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ABSTRACT

The method and basic elements of computer solutions for both poten-

tial flow and viscous flow calculations for engine inlets are described.

The procedure is applicable to subsonic conventional (CTOL), short-haul

(STOL), and vertical takeoff (VTOL) aircraft engine nacelles operating

in a compressible viscous flow. The calculated results compare well with

measured surface pressure distributions for a number of model inlets.

The paper discusses the uses of the program in both the design and anal-

ysis of engine inlets, with several examples given for VTOL lift fans,

acoustic splitters, and for STOL engine nacelles. Several test support

applications are also given.
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INTRODUCTION

One of the significant areas in propulsion technology for advanced

subsonic conventional -(CTOL), short-haul (STOL), and vertical takeoff

(VTOL) aircraft is the design of the engine inlet section. For these

high performance aircraft, the engine inlets are required to operate ef-

ficiently over wide ranges of mass flow, flight speed, and incidence

angle. Furthermore, some applications may require unique configurations

or considerations such as sound absorbing splitter rings, contouring for

high-velocity throat section, low rotor inlet distortion, etc. Because

of the great importance of efficient inlet flow on "both engine perfor-

mance and noise radiation during takeoff and landing, considerable re-

search and development effort is required for the design of high-perfor-

mance inlets.

The principal tool in inlet design has been wind tunnel experiments

with scaled models of inlets. This approach is an expensive and complex

pursuit because of the very large number of geometric and flow variables

involved. An extremely valuable asset in inlet design would be a computer

program for the calculation of the potential and viscous flow within the

inlet for a wide range of aircraft applications, inlet configurations,

and operating conditions. Such a calculation procedure, would provide a

valuable tool for: (l) parametric studies of the effect of inlet design

variables and configurations; (2) analysis and correlation of test data;

and (3) formulation of more efficient and economical test programs.
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The NASA Lewis Research Center is in the process of developing com-

puter programs for the calculation of potential and viscous flows in en-

gine inlets. The original application for the program was the design of

inlets for VTOL lift fans (refs. 1 and 2). The effort has now been ex-

tended to calculation procedures for inlets for conventional and short-

haul engine nacelles (refs. 3> ^> 5> 6> and 7) with provision for the

incorporation of additional bodies such as acoustic splitter rings„

The computer program system contains a number of basic elements.

The chief element is the Douglas program for incompressible potential

flow (ref. 8). A program was written (ref. 9) to represent the inlet

geometry by analytical contours for input to the Douglas program. An-

other program was written (ref. 9) to combine basic incompressible poten-

tial flow solutions to produce a solution for any combination of mass

flow, free-stream velocity, and angle of attack. The combination pro-

gram incorporates a compressibility correction (ref. 10) that can

handle local transonic Mach numbers. The viscous flow solution is "based

on the Princeton method for calculating compressible boundary layers on

curved surfaces (ref. 11), with routines added to calculate boundary

layer transition (ref. 12).

This paper presents a status report on the development and applica-

tions of the a"bove-mentioned computer effort. The basic elements and

procedures of the computer solutions for both the potential flow and vis-

cous flow calculations are first described. Examples are given of the

comparison between calculated and measured surface pressure distributions
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for a number of model inlets. The paper then discusses the uses of the

program in both the design and analysis of engine inlets, with several

examples given for specific cases involving inlets for VTOL lift fans

and for short-haul engine nacelles. Finally the use of the method as a

test support tool is discussed.

NCMENCIATURE

A,B,C, combination coefficients

A i change in rotor incidence angle between static and cross-

flow operation

C- skin friction coefficient

H shape factor, S*/9

L distance from inlet highlight to diffuser exit

M Mach number

M average axial Mach number at fan face

N normal to the body surface

E, total pressure

p static pressure

q dynamic pressure

p,t arbitrary points on the surface of the inlet

R distance between two surface points

r radius from centerline

S. . surface area

S local surface distance from stagnation point
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S total surface distance from stagnation point to diffuser exit
max

U_ rotor tip speed

u axial velocity in boundary layer

V potential flow velocity

V average axial velocity at control station
C

V critical velocity (local speed at Mach one)

X distance from inlet highlight

o^ incidence angle at inlet, direction of free-stream velocity

relative to inlet axis,

£ boundary layer thickness

c *o displacement thickness

© momentum thickness

U molecular viscosity

0 density

Q- surface source strength per unit area

f shear stress

Superscript

average value across inlet flow passage

—* vector

Subscript

1 incompressible

ref reference

T tip

w wall

oo free-stream at inlet, usually taken equal to undisturbed

free-stream
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0 • parallel to inlet axis

1,2,3 referes to basic potential flow solutions

90 perpendicular to inlet axis

CALCULATION PROCEDURE

The calculation procedure developed for the analysis and design of

engine inlets operating in a compressible viscous flow field is discussed

in the following order: l) geometry definition, 2) incompressible poten-

tial flow, 3) compressibility, k) viscous flow, and 5) overall program.

Geometry Definition

Potential flow calculation procedures are quite sensitive to geometry

in that they require geometric coordinates and point spacing to be dis-

tributed properly for accurate solutions on the inlet surfaces. A program

denoted SCIRCL was developed to generate accurate input coordinates for a

prescribed inlet geometry. Representative inlet geometries for potential

flow solutions are shown in figure l(a) for a conventional inlet and in

figure l(b) for a VTOL inlet. For both inlet geometries the duct exten-

sion is an artifice to permit specification of mass flow through the

inlet.

For the VTOL inlet (fig. l(b)) the two-demensional pod or wing

section is replaced by the artificial bellmouth extension which now re-

presents an axisymmetric surface. This artifice facilitates the use of

the axisymmetric potential flow program for VTOL configurations.

The actual geometry is prepared for input to SCIRCL by dividing the

inlet surfaces and extensions into segments each of which is a portion of

an analytical curve as illustrated in figure 2. The curves available are
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straight lines, cubics, superellipses*, ellipses, and lemniscates. SCIRCL

distributes points along the inlet surfaces in such a way as to meet the

requirements of the potential flow program. SCIRCL outputs printed infor-

mation about the inlet surfaces such as, coordinates, curvature, slope,

etc. In addition to the surface points, SCIRCL generates points spanning

the inlet passage (like flow measuring rakes) at axial locations where ve-

locity profiles or streamlines are desired.

Incompressible Potential Flow

The Douglas Neumann program is used for calculating the incompress-

ible potential flow field (ref. 8). The program utilizes a large number

•of sources and sinks of initially unknown strengths on the surface of the

inlet. It is assumed that each surface element is a straight line seg-

ment and that the source or sink is located at the midpoint of each ele-

ment. The central problem of the Douglas analysis is the solution of the

integral equation

= -v

where (f is the unknown source strength on each surface element. The

first term of equation (l) is the normal velocity induced at p (an

arbitrary point on the inlet surface), by a source at p. The second

a superellipse has the form
n . ̂  n

= 1.0(I) * (*)
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term is the combined effect of the sources at other points t on the

surface of the inlet. The quantity -^ I -r?—TT I depends only on the

geometry of the surface. The term on the right of equation (l) is the

normal component of the free-stream velocity at p. The above integral

equation is approximated by a set of linear algebraic equations and then

solved by matrix methods. The velocities on and off the body surface are

calculated from the source distribution.

The Douglas axisymmetric potential flow program, denoted EOD, is

used to obtain three basic solutions for flow about inlets. These solu-

tions (see fig. 3) are: V,, axial flow with inlet duct extension closed;

V̂ , axial flow with the duct open, and V.,, the crossflow solution with

the duct extension open.

A third computer program denoted CCMBYN combines the three basic

solutions into a solution of interest that can be expressed as

V = A VI + B V2 + C"V3 (2)

The combination coefficients A, B, and C are determined by specifying any

combination of l) free-stream velocity V , 2) inlet incidence angle « }

and 3) average axial velocity V (or mass flow rate) as specified at a

control station in the inlet (fig. -̂). The control station is a "rake"

of off-body points in the inlet.
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CompressIbility

The program COMBYN corrects the incompressible potential flow.solu-

tion for compressibility using the method of reference 10. The compress-

ibility correction for internal flow solutions was proposed in reference

10, as

te)VA\f IV = V. f^J (3)

where

V the local compressible velocity

V. the local incompressible velocity

V. the average incompressible velocity across the flow passage

f>. incompressible density (equal to the compressible stagnation

density)

~o average compressible density across flow passage

This expression was developed by comparing exact compressible and incom-

pressible solutions for flow through a turbine blade passage. However,

the correction has "been shown to be applicable to engine nacelle inlets

(ref. 5).

Equation (3) was derived for internal flow solutions and cannot be

applied directly to external inlet surfaces because there is no flow

passage in which the average velocity V. can be calculated. In order

to apply equation (3) to external flows, an artificial value of V. is
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specified. For the static case (V— = 0), V. can be based on some arbi-

trary area representative of the average external flow. For the non-zero

V case, V. is set equal to V^ and equation (3) becomes

v .

where P is the free stream static density. This simple expression
' OB

compares favorably with the Goethert compressibility correction (ref.

13).

Viscous Flow

The surface Mach number distributions obtained from the program

CCMBYN are used as an input, to program VISCUS which calculates the bound-

ary layer growth and separation point (if any) on the inlet surface.

Program VISCUS is a modified version of the Herring and Mellor boundary

layer program (ref. 11) which solves the partial differential equations

of mass, momentum, and energy. This method linearizes the partial dif-

ferential equations by using finite differences for the x derivatives

resulting in a series of ordinary differential equations. The ordinary

differential equations are then integrated numerically across the bound-

ary layer at each x-location. Mellor and Herring, in formulating their

effective viscosity hypothesis, divide the boundary layer in terms of an

inner layer and outer layer and an overlap layer. The viscosity of each

region is based on experimental data and is uniquely determined by values
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of a pressure gradient parameter and displacement thickness Reynolds num-

ber (refs. Ik and 15). The effective viscosity hypothesis as used in the

program includes the influence of longitudinal wall curvature (ref. l6).

The "boundary layer calculations start at the stagnation point on the in-

let. The Falkner-Skan laminar wedge flow solution (ref. lj) for stagna-

tion point flow was used for a starting profile.

The prediction of boundary layer transition is a necessary part of

any viscous flow analysis. In the Herring and Mellor program the loca-

tion of the transition point was a program input„ However, internal

means to effect transition were included in program VISCUS (ref. 12).

The transition region is defined as the region between the instability

•point (or critical point) and the fully turbulent point. The physical

factors which influence the transition region that have been accounted

for include pressure gradient, surface roughness, free stream turbulence

level, and longitudinal curvature. The empirical correlations for these

factors were obtained from reference 17<>

It is important that the development of the laminar and turbulent

boundary layer be accurately determined to ascertain whether the bound-

ary layer would separate and, if so, at what point on the inlet surface.

The criterion used to determine the point of separation is the condition

of zero wall shear stress (zero skin friction coefficient).

Overall Program

The four computer programs discussed previously can be combined into

a single program as illustrated in figure 5. The overall calculation
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procedure consists of the following components: l) geometry definition

(SCIRCL) for input into the potential flov program; 2) calculation of

basic incompressible potential flow (EOD); 3) combination of the basic

incompressible potential flow solutions and correction for compressibil-

ity (COMBYN); *0 calculation of the viscous flow characteristics based

on the results of the potential flow (VISCUS): 5) redefinition of inlet

geometry "by addition of boundary-layer displacement thickness; 6) recal-

culation of potential flow and viscous flow solution; and 7) iteration

of the above scheme until convergence is achieved. It is contemplated

that the four main segments of the program system (SCIRCL, EOD, COMBYN,

and VISCUS) be combined to run under the control of a main routine. At

present, program SCIRCL and EOD are run independently with punched output

from one segment being fed into the next segment. However, programs

CQMBYN and VISCUS have been successfully mated and have been run for a

variety of input conditions.

COMPARISONS WITH EXPERIMENT

To establish the validity of the calculation procedure comparisons

were made with experimental data for l) VTOL inlets, 2) translating cen-

terbody inlet in both a choked and unchoked mode, and 3) an inlet operat-

ing at cruise conditions. All the experimental data except figure 6 were

obtained at the NASA Lewis Research Center. The data of figure 6 were

obtained from the National Research Council of Canada (ref, 18).
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VTOL Inlets

Comparisons between experiment and theory are given for both fan-

in-ving and fan-in-pod .configurations. The surface pressure distribution

in a chordwise cut of a fan-in-wing inlet is shown in figure 6. Three

surfaces are shown in the plot, and the distance on the abscissa corre-

sponds to the numbers indicated on each surface in the inset: the for-

ward surface of the bellmouth, the surface of the centerbody, and the

aft surface of the bellmouth. The agreement is quite good everywhere on

the inlet. It should be noted that the Mach number of this test was very

low (0.2) so that compressibility was not a factor. However, this case

was presented to illustrate the applicability of the method when the

actual geometry differs from the artificial geometry (see fig. l(b)).

The next case illustrates the applicability of the method when the

flow is compressible. Figure 7 shows the theoretical and experimental

surface pressure distributions on a fan-in-pod inlet (described in ref.

19). Both incompressible and incompressible corrected for compress-

ibility theoretical curves are given. The experimental static pressures

agree quite well with the theory corrected for compressibility along the

entire surface of the inlet.

Translating Centerbody Inlet

Unchoked mode. - A translating centerbody inlet with the centerbody

retracted is shown in figure 8(a). The configuration is a conventional

subsonic inlet with an NACA series one external cowl shape and a two-to-
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one ellipse internal lip. The contraction ratio (highlight area/throat

area is 1.30 and the diameter at the diffuser exit is 13-97 centimeters.

A comparison with data and theory is shown in figure 8(b) for static

conditions. Three theoretical curves are shown: (l) the incompressible

potential flow solution; (2) the incompressible solution corrected for

compressibility; and (3) the corrected solution with boundary layer dis-

placement thickness taken into account. The incompressible potential

flow solution with the compressibility correction compared well with the

experimental data in the first half of the inlet„ In the aft portion of

the diffuser the theoretical static pressures were on the average 2 per-

cent higher than experimental data. However, when both the compressibil-

'ity correction and "boundary layer displacement thickness were included,

the theoretical and experimental static pressures were in good agreement

over the entire length of the diffuser.

A comparison "between theory and experiment at high inlet incidence

angle (̂ 0°) with forward velocity is illustrated in figure 8(c). Engine

inlets of short haul aircraft will be exposed to larger incidence angles

than inlets of conventional aircraft (ref. 20) "because of the high lift

coefficients and low speeds necessary for takeoff and landing operations.

Good agreement was found between experimental data and theory except at

the inlet highlight (X/L = 0) where the theoretical static pressures were

lower than experimental data. The "boundary-layer correction was effective

in improving the solution at incidence angle in spite of the fact the

"boundary layer is not uniformly distributed circumferentially in the aft

portion of the diffuser.
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Choked mode. - The translating centerbody inlet with the center-body

extended is shown in figure 9. This illustrates an inlet operating in

the takeoff choked mode with the centerbody extended forward of the inlet

highlight producing a reduced throat area. Internal surface static pres-

sure distributions are shown for a free-stream velocity of 32 m/sec and

at inlet incidence angles of 20 and ̂ 0 degrees. Reasonable comparison

between data and theory was obtained. The slight difference between the

data and theory in the aft portion of the diffuser (X/L > 0.6) can be

attributed to neglecting the boundary layer displacement thickness in

the potential flow solution.

Inlet at Cruise Conditions

To illustrate the applicability of the method at high free-stream

Mach numbers a comparison of calculated internal surface static pressures

(without boundary layer correction) with experimental data on an inlet

operating at a cruise free-stream Mach number of 0.75 is shown in fig-

ure 10. The inlet geometry is a conventional subsonic inlet with an NACA

series one external cowl shape and a two-to-one ellipse internal lip with

contraction ratio of 1.26. In general, good agreement between theoretical

and experimental static pressures was obtained over the entire length of

the inlet lip and diffuser.

APPLICATIONS

The capability of the method in adequately predicting the real flow

in various inlets as shown in the previous section makes it extremely
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useful for several applications. Examples to be given include VTOL inlet

design, STOL inlet design, acoustic splitter design, boundary layer char-

acteristics, and test support.

VTOL Inlet Design

An example of the use of surface velocity distributions and passage

velocity profiles in the design of a VTOL fan-in-pod inlet is shown in

figure 11. The specific problem in this case is the determination of a

near optimum location of the point of tangency between the bellmouth and

the pod surface. Three locations of this tangent point are shown in the

inset in figure ll(a). The theoretical surface velocity distributions on

the three different bellmouths are also shown for both static and cross-

flow operation . It can be seen that both the velocity peaks and the

unfavorable velocity gradients in crossflow are reduced as the tangent

point is moved out to a larger radius, thus case C would be expected to

have the best•crossflow performance. However, at static conditions case

C shows a higher velocity peak and a more adverse velocity gradient than

cases A and B. In order to select a best shape a compromise may be made

between the static and crossflow operation.

The radial velocity profiles at the fan face are shown in figure ll(b)

for toth static and crossflow conditions. The differences between the

three cases were not significant enough to affect the choice. However

another application of the method can be pointed out here, namely that the

calculated static velocity profile as well as the upstream streamlines can

be used as input to the fan rotor design.
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A further example of VTOL inlet calculations is given in figure 12,

which illustrates the effect of crossflow on the potential flow rotor

incidence angle for the fan-in-wing inlet shown in the figure. The rotor

of the fan and the inlet were both designed for static operation with a

ratio of tip speed to fan axial velocity of 1.67. If this inlet is oper-

ated at a ratio of crossflov velocity to fan axial velocity of around 0.4,

the incidence angle of the potential flow relative to the rotor blades

will deviate from the design value by magnitude A i, as indicated by the

contours in figure 12. It can be seen that, in the plane of the rotor

inlet, the incidence angle distortion due to the potential flow alone can

be severe, (incidence angle distortion does not include inlet total pres-

•sure variations or the modification of the potential flow due to the pres-

ence of the rotor.) Similar results can be obtained to study the effect

of different design parameters such as inlet depth, transition velocity,

inlet profile, and rotor conditions.

Short-Haul Inlet Design

An example of application to short-haul inlet design is shown in fig-

ure 13. Internal lip geometries are shown in figure 13(a) for inlet

contraction ratios ranging from 1.3 to 1.42. The surface Mach number

distributions are presented in figure 13(a) and the Mach number pro-

files at the throat location are shown in figure 13(b). The surface

Mach numbers are plotted versus fractional surface distance from

the stagnation point on the inlet to a reference plane in the inlet

duct. This figure indicates a large effect of inlet lip geometry on sur-
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face Mach number levels and gradients, but a relatively small effect on

the velocity profiles. Mach number distributions such as these can aid

a designer in selecting an inlet geometry for a given application.

Acoustic Splitter Design

An application of the prediction method to acoustic splitter loca-

tion and design is shown in figure l̂ . The method is used to obtain the

cruise streamline along which the splitter is to be aligned (fig. l4(a)).

After a preliminary design of the splitter, surface Mach number distribu-

tions on the splitter surface (fig. llj-(b)) were obtained at cruise and

takeoff conditions to aid in achieving a compromise between aerodynamic

and acoustic requirements of the splitter. Examination of the Mach num-

ber distributions shows that similar Mach number gradients were obtained

on both the inner and outer surfaces. This similarity is indicative of

a properly aligned splitter. The potential flow solution can also be

used to optimize the shape of the splitters by minimizing Mach number

gradients for various splitter goemetries.

Boundary Layer Characteristics

The calculation procedure provides boundary-layer results for deter-

mining if separation will occur. An example, illustrating the boundary

layer characteristics for the nacelle inlet of figure 10, for an attached

flow condition is shown in figure 15. The boundary layer parameters pre-

sented are: the shape factor H, the skin friction coefficient C-, and
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boundary layer velocity profiles. Also shown is the predicted location

of the transition region. The skin friction coefficient decreases sharply

in the laminar portion of the flow but separation is not indicated. The

velocity profiles in the boundary layer at various locations along the

surfaces are typical laminar and turbulent profiles.

An example illustrating the boundary layer characteristics for a

separated flow condition for the inlet at 50 incidence angle is shown in

figure 16. Also shown are theoretical and experimental separation loca-

tions. The skin friction coefficient decreases sharply to zero in the

laminar portion of the flow due to the large adverse Mach number gradient.

Good agreement was obtained between experimental and theoretical separa-

tion locations.

Test Support

The theoretical inlet calculations can be useful in analyzing and

understanding experimental results. The calculations have been used for

test support in several experimental programs conducted at the Lewis Re-

search Center.

The most widespread application in test support has been in the cal-

ibration of test inlets for mass flow determination. The computer program

is used to generate a correlation of integrated mass flow with static

pressure at some location on the test inlet surface. This correlation and

the measured static pressure are then used to determine the mass flow

through the test inlet„ This type of mass flow calibration has been suc-

cessfully used in tests reported in references 19, 21, 22, and 23»
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The method also provides surface pressure distributions for calcula-

tion of inlet surface forces. Inlet additive drag is frequently calcu-

lated from the mass flow rate and the location of the stagnation point

which is difficult to determine experimentally. With the inlet programs

additive drag may be determined by integrating static pressures on the

inlet capture stream tube. Inlet cowl suction force can be determined

by integrating the cowl surface static pressure from the stagnation

point to the location of maximum nacelle diameter. The inlet net force

can be obtained from the additive drag and the cowl suction force.

In addition, the calculation procedure can be used to determine sur-

face pressures and forces on boattails. For some engine nacelles the

•cowl pressure distribution may be influenced "by the flow over the aft end

of the nacelle due to the relative proximity of the inlet and boattail.

The method could be used to investigate the interaction between the inlet

and boattail for a given experimental configuration.

Theoretical circumferential variations of flow parameters at the fan

face can also be used in test support. In reference 21 the theoretical

change in rotor incidence angle was used as an aid in interpreting the

variation in rotor exit total pressure ratio observed in the test. Also

the theoretical distribution of rotor inlet flow angle was used to inter-

pret the experimental distribution of rotor outlet flow angle.

COWCIUDING REMARKS

A theoretical method based on incompressible potential flow corrected

for compressibility and boundary layer in axisymmetric inlets was described.



-20-

Several sample calculations and comparisons with experiments were pre-

sented which demonstrated the reliability of the method, and further

applications were illustrated. The method should be a very useful and

powerful tool in both the design and analysis of various types of high-

performance inlets for propulsion systems.
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