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PREFACE

Despite the existence of numerous authoritative books in the field of orbital

mechanics, the author has felt the need for a book which places emphasis on the con-

ditions encountered with actively controlled satellites and spaceships rather than on

observation and analysis of the passive heavenly bodies treated in classical astron-

omy. Present-day space research, includiflg the use of computers, has made much of

the material in previous books outmoded; less emphasis is now placed on closed-form

solutions and more on iterative techniques. It is also apparent that a greater empha-

sis on the basic formulas has become necessary. The problem of relative motion

between two vehicles, which was rarely encountered in classical astronomy, has

become a routine operational matter today and deserves consideration appropriate to

its present importance. Likewise, the atmospheric entry problem for controlled

vehicles is new and should be treated. The author has endeavored to use a direct

approach to the problems at hand, where possible, and has sought to avoid the cum-

bersome methods employed by some of the previous works which were dictated in

their day by a need to avoid as much arithmetic manipulation as possible. This book

is intended, however, not as a competitor but as a supplement to other books.

Although the material covered here is not altogether new, it is scattered in the

research literature and is not always readily accessible. The purpose of this book is

to provide the reader with a reasonably complete primer on modern dynamic orbit

theory. To this end many simple steps, which would seem obvious to the accom-

plished professional in orbital mechanics or flight dynamics, have been retained. For

people already familiar with the subject, it is hoped that the book will provide a use-

ful reference handbook. It should provide a convenient guide for the solution of

practical problems encountered in the analysis of space missions or the design of

satellites and space vehicles.

To those who are not so accomplished in the field it is hoped that the essentially

one-dimensional sequential development which has been adopted will provide a direct

access to the fascinating world of modern space dynamics. Starting from the most

basic inverse-square law, the law of gravity for a sphere is developed. Then the sub-

ject of motion of point masses under the influence of such a sphere is taken up. The

first chapter thus serves as a necessary background and covers what is essential to

the understanding of the rest of the book in the way of classical orbital theory. The

development format used here is thought to be important in that notation is developed

which will be used with a fair degree of consistency throughout the rest of the book.

In addition, the groundwork for the methodology which will be adopted in succeeding

chapters is laid. This methodology consists of a development from the Lagrangian to

the resultant equations of motion to the solutions by way of whatever approximations

are necessary. It is felt that this is the most direct and error-free way to go. In the

event that the Lagrangian formalism may not be familiar to some readers, a suitable

starting point is possible at the equations of motion which generally follow the

Lagrangian within a few steps. There has been no attempt to place the book in a math-

ematical straitjacket. Vectors and vector operations are used whenever they seem
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to be most appropriate, and thus clearest to the average student of mechanics.

Emphasis has been placed on an intuitive feel for the concepts of energy and angular

momentum which, it is hoped, most readers have acquired by the time they read this
book.

The second chapter is devoted to reentry theory and the relationship between

reentry theory and the theory of the orbit. An attempt is made to move the reader _ _, _

away from classical passive observational theory to the developing modern ideas of : _

active spaceships and controlled maneuvers. Emphasis is placed on the character of

the gradual transition from pure space flight to pure atmospheric flight. Again, the

reader should be constantly aware of the overriding importance of the ideas of angu-

lar momentum and energy.

Chapters three and four are concerned with relative motion between two bodies in

orbit about the same planet, usually the earth or moon. In chapter three moving rec- _ _ _. _ . _tangular coordinate systems are taken up for the first time. This development leads _ _i
naturally to the equations of relative motion between two simple point masses and,

hence, to the Clohessy-Wiltshire rendezvous equations. The rest of this chapter is

devoted to further attempts to improve these equations by the consideration of higher-

order terms. In this chapter, perturbation solutions are discussed with emphasis on

the physical content rather than on pure mathematical theory.

The main concern of chapter four is also with relative-motion equations. The

coordinate systems under consideration, however, are nonrectangular. It will be _ -_ -_- _ _

seen that most of the equations which are expressed in chapter three can be improved "\\

considerably in accuracy, or elegance, or both, when the coordinate system is chosen

in a way that is more natural to the physical systems under consideration. The first
of these systems is spherical and represents very little improvement except for the "

utility of the approach for certain pieces of hardware. The second system is in shell

coordinates, which is essentially a set of cylindrical coordinates with the origin

located at some point radially removed from the usual origin. It will be found that _'_ _-" _ _:

this system produces the best long-time or large distance-of-separation accuracy _

because terms of the series expansions can be retained to higher-order accuracy

more readily and handled more easily. Again Clohessy-Wiltshire type rendezvous

equations are developed and, in addition, the reasons for physical breakdown of

relative-motion equations are carefully explored,

Chapter five reverts to rectangular coordinates and treats the mechanics of

simple rigid bodies under the influence of a gravity-gradient field, that is, the differ- *: _j _ _
ence in gravity between two points in close proximity. By the appropriate use of con-

straints, this technique affords an introduction to rigid-body dynamics for satellites.

A simple dumbbell is analyzed, and then the theory is extended to include the interac-

tions of two dumbbells. This approach allows a logical development to simple rigid-

body dynamics including gyroscopic moments. Thus the book essentially covers the

ground between point-mass mechanics for a body in orbit and rigid-body dynamics

for space vehicles. At this stage, the possible directions of research are open-ended,

and a development in terms of moments of inertia, a field which forms a separate _ W_ _

vi



subject for study in itself, becomes natural. With this subject the book is ended. It

is emphasized that this is only a beginning and that almost every topic covered in

this book affords a jumping-off place for more detailed subsequent research. It is

hoped that this book will afford a background for continued improvement in the theory

of space mechanics.
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CHAPTER I

TWO-BODY MOTION

Inertial or Newtonian Reference Frame

Since, to a large extent, the subject matter of this book is devoted to the study of

orbital mechanics in a variety of reference frames, the idea of an inertial reference

frame will be a central concept. An inertial reference frame was once thought to be

one that is fixed relative to absolute space. With the advent of relativistic mechanics

the idea of absolute space lost its meaning, and the idea of an inertial frame Of refer-

ence was shown to be a property peculiar to an individual observer. Attempts were

made to define a reference frame which is fixed relative to every body in the universe

as an inertial reference frame. This idea is also not satisfactory , however, since

every body in the universe seems to be in motion relative to every other body in the

universe both in space and time. In addition, the interrelationship of mass and space

is not satisfactorily understood at the present time. In the face of this vague founda-

tion, an inertial reference frame will be defined as one in which Newton's laws of

motion hold. It may be that in reality no such frame exists. There are situations,

however, which approximate such a system. One is a reference frame fixed relative

to the center of mass of our galaxy. For a large number of problems, including all of

those which will be of interest in this book, a coordinate system fixed relative to the

solar system or fixed relative to the center of the earth will be taken as a sufficient

approximation to an inertial system.

Assume then that an inertial frame x,y,z exists and suppose it is desired to

compute the potential between a unit point particle and a finite rigid body as shown in

the following figure:

,_ dM

/__z. _,_ m-irR _2/_t

Figure i-i.- Potential of a finite rigid body.

The potentialbetween the point particles dM and m is defined as

SM dM(x' ,y' ,z')u(x,y,z) = G R(x,y,z;x' ,y' ,z')

where G is some as yet unknown constant.

(i-i)
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Figure 1-2.- Infinitesimal mass unit and coordinates for computing the

potential of a test mass m due to the presence of a sphere.

Suppose now that the body M is a sphere of radius a and uniform density as

shown in figure 1-2. Since the sphere is symmetric with respect to both spherical

coordinates 0 and _, the potential at any point a distance r from the sphere is

given by equation (1-1) with

dM = a02sin 0 d_b dO dp (1-2)

R 2=p2+r 2 _ 2prcos 0 (1-3)

where p is the radius over which the integration is to be performed and _ is the

density of the material of the sphere. Then

_M dM I_ 2_ (_p2sinOd_dOdpu= c _-=_ _0 -0 (02+r2- 20rcose)1/2
(1-4)

A-AA A-da

= 2yoG _ IO p2sin 0 dO dp(02+r2_ _.orcosO)1/2

In order to facilitate integration at this point, let

t = cos 0

dt = -sin 0 dO

(1-5)

T[ T



Then,

u = -2=oG p2dt dp

(p2 + r2 - 2prt)I/2

I_: p [( 1/2 r2 2]= -2_oG d o
r

i ll-ll

=-_ p r-p)-(r+p dp

=-- =ff ya =-_
r

It can therefore be seen that the potential of a sphere of uniform density is the same

as that of a point particle of mass M at the center of the sphere. Thus, spherical

planets may be replaced by mass points from the standpoint of dynamics. This pro-

cedure will be followed for the most part in subsequent development.

Newton's Law of Gravity

It may be noted that the resultant force per unit mass between

given by

M and m is

acting along a line joining m to M, or

_= GmM(r-_

"_ "tV] (1-8)

where G will now be defined as the universal gravitational constant. This is, of

course, the law of universal gravitation first formulated by Newton:

"Every particle of finite mass in the universe attracts every other particle with

a force acting along the line joining them with a magnitude directly proportional to the

product of their masses and inversely proportional to the square of the distances of

separation."

This law could be taken as a starting point for a theory of orbital .mechanics.

It was decided to take the potential approach, however, out of deference to field-theory

concepts, which seem to be in the ascendency throughout other branches of mechanics

at the present time.

The classical two-body problem is developed next. The starting point for this

development will be by means of the Lagrangian of a mass m in a potential field.

\,



Lagrangian of a Particle in a Gravity Field and

Two-Body Equations of Motion

The general expression for the Lagrangian in a noninertial frame of reference

without translation is given by

I m ¢2 x 7 +½m( x 2T,_-_ --

where _-- is defined as the potential energy,
[71

respect to the center of the potential field g, and

/_ (1-9)

171
is the inertial velocity of m with

is the rotation vector of the

frame of reference.

hate frame is nonrotating, the above equation reduces to the simpler form

1 m_2 ___
-I '1

In a cylindrical coordinate system, with out-of-plane coordinate z,

-- "-" "jr0 + _7,V=lr+

where the out-of-plane magnitude of 7 is given by 17]= (r2 + z2) 1/2.

tational potential is given by the sum of the potential fields of both m

Hence, in this special case,

or

= _ M_ + m_

By assuming, for the present, that _ = 0, and hence the coordi-

_ G(m + M)

I_'! (r 2 + z2) 1/2

where M is the mass of the central body and m is the mass of a satellite.

tion (1-10) becomes

lm(_2+r2_2+_2) + G(m+M)
L = _ (r 2 + z2)1/2 I

The equations of motion which result from this Lagrangian are

(1-10)

(1-11)

The gravi-

and M.

(I-12)

(l-12a)

Equa-

l (1-13)

m_-mr02 + G(m+M)r =0

(r 2 + z2) 3/2

(1-14)

mr20 + 2mrS0 = 0 (1-15)

m_,+ G(m+M)z =0 (1-16)

(r 2 + z2) 3/2

Since G, m, and M are all constant, the gravitational potential at the surface of a

planet can be defined by

G(M + m) (1-17)
mger e = re

i--Ai i-{l



where r e is the radius of the planet and ge is a derived quantity known as the local

gravitational acceleration. Thus, roger e is the potential energy at a distance r e

from the origin. If ge is defined in this manner,

G(M + m) = mgere2 (1-18)

If the right-hand side of equation (1-18) is now substituted for the gravitational term in

equations (1-14), (1-15), and (1-16), the equations of motion become

m_ - mr02 + mgere2r = 0 (1-19)

(r 2 + z2) 3/2

mr2_ + 2mri'0 = 0 (1-20)

mgere2Z

m_ + 3/2 = 0 (1-21)
(r 2 + z 2)

These equations completely define two-body orbital motion in an inertial frame of ref-

erence. It should be noted that equation (1-20) is actually a torque-balance equation

while equations (1-19) and (1-21) are force-balance equations. Equation (1-19) only

becomes a force equation when divided by r. The peculiar nature of equation (1-20)

is readily seen to be a consequence of the choice of a cylindrical coordinate system.

Integration of equation (1-20) gives the angular momentum associated with the

plane containing r and O:

m _ = 0 (1-22)
dt

Let

r2(_ = h (1-23)

where h is called the angular momentum per unit mass. From a strict vector

viewpoint h is only one of the components of angular momentum, that is, that com-

ponent formed in the direction of i X j = k in the notation of equation (1-11). Since

this component is conserved irrespective of the other two, however, it is especially

valuable in orbital mechanics.

Equations (1-19) and (1-20) can be considerably simplified by assuming that z

and _. are initially zero. If this assumption is made, equation (1-21) remains zero

for all time and the motion remains planar. Equation (1-19) becomes

mgere 2
mr - mr02 + = 0 (1-24)

r 2

Equation (1-20) is not affected by neglecting z and _.; so equation (1-23) still

applies. Under these conditions there is no angular momentum in the z equation

and, since r is radial and so cannot express angular momentum, all of the angular

momentum is contained in h. Since it is always possible to select a coordinate

7
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system where the out-of-plane motion is zero initially, all simple orbits can be treated

as planar so long as there is no acceleration acting in the out-of-plane direction.

Substituting the right-hand side of equation (I-23) into equation (i-24) uncouples

the latter, thus giving

h2 mgere2 0 (I-25)
m_ - m _ + r 2 =

This equation can be multiplied through by }" and integrated to yield

1 m}2 + 1 h2 mgere 2
-2 _m r2 r = Constant (1-26)

Let the integration constant be designated by mH. The left side is the law of conser-

vation of energy, so H is the energy per unit mass and mH is the total energy.

Thus

i_ m_2 + i, m h2- mgere2
= mH (1-27)

2 2 r 2 r

The orbital speed at any given radius may be found from equation (1-27). If V

is speed,

_lmv 2 1_ _r 2 , _)_= m + _rv (1-28)2 2

Then using the left-hand side of equation (1-28) in equation (1-27) and dropping the

common m

1 V2 = H + _gere2 (1-29)
2 r

for all orbits.

By setting _ = 0 the existence of extremal distances can be investigated.

Equation (1-27) is solved for r to give

-1 ±all + 2h2tt

V ge2re 4

ra, p = 2H/ere2/g (1-30)

It can be seen, since ge and r e are always positive and h is even-powered, that

the sign of H governs the nature of the orbit in a distinctive manner. If H is

zero or positive, there can be only one positive nonzero extremal. If H is negative,

there are two real values. In this case the positive sign of the radical gives an

expression for minimum distance from the origin rp, the perigee radius, while the

negative sign gives the maximum distance ra, the apogee radius.

A A • •rm
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So

Equation of a Conic Section

Equation (1-27) can be integrated with a change of independent variable from t

to obtain the classic equation of a conic section. By equation (1-23)

_=h
r2 (1-23)

_=hdr
r 2 dO (1-31)

Equation (1-27) becomes, after some rearrangement,

dr_ 2 r2I_r2:2gere21rdO/ : +\_/ - (1-32)

Taking the square root, the variables separate to give

dO = dr

r_2H_ r2:2gere2/r
1/2 (1-33)

This equation can be integrated directly (ref. 1) to give

0 - 0o = cos -]
_-- - gere 2

ge2re 4

where 0o is an integration constant. If this equation is solved for

Setting

r

h2/gere 2

ll 2 xl/21 + + 25 H._ cos(0
ge2re------_] - 0o)

h 2

gere 2

which is called the semilatus rectum and, if e is defined by

(1-34)

r, one obtains

(1-35)

(1-36)

_-- (1 2h2H_1/2+- 2 r 4/
_e e ]

(1-37)

i-A-dl
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equation (1-35) becomes

r = P (1-38)
1 + e cos(e - Co)

Examples of typical solutions of equation (1-38) with p set equal to one are shown

in figure 1-3. The same information in more familiar rectangular coordinates is

2.5 m

1.0

0
-400

= all cases

30
.20

.60

1.00

1.25
1.50

2.00

I I I I I I I I
-300 -200 -I 00 0 100 200 300 4.00

8,deg

Figure 1-3.- Typical conic sections in nondimensional form. Radial distance
plotted against angle in degrees.

shown in figure 1-4. Equation (1-38) is a standard form of a conic section with the

origin at one focus and eccentricity e. The three types of orbit suggested by equa-

tion (1-30) can now be classified by the value of the eccentricity e:

If

If

If

In the special case where e = 0 equation (1-38) reduces to the equation of a circle.

These cases will now be examined in detail with special consideration given to

the elliptic case since this is the most important case from an astrodynamic point of

view.

0 _-<e < 1, the orbit is an ellipse

e = 1, the orbit is a parabola

e > 1, the Orbit is a hyperbola

A-A • m-il
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p=l QII coses

i ll-il

-3.0 - .5 1.5

Fig_e i-4.- Conic sections in rectangular coordinates.

Elliptic orbit.- In the first case above

or

2h2H (1-39)
O<e= +g-_r 4 ] <1

V=,e e /

2h2H < 0 (1-40)

ge2re 4

Since h, ge, and r e are all even-powered, H must be negative; that is, the total

energy per unit mass (with respect to a zero potential infinite point) is negative for an

elliptic orbit, and the spacecraft is trapped in a potential well.

11



The next step is to calculate the period of an elliptic orbit. This period is fre-

quently obtained by introducing coordinates associated with the geometric center of

the ellipse and making an appropriate transformation. The period is then found in

terms of the semimajor axis distance. A more direct, though algebraically more

involved, method is to calculate the area of the ellipse divided by the rate at which

area is swept out by the r vector. In this instance the orbital period P is

SOP Y:_dO=_'2_r2dO f:_r2-_ "J0 h'-P = dt = _ = dO (1-41)

The numerator of the above expression is found by multiplying equation (1-33) by r2

r2d0 = r dr

I2H_r2 (2gere2/r _ 1/2_-/ +\ h 2 / -

Hence, taking advantage of symmetry over r in the limits

_r *a
p = y:_ r2d0 _ 2 r dr

h h _2H_r2 + /2gere2_r 111/2

PLt j t h2 /

where r a is apogee and rp is perigee.

(1-42)

(1-43)

It can be seen that by applying the limits in the above equations a tacit assump-

tion is made that the orbit is closed and hence is an ellipse. Integrating from tables

il-li II ll-ll

h_2H_r2 (2gerel/r 111/#2 ra gere2 sin-lF 2Hr+gere 2 __ ra

P= H_') + t h2 / + _ l (2Hh2 + ge2regl/#_ (1-44) _. _. _._._
I rp rp

+

/2ger2_ra _1/2 hi2i_r 2 f2gere2__ r _1/2\ / - 7c/,,+\--7) p-

gere 2 sin-l__ 2Hra+gere 2 __

+_ bHh2 + ge2re4)l/_

Then, making use of the values of r a

gere---_2 sin-l_- 2H----rp+gere2 -_ (1-45)

H_2-H L(2Hh2 + ge2re4)l/2 j

and rp in equation (1-30) the first two terms
in equation (1-45) vanish and the second two terms reduce to

12
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P = gere 2 sin-l(1) + gere 2 sin-l(_l) = gere 2_
- (1-46)

A negative period, of course, corresponds to a reversal of direction or of time; hence

only the absolute value is of physical interest. This equation brings out the fact that

the period of an orbit depends only upon the total energy of the orbiting body and the

strength of the gravity field of the attracting planet.

The semimajor axis of an ellipse a is given by one-half the sum of the perigee

radius and the apogee radius. Again making use of equation (1-30)

ra+rp l/.-gere2 Vge2re4+2H h2 -gere2+Vge2re4+2Hh21- _ gere2 (1-47)
a = = 2H 2H

The period in terms of the semimajor axis becomes

= 2_ /_gere21 2_a 2_ _a_P ---'_\_/= _= (1-48)

It can be seen that the period becomes a function of either Ca,H) or (a,gere2). About

a given planet, any two orbits having the same energy and semimajor axis are syn-

chronous. This will be found to be important in the study of rendezvous problems.

From equation (1-36) it can be seen by rewriting the equation that

gere2 r (1 2h2H-_
p =- _{1-i_ + ge--_'_4re4]_J=- gere'---22'-1-2H (e2) (1-36a)

And so, from equation (1-47)

p = a(1- e 2)

Thus equation (1-38) can be written for an elliptic orbit in the useful form

r= a(1- e 2)

1 + e cos(0 - 0o) (1-38a)

Circular orbit.- A special case of an elliptic orbit is a circular orbit. In this

kind of orbit e = 0 and equation (1-35) reduces to

h2
rci r = _ = Constant (1-49)

gere 2

The energy of a circular orbit can be found from equation (1-37). Since e is zero

H = ge2re4 gere2
= - -- (1-50)

2h 2 2rci r
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The speed is found very simply from equation (1-29) and is

I V 2. = l gere 2
2 clr 2 rcir

or

= _g_--ere2 (1-51)

Vcir V rci-'--_

The angular momentum can also be established from equation (1-50) and is given by

hci r = rcir_ _ = rcirVci r

Hence it can be seen that 0 is constant. Denoting this constant by w gives

(1-52)

=r2. w r._
hcir air cxr v rci r

(I-53)

Hence

(1-54)

All of the other important relations for circular orbits can be derived in a similar

manner from the appropriate elliptic equations.

Parabolic trajectories.- For parabolic trajectories e = 1; therefore, from

equation (1-37)

2h2H = 0

ge2re 4

and from equation (1-35)

h2/gere 2
r=

1 + COS(0- 00)

(i-55)

(1-56)

Since h2 and ge2re 4 are finite, and nonzero, the total energy, from equa-

tion (1-55), is zero; thus

H = o (1-57)

The zero total-energy state could be considered the main distinguishing feature of a

parabolic orbit. The speed is found again from equation (1-29) and is

1 V 2 _ gere 2
parabolic r

A---A-A A-II
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or

2g_re2Vparabolic = (1 - 58)

A simple and useful relation can be found between circular and parabolic speeds by

comparing equations (1-51) and (1-58) for trajectories at the same altitude. If

r = rcir,

Vparab°lic = _ (1-59)
Vcircular

The minimum distance from the origin for a parabolic trajectory occurs when r = 0.

From equation (1-27) by setting the time derivative of r equal to zero

h2
rmin - (1-60)

2gere2

Thus, if one wishes to inject a vehicle from circular orbit to a parabolic trajectory by

thrusting tangent to the orbit, the required angular momentum is

= r • _l --2_
hparabolic mln V rmin

The ratio of angular momenta can also be found.

hparabolic =
hcircular

The difference inangular momentum between hparaboli c
slight rearrangement, making use of equation (1-52)

hparaboli c - hcircular = (_- 1)rcir_ (1-63)

A parabolic trajectory has the property that a body on such a trajectory has just

barely enough speed to escape from the gravitational field of the attracting planet.

Thus these trajectories are often called minimum-escape trajectories. Such trajec-

tories are not encountered very often in actual practice. However, bodies entering

the solar system with essentially zero velocity relative to the sun are found to approx-

imate this situation fairly well. Included among these are a large class of comets.

Since these bodies return to the same distance from which they start, comets in per-

fectly parabolic orbits are observed only once. Due to minor energy losses, however,

some of these bodies are trapped by the solar system and thereafter assume highly

elongated elliptic orbits. Under these conditions, they periodically return to the
vicinity of the sun.

Many meteorites are also presumably On parabolic trajectories with respect to

the earth. They travel around the sun in essentially the same orbit as the earth until

(1-61)

From equations (1-53) and (1-61),

(1-62)

and hcircular is given by

15
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they encounter the earth's gravity field. In this case, few of the observed ones sur-

vive an encounter with the earth.

Hyperbolic trajectories.- Hyperbolic trajectories are important in interplane-

tary work because bodies in such orbits travel with speeds in excess of minimum-

escape speed. Up until the present time no such trajectories have been attempted

relative to the solar system owing to the high energies involved with respect to the

energy level of the earth. Such trajectories are important in interplanetary work,

however, since they allow the shortest travel times between planets. Of course, any

interplanetary probe leaves the vicinity of the earth along a hyperbolic trajectory

with respect to the earth itself.

For a hyperbolic trajectory e > 1; therefore,

1+ 2h2H 1/2 1 (1-64)
>

ge2re 4)

Since, as before, h, ge' and r e are all even-powered, H must be positive; that

is, the total energy per unit mass (with respect to a zero potential infinite point) is

positive, and a spacecraft has the capability of leaving the local gravitational potential

well. A body having such energy with respect to a planet's gravitational field escapes

into the solar system; a body having such potential energy with respect to the sun's

gravitational field escapes from the solar system into interstellar space.

Equation (1-35) applies as in the case of an ellipse although the results are, of

course, quite different, as zero denominators are possible. Thus

h2/ge re2 (1-35)
r--

+ 2h2H ._1/2 COS(0- OO)1 + 1 ge2re4_ )_

The concept of period is meaningless, as such orbits are not cyclic.

Mean and Eccentric Anomaly

The mean motion of a satellite in elliptic orbit is defined as

2_ 2H_-H
n _ _-_ o_

P -gere 2

or, expressed in terms of the semimajor axis, from (1-47)

n= v a 3

This is the rate at which an orbiting spacecraft would have to move if its angular

velocity were constant in order to complete one orbit in time P. The mean angle

traveled from some arbitrary starting time t o would then be

(1-65)

(1-66)
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M=n(t-to)--2_V=_(t-to)
-gere 2

(1-67)

The eccentric anomaly E, described in figure 1-5, is defined by the transcen-
dental equation

E-e sin E = M = 2H_-H(t- to)
-gere 2

(1-68)

or, in terms of the semimajor axis,

\

ge_e (t-to) n(t
E-e sin E = M = a-_2" = - to)

This equation is called Kepler's equation.

(1-69)

Projected circle

Actual orbit _ =0.5

va Center

Vernol equinox, T

Figure i-5.- Eccentric anomaly description.
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Equation of the Center

Equation (1-69) can be used to derive an important series expansion of an

ellipse called the equation of the center which will be needed in chapter 3. The par-

tial derivative of equation (1-69) with respect to the eccentricity is given by

so that

or

8._E _ sin E - e cos E aE = aM (1-70)
8e 86 0e

From the second equality in equation (1-69), it can be seen that

8e 0e La3/2

E" OE
(1 - e cos )_-6 - sinE = 0

(1-71)

e SEE= e sinE (1-72)
ae 1 - e cos E

Also, from equation (1-69) the exact differential is given by

dM = (1 - e cos E)dE (1-73)

Equations (1-72) and (1-73) can be combined to give

e a--E-EdM = e sin E dE (1-74)
%e

This equation can be integrated over M to give

_0 TM (1-75)
e --dM=-e cosE +C

oe

where C is an integration constant. In order to perform this integration, it is nec-

essary to expand E in a series of terms in M. To facilitate the integration to suf-

ficient accuracy, solve equation (1-69) in a nested expression:

E=M+e sine

but

sin E = sin(M + e sin E)

= sin[M + e sin(M + e sin E)_

= sin [M + e sin(M + e sin((...)))_ (1-76)

Then apply the trigonometric identity for the sine of the sum of two angles

sin(A + B) -- sin A cos B + cos A sin B

18

A-A A A i

][ !



to obtain

E =M+e sinM[cos(e sin(M+e sin(...)))_

+ e cos M [sin(e sin(M + a sin(...)))_ (I-77)

But for small eccentricity this equation becomes, approximately (ref. 2)

E _ M + e sin M + e2cos M sin M + Higher-order terms

so

e2
E -- M + e sin M + _- sin 2M + Higher-order terms (1-78)

The partial derivative of equation (1-78) with respect to e can then be applied in

equation (1-75), resulting in

-e cosE=C+e (sinM+e sin2M+...)dM (1-79)

where C is still an undetermined constant. From figure 1-5

a_ + r cos(0 - 0o)= a cos E (1-80_

and from equation (1-38a)

r-- a(1- 2)
1 + c cos (0 - Oo) (1-38a)

IS (0 - 0o) is eliminated between these two equations, the equation of an ellipse in
polar form is given by

r = a(1 - e cos E) (1-81)

Hence

-e cosE=r- 1
a

Substituting this value for the term on the left in equation (1-7 9)

r= l+C+e (sinM+e sin2M+ .)dMa • • (1-82)

or, integrating,

r= 1 +C- e cos M--1 E2cos 2M (1-83)a 2

IS it is assumed that the series is uniformly convergent for small eccentricity, this

equation can again be integrated between the limits M = 0 and M = 2y:

dM = 2y(1 + C) - e cos M dM - _- cos(2M)dM (1-84)

The two right-hand trigonometric terms vanish and

dM = 2y(1 + C) (1 - 85)

19
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The left-hand side is evaluated by reverting back to eccentric anomaly form, noting

that the limit remains unchanged,

_:_(1-e cos E)2dE =.2_(1 +¢) (1-86)

Thus

and

Then

C=e 2
2

= 2_(1 + C)

r-= 1 - e cos M-
a

The computation of the appropriate series for

equations (1-38a) and (1-69). By eliminating

1 - e 2
1 - £ cos E =

1 + _ cos(0 - 0o)

(1-87)

1 e2(cos 2M - 1) + Higher-order terms (1-88)

0 follows from this equation and

r between (1-88) and (1-38a)

(1-89)

This equation can be solved for cos(0 - 0o) by rearrangement

cos E - c
/k0 - 00)= 1 - e COS ECOS

and can also be converted to sine form, which is

(1-90)

(1 - e2)l/2sin E

sin(0 - 0o) = 1 - e cos E
(1-91)

Equation (1-90) can then be differentiated with respect to E

(1- e2)sin E dE
sin(0- Oo)dO =

(1 - e cos E) 2

Elimination of sin(0 - %) between equations (1-91) and (1-92) results in

(1-92)

dO = (1- e2)1/2(1 -e cos E)dE

(1 - e cos E) 2

(1-93)

which is, from Kepler's equation, equation (1-73),

dO= (1- 2)1/2
(1 - e cos E) 2

This equation becomes, as a consequence of Kepler's equation,

(1-94)

dO= _"1'- e2( dE/2dM (1-95)
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The quantity dE/dM is found at once from the expression for

equation (1-78), by taking the derivative of E with respect to

dO = (1-e2) 1/2(1 +e COS M + e2COS 2M)2dM

Then, after expanding (1 - _2) 1!2 in the power series

(1- ¢2) 1/2 = 1- _2 + Higher-order terms
2

E in terms of M,

M,

(1-96)

(1-97)

dO = II - + Higher-order term dM

+ 2_ cos M + e2 2 cos 2M + _ cos 2M + + Higher-order term dM

1 + 2c cos M + _ e2cos 2 dM (I-98)

integrating with respect to M,

5
0 = M + 2e sin M + _ ¢2sin 2M + Higher-order terms (1-99)

Equations (1-84) and (1-99) describe the motion of a body in an ellipticorbit in terms

of the mean anomaly. These equations diverge for eccentricitiesgreater than 0.6627

and converge rapidly for typical orbitaleccentricitiesand hence are handy for manual

calculation. They will be used for analyticalexpressions for noncircular orbits in

chapter 3. Equation (1-99) is referred to as the equation-of-the-center in some books

on orbitalmechanics.

i ll-ll

The Orbit in Space

Discussion has thus far been confined to that of a plane two-dimensional orbit

such as, for example, an ellipse. It can be seen that the ellipse is completely speci-

fied in its plane by four independent, fixed parameters; for instance, from equa-

tion (1-35) the conic section could be completely specified by naming the angular

momentum h, the energy H, the gravity parameter gere 2, and the argument of
perigee 0o.

The orbit could just as well have been defined by the following parameters: the

length of the semimajor axis a, the eccentricity e, the argument of perigee 8o, and
the time of perigee passage.

In each of these instances it is found that-there are three physical parameters of

an ellipse plus one quantity which specifies the orientation of the ellipse i n the refer-

ence plane. In addition to these, two quantities are required to specify the orientation

of the plane of the orbit with respect to three-dimensional space. These quantities

are usually specified as the inclination, which is the angle the plane of the orbit makes

with respect to the fixed reference plane; and the longitude of the ascending node,

21



whichmarkstheorientationof the line of intersectionof theorbit with respectto the
referenceplane. Thereareavariety of suchsystemsin existence,eachhavingits
advantagesfor certainproblems. Followingthemainline of reasoningusedhere,
however,thesystemwhichfalls naturallyoutof classicalmechanicswill beused;
namely,energy,angularmomentum,gravity,andwhatevergeometricorientation
coordinatesseemmostappropriatefor agivenproblem. Orientationcanbeassumed
to bespecifiedby inclinationandthelongitudeof theascendingnode. Underthis
organizationform, a coordinatesystemsuchasis shownin figure 1-6 is appropriate,
where eo is theargumentof perigee, i is the inclinationof orbit planeto planeof
theecliptic, and _ is the longitudeof theascendingnode.

Y

i-A-A A-dO

Line of

_Ione of motion

of the satellite

z

quatoriol
reference plone

x

Ascending
node _" _:

Fi_e 1-6.- Orbital elements in space.

Assume a rectangular coordinate system with the x-, z-axes located arbitrarily

in the equatorial plane and the y-_is perpendicular to it. Then the position of the

satellite at any given time is specified by

x = r_os(_ - _o)°OS _ + sin(_ - 0o)°OS i sin _i t

7.=rEsin(eeo)COSi cos cos(e-eo)sin
where e is the true anomaly and r is the radial distance to the satellite.

Since eo, i, and _ are all invariant for a planar orbit, it remains only to

specify the relationship between r and 8 to define completely the position of the

satellite. This relationship can be specified by the angular momentum or the

Lagrangian. _ _Rr

22
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CHAPTER 2

REENTRY THEORY

The objective of this chapter is to express the equations of orbital motion in a

coordinate system which is natural for a reentry vehicle and to make an attempt at a

solution. In so doing it will be necessary to introduce the concepts of aerodynamic

lift and drag. First, however, it will be found convenient to express the orbital

motion in terms of the velocity vector of an orbital vehicle. Efforts shall be confined

to motion in the orbital plane, keeping in mind that in actual practice out-of-plane

motion can be obtained either by thrusting out of plane or, in the atmosphere, by roll-

ing the entry vehicle so as to produce an out-of-plane lift component. In the orbital

plane the velocity vector is specified completely by the magnitude V and an orienta-

tion angle with respect to the local horizontal called the flight-path angle y.

It is easy to see why this formalism has been useful over the years. While in

this form it is true that radial velocity and angular momentum are not uncoupled, the

drag force is directed opposite to that of the velocity vector. The magnitude of this

force is found to be approximately proportional to the projected surface and the

dynamic pressure acting on this surface. Thus, as can be seen in the following

sketch (fig. 2-1), a simple resolution of forces in the direction of motion is possible.

r

Drag A Lift

\

Axis of reentry

vehicle

Local

horizontal

Figure 2-1.- Lift and drag forces on a reentry body.

The Lagrangian for a body in orbit about the earth in an earth-centered, iner-

tial, polar coordinate system (z neglected)is

1 m(_2 + r2@2) + mgere 2 (2-1)
L=_ r

The equations of motion which result are

m_ - mr_ 2 + mgere2 = 0 (2-2)
r 2

mr2e + 2mrf_ = 0 (2-3),
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Notethat equation (2-2) is a force equation while equation (2-3) is a torque equation

and only becomes a force equation when divided through by r. These equations are,

of course, the same as equations (1-14) and (1-15) of chapter 1.

h Ad

Speed and Flight-Path Angle

Now make use of the relations which define speed and flight-path angle

V cos 7' = r_ (2-4)

V sin _ = i- (2-5)

It follows from equations (2-4) and (2-5), by taking the time derivative,

V 2
rO= V cos 7 - V_ sin _ - r_ = "¢ cos 7 - V_ sin 7 - 7" sin _ cos 7 (2-6)

Hence equation (2-3) becomes

V 2 V2 .
mVcosT-mV_siny-m-_-sinTcosT+2mT_mnTcosT=O

or

V 2
m_ cos v - mV_ sin T + m 7" sin 7 cos 7 = 0 (2-7)

Also, making use of equations (2-4) and (2-5), equation (2-2) becomes

V2 gere2 = 0 (2-8)
m_ rsinT+mV_cos_-m_cos2_+m r----_

Now it is necessary to combine equations (2-7) and (2-8) in such a way as to separate
_r and _:

(1) Multiply equation (2-7) by cos _ and equation (2-8) by sin _,

V 2
m_ r cos2_ , - mV_ sin _ cos _ + m 7- sin T cos2_ = 0 (2-9)

V 2 gere 2
mV sin2v + mV_ sin 7 cos _ - m _ sin _, cos2v + m -7- sin V = 0 (2-10)

Adding equations (2-9) and (2-10) and making use of sin2_ + cos27 = 1,

gere 2

mV + m -7 sin V = 0 (2-11)

{2) Multiply equation (2-7) by sin _ and equation (2-8) by cos

V 2
m%r sin _ cos _ - mV_ sin2_ + m -_- sin2_ cos _ = 0 (2-12)
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V 2 3 gere 2

mV sin y cos y + mV_ cos2y - m -_- cos y + m -7- cos y -- 0

Subtracting equation (2-12) from equation (2-13) and making use of

V 2 gere 2

mV_ m_cosy+m--7-cosy=0

or, since gr 2 = gere 2 for any r

)mV_-mg - 1 cos_,=O

(2-13)

sin2y + cos2y = 1

(2-14)

(2-15)

Lift and Drag

Equations (2-11) and (2-15) represent the motion in terms of velocity and flight-

path angle of a body in orbital motion (refs. 3 and 4). It should be emphasized that

this is no more than an algebraic transformation and as such contains exactly the

same information as equations (2-2) and (2-3). All that is done is a conversion from

orthogonal velocity components to a scalar magnitude and a direction angle. Although

velocity flight-path-angle coordinates may be more intuitive than the formalism of

equations (2-2) and (2-3), it should also be noted that there is a penalty which must be

paid. The great beauty of the classical orbital equations, equations (2-2) and (2-3), is

that the angular-momentum equation is uncoupled from the energy equation, thus per-

mitting direct integration of the equations of motion. In velocity flight-path-angle

form this situation is no longer true, and no exact differential for angular momentum

exists. Equations (2-11) and (2-15) are each expressions of combinations of angular

momentum and energy and have to be uncoupled by essentially reversing their deriva-

tion. This fact can be seen very easily by examining the transformation equations,

equations (2-4) and (2-5). It is clear that no expression equivalent to r2_ is pos-

sible using just equation (2-11) or equation (2-15). Equations (2-14) and (2-15)

express the reentry equations in a form which is applicable when there are no non-

conservative forces present; that is, they are valid for space applications but are not

valid in the atmosphere where lift and drag are present. It is thus necessary to add

the nonconservative forces on the right-hand sides of these equations. The magnitude

of the drag force is found to be approximately proportional to the product of the pro-

jected surface and the dynamic pressure acting on this surface. Denoting the propor-

tionality constant by CD, then

D = CDSq (2-16)

where the dynamic pressure is given by

1 2
q = _pV (2-17)

and p is the atmospheric density. The liftforce is defined analogously by

L = CLSq (2-18)
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It should be noted that C L and CD are both only approximately constant but this

approximation is found to be good experimentally. Hence, for orbital flight in an

atmosphere, equations (2-11) and (2-15) along with equations (2-4) and (2-5) form the
complete set

m_ r + mg sin 7 = - lpCDSV2 (2-19)

mV_-mg - 1 cos7 =_pCLSV2 (2 -20)

with

r_ = V cos 7 (2-4)

= V sin 7 (2-5)

gere 2
g -

r2 (2 -21)

to specify the local gravitational attraction at the vehicle.

hA-I

\

The Barometric Equation

In equations such as equations (2-19) and (2-20) it is necessary to have a rea-

sonably valid expression for the density as a function of altitude. This expression is

obtained by combining the hydrostatic equation with the perfect gas law. Consider a

column of gas with the density known for every given altitude as shown in figure 2-2:

oo

t

t
h

Y/, _//
!

I

dh

\p

Surface of earth

Figure 2-2.- Integration scheme to determine pressure

as a function of altitude.
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The hydrostatic equation is found by summing the forces acting on a small vol-

ume of gas in equilibrium. From the figure

-(_)_- og dh--p

So

dp = -Pg
dh

or

dp = -pg dh

The hydrostatic pressure p for some altitude h

of pressure and density from this altitude to infinity:

cO

p=Sh pgdh

Equation (2-22) is to be combined with the perfect gas law.

(2 -22)

is given by integrating the product

(2-23)

For any specified volume

of gas which is assumed to be homogeneous and isotropic the perfect gas law gives

the pressure as

kT
p = -_- p (Perfect gas law) (2-24)

where

k Boltzmann's constant, 1.380622 joules/K

T absolute temperature

M mass of air contained in unit volume

Thus, if it is assumed for any sample volume that temperature and mass are constant,

kT
dp -- _- dp (2-25)

and equation (2-22) becomes

k T dp = -pg dh (2-26)
M

Inserting the value of g from equation (2-21) and rearranging slightly

28

Expressing

r--

and integrating

A-AA A •

dp_ M gere 2

P kT r 2

r as

re+h

from surface h = 0 to some altitude

Pe gere2 (re + h) 2

(2 -28)

(2 -29)
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Hence

In P-P-.=- M gere 2 h

Pe kT (re + h) r e (2-30)

An equation is found by solving for p

gere2P = Pe exp _ _r e + h) (2-31)

It is usually convenient at this point to make the approximation that r e _ r e + h
since h is small compared to re. Then a simpler form of the equation results

P : Pe e (2- 32)

where

gere 2

g _ (r e + h)re (2-33)

Since the coefficient of h in equation (2-32) is very nearly constant, it is usual

practice to treat it as a constant. Setting

Mg= _ (2-34)kT

the usual aerodynamic form of the equation becomes

where

P = Pe e-_h (2-35)

is frequently expressed in reciprocal terms,
1

= Hs (2-36)

The symbol Hs in this form is called the scale height and is important for planetary

atmosphere studies since it is the altitude at which atmospheric density decreases to

1/e = 0.3679 of its value at the surface. For spacecraft entry, however, _ is

somewhat handier. For the earth the value of {_ is 0.0001366/m and the scale height
is approximately 7.3 km.

The usefulness of the barometric equation is not so much in the numerical

results it produces as in the qualitative insight that can be gained from it in the mech-

anics of atmospheric entry. It can be inferred from the derivation that this equation

does not yield highly accurate results, largely because the actual atmosphere is not

isothermal as was assumed in the derivation. As a practical matter the equation is

inaccurate by as much as a factor of two between 60 and 80 kilometers. This state of

affairs is not as bad as it may seem, however, as it merely means that expected

maneuvers will occur at times different from those expected and at different altitudes.

Qualitatively an entry vehicle is not that sensitive to atmospheric-density variations

for a large range of flight regimes.

hA4

= _ .... ,m
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One method of getting around this problem would be to divide the altitude of

interest into layers and to determine values of fl and Pe which accurately describe

the density variation for each small layer. The analytical solution to the equations of

motion to be developed in the next section, which assumes an isothermal atmosphere,

could then be used to solve each problem in a stepwise fashion. The more practical

solution, however, when using a large computer is to use numerical density tables

from the U.S. Standard Atmosphere, and this is what is usually done.

A-A • •-Ira

Solution of the Atmospheric-Entry Equations

Over the years a number of closed-form solutions of equations (2-4), (2-5),

(2-19), and (2-20) have been published. All have the expected drawbacks of approxi-

mate solutions to nonlinear differential equations in not being accurate enough for

practical applications and in not being valid over a wide enough flight regime. These

solutions have been of substantial value, however, in that they have provided a great _ _ ]_ " _ " _
! 41

deal of understanding of the nature of the problem. In addition, analytical solutions c: L

have been of some service in the development of guidance equations. Only two

approximations are justified and they are

(1) sin _ _ 0

V 2
(2) n_ 1 --0

gr

The first approximation (ref. 4) is an expression of the fact that most entries are _ :W -'- _ -_

made at a shallow flight-path angle in order to minimize heating and maximum accel-

eration. While the total integrated heat at shallow flight-path angles is quite large,

the maximum heat-input rate is small; hence such trajectories are the preferred ones

from a heat-dissipation standpoint. The second approximation, though not necessarily

limited in entry angle, is valid only wherever the velocity is equal to satellite velocity.

A solution is presented here which is essentially the same as in reference 3, utilizing

only the second assumption, primarily for the purpose of illustrating the general _ _ _ - _

technique and for the sake of understanding. Solutions making use of assumption (1)

above are abundant in the literature and none will be presented here.

The atmospheric-entry equations can be written in the form

m_r = -D - W sin _

mV_ = T. + W - cos (2-37) _: . •
= V sin

JrO = V cos y

where 0 is the down-range angle about the center of the earth and is included for

the sake of completeness. A numerical integrationof this set of equations for an

unguided spacecraft having essentially the same physical characteristics as an

Apollo spacecraft is shown in figure 2-3:
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Figure 2-3.- Unguided Apollo reentry trajectory.
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Figure 2-3.- Concluded.

For simplification of the atmospheric-entry equations, the following substitu-

tions and assumptions are made:

Assumption (1)

The barometric equation for density applies

P = Pe e-flh (2-35)

where Pe and /3 are constants, and

D K1 e-flhV2_=

CDPeS

where K 1 = 2_ = Constant, and

L K2 e-/3hV2_=

CLPeS

where K 2 - 2m = Constant.

Assumption (2)

_gT - cos_=_(v)_o
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From the second assumption it is seen that whenever the velocity is equal to

satellite velocity, that is, V = _, or when 7 = 90 °, the term e(V) is identically

zero. Hence, these closed-form solutions to the reentry equations are developed by

assuming that the difference between the centrifugal and gravitational accelerations is

negligible. The term e(V) will be carried, however, until this assumption can be

justified.

Equations developed under these assumptions apply to a number of physically

useful problems; for instance, these equations would apply to most entries which are

steep entries in the uppermost regions of the atmosphere. They also would be appli-

cable to skip trajectories for satellites and spacecraft and to grazing entries by such

objects as meteors and tektites.

For simplicity, the following change of the variable h to the variable y is

made. Let

y = e -_h (2-38)

so that

Y-=
Y

With the foregoing assumptions and the change of variables given by equations (2-38)

and (2-38a), the equations of motion (2-37)become

= -KlyV2 - g sin 7

= K2YV + VE (V)

; -_yV sin Y

rO = V cos 7

Eliminate the independent variable, time, in favor of the variable y

of the other equations through by y. Equations (2-39) then become

dV _r K1V g

dy y /3 sin 7 13yV

d_z= _ = K2 e (V)
dy _" _sin7 Bysiny

and

d._e= 6 ctn_

dy _ _ry

These are the equations to be integrated for V, 7, and O

able y, which in turn is expressible in terms of the altitude

that no assumption has been made as to the magnitude of

a small flight-path angle has been made.

(2-38a)

(2 -39)

by dividing each

(2 -40)

(2 -41)

(2 -42)

as functions of the vari-

h. It should be noted

7; that is, no assumption of
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Variation of flight-path angle 3/.- In order to evaluate the flight-path angle 3/,

the following steps are taken. A final, or break-out, condition is assumed at the end

of the trajectory. This condition could be used to specify, for instance, the altitude

of the end of the perceptible atmosphere, that is, hb, skipping out, or the end of an

entry-control mode at some height or flight-path-angle, 3/b, condition which is desired
by the vehicle guidance. In any event, the subscript b represents a local, final flight

condition. Then the integral of equation (2-41) becomes

/b K2 CYb 1 _Yb c(V)dy.sin 3/d3/--- -_-jy dy - 13jy Y

If,during the interval of evaluation, e(V) has a very weak variation with

or

_cos X K2.3/ = - -_- Yly e7 ) In y

y, then

K2cos 3/= cos 3/b + "_'(Y - Yb) + In y (2-43)Yb

In terms of h, equation (2-43) becomes

For the appropriate values of /3h and flhb

_(e-_h- e -_hb) =-(h-hb)

Since K 2 >> e(V) for most trajectories (5 × 10 -7 as opposed to -1 × 10 .7 as deter-

mined numerically at the point of maximum dynamic pressure and less above this

point for a typical Apollo entry), it can be seen that the third term on the right-hand

side of equation (2-44) can be neglected compared to the second term on the right-
hand side.

Variation of the velocity V.- For purposes of evaluating velocity V as a func-

tion of y, equation (2-43) is written in the form

where
cos 3/= a + by (2-45)

K 2

a = cos 3/b - -fl- Yb (2-46)
and

(2-47)
K2

Equation (2-45) may be rewritten

sin 3/=_1 - (a+by)2 (2 -48)
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or

Now the integral of equation (2-40) with the proper limits yields

(2-48a)

Vbdv 1 CYb_, K1 +-_-_dy (2-49)
"_"_-'__=_-_y \si-'_V V y/

Again, it may be seen from numerical calculations that the second term on the right-

hand side of equation (2-49) will contribute very little to the solution because

K1 >> g
sin y _-_ by several orders of magnitude. Typically this number is 2.5 × 10 -5 as

opposed to 2.5 × 10 -7 for an Apollo spacecraft at the point of maximum dynamic pres-

sure. Furthermore, the small variations in g and V with y throughout the

interval of integration will have even less influence on the solution and will therefore

be neglected. Treating g and V in the second term of the right-hand side of equa-

tion (2-40) as constant average values (denoted by g and V) and replacing sin y

with the identity of equation (2-48a) alters equation (2-49) to

In V K1 _¥b dy _ In y (2-50)

V"_ = _ Jy _+fl_2

where

= (1 - a 2) - 2aby- b2y 2 (2-50a)

By the use of integral tables and several trigometric identities, the integral of the

first term on the right-hand side of equation (2-50) may be put into the form

1 (_c_=_-b sin-1 - +1 ]
(2-51)

From equations (2-47) and (2-45),

dy = {7 sin-l(-eos ?,_= :_22_"_ v_22 \ +1 / 10g-c°s-l{'-c°sy___\ +i ].J (2-52)

Depending on the choice of signs for the second term of the right-hand side of the

preceding equation, the integral of dy/_fY may become

or

dy _ Ir

In either case, the same answer results when the limits of equation (2-50) are applied

and when the values of equations (2-52) are substituted into equation (2-50), namely,
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+ g___In y

1
Clearing logarithms and replacing y with e _h and K1/K 2 with L--_ yieldsthe
following explicit expression for V:

b

Again it should be noted that equation (2-53) is valid only in an interval in which

the second term of the exponent is always small compared to the first term. This

second term should be considered an approximate second-order correction to the first

term by virtue of its derivation. It also follows that, inasmuch as V b must always

be less than V (because of atmospheric drag), the first term of the exponent must

always be a positive quantity. Finally, because a value of _/_2 must be assigned in

equation (2-50), it should suffice to use gb and Vb if one is solving for V and to

use the present-state values of g and V ff one is solving for V b. It should also

be noted that this equation is not applicable for the case of zero lift although the zero-

lift case can be bracketed quite nicely by applying this equation with lift values very
near to zero.

Variation of range 0.- Integration of equation (2-42) for range 0 yields the
following equations:

or

dO = - f3-_ y

and

0b 1 yyb a + by dy
dO=_-_ _/1 - (a+by) 2 y

SoOb a SyT dy b yybdYdO=_-_ b y_f_+_

At this point, three cases must be considered. First, if

+b • . -11-cos
Ob-O=_'_ b fir K_22sm _'+l_y

a 2 = 1, then

± 1 fsinT_ sinTb_ 1

= K--_2r\ Y Yb /+_ "_(7-yb)

=+"_--1 (e_hsiny - _hbsin 7bl 1K2r \ e ±_'(_ -Yb) (2 -54a)
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In most practical cases a 2 is very nearly unity, therefore equation (2-54a) will

usually suffice. The following possibilities are included, however, for the sake of

completeness: Second, if a 2 < 1, then

L t I

= + In _ - ab

_r _ Y

fin Yb + _1 - a2 l___a_/1+ ln- Yb ab + _r( Y -_b)

-+
a

' L; ::2 :abU+ _-_sinT'

=+ a _ln z(Yb'_b) _ 1Cr1-_7L _Y'-'/'ff_'_- _(h- hb _?-7(y-_b)
(2-54b)

where z(y,y)= 1 -a 2 -aby+ _-a 2 siny. Third, if a 2> 1, then

' a Isin-l/-ab,+l -.a2)lL 1
.... +_0'- _'b)

Ob @ +/3r a2_-__ l ±by

=+

+by - _Yb 7J

=.-i-

a {in-llfT(1-ac°syl-sin-l_(1-ac°sYb_l +_r(_.... Yb)fir a2_a'__ 1 +K2Y +K2Y b

(2-54c)

In a more compact form, equations (2-54a), (2-54b), and (2-54c) may be expressed as

Ob- e = _r _r(_',h)±(_- _'b)_ (2-557

where the negative sign on the term in brackets is the proper choice in all cases, and

where, for the first case when a 2 = 1,
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[
r(9,,h) = + -fl--leChsin 9, -

K 2

for the second case when

and, finally, for a 2 > 1,

e/3hbsin9,b)

a2< 1,

h) + In
\1 -a 2 ,abe -/3h+ _ a 2 sin

(2-56a)

(2-56b)

.... a

F(9,,h) = + _ in -1 (1 a cos sin-lL K2 x(1 - cos (2-56c)

For cases run in negative time (that is, those cases where the sign on time or else the

sign on all of the velocity terms is reversed), the positive sign in the term on the right

in equations (2-56b) and (2-56c) is proper. For cases run in positive time, the nega-

tive sign is proper. This sign-selection convention applies even though time does not

occur explicitly in the solution in order to keep the down-range angle consistent with

the flight-path angle and altitude.

Kepler Formulation of the Entry Equation

Incorporating Lift and Drag

Equations (2-2) and (2-3) can be generalized from the foregoing to include the

effect of lift and drag. This formulation has obvious applications in the theory of

decay of near-earth satellite orbits where the drag acts as the main perturbing influ-

ence on a normally elliptic orbit. Consider figure 2-4 and resolve the lift and drag

forces into their respective radial and tangential components. The radial and tan-

gential lift and drag coefficients are given by

C r = C L cos 9, - CD sin 9,
/

C o -C L sin 9' - C D cos 9,.J

Equations (2-2) and (2-3)become, in terms of forces,

2

mi:-mr82+mgere =F(r)
r 2

mr_ + 2m_0 = F(0)

From figure 2-4

F(r) =L cos 9,-Dsin7

F(0) = -L sin 9' - D cos 9,

(2-57)

(2-58)

(2 -59)

(2 -60)

(2 -61)
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Figure 2-4.- Forces on a reentry Vehicle in rectangular coordinates.

but from equations (2-4) and (2-5)

r_
COS 9/ = m

V

sin _ =

Hence, replacing L and D

respectively,

(2-62)

(2 -63)

with their equivalents, from equations (2-18) and (2-16),

1 2 r0 _ 1 2
F(r)=_PV CLS(_)_PV CDS(_)=

which,on substitutingfor V, becomes

½PS(r_CL - rCD)V (2-64)

F(r)= 21-pS(r_CL - _CD)(_ 2 + r2_2) 1/2

4O
T Y



AIso,

which, on substituting for V, becomes

._1/2

Then equations (2-58) and (2-59) become

mi: - mr02 mgere2 = IDS(r0CL - J'CD)( I'2 r202) 1/2 (2-68)
+ r2 +

mr0+ 2mi-0 =- IDS(rCL + r0CD)(_2 + r2_2)1/2 (2-69)

These equations are formally equivalent to equations (2-19) and (2-20). It should

be noted that, in spite of the familiar form shown here, these equations are coupled

both in angular momentum and energy because of the lift and drag terms. Of course,

these equations reduce to the usual Keplerian form if p = 0. Thus the equations of

motion of a satellite with drag can be compared easily to the equations of motion of

the same satellite without drag.

Energy and Momenta Rates

Although in equations (2-68) and (2-69) the total energy and the angular momen-

tum are coupled, the same does not apply to the time derivatives of these quantities.

For example, at any instant of time, the angular momentum is given by

mh = mr20 (By definition of angular momentum)

Then the derivative with respect to time is

mh= mr20 + 2mrJ:0 (2-70)

This value of mh, however, is the left-hand side of equation (2-69) multiplied by r,

and hence this equation can be written as

mtl=- loS (CDr2_ + CLr_)(i-2 + r2_2)1/2 (2-71)

Also, at any instant of time the total energy is

1 mgere 2
mH = _ mV 2 r

or, taking the time derivative,

mIt = mV_ r + mgere2 i"

r 2

(By definition of total energy)

(2 -72)
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Also, the change in energy is equal to the integrated product of the drag and the dis-

tance traveled. With s as distance and Ho as the initial energy

but

SO

_s lpSCDV2d s (2-73)
re(H- Ho)=- So

ds = V dt

mCHHo/:
The energy rate can thus be put in the simple and elegant form

1 pSCD V3
H = (2-75)

2 m

This is an important conclusion in several respects: First, it is quite general; that

is, there are no strained or artificial assumptions in its derivation. Second, it

applies at any point along a reentry trajectory and thus depends only on the density at

the present orbit. Third, although it applies to reentry equations containing lift, it

does not, itseH, contain any lift terms. And fourth, it is a function of the single

dynamic parameter V 3. This is as it should be. It results from the work-energy

theorem of classical mechanics.

The corresponding angular momentum equation can be found in an analogous

manner. By application of the transformations

r_ = V cos

= V sin

in equation (2-71) and cancellationof a few terms, the angular momentum is found to

be

1 pSrV 2/,.
h = - - _'_'--'_D cos _/+ C L sin _) (2-76)2 x

It can be seen that the rate of change of angular momentum per unit mass does depend

on C L aswellason C D.

I AA A-I
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APPENDIX TO CHAPTER 2

,li

DERIVATION OF EQUATIONS (2-68) AND ,(2-69)

The transformations developed in chapter 2 can be handled more elegantly in the

following manner for those who prefer matrix techniques:

Equations (2-7) and (2-8) can be written

ml c°s 9/

[sin 7

1-mI er l0
cosdLv_ L c°s_9/ L r2 -J

(2A-1)

Denote the first matrix on the left by

= A (2A-2)

Hence

" os 9/ sin 9/

A -1 =

_sin 9/ cos

Premultiply both sides of equation (2A-l) by A -1 tc obtain

l-sin 9/ cos _ L co29/I L-sin 9/

Thus

mV = _(-sin 9/cos29/+ sin 9/cos29/)- mgere2
r2

which reduces to

sin 9/

(2A-3)

(2A-4)

mV + mgere2 sin 9/= 0 (2-11)
r 2

Also,

mV_, = os 9/sin29/+ cos39/) mgere
r2

cos 9/
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APPENDIX TO CHAPTER 2 - Continued

|_-| ll-i

which reduces to

mV_ = mV---_2cos V mgere2
r r 2

cos y

or with

mg =
mgere2

r 2

mV#-mg - 1 cosy =0

From equations (2-19) and (2-20),

L I blpin
m = -mg -

(___co______o_

Premultiply both sides of this equation by A

m

cos y

sin y

-sin y _r

_oSY_mg_ -sinl[siny 1 -lpsv2I OsY -sinlIi;I 1

in y cos yj LCOS [sin y cos y_] c

(2-!5)

(2A-5)

(2A-6)
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APPENDIX TO CHAPTER 2 - Continued

Am

which becomes

m -- 1_rcosT-V(_ Vc°sr)sinr

*s_n_÷V(_Vco__)r cos

L in cos _sin cosl Dc°s  cLsinl--7m_/ -½p_v_.
sin2_' + c°s27 _D sin r - C L cos

(2A-7)

Equations (2-4) and (2-5) are

r0 = V cos (2 -4)

= V sin

Taking the time derivatives of these equations

_0 + r0 = _r cos _ - V sin

(2-5)

(2A-8)

= _rsin _ + V cos (2 A-9)

Substituting these values back into equation (2A-7)

m = -m - pSV 2

i: V2c°s2$
r LCD sin _- C L cos _J

(2A-10)

Then, substituting various combinations of equations (2-4) and (2-5) to eliminate the

remaining terms in V and _ this equation becomes

-i -V 2
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APPENDIX TO CHAPTER 2 - Concluded

which is equivalent to equations (2-68) and (2-69)

_1/2

m_;- mrS2 + mg = lpS(CLr_- CDr)({_2 + r2_2 )

mr2_+ 2mr]r(_ =- lpS(CDr20 + CLr_)(r2 + r2_2) 1/2

(2 -68)

(2-69)

H

\

46



7 ¸ _.

CHAPTER 3

RELATIVE MOTION IN RECTANGULAR COORDINATES
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L-73-3011

The third stage of the Saturn V used to launch Apollo 9 just prior to docking

for removal of the Landing Module. This photograph was taken in earth

orbit.
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CHAPTER 3

RELATIVE MOTION IN RECTANGULAR COORDINATES

An important category of orbital motion is relative motion between two bodies

which move about the same gravitationally attracting mass; for instance, it may be

desired to rendezvous one spacecraft with another or with a permanent space station.

Alternatively, it may be desired to keep track of a spacecraft by knowing its position

at all times with respect to some simpler, better known orbit such as, for example, a

circular orbit of the same period. Precise and accurate knowledge of relative dis-

tances and speeds can lead to considerable savings in terms of payload into orbit for

a given size launch vehicle and, therefore, is an important cost item in modern space

travel. The need for accuracy has meant that actual orbit determinations and rendez-

vous procedures are presently carried out numerically by means of large digital com-

puters and ground tracking arrays. An understanding of the mechanics involved, how-

ever, that is, an understanding of how spacecraft can be expected to behave in a given

situation in any given reference frame, remains an indispensable part of the design

process. The purpose of this chapter is to convey an understanding of the way space-

craft appear to move when viewed from some other vantage point than the center of

the earth.

In this chapter for the first time a fixed inertial reference frame is not used and

instead a system is considered in which the coordinates are, themselves, in motion

with respect to an inertial frame. The material in this chapter is, in fact, developed

from the classical theory of moving coordinates and in every case is merely a special

application of the theory. Finally, it is remarked that relative motion is the simplest

and most tractable case of three-body motion, that is, three bodies, only one of which

is gravitational, and the only case that can be handled adequately in a practical way

without extensive numerical calculation at the present time. For purposes of this

book, this is the nearest to the complicated problem of three-body motion that will be
considered.

Rectangular Coordinates

Rectangular coordinates are covered first for three reasons. The first is his-

torical, since the first rendezvous equations were presented in rectangular form.

The second is pedogogical. For the beginner accustomed to thinking in rectangular

coordinates, these are usually the easiest to understand. Third, rectangular coordi-

nates are as accurate as any other system provided the bodies under consideration

are in close proximity. Thus, this approach is still advantageous for some problems

in rigid-body dynamics, and, in fact, rectangular coordinates will be used in the fifth

chapter of this book when rigid bodies are discussed. Rectangular coordinates are

not superfluous at the present point in development either, however, since shell coor-

dinates develop rather naturally from this form. It will be seen, in fact, when the
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Clohessy-Wiltshire equations are developed in this chapter in rectangular coordinates

and in the next chapter in shell coordinates, that the equations are the same to first

order in both systems.

The coordinate system in this approach is shown in figure 3-1. The system

consists of rectangular coordinates centered on one of the bodies in orbit. In the case

of rendezvous this body is usually the target vehicle.

//-Target Rehlcle
vehicle

Center
of

planet

,&-A--A A-a

Figure 3-1.- Rectangular-coordinate system centered on a body in orbit.

In equation (I-9) we gave the general expression for the Lagrangian in a non-

inertialframe of reference without translation. The equation was immediately

reduced to the form of equation (I-I0) by the assumption that _ is zero. We now go

back and pick up the argument assuming that _ is not equal to zero. Equation (I-9)

is reproduced here for the sake of convenience

L=_Im_2+mV. _X_'+21-m(_x_')2-/1[r.l (1-9)

In the case of moving coordinates (fig. 3-1) it is assumed that

= k {} (3-1)

5O



andthat

r"= _'x + _(y + rs) + _z $ 4

Hence, itis found that

Also, for rectangular coordinates, the relative velocity is

- -" )V= ix+ +i_ s +

Then

V" _× r'= O_x(_+_s)-_(Y+rs) _

and

(_ X r')2= 02Ey + rs)2 + x2_

In rectangular coordinates _ is given by

= -mgere 2

I_ I Ix2+(y+ rs)2+ z2_1/2

Hence, the Lagrangian becomes

(3-2)

(3-3)

(3-4)

(3-5)

(3-6)

(3-7)

1 Ex2+(:Y+rs)2+_'2_+m_Ex(Y :rs):x(y+rs)_L=_m + -

1 m_2[( mgere2+ Y+rs¢2_ +x j27 + (3I8_

_2 + (y + rs)2 + z_ 1/2

Taking the appropriate derivatives, the exact differential equations of motion are

arrived at in rectangular coordinates

m_ -m(y + rs)O- 2m(_, + i's)_- mx_2+
mgere2X

Ix2 + (Y + rs) 2 + z_ 312

= 0 (3-9)

m_;+mxO+2rn_+m_ s m(y+rs)O 2- %
mgere2(y + rs)

CX2+(y+rs) 2+z2_ 3/2

= 0 (3-10)

mgere2Z
mz = o (3-11)

Ex2 + (y + rs)2 +z_ 3/2
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If there are nonconservative forces such as thrust or drag, terms incorporating these

forces may be added on the right-hand side of these equations. It will be assumed for

the present, however, that there are no nonconservative forces acting on the vehicles.

By factoring out the term rs3 in the bracket, it can be established that

1 1

Ix2+(Y+rs) 2+z_ 3/2 rs3II+r-_s)2+ x--_-2+ z2_ 3/2rs2 r-_J

Then, equations (3-9) through (3-11) become

.2
m_- m(y + rs)O- 2m(_ + _s)O- mx8

mgere2X[{ 1 / 2 x 2 z2._-3/2

m_; + mx0 + 2m_0 + m_ s

(3-12)

(3 -13)

-m(y+rs)02 mgere2(y+rs)I1 +r_)2+ x2 z2__ -3/2+ rs3 rs-'2 + VJ = 0

(3 -14)

m£,+ mgere2rs3 zll + rY--s)2 + _x2 + z2-_ -3/2rs2 VJ = 0 (3-15)

This result may be specialized by assuming that the origin of the coordinate system is

in circular orbit about the attracting planet. Then, denoting 0 by the constant

angular rate w and observing from equation (1-54) that

gere 2 = w 2

rs3
(3-16)

Also, if

rs = 0

rs = 0

and also, ff

= 0

Then

m_ - 2mw:_ - mw2x + mw2x +

A-A • A-I

x, L
+ -- + _ = 0 (3-17)

rs2 r s 2[

I x2 z2T 3/2m_;+2mc_- mw2(y+rs)+mw2(y+rs) l+r_)2+rs_+Vj =0 (3-18)
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yq) x2+z21-3/2m_.+mco2z 1+ +_ =0 (3-19)

rs rs

Numerical solutions to equations (3-17) and (3-18) are presented in figure 3-2

which is modified from reference 5 for the special case where the z coordinate has

been held zero. In this figure x is plotted against y for a vehicle which is ejected

from the origin at various ejection angles but at a constant speed of 3 meters per sec-

ond. The dashed lines show the locus of positions of the ejected vehicle for various

angles of travel about the center of the earth. The effect of trajectory curvature is

quite evident from the spiral nature of the resultant figure.

8-

V o = 3 m/sec

_

4_-

2-

y, km 0 -

-2--

-4--

-6 --

-8
-8

180 ° 143°
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/
/
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/
I
I
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-126 °
/

/
/

/

/ I
! I

, /\
/ / O, deg about

/ / center of earth
/ /

/
/

0

I I I I I I I I
-6 -4 -2 0 2 4 6 8

x, km

Figure 3-2.- Trajectories as measured in a coordinate system above the
surface of the earth of a number of point masses (which at t = 0
were at the center of the coordinate system) with different initial
velocity components relative to the moving coordinate system.
Dashed contours denote the motion of the masses at subsequent posi-
tions of the origin of coordinates.

The last terms on the left in equations (3-17), (3-18), and (3-19) suggest that an

expansion of 1 + rs + + in a power series might be useful in

canceling terms. Such an expansion is facilitated by the fact that under most practi-
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cal circumstances x,

rapid convergence can be expected.

term v as

y, and z are all much smaller than r s so that reasonably

Expanding -(1 + y_2 and defining the small
\ -s/

The term to be expanded becomes

I1+_;_/_;+/_;.]-_:,_+_,-_.
Then, keeping three terms, an expansion of the form

3 15 v2
(1+v)-3/2 =1 -_v+-_- +. • •

gives

Ii+_j ix: I,l 

By squaring the last term on the right and retaining terms correct to second order,

equation (3-21) becomes

+rs ) +(_--s) + _1 _3y+ _ + (3-22,r s 2_rsJrs2

Making the appropriate substitutions in equations (3-17), (3"18), and (3-19) and can-

celing terms of higher order than the second gives

m_ - 2mw_ - 3mw 2 _s = 0 (3-23)

¢o2x 2 3 w2z 2
m_; + 2m_- 3mw2y + 3m w2y2- 3 m m = 0 (3-24)

r s rs 2 2 r_

m A A A I

yz

m_. + mw2z - 3row 2 F_s = 0
(3 -25)

Clohessy-Wiltshire Equations

Simplification may be continued by neglecting the squared and. cross-product

terms since these terms are small.

m_ - 2mo_= 0

m_ + 2murk - 3mw2y = 0
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m_. + mw2z = 0 (3-28)

These, then, are the first-order relative-motion differential equations.

A first integral of equation (3-26) can be obtained directly since both terms are

time derivatives. Then x from the solution of this equation can be used in the sec-

ond term of equation (3-27) to obtain a complete solution in terms of y. Finally, this

solution can be applied in the first integral of equation (3-26) to solve this equation

completely. Equation (3-28) is, of course, just simple harmonic motion and so can be

solved directly. Thus, these three equations have the solutions:

x=2 _- 3y sin wt-2_-cos wt+ 6y o - 3 wt+27 +xo (3-29)

( Xo ) Yo Xo (3-30)y= 2-_-- 3y o cos wt+-_-sin wt+4y o - 2-_-

_'o
z = z o cos wt + -_- sin wt (3-31)

These equations give the position of an arbitrary vehicle relative to an origin which is

itself orbiting in a circular orbit. If, for example, a target satellite is located at the

origin, then Xo,Yo,Z o and Xo,_o,_.o could be interpreted as the initial position and

velocity, respectively, of a rendezvous vehicle. Equations (3-29), (3-30), and (3-31)

then are first-order expressions for the subsequent motion of the rendezvous vehicle

with respect to the target. It follows that, if it is desired to achieve interception at

some specified time T1, it is merely necessary to set x, y, and z equal to zero

and solve for the present velocity needed to achieve these conditions. The instanta-

neous relative velocity components required are given by the following expressions:

_c x°(sin wT1) + Y°_ wT1 sin w_"1 - 14(I - cos w71) ]

_"= 3w_" 1 sin w_ 1 fi8(1- cos W_'l) (3-32)

Yc 2Xo(1-c°s W_l) +yo( 4 sin w_ 1 -3w_ 1 cos wT1)
-- = (3-33)

w 3w_- 1 sin wr 1 - 8(1 - cos W_'l)

Zc -Zo

-w- = tan COT 1 (3-34)

These are the rendezvous guidance equations first published by W. H. Clohessy

and R. S. Wiltshire in 1960 (ref. 6). They are frequently referred to as the Clohessy-

Wiltshire equations, and their influence on the development of modern analytical astro-

dynamics has been substantial. It should be mentioned that these equations were first

used to demonstrate the technical feasibility of earth orbital rendezvous by Eggleston
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andothers(refs. 5and7). Theequationswere actuallyincorporatedin theGemini
spacecraftrendezvouscomputer(althoughin shell-coordinateform) for thefirst suc-
cessfulattemptsat earthorbital rendezvous.Subsequenthardwaredevelopments
havetendedto rely moreheavilyonnumericalintegrationwithdigital computersdue
to thehighaccuracyattainable,but theseequationsare still usefulfor analyticaland
developmentalwork.

Thegreatdrawbackof theClohessy-Wiltshire equations, as might almost seem

obvious from this derivation, is that they break down quickly. The exact differential

equations describing relative motion, equations (3-9), (3-10), and (3-11), are nonlinear

and cannot be solved analytically. A number of approximations were made to yield

equations (3-26), (3-27), and (3-28), which are linear, and the solutions are given by

equations (3-29), (3-30), and (3-31), which in turn lead to the Clohessy-Wiltshire equa-

tions, (3-32), (3-33), and (3-34). Because of the simplifications made, the Clohessy-

Wiltshire equations are accurate only for relatively short time periods and for dis-

tance not too remote from the origin. The nonlinear effects, which were ignored in

order to obtain analytical solutions and which, though small near the origin and for

short time periods, become larger and influence the solutions more at greater dis-

tances and longer times. This loss of accuracy with distance and time can be seen in

figure 3-3 where the solutions of equations (3-29) and (3-30) are compared with exact

numerical solutions done on a computer.

y, km

f5C

I00

50

0

-5C

-10C

-150

-200

-250

-300

-350: t

-- Approximatesolution
..... Exact solution

\ s-

AV =60 m/sec

Launch angle =45 °

'''''''' -',0'06''e6o''''' '' 6o''''''' ''''-J4oo -izoo - -6oo -4 -2oo o 200
x, km

i---A i i-i

Figure 3-3.- Loss of accuracy of the first-order relative-motion equations
with distance and time. This particular example is for a coordinate sys-
tem in circular orbit above the earth.
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Various attempts have been made to improve the accuracy of both equa-

tions (3-29), (3-30), and (3-31) and, also, (3-32), (3-33), and (3-34). In the next por-

tion of this chapter two subsequent attempts at improving the relative motion equa-

tions (3-29), (3-30), and (3-31) will be discussed. The distinguishing feature of these

two improvements is that they are in rectangular coordinates. A similar attempt in

nonrectangular coordinates will be taken up in chapter 4.

London's Improvement of the Relative-Motion Equations

A second-order approximation to the solution of equations (3-17), (3-18), and

(3-19) can be obtained (ref. 8) by referring back to equations (3-23), (3-24), and (3-25).

Note that these equations contain terms in the gravity field expansion, equation (3-22),

which were neglected in the previous linear development.

Let

x = x I + x 2

Y = Yl + Y2

Z=Zl+Z 2

where the subscript 1 denotes the first-order solution and the subscript 2 denotes

a second-order correction. Substitute these values back into equations (3-23), (3-24),
and (3-25)

m_ l + m_ 2 - 2mw_l _ 2mw_ 2 _ 3m¢o2 (Xl + x2)(Yl + Y2)= 0
r S

(3-35)

my I + m_2 + 2w_ 1 + 2w_2 _ 3mw2y I _ 3mw2y 2 + 3mw2 (Yl + Y2) 2
r s

_ 3 mw2 (Xl + x2) 2 - 3 mw2 (Zl + z2)2 = 0

2 rs2 2 r s
(3 -36)

m_. 1 + m_ 2 + mw2zl + mw2z2 - 3mw2 (Yl + Y2)(Zl + z2) = 0
r S

(3 -37)

Immediately it is seen that, since x2, Y2' and z 2 are to be thought of as small

correction terms, higher-order terms involving x2, Y2, and z 2 may be ignored.
Hence, in equation (3-35)

3mw 2
r s (XlYl + x2Yl + xlY2 + x2Y2) = -3mw2 xlY----_l (3-38)

r S
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andin equation(3-36)

(y 2 + y22) _ 3mw 2 y12
3mw 2

_s _: 1 + 2YlY2 r--_-

Likewise

3mw2( x 2 3 mw2 x12
- _ \ 1 +2xlx2+x22)=-2 r--_-

(3 -39)

(3 -40)

hA • •l

3mW2{z 2 3 mw2 z12
_r s \ 1 + 2ZlZ2 + z22) _- _ r-'_-

(3 -41)

Finally,

3mw 2, 3mw 2

_s _ylzl + Y2Zl + YlZ2 + Y2Z2) ~ rs YlZl (3 -42)

Then equations (3-35), (3-36), and (3-37) become

m_ 1 + m_ 2 - 2mw_l - 2mw_2 - 3mw 2 xlY----_l= 0
r S

(3 -43)

mY 1 m_; 2 2mwx 1 2mwx 2 3mw2yl 3mw2y2 3mw 2 Yl 2
+ + + - - + r--_-

3 w2 x12 3 mw2 _= 0-_m rs 2
(3-44)

m_ 1 + m_ 2 + mw2z 1 + mw2z 2 3mw2 = 0 (3-45)
r s YlZl

Subtracting the first-order equations (3-26), (3-27), and (3-28) from these, respec-

tively, yields

m_ 2 - 2m_2 = 3mW2rs XlY 1 (3-46)

= 3mw 2F 2 _ 1 2 +
m_;2+ 2murx2- 3mw2y2 _ _1 _(Xl z12)_ (3 -47)

m_. 2 + mw2z 2 = 3mW2rs YlZl (3-48)

Thus a set of linear differential equations with constant coefficients has been obtained

for the second-order corrections. The right-hand sides are known functions of time

since each term can be computed from equations (3-29), (3-30), and (3-31). It is sig-

nificant that the out-of-plane and in-plane terms are now coupled. We shall find that

this coupling continues when we investigate other types of coordinate systems later on.
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Equation (3-46) becomes _ -_

m_2 _ 2mw_2 3mw2 (A- _s _ 1 c°s2wt +BI sin2wt + C 1 cos cot sin wt

where

+D 1 wt cos ¢ot+E 1 ¢otsin wt+F 1 cos wt

+G 1 sin wt+I 1 wt+J1)

-4XoYo 6YoY o

A 1 =w_+---_---

(3 -49)

4XoY o 6Yo3rO

B1 = w2 w

8:ko2 :koYo 2_'o2

c 1 = _ - 24_ + 18yo2- -7

D 1 21 x°Y° 6:k°2
= w w2 18Yo 2

_-_, -_

6YoY o 3XoYo

E1 = w w2

_oYo YoYo

F 1 =8-7 - 14_

koX o
+ 2 _ - 3XoY o

Yo 2

Gl=2- _
XoYo XoYo 24Yo2 - 8 x°2

+ 28 _+_ - w--_-

XoYo XoA
I 1= 24Yo2 - 24_+6 w2

2XoX o XoYo YoYo

J1 =-_ +4xoyo-4-7+8 w
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Equation (3-47) becomes

mY 2 + 2mco5¢2 - 3mco2y 2 = _
3mco 2

r_2 c°s2cot + B2
r S

sin2cot + C 2 cos cot sin cot

+ D 2 cot cos cot + E 2 cot sin cot + F 2 cos cot

where

+ G 2 sin cot + H2(cot)2 + 12 cot + J2_

• 2

A 2 4x2 12 x°Y° 2y°2 z°
= co"-2"- _+ 9y°2 - co2 2

B2 Yo 2 Xo 2 XoYo Zo2
= co2 8-_+ 24 7 - 18Yo2 2co 2

• °

XoYO YoYo ZoZ o

C2= 12_- 18 co co

(3 -50)

XoY o YoYo

D 2=-6-7+12 co

XoYo 18y °
E 2=2\co2 - 217 +

i-A A All

•,_ _

• • _2 • *- v ,---¥
F 2 = 28 _x°Y° - 24Yo2 - 8 -_+4x°2 _oco2+ 2 x°Y°co _

6O

XoYo XoX0 YoYo

G 2=-12 7 - 47+ 207+6XoY °

9 Xo 2 5¢oYo

H2 = 2 o)2 + 18_-18Yo2 _:_ ._

• °

XoYo XoX o Yo_'o

12=6-7+37- 127-6XoYo

XoYo Xo2 2Yo2 XoYo _ Xo2
J2--16Yo2 - 167 +4 co2 - co-'-_-2 co
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Equation (3-48) becomes

mz 2 + mco2z2 =

where

3mco2 (Ar s 3 c°s2cot + B3 sin2cot + C3 cos ¢0t sin cot

+ F 3 cos cot + G 3 sin cot)

_oZo

A 3 = 2 co 3YoZ °

YoZo

B3=-_

XoZo YoZo YoZo

C3=2--_--3_+_

F 3 = 4YoZ o - 2 z°_°
co

G 3 = 4 y°_° x°_------9-°
_-2 co2

Solutions of the form

(3-51)

x 2 = Oto + Ollcot + ol2 sin cot + ot3 cos cot + a4 sin 2cot + (_5 cos 2cot

+ _6wt sin wt + ot7cot cos cot (3-52)

Y2 =/30 +/31wt + f12(cot)2 + _3 sin cot + f14 cos cot +/_5 sin 2wt

+ f16 cos 2cot + _7cot sin cot + _8cot cos cot (3-53)

A I

z2 = _o + Vl sin cot + 72 cos cot + 73 sin 2wt + 74 cos 2cot

+ r5wt sin cot + r6cot cos cot (3-54)

are sought.

The reason for this particular form is evident from an examination of equa-

tions (3-49), (3-50), and (3-51). If these equations are converted to a multiple-angle

formulation, it can be seen that compatibility upon differentiation demands just this

form so that a balance of terms between the right-hand side and the left-hand side is

possible with no degeneracy• The constants a n, /3n, and 7n are functions of the

initial values Xo,Yo,Z ° and _o,_o,_o, of course• The method of solution which will

be adopted here is to substitute these solutions along with the appropriate time deriva-
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tives backintoequations(3-49),(3-50),and(3-51)andthento comparecoefficients
term byterm ontheright-handside. Theresultingset of simultaneousequationswill
thenyield theappropriatevaluesof oli, /3i, 7i , and so forth, in terms of Ai, Bi,

and Ci.

The first derivatives of equations (3-52), (3-53), and (3-54) are

_[2
-_-= ol1 + (el 2 + OfT)COS wt + (o_6 - ol3)sin wt + 2o_4 cos 2wt

- 2_ 5 sin 2wt + _6wt cos wt - OtTwt sin wt (3-55)

Y2
-_-= E1 + 2_2wt + (/33 + _8)cos cot + (_7- _4) sin wt + 2/_5 cos 2wt

- 2/36 sin 2wt + fl7cot cos wt -/_8wt sin wt (3-56)

_'2 76)cos wt + 273 274_-= (71 + + (75 - 72)sin wt cos 2wt - sin 2wt

+ 75wt cos wt - 76wt sin cot (3-57)

and the second derivatives are

x2w-_= _ (or2 + 2ot7)sin wt + (2ol 6 _ o_3)cos wt _ 4ol4 sin 2wt

- 4_ 5 cos 2wt - _6wt sin wt - _7wt cos wt (3-58)

Y2 2_8)sinwt (2/37 fl4)coswt sin2wt
w"_ = 2_2 - (/33 + + - - 4/35

- 4/36 cos 2wt - _7wt sin cot - fl8_0t cos cot (3-59)

_'2 276)sin wt (275 72)cos wt sin 2wtw--_ = -(71 + + - _ 473

- 474 cos 2wt - 75wt sin wt - 76wt cos cot (3-60)

When these substitutions are made in equations (3-49), (3-50), and (3-51) and coeffi-

cients of like terms are equated, the following sets of simultaneous equations result:

From the _-equation

÷ (3-6 a)

(3-61b)
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3C 1

r--_ -= 8(/36- _4) (3-61c)

3D 1

r-'_- = -(°t7 + 2/37) (3-61d)

A-I

3E._._1 = _ .g
rs 2/38 - °t 6 (3-61e) ._;

3F 1

r--_- = 2°t6 - °t3 - 2/33 - 2fl8 (3-61f)

3G 1

r--_" = -(°t2 + 2°t7 + 2/37 - 2/34) (3-61g)

3I 1

r'-_"= -4/32 (3-61h)

From the _;-equation

7 ÷T-- 3 o- ÷ 2

I IA2 _B2-1 = 7_6 - 4_4 - 3_5

(3-62a)

(3-62b)

(3-62c)
3C___2=

3D 2

r s 2(2/38 + _6) (3-62d) _'=_, __

(3-62e)

(3-62f)

(3-62g)

3E2 2(or 7 + 2_7)

3F 2

r--_-= 2(2_4 - _7- °12- _7)

3G 2

= 2(2/33 + _8 + or3 + °t6)

3H 2

rs 3/32 (3-62h)

3I 2

rs 3/31 (3-62i)
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From the foregoing equations the independent solutions are obtained directly:

u4=-" _s _78 r s

%=_ _3 )-_r_

GI_-s 2FI E_sDol6 = 3 +--_-s -_

F(L_ 1 E2 2G1._
°_7=3\rs 2rs _s']

3 J1 = I2
El=-_r s r--_

3 I1 H2

_2 = 4 rs r s

IC2 IIA1 - BI.I/35= 2 r s F s

_6=11 A2 _s'-B2") -2rslCl

3 E2 3G1 3 F2

'87 = 2' r"s's + r--s" - 2 r--_

3G2 3Fl+3E1
_8=_ +"_ rs

(3-63a)

(3-63b)

(3-63c)

(3-63d)

(3-63e)

(3-63f)

(3-63g)

(3-63h)

(3-63i)

(3-63j)

i-A A A-4

In addition to the foregoing linearly independent solutions, the following linearly

dependent sets of equations are obtained:

3G2 3F1 _
2_ 3 + cz3 =

rs + _,/3F 2 3G 1

_4- _. rs _'J

(3 -64)
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From the _,-equation,

3 A3 + B3

Yo = 2 rs

1 C3

Y3 = 2 r s

1 A3 - B3

Y4 = 2 r s (3-65)

wt cos wt + D 1 cot sin wt

1A+g( 1 +B1 wt

(3 -67)

3 G3

76= - _"r--/ .,

The terms, yl and 72 , are self-canceling due to linear dependency and hence

cannot be determined at this point. To get 71 and y2 one has to apply the initial

conditions that at t= 0, z 2=0,and _'2 =0. Then

71 = -(2y 3 + Y6)"I

(3 -66)

72 -(7o +Y4)J

Integrating the x-equation, equation (3-49),

3mw _.C1 A1 - B1

rex2 - 2mwY2 = -_s _'_" sin2wt + T sin cot cos cot - E 1

+ (D 1 - G1)COS wt + (E 1 + F1)sin wt +EJI

+ _(wt) 2 + KI_

where . K 1 is a constant of integration.

It can be seen very easily by inserting the conditions x2 = Y2 = 0 at t -- 0 that

D 1 - G 1 +K 1=0 (3-68)

or

K 1 =G 1 -D 1 (3-69)

65

-...- _ - _ .,,_, _



From the integration of the _-equation the following simultaneous set of equations is

obtained:

3c1=
rs 2(_6- _4)

4\ rs /

3(D1 -G1)
r s =_2 +_7-2/34

3(E 1 + FI)
r s = _6 - _3- 2/33

/2J1 +A 1 +B1 trs = -2/31

r s -r s 1 -D1 + = _1 -2/3o

(3 -70)

From

tion (3-62),

the last of equations (3-70) and the first identity of the _-equation, equa-

a solvable simultaneous set is obtained, since /32 is known already:

--= 3/3o - 2a 1 - 2/32 (3-71)
2\ rs /+rs

m--A_ A AJ

vvv--_

3G_s 1- D1 + = al- 2/3o (3-72) :._ :_.Z _i[

Hence, replacing /32 by H2/r s. and eliminating _1

3(.A2 + B2 t 3J2 2H2 6G1 6D1 3 C1 (3-73)/30 = -_ "rs r s rs r s + r s 2 r s
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Then

Once /9o

at t=0,

Hence

and from

Hence

0tl =- _':S( 2 + B2) r s r s r s 1- D1 +

is known, one can apply initial conditions at t -- 0 to get, from

= +

3G 1 3F 2 •

_2=0 at t=O

_3= -(_I+2% +%)

(3 -74)

Y2=0

3G 2 3F 1

% =_ +_ -2_S

and, finally,

Oto = -(°t3 + °t5)

(3-75)

(3 -76)

(3-77)

(3 -78)

(3-79)

When these equations are solved simultaneously (which is a very tedious and time-

consuming process), the resultant values are

x ioYo 5 Yo 1 i.._)°to=3 oYo _'_ _Yo_"+_Zo

x 11 1 Zo 2 2_{o2 1 YO2011=3 02 +_ -yO2 +2 +-_+2-_

(3-80a)

._Em --1Zo 2 13 _oYo Xo__ 1
2 w2 _+

(3-80b)

Xo Xo 2 Yo Y°2 - 3Xo2 - 2 z°2
_2 = 36-_-Yo - 30Yo2 - 10--_-- 3Xo-_--- 2 w---_- - Zo 2 w 2 (3-80c)

2£oYo Yo Zo
a S = -3XoY o + w_- 6Yo-_'- 2Zo- _-

(3-80d)

I(lYo 2 J{o2 _:o 92 1_o 2 lzo21_4 =_s 4 w2 w2 +3-_'yO-_yo +4 w2 4
(3-80e)

_5 = 1 . Yo - 2 _z o (3-800

•" .2

o7 .v lr



_ _(_,o_)/_._°__yo/

(3-8og)

(3-80h)

I-AA A-m

I__ 2 _o2 4_o _'z 1-o + 7 2 1 1 2 _'o2
/3o=3 + w2 _Yo 2 w2 w Yo +4\ o +'_

_:-_I.o+__//_,o-_/

(3-81a)

(3-81b)

(3-81c) _- _

J'o _:oJ'o _o _'o

/33= 12y o_+6xoy o- 7 _-_ 3x o_+z o

3 2 5_o2 2_¢o2 18J_oYo Zo 2 1
/34=-_x o - co----_- 15Yo2+_+ w2 w w2 2 z°2

(3-81d)

(3-81e)
- _ .... _ -- :,_ ---_

• . '_ ZoO.°
Y°( 2x° 3Yo) (3-81f)_5 = w \w - 2w

9 2Xo2 1 Yo 2 1 Zo 2 1 6:_oYo

/36=2Yo2+ w2 2 w2 +4 w2 4 z°2- o0
(3-81g)

/37=-3(2_-_ O- 3Yo)(2y o -_) (3-81h)

/38 = 3 _I2Yo - _I

to o oll_o--_--7+z o _-3y

(3-81i)

(3-82a)

71 = 3 y°_° x°_'° Yo
co w2 + Zo "_ (3-82b)
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Yo_o Zo_ o

7,2= -2 _ - 2 -_-- + 3YoZo (3-82c)

)7,3= - _L_-\ -_- - 3yo + Zo (3-82d)

7'4=- o -_--3Y o - (3-82e)

7,5 = 3Zo(2Y o -_) (3-82f)

_'O

(3-82g)

The successive-approximation procedure employed here could, of course, in

principle be carried to any degree of accuracy desired. It should, however, be clear

from all the effort needed to extract an acceptable set of solutions to even this accu-

racy that the payoff is hardly worth it beyond this point. There is an advantage still to

be gained, however, by assuming noncircular orbits. This procedure will be followed

in the next section so that the results of these two approaches can be compared.

Analysis of Anthony and Sasaki

London's perturbation solution can be generalized (ref.9) to include the situation

where the origin of coordinates is, itself,in an e11ipticorbit. The motion of the origin

is approximated by means of power series in the eccentricity of the orbit. This solu-

tion is obtained in terms of the independent variable, time, by a method of differential

corrections accounting for terms of second order in relative distance and firstorder

in the orbitaleccentricity of the moving origin.

As a starting point, rewrite equations (3-9),(3-10), and (3-11) in the following

form, where some terms have been transposed and where the term -mgere2/_s2_ has
been subtracted from both sides of equation (3-10). Thus

nix - my8 - 2my8 - mxe 2 +

m_ + rex8 + 2mk_ - m_2y +

mgere2X

? + (Y + rs) 2 + z_ 3/2

mgere2(Y + r_

? +(y +rs)2 + 3p

= mrs_ + 2mrs8 (3-83)

2
mger e

rs2

= -mr s + mrs _2 (3-84)
mgere 2

rs2
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m_, + mgere2Z = 0 (3-11)

The right-hand sides of equations (3-83) and (3-84), however, are seen to be the same

as the left-hand sides of equations (2-3) and (2-2), respectively, except for sign and

are thus equal to zero. Then

m_ - myO - 2m_O - mxO 2 +
mgere2X

_2 +(y + rs)2 + z_ 3/2

= o (3-85)

m_ + mx0 + 2m_0 - m_2y +
mgere2(y + rs) mgere 2

=0 (3-86)

Thus, by the use of an ingenious trick the terms in _ and r have been replaced

by an extra potential term. Also,

m_. _ mgere2Z = 0

_x 2+(y+rs)2 +z_ 3/2

It is convenient to nondimensionalize in terms of the semimajor axis

x

z
_.=_

a by

(3-11)

(3-87)

and

rs•

p = _- (3-88)

(rs._3/2(gere2_l/2

= \_-] k rs3_/ t (3-89)

i-A A A-st

,_. _!i

or --k! _ _'

= p3/2wt (3-90)

In terms of these variables, equations (3-85), (3-86), and (3-11) become

R
= 0 (3-91)-_g - 2_ - _2_.

7O
T Y I



_z+_ +2_6 - 62_ _ _ +
Y+p

= 0 (3-92)

Z+ =0
(3 -93)

where the dot over the symbol now refers to derivatives with respect to _. It is now

assumed that the distance between the two vehicles is small compared to the semi-

major axis of the vehicle at the origin of coordinates. As usual, the nonlinear terms

are expanded in terms of powers of the coordinates, retaining linear and quadratic

terms. When this expansion is performed,

7 = 0 (3-94)

Y + XO + 2XO - 0 - = 0 (3-95)

ZY
_, + _ - 3 -7 = 0 (3-96)

For orbits that are nearly circular, the dependence of the angular speed and the

radius to the center of coordinates upon the independent variable, time, can be taken

into account by expanding _ and r s in terms of the eccentricity and the mean

anomaly. This expansion is done by taking the time derivative of the equation-of-the-

center (eq. (1-99)). If the equation is truncated at three terms on the right-hand side

5
0=M+2e sinM+_e2sin2M+... (1-99)

then the ordinary time derivative is

But

=lVI l+2e cos M+_e2cos 2M+...

2\1/2
ere

M=/7 ) (t-to)

,o L

= (g__3e2/1/2

t_ = (.gere2_ 1/2 _3/2/1(r, )/r--Y/
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or in nondimensional form

( ÷_ + ..]5= 1 + 2e cos M e2cos 2M

where, from equation (1-67),

M = gel/2r
a3/2 e(t- to) "

or from equation (3-89), M is expressed in nondimensional form as,

(3 -97)

_SO,

M=_- vo (3-98)

_i__co.__o)+_(__co__I_-_o_+...} <_-99_
Solutions to equations (3-94), (3-95), and (3-96) are to be sought by assuming a

first-order solution plus a small differential correction for each term. Thus, let

= _1 + _2 (3-100)

7 = 71 + 7 2 (3-101)

_' = z1 + z2 (3-102)

H the nonlinear terms are omitted and the origin is assumed to be in a nearly circular

orbit, equations (3-94), (3-95), and (3-96) revert to the unintegrated form of the

Clohessy-Wiltshire equations. In nondimensional notation

&--A-A A-m

X 1 - 2Y 1 = 0 (3-103)

Y1 + 2X1 - 3Y1 = 0 (3-104)

Z1 + 7'1= 0 (3-105)

If, at time = O, (t = 0), then

X1 = Xo

Y1 = Yo

7'I = 7'o

(3-106)
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and

• , "N

X1 = _:o

Y1 = Yo

Z 1 = Z o

The solutions of equations (3-103), (3-104), and (3-105) become, respectively,

(3-1o7)

Xl = 2(X o - 3Yo)sin T-2Y o cos T+ 3(2Y o - Xo)T+ (Xo + 2Yo) (3-108)

21 = Z 1 sin T + Z o cos T (3-110)

It can be seen that these equations are exactly analogous to equations (3-29), (3-30),

and (3-31). Substituting these solutions back into equations (3-94), (3-95), and (3-96),

differential equations are obtained for _'2, :_2, and Z2- These equations are simpli-

fied by retaining only the larger quantities such as quadratic terms in the coordinates

X12,:_12,_,12, etc., and the linear terms in the eccentricity eXl,eYl,eZl, etc., and

neglecting the smaller terms. The resulting differential equations are

(3-111)

_r 2+2x2_3_ 2 3(_ 2 2_12 _,12)=:\ 1 - +

+2:1 sin( -
5.1

+:E(,o::- :o)

(3-112)

_'2 + Z2 = 311_'i - 3eZl Cos(T- TO) (3-113)

The initial conditions for X2_X2, "_2,_2, and Z2,Z 2 are all zero because the gen-

eral initial conditions have been satisfied by Xl' YI' and _'1" Since the above set

of equations is a set of linear equations with constant coefficients and known forcing

functions on the right-hand side, the determination of the solution is straightforward

but involves considerable effort. The technique is the same as London's with, how-

ever, still more additional terms.

Anthony and Sasaki carried out their original analysis by breaking their solution

into two parts, one dependent on the eccentricity of the orbit and one not dependent on

the eccentricity. The result is that the part which is independent of the eccentricity is

formally equivalent to London's solutions in the limiting case of zero eccentricity and

that the effect of the eccentricity shows up as a second part of each constant.
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The solutions to equations (3-111), (3-112), and (3-113) are, respectively,

+ :A5e)cos 2_ + (A6°. (_4o.*_ _)_o,._.(_o

+ (A70 + eA7e)_ COS

+ (B4°+ eB4e)cos _+ (B5°+ eB5e)sin 2_+ (B6°

A3 + eA3e)cos

+ eA6e)_ sin

+ (B3° + eB3e)sin

+ eB6e)cos 2_

(3-114)

(3-115)

Z2=(COO+eCoe)+(C1°+eCle)sin_+(C2°+eC2e)cos_+(C3°+ec3e)sin2_

÷(_o÷_C_0cos'_÷(_o÷_C_0_.,_n_÷(_o÷oC0?co_ _-110_

where the coefficients Ai° and

Ao°= 3 "_o_o-_o_o+_o_o+

Aie, etc., are given by

(3-117a)

&AA Am

= IX 11_ 2 2Xo 2 1- 1_02+1 ~ -13_0_0+_CO_01AI° 3 02+T'xo + +_Yo 2 +_ _Zo 2

- - - ~ - 2 - 2 30--02_y 2 Z-o2 - 2A2° ......-3XoY o + 36XoY o 10X o 2Y o 3X o 2Z o (3-118c)

_L _L .~ •
A3° = -6YoY o + 2X_o - 3XoY o - 2ZoZ o (3,-118d) _,: _S _-

2 1-" 2 • Z° 2A4 ° -Xo +_Yo +3XoYo 9- 2 1 _ 1 _.o 2= - _ Yo + _ - _ (3-118e)

~ - 3 _oYo+ 1 _.o_,o (3-118f) _ _r _A50 = XoYo - 5 2 _ L

74



A6° = -6YoY o + 3XoY o (3-117g)

- ~ - 2 18_o 2AT° -- -21XoY o ÷ 6X o ÷ (3-117h)

21 - 3 - 2 3_o2 ÷ 3_ _ - 12£o_o÷ 3_t_o2 3 _o2Bo °=_'Yo 2-_Yo +_ 4 +

BI° = -6XoY o + 3XoX o + 6XoY o - 12YoY o

= 9- 2
B2 ° -18_/'o 2 + 18XoY o _Xo

B3°= 12_ZoY o - '/Xo_ o - 3XoX o + 6XoY o + _.o_o

_, 2 - ~ _ 2 _3 ~ _1 ~ - 2
B4 °=2Y o +18XoY o- 5X o - 15_o 2 _Xo 2 _Zo 2- Z o

i _o_oB5° = 2X°Y° - 3Y°Y° - 5

=_ i " ÷ 2_o2- 6_o_o 9__o2 ÷ 1 _.o2 - I -B6° 2 Y°2 " + 2 4 4 z°2

BT° = -21XoY o + 6Xo 2 + 18Yo 2

B8°: 6_o_o - 3_o_o

Co°=3(_o_,o + 2XoZ O - 3Yo7..o) (3-119a)

(3-118) _ - --_

C1 ° = YoZo - XoZ o + 3YoZ o (3-119b)
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C2°= -2YoZo - 2XoZo + 3YoZo (3-119c)

i-iill ll-I

: _1 -" ~ 3%Zo)c3° 5(YoZo + 2_oZo -

o:: -_(_Xo_.o-_o_.o-to,o)

(3-119d)

(3-119e)

_o:_(_o_,o-_.to_,o) (3-199f)

_0o:-_(,_oZo-_.toZo) (3-119g) }° i_ii

1 YolcOs _oAoe : (-3_ O+_

A,_=-(3_o+3go)_'n7o+(-3Xo+ ,5%)co_._o

A2 e= 3(Xo + 2_ol sin 7o- 12Yo cos _o

A3 e= (6Xo-8YDsin 7o + (-Xo + 2YDc°s _o

A4e3_°sin_°+_(2X°-3Y°)cOs_O=-2 2 "

A5e= 23-(-2_o +3YDsin_O-2 o COS _O

A6 e= -3(X O - 2_o)_in_o

A7e = -3(Xo - 2_Io)COS _'o

(3-120)
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_o_=-(_o÷_oI_ _o÷(-_Xo÷_o)oo,_o

Ble = 0

E

B 2 =0

B3e = -X o sin To - 2Y o cos _o

_,_=_(_o+_o)_-_o+(_to-10_o)co__o

_°=(_o-_o)_._o÷_oco__o

_0_=-_o_i._o+(_o-_o)CO__o

_°=(_o-0_o)co__o

_= (-_o+0_o)_-_o

Co_=-33_.o_. _o-33_'ocos_o

c__= -_.os_. To- _.o_os_o

C2 e -= 2Z o sin _o + _'o cos To

(3-121)

(3-122a)

(3-122b)

(3-122c)

A-i

\

C3 e = 21 _'o sin _o + 21 _'o cos To (3-122d)
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C4e 1 7'o sin _o + 1 Zo cos ?o (3-122e)=-_

&-A A A-din

C5 e = 0 (3-122f)

C6e = 0 (3-122g) _ _, _

It can be seen from the above two examples of perturbation solutions to relative-

motion equations that the complexity of the solutions gets out of hand quite rapidly if

one is to try for high accuracy. The question can then be legitimately asked: what

advantage can one expect to gain from these solution? The answer, of course, is long-

term physical insight into the nature of orbits. One often wishes to ask the question:

will one satellite in the near vicinity of another remain there or drift away and, if so, _ _ T_]" 4] _
how fast will it drift away? Or, alternatively, where is the best location to place an _ _ L•,_ _i!
experiment package in the vicinity of, say, a manned space station, so that the longest

periods of undisturbed experimentation can be carried out? Insight into the answers

to these questions can be gained by examining the coefficients of the solutions. The

secular terms will yield the long-term drift rate while the coefficients of the harmonic

terms are useful for assessing short-term effects. In addition, the determination of

trajectories which lead to the smallest secular variations give one of the best means

for establishing initial coordinate locations for experiment packages. It can also be _ ._ :,,_,-___
seen that orbits which lead to periodic returns to the origin can be studied by this

means. Such orbits could, of course, be quite useful for recapturing experiment

packages or, alternatively, for keeping ejected packages away from the origin if so

desired, thus removing any possibility of future interaction of package and station.

It can be seen that studies of this nature are highly dependent on the accuracy of

the secular terms, and a good premium should be placed on getting these terms cor-

rectly. It will be found in the next chapter that there are advantages along these lines _7 _; _" - _i_

to be achieved if rectangular coordinates with their complexity are discarded in favor ....

of nonrectangular systems, for just this reason; that is, in some directions, secular

terms can be simplified and thus lead to better overall results. Rectangular coordi-

nates are still quite useful in the vicinity of the origin, nevertheless, because of the

inherent orthogonality of the system. Equations so developed are often simpler to

implement and visualize, while retaining an acceptable degree of accuracy. It can be

seen in figures 3-4 and 3-5 for London's equations and in figures 3-6 and 3-7 for the
f

Anthony and Sasaki equations that relatively small departure velocities are specified. : _ _: _/

The necessity for the small departure velocities becomes painfully apparent when one

scales the equations to a small gravitational body such as the moon. In the next chap-

ter an attempt will be made to overcome this difficulty by adopting shell coordinates

which are themselves curved so as to compensate for the curvature of the orbit.
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Figure 3-6.- Comparison of Anthony and Sasaki's perturbation solution

with first-order theory and exact theory for a typical earth tra-

jectory in the x-direction.
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CHAPTER 4

RELATIVE MOTION IN NONRECTANGULAR COORDINATES
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L-73-3012

Apollo Command/Service Module as seen from the Landing Module

just after rendezvous. The lunar near side is in the background.
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CHAPTER 4

RELATIVE MOTION IN NONRECTANGULAR COORDINATE, S

In the previous chapter, relative motion in rectangular coordinates was taken up

in some detail. The center of the coordinate frame, however, moves along a curved

path, and the question naturally arises as to what can be gained by the use of nonrec-

tangular coordinate systems. It turns out that, in some cases, such as spherical mov-

ing coordinates, nothing in particular can be gained except, perhaps, some modest

degree of elegance. If, however, a curved coordinate system centered on the earth is

employed, substantial increases in accuracy over long time periods can be attained.

This improvement is brought about by various types of more efficient equalization

between the dynamic terms and the gravity expansion; that is, curving the coordinate

system results in a set of coordinates that is more "natural" to the dynamic physical

situation. This advantage is usually expressed in the final result as a lessening in the

number of secular terms necessary to achieve the desired level of accuracy or, alter-

natively, as an improvement in the accuracy of the secular term coefficients. This

advantage does not mean that on the short time scale curved coordinates are neces-

sarily more accurate, although they frequently are, but it does mean that, for large

separation distances or large relative velocities, the curved coordinate systems stay

accurate longer. Naturally, the more curved the orbital situation the more one can

expect to gain from curved coordinates. This characteristic makes them especially

attractive for smaller gravitational bodies such as the moon.

In this chapter, a simple spherical coordinate transformation of the Clohessy-

Wiltshire equations will be taken up first. This transformation provides a simple and

useful transition into nonrectangular modes of thought. Next, shell coordinates will be

used, taking up, successively, first- and second-order systems. Finally, one of the

more successful correction factors which has been tried for the rendezvous equations

will be studied. This solution is developed by comparing the first-order rendezvous

equations with the known exact solution when both rendezvous and target vehicle are in

the same circular orbit. In the course of this development, it will be seen why these

systems are good when they are good, and why they fail when they fail. The over-

whelming dominance and persistence of the concepts of angular momentum and energy

conservation will also be seen more clearly than before.

Spherical Coordinates

The equations used to define the relative motion with respect to a rotating coor-

dinate system have been presented previously as equations (3-9), (3-10), and (3-11).

In order to effect the change into spherical coordinates, make the following transfor-

mations (see fig. 4-1):
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Station -'_X
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Figure 4-1.- Coordinates employed in describing the motions
of the space station and shuttle.
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x=Rcos _cos3

y -R cos _ sin 8?
I

z R sin _ .J

(4-1)

If this transformation is applied to equation (3-8) the Lagrangian which results is

1 (1_ 2 R2_2L = _ m + + R2b2cos2_ - 21_ s cos _ sin _ + 2R_s_ sin _ sin

-2R_sb cos _ cos 0+ _s2)+ m6s_R_ s - l_rs)COS _ cos 0-R2b cos2_

+ Rrst_ sin _h cos _ + Rrs_ cos _ sin 0_ + } m6s2(R2cos2_

- 2Rr s cos q., sin 0 + rs2 ) +
mgere 2

rv
(4 -2)

where

rv= 2+(y+ +z = R 2 +rs 2± 2Rr s cos _Psin8

The equations of motion corresponding to equations (3-9), (3-10), and (3-11) are

+Irs(Os2 gerJ'_-r_COSrv3 ]
sin 8

-(rsO s .+21"sEis)COSIp
cos 8 + gere2R = 0 (4-3)

rv3

_+ _._(_-6_)-_q c_+-_._(_-6D_.,

+ (rsOs + 2'sOs)sin _ + Irs (Os 2 ger2"_rv3i - rt
cosS:0 (4-4) _-

cos,+(r_s+%6s)Si.,cos
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iAi i-d

In the special case where the station is in a circular orbit r s and O = co are con-

stants, and equations (4-3), (4-4), and (4-5) reduce to the form

R-R_ 2- R(_-_)2cos2_+ I_ 2 gere2._r gere2R
rv3 / s cos _sin3+ rv_=

0 (4-6)

/ r2_

÷_._(_-_co__-_-_n _÷_: _ee.lr- rv3/ sC°S_=0 (4-7)

R_+21_/+R(_- _)2sin ¢cos ¢- la)2 gere2-/r sin¢sin_=0 (4-8)
rv3/ s

As before, for the case of a station in a circular orbit, the equations of motion in "_ " _" _ "Iterms of the rectangular coordinate system (eqs. (3-13), (3-14), and (3-15)) may be ._ _!:

linearized and, therefore, solved in closed form by approximating the gravity differ-

ence between the two vehicles. Thus

gere2 ~ gere2 (1-3r_ _ (4-9)
rv3 rs3

This approximation represents a rotating parallel gravitational field rather than the

spherical fieldof equation (3-22). The application of equation (4-9) yields equa-

tions (3-26),(3-27),and (3-28) as was done before in chapter 3:

- 2_ = 0 (3-26) \_

_}+ 2o_ - 3c02y= 0 (3-27)

_.+ co2z= 0 (3-28) _ _'_ _'_"-_

These equations have the solutions:

x=2 2_- 3y sin_ot-2_cos wt+ 6y o- 3 wt+2_--+x o (3-29)

(Xo o) 'o Xoy= 2_-- 3y cos o_t+-_-sinwt+4y o- 2-_- (3-30)

_"o
z = z o cos oJt + -_- sin o_ (3-31)

Inverting. these equations to form guidance equations yields the, by now well-

established, set of equations to rendezvous in time Vl

"m -

88



Y.._C= 2Xo(1 - c°s WT1) + YO( 4 sin WT 1 - 3WT1 cos W_'l)
_3

3WT 1 sin cot 1 - 8(1 - cOS WT1)

(3 -33)

Z_C -- - ZO

w tan 0)T 1

(3-34)

For simplicity, make the substitution

A = 3wT 1 sin WT1 - 8(1 - COS WT1)

In terms of the spherical coordinates R, _, and

(3-34) become, respectively,

(4-10)

9, equations (3-32),(3-33),and

+ K 3 sin29o - K 4 sin 9 o cos 9o)COS2_o + K 1 sin2@o (4-11)

_c = (KI_ K2 - K3 sin29o + K4 sin 9 o cos 9o)sin _o cos _o%--
(4-12)

where

_C --
-_- K 3 sin 9 o cos 9 o + K 4 sin29o - K 5

K 1 = -cos WT 1

K 2

K 3

1
= _ sin WT 1

= 3(sin WT 1 -WT 1 COS WT1)

(4-13)

(4-14)

K4=6(wT1 2+2cos wT1)

K5 = 2(1 - cos ¢o_'1)
J

These then are the Clohessy-Wiltshire equations in spherical-coordinate form. They

are useful where spherical symmetry about the origin is inherent to the nature of the

problem as, for instance, if measurements are to be made by a radar located on the

station. They are not, however, any more accurate than the rectangular version and,

hence, have seldom been used either in computer studies where the rectangular coor-

dinates are just as easy to use, or in actual hardware where coordinate conversion has

been the rule. They do, however, show in an elegant manner the separation of range

rate from angular rate.

Shell Coordinates

It is now informative to look at the form the relative motion equations take in

shell coordinates. The coordinate system employed in this development (ref. 10) is

shown in figure 4-2 where r is the projection of a line connecting the center of the
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planet to the orbital vehicle upon the plane of the reference vehicle. The symbol z

is normal to this plane passing through the orbital vehicle; y is measured along r

from the reference vehicle altitude to the projection of the maneuvering vehicle with

the positive direction upward; and x is measured in a curved arc backward along the

flight path of the reference vehicle in the plane of the reference vehicle orbit to r.

The coordinate system rotates about the origin with angular velocity _. It should be

noted that this is a left-handed coordinate system as opposed to all of the previous

•coordinate systems which were right-handed.

//_,/, Ejection

Direction of
orbitol motion

i-A-A _-I

k-Reference vehicle

rbita I vehicle

Figure 4-2.- Coordinates employed in describing the motions of the vehicles.

Two assumptions are made about the physical nature ofthe problem. They are:

(1) the attracting planetary mass is a gravitational sphere, and (2) the body upon which

the coordinate system is centered is in a circular orbit. Small departures from these

assumptions are not considered serious.

9O w y
!
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In a cylindrical coordinate system centered on the planetury body the Lagrangian

is

2

= lm(_2+r2_2 $2) mr2w_+2 r_+z 2
L _ + _ 1 mw2r2 mgere

Equations (4-1) are converted to shell coordinates by means of the following

substitutions:

Y+rs=r 1

X= rs0

Z Z

Hence

rs_

Then, in shell coordinates, the Lagrangian becomes

(4-15)

(4-16)

(4-17)

"ere 1=-m +z + +rs) (}-_s-W _(Y+rs) 2+z
L 2 +

The differentialequations of motion which follow from this Lagrangian are

(4-18)

= o
rs rs

(4-19)

f( gere2 F[I _y_..2
_;-(Y+ s) r s - +

_" gere2z 1 + =0

rs3 r

= 0 (4-20)

(4-21)

These are the exact differential equations of motion as seen from the orbiting vehicle.

It can be seen immediately that equation (4-19) is cyclic in the x-coordinate; thus, a

first integral of the equation of motion in the x-direction is found immediately. The

integral merely expresses the law of conservation of angular momentum.

If use is made of the exact orbital expression,

w 2 = gere 2

rs3
(3-16)
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and equation (4-19) is integrated, the equations of motion become

(4 -22)

:: _ 1 + r_)2 +_;-(Y+rs) _ w) 2- w 2
= 0 (4-23)

+ ¢o2z + + = 0

For convenience, let

x=T s

z

z=_

T= wt

(4 -24)

(4 -25)

The resulting equations are

3-I= K
(1+ Y)2

Y-(Y + 1)((X- 1) 2 -_1

(4 -26)

-3/2_+ y)2 + Z = 0 (4-27)

+ Z + y)2 + Z = 0 (4-28)

where the dot over the symbols now refers to the derivative with respect to r. The

approach taken in obtaining the solutions is the following: Equation (4-27) contains

terms in :( but not in X. The term Z 2 is assumed to be small in relation to

(1 + y)2 and can hence be neglected. For instance, typical dimensional values of z

and y are on the order of l00 km or less, making Z or Y on the order of

10___0= 0.107 as compared to 1. Thus, it is possible to cast equation (4-27) as an
1936

equation in Y and Y by direct substitution of the right-hand side of equation (4-26).

Equation (4-27) can then be solved approximately for Y as an explicit function of

time. The solution so obtained may then be used in the solution of equations (4-26)

and (4-28).

ill II ll-il

•!
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In order to establish a value for K, assume that at time equals zero

° t--Xo

Y=Yo

It follows that K = (_[o- 1)(1 + yo?. Substituting the right-hand side of equa-

tion (4-26) into equation (4-27) and neglecting the out-of-plane term Z results in

(4 -29)

K2 1+_=0

(1 +Y)3 (1+y)2
(4 -30)

If the forms of

1

(I + y)n

where n = 2 or 3 are expanded, and the terms of the second order and lower are

retained, equations (4-26), (4-27), and (4-28) become

+ 2KY - (K + I) = 3KY 2 (4-31)

+ _2y _ fi2 = __y2 (4 -32)

where

7. + Z = 3YZ (4 -33)

(4 -34)

_2 = 3K 2 _ 2_

/

fi2=K2 - 1 _

X = -6K 2 + 3 .J

(4-35)

A-A

First-Order Solutions

The first-order solutions to equations (4-31), (4-32), and (4-33) are obtained by

dropping the second-order terms (setting the terms on the right,hand side of

eqs. (4-31), (4-32), and (4-33) equal to zero). The Y-equation is solved by inspection.
Its solution is

Y = a' COS(_T + _') + _2 (4-36)
_2

where primes are used to distinguish first-order-equation integration constants

and

a

from those of the second-order which will be developed in the next section.
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The X-equation becomes, upon replacing K + 1 with its equivalent by defini-

tion Xo

= Xo - 2KY (4-37)

Then, substituting the right-hand side of equation (4-36) into equation (4-37) for Y

and integrating, the X-equation is

(X 2Kfi2_ 2 Ka' sin(ol_ _') 2Ka' sin _' (4-38)X= o- _2/ - _ + +
+ X o

A solution to the Z-equation is

Z = Zo sin _-+ Z o cos T (4-39)

where Z= Zo at T=0 and Z= Zo"

In order to compute the integrationconstants from the initialconditions, set

Y =Yo at T= 0 and Y=Yo. Then solve for a' and _'. This solution can be

found in a straightforward manner; but, for purposes of making the second-order

equivalent development which will be undertaken shortly more understandable, itis

advisable to make the substitution

u' = a' cos _' (4-40)

Taking the derivative with respect to time of equation (4-36) and applying initialcon-

ditions at T = 0 gives

Yo = -a'(_sin _' (4-41)

Then by squaring both equations and adding, making use of the identity

sin2_' + cos2_ ' = 1, a quadratic in a' is obtained

_2u,2 + yo 2 = _2a'2 (4-42)

for which the solution

a' = ,2 + (4-43)

where

U' = YO -

is obtained by applying terminal conditions to equation (4-36) at T = 0.

Then it follows easily that

h-A A A J

_: _ _•
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(4-44)

Hence k" ._S _-

(4-45)

_' = cos-l[u'_ (4-46)
ka'/



The sign selection on equations (4-45) and (4-46) can be done empirically; for

instance, a' can be chosen always positive and then the quadrant for _' depends

upon the launch angle _b. Equation (4-36) can be expressed explicitly without the

epoch angle as

Yo + (4-47)Y = _ _2 cos _- + -- sin o_T

_2 a o_2

Expanding cos(otT + _') in equation (4-36) yields

Y = (a' cos _')cos _- - (a' sin _')sin 0lT +/32
a2

(4 -48)

Comparison of equations (4-47) and (4-48) gives

a'sin _' =

Hence,

(4-49)

(4 -50)

In equation (4-50), since _ is a frequency, which is a physical quantity, a nega-

tive _ has no meaning. It can thus be seen that the sign of tan _' can be deter-

mined by using positive values of a and letting the signs of Yo and /32 determine

the quadrant. It should be pointed out that f12 is not necessarily positive due to its

definition, which permits imaginary values of /3. It can be seen, however, that- /32

is strictly a function of Xo and Yo and always has the opposite sign to Xo- The

reason is that /32, assuming reasonably small values of Yo, is

It then follows, once a quadrant has been selected for _', that equations (4-49) give

the sign to be selected for a' in equation (4-45). It is found that a positive selection

for a' is the correct selection. These characteristics for all possible ejection

quadrants are given in table 4-I. Thus table 4-I relates the _'-quadrant and the

q_-quadrant (ejection angle) for the first-order solutions.

TABLE 4-I.- FIRST-ORDER QUADRANT AND SIGN SELECTION

Xo Yo /32 _' quadrant a'

+ + - 4 + 1

- + + 3 + 2

- - + 2 + 3

+ - - 1 + 4
r

quadrant
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Solution for

+ 2y+_y2=_2

It is advantageous, in order to eliminate the constant /3

equation (4-51), to transform this equation into the form

+ p2V + _V 2 = 0

Second-Order Solutions

Y.- Equation (4-32) can be expressed as

(4-51)

on the right-hand side of

(4-52)

Let Y=V+MThis transformation can be accomplished by a change in variable.

where M is a constant. The transformation results in

+ (c_2 + 2kM)V + )_V2 = f12_ )_M2 _ c_2M (4-53)

The right-hand side of equation (4-53) thus becomes a function of some stillundeter-

mined constant M. Since the choice of M is not fixed,a value can be chosen which

makes the right-hand side vanish. Comparing equations (4-51) and (4-52) shows that

_2 _ kM 2 _ _2 M = 0 (4-54)

p2 as

(4-55)

(4-56)

(4 -57)

and

c_2 + 2)_M = p2

which can also be written as

p2__ -15z +24K2-8

Solving equation (4-54) for M yields

M---

which can also be expressed in terms of

M=- _ -P (4-58)
2_

Equation (4-52) may be recognized as the equation of a one-dimensional anhar-

monic oscillator. An exact second integral of this equation may be obtained if desired;

however, as this solution is an elliptic integral, the results axe not very useful for

solving the X- and Z-equations. For this reason an approximate perturbation solution

is sought. A more complete treatment than that given here using higher-order terms

can be found in reference 11. The solution V is obtained as the sum of a first-order

Let

p2 >> kV) is

(4-59)

(4 -60)

solution V 1 and a second-order correction term V 2.

V = V 1 + V 2

The first-order solution to this equation (by assuming

V 1 = a cos(pT + _)

96
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from which equation (4-59) becomes

V = a cos(pT + _) + V 2

Applying these relations to equation (4-52) gives

-p2a Cos(pT + _) + _r2 + p2a cos(p_ + _) + p2V 2

+ _t_2cos2(p_" + _)+ 2aV 2 cos(p_" + _)+ V22_

After some cancellation and rearrangement of terms,

(4-61)

(4-62)

--V2 + p2V 2 = -_ta2cos2(pT + _) - 2_aV 2 cos(pT + _) - _V22 (4-63)

Omitting terms of higher order than the second (last two terms on right) results in

1 _a2 _ 1 _a2cos 2(p_ + _) (4-64)_r2 + p2V2 = -Xa2c°s2(pT + _)= - 2 2

Solving the inhomogeneous linear equation in the usual way yields

V2 - _a2 + _a2 cos 2(pT + _) (4-65)

2p2 6p2

Hence, the second-order solution for V is

V = a Cos(pT + _) - _Xa2 _a2 2(p_ _) (4-66)
+ 6-_ cos +2p 2

The constants a and _ are integration constants which depend on initial con-

ditions. This solution is, of course, limited to cases where the first-order assump-

tion is approximately valid; that is,

XV << p2

or

X(Y-M) <<p2

It can be seen from numerical solution that this relationship is usually the case since

Y seldom exceeds 0.1 for cases which are physically practical and M will be small

provided the departure velocity is small enough.

Converting equation (4-66) to Y notation yields

_)_ a2 _ p2
_ _1cos2(p + - (4-67)

Y=acos(p_+ _) 2p2L 3 2_

The last term on the right is part of a small correction term which takes account

of the change in energy and hence the change in average altitude between the original

circular orbit and the new orbit into which the vehicle is launched.
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Solution for X.- The second-order solution for X is obtained by substituting

equation (4-67) for Y in equation (4-31) for X and then integrating. The differen-

tial equation is

X=X°-2KIac°s(or+_)+Xa2c°s2(pT+_)--6p2 Xa22p2 2_a2 +p21+3K_2c°s2(pr+_)2x.j

36p--_ 4p"---_"+ 2p'---_ 2_.2 + _. \p2 +-k"-y2X 3p2

W-A A A-4

: ,k_ •

4Xa 3

3p 2

__ X2a 4-_cos(or+_) _2acos(or+_)+ p2acos(oT+_) -_cos2(or+_)

k 6p4

a2_2

6p 2 a2cos 2(or + _) + -_- cos 2(or +

Integrating equation (4-68) with respect to r with A as an arbitrary constant of

integration yields

X=A+BT+C sin(pr+_) +Dsin2(pr+_) +E sin3(pr+_)

+ F sin 4(or + _)

where

A=X o- (C sin_ +Dsin2_+E sin3_+Fsin4_)

S _

KLK+ X 4X2 _ 2p2 +247J

• Lp xp 2p3J

D= Kf a2_ _2 x k2a2_

\P/\- 4p 2 6p 2 4-_'/

E = I_a3

6p 3
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Terms E and F have been found to be negligible in all cases tested but are

included here for the sake of completeness. The constant A is evaluated on the

usual assumption that at r = 0, X = X o.

Solution for Z.- The solution for Z is obtained by replacing the right-hand

side of equation (4-34) by the first-order term for Z and the appropriate second-

order term for Y to obtain a time-dependent right-hand side. In doing so, of course,

terms are carried which are higher than the second order of smallness. If only

second-order terms are retained, however, new end conditions corresponding to a

and _ would have to be computed as a peripheral calculation. This calculation is

thought to be unnecessary; therefore, equation (4-33) becomes

.... + (4-71)
2P 2 _ - _ cos 2(p_" + _ 2X

Let

/

Xa27,o

2p 2

Then

7, + Z = y cos_oz + _)sin r + 7/cos 20r + _)sin r + K sin _-

The solution of this equation is

Z= 7'0 sin r+l{_gl cos(pz+ _)+ 7/A cos 2(pr+ _)+ gsinr

where

A = 1 +p2 +p4

_=I +p2 + p4
4 16

C=-'F_sin_ _A

(4-72)

(4 -73)

(4 -74)

(4-75)

lli
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Evaluation of the Integration Constants a and _

In order to make effective use of equation (4-67), it is necessary to compute

values for the two integration constants a and _. It is found from experience that,

when synchronous or very nearly synchronous orbits are under consideration (that is,

orbits that return to the same place in space after one complete revolution), one can

obtain excellent results by using the values which are obtained from first-order theory.

For even moderate departures from the synchronous condition, for instance, on the

order of 5° in launch direction, however, this is not the case, especially for _. It

will therefore be necessary in most cases to evaluate the integration constants. A

method for evaluating these constants is outlined in the following.

Differentiating equation (4-67) and applying the initial conditions yields the

simultaneous set of transcendental equations

Yo = a cos _- _a2{1 1 p2 _2

2P 2\ -_cos 2_] + 2)_ (4-76)

_a 2
Y0 = -pa sin _ - _ sin 2_ (4-77)

where a and _ are the two unknowns. These two equations can be solved by

eliminating _ in favor of the two variables u and a where

U = a COS

After substitutionand some manipulation,

_U2+u 2_a 2 p2 _ ot2

3p2 - 3 p2 + 2_ = Yo (4-78)

and

(--fi- + 1 + 3-_ = 0 (4-79)

Solving this set by eliminating a 2 gives a quartic equation in u

9p 4 3p 2 3p 2 ]

+3p2( 2_p2) #o2+3p2Yo
4 --y;---0

In equation (4-80) it can be seen that u is a function of both

well as Yo (through _, p, and k)instead of just Xo and Yo

under first-order theory (eq. (4-42)). As a result, the special case where

(4 -80)

S O and Xo as

as was the case

u=0 will
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no longer occur independent of Yo" Itis seen that,when

is obtained:

3p (2 3p2y°
+7 +.s--r-

u -- 0, the following relation

or

= 0 (4-81)

__3 ot2 - p2 3p4y oYo = + 4 p4 _ 2)_ (4-85)

This relationship is shown in the following sketch for the special case where Yo = 0.

It can be seen that under first-order theory this curve degenerates into a straight
vertical line.

u<0

u<0

Y
o

u-- 0

X

u--0

This curve forms the boundary for the selection of the quadrant for _ since

the sign on u along with the positive selection for a determines the sign of cos _.

Since the second-order term in equation (4-67) is a function of cos 2(pT + _), the

quadrant is not ambiguous and all four quadrants must be used. Table 4-II summaL

rizes the second-order sign selection.

TABLE 4-II.-SECOND-ORDER QUADRANT AND SIGN SELECTION

Ejection quadrant Yo u Sign Quadrant for
on a

0_¢_---_

0_-___-__

__--_2_

__---2_

>0

>0

<0

<0

>0

<0

<0

>0

Fourth

Third

Second

First

A I
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It can be seen that an equivalent set of circumstances corresponding to the sketch

and table 4-II exists for each initial value of Yo" Thus, in order to map out all the

possibilities, a series of curves corresponding to u = 0 for each value of Yo must

be computed. This map is done in figure 4-3, for a series of realistic nondimensional

values.

i A.Ai

X o

Figure 4-3.- Solutions to equation (4-82) for a series of realistic

nondimensional values of X o and Yo"

In terms of ejection angle _b, equation (4-82) becomes

Yo t 3 p4(ot2 - p2) 3p4Yo
tan _b = -r.-- = ± -

Xo 4 X2±o2 2X_o2

Yo \
\

(4 -83)
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Limitations on the Approximate Solutions

Itwill be recalled that one of the conditions implicit in solving the equation of an

anharmonic oscillatorwas that p2 >> _V where V was defined as V = Y - M;

hence, in order for the solution to be valid,

p2 >> k(y _ M) (4-84)

where Y is inherently nondimensionalized in such a way that,for all practical pur-

poses, the term Y in the expression can be neglected. Thus, the criterion which

sets a limit on the validity of the solutions in actual prac{ice is

2
p >>->,M (4-85)

For synchronous speed at ejection angles between 110 ° and 250 °, equation (4-64)

is not satisfied, as can be seen in figure 4-4. Hence, one would not reasonably expect

equation (4-67) to describe the physical situation. That this is actually the case can

1.6-

VO, mlsec

p21 2 _ 147.0 Synchronous speed _..

• ----------.'_':_. 39.3 Hohmann speed_-'____--------

-'0 40 80 120 160 200 240 280 32_.0 :360

_, deg
i

Figure 4-4.- Comparison of the magnitudes of p2 and -_M for Hohmann

and synchronous speeds.

be seen by looking ahead to figure 4-11 for ejection angles of 110 ° and -110 ° (2500).

It is observed that for these cases the error is considerable. At ejection angles of

slightly larger magnitude than this value, p2 becomes imaginary (p 2 = _4_/32 + _4).
Hence, a value for p is undefined. Inspection of equation (4-67) shows that p is

the frequency term; therefore, no solutions would be expected to exist at all with p2

imaginary. This situation occurs for those cases in figure 4-4 for which no solutions

are shown. For the Hohmann case (that is, apogee at the altitude of the origin with

perigee at some lower altitude) equation (4-67) is satisfied for all ejection angles and

p2 remains real; hence, breakdown does not occur (fig. 4-4).

A I
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Total-Energy Equation

Equation (4-30) can be integrated exactly. Multiply through by

_= K25

(1 + y)3 (1 + y)2

Then the integral is

(4-86)

52 K2 1
m = _ + + _ (4-87)
2 2(1 + y)2 _-Y

where C is an integration constant.

Rearranging slightly, C can be identified as the nondimensionalized total

energy (neglecting the out-of-plane term, of course). Hence, replacing K2 by its

equivalent in terms of Xo and Yo

An alternative way to derive equation (4-87) is to change the sign on the potential term

in the Lagrangian, equation (4-18), and then substitute the right-hand side of equa-

tion (4-22) in this Lagrangian.

Apogee and Perigee Prediction

If, at _ = 0, Y = Yo and 5 = 50,

__ __ FC+
2 L 1

and remains constant unless disturbed externally.

subsequent times

_2 = K 2 2 + 2_

(1 + y)2 1 + Y

The extremals are then found to be

Yextremal - 23

(4-89)

Then equation (4-87) becomes for

(4 -87)

(4-90)

The positive value is apogee and the negative value is perigee as measured from
orbital altitude.

i-A • A-al

Solutions in Dimensional Notation

When equations (4-67), (4-69), and (4-74) are converted back to dimensional

notation, the following equations result:
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x = rs _, + B_t+ Cs_n(p_t+ 0 +D s_n2(p_,t+ 0 + E s_n3(p_t+ 0 + F _. 4(p_t+ 0_

(4-91)

2p 2 3 2_. ..)

z=r s sm cot + sin cot cosCowt + _) + _A cos 2(pwt + _) +
4

- cos wt_-_ sin(pwt + _) + 7/_A_sin 2(pwt + _) + Kw___tt+ _.C_
]2p 4p 2 ,jj

where the constant terms are given by

K= s° 1
(dr s

2= 3K 2 -2

f12 = K 2 _ 1

= -6K 2 + 3

p= +o_ = -15K

and

zo
+ F_s cos wt (4-93)

(4-94)

A=xo
rs (Csin_+Dsin2_+E sin3_+Fsin4_) (4-95a)

S +_+_+
wrsK + X + 4X2 p2 2p2

L" )tp 2p3J

_a_ a2o_ 2 _2a4_
D = K ;_2

4p 3 6p 3

19 _2a4_
(4-95b)

(4-95c)

(4-95d)

6p 3
(4-95e)

96p 5

bAJ

\

\
\

(4-95f) _

105



Xa2_.o

2wrsp2

3a_ o

o3r s

A = 1 +p2 +p4

p2
_= 1 +-_-+ 16

c=-_sin_ nz_
P - _- sin 2_

Equation (4-80) becomes, in dimensional notation,

+ 3 p2 (Or2_ p2) + yo 2 3p2yo 0

4 X2 p2w2rs2 2Xr s

With equation (4-79) becoming

/F 3p2_° 2

a =/_:rs(_p2 : 2ku)_

and

= cos -1 u
a

Equation (4-83) becomes

(4-95g)

(4-95h)

(4-95i)

(4-95j)

(4 -95k)

(4-951)

(4 -96)

+ u 2 (4-97)

(4-98)

i-A A A-i

:YO 3 p4(ol2 - p2)w2rs2 3p4yoW2rs (4-99)tan @ = :--= + --
Xo 4 X2_o 2 2_,_o2

The parameters p2, _2, and k2 are functions of Xo only; thus the quadrant

of _ changes depending upon launch angle _b, but no longer simply at 7r/2, It,

31r/2, and 2_ as was true for the first-order solutions. Figure 4-5 is a plot of ko

as a function of _b for u = 0 in dimensional terms which apply to the moon. The
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Figure 4-5.- Plot of u = 0 as a function of XoI and ejection .angle _.

figure can be used, therefore, to determine for the known value of Xo and _b, the

proper quadrant for _. As in first-order theory, a is always selected positive.

Physical Interpretation of Terms

The physical meaning of several of the terms in these solutions can be seen if

the first-order solutions and second-order solutions are compared.

y-equation.- The most important equation from a theoretical standpoint is the

y-equation. It will be best to begin by comparing equation (4-36) (first-order solu-

tion) with equation (4-67) (second-order solution). Thus

Y = a' cos(_r + _') +/32 (4-36)
_2

as compared to

- 2p2E - _. cos 2(pr + _ - 2X
(4 -67)

In first-order theory, a sinusoidal term is added to a constant which is a function of

initial velocity in the x-direction. Hence, the constant merely reflects a change in

energy produced by ejection from the reference orbit and is a function of the speeding

up or slowing down of the orbital vehicle's angular rate. Superimposed upon this

motion is an oscillatory motion above and below the mean altitude, the maximum

amplitudes of which are apogee and perigee. In second-order theory, the same funda-

mental characteristics appear. In this case, however, they are modified slightly to

take better account of the inverse-square nature of the planetary gravity field. The

form is essentially the same as first-order theory presents, but the constant term is

slightly modified to become the coefficient of the second term combined with the last

term on the right in equation (4-67). In like manner, the oscillatory term is present
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although the coefficient is changed slightly. Hence, these two terms represent the

same type of motion as was present in the first-order theory. Superimposed upon this

term is an oscillatory term of twice the frequency of the primary term acting very

much as a second harmonic. The primary effect of this te:m is to increase the apogee

and to decrease the perigee• The function of this term is then to take account of the

weakening of the restoring force as the gravity field decreases at longer distances

from the center of the planet.

Another way of viewing this phenomenon can be seen in figure 4-6 which shows

the acceleration of the lander relative to the reference orbit in terms of exact first-

order and second-order theory for a typical case. It can be seen that acceleration is

_, m/sec 2

Second-order solution
Exact solution
First-order solution

Yo = 128 m/sec
w = . 82 x 10 -3rad/sec

.10t--- \

• 05t- \\ P r

ol ,_. _-_ s

a 2 = O. 7273

-. 05 - "_N_ -/ -f12 = O. 0908

= -2.454

10 _ 4 ¢ : 60°

xo = 74 m/sec-.15 -
-.20 -

Slope = - a 2_2 _J_

-.2_ I I I I I l I_ I
-320 -240 -160 _80 0 80 160 240 320 x 103

y_ m

Figure 4-6.- Acceleration of the orbital vehicle as a function of the

departure distance from the reference orbit for a typical lunar
orbit.

a linear function of displacement over a reasonable altitude range under first-order

theory. Under second-order theory, the acceleration is quadratic and forms a much

better approximation to the exact conditions. In figure 4-6, 132/o_2 constitutes a

change in mean equilibrium altitude and shows that, in general, the point of equilibrium

is displaced, in this case downward• It is pointed out that this change will occur even

for orbits of the same total energy as the reference orbit since orbits of the same

period but different eccentricity will have a different mean altitude. Under second-

order theory this mean displacement is defined a little more precisely by

2
202 ]

(not shown in fig. 4-6). It can be seen that, under the special condition that X = 0,

this relation reduces to fl2/_2 as in first-order theory.
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L-73-3013

Apollo i_ subsatellite shortly after launch from the Command and Service Module.

This is the first such vehicle to be launched from a spacecraft in lunar
orbit.
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x-equation.- Comparison of the x-equation, equation (4-69), with first-order

theory, equation (4-38), shows the first-order equation contains three main terms: a

constant, a secular term, and a sinusoidal term. From the physics of the situation, it

is clear that the phenomenon which was manifested as a constant mean separation in

the y-equation, equation (4-67), is a time-dependent linear mean-drift rate in the

x-equation, equation (4-69). In general, the ejected vehicle would be expected to drift

away over an interval of several orbital periods due to its difference in energy and

angular momentum. For a synchronous orbit, of course, the coefficient of the secular

term would be zero; thus, this term controls the rate of drift.

In other respects the form of this equation is about the same as is obtained for

the y-equation, that is, a series of higher-order trigonometric terms.

z-equation.- In the z-equation, first-order theory predicts simple harmonic

motion; so again there is a linear restoring force. This theory then assumes that

altitude y does not have any appreciable effect upon the out-of-plane mode z.

Although in trajectories of practical interest, it is quite true that z does not have

any marked effect upon y because the orbits are poarly coplanar, the converse of

this statement is not true; and it is found that, for oz _its of moderately large eccen-

tricity (for instance, on the order of 0.1), y-coupling into the z-equation can be very

significant relative to the total, but admittedly small, amplitude in z. In fact, for the

typical synchronous lunar orbit used for the numerical calculations in this book, the

coupled term in y and z amounts to one-third of the value of the pure z-term.

Consequently, the second-order terms in equation (4-71) represent coupling terms

with y.

Test Cases

In order to test the properties of the solutions, the exact differential equations,

first-order solution equations, and second-order solution equations have been pro-

gramed on a digital computer. The test orbital conditions were taken as those for

ejection from a 200-kilometer circular orbit about the moon. The period of the orbit

is 7600 seconds. Two particular trajectories are shown in detail. These trajectories

were a synchronous orbit and a Hohmann case. Both trajectories had a perigee point

20 kilometers above the surface of the moon. Such orbits are suitable either for

reconnaissance or for landing, and both orbits were of interest for the Apollo missions.

Synchronous case.- The chief advantage of selecting the synchronous orbit is

that, since it returns to its initial relative position after one revolution, the investiga-

tor is in a position to interpret errors in the trajectories in reruns of the particular

terms in the solutions to which they are due. Such a trajectory is shown as a time

history in figure 4-7 and in terms of x and y in figure 4-8. It can be seen that the

second-order solutions predict the time of occurrence of periapsis much better than do

the first-order solutions.

Ejection is in an upward direction so that apogee is reached at approximately

one-quarter orbit and perigee at three-quarters orbit. Time histories showing the

main results of this study are shown in figure 4-7. Particular points of interest are
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Figure 4-7.- Time history for a 200-kilometer synchronous lunar orbit showing
exact, first-order, and second-order solutions.
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Figur@ 4-8.- Variation of x with y for a 200-kilometer synchronous lunar orbit
showing the respective positions of the orbital vehicle as seen from a vehicle
in reference orbit.

(1) The error at perigee in these cases for the second-order solution is 5 kilom-

eters. The second-order solution is, therefore, an improvement over the first-order

solution where the error is 20 kilometers and seems to indicate that the equations are

indeed useful as a prediction method for lunar landing or reconnaissance vehicles.

(2) The second-order y-equation is in error timewise at the end of one orbit by

200 seconds. Since the period for this orbit is about 6800 seconds, this error is con-

sidered to be relatively large. The x-equation is in error timewise by the same

amount. The reason for this time error is found in the nature of the anharmonic

oscillator equation employed in solving for y. It can be shown that, when the equa-

tion is restricted to second-order terms, the period is not a function of amplitude. If

terms of higher order had been carried, the period would be a function of amplitude

and the time error would be considerably smaller.

Figure 4-8 is a plot of the variation of x with y for the synchronous orbit of

figure 4-7. Hence, this figure shows the position of the ejected vehicle as it would be

seen from the ejecting vehicle if the out-of-plane motion is disregarded. It is to be

observed that, in spite of the time error in both x and y, the spatial agreement

between the exact and approximate second-order equations is very good.

Hohmann case.- Figures 4-9 and 4-10 show essentially the same information as

figures 4-7 and 4-8, but for the Hohmann case. First-order data havenot been

included in these cases. The agreement between exact and second-order solutions is

better for the y-motion than it is for the synchronous orbit since the ejection velocity

here is much smaller. The data were carried for two complete orbits in order to show

more clearly the nature of the error buildup which occurs at the end of the first orbit

in the x-equation. It is observed that the approximate solution is better over certain

portions of the trajectory than over others and that the error is most significant toward

the end of each orbital period. This result was also obtained in chapter 3 for a rectan-

gular coordinate system and suggests that the cause of the error is something which is
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Figure 4-9.- Time history for a 200-kilometer Hohmann transfer to near the

lunar surface showing exact and second-order solutions.
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retained by both approaches. Figure 4-10 shows a gradual departure from the exact

solutions for each successive orbit because of the secular term of equation (4-69).

Other launch angles.- In figure 4-11 a series of trajectories is shown for differ-

ent ejection angles _ spaced at 20 ° intervals. The ejection speed is the same as for

a synchronous orbit. None of these are synchronous orbits, however, because of the

direction in which ejection takes place. For the sake of clarity, only the exact and
second-order solutions are shown.

Figure 4-12 contains the same information as figure 4-9, but the speed is the

same as that for a Hohmann transfer. Because of the lower ejection velocity, these

trajectories are in much better agreement than those of figure 4-11.

In figure 4-11 no approximate solutions are presented over a range of ejection

angles from-120 ° to +120 °. In addition, the solutions which are presented for +110 °

are considerably in error. A fundamental assumption in solving the anharmonic

oscillator equation is that the first-order term is large in comparison with the second-

order term. For the relatively high ejection speed considered for these cases, the

assumption is violated over this range of ejection angles. A similar situation is not

encountered for the lower launch speed of figure 4-12. Mathematically, the reason for

this difficulty is that for these trajectories p2 becomes progressively small in rela-

tion to the second-order term and then imaginary. When p2 is nearly as small as

the second-order term, the solutions are in error and, when p2 becomes imaginary,

p is undefined and no solutions exist at all.
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Shell-Coordinate Rendezvous Problem

It can easily be seen that the solutions to the relative-motion equations expressed

as equations (4-67), (4-68), and (4-74) are so complicated that reversion to a rendez-

vous set is difficult if not impossible. It can also be seen that, even if such a rever-

sion were analytically available, it would most likely not be useful since at this stage

of development the algebraic complexity begins to outweigh any analytical advantages in

terms of insight that can be expected. There is, however, a method first suggested by

Sparrow and Price (ref. 12) which, while not complete in every derail, is nevertheless

highly accurate and useful. The method is based upon a comparison of the motions

predicted by the Clohessy-Wiltshire equations with the motions to be expected if both

target and rendezvous vehicles are in circular orbits. Since these orbits can be defined

exactly, it seems logical to compare the exact and approximate results and hence to

determine just what part of the equations is necessary to define circular trajectories.
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Apollo 16 ascent stage above the moon as it approaches the

Command and Service Module during rendezvous.
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In this manner a correction factor can be determined which, when added to the conven-

tional Clohessy-Whitshire set, gives a broad range of accurate applicability. In order

to keep this problem as_imple as possible, it is advantageous to follow the original

paper and keep the development planar from the beginning. Hence, in what follows,

the z-coordinate will be neglected with respect to the x- and y-coordinates.

If equations (4-19) and (4-20) are expanded in the gravity field and only terms of

the first order are retained, then the following equations result:

m__ - 2mw_ = 0 (4-100)

m_; + 2mcv_x - 3mw2y = 0 (4-101)

It can be seen that these are exactly the same equations as (3-26) and (3-27), except

that in this case the coordinate system is a shell coordinate system rather than a rec-

tangular one. Hence, the solutions are the same, namely

x tO s,n t
rsS -<'>rs

and

+2 Yo +Xo
m +qx

wr s r s

Y_(2_o 3Yo_coswt+ _O. sinwt+
rs - \_s rs ] wr---s

(4-102)

4Y o 2x o

rs Wrs + qy (4-103)

where qx and qy represent the aggregate of all higher-order terms in the x- and
y-equations, respectively. Equation (4-22) is, however, an exact relation and, if both

target and rendezvous vehicles are in circular orbits, y is a constant (the altitude

difference between the orbits) and equation (4-22) becomes

- + r'_s) = K (4-104)

This equation can also be solved for x yielding the exact expression for circular

orbits. If at t= 0, _= Xo and Yo is a constant, K is given by

Then equation (4-104) reduces by cancellation to

x___= x_._o (4-106)
c0r s c0r s

With w canceled this equation integrates directly to

x = o t + Constant
rs rs
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or if, at t = O, _ = Xo, the constant can be determined and

x Xot Xo
-- = + :- (4-107)
r s r s r s

The physical explanation for this equation is quite simple. If the difference in

orbital altitude is held constant, the separation of the vehicles depends solely on the

difference in their angular rates. This is precisely what J_o/rs is physically; so the

separation angle is strictly a linear function of time and depends on the initial angular

separation as an epoch angle. A comparison of equations (4-102) and (4-106) shows

that for the special case of circular orbits

qx=-2 TM sinwt W_s \rs• + - _-_s/wt - 2 (4-108)

However, since qx is a small correction factor in equation (4-102), it will be suffi-

cient to drop the smaller parts of qx" For nearly circular orbits obviously Yo _ 0

and for small values of cot will practically cancel anyway. Hence,

/2_:° 3Y°_ " \rs(6Y° 4_:0'_-'s/ (3 YO xw-'_s)qx = -2_S r-ss_ sin c°t - - _s
,.-:-_-_]wt = 4 - (sin wt - wt) (4-109)

H in equation (4-23), y and z are set equal to zero and the equation is solved for

_/Wrs, one obtains for a circular orbit with fixed Yo

Xo (1 -3/2_=1- +
Wrs _s/

Then substituting this value back into equation (4-109) for

tor for the x-equation is found to be approximately

qx = 4 _s - 1 + + (sin oJt - o_t)

It is convenient to write this equation in the functional form

qx = 4Q(Yo)(Sin cot- cot)

where

i1 y V3/2
3 YO +'o

Q(Yo) =_ r-_- 1 + rs )

will be referred to as the "Sparrow Q factor."

In the y-direction the same situation is obtained.

_L= Yo = Constant
r s r s

(4-110)

x"/Wrsw the correction fac-

(4-111)

(4-112)

(4-113)

If both orbits are circular,

(4-114)
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Then a comparison of equation (4-114) with equation (4-103) shows that

i-A • A-dD

_.2ko 3yq_ cos wt Yo 2_[o 3Yo
qY = -_ss r s / - wr-'-_ sin wt + Wrs rs

(4-115)

As before, the term in Yo is assumed to be negligible and hence vanishes.

qy -2 Yo= rs (1 - cos wt)

Then

(4-116)

or by use of equations (4-113) and (4-110)

qy = -2Q(Yo)(1 - cos wt) (4-117)

With these correction factors the first-order Clohessy-Wiltshire equations can be

upgraded in the case of planar motion to the form

__=212Xox 3Yo_sinwt_2 Yo__cos wt+(6Y° 3x°_wtrs \_s rs ] Wrs rs Wrs]

YO Xo

+ 2 _ + rs + 4Q(Yo)(Sin wt- wt)

Yo 2£oY -( 2_O 3---YO/coswt+ sinwt 4yO

_-s \_rrs rs/ _ + '_-s - _-'_s

(4-11s)

- 2Q(Yo)(1 - cos cot)

With considerable cancellation in the Q

equations

x Xo Xo 2Yo (.m = _ cot + m + __1 - cos cot) (4-120)
r s cor s r s _r s

y_. Yo Yo
= m + _ sin wt (4-121)

rs rs cor s

If it is desired to achieve interception at some time r 1, set x and y equal to zero

and solve for the velocity needed to achieve these conditions. When this procedure is

followed, Xc as a function of T 1 can be expressed as

Xc x o sin w_ 1 + 2Yo(1 - cos coT1)
(4-122)

cor s rScoT 1 sin cot 1

(4-119)

terms, these equations lead to the equivalent
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and Yc can be expressed as

Yc Yo

Wrs r s sin wT 1
(4-123)

Equations of Sparrow and Price

An alternative guidance-equation set is obtained if Q(Yo) is retained in the

form of equation (4-113). In this case, the cancellation between equations (4-118) and

(4-120), and that between equations (4-119) and (4-121) does not occur so extensively,

and one can obtain guidance equations by setting x in equation (4-118) and y in

equation (4-119) equal to zero and solving for the conditions needed to rendezvous in

some specified time r 1. The set which results is analogous to equations (4-122) and

(4-123) except, however, that in this case the resultant equations can be expressed as

the Clohessy-Wiltshire equations with an additional correction factor•

In equation (4-118) set the left-hand side equal to zero and multiply through by

sin w_-1. In equation (4-119) set the left-hand side equal to zero and multiply through

by 2(1 - cos coT1). Then add the two equations to get

Xc = 1FXo sin ¢0_-1 +Yo 6(wr 1 sin WTl-14+14 cos W_-l)_

Q (_°)(wl- 1 +A) (4-124)

where A is given by equation (4-10)

A= 3wT 1 sin w_ 1 - 8(1 - cos Wrl)

Then substitute the right-hand side of equation (4-124). in equation (4-119) for

again with the left-hand side set equal to zero, to get

XO lco ,oWrs = 2 rsk wT1) + _ 4(sin wT 1 - 3w1"1

(4-10)

XO_

Q4(-_°)-_ - 3wl- 1 sin W'rl)W'r 1 (4-125)

These (equations (4-124) and (4-125)) are the rendezvous equations of Sparrow

and Price (ref. 12). It is of some importance to understand the basic physical assump-

tions under which these equations were derived. Particularly, they were derived

under the assumption that in the Q term Yo is zero. This assumption is not ver_

disadvantageous for real orbits where both rendezvous and target vehicles are in nearly

circular orbits. Except for this assumption, the equations are found to work extremely

well so long as both bodies are in the same orbit plane• It is also useful to note that

the Q-equation (equation (4-113)), degenerates to zero near the target in equa-
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tions (4-124) and (4-125), thus reducing these equations to the linearized Clohessy-

Wiltshire form.

These equations have been tested extensively and have been found to be the best

purely analytical solutions so far published. The assumptions in the derivation, how-

ever, do include neglecting secular terms. Thus_ these equations will eventually

break down, and they should be used with caution when rendezvous is to be attempted

over a long period of time including several orbital periods.
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CHAPTER 5
"m-A A A-I

DYNAMICS OF CONNECTED-POINT MASSES

In chapter 1 the motion of a point mass in orbit was discussed. In chapters 3

and 4 the relative motion of two point masses was considered in some detail. A logi-

cal extension of this development is to consider two point masses which are held a

fixed distance from each other, creating a dumbbell structure. Such a dumbbell in

orbit under the influence of a gravity field will be studied in this chapter. This dumb-

bell will then be connected at its center of mass to a second dumbbell through a

torquing gimbal system. It is hoped that in this manner a simple mathematical model

can be developed which will allow an analytic treatment with a minimum number of

approximations and which will exhibit the effects of both gravity gradients and gyro-

scopic moments. This development is intended to provide a base point for more com-

plicated analyses.

Since the dimensions of realistic space vehicles are small in comparison with

separation distances which have been under discussion in chapters 3 and 4, sufficient

accuracy for this analysis can be attained by using rectangular coordinates. One

dumbbell will be assumed to be small and spinning rapidly, thus simulating a gyro-

scope. The other dumbbell is assumed to be moving slowly and thus simulates the

characteristics of a cylindrical space station.

The equations of motion will be found from the Lagrangian subject to the appro-

priate constraints and then simplified where dropping small terms is appropriate. A

transformation will then be made on the smaller dumbbell transforming this equation

to a system more natural to classical gyroscope spin by assuming that precession

and nutation are slow phenomena.

Moments Acting on a Simple Dumbbell in a Right-Handed, Moving,

Rectangular Coordinate System

The Lagrangian for a single dumbbell in a right-handed, moving rectangular

coordinate system in a circular orbit is

Y+rs)+x

+ mgere2 _ Amw2(x2 + y2 + z 2) (5-1)

It can be seen that this equation is the same as equation (3-8) with rs set

equal to zero except for the Lagrange multiplier in the last term on the right which

acts as a constraint on the distance from the center of mass. Except for these

changes the assumptions are also the same as in equation (3-8), namely, an inverse-
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square gravity field for a spherical earth with point masses in orbit. In this case it is

assumed that both point masses are identical and that motion about the common center

of mass for the two ends of the dumbell is uncoupled from the orbital motion of the

center of mass. The constraint specifies that each individual mass is some fixed dis-

tance p from the common center of mass with p2 held constant. Thus equa-

tion (5-1) must be satisfied subject to a constraint (ref. 13) expressed by k, the solu-

tion for which will allow specification of the tension or compression in the member

connecting the point masses.

With the semilength of the dumbbell given by

p2 = x2 + y2 + z 2 (5-2)

the equations of motion become

mx-2m_- mx_2+
mgere2X

Ex2 + (Y + rs) 2 + z2_ 3/2

m_ + 2n_o_ - m(y + rs)O_2+
mgere2(y + rs)

_x 2+(y+rs) 2+z_ 3/2

m_ + mgere2Z - 2Xmw2z = 0

_2 + (y + rs) 2 + z_ 3/2

- 2kmo_2x =0

- 2Xmo_2y = 0 (5-3)

In order to nondimensionalize the foregoing equations for convenience in han-

dling, divide througii by w2r s Which yields

mx 2my mx + mgere2 X/rs mx

l r,,

m-L+"m--_-m(1+_)+
o_2r s Wrs

mgere2 1 +

I_=)+ r-.,_Vi'-a)lrs3x2 (1+r_)2+,_-_s}j

mz mgere 2 Z/rs
+

W2rs _2rs3 Iraqi+( 1

(5-4)
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Now w 2 = gere2
for one orbit, and so the system can be nondimensionalized in the

rs3

normal way for orbits yielding (dropping the unnecessary m)

Ex- 2Y-X+X 2 +(1 +Y)2+Z - 2XX=0

Ix 2]-3/2+2X- (1 +Y) +(I+Y) 2+(1 +Y)2 + Z -2XY= 0

EX 2_-3/2+Z 2 +(1 +Y)2+Z - 2kZ= 0
J

with p2 in equation (5-2) nondimensionalized to the form

p2 = X 2 + y2 + Z 2 = Constant

Transposing so as to have only the acceleration terms on the left

Ex=2Y+X-X 2+(1 +Y)2+Z +2kX

IX 2] -3/2=-2X+(1 +Y) - (1 +Y) 2 +(1 +Y)2+Z +2XY

Z=-ZEX2+(I+y)2+Z2] -3/2 + 2XZ

The exact moments become

(1) In pitch

M%itc h = m(XY - YX)

{: [x= m 2XX + X(1 + Y) - X(1 + Y) 2 + (1 + y)2 + Z

Ix- 2YY-XY+XY 2+(1 +Y)2+Z

(2) In roll

Mro11 = m(YT, - ZY)

(_ Ix= m YZ 2 + (1 + y)2 + Z + 2XZ - Z(1 + Y)

+Z(I+y)B2+(I+y)2+Z2_ -3/2}
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(3) In yaw

Myaw = m(X}, " ZX)

B= m XZ 2 + (i + y)2 + Z - 2ZY - XZ

+XZt:_2_ +(i +Y)2+Z (5-10)

It is seen that the Lagrange multiplier cancels out of the moment equations.

Make a power-series expansion on the gravity term and approximate by dropping

terms of higher order than the first to get

2 + (1 + y)2 + Z = 1 - 3Y + Higher-order terms

Then equations (5-8), (5-9), and (5-10) become

h_Ipitc h -_ m_XY- 2(XX + y'x_')'] (5-11)

M--'roll -- m(2:KZ - 4YZ) (5-12)

M%a w _ m(-XZ - 2ZY) (5-13)

It can be seen that in the limiting case echere the dumbbell velocity is negligible, the

preceding equations reduce to the usual form of gravity-gradient torques for a rotating

rectangular coordinate system. The important point here, however, is that the

dynamic terms are included. These terms allow an adequate treatment of a rapidly

spinning dumbbell.

Equations of Motion of a Single Dumbbell System

Equation (5-6) is

p2 = X 2 + y2 + Z 2 = Constant

Then the time derivative is

2p/_= 2x_ + 2,_ + 2z_ = 0

and, taking the second time derivative,

(x_+_ +z_,)+ (_2+i_2+_2)-_o

or

+,,i-+z'i=_(42,+f +
This relation can then be used to determine the Lagrange multiplier.

tions (5-5) by X, Y, and Z, respectively, and add

(5-6)

(5-14)

Multiply equa-
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x_--2x_+x_ x_.__.+(1+Y?+z_-3/2- + 2XX 2

2_-3/2YY=-2:_Y+Y(1 +Y) =Y(1 +Y) 2+(1 +Y)2+Z +2XY 2

2_-3/2ZT.= =Z 2 2 +(1 +Y)2+Z +2_Z 2

Then combining these equations by adding the terms containing the Lagrange

multipliers

_._(x_÷_.÷z_)=(x_÷_÷ z_,)-_.(x____ _.÷_1÷_)J

+(x_.,.Y_..,.z_.)l:x_.+_,,._)_.,.z_-_'_

+Y_ +(i +Y>_+z_-3/_

When the right-hand side of equation (5-14) is substituted for the first term on the

right and this equation is solved for _t, the result is

= _ + + XY -YX X2+Y(I +Y)

2(X2+y_. + z2)-x 2+ y2 + z2 2(x2 +y2 + z2)

(5-15)

AA A A-I

+ 2+(1 +Y)2+ Z +
Yl-X_+(I +YP+z_-3/_

_.(x_÷_-÷z_)

This expression acts to constrain the length of the dumbbell to a constant value.

it serves as a measure of the dumbbell tension components in the X, Y, and Z

directions due to the gravity=gradient and dynamic cross-coupling terms.

If, now, three direction cosines of the dumbbell orientation are defined by

cos 51 = X = X

(x2+y2+z2)1/_ v

v_
cos 55 =

P

and

Z
cos53 =_

(5-16)

Thus _," .T_'- _ ....
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'Itcan be seen very readily from equations (5-5) that the nondimensionai tension in the

dumbbell is given by

T = -AP

If the gravity term is expanded, _ reverts to the approximate form

•2 .2 .2
_=_ x +Y +z x_-_

+ 1(1 - 3Y)_(x_÷_÷z_)x_÷_÷z_

k A-d

X 2 + 4Y 2

_(x_.÷_ +z_.) (5-17)

If this value of _ is then placed back into equations (5-7) and the gravity terms are

expanded in these equations also, equations (5-7) become, approximately,

_-_+x-_x(_-_)+_(_+_ +_)+x(__.+4_)
X 2 + y2 + Z 2

(5-18)

I

_2 _2)+y(x2+= -2X + 4Y 2Y(XY - YX) + y(_2 + + 4y2)

X 2 + y2 + Z 2

__-__z(___)+z(__.+_ +_)+z(x_+_)
X 2 + y2 + Z 2

(5-19)

(5-20)

Torque Equations of a Double Dumbbell System

The equations of motion derived in the foregoing section of this chapter can be

extended to include the case where the two dumbbells are attached by a suitable gimbal

system at their centers of mass. To have a perfectly free attachment would be a

trivial case, since neither dumbbell would be able to sense the other, and the results

would not be different from the case where each dumbbell is considered separately.

Consider then, two dumbbells attached by a two-gimbal pivot arrangement (as in

fig. 5-1) which is free to assume any desired angle but to which torquing motors are

attached. The torque applied by either dumbbell becomes a reaction torque on the

other dumbbell. Let the subscript 1 apply to the large dumbbell which is assumed

to be moving slowly and which simulates a space station or orbiting satellite, and let

subscript 2 apply to the smaller, rapidly moving dumbbell which simulates a gyro-

scope. In order to make the problem as general as possible, it will be assumed that

the space station can also be controlled by reaction controls and so forth. The equa-

tions of motion of the space station become, with the summations over all external

torques,
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in pitch

ml Xl l Y1 1)3XlY1 (5-21)

in roll, and

in yaw, where the torques produced against the gyroscope are given by Ti,j, k and
where external torques (couples) produced by reaction controls, distributed drag, and

so forth are represented by Ti,j,k.

CONSTANT-SPEED
GYROSCOPE

MOTOR-_-_

E 'UE
MOTORS.

A-A • A-m

TORQUE
MOTOR,c

BASE ATTACHED TO SPACECRAFT'*"

Figure _-i.- Torquing gimbal assembly.

The equaUons of motion of the gyroscope become
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and

m2(X2_2-Z2_2+2Z2_2÷X2Z2):-_Tj

If these three equations are combined by elimination of

tions are

..X2_r 2 - ¥2X2 " 3X2Y 2 + 2(X2X 2 + ¥2Y2)=- 1Y1 - ¥1X1 - 3XIY 1

(5-25)

(5-26)

Ti,j,k, the resultant equa-

i Ai

(5-27)

m(___2)(¥ ..

(5-28)

..
(5-29)

These equations are general except for the higMy accurate gravity expansion and con-

tain all of the dynamics of interest.

If it is assumed that there is no thrust from the reaction controls, and it is also

assumed that the gyroscope is employed in such a way as to maintain the station in an

essentially motionless condition, the station velocity and acceleration terms are negli-

gible in relation to the static gravitational torque term. Under these special condi-

tions the right-hand sides of equations (5-27), (5-28), and (5-29) are dominated by the

static gravitational torque, and the other terms can be neglected. Other approxima-

tions are also possible on the left-hand sides of these equations. Small dimensions

are assumed for the gyroscope; therefore, the static gravitational torque is dropped

while the velocity and acceleration terms are retained. The resultant simplified set

of equations of motion becomes

- + = ( _3X1Y1/ (5-30)

m 1

Y27.2 - Z2Y 2 - 2X2Z 2 = -(_-_)(4Y1Z1) (5-31)

X2"7'2 - Z2X 2 + 2Z2Y 2 = - X 1Z1) (5-32)

_q

\

\
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These equations display two important features. First, gravity-gradient terms

are still present on the right-hand side of the equations. Second, the gravity-gradient

terms affect the motion of the gyroscope in a manner that is magnified by the ratio of

the mass of the station to the mass of the gyroscope. This magnification would seem

to present a practical limit as to how lightweight space-station control gyroscopes

should be since the dynamic terms should be capable of balancing the gravity-gradient

terms for any desired station orientation.

It is informative at this stage to summarize briefly the assumptions that have

gone into the derivation of equations (5-30), (5-31), and (5-32). First, it was assumed

that both station and gyroscope were point-mass dumbbells of fixed length, in orbit,

connected at their centers of mass but free to move in all directions subject to a

Lagrangian which implied that the gravity gradient had negligible effect upon the cir-

cular orbital motion of the center of mass. Next, the two dumbbells were connected

in such a way that a torque could be applied by one dumbbell to the other. Thus energy

could be supplied from outside the system by torquing motors while producing no

change in total angular momentum.

The equations of motion were simplified by expanding the gravity field as in the

initial single-dumbbell derivation and subsequently by assuming that the dumbbell

which symbolized the gyroscope was physically small compared to the station. It was

further assumed that the gyroscope was employed to maintain the space station in an

essentially motionless condition which permitted the station velocity and acceleration

terms to be neglected. This assumption placed a constraint on the lightness of the

gyroscope relative to the space station.

Natural Gyroscope Coordinates

At this stage, both gyroscope and station are expressed in a rectangular coor-

dinate system. The physical situation is easier to understand, however, if the gyro-

scopic motion is expressed in a coordinate system which is more natural to the gyro-

scope. A coordinate system more in agreement with those used in classical mechanics

is achieved by making the following conversion (see fig. 5-2):

X2 = P2 (cos 7 cos _7+ sin 7 cos _ sin 77) (5-33)

Y2 = P2 (sin 7 sin _) (5-34)

Z 2 = P2(sin y cos _ cos 77 - cos 7 sin 77) (5-35)

where it should be remembered that X2, Y2' and Z 2 are already nondimensional-

ized in terms of r so that this set is an exact analogy with equations (I-100), 7 is

the angle of m 2 in the gyroscope spin plane from a line where this plane intersects

the horizontal plane, 77 is the angle of intersection of the gyroscope plane with the

A A • Am
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horizontal plane as measured from the x-axis, and _ is the angle between the gyro-

scope spin vector and the y-axis. This transformation is orthogonal since

i ll-I

X22+Y22+ Z22=P22

Z

Line of

/
/

/

/

/
/

I
I

of motion
of the dumbbell

/

Lon,
of the

ascending

nod_

!

uatorial
:e plane

Ascending
node

Figure 5-2.- Natural gyroscope coordinates.
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Under these conditions the pitch equation becomes

P22_sin _ cos _)7 + (sin 7 cos 7 cos _ cos _/+ sin2_ sin 7/)_ + (sin _ cos y sin _ sin _7

- sin27 sin _ cos _ cos 7/)_ - (sin 7 cos 7 sin _ cos _/)_2 + (sin y cos _ sin _ cos 7/

+ sin2_ sin _ cos _ sin _/)_/2 + 2(cos27 cos _ cos _/+ sin 7 cos 7 sin 7/)_

+ 2(sin27 sin2_ cos _/)_ - 2(sin 7 cos 7 sin _ cos _ cos _/+ sin27 sin _ sin _/)_

+ 2(cos27 cos _ sin7 cos 7/+ sin 7 cos 7 cos2_ sin2_/+ sin 7 cos _ sin2_

- sin _ cos 7 cos277 - sin27 cos _ sin 7/ cos 7/)_ + 2 (sin27 sin _ cos

- sin y cos 7 sin _ sin _/ cos _/ - sin2y sin _ cos _ sin2_/)_ + 2(sin27 cos2_ sin _/ cos 77

+ sin 7 cos 7 cos _ cos2_/ - cos27 sin 7/ cos _/ - sin 7 cos _ cos _ sin2_/ = 3X1Y 1

The roll equation becomes

(5-36)

+ sin 7 cos 7 sin _ cos _7)_ - (sin 7 cos 7 sin _ sin tT)__' + (sin 7 cos 7 sin _ sin

-sin_sin_cos_cos_)_'+_(co2_cos_sin,-sin _cos7cos_)_

2 (cos27 cos _ sin2y - sin 7 cos 7 cos2_ sin _/cos _/+ sin27 cos _ cos2_/

2(sin 7 cos 7 cos _ sin _7cos _7 - sin2y eos2_ cos297 + sin 7 cos 7 cos _ sin 7/cos _7

cos27 sin2_7)_ = _ ml_22 (4YIZ1) (5-37)

"4-

÷

÷
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and the yaw equation becomes

.P22 _cos _)y- (sinV cos y sin _)_- (sin2y cos2_ + cos2v)_ - (sinV cosy cos _)_2

_,.(co2.__=@_÷(=_n_=_=_co=_)_+'.(=_n_co=_=_="_)_

÷'.(=_n_co=_=_n_co=__o=,-co="_=n_=_=,)_÷'.(=_n"_co="_co=,

- sin 7 cos 7 cos _ sin 7/ = - XlZ 1

Owing to the choice of this coordinate system the. time for one complete revolu-

tion of the gyroscope will be very short in relation to the time required for precession

or nutation; that is, _ is much larger than either _ or _. Thus, trigonometric

functions of y can be averaged on the basis that the other parameters are essentially

constant over any given single cycle yielding considerable simplification in the equa-

tions of motion. It can be readily surmised that the penalty for this approximation

consists in ignoring the fast nutation.

For a single turn of the gyroscope through an angle 2_, definite integrals can be

used; that is,

sin x dx = cos x dx = 0 (5-39)
_0

_ sin x cos x dx = 0 (5-40)

_0 _/ SO _
sin2x dx = cos2x dx =

Hence, the average value of the even terms is

(5 -41)

i _2_ I j'2_ 1 (5-42_Jo sin2xdx=_ 0 cos2xdx=

and the odd terms vanish. With this spin averaging, the pitch, roll, and yaw equations

become, respectively,

P221sin _ cos 7/)Q+ 1(sin W)_ - 1(sin _ cos _ cos _1)_+ _1(sin_ cos _ sin _})_2
L 2 2

+ (cos _ cos _7)_ + (sin2_ COS 7/)_- (sin _ sin 7/)_ + (sin _ cos _- sin _ cos _ sin2_/)_

I A I

- (sin2_ sin _7COS 7})_1: _--_12(3XIY1) (5-43)
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P22_sin_sin7)_-_(cos7)_-½(sin_cos_sin7)_-_(sin_cos_cos7)_2

+(cos_sin7)_+(sin_cos7)_+(sin2_sin7)_+(cos_)_

A A A A_e

+ (sin } cos _ sin 7 cos 7)_- (cos2} cos27 + sin 2 = ___2(4YlZl) (5-44)

and

P22_cos _){;- 1(cos2_ + 1)_-(sin })_ + (sin } cos _)_/_- (sin }sin 7)_

+ (cos2} COS 7)g_=- ml_2 (XIZ1) (5-45)

The gyroscope is now specified by slowly varying parameters which define the position
of the spin axis as a function of time.

Separation of the acceleration terms can be accomplished as follows:• Multiply

the pitch equation by cos _ cos 7, the roll equation by cos _ sin 7, and the yaw equa-

tion by sin _; add the two former and subtract the latter to obtain

P2 (sin _)_ + _ + (sin 7)_' - (cos _ sin 7)

m 1

= _22(3X1Y1 cos _ cos 7/ -4YlZ 1 cos _ sin 7+ XlZ 1 sin _) (5 -46)

Then multiply the pitch equation by sin 7/ and the roll equation by cos 7 and
subtract

p 2r1.: 12 [_ _ + _(sin } cos });72 _ (sin })_ - (cos } cos 7)7 + (cos37

m 1

= _22 (3X1Y1 sin 7 + 4YIZ 1 cos 7) (5-47)

Finally, multiply the pitch equation by sin _ cos 7, the roll equation by sin _ sin 7,
and the yaw equation by cos _. Add these to obtain

P22_-(cos _)_+(sin})_+(cos }cos 7)_-(sin_sin7)_

m 1

= _2 (3XlYI sin _ cos 7 - 4YIZ 1 sin } sin 7- XlZ 1 cos $) (5-48)
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These equations represent the motion of the gyroscope when employed to hold a space

stationthat is under the influence of a gravity-gradient fieldstationary. The solution

of equation (5-46) gives the precession rate, the solution of equation (5-47) gives the

nutation rate, and the solution of equation (5-48) gives the change in spin speed result-

ing from conditions on the stationspecified by X1, YI' and Z1. Ifother control

maneuvers are to be made, the more general relationships for stationmotion and

acceleration may be required as given in equations (5-27), (5-28),and (5-29). Solu-

tions of equations (5-36), (5-37),and (5-38) with the more general expressions for

stationeffectswould give the torque program required by reference back to equa-

tions (5-24),(5-25),and (5-26).

Equations (5-46),(5-47),and (5-48) can also be written in terms of moments of

inertia. If

12 = m2P22

is the nondimensional principal moment of inertia of the gyroscope dumbbell and

Ilx Y = mlXlY 1

I1y z = mlY1Z 1

I1x z = mlXlZ 1

are the respective cross products of inertia of the station, then

1(sin _)_ + _ + (sin 7})y- (cos _ sin _7)_
2

3Ilxy 411yz Ilxz
- cos _ cos _/ cos _ sin 7/+ _ sin

12 I2 12
(5-46a)

i A-a

1 _ + 21_(sin} cos _)_2_ (sin _)_7 - (cos _ cos W)_ + (cos3z})_2

and

3Ilxy 411yz
- sin 7}+ _ cos 77

I2 I2

- (cos _)_ + (sin _)_ + (cos _ cos _)_ - (sin _ sin 7/)_

(5-47a)

3Ixy 4IIyz Ilxz
- sin _ cos _7 sin } sin T/- _ cos _ (5-48a)

12 I2 12

These equations apply either dimensionalized or not since they involve the ratio of the

inertias as the only dimensional terms.
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SYMBOLS

i llil

C

CD

CL

D

K 2
constant defined as cos 7b - -_- Yb

constant of integration which describes amplitude of departure from

reference circular orbit

K 2
constant defined as

constant

drag coefficient

lift coefficient

drag force

I

E • eccentric anomaly

g

ge

H

gravitational acceleration

earth gravitational acceleration

total energy per unit mass

Hs

h

h

ha

hp

I1

12 = 13

i,j,k

scale height

angular momentum per unit mass

height above surface of earth

maximum (apogee) altitude attained by vehicle

minimum (perigee) altitude attained by vehicle

moment of inertia of gyroscope in spin

moment of inertia of gyroscope perpendicular to spin axis

orthogonal coordinates

K integration constant defined in equation (4-34)
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K 1 constant defined as
CDPeS

2m

A A-i

K2

L

L

L/D

constant defined as
CLPeS

2m

Lagrangian, potential energy subtracted from kinetic energy

lift force in chapter 2

lift-drag ratio

M

M •

mean anomaly

translation substitution used to solve equation (4-52) and defined

in equation (4-57)

m mass of vehicle

m

P

mass of dumbbell when single or of station-gyroscope combination when

two dumbbells are present

orbital period

P

Q(yo)

q

R

r

re

rm

rs

S

S

140

pressure

function defined in equation (4-113)

dynamic pressure

radial distance from space station to vehicle

distance from center of planet to orbital vehicle

radius of earth

radius of attracting body

distance from center of attracting body to reference orbit

surface area of entry vehicle

distance traveled

\
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time

i A-I

u dummy variable, a cos

V

V

Vcir

W

velocity

substitution variable used to solve equation (4-51)

circular satellite velocity at surface of earth

weight of entry vehicle

X,Y,Z

x_y_z

m

Y

Y

nondimensional coordinates of shell coordinate system centered on a body

moving in a circular orbit about an attracting planet or satellite

dimensional coordinates of shell coordinate system centered on a body

moving in a circular orbit about an attracting planet or satellite

function of a, b, and y defined by equation (2-50a)

function of altitude, e -/3h

angle of attack

functions of initial velocity component in x-direction defined

in equation (4-35)

r

_K

A

decay constant of atmosphere

function defined by equations (2-56a), (2-56b), and (2-56c) depending

on conditions

flight-path angle

spin angle of gyroscope dumbbell from line of nodes

constant functions of initial out-of-plane velocity defined in equation (4-72)

function of a power expansion in p defined in equation (4-75)

\,

eccentricity

arbitrary constant of integration which describes epoch angle with

respect to reference circular orbit
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®

P

P

P

P

P

T

r1

142

..__ _V._2function of
velocity, V 2 _gr - 1_ cos

angle between line of nodes and x-axis measured in x-z plane

range measured in angle about center of earth

angular coordinate in a cylindrical system with origin at center of

attracting body and lying in plane-of-reference circular orbit,

measured from positive x-direction clockwise

angle formed by x-axis and projection of R on orbital plane of space

station

Lagrange multiplier

gravitational constant

angle between y-axis and angular-momentum vector of gyroscope

nondimensional semilength of dumbbell

density of atmosphere

function of _, _, and _ defined in equation (4-55); hence, a function

of initial velocity and position in x-direction only

nondimensional radius defined by equation (3-88)

semilength of dumbbell

nondimensionalized or scaled time, wt

time to rendezvous

ejection angle

function of a power expansion in p defined in equation (4-75)

angle formed by R and orbital plane of space station

directional angular velocity

angular velocity (magnitude)

A--A A A-I
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Subscripts:

a

c

e

i,j,k

m

max

P

V

apogee or highest trajectory point

breakout, or exit, condition

cOmputed

earth

orthogonal coordinates

moon

maximum

initial condition

perigee or lowest trajectory point

station position or location of origin

vehicle

1 space station

gyroscope

Dots over symbols denote differentiation with respect to time or scaled time

depending upon the section of the book in which they appear. Primes refer to first-

order-solution quantities. The tilde ~ represents nondimensionalization with

respect to the semimajor axis.

For constants, any consistent set of units may be used. In this paper the fol-

lowing values were chosen:

ge -- 9.807 m/sec 2

r e -- 6378.15 km

r m = 1736.5 km

r s = r m + 200 -- 1936.5 km

= 0.13666 per km
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/i = 4.8936 × 10 TM m3/sec 2

Vci r = 7848.62 m/sec

p = 1.225 kg/m 3

m-A A A da
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