(NASA-CR-62097) COLLECTION AND ANALYSIS OF REMOTELY SENSED DATA FROM THE RHODE RIVER ESTUARY WATERSHED (Smithsonian Institution) 95 p HC \$6.75 CSCL 08H 97

<u>.</u>:

N74-12166

Unclas G3/13 23355

NASA

ln - ln - ln / l

original coutairs color illustratiors

Technical Library NASA Wallops Station Wallops Island, Va. 23337

1: 22.72 C.Vaughin

2 Min

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WALLOPS STATION WALLOPS ISLAND, VIRGINIA 23337

ATTN OF: TL (A-13)

DEC 7 1973

NASA Scientific and Technical Information Facility Attn: Acquisitions Branch Post Office Box 33 College Park, MD 20740

Subject: Document Release for NASA CR-62097

Document Release Authorization Form FF 427 and one copy of the following are forwarded:

NASA CR-62097 Collection and Analysis of Remotely Sensed Data from the Rhode River Estuary Watershed (with Loan Document Transaction W-140)

EU C Cimes C ames C. Floyd

Head, Administrative Management Branch

Enclosures

NASA CR-62097

COLLECTION AND ANALYSIS OF REMOTELY SENSED DATA

FROM THE RHODE RIVER ESTUARY WATERSHED

Report

Contract No. NAS5-1913 National Aeronautics and Space Administration Wallops Station; Wallops Island, Virginia 23337

Chesapeake Bay Center for Environmental Studies Smithsonian Institution

Staff Scientists:

David Challinor, Ph.D., Consultant

Daniel Higman, M.A., Botanist

Susan G. Wack, M.A., Plant Ecologist

Dale W. Jenkins, Ph.D. Principal Investigator

(1972

TABLE OF CONTENTS

· ·

· · ·	
Introduction	1
Description of Rhode River Watershed	4
Aerial Overflights	9
Comparison of Film Types in Photointerpretation	18
Photointerpretation of Vegetation Using Color and Structure	21
Drainage Map of Rhode River Watershed	24
Vegetation Map of Rhode River Watershed	29
Correlation of Ground Truth with Aerial Photographs for Forest Species Identification	38
Phenology	51
Evaluation of Photointerpretation of Salt Marsh Vegetation	61
Recognition of Late Summer Crops	67
Applications of Remote Sensing to Rhode River Estuary	70
Evaluation of Automatic Recognition with Multispectral Scanner Imagery	77
Summary	83
Literature Cited	90
Acknowledgments	92

111

ı,

The National Aeronautics and Space Administration (NASA) has selected the Chesapeake Bay and its immediate tributaries as one of four major test sites for the study of remote sensing techniques by the Earth Resources Technology Satellite (ERTS) and the Skylab Project. As a part of this program, NASA chose the watershed of Rhode River, a small sub-estuary of the Bay, as a representative test area for intensive studies of remote sensing, the results of which could be extrapolated to other estuarine watersheds around the Bay. A broad program of ecological research was already underway within the watershed, conducted by the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES) and cooperating universities. This research program offered a unique opportunity to explore potential applications for remote sensing techniques. This led to a joint NASA-CBCES project with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. A third objective, dependent upon realization of the first two, was to extrapolate photointerpretive expertise gained at the Rhode River watershed to other portions of the Chesapeake Bay.

- 1. Detection and mapping of drainage patterns (for studies of stream discharge into the estuary)
 - 2. Identification and mapping of plant species in deciduous forest, cultivated and abandoned fields, and salt marshes, both by photointerpretation and ground truth. This was accomplished through the following projects:
 - A. Preparation of a vegetation map of the watershed
 - B. Photointerpretation and ground truth correlation
 at a deciduous forest site
 - C. Recording of phenological changes as photointerpretive aids
 - D. Photointerpretation of late summer crops
 - E. Photointerpretation and ground truth correlation at two salt marsh sites
 - Detection and mapping of physical factors (bank erosion, sediment movements, etc.) and aquatic vegetation in Rhode River estuary.

Use and evaluation of remote sensing is planned by CBCES investigators for study of planktonic blooms, ground water seepage, distribution of waterfowl, and land use patterns.

The basic approach applying remote sensing to the above research was (a) to examine the available remote sensing data, (b) to determine methods of correlating these data with ground truth, and (c) to use both types of data to statistically evaluate the photointerpretive techniques used. This approach was best for analysis of vegetation cover types. For mapping drainage patterns and estuarine conditions, most emphasis had to be placed on photointerpretation.

3_

DESCRIPTION OF RHODE RIVER WATERSHED

Rhode River watershed comprises 18 square miles of which 14 square miles is land including forests, old fields, pastures, cropland, freshwater marshes, salt marshes, and residential areas, and approximately 4 square miles of the study area is estuary.

The watershed is predominantly an agricultural area which is slowly becoming more heavily populated by suburban encroachment. The eastern shore of Rhode River is populated by the towns of Mayo and Beverly Beach. The western shore remains undeveloped, as most of it is owned either by the Smithsonian or by families deeply concerned with the preservation of wildlife and the natural environment. This particular shoreline (approximately 13.5 miles long) is one of the largest relatively undisturbed areas remaining on the western side of the Chesapeake Bay.

Approximately 45% of the land area of the watershed is cultivated with grain, tobacco, and truck farms. Recent farmers have wisely left most of the stream valleys and floodplains covered with forest, so soil erosion is presently minimal. Forests cover approximately 35% of the watershed. The remaining 20% includes abandoned fields, marshes, and the towns of Mayo and Beverly Beach. This is shown on the drainage map in Figure 1.

Figu

The topography of the watershed is chiefly rolling upland, much dissected by narrow stream valleys which broaden to level floodplains along the courses of Muddy Creek, the principal tributary stream. The eastern shore of Rhode River consists of relatively level lowland, where no streams originate. Maximum elevation in the watershed is 207 feet on the western boundary. Elsewhere the maximum elevation averages 160 feet.

The streams provide good drainage of the upland and flow all year except during summer droughts. Springs and seepages are numerous. The south fork of Muddy Creek and its tributaries drain into Mill Swamp, a partially forested freshwater swamp covering approximately one-quarter square mile. The swamp probably serves as a reservoir for sediments, nutrients, and pollutants washed down from the surrounding upland.

Soil erosion from Rhode River watershed and siltation of the estuary itself have been severe since initial European settlement and clearing of the forest. Extensive salt marshes have developed along the lower course of Muddy Creek and around its mouth. The available data on the depth of Rhode River indicate progressive shoaling since the initial surveys in 1846.

The soils of the watershed range in texture from sand to silt loam. Some overlie the geologic sediments from which they were

formed but others have evidently been washed together from other sources. Stones in the soil are rare, a fact attributed to the repeated washing of the soil particles by successive previous ocean levels and upland streams.

The climate of Rhode River watershed and the surrounding region is humid and temperate, usually with mild winters and hot summers. Storms typically move in from the west but there are also onshore winds from the sea which bring cool breezes in summer and northeastern storms in winter. The Chesapeake Bay moderates the diurnal range of temperatures over adjacent land areas and raises the annual temperature.

The seasonal weather is highly variable, with extremes of temperature (both maximum and minimum) likely to occur at any time of year with no discernible pattern. Spring is the most variable season. Summers tend to be hot and dry with sudden thunderstorms which may cause brief flooding and severe erosion. The growing season usually lasts from late March to late October. Catastrophic storms are rare but locally serious rains are common.

The Rhode River estuary has a surface area of three to four square miles and a mean depth of approximately six feet. The six foot depth contour parallels the shore about 400 feet offshore, except in the . shallower region west of Big Island. Salinities vary locally and seasonally, and range from 4-5 to 11-13 parts per thousand.

The range of tide in Rhode River is usually about 18 inches, but strong southeast winds may cause excessively high tides by pushing more water into the estuary, and strong northwest winds may drive it out. Most of the estuary is sheltered from strong winds and currents, so that wave erosion is not severe, but near its mouth strong contrasts in erosion and deposition occur, especially along the western shore (Cheston Peninsula).

The bottom of the estuary frequently consists of soft black silt, carpeted in some places with waterlogged tree trunks. The shallow area near the mouth of Muddy Creek usually supports a variety of aquatic flowering plants, notably red-headed pondweed (Potamogeton perfoliatus) and Eurasian milfoil (Myriophyllum spicatum). The latter species became so abundant in 1964-65 as to be a serious pest. Scientists at the Johns Hopkins University have been studying its fluctuations of abundance and the recovery of the native aquatic species.

The floristic composition and patterns of vegetation in the terrestrial areas of the Rhode River watershed have been intensively studied within the boundaries of the Chesapeake Bay Center, and for purposes of this study have extended to include the entire watershed. The forests of this area are an interface of the oak-pine coastal plain with the oak-chestnut piedmont (Braun, 1950). Characteristic of these types are white oak with sweetgum, willow oak, pin oak, and sour gum on poorly drained uplands, mixed hardwood and loblolly. Virginia pine stands on abandoned upland fields, beech, tulip, and white oak on slopes, and oak-tulip codominants with hickory subdominants on the piedmont uplands. Chestnut, previously codominant with oak, has been gradually replaced by tulip. These forests represent mature secondary growth in this region. A total of 17 overflights has been made for this study to date, 15 of them under the direction of NASA, Wallops (Table 1). All but two of the NASA-directed flights have been low-level (1200-5000 feet) photographic missions using a T-11 camera with a six inch focal length mounted in a helicopter. Film and filters were used as follows:

Film	Filter
panchromatic black and white (DXN 2405)	Wratten 57
black and white infrared (2424)	Wratten 25A
natural color (8442)	Wratten HF-2
natural color (SO-397) .	Wratten A-1
color infrared (8443)	Wratten 15
color infrared (2443)	Wratten 12 + 20B Wratten 12AV + 2014
	Wratten 15 + 20B

Most of the flights utilized natural color and color infrared film since these types have proved to be the most useful for this study. The film is developed as positive color transparencies on a 9×9 inch format.

Other overflights include one taken by NASA, Wallops from an RB-57 at 60,000 feet with color infrared and natural color film, a

flight by the University of Michigan's Willow Run Laboratory from a C-47 at 5000 feet with film and multispectral scanner, and two flights by Rome Air Force Base. The Air Force flights include one from a C-131 at 2000 feet using a modified AM-AAS-18 MAIRS thermal infrared scanner and the other with a RC-8 sensor using natural color film (2448) from an altitude of 3000 feet.

Hydrological and weather conditions recorded at the CBCES pier and at the weather station in front of the main building are given in Tables 2 and 3. Except for precipitation, cloud conditions and air temperature, all data were taken from a continuously recording Honeywell monitoring system at the CBCES pier with permission of Mr. Robert Cory, U.S.G.S. Data coincide with the starting time for each flight.

In the near future, a continuously recording air temperature monitor will be installed at the main building area. In addition, two stream monitoring stations have been installed on the north fork of Muddy Creek. Both continuously record stream temperature and one also records stream flow. These temperature records will be invaluable for correlations with thermal overflights.

. 1				TABLE 1	X	• •	
	А	ERIAL DA	ТА ТАКЧ	EN FOR CB	CES PRO	JECT BY NASA	
Flight #	Date & Season	Imagery Type	Amount (frames)	Altitude (feet)	Scale	Area Covered	Stereo
1.5	-6/30/70 Summer	b/w IR b/w Pan col Nat col IR	25 ea.	3500	1:7000	eastern half of watershed	Some
17	7/1/70 Summer	b/wIR b/w Pan Col Nat Col IR	71 ea.	3500	1:7000	whole watershed	Some
RB-57 Mission 144 Flight 2	10/22/70 Fall	col IR	2	60, 000	1:60, 000	whole watershed	Yes
27	10/17/70 Fall	b/w IR b/w Pan col Nat col IR	17/2 21/2	1200 5000	1:2400 1:10,000	Hog Is. marsh and western Java forest	Some
U. of Mich. DC-7	11/6/70	b/w IR b/w Pan col Nat col IR		5000	1:10, 000	Beverly Beach to Shadyside (2 flight lines)	Yes
	•	scan band:	s: .32 - .40 - .44 - .46 - .52 - .55 - .58 - .62 - .66 - .72 - .80 - 4.50 - 8.00 -	. 38 . 44 . 46 . 48 . 50 . 55 . 58 . 62 . 66 . 72 . 80 1. 00 5. 50 14. 00	· .		

13

•

Flight #	Date & Season	Imagery Type	Amount (frames)	Altitude (feet)	Scale	Area Covered	Stereo
32	11/8/70 Fall	b/w IR b/w Pan col Nat col IR	44 ea.	1200	1:2400 1:10,00	Beverly Beach to Shadyside (2 flight Olines)	Yes
36.	12/5/70 Winter	b/w IR col IR	80 ea.	2500 1200	1:5000 1:2400	Parts of wa ter- shed	No
,		col Nat	10 ea. (2 sets)	1200	1:2400	4 test sites	Yes
43.	2/2/71	b/w IR col Nat col IR	56 ea.	5000	1:10,00	0 Whole watershed	Yes
48	3/16/71 Winter	col Nat col IR	25 ea.	1200	1:2400	4 test sites .	Yes
51	4/13/71 early spring	col Nat col IR	68 ea.	1200	1:2400 1:10,00	5 test sites OWhole watershed	Yes Yes
57	5/5/71 Spring	col Nat col IR	63	2500	1:5000	Most of Rhode River watershed	Yes
60	5/18/71	col Nat col IR	108	1200 2500	1:2400 1:5000	5 test sites Whole watershed	Yes
73	7/13/71 Summer	col Nat col IR	16 ea. 80 ea.	1200 2500	1:2400 1:5000	5 test sites Parts of Water- shed	Some Some
80	8/24/71 Late Summer	col Nat col IR	103 ea.	3500	1:7000	Whole watershed	Some
89	10/7/71 Fall	col Nat col IR	43 ea.	5000	1:10,00	0Parts of watershee	i Some
IR-71- 21	4/7/71 Early Spring	MAIRS Modified AM-AAS- 18	9	2000	1:10, 00	00Most of watershed and estuary	
71-67	11/15/7	lcol Nat	140	3000	1:6000	Most of watershed	

Table 1 (Continued)

-1.4.

.

t	f 1, t			נ	ABLE 2		· /	i .
		, ну	DROLOGI	CAL COND	ITIONS DU	RING NASA OVE	RFLIGHTS	·
Flight #	Date	Starting Time	Water Temp. (⁰ C.)	Salinity (ppt)	рН	Dissolved Oxygen (ppm)	Turbidity (JCU)	Tide Level * (feet)
15	6/30/70	1000	24.5	8.7		7.0	15	6
17	7/1/70	1500	27.0	8.4	. .	7.5		5.5
RB-57: 144(2)	9/22/70	1530	27.4	· · · ·	8.4	8.5		
27	10/17/70	1300	17.0	13.0	8.1	6.6		4.0
U. of Mich.	11/6/70	1430	12.0	11.4	8.2	8.4		5.7
32	11/8/70	1500	12.4	11.4	8.1	7.5		6.1
36	12/5/70	0900	8.4	12.1		11.4		•
43	2/2/71	1330			8.2	· · · · · · · · · · · · · · · · · · ·	6	
48	3/16/71	1600	. 10. 4	6.1	9.0	13.6	. 16	5.5
51	4/13/71	1200	13.8		7.9	11.0		
57	5/5/71	093 0						
60	5/15/71	1030	13.0	6.9	8.0	• 9.4	·	6.7

Table 2	(Continued)								
Flight #	Date	Starting Time	Water Temp. (°C.)	Salinity (ppt)	рH	Dissolved Oxygen (ppm)	Turbidity (JCU)	 (feet)	
73	7/13/71	1300	27.5		8.0	6. 7		6.4	
380	8/24/71	1000	·						
89	10/7/71	1230	Ź1,Z	10.4	8.5	9.0	20	5,8	

* Water level at end of CBCES pier

, .

Flight #	Date	Starting Time	Daily Precipitation (Inches)	Cloud Type (Daily)	% Cover (Daily)	Wind Speed (mph)	Wind Direction	Daily Max.	Ai: Temp. ³ C. <u>Min.</u>
15	6/30/70	1000	-0	clear	о	8	SSW	34.5	18.9
17	7/1/70	1500	0	c lear	0	6	E	30,0	19.4
57:144 (2)	9/22/70	1530	0	c lear	C			35.0	8.3
27	10/17/70	1300	0	cirro- cumulus	10	0-10	W	12,3	1.7
U. of Mich.	11/6/70	1430	0	c lear	0	5-10	WNW	16 1	1.7
32	11/8/70	1500	0			0- 5	E	17-3	3.3
36	12/5/70	0900	0	cumulus	0-40	0- 5	S	21 1	2.2
43	2/2/71	1330	0			5	WNW	10.0	-14.4
48	3/16/71	1600	0	cumulus	0-40	10	SW	21.1	2.2
51	4/13/71	1200				10-15	ESE	2:.1	- 1.1
57	5/5/71	0930	0	cumulus	0-100			24,5	7.2
60	5/18/71	1030				5	NE		
73	7/13/71	1300	0	cumulus	20			27.8	17.7
80	8/24/71	1000	0	clear	0	0- 5		27,2	19,0
89	10/7/71	1230		clear _	0	7			

WEATHER CONDITIONS DURING NASA OVERFLIGHTS

TABLE 3

ι.

COMPARISON OF FILM TYPES IN PHOTOINTERPRETATION

. . -

Natural color and color infrared film were found to be superior in this study to panchromatic and black and white infrared film for plant species identification and for detection of soil moisture, drainage, siltation, and turbidity. This difference is largely due to the additional information provided by hue and chroma characteristics of color as opposed to only value (light and dark) characteristics of black and white film. The relative merits of color infrared and natural color film for vegetation study are not agreed upon by photointerpreters. Northrop (1968) studying mixed hardwoods in Alabama and Krumpe (1971) working in mixed hardwoods in Tennessee agree that natural color is superior to color infrared for tree species identification. Anson (1966), studying forests in South Carolina and Maruyasu et al (1971) in Japanese deciduous forests, claimed the superiority of color infrared over natural color photos. The latter investigators also reported color infrared superiority in evaluating forest mixture types, crown densities, stand composition with height classes, and ground flora. Pestrong (1970) working on San Francisco Bay marshland and Anderson (1971) studying marshland in Chesapeake Bay state that color infrared is superior to natural color while Egan and Hair (1971), also working on Chesapeake Bay marshland claim

the superiority of natural color used with microdensitometry in the red band region. Those investigators maintaining that natural color is inferior to color infrared film invariably mention the haze problem, a factor mentioned in this study, which is dependent on flying altitude and to some extent season. A near consensus of opinion is reached with regard to drainage mapping; the present investigators agree with Pestrong (1970), Anson (1966), and Norton (1964) that color infrared is superior to natural color. Anson also adds that natural color is superior to infrared color for mapping soils and cultural features.

In this study it was found that no clear distinction could be made between the effectiveness of natural color and color infrared film. Each type had advantages and disadvantages in different instances. Generally, natural color film was better for vegetation interpretation if haze during exposure was negligible. Natural color was less confusing than color infrared, especially in fall when colors were greatly varied; with natural color it was possible to translate field experience directly into photointerpretive ability. This was especially useful in marsh and forest vegetation mapping. Under haze conditions, caused either by weather or flying altitude, color infrared was preferable. For interpretation of drainage patterns, color infrared was superior, while for sedimentation detection, natural color was more

•

•

TABLE 4

FACTORS AFFECTING PHOTOINTERPRETATION

Ground					. Cultivated			Salt	Other
Feature	Deciduous Forest		Pine Forest		Fields	Old Fields		Marsh	Other
Film Types	- ·		s ó		·				
Natural Color	Species subcanopy (Spring) Species canopy (summer) Species canopy (fall)	F G G	Discernible by color (winter) Discernible by texture (other seasons)	G	Recognition by texture G Recognition by color F	Species recog- nition (fall, winter, spring)	G	Species G	Drainage F (winter, early spring) AquaticVeg. F Estuarine Siltation G
Color Infra- red	Subcanopy (spring) Canopy (summer)	G F	Discernible by color. (winter, summe spring)	G r,	Same as above	Species recognition (fall, winter, spring)	F	Species F	Drainage G (winter, early spring) AquaticVeg. F
	Canopy (fall)	G	Discernible by texture (fall)	F		Evergreen Component Recognition (winter)	G		Estuarine Siltation P
		G F P	= good detection = fair detection = poor detection		• •			•	. u

P = poor detection

Second 4

1.1

.

20010 1 ((indea)				•	
~			Cultivated	t	Salt	Other
Feature	Deciduous Forest	Pine Forest	Fields	Old Fields	Marsh	Other
,						
Altitude	•			,		
	t	spacies recognitio	n: crop recognition:	species recognition:	species	Estuarin
(Alt. /Scale	species recognition	below 5000 ft.	G 1200-5000 ft. G	3500 ft. & below G	recognitio	on: Siltation,
Ratio = $1:2$)	1200, 2500 ft	above 5000 ft.	P above 5000 ft. F-P	above 3500 ft. P	5000ft.&	current
	3300, 5000 IC. I				above	$F \underline{flow}$:
	age class distinc-				below 5000 ft.	G below
	tion:				5000 10.	5000 ft.H
·	under 5000 ft. F	· · ·				
	5000 ft. G	, · ·		,		
Season	phenological	discernibility &	crop recognition: on: summer-fall G	dense stand recog- nition:	<u>species</u> recogniti	on: ditions:
	spring C	winter	G winter-spring F	winter C	ż	winter,
	fall C	summer, fall,		fall, spring, sum-	3	eatiy enring (
	winter & summer F	spring	F	mer F		311108
	structural feature			ovorgreen ground-	summer.	fall, sum
,	recognition:			cover recognition:	fall	Gmer
	summer C	7		winter (3 winter,	(after
	winter (1		other seasons 1	P spring	
•						r prowing
	spring & lall r		· · · · · · · · · · · · · · · · · · ·			e plowing only)
	spring & Iall					p plowing only)
	G = good detection	· ·			•	plowing only)
	G = good detection $F = fair detection$ $P = noor detection$	· · ·		- -	•	p plowing only)

.

· · ·

22-

•

In recent years, much emphasis has been placed on color as a tool in photointerpretation of vegetation types and individual species (Heller et al. 1964, Krumpe 1971, Krumpe et al. 1971a, 1971b, Northrop 1968, Northrop and Johnson 1970, Silvestro 1969, and Parry et al. 1969). Color has proved to be very useful, and in some cases indispensable for correct identification of deciduous forest species. However, the tendency has been to rely heavily on color comparisons between transparencies and the opaque Munsell color standards. These standards are precisely classified according to hue, chroma, and value. There are a number of drawbacks to the use of Munsell standards in vegetation photointerpretation: (1) color fidelity of aerial films does not warrant such precise color classifications. Color varies from frame to frame and from the middle of the frame to the edge (vignetting), resulting in color value changes (Parry et al., 1969) Norton (1964) recommends standardization of exposure and processing of film as well as standardized lighting for viewing transparencies and color standards. (2) The visual comparison of an opaque color standard with a transparent color leads to subjective errors since the types of light reaching the eye, reflected vs. transmitted, are different in quality. (3) Color ranges

representative of a given species are difficult to pinpoint due to (a) variation in relative rates of color change within the species, within a season and from year to year, and (b) variation in color ranges between individuals of the same species and sometimes within a single individual due to seasonal idiosyncracies, habitat, age, and genetic makeup of the individual. Krumpe (1971) and Krumpe et al. (1971a, 1971b) tried to overcome the variation factor by standardizing the phenological state at which his forest study area should be observed and by differentiating the "cluster" or most common color range of a species at that time from the "phase" or more variable and less common colors characteristic of the species. Thus, an investigator using Krumpe's crown key can get some idea of which colors are the expected ones for a species at a given time of year. It becomes clear that absolute color is not as important as relative color in species differentiation, or, in the words of Anson (1966) "color fidelity is not as much a consideration in photointerpretation as color differentiation."

- Color criteria notwithstanding, crown structural characteristics are also important for species identification, especially in the case of conifers. Northrop (1968) recommends the following structural characteristics for use in forest photointerpretation: crown texture, shape, size, pattern, and shadow. Heller et al. (1964) also includes crown apex shape, crown margin, limb exposure, branch shape, and tone spots in the crown. In the case of conifers, Sayn-Wittgenstein (1960) emphasizes that despite minimal color differences, conifers are easier to differentiate than hardwoods by structural characteristics because of their regular growth pattern.

In the present study, both color and structural characteristics as well as habitat and topographic data (recommended strongly by Northrop, 1968) were used for species identification in forests, marshes, old field, and cropland. Both color and texture were necessary in the spring for differentiating beech and tulip trees from later-leafing trees such as oaks and hickories. Color was an excellent criterion for differentiating tree species in the fall while in winter and summer, structural characteristics were more important. Color in winter was useful for differentiating beech and sycamore from species having darker crowns. For crop determination, texture was more important than color differences. In winter and spring, cultivation patterns could be used to predict crop type when color was of little use. Aerial criteria most useful for differentiating types of vegetation are given in Table 4.

DRAINAGE MAP OF RHODE RIVER WATERSHED

The drainage map of Rhode River watershed (Figure 1) was constructed primarily to satisfy a requirement for detailed and up-to-date hydrographic data by the CBCES research program. Since the most recent and detailed coverage of the watershed is provided by photographic flights under the remote sensing program, the preparation of a drainage map offered an opportunity to compare the values of natural color and infrared color photography for the detection of hydrographic features.

The drainage map shows all discernible streams, intermittent channels, marshes, and natural or artificial ponds. A gray screen representing the forested portions of the watershed provides a background, since forest extends along most of the stream courses. The boundaries of the forest indicate the watersheds of tributary streams, including those which were dry during preparation of the map. Major roads are included on the map for help in orientation. The boundaries of the watershed were drawn from a topographic map.

All data for the map were copied from 9x9 inch transparencies photographed in April 1971 at a scale of 1:10,000 (flight 51). This flight was chosen because the predominantly deciduous forest of the Rhode River watershed had not yet begun to develop foliage, so that streams running through the forest were readily discernible. The forest outlines, roads, and hydrographic data were traced from each transparency onto sheets of acetate, since it was impractical to cut transparencies from the roll of film. The acetate sheets were then assembled into an uncontrolled mosaic of the Rhode River watershed, and the map was drawn from this mosaic. Slight distortions in the individual photographs tended to produce cumulative distortions in parts of the mosaic, so that frequent corrections were needed. Distortions on the assembled map never exceed 1/4 inch (equivalent to approximately 200 feet on the ground) and are usually much less. Greater accuracy would have required the use of specialized cartographic equipment, which was not available.

The comparison between natural color and infrared color film was made by first tracing the hydrographic and base data from natural color film, then comparing the tracings with corresponding infrared color film. Natural color proved satisfactory except for determining he courses of narrow streams and intermittent drainage channels, and for delimiting swampy areas. For these purposes, the infrared color was superior, since all water surfaces showed blue i gainst a predominantly reddish brown background, whereas natural color offered much less contrast. Approximately 20% of the streams required revision after comparison with infrared color film, usually in the upper reaches of the watershed. A few stream courses could not be accurately traced even on infrared film, either because the overlying vegetation was too dense or because the ravines were too narrow. These obscure courses usually interrupt discernible portions of the streams, and are shown on the map by broken lines. Broken lines also show intermittent channels at the sources of streams. The boundaries of freshwater marshes and swamps were easier to determine on infrared film because of the bluish tinge in wet areas. Salt marshes were easily recognized on both types of film, since they contrast sharply in color and texture from the forest which usually borders them.

The names of streams and marshes on the map were chosen arbitrarily, except for Muddy Creek, Mill Swamp Branch, and Mill Swamp. These latter streams are the only ones named on recent U. S. Geological Survey maps. It was decided to name the other streams in anticipation of an increasing need to refer to them in research projects throughout the watershed. Personal names, former place names, and names descriptive of conditions at the sites were used. Estuaries were given the names that already appear on the U. S. Geological Survey maps.

VEGETATION MAP OF RHODE RIVER WATERSHED

The vegetation map of Rhode River watershed (Figure 2) was constructed to show species composition of forest areas and abandoned fields for research projects by the CBCES. The map facilitated the interpretation of remote sensing data in the various forest habitats throughout the watershed, and improved photointerpretive techniques.

The map shows the distribution of seven major cover types: deciduous and coniferous forest, cultivated and abandoned fields, freshwater and salt marshes, and residential areas. The map describes the dominant and subordinate species found at approximately 500 sites within the forest and abandoned fields, which together cover approximately half the watershed area. Cultivated fields cover most of the remainder of the watershed, but since the crops grown on them are frequently changed they are not described on the map. The vegetation of residential areas (except preserved stands of forest) is not described for the same reason. Most of the marshes are too small to be adequately described on a map of this scale, but a separate section of this report describes the vegetation of the two largest salt marshes.

A prototype of the vegetation map was constructed from a mosaic . of black and white aerial photographs taken in 1968 at a scale of

1:5,000. This scale was excellent for recording field data but was too large for inclusion in this report. The final version of the vegetation map was drawn from the outlines of the drainage map (Figure 1) at a scale of 1:10,000. The natural color and infrared color photos used to prepare the drainage map were then used to locate preciscly the major cover types on the watershed. Infrared photos proved more useful than natural color photos for this purpose since they more accurately revealed not only the boundaries of marshy areas but also the distribution of coniferous forest and evergreen subcanopy vegetation in the deciduous forest and abandoned fields.

In contrast to the drainage map, preparation of the vegetation map required the collection of extensive ground truth. The species composition of the forest canopy and understory was noted whenever any change in the dominant species was apparent, dominance being subjectively determined in each forest habitat by the relative size and abundance of each species. The presence of evergreen shrub and ground layer sigetation (principally honeysuckle) was also noted.

It was impractical to delineate the boundaries of canopy cover types in the deciduous forest, either by recognition from aerial photographs is from ground observations, because the types graded into each other. Species composition of a forest area may be determined by comparing descriptions of the vegetation at several points within it.
The drainage patterns of the forest, shown by the courses of streams, indicate the distribution of stream valley and floodplain vegetation cover types.-

Coniferous forest stands are represented by a patern when coniferous trees constitute 75% or more of the canopy, but more frequently the conifers are scattered through the deciduous forest without forming definite stands large enough to be represented on the map. In these cases, the pattern for deciduous forest is used, and coniferous species are mentioned as co-dominant or subdominant to the hardwoods at individual sites.

The species composition of vegetation cover types on the map is represented by combinations of symbols, the symbol for each species usually being the first letter of its common name. This system makes it easier for researchers in different disciplines to interpret the map. Because the species of some genera such as oak and hickory are difficult to distinguish on aerial photographs, it was decided not to separate these species on the map. In these cases, the first letter of the common generic name is used. When two or more names begin with the same letter, they are distinguished on the map either by the addition of a suffix or by using the first letter of the generic name. For example, the letters H, Hb, and Ho on the map denote hickory, hornbearn, and holly. But hercules-club is more easily distinguished by the letters

Al, for <u>Aralia</u>, its generic name. The selection of letters for these symbols has been arbitrary, determined by convenience and to minimize confusion of species. Table 5 gives the symbols and their respective species. In addition to the letter symbols used to denote species, a few asterisks and parentheses are used to distinguish dominant, sub-dominant, and understory species, as well as young stands, lumbered stands, and stands with thin canopies but dense

understories.

SYMBOLS USED FOR THE VEGETATION MAP OF RHODE RIVER WATERSHED

Aspect of Stand

* denotes sapling-sized stands

- denotes recently lumbered stands now growing back

 \otimes denotes a stand with thin canopy, not necessarily as a result of

- lumbering.

separates dominant species (left) from subordinate species (right)

in the canopy

() encloses understory, shrub layer, and ground layer species

Species Symbols

Ad Alder (Alnus serrulata)

Al Tree of heaven (Ailanthus altissima)

Ap Apple (Pyrus malus)

Ar Hercules club (Aralia spinosa)

B^{*} 'Beech (Fagus grandifolia)

Be Box elder (Acer negundo)

Br Birch, river (Betula nigra)

C Cherry, black (Prunus serotina)

Cy Cypress, bald (Taxodium distichum)

D Dogwood, flowering (Cornus florida)

E Elm, American (Ulmus americana)

		36
	Ed	Elder (Sambucus canadensis)
	F	Ash (Fraxinus spp.)
1	Gb	Greenbriar (Smilax rotundifolia)
•	Gs	Grass, short (species unspecified)
	Gt	Grass, tall (Species unspecified)
	H	Hickory (Carya glabra, C. tomentosa)
	Нb	Hombeam, American (Carpinus caroliniana)
•	Но	Holly, American (Ilex opaca)
	Hs	Honeysuckle, Japanese (Lonicera japonica)
	J	Juniper (Juniperus virginiana)
	ĸ	Mountain laurel (Kalmia latifolia)
	L	Locust, black (Robinia pseudoacacia)
	Μ.	Maple, red (Acer rubrum)
	N	Sour gum (Nyssa sylvatica)
	0	Oak (Quercus spp.)
	Р	Persimmon (Diospyros virginiana)
	Pa	Paulowniz Paulownia tomentosa)
	Pi	Poison ivy (Rhus radicans)
	Po	Poplar (Populus grandidentata)
	Рр	Pawpaw (Asimina triloba)
	\mathbf{Ps}	White pine (Pinus strobus)
	Pt	Loblolly pine (Pinus taeda)
	Pv	Virginia pine (Pinus virginiana)

T		37		•	
: •	R	Raspberry (Rubus spp.)		· •	
	S	Sweetgum (Liquidambar styraciflua)			
	Sa	Sassafras (Sassafras albidum)		- •	
	Sb	Spicebush (Lindera benzoin)			
	Sm	Sycamore (Platanus occidentalis)			
	Su	Staghorn sumac (Rhus typhina)			
•••• . 1	Т	Tuliptree (Liriodendron tulipifera)	•	•	
	Τv	Trumpetvine (Campsis radicans)		,	
	v	Viburnum (species unspecified)			
	Vt	Grape (Vitis spp.)		•	
	W	Walnut (Juglans nigra)			
	W1	Willow, black (Salix nigra)		-	
	Ws	Weeds, short (unspecified)			
	Wt	Weeds, tall (unspecified)	: ·		
		artin Angla			

Examples from the vegetation map:

.

OST ⇒ BrPv (SHs)	-	Canopy of oak (one or more species), sweetgum, and tuliptree as dominants, river birch and Virginia pine as subdominants. Understory of Sweetgum; ground layer of honeysuckle.
- B (ArD>OSHs)	=	Recently lumbered stand of beech (thin canopy, dense understory). Understory dominated by Hercules club and dogwood, with young or sprouting oak and sweetgum as subordinates. Ground layer of honeysuckle.

CORRELATION OF GROUND TRUTH WITH AERIAL PHOTOGRAPHS FOR FOREST SPECIES IDENTIFICATION

An intensive study on identification of forest species, by combining ground truth and remote sensing data, was made on a 5-acre site. The study revealed several fairly reliable criteria which influence this identification. Precautions and techniques were determined which are applicable to similar studios elsewhere. The relative accuracy of photo identification obtainable varies with the species, season, and types of photography employed. Significant correlations of ground truth and remote sensing imagery were obtained on an oval-shaped island (Hog Island) at the mouth of Muddy Creek (see Figure 1). The island supports a mature mixed upland hardwood canopy of white and black oak species, sour gum, and scattered Virginia pine. The understory consists of beech, oaks, and sour gum, with an ericaceous shrub layer predominantly of mountain laurel and blueberry. The, island is especially valuable for a ground truth correlation study because an accurate survey grid covers both the island and adjacent salt marsh. This survey grid provides fixed landmarks at 100 meter intervals, two of which occur on the island. Although the landmarks on the island were hidden from the air by the forest canopy, thir approximate position could be determined on aerial photographs by measuring distances from other landmarks located in the surrounding

salt marsh and marked with tarpaulins to insure their visibility from the air.

Ground truth data were collected in the autumn of 1970 and in the spring and summer of 1971. The presence of the survey grid made it feasible to map the positions of individual tree trunks using an alidade, plane table, and stadia rod. Spring and autumn phenology were noted for distinctive species. The large number of trees on the island made it impractical to map them all, so only those trees having a trunk diameter greater than eight inches at breast height (approximately 4 1/2 feet) were selected for mapping. This eliminated most of the understory trees, but it was expected that the canopy trees would mask them on aerial photos. The trunk diameters of the mapped trees were recorded, to facilitate their correlation with the appropriate crowns on the aerial photos. Many understory trees showed up on the photos, especially when the scales were enlarged. Since many of these trees belonged to different species (beech) than those of the canopy (oaks and sour gum), it would have been worth while to map them. The position of evergreen subcanopy species (principally mountain laurel) would also be useful for correlation with photos in the winter and early spring. However, the major effort required and the crowded appearance of the map which would have resulted discouraged the collection of these supplementary data.

A total of 182 trees were mapped. These included most of the canopy trees on the island except at the southern tip and southwestern slopes, where the steep terrain seriously reduced the accuracy of the mapping. Problems with steep terrain on the western and northwestern sides of the island were corrected by mapping trees along the perimeter of the -island from survey points in the marsh. Pine trees, dead trees, and trees leaning out over the marsh were mapped in anticipation of their value as landmarks on the aerial photos.

The ground truth was compared with both natural color and infrared color photos taken at all seasons, to establish correlations between the mapped trunks and the appearance of the crowns. The films which proved most useful were flight 51 (late winter), flight 57 (spring), flight 73 (summer), flight 89 (mid-autumn), and flight 32 (late autumn). Natural color was good for the identification of hardwood species at all seasons, while color infrared was most useful in the autumn and to a lesser extent in winter and spring. Infrared imagery often proved 'helpful in verifying identifications made from natural color. The values of these film types and seasons in identifying tree species at Hog Island are summarized below.

Season	Altitude (feet)	Natural Color	Inirared Color
Late Winter (fligh: 51)	1200	Good for evergreen species. Cond for locating beech (by white bark). Fair for locating oaks (by branching habit). Poor for locating individual trunks because of confusing shadows.	Good only for evergreen species.
•	· ·		

•	a -	A 1414 1		and a second sec
•	Season	Affitude <u>(feet)</u>	Natural Color	Infrared Color
	Spring (flight 57)	2500	Good for locating beech even in understory by prown texture and color. (Leaves are much brighter green than oak or sour gum.)	Good for verifying beech, but tends to contuse them with pine.
	Summer (flight 73)	1200	Good for distinguishing oaks by branching habit. Fair for distinguishing sour gum.	Good mainly for locating dead trees.
	Mid-autumn (flight 89)	5000	Good for locating sour gum (leaves turn red early).	
	Late autumn (flight 32)	1200	Good for locating oaks and beech by crown color and branching. Fair for locating sour gum (leaves gone).	Fairly good for separating species by crown color.
		÷		

Correlations between frames on the above flights were necessarily approximate, because distortions in the photographs prevented exact matching, even when the scales were the same. The use of an enlargingreducing table at NASA Wallops facilitated this matching, but the time was insufficient for making all potential correlations. Trees around the perimeter of the island could be matched fairly well by visual comparison. An overhead projector at the Smithsonian Institution was used to match the above flights to the field map, with moderate success.

Correlations between the photographs and ground truth proved fairly accurate toward the middle of the island, where the terrain was relatively flat, and at localized points around the perimeter. Slight distortions in the photographs and inaccuracies in the ground truth both of which were intensified by the steep terrain around the sides of the island and by the tendency of trees to lean instead of growing straight, accounted for this difficulty. It was necessary to shift either the photo or the map repeatedly, and attempt correlations at only one segment of the island at a time. Since hole diameter is a fairly good indicator of crown diameter, the diameters of the tree trunks were recorded as part of the ground truth. These proved to be a useful guide for matching a given trunk with one of several adjacent crowns on the photo. Correlation of the largest canopy trees, which proved fairly accurate, utilized the late autumn data (flight 32) and comparison of crown characteristics of the trees on frames from the other flights, especially flight 73.

A map of all the discernible tree crowns on the island (Figure 3) was drawn from a 3X enlargement of a frame from flight 32. The map shows 260 crowns, of which 156 have been identified. Only 54 of these identifications were made or verified by comparison with the ground truth map; the remaining crowns either could not be matched to trunks shown on the ground truth map or were not included in it. The ground truth map shows 182 trees.

The remaining identifications were made on the basis of crown characteristics at as many seasons as possible, to achieve the best reliability. The success of identifications by species and season is summarized in Table 6.

IDENTIFICATIONS OF TREE CROWNS: HOG ISLAND

OAK (canopy)	Number of Individuals
Identified by winter aspect (flight 51)	14
Identified by spring aspect (flight 57)	0
Identified by summer crown characters (flight 73)	3
Identified by late autumn phenology (flight 32)	10
Identified by ground truth map	6
BEECH (chiefly understory)	,
Identified by winter aspect (flight 51)	9
Identified by spring aspect (flight 57)	36
Identified by summer crown characters (flight 73)	0
Identified by late autumn phenology (flight 32)	37
Identified by ground truth map	2
SOUR GUM (chiefly canopy)	
Identified by winter aspect (flight 51)	0
Identified by spring aspect (flight 57)	0
Identified by summer crown characters (flight 73)	2
Identified by mid-autumn phenology (flight 89)	6
Identified by late autumn phenology (flight 32)	50
Identified by ground truth map	8

The identifications tabulated above are not cumulative, since the same tree was often identified on more than one flight.

The criteria used for estimating reliability of crown identifications are

A. Correlation of ground truth with photos from two or more flights = Positive identification
B. Correlation of the ground truth map and photographs from one flight, or of photographs from two flights without the ground truth map = Good identification
C. Identification by ground truth alone or by photographs from one flight

only = Tentative identification These reliability estimates are shown on the crown identification map of Hog Island (Figure 3). Almost half the oaks were positively identified while most of the sour gums and beech understory were tentatively identified.

The identifications of tree crowns shown in Figure 3 and Table 6 result from two different kinds of correlations: correlations between the ground truth map and frames from one or more of the flights consulted, or photointerpretive correlations resulting entirely from the aspect of a given tree on one or more of the flights, with reference to structural or phenological features characteristic of particular species. The latter technique was resorted to when tree trunks on the ground truth map could not be matched to crowns observed on the photographs.

It was possible to extrapolate from the crowns which did correlate with the ground truth map to those which did not, using late autumn phenological and structural characters (flight 32). First, the natural and infrared coloration of 130 crowns was described from the photo, whether the trees being described had been included on the ground truth map or not. Then 54 of these crowns were correlated with the ground truth map using an overhead projector. The correlated trees were grouped by species, and the range of crown colors for each species were noted (See Table 7).

Most of the oaks on the ground truth map exhibited a variety of yellow-brown natural crown colors on flight 32 and most of the sour gums were already leafless. Only two beech were canopy trees and therefore included in the ground truth map, and only one of these could be correlated. The range of crown coloration for all species of oaks did not permit a reliable separation of species by coloration, either with natural or infrared colors. Since the natural colors within each species showed less variation for individual trees than did the infrared colors, the natural colors were chosen as a basis for possible extrapolations.

Of the eight sour gums listed in Table 7, two were leafless. The

rest exhibited the same range of color as oaks, but this was probably because leafless gums were being masked by other species. Since observations of autumn phenology (See Table 8) show that sour gum leaves turn red quite early in the autumn and then fall off, it was considered safe to assume that any such trees showing this characteristic on Hog Island would probably be sour gums. The only other local species having this distinctive autumn phenology is the flowering dogwood, but neither the ground truth data nor an examination of flight 57 (taken in May when the dogwoods were in flower) revealed the presence of any dogwoods on the island. The possible confusion of leafless sour gums with dead trees was eliminated by comparison with the ground truth data and flight 73 (taken in July).

Extrapolations were attempted for 49 trees which had been described from flight 32 at the 1:1200 scale but which did not match any trunks on the field map. The descriptions of their crowns were first compared at the 1:1200 scale and the 1:800 enlargement to get additional correlation data, but many of the crowns which had appeared single on the smaller scale proved to consist of two to five crowns, often differently identified, on the larger scale. This situation eliminated 26 trees (as described on the smaller scale) from further attempts at extrapolation. Tentative identifications of the remaining 23 trees were made by comparing the descriptions of their crown coloration in natural and infrared color with those of trees already identified in Table 7. Of these 23 trees, 7 had

added to the map (Figure 3).

-

.

·

SPECIES OF TREES CORRELATED WITH LATE AUTUMN CROWN COLORATION

	No. on field	No. on	· · · · · · · · · · · · · · · · · · ·	•
Species	map	photo	Infrared Color	Natural Color
			' <u>.</u>	
White oak	3	65	Lavender-gray	Medium yellow-tan
(Quercus alba)	13 -	130	Lavender-gray	Pale yellow-tan
	24	66	Lavender-gray	Pale yellow-tan
	40	76	Lavender-gray	Medium yellow-tan
	48	9 9	Rust red-orange	Pale greenish brown
	54	77	Pale purple-pink	Medium yellow-tan
	55	45	Pale purple-pink	Pale green-yellow
	57, 162	45	Pale purple-pink	Medium yellow-tan
5 	58	80	Lavender-gray	Pale yellow-tan
	63	52	Pale purple-pink	Pale yellow-tan
	64	35	Pale yellow	Dull yellow-tan
·	68	115	Pale purple-pink	pale yellow-tan
<u> </u>	73	122	Lavender-gray	Rust yellow-tan
	80	33	Pale yellow	Pale rust brown
	113	64	Lavender-gray	Yellow-tan (yellow-pink
	118, 119	96	Lavender-gray	brown) "
	143	67	Lavender-gray	:1
	150-151	62	Pale purple-pink	Pale brown yellow-gre
	158	57	Pale purple-pink	Pale brown yellow-gree
•• •	160	27	Yellow-green	Pale rust
			-	
Red & Black Oak	31	77	Lavender-gray	Medium yellow-tan
(Ouercus rubra)	30	118	Lavender-gray	Pale yellow-tan
-(0) velutina)	56	78	Pale purple-pink	Pale brown yellow-gree
(Q. Velutine)	70	117	Red-orange	Rust yellow-tan-green
	72	81	Lavender-gray	dull yellow-tan
	76	39	Red-orange	Brown yellow-green
	47	68		Leafless
	86	80	Lavender-gray	Yellow-tan (yellow-pin-
· · · · · · · · · · · · · · · · · · ·		-	0	Brown)
	94	28	Yellow-green	Dark rust
	132	37	Pale yellow	Pink-brown-yellow
	142	112	Red-rust-orange	Pale yellow-green
	169	21	Bright yellow-or-	Rust
			ange	
	174	67	Lavender-grav	Yellow-tan (yellow-pin)
	* • *			brown)
	,			

TABLE 7

ł

2

. . . .

•

Table	7	(Continued)	ŧ

	•	50		
Table 7 (Continued)			· · · ·	
	No. on field	No. on		
Species	map	photo	Infrared Color	Natural Color
Spanish Oak	10	59	Pale purple-pink	Pale green yellow
(Overcus falcata)	38	49	Pale purple-pink	Pale green yellow
(Recreation recome)	28	51	Purple rust	Pale green yellow
	• 74	123	Yellow-green	Pale rust brown
. – –	75	39	Red-rust-orange	Pale brown-green
•	77	108	_	Rust brown
	78	56	Pale purple-pink	Pale brown-yelle:
	81	54	Pale purple-pink	Pale brown-yelle:
· ·	103	91	Lavender-gray	Yellow-tan (yello:
				pink-brown)
	152	62	Pale purple-pink	Pale brown yellow
		-	· · ·	green
	168	127	Lavender-gray	Yellow-tan (yells
				pink-brown)
	176	92	Lavender-gray	Yellow-tan (yellow
		,		pink-brown)
	177	34	Pale yellow	Pinkish brown-
		• -		yellow
Chestnut Oak	15			Medium yellow-ta
(Ouercus prinus)	23		Blue-green	Pale brown
(Quereus princs)	115	58	Pale purple-pink	Pale brown-gree:
		•••		_
Post Oak	<u>ب</u>	. •		
(Quercus stéllata)	59	79	Lavender-gray	Yellow-tan (yello
•				pink-brown)
Beech		· ·		, <i></i>
(Fagus grandifolia)	27	65	Lavender-gray	Yellow-tan (yello
(1 agas grandi,				pink-brown)
Sour Cum	41, 43	68	Blue-gray	Yellow-tan
(Nyssa sylvatica)	42		Blue-gray	Leafless
(Hybba byrtanica)	60	107	Lavender-gray	Yellow-tan
	69	72	Blue-gray	Leafless
	88	124	Yellow-green	Pale Rust
۲,	130	103	Lavender-gray	Yellow-tan
	153	70		Leafless

.

Observations of the phenology or seasonal changes of plants (i.e., leaf development, flowering, fruiting, leaf color change, and leaf fall) are often valuable for determining species, and indirectly the effects of weather, in conjunction with remote sensing. Sayn-Wittgenstein (1961), in his studies of mixed mesophytic forest in southeastern Canada, stresses the importance of both dates and descriptions of phenological changes for correct species identification.

These criteria have been used in recording the spring and autumn phenology of forest, salt marsh, and cultivated species in Rhode River watershed as a photointerpretation aid. Forest and salt marsh observations were made primarily at the CBCES; observations of cultivated species were made throughout the watershed.

Natural color photographs were taken at three intervals during critical color changes in the autumn of 1971. A hand-held camera was used to record forest and abandoned field vegetation around the horizon from the top of a 40-foot silo. Ground truth identifications were made for many of the trees thus photographed. The data are still being analyzed.

Attempts to standardize observed autumn leaf colors by correlating individual leaves with a set of Munsell color chips were not successful; there was too much variation in leaf coloration within each species or even within individual trees (also noted by Northrop and Johnson, 1970). Moreover, there is no assurance that the close range reflectance of an individual leaf will represent the long range reflectance from an entire crown (Knipling, 1969-70). Weather conditions also influence leaf colors and rates of change. For example, heavy rainfall and moderate temperatures in the autumn of 1971 (September and October), followed by a brief cold spell and high winds (December) produced muted coloration, followed by rapid browning and leaf fall.

An autumn phenology table (Table 8) illustrates the variability in rates of leaf color change between species of trees and among individuals of the same species, especially in different habitats. Individual genetic characteristics, exposure and dryness, and age were all found to influence autumn phenology.

Sweetgum (Liquidambar styraciflua) and sassafras (Sassafras albidum) exhibit a mixture of reds and yellows. In 1970, red maple (Acer rubrum) did the same. The influence of habitat was marked in sour gum (Nyssa sylvatica), which changed color faster on the islands in Rhode River than on the adjacent mainland, apparently because the islands are drier and more exposed. Sweetgum and white oak (Quercus alba) also changed color faster in exposed locations.

Examples of the effects of weather on forest phenology in the autumn of 1971 were the unusually late color change of red maple, the unusually

.

-

early change of Spanish oak (<u>Quercus falcata</u>), and the duller coloration of tuliptree (<u>Liriodendron tulipifera</u>) leaves. All these phenomena are in contrast to those observed in 1970.

TABLE 8

FALL PHENOLOGY

	FALL PHENOLOGY					
Date	Species	Description	Area			
8/24/71	Nyssa sylvatica	Some lvs. turning color	Hog Island			
8/30/71	Liquidambar styra- ciflua Robinia pseudoa-	Some top lvs. turning reddish Some roadside lvs.brown-red	Roadsides and old field of RR. water- shed			
	cacia Prunus serotina	Some top lvs. reddish				
9/20/71	Nyssa sylvatica	Many dark, coppery red crowns Some bright red crowns	Hog Is., Big Is., and Muddy Creek			
	Baccharus halimi- folia	White silky flowers	Muddy Creek, Fox Pt., Hog Is.			
· · ·	Cornus florida Liquidambar styra- ciflua	Some turning red Some turning part red				
10/4/71	Liriodendron tulip- ifera	Many still all green, some with lys. ochre-green	View from west sile			
	Parthenocissus quinquefolia	Bright red	View from west silo			
	Liquidambar styra- ciflua	Most a medium green Some light green with red-orange	View from west silo			
	Sassafras albidum	Yellow-green, lower lvs. on branches often orange-red	View from west silo			
	Quercus falcata	dull orange, yellow, light green or shiny dark green	View from west silo			
	Diospyros virgini- ana	Coppery green with dark, yellowish fruits	View from west silo			
	Prunus serotina	Mostly darkish green or pale pink- green	View from west silo			
	Salix nigra	Pale green with faint brownish-red	View from west silo			
	Celtis occidentalis Quercus palustris Cornus florida Platanus occiden- talis	Pale green, some yellow-green lvs. Brown and pale green pale pink-green Brown (dying)-green and yellow- green lvs.	Road to Western Java Forest " "			

. .

.

Table 8 (Continued)

Date	Species	Description	Area
10/5/71	Robinia pseudoacacia	Yellow and green lvs., dull, glaucous	Roadside of Route
	Cornus florida	Bright red .	Roadside of Route .
	Liquidambar styraciflua	Small trees, tops dark or bright red, lower 2/3 green	Roadside of Route :
•	Sassafras albidum	Green and bright red	Powerline cut off
·	Ulmus americana	Green with brown and yellow	Route 2
i	Nyssa sylvatica	Bright red and losing lvs., some green	Route 2
	Carpinus caroliniana	green with brown and yellow	Route 2
	Liquidambar styraciflua	Many all green; small trees red on top 1/3, green below[Route 2
	Fagus grandifolia	Green with brown and yellow lvs.	Route 2
	Carya sp.	Green, sometimes with brown- yellow lvs.	Powerline cut off
	Celtis occidentalis	Green, some brown	Route 2, cont.
10/13/7	lLiriodendron tulipfera	Lys, brown, dull vellow and	Road to Western
	· · ·	green; some bright yellow with green	Java Forest
	Quercus falcata	Dark Green	B¥
	Carva sp.	Green with brown and yellow	н _г
		lvs. or brown-yellow lys.	
	Úlmus americana	70% dropped, remaining light vellow	11
	Cornus florida	Reddish-green lys.	the end water
	Acer rubrum	Light green lys.	1
	Carva glabra	Green lvs.	IJ
	Ouercus alba	Green lys.	11.
	Nyssa sylvatica	Reddish-green and bright red.	¶ – 200
		dropping lvs.	₹ * ·
	Platanus occidentalis	Brown-green lys., falling	and the second second
	Fagus grandifolía	Green lvs.	1 Consideration
-	Liquidambar styraciflua	Light green lvs.	يون موريون ورويونونونونونونونونونونونونونونونونونون
	Nyssa sylvatica	Bright maroon lys.	Kirkpatrick marsh
	Scirpus Olnevi	Green, top 1/2 brown-vellow	vicinity
	Phragmites communis	heads pale pink-brown.	Kirkpatrick marsh
		stems blue-green, sometimes light yellow	vicinity
	Quercus phellos	Green with some yellow and	Kirkpatrick marsh
	•	brown lvs.	vicinity

Table 8 (Continued)

•

raore o (commaca,	· · · ·	· · · · · · · · · · · · · · · · · · ·
Date	Species	Description	Area
	Quercus palustris	Light orange-green lvs.	Kirkpatrick marsh
	Quercus falcata	Shiny dark olive green lvs.	Kirkpatrick marsh vicinity
,	Quercus alba	Dark green lvs. vicinity	Kirkpatrick marsh
	Juglans nigra	Leafless	Contees Wharf Rd.
	Mimosa pudica	Dull glaucous green, brown	Contees Wharf Rc.
	Pueraria lobata	Bright green	Route 2
10/14/71	Prunus serotina	Some green, some reddish-green	Fox Point Read
•	Sassafras albidum	Orange, some green	Fox Point Road
	Quercus phellos	Green with some yellow and brown lys.	Fox Point Road
	Liquidambar styraciflua	some green, some reddish	Fox Point Road
	Quercus rubra/velutina	Yellow-pink-brown-green, green, and green with assorted colors	Fox Point
	Quercus alba	green	Fox Point
	Quercus falcata	Shiny brown-green or shiny greer	Fox Point
	Fagus grandifolia	green, slightly yellow	Fox Point
	Quercus prinus	Light green, some with yellow- brown boughs	Fox Point
	Liquidambar styraciflua	Green with yellow	Fox Point
	Robinia pseudoacacia	Glaucous dull green lvs.	Fox Point
	Nyssa sylvatica	Light red. dropping lvs.	Fox Point
	Cornus florida	reddish-green lvs.	Fox Point
	Diespyros virginiana	dark green lvs.	Fox Point
	Ulmus americana	pale vellow lvs.	Fox Point
· .	Prunus serotina	green lvs.	Fox Point
10/19/71	Quercus rubra/velutina	Green or reddish-brown lvs.	Road to Western
	Platanus occidentalis	Green, yellow, and brown on lvs., some still green	Java Forest
	Quercus alba	green lvs.	្មា
	Liquidambar styraciflua	Green, some yellow-green lvs.	¥T
	Liriodendron tulipifera	Golden yellow or green lvs.	
	Fagus grandifolia	Green, some with yellow lvs.	U
	Acer rubrum	Green lvs.	- n
•	Carya tomentosa	Golden brown lvs.	11
	Ulmus americana	Part grayish green, part yellow	. U
		lvs., shiny and pale	

56 ' . .

.

Laple o (Continued)

Carya tomentosa

Date

Species Description Area Nyssa sylvatica Some still green, most dropped Java Forest lvs. 10/20/71 Platanus occidentalis, Green with brown and yellow lvs. From CBCES dock Glaucous gray-green Robinia pseudoacacia From CBCES dock Zea mays, standing Stalks light brown From CBCES dock Quercus falcata Bright green Fom CBCES dock 10/26/71 Carya spp. Yellow and dropping lvs. Western Java Fore Fagus grandifolia Golden brown, some green with brown Western Java Fore Quercus alba Western Java Fore Greenish-yellow or green 10/29/71 Morus rubra Light Green Fox Point Road Liquidambar styraciflua Some all green, most have Fox Point Road yellow and/or red and/or maroon Acer negundo Light green lvs., silvery-gold Fox Point Road samaras hanging below Quercus palustris Green and ochre brown, losing Fox Point Road lvs. Prunus serotina Many almost leafless, others Fox Point Road yellow and green lvs. Sassafras albidum Some flame orange-yellow, one bright red, some green on Fox Point Road top, yellow below Diospyros virginiana Leafless or bright yellow lvs., Fox Point Road bright or dull orange fruit Liriodendron tulipifera Yellow with brown and green Fox Point Road Acer rubrum green Fox Point Road Campsis radicans Very pale yellow Fox Point Road Parthenocissus quinque-Fox Point Road in trees, bright red folia Quercus falcata Shiny-green or brown-green-Fox Point Road yellow-orange lvs. Quercus phellos Spotty green/yellow/brown Fox Point Road Robinia pseudoacacia Light green with yellow lvs., Fox Point Road glaucous Quercus alba Ochre and light olive green, someFox Point Road very light green with brown and yellow Quercus rubra/velutina Maroon-brown with green and Fox Point Road yellow lvs. dropping Quercus prinus Light, bright green lvs. with Fox Point Road brown edges Nyssa sylvatica Lvs. red and falling Fox Point Road

Red-brown and yellow, dropping Fox Point Road lvs.

rapic o (continued)

		58	
Date	Species	Description	Area
11/2/71	Carya spp. Liriodendron tulipifera	Bright yellow lvs. Bright yellow, pale yellow, yellow green, brown yellow, and leafless	Contees Wharf Rea Contees Wharf Rea
	Mimosa pudica - Puer aria lobata	Glaucous green with yellow pods Green	Contees Wharf Rea Contees Wharf Rea
<u>`</u>	Liquidambar styraciflua Robinia pseudoacacia Platanus occidentalis	All variations of green and red glaucous dull green Each leaf with brown, green, & yellow	Muddy Creek Road Muddy Creek Road Muddy Creek Road
	Acer rubrum	Green	Kirkpatrick Marsh vicinity
• • • •	Quercus phellos Quercus Alba Liquidambar styraciflua Quercus palustris Prunus serotina	Mostly green; green and yellow Green and brown Green Green with yellow, losing lvs. Some still green	Kirkpatrick Marsh vicinity Kirkpatrick Marsh vicinity Kirkpatrick Marsh vicinity
11/8/71	Liriodendron tulipifera Fagus grandifolia	some yellow, most leafless Many leafless, others green & yellow	Muddy Creek Road Muddy Creek Road
	Robinia pseudoacacia Liquidambar styraciflua	Glaucous dull green Some green, some yellow-green and almost leafless; small ones red on top 1/3, green on lower 2/3	Muddy Creek Road Muddy Creek Road
	Acer rubrum Quercus prinus Carya spp.	Green Yellow-green with brown Leafless	Muddy Creek Road Muddy Creek Road Muddy Creek Road
11/10/71	Acer rubrum Quercus falcata Quercus rubra/velutina Quercus alba Fagus grandifolia Liriodendron tulipifera Nyssa sylvatica	Green Green-yellow, olive, or leafless Green with brown and falling lvs. Green, brown, or leafless Leafless or green and brown lvs. Leafless or orange-yellow and brown lvs. Leafless	Western Java For- Western Java For- Western Java For- Western Java For- Western Java For- Western Java For-
	Liquidambar styraciflua Acer rubrum	Some green, most leafless Green	Fox Point Road Fox Point Road
·	-		

•

Table 8 (Continued)

Date	Species	Description	Area
· · ·	Prunus serotina	Green Vellow-brown lys.	Fox Point Road Fox Point Road
	Quercus prinus	Terrow-Brown 103.	
11/11/71	Platanus occidentalis	Leafless or brown and green lvs.	Road to Western
	Quercus alba	Most with green lvs.	Java Forest
	Fagus grandifolia	Most leafless, some with copper	Road to Western
• •	_	lvs.	Java Forest
	Carya spp.		Road to Western
	Liquidambar styraciflua	Green or leatiess	Java Forest
•	Acer rubrum	Green	Road to western
	Liriodendron tulipitera	Leaness or with yenow-brown	Dood to Western
	Chonene falcata	Some leaflass some with a few	Tava Forest
	Queicus laicata	olive-green lys some with many	Road to Western
		olive-green lys.	Java Forest
	Quercus rubra/velutina	Mostly green	Road to Western
	Ouercus stellata	Mostly green	Java Forest
	~~~~~		
11/18/71	Acer rubrum	Various; green/yellow/brown-	Muddy Creek Road
		yellow/ochre/olivegreen/orange-	
		brown	•
	Quercus falcata	Olive-green or brownish lvs.	Muddy Creek Road
	Pueraria lobata	dead, therefore gray	Muddy Creek Road
	Robinia pseudoacacia	gray-green, lvs. falling	Muddy Creek Road
11/24/71	Quercus alba	Some brownish lvs. still on,	Muddy Creek Road
		some leafless	
	Quercus falcata	Some brownish lvs. still on, som	e
		leafless	Muddy Creek Road
•	Liquidambar styraciflua	Some trees red on top 1/3, most leafless	Muddy Creek Road
	Acer rubrum	• Orange-brown and yellow-orange lvs.	Muddy Creek Road
	Lonicera japonica	Still green and shiny	Muddy Creek Road
	Fagus grandifolia	Most leafless with a few copper	Muddy Creek Road
		lvs.	
	Other species	Mostly leafless	Muddy Creek Road
12/4/71	Prunus avium	Green lvs. turning yellow	Contees Wharf Roa
	Quercus alba	with some brown lvs. on	Contees Wharf Ros
	Quercus stellata	with some brown lvs. on	Contees Wharf Roa
	Quercus rubra/velutina	with some brown lvs. on	Contees Wharf Roa
	Quercus falcata	with some brown lvs. on	Contees wharf Roz
	Liquidambar styraciflua	Some maroon lvs. on	Contees Wharf Rea
			•

ر ک

Additional studies of spring and autumn phenology are planned in order to develop useful generalizations for photointerpretation in the Rhode River watershed. An earlier analysis of phenological characteristics, crown structure, and habitat influence on forest species in the neighboring South River watershed by O'Neill et al. (1950) is expected to provide much useful data. Phenological characters have already proved valuable for photointerpretation of the forest at Hog Island on the CBCES (described in another section of this report).

υU

### EVALUATION OF SALT MARSH PHOTOINTERPRETATION

Salt marsh vegetation was mapped in detail to further the understanding of the Rhode River ecosystem and to determine the effectiveness of remote sensing data for interpreting marsh cover types. The two largest marshes in the watershed, Hog Island Marsh and Kirkpatrick Marsh, both at the mouth of Muddy Creek (see Figure 1) were chosen for their accessibility and broad range of vegetation types. The Hog Island Marsh was studied first, then the data from that study were used to predict the vegetation in the Kirkpatrick Marsh, which was later verified by ground truth. This exercise determined the facility of extrapolating photointerpretive techniques to other salt marshes.

A detailed ground truth survey was made in Hog Island Marsh and correlated with a natural color transparency taken in April at 1200 feet altitude (scale 1:2400). This transparency and ground truth data were then compared with a transparency of the Kirkpatrick Marsh taken in July at 2500 feet altitude (scale 1:5000). A print was made of this latter transparency (Figure 4).

The two investigators who had determined vegetation types in the Hog Island Marsh made independent comparisons between the transparencies of Hog Island and Kirkpatrick Marshes, basing their predictions of the Kirkpatrick Marsh vegetation upon similarities of color,



texture, and habitat. Variations in color and/or texture of the Kirkpatrick Marsh vegetation were outlined and numbered on an acetate overlay of the transparency (reproduced on paper - Figure 5). This overlay was taken to the Kirkpatrick Marsh where the species composition of each numbered area was verified by ground truth.

The ground truth showed that the predictions by the two investigators had a mean accuracy of 50% totally correct identifications of the areas in Figure 5, and a mean accuracy of 72% partially (at least 25%) correct identifications. The actual correctly identified area of the marsh was much greater than 50%, however, since most of the incorrectly identified areas were quite small.

Accuracy of prediction was adversely affected by: (1) the occurrence of vegetation types in the Kirkpatrick Marsh which had no counterparts in the Hog Island Marsh; (2) phenological differences between plants of the same species photographed in April and in July; (3) textural differences between similar vegetation types because of the 2:1 reduction in scale between the April and July photos; (4) the presence of standing water in the Kirkpatrick Marsh, which formed confusing dark blotches in some vegetation types.

The ground truth data were used to construct vegetation type maps for Hog Island Marsh (Figure 6) and Kirkpatrick Marsh (Figure 7). Comparison of the latter with Figure 5 shows that many small variations detected on Figure 4 proved insignificant in the field.





FIGURE 7



Additional photointerpretive exercises are planned, involving other salt marshes in Rhode River. Prediction accuracy is expected to increase considerably when marshes photographed on the same flight are compared. Comparison of the effects of increasing altitude on recognition of marsh vegetation will also be made (see Olson, 1964).

### RECOGNITION OF LATE SUMMER CROPS

Aerial photography was used to identify late summer crops on Rhode River watershed and the validity of these identifications was tested to evaluate photointerpretive capability. A field survey of agricultural crops the summer of 1971 was completed about a month before the NASA, Wallops flight dated 8/24/71 which was taken at an altitude of 3500 feet with both natural color and color infrared film. Using the field survey and photographic data, a photointerpretation test was given to workers at the CBCES to (1) determine the ease with which the major crops, pasture, and weedy fields could be distinguished from each other and (2) compare the two film types for ease of photointerpretability. The test required interpretation of 97 fields with natural color film and 194 fields with color infrared film. The results of interpretation of the major field types are given below.

ParticipantABFilm TypeNatural Color Color IR Natural Color Color IRCorrect<br/>identification<br/>of corn, tobacco,<br/>grass, and grass-<br/>weed fields80 per cent85 per cent 76 per cent78 per cent

Identification of the field types was fairly good. Criteria used for recognizing the three major types are given in Table 9. Although testees preferred to use natural color film, a slight increase in accuracy resulted from use of color infrared film. This increase may be due to
in-test training since natural color film was viewed first. A larger sample size will be needed to verify this difference.

.

### TABLE 9

			Grass
Parameter	Corn	Tobacco	Grass and Weeds
Growth and harvest patterns	Rows distinguish- able, harvested many rows at a time	Rows distinguish- able, harvested by individual plants	Rows usually not dis- tinguishable but evidence of previous cultivation (row lines) sometimes present
Density	Very dense, ground usually not visible	Quite dense, can sometimes see ground between plants	Fairly thin, often uneven density
Growth form and texture	Tall vegetation, individuals not distinguishable, fairly coarse and uniform texture	Moderately tall, individuals dis- tinguishable, texture very coarse and uniform	Low vegetation, individu- als not distinguishable, fine texture. If weeds present, texture coarser, often irregular.
Color Natural	Greenish brown (due to tasselling of corn)	Bright green	Green to dull pale green, Brown or green mottling due to soil, moisture, and dist. of vegetation
IR	Reddish brown, Often yellowish	Bright magenta	Red, pink, or reddish- brown, pink, red, or brown mottling

69

Ì

APPLICATIONS OF REMOTE SENSING TO RHODE RIVER ESTUARY

Remote sensing techniques have been found highly useful in this study in tracing patterns of siltation and current flow, particularly in shallow water. They are expected to prove valuable for monitoring changes in the outlines of the shore. Their value in mapping the distribution of submersed aquatic vegetation has not been demonstrated in Rhode River, because of a dearth of such vegetation during the growing season of 1971. However, a temporary concentration of floating plants (probably alga) was discovered with the aid of aerial photographs.

The best type of film examined to date for tracing siltation, changes in depth, and current flow is natural color film at a scale of 1:10,000. Infrared color film has been much less satisfactory; it shows the heaviest silt plumes but masks the minor details. The data taken by Rome Air Force Base on 4/7/71 with a thermal infrared scanner at 2000 feet show great detail of surface water patterns, but since the scanner penetrated only the top 0-2 millimeter of water, it is hard to conclude how significant these patterns are. A scale of 1:10,000 is sufficient to show the whole picture of water movements over a fairly large area or along a shoreline. A smaller scale (down to 1:20,000) would be a useful supplement, since it would show most of the estuary on one frame, and any loss of detail could be corrected by referring to the 1:10,000 scale. Scales larger than 1:5,000 cover too small an area, and the additional detail on them

has been found unnecessary for tracing siltation and current flow.

Films of the estuary were examined at all seasons to determine the optimum seasons for detecting different phenomena. Water clarity was best during the winter months, probably because of reduced sediment loads entering the estuary. Due to suspended sediment, however, clarity was significant in very shallow water only. Sediment plumes were clearly visible in the estuary from May to November 1971, especially after a rainy period in October (Figure 8) which evidently caused unusually heavy stream siltation. The development of submersed aquatic vegetation could not be noted because its distribution was too sparse, but observations on the ground revealed small patches of Eurasian water-milfoil (Myriophyllum spicatum, currently the predominant species in Rhode River) from May to October. A temporary concentration of what is believed to have been floating algae was discovered in August. No planktonic blooms or "red tides" were detected on the photographs, but a CBCES limnologist thinks they should be visible if present. A "red tide" was detected by ground observations late in the autumn.

Specific applications of remote sensing to the estuary which have been explored to date are: monitoring of siltation patterns at the mouth of Muddy Creek and along the shore of Cheston Peninsula, monitoring of shore erosion at Cheston Peninsula, determination of bottom contours in Muddy Creek, and mapping of rooted submersed aquatic vegetation.

The first two applications were made entirely from examination of aerial photographs, while ground truth observations were used for the others.

The siltation patterns observed in Muddy Creek and along Cheston Peninsula are shown in Figures 8 and 9 respectively. Heavy, moderate, and light silt concentrations were readily distinguishable. In Figure 9, three views of Cheston Peninsula photographed at six-month intervals show variations in the siltation plume. An estimate of the rate of shore erosion at Cheston Point during 1971 was attempted by measuring the width of the point on photographs taken a year apart. This difference in width could not be detected with the instruments available, but a comparison with photographs taken in May 1968 showed that by October 1971 the shoreline had retreated approximately four meters.

Bottom contours were distinguishable only in very shallow water because of suspended sediments. Figure 10 shows the visible contours at the mouth of Muddy Creek at low tide. Several transects across the mouth were made with a skiff to verify the observed contours and collect some quantitative depth records, but the softness of the bottom and drifting of the skiff made this impractical.

The distribution of rooted submersed vegetation was observed periodically from a boat. Floating mats of Eurasian milfoil were noted along the upper tidal portion of Muddy Creek in the autumn of 1970, and other scattered mats appeared along the creek during the summer of 1971. The creek channel, however, is too narrow for many details to



Arrows show discernable current flow





BOTTOM CONTOURS VISIBLE AT LOW TIDE, MOUTH OF MUDDY CREEK



be observed from the air. Only individual plants were found in the estuary at the mouth of Muddy Creek and along the lower portion of Sellman Creek. These plants included widgeongrass (<u>Ruppia maritima</u>), horned pondweed (<u>Zannichellia palustris</u>), and redhead-grass (<u>Potamogeton</u> <u>perfoliatus</u>) as well as Eurasian milfoil.

•

Automatic recognition techniques using multispectral imagery of Rhode River watershed were analyzed for reliability and accuracy of identification of ground truth categories including vegetation types, soil, and water. The University of Michigan's Willow Run Laboratory under the commission of NASA, Wallops, flew over part of Rhode River watershed and adjoining areas at an altitude of 5000 feet with an opticalmechanical multispectral scanner during the fall of 1970. After the multispectral data were processed and an image of the flight path developed on film, sample areas representative of various vegetation, soil, and water types were chosen as "training sets" to be fed into an analog computer known as SPARC. This computer then attempted to : recognize all categories similar to the "training sets," a technique known as automatic recognition.

Sample areas were chosen from water, soil types, marsh types, hardwood forest types, conifer forest types, and pasture, agricultural fields, and abandoned fields. Choices were based on ground truth data and examination of filmstrips of the flight at different wavelengths. The following imagery was fed into the computer for recognition purposes: 0.41-0.43 µm, 0.43-0.45 µm, 0.54-0.58 µm, 0.63-0.68 µm, 0.68-0.74 µm, and 0.75-0.85 µm. Experimentation with automatic recognition of the chosen sample areas under different wavelengths resulted in selection

of nine types for ozalid display: water, loblolly pine, salt marsh, vegetated fields, light bare soil, dark bare soil, pasture, mature mixed upland hardwoods, and immature mixed upland hardwoods.

Attempts were made to compute percent correct and incorrect SPARC identification for these types by planimetering the recognized, incompletely detected, and falsely detected areas of each type on the ozalid display. Several factors prevented this computation for all types. At the time of the flight, there was incomplete ground truth for tone of bare soil fields and for composition of vegetated fields and pasture, the latter because some of the fields in the flight line were off the watershed. In the case of light and dark soil tone, apparently a narrow band photo was used to determine training sites because no tone differences are apparent on the natural color and color infrared photos taken by NASA two days later. It was therefore impossible to obtain ground truth for soil tone from previous field observations or aerial photographs. Finally, the mature and immature mixed upland hardwoods were so diffusely displayed on the ozalid imagery that it was impossible to planimeter recognized, incompletely detected, and falsely detected areas for these types with any accuracy. Percentage correct recognition, incomplete detection, and false detection for water, salt marsh, and loblolly pine are given in Table 10 below while descriptions of the accuracy of the SPARC recognitions for all these types are given in Table 11.

Only 34 percent of the total flightline was recognized by the SPARC

process. Of the recognized area, 24 percent comprised water. Land categories, therefore, comprised only 10 percent of the total flightline. The recognition itself was technically imperfect, there being some overlap in areas recognized as light bare soil and dark bare soil and in areas recognized as pasture and mature upland hardwoods. Theoretically, there should be no overlap in the recognition.

In agreement with the report by the Willow Run Laboratories, it is suggested that better results would be obtained if imagery were taken at lower altitude, from 1000' - 2000', to obtain both better resolution of small vegetation types and larger test areas. The suggestion by Willow Run Laboratories that greater homogeneity within such heterogenous types as salt marsh, vegetated fields, pasture, and mature and immature mixed upland hardwoods, could be obtained by flying in summer or late spring is probably well-founded. If greater reliability could be placed on output from the automatic recognition technique, it would be an invaluable tool for mapping and monitoring the Chesapeake Bay region.

### TABLE 10

## SPARC IDENTIFICATION PERCENTAGES

	Total area of		•	
Recognition Category	Recognition category in S PARC field	Correct Recognition	Incomplete Detections	False Detections
Loblolly pine,	13230 s.a.c.*	11130 s.a.c.	2050 s.a.c.	50
canopy	100%	84%	15%	
Deep water	533060 s.a.c.	470260 s.a.c.	52800 s.a.c.	0
	100%	88%	12%	0
Salt marsh	32090 s.a.c.	1150 s.a.c.	29500 s.a.c.	1440 s.a.c
Spartina, with Iva, and Distichlis	100%	3%	92%	5% -
• •			,	

i.

* s.a.c. = SPARC area count, computed
from planimeter area proportions in comparison to the
s.a.c. for "Correct recognition."

# TABLE 11

.

----

## EVALUATION OF SPARC OUTPUT

Recognition <u>Category</u>	Correct Recognitions	Incomplete Detections	False Detections
Loblolly pine, mature, closed canopy	Almost all of training site and adjacent parts of lob. pine stand	Small amount of train- ing site area	Scattered Virginia pine near the CBCES
Deep water	Both test sites and almost all of category recognized	Non-recognition of shallow areas around mouth of Muddy Cr. and in southern part of flightline. The latter due to spectral reflec- tance.	None
Salt marsh (predominantly <u>Spartina</u> with <u>Iva and Dis-</u> <u>tichlis</u> )	Very little of training site and adjoining marshes	Most of marshes not recognized	A few vegetated fields, scattered forest, and Typha marsh.
Vegetated fields	Almost all of training site recognized as well as parts of other vegetated fields	Spotty recognition of most vegetated fields	Spartina, Baccharis, and Typha marsh included
Light bare soil	Most of training site and dirt shoulders of Muddy Cr. Rd.	Not ascertainable	Some pasture, "dark bare soil, and light colored trees on Hog ls.
Dark bare soil	Almost all of training site detected and parts of shoulder on Muddy Cr. Rd.	Not ascertainable	Some pasture
Pasture	Most of training site, grass on banks of Muddy Cr. Rd.	Spotty recognition of other pastures	Vegetated fields

Table II (Continued)

ŧ

.

The second se					
Recognition Category	Correct Recognitions	Incomplete Detections	False Detections		
Mature, mixed upland hardwoods	Training site partially recognized; mature trees along Muddy Cr. and on Corn Is.	Fox Pt., Hog Is., some of Corn Is. shadowed trees (due to topog. and sun angle)	Probably negligible		
Immature mixed upland hardwoods	Training site poorly detected	Large tracts of immature forest, i.e., old fields along Fox Pt. road	Some vege- tated fields		

. .

SUMMARY

The watershed of Rhode River, a small sub-estuary of the Chesapeake Bay, was selected by NASA, Wallops as a representative test area for a study of remote sensing imagery over the entire Bay. A broad program of ecological research was already underway on the watershed, at the Smithsonian Institution's Chesapeake Bay Center for Environmental Studies (CBCES). A joint NASA-CBCES project was developed with two basic objectives: to evaluate remote sensing data for the interpretation of ecological parameters, and to provide essential data for ongoing research at the CBCES. Different types of remote sensing have been used effectively in studying watershed drainage, natural and cultivated vegetation, and estuary sedimentation.

A total of 17 overflights were made, thirteen flights by NASA at low altitudes (1200-5000 feet), using a T-11 camera mounted in a helicopter. The low level flights used natural color and infrared color film developed as 9x9 inch positive transparencies. The remaining flights included one by NASA using an RB-57 at 60,000 feet with natural and infrared color film; a flight by the University of Michigan using a C-47 at 5000 feet with film and a multispectral scanner; and two flights by Rome Air Force Base using a modified AM-AAS-18 MAIRS thermal scanner at 2000 feet, and an RC-8 sensor with natural color film at 3000 feet. The helicopter flights were made at all seasons, with greater frequency in spring and autumn. Flight dates were arranged with ground truth personnel in response to vegetation conditions.

The most useful flight data for current research at the CBCES proved to be the 9x9 inch transparencies of natural color and infrared color film. Both film types were effective for interpreting natural and cultivated vegetation, but natural color was superior for distinguishing species if haze conditions were negligible. Infrared color was best for detecting drainage patterns and evergreen species in winter, while natural color was preferable for interpretation of estuarine conditions. The two films complemented each other well.

The multispectral scanner data from the University of Michigan flight were disappointingly low in resolution and prone to false detections. Only 34% of the total flightline was recognized, and 24% of this was water. Sample recognition areas were chosen from water, soil types, pasture, cropland, abandoned fields, salt marsh, and conifer hardwood forest. Percentages of correct and incorrect identification of water, salt marsh, and loblolly pine were obtained by planimetering the areas detected and comparing them with areas of the same categories on natural color film. The results were:

Loblolly pine (mature canopy): 84% correct, 15% incomplete, 1% false Deep water: 88% correct, 12% incomplete, 0% false Salt marsh: 3% correct, 98% incomplete, 5% false Percentage recognitions were unobtainable for light and dark bare

soil because no corresponding tonal differences were visible on color film for comparison. The recognition for mixed hardwood forest proved too diffuse to be accurately determined.

Thermal infrared scanner data were taken at night and clearly showed temperature differences between pine and deciduous forest, bare and vegetated soil, pavement and soil, and surface temperatures in the estuary.

Applications for low level natural color and infrared color film included construction of a drainage map and vegetation map; photointerpretation of deciduous forest vegetation, salt marsh vegetation, and cultivated fields; and detection of estuarine erosion and siltation patterns. The photointerpretive studies included correlations with ground truth and statistical analysis of the results. Observations of seasonal phenology facilitated these studies.

#### Drainage Map

A drainage map was drawn which shows all discernible streams, intermittent channels, and marshy or swampy areas. It was drawn from an uncontrolled mosaic of tracings from natural color film photographed in April, before the forest foliage developed. The tracings from natural color film were then compared to corresponding frames of infrared color film to determine the degree of accuracy obtainable from each film type. Natural color proved satisfactory except for detection of narrow stream courses and swampy areas. For these and all hydrographic purposes, infrared color was superior. Approximately 20% of the streams detected on natural color required correction after examination of infrared color photos.

#### Vegetation Maps

The vegetation map was drawn from the same uncontrolled mosaic as the drainage map, but was modified to show the distribution of deciduous and coniferous forest, cultivated and abandoned fields, freshwater and salt marshes, and residential areas. On both natural color and infrared color film, these features showed well, but the latter type was better for detecting evergreen subcanopy vegetation, and delineating marshes and stands of conifers. Species composition in the forest areas and abandoned fields was determined by extensive ground truth collection at over 500 stations. Dominant and sub-dominant species were defined on the basis of trunk diameter and abundance. The map represents dominant and sub-dominant canopy and understory species at each station by letters and symbols. Since most cover types in the deciduous forest grade into each other, it was impractical to draw boundaries for them.

#### Photointerpretation - Hardwood Forest

A detailed correlation of ground truth with aerial photographs was made at Hog Island, at the mouth of Muddy Creek. The 5-acre island supports an upland oak-sour gum forest with some Virginia pine and an oak-beechmountain laurel understory and shrub layer. Techniques were obtained

for fairly reliable identification of these species from natural color and infrared color photographs taken at different seasons.

A ground truth map of the positions of 182 canopy trees was constructed with surveying instruments. The trees were identified and their trunk diameters recorded to facilitate proper matching with crown images on the aerial photographs. Photographs were taken in late winter, spring, summer, mid-autumn, and late autumn. Natural color film proved satisfactory for identification of hardwoods at all seasons, while color infrared was most useful in the autumn. Both types were suitable for locating evergreen species, especially in winter. Reliable correlations between photographs and ground truth were hampered by photographic distortion and inaccuracies in surveying, both of them intensified by steep terrain around the sides of the island. Correlations were most accurate for large canopy trees near the center of the island.

A map of 260 tree crowns was drawn from an enlarged photograph, and 156 of these crowns were identified. Fifty-four identifications were made by ground truth, the remainder by photointerpretation of crown characteristics at different seasons.

#### Photointerpretation - Salt Marsh

Photointerpretive studies were made for the two large salt marshes at the mouth of Muddy Creek, known as the Hog Island and Kirkpatrick Marshes. Ground truth was collected in Hog Island Marsh and correlated

with a photograph taken in April at 1200 feet altitude. These data were compared with a photograph of the Kirkpatrick Marsh taken in July at 2500 foot altitude. From this comparison, predictions were made of vegetative composition in the Kirkpatrick Marsh and later verified by ground truth. Predictions averaged 50 percent totally correct and 72 percent partial ones. Most errors involved relatively small areas of marsh resulting chiefly from dissimilarities in the vegetation of the types as shown on the two photos, and partial inundation of the Kirkpatrick Marsh.

#### Crop Recognition

For recognition of summer crop types a field survey was made to locate fields of corn, tobacco, soy beans, grass (including hay, wheat, and sod), and mixed grass and weeds. A photointerpretation test to determine how easily the crops could be distinguished on both natural color and infrared color film was given to workers at the CBCES. The test required interpretation of 97 fields with natural color film and 194 fields with color infrared. Of the major field types, 76-85 percent were correctly identified. Although testees preferred natural color to color infrared, interpretation was 2-5 percent more accurate with the latter. This may have been a result of in-test training.

#### Estuarine Applications

Natural color ae rial photographs at a scale of 1:10,000 were found highly useful for tracing patterns of estuarine siltation and current flow,

especially in shallow water. At least three levels of sediment concentration were discernible. Bottom contours were traceable at low tide in shallow water. Infrared color photographs were virtually useless for these applications. Both film types were fairly good for detecting concentrations of floating aquatic vegetation, but a dearth of rooted aquatic plants in Rhode River in 1971 prevented extensive study or vegetation mapping. Recurrent photographs of an eroding shoreline proved useful for monitoring rates of erosion. A comparison in the width of a peninsula photographed in 1968 and 1971 revealed a loss of four meters of soil in the 2 1/2 year interval.

The photointerpretive techniques acquired in this study are being further developed and will be applied to progressively larger areas in the vicinity of the Rhode River watershed. Additional ground truth studies will be used to verify extrapolations on the composition of vegetation. Remote sensing techniques at progressively higher altitudes, eventually including those of the ERTS satellite, will be used to study other estuarine ecosystems around the Chesapeake Bay. Anderson, R.R., 1971. Multispectral analysis of aquatic ecosystems in the Chesapeake Bay. Proc. 7th International Symp. on Remote Sensing of Environment. U. of Michigan Willow Run Laboratories, Ann Arbor, pp. 2217-2227.

Anson, A. 1966. Color photo comparison. Photogr. Eng. 32:286-297.

- Braun, E. L. 1950. Deciduous forests of eastern North America. Hafner Publishing Company, Inc. N.Y. 596 pp.
- Egan, W.G. and M. E. Hair. 1971. Automated delineation of wetlands in photographic remote sensing. Proc. 7th International Symp. on Remote Sensing of Environment. U. of Michigan Willow Run Laboratories, Ann Arbor. pp. 2231-2252.
- Heller, R. C., G. E. Doverspike, and R. C. Aldrich. 1964. Identification of tree species on large-scale panchromatic and color aerial photographs. USDA, Forest Service. Agriculture Handbook #261. 17 pp.
- Knipling, E.B. 1969. Leaf reflectance and image formation on color infrared film. pp. 17-29 in P.L. Johnson, ed. Remote Sensing in Ecology. U. of Georgia Press. Athens. 244 pp.
- Knipling, E. B. 1970. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sensing of Environment 1:155-159.
- Krumpe, P.F. 1971. The delineation and prediction of forest cover and site parameters by multiband remote sensing on Wilson mountain, Morgan County, Tennessee. M.S. Thesis, University of Tennessee, Knoxville. 120 pp.
- Krumpe, P.F., H. R. DeSelm, and C. C. Amundsen. 1971a. The delineation of forest cover and site parameters by multiband remote sensing. American Society of Photogrammetry, 37th annual meeting, March, 1971.: 98-122.
- Krumpe, P.F., H. R. DeSelm, and C. C. Amundsen. 1971b. An ecological analysis of forest landscape parameters by multiband remote sensing. Proc. 7th International Symp. on Remote Sensing of Environment.
  U. of Michigan Willow Run Laboratories, Ann Arbor. pp. 715-717.

Maruyasu, T., K. Matsuno, K. Watanabe, K. T. Chiya, I. Nakajima,
H. Suzuka, H. Inaba, J. Tsujiuchi, K. Sazanami, and Y. Honda.
1971. Remote sensing of environment in Japan. Proc. 7th
International Symp. on Remote Sensing of Environment. U. of
Michigan Willow Run Laboratories, Ann Arbor. pp. 223-230.

Northrop, K.G. 1968. Photographic interpretation of forest cover types. Publish M.S. thesis. Auburn University, Auburn, Alabama. 75 PP-

Northrop, K. G. and E. W. Johnson. 1970. Forest cover type identification. Photogr. Eng. 36:483-490.

- Norton, C. L. 1964. The use of color and infrared film in photogrammetry. Photogr. Eng. 30:423-427.
- Olson, D. P. 1964. The use of aerial photographs in studies of marsh vegetation. Bulletin 13, Technical Series, Maine Agricultural Experiment Station. 62 pp.
- O'Neill, H.,O. Schulte, A. Barwick, and T. Hart. 1950. An experimental system of keys for the interpretation of vegetation on aerial photography: Chesapeake Bay Area. Tech. Rept. #1 on Research Contract N6-ONR-25504, Catholic U. of America.
- Parry, J.T., W. R. Cowan, & J. A. Heginbottom. 1969. Color for coniferous forest species. Photogr. Eng. 35:669-678.
- Pestrong, R. 1970. Multiband photos for a tidal marsh. Photogr. Eng. 35:453-470.
- Sayn-Wittgenstein, L. 1960. Recognition of tree species on air photographs by crown characteristics. Photogr. Eng. 27:792-809.
- Sayn-Wittgenstein, L. 1961. Phenological aids to species identification on air photographs, Canada Dept. of Forestry, Forest Research Div., Ottawa. Tech. Note #104, 26 pp.
- Silvestro, F.B. 1969. Object detection enhancement. Photogr. Eng. 35: 555-559.

#### ACKNOWLEDGMENTS

We wish to thank the following people for their help in various aspects of this project: Mr. Robert Cory of the U. S. Geological Survey for his generous assistance in documenting hydrological and weather data for the overflights, and also Nancy Sullivan, George Lauder, Henry Florsheim, Carl Peckman, Rod Rowan, Rick Rowan, and Chris Darling for their enthusiastic help in the field and in data reduction.

PHE

92