 17600^{2}\right)_{\mathrm{m}}} \tag{A10}\\
& \dot{D}_{\text {ref }}=\frac{\partial D_{\text {ref }}}{\partial V} \frac{\partial V}{\partial t} \\
& \dot{D}_{\text {ref }}=-4.3 \mathrm{KlO} V_{E}-5 \cdot 3 \dot{V} \\
& \dot{D}_{\text {ref }}=4.3 \mathrm{KlOV}_{E}{ }^{-5.3 D_{r e f}}=\frac{4.3 D_{\text {ref }}{ }^{2}}{V_{E}} \tag{AII}
\end{align*}
$$

Substituting (A4) and (All) into (AB) gives

$$
\begin{align*}
\dot{R}_{r e f} & =-H S\left(\frac{2 D_{r e f}}{V_{E}}+\frac{\dot{D}_{\text {ref }}}{D_{r e f}}\right) \\
& =-H S\left(\frac{2 D_{r e f}}{V_{E}}+\frac{4 \cdot 3 D_{r e f}}{V_{E}}\right) \\
\dot{R}_{r e f} & =-6.3 H S \frac{D_{r e f}}{V_{E}} \tag{A12}
\end{align*}
$$

The nominal L / D required to fly the desired profile, $\frac{L}{D_{r e f e r e n c e ~}}$ is derived in the following manner:

$$
V_{\dot{Y}}=\frac{V_{I}^{2} \cos \gamma}{R}+L-g \cos \gamma
$$

or

$$
V_{\dot{Y}}=\frac{V_{I}^{2} \cos \gamma}{R}+\left(\frac{L^{\prime}}{D_{V}}\right) D-g \cos \gamma
$$

therefore,

$$
\begin{equation*}
\frac{L}{D_{V}}=\left(E \cos \gamma-\frac{V_{I}^{2} \cos \gamma}{R}+V \dot{Y}\right) / D \tag{Al}
\end{equation*}
$$

Assume $\cos \gamma=1, \operatorname{Rg}=V_{\text {sat }}{ }^{2}$

$$
\begin{equation*}
\frac{L}{D_{V}}=\frac{\dot{D}}{D}\left(1-\frac{V_{I}^{2}}{V_{s a t}^{2}}\right)+\frac{V_{Y}}{D} \tag{Al}
\end{equation*}
$$

Since

$$
\begin{align*}
& \dot{h}=v \sin \gamma \approx v_{\gamma} \\
& \ddot{h}=v_{\gamma}+\dot{V}_{\gamma} \\
& v_{\gamma}=\ddot{h}-\dot{v}_{\gamma} \tag{A15}
\end{align*}
$$

for constant heat rate

$$
\begin{aligned}
& \dot{h}=-6.3 \mathrm{HS} \frac{D}{V} \\
& \ddot{h}=-6.3 H S\left(\frac{V \dot{D}-D \dot{V}}{V^{2}}\right)
\end{aligned}
$$

therefore

$$
\begin{equation*}
V_{\dot{Y}}=-6.3 \mathrm{HS}\left(\frac{\dot{D}}{V}-\frac{D \dot{V}}{V^{2}}\right)-\dot{V}_{Y} \tag{A6}
\end{equation*}
$$

Since $\gamma=\frac{\dot{h}}{V}$

$$
\begin{equation*}
\dot{V}_{\gamma}=\frac{\dot{h} \dot{V}}{V}=\left(-6.3 H S \frac{D}{V}\right)\left(-\frac{D}{V}\right)=6.3 H S_{V^{2}}^{D^{2}} \tag{AI7}
\end{equation*}
$$

Combining (A16) and (A17) gives

$$
\begin{equation*}
\dot{v} \dot{\gamma}=-6.3 H S\left(\frac{\dot{D}}{V}+\frac{D^{2}}{V^{2}}\right) \tag{A18}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{L}{D_{V}}=\frac{R}{D}\left(1-\frac{V_{I}^{2}}{V_{s a t}{ }^{2}}\right)-6.3 \frac{H S}{D}\left(\frac{D}{V}+2 \frac{D^{2}}{V^{2}}\right) \tag{A19}
\end{equation*}
$$

However, since $\dot{D}=4.3 \frac{D^{2}}{V}$ for constant heat rate

$$
\begin{equation*}
\frac{L}{D_{v}}=\frac{g}{D}\left(1-\frac{v_{I}^{2}}{V_{s a t}^{2}}\right)-6.3 \frac{H S}{D}\left(4.3 \frac{D^{2}}{v^{2}}+2 \frac{D^{2}}{v^{2}}\right) \tag{A20}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{L}{D_{V}}=\frac{g}{D}\left(1-\frac{V_{I}^{2}}{V_{\mathrm{sat}}{ }^{2}}\right)-39.69 \mathrm{HS} \frac{D}{V^{2}} \tag{A21}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{L}{D_{V} r e f}=\frac{B}{D_{\text {ref }}}\left(1-\frac{V_{I}^{2}}{V_{s a t}}\right)-39.69 \mathrm{Hs} \frac{D_{\text {ref }}}{V^{2}} \tag{A22}
\end{equation*}
$$

Evaluating the second term in the $\frac{L}{D_{r e f}}$ equation for the constant angle of attack case produces a maximum change in $\frac{L}{D_{V}}$ of 0,0097 units and for the variable angle of attack case 0.0216 units. Since this term is negligible

$$
\begin{align*}
& \because r_{i}=\frac{g}{D_{r e f}}\left(1-\frac{\mathrm{v}_{I}^{2}}{\mathrm{~V}_{\mathrm{gR} \mathrm{t}^{2}}}\right) . \tag{A23}\\
& \therefore \therefore \therefore
\end{align*}
$$

Equations ($A+1,(2)$, and (A23) provide the D reference, \dot{R} reference, and L / D reference that are required by the controller to maintain a conatant heat rate trajectory. Figure A-l shows a time history of the comanded and actual heat rate during the constant heat rate phase.

Figure Al. - Comparison of commanded and actual heat rate, \dot{Q}.

APPENDIX B - DQUILIBRIUM GLIDE PHASE FOR
 A CONSTANT ANGLE OF ATTACK

The purpose of the equilibriun glide phase is to predict the range capability of the spacecraft and to compute a reference trajectory which will terminate at the target point. This is accomplished by predicting analytically the range flown from the current orbiter velocity to the velocity at which a load factor of 1.5 g is reached. Then the resultant range for a constant 1.5 g trajectory is predicted in the remainder of the entry. The initial range prediction assumes an equilibrium glide trajectory with a roll angle selected to correct for range ermors. Once the equilibrium roll angle has been predicted that will satisfy the range requirements, a reference drag trajectory is commanded that will correspond to the desired equilibrium glide trajectory.

The basic equilibrium glide equation is

$$
\begin{equation*}
V \dot{Y}=\frac{V_{I}^{2} \cos \gamma}{R}+L-g \cos \gamma \tag{B1}
\end{equation*}
$$

For equilibrium glide, $\dot{\gamma}=0$; therefore

$$
0=\frac{V_{I}^{2} \cos \gamma}{R}+L-E \cos \gamma
$$

Assuming $\cos \gamma=1$, equation ($B 1$) reduces to

$$
\begin{equation*}
0=8\left(\frac{V_{I}^{2}}{R_{g}}-2\right)+L \tag{B2}
\end{equation*}
$$

Since $R_{g}=V_{B a t}{ }^{2}$, this equation reduces further to

$$
\begin{equation*}
0=8\left(\frac{V_{I}^{2}}{V_{s a t}^{2}}-1\right)+\left(\frac{L}{D_{V}}\right) D \tag{B3}
\end{equation*}
$$

Solving for D gives

$$
\begin{equation*}
D=\frac{E^{E}}{\frac{L}{D_{V}}}\left(1-\frac{V_{I}^{2}}{V_{B s t}}\right) \tag{B4}
\end{equation*}
$$

Since L / D in the vertical plane $=L / D \times \cos \phi$, equation (BL) becomes

$$
\begin{equation*}
D=\frac{B}{\frac{L}{D} \cos \phi}\left(1-\frac{V_{I}^{2}}{V_{B a t}^{2}}\right) \tag{B5}
\end{equation*}
$$

Using equation (B5), it is possible to predict the range that will be flown during the equilibrium glide phase by means of the following equations.

Assume that the equilibrium glide trajectory will be based on a constant roll angle, ϕ, and will be flown to the inertial velocity at which the predicted trajectory reaches $1.5 g\left(V_{C G}\right) . V_{C G}$ can be predicted by solving for V_{I} in equation ($B 5$).

$$
\begin{equation*}
V_{C G}=\sqrt{v_{s a t}{ }^{2}-\frac{D_{C g} V_{s a t} \frac{2 L}{D} \cos \phi}{g}} \tag{B6}
\end{equation*}
$$

Where $D_{c g}$ is the drag along the velocity vector equivalent to $1.5 g$

$$
\begin{equation*}
D_{c g}=\frac{1.5 g}{\sqrt{1+(L / D)^{2}}} \tag{B7}
\end{equation*}
$$

Equation (B6) is valid for all equilibrium glide roll angles that result in trajectories that reach 1.5 g . However, trajectories based on mall equilibrium gilde roll angles do not obtain 1.5 g . For this class of trajectories, the guidance can determine this by checking for a negative square root in equation ($B 6$). When this occurs, the guidance must assume that the constant g phase is eliminated and the equilibrium glide trajectory required to reach the target is flown all the way to transition a.t Mach 6.

The range flo by the following yi sons:

$$
\begin{equation*}
\frac{\partial R}{\partial V}=\frac{\partial R}{\partial T} \frac{\partial T}{\partial V}=-\frac{V}{D}=-\frac{V_{I}}{D_{r e f}} \tag{B8}
\end{equation*}
$$

Using equation (Br)

$$
\begin{align*}
& \because \frac{\frac{L}{D} \cos \phi V_{s a t}{ }^{2}}{g}\left(\frac{\mathrm{~V}_{\mathrm{I}}}{\mathrm{~V}_{I}^{2}-\mathrm{V}_{\text {sat }}{ }^{2}}\right) \tag{в9}\\
& R=\frac{(L / D) \cos \phi V_{\text {sat }}{ }^{2}}{B} \int_{V_{I}}^{V_{C G}} \frac{V_{I}}{V_{I}^{2}-V_{\text {sat }}{ }^{2}} d V \tag{B10}
\end{align*}
$$

Integrating equa, (1:0)

$$
\begin{equation*}
R=\frac{(i, D) \cos \phi V_{S a t^{2}}}{2 g} L N\left(\frac{V_{C G}^{2}-V_{s a t}^{2}}{V_{I}^{2}-V_{s a t^{2}}}\right)=R_{E Q} \tag{B11}
\end{equation*}
$$

The range from $V_{C G}$ to transition can be analytically predicted by the
equations

$$
\begin{gather*}
\frac{\partial R}{\partial V}=\frac{\partial R}{\partial T} \frac{\partial T}{\partial V}=-\frac{V}{D}=-\frac{V_{I}}{D_{C B}} \tag{Bl2}\\
R=-\frac{1}{D_{C G}} \int_{V_{C G}}^{V_{T R A N}} V d V=\frac{V_{C G}{ }^{2}-V_{T R A N}{ }^{2}}{2 D_{C B}} \tag{B13}
\end{gather*}
$$

Therefore equations (B1I) and (E13) represent the total predicted range for the entry from the current orbiter velocity to transition.

$$
\begin{equation*}
\mathrm{F}_{\mathrm{P}}=\mathrm{R}_{\mathrm{EQ}}+\mathrm{R}_{\mathrm{CG}} \tag{B14}
\end{equation*}
$$

A comparison between R_{P} and the actual range to the target (assumed to be the transition point) will produce a range error which can be nulled by changing ϕ, the equilibrium glide roll angle. Figure B-l presents the range correction capability as a function of the equilibrium glide roll angle. This figure shows that for an equilibrium glide roll angle below 43.5°, the equilibrium glide trajectory will not intersect 1.58 . Thus for targets that require these roll angles, an equilibrium glide trajectory will be flown throughout entry. This figure also shows that for large equilibrium glide roll angles (to the right of the line marked $V_{C G}$ greater than V_{I} in fig. B-1), the desired equilibrium glide roll angle will intersect 1.58 prior to the current velocity. So for these cases, the guidance will immediately transfer into the constant g ranging phase whenev $V_{C G}$ is computed to be greater than V_{I}.

Once the equilibrium glide roll angle has been determined, the controller reference parameters must be computed in order to fly the desired equilibrium glide trajectory. The controller requires a L / D reference, a drag reference, and an altitude rate reference. The drag reference term is simply equation (B5).

$$
D_{r e f}=\frac{G}{\frac{L}{D} \cos \phi}\left(1-\frac{V_{I}^{2}}{V_{s a t}{ }^{2}}\right)
$$

The L / D reference term is simply

$$
\begin{equation*}
\frac{\mathrm{L}}{\mathrm{D}_{\mathrm{v}}} \text { ref }=\frac{\mathrm{L}}{\mathrm{D}} \cos \phi \tag{B15}
\end{equation*}
$$

where $\frac{L}{D} \cos \phi$ is the inplane $\frac{L}{D}$ required to reach the target.
The altitude rate reference can be derived as follows:
From equation (AB)

$$
\dot{R}_{r e f}=-H S\left(\frac{2 D_{r e f}}{V_{E}}+\frac{\dot{D}_{r e f}}{D_{r e f}}\right)
$$

$$
D_{r e f}=\frac{R^{2}}{\frac{L}{D} \cos \phi}\left(1-\frac{V_{I}^{2}}{V_{E a t}^{2}}\right)
$$

Taking the derivative of $D_{\text {ref }}$

$$
\begin{equation*}
\dot{D}_{\dot{r e f}}=\frac{2 \mathrm{~g} D_{r e f} V_{I}}{\frac{L}{D} \cos \phi V_{s a t}} \tag{B16}
\end{equation*}
$$

Combining equation (A8) with equations (B5) and (B16) gives

$$
\begin{equation*}
\dot{R}_{r e f}=-\frac{2 g H S}{\frac{L}{D} \cos \phi}\left[\frac{\left(1-\frac{V_{I}^{2}}{V_{s a t}^{2}}\right)}{V_{E}}+\frac{V_{I}}{V_{B a t}^{2}}\right] \tag{B17}
\end{equation*}
$$

Equations (B5), (B15) and (B17) are sufficient to establish an equilibrium glide trajectory.

(a) $V_{1}=20000 \mathrm{fps} 1025000 \mathrm{pps}$,

Figure B1. - Equllibrium gilde range predictions.

(b) $V_{1}=7550 \mathrm{fps}$ to 19.000 fps.

FIgure B1.- Concluded.

APPENDIX C - CONSTANT E PHASE

The purpose of the constant g phase is to predict the constant B level required to reach the target and to generate a $D_{\text {ref }}$, $\dot{R}_{r e f}$, and a $\frac{L}{D_{r e f}}$ for the controller.

Equation (E13) presents the equation that analytically predicts the range that will be flown if a constant $\&$ profile ($D_{c g}$) is flown between $V_{C G}$ and transition. This equation is as follows:

$$
R_{C G}=\frac{v_{C G}^{2}-v_{\mathrm{TRAN}}{ }^{2}}{2 D_{\mathrm{Cg}}}
$$

The range to the transition point is obtained from the targeting logic and is equal to the total range to target minus the desired range to the target at transition

$$
R_{T G}=R_{T T}-R_{P T}
$$

The constant g level to reach the target becomes

$$
\begin{equation*}
D_{0}=\frac{V_{C G}{ }^{2}-V_{T R A N}{ }^{2}}{2 R_{T G}} \tag{Cl}
\end{equation*}
$$

The constant g trajectory is controlled by means of the drag controller where

$$
\begin{aligned}
& D_{r e f}=D_{0} \\
& \dot{R}_{r e f}=-H S\left(\frac{2 D_{r e f}}{V_{E}}+\frac{\dot{D}_{\text {ref }}}{D_{r e f}}\right)
\end{aligned}
$$

For constant $\& \dot{D}_{\text {ref }}=0$, therefore

$$
\begin{equation*}
\dot{\mathrm{R}}_{r e f}=-2 H S \frac{D_{r e f}}{V_{E}} \tag{c2}
\end{equation*}
$$

As was the case for constant heat rate, a L / D reference term can be derived from the equation of motion

$$
V \dot{\gamma}=\frac{V^{2} \cos \gamma}{R}+L-g \cos \gamma
$$

or

$$
\frac{L}{D_{V}}=\frac{g}{D}\left(1-\frac{V^{2}}{V_{s e t^{2}}}\right)+\frac{V \dot{Y}}{D}
$$

and from equation (AlL)

$$
V_{\gamma}=:: \dot{H}_{\gamma}
$$

For constant g

$$
\begin{gather*}
\dot{H}=-2 H S \frac{D}{V} \\
\ddot{H}=-2 H S\left(\frac{\dot{D}}{V}-\frac{D \dot{V}}{V^{2}}\right)=-2 H S \frac{D^{2}}{V^{2}} \tag{CB}\\
V \dot{Y}=-2 H S \frac{D^{2}}{V^{2}}-\dot{V} Y \tag{4}\\
\dot{V}_{Y}=\frac{\dot{H} \dot{V}}{V}=\left(-2 H S \frac{D}{V}\right)\left(-\frac{D}{V}\right)=\frac{2 H S D^{2}}{V^{2}} \tag{CD}\\
V \dot{Y}=-4 H S \frac{D^{2}}{V^{2}} \tag{6}
\end{gather*}
$$

Therefore,

$$
\begin{equation*}
\frac{L}{D_{V}}=\frac{g}{D}\left(1-\frac{V^{2}}{V_{s a t}^{2}}\right)-4 \frac{H S D}{V^{2}} \tag{7}
\end{equation*}
$$

so

$$
\begin{equation*}
\frac{L^{\prime}}{D_{V e f}}=\frac{D_{r e f}}{D_{r e f}}\left(1-\frac{V_{E}^{2}}{V_{s a t}^{2}}\right)-4 H S \frac{D_{r e f}}{V_{E}^{2}} \tag{cB}
\end{equation*}
$$

55

Relative velocity was assumed for the constant 8 phase because of the requirement to switch from inertial velocity to relative velocity late in the entry when velocity is approximetely equal to $V_{s a t} / 2$.

```
L`,NTXX D - MATH FLOW LOGIC FOR THE CONSTANT
                        ANGLE OF ATMTACK GUIDANCE
```

All necessar" quations have been developed in the main text and in appendixes A tidr.g. C. The final step is to connect these equations with decision logic to convert trajectory data from the navigation into a commanded roll oncle and a commanded angle of attack for the autopilot. This appendix prir he guidance flow logic and all necessary equa-- tions and constar. \because the constant angle of attack case. Table D-I presents the constants and initial variable values for the guidance. Flow charts 1 through 13 presents the math flow logic for the guidance.

TABLE E-I.- CONSTANTS AND INITIAL VARTABLE VAIUES

ALM	1.5	E
$C_{\text {D }}$	0.336	n.d.
$\mathrm{C}_{\text {FMM }}$	0.000164578836	n. mi./ft
$\mathrm{C}_{\text {FNM }}$	3437.7468	n. mi. $/ \mathrm{rad}$
g^{\prime}	32.2	$\mathrm{ft} / \mathrm{sec}^{2}$
G2	2.5	E
HS	28500.	fps
${ }_{\text {Hp }}$	1	n.d.
IFT	0	n.d.
IG	0	n.d.
ISTP	1	n.d.
LATSW	0	n.d.
LOD	1.497	n.d.
\dot{Q}_{C}	80.	Btu/ft $/$ /sec
R	21041776.	$f t$
RPT	182.4	n. mi.
PTD	57.29577951	rad/deg
SELECT	1	n.d.
VQ	6443.	rps
Vs	25766.1976	fps
VSW	25000.	fps
Vxx	6443.	fps
WE	. 72921149 E-4	rad/sec
WT	140000.	1 b
Y	20./RTD	rad
π	3.14159265	n.d. ${ }^{\text {a }}$
ρ 。	0.076474	lb/ft ${ }^{\text {c }}$
05GSW	0	n.d.

Flow chartD1.- Overall flow logic.

Flow ehert 72.- Targutine - Continued.

Flow char 12.-Tapoting - Concluded.

Flow chart D 3.- Selector.

Flow chart 4.- Constant heat rate.

Flow chart D5. - Equilibrium gilde ranging.

$$
\begin{aligned}
& T 1=\frac{L O D \operatorname{COS}(B A) V S 2}{g} \\
& D_{R E F 2}=\frac{\left.C_{F N M} V E V E-V Q V Q\right)}{2(R T-R P T)} \\
& A L F M=\frac{G 2 g}{A M X}
\end{aligned}
$$

Flow char OH. - Equillbrlum glide ranging - Continued. S59-40

Flow chart 85. Equllibriun plide rangliny - Continued.

Flow chart 05.-Equilibrlum glide ranging - Conciuded.

Flow chart D6 Constant 9 phase.

Flow chart D 7.- Controller.

Flow chart D8. - Lateral logic.

Flow chart DY.- Roll command.

Submittal 58 -Approach Guidance

1. INTRODUCTION

The Approach Guidance Routine presented here is designed to take the orbiter vehicle from the end of the entry phase (altitude $\approx 100,000 \mathrm{ft}$) down to the start of the terminal guidance phase $5.9 \mathrm{n} . \mathrm{mi}$. from the runway at an altitude of 6900 ft . and a velocity of $480 \mathrm{ft} / \mathrm{sec}$. It is based on the ideas of Refs. (1) and (2).

The guidance routine consists of six modes: Acquisition, Energy Dissipadion, Turn-in, Initial Approach, Heading Alignment, and Final Approach. The horizontal geometry is illustrated in Figure 1 in which the circled numbers refer to the various modes. The Acquisition Mode begins at $100,000 \mathrm{ft}$ altitude, contains an angle-of-attack transition maneuver, and ends when the vehicle is within about $15 \mathrm{n} . \mathrm{mi}$. of the runway. Energy dissipation involves flight in the vicinity of the runway around a cylinder of radius 13.5 n . mi. During this mode the vehicle descends from about $50,000 \mathrm{ft}$ altitude to $26,000 \mathrm{ft}$. This helical flight usually comprises less than one half of a revolution around the cylinder. The next three modes, i. e. Turn-in, Initial Approach, and Heading Alignment, constitute a two-turn maneuver to place the wehicle on the appropriate final approach path. The Final Approach Mode establishes the proper interfaces with the Terminal Guidance Routine for the final maneuvers required to land on the runway.

Figure 1. Horizontal Geometry, Approach Guidance

The basic flow of the Approach Guidance Routine is shown in Figure 2.
After the routine is entered and initialized, targeting computations are made to obtain the current values of position and velocity, and direction parameters of the vehicle relative to the desired touchdown point. Next, the mode is selected based on the current trajectory conditions, and quantities unique to the specific mode are computed.

The angle-of-attack command is used for vertical control and is computed during the first part of Mode 1 so as to accomplish a constant ($-0.3 \mathrm{deg} / \mathrm{sec}$) angle-of-attack transition maneuver. During the remainder of Mode 1 and for Modes 2 and 3, an angle-of-attack which will yield a constant ($210 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}$) dynamic pressure is commanded. Finally, during the last three modes, the angle-of-attack which will cause the vehicle to fly at a constant flight path angle (-11 deg) is commanded.

The roll-angle command is used for horizontal control and is computed for the various modes as shown in the following table.

Table 1
Geometric Criteria for Roll-Angle Command

Mode	Geometric Criterion
1	
2	Tangent to Energy Dissipation Cylinder (EDC)
3	Fly on EDC
4	Turn toward center of EDC
5	Tangent to Heading Alignment Cylinder (HAC)
6	Fly on HAC
	Align into vertical runway plane

Finally, the rudder flare or speed brake is deployed during the last three modes in order to achieve a speed of $480 \mathrm{f} / \mathrm{s}$ at the end of approach guidance.

Figure 2. Functional Flow Diagram, Approach Guidance

Notational Conventions

Upper-case letters represent matrices
Lower-case and Greek letters reserved for scalars and vectors
Vector quantities are underlined, e.g. \underline{x}
Vectors are assumed to be column vectors unless explicitly noted

Symbols
a Effective aerodynamic area of vehicle
a Acceleration (RW coordinate)
$c \boldsymbol{\ell} \quad$ Coefficient of lift
$c \ell \quad \partial(c \ell) / \partial(\alpha)$
$\mathrm{d}_{\mathrm{c}} \quad . \quad$ Rudder-flare command
$\mathrm{d}_{\mathrm{RT}} \quad$ Distance between touchdown point and ED center
$f_{\text {turn }} \quad$ Turning factor
g Gravity
h Altitude
$\dot{h} \quad d h / d t$
$\ddot{h} \quad d \dot{h} / d t$
$\mathrm{h}_{1} \quad$ Altitude at beginning of Initial Approach
$h_{R} \quad$ Reference altitude
$\dot{h}_{R} \quad d\left(h_{R}\right) / d t$

Δt	Time interval betweer guidance updates
$\underline{-1}_{1}$	Unit vector ($1,0,0)$
\underline{u}_{2}	Unit vector (0, 1, 0)
$\underline{\mathrm{u}}^{\mathbf{3}}$	Unit vector ($0,0,1$)
v	Vehicle velocity w.r.t. air mass
\underline{v} NED	Horizontal component of vehicle velocity (NED Coord.)
$\underline{V}_{\mathrm{R}}$	Vehicle velocity vector (R, W. Coord.)
$\underline{\text { V }}$ R	Horizontal component of vehicle velocity (R.W. - Tacan Coord.)
y	Cross range to runway
$\dot{\mathrm{y}}$	$\mathrm{dy} / \mathrm{dt}$
α	Current angle-of-attack
α_{c}	Angle-of-attack command
ϕ	Roll angle command magnitude
${ }^{\circ} \mathrm{c}$	Roll angle command
$\Delta \alpha_{\mathrm{D}}$	Desired angle-of-attack change
$\Delta \psi_{\mathrm{C}}$	Desired azimuth change
ψ	Azimuth ($0 \sim 360^{\circ}$)
ψ_{c}	Azimuth command ($0 \sim 360^{\circ}$)
$\psi_{\mathrm{R} W}$	Runway azimuth
$\theta_{\text {HA }}$	Azimuth of ($-\underline{p}_{H A R}$) vector

θ_{N}	Angle to Tacan w. r.t. north (from vehicle) $\left(0-360^{\circ}\right)$
θ_{T}	Angle to Tacan w. r.t. velocity (from vehicle) $\left(0-180^{\circ}\right)$
ρ_{P}	Air density
$\underline{\rho}_{\mathrm{HAN}}$	Vredicted range to go to key point
$\underline{\rho}_{\mathrm{HAR}}$	Vector from proper HA to vehicle (RW-Tacan Coord.)
$\underline{\rho}_{\mathrm{HAR}}^{\prime}$	Vector from other HA to vehicle (RW-Tacan Coord.)
$\underline{\rho}_{\mathrm{R}}$	Vehicle position vector in (RW Coord.)
$\rho_{R D}$	Distance to touchdown point
$\underline{\rho}_{\mathrm{HAT}}$	Vector from Tacan to proper HA center (RW-Tacan Coord.)

Coordinates:

(RW Coord.)
Runway coordinates, centered at touchdown point
$z \quad$ in runway landing direction, i. e. directed down-range and forward
$x \quad u p$
$y \quad x, y, z$ from right hand orthogonal coordinates
(RW - Tacan Coord.)
Runway coordinates, centered at Tacan or center of EDC (NED Coord.)

Local North, East, down coordinates at point of Tacan

Angle Measurements
$\left(0,360^{\circ}\right)$ or $\left(0 \leq \theta<360^{\circ}\right)$
θ between 0 and 360°, measured clockwise
$\left(0,180^{\circ}\right)$ or $\left(-180^{\circ}<\theta \leq 180^{\circ}\right)$
θ between $\left(0.180^{\circ}\right)$ if measured (clockwise)
($0-180^{\circ}$) if measured (counter clockwise)

5. DETAHED FIOW DMGRAMS.

This section contains detailed flow diagrams of the Approach Guidance Routine.

Figure 4a. Detailed Flow Diagram, Approach Guidance Routine

(Figure 4i)

Figure 4c. Detailed Flow Diagram, Approach Guidance Routine

(Figure 4i)

Figure 4d. Detailed Flow Diagram, Approach Guidance Routine
(Figure 4i)
(Figure 4c)

Figure 4e. Detailed Flow Diagram, Approach Guidance Routine

Figure 4f. Detailed Flow Diagram, Approach Guidance Routine

Figure 4g. Detailed Flow Diagram, Approach Guidance Routine

Figure 4h. Detailed Flow Diagram, Approach Guidance Routine

Figure 4i. Detailed Flow Diagram, Approach Guidance Routine

Figure 4j. Detailed Flow Diagram, Approach Guidance Routine

Figure 4k. Detailed Flow Diagram, Approach Guidance Routine

REFERENCES

1. Deyst, J., Tao, M., "Approach Phase Guidance System", MIT Draper Lab, 23A STS Memo No. 11-A, September 1972.
2. Eterno, J. , "Terminal Area Guidance for the Delta-Wing Orbiter", CG43-71M-89.

1. INTRODUCTION

The Approach-Guidance Routine presented here is designed to take the orbiter vehicle from the end of the Entry Phase (altitude $\approx 100,000 \mathrm{ft}$) to the start of the Final Landing maneuver (altitude $\approx 7000 \mathrm{ft}$). A detailed description of the guidance concept along with simulation results demonstrating its feasibility is given in Ref. (1).

The Approach-Guidance system is a closed-fcedback-loop scheme. The velicle energy is managed by controlling the rate at which energy is dissipated during a straight-in approach flight. Energy dissipation rate is controlled by flying at a constant value of dymamic pressure and varying the vehicle's lift to drag ratio with the Rudder Flare and or other available drag-increasing devices (e.g. body flap).

The complete approach flight consists of straight, fixed-length segments from the vehicle's initial position to the airport's main navigational facility (VOR, TACAN) or a suitable artificial checkpoint, then to a point in the final approach plane (intersection point) where the final flight path is intercepted, then straight towards the runway until the Final Landing Guidance System takes over (Outer Marker). Constant-bank turns link the straight flight segments.

The closed-loop energy management policy automatically compensates for any wind component that may affect the energy dissipation rate of the vehicle.

NOMENCLATURE

Notational Conventions

Lower-case and Greek letters reserved for scalars and vectors
Vector quantities are underlined, e.g. y
Components of a vector \underline{x} are denoted x_{1}, x_{2}, x_{3}
Symbols
${ }^{\mathrm{a}} \mathrm{TAC} \quad$ Azimuth of VORTAC
$\mathrm{d}_{\text {INT }} \quad$ Distance from touchdown point to final approach plane intersection point
d OM Distance from touchdown point to initiation of landing guidance system
${ }^{\mathrm{d}}$ TAC Distance from touchdown point to VORTAC
e Current vehicle energy
${ }^{e_{1}}, e_{2}, e_{3} \quad$ Desired vehicle energy at target points
${ }^{\mathrm{e}}$ OLD Value of vehicle energy at previous guidance pass
$\dot{\mathrm{e}} \quad$ Current vehicle energy dissipation rate
$\dot{e}_{D} \quad$ Desired value of vehicle energy dissipation rate
$\dot{e}_{I N} \quad$ Value of \dot{e}_{D} at which flyover mode is entered
$\dot{e}_{\text {OUT }} \quad$ Value of \dot{e}_{D} at which flyover mode is left

$s_{\text {FP }}$	Switch indicating this is the first pass
$\underline{V} \mathrm{R}$ T	Vehicle velocity w.r.t. the touchdown point
$\underline{V}_{\mathrm{H}}$	Horizontal projection of velocity vector
${ }^{\alpha} \mathrm{CMAX}$	Maximum permissible angle of attack
${ }^{\alpha}$ CMIN	Minimum permissible angle of attack
γ	Flight path angle
$\dot{\delta}_{\text {RC }}$	Command Rudder Flare deployment angle rate
$\dot{\delta}_{\mathrm{RCL}}$	Maximum Rudder Flare deployment angle rate
$\Delta \psi$	Heading error
${ }^{\theta} \mathrm{C}$	Command vehicle pitch angle
${ }^{\theta}$ CMINT	Minimum pitch angle during transition
${ }^{\theta} \mathrm{CMP}$	Current lower limit for command pitch angle
${ }^{\theta} \mathrm{CM}$	Corrected minimum limit for command pitch angle
${ }^{\theta}$ CMAX	Maximum command pitch angle
${ }^{9} \mathrm{C}$	Command roll angle
${ }^{\dagger}$ CMAX	Maximum command roll angle magnitude

Special Notation

Sign () Algebraic sign associated with (). Value is +1 or -1 , with $\operatorname{sign}(0)=+1$
$\max () \quad$ The maximum of all element enclosed in ()

```
min () The minimum of all elements enclosed in ()
|()| Magnitude of ( )
```

3. FUNCTIONAL FLOW DIAGRAM

The basic information flow for the Approach Guidance Routine is shown in
Figure 1. This is based on the guidance concept of Ref. (1).
The guidance task is made up of three independent channels:

1. The pitch angle command is proportional to the difference between the desired and measured dynamic pressure. This command is limited so as to limit the pitch-down during the transition maneuver and the maximum and minimum angles of attack.
2. The desired energy dissipation rate is computed as the ratio of energy-to-be-dissipated to the distance-to-go. The Rudder Flare deployment angle rate is proportional to the difference between the desired and the actual energy dissipation rates. A discrete rate controller is superposed in order to drive the desired dissipation rate to a "preferred" value range.
3. The roll angle command is proportional to the difference between the horizontal velocity direction and the horizontal direction from the vehicle position to the target point.

The three channels guide the vehicle sequentially to three target points. Switchover from one target to the next is made at a predetermined horizontal distance from the current target.

The longitudinal channel (No. 2) is inhibited when the vehicle is initially too close to the first target (desired energy dissipation rate exceeds the maximum available). The guidance is then in "flyover" mode. Target switching is also inhibited in this mode.

1. Elias, A., "New Approach Guidance Concept for Shuttle", 23A STS Memo No. 58-72, 4 December 1972, MIT/CSDL.

Figure 1. Functional Flow Diagram for Approach Guidance
3. INPUT AND OUTPUT VARIABLES

Input Variables
-RT Vehicle position w. r.t. touchdown point (touchdown point coordinates: x-up, z-dow, se, y-crosstrack)
$\underline{V}_{\text {RT }}$ Vehicle velocin.r.t. touchdown point (touchdown point coordinates)
q Measured value of Dynamic Pressure Output Variables
θ_{C} Pitch angle command
$\dot{\delta}_{\mathrm{C}} \quad$ Rudder Flare Mection angle rate command
${ }^{\varphi_{C}} \quad$ Roll angle command

4. DESCRIPTION OF EQUATIONS

4. 1 Initial Target Calculations

During the initial pass, the target point horizontal position vectors are constructed from their distances to the touchdown point and the VORTAC azimuth w.r.t. the localizer direction:

$$
\begin{array}{ll}
\text { VORTAC: } & \underline{r}_{1}=\left(0,-d_{\mathrm{TAC}} \sin \mathrm{a}_{\mathrm{TAC}},-\mathrm{d}_{\mathrm{TAC}} \cos \mathrm{a}_{\mathrm{TAC}}\right) \\
\text { Intersection: } & \underline{\mathrm{r}}_{2}=\left(0,0,-\mathrm{d}_{\mathrm{INT}}\right) \\
\text { Outer Marker: } & \underline{\mathrm{r}}_{3}=\left(0,0,-\mathrm{d}_{\mathrm{OM}}\right)
\end{array}
$$

Also, the following initialization tasks are performed:

1. Flyover mode switch off $-s_{\mathrm{FO}}=0$,
2. Initial pass switch on $-s_{F P}=1$,
3. Pitch limit = transition pitch limit (it is assumed that the guidance system is initiated with the vehicle flying on the back side of the L/D curve),
4. The target index i is set to 1 (VORTAC)
5. The "old" values of e and $\underline{r}_{R T}$ are set to zero. This makes the back-difference algorithm of section 4.4 invalid during the first pass, so commands are not issued until the second pass.

4.2 Preliminary Calculations

At the beginning of every guidance pass, the flight path angle and horizontal vector from vehicle to target are computed:

$$
\left.\left.\begin{array}{rl}
\gamma & =\tan ^{-1}\left(\mathrm{v}_{\mathrm{RT}_{1}} / \sqrt{\mathrm{v}_{\mathrm{RT}}^{2}}{ }^{2}-\mathrm{v}_{\mathrm{RT}}^{3}\right.
\end{array}\right)\right)
$$

4.3 Vertical Channel

The command pitch angle is:

$$
\theta_{C}=k_{P}\left(q_{D}-q\right)
$$

The lower limit for the command pitch angle is the largest of:

1. The α mrat absolute pitch mininum, ${ }^{\theta} \mathrm{CMC}$
2. The pitch angle corresponding to the minimum angle $r \quad \gamma+\alpha$ CMIN

The upper limit for the maximum angle of attack, $\gamma+\alpha$ CMAX .
The current absolute pitch minimum is set to ${ }^{\theta}$ CMIINT during the transition maneuver, and to an arbitrary low value (e.g. -1 rad.) after the dynamic pressure reaches the desisod ralue for the first time (i. e. at the end of the transition pitch-down).
4.4 Longitudinal C,

The current vehicle energy is computed from the position and velocity:

$$
e=r_{R T_{1}}-\left(\underline{v}_{R T} \cdot \underline{v}_{R T}\right) / 2 g
$$

The current energy dissipation rate is computed as the back-difference:

$$
\dot{\mathrm{e}}=\frac{e-\mathrm{e}_{\mathrm{OLD}}}{\sqrt{\left(\mathrm{r}_{\mathrm{RT}_{2}}-\mathrm{r}_{\mathrm{OLD}_{2}}\right)^{2}-\left(\mathrm{r}_{\mathrm{RT}_{3}}-\mathrm{r}_{\mathrm{OLD}_{3}}\right)^{2}}}
$$

then the values of e^{e} OLD and r OLD are updated.
The desired value of the energy dissipation rate is then calculated.

$$
\dot{e}_{D}=\left(e_{i}-e\right) /|\underline{r} D H|
$$

and a Rudder Flare rate is commanded proportional to the difference between desired and actual dissipation rates:

$$
\dot{\phi}_{R C}=k_{E}\left(\dot{e}_{D}-\dot{e}\right)
$$

this rate is then limited to the $-\dot{\delta}_{\mathrm{RCL}}, \dot{\delta}_{\mathrm{RCL}}$ range. This command is overriden if the value of e_{D} falls outside of a "preferred" range:

$$
\begin{aligned}
& \text { if } \dot{e}_{D}>\dot{e}_{\mathrm{MIN}}, \dot{\delta}_{R C}=-\dot{\delta}_{R C L} \\
& \text { if } \dot{e}_{D}<\dot{e}_{\mathrm{MAX}}, \dot{\delta}_{R C}=\dot{\delta}_{R C L}
\end{aligned}
$$

The "flyover" mode is enabled when \dot{e}_{D} is lower than \dot{e}_{IN}, and is disabled when $\dot{e}_{\text {D }}$ reaches $\dot{e}_{\text {OUT }}$. When the "flyover" mode is enabled, the command rudder flare rate is zero.

4.5 Lateral Channel

Two unit vectors are comprated:

$$
\begin{aligned}
& \underline{i}_{V H}=\frac{\underline{v}_{\mathrm{RT}}}{\left|\underline{v}_{\mathrm{RT}}\right|} \text { is in the current vehicle heading direction } \\
& \underline{i}_{\mathrm{DII}}=\frac{\underline{r}_{\mathrm{DH}}}{|\underline{r} \mathrm{DH}|} \text { is in the direction from the vehicle to the target }
\end{aligned}
$$

The dot product of these vectors is the cosine of the angle difference between the desired and the actual headings. In order to resolve the sign indetermination of the $\cos ^{-1}$ function, the single component of the cross product

$$
\stackrel{i}{-} \mathrm{DH} \times \underline{\underline{i}} \mathrm{VH}=\mathrm{i}_{\mathrm{DH}_{2}}{ }^{\mathrm{i}_{\mathrm{VH}_{3}}}{ }^{-\mathrm{i}_{\mathrm{DH}_{3}}{ }^{\mathbf{i}} \mathrm{VH}_{2}}
$$

is computed. This is the sine of the heading difference, and its sign is used to resolve the indetermination.

This command roll angle is then calculated:

$$
\phi_{\mathrm{C}}=\mathrm{k}_{\mathrm{L}} \Delta \psi
$$

This command is limited to the $-\phi_{\mathrm{CMAX}},{ }^{\phi_{\mathrm{CMAX}}}$ range.

4.6 Target Switching

The target index variable, is incremented when the horizontal distance to the current target reaches the target's switching value. When the last target's switching distance is reached, ($i=4$), the Approach Guidance is terminated. Target switching is inhibited during the "flyover" mode $\left(s_{\mathrm{FO}}=1\right)$.

Commands are not issued during the first pass.
5. DETAILED FLOW DIATEAMS

This section contains iled flow diagrams of the Approach Guidance Routinc.

Figure 2a. i/pproach Guidance Routine, Detailed Flow Diagram

Figure 2b. Approach Guidance Routine, Detailed Flow Diagram

Figure 2c. Approach Guidance Routine, Detailed Flow Diagram

Figure 2d. Approach Guidance Routine, Detailed Flow Diagram

Introducti
These equ ions are submitted as candidates to fulfill the unpowered Final Approach Guidar o whin onts for the space-shuttle Orbiter. They include Autoland lateral no lon \quad arinal guidance equations. The scheme is all inertial; navigations aids a, ly to update the navigated vehicle state. Pitch rate and speed-brake commands are computed and issued to control in-plane approach. Lateral position error and its integral plus heading-angle error are used to form the vehicle roll command. (There is no decrab or wings level mancuver; the assumption is mad: hat the gear is designed to accommodate the stress of crabbed landings in design winds).

Functional $D \because \because=1$

Figure 1 is Functional diagram. Figure 2 is a block diagram. (For general information, the autopilots being used in simulation runs are included in Figure 2.)

Inputs to the Guidance module are from the Final Approach and Guidance Navigation module; the inputs are the navigated state in the Earth-fixed landing coordinate system. From this are calculated the range to touchdown target, altitude, velocity magnitude, flight-path angle lateral position and heading angle. Outputs are pitch rate command, speed-brake position command and vehicle roll command to the ai; pilot. The guidance roll command drives a roll-rate aileronautopilot inner loop with-roll attitude outer loop. Roll rate command is interconnected to a rate command rudder autopilot with turn coordination and normal acceleration inputs. The acceleration and heading-angle signals are instrumental in holding the orbiter to the final approach plane in crosswinds.

Coordinate System

The autoland guidance uses vehicle position and velocity relative to a runway coordinate system, as shown in Figure 3. Figure 3 also indicates longitudinal sign convention for the equations. The "altitude of the IMU" at touchdown is represented in the equations as touchdown altitude.

Equations and Flow

Figure 4 presents the detailed guidance equations. Autoland guidance is initiated with the vehicle established on the final approach path near the plane of the runway at 3000 to 10000 feet altitude. It is currently entered 8 times per second although little performance degradation is evident at half that frequency.

On the first call, an initialjzation and targeting section is entered. Targeting variables are used to define the flare, shallow glide, pull up and steep sections of the reference trajectory. A steep reference flight path angle is calculated such that the trajectory passes through the initial vehicle position. If, during the steep phase, navigation updates cause large vehicle altitude errors, the steep portion of the reference trajectory is retargeted to pass through the new vehicle position. A linear desired velocity profile is also computed from the vehicle's current velocity to a target value at the beginning of pull up.

Reference and actual values of h and r are differenced and drive the guidance loops shown in Figure 2. Since altitude is approximately equal to the integral of V_{γ}, the velocity term in the denominator of the altitude error gain makes that loop insensitive to velocity variations. The inner loop controls γ which is proportional to h and provides damping for the outer loop. It is compensated with a second order digital filter which effectively cancels two undesirable pole-zero pairs arising from the autopilot-vehicle dynamics. This allows stable operation of the inner loop at a higher gain level and tighter closed loop control. The accuracy of the autoland mancuver is improved by injecting the open loop pitch rate commands \dot{r}_{r} and $q_{c o p}$. The $q_{c o p}$ signal is composed of three parts ($q_{c v}$, $q_{c m}, g_{c g e}$) all of which are tuned to the specific vehicle being flown. The $q_{c m}$ term is a sinusodial pitch rate term added during pull up and again, with a different amplitude and period, during flare to lead the vehicle through these maneuvers. The $q_{c v}$ term ramps up to a constant value after the pull up maneuver and provides the increasing angle-of-attack necessary to maintain lift as the vehicle decelerates along the shallow slope. The $q_{c g e}$ term ramps down to a constant value during the flare maneuver which helps the vehicle drive through the ground effects and minimizes runway float. Typical plots of these terms are sketched in Figure 2,

Lateral Guidance
The lateral guidance is all-inertial. A decrab maneuver was not studied; the assumption being that the gear is stressed for crabbed landings in design winds. The roll gain is halved during flare which levels the wings somewhat in steady-state crosswinds.

The lateral guidance equations are presented in Figure 4. On the initial pass, the roll gain, crossrange integral gain, and the heading gain are stored. On a normal pass the crossrange gain, K_{y}, is calculated as a function of velocity. When altitude becomes less than 50 ft , the roll command gain is decreased from 6 to 3 over a 2 -second period. The roll command is the sum of a crossrange,
integral of crossrange, and velocity heading angle term. It is limited and issued to the autopilot.

Velocity Control

The speed brake is commanded to a position proportional to the sine of the velocity error. Zer. error is at 30 degrees brake for bi-directional control. At the beginning of pull $\%$ the brake is completely retracted to eliminate pitch rates from transients near touchdown.

Constants/Variables Summary
Figure 6 summarizes variables and constants.

Figure 3. Runway Coordinate System

FIGURE 4-2
AUTOLAND EQUATIONS

S29-11

FIGURE 4-5
AUTOLAND EQUATIONS

$K_{\gamma}\left\{F_{e}-\left(z N+Z N_{2}\right) \%_{2,}+Z N \mid Z H_{2} \%_{2}\right.$
$r=R^{\prime}+2 . n+4$

0
FIGURE 4-7
AUTOLAND EQUATIONS

士100.
1000.
1.000
1.00000
1.00000
5.00000
10004.
${ }^{*} 2 \cdot 00000$
1.50000
1000.
10000.
1000.
± 1.00000
1.00u0u
3
3
3
\vdots
-
1.00000
0
0
0
-
$\begin{array}{ll}\dot{3} & 3 \\ 3 & 3 \\ 0 & 3\end{array}$ FIGURE $6-3$
VARIABLE SUMMARY MNEMUIN UNITS UEFLNITIUN KEFEب̧LHCE ALTLTUUE RATE KEt ALTITUDE LIMITEU FOR PLUIS
$\begin{array}{ll}-041 & \cdot n \\ \cdot \cdot n ¢-\end{array}$

$\begin{array}{rr}4 . & 140 . \\ 4 . & 140 . \\ .17453 . & .52364 \\ .17453 . & .54360\end{array}$
 .17591
.45236
4600 5OUO.
345 。
 .45236 \qquad
CLINR

> FIGURE 6-5 VARIABLE SUMMARY UEFINITION
> $\begin{aligned} & \text { KUUDER FLARE COMMANO OIASED OY BUU } \\ & \text { MAXIMUM RUODER FLARE KATE } \\ & \text { KANGE COVEKEED OURINU MANUVER } \\ & \text { MINIMUM OF RPLT } \\ & \text { MAXIMUM OF RPLT }\end{aligned}$ NMOOHJNO! $1 \forall$ ZgNV OJNIS=n APPROX. RANGE AT START OF MANUVER RANGE LIMITEO FOR PLOTS RANGE BIAS FOK RUUOER FLARE CUMMAND TIME $\begin{aligned} & \text { TIME OF THE LAST PHASE CHANGE } \\ & \text { VEHICLE VELOCITY MAGNITUDE }\end{aligned}$ VESIRE VELOCIIY VLLOCITY GIAS FDK RUDUER FLARE COMMAINU DLSIRED TUUCHUONH VELOCITY VEHICLE VELUCITY JOUN RUNWAY VEHICLE VELLOCITY CRJSSRANGE $\begin{aligned} & \text { X VEH. POS. ROSITTVE DOWN RUIVAY } \\ & \text { CROSS HANGE }\end{aligned}$ C1IMn

$$
\begin{aligned}
& \text { コ1Nロッマニい } \\
& 174074
\end{aligned}
$$

$$
\begin{aligned}
& \text { NOMIAAL VALUE UH } \\
& \text { EXPELIEU KAVGE }
\end{aligned}
$$

$$
\begin{aligned}
& 1.9 \\
& .08300 \\
& .74500 \\
& .73500 \\
& .84600
\end{aligned}
$$

$$
\frac{\pi}{7}
$$

HNE:HUNIC

1. INTROILCTION

The Conic State Extrapolation Routine provides the capabil ity to conically extrapolate any spacecraft inertial state vector either backwards or forwards as a function of time or as a function of transfer angle. It is merely the coded form of two versions of the analytic solution of the two-body differential equations of motion of the spacecralt center ol mass. Because of its relatively fast computation speed and moderate accuracy, it serves as a preliminary navigation tool and as a method of obtaining quick solutions for targeting and guidance functions. More accurate (but slower) results are provided by the Precision State Extrapolation Routine.

a	Semi, ir axis of conic
c_{1}	First :on: rarameter $\left(\left(\underline{r}_{0} \cdot \underline{v}_{0}\right) / \sqrt{\mu}\right)$
c_{2}	$\text { Seco: parameter }\left(r_{0} \mathrm{v}_{0}^{2} / \mu-1\right)$
c_{3}	Third conic parameter ($\left.\mathrm{r}_{0} \mathrm{v}_{0}{ }^{2} / \mu\right)$
$C(\xi)$	Power series in ξ defined in text
E	Eccentrii : omaly
f	True anomaly
H	Hyperbr it nalog of eccentric anomaly
i	Counter
${ }^{i}$ max	Maximum permissible number of iterations
${ }^{\underline{i}} \mathrm{r}_{0}$	Unit vector in direction of r_{0}
$\stackrel{i}{i}_{v_{0}}$	Unit vecter in direction of \underline{v}_{0} $\because \because$
p	Semilatu, ectum of conic
p_{N}	Normalized semilatus rectum ($\mathrm{p} / \mathrm{r}_{0}$)
P	Period of conic orbit
${ }^{0} 0$	Magnitude of r_{0}
r_{-0}	Inertial position vector corresponding to initial time
	t_{0}
\mathbf{r}	Magniture of $\underline{r}(t)$
$\underline{r}(t)$	Inertial fosition vector corresponding to time t
S	Switch used in Secant Iterator to determine whether secant method or offsetting will be performed

$S(\xi)$	Power series in ξ defined in text
t	Final time (end of time interval through which an extrapolation is made)
${ }^{t} 0$	Initial time (beginning of time interval through which an extrapolation is to be made)
terr	Difference between specified time interval and that calculated by Universal Kepler Equation
${ }^{*} 0$	Magnitude of \underline{v}_{0}
v_{0}	Infrtial velocity vector corresponding to initial time ${ }^{t} 0$
$\underline{v}(t)$	Inertial velocity vector corresponding to time t
x	Universal eccentric anomaly difference (independent variable in Kepier iteration scheme)
x^{\prime}	Previous value of x
${ }^{\text {c }}$	Value of x to which the Kepler iteration scheme converged
x_{c}	Previous value of x_{c}
$\mathrm{x}_{\mathbf{i}}$	The "i-th" value of x
$x_{\text {min }}$	Lower bound on x
$\mathrm{x}_{\text {max }}$	Upper bound on x
${ }_{0}$	Reciprocal of semi-major axis at initial point \underline{r}_{-0}
$\alpha_{\mathbf{N}}$	Normalized semi-major axis reciprocal ($\alpha \mathrm{r}_{0}$)
7_{0}	Angle from $\underline{-r-0}^{\text {to }} \underline{v}_{0}$

Δt	Specified transfer time interval ($\mathrm{t}-\mathrm{t}_{0}$)
Δt_{c}	Value of the transfer time interval calculated in the Iniversal Keples Equation as a function of x and the - aic parsmeters
$\Delta t_{c}{ }^{\prime}$	Provious value of Δt_{c}
$\Delta t_{c}^{(i)}$.Te "i-th" value of the transfer time interval calcula\therefore ted in the Universal Kepler Equation as a function of the " i-th" value x_{i} of x ard the conic parameters
$\Delta t_{\text {max }}$	Maximum time interval which can be used in computer due to scaling limitations
Δx	Increment in x
ϵ_{t}	Primary convergence criterion: relative error in transfer time interval
$\epsilon_{t}{ }^{\prime}$	Secondary convergence criterion: minimum permissible difference of two successive calculated transfer time intervals
ϵ_{x}	Tertiary convergence criterion: minimum permissible size of increment Δx of the independent variable
θ	Transfer angle (true anomaly increment)
μ	Gravitational parameter of the earth
5	Product of α_{0} and square of x
x_{0}, x_{1}	Coefficients of power series inversion of Universal Kepler Equation

2. FUNCTIONAL FLOW DIAGRAM

The Conic State Extrapolation Routine basically consists of two parts - one for extrapolating in time and one for extrapolating in transfer angle. Several portions of the formulation are, however, common to the two paits, and may be arranged as subroutines on a computer.

2.1 Conic State Extrapolation as a Function of Time (Kepler Routine)

This routine involves a single loop iterative procedure, and hence is organized in three sections: initialization, iteration, and final computations, as shown in Fig. 1. The variable " x " is the independent variable in the iteration procedure. For a given initial state, the variable " x " measures the amount of transfer along the extrapolated trajectory. The transfer time interval and the extrapolated state vector are very conveniently expressed in terms of " x ". In the iteration procedure, " x " is adjusted until the transfer time interval calculated from it agrees with the specified transfer time interval (to within a certain tolerance). Then the extrapolated state vector is calculated from this particular value of " x ".

2.2 Conic State Extrapolation as a Function of Transfer Angle (Theta Routine)

This routine makes a direct calculation (i.e. does not have an iteration scheme), as shown in Fig. 2. Again, the extrapolated state vector is calculated from the parameter " x ". The value of " x " however, is obtained from a direct computation in terms of the conic parameters and the transfer angle θ. It is not necessary to iterate to determine "x", as was the case in the Kepler Routine.

Figure 1. Kepler Routine, Functional Flow Diagram

3. INPIT AND OUTPUT VARIABIES

The Conic State lextrapotation Routine has only one universal constant: the kravitational parameter of the earth. Its principal input variables are the. . incrial state vector which is to be extrapolated and the transfer time interval or Hansfer angle through which the extrapolation is to be made. Several optional input variables may be supplied in the transfer time case in order to speed the computation. The principial output variable of both casces is the extrapolated inortial stato voctor.

3. 1 Conic State Extrajolation as a Function of Transfer Time Interval (Kepler Routine)

Input Variables
$\left(\underline{r}_{0}, \underline{v}_{0}\right) \quad$ Inertial state vector which is to be extrapolated (corresponds to time t_{0}).
$\Delta \cdot t \quad$ Transfer time interval through which the extrapolation is to be made.
x
Δt_{c}^{\prime}
x_{c}^{\prime}
Guess of independent variable corresponding to solution in Kepler iteration scheme. (Used to speed convergence). [If no guess is available, set $x=0$, and the routine will generate its own guess].

Value of dependent variable (the transfer time interval) in the Kepler iteration scheme, which was calculated in the last iteration of the previous call to Kepler.

Value of the independent variable in the Kepler iteration scheme, to which the last iteration of the previous call to Kepler had converged.

Output Variables

($\underline{r}, \underline{v}$) Extrapolated inertial state vector (corresponds to time t).

$\Delta \mathrm{t}_{\mathrm{c}}$	Value of the dependent variable (the transfer time interval) in the Kepler iteration scherne, which was calculated in the last iteration (should agree closely with Δt.
${ }^{c}$	Value of the independent variable in the Kepler iteration scheme to which the last iteration converged.
3.2	Conic State Extrapolation as a Function of Transfer Angle (Theta Routine)
	Input Variables
$\left(\underline{r}_{0}, \underline{v}_{0}\right)$	Inertial state vector which is to be extrapolated.
θ	Transfer angle through which the extrapolation is to be made.
	Output Parameters
($\underline{\mathbf{r}}, \underline{\mathrm{v}}$)	Extrapolated inertial state vector.
Δt_{c}	Transfer Time Interval corresponding to the conic extrapolation through the transfer angle θ.

4. DESCRIPTIONO. QUATIONS
4.1 Conic State Extr: \quad Routine)

The universal fo terms of the universal eccentric anomaly difference is used. This variable, usually denoted by x, is defined by the relations:

$$
x=\left\{\begin{array}{c}
\vdots \\
\sqrt{a}\left(E-E_{0}\right) \text { for ellipse } \\
\sqrt{\bar{p}\left(\operatorname{tar} f / n-\tan f_{0} / 2\right) \text { for parabola }} \\
\sqrt{-a}\left(H \sum_{0},\right. \text { for hyperbola }
\end{array}\right.
$$

where a is the semi-major axis, E and H are the eccentric anomaly and its hyperbolic analog, p is the semi-latus rectum and f the true anomaly. The expressions for the transfer time interval $\left(t-t_{0}\right)=\Delta t$, and the extrapolated position and velocity vectors ($\underline{r}, \underline{v}$) in terms of the initial position and velocity vectors ($\underline{r}_{0}, \underline{v}_{0}$) as functions of x are:

$$
\begin{aligned}
& \Delta t=\frac{1}{\sqrt{\mu_{E}}}\left[\frac{r_{0} \cdot \underline{v}_{0}}{\sqrt{\mu_{E}}} x^{2} v\left(\alpha_{0} x^{2}\right)+\left(1-r_{0} \alpha_{0}\right) x^{3} S\left(\alpha_{0} x^{2}\right)+r_{0} x\right] \\
& \underline{r}(t)=\left[1-\frac{x^{2}}{r_{0}} C\left(\alpha_{0} x^{2}\right)\right] \underline{r}_{0}+\left[\left(t-t_{0}\right)-\frac{x^{3}}{\sqrt{\mu_{E}}} S\left(\alpha_{0} x^{2}\right)\right] \underline{v}_{0} \\
& \left.\underline{v}(t)=\frac{\sqrt{\mu_{E}}}{r r_{0}}\left[\alpha_{0} x^{3} v^{2}\right)-x\right] \underline{r}_{0}+\left[1-\frac{x^{2}}{r} C\left(\alpha_{0} x^{2}\right)\right] \underline{v}_{0}
\end{aligned}
$$

where

$$
\alpha_{0}=\frac{1}{a_{0}}=\frac{2}{r_{0}}-\frac{v_{0}^{2}}{\mu}
$$

and

$$
\begin{aligned}
& S(\xi)=\frac{1}{3!}-\frac{\xi}{5!}+\frac{\xi^{2}}{7!}-\cdots \\
& C(\xi)=\frac{1}{2!}-\frac{\xi}{4!}+\frac{\xi^{2}}{6!}-\cdots
\end{aligned}
$$

Since the transfer time interval Δt is given, it is desired to find the x corresponding to it in the Universal Kepler Equation, and then to evaluate the extrapolated state vector ($\underline{r}, \underline{v}$) expression using that value of x. Unfortunately, the Universal Kepler Equation expresses Δt as a transcendental function of x rather than conversely, and no power series inversion of the equation is known which has good convergence properties for all orbits, so it is necessary to solve the equation iteratively for the variable x .

For this purpose, the secant method (linear inverse interpolation / extrapolation) is used. It merely finds the increment in the independent variable x which is required in order to adjust the dependent variable Δt_{c} to the desired value Δt based on a linear interpolation/ extrapolation of the last two points calculated on the Δt_{c} vs x curve. The method uses the formula

$$
\left(x_{n+1}-x_{n}\right)=-\frac{\Delta t_{c}^{(n)}-\Delta t}{\Delta t_{c}^{(n)}-\Delta t_{c}^{(n-1)}}\left(x_{n}-x_{n-1}\right)
$$

where $\Delta t_{c}{ }^{(i)}$ denotes the evaluation of the Universal Kepler Equation using the value x_{i}. In order to prevent the scheme from taking an increment back into regions in which it is known from past iterations that the solution does not lie, it has been found convenient to establish upper and lower bounds on the independent variable x which are continually reset during the course of the iteration as more and more values of x are found to be too large or too small. In addition, it has also been found expedient to damp by 10% any increment in the independent variable which would (if applied) take the value of the independent variable past a bound.

To start the iteration scheme, some initial guess x_{0} of the independent variable is required as well as a previous point (x_{-1}, $\Delta t_{c}{ }^{(-1)}$) on the Δt_{c} vs x curve. If no previous point is available the point (0,0) may be used as it lies on all Δt_{c} vs x curves. The closer the initial guess x_{0} is to the value of x corresponding to the solution, the faster the convergence will be. One method of obtaining such a guess x_{0} is to use a truncation of the infinite series obtained by direct inversion of the Kepler Equation (expressing x as a power series in Δt). It must be pointed out that this series diverges even for "moderate" transfer time intervals Δt; hence an iterative solution must be used to solve the Kepler equation for x in the general case. A third order truncation of the inversion of the Universal Kepler Equation is:

$$
x=\sum_{n=0}^{3} x_{n} \Delta t^{n}
$$

where

$$
\begin{aligned}
x_{0} & =0, \quad x_{1}=\sqrt{\mu} / r_{0} \\
x_{2} & =-\frac{1}{2} \frac{\mu}{r_{0}^{3}}\left(\frac{r_{0} \cdot v_{0}}{\sqrt{\mu}}\right), \\
x_{3} & =\frac{1}{6 r_{0}}\left\{_{\frac{r_{0}}{r_{0}}}^{3}\left[\frac{3}{r_{0}}\left(\frac{r_{0} \cdot v_{0}}{\sqrt{\mu}}\right)^{2}-\left(1-r_{0} \alpha_{0}\right)\right] .\right. \\
\text { with } \quad \alpha_{0} & =2 / r_{0}-v_{0}^{2} / \mu .
\end{aligned}
$$

(Theta Routine)

As with the Kepler Routine, the universal formulation of Stumpff-Herrick-Battin in terms of the universal eccentric anomaly difference x is used in the Theta Routine. A completely analogous iteration scheme could have been formulated with x again as the independent variable and the transfer angle θ as the dependent variable using Marscher's universally valid equation:

$$
\cot \frac{\theta}{2}=\frac{r_{0}\left[1-\alpha_{0} x^{2} S\left(\alpha_{0} x^{2}\right)\right]}{\sqrt{\rho} x C\left(\alpha_{0} x^{2}\right)}+\cot \gamma_{0}
$$

where

$$
p=\left(\frac{r_{0} v_{0}}{\sqrt{\mu}}\right)^{2} \sin ^{2} \gamma_{0}
$$

and

$$
\gamma_{0}=\text { angle from } \underline{r}_{-0} \text { to } \underline{v}_{0}
$$

However, in contrast to the Kepler equation, it is possible to invert the Marscher equation into a power series which can be made to converge as rapidly as desired, by means of which x may be calculated as a universal function of the transfer angle θ. Knowing x, we can directly calculate the transfer time interval Δt_{c} and subsequently the extrapolated state vectors using the standard formulae.

The sequence of computations in the inversion of the Marscher Equation is asfollows:

Let

$$
p_{N}=p / r_{0}, \alpha{ }_{N}=\alpha r_{0}
$$

and

$$
W_{1}=\sqrt{\rho_{N}}\left(\frac{\sin \theta}{1-\cos \theta}-\cot \gamma_{0}\right)
$$

If

$$
\left|W_{1}\right|>1, \text { let } V_{1}=1
$$

Let

$$
w_{n+1}=+\sqrt{w_{n}^{2}+\alpha_{N}}+\left|w_{n}\right| \quad\left(\left|w_{1}\right| \leq 1\right)
$$

or

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{n}+1}=+\sqrt{\mathrm{V}_{\mathrm{n}}^{2}+\alpha_{\mathrm{N}}\left(1 / \mathrm{w}_{1}\right)^{2}}+\mathrm{V}_{\mathrm{n}} \quad\left(\left|\mathrm{w}_{1}\right|>1\right) . \\
& \text { Let } \quad \omega_{n}=w_{n} \quad\left(\left|w_{1}\right| \leq 1\right)
\end{aligned}
$$

or

$$
1 / \omega_{n}=\left(\left|1 / W_{1}\right| p / V_{n} \quad\left(\left|w_{1}\right|>1\right)\right.
$$

Let

$$
\Sigma=\frac{2^{n}}{\omega_{n}} \sum_{j=0}^{\infty} \frac{(-1)^{j}}{2 j+1}\left(\frac{\alpha_{N}}{\omega_{n}^{2}}\right)^{j}
$$

where n is an integer ≥ 4. Then

$$
x / \sqrt{r_{0}}=\left\{\begin{array}{cc}
\boldsymbol{\Sigma} & \left(w_{1}>0\right) \\
2 \pi / \sqrt{\alpha^{\alpha}}-\Sigma & \left(W_{1}<0\right)
\end{array}\right.
$$

The above equations have been specifically formulated to avoid certain numerical difficulties.

5. DETAILED FLOW DIAGRAMS

This section contains detailed flow diagrams of two Conic State Extrapolation Routines (Kepler and Theta) and the subroutines used by them.

Each input and output variable in the routine and subroutine call statements can be followed by a symbol in brackets. This symbol identifies the notation for the corresponding variable in the detailed description and flow diagrams of the called routine. When identical notation is used, the bracket symbol is omitted.
5.1 Conic State Extrapolation as a Function
of Time (Kepler Routine)

Figure 3a, Kepler Routine, Detailed Flow Diagram
NOTE:

$$
\operatorname{sgn}(\Delta t)=\left\{\begin{array}{rc}
+1 & \Delta t>0 \\
0 & \Delta t=0 \\
-1 & \Delta t<0
\end{array}\right.
$$

Figure 3b. Kepler Routine, Detailed Flow Diagram

Figure 3c. Kepler Routine, Detailed Flow Diagram

Figure 3d. Kepler Routine, Detailed Flow Diagram

Figure 4a. Theta Routine, Detailed Flow Diagram

Figure 4b. Theta Routine, Detailed Flow Diagram

Figure Ac. Theta Routine, Detailed Flow Diagram
5.3 Sutroutines Used By The Transfer Time or Transfer Angle

- Conic Extrapolation Routines
5.3.1 Universal Kepler Equation Subroutine

UNIVF \because SAl $\because \quad$, INPUT VARIABLES
CONS':

Figure 5. Universal Kepler Equation, Detailed Flow Diagram

Figure 6. Extrapolated State Vector Equation, Detailed Flow Diagram

Figure 7. Secant Iterator, Detailed Flow Diagram
5.3.4 Marscher Fquation Inversion Subroutine

Figure 8a, Marscher Equation Inversion, Detailed Flow Diagram

Figure 8b. Marscher Equation Inversion, Detailed Flow Diagram

6. SUPPIEMENTARY INEORMATION

The analytic expressions for the Universal Kepler Equation and the extrapolated position and velocity vectors are well known and are given by Battin (1964). Battin also outlines a Newton iteration technique for the solution of the Universal Kepler Equation; this technique converges somewhat faster than the secant technique but requires the evaluation of the derivative. It may be shown that if the derivative evaluation by jtself takes more than 44% of the computation time used by the other calculations in one pass through the loop, then it is more efficient timewise to use the secant method.

Marscher's universal equation for $\cot \theta / 2$ was derived by him in his report (Marscher, 1965), and is the generalization of his "Three-Cotangent" equation:

$$
\cot \frac{\theta}{2}=\frac{\mathrm{r}_{0}}{\sqrt{\mathrm{pa}}} \cot \frac{\left(\mathrm{E}-\mathrm{E}_{0}\right)}{2}+\cot \gamma_{0}
$$

Marscher has also outlined in the report an iterative method of extrapolating the state based on his universal equation. The inversion of Marscher's universai equation was derived by Robertson (1967a).

Krause organized the details of the computation in both routines.

A derivation of the coefficients in the inversion of the Universal Kepler Equation is given in Robertson (1967 b) and Newman (1967).

1. A. . 4. , 1964, Astronautical Guidance, McGraw-Hill.

2 . 4 W., 1968, A Unified Method of Solving Initial Vaiue and Boundary Value Conic Trajectory Problems, TRW Interoffice Correspondence \#3424.9-15 (January 1968).
3. Wercorr. W., 1965, A Unified Method of Generating Conic Sections, MIT/IL Report R-479, February 1965.
4. C. M., 1967, The Inversion of Kepler's Equation,
5. Robertson, W. M., 1967a, Explicit Universal Series Solutions for the Universal Variable x, MIT/IL Space Guidance Analysis Memo \#8-67.
6. Robertson, W. M. , 1967b, Time-Series Expansions of the Universal Variable x, MIT/IL Space Guidance Analysis 56m. \#13-67.

S6-29

1. INTRODUCTIGN

The Conic R : Velocity Determination Routine provides the capability to solve the following two astrodynamic problems:
"The Multiplu; 13 obtinn, Lambert Required Velocity Determination Problem": zypte the velocity vector required at an initial position to transfer through an inverse square central force field from the initial position to a specified target position in a specified transfer time interval by making a specified number of complete revolutions ($\because \because$ Gine fraction of another one). Also optionally compute the velocity vector at the target position and various parameters of to renic transfer orbit. t $\because \because$
"The De-orbit itcuired Velocity Determination Problem": compute the velocity vector required at an initial position to transfer through an inverse square central force field from the initial position to a specified target radius (which is less than the initial radius) with a specified flight-path angle at that radius in a specified transfer time interval. Also optionally compute the velocity vector at the target position and various parameters of the conic transfer orbit.

The Conic $R=$ Velocity Determination Routine basically consists of two major parts-one $i \therefore: s$ iling the multi-revolution Lambert's problem and one for solving the De-orbit pioblem-which are quite similar. In fact, certain subsections of the parts are identical as well as being identical to certain subsections of the Conic State Extrapolation Routine (Ref. 7) and these may of course be arranged as subroutines on a computer.

The Conic Lambert and De-orbit Required Velocity Determination Routines each involve a single loop iterative procedure, and hence are organized in three sections: initialization, iteration, and final computations, as shown in Figure 1. The independent variable in the iteration in both routines is the cotangent of the flight-path angle a initial position measured from local vertical, or equivalently the cotangen he angle between the initial position vector (extended) and the as yet unknown required velocity vector. The dependent variable is the transfer time interval; it is a function solely of the independent variable and certain other quantities which depend explicitly on the input and which are thus constant in any one problem. In the iter ative procedure, the independent variable (denoted by Γ_{0}) is adjusted betw: upper and lower bounds by a secant technique until the
transfer time interval computed from it agrees with the specified transfer tirnc interval (to within a certain tolerance). Then the velocity vector at the initial posifion (i.e., the required velocity), as well as the velocity vector at the terminal position, is calculated from the last adjusted value of the independent variable.

In the less-than-one-complete revolution case in both routines, the upper and lower bounds on the independent variable are explicitly computed since the dependent and independent variables are monotonically related. However, in the multirevolution case in the Lambert routine, there are two distinct physically-meaningful transfers which solve the problem, and an iterative procedure (cntirely separate from, and not containing nor contained in the previously described iteration scheme) must be used to solve for the value of the independent variable which separates the two regions in each of which exactly one solution lies so that upper and lower bounds may be established corresponding to the unique solution desired. The multi-revolution case for the de-orbit problem is not considered in this document.

Figure 1. Conic Lambert and De-orbit Required Velocity Determination Routines Functional Flow Diagram

NOMENCLATURE

a
c_{1}
c_{2}
C or $C(\xi) \quad$ Power series in ξ defined in the text

E Eccentric anomaly
f

H
i
ic-
${ }^{i} \max$
in Unit vector in direction of angular momentum vector of the transfer and normal to the transfer plane. In the Lambert Foutine the vector \underline{i}_{N} always determines the direction of the transfer, and will also determine the plane of the transfer when either the switch $s_{p r o j}=1$, or the switch $s_{\text {proj }}=0$ but the initial position vector r_{0} is inside one of the cones. In the De-orbit Routine, the vector \underline{i}_{N} always determines the plane and direction of the transfer.
$\underline{i}_{r_{0}} \quad$ Unit vector in direction of \underline{r}_{0}
$\stackrel{i}{r}_{1} \quad$ Unit vector in direction of \mathbf{r}_{1}

Intermediate variable equal to either $k_{b g}$ or $k_{s m}$
k_{bg}
$k_{\mathrm{s} \text { m }}$
m
$m^{\prime} \quad$ Previous value of m
n
$n_{r e v}$

N
p
\mathbf{p}_{1}. Intermediate variable in the Lambert problem equal to $1-\cos \theta$

Intermediate variable in the Lambert problem equal to $\cos \theta-\left(r_{0} / r_{1}\right)$
$\mathrm{p}_{\mathrm{N}} \quad$ Normalized semi-latus rectum of conic transfer orbit $\left(\mathrm{p}_{\mathrm{N}}=\mathrm{p} / \mathrm{r}_{0}\right)$.

Intermediate variable equal to $\lambda / \sin ^{2} \gamma_{1}$

Initial or current inertial position vector (corresponds to time t_{0}).

Terminal or target inertial position vector (corresponds to time t_{1}.

Radius at terminal or target position (corresponds to time t_{1}).

Switch used in Secant Iterator to determine whether secant method or offsetting (biasing) will be performed.

Switch indicating whether the outcome of the cone test involving the tolerance criterion $\epsilon_{\text {cone }}$ was that initial position ${\underset{r}{r}}_{0}$ lies outside both of the cones around the positive and negative target position vector \underline{r}_{1} ($s_{\text {cone }}=$ 0), or inside one of these cones ($s_{\text {cone }}=1$). [See Section 4.7.]

Switch.indicating whether the routine is to compute its own. guess of the independent variable Γ_{0} to start the iterative procedure ($s_{\text {guess }}=0$), or is to use a guess $\Gamma_{\text {guess }}$ supplied by the user (s guess $=1$)

Switch indicating whether the initial and target position vectors, \underline{r}_{0} and \underline{r}_{1}, are to be projected into the plane defined by the unit normal \underline{i}_{N} before the main Lambert computations are performed. If $s_{\text {proj }}=0$, no projection will be made unless the initial position \underline{r}_{0} is found to lie within one of the cones defined by $\epsilon_{\text {cone }}$, in which case $s_{\text {cone }}$ will be set equal to 1 . If $s_{\text {proj }}=1$, the projections will be carried out immediately, and no cone test will be made.

θ	${ }^{\text {s soln }}$	Switch indicating which of the two physically possible solutions is desired in the multi-revolution case. [Not used in the less-than- 360° transfer case]. In particular, $s_{s o l n}=-1$ indicates the solution with the smaller initial fight path angle γ_{0} measured from local vertical, and $s_{s o l n}=+1$ indicates the one with the larger γ_{0}.
-	s_{180}	Switch indicating whether the central transfer angle is between 0° and 180° (s ${ }_{180}=+1$), or between 180° and 360° (s ${ }_{180}=-1$). The determination of which one of the above two possibilities is desired is made automatically by the routine on the basis of the direction of the unit normal vector \mathbb{i}_{N}. In the multiple-revolution case, the number of complete 360° revolutions is neglected; i.e., s_{180} is the sign of the sine of the transfer angle. J
	$\begin{aligned} & \text { Sor } S(\xi) \\ & \text { t err }^{\text {er }} \end{aligned}$	Power series in ξ defined in the text, Difference between specified time interval and that calculated by Universal Kepler Equation [$\mathrm{t}_{\text {err }}=$ $\Delta t-\Delta t_{c}$].
-	\underline{V}_{0}	Inertial velocity required at the initial position \mathbf{r}_{0} to transfer to the terminal point in exactly the specified time interval Δt.
4	$\begin{aligned} & \underline{v}_{I} \\ & V_{n} . \\ & (n=1,2, .) \end{aligned}$	Inertial velocity at the terminal position \underline{r}_{1}. Intermediate scalar variables used in Marscher Equation Inversion
	$\begin{aligned} & W_{n} \\ & (n=1,2 . .) \end{aligned}$	Intermediate scalar variables used in Marscher Equation Inversion

$x_{N} \quad$ Normalized universal eccentric anomaly difference $\left(x_{N}=x / \sqrt{r_{0}}\right)$
$\alpha_{N} \quad$ Reciprocal of normalized semi-major axis of conic transfer orbit ($\alpha_{N}=r_{0} / a$).
$\gamma_{0} \quad$ Flight path angle at initial position \underline{r}_{0} measured from local vertical, i.e., angle from \underline{r}_{0} to \underline{v}_{0}.
$\gamma_{1} \quad$ Flight-path angle at terminal or target position measured from local vertical (corresponds to time t_{1}).
$\Gamma_{0} \quad$ Cotangent of flight-path angle γ_{0} at the initial position \underline{r}_{0} measured from local vertical; i.e., cotangent of the angle between \underline{r}_{0} and \underline{v}_{0}. [Independent variable in iterative scheme].
$I_{0}^{\prime} \quad$ Previous value of Γ_{0}
$\Gamma_{0}^{(i)} \quad$ The "i-th" value of Γ_{0}
$\Gamma_{1} \quad$ Cotangent of flight path angle γ_{1} at the terminal or target position \underline{r}_{1} measured from local vertical
$\Gamma_{\text {guess }} \quad$ Guess of independent variable Γ_{0} corresponding to solution (disregarded when $s_{\text {guess }}=0$).
$\Gamma_{\text {parab }} \quad$ Value of Γ_{0} corresponding to the physically realizable parabolic transfer
$\Gamma_{\max } \quad$ Upper bound on Γ_{0}
$\Gamma_{\mathrm{ME}} \quad$ Value of Γ_{0} corresponding to the minimum energy transfer

$$
\Gamma_{\min } \quad \text { Lower bound on } \Gamma_{0}
$$

$$
\Delta t \quad \text { Specified transfer time interval }\left(t_{1}-t_{0}\right) \text { between } \underline{r}_{0}
$$

$$
\text { and } \underline{r}_{1}
$$

$\Delta t_{c}{ }^{\prime} \quad$ Previous value of Δt_{c}
$\Delta t{ }_{c}{ }^{\text {(i) }} \quad$ The " $\mathrm{i}-\mathrm{th}$ " value of the transfer time interval calculated in the Universal Kepler Equation as a function of the " i-th" value $\Gamma_{0}^{(i)}$ of Γ_{0} and the conic parameters
$\Delta \Gamma_{0} \quad$ Increment in Γ_{0}
$\Delta \Lambda \quad$ Increment in Λ
$\boldsymbol{\epsilon}$ cone Tolerance criterion establishing small cones around both the positive and negative target position directions inside of which the Lambert routine will define the plane of the transfer by the unit normal $\frac{i}{-N}$ rather than the cross product of the initial and target position vectors, \underline{r}_{0} and $\underline{r}_{1} . \mid \epsilon_{\text {cone }}=\sin$ (the half cone angle) 1 .
$\epsilon_{t} \quad$ Primary convergence criterion: relative error in transfer time interval

Secondary convergence criterion: minimum permissible difference of two successive calculated transfer time intervals.

Convergence criterion in iteration to adjust $\Gamma_{m i n}$ and $\Gamma_{\text {max }}$ in multiple revolution case: absolute precision to which transfer time interval minimum is to be determined
${ }_{\Gamma} \quad$ Tertiary convergence criterion: minimum permissible size of increment ΔI_{0} of the independent variable
$\epsilon_{\Lambda} \quad$ rolerance criterion in iteration to adjust $\Gamma_{\text {min }}$ and - In x in multiple revolution case: absolute dif\therefore Orence of two successive values of independent variahle to prevent division by zero
θ
angle (true anomaly increment)
$\lambda \quad$ Ratio of initial position radius to terminal position radius
$\Lambda \quad$ Average of the two most recent values of $\Gamma_{0} .[\Lambda$ is used as the independent variable in the Multi-r:-ution Bounds Adjustment Coding Sequence Fr,tion].
$\Lambda^{\prime} \quad$ Previous value of Λ
$\mu \quad$ Gravitational parameter of the earth (product of earth's mass and universal gravitation constant)
\because he dimensionless variable $\alpha \mathrm{x}^{2}=\mathrm{x}^{2} / \mathrm{a}=\alpha_{\mathrm{N}} \mathrm{x}^{2} /$ r. [Equivalent to square of standard eccentric or . 'perbolic anomaly difference].
5.1 Multiple-Revolution Lambert Required Velocity

Determination Routine

This routine utilizes the following subroutines or coding sequences, which are diagrammed in Section 5. 3:

- Lambert Transfer Time Interval Subroutine
- Marscher Equation Inversion Subroutine
- Universal Kepler Equation Subroutine
- Secant Iterator
- Multi-revolution Bounds Adjustment Coding

Sequence

- Secant Minimum Iterator

UNIVERSAL PROGRAM CONSTANTS CONSTANTS INPUT VARIABLES

Figure 3a. Multi-Revolution Lambert Routine Detailed Flow Diagram

Figure 3b. Multi-Revolution Lambert Routine Detailed Flow Diagram

Figure 3c. Multi-Revolution Lambert Routine Detailed Flow Diagram

Figure 3d. Multi-Revolution Lambert Routine Detailed Flon Diagram
5. 2 De-orbit Required Velocity Determination Routine

This routine utilizes the following subroutines which are diagrammed in Section 5. 3 :

- De-orbit Transfer Time Interval Subroutine
- Marscher Equation Inversion Subroutine
- Universal Kepler Equation Subroutine
- Secant Iterator

Figure 4a. De-orbit Routine Detailed Flow Diagram

5.3 Subroutins or Coding Sequences used by the Conic Requir \quad r. City Determination Routines \because
5. 3. 1 Lamber Iransfer Time Interval Subroutine

Figure 5. Lambert Transfer Time Interval Subroutine Detailed Flow Diagram

This subroutine is identical to the one used in the Kepler and Theta problems.

Figure 7. Universal Kepler Equation Subroutine Detailed Flow Diagram

Figure 8a. Marscher Equation Inversion Subroutine Detailed Flow Diagram

$$
\mathrm{x}, \xi, \mathrm{c}_{1}, \mathrm{c}_{2}
$$

Figure 8b. Marscher Equation Inversion Subroutine Detailed Flow Diagram
5. 3. 5 Secant Iterator

This subroutine is identical (when $k=1 / 4$) to the one used in the Theta problem.

Figure 9. Secant Iterator Detailed Flow Diagram
5. 3.6 Multi-revolution Bounds Adjustment Coding Sequence

Figure 10a. Multi-Revolution Bounds Adjustment Coding Sequence Detailed Flow Diagram

Figure 10b. Multi-Revolution Bounds Adjustment Coding Sequence Detailed Flow Diagram

(No solution possible to this Lambert problem: too many revolutions for too short a specified transfer time interval)

Figure 10c. Multi-Revolution Bounds Adjustment Coding Sequence Detailed Flow Diagram

This subroutine is very similar, though not identical, to the Secant Iterator. They can easily be combined into one routine, although they have been diagrammed separately here for purposes of clarity.

INPUT VARIABLES

Figure 11. Secant Minimum Iterator Detailed Flow Diagram

1. INTRODUCTION

Calculation of the precision required velocity which satisfies terminal position and time-of-flight constraints in a non-Keplerian gravity field is a computation time consuming process, especially in an on-board computer. Therefore, targeting calculations prior to a maneuver are customarily used to predict and compensate for the effects of the perturbations from a conic gravity field, so that during the maneuver only the much simpler conic related computations will have to be performed.

For Lambert aim point maneuvers (described in Reference 2) an adjustment to the terminal (target) position vector will suffice to provide this compensation. This adjusted terminal position, referred to as an offset target, must compensate for gravity perturbations throughout both the maneuver and subsequent coasting flight. Then the required velocity determined by the Lambert routine to intercept the offset target in a conic gravity field is identical to the velocity required to intercept the true target in the nonKeplerian field.

The traditional technique of predicting the effects of gravitational perturbations over the trajectory involves approximating the maneuver by an impulsive velocity change, and hence assuming a coasting trajectory between the initial (ignition) and target positions. However, due to the non-zero length of the maneuver, the actual trajectory will not follow the path predicted by the impulsive approximation, but rather a neighboring path. The difference in the perturbing acceleration between the two paths accumulates over the entire trajectory, resulting in a miss at the target. Since the coasting portion of the trajectory is generally much longer than the thrusting portion, it is important to accurately predict the perturbing effects over this portion of the trajectory. This is accomplished by determining the initial conditions for a coasting trajectory which is coincident with the actual trajectory after thrust termination. A detailed derivation of this technique can be found in Brand (1971) (Reference 1), and a functional description of the procedure follows.

A functional flow diagram describing the calculations necessary to determine the precision re, \because volocity and offset target is presented in Figure 1. Since this technique cr: s for the non-impulsive nature of the maneuver, it requires an estimate of \because ted thrust acceleration. Then the initial position can be offset frorian aciual position such that a coasting trajectory which is coincident with the actual trajectory after thrust termination can be defined. Figure 2 illustrates the concept.

The calculation oi the coasting trajectory initial position requires an estimate of the required velocity change, and therefore two passes are made through the Lambert routsers ee numerically integrating to determine the effects of gravitational peifuivaions. The first Lambert solution is used to determine the impulsive velocity change required. Based upon this, an estimate of the initial position for the coasting trajectory can be calculated. Then the second Lambert solution determines the velocity required from the adjusted initial position, thus defining the coasting trajectory.

For transfers angles which are odd multiples of 180°. Lambert's problem has a partial physical singularity in that the plane of the transfer becomes indeterminate. A detailed de., ion of this singularity can be found in Reference 4. To prevent possible probl, \because in both $\operatorname{targetin}_{\boldsymbol{E}}$ and guiding a maneuver whose transfer angle lies near this singularity, logic has been included in this routine to determine whether the transfer angle approaches this singularity at any time during the maneuver. If this is the case, the target vector is projected into the orbital plane defined by the premaneuver position and velocity, thus preventing any plane change.

If only conic calculations are desired, the routine is exited after the two Lambert solutions are completed. If not, subsequent numerical integration determines the target miss resulting from the effects of gravitational perturbations over this path. To compcisate for these effects, the target vector for the Lambert routine is offset from the actual target by the negative of the miss vector. Since the adjusted initial position, target offset, and effects of gravitational perturbations are all interdependent, the process is repeated until changes in the offset target position are small enough to indicate convergence. Three passes (two iterations) are normally sufficient to establish the offset within a few feet.

Figure 1b. Functional Flow Diagram

O

$s_{\text {eng }}$	Engine select switch
${ }^{\text {fail }}$	Switch set to indicate non-convergence
$s_{\text {guess }}$	Switch set to indicate an estimate of independent variable Γ will be input to the Conic Required Velocity Determination Routine
${ }^{\text {pert }}$	Switch set to indicate which perturbing accelerations should be included in the offset target calculation ($s_{\text {pert }}=0$ indicates only conic calculations; see Reference 3 for complete description of other switch settings)
$S_{\text {proj }}$	Switch set when the target vector must be projected into the plane defined by $\underset{-}{i}$
${ }^{\text {s }}$ soln	Switch indicating which of two physically possible solutions is desired in the multi-revolution transfer (see Reference 4 for complete description)
t_{0}	Ignition time
t_{1}	Target time of arrival
v_{0}	Initial (ignition) velocity
v_{-1}	Initial (and required) velocity on the coasting trajectory
$\mathrm{V}_{1 \mathrm{l}}$	Terminal velocity of a conic trajectory
v_{1}^{\prime}	Terminal velocity (output of the routine)
$\Gamma_{\text {guess }}$	Guess of the independent variable Γ used in the Conic Required Velocity' Determination Routine
$\Delta \underline{r}$	Target miss resulting from perturbations
$\Delta r_{\text {proj }}$	Out-of-plane target miss due to projection of the target vector

\therefore
A. 0 360
'conv
${ }^{\circ} \mathrm{BI}$
θ
ω

Transfer time $\left(t_{1}-t_{0}\right)$

Required velocity change

Magnitude of the required velocity change

Transfer angle (true anomaly difference) at the start of the thrusting maneuver

Approximate central angle traversed during the thrusting maneuver

A pproximate transfer angle to the target at the termination of the thrusting maneuver $\left[\theta_{1}=\theta-\theta_{\mathrm{T}}\right]$

Approximate orbital rate

Figure 3a. Detailed Flow Diagram

Figure 3c. Detailed Flow Diagram

Equations and flow diagrams are presented in this Section which fulfill requirements for abort from boost to an entry path which.achieves sat.isfactory landing at the launch site. Constraints and guidelines are presented in Fig. 1. The trajectory and nomenclature are presented in Figs. 2 and 3. A general flow diagram is presented in Figs. 4 and 5.

As shown in Fig. 2, landing is achieved in four phases: An open loop piase of powered flight wherein propellant is expended, powered-flight constraints are observed and conditions are reached where available ΔV equals ΔV required to get on the entry trajectory. A closed-loop phase of powered flight achieves entry target conditions with very little fuel. An unpowered flight phase follows where unpowered flight constraints are observed and the trajectory approaches the nominal entry trajectory. The final unpowered phase consists of holding the entry trajectory, i.e., controlling to the trajectory through satisfactory landing. These phases and their Guidance Equations are presented in Figs. 6 thru 11.

Figs. 12 thru 18 are the detailed program flow diagrams. Thereafter follows a definition of terms used in this section.
n

AVOID LARGE NORMAL DECELERATIONS (2.5G) AND
DYNAMIC PRESSURES (300 PSF)
-
USE NOMINAL MISSION TECHNIQUES

- TANK IMPACT POINT MUST SATISFY RANGE SAFETY
UNPOWERED PHASE

- 1
(continued)
BOOST ABORT - CONSTRAINTS/GUIDELINES
Figure 1

Figure 3
PLANAR REPRESENTATION OF ABORT MANEUVER

Figure 4

S51-4

POWERED PHASE OF SUBORBITAL MANEUVER

ANALOGOUS TO ASCENT PHASE
 COMPOSED OF TWO GUIDANCE PHASES
 8

$$
\begin{aligned}
& \text { DEPLETE PROPELLANT AND ACHIEVE TARGET SIMULTANEOUSLY } \\
& \text { TERMINATE PHASE WHEN PROPELLANT IS DEPLETED }
\end{aligned}
$$

$$
\text { Figure } 6
$$

- RADIAL (PLATFORM X)

$$
\operatorname{ATC}(1)=K_{1}(R D G-R G)+K_{2}(V D G(1)-V G(1))-G_{E F I}
$$

- RETURN TO LAUNCH SITE
$\operatorname{ATC}(2)=0$
$\operatorname{ATC}(3)=A H \quad A H=\left(A T^{2}-\operatorname{ATC}(1)^{2}\right)^{\frac{1}{2}}$
- DOWNRANGE

VDG(3) > VBOZD

$$
\begin{aligned}
\operatorname{AGC}(2) & =0 \\
\operatorname{AGC}(3) & =\operatorname{AH}
\end{aligned}
$$

- DOWNRANGE
$\operatorname{VDG}(3)<V B O Z D$
$A G C(2)=A H \cdot V G(2) /|V G(2)|$
$\operatorname{AGC}(3)=0$
- TRANSFORMATION

$$
\begin{aligned}
& \operatorname{ATC}(2)=\operatorname{AGC}(2) \operatorname{UYGP}(2)+\operatorname{AGC}(3) \operatorname{UZGP}(2) \\
& \operatorname{ATC}(2)=\operatorname{AGC}(2) \operatorname{UYGP}(3)+\operatorname{AGC}(3) \operatorname{UZG}(3)
\end{aligned}
$$

```
\[
\operatorname{AGC}(1)=\frac{6}{T B O^{2}}(\operatorname{RDG}(1))-\frac{2}{T B O}(\operatorname{VDG}(1)+2 V G(1))-\operatorname{GEFF}
\]
\[
\operatorname{AGC}(3)=(V D G(3)-V G(3)) / T B O
\]
\[
\operatorname{AGC}(2)=Y S I G N\left(A-\operatorname{AGC}(1)^{2}-\operatorname{AGC}(3)^{2}\right)^{\frac{1}{2}}
\]
\[
\underline{A T C}=A G C(1) \underline{U X G P}+A G C(2) \underline{U Y G P}+A G C(3) \underline{U Z G P}
\]
```

UNPOWERED PHASE OF SUBORBITAL MANEUVER

ANALOGOUS TO NOMINAL ENTRY FROM ~600 N.M. UPRANGE OF LANDING SITE

- COMPOSED OF TWO GUIDANCE PHASES

$$
\begin{aligned}
& \text { SEPARATE FROM EMPTY PROPELLANT TANK } \\
& \text { AVOID VIOLATION OF UNPOWERED PHASE CONSTRAINTS } \\
& \text { TERMINATE PHASE WHEN CONDITIONS SUITABLE FOR ENTRY } \\
& \text { GUIDANCE TAKEOVER ARE ACHIEVED } \\
& \text { E } 4 \\
& \text { STEER ORBITER TO ABORT LANDING SITE }
\end{aligned}
$$

Figure 10
PHASE III GUIDANCE EQUATIONS

$$
\begin{array}{ll}
\alpha_{c}=\theta_{D}-\gamma & g_{n}<g_{n} \text { LIMIT } \\
\alpha_{c}=\alpha-\dot{\theta} \Delta t & g_{n}>g_{n \text { LIMIT }}
\end{array}
$$

BUT

$$
\alpha_{M I N} \leqslant \alpha_{c} \leqslant \alpha_{M A X}
$$

$$
\begin{array}{ll}
\varnothing_{V C}=-15^{0} \cdot V G(2) /|V G(2)| & \psi_{V}>\psi_{1} \\
\varnothing_{V C}=-7.5^{\circ} \cdot V G(2) /|V G(2)| & \psi_{1}>\psi_{V}>\psi_{2} \\
\varnothing_{V C}=0 & \psi_{V}<\psi_{2}
\end{array}
$$

RATE LIMIT - . 5% SEC IN PITCH
\dot{D}_{V} IS TAD

54	Entiy Eridunee trieorer
SEH	Solic rusbet noto-
	Va-Mables
160	Thrust acceleration comard in guiraroo cocrdirater, tres
$\therefore 3$	Hordzontul eccoleration, PPSS
LIM	Ancic-or-nttock, Ceg
Mabs	Commanca erefue-of-ntteck, deg
$\underline{5 C}$	The ist acceloration commonl in plation coorainctea, fPSS
EAM	Eank angle, roll rbout pelocity vector, deg
Eminc	. Berik anele coumand, deg
DVA	Delta-y arailable, FFS
DTG	Delta-Y゙ recuired, velocity to be esined, rpo
DVESO	Proricted Z_{g} component oi Lumout relocity riaus previous Falug
G	Acceleration due to Eravity, PISS
cints	Selutire iliebt Math crgice dea
GEEP	Eriective gravity acceieration, bres
GFIN	Pacticicd ef ecctire exstity accelerstion at terainus of pouereú pirsse, Z?SS
GLis	Latitude of atort jandimeste, deerees
G1ions	Ibugituce of abort IEnsing site, degrees
Crion	Tize reto of chame of nomil acceicration, riss
crome	:0-mel acsoleceiton, zuss
$:$	61titu2e, Et
1-xim	Altitude rate, Eis

Varlables（contirised）
Imin yelooty houdrg aman，degreos
LiZ Leunch auimuti，deg
MiCg Nach number
FICM Plation pitoh，degrees
Fincic Platfom pitch comcend，degrees
Q Intermediate vawable
Q1 Interiediate va：iab？e
Qz Intemeãiate vairble
Qibr ．Dynemic pressure，PSF
QSiOT Time rate of charce of dgnemic pressure，PSES
RG
PISE

RISI

NS？
ED
S：30
S：SST
SEIS

150
ゴジ
TッS
TiP：
Iltitude used in guidemee ccitetion，Ft
Pusition vector to abort lanaing site in everraphical
cocjainates，ft cocraijnates， Ft

Fosition rector to abort larding site in irertial（seocentrie）
coorbinates，Ft
Position vector to abort landing site in pietrom cuoruiretes，Ft Position pector to venicle in pletfom coovinietes，ft Surface range to burmout，ft

Surfoce range izo．burnout to abort leaning site，ft
Surfece renge iro＝cument vehicle pasition to evort iancíng sitte，ft

Tine－to－go unti］burnout（fuel depletion），Sea
「1ニe－frov－k：rrout，Seo

Tize to rotste Fron ourrent acceleration vector to commended scyeleration

DEPMiTIO: OF SNECLS

Veriables (Conclujed)

TTL Time to thrust 21uiting

130
W解
LYGP

UGEP

Time requize to wull leteral (ra(2)) velocity
Unit vector rapresenting X-guidance ajs in platform coozinnets
Unit rector represeating Y-guicance logje in platiform
coorinatos coordinatos

Unit rector representing Z-guidance axis in platiorm coondinates

Exhaust ges velucity, FPS
Relatire velocsty in Euidance coordinates, FPS
Inertiel velucity in platiom coordinetes, FPS
Relative velocity in platiorm coordinates, FPS
Intermediate variable used in targeting
A desired value of burmout velooity used in phase i puiciance Intermediate variable used in targetirg
Weight of venicle, Lb
Time rate of charge of venicle weignt, Lb / s ec
Wind vector in platform coorainates, PPS
Inpty weight of orbiter, lics
weight of $0: S$ propeilent, 2 bs
weicht of orbiter (including zain propellant)

```
lesmitude of Ehr,st, accojerevion, FZSS
    Eneser:t thrust. ACGE]eration vector, EESS
```



```
                        \because-
```



```
    Fhese I to p:ese II Enicerce (70) 3:
```


PICRIT

Set to 1 when booster is attached
Sét to 1 if indtial corditions for booster-orbiter are.used
Set to 1 if norinel mission can not be continued
Set to 1 if orbit can be achieved.
Flag used to insure one pass through 2, loop
Flag indicating guidence phase
Set to 1 when booster propellent is depleted
Set to 1 when orbiter propellant is depleted
Set to 1 for return to the leunch site following an abort
Set to 1 if abort is time-criticel

[^0]: The Powered Flight Guidance Routines, described in Reference 3, use the same basic technique described here to maintain entry angle in the event of off-nominal thrusting conditions.

[^1]: $\mathbf{v}_{\mathbf{H}}$
 Horizontal component of vehicle's velocity (absolute)

[^2]: *These symbols appear in the guidance flow charts in appendix D

[^3]: *These symbols appear in the guidance flow charts in appendix D

