NASA TECHNICAL NOTE

NASA TN D-7406

CASE FILE Copy

TECHNIQUE FOR PREDICTING HIGH-FREQUENCY STABILITY CHARACTERISTICS OF GASEOUS-PROPELLANT COMBUSTORS

by Richard J. Priem and Jefferson Y. S. Yang Lewis Research Center Cleveland, Ohio 44135

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • OCTOBER 1973

1. Report No. NASA TN D-7406	2. Government Accessi	on No.	3. Recipient's Catalog	No.
4. Title and Subtitle TECHNIQUE FOR PREDICTING	HIGH-FREQUE	NCY STABILITY	5. Report Date October 1	973
CHARACTERISTICS OF GASEO	US-PROPELLAN	T COMBUSTORS	6. Performing Organiz	ation Code
7. Author(s) Richard J. Priem and Jefferson	Y. S. Yang		8. Performing Organiz E -7473	ation Report No.
9. Performing Organization Name and Address	<u>,</u>		10. Work Unit No. 502-04	
Lewis Research Center National Aeronautics and Space	Administration	· .	11. Contract or Grant	No.
Cleveland Ohio 44135		Ļ		· · · · · · · · · · · · · · · · · · ·
12. Sponsoring Agency Name and Address			Technical No	nd Period Covered
Washington, D. C. 20546	Administration		14. Sponsoring Agency	Code
A technique for predicting the st tion system is developed based injector and the oscillating chan meter approach for the flow elec- bustion chamber. The injector lations with a delay time. Freq combustor design and operating on stability. Changes in oxidize than a similar change in fuel pa used to make these calculations	tability character on a model that a mber pressure. ments in the inje flow oscillations uency and decay parameters to d er design parame rameters. A con is given in an ap	ristics of a gaseous ssumes coupling be The theoretical mo ction system plus v are coupled to the (or growth) rates a emonstrate the infl ters had a much la mplete description opendix.	propellant rock etween the flow f del uses a lump vave dynamics in chamber pressu are calculated fo uence of various rger influence o of the computer	ket combus- through the ed para- in the com- ure oscil- r various s parameters n stability program
17. Key Words (Suggested by Author(s)) Combustion stability Gaseous propellant combustors		18. Distribution Statement Unclassified - u	nlimited	
Theoretical model				
19. Security Classif. (of this report) Unclassified	20. Security Classif. (o Unclassi	f this page) fied	21. No. of Pages 39	22. Price* Domestic, \$3.00 Foreign, \$5.50

 * For sale by the National Technical Information Service, Springfield, Virginia 22151

TECHNIQUE FOR PREDICTING HIGH-FREQUENCY STABILITY CHARACTERISTICS OF GASEOUS-PROPELLANT COMBUSTORS by Richard J. Priem and Jefferson Y. S. Yang* Lewis Research Center

SUMMARY

A technique for predicting the stability characteristics of gaseous-propellant combustors is developed based on a model which assumes that the system is driven by coupling between the flow through the injector and the oscillating chamber pressure. The theoretical model uses a lumped parameter approach for the flow elements in the injection system plus wave dynamics in the combustion chamber. Stability characteristics (frequency and decay or growth rates) were calculated for various combustor design and operating conditions to demonstrate the influence of various parameters on stability. These results show that the stability of a given combustor is determined by the oxidant to fuel mixture ratio and that design changes in the oxidizer side of the system have a much larger influence on stability than similar changes in the fuel system.

INTRODUCTION

Recent interest by NASA in using hydrogen-oxygen thrusters for the Space Shuttle attitude control propulsion system (ACPS) has resulted in an extensive technology program. In this program (ref. 1) the gas/gas feed system received the greatest amount of attention and technology effort. The gas/gas feed system offers the advantages of versatility, flexibility, and light weight and the ability to be developed into a reliable high performance, fully reusable system with excellent thruster pulsing performance (ref. 2). To achieve the desired reliability and reusability will require that the system be designed, tested, and proven to have the same ''dynamic'' stability required for the Space Shuttle main engines (SSME) in the Space Shuttle Orbiter (ref. 3).

*Summer Faculty Fellow at the Lewis Research Center in 1971 and 1972; Assistant Professor of Engineering, Pacific Lutheran University, Tacoma, Washington.

For liquid/liquid and gas/liquid feed systems, as used in the SSME, several analytical models (refs. 4 to 7) are available for predicting combustor stability characteristics. These models have been used extensively in engine development programs to ensure that preliminary designs had the desired stability. The object of the program reported herein is to provide an analytical model for gas/gas rockets to predict stability characteristics. The analytical model of reference 6 predicts that gaseous flow variations through the injector are responsible for many of the stability characteristics observed in gas/liquid injectors. Therefore, this model was used as the basis for an all gaseous-propellant system.

The lumped-element model (ref. 6) for the dynamic flow characteristics of the gaseous injector was used in this investigation. Since dynamic stability (ability to damp a high amplitude disturbance in a finite period of time) would be required of any engine using gas/gas injection, the technique of solving for a neutral stability design point as used in references 5 to 6 was not considered adequate. Therefore, the analytical model was set up to calculate the frequency and decay rate (or growth rate if the engine is inherently unstable) for a specific combustor design and operating condition. This allows the designer to calculate the decay rate for his combustor to ensure that it meets the requirements for a ''dynamically'' stable engine.

After the analytical model was developed it was used to calculate the stability characteristics of a "standard" engine that might be used to meet the requirements for an ACPS thruster. Calculations were also performed for various perturbations of combustor design and operating parameters to demonstrate the usefulness of the model and the sensitivity of the stability characteristics to these parameters. To enable others to use the analytical model a complete listing of the computer program used to make the calculations, along with a description of the input and output and a sample calculation, is presented in the appendixes.

SYMBOLS

A _o	injector orifice area
A _t	nozzle throat area
а	chamber speed of sound
B ₁ , B ₂	eqs. 15(a) and (b)
С	characterizes mass 'capacitance time'' of injector dome (eq. 10(a))
с _d	injector orifice coefficient
C*	nozzle throat choked speed of sound

G _N	nozzle acoustic admittance, see eq. (16)
g	gravitational constant
I	characterizes flow ''inductance'' of injector duct (eq. 10(c))
J _n	n th order Bessel function
К	eq. (17)
L	length
l	longitudinal wave mode number, $l = 0, 1, 2$, etc.
Μ	chamber Mach number
M _w	molecular weight
m,n	transverse wave mode numbers, $m = 1.84$, 5.33, 8.53, etc. for $n = 1$; m = 3.05, 6.70, etc. for $n = 2$
Nb	propellant burning response, see eq. (19)
Nc	chamber flow response, see eq. (18)
N _{inj}	injector flow response, see eq. (9)
O/F	oxidizer to fuel flow ratio
Р	pressure
P _{choke}	dome pressure for choked flow as defined in eq. (3)
R	characterizes flow "conductance" of injector orifice (eq. 10(b))
R _c	chamber radius
R _o	universal gas constant
r	chamber radial direction
S	complex frequency, $\alpha + i\omega$
Т	total temperature of propellant
t	time
v _d	dome volume of propellant
V _z	chamber axial velocity
W	mass flow rate of propellant
w _N	mass flow rate through nozzle
w _t	total mass flow rate
Z	chamber axial direction

3

.

•

•

- α oscillation growth rate or decay rate if negative
- γ ratio of specific heats
- $\eta_{\mathbf{C}}^*$ C^{*} efficiency
- θ chamber tangential direction

 ρ density

- τ delay time
- ω angular frequency
- ω_0 natural frequency

Subscripts:

- d dome
- c chamber
- o orifice

Superscripts:

- _ mean
- ' perturbed, X \overline{X}

THEORY

The analytical model treats the rocket as a system consisting of the injector, combustion chamber, and a combustion region with the appropriate boundary and compatibility conditions at the interface of the various regions. The flow in each region responds to an impressed acoustic pressure oscillation originating in the combustion chamber. These flow responses are influenced by the geometrical and gas dynamic conditions in the injector and combustion chamber. All dependent variables are written as the sum of a constant mean term and a small magnitude term that is harmonic in time. All governing equations are thereby linearized by this small perturbation technique.

Injector

The flow response in the injector is based on the analysis of Feiler and Heidmann (ref. 6) with modifications to include compressible flow through the injector orifices. A schematic of the injector with its various elements is shown in figure 1. All the dimensions of the various elements in the injector are considered to be small compared to the

wavelength of the oscillations. This permits a lumped-parameter treatment of the various elements in the injector.

Propellant Supply Line and Dome

A continuous flow of propellant to the supply dome is assumed. Since the flow is compressible and isentropic, pressure oscillations will affect the instantaneous total mass in the dome so that the dome acts as a capacitor for the flow. Perturbing the dome total mass balance, we get

$$\frac{\overline{\rho}_{d}V_{d}}{\gamma \overline{P}_{d}}sP'_{d} = -W'$$
(1)

The dome mean pressure \overline{P}_d is determined by combining the mean pressure drop across the injector orifice with the mean chamber pressure:

$$\overline{W} = A_{o}C_{d}\overline{P}_{d} \sqrt{\frac{2g\gamma}{\gamma - 1}} \frac{M_{w}}{R_{o}\overline{T}} \left[\left(\frac{\overline{P}_{o}}{\overline{P}_{d}} \right)^{2/\gamma} - \left(\frac{\overline{P}_{o}}{\overline{P}_{d}} \right)^{(\gamma + 1)/\gamma} \right]$$
(2)

and \overline{P}_d is solved using a curve-fitting technique and $\overline{P}_o = \overline{P}_c$.

For certain chamber pressures and propellant flow rates the flow may become choked. The dome pressure for choked flow is then given by

$$\overline{P}_{choke} = \frac{\overline{P}_{c}}{\left(\frac{2}{\gamma+1}\right)^{\gamma/\gamma-1}}$$
(3)

If the flow is actually choked for the given flow rate \overline{W} , the dome pressure is given by

$$\overline{\overline{P}}_{d} = \frac{\overline{W}}{A_{o}C_{d} \sqrt{\frac{2\gamma g}{\gamma - 1} \frac{M_{w}}{R_{o}\overline{\overline{T}}} \left(\frac{\overline{P}_{c}}{\overline{P}_{choke}}\right)^{2/\gamma} - \left(\frac{\overline{P}_{c}}{\overline{P}_{choke}}\right)^{(\gamma+1)/\gamma}}$$
(4)

The dome gas density is described by the perfect gas equation

$$\overline{\rho}_{d} = \frac{\overline{P}_{d}}{R_{o}\overline{T}/M_{w}}$$
(5)

Injector Flow Duct and Orifice

With a short length duct the flow can be assumed incompressible with uniform mean pressure within the duct. The perturbed momentum equation is used to obtain the pressure drop across the duct:

$$\mathbf{P}_{\mathbf{o}}' - \mathbf{P}_{\mathbf{c}}' = \frac{\mathbf{L}_{\mathbf{o}}}{\mathbf{A}_{\mathbf{o}}g} \mathbf{sW}'$$
(6)

To obtain the flow perturbation through the injector produced by the pressure perturbations on either side of the orifice the compressible orifice flow equation (2) is perturbed to obtain

$$\left\{\frac{1}{\gamma} - \frac{\frac{\gamma - 1}{2\gamma}}{\overline{\mathbf{p}_{c}^{(1-\gamma)/\gamma}\left[\overline{\mathbf{p}_{d}^{(\gamma-1)/\gamma}} - \overline{\mathbf{p}_{c}^{(\gamma-1)/\gamma}}\right]}\right\} \frac{\mathbf{P}_{o}'}{\overline{\mathbf{p}}_{c}} + \left\{\frac{\frac{\gamma - 1}{2\gamma}}{\overline{\mathbf{p}_{d}^{(1-\gamma)/\gamma}\left[\overline{\mathbf{p}_{d}^{(\gamma-1)/\gamma}} - \overline{\mathbf{p}_{c}^{(\gamma-1)/\gamma}}\right]}\right\} \frac{\mathbf{P}_{d}'}{\overline{\mathbf{p}}_{d}} = \frac{\mathbf{w}'}{\overline{\mathbf{w}}} (7)$$

Injector Flow Response

The flow oscillation of the injector system is a function of the pressure oscillation in the combustion chamber. This function is expressed as an admittance as given by

ı.

$$N_{inj} = \frac{W'/\overline{W}}{P_c/\overline{P}_c} |_{injector \ exit}$$
(8)

Substitution of equations (1), (6), and (7) into equation (8) gives

$$N_{inj} = -\frac{Cs}{1 + CRs + CIs^2}$$
(9)

$$C = -\frac{\overline{\rho}_{d} V_{d}}{\gamma \overline{W}} \begin{cases} \frac{1}{\gamma} + \frac{\gamma - 1}{2\gamma} \left[\frac{1}{1 - \overline{P}_{c}^{(1-\gamma)/\gamma} \overline{P}_{d}^{(\gamma-1)/\gamma}} \right] \\ \frac{\gamma - 1}{2\gamma} \left[\frac{1}{1 - \overline{P}_{c}^{(\gamma-1)/\gamma} \overline{P}_{d}^{(1-\gamma)/\gamma}} \right] \end{cases}$$
(10a)
$$R = -\frac{1}{\frac{1}{\gamma} + \frac{\gamma - 1}{2\gamma} \left[\frac{1}{1 - \overline{P}_{c}^{(1-\gamma)/\gamma} \overline{P}_{d}^{(\gamma-1)/\gamma}} \right] }$$
(10b)
$$\overline{W}_{L}$$

$$I = \frac{\overline{W}L_{o}}{\overline{P}_{c}A_{o}g}$$
(10c)

The real part of N_{inj} indicates the degree to which the flow responds in phase with the impressed pressure oscillation. The imaginary part of N_{inj} indicates the amount of flow oscillation out of phase with the impressed pressure oscillation.

Combustor Chamber

The mean flow in the combustion chamber is assumed to be uniform, onedimensional, and inviscid. The gas in the combustion chamber is assumed to have the properties associated with the products of combustion for the mixture ratio being metered to the chamber. The gas properties (γ , M_w , and C^*) as functions of mixture ratio were obtained from the tables for hydrogen-oxygen propellants in reference 8. The mean chamber flow conditions were then calculated from the following: Pressure:

$$\overline{P}_{c} = \frac{C^* W_t \eta_C^*}{A_t g}$$
(11a)

Speed of sound:

$$a = \gamma C^* \sqrt{\left(\frac{2}{\gamma+1}\right)^{(\gamma+1)/(\gamma-1)}}$$
(11b)

Density:

$$\overline{\rho}_{c} = \frac{\gamma \overline{P}_{c}g}{a^{2}}$$
(11c)

Mach number:

$$M = \frac{W_t}{\overline{\rho}_c a \pi R_c^2}$$
(11d)

The natural frequency of the chamber was calculated assuming hard walls as follows:

$$\omega_{\rm o} = \frac{\rm a}{\rm R_{\rm c}} \sqrt{\rm m^2 + \left(\frac{\pi \rm R_{\rm c} l}{\rm L_{\rm c}}\right)^2} \tag{12}$$

The three dimensional perturbed pressure and velocity fields in the chamber have previously been determined by Priem and Rice (ref. 9). With ω replaced by s/i,

١

$$\frac{\mathbf{P}_{c}}{\overline{\mathbf{P}}_{c}} = -\gamma \left[\mathbf{J}_{n} (\mathbf{m}\mathbf{r}) e^{\mathbf{i}\mathbf{n}\theta} e^{\mathbf{s}\mathbf{t}} \right] \left[s \left(e^{\mathbf{B}_{1}\mathbf{z}} + \mathbf{K}e^{\mathbf{B}_{2}\mathbf{z}} \right) + \mathbf{M} \left(\mathbf{B}_{1}e^{\mathbf{B}_{1}\mathbf{z}} + \mathbf{B}_{2}\mathbf{K}e^{\mathbf{B}_{2}\mathbf{z}} \right) \right]$$
(13)

$$\frac{\mathbf{v}_{z}'}{\mathbf{a}} = \mathbf{J}_{n} (\mathbf{m}\mathbf{r})\mathbf{e}^{\mathbf{i}\mathbf{n}\theta} \mathbf{e}^{\mathbf{s}\mathbf{t}} \left(\mathbf{B}_{1}\mathbf{e}^{\mathbf{B}\mathbf{1}^{\mathbf{Z}}} + \mathbf{B}_{2}\mathbf{K}\mathbf{e}^{\mathbf{B}\mathbf{2}^{\mathbf{Z}}} \right)$$
(14)

where

$$B_{1} = \frac{sM + \sqrt{(sM)^{2} + (1 - M^{2})(m^{2} + s^{2})}}{1 - M^{2}}$$
(15a)

$$B_{2} = \frac{sM - \sqrt{(sM)^{2} + (1 - M^{2})(m^{2} + s^{2})}}{1 - M^{2}}$$
(15b)

and v'_z is the perturbed axial velocity. A constant K is determined from the boundary conditions as follows:

$$G_{N} = \underbrace{\overline{W'P'}}_{\text{mozzle}} = \left(\frac{1}{\gamma} + \frac{v_{z}'}{MP'_{c}}\right)_{z=0}$$
(16)

then

$$K = -\frac{B_{1}\left(1 - M^{2} + \gamma G_{N}M^{2}\right) + sM(\gamma G_{N} - 1)}{B_{2}\left(1 - M^{2} + \gamma G_{N}M^{2}\right) + sM(\gamma G_{N} - 1)}$$
(17)

The flow perturbation response at the injector end of the chamber $(z = -L_c)$ can then be written as

$$N_{c} = \frac{W'\overline{P}}{\overline{W}P'}\Big|_{inj} = \frac{1}{\gamma} - \frac{B_{1}e^{-B_{1}L_{c}} + B_{2}Ke^{-B_{2}L_{c}}}{\gamma M^{2} \left(B_{1}e^{-B_{1}L_{c}} + B_{2}Ke^{-B_{2}L_{c}}\right) + \gamma sM \left(e^{-B_{1}L_{c}} + Ke^{-B_{2}L_{c}}\right)}$$
(18)

This flow perturbation response must be matched to the response produced by the injector-combustion process combination.

Combustion Process

The burning process which embodies the effects of propellant mixing and chemical reaction is assumed to be characterized by delay times τ for the fuel and oxidizer. It is also assumed that the burning process occurs in a very thin region (relative to the length of the chamber) immediately downstream of the injector.

The propellant burning response N_b is assumed to be the sum of the oxidizer and fuel response functions. The individual oxidizer and fuel responses are weighted by their fractional mass flow rates with a delay time to obtain the following:

$$N_{b} = \frac{1}{\overline{W}_{t}} \left(\overline{W}N_{inj} e^{-\tau S} \right)_{oxidizer} + \frac{1}{\overline{W}_{t}} \left(\overline{W}N_{inj} e^{-\tau S} \right)_{fuel}$$
(19)

Matching the propellant burning response function with the chamber response function produces the following boundary condition for the chamber-injector interface:

$$N_{b} - N_{c} = 0 \tag{20}$$

Equations (9) and (18) to (20) are solved together to obtain the chamber and injector flow responses along with the complex frequency. The imaginary part of the complex frequency describes the period of oscillation and the real part describes the damping rate. A positive value for the real part of the complex frequency means the system is spontaneously unstable and the oscillations will grow in amplitude with time.

Numerical Solution

The flow chart for the computer program to calculate stability is shown in figure 2. The program listing, the program input formats, and a sample calculation are given in appendixes A to C. The solution procedure is to first determine the mean chamber conditions and to test if the injector flows are choked. A guessed value of the complex frequency s is then used to initiate an iterative scheme to converge on a consistent s which satisfies the compatibility conditions of equation (20). The iterative process reduces the error between injector and chamber flow responses, which is the left side of equation (20), to zero by Taylor's formula for two variables.

For any given engine configuration and flow condition, there exist multiple solutions of the complex frequency s. These solutions can be determined from a table of flow response errors as functions of a range of s values. The lowest error values on the map will be at or near a solution. This point can be used as the assumed frequency to initiate the iterations or to check a solution. The quandrants on the complex plane in which the errors lie are also calculated as an additional check on the existence of a solution at the lowest point. A sample error map is tabulated in appendix C for frequencies between 51 000 and 90 000 radians per second and growth rates of 750 to -650 reciprical seconds.

ANALYTICAL RESULTS

To examine the influence of injector and combustor parameters on stability, a base engine about which a parametric study could be performed was established. For the base engine it was assumed that the physical dimensions and mass flow rates would be representative of engines tested in the Space Shuttle attitude control propulsion system (ACPS) technology program. It was also assumed that the engine would have neutral stability (a disturbance would neither grow or decay) and that the oxidizer and fuel flow oscillations through the injector would be 180[°] out of phase with the chamber pressure oscillations. Furthermore, it was assumed that the ratio of the oxidizer to fuel flow oscillation was the same as the ratio of the oxygen to fuel flow rate. It was also assumed that the delay times of the fuel and oxidizer corresponded to a half period of the oscillations.

TABLE I. - STANDARD ENGINE

Length, L _c , ft	0.5
Radius, R, ft	0.1575
Nozzle throat area, A_{+} , ft ²	0.0185
Nozzle throat choked speed of sound efficiency, $\eta_{C}*$	1.0
Nozzle admittance, G _n	0.9166 + 0.0 i
Pressure wave numbers:	
For $n = 0$	0
For $m = 1.84$	1
For $l = 0$	0
Standard growth rate, α , 1/sec	0.0
Standard angular frequency, ω , Hz	9950
Standard chamber response, N	0.9174 + 0.0 i

(a)	Combustion	chamber
-----	------------	---------

ł	b)	Inj	ector
---	----	-----	-------

	Oxidizer	Fuel
Dome volume, V _d , ft ³	0.0036574	0.0024363
Orifice length, L_0 , ft	0.00027833	0.0098092
Orifice area, A_0 , ft^2	0.0019514	0.0030957
Orifice coefficient, C _d	1.0	1.0
Mass flow rate, \overline{W} , lb/sec	2.658	0.505
Specific heat ratio, γ	1.36	1.41
Temperature per molecular weight, T/M_w , ^O R/lb	16.875	393.0
Combustion delay time, $ au$, sec	0.000050255	0.000050255

The physical and gas dynamical properties of the standard engine are shown in table I. Additional information on the standard engine can be found in the sample calculation in appendix C.

Stability Characteristics of Standard Engine

The stability of the standard engine operating at various fuel and oxidizer flow rates is shown in figure 3(a). The lines of constant growth rates (α/ω , fraction/cycle) originate at the origin of the plot and correspond to constant values of O/F (oxidant flow rate/fuel flow rate). Examining the equations that are used in the solutions reveals that flow rates can be eliminated in the equations by dividing by total flow rate and converting the equations to O/F. Therefore, the engine O/F uniquely defines the stability of an engine, independent of flow rates, for fixed values of the other parameters. Stability of the standard engine as a function of O/F is shown in figure 3(b). At very low and high mixture ratios the engine is stable. Between a mixture ratio of 0.35 and 5.26 the engine is unstable. A growth rate of 0.1 fraction per cycle is very unstable as an oscillation with an amplitude of 1 percent of chamber pressure would grow to an amplitude of 100 percent in 48 cycles or 5 milliseconds.

At the very low O/F the fuel side of the injector is operating in the choked flow regime. Therefore, it does not respond to the pressure oscillations. The oxidizer side of the injector is operating at a very low injector pressure drop to chamber pressure ratio, which results in a large flow response, but the fraction of total propellant flow that is being oscillated is small so the engine is stable. At the high O/F ratio the opposite is true with the oxidizer flow being choked and the fuel only being a small fraction of the total flow. In the intermediate O/F region both the fuel and oxidizer respond to a pressure oscillation with sufficient magnitude to make the engine unstable.

Influence of Design Parameters on Stability

To demonstrate the effect of the various design variables on stability, calculations to determine the growth or decay rate of the first transverse mode (n = 1, m = 1. 84, and l = 0) were made in which each design variable was individually increased and decreased about the value it had in the standard engine. The results are plotted in terms of growth rate as a function of the oxidant to fuel flow ratio (O/F) in figure 4. The range of each variable was arbitrarily selected to represent a reasonable range over which the design might be changed.

The influence of the chamber radius and nozzle throat area is shown in figures 4(a) and (b). Increasing either the chamber radius or throat area significantly improved stability (curves are lower and less area under the curves). The reasons for the improved stability with these two variables are entirely different. The change in chamber radius changed the frequency of the oscillation with a resultant detuning of the system. A nozzle throat area increase decreased the chamber pressure and as a result increased the ratio of injector pressure drop to chamber pressure, thereby decoupling the injector flow from the chamber pressure oscillations.

The influence of changes in oxidizer injector length, dome volume, and orifice area on stability is shown in figures 4(c), (e), and (g). The stability at high O/F ratios was not influenced by changing any of the oxidizer variables. This is because at high O/F's the oxidizer flow is choked and, therefore, does not respond to any pressure oscillations; therefore, the oxidizer variables are not important in stability under these conditions. Increasing the oxidizer injector length to 0.03 feet made the engine stable over the entire mixture ratio. This is because the high inertial effect of a long orifice prevents the oxygen flow from responding to a pressure oscillation. Decreasing the oxidizer orifice area had a similar effect. Decreasing the oxidizer dome volume improved stability by reducing the reservoir that stores the propellant when the flow oscillates.

The influence of changes in the fuel variables are shown in figures 4(d), (f), and (h). The fuel variables did not influence stability at the low O/F ratios because in this region the fuel flow is choked and does not respond to any pressure oscillations; thus, the fuel variables are not important under these conditions. At high O/F ratios the fuel side variables influenced stability in a manner similar to that described previously for the oxidizer side; however, the influence of the fuel variables on stability was much less than that observed with the oxidizer variables.

Increasing the fuel and oxidizer flow properties (ratio of temperature to molecular weight) improved stability in a manner similar to those described previously for the injector (figs. 4(i) and (j)). Fuel properties had no influence on stability at the low O/F's, and the oxidizer had no influence at high O/F's. Increasing the temperature over molecular weight ratio improved stability by increasing the injector pressure drop, thereby decreasing the flow oscillations that could be produced by a given pressure oscillation. Again, changing the oxidant properties produced a larger influence on stability than did the fuel property changes.

The influence of the oxidizer and fuel delay times on stability is shown in figures 4(k) and (1). Decreasing the oxidizer delay time to 3×10^{-5} second (corresponding to burning in 0.3 in.) produced a very stable engine over the entire O/F region. Increasing the oxidizer delay time produced a stable operating region from an O/F of 0.8 to 5. Again, a change in oxidizer delay time did not influence stability at the high O/F ratios. Changing the fuel delay time had a similar influence on stability as the oxidizer delay time but produced a much smaller change in stability.

Looking at all the parameters together we see that the standard engine could be made very stable by increasing the chamber radius, throat area, oxidizer injector length, or reducing the oxidizer orifice area and delay time. Of these, the changes in throat area and orifice area influence the supply pressure and chamber pressure which might not be satisfactory from the overall systems point of view. Stability, therefore, would be easiest to obtain in this engine by increasing the oxidizer orifice length to 0.05 feet (0.6 in.)and decreasing the delay time by a factor of 2 to 0.000025 second.

SUMMARY OF RESULTS

A technique for predicting the stability characteristics of gaseous propellant combustors has been developed based on a model which assumes that the system is driven by coupling between the flow through the injector and chamber pressure oscillations. The technique was used to calculate the influence of various combustor design and operating parameters on stability. The results of these calculations may be summarized as follows:

1. The stability of a given combustor was determined by the oxidant to fuel mixture ratio for any fuel or oxidant flow rate.

2. Changing design parameters in the oxidizer side of the injector influences the stability characteristics at low oxidant to fuel mixture ratios, while changes in the fuel system influenced the stability characteristics at high oxidant to fuel mixture ratios.

3. Changes in the design of the oxidizer system had a much larger influence on stability than a similar change in the fuel system.

4. Changing the chamber radius or nozzle throat also had a large effect on the stability of a combustor.

5. To obtain maximum stability in a combustor with given propellant flow rates the combustor should have a large chamber radius and throat area. The injector oxidizer orifices should have a small total area, a long length, and should produce a very small delay time between when the oxidizer is injected and burned.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, June 25, 1973,

502-04.

APPENDIX A

COMPUTER LISTINGS

\$IBFTC MAIN REAL LL, MW, LOX, LF, IOX, IFU, MACH, NBR, NBI, NCR, NCI COMPLEX CSROX, CSRF, ISOX, ISF, TAUSOX, TAUSF COMPLEX NC(3), SZ, SZHZ, GNOZ, SS, SSAVE COMPLEX S(3),NB(3),NBOX,NBF,ERR(3),ESAVE1,ESAVE2 INTEGER WHICH, FRCUT, FICUT, REGION DIMENSION EI(3), ER(3) DIMENSION F(200), T(15)DIMENSION Z1(26),Z2(26),IZ1(26),IZ2(26),Z3(26),Z4(26),IZ3(26) COMMON/BF/F COMMON/ERM/FRMAX, FIMAX, FRMIN, FIMIN, FRCUT, FICUT, IOX, ROX, COX, *TAUOX,CFU,RFU,IFU,TAUF,IFLAGO,IFLAGF,WF,WOX COMMON/WH/ R, AT, TOMOX, TOMF, AOX, AF, LOX, LF, VOX, VF VV,LL,AA,GNR,GNI COMMON /SCLL/VZ,AMOR,AMV,GC, COMMON /AMAIN/PI,GCON,GASC,PC,WTOT READ (5,150) WMAX, WMIN, GAMOX, CORFOX, AOX, LOX READ(5,149) VOX, TAUOX, TOMOX, IP, DELX READ (5,150) WFMAX, WFMIN, GAMF, CORFF, AF, LF READ (5,149) VF, TAUF, TOMF, MAP READ(5,151) LL,R,AT,CSTREF, GNR,GNI,SM,SL READ(5,174) WOSTD,WFSTD,DW,DWF IF (IP.EQ.0) READ (5,175) FRINP, FIINP, INPUTF IF(IP.NE.0)READ (5,174) (21(I),22(I),23(I),24(I),I21(I), *IZ2(I),IZ3(I),I=1,IP) IF (MAP.NE.0) READ (5,174) FRMAX, FRMIN, FIMAX, FIMIN, FRCUT, FICUT IF (IP.NE.0) GO TO 1040 IP=1 Z3(1) = FRINPZ4(1) = FIINPIZ1(1) = 0IZ3(1) = 11040 DO 1000 MN=1, IP IM=MN-1 IF (MN.EQ.1) IM=1 CALL RSTRP(MN, IZ1(IM)) 1001 PMAX=Z1(MN) PMIN=Z2(MN) FRINP=Z3(MN)FIINP=Z4(MN) WHICH=IZ1(MN) NP = IZ2(MN)INPUTF=IZ3(MN) GNOZ=CMPLX (GNR, GNI) WRITE(6,152) WRITE (6,171) WRITE(6,153) WRITE(6,154) WRITE (6,155) WMAX, WMIN, GAMOX, CORFOX, AOX, LOX, VOX, TAUOX, TOMOX, DW, *WOSTD WRITE(6,156) WRITE(6,154) WRITE(6,155) WFMAX,WFMIN,GAMF,CORFF,AF,LF,VF,TAUF,TOMF,DWF,WFSTD

	WRITE(6,157)
	WRITE(6,158)
	WRITE (6,155) LL.R.AT.CSTREF.SM.SL.GNOZ.IP
	WRITE(6,710)
	WRITE (6,155) DELY PMAX PMIN WHICH ND MAP
	WRITE(6,730)
	WRITE(6, 155) FOIND FIIND INDUME
	ETIND-ETIND\$2 \$DT
	FIINF-FIINF"Z."PI WDIME /6 170)
	WRITE $(0, 1/2)$
	IF $(NP \cdot EQ \cdot I)$ GO TO 401
	DP=(PMAX-PMIN)/FLOAT(NP-1)
401	DO 500 $JP=1,NP$
	REGION=0
	IF (WHICH.EQ.0) GO TO 440
	CALL WHICHP(WHICH, JP, PMAX, DP)
440	REGION=REGION+1
	WOX=WOSTD
	GO TO (400,410,410,400), REGION
400	NO=IFIX (ABS (WOSTD-WMIN) /DW) +1
	GO TO 415
410	NO=IFIX (ABS (WOSTD-WMAX) /DW) +1
415	IF (REGION, LE, 2) GO TO 3
_	NO=NO-1
	WOX=WOSTD-DW
	TF (REGION, EO, 3) WOX=WOSTD+DW
3	DO 70 M=1.NO
5	CO TO (420 430 420 430) PEGION
420	NF = TFTX (ABS (WFS TD - WFMAX) / DWF) + 1
	CO = TO = 250
130	
250	ME = ME CADO (ME DID = WEMAA) / DWE / TI WE = WE CAD
250	TE (PEGION EO 1 OP PEGION EO 3) CO TO 211
	NF-NE_1
211	$W_{\Gamma} = W_{\Gamma} S_{\Gamma} D = D W_{\Gamma}$
211	DO = 1
	WTOT= WOX+WF
	OF=WOX/WF
	FRACT = 1./(OF+1.)
	CALL CHMBR (FRACT, CSTR, GC, MW)
	PC= CSTR*WTOT/(AT*GCON)*CSTREF
	PCSI=PC/144.
	B = (GC+1.)/(GC-1.)
	A= GC*SQRT((2./(GC+1.))**B)*CSTR
	FG= A*SQRT(SM**2.+(SL*PI*R/LL)**2.)/R
	FREQN=FG/(2.*PI)
	ALFAZ=0.
	FREQZ=FG
	S(1) = CMPLX(0, FG)
	· · · · · · · · · ·

16

.

```
IF(INPUTF.EQ.1)S(1)=CMPLX(FRINP,FIINP)
      IF (JP.GT.1.OR.I.GT.1) S(1)=SZ
      IF (M.GT.1.AND.I.EQ.1) S(1) = SSAVE
      ALFG=REAL(S(1))
      FG=AIMAG(S(1))
      AA=A*A
      RHOC=GC*PC*GCON/AA
      VZ=WTOT/(PI*RHOC*R**2.)
      VOA=VZ/A
      VV=VZ*VZ
      AMV=AA-VV
      AMOR=AA*(SM/R)**2.
      MACH=VV/AA
      CALL WOP (GAMOX, CORFOX, WOX, AOX, TOMOX, VOX, LOX, COX, ROX, IOX, RHOX,
     *DELPO, IFLAGO, PCHOKO)
      DELPOX=DELPO /144.
      PDOX=(PC+DELPO)/144.
      DPOPCO=DELPO /PC
7
      CALL WOP (GAMF, CORFF, WF, AF, TOMF, VF, LF, CFU, RFU, IFU, RHOF, DELPFU,
     *IFLAGF, PCHOKF)
      DELPF=DELPFU/144.
      PDF = (PC + DELPFU) / 144.
      DPOPCF=DELPFU/PC
      IF (MAP.EQ.1.AND.IM.EO.1) CALL ERMAP
      IM=0
1
      DF=DELX*FG*MACH
      DA=DELX*.1*ALFG
      DAA=10.*DELX
      IF (DAA.GT.DA) DA=DAA
      DO 10 J=1,3
      NBOX=0.
      NBF=0.
      IF(IFLAGO.EQ.1) GO TO 4
      CALL NBS (IOX, ROX, COX, TAUOX, S(J), NBOX, VCTROX, THETAO)
4
      IF(IFLAGF.EQ.1) GO TO 8
      CALL NBS (IFU, RFU, CFU, TAUF, S(J), NBF, VCTRF, THETAF)
8.
      NB(J) = (WOX*NBOX+WF*NBF) / WTOT
      CALL NCS(S(J), NC(J))
      ERR(J) = NB(J) - NC(J)
      IF (CABS (ERR (J)).LE..01) GO TO 50
      ER(J) = REAL(ERR(J))
      EI(J) =AIMAG(ERR(J))
      IF (J-2) 5,6,10
5
      FREQZ=FG+DF
      S(2) = CMPLX(ALFG, FREQZ)
      GO TO 10
6 ·
      ALFAZ=ALFG+DA
      S(3)=CMPLX(ALFAZ,FG)
      FREOZ=FG
10
      CONTINUE
      DERDF = (ER(2) - ER(1))/DF
      DERDA = (ER(3) - ER(1)) / DA
```

	DEIDF=(EI(2)-EI(1))/DF
	DEIDA = (EI(3) - EI(1)) / DA
	ALFAZ = ALFG - (EI(1)/DEIDF - ER(1)/DERDF)/(DEIDA/DEIDF - DERDA/DERDF)
	FBEOZ = FG - (EI(1)/DEIDA - ER(1)/DEBDA)/(DEIDF/DEIDA - DEBDF/DEBDA)
	SZ=CMDLY (ALFAZ FDFOZ)
	$5a - C_{11} = 1$
1 -	$\frac{1}{1} \left(\frac{1}{1} - \frac{3}{3} \right) \left(\frac{1}{1} - \frac{3}{3} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{3}{3} \right) \left(\frac{1}{1} - \frac{3}{3} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{3}{3} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{3}{3} \right) \left(\frac{1}{1} - \frac{3}{3} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{1} \right) = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} - \frac{1}{1}$
1/	WRITE (6,1/3) L,52,5(1),55
	WRITE (6,170) ERR(J),ESAVE2,ESAVE1
	GO TO 55
15	IF(ABS((ALFG-ALFAZ)/ALFAZ).GT02.OR.ABS(ALFG-ALFAZ)
	*.GT.1.) GO TO 9
	IF (ABS((FG-FREQZ)/(FG*MACH)).LE05) GO TO 45
9	FG=FREOZ
	ALFG=ALFAZ
	ESAVE2=EBB (J)
	TF(L, EO, 28) ESAVE = ERP(T)
	$C_{c} = C(1)$
	S(1) = OMDIX(AIEAZ EDEOZ)
	S(1) = CMPLA(ALFA2, FREQ2)
	GO TO I
45	IF (IFLAGO.EQ.1) GO TO 46
	CALL NBS (IOX, ROX, COX, TAUOX, SZ, NBOX, VCTROX, THETAO)
46	IF(IFLAGF.EQ.1) GO TO 47
	CALL NBS(IFU,RFU,CFU,TAUF,SZ,NBF,VCTRF,THETAF)
47	CALL NCS (SZ,NC (J))
	GO TO 51
50	SZ=S(J)
51	CSROX=1./(COX*SZ)
	CSRF=1./(CFU*SZ)
	ISOX=IOX*SZ
	ISF=IFU*SZ
	ATSRF=EAP(TSRF)
	TSIOX=AIMAG (TAUSOX)
	TSIF=AIMAG (TAUSF)
	SZI=AIMAG(SZ)
	HZ=SZI/(2.*PI)
	WOWO=HZ/FREQN
	GROW=REAL (SZ)
	SZHZ=CMPLX(GROW,HZ)
	AOW=GROW/HZ
	IF (L.GE.30) SZ=SSAVE
	IF (LEO.1) SSAVE=SZ
52	WRITE (6.159)
	WRITTE $(6.160)WOX_PDOX_DELPOX_ROX_COX_CSROX_DPOPCO$
	WETE $(6, 161)$ WE DE DELE ANALON CELL CELL CELL
	NATE (VITOI) HE FEFT DEDEE NEOFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOFOF
	WKIIE (0,102) TR(TRIACO NE 1) CO MO 60
	IF (IF LAGU, NE, I) GU TU 63

,

•

•

WRITE (6,720) PCHOKO, DPOPCO GO TO 64 63 WRITE (6,168) IOX, ISOX, XTSROX, TSIOX, NBOX, VCTROX, THETAO 64 IF(IFLAGF.NE.1) GO TO 65 WRITE(6,721) PCHOKF, CPOPCF GO TO 67 65 WRITE (6,169) IFU, ISF, XTSRF, TSIF, NBF, VCTRF, THETAF 67 WRITE (6,163) WRITE (6,164) PCSI, CSTR, A, VOA, OF, NC(J), L WRITE (6,165) SZHZ, FREQN, WOWO, AOW WRITE (6,166) 55 WF=WF+DWF IF (REGION.EO.2.OR.REGION.EO.4) WF=WF-2.*DWF 60 CONTINUE WOX=WOX+DW IF (REGION.EQ.1.OR.REGION.EQ.4)WOX=WOX-2.*DW 70 CONTINUE IF (WMAX.EQ.WMIN.AND.WFMAX.EO.WFMIN) GO TO 500 IF (WMAX.EQ.WOSTD.AND.REGION.EQ.2) GO TO 500 IF (WFMAX.EQ.WFMIN.AND.REGION.EQ.2) GO TO 500 IF (REGION.LT.4) GO TO 440 500 CONTINUE 1000 CONTINUE 149 FORMAT (3F12.5, I12, G12.5, I12) FORMAT (6G12.5) 150 151 FORMAT (7F10.5,F2.0) 152 FORMAT (1H1,5X,23HGAS-GAS STABILITY MODEL) FORMAT (1H0,27HINPUT PARAMETER FOR OXIDANT) 153 154 FORMAT (1H ,1X,5HW MAX,7X,5HW MIN,7X,5HGAMMA,7X,7HORIF CF,5X, *9HORIF AREA, 3X, 6HLENGTH, 6X, 8HDOME VOL, 4X, 3HTAU, 9X, 4HT/MW, *9X,2HDW, 9X,5HW STD) 155 FORMAT(lH ,11G12.5) 156 FORMAT (1H0,24HINPUT PARAMETER FOR FUEL) 157 FORMAT (1H0,18HCHAMBER PARAMETERS) 158 FORMAT (1H ,1X,6HLENGTH,6X,6HRADIUS,6X,8HTHROAT A,4X,6HC* EFF, *6X,6HWAVE M, 6X,6HWAVE L,6X,15HNOZZLE RESPONSE,9X,2HIP) 159 FORMAT (1H0,12X,1HW,11X,6HPD,PSI,6X,9HDEL P,PSI,3X,1HR,11X,1HC, *11X,8HRE(1/CS),4X,8HIM(1/CS),4X,7HDELP/PC) FORMAT (1H ,7HOXIDANT,2X,G12.4,F9.3,3X, F12.3,4G12.4,F12.7) 160 FORMAT (1H ,4HFUEL,5X,G12.4,F9.3,3X,F12.3,4G12.4,F12.7) 161 162 FORMAT (1H0,12X,1HI,11X,6HRE(IS),6X,6HIM(IS),4X,11HE(RE(-T*S)), *2X,10HIM(-TAU*S),3X,8HRE(RESP),4X,8HIM(RESP),4X,9HVCTOR,T=0,3X, *9HTHETA, T=0)163 FORMAT (1H0,12X,6HPC,PSI,6X,2HC*,10X,9HSOUND SPD, 3X,4HMACH,8X, 3HO/F,9X,8HRE(RESP),4X,8HIM(RESP),4X,10HITERATIONS) 164 FORMAT (1H ,7HCHAMBER, 2X,F9.3,3X,7G12.4) F12.4, 2X, 14HFREQUENCY(HZ) =FORMAT(1H0,3X,12HGROWTH RATE=, 165 F10.3,2X,22HNATURAL FREQUENCY(HZ)=, F10.3, 2X, 5HW/WO =, F8.5,*2X,4HA/W=,F10.6) 166 **************

```
168
      FORMAT(lH ,7HOXIDANT,2X,9G12.4)
169
      FORMAT(lH ,4HFUEL,5X,9G12.4)
      FORMAT(1H, 42HERROR IN RESPONSE FUNCTIONS ARE FOR L=30, 2F9.4,
170
     *6H L=29 ,2F9.4,9X,6H L=28 ,2F9.4)
      FORMAT (1H0,43HUNITS USED ARE LB-FT-SEC-DEG R UNLESS NOTED)
171
172
      FORMAT (1H0/1H0/1H0/1H0)
173
      FORMAT(1H, 30HABS(ERROR) DIVERGES.ITERATION=,12,10H CALC'D S=,
     *2F9.2,6H S(1)=,2F9.2,15H PREVIOUS S(1)=,2F9.2)
      FORMAT(4G12.6,312)
174
175
      FORMAT (2F12.6,112)
499
      FORMAT (2F20.10,212)
708
      FORMAT (2110)
      FORMAT (6E12.5)
709
710
      FORMAT(1H0,1X,5HDEL X,8X,4HPMAX,8X,4HPMIN,6X,5HWHICH,8X,2HNP,
     *9X, 3HMAP)
720
      FORMAT(1H, 26HOXIDANT IS CHOKED, PCHOKE=, F12.5, 5X,
     *15HDELP CHOKED/PC=,F12.5)
      FORMAT(1H, 23HFUEL IS CHOKED, PCHOKE=, F12.5, 8X,
721
     *15HDELP CHOKED/PC=,F12.5)
      FORMAT(1H0,1X,21HINITIAL (GROWTH,FREQ),2X,6HINPUTF)
730
      STOP
      END
$IBFTC WO
      SUBROUTINE WOP(GC,C,W,A,T,V,D,AC,AR,AI,RHOD,DELP,IFLAG,PCHOKE)
      COMMON /AMAIN/PI,GCON,GASC,PC,WTOT
      DIMENSION PDKNO(5), WKO(5), TERM1(5), TERM2(5)
      G=GC
      IFLAG=0
      GP=(G+1.)/G
      GTW=2./G
      GM = (G-1.)/G
      GMR = 1./GM
      GR=1./G
      TOM=T
      PCHOKE=PC/((2./(G+1.))**GMR)
      TERMO=(PC/PCHOKE) **GTW
      TERMT=(PC/PCHOKE)**GP
      PCGM=PC**GM
      PCGR=PC**GR
      WCHOKE=A*C*PCHOKE*SQRT(2.*GCON*GMR*(TERMO-TERMT)/(GASC*TOM))
      IF((W-WCHOKE).GT.0.)
                            GO TO 50
      DPD=(PCHOKE-PC)/4.
      PDKNO(1)=PCHOKE
      PDKNO(2)=PCHOKE-DPD
      PDKNO(3) = PDKNO(2) - DPD
      PDKNO(4) = PDKNO(3) - DPD
      PDKNO(5) = PC
      WKO(1) = WCHOKE
      WKO(5) = 0.
      DO 10 I=2,4
      TERMl(I) = (PC/PDKNO(I)) **GTW
      TERM2(I) = (PC/PDKNO(I)) **GP
```

```
WKO(I) = A*C*PDKNO(I)*SQRT(2.*GCON*GMR*(TERM1(I)-TERM2(I))/
      *(GASC*TOM))
10
       CONTINUE
       ONE = (W - WKO(2)) * (W - WKO(3)) * (W - WKO(4)) * (W - WKO(5)) /
      * ( (WKO (1) –WKO (2) ) * (WKO (1) –WKO (3) ) * (WKO (1) –WKO (4) ) * (WKO (1) –WKO (5) ) )
       TWO = (W - WKO(1)) * (W - WKO(3)) * (W - WKO(4)) * (W - WKO(5)) /
      * ( (WKO (2) -WKO (1) ) * (WKO (2) -WKO (3) ) * (WKO (2) -WKO (4) ) * (WKO (2) -WKO (5) ) )
       THR = (W - WKO(1)) * (W - WKO(2)) * (W - WKO(4)) * (W - WKO(5)) /
      * ( (WKO (3) -WKO (1) ) * (WKO (3) -WKO (2) ) * (WKO (3) -WKO (4) ) * (WKO (3) -WKO (5) ) )
       FOR = (W - WKO(1)) * (W - WKO(2)) * (W - WKO(3)) * (W - WKO(5)) /
      * ( (WKO (4) -WKO (1) ) * (WKO (4) -WKO (2) ) * (WKO (4) -WKO (3) ) * (WKO (4) -WKO (5) ) )
       FIV = (W - WKO(1)) * (W - WKO(2)) * (W - WKO(3)) * (W - WKO(4)) /
      * ( (WKO (5) -WKO (1) ) * (WKO (5) -WKO (2) ) * (WKO (5) -WKO (3) ) * (WKO (5) -WKO (4) ) )
       PD=PDKNO(1)*ONE+PDKNO(2)*TWO+PDKNO(3)*THR+PDKNO(4)*FOR+PDKNO(5)*
      *FIV
20
       RHOD=PD/(GASC*TOM)
       DELP=PD-PC
       GMM = (1.-G)/G
       PCGMM=PC**GMM
       PDGMM=PD**GMM
       PDGM=PD**GM
       ALPHA=1./G+GM/2.*1./(1.-PCGMM*PDGM)
       BETA=GM/2.*1./(1.-PCGM*PDGMM)
       AR=-1./ALPHA
       AI=W*D/(GCON*PC*A)
       AC=RHOD*V/(BETA*G*W)
       AC=-AC*ALPHA
       GO TO 60
50
       TERMTH=SQRT (GMR* (TERMO-TERMT) *2.*GCON/(GASC*TOM))
       PD=W/(A*C*TERMTH)
       IFLAG=1
       DELP=PD-PC
60
       RETURN
       END
$IBFTC NB
       SUBROUTINE NBS (AI, AR, AC, TAU, S, NB, VECT, THET)
       COMPLEX S, EXPO, NB, NOTAU
       EXPO=CEXP(-TAU*S)
       NOTAU=-AC*S
                      /(1.+AC*AR*S+AC*AI*S*S)
       NB= NOTAU*EXPO
       VECT=CABS (NOTAU)
       THET=ATAN2(AIMAG(NOTAU), REAL(NOTAU))*180./3.1416
       RETURN
       END
$IBFTC CH
       SUBROUTINE CHMBR(XA,CA,GA,A)
       COMMON /BF/F
       DIMENSION F(200), B(50, 4), T(3), U(3, 3), V(3)
       EQUIVALENCE (F(1), B(1, 1))
       X= XA
       I=0
10
       I = I + 1
```

IF (B(I,1).LT.X) GO TO 10 T(2) = B(I,1)U(2,1) = B(I,2)U(2,2) = B(I,3)U(2,3) = B(I,4)I = I + 1T(3) = B(I,1)U(3,1) = B(I,2)U(3,2) = B(I,3)U(3,3) = B(I,4)I = I - 2T(1) = B(I,1)U(1,1) = B(I,2)U(1,2) = B(I,3)U(1,3) = B(I,4)ZERO = (X-T(2)) * (X-T(3)) / ((T(1)-T(2)) * (T(1)-T(3)))ONE = (X-T(1)) * (X-T(3)) / ((T(2)-T(1)) * (T(2)-T(3)))TWO = (X-T(1)) * (X-T(2)) / ((T(3)-T(1)) * (T(3)-T(2)))DO 20 M=1,3 V(M) = U(1,M) * ZERO + U(2,M) * ONE + U(3,M) * TWO20 CONTINUE CA = V(1)GA = V(2)A= V(3) RETURN END \$IBFTC NS SUBROUTINE NCS(S,NC) COMPLEX EXPT, EXPO, NC, BRAKO, BRAKT COMPLEX S,GN,SQR,XONE,XTWO,D,C,E,XONEL,XTWOL REAL LL COMMON /SCLL/VZ,AMOR,AMV,GC,VV,LL,AA,GNR,GNI GN=CMPLX(GNR,GNI) SQR=CSQRT((VZ*S*VZ*S)+(S*S+AMOR)*AMV)XONE= (VZ*S+SQR)/AMV XTWO= (VZ*S-SQR)/AMV D= AMV+GC*GN*VV E = (GC*GN-1.)*VZ*SC = -(XONE*D+E)/(XTWO*D+E)XONEL=-XONE*LL XTWOL=-XTWO*LL EXPO=CEXP(XONEL) EXPT=CEXP(XTWOL) BRAKO=XONE*EXPO+XTWO*C*EXPT BRAKT=EXPO+C*EXPT NC=1./GC-AA*BRAKO/(GC*VZ*(S*BRAKT+VZ*BRAKO)) RETURN END \$IBFTC BD BLOCK DATA DIMENSION F(200) COMMON /BF/F

COMMON /AMAIN/PI,GCON,GASC,PC,WTOT DATA PI,GCON,GASC/3.1416,32.17,1546./ DATA (F(J),J=1,50)/.004,.006,.008,.01042,.010989,.011628,.012346, A.013158,.014085,.015152,.016396,.017857,.019608,.021739,.024390, B.027778,.032258,.038462,.047619,.062500,.06666667,.071429,.076923, C.083333,.090909,.111111,.142857,.200000,.208333,.217391,.227273, D.238095,.250000,.263158,.277778,.294118,.312500,.333333,.350000, E.400000,.450000,.500000,.550000,.60,.65,.70,.75,.80,.85,.90/ DATA (F(J), J=51,100)/2210. A2516., 2781., 3062., 3124., 3194., 3265., 3345., 3433., 3532., 3641., 3764., B3904.,4064.,4249.,4462.,4712.,5008.,5374.,5867.,5991.,6127.,6277., C6445.,6634.,7089.,7653.,8216.,8261.,8300.,8335.,8363.,8384.,8397., D8402.,8398.,8384.,8358.,8332.,8222.,8077.,7903.,7705.,7491.,7263., E7023.,6773.,6511.,6237.,5947./ DATA (F(J), J=101, 150)/1.3259, 1.3080, 1.2958, 1.2829, 1.2801, A1.2769,1.2734,1.2694,1.2648,1.2594,1.2529,1.2449,1.2350,1.2227, B1.2078,1.1907,1.1727,1.1559,1.1421,1.1321,1.1306,1.1292,1.1280, Cl.1270,1.1261,1.1254,1.1331,1.1650,1.1716,1.1791,1.1876,1.1971, D1.2077, 1.2191, 1.2312, 1.2436, 1.2559, 1.2681, 1.2766, 1.2986, 1.3177, E1.3353,1.3517,1.3661,1.3763,1.3842,1.3893,1.3922,1.3943,1.3966/ DATA (F(J),J=151,200)/ A31.136,30.721,30.318,29.844,29.733,29.612,29.476,29.323,29.151, B28.956,28.731,28.469,28.160,27.789,27.732,26.751,25.984,24.931, C23.430,21.210,20.642,20.020,19.337,18.585,17.750,15.772,13.225, D9.946,9.578,9.203,8.823,8.437,8.046,7.651,7.252,6.852,6.450,6.048, E5.760,5.040,4.480,4.032,3.665,3.360,3.102,2.880,2.688,2.520,2.372, F2.240/ END \$IBFTC RS SUBROUTINE RSTRP(I,J) REAL LL,LOX,LF DIMENSION V(14) COMMON/ERM/FRMAX, FIMAX, FRMIN, FIMIN, FRCUT, FICUT, IOX, ROX, COX, *TAUOX, CFU, RFU, IFU, TAUF, IFLAGO, IFLAGF, WF, WOX COMMON/WH/ R, AT, TOMOX, TOMF, AOX, AF, LOX, LF, VOX, VF COMMON /SCLL/VZ,AMOR,AMV,GC, VV,LL,AA,GNR,GNI IF(I.GT.1) GO TO 5 V(1)=LL V(2) = RV(3)=AT V(4) = TOMOXV(5) = TOMFV(6) = AOXV(7)=AF V(8) = LOXV(9) = LFV(10)=VOX V(11)=VF V(12)=TAUOX V(13)=TAUF RETURN GO TO (11,12,13,14,15,16,17,18,19,20,21,22,23),J

11	LL=V(1)
	RETURN
12	R=V(2)
	RETURN
13	AT=V(3)
	BETURN
14	TOMOX = V(4)
- •	RETURN
15	
10	
16	AOY=V(6)
10	
17	
1/	AF = V(T)
10	
18	
10	RETURN
19	
~ ~	RETURN
20	VOX=V (10)
	RETURN
21	VF=V(11)
	RETURN
22	TAUOX=V (12)
	RETURN
23	TAUF=V(13)
	RETURN
	END
\$IBFT(С WHH
	SUBROUTINE WHICHP(WHICH, JP, PMAX, DP)
	REAL LL,LOX,LF
	INTEGER WHICH
	COMMON /SCLL/VZ, AMOR, AMV, GC, VV, LL, AA, GNR, GNI
	COMMON/ERM/FRMAX, FIMAX, FRMIN, FIMIN, FRCUT, FICUT, IOX, ROX, COX,
ť	TAUOX, CFU, RFU, IFU, TAUF, IFLAGO, IFLAGF, WF, WOX
	COMMON/WH/ R, AT, TOMOX, TOMF, AOX, AF, LOX, LF, VOX, VF
	GO TO (410,411,412,413,414,415,416,417,418,419,420,421,
1	*422),WHICH
410	IF (JP.EO.1) LL=PMAX+DP
	LL=LL-DP
	WRITE (6.480) LL
	GO TO 400
411	TF(JP,EO,I)R = PMAX+DP
	WRTTF (6.481) R
112	$G_{0} = 10$ ± 00
412	$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
	WATTE(0, 402/AI
412	
413	IF (UF, EQ, I) IONOA-FMAATUF
	WRITE (0,483) TUMUA

.

	GO TO 400	
414	IF (JP.EQ.1) TOMF = PMAX+DP	
	TOMF=TOMF-DP	
	WRITE (6.484) TOME	
	CO TO 400	
415	$\frac{1}{10} \frac{1}{10} = $	
415	IF (UP.EQ.I) AUX - FMAATDF	
	WRITE (6,485) AOX	
	GO TO 400	
416	IF(JP.EQ.1)AF =PMAX+DP	
	AF=AF-DP	
	WRITE(6,486)AF	
	GO TO 400	
417	IF(JP, EO, 1)LOX = PMAX+DP	
	LOX = LOX - DP	
	WETTER $(6, 487)$ TOX	
410		
418	IF (JP.LQ.I) LF PMAATDP	
	WRITE (6,488) LF	
4 7 9	GO TO 400	
419	IF(JP.EQ.1)VOX = PMAX+DP	
	VOX=VOX-DP	
	WRITE(6,489)VOX	
	GO TO 400	
420	IF(JP.EQ.1)VF =PMAX+DP	
	VF=VF-DP	•
	WRITE(6,490) VF	
	GO TO 400	
421	IF (JP.EQ.1) TAUOX=PMAX+DP	
	TAUOX=TAUOX-DP	
	WRITE (6.491) TAUOX	
	GO TO 400	
422	TE (TP EO 1) TAUE = PMAX+DP	
766	$\frac{11}{101} \frac{11}{100} \frac{11}{100$	
400	WRITE(0,492)TAUF	
480	FORMAT (IH , ISHCHAMBER LENGTH=,	5X,G11.5)
481	FORMAT(IH, ISHCHAMBER RADIUS=,	5X,G11.5)
482	FORMAT(1H, 19HNOZZLE THROAT AREA=,	5X,G11.5)
483	FORMAT(1H, 20HOXIDANT TEMP/MOL WT=,	5X,G11.5)
484	FORMAT(1H, 20HFUEL TEMP/MOL WT=,	5X,G11.5)
485	FORMAT(1H ,21HOXIDANT ORIFICE AREA=,	5X,G11.5)
486	FORMAT(1H ,18HFUEL ORIFICE AREA=,	5X,Gll.5)
487	FORMAT(1H ,24HOXIDANT INJECTOR LENGTH=,	5X,Gll.5)
488	FORMAT(1H, 21HFUEL INJECTOR LENGTH=,	5X,G11.5)
489	FORMAT(1H, 20HOXIDANT DOME VOLUME=,	5X,G11.5)
490	FORMAT(1H, 17HFUEL DOME VOLUME=,	5X,G11.5)
491	FORMAT (1H , 30HOXIDANT COMBUSTION DELAY TIME=.	5X,G11.5)
492	FORMAT (1H , 27HFUEL COMBUSTION DELAY TIME=.	5X,G11.5)
400	RETURN	
	END	

\$IBFTC MP

,

	SUBROUTINE ERMAP
	REAL LL.IOX.IFU
	INTEGER FROM FICHT OUDD (20.40)
	COMPLEX 5, ND, NC, NDCA, NDF, DAED
	DIMENSION ERR($20,40$), $1R(20)$, $11(40)$
	COMMON /SCLL/V2, AMOR, AMV, GC, VV, LL, AA, GNR, GNI
	COMMON/ERM/FRMAX, FIMAX, FRMIN, FIMIN, FRCUT, FICUT, IOX, ROX, COX,
	*TAUOX,CFU,RFU,IFU,TAUF,IFLAGO,IFLAGF,WF,WOX
	COMMON /AMAIN/PI,GCON,GASC,PC,WTOT
	FR=FRMAX
	DFR=0.
	DFI=0.
	IF (FRCUT.NE.1) DFR= (FRMAX-FRMIN) /FLOAT (FRCUT)
	IF (FICUT.NE.1) DFI= (FIMAX-FIMIN) /FLOAT (FICUT)
	DO 1000 I=1.FRCUT
	FI=FIMAX
	$F(\mathbf{F}) = 0$
	Tr (Triado. EQ. 1) do 10 40
4.0	CALL $NBS(10A, KOA, COA, 1A00A, 3, NB0A, A, B)$
40	IF (IFLAGF.EQ.I) GO TO 80
~ ~	CALL NBS (IFU, RFU, CFU, TAUF, S, NBF, A, B)
80	NB= (WOX*NBOX+WF*NBF) / WTOT
	CALL NCS (S,NC)
	DRESP=NB-NC
	ANGLE=ATAN2 (AIMAG (DRESP), REAL (DRESP))
	IF(ANGLE) 500,510,520
500	IF(ANGLE+PI/2.) 600,601,601
510	QUAD(I,J)=0
	GO TO 90
520	IF(ANGLE-PI/2.)605,605,606
600	OUAD(I,J) = 3
	GO TO 90
601	OUAD(I,J) = 4
	GO TO 90
605	O(IAD(T,J) = 1
000	
606	O(10) (T, T) = 2
000	
90	
90	
1010	
1010	
	TR(1) = FR
	FR=FR-DFR
1000	CONTINUE
	FI=FIMAX
	DO 1020 J=1,FICUT
	TI(J)=FI
	FI=FI-DFI
1020	CONTINUE
	WRITE(6,920)

	WRITE(6,905)					
	DO 1030 J=1,FICUT	1				
	WRITE(6,910) TI(J	J), (ERR(I,J), QU	JAD(I,J), I=1	FRCUT)	
1030	CONTINUE				-	
	WRITE(6,905)					
900	FORMAT(1H ,1X,4HF	REO,58X,6HGROV	VTH/1H ,8X,15	F8.1)		
905	FORMAT(1H ,128H					
	*					
	*)					
910	FORMAT (1H ,F6.0,	1H-,1X,15(F6.2	2,1H*,I1))			
920	FORMAT (1H0, 58HMAE	OF ERRORS, WH	IICH IS ABS (1	IB-NC)	, AND *QUADRANT	OF
	* ERROR)	•				
	RETURN					
	END					
\$DATA						
2.658	2.658	1.36	119514	E-02	.27833E-03	
.365	74E-02 .50255E-04	16.875	1		.5	
.505	.3	1.41	130957	/E-02	.98092E-02	
.243	63E-02 .50255E-04	393.	1			
.5	.1575 .0185	1.	.9166	Ο.	1.840.	
2.658	.505	.1	.2			
.195	14E-03 .001	-5.	9900. (521		
750.	-750. 900	00. 50000	0.1540			

APPENDIX B

PROGRAM INPUT FORMAT

Card 1 6G	12.5:	
1-12	WMAX	maximum oxidant flow rate, 1b/sec
13-24	WMIN	minimum oxidant flow rate, lb/sec
		(= WMAX if no variation in oxidant flow rate)
25-36	GAMOX	oxidant specific heat ratio
37-48	CORFOX	oxidant injector orifice coefficient
49-60	AOX	total oxidant injector area, ft ²
61-72	LOX	oxidant injector length, ft
Card 2 3G	12.5, 112,	G12.5:
1-12	VOX	total oxidant dome volume, ft ³
13-24	TAUOX	oxidant combustion delay time, sec
25-36	TOMOX	oxidant temperature/molecular weight, ^O R-mole/lb
37-48	IP	number of cases in parametric study
		(= 0 or 1 if only one case)
49-60	DELX	constant used to increment S (e.g., DELX = 0.5)
Card 3 6G	12.5:	
1-12	WFMAX	maximum fuel flow rate, lb/sec
13-24	WFMIN	minimum fuel flow rate, lb/sec
		(= WFMAX if no variation in fuel flow rate)
25-36	GAMF	fuel specific heat ratio
37-48	CORFF	fuel injector orifice coefficient
49-60	AF	total fuel injector orifice area, ft ²
61-72	\mathbf{LF}	fuel injector length, ft
Card 4 3G1	12.5, 112 :	•
1-12	VF	total fuel dome volume, ft ³
13-24	TAUF	fuel combustion delay time, sec
25-36	TOMF	fuel temperature/molecular weight, ⁰ R-mole/lb
37-48	MAP	= 1 if error map desired
		= 0 if no error map

Card 5 7F	10.5, F2.C	
1-10	$\mathbf{L}\mathbf{L}$	combustion chamber length, ft
11-20	R	chamber radius, ft
21-30	AT	nozzle throat area, ft ²
31-40	CSTREF	C* efficiency
41-50	GNR	real part of nozzle admittance
51-60	GNI	imaginary part of nozzle admittance
61-70	SM	transverse wave mode
71-72	\mathbf{SL}	longitudinal wave mode
Card 6 4G	12.6:	
1-12	WOSTD	standard oxidant flow rate, lb/sec
		(WOSTD = WMAX if no variation in oxidant rate)
13-24	WFSTD	standard fuel flow rate, lb/sec
		(WFSTD = WFMAX if no variation in fuel rate)
25-36	DW	increment in oxidant rate, lb/sec
37-48	DWF	increment in fuel rate, lb/sec
Card 7 (If	IP = 0) 2G	12.6, 112:
1-12	FRINP	initial guess of frequency (FRINP + iFIINP);
13-24	FIINP ∫	dimensions are 1/sec and Hz, respectively
25-36	INPUTF	if = 0 ignore above and uses natural frequency
		if = 1 use above guessed frequency
Card 7 and		
our a r una	on (If IP \neq	0) 4G12.6, 3I2, Number of cards $I = IP$:
1-12	on (If IP ≠ Z1(I)	0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value
1-12 13-24	on (If IP ≠ Z1(I) Z2(I)	0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value
1-12 13-24 25-36	on (If IP ≠ Z1(I) Z2(I) Z3(I) \	0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP;
1-12 13-24 25-36 37-48	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) }	0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively
1-12 13-24 25-36 37-48 49-50	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I)	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1))
1-12 13-24 25-36 37-48 49-50 51-52	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I)	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I)
1-12 13-24 25-36 37-48 49-50 51-52 53-54	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ2(I) IZ3(I)	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF
1-12 13-24 25-36 37-48 49-50 51-52 53-54 Last card	on (If IP \neq Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ3(I) (If MAP = 1)	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2:
1-12 13-24 25-36 37-48 49-50 51-52 53-54 Last card (1-12	on (If IP \neq Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ2(I) IZ3(I) (If MAP = 2 FRMAX	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2:
1-12 13-24 25-36 37-48 49-50 51-52 53-54 Last card 1-12 13-24	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ2(I) IZ3(I) (If MAP = 1 FRMAX FRMIN }	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values
1-12 13-24 25-36 37-48 49-50 51-52 53-54 Last card 1-12 13-24 25-36	on (If IP \neq Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ3(I) (If MAP = 1) FRMAX FRMIN FIMAX	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values for error map; units are 1/sec and rad/sec
1-12 $13-24$ $25-36$ $37-48$ $49-50$ $51-52$ $53-54$ Last card $1-12$ $13-24$ $25-36$ $37-48$	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ3(I) (If MAP = 1 FRMAX FRMIN FIMAX FIMIN	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values for error map; units are 1/sec and rad/sec
1-12 13-24 25-36 37-48 49-50 51-52 53-54 Last card 1-12 13-24 25-36 37-48 49-50	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ3(I) (If MAP = 1 FRMAX FRMIN FIMAX FIMIN FIMIN FRCUT	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values for error map; units are 1/sec and rad/sec number of increments between FRMAX and FRMIN
1-12 $13-24$ $25-36$ $37-48$ $49-50$ $51-52$ $53-54$ Last card $1-12$ $13-24$ $25-36$ $37-48$ $49-50$	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ2(I) IZ3(I) (If MAP = 1 FRMAX FRMIN FIMAX FIMIN FIMIN FRCUT	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values for error map; units are 1/sec and rad/sec number of increments between FRMAX and FRMIN with maximum = 15
1-12 $13-24$ $25-36$ $37-48$ $49-50$ $51-52$ $53-54$ Last card (1-12) $13-24$ $25-36$ $37-48$ $49-50$ $51-52$	on (If IP ≠ Z1(I) Z2(I) Z3(I) Z4(I) IZ1(I) IZ2(I) IZ3(I) (If MAP = 1 FRMAX FRMIN FIMAX FIMIN FIMIN FRCUT	 0) 4G12.6, 3I2, Number of cards I = IP: parameter maximum value parameter minimum value equivalent to FRINP and FIINP; units are 1/sec and Hz, respectively = 0 to 14 (see note (1)) number of increments between Z1(I) and Z2(I) equivalent to INPUTF 1) 4G12.6, 2I2: specify range of complex frequency values for error map; units are 1/sec and rad/sec number of increments between FRMAX and FRMIN with maximum = 15 number of increments between FIMAX and FIMIN

,

Note (1) - Parameter codes IZ1(I) are assigned as follows:

1	$\mathbf{L}\mathbf{L}$	chamber length
2	R	chamber radius
3	AT	nozzle area
4	TOMOX	oxidant temperature/molecular weight
5	TOMF	fuel temperature/molecular weight
6	AOX	oxidant injector area
7	AF	fuel injector area
8	LOX	oxidant injector length
9	\mathbf{LF}	fuel injector length
10	VOX	oxidant dome volume
11	\mathbf{VF}	fuel dome volume
12	TAUDX	oxidant combustion delay time
13	TAUF	fuel combustion delay time

APPENDIX C

SAMPLE PROBLEM

Input

Card		-				Column	s							
	1 to 12		13 to	24	25	to 36		37 to 48		49	to	60	61 t	o 72
1 2 3 4	2.658 .36574E .505 .24363E	-02 -02	2.658 .502 .3 .502	55E-04 55E-04	. 3	1.36 16.875 1.41 93.	1	1. 1 1. 1	0.	195 5 309	141 571	E-02 E-02	0.2783	3E-03 2E-02
Card	i Columns													
	1 to 10	1	1 to 20	21 to	30	31 to 4	0	41 to 50		51 to 60			61 to 70	71 & 72
5	0.5	(), 1575	0.018	15	1.		0.9166		0.0			1.84	0.
Card						Column	s				-			
	1 to 12		13 to	24	25 to 36			37 to 48	49 & 50	51 & 52	53 & 54			
6 7 8	2.658 .19514E 750.	-03	0.505 .001 -750.		900	0.1 ~5. 000.		0.2 9900. 50000.	6 15	2 40	1			

Sample Calculation

GAS-GAS STABILITY MODE

UNITS USED ARE LB-FT-SEC-DEG R UNLESS NDTED

INPUT PAR/ W MAX 2.65800	AMETER FC W MIN 2.655	DK DXIDA	NT GAMMA 1.36000	04 I F 1 • 00(CF 000	RIF AREA •19514E-0	LENGTH	4 13E-03)0ME VOL).36574E-	TAU 02 3.502	55E-04	T/4W 16•875)	M0 100	1 O C O	5TD •658))
1NPUT PARI W Max 0. 50530	AMETER F(W MIN 0•300	DR FUEL	GAMMA 1.41000	0R1F 1.000	CF 000	RIF AREA •30957E-0	LEVGT+ 2 0-9805	4 92E-02 0).24363E-	TAU 02 3.502	55E-04	T/MW 393.333	ри 0+200	*C 00	570 •53533
CHAMRER PI LENGTH 0.50000	ARAMETER	5 150 750	THRDAT A 0.18500E-(C* EI 1. 1.000	200 000	IAVE M •84000	WAVE L	20	402 ZLE RE 0.91663	SPDVSE		I I			
DEL X 0.50000	PMA)	X 514E-03	PMIN 0.10000E-0	NHICH	2.0	٩.	MAP 1								
1NTTTAL (GROWTH.F	FRE 0) 1	NPUTF 1												
OXIDANT OR	LFICE AF	3EA=	0•19514E-	-03						•	1				
MAP OF ERA Fred	IDRS. WHI	ICH IS A	BS(NB-NC)	AND #	DUADRANT	OF ERROR		17.4							
	750.0	650+0	550.0	450.0	350+0	250+3	153.0	50.0	-50.7	-153.0	-250.0	-350.0	-450.0	- 550 - 0	-650.0
00006	1.36#3	1.30*3	1.25#3	1.19*3	1.14*3	1.08*3 1	.03#3	0.97#3	0.92+3	0•85#3	0.81#3	0.75*3	0.70*3	0-65*3	0-63#3
89000	1.36*2	1+30#2	1.25#2	1.19*2	1.14#2	1.08*2 1	• 32#2 (0+97#2	0.91*2	0.85*2	0.80#2	0.75*2	0.69*2	3.64#2	0.59#2
88000 87000	2.07*2	2.03#2	2.00+2	2 + 8 + 2	1.93#2	1.59#2.1	• 39#2 -	1.83*2	L.20#2	1.77*2	1。18#2 1。74#2	1.72#2	1.10#2	1.6742	1.04#2 1.65#2
86000	2.68*2	2 • 65 * 2	2.63*2	2+09+2	2.58+2	2.55*2 2	-53+2	2.50#2	2.48*2	2.45*2	2.44#2	2 • 42 * 2	2.40*2	2 • 39 * 2	2.37*2
85000 84000	3.45*2 4.43*2	3.43#2	3.42#2 3	3.40*2 4.43*2	3.39*2	3.37*2 3 4.42*2 6	• 36#2 3	3.34#2 4.42#2	3.33*2 4.41*2	3.31#2 4.41#2	3.30#2	3.29#2	3.27#2	3.26#2 4.39#2	3.25#2 4.38#2
83000-	5 . 74*2	5.76#2	5.79#2	5.81*2	5.83*2	5-85*2 5	87#2	5 89 * 2	5.90*2	5.92#2	5.93*2	5.94#2	5.94#2	5.95*2	5.95*2
82000+-	7.55*2	7-64#2	7.72#2	7.80*2	7.88*2	7.96*2 8	• 0 4 * 2 · 5	3.10*2	8.17*2	8.23*2	8.28*2	8.33#2	8.37*2	8.41*2	8.43#2
800001	13-35+2 1	13.95*2	14.60*2 1	5.32#2	16.10#2	6.95#2 17	• 88 * 2 1	89*2 1	10.99#2 2	1.15#2 2	2.41+2	23.72*2	25-05*2	12 • 1 2 • 2 1	7.54#2
79000	14.61*3	15.44#3	16.38*3 1	7.45#3	18.68*3	0.11*3 21	.78#3 23	3.77*3	26.17*3 2	9.11+3 3	12.80#3	37.56#3	43.90#3	52.70#3 5	5.52*3
77000	8.58*3	8.75#3	8.91#3 5	6*80*6	9.25#3	9.42*3 9	• 60 • 9 • 1	9.75*3	1 6+00-01 9•93#3 1	0.05#3 1	0.19*3	10.31#3	10.43*3	0.53*3 1	0.61*3
-•00092	6.18*3	6.24*3	6.30*3 6	5+35+3	6.41+3	6.46*3 6	.51#3 (5.56#3	6.61*3	6.65*3	6.69#3	6.72#3	5.76#3	6.78*3	6.81*3
75000	4.52#3	4.54#3 3.32#3	4.55*3 4	4.57#3 2.21#2	4.58*3	4.60*3 4	•61*3 4	4.63#3 *.21#3	4.64*3	4.65#3 2.21#2	4.66#3	4.67#3	4.68#3	4.69#3 2 21#3	4.70#3 2 21+3
73000	2.42#3	2.40#3	2.39#3	2.37#3	2.36#3	2.35*3 2	34#3	2.33#3	2.32*3	2.31#3	2.30#3	2.30*3	2.29#3	2.29#3	2.7943
72000	1.72#3	1.69#3	1.66*3	l • 64*3	1.62#3	1.59*3 1	• 57#3	l • 55 #3	1.54*3	1.52*3	1.51*3	1 • 50#3	1.49*3	1.48*3	1.48*3
71000	1.20#3	1.16*3	1.12#3]	[•08#3	1.04#3		• 97 # 3	0.94#3	0.91*3	0.88#3	0.86#3	J.83#3	0.82*3	0.80*3	0.79#3
	0.96#2	0.97#2	0.88420	0. /0#3	0.79#2	0.75*3.0	• 6 J # 5 (0.57#3	0.49#3 0.62#2	0.4443	0.39#3	0.34#3	0.29#3	0.24#3	0.2343 0.4547
68000	1.27*2	1.25*2	1-22+2	L-20+2	1.18*2	1.16#2 1	.14#2	1.12*2	1.11*2	1.09*2	1.08*2	1.07#2	1.05*2	1.05*2	1.05*2
67000	1 • 69* 2	1.68*2	1.68*2	l.68#2	1.68*2	1.69*2 1	• 69*2]	l • 70*2	1.70*2	1.71*2	1.72*2	1.73*2	1.74*2	1.75*2	1.7*2
66000	2.10*2	2.12*2	2.15*2	2.19*2	2.22#2	2.26*2 2	•31+2	2-35*2	2•40*2	2.45*2	2.51*2	2.57*2	2.63*2	2•69±2	2.75*2

42#2 32#3	26#3	4341 2341	1+10	1+60	1+04	1441	1*90	36#1	65 #1 .	93#1	21#1	1+8+							****					***					****
*2 4.		•••		*1 2	*1 2•	*1 2.	*1 3.	* 1 3.	* 1 3.	*13.	*] ¢.	*l 4.	X						****					* * * *					****
4 • 12	1.17	9.94	1.04	00-0	2.39	2 °74	3 • 3 5	3.36	3.65	3 • 93	4.21	4.48				A, T=0	¢)33025 *****		1, T=0	~)46145 *****		1, T=0	•)32713 *****
3.85#2	1+09+3	0.27#1	1.20.1	1.10.4	2.39#1	2.73#1	3.05#1	3.35*1	3.64#1	1+66 *8	4•20#1	4.48#1				THET	-179-4		-0-=		THET	-179-6) •0 + + + + + + + + + + + + + + + + + +	-	тнети	179.4		1= -0•(
3.61+2	1:04+3	0.24#1	1.0.1	1-00-1	2.38*1	2.72#1	3+04+1	3+35+1	3.64#1	3.92#1	4.20#1 4	4.47*1		JELP/PC 2.6898625	•1452058	/CT0R,T=0	. 6216	TERATIONS	99644 A/I	JELP/PC 1.6235017 1.0777912	rCTDR,T≖O	- 1026	TERATI JNS	12307 A/4	JELP/PC 6714398).1452058	CTOR,T=0	- 6216	TERATIONS	99650 A/h ********
1.40+2	E+00+1	0.25*1	1 • 00 • 1	1.406	.37#1	1*21.	1+00-1	3.34#1	1*49.1	1*30*1	•-20#1	1*74.4		-04 12	10.	~	-01 2.		•0 =0.	04 10	~	ъ.	01 3 I	- 1 - 1	040	>	01 2.	01 4	*******
3.21 +2	6*66*0	0.23#2	1.00#1	1+66-1	2.37*1	2.72*1 2	3.04%I	3.34*1 3	3.63*1 3	3.92#1 3	4.23*1 4	4.47#1 4		-0.1507E-	-0.7714E-	IMCRESP	0•\$833E-	IM (RESP	/# 816*6	14(1/CS -0.1640E- -0.5429E+	IMCRESP	0.5096	IM (RESP 0.5366E-	9.489 H/ :********	-3.11/CS -3.1607E- -3.7713E-	I4(RESP	0.5771E-	14(RESP 0.1060E-	9.918 W/
3.05#2	6*86*0	0.35*2	1 • 00 • 1	14801	2.37#1	2.71*1	3•03#1	3.34*1	3.63*1	3.92#1	4.19 * 1	4.47#1		8446E-07	• 4054E-03	RE(RESP)	• 9604	RE(RESP) • 4675	\$******** 666 =(2H)	RE(1/CS) •1205E-36 •3987E-03	RE(RESP)	•0333	RE(RESP) •6237	(HZ)= 853 ******	RE(1/CS) •8365E-07 •4016E-03	RE(RESP)	•9599	RE(RESP) •4723	********* 666 =(2H)
2+16-3	.99#3	0.42#2	1+10-1	1440-1	.36#1	1+1L+1	1+60+1	34#1	1.63#1	1+16-1	1+61-4	• • 47 * 1		- P	-03 -0	LS I	3986 2	Ē	00 ENCY		- (5)		ā	U ENCY *****	- 6- 6-	- S	5	- 6	UENCY
2.78*2	1.01+3 (0.49*2 (1*03#1		2.35#1 2	2.71+1 2	3+03#1 3	3.33#1	3.63#1 3	E 1+16*E	4.19#1 4	4.47#1 4		1.0000	0.2083E-	IMC-TAU	12.66 -3.1275	0/F 5.2636	U2AL FREG *******	с 1-3030 0-3021E-	INC-TAU	-3.0638	0/F 8.7148	URAL FREG #########	с 1.0030 0.2083Е-	I MI - TAU	-3.1277	0/F 5.2534	U2AL FREG ********
2+67+2	1.04+3	0.56*2	1•02#1	1.98#1	2.36#1	2.71#1	3.03#1	3.33#1	3.63#1	3.91*1	4•19 # 1	4+441		00000000	.3441	RE (- T*S))	CHOKED/PC= •0166	4ACH	4. 554 NAT ********	200000000 1697	RE (-T+S))	.0228	4ACH • 1418	2. 728 NAT ********	3441	RE (-T+S))		4ACH •1415	5.127 NAT
. 57#2	.07#2	.63#2	1#10*	1486	1+96.	1+01.	1*60.1	1*56.1	1.62#1	1+16-1	1+61 **	-46#1		1200	48 0	Ē	0ELP	- d	066	SI F 24500(24500(01 1	- 0 0	670	57500(57500(1) H 12	01 10	- 0 04	066 :
2.4942 2	1.10*2	0.70*2 0	L • 09#2		2.36+1 2	2.70+1 2	3.03*1 3	3.33#1 3	3.62*1 3	3.91+1 3	4.19#1 4	4.46*1 4		06L 7.F	42.1	(SI)WI	7012 0.7406E-	SOUND S	ENCY(HZ)= ********	DEL P.P 3734•6 18•5	(S1)W1	0.5321E-	20000 S	ENCY (HZ)= ******** -02	DEL P.P 485.1 42.1	IN(IS)	0-1406E-	5346.0	ENCY (HZ) =
2-41+2	1.14#2	0.77*2	1.542	1466-1	2.36*1	2.71*1	3.03#1	3.33#1	3.62#1	3+91+1	4.19#1	4•46#1		3.663	114•21	E(15)	= 78110.3 3893E-03	# 64•6	63 FREOU	0.PSI 3.663 7.634	E(IS)	3908E-03	. * 13•9	88 FREQU *********	0.PSI 5.421 12.411	E(1S)	3856E-03	;* 164• 6	76 FREDU
.35*2	.17+2		5 # 51 • 1	1#00	1+16.	1+12.	•03#1	1.33#1	1.62#1	1*16*1	.13#1	•• 46 * 1		397	EE	CK I	PCHOKE	78	327。09 *****	а 397 25	e i	0- 0-	ບ 6 . ອ	447°72 ****** A=	33 7 P	5 C C C C C C C C C C C C C C C C C C C	-00-	78	324.02
2.29#2 2 1.93#2 1	1.21+2	0-90+2	1.18#2 1 1.4041 1	2.00+1 2	2.37#1 2	2.71*1 2	3.03#1 3	3.33#1 3	3.62*1 3	3.91*1 3	4.19*1 4	4.46#1 4	:	2.6580	0*5050	-	S CHOKED. 0.1190E-	PC. PS I 290.263	R A T E= -	и 2.6580 0.3050	1	0.8728E-	PC+PSI 239-039	RATE= *********	W 2.6580 0.5050	1	0-1190E-	PC • PS I 290 • 263	RATE= -
65000	63000	62000	00009	59000	58000	57000	56000	55000	000+5	53000	52000	51000		OXI DANT	FUFL		FUEL	CHAMBER	GR0WTH ********	OXT DANT FUE L			CHAMBER	GROWTH ********	OXI DANT Fufl			CHAMBER	GROMTH ******

	THETA, T=0	179.63		1= -0.045986 :*******
DELP/PC 2.2439102 0.0777912	VCTOR, T=0		ITERATIONS	1.12312 A/V
IM(1/CS) -0.1640E-04 -0.5429E-01	IM(RESP)	0+5086	[4(RESP) 0.5544E-01	19.489 W/W0=
RE(1/CS) -0.1200E-06 -0.3973E-03	RE(RESP)	6.0329	RE(RESP) 0.6247	4CY (H2) = 853 ***********
C 1.0000 0.3021E-03	IM(-TAU*S)	-3.0639	0/F 8.7148	FURAL FREQUEN
R 50000000000 0.1697	E(RE(~T*S)) LP CHOKED/PC3	1.0227	MACH 0.1418	9703.147 NA)
DEL P+PSI 536+382 18+595	[M([S) 81152 DEI	0.5321E-01	50UND 5PD 4646.6	UENCY (HZ) =
P0.PSI 775.421 257.634	RE(IS) CHOKE= 64325.	6 -0.3894E-03	C* 6913•9	46.2127 FRED
н 2.6580 0.3050	I IS CHOKED. P	0.8728E-0	960-965 129-039	H RATE= -4 *********
OXI DANT FIJF L	OXI DANT	FUEL	CHAMBER	GRNHT *******

REFERENCES

- 1. Gregory, John W.; and Herr, Paul N.: Hydrogen-Oxygen Space Shuttle ACPS Thruster Technology Review. NASA TM X-68146, 1972.
- Kelly, P. J.; and Schweickert, T. F.: Space Shuttle Auxiliary Propulsion System Design Study - Final Report. Rept. No. MSC 04423.1, McDonnell Douglas Corp. (NASA contract No. NAS9-12012), Dec. 1972.
- Chandler, Keith B.: The Main Engine for the Space Shuttle. Seventh JANNAF Combustion Meeting. CPIA Publ. No. 204, vol. 1, Johns Hopkins Univ., Feb. 1971, pp. 821-834.
- 4. Crocco, Luigi; and Cheng, Sin-I.: Theory of Combustion Instability in Liquid Propellant Rocket Motors. AGARDograph 8, Butterworth Sci. Pub., 1956.
- Reardon, F. H.: Correlation of Sensitive-Time-Lag-Theory Combustion Parameters with Thrust Chamber Design and Operating Variables. Fifth ICRPG Combustion Conference. CPIA Pub. no. 183, Johns Hopkins Univ., Dec. 1968, pp. 237-244.
- Feiler, Charles E.; and Heidmann, Marcus F.: Dynamic Response of Gaseous-Hydrogen Flow System and Its Application to High-Frequency Combustion Instability. NASA TN D-4040, 1967.
- Priem, Richard J.; and Guentert, Donald C.: Combustion Instability Limits Determined by a Nonlinear Theory and a One-Dimensional Model. NASA TN D-1409, 1962.
- 8. Hersch, Martin: A Mixing Model for Rocket Engine Combustion. NASA TN D-2881, 1965.
- Priem, R. J.; and Rice, E. J.: Combustion Instability with Finite Mach Number Flow and Acoustic Liners. 12th Symposium (International) on Combustion. The Combustion Inst., 1969, pp. 149-159.

Figure 1. - Schematic of injector and combustion chamber.

Oxidant flow rate, Ib/sec

Growth rate, 5/w, fraction/cycle

Figure 4. - Concluded.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 20546

> OFFICIAL BUSINESS PENALTY FOR PRIVATE USE \$300

SPECIAL FOURTH-CLASS RATE BOOK POSTAGE AND FEES PAID NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 451

POSTMASTER :

If Undeliverable (Section 158 Postal Manual) Do Not Return

"The aeronautical and space activities of the United States shall be conducted so as to contribute . . . to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

-NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

TECHNICAL NOTES: Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

TECHNICAL MEMORANDUMS:

Information receiving limited distribution because of preliminary data, security classification, or other reasons. Also includes conference proceedings with either limited or unlimited distribution.

CONTRACTOR REPORTS: Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge. TECHNICAL TRANSLATIONS: Information published in a foreign language considered to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information derived from or of value to NASA activities. Publications include final reports of major projects, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

TECHNOLOGY UTILIZATION

PUBLICATIONS: Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Technology Surveys.

Details on the availability of these publications may be obtained from: SCIENTIFIC AND TECHNICAL INFORMATION OFFICE NATIONAL AERONAUTICS: AND SPACE ADMINISTRATION Washington, D.C. 20546