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Abstract

4 c We define a class of detection-estimation problems on matrix Lie groups
O in which the observation noise is multiplicative in nature. By examining

0 rj the differential versions of the hypotheses, which are bilinear in
0 "nature, we are able to derive the relevant likelihood ratio formula
U and the associated optimal estimation equations for the signal given

P Pn the observations and the assumption that the signal is present. These
H estimation equations are of interest in their own right, in that they

z represent a finite dimensional optimal solution to a nonlinear esti-
mation problem and can be viewed as consisting of a Kalman-Bucy filter

0 U o along with the on-line computation of the solution of the associated
EHH Riccati equation, which is driven by the observations. The usefulness

44 of these results is illustrated via an example concerning the detection
H H 0 of an actuator failure in a rigid body rotational control system.
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I. Introduction

Kailath [1],[2] and Duncan [3] have derived rather general

likelihood ratio equations for the detection of signals in additive

noise. These equations explicitly involve the optimal least squares

estimate of the signal given the observations and the assumption that

the signal is present. In general, the optimal signal estimation

equations are infinite dimensional in nature, and thus the practical

implementations of the estimation-detection equations in the general

case necessarily involves suboptimal, finite-dimensional approximations.

Thus it is of interest to find classes of signal and observation

processes for which the optimal systems can be realized by finite-

dimensional sets of equations. Of course the best known example of

this type is the class of signals generated by linear systems driven

by white noise and the class of observations that are linear in the

signal and involve additive observation noise only. In this case, the

optimal signal estimate is generated by a Kalman-Bucy linear filter

[4],[5], and the detection equations can be implemented quite easily.

Recently, there have been several papers [6]-[14] that point

out that estimation problems for certain ( right- or left-invariant)

bilinear observation processes can also be handled rather nicely. In

this case, the tools of Lie theory [15]-[17] are of value in deriving

equations for the optimal estimation system, which consists of a non-

linear preprocessor followed by a linear filter. The extension of

these bilinear estimation results to the detection problem was carried

out by Lo (13], who obtained finite dimensional estimation-detection

results for certain right-invariant bilinear observation,.processes.
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In this paper, we consider a somewhat different class of esti-

mation-detection problems. As in Lo's case [13], our observation and

signal processes evolve on certain matrix Lie groups, but in our case

the observation noise enters multiplicatively. Such a model was first

considered in [10] and [12] in relation to the estimation of the angular

velocity of a rigid body. By considering the differential form of the

observations, we are led to bilinear equations that differ from those

of Lo [13] and those considered in [6]-[9] in a most significant way --

our equations are neither left-nor right-invariant (unless the under-

lying Lie group is abelian, in which case our results are essentially

the same as Lo's). In this case, we cannot use the same trick that

was so successful in [6]-[9], [11], and [13], but motivated by the

results in [10],[12], we are able to obtain nonlinear finite dimensional

optimal estimation-detection equations that are most interesting in

that they include a Kalman-Bucy filter whose gain must be computed

on-line, using the incoming values of the observation process in the

integration of the associated Riccati equation.

In the next section we define several classes of processes on

Lie groups, introduce our observation model, and compare it to the

right-invariant bilinear model used in [6]-[9],[11], and [13], Section

III contains the derivation of the likelihood ratio for signal detection

in multiplicative noise, and we also display the optimal nonlinear

signal estimation equations. Several examples are included in Section

IV. These include a problem formulation that may prove to be of value

in detecting actuator and sensor failures in rigid body - inertial

guidance systems.
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II. Signal and Observation Processes on Matrix Lie Groups

As in [6]-[14], the basis for our generating random processes

on matrix Lie groups is an injection procedure from the Lie algebra

associated with the Lie group into the Lie group. This type of

operation was first introduced by McKean [18],[19] and later extended

by Willsky and Lo [6]-[14]. Let G be an n-dimensional matrix Lie group

of N x N matrices with associated matrix Lie algebra L (for the rele-

vant properties of matrix Lie groups, see [14]-[17]). Let A1,A1,...,An

be a basis for L. Suppose we have an n-dimensional stochastic process

x satisfying

dx(t) = f(x(t),t)dt + G(x(t),t)dw(t); x(O) given (1)

where w is an m-dimensional Brownian motion process, independent of

x(O), with

E[dw(t)dw'(t)] = Q(t)dt (2)

Following [6],[13],[18]-[19], we inject x into G via the "product

integral" in one of two ways:

Xl(t) = n exp Aidx (s) (3)
s<t i=1

n
X2(t) ) exp I Aix (s)dsl (4)

s<t i 1

For the definition of the product integral and a discussion of

the existence and properties of X1 and X2, see [131,[14],[19]. We only

note that X1 and X2 satisfy the stochastic differential equations
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n n n
dX1 (t) = A.dx.(t) + I [G(x(t),t)Q(t)G'(x(t),t)]j AA dt} xl(t)

i=l i=1 j=l
(5)

n

dX2 (t) = [Ax (t)dt X2 (t) (6)

(here x. is the ith element of the vector x and D.. denotes the ijth
1

element of the matrix D). In (5) and (6) we see the inherently bilinear

nature of these equations. In fact, they define right-invariant bilinear

systems. By reversing the order of the products in the discrete approx-

imation to the product integral, we obtain left-invariant bilinear sy-

stems (e.g. dX2(t) = X2 (t) A.x (t)dt ).

As discussed in [10],[11],[14] and proven in [13], if we

assume that x(0) is known, the processes x, X1, and X2 are (almost

surely) causally equivalent -- i.e. knowledge of x = {x(s) 0 < s < t}

t t
is equivalent to knowledge of X1 or X2t . Intuitively, this is clear,

since we can write (X1,X 2 E G almost surely, which implies they are

invertible a.s.)

n n n
Aidx (t) = [dX(t) 1  (t) - [G(x(t),t)Q(t)G'(x(t)t)] 3  jdt

i=1 i=l j=l
(7)

Aixi (t)dt = dX2 (t) ]X 2  (8)
i-1

we can recover x from X1 (assuming we can solve (7)) or X2 because of

the linear independence of the Ai (see [10], [13] for the details).
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Thus we have the equivalence of the vector space process x and the Lie

group processes X1 and X2 in that, given any of them we 
can construct

the others, although the functional relationships among X1,X2 and x

are, in general, quite complex (see [10],[14]).

We include the above general formulation to indicate the extent

of the relationship between Lie group and vector space (Lie algebra)

processes. For some further comments on and results for the general

formulation, we refer the reader to [6],[13], and [14].

The value of the bijectivity of the algebra-to-group injection

procedure is great, especially for the special class of linear-bilinear

processes -- a setting in which we can solve detection and some 
esti-

mation problems. In order to indicate this value, we will review a

linear-bilinear problem formulation considered by Lo [13] (see also

[6]-[12]). The extension of these techniques to the nonlinear case will

be clear, although the general problem does not lead to finite dimen-

sional solutions.

Let x be a k-dimensional process satisfying

dx(t) = F(t)x(t)dt + G(t)dw(t) (9)

where w is an m-dimensional Brownian motion independent of the normally

distributed initial condition with

E[x(O)] = 0 E[x(O)x(0)'] = P0  (10)

E[w(t)] = 0 E[dw(t)dw'(t)] = Q(t)dt (11)

Let C(t) be an n x k matrix of continuous functions. We now write down

a pair of hypotheses on the Lie Group G:
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H1G: Z(t) = n exp iA. [C(t)x(t)dt + dv(t) i  (12)
1- s<t i=

n

HOG: Z(t) = n exp { A dvi(t) (13)

s<t i=1

where v is an n-dimensional Brownian motion, independent of w and x(O),

with

E[v(t)] = 0 E[dv(t)dv'(t)] = R(t)dt (14)

R(t) > 0 (15)

or, in differential form,

n n n

H1G: dZ(t) = A i [C(t)x(t)dt + dv(t)]i + I Rij(t)A A dt Z(t)

i=l j=l (16)

n n n
H OG: dZ(t) = A.dv i (t) + I Rij (t)AiAjdt Z(t) (17)

i= 1 i=l j=l

Using the bijective property relating processes on the Lie alge-

bra and the Lie group, we have the completely equivalent hypothese on

the Lie algebra L:

HIL: dz(t) = C(t)x(t)dt + dv(t) (18)

HOL: dz(t) = dv(t) (19)

Note that if we identify the pair of hypotheses HIG and H1L and the

pair HOG and HOL, we have

n
z(t) = n exp , Aidz(t) (20)

s<t i=l
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For the Lie algebra problem, we have the standard linear-Gaussian

estimation-detection result. That is, let [0, T] be the time

interval of interest and let C be the space of n-dimensional continuous

functions on [O0, T] that are zero at t = 0. Also, let B5 be the Borel

field on C under the uniform topology and let Vl and p0 be the measures

induced by y on (C,,B8) under H1L and HOL, respectively. We then

have [1]-[3] that the likelihood ratio for signal detection is

LR = (z) = exp - '(t t)C' (t)R-1 (t)C(t)R(tIt)dt

0

-1+f X (t t)C' (t) R (t)dz (t) (21)

0

where f denotes the Ito integral and

X(tlt) = E[x(t)Iz t ,H1L ]  (22)

This is computed by the following Kalman-Bucy filter [4],[5]:

dj(tlt) = F(t)"(tit)dt + P(t)C'(t)R-l(t)[dz(t) - C(t)2x(tlt)dt]

(23)

P(t) = F(t)P(t) + P(t)F'(t) - P(t)C'(t)R (t)C(t)P(t) + G(t)Q(t)G'(t)
(24)

P(0) = P0  (25)

Using the bijectivity of the injection procedure, we would expect the

following, which is in fact proven in [13]: let Cg be the family of

continuous matrix-valued functions on [O0,T] with values in G that are

equal to I at 0, and let 8g be the Borel field on Cg under the uniform
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topology. Denoting by V and v0 the measures induced on (C ,Bg ) by

the process Z under the hypotheses HIG and HOG, respectively, we have

the following representation of the likelihood ratio

LR = () = exp - x' (tlt)C' (t)R -l(t)C(t)x(tlt)dt
o 2f00

T
+ x' (tlt)C'(t)R (t)dz(t) (26)

0

where

x(tlt) = E[x(t)IZt H1G] = 2(tt) a.s. (27)

Here x(t t) is computed as follows:

dx(tlt) = F(t)x(tlt)dt + P(t)C' (t)R-l (t) [dz(t) - C(t)x(tlt)dt] (28)

where P is given by (26),(27) and we recover dz from Z and dZ from

n n n
A.dz (t) = [dZ(t)]z-l (t) - Rij..(t)AiAjdt (29)

i=l i=1 j=i=l j=l

Since AO,...,An_1 form a basis for L, we can write

n
B BiAi V BE L, Bi  TR (30)

i1

(see [13] for details) and thus

dz'(t) ,=( A idzi(t) ,..., A dz(t) (31)
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Thus, for this problem, the optimal estimation-detection system

consists of a nonlinear preprocessor to recover dz from Z and 
dZ, followed

by a Kalman-Bucy linear filter to compute x(tjt). This is followed by

a system that takes (tit) and dz(t) as inputs and computes the LR from

(21) or (26). Note that as mentioned earlier, it is crucial in the

above development that dZ have the right-invariant representation (16)

or (17). In fact, it is precisely this point that leads to the design

of the nonlinear preprocessor followed by a linear filter with pre-

computable gains. We note that assuming that X(0) # 0 or that the Lie

algebra hypotheses are

H1L: dz(t) = f(t)dt + C(t)x(t)dt + dv(t) (32)

HOL: dz(t) = f(t)dt + dv(t) 
(33)

where f is a deterministic term, causes no difficulty in the above

analysis nor in the analysis described in the rest of the paper. 
Such

a term can be thought of as a "carrier frequency" (see [6],[8]).

As discussed in [101 and [12], there are several physically im-

portant problems, including some inertial navigation and 
optical com-

munication applications, in which the observation noise process is

inherently multiplicative in nature. Based on this physical motivation

and the results in [10] and [12], in the next section we formulate a

multiplicative noise detection problem. As we shall see, this develop-

ment will lead to bilinear equations that are neither right- nor left-

invariant and for which the optimal detection-estimation system takes

a rather striking form. The techniques introduced here are potentially

useful in such problems as sensor, actuator, and plant failure
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detection in linear and bilinear systems (which will be discussed in

subsequent papers; see also Example 1 in Section IV).

Let x,v, and C be as before, and let

y(t) = C(t)x(t) (34)

We inject y into G via the usual product integral

n
Y(t) = 0 exp Aiy i (s)ds (35)

s<t i=I

n n

dY(t) A Yi (t)dtI Y(t) = Ai (C(t)x(t)) dt Y(t) (36)

We also inject v into G via a second product integral

V(t) = H exp A dvi(s) (37)
s<t i=l

which is to be interpreted as corresponding to the left-invariant

bilinear stochastic equation

n n n
dv(t) V(t)V A dv (t) + I R (t)A A dt (38)

il1 i=l j=l

We note that (37) corresponds to reversing the order of the products in

the limiting expression for the product integral (see [10],[12]).

In the next section we will consider a detection problem in-

volving an observation process of the form

M(t) = Y(t)V(t) (39)

Here Y is the signal process and V should be interpreted as observation
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noise. For physical motivation for the models (38) and (39) , see [10],

ri1 MThe A4fferevt,-il fo-rm of (39) is

n n

dM(t) = A A[C(t)x(t) dt M(t) + M(t) A.dv (t)

n n
+ I R.. (t)AiA dt]

i=1 j=1 (40)

This is neither left-nor right-invariant (in fact, it is the sum of a

left-invariant and a right-invariant term), and thus, we cannot use the

same nonlinear preprocessing trick that was successful in the previous

problem in reducing the problem to a linear-Gaussian one. That is, in

-1
general, when we multiply through in (33) by M (t), the right-hand

side is not independent of M, so we cannot obtain the filter form of

nonlinear preprocessor followed by a linear filter with precomputed

gains. As we shall see in the next section, the optimum filter-detector

is highly nonlinear in nature and possesses a rather distinctive form.

In closing this section, we note that the observation process

(40) is of the same form as that in (12) if the underlying Lie group

G is abelian [15]. In this case, elements of L and G commute, which

implies that right- and left-invariant bilinear systems are the same.

Thus, our results will reduce to those of Lo [131 and Willsky and Lo

[6]-[8] in the abelian case.
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III. Estimation-Detection with Multiplicative Observation Noise

Let Y and V be given by (35)-(38). We define two hypotheses on G

HIG: M(t) = Y(t)V(t) (41)

HOG: M(t) V(t) (42)

or, in differential form,

n n n n

H 1G:dM(t) A iY (t)dt] M(t) + M(t) Aidvi (t) + R(t)AA dt
i=1 i=1 i=1 j=1

(43)

n n n
H G:dM(t) = M(t) i A.dv.(t) + I I R..(t)A.A.dt (44)

i=1 i=1 j=1

The problem is to determine the likelihood ratio for these two hypotheses

and to display the associated filtering equations that arise.

As in the right-invariant case discussed in the preceding section,

we will find it useful..to transform the hypotheses (41),(43) and (42),

(44) into completely equivalent hypotheses on the Lie algebra via a

particular bijective mapping. We do this as follows: multiply both

-1
sides of (43) and (44) on the left by M (t) (which exists w.p. 1).

Recall [15],[16].that if L is the matrix Lie algebra associated with the

matrix Lie group G, then

-l
X-1A X L V A E L V X E G (45)

Thus, we have the hypotheses on the Lie algebra L (almost surely):
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n n
H 1L: M (t)[dM(t)] - R..(t)A.A.dt

i=l j=l

-1 m i
= M(t) Ay(t)dt M(t) + A.dv.(t) (46)

i= j 1=

n n n
HOL: M (t)[dM(t)] - I R..i(t)A.A.dt = A.dv .(t) (47)

i=l j=l i=l

which are easily seen to be completely equivalent to HIG and HOG'

respectively, since the mapping from Mt to Zt , where Z is defined by

n n
dZ(t) = M (t) [dM(t)] - I I R ij(t)A.A.dt (48)

i=1 j=1

is seen to be a bijection of the same general type as that used in

[13].

To simplify the hypotheses (46),(47), we coordinatize Z using the

basis A ,...,A n . That is, if we write

n
E(t) = Aiz (t) (49)

i=l

our Lie algebra hypotheses become

H1L: dz(t) = H(M(t),t)x(t)dt + dv(t) (50)

HOL: dz(t) = dv(t) (51)

where H(M(t),t) is an n x k matrix that depends on M(t) (it is clear

that the right-hand side of (46) is linear in x(t), since y(t) = C(t)x(t)).

This matrix can be computed as follows: write

n
-1 nM (t)AiM(t) = 7. (M(t))A. (52)

J=l '3
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Then

[ n 1 n n

Ml(t) A (t) M(t) = ij(M(t))A y (t)
i=l i=l j=1

n n
X 7 (M(t))y.(t)M A.
j=l i=l

n

= [H(M(t),t)x(t)].A. (53)
j=l

where

H(M(t),t) = r'(M(t))C(t) (54)

and the ijth element of r is Yij. Note that if G is abelian,

-1
M (t)A.M(t) = A. Vi (55)

which implies that r = I and H = C, and thus, as discussed at the end

of the preceding section, our hypotheses (50),(51) reduce to the right-

invariant hypotheses (18),(19). However, in the general case H depends

on M(t). We refer the reader to [13] for a mechanization of a procedure

for finding the coordinate functions Y... The procedure involves simple

linear algebra and is easy to mechanize, and thus for our purposes, we

assume that we have two black boxes that can take dZ(t) and M(t) as

their respective inputs and produce as outputs dz and H(M(t),t), re-

spectively (see the examples in the next section in which we explicitly

display the details of these black boxes in several specific cases).

By the bijectivity-equivalence arguments discussed earlier, our

detection problem now reduces to considering the two hypotheses (50),
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(51) with the knowledge that z and M are causally equivalent (this

is true because Zt and Mt are, and z is simply a particular coordinati-

zation of Z). Thus, at time t, M(t) and therefore H(M(t),t) are

conditionally known. Intuitively, we then see that (50) represents a

"conditionally" linear observation process. Thus one would expect the

optimal filter for x(t) given z to be a Kalman-Bucy filter with the

optimal gains and associated covariance computed on line using incoming

values of M or zi In addition, it would then be natural to expect the

likelihood ratio to have a form very similar to the ones in the previous

section but again incorporating incoming values of M or z.

These intuitive ideas are, in fact, correct, and a discussion

of how this result follows from several results in the literature is

presented in the appendix. Using the equations in the appendix and

noting that, since M(t) is a deterministic function of zt, we have

- t
H(M(t),t) = H(z ,t), we can derive the optimal estimation-detection

system depicted in Figure 1. The incoming observation dM(t) is inte-

grated, and the value of M(t), along with the known values of C(t) and

R(t) are used to compute H(M(t),t) and dz(t) as described earlier. The

conditional density for x(t) given zt is the normal density N(x;X(tlt),

P(tlt)) where both the conditional mean R(tt) and the conditional

covariance P(tlt) are computed on-line using incoming values of M and

z in the integration of the equations:

dxi(tlt) = F(t)x(tlt)dt + K(tlt)[dz(t) - H(M(t),t)2(t t)dt ]  (56)

(olo0) = 0 (57)

P(tlt) = F(t)P(tlt) + P(tlt)F'(t) + G(t)Q(t)G'(t) - K(tlt)R(t)K'(tlt)

(58)



INVERSE

dM(t) () M-l(t)dM(t)dZ COORDINATIZATION dx= F^dt+ K [dz - Hxdt

C Rij(t)AiAidt
i= 1 j= 1

a(t/t) LR(t/t)

S1 Illm Eimation-D ction System for Mutilicative Observation Noise

Fig. 1: Illustrating the Optimal Estimation-Detection System for Multiplicative Observation Noise
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P(010) = P0  (59)

K(tlt) = P(tlt)H'(M(t),t)R (t) (60)

The likelihood ratio LR(tlt) for hypothesis H1 over Ho, given observations

up to time t, is then given by

t
LR(tlt) = exp f- J '(sls)H'(M(s),s)R1 (s)H(M(s),s)R(sls)ds

0

+ f R'(ss)H'(M(s),s)R 1 (s)dz(s) (61)

0

(here(H1 ,H0 ) can be thought of as either (HlG,HOG) or (HiLHOL), since

they are equivalent).

The optimal estimation-detection system is quite distinctive in

form, as it should be viewed as an optimal linear estimation system,

augmented by the on-line integration of the nonlinear Riccati equation

using the incoming values of the observations, followed by a likelihood

ratio evaluation that again is identical in form to the usual linear-

Gaussian one, but that also incorporates new values of the observations

into the gains. It should also be noted that a simple example of a

discrete time system for which the optimal filter has this type of form

was reported by Istr8m [20, p. 236].

We note that as in (1], by using the chain rule one can readily

extend these likelihood ratio results to problems such as detection in

colored as well as white noise. For instance, we can consider the case

in which Y(t) may be generated in one of two hypothesized ways:
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H0: dY(t) = A [Cl(t)x(t)] idt) Y(t) (62)
1=1

with x a k -vector satisfying

dx(t) = Fl(t)x(t)dt + G (t)dw(t) (63)

where F1 ,G1 , and C1 are given matrix functions of appropriate 
dimensions.

The second hypothesis is

n

H1 : dY(t) = ( Ai[C2 (t)(t)idt) Y(t) (64)
i=1

with E a k2-vector satisfying

dE(t) = F2 (t) (t)dt + G2(t)dw(t) (65)

where F2,G 2 , and C2 are also given matrix functions.

In this case the likelihood ratio for H1 and H0 given the obser-

vation process

M(t) = Y(t)V(t) (66)

is obtained as the ratio of the LR for H1 and H2 and the LR for H0

and H2, where H2 is the hypothesis

H2: Y(t) - I (67)

Thus, it is easy to see that the system that computes the desired LR

consists of two linear filters with on-line gain computations -- i.e.

one filter estimating x assuming H0 holds and one estimating E assuming

H1



-19-

It is clear that there are a number of variations on this theme--

e.g. we can hypothesize different V processes, etc. Thus, we see that

the techniques developed in this section are potentially useful in

identifying the underlying dynamics of the system under consideration

and in detecting abrupt changes in the dynamics. Example 1 in the next

section is a simplified version of a very important practical problem,

and it indicates how our results may be applied.

We now make a few comments on optimal Lie group estimation. The

likelihood ratio formula (61) explicitly uses only the optimal (least

squares, maximum likelihood, etc.) estimate of the vector-valued quantity

x(t). Referring to the definitions of y (34) and Y (35),(36), we see

that we can directly compute the optimal estimate of y(t):

9(tlt) = C(t) (tlt) (68)

By identifying TRn with L via

n
u t - Aiu. (69)

we see that we are essentially computing optimal estimates of processes,

such as y, on the Lie algebra. What about the estimation of a Lie

group-valued process such as Y? This is, in general, a very difficult

(in fact, unsolved) problem, since there is no simple relationship

between Yt and yt. In fact, the optimal estimate of Y(t) would seem

in general to require smoothing our estimates of the entire trajectory

y t, and even having this it is not clear what to do! These difficulties

do not arise in the abelian case, which is studied in [6]-[9] and [14],
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and explicit solutions can be found in other special cases. 
A first

result is reported in [10] and [11], and further results will be pre-

sented in later papers.

Finally, in closing this section, we make a few comments about

a slight generalization of the results of this section. So far we

have assumed that A ,...,A n form a basis for L. Suppose instead we

simply assume that A1,... An  are linearly independent and generate L,

which we assume is p(>n)-dimensional. Find An+l... ,Ap so that

A1...,A p form a basis for L. In this case, we must replace the

coordinitization in (49) by

p

Z(t) = A.z. (t) (70)

i=1

and the Lie algebra hypotheses (50),(51) become

H1L: dz(t) = H(M(t),t)x(t)dt + S(t)dv(t) (71)

HOL: dz(t) = S(t)dv(t) (72)

where H(M(t),t) is now a p x k matrix (computed in precisely the same

fashion) and S(t) is the p x n matrix given by

S(t) (73)
0P n

+n-+ rlp-nrr+

In this case (71),(72) include several perfect observations, and the
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optimal estimation system becomes an observer-estimator 
[25],[26]. Thus,

there are no conceptual difficulties introduced by this generalization.

IV. Examples

In this section we will present two examples illustrating the

techniques developed in the preceding section.

Example 1: Consider the Lie group S0(3), consisting of all 3 x 3

orthogonal matrices with positive determinat. Such a matrix can be

thought of as representing the orientation of a rigid body in TR 3 --

i.e. it is a "direction cosine" matrix [27] representing the orienta-

tion of an object with respect to a(possibly inertial) reference frame.

The Lie algebra so(3) associated with S0(3) has the basis

Al = 0 - A2 
=  0 0 0 A3 =  1 0 0 (74)

0 1 0 -1 0 0 0 0 0

Note that S0(3) is nonabelian. For further discussions of the properties

and physical significance of S0(3), we refer the reader to [10],[12], [14],

[27]-[29].

We now suppose that we have a stochastic process x in TR3 that

is given by one of the two hypotheses

HO: dx(t) = f(t)dt + dw(t) (75)

Hl: dx(t) = Edt + f(t)dt + dw(t) (76)

where f(t) is a deterministic 3-dimensional time function, and E is a

random (constant) vector with normal distribution

E() = 0 E(r') = P (77)
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Also, x(0) is a normally distributed random vector, independent of S,

with

E[x(O)] = 0 E[x(0)x'(0)] = P0  (78)

and w is a three-dimensional Brownian motion process, independent of

5 and x(O), with

E[w(t)] = 0 E[w(t)w'(t)] = Q(t)dt (79)

The x process is injected into S0(3) via the equation

dX(t) = [ A.ixi(t)dtj X(t) (80)

If we think of X as the direction cosine matrix of a rigid body, x

has the physical interpretation of being an angular velocity vector,

representing the angular velocity of the rigid body with respect to

a reference frame (the coordinatization of these quantities depends upon

the particular application; see [27] for details). In this case we can

interpret physically the two hypotheses: the term f(t) represents known

torques that we apply to the body and the Brownian motion term repre-

sents random disturbances. The random term 5 represents a possible

actuator failure in the control system of the craft -- e.g. a jammed

reactor jet on a spacecraft or a failed control surface on an aircraft.

Thus, the problem of distinguishing between these hypotheses can be

viewed as a failure detection problem.

Before discussing the relevant observation process and associated

detection system, we comment on the above dynamical model. Note that

the angular velocity equations we have postulated are simpler than the
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usual nonlinear Euler equations [27]. Equations (75) and (76) or

somewhat more complicated linear equations can be viewed as reasonable

approximations if: (1) the rigid body is "nearly" spherically sym-

metric; or (2) we linearize Euler's equations about a nominal (which

might be included in the f(t) term); or (3) we make Q(t) large enough

so that the nonlinear effects can be viewed as process noise. Also,

there is no difficulty in considering more general linear dynamics --

e.g. if we linearize about a nominal, or if E is taken to be time-

varying.

We now describe the observation process of interest to us. We

assume that X represents the relative orientation of the body with

respect to inertial space, and we suppose that the rigid body is

equipped with an inertial platform that is to be kept fixed in inertial

space (see [27] for a detailed discussion). Because of drifts in the

gyroscopes used to sense rotation of the rigid body, the platform

drifts relative to inertial space. As discussed in [12] and [14], a

possible model for this drift is to take V(t), the orientation of

inertial space with respect to the platform, to be a left-invariant

Brownian motion

3 3
dV(t) = V(t) i Aidvi(t) + 1 i, R (t) A  d t  (81)

1-1 ij=1

where v is a 3-dimensional Brownian motion, independent of x(O), §,

and w, with

E[v(t)] m 0 E[v(t)v'(t)] = R(t)dt (82)

R(t) > 0 (83)
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Our observation process in the orientation M(t) of the rigid body with

respect to the platform, which can be determined by reading off gimbal

angles and is given by

M(t) = X(t)V(t) (84)

As discussed in the preceding section, the incremental change in M(t)

is given by

dM(t) = Aix (t)} M(t)dt

1 1 2 13 iAji= ij=1

(see [12],[14], and [27] for a discussion of how one obtains pulse-like

or incremental information in such systems).

Performing the type of transformation used in the previous section

-i
(note that M (t) = M' (t) a.s.), we have

dZ(t) = M'(t)(t)dM(t) - (t)A A dt
2 1 , i j= 1

3 3
= M'(t) C A.x.(t)M(t)dt + C A.dv.(t) (86)

i=L1 i=li

Also, we obtain the following expression for z(t), the TR 3-coordinati-

zation of Z, and its differential:

z'(t) = [Z3 2 (t), Z1 3 (t), Z2 1 (t)] (87)

dz(t) = H(M(t))x(t)dt + dv(t) (88)

where
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M22M33-M 23M32 M13M32-M12M33 M12M23-M13M22

H(M) = M23M31-M21M33 M11M33-M13M31 M13M21-M11M23

M21M32-M22M31 M12M31-M11M32 M11M22-M12M21

Having these expressions, we have the following equation for the like-

lihood ratio for the two hypotheses:

t
exp{- 1'(s s)H'(M(s))R-(s)H(M(s))21(s )ds

LR(tlt) = --

exp- f x0 '(sjs)H'(M(s))R-I(s)H(M(s))x 0 (SIs)ds

0

+ f X1 '(sls)H'(M(s))R- (s)dz(s)

0 (90)

t -1
+ ±X0'(ss)H'(M(s))R (s)dz(s)

0

where A 1 (tIt) is the conditional mean of x(t) given z t , assuming H1

holds, while to compute X0(t t), we assume H0 holds. The stochastic

differential equations for these quantities are

d0 (tlt) - f(t)dt + K (tlt)[dz(t) - H(M(t))90(tlt)dt] (91)

P0(tlt) - Q(t) - K (tlt)R(t)KO (tlt) (92)

-1

K0(tit )  0 P0(t t)H'(M(t))Rl(t) (93)

-dt + K 1(tit)[dz(t) - H(M(t))x0(tlt)dt]
[d(tjt) I0 (94)
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Pl(tlt) = fPl(tt) + Pl(tlt)P' (t) + Q(t) + Kl(tl t)R(t)K ' (tt)

(95)

Kl(tlt) = Pl(tt)H(M(t))R-1(t) (96)

Here P1 is a 6 x 6 matrix, and

= = = [H 0] (97)
0 0 0 0

We also note that sensor failure detection can be considered

by hypothesizing several different forms for V.

Example 2: Consider GL(2,lR), the group of 2 x 2 invertible matrices.

Its Lie algebra consists of all 2 x 2 matrices and has the basis

A 1  , A2 = , A 0 0 , A4 =

S 0 0 0 1 0 0 1

(98)

Let x be the k-dimensional process satisfying

dx(t) = F(t)x(t)dt + G(t)dw(t) (99)

and let y be the 4-dimensional process

y(t) = C(t)x(t) (100)

We also take v to be a 4-dimensional Brownian motion independent of w with

E(dv(t)dv'(t)) = Idt (101)

We inject y and v into GL(2,TR) via

dY(t) ii(t) Y(t)dt (102)
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4
dV(t) = V(t) A dv (t) + (A +A4)dt] (103)

and define the two hypotheses

H1: M(t) = Y(t)V(t) (104)

H0: M(t) = V(t) (105)

As discussed in Section III, we can define Z via

dZ(t) = M- l (t)dM(t) - (A1+A4 )dt (106)

and, defining the 4-vector

z'(t) = [Z 1 1 (t),Z 1 2 (t),Z 2 1 (t),Z 2 2 (t)] (107)

the two hypotheses become

H1: dz(t) = H(M(t),t)x(t)dt + dv(t) (108)

H0: dz(t) = dv(t) (109)

where we compute H(M(t),t) from

H(M(t),t) = '(M(t))C(t) (110)

where Yij' the ij element of r, is given by

-1 -1
Yi (M) - (M AM)11 Yi2 (M) = (M AiM)12

(111)
-1 -1

Yi3(M) = (M AM) 2 1  Yi4 (M) = (M AiM)22

For instance,

M11M22
Y11 (M) = (112)

11M11M22 - 12M21
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Having these terms, we can apply the results of Section 
III to obtain

explicit optimal estimation and likelihood ratio 
equations.

V. Conclusions

In this paper we have considered a class of optimal estimation-

detection problems involving multiplicative observation noise. By

considering the differential form of the observation process, we ob-

tained optimal estimation and likelihood ratio equations that are quite

interesting in that they are identical to those in the linear-Gaussian

case except that the estimation error covariance depends on the ob-

servations and thus must be computed on-line.

We have noted that these results are potentially useful for on-line

system identification and in the detection of failures or changes in

system dynamics. This potentiality was illustrated by examining an

actuator failure detection problem associated with rigid body rotations

and inertial navigation systems.



APPENDIX: The Computation of a Likelihood Ratio and a Conditional Density

In Section III we were confronted with a signal detection problem

of the form

H 1: dz(t) = H(zt,t)x(t)dt + dv(t) (113)

H2 : dz(t) = dv(t) (114)

where v is an n-dimensional Brownian motion

E[v(t)] = 0 E[dv(t)dv'(t)] = R(t)dt (115)

R(t) > 0 .(116)

and x is a k-dimensional process satisfying

dx(t) = F(t)x(t)dt + G(t)dw(t) (117)

Here x(O) is assumed to be a Gaussian random variable with

E[x(0)] = o E[(x() - x )(x() - x )'] = P0  (118)

and w is an m-dimensional Brownian motion with

Elw(t)] = o E[dw(t)dw'(t)] = Q(t)dt (119)

It is assumed that v,w, and x(O) are mutually completely independent.

Also, we note that H is allowed to be a function of the past observations

t
z , and we define the "signal" process

s(t) = H(zt,t)x(t) (120)

We now note that future values of v(*) are independent of past

values of z(.) and s(.). Also, for the particular case of interest in

Section III, it can be shown by a tedious but straightforward calcu-

lation that if [0,T] is the time interval of interest,

-29-
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Es2(t) dt < m (121)

0

These facts enable us to use the vector version of the likelihood

ratio formula derived in [2]. Let C be the space of n-dimensional

continuous functions on [0,T] with associated Borel field 8 under the

uniform topology. Letting Ul and i0 denote the measures induced on

(CZ,B) by z under H1 and HO, respectively, we have

dp1 T T
LR = ) exp - ' s'(t t)R1 (t)"(t t)dt+ f '(t t)l(t)dz(t)

0 t 
0

0 0 (122)

where

s(tIt) = E[s(t)lzet,H] = H(zt,t)E[x(t) zt,H1 ] = H(zt,t)x(tIt) (123)

Thus, it remains to derive a method for computing x(tlt). We

first note that for any.0 < t < t 2 < .. < t, the variables

zt ,...,z t and x(t) are not jointly Gaussian. However, as we shall

see, the conditional density for x(t) given z t is Gaussian with mean

and covariance that depends on z To see this, we refer to the work of

Kailath [21],[22], and Frost and Kailath [23] on the innovations

approach to least squares estimation. In particular, in [23] a partial

differential equation for the conditional density is derived. The

derivation assumes the complete independence of v(.) and s(.) which we

do not have in our case. However, as Frost and Kailath [23] suggest,

if we use the weaker innovations representation of Fujisaki, Kallianpur,



-31-

and Kunita [24], which requires only that future values of v(-) be

independent of past s(-) and v(-) plus the integrability condition (121)

(actually, a weaker condition will do), we can obtain a partial dif-

ferential equation of essentially the same form. That is, if we let

p(x,t) denote the conditional density for x(t) given zt evaluated at

x, we have

dp(x,t) = L(p)(x,t)dt

+ [x-(tl t)]'H'(zt,t)Rl(t)[dz(t)-H(zt,t)x(tlt)dt]p(x,t)

(124)

where L is the Fokker-Planek operator for (117)

L(p)(x,t) = -p(x,t)tr F(t) - [ (x,t) F(t)x

2 1 2

A straightforward computation shows that the solution to (124) is

p(x,t) = N(x;9(tlt), P(tlt)) (126)

where N(x;a,P) is the (multi-dimensional) normal density with mean a

and covariance P, and we compute x(tlt) and P(tlt) from

d (tlt) = F(t) i(tlt)dt + P(tlt)H'(zt,t)R-l(t)[dz(t)-H(zt,t)x(t t)dt

(127)

X(olo) = o0 (128)

P(tt) = F(t)P(tlt) + P(tlt)F'(t) + G(t)Q(t)G'(t)

-P(tlt)H' (zt,t)Rl(t)H(zt,t)P(tlt) (129)
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P(010) = P0  (130)

t
Note that P depends on z.

We also note that one can compute the infinite set of conditional

moments of x(t) directly from the stochastic differential equations

derived in [24], and one finds that the moments of N(x; R(tlt),P(tIt))

satisfy these equations.
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