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RAPID ITERATIVE REANALYSIS FOR AUTOMATED DESIGN

By Kumar G. Bhatia *
Langley Research Center

SUMMARY

A method for iterative reanalysis in automated structural design is presented for
a finite-element analysis using the direct stiffness approach. A basic feature of the
method is that the generalized stiffness and inertia matrices are expressed as functions
of structural design parameters, and these generalized matrices are expanded in Taylor
series about the initial design. Only the linear terms are retained in the expansions.
The method is approximate because it uses static condensation, modal reduction, and the
linear Taylor series expansions. The exact linear representation of the expansions of the
generalized matrices is also described and a basis for the present method is established.

Results of applications of the present method to the recalculation of the natural fre-
quencies of two simple platelike structural models are presented and compared with
results obtained by using a commonly applied analysis procedure used as a reference.
In general, the results are in good agreement. A comparison of the computer times
required for the use of the present method and the reference method indicated that the
•present method required substantially less time for reanalysis. Although the results
presented are for relatively small-order problems, the present method will become
more efficient relative to the reference method as the problem size increases. An
extension of the present method to static reanalysis is described, and a basis for uni-
fying the static and dynamic reanalysis procedures is presented.

INTRODUCTION

Currently, there is considerable interest in automating as much of the structural
design process as possible. A status report of the current situation in this area is pre-
sented in reference 1. The papers cited in this reference provide a good summary of
the work to date in automated design. It is pointed out that the resizing methods for
structures and the techniques for a systematic way of conducting analyses are two
important aspects of any automated design system. The present study is concerned
with systematic reanalysis procedures for automated design.

^NRC-NASA Resident Research Associate.



The iterative nature of automated design requires that the individual analyses be
repeated many times. Therefore, the economy, speed, and accuracy of the individual
analyses are important factors in the success of an automated design process. A given
computational technique may thus be well suited for a few analyses, such as in the detailed
validation of a final design, but the technique may not be well suited for use in an auto-
mated design process.

Published work describing iterative reanalysis procedures is heavily oriented
toward approximate static reanalysis, as evidenced by references 2 to 9. In contrast,
there appears to be a scarcity of dynamic reanalysis procedures, which are obviously
more complex and expensive than the static reanalysis procedures. An efficient approx-
imate dynamic reanalysis is a valuable tool independently and in conjunction with a static
reanalysis procedure.

The purpose of this paper is to present an approximate finite-element structural
reanalysis procedure which is well suited for the iterative requirements of the automated
design process. It is recognized that the initial formulation of the structural problem for
iterative reanalysis should be made by taking into consideration the special nature of the
iterative process, and that such a formulation can be different from the formulation for
a single analysis. It is shown that the method can be applied to static and dynamic reanal-
ysis, and a unified approach to static and dynamic reanalysis is presented but the develop-
ment of the present method in the main body of the report emphasizes dynamic reanalysis.
In particular, the method as developed herein provides a means of determining the natural
frequencies and mode shapes of a structure as would normally be required during each
cycle of an automated design process but without having to perform a complete structural-
reanalysis. The approximate nature of the method is examined in appendix A. In appen-
dix B, an extension of the method to static reanalysis is presented, and a basis for unifying
the static and dynamic reanalysis is described.

The method may be outlined as follows. The complete structural stiffness and iner-
tia matrices are assembled by the direct stiffness method for the initial design. A set of
stiffness design parameters and a set of inertia design parameters are defined so that the
assembled stiffness matrix is a linear function of the stiffness design parameters and the
assembled inertia matrix is a linear function of the inertia design parameters. The
design parameters themselves can be nonlinear (and complicated) functions of the struc-
tural design variables. In the present study, the design variables are distinct from the
design parameters and are restricted to structural element thicknesses, cross-sectional
areas, elastic properties, and/or any combination of these. The complete structural
matrices are then reduced by static condensation and an eigensolution obtained for the
reduced system. A modal matrix is then constructed with the desired number of eigen-
vectors, and the generalized stiffness and inertia matrices for the initial design parame-
ters are determined. The generalized matrices (for an arbitrary set of design variables)



are expanded in two-term Taylor series expansions about the initial design by using the
design parameters as the independent variables. The analytical expressions to evaluate
the first derivatives appearing in the Taylor series expansions are derived. Once the
Taylor series expansions are defined, the generalized stiffness and inertia matrices can
be directly evaluated for any perturbations in the design variables from the initial design.
An approximate reanalysis can then be performed by using the generalized matrices
determined in this manner.

The method is illustrated for dynamic reanalysis and examples of application of this
method to simple trapezoidal and rectangular plate models are presented and discussed.
The results, in terms of natural frequencies, are compared with the results obtained by
performing a complete structural analysis. A special-purpose digital computer program
was written to obtain these results. This program is designated RITREAD (Rapid Iterative
Reanalysis for Automated Design). Some of the features of this program are discussed
in appendix C. The formulation of the method allows the derivatives of the generalized
structural matrices with respect to design variables to be easily computed, as indicated
in appendix D.

SYMBOLS

vector of structural design variables, (NV x 1)

force vector

f ji function of {p} associated with

[K] system stiffness matrix, (n x n)

[KG] generalized system stiffness matrix, (NM x NM)

constant matrix of stiffness coefficients associated with ith stiffness design
parameter, (n x n)

contribution of the ith element to the system stiffness matrix, (n x n)

constant matrix of stiffness coefficients corresponding to the jth subelement
of ith finite element, (n x n)

[M] system inertia matrix, (n x n)



generalized system inertia matrix, (NM x NM)

constant matrix of inertia coefficients associated with ith inertia design
parameter, (n x n)

NE total number of finite elements

NM number of natural vibration modes used in modal reduction

NP number of stiffness design parameters

N^ number of inertia design parameters

NR number of degrees of freedom eliminated by static condensation

NV number of structural design variables

NZ number of degrees of freedom retained after static condensation

n total number of degrees of freedom, NZ + NR

ni number of constant submatrices required to express JKjl as a linear
function of design parameters

P- stiffness design parameter associated with

vector of stiffness design parameters, (NP x 1)

vector of inertia design parameters, (N^ x 1)

[Q] modal matrix, (NZ x NM)

modal matrix, (n x NM)

/qA, eigenvector corresponding to ith natural mode of vibration, (NZ x 1)

/qA eigenvector corresponding to ith natural mode of vibration, (NM x 1)

[s] final transformation matrix, (NR x NM)



dm integer set associated with Pm, identifying the subelements for which
pm = pij> 3 = 1>ni, i = l , N E

[T] transformation matrix relating the degrees of freedom eliminated to the
degrees of freedom retained in static condensation, (NR x NZ)

vector of structural displacements, (n x 1)

vector of structural displacements corresponding to degrees of freedom
retained in static condensation, (NZ x 1)

vector of structural displacements corresponding to degrees of freedom
eliminated in static condensation, (NR x 1)

vector of static displacements, (n x 1)
<?

square of natural frequency, (rad/sec)^

vector of generalized static displacements, (NM x 1)

column matrix

[ 1 rectangular matrix

Subscript following a parenthesis denotes a partial derivative with respect to a

design parameter, for example, ([K]). = -^p> ([Mj). = gt, • Double subscripted matrix

represents a matrix partitioned or separated from a larger matrix. Superscript B
denotes that the superscripted symbol corresponds to the initial design. Superscript T
is used to denote a matrix transpose. All other symbols are locally defined.

A TYPICAL APPROACH FOR DYNAMIC ANALYSIS

A typical approach to dynamic analysis for determining the natural vibration char-
acteristics of complex structures is described in this section and is used in the subse-
quent sections as a basis for the development of the reanalysis method.

In representing a complex structure by an analytical model, a large number of finite
elements may be needed for a physically continuous structure with an infinite number of
degrees of freedom to be adequately modeled with a finite number of degrees of freedom.
The system stiffness matrix [K] and the system inertia matrix [Mj can be determined
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for the complete structure by using the direct stiffness method of reference 10. K a large
number of finite elements are used for the structural representation, [K] and [M] will
be of a high order. The dynamic analysis is thus often hampered by difficulties in accu-
rately and efficiently handling eigenvalue problems of large size. The usual practice is
to reduce the size of the eigenvalue problem by static condensation in the manner sug-
gested by Guyan (ref. 11) and Irons (ref. 12).

The system displacement vector {id} and the system stiffness matrix [K] are
partitioned as

(1)

and

[K] =

(n x n)

N
(2)

The physical coordinates to be retained are denoted by the subscript h and those to be
eliminated are denoted by the subscript a. One may, for example, either intuitively
decide to eliminate some degrees of freedom or use the method of reference 13 to deter-
mine more rationally the degrees of freedom to be eliminated. However, the method of
selecting the degrees of freedom to be eliminated is an important practical consideration
but will not be discussed herein. By the methods of references 11 and 12 a transformation
matrix [T] relates ^U to UA so that

(3)

(NR x 1)

where

= -[V]""1
(4)

(NR X NZ)

The reduced stiffness matrix fknl is defined by

6



[Kh]
(NZ x NZ)

(5)

The reduced inertia matrix [M^l can be determined as in references 11 and 12, or the
same expression can be obtained from the equivalence of virtual work as in reference 14
(pp. 291-292), and is given by

[Mh] = [MhhJ
(NZ X NZ)

where [~Mnn~], etc., are the inertia matrix partitions defined by

[Mhh]

(6)

The reduced structural matrices are used to solve the eigenvalue problem

(i = 1,NZ) (7)

where Jq.~X is the eigenvector defining normal-mode displacements for the NZ degree

of freedom system and YrJ/qAj defines the normal-mode displacements for the unre-

duced system with n degrees of freedom.

The solution of equation (7) completes the process of obtaining the natural vibration
frequencies and mode shapes of primary interest. A substantial saving is usually realized
by reducing the order of the eigenvalue problem from n to NZ as described. The
order of the reduced structural matrices NZ may still, however, be unwieldy if either
flutter or dynamic response analyses are to be performed. In order to further reduce
the order of the stiffness and inertia matrices in such instances, a transformation to a
smaller number of modal coordinates is effected by means of the familiar normal mode
approach. A modal matrix [Q] is constructed from the first NM eigenvectors corre-
sponding to the lowest NM frequencies of vibrations obtained from the solutions of



equation (7) . The generalized structural matrices are then determined from the following
equations :

[KG] = [Q]T[Kh][Q]
(NM X NM)

= [QjT[Khh][Q]^[Q]T[Kha][s] (8a)

and

[MG] = [Q]T[Mh][Q]
(NM X NM) T

= MT[Mhh][Q] + [Q]T[Mha][S] H- [[Q]T[Mha][SJ] + [SjT[Maa][Sj (8b)

where [sj = [T][Q]. The generalized matrices given by equations (8a) and (8b) are diag-
onal matrices and are usually of an order much smaller than the system matrices, that is,
NM « n. The eigenvalue problem using the generalized matrices is of order NM, and
is expressed by

[[KG] - = {0} (i = 1,NM) (9a)

where

In the method for dynamic reanalysis developed in the following section, the order of the
eigenvalue problem to be solved, if required, is NM.

DEVELOPMENT OF THE PRESENT METHOD

The typical dynamic analysis procedure described in the previous section is not well
suited for efficient reanalysis because (1) evaluation or reassembly of [K] and [M] is
required for each reanalysis, (2) the transformation matrix [T] has to be recomputed,
and fKnl and fMn1 have to be determined for each reanalysis, and (3) reduction of
rKn~| and [M^] to [KG] and [MG] is required during each reanalysis . The modal
matrix [Q] determined for the initial analysis could be used as an assumed-mode
matrix during reanalysis and the order of the eigenvalue problem required to be solved
for natural-vibration analysis reduced from NZ (as in eq. (7)) to NM (as in eq. (9a)).
If the natural frequencies and mode shapes of the structure are not required, and only
[KG] and [MG] are required, the eigenvalue problem of equation (9a) need not be solved



during reanalysis. Even then the complete reanalysis procedure as described can be
very expensive.

The method presented herein can economically determine the generalized stiffness
and inertia matrices during reanalysis following their generation during the initial analy-
sis. The present method involves some modifications in the formulation of system stiff-
ness and inertia matrices during the initial analysis. The complete system stiffness and
inertia matrices are expressed during the initial analysis as linear functions of the stiff-
ness and inertia design parameters, respectively. The generalized matrices and their
derivatives with respect to the design parameters are then determined. The generalized
stiffness and inertia matrices are expressed by linear Taylor series expansions in the
design parameters about the initial design. For subsequent analyses, the generalized
matrices are determined from the Taylor series expansions. This procedure is devel-
oped subsequently.

Formulation of System Structural Matrices

In the direct stiffness method of finite-element analysis, the system stiffness matrix
for the complete structure can be generated by properly assembling all the elemental
stiffness matrices. This assembly is indicated by the relation

NE
[K] .^pq] (10)

(n x n) i=l

When only a single analysis is required, there is no further need for Kj matrices after
they have been added to the system stiffness matrix [K], and these elemental matrices
are not normally saved. When some of the design variables are changed in an automated
design process, a reanalysis is normally performed. As a consequence of the change in
design variables, many of the elemental stiffness matrices will have to be recomputed
before a reanalysis. Considerable computational efficiency can be obtained if the recom-
putation of the affected elemental matrices can be avoided. This can be done if the ele-
mental stiffness matrices are expressed in the following form:

ni

tv~\ — \ f
i ~ /

(n x n) j=l

Hi

3=1



where Py = fjj({DM is defined as a stiffness design parameter and is a uniquely defined
function of the design variables {b}; [Kyi where j = l,nj are constant submatrices
corresponding to the ith element, and n^ is the number of constant submatrices required
for the ith element to represent (jKjJ as a linear function of the design parameters. Sub-
stituting equation (11) into equation (10) yields

NE

M -II
(n x n) i=l j=l

(12)

The system stiffness matrix as given by equation (12) is a linear function of the stiffness
o

design parameters «.

The stiffness design parameters are not required to be linear functions of the design
variables {D}. The concept of the stiffness design parameters and design variables is
illustrated in the following example for a beam element which includes the effect of shear
deformation (ref. 15). The stiffness matrix for this element is

R -I"

z 2 R + E I y

4 K+ I

Symmetric

-R

1 R
2 R

R

I R
2 R

z2
R

 EV
4 R" I

l-R
2 K

,2 EIV

^•R + -r

where

length of the beam element

Ely flexural stiffness of beam element

The form of the stiffness matrix given in equation (12) is similar to that published
by Kavlie and Powell (ref. 4), but was independently developed by the author.

10



R =
lkzAG 12EIyy

A cross-sectional area of beam element

G shear modulus

kz constant defining fraction of cross-sectional area of beam effective in shear

The element matrix may be expressed in the form of equation (11) by writing

2

where

v- l

= EI

lkzAG

0

0

11



1 -1
Z2

4

-1

Z
2

1

Z
2

Z2

4

Z
2

T

The design variables for this beam element could be E, G, Iy, A, b, and h or any
combination of these variables, and P^ and P^ are the design parameters which may
be nonlinear functions of the design variables.

Although a large number of finite elements may be required for adequate represen-
tation of complex structures, some of the design parameters Py may be identical to
each other. It would be advantageous to distinguish the number of unique design parame-
ters from the number of elements as suggested in reference 16. Let *dm, where
m = 1,NP, be a set associated with a stiffness design parameter Pm such that all the
submatrices for which Pm = P^ (where i = 1,NE, j = l,n^ are uniquely identified,
and there is at least one = Pm. In other words, the various constant submatrices
associated with any Pm (where m = 1,NP) can be summed into a single matrix fKml
and the system stiffness matrix expressed in the form

NP

M -I
(n x n) m=l

Pm[Km] (13)

-where

• I I
(n x n)

12



and y y indicates that the summation is performed only for those values of i

and j which are identified by the set ^/m.

The system inertia matrix can also be expressed as

[M] = î[M{] (14)
(n x n) i=i

where ^i, i = 1,N^, are inertia design parameters, and [Mjl, i = 1,N^, are constructed
in the same manner as fK.{\, i = 1,NP. The design parameters for the stiffness and
inertia matrices are defined independently of each other and, in general, will not be the
same.

Equations (13) and (14) express the system stiffness and inertia matrices as linear
functions of two different sets of design parameters {?} and {̂ }, respectively. The
recalculation of [K] and [M] for any set of design parameters is facilitated if the con-
stant matrices [Kij and fMjl are saved during initial analysis for subsequent use.

In addition to equations (13) and (14), the expressions for the partial derivatives of
[K] and [M] will be subsequently used to develop the present method. These expres-
sions are given by

Equations (13) to (16) will be subsequently used in the derivation of the expressions for
the generalized stiffness and inertia matrices, and their derivatives with respect to the
design parameters.

Determination of Generalized Stiffness and Inertia Matrices During Reanalysis

The system stiffness and inertia matrices can be expressed as functions of the stiff-
ness and inertia design parameters (eqs. (13) and (14)), respectively, and the correspond-
ing generalized matrices (eqs. (8a) and (8b)) can be determined by the method described

13



earlier. The generalized matrices can be expressed in terms of the design parameters,
and equations (8a) and (8b) are rewritten as

NP

[KG] = P|[Q][Khh)il[Q] + [Q][Kh(M][s]
(NMXNM) i=l L

and

[MG]
(NM X NM) i=l

[Q]T[Mhh)i][Qj + [QjT[Mha)i][s]

where (Knn jl, [M^ jl, etc., are defined by

(17)

(18)

and

(n x n)

[Khh,i] [KhQ!,i]

[Mhh,i]

(n xn)

The generalized matrices are now expanded in Taylor series about the initial design,
and the series expansions are given by

(19)

14

NP
[KG] = [KG*] + 2 ([KG]) (P - PJB) + . . .

(NMXNM) j=l J



and

[MG] = [MGB] + ([MG]) to - 9ft + . . . (20)
(NM X NM) j=l

where the superscript B refers to the initial design.

The following assumptions are now made:

(1) The generalized matrices are linear in the design parameters. This linearity
allows neglecting the second and higher order terms in the Taylor series expansions.

Consequently the generalized derivatives ([KG]]., j = 1,NP, and ([MG])., j = 1,N^,

are constants.

(2) The modal transformation matrix [QJ is a constant matrix. Therefore during
the reanalysis, the modal reduction (that is, from NZ to NM coordinates) is essen-
tially the same as in the assumed-mode method except that in the present method the
assumed modes are the normal modes of vibration (obtained from eq. (7)) of the initial
structure. It is known that by itself the assumed-mode method during reanalysis would
give good approximations for the lower modes of the vibration (ref. 17).

(3) The transformation matrix [T] is a constant for the purpose of calculating
([MG]]., i = 1,N^. This assumption simplifies the expression for ([MG]]. and will be

further discussed in appendix A.

In order to derive an expression for ([KG]]., equation (17) is differentiated with

respect to the design parameter ?4. The resulting equation is

([KG]), ^Qf^hhjJM-W^Kh^jM^Q/haJ^ (2D

(NM x NM)

where [Q] is a constant matrix. Since [s] = [T][Q]>
(NR X NM)

([s]). = ([T|).[Q] .. (22)

From equation (4),

M
(NR x NZ)

15



Therefore

or,

(M), - - [«a«Jl(M).
]

(23)

where [K-aa ;~] = ( T l C T ) , etc., since [K] is a linear function of the design parameters.
J

Substituting equation (23) into equation (22) yields

_ _ _w ^ J (24)

Then

Substituting this expression into equation (21) results in

([KG]).

(NM X NM)

(25)

Equation (25) gives the expression for evaluating the partial derivatives of the generalized
stiffness matrix. Since the matrix ([KG]J calculated from this expression is symmet-

ric, the generalized stiffness matrix calculated from equation (19) will also be symmetric.

An expression for the partial derivatives of the inertia matrix can be similarly
derived by differentiating equation (9) and is given by

16



([MO]). . [Q]T[MhhJ]fQ] + [Q]T[MhoJJ[s] + |JQ]T[Mha;i][s]~
TT* K * i -VTH IT\(NM x NM)

[s]T[Maa>j][s] + [Q]T[Mha]([s]). +

(26)

where ([s]r is given by equation (24). If [r] is assumed to be a constant,3 f[MG]j.
J J

is simplified to

([MG]) = [Q]TrMhhJ|[Q]
J I— —'

(27)

Further discussion of the justification for assuming [T] a constant matrix is presented
in appendix A.

Equations (19) and (20), in conjunction with equations (25) and (27), provide the
basis for an efficient procedure for calculating [KG] and [MG] during an iterative
reanalysis. The generalized matrices corresponding to the initial design and their
derivatives with respect to the design parameters can be determined and saved during
the initial design cycle. For any perturbation from the initial design, the new general-
ized matrices can be easily determined.

APPLICATION OF THE PRESENT METHOD

The results of application and the efficiency of the present method are discussed in
this section. During the initial analysis cycle, the generalized structural matrices and
their partial derivatives with respect to the design parameters, are calculated by using
equations (8a), (8b), (25), and (27). In evaluating the partial derivatives of the general-
ized inertia matrix by equation (27), the transformation matrix [Tj is assumed to be a
constant matrix. The generalized matrices have been derived by using static condensa-

3 Equation (26) can be simplified if [T] is assumed to be a constant. It is noted
that the last four terms in equation (26) contain the product rMnQ! ([K^o,] or

, and intuitively their sum would be (numerically) substantially smaller
than the sum of the first four terms. This condition led to the assumption of constant

[r] for the purpose of evaluating

17



tion, modal reduction, and the assumption that they can be expressed by linear Taylor
series expansions. The generalized matrices during reanalysis are, therefore, approx-
imate, and the eigensolutions obtained with these matrices are also approximate. In
order to evaluate the results from the new method, the natural frequencies determined
from the approximate generalized matrices are compared with the natural frequencies
determined from a "reference method."

In the reference method, the system structural matrices are formulated as in equa-
tions (13) and (14) and are assembled during each reanalysis from the rKjl and
matrices corresponding to the various design parameters. The typical procedure
described earlier is then employed to determine the eigenproblem expressed by equa-
tion (7). The natural frequencies obtained from the solution of equation (7) are then
taken as a basis for the comparison of the natural frequencies obtained from the pres-
ent method. It is noted that the reference method is also approximate but it is widely
used; therefore it provides a rational basis for the comparison of the new method. The
computer central processing unit (CPU) times required for reanalysis by the present
and reference methods are compared to determine the efficiency of the present method.

Results of Application

The present dynamic reanalysis method is applied to simple trapezoidal and rec-
tangular plates with various boundary conditions. The structure is represented in all
cases as an assemblage of triangular-plate bending elements (ref. 14, pp. 111-115)
whereas inertia properties are described by a consistent mass representation. Each
element has a total of nine degrees of freedom - three normal displacement degrees
of freedom and six rotational degrees of freedom. The rotational degrees of freedom
were chosen to be eliminated from the assembled system structural matrices by static
condensation.

For the first set of example problems, the trapezoidal plate structure shown in
figure 1 is represented by 35 grid points defining 48 finite elements. The free structure
has a total of 105 degrees of freedom. Thickness of each element is taken to be a design
variable. There are thus 48 design variables and the same number of design parameters.
All percent changes in design variables are with reference to their initial values. The
various cases studied are described below, and the generalized matrices are 10 x 10 in
each case unless otherwise mentioned.

Case 1.- The grid points 1 to 5 are rigidly fixed and represent a cantilevered bound-
ary condition at X = 0. During the first reanalysis, all the design variables were uni-
formly increased by 300 percent, and during the second reanalysis they were increased
by 1500 percent from their respective initial values. The results are given in table I.
The frequencies from the present method are seen to be identical to the frequencies

18
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from the reference method; thus, it is-demonstrated that the present method does indeed
give exact natural frequencies for uniform changes in the design parameters as shown in
appendix A.

Case 2.- The boundary conditions for this case are the same as those for case 1.
The thicknesses for the elements numbered 2, 3, and 7 were fixed at their initial values,
and were not changed during reanalysis. The rest of the design variables were increased
by 25 percent during the first reanalysis, and by 56.25 percent during the second reanaly-
sis. The results are presented in table II. The maximum error for the first reanalysis
is about 1.78 percent in the ninth mode, and for the second reanalysis it is about 5.2 per-
cent in the tenth mode. Thus, the results obtained from the present method can be con-
sidered to be good even when a few design variables remain unchanged while most of
the design variables are changed uniformly.

Case 3.- The boundary conditions are the same as in the previous two cases. Dur-
ing the first reanalysis, the thickness of element number 23 was set to zero. In the sec-
ond reanalysis, the thicknesses for two elements, element numbers 18 and 23, were set to
zero. From the results in table in, the maximum error occurs in the second mode; for
the first reanalysis it is 1.905 percent and for the second reanalysis it is 5.749 percent.
When three elements were removed, the present method gave an error of about 13 per-
cent in the second mode and about 14 percent in the tenth mode; these results are not
tabulated. The results show that the present method gives reasonably good results even
for drastic changes in the structure. This type of application could possibly be used to
study the effect of structural cutouts.

Case 4.- The boundary conditions are again the same as in the previous three cases.
A constant concentrated mass of 0.45359 kilogram (1 Ibm weight) is placed at the grid point
number 35. The design variables were uniformly increased by 25 percent and 56.25 per-
cent of their respective initial values. The results are presented in table IV. The fre-
quencies calculated from the present method are almost identical to those computed from
the reference method. Since the concentrated mass remains constant during reanalysis,
the inertia matrix is effectively experiencing a nonuniform change in the inertia design
parameters. But the uniform change in the stiffness design parameters causes the trans-
formation matrix [T] to remain a constant, and therefore the frequencies from the pres-
ent and reference methods can be expected to be nearly identical.

Case 5.- The swept, tapered plate structure is restrained only at grid point num-
ber 3; a 451.939 newton-meter/radian (4000 Ib-in./radian) spring restrains rotation
about the X-axis, and the normal displacement in the Z-direction and the rotation about
the Y-axis are specified as zero. This configuration simulates the arrangement of an
all-movable control surface. The results presented in table V indicate that the frequen-
cies from the present method are almost the same as those from the reference method.
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In this example, even though the design parameters are uniformly changed, the transfor-
mation matrix [T] does not remain a constant because the spring stiffness remains con-
stant during the reanalysis. The results of this example show that the present method can
be expected to provide good results for the spring-support type of boundary conditions.

In a variation of case 5, a concentrated mass of 0.45359 kilogram (1 Ibm weight) was
placed at the grid point number 35. The percent errors in frequencies by the present
method were almost the same as those for the example without the concentrated mass.
To study the effect of the number of modes, the example cases 4 and 5 were rerun by
using the first five modes of natural vibration for the generalized matrices instead of the
first ten modes of natural vibration. The results showed that there was no appreciable
increase in the percent errors (five modes compared with ten modes). For the example
without the concentrated mass, the maximum errors for 56.25 percent uniform change in
the design variables was 1.096 when using five modes compared with 0.960 when using ten
modes.

In the second series of examples, a rectangular-plate structure idealized into
48 triangular finite elements was considered. This structure is illustrated in figure 2.
Two types of boundary conditions were considered and these are described by the follow-
ing two cases. In all the examples discussed below, the generalized matrices were cal-
culated from the first seven modes of natural vibration.

Case 6.- The rectangular plate is rigidly supported along its four edges. The thick-
nesses were uniformly increased for all the elements by 25 percent and then by 56.25 per-
cent of their respective initial values. The natural frequencies calculated from the pres-
ent method were identical to those calculated from the reference method, and therefore
the results for this method are not presented. In a subsequent study, the thicknesses for
elements 17 to 32 were increased by 25 percent and 56.25 percent from their respective
initial values whereas the remainder of the element thicknesses were unchanged from
their respective initial values. The results for this example are presented in table VI.
The maximum error in frequency is 2.265 percent in the third mode for the 25 percent
increase, and about 10 percent in the seventh mode for the 56.25 percent increase. The
results are considered to be acceptable for reanalysis during automated design.

Case 7.- The rectangular plate of figure 2 is simply supported along its edges. For
uniform increase in thickness for all the elements, the natural frequencies calculated
from the present method were identical to those from the reference method. The results
for a case when the thicknesses for element numbers 17 to 32 are increased, are given
in table VII. The percent errors for this case are somewhat smaller than those for the
plate with the fixed edges.
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Comparison of Computer Times for Reanalysis

The computer cost saved by using the present method for iterative reanalysis is a
complicated function of the number of (a) degrees of freedom n, (b) design parameters
NP and N^>, (c) degrees of freedom eliminated NR, (d) generalized coordinates NM,
and (e) total number of reanalysis cycles. Table VIH presents a comparison of the com-
puter CPU times required with the present and reference methods. The computer time
listed for the eigensolution in the reference method is for complete solution of equa-
tion (7), and all the NZ eigenvalues and eigenvectors were calculated even though only
the first NM eigenvectors were needed. The computer subroutine used for the eigen-
solution is based on Jacobi's method and finds the solution for all NZ modes. However,
for the cases in table Vm, the reference method CPU times are not heavily penalized
since most of the methods that would be used for partial modal solution would still

require determination of the symmetric matrix

,-1/2
T

-1/2 T -1/2
or

-1/2 Thus, the CPU times in table Vin can be used for the com-

parison and show the efficiency of the present method. Each "analysis" (table VIE) for
the present method involved evaluating the generalized matrices for the new set of design
variables and solving the eigenvalue problem of order NM. It is seen that the present
method yields substantial time savings and hence cost savings when a large number of
analyses are required. For example, from the first entry in table Vin, the present
method would require about 3.6 percent CPU time for the reference method if 100 reanal-
yses are required, and about 22 percent CPU time if 10 analyses are required. This
statement assumes that generalized derivatives are calculated only once. If the gener-
alized derivatives are required to be recomputed, the additional time required for each
recomputation is of the order of the time required for one analysis by the reference
method.

A comparison of the number of multiplications required in the present method to
the number required in the reference method indicates that as the problem size and/or
the number of reanalysis cycles increase, the computer cost savings achieved by using
the present method relative to the reference method increase.

CONCLUDING REMARKS

A method for iterative reanalysis in automated structural design has been presented
for a finite-element analysis using the direct stiffness approach. A basic feature of the
method is that the generalized stiffness and inertia matrices are expressed as functions
of structural design parameters, and these generalized matrices are expanded in Taylor
series about the initial design. Only the linear terms are considered in the expansions.
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The method is approximate because it uses static condensation, modal reduction, and the
linear Taylor series expansions. The exact linear representation of the. expansions of
the generalized matrices is also described, and a basis for the present method is estab-
lished. The formulation of the present method provides a simple means of evaluating the
derivatives of the structural matrices with respect to structural design variables.

The method has been illustrated for dynamic reanalysis by applications to simple
trapezoidal and rectangular plate models. The results in terms of natural frequencies
were compared with the results obtained from a complete commonly applied structural
analysis. Several support boundary conditions were considered, and the results obtained
from the present method were generally in good agreement with the results from the ref-
erence method. A comparison of the computer times required for the use of the present
method and the reference method indicated that the present method required substantially
less time for reanalysis. The present method will become more efficient relative to the
reference method as the problem size increases.

The application of the present method to static reanalysis has been described and
the basic equations have been derived. A procedure for combining the static and dynamic
reanalysis into a unified approach is offered, but this procedure has not been demonstrated
by actual application.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., July 9, 1973.
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APPENDIX A

THE APPROXIMATE AND EXACT LINEAR REPRESENTATION

OF GENERALIZED MATRICES

It was assumed that the generalized stiffness and inertia matrices are linear func-
tions of their respective design parameters, and that the transformation matrix [T] is
a constant for the purpose of deriving expressions for the derivative of the generalized
inertia matrix with respect to an inertia design parameter. It is shown in this appendix
that [T] remains a constant if all the stiffness design parameters are uniformly changed,
that is, the design parameters are changed by a constant percentage from their respec-
tive initial values. The exact linear representation of the generalized matrices is then
discussed, and it is shown that the assumption of a constant [T] in deriving the expres-
sion for the generalized inertia matrix derivatives is justified.

The transformation matrix (Vj for the initial analysis is given by equation (3) and
is

B[~K ili IVJJ

where an arbitrary initial stiffness design parameter P^ is factored out from
and [K^l, and each element of [K^a] (or [KQ,^] is obtained by dividing the correspond-

ing element of [K^O] for |Kah]j by P^. Since ["K^al and [K^hl are linear in

{p}, each element of \~K-a a \ and [K^jJ is either a constant multiplied by the ratio of

a design parameter to P^B or a summation of several such terms. After a uniform
percent change in all the stiffness design parameters from their initial values, the ratio
of any design parameter to the ith design parameter will be the same as the correspond-
ing ratio at the initial design, and [T] will remain unchanged. In this case, the expres-
sion for ([MG]). in equation (27) is exact. In addition, [KG] and [MG] are linear in
design parameters, and can be exactly represented by the constant and the linear term of
the Taylor series expansion.

' This relationship was pointed out to the author by William C. Walton, Jr., and
Jerrold M. Housner of NASA Langley Research Center.
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APPENDIX A - Continued

For a nonuniform change in the stiffness design parameters, the transformation
matrix [T] does not remain a constant, and the generalized matrices obtained from the
two-term Taylor series expansions-are not exact. An exact linear representation of the
generalized matrices can be obtained if the static condensation is not performed, and the
eigenvalue problem associated with the complete system matrices [K] and [M] is
solved to determine the modal transformation matrix [Qnl- Then

and

[KG] . [Qnf [K] [Qn]
(NM X NM) (NM X n) (n X n) (n X NM)

[MG] [Qn]
T [M]

(NM X NM) (NM X n) (n X n) (n X NM)

(A2)

(A3)

The generalized matrices thus obtained are linear with respect to the design parameters,
and the Taylor series expansions obtained by using only the first two terms, are exact.
The exact series representation is, however, achieved at the cost of solving a considera-
bly larger eigenproblem, specifically one of order n. As an alternative, one may per-
form the static condensation and solve equation (7) of the order NZ to form the
(NZ x NM) modal matrix [Q]. Since the transformation matrix [T] has already been
determined, the modal matrix for the unreduced system [Q^ can be calculated. The
matrix [Qnl determined by this method would be, strictly speaking, an assumed-mode
matrix approximating the exact modal matrix. In any case, rQnl can be used to deter-
mine the generalized matrices which are linear in the design parameters. The general-
ized matrices can be expressed as

[*»]- [Q]'
[«hh] [V]
[Kah] [Kaa]

[Q]

M

(A4)
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APPENDIX A - Concluded

and

[MG] =
[Mh«] [Q]

w
(AS)

where [s] = [T][Q] as before, and

[«„]•

[Q]

Equations (A4) and (A5) are identical to equations (8a) (for [KG]J and equation (8b) ('for,
[MG]), respectively. Differentiating equations (A4) and (A5) with respect to the design
parameters Pj and 3?j, respectively, and assuming rQn~| to be a constant matrix gives
expressions for ([KG]), and ([MGjj.. These expressions are identical to equations (25)

J , .

and (27). It should be recalled that in deriving equation (27) for ([MG]jJ., [T] was

assumed to be a constant. Therefore, the assumption of a constant [T] for the gener-
alized inertia matrix derivatives is equivalent to obtaining an assumed-mode matrix [~Q 1
from the normal-mode matrix [Q] for the initial design.
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APPENDIX B

STATIC REANALYSIS

The application of the present method to static reanalysis is described in this appen-
dix. The system of equations required to be solved for the structural displacements is

(Bl)

where {A} is the displacement vector, and {F} is the applied-force vector. The
stiffness matrix [K] is formulated as a linear function of the stiffness design parame-
ters Pi? i = 1,NP, as in the dynamic reanalysis. Equation (Bl) can be written in par-
titioned form as

IV 1 frc 1LKnJ LKl2J

[K2l] [K22J

<

'ti

(A2>
_,

> = <

X- ^

\
"""/

(^2} ;

s. J

(B2)

Let {AA be the set of displacements which are to be retained, and ^2} ^e *ne

of displacements which are to be eliminated. For example, /A A could be the vector
of normal displacements for a wing structure whereas /A 2} could be the vector of rota-
tional displacements. In general, the force vector ft? 2} corresponding to {&2\> wil1

not be identically zero.

From equation (B2),
follows :

can be expressed in terms of /A A and as

-l (B3)

where

"1

[Ts] = -[K22]"[K2l]

Equation (Bl) can then be written as

(B4)

(B5)
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APPENDIX B - Continued

where

= [Kll]+[K12][Ts] <B6>

and

1} + [TS]T{F2} <B7)

The order of equation (B5) is less than the order of original displacement equa-
tion (Bl). For the purpose of reanalysis, [kj and \F/ can be expanded in Taylor
series about the initial design. K only the first-order terms are retained, that is, if
[kl and \jy are assumed to be linear in P±, then

(B8)

i=l 1V

and

NP
{F}={FB}+y ({FAfpi-P^) (B9)

where the superscript B denotes the initial design point, P^ are the stiffness design
parameters, NP is the number of stiffness design parameters, and a subscript follow-
ing a parenthesis denotes a partial derivative with respect to the design parameter corre-
sponding to the subscript. The partial derivatives are given by the following expressions:

(B10>

and
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APPENDIX B - Continued

During reanalysis, [kj and {F} can be evaluated from equations (B8) and (B9).
As a consequence of assuming [K] and {F} to be linear, the partial derivatives ([k]).

/ r*- ~\\
and \Fj . , i = 1,NP, are constants and need to be calculated only at the initial design.
The displacements {&{} can be solved from equation (B5), and {&2\ can be deter-
mined from equation (B3).

In order to obtain ^2} from equation (B3) during reanalysis, matrices fTgl and
[~K22T are retluired- Several alternatives are described to obtain these matrices dur-

r*\ing reanalysis. By virtue of equation (B 11) and the fact that the \F/ are taken to be
constants, fTgl is linear with respect to {i?}, and is given by the following expression:

NP

i=l
M = [T

S
B> J ([Ts]).(pi - pi

-i-l r iNote that K^j is not linear in \P), but may be approximated by assuming it to be
linear with respect to 1/Pj, i = 1,NP, in a manner similar to reference 7. Thus

M'Vi

x NP
h2

B]"1([K22]).[K22B]-1 (B14)

The matrix triple product |K22 (rK22~|) K22 is a constant matrix and has to be

evaluated only during the initial analysis. It is apparent from equation (B3) that if {FQ}
is identically zero, fKoo] will not be required. If {Fo\ is small in magnitude rela-

tive to {"Fj"V, then [^22] could be assumed to be constant for the purpose of deter-

mining {^2}- Alternatively, it may be argued that assuming [TgT to be linear in the
stiffness design parameters implies that Kl is a constant. This condition is evi-
dent from equation (B4) and the fact that [K^il is formulated as a linear function of the
stiffness design parameters. Therefore, assuming KooT to be a constant may be
satisfactory in practice.

The procedure outlined above - static condensation followed by Taylor series
expansion - is probably more efficient than reassembling a new [K] matrix for each
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APPENDIX B - Continued

reanalysis and solving equation (Bl) for {A}. The procedure is, however, not as effi-
cient as the method for dynamic reanalysis presented in the main body of this report
because the static reanalysis does not incorporate modal reduction. In order to achieve
the same degree of efficiency for the static reanalysis as for the dynamic reanalysis, it
is proposed that the static reanalysis be performed by using an approach parallel to that
of the dynamic reanalysis, in which case the static and dynamic reanalyses can be inte-
grated into one unified approach. A procedure to accomplish this integration is described.

The degrees of freedom to be eliminated by static condensation in the static reanal-
ysis are selected to be the same as in the dynamic reanalysis. The transformation matrix
[Tg] will now be identical to the transformation matrix [_T] for the dynamic reanalysis,
and /A A and ^2} will be identical to {Uh} and {Uo}> respectively. If the modal
transformation matrix [Q] determined for the dynamic reanalysis is used to transform
the physical displacements AjjA to a set of generalized displacements {£}, then the
generalized matrix [KG] is the same for the static and dynamic reanalyses. The gen-
eralized displacements •(£} can be obtained from

(B15)

where

(Fg> =

and

The vector {Fg\ is assumed to be expressed by a two-term Taylor series expansion

NP

where

and ([S]). is given by equation (24) . If (F/X is identically zero, then {Fg\ is a
constant.
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Equation (B 15) can be solved to obtain
mined by back substitution; thus

APPENDIX B - Concluded

and and can be deter-

(B18)

and

(B19)

Then [s] is determined during reanalysis from

NP
[S] = (B20)

where ([&]). , given by equation (24), is determined only during the initial analysis.

TK^Q,!" c
is given by

' 1

" can be determined in the same manner as [^22] in equation (B 14), and

1 PiB(P.B . p.)
(B21)

The procedure described for the approximate static reanalysis has not been pro-
gramed and evaluated. However, the rationale for the static case is similar to that for
the dynamic reanalysis which is shown to be economical and does give fairly accurate
results.
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APPENDIX C

COMPUTER PROGRAM RITREAD

The special purpose computer program RITREAD (Rapid Iterative Reanalysis for
Automated Design), which was developed for solving the example problems presented in
the main text, is described in this appendix. The program was written in Fortran IV for
use on the Control Data 6000 series digital computers at the Langley Research Center. A
simplified flow chart and a brief discussion of some of the salient features of RITREAD
are included in this appendix. The program listing and the usage procedure are not
described.

RITREAD has only a triangular plate bending element and the corresponding consis-
tent mass representation, and each element has nine degrees of freedom associated with
it. The finite-element idealizations for the plate configurations of the type shown in fig-
ures 1 and 2, can be automatically generated by RITREAD from a simple input.

RITREAD has been written for a maximum of 35 grid points and 48 elements. Each
element is assigned one stiffness design parameter and one inertia design parameter, and
each element thickness is taken to be a design variable. Therefore, the number of design
variables, the number of stiffness design parameters, and the number of inertia design
parameters are identical to the number of elements. The stiffness design parameter for
each element is the element thickness cubed, and the inertia design parameter is equal to
the element thickness. Each grid point has three degrees of freedom - one normal dis-
placement and two rotations. The rotational degrees of freedom are eliminated by Guyan
reduction, and the reduced stiffness and inertia matrices are used to solve for the normal
vibration modes. A maximum of ten modes can be used to construct the modal matrix,
and the maximum size of the generalized matrices is thus 10 by 10.

Figure 3 shows a simplified flow diagram of RITREAD. The program is arranged
in multiple overlays with each overlay performing a logically discernible task. Over-
lay (0,0) monitors the execution sequence and transfers the required data to different over-
lays. The large amount of data required for element matrices, and the generalized matri-
ces are written on the two disk files to save the in-core memory required, and to have
the capability to eliminate recomputation of the element matrices, the base generalized
matrices, and the generalized derivatives during a future run for the same structure.

In overlay (1,0), each unrestrained degree of freedom is assigned an identifying
number determined from the finite-element definitions which are input into the program
or automatically generated within the program from a simple input- The constant matri-
ces of stiffness and inertia coefficients for each element are determined. Each constant
matrix is n x n, but has only 81 nonzero elements since the plate element has nine degrees

41



APPENDIX C - Continued

Overlay (0,0)
Input to define
program variables
and logic

Are
element
matrices on
tape 1?

Are
generalized
matrices and
derivatives on
tape 2?Overlay (1,0)

Input for finite elements,
calculate element
matrices and save on
tape 1

Overlay (3,0)
Generate new general
ized matrices and
solve eigenproblem

Overlay (2,1).
Assemble system stiff-
ness and inertia matrices
in partitions of normal
displacements and rotations

Is
further
reanalysis
required ?

Overlay (2,2)
Eliminate rotational
degrees of freedom
by Guyan reduction
and solve eigenprob-
lem to determine modal
transformation matrix

Change design variables

Is
exact analysis

required ?

Overlay (2,3)
Determine the generalized
matrices and their deriv-
atives, and save on tape 2

Figure ?.- Simplified flow diagram of program RITKEAD.
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APPENDIX C - Continued

of freedom. These matrix coefficients are written on a disk file as two matrices of size
9x9 along with a 9 x 1 vector {LG} identifying the element degrees of freedom with
the system degrees of freedom. For the restrained element displacements, the corre-
sponding element in {LG} is zero. This procedure minimizes the disk space required,
and tape 1 can be copied on an external tape and saved for future use, if desired.

In overlay (2,1), the matrices of the stiffness and inertia coefficients and the asso-
ciated vector {LG} are read (one element per reading operation) from tape 1. Each
coefficient matrix is multiplied by the appropriate initial design parameter, and the ele-
ment stiffness and inertia matrices are thus determined for each element. The contri-
butions from all elements are added to assemble directly the matrix partitions fKhhl'
[Kn0!"|, [K^O,!, [MnhJ, [MnQ!], and [Mac^]. These are passed by means of a labeled
common block to overlay (2,2).

The transformation matrix [T] is determined in overlay (2,2) by solving the
matrix equation ["K^^tT] = -[KnQ!l

T by use of Cholesky's method. The reduced matri-
ces [Kn] and [Mn1 .are then determined by the expressions in equations (5) and (6).
The modal matrix [Q] is constructed from the solution of the eigenproblem of equa-
tion (7). The eigenproblem is solved by Jacobi's method, and all the NZ eigenvalues
and eigenvectors are determined. The matrices [T] and [Qj are passed to over-
lay (2,3) by means of a labeled common block.

The generalized matrices LK GJ and [M^BJ corresponding to the initial design,
and the derivatives of the generalized matrices with respect to the design parameters are
calculated in overlay (2,3). The matrix [S] is first determined from the matrix prod-

uct [T][Q]. The determination of [KGB] and [MGB], and the derivative calculations
are performed in the same pass through the program. The value of [KGB] is obtained
by multiplying the first two terms in the expression for ([KG]J. in equation (25), by the
corresponding stiffness design parameter, and summing the resulting matrix over all
the NP design parameters. Similarly, (_MGBJ is obtained by simply evaluating

([MG]V^i, where ([MG]\ is given by equation (27).

In determining the derivatives of the generalized matrices by equations (25) and
(27), the triple matrix products of the form [Q]TrKnh jl[Q], [Q]T[KhQ! jl[s], etc., are
required. An optimum procedure for obtaining these products is desirable since the
number of such triple products is 4(NP + N^). The general procedure used in RITREAD
is illustrated for determining [Q]T[Knn j][Q]- The 9x9 element stiffness matrix and
the 9 X 1 vector {LG} for the ith element are read from tape 1. The element stiffness
matrix is rearranged into matrix partitions [KZ], [KZRJ, and [KR] where [KZ]
is the 3 x 3 partition for the normal displacements (retained displacements), [KR.J is
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APPENDIX C - Concluded

the 6X6 partition for the rotational displacements (eliminated displacements), and [KZRj
is the 3x6 partition of the normal displacements - rotations coupling. The vector {LG}
is also rearranged so that the first three terms identify the normal displacement degrees
of freedom corresponding to [KZ], and the last six terms identify the rotational degrees
of freedom corresponding to [KRJ. Any zeros in {LG} indicate that during input the
corresponding displacements associated with the particular grid points have been speci-
fied to be zero. The number of nonzeros for the normal displacements IZ and for the
rotational displacements IR in {LG} are counted. If IZ < 3, the subsequent elements
to any zero element in the first three elements of {LG} are moved up and the zero ele-
ments eliminated. If IR < 6, the last six elements of {LG} are also similarly rear-
ranged. The rows and columns in the three partitioned matrices, corresponding to the
zeros, if any, in {LG} are eliminated, and the subsequent rows and columns are moved
to their proper position to correspond to the newly arranged {LG}. The matrix triple
products can now be efficiently performed as illustrated by the following expression for
A(I,J), where [A] = [Q]T[Khh>i][Q]:

IZ IZ

A(I,J) = £ Q(LG(Z),l) £ KZ(J,m)Q(LG(m),j)
1=1 m=l

Therefore, determination of [Q] fK^h i][Q] recluires (NM2)(lZ2) multiplications

instead of the (NM2)(NZ2) multiplications required if the advantage of the zero ele-
ments is not taken. The other triple products are also carried out in the manner shown
for the product [Q]T[Khhji][Q].

The matrices [KG^j, [MG^J, the design variables {D}, and the generalized stiff-
ness and inertia derivatives are written on tape 2 in overlay (2,3). The generalized matri
ces are calculated for any set of design variables {p} in overlay (3,0). The required
matrices are read from tape 2, and the generalized stiffness and inertia matrices are
determined from the expressions for the Taylor series expansion. Once [KG] and
[MG] are determined, an eigenvalue problem of the order NM is solved for NM
eigenvalues and eigenvectors. Tape 2 can be copied on an external tape if the same
problem with different design variables is required to be solved at a future date.

This brief program description outlines the computational procedure used to imple-
ment the iterative reanalysis method presented in this paper for solution of the sample
problems. Although this particular program is limited in size and is restricted to only
one type of finite element, experience with its use has indicated that the basic program
organization and solution flow is good and should form a basis for the development of a
more comprehensive program.
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APPENDIX D

DERIVATIVES OF STRUCTURAL MATRICES WITH

RESPECT TO DESIGN VARIABLES

In automated structural design procedures based on mathematical programing, the
derivatives of the structural matrices with respect to the design variables are often
required. It is shown in this appendix that these derivatives can be obtained in a simple
manner when the structural formulation is based on the method presented in this report.

The system stiffness and inertia matrices are expressed in equations (13) and (14)
as linear functions of the design parameter. The design parameters themselves can be
nonlinear functions of the structural design variables. Therefore the derivatives of the
system matrices with respect to a design variable are

NP

and

0- l .NV, (02,

The derivatives of the generalized structural matrices with respect to a design variable
are obtained by noting that the derivatives of the generalized matrices with respect to
design parameters are constant. Thus,

«

NP

and

(j = 1«NV) (D4)

The design parameters are functions of the design variables, and these functional defini-
tions are known. Therefore, aPj/kDj, 9^i/9Dj, etc., are easily determined. The higher
derivatives can also be computed on the same basis.
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APPENDIX D - Concluded

The equations (Cl) to (C4) are further simplified if the design variable Di,
j = 1,NV, is associated with only one or a few of the design parameters {P} and
In such a case, the summations do not have to be performed over all the design
parameters.
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