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computed standard deviation of the measurement resiciual, AM
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WSMR estimate of the standard deviation in the ith state component
i=X,Y2X,Y,2)
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FLIGHT RESULTS FROM A STUDY OF AIDED INERTIAL
NAVIGATION APPLIED TO LANDING OPERATIONS
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Ames Research Center
and
S. F. Schmidt and B. Conrad

Analytical Mechanics Associates, Inc.
SUMMARY

An evaluation is presented of the approach and landing performance of a Kalman filter aided
inertial navigation system using flight data obtained from a series of approaches and landings of the
Ames CV-340 aircraft at an instrumented test area of the. White Sands Missile Range (WSMR). A
description of the flight tests and the test apparatus is given, in which data recorded onboard the air-
craft included (1) accelerometer signals from the platform of an Inertial Navigation System (INS),
(2) three ranges from the Ames/Cubic Precision Ranging System (ACPRS), (3) radar and barometric
altimeter signals, and (4) time. .

The recorded data were processed postflight to provide an estimated trajectory of the aircraft
during the flight test. The data processing computer software used a Kalman filter and was designed
to operate onboard the CV-340 aircraft in real time or postflight in a ground-based facility. This
software is described, including the techniques used for rejecting “bad data” and for initializing the
Kalman filter from in-flight data measurements. Typical results of the filter initialization are given.

Error models for the recorded data are presented along with an expression for in-flight calibra-
tion of the ranges for anomalous behavior discovered in the Ames Cubic Precision Ranging System.

The performance of the WSMR cinetheodolite tracking system was analyzed for the situation in

which the aircraft was stationary at a known location on the ground after each landing. Certain --

results of this analysis carry over to the situation in which the aircraft is in. flight.

The flight-test results were based primarily on comparisons between the trajectories estimated
by the aided inertial system and that determined by the cinetheodolite data. The test results compare
position and velocity components with emphasis on the final 40 seconds before touchdown.

Among the more important conclusions reached ‘was that the aided inertial system is capable of
navigationaccuracies sufficient to meet very stringent automatic landing requirements. These accura-
cies also qualify the system as an independent reference against which other navigation systems could
be evaluated. In applications where the reference system can be carried onboard the test vehicle, this
approach would have outstanding advantages over a cinetheodolite reference system. Another signifi-
cant conclusion, particularly for onboard applications, is that an effective square-root form of the



Kalman filter was demonstrated which includes an efficient method for modeling random forcing
functions.

INTRODUCTION

Accurate and reliable navigation systems will play avital role in aircraft operations of the future.
The most critical role will be to provide essential information to an automatic landing system. Recent
trends clearly show that the airline industry is moving steadily toward the use of automatic landing
systems. The Space Shuttle Vehicle (SSV), designed to land without engine power, must have a very
sophisticated automatic landing system. These examples show there is a growing need to develop
navigation concepts that will keep pace with the increasing demands being placed on automatic land-
ing system technology.

The flight-test results presented here are the outcome of a joint program between NASA’s Ames
Research Center (ARC) and Manned Spacecraft Center (MSC) and the Army’s Instrumentation
Directorate at the White Sands Missile Range (WSMR-ID) to study a particular navigation concept
with emphasis on approach and landing. These studies evolved from (1) an ARC desire to test a
Kalman filter aided inertial navigation system called RAINPAL (Recursive Aided Inertial Navigation
for Precision Approach and Landing) that has wide application in many types of aircraft such as
V/STOL and CTOL, (2) an MSC desire to investigate new concepts suitable for navigation of the
SSV during approach and landing, and (3) a WSMR-ID desire to investigate new concepts that offer
promise as a future instrumentation system for the WSMR.

The RAINPAL system uses a square-root form of the Kalman filter to process data received
from ground navigation aids and from onboard altimeter measurements to update an Inertial Naviga-
tion System (INS). While a variety of ground navigation aid data can be used, this test used three
ranges from the aircraft to transponders on the ground as measured by the Ames Cubic Precision
Range System (ACPRS). When operated in conjunction with a barometric or radar altimeter, this
concept (as shown by extensive simulation studies, refs. 1-3) can provide precision navigation during
approach and landing.

Most Kalman filter updating systems that have operated in the recent past (ref. 4) have used
conventional filter formulations. The square-root formulation was initially developed for use with
small computers that have difficulty retaining sufficient accuracy without resorting to extremely
time-consuming “extra precision.” Random forcing functions were not used for dynamic model error
compensation in these early filters since techniques for including such effects required prohibitive
calculation times and/or computer storage. Recent advances (refs. 5 and 6) in computational tech-
niques have resulted in efficient methods for adding the random forcing functions that make the
square-root formulation highly attractive for airborne use. Capitalizing on these advances, a major
objective of this test program was to demonstrate such a Kalman filter in an airborne aided inertial
system.

An extensive fixed-point software program was developed for the XDS-920 computer onboard
the CV-340 which would allow in-flight, real-time operation of the RAINPAL system (ref. 7) or in-
flight data recording for later processing. This same software also allowed postflight processing of the
in-flight recorded data on a XDS-920 computer located in a laboratory. This postflight data analysis
facility proved invaluable in developing and validating the onboard RAINPAL mechanization.
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To validate the navigation performance of the real-time RAINPAL system, a series of flight tests
was conducted at the White Sands Missile Range (WSMR). System performance was measured during
approach and landing by comparing the aircraft position and velocity measurements obtained from
the WSMR cinetheodolite tracking data with those computed by the RAINPAL system. The compari-
sons presented here are restricted to 130 seconds before touchdown (beginning of glideslope) with
major emphasis on the final 40 seconds before touchdown.

The authors gratefully acknowledge their indebtedness to.the many persons who contributed
considerable time and effort to the planning, preparation, data handling, and conduction of the flight
tests at White Sands Missile Range. These persons, listed alphabetically by agency, are:

NASA/ARC:

Frederick G. Edwards
Gordon H. Hardy
Henry C. Lessing
Milo D. Reisner
Gilbert G. Robinson
Glen W. Stinnett, Jr.

NASA/MSC:

J. T. Chapman
Ronald C. Epps

Ellis W. Henry

Carl F. Koontz
William A. Middleton
J. Bruce Williamson

White Sands Test Facility:
George M. Ortiz
U. S. Army (Instrumentation Directorate, White Sands Missile Range):

T

J. F. Hernandez



TEST SITE AND APPARATUS
Test Site

“*t ":*The teést site was a dry-lake bed near the north end of Northrup Strip at the White Sands Mis-
sile Range. A takeoff -and landing strip had been graded and rolled just before the flight tests began.
Nineteen sites, surveyed to an accuracy of 7.6 cm (3 in.), were located on and near the strip. Site
1'was designated as the origin of the runway ‘coordinate system. Figure 1 is a diagram of the test area
showing the positive diréctions'of the runway coordinate system (tangent to the earth’s surface at
sité 1) and the three sites where ACPRS transponders were deployed. The remaining surveyed sites
were used for other parts of the ﬂight tests. :
i e IR 7

\@T\'RANSPONDER _
NO.2 ™ — \\\No.I

. Figure 1. — Test site at Northrup Strip.

Test Aircraft and Airborne Apparatus

., -The test aircraft was the ARC CV-340 shown in figure 2. This figure gives some of the basic air-
craft characteristics and shows a cutaway view of the cabin interior and the radome exposing some of
the test airborne apparatus. The test airborne apparatus consisted of (1) an XDS-920 (formerly SDS
920) digital computer, (2) the ACPRS precision ranging system, (3) time-code generator, (4) LTN-51

T WING SPAN e om o 32 meters (105f1)
' APPROX. TAKE-OFF.WT. ~ 24,200 kg (44,0001b)
APPROX. USEFUL LOAD 8,100kg (18,000 Ib)

“APPROK. LANDIKG SPEED 148 km/br (80 knots)

" RANGING SYSTEM
ELECTRONICS

COMPUTER.

RANGING SYSTEM .
ANTENNA INERTIAL NAVIGATION SYSTEM

(IN BAGGAGE COMPARTMENT)
" Figure 2. — CV-340 test aircraft.



INS and the associated Electronic Interface Unit (EIU), and (5) barometric and radar altimeters. To
aid in understanding later discussions, some elaboration of certain aspects of the onboard apparatus is
necessary. The XDS-920 computer is a general purpose machine repackaged for aircraft operation,
It has a 12K word memory and a word length of 24 bits including the sign. The ACPRS precision
range system measures simultaneously the range from the aircraft to each of the three ground trans-
ponders. Reference 8 gives the maximum unambiguous range as approximately 56 km (30 n.mi.)
and the range resolution as 21.4 cm (0.7 ft). The onboard transmitter and the ground transponders
operate in the 262 to 310 MHz band. The Litton LTN-51 INS and the EIU were next to each other
in the baggage compartment beneath the floor of the forward cabin. The LTN-51 is the reference
point on the aircraft to which all position and velocity data in this report are referenced and to which
all WSMR tracking data were ultimately referred. The barometric altimeter is a Rosemount. Engineer-
ing Co. Model 840E-2F. Located in a rack behind the copilot’s seat, it was attached to the aircraft
pitot-static system but was completely independent of the cockpit altimeters in every other respect.
There was no feature for manually inserting a correction for local atmospheric pressure.

Figure 3 is a block diagram showing the interconnection of the onboard equipment. For these
tests, the following quantities were recorded:

(1) three ranges from the ACPRS

(2) radar and barometric altitudes

3) AVX, AVy, and AVZ (changes in velocity along LTN-51 platform axes)
(4) LTN-51 platform gimbal angles

(5) latitude, longitude, north-south velocity, east-west’ velocity, and 'true heading from the
LTN-51 ARINC data bus : e o

.......

(6) time to nearest millisecond

BAROMETRIC RADAR
ALTINETER ALTINETER
! 1

| A/0 converTER |

AL
et L

NAVIGATION !
ELECTRONIC  * 4V's
SYSTEM INTERFACE ATTITUDES

UNIT o ARINC DATA

R «| MAGNETIC
AIRBORNE
COMPUTER — REEGE[E)ER

READ COMNAND

- RANGING 3-_RAI{GES

B

TINE CODE TIME
| GENERATOR

Figure 3. — Block diagram of flight-test equipment.



The inertial data, AV, AV, and AV, were obtained from a Litton LTN-51 Inertial Navigation
System (INS) in the form of analog X, Y, and Z acceleration signals. A special interface (EIU) was
designed and constructed which would simultaneously integrate these accelerometer signals and con-
vert them into 12-bit digital delta-velocity words. These words were placed into holding registers in
the EIU to await parallel transfer into the XDS-920 computer. Placement of the delta-velocity words
into holding registers was initiated by a high-priority interrupt signal that also caused the computer
to immediately transfer these words into its memory. This high-priority interrupt signal was precisely
controlled at a frequency of once every 65.911 msec (approximately 16 times per second). A second
signal, synchronized with the high-priority interrupt signal and 1/4 its frequency, was used to control
the sampling of all navigation aid data, to time-tag the data, and to record all the data on magnetic
tape. (All measurements and computations were carried out in the English system of units.)

ACPRS Tranéponders

An ACPRS transponder is shown in figure 4. The transponder with its associated antenna is
shown mounted atop a surveyor’s tripod. The overall height of the tripod-transponder-antenna com-
bination is approximately 254 c¢cm (100 in.). The transponder itself weighs about 9 kg (20 1b) and is
normally powered by a battery pack located on the ground. Before the WSMR flight tests, the factors
influencing the placement of transponders (refs. 1-3) were investigated. From these studies, it was
shown that:

(1) Locating two properly spaced transponders directly under the approach path would enable
the system to obtain accurate estimates of the barometric altimeter bias as the aircraft passed
overhead.

(2) At least one transponder must be placed to the side of the runway to provide good cross-
runway (Y) information at touchdown.

Flight tests of the ACPRS system were conducted to determine whether data from the ACPRS were
obtainable in a direct overflight at altitudes as low as 12.2 m (40 ft). The results showed that data
were available until shortly after the aircraft had passed overhead. This data dropout is due to the
restricted ACPRS antenna pattern. With the antenna in the nose of the CV-340, the antenna pattern
effectively covers only the forward hemisphere. Based on this flight-test data and on the simulation
results, the ACPRS transponders were located at the three surveyed sites shown in figure 1. The
transponder antenna coordinates in the runway coordinate system are given in table 1.

TABLE 1.— TRANSPONDER ANTENNA COORDINATES

Transponder no. Antenna coordinates (X, Y, Z), m (ft)
1 -2,745.19,0.04,0.59
(:9,000.61, 0.12, 1.93)
2 -5,795.27,0.06, -2.02
(-19,000.90, 0.20, -6.61)
3 914.78,-915.21,2.23
(-2,999.27, -3000.70, 7.32)




Figure 4.— ACPRS ground transponder.

Flight Pattern

The flight-test data described in this report were obtained by flying a series of three “racetrack™
patterns as shown in figure 5. The test sequence for each pattern was as follows: (1) the CV-340 was
positioned so that the Aircraft Reference Point (ARP) (indicated by a block arrow painted on both
sides of the aircraft) was directly over site 1 on the runway; (2) cinetheodolite tracking was begun
and the airplane was taxied into position for takeoff; (3) the aircraft took off to the north and made
a right climbing turn, leveling off at 458 m (1500 ft); (4) the aircraft then flew parallel to the runway
until X =—12,200 m (—40,000 ft); (5) a 180° turn was then executed; (6) the final approach was
flown using a 3° glide slope; (7) the airplane was landed and stopped with the ARP directly over site
1, and (8) the cinetheodolites were stopped.




= INITIALIZE FILTERS ¢

Figure 5. — “RACETRACK” flight-test pattern.

RAINPAL SOFTWARE

General Description

The RAINPAL software is an integrated software package designed to provide Kalman filter
aided inertial navigation computations and communication with input/output peripherals allowing
in-flight navigation with real-time data (ref. 7) or postflight navigation in a ground-based laboratory
data analysis facility (see fig. 6) using recorded flight data.

The RAINPAL software incorporates three navigation operational modes: (1) a ground align-
ment mode, (2) a “data start” or in-flight alignment mode, and (3) the normal Kalman filter aided
inertial navigation mode. These modes operate in real time or with flight data recorded in real time.
The ground alignment mode serves toinitialize the navigation equations and the Kalman filter before
flight. The *data start™ in-flight alignment mode serves the same purpose when initialization is done
during flight and is also the mode used to process the data recorded at WSMR. In this latter case,
ranges or other NAVAID measurements are used to calculate the required initial conditions. In any
case, once the computations are complete in either of the first two modes, the system is then placed
into the third or aided inertial navigation mode.

The software also provides a variety of input/output capabilities designed to facilitate the valida-
tion, testing, and operation of the RAINPAL system. These include strip chart and line printer out-
puts, typewriter input/output, and magnetic tape recording. The input/output functions time share
with the navigation calculations using a system of priority interrupts.




Laboratory Operation of the RAINPAL Software

The laboratory facilities at Amesinclude an XDS-920 computer identical to that on the CV-340
aircraft. This allows the RAINPAL software to be operated in an identical manner either onboard the
aircraft or in the laboratory. This laboratory facility was called the RAINPAL Ground-Based Data
Analysis System. By virtue of the software and its input/output flexibility, this system, when used
with recorded flight data, becomes a very powerful navigation system design and validation facility.
This facility has proved invaluable for (a) validation of the RAINPAL airborne test equipment
(fig. 3), (b) validation of the airborne real-time navigation functions, and (c) postflight analysis of the
datarecorded during the WSMR flight tests. When used for postflight analysis, the use of time-tagged
data recorded in real time during flight allows the RAINPAL navigation calculations to be executed
in a manner identical to that which could have been or were performed in real time onboard the air-
craft. The navigation performance results presented in this report were obtained in the manner just
described. A detailed description of the processing of the WSMR flight data is presented in the next
section.

Processing of the Recorded Flight Data

Figure 6 is a diagram of the information flow in the laboratory facility when it was used for
processing the WSMR flight data. Processing begins by reading a block of time-tagged data from a
magnetic tape written by the airborne test equipment (fig. 3) during the flight test at WSMR. The
time-tag allows an accurate correlation of the recorded data and the WSMR cinetheodolite solutions.

[__————__-T_ ____________ _] . &
| L ‘
| — '
ol A :
MACKETIC lavs ] NAVIGATION Ju e
READER EQUATIONS IN PRINTER
_T—'I RUNWAY COORDINATES
' |
. STATE 4
1 TILT ESTIMATES _J IEST'" AT, &
| |
| |
| |
RANGES & ALTITUDES KALMAN-FILTER -1
: I
- ___—____ STATE ESTIMATES _ |
7 LY, 2,001
~ AV's--3 AXIS QUANTIZED VELOCITY INCREMENTS . R }:H l2 _ '
A . - (- i .
- T-=TOTAL TILT TRANSFORMATION (PLATFORM TO RUNWAY) Xt 3 e
. VERT ACC BIAS
BARO ALT BIAS

Figure 6. — Block diagram of RAINPAL ground-based data analysis system.



The inertial data are in the form of velocity changes AV,, AVy, and AV, as 12-bit digital words
from the magnetic tape. These AV terms result from integrating acceleration signals from the
LTN-51 Inertial Measurement Unit (IMU) over a fixed time increment. The time increment is set by
the rate of the precision interrupt source onboard the aircraft. These velocity changes are then trans-
formed into runway coordinates. In the navigation equations, after the effect of the computed gravity
is removed and coriolis corrections made, a second integration is performed to obtain position.

The output of the navigation equations is a six-state vector of positions and velocities of the air-
craft in runway coordinates. As shown in figure 6, this state vector is used by the Kalman filter,
together with the range and altitude measurements read from the magnetic tape, to compute correc-
tions to these positions and velocities as well as estimates of five additional states. These five addi-
tional states consist of three errors (IMU platform “tilts”) in the transformation T and biases in the
barometric altimeter and the vertical accelerometer in the IMU. The Kalman filter state vector, X
thus has eleven components that are output on a line printer for comparison with the WSMR data.
The Kalman filter produces these estimated corrections from the samples of ACPRS and altimeter
data read from the magnetic tape. If, for any reason, a data sample from any or all data sources is
considered “bad” by a data validity test, these data samples are not processed by the filter. For the
results presented in this report, data were sampled for processing by the filter at a rate of once every
2 seconds. This data rate is consistenf with the real-time capability of the RAINPAL system navi-
gating in actual flight.

Data Rejection

Precision navigation during approach and landing requires that the RAINPAL system reject bad
data that might occur from a data source and cause a corrupted estimate of the aircraft state. For
example, as the aircraft flies past one of the ACPRS transponders, the signal from this transponder
can be either lost or become so weak that the ranges are not usable or are quite noisy. Examples of
the meaningless ranges obtained from the ACPRS as a result of loss of signal are shown in figure 7.

E s00 = 1600 .
w w -
o o \
@ or ;-'_) o}
H -
2-500 - J -1600
- 10 . 30 -
- - m
fo) w o
8% o83 o JJ“N
2€ < - Il it
e _'0_0: -30%- i
. 10 . 30, LOSS OF RANGE SIGNAL
Nm N L
w e w O
Ox 0r¢Q© X 0
Ze iz f
a u:""_30_
_|o_
0r - —
o [fe P
WX ol85x o LA
ZE iz il
P "
0 L -30 %+
Io L 1 1 1 1 1 J
0 25 50 75 100 125 150
TIME, sec

Figure 7. — Recording of ACPRS ranges and radar altimeter.
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In this figure, the ranges are generally good until after the aircraft has overflown the transponder.
Bad data from each data source were rejected by a validity test as follows:

(1) Each measurement residual, AM, is computed. (AMis defined as the meausrement quantity
minus the estimated quantity computed from the estimated state given by the navigation system
output.)

(2) The measurement is considered acceptable if
lAM| < 2q (1)

where q is the computed standard deviation of the measurement residual, AM. The minimum value
of q is the standard deviation of the error in the particular measurement source and is given under
Error Models.

Kalman Filter Ipitialization

Large initial position and velocity errors can cause a convergence difficulty in the Kalman filter.
To circumvent this problem in an actual system, the program must have a built-in “data-start™ pro-
cedure (in-flight alignment mode) that computes reasonably accurate initial position and velocity
estimates from data (external measurements) before processing data with the Kalman filter.

For these tests, the data-start procedure directly computes the position and velocity components
based on measured ranges from ACPRS transponders 1 and 3 (see fig. 1) and the barometric altimeter.
The data start consists of a “least-squares” fit of straight lines through five successive samples of each
measurement. The measurement averages at the center are projected ahead of real time using the
straight-line average from the least-squares fit. The starting position (X, Y, Z) and the starting velocity
X, Y, Z) are then directly calculated using a “trilateral-type” computation. Typical results of this
computation at two time points referenced to the time the Kalman filter initialization began (t = 0)
for the third.landing are given in terms of deviations from the WSMR computed values.

Asshownin table 2, the data-start procedure provides quite accurate initial condition estimates,
although there are biases in these estimates. These biases are due to the fact that the estimates were
obtained from range measurements that were not compensated for systematic ACPRS errors (see
later discussion).

- — --Large initial condition errors can, in some instances, cause Kalman filter estimates to diverge
from the correct values because the Kalman filter algorithm assumes that the measurements are linear
functions of the aircraft state when, in fact, they are not. Techniques have been developed to over-
come this problem but were not included in the RAINPAL software because, with initial errors of
the magnitude shown in table 2, quite rapid convergence to very small estimation errors was achieved
by the RAINPAL Kalman filter algorithm. This implies that the assumption of linearity is valid for

“initial errors of the magnitude shown in table 2. No attempt was made to determine the range of
data-start errors which the Kalman filter algorithm can handle without special provisions to account
for measurement nonlinearities.
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TABLE 2. — TYPICAL DEVIATIONS IN THE DATA-START COMPUTATIONS

é.tate " Deviations from - Deviations from WSMR
Component WSMR at t = 6.5 sec at t = 21.3sec

X -102m (-33.5ft) -92m (30.1ft)

Y 6.7m (22.11ft) 6.3m (206 ft)

Z 3.1m (10.1 ft) 6.2m (204 ft)

X -0.21 m/sec (-0.70 ft/sec) 0.28 mfsec  (0.91 ft/sec)
Y -2.92 mfsec (-9.56 ft/sec) -1.60 mfsec  (-5.25 ftfsec)
z ~1.10 m/sec (~3.61 ft/sec) -1.19 m/sec  (~3.89 ft/sec)

Error Models

Introduction — This section describes the mathematical models that characterize the measured
quantities processed by the Kalman filter. These models describe two types of errors — random and
systematic. The Kalman filter requires a statistical mbdel of the random errors and assumes that all
systematic errors have been removed or are estimated as separate filter states as is done with the
barometric altimeter bias. Failure of the errors in the measurement quantities to agree with the
Kalman filter statistical model can have a very deleterious effect on the Kalman filter estimation
performance, particularly when these modeling errors are systematic errors. The removal of such an
unexpected systematic error in the ACPRS range measurements through the use of a model of the
error generation process will be described. A statistical model in terms of a bias and standard devia-
tion is given for each measurement source.

Altimeters — Two altimeters were used during the approach and landing. The barometric altim-
eter was used until the aircraft had descended below 22.9 m (75 ft), at which time a switch was made
to the radar altimeter. The switch in altimeters was required for two reasons: (1) the radar altimeter
is not independent of the terrain over which the aircraft is flying and can only be relied upon shortly
before touchdown when the aircraft is over flat terrain in front of the runway, and (2) the barometric
altimeter bias changed rapidly due to large dynamic errors in the pitot-static system induced by the
pitchup of the aircraft at landing. This could result in large Z axis errors, which, at touchdown,
have been observed to be on the order of 21.4 m (70 ft).

Each altimeter signal was fed through two isolation amplifiers with different gains into separate
analog-to-digital (A/D) converter channels to provide a “high” and a “low” scale. The scales were:

(a) Barometric altimeter: 0-305 and 0-3050 m (0-1,000 and 0-10,000 ft)

(b) Radar altimeter: 0-381 and 0-1525m (0-1,250 and 0-5,000 ft)
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The altitude of the Northrup Strip was approximately 1220 m (4000 ft). This considerably
exceeded the range of the barometric altimeter low 0-305 m scale. To make this channel usable, an
offset electrical bias equivalent to 1207.3 m (3958.5 ft) was introduced into the isolation amplifier
for the low scale.

Two altimeter scales were used to minimize the effect of A/D-induced noise. Unfortunately,
apparent grounding anomalies in the isolation amplifiers introduced an additional source of noise
into the altimeter signals. The amplitude of this noise varied from day to day. For the flight tests
reported here, the standard deviation was about 2 m on the low scale and about 10 m on the high
scale. Careful redesign of the amplifiers probably could reduce the standard deviation of this noise
by a factor of 4 or 5.

The standard deviation of the errors in the recorded barometric altimeter data used in the post-
flight analysis was 4.58 m (15 ft) for both the high and low scales. A bias value of —27.45 m (=90 ft)
was determined on the ground just before the test as nominal compensation for the local atmos-
pheric pressure. This same bias was used for each of the three landings.

The radar altimeter error model used in the Kalman filter was for noise only. A bias was used
to compensate the data for an observed offset introduced primarily by the isolation amplifier. The
standard deviation used in the filter and the bias (offset compensation) were as follows: Standard
deviation, 1.83 m (6.0 ft); and bias, 5.19 m (17 ft).

ACPRS — Early attempts to use the RAINPAL ground-based data analysis facility for postflight
processing of the data recorded at WSMR mdlcated an anomalous behavior of the ACPRS ranges that
appeared to become worse as the aircraft approached touchdown. Examination of the difference
between the measured ACPRS ranges and the WSMR computed ranges indicated a behavior pattern
as shown in figure 8. In this figure, ACPRS range errors are shown as dots for each of the three
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Figure 8. — Range errors and range rate to each transponder.
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ranges. On the left side of the figures are the range errors for the first landing and, on the right, the
range errors for the third landing. Also shown in this figure are plots of the respective range rates.
The range-rate plots are shown to a scale that accentuates the correlation of the range errors and
range rate. The curves for the first landing start at point B (see fig. 5). The curves for the third landing
start earlier, beginning at point A and terminating about 70 seconds before touchdown. The curves
starting at point A show the range-rate effect in that portion of the flight when the aircraft was facing
the backside of the transponder antennas.

From this figure, it appears that there is a striking dependence of range error on range rate. In
addition, it also shows the following:

(a) There is an apparent dependence on signal strength. When the aircraft is farther away from
the transponder or the aircraft antenna is not pointed directly at the front side of the transponder
antennas, the range errors tend to be reduced.

(b) Thereis an apparent time dependence. Comparison of the errors on first landing with those
on the third landing indicate that the errors reduce with time.

Examination of these data, of data from flights at WSMR on other days, and of functional block
diagrams (ref. 9) and discussions with the manufacturer of the ACPRS system has led to two inherent
circuit deficiencies that appear to be responsible for the Doppler-like error. Relatively simple changes
in circuit design or gain adjustments could possibly overcome these deficiencies.

To evaluate the navigation performance that could be attained with the “improved” ACPRS, a
mathematical model of the range error generation process was required which could be implemented
with software. Such an improvement is one means of overcoming hardware deficiencies and giving an
improved ACPRS. Examination of the AR and R histories in figure 8 indicates that a good model
would be of the form

AR, =B,(v) + K.("R, (2)

where i denotes the transponder number and B;(v) and K;(v) are nonlinear functions of the AGC
voltage, v, for channel i. The range rate, R is computed from the current best estimate of the state
at the particular point along the flight path The AGC voltages were not recorded during the WSMR
tests. As a result, a compensation of the form of equation (2) with nonlinear coefficients could not
be tested. Instead, data were processed during approach and landing where the major portion of the
error in each of the three ACPRS ranges was a linear expression of the form:

ARCI=BI+K1R1’ 1= 1,2,3 (3)

Equation (3) was used from point C to touchdown since this portion of the flight was of primary
interest. The R; terms were computed along the flight path each time ACPRS range measurements
were to be processed using the expression

. 1 . : .
R; R—[X(X XD *YY =Y PD+Z(Z-Zp); i=1,2,3 4)
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where

=X =X + (Y=Y ) +@-2 91" 5 i=1,2,3 (5)

The terms X ., Y ., and Z ; are the antenna coordinates of the three transponders given in table 1
and the state eciements X, Y, Z X Y and Z are the estimated values referred to the ACPRS antenna
. in the nose of the CV-340.

Figure 9 shows a comparison of the actual range errors (dots) and the range error calibration
computed from equation (3). The curves on the left were computed during the first landing and those
on the right during the third landing. The constant coefficients used in equation (3) for each trans-
ponder are given in table 3 where range rate is measured in meters per second and AR, is in meters.
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Figure 9. — Comparison of range errors and model of range errors.

TABLE 3. — COEFFICIENTS FOR IN-FLIGHT COMPUTATION OF AR,

Transponder First landing Second landing Third landing
i B; K B; K B K;
1 -433 0.06170 -2.74 0.0530 A -2.50 . 0.04;16
2 3.05 1.04547 4.02 .0471 4.42 .0429
3 4.11 07500 3.07 0345 3.60 0429
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As stated earlier, the ACPRS range errors diminished in amplitude with time (ref. 9). As a result,
the calibration model (eq. (3)) tended to be less in error during the later landings, which caused a
trend toward improved navigation accuracy as the flight tests progressed. The effect of imperfect
modeling and therefore calibration for the range rate induced errorsis to produce navigation perform-
ance which is slightly pessimistic when compared to the performance that would be expected from
flight tests using a hardware improved ACPRS.

After the range error calibration (eq. (3)) was applied, the statistical model of the random
ACPRS range errors used in the Kalman filter was: standard deviation, 0.91 m (3.0 ft); and bias,
0.0 m.

FLIGHT-TEST RESULTS

Flight-Test Operations

The flight-test operations were controlled from the WSMR King 1 control station via UHF radio
to the pilot of the test aircraft. Aircraft position as measured by an FPS-16 radar was fed to a plot
board at the control station for comparison with a trace of the desired flight pattern. During the test,
the WSMR Vector Controller would compare the actual path of the aircraft to the desired path and
radio the necessary course changes to the pilot. Also at the plot board were (1) the WSMR Radar and
Cinetheodolite Controllers and (2) four members of the NASA test team whose function was to pro-
vide program direction, monitor all UHF radio transmissions, advise the CV-340 pilots via radio, and
keep accurate logs of all events during the test.

Reduction of WSMR Cinetheodolite Data

Description of the cinetheodolite system — A cinetheodolite is a precision device for measuring
azimuth and elevation angles. At WSMR, 35-mm motion pictures are taken of the object being man-
ually tracked by an operator who observes the object through a telescope. The azimuth and elevation
angles of the theodolite gimbals (center of photograph) are recorded on each frame of the film along
with the time. Cinetheodolites are operated in networks since, without range information, position
cannot be determined from a single cinetheodolite. With proper placement of the cinetheodolites in
a network, the three position components of the tracked object can be determined to approximately
equal accuracy. All cinetheodolite photography is synchronized electrically through an underground
cable. In this instance, photographs were taken once every second. The number of cinetheodolites in
a network being used for data reduction at any particular time may vary, depending on the position
of the object being tracked or on other factors such as the number of photographs available in the
film load. Seven cinetheodolites were assigned to the tests described in this report.

When the film from a flight test is developed, it is manually examined frame by frame and cor-
rections to the gimbal angle readings determined so that, in this case, the angle readings correspond
to the Aircraft Reference Point (ARP), that is, the tip of a black arrow painted on each side of the
aircraft.
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Computation of position and velocity — WSMR uses an extensive digital computer program to
take the gimbal angles at each time point (along with the coordinates of each cinetheodolite statlon)
and compute a set of position components X, Y, 7) that “best” fits the angle data. A conventlonal )
least-squares procedure is then used (ref. 10) to fit a second-order curve of the form

2 . ' -
X(tj)=AO+A1tj+A2t- : j=1,2,...,NB<N<2] 6)

through aseries of N time points to find values for Ag, A, and A,. Expressions similar to equation
(6) are used to find equivalent A values for Y(tj) and Z(tj). The X value at any time t, on the
curve is then found by substituting t into equation (6), with Y and Z being found in a similar way.
The resulting X, Y, and Z are the WSMR estimates of the aircraft position at th

The corresponding X velocity estimate is found by differentiating equation (6) with respect

to t;. The resulting expression is

j.

X(t)=A, +2A5t5 j=1,2,...,K (7)

Similar expressions are used for Y(tj) and Z(t;). The velocity components are found by evaluating
the curve at its midpoint using equation (7) and the equivalent Y and Z expressions. This same
procedure is repeated at the next time point in the time history and so on in what is called a “moving
arc” technique.

Cinetheodolite position and velocity error statistics — To estimate the RMS error (1-0) in each
of the three position components, the computed point (X, Y, Z) is used to compute the azimuth and
elevation from each cinetheodolite station. The differences between the computed azimuth and eleva-
tion angles and the measured values are found and these residuals are used to calculate a sample
angular variance, S2. Partial derivatives derived from the least-squares solution principal matrix are
then used to compute Cy so that the WSMR estimated 1-0 error in each position component may
be found from an expressmn of the form

R (S 7\ R ) N

Similar expressions are used to find 3y and G,.

Estimates of the RMS error in the velocity components are found by first computing a sample _
variance, Sx using the squares of the differences between the least squares X(t;).from equation (6) -
and X(t ) from the cinetheodolite solution. This sample variance is then scaled using partial deriva-
tives obtained from the principle matrix of the least squares solution, that is,

0 = (Cx52)"? ©) .

The terms 3)-, and 6, are found in an analogous way.
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The computed estimates of the positions and velocities along with the associated estimates of
the RMS error in these estimates of the aircraft state were published by WSMR for 1-sec time inter-
vals. These data are used in this report to evaluate the performance of the RAINPAL system.

Cinetheodolite Static Checks

Static checks of the WSMR cinetheodolite tracking system were included as part of the flight-
test procedures. The purpose of these static checks was to gain insight into the accuracy and error
characteristics of the trajectory estimates obtained from the cinetheodolite tracking system. Ulti-
mately, it was expected that the insight gained would aid in understanding and interpreting the
WSMR in-flight estimates. The static checks were included in the flight-test procedures in the follow-
ing manner: after each landing, the aircraft was taxied to site 1 and positioned so that the aircraft
reference point (ARP) was approximately over the surveyed site. Then the X, Y, and Z components
of the ARP with respect to site 1 were surveyed to an accuracy of +0.076 m (%3 in.) and recorded
for later comparison with WSMR estimates derived from the cinetheodolite data.

Table 4 is a summary of the analysis of the WSMR estimates during the time periods the air-
craft was stopped at site 1 after each landing using the known position and velocity (zero) as a
reference. The analysis was based on 8 seconds (8 data points) of data for the first landing (the
cinetheodolites were stopped too soon) and on 40 seconds of data for the second and third landings.
The first column for each landing in table 4 shows the mean (average) error in the WSMR estimates
for each of the three components of position and velocity. The second column shows the standard
deviations of these errors. The third column shows the mean of the standard deviations (1 o) quoted
by WSMR as representing the uncertainty in the cinetheodolite-derived estimates (see eqs. (8) and

(9)).

TABLE 4. — WSMR STATIC CINETHEODOLITE TRACKING ERRORS

First landing Second landing Third landing
WSMR Observed Mean WSMR Observed Mean WSMR Observed Mean
mean quoted mean quoted mean quoted
Components . 1.0 . 1-0 . 1-0
tracking 1-0 tracking 1-0 tracking 1-0
values values values
error values error values error values
X (m) -1.74 0.15 1.95 0.00 0.08 0.55 0.11 0.11 0.58
Y (m) .73 .36 1.86 21 .44 1.10 .04 41 1.19
Z (m) -1.58 .19 1.16 -.12 .08 47 -.30 11 .49
X (m/sec) 155 155 .034 .006 .098 .015 .003 .094 .015
Y (m/sec) -.064 719 .100 -.061 314 049 .015 .500 .076
Z (m/sec) -.018 235 .034 .000 061 .009 -.012 .128 .021
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The data in table 4 provide considerable insight into cinetheodolite tracking system perform-
ance. Comparisons of the mean tracking error for the three landings show a bias level in the X and Z
position components of almost 1.8 m (6 ft) for the first landing. These levels for the second and third
landings were generally less than 0.3 m (1 ft). WSMR has stated that this difference was caused by an
additional cinetheodolite being used in only the first landing solution as the aircraft approached the
ground and that this cinetheodolite has a bias error whose effect could not be removed. Aside from
this discrepancy on the first landing, column 1 for each landing shows that the mean value is an
accurate estimate of the true position and velocity when the aircraft is stationary,

The statistical data in columns 2 and 3 show substantial discfepancies between the observed
sample standard deviations (column 2) and the 1-0 values quoted by WSMR as representing the accu-
racy of the WSMR estimates. Furthermore, there is a lack of self-consistency in the quoted 1-ovalues.
The quoted 1-o values given for position estimates (column 3) appear to be pessimistic (by a factor of
2 to 5) when compared to the observed sample standard deviation in column 2. In velocity, the oppo-
site is true — the quoted 1-0 values are optimistic (by a factor of 5 to 7). Another type of incon-
sistency (not shown in table 4)is apparent when WSMR-quoted 1-o values for the static tests are
compared with those for periods when the aircraft was in flight. Intuitively, it would seem that ran-
dom tracking errors should be significantly smaller when the aircraft is stationary. The static velocity
1-0 values quoted for X and Z (column 3) are about an order of magnitude smaller than the in-
flight values. However, the quoted X, Y, Z, and Y 1-0 values are about the same regardless of
whether the aircraft is flying or stationary on the ground.

Plots were made of the observed data from which the standard deviations in column 2 were
derived. The plots (not shown) showed frequent large fluctuations approximately evenly distributed
about the mean value. For the third landing, the maximum and minimum values for these fluctua-
tions were:

+0.27 m (0.9 ft) in X
+0.95m (£3.1ft)inY
+0.30m (x1.0ft)in Z
+0,24 m/sec (0.8 ft/sec) in X
$0.95 m/sec (3.1 ft/sec) in Y
+0.30 m/sec (1.0 ft/sec)in Z

Comparisons of these plots with the in-flight data plots show rather good agreement between the
character and magnitude of the fluctuations observed in the flight data (fig. 10) and those observed on
the ground. This tends to indicate that the in-flight fluctuations are due not to aircraft motion but to
the same source as the fluctuations observed on the ground.

The reason for the differences between the observed 1-0 values and the quoted 1-0 values is
probably associated with unrealistic error models implicit in the equations used to compute the
quoted 1-o values. For example, when the aircraft is stationary on the ground, the constants Ay and
A, in equation (6) should have been zero but they were not. Because of these differences, the
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quoted 1-0 values are of limited use for assessing RAINPAL performance. However, the following
conclusions appear reasonable: (1) Althdugh the quoted static 1-0 values for WSMR position estimates
are too large, the quoted values for in-flight situations are nearly correct; (2) the quoted velocity 1-a
values should be increased by a factor of about 6 or 7 for both the static and in-flight situations since
this makes them consistent with the observed sample statistics in the static checks and consistent
with the random fluctuations observed in the WSMR velocity estimates in the in-flight situations; and
(3) the mid-value of the upper and lower bounds of the random fluctuations is usually a good estimate
of the correct position or velocity for the static situation. The similarity of the fluctuations seen in
both the static and in-flight situations implies that this same conclusion may also apply in flight for
velocity data and, in most cases, for position data.

Navigation Performance

Postflight analysis procedures — The RAINPAL software was used in the ground-based labora-
tory data analysis facility to obtain estimated flight trajectories. The navigation performance was then
determined by comparing these RAINPAL estimated flight trajectories with the trajectories measured
by the WSMR cinetheodolite tracking system. This comparison was made using data recorded in flight
during three separate landings on the same day.

Data were recorded at WSMR at a rate of four times per second. However, the Kalman filter
processed data once every 2 seconds. As a result, only 1/8 of the recorded measurement data could be
processed in determining a particular RAINPAL estimated flight trajectory. Depending on the filter
initialization time, eight different estimates of the same trajectory can be obtained by sequentially
shifting the starting time of each estimate of the trajectory by increments of 1/4 second. Therefore,
each of the eight possible estimated trajectories uses different samples of the measurement data.
Each trajectory uses the same inertial data so that the resulting dispersions in the estimated aircraft
state resemble those that would be obtained if the aircraft were flown over the identical path eight
times. Only three of the eight possible estimates are shown in this report to enhance the clarity and
readability of the figures.

During the flight test, a slow drift in the accelerometer biases was detected but the cause was
not located and removed until after the flight tests. To obtain the results presented here, a refinement
was made in each of the three accelerometer biases using a postflight calibration procedure.

Comparison of RAINPAL and WSMR estimated trajectories — Comparisons of RAINPAL and
WSMR estimated trajectories are presented in figure 10. Most of these data are presented for the
final 40 seconds of flight before touchdown for three different landings. This is because RAINPAL
is intended to provide the most accurate estimation performance in the final portion of each landing.
This choice provides for figures with scales whose resolution is consistent with this objective of the
RAINPAL system. The X position component (along track) will not be shown because the X dis-
tance covered in the final 40 seconds would result in a scale in which the difference between the
WSMR and RAINPAL results would be indistinguishable. However, a comparison of the RAINPAL
and WSMR data was made at the vicinity of touchdown. From this comparison, it is estimated that
the standard deviation of the error in the RAINPAL X-position estimates is in the range 0.9 £0.6 m
(3 £2 ft). Figures 10(a) and 10(b) compare three RAINPAL estimated trajectories with the WSMR
estimated trajectory. The WSMR results are presented in terms of plus and minus 1-0 bounds about
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their estimate of the aircraft trajectory. These 1-¢ bounds are the standard deviations quoted by
WSMR for the error in their estimates.

Figure 10(a) presents the Y component. The WSMR cinetheodolite solutions show that
RAINPAL system navigation performance in the Y component improved in going from the first to
the third landing. This is consistent with the data and discussion in connection with figure 9, where
the ACPRS range error calibration errors were smaller for the third landing. The results obtained for
the third landing are more indicative of the navigation performance that could be expected for a pre-
cision ranging system which did not have the range-rate error anomaly observed in the ACPRS sys-
tem. This figure shows (when going from the first to the third landing) the effect on navigation per-
formance of errors in the ACPRS calibration. In this case, the ACPRS calibration errors caused the
Y error at first landing touchdown to range from about 2.4 to 4.3 m (8 to 14 ft), but for the third
landing, where these errors were much smaller, the touchdown dispersion range was only about 0.9
to 1.8 m (3 to 6 ft). On the basis that the third landing is more indicative of the actual capability of
the RAINPAL system, the standard deviation of the Y-position error at touchdown is estimated to
be in the range 1.2 +0.6 m (4 +2 ft).

Figure 10(b) compares the Z component of the three RAINPAL estimates to the WSMR
determined Z position for each of three landings. This figure shows very good agreement between
the WSMR and RAINPAL estimates until the aircraft reaches an altitude of about 4.6 to 6.1 m (15
to 20 ft). At this point, there is a clear divergence between the WSMR and RAINPAL estimates, with
the two sets of data showing a difference of about 1.2 to 2.1 m (4 to 7 ft) at touchdown. The correct
Z position at touchdown is shown on each plot. This is the Z position of the LTN-51 INS located
in the baggage compartment (2.2 m or 7.2 ft above the runway) and its Z position is known when
the wheels are on the ground. Examination of the plots shows that the RAINPAL system estimates
were generally within 0.3 m (1 ft) of the correct value although, in one case, on the third landing
the error was about 1.2 m (4 ft) high. These estimates were judged to have errors whose standard
deviation is in the range 0.9 +0.6 m (32 ft).

All of the WSMR Z estimates were low at touchdown, ranging in error from about 0.9to 1.8 m
(3 to 6 ft). Note that the touchdown bias remained in the WSMR data for the first landing after the
aircraft had taxied the remaining 910 m (3000 ft) or so to site 1, but not for the second or third
landings (as was shown in table 4). An explanation for the behavior was offered by WSMR and was
discussed in connection with table 4, but it appears to the authors that this error could also be
influenced by atmospheric refraction error in the cinetheodolite data. This type of error might cor-
relate better with the increasing divergence in the data as the aircraft approached the ground and is
supported, to some extent, by the fact that WSMR corrects for atmospheric refraction based only on.
a “standard day.” ~ T -

Figure 10(c) is a plot of X versus time for each of the three landings. The consistency of the
RAINPAL estimates is extremely good. The agreement between WSMR and the RAINPAL estimates
" is generally well within 0.15 m/sec (0.5 ft/sec), which is approximately the standard deviation of this
component indicated by column 2 for each landing in table 4. The WSMR data exhibit a fluctuating
behavior that is probably not a result of aircraft motion since the aircrew reported no turbulence
during the test and surface winds were steady at about 2 knots. Furthermore, in the discussion in
conjunction with table 4, it was pointed out that the in-flight velocity fluctuations have a character
similar to that observed when the aircraft was stationary on the ground and that the fluctuations are
probably due to limitations in the least-squares estimation technique. It was also pointed out in the
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same discussion that the quoted *1-¢ values for in-flight situations were too small by a factor of 6 or
7. Hence, no t1-¢ bounds are shown for any of the WSMR velocity data in this report. Based on the
data shown in figure 10(c) and the observed results presented in table 4, it is estimated that the
standard deviation of the error in the RAINPAL estimates of X is in the range 0.15 +0.06 m/sec
(0.5 £0.2 ft/sec).

Figure 10(d) is aplot of Y and Z versus time for the three landings. Again, the three RAINPAL
estimates are consistent. Based on the observed results shown in taljle 4, variations with a standard
deviation of 0.72 m/sec (2.4 ft/sec) should characterize the WSMR Y estimates on the first landing,
decreasing substantially on the second and third landings. For Z, table 4 indicates that reasonable
values for the standard deviations of the WSMR data are on the order of 0.15 m/sec (0.5 ft/sec) for
the first, second, and third landings. It is difficult to assess the probable RAINPAL Y error at touch-
down because of the rather large random errors that appear to exist in the WSMR Y estimates.
However, the three RAINPAL trajectories have a small dispersion in Y, which is well within the
+0.46 m/sec (1.5 ft/sec) 1-0 bounds that appear reasonable for errors in the WSMR data (see discus-
sion in association with table 4). The RAINPAL Y errorat touchdown (1 o) is certainly not greater
than about +0.46 m/sec (1.5 ft/sec) and may be as small as 0.15 m/sec (0.5 ft/sec). For Z, the results
from the static tests indicate that random tracking errors (1 ) ranging from 0.24 to 0.06 m/sec
(0.77 to 0.20 ft/sec) should be expected at touchdown. The random dispersions in the RAINPAL
estimates are on the order of about +0.15 m/sec (20.5 ft/sec). It appears reasonable, therefore to
assign a standard deviation ranging from 0.15 +0.06 m/sec (0.5 +0.2 ft/sec) to the RAINPAL Z error.

Effects of estimating barometric altimeter bias — The barometric altimeter bias is considered to
be the mean value of the much more rapidly varying altitude measurement errors. This quantity is a
function of the local atmospheric pressure that is slowly changing. It is also affected by the non-
constant errors in the aircraft pitot-static system. As a result, the term “barometric altimeter bias”
applies not to a true bias (constant) but, considering the length of the flight test, to arelatively slowly
varying quantity. It was therefore included as one of the state variables of the Kalman filter so that
it could be estimated in flight when a good independent source of vertical information was available.
This would occur, for example, when flying over a precision ranging system transponder (refs. 1 and
2). In contrast, the radar altimeter bias can be regarded as a true constant (bias) that can be calibrated
before flight so there is no need to include it as a state variable.

To demonstrate the impact of estimating the barometric altimeter bias on the Kalman filter

estimation of the Z component, one run was repeated with the barometric altimeter bias estimation
—— -—feature disabled:--Figure -11-shows -the result-of -this-run-compared-to-its-counterpart repeated from--—— -
figure 10(b) (landing 3). This figure shows that the Z estimation without barometric altimeter bias
estimation-is much more poorly'behaved than the comparison run. In-particular,.a discontinuity in
Z of 12.2 m (40 ft) occurred as the aircraft passed over transponder 1 at 97 sec (dashed line). This
was due to the Kalman filter receiving good vertical data for a short time while the aircraft passed
over transponder 1. Later, a second discontinuity of 11 m (36 ft)_occurred when the switch was
made to the radar altimeter (dotted lin€). The figute Showsthat the Z estimation with bias estima- -
tion is in very good agreement with the WSMR estimates and is a smooth continuous curve without
discontinuities even when the switch to the radar altimeter was made. Such discontinuities are con-
sidered important in automatic landing systems because they could result in control transients at low
altitudes from which it would be difficult for the aircraft to recover before touchdown.
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Figure 11.— Vertical channel performance with or without barometric

altimeter bias estimation.

Comparison of free inertial and RAINPAL solutions — The purpose of figure 12 is threefold:
(1) to show the system performance in the free inertial mode, (2) to show the improvement over
free inertial navigation achieved when ACPRS and altimeter data are processed every 2 seconds, and
(3) to supplement the data in figures 10 by including data before 90 seconds. Free inertial, in this
case, means starting with the WSMR estimates of initial position and velocity and integrating the
Av,, AVy, and AV, data recorded on magnetic tape during the flight test at WSMR; no ACPRS or
altimeter data were processed in this mode. The free inertial performance indicates the quality of
key elements of the experimental inertial system operating in a runway coordinate system: These
include:
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(1) the quality of accelerometer, gyros, and other platform components of the LTN-51 IMU,
(2) the quality of the integration of the acceleration signals by the EIU,

(3) the correctness of the runway referenced inertial navigation equations programmed in the
XDS-920 computer, and

(4) the adequacy of the fixed-point scaling used in the XDS-920 computer.

In figure 12, the WSMR estimates are used as a reference, that is, the WSMR estimates were sub-
tracted from both the free inertial and RAINPAL estimates to give the difference quantities plotted.
This procedure yields tractable plotting scales for comparing the free inertial and RAINPAL data but
suffers from the fact that WSMR tracking errors appear as errors in both the free inertial and
RAINPAL position and velocity estimates. Figure 12(a) shows the deviations in position obtained for
the second landing. '

The deviations in position and velocity shown for the free inertial operation are zero at t=10
because the WSMR estimates were used to initialize the experimental inertial navigation system. On
the other hand, the RAINPAL navigation system, which includes the experimental inertial navigation
system, began a data-start procedure at t = 0, but there was no output until 16 seconds, when the
procedure was completed.

Figure 12(a) shows that the deviations in free inertial position exhibit an error time history
common to most unaided inertial systems. Specifically, the effect of acceleration errors first become
readily apparent at about 30 seconds in the AY and AZ components and at about 50 secondsin the
AX component. These acceleration errors, though quite small, clearly show the effect on position
error of multiplying by the square of the elapsed time; after 130 seconds, this effect is significant.
Even so, the errors are within the 1-n. mi./hr specification for acommercial INS such as the LTN-51.

In comparison, the RAINPAL run, in which the experimental navigation system is aided by
external data, maintained the X component generally within 1.5 m (5 ft) of the WSMR estimate
throughout the entire 130-second run. The Y component deviated from the WSMR value by as
much as 5.5 m (18 ft) on two occasions during the first 2/3 of the time history but, in the latter third,
remained generally within about 1.5 m (5 ft) of the WSMR estimate. The Z component deviated
on one occasion to a maximum of about 3.4 m (11 ft) at 105 seconds (see fig. 10(b)) but (except for
initial condition errors) was generally within 1 m (3.3 ft) of the WSMR estimate for a majority of the
first 90 seconds.

Figure 12(b) shows the corresponding velocity deviations. The fluctuations in these delta-
velocity time histories are due primarily to the fluctuating character of the WSMR velocity estimates
as shown in figures 10(c) and (d). These anomalies do not, however, detract from the usefulness of
these curves since the general trends are clear. These curves indicate that, up to about 50 seconds, the
free inertial velocities were varying randomly about zero error, but by 60 seconds, a definite offset
was clear. This error continued to incréase slowly to the end of the run. The RAINPAL run, on the
other hand, quickly reduced the data-start errors, but there was-no distinct improvement over the
free inertial run until about 60 seconds. Following that time, the RAINPAL delta-velocity errors
appear to slowly oscillate about zero throughout the remainder of the run.
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Table 5 summarizes the deviations from the WSMR estimates of both the free inertial and
RAINPAL run at 130 seconds. These data show that, during a final approach lasting only 130 sec-
onds, free inertial navigation drift would result in unacceptable-touchdown errors. The use of aiding,
on the other hand, produced position estimates that were reduced an order of magnitude over the
free inertial results. In velocity, the improvement factor is clouded by the random fluctuations in the
WSMR estimates but appears to be about 2. The difficulty of determining improvement is partially
overcome by the column of differences in Table 5. These differences are independent of the WSMR
estimates and indicate quantitatively the improvement in navigation performance.

TABLE 5. — FREE INERTIAL, RAINPAL DEVIATIONS AT 130 SECONDS

Component Free inertial RAINPAL (free irgirifizefcli;INP AL)
X -31.8 m (~104 ft) -1.83m (-6 ft) -30.0m (-98 ft)
Y 37.2m (122 ff) 1.52m (5 ft) 357m (117 ft)
z -21.3 m (=70 ft) 61m (2ft) -21.9m (-72 ft)
X -73m/sec (-2.4 ft/sec) .00 m (0.0 ft/sec) -.73 mfsec (~2.4 ft/sec)
Y .52 mfsec (1.7 ft/sec) .92 mfsec) (0.3 ft/sec) | -.40 m/sec (-1.3 ft/sec)
Z -.076 m/sec (-0.25 ft/sec) .152 m/sec (0.5 ft/sec) | -.23 m/sec (-.075 ft/sec)

Figure 12 shows that the free inertial performance of the experimental inertial system operating
in the runway coordinate system is at least equal to that of the commercial LTN-51 but, for the final
approach, the drift in the experimental system is sufficiently large that unacceptable touchdown
errors result. When aided with extemnal data, the overall RAINPAL navigation performance (follow-
ing completion of the Kalman filter initialization phase) approaches the touchdown performance
shown in figure 10 most of the time throughout the entire landing approach.

Comparison of flight and simulation results — During the development of the RAINPAL sys-
tem, a fairly elaborate digital computer simulation was developed for use in determining the perform-
ance that could be expected of the system. A matter of considerable interest was whether the simula-
tion was sufficiently realistic to reliably predict performance. To investigate this matter, the simula-
tion program was used in its Monte Carlo mode to generate five estimated trajectories for an approach
and landing trajectory and to ‘generate the measurement sequence, with data noise statistics dupli-
cating as nearly as practicable the actual WSMR situation. The five sample estimated trajectories dif-
fered only in that each utilized a measurement sequence corrupted by a different, statistically inde-
pendent sequence of measurement noise. According to the theory of extreme statistics, the range of
results thus obtained is on the average a little more than *1 o at each time point. This range thus
represents the deviations from the actual trajectory within which approximately 2/3 of the estimated
trajectories should lie.
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To compare simulated and actual results, the upper and lower deviation Y and Z bounds
determined from the Monte Carlo simulation were applied to the WSMR Y and Z estimates for the
third landing. These form the shaded area shown in figure 13, on which the Y and Z components of
the three RAINPAL estimated trajectories are also plotted (repeated from figs. 10(a) and (b). It is
seen that about half the Y and 2/3 of the Z RAINPAL points fall within the shaded area. Although
WSMR accuracy (1 ¢) is no better than 1.1 m (3.5 ft)in Y and 0.5 m (1.5 ft) in Z, these results
indicate a satisfactory degree of consistency between the simulated and actual RAINPAL perform-

" ance for the specific situation investigated here.

0
60 o & o FLIGHT TEST DATA 180 .
—— WSMR ESTIMATE
L S0 F 160 |- 190
(5
wh 4o | |
™ {40
0r ol e SIMULATION RESULTS o b SIMULATION RESULTS
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Figure 13. — Comparison of flight and simulation results.
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Performance of the Kalman Filter Software

The square-root Kalman filter was programmed in fixed-point arithmetic for a XDS-920 digital
computer. To minimize the computation time, the majority of the computer instructions was done
in single precision. Once the filter had been debugged, its performance in the ground-based labora-
tory and in real time (ref. 7) was flawless without a single instance of anomalous behavior. This is
significant because the square-root formulation of the Kalman filter has several important advantages
over the more conventional formulations, particularly in an onboard application. In the past, lack of
an efficient method to incorporate the modeling of random forcing functions has been a major deter-
rent to its use. The experience gained in these flight tests has demonstrated that this difficulty has
been overcome.

L

i RAINPAL APPLICATIONS

Aircraft Navigation

The present navigation accuracy requirements for automatic landing systems on commercial
CTOL aircraft have not been established directly. Instead, the accuracy requirements are given in
terms of total guidance, navigation, and control lateral and longitudinal dispersions. These dispersions
(ref. 11) are for a category Il automatic landing system on a runway 45.7 m (150 ft) wide and are
normally expressed in terms of a two-standard deviation number, assuming the errors are normally
distributed. On a one-standard deviation basis, the dispersion requirements are: longitudinal (X),
229 m (750 ft); and lateral (Y), 4.11 m (13.5 ft).

To arrive at a figure for the allowable standard deviation of the navigation error, a common
method is to assume that equal error contributions are made by each system (guidance, navigation,
and control) to the total. The total error, then, is the root-sum-square of the three equal contributors.
On this basis, the allowable navigation error standard deviation is

X0y = 132 m (433 ft)

Ypay = 2.38 m (7.79 ft)

The allowable touchdown errors for the SSV are also given in terms of a standard deviation for
the total guidance, navigation, and control errors. The current requirements are preliminary and, of
necessity, very conservative, not only because the vehicle will touch down at high speed in any
weather, but also because the vehicle is the first of its kind and, therefore, no historical data are
available on which to base the allowable touchdown errors. The current total touchdown error stand-
ard deviations on a runway 45.7 m (150 ft) wide are

X =173.15 m (240.0 ft)
Y =2.62 m (8.6 ft)
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Z=4,62m (14.0 ft)

X = 3.05 m/sec (10 ft/sec)
Y =1.52 m/sec (5 ft/sec)

Z = 0.152 m/sec (0.5 ft/sec)

Again, assuming that the total error is the root-sum-square of three equal contributors, the allowable
navigation error contribution would be

Xy = 42.23 m (138.56 ft)
Y, 0y = 1.51 m (4.97 ft)
Z,ay = 2.46 m (8.08 ft)

Xpay = 1.76 m/sec (5.77 ft/sec)
Yoy = 0.88 m/sec (2.89 ft/sec)

Z,,y =0.088 m/sec (0.289 ft/sec)

For other aircraft such as V/STOL, the automatic landing system dispersions are not estab-
lished. However, the allowable dispersions probably will be similar to those of CTOL aircraft and
certainly not more stringent than the present requirements of the SSV. Thus there seems to be
little doubt that a navigation system meeting both the CTOL and SSV automatic landing system
requirements would also meet those of a V/STOL aircraft.

A comparison is made in table 6 of the estimated standard deviation of the errors in the
RAINPAL navigation system with the allowable navigation errors in an automatic landing system of
a CTOL aircraft and the SSV. This table shows that a navigation system of the RAINPAL type, where
aiding is provided by precision ranging system measurements and altimeter data, is fully capable of
providing the navigation accuracy required for automatic landing of CTOL and V/STOL aircraft. It
also appears that the accuracy would be adequate for the SSV automatic landing system with the
possible exception of the vertical velocity requirement which seems overly stringent. Even so, had
the accelerometer bias drift problem been discovered and resolved before the flight tests and had the
ACPRS not experienced abnormal behavior along with excessive noise in the altimeter signals, there
is reason to expect that the resulting improvement in the RAINPAL navigation performance over
that presented here would have been adequate to satisfy the vertical velocity requirement.

Further applications of RAINPAL as a navigation system exist using navigation aids other than
the precision ranging system. One outstanding advantage of the Kalman filter formulation is that
other navigation aids operating singly or simultaneously can be easily included. Thus, the inclusion
of such aids as VORTAC, TACAN, Instrument Landing System (ILS), or Microwave Landing Sys-
tem (MLS) is relatively simple. Indeed, simulation results (refs. 1-3) indicate that a system using
VORTAC or TACAN aiding for enroute navigation and MLS aiding for terminal navigation would
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have navigation accuracies during the landing approach comparable to those obtained with a preci-
sion ranging system. The use of the conventional ILS for aiding was shown in these studies to be less
accurate but worthy of future study.

TABLE 6. — COMPARISON OF RAINPAL NAVIGATION ERRORS WITH
ALLOWABLE ERRORS FOR CTOL AND SSV

RAINPAL navigation error Navigation errors z.illowat?le Navigation errors allowable
Component . for CTOL automatic landing
standard deviations for the SSV autoland system
systems .
X 0.9 £0.6 m (3 £2 ft) 132m (433 ft) 43.2m (139 ft)
Y 1.2 +0.6 m (4 £2 ft) 2.38m (7.79 ft) 1.51 m (4.97 ft)
Z .09 +0.6 m (3 2 ft) 2.46 m (8.08 ft)
X -0.15 £0.06 m/sec (0.5 +0.2 ft/sec) 1.76 mfsec  (5.77 ft/sec)
Y 0.3 £0.15 m/sec (1 0.5 ft/sec) 0.88 m/sec  (2.89 ft/sec)
4 0.15 £0.06 m/sec (0.5 +0.2 ft/sec) 10.088 m/sec (0.289 ft/sec)

Independent Reference System

The WSMR cinetheodolite system is an independent reference system capable of providing an
independent estimate of the trajectory of a vehicle. At present, WSMR is one of the best sources of
independent data available and its value for this purpose, in most cases, is unquestioned.

The flight-test results presented here indicate that the RAINPAL system can provide accuracies
comparable to those of WSMR, with RAINPAL being superior with regard to velocity determination
due to the use of accelerometer data. The RAINPAL system also appears to have an advantage with
regard to bias errors in the altitude estimates. As a result, it qualifies as an independent reference

_ system that could replace the cinetheodolite system for applications where it-is feasible to install the- --

reference system onboard the test vehicle.

A major advantage of the RAINPAL approach for range instrumentation is that position and
velocity estimates can be easily produced and printed out onboard in real time for immediate com-
parison with the system under test, with little or no dependence on postflight data processing. A
further advantage is the greater operational flexibility of a RAINPAL type system in that (1) it can
be used night or day and in adverse weather conditions, thus increasing available range time, (2) no
human operators are needed for the transponders, (3) no synchronization or communication network
is required, and (4) the ground transponders are lightweight and inexpensive compared to cinetheod-
olites.
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CONCLUSIONS

The WSMR flight-test results represent an important step in demonstrating the feasibility of an
aided inertial navigation system in which a Kalman filter is used to derive corrections to the inertial
state by processing data from external sources. In these tests, the data processed were from a preci-
sion ranging system and from barometric and radar altimeters. As a result of analysis of the flight-
test data presented in the text and observations regarding the operation of the computer software,
the following conclusions were reached.

(1) The WSMR cinetheodolite system is one of the best sources of data presently available for
providing an independent trajectory estimation. However, in this instance, there is evidence that the
accuracy of the WSMR system is of the same order as that of RAINPAL. As a result, the WSMR tests
could provide only an order-of-magnitude assessment of the RAINPAL performance. Estimates of
this performance capability at touchdown, based on the evaluation of the data analysis described in
this report, are presented in table 7 in terms of an estimated standard deviation of the navigation
erTor.

TABLE 7. — STANDARD DEVIATION OF THE NAVIGATION ERROR AT TOUCHDOWN

Component Standard deviation
X 0.9+0.6m (32 ft)
Y 1.240.6 m (4 %2 ft)
z 09+0.6m (3+2ft)
X 0.15 +0.06 m/sec (0.5 +0.2 ft/sec)
Y 0.3 +0.15 m/sec (1 0.5 ft/sec)
z 10.15£0.06 mfsec (0.5 0.2 ft/sec)

(2) Aided inertial systems of the RAINPAL type using precision range system data can provide
navigation accuracies suitable for automatic landing of V/STOL and CTOL aircraft. The navigation
performance of such a system would also meet the current requirements for the SSV.

(3) The RAINPAL system could be operated as an independent reference against which other
navigation systems could be evaluated. Using a hardware improved ACPRS or a modern version of
this system, the RAINPAL system should produce more accurate position and velocity estimates
than the WSMR cinetheodolite system.

(4) One of the more significant conclusions resulting from the flight tests was that an effective
square-root form of the Kalman filter has been demonstrated. This form incorporates an efficient
method of handling random forcing functions and overcomes a major problem with many Kalman
filter implementations in the past.
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(5) The data-start procedure used to initialize the Kalman filter without prior knowledge of
position or velocity (using only external measurement data) proved reliable and sufficiently accurate
that rapid filter convergence to small estimation errors always occurred.

(6) The “free inertial” performance of the experimental inertial portion of the system operat-
ing in a runway coordinate system was shown to be at least equal to that of the commercial LTN-51
inertial navigation system. Subsequent hardware improvements and flight tests indicate that the per-
formance has been much improved over that shown here. Even so, the present results show that, when
aided with external precision range system measurements, the RAINPAL performance (after the
Kalman filter initialization phase is completed) approaches the touchdown performance shown in
fig. 10 a majority of the time throughout the entire landing approach.

(7) Use of the Kalman filter to estimate the barometric altimeter bias is an effective method
for removing transients in the vertical (Z) position estimate which results from overflying ACPRS
transponders and also from switching the filter data source from barometric to radar altimeter. Since
the transients occurred at low altitude, barometric altimeter bias estimation would be an important
consideration when all-weather landing operations are involved.

(8) Based on a limited number of simulation runs, the simulation program developed in sup-
port of the RAINPAL program and_reported in references 1 and 2 produces results consistent with
the flight results to a satisfactory degree.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, April 17, 1973
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