
(NASAOTNODッ7427) HYPERSONIC ABRODYNAEIC CHARACTERISTICS OF A PAMI (NASA) 50 解 p HC WING BODY CONFIGURAIIN (50 CSCL 01 A \$3,00

HYPERSONIC AERODYNAMIC CHARACHi\&ggites

OF A FAMILY OF POWER-LAW,

 WING-BODY CONFIGURATIONSby James C. Townsend

Langley Research Center
Hampton, Va. 23665
national aeronautics and space administration - washington, d. C. - december 1973

[^0]
HYPERSONIC AERODYNAMIC CHARACTERISTICS OF A FAMILY OF POWER-LAW, WING-BODY CONFIGURATIONS

By James C. Townsend
Langley Research Center

SUMMARY

The configurations analyzed are half-axisymmetric, power-law bodies surmounted by thin, flat wings. The wing planform matches the body shock wave shape. Analytic solutions of the hypersonic small disturbance equations form a basis for calculating the longitudinal aerodynamic characteristics. Approximate boundary-layer displacement effects on the body and wing upper surface are included. Skin friction is estimated by using compressible, laminar boundary-layer solutions. By using an effective body shape, the method is extended to small angles of attack. Three basic theoretical assumptions are made: (1) the body is slender, (2) the shock wave is strong, and (3) the Mach number is large. In comparisons with available experimental data, good agreement was obtained when these assumptions were satisfied. The method is also used to estimate the effects of power law, fineness ratio, and Mach number variations at full-scale conditions. The implementing computer program is included.

INTRODUCTION

Much research has been devoted to the hypersonic flow about half bodies of revolution mounted beneath a thin wing. Theoretical studies (refs. 1 to 3) and experimental work (refs. 4 to 7) show that with half-cone bodies these configurations combine good stability characteristics with high values of maximum lift-drag ratio. Replacing the conical bodies with those having power-law profiles generates a larger class of configurations and one which is more representative of aircraft shapes. Low wave-drag bodies in the hypersonic regime are generated by power-law curves with exponent in the range 0.5 to 0.8 . (See refs. 8 to 12.) These bodies have the additional advantage of better volume distribution than cones.

The purpose of this study was to develop a method for calculating the longitudinal aerodynamic characteristics of power-law bodies with reflection-plane wings. The method applies to configurations consisting of half of an axisymmetric power-law body mounted beneath a thin wing whose planform matches the theoretical body shock shape at zero angle
of attack. Small-disturbance theory, with small perturbations for Mach number and boundary-layer displacement effects, provides a means for calculating the pressure field and shock-wave shape. This pressure field is integrated analytically to obtain the forces and moment on the body. Small angles of attack are simulated, and laminar skin friction is calculated. The computer programs which have been written to implement this method are presented in an appendix.

SYMBOLS

a_{1}. shock-wave perturbation constant
C Chapman-Rubesin constant, $\frac{\mu_{\mathrm{w}} / \mu_{\infty}}{\mathrm{T}_{\mathrm{W}} / \mathrm{T}_{\infty}}$
$\mathrm{C}_{\mathrm{A}} \quad$ axial-force coefficient, $\frac{\text { Axial force }}{\overline{\mathrm{q}}_{\infty} S}$
$C_{D} \quad$ drag coefficient, $\frac{D}{\overline{\mathrm{q}}_{\infty} \mathrm{S}}$
$C_{L} \quad$ lift coefficient, $\frac{L}{\bar{q}_{\infty} S}$
$C_{m} \quad$ pitching-moment coefficient, $\frac{\text { Pitching moment }}{\overline{\mathrm{q}}_{\infty} S \overline{\mathrm{c}}}$
$\mathrm{C}_{\mathrm{N}} \quad$ normal-force coefficient, $\frac{\text { Normal force }}{\overline{\mathrm{q}}_{\infty} \mathrm{S}}$
$\mathrm{C}_{\mathrm{N}, \mathrm{b}} \quad$ normal-force coefficient of body
$\mathrm{C}_{\mathrm{N}, \mathrm{w}}$ normal-force coefficient of wing
$\mathrm{C}_{\mathrm{p}} \quad$ pressure coefficient, $\frac{\overline{\mathrm{p}}-\overline{\mathrm{p}}_{\infty}}{\overline{\mathrm{q}}_{\infty}}$
$\overline{\mathbf{c}}$
mean aerodynamic chord, taken as $\quad \overline{\mathrm{c}}_{\mathrm{b}}=\frac{2 \bar{l}}{\mathrm{~m}+2}$
D drag

E constant in boundary-layer displacement thickness

F	Similarity static-pressure variable
f	fineness parameter, $\frac{\bar{i}}{\overline{\mathrm{r}}_{\mathrm{b}, \mathrm{B}}}$
I	boundary-layer profile parameter
J	integral of F from body to shock
L	lift
\bar{i}	length
M_{∞}	free-stream Mach number
m	exponent of power-law body shape
p	dimensionless static pressure,$\frac{\overline{\mathrm{p}}}{2 \delta^{2} \overline{\mathrm{q}}_{\infty}}$
$\overline{\bar{p}}_{u}$	average wing upper surface pressure
$\overline{\mathrm{q}}_{\infty}$	free-stream dynamic pressure
R	dimensionless shock-wave radius, $\frac{\overline{\mathrm{R}}}{\delta \bar{l}}$
$\mathrm{R}_{\infty, l}$	free-stream Reynolds number, $\frac{\bar{\rho}_{\infty} \bar{l} \overline{\mathrm{U}}_{\infty}}{\bar{\mu}_{\infty}}$
r	dimensionless radial coordinate, $\frac{\overline{\mathbf{r}}}{\delta \bar{l}}$
S	projected planform area
s_{c}	distance from nose to upper surface center of pressure
T	temperature
$\overline{\mathrm{U}}_{\infty}$	free-stream axial velocity

V volume of body
dimensionless axial coordinate, $\frac{\bar{x}}{\bar{l}}$
$\alpha \quad$ angle of attack relative to body axis
$\gamma \quad$ ratio of specific heats
δ
shock-wave slope parameter, $\delta \equiv \frac{\overline{\mathrm{R}}_{0, \mathrm{~B}}}{\bar{l}}=\frac{1}{\mathrm{f} \eta_{\mathrm{b}}}$
δ^{*} dimensionless boundary-layer displacement thickness, $\frac{\bar{\delta}^{*}}{\delta \bar{l}}$
${ }^{\epsilon} 1$ small perturbation parameter for Mach number, $\frac{1}{\left(\delta \mathrm{M}_{\infty}\right)^{2}}$ small perturbation parameter for boundary-layer displacement, $\frac{d \delta^{*} / \mathrm{d} \xi}{\mathrm{dr}_{\mathrm{b}} / \mathrm{d} \xi}$
η similarity form of radial coordinate, $\frac{\mathrm{r}}{\mathrm{R}_{0}}$
$\kappa=\left(\frac{\delta}{\delta_{\mathrm{e}}}\right)^{2}$
$\mu \quad$ viscosity coefficient
$\nu=\frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{f}}$
$\xi \quad$ similarity form of axial coordinate
$\rho \quad$ dimensionless density, $\frac{\bar{\rho}}{\bar{\rho}}$
Subscripts:

B at base of configuration, $x=1$
b
body
e effective body shape
$\max \quad$ maximum
$(\mathrm{L} / \mathrm{D})_{\max }$ maximum lift-drag ratio
zero-order similarity solution $\left(\epsilon_{1} \rightarrow 0\right)$
first-order similarity solution $\left(\epsilon_{1}^{2} \ll 1\right)$
free-stream value
wall

An asterisk denotes that the quantity includes boundary-layer displacement effect. A bar over a symbol denotes a dimensional quantity.

THEORY

The method applies to the general configuration shown in figure 1(a). It consists of one-half of a body of revolution mounted beneath a thin wing at an angle of attack of 0°. By assumption, the wing acts as an endplate to maintain the axial symmetry of the flow about the body. The wing planform matches the shock-wave shape about the full body, and the body pressure field acts on the wing to provide additional lift. The method is put together from a series of pieces in order to arrive at the final aerodynamic coefficients. The basis for the development is the result in hypersonic slender-body theory that for power-law bodies, there are similarity solutions to the inviscid flow equations in the hypersonic limit. (See ref. 13.) Independent small perturbations are made to account for Mach number effects and for laminar boundary-layer displacements. (See ref. 14.) To simulate the effects of small angles of attack, a simple substitution of an effective body is made. The resulting equation for the pressure distribution is integrated analytically to obtain the pressure forces and moments on the body. Then the laminar skin-friction drag is calculated by using the analytic pressure distribution. The development outlined is explained in more detail in the following sections.

Inviscid, Power-Law Body Solution

If, in inviscid hypersonic flow about a slender body, the velocity changes in the freestream direction are neglected compared with the transverse flow velocities, the hypersonic small-disturbance equations result. When a strong, power-law shock wave occurs
in such a flow at infinite Mach number, these equations indicate that the body generating the shock also has a power-law shape. (See ref. 14.) Thus in figure 1(a), the shock wave $\frac{\overline{\mathrm{R}}_{0}}{\bar{l}}=\delta\left(\frac{\overline{\mathrm{x}}}{\bar{l}}\right)^{\mathrm{m}}$ is generated by the body $\frac{\overline{\mathrm{r}}_{\mathrm{b}}}{\bar{l}}=\frac{1}{\mathrm{f}}\left(\frac{\overline{\mathrm{x}}}{\bar{l}}\right)^{m}$. In dimensionless form (fig. $1(\mathrm{~b})$) these relations become $R_{0}=x^{m}$ and $r_{b}=\frac{1}{\delta f} x^{m}$. When the dependent variables are expresse in terms of the slope of the shock wave, the axial variations may be separated from the radial variations of the variables to obtain similarity equations. Thus in similarity variables $\xi=\mathrm{x}$ and $\eta=\mathrm{r} / \mathrm{R}_{0} ; \quad \mathrm{R}_{0}=\xi^{\mathrm{m}}, \quad \mathrm{r}_{\mathrm{b}}=\eta_{\mathrm{b}} \xi^{\mathrm{m}}$, and the dimensionless pressure field is $\mathrm{p}_{0}=\mathrm{F}_{0}(\eta)\left(\frac{\mathrm{d} R_{0}}{\mathrm{~d} \xi}\right)^{2}=\mathrm{m}^{2} \mathrm{~F}_{0}(\eta) \xi^{2(\mathrm{~m}-1)}$. Here $\mathrm{F}_{0}(\eta)$ is found by solving a set of ordinary differential equations in η. (See refs. 14 and 15.)

In order to relax the restriction to infinite Mach number, Kubota (ref. 14) applied a small perturbation procedure. This procedure results in the following first-order pressure distribution and shock-wave shape about the power-law body $r_{b}=\eta_{\mathrm{b}} \mathbf{x}^{\mathrm{m}}$:

$$
\begin{align*}
& \mathrm{p}_{1}(\xi, \eta)=\mathrm{m}^{2} \mathrm{~F}_{0}(\eta) \xi^{2(\mathrm{~m}-1)}+\epsilon_{1} \mathrm{~m}^{2} \mathrm{~F}_{1}(\eta) \tag{1}\\
& \mathrm{R}_{1}(\xi)=\xi^{\mathrm{m}}\left[1+\epsilon_{1} \mathrm{a}_{1} \xi^{2(1-\mathrm{m})}\right] \tag{2}
\end{align*}
$$

Here $\epsilon_{1} \equiv\left(\mathrm{M}_{\infty} \delta\right)^{-2}$ is a small parameter corresponding to the hypersonic strong shock assumption $\mathrm{M}_{\infty} \sin \theta \gg 1$. The necessity of simultaneously satisfying $\delta^{2} \ll 1$ and $\epsilon_{1}{ }^{2} \ll 1$ puts a strong requirement on the Mach number. That is, the present method is limited to $M_{\infty} \gg 1$ so that with a slender body $\delta^{2} \ll 1$, the parameter ϵ_{1} is still small. Figure 2 shows the relationship between δ, ϵ_{1}, and M_{∞} and can be used to check on ϵ_{1} for a given Mach number and body shape (by noting that $\delta=1 / \mathrm{f} \eta_{\mathrm{b}}$).

The perturbed pressure variable $\mathrm{F}_{1}(\eta)$ and the shock-wave displacement constant a_{1} are found from a second set of ordinary differential equations. (See refs. 14 and 15.) The two sets of differential equations involve only m and γ as parameters, and thus they can be solved over the needed range of values and the tabulated results used in applications to flow problems. Table I and figure 3 present the results needed for the current application. They were found by numerical integration techniques similar to those described in reference 16. (With acess to modern digital computers, the exact numerical computation has become at least as easy to carry out as the approximate technique which gives ref. 16 its title.) The integrated pressure J_{0} and pressure perturbation J_{1} are defined as $\mathrm{J}_{0} \equiv \int_{\eta_{\mathrm{b}}}^{1} \mathrm{~F}_{0}(\eta) \mathrm{d} \eta$ and $\mathrm{J}_{1} \equiv \int_{\eta_{\mathrm{b}}}^{1} \mathrm{~F}_{1}(\eta) \mathrm{d} \eta$; they will be applied to the wing
undersurface.

Corrections for Boundary-Layer Displacement

In order to make a corrected approximation accounting for laminar boundary-layer growth, a perturbed body shape $\mathrm{r}_{\mathrm{b}}{ }^{*}(\mathrm{x})=\mathrm{r}_{\mathrm{b}}+\delta^{*}$ is used. The displacement thickness of the boundary layer is given by $\delta^{*}=\frac{2 \mathrm{~m} \eta_{\mathrm{b}}}{3-2 \mathrm{~m}} \mathrm{Ex}^{3 / 2-\mathrm{m}}$ (based on a result from ref. 17 for adiabatic wall conditions). Here $\mathrm{E} \equiv \frac{\gamma-1}{\sqrt{2 \gamma}} \mathrm{M}_{\infty} \mathrm{f}^{2} \mathrm{I} \eta_{\mathrm{b}} \frac{3-2 \mathrm{~m}}{2 \mathrm{~m}^{2} \sqrt{4 \mathrm{~m}-1}} \sqrt{\frac{\mathrm{C}}{\mathrm{R}_{\infty, l} \mathrm{~F}_{0}\left(\eta_{\mathrm{b}}\right)}}$ which is very small for large Reynolds numbers. By using the appropriate value for I (the sum of the transformed displacement and momentum thicknesses in refs. 18 and 19), this relation for δ^{*} may be applied for any constant wall temperature. If the flow outside the boundary layer is considered to be the inviscid flow about the "perturbed body" $r_{b}{ }^{*}(x)$, the corresponding pressure distribution and shock shape are approximated as follows. In terms of the body radius $r_{b}=\eta_{b} \xi^{m}$, equations (1) and (2) become

$$
\mathrm{p}_{1}=\mathrm{m}^{2} \mathrm{~F}_{0}(\eta) \xi^{2(\mathrm{~m}-1)}+\epsilon_{1} \mathrm{~m}^{2} \mathrm{~F}_{1}(\eta)=\frac{\mathbf{F}_{0}(\eta)}{\eta_{\mathrm{b}}{ }^{2}}\left(\frac{\mathrm{dr}_{\mathrm{b}}}{\mathrm{~d} \xi}\right)^{2}+\epsilon_{1} \mathrm{~m}^{2} \mathrm{~F}_{1}(\eta)
$$

and

$$
\mathrm{R}_{1}=\xi^{\mathrm{m}}\left[1+\mathrm{a}_{1} \epsilon_{1} \xi^{2(1-\mathrm{m})}\right]=\frac{\mathrm{r}_{\mathrm{b}}}{\eta_{\mathrm{b}}}\left[1+\mathrm{a}_{1} \epsilon_{1}\left(\frac{1}{\mathrm{~m} \eta_{\mathrm{b}}} \frac{\mathrm{dr}_{\mathrm{b}}}{\mathrm{~d} \xi}\right)^{-2}\right]
$$

By replacing r_{b} by $r_{b}{ }^{*}$ (as in ref. 14), these equations become

$$
\begin{equation*}
\mathbf{p}_{1}^{*}(\xi, \eta)=\frac{\mathbf{F}_{0}(\eta)}{\eta_{\mathrm{b}}^{2}}\left(\frac{\mathrm{~d} \mathrm{r}_{\mathrm{b}}^{*}}{\mathrm{~d} \xi}\right)^{2}+\epsilon_{1} \mathrm{~m}^{2} \mathrm{~F}_{1}(\eta)=\mathrm{m}^{2} \xi^{2(\mathrm{~m}-1)}\left(1+\epsilon^{*}\right)^{2} \mathrm{~F}_{0}(\eta)+\epsilon_{1} \mathrm{~m}^{2} \mathrm{~F}_{1}(\eta) \tag{3}
\end{equation*}
$$

and

$$
\begin{align*}
\mathrm{R}_{1}^{*}(\xi) & =\frac{\mathrm{r}_{\mathrm{b}}^{*}}{\eta_{\mathrm{b}}}\left[1+\mathrm{a}_{1} \epsilon_{1}\left(\frac{1}{\mathrm{~m} r_{\mathrm{b}}} \frac{\mathrm{dr}_{\mathrm{b}}^{*}}{\mathrm{~d} \xi}\right)^{-2}\right] \\
& =\xi^{\mathrm{m}}\left[1+\frac{\delta^{*}}{\mathrm{r}_{\mathrm{b}}}+\mathrm{a}_{1} \epsilon_{1} \xi^{2(1-\mathrm{m})}\right]+\text { terms of order } \epsilon_{1} \epsilon^{*} \tag{4}
\end{align*}
$$

Here $\quad \epsilon^{*} \equiv \frac{\mathrm{~d} \delta^{*} / \mathrm{d} \xi}{\mathrm{dr}} \mathrm{r}_{\mathrm{b}} / \mathrm{d} \xi \mathrm{E} \xi^{\frac{3}{2}-2 \mathrm{~m}} \ll 1$ except in a small region near the nose when $m>\frac{3}{4}$.

Simulation of Angle of Attack

The pressure distribution along the pitch plane of the body at angle of attack is assumed to be the same as that about an equivalent axisymmetric body. This effective body is at zero angle of attack. It has a power-law profile which closely matches the windward element in the plane of symmetry of the actual body at angle of attack. Figure 4 shows the relation between the real and effective bodies, and the following expressions are used to obtain the effective body parameters

$$
\begin{align*}
& \overline{\mathrm{x}}_{\mathrm{e}}=\overline{\mathrm{x}} \cos \alpha-\overline{\mathrm{r}}_{\mathrm{b}} \sin \alpha \\
& \overline{\mathrm{r}}_{\mathrm{b}, \mathrm{e}}=\overline{\mathrm{x}} \sin \alpha+\overline{\mathrm{r}}_{\mathrm{b}} \cos \alpha \\
& \mathrm{f}_{\mathrm{e}} \equiv \frac{\bar{l}_{\mathrm{e}}}{\overline{\mathrm{r}}_{\mathrm{b}, \mathrm{e}, \mathrm{~B}}}=\frac{1-\frac{1}{\mathrm{f}} \tan \alpha}{\tan \alpha+\frac{1}{\mathrm{f}}} \approx \frac{\mathrm{f}}{1+\mathrm{f} \tan \alpha} \tag{5}
\end{align*}
$$

and

$$
\mathrm{m}_{\mathrm{e}} \equiv \frac{\log _{\mathrm{e}}\left(\overline{\mathrm{r}}_{\mathrm{b}, 2, \mathrm{e}} / \overline{\mathrm{r}}_{\mathrm{b}, 1, \mathrm{e}}\right)}{\log _{\mathrm{e}}\left(\overline{\mathrm{x}}_{2, \mathrm{e}} / \overline{\mathrm{x}}_{1, \mathrm{e}}\right)}
$$

so that

$$
\frac{\overline{\mathrm{r}}_{\mathrm{b}, \mathrm{e}}}{\bar{l}_{\mathrm{e}}} \approx \frac{1}{\mathrm{f}_{\mathrm{e}}}\left(\frac{\overline{\mathrm{x}}_{\mathrm{e}}}{\bar{l}_{\mathrm{e}}}\right)^{\mathrm{m}_{\mathrm{e}}}
$$

Here $\overline{\mathrm{x}}_{1}$ and $\overline{\mathrm{x}}_{2}$ are points selected to provide a good approximation. A lower limit of $\mathrm{m}_{\mathrm{e}} \geqq 0.51$ was set to avoid computational problems associated with the theoretical limit as $\mathrm{m} \rightarrow 0.5$.

The approximating pressure distribution along the body at angle of attack is then

$$
\begin{equation*}
\mathrm{p}_{1, \mathrm{e}}^{*}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)=\frac{\mathrm{m}_{\mathrm{e}}^{2}}{\kappa}\left[\left(1+2 \nu^{2} \mathrm{E}_{\mathrm{e}^{\mathrm{x}}} \mathrm{e}^{\frac{3}{2}-2 \mathrm{~m}_{\mathrm{e}}}\right) \mathrm{F}_{0}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)^{2\left(\mathrm{x}_{\mathrm{e}}-1\right)}+\kappa \epsilon_{1} \mathrm{~F}_{1}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)\right] \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
& \nu \equiv \frac{\mathrm{f}_{\mathrm{e}}}{\mathrm{f}}=\frac{1}{1+\mathrm{f} \tan \alpha} \\
& \kappa \equiv\left(\frac{\delta}{\delta_{\mathrm{e}}}\right)^{2}=\nu^{2}\left(\frac{\eta_{\mathrm{b}, \mathrm{e}}}{\eta_{\mathrm{b}}}\right)^{2}
\end{aligned}
$$

and E_{e} is the same as E with m_{e} replacing m. (The factor κ appears since $\mathrm{p}_{1, \mathrm{e}}^{*} \equiv \frac{\overline{\mathrm{p}_{1, \mathrm{e}}^{*}}}{2 \overline{\mathrm{q}} \delta^{2}}=\frac{1}{\kappa} \frac{\overline{\mathrm{p}_{1, \mathrm{e}}^{*}}}{2 \overline{\mathrm{q} \delta} \mathrm{\delta}_{\mathrm{e}}^{2}}$.

By following reference 6 which uses a similar angle-of-attack method for half-cone wing configurations, this pressure distribution is applied over the entire body surface. The pressure distribution under the wing from $\eta_{\mathrm{b}} \leqq \eta \leqq 1$ is assumed to be the same as that in the flow field of the effective body from $\eta_{\mathrm{b}, \mathrm{e}} \leqq \eta \leqq 1$. Since this equivalent body approach does not attempt to account for the actual flow under the wing, its use necessarily limits the present method to very small angles of attack. For this reason all calculated results presented are in the range $\frac{1}{2} \leqq \nu \leqq 2$. Instead of calculating the wing upper surface pressure in detail, an average pressure is used. This value is taken from the charts of reference 20 , which includes viscous-interaction effects on the pressure and skin friction on delta wings at angle of attack in hypersonic flow. Since the viscous effects are approximately proportional to $\mathrm{x}^{-1 / 2}$, delta-wing results for which $\iint x^{-1 / 2} \mathrm{dr} \mathrm{dx}$ and the span equal to those of the power-law wing are used. The base pressure is set equal to free-stream static pressure p_{∞}.

Skin Friction

The skin-friction contribution is the remaining term of the axial-force coefficient to be evaluated. In this report laminar boundary layers are assumed for all calculations. The wetted area is divided into the body surface, wing upper surface, and the exposed part of the wing underside, each of which is treated separately. For the skin-friction calculations for the body and the wing lower surface, the longitudinal pressure distribution is modified in the nose region by keeping a higher order term in the pressure equation. These calculations then use a scheme given in reference 18 for incompressible laminar boundary layers. Two transformations of the independent variables allow its use with the two-dimensional compressible laminar-boundary-layer similar solutions of reference 19 for the present cases. For the body, the Mangler transformation (ref. 18) changes the axial coordinate to that for an equivalent two-dimensional body. For the relatively small exposed-wing undersurface, a simplified flow model is applied, that is, streamlines are taken as parallel to the body surface, and the pressure is taken as varying parabolically from the body to the shock wave. In both cases the Stewartson transformation (ref. 19) changes the surface length and exterior velocity distribution to the form for an equivalent incompressible flow; the method of reference 18 is then applied. For the wing upper surface, the average skin friction from the appropriate charts of reference 20 is used just as for the upper surface pressure.

Longitudinal Aerodynamic Coefficients

Integrations of the appropriate components of the surface pressures over the body and wing give expressions for the axial force, the normal force on the body and on the
wing, and the pitching moment. In coefficient form the expressions are (to first order in ϵ_{1} and ϵ^{*}):

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{A}}=\frac{\pi(\mathrm{m}+1) \delta^{2} \mathrm{~m}_{\mathrm{e}}^{2}}{\mathrm{f} \kappa \frac{\mathrm{~S}}{S_{\mathrm{b}}}}\left\{\left[\frac{1}{2\left(\mathrm{~m}_{\mathrm{e}}+\mathrm{m}-1\right)}+\frac{4 \nu^{2} \mathrm{E}_{\mathrm{e}}}{4 \mathrm{~m}-1}\right] \mathrm{m} \mathrm{~F}_{0}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)+\frac{\varepsilon_{1} \kappa}{2}\left[\mathrm{~F}_{1}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)-\frac{1}{\gamma \mathrm{~m}_{\mathrm{e}}^{2}}\right]\right\}+\mathrm{C}_{\mathrm{A}, \mathrm{~F}} \\
& \mathrm{C}_{\mathrm{N}, \mathrm{~b}}=\frac{2 \mathrm{~m}_{\mathrm{e}}{ }^{2} \delta^{2}}{\kappa \frac{\mathrm{~S}}{\mathrm{~S}_{\mathrm{b}}}}\left\{\left(\frac{1}{2 \mathrm{~m}_{\mathrm{e}}+\mathrm{m}-1}+\frac{4 v^{2} \mathrm{E}_{\mathrm{e}}}{2 \mathrm{~m}+1}\right)(\mathrm{m}+1) \mathrm{F}_{0}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)+\epsilon_{1} \kappa\left[\mathrm{~F}_{1}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)-\frac{1}{\gamma \mathrm{~m}_{\mathrm{e}}^{2}}\right]\right\} \\
& \mathrm{C}_{\mathrm{N}, \mathrm{w}}=\frac{2 \mathrm{~m}_{\mathrm{e}}{ }^{2} \delta^{2}}{\kappa \frac{\mathrm{~S}}{\mathrm{~S}_{\mathrm{b}}}}\left(\left\{\left(\frac{1}{2 \mathrm{~m}_{\mathrm{e}}+\mathrm{m}-1}+\frac{4 \nu^{2} \mathrm{E}_{\mathrm{e}}}{2 \mathrm{~m}+1}\right)\left(\frac{1-\eta_{\mathrm{b}}}{1-\eta_{\mathrm{b}, \mathrm{e}}}\right) \mathrm{J}_{0, \mathrm{e}}+\frac{2}{\gamma+1}\left[\frac{4 \mathrm{mE}}{(3-2 \mathrm{~m})(4 \mathrm{me}-2 \mathrm{~m}+1)}\right.\right.\right. \\
& \left.\left.\left.+\frac{\epsilon_{1} \mathrm{a}_{1}}{2 \mathrm{~m}_{\mathrm{e}}-\mathrm{m}+1}\right]\right\}(\mathrm{~m}+1)+\epsilon_{1} \kappa\left(\frac{1-\eta_{\mathrm{b}}}{1-\eta_{\mathrm{b}, \mathrm{e}}} \mathrm{~J}_{1, \mathrm{e}}-\frac{1-\eta_{\mathrm{b}}}{\gamma \mathrm{~m}_{\mathrm{e}}^{2}}\right)\right) \\
& C_{N}=C_{N, b}+C_{N ; w}-\frac{\overline{\bar{p}}_{u}-p_{\infty}}{q_{\infty}} \\
& \mathrm{C}_{\mathrm{m}}=-\frac{(\mathrm{m}+1)(\mathrm{m}+2) \mathrm{m}_{\mathrm{e}}^{2} \delta^{2}}{\kappa \frac{\mathrm{~S}}{\mathrm{c}}} \mathrm{~S}_{\mathrm{b}} \overline{\mathrm{c}}_{\mathrm{b}} \quad\left(\frac{1}{\mathrm{f}^{2}}\left(\frac{1}{2 \mathrm{~m}_{\mathrm{e}}+3 \mathrm{~m}-2}+\frac{4 \nu^{2} \mathrm{E}_{\mathrm{e}}}{6 \mathrm{~m}-1}\right) \mathrm{mF} F_{0}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)\right. \\
& +\frac{\epsilon_{1} \mathrm{k}}{3 \mathrm{f}^{2}}\left[\mathrm{~F}_{1}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)-\frac{1}{\gamma \mathrm{~m}_{\mathrm{e}}{ }^{2}}\right]+\left(\frac{1}{2 \mathrm{~m}_{\mathrm{e}}+\mathrm{m}}+\frac{4 \nu^{2} \mathrm{E}_{\mathrm{e}}}{2 \mathrm{~m}+3}\right)\left[\mathrm{F}_{0}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)+\frac{1-\eta_{\mathrm{b}}}{1-\eta_{\mathrm{b}, \mathrm{e}}} \frac{\bar{J}_{\mathrm{o}, \mathrm{e}}}{\eta_{\mathrm{b}}}\right] \\
& +\frac{2}{(\gamma+1) \eta_{b}}\left[\frac{4 \mathrm{mE}}{(3-2 \mathrm{~m})\left(4 \mathrm{~m}_{\mathrm{e}}-2 \mathrm{~m}+3\right)}+\frac{\epsilon_{1} \mathrm{a}_{1}}{2 \mathrm{~m}_{\mathrm{e}}-\mathrm{m}+2}\right]+\frac{\epsilon_{1} \mathrm{~K}}{\mathrm{~m}+2}\left[\mathrm{~F}_{1}\left(\eta_{\mathrm{b}, \mathrm{e}}\right)\right. \\
& \left.\left.+\frac{1-\eta_{\mathrm{b}}}{1-\eta_{\mathrm{b}, \mathrm{e}}} \frac{\mathrm{~J}_{1, \mathrm{e}}}{\eta_{\mathrm{b}}}-\frac{1}{\gamma \mathrm{~m}_{\mathrm{e}}{ }^{2} \eta_{\mathrm{b}}}\right]\right\}+\frac{\overline{\bar{p}}_{\mathrm{u}}-\mathrm{p}_{\infty}}{\mathrm{q}_{\infty}} \frac{\mathrm{s}_{\mathrm{c}}}{\overline{\mathrm{c}}}
\end{aligned}
$$

The pitching-moment reference center is at the nose of the body $(x=0)$. For the corresponding zero-order and inviscid relations, set $\epsilon_{1}=0$ and $E=0$, respectively. Note that the factors η_{b} and $\mathrm{m}+1$ are associated with the actual planform area used in normalizing the coefficients.

These equations have been programed for calculation by a high-speed digital computer. The program includes the skin-friction calculations on the body and the wing
undersurface. There is a subsidiary program which computes the parameters required to get the upper surface pressure and skin friction from reference 20 . The appendix presents an exposition of these programs. The basic program requires only 21600 octal storage locations after compilation on the Control Data Corporation 6600 computer at the Langley Research Center and runs an average case with 11 angles of attack in about 3 seconds of central processor time.

DISCUSSION OF RESULTS

Evaluation of Method

There have been no reported comprehensive experimental evaluations of the powerlaw, wing-body configurations to which the theoretical analysis applies. The data available fall into two groups: (1) drag of complete power-law bodies of revolution (no wing) at several Mach numbers and fineness ratios, and (2) aerodynamic characteristics of conical ($\mathrm{m}=1.0$) wing-body configurations. Only a small part of these data satisfy the high Mach number, the slender body, and the strong shock criteria required for strict application of the similarity theory. Data for which the criteria are not well satisfied can be used to determine the limits for practical application of the method.

Power-law bodies of revolution.- The zero-angle-of-attack drag of these bodies is already calculated as part of the present method. Figure 5 contains four sets of comparisons with experimental data. The drag coefficients have been based on the length squared as reference area in each case to form a uniform basis of comparison. In parts (a) and (b) of figure 5 , the ratio $\mathrm{V} / \mathrm{l}^{3}$ was held constant and yielded a small variation in the fineness ratio as the power-law exponent was varied to obtain the different bodies for the tests. Figure $5(\mathrm{a})$ is for tests at Mach 21.6 in helium (ref. 12). The agreement is very good. The coefficients in figure 5(b) are for tests at Mach 10.03 in air (ref. 21); the calculations are in good agreement with experiment. Figure 5(c) shows good agreement at Mach 10.35 for a series of power-law bodies having nearly equal fineness ratios. In figure 5(d) the data for the same bodies at Mach 5.96 is not predicted.

The range of agreement obtained in figure 5 should be considered in light of the basic assumptions of the theory as discussed in the previous section. For this reason the pertinent parameters are shown in the legends of figure 5 and also in figure 2. Since $\delta \ll 1$ for all cases, the slender body condition is well satisfied. The hypersonic assumption $\left(M_{\infty} \gg 1\right)$ is generally considered to be satisfied for $M>5$ and so should not cause the discrepancies in figure 5. However, the strong shock assumption $\left(\epsilon_{1}{ }^{2} \ll 1\right)$ is satisfied only for figure 5(a), where the agreement is very good. This result shows the
importance of evaluating ϵ_{1} to determine whether the theory can reasonably be applied to any particular configuration and free-stream conditions.

As an additional comparison with the present method and the experimental data, drag coefficients based on the simple Newtonian pressure equation $C_{p}=2 \sin ^{2} \theta_{b}$ and on inviscid conical flow were calculated and are presented in figure 5. The Newtonian prediction and inviscid conical solution drag values are low since viscous interaction effects on the surface pressure become important on high-fineness-ratio bodies at high Mach numbers.

As noted in reference 22, entropy layer effects become important for power-law exponents less than $m=\frac{\gamma+1}{2 \gamma+1}(m \approx 0.63$ for $\gamma=1.4)$; therefore, the theoretical predictions (which do not include these effects) can be expected to be poorer in that range. A less subtle limitation occurs at $\mathrm{m}=0.5$, where $\eta_{\mathrm{b}}=0$; that is, the ratio of shock-wave radius to body radius becomes infinite. This case is the "blast wave" solution for bluntnosed bodies of negligible thickness (for example, a cylindrical rod) as described in references 15 and 22 . For bodies with nonzero radius, as in figure 5 , the predicted shock-wave radius goes to infinity as $\mathrm{m} \rightarrow 0.5$ and so does the wave drag. Thus, the theory is not useful for the blunter shapes.

Wing, conical-body configurations.- Theoretical estimates for wing conical body configurations can be compared with the experimental data in reference 23 . The bodies in this reference were halves of right, circular cones, corresponding to $\mathrm{m}=1$. The wings were thin flat plates. The normal- and axial-force coefficients for configurations with the first-order Mach number and boundary-layer thickness corrections to the wing planform shapes are presented in figure 6. The present theory is in good agreement with the experimental data near an angle of attack of 0°, but deviates from it elsewhere. The deficiency in the angle-of-attack method is such that the errors in C_{A} and C_{N} are generally about equal and in the same direction. This condition results in the good prediction of the lift-drag curve (drag polar) shown in figure 7, which produces lift-drag ratios agreeing well with the experimental values. Figure 7 also shows the pitchingmoment coefficient, the theory generally agreeing well with experiment near $\alpha=0^{\circ}$.

Other data for comparison with theory may be found in references 6 and 7. The wings for the configurations tested had delta planforms with several leading-edge sweeps. Consequently, they cannot match the shapes used by the theory, but at small angles of attack, where the wing alone produces little lift or drag, the aerodynamic coefficients should be comparable if they are based on the areas of delta wings approximating the theoretical planforms. Figure 8 shows such a comparison at Mach numbers 6.86 (ref. 6) and 20 (ref. 7). The theoretical drag polars and the lift variation with angle of attack
at $M=6.86$ agree well with the experimental points, especially near $\alpha=0^{\circ}$ (fig. 8(a)). The pitching moment about $x=2 l / 3$ is predicted well near $C_{L}=0$, but the slope shows an almost neutrally stable trend whereas the experimental data show the configuration to be somewhat more stable. The difference in the distribution of wing area between the experiment and theory would contribute to this effect.

Maximum lift-drag ratios for the same configurations (and some with smaller cone angles) in helium at Mach 20 are shown in figure $8(\mathrm{~b})$. The predicted values agree fairly well with experiment considering the differences in wing shape and area.

Example Application of Method

The preceding comparisons with experimental results have shown that the present theoretical method gives good predictions of the lift, drag, and lift-drag ratio and fair estimates of the pitching moment for small angles of attack as long as the basic assumptions of the theory are met. Thus, the method should be useful for studying the general characteristics of the power-law-body flat-wing configurations at high Mach numbers. Just two parameters, the power-law exponent m and the fineness parameter f, completely specify these body shapes. For the wings the Mach number is the principal additional parameter required, although the Reynolds number, ratio of specific heats, and wall temperature also enter through the boundary-layer growth perturbation. In order to assess the effects of these three main variables, the theory was used to predict the aerodynamic characteristics of a family of full-scale configurations at two Mach numbers. The chosen altitude was 30 km for which the unit Reynolds numbers are $2.21 \times 10^{6} /$ meter and $4.42 \times 10^{6} /$ meter at the chosen Mach numbers of 6 and 12 , respectively, based on the 1962 standard atmosphere (ref. 24). The body volume was set at $2500 \mathrm{~m}^{3}$, giving lengths of 28.2 m to 78.1 m (approximately 92.5 ft to 256 ft), for $0.63 \leqq \mathrm{~m} \leqq 1$ and $2.5 \leqq \mathrm{f} \leqq 10.0$. Additional assumptions were $\gamma=1.4$ and a ratio of wall temperature to total temperature of 0.41667 . For each Mach number the range of the fineness parameter was chosen to keep $\delta^{2} \ll 1$ and $\epsilon_{1}^{2} \ll 1$. The results of these calculations are presented in figures 9 and 10.

Effect of power-law exponent.- Varying the body power-law exponent while holding the fineness parameter constant at $\mathrm{f}=5$ for Mach 12 flight at an altitude of 30 km produced the curves shown as figure 9(a). The drag polars in the range $0.63 \leqq \mathrm{~m} \leqq 0.75$ all cluster together, and hence so do the lift-drag ratios. Only in the conical case ($\mathrm{m}=1$) does the drag fall significantly higher and the lift-drag ratio lower. The pitching moment does show a major variation with m, both in slope and intercept. As m decreases from 1.0 to 0.63 , that is, as the nose becomes blunter and the aft end less flared, the
zero lift pitching moment $C_{m, 0}$ increases. At the same time, the stability decreases, configurations with $\mathrm{m}<0.75$ becoming unstable for the moment reference center at $\bar{x}=0.6 \bar{l}, \bar{y}=0.15 \bar{r}_{b, B}$. Since the effect of m on the lift-drag ratio is relatively small, this parameter could be chosen to minimize the trim drag.

Effect of fineness ratio.- The computed characteristics for a range of values of the fineness parameter f are shown in figure $9(b)$. For this family of configurations, the power-law exponent was set at $m=0.75$, and the curves are for Mach 12 flight at 30 km as before. At low values of f the peaks in L/D are low and broad and become higher and sharper as the bodies become finer. The stability of the configurations is practically unaffected by variations in the fineness parameter, as indicated by the almost parallel pitching-moment curves.

Effect of Mach number.- Figure 9(c) shows a comparison of Mach 6 calculations with those for Mach 12 for configurations having three of the power-law body shapes. Note that the change in Mach number makes a change in the wing planform for each body shape. The effect on the drag polars shows clearly in the three sets of curves. At Mach 6 the zero lift-drag coefficient $C_{D, 0}$ is higher but the drag due to lift is lower than at Mach 12. Since the curves cross before ($\mathrm{L} / \mathrm{D})_{\max }$ is reached, the Mach 6 curves of L / D peak higher and at larger C_{L} values than the Mach 12 curves. If the same reference area had been used, the C_{L} difference would have been larger since the Mach 12 design wing is smaller. The pitching-moment curves are little affected by the Mach number change.

Summary of calculations.- The results of the Mach 6 and 12 calculations for flight at 30 km are summarized in figure 10. As was indicated in figure 9 , the effect of the power-law exponent m on $(\mathrm{L} / \mathrm{D})_{\max }$ is relatively small. For the low fineness ratios, the curves form broad maxima centered near $\mathrm{m}=0.7$; they become more peaked and move toward $\mathrm{m}=0.8$ as the fineness ratio increases. This result compares with the value $\mathrm{m}=0.75$ determined from the Newtonian pressure law as the power-law exponent for minimum drag bodies under length and diameter (that is, fineness ratio) constraints. There is a stronger dependence of the associated lift coefficient $C_{L,(L / D)_{\max }}$ on the value of m, particularly for the less fine bodies. The effect of the fineness parameter on $(\mathrm{L} / \mathrm{D})_{\max }$ and $\mathrm{C}_{\mathrm{L}},(\mathrm{L} / \mathrm{D})_{\max }$ is opposing in that increasing f increases $(\mathrm{L} / \mathrm{D})_{\max }$ (and its dependence on m) but decreases $\mathrm{C}_{\mathrm{L},}(\mathrm{L} / \mathrm{D})_{\max }$ (and its dependence on m). (At any given lift coefficient in the range of calculation, however, L / D can be increased by going to a finer body; see fig. 9(b).) The curves of $\alpha_{(L / D)_{\max }}$ are included in figure 10 in order to show that the calculations of $(\mathrm{L} / \mathrm{D})_{\max }$ occur within the range of small angles of attack for which the present method gives its best results. (See fig. 6.)

CONCLUDING REMARKS

This paper has presented a method for calculating the longitudinal aerodynamic characteristics of a family of configurations in hypersonic flow. These configurations each consist of a half-axisymmetric power-law body surmounted by a thin flat wing for which the planform matches the analytical shock-wave shape about the body at an angle of attack of 0°. The method is based on the power-law similarity solutions of the hypersonic small-disturbance equations. These solutions require three basic assumptions: the Mach number is large, the body is slender, and the shock wave is strong. A firstorder perturbation allows the calculation of Mach number effects, and a perturbation to the body shape provides for the boundary-layer growth. Skin friction is accounted for by using compressible, laminar boundary-layer solutions at the computed pressure distributions integrated over the body and wing surfaces. A computer program has been written implementing this method; sample computations using the program have taken only a few seconds per case.

When compared with experimental data for axisymmetric power-law bodies and for wing-conical-body configurations, the present method gave good agreement where the basic assumptions were satisfied. An example series of computations with variations in the principal parameters at a full-scale flight condition showed that varying the power-law exponent has a greater effect on longitudinal stability and trim than on the lift-drag ratio. The computations for Mach 6 gave higher maximum lift-drag ratios, higher drag coefficients at zero lift, but essentially the same stability characteristics as their counterparts for Mach 12.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., October 25, 1973.

APPENDIX

COMPUTER PROGRAM FOR CALCULATING
 THE AERODYNAMIC CHARACTERISTICS OF POWER-LAW WING-BODY CONFIGURATIONS

The calculation procedure described in the main body of the paper for obtaining the aerodynamic coefficients for power-law wing-body configurations at hypersonic speeds has been programed for high-speed digital computation. The program will also compute the zero angle-of-attack drag for an axisymmetric power-law body alone. The purpose of this appendix is to provide a description of the necessary input and available output as well as a FORTRAN IV (ref. 25) listing of the source program. A separate program to compute the parameters needed to obtain two input values from the figures of reference 20 is also listed and described.

Description of Program

First, the program reads all the input variables describing the case to be computed. After calculating geometric constants, it goes through the angles of attack, computing the body axis forces and moments, interpolating the similarity solution parameters from a stored table. Skin friction is calculated for each angle of attack and added to the axial force. The results are then transformed to the stability axes. If at least three angles of attack are included in a case, a quadratic interpolation of the drag polar is made to obtain $(\mathrm{L} / \mathrm{D})_{\max }$ and other quantities, which are printed out along with the body- and stability-axis coefficients. A summary subroutine assembles certain quantities for separate printout after completion of all cases.

Program Listing

The FORTRAM IV listing of the source program used on the Control Data series 6600 computer system at the Langley Research Center is as follows:

```
PPCGQAM HYPAEPO(INPUT=201, DUTPUT=401,TAPFG=INPUT,TAPE7=601)
    A 1
HYPERSONTC AEPOOYNAMIC CHARACTERISTICS OF POWER-LAW WING-BDOY CONFIGURATIONS
```


c
r

APPENDIX - Continued

TOMMON $A P, Z 1 M E, E 2 U 2, F O E, F 1 E K, T H G 12 G, T W M, E M B F 2, O 2 M E 2 K, X 2 M, W I N G, F O 1$, 11
1 FITK,OLR,FTE,ONETB,XSE,GMA,GMI,GM12,GP12,EM,EMI,EM32,ZMM, ZEMI1, 12
2 THP 2M, \triangle MCH2, DEL, TWEM, AEP 13
NAMELTST /DATA/NCASF,GAM,TINF,AMCH,NALF,ANGL,EM,F,PEL,SSB,XCG,YCG, 14
! DRDT, CAFACTR, ANGO, XOUT, PBAPOL,CFDCFOL, ALAMCR, BDYONLY,DEL, EPS,XSE 15
2 /CUT/T, ANG, ANGO,FME,YE,EMI,CAFRZ,CAFU,CAFL,AI,PTWP1 16
r VART $=$ FM, VARD $=$ ASSICIATEO VALUES OF ETAB,FO,FL,DJO,DJI,AI FROM TABLE I
DATA X/0.,.0V03,.0006,.0009,.0012,.0018,.0024,.0036,.005,.0085,
!.015,.025,.045,.08,.14,.25,.45,.7,1.1, PI, PIF,OTOR/3.14159285359, A 18
2 2.6586808,.01745329252/, KP,LLIM,ML,ML1,NCASE/-1,19,18,17,1/, 19
3 VART, VARD/1.,. $95,-9, .85, .8, .75,-7,-566667, .633333, .6,-55,-53, .51$, 20
4. . 14034 , . 91034,.00465, .89743,.88798,.87507,.85648,.8388,.81391, 21
$.77647, .66414, .56901, .37221, .87445, .84711, .8163, .78174, .74265$, 22
 23
7 1.0591,1. 2306,1.4296,1. $4897,1.9811,2.2985,2.4964,2.6392,2.6593$, 249. 1n318,.11798,.12129,.13554,.17318,.20119,.25443, .0841,.09551,
$.86687,1.0411, .47569, .52709, .58604, .64291, .72741, .80732, .88631$, $2.93216, .95546, .98034, .94791, .98377, .97539 /, \quad$ GAM/1.4/t,3 SSB,TWTT, PBPI,CAFACTR,XE,XCUT/O.,.415667,1...1.,.10,.FALSE./LIGITAL TFMIN, BDYONLY, WTNG, XOUT
8 2.251, . .887k.1.411, .07323,.07589,.07909,.08303,.08799,.09444; A 25
X. 11044, . 13067,.15918,.20098,-26458,.32562,.40794,.51763,.74598, 2726
EXTERNAL FUN? 32ROYONLY=-FALSE.DEAD ?8. HEADIF (ENDFILE 5) 22.?A 28? 9
pead oatab30A 31
(cmx=n.
COMTN=1.33
IFNIN=.FALSE.8
GO TO $\{2,4,5,6\}$, NCASE 40
NC. $A S E=11$ GAM, 21 AMCH,TINF, 31 EM, 4) F,REL,SSB have new values
$G M 1=$ GAM-1.41
$2 T, N 1=2 . / T, M 1$ 42
 43
$G P I=G^{A} M+1$. 44
GO12 $=5$. 6 GP1 45
FOI $=1 . / G P I 2$ 46
$C M A=G . A M$ 47
GP14 $=.25 *$ GP1 48
ZGGI =GAM*ZGMI 49
ZGIG=-4./2GG1 50
GMI =1./GAM 51
ZGPG=GMT-. $=$ 52
GP1G=GP?*GMI 53
GF = - ? 2* $\{2 . * G A M) * * 1.5 * G P 12 * * G 1$ G 54
 55
G27=-.27/GX1 56
THC12G=1.-. 5 *GX1 57
-TBGT=1./SQRT(8.*GAM) 58
$A T 1=1.717 * T W^{T} T+.47 \mathrm{C}_{4}$ 59
$\Delta T 2=T W T T+.34 R$ 50
RTTWTT=SQRT(TWTT) 5 ?
$A M C H 2=A M C H * A M C H$ 62
$\triangle M C H 3=\triangle M C H * A M C H 2$ 63
$\triangle M T=1 . / A M C H 2$ 64
TTBTI=1.+GM1?*AMCH? 65
RTTTRT!=SQRT (TTBTI) $6 A$
 67
$\Delta L A M=1(1 .+$ SUTH)/(TWTT+SUTHI) \#RTTWTT 68
SUTHT=?9B. S/TINF59
$C 2=((1 .+$ SUTH) $(1)+$ SUTHI) $) * R T T T B T I$ 70
PTC: $=$ SQRT (ALAM/C.2) 71
 72
PTCヨ=SOPT((I.+SUTHI)/(TPTI+SUTHI)*SQRT(TPTII) 73
$G C M G=T, F * P T C 1 * A M C H * * G P 1 G$ 74
$P O=2 . * A M I * G M T$ 75

APPENDIX - Continued

 \(E M P 1=F M+1\). A 76
 FMP12=.5*FMP1 A 77
 \(\mathrm{CMP}=\mathrm{FM}+2\).
 \(F M M 1=F M-1\).
 M
 \(T W N=? . * M\)
 THR2M \(=\) Z. - TWM
 \(2 M N=2-F M\)
 EMI=1./FM
 ZFMI I=2.*(EMT一1.)
 FM32=1.5*EMI-2.
 ZGM1 \(22=1,5+Z M M 1 * G M I\)
 ZMP1t=1./(EMP1 +EM)
 \(T W M 3 I=1 . /(\) FMP1 + FMP 2\() \quad\) A 89
 FM\&I=1./(4.*EM-1.)
 SJXMI=1./(6.*EM=1.)
 THRMM? \(=1 . /(3--E M)\)
 FIV2MI $=1 . /\left(5 .-T H^{M}\right)$
92
FM4019 =.4019*EM
FMX1I =1./(1.5303-FM4019)
FMX152M=FTV2MT/EMX1I
95
$E M \times 2=.5 /(.9274+E M 4019)$
97
IP=20.* (1.05-EM)
98
$A I=A T 1-A I 2 * E M M 1 /(E M M 1-G 37 / E M 4 I)$
CALL MTLUP (EM,Y,2,13,13,6,IP,VARI,VARD)
-
99
TABI A 100
ETABI=1./ETAB
ONETET=ETABI-1.
A 101
ZGIET $=$ ETABI/GP12
A 102
A 103
$E T B=E T A B$
ПNFT8=1./(1.-ETAB)
A 104
กNET8=1./(1.-ETAB)
A 105
$A M C H N=(1 .-2 M M 1 *(A M C H-1)) * * G M$.
GETIEMF=GCMG*ETAB*AI*SQRT(EM4T)*(EM*EM*FO)**2G2G/AMCHN
A 106

$F I=1 . / F$
A 108
EMBF7=(EM*FI)*ね2
$F S Q=F * F$
A 109
A 110
FMIMSF =EMP1*EMP?/FSO A 111
FMIM2F2=EMP1*EMP2/FSO A 112
RTRELI=1./SORT(REL) A 113
ESAV=GM1*AMCH*FSQ*RTC1*QTRELI*RTBGI
A 113
A 114
DEL=ETABT*FI
$F P S=A M$? / (DEL*DEL
A 115
$F P S=A M Y /$ PDEL*DELI \quad A 116
$A F P=A I * E P S \quad$ A 117
FMSAV=4**ESAV*AT*ETAB/(EN*SORT(FO/EM4I)) A 118
TWEM=EMSAV**5.
A 118
A 119
$\begin{array}{ll}R S E=S O R T(G E T T E M F * R T P E L I * D E L * * Z G 1 G * X E * * Z G M 1 Z 2) & \text { A } 120 \\ \text { PTZPI=PTOT(RSE) }\end{array}$
PT2P1=PTOT(RSE)
A 121

$A F P X=A E P \& E M X 152 M$
A 123

$5 M 22 X=.25 * E M S A V * E M X I I$	A 123

G?MRT $=.69053$ *GM12*AMCH3*RTC3*RTRELI \quad A 124
$E M F S A V=0$. A 126
WING GEOMETRIC PARAMETERS AND FLOW CONSTANTS

APPENDIX - Continued

```
    FMETS=EMDI #ETABT *SBBYS A 140
    M=3
    KK1=(ML-1)/M+1
    KK=KKI+!
    K=KK
    MK=M*(K-2)+1
    OSWCOS(LLIM)=P\MS
    PB(LLTM)=ETAB
    L!=も!TM
    cosSL=0.
    PS=1.+TWEM+AEP
    XW(KK)=1.
    COSSL(KK)=1./SORT(1.+EMBF2)
    DO B LL=1, ML ?
    L=LL!M-LL
    XL=X(L)
    XM=XI.**FM
    CSWCOS(L)=P\MS*XM
    IF (BOYONLY) GO TO 8
PQ(L)=FTAB*XM
IF (MK.NE.L.) GE TO &
K!=k
K=k-1
MK=M*(K-2)+1
XW(K)=XL
XSF=.5#(XW(K1)+XL)
TXSE(K) =XST
PT.WD1(K)=PTOT2(RSE)
DFLP(K)=RSE-ETAB*XSE**EM
RSKl=RS
XM12=(XM/XLS)**2
PS =XM*(1.+(TWEM/SQPT(XL)+AEP)/XM12)
CO$SL(K)=1./SQRT(1.4EMBF2*XM12)
DRMIS=EMETS*(RSK1-RS-RB(II)+RB(L))
DSWCSL{K,K)=DRM1S**2F*{COSSL(K)+COSSL(KI))
LT=t.
OO 7 J=K1, KK
OSWCSL(J,K)= DRM1S*COSSL(J)
cont:NuE
DSWROS=PIMS*(-1*X(2))**EM
IF (RDYONLY) GC TO 10
XW=0.
XSE=.5#XW(2)
TXSE=XSE
PTHP!=PTOT2(RSE)
OELR=PSE-ETAB*XSE**EM
DRMIS=EMETS*(RS-RB(LI))
OSWrSt=ORMIS*.25*COSSL(2)
DO 9 J=2,KK
DSWCSI(J,1.1= DRM1S*COSSL(J)
XLI=X(6)
XL2=X(1.f)
FLL=RA(G)
PL2=RB(16)
C
C ANGLE OF ATPACK VARIATION
```



```
ANGO=DEL*(OB(MLI-ETAB)/(1.-X(ML)) 
1 0
```


E2て
222
tzz W ．
0てZ V
612∇
$812 \square$
LI2
$912 \forall$
与12 \forall
TI2 \forall
どて \forall
2I2 V
でて V
$012 \forall$
$602 \forall$
802 V
$202 \forall$
902 V
502
TOZ \forall
EOZ \forall
202% LOZ \forall

 WJ\＃joy＝Wjog
てヨwコ／iwg＝1てうわり まW7－・と＝swtz

$w \pm+j w Z=w \leq w Z$ jW土＊${ }^{\circ}$＝$=3$ W2
－i－gway＝i゙きだり

でどとでくて（AロSヨฟうージき）コ1
$0^{\circ} \mathrm{i}=$ jiwa
iく O1 05 is＊$=3 \mathrm{wj}$

（ $N 1 *[7 X+\tau 7 d) /(N \perp * \bar{C}\rceil X+\bar{c}\rceil y)=1 \nabla d O H y$
UZ U1 39 （I．0j•Wj）Ji

（－T－30d）＊0d＝（i）101ana

 こ2 1105 Wy＝3ns － $1=01$
－ $\boldsymbol{i}=$ この
（1）70d88d＊WV70dwSA81STS＝（1150人8500 GT
yc Ul US
（I）TING GE LNI od
［－9NロN＝9VロN

$(* T-S O d) * 0 d=(1) \& 01 d n d$
（（て＊＊ヶ0）
0ロコネカ」のリンクロハid」

（INV＊WOW\＃）S甘V＝ひめつ
 （פN：INIS＝（I）EVIS 2l LityItri（JNJ）JI II Эanssjad छכvadns oldan Sivam J
penuṭquos－XIGNGdCV

APPENDIX - Continued

```
    FKGO=FK*GME?Y! A 263
    FPSEVO=F1EK=PRPI*FKGO A 2.64
    FPSAVI=FICK-EKGO
    A 265
    FPSAV2=\INETET*{EK*DJ1E*ETE1J-FKGO)
    A 266
    CNR{T)=D2MS2*(FOEM1*FFSAV+EPSAV1)
    A 267
    CNC\I|=D2MS?*F\capEM1*EME*ETDAT*EE4U2/({ZME+1.1*THR2ME)
    A 268
    A 269
    CNW(I)=D2MS2*{FMPI*(DJETB*EESAV&ZGIET*{EMSAV/(FRMEI-ZMMI)*AEP/
    1{\MF=EMM1))-EME*ETPAT*E4UM*FOE/THR 2NE) +FDSAVZ}
    A 270
    CN(I)= CNB(I)+(ND(I)+CNW(I) +DPSBYOS(I)
    TMN=D2MST&FMPI#(FMPZ&(FOEHDJETB)*(1./ZMEM+FE4U2*THM3I)* A 273
    A 271
    A 272
1 \G1ET&(EMSAV/{FRME+THR2M)+AEP/(ZMEM- ZMM1))) +EPSAVI +EPSAV2)
    CMA=D2MSC*EM1N2F2*(FOEM*(1./(LMEM+ZMM1) +FF4U2*SIXMI)+EPSAVO/3.)
    CMCG(T)=CMN+CMA-XSC*ODSPYQS+.5#FMP2*(CNII)*XCG+CAP(I)*FI*YCG) A 276
A 273
```

```
SKIN FRICTION ON BGDY
FIEFFOF
E2U2=.5*EE4U2
\(\triangle O C=G A M F M E Z / E K\)
\(\triangle P=A P O / P T 2 P\) L
WTNG=. FALSE.
CAFB2 = CFCON*SKNFQCIX,LLIN, OSWCOS,GAM, ALAM,FUN1)
A 277
IF (RDYONLY) GO TO 2 ?
SKIN FRTCTION ON WING UPPER AND LOWER SURFACES
CAFU=CFOCR*(1.+CFDCFOI(II) A 284
\(C A F L=0\).
A 285
WING=.TRUE.
A 286
DO \(24 \mathrm{~K}=1, \mathrm{KKI}\)
\(K 1=K K-K+1\)
\(A P=A P O / P T W P I(K)\)
DLR=DELR(K)
A 287
A 288
A 289
\(S A V X W=X W(K)\)
A 290
XW(K) = TXSF(K)
A 291
A 292
C.AFL = C.AFL + PTWPI(K)*SKNFRCW(XW(K),K1, DSWCSL(K,K),GAM,ALAM,FUN1)
A 293
\(X W(K)=S A V X W\)
A 294
CAFL=CAFIC*CAFL
A 295
IF (XOUT) PRTNT QUT
A 296
LIFT, DPAG, ANC L. / D
\(C A F(I)=C A F B 2+C A F U+C A F L \quad\) A 297
Gח TO 26
\((A F I I)=? . * C A F B ?\)
A 298
A 299
CAP(I)=2. \(\operatorname{CCAP(I)}\)
\(\mathrm{CN}=\mathrm{O}\).
\(C M C G=0\).
A 300
A 301
CA(T) \(=\) CAD(I) CRAFACTR*CAF(I)
CL(I)=CN(I)*COSE(I)-CA(I)*SINE(I)
CO(T)=CAIII*COSF(T)+CN(I)*SINE(I)
C.CD(T)=CLIT/CD(I)
A 302
IF (COMIN.LT.CDEII) GO TC 27
IMIN=I
A 303
A 304
A 305
CDMIN=C.D(I)
IF (CLCO(T).LT.CLDMX) GO TO 28
CLCMX=CLCO(I)
TMAX=T
continue
A 306
TF (XOUT) PRINT 36, HEAD
A 307
A 308
IF (NANG-3) 31,29,29
A 399
QUADRATIR INTERPCLATION OF DRAG POLAR TO GET IL/DIMAX, ETC.
IF (IMAX.LT. 2 ) IMAX=2
A 316
IF (TMAX.GE.NANGI TMAX=NANG-1 A 317
IF 1 MAX.GE.NANG TMAX \(=N A N G-1\)
\(I X P=1\) MAX +1
A 318
T \(X M=T M A X-1\).
\(Y I=C D(I X M)\)
A 319
A 320
\(Y\) Y \(=\) CO(TMAX)
A 310
A 311
A 312
A 313
A 314
A 315
```

[^1]
APPENDIX - Continued

```
    Y2=CD(IXP)
    X]=\GammaL(TXM) A 323
    X?=r.l(IMAX) A 324
    X2=CL(IXP)
    A 325
    x12=x1-x2
    x2?=x2-x?
    A 327
    IF (IFMTN) GO TO 30
    A 32B
    X31=X3-X1
    &={Y{*X23+Y2*X31+Y3*X12)/{-X12*X23*X31}
    XA=.5*(A*(X3+X1)-(Y3-Y1)/X3))
    XA2YAA = Y2+XZ*(2.*XA-A*X2)
    CLNX2=XAZYAA/A
    IF (CLMXP.LT.0.1 GO TO 30
    CINX=SQRT(CLMX2)
    CONX=2.*(XAZYAA-XA*CLMX)
    CLCMX=CLMX/CDMX
    T.ALL MTLUP (O.;CDALO,2,NANG,11,2,KP,CL,COANGL)
    TALL NTLUD (CLMX,ALPHX,2,NANG,11,1,INAX,CL,ANGL:
    TFMIN=.TPUE.
    IMAX=\MIN
    A 329
    A 330
A 331
A 332
A 333
A 234
A 335
A 336
A 337
A 338
A 339
A 340
GO TO 2O
A 342
Y2 221=(Y3-Y2)/(Y2-Y!)
x322!= x23/x!2
A 343
A 344
CLMN=.5*(Y222l*(X2+X1)-X322l*(X3+X2))/(Y3221-X3221)
A 345
C,ALL MTLUP (CLMN,CDALN,2,NANG,11,2,KP,CL,COANGL) A 346
r
C MATN OUTPUTS
    PRTNT 27. CLDMX,ALPHX,CLMX,CDMX,CDALC,CDALN,CLMN A 347
    (ALL SUMMARY (CLDMX,ALPHX,CLMX,COALO,COALN,CL(IO),HEAD,NCASE) A 348
    PRINT 24, (ANGL(I),CL(T),COIT),CMCG{T),CLCD(I),CN(I),CNB(I),CNO{I)
    I, CNW(I), DPSRYOS(I),CA(I),CAP(I),CAF(I),I=1,NANGI A 350
A 349
    NCASE=4
A 351
    GO TO 1
    GO TO 1
    STCP
A 353
A 354
    FORMAT (F12.2.15H DEG. PUPIQI =,F10.5)
A 355
    FMPMAT (//3X,5HALPHA, 8X, ?HCL, AX, 2HCD,8X, 2HCM, 7X,3HL/D,9X,2HCN,8X, A 356
    1 ZHCNB,7X,3HC,NO,7X, 3HCNW,&X,4HDP/O,8X,2HCA, 8X, 3HCAP, 7X, ZHCAF/1
    2 (F7.1,3X,3F1C.5,F9.2,2X,5F10.5,X,3F10.51)
A 357
    FORMAT (//F8.2,?BH DEG., TOO NEGATIVE FOR BCOY)
A 359
    FIRMAT 11MI/20X8AIO/1
    A 360
    FDOMAT I/IIIH (L/DIMAX =,Fg.4,11H AT ALPHA =,F7.4, 26H DEGREES, A 361
    WITHCLL AND CD =, 2F9.K//6HCOD =,F1O.8,14H, AT ALPHA O =,FB.4// A 362
    2 9H CD MIN =,FIO.8,12H, AT ALPHA =,F8.4,9H AND CL =,F8.6) A 363
    FORMAT (8A1O) A 364
    ENO
A 364
    FUNCTION PTOT (RS) B 1
    TOTAL TO STATIC PRESSURE RATIO ACPOSS SHOCK, AND SHOCK POSITION
        2
    COMMON DUMB(16),XS,GAM,GM1,GM12,GP12,EM,EMI,EM22,ZMM,ZEMI1,THR2M,
```



```
B 3
    1 AMCH2,DEL,THEM,AEP
B 4
    c. }\quad\mathrm{ \ AMCHIT,DEL,THEM,AEP
    XSNO=RS
    5
    XI=R S##FMT
        B}
    M\=RS##FM!
        7
    DO ! I= 1, 10
        8
    X01M=X0**FMMI8
        9
    XSM=PS/(1.+(AEP+TWEM/SORT(XO1M))*(XO1M/XO)**2)
        10
    IF (XSM/XSMO.GT..990) GO TO 2 B 11
```



```
    X!=XSM**EMI
        l
1
    XSMO}=XS
Function prot (Rs)
        3
```


APPENDIX - Continued

 BEGTN WITY \(X(1)=X S E, X I(1)=0 .\), BETA \(=0\). (UNDERSIDE OF WING)
 BETA \(=0\).
 TMPT 2=.44T.
 FPTH =. 220E2
 \(X M=x+.1 *(X \mid 2)-X)\)
 PEPT \(2=D(X M)\)
 UM \(=\) SQRT (ZGMI * (PEPT 2\#\#GXI-1.))
 CALL MGAUSS \(\{X, X M, 1, X I M, F U N X, F O F X, 1\))
 XTH = \(A\) L \(A M \neq X I M\)
 TH2U"=TMBT2*XIM
 DCF(1)=PEPT \(7 * G \times 2 * F P T H * D S W C O S(1) * S Q R T(U M * * 3 / T H 2 U R)\)
 \(X\) (1) \(=X I M\)
 U(1) \(=U M\)
 DO 9 IP =2, LLIM
 \(X P=X(I P)\)
 CALL MGAUSS \((X M, X P, 1, O X I, F U N 1, F O F X, 1)\)
 DXI=ALAM*DXI
 \(X I I P \mid=O X I+X I M\)
 PFFT2 \(=P(X P)\)
 U(IP) \(=\) SQRT(ZGN1*(PEPT2**GX1-1.))
 \(\triangle L N U P=A L D G I U(I D / / U M)\)
 ALAUR2=9. *ALNUR
 DXTUTH=OXI/TH?UQ
 RLAM=7.7B09*(U(IP)/UM-1.1/DXIUTH
 BET=RLAM*(1.+(RLAM-1.)*(1.020E737*DXIUTH-.20419)*DXIUTH+.344145))
 \(K K=1\)
 \(K!=0\)
 r ITERATION FOR BETA (LOCAL VELOCITY-VARIATION PARAMETER)
$007 \mathrm{~J}=1.29$
RITO=BET
RTT(KK)=BET
TF $(K K-2) 5,3,3$

```
2 KK=1.
    P32=BIT(3)-8IT(2) C 48
    B21=BIT(2)-BTT(1) 4. 49
    TF (ARS(AR1+B32).LT.ABS(B3?)) GOTO4 50
    BOENOM=R32-B21. . C. 51
    TF (BNFNOM.EQ.O.1 GO TO 6 5 5 
    RFT={RTT(1)*BIT{Z|-RIT(2)**2)/BOENOM C, 53
    kl=0
    GOTH&
    AFT=(RTT(?)+BIT(3))/?.
    GO TO 6
    KK=KK+K?
    K!=1
    IF (BET.GT.2.) EET=1.4
    CALL NTLUP (BET,THT2,2,15,15,1,JP,B,TTH2)
    RFT=ALNUN 2/(ALNUP+ALOG(1. +OXIUTH*(2.-BET)*THT2))
    TF (APSIBET/BITR-1.)-.0001) 8.8.7
    CONTINUE
    PRINT Il, XP,BITR,BET
    BETA(TP)=RET
    CALT NTLUP (BET,THT2,2+15,15,2,JP,B,TTH2)
    THZUP=(1.+DXIUTH*{2.-AET\*THT 2.)*THZUR
    DCF(IP)=PEPT2**GX2*FWPP*DSWCOS(IP)*SORT(UTTP)**3*THT2/TH2UR)
    XM=XP
    XIM=XI(PP)
    UM=U(TP)
    IF (LLTM.EQ.2) GO TO 10
    SKNFRC=SUMIX,DCF,LLIMMI
    RETURN
    SKNFRC=-5*(DCFF+DCF(2))*(X(2)-X)
    RETURN
    FOGMAT (/2.6H BETA UNC,ONVERGED AT X/L =,FB.5,12H BETA VALUES,2F12.8
    1)
    ENO
    SURROUTINE FUNI {X,FOFX} 0
C INTEGRAND OF STEHARDSON TRANSFORMATION INTEGRAL FOR SKIN FRICTION
    CDMMON AP, ZIME,E2U2,FOE,F1EK,THG12G,TWM,EMBF2,C2ME2K,X2M,WING
    LOGTCAL WING
    X2N=X**TWM
    X2=X*X
    \F (WING) 2,1
    XF=X2M
    X2=1./(X2* X2N)
    GO TO 3
    XF=1.
    X2 = X 2M/X2
    FOFX=P2(X)**THG12G*XF*SQRT(1.+EMBF2*X2)
    RETUQN
    END
    FUNCTION P (X)
        BODY OR WTNG SURFACE PRESSURE
        COMMCN AP, Z1ME,E2U2,FOE,F1EK,THG12G;TWM,EMBF2,G2ME2K,X2M,WING,FOI;
        1F11K,OLR,ETB, ONETE,DUM8\13I,THEM,AEP
        LOGICAL WTNG
        X2M=X**TWM
        ENTRY P?
        TF (WTNG| 2.1
    FTCE=FOF
    FTIEK=FIEK
    GOTO 3

APPENDIX - Continued
    \(X M=S Q R T(X 2 M)\)
\(E T R=((\{D R Q+E T B * X M) /\{X M+(T W E M * S Q R T(X)+A E P * X \mid * X / X M)-E T B) * Q N E T B) * * 2\)
    \(F T O E=F D E+E T R *(F O 1-F O E)\)
    11
    FTIFK=FIEK+ETR*(FIIK-FIEK)
    X21ME \(=X * * 21\) ME
    \(P=A P *((1 .+F 2 U 2 * X 21 M E / S Q R T(X)) * F T O E /(X 21 M E+D 2 M E 2 K)+F T 1 E K)\)
    IF (P.LT.I) RETURN
    PRTNT 4, P, X,F2UZ,D2ME2K,ETR,FTOE,FTIEK
    \(P=.9999999925\)
    RETURN
    FOPMAT (4HP=,F13.5.16H SET \(=1\). AT \(X=, F 10.5,10 X, 5 E 13.5)\)
    ENC
    FUNRTION SUM \((X, Y, N)\)
    TRAPEZOTDAL INTEGRATION FOR UNEQUAL INTERVALS
    OIMENSION X(19),Y(19)
    \(M=N-1\)
    \(P S U M=Y *\{X(2)-X)+Y(N\} *\{X(N)-X(M)\}\)
    DD \(1 \quad I=2, M\)
    PSUM \(=P\) SUM \(+Y(I) *(X(I+1)-X(I-1))\)
    SUF = = \(\approx\) PSUM
    PETURN
    END
    SURPOUTINE SUMMAOY(A,B,C,D,E,F,H,N)
    1
    COLLECTION OF SUMMARY RESULTS ON A FILE (TAPEJ) FOR SEPARATE OUTPUT

    END

\section*{APPENDIX - Continued}

\section*{Input}

A single case consists of the determination of the aerodynamic coefficients over a given set of angles of attack. The first card for each case provides a heading for the printout; it consists of 80 columns of any desired FORTRAN characters. The remaining cards for each case are interpreted by a system loading subroutine (NAMELIST) which is very flexible. The data block begins with an arbitrary name (\$DATA in the present case) and ends with the dollar sign (\$); the variables between may be in any order and need appear only if values are to be different from those preassigned or used in the previous case of the same computer run. Column one of all these cards is blank. A description of the input FORTRAN variables with their correct type and preassigned values (if any) in parentheses is as follows:

FORTRAN variable

\section*{Description}
\begin{tabular}{|c|c|}
\hline TINF & free-stream static temperature, \(\mathrm{T}_{\infty}{ }^{\mathrm{O}} \mathrm{R}\) (real) \\
\hline AMCH & free-stream Mach number, \(\mathrm{M}_{\infty}\) (real) \\
\hline NALF & number of angles of attack, maximum of 11 (integer) \\
\hline ANGL & angle-of-attack array, decreasing order, deg (real) \\
\hline EM & power-law exponent, m (real) \\
\hline F & body fineness parameter, f (real) \\
\hline REL & Reynolds number based on body length, \(\mathrm{R}_{\infty, l}\) (real) \\
\hline SSB & ratio of reference area for coefficients to body planform area; if zero, program uses wing planform area (real;0.) \\
\hline XCG & ratio of \(x\) location of moment reference center to body length (real) \\
\hline YCG & ratio of \(y\) location of moment reference center to maximum body radius (real) \\
\hline
\end{tabular}

\section*{APPENDIX - Continued}

FORTRAN variable
Description

PBPI
ratio of base pressure to free-stream static pressure (real;1.)

CAFCTR

XOUT

PBBPOL

CFDCF01

BDYONLY

NCASE
multiplication factor times calculated laminar skin friction (real;1.)
extra output at each angle of attack if XOUT \(=\).TRUE.(logical,.FALSE.)
array of NALF values of wing upper surface pressure parameter \(\left(\frac{\overline{\mathbf{P}}-\mathrm{P}_{0}}{\lambda_{\mathrm{Cr}}}\right.\) in ref. 20) corresponding to angles of attack ANGL (real)
array of NALF values of wing skin-friction parameter \(\left(\frac{C_{F, \Delta}}{C_{F, 0, \mathrm{cr}}}-1\right.\) in ref. 20
of attack ANGL (real)
set equal to .TRUE. for axisymmetric body only, .FALSE. for half body with wing (logical; .FALSE.)
indicator for each additional case of a run to avoid unnecessary recomputations (integer; 1 initially, 4 each case thereafter). After first case of a run set NCASE \(=2\) if AMCH or TINF is changed; set NCASE \(=3\) if EM is changed but AMCH and TINF are not; for no change to AMCH, TINF or EM use preassigned value 4.

\section*{Output}

There are four possible output blocks for each case, only two of which always appear. First comes the input list with four added variables. These are GAM, the ratio of specific heats \(\gamma\); ALAMCR, a parameter ( \(\lambda_{c r}\) ) from reference 20 ; DEL, the slender body parameter \(\delta\); and EPS, the shock strength parameter \(\epsilon_{1}\). Next is a

\section*{APPENDIX - Continued}
list of the angles of attack with the pressure coefficient, Mach number and sine squared of the shock angle for oblique shock, and with the pressure coefficient and Mach number for Prandtl-Meyer expansion through the angle (appears only for new Mach numbers). Third is a list of variables used in the angle-of-attack and skin-friction calculations, which appears only if called by setting XOUT = .TRUE. in the input list. Fourth is the standard output of stability-axis and body-axis coefficients with the interpolated (L/D) max. The normal-force coefficient is also broken down into contributions from the body CNB, the body boundary-layer area under the wing CND, the rest of the underwing area CNW, and the wing upper surface DP/Q. The axial force is broken into the contribution from the pressure CAP and from the skin friction CAF. In addition to these results, after all cases have been run, a summary of results is printed out for cases with angles of attack.

\section*{Example}

Input cards for a run of two sample cases are presented below. The first case is for the complete configuration with \(m=0.75, f=7\), at \(M_{\infty}=12, \quad R_{\infty, l}=256.26 \times 10^{6}\) and 11 angles of attack. The second is for the axisymmetric body having the same parameters.
```

POWFR-LAW TRANSPORRITER. MACH 12 EM=.7500 F=7.00 PFY=4.4PEG/MM PRAGF=OTNFINTT

```

```

 PRAPOL=2.85.3.19,3.52,3.71,3.0.4.09.4.77.4.62,4.95.5.24,5.5.
    ```

```

 NALF=11,ANGL=3.,2.,1,..5,0.4-.5,-1.,->.,-3.,-4.4.-5, क
 POWER-LAW ROOY OF RFVOL MACH 1P EM=.7500 F=7.CO RFY=4.4JEG/M PRACF=PTNFIMTT
\$OATA NCASE=?,ROYONLY=,TRUF.,NALF=1,ANGL(1)=0.,PHAPOI=O.,CFDCFO1=0.*

```

The output for these input cards is shown below. The total computation time on a CDC 6600 series computer at the Langley Research Center was less than 15 seconds (excluding compilation).
```

SOAta
NTASE = !.
GAM = C.'4F+C1,
TTNF = c.angE+M?,
AMCH = 0.3 FE+C?,
NAIF = 11,
ANGI = 0.3E+01, 0.7c+01, 0.1E+C1, 7.5E+0C, 0.0, -0.5E+00, -0.1E+01,
M = C.7rf+en,
F = 0.7F+51,
PEL = 0.25F2EF+O%,
ssR = r.o,
XRG = 0.6F+7C,
YCG = 0.15F+CO.
PBPT = 0.1F+?!.
CAFACTR = C.1F+OY,
ANGO = -9.111768771F4745E+CO,
xCuT = F,

```

\section*{APPENDIX - Continued}
```

PBBPOL = 0.28KE+21, 0.719E+01, 0.3E2E+01, 0.371E+01, 0.39E+01,
0.429r+r1, 0.4?7F+0!, 0.AS2E+01, %.4GES+01, 0.524E+01,
CFDCFO1 = -0.7E-01, 0.6E-01, 0.23E+00, 0.32E+00, 0.42E+00, 0.52E+00.
0.52F+00, O. U4F+00, 0.109F+OI, 0.135F+01: 0.159F+01.
ALAMCR = 0.0196C72174F557F-C?,

```
RDYENIY \(=F\).
DF1 \(\quad=0.16325724504277 E+C 0\).
EPS \(=C .28 C 5 \times E E F 920825 F+C O\),
\(X S E=\pi .4^{* F}-C^{2}\),
\$END
\[
\text { PONEP-LAN TRANSPDORITER MACH } 12 \quad E M=.7500 \quad F=7.00 \text { REY=4.42EG/M DBASE=OINFINIT }
\]
3.00 DES. PUPTOT \(=-.0060^{5}\)
2. 00 OEC. PUPTQT \(=-.00454\)
.OJ OEG. PUPIOT \(=-.002^{\circ}\)
.\({ }^{\circ}\) OFG. PUDTOT \(=\)



\(\begin{array}{ll}-7.00 \text { DEK. PUP'DI }= & .00744 \\ -3.0 n \text { OFG. PUPTOT }= & .0124 ?\end{array}\)
-2.09 OFG. PUPTOT \(=\quad .0124\)
-4.7 OEF. PUPTOT \(=\quad .01887\)


ILAIMAX \(=5\). RGB8 AT ALPHA \(=-.022^{5}\) DEGREESF WITH CL ANO CD \(=.034100 .005832\)
COC \(=\) NO2B2901, AT ALPUA \(n=-2.3872\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline ALPHS & rl & 50 & \(\mathrm{C}^{\prime}\) & 110 & CN & CNB & CNO & C.NW & DP/Q & CA & CAP & CAF \\
\hline 3.0 & . 04639 & . 91308 & . 09211 & 4.91 & . 08478 & . 04397 & . 00011 & . 01492 & . 00578 & .00970 & . 00926 & . 000043 \\
\hline 7.0 & . 05418 & .71071 & . 000324 & 5.30 & .05450 & . 03764 & .00011 & . 01250 & . 00425 & . 00832 & . 00790 & . 000042 \\
\hline L. & , \(74 \times 24\) & .09781 & -.00192 & 5.45 & -754?7 & . 03174 & . 00011 & +01027 & . 00225 & . 00704 & . 00663 & . 000040 \\
\hline - 5 & . 03978 & . 07678 & -.00? \({ }^{\text {a }}\) & 5.79 & . 03934 & . 07897 & . 00011 & . 00923 & . 00103 & . 00664 & . 00604 & . 00040 \\
\hline \(0 \cdot n\) & -034? & . 90587 & -.00447 & 5.85 & .034 22 & . 02632 & .00011 & . 00825 & -. 00036 & . 00587 & . 00548 & . 00039 \\
\hline 5 & - 2 2ave & .00507 & -.00593 & 5.78 & . 02931 & . 02381 & . 00011 & .00731 & -. 00192 & -00533 & . 00495 & . 00039 \\
\hline \(-1.0\) & . 07436 & . \(\cosh 45\) & -.00754 & 5.84 & . 02428 & .02142 & . 00211 & . 09844 & -.00369 & . 004 BR & - 00444 & .00038 \\
\hline -2.0 & .91428 & . 03360 & -.0112* & 4.20 & .01415 & . 01708 & .00011 & . 00484 & -. 00788 & . 00388 & . 00352 & . 00037 \\
\hline -3.0 & . 00408 & - 902 月9 & -.01572 & \(\cdots\) - 38 & .07384 & . 01.332 & .00011 & . 90347 & -. 01307 & .00310 & .00213 & . 00036 \\
\hline -4.0 & -. 00254 & . 20789 & -. 02105 & -2.26 & -.09672 & . 01018 & . 00011 & . 00234 & -. 01935 & . 00243 & . 00207 & - D0036 \\
\hline \(=5.0\) & -. © 737 & . 90343 & -. 02.731 & -5.06 & -. 01760 & - D076T & . 00011 & .00144 & -. 03688 & .00190 & . 00155 & .00035 \\
\hline
\end{tabular}

\section*{SOATA}

NCASE \(=2\)
GAM \(=0.14 E+C 1\),
TINF \(=2.40\) EF*C?,
aMCH \(=0.12 \mathrm{f}+\mathrm{C2}\).
NAIF \(=1\),
ANGL \(=0.0, \quad C .2 E+01,0.1 E+01,0.5 E+00,0.0,-0.5 E+00,-0.2 F+01\), \(-0.2 E+01,-0.2 E+01,-0.4 E+01,-5.5 E+01+\)
EM \(\quad=0.7 E E+\mathrm{CO}_{\text {\% }}\)
\(F \quad=0.7 E+01\),
REL \(=0.2562 \in E+09\),
\(S \$ B=0.0\),
\(X C G=0 . K \div+90_{4}\)
\(Y C G=0.15 F+C O\);
PBPI \(=0.1 E+01\).
CAFACTR \(=0.1 E+01\),
ANGO \(=-0.11176877154745 E+00\),
XCUT \(=F\)
PBBPDL \(=0.0,0.319 E+01,0.352 E+01,0.371 E+01,0.39 E+01,0.409 E+01\), \(0.427 E+01, \quad 0.462 E+01, \quad 0.49 E E+01,0.524 E+01, \quad D .5 E E+01\).
 \(0.32 \mathrm{~F}+00\), \(0.84 \mathrm{E}+00, \quad 0.109 \mathrm{E}+0 \mathrm{~L} ; \quad 0.135 \mathrm{E}+01\), \(0.149 \mathrm{E}+0 \mathrm{I}\);
```

ALAMLP = 0.918652?1746557E-02,

```
BDYONLY \(=T\),
OEL \(=0.16325224594277 E+00\),
EPS \(=0.26066896920625 E+0 C\)
\(\mathrm{XSE} \quad=0.13098004141169 \mathrm{E}=02\),
send

hypaepo summany
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \[
(L / D)_{\text {MAX }}
\] & \[
\begin{aligned}
& \text { ALPHd } \\
& \text { LIJDMX }
\end{aligned}
\] & \[
Y_{t / D M X}
\] & \[
\mathrm{CO}_{0}
\] & \[
{ }_{0}^{\text {ALPMA }}
\] & \[
\mathrm{r}_{\mathrm{MTN}}
\] & \[
\begin{gathered}
\text { ALPHA } \\
H I N
\end{gathered}
\] & \(\mathrm{CL}_{\mathrm{A}=0}\) \\
\hline 5.8468 & . 022 : & . 03410 & . 00283 & -3.38 & . 0028 & -3.50 & 034 \\
\hline
\end{tabular}

\section*{COMPUTER PROGRAM FOR CALCULATING \(\mathrm{K}_{0}\) AND \(\lambda_{\mathrm{cr}}\)}

The main program requires as inputs values of two parameters describing wing upper surface conditions. These values are an average wing upper surface pressure parameter (PBBPOL) and an average wing upper surface skin-friction parameter (CFDCF01). They are plotted in reference 20 (figs. 4 and 11 of the reference, respectively) as \(\frac{\overline{\overline{\mathrm{P}}}-\mathrm{P}_{0}}{\lambda_{\mathrm{cr}}}\) and \(\frac{\mathrm{C}_{\mathrm{F}, \Delta}}{\mathrm{C}_{\mathrm{F}, 0, \mathrm{cr}}}-1\) for delta wings as functions of \(\lambda_{\mathrm{cr}}\) (a viscous interaction parameter) and \(\mathrm{K}_{0}\left(=-\mathrm{M}_{\infty} \alpha\right)\). This program calculates \(\mathrm{K}_{0}\) for each angle of attack and the value of \(\lambda_{c r}\) for the delta wing corresponding to the power-law wing. As mentioned in the main body of the paper, the correspondence is based on the viscous effects, which are assumed to be approximately equal for wings with equal spans and equal values of \(\iint x^{-1 / 2} \mathrm{dr} d x\). For the power-law wings, this integral involves gamma functions which are approximated analytically in the program.
```

PROGRAM UPPRESSIINDUT=201,OUTPUT=2O1,TADEI=INPUTI A , \
DIMFNSITNN ANGL(111, CAD(11], PO(11), HEADI8), PBBPOLIl1) A ?
NAMELIST /OATA/ REL,F,AMCH,TINF,EM,FTAR,FF,AI,NCASE,NALF,ANGL,XCG, a 3
ISSB,YRG
OATA GAM,TWTT,PTF,ASAV/2.4,.41867,2.65868,0.1
GM1=GAM-1.
GM1I=1./GM1
GM83=GAM*8./3.
GM!2=.5*GM1
GP:4=(GAM+1.)/4.
ZGGT=GAM/GM12
READ 11, HEAD
IF (ENDFILE 1) 9,2
REAO DATA
IF (ANGL.EQ.ASAVI GO TO 7
ASAV =ANGL
DO 5 {=1,NALF
ANG=.0174533*ANGLIII
A 18

```

\section*{APPENDIX－Continued}
```

 IF(C.AO(I)) 4,5.3 A 20
 FOQMAT (///15X,2HFM,9X,1HF,8X,4HMACH,6X,5HCRE/L,7X,11H(LAMROA)CRE/
 1/9X,F1O.4,2F10.2,F12.6,E17.6////6X,FH{NGLF,6X,4H(K1O,7X,4H(P)O.7X,G
 2HLAM=0.,OX,I 3H(P-PO)/LAMBOA,6X,1!H(CFC/CFO)-1/I/F11.2,F11.4, 2F11.C
 31)
 FORMAT (84IO1
 FOPMAT (1H1,5XBAYT) A 68
 END
    ```

GP1KO4＝GP14＊CAO（1）
21
RTGKA＝SQRT \(1 \rightarrow+G P 1 K 04 * * 2)\) A 22
\(P O\{T=1 .+G A M \neq C A O(I) *(G P 1 K 04+R T G K 4) \quad\) A 23
PQBPOL（T）＝TM 8 3＊（RTGK4＋GP1KO4＊（2．＋GP1K94／QTGK4）／／SQRT（PO（I））A 24
GO TO
GM12K＝1．\(+G M 12 * C A O(T)\)
Dつ（T）＝GM1 2K＊＊ZGG1
IF（PO（T）．LT．O．）PO（I）＝0

GO TO 6
\(P 0(I)=1\) ． 31
PRBPOL\｛T：＝GM83 A 32
CONTTNUE \(\quad 33\)
ZM＝？．＊FM A 34
PRTNT 12．HEAD \(\quad\) A5
IF（FM．FO．BSAV）GOTO 8 A 36
ASAV＝FM \(\quad 8 \quad 37\)
EMMI＝EM－I．\(\quad 38\)
EMAI＝ム．＊FM－1．\(\quad\) \＆ 39
EM4019＊．4019＊EM A 40
\(E M X 1=1.5303-E M 4019 \quad A^{\prime} \quad\) A 41
\(E M X 2=.5 /(.9274+E M 4019) \quad\) A 42
\(A T=.9775=.7627 * E M M T /(E M M 1+1.295 * E M 41)\) A 43
\(E M G=G M Y \neq A T * E T A B /\{E M * S Q R T(2 *\) GAM＊EM＊I＊FO））A 44
\(A E D=\triangle T *(F T A B * F / A M C H) * * 2\) A 45
\(A E P X=A F D * E M X 1 /(5 .-2 M)\)
TTBTた1．
（BT）
TWTI＝TWTT＊TTRTT
（2）
SUTHT＝198．5／TINF A 50
CI＝\｛1．＋SUTHTI／\｛THTI＋SUTHI）＊SQRT（TWTY）A 5 I
C． \(3=(1 .+\) SUTHI）／\｛TPTI＋SUTHT）＊SQPT（TPTI）A 52

EM 32X＝5＊2EMス2／EMX1 A 54
G2MRC \(=* 9053 * G M 12 *(A M C H * * 3) * S O R T(C 2 / R E L) \quad\) \＆ 55
CREt．\(=D\) YF＊\((F M X 2+A E P X+F M 32 X) /(1 .+A E P+Z E M 32)\) A 56
ALAMCP＝GZMRT／5QQT（CRELJ A 57
PRINT IO，FM，F，AMCH，COEL，ALAMCR，（ANGLITI，CAOII），POIT），PRRPOLII），I＝A 58
II，NALFI 50
GO TO ！\(\quad 60\)
\(6!\)
\(r\)（ \(r\)（ 6

\(1 / 9 X, F 10.4,2 F 10-2, F 12.6, E 17,6 / / 16 X, F H 1 N G(F, 6 X, 4 H(K) O, 7 X, 4 H(P) 0, ? X, 6\)
3）
63
54
\(5 F\)

11
12

FOPMAT（1H1，5XBA） 9 ）
END
```

IF（CAO（I）） $4,5,3$ A 20

```

Input
A single case consists of calculations for a single configuration over a set of angles of attack．The first card is a heading consisting of any 80 FORTRAN characters．The remaining cards use the same loading subroutine as does the main program；the data block begins with \＄DATA and ends with \(\$\) ．The necessary input variables are TINF， AMCH，NANG，ANGL，EM，F，REL，ETAB，F0，and A1．Of these the first seven are the same as for the main program and the last three are from the similarity solution results．

See figure 3 and table I where \(\mathrm{ETAB}=\eta_{\mathrm{b}}, \quad \mathrm{F} 0=\mathrm{F}_{0}\left(\eta_{\mathrm{b}}\right)\), and \(\mathrm{A} 1=\mathrm{a}_{1}\). The program is set up so that the input cards to the main program may be used with these three variables added. Here is the input for the first sample case given with the main program:
```

POWFR-LAW TRANSPORBITER MACH 1 ? $E M=.7500 \quad F=7.00$ RFY $=4.4$ PFA/M \#\#\#\# PRPRFSS

```

```

 \(E T A B=.87507 \cdot F J=-69 R 06 \cdot A 1=.80732\),
    ```


\section*{Output}

The output for the same case is shown in this section. In it (LAMBDA)CRE \(=\lambda_{\text {cr }}\) and \((K) 0=K_{0}\) are needed for use with reference 20. Also printed are the length ratio of the delta to the power-law wing, CRE/L; the ratio of inviscid surface pressure to free-stream static pressure, P0; and the average pressure parameter for \(\lambda=0\), \(L A M=0\). This latter value is a useful aid sometimes in interpolating values from the figures of reference 20 .


\section*{REFERENCES}
1. Eggers, A. J., Jr.; and Syvertson, Clarence A.: Aircraft Configurations Developing High Lift-Drag Ratios at High Supersonic Speeds. NACA RM A55L05, 1956.
2. Savin, Raymond C.: Approximate Solutions for the Flow About Flat-Top Wing-Body Configurations at High Supersonic Speeds. NACA RM A58F02, 1958.
3. Mandl, Paul: A Theoretical Study of the Inviscid Hypersonic Flow About a Conical Flat-Top Wing-Body Combination. AIAA J., vol. 2, no. 11, Nov. 1964, pp. 1956-1964.
4. Fetterman, David E.; Henderson, Arthur, Jr.; Bertram, Mitchel H.; and Johnston, Patrick J., Jr.: Studies Relating to the Attainment of High Lift-Drag Ratios at Hypersonic Speeds. NASA TN D-2956, 1965.
5. Becker, John V.: Studies of High Lift Drag Ratio Hypersonic Configurations. Proceedings of the Fourth Congress of the International Council of the Aeronautical Sciences, Robert R. Dexter, ed., Spartan Books, Inc., 1965, pp. 877-910.
6. Fetterman, David E.: Favorable Interference Effects on Maximum Lift-Drag Ratios of Half-Cone Delta-Wing Configurations at Mach 6.86. NASA TN D-2942, 1965.
7. Johnston, Patrick J.; Snyder, Curtis D.; and Witcofski, Robert D.: Maximum LiftDrag Ratios of Delta-Wing-Half-Cone Combinations at a Mach Number of 20 in Helium. NASA TN D-2762, 1965.
8. Eggers, A. J., Jr.; Resnikoff, Meyer M.; and Dennis, David H.: Bodies of Revolution Having Minimum Drag at High Supersonic Airspeeds. NACA Rep. 1306, 1957. (Supersedes NACA TN 3666.)
9. Miele, Angelo; and Cole, Julian: Optimum Slender Bodies in Hypersonic Flow With a Variable Friction Coefficient. AIAA J., vol. 1, no. 10, Oct. 1963, pp. 2289-2293.
10. Miele, Angelo: A Study of the Slender Body of Revolution of Minimum Drag Using the Newton Busemann Pressure Coefficient Law. Tech. Rep. No. 62 (Doc. D1-82-0186), Boeing Scientific Res. Lab., Aug. 1962.
11. Peckham, D. H.: Measurements of Pressure Distribution and Shock-Wave Shape on Power-Law Bodies at a Mach Number of 6.85. Tech. Rep. No. 65075, British R.A.E., Apr. 1965.
12. Love, E. S.; Woods, W. C.; Rainey, R. W.; and Ashby, G. C., Jr.: Some Topics in Hypersonic Body Shaping. ALAA Paper No. 69-181, Jan. 1969.
13. Lees, Lester; and Kubota, Toshi: Inviscid Hypersonic Flow Over Blunt-Nosed Slender Bodies. J. Aeron. Sci., vol. 24, no. 3, Mar. 1957, pp. 195-202.
14. Kubota, Toshi: Investigation of Flow Around Simple Bodies in Hypersonic Flow. GALCIT Memo No. 40 (Contract No. DA-04-495-Ord-19), June 25, 1957.
15. Mirels, Harold: Hypersonic Flow Over Slender Bodies Associated With Power-Law Shocks. Vol, 7 of Advances in Applied Mechanics, H. L. Dryden and Th. von Kármán, eds., Academic Press, Inc., 1962.
16. Mirels, Harold: Approximate Analytic Solutions for Hypersonic Flow Over Slender Power Law Bodies. NASA TR R-15, 1959.
17. Lees, Lester: Laminar Heat Transfer Over Blunt-Nosed Bodies at Hypersonic Flight Speeds. Jet Propulsion, vol. 26, no. 4, Apr. 1956, pp. 259-269, 274.
18. Smith, A. M. O.: Rapid Laminar Boundary-Layer Calculations by Piecewise Application of Similar Solutions. J. Aeron. Sci., vol. 23, no. 10, Oct. 1956, pp. 901-912.
19. Cohen, Clarence B.; and Reshotko, Eli: Similar Solutions for the Compressible Laminar Boundary Layer With Heat Transfer and Pressure Gradient. NACA Rep. 1293, 1956. (Supersedes NACA TN 3325.)
20. Bertram, Mitchel H.: Hypersonic Laminar Viscous Interaction Effects on the Aerodynamics of Two-Dimensional Wedge and Triangular Planform Wings. NASA TN D-3523, 1966.
21. Spencer, Bernard, Jr.; and Fox, Charles H., Jr.: Hypersonic Aerodynamic Performance of Minimum-Wave-Drag Bodies. NASA TR R-250, 1966.
22. Hayes, Wallace D.; and Probstein, Ronald F.: Hypersonic Flow Theory. Vol. I Inviscid Flows. Second ed., Academic Press, Inc., 1966.
23. Townsend, James C.: Aerodynamic Interference Effects on Half-Cone Bodies With Thin Wings at Mach 10.03. NASA TN D-5898, 1970.
24. Anon.: U.S. Standard Atmosphere, 1962. NASA, U.S. Air Force, and U.S. Weather Bur., Dec. 1962.
25. McCracken, Daniel D.: A Guide to FORTRAN Programming. John Wiley \& Sons, Inc., c. 1961.

TABLE I.- SOLUTIONS TO THE HYPERSONIC SIMILARITY EQUATIONS FOR POWER-LAW BODIES OF REVOLUTION
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline m & \(\eta_{\mathrm{b}}\) & \(\mathrm{F}_{0}\left(\eta_{\mathrm{b}}\right)\) & \(\mathrm{F}_{1}\left(\eta_{\mathrm{b}}\right)\) & \(\mathrm{J}_{0}\) & \(J_{1}\) & \(\mathrm{a}_{1}\) \\
\hline \multicolumn{7}{|c|}{\(\gamma=7 / 5\)} \\
\hline 1.00000 & 0.91492 & 0.87342 & 0.9179 & 0.07323 & 0.08410 & 0.47546 \\
\hline . 95000 & . 91034 & . 84711 & 1.0591 & . 07589 & . 09551 & . 52709 \\
\hline . 90000 & . 90465 & . 81630 & 1.2306 & . 07909 & . 11044 & . 58604 \\
\hline . 85000 & . 89743 & . 78174 & 1.4386 & . 08303 & . 13067 & . 65291 \\
\hline . 80000 & . 88798 & . 74265 & 1.6887 & . 08799 & . 15918 & . 72741 \\
\hline . 75000 & . 87507 & . 69806 & 1.9811 & . 09444 & . 20098 & . 80732 \\
\hline . 70000 & . 85648 & . 64662 & 2.2986 & . 10318 & . 26459 & . 88631 \\
\hline . 66667 & . 83880 & . 60763 & 2.4964 & . 11098 & . 32565 & . 93216 \\
\hline . 63333 & . 81391 & . 56403 & 2.6392 & . 12129 & . 40794 & . 96566 \\
\hline . 60000 & . 77647 & . 51478 & 2.6593 & . 13564 & . 51763 & . 98034 \\
\hline . 55000 & . 66414 & . 42678 & 2.2510 & . 17318 & . 74598 & . 96791 \\
\hline . 53000 & . 56901 & . 38500 & 1.8876 & . 20119 & . 86687 & . 96377 \\
\hline . 51000 & . 37221 & . 33757 & 1.4110 & . 25443 & 1.04110 & . 97539 \\
\hline . 50500 & . 27299 & . 32450 & 1.2766 & . 28069 & 1.11845 & . 98249 \\
\hline . 50000 & . 00000 & . 31077 & 1.1366 & . 35808 & 1.36841 & . 99182 \\
\hline \multicolumn{7}{|c|}{\(\gamma=5 / 3\)} \\
\hline 1.00000 & 0.87041 & 0.81065 & 0.7836 & 0.10244 & 0.10987 & 0.46531 \\
\hline . 95000 & . 86429 & . 78363 & . 9017 & . 10532 & . 12597 & . 51356 \\
\hline . 90000 & . 85679 & . 75282 & 1.0433 & . 10872 & . 14660 & . 56788 \\
\hline . 85000 & . 84740 & . 71823 & 1.2122 & . 11283 & . 17364 & . 62833 \\
\hline . 80000 & . 83532 & . 67912 & 1.4108 & . 11787 & . 20994 & . 69402 \\
\hline . 75000 & . 81919 & . 63448 & 1.6356 & . 12422 & . 25974 & . 76228 \\
\hline . 70000 & . 79658 & . 58296 & 1.8685 & . 13248 & . 32919 & . 82727 \\
\hline . 66667 & . 77569 & . 54389 & 2.0053 & . 13956 & . 39031 & . 86398 \\
\hline . 63333 & . 74719 & . 50016 & 2.0956 & . 14850 & . 46626 & . 89116 \\
\hline . 60000 & . 70595 & . 45067 & 2.0942 & . 16025 & . 55904 & . 90627 \\
\hline . 55000 & . 59076 & . 36177 & 1.7872 & . 18792 & . 73266 & . 91473 \\
\hline . 53000 & . 49985 & . 31912 & 1.5217 & . 20647 & . 81845 & . 92427 \\
\hline . 51000 & . 32217 & . 26988 & 1.1590 & . 23916 & . 93877 & . 94825 \\
\hline . 50500 & . 23542 & . 25600 & 1.0506 & . 25495 & . 99164 & . 95764 \\
\hline . 50000 & . 00000 & . 24113 & . 9315 & . 30378 & 1.16431 & . 96872 \\
\hline
\end{tabular}

(a) General power-law, wing-body configuration.

(b) Body of revolution in nondimensional coordinates.

Figure 1.- Configuration studied, showing relation between physical and nondimensional coordinates.


Figure 2.- Graph of the relation \(\epsilon_{1}=1 /\left(M_{\infty} \delta\right)^{2}\) for several Mach numbers and showing the values of \(\delta\) and \(\epsilon_{1}\) for various sets of experimental data.


Figure 3.- Variation of similarity solution parameters with power-law exponent \(m\).


Figure 4.- Effective body for estimating aerodynamic characteristics at angle of attack (shown for \(f=6, \quad m=2 / 3\) ).


Figure 5.- Comparisons of theoretical drag coefficient at zero angle of attack with experiment for power-law bodies of revolution. The theory is shown for the larger Reynolds number in each case.


Figure 6.- Comparison of theoretical normal and axial forces with experiment for wing-conical-body configurations ( \(\mathrm{m}=1\) ) at Mach 10.03.


Figure 7.- Comparison of theoretical drag polar, lift-drag ratio, and pitching-moment curves with experiment for wing-conical-body configurations ( \(\mathrm{m}=1\) ) at Mach 10.03.

(a) Drag polars and pitching moment at Mach 6.86 in air.

(b) Maximum lift-drag ratio at Mach 19.9 in helium.

Figure 8.- Comparisons of calculated performance of half-cone bodies having shock-shape-matching wings with experimental data for the same bodies having delta-planform wings.

(a) Variation with \(m\) for \(f=5\).

Figure 9.- Comparison of calculated aerodynamic characteristics for Mach 12 flight at an altitude of 30 km . Volume \(=2500 \mathrm{~m}^{3}\); moment reference center at \(\overline{\mathrm{x}}=0.6 \bar{i}, \quad \overline{\mathrm{y}}=0.15 \overline{\mathrm{r}}_{\mathrm{b}, \mathrm{B}}\).

(b) Variation with \(f\) for \(\mathrm{m}=0.75\).

Figure 9.- Continued.

(c) Comparison of three configurations with Mach 6 designs for the same body shapes.

Figure 9.- Concluded.


Figure 10.- Summary of theoretical aerodynamic characteristics for configurations of volume \(2500 \mathrm{~m}^{3}\) at Mach 6 and 12 and at an altitude of 30 km .```


[^0]:    *For sale by the National Technical Information Service, Springfield, Virginia 22151

[^1]:    (

