A NASTRAN DMAP ALTER FOR DETERMINING A LOCAL

STIFFNESS MODIFICATION TO OBTAIN A SPECIFIED EIGENVALUE

By William R. Case, Jr.
NASA Goddard Space Flight Center

SUMMARY

This paper describes a technique, which has been programmed as a DMAP Alter to Rigid Format 3, for determining a stiffness natrix modification to obtain a specified eigenvalue for a ptructure. The stiffness matrix modifications allowable are Fhose that can be described as the product of a single scalar wariable and a matrix of constant coefficients input by the user. Fhe program solves for the scalar variable multiplier which will yield a specified eigenvalue for the complete structure (pro(rided it exists), makes the modification to the stiffness matrix, and proceeds in Rigid Format 3 to obtain the eigenvalues and eigenvectors of the modified strveture.

INTRODUCTION

The motivation for devising a technique for determining a Hocal stiffness modification to obtain a specified eigenvalue stemmed from several launch loads analyses performed at the goddard Space Flight Center in which these analyses were updated using data from hardmount spacecraft vibration tests. quite pften, spacecraft are attached to their launch vehicle via a Marmon type clamp band. Generally, the clamp bind attaches the spacecraft to an adapter section which in turn is bolted to the launch vehicle. However, the stiffness of the clamp band is often not known well enough to make an accurate analytical prediction of the fundamental mode of the spacecraft adapter structure when cantilevered from the base of the adapter, as it is in the spacecraft vibration tests. Thus, the original launch loads analyses are updated to reflect these discrepancies once the modes of the spacecraft-adapter structure have been measured in tests.

Updating any finite element model to agree with modal data obtained from tests usually requires a trial and error process in which some local stiffness is adjusted until the fundamental mode of the model agrees with the test data. However, if a value for the local stiffness exists which will give the finite element mociel the measured eigenvalue, then this stiffress can be found analytically.

The DMAP Alter presented computes the value of the stiffness (or stiffness change) and adds this to the original stiffness matrix for the finite element model. The program then proceeds in Rigid Format 3 to compute the remairing eigenvalues and eigenvectors for the finite element model.

THEORETICAL DESCRIPTION

In real eigenvalue analysis, NASTRAN solves for the eigenvalues and eigenvectors for the analysis (or U_{a}) degrees of freedom from

$$
\begin{equation*}
\left[K_{a a}-\lambda M_{a a}\right]\left\{v_{a}\right\}-0 \tag{1}
\end{equation*}
$$

The stiffness matrix for the U_{a} degrees of freedom is obtained from the original U_{g} degrees of freedom through the application of constraints and Guyan reduction. The stiffness matrix K_{gg} for the U_{G} degrees of freedom can be considered to be the sum of two matrices

$$
\begin{equation*}
K_{g g}=K_{g g_{0}}+\Delta K_{g g} \tag{2}
\end{equation*}
$$

where $K_{g_{0}}$ contains the stiffnesses for the finite element model which will not be modified and $\Delta K_{g q}$ contains all of those stiffnesses that will be modified. The modification technique described in this paper is one in which the stiffnesses to be modified are all proportional to some scalar variable, which will be denoted as β. Thus, $\Delta \mathrm{K}_{\mathrm{gg}}$ can be written as

$$
\begin{equation*}
\Delta K_{g g}=\beta K_{g g}^{\prime} \tag{3}
\end{equation*}
$$

where K^{\prime} gg are the values of the $\Delta \mathrm{K}_{\mathrm{gg}}$ coefficients per unit value of the scalar vari-ible β. The K^{\prime} matrix could represent, for example, the portion of the finit ${ }^{g}$ element model represented by several beam elements of the same cross section whose moment of inertia we wanted to vary. In this case, β would be the moment of inertia of those beams and K^{\prime}, would be the stiffness coefficients for these beams per ${ }^{g}$ nit moment of inertia.

In gereral, $\Delta \mathrm{K}_{\mathrm{gg}}$ can be any portion of the finite element model whose stiffness coefficients vary proportionally to scme known variable. This variable could not, therefore, be the thickness of plate elements since the bending stiffness varies as the cube of the thiciness while the transverse shear and membrane stiffnesses vary with the first power of the thickness. If, however, the plates were pure bending plates ino membrane or transverse shear), then all of the stiffness coefficients would vary with the cube of the thickness and we would be able to express the stiffness of those plate elements by an equation of the type in equation (3) where β could be taken as the cube of the thickness or the bending rigidity D.

Thus, considering only those applications in which the stiffness matrix for a portion of the structure can be represented as in equation (3) where β is a single scalar variable, the stiffness matrix for the complete structure (eq. (2)) becomes

$$
\begin{equation*}
K_{g g}=K_{g g_{0}}+\beta K_{g g}^{\prime} \tag{4}
\end{equation*}
$$

The stiffness matrix in equation (4) can be reduced to the analysis set of degrees of freedom U_{a} through the application of multi and single point constraints and through the Guyan reduction of the omitted points as mentioned above. The only restriction in the DMAP Alter presented herein is that the degrees of freedom that have stiffnesses thut will be modified are not allowed to belong to the " 0 " set (omitted coordinates).

Following the normal procedures for reducing from the U_{g} to the U_{a} degrees of freedom (with the restrictions mentioned above), the eigenvalue problem as stated in equation (1) can be written as

$$
\begin{equation*}
\left[K_{a a_{0}}+\xi K_{a a}^{\prime}-\lambda M_{a a}\right]\left\{u_{a}\right\}=0 \tag{5}
\end{equation*}
$$

The problem is to find a value of β that will result in one of the eigenvalues (usually the first nonzero eigenvalue) attaining a specified value, say λ_{1}. Setting λ equal to the specified value λ_{1} in equation (5) results in the equation

$$
\begin{equation*}
\left[\left(K_{a a_{0}}^{\left.\left.-\lambda_{1} M_{a a}\right)+\beta K_{a a}^{\prime}\right] \quad\left\{U_{a}\right\}=0}\right.\right. \tag{6}
\end{equation*}
$$

In order for there to be a nontrivial solution to equation (6), the determinant of the coefficient matrix must vanish. This will result in a polynomial in β equal to zero, that is,

$$
p(\beta)=0
$$

Thus, the solution for the value of β that will provice a specified eigenva!ue (provided such value of β exists) may be obtained by solving an eigenvalue problem, using equation (6), for β. This can be readily accomplished in NASTRAN using the module READ by inputting to READ the matrix ($\mathrm{K}_{\mathrm{aa}}-\lambda_{1} \mathrm{Maa}_{\mathrm{aa}}$) as the "stiffness" matrix and the matrix K^{\prime} aa as the "mass" matrix. The resulting "eigenvalue" found by READ will be the value of β that will provide the stiffness modification necessary for the structure to have the real eigenvalue λ_{1}.

It should be pointed out that there is no guarantee that the process will always work. There may be no modificaicion of the portion of the structure we are attempting to modify that will result in the specified eigenvalue λ_{1}. However, the analyst can often tell, by comparison of his original finite element modes with those obtained from tests, what portion of the model appears to be too stiff or too flexible. In these instances, the procedure outlined in this paper for determining the stiffness
hodification should relieve the analyst of the burden of making irbitrary changes in the stiffnesses and solving repeated eigenhalde problems until the model agrees with the test. Since the :echnique outlined is one in which a stiffness change is deterfined which will provide one eigenvalue equal to a specified balue, it appears that it will be most useful when there is disagreement between the original modei and test results in a fundamental mode. It should also be mentioned that the stiffness change, while providing a specified fundamental mode, will obviously yield higher modes different from those obtained from the original or unmodified finite element model. There is no juarantee that these new higher modes will agree any better with the test modes than those from the original model.

INPUT TO THE PROGRAM

The data deck required to make a run to modify part of the btructure and obtain the resulting eigenvalues will be discussed in terms of changes to a normal deck for Rigid Format 3, real figenvalue analysis.

Case Control Deck

Two subceses are required. In the first subcase, a METH $\quad \mathrm{D}$ fard selects an EIGB bulk data card which will be used for the igenvalue extraction for β.

The second subcase contains the normal case control cards hat the user would have in any Rigid format 3 run including a ETHOD card which selects the EIGR bulk data card for the real igenvalues λ. The result of this subcase will be the normal ceal eigenva ue analysis output with one of the modes equal to the specified eigenvalue (to be specified in the Bulk Data Deck).

Bulk Data Deck
. Input of the normal finite element model of the structure which would be used in a real eigenvalue analysis. From this finite element model the stiffness matrix $\mathrm{K}_{9 g_{0}}$ will be built by NASTRAN. This could be the identical cards used to
describe the structure if an original modal analysis had been performed and the user were now rerunning it to modify part of the structure. In this case, the value of β determined in the current run would be the change in stiffness of the modified part of the structure. Included in these cards, of course, is the EIGP card requested hy subcase 2 which will find all desired modes subsequent to the modification.
2. DMIG input of $K^{\prime} g^{\circ}$
3. EIGB card requested by subcase 1 for finding the "eigenvalue" B. The normalization for the eiqenvector must be MASS. If the scalar variabie multiplier of K_{gg} is, for example, the moment of inertia of some of the beam elements, then the search range should be the range over which the user expects the change in this variable to lie (change witin respect to the value that is in the finite element model in item 1).
4. A PARAM bulk data card with parameter name = FREQ and value equal to the frequency (in Hz) of the mode the user wishes to specify.

DMAP ALTER DESCRIPTION

Appendix A lists the DMAP Alters to Rigid Format 3, Level 15.1.0, required to solve for the stiffness modification, to assemble the new stiffness matrix, and to proceed in Rigid Format 3 to obtain all of the desired eigenvalues and eigenvectors of the modified system. Several of the Alter statements are discussed in the appendix to clarify their function. In general, all the DMAP modules used but onn are standard DMAP modules described in the NASTRAN User's or Programmer's Manuals. The module SCALAR, however, is a new module written and added to NASTRAN at the Goddard Space Flight Center and will be an available DMAP module in level 16 when it is released. Basically, this is a module that accepts matrices as input and will output one coefficient of the matrix as a NASTRAN complex, single or double precision parameter that can be used, for example, in the DMip module ADD to multiply other matrices by. This was needed since the only way the scalar value of B could be obtain.3d as data that could be used in subseguent DMAP statements was in the matrix

KHHK output from module GKAM following the eigenvalue extraction for β. The module SCALAR was used to extract p from KHHK. The matrix KHHK is the "modal stiffness" matrix found from the eigenvalue run to obtain β. If tre normalization on the EIGB bulk data card requests normalizition to unit modal mass, then the coefficient in KHHK will be β.

SAMPr.E PROBLEMS

Using the DMAP Alter program, two sample problems have been run. Figure 1 shows a beam finite element model of the UK-5 spacecraft and adapter to be flown on the Scout vehicl?. The spacecraft and adapter are attached via a Marmon clamp, which in this finite element model is modeled as a scalar spring. In the original analysis, the model contained no scalar spring element for the clamp band and the adapter and spacecraft were assumed rigidly connected. The fundamental bending mode obtained from this finite element model was 43 Hz . Subsequent tests of the system indicated that the first mode was at 33 Hz and that the Marmon clamp did not appear "infinitely" stiff. Thus, the model vas modified by including a spring between the adapter and spacecraft. The second run, made to determine the value that the spring should have to obtain a 33 Hz zirst bending mode contained the following changes:

1. removal of the MPI rigid constraint at the adapter/spacecraft interface that was used in the original analysis to simula ie zero bending flexibility at that joint.
2. addition of DMIG matrix input of a scalar sfring stiffness matrix per unit value of stiffness:

represented by the grid points and rotational degrees of freedom to which the scalar spring connects
3. EIGB bulk data card to find k_{s} (β is k_{s} in this problem) with eigenvector normalization to MASS
4. PARAM FREQ bulk data card with value 33 Hz (complex single precision)

The data deck for this run is listed in Appendix B. The output from subcase 1 gave the value of k_{s} needed to obtain a 33 Hz first bending mode, namely, $4.3 \times 10^{9} \mathrm{~N} / \mathrm{m}\left(24.5 \times 10^{6} \mathrm{lb} / \mathrm{in}\right)$. Subcase 2 then was executed to obtain the eigenvalues and eigenvectors for the system with this spring in the model. The resulting eigenvalues were a 33 Hz first mode with the second mode changing, in this case, by only a few percent from that obtained from the original model.

Figure 2 shows another problem run using the DMAP Alter. In this case, the structure is a stiffened plate simply supported on all four sides. The plate is stiffened with an I-beam whose area and offset distance are specified but whose moment of inertia (about the beam centroidal axis) may be varied. The problem is to determine the moment of inertia of the beam that will give a 40 Hz first symmetric bending mode of the structure. The structure was modeled with a 5×5 mesh of grid points equally spaced in one quadrant of the plate. The DMIG matrix K_{gg} in this problc 7 consisted of the stiffness of the beams (due to the bending moment of inertia only) for all of the grid points to which the beams were attached. The Bulk Data input for the finite element model consisted of the normal input for such a structure but with zero bending inertia for the beams (the area and offset distance were input on the CBAR cards). The first subcase solved for the moment of inertia of the beams that would result in a 40 Hz first symmetric bending mode of the structure. This was determined as $855.8 \mathrm{~cm}^{4}$ ($20.56 \mathrm{in}^{4}$). Subcase 2 then proceeded to obtain the eigenvalues and eigenvectors of the modified system and it was determined that the first mode was at 40 Hz .

:CKNOWLEDGEMENT

The help of Mr. Reginald Mitchell of tie Guddard Space Flight Center is greatly appreciated for his programming efforts in writing the module SCALAR needed in the DMAP A.iter.

APPENDIX A

DMAP ALTER FOR DETERMINING LOCAL STIFFNESS CHANGE TO OBTAIN A SPECIFIED EIGĖNVALUE (RIGID FORMAT 3)

```
    1 ALTER 45
    2 MTRXIN ,MATPOOL,EQEXIN,SIL,/DKGGP,&/V,N,LUSET/V,N,NODKP/
        CoNoO/CoNgO S
    3 SAVE NODKP $
    4 MATGPR GPL,USET,SIL,DKGGP//C,N,G/R.NOG $
    5 ALTER 48
    6 EQUIV DKGGP,OKNNP/MPCF1 $
    7 ALTER 58
    8 MCE2 USET,GM,OKGGP,:,/DKNNP,:, $
    9 ~ A L T E R ~ 6 1 ~
    10 EQUIV DKNNP,DKFFP/SINGLE S
    11 ALTER 64
    12 UPARTN USET,DKNNP/DKFFP,,,/C,N,N/C,N,F/C,N,S $
    13 ALTER }6
    14 SQUIV OKFFP,OKAAP/OMIT S
    15 ALTER }7
    16 UPARTN USET,DKFFP/DKAAP,O/C,N,F/C,N,A/C,N,O S
    17 ALTER 75,76
    18 ADO MAA./MAAI/C,Y,FREQ S
    19 ADD MAAL,/MAAZ/C,Y,FREQ 5
    20 ADO MAAZ,KAA/DAA/C,N.(39.47842.0.0)/C.N.(-1.0.0.0) S
    21 DPO DYNAMICS,GPL,SIL,USET/GPLD,SILD,USETD,.,.,:,EED,
        EQUYN/V,N,LUSET/V,V,LIJSETO/V,N,NOTFL/V,N,NODLT/
        V,NONOPSUL/V,N;NOFRL/V,NONONLFT/V,NONOTRL/
        VONONOEED/C,N,I23/V,N,NOUE S
```

22	Save	NOEED \$
23	COMD	ERKORZ,NDEED
24	CHKPNT	EED \$
25	READ	
26	SAVE	NEIGV $\$$
27	OFP	LAM/,K,OEIGSK, , , //V,N,CARONOK
28	save	CARDNOK $\$$
29	GKAM	,PHIAK,MIK,LAMAK,, ,, CASECC/MHHK, ,KHHK,PHIOHK, $C, N,-1 / C, N, 1 / C, Y, L F R E \widehat{T}=0,0 / C, Y, H F R E Q=0.0 / C, N,-1 /$
30	SCALAR	KHHK//CsNol/CoN, I/V.N.BF.TA \$
31	SAVE	BETA S
32	ADD	DKAAP,KAA/KAAT/V,N,BETA \$
33	COND	LBL6.REACT \$
34	RBMG1	USET•KAAT, MAA/KLL,KLR,KRR,MLL,MLR,MRR S
35	ALTER	85,90
36	READ	KAAT,MAA,MR,DM,EEU,USET,CASECC/LAMA,PHIA,MI,OEIGS/ C,N:MODES/V,N:NEIGV/C.N. 2
37	SaVE	NEIGV \$
38	CASE	CASECC,/CASEX2/C,N,TRAN/V,N,REPEATT $=2 / \mathrm{V}, \mathrm{N}$, NOLOOP S
39	ALTER	105,105
40	SDR2	CASEX2,CSTM,MPT,OIT,EQEXIN,SIL., BGPOP,LAMA,QG, PHIG,EST, $7, O 0 G 1, O P H I G, O E S 1, O E F 1, P P H I G / C, N$,REIG $\$$
41	ALTER	109,109
42	PLOT	PLTPAR,GPSETS,ELSETS,CASEX2,BGPDT,EQEXIN,SIP,,PPHIG/ PLOTX2/V,N,NSIL/V,NoL.USET/V,N:JUMPPLOT/V,N,PLTFLG/ VINiPFILE S

43 ENDALTER

DESCRIPTION OF DMAP ALTER STATEMENTS

2. MTRXIN reads DMIG cards which contain the coefficients of the $K_{g q}$ matrix input by the user. These are the stiffness ${ }^{\text {coefficients (for the portion of the structure }}$ which will be modified) per unit value of the parameter that they vary with. These can easily be determined by running Rigid Format 1 , up through GP4, with the bulk data containing all grid points, coordinate systems, and elements for the portion of the model to be modified.

5-16. These Alters perform the reduction on the K^{\prime} gg matrix at the same location in Rigid Format 3 that the reductions are performed on the stiffness matrix for the remainder of the structure ($\mathrm{K}_{\mathrm{g} g_{0}}$).
18-20. Formulate the matrix $K_{a a^{-}} \lambda_{1} M_{\text {aa }}$ using the input parameter FREQ which is FREQ $=\frac{1}{2} \sqrt{\lambda_{1}}$. That is, $F R E Q$ is the frequency in Hz of the mode we are specifying the eigenvalue for.
25. Solve an eigenvalue problem for β using the buckling option in READ. The resulting "modal stiffness" matrix, KHHK, which will be output from module GKAM, will contain β on the diagonal since the eigenvector normaiization on the EIGB bulk data card is a normalization on unit modal mass.
29. GKAM outputs the matrix KHHK.
30. SCALAR (discussed above) extracts a value from KHHK and outputs it as a parameter (BETA).
32. ADD formulates the total stiffness $K_{a a_{o}}+\beta K^{\prime} a^{\prime}$
36. READ extracts the eigenvalues and eigenvector of the modified system, one of which will be the specified eigenvalue λ_{1}

APPENDIX B

```
    CASE CONTROL AND BULK DATA DECKS FOR UK-5 S/C - ADAPTER STIFFNESS MODIFICAT
TITLE = UKS SPACECPAFT AND EH SECTION
SUBTITLE = CANTILE/ERED muDE SHAPES (LATERAL)
LABEL = STIFFNESS CALCULATION FOR CLAMP BAND FOR 33 HZ FIRST BENDING
ECHO = UNSORT
MPC = 52
SUBCASE 1
    METHOD = 1
SUBCASE 2
    METHOD = 2
        OUTPUT
            VECTOR = ALL
            ELFORCE = ALL
            SPCF = ALL
BEGIN BULK
S LATERAL mODES
$
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline GRDSET & & & & & 0. & 1. & \[
\begin{aligned}
& 1345 \\
& 0 .
\end{aligned}
\] & & \\
\hline EIGB & 1 & INV & 5. +6 & 5. +7 & 1 & 1 & & 1.-4 & -EIG \\
\hline -EIGl & MASS & & & & & & & & \\
\hline EIGR & 2 & INV & 25. & 400 . & 3 & 3 & & 1.-4 & -EIG \\
\hline -EIG2 & MaX & & & & & & & & \\
\hline PARAM & GRDPNT & 0 & & & & & & & \\
\hline Param & WTMASS & . 002 & & & & & & & \\
\hline \multicolumn{10}{|l|}{5} \\
\hline \multicolumn{10}{|l|}{5 EH SECTION} \\
\hline 5 & & & & & & & & & \\
\hline GRID & 501 & & 47.77 & 0 。 & 0. & & 123456 & & \\
\hline GRID & 502 & & 44. & 0 . & 0 . & & & & \\
\hline GRID & 503 & & 40. & 0. & 0. & & & & \\
\hline GRID & 504 & & 37.27 & 0. & 0 。 & & & & \\
\hline CBAR & 5001 & 5001 & 502 & 501 & & & & & \\
\hline CBAR & 5002 & 5002 & 503 & 502 & & & & & \\
\hline CBAR & 5003 & 5003 & 504 & 503 & & & & & \\
\hline PBAR & 5001 & 5001 & 2.634 & 94.4 & 94.4 & 72.6 & . 989 & & +850 \\
\hline PBAR & 5002 & 5001 & 2.138 & 59.5 & 59.5 & 45.8 & . 989 & & - 850 \\
\hline PBAR & 5003 & 5001 & 1.710 & 29.2 & 29.2 & 22.4 & . 989 & & +850 \\
\hline +85011 & & & & & & & & & -850 \\
\hline -B5021 & & & & & & & & & -850 \\
\hline +850.31 & & & & & & & & & -850 \\
\hline
\end{tabular}
+85012 . 185 . 185
+85022 . 185 . 185
*B5032 .185 .185
MAT! 5001 1.*7 1.+7 .3
S
CONSTRAIN S/C - ADAPTER INTERFACE GRID POINTS TO BE THE
S SAME EXCEPT IN ROTATIONAL UEGHEE OF FREEDOM
\begin{tabular}{llllllll} 
MPC & 51 & 504 & 1 & 1.0 & 601 & 1 & -1.0 \\
MPC & 52 & 504 & 2 & 1.0 & 601 & 2 & -1.0
\end{tabular}
```


THEORETICAL MODE SHA FOR $k_{g}=4.3 \times 10^{9} \mathrm{~N} / \mathrm{M}$ $124.5 \times 10^{6} \mathrm{LB} / \mathrm{IN}$
 $f=33 \mathrm{HZ}$
--- THEORETICAL MODE SHA FOR $k_{s} \rightarrow \infty$ $f=43 \mathrm{HZ}$

O MODE SHAPE FROM UK-5/ADAPTER VIBRATI TESTS $f=33 \mathrm{HZ}$

Figure 1.- Clamp-band stiffness modification to ohtain 33 Hz first bending mode for the UK-; spacecraft and adapter.

Figure 2.- Stiffener EI modification to obtain 40 Hz first mode ror the simply supported stiffened plate.

