NASA TECHNICAL NOTE

NASA TN D-7427

NASA TN D-7427

N74-12705

(NASA-TN-D-7427) HYPERSONIC ABRODYNAMIC CHARACTERISTICS OF A FAMILY OF POWER-LAW. WING BODY CONFIGURATIONS (NASA) 48 p HC SO CSCL 01A 41/01 24554 H1/01 24554

HYPERSONIC AERODYNAMIC CHARAC**FERISTICS** OF A FAMILY OF POWER-LAW, WING-BODY CONFIGURATIONS

by James C. Townsend Langley Research Center Hampton, Va. 23665

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION . WASHINGTON, D. C. . DECEMBER 1973

1. Report No. NASA TN D-7427				••
NASA TN D-7427	2. Government Accession No.		 Recipient's Catalo 	ig No.
4 Title and Subtitie			5, Report Date	
UVDEPSONTO APPODIXIA			December	1973
FAMILY OF POWER-LAW	, WING-BODY CONFIGU	RATIONS	3. Performing Organ	ization Code
7. Author(s)		1	3. Performing Organ	ization Report No.
James C, Townsend			L-7176	
· · · · · · · · · · · · · · · · · · ·		1'). Work Unit No.	
9. Performing Organization Name and Address			760-66-01	1-01
NASA Langley Research Co	enter	1	1. Contract or Gran	t No.
Hampton, Va. 23665				
		1	3. Type of Report	and Period Covered
12. Sponsoring Agency Name and Address			Technical	Note
National Aeronautics and S	pace Administration	1	4. Sponsoring Agen	cy Code
Washington, D.C. 20546				
40.41				
16. Abstract	- alass and h = 16	antain monor-	low bodies on	mounted hy
The configurations a	nalyzed are nall-axisym	netric, power-	aw poules su	utia solutions
thin, flat wings. The wing	planform matches the be	ay snock-wave	snape. Anal	ytic solutions
of the hypersonic small dis	sturbance equations form	a basis for ca	Iculating the I	ongitudinal
aerodynamic characteristi	cs. Boundary-layer dis	placement effec	ts on the body	and the wing
upper surface are approxim	nated. Skin friction is e	stimated by us	ing compress	ble, laminar
boundary-layer solutions.	Good agreement was ob	tained with ava	ilable experin	
for which the basic theoret	ical assumptions were s		method is use	nental data
	ical assumptions were s	atisfied. The		d to estimate
the effects of power-law, f	ineness ratio, and Mach	number variati	ons at full-sc	d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The financial second s	ons at full-sca	d to estimate ale conditions.
the effects of power-law, f The computer program is :	ineness ratio, and Mach included.	atisfied. The f	ons at full-sc:	d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The f	ons at full-sc	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is :	ineness ratio, and Mach included.	atisfied. The f	ons at full-sc:	d to estimate ale conditions.
the effects of power-law, f The computer program is :	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc	d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc	nental data d to estimate ale conditions.
the effects of power-law, f	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc:	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc:	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is	ineness ratio, and Mach included.	atisfied. The i	ons at full-sc:	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s))	ineness ratio, and Mach included.	atisfied. The number variati istribution Statement	ons at full-sc:	d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s)) Power-law body	ineness ratio, and Mach included.	atisfied. The number variati istribution Statement Unclassified	ons at full-sc: – Unlimited	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s)) Power-law body Hypersonic flow	ineness ratio, and Mach included.	atisfied. The s number variati istribution Statement Unclassified	ons at full-sc: - Unlimited	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s)) Power-law body Hypersonic flow Wing-body combinations	ineness ratio, and Mach included.	atisfied. The s number variati istribution Statement Unclassified	ons at full-sc: – Unlimited	d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s)) Power-law body Hypersonic flow Wing-body combinations Hypersonic similarity	ineness ratio, and Mach included.	atisfied. The number variati istribution Statement Unclassified	ons at full-sc: - Unlimited	d to estimate ale conditions.
the effects of power-law, f. The computer program is 17. Key Words (Suggested by Author(s)) Power-law body Hypersonic flow Wing-body combinations Hypersonic similarity 10. Security Classif (of this report)	20. Security Classif. (of this s	atisfied. The number variati istribution Statement Unclassified	ons at full-sc: - Unlimited	nental data d to estimate ale conditions.
the effects of power-law, f The computer program is 17. Key Words (Suggested by Author(s)) Power-law body Hypersonic flow Wing-body combinations Hypersonic similarity 19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this public lass of the security classif. (of this public lass of the security classif.)	atisfied. The number variati istribution Statement Unclassified	ons at full-sc: - Unlimited 21. No. of Pages 47	22. Price* Domestic, \$3.00

*For sale by the National Technical Information Service, Springfield, Virginia 22151

HYPERSONIC AERODYNAMIC CHARACTERISTICS OF A FAMILY OF POWER-LAW, WING-BODY CONFIGURATIONS

By James C. Townsend Langley Research Center

SUMMARY

The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Approximate boundary-layer displacement effects on the body and wing upper surface are included. Skin friction is estimated by using compressible, laminar boundary-layer solutions. By using an effective body shape, the method is extended to small angles of attack. Three basic theoretical assumptions are made: (1) the body is slender, (2) the shock wave is strong, and (3) the Mach number is large. In comparisons with available experimental data, good agreement was obtained when these assumptions were satisfied. The method is also used to estimate the effects of power law, fineness ratio, and Mach number variations at full-scale conditions. The implementing computer program is included.

INTRODUCTION

Much research has been devoted to the hypersonic flow about half bodies of revolution mounted beneath a thin wing. Theoretical studies (refs. 1 to 3) and experimental work (refs. 4 to 7) show that with half-cone bodies these configurations combine good stability characteristics with high values of maximum lift-drag ratio. Replacing the conical bodies with those having power-law profiles generates a larger class of configurations and one which is more representative of aircraft shapes. Low wave-drag bodies in the hypersonic regime are generated by power-law curves with exponent in the range 0.5 to 0.8. (See refs. 8 to 12.) These bodies have the additional advantage of better volume distribution than cones.

The purpose of this study was to develop a method for calculating the longitudinal aerodynamic characteristics of power-law bodies with reflection-plane wings. The method applies to configurations consisting of half of an axisymmetric power-law body mounted beneath a thin wing whose planform matches the theoretical body shock shape at zero angle of attack. Small-disturbance theory, with small perturbations for Mach number and boundary-layer displacement effects, provides a means for calculating the pressure field and shock-wave shape. This pressure field is integrated analytically to obtain the forces and moment on the body. Small angles of attack are simulated, and laminar skin friction is calculated. The computer programs which have been written to implement this method are presented in an appendix.

SYMBOLS

shock-wave perturbation constant
Chapman-Rubesin constant, $\frac{\mu_w/\mu_{\infty}}{T_w/T_{\infty}}$
axial-force coefficient, $\frac{Axial \text{ force}}{\bar{q}_{\infty}S}$
drag coefficient, $\frac{D}{\bar{q}_{\infty}S}$
lift coefficient, $\frac{L}{\bar{q}_{\infty}S}$
pitching-moment coefficient, $\frac{\text{Pitching moment}}{\bar{q}_{\infty}S\bar{c}}$
normal-force coefficient, $\frac{\text{Normal force}}{\bar{q}_{\infty}S}$
normal-force coefficient of body
normal-force coefficient of wing
pressure coefficient $\frac{\bar{p} - \bar{p}_{\infty}}{2}$
$\bar{\mathbf{q}}_{\infty}$
mean aerodynamic chord, taken as $\bar{c}_b = \frac{2\bar{l}}{m+2}$
mean aerodynamic chord, taken as $\bar{c}_b = \frac{2\bar{l}}{m+2}$ drag

F	similarity static-pressure variable
f	fineness parameter, $\frac{\overline{i}}{\overline{r}_{b,B}}$
I	boundary-layer profile parameter
J	integral of F from body to shock
L	lift
ī	length
$\mathrm{M}_{\mathrm{\infty}}$	free-stream Mach number
m	exponent of power-law body shape
р	dimensionless static pressure, $\frac{\bar{p}}{2\delta^2 \bar{q}_{\infty}}$
$\bar{\bar{p}}_u$	average wing upper surface pressure
$ar{q}_\infty$	free-stream dynamic pressure
R	dimensionless shock-wave radius, $\frac{\overline{R}}{\delta \overline{l}}$
$R_{\infty,l}$	free-stream Reynolds number, $\frac{\bar{\rho}_{\infty}\bar{\iota}\overline{\overline{U}}_{\infty}}{\bar{\mu}_{\infty}}$
r	dimensionless radial coordinate, $\frac{\ddot{\mathbf{r}}}{\delta \bar{l}}$
S	projected planform area
s _c	distance from nose to upper surface center of pressure
т	temperature
$\overline{\mathrm{U}}_{\infty}$	free-stream axial velocity

3

-

-

$$V volume of body x dimensionless axial coordinate, $\frac{\bar{x}}{\bar{l}}$
 α angle of attack relative to body axis
 γ ratio of specific heats
 δ shock-wave slope parameter, $\delta = \frac{\bar{R}_0}{\bar{l}} \frac{B}{l} = \frac{1}{t\eta_b}$
 δ* dimensionless boundary-layer displacement thickness, $\frac{\bar{\delta}^*}{\delta \bar{l}}$
 $\epsilon_1 small perturbation parameter for Mach number, $\frac{1}{(\bar{\delta}M_{\infty})^2}$
 $\epsilon^* small perturbation parameter for boundary-layer displacement, $\frac{d\delta^*/d\bar{\xi}}{dr_b/d\bar{\xi}}$
 $\eta similarity form of radial coordinate, $\frac{r}{R_0}$
 $\theta shock-wave angle $\kappa = \left(\frac{\delta}{\bar{\delta}e}\right)^2$
 $\mu viscosity coefficient $\nu = \frac{f_e}{\bar{t}}$
 $\bar{\xi} similarity form of axial coordinate $\rho dimensionless density, \frac{\bar{\rho}}{\bar{\rho}_{\infty}}$
 Subscripts:
 B at base of configuration, $x = 1$$$$$$$$$

b body

e effective body shape

max maximum

(L/D)_{max} maximum lift-drag ratio

0	zero-order similarity solution $(\epsilon_1 \rightarrow 0)$
1	first-order similarity solution ($\epsilon_1^2 << 1$)
Ø	free-stream value

w wall

An asterisk denotes that the quantity includes boundary-layer displacement effect. A bar over a symbol denotes a dimensional quantity.

THEORY

The method applies to the general configuration shown in figure 1(a). It consists of one-half of a body of revolution mounted beneath a thin wing at an angle of attack of 0° . By assumption, the wing acts as an endplate to maintain the axial symmetry of the flow about the body. The wing planform matches the shock-wave shape about the full body, and the body pressure field acts on the wing to provide additional lift. The method is put together from a series of pieces in order to arrive at the final aerodynamic coefficients. The basis for the development is the result in hypersonic slender-body theory that for power-law bodies, there are similarity solutions to the inviscid flow equations in the hypersonic limit. (See ref. 13.) Independent small perturbations are made to account for Mach number effects and for laminar boundary-layer displacements. (See ref. 14.) To simulate the effects of small angles of attack, a simple substitution of an effective body is made. The resulting equation for the pressure distribution is integrated analytically to obtain the pressure forces and moments on the body. Then the laminar skin-friction drag is calculated by using the analytic pressure distribution. The development outlined is explained in more detail in the following sections.

Inviscid, Power-Law Body Solution

If, in inviscid hypersonic flow about a slender body, the velocity changes in the freestream direction are neglected compared with the transverse flow velocities, the hypersonic small-disturbance equations result. When a strong, power-law shock wave occurs in such a flow at infinite Mach number, these equations indicate that the body generating the shock also has a power-law shape. (See ref. 14.) Thus in figure 1(a), the shock wave $\frac{\overline{R}_0}{\overline{t}} = \delta \left(\frac{\overline{x}}{\overline{t}}\right)^m$ is generated by the body $\frac{\overline{r}_b}{\overline{t}} = \frac{1}{f} \left(\frac{\overline{x}}{\overline{t}}\right)^m$. In dimensionless form (fig. 1(b)) these relations become $R_0 = x^m$ and $r_b = \frac{1}{\delta f} x^m$. When the dependent variables are expressed in terms of the slope of the shock wave, the axial variations may be separated from the radial variations of the variables to obtain similarity equations. Thus in similarity variables $\xi = x$ and $\eta = r/R_0$; $R_0 = \xi^m$, $r_b = \eta_b \xi^m$, and the dimensionless pressure field is $p_0 = F_0(\eta) \left(\frac{dR_0}{d\xi}\right)^2 = m^2 F_0(\eta) \xi^{2(m-1)}$. Here $F_0(\eta)$ is found by solving a set of ordinary differential equations in η . (See refs. 14 and 15.)

In order to relax the restriction to infinite Mach number, Kubota (ref. 14) applied a small perturbation procedure. This procedure results in the following first-order pressure distribution and shock-wave shape about the power-law body $r_b = \eta_b x^m$:

$$p_{1}(\xi,\eta) = m^{2}F_{0}(\eta) \xi^{2(m-1)} + \epsilon_{1}m^{2}F_{1}(\eta)$$
(1)

$$R_{1}(\xi) = \xi^{m} \left[1 + \epsilon_{1} a_{1} \xi^{2(1-m)} \right]$$
(2)

Here $\epsilon_1 \equiv (M_{\infty}\delta)^{-2}$ is a small parameter corresponding to the hypersonic strong shock assumption $M_{\infty} \sin \theta \gg 1$. The necessity of simultaneously satisfying $\delta^2 \ll 1$ and $\epsilon_1^2 \ll 1$ puts a strong requirement on the Mach number. That is, the present method is limited to $M_{\infty} \gg 1$ so that with a slender body $\delta^2 \ll 1$, the parameter ϵ_1 is still small. Figure 2 shows the relationship between δ , ϵ_1 , and M_{∞} and can be used to check on ϵ_1 for a given Mach number and body shape (by noting that $\delta = 1/f\eta_b$).

The perturbed pressure variable $F_1(\eta)$ and the shock-wave displacement constant a_1 are found from a second set of ordinary differential equations. (See refs. 14 and 15.) The two sets of differential equations involve only m and γ as parameters, and thus they can be solved over the needed range of values and the tabulated results used in applications to flow problems. Table I and figure 3 present the results needed for the current application. They were found by numerical integration techniques similar to those described in reference 16. (With access to modern digital computers, the exact numerical computation has become at least as easy to carry out as the approximate technique which gives ref. 16 its title.) The integrated pressure J_0 and pressure perturbation J_1 are defined as $J_0 \equiv \int_{\eta_b}^{1} F_0(\eta) \, d\eta$ and $J_1 \equiv \int_{\eta_b}^{1} F_1(\eta) \, d\eta$; they will be applied to the wing undersurface.

Corrections for Boundary-Layer Displacement

In order to make a corrected approximation accounting for laminar boundary-layer growth, a perturbed body shape $r_b^*(x) = r_b + \delta^*$ is used. The displacement thickness of the boundary layer is given by $\delta^* = \frac{2m\eta_b}{3-2m} Ex^{3/2-m}$ (based on a result from ref. 17 for adiabatic wall conditions). Here $E \equiv \frac{\gamma - 1}{\sqrt{2\gamma}} M_{\infty} f^2 I \eta_b \frac{3-2m}{2m^2\sqrt{4m-1}} \sqrt{\frac{C}{R_{\infty,l}}F_0(\eta_b)}$ which is very small for large Reynolds numbers. By using the appropriate value for I (the sum of the transformed displacement and momentum thicknesses in refs. 18 and 19), this relation for δ^* may be applied for any constant wall temperature. If the flow outside the boundary layer is considered to be the inviscid flow about the "perturbed body" $r_b^*(x)$, the corresponding pressure distribution and shock shape are approximated as follows. In terms of the body radius $r_b = \eta_b \xi^m$, equations (1) and (2) become

$$\mathbf{p}_1 = \mathbf{m}^2 \mathbf{F}_0(\eta) \xi^{2(\mathbf{m}-1)} + \epsilon_1 \mathbf{m}^2 \mathbf{F}_1(\eta) = \frac{\mathbf{F}_0(\eta)}{\eta_b^2} \left(\frac{\mathbf{d}\mathbf{r}_b}{\mathbf{d}\xi}\right)^2 + \epsilon_1 \mathbf{m}^2 \mathbf{F}_1(\eta)$$

and

$$\mathbf{R}_{1} = \xi^{\mathbf{m}} \left[\mathbf{1} + \mathbf{a}_{1} \epsilon_{1} \xi^{2(1-\mathbf{m})} \right] = \frac{\mathbf{r}_{b}}{\eta_{b}} \left[\mathbf{1} + \mathbf{a}_{1} \epsilon_{1} \left(\frac{1}{\mathbf{m} \eta_{b}} \frac{d\mathbf{r}_{b}}{d\xi} \right)^{-2} \right]$$

By replacing r_b by r_b^* (as in ref. 14), these equations become

$$\mathbf{p}_{1}^{*}(\xi,\eta) = \frac{\mathbf{F}_{0}(\eta)}{\eta_{b}^{2}} \left(\frac{d\mathbf{r}_{b}^{*}}{d\xi}\right)^{2} + \epsilon_{1} \mathbf{m}^{2} \mathbf{F}_{1}(\eta) = \mathbf{m}^{2} \xi^{2(m-1)} (1+\epsilon^{*})^{2} \mathbf{F}_{0}(\eta) + \epsilon_{1} \mathbf{m}^{2} \mathbf{F}_{1}(\eta)$$
(3)

and

$$R_{1}^{*}(\xi) = \frac{r_{b}^{*}}{\eta_{b}} \left[1 + a_{1}\epsilon_{1} \left(\frac{1}{m\eta_{b}} \frac{dr_{b}^{*}}{d\xi} \right)^{-2} \right]$$
$$= \xi^{m} \left[1 + \frac{\delta^{*}}{r_{b}} + a_{1}\epsilon_{1}\xi^{2(1-m)} \right] + \text{terms of order} \quad \epsilon_{1}\epsilon^{*}$$
(4)

Here $\epsilon^* = \frac{d\delta^*/d\xi}{dr_b/d\xi} = E\xi^{\frac{3}{2}-2m} << 1$ except in a small region near the nose when $m > \frac{3}{4}$.

Simulation of Angle of Attack

The pressure distribution along the pitch plane of the body at angle of attack is assumed to be the same as that about an equivalent axisymmetric body. This effective body is at zero angle of attack. It has a power-law profile which closely matches the windward element in the plane of symmetry of the actual body at angle of attack. Figure 4 shows the relation between the real and effective bodies, and the following expressions are used to obtain the effective body parameters

$$\bar{\mathbf{x}}_{e} = \bar{\mathbf{x}} \cos \alpha - \bar{\mathbf{r}}_{b} \sin \alpha$$

$$\bar{\mathbf{r}}_{b,e} = \bar{\mathbf{x}} \sin \alpha + \bar{\mathbf{r}}_{b} \cos \alpha$$

$$f_{e} = \frac{\bar{l}_{e}}{\bar{\mathbf{r}}_{b,e,B}} = \frac{1 - \frac{1}{f} \tan \alpha}{\tan \alpha + \frac{1}{f}} \approx \frac{f}{1 + f \tan \alpha}$$

$$(\tan \alpha < 1)$$

$$(5)$$

and

$$m_{e} \equiv \frac{\log_{e}(\bar{r}_{b,2,e}/\bar{r}_{b,1,e})}{\log_{e}(\bar{x}_{2,e}/\bar{x}_{1,e})}$$

so that

$$\frac{\mathbf{\bar{r}_{b,e}}}{\overline{\iota}_{e}} \approx \frac{1}{f_{e}} \left(\frac{\mathbf{\bar{x}}_{e}}{\overline{\iota}_{e}} \right)^{m_{e}}$$

Here \bar{x}_1 and \bar{x}_2 are points selected to provide a good approximation. A lower limit of $m_e \ge 0.51$ was set to avoid computational problems associated with the theoretical limit as $m \rightarrow 0.5$.

The approximating pressure distribution along the body at angle of attack is then

$$\mathbf{p}_{1,e}^{*}(\eta_{b,e}) = \frac{\mathbf{m}_{e}^{2}}{\kappa} \left[\left(1 + 2\nu^{2}\mathbf{E}_{e}\mathbf{x}_{e}^{\frac{3}{2}-2\mathbf{m}_{e}} \right) \mathbf{F}_{0}(\eta_{b,e}) \mathbf{x}_{e}^{2(\mathbf{m}_{e}-1)} + \kappa\epsilon_{1}\mathbf{F}_{1}(\eta_{b,e}) \right]$$
(6)

where

$$\nu \equiv \frac{\mathbf{f}_{\mathbf{e}}}{\mathbf{f}} = \frac{1}{1 + \mathbf{f} \tan \alpha}$$
$$\kappa \equiv \left(\frac{\delta}{\delta \mathbf{e}}\right)^2 = \nu^2 \left(\frac{\eta_{\mathbf{b},\mathbf{e}}}{\eta_{\mathbf{b}}}\right)^2$$

and E_e is the same as E with m_e replacing m. (The factor κ appears since $p_{1,e}^* = \frac{\overline{p_{1,e}^*}}{2\overline{q}\delta^2} = \frac{1}{\kappa} \frac{\overline{p_{1,e}^*}}{2\overline{q}\delta_e^2}$) By following reference 6 which uses a similar angle-of-attack method for half-cone wing configurations, this pressure distribution is applied over the entire body surface. The pressure distribution under the wing from $\eta_b \leq \eta \leq 1$ is assumed to be the same as that in the flow field of the effective body from $\eta_{b,e} \leq \eta \leq 1$. Since this equivalent body approach does not attempt to account for the actual flow under the wing, its use necessarily limits the present method to very small angles of attack. For this reason all calculated results presented are in the range $\frac{1}{2} \leq \nu \leq 2$. Instead of calculating the wing upper surface pressure in detail, an average pressure is used. This value is taken from the charts of reference 20, which includes viscous-interaction effects on the pressure and skin friction on delta wings at angle of attack in hypersonic flow. Since the viscous effects are approximately proportional to $x^{-1/2}$, delta-wing results for which $\iint x^{-1/2} dr dx$ and the span equal to those of the power-law wing are used. The base pressure is set equal to free-stream static pressure p_{∞} .

Skin Friction

The skin-friction contribution is the remaining term of the axial-force coefficient to be evaluated. In this report laminar boundary layers are assumed for all calculations. The wetted area is divided into the body surface, wing upper surface, and the exposed part of the wing underside, each of which is treated separately. For the skin-friction calculations for the body and the wing lower surface, the longitudinal pressure distribution is modified in the nose region by keeping a higher order term in the pressure equation. These calculations then use a scheme given in reference 18 for incompressible laminar boundary layers. Two transformations of the independent variables allow its use with the two-dimensional compressible laminar-boundary-layer similar solutions of reference 19 for the present cases. For the body, the Mangler transformation (ref. 18) changes the axial coordinate to that for an equivalent two-dimensional body. For the relatively small exposed-wing undersurface, a simplified flow model is applied, that is, streamlines are taken as parallel to the body surface, and the pressure is taken as varying parabolically from the body to the shock wave. In both cases the Stewartson transformation (ref. 19) changes the surface length and exterior velocity distribution to the form for an equivalent incompressible flow; the method of reference 18 is then applied. For the wing upper surface, the average skin friction from the appropriate charts of reference 20 is used just as for the upper surface pressure.

Longitudinal Aerodynamic Coefficients

Integrations of the appropriate components of the surface pressures over the body and wing give expressions for the axial force, the normal force on the body and on the wing, and the pitching moment. In coefficient form the expressions are (to first order in ϵ_1 and ϵ^*):

$$\begin{split} \mathbf{C}_{\mathbf{A}} &= \frac{\pi(\mathbf{m}+1)\delta^{2}\mathbf{m}_{e}^{2}}{t\kappa} \frac{S}{S_{b}} \sqrt{\left[\frac{1}{2(\mathbf{m}_{e}+\mathbf{m}-1)} + \frac{4\nu^{2}\mathbf{E}_{e}}{4\mathbf{m}-1}\right]} \mathbf{m} \mathbf{F}_{0}(\eta_{b,e}) + \frac{\epsilon_{1}\kappa}{2} \left[\mathbf{F}_{1}(\eta_{b,e}) - \frac{1}{\gamma \mathbf{m}_{e}^{2}}\right] \right\} + \mathbf{C}_{\mathbf{A},\mathbf{F}} \\ \mathbf{C}_{\mathbf{N},\mathbf{b}} &= \frac{2\mathbf{m}_{e}^{2}\delta^{2}}{\kappa} \frac{S}{S_{b}} \sqrt{\left(\frac{1}{2\mathbf{m}_{e}+\mathbf{m}-1} + \frac{4\nu^{2}\mathbf{E}_{e}}{2\mathbf{m}+1}\right)} (\mathbf{m}+1)\mathbf{F}_{0}(\eta_{b,e}) + \epsilon_{1}\kappa \left[\mathbf{F}_{1}(\eta_{b,e}) - \frac{1}{\gamma \mathbf{m}_{e}^{2}}\right] \right\} \\ \mathbf{C}_{\mathbf{N},\mathbf{w}} &= \frac{2\mathbf{m}_{e}^{2}\delta^{2}}{\kappa} \frac{S}{S_{b}} \sqrt{\left(\frac{1}{2\mathbf{m}_{e}+\mathbf{m}-1} + \frac{4\nu^{2}\mathbf{E}_{e}}{2\mathbf{m}+1}\right)} \left(\frac{1-\eta_{b}}{1-\eta_{b,e}}\right) \mathbf{J}_{0,e} + \frac{2}{\gamma+1} \left[\frac{4\mathbf{m}\mathbf{E}}{(3-2\mathbf{m})(4\mathbf{m}\mathbf{e}-2\mathbf{m}+1)} + \frac{\epsilon_{1}\epsilon}{2\mathbf{m}_{e}-\mathbf{m}+1}\right] \\ &+ \frac{\epsilon_{1}41}{2\mathbf{m}_{e}-\mathbf{m}+1} + \frac{\epsilon_{1}\kappa}{1-\eta_{b}} \left(\frac{1-\eta_{b}}{1-\eta_{b,e}}\mathbf{J}_{1,e} - \frac{1-\eta_{b}}{\gamma \mathbf{m}_{e}^{2}}\right) \right) \\ \mathbf{C}_{\mathbf{N}} &= \mathbf{C}_{\mathbf{N},\mathbf{b}} + \mathbf{C}_{\mathbf{N},\mathbf{w}} - \frac{\overline{p}_{u}-\mathbf{p}_{\infty}}{q_{\infty}} \\ \mathbf{C}_{\mathbf{m}} &= -\frac{(\mathbf{m}+1)(\mathbf{m}+2)\mathbf{m}_{e}^{2}\delta^{2}}{\kappa} \left\{ \frac{1}{t^{2}} \left(\frac{1}{2\mathbf{m}_{e}+3\mathbf{m}-2} + \frac{4\nu^{2}\mathbf{E}_{e}}{6\mathbf{m}-1}\right) \mathbf{m}\mathbf{F}_{0}(\eta_{b,e}) \\ &+ \frac{\epsilon_{1}\kappa}{3t^{2}} \left[\mathbf{F}_{1}(\eta_{b,e}) - \frac{1}{\gamma \mathbf{m}_{e}^{2}}\right] + \left(\frac{1}{2\mathbf{m}_{e}+\mathbf{m}} + \frac{4\nu^{2}\mathbf{E}_{e}}{4\mathbf{m}+3}\right) \left[\mathbf{F}_{0}(\eta_{b,e}) + \frac{1-\eta_{b}}{1-\eta_{b,e}} \frac{\overline{3}_{0,e}}{\eta_{b}}\right] \\ &+ \frac{2}{(\gamma+1)\eta_{b}} \left[\frac{4\mathbf{m}\mathbf{E}}{(3-2\mathbf{m})(4\mathbf{m}_{e}-2\mathbf{m}+3)} + \frac{\epsilon_{1}^{2}\mathbf{a}}{2\mathbf{m}_{e}+\mathbf{m}+2}\right] + \frac{\epsilon_{1}\kappa}{\mathbf{m}+2} \left[\mathbf{F}_{1}(\eta_{b,e}) \\ &+ \frac{1-\eta_{b}}{\eta_{b}} \frac{\overline{3}_{1,e}}{\eta_{b}}} - \frac{1}{\gamma \mathbf{m}_{e}^{2}\eta_{b}}\right] \right\} \\ \end{split}$$

The pitching-moment reference center is at the nose of the body (x = 0). For the corresponding zero-order and inviscid relations, set $\epsilon_1 = 0$ and E = 0, respectively. Note that the factors η_b and m + 1 are associated with the actual planform area used in normalizing the coefficients.

These equations have been programed for calculation by a high-speed digital computer. The program includes the skin-friction calculations on the body and the wing undersurface. There is a subsidiary program which computes the parameters required to get the upper surface pressure and skin friction from reference 20. The appendix presents an exposition of these programs. The basic program requires only 21600 octal storage locations after compilation on the Control Data Corporation 6600 computer at the Langley Research Center and runs an average case with 11 angles of attack in about 3 seconds of central processor time.

DISCUSSION OF RESULTS

Evaluation of Method

There have been no reported comprehensive experimental evaluations of the powerlaw, wing-body configurations to which the theoretical analysis applies. The data available fall into two groups: (1) drag of complete power-law bodies of revolution (no wing) at several Mach numbers and fineness ratios, and (2) aerodynamic characteristics of conical (m = 1.0) wing-body configurations. Only a small part of these data satisfy the high Mach number, the slender body, and the strong shock criteria required for strict application of the similarity theory. Data for which the criteria are not well satisfied can be used to determine the limits for practical application of the method.

<u>Power-law bodies of revolution</u>.- The zero-angle-of-attack drag of these bodies is already calculated as part of the present method. Figure 5 contains four sets of comparisons with experimental data. The drag coefficients have been based on the length squared as reference area in each case to form a uniform basis of comparison. In parts (a) and (b) of figure 5, the ratio V/l^3 was held constant and yielded a small variation in the fineness ratio as the power-law exponent was varied to obtain the different bodies for the tests. Figure 5(a) is for tests at Mach 21.6 in helium (ref. 12). The agreement is very good. The coefficients in figure 5(b) are for tests at Mach 10.03 in air (ref. 21); the calculations are in good agreement with experiment. Figure 5(c) shows good agreement at Mach 10.35 for a series of power-law bodies having nearly equal fineness ratios. In figure 5(d) the data for the same bodies at Mach 5.96 is not predicted.

The range of agreement obtained in figure 5 should be considered in light of the basic assumptions of the theory as discussed in the previous section. For this reason the pertinent parameters are shown in the legends of figure 5 and also in figure 2. Since $\delta \ll 1$ for all cases, the slender body condition is well satisfied. The hypersonic assumption $(M_{\infty} >> 1)$ is generally considered to be satisfied for M > 5 and so should not cause the discrepancies in figure 5. However, the strong shock assumption $(\epsilon_1^2 \ll 1)$ is satisfied only for figure 5(a), where the agreement is very good. This result shows the

importance of evaluating ϵ_1 to determine whether the theory can reasonably be applied to any particular configuration and free-stream conditions.

As an additional comparison with the present method and the experimental data, drag coefficients based on the simple Newtonian pressure equation $C_p = 2 \sin^2 \theta_b$ and on inviscid conical flow were calculated and are presented in figure 5. The Newtonian prediction and inviscid conical solution drag values are low since viscous interaction effects on the surface pressure become important on high-fineness-ratio bodies at high Mach numbers.

As noted in reference 22, entropy layer effects become important for power-law exponents less than $m = \frac{\gamma + 1}{2\gamma + 1}$ (m ≈ 0.63 for $\gamma = 1.4$); therefore, the theoretical predictions (which do not include these effects) can be expected to be poorer in that range. A less subtle limitation occurs at m = 0.5, where $\eta_b = 0$; that is, the ratio of shock-wave radius to body radius becomes infinite. This case is the "blast wave" solution for blunt-nosed bodies of negligible thickness (for example, a cylindrical rod) as described in references 15 and 22. For bodies with nonzero radius, as in figure 5, the predicted shock-wave radius goes to infinity as $m \rightarrow 0.5$ and so does the wave drag. Thus, the theory is not useful for the blunter shapes.

<u>Wing, conical-body configurations.</u> Theoretical estimates for wing conical body configurations can be compared with the experimental data in reference 23. The bodies in this reference were halves of right, circular cones, corresponding to m = 1. The wings were thin flat plates. The normal- and axial-force coefficients for configurations with the first-order Mach number and boundary-layer thickness corrections to the wing planform shapes are presented in figure 6. The present theory is in good agreement with the experimental data near an angle of attack of 0° , but deviates from it elsewhere. The deficiency in the angle-of-attack method is such that the errors in C_A and C_N are generally about equal and in the same direction. This condition results in the good prediction of the lift-drag curve (drag polar) shown in figure 7, which produces lift-drag ratios agreeing well with the experimental values. Figure 7 also shows the pitching-moment coefficient, the theory generally agreeing well with experiment near $\alpha = 0^{\circ}$.

Other data for comparison with theory may be found in references 6 and 7. The wings for the configurations tested had delta planforms with several leading-edge sweeps. Consequently, they cannot match the shapes used by the theory, but at small angles of attack, where the wing alone produces little lift or drag, the aerodynamic coefficients should be comparable if they are based on the areas of delta wings approximating the theoretical planforms. Figure 8 shows such a comparison at Mach numbers 6.86 (ref. 6) and 20 (ref. 7). The theoretical drag polars and the lift variation with angle of attack

at M = 6.86 agree well with the experimental points, especially near $\alpha = 0^{\circ}$ (fig. 8(a)). The pitching moment about x = 2l/3 is predicted well near $C_L = 0$, but the slope shows an almost neutrally stable trend whereas the experimental data show the configuration to be somewhat more stable. The difference in the distribution of wing area between the experiment and theory would contribute to this effect.

Maximum lift-drag ratios for the same configurations (and some with smaller cone angles) in helium at Mach 20 are shown in figure 8(b). The predicted values agree fairly well with experiment considering the differences in wing shape and area.

Example Application of Method

The preceding comparisons with experimental results have shown that the present theoretical method gives good predictions of the lift, drag, and lift-drag ratio and fair estimates of the pitching moment for small angles of attack as long as the basic assumptions of the theory are met. Thus, the method should be useful for studying the general characteristics of the power-law-body flat-wing configurations at high Mach numbers. Just two parameters, the power-law exponent m and the fineness parameter f, completely specify these body shapes. For the wings the Mach number is the principal additional parameter required, although the Reynolds number, ratio of specific heats, and wall temperature also enter through the boundary-layer growth perturbation. In order to assess the effects of these three main variables, the theory was used to predict the aerodynamic characteristics of a family of full-scale configurations at two Mach numbers. The chosen altitude was 30 km for which the unit Reynolds numbers are 2.21×10^6 /meter and 4.42×10^6 /meter at the chosen Mach numbers of 6 and 12, respectively, based on the 1962 standard atmosphere (ref. 24). The body volume was set at 2500 m^3 , giving lengths of 28.2 m to 78.1 m (approximately 92.5 ft to 256 ft), for $0.63 \le m \le 1$ and $2.5 \le f \le 10.0$. Additional assumptions were $\gamma = 1.4$ and a ratio of wall temperature to total temperature of 0.41667. For each Mach number the range of the fineness parameter was chosen to keep $\delta^2 \ll 1$ and $\epsilon_1^2 \ll 1$. The results of these calculations are presented in figures 9 and 10.

Effect of power-law exponent.- Varying the body power-law exponent while holding the fineness parameter constant at f = 5 for Mach 12 flight at an altitude of 30 km produced the curves shown as figure 9(a). The drag polars in the range $0.63 \le m \le 0.75$ all cluster together, and hence so do the lift-drag ratios. Only in the conical case (m = 1) does the drag fall significantly higher and the lift-drag ratio lower. The pitching moment does show a major variation with m, both in slope and intercept. As m decreases from 1.0 to 0.63, that is, as the nose becomes blunter and the aft end less flared, the zero lift pitching moment $C_{m,0}$ increases. At the same time, the stability decreases, configurations with m < 0.75 becoming unstable for the moment reference center at $\vec{x} = 0.6\vec{l}, \vec{y} = 0.15\vec{r}_{b,B}$. Since the effect of m on the lift-drag ratio is relatively small, this parameter could be chosen to minimize the trim drag.

Effect of fineness ratio.- The computed characteristics for a range of values of the fineness parameter f are shown in figure 9(b). For this family of configurations, the power-law exponent was set at m = 0.75, and the curves are for Mach 12 flight at 30 km as before. At low values of f the peaks in L/D are low and broad and become higher and sharper as the bodies become finer. The stability of the configurations is practically unaffected by variations in the fineness parameter, as indicated by the almost parallel pitching-moment curves.

Effect of Mach number.- Figure 9(c) shows a comparison of Mach 6 calculations with those for Mach 12 for configurations having three of the power-law body shapes. Note that the change in Mach number makes a change in the wing planform for each body shape. The effect on the drag polars shows clearly in the three sets of curves. At Mach 6 the zero lift-drag coefficient $C_{D,0}$ is higher but the drag due to lift is lower than at Mach 12. Since the curves cross before $(L/D)_{max}$ is reached, the Mach 6 curves of L/D peak higher and at larger C_L values than the Mach 12 curves. If the same reference area had been used, the C_L difference would have been larger since the Mach 12 design wing is smaller. The pitching-moment curves are little affected by the Mach number change.

Summary of calculations.- The results of the Mach 6 and 12 calculations for flight at 30 km are summarized in figure 10. As was indicated in figure 9, the effect of the power-law exponent m on $(L/D)_{max}$ is relatively small. For the low fineness ratios, the curves form broad maxima centered near m = 0.7; they become more peaked and move toward m = 0.8 as the fineness ratio increases. This result compares with the value m = 0.75 determined from the Newtonian pressure law as the power-law exponent for minimum drag bodies under length and diameter (that is, fineness ratio) constraints. There is a stronger dependence of the associated lift coefficient $C_{L,}(L/D)_{max}$ on the value of m, particularly for the less fine bodies. The effect of the fineness parameter on $(L/D)_{max}$ and $C_{L,}(L/D)_{max}$ is opposing in that increasing f increases $(L/D)_{max}$ (and its dependence on m) but decreases $C_{L,}(L/D)_{max}$ (and its dependence on m). (At any given lift coefficient in the range of calculation, however, L/D can be increased by going to a finer body; see fig. 9(b).) The curves of $\alpha_{(L/D)_{max}}$ are included in figure 10 in order to show that the calculations of $(L/D)_{max}$ occur within the range of small angles of attack for which the present method gives its best results. (See fig. 6.)

CONCLUDING REMARKS

This paper has presented a method for calculating the longitudinal aerodynamic characteristics of a family of configurations in hypersonic flow. These configurations each consist of a half-axisymmetric power-law body surmounted by a thin flat wing for which the planform matches the analytical shock-wave shape about the body at an angle of attack of 0° . The method is based on the power-law similarity solutions of the hypersonic small-disturbance equations. These solutions require three basic assumptions: the Mach number is large, the body is slender, and the shock wave is strong. A first-order perturbation allows the calculation of Mach number effects, and a perturbation to the body shape provides for the boundary-layer growth. Skin friction is accounted for by using compressible, laminar boundary-layer solutions at the computed pressure distributions integrated over the body and wing surfaces. A computer program has been written implementing this method; sample computations using the program have taken only a few seconds per case.

When compared with experimental data for axisymmetric power-law bodies and for wing—conical-body configurations, the present method gave good agreement where the basic assumptions were satisfied. An example series of computations with variations in the principal parameters at a full-scale flight condition showed that varying the power-law exponent has a greater effect on longitudinal stability and trim than on the lift-drag ratio. The computations for Mach 6 gave higher maximum lift-drag ratios, higher drag coefficients at zero lift, but essentially the same stability characteristics as their counterparts for Mach 12.

Langley Research Center,

National Aeronautics and Space Administration, Hampton, Va., October 25, 1973.

ľ

APPENDIX

COMPUTER PROGRAM FOR CALCULATING THE AERODYNAMIC CHARACTERISTICS OF POWER-LAW WING-BODY CONFIGURATIONS

The calculation procedure described in the main body of the paper for obtaining the aerodynamic coefficients for power-law wing-body configurations at hypersonic speeds has been programed for high-speed digital computation. The program will also compute the zero angle-of-attack drag for an axisymmetric power-law body alone. The purpose of this appendix is to provide a description of the necessary input and available output as well as a FORTRAN IV (ref. 25) listing of the source program. A separate program to compute the parameters needed to obtain two input values from the figures of reference 20 is also listed and described.

Description of Program

First, the program reads all the input variables describing the case to be computed. After calculating geometric constants, it goes through the angles of attack, computing the body axis forces and moments, interpolating the similarity solution parameters from a stored table. Skin friction is calculated for each angle of attack and added to the axial force. The results are then transformed to the stability axes. If at least three angles of attack are included in a case, a quadratic interpolation of the drag polar is made to obtain $(L/D)_{max}$ and other quantities, which are printed out along with the body- and stability-axis coefficients. A summary subroutine assembles certain quantities for separate printout after completion of all cases.

Program Listing

The FORTRAM IV listing of the source program used on the Control Data series 6600 computer system at the Langley Research Center is as follows:

~	PPEGRAM HYPAERO(INPUT=201,BUTPUT=401,TAPF5=INPUT,TAPE7=601)	A	1
с с	HYPERSONIC AERODYNAMIC CHARACTERISTICS OF POWER-LAW WING-BODY CONFIGU	RAT	IONS
v	DIMENSION HEAD(8), Y(6), YE(5), VARD(13.6), VARI(13), ANGL(11).	A	2
	1 SINE(1)), COSE(1)), PBBPOL(11), CFDCFO1(11), PUPIOT(11), CNB(11),	Å	3
	2 CND(11), CNW(11), DPSBYOS(11), CN(11), CAP(11), CAF(11), CA(11),	Δ	4
	² (L(1)), (D(1)), (ICD(1)), (MCG(1)), (DANG(1)),2), (DAL0(2),	Ā	Ś
	4 CDALN(2), X(19), XW(19), PB(19), DSW(05(19), DSW(5)(7-6),	Â	Ä
	5 CCSSL(18) + TXSE(18) + DELR(18) + PTWP1(18)	Â	7
	EQUIVALENCE (Y. FTAB). (Y(2). EQ). (Y(6). A). (YE. FTABEL.	- Â	ġ
	$1 (YE(2) \cdot EOE) \cdot (YE(3) \cdot EYE) \cdot (YE(4) \cdot O(OE) \cdot (YE(5) \cdot O(EE))$	Â	ğ
	? (ANGL,CD(12),CDANGL(12))	Ā	ıó

c	<pre>COMMON &P,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, I FIIK,DLR,FTE,ONETB,XSE,GMA,GM1,GM12,GP12,EM,EMI,EM32,ZMM,ZEMI1, 2 THP2M,&MCH2,DEL,TWEM,AEP NAMELIST /DATA/NCASE,GAM,TINF,AMCH,NALF,ANGL,EM,F,PEL,SSB,XCG,YCG, I PRPI,CFACTR,ANGO,XOUT,PBBP0L,CFDCFOL,ALAMCR,BDYONLY,DEL,EPS,XSE 2 /CUT/T,ANG,ANGO,FME,YE,EMI,CAFB2,CAFU,CAFL,AI,PTWP1 VARI = EM, VARD = ASSOCIATEO VALUES OF ETAB,FO,F1,DJ0,DJ1,A1 FROM TABL DATA X/O0003.0006.0009.0012.0018.0024.0036.005.0085, I .015,025.045.08.14.25.45.71./, PI,PIF,DTOR/3.14159265359, 2 2.6586A08.01745329252/, KP,LLIM,ML,ML1,NCASE/-1,19,18,17.1/, 3 VART,VARD/195,.9.85.8.75.77.666667.633333.6.55.53.51. 4 .914934,91034,90465.89743.88798.87507.85648.8388.81391. 5 .77647.66414.56901.37221.87445.84711.8163.78174.74265. 6 .69806.464662.40763.55403.51478.42678.385.33757.9179, 7 1.0591.1.2306.1.4386.1.6887.1.9811.2.2986.2.4964.2.6392.2.6593. 8 2.251.7.8876.1.411.07323.07589.07909.08303.08799.09444. 9 .10318.11098.12129.13554.17318.20119.25443.0841.09551. X .11044.13067.15918.20098.26458.32562.40794.51763.74598. 1 .86687.1.0411.47569.52709.58604.65291.72741.80732.88631. 2 .93216.96566.98034.96791.96377.97539/. 3 SB.TWT,PBP1.CAFACTR,XE,XOUT/0415667.1110.FALSE./ LOGICAL TFMIN,BDYONLY.WING,XOUT</pre>		11 12 13 14 15 16 17 18 19 20 22 22 22 22 22 22 22 22 22 22 22 22
1	EXTERNAL FUNT BDYONLY=_FALSE. PEAD 38, HEAD	A A A	32 33 34
2	IF (ENDFILE 5) 32+2 READ DATA	A	35 36
•-	CLDMX=0.	Δ	37
•	COMINEL. TEMINE.FALSE.	Δ.	39
	GO TO (3,4,5,6), NCASE	A	40
С 2	NCASE = 1) GAM, 2) AMCH,TINF, 3) EM, 4) F,REL,SSB HAVE NEW VALUES. CM1-CAM-1	A	41
3	ZGM1=2./GM1	A	42
	GM12=.5*GM1	A	43
	CP1=GAM+1.	A.	44
	GP12=-5*GP1 CO1-1 (CD12	A	40
	FUI=1./GP12	Â	47
	GP14=.25*GP1	Ą	48
	ZGG1=GAM*ZGM1	A	49
	ZG1G=-4./ZGG1	A	50
	GMT=1./GAM	A *	っし 5つ
	2626=6M)~ CD1C=CD1*CMT	Ã	53
	GF=_12*(2.*GAM)**J_5*GP12**GP1G	A	54
	GX1=-GM1+GMT	A	55
	G77=77/GX1	<u>م</u>	56
	THC12G=15*GX1 pTPCT=1./SOPT(R.*CAM)	Ā	58
	AT1=1.217*TWTT+.4704	4	59
	AT 2= TWTT+. 344	A	60
	RTTWTT=SORT(TWTT)	A,	61
4	AMCH2=AMCH*AMCH	A	62
•	AMCH3=4MCH*AMUH2 AMT-3 /AMCH2	А 8	64
	TTRTI=1.+GM1?*AMCH2	Â	65
	RTTTBTI=SQRT(TTBTI)	A	66
	SUTH=198.6/(TINF*TTBT!)	A	67
	ALAM=((1.+SUTH)/(TWTT+SUTHI)*RTTWTT	<u>А</u> А	68 64
	50'0'=1'30+97'11NC C2=((1_+\$HTH)/(1_+\$HTHI))*RTTTBTT	Ā	70
	PTC1=SQPT(ALAM/C2)	A	71
	TPTT=.273+(.195+.532*TWTT)*TTBTI	A	72
	PTC3=SQPT((1.+SUTHI)/(TPTI+SUTHI)*SQRT(TPTI))	A	73
	GCMG=GF#PTC1*AMCH**GP1G	A	74
	PQ=2•*AMI*GM1	A	12

17

.

5	EMP1=FM+1.	A 76
	FMP12=5*FMP1	A 77
	EMP2=EM+2.	A 78
	FMM1 = FM-1 .	A 79
	ZMM1=?.*EMM1	A 80
	T₩M=2,×FM	Δ 81
		A 82
	7 MM = 2 EM	A 92
	CHA + 2.47 CM 7CMT1→2 ★/CMT_1 3	A 64
	と、1931年にあるができたが、1997年1997年1997年1997年1997年1997年1997年1997	A 85
	TM22=4.07MEM1=2.0	66 A
	26/03/2=1-772/001/56/01	A 87
		A 88
	1WM3I=X.+/(EMP2)	A 89
	$EM42 = 1 \cdot 7 (4 \cdot \pi EM + 1 \cdot 1)$	A 90
	SIXMI=]./(6.*EM-1.]	A 91
	THRMMX=1./(3EM)	A 92
	FIV2MI=1./(FTWM)	A 93
	FM4019=+4019*EM	A 94
	FMX1I=1./(1.5303-EM4019)	A 95
	FMX152M=FTV2MT/EMX11	A 96
	EMX2=.5/(.9274+EM4019)	A 97
	1P=20.*(1.05-FM)	A 09
	AT=AT)-AT2*ENM1/(EMM1-G37/EMAT)	M 70
	$(\Delta t) = MT(t) = (EM, V_2) = (\Delta T) = $	A 99
	ETART-1 /ETAR	A 100
	CNETET-ETADI	A 101
	UNE (EI-EIADITI)	A 102
		A 103
	$c_1 c_2 = c_1 A c_2$	A 104
		A 105
	$Am \cup Hn \neq (\downarrow \bullet - Z mm I = (Am \cup H - I \bullet J) = \mp GMI$	A 106
	GETIEMF=GCMG*ETAB*AI*SQRT(EM4T)*(EM*EM*FO)*+ZG2G/AMCHN	A 107
	F11=F01*(A1*(ZGG1+2./GP1G-EM1/GM1)-EM1/ZGG1)	A 108
6	FI=1./F	A 109
	EMBF2=(EM*FI)**2	A 110
	FSQ=F*F	A 111
	EMIM2F2=EMP1+EMP2/FSQ	A 112
	RTRELI=J./SQPT(REL)	A 113
	ESAV=GM1*AMCH*FSQ*RTC1*RTRELI*RT8GI	A 114
	DEL=ET4B1+FI	A 115
	EPS=AM(/(DEL*DEL)	A 116
	\$FP=41*EPS	A 117
	EMSAV=4.*ESAV*AT*FTAR/(FM*SORT(FO/FM4T))	A 119
	TWEMSEVALS	A 110
	RSF=SORT(GFTTEME*PTPELT&DEL##761C#YE##76H32)	A 127
		A 120
	PTRALT= SART/AMCH40TTTPTT++2//C9+DEL+AT20111	A 121
	ALOY - ALD + CM VI COM	A 122
		A 123
		A 124
	CARRI - + C7UDD+GMIZ*AMUND+R1UD+R1ELI EMERANA	A 125
~	EMFSAV-U.	A 126
Č		
	WING GEOMETRIC PARAMETERS AND FLOW CONSTANTS	
ц.,		
	SISTSBEETABI*(1.+FMP1*(AEP*THRMMI+EMS&V*FIV2MI))	A 127
	SBRYS=1./SISTSB	A 128
	IF (SSB.GT.O.) SBBYS=1./SSB	A 129
	SISTBYS=SISTSB*SBBYS	A 130
	DEL?=DEL*DEL	A 131
	PTMS=_5*PT*EMP1*SBBYS	A 132
	RTCREL!=SQRT((1.+AEP+TWEM)/(PIF*(EMX2+AEPX+EM32X)))	A 133
	XSC=FMP12	4 134
	ALAMCR=G2MRC*RTCRELI	4 135
	POLAM=-PO*ALAMCR	A 126
	CFOCR=1.328*RTC1*PTREL1*RTCREL1*S1STRYS	A 127
	CAFLC=2.*ALAM*ANI*RTROLI	A 114
	CFCON=PT2P1*CAFIC	071 H 076 A
		A 197

	FMETS=FMP1*FTAB1*SBBYS	A 140
	M-3	A 141
		A 167
	⊼K1=(ML−1)/M+1	A 142
	KK=KK1 + 1	A 143
		A 144
	N - NN	
	MK=M*(K+2)+1	A 142
	2MTG=1MTJ=2MTG	A 144
		A 1A7
	✓ MB(LLIM)=ETAB	A 141
	1 1 = 7 1 1 34	A 148
		A 149
	CU3SL=0.	A 14,
	PS=1.+TWEM+AEP	A 150
	YH (FK) - 1	A 151
	An(NK)=:-	A 160
	CDSSL(KK)=1./SQRT(1.+EMBF2)	A 122
	DD 8 11=1.411	4 153
		A 154
	L=LL [M-LL	H 117
	XL=X(L)	A 155
		A 156
		A 150
	DSWCOS(L)=PIMS*XM	A 157
	TE (ROYONI V) CO TO 9	A 158
		A 150
	HHIL]=FTAB#XM	A 109
	TE (MK_NE_1) GO TO 8	A 160
		A 141
	N, EN	M 101
	K=K-1	a 162
		A 163
	MK=M*(K=2)+3	
	XW(K)=XL	A 154
	VCE- EXIVUIVILIANI	A 165
	ASEA. DALATINE	1 1//
	TXSE(K)=XSE	A 166
	PTwp1(K) = PTOT2(RSE)	A 167
		0.1 F A
		A 100
	R\$K1 = R\$	A 169
		A 170
	XM12=(XM/XL)**2	4 110
	PS=XM*(1_+(TWEM/SQPT(XL)+AEP)/XM12)	A 171
	COTSI (V)-1 /SODT(1 AEMBE2#YM12)	6 172
	CU35L(N)=1+7 3WK1(1+TEMOF 2TAM127	
~ ·	DRM1S=EMETS*(RSK1-RS+RB(L1)+RB(L))	A 113
	OSWEST (K.K)=DRM15*_25*(EOSS) (K)+EOSS((K1))	4 174
	DJRUSELKYKI-BAHIS PESITE OSSELKII SOSSELKII	A 176
		A 175
	DD 7 J=K1.KK	A 176
-		A 177
1	USW(SLIJ+K)=UKMIS+CUSSL(J)	
8	CONTINUE	A 178
		A 179
		4 100
	IF (BDYONLY) GC TO IO	A 189
	XU=0.	A 181
		A 100
	XSE=+h*XW(2)	M 102
	TXSE=XSE	A 183
		A 1 94
	PIMPLEPIUIZANJEJ	4 3 65
	DELR=PSE-ETAB*XSE**EM	A 185
	nom15=EMET5*(R5-RB(11))	A 186
•		A 107
	DSMCSL=DRMLS*+29*CUSSL(2)	4 107
		A 188
~	0 0 0 0 0 1 1 1 - 0 0 0 0 0 0 0 0 0 0 0	A 189
9	D2MC2113*(1=DEWI22+CD22C131	M 107
	XL1=X(6)	A 190
	NI 2-V1161	A 191
		1 100
	PL1=P8(6)	A 192
	P1 7=RB(16)	A 193
c		
r	ANCLE DE ATPACK VARIATION	
<u>ل</u>	ANGLE OF MILMON YANAMILON	
r		
	ANGO=DF1 #(9B(M))-FTAB)/(1,-X(M)))	A 194
• -	A A A A A A A A A A A A A A A A A A A	
10	PRINT UNTA	A 195
	PRINT 36. HEAD	A 196
		A 107
		A 197
	Dn 28 1=1,NANG	· A 198
		A 100
		A 4 7 7
	tF (NE4SE-3) 12,11,11	A 200

197 V EZEK≃EŻE*EK 09Z ¥ **⊢**κ≖Eb2≉C⊽λ 652 V HE2VA=J*(T-WEWZ)/*T=AVSEE 892 ₹ lidWZ≠2Ny∋∃=WN%∋ EF6U2=4.*U2*(ESAV*A1*ET#BE*THR2ME/(EME2*SORT(FOE*FRME1))) 152 V 952 V SW20-=35w20 552 ₹ SM20**2=254c0 DSMS=0SME5K#28dX2 ¥ 52₹ €52 ¥ JSMESK=DECS*EMES\C∀X C*+TART=*SU=YAT V 525 εĉ AOOY AXIS COEFFICIENTS FROM INTEGRATED WING AND BODY PRESSURES 5 J 152 1 TETEND*JIETE*EOLO=8TFLO V 520 **₽09#**£9**P**3**#**F0E 692 ¥ K∃≉303=W303 842 ¥ CME21=GMI/EWES BWZ-"Z=BWIZ 172 A 972 8 VI=011-015*EME1/(EWEJ-031*EWWEJ) •1-303=1303 ۷ 542 IH55WE=3"-5WE 44Z V E42 V WB+3WZ=W3WZ 242 ₹ SWE=S°#EWE -1-3W99=13469 172 ₹ EGNE=¢" *EWE 0+7 ₹ 6EZ V ₽M5≠9M3=S3M3 8£2 ¥ fereir=1./(1.-erabet ¥ 531 78AT9*36&T9=TA9T9 CALL MTLUP (EME+YF+2+13+13+19+10+VAR1+VARD) 982 ¥ ¥ 532 BMB=VASBMB 22 ¥234 IE (EWE-EWESVA) 55*53*55 ĩΖ 882 V 0°ĭ=iwa 02 12 01 09 232 ۷ %S*=3₩3 152 A οĩ ¥ 530 12*12*61 (15*-BWB) B1 EME=&LOG(EHOP&T)/&LOG((XL2-PL2*TN)/(XL1-RL1*TN)) 622 ¥ 81 31401401 10*10*18 822 A 722 A KHORAT= (RL2+XL2+TN)/(RL1+XL1+XL1) IF (FM.EQ.1) GC TO 20 ¥ 559 7**IN1*3***()/*i=20 ⊊22 ¥ V 524 IN=SINE(I) JNIS=N1 EFFECTIVE BODY SHAPE DUE TO ANGLE OF ATTACK С 1 ¥ 553 OPSBYOS(T)=S1STBYS*(PQLAM*PBBPOL(1)-PUPIOI(1)) 11 PRINT 224 ANGL(1)*PUPIQ1(1) X 222 172 V 606101(1)=60*(b0E-T*) TE (P∩E+LT.0.) POE=0. 022 ¥ b0E=([*-CWIS*C00)**I)=30d 91 4 516 72 DI 09 81Z V ма≖∃ма TIS A 1=Ŭ1 A. 216 •î=z∩ 812 V ŝΙ DoSsyds(1)=S1ST8YS*POLAM*P88POL(1) ¥12 ¥ 85 OT 85 EIS A (I) TONY 4SE IN18d 212 ¥ 112 ۷ I-ONVN=OVVN TE (ANGOLUE, ANG) GO TO LT **7**ĩ V 510 PRINT 23, ANGL(I), PUPIQI(I) ¥ 506 (*1-S0d)*0d=(1)101d0d 805 A b02=1*+CV%+LVOx(Cb1KUC+2061(1*+Cb1KOC+*\$)) F05 A ¥ 509 CP1K0c=Cp14+CV0 ٤1 11 (VNC) 13+12+10 502 ۷ CAC=ARS(AMCH*ANG) A 204 EOS A CO2E(1)=2061(1*-21ME(1)**5) 15 \$1202 ¥ (ONV)NIS=(1)∃NIS ∠1*91*51 (9N\$) ∃I ïī IOS A

¥ 562

WING UPPER SURFACE PRESSURE

ງ ເ 50

EiîK≃Eîî∗EK

	FKGQ=FK*GM5? T	A 263
	EPSAVO=F1EK-PBPI*EKGO	A 264
	EPSAV1=F1EK-EKGO	A 202
	FPSAV2=NNETET*(EK*DJ1E*ETE11-EKG0)	A 200
	CNR(T)=D2MS2*(F0EM1*FFSAV+EPSAV1)	4 201
	CND(I)=D2MS2*F0EM1*EME*ETPAT#EE4U2/((ZME+1.)*THR2ME)	A 200
	CNW(1)=D2MS2*(EMP1*(DJETB*EESAV+ZGIET*(EMSAV/(FRME1-ZMMI)+ACP)	A 207
	1 (ZMF-EMM1))-EME*ETPAT*E4UM*F0E/THR2MEJ+EPSAV2)	A 271
	CaP(1)=P1*D2MS*EMP1*F1*(F0EM*()-/(ZME*ZMML)*EC402*EM*1/**J*EF3**0	A 272
	(N(L)=CNB(I)+CNB(I)+CNB(I)+CNW[I]+DPSBTWS[I] CNW, DBNGGTGCD+CCCDCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	A 273
	I MN=D2MS(#FMP[#(FMP24((FUETUJETUJETU) + 11)/FUETULETUETUETUETUETUETUETUETUETUETUETUETUETUE	A 274
	CMACHANGERUNDEDTHEETHEETHEETHEETHEETHEETHEETHEETHEET	A 275
	CMF = CMT	A 276
r		
ř	SKIN FRICTION ON BODY	
	FOE=FOE	A 277
	E2U2=.5*EE4U2	A 278
	APC=GAM*EME2/EK	A 219
	6P=AP0/PT2P1	A 281
	WING=.FALSE.	A 282
	CAFB2=CFCON*SKNFRC(X,LLIM,DSWCOS,GAM,ALAM,FUNI)	A 283
ſ	IF (BDYONLY) GO 10 25	
ċ	SKIN FRICTION ON WING UPPER AND LOWER SURFACES	
	CAFU=CFOCR*(1.+CFDCFO1(I))	A 289
	C&FL=0.	A 207
	WING=.TRUE.	A 287
	DO 24 K=1,KK1	A 288
	K1=KK-K+1	A 289
		A 290
	DLR=DELRIKJ CANNEYNEYN	A 291
	SAAXWEYAINI SAAXWEYAINI	A 292
	AW(K) - AS(K), A	A 293
24		A 294
6-1	CAFL=CAFLC*CAFL	A 295
	IF (XOUT) PRINT OUT	A 296
С		
C	LIFT, DPAG, ANC L / D	A 297
	CAF(I)=CAFB2+CAFU+CAFL	Δ 298
		A 299
25	(AF(1)=7.**(AFD) c+o(1)=7.**(AFD)	A 300
	LAFII-7-2-TVAFII/ CN-0	A 301
		A 302
26	CA(T)=CAP(T)+CAFACTP*CAF(T)	A 303
-0	CL(I)=CN(I)*COSE(I)-CA(I)*SINE(I)	A 304
	CD(T)=CA(I)*COSF(T)+CN(T)*SINE(I)	A 305
	CLCD(J)=CL(I)/CD(I)	A 306
	IF (COMIN.LT.CD(I)) GO TC 27	A 307
	IMIN=T	8 J U B
	CDMIN=CD(I)	8 3 3 3 5
27	IF (CLCD(T).LT.CLDMX) GD TO 28	A 311
	CTCWX=CTCD(1)	A 312
		A 313
28		A 314
	r = r = r = r = r = r = r = r = r = r =	A 315
c		
C	QUADRATIC INTERPOLATION OF DRAG POLAR TO GET (L/D)MAX+ EIC+	
C.		A 214
29	TE (TMAX.LT.2) IMAX=2	A 310
	IF (IMAX.GE.NANG) (MAX=NANG+1	1 318
	IXP=IMax+1	A 319
	· JXM=IMAX+L	A 320
	YE=UUYIAMY VD=CD/THAY)	A 321
	T ZELUT TOWAT	4 322

	YARDUIXP)		2.2.2
	AD PELLICANI Vin-Cliftaavi	A	223
	X/=1.L11MAX/ V3-C1/TVD	А А	324
		А.	222
	N 1 2 - N 1 - N 2	А	222
	ACTEACTAR TE (TEMTA) CO TO 20	4	221
		A .	220
	A 3 1 - A 3 - A 1 A - J V 1 + V 3 - X V 3 + V 3 + V 3 + V 1 3 + V	Д	229
	NA - CHIMACJYICHAJIYIJAARIJIAARIJIAA	A .	220
	A4 • • 7 • 1 × • 1 A 7 • 1 × 1 + 1 − 1 + 1 / A 3 / f VA 7 • 4 × • 1 × •		222
	AA2144+12+A2+126+A4=H+A21 A1NY2+YA2XA1/A	4	222
	TELEBATHATA	4	222
	TE NUERAALISUUS DU TU DU Cinvecaticinvai	A .	234
		д А	232
		Å	230
	CALL MILLO (DALA, 2. NANG. 11. 2. KO. CL. CDANGE)	4 A	721
	CALL NTING (CINY, ADDY, 2, NANGYIYY, YOUYOONNO)	~	220
	TEMTNE TOUE	7	360
		Ä	340
		7	342
30	v2 221=(v2-v2)/(v2-v1)	Ä	242
	x3221=x23/x12	Ä	245
	^///// · · · · · · · · · · · · · · · · ·	7	345
	CALL MILLIP (CLANACOAL A 2 NAME 11 2 KP CLADARL)	2	346
r		*	540
č	MAIN OUTPUTS		
č			
	PRINT 37. CLDMX.ALPHX.CLMX.CDMX.CDALC.CCALN.CIMN	8	347
	CALL SUMMARY (CLDMX+ALPHX+CLMX+CDALO+CDALN+CL(IO)+HEAD+NCASE)	Ā	348
31	PRINT 34, (ANGL(I)+CL(I)+CD(I)+CMCG(I)+CLCD(I)+CN(I)+CNB(I)+CND(I)	Ā	349
	1.CNW(1).DPSBYOS(1).CA(1).CAP(1).CAF(1).1=1.NANG)	۵	350
	NCASE=4	Â	351
	GO TO 1	Δ	352
32	CALL PENTSUM (CLDMX+ALPHX+CLMX+CDAL0+CDALN+CL(IO)+HEAD+NCASE)	Ä	353
	STOP	۵	354
c			
33	FORMAT (F12.2,15H DEG. PUPIQI =,F10.5)	A	355
22	FOPMAT (//3X,5HALPHA,8X,2HCL,8X,2HCD,8X,2HCM,7X,3HL/D,9X,2HCN,8X,	A	356
	1 3HCN8+7X+3HCN0+7X+3HCNW+6X+4H0P/0+8X+2HCA+8X+3HCAP+7X+3HCAF//	۵	357
	2 (F7.1,3X,3F10.5,F9.2,2X,5F10.5,X,3F10.5))	٨	358
35	FORMAT (//F8.2,28H DEG., TOO NEGATIVE FOR BODY)	A	359
36	FIRMAT (1H1/20X8A10/)	A	360
37	FORMAT (//11H (L/D)MAX =,F8.4,11H AT ALPHA =,F7.4, 26H DEGREES,	A	361
	1 WITH CL AND CD =, 2F9-6//6H CDO =, F10, 8, 14H, AT ALPHA 0 =, F8, 4//	A	362
	2 9H CD MIN =,F10.8,12H, AT ALPHA =,F8.4,9H AND CL =,F8.6)	A	363
38	FORMAT (8A10)	A	364
	ENO	A	365-
	FUNCTION PTOT (RS)	B	1
C			
Ċ.	TOTAL TO STATIC PRESSURE RATIO ACROSS SHOCK, AND SHOCK POSITION	8	2
С			
	COMMON DUMB(16),XS,GAM,GM1,GM12,GP12,EM,EMI,EM32,ZMM,ZEMI1,THR2N,	B	3
_	1 AMCH2, DEL, TWEM, AEP	В	4
С	X POSITION FOR GIVEN SHOCK RADIUS	B	5
		в	6
	XJ=RS#*FMI	8	7
	D(1, 1=1, 10)	В	8
	XOIM=XO##EMI	В	.9
	XSM=PS/(1_+(4EP+TWEM/SQRT(X01M))*(X01M/X0)**2)	В	10
	1+ (XSM/XSM0+G1++999) GO TO 2	в	11
•		8	12
T	X5M0=X5M	B	13

2	XS=XSM**EMT GD TO 3 ENTRY PTOTO	8 B 8	14 15 16
C	SHOCK RADIUS AT GIVEN X POSITION XSM=XS**EM	В В В	17 18 19
3	RS#XSM+(dEP+TWEM/SQRT(XSJ)#XS#XS/X3M XSL2M=XSM**2 TTHX?={DEL*{EM*XSL2M/XS+XS*ZMM*AEP+•5*THR2M*TWEM*SQRT(XS}}}**2 AM2=AMCH2*TTHX2/(XSL2M+TTHX2) AMC1=CP32*AM2*(1.+CM12*AMCH2)/(1.+GM12*AM2)	B B B	20 21 22 23
	AMG2=GP12/(GAM*AM2-GM12) PTCT=FXP{(ALOG(AMG2)+GAM*ALOG(AMG1))/GM1) RETURN END	8 8 8 8	24 25 26 27
_	FUNCTION SKNERC (X;LLIM,DSWCOS;GAM,ALAM,FUN1)	С	1
C C C	LAMINAR, COMPRESSIBLE SKIN FRICTION (DATA ARE FOR TW/TT =	. 41	667)
ι.	DIMENSION X(19), DSWCOS(19), XI(19), U(19), BETA(19), DCF(19), 1 BIT(3), B(15), TTH2(30), THT2(2) EQUIVALENCE (FWPP,THT2(2)) DATA B,TTH2/2,1,0.,.05,.1,.2,.3,.4,.5,.6,.8,1.,1.2,1.6,2.,	0000	2345
	1 .293, .2485, .2205, .2095, .1998, .1845, .1725, .1627, .1547, .1479, .137, 2 .128F, .1218, .1116, .1107, .269, .387, .4696, .5051, .5373, .5944, .6447, 3 .69, .73165, .7703, .8408, .9044, .9627, 1.0677, 1.1613/, JP/11/ 4, 6X1, GX2, ZGM1/2857142857143, 1.285714285714, 5./		7 8 9
с 1	BEGIN WITH X(1) = 0., X((1) = 0., Berg = .9 (BEONT-NOSED BODT) BETA(1)=.5 TMPT2=.23209 FPTH=.28779 GO TO 2 ENTRY SKNERCH	000000	11 12 13 14 16
C	BEGIN WITH X(1) = XSE, XI(1) = 0., BETA = 0. (UNDERSIDE OF WING) BETA=0. TMRT2=.441 FPTH=.22052	0000	15 17 18 19
2	XM=X+.1*(X(2)-X) PEPT2=P(XM) UM=SQRT(ZGM1*(PEPT2**GX1-1.)) CALL MGANSS {X+XM+1+XTM+FUN1+FOFX,1}		20 21 22 23
	XTM=ALAM*XIM TH2UP=TMBT2*XIM DCF(1)=PEPT2**GX2*FPTH*DSWCOS(1)*SQRT(UM**3/TH2UR)	0000	24 25 26 27
	XT(1)=XIM U(1)=UM DO 9 IP=2+LLIM YP=X(IP)	0 - 0 - 0	28 29 30
	CALL MGAUSS (XM, XP, 1, DX1, FUN1, FDFX, 1) DXI=ALAM*DXI XI(IP)=DX1+XIM DST2=D/14P1	с с с с	31 32 33 34
	U(IP)=SQRT(ZGML*(PEPT2**GX1-1.)) ALNUP=ALOG(U(IP)/UM) ALNUR2=2.*ALNUR pylutH=DXI/TH2UR	0 0 0 0	35 36 37 38
	RLAM=7.7809*(U(IP)/UM-1.)/DXIUTH BET=RLAM*(1.+(RLAM-1.)*((.0206737*DXIUTH20419)*DXIUTH+.344145)) KK=] K1=0	0 0 0 0	39 40 41 42
r	ITERATION FOR BETA (LOCAL VELOCITY-VARIATION PARAMETER) DO 7 J=1,29	C	43
	BITR=BEI BTT(KK)≖BET TF (KK+3) 5,3,3	C C C	45 46 47

23

.

3	KK = 1	-	
	P32=BIT(3)-BIT(2)	С	48
	821=8TT(2)=8TT(1)	C.	49
	061-01/16/7-04/1433	Ċ	50
	TF [085(821+8527+L1+A05(85277 60 10 4	ř	51
	BDENOM=B32-B21		
	TE (BDENDM.EQ.0.) GO TO 6	С	52
	BET=/BIT(1)*BIT(3)-BIT(2)**2}/BDENOM	С	53
		С	54
		č	55
4	BFT=(BTT(2)+BIT(3))/2.	Ľ	76
-	60 TO 6	C	57
~		С	58
<u> </u>		ř	50
	KT=1	5	
6	JF (BET.GT.2.) BET=1.4	C	60
	CALL MTILLE (BET.THT2.2.15.15.1.JP.B.TTH2)	С	61
	a = A + A + A + A + A + A + A + A + A + A	С	62
		ř	42
	TE (ABS(BET/B)TR-1.)00011 8,8,7	2	43
7	CONTINUE	ι.	04
	DRINT 11. XP-BITR-BET	С	65
~		С	66
8		ř	67
	CALL MILUP (BET, 1H12,2+15,12,24,34,44,44,44,44)	Č,	
	TH2UP=(1.+OXIUTH*(2ABT)*THT2)*TH2UR	Ç	99
	DCF(TP)=PEPT2**GX2*FWPP*DSWCOS(IP)*SGRT(U(IP)**3*THT2/TH2UR)	С	69
		С	70
		ř	71
	XIM=XI(³ P)	С.	11
9	UM=U(IP)	C	72
	TE (111M-EQ-2) GO TO 10	С	73
		C	74
	SKNPRU=SUMIA, DUP, LLIMP	ž	75
	RETURN	L L	15
10	SKNFRC=•F*{DCF+DCF{2}}*{X(2}-X}	C	76
	RETURN	С	77
~		C.	78
<u>ь</u>	TOTAL A CALL ATTA AND ANY TOTAL AT A 44 - TO T TAL ATTA MALIES, 2512 9	ř	70
11	FORMAT (726H BETA UNCONVERGED AT X/L =+FB+5+12H BETA VALUES+2F12+0	С	17
	1)	C	80
		-	
	END	C	- 8 1 ≓
	END	Ċ	81-
	END	¢	81-
	END SUBROUTINE FUNI (X.FOFX)	с D	81-
c	END SUBROUTINE FUNI (X,FOFX)	с 0	81- 1
ç	END SUBROUTINE FUNI (X,FOFX)	с 0 0	81- 1
C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION	С 0 D	81- 1 2
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION	с 0 D	81- 1 2
CCC	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME.EZU2.FOE.FIEK.THG12G.TWM.EMBF2.DZME2K.X2M.WING	с 0 D D	81- 1 2 3
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, EZU2, FOE, FIEK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING		81- 1 2 3 4
C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING		81- 1 2 3 4
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, EZU2, FOE, FIEK, THG12G, TWM, EMBF2, DZME2K, X2M, WING LOGICAL WING X2M=X**TWM		81- 1 2 3 4 5
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X		81- 1 2 3 4 5 6
CCCC	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1		81- 1 2 3 4 5 6 7
C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X**TWM X2=X**X IF (WING) 2,1 YE=Y2M		81- 1 2 3 4 5 6 7 8
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, EZU2, FOE, FIEK, THG12G, TWM, EMBF2, DZME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X** IF (WING) 2,1 XF=XZM IF (WING) 2,1 XF=XZM		81- 1 2 3 4 5 6 7 8
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, EZU2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M)		81- 1 2 3 4 5 6 7 8 9
C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X*TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3		81- 1 2 3 4 5 6 7 8 9 10
C C C 1	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1.		81- 1 2 3 4 5 6 7 8 9 10 11
C C C C 1 2	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, FIEK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2		81- 1 2 3 4 5 6 7 8 9 10 11 12
C C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 EGEF=22() + + THC12C+YEFFODT(1 + EM852+Y2)		81- 1 2 3 4 5 6 7 8 9 10 1 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 1 2 1
C C C 1 2 3	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGTCAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2)		81- 1 2 3 4 5 6 7 8 9 10 11 12 13
C C C 1 2 3	END SUBROUTINE FUN1 (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN		81- 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 1 2 1 3 4
C C C 1 2 3	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END		81- 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 4 1 5 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2
C C C C 2 3	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END		81- 1 2 3 4 5 6 7 8 9 00 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 2 3 4 5 7 8 9 10 1 1 1 2 3 4 5 7 8 9 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C C C C 3	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X*TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND		81- 1 2 3 4 5 6 7 8 9 0 1 1 2 1 3 4 1 5
C C C 1 2 3	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2,FOE, F1EK, THG12G,TWM,EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TD 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END		81- 1 2 345678901123445
C C C C Z 3	END SUBROUTINE FUN1 (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,C2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X** IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X)		81- 1 2 345678901123145 1
C C C C 1 2 3 C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2N,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X)		81- 1 2 3 4 5 6 7 8 9 10 11 2 13 4 15 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
C C C C C C C C C C C C C C C C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OF WING SUBFACE PRESSURE		81- 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 1 5 1
C C C C 1 2 3 C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,Flek,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2P=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X) BODY OF WING SURFACE PRESSURE		81- 1 2 3456789011231415 1
CCC 1 2 3 CCC	END SUBROUTINE FUN1 (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OP WING SURFACE PRESSURE		81- 1 2 345678901123445 1 0
C C C C C C C C C C C C C C C C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING LOG-TCAL WING X2M=X**TWM X2=X*X TF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X) BODY OF WING SURFACE PRESSURE COMMON AP, ZIME, E2U2, FOE, F1EK, THG12G, TWM, EMBF2, D2ME2K, X2M, WING, F01,		81- 1 2 3 4 5 6 7 8 9 10 1 1 2 1 3 4 5 1 2 2
C C C C C C C C C C C C C C C C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2,FOE, F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2 = X + TWM X2 = X + TWM X2 = X + TWM X2 = X + X IF (WING) 2,1 XF = X2M XZ = 1. (X2 + X2M) GO TO 3 XF = 1. X2 = X2M/X2 FOFX = P2(X) + * THG12G + XF + SQRT(1.+ EMBF2 + X2) RETURN END FUNCTION P (X) BODY OP WING SURFACE PRESSURE COMMON AP, ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, IF11K,DLR,ETB,ONETB,DUMB(13),TWEM.AEP		81- 1 2 3 4 5 6 7 8 9 0 1 1 2 3 4 5 6 7 8 9 0 1 1 2 3 1 4 1 5 1 2 3
CCC 1 2 3 CCC	END SUBROUTINE FUNI (X,FOFX) INTEGPAND OF STEWARDSON TRANSFORMATION INTEGPAL FOR SKIN FRICTION COMMON AP,ZIME,EZU2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X) BODY OP WING SURFACE PRESSURE COMMON AP,ZIME,EZU2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, 1F11K,DLR,ETB,CNETB,DUMB(13),TWEM,AEP LOGICAL WING		81- 1 2 345678901123415 1 234
CCC 1 2 3 CCC	END SUBROUTINE FUNI (X,FDFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2,FDE, F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X) BODY OF WING SURFACE PRESSURE COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, 1F11K,DLR,ETB,CNETB,DUMB(13),TWEM,AEP LOGICAL WING Y3+Y+THM	C 0 0 00000000000 E EEEE	81- 1 2 345678901123445 1 2345
CCC 1 2 3 CCC	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OF WING SURFACE PRESSURE COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, 1F11K,DLR,ETB,CNETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X*TWM	C 0 0 000000000000000 E EEEE	81- 1 2 34567890112345 1 2345
C C C C C C C C C C C C C C C C C C C	END SUBROUTINE FUNI (X,FOFX) INTEGPAND OF STEWARDSON TRANSFORMATION INTEGPAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X TF (WINGJ 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.*EMBF2*X2) RETURN END FUNCTION P (X) BODY OP WING SURFACE PRESSURE COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, IF11K,DLR,ETB,CNETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X**TWM ENTRY P2	C 0 0 0000000000000 E EEEEE	81- 1 2 345678901123455 1 23456
CCC 1 2 3 CCC	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP, ZIME, E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OF WING SURFACE PRESSURE COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, IF11K,OLR,ETB,CNETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X**TWM ENTRY P2 IF (WING) 2,1	C 0 0 00000000000 E EEEEE	81 1 2 345678901123455 1 234567
CCC 1 2 3 CCC 1	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2N,WING LOGICAL WING X2M=X**THM X2=X*X IF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OF WING SURFACE PRESSURE COMMON AP,Z1ME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, 1F11K,OLR,ETB,ONETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X**TWM ENTRY P2 IF (WING) 2,1 FTOFEFOF	C 0 0 00000000000 E EEEEEE	81- 1 2 34567890123455 1 2345678
CCC 1 2 3 CCC 1	END SUBROUTINE FUNI (X,FOFX) INTEGRAND OF STEWARDSON TRANSFORMATION INTEGPAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X*X TF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN FND FUNCTION P (X) BODY OF WING SURFACE PRESSUPE COMMON AP,Z1ME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, 1F11K,DLR,ETB,ONETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X**TWM ENTRY P2 TF (WING) 2,1 FTCE=FOE FTTEY_F	C 0 0 0000000000000 E EEEEEEEE	81- 1 2 34567890123455 1 23456780
CCC 1 2 3 CCC 1	END SUBROUTINE FUNI (X,FOFX) INTEGPAND OF STEWARDSON TRANSFORMATION INTEGPAL FOR SKIN FRICTION COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,C2ME2K,X2M,WING LOGICAL WING X2M=X**TWM X2=X** TF (WING) 2,1 XF=X2M X2=1./(X2*X2M) GO TO 3 XF=1. X2=X2M/X2 FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2) RETURN END FUNCTION P (X) BODY OF WING SURFACE PRESSUPE COMMON AP,ZIME,E2U2,FOE,FIEK,THG12G,TWM,EMBF2,D2ME2K,X2M,WING,FO1, IFI(K,OLR,ETB,ONETB,DUMB(13),TWEM,AEP LOGICAL WING X2M=X**TWM ENTRY P2 TF (WING) 2,1 FTOE=FOF FIJEK=FIEK	C 0 0 000000000000000 E EEEEEEE	81- 1 2 345678901123455 1 23456789

2 3 C	<pre>XM=SQRT(X2M) ETR=(({DLR+ETB*XM}/{XM+(TWEM*SQRT(X)+AEP*X}*X/XM}-ETB)*DNETB]**2 FT0E=F0E+ETR*(F01-F0E) FT1EK=F1EK+ETR*(F11K-F1EK} X21ME=X**Z1ME P=AP*((1.+F2U2*X21ME/SQRT(X))*FT0E/(X21ME+D2ME2K}+FT1EK) IF (P.LT-1) RETURN PRINT 4, P,X,F2U2+D2ME2K,ETR,FT0E,FT1EK P=.9999999925 RETURN</pre>		11 12 13 14 15 16 17 18 20 21 22	
4	FORM¢T (4H P =+F13+5+16H SET = 1+ AT X ≠+F10+5+10X+9€13+9} ENC	F	23-	
•	FUNCTION SUM(X,Y,N)	F	1	
C C	TRAPEZOTDAL INTEGRATION FOP UNEQUAL INTERVALS			
۲. ۲	DIMENSION X(19),Y(19) M=N-7 PSUM=Y*(X(2)-X)+Y(N)*(X(N)-X(M)) DD 1 I=2,M PSUM=PSUM+Y(T)*(X(T+1)-X(I-1))	F F F F F	23456	
4	SUM=.F*PSUM PETURN END	F F F	7 8 9	
	SUBROUTINE SUMMAPY(A, B, C, D, E, F, H, N)	G	1	
C C	COLLECTION OF SUMMARY RESULTS ON A FILE (TAPE7) FOR SEPARATE OUTPUT			
t	DIMENSION D(2), E(2), H(8), L(25), D(14,75) DATA L,7,SKIP/26*0,3H(/)/ TE (N=3) 1-2-3	G G G	234	
1	1 F (L(1).EQ.1) GD TO 6 J=0	G	5	
2	L(1+1) = L T = 1+3	G	8	
4	D(1,I)=A D(2,I)=B	G	10	
	C(3,1)=C C(4,1)=D	G	12	
	D(f, I) = D(2)	G G	13 14	
	0(7,T)=E(2)	G G	15 16	
	0(8,1)=F 0(9,1)=H(3)	Ğ	17	
	C(10,1)=H(4)	G C	18	
	O(11,1)=H(5)	Ğ	20	
	O(13,J)=H(7)	6	21	
	D(14,1) = H(B)	G	23	
	TE (J.LI.20) RETURN ENTRY PRNTSUM	G	24	
6	WRITE(7,9)	G	25	
	00 7 J=1,I TE (1(1)_F0_1) WPITE(7,SKIP)	Ģ	27	
	WRITE(7,8) (O(K,J),K=1,14)	G	28	
7	F(1)=0	Ğ	30	
	J=U TF (N+17-3) GC TO 2	Ģ	31	
	RETURN	0 G	33	
8	FORMAT(X2F9.4,F8.5,F9.5,F9.5,F8.2,F9.4,F0.2,F0.5,5,5,5,0410, FORMAT(141/16H_HYPAFRO_SUMMARY//3X,5H(1/D),FX,5HALPHA,4X,2HCL;3X,	Ğ	34	
9	1 2(5X,2HCD,5X,5HALPHA),4X,2HCL/7X,3HMAX,2X,2(3X,5HL/DMX), 2 2(6X,1H0,3X),2(2X,3HMIN,4X),3HA=0)	6 6	35 36- 37	•
	END CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACT			05

Input

A single case consists of the determination of the aerodynamic coefficients over a given set of angles of attack. The first card for each case provides a heading for the printout; it consists of 80 columns of any desired FORTRAN characters. The remaining cards for each case are interpreted by a system loading subroutine (NAMELIST) which is very flexible. The data block begins with an arbitrary name (\$DATA in the present case) and ends with the dollar sign (\$); the variables between may be in any order and need appear only if values are to be different from those preassigned or used in the pre-vious case of the same computer run. Column one of all these cards is blank. A description of the input FORTRAN variables with their correct type and preassigned values (if any) in parentheses is as follows:

FORTRAN variable Description TINF free-stream static temperature, T_{co}^OR (real) AMCH free-stream Mach number, M_{∞} (real) NALF number of angles of attack, maximum of 11 (integer) ANGL angle-of-attack array, decreasing order, deg (real) EM power-law exponent, m (real) F body fineness parameter, f (real) REL Reynolds number based on body length, $R_{\infty,l}$ (real) SSB ratio of reference area for coefficients to body planform area; if zero, program uses wing planform area (real;0.) XCG ratio of x location of moment reference center to body length (real) YCG ratio of y location of moment reference center to maximum body radius (real)

FORTRAN variable	Description
PBPI	ratio of base pressure to free-stream static pressure (real;1.)
CAFCTR	multiplication factor times calculated laminar skin friction (real;1.)
XOUT	extra output at each angle of attack if XOUT = .TRUE.(logical,.FALSE.)
PBBPOL	array of NALF values of wing upper surface pressure parameter $\left(\frac{\bar{P} - P_0}{\lambda_{cr}} \text{ in ref. 20}\right)$ corresponding to angles of attack ANGL (real)
CFDCF01	array of NALF values of wing skin-friction parameter $\left(\frac{C_{F,\Delta}}{C_{F,0,cr}} - 1$ in ref. 20 corresponding to angles of attack ANGL (real)
BDYONLY	set equal to .TRUE. for axisymmetric body only, .FALSE. for half body with wing (logical; .FALSE.)
NCASE	 indicator for each additional case of a run to avoid unnecessary recomputations (integer; 1 initially, 4 each case thereafter). After first case of a run set NCASE = 2 if AMCH or TINF is changed; set NCASE = 3 if EM is changed but AMCH and TINF are not; for no change to AMCH, TINF or EM use preassigned value 4.

Output

There are four possible output blocks for each case, only two of which always appear. First comes the input list with four added variables. These are GAM, the ratio of specific heats γ ; ALAMCR, a parameter (λ_{cr}) from reference 20; DEL, the slender body parameter δ ; and EPS, the shock strength parameter ϵ_1 . Next is a

list of the angles of attack with the pressure coefficient, Mach number and sine squared of the shock angle for oblique shock, and with the pressure coefficient and Mach number for Prandtl-Meyer expansion through the angle (appears only for new Mach numbers). Third is a list of variables used in the angle-of-attack and skin-friction calculations, which appears only if called by setting XOUT = .TRUE. in the input list. Fourth is the standard output of stability-axis and body-axis coefficients with the interpolated $(L/D)_{max}$. The normal-force coefficient is also broken down into contributions from the body CNB, the body boundary-layer area under the wing CND, the rest of the underwing area CNW, and the wing upper surface DP/Q. The axial force is broken into the contribution from the pressure CAP and from the skin friction CAF. In addition to these results, after all cases have been run, a summary of results is printed out for cases with angles of attack.

Example

Input cards for a run of two sample cases are presented below. The first case is for the complete configuration with m = 0.75, f = 7, at $M_{\infty} = 12$, $R_{\infty,l} = 256.26 \times 10^6$ and 11 angles of attack. The second is for the axisymmetric body having the same parameters.

```
POWER-LAW TRANSPORBITER: MACH 12 EM=.7500 F=7.00 PFY=4.42E6/M PRASE=PINFINIT
$DATA AMCH=12..6M=.75.F=7..REL=256.26F6.TINF=408..XCG=.6.YCG=.15,
PBGP0L=2.86.3.19.3.52.3.71.3.9.4.09.4.27.4.62.4.95.5.24.5.5.
CFDCF01=-.07..06.23.32.42.52.62.84.1.09.1.35.1.59.
NALF=11.ANGL=3.22.1...5.0...5.1.2...3...44.1.09.1.35.1.59.
POWER-LAW BODY OF REVOL MACH 12 EM=.7500 F=7.00 REY=4.42E6/M PRASE=PINFINIT
$DATA NCASE=2.RDYONLY=.TRUE..NALF=1.ANGL(1)=0..PBBP0L=0..CFDCF01=0.*
```

The output for these input cards is shown below. The total computation time on a CDC 6600 series computer at the Langley Research Center was less than 15 seconds (excluding compilation).

```
$0414
NEASE
        -
GAM
         = 0.14F+01.
TINE
         = 0.4085+02,
APCH
         = 0.37E+02.
NALE
         = 11,
         = 0.3E+01, 0.10+01, 0.1E+01, 1.FE+00, 0.0, +0.5E+00, -0.1E+01,
-0.2E+01, -0.3E+01, -0.4E+01, -0.5E+01,
ANGL
ЕM
         = 0.7FF+00,
F
         = 0.7F+01+
P FL
         = 0.25426E+09.
SSB
         - 0.0.
XCG
      ° = 0.65+70,
YCG
        = 0.15F+C0.
PBPT
         = 0.1F+01.
CAFACTE = 0.1F+01,
        = -0.111768771F4745E+CO+
ANGO
XCUT
        = F.
```

 PBBPOL
 =
 0.28AE+01, 0.219E+01, 0.371E+01, 0.371E+01, 0.39E+01, 0.459E+01, 0.459E+01, 0.459E+01, 0.459E+01, 0.459E+01, 0.524E+01, 0.459E+01, 0.524E+01, 0.524E+00, 0.52E+00, 0.42E+00, 0.52E+00, 0.52E+00, 0.52E+00, 0.52E+00, 0.52E+00, 0.109E+01, 0.135E+01, 0.159F+01,

 CFDCF01
 =
 -0.7E-01, 0.6E-01, 0.23E+00, 0.32E+00, 0.42E+00, 0.52E+00, 0.52E+00, 0.52E+00, 0.109E+01, 0.135E+01, 0.159F+01,

 ALAMCH
 =
 0.9996922174AF57E-02,

 BDYDNLY
 =
 F.

 DE1
 =
 0.46255224594277E+00,

 EPS
 =
 0.4675525245920625E+00,

 XSE
 =
 n.4*E-03,

 SEND

*CR0/

POWEP-LAW TRANSPORTTER MACH 12 EM=.7500 F=7.00 REY=4.42E6/M PBASE=PINFINIT

3.00	DEG.	PUPIDI	=	00605
2.00	056.	Ρυρτωτ	Ŧ	00454
1.00	DEG.	PUPIOJ	=	00257
. ⁼0	DEG.	PUPIGI	=	00137
F0	DFG.	101909	=	.00155
-1.00	DEG.	PUPTOT	÷	.00220
-7.00	066.	101909	-	.00746
-3,00	OFG.	PUPTOT	Ŧ	.01242
-4_00	OES.	PUPTOT	=	401887
00	DEG.	PUPICI	Ξ	02632

(L/D)MAX = 5.8468 MT ALPHA = -.0225 DEGREES; WITH CL AND CD = .034100 .005832

COC = +00282901; AT AUPHA 0 = +3.3873

CO MIN = .00282*59, at ALPHA = -3.4944 AND CL =-.001197

ALPHS	CL.	CO	C₩	L70	CN	CNB	CNO	CNW	DP/Q	CA .	CAP	CAF
3.0	. 16419	. 11308	.01711	4.91	-06478	.04 3 97	.00011	.0149Z	.00578	.00970	.00926	.00043
2.0	-05418	-11-121	00124	5.30	.05450	03764	.00011	.01250	.00425	+00832	-00790	-00042
1.0	04474	.00781	00192	5.66	04427	03174	.00011	.01027	.00225	.00704	.00663	.00040
	07978	.00678	00714	5.79	03934	02897	.00011	00923	.00103	+00644	-00604	.00040
0.0	.03472	10587	~.00447	5.85	03432	.02632	.00011	.00825	00036	+00587	.00548	.00039
5	C7075	.00507	00593	5.78	02931	02381	.00011	.00731	0019Z	.00533	.00495	+00039
-1.0	07476	00440	00754	5 54	02428	D2142	.00011	.00644	-+00369	+004B2	-00444	.00038
-2-D	-01428	.00340	0112ª	4.20	.01415	.01708	.00011	.00484	00788	.00389	.00352	.00037
-3.0	.004.00	-00289	01572	1.38	.07384	.01332	.00011	.00347	01307	200310	.00273	.00036
-4 0	- 004 54	.00789	02105	-2.26	09672	.01018	.00011	.00234	- 01935	+00243	.00207	.00036
-5,0	01737	0343	02731	-5.06	01760	.00767	.00011	.00144	02682	.00190	.00155	.00035

,

SOATA

NCASE	-	2,
GAM	Ŧ	0.14E+Cl,
TINF	Ξ	2.4085+03,
AWCH	2	0.126+02.
NALE	=	1,
ANGL	•	0.0, C.2E+01, 0.1E+01, 0.5E+00, 0.0, -0.5E+00, -0.1E+01, -0.2E+01, -0.3E+01, -0.4E+01, -0.5E+01,
EM	=	0,7*E+CO+
F	*	0.78+01+
PEL	-	0.256265+09,
5 S B	=	0.0,
XCG '	-	0.45+30+
YC G	=	0.15F+C0+
PBPI	Ŧ	0.16+01+
CAFACTR	=	0.16+01,
ANGO	=	-0.111768771547456+00,
XCUT	5	Fr
PBBPOL	=	0.0, 0.319E+01, 0.352E+01, 0.371E+01, 0.39E+01, 0.409E+01, 0.427E+01, 0.462E+01, 0.495E+01, 0.524E+01, D.55E+01,
CFDCFO1	=	0.0, C.6E=01, 0.23F+00, 0.32E+00, 0.42E+00, 0.52E+00, 0.62E+00, 0.84E+00, 0.109E+01, 0.135E+01, 0.159E+01,

.

ALAMER = 0.91965231746557E-02, BDYONLY = T, DEL = 0.16325224594277E+00, EPS = 0.26056685930625E+00, XSE = 0.13396004141169E-02, \$END

POWER-LAW BODY OF REVOL MACH 12 EMA.7500 F=7.00 REY=4.42E6/M PBASE=PINFINIT

ALPHE	CL	ĊO	CH	L/D	CN	CNB	CND	CNW	00/0	CA	CAP	CAF
0.0	0.00000	.01128	0.00000	0.00	0.00000	.07637	.00011	.00825	9.00000	.01128	.01096	.00032

HYPAEPO SUMMARY

(L/D)	ALPHA	CL .	CD	ALPHA	C D	ALPHA	¢ι
MAX	LZDMX	t/DMX	n	0	HT N	HIN	A=0

5.8468 --.0225 .03410 .00283 -3.38 .0028 -3.50 .03432 TER NACH 12 5M=.7500 F=7.00 REY=4.42E6/N PBASE=PINFINIT

COMPUTER PROGRAM FOR CALCULATING K₀ AND λ_{cr}

The main program requires as inputs values of two parameters describing wing upper surface conditions. These values are an average wing upper surface pressure parameter (PBBP0L) and an average wing upper surface skin-friction parameter (CFDCF01). They are plotted in reference 20 (figs. 4 and 11 of the reference, respectively) as $\frac{\overline{P} - P_0}{\lambda_{\rm Cr}}$ and $\frac{C_{F,\Delta}}{C_{F,0,\rm Cr}}$ -1 for delta wings as functions of $\lambda_{\rm Cr}$ (a viscous interaction parameter) and K_0 (= $-M_{\infty}\alpha$). This program calculates K_0 for each angle of attack and the value of $\lambda_{\rm Cr}$ for the delta wing corresponding to the power-law wing. As mentioned in the main body of the paper, the correspondence is based on the viscous effects, which are assumed to be approximately equal for wings with equal spans and equal values of $\iint x^{-1/2} dr dx$. For the power-law wings, this integral involves gamma functions which are approximated analytically in the program.

```
PROGRAM UPPRESS(INPUT=201,OUTPUT=201,TAPE1=INPUT)
                                                                            8
                                                                                ٦
 DIMENSION ANGL(11), CAO(11), PO(11), HEAD(8), PBBPOL(11)
                                                                                2
 NAMELIST /DATA/ REL,F,AMCH,TINF,EM,ETAB,FO,AI,NCASE,NALF,ANGL,XCG,
                                                                                3
1SSB, YCG
                                                                            Δ
                                                                                4
DATA GAM, TWTT, PTF, ASAV/1.4,.41667, 2.65868, 0./
                                                                            A
                                                                                 5
GM1=GAM-1.
                                                                            A
                                                                                6
GM1I=1./GM1
                                                                            ۵
                                                                                7
GM83=GAM+8./3.
                                                                            A
                                                                                Ŕ
GM12=.5*GM1
                                                                            A
                                                                                0
GP14=[GAM+1.]/4.
                                                                            A
                                                                               10
ZGG1=GAM/GM12
                                                                            A
                                                                               11
READ 11, HEAD
                                                                            A
                                                                               12
JE (ENDEILE 1) 9+2
                                                                            A
                                                                               13
READ DATA
                                                                            ۵
                                                                               14
IF (ANGL.EQ.ASAV) GO TO 7
                                                                            ٨
                                                                               15
ASAV=ANGL
                                                                            Δ
                                                                               16
DO 6 T=1,NALF
                                                                            4
                                                                               17
ANG=.0174533*ANGL(I)
                                                                            Δ
                                                                               18
CAO(I) =- AMCH * ANG
                                                                            ٨
                                                                               19
```

1

	IF (CAO(I)) 4,5+3	۵	20
3	GP1K04=GP14*CA0(1)	A	21
	RTGK4=SQPT(1.+GP1K04**2)	A.	22
	PO(T)=1+GAM*CAO(T)*(GP1KO4+RTGK4)	A	23
	P98P0L(T)=GM83*(RTGK4+GP1K04*(2,+GP1K04/RTGK4))/S0RT(P0(I))	A	24
	GO TO 5	A	25
4	GM12K=1.+GM12*CA0(T)	A	26
	P9{7}=GM12K**ZGG1	4	27
	IF (PO(T).LT.O.) PO(T)=0.	A	28
	PBBPOL(I)=GM83*GM12K**GM11	ß	29
	GO TO 6	A	30
5	$PO(T) = T_{\bullet}$	۵	31
	P88P01 (T)=GM83	A	32
6	CONTINUE	A	33
7	ZM=2.*FM	٨	34
	PRINT 12. HEAD	Δ	35
	JE (EM_EQ_BSAV) GO TO 8	٨	36
	BSAV=FM	Ā	37
	£MM]=EM_1.	Ā	28
	EM41=4.*FM-1_	Ă	20
	EM4019=_4019*FM	Ā	40
	EMX1=1_5303-EM4019	Ā	<u>4</u> 1
	EMX2==5/(-9274+EM4019)	Ā	42
	$AT = 9775 - 7627 \times EMM1 / (EMM1 + 1.295 \times EMA1)$	•	42
	FMG=GM * A T A F T A B I F M A S O B T I 2 A A C M A E M A 1 A E O 1 3 I	2	44
8		Å	4 E
		Å	45
		Ä	70 77
		Å	6.9
	TOTE 77341 1054 5325TWTT1#TTATE	4	40
	SITHT=108 AFTINE		50
	63=1154=07 1 [M]	ц. А	50
		Ä	52
	02+(3+30)(1177)(1+1170)(137-30(147)(1) 7EM22-EMC+AM(0)=E+CADT((1)(0)(0))	4	22
	ZUNZETUNYANDIAN MUTANYA ILUYALI EM22Ye 647EM22/EM21		200 50
	C2MPC= - 2005320000	Ä	55
	CONFICER FOR TARGET CHARACTER TO THE CONFICE A	×4 A	2.2
	AIANÓ=COMPCISCOTICOELL	*	57
	PRINT 10. FM. E.ANCH.COEL.ALANCH. (ANCL. (A.C. (A.C.). DOLTA. DRADOL (T). T-	Â	50
	13.NATES		50
		Â	57
a	STOP	Ň	41
ć		Ă	42
10	FORMAT (///15%,2HFM,9%,1HF,8%,4HMACH,4%,5HC05/1,7%,11H/1AM00A)/05/	Å	47
7 Q7	1/93, E10.4. $2-510$, $5-510$, $5-510$, $5-710$, $5-700$, $5-51$	4 A	00 6 A
	2 HI AM $= 092.13$ H $[0-p0]/1$ AM ROA (52.11 H $(CEO)(EO)(EO)(1)/(CEO) = 0.120$	A A	07 6F
	31)	Å	90 66
11	ECOMMAT (8810)	Å	67
12		Ă	4.9
		Ň	60-
			¥ 7

Input

A single case consists of calculations for a single configuration over a set of angles of attack. The first card is a heading consisting of any 80 FORTRAN characters. The remaining cards use the same loading subroutine as does the main program; the data block begins with \$DATA and ends with \$. The necessary input variables are TINF, AMCH, NANG, ANGL, EM, F, REL, ETAB, F0, and A1. Of these the first seven are the same as for the main program and the last three are from the similarity solution results.

APPENDIX – Concluded

See figure 3 and table I where ETAB = $\eta_{\rm b}$, F0 = F₀($\eta_{\rm b}$), and A1 = a₁. The program is set up so that the input cards to the main program may be used with these three variables added. Here is the input for the first sample case given with the main program:

```
POWER-LAW TRANSPORBITER MACH 12 EM=.7500 F=7.00 RFY=4.42E6/M
                                                                  ##### HPPRESS
$DATA AMCH=12..EM=.75.F=7..REL=256.26F6.TINF=408..XCG=.6.YCG=.15.
ETA8=.87507.FJ=.69806.A1=.80732,
NALF=11+ANGL=3.,2.,1.+.5.0.,-.5.+1.,-2.,-3.,-4.,-5.$
```

Output

The output for the same case is shown in this section. In it (LAMBDA)CRE = λ_{cr} and $(K)0 = K_0$ are needed for use with reference 20. Also printed are the length ratio of the delta to the power-law wing, CRE/L; the ratio of inviscid surface pressure to free-stream static pressure, P0; and the average pressure parameter for $\lambda = 0$, LAM = 0. This latter value is a useful aid sometimes in interpolating values from the figures of reference 20.

POWER-LAW TRANSPORBITER MACH 12 EM=.7500 F=7.00 REY=4.42E6/M #**** UPPRESS

	EM	F	MACH	CRE/L	(LAMBDA)CPE	
	.7500	7.00	12.00	1.056144	9.196840E-03	
ANGLE	{K)0	(P)0	LA	1=0.	{P-PO}/LAMBDA	(CED/CE0)-1
3.00	6287	.39962	2.66	366		
2.00	4189	.54202	2.99	986		
1.00	2094	.74116	3.354	58		
.50	+.1047	.86229	3.54()92		
0.00	-0.0000	1.00000	3.733	33		
50	.1047	1.15611	3.921	399		
-1100	. 2094	1.33237	4.123	32		
-2.00	•4189	1.75205	4.498	171		-
-3.00	.6283	2.27170	4.844	14		
-4.00	.8378	2.90224	5-15(51		
-5.00	1.0472	3.65262	5.414	72		

REFERENCES

- 1. Eggers, A. J., Jr.; and Syvertson, Clarence A.: Aircraft Configurations Developing High Lift-Drag Ratios at High Supersonic Speeds. NACA RM A55L05, 1956.
- 2. Savin, Raymond C.: Approximate Solutions for the Flow About Flat-Top Wing-Body Configurations at High Supersonic Speeds. NACA RM A58F02, 1958.
- Mandl, Paul: A Theoretical Study of the Inviscid Hypersonic Flow About a Conical Flat-Top Wing-Body Combination. AIAA J., vol. 2, no. 11, Nov. 1964, pp. 1956-1964.
- Fetterman, David E.; Henderson, Arthur, Jr.; Bertram, Mitchel H.; and Johnston, Patrick J., Jr.: Studies Relating to the Attainment of High Lift-Drag Ratios at Hypersonic Speeds. NASA TN D-2956, 1965.
- Becker, John V.: Studies of High Lift Drag Ratio Hypersonic Configurations. Proceedings of the Fourth Congress of the International Council of the Aeronautical Sciences, Robert R. Dexter, ed., Spartan Books, Inc., 1965, pp. 877-910.
- 6. Fetterman, David E.: Favorable Interference Effects on Maximum Lift-Drag Ratios of Half-Cone Delta-Wing Configurations at Mach 6.86. NASA TN D-2942, 1965.
- Johnston, Patrick J.; Snyder, Curtis D.; and Witcofski, Robert D.: Maximum Lift-Drag Ratios of Delta-Wing-Half-Cone Combinations at a Mach Number of 20 in Helium. NASA TN D-2762, 1965.
- Eggers, A. J., Jr.; Resnikoff, Meyer M.; and Dennis, David H.: Bodies of Revolution Having Minimum Drag at High Supersonic Airspeeds. NACA Rep. 1306, 1957. (Supersedes NACA TN 3666.)
- 9. Miele, Angelo; and Cole, Julian: Optimum Slender Bodies in Hypersonic Flow With a Variable Friction Coefficient. AIAA J., vol. 1, no. 10, Oct. 1963, pp. 2289-2293.
- Miele, Angelo: A Study of the Slender Body of Revolution of Minimum Drag Using the Newton Busemann Pressure Coefficient Law. Tech. Rep. No. 62 (Doc. D1-82-0186), Boeing Scientific Res. Lab., Aug. 1962.
- Peckham, D. H.: Measurements of Pressure Distribution and Shock-Wave Shape on Power-Law Bodies at a Mach Number of 6.85. Tech. Rep. No. 65075, British R.A.E., Apr. 1965.
- 12. Love, E. S.; Woods, W. C.; Rainey, R. W.; and Ashby, G. C., Jr.: Some Topics in Hypersonic Body Shaping. AIAA Paper No. 69-181, Jan. 1969.
- 13. Lees, Lester; and Kubota, Toshi: Inviscid Hypersonic Flow Over Blunt-Nosed Slender Bodies. J. Aeron. Sci., vol. 24, no. 3, Mar. 1957, pp. 195-202.

- 14. Kubota, Toshi: Investigation of Flow Around Simple Bodies in Hypersonic Flow. GALCIT Memo No. 40 (Contract No. DA-04-495-Ord-19), June 25, 1957.
- Mirels, Harold: Hypersonic Flow Over Slender Bodies Associated With Power-Law Shocks. Vol. 7 of Advances in Applied Mechanics, H. L. Dryden and Th. von Kármán, eds., Academic Press, Inc., 1962.
- Mirels, Harold: Approximate Analytic Solutions for Hypersonic Flow Over Slender Power Law Bodies. NASA TR R-15, 1959.
- 17. Lees, Lester: Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion, vol. 26, no. 4, Apr. 1956, pp. 259-269, 274.
- Smith, A. M. O.: Rapid Laminar Boundary-Layer Calculations by Piecewise Application of Similar Solutions. J. Aeron. Sci., vol. 23, no. 10, Oct. 1956, pp. 901-912.
- Cohen, Clarence B.; and Reshotko, Eli: Similar Solutions for the Compressible Laminar Boundary Layer With Heat Transfer and Pressure Gradient. NACA Rep. 1293, 1956. (Supersedes NACA TN 3325.)
- 20. Bertram, Mitchel H.: Hypersonic Laminar Viscous Interaction Effects on the Aerodynamics of Two-Dimensional Wedge and Triangular Planform Wings. NASA TN D-3523, 1966.
- 21. Spencer, Bernard, Jr.; and Fox, Charles H., Jr.: Hypersonic Aerodynamic Performance of Minimum-Wave-Drag Bodies. NASA TR R-250, 1966.
- 22. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Vol. I Inviscid Flows. Second ed., Academic Press, Inc., 1966.
- 23. Townsend, James C.: Aerodynamic Interference Effects on Half-Cone Bodies With Thin Wings at Mach 10.03. NASA TN D-5898, 1970.
- 24. Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962.
- 25. McCracken, Daniel D.: A Guide to FORTRAN Programming. John Wiley & Sons, Inc., c.1961.

m	η _b	$\mathbf{F}_{0}(\eta_{\mathbf{b}})$	$\mathbf{F}_1(\eta_b)$	J ₀	J ₁	^a 1
	· · · · ·		$\gamma = 7/5$			
1,00000	0.91492	0.87342	0.9179	0.07323	0.08410	0,47546
.95000	.91034	.84711	1.0591	.07589	.09551	,52709
.90000	.90465	.81630	1.2306	.07909	.11044	,58604
.85000	.89743	.78174	1,4386	.08303	.13067	.65291
.80000	.88798	.74265	1.6887	.08799	.15918	.72741
.75000	.87507	.69806	1.9811	.09444	,20098	.80732
.70000	.85648	.64662	2.2986	.10318	.26459	.88631
.66667	.83880	.60763	2.4964	.11098	.32565	.93216
.63333	.81391	.56403	2.6392	.12129	.40794	.96566
.60000	.77647	.51478	2.6593	.13564	.51763	.98034
.55000	.66414	.42678	2.2510	.17318	.74598	.96791
,53000	,56901	.38500	1.8876	.20119	.86687	.96377
.51000	.37221	.33757	1.4110	.25443	1.04110	.97539
.50500	.27299	.32450	1.2766	.28069	1,11845	.98249
.50000	.00000	.31077	1,1366	.35808	1.36841	.99182
	<u>.</u>	·	$\gamma = 5/3$			
1.00000	0.87041	0.81065	0.7836	0.10244	0.10987	0,46531
.95000	.86429	.78363	.9017	.10532	.12597	.51356
.90000	.85679	.75282	1.0433	.10872	.14660	567 88
.85000	.84740	.71823	1.2122	.11283	.17364	.62833
.80000	.83532	.67912	1,4108	.11787	.20994	.69402
.75000	.81919	.63448	1,6356	.12422	.25974	.76228
,70000	.79658	.58296	1.8685	.13248	.32919	.82727
.66667	.77569	.54389	2.0053	.13956	.39031	.86398
.63333	.74719	.50016	2.0956	.14850	.46626	.89116
.60000	.70595	.45067	2.0942	.16025	.55904	.90627
.55000	.59076	.36177	1,7872	.18792	.73266	.91473
.53000	.49985	.31912	1.5217	.20647	,81845	.92427
.51000	.32217	.26988	1,1590	.23916	.93877	.94825
.50500	.23542	.25600	1.0506	.25495	.99164	.95764
.50000	.00000	.24113	.9315	.30378	1.16431	.96872

TABLE I.- SOLUTIONS TO THE HYPERSONIC SIMILARITY EQUATIONS FOR POWER-LAW BODIES OF REVOLUTION

(a) General power-law, wing-body configuration.

(b) Body of revolution in nondimensional coordinates.

Figure 1.- Configuration studied, showing relation between physical and nondimensional coordinates.

Figure 2.- Graph of the relation $\epsilon_1 = 1/(M_\infty \delta)^2$ for several Mach numbers and showing the values of δ and ϵ_1 for various sets of experimental data.

Figure 3.- Variation of similarity solution parameters with power-law exponent m.

Figure 4.- Effective body for estimating aerodynamic characteristics at angle of attack (shown for f = 6, m = 2/3).

Figure 5.- Comparisons of theoretical drag coefficient at zero angle of attack with experiment for power-law bodies of revolution. The theory is shown for the larger Reynolds number in each case.

Figure 6.- Comparison of theoretical normal and axial forces with experiment for wing—conical-body configurations (m = 1) at Mach 10.03.

Figure 7.- Comparison of theoretical drag polar, lift-drag ratio, and pitching-moment curves with experiment for wing—conical-body configurations (m = 1) at Mach 10.03.

(a) Drag polars and pitching moment at Mach 6.86 in air.

Figure 8.- Comparisons of calculated performance of half-cone bodies having shock-shape-matching wings with experimental data for the same bodies having delta-planform wings.

(a) Variation with m for f = 5.

N

(c) Comparison of three configurations with Mach 6 designs for the same body shapes. Figure 9.- Concluded.

Figure 10.- Summary of theoretical aerodynamic characteristics for configurations of volume 2500 m^3 at Mach 6 and 12 and at an altitude of 30 km.