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HYPERSONIC AERODYNAMIC CHARACTERISTICS OF A FAMILY

OF POWER-LAW, WING-BODY CONFIGURATIONS

By James C. Townsend

Langley Research Center

SUMMARY

The configurations analyzed are half-axisymmetric, power-law bodies surmounted

by thin, flat wings. The wing planform matches the body shock wave shape. Analytic

solutions of the hypersonic small disturbance equations form a basis for calculating the

longitudinal aerodynamic characteristics. Approximate boundary-layer displacement

effects on the body and wing upper surface are included. Skin friction is estimated by

using compressible, laminar boundary-layer solutions. By using an effective body shape,

the method is extended to small angles of attack. Three basic theoretical assumptions

are made: (1) the body is slender, (2) the shock wave is strong, and (3) the Mach number

is large. In comparisons with available experimental data, good agreement was obtained

when these assumptions were satisfied. The method is also used to estimate the effects

of power law, fineness ratio, and Mach number variations at full-scale conditions. The

implementing computer program is included.

INTRODUCTION

Much research has been devoted to the hypersonic flow about half bodies of revolution

mounted beneath a thin wing. Theoretical studies (refs. 1 to 3) and experimental work

(refs. 4 to 7) show that with half-cone bodies these configurations combine good stability

characteristics with high values of maximum lift-drag ratio. Replacing the conical

bodies with those having power-law profiles generates a larger class of configurations

and one which is more representative of aircraft shapes. Low wave-drag bodies in the

hypersonic regime are generated by power-law curves with exponent in the range 0.5 to

0.8. (See refs. 8 to 12.) These bodies have the additional advantage of better volume

distribution than cones.

The purpose of this study was to develop a method for calculating the longitudinal

aerodynamic characteristics of power-law bodies with reflection-plane wings. The method

applies to configurations consisting of half of an axisymmetric power-law body mounted

beneath a thin wing whose planform matches the theoretical body shock shape at zero angle



of attack. Small-disturbance theory, with small perturbations for Mach number and
boundary-layer displacement effects, provides a means for calculating the pressure field
and shock-wave shape. This pressure field is integrated analytically to obtain the forces
and moment on the body. Small angles of attack are simulated, and laminar skin friction
is calculated. The computer programs which have been written to implement this method
are presented in an appendix.

SYMBOLS

a shock-wave perturbation constant

I'tw/ co
C Chapman-Rubesin constant,

Tw/T,

Axial force
CA axial-force coefficient,

qoS

CD drag coefficient, D

CL lift coefficient,
q S

Cm pitching-moment coefficient, Pitching moment
40Sc

CN normal-force coefficient, Normal force

cooS

CN,b normal-force coefficient of body

CN,w normal-force coefficient of wing

Cp pressure coefficient, -

mean aerodynamic chord, taken as cb 21
m+2

D drag

E constant in boundary-layer displacement thickness
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F similarity static-pressure variable

f fineness parameter,
rb, B

I boundary-layer profile parameter

J integral of F from body to shock

L lift

1 length

Moo free-stream Mach number

m exponent of power-law body shape

p dimensionless static pressure,
26 2q 0

Pu average wing upper surface pressure

q, free-stream dynamic pressure

R dimensionless shock-wave radius,
61

Roo,l free-stream Reynolds number,

r dimensionless radial coordinate, -

S projected planform area

s c  distance from nose to upper surface center of pressure

T temperature

U00 free-stream axial velocity

3



V volume of body

x dimensionless axial coordinate, ,

a angle of attack relative to body axis

y ratio of specific heats

6 shock-wave slope parameter, 6 = RO -1
*1Z fq%

6 dimensionless boundary-layer displacement thickness, -

E1 small perturbation parameter for Mach number, 1
(6 Mo)2

6 buayd6*/d
E small perturbation parameter for boundary-layer displacement, d6*/d

drb/d

17 similarity form of radial coordinate, -r
RO

o shock-wave angle

K=2

AL viscosity coefficient

fe

similarity form of axial coordinate

p dimensionless density,
pO

Subscripts:

B at base of configuration, x = 1

b body
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e effective body shape

max maximum

(L/D)max maximum lift-drag ratio

0 zero-order similarity solution (E 1 - 0)

1 first-order similarity solution (E 1
2 << 1)

00 free-stream value

w wall

An asterisk denotes that the quantity includes boundary-layer displacement effect.

A bar over a symbol denotes a dimensional quantity.

THEORY

The method applies to the general configuration shown in figure 1(a). It consists of

one-half of a body of revolution mounted beneath a thin wing at an angle of attack of 00 .

By assumption, the wing acts as an endplate to maintain the axial symmetry of the flow

about the body. The wing planform matches the shock-wave shape about the full body,

and the body pressure field acts on the wing to provide additional lift. The method is put

together from a series of pieces in order to arrive at the final aerodynamic coefficients.

The basis for the development is the result in hypersonic slender-body theory that for

power-law bodies, there are similarity solutions to the inviscid flow equations in the hyper-

sonic limit. (See ref. 13.) Independent small perturbations are made to account for Mach

number effects and for laminar boundary-layer displacements. (See ref. 14.) To simulate

the effects of small angles of attack, a simple substitution of an effective body is made.

The resulting equation for the pressure distribution is integrated analytically to obtain the

pressure forces and moments on the body. Then the laminar skin-friction drag is calcu-

lated by using the analytic pressure distribution. The development outlined is explained

in more detail in the following sections.

Inviscid, Power-Law Body Solution

If, in inviscid hypersonic flow about a slender body, the velocity changes in the free-

stream direction are neglected compared with the transverse flow velocities, the hyper-

sonic small-disturbance equations result. When a strong, power-law shock wave occurs
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in such a flow at infinite Mach number, these equations indicate that the body generating
the shock also has a power-law shape. (See ref. 14.) Thus in figure 1(a), the shock wave

S mis generated by the body = In dimensionless form (fig. 1(b)) these

relations become RO = x m  and rb = x m . When the dependent variables are expresser

in terms of the slope of the shock wave, the axial variations may be separated from the
radial variations of the variables to obtain similarity equations. Thus in similarity varia-
bles ( = x and 7 = r/RO; RO = m, rb = 77b~ m , and the dimensionless pressure field is

P0 = F0 ()-~) = m2F 0 ()2(m-). Here F0 () is found by solving a set of ordinary

differential equations in 77. (See refs. 14 and 15.)

In order to relax the restriction to infinite Mach number, Kubota (ref. 14) applied
a small perturbation procedure. This procedure results in the following first-order pres-
sure distribution and shock-wave shape about the power-law body rb = r/bxm:

Pl(,7) = m 2 F0 (7) 2(m-1) + E1m 2 F1(77) (1)

Rl()= m 1 + Ela 1 2(1-m) (2)

Here El = (Moo6)-2 is a small parameter corresponding to the hypersonic strong shock
assumption M, sin 0 >> 1. The necessity of simultaneously satisfying 62 << 1 and

«12 << 1 puts a strong requirement on the Mach number. That is, the present method is
limited to M, >> 1 so that with a slender body 62 << 1, the parameter E 1 is still
small. Figure 2 shows the relationship between 6, E1 , and Mo and can be used to
check on E1 for a given Mach number and body shape (by noting that 6 = 1/frb).

The perturbed pressure variable F 1(?I) and the shock-wave displacement constant
a1 are found from a second set of ordinary differential equations. (See refs. 14 and 15.)
The two sets of differential equations involve only m and y as parameters, and thus
they can be solved over the needed range of values and the tabulated results used in appli-
cations to flow problems. Table I and figure 3 present the results needed for the current
application. They were found by numerical integration techniques similar to those
described in reference 16. (With acess to modern digital computers, the exact numerical
computation has become at least as easy to carry out as the approximate technique which
gives ref. 16 its title.) The integrated pressure JO and pressure perturbation J 1 are

131
defined as JO FO(r7 ) d77 and J1 - F 1( 7) dr7 ; they will be applied to the wing

undersurface. b
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Corrections for Boundary-Layer Displacement

In order to make a corrected approximation accounting for laminar boundary-layer

growth, a perturbed body shape rb*(x) = rb + 6* is used. The displacement thickness of

the boundary layer is given by 6* - 2 mi b Ex3/ 2 -m (based on a result from ref. 17 for
3 - 2my-1 2 3-2mC

adiabatic wall conditions). Here E - Mf2 1b 3-2m C which is
_ Mf 2m 2  1 Ro,l Fo(%b)

very small for large Reynolds numbers. By using the appropriate value for I (the sum

of the transformed displacement and momentum thicknesses in refs. 18 and 19), this

relation for 6* may be applied for any constant wall temperature. If the flow outside

the boundary layer is considered to be the inviscid flow about the "perturbed body"

rb*(x), the corresponding pressure distribution and shock shape are approximated as

follows. In terms of the body radius rb = b m, equations (1) and (2) become

pl = m2F 0 (?))2(m-1) + lm 2 F 1(ij) b d 2 + E1m 2 F 1(?J)

and

m 2(1-m) rb al 1 drb -2]

By replacing rb by rb* (as in ref. 14), these equations become

pl \* dr 2 + 6lm 2 F 1 (7) = m 2 2 (m- 1) (1 + E*)2FO(7) + elm 2 Fl(7) (3)

17b2 (b d

and

R1*() = 1 + all d /_

= m[l + i+ al~e2(l-m] +terms of order E E* (4)

3 -2m
&*/d 2 3

Here E* -_ = E 2  << 1 except in a small region near the nose when m > .

drb/d~7



Simulation of Angle of Attack

The pressure distribution along the pitch plane of the body at angle of attack is
assumed to be the same as that about an equivalent axisymmetric body. This effective
body is at zero angle of attack. It has a power-law profile which closely matches the
windward element in the plane of symmetry of the actual body at angle of attack. Figure 4
shows the relation between the real and effective bodies, and the following expressions are
used to obtain the effective body parameters

Xe = x cos a - rb sin a

rb,e = x sin a + rb cos a

(5)
1 1 - !tan a

-ef ff = -1- f (tan a << 1)rb, e,B tan a +1 1 + f tan a

and

loge(fb,2,e/ b, 1,e)

loge( 2,e/i1,e

so that

me
rb, e 1 x me

le ee

Here :1 and :R2 are points selected to provide a good approximation. A lower limit
of me _ 0.51 was set to avoid computational problems associated with the theoretical
limit as m - 0.5.

The approximating pressure distribution along the body at angle of attack is then

e 2 2 (m e -1)- el e -1)
,e ?b,e) =  + 2v2Eexe 2  me)FO + K1F1b, (6)

where

f 1
f 1 + f tan a

8
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and Ee is the same as E with me replacing m. The factor K appears since

p P1,__e 1 P ,e2 By following reference 6 which uses a similar angle-of-attack
P1,e 262 K 26e 2
method for half-cone wing configurations, this pressure distribution is applied over the

entire body surface. The pressure distribution under the wing from b - 77 5 1 is

assumed to be the same as that in the flow field of the effective body from 7lb, e : l 1.

Since this equivalent body approach does not attempt to account for the actual flow under

the wing, its use necessarily limits the present method to very small angles of attack.
1 < <

For this reason all calculated results presented are in the range : v S 2. Instead of

calculating the wing upper surface pressure in detail, an average pressure is used. This

value is taken from the charts of reference 20, which includes viscous-interaction effects

on the pressure and skin friction on delta wings at angle of attack in hypersonic flow.

Since the viscous effects are approximately proportional to x-1/2, delta-wing results for

which YY x-1/2 dr dx and the span equal to those of the power-law wing are used. The

base pressure is set equal to free-stream static pressure p..

Skin Friction

The skin-friction contribution is the remaining term of the axial-force coefficient to

be evaluated. In this report laminar boundary layers are assumed for all calculations.

The wetted area is divided into the body surface, wing upper surface, and the exposed part

of the wing underside, each of which is treated separately. For the skin-friction calcula-

tions for the body and the wing lower surface, the longitudinal pressure distribution is

modified in the nose region by keeping a higher order term in the pressure equation.

These calculations then use a scheme given in reference 18 for incompressible laminar

boundary layers. Two transformations of the independent variables allow its use with the

two-dimensional compressible laminar-boundary-layer similar solutions of reference 19

for the present cases. For the body, the Mangler transformation (ref. 18) changes the

axial coordinate to that for an equivalent two-dimensional body. For the relatively small

exposed-wing undersurface, a simplified flow model is applied, that is, streamlines are

taken as parallel to the body surface, and the pressure is taken as varying parabolically

from the body to the shock wave. In both cases the Stewartson transformation (ref. 19)

changes the surface length and exterior velocity distribution to the form for an equivalent

incompressible flow; the method of reference 18 is then applied. For the wing upper

surface, the average skin friction from the appropriate charts of reference 20 is used just

as for the upper surface pressure.

Longitudinal Aerodynamic Coefficients

Integrations of the appropriate components of the surface pressures over the body

and wing give expressions for the axial force, the normal force on the body and on the

9



wing, and the pitching moment. In coefficient form the expressions are (to first order in

El and E*):

(m + 1)62me2 1 4v 2 Ee 1  1K -2

CA =- + mFO 2CK" -]K S 2(me + m -1) 4m - 1 r b,e be 2 AF
Sb

2m-s 6 2e " 
1 4v2Ee3 1e )(

CNb 2 2 me +m 1 +2m+ + K ,e)
Ku ym

Sb

2m e22 1 4v2 E 1 4veb 2 4mE

2 4mE Elal 2 iK

CN + wm -12+11b, 0 y + 1 (3- 2 m)(4me-2m+ 1)

+ + 1)L 2m)(4m e 2m + 3) + 2m- m + m+ --2 -
b , e)

1 a Jl,e 1 b --Psc

KI, - m E 1 b.e

CNCN,b+ C N4w 1

1 (m + )(m+ )e2 6 2 7b q 4E

The pitching-moment reference center is at the nose of the body (x = 0). For the corre-
sponding zero-order and inviscid relations, set E1 = 0 and E = 0, respectively. Notethat the factors and m + 1 are associated with the actual planform area used in

normalizing the coefficients.

These equations have been programed for calculation by a high-speed digital com-puter. The program includes the skin-friction calculations on the body and the wing
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undersurface. There is a subsidiary program which computes the parameters required

to get the upper surface pressure and skin friction from reference 20. The appendix

presents an exposition of these programs. The basic program requires only 21600 octal

storage locations after compilation on the Control Data Corporation 6600 computer at

the Langley Research Center and runs an average case with 11 angles of attack in about

3 seconds of central processor time.

DISCUSSION OF RESULTS

Evaluation of Method

There have been no reported comprehensive experimental evaluations of the power-

law, wing-body configurations to which the theoretical analysis applies. The data avail-

able fall into two groups: (1) drag of complete power-law bodies of revolution (no wing)

at several Mach numbers and fineness ratios, and (2) aerodynamic characteristics of

conical (m = 1.0) wing-body configurations. Only a small part of these data satisfy the

high Mach number, the slender body, and the strong shock criteria required for strict

application of the similarity theory. Data for which the criteria are not well satisfied

can be used to determine the limits for practical application of the method.

Power-law bodies of revolution.- The zero-angle-of-attack drag of these bodies is

already calculated as part of the present method. Figure 5 contains four sets of compari-

sons with experimental data. The drag coefficients have been based on the length squared

as reference area in each case to form a uniform basis of comparison. In parts (a) and (b)

of figure 5, the ratio V/1 3 was held constant and yielded a small variation in the fine-

ness ratio as the power-law exponent was varied to obtain the different bodies for the tests.

Figure 5(a) is for tests at Mach 21.6 in helium (ref. 12). The agreement is very good.

The coefficients in figure 5(b) are for tests at Mach 10.03 in air (ref. 21); the calculations

are in good agreement with experiment. Figure 5(c) shows good agreement at Mach 10.35

for a series of power-law bodies having nearly equal fineness ratios. In figure 5(d) the

data for the same bodies at Mach 5.96 is not predicted.

The range of agreement obtained in figure 5 should be considered in light of the

basic assumptions of the theory as discussed in the previous section. For this reason

the pertinent parameters are shown in the legends of figure 5 and also in figure 2. Since

6 << 1 for all cases, the slender body condition is well satisfied. The hypersonic assump-

tion (MO >> 1) is generally considered to be satisfied for M > 5 and so should not cause

the discrepancies in figure 5. However, the strong shock assumption 612 << 1) is satis-

fied only for figure 5(a), where the agreement is very good. This result shows the
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importance of evaluating e1 to determine whether the theory can reasonably be applied
to any particular configuration and free-stream conditions.

As an additional comparison with the present method and the experimental data,
drag coefficients based on the simple Newtonian pressure equation Cp = 2 sin2ob and
on inviscid conical flow were calculated and are presented in figure 5. The Newtonian
prediction and inviscid conical solution drag values are low since viscous interaction
effects on the surface pressure become important on high-fineness-ratio bodies at high
Mach numbers.

As noted in reference 22, entropy layer effects become important for power-law
Y+1

exponents less than m - (m = 0.63 for y = 1.4); therefore, the theoretical predic-
2y + 1

tions (which do not include these effects) can be expected to be poorer in that range. A
less subtle limitation occurs at m = 0.5, where 71b = 0; that is, the ratio of shock-wave

radius to body radius becomes infinite. This case is the "blast wave" solution for blunt-
nosed bodies of negligible thickness (for example, a cylindrical rod) as described in
references 15 and 22. For bodies with nonzero radius, as in figure 5, the predicted

shock-wave radius goes to infinity as m - 0.5 and so does the wave drag. Thus, the
theory is not useful for the blunter shapes.

Wing, conical-body configurations.- Theoretical estimates for wing conical body
configurations can be compared with the experimental data in reference 23. The bodies
in this reference were halves of right, circular cones, corresponding to m = 1. The
wings were thin flat plates. The normal- and axial-force coefficients for configurations
with the first-order Mach number and boundary-layer thickness corrections to the wing
planform shapes are presented in figure 6. The present theory is in good agreement
with the experimental data near an angle of attack of 00, but deviates from it elsewhere.
The deficiency in the angle-of-attack method is such that the errors in CA and CN
are generally about equal and in the same direction. This condition results in the good
prediction of the lift-drag curve (drag polar) shown in figure 7, which produces lift-drag
ratios agreeing well with the experimental values. Figure 7 also shows the pitching-
moment coefficient, the theory generally agreeing well with experiment near a = 00.

Other data for comparison with theory may be found in references 6 and 7. The
wings for the configurations tested had delta planforms with several leading-edge sweeps.
Consequently, they cannot match the shapes used by the theory, but at small angles of
attack, where the wing alone produces little lift or drag, the aerodynamic coefficients
should be comparable if they are based on the areas of delta wings approximating the
theoretical planforms. Figure 8 shows such a comparison at Mach numbers 6.86 (ref. 6)
and 20 (ref. 7). The theoretical drag polars and the lift variation with angle of attack

12



at M = 6.86 agree well with the experimental points, especially near a = 00 (fig. 8(a)).

The pitching moment about x = 21/3 is predicted well near C L = 0, but the slope shows

an almost neutrally stable trend whereas the experimental data show the configuration to

be somewhat more stable. The difference in the distribution of wing area between the

experiment and theory would contribute to this effect.

Maximum lift-drag ratios for the same configurations (and some with smaller cone

angles) in helium at Mach 20 are shown in figure 8(b). The predicted values agree fairly

well with experiment considering the differences in wing shape and area.

Example Application of Method

The preceding comparisons with experimental results have shown that the present

theoretical method gives good predictions of the lift, drag, and lift-drag ratio and fair

estimates of the pitching moment for small angles of attack as long as the basic assump-

tions of the theory are met. Thus, the method should be useful for studying the general

characteristics of the power-law-body flat-wing configurations at high Mach numbers.

Just two parameters, the power-law exponent m and the fineness parameter f, com-

pletely specify these body shapes. For the wings the Mach number is the principal addi-

tional parameter required, although the Reynolds number, ratio of specific heats, and wall

temperature also enter through the boundary-layer growth perturbation. In order to

assess the effects of these three main variables, the theory was used to predict the aero-

dynamic characteristics of a family of full-scale configurations at two Mach numbers.

The chosen altitude was 30 km for which the unit Reynolds numbers are 2.21 x 106 /meter

and 4.42 x 106 /meter at the chosen Mach numbers of 6 and 12, respectively, based on the

1962 standard atmosphere (ref. 24). The body volume was set at 2500 m 3 , giving lengths

of 28.2 m to 78.1 m (approximately 92.5 ft to 256 ft), for 0.63 _ m 5 1 and 2.5 5 f _ 10.0.

Additional assumptions were y = 1.4 and a ratio of wall temperature to total temperature

of 0.41667. For each Mach number the range of the fineness parameter was chosen to

keep 62 << 1 and 612 << 1. The results of these calculations are presented in figures 9

and 10.

Effect of power-law exponent.- Varying the body power-law exponent while holding

the fineness parameter constant at f = 5 for Mach 12 flight at an altitude of 30 km pro-

duced the curves shown as figure 9(a). The drag polars in the range 0.63 _ m = 0.75 all

cluster together, and hence so do the lift-drag ratios. Only in the conical case (m = 1)

does the drag fall significantly higher and the lift-drag ratio lower. The pitching moment

does show a major variation with m, both in slope and intercept. As m decreases

from 1.0 to 0.63, that is, as the nose becomes blunter and the aft end less flared, the

13



zero lift pitching moment Cm,0 increases. At the same time, the stability decreases,
configurations with m < 0.75 becoming unstable for the moment reference center at
A = 0.61,y = 0.15b, B. Since the effect of m on the lift-drag ratio is relatively small,
this parameter could be chosen to minimize the trim drag.

Effect of fineness ratio.- The computed characteristics for a range of values of the
fineness parameter f are shown in figure 9(b). For this family of configurations, the
power-law exponent was set at m = 0.75, and the curves are for Mach 12 flight at 30 km
as before. At low values of f the peaks in L/D are low and broad and become higher
and sharper as the bodies become finer. The stability of the configurations is practically
unaffected by variations in the fineness parameter, as indicated by the almost parallel
pitching-moment curves.

Effect of Mach number.- Figure 9(c) shows a comparison of Mach 6 calculations
with those for Mach 12 for configurations having three of the power-law body shapes.
Note that the change in Mach number makes a change in the wing planform for each body
shape. The effect on the drag polars shows clearly in the three sets of curves. At
Mach 6 the zero lift-drag coefficient CD,0 is higher but the drag due to lift is lower
than at Mach 12. Since the curves cross before (L/D)max is reached, the Mach 6
curves of L/D peak higher and at larger CL values than the Mach 12 curves. If
the same reference area had been used, the CL difference would have been larger
since the Mach 12 design wing is smaller. The pitching-moment curves are little
affected by the Mach number change.

Summary of calculations.- The results of the Mach 6 and 12 calculations for flight
at 30 km are summarized in figure 10. As was indicated in figure 9, the effect of the
power-law exponent m on (L/D)max is relatively small. For the low fineness ratios,
the curves form broad maxima centered near m = 0.7; they become more peaked and
move toward m = 0.8 as the fineness ratio increases. This result compares with the
value m = 0.75 determined from the Newtonian pressure law as the power-law exponent
for minimum drag bodies under length and diameter (that is, fineness ratio) constraints.
There is a stronger dependence of the associated lift coefficient CL,(L/D)max on the
value of m, particularly for the less fine bodies. The effect of the fineness parameter
on (L/D)max and CL,(L/D)max is opposing in that increasing f increases (L/D)max
(and its dependence on m) but decreases CL,(L/D)max (and its dependence on m).
(At any given lift coefficient in the range of calculation, however, L/D can be increased
by going to a finer body; see fig. 9(b).) The curves of c(L/D)max are included in fig-
ure 10 in order to show that the calculations of (L/D)max occur within the range of small
angles of attack for which the present method gives its best results. (See fig. 6.)
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CONCLUDING REMARKS

This paper has presented a method for calculating the longitudinal aerodynamic

characteristics of a family of configurations in hypersonic flow. These configurations

each consist of a half-axisymmetric power-law body surmounted by a thin flat wing for

which the planform matches the analytical shock-wave shape about the body at an angle

of attack of 00. The method is based on the power-law similarity solutions of the hyper-

sonic small-disturbance equations. These solutions require three basic assumptions:

the Mach number is large, the body is slender, and the shock wave is strong. A first-

order perturbation allows the calculation of Mach number effects, and a perturbation to

the body shape provides for the boundary-layer growth. Skin friction is accounted for

by using compressible, laminar boundary-layer solutions at the computed pressure dis-

tributions integrated over the body and wing surfaces. A computer program has been

written implementing this method; sample computations using the program have taken

only a few seconds per case.

When compared with experimental data for axisymmetric power-law bodies and

for wing-conical-body configurations, the present method gave good agreement where

the basic assumptions were satisfied. An example series of computations with varia-

tions in the principal parameters at a full-scale flight condition showed that varying the

power-law exponent has a greater effect on longitudinal stability and trim than on the

lift-drag ratio. The computations for Mach 6 gave higher maximum lift-drag ratios,
higher drag coefficients at zero lift, but essentially the same stability characteristics

as their counterparts for Mach 12.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., October 25, 1973.
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APPENDIX

COMPUTER PROGRAM FOR CALCULATING

THE AERODYNAMIC CHARACTERISTICS OF POWER-LAW

WING-BODY CONFIGURATIONS

The calculation procedure described in the main body of the paper for obtaining

the aerodynamic coefficients for power-law wing-body configurations at hypersonic speeds

has been programed for high-speed digital computation. The program will also compute
the zero angle-of-attack drag for an axisymmetric power-law body alone. The purpose
of this appendix is to provide a description of the necessary input and available output as

well as a FORTRAN IV (ref. 25) listing of the source program. A separate program to

compute the parameters needed to obtain two input values from the figures of reference 20

is also listed and described.

Description of Program

First, the program reads all the input variables describing the case to be computed.
After calculating geometric constants, it goes through the angles of attack, computing the
body axis forces and moments, interpolating the similarity solution parameters from a
stored table. Skin friction is calculated for each angle of attack and added to the axial
force. The results are then transformed to the stability axes. If at least three angles
of attack are included in a case, a quadratic interpolation of the drag polar is made to
obtain (L/D)max and other quantities, which are printed out along with the body- and
stability-axis coefficients. A summary subroutine assembles certain quantities for sep-
arate printout after completion of all cases.

Program Listing

The FORTRAM IV listing of the source program used on the Control Data series 6600
computer system at the Langley Research Center is as follows:

PtCGQAM HYPAEPO(TNPUT=201,9UTPUT=401TAPFR=INPUTTAPE7=601) A 1

C HYPERSONTC AERODYNAMIC CHAPACTFRISTICS OF POWEP-LAW WING-BOOY CONFIGURATIONS
C

OTMFNSION HEAC(8), Y(61, YE(5), VARD(13,6), VARI(13) ANGL(ll), A 2
1 STNE(11), COS.(17), PBBPOL(IZ), CFDCFOI(11), PUPIQI(11I, CNB(11), A 3
2 CND(11), CNW(11), DPSRYQS(11 , CN(11), C4P(11), CAF(11), CA(ll), A 4

f CL(1I), CD(11), CLCO(11I CMCG(11), CDANGL(11,2), CDALO(2), A 5
k CDA.N(2), X(19), XW(19), PB(19), DSWCOS(19), DSWCSL(7,6), A 6
5 rCSSL(18), TXSE(18), DELR(18), PTWPI(18) A 7
EQUIVBLFNCE (YETAB), (Y(2)*FO), (Y(6),A1l, (YE,ETABEI, A 8

I (Yr(2),FOE), (YE(3),F1E), (YE(41,0JOE), (YE(r)ODJ1.E) A 9
' (ANGLCD(12),CDANGL(12)) A 10

16



APPENDIX - Continued

COMMON AP, Z1MEE2U2,FOFFIEKTHG12GTWM,FMBF2,02ME2K,X2MWTNGFO1, A 11

I FI1!K,DLR ,FTPONETB,XSEGMAGM1,GM12,GPI2, EMEMI,EM32,ZMM, ZEM11, A 12

2 THP7M,6MCH42,DEL,TWEM,AEP A 13

NAmF.LTST IDATA/NCASE,GAM,T INFAMCH,NALF,ANGLEMF,PEL,SSB, xCG,YCG, A 14

1 PPOT, C FACTP,,ANG,XOUTPB8P0LCFDCFOlALAMCR,BDYONLY,OEL,EPS,XSE A 15

2 /CUT/T,ANG,ANGO,E:MEYE,EMICAFP2?,CAFU,CAFLAI,PTWPI A 16

r VAPT =FM, VAqO ASSOCIATED VALUES OF ETAB,FO,FI,OJO,DJ1,AI FROM TABLE I

OATA X/O.,.0003,.0006,.0009,.0012,.0018,.002
4 ,. 0O 3 6 ,.OOS,.

0O 8 5 , A 17

1 .015,.025,.0415,.089.14#.25,.45,.791./, P1 ,PIF,DTOR/3.14159265359, A 18

2 ?.6986PB,.O1745329252I, KP,LL!M,ML,ML1,NCASE/-1,19,18, 17,1/, A 19

1 VART,VAPO/1 .,.95,.9,.85,.8,.75,.7,.566667,.633333,.6,.5i.539.51, A 20

1- 914a34,.91034,.90&6'15,.89743,.88798,.87507,.85648,.83B8,.81391, A 21
r 77447,.664149.56901t.37221, .87445,.84711,.8163,.78174,.74265, A 22

6 *69804,.6L4A6,.A(M763,.56403,.51478,.42678,.385,.337579 .9179, A 23

7 1__G591, 1. ?3,'6,1.4?86, 1.6 897,!.9811,2.2986,2.4964,2.6392,2.6593, A 24

8 2.?Vll, 0.887A91.411, .073219.07589,.C7909,.08303,.08799,.09444. A 25

9 .018,.11"98,.12129, .13554,.17318,.20119,.25443, .8,09551, A 26

X .11014,.1367,.15918,.20O98,.26458,.32562,.4O794,.51763,.74598, A 27

1 e(-687,1.0)411, .47!;49,.52709,.58604,.(,-2919.72741,.80732, .88631, A 28

2 .93216,.95,(,.98O34,.9f,791,.9E-?77,.97r,39I, GAM1.4/, A 29

3 SSB,TWTT,PBP!,CAFACTflXE,XOUT/f.,.416,667,1.,1.,.10,.FALSE./ A 30

LOGICAL TFM!N,qnONLY,WING,XOUT A 31

EXTERNAL FUN! A 32

ROYONLY=.F'&LSE. A 33

1 PFD 18, HEAD A 34

IF (ENDFILr- 5) 32,? A 35

2 PFAD DATA A 36

CLCMX=O. A 37

C9DMTN=1,. A 38

TFP'IN=.FALSE. A 39

GO TO (?,405,6). NCASr. A 40

C, NCASE = 1) GAM, 2) AMC?4,TINF, 3) EM, 4) FvPEL,SSB HAVE NEW VALUES

3 GMI=GAM-1. A 41

ZnFl2./GM1 A 42
GM12=.S*GMI A 43

cpI=G' M+1 A 44

G0 1 ?=. F*GP1 A 45
FO1=l./GP!2 A 46

CMA=GAM A 47

GP]4=.29*GP1 A 48

ZGGI =GfAM*ZG!41 A 49

ZGIG=-&. /ZGGI A 50
cml=1./G~m A S1

ZG2G=GMT-.1 A 52

0 ~G =GPl~* GM A c;3
GF=.12*(?.*GAM)**1 .5*GP12**GPI.G A 94

6 X 1=-rm I *c, m A r,5

G'7=-.17/GXI A 56

THCI?G=1 .-.5*GXI A 57

OT8rGT=l ./SQDT( 8.*GAM) A 58

!1=1 .?'7*TWTT+.I47, A 59

67 2=TWTT+. ?-If A 60

RTTWTT=SQPT( TWTT) A 6i

4 AMCH?= NCH*6AMCH A 62
AMrH3=6,MCH*AMCH2 A 63

AMT=l./AMCH2 A 64
TTBTT=!.+GMI?*AMCH? A 65
qTTT9Tl=SQRT(TT9Tl) A 66

SUTH=!108.6/(TINF*TTOT!) A 67

ALAM=( (1.+SUTH)/CTWTT+SUTHI)*PTTWTT A 68
SUW'T=198.6/TINF A 69

C2=( (l.+SUITH)/U!.+SUTHI) )*RTTTBTI A 70

PTCI=S0,T( ALkM/r2) A 71

TPT!=.273+(.*19g+.F32*TWTT)*TTBTI A 72
pTt3=SOPT(I.+SUTHI)/(TPTI+SUTHTI*SQRT(TPTI)) A 73

GflMG=GF*P TCl*AMCH**GPl6 A 74

p=2 .*AMI*GMT A 75
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APPENDIX -Continued

5 FMPl=FM+1. A 76
FP12=.5*rFMPI A 77

FMP2=FM+2. A 78
Fmmtj=rM-1. A 79
7mmI =?. *'FMM1 A 80
TWFM=?.*FM A 81
THP2 M =A .- TWM, A 82
ZmmtI?.-FM A 83
EM T= 1 * M A 84
ZIFMIL=2.*( EM!.-I.*) A 85
FM??=1.r*EMT-2. A 86
ZGM132=' .F+ZMMi*GMI A 87
ZMPI1=1. ( EMP1.EM) A 88
TWM3I=l./f FMP1,FMpD A 89
FM4!=l./(4.*FM-1.) A 90
STXMT=!./(6.*EM-1. I A 91
TLIRMMI=!./(3.-.EM) A 92
FTV2MI=1.I(rC.TWM) A 93
FM4019=.4019*EM A 94
FMX1!=1 ./(1-9303-FM4019) A 95
FmX152M=FTV2MY/EMXII A 96
EMX2=.5/( .9274*EM40191 A 91
TP=20.*(1.05-EM) A 98
AI=ATI-A!2*EMMl/(EMM1-G37fEM4!) A 99
CALL MTLUP (EM,Y,2,13,13,691P,VARI,VAROI A 100
ETAB!./ETAB A 101
ONETET=ETAB!-1 A 102
ZGlET=ETABT/GPi2 A 103
ET5=ETA8 A 104
ONFTB=1.I(l.-ETAB) A 105
AMCHN=(1.-ZMMI*(AMCH-1.j )**GM! A 106
CET!EMF=GCMG*ETA B*AI*SQRT(EM4T I*(EM*EM*FO)**ZG2GIAMCHN A 107
F11=FOI*(Al*(ZCG1+2./lGGEMTGM1)-EPI*EM!,ZGGI) A 108

6 Fl=!./F A 109
E'48F?=( EM*FI )**2 A 110
FSQ=F*F A Ill
FMIM2F2=EMP1*EMP2IFSQ A 112
PRELT=] ./SQPT(REL) A 113
FSAV=GM.*AMCH*FSQ*RTCI*QTRELT.*RT8GI A 114
OEL=ETABT *F! A 115
EPS=AM!I(DEL*OEL) A 116
AcP=A!*EPS A 117
EMSAV=4.*ESAV*A!*ETAB/(EM*SQPT(FO/EM41) A 118
TWFM=EMSAV*.5- A 119
RSF=SQRT( GETTEMF*PTPEL I*OEL**ZGIG*XE**ZGM132) A 120
PT2P1=PTIT(PSE) A 121
RTROLT=SQRT(AMr1H*PTTTBTT**3/(C2*PEL*PT2Pl,) A 122
4EPX=AFP*Emx1r7?m A 123
cM32X=.25 *EMSAV*EMX1I A 124
G~mrC=.69053*GM12*AMCH3*RTC3*RTp EL! A 125
EMFSAV=0. A 126

c
C, WING CEOMETPIC PARAMETERS AND FLOW CONSTANTS

SISTSB=ET.ARI*(.+4PI*(A.Pp*TH.4MM+EMSAV*FIV2MI)J A 127
SRRYS=I. /SISTSBI a 128
IF (SSB.GT.O.) SBBYS=1.ISSB A 129
SI ST8YS=SISTSB*SBBYS A 130
DEL?=DEL*r)EL A 131
PTMS=.5*PT*FMP1*SBBYS A 132
R~PL=QT(.APTE)(I*EX+EXE3X) k 133
XSC=cMP!2 A 134
ALAMCP=C,2MRC*PTCREL! A 035
POLAM=-P0*ALAMCR A 136
CFOCR=1 .328*RTC1*PTPEL!*RTCR EL!*SISTBYS A 137
CA FL C=2.* ALAM *AM! *PT R LI A 1?8
CFCCN=DT2PI*CAFLC A 119
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FMETS=EMPl*ETABI*SBBYS A 140
M= A 141

KKI=(ML-1)/M+1 A 142

KK=KKI+1 A 143

K=KK A 144

MK=M*(K-2)+1 A 145

OSWCOS(LLIM)=PTMS A 14A

PB(LLIM)=ETAB A 147

LI=LLIT A 148
COSSL=O. A 149

PS=!.+TWEM+AEP A 150

XW(KK)=I. A 151

COSSL(KK)=1./SQPT(1.+EMBF2) A 152

DO 8 Lt..=l,MLl 4 153

L=LL!M-LL A 194

XL=X(L) 'A 155

XM=Xt.**FM A 156

DSWCOS(L)=PTMS*XM A 157

IF (BDYONLY) GO TO 8 A 158

PR(L)=FTAB*XM A 159

IF (MK.NE..L) GC TO 8 A 160

KI=K A 161

K=K-1 8 162

MK=M*(K-2)+1 A 163

XW(K)=XL A 164

XSF=.5*(XW(K1)+XL) A 165

TXSE(K)=XS' A 166

PT-WDI(K)=PTOT2(RSE )  
A 167

DFLP(K)=RSE-ETA8*XSEE**M A 168

RSKI=RS A 169

XM?2=(XM/XL)**2 4 170
PS=XM*(1.+(TWEM/SQPT(XL)+A P)/XM12) A 171

COtSL(K)=1./SQRT(1.+EMBF2*XM12) A 172

DfMiS=EMETS*(RSKI-RS-RB(L1)+RS(L)) A 173

OShCSL(K,K)=DRM1S*.25*(COSSL(K)+COSSL(IK)) A 174

tl=t A 175

00 7 J=KltKK A 176

7 DSWCSL(JK)=ORMS*COSSL(J) A 177

8 CONTINUE A 178

DSWrOS=PTMS*(.,*X(2))**EM A 179

IF (RDYONLY) GC TO 10 A 180

XW=O. A 181

XSE=.9*XW(2) A 182
TXSE=XSE A 183

PTWP!=PTOT2(RSE) A 184

DELR=PSF-ETAB*XSE**EM A 185

ORMIS=EMETS*(RS-R8(Ll)) A 186

SktSL=DRMIS*.25*COSSL(2) A 187

DO 9 J=2,KK A 188

9 DShCSI(J,lI.=DPMIS*COSSL(J) A 189

XL1=X(6) A 190

XL2=X(1!) A 191

PL1=R9(6) A 192

PL2=RB(16) A 193

C ANGLE OF ATTACK VARIATION

tNGO=DEL*(oB(ML)-FTAB)/(1.-X(ML)) A 194

10 PRINT DATA A 195
PTNT 36, HFAD A 196

NANG=NALF A 197

Dn 28 !=1,NANG A 198

ANG=DTO*ANGL(I) A 199
TF (NrCSE-3) 12911911 A 200
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APPENDIX - Continued

FKGO=FK*GMITr A 263

FPSkVO=FIEK-PBPT*FKGO A 264

CPSAV1=FIFK-EKGO A 265

FPSAV2=NETET*(EK*DJIE*FTEtI-EKGO) A 266

CNP(1)=D2MS2*(FOEM1*FSAV+EPSAV1) A 267

CNC(T)=02MS?*FFM*EME*ET4AT*EE4U2/((ZME+1.)*THR2ME) A 268

CNW(I)=D2MS2*(EMPI*(DJETB*EESAV+ZGET*(EMSAV/(FRMI-ZMMI)+AEP/ A 269

1 (ZMF-EMM1))-EME*ETPAT*E4UM*FOE/THP2ME)+FDSAV2I A 270

CP(I)=PT*D2MS*EMP*FIT*(FOEM*(()./(ZME+ZMM1)+EE4U2*FM41)+.5*EPSAVO) A 271

CNfl)=NR(II)+CNO(T)+CNW(T)+OPSRYQS(I) A 272

rMN=D2MSCPFMpIl(FMP2*((FOE+DJETB)*(1./ZMEM+EE4U2*TWM
3 I)+ A 273

1 ZGIET,(rMSV/FP ME+THR2M)+AEP/(ZMEM-ZMMI)))+EPSAV1+EPSAV?) A 274

CM =02MSC*EMl 2F2*(FOEM*(1./(ZMEM+ZMMI)+FF4U2*SIXMI)+EPSAVO/3.) A 275

CMr4(T)=CMN+CMA-XSC*DPSPYQS+.5*FMP2*(CN(I)*XCG+CAP(Y)*FI*YCG) A 276

C SKIN FRICTION ON BODY
FOE=FOF A 277

E2U2=. 5 *EE4U2 A 278,

APC=G M*FME2/rK A 279

AP=APO/PT2Pl A 280

WING=.FALSE. A 281

CAFB2=CFCON*SKNFC(XLLIDSWCOS,GAM,ALAM,FUN11 
A 282

IF (BOYONLY) GO TO 25 A 283

C SKIN FRICTION ON WING UPPER AND LOWER SURFACES

CAFU=CFOCR*(I.+CFDCF01(inl A 284

CAFL=0. A 285

WING=.TPUE. A 286

00 24 K=1,KK1 
A 287

KI=KK-K+1 
A 288

AP=APO/PTWPl(K) 
A 289

OLR=DELR(K) 
A 290

SAVXW=XW(K) A 291

XW(K)=TXSF(K) A 292

CAFL=CAFL+PTWP1(K)*SKNFRCW(XW(K)tKIDSWCSL(KK)tGAMALAM,FUN1) A 293

24 XW(K)=SAVXW 
A 294

CAFL=CAFi.C*CAFL A 295

IF (XOUT) PRINT OUT A 296

C
C LIFT, DPAG, ANC L / D

CAF(1)=CAFB2+CAFU+CAFL A 297

GO TO 26 
A 298

25 4AF(T)=?.*CAFB? 
A 299

CAP(I)=?.*CAP(t) 
A 300

CN=O. A 301

'CMCG=O. 
A 302

26 Ck(T)=CAP(I)I+C4FAACTP*CAF(1) 
A 303

CL(I)=CN(T)*COSE(I)-CA(I)*SINE(I) 
A 304

CO(T)=CA(I)*COSF(T)+CN(II*SINE(1) 
A 305

CL.CD(T)=CL(I)/CD(I) A 306

IF (CODMIN..T.CDot)) GO TC 27 A 307

IMIN=I 
A 308

CDMIN=CD(I) A 309

27 IF (CLCDO().LT.CLDMX) GO TO 28 A 310

CLCMX=CtCO(I) A 311

TMAX=T 
A 312

28 CrtTINUE 
A 313

IF (XOUT) PRINT 36, HFAD A 314

TF (NANG-3) 31,29,29 
A ?19

C
C QUADRPTIc TNTERPCL&TION OF DRAG POLAR TO GET (L/D)MAX, ETC.

29 IF (IMAX.LT.2) IMAX=2 A 316

IF (IMAX.GE.NANG) T~AX=NANG-1 A 317

IXP=IMAX+1 A 318

TXM=yMX- 
A 319

yl=CD(IXM) 
A 320

y=CO(MAX) 
A 321
k 322
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Y=CDO(TXP)
X1=CL(TXM) A 323
X?=CL(IMAX) A 324
X3=CL(IXP) A 325
X12=X1-X2 A 326
X2?=X2-X? A 327
IF (IFMN) GO TO 30 A 328
X31=X3-X1 A 329
A=(Y1*X23+Y2*X31+Y3*XA2)/(-X12*X23*X31) A 330
XA=.5*(A*(X3+X1)-(Y3-Y1)/X3) A 331
XA2YAA=Y2+X2*(2.*XA-A*X2) A 332
CLPX2=X42YAA/A A 333
TF (CLMX?.LT.O.) GO TO 30 A 334
rltX=SQRT(CLMX?) A 335
CDMX=2.*(XA?YAA-XA*CLMX) A 336
CLCMX=CLMX/CDMX A 337
rALL MTLUP (O.,CDALO,2,NANG,11,2KPCLCDANGL) A 338
CALL MTLUD (CLMX,ALPHX,2,NANG, 111 .IMAXCLANGL) A 339
TFPIN=.TOUE. A 340
IMAX=IMIN A 341
60 TO 20 A 342

30 Y3221=(Y3-Y?)/(Y2-YI) A 343
X3221=X23/X12 A 344
CLiN=.A*(Y3221*(X2+X1)-X3221*(X3+X2))/(Y3221-X3221) A 345
CALL MTLUP (CLMN,CDLN2,NANG,11,2,KPCL,CDANGL) A 346

C MATN OUTPUTS

PRTNT 37, rLDMXALPHXCLMXCDMXCDALC,CCALNCLMN A 347
CALL SUMMARY (CLDMXALPHXCLMXCDAtOCOALt.NCL(I0)tHEAC,NCASE) A 348

31 PRINT 34, (ANGL(I),CL(T),CO(T),CMCG(),1CLCD(TICN(I),CNB(I),CND(I) A 349
1,CNW(T),fPSRYQS(T),CA(I),CAP(T),CAF(IIT=1,NANG) A 350
NCASE=4 A 351
GO TO 1 A 352

32 CALL PVNTSUM (CLDMXALPHXCLMX,CALOCDALNCL0IO)HEAODNCASE) A 353
STOP A 354

C
33 FORMAT (F12.2,15H DEG'. PUPIQI =F10O.5) A 355
?. FOPMAT (//3X,5HALPHA8X,?HCLtRX,2HCDBX,2HCM,7X,3HLID,9Xt2HCN,8X, A 356

1 ?PCNB,7Xt3HCN,7X,?HCNW,6X,4HDP/Q,8X,2HCA8X,3tCAP,7XtHCAF// A 357
2 (F7.t13X,3F1C.5,F9.2,2X,5FIO.5,X,3FI0.q)I A 358

35 FORMAT (//F8.2,?BH DEG., TOO NEGATIVE FOR BODY) A 359
36 FORMAT (1H1/20X8A0/) A 360
37 FORMAT (//11H (L/D)MAX =,F8.4,11H AT ALPHA =#F7.4, 26H DEGREES, A 361

1 WITH CL AND CD =,2F9.6//6H CDO =,F1O.8,14H, AT ALPHA 0 =,FB.4// A 362
2 9H CD MIN =,Fl.812?H, AT ALPHA =,F8.49 AND CL =,F8.6) A 363

38 FORMAT (8A10) A 364
END A 365-

FUNCTION PTOT (RS) 8 1
C
C TOTAL TO STATIC PRESSURE RATIO ACROSS SHOCK, AND SHOCK POSITION B 2

COMMON DUMB(16),XSGAMGP1,GM12,GP12,EMEMIEM2ZMM,ZEMIt1THR2M, B 3
1 AMCH?,DELTWEMAEP B 4

C X POSITION FOR GIVEN SHOCK RADIUS B 5
XSMO=PS B 6
'Xf=RS**FMI B 7
00 1 T=r910 R 8
XO1M=XO**EMI B 9
XSM=PS/(1.+(AEP+TWEM/SQRT(XO1M|)*(XOIM/XO)**2) B 10
IF (XSM/XSMO.GT..999) GO TO 2 B 11
XO=XSM**EMI B 12

1 XSMO=XSM B 13
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XS=XSM**EMT 
B 14

GO TO ? 
B 15

FNTRY PTOT2 
B 16

C SHOCK RADIUS AT GIVEN X POSITION B 17

XSM=XS**EM 
B 18

RS=XSM+(AEP+TWFM/SQPT(XS))*XS*XS/XSM 8 19

3 XSL?M=XSM**2 
8 20

TTHX?=(DEL(EM*XSL2M/XS +XS*MM*AEP+.5*THR2*TWEM*TEMSQRT(XS)))**2 21

AM?=AMCH2*TTHX2/(XSL2M+TTHX2) 
B 22

AMG1=GP,?*AM2*(1.+GM12*AMCH2)/(1.+GM12*AM2) B 23

AMG2=GP12/(GAM*AM2-GM12) 
B 24

PTCT=FXP((ALOG(AMG2)+GAM*ALOG(AMGI))/GM1) B 25

RETURN 
B 26

ENO 
B 27

FUNCTION SKNFRC (XLLIMvDSWCOSGAMvALAM#FUN1) C 1

C
C LAMINAP, COMPRESSIBLE SKIN FR!CTION (DATA ARE FOP TW/TT = .41667)

C
OTMENSTON X(19), OSWCOS(19), XI(19), U(19), BETA(19), DCF(19)t C 2

1 BIT(3), B(15), TTH2(30), THT2(2) C 3

EQUTVALENCE (FWPPTHT2(2)) 
C 4

DATA PTTH2/-.2,-.O1.0 .05,.1,.
2,. 3,. 4 .5A'.6,.8,1.,l.2,1.6,2., C 5

1 .293,.248t.2205,.2095,.1998,.1845,.1725,.1627,.1547,.1479,.137, 
C 6

2 .128,.1218,.11116t.1107, .269,.387,.4696,.5051,.5373,.5944,.6447, C 7

3 .6O,.73165,.7703,.bO S,. O44,.9627,1.06
7 7,1. 1 6 1 3 /9 JP/l/ C 8

4, GXI,GX2,ZGMC/-.28571428 7 43,1.28 714285714,5./ C 9

C BEGIN WITH X(1) 0., X!( = 0., BETA = .5 (BLUNT-NOSED BODY) C 10

S BTA(1)=.5 
C 11

TMPT2=.23209 C 12

FPTH=.28779 
C 1?

Gn TO 2 C 14

ENTRY SKNFTCW 
C 16

C BEGIN WITH X(1) = XSE XTI(1) = 0., BETA = 0. (UNDERSIDE OF WING) C 15

BETA=O. C 17

TMPT2=. 441 C 18

FPTH=.220F2 C 19

2 XM=X+.!*(X(2)-X) 
C 20

PEPT2=o(XM) 
C 21

UM=SQRT(ZGMI*(PEPT2**GX-1I.)) C 22

CALL MGAUSS (X,XM,1,XTM,FUN1,FOFX,') C 23

X!rt=LAM*XTM 
C 24

TH2UP=TMBT2*XIm 
C 25

DCF(1)=PEPT?**GX2*FPTH*DSWCOS(1)*SQRT(UM**3/TH2UR) C 26

XT()=XIM 
C 27

U(I)=UM 
C 28

DO 9 IP=2,LLIM 
C 29

XP=X(TP) 
C 30

CALL MGAUSS (XM,XP,1,OXI ,FUN1,FOFXl) C 31

DXI=ALAM*OXT 
C 32

XTITP)=DXT+XIM 
C 33

pFFT2=P(XP) 
C 34

Ut(IP)=SQT(ZGPM1(PEPT2**GX-I1.)) C 35

bLNU=AtnG(U(IPi/UM) C 36

ALNUR2=7.*ALNUR 
C 37

OXIUTH=DXI/TH2?U 
C 38

RPLAM=7.7809*(U(IP)/UM-1.)IDXIUTH C 39

BET=PLAM*(1.+(PLAM-1.)*((.0206737DXTUTH-.20419)*XIUTH+.
4 4 145)) C 40

KK=! C 41

K!.=0 
C 42

r ITERATION FOR BETA (LOCAL VELOCITY-VARIATION PARAMETER)

o0 7 J=1,29 C 43

pITo=BET 
C 44

BTT(KK)=BET 
C 45

IF (KK-3) ,3,3 C 46
C 47
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3 KK=I
P72=BIT(3)-BTT(2) C 4
821=RIT(2)-BIT(1) C 49

TF ('BS(21+B32).LT.ABS(B32)) GO TO 4 C 50

BDENOM=B32-BI C 51

TF (BDENOM.EQ.O.) GO TO 6 C 52

PFT=(BTT(1)*BTT(3)-BIT(2)**2)/BDENOM C 53

K1=0 C 54

GO TO 6 C 55
4 99T=(RTT(?)+BIT(3)/?2. C 56

GO TO 6 C 57
KK=KK+K' C 58
KL:Z C 59

6 TF (BET.GT.2.) BFT=1.4 C 60

CALL MTLUP (BETTHT2,2,15,1~,IJP,B,TTH2) C 61

RFT=ALNUP2/(LNUPhALOG(.+DXUTH*(2.-BETI)THT2)) C 62

TF (ARS(BET/BITR-1.)-.0001) 8,817 C 63

7 rONTINUE C 64

PRTNT 11, XPBITR,BET C 65
8 BETA(TP)=RET C 66

CALL MTLUP (BETTHT2,2,15, 1F,2JP,BTTH2) C 67
TH2UP=('.+OXIUTH*(2.-PET)*THT?)*TH2UR C 68
DCF(TP)=PEPT2**GX2*FWPP*DSWCOS(IP)*SQRT(U(TP)**3*THT2/TH2UR) C 69

XM=XP C 70
XIM=XI(TP) C 71

9 UM=U(TP) C 72
TF (LLTM.EQ.2) GO TO 10 C 73
SKNFRC=SUM(XDCF,LtLM) C 74
RETURN C 75

10 SKNFRC=.=*(DOF+OCF(21)*(X(2)-X) C 76
PETURN C 77

C C 78
11 FORPMT (/26H BETA UNCONVEPGED AT X/L =,F8.5,12H BETA VALUES,2F12.8 C 79

1) C 80
END C 81-

SUBROUTINE FUNI (XFOFX) 0 1
C
C TNTEGnAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION D 2
C

COMMON AP,Z1MEE2U2,FOE,FIEKTHG12GTWMEMBF2,C2ME2KX2MWING D 3
LOG-CAL WING 0 4
XM=X**TWM D 5

X2=X*X 0 6
'F (WING) 2,1 0 7

1 XF=X2M 0 8
X2=1./(X2*X2M) 0 9
GO TO 3 0 10

2 XF=1. 0 11
X2=X2M/X2 D 12

3 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) D 13
RETURN D 14
FND D 15

FUNCTION P (X) E 1
C
C BODY OP WING SURFACE PRESSURE

COMMON APZIMEE2U2,FOEFIEKTHG12GTWMEMBF2,C2ME2KX2MtWINGFOt1 E 2
1FIIK,DLRETBET TBOUM(13),TWEMAEP E 3
LOGICAL WING E 4
X?M=X**TWM E 5
ENTRY P1 E 6
TF (WING) 2,1 E 7

1 FTCE=FOF E 8
FTIEK=F1FK E 9
GO TO 3 F 10
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2 XM=SQRT(X2M) 
E 11

ETR=(((OLP+ETB*XM)/(XM+(TWEM*SQRT(x)+AEP*X)*x/XM)-ETB)*OETTB)**
2  E 12

FTOE=F0E+ETR*(F01-FOF) 
F 13

FT1EK=FIFK+ETR*(F11K-F1EK) 
F 14

3 X21ME=X**Z1ME 
E 15

P=AP*((1.+E 2 U2 *X 21ME/SQRT(X))*FTOE/(X21ME+D2ME2K)+FTIEK) 
E 16

IF (P.LT.1) RETURN 
E 17

PRINT 4, P,XE2U2,D2ME2KETRFTOE,FTIEK E 18

P=.9999999925 E 19

RETURN 
E 20

C E 21

4 FOPMAT (4H P =,F13.'F16H SET = 1. AT X =,FI0.5,lOX,5E13.5) E 22

ENC 
F 23-

FUNfTION SUM(XY,N) 
F 1

C
C TRAPEZOIDAL INTEGRATiON FOR UNEQUAL INTERVALS

SF 2
DIVENSION X(19),Y(19) F 3

M=N-I F 4

PSUM=Y*(X(2)-X)+Y(N)*(X(N)-X(M)) F 4

00 1 I=2,M F 6
1 PSUM=PSUM+Y(II)*(X(T+1)-X(I-I)) F 6

SUM=.=*PSUM F 8
RETURN 

F 9

END

SUPPOUTINE SUMMAPY(At,8,C,DEFHN) G 1

C COLLECTION OF SUMMARY RESULTS ON A FILE (TAPE7) FOR SEPARATE OUTPUT

C G 2
DOIENSTON 0(2), E(2), H(8)t L(2=), 0(1475) G 2

DATA L,',SKIP/26*O,3H(/)/ 
G 3

IF (N-3) 1,2,3 G 4

J IF (t(1).EQ.1) GO TO6 G 5

T =0 
G 6

2 L(T+1)=1 
G 8

3 I=!+1 
G 9

0(091)=A G 10

0(2,T)=R G 11

e' l )=r G 12

0(4,1)=0 G 13
G 14

0(6,1)=E G 15

C(7,T)=F(?) 
G 15

0(8,T)=F G 167

O(9,T)=H(?) G 18

C(1I )=H(') G 19
n(12,1)=H(() G 20

0(12',)=H(7) G 21
O(1?,TI)=H() G 22
(4,I)=H8 G 22

TF (T.LT.25) RETURN 
G 23

FNTPY PPNTSUM 
G 24

6 WRTTFE(79) G 25

DO 7 J=Y,I G 26

IF (L(J).FQ.1) WPTTE(7,SK!P) G 7

wp!TE(7,8) (O(KJ),K=114) G 28

7 L(J)=0 G 29

1=0 
G 31

TF (N.LT.3) GC TO 2 G 32

RETURN 
G 32

8 FORM.AT(X 2 Fg.4,F8.5,F9.~,F8.2F9.4,F8.2,F8.5,
3X,6410) G 33

9 FORMAT(HI/16H HYPAEPO SUMMARY//3X,5H(L/D),X,5HALPHA,4X,
2HCL

A X , G 34

1 2 (5 X,2HCD,5X,5HALPHA),4X,?HCL/7X,3HMAX,2X,2(3X,5HL/DMX)I 
G 35

2 2(X,HO,3X) 2(2X,3HMINAX),3A=O) G 36-
-- G 37

ENC 25
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Input

A single case consists of the determination of the aerodynamic coefficients over a
given set of angles of attack. The first card for each case provides a heading for the
printout; it consists of 80 columns of any desired FORTRAN characters. The remaining
cards for each case are interpreted by a system loading subroutine (NAMELIST) which
is very flexible. The data block begins with an arbitrary name ($DATA in the present
case) and ends with the dollar sign ($); the variables between may be in any order and
need appear only if values are to be different from those preassigned or used in the pre-
vious case of the same computer run. Column one of all these cards is blank. A descrip-
tion of the input FORTRAN variables with their correct type and preassigned values (if
any) in parentheses is as follows:

FORTRAN variable Description

TINF free-stream static temperature, To OR (real)

AMCH free-stream Mach number, Mo, (real)

NALF number of angles of attack, maximum of 11 (integer)

ANGL angle-of-attack array, decreasing order, deg (real)

EM power-law exponent, m (real)

F body fineness parameter, f (real)

REL Reynolds number based on body length, R, 1l (real)

SSB ratio of reference area for coefficients to body
planform area; if zero, program uses wing
planform area (real;O.)

XCG ratio of x location of moment reference center to
body length (real)

YCG ratio of y location of moment reference center to
maximum body radius (real)
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FORTRAN variable Description

PBPI ratio of base pressure to free-stream static pressure

(real;1.)

CAFCTR multiplication factor times calculated laminar skin

friction (real; 1.)

XOUT extra output at each angle of attack if

XOUT = .TRUE.(logical,. FALSE.)

PBBPOL array of NALF values of wing upper surface pressure

parameter ( Xc in ref. 2 corresponding to

angles of attack ANGL (real)

CFDCF01 array of NALF values of wing skin-friction parameter

( CF,r - 1 in ref. 20) corresponding to angles

of attack ANGL (real)

BDYONLY set equal to .TRUE. for axisymmetric body only,

.FALSE. for half body with wing (logical; .FALSE.)

NCASE indicator for each additional case of a run to avoid

unnecessary recomputations (integer; 1 initially,

4 each case thereafter). After first case of a run

set NCASE = 2 if AMCH or TINF is changed; set

NCASE = 3 if EM is changed but AMCH and TINF

are not; for no change to AMCH, TINF or EM use

preassigned value 4.

Output

There are four possible output blocks for each case, only two of which always

appear. First comes the input list with four added variables. These are GAM, the

ratio of specific heats y; ALAMCR, a parameter (cr) from reference 20; DEL, the

slender body parameter 6; and EPS, the shock strength parameter E1 . Next is a
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list of the angles of attack with the pressure coefficient, Mach number and sine squared
of the shock angle for oblique shock, and with the pressure coefficient and Mach number
for Prandtl-Meyer expansion through the angle (appears only for new Mach numbers).
Third is a list of variables used in the angle-of-attack and skin-friction calculations,
which appears only if called by setting XOUT = .TRUE. in the input list. Fourth is
the standard output of stability-axis and body-axis coefficients with the interpolated
(L/D)max. The normal-force coefficient is also broken down into contributions from
the body CNB, the body boundary-layer area under the wing CND, the rest of the under-
wing area CNW, and the wing upper surface DP/Q. The axial force is broken into the
contribution from the pressure CAP and from the skin friction CAF. In addition to these
results, after all cases have been run, a summary of results is printed out for cases with
angles of attack.

Example

Input cards for a run of two sample cases are presented below. The first case is
for the complete configuration with m = 0.75, f = 7, at Mo = 12, R.l = 256.26 x 106

and 11 angles of attack. The second is for the axisymmetric body having the same
parameters.

POWER-LAW TRANSPORRITER' MACH 12 EM=.7500 F=7.00 PrY=4.4F 6/M pPArqF=PTNFINMTT
$DATA AMCH=12?.EM=.7T,F=7.,PEL=256.A6FA.TINr=40A. ,XCr=.6,Ycr=.1 ,
PPAPOL=2.86*3.1993.52,3.71 .3.,4.094.'97.4.624.9.5 ,2. 499.9.
CF)CF01=-.07.,06*,23*,°32 .42 .52,.629.A4.1.0OQ 1.35* ].5 ..
NALF=11,ANGL=3. 2., 1* 5,0,,-.5,-1. ,-2.-3.,-4. ,-5.

POWER-LAW RODY OF RFVOL MACH 12 EM=.7c;00 F=7.00 DFY=4.4'E6/M PPAcF=PTrIFNITT
$DATA NCASE=?,ROYONLY=.TPUF. NALF=I.ANrGL(I)=O. PRPO01=',.CDCF 01=0.'

The output for these input cards is shown below. The total computation time on a
CDC 6600 series computer at the Langley Research Center was less than 15 seconds
(excluding compilation).

NrAS =

GAM = 0.'4F CI

AMH = 0.1 E+C2,

NAI F = 11,

F

ANGL = 0.3E+O), 0." 01, O.?F+,i, 1.E+0C 1 O.C -0.5F+OO -0.1E+01,

sM = .7r + l*

PFL 0. . 6Fn9,

SSR r.0

Xrg = C.6F+ tC

YCG 0.1
5

F+Cn,

PBPT = 0.1F+01

CAFACTP = O.IF+'',

ANGO = -0.1!1768771F4745F+00,

XCUT = F,
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PBBPOL = .286Et01, 0.~19+nl0 0.3FZ5+01, 0.371E+01, 0.39E+01,
0*409t9+C, 0.&?7F+01, 0. 62E+01, 0.49-E+01, 0.524E+01,

CFDCF0O = -0.7E-0 1 , 0.6E-01, 0.23E.00, 0.32E+00, 0.42E+00, 0.52E+00,
0.652?F0, 0.84F+00, 0.109FI01, 0.135+01, 0.159F+01,

ALAMCP = 0.939622174057F-C2,

ROYONLY = F,

DFI = 0.16?52245c4277E+00,

EPS = C.609Ser 930625EF+0C,

XSE n.4F-C

SEND

POWEP-LAW TRANSPORBTER MACH 12 EM=.7500 F=7.00 REYs4.42E6/M PBASE=PININFINT

3.00 0DE. PUPTO = -. 0060'
2.00 0oD. PUPTQT = -. 004F4
1.00 DEG. PUPIO! = -. 002-7
.'0 DEC. PUPTOT = -. 00137

-. 0 DFG. PUPTOT = .on00
-1.00 0DE. PUOTOT = .010?'
-2.00 DOE. PUP'OI = .00746
-3.00 OG. PUPTIO = .0120?
-4.00 DEG. PUPTIO = .01887
-'.On DEG. PUPTII = .026?

(L/0)mAX = 5.8 68 ST ALPHA = -. 022' DEGREES, WITH CL AND CD = .034100 .005832

C00 = .002829019 AT CtP
U A 

0 = -3.38?!

CO MITN = .00282E', 8T ALPHA = -3.490 ONOD CL =-.C001197

ALPH3 CL CD Cm L/I CN CNB CND CNW OP/Q CA CAP CAF

?.n .06q19 .31908 .03211 4.91 .06678 .0'397 .00011 .01492 .00578 .00970 .00926 .00043

2.0 .0418 .312?1 .00024 .30 .05650 .03764 .00011 .01250 .00425 .00832 .00790 .00042

1.0 ."4a24 .00781 -. 00192 9.66 .044?7 .03174 .00011 .01027 .00225 .00704 .00663 .00040

.9 .0'928 .00678 -. 0014 5.79 .03934 .02897 .00011 .00923 .00103 .00644 .00604 .00040

0.0 .03432 .10587 -. 00447 9.8' .03432 ,02632 .00011 .00825 -. 00036 .00587 .00548 .00039

.C?R0 .00507 -. 00593 5.78 .02931 .02381 .00011 .00731 -. 00192 .00533 .00495 .00039

-1.0 .0?46 .00&40 -. 00754 .='4 .02428 .02142 .00011 .00644 -. 00369 .00482 .00444 .00038

-2.0 .01428 .013-0 -. 0112' 4.20 .01415 .01708 .00011 .0048' -. 00788 .00389 .00352 .00037

-3.n .C040 .01280 -.0' 72 1.38 .01384 .01332 .00011 .00347 -.01307 .00310 .00273 .00036
-4.0 -. 005Aq .00289 -. 02105 -2.26 -. 00672 .01018 .00011 .00234 -. 01935 .00243 .00207 .00036

-R.n -. 01737 .n0343 -. 02731 -5.06 -. 01760 .00767 .00011 .00144 -. 02682 .00190 .00155 .00035

SOATA

NCASF = 2,

GAM = 0.14E+C1,

TINF * 0.4081+C?,

8MCH * 0.12E+02,

NAIF 1,

ANGL = 0.0, C.2E+01 O.1E+OI, 0.5E+00, 0.0, -0.5E+00, -0.1F+01,
-0.2E+01, -0.3E+01, -0.4E+01, -3.'E+01,

FM . 0.7tE+CO,

F = 0.7F+01,

PEL = 0.26261+09,

SSB = 0.0,

XCG = O.OE+30,

YCG = 0.15f+00,

PBPI = 0.16+031

CAFACTP = 0.1+01,

ANGO = -0.1117*877154745E+00,

XCUT = F,

PBBPOL = 0.0, 0.319E+01, 0.352E+01, 0.371F+01, 0.39E+01, 0.409E+01,
0.427E+01, 0.462E+01, 0.495E+01, 0.524E+01, 0.55E+01,

CFDfFO1 = 0.0, C.6F-01, 0.23F+00, 0.32E+00, 0.42E+00, 0.52E+00,

0.62F+00, 0.84E+00, 0.109E+01, 0.135E+01, 0.159E+01,
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ALAMCP - 0.91961221746557E-02,

BDYONLY - T,

DEL = 0.16325224594277E+00,

EPS = 0.2C6e66 930 250+0,

XSF = 0.13-960041&1169E-0?,

SEND

POWER-LAW SCDY OF REVOL MACH 12 EM .7500 F=7.00 REY=4.42E6/M PBASE=PINFINIT

ALPHO CL CD CM L/D CN CNB CND CNW OP/Q CA CAP CAF

0.0 0.00C0 .01128 0.00000 0.00 0.00000 .0?632 .00011 .00825 0.00000 .01128 .01096 .00032

NYPAEPO SUMMARY

(L/D) ALPHA ri CD ALPHA CD ALPHA CL
MAX ./DMX L/DMX 0 0 MIN MIN A=0

5.8468 -. 022' .03410 .00283 -3.38 .0028 -3.50 .03432 TER MACH 12 F4M.7500 F=7.00 REY=4.42E6/M PBASE=PINFINIT

COMPUTER PROGRAM FOR CALCULATING KO AND Xcr

The main program requires as inputs values of two parameters describing wing
upper surface conditions. These values are an average wing upper surface pressure
parameter (PBBPOL) and an average wing upper surface skin-friction parameter
(CFDCF01). They are plotted in reference 20 (figs. 4 and 11 of the reference, respec-

P - P0 CF, A
tively) as and C -1 for delta wings as functions of Xcr (a viscous

Xcr CF,0,cr
interaction parameter) and K0 ( = -M 0 a). This program calculates K0 for each angle
of attack and the value of Xcr for the delta wing corresponding to the power-law wing.
As mentioned in the main body of the paper, the correspondence is based on the viscous
effects, which are assumed to be approximately equal for wings with equal spans and
equal values of §5 x-1/2 dr dx. For the power-law wings, this integral involves gamma

functions which are approximated analytically in the program.
PROGRAM UPPPESS(TNOUT=201,OUTPUT=201,TADE1=INPUT) A
DTMFNSTN ANGL(1), CAO(11), P0(113) HFAD(8), P88POL(11) A ?
NAMLIST /DATA/ REL,F,AMCHTINFEMETB4,FO,AlNCASENALFANGLtXCG, a 3
1SS8,YrG A 4
DATA GAM,TWTT,PTF,ASAV/1.4,.41667,2.65868,O./ A 5
GM1=GAM-I. A 6
GMIT=I./GM1 A 7
GM83=GAM*8./3. A 8
GMY.2=.5*GM1 A 9
GPI4=(GAM+1.)/4. A 10
ZGGl=GeM/GM12 A 11

1 READ 11, HEAD A 12
IF (ENDFILF 1) 9,2 A 13

? READ DATA A 14
TF (ANGL.EQ.ASAV) GO TO 7 A 15
ASAV=ANGL A 16
DO 6 T=1,NALF A 17
ANG=.0174533*ANGL(I) A 18
CAO(T)=-AMCH*ANG A 19

30



APPENDIX - Continued

IF (rCA(I)) 4,5,3 A 20
3 GP1K04=GP14*CAO(I) A 21

RTGK&=SQPT( .+GP1K04**2) A 22
PO(Ti)=.+GM*CAO(T)*(GPIKO4+RTGK4) A 2?
P98POL(T)=GM83*(RTGK4+GPlKO4*(2.AGPlK4/QTGK4))/SQRT(PO(I)) A 24
GO TO 5 A 'f

A GM12K=1.+GM12*CAO(T) A 26
PO()=GM12K**ZGG1 A 27
IF (PO(T).LT.0.) PO(f)=O. A 28
PBBPOL(T)=GM83*M12K**GMIT 29
GO TO 6 A 30
POI()=. A 31
P8BPOLIT)=GM83 A 32

6 CONTTNUF A 33
7 ZM=?,*M A 34

PRINT 12, MEAD A 35
IF (FM.FQ.BSAV) GO TO 8 A 36
PSAV=FM 4 37
EMM!=EM-1. A 38
EMAl=,.*FM-1* A 39
EM4019=.4019*EM A 40
EMXt=1. 303-FMA019 A 41
FMX2=.5/(.9274+EM4019) A 42
AT=.977r-.7627*EMMI/(EMM+1.95*EM41) A 43
EMG=GM'*AY*ETAB/(EM*SQRT(2.*GAM*EM&I*FO)) A 4&

8 AED=A1*(FTAB*F/AMCH)**2 A 45
AcPX=AFD*FMX1/(5.-ZM) A 46
TTBTT=I.+GM12*AMrH*4MCH A A7
TWTI=TWTT*TT8T! A 48
TPTI=.273+(.199+.532*TWTT)*TTPTI A 49
SUT4T=198.6/TINF a 50
CIl=t.+SUTHT)/(TWTI+SUTHT)*SQRT(TWTT) A 51
C3=(1.+SUTHI)/(TPTI+SUTH)*SQTTPTTPTI) A 52
ZEM32=FMG*AMCH*F*F*SOQT(C1/DL) A 53
EM 2 2X=.5*ZEM'2/EMXI A 54
G2MPrC=.A901*GM12*(AMCH**3)*SOQT(C?/REL) 4 55
rRE.=PTF*(FMX2+4EPX+FM32X) /(1.+EP+ZEM32) A 56
ALAM P=G?MR/SOQT(CREL) A 57
PRINT 10, F~MFMMCCEL4LMCP(ANGL(1),CAOI),PO(T),PBRPOL(IIl= A 58

11,NALF) A 59
GO TO i a 60

9 STOP A 61
r 4 62
10 FORMAT (///15X,2HFM,9X,IHF,8X,HMACH,6X,FHCRE/L 7X,IIH(LAM8OA)CRE/ 4 63

1/9X,FO.4,2F1O.2,F12.6,EI7.6///6X,-H4NGIF,6X,4H(K)O,7X,&H(P)0,7X,6 A 64
2HLAM=0.,9X,13H(P-PO)/LAMBDt,6X,11H(CFOF FI)-1/(/Fl1.2,F11.4, Fll. A 5v
31) A 56

11 FORMAT (8410) A 67
12 FORMAT (IH1,5X8A ) a 68

END A 69-

Input

A single case consists of calculations for a single configuration over a set of angles

of attack. The first card is a heading consisting of any 80 FORTRAN characters. The

remaining cards use the same loading subroutine as does the main program; the data

block begins with $DATA and ends with $. The necessary input variables are TINF,
AMCH, NANG, ANGL, EM, F, REL, ETAB, FO, and Al. Of these the first seven are the

same as for the main program and the last three are from the similarity solution results.
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APPENDIX - Concluded

See figure 3 and table I where ETAB = ?b, FO = F0 ( b), and Al = al. The program is

set up so that the input cards to the main program may be used with these three variables

added. Here is the input for the first sample case given with the main program:

POWER-LAW TRANSPORBITEP MACH 1? FM=.70 F=7.00 PrY=4.4p?6/mA ***** PppFS
$DATA AMCH=1?.,EM=.75,F=7..RFL=256.26 6 TINF=40R . , xC r =.6 ,yCr,=. 5,
ETAB=.87507FO=.69806 .Al=.0 7 3?,
NALF=I1 ANGL=3.,2.,.500-.,-1.- ,- .- 3. q-4. ,-5.

Output

The output for the same case is shown in this section. In it (LAMBDA)CRE = Xcr
and (K)0 = KO are needed for use with reference 20. Also printed are the length ratio

of the delta to the power-law wing, CRE/L; the ratio of inviscid surface pressure to

free-stream static pressure, PO; and the average pressure parameter for X = 0,
LAM = 0. This latter value is a useful aid sometimes in interpolating values from the

figures of reference 20.

POWFn-LtW TRANSPODRITER MACH 12 EM=.7500 F=7.00 PEY=4.42EF/M ***** UPPPFSS

EM F MACH C9F/L (LAMBDA)CDF

.7500 7.00 12.00 1.056144 9.196840E-0

ANGLE (K)0 (P)O LAM=O. (P-P0)/LMBDA (CFOD/CFO)-1

3.00 -.628' .39062 2.66866

2.00 -.4189 .54202 2.99986

?.0) -.2094 .74116 3,35458

.0 -. 1047 .86??9 3.54092

0.00 -0.nron0 1.00000 3.73333

-. 50 .1047 1.15611 3.92899

-1.00 .2094 1.33?37 &.12332

-2.00 .4189 1.75205 4.49871

-3.00 .6283 2.27170 &.84414

-4.00 .8378 2.90224 5.15051

-5.00 1.n~'72 3.65262 9.41472
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TABLE I.- SOLUTIONS TO THE HYPERSONIC SIMILARITY EQUATIONS

FOR POWER-LAW BODIES OF REVOLUTION

m vb FO) F 1/q) 1 al

y = 7/5

1.00000 0.91492 0.87342 0.9179 0.07323 0.08410 0.47546

.95000 .91034 .84711 1.0591 .07589 .09551 .52709

.90000 .90465 .81630 1.2306 .07909 .11044 .58604

.85000 .89743 .78174 1.4386 .08303 .13067 .65291

.80000 .88798 .74265 1.6887 .08799 .15918 .72741

.75000 .87507 .69806 1.9811 .09444 .20098 .80732

.70000 .85648 .64662 2.2986 .10318 .26459 .88631

.66667 .83880 .60763 2.4964 .11098 .32565 .93216

.63333 .81391 .56403 2.6392 .12129 .40794 .96566

.60000 .77647 .51478 2.6593 .13564 .51763 .98034

.55000 .66414 .42678 2.2510 .17318 .74598 .96791

.53000 .56901 .38500 1.8876 .20119 .86687 .96377

.51000 .37221 .33757 1.4110 .25443 1.04110 .97539

.50500 .27299 .32450 1.2766 .28069 1.11845 .98249

.50000 .00000 .31077 1.1366 .35808 1.36841 .99182

y = 5/3

1.00000 0.87041 0.81065 0.7836 0.10244 0.10987 0.46531

.95000 .86429 .78363 .9017 .10532 .12597 .51356

.90000 .85679 .75282 1.0433 .10872 .14660 .56788

.85000 .84740 .71823 1.2122 .11283 .17364 .62833

.80000 .83532 .67912 1.4108 .11787 .20994 .69402

.75000 .81919 .63448 1.6356 .12422 .25974 .76228

.70000 .79658 .58296 1.8685 .13248 .32919 .82727

.66667 .77569 .54389 2.0053 .13956 .39031 .86398

.63333 .74719 .50016 2.0956 .14850 .46626 .89116

.60000 .70595 .45067 2.0942 .16025 .55904 .90627

.55000 .59076 .36177 1.7872 .18792 .73266 .91473

.53000 .49985 .31912 1.5217 .20647 .81845 .92427

.51000 .32217 .26988 1.1590 .23916 .93877 .94825

.50500 .23542 .25600 1.0506 .25495 .99164 .95764

.50000 .00000 .24113 .9315 .30378 1.16431 .96872
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(a) General power-law, wing-body configuration.g edge

coincides with shock

Bod s ra (x) = rb xm

x=Ox

ero-order case)

(b) Body of revolution in nondimensional coordinates.

wave Tb

(a)Figure 1.- Configueneration studiedr-law, shwing-body relationfigura between physical

/*, Body s urfac e rl = rbx~lbx

Sh 0ck r~
(zero -order case)

Mb Body of revolution in nondimensional coordinates.

Figure 1.- Configuration studied, showing relation between physical
and nondimensional coordinates.
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1.5

Experiment
1.4 - Data in Configuration

figure

1.3 - _ o 5(a) Power-law bodies
1.3 5(c) of revolution

S 6, 7 1/2-cone with
, shock-shape wing

1.2 r 8(a) 1/2-cone with
ci 8(b) (delta wing

Theory

1.1 Power-law 1/2-body of revolution,
shock-shape wing (figs. 9, 10)

1.0

0.

0. .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
Slender body parameter, 6

Figure 2.- Graph of the relation E = 1/(M,6) 2  for several Mach numbers and

showing the values of 6 and El for various sets of experimental data.
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b F1 /b)
.7 1.5

.61.0

.5 .5

59 --------- ----.

5 .6 .7 .8 .9 1.0 .5 .6 .7 .8 .9 1.0
m m

Figure 3.- Variation of similarity solution parameters with power-law exponent m
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-_ "- Effective body center line

Te

Outline of effective body

Figure 4.- Effective body for estimating aerodynamic characteristics at

angle of attack (shown for f = 6, m = 2/3).
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Theoretical drag forces
Total drag (present method)

Hypersonic similarity
Skin friction

---- Newtonian method
.-.- Inviscid cone flow

Roo Mo
.0016 - 8xio6  

21.6 - .0016

[ 6x106  
20.8 _-

.0012 .0012 O Rl 1
D D 0 1.4x10

6  10.03

.0003 -. 0008) 0 /.0008 - -- ---- -

.0004 .0004

0. (a) V/
3  =  

/300; 6= .11, , .2 (ref. 12 0. (b V/3 = 01046; 6 .11, , .9 (ref. 22)

R_,l Moo Ro I Mo

.0012 O 2.5x 06 10.35 .0012 0 4.4xo0
6  

5.96

00 2.2x106 10.33 0 1.5x106  
5.85

.0008 .0008
0 D

- -0004 .0004

0. t() f 6.63 6 z .09, 1, Z1.2 (ref. 12) (d) f 6.63 6 .09, ez 4. (ref. 12)
.5 .6 .7 .8 .9 1.0 .5 .6 .7 .8 .9 1.0

Power-law exponent, m Power-law exponent, m

Figure 5.- Comparisons of theoretical drag coefficient at zero angle of attack with
experiment for power-law bodies of revolution. The theory is shown for the
larger Reynolds number in each case.
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.28

.24 Theory Experiment (ref. 23)

0 f=4 (8=.27, r=.13)
---- O f=8 (6=.14, e=.53)
O f=12 (6=.09, c=1.2)

.20 -

.16

.12

S/

CN----------------------------------------

.o8 -P /

.08

A

0.04

.08.0

.06

C
A

.04

,02

-10 -8 -6 -4 -2 0 2 4 6 8 10
Angle of attack, a, deg

Figure 6.- Comparison of theoretical normal and axial forces with experiment for

wing-conical-body configurations (m = 1) at Mach 10.03.
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0O f=4 (6=.27, .13)
-2. O f=8 (6=.14, =.53)

--- f=12 (6=.09, =1.2) O
.12

-4,</

.10

-6.

.08

CD

.06

- --. 04

.02

0.
-. 04 0. .04 .08 .12 .16 .20 .24 .28

CL

Figure 7.- Comparison of theoretical drag polar, lift-drag ratio, and pitching-moment
curves with experiment for wing-conical-body configurations (m = 1) at Mach 10.03.
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Theory Experiment (ref. 6)

shock-shape wing A = 75* delta wing ec 6
O 90 .17 .71
o 7.50 .14 1.03

.08

.06

CD  .04

0.

-. 04 0. .04 .08 .12 .16 .20 .24
CL

(a) Drag polars and pitching moment at Mach 6.86 in air.

Experiment (ref. 7)

6. o A = 750 delta wing
0 A = 810 delta wing

Theory
4.- Shock-shape wing4. -- -

(t)max °

2.

O.
0. 2. 4. 6. 8. 10. 12. 14.

Oc, deg

(b) Maximum lift-drag ratio at Mach 19.9 in helium.

Figure 8.-- Comparisons of calculated performance of half-cone bodies having

shock-shape-matching wings with experimental data for the same bodies

having delta-planform wings.
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(a) Variation with m for f = 5.

Figure 9.- Comparison of calculated aerodynamic characteristics for Mach 12
flight at an altitude of 30 km. Volume = 2500 m3; moment reference center
at = 0.6, =0.15FbB.
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(b) Variation with f for m = 0.75.

Figure 9.- Continued.
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(c) Comparison of three configurations with Mach 6 designs for the same body shapes.

Figure 9.- Concluded.
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Figure 10.- Summary of theoretical aerodynamic characteristics for configurations of

volume 2500 m 3 at Mach 6 and 12 and at an altitude of 30 km.
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