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ABSTRACT

The method and basic elements of computer-solutioﬁs for both poten-

_tiai'floﬁ‘and viscous flow calculations for engine inlets are described.
The_procédure is applicable to subsonic conventional (CTOL), short-haul
(STOL), and vertical takeoff (VTOL) aircraft engine nacelles operating
'in a compressible viscous flow. The calculafed results compare well with
| measured surface pressure distributions for a number of model inlets.

The paper»discusses the uses of the program in both the design and anal-
 ysis.§f enginé inlets, with several examples given for VIOL 1lift fans,
acdustic splitters, and for STOL engine nacelies. Several test supfort

applicétions are also given.
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INTRODUCTICN

One of the significant areas in propulsion technology for advanced
subsonic conventional {CTOL), short-haul (STOL), and vertical takeoff
(VTOL) aircraft is the design of the engine inlet section, For these
high performance aircraft, the engine inlets are required to operate ef-
ficiently over wide ranges of mass flow, flight spéed, and incidence
angle., Furthermore, some applications may require unique configurations
or considerations such as sound absorbing splitter ringé, contouring for
high~velocity throat section, low rotor inlet distortion, etc. Because
of the great importance of efficient inlet flow on both engine perfor-

" mance and noise radiation during takeoff and landing, considerable re-
search and development effort is reqﬁired for the design of high-perfor=
mance inlets.

The principal tool in inlet design has been wind tunnel experiments
with scaled models of inlets. This approach is an expensive and complex
pursuit because of the very large number of geometric and flow variables
involved., An extremely valuable asset in inlet design would be a computer
program for the calculation of the potential and viscous flow within the
inlet for a wide range of aircraft applications, inlet configurations,
and operating conditions., Such a calculation procedure would provide a
valuable tool for: (1) parametric studies of the effect of inlet design
variables.and configurations; (2) analysis and correlation of test data;

and (3) formulation of more efficient and economical test programs.
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The NASA Iewis Research Cehter is in the process of devéloping com-
puter programs for the calculation of potential and viscous flows in en-
gine inlets. The original application for the program was the design of
inlets for VIOL 1lift fans (refs, 1 and 2). The effort has now been ex-
tended to calculation procedures for inlets for conventional and short-
haul engine nacelles (refs. 3, 4, 5, 6, and 7) with provision for the
incorporation of additional bodies such as acoustic splitter ringé°

The computer program system contains a number of basic elements.
The chief element is the Douglas program for incompressible potential
flow (ref. 8). A program was written (ref. 9) to represent the inlet
geometry by analytical contours for input to the Douglas program. An-~
other program was written (ref. 9) to combine basic incompressible poten-
tial flow solutions to produce a solution for any combination of mass
flow, free-stream velocity, and angle of attack. The combination pro-
gram incorporates a compressibility correction-(ref. 10) that can
handle local transonic Mach numbers, The viscous flow solution is based
on the Princeton method for calculating compressible boundary layers on
curved surfaces (ref. 11), with routines added to calculate boundary
layer transition (ref, 12).

This paper presents a status report on the development and applica-
tions of the above-mentioned computer effort. The basic elements and
procedures of the computer solutions for both the potential flow and vis-
cous flow calculations are first described. Examples are given of the

comparison between calculated and measured surface pressure distributions
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for a number of model inlets. The paper then discusses>the useé of the
program in both the design and analysis of engine inlets, with several
examples given for specific cases involving inlets for VIOL 1ift fans
and for short-haul engine nacelles. Finally the use of the method as a

test support tool is discussed.

NOMENCIATURE
A,B,C, combination coefficients
Ai change in rotor incidence angle between static and cross-

flow operation

Ce skin friction coefficient
H shape factor, 5*/9
L distance from inlet highlight to diffuser exit

M Mach number

ﬁc ‘average axial Mach number at fan face

N normal to the body surface

Pt total pressure

P static pressure

q dynamic pressure

p,t arbitrary points on the surface of the inlet
R distance between two surface points

T radius from centerline

SA . surface area

S local surface distance from stagnation point
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Smax total surface distance from stagnatioﬁ point to diffuser exit

UlII rotor tip speed

ﬁ axial velocity in boundary layer

v potential flow velocity

V; average axial velocity at control station

V.. critical velocity (local speed at Mach one)

X distance from inlet highlight

o¢ incidence angle at inlet, direction of free-stream velocity
relative to inlet axis.

§ boundary layer thickness

5'* displacement thickness

] momentum thickness

/J molecular viscosity

? density

o surfaée source strength per unit area

T shear stress

Superscript

_— average value across inlet flow passage

— vector

Subscript

i incompressible

ref reference

T tip

W wall

oo 'free-stream at ;nlet, usually taken equal to undisturbed

free-stream
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0 - parallel to inlet axis
1,2,3 " referes to basic potential flow solutions
90 perpendicular to inlet axis

CALCULATION PROCEDURE

The calculation procedure developed for the analysis and design of
engine inlets operating in a compressible viscous flow fiéld is discussed
in the following order: 1) geometry definition, 2) incompressible poten-

tial flow, 3) compressibility, 4) viscous flow, and 5) overall program.
Geometry Definition

Potential flow calculation procedures.are quite sensitive to geometry
in that they require geametric coordinates and poiﬁt spacing to be dis-
tributed properly for accurate solutions on the inlet surfaces. A program
denoted SCIRCL was developed to generate accurate input coordinates for a
prescribed inlet geometry. Representative inlet geometries for potential
flow solutions are shown in figure 1(a) for a conventional inlet and in
figure 1(b) for a VIOL inlet. For both inlet geometries the duct exten-
sion is an artifice to permit specification of mass flow through the
inlet.

For the VIOL inlet (fig. 1(b)) the two-demensional pod or wing
section is replaced by the artificial bellmoutﬁ extension which now re-
presents an axisymmetric surface. This artifice facilitates the use of
the axisymmetric potential flow program for VIOL configurations.

The actual geometry is prepared for input to SCIRCL by dividing the
inlet surfgces and extensions into segments each of which is a portion of

an analytical curve as illustrated in figure 2. The curves available are
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straight lines, cubics, superellipsgs*, ellipses, and lémniscaies. SCIRCL
distributes points along the inlet surfaces in such a way as to meet the
requirements of the potential flow program. SCIRCL outputs printed infor-
mation about the inlet.surfaces such as, coordinates, curvature, slope,
etc, In addition to the surface points, SCIRCL generates points spanning
the inlet passage (like flow measuring rakes) at axial locations where ve-

locity profiles or streamlines are desired.
Incompressible Potential Flow

The Douglas Neumann program is used for calculating the incompress-
ible potential flow field (ref. 8). The program utilizes a large number
‘of sources and sinks of initially unknown strengths on the surface of the
inlet. It is assumed that each surface element is a straight line seg-
ment and that the source or sink is located at the midpoint of each ele-
ment. The central problem of the Douglas analysis is the solution of the

integral equation

2 mdle) - | & [ ﬂ%—ﬂ] 0 (v)as, = -V ¥ (1)

Y

where (@ 1is the unknown source strength on each surface element., The
first term of equation (1) is the normal velocity induced at p (an

arbitrary point on the inlet surface), by a source at p. The second

* .
a superellipse has the form

3" @ -
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term is the combined effect of ﬁhe sources at other poinﬁs t on the
surface of the inlet. The quantity 5% [:?R%:ES] depends only on the
geometry of the surface. The term on the right of equation (1) is the
normal component of thé free-stream velocity at p. The above integral
equation is approximated by a set of linear algebraic equations and then
solved by matrix methods. The velocities on and off the body surface are
calculated from the source distribution. |

The Douglas axisymmetric potential flow program, denoted EOQD, is
used to obtain three basic solutions for flow about inlets., These solu-
tions (see fig. 3) are: s&, axial flow with inlet duct extension closed;

-

Vé, axial flow with the duct open, and V3, the crossflow solution with
.the duct extension open.
A third computer program denoted COMBYN combines the three basic

solutions into a solution of interest that can be expressed as

v V. +BV v (2)
V = A Vi > + C V3

The combination coefficients A, B, and C are determined by specifying any
combination of 1) free-stream velocity v, 2) inlet incidence angle & ,
and 3) average axial velocity V; (or mass flow rate) as specified at a
control station in the inlet (fig. 4). The control station is a "rake"

of off-body points in the inlet.
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Combressibility

" The program COMBYN corrects the incompressible potential flow.solu-
tion for compressibility using the method of reference 10. The compress-
ibility correction for internal flow solutions was proposed in reference

10, as
vV = V. (;gi | (3)
P . .

where

v the local compressible velocity

Vi the local incompressible velocity

V}- the average incompressiblé velocity across the flow passage

Pi. incompressible density (equal to the compressible stagnatioﬁ
density)

?’ average compressible density across flow passage

This expression was developed by comparing exact compressible and incom-
pressible solutions for flow through a turbine blade passage. However,
the correction has been shown to be applicable to engine nacelle inlets
(ref. 5).

Equation (3) was derived for internal flow solutions and cannot be
applied directly to external inlet surfaces because there is no flow
passage in which the average velocity Vi can be calculated, In order

to apply equation (3) to external flows, an artificial value of Vi is
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specified. For the static case (V’aD = 0), Vi can be based on some arbi-
trary area representative of the average external flow. For the non-zero
V, case, V; is set equal to Vg and equation (3) becames

. vi/voo
Vo= v (—;—3 (&)
- ~]

where }zb is the free stream static density. This simple expression

compares favorably with the Goethert campressibility correction (ref.

13).
Viscous Flow

The surface Mach number distributions obtained from the program
COMBYN are used as an input to program VISCUS which calculates the bound-
" ary layer growth and separation point (if any) on the inlet surface.
Program VISCUS is a modified version of the Hefring and Mellor boundary
layer program (ref. 11) which solves the partial differential equations
of mass, momentum, and energy. This method linearizes the partial dif-
ferential equations by using finite differences for the x derivatives
resﬁlting in a series of ordinary differential equations. The ordinary
differential equations are then integrated numerically across the bound-
ary layer at each x-location. Mellor and BHerring, in formulating their
effective viscosity hypothesis, divide the boundary layer in terms of an
inner layer and outer layer and an overlap layer. The viscosity of each

region is based on experimentai data and is uniquely determined by values
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of a pressure gradient parametef an@ displacement thickﬁéss Reynolds num-
ber (refs., 14 and 15). The effective viscosity hypothesis as used in the
program includes the influence of longitudinal wall curvature (ref. 16).
The boundary layer caiculations start at the stagnation point on the in-
let. The Falkner-Skan laminar wedge flow solution (ref. 17) for stagna-
tion point flow was used for a starting profile.

The prediction of boundary layer transition is a necessary part of
any viscous flow analysis. In the Herring and Mellor program the loca-
tion of the transition point was a pfogram input. However, internal
means to effect transition were included in program VISCUS (ref. 12).

The transition region is defined as the region between the instability
‘point (or critical point) and the fully turbglent point, The physical
factors which influence the transition region that have been accounted
for include pressure gradient, surface roughness, free stream turbulence
level; and longitudinal curvature. The empiriéal'correlations for these
factors were obtained from reference 17, |

It is important that the development of the laminar and turbulent
boundary layer be accurately determined to ascertain whether the bound-
ary layer would separate and, if so, at what point on the inlet surface.
The-criterion used to determine the point of separation is the condition

of zero wall shear stress (zero skin friction coefficient).
Overall Program

The four computer programé discussed previously can be combined into

a single program as illustrated in figure 5. The overall calculation
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procedure consists of the following components: 1) geoﬁetry definition
(SCIRCL) for input into the potential flow program; 2) calcuwlation of
basic incompressible potential flow (EOD); 3) combination of the basic
inéompressible potenti;l flow solutions and correction for compressibil-
ity (COMBYN); 4) calculation of the viscous flow characteristics based
on the results of the potential flow (VISCUS): 5) redefinition of inlet
geometry by addition of boundary-layer displacement thickness; 6).recal-
culation of potential flow and viscous flow solution; and 7) iteration
of the above scheme until convergence 1s achieved., It is contemplated
that the fqur main segments of the program system (SCIRCL, EOD, COMBYN,
and VISCUS) be combined to run under the control of a main routine. At
present, program SCIRCL and EOD are run independently with punched output
from one segment being fed into the next segment. However, programs
CQMBYN and VISCUS have been successfully mated and have been run for a

variety of input conditions.
COMPARISONS WITH EXPERIMENT

To establish the validity of the calculation procedure comparisons
were made with experimental data for 1) VIOL inlets, 2) translating cen-
tefbody iniet in both a choked and unchoked mode, and 3) an inlet operat-
ing at cruise conditions. All the experimental data except figure 6 were
obtained at the NASA ILewis Research Center. The data of figure 6 were

obtained from the National Research Council of Canada (ref. 18).
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VI0OL Inlets

Comparisons betweén experiment.and theory are given for both fan-
in-wing and fan-in-pod configurations. The’surface pressure distribution
in a chordwise cut of a fan-in-wing inlet is shown.in figure 6. Three
surfaces are shown in the plot, and the distance on the abscissa corre-
sponds to ghe numbers indicated on each surface in the inset: the for-
ward surface of the bellmouth, the surface of the cénterbody, and the
aft surface of the bellmouth. The agreeﬁent is quite good everywhere on
the inlet, It should be ﬁoted that the Mach mumber of this test was very
low (0.2) sé that compressibility was not a factor. However, this case
was presented to illustrate the applicability of the method when the
;ctual geometry differs from the artificial geometry (seé fig. 1(b)).

The next case illustrates the applicability of the method when the
flow is compressible, Figure T shows the theoretical and experimental

. surface pressure distributions on a fan-in-pod inlet (described in ref.
19). Both incompressible and incompressible corrected for compress-
ibility theoretical curves are given. The experimental statié pressures
agree quite well with the théory corrected for compressibility along the

entire surface of the inlet.
Translating Centerbody Inlet

Unchoked mode. - A translating centerbody inlet with the centerbody

retracted is shown in figure 8(a). The configuration is a conventional

subsonic inlet with an NACA series one external cowl shape and a two-to-
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one ellipse internal 1lip. The éont:action ratio (highlight area/throat
area is 1.30 and the diameter at the diffuser exit is 13.97 centimeters.

A comparison with data and theory is shown in figure 8(b) for static
conditions. Three théoretical curves are shown: (1) the incompressible
potential flow solution; (2) the incompressible solution corrected for
compressibility; and (3) the corrected solution with boundary layer dis-
placement thickness taken into account. The incompressible potenfial
flow solution with the compressibility correction compared well with the
experimental data in the first half of the inlet. In the aft portion of
the diffuser the theoretical static pressures were on the average 2 per-
cent ﬁigher than experimental data. However, when both the compressibil-
ity cbrrection and boundary layer displacement thickness were included,
the theoretical and experimental static pressures were in good agreement
over the entire length of the diffuser. |

A comparison between theory and experimenf at high inlet incidence
angle (40°) with forward velocity is illustrated in figure 8(c). Engine
inlets of short haul aircraft will be exposed to larger incidence angles
than inlets of conventional aircraft (ref. 20) because of the high 1lift
coefficients and low speeds necessary for takeoff and landing operations.
Good agreement was found between experimental data and theory except at
the inlet highlight (X/L = 0) whei«e the theoretical static pressures were
lower than experimental data. The boundary-layer correction was effective
in improving the solution at incidence angle in spite of the fact theA
boundary layer is not uniformlj distributed circumferentially in the aft

portion of the diffuser.



-1h-

Choked mode. - The translating centerbody inlet with the centerbody
extended is shown in figure 9, This illustrates an inlet operating in
the takeoff choked mode with the centerbody extended forward of the inlet
highlight producing a éeduced throat area. Internal surface static pres-
sure distributions are shown for a free-stream veiocity of 32 m/sec and
at inlet incidence angles of 20 and 40 degrees. Reasonable comparison
between data and theory was obtained., The slight difference'betweén the
data and theory in the aft portion of the diffuser (X/L. > 0.6) can be
attributed to neglecting the boundary layer displacement thickness in

the potential flow solution.
Inlet at Cruise Conditions

To illustrate the applicability of the ﬁethod at high free-stream
Mach_nﬁmbers a comparison of calculated internal surface static pressures
(without boundary layer correction) with experimental data on an inlet
operating at a cruise free~-stream Mach nunber of 0.75 is shown in fig-
ure 10, The inlet gecmetry is a conventional subsonic inlet with an NACA
series one external cowl shape and a two-to-one ellipse internal 1lip with
contraction ratio of 1.26. In general, good agreement bgtween theoretical
and éxperimental static pressures was obtained over the entire length of

the inlet lip and diffuser,
APPIICATIONS

The capability of the method in adequately predicting the real flow

in various inlets as shown in the previous section makes it extremely
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useful for several applications.' Examples to be given include VTOL inlet
design, STOL inlet design, acoustic splitter design, boundary layer char-

acteristics, and test support.
VIOL Inlet Design

An example of the use of surface velocity distributions and passage
velocity profiles in the design of a VIOL fan-in-pod inlet is shown in
figure 11, The specific problem in this case is the determination of a
near optimum location of the point of tangenéy between the bellmouth and
the pod surface. Three locations of this tangent point are shown in the
inset in figure 11(a). The theoretical surface velocity distributions on
the three different bellmouﬁhs are also shown for both static and cross-
flow operation .. It can be seen that both thé velociﬁy peaks and the
unfavorable velocity gradients in crossflow are reduced as the tangent
point is moved out to a larger radius, thus caseé C would be expected to
have the best crossflow performance, However, at static conditions case
C shows a higher velocity peak and a more adverse velocity gradient than
cases A and B. In order to select a best shape a compromise may be made
between the static and crossflow operation.

‘The radial velocity profiles at the fan face are shown in figure 11(b)
for both static and crossflow conditions. The differences between the
three cases were not significant enough to affect the choice. However
another‘application of the method can be pointed out here, namely that the
calculated static velocity profile as well as the upstream streamlines can

be used as ihput to the fan rotor design.
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A further example of VIOL inlet calculations is gi#en in figure 12,
which illustrates the effect of croscflow on the potential flow rotor
incidencc angle for the fan-in-wing inlet shown in the figure, The rotor
of the fan and the inlct were both designed for static operation with a
ratio of tip speed to fan axial velocity of 1.67. If this inlet is oper-
ated at a ratio of crossflow velocity to fan axial velocity of around O.k,
the incidence angle of the potential flow relativc-to the rotor blédes
will deviate from the design value by magnitude .A_i, as indicated by the
contours in figure 12. 1t can be seen that, in the plane cf the rotor
inlet, the incidence angle distortion due to the potential flow alone can
be severe, (Incidence angle distortion dces not include inlet total pres-
-sure variations or the modification of the potential flow due to the pres-
ence of the rotor.) Similar results can be cbtained to study the effect
of different design parameters such as inlet depth, transition wvelocity,

inlet profile, and rotor conditions.
Short-Haul Inlet Design

An example of application to short-haul inlet design is shown in fig-
ure 13. Internal lip geometries are shown in figure 13(a) for inlet
contraction ratios ranging fraom 1.3 to 1.42. The surface Mach number
distributions are presented in figure 13(a) and the Mach number pro-
files at the throat location are shown in figure 13(b). The surface
Mach nnmbérs are plotted versus fractional surface distance from
the stagnation point on the inlet to a reference plane in the inlet

duct. This figure indicates a large effect of inlet lip geometry on sur-
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face Mach number levels and gradients, but a relatively small effect on
the velocity profiles. Mach number distributions such as these can aid

a designer in selecting an inlet geometry for a given application.

Acoustic Splitter Design

An application of the prediction method to acoustic splitter loca;
tion and design is shown in figure 14. The method is used to obtain the
cruise streamline along which the splitter is to be aligned (fig. 14(a)).
After a preliminary design of the splitter, surface Mach number distribu-
tions on the splitter surface (fig. 14(b)) were obtained at cruise and
takeoff conaitions to aid in achieving a compromise between aerodynamic
and acoustic requirements of the splitter. Examination of the Mach num-
ber distributions shows that similar Mach number gradients were obtained
on both the inner and outer surfaces. This similarity is indicative of
a properly aligned splitter. The potential flow solution can also be
used to optimize the shape of the splitters by minimizing Mach number

gradients for various splitter goemetries,
Boundary Iayer Characteristics

" The calculation procedure provides boundary-layer results for deter-
mining if separation will occur. An example, illustrating the boundary
layer characteristics for the nacelle inlet of figure 10, for an attached
flow condition is shown in figure 15, The boundary layer parameters pre-

sented are: +the shape factor H, the skin friction coefficient C., and

f,
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boundary layer velocity profileé. Also shown is thelprédicted location

of the transition region. The skin friction coefficient decreases sharply
in the laminar portion of the fiow but separation is not indicated. The
velocity profiles in Ehe boundary layer at various locations along the
surfaces are typical laminar and turbulent profiles. )

An example illustrating the boundary layer charécteristics for a
separated flow condition for the inlet at 50o incidence angle is éhown in
figure 16. Also shown are theoretical and experimental separation loca-
tions. The skin friction éoefficient decreases sharply to zero in the
laminar portion of the flow due to the large adverse Mach number gradient.

Good agreement was obtained between experimental and theoretical separa-

+tion locations.
Test Support

The theoretical inlet calculations can be useful in analyzing and
understanding experimental results. The calculations have been used for
test support in several experimental programs conducted at thé Iewis Re-
search Center. |

The most widespread application in test support has been in the cal-
ibrétién of test inlets for mass flow determination. The computer program
is used to generate a correlation of integrated mass flow with static
pressure at some location on the test inlet surface. This correlation and
the measured static bressure are then used to determine the mass flow
through the test inlet. This type of mass flow calibration has been suc~-

cessfully used in tests reported in references 19, 21, 22, and 23.
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The method also provides sﬁrface‘pressure distribuﬁions for calcula-
tion of inlet surface forces., Inleﬁ'additive drag is frequently calcu-
lated from the mass flow rate and the location of the stagnation point
which is difficult to aetermine experimentally., With the inlet programs
additive drag may be determined by integrating static pressures on the
inlet capture stream tube. Inlet cowl suction force can be determined
by integrating the cowl surface static pressure from fhe stagnatidn
point to the location of maximum nacelle diameter. The inlet net force
can be obtained from the additive drag and the .cowl suction force.

In addition, the calculation procedure can be used to determine sur-
face pressures and forces on boattails. For some engine nacelles the
cowl pressure distribution may be influenced by the flow over the aft end
of the nacelle due to the relative proiimity of the inlet and boattéil.
The method could be used to investigate the interacfion between the inlet
and boattail for a given experimental configuration,

Theoretical circumferential variations of flow parameters at the fan
face can also be used in test support. In reference 21 the theoretical
change in rotor incidence angle was used as an aid in interpreting the
variatiqn in rotor exit total pressure ratio observed in the test. Also
the theoretical distribution of rotor inlet flow angle was used to inter-

pret the experimental distribution of rotor outlet flow angle.
CONCLUDING REMARKS

A theoretical method based on incompressible potential flow corrected

for compressibility and boundary layer in axisymmetric inlets was described.
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Several sample calculations and comparisons with experiments were pre-

sented which demonstrated the reliability of the method, and further

applications were illustrated. The method should be a very useful and

powerful tool in both the design and analysis of various types of high-

performance inlets for propulsion systems.
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