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1. INTRODUCTION

1.1 PURPOSE

This report presents the detailed analyses of Apollo 15 Guidance,
Navigation and Control equipment inflight performance. The analyses will
supplement the discussions of CSM and LM GN&C performance presented in
the Apollo 15 Mission Report (Reference 1).

1.2 SUMMARY

The Guidance, Navigation and Control Systems installed in the Apollo
15 spacecraft performed as expected with a few exceptions. In the CSM,
significant SCT visibility degradation was observed as the result of
fogging in the eye piece, the roll axis of the GDC would not align prop-
erly and the EMS scroll scribed intermittently during entry. In the LM,
the AGS warning and master alarm lights falsely illuminated shortly after
completion of LM ascent and the crew reported that the cross-pointer
needles were not working during the braking phase of rendezvous. These
hardware anomalies along with several procedural anomalies are discussed
in the MSC Mission Report (Reference 1).

This report contains the results of additional studies which were
conducted to confirm the conclusions of the MSC Mission Report and con-
tains analyses which were not completed in time to meet the Mission Re-
port deadline.

The LM IMU data were examined during the lunar descent and ascent
phases. Most of the PGNCS descent absolute velocity error was caused by
platform misalignments. PGNCS radial velocity divergence from AGS during
the early part of descent was partially caused by PGNCS gravity comnuta-
tion differences from AGS. The remainder of the differences between PGNCS
and AGS velocity were easily attributable to attitude reference alignment
differences and tolerable instrument errors. For ascent the PGNCS radial
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velocity error at insertion was examined. The total error of 10.8 ft/sec
was well within mission constraints but larger than expected. Of the
total error, 2.30 ft/sec was PIPA bias error, which was suspected to exist
pre-Tunar 1iftoff. The remaining 8.5 ft/sec is most probably satisfied
with a large pre-liftoff planform misalignment. A gravity anomaly at the
landing site deflected the IMU measurement of gravity away from the land-
ing site radius vector resulting in a misalignment about the Y platform
axis (-295 sec) which was approximately 1.7 times expected maximum. It
appears that IMU sensor performance was acceptable.

Detailed studies of the CSM DAP were required to investigate a SPS
gimbal transient during the TEI maneuver and a comprehensive study of
SIMBAY pointing in Tunar orbit was conducted to investigage unexpected
long duration RCS jet firings. The gimbal transient was the result of
a PGNCS CDU transient and the unexpected RCS firings were the result of
a software anomaly. The software anomaly will be resolved on the fol-
lowing missions with procedure changes. The CDU transient problem has
been observed before in coasting flight but this was the first time it
was observed in powered flight. In either case no detrimental effects

have occurred or are expected. No corrective action is planned.

Detailed error separation studies of the AGS Abort Sensor Assembly
indicated excellent performance of the accelerometers and gyros durina

coasting and powered flight.
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2.0 LM IMU PERFORMANCE

LM IMU performance was examined for both coasting and powered flight.
Results were acceptable. Residual gyro drift measurements (differences
between the total gyro drift and the LGC compensation being applied) based
on the alignments performed are presented in Table 2.1. The two sets of
drift values calculated while the LM was in coasting flight are direct
measures of residual gyro drift and are directly comparable to the one
sigma specification value of two meru. The first P57 includes primarily
coasting flight drift and will be evaluated against the coasting flight
criteria. All of the nine values fall within or quite close to the two
meru Timit. A1l subsequent drift errors were calculated using the P57
data while the LM was on the lunar surface. Different limits for the
X gyro are applicable since while on the surface, the input axis accelera-
tion sensitive drift must also be considered. Only one surface drift
value varied significantly from the expected 15 value, that being the
final P57 Z gyro residual drift measured prior to liftoff. However, the
1o uncertainty in the alignment technique about the Z axis is 0.023 degrees
which results in an uncertainty of 1.15 meru for the Z drift measurement in
question. Indications are, the gyros were performing within acceptable
1imits during coasting flight and while on the surface.

PIPA bias calculations based on coasting flight data and lunar surface
data are presented in Table 2.2, The accelerometer instruments showed
excellent stability during coasting and across powered flight periods.
Across the shutdown period on the Tunar surface, the X and Y instrument
biases shifted by 0.39 and 0.46 cm/sec2 respectively which is expected.

For the first time, the biases were updated on the Tunar surface and the

biases remained stable for the remainder of the LM active periods. After
ascent to lunar orbit, the Z instrument compensation was changed to adjust

for a small shift which occurred before PDI and the X compensation was adjusted
to agree more closely with the post powerup bias measured on the lunar

surface.



2.1 DESCENT PERFORMANCE

IMU performance during the descent period was based on assessment of
a PGNCS inertial velocity state at touchdown which was independent of the
landing radar data and comparisons of the PGNCS thrust and total velocities
with AGS data during descent. The PGNCS touchdown vector was obtained by
integrating the incremental thrust accelerations, recovered from telemetry,
to the time of touchdown. The trajectory was initialized 20 seconds prior
to ullage using the onboard state vector. The resultant inertial velocity
and the true inertial velocity at the landing site are shown below:

PGNCS Inertial True Inertial
SM Velocity without Velocity at AV (Ft/Sec)
Coordinates Radar Updating Landing Site PGNCS-TRUE
X 4.67 ft/sec 0 ft/sec 4.67
5.22 ft/sec 3.05 ft/sec 2.17
7 -15.01 ft/sec -13.25 ft/sec -1.76

A set of IMU errors which force the PGNCS data to agree more closely with
the true inertial velocity at the landing site is shown below:
Contribution (Ft/Sec)

Error Source Value F]igﬁi}ggef1igpt AVx Avy sz
ACBX 40 ug 0.2 0.99
ACBY -10 g 0.05 -0.25
ACBZ -110 ug 0.6 -2.75
by 134 <sec 0.7 3.67 1.50
X - 89 sec 0.4 2.42

x4.66 2.17 -1.25

Accelerometer bias errors (ACBX, Y, Z) in the error set are those residual

biases measured pre-PDI and noted in Table 2.2.(1)

The platform misalign-
ment angles ¢y and ¢x are acceptable for an inflight alignment and are
less than one sigma errors as noted by the column referencing the inflight

value to the preflight estimate.

1) 2
1 CM/sec™ - 1000 ug
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A further assessment of the PGNCS performance is based on the comparison
of PGNCS onboard state vectors with the AGS onboard state vectors.

Figures 2-1 through 2-3 present AGS minus PGNCS total inertial velocity
differences and Figures 2-4 through 2-6 show the AGS minus PGNCS total
inertial position differences. The plot of primary interest is Figure 2-1
showing AVX which is essentially altitude rate. The plot shows a divergence
starting at PDI with an increasing rate starting at the time landing radar
altitude updates begin. The divergence continues until landing radar
altitude rate updates begin at which time, the divergence is stopped and
the difference begins to decrease. Indications are, the AGS altitude

rate estimate is better than PGNCS before landing radar updates start, after
which time the PGNCS was driven back toward the AGS estimate of altitude
rate. In order to isolate the cause for the divergence, differences
between AGS and PGNCS were computed in the thrust velocity domain, i.e.,
AGS sensed velocity minus PGNCS sensed velocity independent of gravity.
These differences are shown as dashed lines in Figure 2-1 through 2-3,

and indicate that for AVX, the inertial instruments account for about

half of the divergence observed in the total differences. For AVy and
AVZ, almost all of the total velocity divergence before start of radar
updating is directly accountable to sensed velocity differences, i.e.,
minimal gravity effects. The AVZ sensed difference between AGS and PGNCS
is primarily the result of the PGNCS bias error which was previously
discussed coupled with some AGS/PGNCS attitude misalignments. The AVy
sensed difference is primarily attitude misalignment between the AGS
inertial reference and PGNCS IMU attitude. AGS errors are discussed in
Section 3 of this report. Explanation of total AVX is now explained in
two parts; (1) gravity effects and (2) sensor differences.

1) AV, Gravity Effects

Both AGS and PGNCS computers calculate gravity effects during
powered flight using a spherical gravity model which is
expressed as:
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where um = moon gravitational constant
u. = unit vector in direction of r
r = vradius vector

For this discussion, u_ is effectively along the X inertial
direction, so the exprgssion will be simplified to:

um

g = - ————
X r2

Prior to landing radar altitude updating, the PGNCS and AGS
gravity effects are different because each computer is using
a different value for um.

15 2

PGNCS wm = 0.173139 x 10'° £t3/sec

15 2

ft3/sec

AGS um 0.173188 x 10

The difference in um results in a velocity computation
difference (AGS-PGNCS) of aV, = -0.3 ft/sec at start of
altitude update. This value plus the sensed error
resolves the differences between AGS and PGNCS at the
start of LR altitude updating. After altitude updating
starts, the X velocity difference begins to diverge at
a faster rate. PGNCS position state vector updating
using radar data is adjusted onboard to account for
terrain variations under the spacecraft. The terrain
variations are modeled preflight and are stored in

the computer. Postflight analysis (Reference 2)

has shown that the terrain was modeled in error, and
the effect was, to introduce an error into the PGNCS
position state each time a radar measurement was
incorporated. The terrain model coming into closer
agreement with the actual terrain features later

on in descent along with altitude rate measurements
from the radar prevented this modeling error from
having any significant effect on the LM landing.
However, the earlier effect was, to drive the PGNCS
position state away from the AGS position state and
this is easily observable from Figure 2-4. The large
difference in 2Ry at start of altitude updating

caused further difference in the computation of gravity
effects by AGS and PGNCS. Between the first altitude
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update and start of altitude rate update, the AR,
difference caused a velocity difference of -0.91 ft/sec.
In addition, the um difference contributed an additional
-0.52 ft/sec yielding a total AV, velocity difference

due to gravity effects of -1.43 ét/sec. The gravity
effects plus the sensed velocity error resolves the
difference between AGS and PGNCS at the start of altitude
rate updating to within -0.37 ft/sec which is within the
noise level of the data being utilized.

2) AVX Sensor Differences

The sensed difference between AGS and PGNCS can easily be
satisfied due to the PGNCS accelerometer bias errors, known
misalianment between the AGS inertial reference and PGNCS
IMU attitude and AGS accelerometer errors. PGNCS accelero-
meter errors have been previously discussed and AGS attitude
and accelerometer errors will be discussed in Section 3 of
this report.

In conclusion, the IMU performance during descent was acceptable and
only about half of the divergence between PGNCS and AGS altitude rate is
attributable to sensor errors. The gravity effects as the result of
PGNCS terrain modeling error and differences between PGNCS and AGS moon

gravitational constant caused the remainder of the altitude rate divergence.

2.2 ASCENT PERFORMANCE

For ascent, the PGNCS insertion vector was corrected for (1) known
accelerometer bias errors which existed during ascent (noted in Table 2.2)
and (2) corrected for the best estimate landing site vector. The PGNCS vectcr
was subsequently compared with a postflight established MSFN vector. The
AGS insertion vector was also compared with the MSFN vector and the
comparisons are presented below:

X (Radial) AY (Cross-range) Al (Down-range)

Difference (Ft/Sec) (Ft/Sec) (Ft/sec)
PGNCS-MSFN 8.49 -8.31 -0.72
AGS-MSFN 3.24 -10.08 0.43
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A set of IMU errors which will fit the PGNCS absolute insertion velocity
error is shown below:

_ Contribution
Error Source Value F]ighzjglgf1ight AVx AVy AVz
SFEX 116 ppm 1o 0.13
NBDY. -0.03%/hr 1o 0.20
ADSRAY -0.075°/hr/g 1o 0.14
oy -295 sec 5o 8.00 -1.60
X -305 sec 20 -8.31

¥8.47 -8.31 -1.60

The ¢x misalignment error conveniently satisfies the Avy and the size of
the misalignment is consistent with predicted uncertainties. The ¢y error
appears to be the most reasonable fit for the large AVX, but the misalign-
ment is inconsistent with preflight estimates. As shown in the table above,
when the ¢y is selected to totally account for AVX, approximately 1 ft/sec
residual remains in AVZ, the downrange direction. However, MSFN has the
greatest uncertainty in the Z direction which could easily account for

the poor velocity match in that direction. The reasons for selection of

Y misalignment to fit the end point errors are as follows:

1) As the above table reveals, contribution to aVy for one
sigma scale factor (XSF) and gyro drift- (YGCDR and YADSR)
errors are extremely small. Large instrument errors would
be required to account for the 8.49 ft/sec X velocity error;
an error which would suggest a failed instrument. Free-fall
data acquired pre-PDI and post insertion, lunar surface data
and Tunar ascent data reflects good performance of the
accelerometers and gyros thus contradicting a failed instru-
ment hypothesis.

2) Postflight studies have been conducted to assess the IMU
attitude errors prior to liftoff and these studies also
give indications of misalignments larger than preflight
estimates. The studies used AOT star sighting data
acquired while on the lunar surface to determine LM body
attitude. Multiple AQT star sightings were processed in
a weighted least squares estimator to determine the best
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estimate of LM body attitude with respect to a moon-fixed
local Tevel coordinate system. Gravity vector measurements
obtained at the time of the AQT sightings were also used

in order to detect and compensate for LM tilting between
batches of AOT sightings. Once the body attitude was
determined, the gimbal angles at a specific time were used to
determine the IMU orientation at the time in question. The com-
puted and the desired platform orientations were then compared
to determine misalignments. The IMU orientation was computed
after completion of the final P57 and results indicated the
following platform misalignments.

——

ABX = =144 sec
a6y = -180 sec
r0z = 180 sec

Maximum expected (30) gravity/star alignment errors computed
pre-flight were 445, 169 and 260 arc seconds respectively for
X, Y and Z. The abnormally large error about the Y axis is
thought to be caused by a gravity anomaly at the Tanding site
which deflected the PGNCS gravity measurement away from the
true local vertical. The liftoff error is conceivably larger
than the estimate above, because some uncertainty exists in
the method used (+ 40 sec) and the IMU drifted for approxi-
mately 40 minutes before T1iftoff occurred. The large Y axis
misalignment at first observation appears to contradict the
0.03 degree star angle difference (Noun 5) computed onboard at
the time of the alignment. However, review of the P57
measurement geometry reveals that a Y axis misalignment is
not totally contained in the NO5 value. For the P57 align-
ment, the vehicle was setting with the Z body axis pointing
5 degrees north of the CSM orbit plane and the right hand
detent was used for the star measurement. As a result the
plane which contains the star and gravity vector is 65 degrees
away from the orbit plane. The star angle difference calcula-
tion measures primarily those errors in the plane containing
the star and gravity vectors. Errors perpendicular to the
plane go undetected. Since the final alignment errors per-
pendicular to the plane are in fact about the Y axis, the
Noun 05 measurement will not totally represent the true
ABy.

y

The large difference between PGNCS and AGS error in the

radial direction additionally cast some suspicion on the PGNCS
and at first observation suggests a problem in the PGNCS X
axis. If a PGNCS initial alignment caused the radial error
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because of a gravity anomaly, the AGS should reflect a similar
error, since it also uses gravity for performing its pre-
liftoff alignment. Proof of this hypothesis is evident from
Figure 3-16 in Section 3, where actual difference between

AGS and PGNCS attitude are presented. The plot shows AGS
attitude relative to PGNCS attitude in body coordinates.

For ascent, the relationships between body differences and
inertial att1tude differences are asXI = aeZB, aeYI = -40YB
and a8Zl = -A6XB.

Therefore from Figure 3-16 it can be seen that the AGS starts
out with a pre-1iftoff misalignment frem PGNCS of 80 arc
seconds. But further study of the same figure shows that

the AGS continued to diverge away frm PGNCS throughout the
course of the burn. The sketch in Fiqure 2-7 clarifies the
following remarks. PGNCS was apparently misaligned about

Y pre-1iftoff by a significant amount. AGS/PGNCS attitude
data shows that AGS was within 80 sec of PGNCS at the same
time but misaligned in a direction toward the true inertial.
In the course of the burn, the AGS attitude reference con-
tinued to diverge toward the true inertial. The AGS attitude
reference apparent drift is primarily the result of ASA mis-
alignments in conjunction with the significant body maneuvers
which are performed during ascent. The end result is, an AGS
measured inertial velocity which is better than PGNCS. Further
proof is obtained when AGS-PGNCS sensed velocity differences
in inertial space are derived and plotted in Figures 2-8
through 2-10. As shown, the largest sensed error is in the

X direction, and this sensed difference between AGS and PGNCS
can be satisfied with a 140 sec misalignment about Y. Review
again of Figure 3-16 shows an average inertial attitude mis-
alignment between AGS and PGNCS of 140 sec.

Review of lunar gravity modeling studies’ confirmed a large
offset of the "g" vector at the Hadley itille Site when mascon
effects are considered. When a L1 potential model was modified
with mascon effects at the nominal landing site, the gravity
vector shifted .019 degrees to the north and 0.108 degrees to
the west. The primary effect on a platform aligning to the"g"
vector for a westerly flight azimuth would be to tilt the
vertical axis downrange. For the A-15 mission, this is equiva-
lent to a -390 sec misalignment about the platform y axis.

In summary, the most reasonable explanation for the PGNCS radial
error at insertion is platform misalignment. From available data it
appears that IMU sensor performance was acceptable and the large pre-liftoff

Y misalignment was the result of inappropriate lunar potential modeling,
not hardware error.

1
MSC Memo FM4 (71-97), Apollo 15 Lunar G, dated July 9, 1971
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3.0 LM AGS PERFORMANCE

3.1 Altitude and Altitude Rate Update During Descent

Apollo 15 was different from previous missions in that altitude
and altitude rate updates were executed during powered descent while only
altitude updates were performed on previous missions. The AGS minus NGNCS
altitude and altitude rate differences for pertinent times during the descent

are summarized below:

Pre-Altitude Post-Altitude Pre-Velocity Post-Velocity

Update Update Update Update Touchdown
sh (ft)  -1018 368 616 616 678
ah (ft/sec) 2.4 -2.4 -1.6 -1.0 0.5

The differences throughout descent are plotted in Figures 3-1 and 3-2..
The 368 foot error in altitude remaining after the altitude update is the
result of a 1.8 second time delay in executing the update, approximately
the same size execution error as observed on previous missions. The
altitude rate update had Tittle effect on the AGS velocity vector since
the AGS was maintaining an accurate velocity trajectory before the update.

3.1.2 State Vector Transfers from PGNCS

There were four state vector transfers in the Apollo 15 mission.
Three of them were prior to PDI and one just before lunar surface 1iftoff.
During the mission, the ground data processor indicated the first two
pre-PDI state transfers were significantly in error. Specifically, the
second state vector transfer (103:12:32.02 GET) CSM position and velocity
errors displayed on the flight controllers console were 1071.84, 13,067.87,
318.15 feet; -11.62, -0.48, and -0.29 feet/second radial, downrange and
crossrange respectively.

A1l four of the state vector transfers were analyzed by comparing
the AGS and PGNCS state vectors which were obtained from telemetry data.
The method used in this analysis was to propagate the PGNCS using a best
estimate gravity model to the AGS epoch. The results were then compared
with the AGS state vectors.
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The results presented in Table 3.1 indicate that all four state
vector transfers were properly executed and all errors were within the
expected value of 750 feet for position components and 0.75 feet/second
for velocity components.

The ground computed errors in the first two pre-PDI state vector
transfers were evidently caused by the ground operations and not by the
AGS or PGNCS.

3.2 Sensor Performance

3.2.1 Gyro and Accelerometer Free-flight Performance

Inflight qvro fixed drift is based on free-flight AGS attitude
comparisons with PGNCS attitude and the AGS inflight and lunar surface
calibrations. A history of gyro fixed drift for ASA 017 is presented in
Table 3.2.

AGS accelerometer biases determined from calibrations and free-flight
velocity accumulations are shown in Table 3.3. The histories show good
Tong and short term stability.

3.2.2 AGS-PGNCS Attitude Difference During Powered Flight

In order to obtain estimates of gyro errors, two types of attitude
differences are examined.

1) Bodv anqgle difference, :. This narameter is the small
argle difference between the AGS direction cosine (DC),
matrix A, and the PGNCS gimbal angle matrix, G. It is
computed from

0 < -
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2) Integrated bodv rate difference, An. This parameter is
computed from:

A dt

Hopgs = “pancs!

where the indicated rates are okbtained from

T T

[+ Lopggd = AR T+ Lupguec] = 6 6
In theory, this should be the more useful parameter since
error propagation modes are simpler and initial matrix
misalignments do not propagate at all. In practice, it

has been found that integration of the 1 second data often
yields misleading results, and a2 is used only to corroborate

the patterns in the & residual curves.
To simplify the error analysis, error equations were written for

single axis rotations which occurred during the powered flight phases.
The error model for each discrete maneuver analyzed will be given in
the text. The error terms used are defined as follows:

AT = Timing error

= Initial body angle difference (at the start of a

8
-0 given maneuver)

= AGS gyro input axis misalignment w.r.t. NAV BASE

[f=e)
i

by + by = constant gyro rate difference (static + dynamic)

| =
1l

Gyro scale factor error

3.2.2.1 Descent Attitude Differences

Three sets of data plots are provided to support the descent

analysis.
1) o : Integrated body rate (Figures 3-3 through 3-5).
These parameters do not generally represent physical

angles, but do appear as driving functions on the
error models.
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2) & : AGS-PGNCS body angle differences (Figure 3-6 through 3-8)
3)  aq: AGS-PGNCS integrated body rate differences (Figure 3-9
through 3-11).
The reference time for each of these descent plots is 104:29:00.1 (LGC
clock Time) which is approximately 70 seconds before descent engine
ignition. For the minus 48 degree roll maneuver at t = 250-266 seconds
on Figure 3-3, the error model for Y and Z attitude error and integrated

body rate differences are:

Moy = -(vz - GOZ) sin 2y (wY - OOY) (1-cos QX)
Ny = (uz - GOZ) (1-cos ux) + (wY - eOY) sin y
A = - h e}

7 VA
Ay by Sy

Using the values of 46, g5 and A taken from the appropriate plots,
the "least squares" solution for the gyro misalignments is found to be:
by = 44 sec, by = 33 sec
For the minus 55 degree pitch maneuver at t = 630-760 seconds on
Figure 3-4, the error equations for X and Z attitude error are:

Aoy = (wz - GOZ) sin 2y + (wx - HOX) (1-cos RY)
wyo= (g - “o7) (1-cos <) - (vy - Tgx) SN Gy

Using the values of a8 and 8 from the plots, the gyro misalignments are
found to be:

vy T 36 sec, vy = -35 sec

It should be clarified at this time, that true gyro input axis mis-
alignment from the ASA cannot be separated from ASA misalignment to the
navigation base. Therefore, in the subsequent discussions, when gyro
input axis misalignment is referred to, the value quoted includes both

error sources.
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The constant pitch rate maneuver during the descent between 80 seconds
and 500 seconds in Figure 3-4 provides a suitable segment of time for
observing the input axes misalignments effects and at the same time to isolate
the gyro drift effects. The a0y and 49, curves are suitable for analysis and
error models for the period in question are:

Ay = Uy Qy + AT BX
+
80y = Yy Oy AT BZ

Using the a priori wz and wx values and the following observed changes:

AQX 20 sec

AQZ = =35 sec

2y -35 degrees ;

the two equations yield values of BX = +0.10 degree/hr and BZ = -0.03
degree/hr. Measured residual fixed drift for the X gyro pre-PDI was

0.10 degree/hr. The dynamic error for the X gyro is therefore approximately
zero and the dynamic error for the Z gyro is -0.03 degree/hr. The Y data

appears to be too noisy to interpret a drift value.

3.2.2.2 Ascent Attitude Differences

The ascent attitude comparisons consist of the same parameters used
in the descent phase.

st QY’ QZ shown in F'igUY‘eS 3-12, 3—]3, 3-14
By Bys By shown in Figures 3-15, 3-16, 3-17

BRys Ay A% shown in Figures 3-18, 3-19, 3-20

The zero reference time on each of these plots is 171:37:00.35 (LGC clock
time) which is approximately 22 seconds before 1iftoff.
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As expected, the Y and Z channel data are quite noisy and generally
unsuitable for any detailed error analyses. It is interesting to note
that the noise level suddenly decreases after T = 300 seconds (particularly
in Y), because the body rate limit cycle begins to subside.

The maneuver chosen for analyzing the gyro misalignments was a large
pitch change at T = 578-630 seconds. Since the +100 degree pitch (V)
maneuver occurred after engine cutoff, the attitude comparisons are
relatively noise free. The error model for the integrated body rate

difference, a0 is:

My Ty
3 jY = KYZY + ;',tuJY

The error model for the matrix misalignment, 4, is

60y = (wz - aoz) sin oy + (’X - “OX) (1-cos QY)
AGY = KYQY + ntmy
P -(WX - GOX) sin ay + (wz - 602) (1-cos QY)

In terms of total chanaes across the maneuver, the error equations become:

= 240 sec = 1.745 .

;,IX
a6y = 160 Sec = (v, + 146) (.€85) + (uy, - 70) (1.174)
ey = 320 sec = (1, +146) (1.174) - (., - 70) (.985)

The "best" least squares solution for the gyro misalignments is

e

b= 13 5521 = 15 sec

7 "X
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Knowing the above error sources the effects of X and Z dynamic gyro
drift can now be estimated during the ascent burn by analyzing the Oy plots.

The error model for the period in question is:

B B

: I's ..l(. 3 ___Z._ -
2Oy = (wz- 802) sin qy + (wx-oox)(l-cos JY) + oy sin o oy (1-cos mY)

Observed changes from available plots across the time period,
T = 120-454 seconds, are:

20y = -60 Sec
Oy = -36 degrees
wy = -.098 degree/sec = 350 degree/hr

Using the a priori estimates of gyro misalignments from above and static
bias errors from Table 3.2, the error model reduces to:
- _ sec sec
-60 sec = (-96 -22 + 52) sec + bDX(346 37F%) + bDZ(112 375})
Thus we see that the a priori errors adequately explain the by residuals,
and conclude that there is no significant X-gyro dynamic drift and (with

less certainty) no significant Z-gyro dynamic drift.

3.2.3 Powered Descent Velocity Comparisons

Start of powered descent (PDI) was at 104:30:09 GET with lunar touch-
down occurring at 104:42:30 GET. Total accumulated velocity during the
descent phase was approximately 6829 feet/second. PGNCS sensed two second
velocity data were corrected for PGNCS errors (See Section 2),rotated into bcdy
axes using IMU gimbal angles and summed to form velocity histories in
body space. Differencing these PGNCS body axes velocities from the AGS
sensed velocities, derived by extracting gravity from the AGS velocity
state vector and rotating the sensed aV using the DC matrix, yielded the
curves shown in Figures 3-21 through 3-23. Since these differences are

derived using gimbal angle data to rotate PGNCS V (gimbal angles provide

3-7



a true relationship between body and platform space) and using the CD matrix
to rotate AGS AV (which is simply reversing the process the onboard com-
puter performed), the error curves theoretically represent only accelerometer
errors and timing errors. The step change in velocity error occurring at
entrance to the approach phase (P64) in Figure 3-21 is also obeservable in

Z channel (Figure 3-23). This is a data processing error resulting from

the inability to properly handle high angular acceleration. At P64, the

LM performs a pitch maneuver of approximately 40 degrees to allow the
astronaut to view the landing site. The maneuver is performed at an

angular rate high enough to produce sizable angular accelerations at the

IMU and ASA due to the offset of the sensors from the LM center of gravity.
Due to the low frequency data rate, perfect transformation of this angular
acceleration from IMU to body axes is difficult and some processing error

is unavoidable. The 0.8 feet/second step in velocity error results. This
problem has been encountered on previous missions and is discussed in
Reference 3.

Using a weighted least squares filter with the AGS accelerometer error
model, a set of error coefficients was determined which fit the velocity
difference curves. Modeled accelerometer errors are listed in Table 3.4.
The fit was terminated at the P64 point so as not to corrupt the fit with
the unmodeled step error. Results of the fit are listed below:

Error Model Symbol Description Value
XASF X Accelerometer scale factor 12 ppm
YAMTX Y Accelerometer misalignment -16 sec

toward X
ZAMTX Z Accelerometer misalignment 4 sec
toward X
XAB X Accelerometer static bias -33 ug
YAB Y Accelerometer static bias -21 ug
ZAB 7 Accelerometer static bias -38 ug
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The accelerometer bias errors were constrained in the fit to agree with the
static bias values determined i,efore PDI ignition. A1l of the remaining
errors in the X channel have been solved for in terms of scale factor error
(XASF) because the only other sensitive error in the X channel, dynamic
accelerometer bias, is highly correlated with XASF and inseparable. For

the Y channel, all of the dynamic error has been solved for in terms of Y
accelerometer misalignment toward X (YAMTX) because the only other significant
error, dynamic accelerometer bias, is highly correlated and inseparable.

For the Z channel, misalignment and dynamic bias are similarly inseparable.

3.2.4 Ascent Velocity Comparisons

Start of ascent was at 171:37:22 GET with insertion occurring at
171:44:30 GET. Total accumulated velocity during the ascent phase was
approximately 5970 feet/second. Ascent velocity differences were developed
in the same manner described in descent Section 3.2.3, and are presented in
Figures 3-24 through 3-26. PGNCS errors (see Section 2) have been eliminated
from these differences. The weighted least squares filter was used to fit
a set of AGS accelerometer errors to the velocity differences. Results of
the fit were as follows:

Error Model Symbol Description Value

XASF X Accelerometer scale factor -142 ppm

YAMTX Y Accelerometer misalignment -25 sec
toward X

ZAMTX . Accelerometer misalignment -32 sec
toward X

XAB X Accelerometer static bias - 30 ug

YAB Y Accelerometer static bias - 53 ug

ZAB Z Accelerometer static bias - 46 ug

The accelerometer static biases in the fit were based on a segment of

free fall data after completion of orbit insertion. For the same reasons
indicated in the descent discussion, all the remaining X axis velocity
error was solved for in terms of scale factor error and all remaining Y and
Z velocity error has been solved for in terms of instrument misalignments

toward the spacecraft X axis.
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3.2.5 Comparisons of ASA Inflight Errors to Preflight Performance Estimates

3.2.5.1 Accelerometer Error Summary

Based on the AGS capability estimate, the accelerometer errors agree
favorably with the preflight performance estimates derived for the particular
instruments flown on Apollo 15.

For powered flight, accelerometer errors are summarized in Table 3-5.
As noted in Section 3.2.3, individual accelerometer dynamic error terms are not
fully separable and as a result were arbitrarily grouped into one error
source for each axis. For comparison with the preflight estimates, again
it was necessary to define a single performance index which could represent
the premission performance estimates and the inflight estimate. A per-
formance index was derived by converting all the non-bias errors such as
sensing axis misalignment and scale factor error into equivalent accelera-
tion errors. This is possible only because the ratios of the partials
for the errors mentioned above are fairly constant through the descent and
ascent trajectories, thus explaining the high correlation between these
errors.

The table shows reasonable corroboration of errors with the pre-
flight system modeling for ASA 017 and good correlation between the two
phases of flight.

3.2.5.2 Gyro Error Summary

Gyro information retrieved from the attitude comparisons during
ascent and descent indicate excellent agreement with ASA 017 Preflight
Performance Estimates. Dynamic bias information was obtained on the X

and Z instruments, however noisy data precluded separation of any meaning-
ful information about the Y gyro. Free-flight stability was excellent for
all instruments. Gyro drift information for descent and ascent are compared
with the preflight estimates in Table 3-6. Gyro misalignment information
retrieved from the analysis is presented in Table 3.7 and indicates good

agreement with the preflight error model.



TIME T .

THME GET AX AY | sz AVy AVy AV
hr:min:sec ft ft - ft ft/sec ft/sec ft/sec
101:23:17.2161 113. -86. 9. 202 126 -.253
103:12:13.216| -50. -250. -158. -.227 .125 -.0D96
104:12:49.206) 558. -109. 138. -.195 .113 . 608
171:21:15.96 {-138. -12. 160. .031 .048 .236

LM STATI. VECTOR LERRORS IN AGS COORDTN&EES
TIME GET )

L AX AY AZ L Ay AVy AV
hriminisec ft ft it ft/sec ft/sec ft/sec
101:23:17.216| —66. 173. 33. -.148 .035 .082
103:12:13.216 317. -71, -22. -.251 .218 ~-.178
104:12:49:204 | -62, -146, -65. .1?35 .079 . 215
171:21:15.96 |-292. 275. | -321. .216 -.05 | -.001

CSM STATE VECTOR LRRORS IN AGS COORDINATES

Table 3-1.

State Vector Transfer Errors
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Table 3.4. LM AGS Error Model (Accelerometer)
Mnemonic Description
XAB X accelerometer bias
YAB Y accelerometer bias
ZAB Z accelerometer bias
XASF X accelerometer scale factor
XAMTY X accelerometer misalignment toward Y
XAMTZ X accelerometer misalignment toward Z
YAMTX Y accelerometer misalignment toward X
YASF Y accelernmeter scale factor
YAMTZ Y accelerometer misalignment toward Z
ZAMTX Z accelerometer misalignment toward X
ZAMTY Z accelerometer misalignment toward Y
ZASF L accelerometer scale factor
TB Accelerometer timing bias




Table 3.5. Accelerometer Error Summary

Descent Equivalent Accelerometer Bias Errors {ug)

ASA 017
Preflight Estimate
Axis Error Source Inflight Estimate Mean 30
Bias, nonlinearity _
X and dynamic errors 6 01
Scale factor _le 14
Total -26 10 125
Bias, nonlinearity -4 a8
and dynamic errors
Internal sensing axis
Y alignment -54 H
ASA alignment to
navigation base o 155
Total -44 -58 217
Bias, nonlinearity
and dynamic errors -22 88
Internal sensing axis
1 alignment 0 12
ASA alignment to
navigation base 9 195
Total -32 -22 214

Ascent Equivalent Accelerometer Bias Errors (ug)

ASA 017
Preflight Estimate
Axis Error Source Inflight Estimate Mean 3a
Bias, nonlinearity -6 107
X and dynamic errors
Scale factor 19 95 _
Total -91 13 143
Bias, nonlinearity -4 3
and dynamic errors
Y Internal sensing axis -72 26
alignment
ASA alignment to 0 156
navigation base — —_
Total -10% -76 162
Bias, nonlinearity .22 2
and dynamic errors
1 Ingerna1 sensing axis 0 16
alignment
ASA alignment to 0 156
navigation base -_ —
Total -113 -22 157




Table 3.6. Gyro Bias Error Summary (Deg/Hr)

3-15

Descent
ASA 017 ASA 017
Preflight Estimate Inflight Estimate
_Mean 3 ¢
Gyro fixed drift 0 0.45 0.10 (1)
0 0.45 0.05 (1)
0 0.46 o (M
X Gyro spin axis 0 0.53
mass unbalance (2) 0
Gyro dynamic drift 0.02 0.29
0.13 0.25 -
- 0.09 0.26 -0.03
Total (deg/hr) 0.02 0.75 0.10
0.13 0.51 -
- 0.09 0.53 -0.03
Ascent
ASA 017 ASA 017
Preflight Estimate Inflight Estimate
_Mean 3 o
X Gyro fixed drift 0 0.42 0.15 (i)
Y 0 0.41 0.03 (3)
JA 0 0.41 -0.04
" es unbalance o es| ;
Gyro dynamic drift 0.02 0.26
0.11 0.28 -
- 0.07  0.34 0
X Total drift (deg/hr) 0.02 0.72 0.15
Y 0.11 0.51 -
- 0.07 0.53 -0.04
(T Table 3.2 column 3 minus column 2
(2) Postflight data are not sufficient to separate x gyro spin axis unbalance
and gyro dynamic drift
(3) Table 3.2 column 6 minus column 5



Table 3.7. Gyro Input Axis Misalignments

ASA 017
Gyro Input Axis Preflight Inflight Value Inflight Value
Error Sources Estimate (Sec) Descent (Sec) Ascent (5ec)
Mean 3o

Internal misalignment

X toward Y 50 9
ASA to nav. base mis- 0 120

alignment 50 120 y7 = 44 vz = 113
Internal misalignment

Z toward X 33 19
ASA to nav. base mis- 0 120 )

alignment 33 121 by = 33 Not attainable
Internal misalignment *

Z toward Y -39 15
ASA to nav.a??simg;i— 0 120 )

J =39 121 vy = =35 by = 15

As shown in the table, inflight estimates cannot separate internal mis-
alignments from ASA misalignments.

*Sign reversed to agree with inflight convention.
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4. DIGITAL AUTOPILOT PERFORMANCE

4.1 CSM DIGITAL AUTOPILOT

Analysis of the CSM DAP on Apollo 15 was primarily directed toward
those phases of DAP operation which were new to this mission and toward
peculiarities observed from initial review of the data. CSM Thrust Vector
Control (TVC) DAP performance agreed closely with successful SPS burns
of previous missions with one exception. A yaw SPS gimbal transient was
detected during the TEI burn apparently caused by a CDU transient. The
new universal tracking (P20) option 2 capability for orbital rate maneuver-
ing was tested when the vehicle was in lunar orbit. Postflight analysis
indicated the performance was acceptable. The use of universal tracking
(P20) option 5 for S/C pointing to accommodate the SIMBAY experiments
while in lunar orbit was also examined. When the CSM was docked to the
LM and P20 option 5 was used, several occurrences of long duration jet
firings were observed, when only minimum impulse firings were expected.
Postflight analysis of the CSM DAP performance indicated that the orbital
rate maneuver was interrupted periodically for a duration of approximately
20 seconds. MWhen these interruptions occurred at a time when the vehicle
attitude error was close to the deadband, large jet firings would occur
as the DAP reverted to its attitude hold function of phase plane maintenance.
Upon restoration of spacecraft pointing, jet firings were again required
to re-establish the orbital rate. Detailed results from the above studies
are presented below.

4.1.1 SPS Burn/Yaw SPS Gimbal Transient During TEI

A yaw SPS gimbal transient observed during the TEI burn was most likely the
result of a COU transient. Analysis of available telemetry data at the time
of the transient indicate good correlation between DAP commands, SPS gimbal
motion and CSM body rates. A1l data pertinent to the event are shown in

Figure 4-1. As shown, the CDU's are only read-out on telemetry once per
second whereas the DAP reads the CDU's every 40 ms. Gimbal commands are
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also read once per second but fortunately the yaw command was read near
the time the transient occurred. The gimbal trim command (YACTOFF) is
read once per 2 seconds. The combination of YACTOFF and YCMD is the total
DAP command to the SPS gimbal actuator. At the time of the transient the
total DAP command changes from 0.12 degrees to 0.35 degrees, a change of
0.23 degrees.

The TVC DAP initial gain at the time of transient is 0.66 deg/deg. If
the CDU outputs are examined in terms of the attitude error equations at
the time of the transient, it can be shown that the yaw attitude error is
related to the CDU's as follows:

Yo T Yaw error = - cos ¢ sin ¢' (CDUY—CDUYD) + cos ¢ (CDUZ-CDUZD)
where

y = CDUZ

¢' = CDUX - 7.25°

CDUD = Desired CDU angle

Assuming the transient occurred in only one CDU, the magnitude of the CDU
transient was computed as follows:

a) Knowing the DAP gain and observed engine deflection,
the attitude error (v_.) was determined to be approxi-
mately 0.33 degrees.

b) Using the gimbal angles at the time of the last tele-
metry sample, compute the CDU change required to cause
the 0.33 degree DAP attitude error. Results were
(CDUY—CDUYD§ = 6.67° or (CDUZ-CDUZD) = 0.33°.

The CDUY case was discarded because transients of that size have not been
observed in ground testing. Laboratory testing has isolated two types of
CDU transients;
1) Fine error switch transients observed when the CDU
is changing slowly and various low order bits remain
unchanged for several minutes. The size of the tran-

sient is usually less than 0.24 degree and lasts for
a second or less.
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2) Coarse error switch transients observed when the CDU
is at angles of 0° + integer multiples of 45°. These
transients are less than 0.34° and last for less than
50 milliseconds.

The CDUZ transient does not fit the second case because the gimbal was
0.68 degrees, not zero, but the conditions did meet the first case since
the CDUZ was moving at a slow 0.012 deg/sec. The transients result from
a design deficiency in the transistor switches of the CDU read counter.
Since the problem causes only short term effects (less than a second)

hardware changes have not been implemented.

In following the effects of the CDU transient, the SPS gimbal was
driven from 0.19 degrees to 0.32 degrees, a peak change of 0.13 degrees.
The SPS control authority for CSM only configuration is approximately
3 deg/secz‘per degree of SPS gimbal travel, and the gain is negative. The
rate gyro trace, which is 100 sample per second data, shows the body
negative rate building to -0.02 deg/sec. Taking the average SPS positive

deflection géli and time of deflection (200 ms) and multiplying by the

SPS gain, an expected body rate of -0.04 deg/sec is computed, well within
the sensitivity of the measurement date. In response to the engine deflec-
tion, the DAP detected the vehicle rate and attitude errors, and commanded
a negative engine command of 0.17 degrees. Computing the expected vehicle
rate for this deflection, a value of 0.08 deg/sec is obtained. Examination
of the rate gyro data shows the yaw vehicle rate building to 0.06 deg/sec,
again well within the granularity of the measurement data. An expected

lag exists between the rate gyro data and the rapid engine deflections due
to vehicle bending.

In summary, available data indicate that the DAP issued an erroneous
SPS gimbal command which was most Tikely the result of a CDU transient. The
DAP satisfactorily corrected for the subsequent vehicle rate and attitude
errors within the following 540 *+ 20 ms and the data were nominal for the
remainder of the maneuver.



4.1.2 Universal Tracking Program - Option 2

CSM DAP performance during the CMC Universal Tracking Program P20,
Option 2, was examined with particular reference to initial transients
due to program start-up and the time to reach orbital rate. These effects
were studied by comparing actual and desired rates, and actual and desired
gimbal angles. Figures 4-2 and 4-3 present these quantities for the Y-
control axis (the axis of greater rotation maneuver for Option 2) and X-
control axis, respectively. It is seen that the Y- axis actual rate is
considerably larger, during the first portion of the maneuver, than the
orbital rate command (0.0506 deg/sec) required for landmark tracking. This
is because of the necessity for first maneuvering to the appropriate attitude
for tracking before the orbital rate alone is to be maintained. Hence,
initiation of P20, Option 2 was verified to be nominal.

As Figure 4-2 indicates, the maneuver was performed with the actual
CDUY following the desired CDUYD satisfactorily. The higher slope on the
CDUYD curve early in the maneuver indicated the need for a rate greater
than orbital rate at the start of the maneuver. Also, CDUYD finally
approached a constant slope curve indicative of a constant orbital rate

maneuver.

4.1.3 Universal Tracking Program - Option 5

During SIMBAY pointing in Tunar orbit, frequent discontinuities in
P20 were observed, which caused the DAP to perform an inertial attitude
hold and interrupt the established orbital rate. When these discontinuities
occurred, transients of 0.7° in each of the pitch and yaw attitude errors
were caused and if the DAP deadbands were exceeded, the RCS jets would stop
the vehicle rate. When the maneuver commands were resumed, the orbital
rate had to be re-initiated. The circumstances leading to this start-stop
jet firing sequence occurred rather frequently with the docked CSM/LM
because of the nature of the gravity gradient torques. Analysis indicated
the maneuver command terminations were correlated with the orbital integra-
tion routine which was being exercised at intervals of about 35 minutes.
The remainder of this discussion will detail the sequence of events in
P20 leading to the problem and will analyze the DAP response.
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The SIMBAY vector is pointed downward along the local vertical during
long periods of orbital rate maneuvering. In this attitude, the X-axis of
the vehicle is horizontal. The SIMBAY vector is located about midway between
the +Y and -Z axes of the vehicle and 45° from RCS Quads A and B, The roll
orientation of the spacecraft is shown at the top in Figure 4-4. The vehicle
is rotated 127.5° clockwise from the heads-up position relative to the lunar
surface when vehicle +X is along the velocity vector. The jets shown in
the top sketch are those that perform all the firings during the major RCS
firings and just prior to such events.

The sketch in the lower half of Figure 4-4 shows the two X-axis
orientations that were used for SIMBAY experiments. The long duration
orbital maneuvers were performed with the +X axis pointed uprange as shown
on the right. The orbital rate direction is indicated by the arrows and
yields the pitch and yaw rates indicated below each sketch.

The gravity-gradients are not aligned with the conirol axes and do not
produce predictable DAP phase-plane trajectories. Gravity-gradient torques
are parallel to the orbital rate axis and are proportional to the attitude
deviation from the horizontal. Pitch and yaw attitude and rate errors are
a combination of errors in both the vertical and horizontal planes; only by
combining pitch and yaw attitude errors can one compute the angular accelera-
tion produced by gravity-gradients in either of the control axes. Hence,
the DAP phase-plane was abandoned as a tool for analyzing DAP performance
in the presence of gravity-gradient torques.

ATTITUDE ERROR ANOMALY

The discontinuity in P20 which causes the large jet firings was dis-
covered from a cross-plot of pitch and yaw attitude errors shown in
Figure 4-5. The pitch and yaw axes are rotated 45° in Figure 4-5 to
correspond to the roll orientation shown in Figure 4-4; as a result, the
attitude errors in the vertical plane are measured up and down the page
and cross-range attitude errors are measured left and right. The effect
of gravity-gradients is to cause the errors in the vertical plane to
increase in either direction from the horizontal.
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In addition, the gravity-gradient torque increases with the vertical attitude
error and causes the trace in Figure 4-5 to reach the upper or lower corners of
the plot. Eventually, a minimum-inpulse limit-cycle is established near one

of these two corners. The gravity-gradient torques force the vehicle toward

the DAP deadbands, and the RCS jets fire alternately in pitch and yaw to reverse
the vertical rate. These limit-cycles are so small for the docked vehicle

that they are barely visible in Figure 4-5.

Several discontinuities in DAP attitude errors can also be seen in
Figure 4-5. The most obvious discontinuity appears near the origin at
86:38:17 GET and does not cause any jet firings to occur since the DAP
deadbands were not exceeded. No change in vehicle motion was responsible
for the sudden change in DAP attitude errors; the change was due to the
termination of orbital rate commands and the corresponding CDUD increments.
Before and after the discontinuity, the trace is moving from left to right
at a high rate. Two pitch firings occur when the deadband is encountered,
and the horizontal and vertical rates are both reversed. As the trace
moves slowly upward and toward the left, a second discontinuity occurs
(86:59). As the plot continues to the left, the vertical rate is reversed
by gravity-gradient torques which force the curve toward the lower corner
in Figure 4-5. A tiny (0.3° peak-to-peak) minimum-impulse limit-cycle is
established until a third discontinuity occurs (87:40); this time, both
DAP deadbands are exceeded and major firings occur.

These major firings are both unnecessary and undesirable. If the jets
are fired, the orbital rate will be stopped and additional jet firings will
be required later to re-establish the vehicle rate. During Apollo 15 SIMBAY
operations, all pitch and yaw firings were performed by the -X jets because
of impingement constraints and these un-coupled firings produce a delta-V
of 0.1 ft/sec for each major firing. The impulses are not predictable and
may produce significant errors in the ground and onboard orbital navigation
computations.
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Enlargements of two of these attitude error anomalies are shown in
Figures 4-6 and 4-7. Figure 4-6 is a plot of the first discontinuity in the curve
in Figure 4-5 at GET 86;38:17. Dots indicate one or more 2-second samples of
the pitch and yaw attitude error in Figure 4-6, while solid lines were.plotted
from occasional data points. At the start of the plot in Figure 4-6, the data
points are fairly dense even though the DAP rate error is higher than usual
for SIMBAY operations. At GET 86:38:17, the data points break sharply toward
the lower left for 20 seconds due to the erroneous commands to the DAP.
At GET 86:38:37, the DAP is commanded to maneuver back to the local horizontal,
and this brings the DAP error back to the line established before the 0.91
degree vertical transient occurred. The attitude error transient in Figure 4-6

had no effect on the motion of the vehicle because the DAP deadbands were
not exceeded, and because the change occurred in the commanded attitude, not

the actual attitude.

Figure 4-7 is a close-up of the extreme lower corner of Figure 4-5
25 times. The heavy curve plots the attitude errors prior to the loss of
commands. The thin line connecting the circled data points is a plot of the
DAP pitch and yaw attitude errors after the orbital rate commands are
removed. The plot starts at the upper right (87:27:05) in Figure 4-7 where a
small pitch firing occurs and crosses the yaw deadband at a high rate. A
larger yaw firing reverses the vertical rate and the trace drifts slowly toward
the left until the yaw deadband is encountered once more. The first minimum
impulse occurs on the far left and is followed by four additional minimum
impulses in pitch and yaw and one roll firing which couples into pitch.

The first circled point in Figure 4-7 indicates the last data point where
the DAP attitude errors are normal. Starting at the second circle, the two
curves separate; the arrow shows the direction that the vehicle takes with
respect to the local vertical reference, while the circles plot the DAP
errors which move rapidly in the opposite direction. Within two seconds
(third circle), major jet firings begin and continue intermittently until
the attitude errors stabilize (circle 5 at bottom). The attitude errors
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decrease slowly until the commands resume at circle 10 near the pitch dead-
band. A maneuver is commanded at a rate which is higher than the orbital
rate in order to bring the center of the DAP deadbands back to the local
horizon. This causes the attitude error plot in Figure 4-7 to move rapidly
across the page from the bottom to the top (circle 10 to 14).

Figure 4-8 is a plot of the commanded and measured gimbal angles at the
time of the major firings plotted in Figures 4-5 and 4-7. For purposes of
demonstration, the inner gimbal angles can be considered to be angles in
the orbital (vertical) plane. Prior to the attitude error anomaly, both
curves are following the orbital rate slope with a 7° vertical attitude
error determined by the 5° control deadbands. This orbital rate maneuver
should be expected to continue indefinitely with a precisely constant point-
ing error. Instead, the orbital rate maneuver was stopped by terminating
the command increments at GET 87:39:59 as shown by the CDUYD curve in
Figure 4-8. As the measured gimbal angle (COUY) continues to decrease, the
attitude error increases and causes the jet firing to reduce the vehicle
rate to 23% of the orbital rate. After 20 seconds, the CDUYD increments
are larger than before and denote a catch-up maneuver to place the CDUYD
curve back on the "ORB RATE" tine.

Invariably, one other event occurs in the same telemetry time frame
with the start of the command discontinuity. In every case studied, the
discontinuity in CDUYD begins at the same time-tag as the loading of the
new permanent state vectors at the end of the orbital integration routines.
The mechanism by which the termination of the orbital rate commands is
triggered at the completion of the orbital integration has been studied by
MIT/CSDL and work around procedures are being developed.

After a major firing occurs, the DAP deadband is crossed and a Timit
cycle is established in the upper corner of Figure 4-5. The two discontinuities
indicated at the top of Figure 4-5 cause no major jet firings. Smwall firings
do occur after the DAP commands are restored. During the attitude-error
anomaly, the DAP is unaware of the true vehicle motion during a period of 40
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to 60 seconds. During this period, small initial rates and gravity-gradient
torques can cause the vehicle attitude error to increase, so that when the
orbital rate maneuver is resumed after the interruption, the attitude error
can cause small jet firings. These firings are typically smaller than those
encountered at the negative attitude error Timits.

This P20 limitation was studied by MSC flight controllers and several
operational considerations have been proposed for Apollo 16 to help alleviate
the problem. The most significant procedural work-around is the setting
of the CMC SURF FLAG (bit 8 of FLAGWORC 8) to prevent LM state vector
integration. This will result in approximately four seconds of interrup-
tion of the P20 orbital rate maneuver (for integration of the CSM state
vector only) compared to the twenty seconds required for both LM and CSM
state vector integration. Consequently, the errors accummulated during
the shortened interruption period will be greatly reduced, which will
reduce the number of times the deadband is exceeded. Furthermore, if the
deadband is exceeded, the amount which the deadband is exceeded is decreased
and the resultant firings will be smaller than those observed in the
Apollo 15 mission. Other operational considerations are limiting the time
tag on state vector uplinks to be within 30 minutes of uplink time, 1imiting
the use of programs that allow P20 to run in the background and which prevent
perfodic state vector integration, and also limited use of extended verbs
that require state vector integration.

4.2 LM DIGITAL AUTOPILOT

LM Digital Autopilot performance was reviewed during descent and ascent
to identify any major differences between this mission and previous missions.
On the whole, the DAP performance was found to be nominal and in agreement

with previous lunar landings.
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4.2.1 LM DAP Performance During Powered Descent Braking Phase

Powered Descent Initiation (PDI) was effected using LGC Braking Phase
Program P63. The conditions observed on the DSKY at DPS ignition were:

LM Inertial Velocity Magnitude: 5559.6 fps
Altitude Rate: -35.7 fps
Altitude: 52,899 ft

The RCS propellant consumption and jet on-time for attitude control
during P63 were:

+U' axis: 1.35 1bs., 3.633 sec.
-U' axis: 1.51 1bs., 4.072 sec.
+V' axis: 2.25 1bs., 6.063 sec.
-V' axis: 0.60 1bs., 1.613 sec.
+P  axis: 1.52 1bs., 4.095 sec.
-P axis: 1.64 1bs., 4.426 sec.

The unbalanced usage in the V' axis is primarily the result of c.g.
offset from the engine thrust vector which existed at the time of PDI and
slow response time of the gimbal trim system. Total RCS propellant con-
sumption during P63 was 8.87 1bs and is slightly more than 7.06 1bs used
for Apollo 14 but less than the 16 1bs used in Apollo 12. A plot of RCS
propellant consumption during powered descent is given in Figure 4-9.

It is noted, however, that a comparison of propellant consumption of pre-
vious missions with Apollo 15 should be done with special care for the
following reasons: Apollo 15 was a different vehicle of greater mass and
it utilized a different steering profile to achieve a trajectory of

greater rate of descent.

DAP estimated body rates indicate that slosh oscillations started
later in the burn (420 seconds compared to 270 seconds for Apollo 14) and
with lower amplitude than on previous flights. As noted previously, the



LM-10 vehicle moments of inertia were considerably different (greater
overall mass because of larger DPS tanks, more propellant and the Lunar
Rover) from those on earlier flights. Also, the greater rate of descent
of the Apollo 15 trajectory contributed to greater mass at any given time
during the burn. However, it is of interest to note that the 150 second
longer burn before slosh initiation resulted in the propellant onboard at
this time being only 38% (of that used from P63 initiation to touchdown)
compared to 52% for Apollo 14.

In summary, nominal response was observed during P63 for the Apollo 15

Powered Descent Burn.

4.2.2 LM DAP Performance During Powered Descent Approach Phase

The conditions at the entrance to P64 observed on the DSKY were:

LM Inertial Velocity Magnitude: 318 fps
Altitude Rate: -135.3 fps
Altitude: 6,733 ft

Upon entering P64, the attitude error deadband was changed from
1.0 degree to 0.3 degree. The automatic pitchover maneuver was started
immediately and the total pitchover maneuver was -40.2 degrees. The maxi-
mum estimated pitch rate during the maneuver was -11.06 deg/sec, slightly
larger than Apollo 14 but is consistent with the fact that the Apollo 15
pitchover maneuver was 9 degrees greater than the Apollo 14 pitchover

maneuver.

The RCS propellant consumption and jet on-time for attitude control
during P64 were:

+U' axis: 1.58 1bs., 4.266 sec.
-U' axis: 2.19 1bs., 5.909 sec.
+V' axis: 1.27 1bs., 3.420 sec.
-V' axis: 2.38 1bs., 6.428 sec.
+P axis: 1.78 Ibs., 4.781 sec.
-P  axis: 1.79 1bs., 4.820 sec.



The total RCS propellant required for attitude control during P64 was
10.99 1bs. This is about 40% greater than the 7.83 1bs for Apolio 14. The
increase is consistent with a heavier vehicle.

In summary, nominal response was observed during P64 for the Apollo 15
Powered Approach Burn. Attitude control of the heavier vehicle, however,
resulted in 40% increase in RCS propellant consumption compared to Apollo 14.

4.2.3 LM DAP Performance During Powered Descent Landing Phase

The LM DAP performance during P66 defies exact comparison because of
the manual control mode and the individual pilot choice in landing technique.

The conditions observed on the DSKY at the entrance to P66 were:

Horizontal Velocity: 29.8 fps
Altitude Rate: -11.9 fps
Altitude: 331 ft

The maximum LGC estimated body rates at touchdown were:

OMEGAP: -14.21 deg/sec
OMEGAQ: 0.52 deg/sec
OMEGAR: -2.51 deg/sec

The rate in roll was much higher than the corresponding one in Apollo 14;
this is attributed to the fact that one leg of the LM landed in a small crater.

The RCS propellant consumption and jet on-time for attitude control
during P66 were:

+U' axis: 4.63 1bs., 12.486 sec.
-U' axis: 5.59 Ibs., 15.070 sec.
+V' axis: 5.76 1bs., 15.537 sec.
-V' axis: 4.69 1bs., 12.643 sec.
+P axis: 1.47 1bs., 3.936 sec.
-P  axis: 0.06 1bs., 0.148 sec.



The total RCS propellant consumption for attitude control during P66
was 22.20 Tbs. This is a substantial reduction of 66% from the 64.96 1bs
required for Apollo 14. This reduction is primarily the result of a more

rapid and monotonic descent with negligible hovering using manual control
before touchdown.

4.2.4 M DAP Performance During Ascent

The maximum attitude errors and rate errors near 1iftoff were:

P ERROR -1.02 deg OMEGAP ERROR: 3.17 deg/sec
U'ERROR: -2.19 deg OMEGAU' ERROR: -3.01 deg/sec
V'ERROR: -4.05 deg OMEGAV' ERROR: 8.66 deg/sec

The CDUY output indicated a pitchover of approximately 56.9 degrees
which lasted for 10 seconds. During this interval the maximum pitch rate
was 15.64 deg/sec and the maximum angular acceleration was 11.66 deg/secz.
This pitchover was similar to that in Apollo 14 in which the same maneuver
was performed in 9 seconds with a comparable pitch rate but Tower peak
angular acceleration. This is consistent with the fact that the Apollo 15
pitchover was 5.7 degrees greater than for Apollo 14,

The ascent burn was performed with the APS interconnect open such
that the RCS jets consumed APS propellant. About 67.86 1bs of APS pro-
pellant was used by the RCS jets for attitude control. This consumption
was 4 1bs less than for Apollo 14.
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