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I. SUMMARY

The two-scale composite rough surface model usually considered is one

composed of large undulations over which small irregularities are superimposed.

This general model may be further subdivided into two other models: (1) the large

undulations are larger in dimension than that of the illuminated area so that within

the beam of illumination the picture is a tilted perturbed plane; and (2) the large

undulations are of such a size that at least several undulations can be found within

the beam. The first model is essentially the small perturbation model, since the

effect of the tilt can be accounted for either by a change in the angle of incidence

or by resolving the incident plane wave into horizontally and vertically polarized

components, or by both. The second model is much more complicated and has been

approached in most cases with a non-coherent assumption, i.e. the contribution from

the small irregularities may be computed by summing powers from the large facets

constituting the large undulations. The total contribution from the composite surface

is then taken to be that from the large undulations plus that from the small irregu-

larities averaged over the large undulations.

If the non-coherent assumption is not made, the total scattered field from

the illuminated area must be computed before evaluating the power which is the

approach adopted in this study to calculate both the vertically and horizontally

polarized scattering coefficients. The surface is assumed finitely conducting and

homogeneous; the surface roughness may be non-uniform. To gain insight into the

mechanisms of scatter, results are compared with those obtained by previous theories.

The special form of the terms due to excluding the non-coherent assumption and the

meaning of such terms are discussed.

Based on Cox and Munk's [9] relation between the mean square surface slope

of the sea and wind speed, curves are drawn showing the backscattering coefficient,

a , as a function of wind velocity and of the angle of incidence. The comparison

with NRL [10,11] data shows satisfactory angular agreement for both horizontal

and vertical polarization, especially for incident angles larger than 30 . For

smaller incident angles, NASA/MSC [12] data have been chosen for comparison and

close agreement is again observed.



II. INTRODUCTION

Many scattering theories [1-4] using two-scale rough surface models have

been developed in recent years. The general model is a large undulating surface

with small irregularities superimposed. More specifically, two types of models

have been considered: (1) the large undulations are larger in dimension than the

illuminated area and thus within the beam the picture is a tilted perturbed plane,

and (2) the illuminated area contains at least several large undulations. For model (1)

the problem remains essentially the same as a small perturbation problem since the

effect of any tilt can be accounted for by a change in the angle of incidence and

by resolving the incident plane wave into horizontally and vertically polarized

components [3], Such a simple treatment is not possible for model (2) for which two

different approaches are in existence: (i) the non-coherent approach where a non-

coherent assumption is used to simplify the problem [l],and (ii) the coherent approach

where the said assumption is not made [4]. The non-coherent assumption referred to

here is the one defined by Semenov [1], i.e. the contribution from the small

irregularities may be computed by summing powers from the large facets constituting

the large undulations. This assumption implies that the calculation of the contribution

from the small irregularities in model (2) is identical to solving the entire problem

using model (1). Of course, for model (2), the contribution from the large undu-

lations must also be computed and this is the major difference between the two models

when the non-coherent assumption is made. Differences between models (1) and (2)

are further magnified if the non-coherent assumption is not made. Thus, the total

scattered field must be found by integrating the total field on surface before calculating

the power. Hence, it follows that terms due to integrating the first order perturbed field

over the large undulations within the illuminated area will show up and give an

explicit indication of the interaction between the large and the small scatterers.

Such an interaction is restricted to be an average operation in the non-coherent

approach and this defines the major difference between approaches (i) and (ii).

This paper discusses another coherent approach for model (2). The composite

surface, £ (x,y)= Z(x,y)+s(x,y), is assumed to be finitely conducting and homogeneous

with Z(x,y) representing the large undulations and s(x,y) the small irregularities.

Z(x,y) and s(x,y) are to be generated by independent, stationary, Gaussian random

processes.



The approach is a modified Kirchhoff's method employing the equivalent

surface field, i.e. the surface field on Z(x,y) estimated by the tangent plane method

is modified to include the effect of s(x,y). Once this equivalent field is obtained

the problem reduces to a single surface scattering problem, i.e. scattering from

the surface Z(x,y). The concept of equivalent field was advanced earlier by Bass

and Bocharov [5] for scattering from a single surface. Results obtained by this

approach are simpler and reduce more readily to special cases of single surface

scattering than Fung and Chan's approach [4], where fields on the composite sur-

face f(x,y) were considered.



III. THE SCATTERED FIELD

The far zone scattered field due to an incident plane wave on a rough surface

Z(x,y) (Figure 1) is given by a special form of the Stratton-Chu integral [6],

-n2) ds (l)
•w'1

where a time factor of the form, exp(j0)t), is understood;^ is the position vector

pointing from the origin of the coordinate system to a surface element dS;^ is

is a unit vector in the direction of observation; R is the distance from the origin to

the field point; E, H are the total electric and magnetic fields on the surface;

k is the wave number in air; r; is the intrinsic impedance in air, K — -jk exp (~jkR)/

(47rR), and r^ is the local normal to the surface.

The basic problem for finding E is to determine n x E and n x H at any point
1 ^ M*S AH <Mt /»•« A* ' '

on Z(x,y). To do so it is necessary to set up a local coordinate system at the point

in question. A possible set of local coordinates is

(2b)

where Z , Z are the partial derivatives of the surface Z(x,y) with respect ro x and

y respectively, and i, j, k are the unit vectors of the (x,y,z) coordinates. From

the definition of the local coordinates we see that the tangent plane at the point

(x,y) on Z(x,y) coincides with the plane x-y. If the small irregularities were absent

this would be an infinite flat plane. However, with the small irregularities present, this

becomes a perturbed plane and the local scattered fields may be found by Rice's

theory [7]. This has been done by both Rice [7] and Valenzuela [8]. Hence, let

us assume that in the local frame

%> * "*" Jl 5 "*" ̂  2 (3a)

H = * H- •* yHq + 1H= . (3b)



Fig. 1. The geometry of the scattering problem.



2 2
Assuming Z , Z ^ 1, we may rewrite the backscattered field in terms of

the local field components as (see Appendix I)

f L TL rE s ~ ~ K o { J [ ( E g C o s 0 - ^H- i - i E- +7,H9 cos 6 ) Za
~s J-J-L l~ 3 3

/slnO') -i- (i,cose + J^sinG) (( E^ +1\ H^ cos 6'j

H- C E «j cos e-iH^Zij/sln8'j} exp(-j £,•£ ) dxdy (4)

where k, = kn,; n, =J^sin G - k cos G; 2L, width of the illuminated area; G1 is

the local angle of incidence. '

For computing polarized scattering the Z - terms in (4) are unimportant

and, therefore, reasonable accuracy may still be achieved by leaving out the Z -

terms. However, for depolarized scattering the field expressions are complicated

by the presence of the Z - terms and the local angle appearing in the denominator.

In addition, depolarization due to the split of the incident polarization into locally

horizontal and vertical components as a result of Z also complicates matters. In

short, there is as yet no satisfactory method for estimating.the depolarized scattering

coefficients from (4).

For a horizontally polarized incident plane wave of the form

E x = i exp [ ~ j k(* Sind ~ z cos 9)]
**VN «v\* '

there correspond two locally incident waves (Appendix I). However, for polarized

scattering there is no significant error if we take one of the local incident waves

to be

E = y exp( - j k ( ^ sLu6'- zcos e ' ) )

and ignore the other one.

By applying Bass and Bocharov's [5] concept to Valenzuela's results [8],



the equivalent fields on Z(x,y) up to the first order may be shown to be (see Appendix li)

ES = JJ Ta a v Q ' E X d u d v (5a)

Ey = ( i + R . ) e x p ( - j k , -D- / /TxCu 2 ^c )Q 'EX dudv (5b)

H H* = C i- R ,. ) cos 9' exp (- j j< , •£ ) +JJ T,. |uacb-c)/k + kc | Q'EX dudv (5c)

y = / / [ uv (b -c ; Q'/kJ EX dudv ; (5d)

where EX = exp (-jux - jvy + jkZ cos G),

Q '= jck ' 2 -k z )Scu-ks ine ' ,

v2

S(u,v) = two dimensional Fourier Transform of s(x,y),

c f co. J ' m C C o ) < 0, C0 = C k ' 2 -u 2 -v 2 ) ' / 2

I -C0, J 'mCCo) > 0 ;

and ^m means "the imaginary part of."

The limits of integration in (5) are from - °°to °e.

Similarly, for a vertically polarized incident plane wave of the form,

£ , = ( • » - cos 9 + k si.n 9 ) exp f - - f k (?csi.n6 - z cos 6 )]
AM* ' *~> /v%* I I. J -1 J

the local fields on Z(x,y) up to the first order are

E* = C'-R,,)cose'exp(-Ji,-jJ

'/k'J EX dadv °

//<'- vk SU0' J £X dudv (6C)

-x )
+J/T,,Q'( ku Sin 9'+ Cv2c - /b- ck2 ) cos <?!>/k ' ] EX <Ju.dv (6d)

where T,, = 1 -i



IV. THE SCATTERING CROSS SECTIONS

If we use a linear approximation for the Fresnel reflection coefficients

(see Figures 2 and 3) and the local cos G1 and sin G', then

RA * FWfl) + R/ Zx j

R,, « Fy.6) f R,; Zx ;

R x ' = - e k R j . ( 0 ) sen 8 / ( k' cos <£) ;

t> ( k ' c o s 0 f k c o s £ )2 J;

COS 6' - COS 9 •»• Z-x SITI 0 ;

Sin 6' = Si.Tl.0 - Z* COS 0 .

cos ^ * [ i - ( k/k' )2 stn2e ]^ ;

and (5) and (6) may be substituted into (4) to obtain the backscattered field (Appen-

dix III). The scattering coefficient defined in terms of the scattered field by

0>p = 4Tr R2 < £sp • Esp > / (2|_)2

(7)

can now be computed. ^...> is the symbol for ensemble average; * is the symbol

for complex conjugate. Some identities for ensemble average useful for evaluating
a are

PP
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where Z - Z(x,y); Z1 - Z(x',y'); (x,y) and (x',y') represent in general two dif-

ferent points within the illuminated area; (u,v) and (u',v') are similarly defined as

(x,y) and (x',y') in the wave number space; rv = x - x', p = y - y'; p = p(rvR) is the
2 2

correlation coefficient of Z(x,y); a, , cr are the variances of the surfaces s(x,y)

and Z(x,y) respectively; 6 ( ) is the Dirac delta function and W (u,v) is the rough-

ness spsctrum of s(x,y) related to its correlation coefficient p, (cv,f?) by the Fourier

transform.

The general form of u may be written in terms of the sum of CTIDD

CT2pP (APPendix |V);

pp ~ *'"'.,

2
- i a v, ( A PP

exp [ - j v, a - v* os O - f ) J J ct d ^3

(8)

where v = 2k sin G and v = 2k cos G;
x z

d(3

13 (9)



where Re means "the real part of"

q = u - k sin ©

W = W(q,v)

T = 1 4- R
P P

R = R, for horizontal polarization

R,, for vertical polarization

R ' = derivative of T with respect to Z
P P v >

2 2 2
K = 4k cr cos © .

For horizontal polarization,

CT2hh

in which

A|xK = 2 Ri cos e

Bkk = 2. (Rx sin.0 + R^

= Q

Q

be) sin. Q

) 2 - r r C k '

For vertical polarization,

i vv

in which

(10)

cos

(11)

- v 2b-

Avv = -2 R, cos 6

Bvv = - 2 ( R l c o s 9 + Rx, sLnO )

Cvv = Q (Cu Cb-f kcosfl)Jsi.n9 ̂

- k Cv 2 4bc )J cos 9^/k' 1

DW = Q [sLn6 ( ka sin 6 + ( vzc - v?b -ck 2 J cos

+ k2slnecos0{;cos0(v2c - v 2 b-ck 2 ) - k(vs- f be

- u cos 0 ( b + k cos fl ) 1

14

COs



The expression for n-. is identical to single surface scattering results

obtained by the Kirchhoff's method. The form of a-, may not appear familiar

because most of the cases discussed in the literature are special cases, as noted in

the next section. The expression for a~ is more complicated; hence, it is best

to examine its meaning by considering special cases.

15



V. SPECIAL CASES AND DISCUSSIONS OF a, , a9Ipp' 2pp

Let us assume that 2L can be chosen so large that within the region of conver

gence, 2L» a,p for the integrals in ai . If so, neglecting the edge effect terms

we can rewrite a-, asIpp

(12)

For isotropically rough surface, (12) reduces to

2 /-2L.-•*•*/: BPP J o (V l l
-Kd- f )

(13)

where Jo ( ) is the zero order Bessel function of the first kind. Eq. (13) is the

backscatter integral most often discussed in the literature. It is important to note

that some of the conditions under which (8) reduces to (13) are loosely defined

in terms of inequalities. Hence, the precise region of validity for (13) remains

obscure.

It is interesting to note that as L goes to infinity and for sufficiently small

K (i.e. small a/\), (8) may be approximated, except for a specular-type term, by

o e? |App| ff (13 J e ( 2 k l sin 9

Thus,

= 8 si.n0

<r,v v = 8 W C 2 k sun Q )

16



where cr,i , is seen to be identical with the first order predictions of the small

perturbation theory, [2,8| when the surface under consideration satisfies both

assumptions of the Kirchhoff's theory and the small perturbation theory. However,

this is not the case with a, indicating that different approaches need not lead

to the same results, because the degrees of approximation for different theories are

different.

If the small irregularities are absent, QO =0 and a reduces to <ji2pp pp Ipp
as expected.

If the large undulations are absent, i.e. Z(x,y) = 0, then cr, becomes

fi * da d Q

4-TT

which is a specular-type term that behaves like sin x/x.

With Z(x,y) = 0, a^ becomes

(Tapp 2

C u - k si.n6, v) exp[- j (a+ k sin 9 3 « - j v / 3 ] j du. dvda dp

If 2L can be taken to be infinity, ao reduces to2PP
2 rm

<Tepp
2 rm r<*> 2

= £ ( -7T k CT( ) / J /TCppI W(u-ks 'Lne,v) i (u+kSL7i6) <ftv) duo-,
*/- CO -'- CO

Thus, . (14)

+T/C

' W ( z k sLn0y 0 ) (15a)

= 8 K" cr,a cos40 | Rj2 W ( a k s U S . O ).
(15b)

17



The above results are identical v/ith the first order results obtained by the small

perturbation method |2,8| ^Appendix V). Note that 2L must be taken to be infinity

for o „ to reduce to the perturbation results because the mean plane for the

perturbation model is an infinite flat plane.

Let us now examine the first term in TO when Z(x,y) is not zero and v/hen

2L can be taken to be infinity. It has the form

/*" rrr i T c P P i a w ( u - k s i n e , v j
"'-co J-oo J-ao -"-co rr

exp[-j Cu-rksi.n.9.)<x - j v/3 - K (I- ?) ] du dv d<x. dp (i6)

The variables u, v may be interpreted as the wave numbers or frequency components

for the surface s(x,y). Comparison between (14) and (16) shows that in (14) only

a specific pair of u,v values is allowed whereas in (16) all values of u,v are required.

This means that the large undulations are responsible for making all frequency

components of s(x,y) effective in the scattering process. They also define the

appropriate weighting (through K and p(o,p) ) on the. contributions of the different

frequency components of s(x,y). Similar statements can be made about other terms

in 02 except that they vanish with Z(x,y). Thus, 02 is seen to define expli-

citly the interaction between the large and the small scatterers. This interaction

vanishes when either s(x,y) or Z(x,y) is zero. Scattering theories with the non-

coherent assumption have this interaction replaced by averaging (15) using the slope

distribution of Z(x,y). (The dependence of (15) upon the slopes of Z(x,y) arises

when the incident angle is taken to be the local incident angle.) Hence, in such

theories the nature of the interaction is assumed rather than calculated.

If the a ,3 -integrals in CT^ converge fast enough so that within the region

of convergence 2L» n,|
J and if, in addition, edge effects are negligible, then

/r - k*

Re

T G C p p * "2 3^W

e*p[- \ (a-t- k sln0 ) a - jv p - K < i - f ) | du dv da <J fl

18



where G = (uik sin O)/ v .

For isotropical ly rough surfaces, (17) may be further reduced to

•J-ao J-'

T Q C PP

da dv

W

Jo (S / (u+ks ine /4 v?) e
-K d- f )

(18)

To compute the backscattering characteristics with (13) and (18), p(|) and

W(K) need be specified. As an illustration, we assume that p(|) is Gaussian and can

be approximated by the first two terms of its series expansion about ? = 0 and

W ( K ) =
(19)

where jPis the correlation length of the surface, s(x,y). Under these assumptions

(13) and (18) become (see Appendix IV)

+Bpp

(20)

duLclv, (21)

Figures 4 and 5 show the general angular behavior of CTI i and u for

different values of the rms slopes of Z(x,y) and kp, of s(x,y). Since the major dif-

ference between this theory and other scattering theories lies in a?o ; Figures 6 and 7 ,

a 2 ar>d (7o| h ' are P'0^6^ using (21). First order results from the small perturbation

theory for a single surface given by (15) are also shown to provide a basis for compar-

ison. In Appendix VI, all the identities used are rewritten for ease of reference.

19
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VI. COMPARISON WITH SEA CLUTTER MEASUREMENTS

As an illustration, only the; results corresponding to an isotropic rough surface

with Gaussian surface height distribution will be compared with the experimental

sea data. The assumed surface model although not realistic for the ocean surfacp,

is able to predict the correct angular trend of the backscattering coefficients for

both horizontal and vertical polarizations with surface parameters of very reason-

able sizes.

An examination of the backscattering coefficients, given by (20) and (21),

indicates that the rms surface slope m of the large undulations not only affects the

cr, term, but also the a~ term. So, it is clear that the large undulations

influence the returns from the small irregularities as mentioned in the previous

section. To suppress as much of the effect from shorter waves as possible, Cox and

Munk's [9] mean-squared slope measurement in the presence of oil slicks is adopted

to estimate m for different wind conditions (see Appendix VII).

It is generally agreed that the surface spectrum of the small irregularities

should vary like BK (K = surface wave number and B = constant). In comparison

with experimental data, the value of kl of (19) is assigned to be 2 (Figure 8) so

that the correct angular behavior of the Gaussian spectrum approximates BK

well over the angular range, 30° G 70°, i.e. BK is approximated by (19)

with K = 2k sin G, the Bragg scatter condition. To bring the level into agreement at

G = 60 , we multiply the Gaussian approximation by the factor of 35.3 . Since a

complete information of the increase in intensity of the high frequency part of the sea

spectrum is not yet available, the wind dependence of <ji cannot be uniquely deter-

mined. Oceanographic investigations indicate that the values of B lie in the interval

4 .6x lO~ 3 i B < 3 . 2 6 x 10~2 [9,13, 14]. This implies that k<jj should lie in the range

from 0.067 to 0.2 when BK is equated to (19) at 60 . These values of ka, are

consistent with the assumptions of the small perturbation theory.

According to the above arguments, comparisons of computed [(20) and (21)]

and measured (NRL) backscatter characteristics of X and L bands for wind speeds of

11-27 knots are shown in Figures 9 through 16. It shows fairly good agreement,

especially for-incident angles larger than 30 . Since questions have been raised about

the accuracy of the absolute levels of the measured scattering coefficient curves from
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different missions [15], the main intention of these comparisons is to show the angular

agreement rather than the agreement in absolute values. However, to allow reference

back to the measured data, all levels of the data have been raised by 6 db rather

than arbitrarily adjusted for each wind speed to obtain better fit to the theoretical

curves. Values of kcr, and m used in the calculation are as follows:

ka, m corresponding wind speed (knots)

0.1 0.09 11
0.13 0.1 14~16
0.17 0.12 23-27

It is noted that the value of ka-j increases with increasing wind speed. This obser-

vation is in agreement with recent studies of the sea spectrum [16,17], For smaller

incident angles more data points are needed to define the angular shape of the

CT curves. For this reason NASA/MSC data are chosen in Figure 17. Agreement

is observed between measurement and theory with m determined by Cox and Munk's

clean sea measurement. More experimental data are needed to explain the discre-

pancy in using slick and clean sea measurements.

On the basis of the above results, it appears that it is possible to determine

the wind dependence of the scctrerometric parameters m and a,. With sufficient

experimental data these parameters may be determined more precisely for different

wind speeds.
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VII. CONCLUSIONS

The results of the present theory indicate an explicit interaction between

the large undulations and the frequency components of the small irregularities. As

compared with a, , a~ which represents this interaction decreases more slowly

with the increase of the incident angle. This offers another possible explanation

for what has been called the diffuse scattering portion of the angular curve.;-.
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APPENDIX I

THE BASIC SCATTERED FIELD EXPRESSION

In this appendix, an expression of the backscattered field in terms of the

local field components on surface is derived. The star'ing point is the modified

Stratton-Chu integral:

£s
 = K0 £* xj~(;>i x E -n£* x ( £ *£ )

Assume

H » * H* * S H9
AM A«\ jj, J

where

- ( 1 « a. )/D.
J DO

•( n- 2,e +2,* 3"^

•x = § x E
**v* A** •****

« ( i - iza cos fl/D« * is. 2, )( i*

D- a H X2i' l = T 2J * (sLrL0 - Z, cos 6)

2 2
If Z , Z «1, the local unit coordinate vectors may be approximated as follows:

•* K -»- - i ZM cosfl /si.n 8' -f k Z,
.•*%•* /V\A (v^k J / /vv*

' ^ J -^ Jl H^ sLnfl/SL-nfl'
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with

stn0' ~ sun 0 - z^ cos 0 .

For backscattering (i.e. r\~- -n, = -i sinG + k cosG) the following relations may
A-,2 ••"••I -v- ~w

be obtained

. , . Ji slnQ ) Hu cos S s l n S - j cos

n, * § B ( i cos0 •*• l< ai-n 8 ) - j HM /sin 9'^ " " • ^ / ~ ~^ n ~ > j /

with

cos 8' * cose+ HK sin8

2U « <U "H * - ^. * C| E« -IE, )

= - [ ( i cos 0 t k sin 6 ) ( E* •*• Z» ws 0 Eg

0'

Similarly,

2U * C^ia " <21 *H>) a ( i.c°s8 •«• ji si.n8)Ccos0' Hg - Hg H^

- j C H^ -t Z¥ cos 5 Hq /sin 0').
** n

Note that *

* C i, cos 6 •*• k, sin 8 ) = - j

2J. , x j =• ( ̂  cos 9 •*• k sin 8 ) ,

Substituting (l~3) and (1-4) into 0-1) we get the backscattered field as

E^ •«">jHgcc6fl'H(E3Cos6-'»|H»)Hs/si.n6'3

C- j Jk, -£ • } d^ d

where ^

k, = k -M.,
A^VL *-A ' •
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By using (l~2) it is possible to find the local incident fields. Thus, for a

horizontally polarized incident field of the form j exp(-jki ' r), there correspond two
A*\ rtil. *"••

local fields, i .e .

j[ e x p C - j J<, •£ ) ~ £ exp i- 3 J<, •£ ) - ( '

Similarly, a vertically polarized incident field of the form (i cosG + k sinG) exp

(-j k, • r) may be decomposed into two local fields, i.e.
^**l *A^

( ^ cos 0 + Ji sin 0 ) exp ( - j jij • £ )

~ (« cos 6' + i sLn6') exp (- i j<, •£ )
. 0-7)

+ 5 ( 2 stn 9 ' ) e*P ( - j Ki • JC ) .
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APPENDIX II

FIELDS ON SURFACE Z(x,y)

A. Horizontally Polarized Case

From the small perturbation theory, the total scattered E-field up to the

first order in space may be written

E* <•*, 5 , l ) = // Tj. uv Q' E * du. dv

= p (H-la)
- c -x i

EJJ C*, y, 2 ) = [expC j k 2 cos9') + Rj. exp ( - j k z cos fl )J

•exp ( - jk * sLne^-yj Tx (Li2-^ cb) Q Ex du dv

- c rr (H-lb)= E^o + E y ,

where

E* = exp (-j u* - j v y - j kcos6 z )

Q' = j ( k'2- k2) S c u -k s l7 i8 ' , v) C 2 T r D)"

D = U2C -f k '2b

Ta = ' -«• RA .

To obtain the zero order E-field on surface Z(x,y) we may apply the tangent

plane approximation. Thus, in local coordinates its value at any point on surface is

E y 0 C 0 ,0 ,0 ) = I + RA

To obtain the correct phase relationship between points in(x,y,z) coordinates, the

total zero order E-field at a point (x,y) on surface is expressed as
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The form of the first order field is not similar to the zero order in that it does

not contain the incident field. Thus, taking E , as an example, we find the value of

the field on surface in local coordinates to be

E^r (0,0,0 ) = JT Tj_ u. v Q dm. dv

Following Bass and Bacharov, the total first order field on surface in (x,y,z) coordinates

is

r r , .<«» - jvy - 1 k 2 cos 9
E*! < * , y ,O= JJ T.L uvQ e dudv . (H-3)

Thus, the complete set of fields on surface in (x,y,z) coordinates is

E-x C*, y, 2) =J| Tx uvQ 'EX du dv fll-4a)

^x < * . , a / 2 )=

+ J/Tj. [a ? (b-c) /k 4 kc] Q'EX du dv

ij Hy c - x , a , & ) =//Tj.f u-v < b - c > a'/u J Q ' E X d u d v

where

EX = exp ( - ju* - j v 3 - j k* coS9 ) . (M_5)

B. Vertically Polarized Case

For a vertically polarized incident plane wave of the form

£ = c i.cos0 -t k.sCYi0 ) e x p [ - 3 k C ^ f S i n f l - z c o s f l ) (||_6)

the local fields on Z(x,y) up to the first order are

E % = cos 9' ( I - R,, ) exp ( - j i' ' L ) (H-7a)

T" Q' ^ ku slTl0'~ ( yZ!'f tc) k COS ^ k ' J EX dixdv
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Q

where du, dv

= exp <- j
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APPENDIX III

INTEGRANDS FOR THE POLARIZED FIELDS

In order to make use of the formulas for computing the scattering coefficients

shown in the next appendix, it is necessary to get the integrands of the field

expressions in the right format.

The general field expression is of the form

E = K JJ(INT) exp ( - j k,-£ ) d* dy (m-i)

where INT for the two polarizations are given below.

A. Integrand for E, • , (INT). •

(INT)KK= COSfl'Eij - ^H*

= cos9'{ [ l+RA(e1)Jexp(- jJ i , - j : )- / jTA(6'}(u^bc3Q'EX dudvj

-cosf l ' f l -Ra(e')JexpC-jJi.-j:)-J/T,(8')[^^-^A + l<t]Q'EXduclv

- 2 R t (9) + R i Z ccos8 + Z»sLnG) exp (- j £' •£ )

• Q 5 (9 ' ) E X da dv

« 2 {R A ( 0 ) cos8 t [R 1 ( 0 ) sLn0+ Rl'cosG] Zx j

C - j £ ' • £ ) - / / ( T ^ C O ) * Rl Zx]

h^ DEKK Z,] (SC0 ) + S'H, )EX dadv

45



where

S ( 0 ' ) ~ 5 (9 ) f^ 'z* , TiO') * T,t<:0) f

EX = ex p ( - j u. * - j v y f j k z cos 0 )

S' = -§^§ = C a-S/3Cu- ksCne) ] kcosQ

D|Kk = [uz(b- c)/k + kc t C u.2 -i- be ) cos 9 ) Q

D£KK = .<"*•«. be) Q sLn.0 , 0 '= Q5(8'3 = QS(u- ksine; v)

Q = j ( k' *- U? ) ( s IT C k'c t k'*b ) ] "' .

Linear approximations have been used to rewrite results in terms of the incident angle

rather than the local angle.

B. Integrand for Evv

(INT)yv = E-5 I"! Hjf COS 6'

bu-sCne- (v%bc) Ucos «#'/U'] EX Jix dv

cos0 ' { -C 1+ R « C 0 ' ) ) e x p ( - j h-jr )

v2c.- vsb - ck2} cos <^/k' J

• EX dudv j

= -2 [ R / 7 C 9 ) cos 6 + [ R.' cos 9 + R«(e js in6 j z* J

> e x P c' J Ji''-j: ) + T«(0') QS(fl ')

be) k) cos ^/k' j E X d i x d v

'0/ 5 Cfl ') Si.n0 kasi-nS + C v?c-

(5 (0 ) tS'z,] EX du-dv
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APPENDIX IV x

EXPRESSIONS FOR THE SCATTERING COEFFICIENTS

A. Consider a Field Expression of the form

A -J'v**+ j *tl
E,=K0 I / CApp + BppZ, )e d-x du

-L ' (IV- 1)
the product of E, and its conjugate is

u •#
E, .£,* = ) K.f ////( |App|2* App BPp Zv-i- I Bpp(2 E, Z*' > APP BPPZ*

-L

exp C ~J v, c*-**> + J v z ^ z " 2/)]d^ diJ dl('da'. (IV-2)

Taking ensemble average of the product yields

pp** A^P 6PP)

' d '

(IV-3)

where ot = x~x'; /3 = y-y1; A and B are not functions of «, ^3 ; K = v2<r^ CTf=<HZ>.

The scattering coefficient CT corresponding to the field given in (IV-1) is

ipp = R2< E, •£,*>

exp [ - j vxoi - K ( i- f >]
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If the ci . ft -integrals in CT converge fast enough so that within the region of
' IPP

convergence 2L>><*, /3 , and if edge effects are negligible, then

cr = ——
"PP *t

• exp [ - j v - x * - K ( i - f ) ] d a d j 3

(IV-5)

For isotropically rough surface, (IV-5) reduces to

• rr vz rr. -« « - — - - - (|y_6)

where Jo( ) is the zero order Bessel function.

The identities useful for getting (IV-5) from (IV-4) are

21

2L

J- exp[ - jv ,«-K<«
-2L

" e x p ( - j v^a- K ( l - f )J
L

B. Consider a field expression of the form

where D, and D_ are both functions of u and v; S1 is the derivative of S with respect

to Zx;

= exp - "t
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It is possible to write Eo '
n tnc same (r°rm as (IV-1) and identify A and B v/ith

2 ^ PP PP
Zx -term being ignored. EXP may be taken to play exactly the same role as exp

[~jv x 4 jv z] without affecting the final result. Note that appropriate subscripts
X 2

should be attached to D,, D«, T, and R, depending upon the polarization states.

However, these subscripts have been left out here for simplicity of writing. The

basic form of the scattering coefficient for this field is ajjain given by (IV-4). The

corresponding coefficient terms can be shown to be (see section C)

|TD, |2W dadv (IV-8a)

- f^Re[TD,(TD2 ^R'D,^ J j d a d v

where < . . .> is the symbol for ensemble average performed on s(x,y); Re means

"the real part of; * is the complex conjugate sign;

W = W(q,v)

q = u-k sin © , V = 2k cos © .

Although (IV- 1) may be used for (IV-7) , it is more convenient to write the

scattering coefficient for the field given by (IV~7) directly in terms of D, and D«

instead of A and B . Thus,
PP PP

2RP

T
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If the a., /3 -integrals converge fast enough so that within the region of convergence

2L»a, /3 and if edge effects ere negligible, then for isotropically rough surface, similar

to a , , (IV-9) reduces to
"PR

a

Re (QTD,pp [ TD l p p t G ( T D z p p - t RD.pp )

- K C i - f ) 7 ^ d 5
J (IV-10)

where G = (u + k sin ©)/ v .
z

C. Consider a field expression of the form

-HOO •*• DO.O j £„ EXP dudv cJirdy , (IV-11)
-L. -oo

then

U ^ -co

•*• I Bol S'S,'*] Z, Zy | EXP| 2 du. dvd u dv ' [dx dy dVdjj' ,.., ,?v

where Ao, Bo are both functions of u, v; S - S(u,v) and S, = S,(u',v'); EXP =

exp hj(u + k sin 0) x-jvy + jk cos OZ). The following identities of ensemble

average over s(x,y) are needed for getting (IV-13) below:

< S S * > = 2 7 r O ' , i ! W ( u . - U sL-n. 0 , v ) S (a -a . ' ) & < v - v ' )

9 -y SCtL-u. ' } i C v-
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< S -

™en *'•«> respecf

T
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If, in addition, we assume that autocorrelation of the large undulalions to be

Gaussian and integrate out the Bcssel function of (IV-6) and (IV-10) , the following

expressions result:

0-|pp= - (4 m.

OC)

<repp = -n k"V fl f jCpp - t -QD P P ) 2 W + R e [ ( C P p ^ £ DP'P )
-

(lV-16)

where W(K)= ( j?2/2)exp [-(K^/2)2] is the roughness spectrum of s(x,y) related

to its. correlation coefficient by the. Bessel transform; J> is the correlation length of the

surface, s(x,y); f (o) is the second derivative of y evaluated at zero;

W = W (/ is+ v* )
I — '

Cpp = T D l p p

^PP = TD2pp f R'D,PP .

To obtain (IV-15) and (IV-16), we have used the approximation and the

identity as shown below

0) exp C- K C i - f ) ] ~ e x p [ - K | ?"(o) | ^2/2 ]

/-<*>
(2) J0 J. < v, ^ ) exp (- a
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Comparing 0V-J), (JV-7) w.'lh (|||-2) and (IH-5) and using (iV-4) and (iV~9)
we get

with

AkK ** £ Rj. (0) cos 6

=.2 [R t (6) sin 0-c R cos @ )

= Q [ a 8 C f c - C ) / f c -f |<c + (a%bc) cos 9

= Q «f u% be) si-rv e .

with

Avv = - a Ry / (0> cos6

BW s ~ * [R0 C0) sln.8 + R* cose]

D ivv » Q J[ u. c b t k cos fl ) ] sin 9 * (cos 8 C

- v2t -c ks) - ( v%bc) k

D2vv = Q f scn6 ( kusi.rx0 t C v z c - vei>- c^ ) cos

+ k st-n.8 cos 0 [cos 8 ( V2c- v aL- c k 2 ) -

/ , 3 ,
/C k cos <p ) - u cos 5 ( {> + f< cos 9 )
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APPENDIX V

IDENTIFICATION OF THE DIFFERENT FORMS OF THE

SCATTERING COEFFICIENT FORMULA

To compare <7 in (14) with the corresponding Valenzuela's and Wright's

scattering coefficients, we rewrite (14) in the following form
.00 rco

where

Thus

where

( J f

-coJ-a
W ( u - k s i n e , v )

T,, = -77

(u + ksin8 ) £ (v) du dv

a kcos 9

-k (v 2 - tbc ) )

the property of the Dirac delta function it follows that

u = -ksinQ

v = o

-k s l7V0 ,0 )

[cos 9 ( - k Vcos 4> ) - ke k'cos 6 cos<£ } cos

^_
'cos6-rkcos4>

^ k' 2( k'cos 9
Substituting (V-3) into (V-2) yields

= 8
k' ( k'cosfl t- kcos<{> )

W
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given by Valonzuela and in his notation is ( ^yy) i = 8 IT T\O 0056 < PSw>

4 <,
= 4 ir /3 cos 0

' (V-5)

.W (^

The connections between his notations and the one used in this paper are

{3 * k

e . k'>V

W nr W

(V-6a)

(V-6b)

(V-6c)

Substituting (V-6) into (V-5) yields

C 0" 1 I ~\ vv >> val.
tr k C05 £

-!<_
kl

,' ( 2 k sun 0 , 0 )

„ i -4 ^-= 8 k cr, cos 9
k '^C k'cosS + k (V-7)

W ( a k SLTI 0 , o )
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which is identical to (V-4).

Using the notations in this paper, we can rewrite Wright's scattering

coefficient as follows

where

Thus,

k'cos 9 -_

" k'cos 0 4

Substituting R,,and T,, into a yields

cos
2k'2(k'cos0-t k

k''cos29 -
k'cos 6 -(• k cos<£ )a

cos

k'2(k'cos9-t

(°~w)w= 8 k^ofcos^e
k'z(k'cos6t

which is again identical to (V-4) .

In conclusion, when Z(x,y) - 0, we get

W e a k 5 1 7 x 6 , 0 )

2vv

= 8 -r T,, cn0y o) .

(V- 1 1 )
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APPENDIX VI

COLLECTION OF IDENTITIES

All the identities used in this report ore rewritten in this appendix for

ease of reference. The order of appearance of these identities does not correspond

to that in the report. All the integral identities are given first and then the iden-

tities for ensemble averages.

I fL fL

1- S ( ", v) - -^ J^ J s C X , y ) exp(- j*"-jftv) d* d^

2.

3. If

then

and Jo T^" J. ^ ̂  ^ ) e*p C b f , ) g d ^ c: - /3 W C (3 ) + edge effect term

4
- expc -ax ) J«(b?f)

e « > _ | ^ R e a > | I m b | ]

where F (TX + I ) = n PCTi) if 71 > o

r c^> =

5. 1"°° -x0"1"' exp (-a*2) Ja ( b?c )
J

Re , a> o , Re ex> -
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16.

17.

J-TT
6. J0

 exP ( j bcos x) cos-n* d* = j ^^ r rJ^Cb)

7- [''sine exp(± j *sm9) de = ± j e^ 3'^
'o

, 4""* 2TT W . „

8> j e x p ( j*sLnfl + j m 9 ) d 8 = < - « ) a-irJ^C-x

xp(± jocose ± j ^s ine)d8 = 2~ Jo C y**-1

10. | exp( jcot ) doj = 2 or S e t )

; V ' 3 Sca,v)*

11. < :

12. <

13. < :

M_ < Z x e x p [ J V . C Z - Z ' ) ] > = < Zl- expC j V £ C Z - Z ' ) ] >

where «. = * - • * '

15. <Z^;--p[VH(
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APPENDIX VII

COX AND MUNK (1954) SURFACE MEAN SQUARE SLOPES

1 . For clean sea

nr2 -t CT2 = 5.12 * 10 5*V -+ 0.003 ± 0.004
CroSS uf

2. For slick sea

/T2 -t- (T2 = 1.56 * 10~5*V -»• 0.008 1 0.004-v ' up

In both (1) and (2), V is in meter/second.

For isotropically rough sea surface, we have

where m and m are the rms slopes of the clean and the slick sea, respectively.

Values of m and m ore given in Table I for different wind speeds.

60



TABLE I COX N MUNJK RMS SURFACE SL'O'ES

N SL

0,500 0.2793E-01
0 ,46B9E-(ii

2,000 0.6/97E-01
0,5967E-ol

4,000 0.9B69C-01
T.7155E-Q1

5.000 0,1109=00
._ . . _ 0.76B1E-01

6,000 . ., . 0.121<?E 00 ...

8.000 0 .1414= oo
.._. ._ ..0.9077E-.Q.1 .

10.000 0.1584=- 00
~0.9399E-ni

12.010 0.1738E 00
. T.1Q66E .00.. .

14.000 0 . 1 8 '3 0 E 0 0
0.1137E (10

15.000 0.1947=00
n . 1 1 7 o E on

16. ODD n.2nil= 00
1.1203S 00

16.0TO 0.2135= 00
0.1266E OC

20.0DO 0.2252E 00
1.1327E 00

23. ODD 0.24 16= 00
._ _.O.l4i2E 00

25,000 0.2520= 00
0.1466E 00

... li...F?R EACH'^rip SP, THE UPPER L
N HE LTvJ-R L I N E IS FOU SLI::K

2, M 1 , M 2 , N MS A K i ; TtiF L.O'*l£R|MEDl

CLEAN Sl!A
1CK St;A

.... M2

0.5273E-01
0.6626E-ni 0,

0,9136E-ni
0.7457E-01 0,

0.10P4E TO
0.3438E-01 0.

0 , 1196t 10
o . aassE-oi ... _ o .

0.1298E .JO .
0.9317E-01 0,

0.1433E 10
0.1012EOQ 0.

0.10S6E 00 0.

0.1795E 10
..0.1156E..OO . . .._ . ..3.

0 . 1 2 2 1 E 0 0 0 .

0.1997E 10
0.1253E CO 0,

0.2061E 10
0 . 12B4E 00 0,

(1 , 21B1E 10
1 . 1 3 4 3 E O Q 0,

0 . 2296E 10
H . 1 4 0 U E O O 0.

0.2457H 1C
_ 0.14R.1E .00 .. . 0,

0,2559^ ic
0.1533E 00 ' 0,

1NE IS THE RMS Sl'CPES ro
SEA.

Jt-liN UpPE" VA.LJE5 DF 'MS

M3

0.5914F;-
7 9 9 4 :- - 0 1

0 . 9 2 T 4 E -
3695E-01

0 .1172E
9550E-G1

0 . 1 2 7 7 F
9950E-01 .

0.1373E
1 0 3 3 E n n

0 .1549?
11Q6E 00

. 0.17J6E
1175E 00

0 . 1 650?
12395 00 .

n ,19B,3E
1:5,11= on

n . 2 0 4 7 E
1.130= on

1359 E 00

n .2227G
1 4 l 6 E 00

0.2339E
1.470 = ' no

n .2496E
1547= 00

n.?595E
1397E 00

' CLEAN SE

01

ni

in

00

00

00

n • "

T; 0

"0

00

00

10

A,
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