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STREAMLINE CURVATURE DESIGN PROCEDURE FOR

SUBSONIC AND TRANSONIC DUCTS

By Raymond L. Barger

Langley Research Center

SUMMARY

A procedure for designing ducts for subsonic and transonic speeds is described.
Examples discussed are a wind-tunnel contraction cone, a supersonic nozzle, and a dif-
fuser. A listing of the computer program is included.

INTRODUCTION

When the design parameters (length, maximum diameter, and velocity variation) of
a duct permit a very gradual area variation, the one-dimensional approximation (ref. 1)
can be used for the design. Such is not the case, however, for many applications, such as
wind-tunnel contraction sections, nozzles, and engine inlet diffusers for which there are
severe restraints on allowable dimensions. For ducts of this type the radial variation of
the flow parameters is often not negligible, and so the one-dimensional approximation does
not suffice.

If a duct is intended to be used for low-speed applications, it can be designed by a
generalization (see ref. 2 and its references) of an incompressible flow method originated
by Tsien (ref. 3). The usual procedure for the compressible case is to utilize a series
expansion in powers of some parameter (refs. 4 to 7), but such solutions rapidly increase
in complexity with increasing number of terms, and therefore must be truncated after a
small number of terms. For example, the solution of reference 5, which utilizes an
expansion in powers of r 2 , becomes unmanageably complicated even for the first five
terms.

The problems associated with series expansion solutions are avoided by the method
of reference 8, which can be used as a design procedure. That method is a relatively
complicated direct numerical attack on the problem, involving a continuous transforma-
tion of coordinates and a finite-difference solution of the differential equations working
outward from the center line.

The present analysis, in comparison, makes use of the streamline curvature equa-
tions, which represent a natural formulation of the equations for this type of problem
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inasmuch as any streamline can be taken to be a wall contour. The streamline curvature

equations have also been used for the design of centrifugal impellers (ref. 9). The pres-

ent method differs from that of reference 9 in several respects:

(1) The design velocity distribution is specified on the axis rather than on an inner

hub profile

(2) The equations are formulated directly in terms of the streamline curvature

rather than the radius of curvature, which becomes singular at an inflection

point of a streamline

(3) The graphical method of reference 9 is replaced by a mathematical model which

can be programed for machine calculation

The streamline curvature equations, as used in the present analysis, represent a

form of the exact, compressible, inviscid flow equations. The method is therefore appli-

cable from low subsonic to supersonic speeds, but no treatment of shocks is included. The

equations, and the computer program in the appendix, have been written for the axisym-

metric case, but the analysis can be applied to problems of two-dimensional design sim-

ply by replacing the factor 27rr in the continuity equation with the width of the duct. Then

a symmetric duct can be designed by specifying a velocity distribution along a center line,

or one wall can be specified together with a velocity distribution on the wall.

SYMBOLS

The International System of Units (SI) is used in this study.

a streamline curvature, dqp/ds

C contraction ratio

c speed of sound

M Mach number

m mass flow rate

n distance normal to streamlines

q total velocity

s distance along streamline
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V center-line design velocity

X,R cylindrical coordinates nondimensionalized with respect to estimated entrance
diameter

x,r cylindrical coordinates

y ratio of specific heats

p density

dx

Subscripts:

c center line

i ith point on a given streamline

k kth streamline

t total conditions

wall at wall

A bar over a symbol indicates average value: k k+
2

ANALYSIS

Flow Equations

When the circumferential component of velocity is neglected, the compressible
inviscid streamline curvature equations for axisymmetric flow consist of the continuity
equation in integrated form,

in = 27 pqr dn (1)
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and the velocity equation,

q = q exp(n a dn) (2)

where the density is given by

-1/(-1)

P = PtLY \ 2  (3)

and the curvature by

a = (4)
ds

(See ref. 9.) The streamline curvature is the rate of change of flow angle with distance

along the streamline; it is the reciprocal of the radius of curvature.

Method of Solution

The calculation is initiated by prescribing a velocity distribution along the center

line. For purposes of calculation the velocity on the kth streamline is determined by the

approximation

qk = qk- 1 e A n  (5)

The mass flow between streamlines is estimated by

Amf = 27Cn' An

In order to compute the curvature ai, Acp is determined as the change in angle of slope
of the straight lines joining the ith point to the i - 1 point and to the i + 1 point and

then Ap is divided by the corresponding As.

The equations were solved by an iterative numerical technique. First, the shape of

a stream tube having a small maximum diameter is estimated from the one-dimensional

flow relations using the assumed center-line velocity distribution. The normals to this
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streamline are determined, as well as its slope and curvature distributions. These func-
tions permit the velocity and density distributions to be computed on this streamline by
means of equations (5) and (3). Next, the mass flow is computed through each normal
and compared with the required mass flow for this stream tube. The streamline coordi-
nates are then adjusted slightly in the direction that will reduce the error in mass flow,
the error is computed, and the coordinates are readjusted, and so on until the desired
mass flow is obtained within a reasonable tolerance. This procedure is carried out at
each point on the streamline. Then the curvature of this streamline is computed and used
to obtain a new estimate for a to be used in equation (5). With this new estimate the
entire procedure is repeated to obtain a better estimate for the streamline. The velocity
along this streamline is then taken as input data to compute the next streamline, which is
first estimated from the one-dimensional equations, in the same manner as for the pre-
vious streamline.

The successive streamlines are computed similarly until a specified mass flow is
obtained, unless the solution becomes unstable before the mass flow condition is met. In
such case the last stable streamline can be taken as the wall contour, unless the solution
displays an unacceptable pressure gradient along the wall.

Stability of Convergence

One drawback to the use of the stream curvature equations is the tendency of the
solutions to become unstable relatively easily. This tendency is a direct result of the
use of the streamline curvature. A small change in r can result in a relatively large
change in the curvature. Since the curvature is in the exponent in equation (2), the veloc-
ity is sensitive to the curvature and thus to small changes in r.

This sensitivity can be counteracted to a considerable extent by the manner in which
the calculation is performed. In the present method, a smooth distribution of curvature
is used in the initial estimate for each streamline. Then when the actual curvature is
computed, it is not used directly but is averaged with the curvature of the previous
streamline for use in equation (5). This procedure tends to stabilize the convergence and
has been used in the calculations of this paper.

There is an alternate procedure which is mathematically more stable, but it
requires somewhat more computing time. If many streamlines are computed, the follow-
ing approximation will apply in equation (2):

kn k -l

n a dn ~ak(An)k Z ak(An)k

1 1
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Thus the coordinates of each streamline can be computed from the distributions along

the previous streamline, and it is not necessary to determine the coordinates of a given

streamline from its own curvature by iteration.

Design Velocity Distributions

Some of the existing design analyses (e.g., refs. 3 and 5) prescribe the design axial

velocity distribution in terms of a particular analytic expression. Where high-order

derivatives are required, this analytic expression must be selected so that these deriv-

atives do not become unmanageably complicated.

The present method, on the other hand, is not restricted to a particular type of

design velocity distribution inasmuch as the input data for the calculation can be in the

form of values specified at discrete x-locations on the axis. This system facilitates

"experimenting" with various designs by making small local variations in the design dis-

tribution. However, the input data should be reasonably smooth in order to obtain wall

shapes without excessive curvature, as well as to insure stable convergence of the cal-

culation. For some designs requiring large values of the stream function and rapid flow

changes, the design velocity must be extremely smooth. This requirement can be met by

inputting a smooth second derivative and integrating it twice.

The selection of a design velocity distribution need not be simply a cut-and-try

process. The one-dimensional equations are often useful to provide an estimate of the

flow relations. Moreover, in those cases where both the upstream and downstream flows

are uniform, the one-dimensional equations give correct relationships between the flow

values in these two regions, even though the flow between these regions is nonuniform

(provided, of course, that no separation takes place).

For example, suppose that a wind-tunnel contraction cone is to be designed for an

exit Mach number of 1 and a contraction ratio of C. Then the uniform entering velocity

would be determined by the equation

:/ + 1 (y - 1) 2

(+11) 2(21) 2]

(See ref. 10, eq. (82).)

Since in the entering flow V/ct is generally much less than 1, the nonlinear term
can be neglected in an approximation, and so, for y = 1.4, V/ct = 125/216C. The veloc-

ity at the exit would be given by V/ct = /6 (ref. 10, eq. (68)).

6



Examples

Three sample cases have been computed: a wind-tunnel contraction section, a noz-
zle, and a diffuser. The contraction section is shown in figure 1 together with several
streamlines. The most critical part of such a duct is that near the exit, where the flow
becomes parallel and, correspondingly, the wall curvature becomes zero. A wall which
is otherwise smooth but has a rapid decrease in curvature incurs an adverse pressure
gradient at the wall, with the possibility of flow separation and the certainty of a severe
radial velocity gradient. For the example shown, the curvature variation is gradual, so
that the flow is fairly uniform radially, as indicated.

The other critical region for a contraction section is near the wall at the large end,
where the slow-moving flow enters a region of negative curvature. This adverse gradient
may separate the flow locally. However, for the sake of obtaining a short contraction
section, some separation might be tolerated in this region with the expectation that the
subsequent favorable acceleration section will reduce flow nonuniformities.

A nozzle design is shown in figure 2. Observe that where the wall curvature is
slight, the variation of Mach number along a streamline normal is slight, although the
duct may be sharply contracting. On the other hand, the radial variation is relatively
large in the throat, where the curvature is greater. The supersonic Mach number dis-
tribution at the wall is smooth because of the smooth variation of wall curvature. This
result may be compared with that obtained with a cone-circular-arc-cone nozzle, which
displays a drop in wall Mach number at the curvature discontinuity in the expanding sec-
tion of the nozzle (see ref. 11, fig. 1).

Figure 3 shows a design for a subsonic diffuser. This case is more sensitive than
that of the contraction section because the negative curvature at the wall occurs where
the flow is already decelerating. Since this critical region is near the terminal end of
the diffuser, the results of any flow separation will be seen at the end of the diffuser.

To illustrate the influence of the curvature on the solution, the wall Mach number
distribution for the nozzle is plotted in figure 4, as calculated from both one-dimensional
and streamline curvature equations. The differences are larger in the vicinity of the
throat, where the Mach number is relatively sensitive to flow geometry. The maximum
difference in Mach number is about 0.06.

CONCLUDING REMARKS

A computerized procedure that makes use of the inviscid streamline curvature
equations has been developed for designing compressible-flow ducts from an assumed
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center-line velocity distribution. Three examples are given: a wind-tunnel contraction
section, a nozzle, and a diffuser.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., October 4, 1973.
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APPENDIX

COMPUTER PROGRAM

The program language is FORTRAN 4. The input, by the NAMELIST format, con-
sists of the following quantities:

X an array of axial positions for which velocities are specified

Q an array of the design velocity values

RMX the desired radius at X(1)

ROI Pt

CT ct

KMX number of streamlines to be computed

N number of X and Q values input

Before beginning the calculation the program prints the design center-line velocity
distribution with the headings

J point index

X axial coordinate

Q velocity

After computing each streamline the program prints the results for that streamline
with the following headings:

PT. point index

ITER. number of iterations required to satisfy continuity at Jth point

X axial coordinate

9



APPENDIX - Continued

R radial coordinate

SLOPE streamline slope

CURV. streamline curvature

VEL. velocity along streamline

P/PT. local pressure divided by total pressure

M local Mach number

Computing times for the three sample cases ranged from 2 to 5 seconds.

PkOC~9PM MAAKADUC(I, PUJT,OUTPUTTTADPF 1=IRIJPJTI

!)IMFNSITN x(50)(SO)SL(5),Q*(1,XJ(0)..J(UONT(O)SK(50)9
I(C) KT (SO) ,PP(RO) . T (S )
rAM LTST/TPT/PT/XOQRpMXROTNoCT,KMX

C r FA) TMINUT ANn PRINT VELOCTTY nIST1TRITIO, \, NONr IMENSTONALTZE VFL.
1 LREAF (l I TNPTr) TF(F(F I )f ?7.

2 PI=3.1415Q K=I
PRTNT 40

4a ()HIAT H1* 9XIHJ, *lXl1HX 1 XIH0/)

PITNT &l, (JX(J),U(J),J=1,N)
00 6 J=19N SQ(J)=(-(J)/CT $SKI(,J)=.,0 %OI(J)=0(Ji %SK(J=.0

41 F OPMAT (TlO.2F 2.A0
r T (J)=.o

C FOP KTW STRFAMLINF, COMP!ITF :APAMPTFRS ANl- TNTTTAL FSTTMATFS FOP

C COOPDINATFS AND SLOPES
7 .IT=FLOAT(K)*PMX/FLOAT(KMX)$AI=PT*(PTI*QTI-RP (1*RI(1))

MC=pOIAI(1l)*(1.-.2*O(1*O(1) a DO J=Nl %)rPS=O(J)*O(J)
RO(J)POT*(Il.-.*)RS)**?.5 $ A=Q(1 )*AI/(O())*'(.J))

A (J)=SOPT(A/PT+iRI(J)*PI(J)) $SL(1)=.O $00 9 J=Q,N

C COMPUTP NOr MALS TO KTH STRFAMLINF
9 SL(J)=(P(J)-P(J-1))/(X(.J)-X(J-I)i nDO 14 J=?2N

IF(J.EO.N)GO(0 TO 13
iF(SL(J).GT..O.ANO.SL(J+I).GT.O)GO TO 10
IF(SL(J).LT..O.ANO.SL(J+1).LT.O)(,O TO II

IF(SL(J)*SL()SLJ1).LF..)G TO 13
In SM=SL(J) $41=R(J-I) $XI=X(J,-1) $PL=P(J)%XL=X(J) %GO TO 12

11 SM=SLJJ+1) R1=R(J) $X1=X(J)$XL=X(J+I)%RL=P(J+.1
I? IF (S.ANE .. 0)XJ(J)=SM/(SM*SM + I.)*(P (J)-PI+SM X + X (J)/SM)

IF (SM .Fn. .J)X,J(J) =X

kJ(J)=P1+SM*(XJ(J)-X1) 0GO TO 14
13 J(J)=P(J)~ XJ(J)=X(J)
1I CONTINUF 0XJ(1)=., $RJ(1)=PTI ;SK(I)=0.
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APPENDIX - Concluded

c COMPUTE CUI9VATURE9 VELOCTrY, OFNSTTY, AND MASS FLOW
LL=1

15 0() 17 J=2,N sL=1
I(- IF(LL.FO.1 .ANn.K.6 T.1)SK(J))=SKT(.J)*FLOAT(I)/FLOAT(K-1)

)N=SO)RT((XJ(JP4)(J))**?fPJ(J)-PT(j)))**?) %SKM=(SK(J)+SKT(J))*.q

0 (J) =0I (J) *FXP (SKM*nN)
0t~M=(0j(J-),O(J))*.b3 $ROM=UI.-.?*OM*Qm)**2.5
P'A.S*(Rj(J),PI(,)))%MM?PT T* m~rlN*ROM*OVlFP(FM-FMM )/FM

JF(A9S(FR)*LT.*jO0iOOO1)GO TO 17

C ADJUST COORDINATES OF KTH S.TPFAIALTNF ALONG, NOPMAL TO SATISFY

C CONTTNUTTY

IF(CJ.FO.?) NJ CJ-i)=Pj Cj)
AJ(,)=X(J)+(l.+EP*.5;)*(XJ(J)-X(J)) $L=L+1 $TF(L.G'T.C99)GO TO 27

60 TO 16
17 CONTT N1 I

44 FOPMAT(7,4F1?.S)
C kECOMPt)TF CURVATUqP FOP Afl.)JJ;TFIT rOOROPTNATFS ANrn PFPEAT

C CALCULATION FOR KrH STRFAMLINE
LL=LL+l STF(LL.6T.?)GO TO 2S
0)0 1 i J=2.N

IRJS(J)=(JJ-J(,1) .R(J1i -,(.J-

~~~OT 19J=,

19 k C (JI I *?iSCL (J=.1)(;

DE)FL=+ATAN,('SL(,J+1f-ATAN(SL(J)I
SK (.I)= (nF/S+ SK (J) )*. 5

?-3 CONTTNUE %0O ;)4 J=?,Nil TF(SK(J)*S;K(J-1).LT..i.Atf.qK(,))*SKCJ+l1.
ILT..O)SK())=.S*(SK(J1I)+SK(J+l))

?4 CONTINUIF %SK(l)=.UJ %SK(?)=SK(1)*.r; %GO TO 15

C iJIJNDT-MFN\STj-,NALIZF AND PRTNIT RFS1JLTS FOP KTH STRFAIMLTNF, SH-TFT

C INOFXq ANDl PROCEED) TO NEXT STPFANI_ INE
?r- PkTNIT 4?
4? FO)PM4T(1H1,5XSHITFR.,SXIHPT.6XNX1?XH,QX5HS.I- PF,1)XY;HCr~fV.,

1l0X4H~IrL.,4X4wP/PTql2X1HM/)

1)I()0=(J) %X(J)=XJ(J) $CK(j)=qK(J)

, .P I -? ,( ) IJ,)TX = ()/ O T P 1 P0QT~wrP**3.5)

43 FO'PMAT (?TP. 7F1.3*6)

PRTNT 41ql.,JSXqSr4.SL(J)qS;K(J),QfJ)qPOP~T,)m
IF(K.FO.KMX)OCJ)=.O

2F 1-IT (A) RJ (J) TPI =)PJ ( I) %K =K + T ~TF (K. LF. K M ) GO TO 7 ( G'O TO 1
?17 STOP $FNO
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