" It S ,3 b
o -1

R

Final Report
Covering the Period 7 October 1969 to 7 October 1970

g

RESEARCH AND APPLICATIONS--
ARTIFICIAL INTELLIGENCE

- By: BERTRAM RAPHAEL

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION -
600 INDEPENDENCE AVENUE, S.w. - :
WASHINGTON, D.C. 20546

Attention: MR. SAMUEL A. ROSENFELD/RET

CONTRACT NAS12-2221

Sponsored by : ; .

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C. 20301
ARPA ORDER 1058 AMENDMENT 1

P LN SN

LAEC STANFORD RESEARCH INSTITUTE

Menlo Park, California 94025 - U.S.A.

a1 /. /

N1 7 G’

(NASA-CR-131785) RESEARCH R
- AND . T a
ARPLIATIONS: - ARTIFICAL INTELLIGENCE - N13-72140 .

Final Report, 7 Oct 1969 7 .

: - * . - O t- M
(Stanford Research Inst,) 175 (; 1970 Uncl
(51 -© ‘, : nclas
00/99 17653

AT

/71 3\

STANFORD RESEARCH INSTITUTE

. Menlo Park, California 94025 - U.S.A.
SN \17//Z

~aNys

Final Report November 1970
Covering the Period 7 October 1969 to 7 October 1970

RESEARCH AND APPLICATIONS--
ARTIFICIAL INTELLIGENCE

By: BERTRAM RAPHAEL

= Preparéd for:

3 ' NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
600 INDEPENDENCE AVENUE, S.W.
WASHINGTON, D.C. 20546

Attention: MR. SAMUEL A. ROSENFELD/RET
CONTRACT NAS12-2221
SRI Project 8259

Approved by:

DAVID R. BROWN, Director
Information Science Laboratory

BONNAR COX, Executive Director
Information Science and Engineering Division

Sponsored by

ADVANCED RESEARCH PROJECTS AGENCY
WASHINGTON, D.C. 20301
ARPA ORDER 1058 AMENDMENT 1

. 65

Copy No.o.07....

ABSTRACT

This is the final report for the most recent year of a continuing
program of research in the field of artificial intelligence. fhis work
follows previous projects that resulted in the design, construction,
and demonstration of a 'first generation' robot system, The work re-
ported here consists of new research aimed ét the development of a more
sophisticated "second generation" robot. Although the robot vehicle
ifself will be essentially unchanged, it will be controlled by a com-
pletely new computer hardware and software system. In particular, this
report contains detailed descriptions of the computer configuration and
the bottom-level software design, two new bases for problem-solving
systems (called STRIPS and QA4), and new directions in visual scene-

analysis techniques.

iii

CONTENTS

ABSTRACT
LIST OF ILLUSTRATIONS .
LIST OF TABLES+ « v « v v v o v v v v v v o
I INTRODUCTION
II BACKGROUND
III REPORT OUTLINE

iaY SUMMARY OF RESULTS

A, Computer System

B Bottom-Level Software
C.. Problem-Solving Research,
D

Vision,

\Y PUBLICATIONS AND PRESENTATIONS
A, Publications,

B, Presentations
APPENDIX A--COMPUTER CONFIGURATION
APPENDIX B--BOTTOM-LEVEL PDP-10 SOFTWARE FOR THE SRI ROBOT
APPENDIX C--THE FRAME PROBLEM IN PROBLEM-SOLVING SYSTEMS

APPENDIX D--STRIPS: A NEW APPROACH TO THE APPLICATION OF
THEOREM PROVING TO PROBLEM SOLVING

APPENDIX E--QA4 WORKING PAPER. .
APPENDIX F--SOME CURRENT TECHNIQUES FOR SCENE ANALYSIS

DD Form 1473

iii

vii

ix

10

13

19

45

67

107

141

ILLUSTRATIONS

APPENDIX A
Figure 1 PDP-10 Configuration, 17
APPENDIX D
Figure 1 Flowchart For the’Strips Executive. 88

Figure 2 Configuration of Objects and Robot For Example

Problem 000 . 920
Figure 3 Search Tree For Example Problem 97
" APPENDIX E
Figure 1 Iterative Fibonacci Program « « . . 131
APPENDIX F
Figure 1 Three Corridor Scenes + v o v « o o « . 148
Figure 2 Results of Merging Heuristics « « . . . 149
Figure 3 A Simple Scene., ., Coe e 157
Figure 4 A More Complicated Scene. v v v o o o « o 161
Figure 5 The Analysis'Tfee e e . . 163
Figure 6 Basic Flowchart For Landmark Program, 167
Figure 7 Landmarks . ., « . . o v ot v e e e e e e 168

vii

TABLES

Table I Major System Changes., « v v v « v v « . 3
Appendix F

Table I Correspondence Between Boundary Setment Configura-

tions and Characters Used in Printout , 150
Table II Regions That Are Legal Neighbors. 153
Table III Hypothetical Region Scores. 162

ix

I INTRODUCTION -

This is the final report for the most recent year of a program
of research in the field of artificial intelligence. The present pro-
ject began in October 1969 as a direct continuation of work performed
under a previous contract.* It is expected that the work will be con-
tinued under new support. Therefore this is a report on the present
status of a continuing research program.

An Interim Scientific Reportf was -prepared in April 1970 which:
describes activities during the first six months of this project. "This
present report therefore emphasizes more recent work and is designed

to augment, rather than replace, the Interim Report.

11 BACKGROUND

In our previous projects, research was focused on the applica-
tion of techniques of artificial intelligence to the control of a
mobile automaton in a realistic laboratory environment. This work
culminated .late in 1969 in some demonstrations of a complete automaton
system, which is documented in numerous. papers -and reports and in a
25-minute motion picture entitled "Shakey: A First Generation Robot."
As a result of that work we discovered a variety of limitations, both
in the capabilifies of-our'computer facility and, more important, in
the techniques we were using for various conceptual portions of the

system design.

Contract F30602-69-C-0056 with the Advanced Research Projects Agency
and the Rome Air Development Center.

1-

L. J. Chaitin et al., "Research and Applications--Artificial Intelli-
gence, Interim Scientific Report, Contract NAS 12-2221, Stanford
Research Institute, Menlo Park, California (April 1970).

During the past year we have been converting our hardware to a

new, more powerful computer configuration. As a result, the physical

‘robot vehicle has not been available for experimentation. This change-

over periéd provided us -with an excellent opportunity to make basic
studies in several areas, and thereby redesign the major software éomf
ponenfs of the systém. As a result of this redesign, we have now
establishéd the framework for our second-generation robot system, which
will be implemented during the coming year. Table I summarizés the
major departures between our first and second robot generations. The
remainder of this report describes the technical considerations that

resulted in various aspects of the second-generation framework.

III-- REPORT OUTLINE - -+ = - - = === n == — = = —immmme o o o

Instead of preparing the customary single, large, integrated
report, we have decided to make this final report consist of a b;ief'
document that summarizes our accémplishments, supported by several
appendices, including some Technical Notes, that contain the technical
details of the work. As discussed in Section II, the bulk of our work

e
this year has consisted of several separate basic studies. The appended
Technical Notes, also available separately, provide documentation for
the present status of each of these studies. In the yeaf ahead we
plan to integrate some of these reéults.

Section IV contains summaries of our progress during the pasf
year- and provides a guide to the contents-of the appendices. Finally,
Section V contains descriptions of publications ahd ﬁresehtations by
our staff members auring this past year with the support of this proF

Jject.

N

Table I

MAJOR SYSTEM CHANGES

Shbject

Computer Facility

Problem Solving

Vision

Implementation

Fifst Genefation

SDS-940

Core memory 64K,
24-bit words, 0.5M
word drum

QA3
Theorem—-proving

approach, using state..

variables

Analysis based on .
local detection of

.line segments,

followed by global
considerations

Dual grid and list
models; parallel use
of FORTRAN and LISP
systems

Second Generation

PDP-10

Core memory 192K,
36-bit words, 1.5M
word drum,.20M word .
disc, PDP-15 periph-
eral computer

STRIPS _

A problem-solving
executive that uses
a theorem prover as
a subroutine

Analysis based on
regions and early
use of global infor-
mation

Single "tuple" model;
LISP operating system
in control; new QA4
language under devel-
opment

Iv SUMMARY OF RESULTS

A, Computer System

A new computer facilify, purchased by the government (partly

.under Contract F30602-69-C-0056 wifh Rome Air Development Center). for
the use of this project and its possible éuccessors, was procured and
installed. This instaliation is ﬁow éssentially complete. We expecf

- to have the completé system operational within a few months. Mean-
while, the ?obot and camera hardware have been attached to the new
system and are almost completely operational. Appendix A describes

the new configuration.

B. Bottom-Level Software

Transferring the SRI robot from the SDS-94O to the fDP-lO/‘
be-lé sys£eﬁ has éi;en ;s fhe opportunity t9 replace the father com-
plicated fObOt software interface on the 940 witﬁ one more tailored
to the user's view of what the robot does. By éarefully defining the
actiqns that thé computer can ask the robot to perform, their possible
~consequences, and so on, we hope to achieve logical clarity and, at the
same tiﬁg, enhanced usefulness. Appendix B describes the "front-side"
interface to the bottom-level robot software (i.e., the interface
through which the routines are called as operators or subroutines by
other software in the robot program hierarchy). It also describes,
when appropriate, the "back-side' interface between the bottom-level
software and the PDP-lS/gobot complex, and the internal structure of

r

the bottom-level software itself.

C. Problem-Solving Research

Problem s6lving was done in the"firsf-geheration robot system
by QA3, a theorem-proving and question‘answering system based upon first-
order predicate calculus, Although mathematically elegant, the approach
used to generate plans of action became extremely ineffiéient in all but
the most trivial situations. The major‘diffiéulfy'was due to the ''frame
problem," the problem of creating and maintaining an appropriate infor—
mational context or 'frame of reference, which is discussed in detail
in Appendix C. 'Additional:difficulties arise because QA3 fails to
distinguish between two phases of problemQéolding activity: Elanﬁing
courses of action, and executing fhe resulting plans. (The particular
importance of the execution phase of robot problem-solving activitb was
discussed by J. H. Munson in Appendix F to the Interim Repdrt.)

A new problem-solving system called STRIPS has now-beeﬁ de-
fined and is described. in Appendix D. It consists of an executive that
mikes use of a theorem-proving program, as a subroutine, to make'Qari-
ous tests such as whether a proposed action is applicable to a given
situation. 'STRiPS contains, however, considerably more flexibility
than would a thebrém prover alone.

The QA3.5 System, an upgraded version of QA3, can be modified
to interface with STRIPS.- (QA3 is a question-answering system, deécribed
in the cited final report of the ARPA—RADC'project; that contains a
theorem-proving program for first-order'predicate calddlus.) Inbéddition,
this project has been partially supporting the developméht of é.newA

system called QA4. Originally conceived as a next—genérafion'theorém

prover based upon higher-order logic, QA4 has evolved into the speci-
. fication of a programming language paréiculariy well-suited for use in
the design of new theorem-proving and problem-solving systems, Future
Qersions of STRIPS and QA3, as well as separately supported projects
for automatic program construction or verification, will probably be
programmed in the QA4 language. The status of the QA4 development is
described in Appendix E.
D. Vision

The vision part of thé first-generation system was based

on the detection of line segments in the picture. Scene analysis was
accomplished by a decision—-tree program whose structure reflects thé
known constraints and relations in the robot's visual world. This
_‘progfam addéd informatioh‘to tﬁe robot'é modél but &id not use any
information previously stored in that model.

General scene analysis in the second—-generation system will
be bgsed on the detection of regions'in the picture. A quite complete
library of routines fér:region analysis has been coded. - Current plans
for scene analysis envision feplacing the decision tree by a search
procédure that will allow an explicit, forﬁal, and easily modifiable
description of the knowniconstraints and relations. A detailed descrip-
~tion of this approach is given in Appendix F.

As the robot's model of the world becomes more complete,

. the role of vision changes from one af exploring an unknown world to
one of providing vigualﬂfe;dback.' A typical task here is that of
sighting landmarks and using them to update the robot's knowledge of

its own location and orientation. A program that accomplishes this is

AN

described in Appendix F. The use of specific information in the model
to aid scene analysis is expected to play a prominent role in the

second-generation system.

\ PUBLICATIONS AND PRESENTATIONS

A, Publications

Following is a list of technical notes and papers generated
by the staff of the Artificial Intelligence Group of Stanford Research
Institute witﬁ the support of this project:

(1) J. Munson, ''A LISP-FORTRAN-MACRO Interface for the

PDP-10 Cpmputer," Technical Note.16 (November 1969) .

(2) C. Brice, C. Fennema, and S. Weyl, '"AROS--Algorithms

for Partitioning a Picture, Technical Note 18
(January 1970).
(3 J. Munson, 'The SRI Intelligent Automaton Program,"

Technical Note 19 (January 1970) ; published in Proc.

First Natl. Symp. Industrial Robots, pp. 113-117
(1970) .
4) R. Duda and P, Hart, "Experiments in Scene Analysis,

Technical Note 20 (January 1970); published in Proc.

First Natl. Symp. Industrial Robots, pp. 119-130 (1970).
(53) L. Coles, "Bibiiography qf Litgratﬁre in the Field of
Robots, Technical Note 23 (March 1970).
(6) R; Yates and B. Raphael, "Resolption Graphs, ' Technical

Note 24 (March 1970) ; to be published in Artificial

Intelligence, December 1970,

¢p)

(8)

(9)

(10)

a1n

(12)

a3

(14)

(15)

(16)

é. Ellis and L. Chaitin, "PDP-15 Simulator, Technical
Note 25 (April 1970).

R. Waldinger, 'Robot and State Variable," Technical
Note 26 (April 1970). .

R. Kling, "Some Remarks on Resolutidn Strategies,"
Technical Note 28 (April 1970).

J. Munson, ''A Cost-Effectiveness Basis for Robot
Problem Solving and Execution," Technical Note 29‘
(January 1970) .

B. Raphael, 'Robot Problem Solvihg without State Vari-
ables," Technical Note 30 (May 1970).

J. Munson, ''The SRI Robot as a Candidate Domain for
Vocal Conversation with a Computer,’ Technical Note

31 (May 1970).

D. Luckham (Stanford University) and N. Nilsson (SRI),
"Extracting Infbrmation from Resoiution Proof Trees,
Technical the 32 (Juné 1970) ; to be published in

Artificial Intelligence.

B. Raphael, ''The Frame Problem in Problem-Solving
Systems, ' Technical Note 33 (June 1970); published in

Proc;AAdv. Study Institute.

Z. Manna (Stanford University) and R. Waldinger (SRI),

"Towards Automatic Program Synthésis," Technical Note

34 (July 1970).

J . Munson, Bottom-Level PDP-lO Software for the SRI

Robot, ' Technical Note 35 (August 1970).

an R. Duda and P, Hart, 'A Generaiized Hough Transforma-
tion for Detecting Lines in Pictures, Technical Note
36 (August 1970); to be submitted for publication in

the I1EEE Trans. Computers.

(18) R. Kling, "SRiF—TRACE Package for PDP-10 LISP," Technical
Note 37 (September 1970) .

(19) C. Rosen, 'An Experimental Mobile Automaton,’ Technical
Note 39-(Ju1y 1970); to be published in Proc. 18th

' Conf.‘Remote Systems Technology.

(20) L. Coles, "An Experiment in Robof Tool Using, '
Technical Note 41 (Oétober 1970) ; paper presented at
IEEE Systems Science and Cybernetics Conference
(abstract published in Proceedings) .

(21) J. Rulifson, J. Derksen, and R. Waldinger, ''QA4 Work-
ing Paper, Technical Note 42 (October 1970).

(22) N. Nilsson and R. Fikes, "STRIPS: A New Approach to
the Application of Theorem Proving to Problem Solving, '
Technical Note 43 (October 1970).

(23)° R. Klihg, 'Design Implications of Theorem-Proving
Strategies) ' Technical Note 44 (Octobgr 1970) .,

(24) C. Brice and J. ﬁerkseh, "The QAS Implemegtation of
E-Resolution," Technicai Note 45 (October 1970) .

(25) R. tha, "Some Current Techniques for Scene Analysis,"

Technical Note 46 (October 1970).

B. Presentations

Following is a list of presentations made by staff members

of the Artificial Intelligence Group during the period of this con-

tract:

@))

(2)

(3)

_ (4)

(5)

(6)

&)

L. Coles, "An Overview of the SRI Robot Project,'
Workshop and Symposium on Robotics, North American
Rockwell Corporation, Thousand Oaks, California,
October 9, 1969; télk and movie.

R. Yates, "Techniques for Robot Problem Solving,"‘
Workshop and Symposium on Robotics, North American
Rockwell Corporation, Thousénd Oaké, California,
October 9, 1969; talk.

L. Coles, 'The SRI Robot bejeét:‘ AnNOVérviéﬁ,"r‘
ASME meeting, November 25, 1969; talk and movie.

B. Raphael, "The Robot Project at Stanford Research
Institute,” University of Illinois, Department of
Computer Science, Urbana,_Illinois. January 5, 1970;
talk and movie,

B. Raphael, "RecentAResults in Automatic Theorem
Proving, University of Illinois, Department of
Computér Science, Urbana, Illinois, January 6, 1970.

R. Duda, "Vision Programs for a Robot, IEEE Systems

Science and Cybernetics Group meeting, January 22,
1970; talk and vision movie. '

N. Nilsson, "Robot Research at the Stanford Research

Institute, Oregon State University, Department of

10

1€:))

(9)

Qo

1)

12)

(13)

(14)

Electrical and Electronics'Engineering, Corvallis,
Oregon, March 20, 1970; talk and movie.

B. Raphael, "The Robot Project at Stanford Research
Institute," University of Alberta, Department of
Computing Science, Edmonton, Cahada, April 1, 1970;
talk and movie.

B. Raphael, 'The Robot Project at Stanford Research
Institute,"'IPSOC meeting, Vancouver, Canada, April

2, 1970; talk and movie.

B. Raphael, "The Robot Project at Stanford Research

£Institute," University of Saskatchewan, Department

of Computational Science,'Saskatoon, Canada, April

2, 1970; talk and movie.

B. Raphael, "The Robot Project at Stanford Research
Institute,’ University of British Columbia, Department
of Computer Science, Vancouver, Canada, April 3, 1970;
talk and movie.

C. Rosen, Mullard Research Laboratories, Redhill,
England, June 24, 1970; movie.

C. Rosep, University of Edinburgh, Department of
Machine Intelligence and Perception, Edinburgh,
Scotland, June 26,.1970; movie.,

B. Raphael, "Robot Research,' Seminar on Artificial
Iﬁtelligence, Dubrovnik, Yugoslavia, June 29-July 11,

1970; talk and movie.

11

(15)

(16)

an

(18)

L. Coles, "Natural-Language Processing," and
"Intelligent Robots," Seminar on Artificial Intelli-
gence, Dubrovnik, Yugoslavia, June 29-July 11, 1970;
talk and movie.

B. Raphael, "The Frame Problem in Problem-Solving
Systems, Advanced Study Institute on Artificial
Intelligence and Heuristic Programming, Lake Como,
Italy, August 2-14, 1970; talk and movie.

B. Raphael, CERN, Geneva, Switzerland, August 31, 1970;
talk and movie.

R.'Duda, National Conferencé, Association for Computing

Machinery, New York, New York, September 1-3, 1970;(

movie.

12

- APPENDIX A

COMPUTER CONFIGURATION

Leonard J,. Chaitin.

13

The Artificial intelligenqe Gréup computer coﬁplex consists of
the following parts: |

o PDP—lO computer and perlpherals

¢ PDP-15 computer and perlpherals (1nclud1ng the robot)

® An interprocessor buffer to connect the two computers.

These are interconnected as shown in Figure 1.

The PDP-10 system has 192K (K =1024) wofds of 36-bit memor&. 32K
is DEC MD10 meﬁory. The rest is Ampex RGlO memory, consisting of one
32K memory with interface and one 128K memory 1nterface';nd four modules
of 32K each. All memory has four ports. These are occupied by: | ‘

® PDP-10 cenfral processor‘

® DF10 data channelA

® Bryant drum controllef

® DA25C inéerface..

The Bryant drum is a high-speed autolift drum which has a 1.5-
million-word capaciéy. It is planned that it Qill bevused for éwapping
and some sysfemlfiles. Thé druﬁ controiler iﬁterfaces_directly into
the memory rather than going through a data channel,

The DF10 dafa chaﬁnel is used to ﬁandlé 1/0 froﬁ two peripherals:
the disk pack. drives and the TV A/D converter. N

The interface betweeﬁ the disk pack driveé and the DF10 data
channél was builtvﬁy Interactive Data Systeﬁs, Inc.

The disk péck dfives are m;nufactured by Eenﬁury Data Systéms
and handle the 20-sﬁrface disk packs. This means that each disk pack
has a 5-million-word capacity. The packs themselves are manufactured

by Caelus Inc. The disk pack system is used as secondary storage.

15

Currently, we are also using one disk pack drive as a éwappiné device
for-the time-sharing system. |

The TV A/D converter is an SRI—desigﬁed and -built device. It
handles data from the robot TV camera af a rate of one word'every 1.5
microsgpopds;. If is éabaﬁle of.procéssiné ;ither 120120 or 240x240
pictures with Sé 1éveis‘of gray ségle.

The DA25C is the PDP-10 siae df the interprocessor buffgr. it
handles dafa at ;né.36—bit word évéry 8 microseconds.v We have pro-
grammed‘itusuchlihat thé PDP-10 ié'alQays in control and-can interrupt
any transmission in order to initiate one of its own.

The DA25D ié the PDP—iS side of thé intefprocessor buffer. Each
PDP~10 word is split into two PDP-15 words (18 bits each)., It also
does the reverse operation. It operates on the PDP-15 I/0 bus as a
single-cycle device; however, its internal logic uses three cycles per
word.

Thé PDP-15 has 12K of coré memory and an I/0 processor. All dévices
are:"daisy chained"von the 1/0 bus. Tﬁese include an Adage display,
paper tape, DﬁC tape, A/D éon&érter, D/A.converter (not yet-deliQered),
ARPA network IMP (not &et'implémented), and the SRI robot. |

The Adage display pfovides a high-speed graphics capability. It
will be refreshed from thé PDP-15‘coref The disélay lists will be pre-
pared in the>fo—i0 an& exeéuted from fﬁe PDP—lé. Capabilities include

incremental mode, print mode, dotted lines, and intensity control,

16

NOILVHNOI4NOD 0l-dad

I 34NOI4

T0ULNOD
J510

|

IINNVHO
0140

B Tere

YWeJ 1PIOM W Z'S (SauQ anG Amuad

s 008

L
X34V

b e e

_ c—u’—

sl g1

0161 g sdmdeQ
“
20120
woi2a sedAaeey
90120 ﬂ
g YSHIE
a1
VoL
TN PTEM
ol
=g O/ s
orwy
Ndd O1-dQd

SQUOM NIE
voian

on

av _ .
030IA nag Y
L LKL
1onu0) wnya .
wnig INVAHE vu3INVD
weArg 201581) n 1080y
-
(o] Q
. 1 3OVIHILNI
E) %a_um> ¥ AHL3W373L
10804 10804
—_————
‘ 4N XHOMLIN]I|,
— .
NS ‘Pesds asovyY 104y —
1090y s04 via av
9 ssne on
S34v1330 z091
e _ 1378wy _ﬁ
u SUMN L4
vds)
S154 mwuhm(o SIVH 51am uOSS3II0M4 ||
on
néd
A
ooy wdRy zthn
pesds-ulni

2%ZvQ a— aszva

b1 4

N8

S1-404

APPENDIX B

BOTTOM~LEVEL PDP-10 SOFTWARE FOR THE SRI ROBOT

19

o~

August 1970

BOTTOM~-LEVEL PDP-10 SOFTWARE FOR THE SRI ROBOT

by

John H. Munson

Artificial Intelligence Group

- Technical Note 35

SRI Project 8259

This research is sponsored by the Advanced Research
Projects Agency and the National Aeronautics and
Space Administration under Contract NAS 12-2221,

21

Transferring the SRI robot from the SDS-940 to the PDP-10/PDP-15
system has given_us the opportunity to replace the rather obscure and
complicated robot software interface on the 940 with one more tailored
to the-gser's view of what the robot does. By carefully defining the
actions the computer can ask the robot to perform, their possible con-
sequences, and so on, we hope to achieve logical clarity and, at the
same time, enhanced usefulness. This note describes the "front-side"
interface to the bottom-level robot software (i.e., the interface
through which the routines are called as operators or subroutines by
other software in the robot program hierarchy). It also describes as
appropriate, the ''back-side" interface between the bottom~level soft-
ware and the PDP;15/robot Complex, and the internal structure of the

bottom~level software itself.

23

THE ROBOT ACTIVITIES
" The robot'presentiy‘has foufvdegrees of mechanical freedom: it
can tilt and pan its "head, " conf;ining the TV camera and rangefinder,
and it can rotate its two drive wheels. If the drive wheels (mounted
on either side of the robot on a common axis) are rotated together in

the same direction, the robot rolls forward or backward. If they are -

rotated in opposite directions, the robot turns about its center point.

Thus, there are currently four robot activities that cause robot motion.

Each has a single argument giving the magnitude of the motion:

Activity Argument
- TILT , Number of degrees upward from present position
PAN Number of degrees right (clockwise) from present
position : ‘ :
"TURN =~ 7 " 'Number 6f degrees right (clockwise) from present =
position
ROLL Number of feet forward.

Negative values of the arguments lead to directions of motion opposite

to those listed above.

(The robot also has the ability to turn only one of its drive
wheels, thus pivoting about the other. Since no actual demand to use
this ability has arisen to date,'the two corresponding activities are
not currently prévided.)

The robot_preséntly has three sensory modes: TV, rangefinder, and
catwhiskers. The first two of these can be activated on command. The
command RANGE causes a readihg of the distance to the pearest-surface,

along a path that is nominally in the center of the field of view of

24

the camera. The commanq SHOOT causes a quantized TV picture to be
read into the PDP-10 memory. An auxiliary TV activity, TVMODE, is
provideé to- enable setting of the picture resolution and (potentially)
other aspects of the TV system, such as beam current and target voltage,
~or color filters in front of the camera. Two other auxiliary TV ac-
tivities, IRIS and FOCUS, operate motors on the robot to control the
iris setting (f-stop) and the distance of best focus of the camera;

The catwhiskers (and the push-bar) are affected only when the robot
moves, through TURN or ROLL. At the conclusion of each such activit&.
a report of the status of these sensors is sent to the PDP-10 and
stored. Thus, there is no activity corresponding directly to this mode
of sensory input. However, an option exists as to whether changes in
the status of the whiskers and push-bar during a TURN or ROLL cause
the robot to halt immediately (the "normal’' case), or whether the motion
proceeds to completion (in which case we say the "overrides' are on).
This option is controlled by activity OVRID., Details of the catwhisker

operation are contained in a later section.

Thus, there are presently the following sensory-related activities:

Activity Argument

RANGE None

SHOOT (Picture array location in PDP-10)

TVMODE 0: Set picture resolution to 120X 120
l: Set picture resolution to 240 x 240

OVRID Turn all overrides off

Turn on the catwhisker override only
Turn on the push-bar override only
Turn on both classes of override

W N = O

25

Activitx Argument

IRIS " Number of exposure-value (EV) units by which to
: open up the iris (see below)

FOCUS Number of feet by which the focal distance is to

)
be increased.

In subsequent sections we will take a closer look at these activi-
ties. First, we must digress to consider some general characteristics

of the bottom-level softwafe package.

26

GENERAL CHARACTERISTICS AND DESIGNVPHILOSOPHY

A call to one .of the (L1SP) functions implementing the activities
listed abbve only starts-that aéfivity.‘ That is, the called function
causes the PDP-10 to communicate witﬁ the PDP-15 (through the routine
START15) , teiling the PDP-15 fo undertake the required action. Then
the called functién refurns control to the proéraﬁ that called it. Thus,
the robot program does not "hang up" in the called function while the
activity is being carried out.

This design has several raﬁifications. First, it allows noncon-
flicting activities to be carriéd out concurrehtiy. Conflicting activi-
ties are those for which the robot's aétions literally interfere with
each otherA(e.g.; taking a TV pictufe-while moving), or for which the
maintenanéerf the robot's model would be garbled if one activity is not
léid to rest before the other is.beéun. A table, included in this paper,
shows the conflicting activities. The bottom-leve14software checks for
confliéts and hangé up the roﬁot ﬁrogram in an activity call until all
conflictingléctivities from earlfer calls are completé. There is no
provision made for qheuing suéh conflicting calls and allowing the robot
program to proceed, since the need for this‘seemed too unlikely to
warrant the effort.

Second, control may be almost anyﬁhere.in the robot program hierarchy
when the previously requestéd activity.terminates. Since the LISP system
is not structured to allow arbitrary program interrupts, the robot pro-

gram is not informed when an activity has terminated. The program has

contact with the status of a previously requested activity only in the

following instances:

27

(1) The program calls an activity that conflicts with the
previously called one

(2) The program attempts to access information in the robot's
‘model (using the N-tuple storage system routines whose
names begin with M, for model), which information might be
changed by the previously called activity.

In either of these instances, the bottom-level software automatically
causes the PDP-10 to obtain from the PDP-15 a reading of the status of
the previously called activity. If the activity has terminated, the
software performs necessary bookkeeping and allows the new request to
proceed. If not, the new request is hung up in a wait loop until a
subsequent reading from the PDP-15 indicates that the former activity

is terminated.

In any case, information about the status of the external activity

.

does not even enter the PDP-10 until it specifically requests a(readipg
from the PDP-15, ﬁo ﬁatterﬂhow far in tﬁe past the activity may have
terminated. This is a consequence of the fact that the PDP-10 initiates
all intercoﬁputer transfers; it may be viewed as a scheme of receiving
informétion from the PDP-15 aﬁd robot only on a "need-to—knowh basis.

An important corollary of this design is that requests to the robot
model to access information which may be affected by robot activities
should always be made via the N-tuple storage system functions beginning
with '"M," not those beginning with "NT." Otherwise, the necessary inter-~

locking will not occur, and obsolete information could be accessed.

28

THE ACTIVITY STATUS VARIABLE (ASV) AND
MODES OF TERMINATION '

We have seen that information flows from the PDP-15 to the PDP-10

only when the PDP-10 requests a status report on an activity. The
first data element of'such a report is called the activity status vari-
able (ASV). For the particular activity being interrogated, the ASV
tells whether that activity has terminated, and, if so, in what way.
I1f the activity is still in progress, the ASV has the value -1, and the
remainder of the report is meaningless. If tﬁe activity has terminated,
the ASV has a nonnegative value, which is‘subsequently available in the
robot's model.

Various (nonnegative) values of the ASV have specific meanings fpr

different activities, which will be described subsequently. Certain

values, however, have meanings common to all the activities:

Asv Mode of Termination
6 Time-out occurred
7 Activity was STOP-ped by PDP-10
8 Terminated by panic in PDP-15.

Time-outs are determined by the PDP-15, One of our design
decisions was that every activity would terminate after some specified
time, no matter what the condition of the robot or its communication
link (assuming only proper operation of the PDP-15)., Thus, the user
can avoid the common frustration of having his program hang up on the
external equipment and needing to restart it from scratch.

There is a provision (which we expect to be very rarely used) for

the robot program, after starting an activity, to abort it (whether or

29

not it has terminated). This is done by invoking the STOP15 routine.
On receiving the corresponﬁing command, the PDP-15 halté the action of
tHevrobot. ‘The sﬁbsequent étatus report (which, as aiways, does not go
to the PDP-10 until requested) will have an ASV of 7. We will endeavor
to provide, in such status reports, valid information on the terminaln
status of motor registers, etc., in the robot. -

The panic ASV is a catch-all for reporting hardware or software
malfunctions with which the PDP-15 cannot cope.

In what follows, an ASV value of O generally réprésehts the most
common or 'most normal’ mode of termination. The precise meaning of

this and other ASV values, however, depends on the activity.

30 .

ADDITIONAL CﬁARAéTEﬁISTICS OF PAN AND TILT

Sometimeé the user (5y wﬂich we-meaﬁieithér a person at a Teletype
or some higher-level program in the PDPjiOS may want the robot to pan
incrementally (i.e., turn its head x degrees ieft or right of where it
is currently), aﬁd sometimes an assolute positioning is desired (x degrees
left or right of the forward position). Tﬁe activities specified in an
earlier éection are éarameterized on an incremental basis, so the incre-’
mental case is handleﬁ directly. (For every statement ﬁade in this
section about PAN, an analogous statement applies to TILT.’

For absolute:posifioning, let us firsf make the assﬁmption that an
entry in the robot's model in the PDP-10 contains the current Qalue of
the pan angle of the.robot's head. Then a roufiﬁe (call it PANTO) whose
argument is an absélute pan angle, in degrees, can proceed as follows:
first, PANTO accesses the model to determine the current pan angle;
second, PANTO subtracts the current value from thé desired one, to
determine the necessary increment; third, PANTO calls PAN, specifying
this increment. PAN. causes the action to be performed, and updates the
robot model.

Now consider the cas€ in which the model is not assumed to have an
gccurate value of the pan angle. This case can arise in the start-up
of an experiment, through malfunction or error, or as a result of steady
accumulation of uncertainty. In this case a user can establish the pan
position by first reduesting a pan activity with an excessive increment
(which will drive the pan mechanism against one of its limit switches),
setting the pan angle to the value of that limit in the robot model,

then performing a PAN or PANTO to the desired position. What is required

31

in addition to the basic PAN activit& is knowledge about the limit
value. Since>£his ié a constant of thé‘robof hardwaré,‘it can be deter-
mined and coded inﬁp the appropriate program or progr;ms.

Zero for the pan coordinate occu;s when the head‘assembly is facing
stréight ahead on the robot. ‘Zero for the tilt qoordinate occurs when
the axis of the TV caméra and rangefinder is horizontal,

' Thé input parameter for the routine PAN is expressed in degrees
(a floating-point number), as is the value of the pan angle in the robot
model; For a communication to the PDP-15 and the robot, the pan angle
increment is expressed in counts of the digital register that drives
the pan motor on the robot., (This is a métter of removipg all possible
computational burdens from the PDP-15.) The bottom-leyel software per-

forms the necessary conversion using a constant PANFACTOR = counts/degree.

32

TERMINATION MODES FOR PAN (AND TILT, BY ANALOGY)

ASV=0. The pan activity
value Qf the pan angle in the
report is received.

ASV=1. The pan carriage
knowledge of this fact and of

the pan angle in the model is

achieved the requested incremgnt. The

model is updated at the time this status

ran into one of its 1limit switches. From
the requested pan direction, the value of

updated to the limit value.

No other normal terminations(of PAN are possible.

The same codes and analogous results apply to TILT:

33

THE CATWHISKERS
The catwhiskers are the tactile sensors of the robof.' They consist
of arcs of wire léoping out from the robot's bodyJandlattachéd to micro-
switches at both ends. A modest ﬁréééuré on a whisker at almost ény

point will activate at least one of its two switches, which are arranged

1

"in parallel. In this event, we say that that whisker is 'on.
Alfhough;the logic of the hardware catwhisker operation is compli-
cated, there are only three cases that should be of interest to the user.

Case 1! At the beginning of a roll or turn activity, all cat-
.whiskers are off and the catwhisker overrides are off.
1f nothing happens to the whiskers, the activity should
go to completion. If a catwhisker is turned on by con-
tacting some object during the activity, the robot will
begin to decelerate. Then, if the catwhisker turns off
{because it merely brushed an object) before the robot
stops, the robot is supposed to pick up speed and complete
its activity. Otherwise, the robot will quickly come to
~a stop. The robot will fall short of its desired position,
unless it should happen to attain its goal while stopping.

Case 2: When a roll or turn is requested, a catwhisker is on and
the overrides are off. In this case the robot will not
move, and the action will be terminated.

Case 3: The overrides are on. Whether or not the catwhiskers
are on or come on during the activity, the robot is not
halted and should complete its activity.

The user receives, in the status reporf of a terminated roll or

turn activity, three gquantities: the ASV, the residual count in the
wheel-motor register (zero if the desired position was achieved), and

a word whose bits give the status of the catwhiskers on termination.

From these values it'is possible to reconstruct what happened.

34

TERMINATION MODES FQR ROLL (AND TURN, BY ANALOGY)

ASV=0. A full roil was compieted. No catwhiskers came on. The
residual count and'the catwhisker word should be éero.

ASv=1, A’full roll was completed. Catwhiskers came-on, but were
ignored. This implies that the catwhisker overrides were on. The
residual count should be zero,.and tﬁe éatwhisker word'should reflect
whatever stafus the whiskers had on termination.

ASV=2. A full roll was not completed. A bump of bumps occurred,
and the catwhisker override was off. Thé residual coﬁnt is in general
not zero. The catwhisker word reflects the terminal status. This
outcome could arise from either Case 1 or Case 2 above.

ASv=3. A full roll was hot compieted, because the push~bar (see
below) became free (and the pusthar override was off). Residual count
and catwhisker word are as in ASV=2,

In the case of ASV=0, the user can conclude that the activity
proceeded as intended. ‘In other cases, it seems that the residual
count and the terminal catwhisker word are more valuable than the ASV,
In all cases, the bottom-level software updates the model with the new
values of the robot's X and Y location'énd angular position, based on
the old values, the requested move, and the residual count. The cat-
whisker status value in the model is also updated with the new»tgrminal

value.

35

THE PUSH—BAR

The robot is presently fitted w1th a push-bar on the front, with .
two switches. One switch is to tell when the bar is pushing against
an obJect the other, when the bar is encountering excess resistance
from an unmoving obJect or a well. The former s1gnals the PDP—15 (i.e.,
generates.a speciel interrupty whenever it goes from on (contacted) to
of f (free). This is to tell the program when a pushed object has slipped
off the bar. Normally, this will cause the PDP-15 to stop the robot;
however; this can be overridden. The status of this switch on termina-
tion of en ectivity is reported as one;of the-bits in'the'catwhisker
status word.) o

The second switch, 51gnaling excess re51stance, will cause the

PDP—15 to execute and subsequently report an- ASV—8 phnic stop.

36

OVERRIDES

There are presently two ovérrides, éné for the cafwﬁiskers as a
group and one forvthe firsf switch on the push-bar.‘ These are entirely
separate and operate somewhat differently. Tﬁe catwhisker override,
which goes to a hardware register sn the rob&t. blocks the robot from
executing-its early shutdown sedﬁence (see Case 1; above) that other-
wise oécurs whénever a catwhisker is on. ‘The push-ba; override blocks
the PDP-15 from stopping the robot whenever the first push-bar switch

makes a transition from on to off.

. When the robot is pushing an'object, the catwhisker override must
be on., When the robot is backing off from an object, the catwhisker
override must always be on and-the push-bar override must be on if the
robot is to back off beyond the pbiht of disengagement in one qption.

Activity OVRID turns the overrides on and off according to the

value of its argument, as follows:

Catwhisker Push-bar
Argument Override Override
0 OFF , OFF
1 ON OFF
2 OFF ON
3 ON ON

Being an activity, OVRID is subject to the ASV discipiine. A
program that calls OVRID and then, say, TURN or ROLL may have to wait
momentarily for the termination of OVRID. On termination, the only
ASV's that are likely to occur are ASV=0 (completed) or ASV=8 (panic;

probably transmission error).

37

ADDITIONAL CHARACTERISTICS OF TURN AND ROLL

The input parameter for ROLL ié expressgd in fget; that for TURN,
‘in degreeé. As with PAN and TILT,‘the arguments are convertéd to motor
counts fqr qommunication with the PDP-15. Motion.is inherently incre-
mental, Fhere beipg no limit switches involved and no absolute knowiedge
of position except what can be deduced by the robot program. Whenever
the robot-executes TURN, the bottom—lével software updates its angu}ar
position, 0, in the model. When‘the robot executes ROLL, the software

updates the robot's location:

X~X + (cos 9) * (distance moved)

Y~Y + (sin 6) * (distance moved) .

-It is implicit that the current X, Y, and 6 are always available in the
model, although they are subject to revision by higher authoriti-(i;é;,

the user) at any time.

38

RANGE AND SHOOT

Activity RANGE has no arguments. Activity SHOOT may have as an
argument the location of an array in the PDP-10 to receive the TV pic-
ture. The terminal ASV's that are to be expected are ASV=0 (completed),
ASV=6 (timeout), and ASV=8 (panic).

Both of these activities'require a turn-on time measured in seconds,
to bring the rangefinder mirror up to speed in one case and to warm up
the TV electronics in the other. (These and other operating modules
in the robot are normally kept off to conserve power.) To avoid wéit—
ing for the turn-on every time during a period of repetitive use, without
burdening the user with predicting such periods, we have established
time-outs for these modules, controlled by the PDP-15. After RANGE or
SHOOT, the corresponding module will be kept on for a period of, say,

a minute. Wheh this time has passed since the last such activity, the
module will be shut down. This will be done without effort on the

user's part.

39

TVMODE, IRIS, AND FOCUS

Thesg activities are used to prepare for taking a TV picture.
They may be called at any time.

ZActivity TVMODE prepares for 120X 120 pictures to be read sub-
sequently if its argument is zero, and for 240X 240 pictures if its
argument is 1. Like OVRID, TVMODE has an ASV whose terminal value
should only be. O or 8. |

IRIS and:FOCUS ope;ate motérs with limit switches. In most re-
spects,_these activities are analogous tq PAN and TILT. - IRIS and FOCUS,
,hpwever, perform a nonlinear transformation between the input argument
and the»drive-motor count. ‘Multiplying the desired increment by a
constant factor does not suffice; the true transformation is determined
by calibration and stored within the bottom-level software.

The argument for IRIS is expressed as an incremenf'in the exposure
value (EV), which is logarithmically related to the f-value of the iris
opening. No matter what the current EV number, increasing it by one
doubles the light reaching the camera.

The argument for FOCUS is expressed as an increment, in feet, by
which the distance to the plane of best focus (f) is to be increased.
This form of the argument is chosen because it is most convenient for
the user, but it leads to a problem for the software; The motion of the
focus drive motor is highly nonlinear in f, being more nearly linear in
1/f. A tiny motion of the drive motor carries f all the way from, say,
100 feet to infinity.

We thus establish the following convention for the argument of

FOCUS. Any increment that carries f beyond 100 feet is treated

40

by driving the focus carriage to its outer limit (i.e., focus at infinity),
and the value of f in the robét model is set to 100.feet. Cf course, any
subsequent increment that reduces the focal distance will be treated
relative to an initial f of 100 feet.

The user can avoid any concern wifh fhis issue by using a routine
FOCUSTO, analogous to PANTO, that takes an absolute distance argument

rather than an incremental one.

41

JYVMLIOS 10€0Y 01-ddd

TAATI-WOLLOE A0 HENLONYLS Wvygd0odd

*S3T1TATI}OR JIBU3O JIOF pmﬂxm_wwcﬂusou o3eoTTdng 'SAUTINOX NYd 94l JOF PI3eAISNIIT ST 2INIONIIS SYL 1910N

_\\1wmuos mﬁa:p-zLMN o _ \\w\¢ j0qox pue gT1-ddd \\

STaviy STdOLS GTIYVIS

i) i\ %
(NVd dOLS)

*019 ‘QVIULIN _
™ A, Papodu 3T

L doot 31eEm
wHOpm.lq sapnIourt

|
]

“DYTANVd 39501 U243 t
‘gurdsaxsjooq orerxdoxdde og ———— s E

*Laessoodu JT 1TeM pPSI3IeS

£{juaaano jou ST 3T JT ‘%
£31A1308 NVd oY} °13319§ _
TILLASNVA , . |
19s
A

|

pPa1319s 9q 3snu . _
aouay pue 3T 3033F3F® —
|

|

PINOD S3T3TATIOE YOTIysm
2as 01 1sonbaa azA1euy
TILLISTAAON)

Sut3or{Fuod Surrlles
I 1933y ‘A31TAT3OE
NVd 23 93ET3Tul |
NvVd

A/

(OLNYd) - .

SY00Ta93uT £31TATIOR A

_ ‘q0qoa y3iim ‘1apouw

2Yyj3 Ss900®8 03} sisanbay
*919 QYN

.mmﬂuﬂ>ﬂuom~

42

(1 28ed) AYVAWNS ALIAILOV 1odod

:pIom snieis

JOYSTUMIED JO UIOJ

3003 /S3UNnod

*8ap/sjunod

*3ap /s31unod
3TUIT 348t
ITWIT 3391

*39p/s3unod
3TWIT MOT
3TUIT Y3ty

paxtnbax
sjuelsuod

(passadde ST g)

(ASY °Ioutr) Topou ul

SAPIJIIIA0 saaqsIym ‘x ‘x | sxeysiym ‘eroys V\ a18ue ued a18ue 3111 polepdn uotjewaoyul
LOOHS LOOHS |
ardno ‘IDNVY ‘d1¥A0 ‘IONVH ‘dI¥AO LOOHS LOOHS SOT3TATIOE |
‘104 ‘NMNL ‘“T10d ‘NMAL ‘108 ‘NuNL ‘IONVH ‘Nvd | ‘IONVE ‘ITIL SurzotTrFuUo)

SISIYM JO

sSn1e}ls [BUTWIS],

JUSWSTD PITYL

1UNOD J030uW
1enprsaa

1UNOd J030u
1enprsag

1Unod Jo03j0u
1enpisag

7UNO0D JOj0W
Tenpisag

jaxodaa snjieis ¢I-ddd
JO juduUSTS® PuUodIS

a#3a1dmoo :Q

Jeq-ysnd :g :paddojs ‘padumq :g

‘paaoust ‘padumq

1 ‘o3ardwmoo :0

ITWIT 1
a1a1dwos :Q

JTUET T
9191dwos :0

(otued=g ‘dojs=y
‘1no swWr3l=9) ASY

*SIONSTUYM T

yioq :g ‘Jeq :g
*3¥O 0

pIBMIOY 31994

1y3ta sasaadaq

3y8ra seaalaqg

dn saoa3saq

juaum3ay

<

v

€

4

T

9pod A31TATIOY

arygao

TIOYW

NdNL

Nvd

LITIL

aweN

43

‘U UOTISIDAUOD Ad/s3unod A
,00T = 3TWIT IBF: 3Turl uado m uorjouny paxtnboux
JTWI] XEdU 1IWIT Inys - : —_ uorleInSuBRII) sj1uglsuo)d
. (ASY - TIOour) Tapou utr
aduel1sIp SN00d anleA gyl 8uti319s oapow ,2an3otd 3sery, :wwsmk 3sey,, pajepdn UOT}eULIOFUY
. FONVY B AI¥AO [IDNVH “TTOY ‘NUAL SaT1TATIO®
SN00d ‘IOOHS | SI¥I ‘LOOHS | IAOWAL ‘LOOHS . 31deoxa 11® ‘Xvd ‘UTIL Bur3oTIFUO)

juswara PJITYL

1uUnoo JI030W

junood Jojouw

3Unod J93sil3aa

jaodax sniels gr-ddd

Tenprsox 1enpisad - - a3uex JO juUSWOTd PUOIDS
ITWIT 1 ITWTT :1 IOIIO UOISSTWX :1 (o1ued=g ‘do3}s=,
2191dmoo :0 9191dwod :0 o3o1duwod o M ayerdwos :p s301duod Q0 ‘1IN0 BWI}=9) ASY
3oqox woay [usado ~piemol ovzZ X 0bg 1 m Amwokvvm _ LusunSay
IoyjIel 1993 _s31Tun A% 0ZI X 021 :0 fexxe axniotd)
01 6 8 | 2 9 2p0D A3TATIOV
$N1004 SIdl JAOKWAL Y LOOHS IIONVYH aweN

44

APPENDIX C

THE FRAME PROBLEM IN PROBLEM-SOLVING SYSTEMS

45

June 1970

THE FRAME PROBLEM IN PROBLEM-SOLVING SYSTEMS

by

Bertram Raphael

Paper prepared for publication in the Proceedings of the
Advanced Study Institute on Artificial Intelligence and
Heuristic Programming, held at Menaggio, Italy, August
1970.

Artificial Intelligence Group
Technical Note 33

SRI Project 8259

This research is sponsored by the Advanced Research Projects
Agency and the National Aeronautics and Space Administration
under Contract NAS 12-2221,

47

I INTRODUCTION °

The frame problem has taken on ﬂew'significaﬁce during recent
attempts fo develop‘arfificially infelligént systems. The problem deals
with the difficulty of creatiné and maintaining an appropriate informa-
tional context or ''frame of reference' at-each stage in‘certain problem-
solving processes. Sihce this is an area of current research, we are
not prepared fo présent a solution to the frame problem; rather, the
purpose of this paper is'to sketch the approaches being pursued, and to
invite the reader to suggest additions and improVements.

Although broader interpretations are possible, we think of an
"artificially intelligent system" as meaning a programmed computer, with
associated electronic and mechanical devices (e.g;, a radio-controlled
robot vehicle qnd cameraj, that is intelligent in the sense defined by

, (1) *
McCarthy and Hayes:

"... we shall say that an entity is intelligent if it has an
adequate model of the world (including the intellectual world of
mathematics, understanding of its own goals and other mental
processes), if it is clever enough to answer a wide variety of
questions on the basié of this model, if it can gef additional
information from the extefnal world when if wants to, and can
perform such tasks in the éxternél world thaf its goals demand
and its physical abilitieé permif}"

Reference (2) discusses the reseafcﬁ significance of.attempting to build

such an infelligent robot syétem.

* References are listed at the end of this paper.,

49

The intelligent entity, as defined above, will have to bg able to
carry out tasks. Since a task-generally involves some.change in the
world, it must be ablelto update its quel so that it remains as accurate
during and after the performance of a tgsk as it was beforef Moreover,
it must be able to 2&32 howA;o carry out a task, énd this planping process
usually requires keeping "in mind," simulfaneously, a varicety of possible
actions and corresponQing‘models of thq hypotheticgl wo;ldschat wou;d re-
sult from those actionsi The bookkeeping problems involved with kggping
track of thesq hypothetical wpr}ds account for much of the difficulty of
the Irame problemi
11 THE-FRAME PROBLEM

We shall illustrate the‘framq problgm wi;h a simple gxamp}g. Sgppqse
fhe“initial_Qo;ld de;criétion éoﬁtéiagvthé following facts (expressed in
some suitab}e representation, whose precise form is beyond our immediate
concern) : |
| (F1) A robot is at position A.

(F2) A box called Bl is at position B.

(F3) A box called B2 is on top Qf Bl.

(F4) A,B,C, an@ D'aye all positions in the same room.

Suppose, further, that twq kinds of actions are possible:

(A1) The robot goes from x to y, and

(A2) The robot pushes Bl from x to y,
where x and y are in {A,B,C,D}. Now consider the following possib;e.tasks:

Task (1) : The roﬁot should be at C,

This can be accomplished by the action of type A1)>"Go'from A to‘C;"

After performing the action, the system should "know' that facts F2

50

through F4 are still true, i.ef they describe the world after the action,
but F1 must be replaced by

(F1') The robot is at position C.

Task (2): Bl should bénat C.
Now a "push" actiqn'must be used, and both F1l and F2 must be changed.

One can thiﬁk Qf simple procedures for making appropriate changes
in the model, but they all seem to break down in more complicated cases.
For example, suppose the procedure ié:

Procedﬁre (a) : "Determine which fécts change by matching the task

specification against the initial model." .

This would fail in task (1) if the broblem solver decided to get the
robot to_C by pushing Bl there (which is not unreasonable if the box were
between the robot and C and pushing were easier than going around), thus
changing F2.

Procedure (b): _"Specify which facts are changed by each action

operator." |

This procedure is also not sufficient, for the initial world description
may also contain derived information such as

(F6) B2 is at position B,)
which happens to be made false in task (2).

More cpmplicated problems arise when sequences of actions are
required. Consider:

Task (3): The robot should be at D and, simultaneously, B2 should

be at C. .

The solution requires two actions, "Push Bl from B to C'" and "Go from C

to D," in that order. . Any effective problem solver must have access to

51

the full sets of facts; including derived consequences that will be true
as a result of each possible action, jn order to produce fhe correct
sequence.,

Note that the frame problem is a problem of finding a practical
solution, not merely finding a solutioﬁ; Thus it resembles tge famous
traveling salesman problem or the probleﬁ of finding a winnihg move in
"a chess game;fproplems for which straightforwafd algorithms ére'knOWn
but usually worthless. .
¢9)

McCarthy and Hayes divide 1ntéiligéhce into two parts: the

epistemological part, which deals with-the nature of the représentation

of the world, and the heuristic part, which deals with the problem-solving
mechanisms that operaté on the fépresentation; They then proceédfto con-
iptelligence (including the frame problem). Here, on the other hand, we
are concerncd with constructing a complete'intelligent system, including
both-the world representations and the closely related problem-solving
1programs.' In the'fqllowing we shall assume that the representétions are
basically in the form preferred in Ref. (1), namely sets of sentences in a suit-
able formal logical language such a prcdicéte-caldulus; apd we shall
describe candidate organizations for the "heuristic part,” i.e. the
problem solver, of an artificially intelligent system that can cope with
the frame problem.

111 ' CURRENT APPROACHES

A, Complete Frame Descriptions

A frame can generally be completely described by some data

structure, e.g., by a set of facts--expressed as statements in a predicate

52

calculus, If'we'think ot each such frame as an object and each possible

action as an operafor that caﬁ trgnsfssm one objecp (fraﬁe) into another,

then we may use a problem-solving system such as GPS(B? for attempting

to construct an object for which the desircd goal conditiops are true.
Unfortunately, when the data bgse defining each frame reaches a non-trivial
size, it becomes impractical to gencrate and store all the complete framic-
objects, For example, suppose each psssiblo frame is defined by 1000 elementary
facts, an average of six different actions are applicable and heuristically
plausible in any situation, and a typical task requires a sequence of four
actions~--not unrensonabls assumptions about a siﬁple robot system. Then the
search tree of possisle frames may have about 1000 nodes; it is not practical.to
store 1000 facts at each node., If each action causes changes in, say,

three facts, then storing just the chango information at each node EE
practical--provided appropriate bookkeceping is dbne to keep track of which

of the original facts still holds aftér a series Qf actions.. This book-

keeping seems to reqsire considerable program structure in addition fo

(and quite sepgrate from) the basic object, operator, and difference struc-

ture oi a GPS-type system. The following approaches are concerned with this

new bookkeeping problem, |

B. State Variables

One way to keep trsck of frames is tb consider each possible
world to be in a sepafate siate and to assign hames tq states.v In
this formulation, actions are state transition rules, i.e. rules for
transforming one state into another, Since aption rules are generally
applicable»to large classes of states, the description of an action can

contain variables that range over state names.

53

Green describes aﬁ apbroach of this kind in detail.in Ref. (4).
Eéch fact is labéled with ghe name of the stateAin which it is‘knéwn fo be
true., Additional facts tﬁat are statce-independent deécribe the transitional
effects of actions, For example,. if SO is the name of tye initial state
and At(ob,pos,s) is a pfedicéte asserting that object ob is at position

pos in state s, then the conditions of the previous example may be partially

defined by the following axioms:

(G1) At (Robot, A, S,) (from F1)
(G2) At(B1, B, SO) (from F2)
(G3) Box(Bl) A Box(B2) (Bl and B2 arc boxes)

(G45 (Vx,y,x)lAt(Rébot,x,s) D At(Robot,y;go(x,y,s))](from Al)

At this point some explaﬁations seem in order. Box(x)(as;erts
that iris a box, .Perhaps it would have beenrﬁoré consisfent fo write,—e,g.,
Box(B1, So), because we only Eggﬂ that Bl is a box in the initial state.
ﬁowevef, we do not contemplate allowing any éctions that de;troyvbox-ness,
such as sawing or burnihg, so we could add the axiém (¥s)Box(B1,s). Since
we'Would ﬁhen be able to prove that Bl is.aiboxvin éll states; Qe suppress
the state variable Without loss of generality.

Each action, in this formalism, is viewedlas a function. One
argument of the function is always the state in wﬁich the éction is applied,
and the value of the function is the stafé resuiting after-the action, Thus,
e.g., the value of go(A,C,SO) is the name of fhe sfate achieved by going to
C after starting from A in the initial state. |

The appeal of thié approach is.that, if we héve a thebrem-proving
progrnﬁ, no speciai pfobleﬁ-solving mechanisms or bookkeeping procedures

are necessary. Action operators may be fully described by ordinary axioms

54

(such as G4 for the go operation) and the theorem-proving program, with
its built-in bookkeeping, becomes the problem solver. For example, task (1)
may be stated in the form, ''Prove that there exists a state in which the
robot is at C," or in predicate calculus, prove the theorem:

(%) ({s) At(Robot,C,s) .
From (G1) and (Gr), we can prove that (*) is indeed a theofem.' By answer
tracing during the proof (Ref. (5)), we can show that s = go(A,C,SO), which
is the solution.

For morc complex actions, however, the major problem With this

approach emerges: After each state change, the entire data base must be

reestablished. We need additional axioms that tell not only what things

change with cach action, but also what things remain the same. For example,
we know that Bl is at B in state S0 (by G2), but as soon as the robot moves,
say to statce go(A,C,SO), we no longer know where Bl is! To he able to
figure this out, wc nced another axiom, such as

(vx,y,u,v,s) [At(x)y,s) A x # ROBOT :>At(x,;,go(u,v,s))] .
("'When the robot goes from u to v, the object x remains where it is at y.")
Thus a prodigious set of axioms is needed to define explicitly how every
action affects cvery predicate, and considerable theorem-proving effort
is needed to "drag along"” unaffected facts through state transitions.
Clearly this approach will not be practical for problems involving many
facts,

C. The World Predicate(s)

Instead of using a variety of independent facts 'to represent
knowledge about a state of the world, supposc we take all the facts about

.4 particular world and view the entire collection as a single entity, the

55

model M. We may then use a single predicate P, the "world predicate,"”
whose domains are models and st;te-names, P(m,s) is interpreted as meaning
that s is the name of the world that satisfies all the facts in N. One
possible structure for I is a set of ordered n-tuples, egch of which rep-
resents some elementary relation; e.g., {(At, Robot, A) and (At, B1, BY are
elements of the initial model, mi.

The initial world is definéd by the axiom Pﬂhi,So) (except
that the complete known contents oflni must be explicitly given). We
can now specify that an action changes a particular relation in M, and

does not change any other relations, by a single axiom, e.g. the go

action is defined by the axiom
(Vx,y,;,s)[P({(At,Robot,x),;},s)ZDP({(At,Robot,y),;},go(x,f,s))] .
Here w (read 'w=bar') is a variable whose value is” an jndefinite number
of elements of a set, namely all those that are not explicitly described.
This approach preserves the advantages of the previous.state-
‘variable:approach; namely, the problem solving, answer construction, and
other bookkeceping can be left to the theorem prover. In addition, proper-
ties of the model are automatically carried through state changes by the
barred variables. On the other hand, several difficulties are appareﬁt:
theorem-proving strategies may be grossly inefficient in the domain of
problem solving; the logic must be extended to include domains of sets and
n-tuples; complex pattern-matching algorithms will be needed to compare
expressions containing variables that range over individuals, n-tuples,
sets, and indefinite subsets; and the fact thalt properties of the world
are stored as data, instead of as axioms, constrains the problem-solving
process by restricting the class of inferences that are possible. Further

study is necessary to determine the feasibility of this approach.

56

’p)
D. Contexts and Context Graphs(

Suppose we let a state correspond to our intuitive notion of
a complete physical situation. S?nce the domain of our logical_formalism
includes physical measurements ;uch as object positions, descriptions,
etc., every consistent statement of lirst-order logic is either true or
false for every state. We think of each such statement as a predicate
that defines a set of states, namely those for which it is true. We
call such a set of possible states the context defined by the predicate.

We shall find it convenient to allow certain distinguished
variables, called parameters, to occur in predicates. Since each such
predicate with ground terms substituted for parameters defines a context,
a predicate containing parameters may be thought of as defining a family
of possible contexts--and each partial instantintion of parameters in
the predicate defines a subfamily of contexts (or, if no parameters
remain, a specific context).

For example, the predicate At(B1,B) defines a context (the
set of all states) in which object Bl is at position B. 1If x and y arc
parameters, At(x,y) defines the family of contexts in which some object
is located any place. At (Bl,y) is a subfamily of this fémily in which
the object Bl must be located at some (as yet unspecified) place.

A problem.to be solved is specified by a particular predicate

called the goanl predicate. - The problem, implicitly, is to achieve a

goal stale, i.e., produce any member of the context defined by the goal
predicate.
An action will consist of an operator name, a parameter list,

and two predicates—~—the preconditions K und the resulis R. 1In addition,

57

any of 'the elementary relations in the preconditions may be designated
as transient preconditions. For example, the go action is defined by

name parameters
N

gb (x,y)

K{At(Robot,x) | At(Robot,y)}R ,
where underlining designates a transient condition. Each action operator
thus corresponds to a family of specific actions. An action is applicable
in any state that satisfies K; when an action is applied, the resulting
state no longer need salisfy the tfnnsients but must sﬂtisfy R.

In this approach, the conjunction of predicates in the robot's
model of the world is an initial predicate I, defining as an initial con-
text the set of all states that have, in common, all the known properties
~of the robotfs_currgnt world. The goal context, defined by a given goal
predicate, is the set of satisfactory target states. When an operator
ié applied in a context, it changes the defining predicate (roughly, by
deleting trnnsienfs and conjoining results), theréby changing the context.
The problem~solving task is to construct a sequence of operators that
will transform the initial context into a subset of the goal cdﬁtext.

\ Any context that can be reached from the initial context by
a finile sequence of operators is called an achievable context. Any
context from which a subset of the goal contextican be reached by a
finite sequence ol operators is called a sufficient context. The main
task may be restated, then,.as finding an operator sequence to show
that the goal is achievable, or that the initial context is sufficient,"

or, more generally, that some achievable context is a subset of some

sufficient context (and therefore is itself sufficient),

58

The main loop of‘the prpblem solver consists of two steps:
@8] Test whether any known achievable coﬁtext is a subset
of any known suffiéient.context. If so, we are done.
2) Either generate a néw achi;vagigﬁgggiéxt by applying
some operator in a known achievable context ("working
forwards'", or generafe, as a new sufficient context,
one that would become a known sufficient context by
the application of some operator (”working backwards') .
Then return to step 1 to test the newly generated con-
text.
An advantage of this approach is that all states and all
properties of operators are defined by first-order predicatés, SO a
standard theorem-proving program can do ﬁost of the work of testing
operators and results and selecting valu¢s~of parameters. . On the other
hand, a separate data structure, called a context graph, is needed to
keep track of the trees of achievable and sufficient states and the
operators that relate their nodes. For example, suppose we wish to
get from A to D in the directed graph:

B C D

A‘i://f”"_—~_*‘-——'—
™~ :

We shall abbreviate by 4 the predicate that gives the graph's topology:
& - Path(A,B) A Path(B,C) A Path(C,D) A Path(A,F) A Path(E,D) .

The initial predicate is 1 & At(A) A & . The goal predicate is G =~ At(D).

We shall deline the operator go, for this problem, by:

59

V-

go(x,y)

Path(x,y) At(y)
At (x)

The operator is applicable in confext I only if we can prove
that
(QX,yi[I D At (x) A‘Path(x,y)]
is a theorem. The proof can.be done by resélution with answer tracing.r
The above statement can be shown to be a theorem when x = A and y is’
either B or F. Therefore, the go operator can be used two ways to generate
new achievable contexts Cl and C2, with corresponding predicates

=Y
Poy Vo4 At(B), P,

2 =8 N At(F). To keep track of actions and instantia-

tions, we shall draw the context graph:

go(A,B)

go(A,F) c2

Similarly, from Cl we can prove the applicability of go(B,C), which, when
applied, gives C3

Pog = & A AL .

To illustrate working backwards, consider whether the result of a go

implies G. The relevant problem for a theorem prover is

(Ay) [At(y) D At(D)) .
This is trivially true if y = D, so any state that satisfies the pre- .
conditions of the operator go(x,D) is sufficient (because the operator
will then be'npp}icable, and will produce thé goal) . Thus a new sufficient

context is given by the preconditions,

Poy = At (x) A Path(x,D)

60

(Note that C4 is really a family of contexts, because of the parameter

x.) The context graph is now :

) . .
I c4 go(x,D) G

€o
‘.
La~ce

Finally, the theorem prover can show that

PCSZ? PC4 when x = C ’

completing the solution.

Most problems are considerably more difficult than the above
example because of several complications. Suppose in trying to work
backwards from G (using an operator Op with preconditions K and results
R) we find that we cannot provg‘R D G, but instead discover a statement
S such that RA §D G. We may still work backwards with Op, but the new
sufficient context is defined not by K alone but rather by K A S,
Furthermore, some extra bookkeeping must remind us that S may not be
disturbed, in a valid splution, by applying Op--g.g., no transients of
Op may nbpenr in S. Similar pdditioqal subgoals——and bookkeeping com-
plications--arise from each incomplete attempt to prove that an achiev-
able co#toxt is contained in o spfficient context.

Additional complexities arise from dependencies. That is,

whgn an expression K is deleted by a @ransient dur;ng an action, other
expressions that were duduced‘from‘ﬂ in previous contexts can no longer
be guaranteed to be true in new contexts. Thus:each deduced expression
is said to depend upon nll its ancestors, adding to our growing burden

of bookkeeping problems.

61

On the other hand, the context graph can take care of much
of the bookkeeping automatically. Each logical expression need only be
stored once, with notations telling in which contexts it was created and
destroyed, rather thap being either copied or rederived frém context to
context. Finally, if predicates of achievable contexts and operator
_results are stored in clause form, and predicates of sufficient con-
texts and operator preconditions are stored in negated clause form,
preliminary experiments show that most of the nuts-and-bolts work of
attempting solutions and generating new contexts can be:done in a
straiéhtforﬁard maﬁner by an existing resolution-type theorém-proving
program.

E. ' Other Approachés

' Several other dﬁprbaches to the frame problem have been
suggested, althoﬁgh féwbhavé‘been worked out in sufficient detail to
test on a computef.

Richard E; Fikes at Sﬁl is deveiobiﬂg a system whose formal
framework is simiiar to that of D abové ("contexts and context gfaphé"),
but which does not use resolution techﬁiques. Instead, proofs-are
strongly dependent dpon the sémanfiqs 6f the 1ogic,.and the probleﬁ
solver proceeds by a heuristic, goal-directed, cﬁse—énalysis'appronch.
This work is still in an early stage of devéldpment.

Eric Sandcwnll at Sfanford is extending some ideas suggestéd
by John McCafthy for lormalizing ihc coﬁcepts of cadsnlity and time
dependénce, usiﬁg a method broposed by J. Alan Robinson for embeddiﬁg
higher order logic in first-order ﬁredicate calculus. Thé:rcsulting

system provides an interesting model for inevitable sequences of events

62

(e.g. "if it is raining then thingS'will.get wet,") but may not be as
useful for describing alternative bossiblevactions by an external agent
(e.g., the robot).

Methods for proving theoremé in higher order predicate calculus
are being developed in several places, and thé use of fhis more powerful
formalism may eventually vastly simp]ify our tasks. Finally, McCarthy
and Hayes(l) suggeét some other appronéhe; including modal logics and
counterfactuals, but the details have not been extensively explored.

v CONCLUSIONS

This paper has described the frame problem and the principal
methods that have been proposed for solving it.

Let us review the approaches listed above. A, complete frame and
frame-transition descriptions, was simply a stage-setting-"straw man"'
that we would not consider actually using. B, thehlogic-cum—staté~
variable approaéh, is beautifully elegaht.for "foy" problems, but both the
representational effort and.the théorem*proving effort grow explosively with
problem complexity. C, the world predicate idea, preserves some of the.
elegance ol approach B while cnrryink ﬁlong hecessary [rame information
implicitly; however, it places a burdeﬁAon theorem-pro;ing abilities in
new domains and requires an awkward use of two levels of logical repre-
sentation (that is, relatioﬁs émbng the n—tuplés in the model must be
defined‘in terms of the-world prediééte), SO thaf the practicality of
the approach is open io serious question. Approach D, the use of contexté
and context graphs (without explicit state nameé in the logic), is a more-
or-less brute-force attempt to combine the use of first-order theorem-

proving methods with a GPS-like structure of subgoals and operators;

63

although the bookkéeping-problems_are complicated, they seem to be tractable,
S0 thnt.the approach is reasonably promising. anally, under F we ﬁenpioned
several interesting‘ideas that warrant further ekploration before they can
be meaningfully compqred“with the other‘approachesf

‘Until now most research ip problem soiving has dealt w;th fairly
static'situations in nnfrow subject domains. As we become interes£ed
in building complete artificially independent systems{ a new kind of
problem—sélving research emerges: We must study how to solve problems
in an environment containing a lﬁrge store of knowledge, while consider-
ing the possible effgcts'of a variety of Sequences of actions., This
paper has described some of the first exploratqry steps into this
important area Qf research.

'V ACKNOWLEDGMENT o o e
Many of the ideas discussed above, including deve}qpment of the
contexts and context graphs_approach, are the result of joint discussions

betWeen the author apd L; S. éoles, R. E, Fikes, J. H. Munson, and
N, J. Nilsson. The 'world predicate" idea is completely due_to
R. Waldinger. C. C. Green developed the state variable approach, and he
is largely responsiblg for our egrly realization of the importance of
the frame prqblem.

The yesearch described herein is supported by the Advanced Research
Projects Agency of the Department of Defense, and by fhe National Aero-

nautics and Space Administration under Contract NAS12-2221.

64

REFERENCES

McCarthy and Hayes, "Some Philosophical Problems from the Stand-

point of AI," Machine Intelligence 4, B, Meltzer and D. Michie,

eds. (Edinburgh University Press, Edinburgh, Scotland, 1969).
B. Raphael, "The Relevance of Robot Research to AI," in Formal

Systems and Non-Numeric Problem Solving by Computer (Springer-

Verlag, 1970).

G. W. Ernst and A. Newell, GPS: A Case Study in Generality and

Problem Solving (Academic Press, New York, N.Y., 1969).

C. C. Green, "Applicntion of Theorem Proving to Problem Solving, "

Proc. International Joint Conference on Artificial Intelligence,

Washington, D.C.,-May 7-9, 1969.
C. Green and B. Raphael, "The Use of Theorem-Proving T chniques

in Question-Answering Systems," Proc. 1968 ACM Conference, Las

Vegas, Nevada (August 1968) .

R. Waldinger, 'Robot and State Variable, TN 26, Artificial
Intelligence Group, Stanford.Besearch Institute, Menlo Park,
California (April 1970).

3. Raphael, "Robot Problem Solving without State Variables,

N 30, Artificial Intelligence Group, Stanford Research Iﬁstitute,

Menlo Park, California (May 1970).

65

APPENDIX D

STRIPS: A NEW APPROACH TO THE APPLICATION OF
THEOREM PROVING TO PROBLEM SOLVING

67

Page Intentionally Left Blank

Page Intentionally Left Blank

1 INTRODUCTION

A. Overview of STRIPS

This note describes a new problem-solving program called
STRIPS (Sfanford Research Institute Problem Solver). The program is
now being implemented in LISP on a PDP-10 to be used in conjunction
with robot research at SRI. Even though the implementation of'STRIPS,
is not yet complete, it seems to us important to discuss some of its
planned features so that they can -be compared with other on-going work
in this area.

STRIPS belongs to the class of problem solvers that search
a space of "world models'' to find one in which a given goal is achieved.
For any world model, we assume there exists a set of applicable operé-
tors each of which transforms the world model to some other world model.
The task of the problem solver is to find some composition of operators
that transforms a given initial world model into one that satisfies some
particular goal condition.

This framework for problem solving, discussed at length by
Nilsson,l* has been central to much of the research in Artificial

Intelligence. A wide variety of different kinds of problems can be

. t .
posed in this framework. Our primary interest here is in the class of

References are listed at the end of this techrnical note.

It is true that many problems do not require search and that special-
ized programs can be written to solve them. Our view is that these
special programs belong to the class of available operators -and that
a search-based approach can be used to discover how these and other
operators can be chained together -to -solve - even more difficult problems.

71

problems faced by a robot in rearranging objects and in navigating.

The robot problems we have in mind are of the sort that require quite
complex and general world models compared to those needed in .the solu-
tion of puzzles and games. Usually in puzzles and games, a simpie matrix
or ligt structure is adequate to represent a state of the problem. The
world model for a ropot problem solver, however, needs‘to include a

large number of facts and relations dealing with the position of the
robot and the positions and attributes of "various objects, open spaces,
and boﬁndaries.

Thus, the first question facing the designer of a robot
problem solver is how to represent the world model. A convenient answer
is to let the wo;ld Pode}rtgke_the form of statements in some soit_of»
genergl logica} formalism. For STRIPS we have chosen the. first-order,
predicate calculus mainly because of the existence of computer programs
for finding proofs in this system. Initially, STRIPS will use the QA3
theorem-proving system2 as its primary deductive mechanism.

Goals (and subgoals) for STRIPS will be stated as first-order
predicate calculus wffs (well formed.formulas). For example, the task
"push a box to place b" might be stated as the wff (8Fuw) [BOX(u) A AT(u,b)],
where the predicates have the obvious interpretation. The task of the
system is to find a sequence of operators that will produce a world model
in which the goal can be shown to bg true. The QA3 theorem prover will
be used to determine whether or not a wff corresponding to a goal or sub-
goal is a theorem in a given world model.

Although theorem-proving methods will play an important

role in STRIPS, they will not be used as the primary search

72

mechanism. A graph of world models (actually a trée) will be generated
by a search process that can best be described as GPS-like (Ernst and
Newe113). Thus it is fair fo say that STRIPS is a combination of

GPS and formal theorem-proving methods. This combination allows objects
(world models) that can be much more coﬁplex aﬁd generalbthan’any of
those used in pre&iously implemented versions of GPS. This use of world
models consisting of sets of logical statements causes some special
problems that are now the subject of much research in Artificial Intelli-
gence. In the next and following sections we will describe some of these
problems and the particular solutions to them that STRIPS employs.

B. The Frame Problem

When sets of logical statements are used as world models,
we must have some deductive mechanism that allows us to tell whether or
not a'given model satisfies the goal or satisfies the applicabil.ty con-
ditions of various operafors. Greén4 implemented a problem-solving
system based on a theorem prover using the resolution principle.
In his system, Green expressed the results of operators as logical state-
ments. Thus, for example, to describe an operator goto(x,y) whose effect
is to move a robot from any place x to any other place y, Green would use
the wff

(Vx,y,s) [ATR(x,s) = ATR(y,goto’ (x,y,s))] ,

where ATR is a predicate describing the robot's position. Here, each
predicate has a state term that names the world model to which the predi-

cate applies. Our wff above states that for all places x and y and for

73

all states s, if the robot is at x in state s then the robot will be
at v in the stnte-goto'(x,y,s) resulting from applying the 5222 operator
to state s.

With Green's formulation, any prqblem can be posed as a
theorem to be proved. The theonem will have an existentially quantified
state term, s. For example, the problem of pushing a box B to place b
can be stated as the wff'

(ds) AT (B,b,s) .

If a constructive proof procedure is used, an instance of the state

. 2
proved to exist can be extracted from the proof (Green, Luckham

5 s
and Nilsson') . This instance, in the form of a composition of

operator functions acting on the initial state, then serves as alsolu~

tipn tnvtne.problem.

Green's formulation has all the appeal (and limitations) of
any general-purpose problem solver and represents a significant step
in the development of these systems. It does, however, suffer from
somé_serious disadvgntages that our present system attempts to over-v
come. One difficulty is caused by the fact that Green's system combines
two esséntially different kinds of searches into a single search for a
proof of the theorem representing the goal. One of these searches is
in a space of world models;_this search proceeds by applying operators
to these models to produce new models. The second type of search con-
cerns finding a proof fhat a given world model satisfies the goal
theorem or the applicability conditions of a given operator. Searches
of this type proceed by applying rules of inference to wffs within a

world model.

74

When these two kinds of searches are combined in the largely syntactically
guided proof-finding mechanism of a general theorem prover, the result is
gross inefficiency. Fhrthermore, it is much more difficult to apply any
available semantic information in the 6ombined search process,

The second drawback of Green's system is even more serious.
The system must explicitly describe, by special éxioms, thosé relations
not affected by each of the operators. For example, since typically the
positions of objects do not change when a robot moves, we'musf include
the statement

Vu,x,y,2,s) [OBJECT (u,s) A AT (u,x,s) = AT (u,x,goto’ (y,z,s)]

Thus, after every application of goto in the search for a solution, we
may need to prove that a gi?en object B remains in the game position in
the new state if the position of B is important to the completion of the
. solution, o

The problem posed by‘thé e&ident fact that operatbrs affect
certain relations énd don't affect others is sbmetiﬁes called the frame

6,7 Since, typically, most of the wffs in a world model will

groblem;
not be affected by an operator application, our approach will be to name
only those relations that are affected by an operator and to assuﬁe that
the unnamed relations remain Qalid in the neQ world model. Sincé proving
that certain relations are still satisfied in successor‘states is tedious,
our convention can drastically decrease the search effort required.

Because we are adopting special conventions about what happens

to the wifs in a world model when an opérdtor is applied, we have chosen

75

to take the process of operator application out of the formal deductive
"system entirely. 1n our approach, when an operator.is applied to a
world mpdel, the computation of the new world model is done by a special
extra-logical mechanism. Theorem-proving methods are used iny within

a given world model to answer questions about it concerning which opera-
tors are applicable and whether or not the goal has been satisfied. By
separating the theorem proving that occurs within a world model from the
search through the space of models we can employ separate strategies for
these two activities and thereby improve the overall performance of the

system.

II‘ OPERATOR DESCRIPTIONS AND APPLICATIONS

| The operators are the basic elements out of which 'a solution is
built. For robot—iike problems we can imagine that the operators corre-
spond to routines or subprograms whose execution causes a robot to take
certain actions. For example, we might have routines that cause the
robot to turn and move, a routine that causes it to go through a doorway,

a routine that causes it to push a box and perhaps dozens of others.

When we discuss tﬁe épplication of problem-solving techniques to robot
problems, the reader shéuld keeb in mind the diétinction between

an oéerator and its aésociated rdutines. Execution of routines actually
causes the robot to také actions. Application of operators to world
models occurs during the plaﬁning>(i.e., problem solving) phase when an
ﬁttempt is being made to fiﬁd a sequence of operators whose associatedv

routines will produce a desired state of the world. Since routines are

76

programs, they can have parameters that are instantiated by constants
when the routines are executed. The associated operators will also have
parameters, but as we shall soon see, these can be left free at the time
they are applied to a model.

In order to chain tqgether a sequénce of operators to aphieve a

given goal, the problem solver must have descriptions of the operators.

The descriptions used by STRIPS consist of three major components:

(1) Name of the operator and its parameters,

(2) Preconditions, and

(3) Effects.
The first component consists merely of the name of the operator and the
parameters taken by the operator. The second component is a formula in
first-order logic. The operator is applicable in any world model in
which the precondition formulaAis a theorem. For example, the operator
push(u,x?y) which models the action of the robot pushing an object u

from location x to location y might have as a precondition formula
@Ex,w) [AT (u,x) N ATR(x)] .

The third component of an operator description defines thé effects
(on a set of wffs) of applying the operator. We shall discuss the process
of computing effects in some detail since it plays a key role in STRIPS.
When an operator is applied, certain wffs in the world model are no longer
true (or at least we cannot be sure that they are true) and certain other
wifs become trué. Thus to combuté one world model from another involves

%* ’ .
copying the world model and in this copy deleting some of the wffs and

* . .
In our implementation of STRIPS we employ various bookkeeping techniques
to avoid copying; these will be described in a later section.

77

adding others. Let us deal firét with the set of wifs .that should be
added as a result of an operatof application.

The set of wffs to be added to a world model depends on the results
of the routine modeled by the operator. These results are not completély
specified until all of the parameters of the routine are instantiated by
constants. For example, the operator goto(x,y) might model'the robot
moving from location x to location y for any two locations x and y. When
this operator's routine isbexecuted, the parameters x and y must be
instantiated by constants. However,, we have designed STRIPS so that an
operator can be applied to a world model with any or all of the operator's
parameters left uninstantiated. For exampie, suppose we’apply ﬁhe opera-
tor gbto(a!x) to a world model in which‘the robot is at some location* a.
If the parameter x is unspecified, so will be the resulting world model.
We coulé say that the application of goto(a,x) creates a family or schema
owaorld models parameterized by x. The power and efficiency of STRIPS
is increased by searching in this spacé of world model families rather
than in the larger space of individual world models.

If we are to gain this reduction in search space size, then we
must be able to describe with a single set of predicate calculus wiffs
the world model family resulting from the application of an operator with
free parameters. One way in.which this can be done is to use a state’
term in each literal of each wff. Thus, the principal effect of applying
the operator goto(a,x) to some world model so, say, is to add the wff

(Vx) (Ts)ATR(x,s)

*

We shall adopt the convention of using letters near the beginning of
the alphabet (a,b,c,etc.) to stand for constants and letters near the
end of the alphabet (u,v,w,x,etc.) as variables.

78

which states that for all values of the parameter x, theré exists a world
model s in which the robot is at x. Witﬁ expressions of this sort, a
set of wffs can represent families of worid models. Selecting specific
values for the'parameters selects specifié membe?s of the family.
Anticipating the use of a resolution—baéed theorem prover in
) :

STRIPS, we shall always express formulas in clause form.

Then the formula above would be written
ATR(x,goto'(a,x,so))

where goto'(a,x,so) is a function of}x replacing the existentially
quantified state variable. The value éf goto'(a,x,so), for any x, is
that world model produced by applying the operator goto(a,x) to world
model S, Recall that any variables (such as x in the formula above)
occurring in a clause have implicit universal quantification.

The description of each operator used in STRIPS contains a list
of those clauses to be added when computing a new world model. This
list is called the add list.

The description of an operator also includes information about
which clauses can no longer be guaranteed true and must therefore be
deleted in constructing a new world model. For example, if the operator
goto(a,y) is applied, we must delete any clause containing the atom*
ATR(a) .- Each operator description contains a list of atoms, called
the delete list, that is used to compute which clauses should be deleted.
Our rule for creating a new world model is to delete any clauses contain-
ing atoms (negated or unnegated) that are instances of atoms on the delete
list. We also delete any clauses containing atoms of which the atoms on

*
An atom is a single predicate letter and its arguments,
79

on the delete list are instances. The applicafion of these rules might
sometimes delete’some clausés unnecessarily, but we want to bé guargnteed
that thé néw world model willvbe consistent if the old one was. |

When én operator descfiptioﬁ is written, if may nﬁt be possible to
name expliéitly all the atoms thatAshould appear on the délete list, For
example, it may be the case thét a worid model contains claﬁses that are
derived from other clauses in the ﬁodél. Thﬁs from AT (Bl,a) and f;oﬁ
AT(B2,a+)) we might derive NEXTTO(B1,B2) and inéert it.into the moéel.
Now, if one of the clauses on which the derived élause depends is deleted,
then the derived clause must be deleted also.

We deal with this problem by defining a set of primitive predicates

(e.g., AT? ATB{ BOX) and relating all other predicates to this primitive
set. In particular, we requiré the delete list of an operator descrip--
tion to indicate all the atoms containing primitive predicates which should
be deleted when the operator is applied. Also, we require that any non-
primitive clause in the world model have associated with it those primitive
clauses on which its validity depends. (A primitive clause is one which
contains only primitive predicates;> For example, the clause NEXTO(B1,B2)
would have associated with it the clauses AT(Bl,a) and AT(B2,a+d).

By using these conventions we can be.assured that primitive clauses
will be'correctly deleted during operator applications, and that the
validity of nonprimitive clauses can be determiped whenever they are to
bé used in a deduction by checking to see if all of the primitive clauses

on which the nonprimitive clause depends are still in the world model.

80

In the next section, we~shall describe the search process for
STRIPS and also present a specific example in which the process of

operator application is examined in detail.

111 THE OPFRATION OF STRIPS

A, Computing Differences and Relevant Operators

In a very simple problem-solving system we might first apply
all of the applicaﬁie operators to the initial world model to create a
set of succeésor models. We would continuelto apply 511 apﬁlicable
operafors to these successors and to their descéndants until a modél
was produced in which the goal formula was a theorem. Checking tb see
which operators are applicable and to see if the goal formula is.a
theorem are theorem—-proving tasks that<cou1d be accomplished by a deduc-
tive system such as éAB. However, since we envision uses in which tﬁe
number of operators apﬁlicable to agy given world model might be quite
large, such a simple system Qouid generate an undesirably large tree of
world models and would thus be impractical.

Insteéd Qe would like to use the GPS strategy of extracting
"differences' between the present world modél gnd the goal and of identi-
fying operators that are "relevant" t6 reducing fhese differences. Once
a relevaht operator has been determined; we attempt to solve the sub-
proslem ofiproducing a world modél'to which it is applicable. If Such
a model is found thén we apply thé relevant operator and reconsider the
origiﬁal goal in the resulting model.

When an operator is found to be relevant, it is not known

13 where it will occur in the completed plan; that is, it may be applicable

81

to the initial model and therefore be the first operator applied, its
effects ﬁay imply’ the goal so tﬁat it is thé last‘operator applied, or
it may be some intermédiate s?ep toward ihe goal.. Because of this
flexibility, the STRIPS séérch strategy éombines many of the advéntaées
of both forward search (from the initial model toward the goal) and
backward search (from the goal toward the initial models.

Two key-éteps in this stratégy inQoive cﬁmputing differences
and finding operators relevént to reducing tﬁese differences. VOne of
the novel features of dur system is that it uses a theorem prover as an
aid iﬁ these gteps. Tﬁe foliowing description of these p?océsses assumes
that tﬁe reader is familiar with the terminélogy of résolution-based
theorem—-proving systems.

-éuﬁpose we have a world"médéikcbﬁsisiing of a sef,As:;bfj
clauses, and that we have a gbal formula whose ﬁegation is repreéented
by the set, G, of clauses. The difference;computing mechanism attempts
to find a céntradiction for the set S U G using a resolu?ion fheorem
provef such as QA3. (The theofeﬁ prover Would likely uée, at leasf,
the set-of-support strategy with G the set receiving support.) If a
co_ntfadiction .is found, tllell'tile "difference" 'is nil and STRIPS would
conclude that the goal is satisfied in S.

Our interést at the momenf tﬁough is in the caseAin whicﬁ QA3
ca;not find a contradiction after investing soﬁe prespecified amodnt of
effort. L.et R be thé‘sef consisting of the clauseé iﬂ G>and the resélv-

ents produced by QA3 which are descendants of G. Any set of clauses D in

[\

82

R can be taken as a 'difference between S and the goal in the sense
that if a world model were found in whiph a‘clause in D could be contra-
dicted, then it is likely* th%t the proof of the goal could be completed
in that model.

STRIPS creatgs differences by heuristically selecting subsets
of R, each of which acts as é difference. The selection process considers
such factors as the number of literals in a clause, at what level in the
proof tree a clause was generated; and whether orlnot a clause has any
descendants in the proof tree.

The quest for relevant operators proceeds in two steps. In
the first step an ordered list of candidate operators is created for each
difference set. The selection of operators for this list is based on a. simple
comparison of the clauses in the difference set with the add lists in the
operator descriptions. For exampie, if a difference set contained a‘clause
having in it the robot position predicate ATR, then the operator goto
would be considered a candidate operator for that difference.

The second step in finding an qperatof relevant to a given
difference-set involves employing QA3 to determine if c}auses on the add
list of a candidate operator can be used to 'resolve away" (i.e., continue
the proof of) any of the'clauses in the_differencé set. If, in fact, QA3 can
produce new resolvents which are descendants of the add list clauses,
then the candidate operator (properly'instantiated).is considered to be

a relevant operator for the difference set.

* . -)
That is, a proof could be completed if this new model still allows a
deduction of this clause in D.

¢

83

.
To complete the operator-relevance test STRIPS must determine
which instances of the operator are relévant. For example, if the differ—
ence set consists of,the‘unit clauées -ATR(a) and ~ATR(b), then goto(x,y)
is a relevant éperator only when y is ins%antiated by a or b. .Each new
resolvent which is a descendant of the operator's aad 1is£ claﬁses is
used to form a relevant instance of the operatof by épplying to the
operator's parameters the same instahtiations that wefe'made during the
production of the resolvent. Hence the considefation of one candidate
operator ﬁay produce several relevant operator instances.
One of the important effects of the difference-reduction
process is that it usually produces specific instances fof the operator

parameters. Furthermore, these instances are likely to be those occur-

ring in the final solution, thus helping to narrow the search process.
So, although STRIPS has the ability to consider operators with uninstan-
tiated parameters, it also has a strong tendency toward instantiating

these parameters with what it considers to be the most relevant constants.

B. Thé STRIPS Exécutive
STRIPS bégins by~attémptiné to form differencés between the
initial world model, So’ gnd the main goal (és described in the pfevious
section) . If no differences are found, then the problem is trivially
éolved. If differences are found, then STRIPS computes a set of operators
rele?ant to reducing thosé differencés. |
Suppose, for.exsmﬁle, that STRIPS finds two iﬁstantiated

and OP,_, relevant to reducing the differences between

operato?s, OP1 5

so_and the main goal. Let the (instantiated) precqndition formulas for

"y

84

these operators be denoted by PC1 and PC2, respectively. "Thus STRIPS
has found two ways to work on the main problem:
1) Produce a world model to which OPl is applicable,
apply OPl’ and then produce a world model in which the
main goal is satisfied, or
(2) Produce a world model to which OP2 is applicable, apply
OP2, and then produce a world model in which the main
goal is satisfied.

STRIPS represents such solution alternatives as nodes on a

search tree. The tree for our example can be represented as follows:

(s ,G))
O [0}

(So,(Gl,Go)) (so’(Gz’Go)) ’

where Go’Gl’ and G2 are sets of clauses corresponding to the negations

of the main theorem, PC1 and PC2, respectively.
In general, each node of the search tree has the form

({world model),{goal 1ist)). The subgoal being considered for solution
at each node is the first goal on that node's goal list; The last goal
on each list is the negation of the main goal, and each subgoal is the
negation of the precopditions of an operatqr. Hen;e, each subgoal in

a goql list represents an attempt to apply an operator which is relevant
to achigving the next goal in the goal 1is§.

. .sG

Whenever a new node, (si,(Gm,G ,Go)), is constructed

m-1"'" 1

and andded to the search tree as a descendant of some existing node, the
new node is tested for goal satisfaction. This test is performed by

QA3 which looks for a contradiction to sS4 U Gm.

85

If a contradiction is found and m is o (i.e., the node has
the form (Si,(Go))), then the main goal is satisfied in sS4 and the

problem is solved. If a contradiction is found and m is not o, then

nGm is the negation of a precondition formula for an operator that is

applicable in s, . STRIPS produces a new world model, s;, by applying
to si the operator corresponding to Gm. The node is changed to
(Sil(Gm;l,."’Gl’GO)) and the tgsf for goal satisfaction is performed
on it again. This pfocess of changihg the node continues until a goal is
encountered which is not safisfied or until the problem is solved.

If no contradiction is found in the goal satisfaction test,
QA3 will return a set R of clauses consisting of the clauses in Gm
afé reso}yen?s tpat arcAdesgpnqénts_of‘clagses»inAGm. _This set of _
resolvents is attached to the node and is used for generating successors
to the node.

The process for generating'the successors of a node
PRSI ¢

(si,(Gm,Gm_ 'Go)) with R attached involves forming difference

1 1

sets {Di} from R and finding operator instances relevant to reducing
‘thése différeﬁces (as described in the previous section). For each
operdtor instance found to be relevant, a new offspring node is éfeated.
This new node is formed with the same “orla model and goal list as its
parent node.‘ The goal of finding a world modél in which the relevant
operator instance can be applied is added tb the new node. This is.

done by creating the appropriate instance of the operator's preconditions
'and'addiﬁg the negatidn of the instantiated preconditiOné to the begin-

ning of the new node's goal list.

86

Since the number of opefafors relevant to reducing sets of
differences might be rather large in some cases, it is poésible that a
given node in the search tree might have a large number of successors.
Even before the successors are generated, though, we can order them
according to the heuristic merit of the operators and difference sets
used to generate them. The process of computing a successor node can
be rather lengthy, and for this reason STRIPS actually computes only
that single next successor judged to be best. STRIPS adds this successor
node to the search tree, performs a goal-satisfaction test on it, and
then selects another node ffom the set of nodes which still have uncom-
puted successors. STRIPS must therefore associate with each node the sets of
differences and candidate 6pepators it has already used in creating
successors.

STRIPS will héve a heuristic mechanism to select nodes with
uncbmputed successors to work on next. Fof this purpose weAwill
use an evaluation function that takes into account such fgctors as the
number and types of literals in the remaining goal formulas, the number
of remaining goals, and the number and types of literals in the difference
sets.

A simple flowchart of the STRIPS executive is shown in’

Figure 1,

0E-65Z8-vi

JAILNDO3X3 SdIH1S 3IHL HO4 LHYVHIMOTY | 3HNOIL

'

1IX3 34NV |

300N
HOSS300NS
v 3LNdWOD
pa1dayes | 1517 V09 WOoH4
apoN V09 1SHI3 ONIAOWIY Lixa
GNV 13GOW GTHOM Ol S999nS -
HOLVHIO ONIA1ddY

HOSS3DONS GILNJWOINN

A8 JQON 3JONVHO

NV ONIAVH
Sapou JQON Vv 10313S
yons oN
300N 3HL 01
SIN3IATOS3Y
HOVLiLY
|
ON

|

SAA

é{sn
V09 3HL NO

(EVD S3Sn)
¢Q3N4SILVS
1S171-IV09 3IHL NO
Iv09 1SHI4
JHL SI

SIV09 H3HLO
JY3IHL YV

ON

SAA

3GON TVILINI 3LV3IHD

88

C. An Example

An understanding of how STRIPS works is aided by tracing
through a simple example. Consider the configuration shown in Figure 2
consisting of two objects B and C and a robot R at places b, ¢, and a,
respectively. The problem given to STRIPS is to achieve a configuration
in which object B is at place k and in which object C is not at place c.

The existentially quantified theorem representing this problem
can be written

If we can find an instance of s (in terms of a composition of operator
applications) that satisfies this theorem, then we will have solved the

problem. The negation of the theorem is
Go: ~AT(B,k,s) V AT(C,c,s)

Let us suppose that STRIPS is to compose a solution using
the two operators goto and push. These oberators can be described as
follows:

1. Eush(u,x,y): Robot pushes object u from pléce X to
place y.

Precondition formula:
(?u,x,g)[AT(u,;,s) A ATh&x,s)]
Negated precondition formula:
~AT (u,x,s) V ~ATR(x,s)
Delete list:
AT (u,x,s)

ATR(x,s)

89

ROBOT

TA-8259-31

FIGURE 2 CONFIGURATION OF OBJECTS AND ROBOT FOR EXAMPLE PROBLEM

90

Add list:
, *
AT (u,y,push’ (u,x,y,s))
*
ATR(y,push’ (u,x,y,s))
%
where s is the state to which the operator is applied.
2. goto(x,y) : Robot goes from place x to place y.
Precondition formula:
({x,s)ATR(x,s)
Negated precondition formula:
~ATR(x,s)
Delete list:
ATR (x,s)
Add list:
P *
ATR(y,goto’ (x,y,s))
The initial configuration can be described by the following
world model:
s : ATR(a,s)
o)
AT(B,b,s)
o
AT(C,c,s)
o
In addition, we have a universal formula, true in all world models,
that states if an object is in one place, then it is not in a different
place:
F: (u,x,v,s)[AT(u,x,s) N (x#y) = ~AT(u,y,s)]
The clause form of this formula is

’ .

F ~AT (u,x,s8) V (x=y) v ~AT (u,y,s)

}
We assume that F’ is adjoined to all world models.

91

STRIPS firstAeonstructs the node No’ consisting of the list
(so,(Go)),-as the roof of the problem-solving tree and tests it for a
solution by attempting to find a contradiction for the set S, U {Go}.
No centfadiction ié feund but some resol&ents can belobtained; among
them are two resolvents of G, and F’:

Rlz ~AT(P,k,s) V (c=y) V ~AT(C,y,s)

and R2: ~AT(B,k,s) V (x=c) V ~AT(C,x,s) .

AQditional resolvents can be produced also, bet these happen all to be
tautologies and can thus be eliminated.f A sophisticated system would
detect that R1 and R2 are identical, so xet us.euppose fhat Rl is the
only resolvent attached to No.

- - Next STRIPS selects a“ﬁode"(No ;S'now the only one available)
and begins to'generate successors. first it eelects a difference set'
D1 from the.set of resolvents attached to No' Iﬁ this case if sets

D1 = {Rl}. Then STRIPS composes a list L of candidate operators for

reducing D Here L would consist of the single element push.

1

Next STRIPS attempts to reduce D1 using clauses on the add

list of push. Again using theorem-proving methods we obtain two resolv-
:) . i

ents from D1 and AT(u,y,push'(u,x,y,s)

. o
/~AT(B,k,pushl(C,x,y,s NV (c=y)

. %
and ~AT (C,y,push’ (B,x,k,s)) V (c=y) .

TWe are assuming a set-of-support strategy with the initial support
set consisting only of the negated theorem. :

92

Assuming that these resolutions represent acceptable reductions in the
difference, we extract the state térms of the resolvents to yield
appropriate instances of the relevant 6perator. This gives us:

0P1: push(C,x,y)

and OP2: push (B, x,k)

Next, we construct the negated versions of the precondition

formulas for OP1 and_OPz:

Glz ~AT (C,x,s) V ~ATR(x,s)

and A Gzz ~AT(B,x,s) V ~ATR(x,s) .

These formulas are then used to construct two successor nodes

le (so,(Gl,Go))

and N2: (So’(GZ’Go)) .

These nodes would be immediately tested for solutions. For brevity, let:
us consider just Nl' In testing for a solution STRIPS attempts to find

a contradiction for s, U Gl'

Again no contradiction is found, but the following resolvents
are obtained:
R.: ~ATR(c,s) from G_ and AT(C,c,s)
3 o 1 o

and R, ~AT(C,a,sO) from G

4 and ATR(a,sé) .

1

Although these clauses represent differences between so and Gl’ we do

not insist that these differences be reduced in Sq e We would accept a
reduction occurring in any world model, so STRIPS rewrites the clauses

as .

’ .

R ~ATR (¢, s)

/ .

and R ~AT(C,0,8)

93

These clauses refer to preconditions for pushing object C, To contradict

R3' the robot must be at c;'td contradict R4"object C must be at a.

’

Suppose our sjstem recognizes that an attempt to contradict R4

is cir-
cular and attaches just the set {Rs'} to node Nl.
Next STRIPS selects a node for consideration. Suppose it

selects Nl' In generating successors, it sets the difference set, Dz,

to {R}.
o {r,"]

The list of operators useful for reducihg D; consists only of
gofo. STRIPS now attempts to perform resolutions between the clauses on

The clause in D, resolves with ATR(y,goto’

th 1i D..
e add list of goto and 2 2

*
(X,y¥,s)) to yield nil, and answer extraction produces the instance sub-

stituted for the state term, namely

. '1 *
R - Jo X o « M 6 JPOX - .
Thus STRIPS identifies the following instance of goto:

OP3: goto(x,c) .

The associated negated precondition is

G?: ~AT (R,x,s)

STRIPS then constructs the successor node

) N.: (So,(GS,'G’

)
3 ,Go,)

1

and immediately attempts to find a contradiction for S, U GS" Here a

contradiction is obtained, and answer extraction yields the state term:

goto'(a,c,sé) .
Thus STRIPS applies goto(a;c) to S, to yield

sy° ATR(c,gofo/(a,c,so))

AT(B,b,goto'(a,c,so))
AT(C,c,goto'(a,c,so)) "

Node N3 is then changed to

“4: (sl.(ul,GO))

94

and STRIPS immediately checks for a cqntradiction for s, U Gl. Again a
contradiction is found; answer extraction produces the following instances
for x and s:
X =cC
and s = goto'(a,c,sos .
Thus STRIPS applies the following ipstance of OP1:
push(C,c,y)
The result is the world model family 52 consisting of the following clauses:
S, ATR(y,push'(C,c,y,goto'(a,c,so)))
AT(B,b,push'(C,c,y,goto'(a,c,so)))
AT(C,y,push'(C,c,y,goto'(a,c,sé)))
Note that this application of the operator push involved an uninstan-
tiated parameter, y.
Node N4 is then changed to
NS: (52,(G0))
and STRIPS checks for a contradiction for s, U Go. In doing so it pro-

duces the following tree of resolutions:

~AT (B,k,s) V AT(C,c,s) ~AT(u,%x,s8) V (x=y) V ~AT(u,y,s)

.-/’
~
~AT (B,k,s) V (c=y) V ~AT(C,y,s)
N

AT(C,y,push'(C,c,y,goto'(a,c,so)))

hRN

«AT(B,k,push’(C,c,y,gpto'(a,c,so)) V (c=y) .

95

The clause at the.root produces one of the resolvents to be attached

to N5, namely

RS: ~AT (B,k,s) V (c=y) .

Suppose STRIPS selects N5 next and begins generating successors
based on a difference D3 = {Rs}. The operator list for this difference
consists solely of push, ana_the relevant instance of push is found to be

OP4: push(B,x,k)

Its (negated) precondition is

G,: ~AT(B,X,s) V ~ATR(x,s) .

A successor node to N5 is then

N6: (sz,(G4,Go)) .

STRIPS then finds a contradiction between s, and G4 and extracts .

2

s = push'(C,c,b,goto'(a,c,so))

and x = b. Therefore, it applies pu§h(B,b,k) to an instance of 52

(with y = b) to yield

S, ATR(k,push’(B,b,k,push'(C,c,b,goto'(a,c,so))))

AT(B,k,push'(B,b,k,push'(C,c,b,goto'(a,c,so))))
‘AT(C,b,push/(B,b,k,push'(C,c,b,goto'(a,c,so))))

Node N6 is then changed to node

N7 . (SS, (GO))

STRIPS can find a contrndiction.betweén S and GO [assuming that the
equality predicate (b=c¢) can be evaluated to be false] and exits
successfully. The successful plan is embodied in the state term for

s We show the solution path'in the STRIPS problem-solviné tree in

3°

Figure 3.

96

No: (S, (G))

Ny: (S, (G, G,)) : Ny (8, (G, G,

Ng: (S, (G5 G, Go))

Ng: (8 (G G
Ng: (S5 (G,)

!

Ng: (S,51G4 G, D) ‘ Goal achieved
Ny: (S5 (Gg)

TA-8269-32

FIGURE 3 SEARCH TREE FOR EXAMPLE PROBLEM

97

D. Efficient quresentatioﬁ of World Models

A primary desigh issue in the implementation of a system
such as STRIPS is how to satisfy the storage requirementé of a search
tree in which each node may contain a different world.model. We would
like to use STRIPS in a robot or question-answering environment whefe
the initial world model may consist of hundreds of wffs. For such
Vapplications it is infeﬁsible to'fecbpy complefel§ a world model each
time a new model is produced by application of an operator.

‘We have dealt witﬂ.this prdblem'in STRIPS by first making
the assumption that most of the wffs in a problem's initial world model
will not be changed by'thé application of operators. This is certaiﬁly
 true for the class of robot éroblems_we are currently concerned with.
For these problems most of the wffs in a modéi.describe rooms, walls,
doors, and objects, or specify general properties of the world which
are true in all models. The only wffé_that.might be changed in this
robot environment are the ohes that: describe -the status of the robot and
any objects which it_manipulates;

Given this assumption, weﬂhave implemented the following
schemé for handling multiple world models. All the wffs for all world
models are stored in a commén mehofy'structure. Associated with each
wiff (i.e., clause) is a visibility flag, and QA3 has been modified to
consider only clauses from the memory structure which are marked visiblé.
Hence, we can 'define' a particular world model for QA3 by marking that
model's clauses visible and all other clauses invisible. When clauses

are entered into the initial world model they are marked visible and

98

given a variable as a state term. Clauses not changed will remain
visible throughout STRIPS' search for a solution. |

Each world model produced b& ST#IPS is defined by two clause
lists. The first list, DELETIONS, names all those clauses from the
initial world model which are no longer present in the model being
defined. The secénd list; ADDITIONS, names all those clauses in the
model being defined which are not also in the initial model. These lists
represent the changes in the initial model'needeq to form the model being
defined, and our assumption implies they will contain énly a small number
of clauses.

To specify a given world model to’QAS,.STRIPS marks visible
the clauses on the model's ADDITIONS list and marks invisible the clauses
on the model's DELETIONS list. When the call to QA3 is completed, the
visibility markings of these clauses are returned to their previoﬁs
settings.

When an operator is applied to a world model, the DELETIONS
list of the new world model is a copy of the DELETIONS list of the old
model plus any clauses from the initi;l model which are deleted by the
operator. The ADDITIONS‘list of the new model consists»of the clauses
from the old model's ADDITIONS list as transformed by the operator plus
the clauses from the operator's add list.

To illustrate this implementation design we list be€low the
way in which the world models described in the exampie of the previous
section are represented:

s : ATR(a,s)
o
AT (B,b,s)
AT (C,c,s)

99

s.: DELETIONS:
ADDITIONS:

s : DELETIONS:

ADDITIONS :

ADDITIONS:

's.: DELETIONS:

ATRkays)

ATR(c,goto'(a,c,so))

\ATR(a,s)

AT(C,c,s)

ATR(y,push'(C,ny,goto'(a,c,so)))
AT(C,y,push'(C,c,y,goto’(a,c,so)))_

_ ATR(a,s)

AT(C,C)S)
AT(B,b,s)

ATR(k,push'(B,b,k,push'(c,c,b,gdto'(a,c,so))))
RT(B,k,push'(B,b,k,push'(C,c,b,goto'(a,c,so))))
AT(C,c,push'(B,b,k,push'(C,c,b,gotol(a,c,so))))

"IV FUTURE PLANS AND PROBLEMS

The implementation of STRIPS now being completed can be extended

in several directions. These extensions will be the subject of much of

our prpblemrsolving research activities in the immediate future. We

shall conclude this note by briefly mentioning some of these.

We have seen that STRIPS constructs a problem-solving tree whose

nodes represent subproblems.

In a problem-solving process of this sort,

there must be a mechanism to decide which subproblem to work on next.

We have already mentioned some of the factorg that might be incorporated .

in an evaluation function by which subproblems can be ordered according

to heuristic merit. We ékpéct to devote a good deal of effort to devis-

ing and experimenting with various evaluation functions and other order-

ing techniques.

100

Another area for future research concerns synthesis of more complex
procedures than those consisting of simple linear sequences of operators.
Specifically we want to be able to generate procedures involving itera-
tion (or recursion).and conditional branching. In short, we would like
STRIPS-to be able to generate computer programs. Several researchersll’s’9
have already considered the problem of automatic program synthesis
and we expect to be able to use some of their ideas in STRIPS.

Our implementation of STRIPS is designed to facilitate the definition
of new operators by the user., Thus the problem-solving power of STRIPS
can gradually increase as its store of operators grows.

An idea that may prove useful in robot applications concerns
defining and. using operators to which there correspond no execution
routines. That is, STRIPS may be allowed to generate a plan containing
one or more operators that are fictitious. This technique essentially
permits STRIPS to assume that certain subproblems ‘have solutions without
actually knowing how these solutions are to be achieved in terms of
existing robot routines. When the robot system attempts to execute a
fictitious operator: the subproblem it represents must first be solved
(perhaps by STRIPS). (In human problem solving, this strategy is employed
when we say: 1 won't worry about tihat [sub]l problem until I get to it.™

We are also interested in getiing STRIPS to define new operators
for itself based on previous problem solutions. One reasonable possi-
bility is that after a problem represented by (SO,(GO)) is solved,

STR1PS could automatically generate a fictitious operator to represent

the solution. It would be important Lo try to generalize any constants

101

appearing in Gb; theée would then be represented by parameters in the
fictitious operator. The.structure of the actual solution would also
have to be examinea in order to- extract a precondition fﬁrmuié,
delete list, and‘ggg_ligg_for the ficfitious operator.

A more ambitious underfaking would be an attempt to synthesize
automatically a robot execution routine corresponding to the new operator.
Of course, this routine would be composed from a sequence of the exist-~
ing routines corresponding to the individual existing operatofs used in
the problem solution. The major difficulty concerns generalizing con-
stants to parameters so that the new routine is general enough to merit
saving, Hewittlo discusses a related prgblem'that he calls
"procedural abstraction.' -He suggests that from a few instances of a
procedure, a general version can sometimes be synthesized., We expect
that our generalization préblem will be aided by an analysis of the
structure of the preconditions and effects of the individual operators

used in the problenm solutidﬁ;

102

ACKNOWLEDGMENT

The development of the ideas embodied in STRIPS has been the result
of the combined efforts of the present authors, Bertram Raphael, Thomas
Garvey, John Munson, and Richard Waldinger, all members of the Artificial

Intelligence Group at SRI.

103

REFERENCES

N. J. Nilsson, Problem-Solving Methods in Artificial Intelligence

(McGraw-Hill Book Company, New York, to appear in April 1971).
C. Green, 'Theorem Proving by Resolution as a Basis for Question-

Answering Systems," in Machine Intelligence 4, B. Meltzer and

D. Michie (Eds.), pp. 183-205 (American Elsevier Publishing Co.,
Inc,, New York, 1969).

G. Ernst and A. Newell, GPS: A Case Study in Generality and

Probiem Solving, ACM Monograph Series (Academic Press, 1969).

C. Green, "Application of Theorem Proving to Problem Solving,"

Proc. Intl, Joint Conf, on Artificial Intelligence, Washington,

D.C. (May 1969).
D. Luckham and N. Nilsson, ”Extracting Information from Resolution

Proof Trees, Artificial Intelligence (to appear).

J. McCarthy and P. Hayes, 'Some Philosophical Problems from the

Standpoint of Artificial Intelligence," in Machine Intelligence 4,

B. Meltzer and D. Michie (Eds.), pp. 463-502 (American Elsevier
Publishing Co., Inc., New York, 1969).
B. Raphael, "The Frame Problem in Problem-Solving Systems,” Proc.

Adv. Study Inst. on Artificial Intelligence and Heuristic Program-

ming, Menaggio, Italy (August 1970).
R. Waldinger and R. Lee, PROW: A Step Toward Automatic Program

Writing," Proc. Intl. Joint Conf. on Artificial Intelligence,

Washington, D.C. (May 1969).

105

10,

Z. Manna and R. Waldinger, "Towards Automatic Program Synthesis,"
Artificial Intelligence Group Technical Note 34, Stanford Research
Institute, Menlo Park, California (July 1970).

cC. Hewitt,‘"Plénneri A Langﬁage for Manipulating Modelé and Proving
Theorems in a Robot;" Artificial Intelligence Memo No. 168 (Revised),
Massachusetts Institute of Technology, Project MAC, Cambridge,

Massachusetts (August 1970) .

106

APPENDIX E

QA4 WORKING PAPER

107

October 1970

QA4 WORKING PAPER

by

Johns F, Rulifson
Richard J. Waldinger
Jan Derksen

Aitificial Intelligence Group
Technical Note 42

SRI Projects 8721, 8550, 8259

The research reported here is sponsored by National Aeronautics and
Space Administration under Contracts NASW-2086 and NAS12-2221 and by
Air Force Cambridge Research Laboratories under Contract F19628-70-C-0246,

109

I GENERAL GOALS OF THE LANGUAGE

A, The Language and Its Data ﬁasé

The QA4 language is an ehhanced omega-order languagel* em-
bedded in a system of control statements., The declarative facets of the
language include atomic symbols, tuples, unordered tuples, sets, function
definitions, and applications; the imperative facets include (in addition
to normal program control features) set iteration, backtracking, and
paralleliQm. The language is intended to be a natural formalism for the
description of probiem-domaiﬁ-oriented theorem-proving strategies. More-
over, the specification of problems to be solved by QA4 programs have a
natural, compact formulation in the séme language. That is, the state-
ment of theorems to be proved or the spécification of programs to be
written is a task similar in nature to writing theorem provers or program
synthesizers, For this reason, the dafa base for QA4 programs is QA4
expressions. A preliminary description of the QA4 syntax appears in

Ref 2,

B. Properties of Expressions

In addition to the syntactic component that uniquely distin-
guishes it from-all other QA4 expressions,’ every QA4 expression has a

property list, This list stores arbitrary properties ‘and their values,

*
References are listed at the end of this note.

111

the values being, in turn, QA4 expressions, The properties are used by
QA4 programs both to store inférmatioﬂ-for the 1nterpretef,‘and to guide
strategies and coﬁmunicate informétion about the data on which the
prog;ams are working, These properties fall into three categories:
»inferpreter bookkeeping, semantic, aﬁd praématic.

. The standard seﬁant;c properties of an expression inciude its
value, the set of expressions it is known to equal, the sets of expressions
it may not equal., Rules for evaluation and simplification are also‘se-
mantic properties, It is assumed that partial evéluation or simplifica-
tioﬂ of expressions will be an important strategy in all QA4 problem
solvers.. The QA4 interpreter comes,equipped_with.such a partial .
evaluator. It is, ho;ever,.incomplete, but can be enhanced through
the use of appropriate semﬁntic properties, Fin#lly, it is often useful
to write a strategy 1# térms of a particular data structure, say a set.
The programs may be clear and concise, making the strategy transparent
and flexible, Yet, for reasons of efficiency it may 5e necessary to rep-
resent the set outside the standard QA4 framework, say with a LISP array.
Such representation information is handled by the use of semantic pro-
perties,

Pragmatic prbpertieS‘a;e peculiar to each individual problem.
. The properties are used by strategy programs'fo communicate and note -
information about expressionst They take the flavor of statements ‘such

as "I've tried this before and it didn't work."

112

C. Expression Manipulations

Expression manipulation is accomplished by decomposition and
construction. Decomposition, in QA4, means naming parts or components
of an expression. The naming is done with pattern matching. Patterns
may occur at many points in the language: in functional variable bindings,
assignment statements, and conditional tests. Transformation of ex-
pressions is done through a complete set of constructors: add an element
to a set, add onto tuples, or construct a lambda expression, to name a
few. There is also a large set of primitive operators on the structural

data forms, e.g., set union, arithmetic addition, and Boolean conjunction,

D. Control Statements

In order to solve large problems and carry out long proofs,

it is necessary to have highly goal-directed search strategies. More-
over, many of the searches done in QA4 strategy programs simply do not
héve appropriate numerical means of guiding them, That is, the semantic-
pragmatic search techniques are guided by programs making local decisions
on current information, Any attempt to centralize the search or have
uniform procedures cannot be done easily. For this reason, the QA4
language makes directly available, through statements in the language,
many well-known search procedures. This means that each particular
problem-domain-oriented strategy program can use appropriate search

techniques at its own local level., Strategies may thus search in parallel,

113

grow search trees, or backtrack whenever such methods are appropriate,
Accordingly, one can no longer characterizé a QA4 progfam as‘doiné a
particdlar kind of search while it is pfoﬁlem solving; in mdst cases,
many (if not all) kindg of searéh afé beiné_doﬁé.

The §earch—or;eﬁted statements of QA4 fall into three categories:

Iteration over sets--taking the form of selection

through patterns and for each statements.

Parallelism--Appearing as coroutines, parallel

strategy execution, and when statements,

Backtracking--Taking place in the program failure

mechanism and the choice function (choices many times

being made from possible matches to a pattern).

I1 ORGANIZATION OF THE INTERPRETER

A, User Interface

The QA4 programmer views the system as an interactive pro-

gramming tool., He types commands in the form of QA4 expressions to a

top-level function, These commands may input or modify expressions or

values of properties of expressions; define, modify, or execute pro-

grams; or perform debugging tasks, Roughly speaking, the system is

divided into three parts: -ihput/output, editor, and interpreter,

The input/output system is én expression parser, which trans-

forms QA4 infix syntax into prepolish or internal format, The parser

uses the BIP package® and has the advantage of being readily modified.

114

Similarly, an output function takes the internal expression form and
outputs a corresponding infix output stream, Thus, the user always
communicates with QA4 in an infix mathematical-style notation,

The editor is still conceptual, While we feel it is #n
essential part of a useful human-oriented system, it is yet to be
specified,

The QA4 interpreter is an EVAL function resembling LISP EVAL,
It accepts QA4 expressions and, with the aid of an extensive library of
primitive functions, executes them. At this time we have no plans to
make interpretations of expressions that do not have an immediate, obvious
‘value (say, FORALL statements). We hope that experience with theorem-

proving programs will show ways of automatically extending the basic EVAL,

B. Expression Storage

The storage and retrieval of expressions is fundamental to the
QA4 system. That is, given a syntactic form for an expression, a funda-
mental operation is to look the form up and find the properties already

. 3\

assigned or known about the form, This is an extension of LISP's atom
property feature to expressions in general, Internally, a QA4 expression
is a property list consisting of a property EXPV, whose value contains
the syntactic information about the expression, and whose remaining

properties are semantic or pragmatic, When an expression is stored, a

lookup is made to determine whether or not the expression has been stored

115

befo}e; If so, the old expressibn ié returned, and if not, a new‘éx-
preésion is added to the gene?al stofe. Thus, only.one copy of each
expression is retaihéd“by the syétem.

The stérage ﬁechanism ié a diécriminatioﬁ net, To understand

the workings of the net, supbose the system contained only the expressions,

in internal format,

(SET A B), (TUPLE A B), (TUPLE C B)
The net automatically created for storing these expressions might be

STYPE
~ ser 7 ~TuPLE
(SET A B) |

(TUPLE A B) (TUPLE C B)
‘The net is a tree,. Each node of the tree contains
(1) A function, which extracts an atomic piece of
syntactic information, and
(2) Either a terminal node or a list of b;anches. (A
terminal node contains an expression,. and a branch
is a pair--an atom and another node).
A syntactic form is looked up in-the net by applying the
feature extraction at the top node, choosing the appropriate branch, and

continuing until a terminal node is reached or there is no appropriate

116

branch, If no branch exists, then the expression does’not occur in the
net and a new terminal node may be added.

When a terminal node is reached, the input expression must be
checked against the syntactic property on the expression at the terminal
node. If they match, all is well and the property list for the form
has been found, If they do not match, a new branching node must be
created., To construct the feature selector the two expressions'are
compared in a structural depth-first manner until the first difference
is noted. The results of this search are encoded into a list and in-
stalled as the feature selector of the new node; A terminal node for
the new expression is constructed, the two new branches made up, and the
net is transformed to hold the property list for the new form,

If two QA4 expressions are identical except for the names of
their bound variables, they go into the same internal representation,
Thus, bound variables may not be used as selector functions. Moreover,
in order to store sets and bags in the nef, an index is assigned to
each element of a set or bag expression the first time it is stored,

If fhe same set is then stored a second time (perhaps with some expressions
permuted), the elements are first sorted by the index numbers and then
discriminated upon syntactically; Thus, if a user types in the set
{A,B,C], the elements are assigned indices A « i, B+~ 2, C+~3. 1If the

set {C,B,A} is entered, it is sorted into {A,B,C] and then found to

117

already occur., The net functions also maintain statistics concerning
the number of references made to each expression and discrimination for

future optimizations.

C. . Equality Partitions

The efficient treatment of the equality predicate is crucial
to the operation of any problem—solving ;ystem. Rather than axiomatize
the equality rules, we have built them into the QA4 system by introducing
equality partitions. Each expression in a context has (as its value'
property for that cpntext name) the set of expressions known to be
logically equal to it in that context. _When two expressions are asserted
or proved equal in a context, their "equality sets' are merged to form
a new set for each, Moreover, each expression has. (in context) a set
of sets of expressions that are known to be unequal to the given
expression. That is, each set in the "unequal set" contains a set of
expressiong known to be not all equal., Again, when a new equality
assertion ié‘made, these sets are updated correspondingly. Consequently,
whenever an equality(assertion causes a contradiction via the equality
rules, it is immediately known. An additional advantage to maintaining

the equality information is to be able to select the '"best' expression

equal to a given expression for a certain purpose,

118

III CONTEXTS

A, Intent and Uses

Variable bindings are implemented in the QA4 interpreter with
a "'context" mechanism, This.method of storing all the changeable
property values of expressions simplifies the execution of parallelism
and backtracking in the interpretér. The same facilitiés, moreover, are
made available to the users as a method of data manipulation in programs
dealing with the frame-problem, conditional proofs, or variable bindings.
The mechanism simulates a branching pushdown stack. Each node in the-
tree corresponds to a process or state of the world. When a process
changes properties of an expression, the changes are only effective for
the process and its descendants. The property values of the ancestors

of the process are unchanged.

B, Example
1, Coroutines
For example, suppose a process P is being interpreted,
and it creates two coroutine subprocesses Pl and P2, With each creation,
the interpreter creates a new context, and each is aﬁ extension of P,

We might represent this as:

119

2, Backtracking

Backtracking is slightly different, If P 1s terminal
(that is, it has no subprocesées when a backtracking point is reached),
then a new context is created; however, the new context 1s an extension
of P. This is done so that further changes in vgriable values in P
will not destroy the old values, and the state at the backtracking point

can be readily restored: I

@ - P

If P already had subprocesses, then the new context is

an extension of P, which interposes itself between the original P and

the subprocesses:

|
()

C. A Note of Caution

When the interpreter and programs use the same data base, case
must be taken by user programs during property list manipulation, These
concerns come naturally to a LISP programmer who confronts the same
problem when he uses properties of atomg. The usefulness of the
feature, however, certainly makes it worthwhile, The problems of the

interpreter and user programs are very similar, and mechanisms useful

120

for one are probably useful for the other. It is important, therefore,
that QA4 programmers fully understand the context mechanism and exploit

it in their programs to gain the full pbwer of the language;

D. Implementation

A data item of type context is a list of numbers, say (5, 3, 1).
Each number corresponds to a node in the graph representation of the pro-

cess structure. For example, suppose the current process structure was

then (5, 3, 1), (4, 3, 1), (2, 1), (3, 1) are ;11 possible contexts.
Process P3's context is (3, 1), thle P4's context is (4, 3, 1). The
extension of a context is handled by the funcfion XCTX, which creates
a new unique context number and puts it on the front of a context,

The values of properties of expressions are stored as prgperty
lists themselves, where the cpptext_numbers are property names, For
example, an expression might look like:

(NETEXPRESSION EXPV (TUPLE 1 2) Pl (CONTEXTLIST 5 Q»3 R)).
This internal representation means that the value of propgrty Pl for
the tuple.{1, 2) was set to Q under a context headed by 5, say (5, 3, 1)
and set to R under a context}headed by 31 say (3, 1). In-the sample

above, P3 may have set the value to R, while P5 set it to Q.

121

E, Lookup
_The lookup routine CTXGET takes an expression,'a.property name,
and a context as'arguments. If e were a pointer to the above’expreSSion,
then (CTXGET e "P1" "(3 1)"), would first get the LISP values of property
Pl, the list (CONTEXTLIST 5 Q 3 R). It would then iook‘fof a value under
context number 3, and if that failé under 1, In oﬁr'example, it finds

one under 3 and returns R.'

F. Changing Contexts

Contexts are popped by the function POPCTX, properties are

_..._added with CTXPUT, and_removed with_ CTXREM, _ The context functions.note. . —.

all current contexts and discard all else during garbage collection.

o

G. Summary
The whole notion of the diécrimination net as a means of

accessing expressioné is a method of exteﬁding fhe LISP idea of property
list from atoms to expressions in genéral. The inclusion of bound variable
expressions and sets in the net causes some concern, but can be héndled.
The context mechanism is an eitensibn‘ih a similar vein;' The values of
properties can be with respect‘to a‘given sfate or’binding level. LISP
programs sometimes do this when the value of a property is treated as

a pushdown stack, However, a simple stack is not enough for parallelism

and backtracking. The context mechanism appears to be>a'conéise, natural

122

method of extending the basic notions.‘ It even carries along the
features'of garbage collection, something which change lists and other

approaches have difficulty with,

H. Example

—_—]

The QA4 theorem prover uses high-level rules of inference,
Thus, one QA4 proof step may representvmany formal steps. QA4 rules
of inference may be very special-purpose: In any situation, we expect
the system to select, from a large collecti§n, those rules that might be
advantageously applied.

We see the QA4 theorem prover working at the same level as a
human mathematician, and a finished QA4 proof should read like a proof
in a mathematical textbook. To illustrate this point we present a
fairly difficult theorem, and a protocol of the projectgd QA4 proof
prqcedure applied po this theorem. The following discussion presents
only the "correct” branch of the hypothetical QA4 solution, A problem
solving strategy that would generate this solution, among others, is
described in the next section of this note,

The theorem to be proved arises in a program-synthesis problem,
We are given a recursivg program to compute the Fibonacpi sequence
1,1,2,3,5,8, ... in which each term is the sum of the preceding two terms.
The program we are given is

fib(x) = if x €1 then 1 else fib (x - 1) + fib(x - 2) .

123

This program is grossly inefficient, requiring many redundant recursive
computations of'the function oﬁ_the same argument, We would like to
construct an equivalent iterative program,

Of the many possible QA4 rules of inference, the following are

useful in this problem.

(1) Induction (Going-Up Iterative?): Té prove a theorem
of the form (Vx)P(x), where x is a natural number,
prove P(0) and prove (¥)P(x) D P(x + 1)).

(2) Resolution: The equivalent of Robinson's rule,® but
expressed in terms of QA4 expressiong with quanti-
fiers,

(3) Partial Evaluation: Take a function that is de-
fined in the syéfem, and expand it according to
'its definition. For example, replace fib(x + 2)
by fib(x + 1) + fib(x)). The rule especially applies
to expressions of the form f(a) or f(x + a), where
a‘is a constant,

(4) Conditional Split: Repléce an expression of the
form if P then Q else R by (P Q) A (—p D R).

(5) Conditiéngl Derivation: To prove a fheorem of form

PoQ, assﬁme P and prove Q.

124

(6) A-Split: To prove a theorem of form P A Q, prove
P and prove Q. When an assertion of form P A Q is
made, assert P and assert Q.

(7) Functional Split: To prove a theorem of form (HEz)

I
ct
>

z = f(tl,...tn),.prove a theorem (Ez) z,
AN(Ez)z =t .
n” “n n

. (8) -Equality: 'To prove a theorem of form tl = t2, where
the ti are terms, replace #he exi;tentially quanti-
fied variables of the ti so that the twq resulting
terms are identical,
(9) Change of Variables: Replace an expression of form
(Vx) [x 2 a D P(x)], where x is a natural number,
by (Vx) [P(x + a)l (replacing X by x - a).
(10) Simplification: Replace 1l + 1 by 2, O . X by O,
and make other such improvements,
These rules are roughly statéd; for example, the forms that
N-split, conditional split, and the equality rule are applied to may have
certain quantifiers. In practice these rules would be separate, complex
programs in the QA4 language,
Now let us examine the beﬁavior of the system when faced with
the program synthesis problem, We first assert.
(11) Assert fib = Ax if x €1 then 1 else fib(x - 1) +

fib(x - 2).

125

(12) Assert.(Vx) (x €1 D fib(x) = 1).
and
(13) Assert (¥x)x 22 D fib(x) = fib(x - 1) + fib(x - 2),
Té produce (13) ghe system used fhe simplifier to replace
—{Xx £1) by x 2 2; we will not always mention the actions of the simpli-
fier explicitly., We then give the system the goal
(14) Cdnstruct an iterative program that s#tisfies the
input-éutﬁut relation, z = fib(x), where x is the
input and z is the output, and fib is nét taken to

be "primitive."

The condition that fib not be primitive means that fib is not
permitted to appear in the iterative program. This restriction is in-

tended to prevent the system from producing the following iterative

z ~ fib(x)

l

Print(z)

(This program is correct, iterative, and every bit as in

program,

efficient as the original recursive program.)

126

When the system is given this program-synthesis goal, 1t may
transform it into a theorem—préving goal by using a standard technique.1
Thus, it produces the new goal

(155 Prove (Vx)(3z) z = fib(x).

From its collection of inférence rules, the system selects
those that seem relevant to the proof of this theorem., These are in-
duction, equality, and resolution (against 12 or 13). induction is an
expensive routine; we will defer trying it until we have explored the
other possibilities, Equality tries to substitute fib(x) for z; however,

the stipulation that fib is not primitive prevents that substitution from

being made; otherwise, the proof woﬁld be conclgded and the trivial
program above would be produéed. In this case, however, the equality
rule fails, "Resolution” of (15), with (12) produées

(16) Prove (Vx) x 2 2 D (Hz) z = fib(x).

This goal is more attractive than the original goal (15)
because it is a speéial case of (15); (165 is the consequent éf (15),
Therefore, the attention of'the system is focussed on (16), and work on
(15), including application of the induction rule; is delayed. The system
then selected those rules that seem relevant to the proof of (16),. Thé
rules selected include change of variables (9),‘conditiona1 derivation
(5), and induction. Change of variables is applied befére the other

rules, producing a new goal

127

(17) (Vx)(8z) z = £ib(x + 2).

The form of (17) sugéests tﬁg immediate application of fhe
partial evaluation rule (3). This produces (with simplificafion)

(18) Prove (Vx)(dz) =z =lf1b(x - 1) + fib(x).

This goal is in the propef form for funcfional splitting (7).
The new goal, |

(19) Prove (Vx)[(ﬁzl) z1=lfib(k + 15 AV(sz) z, = fib(x)],‘
is prodﬁcéd. Aithough the form of this expression suggests A—splitting,

this tack quickly proves to be a dead end: of the two goals produced,

(20) Prove (Vk)(ﬂzl) z1 fib(x + 1) and

(21) Prove (Vx)(Ezz) z,

fib(x),

the second proveé to be identical to the originél goal (15). Since both
these goals must bé achieved in order that (19) be achieved, both (20)
and (21) are discarded. Having exhausted the ofﬁer possibilities, the
system ventures to try ihduction on (19), The two new goals generated
are:

fib(0), and

2 = f
(22) Prove (Hzl) z1 ib(1) A (sz) z2
(23) Prove (¥x) [((Hzl) 2, = fib(x + 1) A (sz) z, = fib(x)) D
((az1’> zl' = fib(x + 2) A (3z)) 22' =. fib(x + 1)1 .
Both these goals must be achieved if the theorem is to be proved. The

system considers the first goal first, The most appropriate rule to be

applied is A-split, which produces two new goals,

128

(24) Prove (Hzl) z1~ fib(l) and

(25) Prove (sz) z, fib(0),
both of which must be achieved, Partial evaluation applies to both

goals, producing

(26) Prove (Hzl) z 1 and

1

(27) Prove (C’Izz)..z2 1.
Then the equality rule is applied to each of these goals with success,
so that (22) has been achieved. Attention now focussgs on (23), Con-
ditional derivation (5) allows‘us to make the assumption

(28) Assert (Hzl) z, = fib(x + 1) A (Ezz) z, = fib(x){ and
create the goal

(29) Prove (Hzl’) zl’ = fib(x + 2) A (sz’) 22' = fiﬁ(x + 1).

The N-split rule, applied to the assertion (28), produces two new

statements,

(30) Assert (Hzl) z1 fib(x + 1) and

(31) Assert (sz)'z2 fib(x).
The same rule, applied to the goal (29), results in the establishment

of two other goals

(32) Prove (Hz{) z{ fib(x + 2)

and

(33) Prove (Hzé) zé fib(x + 1),

both of which are to be achieved.

129

The resolution rule

(30) fesulting in a success,

constructs;
(34) Prove
As before,
(35) Prove
andvﬁwéplit produces
(36) Prove

(37) Prove

EZ, 4
(1) z1
function

(st) z3

(st) 23

(324) z4

applies between goal (33) and assertion

Partial évéluation, applied to goal (32)

= fib(x + 1) + fib(x),.
splitting produces

fib(x + 1) A (324) z, = fib(x),

fib(x + 1) and

fib(x).

~ These goals resolve with assertions (30) and (31) respectively, com-

prleting the proof.

We have included mostly those steps in the search that actually

did lead to the proof. The system would examine some of the false paths

too, although it does not rely on blind search and discontinues a line

of reasoning when another appears more profitable.

Program synthesis techniques allow us to produce the program

illustrated in Figure 1, from the proof.* This program turns out to be

far more efficient than the original recursive program,

In this section we have discussed the behavior of a problem

solver without ébecifying a mechanism that exhibits this behavior, In

the next section we outline a system capable of carrying out such reasoning.

130

(V1,Y2,V3) <« (0,1,1})

2« y2+y3

(vy.¥2.¥3) € (yg+1yo+yayy)

TA-8721-2

FIGURE 1 ITERATIVE FIBONACCI PROGRAM

IV The QA4 PROBLEM SOLVER
This section gives an overview of the goals, overall structure, and

flow of control of the QA4 problem solver.

A, Goals

° The problem solver should be easy to guide with intuitive
knowledge about various forms of problem solving, If we run a proof,
for example, and we see the problem solvgr doing an . obviously stupid
thing, then it should be possible to modify the proof strategy or give

additional information in an easy way so that the system does not make

131

the same errors in a second run of the problem. Thus, the problem
solver should also be easily modifiable.'
LI A large body of pragmatic information in the s&stem
°* A natural and compact formulation not only of goal
statements but also of strategies in a unified language.
For example, we would not write the theorems to be proved
in first-order predicéte éalculus while writing strategigs

in LISP,

B. Statements

“The system is given information with four sorts of ététeﬁents;
L Goal statements: e.g., Prove (Vx)(¥z) z = fib(x)
° Assertions: e.g., factorial = xx if x = 0 then
1l else x + factorial (x - 1)
L Eval rules: e.g., change of variables (Vx). x 2 a
D P(x) tra;sforms to (Vx)p (x + a)
L Strategies: e.g., a linear equation solver,
The goal statements and assertions are analogous to the theorems and
axioms of a resolution-type theorem prover. The eval rules and strategies
are e#préssioﬁ transformation rules,
An eQalxrule is a single—e#preésion transformation rule. vIt

takes an input expression, matching a pattern given in the first half

132

of the eval rule, and transforms it under given conditions (when a
predicate is true) into an output expression according to the second
half of the eval rule.

A strategy is a program made up of.control statements, eval
rules, and other strategies. The progra& tells how to appiy several

transformations, sequentiallyorin parallel, for example,

C. Basic Method

The system is goal-directed. A probiem entered in the system
is the first goal statement. The systém tries to find eval rules and
strategies that may aid in achieving the goél. From these rules ‘it
constructs a single strategy associated with the goal, This strategy
is applied to the goal; if this strategy ddes not succeeed at once, the
system may create one or more subgoals, In the same way, subgoals are
given associated strategies, which control their processing,

The eval rules and stratégies relevant to a given goal or

assertion are selected by the 'filter,"

D. The Filter
The filter is a program that analyzgs expressions and the
associated semantic and pragmgtic information kept on t@e expression's
property list. The filter's maip task ;s to find in ap efficient way

all eval rules, strategies, and typed-in pragmatics applicable to

133

(matching with) a given expression, After it has found the relevant
information, a combined strategy 1s put together, put on the property

list of the expression, and given to the interpreter,

E. How Statements are Processed

Let us see how the system processes each sort of QA4 input
statement. First, consider the case of an assertion given to the
filter. An assertion must be entéred in the data base qf the problem
solvér. It is possible that whenever an assertionbsf a cerfa}n form'
(matching a given pattern) is made, other assgrtigns also shou;d be made.
We.can give a great number of this sort of_ruleé in the form of eval
rules. An example is the'conditional-sp}it rule, which is applicable
to the gssertion fib é xxl - if ,,. in the example.of.Section IV, »Two.
additional assertions must be made according to tﬁis rule, Matching‘
rules are found by the filter, A strategy is made up and interpreted
that puts thé initial assgrtion and_the assertions discovereq by the
filter in the data base, |

In the case of a goal statement, an expression is given to the
filter together with advice. For example, the goal statement 'Prove
z = fib(x)" is given to the filter, together with constraints and advice,
such as: 'the given expression is an input/output relation, this is a-
program—writing problém, write an iterative program." ‘The filter tries

to find -the relevant eval rules and strategies with the information

134

DATA BASE

QA4-eXpression —eis INTERPRETED

FILTER S —
AdViCe i e p> p

New subgoal
plus advice

TA-8721-1

residing in the filter. It will do some pattern matching to find
relevant expression transformation rules, aﬁd use the constraints and
advice given, together with the gdal statement, in the search for the
right rules. In the example, the filter puts the strategy ''try the
theorem-proving approach" together. This strategy creates the new sub-
goal "Prove (Vx)(3z) z = fib(x)." The strategy gives the subgoal,
together with the advice 'try only techniques that -give iterative solu-
tions," to the filter, Now the whole procedure will be repeated until
success is achieved and the goal can -be proved true.

The filter is changed by entering new eval rules and strategies,

The front end of an eval rule (a pattern) will get its proper place

135

among the already collected patterns in the filter; e.g., the eval rule
change of variables will cause the filter to be updated with the pattern
(Vx)x 2 a D P(x). When an expression of that form is passed through

the filter, the change-of-variables rule will be selected,

F. How Problems are Solved

All strategies, eval rules, the filter, a simple monitor, and
other high—levei programs of the proﬁlem solQer are written in the QA4
language. For this langﬁage, a simple LISP-like EVAL is being written.

" The flow of confrol in fhe system'is governed by strategies,
. interpreted by a simple monitor, Strategies are buf 6n_propefty 1iété
of exbressions according to certain conventions. The task o1 the monitor
is to interpret strategies. under a set of conventions., The monitor also
. hands expressions to the filtér and utility functions; for example, a
function that puts typed-in information about a problem statement on the
property list of this expression. The monitor interprets the control
functions and in general connects the complex of strategies and system
fupctions. The task of the monitor is, however, a mechanical task:
A1l "cleverness'' resides in.the strategies.

The situation of a strategy creating one subgoal‘can get more
complex when more eva}’rules or strategies are applicable; e.g., in the
examplg of the fib function: Try partial evaluation, resolution, or

induction. Now the system can work on one subgoal, but should not give

136

up on the other subgoals, It could work for a time on the goal generated
by the partial evaluation but fhen decide that the goals are getting
worse (compared with the original) and try the induction step.

To be able to work in such a fashion, a set of functions for
controlling strategies are available. They will be all realized with a
simple coroutine mechanism that makes use of the contexts as described

in Section III,

G. Control Functions

To give the flavor of the control functions, some are described
below. A strategy can create two or more goals and ask the problem
solver to prove them all, An example is induction, in whil™ two subgoals
(the zero case and the step case) must be proved true, The system uses
for this purpose the AND statement (AND set strategy), All the strétegies
in the set are run in parallel, and the relative speed of each program
is controlled by the.strategy. Sometimes it is necessary for a program
in the set to communicate with the.controlling strategy. For example,
the program sees its progress is poor and wants to give this information
to the controlling strategy of the AND, so that another prog;am in the
set can be given a turn or other action can be taken, For this purpose
a program (strategy) can use the WAIT statement (WAIT x), The value of

X is given to the strategy associated with the AND and the calling program

is suspended. The OR statement (OR set strategy) operates in a similar

137

‘way, For example, in the Fibonacci problem, three alternatiQe rules are
proposed for the goal (Vx)(8z) z = fib(x): induction, resolution; and’
the equality rule. These rules are combined by an OR statement and
equality is tried first, but fails, Now resolution is selected by the
strétegy associated with the OR statement. Induction is only tried when
the resolution strategy fails or produces poor results, in which case

a return to the OR statement is made. In the case of the Fibonacci

example the resolution was successful,

H. Advice to the System During a Proof

The ﬁrobiém éblVérlié'able to take advice during a proof.
A natural point to do this is whenever a strategy calls the iiiter and
gives a new goal (or new g&als) to be analyzed. We can envision among
others two ways-of giving advice:
(1) Changing a strategy, mainly strategies controlling

AND and OR statements; and
(2) Supplying a new strategy in the set of an AND or

" OR, which gives rise to a new subgoal,

138

REFERENCES

D. Hilbert and W. Ackermann, Principles of Mathematical Logic,
pp. 152-163 (Chelsea Publishing Company, New York, New York 1950).

L., J. Chaitin et al., "Research and Applications--Artificial
Intelligence,’ Interim Scientific Report, Section V, "Long Term
Problem Solving,' Contract NAS12-2221, SRI Project 8259, Stanford
Research Institute, Menlo Park, California (April 1970).

R. E, Fikes, "A LISP Implementation of BIP," AI Group Technical
Note No, 22, Stanford Research Institute, Menlo Park, California
(February 1970),

Z. Manna and R. Waldinger, "Towards Automatic Program Synthesis,'
AI Group Technical Note 34 (July 1970), [Submitted for publication
in Collection of Lecture Notes in the Symposium on the Guomantics

of Algorithmic Languages, Erwin Engeler, ed., Springcr Vorlag,]

[Also submitted for publication in the Communications of the
Association for Computing Machinery.]

J. A. Robinson, "'A Machine Oriented Logic Based on the Resolution
Principle,' Journal of the Association for Computing Machinery

Vol., 12, No, 1 (January 1965),

139

APPENDIX F

SOME CURRENT TECHNIQUES FOR SCENE ANALYSIS

141

October 1970

SOME CURRENT TECHNIQUES FOR SCENE ANALYSIS

by

Richard O. Duda

Artificial Intelligehce Group

Technical Note 46

SRI Project 8259

This research is sponsored by the Advanced Research
Projects Agency and the National Aeronautical and
Space Administration under Contract NAS 12-2221.

143

1 INTRODUCTION

The purpose of the visual system is to provide the automaton with
important information'abouf its'environment, information about the loca-
tion and identity of walls, doorways, and various objects of interest.

By adding new information to the model, the visual system gives the autom=-
aton a more complete and accurate representation of its.world. The role
of vision is not independent of the state of the model. If the automaton
has entered a previously unexplored area, the visual scene must be ana-
lyzed to add information about the new part of the environment to the
model. In this situation, the model can provide so little assistance
that it is often not referenced at all. On the other hand, if the autom-
aton is in a thoroughly known area, the role of vision &hanges to one of
providing visual feedback to cqrrect small errors and verify that nothing
unexpected has happened. In this situation, the model plays a much more
important role in assisting and actually guiding the analysis.

Until recently our attention has been directed primafily at the
general scene-analysis préblem.‘ Every picture was viewed as a totally
new scene exposing completely unknown area. More recently we have
addressed the problem of using a complete, prespecified map of the floor
area to update the automaton's position and help in tasks such as going
through a doorway. Another use of this kind of visual feedback would
be the monitoring of objects being pushed.

In trying to solve these problems, we have tended to take one or
the other of two extreme approaches. Either we tried to develop géheral

methods that can cope with any possible situation in the automaton's

145

world, or we tried to exploit rather special facts that allow an effi-
cient special-purpose‘sdlution; The first approach involves the more
interesting problems in artificial intelligence, but it provides more
capabilities than are needed in many situations, and provides' them at
the cost of relatively long computation times. The second approach pro-
vides fast and effective solutions when certain (usually implicit) pré—
conditions are satisfied, though'it can fail badly if these conditions
are not met. Eventually, of course,. some combination of these two
approaches will be needed, sinceé the automatpn actually operates in a
partially known world, rather than one that is completely unknown or
completely known. However, we have decided to concentrate on these two
extreme situations before-addressing the infermédiéte'césé.”Thé remainder

. ’ *
of this note describes the current status of our work in these areas.

I1 REGION ANALYSIS

A, The Merging Procedure
Our work in general scene analysis is based on dividing the
picture into regions representing walls, floors, faces of objeccts, etc.
The basic approach has been described in detail elsewhere, and only a
brief swmmary will be given here. The procedure begins by partitioning
the digitized image into elementary regions of constant brightness.
This usually produces many small, irregularly shaped regions that are

¢

fragments of more meaningful regions. Two heuristics are used to merge

-

L B . . ’ . .

Our earlier work in scene analysis is described in Reference 1. Addi-
tional information on more recent work is contained in References 2-5..
References are listed at the end of this report.

146

these smaller regions togethef;' ﬁoth of these‘heurisfics operate on

the basis of fairly local information, the difference in brighfness

along the common boundary between two neighboring regions. The heu-
ristics are not infallible; they can merge regions that should have

been kept distinct, and they can fail to merge regions that should have
been merged. However, theyv reduce the picture to a small number of large
regions corresponding to major parts of thg picturé, together with a
larger number of Qery small reéions‘that‘éan uéually be ignored.

The effect of applying these heuristics is best described
through the use of examples. figure 1 shows television monitor views of
three typical corridor scenes. Figure 2 shows the results of applying
the merging heuristics to digitized versions of these pictureé. The
boundaries of the.fegions in these pictures are directed contours, and
can be traced using the correspondences shown in Table I. Generally
speaking, important regions can be separated from unimportant regions
purely on the basis of size. Figure 2a, for example, contains four
large, important regions. Three of them are direc¢tly meaningful (the
door, the wall to the right, and the baseboard), apd the fourth is the
union of two important regions-(the floor and the wall to the left).

An inspection of Figure 2b shows similar results. Figure 2c shows the
result of applying fhe technique to a'cémplicated scene; while some
useful information can be obtaiped, fhe fesoiution available severely
limits the usefulness of the resultéf '

Our only complete scene—gnﬁlysis program is oriented foward

identifyiné boxes and wedges, objects with triangular or rectangular

147

(a) DOOR

(b) HALL

(c) OFFICE WITH SIGN

TA-8259-20

FIGURE 1 THREE CORRIDOR SCENES

148

LZ-6GZ8-V L1

NDIS

HLIM 3014340 (°)

SOULSIHNTIH DNIDYHIW 40 SLINS3H € 3HNODID

IIVH {9)

Ho0da

(e}

v

149

TABLE I CORRESPONDENCE BETWEEN
BOUNDARY SEGMENT CONF1GURATIONS
AND CHARACTERS USED IN PRINTOUT

CONFIGURATION CHARACTER CONFIGURATION CHARACTER

» o

< I I

o > A

slalalajaials
ojojaialoiolala

TA-8259-24

150

faces, in a simple room cnv.ironmcnt.3 For this tuSk,.we begin by fit-
ting the boundaries of the major regions by struight'lincé} Regions
are identified as being part of the floor, walls, bascboards; and faces
of objects by such pfoperties‘aé-éhape, brightness, and position in the
picture. Objects are identified by grouping neighbofing faces éatisfy—
ing some of the simpler criteria used. by Guzman.6 In the process,
certain errors ca@sed by'ihcorrect'merging are detected and corrected.
We have yel to complete a similar énal&sis progranm for the conditions
encountered in corridor scenes. However, we have investigated the
problem of ‘obtaining a scene description that is ihternally consistent;

the next section'deséribes the aﬁalfsis approach for this problem.

B. ' A Procedure for Scene Analysis
It we assume témporarily that the merging heuristics have
succeeded in the sense that all of the large regions are meaningful
areas, then the only basic problem remaining is the proper identifica-
tion of each region. Examination of the corridor pictures indicates
the need to be able to-idéntif& a number of different region types,
inciuding the following: -

(1)~ Floor

) Wall

(3) " "Door

()] Door Jjuinb

(5) Object face

(6) Baseboard

(7 Baseboard reflection
(8) Sign*

()] Window

¥ “ L " . N
By ‘'sign we mean a dark vertical. bar on, the wall used, as illustrated
in Figure 1lc, to identify an office.

151 -

(10) Clock ‘

(11) Doorknob .

(12) | Thermostat

(13) Power outlet

(14) Automaton.

Each of these regions has certain properties which tend to
characterize it uniquely. For example, the floor region is usually
large, bright, and near the bottom of the picture. However, most
regions can be identified with greater confidence if the nature of their
neighbors is considered as well. 7Thus, the presence of a baseboard or
baseboard reflection‘at the top of a region almost guarantees that the
region is the floor; conveysely, the presence of wall area immediately
above a region guarantees that it can not be a baseboard reflection.
1f regions are identified without regarq to how that choice affects the
overall scene description, the chance for érror is incréased. Moreover,
the resulting description can be nonsensical.

Many, though by ﬁo means all, of the relations between types
of regions relate to neighboring regions. Table II indicates those
itypes of regions that can and cannot be legal'neighbors. We can easily
add to this further restrictions, such aé the fact that the baseboard
nust ha;g the wall as a neighbor along its top edge. These are some of
the important known facts about the generﬁl nature of the automaton's
cnvironment; The problem is to use facts such as these to aid in the
.analysis of the-scene.

One approach to solving this problem isAto use these faéts

as constraints to eliminate impossible choices. Suppose that each

significantly large region in the picture is tentatively classified

152

TABLE 11

REG1ONS THAT ARE LEGAL NEIGHBORS

[,
w
w Lo -
2 2 288 g £ 55
€ % < <K z z 8§ ©° «
« 5 289 5] ¥ 5 « 2
S -« ¢ g © @2 aou 8 $ ¢ & w o
© 3 9 9 8 5 pi3% 2 © Qg uWw 2 £
¢ z 88 8 &3¢3 2 38 ¢F 2 2
FLOOR + 4+ |+ |+ |+ |+
‘ -+~ et -
WALL ++++L+L+{ ki hdbARdRAR:
DOOR ++| [+]+[+ + 1+ T T+
DOOR JAMB + 4]+ + |+ L + +
OBJECT FACE +|+ ++ [+ [+ [+[+ ++ |+ |+
BASEBOARD I+ ++]+ +] T 1T+ 1+
BASEBOARD. — T
REFLECTION + [t F |+ ﬁ* +
SIGN - + + +
WINDOW + |+ + i
CLOCK + |
DOORKNOB 4|+ +
THERMOSTAT - -+ +
A2 S
POWER OUTLET + + |+ | +
AUTOMATON i+ |+ |+ + |+ +]|+] ﬁ +
TA-8259-25

153

on the basis of the attributes of that region alone. Suppose further
that a score is computed for eaqh region that measures the degree to
which it resembles each region type.* For any selection of names for
regions, we can define the score for the resulting description as the
sum of the individual scores. Then, we can analyze the scene by trying
to find highest scoring legal selection of region names. With no loss
in generality and some gain in convenience, we can work with the losses
incurred by selecting other than the highest scoring choice. In terms
of losses, we want the legal description having the smallest overall
loss.’

This problem is basically a'tree—searching problem. The
sﬁart»node of the tree corresponds to the first.region selected for -
naming. The branches emanating from that node correspond to the possible
choices of names for that region. A path through the tree corresponds
to a unique labeling of the picture. Thus, if there are N possible
region names and R regions, there are potentially NR possiblé paths
through the tree. Each path passes through R+l nodes from the start
node to the terminal node. Every términal.node has a loss value, which
is the sum of the losses incurred for the choices along the path to that
node. A goal node is a terminal node corresbonding to a complete, legal
scene description. We seek the gdal node wikh the smallest overall loss.

This is a stnndafd problem in tree searching, and optimum
search procedures are known. Assume that some choices have been made

for some of the regions so that we have a partially expanded tree.

%
This score might be interpreted as the logaritlm of the probability
that the given region is of the indicated type..

154

Using the Hart-Nilsson-Raphael terminology,7 some of the terminal nodes
of this tree are open nodes, candidates for fgrther expansion. Each open
node hgs an asquiated loss é, the sum of the 1ossgs_from the sfart node
to that node. 1If we assume that there is no reason to believe that Zero-
loss choices cannot be made from that node on, then the optimal search
strategy is to expand that open node having the minimum é.

To expana a node, we must select a region not previoqsly con-
sidered and examine the possible choige for_that region, rgling out any
choices that are not legal. Differept strategies can be used forfselect—
ing the next region. It seems advantageous to ask it to be a qeighbor
of the regions selected previously, sincg this maximizes the chance of
detecting illegalities. 1In general,.we will have several neighbors for
candidate successors. of these, it seems fgasonablg to select the one
having the highest‘écore, under the assumption £hat the first chqiée
name for this region is most likely to be correct.

Aftgr a region has Been selécted, it is necessary to examine
the choices one can make for its ﬁame to see thch ones are iegél.‘ If
we limit ourselves to pairwise relations between neighboring regions, we
need merely compare each choice with previously made choices on the path
to this- point .and test each for legality.*- The node expanded is removed
from the list of open nodes, the resulting new nodes #re added;'ﬁnd the
process is repeated until- the algorithm selecfs a goal node for further-
expansion. This is our final result, a legal scene description Having ’

the minimum loss.

* ' .
When an illegality is found, that choice is deleted. One can argue that

few relations are so strong as to be absolutely illegal, and an alterna-

tive approach would be to introduce various additional losses for the
different observed relations,

155

C. Examples

The following ekamples'serve to illustrate the action of
'this scene-analysis procedure. Consider first the simple scene shown
in Figure 3. For simpliéity; we assume that there are.only'five types
of allowed regions--floor, wall, door, baseboard, and sign. Consider
Region }.- On the basis of its brightness, size, verfical right bound—
ary,'and pdssessibn of a hole, it should receive é ﬂigh score as a wall,
and lower scores as floor, door, sign, and baseboard. Region 2 might;
perﬁaps, score highest as a door, and so on. Thus, the following table
of scores, although purely imaginary, is not unreésonable. Missing

entries correspond to scores too low to be seriously considered.

Type Base-

Region Floor Wall Door board Sign
1 5 6 2 !
KN
2 7 1 5
3 3 | 3 5 1

The following table gives equivalent information in terms of the losses

associated with each choice.

Type ' — Base- Max
Regiop Floor Wal} Door board Sign Score
1 1 0 4 : 6
2 : . . .0 6 2 7
3 2 2 0 4 5

156.

FIGURE 3

A SIMPLE SCENE

157

TA-8259-26

Let us use our tree-searching algorithm to obtain the minimum-
loss, legal description of this scene. Initially the successor function
is unconstrained by neighbor restrictions,'and selects Region 2 merely
because it has the highest score. At this point, all of the choices for
Region 2 are legal, and the tree has three open nodés; the numbers shown
next to each node give the loss accumulated in reaching that part of the

tree.

Baseboard,” Silgn Door
/6 2 C>()

The search nigorithﬁ<}équifés“that the'épén:node héving the
least loss be expanded next, which corresponds to tentatively calliﬁg
Region 2 a door. Thg successor function finds only one.neighbor to
choose from, Region 1, and considers its alternatives: wall, floor,
and door., None of these choices is a legal neighbor surrounding Region

1, and hence all are rcjected. Thus,; this open node has no successors.

/
Baseboard/

- 158

Returning to the choices for open nodes, Region 2 is tenta-
tively éalled a sign. The successor function again selects Region 1,
and this time finds one legal successor, the wall.* - The loss associated
with this choice is 0, and the overall loss is 2, The list of open

nodes still contains two members.

Baseboard Si?n N Door

<:>6

N\, : ///;
oo\
Door, Flpor\igll Door/” Floor \ Wall

ORONONS

The search:algorithm selects the open node with loss 2, and
the successor function has only Region 3 to select from. All of the
choices for Region 3 are all legal with respect to céliing Region 2 a

sign and Region 1 a wall. The least loss results from calling Region

3 a door, and the scene analysis is completed.

*Note that our successor function will always produce a tree with R+1
levels. At any level, the same region will always be selected by the
successor function. The actual successors, however, will be limited
by the legality requirement.

159

. Baseboar,

Slgn/’Wa 1 Fl or‘ Door
')

<

A Somewhat more realistic example involving 10 regions and
14 region types is-illustrated in Figure 4. Table III gives the hypo-

thetical scores. DBased on these scores alone, half of the regions wou}d_

-gé‘ihcofréctly ideﬁfified. Fiéure 5 shows the tree produced by the
search a}gorithm. ‘Theidevelopment of this.tree is toq complicated td
describe in detail, 1t shou}d be noted, howevef; that considerable
backtracking occurred becaﬁse a low-scoring third choice was nceded for
) Region 8, the doorknob. Whether or ﬁot this can be circumventeé without
causing other problems is not known,
D. Remarks

To date, this procedure has only been used on some hypothetical
examples., We have wmodified a general tree-searching program to adapt it
10 some special characteristics of this problem. However, we have not
started the important tuask of writing programs to measure characteristics

of regions and to use these characteristics to produce reécognition scores.

160

TA-8259-27

FIGURE 4 A MORE COMPLICATED SCENE

161

TABLE 111

HYPOTHETICAL REGION SCORES

TYPE

REGION

FLOOR
WALL
DOOR
DOOR JAMB

OBJECT FACE

BASEBOARD

BASEBOARD
REFLECTION

SIGN
WINDOW
CLOCK
DOORKNOB

. THERMOSTAT
POWER OUTLET

AUTOMATON

162

TA-8259-29

4Dl

Wa F
(]
(13 &2
BR B
/ /
X X
5-3 5-
g dOC
Wi F D Wa Wi
. 8 .
s ba'o 3 [\¢
L (2P Qr Q @lye
Ss/B8\6R S/ B\BR S/ 8\BR S$f B \BR
16 3 6 4
7 $/ / N/
0'.0 OXX OXX QRO
2-1 241 2-1 241 2-1 2-1 2-1 2-1 291
4-5 4-5 4-%
-
M A
6 ——g— ¢
PRUNED SEQUENCE
NODE NUMBER
2-3. -
REGION
NUMBER
’ REGIONS IN
CONFLICT

F 0 Wa
0
@s° @n* D
S/ 8 \BR S/ 8 \8R Sf 8 \BR
2
aé&zé&aww
2-1 2-% 2.1 2-1 2-% 2-) 2-1

10-3 10-3 10-9 10-3 10-3
TA-8269-28

10-3 10-9 10-3 10-3

FIGURE 5 = THE ANALYSIS TREE

163

In addition, we have not implemented any legality conditions beyond the
simple conditions given in Table II.

This approach to scene analysis has several potential advan-
tages. It is not necessary to identify every region corféctly at the
outset to obtain a correct analysis, provided that the "synfacfic" rules
are sufficiently complete. By providing a limit on the allowable loss,
a partia1 scene description caﬁ be obtained that may be uSeful‘even though
incomplete. Pcrhapslmost important, the operations of merging, feature
extraction, classification, and analysis are clearly separated, allowing
fairly independent modificatién and iﬁpfdvement. In particular; the
general knowledge about the environment can'Be»expre§sed eXpiicitiy as
rg}gs fpr lggél scenes, and if the environment -is changedAit-ié possible -
to confine the program changes to modifying these rules.

One of the major problems with this approach is the lack of dn
obvious way to detect erioneoius regions, regions that are fragmerts of
or combinations of meaningful regions. We are curréntly working on this'
problem; since progress toward its solution is needed before impleménta—w
tion of this system can be begun. Another probiem is thaf it is not
clear how-spCCifié information contained in the model can be used to
quide the analysis. - This problem of working in a world that is neither
'completely'known hor‘complefély unknown is one of the majof unsolved

problems in visual scene analysis.

111 LANDMARK IDENTIFICATION
-When the environment is completely known, the visual system

can provide feedback to update the automaton's position and orientation.

164

The x-y location ofithe automaton and its orientation'e can be determined
uniquely from a picture of a known point and line lying in the floor.*
Such distinguished points and lines serve as landmapks for the automaton.
This sectioq describgs our present program that qses_concave.corners,‘
convex corners, and doorways as landmarks to update position and orienta-
tion,

A flowchart outliniﬁg the basic operations of this‘progrgm is ;hown
in Figure 6, —Thé program.beéins by seleqting a landmark from the model
that should be visible from ?he automaton's present position; if more
than one candidate exists, one is selectéd on the basis of range and the
amount of panning of the camera required.* The camera is then panned and
tiltedlthe amount needed to bring the landmark into the center of the
fiéld of view, and a picturg is taken. The baseboard—tracking routine
described pre?iouslyz'is used to find the segments of baseboard in the
picture and to fit them withylong straight lines.

‘ Ex;ctly what happens next depends on the }andmark type. For a
door, the long line nearest the center of the picture is selected, and
the true image of the landmark is assumed to be the endpoint of the
baseboard segment on that line and nearest the center of the picture.

An additional check is made to see tha? the gap from that point to the
next segment is long enough to be a passageway. A convex corner viewed
from an angle such that only one side is visible is treated as if it

were a door. Otherwise, the intersection of long lines nearest the center

If no landmark is in view, a suitable message is returned together

with a suggested vantage point from which a landmark can be seen. This
is one of several '"error' returns that can be obtained from the program.
The program can also be asked to select a specific landmark, or a land-
mark different from the ones previously selected.

165

of the picture is éssumed to be the true image of the landmark, and a
check is méde to see that the.baseboard segments near this point have
the right geometricai configdration. The locatibﬁ of the landﬁark in
the picture gives fhe information needed to compute cofrections for the
automaton's position and orientation.

The operation of this program is illustrated in Figure 7. In
this experiment, the automaton was épproximately 7.5 feet away from a
wall along which there were fogr landmarks, both sides.of a doorway,
a cénvex corner, and a conéave corner. The pictures.in Figufe 7 show
how closely the panning and tilting brought the landmarks to the center

of the pictures. For scenes as clear as these, fhe program operates

~very reliably. Presently, we can use this routine to -locate the robot

with an accufacy of between 5 percent and 10 percent of the range,'and
to fix its orientation fo Within S5 degrees. Since the errors aré randoh,
the accuracy can be improved‘fufther by sighting a second landmark{
Further increases in accuracy, if needeq, will have to be obtained by

improving the tilt and pan mechanism for the camera.

166

Concave corner

!

SELECT MOST
CONVENIENT
LANDMARK

FROM MODEL

PAN AND TILT
CAMERA TO

CENTER ON
LANDMARK

13

TAKE PICTURE,
TRACK BASEBOARD,
AND FIT WITH

. LONG LINES

s

TYPE OF Door

Y

FIND
INTERSECTION
OF. LONG LINES

NEAREST 'LANDMARK

Concave

TYPE OF
CORNER

4

+ LANDMARK

Convex
" corner

Y

BOTH SIDES
VISIBLE ?

FIND LONG
LINE NEAREST
'LANDMARK

y

Convex

FIND TRACK
ON THAT LINE
NEAREST
LANDMARK

CHECK' FOR
CONCAVITY

v

CHECK FOR
CONVEXITY

[

CHECK FOR
DOOR-WIDTH
GAP IN TRACK

FIGURE 6

y

UPDATE
POSITION -

$

BASIC FLOWCHART FOR LANDMARK PROGRAM

167

TA-8259 -22

€T-6SZ8-VL

H3INHOD IAVINOD (P)

4004 1437 (9)

SOHHVINANVT

L 3HNOI4

H3INHO0D X3ANOD (2)

H4004a LHOIY (e)

168

REFERENCES

L. S. Coles et al., "Applications of Intelligent Automata to
Reconnaissance, ' Final Report, Contract F30602-69-C-0056, SRI
Project 7494, Stanford Research Institute, Menlo Park, California

(November 1969).

L. J. Chaitin et al.,-"Research and Applications--Artificial
Intelligence," Interim Scientific Report, Contract NAS12-2221,
SR1 Project 8259, Stanford Research Institute, Menlo Park,
California (April 1970) .

C. R. Brice and C. L. Fennenma, "Scene Analysis Using Regions,"
SRI Artificial Intelligence Group Technical Note 17, Stanford
Research Institute, Menlo Park, California (April 1970).

R. O. Duda and P, E. Hart, "Experiments in Scene Analysis," SRI
Artificial Intelligence Group Technical Note 20, Stanford Research

Institute, Menlo Park, California (January 1970).

R. O. Duda and P. E. Hart, A Generalized Hough Transformation for
Detecting Lines in Pictures," SRI Artificial Intelligence Group
Technical Note 36, Stanford Research Institute, Menlo Park, Calif-
ornia (July 1970).

A, Guzman, "Decomposition of a Visual Scene Into Three-Dimensional

Bodies,'' Proc. FJCC, pp. 291-304 (December 1968).

P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal Basis for the

"

Heuristic Determination of Minimum Cost Paths, IEEE Trans. Sys.

Sci. Cyb., Vol. SSC-4, pp. 100-107 (July 1968).

P. E. Hart and R. O. Duda, "Perspective Transformations," SR1
Artificial Intelligence Group Technical Note 3, Stanford Research

Institute, Menlo Park, California (February 1969) .

169

UNCLASSIFIED

Security Classification

DOCUMENT CONTROL DATA -R&D -

(Security classilication of title, body of abstract and indexing annotation must be entered when the overall report is classilied)

'. ORIGINATING ACTIVITY (Corporate author) . . .|28. REPORT SECURITY CLASSIFICATION
Stanford Research Institute Unclassified
333 Ravenswood Avenue . 2b. GROUP
Menlo Park, California 94025

3. REPORT TITLE

RESEARCH AND APPLICATIONS--ARTIFICIAL INTELLIGENCE

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

Final Report 7 October 1969 to 7 October 1970

8. AUTHOR(S) (First name, middle initial, last name)

Bertram Raphael

6. REPORY DATE . 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
November 1970 182 30
88. CONTRACT OR GRANT NO. 98. ORIGINATOR'S REFORT NUMBERI(S)
NAS 12-2221

b. PROJECT NO.

SRI Project No, 8259

9b. OTHER REPORT NOI(S) (Any other numbers that may be assigned

this report)
d ARPA Order 1058 Amendment 1
10. OISTRIBUTION STATEMENT
1. SUPPLEMENTARY NOTES . 12. SPONSORING MILITARY ‘AC‘HVITV
National Aeronautics and Space
Administration

600 Independerice Ave., S.W.
Washingtgn, D.C. 20546

13. ABSTRACT

This is the final report for the most recent year of a continuing program of
research in the field of artificial intelligence. This work follows previous projects
that resulted in the design, construction, and demonstration of a "first generation”
robot system. The work reported here consists of new research aimed at the develop-
ment of a more sophisticated "second generation'" robot. Although the robot vehicle
itself will be essenfially unchanged, it will be controlled by a completely new
computer hardware and software system., In particular, this report contains detailed
descriptions of the computer configuration and the bottom-level software design, two
new bases for problem-solving systems (called STRIPS and QA4), and new directions in
visual scene-analysis techniques,

FORM - : - - e —
DD‘!"N'ov 001473 (PAGE:” UNCLASSIFIED
S/N 0101-607-6_801 o ' : o Security Classification

UNCLASSIFIED

Security Classification

’ LINK A TTLink e] CiNk e
KEY WORDS

ROLE wTY ROLE wT ROLE wT

Artificial Intelligence
Problem Solving
Pattern Recognition
Robots

Theorem Proving

DD S 1473 (eack) | | UNCLASSIFIED
(PAGE 2) .

Security Classification

