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I. SUMMARY

The two-scale composite rough surface model usually considered is one
composed of large undulations over which small irregularities are superimposed.

This general model may be further subdivided into two other models: (1) the large
undulations are larger in dimension than that of the illuminated area so that within
the beam of illumination the picture is a tilted perturbed plane; and (2) the large
undulations are of such a size that at least several undulations can be found within
the beam. The first model is essentially the small perturbation model, since the
effect of the tilt can be accounted for either by a change in the angle of incidence
or by resolving the incident plane wave into horizontally and vertically polarized
components, or by both. The second model is much more complicated and has been
approached in most cases with a non-coherent assumption, i.e. the contribution from
the small irregularities may be computed by summing powers from the large facets
constituting the large undulations. The total contribution from the composite surface
is then taken to be that from the large undulations plus that from the small irregu-
larities averaged over the large undulations.

If the non-coherent assumption is not-made, the total scattered field from
the illuminated area must be computed before evaluating the power which is the
approach adopted in this study to calculate both the vertically and horizontally
polarized scaottering coefficients. The surface is assumed finitely conducting and
homogeneous; the surface roughness may be non-uniform. To gain insight into the
mechanisms of scatter, results are compared with those obtained by previous theories.
The special form of the terms due to excluding the non-coherent assumption and the
meaning of such terms are discussed.

Based on Cox and Munk's [9] relation between the mean square surface slope
of the sea and wind speed, curves are drawn showing the backscattering coefficient,
o__. as a function of wind velocity and of the angle of incidence. The comparison
with NRL [10, 11] data shows satisfactory angular agreement for both horizontal
and vertical polarization, especially for incident angles larger than 30°. For
smaller incident angles, NASA/MSC [12] data have been chosen for comparison and

close agreement is again observed,



1. INTRODUCTION

Many scattering theories [1-4] using two-scale rough surface models have
been developed in recent years. The general model is a large undulating surface
with small irregularities superimposed. More specifically, two types of models
have been considered: (1) the large undulations are larger in dimension than the
illuminated area and thus within the beam the picture is a tilted perturbed plane,
and (2) the illuminated area contains at least several large undulations. For model (1)
the problem remains essentiolly the same as o small perturbation problem since the
effect of any tilt can be accounted for by a change in the angle of incidence and
by resolving the incident plane wave into horizontally and vertically polarized
components [3]. Such a simple treatment is not possible for model (2) for which two
different approaches are in existence: (i) the non-coherent approach where a non-
coherent assumption is used to simplify the problem [1],and (ii) the coherent approach
where the said assumption is not made [4]. The non-coherent assumption referred fo
here is the one defined by Semenov [1], i.e. the contribution from the small
irregularities may be computed by summing powers from the large facets constituting
the large undulations. This assumption implies that the calculation of the contribution
from the small irregularities in model (2) is identical to solving the entire problem
using model (1). Of course, for model (2), the contribution from the large undu-
lations must also be computed and this is the major difference between the two models
when the non-coherent assumption is made. Differences between models (1) and (2)
are further magnified if the non-coherent assumption is not made. Thus, the total
scattered field must be found by integrating the total field on surface before calculating
the power. Hence, it follows that terms due to integrating the first order perturbed field
over the large undulations within the illuminated area will show up and give an
explicit indication of the interaction between the large and the small scatterers.

Such an interaction is restricted to be an average operation in the non-coherent
approach and this defines the major difference between approaches (i) and (ii).

This paper discusses another coherent approach for model (2). The composite
surface, U (x,y)= Z(x,y) +s(x,y), is assumed to be finitely conducting and homogeneous
with Z(x,y) representing the large undulations and s(x,y) the small irregularities.
Z(x,y) and s(x,y) arc to be generated by independent, stationary, Gaussian random

processes.



The approach is a modified Kirchhoff's method employing the equivalent
surface field, i.e. the surface field on Z(x,y) estimated by the tangent plane method :
is modified to include the cffect of s(x,y). Once this equivalent field is obtained
the problem reduces to a single surface scattering problem, i.e. scattering from
the surface Z(x,y). The concept of equivalent field was advanced earlier by Bass
ond Bocharov [5] for scattering from a single surface. Results obtained by this
approach are simpler and reduce more readily to special cases of single surface

scattering than Fung and Chan's approach [4], where fields on the composite sur-

face (x,y) were considered.




IlI, THE SCATTERED FIELD

The far zone scattered field due to an incident plane wave on a rough surfoce

Z(x,y) (Figure 1) is given by a special form of the Stratton-Chu integral (6],

AAN

Es=K°22XI[;L“XE-RQZX(gxﬁ)]exp(jki-na)ds (1)

where a time factor of the form, exp(j.t), is understood; g, is the position vector
pointing from the origin of the coordinate system to a surface element dS;‘_r.)‘2 is
is o unit vector in the direction of observation; R is the distance from the origin fo
the field point; E, H are the total electric and magnetic fields on the surface;
k is the wave number in air; nis the intrinsic impedance in air, K= -ik éxp (~ikR)/
(47R), and n,is the local normal to the surface.

The basic problem for finding‘iﬁ‘S is to determine n x E and n x H ot any point
on Z(x,y). To do so it is necessary to set up a local coordinate system at the point

in question. A possible set of local coordinates is

-d
Eo= (iZ. - jEg v K)(EL v 2 1) " (20)
Jeczxmy /] E xm | (2b)
X= 3 x2 (2¢)

where Zx' Z_ are the partial derivatives of the surface Z(x,y) with respect 1o x and

y respectively, and i, i, liore the unit vectors of the (x,y,z) coordinates. From

the definition of the local coordinates we see that the tangent plane at the point

(x,y) on Z(x,y) coincides with the plane %-y. If the small irregularities were absent
this would be an infinite flat plane. However, with the small irregularities present, this
becomes a perturbed plane and the local scattered fields may be found by Rice's

theory [7]. This has been done by both Rice [7] and Valenzuela [8]. Hence, let

us assume that in the local frame

E

E= 2Bz r3E; ¥ ZE; (3a)
H= x H +gHg * ZH; | (3b)

LN



Zh

Fig. 1.  The geometry of the scattering problem.



Assuming ZX2, YA 24( 1, we may rewrite the backscattered field in terms of

the local field components as (see Appendix |)
L L ) '
Eg =~ - K‘JL.[L {i[( Egcos® -mHz)-(Ez+nHg cos8) Z,

/sin8°] + (icos® + ksing) [((Ez+mHzcosb)

+(Egcose-'qH,;)Zg/sLn9,]} exp(-j KX ) dx dy (4)

where ‘I‘<‘] = kn‘]; n =isin O -nls‘cos G; 2L, width of the illuminated area; @' is
the local angle of incidence. f

For computing polarized scattering the Z_ - terms in (4) are unimportant
and, therefore, reasonable accuracy may still be achieved by leaving out the Z -
terms. However, for depolarized scattering the field expressions are complicated
by the presence of the Z_- terms and the local angle appearing in the denominator.
In addition, depolarization due to the split of the incident polarization into locally
horizontal and vertical components as a result of Z_ also complicates matters. In
short, there is as yet no satisfactory method for estimating the depolarized scattering

coefficients from (4).

For a horizontally polarized incident plane wave of the form

E, = jexp[-jk(xsin8 - &cosg)] ,

there correspond two locally incident waves (Appendix [). However, for polarized
scattering there is no significant error if we take one of the local incident waves

to be

.

E! = g\ exp[-jk(%sine'-'icos 6')]

and ignore the other one.

By applying Bass and Bocharov's [5] coneept to Valenzuela's results [8],



the equivalent fields on Z(x,y) up to the first order may be shown to be (sce Appendix 1i)

ff T, uvQ'EX dudv (50)

Ez

Eg=C+Ru) exp(-jk,-r)-[[ T (u+be) QEX dudv (5b)

nHz=(1-R,)cos8’exp(-ik, L) *” Tulwcb-c)/ktke [QEX dudv  (5¢)

nHg = [f[uv(b-c) Q"/k] EX dudv (52)

)

where EX =exp (-jux = jvy + jkZ cos ),
B ’ ) ' -
Q= j kK s cu-ksind’, v)[2x(kc+kb)]

T,.=1+R.
b { (k‘-uz-vz)yz, K® > U +VP

. 2.4 2
-J(uz-rvz—k )/2) ki< W+ V2 )

S(u,v) = two dimensional Fourier Transform of s(x,y),
c {Co. Im(Co) €0, Co = (KE-uB-yEy72
=Co, Im(Co) >0

and Im means "the imaginary part of ,"
The limits of integration in (5) are from = ®to =,

Similarly, for a vertically polarized incident plane wave of the form,

E,=(4icos8 +~listne)exp[-jk('xsine-zc,ose)] ’

the local fields on Z(x,y) up to the first order are
Ez = (1-R,)cos8'exp(~j k., x)

t{71,Q[bu sin@’~(v2+bc)kecosd/k'] EX dudv (60)
Ej ='(fT,,Q'[bvsLn9'+uvkcos¢"/k']Exdudv (éb)
mHz =ffT,,Q'[uv(c-b) cos$/k’- vk sin®’ ] EX dudv (6¢)

HG = = QL+ R, eXp (- Kk )
1. (ku sin 8+ (v -vb-ck¥ycosd/k JEX dudv  (6d)

where T,= 1+ R, .



IV. THE SCATTERING CROSS SECTIONS

If we use a linear approximation for the Fresnel reflection coefficients
(see Figures 2 and 3) and the local cos @' and sin G, then

R. = R(8) + R. Z,
R, =~ R(®) + R, Z,

R.:=-2k Ri(8) stne/(k'cos4’);

R, =[2k (K*-K)sin0] /(K cos (k'cos§ + keos $)™ ];
cosf =~ cos® + Zxsinb

sin f = sinb -~ Z,cosb

cos ¢

n

[1-Ck/k' Y sin26 172 ;

and (5) and (6) may be substituted into (4) to obtain the backscattered field (Appen-
dix ). The scattering coefficient defined in terms of the scattered field by

!
2

* 2

ann

(7)

can now be computed. <...>Is the symbol for ensemble average; * is the symbol
for complex conjugate. Some identities for ensemble average useful for evaluating

o are
PP

CZxexp[jv (Z2-Z2D)>

It

CEoexpljvy (z-2)1)
=-jotv 3L epl-0 v -]

! . , 2 2 2B,
CZ, 2y exP[Jvz(Z_Z )J>=“02[2afa*V:O'2( 22)]8 v o (-8
* )
{s(u, vy 235

e e 2 BW(‘*V " I
3w > = 2%o0, —————4—>au d(u-uw'yd(v-v')

dS(U, vy s(u,v)*> =27 67 W(w,v) §(u-w) §Cv-v
8
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where Z = Z(x,y); Z' = Z(x',y"); (x,y) and (x',y') represent in general two dif-
ferent points within ihe'illuminotcd areo; (u,v) and (u',v') are similarly defined as
(x,y) and (x',y') in the wave number space; ¢=x-x', B=y~-y'; p= plarp)is the
correlation coefficient of Z({x,y); "]2 . 02 are the variances of the surfaces s(x,y)
and Z(x,y) respectively; & ( ) is the Dirac delta function and W (u, v) is the rough-
ness spsctrum of s(x,y) related to its correlation coefficient Py (o, R) by the Fourier
transform.

The general form of ¢ may be written in terms of the sum of lpp and
2pp (Appendix IV);

2L

2 2l
Lk (2L-jaly2L-161) { 2
Oipp = 4 f f (2L)? | Appl

-2L/-2L

L2 » * af
_JO' V. ( APp Bpp "'App BPP)—Q’OL_-
2 a%e 2 38 2
- 6" ) Bppl [ Sr T OV (52) J}
. 2 2
exp[—Jv,oL—Vz o (1-9)] da dp
(8)
where v =2k sin @ and v_ = 2k cos O;
X z
k"’o.ejﬂrL caL—lotl)(aL-(s)f”f“’ 2
0. = = TC w
2pp 2 Jada (2L ) Lo Jowo {l P,Pl
, *
52 e (o g e
- 2% 29\ R

2 3 , *
+!TC W/4 + v, i;vRe[TCpp(TDpp‘“RCPP) J:s

exp[-j(u+ ksinb)a ‘JVP‘K("Y)} du dvda d

13 9)




wherc Re means "the real part of”

g=vu-ksin®
W = W(q,v)
T=1+R
P P

Rp: Rl for horizontal polarization

R

» for vertical polarization

R '= derivative of T with respect to Z

K = 4k202c052@ .

For horizontal polarization,

“hh = %hh ™ 92hh (10)
in which

Apn = 2R, cos®

Bhh =2 (R, sin8 * R, cos8)

]

Q[uf(b-¢)/k +ke + (u+be)y cos 8 ]
Q (u®+ be) sin 8

Chh
DKkh

Q = (K=K [2w (ke kKTby )™

For vertical polarization,

Oy = Oivy * Tavy an
in which
A, = -2R,cos8
B,, =-2(R,cos8 + R,sin8 )
C =Q{[u(b+ kcos8)]sing +{cos8(vic-vib- ck?)

-k (v¥+bc)] cos ¢/k'}

Dy, = Q {sLne[ku sin® + (vie -vib-ck?)cos ¢ /k" ]
+ k¥sinfcos 8 cosB(vie -v?b -~ ck?) - k(vitbe)) /K cos ¢
-ucose(b+kcose)}

14




The expression for o is identical to single surface scattering results
obtained by the Kirchhoff's method. The form of O pp MY not appear familiar
because most of the cases discussed in the literature are special cases, as noted in
the next section. The expression for 02pp is more complicated; hence, it is best

to examine its meaning by considering special cases.

15



V. SPECIAL CASES AND DISCUSSIONS OF T1pp’ T2pp
Let us assume that 2L can be chosen so large that within the region of conver-
gence, 2L>> a,p for the integrals in TYpp If so, neglecting the edge effect terms

we can rewrite Glpp as

2 .aL 2L .
ok 2 o4 vya —-Kei-9)
G'PP-:*."?J' j )AFP'fBPP tan 6 e dotdp.
-2LY-2L (]2)

For isotropically rough surface, (12) reduces to

K 2t 2 -K(1-9)
0|PP=?I IAPP+ BPP Tanel Jo(ng)e Edx
°

(13)

where Jo () is the zero order Bessel function of the first kind. Eq. (13) is the
backscatter integral most often discussed in the literature. It is important to note
that some of the conditions under which (8) reduces to (13) are loosely defined
in terms of inequalities. Hence, the precise region of validity for (13) remains
obscure.

It is interesting to note that as L goes to infinity and for sufficiently small

K (i.e. small g/A), (8) may be opproximated, except for a specular-type term, by

2 2
Opp = £ Apy ff’(EJJo(EkEsLne)EdE.

Thus,

2
wW(zk sing)

4 2 4
Ol = 8 k¥ 6" cos 9|RL

2
w(2ksing)

ivv

g, =8 k* ozcos‘*elR”

16



where %hh is seen to be identical with the first order predictions of the small
perturbation theory, (2, 8] when the surface under censideration satisfies both
assumptions of the Kirchhoff's theory and the small perturbation theory. However,
this is not the case with a1,y ndicating that different approaches need not lead
to the same results, because the degrees of approximation for different theories are
different.

If the small irregularities are absent, %2pp = 0 and %op reduces to P
os expected.

If the lorge undulations are cbsent, i.e. Z{x,y) = 0, then olpp becomes

2L - Vy

LoeL-lal) (2L~
(2L )?

1]

181) 2
e

-aL

=_,AP_fif (al_—]ml)e R do
2L

which is a specular-type term that behaves like sin x/x.’
With Z(x,y)= 0, %90p becomes

o =_&'LJZL/2L (2L- Idl)(BL-lﬁi)f / re,,
“pP 2 -2L7-2L (2L) {

W (u-k sing v)exP[ j(u+k5m6)o& jVP]} dudvclcxdra

If 2L can be tcken to be infinity, 92pp reduces to

2@ o 2
Oppp =2 (T k 0‘,)/ / | TCppl Win-ksin 8,v) S(utksine) dcvy dusv,
Thus, o (14)
Oy = SkAa-l2 ,R,,cosee +T,,2( k’z- kz) sLnEe/a k'z lz
"W (2ksin6,0) ' (150)

Cann = 8K 07 cos™0 | R, |  w (2ksing,0). (15b)

17



The above results are identical with the first order results obtained by the small
perturbation method [2,8) Appendix V). Note that 2L must be taken to be infinity
for % 20p to reduce to the perturbation results because the mean plane for the
perturbation model is an infinite flat plane.

Let us now examine the first term in 7 2pp when Z(x,y) is not zero and when

2L can be taken to be infinity. It has the form

S22 2 ITcpel™ wiusksino, v

exp[-j(utksin®)a-§vg =~ Ki-¢)]dudv da dg (16)

The variables u, v may be interpreted-as the wave numbers or frequency components
for the surface s(x,y). Comparison between (14) and (16) shows that in (14) only
-a specific pair of u, v values.is allowed whereas in (16) all values of u, v are required.
This means that the large undulations are responsible for making all frequency
components of s(x,y) effective in the scattering process. They also define the
appropriate weighting (through K and p{0,£) ) on the contributions of the different
frequency components of s(x,y). Similar statements can be made about other terms
in % 2pp except that they vanish with Z(x,y). Thus, %90p is seen to define expli-
citly the interaction between the large and the small scatterers. This interaction
vanishes when either s(x,y) or Z(x,y) is zero. Scattering theories with the non-
coherent assumption have this interaction replaced by averaging (15) using the slope
distribution of Z(x,y). (The dependence of (15) upon the slopes of Z(x,y) crises
when the incident angle is taken to be the local incident angle.) Hence, in such
theories the nature of the interaction is assumed rather than calculated.

If the a,8 -integrals in 0gpp CONVerge fast enough so that within the region

of convergence 2L>> q,2 and if, in addition, edge effects are negligible, then
12 o2 ELjeLfoo S ) 2
o, = £ 9

t vy —g% Re (GTCpp[TCpp + GCTDpp+R'Cppd ™)

2 2 'w
exp[-]' (utk stn@)a - 4vp - Kt j‘)} du dv dua d(s

18 (17)



where G = (urk sin @) / v,

For isotropically rough surfaces, (17) may be further reduced to

2L
O'ZPP:..kojjj | TCpp* G (TDp, chp)|

l 8? Re(TGCPP[TCPP-fG(TDPP-r RCpp)] )

*ITGCPPI : 2(;/ 4}J,(Eﬁu+ksinef+ v?)e_K(i-?)

- du dVEdE . (18)

To compute the backscattering characteristics with (13) and (18), p(&) and
W(K) need be specified. As an illustration, we assume that p(E) is Gaussian and can

be approximated by the first two terms of its series expansion about & = 0 and
2
W(K) = (£3/2)y exp[- (ke/2) ) (19)

where fis the correlation length of the surface, s(x,y). Under these assumptions
(13) and (18) become (see Appendix 1V)

= (8 m"cos®o )-I 'APP +Bpp tanelzexp[—tanze/(Zmz)J
' (20)
2 2% (> p 2

+ Re([ TCrp+G (TDpp +R'Cppd] T Cpp™ G )V, a?}

Vz-zm-z exp{-[(u" ksLnG)?-f- V?]/( 2 sz m? )} du dv_ (21)

Figures 4 and 5 show the general angular behavior of Chh and Oy for
different values of the rms slopes of Z(x,y) and kp] of s(x,y). Since the major dif-
ference between this theory and other scattering theories lies in 2pp’ Figures 6 and 7,
T ouy and Tk ¢ are plotted using (21). First order results from the small perturbation
theory for a single surface given by (15) are also shown to provide a basis for compar-

ison. In Appendix VI, all the identities used are rewritten for ease of reference.
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VI. COMPARISON WITH SEA CLUTTER MEASUREMENTS

As an illustration, only the results corresponding to an isotropic rough surface
with Gaussian surface height distribution will be compared with the experimental
sea data. The assumed surface model although not realistic for the ocean surface,
is oble to predict the correct angular trend of the backscattering coefficients for
both horizontal and vertical polarizations with surface parameters of very reason-
able sizes.

An examination of the backscattering coefficients, given by (20) and (21),
indicates that the rms surface siope m of the large undulations not only offects the
o1, ferm, but also the % 2pp term. So, it is clear that the large undulations
influence the returns from the small irregularities as mentioned in the previous
section. To suppress as much of the effect from shorter waves as possible, Cox and
Munk's [9] mean-squared slope measurement in the presence of oil slicks is adopted
to estimate m for different wind conditions (see Appendix VII).

It is generally agreed that the surface spectrum of the small irregularities
should vary like 85_4 (K = surface wave number and B = constant). In comparison
with experimental data, the value of ki of (19) is assigned to be 2 (Figure 8) so
that the correct angular behavior of the Gaussian spectrum approximates BK™
well over the angular range, 30° @ 702, i.e. BE—A' is approximated by (19)
with K = 2k sin @, the Bragg scatter condition. To bring the level into agreement at
G = 60°, we multiply the Gaussion approximation by the factor of 35.3 . Since a
complete information of the increase in intensity of the high frequency part of the sea
spectrum is not yet available, the wind dependence of oy cannot be uniquely deter-
mined. Oceanographic investigations indicate that the values of B lie in the interval
4.6 x 10-35 B£3.26 x 10_2 [9,13, 14]. This implies that ko] should lie in the range
from 0.067 to 0.2 when BK 4 is equated to (19) at 60°. These values of ko] are
consistent with the assumptions of the small perturbation theory.

According to the above arguments, comparisons of computed [(20) and (21)]
and measured (NRL) backscatter characteristics of X and L bands for wind speeds of
11-27 knots are shown in Figures 9 through 16. It shows fairly good agreement,
especially for-incident angles larger than 30°. Since questions have been raised about

the accuracy of the absolute levels of the measured scattering coefficient curves from
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different missions [15], the main intention of these comparisons is to show the angular
ogreement rather than the agreement in absolute values. However, to allow reference
back to the measured data, all levels of the data have been raised by 6 db rather
than arbitrarily adjusted for each wind speed to obtain better fit to the theoretical

curves, Values of kc] and m used in the calculation are as follows:

kcl m corresponding wind speed (knots)
0.1 0.09 11

0.13 0.1 14~16

0.17 0.12 23 ~27

It is noted that the value of koy increases with increasing wind speed. This obser-
votion is in agreement with recent studies of the sea spectrum [16,17]. For smaller
incident angles more data points are needed to define the angular shape of the
o__ curves. For this reason NASA/MSC data ore chosen in Figure 17, Agreement
is observed between measurement and theory with m determined by Cox and Munk's
clean sea measurement. More experimental data are needed to explain the discre-
pancy in using slick and clean sea measurements.

On the basis of the acbove resulfs, it appears that it is possible to determine
the wind dependence of the scctterometric parameters m and oq. With sufficient
experimental data these parameters may be determined more precisely for different

wind speeds.
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VI, CONCLUSIONS

The results of the present theory indicate an explicit interaction between
the targe undulations and the frequency components of the small irregularitics. As
compared with T1pp’ T2 which represents this interaction decreases more slowly
with the increase of the incident angle. This offers another possible explanation

for what has been called the diffuse scattering portion of the angular curve. -
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APPENDIX |

THE BASIC SCATTERED FIELD EXPRESSION

In this appendix, an expression of the backscattered field in terms of the
local field components on surface is derived. The star'ing point is the modified

Stratton-Chu integral:

S an

E Konzxf[&xg-ngzugxﬁ)]exp(jk;-ﬁa)ds_ 1-1

Assume
E = Z‘:E; ""-j-E.] "",éEi
‘t{ = :‘X—MH; "’BHQ'(‘:Z“HE
where
E=xn/In|
; ) 2 2 -3
= (-hZ,- jEy+k)(1r Ex +Ey) T
E = (Z x Z.',"l)/Do
:::[:-“ Zy cose+4j_(s£n6-z,(c'ose)+l<‘23 sLnG]D;'
-4
(14 By 2y )E
‘; = XME‘

LI (T

i-}'_chose/Dow*LgZ,)(H Z:.z; )"

~
~
~n

D, =|2Z xﬁ.]:[Ir:';+(5Ln9—}_’,‘cose)2 ]%

2 . . .
N <<1, the local unit coordinate vectors may be approximated as follows:

itz ,Z

r

XN

;il
s

A -3 Zycos8/sin8 + k Z«
i x ichosﬂ/sLnGl-ri + k Zy sLnG/sLnQ'

~'izx'izﬂ+}f«

;ml
!
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with

sin@ = sing -2Z, cos B

For backscattering (i.e. ny= "N = =i sin@ + k cosB) the following relations may
be obtained v

]

n x £
Y

A,

3 Es - ZEg

32

¢ X

== (4058 + K sin@) Eycos 8/5in8'~ § cos @’

har 3y
]

N x
v

(”i.‘c056+ksin6)~j ZB/SLnG’
with
cos8 ® coso+ Z, sinb
Bex(M<EY=- mx (FEz-ZE§)
= -[(kecos® + ksinb)(Ez+Zycos0Eg/sind’) 1-3)
+50cos 0 Eg - ZyEz /sin ') ] |

Similerly,

mex (Max (naH)] = (:é.cose*ﬁs‘me)(cose'Hg~ZgHR/sLn6')
_i(H;‘ t+EZycos 8 Hg/si.'ne').
Note that : (i-4)
(L sinf-keo5 ) x (L Ccos58+ ksin8) =~}
Tyox§ o= licosf+ ksinb),

Substituting (1-3) ond (1~4) into {i-1) we get the backscattered field os

L L A ’ . ‘
o -k [ £0CEs cas 0= 13- By e 2 find )

+ (i cos 8+ ksin8)[(E;+ 1H3 coss')+(E5cose-~qH;)Zs/sLnS']

~exp (- 3 koo r) da dy
where (I-5)

ko= km,
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By using (1-2) it is possible to find the local incident fields. Thus, for a
horizontally polarized incident field of the form j exp(-ih * 1), there correspond two
local fields, i.e. =

] exp(-jk, ry = i exp (- Ji‘.; ‘) -« icosala-}:si.nel)gfﬁie_'
-exp (-jb'.r‘)' (I-6)

Similarly, a vertically polarized incident field of the form (i cosO + k sinO) exp

(—ik] * 1) may be decomposed into two local fields, i.e.
(L cosé +k simo)exp (-jki-X)
= (X cos8 + Z sinb )exp(-jki-r)

_ . . (1-7)
t Y« zs/sme’) exp (-4 ki-X) .
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APPENDIX 11

FIELDS ON SURFACE Z(x,y)

A. Horizontally Polarized Case

From the small perturbation theory, the total scattered E-field up to the
first order in space may be written

T Q’E dud
EfE[_l wv x dudv t1e)

Ez (%X, 9,%)

Eg (%,§,2)=[exp(jk 2cos8)+ R exp(-jkZcos 8)]

rexp (- 4k ')_(si.ne,)—ff T (u®+ cb) QIE?( dudv

= (H-1b)
= Eg +Eyg _
where

Ex = exp (-juv‘(’-jvg—jkcosei)

Q= j(kla— kz)S(u—ksLnG',v)(a?; D)"
D = Kc+ k'%b
TJ. = |+ R*

To obtain the zero order E-field on surface Z(x,y) we may apply the tangent

plane approximation. Thus, in local coordinates its value at any point on surface is

Ego ¢0,0,0) =1+ R,

To obtain the correct phase relationship between points inix,y,z) coordinates, the

total zero order E-field at a point (x,y) on surface is expressed as

k' - r ) (11-2)

A s

Ego(”‘,ﬂ,l)=(l~f Ry, exp(-j
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The form of the first order ficld is not similar to the zero order in that it docs
not contain the incident ficld. Thus, toking Exl as an example, we find the value of

the field on surface in local coordinates to be

E z, (O,o,o)=ff T, uv Q" du dv

Following Bass and Bacharov, the total first order field on surface in (x,y,z) coordinates
is

s ojux - vy - jkzcose

Eil('xlfj,z)=jf Ti:uv@e dudv | (1-3)

Thus, the complete set of fields on surface in (x,y,z) coordinates is

E—}i (x,y4,%) =IJ‘ TL uv Q/EX du dv (I1-4a)
Eg(x,y,2)=C+Ru)exp(-jki L) ’ (11-4b)
—ffTL(tf*rbC)Q'EXduclv
"(Hi("‘;ﬂlz)=cose’u—R;)exP(-jh.-L) (l1-4c)
+jjTJ_ [uz(b-c.)/k +ke] QEx du dv
, , (11-4d
TH3( g, 2y = [1, [uvb-c>Q@/k JQEX dudv )
where
EX = exp (- jux-jvy- jhkzcos® ). (11-5)
B. Vertically Polarized Caose
For a vertically polarized incident plane wave of the form
E = (4{cos8 +ksind) exp[-jk(?(sine—u,ose)] (11-6)
the local fields on Z{x,y) up to the first order are
E,—x-=COSQI(I—R,,)exp(-j,‘§-'.[) (H=7a)

+ [ 1,Q [ busine’- (v?+be) k cos ¢7/k JEX dudvy
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where

Es=Ifr.a", (bsin 8"+ ukcos /K Y Ex du dlI-7b)

7 H; :[f T, Qv [ue ~b)cosp /L -~k sin8 ] EX du dv (t1-7¢)

MHF= - Cr Ry exp (- j ko r ) (1-7a)
+fsz,Q,[ku5Ln8'+ (vie-vih-ci)cos ?57’(‘]

EX du dv
Ex = exp¢(- Jux-jvy-jkecosg)
Q = j(klz" ka)[aﬁ'(k’z{""kEC)J-lscu‘ksi.nQ,v)
T/l =1+ Rn .



APPENDIX Il
INTEGRANDS FOR THE POLARIZED FIELDS
In order to make use of the formulas for computing the scattering coefficients
shown in the next appendix, it is necessary to get the integrands of the field

expressions in the right format.

The general field expression is of the form
E=K”(1NT) exp (- j k£ ) dxdy (1i-1)
where INT for the two pcﬂorizations are given below.

A. Integrand for Ehh’ (lNT)hh

(INT),, c050'53 - mHz

cose'{[H Rl(e')v] exp (-] .‘:.-):)-ffn(9')(uz+bc)Q'Ex dudv}
-cosf [I - R;(G')]exp(—J’k‘-,):‘)—I'[T*(e')[u?(b-c)/k+ ke]QEX dudv
e [R;(G) + RIZ,] (Cos8+Z,5itn8) exp (-3 .5 -K)

- R

‘ “‘fle (e')(uf(b—C)/k t ke + (_u2+ bc)cos8+ Z, sinb(L+ bc)]
QS8)E X du dv

= 2 {R.(8) cos8+[Ri(8)sin® + RicosO] Z,}
exp (- jki-r) - [f(T.(0)+RL Zx)

, -2
[ Dinn + Dann Z,][S(e)+s Z.JEX dudv (i-2)




where

5(8)= S(8) +5'Zx , T.(0) ¥Ti(0)+ Ru Zx

EX = exp (~jux-jV3+jkzcose)
S = 25— - [ 35/acu-ksing) ) kcoso

Dlhh=[u2(b—(‘-)/k + ke + (W+be)cos8 ] Q

DZK'\ = (u.z-c-bc_) Q SL"'Le F) Q ,= Q6(9,)=Q5(U~“k5”‘e;\’)
Q= K=Ky [awCke+ K]

Linear approximations have been used to rewrite results in terms of the incident angle
rather than the local angle.

B. Integrand for Evv

(INT),, = Ex +71 Hg cos 8’

cos 8 [1- R,,(G')]exp(-jh"ﬁ)+ffT,,(8') Q
[busin®’~ (vi+be) keos ¢/ TEX du dv

+cos 8 {-(1+R,(8)])exp(~] kir)

+ ffT,,(e') Q' [kusing’+ (vic.- Vb ~ekycos ¢7/k ]
"EX dudv}

r

-e{R,,<e>cose+[R,',cose+R,,<e)sanejz,}
rexp i kiert [fT,00)Qs(8) -
{u (b+kcos8)sin@'s [cos8(vie-vb- ck’)
~¢(v¥+be) k] cos ¢~_'/k'} EX du dv
+[[ 7,08 Q5(8)sin8 (kusind+(vie-v?h-ck®)

. COS¢/k’] Z,EX dudv

=-2 { R,,(G)cos@*r[R,jcosleR,,(e)sLnG_]z,}
exp & F k) + [ [(T.(0) + R, 22 1[Divy+ Daw E( ]
[S(G) *SIZ,] EX dudv
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APPENDIX IV !

EXPRESSIONS FOR THE SCATTERING COEFFICIENTS

A. Consider a Field Expression of the form

L . .
-3 Vx X + ] Vo R
E =Ko [[ CApp B 2,0 e dx dy
-L / (iv-1)
the product of E; ond its conjugate is
2 % 2 * _ 2 . *
E‘ 'Er=, K.,I ffjf( lAppl + APF BPP Za+ l Bpp‘ ExZx .+APP BPPZ"‘)
-L
exp[-j Vy (x=%") +sz(Z'3')JdX dﬂ d’('ds . (IV-2)
Taking ensemble average of the product yields

" 2 bl ety gL 2z . * *
CE,-E>= K.l I.LJ.L-[L-,-J.L-,'{’APP' ~§ CApp Bpp + App Bpp)

2 2 Y 2 X . 2 2
Vp o - -1Bpp| 0 [ a::*"z"a =) ]} e"P[‘JV“‘*’VzG“‘?)]

da dlz dx'ds'

2reL ral . . *
= IR [ car -1y i -tpId{ 1Al - § (AnBrr + AprBrr )

2 2p 2 . ,
Ve 0 3T - Bl 0 [ 55 + K (Y]} expt-gv«*-(w"fﬂd*cﬁ
V-3

where o= x-x"; B=y-y'; App and Bpp are not functions of «, B ; K= V;crz)- 029= <22,
The scattering coefficient alpp corresponding to the field given in (IV-1) is

(g

pp = 4w RICE,-E"> /caLy

2 2L c2L ¢zL-lab)(2L~181) z - .
S J—u (2L)? {1apel =1 CAppBrp + Arp Bpp )

w

n

¢ 2 2 z ’
vz 0" 3 = IBppl O [2£+K(%)2]} (IV-4)

cexp[-jvaa - Ki-95] du dp .
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If the o, 8 -~integrals in CT]p converge fast enough so that within the region of

convergence 2L>>«, 3 , ond if edge effects are negligible, then
2

“ipp

it

Vi - » . 2
j “APP| t 7, (AppBpp + Ape BPP)+|_:,/; Bep | ]

.exP[-jV'xa' K(l“?)]dd d@

2L 2

u

4!\

) 'APP“’ Bepl exp[ jyax-KG-$) ] da dp .
-2LY-

(IV-5)

For isotropically rough surface, (IV-5) reduces to

-K@-¢)

Gop =K [ 1A+ By T (vt e Ede

(IvV-6)

where Jo( ) is the zero order Bessel function.

The identities useful for getting (IV=5) from (1V-4) are

el

I

-2L

2 2L a%yp
(m J_le_n az exp[-4 Vya-K-9)]dadp = f 2 Bx exP[ JUt=K@G-9>]

+f_::f-2 [JV" zfx_K( )]exp[ JVGL K (1~ f)]dt’(dﬁ

2L

L .
J j 2L ;i exp[ j Vxol= K(l~S’)JdoLd(3=i;%exP[—JV,oL—K(I-Q)‘]

~2L

+ _&J LJEL exp[-{Vaa- K(i-9)] dee d3 |
K -2L J-2L

B. Consider a field expression of the form

L ©
Ez =K :(.l:( {_!‘:{ (T+ R,Z-x)(DI"'DzZ,)<5"SIZx) EXPCJ”*‘JV}'JXJ&“V 7)
where D, and D2 are both functions of u and v; S' is the derivative of S with respect
to Zx;
EXP= exp ['j (u+ksinB)x~jvy+ jekcosé = ]
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It is possible to writc E, in the some form as (IV-1) and identify A and Bpp with
Zx“-term being ignored. EXP may be taken to play exactly the same role as exp
[-iv x v, z] without affecting the final result. Note that appropriate subscripts
should be attached to D D2, T, and R, depending upon the polarization states.
However, these subscrlpts have been left out here for simplicity of writing. The
basic form of the scattering coefficient for this field is cjain given by (IV-4). The

corresponding coefficient terms can be shown to be (see section C)

ClAppld=2vc? [[ 17D, "W dudv (IV-8a)

» 2 o2 ’ * -“._a_“-/-——\/—z d_ dV
{App Bpp > =270, ”TD.[(TDz*RD-) W (TD ) 5g 2(|]v—;b)

§ 2y
<IBPP]2>= fS{]TD2+RD| W+]TD‘ a_a}z
+ V 3¢ Re[TDi(TD; +R'D.Y ]} du dv (IV-8c)

where <. . .> isthe symbol for ensemble average performed on s(x,y); Re means
"the real part of'; * is the complex conjugate sign;

W=W(q,v)

q=uksin® ,V_ =2kcos O,

Although (IV-1) may be used for (IV~7), it is more convenient to write the
scattering coefficient for the field given by (IV-7) directly in terms of D] and D,
instead of A and B__ . Thus,

pp PP

* 2
Oppp = 4 R°CELE,> /c2L)
Ke® 2% (2L-la]y(2L~11) 7 e
= =2 TDippl W
2 I.J (2L Y ({I' PP
-j26% v, 2L Re (TDpp((T 9W ]
J 2 5o e 'PP[ Doppt 'PP) w+ (T D.pp) })

S%p 29 \2 . 2 azw
2+ K (2L ] (17 Dappt RPipp "W+ | TDupp | i

aw %*
TV 5y RQ[TD'PP(TDapp Dipp) ]) (IvV-9)

-exp[-j(u+ksLnG)a~jvp\K(|—?)]dudv} dadg,
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If the &¢, B -integrals converge fast enough so that within the region of convergence
2L >>«, B and if edge effects cre negligible, then for isotropically rough surface, similar

to O , (IV-9) reduces to

1pp

2 2 [t [ , 2
ozPP='”k‘T' fo f.eoj.oo{lTD'PP*G(TDePP*RD'PP” W

+ Vi

Y
< B%
exp [ -K(i-p)] EJE

ITGDIPP, }J (% /(u+ ksind )@ + v¥ ydudy

(1V-10)
where G = (u+ ksin @)/ v,
C. Consider a field expression of the form
L o
E=Kof_[ fj(A°s+Ba‘S)Z'x EXP dudv dxdy , (V-11)
-L -0

then

E-E%= |k, jjjf{jjjf[lA;55+A B.ss "+ ASB.8"S!

*1B.78"S/" ) 2, 2y [ExP|  dudvdudy fdx dyde'dy’ (IV-12)

where Ao, Bo are both functions of u, v; S = S(u,v) and 517 S](U' V) EXP =
exp [~j(u + k sin @) x-jvy + jk cos @Z). The following identities of ensemble

average over s{x,y) are needed for getting (IV-13) below:

<ssT>=27w06° W (u-ksin6,v) S(u-u') $(v-Vv')

<ss/*>=2w0’ a? kcos® S(u-w)d §Cv-v)
’ % z ‘. '
<5 57> = 2% 67 k®cos?0 —‘;%’\2/ SCu-uw' ) SCv-v')
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Average (1Iv~12) first wiph, fespect 4o s(x,y)

I g,

;? kcos@+/8 /*

<E.g*

B¢+A°B:)
k*cos®s 83212" o} duclv}Z Z,
exp (- j(uu«ksme)(x Xy

-Jv(j 3)+J Ekcosgca z)]
a’xdg dx’ dy

(Iv- 13)
Then wis, respect 44 Z(x,y)

2L
CE-ETy L YK [ o -, laty e - lﬁIJ{ff[lA I'w
. ~ag
+(A’g

o * A, B*) ~ib_/k¢o58+15°[ K cos®g 22w WJ
dudv ) (ge 2. GO el s us ksing ) o
gV /”‘K<1~f)]dqdp (1v-14)
Comparing (IV~74) and (IV"H) with (I\/~3) and (/- 7) we hove
<18,,0% - e_['?[AIW+(A B.ta, B keog o
-oo
3%
1B K7 st S5% ] du dy
sawa,eff[lTszR'D /2W+akcose Re[TD
o(TDE-fQD Y 74 IT D, %2 cos®g 2W i:}a}dudv
9 given i, (I\/~8c) wWith
A0~D R'+TD2
Bo~D T,
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If, in addition, we assumec that autocorrelation of the large undulaiions to be
Gaussian and integrate out the Bessel function of (1IV-6) and (IV-10} , the following

expressions result:

(4 m? costh )—I [App+ Bpp tom 6 ,Eexp[—‘thn_z 9/(2"\)2]“\/_]5)

!
“ipp=z

7 ’ ’ ’ ’ ¥
Tepp =T k0" ”{ICPP“‘GDPHEW+ Re((Cpp+ GDpp ) Cipp & ]

w -2
* Vg % V, m anP [-[(u.'rksl.n 9)2+ VEJ/(E V;mz)}c}“ dv
(1V-16)

where W(K)= (.ﬂQ/Z)exp [-(_ISP/Z)Q] is the roughness spectrum of s(x,y) related
to its.correlation coefficient by the Bessel transform; £ is the correlation length of the

surface, s(x,y); S’”(o) is the second derivative of $ evaluated at zero;

m¥= g% 9 (o) |

W= W (/[ 3%+ v? )
~ Cpp = TDupp

’ ’
D PP - T DEPP + R D PP )
To obtain (IV-15) and (IV-16), we have used the approximation and the

identity as shown below

1) exp (-KG-9)] x exp[- K] $")]| /2]

o
@ _[:, jo(V'Ag)eXP("agz)EQ’E

= | 2
T 2a@xp (- V, S4a)
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Comparing {iV-1), (IV=7) with (111-2) und {H1-5) and using (IV-4) and {(}V-9)

we get

() Pu T Oun P e

with
Ak = 2 R4 (8) cos b
Bik = 2 [R.(8)Sin 0+ R, cos § ]
Dip = @luCb~cr/i+ ke + (u’+b¢)c053]
Darr = Q (u'+ bc) sind .

(2) Tuy = Oy + 0,4,

with
Ay =~ 2R ,<8) cos8
Bw=-2[R,(8)sin8 +R, coss]

Dive = Q{[u(b t kcos8)]sin® +[cos 8 (v

-vih - e k®) - (vEPebe) k]cos‘#/k)}

Dzvy = Q (Smé [ kusin® + (vic - VPbock®ycos ¢/k")
+ k'sin cos @ [cos 8 (vi- vih-ck?y- (v be)k]

3
/(k Cos P~ ucCosé( b+ kcos@)} .
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APPENDIX V

IDENTIFICATION OF THE DIFFERENT FORMS OF THE
SCATTERING COEFFICIENT FORMULA

To compare c,, g in (14) with the corresponding Valenzuela's and Wright's

scattering coefticients, we rewnfe {(14) in the following form

- -a(..ko-)j j

S(u+ksing) §(v) du dv

- 2 kcos @
” kKecos8+ kcos ’

Cvv Q{u<b+kcose)sme+[cose(vc ~v?b -ck®)
-k (vZ+be)] cos /K’ } '
Q = (K*-k®) [2w (ke + K'b) ]-'
cos?d = I- k2 sin®6/K'"
By the property of the Dirac delta function it follows that
u = ~ksin@®

V=0

T//va(u,v)‘ Wu-ksing, v)

where

Thus 2 2 .
OLyy =2(wkay) ’T,,Cw( -ksi‘ne,o)‘ W (2ksin8,0) v-2)
h )
vnere T//va("kSGle,O) = T,,Q{-ksine(kcose +kC056) SLne +
[cosB (- k'k’cosé ) -~ k? k'cos 8 cosP ] cos $/k }
=T,,Q{-2kzcose(sin26+cosz¢)}

- 2 k'cos »2 2 2 .2 _
_[k'cosefkcc?sd)] [E'rrkk(kcos;:+ kcose)] [’ak cos@(sin 8+l
__ 2 (K*-KHkeosPO K A (KK sin®g )

w K% (KcosB + kcosd )? ) (V-3)
Substituting (V-3) into (V-2) yields

K2 sun 9)]

2
s - 8K cos™e (KL (K% (- k3ysin‘e]
avy l k'* (k'cos + keos $)?

W (zksinﬁ,o).

(V-4)
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Iy given by Valenzuela and in his notation is ( O'VV)

( OVV )val.

= 8wm, cos® < Pgyy>

val,

5.~,q°c059<Psw> »

(e -1)[€(5in*0 +1) - sin®8 ]
(ecogb+fe- sim?p ) {V-5)

{t

4% /34 cos'o

W (2ksing,0)

The connections between his notations and the one used in this paper are

p=k (V-6a)
)2 2
s (V-6b)
: o
W= W Vet
Substituting (V-6) into (V-5) yields
3 '2 . 2
] B ey s
(O )yal = 4T RO = ——
) (%5 coso+ /55  sin%e )
2
29y (2ksind,0) 2
n
/R 2 R ,2* 2 . 2
- 8 ko costg| (K ,-ak ),[k + (K =k )5“:9]
k ( kcos8+ kcosed) V-7)

W (2 kanb,o0)

56



which is identical to (V-4).

Using the notations in this poper, we can rewrite Wright's scattering
coefficient as follows

(6,,), =8 k4o-,2] 9| “W(2ksing, o)
< 8 k0,7 R, cos?0 + TICK= K¥ysin®g/2 k)| “w(2ksin8,0)
where _ _Kcos8 - kcose (vV-8)
R, * k‘cos @ + kcos ¢
Substituting R,,and T,, into g, yields

R,cos°0 + T, (k'2 k*) smk,?

- (Kcos8- kcosP) cos *s + 4K %0st8 (K k) sind
k'cos 8+ kcos ¢ 2k'*(Kcos® + k cos )°

(K “cos® - kzc?saqb)cosaﬂ + 200520 (k' k2)sin28
(kicos8+ kcose )2

Ju

"

cos°0
(K'cos8+ kcose )?

(k cos®9 - kcos ¢+ESL7L9( k)}

= Ccos26 r2 .2 2
(k'cose+k¢os¢)2[k ("LS""G)"‘("&L) 2 k’sin 6]

cos®o
(k'cos@+ kcose)®

H

2,2 2 T
[( k +k sin% - kzs'mze)— —kk;z—(k'z- Ksin®g + K sin?e ):

o528 (K k2 (K 5 K 5in%0 - Kisin?e)
k3(Kcos@+ kcose )?

V-9
Thus,

X3
vy —8kc cos’0 (k= k)(k ik k)sme] Wzksing,o)
K (k 058t kcosed )® (V-10)

which is again identical to (V-4) .

In conclusion, when Z(x,y) = 0, we get

Oavy = COGu dval = (O )y

2
W(2ksino, o)
(vV-1H

Hi

81 07| R, cos®e + T, (K715 SRS
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APPENDIX VI

COLLECTION OF IDENTITIES

All the identities used in this report are rewritten in this appendix for
ease of reference. The order of appearance of these identities does not correspond

to that in the report. All the integral identities are given first and then the iden-

tities for ensemble overages.

| Lot
S(u,v) = }T;J_LLLs(x,ké) exp(—j'xu—j;,W)dxd%

2wy =g [ e (5, n) expl-§4E=jvi) dg dy

. W ={"T (pxrs, Bdx

then W’([j):%@=_j:°‘]_‘({3g)gl Esz

® a8,
and o ?E_J.(ﬁ Eyexp(b$§)Ed: .":—pW({S)-f' edge effect term
4 S, xTexp caxy Tncbxy da
wtd
=2a @b (aed) /[ fr (atepty 7
(Rea>-1, Rea>|Inbl|]

n{(n) if m > O

J=

fw x ! exp (-ax®) J, (bx) dx

where T (m+1)
ros)

i

= [ b /f2ay"" ] exp (-bfaa)

[Re , >0 , Re &x>=17.
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10.

11.

12,

13.

14.

15,

16.

17.

it

w mn
L exp (bcos x) cosmx dx = § 4 Ju(b)

t 3 2 J,(x)

i

2
S Wsme exp (* jx sin 8) de

$+27

Jo

J':*ZWQXP(ij’XCOSQ + jéSihe)de = 2% Jo ( J—;(?-+ ‘é? )

" (x)
exp(jxs'me + J‘me)de = (~1) 2w JIm

j_” exp(jwt) dw = 2 ™ $ct)

n
Q
(¥

(zz'>
(s s’y =

I
Q
=

(S vy Scuvy d=2T 62 W Wy §(u-u) §(v-v)

(Ziexp[jVe(2-2)]> = 2w expljVaZ-2)] >

2
:-jd‘z\/z% CXP[‘GZ\/Z(l—?)]

where o = - x’

’ . , 2 2., 2 2
(ZaZy ep( V2 (Z-20) 5 = - 0% (3 + 0V (B2 Jexpl-0*V0r-5))

*
o, D , 2
<S(u,v)—-———-—saikuw > =2w0, 2w V)

’ r) *
{R25%.v) 25(4.v) >'=2'.\.-o‘2_aiw
2w 2U ' aud
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APPENDIX VH

COX AND MUNK (1954) SURFACE MEAN SQUARE SLOPES

1. For clean sea

512 %10 "%V + 0,003 * 0004

+
Q
»

2. For slick sea

ot 62 =1.56 %10 ~xV + 0.008 * 0.004

+
1]

In both (1) and (2), V is in meter/second.

For isotropically rough sea surface, we have

2_' 2 2
'mc‘R=~a—(ac+au)

where m _and m_ are the rms slopes of the clean and the slick sea, respectively.,

Values of m _ and m_ ore given in Toble | for different wind speeds.
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