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NASA Langley Research Center

SUMMARY

A new higher order triangular plate-bending finite element is presented

in this paper which possesses high accuracy for practical mesh subdivisions

i and which uses only translations and rotations as grid point degrees of free-

dom. The element has 18 degrees of freedom (d.o.f.),viz., the transverse
displacement and two rotations at the vertices and mid-side grid points o:"the

" triangle. The transverse displacement within the element is approximated by

a quintic polynomial; the bending strains thus vary cubically within the
" element. Transverse shear flexibility is.taken into account in the stiffness

formulation. Two examples of static and dynamic analysis are included to

show the behavior of the element. Excellent accuracy is achieved in all cases.

This element, designated _s TR-18, is demonstrated to be an ideal candi-

date for generation of a family of plate and shell elements for inclusion into

NASTRAN. The following elements are specifically mentioned in this context,

_ viz., (i) triangular plate element, (ii) quadrilateral plate element,

(iii) curved triangular shell element, (iv) curved quadrilateral shell element
| and (v) plates with membrane-bending coupling and muitilayered platcs. The

present paper describes the detailed theoretical derivations for the afore-

mentioned elements. In addition, the behavior of the TR-18 element and

associated quadrilateral plate element is illustrated by two sample problems.

Comparisons with existin_ alements in the literature and the present NASTRAN

quadrilateral elements are shown.

INTRODUCTION

NASTRAN presently (Level 15.5) has, in all, a total of nine different _.
, forms of plate elements in two different shapes (triangular and quadrilateral).

The present NASTRAN basic bending element, TRBSC, the basic unit from which

_ the bending properties of the other plate elements are formed, uses a cubic

displacement field (with the x2y term omitted). This constrains the normal _.
." slope (on the exterior edges of the TRPLT bending element) to vary linearly,

'"' which in turn makes the element overly stiff. A need thus exists for

.- a more accurate plate bending element for NASTRAN.

A brief review of some of the more important plate bending elements is ..

i now made. Formulations of triangular plate bending elements were
finite

given as long ago as 1966 by Clough and Tocher (ref. i) and by Bazeley et al.

(ref. 2). The conforming elements presented therein allow only a linear
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stiff, whereas the nonconforming element given in ref. 2 uses a cubic poly-

nomial for transverse displacement and is not of very high accuracy. Improve-

ments to these elements have been made by using higher degree polynomials for

transverse displacements; indeed elements of very high accuracy have been

reported by Argyris (ref. 3), Bell (ref. 4) and Cowper et al. (ref. 5) using
quintic polynomials for the displacements field. But these elements have

i strains, curvatures and/or higher order derivatives of displacements as grid

point degrees of freedom (d.o.f.) which lead to an inconsistency when abrupt I

! thickness or material property variation occurs. That is to say that the ccm-
tinuity of strains and curvatures implied by their use as degrees of freedom

_ at grid points is violated wherever concentrated loads, changes in slope,

_ changes in thickness, or connections to other structures occur. In short, the
proper use of elements that assume continuity of strains and curvatures is

restricted to regions where discontinuities do not occur. Further, the ex-
, istence of higher order derivatives makes Jt difficult to impose boundary con-

ditions on these and indeed the simple interpretation of energy derivatives

as "nodal forces" disappears (ref. 6). Bell has also developed another element

i in ref. 4, designated T-15 by him, which has only displacements and rotations

i as degrees of freedom. But it has a major drawback in that not all grid points
of the element have the same d.o.f.; consequently, it becomes difficult, if

not impossible, to consider connections of this element w_th other finite

elements. Thus the practical use of the T-15 element in general purpose

I', programs is severely limited.

I A need still exists to develop a new accurate plate bending Finite element

that has the advantages of the accuracy associated with a high order displace-
ment polynomial but does not have the disadvantages discussed above and is

therefore suitable for inclusion in general purpose computer programs like
NASTRAN.

In this paper, a triangular element and an associated quadrilateral

element are developed that use only displacements and rotations as grid
point degrees of freedom and use a quintic polynomial for lateral displace-

ment. The quadrilateral element is formed by four triangular elements. The

stiffness, consistent mass and load matrices of the separate triangles are

evaluated and added by the direct stiffness technique to form the respective

matrices for the quadrilateral. The terms associated with the internal grid ._
points are then eliminated by static condensation. None of the elements

discussed in referencec I to 5 possess the property of transverse shear
flexibility. This has been taken into account in the present paper by a

procedure based on that used in NASTBA_ (ref. 7).* The components of transvers

shear strain are quadratic functions of position. Convergence to the limiting ,
case of zero transverse shear strain is uniform.

In addition, three elements, vlz., (i) a curved triangular shell element,

(li) a curved quadrilateral shell element, and (iii) a multilayered plate

element can be derived from the TR-18 element. Together with the quadrilateral
plate element, these elements constitute the TR-18 family of elements.

*A similar procedure for incorporation of transverse shear flexibility

into a quartic element was communicated to the author by Dr. R. H. MacNeal of
MacNeal-Schwendler Corporation.
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-,_ _ LIST OF SYMBOLS

I{a} Column vector of coefficients

a,b,c Dimensions of triangular element in local co-ordinates (fig. i)

al, a2, a3 Coefficients of quintic polynomial

_ [BI],[B2],[B3] Matrices relating strains and generalized displacements

, _ It] Row vector relating transverse displacement to generalizeddisplacement

[D] Matrix relating bending stresses and bending strains

D Plate flexural rigidity, Et3/12(l - v2)
E Elastic modulus

i [Go] Matrix relating interior grid point displacement to exteriorgrid point displacements of quad-element

i [J] Matrix relating transverse shear forces and strains
[K] Stiffness matrix

L Length of side of plate

' [M] Con.;istent mass matrix

i {M} Vector of bendin6 _nd twisting moments per unit lengthN Number of elements per side of plate

[Q] Matrix relating grid-point displacement _ctor and vector of
_. polynomial coefficients

[R] Augmented matrix of Q and constraint relations

IS] Matrix relating vector of polynomial coefficients and grid

point displacement vector

T Kinetic energy

TI],[T2] Transformation matricesThickness of plate

[U] Matrix of transformation of strain components
U Strain energy

{V} Vector of transverse shears per unit length

w Lateral displacement

wc Central deflection
x,y,z Co-ordinate ayes in the local system

X,Y,Z Co-ordinate axes in the global system
a Rotation of xz plane at each grid point

Rotation of yz plane at each grid point

Yxz' Yyz Transverse shear strains

(¥} Vector of transverse shear strains /A
{_),{A) Column vectors of grid point displacement in local or global

system
Inclination of material orientation axis to x-axis

{¢} Displacement vector of quadrilateral element
v Poisson's ratio

p Mass density of plate material _'"

Non-dimensional parameter of eigenvalues, _ta_L4/D

[_] Dicection cosine matrix of quadrilateral median plane
Circular frequency of plate vibration

{X} Bending strains

.>
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Xx,Xy,×xy Bending strains

TRIANGULAR PLATE ELEMENT TR-18

In this section of the paper, the derivation of the stiffness matrix,

consistent load vector and consistent mass matrix of the triangular plate

element is given. The procedure for the derivation is described ±n detail in

reference 8, and hence only essential details arc presented here.

The element has 18 d.o.f., the transverse displacement and 2 rotations

at each vertex and at the mid-point of each side. Three additional conditions

are introduced, viz., the slope normal to each edge (hereinafter called normal

slope) varies cubically along each edge. This establishes 3 constraint equation
between the coefficients of the polynomial for displacements, which, t,_gether wi

i the 18 d.o.f., uniquely determine the 21 coefficients in the quintic polynomial.
The variation of deflection along any edge is a quintic polynomial in _he

| edgewise co-ordinate; the six coefficients of this polynomial are uniquely

i determined by deflection and edgewise slope at the 3 grid points of the edge.Displacements are thus continuous between two elements that have a common edge.

The normal slope along each edge is constrained to vary cubically% however,

since the norma_ slopes are defined only at 3 points along an edge, there is

no normal slope continuity between 2 elements that have a common edge. The

element thus belongs to the class of non-conforming elements. The development

of this element follows closely that of Cowper et al. (rcf. 5).
i

Element Geometry

Rectangular c_rtesian co-ordinates are used in the formulation. An

arbitrary triangular element is shown in figure i, where X, Y, and Z are a

system of global co-ordlnates and x, y, z are the system of local co-

ordinates for the triangular element. The grid points of the element are

numbered in counterclockwise direction as shown. The following relationship

between the dimensions of the triangular element a, b, c, the inclination

e between the X and x axes and the co-ordlnates of the vertices of the

element can be easily derived (see fig. I):

cos O- (x3 - xl)/r sin e - (Y3 - Y1)/r (1)

-_ )21i/2where r = [(x3 - Xl)2+ (x3 - Yl (2)

I a = (X3 - X5) cos O - (Y5 - Y3 ) sin 8

.. " {(x3 - xS)(x3 " xl_ �(Y3" Y5)(Y3 - Y1)t/r (3)
#

J_8
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_n_ similarly,

! b = {(X5 - XI)(X 3 - XI) + (Y5 - Y1)(Y3 - YI )}/r (_)

i c = {(X3 - XI)(Y5 - Y1 ) - (Y3 - YI)(X5 - Xl)}/r (5) ,

Displacement Function

The deflection w(x, y) within the triangular element is assumed to vary

as a quintic polynomial in the local co-ordinates, i.e.,

w(x,y) = aI + a2x + a3Y + a4xp + a5xY + a6y2 + a7x3 +

2 2 + aloY3 + allX$ al2x3y 2 2aSx y + agXy + + a13x y +

al4xy3 _ al6x5 ; a18x3y2 2 3+ al5Y + + al7x _ + + al9x Y +

a2oXY _ + a21y5 (6_

There are 21 constants, aI to a21. These are evaluated as follows:

The element has 18 d.o.t'. At each grid point there are 3 displacement

components as d.o.f., viz., w, displacement in z-direction, a, rotation

about the x-axis and 8, rotation about y-axis. The rotations s and B

are obtained from the definitions of transverse shear strains Yxz and

Yyz' i.e. ,

Yxz " _x + B

Yyz _y - a

It can be shown (ref. 8) that Yxz and Yyz' and hence a and G, at any

grid point can be expresred in teras of the constants a 1 to a21. Thus 18

relations between grid point displacement values and the constants are obtained.
Three constraints among the coefficients in the above polynomi_l (eq. (6)) are
now introduced so that the normal slope varies cubically along each edge. It
is clear that the t_e constraint equations will involve only the coefficients
of the fifth degree terms in equa.Aon (6), since the lover degree terms
satisf_ the condition of cubic normal slope automatically. Moreover the con-

e
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ditions depend only on the direction of nn _dg_ %nd not on its post, ion. Alon_

i the edge defined by gl'id points I and 3, where y = O, the condition oF cubic
normal slope requires that

, i al 7 = 0 (_)
!.

x

It can be shown (ref. 8) that the condition for cubic varistion of normal slope

along edge 1-5 is

5bhc a16 + (4b3c 2 - b5)a17 + (3b2c 3 - 2bhC)al8 + (2be h - 353c2)a19 +

(c5 - 4b2e3)a20 - 5be h a21 = 0 (9)

and the condition for cubic variation of the normal slope along the edg _ 3-5

. (see fig. i) is

4 32

5ahc a16 + (-4a3c 2 _ a5)a17 + (3a2c 3 - 2a4c)al8 + (-2 ac + 3a c )a19 +

(¢5 _ 4a2c 3) + 5ac h = 0 (I0)
a20 a21

The 18 relations between grid point displacements (w, a and B at each

of the six grid points) and the coefficients of the polyno-.ial, together with

the three constraint equations (8), (9), and (I0), uniquely detennine the

coefficients aI to a21. The following equations can therefore be written:

{6} = [Q] {a} (ii)

•_ and (a}= Is!(_} (12)

where [Q] is the 18 x 21 matrix involving the co-ordinates of grid points

substituted into the function w (eq. (6)) and the appropriate expressions

• .'. of a and 8; {a} is the column vector of coefficients aI to a21 , and IS]

is a 21 x 18 matrix and consists of the first 18 columns of t_m inverse of an

0 augmented matrix of [Q] and the three constraint equations ($), (9), and (i0).

Stiffness Matrix

_' The following relationships are obtained from the theory of deformation

for plates (ref. 9). In the present notation, the curvatures are defined by

460
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" 1?B
X_ - _

aa ' _

: x5 = _-_)y (13) [

L :_a _B i

t
3ending at,dtwisting moments are related to curvatures by I

t

? My = [D]t Xy (_4)

t Xxy
_ J

, [D] is, in general, a full symmetric matrix of elastic coefficients.Shear forces (and hence shear strains) are proportional to the third

yes of the displacements. Since the displacement within the element

assumed tc vary as a quintic polynomial_ shear strains are expressed by a
uadratic polynomial ss follows:

Yx = bl + b14x2 + b6Y (15)

Yy cI + c2x + c3Y + c4x2 + c5xY + c6Y ):
t

The shear forces Jx' V are related to _¥x' Yy byy

Yx :_

Vx = t* [a] (16) :_',h

[i',." G is in general a full 2 x 2 symmetric matrix and t* is an effective
_' lickness of the element.

_i_ It can be shown that bI to b6 and cI to c6 can be expressed in

of the coefficients aI to a21 (ref. 8) and hence Yxz can be

J
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expressed as !
!

{y} = [BI] {a} (17) i.

1

where [B1] is as given in reference 8. The curvature {×} is now split into
2 parts, i.e.,

{x}= {xi}+ {x2} (18)

where

32w _ _ _Yxz

ax2 _x

a_w _Yyz (19)
{X1} = __ {X2} = _ ay

ay2

o _2w 3Yxz _Yyz
_ ay ax

It follows that {X1} is the vector of curvatures in the absence of trans-

verse shear and {X2} is the contribution of transverse shear to the vector of

curvatures. Now _X1} and {X2} are expressed in terms of generalized co-ordinate_

{a} as

{Xl} = [B2] {a} (20)

and

'"" {X2} = [B3] {a} (21)

<, where [B2] and [B3] are given in reference 8. Thus

'" {X} = {X l} + {X 2} = ([B 2] + [B3] ) {a} (22)

_, The generalized stiffr.essmatrix can be obtained as (ref. 8):

_'_' .,._, [K]gen- i([B2] + [B3])T[D]([B2] + [B3] ) �[B1]T [G][B1] dx &y (23)

'[ ., 1

_, ,: 462
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The element stiffness matrix in the local co-ordinate system, [K]e, is, by

virtue of equation (12),

[K]e = [S]T [K]gen [S] (24)

The element stiffness matrix in the global co-ordinate system, [K]g, is

' [K]g = [T2IT [K]e [T2] (25)

?

[ !where IT2] is the transformation matrix of displacen_ent vectors from global
t

to local co-ordinates of element.

i The evaluation of the elements of the generalized stiffness matrix, [K]
, gen

of equation (23), in closed form is, though straightforward, very tedious.This is due to the lengthy expressions involved in the triple matrix products.

{ The integration involved in equation (23) is now split into 5 integrals as

i . follows:

%

[n]gen = If [B2]T [D] [B2] dx d_

+ II [S2IT [D] [B31 dx dy + II [B3]T [D] [B2] dx dy

I + /I [B3IT [DI [B31 dx dy + I! [B±]T [G] [B1] dx dy

(26)

The first term II [B2IT [D][B2] dx dy is evaluated in closed form; the

i _, oLher fo_- terms are e_-!uate@ using numerical integration. The numerical in-

teEration formulas used are listed in ref. 8. If the plate is ass'_med +o be

rigid in transverse shear, the matrices [B1] and [B3] are nnll and the last
four terms of equation (26) vanish.

Consistent Mass Matrix

-- It cs_nbe shown that the generalized consistent mass matrix is (ref. 8)

_/, [M]gen - pt #'I [C]T[C] dx dy (27)

' m

I

I # % 4
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2 2 y51.,,_ where [C] = [i x y x xy y ..... ,,

The mass matrix can be transformed to element co-or_inates and global
co-ordinates by the same transformations as those used for stiffness matrix.
Thus

t_

J [M] = IS]_ [M] Is] (28)
e gen

and

[M] = [T2jT[M] [T2] (29)
| g e

where the subscripts e and g on [M] stand for element and global system,
respectively.

Consistent Load Vector

It can be shown that the generalized consistent load vector is, (ref. 8)

[P]gen ff [C]T
= q dx dy (30)

where q is the distributed loading.

The consistent load vect.... n now be transformed to element and global

co-ordinates by

[P]e = [S]T [P]gen (31)

,,-_ tt'lg = ['r2] [_']e __"'

'"' THE QUADRILATERAL PLATE ELEMENT

'i'" The quadrilateral element is formed from four of the triangular elements
just described. Two arrangements of the quadrilateral element are shown in .
Figures 3(a) and 3(b).

i_' The quadrilateral element has eight grid points on its edges. In the

,' arrangement of the quadrilateral element shown in Figure 3(a) which will be

i_ _ designated as QUADI, the quadrilateral i_ divided, first into 2 triangles by

:i"'i one diagonal and then again into 2 more triangles by the other diagonal. In ,

J
46_:
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"_ each case one additional grid point, at the mid-point of the diagonal, is intro-

duced; the stiffness, mass and load matrices of the triangl_ are evaluated and !

i

• added and the terms associated with the internal grid point are eliminated by 1
, static condensation. The stiffness, mm.ss and load matrices of the quadrilateral I'

element are obtained by adding one-half the contribution of each ca6e. In the

_' arrangement of the quadrilateral element shown in Fig. 3(b), designated as I

QUAD5, five additional grid points are introduced internally so that the quad- I

rilateral Js divided into four triangular elements. The eight grid ooints on

the edges are numbered i to 8. Grid point 9 is located at the intersection ::

of lines joining mid-points of opposite edges. Grid points !0 to 13 are
located at the middle of the lines joining grid point 9 to each of the corners

of the quadrilateral. The stiffness, mass and load matrices of the triangular

elements are evaluated, as described previously, and added by the direct stiff-

ness technique to form the respective matri_ez for the quadrilateral. The

, internal grid points are then _!imlnated by static condensation.

In a preliminary operation, the grid points of the quadrilateral are ad-

justed to lie in a median plane. The median plane is selected to be parallel
! to, and midway b_tween, the diagonals of the quadrilateral. The adjusted quad-

i rilateral is the normal projection of the given quadrilateral on the medianplane. The short line segments Joining the corners of the original and pro-

Jected quadrilateral elements are assumed to be rigid in bending and extension.

The quadrilateral element and its projection onto the median plane is shown in

Fig. 3(c) I•

I
f

FORMULATION AND SOLUTION OF EQUATIONS I

The global stiffness matrices, load vectors, and mass matrices for the

complete structure modeled by these elements are assembled from the correspond-

ing matrices of the individual elements by standard methods (ref. 6) to
form the matrix equation

[K] {U} = {P} (33)

T_

£ U L.,O, u.,,t..,_n _ ,Because the d.o.f, at grid points consist of displacements and ....."_ -

it presents no difficulty to specify the appropriate geometric boundary
_.... conditions at any irregular and/or complex boundary. After the boundary

"." conditions are applied, the matrix equation (35) is solved by Gaussian

_"_-_ " elimination to obtain the global displacement vector {U}.

" DISCUSSION OF RESULTS "

!:i', The triangular and quadrilateral elements are used to solve two problems "

in _tatics and 4ynamics of thin isotropic plates. Only the results for the

_ simply supported plate are presented here; the interested reader m_ consult

ref. 8 for details. The problem analyzed is that of the statics and dynamics

465 :;_ '
>

• •, ,_ ....._,_ _ --__ .;...-:.__.........................................
!

1974006473-462



4 ,
4

I

i

of e square plate with edges simply supported. All calculations were carried

out on the CDC 6400/6600 series of computers with SCOPE operating system of i

the Langley Research Center. Single precision arithmetic was used _hroughout. }

A value of Poisson's ratio of 0.O is used in all problems. It is mentioned I

in this context that other finite-element analyses in the literature use 0.3 i
• as the value of Poisson's ratio, i

Static Analysis of a Square Plate

, The arrangement of the finite elements in a quarter of the square plate i

is shown in Fig. 4. The number of subdivisions of the edge of the square is

denoted by N. Due to symmetry, only one-quarter of the plate is analyzed.
The calculated values of the deflection at the center of the simply supported

, plate are given in Table i and compared with the exact solution given by

Timoshenko (ref. 9). These values together with other known finite element
analyses available in the literature (refs. 3, 4, 5 and iO) are also compared

in Figures 5 and 6 in plots of deflection versus mesh size using a linear scale
for N-1.

As seen from table l, the "Q" arrangement is found to give better results

than the "P" arrangement for the uniformly distributed loading; however, the

( "P" arrangement is found to be better, in general, for concentrated loads. For
_ the clamped plate, the "P" arrangements are found to be slightly better than

the "Q" arrangements, as noted from ref. 8. For the quadrilateral element,

QUAD1 is found to be superior to QUADS.

The high accuracy achieved with the present elements (triangular and

quadrilateral), even for the coarsest mesh, is evident from Table 1 and

Figures 5 and 6 for the simply supported plate. In the case of the clamped

plate, the results for the coarsest grid are not as accurate as in the case of

the simply supported plate (ref. 8); however, as the element size is decreased
the values of deflection obtained with the present elements approach very
rapidly the exact results.

Free Vibration of' a Square Plate

| The natural frequencies of a simply supported square plate wer_ _etermined
using the triangular and quadrilateral elements. The non-dimensional eigen-

• values are

_i _ = Dta_L4/D (34)

0 = mass density

t = thickness of plate

_,'_ _ - circular frequency

i < ' t

F 466
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L = length of side of square plate

D = Et3/12(l - v2), the flexura! rigidity of the plate.

The exact eigenvalues for the simply supported plate are given by

= (r 2 + s2) 2 _4 (25)

where r and s refer to the number of half-waves parallel to the edge directions.

The lowest 6 values obtained using the present elements and the exact

results are shown in Table 2. The eigenvalue problems were solved using a

, Jacobi routine that produced the complete set of eigenvalues and eigenvectors.
Consistent mass matrix was used for treatment of inertia. It is seen that the

lowest eigenvalue is calculated to within I% of exact result. Good agreement

" _ is noticed for higher eigenvalues as well.

I THE TR-18 FAMILY OF ELEMENTS

', A number of finite element formulations for doubly curved shells are

presently available, the notable among them being the works of Ahmad, Irons

and Zienkiewiez (Ref. ii), Bonnes, Dhatt, Giroux, and Robichand (Ref. 12),

Strickland and Loden (Ref. 13), Key and Beisinger (Ref. lh), Dhatt (Ref. 15),

and Olson and Lindberg (Ref. 16). Some of these have neglected transverse
shear deformations whereas some others use sub-triangles and/or second and

higher order derivatives of the displacements of the element as degrees of

freedom, thus complicating the formulation. A need still exists for an
accurate shell element that has only translations and rotations as d.o.f.

Such shell elements can be derived using the TR-18 plate element; the

formulation presented here is simple and includes transverse shear deforma-
tions; it is based on the linear shear deformation theory of _hin shells as

given by Washizu (Ref. 17).

Using shallow shell theory, flat plate elements can be easily converted

I i_ to curved shell elements. The linear strain triangular membrane element,

known as TRIM6 in the literature, can be combined with the TR-18 plate element

to develop a doubly curved shallow shell triangular element. The surface of

"L the shell will be approximated by a quadratic polynomial of the position
coordinates of the base triangle. By a procedure analogous to that discussed

_ for the quadrilateral plate element, a quadrilateral shallow shell element
can be developed. Multllayered plates, and plates with coupled membrane and

L bending deformations, can be designed using TR-18 plate elements.

467
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Curved Triangular Shell Element

Fig. 7 shows a differential element dA on the middle surface of the

: doubly curved shell with orthogonal eurvilinear surface co-ordinates _i' _2'

• _3" A right handed cartesian co-or te system X, Y, Z is also shown.

In Fig. 8 and Fig. 9 the curved triangular shell element is shown in basic and
local coordinate systems. The differential surface element is expressed as

dA = _Z _2 d_ld_2 (36)

where aI and e2 are the Lam4 parameters.

If th_ m,rf_ce z(×,y) of an element is sha]low_ the following relations
are valid

where

Z,x _x Z y = ?--_

The set of orthogonal eurvilinear co-ordinates (_i' _2' _3) over the surface

of the shallow element dA can be replaced by a set of shallow cartesian

co-ordinates (x,y,z) where

_i = x _2 = y (38)

i i" and Lain4 parameters _I = a2 _ 1 (39)

From eq. (36), (38) and (39), dA = dx dy (40)

The curvatures of the shallow element can then be approximated by

1

R11 = -Z,xx (41)

I (42)
R22 -Zyy

468
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i ca F ,.2

' I:} L ' t:P<X31 )'32 )33J ._

where is the vector from the origin of th= basic co-ordina-_e system to

U0J
the origin of the local co-ordinate system• _he distances XO' YO' 20 are

not involved in the calculation of the stiffness matrix of the element since

only the differences of co-ordinates are used; hence they are discarded. The
inversion of equation (44) yields

x XII ^21 13 ,_

k-J tXl3 _s s_j L J %

It may be seen that XII' _21 and X31 are components in X, Y and Z ;'

directions of a unit vector along the x direction; and so on for I12' XI3' etc.

An analytical description of the surface of the element suitable for

application of shallow shell theory is obtained by assuming that the elevation °_"

of the shell middle surface may be expressed as a quadratic polynomial in the

local co-ordinates of the element, i.e.,

f4×2 2 ' "z(x,y) = fl + f2 x + f3y + + f5xy + f6y (46)
-{?t
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This implies that th_ shell element has constant curvat1_es and is consistent

with the approximations of shallow shell theory. Knowing the co-ordinates

x, y, z of the six points of the triangular "lement, the constants fl to

f6 can be evaluated.

Symbollcally

{z} = [QI] {f} (hT)

: or

-1 {z} (_8){f} = [Q1 ]

i, where [QI] is a 6 x 6 matrix of the co-ordinates of the six _oints. of the

_).element substituted into equation (_F

i De_rees of freedom and assumed displacement function.- The element has 30degrees of freedom (d.o.f.), with 9 d.o.f, per grid point. These are the

i three translations u. v, w in the x, y, and z directions and the rota-

tions of the xz and yz planes, m and 8. The displacements u, v, w

_ are positive in the positive co-ordinate directionsj the slopes are positive
when they cause compression at the top of the surface. The u and v d.o.f.
are assume_ to vary ever the element by a full quadratic polynomial of local

co-ordinaten_ as follows:

ahx2 2u = aI + agx + a3Y + + asXY + a6Y (h9)

v = a7 + a8x + agy + al0x2 + allxY + al2Y2 (50)

The deflection w will be defined by a quintic polynomial as in equation (6).

,_ The coefficients aI to _21 of equation (6) will be renumbered a13 to a33 ..

respectively. The 55 coefficients aI to a33 can be uniquely determined
from the 30 d.o.f, of the shell element (9 d.o.f, each at six grid points)

-' together with the 3 constraint equatic_,s (8), (9), and (i0).

>

Strain-displacement relations.-The expressions for transverse shear
_ . strains and bending strains for the curved shell element are the same as those

" for the TR-18 element (eqs. (7) and (13)). The membrane strains are

L(

|

i i ......... ,...... li - - °
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Bu _2z
e = --- - w

x _x _x2

• _v 82z
e = -- - w -- (51)%k

y By _y2

I _u ?v _2z

•, _ exy _y + _x - 2w _x_y

f

Stiffness matrix.- The stiffness matrix carlbe evaluated by the standard
procedures (ref. 6). The element can then be tested against other elements

(refs. !i to 16) for suitability as well as accuracy. At the time of writing
of this paper, the calculations for the el_ent have not been completed.

Curved Quadrilateral Shell Element

A curved quadrilateral shell element can be constructed from the curved

triangular shell elements by a procedure analogous to that of the construction

_ of the quadrilateral plate element from the TR-18 element.

Plates With ;4embrane-Bending Coupling

Plates with coupled merabrane and bending deformations and multilayered

plates (fig. i0) can be analyzed by means of the elements presented earlier

herein. Nuxtilayered plates will produce coupling between membrane and
bending deformations when the plate is not symmetrical with respect to its

middle surface. A general form of the coupled stress-strain relationship
can be expressed as

F [A] [B] o (_m

{M}I= [BIT [D] £I _{X}_ (52) ._: "

£LI _o o L(,,j
4C

where

:, {F} is a vector of membrane force components Fx, Fy, F

• .' {M} is a vector of bending and twisting moments Mx, My, Mxy

_ {V] is a vector of transverse shear components Vx, V

t

I- i
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{£m} is a vector of membrane strain components gx' £y' gxy i
v

(X} is a vector of curvatures ×x' Xy_ _xy _

{y} is a vector of average transverse shear strain 7x, yy
¢

: N

i [A] is a 3 x 3 matrix, _ [Ce] (tk - tk_l)
k=l

_ N 2 2

., [ [2] Js a 3 x 3 matrix, _ [G ] tk - tk-Ie 2

I [D] is a 3 x 3 matrix, _ [G ] tk -i
; _ e 3
| k=l

[G] is a 2 x 2 transverse shear matrix

i [Ge] is a 3 x 3 matrix of elastic coefficients

tk is the distance to the outer edge of plate (or layer in a multilayer

i plate) from reference s_face
tk_ 1 is the distance to the inner edge of plate (or layer in a multilayered

plate) from reference s_face
%,

t* is an effective thlckness for the element

The inplane strain vector at any point is

(E}= (E } -z {×} (53)
m

where z is the distance from the reference surface. The strain energy of the

plate element is

U = _i f [{F}T{g m} + {M}T{x) + (v}T{y}ldA (94)

whe;e the integration is carried out over the surface of %he element. The

, stiffness matrix for the triangular and quadrilateral elements can be

evaluated by the usual procedures (refs. 6 and 81.

_ CONCLUDING R_SMARkS

New triangular elements and associaCed quadrilzteral elements for plate

_, and shell analysis having only displacement and rotations as grid point

i::' degrees of freedom are described in this paper. The examples presented for

plate elements demonstrate that high accuracy is achievable using these

_' '_" elements for practical subdivisions.
|
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I The effect of transverse shear deformations is included in the elcment

formulation. Transverse shear strains vary quadratically within the element;

convergence to the limiting case of zero transverse shear strain is uniform.
The present elements are expected to give better approximatlons than most

displacement model plate bending elements for solving problems where trans-

verse shear effects are significant.

Finally, it is remarked that these elements are ideally suited for

inclusion into general purpose computer programs due to (i) simplicity of

formulation, (ii) use of only displacements and rotations as grid point
degrees of freedom, (iii) high accuracy for practical mesh subdivisions and
(iv) inclusion of transverse shear flexibility in the element properties.

A
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' Figure 3(a).- Quadrilateralelement (QUADI_geometry.
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Figure 3(b).- Quadrilateral element (QUADS)geometry.
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Figure 3(c).- Median plane for quadrilateral element.
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i N-2 N-4 N-6 N-8
P arrangements of triangular element mesh idealization

/1/I, //A
N-2 N-4 N-6 N-$

Q arrangements of triangular element mesh idealization

Figure 4.- Finite element idealization of square plate.
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_, Notation Element Reference i

Shape

": T (_-mesh) Pre.°entpaper i_
P T (P-mesh) Present paper "

_., Q1 Q Present paper i

_, 03 Q Present paper i
ACM R l

HCf T 1 i_

Z T 2

I"

TUBA-6 T 3

_,_- B-2 T (T-18) _,lO {
B-3 T (T-21) h,iO i

} _ C-N T (Q-mesh) 5
' C-P T (P-mesh) 5

NQ Q 7

CFQ Q 9
,,,,,

T - Triangular; Q - Quadrilateral;
R- Rectangular

13.0[,, ',",,Z \,,ACM

L" ".. NQ_',, \\

"'.

EXACT N
COEFFICIENTFOR _ -.-__...... ......

CENTRALO LECT,ON." .."...-"WcD/pL2 C-N /// "// /
1000

11.0[- \ x_.C_P / // "I k.--B-2 // /

/ /
CFQ// HCT/ JL

/ / _
/ /

10.0 I z , , , , I ,
2 4 6 8 1216 _o

NUMBEROFELEMENTSPERSIDE,N

Figure 5.- Simply supported square 1_late: central deflection we
under central point load P.
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Notation Element Reference

_' Shape

N T (Q-mesh) Present paper

P T (P-mesh) Present paper

Q/ Q Present paper

Q5 Q Present paper

ACM R 1
HCT T 1
Z T 2

' TUBA-6 T 3
B-Z T (T-ZP)

i' B-2 T (T-ZS) _,z0
, B-3 T (T-21) 4,i0
} _ C-N T (_-mesh) 5

i' C-P T (P-mesh) 5

_Q Q 7
i CFQ Q 9

T - Trian_lar; Q - _uadrilateral;

i R - Rectan&_lar

i 4.2[ B-1
, ,/-_ Q5

!

, Acr

_ _ o'),. ,, ,

4.0 / ,'
COEFFICIENTFOR L _'v .. - _t" /

CENTRALDEFLECTION, ti / /_ /

-/,, I
wcOlqo'4L 3.9 //

,. 1000 "CFQ ACM///I'NO ,/HCT
3.8- / " I

,_ / / i
.... I I o

• / / l
,-'. 3.7- / / /
• I / II

II I
-Is • l I iJ !

, 3.62 4 6 8 1216 Qo
: , NUMBEROFELEMENI5PERSIDE,N

Figure 6.- Strpl,y supported square plat, e: central cteflection w_

" _mder uniformly distributed load qo"

" 4d2
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Figure 7.- Differentialelement.

Z
(X6,Y6,Z6) 5 (X5,Ys,Z5)

.' (XI,YI.Zi)(X2.Y2,Z2)3 (X3.Y3,Z3)

|/ x
2'" Figure 8.- Curved triangularshell element in basic co-ordinatesystem.

483 , .
o_

III II _,

1974006473-480



; !

' 1

' t

" ! (x6,Y6.Z6)

i 5 (x5,Ys,Z51

: _ z _4 (x4.Y4,Z4)

i 1, 2 3 (x3,yyZ3)
' (xl'Yl'Zl)', : (x2'Y2'Z2) '

, I

I

,''' . /'_'Y Zl=Z3:Z 5
(xI,YI.O) (x3,yyO)f

i ;
' X

i Figure 9.- Curved triengular shell element in local ec-_rdinate system,
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Figure i0.- Mult_iayered plate geometry.
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