(NASA-TM-X-62296) WIND TUNNEL
 INVESTIGATION OF A LARGE-SCALE UPPER SURFACE BLOWN-FLAP TRANSPORT MODEL HAVING TwO ENGINES (NASA) 69 p HC $\$ 5.50$

WIND TUNNEL INVESTIGATION OF A LARGE-SCALE UPPER SURFACE BLOWN-FLAP TRANSPORT MODEL HAVING TWO ENGINES

Kiyoshi Aoyagi, Michael D. Falarski and David G. Koenig

Ames Research Center
and
U.S. Army Air Mobility Research and Development Laboratory
 Moffett Field, Calif. 94035

August 1973
$b \quad$ wing span, $m(f t)$
c wing chord measured parallel to the plane of symmetry, m (ft)
C_{p} pressure coefficient, $P_{\ell}-P_{s} / q_{\infty}$
c_{t} horizontal tail chord measured parallel to the plane of symmetry, $m(f t)$
$\bar{c} \quad$ mean aerodynamic chord of wing, $2 / \mathrm{S} \int_{0}^{b / 2} c^{2} d y, m$ (ft)
$C_{D} \quad$ drag coefficient, drag $/ q_{\infty} S$
$C_{D_{\text {ram }}}$ ram drag coefficient, $W v / \mathrm{gq}_{\infty} S$
C_{J} jet momentum coefficient, $F g / q_{\infty} S$
$C_{L} \quad$ lift coefficient, $1 i f t / q_{\infty} S$
$\mathrm{C}_{\ell} \quad$ rolling-moment coefficient about stability axis, rolling moment $/ \mathrm{q}_{\infty} \mathrm{Sb}$
$C_{m} \quad$ pitching-moment coefficient about $0.40 \bar{c}$, pitching moment $/ q_{\infty} S \bar{c}$
C_{n} yawing-moment coefficient about stability axis, yawing moment $/ q_{\infty} \mathrm{Sb}$
C_{y} side-force coefficient about stability axis, sideforce/ q_{∞} S
$\mathrm{F}_{\mathrm{A}} \quad$ static (wind off) incremental axial force due to flap deflection with power on, N (lb)
F_{g} gross thrust with engine alone, N (1b) (obtained statically)
$\mathrm{F}_{\mathrm{N}} \quad$ static (wind off) incremental normal force due to flap deflection with power on, N (1b)
$F_{R} \quad$ resultant force $\sqrt{F_{A}^{2}+F_{N}^{2}}$, N (lb)
g acceleration of gravity, $9.81 \mathrm{~m} / \mathrm{sec}^{2}\left(32.2 \mathrm{ft} / \mathrm{sec}^{2}\right)$
i_{t} horizontal tail incidence, deg
$P_{\ell} \quad$ local static pressure, N / m^{2} ($1 \mathrm{~b} / \mathrm{sq} \mathrm{ft}$)
$P_{s} \quad$ free-stream static pressure, $N / m^{2}(1 b / s q f t)$
$P_{\infty} \quad$ free-stream total pressure, $N / m^{2}(1 b / s q f t)$
free-stream dynamic pressure, N / m^{2} ($1 \mathrm{~b} / \mathrm{sq} \mathrm{ft}$)
$S \quad$ wing area, $m^{2}(s q f t)$
v free-stream air velocity, $\mathrm{m} / \mathrm{sec}$ (ft/sec)
W engine inlet weight rate of flow, $\mathrm{kg} / \mathrm{sec}(1 \mathrm{~b} / \mathrm{sec}$)
WCP wing chord plane
y spanwise distance perpendicular to the plane of symmetry, m (ft)
$\alpha \quad$ angle of attack of fuselage, deg
δ_{a} aileron deflection, deg
δ_{e} horizontal tail elevator deflection, deg
δ_{f} deflection of Coanda plate trailing edge measured parallel to the plane of symmetry, deg (see fig. 2(d))
$\delta_{f_{2}} \quad$ trailing-edge second flap deflection measured parallel to the plane of symmetry, deg (see fig. $2(\mathrm{~d})$)
$\delta_{j} \quad j e t$ exhaust deflection angle wind off, $\tan ^{-1} F_{N} / F_{A}$, deg (average value)
$\delta_{s} \quad$ slat deflection, measured parallel to the plane of symmetry, deg
$\delta_{s p}$ spoiler deflection, measured parallel to the plane of symmetry, deg
$\eta \quad$ wing semispan station, $y /(b / 2)$
n_{c} spanwise extent of Coanda plate surface, $y /(b / 2)$
$\eta_{f} \quad f l a p$ system static turning efficiency, FR/Fg (average value)
() uncorrected

WIND TUNNEL INVESTIGATION OF A LARGE-SCALE UPPER SURFACE blown-FLAP TRANSPORT MODEL HAVING TWO ENGINES

Kiyoshi Aoyagi, Michael D. Falarski and David G. Koenig

Ames Research Center
and
U.S. Army Air Mobility RGD Laboratory Moffett Field, Calif., 94035

SUMMARY

An investigation has been conducted to determine the aerodynamic characteristics of a large-scale subsonic jet transport model with an upper surface blowing flap system that would augment lift. The model had a 25° swept wing of aspect ratio 7.28 and two turbofan engines with the engine centerline located at 0.256 of the wing semispan. The lift of the flap system was augmented by turbofan exhaust impingement on the Coanda surface. Results were obtained for several flap deflections and engine nozzle configurations at jet momentum coefficients from 0 to 4.0 .

Three-component longitudinal data are presented with two engines operating. Limited longitudinal and lateral data are presented with an engine out. In addition, limited exhaust and flap pressure data are presented.

A maximum $C_{L_{\text {max }}}$ value of 11.5 at a jet momentum coefficient of 4.0 was obtained with an engine exhaust nozzle that provided a maximum jet exhaust total pressure close to the wing and flap surfaces. A Coanda surface that extended from 0.11 to 0.43 of the wing semispan was determined to provide optimum lift values.

INTRODUCTION

The principle of augmenting lift by directing the jet exhaust over the wing upper surface and turning it over the deflected flap by the Coanda effect is currently being considered in some powered-lift transport designs. One reason for this consideration is the possibility of noise reduction due to wing shielding. Earlier investigations of the upper surface blowing concept have been reported in references 1 and 2 for aerodynamic characteristics and in reference 3 for noise characteristics. Since these investigations were based on small-scale models with simulated jet exhaust, additional investigations are required at higher Reynolds numbers with a realistic jet exhaust wake that corresponds to present-day turbofan engines.

To fill this need an investigation was undertaken in the Ames $40-$ by 80 -foot Wind Tunnel with a large scale upper surface blown-flap model. The aerodynamic and noise characteristics of a large-scale 25° swept-wing transport were obtained with two turbofan engines mounted on top of the wing. Only the aerodynamic characteristics of the model will be presented in this report. The noise characteristic data will be reported separately. Results were obtained with several flap deflections and engine nozzle configurations at jet momentum coefficients from 0 to 3.0 in most cases. The data were obtained at Reynolds numbers from 1.8×10^{6} to 3.0×10^{6}, based on a mean aerodynamic chord of $1.69 \mathrm{~m}(5.56 \mathrm{ft})$ and at dynamic pressures from 153 to $460 \mathrm{~N} / \mathrm{m}^{2}(3.2$ to 9.6 psf$)$, respectively.

MODEL AND APPARATUS

A photograph of the model in Ames 40 - by 80 -foot Wind Tunnel is shown in figure 1. Pertinent dimensions of the model are given in figure 2 (a). The model was equipped with two JT15D-1 engines. This model is the same as that reported in reference 4 except for the trailing-edge flap system and the four engines located below the wing.

Wing

The wing had a quarter chord sweep of 25°, an aspect ratio of 7.28 , and an incidence of 0°. The airfoil section had an NACA $63_{2} \mathrm{~A} 214$ thickness distribution at the root tapering linearly to an NACA $63_{2} \mathrm{~A} 211$ thickness distribution at the tip. The ordinates of these sections are given in table I. The upper surface of the wing was modified from $n=0.11$ to 0.48 in order to provide a better fairing between the engine nozzle and the Coanda surface as shown in figure $2(\mathrm{~b})$.

Leading-Edge Slats

Full span leading-edge slats were used to delay the wing leading-edge flow separation as shown in figure 2(c). A 0.19 c slat was deflected 48.5° from $\eta=0.08$ to 0.19 , and a 0.25 c slat was deflected 50° from $\eta=0.33$ to 1.0 with respect to the wing chord plane. The slats were attached to the wing leading edge throughout the investigation.

Trailing-Edge Flap System
The basic flap system had two flap segments with fixed pivots as shown in figure 2(d). The flap system extended from $\mathrm{n}^{2} 0.11$ to 0.75 and consisted of the first and second flap of a triple-slotted flap configuration used in reference 4. A detachable Coanda plate surface was installed over the double-slotted flap from $\eta=0.11$ to 0.48 with breaks at $\eta=0.15,0.34,0.39$ and 0.43 . Separate Coanda plates were used to provide a jet flap deflection, δ_{f}, of $30^{\circ}, 55^{\circ}$, and
75°. A . $254 \mathrm{~m}(.834 \mathrm{ft})$ chord extension was added at the trailing edge of the Coanda plate used for $\delta_{f}=75^{\circ}$ to give $\delta_{f}=90^{\circ}$.

A 0.10 c plain spoiler hinged at 0.725 c formed part of the shrouded trailing edge when undeflected and extended from $\eta=0.51$ to 0.75 . The spoiler was deflected 30° above the wing surface during the investigation.

Aileron

A slotted aileron extended from $\eta=0.75$ to 1.0 and was deflected 20° parallel to the plane of symmetry throughout the investigation as shown in figure $2(\mathrm{~d})$. The aileron is the same one reported in reference 4.

Propulsion

The JT15D-1 engines were housed in nacelles as shown in figure 2(b). The engines have a bypass ratio of 3 and a normal maximum gross thrust rating of 2200 pounds. The nacelle centerline was coincident with the engine centerline and was pitched up 1° with respect to the wing chord plane. The centerline was located at $\eta=0.256$ which was the same as the inboard engine centerline location of reference 4.

The nacelle contours are defined in figure 2(e). The maximum frontal area was $.67 \mathrm{~m}^{2}\left(7.25 \mathrm{ft}^{2}\right)$ with an overall length of 2.60 m (8.54).

The nozzle configurations investigated are shown in figure $2(f)$. The investigation was primarily concerned with nozzles B, B with deflector, and D. Nozzle A was tested wind off only. Nozzle C was similar to nozzle D but deflected with increasing thrust, and no data are presented for this configuration.

Fuselage
The fuselage had a constant $1.2 \mathrm{~m}(4.0 \mathrm{ft})$ diameter except at the nose and tail. The nose section had an elliptical outline with circular cross sections that decreased from 1.2 m to smaller diameters. The tail section tapered from a 1.2 m circular section to a small elliptical section.

Two fuselage fence configurations were investigated to prevent possible engine exhaust cross flow over or under the fuselage as shown in figure $2(\mathrm{~g})$. The fence located behind the flap and close to the bottom of the fuselage is designated configuration 1 . The fence located on top of the fuselage is designated configuration 2 .

Tail
The geometry of the horizontal and vertical tails is described in figure 2(a). These tails are the same ones used in reference 4. The
horizontal tail detail is shown in figure 2(h). The horizontal tail incidence and elevator deflection were set at 0° when the tail was on during the investigation. The vertical tail was on the model throughout the investigation.

CORRECTIONS

The data were corrected for wind tunnel effects. These corrections were determined by considering only the aerodynamic lift of the model ($\mathrm{C}_{\mathrm{L}}^{1}$) that resulted after the jet reaction components had been subtracted from the data as follows:

$$
\begin{aligned}
C_{L}^{\prime} & =C_{L}-\eta_{f} C_{J}\left[\sin \left(\delta_{j}+\alpha_{u}\right)\right] \\
\alpha & =\alpha_{u}+.4175 C_{L}^{\prime} \\
C_{D} & =C_{D_{u}}+.0073 C_{L}^{\prime 2} \\
C_{m} & =C_{m_{u}}+.025 C_{L}^{\prime} \quad \text { (horizontal tail test only) }
\end{aligned}
$$

The C_{J} values were based on the calibrations of the left hand engine static thrust variation with engine fan rotational speed with the engine alone as described in Appendix A. The right hand engine static thrust was assumed to be equivalent to that of the left engine alone thrust plus the difference between the static thrusts of the right and left engines measured when installed on the model. δ_{j} and η_{f} values used in the corrections are shown in figures 4 (a) and $4(\mathrm{~b})$. These values were obtained from wind off normal (F_{N}) and axial (F_{A}) force measurements with the engine installed on the model operating in the wind tunnel. The resultant thrusts (F_{R}) were divided by the engine alone static thrust values to compute η_{f} values.

The data that are presented in this report are not corrected for ram drag. In order to determine this, the variation of ram drag with C_{J} for the nozzles investigated are shown in figure 5.

TESTING AND PROCEDURE

In most cases, forces and moments were measured through an angle-of-attack range of -8° to 26°. Tests were conducted at Reynolds numbers of 1.8×10^{6} to 3.0×10^{6}, based on a mean aerodynamic chord of $1.69 \mathrm{~m}(5.56 \mathrm{ft})$ and at dynamic pressures of 153 to $460 \mathrm{~N} / \mathrm{m}^{2}$ (3.2 to 9.6 psf), respectively. Force measurements to compute δ_{j} values were obtained in the wind tunnel with the wind off prior to the wind on tests. These measurements were recorded at two or three power settings with one engine operating in most cases before air re-circulation could be generated in the test section.

Tests With Constant C_{J} and Varying Angle of Attack
Two engines operating- A constant C_{J} was maintained as angle of attack was varied for each flap and nozzle configuration investigated. The nominal C_{J} values used in most cases during the investigation are as follows:

The variables tested were nozzle configurations, spanwise extents of the Coanda surface, jet flap deflections, spoiler deflection, and fuselage fence configurations. Tests were conducted with and without the horizontal tail.

One engine operating- Tests were conducted with the left engine out with nozzle B and 0.15 m gap deflector. The data were obtained for one case with the Coanda surface removed behind the engine-out side. For the other case the Coanda surface was left on behind the engine-out side.

Tests With Constant C_{J} and Varying Angle of Sideslip

A constant C_{J} was maintained at $\alpha_{u}=0^{\circ}$ and 8° as sideslip, β was varied from 4° to -19°. Tests were conducted with nozzle D at $\delta_{f}=75^{\circ}$ and 90°.

RESULTS AND DISCUSSION

The static turning efficiencies (η_{f}) and static turning angles (δ_{j}) for the nozzles investigated are shown in figure 4. Figure 5 shows the variation of $C_{D_{~}}$ with C_{J} for the engine nozzles investigated. The jet exhaust total pressure distribution at the engine centerline behind the nozzle and at the flap trailing edge are shown in figure 6. The lateral total pressure distribution behind the engine exhaust nozzle is shown in figure 7. The basic aerodynamic data obtained from this investigation are presented in figures 8 through 25. An index to these data is given in table II. The flap chordwise surface pressures behind the engine centerline are shown in figure 26. Figures 27 through 30 are summary plots that show the variation of C_{L} with C_{J} at $\alpha=0^{\circ}$ and at $\mathrm{C}_{\mathrm{L}_{\text {max }}}$.

Static Turning

In most cases the δ_{j} and η_{f} values shown in figure 4 were obtained with only the left hand engine operating. The results obtained with the right hand
engine aline were nearly the same as those obtained with the left engine alone.

With the addition of a deflector (0.15 m gap) behind nozzle B the δ_{j} value increased from 46.5° to 58° at $\delta_{f}=75^{\circ}$. However, the η_{f} value decreased from 97% to approximately 90%. Similar results were obtained with nozzle D. The improvement in δ_{j} was coincident with the movement of the maximum jet exhaust total pressure toward the wing and flap surfaces (see figure 6). These measurements were obtained from pressure rakes located behind the left engine and at the flap trailing edge as shown in figure $2(\mathrm{~b})$. A fairly uniform exhaust total pressure distribution across the nozzle span was obtained with nozzle D and with nozzle B and 0.15 m gap deflector as shown in figure 7 . These measurements were obtained from the single engine test described in Appendix A.

A slightly higher δ_{j} value (66°) was obtained with two engines operating simultaneously at the same power setting compared to 62° with a single engine operating (see fig. 3(b)). As indicated from surface flow observation this probably resulted from the jet exhaust spreading over the top of the fuselage for one engine operation, whereas this spreading was limited to the model plane of symmetry for two engine operation.

Variation of Lift Coefficients with Jet Momentum Coefficient at $\alpha=0^{\circ}$ and C_{L} ${ }_{\text {max }}$

The effect of the deflector behind nozzle B on the variation of C_{L} and C_{J} is shown in figure 27. The increase in C_{L} values was significant with the deflector at 0.15 m gap because of the higher δ_{j} value and the movement of the maximum jet exhaust total pressure toward the wing and flap surfaces (see fig. 6). Additional improvements in C_{L} and $\mathrm{C}_{\mathrm{L}_{\max }}$ values (approximately 7% at $C_{J}=3.0$) were obtained with nozzle D compared to the values obtained with nozzle B and 0.15 m gap deflector as shown in figure 28 . A maximum $\mathrm{C}_{\mathrm{L}_{\text {max }}}$ value of 11.5 at $C_{J}=4.0$ and $\delta_{f}=75^{\circ}$ was obtained with nozzle D.

The effect of the Coanda surface spanwise extents on the variation of C_{L} with C_{J} is shown in figure 29. A loss in C_{L} and $C_{L_{\max }}\left(7 \%\right.$ at $\alpha=0^{\circ}, 3.5 \%$ at $C_{L_{\max }}$ for $C_{J}=3.0$) values resulted when the spanwise extent of the Coanda surface was decreased from $n_{c}=0.11$ to 0.39 to $n_{c}=0.15$ to 0.39 . Slightly higher C_{L} and $C_{L_{m a x}}$ values were obtained when the spanwise extent of the Coanda surface was increased from $n_{c}=0.11$ to 0.39 to $n_{c}=0.11$ to 0.43 . The lift values were nearly the same when the spanwise extent of the Coanda surface was increased from $n_{c}=0.11$ to 0.43 to $n_{c}=0.11$ to 0.48 .

The effect of the fuselage fence configurations that were investigated on the variation of C_{L} with C_{J} was small as shown in figures $30(a)$ and $30(b)$.

APPENDIX A

An accurate engine static thrust calibration could not be obtained with the engines installed on the model during the wind tunnel tests because the flaps could not be retracted. Therefore, static thrust and jet exhaust total pressure survey measurements of the engine alone were conducted at the Ames static test facility site after the wind tunnel tests were completed. The left engine and nacelle configuration was removed from the model and was installed on a platform that was attached to three load cells as shown in figures 3(a) and 3 (b). The engine nozzle configurations and areas were duplicated by adding an extension plate under the nozzle exit. This plate was contoured to match the wing upper surface behind the engine nozzle of the model. The engine centerline was leveled and was located $3.14 \mathrm{~m}(10.30 \mathrm{ft})$ above the ground.

The thrust valves as a function of fan rotational speed were obtained for nozzle B, B and 0.15 m gap deflector, and D. In addition the jet exhaust total pressures were surveyed laterally for the latter two nozzle configurations. Some of these data are presented in figure 7.

The static engine thrust calibration for nozzle B and 0.18 m gap deflector was assumed to be equivalent to that of the engine alone with nozzle B plus the difference between the thrusts obtained with the two nozzles measured with the engines installed on the model.

1. Turner, Thomas; Davenport, Edwin E.; and Riebe, John M.: Low-Speed Investigation of Blowing from Nacelles Mounted Inboard and on the Upper Surface of an Aspect-Ratio-7.0 35° Sweptwing with Fuselage and Various Tail Arrangements. NASA Memo 5-1-59L, 1959.
2. Phelps, Arthur E.; Letko, William; and Henderson, Robert L.: Low-Speed Wind-Tunnel Investigation of a Semispan STOL Jet Transport Wing-Body with an Upper-Surface Blown Jet Flap. NASA TN D-7183, May 1973.
3. Maglieri, Domenic J.; and Hubbard, Harvey H.: Preliminary Measurements of the Noise Characteristics of Some Jet-Augmented-Flap Configuration. naCA Memo 12-4-58L, 1959.
4. Aoyagi, Kiyoshi; Falarski, Michael D.; and Koenig, David G.: Wind-Tunnel Investigation of a Large-Scale 25° Swept-Wing Jet Transport Model with an External Blowing Triple-Slotted Flap. NASA TM X-62,197.

TABLE I. - WING SECTION CONTOURS OF ROOT AND TIP SECTIONS (other sections obtained using straight line elements between these sections)

$\mathrm{x}^{*} / \mathrm{c}, \% \mathrm{c}$	** y / c, \% c			
	$\begin{aligned} & \text { Section at } \\ & \text { wing root }(n=0) \end{aligned}$		$\begin{array}{r} \text { Section at } \\ \text { wing } \operatorname{tip}(\eta=1.0) \end{array}$	
	Upper	Lower	Upper	Lower
0	0	0	0	0
0.55	1.356	-	1.060	-
0.88	-	-1.275	-	-0.998
1.00	1.748	-1.358	1.379	-1.061
3.00	2.957	-2.324	2.363	-1.785
5.00	3.802	-2.962	3.055	-2.259
8.00	4.774	-3.662	3.852	-2.776
10.00	5.304	-4.032	4.288	-3.065
12.50	5.873	-4.419	4.757	-3.329
15.00	6.357	-4.741	5.157	-3.562
20.00	7.127	-5.232	5.796	-3.915
25.00	7.680	-5.558	6.258	-4.143
30.00	8.045	-5.740	6.566	-4.265
35.00	8.220	-5.772	6.721	-4.273
40.00	8.217	-5.662	6.730	-4.174
45.00	8.046	-5.422	6.604	-3.978
50.00	7.730	-5.071	6.358	-3.699
55.00	7.288	-4.633	6.010	-3.357
60.00	6.738	-4.137	5.572	-2.999
65.00	6.091	-3.643	5.053	-2.643
70.00	5.363	-3.149	4.465	-2.286
75.00	4.574	-2.655	3.824	-1.929
80.00	3.742	-2.161	3.138	-1.573
85.00	2.839	-1.667	2.382	-1.204
90.00	1.912	-1.173	1.605	-0.859
95.00	0.971	-0.679	0.814	-0.503
100.00	0	-0.185	0	-0.146

*Chordwise distance from wing leading edge parallel to model plane of symmetry.
**Distance above wing reference plane-positive upperpendicular to wing reference plane.

TABLE II.- LIST OF BASIC DATA FIGURES

TABLE II. - LIST OF BASIC DATA FIGURES - CONTINUED

TABLE II. - LIST OF BASIC DATA FIGURES - CONTINUED

TABLE II. - LIST OF BASIC DATA FIGURES - CONCLUDED

Figure 1.- Photograph of the model as mounted in the the Ames 40 - by 80 -Foot Wind Tunnel.

(a) GENERAL AREANGEMENT OF THE MODEL

FIGURE 2. - GEOMETEIC DETAILS OF THE MODEL.

NOTE:

1. ALL DYMENEIONE N METEES
(FEET) EXCEPTAS NOTED.
2. $\eta=.1 /$ to $A B$ COANDA $5 u R F A C F$.

(d) TEARING-EDSE FUAP AND AILERON ARRANGEMENT

F/GURE 2 - CONTHNUED.

$57 A$		
	Y_{L} (Any)	Y_{L} (Anas)
0	.38	.64
.05	.38	.64
.10	.37	.62
.15	.35	.60
.20	.32	.56
.25	.28	.51
.30	.22	.43
.36	.12	.31
.38	0	0

STA*2		
\boldsymbol{x}	Yu (AM)	YL (Avol
0	. 37	. 73
. 05	. 37	. 78
. 10	. 36	. 72
. 15	. 34	. 68
. 20	. 31	. 63
. 25	. 27	. 56
. 30	. 21	. 48
. 36	. 12	. 37
. 38	0	0

$\operatorname{STA*}^{3}$		
x	Yucam	$Y_{1}(f \times 1)$
0	. 38	. 66
. 05	. 38	. 66
. 10	. 37	. 66
. 15	. 35	. 61
20	. 32	. 53
. 25	. 28	. 48
. 30	. 23	. 43
. 36	. 14	. 36
. 39	0	0

STA \#4			$574 * 5$		
x	Yum		x	Yu(an)	$Y_{1}{ }^{(1)}$
0	. 36	. 60	0	. 29	. 51
. 0.5	. 36	. 60	.0.5	29	. 51
. 10	. 35	. 59	. 10	. 28	. 51
. 12	-	. 58	. 12	-	. 51
. 15	. 34	. 56	. 15	. 28	. 49
. 20	. 33	. 49	. 20	. 28	. 44
. 25	. 30	. 45	. 25	. 27	. 40
30	. 26	. 41	. 30	. 26	. 38
. 36	. 21	. 35	. 36	. 24	. 35
. 39	-	. 25	. 41	. 16	. 32
43	0	0	42	0	0

> (e) NACELLE CONTOUR.
> FIGURE 2. COWTNUED.

NOZZLE B WITH DEFLECTUE'

-

NOZZLE D
(f) EnGINE NOZzLE GRRANGEMENT

FIGURE 2.- CONTINUED.

(a) Photograph of the JT15D-1 engine at the Ames static test facility site

Figure 3.- Single JT15D-1 engine static thrust stand installation.

										Stesa	${ }_{\text {sinuta }}$	
									-	-		
		R								*		
									σ_{1}			
		,						14				
		b						\%	18.	\square		
		,							雷.		\%	
		\%										
										+		
		- 0										
		\%										
		,								? \times	\%	
		**										
								$1{ }^{2}$	r^{2}	8	?	
											8	
							1			\%		
										-		
										\%		
							5	+ -	0°			
							*11	7mpar				

Distance fare englne \& $\&$

Figure 7, - Concluded
nozele "D"

Figure 9. - Longitudinal charactaristics of the made/ with nozz/e B and 0.18 m gap deflector, $\delta_{f}=75^{2}\left(2.11\right.$ to 48), $\delta_{2}=4 t^{2}$; tal/ aff.

Figure II . Longitudinal characteristics of the model with nozele B and a.lsm gop deflector at several sponnise extent of Coando surtaces; $\delta_{f}=75^{\circ}, f_{\sqrt{2}}=47^{a}$, torl off.

Figure 12 . - Longitudinal characteristics of the model with fuse lage fence cenfiguration is nozzle B with oism gap atetleator, $\delta_{f}=75^{\circ}\left(\eta_{c}=.11\right.$ to. 48$), \delta_{f}=44^{\circ}$, tail off.

(d) Fuselget fence configuration 1.

(a) Longitudinal charaateristics of the model.

(b) Lateral characteristics of the madel.

Figure 2/, - Concluded.

Figure 22,- Aeradynawne chanacterlstics of the madel with left hand Cbanda surfaces remaved and engine out; nozzte is arth ansurnkiffeotor,

(b) Latamal charcucteristics of the model.

Figure 2.. - Cancluded.

Figure 23 - Variation of side force, yawing-moment, and rolling-mament coefficients with sideslip; nozzle $D, \delta_{f}=90^{\circ}\left(\eta_{c}=.11\right.$ to 43$)$, $\delta_{f_{2}}=44^{\circ}, 4_{4}^{\prime}=0^{\circ}$,

Figure 24. - Variation of side farce, yawing-mament, and rolling-moment coefficients with sideslip; nozzle $D, \delta_{f}=90^{\circ}\left(\gamma_{c}=.11\right.$ to. $\left.\alpha 3\right)$, $\delta_{f_{2}}=44 ; 4=0^{\circ}$, fuselage fence configuration 1.

(b) $\alpha_{4}=8^{\circ}$.

Figure 24.- Cancluded.

Figure :25:- Variation of side force, youving-moments, and rolling-moment coefficients with sideslip; nozzle $D, \delta_{f}=75^{\circ}\left(\eta_{c}=.11\right.$ to. \&3 $)$,
$\delta_{f_{2}}=44^{\circ} ; 4_{4}=0^{\circ}$.

