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SUMMARY

Information about principal axes and moments of inertia is presented
in terms of formulas involving solely quantities which can be expressed
in literal form whenever ceutral principal axes can be located by inspec-
tion for at least one state of a deformable system composed of particles
and rigid bodies. Two illustrative examples are worked out in detail.

INTRODUCTION

Principal axes and moments of inertia play important physical roles
in certain situations, For example, any completely free rigid body (or
a deformable body moving as if _t were rigid) can execute a simple rota-
tional motion, that is, a motion during which the angular velocity vec-
tor remains parallel to a body-fixed line; but this is possible only if
the line is parallel to a central principal axis of inertia, and the sta-
bility of the motion is affected by the relative magnitudes of the cen-
tral principal moments of inertia.

Principal axes and moments of inertia are of interest also from an
analytical point of view, for their use can lead to marked simplifications
of expressions for kinetic energy, angular momentum, gravity torque, etc.
Consequently, *he following are natural questions: Are therc any diffi-
culties associated with the use of principal axes and principal moments
of inertia? And, if so, how can they be overcome? The answer to the
first question is "yes"; for, while the problem of locating principal
axes and evaluating principal moments of inertia can always be solved in
principle (it is simply the eigenvalue problem for a 3 x 3 symmetric
matrix), the solution, in general, entails finding the roots of a cubic
equation, and this can give rise to difficulties ranging from relatively
minor ones, presenting themselves when one is dealing with numerical
(rather than literal) values of system parameters, to apparently insur-
mountable ones, which arise when one seeks results expressed entirely in
literal form. As to the second question, it is the purpose of this paper
to supply a partial answer by presenting formulas containing information
about principal axes and wmoments of inertia in terms of quantities which
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are readily available in literal form whenever central principal axes can
be located by inspection for at least one state of the system under consi-
deration., These formulas are
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To explain the symbols appearing in Eqs. (1)-(5), it is helpful .o
refer to a schematic representation of the situation to which these equa-
tions apply, Fig. 1, where S designates a material system composed of
particles and rigid bodies. The relative positions and orientations of
the objects forming S are presumed to be governed by n scalar quanti-
ties ql,..., qn chosen in such a way that all vanish when S assumes a

certain configuration called the reference state, S* 1is the mass center
of S. Al’ AZ’ A3 are mutually perpendicular axes intersecting at S§*

and meeting two requirements: the orientation of each axis relative to
S depends uniquely on the values of Qyseeesq s and each axis is a princi-

*
pal axis of inertia of S for S when S is ir the reference state,
Bl’ BZ’ B3 are instantaneous central principal axes of § ; that is, they

%*
are principal axes cf S8 for S for all values of Qqseeesd o Fi-
310 8y 24
bz, b3 are unit vectors respectively parallel to Bl’ BZ' 33 .

:

nally,

and El,
In Eqs. (1)-(5), each of the subscripts j, k, and { may take on

the values 1, 2, and 3, but no two may have the same value; the subscripts

r and s assume the values 1,..., n; tildes denote evaluations at 1 B

are unit vectors respectively parallel to Al’ A2, A3

cee =g = 0, that is, in the reference state; and the symbols appearing

in the equations are defined as follcws:
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where I ice the inertia dyadic of S for 8§ . Finally, a comma followed

by r or/and s indicsates partial differentiation with respect to r
or/and s , so that, for example,
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EXAMPLES

One class of probleme whose solution is facilitated by usiag Eqs. (1)-
{4) involves questions regarding the sensitivity of principal axes orienta-
tions and principal moment of inertia values to small changes in the con-
figuration of a deformable system. For example, consider the system §
of three particles P, Q, and R shown in Fig. 2(a2). If P and Q each
have a mass m while R has a mass 2m , the mass center S* of S is
situated as indicated, and x1 and x2 are central principal axes of S

when the three particles form an equilateral triangle with sides of length
2L. The associated moments of inertia have the values 2mL2 and 3mL s
respectively, In Fig. 2(b), S is shown in a state of distortion. The
nass center S$* is again the midpoint of the line segment connectiﬁg R
to 0, the midpoint of P-Q , but lines passing thnrough s* and parallel
to O-R or to P-Q are no longer central principal axes. Instead, two
of the central principal axes of § are now the perpendicular lines B1

and B, » the first of which forms with O-R an angle 8 that depends on

the distortion, and the associated principal moments of inertia, I1 and I,

differ from 2mL2 and 3mL2 « To study such distortiou effects, one can
introduce coordinates qj’ axes A,, and unit vectors and b

a
(5= 1,2,3) as shown in Fig. 2(b). [A3, a., and b3

are normal to the
plane of the paper and are omitted from Fig. 2(b)]. The orientation of
Aj relative to S then depends uniquely on the values of 9> 9y and

a4, and A, 1is a principal axis of S for S* when q =9y =9y = 0.

i
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Next, express b1 as

El = El - aa, +b, -« aa
or, in accordance with Eqs. (6), as

=b +
2y = P T P ®)
Then b11 and b12 are functions of 95> 99p» and 93 - Expanding these
in Taylor series, retaining only terms of degree lower than two, and using
the summation convention for repeated subscripts, one can write

~
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or, after using Eqs. (1) and (2),
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Now, I,; 5 Iy and 112 [see Eqs. (7)] can be formed readily since
the A and A

1 2 coordinates of P, Q , and R can be found by in-
spection:

I11 = 2m[(L + ql) cos q3]2

(11)
I =m[3(L+q)2+2(L+ )23'2 ]
22 2 9 in qq (12)
2
112 = -2m(L + ql) sin4q3 cos 9, (13)

Setting q; = q, = q, = 0 in Eqs. (11) and (12), one obtsgins

~ 2 = 2
I,, = 2", I,, =3



and partial differentiations of Eq. (13) yield

~ ~ ~ 2
I12,1 = 112,2= 0> Tjp 3= -2l

Substituting into Eq. (10), one thus arrives at
by =3+ 2,3,

which shows that during a sufficiently small distortion of S one can
approximate 8 ([see Fig. 2(b)] with 2q,4 .

The principal moments of inertia I1 and I, are also functions of
9 5 9 > and 93 » Again resorting to series expansion, and usir, Egs.
(3) and (4), one can, therefore, write

~
~ -~
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and, in view of Egs. (11)-(13),
Il~2m1'(1+2-f ’ 12~ 3m1,(1+2_£) (14)

These results describe the effect of a small distortion on I1 and 12
in terms of the quantities q; - 9 and 9y - which characterize the
distortion.,

Eqs. (14), and, indeed, the corresponding exact expressions for I1

and I2 ,» could be obtained also without the use of Eqs. (3) and (4), for
we are here dealing with a planar distribution of matter, so that one needs
to solve only a quadratic, rather than a cubic, equation to determine I1
and 12 . However, exact expressions are actually of less value than those

displaying leading terms of series expansions when one is concerned with
questions of sensitivity; and the reader can easily convince himself that
the method here employed requires considerably less labor than does the
process of finding exact expressions for I1 and I, and then expanding
in series,

A problem illustrating the use of Eqs. (4) and (5) to generate an
exact result arises when one seeks conditions under which a principal mo-
ment of inertia of a deformable system possesses an extreme value, For
instance, consider a system S composed of two rigid bodies, o« and B8,
which are connected to each other by m2ans of a gimbal y , as shown in
Fig. 3, Point 0 is the common mass center of o and B ; X1 s XZ s x3

are principal axes of o , and Y, , Y, , Y, are principal axes of 8 ;
and the gimbal can rotate relative to o and g only about X1 and Y,y »

respectively, The relative orientation of o and § thus depends solely



on the angles 9, and a9 > and the central principal axes of o and 8
are necessarily central principal axes of S when 9, = 9 = 0 . Suppose

now that By is the central principal axis of § that coincides with X3
and Y3 when 9 = q, = 0 , and let I3 be the associated central princi-

pal moment of inertia of S . Then I, has a (local)minimum value when

9; = 4, = 0 if the following conditions are satisfied:

Iyp=13,=0 (13)
1. .. >0 L, . I (@ %0 (16)
3,11 » 13,11%3,22 3,127 7 \

How must s Uy s A the centra). principal moments of inertia of a ,

be related to Bl R 82 , 83 » the central principal moments of inertia of

8 , in order that Eqs. (15) and the inequalities (16) be satisfied? To
answer this question, one can take for A1 s A2 , and A3 the axes Xl, Xz,

and x3 » in which case, from Eqs. (7),
1 =a;+8 5 Ip=ay*p

I3, = (Bg - By)e;s,¢
I = s S 2 + s - s.C.C 2
32 T 781565, Y B¢ - B3%%1%
2 2 2

2. 4852+ p,c
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where 55 and c, denote respectively sin q; and cosq, (i=1,2). 1t
foliows that

I3, =0 I32,1 =82 - B3 I33,1 =0
131,283 - 8 I32,°0 I33,0=0
I33,:1 = 2(By - 8y I33,02=0 I33,22 = 2(By - B3)

and Eq. (&) thus gives

Iy =13,=0



while Eq. (5) vields
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Eqs. (15) are thus seen to be satisfied automatically, and the inequalities
(16) are equivalent to

(02 = 03)(82 - B3)
@ " a3 T By - By

and

(Ql - 03)(51 - B3)
@ ~azt P -8,

Hence, when the central principal moments of inertia of o and £ satisfy
these two conditions, then 13 has a (local) minimum at 9 =9y = 0.

DERIVATIONS

To establish the validity of Eqs. (1)-(5), one may begin by observing
that Eqs. (1) follow immediately from Eqs. (6) together with the fact tbat,

by construction, aj = bj when S 1is in the reference state. Next, use
Eqs. (6) and the identity
0 Sl U b N W o T B
to write "~
= +
21 % Prid1 * a2 * Pyl

b3



and, after expanding b b12 , and b in Taylor series and using Egs. (1),

11’ 13

~
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+ (b12,rqr + ...)32 + (b13,rqr + ...)33 Q7

Similarly. Eq. (3) is an immediate consequence of Eq., (8) and the first of
Eqs. (7), and I1 can, therefore, be expressed as

- ~ -10-
1l = 111 + Il,rqr + 2 Il,rsqrqs + ... (18)

Now make use of the fact that, by construction, b1 is parallel to a
central principal axis of inertia of S for all values of S IEEETE NN A

so that

I.b,=1Lb

~1 1~1
or, after scalar multiplication of both sides of this equation with a
3 s Loby =13 by (19)

Substitution for b1 and I1 from Eqs. (17) and (18), together with Eqs.
(7), then gives

I11 (1L + bll,rqr + ...) + Ilz(blz,rqr + ...) + 113(b13,rqr + ...)

~ ~
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Moreover, 111 ’ 112 , and 113 can also be expanded in series:

~ ~
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112 = Ilz;rqr *oeee 113 = I13,rqr + ...

Consquently, each side of Eq. (20) can be regarded as a power series in
IR qn , and it follows that the coefficients of like terms can be

equated separately, Doing this for terms of the first degree in
9y s vee s qn , one finds that
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Le® e (21)

and considering second degree terms, one obtains

l,rs = :ll,rs

~ ~ ~

I * 21y, 12,6 T 113,0013,0) (22)
Proceeding similarly, but using a, and a, in place of a, in Eq.
(19), one finds that

b, =, b =l (23)
L2,r L. -1 13,r I.. -1
11 22 11 a3
and substitution into Eq. (22) then leads to
~ ~ I I I I
I -1 2 ~lZ_iL}.Z,s + ~13,r £3,s (24)
l,rs ll,rs I -1 1 -1
11 22 11 33
Finally, since b1 is a unit vector,
B 2 2 2
(bll) + (blz) + (b13) =1
Differentiation with respect to 9, gives
1%, ¥ P12Pr2,e t P13P13,c = O
or, after using Eqs. (1),
bll,r =0 (25)

For §j =1, the validity of Eqs. (2) is established by Eqs. (25) and

(23), that of Eq. (4) by Eq. (21), and that of Eq. (5) by Eq. (24). Clearly,

similar proofs can be carried out for =2 and j= 3,
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