
MISSION AND DATA OPERATIONS

IBM 360

USER'S GUIDE

Prepared for

S- a Goddard Space Flight Center
= r- Greenbelt, Maryland 20771

o
NPrepared by

Mr. Jack Balakirsky
Operating Systems Maintenance Section

Goddard Space Flight Center
0 GSFC Code 531.1

S'- and

zUs Computer Sciences Corporation
oCI) 8728 Colesville Road

WWm Silver Spring, Maryland 20910
Het

0

aM 0 July 1973

QLA

oU

-4 H W
n

04 w d0
0 ~



PREFACE

This is a major revision of, and obsoletes, the September 1971 edition of the

M&DO IBM 360 User's Guide. Changes and additions to the text and illustrations

are indicated by a vertical line on the outside margin of the page.

The purpose of this document is to provide a central reference vehicle for
all information relating to the use of the M&DO IBM 360 computer facilities.
While the primary objective is to provide information relating specifically
to the M&DO Mission Operations Computing Center, which may not be found else-

where, there has been an attempt to include sufficient additional information
so that a user may either find the information he needs directly or be referred
to the proper document for more detailed information.

It is also intended that this document be continually updated, as new versions
of the operating system are installed, changes are made to the configuration
and the operating environment; all pertinent information regarding these changes
will be distributed as updates to this document.

The M&DO IBM 360 User's Guide is available to all users of the M&DO IBM 360

computers, including both GSFC and contractor personnel. Readers are encour-
aged to offer suggestions as to the content and organization of the document
so that these may be considered for inclusion in future updates.

This document was prepared from an outline developed by Robert C. Danek of the
Computer Management Branch, Code 531. The document necessarily contains a
considerable amount of information edited from other publications. Appreciation
is extended to the many personnel at Goddard who contributed their expertise in
the development of this User's Guide and especially to Frank J. Pajerski, Jr.,
Code 531.1, for his many suggestions concerning this revised edition.

Jack Balakirsky, Code 531.1
Goddard Space Flight Center
Greenbelt, Maryland 20771
982-6797

PRECEDING PAGE BLANK NOT FILMED

$ii/iv



TABLE OF CONTENTS

Section 1 - Introduction . . . . . . . . . . . . . . . . . . . . . . 1-1

1.1 Purpose................... .... . . 1-1

1.2 Organization of This Document. . . . . . . . . . . . ... . 1-2

Section 2 - Protocol . ... .............. . . . . . . . 2.1-1

2.1 Authorization for Computer Use ........ . . . . . . . 2.1-1
2.1.1 General Discussion . . . . . . ................. . . . 2.1-1
2.1.2 Programmer Identification Code (Programmer ID) . . . . . . 2.1-1
2.1.3 Sponsor Number . . . . . . . . . . . . .. . . . . . . 2.1-1
2.1.4 Program Number ............. .. ...... ... . 2.1-1
2.1.5 Project Numnber . . . . . . . . . . . . . . . . . . . . . . 2.1-2
2.1.6 Category Code . ............. . . . . . . . . 2.1-2
2.1.7 Type of Run Code ............ . . . . . .. . . 2.1-2
2.1.8 CRJE Authorization . . . . . .......... . . 2.1-2
2.2 Approval Requirements for Dedicated Use of Resources . . 2.2-1
2.2.1 General Discussion ................ . . . 2.2-1
2.2.2 User Data Sets ............ . . . . . ... 2.2-1
2.2.3 Private Volumes. . . ... . ............. . . . 2.2-2
2.2.4 CRJE Space Allocation. ......... ......... . 2.2-3
2.2.5 APL Space Allocation . . . . ... ........... 2.2-3
2.2.6 Dedicated Peripherals. ............ .... .. . 2.2-3
2.2.7 Scheduling and Priorities. ....... . . . . . 2.2-3
2.2.8 User Addition to Procedure Library . . . . . . . . .... 2.2-4
2.2.9 Application-Oriented Systems . . . . . . . . . . . .... 2.2-5
2.3 Job Submission Procedures and Operations . . . . . . 2.3-1
2.3.1 Dispatching Stations . . .. ............... 2.3-1
2.3.2 Remote Job Entry (RJE) . ................. 2.3-1
2.3.3 Conversational Remote Job Entry (CRJE) . . . ....... 2.3-2
2.3.4 CRJE/RJE Tape Mounts .... ............. . 2.3-2
2.3.5 Tape Library ... . .. . . .... ....... . 2.3-3
2.3.6 Use of Private Volumes . . . . . . . . . . . . . .... . 2.3-6
2.3.7 Plotter Outputs. . ............. . . ....... 2.3-6
2.3.8 EAM and Related Services . .......... .... . 2.3-6
2.3.9 AUTOPLOW Services. . . . . . . . . . . . . . . . . . . 2.3-8
2.3.10 User Assistance. . . . . . . . . . . . . ... . . . . 2.3-8
2.3.11 Program Library Services ....... . . . . . . . ... 2.3-9
2.3.12 GSFC Manuals Library ........... . . . . . ... 2.3-10
2.4 Other Facilities at the Goddard Space Flight Center. .... 2.4-1
2.4.1 Space and Earth Sciences Computer Center (SESCC)

IBM 360/91K. ................ .. ... . 2.4-1
2.4.2 SESCC 360/75J. . . . . . . . . . . . . . . .. . . . . 2.4-1
2.4.3 Other Supporting Services. . . . . . . . . . . . . . . . . 2.4-1
2.4.4 Other Computers. . . . . ...... ...... ... . 2.4-2
2.4.5 Plotters . . . . . . . ......... ... 2.4-2

v



TABLE OF CONTENTS (Cont'd)

Section 3 - MDO Hardware Facilities . ...... . . . . . . . . . 3.1-1

3.1 General Discussion . ..... . . . . . . . . . . . 3.1-1

3.1.1 Operating System . . . . . . . . . . . . . . . . . . 3.1-1

3.1.2 Control Program. . . . . . . . . . . . 3.1-1

3.2 M&DO IBM 360/95. ....... . . . . . . .. .. . . . . . 3.2-1

3.2.1 Location . .... . . . . . . . . . . . . . .*. . . . 3.2-1

3.2.2 Scheduling and Operations. . . . . . . ....... . . 3.2-1

3.2.3 Hardware Configuration . . . . . ... . . . . . . . . . . 3.2-1
3.2.4 Unit Address . . . . . . .... . . . . . . . 3.2-4

3.2.5 Volume Serial Numbers. . .......... . .... . ... . 3.2-5

3.2.6 Software . . . . . . ... . . . . . . . . . . 3.2-6

3.3 M&DO IBM 360/75 (Cl) . . . . . . . . . . . . . . . . . . 3.3-1

3.3.1 Location . . . . . . ... . . . . . . . . . . . . . . . . 3.3-1
3.3.2 Scheduling and Operations. . . . . . . . . . 3.3-1

3.3.3 Hardware Configuration .. ....... . . . . . 3.3-1
3.3.4 Unit Addresses . . . . . . . . . . . . . ... . . . 3.3-3
3.3.5 Serial Numbers . . . ....... . . . . . . . .. . . . . 3.3-4
3.3.6 Software . . . . . . . . . . . . . . o * . o . . . 3.3-4
3.4 M&DO 360/75 (C2) .. ........ . . . . . 3.4-1

3.4.1 Location . . . . . . . . . . . ... . . . . . . . . 3.4-1

3.4.2 Scheduling and Operations. .. . . . . . . . . . . . . 3.4-1
3.4.3 Hardware Configuration . . ......... . . . . . . o 3.4-1
3.4.4 Unit Addresses .. . ............... . . . . 3.4-3
3.4.5 Volume Serial Numbers. . . . . . . . . . . . . ... . . . 3.4-4
3.4.6 Software . . . . ... ................. . . . . . . 3.4-4
3.5 M&DO IBM 360/65. . . . . . . . . . . . . . . . . .. 3.5-1

3.5.1 Location . . .. . . ................. . . . 3.5-1
3.5.2 Scheduling and Operations. .... ............ 3.5-1

3.5.3 Hardware Configuration . . . . . . . . . . . . .... . 3.5-1

3.5.4 Unit Addresses . . . . . . . . . . . . . . . . . . . . 3.5-3

3.5.5 Serial Numbers . .. . ......... . . 3.5-4

3.5.6 Software . . . . . . . . . . . ....... . . . . 3.5-4

3.6 Peripheral and Accessory Equipment . ........... 3.6-1
3.6.1 Location . . . . . . . ................ . . . . . 3.6-1
3.6.2 IBM 360 Models 20 and 30 . ..... ...... . .. . 3.6-1

3.6.3 CDC 160A ......... . . .......... . . 3.6-2

3.6.4 Honeywell DDP-24/H632. . . . . . . . .... . . . . . 3.6-2
3.6.5 References . . . . .................. . . . 3.6-5

3.7 Unit Characteristics . ................... . 3.7-1

3.7.1 Direct-Access Devices. . . . . . . . ... . . . . 3.7-1

3.7.2 IBM 2400-Series Tape Drives. . . .. .......... . 3.7-3
3.7.3 Other Hardware Components. . . . . . . . . . . . . . 3.7-3
3.7.4 Character Sets and Codes . . . . . . . . . . . . . . . . . 3.7-3

vi



TABLE OF CONTENTS (Cont'd)

Section 4 - Software Status ... . . . . . . . .. . . . . . . . . 4-1

4.1 General Discussion ... .... ........ * ... .. 4-1

4.2 Current Software Status. . ..... . . . ............. 4-1

4.3 Writer News File ...... . * * * * * . . * . . 4-4

4.4 M4DO 360 Computer Bulletin . . . . . . . . . . . . . 4-4

4.5 M&DO 360 Cmputergram. . . . . . . . . . . . 4-4

4.6 GSFC Computer Newsletter . . . . . . .. . 4-4

4.7 Document . . . . . . . . 4-4

Section 5 - Job Set-Up . . ... . . . .............. . ... 5.1-1

5.1 General Information. . . . . . ... . . . . . . . . . . . 5.1-1

5.1.1 Scope of This Section. . . . . . . . . . . . . . . . . . . 5.1-1

5.1.2 Job Submission Slips . . . . . . . . . . . . . . . . . . . 5.1-1

5.2 Job Control Language .. . . . . . . . . . 5.2-1

5.2.1 Purpose. . . . . . . . . . . . . . . . 5.2-1

5.2.2 Operation Considerations . . . . . . . . . . . . . . . . 5.2-1

5.2.3 General Format of JCL Statements . . . . . . . . . . . . . 5.2-2

5.2.4 Job Sequencing . . . . . . . . . . . . . . . . . . . 5.2-3

5.3 Deck Setup . . . . . . . . . . . . . . . . . . . . . 5.3-1

5.3.1 Job Card Format. . . . . . . . . . . . . . . . . . . . . . 5.3-1

5.3.2 Estimating Computer Time . . .............. . 5.3-5

5.3.3 Completion Codes for Insufficient CPU or I/O Job Times . . 5.3-6

5.3.4 Priorities . . . . . . .. . . . . . . . . . . . . . . . 5.3-6

5.3.5 Classes. ..... . . . . . . . ... . . . . . . . . .. 5.3-6

5.4 STEPLIB and JOBLIB Cards ............ . .... . 5.4-1
5.4.1 STEPLIB DD Card. . . . . . . . . .. . . . . . . . 5.4-1

5.4.2 JOBLIB DD Card . . . . . . . . . . . . . . . . . . 5.4-2

5.4.3 Reference. . . . . . ... . . . . . . . . . . . . . . . . 5.4-2

5.5 Execute (EXEC) Card. . ............ . . . . . . 5.5-1

5.5.1 General Discussion ........ . . . . . . . . . . . . . 5.5-1

5.5.2 Executing Programs and Cataloged Procedures. . . . . ... 5.5-1

5.5.3 EXEC Card Parameters . . . . . . . . . . .. . . . . 5.5-2

5.6 The Data Definition (DD) Statement . . . . . . . . . ... 5.6-1

5.6.1 General Discussion . . . . . . ... . . . . . . . . . . 5.6-1

5.6.2 The DD Cards . . . . . . . . . .. . . . . . . . . . . 5.6-1

5.6.3 Continuation of DD Cards ................. 5.6-1

5.6.4 Abbreviations in DD Statements . ............ . 5.6-1
5.6.5 Backward References (*.name.name). . . ........ . . . . 5.6-2

5.6.6 Parameters in the Operand Field of the DD Statement . . . 5.6-3
5.6.7 Defining Data in the Input Stream (DD * or DD Data). . . . 5.6-39

5.6.8 Bypassing I/O Operations on the Data Set (DUMMY) . . ... 5.6-41

5.6.9 Defining the System Output Stream. . ........... . 5.6-42

vii



TABLE OF CONTENTS (Cont'd)

Section 5 (Cont'd)

5.7 DELIMITER and Null Control Cards . ......... . . 5.7-1
5.7.1 DELIMITER Statement. . . . . . . . . . ........ . . . 5.7-1
5.7.2 Null Statement . . . . . . . . . . . . . . . . .. . . . 5.7-1

Section 6 - Standard (IBM-Supplied) Processors . ....... . . . . . 6.1-1

6.1 General. . . . . . .. . . . . . . . . . . . . . 6.1-1
6.2 Language Processors. . . . . . . . . . . . . . . . . . . . 6.2-1
6.2.1 FORTRAN IV ................... ...... 6.2-2
6.2.2 PL/I ........................... 6.2-17
6.2.3 Assembler (F) ....................... 6.2-22
6.2.4 RPG. ... ................ . . .. ...... 6.2-24
6.3 Large Utilities. ....... ............ .. 6.3-1
6.3.1 Linkage Editor .... . . . . . . . . . .. . . . 6.3-1
6.3.2 Loader ....... . . . . . . . . . . . . . . . . . . 6.3-6
6.3.3 Sort/Merge . ... .............. . . . . . 6.3-9

Section 7 - Added Processors .......... . . . . .. . . . . 7.1-1

7.1 General Discussion ...... . . ......... . . 7.1-1
7.2 Boole and Babbage. . . . . . .. . .. . . . . . . . 7.2-1
7.3 FORMAC . ........... . . . . . . . . . . . . . 7.3-1
7.3.1 References .... .. . ............ .... 7.3-4
7.4 GPSS V . . . o. . . . . . . ...... .. . . . . . . . . 7.4-1
7.4.1 GPSS V Applications. ... .. ........... 7.4-2
7.4.2 References ....... .. . .... .... . . . 7.4-2
7.5 Graphics Terminal Service (GTS). . ....... ...... 7.5-1
7.6 Bit-Manipulation Routines .... ... . . . . . 7.6-1
7.7 Continuous System Modeling Program (CSMP). . ....... 7.7-1
7.7.1 General Description of the Program . . . . . . . . ... . 7.7-1
7.7.2 Availability and Required JCL .............. . . 7.7-2
7.7.3 References . . . . . . ....... . . . . . . . . . . 7.7-2
7.8 Simscript 11.5 .......... . ........ .. . . . . . . 7.8-1
7.8.1 Recent Modifications ......... . . . . .. . . . 7.8-1
7.8.2 Availability . . . ..... ... . . . . . .... 7.8-1
7.8.3 References . .... ......... . . . . . . . 7.8-1
7.9 Timing Routines. ........ . ... . . . . . . . . 7.9-1
7.9.1 REMTIM . . . . . . . . . . . . . . . . . . . . . . .. . 7.9-1
7.9.2 ZTIME .... . .. ....... ... ...... .. . . . . . . 7.9-1
7.9.3 TIME . . ...... o ...... ............. . 7.9-1
7.9.4 FTIMIN,FTIMOT and TIMEIN,TIMOUT . . . . . . . . . . . . .. 7.9-2
7.10 Scientific Subroutine Package (SSP). . . . . . . . . . . 7.10-1
7.10.1 Basic Characteristics of the SSP Package . . . . . . . . 7.10-1

viii



TABLE OF CONTENTS (Cont'd)

Section 7 (Cont'd)

7.10.2 Availability . . . . . . . . . .. . . . . . 7.10-1

7.10.3 References . . . . . . . . . . . . . . . . . . . . . . . 7.10-1

Section 8 - System, Processor, and User Libraries. . ..... .. . 8-1

8.1 General Discussion. . . . . . . . . . . . . 8-1

8.1.1 References ...... . ......... . . . . 8-2

8.2 LINKIB . . . . . . * . . . . . . . . . . . . . . . 8-2

8.2.1 References . .. . . . . . . . . . . . . .. . . . . . . . 8-2

8.3 PROCLIB. . . . . . ... . . . . . . . . . * . 8-2

8.3.1 References . . . . . . . . . . ... . . . . . . . . 8-3

8.4 SVCLIB ......... . . . . . . . . . . 8-3

8.4.1 References . . . . . . . . . . . . . . . . 8-3

8.5 MACLIB . ...... . ... . . . . . . . . . . . # 8-4

8.5.1 References . . . . . . . . . . . . . . . . . . . . . . 8-4

8.6 FORTLIB . . . . . . . . . . . . . . . . . . . . . 8-4
8.6.1 References . ........... . . . . . . . . . . . 8-4

8.7 PLILIB . . . . . . . . . . . . . . . . . . . . . . 8-5

8.7.1 References . . . . . . . . . . . . . . .. . . . 8-5
8.8 LOADLIB . . . ........ . . . . . . . . . 8-5

8.8.1 References . . . . . . . . . . . . . . . . . . . 8-6

8.9 TELCMLIB . . . . . . . . . . . . . . . . . . . . . . 8-6

8.9.1 References . . . . . . . . . . . . . . . . . . . . . . . 8-6

8.10 SYSLIB . . . . . . . . . . . . . . . . . . . . 8-6

8.10.1 References . .. . . . . . . . . . . . . . 8-7

Section 9 - Utilities. . . . . . . . . . . . . . . . . . . . . . . 9.1-1

9.1 General . . . . .... .. ..... . . . . . . 9.1-1
9.1.1 Nature of Utilities . . . . . . . . . . . . . 9.1-1

9.1.2 How to Choose a Utility . . . . . . ..... . . . ... 9.1-1

9.1.3 Utility Categories . . . . . . . . . ...... . . . . 9.1-4

9.1.4 Utility Control Statements . . . . . . . . . . . . . . . . 9.1-4

9.1.5 Utility Pecularities . . . . . . . ..... . . . . . . 9.1-5

9.1.6 Notes on Examples . . . . . . . . . . . .... . . .. . 9.1-6

9.1.7 Return Codes . . .. . . . . . . . . . . . . . . . . . . . 9.1-6

9.2 System Utilities . . . . . . . . . ... . . . . . . . . 9.2-1

9.2.1 IEHMOVE . .. . . . . . . . . . . . . . . . . . . . . . 9.2-1

9.2.2 IEHLIST ................... ...... 9.2-7
9.2.3 IEHINITT .................. ...... 9.2-10
9.2.4 IEHDASDR . . . . . . . . . . . . . . . . . . . . . . . . 92-12

9.2.5 IEFBR14 . . . . . . . . . . . . . . . . . . . . . . . . 9.2-12

9.2.6 IEHPROGM . . . . . . . . . . . . . . . . . . . . . . . . . 9.2-13

9.3 Data Set Utilities . . . . . . . . . . . . . . . . . . . 9.3-1

ix



TABLE OF CONTENTS (Cont'd)

Section 9 (Cont'd)

9.3.1 IEBCOPY. . ............. . ......... . . . . 9.3-1
9.3.2 IEBGENER . . . . . . . .......... . . . 9.3-3

9.3.3 IEBPTPCH . ....... . . . .. . .. . . .. . . . . 9.3-6

9.3.4 IEBUPDTE . ....... . . . . . . . . . ... . 9.3-9
9.3.5 IEBDG . ..... ... . . . * . . . . . . . 9.3-14

9.4 Other Utilities . ........... . . . . . . . . 9.4-1

9.4.1 MAPDISK ................... ...... 9.4-1
9.4.2 PATRICK . ........ . . . . . . .. . . . . . 9.4-3
9.4.3 IEBFGR . ............... . . . ..... . 9.4-9
9.4.4 OSSLIP . .................. ....... 9.4-10
9.4.5 Update Utility for Source and Object Files . . . . . . . . 9.4-16
9.4.6 Load Module Map Program (IMBMDMAP) . . . . . . . .... 9.4-17

9.4.7 LISTPDS -- Source Library Utility Listing Program -
Version 6.1 ....... . . . . . . . . . . . ... 9.4-18

9.4.8 PDSUR --- Partitioned Data Set Unload/Reload Utility
Program . .............. . .. . . . . . . . . 9.4-23

9.4.9 CONSEQ . . . ..... . . . . . .. . . . . . . . . .. 9.4-28

Section 10 - AUTOFLOW . ................. .... . 10-1

10.1 Introduction . ............... . .. . . . . 10-1

10.2 General Description . ......... ....... .. 10-1
10.3 AUTOFLOW Job Submission . . . . .. . . . . . . . . . 10-2

10.3.1 Job Submission Slip . . . ................ 10-2
10.4 The Job Card for AUTOFLOW Runs . . . . . . . . 10-3
10.4.1 Required Entries ......... . . . . . . . . . . 10-3

10.5 AUTOFLOW Job Control Cards . . . . . . .. . . . . . . . . 10-4

10.5.1 Cataloged Procedures: ADRFLOW, PPEX . . ... . . . 10-4
10.5.2 ADRFLOW Procedure . . . . . . .. . .. . . . 10-5
10.5.3 PPEX Procedure . . . . . .. . . . . . . . . . . . . . . 10-6
10.5.4 References . .. . . . .. . . . . . . . .. 10-7

Section 11 - OS Executive Features . . . . . . . . . . . . . . . . . 11.1-1

11.1 System View of Data Management . . . . . . . . . . . . . . 11.1-1

11.2 System-Oriented Macros ...... . . . . . .. . . . .. . 11.2-1
11.3 Condition Codes and Completion Codes . . . . . . . . . . . 11.3-1
11.4 Dumps of Various Kinds and How to Get Them . . . . . . .. 11.4-1
11.5 Checkpoint/Restart . . . . . . . . . . . . . . . . . . . . 11.5-1
11.6 ROLL-OUT/OLL- IN . . . . . . . . . . . . . . . . . . 11.6-1
11.7 Supervisor Procedures . . . . . . . . . . . . . . .. 11.7rl
11.7.1 Reader-Interpreter Procedures . . . . . . . . . . . . . . 11.7-1
11.7.2 Initiator-Terminator Procedures . . ........... 11.7-2

x



TABLE OF CONTENTS (Cont'd)

Section 11 (Cont'd)

11.7.3 System Output Writers . .. .. ..... .. . . ..... 11.7-3

Section 12 - Graphics ............. . . . .. .. . . . 12.1-1

12.1 2250 ....... .......... ........... 12.1-1
12.1.1 General Hardware Capabilities ....... . . . . . 12.1-1
12.1.2 Policies and Procedures Governing Use of Graphics -

M&DO 360 Computers . . . ............. . . . . 12.1-2
12.1.3 GTS . . . . . . .......................... . 12.1-4
12.1.4 Graphics Subroutine Package (GSP) . . . . . . . . . . . 12.1-6
12.1.5 Graphic Programming Services (GPS) ........ . . . .. . . 12.1-9
12.1.6 SCOPLT .............. ... . . ...... . 12.1-11
12.2 2260 . ........................ ... . 12.2-1
12.2.1 General Hardware Capabilities . . . . . . . . . . . . . . 12.2-1
12.2.2 Software Support .......... ........ .. . 12.2-1
12.3 Plotters ............ .. ..... . ...... 12.3-1
12.3.1 Stromberg-Carlson 4020 Plotter (SC-4020) . . . . . .. . . 12.3-1
12.3.2 Stromberg-Datagraphics 4060 Plotter . . . . . . . . . . 12.3-2
12.3.3 CalComp 770/780 Plotting System . . ........... . 12.3-4
12.3.4 CPLOT Program ..... ..... ....... . ... . . 12.3-5
12.3.5 PRPLOT Program . . . . . . . . ...................... . 12.3-512.3.6 Wolf Plotting and Contouring Package . . . . . . . . . . . 12.3-6
12.3.7 MARK IV ... .......... .... ...... .. 12.3-8

Section 13 - Remote Job Entry ... ..... . .. ...... . 13.1-1

13.1 General Discussion . . . . . . . . . . . . . . . .... . 13.1-1
13.1.1 Nature of Remote Job Entry (RJE) . . . . . . . ........... 13.1-1
13.1.2 RJE Facilities . .. . . .... . . . . ............... . . 13.1-1
13.1.3 Locations of RJE Terminals ......... ..... . 13.1-4
13.1.4 Computers Supporting RJE . . . . . . . . . . . . . . . . . 13.1-4
13.1.5 Tape Mounts .......... .... . . . . . . 13.1-4
13.1.6 Policy and Restrictions . . . . . . ................ . . 13.1-4
13.1.7 References . . . . . ........... . . .... . . . . . . . 13.1-5
13.2 Operating The' RJE Terminal . . . . ................. . 13.2-1
13.2.1 Operating Guidelines .................... 13.2-1
13.2.2 Punched Output (Model 2 Only) .............. 13.2-3
13.2.3 Operator Attention Alarm . . . . ............... . . . 13.2-3
13.2.4 Error Procedures . .. . . . . ................... . . 13.2-4
13.3 Programming Considerations . . . . ................. . 13.3-1
13.3.1 Code Structure . . . . . . . . . . . . . ... . . . .... 13.3-1
13.3.2 Card Read/Punch . . . .. .......... . . ........ . . . 13.3-1
13.3.3 Printers . . . . . . . . ....................... . 13.3-113.4 Output .. 13.4-113.4 Output• . . . . . . . . . . 13.4-1x

xi



TABLE OF CONTENTS (Cont'd)

Section 13 (Cont'd)

13.5 Use of the IBM 2780 Terminal Off-Line . . . . . . . . . 13.5-1

13.5.1 Normal Stops . . . . . . . . . . . .......... 13.5-2

13.5.2 Hopper Entry ........................ 13.5-2

13.5.3 Stacker Full . . . . . . * * * * * * * * * * * . . . . . 13.5-2

Section 14 - Conversational Remote Terminal Service (CRJE/CRBE). . . 14.1-1

14.1 General Discussion .. . ............ .... 14.1-1

14.1.1 Location of Terminals ... ... .............. .. . 14.1-1

14.1.2 Computers Supporting CRJE and CRBE . . . . . ... ... 14.1-2

14.1.3 Hours of Services ........ . .. 14.1-2

14.1.4 Tape Mounts ... ... ....................... 14.1-2

14.1.5 Nominal Space Allocations . .............. 14.1-3

14.1.6 News Files . . . . . . ....................... * 14.1-3

14.1.7 Assistance ... . . . .................. ..... 14.1-3

14.1.8 References . . .. .. . . . . 14.1-4

14.1.9 CRJE and CRBE Classes . . . . . . . . . 14.1-4

14.2 Programming Considerations . . . .................. . 14.2-1

14.2.1 General Discussion .............. . .. 14.2-1

14.2.2 Line Length ............. ..... . 14.2-1

14.2.3 Return of Output to the Remote Terminal . . . . . . . . 14.2-1

14.2.4 Retrieval of User Data Sets from the CRJE Terminals on

the 360/95 . ..................... . 14.2-2

14.2.5 Editing an OS Data Set .................. 14.2-4

14.2.6 Using a DSLIST . ... . .. . o ................. 14.2-4

14.2.7 Deletion of Sequence Numbers in CRJE Files . . . . . . . 14.2-5

14.2.8 NOTIFY Program Used in Conjunction with CRJE . . . . . . . 14.2-5

14.3 Utilities in CRJE .................... 14.3-1

14.3.1 Building CRJE Files From Decks . ............ . 14.3-1

14.3.2 Listing CRJE Files . . . . . . o .......... ......... . 14.3-1

14.3.3 Punching Selected CRJE Files . ............ .... 14.3-2

14.3.4 Printing Selected CRJE Files . . . . ................ 14.3-2

Section 15 - APL - A Programming Language . . . . .......... 15-1

15.1 General . . ....... . . . . . . . o . . . 15-1

15.2 Libraries . ..... . . . . . ..... .. . 15-2
15.3 Using APL . . ..................... * * * * * * .. 15-2

15.4 Sign-on Procedure - 1050 Type Terminals . . . ....... . . 15-3
15.5 Operator Communication . . . . .. ................ . 15-4
15.6 APL Courses ...................... . 15-4

15.7 Extended File System . . . . ....... .......... 15-5

15.8 MINIPERT Program ... . . ... . . . . . . . . 15-6
15.9 References . ............ . . . ......... . 15-7

xii



TABLE OF CONTENTS (Cont'd)

Section 16 - Memory Usage . . .. . . . . . . . . . . . . . . .. 16-1

16.1 General MVT Considerations ...... .......... 16-1
16.2 Region Parameter .............. . . . . 16-1
16.3 Multi-Stepping. .... ...... .... . .. . . 16-2
16.4 Attach, Link and XCTL Macro Instructions. .. . ... . 16-2
16.5 Overlays ...... . . . . . . . . . . . ...... 16-3
16.6 Memory Hierarchy Support. ....... . . . . . . . .. 16-3
16.7 Memory Trade-offs . .................. . 16-4

Section 17 - Data Management Techniques ...... ... . . . . . 17.1-1

17.1 General Aspects of Data Management ... ...... . . . . 17.1-1
17.1.1 Use of Names .................. .. . . . 17.1-1
17.1.2 Volume States and Attributes. ..... ........ . 17.1-4
17.1.3 Record Formats ............... .. .... . 17.1-8
17.1.4 To Queue or Not to Queue .......... .. . ... 17.1-11
17.1.5 Efficient Use of Channels and Access Mechanisms (SEP

and AFF) ................. ... ... .17.1-12
17.1.6 Data Set Protection ........... .. . . . . . . 17.1-15
17.1.7 Error Options . . . . . . ............ .. . . . . . . . 17.1-17
17.1.8 Generation Numbers .............. . . . . 17.1-18
17.1.9 Gather Write and Scatter READ .. ... ..... . . 17.1-19
17.1.10 Disposition Parameter; Private, Shared, MOD Data Sets . 17.1-20
17.2 Direct-Access Considerations . . . . . . . . . . . . . . 17.2-1
17.2.1 Data Set Organization (DSORG Subparameter) ... . . . . . 17.2-1
17.2.2 Space Determination and Specification (Space Parameter). . 17.2-3
17.2.3 Use of FORTRAN DA Facilities . ....... . . . . . . 17.2-5
17.2.4 Track Overflow ........... . . . . .. .. . . 17.2-9
17.2.5 Multi-Unit Files . . . . . . . . . . . . 17.2-10
17.2.6 Direct Access I/O Package (DAIO) .... . . . . . . . . . 17.2-11
17.3 Tape Considerations .... ....... . .... 17.3-1
17.3.1 9-Track Tapes ............ ... . .. .. 17.3-1
17.3.2 7-Track Tapes . . . . . . . . . . . . . . . . .. 17.3-1
17.3.3 Internal Tape Labels . . . . . . . . . . .. . . . . . . 17.3-1
17.3.4 Multifile Reels, Multireel Files .. . . . . . ... . 17.3-2
17.3.5 Use of the DISP Parameter .. ..... . . . . . . . . 17.3-3
17.3.6 Other Tips for Tape Users ... .... . . . . . . 17.3-3
17.3.7 FTIO (FORTRAN Input/Output) Routines . .. .. ..... . 17.3-5

Section 18 - Machine Independence . . . .... . . 18-1

18.1 Common Configuration Subset . . . . . . . . . . . 18-1
18.2 Physical Transfer of Data Sets . . . . . . . . . 18-1
18.3 Differences in Run Priority Determination and Set-up

Restrictions . . . . . . . . . ... . . . . . . . . . . . 18-3

xiii



TABLE OF CONTENTS (Cont'd)

Section 18 (Cont'd)

18.3.1 Job Stream Manager (JSM) . . . .. . . ................ 18-3

18.3.2 GSFC Job Stream Manager . . . . . ............... . 18-3

18.4 Run Time Estimates for Different IBM 360 Models and

Timing Differences Between LCS and Main Memory . .... . 18-8

18.5 Differences Between GSFC Software and Other
Installations . . . . . . . . . . . . . ...... . 18-8

18.5.1 Job Statement and Accounting Differences . . . . . . . . . 18-9

18.5.2 Procedure Names . . . . . .. . . . . . . . . ......... .18-9

18.5.3 Generic and Derived Unit Names . . . . . . . . . . . . . . 18-10

18.5.4 Job and Module Libraries . . . . . . ............ . . . . 18-10

18.5.5 OS Release Differences . . . .. . . ............... . 18-11

18.5.6 OS Option Differences . . . . . . .. . . ............. 18-11

Section 19 - GSFC Standards . ... . .......... . . ... . ..... . 19.1-1

19.1 Processors and Procedures . . ............ ... . . .19.1-1

19.1.1 GSFC Standard Rules. . . . . .. . . ................ . 19.1-1

19.2 Unit Names . . . . . .. . . . . . . . . . . . . . . . 19.2-1

19.2.1 Generic Unit Names . . . . .. . . . . ................... 19.2-1

19.2.2 Derived Unit Names . . . . . . . ................... . . 19.2-2

19.2.3 Specific Unit Names . . . . . .. . . ................... 19.2-3

19.3 GSFC Standard Cataloged Procedures . . . . . . . . . . . 19.3-1

19.3.1 Compiler Procedures. . . . . ................ ... * 19.3-1

19.3.2 Link-Edit and Execute . . . . . . . ................. .. 19.3-7

19.3.3 SORT .. . . . . . . . . . . * . . 19.3-14

19.3.4 PRNTPROC . . . . .. . . . ......................... 19.3-1E

19.3.5 ADDTOLIB . . . .................. 19.3-1

19.3.6 SAVEPROG . . . . . .................... 19.3-1E

19.3.7 BB . . . . . . . . . . . . . . . .19.3-1"

19.3.8 FAPCON . . . . . . . . . . . . . . . . 19.3-2(

19.3.9 FORMAC ............... ... ... . . 19.3-2(

19.3.10 GPSS V . . . . . . . . . . . 19.3-2(

Section 20 - Conversion Aids . ........ . . . . . . . ... 20.1-1

20.1 Data Statement SIFT Program . . . ...... . . . . 20.1-1

20.1.1 Input/Output . . . . . . . . . 20.1-1

20.1.2 Restrictions . . . . . .. ....... * . . . 20.1-2

20.1.3 References . .. ... ............ . . . . 20.1-2

20.2 FAPCON . . . . ............. . . . . . . . . . 20.2-1

20.2.1 Input/Output . . . . . . . . . . . . . . . . . . .. . . 20.2-1

20.2.2 Processing Capabilities . . . . . . . . . . . . . . . . . 20.2-1

20.2.3 Restrictions . . . . . . . . . . . . . . . . . . . . . . 20.2-2

20.2.4 JCL . . . . . . . . . . . ... . . .* . . . . . 20.2-2

xiv



TABLE OF CONTENTS (Cont'd)

Section 20 (Cont'd)

20.2.5 References ................... .. . .. . 20.2-3
20.3 DEBLOCK/CNVRT Package . ................ . 20.3-1

20.3.1 DEBLOCK Subroutines -- DEFOR, DBDCS, DBFDCS ....... 20.3-1
20.3.2 DEBLOCK Subroutine -- DBGEN . .............. 20.3-1
20.3.3 Subroutine CNVRT ................... . 20.3-2

20.3.4 Subroutine CMPRS . ................. .. . 20.3-3

20.3.5 JCL to use DEBLOCK/CNVRT . ............... . 20.3-3
20.3.6 References . .................. . . . . . 20.3-3
20.4 DATCON ................... .. . . . . . . 20.4-1
20.4.1 Call Statements for DATCON . ............... 20.4-1
20.4.2 JCL for DATCON ................... . . . . 20.4-1

20.4.3 References ................. . . . . . . . . 20.4-2
20.5 TIDY . ................. . .... . . . . . 20.5-1

20.5.1 References . ................. .. ... . 20.5-1

20.6 Other Aids . .................. . . . . . 20.6-1
20.6.1 PK ALTR . ............ ... . . . . . . . 20.6-1

20.6.2 FORTLCP ................... . . . . . . . 20.6-1

20.7 DACUT9 . .................. ... ... .. 20.7-1
20.7.1 Individual Subroutines . ................ . 20.7-1
20.7.2 References ................... .... . 20.7-2

Section 21 - Debugging Facilities . ................ 21.1-1

21.1 Interpreting System Messages . . . . . .......... 21.1-1

21.2 Imprecise Interrupts on the 360/95 and What To Do Next . . 21.2-1

21.3 Error Traceback . .......... ....... . . 21.3-1
21.4 DUMPS ................... ....... 21.4-1

21.5 FORTRAN Debugging and Error Handling . .......... 21.5-1
21.5.1 FORTRAN Debugging Package . ............... 21.5-1
21.5.2 FORTRAN Extended Error Handling . ............ 21.5-1
21.6 TESTRAN . . . . . . . . .. . ........................ 21.6-1
21.7 Printing Data Sets for Debugging . ........... . 21.7-1
21.7.1 Core Dumps ................... .... . 21.7-1
21.7.2 Dynamic Debug Output . .................. 21.7-1

21.7.3 Intermediate Outputs . .................. 21.7-2
21.8 B37s, D37s, E37s ................... .. 21.8-1
21.9 SIGPAC . .. ................ ... . . . . 21.9-1

Section 22 - Overlay Considerations . ............... 22.1-1

22.1 Introduction . ............. . ....... . . 22.1-1

22.2 Definitions ................... .... 22.2-1
22.3 Programming Considerations . ............. . . 22.3-1
22.3.1 General . .................. .... .. 22.3-1

xv



TABLE OF CONTENTS (Cont'd)

Section 22 (Cont'd)

22.3.2 Common Routines and Data . ................ 22.3-1

22.3.3 Overlay Trees ...................... 22.3-3

22.4 Linkage Editor Control Cards . . . . . .......... . . 22.4-1

Section 23 - References ...................... 23-1

Index

xvi



LIST OF ILLUSTRATIONS

Figure

1.2-1 M&DO IBM 360 User'S Guide Reading Plan . . . . . . .... 1-3
3.2-1 Equipment Configuration: IBM 360 System, Model 95 . ... 3.2-2
3.3-1 Equipment Configuration: IBM 360 System, Model 75 (Cl). . 3.3-2
3.4-1 Equipment Configuration: IBM 360 System, Model 75 (C2). . 3.4-2
3.5-1 Equipment Configuration: IBM System 360, Model 65 . ... 3.5-2
3.6-1 IBM 360/20 M&.DO 3.. ............... ... 3.6-33.6-1 IBM 360/20 M eDO . . . . . . . . . . . . . . . . . . . . . 3.6-3

3.6-2 IBM 360/30 M&DO .. . ...... . . . . . . . . .. . . . 3.6-4
6.2-1 Usage of Compiler Data Sets ........ . . . . . . 6.2-12
9.4-1 Entries for Routine Parameter for PATRICK . .. .... . 9.4-5
22.2-1 Example of Tree Structure . .... .. ..... . 22.2-2
22.2-2 Tree Diagram ............. . . . . . . 22.2-3
22.2-3 Tree Diagram . . . . . . . . . . . . . . . . . 22.2-4
22.3-1 Example of a Tree Portion ... . ..... . . .... 22.3-2
22.3-2 Tree Diagram . . . . . . ............. . . . . . . . . 22.3-4

LIST OF TABLES

Table

3.7-1 Direct Access Device Characteristics ..... . . ..... . 3.7-2
3.7-2 Track Capacities . . . ........... . . . .. . 3.7-2
3.7-3 Print Trains in Use on the M&DO 1403 Printers. .... .... 3.7-4
3.7-4 2400 Series Magnetic Tape Unit Characteristics . . . . . . 3.7-5
4.2-1 Available Software on M&DO Computers o o ....... .... 4-2
5.3-1 JCL Statement Sequence ........... .... .. 5.3-1
5.3-2 Job Card Format. . . . ....... ...... . . 5.3-3
5.3-3 Completion Codes . . . o . o ......... ..... . . . 5.3-6
6.2-1 Comparison of S/360 FORTRAN IV, ANSI FORTRAN, 7094

FORTRAN IV, and 1108 FORTRAN V ............. 6.2-4
6.2-2 FORTRAN G Data Sets - DCB Parameters ...... . . ..... 6.2-9
6.2-3 FORTRAN H Data Sets - DCB Parameters . o . . . . . . 6.2-9
6.2-4 Default Options for FORTRAN G and FORTRAN H Compilers . . 6.2-11
6.2-5 PL/I Compiler Optional Data Sets . o o . . . .. . . 6.2-19
6.2-6 PL/I Compiler Optional Data Sets Characteristics . . . 6.2-20
6.2-7 Compiler Options, Abbreviations, and Standard Defaults . . 6.2-21
6.2-8 Assembler F Data Set Characteristics . . . . . . . . 6.2-23
6.2-9 RPG DD Names Required. . . . . . o . . . . . . . 6.2-25
6.3-1 Linkage Editor Design Levels . .. ....... .. . . . . 6.3-2
6.3-2 Linkage Editor ddnames . o o . . . . . . . . o . . 6.3-5
6.3-3 DCB Requirements ........ .... . .. 6.3-5

xvii



LIST OF TABLES (Cont'd)

Table

6.3-4 Input Deck for the Loader (Basic Format) . . . . . . . . . 6.3-8

6.3-5 Input Deck for a Load Job. . . . . . ............... . 6.3-8

6.3-6 Loader and Loaded Program Data . . . . . ............. . . 6.3-8

6.3-7 Summary of Job Control Language Statements for

Sort/Merge . . . . .. . . . . ..................... . . 6.3-10

9.1-1 How to Select a Utility. . . .. ............ . .. ..... 9.1-2

11.2-1 Access Method Macros . . . . . .. . .................. . 11.2-2

11.2-2 Supervisor Service Macros. . . . .. ............... . . 11.2-3

11.7-1 DEFAULT SYSOUT/REGION Space Allocation (in tracks) . . . . 11.7-2

13.1 RJE Commands . . . . . . . . . ...................... . 13.1-6

17.1.2-1 Volume States and Their Characteristics. . . ......... .17.1-5

17.2-1 BLKSIZE Ranges: Device Considerations . . . . . . . . . . 17.2-7

17.2-2 Load Module DCB Parameter Default Values . . . ....... .. 17.2-8

18.1-1 Configuration Summary. . . . . . . . . . . . . .. . . . 18-2

18.3-1 S360/95 Job Stream Manager Class Assignments . . . . . . 18-4

18.3-2 Priority Within a Job Class Queue. . . . . ............ 18-5

18.3-3 Initiator's Order of Searching Job Class Queues. . . . . . 18-7

21.1-1 System Message Prefixes. . . . . .. ................. . .21.1-2

21.3-1 Example of Error Traceback . . . . .. ............... . .21.3-2
21.7-1 Post-mortem Dumps. . . . . . .................... 21.7-1

xviii



INTRODUCTION

SECTION 1

INTRODUCTION

1.1 PURPOSE

Operating System 360 (OS 360) is a powerful control program amply documented -

the manuals produced by IBM relating to OS 360 require more than six feet of
shelf space. It is not the intention of this guide to duplicate IBM's efforts.

Operating System 360 is quite flexible and usually no two implementations of
OS 360 will be the same. It is because of this flexibility that the need
arises for a local User's Guide. (The purpose of this manual is to serve as
an introduction to the M&DO computer systems and to supplement all other rele-
vant documentationto be referenced. Because of its index structure, the user
will be able to reference those sections pertinent to his needs) This is not
a programming manual; where a user needs to learn a language or a system, it
will be necessary to review the referenced documents.

It is intended that this User's Guide be complete (within its scope) and up
to date. Periodic revisions will be made; however, it will be impossible to
maintain the guide completely up to date. To fill the interim, refer to the
M&DO 360 Computer Bulletins and the GSFC Computer Newsletter. Usually, perti-
nent information is also posted in the Programmer Assistance Center (PAC) and
dispatch areas.

1-1



INTRODUCTION

1.2 ORGANIZATION OF THIS DOCUMENT

This User's Guide has been developed, and will be maintained on magnetic

tape through the use of the IBM MT/ST system (a Selectric typewriter with

cassette tape units). It is organized in such a way as to permit updating
without the need to renumber all of the preceding or succeeding pages; that

is, the document is paginated according to two-digit subsections (e.g.,
14.1-1, 14.1-2, etc.). Exception to this occurs in those places where the

subsections are very short. In these cases, more than one two-digit sub-

section may occur on the same page, and the page numbers are relative to

the entire section.

When the document is updated, the new or replacement pages will contain
the date of revision at the top left corner, and any modified lines of

text will be indicated by a vertical line in the outside margin. This

major revision (July 1973) will not contain the date of revision at the

top left corner of each revised page.

To assist the user in locating a particular area of interest in the User's

Guide, several facilities are offered:

1. Table of Contents

2. List of Illustrations

3. Index

4. Chart showing logical groupings of sections in the User's Guide
and interrelationships between them (facing page)

In addition, the upper right hand corner of each page repeats the major

section heading to which it belongs, to facilitate thumbing through the
document.

Effort has been made, through redundancy and cross-referencing, to cover
each area of interest in all contexts to which they are related. Finally,
references to other sources for additional information are given through-
out the text, and in Section 23.

1-2



INDEX

GENERAL INFORMATION SPECIFIC INFORMATION

GSFC

ENVIRON- JCL 5. JOB SETUP
MENT 2. PROTOCOL - 16.2 REGION PARAMETER

3. HARDWARE FACILITIES 16.5 OVERLAYS
4. SOFTWARE STATUS 17. DATA MANAGEMENT
7. ADDED PROCESSORS TECHNIQUES

18. MACHINE INDEPENDENCE 19. GSFC STANDARDS
20. CONVERSION AIDS 22. OVERLAY

CONSIDERATIONS

OS/360 COMPILERS 6.2 LANGUAGE PROCESSORS
SCONSDER- 11. OS EXECUTIVE FEATURES
ATIONS 16. MEMORY USAGE LINKAGE

6. STANDARD PROCESSORS 6.3 LARGE UTILITIES
17. DATA MANAGEMENT EDITOR, LOADER

TECHNIOUES DEBUGGING
21. DEBUGGING FACILITIES

UTILITIES
9. 

U T IL IT IE S  
8. USERAND

6.3 LARGE UTILITIES PROCESSOR LIBRARIES
7. ADDED PROCESSORS

GRAPHICS
12.1 2250

12.2 2260

12.3 PLOTTERS

REMOTE
13. RJE

TERMINAL 14. CRJE/CRBE
SYSTEMS 15. APL

AUTOMATIC

FLOWCHARTING 10. AUTOFLOW

23 REFERENCES



PROTOCOL

SECTION 2

PROTOCOL

2.1 AUTHORIZATION FOR COMPUTER USE

2.1.1 GENERAL DISCUSSION

All programmers must use identifying accounting information when submitting

jobs to be run on GSFC computers. This information must be punched into the

JOB card (Subsection 5.3) and indicated on the Job Submission Slip (Subsec-

tion 5.1) when computer time is desired. A document (X541-69-379) issued by

the GSFC Computer Services Section outlines the details for completing the

registration form required of potential computer users. Copies can be

obtained from Mr. Gerald R. Quigley, GSFC Building 3, Room 162, Extension 4923.

The following paragraphs describe the accounting information required in the

JOB card and Job Submission Slip.

2.1.2 PROGRAMMER IDENTIFICATION CODE (PROGRAMMER ID)

Format: ooiii

The first two characters identify the organization code; the last three are
the programmer's initials. If the programmer has only two initials, or if
another user has the same initials, the third character in the code will be a
numeric digit.

2.1.3 SPONSOR NUMBER

Format: ssxxx

The first two characters identify the sponsor; i.e., the organization for
whom the computer use has been authorized. The last three digits identify
the specific problem being solved for that organization.

2.1.4 PROGRAM NUMBER

Format: pppppp

This six-character number identifies a particular program or system of pro-
grams, and is used by the GSFC Computer Program Library to register any pro-
gram offered. Refer to paragraph 2.3.11 of this User's Guide for details on
the function of the Library.

2.1-1



PROTOCOL

At the time a new programming effort is initiated, it is the responsibility
of the programmer (or his sponsor) to obtain a program number from the
Library, Extension 2186 or from a computer manager.

2.1.5 PROJECT NUMBER

Format: pppp

This four-digit code identifies the individual spacecraft or experiment with
a given program. (Refer to Document X-541-69-379 for a detailed description).

2.1.6 CATEGORY CODE

Format: c

This one-digit code identifies the type of work being processed. The cate-
gories are described in detail in Document X-541-69-379 and are summarized
below:

Code Title

1 Scientific and Engineering
2 Data Reduction
3 Mission Control
4 Simulation
5 Administrative

2.1.7 TYPE OF RUN CODE

Format: t

This one-digit code identifies a run as test (T), production (P), or an
extended code for rerun and downtime (refer to Document X-541-69-379 for
a detailed description).

2.1.8 CRJE AUTHORIZATION

Use of the Conversational Remote Job Entry (CRJE), which provides remote access
to the IBM 360/95 system, requires registration with the Computer Services
Section, GSFC Building 3, Room 103, Extension 6781. An applicant must have
a programmer ID and sponsor number and must attend the CRJE seminar, or show
a proficiency in RITS or CRBE before he will be authorized as a CRJE user.
After his application is approved, he may then use any of the terminals,
identifying himself by his programmer ID, password, and sponsor number.

2.1-2



PROTOCOL

2.2 APPROVAL REQUIREMENTS FOR DEDICATED USE OF RESOURCES

2.2.1 GENERAL DISCUSSION

The IBM 360/95 is the M&DO general support computer. Although all systems
are available to any authorized user, the Model 65 and Models 75 are devoted
almost entirely to their assigned projects and have little time available.

All computer facilities are operated on a limited access basis. The respon-
sibilities for scheduling, operation, and maintenance of this equipment and
supporting services are assigned to specified personnel and provided as a
service to authorized users. Except for certain designated locations, access
to the areas occupied by the equipment and supporting functions is limited
to operating and management personnel assigned the responsibility of operat-
ing the facility. Users of the computing service, i.e., programmers and
experimenters, are allowed access to these facilities only when the nature
of their requirement is such that it cannot be satisifed by the normal opera-
tional mode. In such a case, special arrangements for access must be made
with the GSFC computer manager. Mr. Harry G. Bitting, Building 3, Room 130,
Extension 6886, is the computer manager for the 360/95, 360/75's, and 360/65.
Unauthorized personnel are not permitted to operate any part or component of
the computers or other support equipment, as designated personnel are assigned
this task.

2.2.2 USER DATA SETS

The Model 95 has nine scratch packs (VOL=SER=GlSCRI through VOL=SER=-GSCR9)
permanently mounted for the storage of temporary user data sets. A tempo-
rary data set is one which exists only for use within a job and which will
be deleted upon completion of the job. To assign a temporary name, code
the keyword parameter DSN=&name or DSN=&&name in the DD card. Replace the
term name with any 1- to 8-character name not used by another temporary
data set in the job. To assign the data set to one of the scratch packs,
code the keyword parameter UNIT=DISK, and the system will assign the data
set to a scratch pack having the amount of requested space available.
The DISP parameter on the DD card should be coded as DISP=(NEW,DELETE) or
DISP=(NEW,PASS,DELETE) if the data set is to be used in a subsequent job
step. The use of temporary data sets is strongly encouraged, since it
frees space for use by other users after the job has been completed.

It is, of course, essential for users to have the capability of retaining
their data sets on-line from one day to the next or for an indefinite period
of time. The computer manager has made a provision for this by allocating
on-line storage for user data sets on the Model 95. Currently, two 2316
disk packs (VOL=SER=GlUSR1, VOL=SER=GlUSR2) and two 3021 bins on the 2321
data cell (VOL=SER=GlUSR3 and VOL=SER=GlUSR4) are allocated for this purpose.
Because of the limited nature of these resources, procedures have been estab-
lished to control their use. All data sets placed on the user packs must
conform to the standards adopted by the GSFC OS/360 Software Standards
Committee.

2.2-1



PROTOCOL

* Data sets must be named in the form

Xn.USRID.SPONS.NAME

where Xn is the 2-character machine station code,
e.g. GI, M2, K3, HI, etc.

USRID is the 5-character user identification.
SPONS is the 5-character sponsor identification.
NAME is any name consisting of 1 to 8 characters.

Example: Gl.GA2AG.GA004.MONORC

* Secondary extents may not be specified.

* Data sets allocated prior to March 1, 1972, may retain the previous
standard naming convention:

xx.yyyyy.zzzzzzzz

where:

xx = System Designation (360/95 = G1)
yyyyy = User Identification (e.g., G3GRQ)
zzzzzzzz = Optional Identification (e.g., MYSET1)

Data sets which do not conform to the above conventions will be
eliminated without further notice.

* All allocations of user storage areas will be made only with
the knowledge and approval of the computer manager. All such
requests should be forwarded to the computer manager with a
written explanation of the action desired. Unapproved alloca-
tions will be scratched without prior notice to the owner of
the data set.

* On the first working day of each month, users will receive a
memorandum listing the data sets that are available on the user
packs. Users must indicate the disposition of each data set
and return the memorandum to the computer manager. Failure to
return the memorandum within one week will result in the user's
data sets being scratched.

2.2.3 PRIVATE VOLUMES

A request for a disk pack or data cell must be made in writing by the sponsor -
not the individual programmer - and approved by the Chief of the Mission
Operations Computing Center. The programmer presents the approved request to

2.2-2



PROTOCOL

the Computer Services Section. Building 3, Room 103, where the packs and cells

are dispensed. Disk packs and data cells are issued with the manufacturer's

number, a permanent GSFC number, and a temporary volume label. The label

contains a code representing the organization, user, and job. The device
is identified by this code until it is returned and re-issued under a different
label. Once issued, the devices are stored in the vicinity of the computer
room under controlled conditions. Requests for moving the device from
one system to another will be honored, but prior permission should be obtained

from the computer manager. A device may be removed from the Building 3 area

by obtaining permission from the computer manager and by completing a
"charge-out" card. These devices are accountable equipment and are the
responsibility of the Mission Operations Computing Center.

2.2.4 CRJE SPACE ALLOCATION

After receiving authorization to use CRJE (see Paragraph 2.1.8), a user will
have allocated one cylinder (20 tracks) of space. This space will be on one
of two 2316 packs - either GICRJ1 or G1CRJ2. Refer to Paragraph 2.3.3 for
detailed information on CRJE services and hours of operation.

2.2.5 APL SPACE ALLOCATION

Each user of the 360/95 APL system is given 10 work spaces in which to SAVE
his functions or data. Each work space has a length of 36,000 bytes. Un-
like the CRJE or CRBE user libraries, the APL user work spaces are not
partitioned data sets; rather, they are structured together internal to the
APL system. They are not readily distinguishable by anyone other than the
user of the work space, and then, only when the work space is being used
through APL. A backup to the APL system (including a daily dump of user
work spaces) is maintained in the event of APL disk failure.

2.2.6 DEDICATED PERIPHERALS

One of the prime functions of OS 360 on the M&DO computers is to utilize
efficiently all available system resources in order to maximize throughput
and minimize turnaround time. The moment that any peripheral device (e.g.,
disk drive, tape drive, printer) is dedicated to an individual user's job, the
system operates much less efficiently. Hence, the use of dedicated periph-
erals is discouraged, and requests for the use of dedicated peripherals
should only be submitted when required for a launch or other emergency
circumstance. All such requests must be submitted in writing to the com-
puter manager.

2.2.7 SCHEDULING AND PRIORITIES

Scheduling of the computers is under the control of the Computer Services
Section, Mission Operations Computing Center. A schedule is issued weekly,
indicating blocks of time for specific Divisions and/or programmers. The

2.2-3



PROTOCOL

normal processing of a job is accomplished without obtaining a priority and
is run in log number order, within the scheduled block of time for "general
support".

Generally, individual jobs requiring more than 15 minutes CPU or I/O time
will be retained for the night shifts to process. The exception to this would
be priority or programmer-present work, operating within the scheduled block
time. For convenience and speed in processing, IBM 360/95 jobs may be batched
together and loaded onto tape off-line, utilizing the IBM 360/30. This action
eliminates much of the card handling and setup time that would be required to
process individual jobs on the computer. Similarly, the processed output may
be stacked on one or more tapes for listing off-line.

Once a job has been entered into an M&DO computer, an addition to the operating
system, known as the Job Stream Manager, further classifies jobs and establishes
priorities. Each job is automatically assigned to one of 25 classes (A-O, Q-Z)
on the basis of the amount of memory (REGION size) and the number of tape drives
required by the job. Numeric classes 0 through 9 are used for such programs as
ADL, CAIRS, and 2250 and 2260 graphics-type terminal systems. They are also
assigned as needed during satellite launches and under other special conditions.
The Job Stream Manager uses the estimated run time as the basis for the assign-
ment of priorities, with shorter runs being processed first. On the M&DO com-
puters, the priority (PRTY=) and class (CLASS=) parameters on the JOB card are
ignored if they are present.

2.2.8 USER ADDITION TO PROCEDURE LIBRARY

The use of cataloged procedures (refer to the IBM Job Control Language Reference
(GC28-6704) manual) can considerably simplify the execution of many programs.
Due to space limitations,the following conditions must be met before procedures
can be placed in the 360/95 user PROCLIB (DSNAME=SYS2.USERPROC):

a. The procedure must be necessary for the execution of a user pro-
gram. Procedures for compilations, assemblies, or link edits may
not be entered.

b. The procedure must be checked out.

c. The procedure must be at least 15 cards, or it can be any size
if it is used at least five times per day.

d. A written request accompanied by a listing of the procedure and
the deck necessary to update SYS2'.USERPROC must be submitted to
the IBM 360/95 computer manager before space allocation can be
granted. Subsequent updates to previously approved procedures
must also follow the above rules.

2.2-4



PROTOCOL

2.2.9 APPLICATION-ORIENTED SYSTEMS

There are many specialized programming systems in use by the M&DO which are
utilized by particular groups of individuals, but which are not for use by
the general public. These processors are programs or series of programs
designed to perform a particular function and assist particular projects.
The following are examples of such processors.

2.2.9.1 Computer-Assisted Interactive Resource Scheduling (CAIRS)

This system assists the Operations Center branch in the control, production,
and scheduling of the tracking and data acquisition stations in support of
scientific satellite missions. The CAIRS system is utilized continuously
throughout the day, and hence is resident on two 2316 disk packs permanently
mounted on the Model 95. CAIRS is written in Assembly Language and PL/1
and functions on a real-time basis from remote terminals. Users requiring
more information about the CAIRS system should contact Mr. Carl E. Gustafson,
Code 512, Extension 4939, or Mr. Robert H. Adams, Code 512, Extension 4938.

2.2.9.2 Definitive Orbit Determination System (DODS)

This system is designed to meet the orbit determination needs and to support
tracking prediction operations associated with scientific and applications
spacecraft programs of NASA and the space community. The primary purpose of
DODS is to compute orbits of various satellites for surveillance and research
at GSFC, and includes a number of data processing functions to make this com-
putation as automatic and effortless as possible. DODS operates on either
the Model 75 (Cl) or Model 95. Users requiring more information on DODS should
contact Mr. Paul Shapiro or Mr. Kenneth E. Lehtonen Code 571, Extension 2589.

2.2-5



PROTOCOL

2.3 JOB SUBMISSION PROCEDURES AND OPERATIONS

2.3.1 DISPATCHING STATIONS

2.3.1.1 General Processing Flow

The initial step in processing a computer work unit for the Models 75 and

95 is the submission of a computer job to the Dispatch Station in Building 3,

Room 167, Extension 6733. The jobs for the Model 65 are submitted to the

Dispatch Station in Building 14, Room S4, Extension 2195. The submission

must be accompanied by the proper forms and instructions, program and data

decks, if required, and all tape files which are not in the tape library
associated with the operation. The work must be identified by an authorized

programmer identification code.

Personnel at the Dispatch Station will examine the submission to determine

that required forms, instructions, and data are provided. If the submission

is determined to be incomplete, it will be returned to the requester immedi-

ately; if it is complete, it will be logged and processed. After processing,
the appropriate input and output items are placed in the user's output box.

2.3.1.2 Problem Report

If it is felt by the programmer that his work has not been properly processed

a Problem Report form is available at the Programmer Assistance Center, Build.

ing 3, Room 133A, Extension 6768, (see Paragraph 2.3.10.1) to indicate the

problem. The Problem Report form is self-explanatory.

2.3.1.3 Messenger Service

Users need not go directly to the Dispatch Stations to submit jobs. GSFC

maintains a messenger service which will pick up and deliver jobs to remote
locations, both at GSFC and off-site. The locations serviced and hours of

delivery are posted at the dispatcher's office, or they may be obtained by

calling Extension 6733.

2.3.2 REMOTE JOB ENTRY (RJE)

2.3.2.1 Job Submission

RJE services are normally available on the IBM 360/95 between the hours of

8 A.M. to 8 P.M., Monday through Friday, excluding holidays. RJE may not
be available if the 360/95 is being used to support a launch. Refer to
Section 13 of this User's Guide for detailed information concerning job sub-
mitted via RJE.

2.3-1



PROTOCOL

2.3.2.2 Output Routing

The output from a job submitted via RJE may be directed to the user's work
station, to an alternate user, or to the system output writer for delivery
through the Dispatch Station. Refer to Section 13 of this User's Guide for
detailed information on the capabilities and uses of RJE.

2.3.3 CONVERSATIONAL REMOTE JOB ENTRY (CRJE)

2.3.3.1 Hours of Service

CRJE services are available on the IBM 360/95 from 8 A.M. to 8 P.M., Monday
through Friday, excluding holidays. CRJE may not be available if the 360/95
is being used to support a launch. During nonscheduled hours, CRJE will be
made available within 30 minutes after a request is received. Calls should
be made to the shift leader on extension 5820.

2.3.3.2 Output

The printed results of a run can be obtained either from the 1403 printers
located at the 360/95 (SYSOUT=A), at the user terminal (SYSOUT-R), or a
combination of the two. Consult Section 14 of this User's Guide and the
Conversational Remote Job Entry User's Guide (GC30-2014) for complete details.

2.3.4 CRJE/RJE TAPE MOUNTS

Jobs submitted to the IBM 360/95 via CRJE or RJE which require the mounting
of specific tapes cannot be processed unless these tapes are readily avail-
able in the machine area. In order to insure proper handling of such jobs,
the user must include the tape numbers in the VOLUME=SER= fields of the
appropriate DD statements of the submitted job.

Jobs which call for specific tape mounts will be CANCELED if the required
tapes are not in the machine room. If output tapes are to be retained, they
must be supplied beforehand. Scratch tapes may be used without notifying
the dispatcher. However, they will not be saved after the completion of a
job. When a job requires the use of a scratch tape, simply omit the VOLUME
parameter from the DD card.

Private volume disk packs or data cells may be referenced only if it is
known that the required volumes are already mounted according to a predeter-
mined schedule. CRJE or RJE initiated mount requests for private volume
direct access devices will not be honored.

Jobs submitted through the dispatcher that request the mounting of private
volumes will be held until the volumes are scheduled to be mounted.

2.3-2



PROTOCOL

2.3.5 TAPE LIBRARY

The function of the Magnetic Tape Library is to issue, receive, and release

magnetic tapes for use in the M&DO 360 computer complex.

The various jobs submitted for processing may require a tape from the tape
library as input, and the resultant output may need to be filed. A Perma-
nent Save Tape Label is submitted by the user/programmer to the tape library
with the job and contains all the pertinent information concerning the tape,
with the exception of the tape number, which is supplied by the tape librar-
ian or the operator. This card is in two parts: one part is applied to the
tape as a label, the other is sent to the Keypunch Section for punching into
a permanent file card.

Remote users of the 360/95 no longer have to call in their tape requirements,
since the tape library is now located in the 360/95 area. New output tapes
to be saved, however, should be supplied beforehand.

On the other M&DO 360 computers, magnetic tapes are obtained from the library
by the operator or dispatcher as the work is being prepared for the computers.
Remote terminal users must telephone the tape library to request that a tape
be placed in the appropriate computer area prior to submitting a job calling
for that tape.

2.3.5.1 Tape Library Procedures Now In Effect

1. The basic retention period for "SAVE" tapes is 60 days. At the end
of the 60-day period the "SAVE" tape will be released unless action
is taken by the tape's originator. Options available are as follows:

a. Permit release of tape.

b. Extended retention (an additional 60-day period). Request
must be signed by originator's GSFC Branch Office or equiva-
lent, and approved by computer manager. (See Subsec-
tion 2.3.5.2.)

c. Withdrawal of tape from library. Request must be signed by
originator's GSFC Branch Office or equivalent. This trans-
fers future custody of the tape to that Branch who may store
it in their own facility, send it to remote storage (see
GMI 2430.2) or release the tape back to the library when it
is no longer needed. (See Subsection 2.3.5.2.)

NOTE: The library no longer sends user tapes to remote storage.

2. Blank tape will not be issued by the tape library. Users wishing
to retain output tapes will be required to submit the tape with

2.3-3



PROTOCOL

the job. Blank tape may be obtained from center stock by submitting
through proper channels a form number GSFC 20-7, Stores Stock Requi-
sition. The stock number for new 1600 BPI tape is 7440-130-3273 and
is issued in lots of one. The Stock No. for rehabilitated tape cer-
tified at 1600 BPI is 7442-R22-4444 and comes in cartons of ten tape.

3. Tape may be withdrawn from the active library by the tape's origin-
ator for the purpose of using it on other Center computer systems.
(See Subsection 2.3.5.2.) These requests must be made in writing
and must not exceed 30 days. Failure to return tape at the con-
clusion of the specified 30-day period will cause the tape to be
transferred to the custody of the withdrawing individual.

4. Custody of all tape now in remote storage has been transferred to
the originator's sponsor.

5. Non-library tapes submitted for processing with jobs will not be
held at the computing facility but will be returned with the com-
pleted job.

2.3.5.2 Tape Library Forms

MOCC PERMANENT TAPE WITHDRAWAL RECEIPT

DATE _ TAPE NUMBER

REQUESTOR'S NAME

CODE TELEPHONE

BRANCH APPROVAL

CODE TELEPHONE

COMPUTER MANAGER APPROVAL

DATE

2.3-4



PROTOCOL

MOCC EXTENDED TAPE RETENTION REQUEST

PLEASE EXTEND THE RELEASE DATE OF THE FOLLOWING LIBRARY TAPES AN ADDITIONAL 60 DAYS.

TAPE NO. DATE

TAPE NO. DATE

TAPE NO. DATE

TAPE NO. DATE

TAPE NO. DATE

REQUESTOR'S NAME

CODE TELEPHONE

BRANCH APPROVAL

CODE TELEPHONE

COMPUTER MANAGER APPROVAL

DATE

M&DO LIBRARY TAPE WITHDRAWAL RECEIPT

TAPE NO. DATE WITHDRAWN

DATE TO BE RETURNED

TEMP. LOCATION OF TAPE DATE RETURNED

NAME OF BORROWER

GSFC CODE CONTRACTOR NAME

PROGRAMMER ID TELEPHONE

SIGNATURE OF BORROWER

2.3-5



PROTOCOL

2.3.6 USE OF PRIVATE VOLUMES

During daytime operations (8 A.M. to 8 P.M.), 23 of the 24 disk drives avail-
able on the IBM 360/95 have permanently mounted packs. The remaining one is
normally reserved for private user packs, such as ATSPAK, DOTTE1 and DOTTE2.
The mounting of private disk packs and data cells could reduce the efficiency
of normal operations and is not encouraged.

2.3.7 PLOTTER OUTPUTS

There are several types of plotters available at GSFC for use by qualified
personnel. -Programs run with the appropriate JCL will produce output tapes
which may then be used on the desired plotter to furnish the necessary plots.
Plotters are discussed more fully in Paragraph 2.4.5.

2.3.8 EAM AND RELATED SERVICES

Computer Sciences-Technicolor Associates (CSTA), a GSFC contractor, is respons:
ble for computer operations, dispatch service, the tape library, keypunching,
and all EAM related services.

2.3.8.1 Card and Tape Processing Services

Two computers, an IBM 360/20 and 360/30, are available around-the-clock for
card and tape processing services. The user need not prepare any control or
JOB cards, but must complete a request slip (available in the Dispatch Sta-
tion Building 3, Room 167, Extension 6733) indicating the service he wants
performed and the density, mode, and DCB information for any tapes being
used.

The Model 20 services provided include sorting, sequencing, interpreting,
duplicating (up to four copies at once), reformatting, and printing card
decks. It can also be used to convert 026 (BCD) punched cards to 029
(EBCDIC) cards and vice versa.

The Model 30 services provided include tape-to-print, tape-to-tape, tape-
to-card, card-to-tape, and dumping a 7- or 9-track tape of any standard
mode with 200, 556, or 800 BPI density. Nine-track tapes cannot be copied
to another 9-track tape, as only one 9-track tape drive is available. Seven-
track tapes may be copied to either 7- or 9-track tapes. The Model 30 can
be used for both blocked and unblocked tapes, but users must indicate the
block size and logical record length on the request slip.

2.3.8.2 Keypunching Services

A variety of keypunching services are provided to GSFC personnel in support
of work directed to and through the large-scale computers. All work is key-
punched and verified in sequential order, unless a priority or express run is
specified.

2.3-6



PROTOCOL

~L1 work submitted for keypunching must be logged through the central dis-

>atcher. A log number will be assigned to the job and the job will then be

lorwarded to the Keypunch Operation. Completed work will be returned to the

)ispatch area, where it may be retrieved by the submitter after it has been

Logged out.

Nn express submittal is defined as a job containing 25 cards or less to be

ceypunched and/or verified. A priority submittal can be of any length and

the priority assigned is a function of the importance of the job. This pri-

Drity may come from the Computer Services Section or from the CSTA Supervisor

)f the Operations Department. All keypunching work is verified as a standard

?ractice. Normally, this verification is accomplished by an operator other

than the one who has keypunched the job.

ll work submitted for keypunching must be coded on standard coding forms,
such as those for FORTRAN, Assembler Language, or Eighty Column General Pur-

pose. All entries on the coding sheets must be printed. Handwritten requests

will be returned without being punched. Submitters are requested to erase

any errors thoroughly - do not scratch through. Proper columns and spacing
should be indicated. Requests for rearrangement of cards cannot be accom-

modated. All jobs will be keypunched and returned in the same order as they

appear on the coding sheets. The EAM work request has provisions for indi-

cating a sorting operation, and jobs requiring a rearrangement of cards may
be handled in this way.

To avoid confusion, the following conventions have been established in coding

forms at GSFC:

LETTERS: I, O, 9
NUMBERS: 1, 0, 2

2.3.8.3 Notes on IBM 026/029 Card Punches

There are two types of keypunches available to users: the IBM 026 Printing
Card Punch and the IBM 029 Card Punch. The IBM 026 is controlled by a pro-

gram card and by the keyboard switches and keys. The program card controls
automatic skipping and duplicating, field definition, and alphabetic shifting.
The IBM 029 has a two-program card which can be alternated at will either be-

tween punched cards or in the course of punching a single card. The IBM 026

has a 48-character keyboard for punching data in BCD format. The 64-charac-

ter keyboard on the IBM 029 is intended for punching data in EBCDIC. The
card codes produced by these keypunches are discussed in paragraph 3.7.4.3

2.3.8.4 Report Finishing

Report finishing includes the decollating, reproducing, and binding of com-

puter printouts. This service is available 24 hours per day. The decollator

separates multiple-ply printouts from their carbons and refolds them individ-

ually. The removal of margins is optional. Since only the first four copies

2.3-7



PROTOCOL

of computer printouts are legible, copies in excess of four are made on the
Xerox 2400. Document binding may take one of two forms. A continuous listing
is glued along the top edge and secured between front and back covers. Side-
edge glueing is feasible only with single-sheet listings reproduced on the 2400.

2.3.9 AUTOFLOW SERVICES

AUTOFLOW is a proprietary software system of Applied Data Research, Inc.,
that automatically translates the source language of a program into flow-
charts, and then prints them out on the printer. The programmer may choose
to have his flowchart put on an output tape for later use.

AUTOFLOW can assist in debugging a program by means of a flowchart in the
early stages of the program, or can provide final documentation. Accompany-
ing the flowcharts are tables of contents and cross references; tables of
diagnostic messages pointing out program-logic errors, syntax errors, miss-
ing references, etc.; and an optional listing of the source program.

In addition, AUTOFLOW has special features that enable the programmer to
adjust details in the flowcharts by means of additional coding. Since AUTO-
FLOW makes use of program comments in the flowcharts, generous use of com-
ments in the program results in more meaningful flowcharts.

AUTOFLOW accepts as inputs either decks or tapes in COBOL, FORTRAN, PL/1, or
assembly language for the S/360, and assembly language or FORTRAN decks or
tapes for CDC 3200, DDP 224, XDS 930, and Univac 1108 computers. AUTOFLOW,
and its preprocessor for computers other than the S/360, follows all the
rules in the programming manuals of the particular computer being flowcharted.

See Section 10 for a more detailed description of AUTOFLOW.

2.3.10 USER ASSISTANCE

Goddard Space Flight Center utilizes both Government employees and contractor
personnel to provide individual programmers and users with the best assistance
possible.

2.3.10.1 Programmer Assistance Center (PAC)

Five programmers are on duty in the Programmer Assistance Center, Building 3,
Room 133A, Extension 6768, from 8 A.M. to 4:30 P.M., Monday through Friday,
to provide users with error analysis and correction. Users will be requested
to complete a Computer System Problem Report while one of the programmers
examines the user's problem. To aid the programmer, users should request
a SYSUDUMP dump for the job steps which terminate abnormally.

The personnel in the PAC will also provide operational assistance for users
unfamiliar with the 360 Operating System, Job Control Language, or GSFC stan-
dards and procedures. The function of the PAC has been expanded recently to

2.3-8



PROTOCOL

include aiding the programmer in the optimization of his program. This can

be done through the better allocation of resources, reduced CPU and I/O time,

lower memory requirements, etc. Those interested in having a more efficient

program should contact the PAC on extension 6768. Information concerning the
optimization of source code is contained in Subsection 7.2.

2.3.10.2 CRJE/APL Assistance

Users with problems related to CRJE or APL should contact the PAC.

2.3.10.3 GSFC Systems Programmer Assistance

The GSFC systems programmers are not available for general assistance. All

matters related to programming and system difficulties should be directed

to the programmers in the PAC. If the individuals on duty are unable to

resolve the question satisfactorily, they will consult with the GSFC Techni-

cal Representative, who will determine if a GSFC systems programmer should
be consulted.

2.3.10.4 Field Engineer Assistance

No user, whether a Goddard or a contractor employee, may contact the Field
Engineers directly. Any problem which is caused by a hardware failure must
be brought to the attention of the computer manager or the PAC programmers.

2.3.11 PROGRAM LIBRARY SERVICES

The Goddard Space Flight Center has established a Computer Program Library,

a repository for computer programs and related documentation generated by
and for GSFC. As such, the GSFC Computer Program Library is a center for

the collection, storage, and retrieval of all computer programs, systems,
subroutines, and their attendant documentation. This library also has access
to programs and documentation from sources outside the Center. In establish-
ing this library, the GSFC has several objectives:

* Avoid duplication of effort

* Reduce programming time

* Reduce programming cost

A means toward achieving these objectives is to make previously programmed
material more widely available. Although previous efforts may not have ful-
filled current needs, access to techniques employed by other programmers is
often helpful in shortening the time required for new developmental activities.

GSFC Report X-540-69-107 describes the functions and activities of the Pro-
gram Library in greater detail. A copy of this may be obtained from Mrs.
Pat Barnes, Code 532, Extension 6796.

2.3-9



PROTOCOL

2.3.12 GSFC MANUALS LIBRARY

2.3.12.1 Location, Hours of Service, and Approval Requirements

GSFC maintains a manuals library where Government personnel may obtain copies
of computer manufacturers' manuals and related forms. This service is also
available to contract personnel when their contract stipulates that GSFC will
supply computer manuals. Manuals may be obtained by completing a Goddard
Space Flight Center Technical Manual Request, form 540-20 (6/70), and obtain-
ing the approval of the responsible Division Chief.

The Library is located in Building 16 Annex, Room 115, which is most easily
reached from the rear entrance (the end of the Annex that faces Building 16).
Library hours are 8 A.M. to 4:30 P.M. daily. Requisitions will be filled
from stock on the shelves or will be ordered. Users may telephone the
Library, Extension 4672, to obtain additional information.

2.3.12.2 Types of Manuals Stocked

In general, supplies include those items needed by users of Goddard computers,
and include the following types of publications:

* Manuals on IBM S/360 computers

* Manuals on IBM 7090/7094 computers

* IBM coding forms

* Other items, such as the SD4060, CalComp and Gerber plotter
manuals.

The Librarian maintains a current bibliography of manuals at the desk, so
that users can check titles and current revision dates of manuals requested.

2.3-10



tOTOCOL

4 OTHER FACILITIES AT THE GODDARD SPACE FLIGHT CENTER

4.1 SPACE AND EARTH SCIENCES COMPUTING CENTER (SESCC) IBM 360/91K

e SESCC 360/91K computer is located in the basement of Building 1. The
0/91K is currently operating under Release 20.6 of the IBM S/360 Operating
stem with MVT. It has on-line graphics, and serves a number of CRBE and
E users. This computer has the regular assembler and compilers, plus some
the special programs available on the SESCC Model 75J. (NOTE: The Model 91
s no decimal arithmetic feature; consequently, all decimal-instruction pro-
ams must be directed to the Model 75.)

4.2 SESCC 360/75J

e SESCC 360/75J computer is also located in the basement of Building 1.
a 360/75J is currently operating under Release 20.6 of the IBM S/360 Oper-
ing System with MVT. It has on-line graphics, and serves several remote
rminals (CRBE) both at Goddard and off-site. This computer has in its
stem library a number of special programs of general interest, in addition
the regular assembler and compilers. For further information concerning

a SESCC 360/91 or SESCC 360/75 consult the SESD User's Guide.

4.3 OTHER SUPPORTING SERVICES

pporting services are available and include:

1. IBM S/360, Model 30 computer in Building 26, used for off-line sup-
port of the SESCC 7094.

2. Model 029 keypunch machines for self-service, in Buildings 21 and 26.

rooms near the SESCC Building 1 computer facility, the following support
rvices are available:

1. IBM S/360, Model 20 computer for off-line support to the SESCC
360/91K and 360/75J. It is used for such operations as card-to-
printer listing, 026-to-029 conversion, reproduction, interpreta-
tion, sequencing, gang punching, and sorting.

2. Keypunching service.

3. Model 029, keypunch machines for self-service.

re detailed information on these services may be found in the SESD User's
ide.

2.4-1



PROTOCOL

2.4.4 OTHER COMPUTERS

Other "category A" (general purpose) computers available for use at the

Goddard Space Flight Center include:

1. The SESCC IBM 7094-II computer. With 65K words of core and 1301-2

disk capability, this computer is located in Building 26 and intended

primarily for use by the National Space Science Data Center personnel.

More detailed information may be found in the SESD User's Guide.

2. The Information Processing Division's Univac 1108, which has 196,000
word memory, 512,000 words of fast drum storage, 419,200 words of

medium-speed drum storage, and 44,000,000 words of low-speed drum
storage. This computer, located in Building 23, has two CPU's shar-
ing the resources, which include 33 IBM-compatible 7-track tape
drives. The Univac 1108 supports various satellite projects, in-
cluding the Orbiting Geophysical Observatory (OGO), Orbiting Solar
Observatory (OSO), Applications Technology Satellite (ATS), and Orbit-
ing Astronomical Observatory (OAO) projects. More detailed informa-
tion on the Univac 1108 may be obtained from Mr. Eugene Grunby,
Extension 6428 or Mr. Mike Mahoney, Extension 6028.

2.4.5 PLOTTERS

2.4.5.1 Stromberg - Carlson 4020 Plotter .(SC 4020)

The SC 4020 is a cathode-ray-tube microfilm plotter having options for 35 nmm
or 16 mm microfilm, or 7" x 7" hardcopy. It is no longer available at Goddard;
having been replaced by the Stromberg-Datagraphics 4060 Plotter.

2.4.5.2 Stromberg - Datagraphics (Formerly Stromberg - Carlson)
4060 Plotter

The SD 4060 Stored Program Recording System represents an improvement over
the SC 4020 unit described in the previous paragraph. It is located in
Building 23, Room 220, Extension 4434.

The 4060 system contains a Product Control Unit, which is a modified
Honeywell DDP 516 computer that controls information flow and formats the
output. This results in greater flexibility and higher operating speed.
The major advantages of the SD 4060 over the SC 4020 are:

1. Hard copy is made available through the xerox copyflow process,
which allows the production of 8-1/2" x 11", 11" x 14", and strip
chart.

2. The graphics portion of a 4060 job takes only 25 percent as much
execution time as a comparable 4020 job.

2.4-2



PROTOCOL

3. The resolution of the 4060 output is 12.5 times greater than that
of the 4020 output.

Additional information about the SD 4060 may be obtained from the Universal
4060 System and Software Manual available through Mr. Don Kennedy, Extension
6992, or Mr. George Fleming, Extension 6346, both in Building 23.

Software packages for generating SD 4060 plot tapes on the M&DO S/360 com-
puters are described in Section 12 of this document. Tapes generated for
the SC 4020 may also be used on the SD 4060. However, this is inefficient
since it makes the 4060 simulate the 4020 and this procedure is not
encouraged.

2.4.5.3 CalComp 570 Plotting System

The CalComp 570 Magnetic Tape Plotting System (formerly in the S/360-91 com-
puter room) is no longer available at GSFC.

2.4.5.4 CalComp 770/780 Plotting System

There are two CalComp Model 780 Magnetic Tape Plotting Systems located in
Building 1, Room 8, Extension 6277. Each system consists of a Model 763 dig-
ital recorder, a tape transport, and a tape control unit. The Model 763 dig-
ital recorder is a drum plotter, similar to the 565R unit used with the 570
System, but with several added features--the plotting surface is 30 inches by
120 feet, and the plotter is capable of operating in the "ZIP" mode. This
mode is used to reduce plotting time when the plot consists of long, smooth
lines without abrupt changes in direction.

The 780 tape transport accepts 7-track tapes recorded at 200 BPI or 556 BPI.
These tapes may be prepared on IBM 360 computers through the use of the 770/
780 plotter packages, as described in Section 12. For further information,
refer to the CalComp Digital Recorder User's Manual.

2.4-3/2.4-4



M&DO HARDWARE FACILITIES

SECTION 3

M&DO HARDWARE FACILITIES

3.1 GENERAL DISCUSSION

This section discusses, in general terms, the Operating System (OS) used
on the 360 computers at Goddard. Later sections discuss specific machines
and hardware characteristics.

3.1.1 OPERATING SYSTEM

The Models 95, 75, and 65 operate under a program package referred to as
OS/MVT (Operating System with Multiprogramming with a Variable Number of
Tasks). Multiprogramming is that operation of a processor which permits
programs to be executed in such a way that none of the programs needs be
completed before another is started or continued. This capability is
directed toward minimizing periods of idleness in any one part of the system.
The scheduling program assigns one activity to the central processor while
other activities are awaiting the completion of the input/output operations,
and these activities are executed in such a way that those components that
can function simultaneously are put to the fullest possible use. With MVT,
the processor can service up to 15 jobs, each containing several tasks.

The operating system consists of a control program and a variety of process-
ing programs. The latter include language translators, service programs, and
user-problem programs. The exact composition of the operating system is flex-
ible. All OS programs are stored in libraries on direct-access devices. Those
basic to the system remain in memory; infrequently-used programs are stored
on-line on direct-access storage devices and copies brought forward as needed.
Furthermore, user-designed programs can be incorporated into the operating
system for the duration of a single job or they may be stored in libraries
and remain a part of the system for an extended period of time.

3.1.2 CONTROL PROGRAM

The control program directs the order in which jobs are processed, the work
flow within the system, and input/output operations. It has three major parts:
the job scheduler, the master scheduler, and the supervisor. These parts re-
main in core indefinitely. In addition to these, a group of supplementary
routines is also available. These are brought into core from auxiliary storage,
as needed.

3.1-1



M&DO HARDWARE FACILITIES

The job scheduler reads job definitions from input/output devices; allocates

input/output devices to each job; initiates the execution of the processing

program specified for each job; processes selected output produced during each

job; and provides records of work processed. In addition to performing these

standard functions, the job schedulers for Goddard's 360 systems are uniquely
tailored to classify jobs and establish their priorities. Refer to Para-

graph 2.2.7 of this User's Guide for further details on the job schedulers.

The master scheduler is a two-way communication link between the operator

and the system. The operator can issue commands to the master scheduler,
alerting the system to a change in the status of the input/output devices;
altering the operation of the system; and requesting information on the
status of the system. Goddard's 360 systems provide extended communication
with the operator: the master scheduler keeps the operator informed of
where jobs are coming from and where they are going.

The supervisor is the control center of the operating system. It provides
a number of services for other parts of the system, either in response to a
specific request (e.g., request for storage space) or in response to some
contingency (e.g., hardware malfunction). These services include allocating
main storage space required by programs during their execution; sharing
areas of main storage among routines that need not be in main storage at the
same time; loading programs into main storage; controlling the concurrent
execution of programs and routines; scheduling and controlling input/output
operations; providing the time of day and other timing services; and provid-

ing standard procedures that assist in diagnosing exceptional conditions.

3.1-2



M&DO HARDWARE FACILITIES

3.2 M&DO IBM 360/95

3.2.1 LOCATION

The M&DO Model 95 computer is located in Building 3, Room 153. Its systems

hardware and on-line and off-line peripheral devices are described below.

3.2.2 SCHEDULING AND OPERATIONS

The Computer Manager for the M&DO 360/95 is Mr. Harry G. Bitting, Building
3, Room 130, Extension 6886. The Systems Programmers responsible for coordi-

nating system programming activities on the 360/95 are Mr. Eugene A. Czarcinski,
Building 3, Room 133E, Extension 6710 and Mr. Frank J. Pajerski, Jr.,
Building 3, Room 127, Extension 6798.

Users may submit jobs to the Model 95 through the Dispatch Station, Building
3, Room 167, Extension 6733, or through remote terminals.

The systems programmers responsible for the remote terminal systems such as
CRJE (Conversational Remote Job Entry) and APL (A Programming Language) are
Mr. Harry E. Crispell and Mrs. May Wilson Adams both located in Building 3,
Room 129, Extension 6796.

3.2.3 HARDWARE CONFIGURATION

As shown in Figure 3.2-1:

a. Model 2095J Central Processing Unit (CPU). This unit addresses
main storage, performs logical and arithmetic functions, and
initiates communication between main storage and external devices.
The CPU has a basic machine cycle time of 60 nanoseconds.

b. Model M-120-J Processor Storage. This has 1024K bytes of thin-
film memory. It operates at a basic machine cycle time of 120
nanoseconds.

c. Model 2395-2 Core Storage. This has 4096K bytes of high-speed
core, with a basic cycle time of 750 nanoseconds.

d. Model 2250-1 Master Console and 2260-1 and 1052 Alternate Consoles.

e. One 2860-1 Selector Channel with a 2314-Al Direct-Access Storage
Facility attached. The 2314-Al has a capacity of 233,408K bytes.

3.2-1



0
O

H

M-120-J
01F 2395-2 THIN FILM

CORE STORAGE 2095-J MEMORY H
4,194.304 BYTES PROCESSOR .12 M

10E2-7 0E7 .75;,
KEYBOARD 1,048,576BYTES Cf

CONSOLE 
2

DISPLAY (CONTINUED ON NEXT PAGE)

TO M&DO
360/65 28701 MULTIPLEXOR CHANNEL

CHANNELO
SELECTOR SUBCHANNELS

0 0C OD 0E

2703-1 2803-2 2803-2
2911-1 2821-1 2821-3 2821-5 248-3 TRANS. TAPE TAPE
SWITCH CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL

0 01C 01D 00C 00D 1050, 2741 TYPE, AND020D 27802 REMOTE
TERMINALS

2260.1 2401 240146 2250-1
REA NCH PRINTER REA D/PUNCH CRT

PDA READ/PUNCH REA/PUNCH DISPLAY TAPE TAPE DISPLAY
0oE1

2260-1 / 24016 2401-6 2250-1

2260-1 2401-6 2401-6
OAO-0A7

2260-1 2401-6 2401-6

CAIRS 2260-1 2401-3 2401-3

1403N1 PRINTER 2261 2401-3 2401-3

0_-E220-1 OC-C5 0O005OD

2260-1

TO CTC ADAPTER
ON CH-1 360/75 (C1)
OCF

TO CTC ADAPTER ON
CH. 1 360/75 (C2)
ODF

Figure 3.2-1. Equipment Configuration: IBM 360
System, Model 95 (Sheet 1 of 2)



(CONTINUED FROM PRECEDING PAGE)

2860-3 SELECTOR CHANNEL 2860-1 SELECTOR CHANNEL

1 5 2 3

2820-1 2841-1
DRUM STORAGE

CONTROL CONTROL

2301-1
1C0 DRUM 2314-1 2321-1 23141 2314-A1

DISK DATA DISK DISK
1C1 2301-1 CELL

330-337

Figure 3.2-1. Equipment Configuration: IBM 360
System, Model 95 (Sheet 2 of 2)



M&DO HARDWARE FACILITIES

f. Three 2860-3 Selector Channels with:

1. Two 2314-1 Direct Access Storage Facilities, containing
233,408K bytes each.

2. One 2321-1 Data Cell, containing 400,000K bytes.

3. Two 2301-1 Drum Storage Units, containing 4,000K bytes each.

4. A Channel-to-Channel adapter which can be used to tie the
Model 95 together with the 360/75 (Cl) or 360/75 (C2).

5. One 2-Channel Switch.

g. One 2870-1 Multiplexor Channel, including three selector subchan-
nels with:

1. Two 2250-1 Graphic Display Units

2. Eight 2401-6 9-track tape drives

3. Four 2401-3 7-track tape drives

4. Two 2540-1 Card Read Punches

5. Five 1403-Nl Printers with an HN Print Chain

6. One 2701-1 Data Adapter Unit

7. One 2703-1 Transmission Control Unit for attaching IBM 1050,
2741 type, and 2780-2 remote terminals to telephone lines

8. Eight 2260-1 Alphameric CRT Displays

3.2.4 UNIT ADDRESS

The following are the device addresses for units attached to the Model 95.
They are presented here for the reader's edification; however, unit ad-
dresses should never be used in the UNIT field on DD cards.

3.2-4



M&DO HARDWARE FACILITIES

Device Type Address

2150/1052 *01F
2314-Al 330-337
2314-1 230-237, 140-147
2321-1 2E3
2301-1 ICO, 1CI
2250-1 *0E7, OEO-0El
2401-6 0C2-0C5, 0D2-0D5
2401-3 OCO, OC1, ODO, ODI
2540-1 OOC, 01C, OOD, 01D
1403-NI 001-003, 00E, OOF
2260-1 0AO-0A6, *0A7

*Reserved for operators consoles.

NOTE: The 2250 (OEl) and 2260's (0A2, 0A4) available for general use are
located in Building 3, Room 137. The other 2250 and 2260's are dedi-
cated to specific projects.

3.2.5 VOLUME SERIAL NUMBERS

In the volume label of each Direct-Access Storage Device (DASD) is a unique
serial number, referenced by the keyword parameter VOL=SER=volume in the DD
card. The following is a list of the serial numbers assigned to the DASDs
normally mounted on the Model 95:

Device Volume

Type Use Serial Number

2314 Work or GlSCRl through
scratch packs G1SCR9

2314 Storage of user G1USRI and
data sets GlUSR2

2321 Storage of user GlUSR3 and
data sets GlUSR4

2301 Storage of system GlDRM1 and
data sets GlDRM2

2314 Storage of system G1SYSl and
and user data sets GlSYS2

2314 Used by the CRJE GlCRJ1, G1CRJ2
and the APL system APLRIT, APLR19

The other seven packs are private user packs, such as CAIRS1, DODS packs,
etc.

3.2-5



M&DO HARDWARE FACILITIES

3.2.6 SOFTWARE

The 360/95 is currently operating under Release 21.6 of the IBM S/360 Operat-

ing System with MVT. The Model 95 is not equipped with a decimal instruc-

tion set and can only simulate these instructions through software techniques.
Since the simulation is extremely slow, lengthy decimal operations should

be performed on Models 65 or 75, which are equipped with the decimal

instruction set.

The following 360 instructions use decimal arithmetic.

AP - Add decimal

CP - Compare decimal

DP - Divide decimal

MP - Multiply decimal

SP - Subtract decimal

ZAP - Zero and add

3.2-6



M&DO HARDWARE FACILITIES

3.3 M&DO IBM 360/75 (Cl)

3.3.1 LOCATION

The Model 75 (Cl) is located in Building 14, Room 100. It is used pri-
marily to perform attitude and orbit determination work. However, when
the work load warrants it, general purpose jobs will be run when so indicated
by the user on his submittal form. Its systems hardware and on-line and
off-line peripheral devices are described below.

3.3.2 SCHEDULING AND OPERATIONS

The Computer Manager for the M&DO 360/75 C1 is Mr. Harry G. Bitting, Building
3, Room 130, Extension 6886. The Systems Programmers responsible for coor-
dinating system programming activities on the Cl are Mr. Calvin W. Curlen,
and Mr. Herbert R. Durbeck, Building 3, Room 133E, Extension 6710 and
Mr. Larry G. Hull, Building 3, Room 126, Extension 5308.

Users may submit jobs to the Model 75 through the Dispatch Station in
Building 3.

3.3.3 HARDWARE CONFIGURATION

As shown in Figure 3.3-1, the system components are:

a. Model 2075-J CPU, with a basic machine cycle time of 195 nano-
seconds (equipped with the standard, decimal, and floating point
instruction sets).

b. Two Model 2365-3 Processor Storage Units with a capacity of 512K
bytes each, of high-speed storage, and a basic machine cycle time
of 750 nanoseconds.

c. One Model 2361-1 Core Storage unit, with a capacity of 1024K bytes
of Large Core Storage (LCS), and a cycle time of 8 microseconds.

d. One Model 2150/1052 Typewriter Console.

e. One 2860-2 Selector Channel with:

1. One 2314-1 Direct-Access Storage Facility, with a capacity
of 233,408K bytes.

2. Two 2303-1 Drum Storage Unit, each with a capacity of 4,000K
bytes.

3.3-1



3r

121 2365-3

2361-1 PROCESSOR
CORE STORAGE 20RSJ STORAGE E
1048,576 BYTES PROCESSOR 1.048,576 BYTES L

B 2.75..
1052-7 01F oE

KEYBOARD

2150-1 t
CONSOLE

2840-2 SELECTOR CHANNEL

2870-1 MUL.TIPLEXOR CHANNEL SELECTOR HANNRAE 09-COM ION SE
STORAGE CHANNEL TO COMMUNICATION SELECTOR

SELECTOR SBCHANNELS TRANSFER CHANNEL CHANNEL

S UNIVAC 48
TO 

TO 360185 SYSTEM

CHANNELO 
SUCHANNEL

360O2 L SC
1C21

2311-1 2423031 23

SWITCH 2821 021 STC SWITCH 21-2 FILE DIS

BOX CONTROL CONTROL CONTROL BO BO CONTROL CONROL 2

' 12CA CON

272770 1701 20

T2 2401-3 2 2.2 2303

14R 
DRUM

402401 2250-3

PRINTERwOD

"ONTRO .ARNEFH2 E01. TAPE24014 2401-3

1403N 

0I

CARDREAD) CARDREAER PUNCH 2401-0

'HARDWARE SHARED BY THE Cl AND C2 COMPUTERS
iSSHOWN IN FIGURE 3A-1 ASWELL AS IN FIGURE 33-1.

Figure 3.3-1. Equipment Configuration: IBM 360

System, Model 75 (Cl)



M&DO HARDWARE FACILITIES

f. One 2860-1 Selector Channel with:

1. One 2314-Al Direct-Access Storage Facility, with a capacity of
233,408K bytes.

g. One 2870-1 Multiplexor Channel, including four selector subchannels
with:

1. One hard-wired 2250-1 Display Unit

2. Five 2401-6 9-track tape drives

3. Three 2401-3 7-track tape drives

4. One 2501-Bl Card Reader

5. One 2540-1 Card Read Punch

6. Two 1403-N1 Printers with a QN print chain

7. One 2702-1 Transmission Control Unit for the attachment of
CRJE remote terminals

8. One 2321-1 Data Cell, with a capacity of 400,000K bytes.

For units switchable between the (Cl) 75 and the (C2) 75 see paragraph 3.4.3.
In addition, various communication channels are present for interfacing with
the Model 95, and Univac 494 system.

3.3.4 UNIT ADDRESSES

The following are the device address for the units attached to the Model 75
(Cl). They are presented here for the reader's edification; however, unit
addresses should never be used in the UNIT field on DD cards.

Device Type Address

2150/1052 01F
2314-1, Al 230-237, 530-537
2321-1 0F3
2303-1 196, 197
2250-1 OEO
2401-6 0Cl-OC5
2401-3 OCO, 0C6-0C7
2501-B1 04C
2540-1 00C,OOD,01C,01D
1403-N1 002,003
2702 020-027, 030-037

3.3-3



M&DO HARDWARE FACILITIES

3.3.5 SERIAL NUMBERS

The volume serial numbers for the DASDs on the Model 75 (Cl) are as follows:

Device Volume
Type Use Serial Number

2314-1 Scratch or work G3SCRO - G3SCR4,
packs HlSCR1, HlSCR2, HlSCR4

2314-1 System packs G3SYSO, G3SYSl
2321-1 User

Libraries G3USR1
2303-1 System storage G3DRMO, G3DRMl

3.3.6 SOFTWARE

The 360/75 (Cl) is currently operating under Release 21.6 of the IBM S/360

Operating System with MVT.

3.3-4



M&DO HARDWARE FACILITIES

3.4 M&DO 360/75 (C2)

3.4.1 LOCATION

The IBM 360/75 (C2) computer, located in Building 14, Room 100, is the
primary support system for the Goddard Real Time System (GRTS). The C2 is
used primarily to perform attitude and orbit determination work. Its system
hardware and on-line and off-line peripheral devices are described below.

3.4.2 SCHEDULING AND OPERATIONS

The Computer Manager for the Model 75 (C2) is Mr. Harry Bitting, Building 3,
Room 130, Extension 6886. The systems programmers responsible for coordi-
nating system programming activities on the C2 are Mr. Larry G. Hull,
Building 3, Room 126, Extension 5308, and Mr. Herbert R. Durbeck, and
Mr. Calvin W. Curlen, Building 3, Room 133E, Extension 6710.

3.4.3 HARDWARE CONFIGURATION

The system components for the Model 75 (C2) are as follows:

a. A Model 2075-J Processing Unit (equipped with the standard,
decimal, and floating point instruction sets)

b. Two Model 2365-3 Processor Storage units, with a capacity of 512K
bytes each, of high speed storage, and a basic machine cycle time
of 750 nanoseconds.

c. One Model 2361-1 Core Storage with 1024K bytes of LCS

d. One 2860-1 Selector Channel with:

1. One 2314-Al Direct Access Storage Facility, with a
capacity of 233,408K bytes of storage

e. One 2860-2 Selector Channel with:

1. One 2314-1 Direct Access Storage Facility, with a capacity
of 233,408K bytes of storage

2. Two 2303-1 Drum Storage devices, each with a capacity of 3900K
bytes

f. One 2870-1 Multiplexer Channel with four selector subchannels with:

1. Two switchable 2250-1 Display Units

2. One hard wired 2250-1 Display Unit

3.4-1



UNIVAC 494
SYSTEM 1052-7

KEYBOARD 01F

COMMUNICATION (2)2365-3 2351-1 2150-1
CHANNEL 2909-3 CPU STORAGE LCS OPERATOR'S2075-JLCS OERATOR'S

.75 CPU 1,048,576 BYTES CONSOLE
1,048,576BYTES 8

I I I

2860-1 282 SELECTOR CHANNEL 2870-1 MULTIPLEXOR CHANNEL

STORAGE CTC SELECTOR SUBCHANNELS
TRANSFER CTC 

5 CHANNEL 2 1 FOF OE O

B t

DISK SELODO 291-1 FROM CH. 0ON
2314-A1 2314-1 2841-1 2841-1 Z. R 28211 SWITCH

2314-1 LE FILE CARD/PTR CARD/PTR BOX
I CONTROB 360175 ICI)

53D 2 S COTOL230-237 CONTROLNTROL 24013 CONTROL 2)

2401-3 2803-2
us MAGNETIC

z 2401- CONTROL 2921 31 CA D
4 - ITE CARD/PTR

0 
00E CONTROL

00 2321-1P2M 1 24014DATA 20-

A AUNIT S Y PRINTER PRINTER

24014

2303S1 O2803-2 24016
1i 4TORAGE MAGNETIC IBM 360DRUM TAPE 75 (C2)197 S ECONTROL 2401-3
197

2303-1 2401-3

*2911-1 0C44 2501-81
(2 x 1) CARD/RDR

SWITCH 04C
20-1*O BOX

050I DISPLAY
CONSOLE 2701 n2-1*

DATA
ADAPTER

1403-N1

PRINTER
001

DISPLAY 5LINES
0EI CONSOLE FOR

22800' REMOTE TERMINALS FROM SUBCHANNEL OD ON 360f5 (C1)

'HARDWARE SHARED BY THE C1 AND C2 COMPUTERS IS TO SWITCH BOX 2914-1 (2 x 4) ON 3S0176 (C1)
SHOWN IN FIGURE 3.31 AS WELL AS IN FIGURE 3.4-1.

FROM SWITCH BOX 2914-1 ( x 4) ON 360,76 (C1)

Figure 3.4-1. Equipment Configuration: IBM 360
System, Model 75 (C2)



M&DO HARDWARE FACILITIES

3. Eight 2401-6 9-track tape drives (the 4 drives OD1-0D4 are
switchable with the Model 75 (Cl))

4. Two 2401-3 7-track tape drives (drive ODO is switchable with
the Model 75 (Cl)

5. Five 1403-N1 Printers (3 are shared with the Model 75 (Cl))

6. Two 2540-1 Card Read Punches (one is switchable with the
Model 75 (Cl))

7. One 2321-1 Data Cell containing 400,000K bytes of storage

8. One 2702-1 Transmission Control Unit for the attachment of
CRJE remote terminals.

g. One 2150/1052 Typewriter Console

h. Various communication channels for interfacing with the Model 95,
the Univac 494, and IBM 1050 and 2741 type remote terminals.

3.4.4 UNIT ADDRESSES

The following are the device addresses for the units attached to the Model 75
(C2). They are presented here for the readers edification; however, unit ad-
dresses should never be used in the UNIT field on DD cards.

Device Type Address

2150/1052 01F
2314-1 230-237
2314-Al 530-537
2321-1 0F3
2303-1 196, 197
2250-1 OEO (OEl, 0E2 switchable)
2401-6 0Cl-0C4, 0Dl-0D3
2401-3 000, ODO, 0D4
2540-1 OOC, 04C, OOD
1403-N1 001, OOE, OOF

3.4-3



M&DO HARDWARE FACILITIES

3.4.5 VOLUME SERIAL NUMBERS

The volume serial numbers for the DASDs on the Model 75 (C2) are as follows:

Device Volume

Type Use Serial Number

2314-1, Scratch or work H1SCR1, HlSCR2,

Al packs H1SCR4, G3SCRO,
G3SCR1

2314-1, Goddard Real Time H1RTS1-H1RTS4
Al System (GRTS)

2314-1, System packs HlLIBS, H1IPLB

Al
2314-1, User libraries HlARTS, HlART2

Al
2321-1 User libraries (GRTS source

libraries)
2303-1 System storage HlDRM2

Scratch or work H1DRM1

3.4.6 SOFTWARE

The 360/75 (C2) is currently operating under Release 21.6 of the IBM S/360

Operating System with MVT.

3.4-4



M&DO HARDWARE FACILITIES

3.5 M&DO IBM 360/65

3.5.1 LOCATION

The Model 65 is located in Building 14, Room E4. It is used primarily to
support the Orbiting Astronomical Observatory (OAO) project. Its systems
hardware and on-line and off-line peripheral devices are described below.

3.5.2 SCHEDULING AND OPERATIONS

The Computer Manager for the M&DO 360/65 is Mr. Harry Bitting, Building 3,
Room 130, Extension 6886. The Systems Programmer responsible for coordinating
system programming activities on the 360/65 is Mr. Dave Spiegel, Building 3,
Room 127, Extension 6798.

Users may submit jobs to the Model 65 through the Dispatch Station, Build-
ing 14, Room S4, Extension 2195.

3.5.3 HARDWARE CONFIGURATION

As shown in Figure 3.5-1, the system components are:

a. Model 2065-I CPU, with a basic machine cycle of 200 nanoseconds.
(Equipped with the standard, floating point, and decimal instruc-
tion sets).

b. Two Model 2365-2 Processor Storage units with a capacity of 256K
bytes each of high-speed storage and a basic cycle time of 750
nanoseconds.

c. One Model 2361-1 Large Core Storage unit with a capacity of 1024K
bytes and a-cycle time of 8 microseconds.

d. One Model 2150 console with two Model 1052 typewriter attachments.

e. One 2860-1 Selector Channel with:

1. Two 2314-1 Direct-Access Storage Facilities, with capacities
of 233,408K bytes each.

2. One 2303-1 Drum Storage Unit, with a capacity of 3,913K bytes.

3.5-1



2361-1 (2) 2365-2
2361-1 PROCESSOR

01F CORE STORAGE 2065- STORAGE

1,048576 BYTES PROCESSOR STORAGE
524,288 BYTES

1052-7 8 .75 ps

KEYBOARD

2150-1 1052-7
CONSOLE KEYBOARD

009

2870-1 MULTIPLEXOR CHANNEL 2860-1 SELECTOR CHANNEL

SELECTOR SUBCHANNELS 1 2

0 OC OD OE

2701-1 2821-5 2843-3 2803-2 2803-2 28402 23141 21 23141

CONTROL TAPE TAPE DISPLAY DISK CONTROL DISK
COTROL CONTROL CONTROL CONTROL CONTROL CONTROL

S0 130137 230237

SDS 930
COMPUTER

1403-NI 2260-1 2401-3 2401-3 22503
PRINTER CRT MAG MAG CRT OEO

ODE DISPLAY TAPE TAPE DISPLAY

1403READ/PUNCH 2260-1 
197 OR 297

240100C-00D3 2 22503

2260-1
2401-6 2401-6

2260-1 
2303-1
DRUM

2540-1 22601 OC&-C2 OD0-0D2

CARD
READ/PUNCH 22601 197 OR 297

OOC-OOD 2260-1

2260-1

050-057

Figure 3.5-1. Equipment Configuration: IBM System 360,
Model 65



M&DO HARDWARE FACILITIES

f. One 2870-1 Multiplexor Channel, including three selector sub-
channels with:

1. Two 2250-3 Display Units

2. Two 2401-6 9-track tape drives (800 and 1600 BPI)

3. Two 2401-3 9-track tape drives (800 BPI)

4. Two 2401-3 7-track tape drives

5. One 2540-1 Card Read Punch

6. Two 1403-NI Printers with a QN print chain

7. Eight 2260-1 Display Units

8. One 2701-1 Transmission Control Unit, used for communication
with SDS 930.

NOTE: The Model 65 has two 9-track tape drives that read/write only at 800
BPI. It also has two dual density 9-track tape drives that read/write
at 800 and 1600 BPI. To insure allocating a 9-track dual density drive,
code UNIT=2400-4.

3.5.4 UNIT ADDRESSES

The following are the device addresses for the units attached to the Model 65.
They are presented here for the reader's edification; however, unit addresses
should never be used in the UNIT field on DD cards.

Device Type Address

2150/1052 01F,009
2314-1 130-137
2314-1 230-237
2303-1 197
2401-6 OC2,0D2
2401-3 9-track 800BPI 0Cl,ODl
2401-3 7-track OCO,ODO
2540-1 00C,OOD
1403-N1 00E,OOF
2260-1 050-057
2250-3 OEO-OE1

3.5-3



M&DO HARDWARE FACILITIES

3.5.5 SERIAL NUMBERS

The volume serial numbers for the DASDs on the Model 65 are as follows:

Device Volume

Tye Use Serial Number

2314-1 Scratch packs G2SCRl - G2SCR4

2303-1 System storage G2DRUM

3.5.6 SOFTWARE

The 360/65 is currently operating under Release 21.6 of IBM S/360 Operating

System with MVT.

3.5-4



M&DO HARDWARE FACILITIES

3.6 PERIPHERAL AND ACCESSORY EQUIPMENT

3.6.1 LOCATION

The IBM 360/20, 360/30, the Honeywell DDP-24/H632 and the CDC 160A systems
are located in the Main Computer Room, Building 3, Room 153. One IBM
360/30 is located in the Riggs Building. All requests for work to be
performed on these systems are submitted to the Dispatch Station, Building 3.

3.6.2 IBM 360 MODELS 20 AND 30

The smaller models of the IBM 360 system are used primarily to prepare input
and output for the larger computing systems.

3.6.2.1 360/20

The Model 20 provides the card-processing services described in Paragraph
2.3.8.1 of this manual.

3.6.2.2 360/30

The S/360 Model 30 uses the following utilities for operations such as
tape-to-print, card-to-tape, tape-to-punch, tape copying, octal dump, hex
dump, and the printing of USASCII-8 tapes.

DEBE is used for operations such as copying from card or tape to either card,
tape, or print. DEBE will handle either 7- or 9- track tapes.

The System/360 Multiple Utility Program is used for multiple card-to-tape,
tape-to-print, and tape-to-punch operations with 7- or 9-track tapes.

The Basic Programming System (BPS) Utility Programs are used for multiple
card-to-tape, tape-to-print, and tape-to-punch operations with 7- or 9-track
blocked or unblocked tapes, and tape-to-tape or tape compare with 7-track tapes.

The Octal Tape Dump Utility is used to dump 7-track tapes in octal format.

The Hex Tape Dump Utility provides a hex dump of 7- or 9-track unblocked tapes.

The Block Tape utility is used to print blocked tapes. The default blocksize
is 7200; any other blocksize must be stated explicitly.

The DDP utility is primarily used to print fixed blocked Honeywell USASCII-8
tapes on the Model 30.

3.6-1



M&DO HARDWARE FACILITIES

Execution of the utility programs is under the control of the operator. The

user needs only to specify the function to be performed and any identifying
information. For correct and efficient operation, the user must specify:

0 7- or 9-track tape (800 bpi only)

* Density

0 Blocksize

* Number of files on tape

* Any special instructions required to further define or clarify the
operation

Since there is only one 9-track drive on this system, 9-track tapes cannot be

duplicated.

The Model 30 in the Riggs Building supports the IBM 360/75 (C2) system. It
performs data transfer operations similar to those performed by the Model 30 in
Building 3. In addition, it is uniquely equipped for printing documents;
its printer has a text-train character set (i.e., a full upper and lower case
and all special characters).

3.6.3 CDC 160A

The CDC 160A system interfaces the local STADAN operations and the various
tracking stations involved in those operations. Predicted orbit data gen-
erated by the 360/75 system are transferred from magnetic tape to paper
tape and relayed via teletype.

3.6.4 HONEYWELL DDP-24/H632

The DDP-24/H632 units are two highly versatile computers designed for applica-
tions involving control, monitoring, and computations in a wide range of
processes. Most internal operations of the DDP-24 computer are performed in
10 microseconds or less, including access time, and operations of the H632
computer are performed in less than 1 microsecond.

The DDP-24/H632 complex at GSFC has four basic applications. First, it simulates
the STDN to check out the operational programs of the real-time system. Sec-
ond, it receives, edits, and records low-speed tracking data during missions.
Third, it transmits acquisition pointing data and acquisition scheduling mes-
sages via four teletype lines to the tracking sites. Fourth, it performs
variant difference analysis of high-speed data in support of missions. All of
these applications are performed in a real-time environment.

3.6-2



PROCESSING MULTI FUNCTION
UNIT 4K CARD MACHINE
2020 B2 2560 A-1

00

w

P R IN T E R

1403-2

H

Figure 3.6-1. IBM 360/20 M&DO In



PROCESSING PRINTER CONTROL

UNIT 16K BYTES KEYBOARD UNIT

2030 D 1052-6 1051-N1

CONTROL UNIT
CARD/PRINTER

MAG TAPE 
2821-5

CONTROL
2403-1

CARD READ PRINTER
PUNCH 1100 LPM

MAG 1000/300 CPM 1403 N-1
TAPE 2540-1 1416-1
UNIT
2401-1

MAG
TAPE PRINTER
UNIT 1100 LPM
2402-1 1403 N-1

1416-1

2402-1

MA g
TAPE
UNIT
2403-1

Figure 3.6-2. IBM 360/30 M&DO



M&DO HARDWARE FACILITIES

Further information concerning the DDP-24/H632 complex may be obtained from
Mr. Thomas J. Flannigan, Code 573, Extension 6031.

3.6.5 REFERENCES

IBM Reference Manual, IBM System/360 Model 20, System Summary, Form GA26-5889.
IBM Reference Manual, IBM System/360 Model 30, Functional Characteristics,
Form GA24-3231.

CDC Reference Manual, Control Data 160 Computer, Publication No. 60002300.

Honeywell H632 General Purpose Computer, Reference Manual, Document No.
130071960E.

DDP-24 Reference Manual, Document No. 71-157.

3.6-5



M&DO HARDWARE FACILITIES

3.7 UNIT CHARACTERISTICS

3.7.1 DIRECT-ACCESS DEVICES

A Direct-Access Storage Device (DASD) is one on which each physical record

has a discrete location and a unique address. Thus records can be stored

on a DASD in such a way that the location of any one record can be determined
without extensive searching. Records may be accessed serially, but they may
be organized so that they may be accessed directly.

The three types of DASDs are: the disk, the drum, and the data cell. Each
is described in great detail in Introduction to IBM System 360 Direct-
Access Storage Devices and Organization Methods, Form GC20-1649. Table
3.7-1 which is extracted from the above-mentioned document, summarizes the
characteristics of each type.

In the table, the capacity of a track is expressed in terms of the maximum
number of data bytes. This maximum may be achieved when there is one physi-
cal data record (block) per track formatted without a key. As the track is
divided into multiple data records, the additional address markers, count
areas, and gaps reduce the number of bytes available for data.

Table 3.7-2 gives the capacity from the standpoint of how many physical data
records of a given length will fit on a track. In some cases, the table cannot
be used and the number of records per track for a given record design must be
calculated, using the formulas discussed in the Introduction to IBM System 360
Direct-Access Storage Devices and Organization Methods, from which the table
is extracted.

Note that the table is divided into two parts, since the capacity varies
depending on whether records are formatted with or without keys. Normally
at Goddard, records are formatted without keys. Examples using the table:

* Device is the 2314, records are unblocked and formatted without
keys, and data length is 400 bytes. There will be 14 records
per track.

* Device is the 2321, records are unblocked, and formatted with
keys, data length is 100 bytes, and key length is 8 bytes. In
using the right-hand side of the table, the number to look up is
data length plus key length - in this example, 108. There will
be 9 records per track.

* Device is the 2301, records are blocked and formatted without
keys, blocking factor is 3, and logical record length is 900
bytes. The data area will be 2700 bytes, so there will be 7
blocks of 3 records each or 21 logical records per track.

3.7-1



M&DO HARDWARE FACILITIES

Table 3.7-1. Direct Access Device Characteristics

Bytes per Access Motion (MS)
Tracks Rotation Transfer

Storage per Device (ms) Rate
Device Medium Cylinders Cylinder Track Cylinder (Million) Min. Max. Avg. ;Full) (KB)

Pack: 200 Pack 29.17
2314 Disk Model Al 20 7294 145,880 Model Al 25 130 60 25 312

Total: 1600 Total: 233,408
Model A2 Model A2
Totalt 1000 Total: 145,880

2303 Drum 80 10 4892 48,920 3.9 0 0 0 17.5 303.8

2301 Drum 1 200 20483 4.09 4.09 0 0 0 17.5 1200
(Million)

2321 Strip Strip:
of 5 20 2000 40,000 400 95 600 350* 50 56

tape Array:
10,000

*Assuming that the previously addressed strip has already been restored. If this assumption cannot be made, average access time is 550 ms.

Table 3.7-2. Track Capacities

Maximum Bytes per Physical Record Physical Maximum Bytes per Physical Record
Formatted without Keys Records Formatted with Keys

per
2314 2303 2301 2321 Track 2314 2303 2301 2321

7294 4892 20483 2000 1 7249 4854 20430 1984
3520 2392 10175 935 2 3476 2354 10122 920
2298 1558 6739 592 3 2254 1520 6686 576

1693 1142 5021 422 4 1649 1104 4968 406

1332 892 3990 320 5 1288 854 3937 305

1092 725 3303 253 6 1049 687 3250 238

921 606 2812 205 7 877 568 2759 190

793 517 2444 169 8 750 479 2391 154

694 447 2157 142 9 650 409 2104 126

615 392 1928 119 10 571 354 1875 103

550 346 1741 101 11 506 308 1688 85
496 308 1585 86 12 452 270 1532 70
450 276 1452 73 13 407 238 1399 58

411 249 1339 62 14 368 211 1286 47

377 225 1241 53 15 333 187 1188 38

347 204 1155 44 16 304 166 1102 29

321 186 1079 37 17 277 148 1026 21

298 169 1012 30 18 254 131 959 15

276 155 952 24 19 233 117 899 9

258 142 897 20 20 215 104 844

241 130 848 15 21 198 92 795

226 119 804 10 22 183 81 751

211 109 763 6 23 168 71 710

199 100 726 24 156 62 673

187 92 691 25 144 54 638

176 84 659 26 133 46 606

166 77 630 27 123 39 577

157 70 603 28 114 32 550

148 64 577 29 105 26 524

139 58 554 30 96 20 501

3.7-2



M&DO HARDWARE FACILITIES

3.7.2 IBM 2400-SERIES TAPE DRIVES

IBM magnetic tape is a continuous recording medium similar to the tape used
in home recorders. Data are recorded in magnetized spots or bits, are perma-
nent, and can be retained for an indefinite period. As data are recorded, the
previous information is erased, thus permitting repetitive use of the tape.
IBM Form GA22-6866, IBM System/360 Component Descriptions, 2400-Series Mag-
netic Tape Unit, contains a comprehensive presentation of the characteris-
tics, functions, and features of the IBM 2400-Series Magnetic Tape Units.
Table 3.7-4 summarizes the main characteristics.

3.7.3 OTHER HARDWARE COMPONENTS

The Computation Division ADP Equipment Guide discusses other hardware
components, such as EAM equipment, card readers and punches, printers, other
types of magnetic tape units, display consoles, remote terminals, direct
access external storage devices, control units, line attachments, and
processors and storage units.

3.7.4 CHARACTER SETS AND CODES

3.7.4.1 Character Sets

IBM has 12 standard character sets which can be used on the Model 1403 printer
and which provide for printing any set of up to 240 graphics. The print train
normally used on the GSFC printers is suitable for most purposes and provides
the best combination of speed and readability. The more characters available
for printing, the slower the printing operation will be. The following print
trains are available on the Model 1403 printers. Refer to Table 3.7-3.

Computer Print Train Number of 1403's

360/95 HN 5
360/75 (Cl) HN 2 (switchable with C2)

QN 2
360/75 (C2) HN 3 (1 switchable with C1)
360/65 QN 2
360/30 RN 2

3.7-3



M&DO HARDWARE FACILITIES

Table 3.7-3. Print Trains in Use on the M&DO 1403 Printers

"HN"

NOTEI I 2 312345 67890 /STUVWXYZ S ( I K LIM N OIP O RI s- IAB CIDE FlG H I +.

"ON" PL/ (60 GRAPHICS- 45 PREFERRED)

1 2 3 4 5 6 7 8 9 0 X Y / S TU V W- " J K LMNOPQR -Z A B C D E F G H I + . )

: %

"RN" FORTRAN COBOL COMMERCIAL (52 GRAPHICS - 47 PREFERRED)

1 2 3 4 5 6 7 8 9 0 X Y / S T U V W $ = J K L MNOP R -Z ABCDE F G HI +

%@

#@

NOTE I: Five full sets per cartridge arrangement.

Refer to the IBM System/360 Operating System Operator's Guide, Form GC28-6540
and the IBM 1403 Printer, Form GA24-3073 for information concerning other
character sets.

3.7.4.2 Computer Codes

The System 360 accepts two principal, coding schemes: Extended Binary Coded
Decimal Interchange Code (EBCDIC) and USA Standard Code for Information
Interchange (USASCII).

EBCDIC uses eight binary positions for each character format, plus a position
for parity checking. By using eight-bit positions, 256 different characters
can be coded. This code permits, for instance, the coding of uppercase and
lower case alphabetic characters, a wide range of special characters, and
many control characters that are meaningful to certain input/output devices.
At present, many bit patterns have no assigned function (control or graphic).
They are reserved for future assignment. EBCDIC is one of the two principal
coding schemes for System 360.

USASCII is a seven-bit code developed through the cooperation of users of
equipment of communications and data processing industries, in an attempt to
simplify and standardize machine-to-machine and system-to-system communication.

Because the System 360 has an eight-bit character capacity, it was necessary
to expand USASCII to an eight-bit representation. This expanded representa-
tion is referred to by IBM as USASCII-8. This code may be used for internal
processing and input/output purposes with System 360 in those media for which
USASCII has been standardized.

3.7-4



Table 3.7-4. 2400 Series Magnetic Tape
Unit Characteristics

2420
2401 - 2404 Tape Units 2415 Tape Units Tape Unit

Characteristics Model 1 Model 2 Model 3 Model 1-3

Model I Model 2 Model 3 Model 1-6 Model 7

Model 4 Model 5 Model 6 odel 4-6 N

9-Track 9-Track 9-Track 9-Track 1-4
Number of Tracks NRZI 7-Track NRZI 7-Track NRZI 7-Track NRZI 7-Track 9-Track

and NRZI NRZI NRZI NRZI PE tj
Recording Method 9-Track PE /9-Trck Pk PE 9-Track PE

800 800 800800 800 800 800800

Density (BPI) 556 556 556 556 1600
Bytes per inch 1600 200 1/600 200 /1600 200 1600 200

30,000 30,000 60.000 60,000 90,000 90,000 15,000 15,000
Data Rate 20,850 41,700 62,500 10,425 320,000
(Bytes/Sec) 60,000 7,500 20,000 15,000 80,000 22,500 000 3,700

37.5 75.0 112.5 18.75

Tape Speed 37.5 75.0 112.5 18.75 200

(In/ 7.5 75.0 112.5 118.75

0.6 0.6 0.6 0.6

Interblock Gap .75 .75 .75 .75 0.6

(Inches0.6 0.6 :0.6 0.6

Nominal 16.0 8.05.3 32.0

SRG Time 16.0 8.0 5.3 32.0 3.0

(In/MS.) X16.0 8.0 Z5.3 2.0

Rewind3.0 1.4 /1.0 " 4.0

Time 3.0 1.4 j 1.0 4.0 1.0

(In/Min) /3.0 .41.0 4.0

2.2 1.5 1.1 4.0

Unload 2.2 1.5 . 1.1 4.0 1.1

(In/Min) 2 2 / 1.5 1. 4.0



M&DO HARDWARE FACILITIES

The coding and character representation for EBCDIC and USASCII may be found
in IBM System 360 Principles of Operation, Form GA22-6821. EBCDIC is an
extension of Binary Coded Decimal (BCD) interchange code, which is used
extensively on second-generation equipment (e.g., IBM 1401, 1410, 7010,
7090, and 7094 Data Processing Systems). Refer to the green card (IBM
System 360 Reference Data, Form X20-1703) for the relationship between
EBCDIC and BCD.

3.7.4.3 Card Codes

The standard Hollerith card code uses the twelve possible punching posi-
tions of a vertical column on a card to represent a numeric, alphabetic,
or special character. The twelve-hole positions are divided into two
areas, numeric and zone. The first nine-hole positions from the bottom
edge of the card are the numeric hole positions and have an assigned value
of 9, 8, 7, 6, 5, 4, 3, 2, and 1, respectively, the remaining three posi-
tions, 0, 11, and 12, are the zone positions. (The 0 position is considered
to be both a numeric and a zone position.)

The numeric characters 0 through 9 are represented by a single hole in a
vertical column. For example, 0 is represented by a single hole in the 0
zone position of the column.

The alphabetic characters are represented by two holes in a single vertical
column, one numeric hole and one zone hole. The alphabetic characters A
through I use the twelve-zone hole and a numeric hole 1 through 9, respect-
ively. The alphabetic characters J through R use the eleven-zone hole and
a numeric hole 1 through 9, respectively. The alphabetic characters S
through Z use the 0-zone hole and a numeric hole 2 through 9, respectively.

The standard special characters $, *, %, and so on, are represented by
one, two, or three holes in a column of the card and consist of hole pat-
terns not used to represent numeric or alphabetic characters.

The card punch configuration for these characters may be found on the IBM
green card (IBM System/360 Reference Data, Form X20-1703). Since EBCDIC
contains more characters in its set than does BCD, the 029 keypunch offers
more special characters than the 026. In addition, there are different
nole patterns on the two keypunches for five of the special characters.

3.7-6



M&DO HARDWARE FACILITIES

These characters and the card codes for each of the two keypunches are
shown below:

Keypunch Code

Character 026 029

+ 12 12-8-6
= 8-3 8-6

( 0-8-4 12-8-5
) 12-8-4 11-8-5
' 8-4 8-5

3.7.4.4 Paper Tape

Punched paper tape serves much the same purpose as punched cards. Developed
for transmitting telegraph messages over wires, paper tape is now used for
data processing communication as well. For long-distance transmission,
machines convert data from cards and keyboard strokes to paper tape, send
the information over telephone or telegraph wires to produce a duplicate
paper tape at the other end of the wire, and reconvert the information to
punched cards, for later processing.

Data are recorded as a special arrangement of punched holes, precisely
arranged along the length of a paper tape. Paper tape is a continuous
recording medium, as compared to cards, which are fixed in length. Thus,
paper tape can be used to record data in records of any length, limited
only by the capacity of the storage medium into which the data are to be
placed or from which the data are received.

Data punched in paper tape are read or interpreted by a paper tape reader
and recorded by a paper tape punch.

3.7-7



SOFTWARE STATUS

SECTION 4

SOFTWARE STATUS

4.1 GENERAL DISCUSSION

In the dynamic environment of the S/360 Operating System, the status of
software items is continually changing through new system releases, de-
velopment of new or improved language processors, updating of proprietary
packages, and countless other modifications. Most of these changes are
compatible with previous versions or require only minor modifications to
existing programs. Software packages are available directly through
LINKLIB; however, they may be stored in a private library and called by
the use of a JOBLIB or STEPLIB card. Users desiring to use programs not
available on an M&DO computer should contact the PAC for information on
how to temporarily include them in the system. As changes are made to
the system, they will be announced in the GSFC Newsletter, the M&DO 360
Computer Bulletin, and by notices in the Programmer Assistance Center.
Users are strongly urged to use this information to maintain an up-to-
date knowledge of the M&DO computer systems.

4.2 CURRENT SOFTWARE STATUS

Table 4.2-1 presents the software available on the M&DO computers. Be-
cause the system libraries are continually being updated to satisfy the
requirements of changing user demands, the user should verify that his
required programs are (1) still available and (2) stored in the specified
library.

Release 21.6 of the Operating System is in use on all of the M&DO 360
computers.

4-1



SOFTWARE STATUS

Table 4.2-1. Available Software on M&DO Computers (Sheet 1 of 2)

ITEM SECTION 360/95 360/75 (Cl) 360/65

OPERATING SYSTEM RELEASE RELEASE 21.6 RELEASE 21.6 RELEASE 21.6

NUMBER OF BYTES OF USER MEMORY 2700K 1800K 1500K

DEFAULT REGION SIZE 64K 80K 100K

PROCESSORS:
ASSEMBLER (G) 19.3.13 J J J

ASSEMBLER (F) 6.2, 19.3.1 X X X

FORTRAN (G) 6.2, 19.3.1 X X X

FORTRAN (H) 6.2, 19.3.1 X X X

DAIO (DIRECT ACCESS INPUT/
OUTPUT) 17.2.6 X X N

LOADER 6.3.1, 19.3.2 X X X

LINKAGE EDITOR (F) 6.3.1,19.3.2 X X X

PL/1 (VERSION 4.3) 6.2, 19.3.1 J J N

PL/1 (VERSION 5.3b) 6.2, 19.3.1 X X J

APL (A PROGRAMMING LANGUAGE) 15 X N N

CRBE (CONVERSATIONAL REMOTE
BATCH ENTRY) 14 N N N

CRJE (CONVERSATIONAL REMOTE
JOB ENTRY) 14 X N N

RJE (REMOTE JOB ENTRY) 13 X N N

OS UTILITIES 9 X X X

RPG ** X X N

SORT/MERGE 6A, 19.3.3 X X X

FAPCON (FORTRAN SINGLE TO
DOUBLE PRECISION CONVERT) 20.2, 19.3.8 X X N

FORMAC (FORMULA MANIPULA-
TION COMPILER) 7.3, 19.3.9 J J N

SIGPAC (SIGNIFICANCE PACKAGE) 21.10 J N N

OTHER SOFTWARE PACKAGES:
BEEF (BUSINESS AND ENGINEERING

ENRICHED FORTRAN) * N N N

BOOLE & BABBAGE (PROBLEM
PROGRAM ANALYZER) 7.2, 19.3.7 J J J

CALCOMP 770 12.3.3 J N J

CALCOMP 780 12.3,3 J N N

CSMvP (CONTINUOUS SYSTEM
MODELING PROGRAM) 7.8 J J N

ECAP (ELECTRONIC CIRCUIT
ANALYSIS PROGRAM) * N N N

GPCP (GENERAL PURPOSE
CONTOURPROGRAM) * N N N

GPSS (GENERAL PURPOSE
SIMULATION SYSTEM) 7A, 19.3.10 J N N

MARK IV 12.3.7 J N N

SIMSCRIPT 11.5 7.7 J N N

SSP (SCIENTIFIC SUBROUTINE
PROGRAM) 7.10 X X J

CONVERSION AIDS:
DACUT9 (WRITE 7094 BINARY TAPES

FROM S/360 FORTRAN) * N N N

DATASIFT (DATA STATEMENT
SIFT PROGRAM) 20.1 N N N

DATCON (WRITE 7094 OR 1108
BINARY TAPES FROM S/360
FORTRAN) 20A G G F

4-2



SOFTWARE STATUS

Table 4.2-1. Available Software on M&DO Computers (Sheet 2 of 2)

ITEM SECTION 360/95 360/75 (Cl) 360/65

DEBLOCK/CNVRT (CONVERT 7094
BINARY TAPES TO S/360) 20.3 G G F

FORTLCP (FORTRAN TO PL/1
CONVERSION) 20.5 N N N

TIDY (REFORMAT FORTRAN
SOURCE PROGRAMS) 20.5 N N N

UNPACK (USE 7094 PACKED DATA
ON S/360) * G G F

GRAPHICS:
GPAK (GRAPHICS SUBROUTINE

LIBRARY) * N N N
GSP (GRAPHICS SUBROUTINE

PACKAGE) 12.1 X X X
GTS (GRAPHICS TERMINAL SYSTEM) 7.5 J J J
SC4020 PLOT PACKAGE 12.3 J J N
SD4060 PLOT PACKAGE 12.3 J J N
WOLF PLOTTING AND CONTOURING

PACKAGE 12.3 J J N
BIT MANIPULATION ROUTINES: 7.6 G G F

AND

OR (INCLUSIVE OR)
EXCLUSIVE OR
ONES COMPLEMENT
BITON (SET A BIT TO 1)
BITOFF (SET A BIT TO 0)
BITFLP (COMPLEMENT A BIT)
SHIFT LEFT
SHIFT RIGHT

TIMING ROUTINES:
FTIMIN, FTIMOT 7.9.4 G G F
TIMEIN, TIMOUT 7.9.4 G G F
REMTIM 7.9.1 G G F
TIME 7.9.3 G G F
ZTIME 7.9.2 G G F

KEY:
X = AVAILABLE THROUGH LINKLIB
J = AVAILABLE IN ANOTHER LIBRARY; MUST USE JOBLIB, OR CATALOGED PROCEDURE HAS A STEPLIB

OR SYSLIB CONCATENATION
N = NOT AVAILABLE
G = GSFCLIB (EXTENSION OF FORTLIB)
F = FORTLIB
* = NOT INCLUDED IN THIS DOCUMENT. CONTACT MRS. PAT BARNES IN THE GSFC PROGRAM LIBRARY IN

BUILDING 3.
** = NOT INCLUDED IN THIS DOCUMENT. SEE THE APPROPRIATE IBM MANUALS FOR DOCUMENTATION AND

THE SYS1. PROCLIB OF THE APPROPRIATE COMPUTER FOR THE CATALOGED PROCEDURE.

4-3



SOFTWARE STATUS

4.3 WRITER NEWS FILE

Writer News is available on all of the M&DO 360 computers. It provides

current news of interest to the computer user by inserting a brief file

of information after the job header page in the printed output.

4.4 M&DO 360 COMPUTER BULLETIN

The M&DO 360 Computer Bulletin is published on an as-needed basis. It is

distributed to members of the M&DO 360 User's Committee, which is responsible

for passing the information contained in the bulletin along to the people
it represents. Additional copies may be obtained from the Computer Manage-
ment Branch, Code 531, extension 6887.

4.5 M&DO 360 COMPUTERGRAM

The M&DO 360 Computergrams are tutorial in nature. They are designed to aid
the user in making better use of the available 360 hardware and software.
They are distributed in the same manner as the M&DO 360 Computer Bulletin.

4.6 GSFC COMPUTER NEWSLETTER

The GSFC Computer Newsletter is also published on an as-needed basis. Copies

may be obtained from Mr. Dave Kohnhorst, Code 601, extension 6697.

4.7 DOCUMENT

Information is available in the cataloged data set SYS2.DOCUMENT concerning
new and improved versions of software packages in use on the M&DO 360 com-
puters. To retrieve the entire DOCUMENT library code:

//INFO EXEC LISTPDS,DSN='SYS2.DOCUMENT'

To retrieve information for a particular software package the program name
(in this example ASMG) must be used.

//INFO EXEC DOCUMENT,PROGRAM=ASMG

4-4



JOB SET-UP

SECTION 5

JOB SET-UP

5.1 GENERAL INFORMATION

5.1.1 SCOPE OF THIS SECTION

This section explains the fundamental details of setting up a deck of JCL
and data cards as a job, and submitting them to be run on a M&DO computer.
Items explained are the job submission slips and the IBM Operating System
Job Control Language or JCL. The JCL also controls input and output of
data, as well as the allocation of input/output devices to the job.

5.1.2 JOB SUBMISSION SLIPS

Available at the dispatcher's desk are three-part slips which must be com-
pleted and attached securely to the job being submitted. The user fills
in certain information exactly as it appears on the job card including
sponsor number, programmer I.D., job name, box number, and length of run.
As on the job card, both CPU and I/O times should be put in the appropriate
boxes on the slip. In addition, if tapes or private packs are to be used,
the user must write the identifying numbers on the slip. This is important
because it forewarns the computer operator that a particular volume will be
required by the job. The operators separate jobs into batches depending
on their use of private packs. This reduces the time required to exchange
these volumes.

There is a space on the job submission slip for required storage. The opera-
tors of the smaller computers use this information to determine whether they
can start another job. The remarks section should be used to indicate spe-
cial requirements, such as a particular machine on which the job is to be run.

5.1-1



JOB SET-UP

5.2 JOB CONTROL LANGUAGE

5.2.1 PURPOSE

The 360 operating system was intended to be very flexible - it assumes many

of the functions which are performed manually in less sophisticated systems.

The OS loads and initiates programs, monitors their execution, and terminates

them when necessary. In order to perform these functions, the control pro-

gram must be given instructions for each job that it will monitor. In S/360

these instructions are given in the Job Control Language (JCL) which must

accompany every job to be run.

5.2.2 OPERATION CONSIDERATIONS

In order to give the user a clearer understanding of the meanings of the

various JCL statements and operands, the following discussion very briefly
presents the sequence of events by which the operating system reads the JCL,
schedules jobs, and allocates resources.

JCL is read into the operating system by a "reader-interpreter" which is des-

cribed in Subsection 11.7. The reader processes the "input stream" which

contains JCL and input data. JCL is distinguished from the other data in the

input stream by the first two characters in each card. With the exception of
the delimiter or /* card which ends or delimits a section of data in the input
stream, all JCL cards start with // in columns 1 and 2.

As the "reader" reads the input stream, it buffers (spools) the data to disk.
The "interpreter" scans the JCL diagnosing format errors, breaks the infor-
mation down, and places it on the job queue (the SYS1.SYSJOBQE data set)
where it also places pointers to the input stream data which has been spooled
onto the disk. If it finds a JCL error, it assigns a priority 14 (highest
in the system) to the job and flushes it out of the system. An "initiator"
looks at the job queue and pulls the job and data off the queue, in their

proper turn, based on priority and job class. The initiator selects the job
from the job queue, analyzing the I/O requirements of the job, allocating
devices to fill the requirements, issuing volume mount instructions where
needed, and verifying that the correct volumes were mounted. Once the job
is completely executed, the terminator terminates it, de-allocates its
data sets and volumes, and passes it back to the job queue. From there
the writers pick up the system messages and system output data, which have
been spooled out during execution of the job, and print them. The operators

pick up the printed output and punched cards, if any; place them together with
the job submission slip, input deck, tapes, and whatever else was submitted;
and send them back to the dispatcher for delivery to the programmer.

5.2-1



JOB SET-UP

5.2.3 GENERAL FORMAT OF JCL STATEMENTS

There are eight types of JCL statements. Four are normally used by program-
mers. These are the JOB statement, EXECUTE statement, DATA DEFINITION (DD)
statement, and the DELIMITER or /* statement. Four other JCL cards exist:
the NULL statement or // card used by the operators at Goddard to separate
jobs; the COMMENT statement -- that is the //* card in which programmers may
put comments as an aid in documenting their JCL; the PROC statement, which
is used only in cataloged procedures; and the COMMAND statement, which may
be used by operators to enter commands in the input stream rather than from
the console.

The general format of JCL cards is a // in columns 1 and 2 followed by a
name field, an operation field, and an operand field, followed by a comments
field. The name field begins immediately after the second slash, while the
name, operation, operand, and comment fields are separated from each other
by one or more blank spaces. The operand and comments fields may also be
continued on successive cards.

5.2.3.1 Name Field

Occasionally, the name field may be omitted, but preferably should be in-
cluded, as it identifies a control card so that other JCL cards or system
functions can refer to it. It can be from one to eight characters in
length and can contain any alphanumeric or "national" characters. The
alphanumeric characters are A to Z and 0 to 9, and the national characters
are the @ sign, the $ sign, and the number or pound sign, #.

5.2.3.2 Operation Field

The operation field specifies the type of control card, JOB, EXEC, DD, PROC,
or an operator's command. The other types of JCL cards (i.e., comment, de-
limiters, null) do not have operations.

5.2.3.3 Operand Field

The operand field contains parameters. Some of these parameters are posi-
tional. That is, they are only legal in a certain position within the oper-
and. Others are of the keyword format: (KEYWORD--value(s)), where "keyword" is
the name of the parameter and "value" is the value assigned to that parameter.
Some parameters also have subparameters, which likewise may'be positional
or keyword. Parameters are separated by commas (blanks are not permitted).
Positional parameters must be coded in the order specified before any key-
word parameters. The absence of a positional parameter is indicated by the
coding of a comma in its place. If the absent positional parameter is the
last parameter, or if all other positional parameters are also absent, re-
placing commas should not be coded. Parameters with multiple values must

5.2-2



JOB SET-UP

be coded within parentheses. That is, subparameters which are likewise

separated by commas are coded surrounded by parentheses so that the scanning

routines of the reader-interpreter do not interpret them as separate prime

parameters. The keyword parameters may be coded in any order after the

positional parameters.

If any characters are used other than the alphanumeric or national 
charac-

ters (and occasionally a period or a hyphen) in some subfields, the para-

meter must be enclosed in single quotes. If a quote or an apostrophe is

used within the field, it must be doubled.

5.2.3.4 Comments

Comments may be coded on any JCL card by leaving one or more blanks between

the last field and the beginning of a comment. This is true even if the

operand field is to be continued. The operand field can continue no further

than column 71 of the card. If the operand will not fit on one card, or if

it is desired to split the parameters onto separate cards for readability

or any other reason, the field must be interrupted after a complete para-

meter*, including the comma that follows it, at or before column 71, and a

// must be coded in the next card; the interrupted card is continued in

column 4 to 16. If the continuation card is begun after column 16, the con-

tinuation is treated as a comment.

Besides interrupting after a complete parameter in order to continue, certain

subparameters can be interrupted. These are in the account and PARM fields

on execute cards; condition parameters on job and execute cards; and the DCB,

VOL=SER, SEP, and UNIT=-SEP parameters on DD cards.

5.2.4 JOB SEQUENCING

On occasion, the user may need to run multiple jobs which are order-dependent,

i.e., the execution of one job is dependent upon the successful completion 
of

another job.

The introduction into the system of one job followed by another is no guaran-

tee that the second job will be run last. Depending upon multiple considera-

tions, including I/O and CPU times and the size of the region required, the

second job might well execute first.

*Continuation cards were originally specified by coding a non-blank charac-

ter in column 72. This is no longer required, but is sometimes seen in

older procedures. Under this old system, a continuation card had to start

in column 16. However, this is no longer true.

The only reliable means to prevent one job from being selected for process-

ing until after another job has terminated is to code the keyword parameter

TYPRUN=HOLD in the JOB card of the job which is to be executed last. The

5.2-3



JOB SET-UP

job is then held until a RELEASE command is issued by the operator. The oper-
ator must be informed (by means of the comments field on the job submission
slip) about what should be done and when the job should be released. Failure
to do so may cause the job to be released prematurely.

5.2-4



JOB SET-UP

5.3 DECK SETUP

The following table presents the sequence in which JCL 
statements are to be

placed when setting up a job.

Table 5.3-1. JCL Statement Sequence

SECTION

JCL STATEMENT FUNCTION REFERENCE

JOB Defines a job and supplies accounting 5.3.1

and other information about the job to

the system.

JOBLIB Indicates that a private library is to 5.4.2

be searched for the program(s) to be

executed. This card is not needed for

a program which is on the system library.

EXEC Defines a "job step", naming the program 5.5

to be executed (or the cataloged proce-

dure to be referenced).

STEPLIB Indicates that a private library is to 5.4.1

be searched for the program(s) to be

executed. This card is not needed for

a program which is on the system library.

DD Defines a data set to be referenced by the 5.6

job step. One DD statement is required

for each data set referenced.

A job may have multiple steps by the use of multiple sets 
of EXEC and

DD cards. The completion of the last step in a job is marked with a JOB

statement associated with the succeeding job, or a NULL statement 
(subsec-

tion 5.7.2). When a DD DATA statement is used to define the input stream

the last card of the job must be a delimiter statement (/*).

The number of EXEC and DD statements allowed per job varies, depending upon

the limit of the job queue space. Any job which has too many EXEC and

DD statements for the system to handle will be ABENDed with a completion

code of 422. If possible, the job should be subdivided into several different

jobs and submitted separately. If it is not feasible to do so, the programmers

in the PAC (see paragraph 2.3.10) should be consulted.

5.3.1 JOB CARD FORMAT

The JOB card format is as follows:

//useidxxx JOB (ssssscpppp,r,prgram,tttttt),box,MSGLEVEL=(x,y)

5.3-1



JOB SET-

The JOB card is the first card in a deck of cards submitted as a S/360
computer job. The format is determined by. the GSFC accounting proce-
dures, and entries must be exactly as shown in Table 5.3-2. More detailed
information about the GSFC accounting procedures may be found in subsec-
tion 2.1 of this User's Guide.

NOTE: It is imperative that the correct programmer ID, sponsor number,
project code, and program number be used on the JOB card. Incorrect use o:
any of the above will cause the job to fail with a message printed as to
which field is in error. After an error is detected in one of the fields,
remaining fields are not scanned.

5.3-2



JOB SET-UP

Table 5.3-2. Job Card Format

Col. 3-10 The programmer's 5-letter ID, plus three more characters 
that

are unique to that job. The combination makes up the job

name. (useidxxx)

Col. 12-14 The Word "JOB"

Col. 17-21 The sponsor number (sssss)

Col. 22 The category code (c)

Col. 23-26 The project code pppP)

Col. 28 The run type, as follows: (r)

T for test
P for production run
R for hardware-error run
S for tape-error rerun
Q for software-error rerun
U for operator-error rerun

Col. 30-35 Program number (prgram)

Col. 37-39 Estimate of CPU time (minutes) needed to run the job. (ttt)1

Col. 40-42 Estimate of I/O time (minutes) needed for the job. (Note:

the operating system will assign a priority to the job,

based on the greater of the two time estimates. If either

the CPU or I/O estimate is exceeded by the job, the run will

be ABENDed. See the discussion below of completion codes

for insufficient time.) (ttt)1

Col. 45-47 Box number at the computer facility. A user who does not have

a box assigned should request one from the dispatcher. (box)

Col. 49-57 MSGLEVEL=(x,y): Informs the job scheduler as to which JCL

and allocation/termination messages are to be printed.

(Continued on the following page)

1H00 is valid for CPU or I/O time on the 360/95 and represents a time request

of 1/2 minute. HOO is not valid on the M&DO 360/75's and 360/65.

5.3-3



JOB SET-UP

Table 5.3-2. (Cont'd)

The value of x may be:

0 Only the JOB statement is to be printed (default value).

1 All JCL statements, cataloged procedures, and over-
rides to cataloged procedures appear in their proper
sequence.

2 Only input job control statements (cataloged procedure
statments will not appear).

The value of y may be:

0 No allocation/termination messages are to appear, unless
the job abnormally terminates. If this occurs, these
messages will appear as output.

1 All allocation/termination messages will appear (default
value).

NOTE: If MSGLEVEL=(X,Y) is omitted, the system defaults to (2,0) on the M&DO
360/95 and 75's and (1,1) on the 360/65.

5.3-4



JOB SET-UP

5.3.2 ESTIMATING COMPUTER TIME

A new, optional software feature has been implemented that permits 
work to be

run on the most available equipment capable of processing the given 
job. Only

the submitter can determine whether, for example, the 360/75 can process a 
job

originally set up for the 360/95, and it is his responsibility 
to make this

determination. The greatest deterrent to such interchangeability has been in

the area of CPU time estimates. If time is estimated for the 360/95, it may

run out on a slower machine. Conversely, if time were estimated for the 360/75

or 360/65, it would'suffer an artificially lower priority if run on the 360/95.

The optional feature automatically adjusts the CPU time estimate if the 
job is

loaded on a machine other than the one estimated for. In the absence of the

optional JOB card field described below, no time estimate adjustment 
will be

made by OS/360. The option consists of two digits and a period preceding the

"box number" on the JOB card.

//jobident JOB (...account info...),xx.box

where xx is either 65, 75, 91, or 95 and designates the machine to which the

CPU time estimate in the accounting information applies. If run on a differ-

ent machine, this figure is adjusted according to the factors shown in the

following table.

Actual For

Estimated For 36/65 360/75 360/91 360/95

360/65 1 0.80 0.67 0.5

360/75 1.25 1 0.50 0.33

360/91 4 3 1 0.80

360/95 5 4 1.25 1

For example, if you estimate x minutes to run a job on the 360/95 that is

actually run on the 360/75, you will get 4x minutes of CPU time. Experience

may dictate some adjustment in these factors in the future, in which case

prior notification will be issued.

Note that 360/95 EMS (core memory) is assumed, not thin film. High-speed

memory is assumed for the 360/75 and 360/65. Also, graphics users must still

plan to run jobs in LCS on the 360/75, and the user must still include ade-

quate CPU time. Finally, in order to avail himself of the best possible serv-

ice, the user must indicate, on the handwritten job slip, the machines on 
which

his jobs can be run.

This is not an automatic transferral of job decks from one machine to another

via a communications link. Hence, it would be an inappropriate (though harm-

less) addition to the JOB card for CRJE or RJE submitted work.

5.3-5



JOB SET-UP

While parameters other than TYPRUN=HOLD can be inserted in the operand field
on the job card, their use is not generally recommended. MSGCLASS can be
used to force system output to a special printer (see SYSOUT discussion).
The CLASS, PRTY, and TIME parameters are ignored. Use of the REGION param-
eter will cause a JCL error (See subsection 16.2). The parameters which can
be coded on the EXEC card should usually be coded there, as their effect is
more precise.

5.3.3 COMPLETION CODES FOR INSUFFICIENT CPU OR I/O JOB TIMES

Completion codes that will be returned to the user, if the job exceeds his
CPU or I/O time estimates, are shown in Table 5.3-3.

Table 5.3-3. Completion Codes

CPU Time I/O Time
Computer Completion Code Completion Code

S/360-95 322 F22

S/360-75 322 F22

S/360-65 322 F22

On printouts received, both CPU and I/O time will be given to allow refine-
ment of original estimates. I/O time will also be broken down by device
type (tape, disk, drum, etc.) so that the components of the total are avail-
able.

5.3.4 PRIORITIES

As discussed in paragraphs 2.2.7 and 18.3.1 of this User's Guide, the
job stream manager utilizes the CPU and I/O time punched into the JOB card
to establish priorities.

The larger of these two numbers is compared with an internal table to estab-
lish the priority for the job. The shorter the job, the higher its priority.
The values used are shown in Table 18.3-3.

5.3.5 CLASSES

The job stream manager assigns aa class to each job, depending on the resources
(core and I/O units) required. Table 18.3-1 shows the breakdown used by the S/95.
There is a separate job queue for each class. As the initiators pull jobs
from specific queues and in a specific order (Table 18.3-2 shows this order
for S/95), the class into which a job is placed will affect its scheduling.

5.3-6



JOB SET-UP

5.4 STEPLIB AND JOBLIB CARDS

The execution of any program or load module not in the system library

(SYS1.LINKLIB and its extensions) requires that a STEPLIB or JOBLIB 
state-

ment be used to identify that library by data set name. It is highly recom-

mended that use be made of STEPLIB rather than JOBLIB since the STEPLIB 
card

causes the private library to be searched for that job step only. The JOBLIB

card causes the private library to be searched in every job step.

5.4.1 STEPLIB DD CARD

The major function of the STEPLIB statement is to make programs which reside

in a private library available to the operating system. When the STEPLIB

statement is encountered, the operating system concatenates the private li-

brary with the system library (SYS1.LINKLIB). When a request is made for the

program, the operating system searches first in the private library and then

in the system library. This is especially useful when working with more than

one version of the same program. The alternate version in the private library

may be STEPLIBed when its use is required. Removing the STEPLIB card makes

available the version in the system library.

The STEPLIB card can appear in any position among the DD statements for that

job step. If the private library referenced is cataloged, the operand field

requires only the DSNAME and DISP parameters. If only the first operand of

the DISP parameter is coded, the second operand will default to PASS. The

first operand may be NEW, OLD, or SHR. SHR is the recommended disposition

for libraries which may be required by other users. If the library is not

cataloged, volume and unit information must also be provided.

If a private library is created within the job step, code DISP=(NEW,CATLG)
or DISP=(NEW,KEEP) on the DD card and DISP=NEW on the STEPLIB card. If KEEP

or CATLG are not specified on the library DD card the library will be deleted

at the end of the job step. Space for the data set should be allocated on

the STEPLIB card.

A STEPLIB DD statement can appear in a cataloged procedure and can be referred

to by, or passed, to other steps of the same job. As with ordinary DD state-

ments, a sequence of DD statements may be concatenated with the STEPLIB card

so that they are effectively read as one.

The JOBLIB DD statement need not appear in a job in order to use the STEPLIB
DD statement. If both JOBLIB and STEPLIB DD statements appear in a job, the

JOBLIB definition is ignored for any step that contains the STEPLIB defini-

tion.

5.4-1



JOB SET-UP

5.4.2 JOBLIB DD CARD

The JOBLIB statement must immediately follow the JOB card. It defines a pri-
vate library for the duration of the job. Those parameters required to retrieve
a data set are coded as in the STEPLIB statement. If the user wants the JOBLIB
definition ignored but the step does not require use of another private library,
the system library must be defined on the STEPLIB DD statement as shown in the
following statement:

//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR

A JOBLIB statement cannot appear in a cataloged procedure.

Reference back to the JOBLIB is the same as for other DD statements. When a
library is JOBLIBed, the user must insure that subroutine libraries having sup-
porting modules are added to the SYSLIB DD statement in the LINK and LINKGO
procedures. One example of this (on the M&DO 360/75) is the PL/I Version 4.3
processor which is in SYS3.LINKLIB and the PL/I Version 4.3 subroutines which
are in SYS2.PL1LIB. The user must code both:

//JOBLIB DD DSN=SYS3.LINKLIB,DISP=SHR

and

//LINK.SYSLIB DD DSN=SYS2.PLlLIB,DISP=SHR

The libraries are searched in the order in which the DD statements appear, with
the system library searched last.

When concatenating private libraries, as when concatenating any data sets, the
ddname must be omitted from all the DD statements defining private libraries,
except the first DD statement. The first statement must specify a ddname of
JOBLIB or STEPLIB. If JOBLIB is specified, the entire group must appear immed-
iately after the JOB statement. If STEPLIB is specified, the entire group would
appear as one of the DD statements for a particular step.

5.4.3 REFERENCE

IBM System/360 Operating System manual.

* Job Control Language Reference (GC28-6704).

5.4-2



JOB SET-UP

5.5 EXECUTE (EXEC) CARD

5.5.1 GENERAL DISCUSSION

This card is always the first card after the JOB card (except when a JOBLIB

card is used). When more than one job step is used (for example: compile,
link-edit, and execute), the EXEC card is the first card in each step.

The EXEC card may or may not have other entries added to it, depending on the

circumstances, as explained under individual descriptions of cataloged proce-

dures and various programs and in subsection 5.5.3.

Although the name field of the EXEC card may be left blank, this name
(chosen by the user) is so often required as a stepname that it is always
good programming practice to use one. The job step name must be used if

later control statements refer to the job step in any way. Further, this
step name is used by the system to return CPU and I/O time to the user and
as step identification with certain diagnostics. Each stepname in a job
must be unique. The makeup of the stepname is the same as that for the JOB
card, i.e., one to eight alphanumeric or national characters (@,$,#).

5.5.2 EXECUTING PROGRAMS AND CATALOGED PROCEDURES

The principal function of the EXEC statement is to identify the program to
be executed or the cataloged procedure to be used. Programs to be executed
can reside in three types of libraries, as follows:

1. The system library. This is a partitioned data set (PDS), named
SYS1.LINKLIB, which is used to store frequently used programs.
To execute a program that resides in the system library, the
user should code:

//step EXEC PGM=progname

where progname is the name of the program.

2. Private libraries. These are partitioned data sets which store
groups or programs not used frequently enough to warrant their
inclusion in the system library. These private libraries must
be identified on a JOBLIB or STEPLIB statement.

3. Temporary libraries. These are temporary partitioned data sets
created to store a program until it is used in a later step of
the same job. To execute a program from a temporary library,
the user should code:

//step EXEC PGM=*.stepname.ddname

5.5-1



JOB SET-UP-

where stepname and ddname are the names of the job step and the
DD statement where the temporary library was created (usually
LINK.SYSIUOD). Note that the DD statement referred to must con-
tain the member name of the program as well as the DSNAME of the
library.

To execute a program that resides in a private library, the same format is used
as for a program residing in the system library.

Instead of executing a particular program, a job step may use a cataloged
procedure. A cataloged procedure can contain control statements for sev-
eral steps, each of which executes a particular program. Cataloged proce-
dures are members of a library (PDS), named SYS1.PROCLIB and (models 95 and
75 (Cl)) SYS2.USERPROC. To request a cataloged procedure, the user should
code:

//step EXEC procname
or

//step EXEC PROC=procname

where procname is the member name associated with the cataloged procedure.

5.5.3 EXEC CARD PARAMETERS

Several parameters can be included on EXEC cards. Users of M&DO computers
will find the PARM, COND, and REGION parameters useful or necessary. Many
cataloged procedures supply them. When adding or overriding EXEC card
parameters of cataloged procedures, certain precautions must be taken.
Cataloged procedure steps must be overridden in order, i.e., all overrides
to STEP1 must be coded on your EXEC card before any overrides of STEP2.
Other precautions are mentioned in paragraphs 5.5.3.1 and 5.5.3.3.

5.5.3.1 PARM

The PARM parameter is used to pass options to a program. The program must
be designed to accept the PARM information; otherwise, the field is ignored.
When overriding a cataloged procedure, the overriding PARM field will com-
pletely replace the one in the cataloged procedure. Those options not
stated will revert to the defaults (chosen at system generation time) which
are not necessarily those stated in the cataloged procedure. In multi-step
procedures overrides should be coded as "PARM.stepname" rather than just
"PARM", as the latter format will only override the PARM field in the first
step of the cataloged procedure.

-5.5-2



JOB SET-UP

5.5.3.2 COND

The COND field on the EXEC card is used to conditionally execute or skip a

job step, depending on the completion and condition code set by a preceding

step. The code returned by the preceding step is compared to the number

specified in the COND statement. If the comparison is satisfied, the step
is bypassed. Use of the format COND=(n,cp) tests all preceding steps. Use

of the format COND=(n,cp,stepname) tests a particular step. Up to eight
different tests can be made against the condition codes by coding COND=
((n,cp,STEP]),(n,cp,STEP2),(...)). There is only one condition code returned
per job step.

COND=EVEN and COND=ONLY test for an abnormal termination (ABEND) of a pre-
vious step. They can be used in conjunction with the COND= tests described
in the above paragraph. However, COND=EVEN and COND=ONLY cannot be used in
the same job step. COND=EVEN execute this step even if one or more preceding
job steps abnormally terminated. COND=ONLY execute this step only if one or
more of the preceding job steps abnormally terminated. They are useful
for steps which list the contents of intermediate files or restore things
which might have been left in disarray by the abnormal termination. They
will not be effective if a JCL error or a condition which set a completion
code of n22 caused the ABEND, or if any return code tests specified in the
job step have been satisfied.

5.5.3.3 REGION

The REGION parameter must be used if a step requires more core than the de-
fault region size provided by the reader-interpreter procedure. The default
value varies from machine to machine (refer to Table 4.2-1). Most cataloged
procedures have the proper region specified for each step. The use of REGION
on a step basis results in the best use of system resources. The use of
REGION on the JOB card is not permitted, and, if used, will result in a JCL
error (see subsection 16.2).

Lack of sufficient REGION will result in an ABEND with a code of 804 or 80A.
Since some system tasks, such as access method routines and buffers, require
core in a user's region, a REGION parameter must be large enough to include
these tasks, as well as the specified program. 10K is usually sufficient for
these system routines as well as for an ABEND condition.

NOTE: The result of the COND parameter when specified on the JOB card
differs from that when specified on the EXEC card. If a JOB card
return code test is satisfied subsequent steps are bypassed and
the job is terminated. If an EXEC card return code test is satisfied,
the step is bypassed. COND=EVEN and COND=ONLY cannot be used on the
JOB card.

5.5-3



JOB SET-UP

5.6 THE DATA DEFINITION (DD) STATEMENT

5.6.1 GENERAL DISCUSSION

For general instructions on preparing the DD control cards, refer to the
IBM manuals, Job Control Language Reference, Form GC28-6704. The following
paragraphs present an overview of the DD card, along with the supplementary
information unique to GSFC and the M&DO facilities. More detailed information
on specific techniques and parameters may be found in Section 17.

5.6.2 THE DD CARDS

Data sets used by processing programs must be represented by DD statements
in the job stream. The DD statements pertaining to a particular job step
follow the EXEC statement associated with that step. A DD statement must
contain the term DD in its operation field. Although all parameters in the
DD statement's operand field are optional, a blank operand field is invalid,
except when overriding DD statements defining concatenated data sets.

The general form of the DD statement is:

//ddname DD operands

Like the EXEC card, the DD operand consists of positional and keyword para-
meters (refer to subsection 5.2.3 of this guide).

5.6.3 CONTINUATION OF DD CARDS

If the operand of a DD card will not fit on one card, it may be continued.
This is explained in subsection 5.2.3 of this guide. (Note: In this User's
Guide, because of space limitations on the printed page, the examples of
control cards are necessarily shorter than the full 71 columns allowed on
an actual card, but the examples follow all of the above rules for continu-
ing statements.)

5.6.4 ABBREVIATIONS IN DD STATEMENTS

As explained in the IBM Job Control Language Reference manual, certain abbre-
viations are allowed in the DD statements, and are useful in saving space on
a control card. (Note: These abbreviations are not allowed in utility control
cards.)

In this User's Guide, both the abbreviated form and the full form are used
in examples of DD cards. The two parameters with their abbreviations are:

* VOLUME or VOL

* DSNAME or DSN

5.6-1



JOB SET-UP

For example, both of the following versions of a statement are recognized by
the system:

//SOURCE.COMPILE DD DSNAME=TAPOUT, UNIT=9TRACK,VOLUME=SER=tapeid,
// DCB= (RECFM=F,BLKSIZE=80,DEN=2),LABEL= (,BLP),

// DISP=(NEW,KEEP)

or

//SOURCE.COMPILE DD DSN=TAPOUT, UNIT=9TRACK,VOL-SER=tapeid,
// DCB= (RECFM=F,BLKSIZE=80,DEN=2),
// LABEL= (,BLP),DISP= (NEW,KEEP)

5.6.5 BACKWARD REFERENCES (*.name.name)

The user may save time and avoid errors in copying information onto a DD
card from an earlier DD card in the same job by writing a backward reference
in the form of:

*.stepname.ddname

For example, assume that the user has several job steps, and that in the one
named STEP2 there is a SYSPRINT DD card containing complete DCB information

that will be used in exactly the same manner in STEP4. Therefore, in STEP4

he writes this card:

//SYSPRINT DD SYSOUT=A,DCB=*.STEP2.SYSPRINT

Or assume that the user has this statement in STEP1:

//CARD4 DD DSN=&&WORKl

and he desires to refer in several later job steps to the same data set name.

He may, instead of repeating DSN=&&WORK1, write:

DSN=*.STEP1.CARD4

If the earlier DD card is in the same job step, he writes:

DSN=*.ddname

If the DD statement referred to is in a cataloged procedure within the sys-

tem procedure library, and the user desires to refer to the statement from
outside the procedure, he must give the step name that invoked the procedure,
the name of the step within that procedure, and the name in the DD statement

within that step of the procedure:

*.jobstepname.procstepname.ddname

5.6-2



JOB SET-UP

5.6.6 PARAMETERS IN THE OPERAND FIELD OF THE DD STATEMENT

The following parameter descriptions should be used as a guide to the
use of parameters in the operand field of the DD statement. They are not
complete; therefore, the user is referred to the IBM Job Control Language
Reference (GC28-6704) manual for a more detailed description. Section 17
of this document contains further discussion of some of these parameters
as they apply to M&DO computer use.

In the following descriptions, the format of the parameter is shown first,
followed by a discussion of its more important subparameters and comments,
if any.

The symbols used in displaying the parameter formats are as follows:

= ~ Choose one

1] = Optional; if more than one line is enclosed, choose one or[ none.

5.6.6.1 Data Control Block

Each data set that is to be read or written must have a data control block
associated with it. The data control block is originally constructed in
the processing program by a DCB macro instruction. This data control block
can be completed when the DCB macro instruction is issued, or at execution
time through the DCB parameter on the DD statement and the data set label,
if one exists. The format of the DCB parameter is as follows:

DCB=(list of attributes)
DCB=( dsname I [,list of attributes])

*.ddname
*.stepname.ddname
*.stepname.procstepname.ddname

5.6.6.1.1 Rules for Coding

a. Separate each DCB keyword subparameter with a comma.

b. If the DCB parameter value consists of only one keyword sub-
parameter, a data set name, or a backward reference, the user
need not enclose it in parentheses.

c. All DCB subparameters, except BLKSIZE and BUFNO, are mutually
exclusive with the DDNAME parameter; therefore, when the DDNAME
parameter is coded, the user should not code any DCB subpara-
meters except BLKSIZE and BUFNO. The DCB subparameters BLKSIZE
and BUFNO have meaning when coded with the DDNAME parameter.

5.6-3



JOB SET-UP

5.6.6.1.2 Completing the Data Control Block

When more than one source is used to complete the data control block, a
merging process takes place. First, information coded with the DCB macro
instruction is placed in the data control block. Then, information coded
on the DD statement is placed in unfilled sections of the data control blocks.
Finally, information in the data set label, if one exists, is placed in
still unfilled sections of the data control block. DCB information may
also be provided by default options assumed in the OPEN macro instruction
and by the user's program, either before the data set is opened (by using
the DCBD macro instruction) or in the DCB exit routine. Refer to the chapter
"Interface With the Operating System" in Supervisor and Data Management Macro
Instructions (GC28-6647) for details.

5.6.6.1.3 DCB Macro Instruction

The DCB macro instruction includes information about the data that is
unlikely to change each time the processing program is executed. Also,
it includes any information that is not related to the DCB parameter and
the data set label (e.g., MACRF, DDNAME, EXLST).

5.6.6.1.4 DCB Parameter

The DCB parameter is coded on the DD statement and includes all the infor-
mation that is not specified by any other source. How to specify DCB
information on the DD statement is described in 5.6.6.1.6 below.

5.6.6.1.5 Data Set Label

If the data set already exists and has standard lIbels, certain information
is contained in the label that can be used to complete the data control
block. For tape, the data set label can contain the data set's record format,
block size, logical record length, tape recording density, and for 7-track
tape, tape recording technique. For direct access, the data set label
can contain the data set's organization, record format, blocksize, logical
record length, and if the data contains keys, the key length and relative
key position.

5.6.6.1.6 Specifying DCB Information on the DD Statement

The DCB parameter must be coded on the DD statement unless the data control
block is completed by other sources. There are several ways of specifying
DCB information on the DD statement. The user can:

a. Supply all pertinent DCB keyword subparameters on the DD
statement.

b. Tell the system to copy DCB information from the data set
label of an existing cataloged data set.

5.6-4



JOB SET-UP

c. Tell the system to copy DCB information from an earlier
DD statement in the same job.

If the user is extending a data set which has standard label, the blocksize
information in the data control block must agree with the blocksize specified
in the data set label. Conflicting information may make the data set
unusable by later jobs. The user should especially take care when extending
sequential data sets (tape or direct access) with DISP=MOD or adding or re-
placing members on a partitioned data set.

5.6.6.1.7 Supplying DCB Keyword Subparameters

The DCB information required to complete the data control block can be
listed as keyword subparameters in the DCB parameter; subparameters are
separated by commas. If the processing program and the DCB parameter supply
the same subparameter, the subparameter on the DD statement is ignored.
Valid DCB keyword subparameters and the values that can be assigned to
them are listed in Job Control Language Reference (GC28-6704), under
"Glossary of DCB Subparameters."

5.6.6.1.8 Copying DCB Information From a Data Set Label

To save time in coding the DCB parameter, the user can tell the system to
copy the DCB information from the data set label of a cataloged data set
on a currently mounted direct-access volume. The data set must have standardlabels. A permanently resident volume is the most likely place from which
to copy such information because it is always mounted. The user should
code in the DCB parameter the data set name of the cataloged data set.
The name coded cannot contain special characters, except for periods used
in a qualified name.

The following DCB keyword subparameters can be copied from the data setlabel: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The volume
1equence number and expiration date of the cataloged data set are also copied
unless these are specified in the DD statement. If the user codes any
DCB keyword subparameters following the name of the cataloged data set,
these subparameters override any of the corresponding subparameters that
were copied. Valid DCB keyword subparameters and the values that can beassigned to them are listed in Job Control Language Reference (GC28-6704),
under "Glossary of DCB Subparameters."

5.6.6.1.9 Copying DCB Information From an Earlier DD Statement

Another way to save time in coding the DCB parameter is to tell the system
to copy the DCB information from an earlier DD statement in the same job.
The earlier DD statement can be contained in the same job step, an earlier
job step, or a cataloged procedure step. If the user codes any DCB keywordsubparameters following the reference to the DD statement, these subparameters

5.6-5



JOB SET-UP

override any of the corresponding subparameters that were copied. If the

DD statement defines an existing data set and contains the DCB parameter,

the system copies those subparameters from the earlier DD statement that

were not previously specified for the existing data set. Valid DCB keyword

subparameters and the values that can be assigned to them are listed in

Job Control Language Reference (GC28-6704), and Supervisor and Data

Management Macros (GC28-6647).

5.6.6.2 DEN

It is good programming practice to specify tape density in the DCB infor-

mation, rather than to take the default option, because this 
eliminates

errors in remembering default options. Also, default density may vary

from one computer to another because of system generation options, 
while

these differences may be unknown to the user. Write:

DCB=DEN=n

where n is the desired density, as shown below.

Tape densities, used on M&DO computers, and the code for their use, are

as follows:

BPI if BPI if BPI if BPI if

DEN=0 DEN=P DEN=2 DEN=3

Tape Drive

7-Track 200 556 800 Not
Allowed

9-Track Not Not 800 1600
Allowed Allowed

The default density for all 9-track drives on the modules 95 and 75 is 1600 BPI.

The model 65 has two 800 BPI 9-track drives and two dual density 800-1600 BPI

9-track drives. To insure allocating a dual density drive on the 360/65,

code UNIT=2400-4.

5.6-6



JOB SET-UP

5.6.6.3 TRTCH

The tape recording techniques parameter is used to differentiate the various

recording techniques which may be used with 7-track tapes. Allowable values

are:

C - Data Conversion

When reading tape, four 6-bit characters from tape fill three
8-bit bytes in core. When writing, three 8-bit bytes from
core fill four 6-bit characters. All M&DO 7-track drives

support data conversion. At other centers, the user should
code UNIT-2400-2 to ensure that the 7-track drive supports
data conversion.

E - Even Parity

Most 1400 series tapes and formatted tapes on 7000 series
computers were written in even parity.

T - Translate

BCD-to-EBCDIC translation is to be performed when reading;
EBCDIC-to-BCD translation is to be performed when writing.

ET - Both Even Parity and Translation

In the absence of the TRTCH parameter, the 7-track tape is
read/written in odd parity, without conversion or translation.

The result - When read from tape to core the 6 bit character will be con-
verted to an 8 bit byte by having zeros stored in its two high order bits.
When read from core to tape an 8 bit byte will be converted to a 6 bit
character by having its two high order bits truncated.

5.6.6.4 Disposition

The DISP parameter describes to the system the status of a data set and
indicates what is to be done with the data set after termination of the
job step that processes it or at the end of the job. The user can indi-
cate in the DISP parameter one disposition to apply if the step terminates

5.6-7



JOB SET-UP

normally after execution and another to apply if the step terminates
abnormally (conditional disposition). The format of the DISP parameter
is as follows:

DISP=( NEW ,DELETE ,DELETE
OLD KEEP ,KEEP
SHR ,PASS ,CATLG
MOD , CATLG _,UNCATLG

,UNCATLG

5.6.6.4.1 Rules for Coding

a. If only the first subparameter is coded, the user need not
enclose it in parentheses.

b. If the data set is new, the user can omit the subparameter
NEW. However, if the user specifies a disposition or
conditional disposition, he must code a comma to indicate
the absence of NEW.

c. The user can omit the DISP parameter if a data set is created
and deleted during a job step.

d. If the user does not want to change the automatic disposition
processing performed by the system, he need not code the
second subparameter. (When the second subparameter is not

ccd , uLumatically keeps data sets that did
exist before the job and automatically deletes data sets
that did not exist before the job.) If the user omits the
second subparameter and codes a conditional disposition,
he must code a comma to indicate the absence of the second
subparameter.

e. The DISP, SYSOUT, and DDNAME parameters are mutually exclu-
sive parameters; therefore, when SYSOUT or DDNAME is coded,
do not code the DISP parameter.

f. Refer to subsection 17.3.5 for the use of the DISP parameter
when using tapes.

5.6-8



JOB SET-UP

5.6.6.4.2 Specifying the Data Set's Status

A data set is either a new data set or an existing data set. What the
user plans to do with the data set determines which status he codes as
the first subparameter of the DISP parameter. There are four different
states that can be coded in this position. This subparameter allows the
user to tell the system: the data set is to be created in the job step --
NEW; the data set existed before this job step -- OLD; the data set can
be used by other concurrently executing jobs -- SHR; the data set is to
be lengthened with additional output -- MOD.

a. Specifying NEW as the Data Set's Status

Specifying NEW as the first subparameter of the DISP
parameter tells the system that the data set is to be
created in the job step and may be used by the processing
program to contain output data. If the user omits the
subparameter NEW, the system assumes the data set is to
be created.in the job step. When the status of a data
set is NEW, the user must code on the DD statement all of
the parameters necessary to define the data set.

b. Specifying OLD as the Data Set's Status

Specifying OLD as the first subparameter of the DISP para-
meter tells the system that the data set existed before this
job step. The data set will not be allocated to another
JOB until this JOB terminates. Code OLD only when you want
exclusive use of the data set, e.g., when you are updating
the data set.

c. Specifying SHR as the Data Set's Status

Specifying SHR as the first subparameter of the DISP para-
meter tells the system that the data set resides on a
direct-access volume and other jobs that are executing
concurrently with this job step may simultaneously use
(share) the data set. When SHR is specified, any job step
that uses the data set should only read the data set.

If the user codes DISP=(SHR,DELETE) the system assumes OLD
instead of SHR. Once SHR is specified for a data set,
every reference to that data set within the job must be
specified by SHR, or the data set can no longer be used
by concurrently executing jobs.

5.6-9



JOB SET-UP

d. Specifying MOD as the Data Set's Status

Specifying MOD as the first subparameter of the DISP para-
meter tells the system that when the data set is opened
for output, the read/write mechanism is to be positioned
after the last record in the data set. MOD is specified
when the user wants to add records to a data set with
sequential, indexed sequential, or partitioned organization.
MOD should not be specified for data sets with direct
organization. When MOD is specified and the number of
volumes required to lengthen the data set may exceed the
number of units requested, a volume count should be speci-
fied in the VOLUME parameter. This ensures that the data
set can be extended to new volumes.

When MOD is specified, the system first assumes the data
set exists. However, if the system cannot find volume
information for the data set -- on the DD statement, in
the system catalog, or passed with the data set from a
previous step -- the system then assumes that the data set
does not exist and the data set is created for the job
step. If the NEW data set is to be written to disk, space
allocation must appear on the DD card. If space has been
requested on the DD card and the data set is not NEW, the
allocation request will be ignored. Specifying MOD for a
new sequential data set causes the read/write mechanism to
be positioned after the last record in the data set each
time it is opened for output. MOD is often used for tem-
porary passed data sets in those cataloged procedures which
may be used repetitively within a job. For instance, a
programmer may wish to compile both an ALC module and a
FORTRAN module, load them together, and execute the load
module. If the object module output of the compiler steps
of the cataloged procedures specified NEW, the programmer
would be forced to override this parameter for every pro-
cedure but the first. MOD works in either case.

If MOD is specified and volume information exists, the first
volume of a multivolume data set will be mounted unless
DEFER is specified in the UNIT parameter or (for tape data
sets only) the VOLUME=REF parameter is used.

When a user lengthens a data set that has standard labels,
DCB information in the data control block must agree with
the DCB information contained in the data set label. Con-
flicting DCB information, specifically conflicting block
sizes, may make the data set unusable by later jobs. There-
fore, the DCB information contained in the data set label
should not be coded on the DD statement. If this DCB

5.6-10



JOB SET-UP

information is coded in the DCB macro instruction, it
must agree with the information contained the data set
label.

If a user extends a data set that has Fixed-Block spanned
(FBS) records, and the last block was a truncated one, an
end-of-data set condition occurs when the truncated block
is encountered. If an attempt is made to read the data
set backward on magnetic tape, processing is terminated
immediately (with an end-of-data set condition) upon read-
ing the truncated block.

5.6.6.4.3 Specifying a Disposition for the Data Set

The second subparameter of the DISP parameter tells the system what is
to be done with the data set after normal termination of the job step.
There are five dispositions that can be specified for a data set. These
dispositions allow the user to:

* Delete a data set -- DELETE.

* Keep a data set -- KEEP.

* Pass a data set to a later job step -- PASS.

* Catalog a data set -- CATLG.

* Uncatalog a data set -- UNCATLG.

When the second subparameter is not coded, data sets that existed before
the job continue to exist and data sets that were created in the job step
are deleted.

The system ignores the disposition the user has coded and automatically
keeps existing data sets and deletes new data sets when the step is
abnormally terminated before the step begins execution, e.g., primary direct-
access space cannot be obtained.

Sometimes the system does not perform disposition processing. The system
does not disposition processing of data sets when:

* The job step is bypassed because of an error that is found
during interpretation of control statements, e.g., a control
statement containing errors is read.

* The job step is bypassed because a return code test is
satisfied.

5.6-11



JOB SET-UP

* The job step makes a nonspecific request for 
a tape volume

and the data set is never opened. There is one exception

to this: if the data set is defined as a new generation

data set, the system performs the requested disposition.

* The job step requests that the mounting of a 
direct-access

volume be deferred and the data set is never opened.

Except for the cases mentioned above, the specified 
disposition is in

effect for the data set if the job step terminates normally or abnormally

and the user has not specified a condition disposition as the third sub-

parameter of the DISP parameter.

a. Specifying DELETE as the Disposition

Specifying DELETE tells the system that the user 
wants the

data set's space on the volume released. DELETE is the only

valid disposition that can be specified for a data set

assigned a temporary name or no name. If the data set

resides on a tape volume, the tape is rewound and the volume

becomes available for use by other data sets at the end of

the job step. If the data set resides on a direct-access

volume, the system removes the volume table of contents

entry associated with the data set and the data set's space

is available for use by other data sets at the end of the

job step. However, if the direct-access data set's expira-

tion date or retention period has not expired, the system

,does not delete the data set. The user can use the IEHPROGM

utility program to remove the volume table of contents entry.

If the data set is cataloged, its entry in the system catalog

is also removed, provided the system obtained volume information

for the data set from the catalog, i.e., the VOL=SER- and

UNIT=parameters were not coded on the DD statement. If the

system did not obtain volume information from the catalog,

the data set is still deleted, but its entry in the catalog

remains. In this case, the user may use the IEHPROGM
utility program to delete the entry.

b. Specifying KEEP as the Disposition

Specifying KEEP tells the system that the user wants the

data set kept intact.

c. Specifying CATLG as the Disposition

Specifying CATLG tells the system that the user wants the

system to create an entry in the system catalog that points

5.6-12



JOB SET-UP

to this data set. The disposition of CATLG also implies
a disposition of KEEP. Once the data set is cataloged, the

user can retrieve the data set in later job steps and jobs
by coding the DSNAME parameter and a status of other than

NEW in the DISP parameter. The VOL=SER= and UNIT= parameters

are not required.

If the data set's name is enclosed in apostrophes, the data

set must not be assigned a conditional disposition of CATLG.
If the data set has a qualified name, e.g., A.B.C., the user
must have created all but the lowest level of the name as

indexes in the catalog before asking that the system catalog
the data set. This is done using the IEHPROGM utility pro-
gram.

d. Specifying UNCATLG as the Disposition

Specifying UNCATLG tells the system that the user wants the
data set's entry in the system catalog removed. UNCATLG

does not tell the system to delete the data set. Later jobs
that use this data set must provide on the DD statement all
of the parameters necessary to define the data set.

e. Specifying PASS as the Disposition

Specifying PASS as the second subparameter of the DISP
parameter tells the system that the data set is to be passed
after it is used in a job step. This permits another job
step in the same job to use this data set without having
retrieval and disposition processing done by the system.
The user continues to code PASS each time the data set is
referred to until the last time it is used in the job. At
this time, the user assigns it a final disposition. If he
does not assign the data set a final disposition, the system
deletes the data set if it was created in the job and keeps
the data set if it existed before the job.

When a subsequent job step wants to use the passed data set,
the user must include a DD statement for the step. On this
DD statement, he must always code the DSNAME and DISP para-
meters, as follows:

* The DSNAME parameter identifies the data set. The user
should either code the data set's name or make a back-
ward reference to any earlier DD statement in the job
that defines the data set.

3.6-13



JOB SET-UP

* The DISP parameter specifies the data set's status and
disposition. (If a later step is to use this data
set, the user should specify a disposition of PASS;
if this is the last job step that uses this data set,
the user should specify the data set's final disposi-
tion.)

The other parameters the user may code are UNIT, LABEL, and
DCB. The user should code:

* The UNIT parameter if he wants more than one device
allocated to the data set.

* The LABEL parameter if the data set does not have
standard labels.

* The DCB parameter if the data set does not have standard
labels and the first DD statement that defines the passed
data set contains the DCB parameter.

If several data sets used in the job have the same name, the
user can only pass one of these data sets at a time. A job
step must refer to a passed data set and assign a disposition
of other than PASS to the data set before another data set
with the same name can be passed.

5.6.6.4.4 Specifying a Condition Disposition for the Data Set

The third subparameter of the DISP parameter tells the system what is
to be done with the data set if the step abnormally terminates. If the
user does not specify a conditional disposition and the step abnormally
terminates, the system uses the disposition specified as the second sub-
parameter of the DISP parameter to determine what is to be done with the
data set. (There are a few exceptions and they are noted in para-
graph 5.6.6.4.3.) If a passed data set has not been received and a job
step abnormally terminates, the passed data set assumes the conditional
disposition specified the last time it was passed. In this case, condi-
tional disposition processing is done at job termination, not at step
termination.

There are four conditional dispositions. When a job step abnormally ter-
minates, these conditional dispositions allow the user to:

* Delete a data set -- DELETE.

* Keep a data set -- KEEP.

* Catalog a data set -- CATLG.

5.6-14



JOB SET-UP

* Uncatalog a data set - UNCATLG.

Note; A scratch volume will be rewound, unloaded, and a KEEP message issued

to the operator during abnormal termination of a job step when: (1) a
temporary data set written on the scratch volume has been assigned a non-
temporary name, and (2) a conditional disposition of KEEP has been assigned
to the data set.

5.6.6.5 Data Set Name

When the user creates a data set, he should use the DSNAME parameter to
assign a name to the data set. The data set name is part of the informa-
tion stored with the data set on a labeled volume. Later, when another
job step or job wants to use the data set, it identifies the data set
name in the DSNAME parameter; the system uses the data set name to locate
the data set on the volume. On an unlabeled (tape) volume, the data set
sequence number in the LABEL parameter is used to locate the data set.

How the user codes the DSNAME parameter depends on the type of data set
and whether the data set is nontemporary or temporary. Note that the
disposition should correspond to the temporary or nontemporary status
implied in the DSNAME parameter.

The format of the DSNAME parameter is as follows:

DSNAME dsname
DSN dsname (member name)

dsname (generation number)
dsname (area name)
&&dsname
&&dsname (member name)
&&dsname (area name)
*.ddname
*. stepname. ddname
*.stepname.procstepname.ddname

5.6.6.5.1 Rules for Coding

a. An unqualified data set name may consist of one to eight
characters. The first character must be an alphabetic or
national (@,$,#) character; the remaining characters can be
any alphanumeric or national characters, a hyphen, or an over-
punched ampersand zero (12-0 punch). A temporary data set
name can consist of one through eight characters, excluding
the ampersands; the first character following an ampersand
must be an alphabetic or national character.

5.6-15



JOB SET-UP

b. A qualified name may consist of up to 44 characters, includ-
ing periods. For each eight characters or less there must
be a period, and the character following a period must be an
alphabetic or national (@,$,#) character.

c. The user need not code the DSNAME parameter if the data set is
created and deleted in the job, i.e., if the data set is
temporary.

d. The DSNAME and DDNAME parameters are mutually exclusive para-
meters; therefore, when the DDNAME parameter is coded, the user
should not code the DSNAME parameter.

Sometimes it may be necessary or desirable to specify a data set name that
contains special characters. If the name contains special characters, the
user must enclose the name in apostrophes (5-8 punch), e.g., DSNAME='DAT+5'o
If one of the special characters is an apostrophe, the user must identify
it by coding two consecutive apostrophes (two 5-8 punches) in its place,
e.g., DSNAME='DAY''SEND'. A data set name enclosed in apostrophes can
consist of one through 44 characters.

There are cases when the user's data set name must contain required special
characters which tell the system something about the data set (e.g., && in
DSNAME=&&name are required special characters that tell the system that
this is a temporary data set). In these cases, the data set name must not
be enclosed in apostrophes because the system will not recognize the re-
quired special characters as having any special significance. The follow-
ing data set names contain special characters that tell the system some-
thing about the data set and, therefore, cannot be enclosed in apostrophes:

* DSNAME=name (member name)

* DNAME=name (area name)

* DSNAME=name (generation number)

* DSNAME-&&name

* DSNAME=*.stepname. ddname

The following rules should be observed:

* If the data set is to be cataloged, the data set name cannot
be enclosed in apostrophes.

* If the data set name begins with a blank character, the data set
is assigned a temporary data set name by the system.

5.6-16



JOB SET-UP

* If the data set name ends with a blank character, the blank is
ignored.

* If the only special character is a period or a hyphen, the user
need not enclose the data set name in apostrophes.

5.6.6.5.2 Copying the Data Set Name From an Earlier DD Statement

The name of a data set that is used several times in a job, whether speci-
fied in the DSNAME parameter or assigned by the system, can be copied
after its first use in the job. This allows the user to easily change
data sets from job to job and eliminates assigning names to temporary
data sets. To copy a data set name, the user should refer to an eariler
DD statement that identifies the data set. When the earlier DD statement
is contained in an earlier job step, the user should code DSNAME=*.step-

name.ddname; when the earlier DD statement is contained in the same job
step, he should code DSNAME=*.ddname; when the earlier DD statement is
contained in a cataloged procedure step called by an earlier job step, he
should code DSNAME=*.stepname.procstepname.ddname.

5.6.6.5.3 Creating or Retrieving a Nontemporary Data Set

If the data set is nontemporary, the user can identify:

e A permanent data set, by coding DSNAME=dsname.

* A member of a nontemporary partitioned data set, by coding
DSNAME=dsname (member name).

* A generation of a nontemporary generation data group, by coding
DSNAME=dsname (number).

* An area of a nontemporary indexed sequential data set, by coding
DSNAME=dsname (area name).

5.6.6.5.4 Creating or Retrieving a Temporary Data Set

If the data set is temporary, the user can identify:

* A temporary data set, by coding DSNAME=&&dsname.

* A member of a temporary partitioned data set, by coding
DSNAME=&&dsname (member name).

* An area of a temporary indexed sequential data set, by coding
DSNAME=&&dsname (area name).

5.6-17



JOB SET-UP

5.6.6.5.5 Nontemporary Data Sets

When a nontemporary data set is created, it is assigned a name in the DSNAME
parameter and is assigned a disposition of KEEP or CATLG. (A data set
assigned a disposition of KEEP may be assigned a disposition of CATLG by
a later job step or job.) The name a user assigns to a nontemporary data
set must be specified in the DSNAME parameter by all other steps and jobs
that want to use the data set.

A nontemporary data set name can be either an unqualified or qualified
name. An unqualified data set name consists of one through eight charac-
ters. The first character must be an alphabetic or national (@,#,$)
character; the remaining characters can be any alphanumeric or national
characters, a hyphen, or an overpunched ampersand zero (12-0 punch).

A qualified data set name consists of one through 44 characters (includ-
ing periods), except when the qualified name identifies a generation data
group. In this case, the data set name may consist of only one through 35
characters (including periods). For each eight characters or less there
must be a period, and the first character of the name and the character
following a period must be an alphabetic or national (@,#,$) character.

If the user assigns a qualified name to a data set that is to be cataloged,
all but the lowest level of the name must already exist as indexes in the
system catalog before he can request the system to catalog the data set.
An index level is created by using the IEHPROGM utility program. Once
the indexes are established, the data set can be cataloged.

When the user requests a data set that is cataloged on a control volume
(e.g., DODS) other than the system catalog, the system attempts to mount
this control volume if it is not already mounted. After the system
obtains the pointer to this data set, the control volume may then be de-
mounted by the system if the unit on which it was mounted is required by
another volume. If the user plans to delete, uncatalog, or recatalog the
data set, the volume must be mounted during disposition processing (at the
end of the job step) in order for the pointer to be deleted or revised.
The user can ensure that the volume remains mounted by requesting the
operator to issue a MOUNT command for this volume before the job step is
initiated. If the user does not use the MOUNT command to mount the volume,
and if the volume is not mounted during disposition processing, then, after
the job has terminated, he must use the IEHPROGM utility program to delete
or revise the pointer in the control volume. (In order for the system to
mount a control volume, the control volume must be logically connected to
the system catalog. This is done using the CONNECT function of the
IEHPROGM utility program, which is described in the IBM System/360 Operating
System Utilities (GC28-6586) publication.)

5.6-18



JOB SET-UP

5.6.6.5.6 Temporary Data Sets

Any data set that is created and deleted within the same job is a temporary
data set. A DD statement that defines a temporary data set need not in-
clude the DSNAME parameter; the system generates one for the user. Tempo-
rary data set names should not be used for tape data sets, as they cause
excessive printout on the operator's console. The user should use a
permanent form of the DSNAME.

If the user includes the DSNAME parameter, the temporary data set name
can consist of one through eight characters and is preceded by two
ampersands (&&). The character following the ampersands must be an
alphabetic or national (@,#,$) character; the remaining characters can
be any alphanumeric or national characters. (A temporary data set name
that is preceded by only one ampersand is treated as a temporary data
set name as long as no value is assigned to it either on the EXEC state-
ment for this job step when it calls a procedure, or on a PROC statement
within the procedure.) If a value is assigned to it by one of these means,
it is treated as a symbolic parameter. Symbolic parameters are discussed
in Appendix A of Job Control Reference (GC28-6704).

The system generates a qualified name for the temporary data set, which
begins with SYS and includes the jobname, the temporary name assigned
in the DSNAME parameter, and other identifying characters.

If the user attempts to keep or catalog a temporary data set (he speci-
fies a disposition of KEEP or CATLG in the DISP parameter), the system
changes the disposition to PASS and the data set is deleted at job ter-
mination. However, this change is not made for a data set on a tape
volume when the following conditions exist: (1) the data set is new;
(2) the data set is not assigned a name; and (3) DEFER is specified in the
UNIT parameter. The data set is deleted at job termination, but the sys-
tem tells the operator to keep the volume on which the data set resided
during the job.

5.6.6.5.7 Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential rec-
ords, each identified by a member name in a directory. When a user wants
to add a member to a partitioned data set or retrieve a member, he must
specify the partitioned data set name and follow it with the member name.
The member name is enclosed in parentheses and consists of one to eight
characters. The first character must be an alphabetic or national (@,$,#)
character; the remaining characters can be any alphanumeric or national
characters.

5.6-19



JOB SET-UP

5.6.6.5.8 Generations of a Generation Data Group

A generation data group is a collection of chronologically related data
sets that can be referred to by the same data set name. When a user wants
to add a generation to a generation data group or retrieve a generation,
he must specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and
the number is a zero or a signed integer. A zero represents the most
current generation of the group; a negative integer represents an older
generation; a positive integer represents a new generation that has not
as yet been cataloged.

To retrieve all generations of a generation data group (up to 255 genera-
tions), the user should code only the group name in the DSNAME parameter
and the DISP parameter.

A complete discussion of creating and retrieving generating data sets
is contained in "Appendix D: Creating and Retrieving Generation Data
Sets" in Job Control Language Reference (GC28-6704).

5.6-20



JOB SET-UP

5,6.6.6 Postponing Data Set Definition

The DDNAME parameter allows the user to postpone defining a data set until
later in the same job step. In the case of cataloged procedures, this
parameter allows the user to postpone defining a data set in the procedure
until the procedure is called by a job step.

The DDNAME parameter is most often used in cataloged procedures and in job
steps that call procedures. It is used in cataloged procedures to post-
pone defining data in the input stream until a job step calls the procedure.
(Procedures cannot contain DD statements that define data in the input
stream, i.e., DD * or DD DATA statements.) It is used in job steps that
call procedures to postpone defining data in the input stream on an over-
riding DD statement until the last overriding DD statement for a procedure
step. (Overriding DD statements must appear in the same order as the corres-
ponding DD statements in the procedure.)

The DDNAME parameter is coded as follows:

DDNAME=ddname

where ddname is the name of a following DD statement in the same job step
that defines this data set.

5.6.6.6.1 Rules for Coding

a. The only parameters that can be coded with the DDNAME parameter
are the DCB subparameters BLKSIZE and BUFNO.

b. The DDNAME parameter cannot appear on a DD statement named
JOBLIB.

c. The user can code the DDNAME parameter up to five times in a job
step or procedure step. However, each time the DDNAME parameter
is coded, it must refer to a different ddname.

d. If the data set, which will be defined later in the job step,
is to be concatenated with other data sets, the DD statements
that define these other data sets must immediately follow the
DD statement that includes the DDNAME parameter.

5.6.6.6.2 Coding the DDNAME Parameter

When the system encounters a DD statement that contains the DDNAME para-
meter, it saves the ddname of that statement. The system also temporarily
saves the name specified in the DDNAME parameter so that it can relate

5.6-21



JOB SET-UP

that name to the ddname of a later DD statement. Once a DD statement with

that corresponding name is encountered, the name is no longer saved. For

example, if the system encounters this statement:

//ABC DD DDNAME=JACK

the system saves ABC and, temporarily, JACK. Until the ddname JACK is

encountered in the input stream, ABC defines a dummy data set.

When the system encounters a statement whose ddname has been temporarily
saved, it does two things: (1) it uses the information contained on this

statement to define the data set; and (2) it associates this information

with the name of the statement that contained the DDNAME parameter. The

value that appeared in the DDNAME parameter is no longer saved by the
system. To continue the above example, if the system encounters this
statement:

//JACK DD DSNAME=NIN,DISP= (NEW,KEEP) ,UNIT=2400

the system uses the data set name and the disposition and unit informa-
tion to define the data set; it also associates the ddname of the state-
ment that contained the DDNAME parameter with this information. In this

example, the ddname used is ABC; the ddname JACK is no longer saved.
The data set is now defined, just as it would be if the user had coded:

//ABC DD DSNAME=NIN,DISP (NEW,KEEP) ,UNIT=2400

The system associates the ddname of the statement that contains the DDNAME
parameter with the data set definition information. It does not use the

ddname of the later statement that defines the data set. Therefore, any
references to the data set, before or after the data set is defined, must
refer to the DD statement that contains the DDNAME parameter, not the DD
statement that defines the data set. The following sequence of control
statements illustrates this:

//DDI DD DDNAME=LATER

//LATER DD DSN=SET12, DISP (NEW,KEEP) ,UNIT=2314,VOLUME =SER=G3SCRO,
// SPACE-(TRK,(20,5))

//DD12 DD DSN=SET13,DISP= (NEW,KEEP) ,VOLUME=REF=*.DD1,
// SPACE=(TRK, (40,5))

5.6-22



JOB SET-UP

When the user wants to concatenate data sets, the unnamed DD statements
must follow the DD statement that contains the DDNAME parameter, not the
DD statement that defines the data set. -The following sequence of control
statements illustrates this:

//DDA DD DDNAME= DEFINE
// DD DSN=A.B.C,DISP=OLD
// DD DSN=SEVC,DISP=OLD,UNIT=2314 ,VOL-SER=GlSCRI

//DEFINE DD *
data

/*

The user can use the DDNAME parameter up to five times in a job step or
procedure step. However, each time the DDNAME parameter is coded, it
must refer to a different ddname.

5.6-23



JOB SET-UP

5.6.6.7 Data Set Labels

Labels are used by the operating system to identify volumes and the data

sets they contain, and to store data set attributes. If data set labels
are present, they precede each data set on the volume. Data sets residing
on direct-access volumes always have data set labels. These data set

labels are contained in the volume table of contents at the beginning of
the direct-access volume.

A data set label may be a standard or nonstandard label. Standard labels
can be processed by the system; nonstandard labels must be processed by
nonstandard label processing routines, which are not included in the M&DO

systems. Data sets on direct-access volumes must have standard labels.
Data sets on tape volumes should have standard labels, but can have non-
standard labels or no labels.

Tape label definitions and associated tape label processing are included
in the Tape Labels (GC28-6680) publication.

The LABEL parameter is coded as follows:

LABEL=([data set sequence number] -,SL- ,IN [,EXPDT=yyddd
,NL ,OUT ,RETPD--nnnn J
,BLP

5.6.6.7.1 Rules for Coding

a. All the subparameters except the last subparameter in the LABEL
parameter are positional subparameters. Therefore, if the user
wants to omit a subparameter, he must indicate its absence with
a comma.

b. If the only subparameter the user wants to specify is the data
set sequence number, RETPD or EXPDT, he can omit the parentheses
and commas and code LABEL=data set sequence number, LABEL=RETPD=
nnnn, or LABEL=EXPDT=-yyddd.

c. If the data set has standard labels, the user can omit the sub-
parameter SL.

d. When the user is defining a data set that resides or will reside
on a direct-access volume, only SL can be specified as the second
subparameter.

e. The LABEL, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, the user
should not code the LABEL parameter.

5.6-24



JOB SET-UP

5.6.6.7.2 When to Code the LABEL Parameter

The LABEL parameter must be coded if:

* The user is processing a tape data set that is not the first data
set on the reel; in this case, he must indicate the data set
sequence number.

* The data set labels are not standard labels; the user must indi-
cate NL or BLP.

* The user wants to specify what type of labels a data set is to
have when it is written on a scratch volume; he must indicate
the label type.

* The data set is to be processed only for input or output and
this conflicts with the processing method indicated in the OPEN
macro instruction; the user must specify IN, for input, or OUT,
for output. This option should be used when applicable for
FORTRAN sequential data sets.

* The data set is to be kept for some period of time; the user must
indicate a retention period (RETPD) or expiration date (EXPDT).

5.6.6.7.3 The Data Set Sequence Number Subparameter

When the user wants to place a data set on a tape volume that already con-
tains one or more data sets, he must specify where the data set is to be
placed, i.e., the data set is to be the second, third, fourth, etc., data
set on the volume. The data set sequence number causes the tape to be
positioned properly so that the data set can be written on the tape or
retrieved.

The data set sequence number subparameter is a positional subparameter and
is the first subparameter that can be coded. The data set sequence number
is a 1- to 4-digit number. The system assumes 1, i.e., this is the first
data set on the reel, if the user omits this subparameter or if you code 0.

When the user requests the system to bypass label processing (BLP is coded
as the label type in the LABEL parameter) and the tape volume contains
labels, the system treats anything between tapemarks as a data set. There-
fore, in order for the tape with labels to be positioned properly, the data
set sequence number must reflect all labels and data sets that precede the
desired set. Section I of the Tape Labels (GC28-6680) publication illus-
trates where tapemarks appear.

5.6-25



JOB SET-UP

5.6.6.7.4 The Label Type Subparameter

The label type subparameter tells the system what type of label is asso-

ciated with the data set. The label type subparameter is a positional

subparameter and must be coded second, after the data set sequence number

subparameter. The user can omit this subparameter if the data set has

standard labels.

The label type subparameter is specified as:

0 SL -- if the data set has standard labels.

* NL -- if the data set has no labels.

* BLP -- if the user wants label processing bypassed.

SL is the only label type that can be specified for data sets that reside
on direct-access volumes.

When SL is specified, or the label type subparameter is omitted and the
data set has standard labels, the system can ensure that the correct tape
or direct-access volume is mounted. When the user specifies NL or BLP,
the operator must ensure that the correct tape volume is mounted. If the
user specifies NL, the data set must have no standard labels.

For cataloged and passed data sets, label type information is not kept.
Therefore, any time the user refers to a cataloged or passed data set
that has other than standard labels, he must code the LABEL parameter and
specify the label type.

BLP is not a label type, but a request to the system to bypass label pro-
cessing. This specification allows the user to use a blank tape or over-
write a 7-track tape that differs from his current parity or density speci-
fications. Bypass label processing is an option of the operation system.

Note for BLP: Each file of a standard label tape is preceded and followed
by a label. This means that for every file of data there are actually three
files that the system must read. Therefore, in order to read the nth data
file of a standard label tape using LABEL=(X,BLP), you should determine X
by the formula

X = 3n-1.

The label type subparameter can also be specified when the user makes a
nonspecific volume request for a tape volume (i.e., no volume serial
numbers are specified on the DD statement) and he wants the data set to
have a certain type of label. If the volume that is mounted does not
have the corresponding label type he desires, he may be able to change
the label type.

5.6-26



JOB SET-UP

When you specify NL and the operator mounts a tape volume that contains
standard labels, the user may use the volume, provided; (1) the expira-
tion date of the existing date of the existing data set on the volume has
passed; and (2) the existing data set on the volume is not password pro-
tected; and (3) he makes a nonspecific volume request. All of these
conditions must be met. If they are not, the system requests the operator
to mount another tape volume.

When the user specifies SL and the operator mounts a tape volume that
contains other than standard labels, the system requests the operator to
identify the volume serial number and its new owner before the standard
labels are written.

5.6.6.7.5 The IN and OUT Subparameters

The basic sequential access method (BSAM) permits a specification of
INOUT or OUTIN in the OPEN macro instruction as the processing method.
If the user has specified either of these processing methods in the OPEN
macro instruction and wants to override it, he may do so by coding either
the IN or OUT subparameter. For FORTRAN users, the IN and OUT subparameters
provide a means of specifying how the data set is to be processed, i.e.,
for input or output. Whenever a FORTRAN tape operation is executed, the
system, in the absence of additional information, will OPEN that data set
for IN-OUT operations. This requires a reply by the console operator before
any tape operation can take place. This, in turn, creates overhead and
introduces an additional human element into the execution of the program.

When INOUT is specified in the OPEN macro instruction and the user wants
the data set processed for input only, he can specify the IN subparameter.
When the IN subparameter is coded, any attempt by the processing program
to process the data set for output is treated as an error. If the user
does not override the INOUT specification for tape volumes, the operator
must insert a ring negating the file protection feature.

When OUTIN is specified in the OPEN macro instruction and the user wants
the data set processed for output only, he can specify the OUT subpara-
meter. When the OUT subparameter is coded, any attempt by the processing
program to process the data set for input is treated as an error.

The IN and OUT subparameters are positional subparameters. If either is
coded, it must appear as the fourth subparameter, after the data set
sequence number subparameter, the label type subparameter, and the PASSWORD
subparameter, or the commas that indicate their absence.

5.6-27



JOB SET-UP

5.6.6.7.6 The RETPD and EXPDT Subparameters

When it is necessary that a data set be kept for some period of time, the
user can tell the system how long it is to be kept when he creates the data
set. As long as the time period has not expired, a data set that resides
on a direct-access volume cannot be deleted by or overwritten by another
job step or job. (If it is necessary to delete such a data set, the
user can use the IEHPROGM utility program to delete the data set. The
IEHPROGM utility program is described in the IBM Utilities publication,
GC28-6586.)

There are two different ways to specify a time period: (1) tell the system
how many days you want the data set kept (the RETPD subparameter) or
(2) tell the system the exact date after which the data set need no longer
be kept (the EXPDT subparameter).

If the user codes the RETPD subparameter, he specifies a 1- to 4-digit
number, which represents the number of days the data set is to be kept.
If he codes the EXPDT subparameter, he specifies a 2-digit year number and
a 3-digit Julian day number (e.g., July 1, 1976 would be 76182), which
represents the date after which the data set need no longer be kept. When
neither the RETPD or EXPDT subparameter is specified for a new data set,
the system assumes a retention period of zero days.

The RETPD or EXPDT subparameter must follow all other subparameters of
the LABEL parameter. If no other subparameters are coded, the user can
code LABEL=RETPD=nnnn or LABEL=EXPDT=yyddd.

5.6-28



JpB SET-UP

5.6.6.8 Obtaining Space for Direct-Access Data Sets

The format of the SPACE parameter is as follows:

SPACE=( cTRK I' (quantity Iincrement [ directory )

CYL index
blocksize

RLSECONTIG ROUND )
,,MXIG

The SPACE parameter must be specified when creating new direct-access data
sets.

Space can be requested in terms of cylinders, tracks, or blocks. For most
efficient use space should be allocated in cylinders. Refer to subsection
17.2 for a further description of the SPACE parameter.

5.6-29



JOB SET-UP

5.6.6.9 Channel Optimization

SEP= (ddnames)

AFF=ddname

A maximum of eight ddnames previously defined in the step may appear in the

SEP parameter. The parentheses are unnecessary if only one ddname is coded.

The AFF parameter must refer to a prior data definition statement which

contains the SEP parameter. Refer to subsection 17.1.5 for a further dis-

cussion of channel optimization.

5.6-30



JOB SET-UP

5.6.6.10 Allocating an I/O Unit

Before the data set can be used as input to a processing program or
written as output by a processing program, the volume on which a data
set resides or will reside must be mounted on an input/output device.
The UNIT parameter provides the system with the information it needs to
assign a device to the data set. The format of the UNIT parameter is as
follows:

UNIT=( unit address . ,unit count [,DEFER] [,SEP=(ddname,...)])
device type ,P
group name

UNIT=AFF-ddname

5.6.6.10.1 Rules for Coding

a. If the only subparameter coded in the UNIT parameter is the
first subparameter, the user need not enclose it in parentheses.

b. The user need not code the unit count subparameter if he wants
only one device assigned to the data set.

c. The UNIT and DDNAME parameters are mutually exclusive parameters;
therefore, if DDNAME is coded, do not code the UNIT parameter.

5.6.6.10.2 Identifying the Device

The user must identify to the system the specific device he wants or the
type of device he wants. To identify a specific device, he must specify
a unit address. When a unit address is coded, the system assigns the user
that unit.

The user should not identify a device by its unit address unless it is
absolutely necessary. Specifying a unit address limits unit assignment
and may result in a delay of the job and other following jobs if the unit
is being used by another job or in cancellation by the operator if the
unit is not available.

5.6.6.10.3 Device Type

Device types correspond to particular set of features of input/output
devices. When the user codes a device type, he allows the system to assign
any available device of that device type. For example, if the device type
he wants is a 2314 Disk Storage Drive, he codes UNIT=2314. The system
assigns space on an available 2314. If only one device in the system is
of that device type, the system assigns space on that device. If there
is more than one device in the system of that device type, there is a
certain degree of device independence.

5.6-31



JOB SET-UP

The device types available on M&DO systems and their descriptions are
listed below. 2400-7 and 2400-9 are device type names added to the IBM
device type list by the GSFC system programmers at system generation
time. (The user can code only those device types that were defined
during system generation.)

TAPE

Device Type S/95 S/75 S/65 Device

2400 X X X 2400 series 9-Track Magnetic Tape Drive
that can be allocated to a data set
written or to be written in 800 bpi when
the dual-density feature is not installed
on the drive or in 1600 bpi when the dual-
density feature is installed on the drive.

2400-2 X X X 2400 series Magnetic Tape Drive with
2400-7 7-Track Compatibility and Data Conversion.

2400-3 X X X 2400 series 9-Track Magnetic Tape Drive
that can be allocated to a data set written
or to be written in 1600 bpi density.

2400-4 X X X 2400 series 9-Track Magnetic Tape Drive
2400-9 having an 800 and 1600 bpi density capa-

bility.

DIRECT ACCESS

Device Type S/95 S/75 S/65 Device

2301 X - - 2301 Drum Storage Unit

2303 - X X 2303 Drum Storage Unit

2314 X X X 2314 Storage Facility

2321 X X - Any bin mounted on a 2321 data cell drive

The 2301 and 2303 Drum Storage Units are reserved for system data sets.

5.6-32



JOB SET-UP

UNIT RECORD

Device Type S/95 S/75 S/65 Device

1052 X X X 1052 Printer-Keyboard

1403 X X X 1403 Printer

2501 - X - 2501 Card Reader

2540 X X X 2540 Card Read Punch (read feed)

2540-2 X X X 2540 Card Read Punch (punch feed)

GRAPHIC

Device Type S/95 S/75 S/65 Device

2250-1 X X - 2250 Display Unit, Model 1

2250-3 - - X 2250 Display Unit, Model 3

2260-1 X - X 2260 Model 1 Display Station (Local
Attachment)

5.6.6.10.4 Group Name

A group name is one through eight alphanumeric characters and identifies a
device or a group of devices. The group of devices can consist of devices
of the same type or different direct access and tape device types. Group
names are established during system generation.

When a user codes a group name, he allows the system to assign any avail-
able device type that is included in the group. (If a group consists of
only one device type, as is true of all the GSFC group names, the system
assigns that device.) For example, if all 2314 Disk Storage Units are
included in the group named DISK and the user codes UNIT=DISK, the system
assigns an available 2316 disk pack on a 2314 device.

Subsection 19.2 contains a list of the GSFC standard group names.

5.6-33



JOB SET-UP

5.6.6.10.5 Unit Count

The unit count subparameter indicates how many devices the user wants

assigned to a data set. If he does not code this subparameter, or codes 0,

the system assigns one device. (If he receives a passed data set or refers

the system to a cataloged data set or earlier DD statement for volume and

unit information (VOLUME=REF=reference), the system assigns one device,
even if more devices were requested in an earlier DD statement.) Only in
one case may the system assign more than one device: when two DD state-
ments in a step request use of the same volume. If either of these two

DD statements requests any other volume(s), the system assigns an addi-
tional device.

For operating efficiency, the user can request multiple devices for a

multivolume data set or for a data set that may require additional volumes.
When each required volume is mounted on a separate device, time is not
lost during execution of the job step while the operator demounts and
mounts volumes. The maximum number of devices that can be requested per
DD statement is 59.

A partitioned data set cannot be extended to other volumes. It must reside
on a single direct access storage device (DASD). Care must be exercised in
assigning a sequential data set to more than one DASD since the system will
allocate up to 16 extents (if the space is available) on each of the assigned
volumes.

In the following cases, the user should always code the unit count sub-
parameter when the data set may be extended to a new volume:

0 If the data set resides on a permanently resident or reserved
volume. In these two cases, the volume cannot be demounted in
order to mount another volume.

* If the data set is assigned space through suballocation. Code
the unit count subparameter on the DD statement that requests
the space to be suballocated.

The unit count subparameter is a positional subparameter, and it shares
the same position as the subparameter P. If neither of these subparameters
is coded and the DEFER or SEP;subparameter follows, code a comma to indi-
cate the absence of the unit count subparameter and the subparameter P.

5.6.6.10.6 Parallel Mounting

Requesting parallel mounting has the same effect as specifying a unit
count, i.e., more than one device is assigned to the data set. When
parallel mounting is requested, the system counts the number of volume
serial numbers specified in the VOL=SER=parameter on the DD statement
and assigns to the data set as many devices as there are serial numbers.

5.6-34



JOB SET-UP

(For cataloged data sets, the system counts the number of volume serial
numbers contained in the catalog.) The user can request parallel mount-
ing by coding the letter P in place of the unit count subparameter.

The subparameter P is a positional subparameter, and it shares the same
position as the unit count subparameter. If neither of these subparameters
is coded and the DEFER or SEP subparameter follows, code a comma to indi-
cate the absence of the subparameter P and the unit count subparameter.

5.6.6.10.7 Deferred Mounting

The DEFER subparameter requests the system to assign the required units
to a data set and to defer the mounting of the volume(s) on which the
data set resides until the processing program attempts to open the data
set. The DEFER subparameter should only be coded on DD statements that
define data sets residing on removable volumes. The DEFER subparameter
cannot be coded on a DD statement that defines an indexed sequential data
set or that defines a new data set that is to be written on a direct-
access volume, because space cannot be allocated to the data set.

If the user requests deferred mounting of a volume and the data set on
that volume is never opened by the processing program, the volume is not
mounted during the execution of the job step. If a later job step refers
to that data set, the system may assign a different device to the data
set than was originally assigned to it.

If the user requests deferred mounting of a private volume (a private disk
pack or data cell or any specific tape) and has not filled in the serial
number on his computer request form, the following sequence of events may
take place: (1) the user's job will be read in and be executed; (2) the
deferred data set will be opened; (3) the requested volume will not be
available; (4) the operator will cancel the user's job; and (5) the user
will be charged for all the time used.

5.6.6.10.8 UNIT Separation and Affinity

These topics are discussed in paragraph 17.1.5.2.

5.6.6.10.9 When Not to Code the UNIT Parameter

Except in a few cases, the UNIT parameter is always coded on a DD statement
that defines a data set that requires one or more devices. In the follow-
ing cases, the system obtains the required unit information from other
sources. Therefore, the user need not code the UNIT parameter:

* When the data set is cataloged. For cataloged data sets, the
system obtains unit and volume information from the catalog.
However, if VOLUME=SER=serial number is coded on a DD statement

5.6-35



JOB SET-UP

that defines a cataloged data set, the system does not look

in the catalog. In this case, the user must code the UNIT

parameter. If the VOLUME parameter is not coded but the user

requests a device in the UNIT parameter, the request is ignored.

* When the data set is passed from a previous job step. For

passed data sets, the system obtains unit and volume infor-

mation from an internal table. However, if VOLUME=SER=serial
number is coded on a DD statement that defines a passed data

set, the system does not look in the internal table. In
this case, the user must code the UNIT parameter. If the
VOLUME parameter is not coded but the user requests a device
in the UNIT parameter, the request is ignored.

* When the data set is to use the same volumes assigned to an
earlier data set, i.e., VOLUME=REF=reference is coded. In
this case, the system obtains unit and volume information
from the earlier DD statement that specified the volume
serial number or from the catalog. If the user requests a
device in the UNIT parameter, the request is ignored.

* When the data set is to share space or cylinders with an
earlier data set, i.e., SUBALLOC or SPLIT is coded. In this
case, the system obtains unit and volume information from the
earlier DD statement that specifies the total amount of space
required for all the data sets. If the VOLUME parameter is
coded, it is ignored. If the user requests a device in the
UNIT parameter, the request is ignored.

In all of these cases, the user can code the UNIT parameter when he wants
more devices assigned.

5.6-36



JOB SET-UP

5.6.6.11 Defining a Volume

A volume can be a tape reel, a disk pack, a data cell, or a drum. The
VOLUME parameter provides information about the volume or volumes on
which an input data set resides or on which an output data set will
reside.

Before a data set can be read or written, the volume on which the data
set resides or will reside must be mounted. For an existing data set,
the user must identify the volume or volumes on which the data set
resides by making a specific volume request. For a new data set, the
user can make a specific volume request or let the system select a volume
for him by making a nonspecific volume request. The VOLUME parameter
is specified as follows:

VOLUME = ([PRIVATE] [RETAIN [volume sequence number [,volume count]
VOL I I

,] SER=(serial number,...)
REF=dsname
REF=*ddname
REF=*. stepname, .ddname
REF=*. stepname .procstepname.ddname

5.6.6.11.1 Rules for Coding

a. The volume sequence number subparameter can be one to four
digits.

b. The volume count subparameter is a number from one through 255.

c. If the only subparameter the user is coding is PRIVATE, he
need not close it in parentheses.

d. If the only subparameter the user is coding is SER or REF, he
codes VOLUME=SER=(serial number,...) or VOLUME=REF=reference.

e. If the list of volume serial numbers consists of only one serial
number, the user need not enclose the serial number in paren-
theses.

f. The VOLUME, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, do not code
the VOLUME parameter.

g. The VOLUME parameter should not be used to retrieve a data set
which is cataloged or passed.

5.6-37



JOB SET-UP

5.6.6.11.2 Specific Volume Request

A specific volume request informs the system of the volume's serial
number. Any of the following implies a specific volume request:

1. The data set is passed from an earlier step or is cataloged.

2. VOLUME=SER=serial number is coded on the DD statement.

3. VOLUME=REF=reference is coded on the DD statement, referring
to an earlier specific volume request.

When the user makes a specific volume request, he can code the PRIVATE
subparameter or the PRIVATE and RETAIN subparameters in the VOLUME
parameter. For passed data sets, he can also code the volume count
subparameter. For cataloged data sets, he can also code the sequence
number and volume count subparameters.

5.6.6.11.3 Nonspecific Volume Request

A nonspecific volume request can be made only if the user is defining a
new data set. When he makes a nonspecific volume request, the system may
assign his data set to a volume that is already mounted, or may cause a
volume to be mounted. What the system does depends on the volume state
of the volumes that are already mounted. The volume states that mounted
volumes can assume and how they affect volume selection are described
under "Volume States" in Section 17.

When you make a nonspecific volume request, you can code the PRIVATE
subparameter, or the PRIVATE and RETAIN subparameters, and the volume
count subparameter in the VOLUME parameter.

5.6-38



JOB SET-UP

5.6.7 DEFINING DATA IN THE INPUT STREAM (DD * or DD DATA)

The input stream can be on a card reader, a magnetic tape, or a direct-
access device.

Data in the input stream are written onto a direct-access device to allow
for high-speed retrieval when the data are required. The reader proce-
dure assigns two buffers to the data control block plus a blocking factor
(3200 bytes per block) to be used to block the data in the input stream
when they are placed on the direct-access device. The user can assign a
smaller blocking factor by including the DCB subparameter BLKSIZE on the
DD * or DD DATA statement, e.g., DCB=BLKSIZE=80. He can also assign the
number of buffers by including the DCB subparameter BUFNO, e.g., DCB=
(BLKSIZE=3200,BUFNO=2).

If the processing program does not read all the data in an input stream,
the remaining data are flushed without causing abnormal termination of
the job.

5.6.7.1 Rules for Coding

a. In MVT, there may be more than one DD * and/or DD DATA state-
ment per job step.

b. In MVT, when the user calls a cataloged procedure, he may add
more than one DD * and/or DD DATA statement to a procedure step.

c. In MVT, if the data are preceded by a DD * statement, a
delimiter statement (/*) following the data is optional.

d. If the data are preceded by a DD DATA statement, a delimiter
statement (/*) following the data is required.

e. The data cannot contain the characters /* in columns 1 and 2.
PL/I comments begin with /*, but most PL/I coders begin in
column 2, which is the default starting position.

f. In MVT, the DCB subparameters BLKSIZE and BUFNO have meaning
when coded on a DD * or a DD DATA statement. Any other para-
meters coded on a DD * or DD DATA statement are not used but
are checked for syntax.

g. A cataloged procedure cannot contain either a DD * or a DD DATA
statement.

h. Code the DATA parameter instead of the * parameter when the
data contains job control statements.

5.6-39



JOB SET-UP

The user can include several distinct groups of data in the input stream

for a job step or procedure step. The system can recognize each group of
data if the user precedes each group with a DD * or DD DATA statement,
or follows each group with a delimiter statement (/*), or both. (If he

leaves out the DD DATA or DD * statement for a group of data, the system
provides a DD * statement having SYSIN as its ddname.)

The following rules apply when data are entered through an input stream:

* The input stream can be on any device supported by QSAM.

* The characters in the records must be coded in BCD or EBCDIC.

5.6.7.2 The DCB Subparameters BLKSIZE and BUFNO

BLKSIZE and BUFNO may be coded on a DD statement that contains the DDNAME
parameter, which refers to another DD statement. If, in turn, the refer-
enced DD statement defines data in the input stream, these DCB subparameters
are used to block the data. However, if the referenced DD statement con-
tains its own DCB subparameters BLKSIZE and BUFNO, these values override
those on the DD statement that contains the DDNAME parameter.

5.6-40



JOB SET-UP

5.6.8 BYPASSING I/O OPERATIONS ON THE DATA SET (DUMMY)

The DUMMY parameter, a DD statement positional parameter, allows the

user to bypass input/output operations, device and space allocation,

and disposition of data sets referred to by the basic sequential or

queued sequential access method. This facility can be used to suppress
the writing of certain output data sets, such as assembler listings,
and to update new master files with a dummy detail file. Bypassing
operations on noncritical data sets also results in a saving of time

when a program is being tested. To use this facility, DUMMY is coded

as the first parameter in the operand field.

DUMMY specifies that no devices or external storage space is to be

allocated to the data set, no disposition processing is to be performed
on the data set, and, for BSAM and QSAM, specifies that no input or

output operations are to be performed on the data set.

5.6.8.1 Rules for Coding

1. The user can code the DUMMY parameter by itself or follow it
with all the parameters necessary to define a data set.

2. If the DUMMY parameter is coded and an access method other
than the basic sequential access method (BSAM) or queued
sequential access method (QSAM) is requested to read or write
the data set, a programming error occurs.

5.6.8.2 The Function of the Dummy Parameter

When the user uses either the basic sequential or queued sequential access
method, the DUMMY parameter allows his processing program to execute
without performing input or output operations on a data set. When the
processing program asks to write a dummy data set, the write request is
recognized, but no data are transmitted. When the processing program
asks to read a dummy data set, an end-of-data-set exit is taken imme-
diately.

Besides bypassing input or output operations on a data set, the DUMMY
parameter causes the UNIT, VOLUME, SPACE, and DISP parameters, when
coded on the DD DUMMY statement, to be ignored (if coded, these para-
meters are checked for syntax). Therefore, no devices or external
storage space is allocated to the data set and no disposition processing
is performed on the data set.

If the user knows that certain parts of a program "work" and need not
be processed each time the job is submitted for testing, the DUMMY para-
meter can help save time. The DUMMY parameter can also be used to suppress
the writing of data sets, such as output listings, that the user does not
need.

5.6-41



JOB SET-UP

5.6.9 DEFINING THE SYSTEM OUTPUT STREAM

SYSOUT= (classname [;program name [,form number])

5.6.9.1 Rules for Coding

a. The classname can be any alphanumeric character (A-Z, 0-9).
See paragraph 5.6.9.4.

b. The form number is one to four alphameric and national (@,$,#)
characters.

c. If a program name and form number are omitted, the user need
not enclose the classname in parentheses.

d. The UNIT, SPACE, OUTLIM (Release 19 and later only), and DCB
parameters can be coded with the SYSOUT parameter. Besides
the mutually exclusive parameters listed below, other param-
eters codes with the SYSOUT parameter are ignored.

e. The DISP, DDNAME, AFF, SEP, VOLUME, LABEL, SPLIT, and SUBALLOC
parameters and the SYSOUT parameter are mutually exclusive
parameters; therefore, if any of these parameters are coded,
do not code the SYSOUT parameter. To override a SYSOUT para-
meter in a cataloged procedure, code the DISP parameter.

5.6.9.2 Advantages of Codiny the SYSOUT Parameter

When a user wants a data set printed on an output listing or in the form
of punched cards, he can code the UNIT parameter and identify the unit
record device he wants, or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device he wants. There
are advantages to coding the SYSOUT parameter:

a. During execution, the output data set is written to a direct-
access device, and a system output writer writes the data set
to a unit record device at a later time. This allows greater
flexibility in scheduling print and punch operations, and
improves operating system efficiency. The user can also write
his output data set directly to a unit record or magnetic tape
device.

b. The output data set and system messages resulting from the job
can be assigned to the same type of unit record device. This
is accomplished by specifying the same classname in the SYSOUT
and MSGCLASS parameters. (The MSGCLASS parameter is coded on
the JOB statement.)

5.6-42



JOB SET-UP

c. When a user wants the output data set printed or punched on
a special output form, he can specify the form number in the
SYSOUT parameter and let the system inform the operator at
the time the data set is to be written what form is to be
used. The use of this parameter is not encouraged. When
multiple copies of a printout are desired they may be obtained
by submitting the original to the 360/95 dispatcher to be
duplicated on the Xerox 2400. The Xerox 2400 will reduce
11 x 14 7/8 inch pages to 8 1/2 x 11 inch pages. It can
sort and collate up to 29 sets in one pass of the original
listing.

d. The reader-interpreter procedure provides a default
SPACE=(TRK,(20,40)) allocation. This may be overridden. If
the cataloged procedure or program do not provide DCB informa-
tion, it must be provided in the DD card. A SPACE allocation
of (TRK,5) is sometimes used on a SYSUDUMP card to print the
first pages of a dump.

5.6.9.3 Coding Other Parameters with the SYSOUT Parameter

The UNIT, SPACE, OUTLIM and DCB parameters can be coded with the SYSOUT
parameter. The DDNAME, DISP, AFF, SEP, VOLUME, LABEL, SPLIT, and
SUBALLOC parameters are mutually exclusive with the SYSOUT parameter;
any other parameters that the user codes with the SYSOUT parameter are
ignored.

The user can write output data sets destined for unit records devices
to a direct-access device instead of immediately writing the data set
to the desired unit record device. Later, a system output writer writes
the data set to the desired unit record device. In the UNIT parameter,
he can request what type of direct-access device he wants for writing
the output data set, how many devices he wants (up to a maximum of five),
and unit separation from other data sets defined in the job step. In
the SPACE parameter, he can specify how much space should be allocated
to the data set and that unused space is to be released. If he emits
the UNIT parameter, the system assigns a device; if he omits the SPACE
parameter, the system assigns the amount of space to be allocated. These
values are part of the PARM parameter field in the input reader procedure
used to read the input stream.

The user can also write an output data set directly to the desired unit
record or magnetic tape device. When direct system output is desired,
the operator selects a unit record or magnetic tape device for a class
by issuing a START DSO (Direct System Output) command. In addition to
the SYSOUT parameter, the DCB and UCS parameters can be coded. If the
SYSOUT subparameters other than classname are coded, the specified infor-
mation is ignored. The UNIT and SPACE parameters are also ignored if
direct system output processing is used. Since the type of processing
to be used may not always be known, it is advisable to code these para-
meters in case an intermediate direct-access device is used.

5.6-43



JOB SET-UP

The DCB parameter can be coded with the SYSOUT parameter to complete
the data control block associated with the output data set. The infor-
mation contained in this data control block is used when the data set
is written to the direct-access device and read by the system output
writer. However, the output writer's own DCB attributes are used when
the data set is written to the desired unit record device.

The OUTLIM parameter allows the user to specify a limit for the number
of logical records he wants included in the output data set being routed
through the output stream. The OUTLIM parameter has meaning only in
systems with the System Management Facilities (SMF) option with system,
job, and step data collection. Unless the SYSOUT parameter is coded in
the operand field of the same DD statement, the OUTLIM parameter is
ignored.

5.6.9.4 The Classname

When the user codes the SYSOUT parameter, he indicates a classname. A
classname is an alphanumeric character (A-Z, 0-9) that indicates the out-
put class desired. Each installation specifies what classnames corres-
pond to what output classes. Therefore, when the user specifies a
classname, the operator knows what type of output device the user wants,
and he ensures that a system output writer is available to write the
output data set to the desired output device.

The system determines where system messages resulting from a job are to
be written based on what is coded in the MSGCLASS parameter on the JOB
statement. If the MSGCLASS parameter is not coded, system messages
associated with the user's job are routed to the default output class
specified in the PARM field of the input reader procedure. The default
for the MSGCLASS parameter is A unless changed by the user's installa-
tion. Class A corresponds to a printer. If the user wants his output
data set and the system messages resulting from the job written to the
same unit record device, he simply codes the same classname in both the
MSGCLASS and SYSOUT parameters, or omits the MSGCLASS parameter and codes
his installation's default output class in the SYSOUT parameter.

a. SYSOUT=A - This is the regular printout from the on-line printer.
It is on regular paper, 6 lines per inch.

b. SYSOUT=B - This is the card punch, for punched decks.

c. SYSOUT=C - This is the same as class A output, but printed with a
lower priority.

d. SYSOUT=R - This is used only for CRJE.

e. SYSOUT=U - Any jobs left in the system after RJE is shut down,
and which have specified SYSOUT=U, will be printed on the system
printer in the computer center.

5.6-44



JOB SET-UP

5.6.9.5 Job Separators

The user's output data are preceded by a job separator - a series of three
listing pages or three punched cards that separate the output data sets of
different jobs. The output data sets from these jobs were written to the
same unit. Each page or card contains the name of the job whose data
follows, and identifies the output class and box number. The page separator
also contains the identification of the printer that processed the output,
the time of day and date of printing, a consecutive number, and the ID's of
the last eight jobs printed at the printer. Job separators make it easier
for the operator to separate the data produced by the user's job from the
data of other jobs.

On the 360/95 all remotely submitted jobs (CRJE, RJE, graphic terminals)
have an X printed to the far right of the second line on the header page.
This makes the job reading identifiable to the operator as one having been
submitted remotely and for which there is no job submitted form.

5.6-45



JOB SET-UP

5.7 DELIMITER AND NULL CONTROL CARDS

5.7.1 DELIMITER STATEMENT

The DELIMITER statement marks the end of a data set in the input stream
and is used to separate data in the input stream from the job control state-
ments that follow the data. The DELIMITER is coded with the characters /*
in columns 1 and 2, with the other columns blank.

It should be noted that the /* card is not needed, except after data intro-
duced by a DD DATA statement. Following data introduced by a DD * state-
ment, the /* card may be used or omitted at the user's discretion. In the
JCL examples shown in this User's Guide, note that the /* card sometimes
is used for clarity, but is otherwise omitted. Refer to paragraph 5.6.7
for a discussion of DD * and DD DATA.

5.7.2 NULL STATEMENT

The NULL statement is used to mark the end of a job's control statements and
data. A NULL statement causes the scheduler to look for the next JOB state-
ment. If there are any cards between the NULL statement and the next JOB
statement, these cards are flushed from the input stream. The NULL statement
is coded with the identifying characters //, in columns 1 and 2, with all
other columns blank.

5.7-1



STANDARD (IBM-SUPPLIED) PROCESSORS

SECTION 6

STANDARD (IBM-SUPPLIED) PROCESSORS

6.1 GENERAL

Computer manufacturers customarily furnish software to facilitate the use
of their computers. This software is comprised of an operating system,
processors used in program preparation, and utility programs for perform-
ing certain standard functions. This section describes the IBM-supplied
processors which are available on the M&DO computers, including the lan-
guage processors -- FORTRAN, PL/I, RPG, and Assembler (F); and the large
utilities -- Linkage Editor, Loader, and Sort/Merge. Note that COBOL is
not supported on M&DO computers.

The language processors translate symbolic statements into machine instruc-
tions, producing object modules. The object modules must undergo two
additional steps - linkage editing and loading - before they become exe-
cutable programs. This is done so that a number of separately compiled
programs, including library subroutines, may be combined into a single
load module. The linkage editor combines and edits modules to produce
a single load module that can be brought into main storage for execution
by program fetch. The linkage editor provides several processing facil-
ities that are performed either automatically or in response to control
statements prepared by the programmer.

The loader combines the basic editing and loading functions of the link-
age editor and program fetch in one job step. It is designed for high
performance loading of modules that do not require the special process-
ing facilities of the linkage editor and fetch, such as overlay. The
loader does not produce load modules for program libraries.

Some of the processors are available in several "design levels" (e.g.,
FORTRAN G and FORTRAN H). Originally, the letter designating the design
level corresponded to the amount of memory required in the host computer
in order to execute the processor. For example, a computer with G level
memory (128k) or larger would be needed to use FORTRAN G. However, because
of the MVT environment and variations in the choice of operating system
configurations on a given computer, only the size of the region in which
the compiler operates is of concern. Further, some of the processors,
notably the Linkage Editor, are subdivided into several design levels within
these stages. In general, the higher design levels require increasingly
more memory and sometimes offer additional capabilities.

6.1-1



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2 LANGUAGE PROCESSORS

The most widely used language at GSFC is FORTRAN IV for use in mathematical

and scientific applications. Paragraph 6.2.1 briefly describes the evolu-

tionary development of FORTRAN IV and points out the major differences

between the FORTRAN IV language as supported by the FORTRAN G and H compilers,
and the FORTRAN compilers on the IBM 7094 and Univac 1108. ANSI FORTRAN IV

specifications are also given. Differences between the FORTRAN G and H
compilers are presented in paragraph 6.2.1.1. PL/I is a more recently de-
veloped language than FORTRAN and is more comprehensive, suitable for commer-
cial applications as well as scientific applications. RPG is a language
designed for report generation.

6.2-1



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.1 FORTRAN IV

The FORTRAN language has undergone an evolutionary development, beginning
with the original FORTRAN compiler for the IBM 704 in 1956. This processor
was modified in 1958 to accept an augmented language known as FORTRAN II

and, subsequently, processors for FORTRAN II became available on a variety
of computers. The language was further extended in 1962 with the advent of

FORTRAN IV. While FORTRAN IV is a more general language, it is defined so
that it is in some ways incompatible with FORTRAN II. To facilitate the
transition, some FORTRAN IV processors were designed to accept certain
FORTRAN II features which had been eliminated from FORTRAN IV. Among these
are the PRINT and PUNCH statements, and the READ statement with an implied
unit number. As FORTRAN processors proliferated, a number of language dif-
ferences arose, since there was no existing body charged with controlling
the development of the language. Finally, in 1966, the American Standards
Association (ASA), currently known as the American National Standards Insti-
tute (ANSI), established a standard definition of FORTRAN based upon FORTRAN IV.
This standard did not attempt to extend the language, but to define those fea-
tures which were in current use and which were considered valuable. It
did not contain any of the extended features supported by some processors which
tended to depend upon the capabilities of a particular computer or operating
system. Extension of this type, therefore, continues to appear in later pro-
cessors, while ANSI FORTRAN was used as the base.

The IBM S/360 FORTRAN IV language embraces the complete ANSI FORTRAN and in-
cludes some additional features which give the user greater control over S/360
facilities and which offer increased generality. Among the most significant
extensions are direct-access input/output, the IMPLICIT statement, mixed-
mode expressions, and the length specifications on arithmetic variables.
The table in paragraph 6.2.1.1 presents the language features supported by
the IBM FORTRAN IV (G and H) compilers which are not part of ANSI FORTRAN.
This table also provides a comparison of ANSI FORTRAN with 7094 FORTRAN IV
and 1108 FORTRAN V.

Additional information on the use of these features may be obtained from
the IBM FORTRAN IV Language, Form GC28-6515, and IBM System/360 Operating
System FORTRAN IV (G and H) Programmer's Guide, Form GC28-6817. For detailed
information on ANSI FORTRAN, the reader is referred to ASA FORTRAN (ANSI,
X3.9 - 1966).

6.2.1.1 Major Language Differences

The major differences between IBM S/360 FORTRAN IV (G and H compilers) and
the FORTRAN supported by the IBM 7094 and Univac 1108 computers are presented
here.

6.2-2



STANDARD (IBM-SUPPLIED) PROCESSORS

In relating S/360 FORTRAN to that of the 7094 and 1108, it is important to
note that the IBM 7094 FORTRAN IV compiler predates ANSI FORTRAN, and thereby
was a direct influence on development of ANSI FORTRAN. This compiler supports
some features which are a carry over from FORTRAN II, such as the PRINT and
PUNCH statements, and the READ statement with implicit unit designation.
These were eliminated from ANSI FORTRAN in the interest of generality, but
were carried into the S/360 FORTRAN IV to facilitate conversion of 7094 pro-
grams to the S/360. Other than these considerations, the 7094 FORTRAN IV is
essentially the same as ANSI FORTRAN.

The Univac 1108 FORTRAN V compiler is a more recent development than ANSI
FORTRAN and extends upon it, as does the S/360 FORTRAN IV. The 1108 extensions,
however, differ considerably from those of the S/360. While it is not
within the scope of this document to describe the 1108 FORTRAN V language,
those features of S/360 FORTRAN IV which are supported by the 1108 FORTRAN
V will be noted.

Any discussion which compares a programming language as supported by dif-
ferent computers must also deal with certain considerations imposed by the
hardware. Word size, for instance, affects the precision of numeric values.
It also influences the way in which character data is manipulated by the
program. On the 7094 and 1108, for instance, six characters can be con-
tained in a word, while on the S/360, only four characters are possible.
The bit configurations for characters may also vary from one machine to
another.

Table 6.2-1 presents a comparison of S/360 FORTRAN IV, ANSI FORTRAN, 7094
FORTRAN IV, and 1108 FORTRAN V. Along with linguistic differences, differ-
ences imposed by hardware are also shown. This table is not intended to
be all inclusive; it uses the S/360 FORTRAN as a base, i.e., those features
of 1108 FORTRAN which are not part of S/360 FORTRAN are not represented in
the table.

The above discussion relates to considerations which affect the way that a
FORTRAN program is written. There are many other considerations, such as
the use of the compiler and interfaces with the operating system, which are
completely dependent on a specific implementation and the host environment.
There are differences, for instance, in the degree and types of optimization,
debugging facilities, and limitations of each compiler. For details of
these considerations as related to the S/360 G and H compilers, refer to
the IBM System/360 Operating System FORTRAN IV (G and H) Programmers Guide,
Form GC28-6817.

6.2-3



Table 6.2-1. Comparison of S/360 FORTRAN IV, ANSI FORTRAN,
7094 FORTRAN IV, and 1108 FORTRAN V

S/360 FORTRAN Features ANSI 7094 1108 Notes

Direct-access I/O statements Allows the user to specify the location
(relative record number) within a data
set of the record to be accessed.

DEFINE FILE No No No Specifies the data set characteristics
(such as record size, number of records)

FIND No No No Provides an overlap of record accessing
and processing.

READ, WRITE with No No No Specifies the data set reference number
a'r parameter (unit number) and the relative position

of the record within a data set.

END, ERR parameters in READ No No Yes Specifies the recovery points in case of
statement an error condition or end of data.

NAMELIST statement No Yes Yes Allows the names of variables to be input/
output to be specified separately from the
READ/WRITE statement.

PRINT, PUNCH statements No Yes Yes Provides compatibility with other
FORTRAN IV compilers (which predate
the ANSI standard). t

READ with implicit unit number No Yes Yes

0



Table 6.2-1. (Cont'd)

S/360 FORTRAN Features ANSI 7094 1108 Notes

T Format Code No No Yes Specifies the actual character position
within a record (as opposed to the rela-
tive position, as with X format).

Z Format Code No No No Specifies hexadecimal data--replaces O
format for S/360.

ENTRY statement No Yes Yes Provides for multiple entry points into
a subprogram. c

0

Nonstandard returns from sub- No Yes Yes There are syntax differences in statement
routines (statement label label parameters between various implemen-
parameters in CALL statement, tations. Check the appropriate pro-
RETURN:) gramming manual for specifics.

Length specification of varia- No No No Gives the user greater control over the
ables as part of type speci- amount of storage occupied by variables,
fication and over the resulting precision.

IMPLICIT statement No No Yes Gives the user the means to establish his
own default type attributes for variables
not explicitly declared.

Initial data values in type No No Yes Accomplishes the same result as the DATA
specification statement, but is more convenient to use.



Table 6.2-1. (Cont'd)

S/360 FORTRAN Features ANSI 7094 1108 Notes

Hexadecimal constant No No No May be used as data initialization
value.

Literal enclosed in apostrophes No No No Eliminates the necessity of counting
characters, as with hollerith constants.

PAUSE 'message' No No No Allows for an alphanumeric message to
be sent to the operator (1108 FORTRAN
allows for six alphanumeric characters,
without the apostrophes).

Mixed mode expressions No No Yes The type of result depends on the com-
bination of operands.

Generalized subscripts No No Yes The result is converted to integer, if
necessary.

Maximum number of dimensions 3 7 7
in an array = 7

Adjustable dimensions Yes Yes Yes For the 7094, the values of the arguments
that represent the array dimensions must
agree with the dimensions of the actual
array. For other versions, they may be
less than the actual dimensions.



Table 6.2-1. (Cont'd)

S/360 FORTRAN Features ANSI 7094 1108 Notes

Integer, maximum 235-1 235-1 These are hardware considerations.

magnitude = 231-1

Integer, maximum -- 11 11
decimal digits = 10

Real, maximum -- 1038 1038
magnitude = 1075

Real, maximum 17 17
decimal digits = 16



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.1.2 FORTRAN IV Compilers

The FORTRAN IV compilers accept programs written in the FORTRAN IV language
(as defined in the IBM System/360: FORTRAN IV publication), as input, and
produce, as output, machine language object modules which in turn may
be used as input to the Loader or Linkage Editor for execution as problem
programs. Two different FORTRAN compilers are available on the M&DO comput-
ers -- FORTRAN level G, and FORTRAN level H. The major difference between
these two levels is in the internal compiler processing, which results in
differences in generated object code and differences in the compiler printed
output. However, both compilers operate on an identical syntactic set of
FORTRAN source statements; therefore, a FORTRAN source program may be
used as input to either compiler. In general, the level H compiler has an
extended range of options which provide the user with increased flexibility
in specifying compiler operations and compiler output.

The name of the FORTRAN G compiler is IEYFORT; the name of the FORTRAN H
compiler is IEKAAOO. Most of the following discussion refers to the GSFC
FORTRAN procedures as available on the M&DO computers. Users desiring to
write their own compile procedures, rather than use the ones available in
the system procedure library, must use an execute statement with a compiler
name (e.g., // EXEC PGM=IEYFORT or PGM=IEKAAOO) and must supply the necessary
DD statements for the compiler.

6.2.1.2.1 GSFC FORTRAN Procedures and Compiler Data Sets

The FORTRAN compiler is normally invoked by executing the appropriate GSFC
procedure. The G compiler is invoked by an execute statement of the form:

// EXEC FORTRANG,PARM=........ 1

and the H compiler is invoked by the statement:

// EXEC FORTRANH,PARM= ......... 1

Several standard data sets are used by the compiler during its processing.
Each data set has a specific functional use and specific device requirements.
Standard assumptions are made for the DCB parameter of the data sets used
by the compilers. Table 6.2-2 contains data set definition DCB parameters
for the G compiler. Table 6.2-3 contains the DCB values for the H compiler
data sets. Of the DCB values in these two tables, only the values for block-
size can be overridden with a DD statement. The user may also specify the
number of buffers to be used for compiler data sets. If the buffer number
is not supplied, the QSAM default is used. The buffer defaults are three
buffers for the card read punch (IBM 2540) and two buffers for all other de-
vices. The compilers' use of these data sets is mentioned in conjuction with
the discussion of compiler options which follows.

1See paragraph 6.2.1.2.2

6.2-8



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-2. FORTRAN G Data Sets - DCB Parameters

DDNAME RECFM LRECL BLKSIZE

SYSLIN FB 80 3200

SYSPRINT FBA 120 7200

SYSPUNCH FB 80 7280

SYSIN 2  FB 80 3200

Table 6.2-3. FORTRAN H Data Sets - DCB Parameters

DDNAME RECFM LRECL BLKSIZE

SYSLIN FB 80 3200

SYSPRINT VBA 137 7265

SYSPUNCH FB 80 7280

SYSUT1 FB 105 3465

SYSUT2 FB 1024 4096
40961

SYSIN2  FB 80 3200

1
The value is within this range. The actual value is calculated during
execution.

2
The SYSIN data set is not defined in the GSFC procedure. If a SYSIN DD
card is not added by the user, the following card - //SYSIN DD * is auto-
matically generated by the system.

6.2-9



STANDARD (IBM-SUPPLIED) PROCESSORS

From the tables, it can be seen that the H compiler uses two more data sets
than does the G compiler. These two data sets are used for temporary work
space to process the additional options available with the H compiler.

6.2.1.2.2 Compiler Options

Compiler options are a series of keywords that direct the processing in
terms of the type of output which the compiler generates. The compiler
options for the G and H compilers are identical with the exception that the
H compiler has three additional options not available in the G compiler.

The compiler options are set during system generation. The option values
set at SYSGEN are called default options. A list of these default options
is presented in Table 6.2-4. The user may request options other than the
standard defaults by explicitly coding the desired options in the PARM field
of the EXEC statement. The available options are explained in detail in the
FORTRAN G & H Programmer's Guide. Figure 6.2-1 describes the relationship
between the specified options and compiler data sets.

All compiler listings of source code, object code, storage maps, error mes-
sages, structured source listing, and cross references are output to
SYSPRINT. Object modules generated by the compiler are output to SYSLIN,
which can be used as input to the Loader or Linkage Editor. Requested
punched object decks are output to SYSPUNCH. The H compiler uses its two
additional data sets (SYSUTI and SYSUT2) for temporary work space while
creating the structured source listing (available only in conjunction with
OPT=2) and the cross reference listing.

6.2.1.2.3 Multiple Compilations

Both the G and H compilers are designed to facilitate multiple compilations;
the compiler control program design is such that reloading of the compiler
is unnecessary to accomplish compilation of multiple source modules.
Therefore, SYSIN input of source statements to the compiler may contain sev-
eral FORTRAN source modules. In compiling multiple FORTRAN source modules,
the NAME option can be used to specify the NAME assigned to the main FORTRAN
program. If the NAME option is not specified, the compiler assumes the name
MAIN for the main program. The name of a FORTRAN subprogram is the name
specified in the SUBROUTINE or FUNCTION statement.

6.2.1.2.4 FORTRAN G Compiler

The G compiler consists of a control program and five processing phases. The
compiler operates in a minimum of 80k bytes of main storage. This includes
space for compiler code, data access routines, and work space for compiler
tables. The region size available for the compiler is directly related to

6.2-10



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-4. Default Options for FORTRAN G
and FORTRAN H Compilers

H Compiler Default Options G Compiler Default Options

S/360 Model 95 S/360 Model 75 S/360 Model 95 S/360 Model 75

SOURCE SOURCE SOURCE SOURCE

NOLIST NOLIST NOLIST NOLIST

EBCDIC EBCDIC EBCDIC EBCDIC

NODECK NODECK NODECK NODECK

LOAD LOAD LOAD LOAD

MAP1  MAP MAP MAP

LINECNT=60 LINECNT=60 LINECNT=60 LINECNT=60

NAME=MAIN NAME=MAIN NAME=MAIN NAME=MAIN

ID1  ID ID1  ID

OPT=1 OPT=l

NOXREF NOXREF

NOEDIT NOEDIT

SIZE=250K SIZE =250K

1
These options differ from those defaults in the IBM FORTRAN procedures.

6.2-11



STANDARD (IBM-SUPPLIED) PROCESSORS

FOR ALL

COMPILATIONS ERROR AND
WARNING
MESSAGES

SOURCE
OPTION SOURCE

MODULE
SYSIN LISTING

FORTRAN
SOURCE

LIST OPTION OBJECT
DA MODULE

LISTING

FORTRAN SYSPRINT

COMPILERS DATA SET

MAP OPTION STORAGE

MAP

DECK OPTION PUNCHED SYSPUNCH
OBJECT

DATA SET
MODULE

LOAD OPTION OBJECT SYSLIN

MODULE DATA SET

EDIT OPTION INTERMEDIATE
S OUTPUT FOR SYSUT1

EDIT DATA SET

FORTRAN H ONLY

XREF OPTION INTERMEDIATE SYSUT2
OUTPUT FOR DATA SET

XREF

Figure 6.2-1. Usage of Compiler Data Sets

6.2-12



STANDARD (IBM-SUPPLIED) PROCESSORS

the maximum number of source statements which can be compiled. Therefore, if
compilation is deleted because the main program or a subroutine is too large,
an increase of the region specified in the EXEC statement will normally permit
successful compilation. A region size of 100k is estimated to be adequate to
compile 400 source statements. To adjust the region size to accommodate
smaller or larger programs, IBM suggests allowing 75 bytes per source state-
ment. A region size of 150K on the M&DO 360/95 is specified in the GSFC
FORTRAN G procedure. A description of the G compiler storage map and G com-
piler optimization follows?

a. G Compiler Storage Map -- The FORTRAN G storage map, produced if
the MAP option is specified, consists of a list of variables
classified by their type (such as scalar variables and array
variables) followed by a relative address. The map which is
produced is not as useful as the H compiler storage map (which
contains additional information useful in debugging). The
options for structured source listing and cross reference list-
ing are not available with the G compiler.

b. G Compiler Optimization -- The G compiler performs less exten-
sive optimization than the H compiler. The optimization proce-

dure operates over DO loops, and an attempt is made to optimize
subscripting operations within the loop. During the optimization
phase, decisions are made on the basis of frequency of use, as
to which subscript expressions are to be kept in general registers
and which are to be maintained in storage. The result of this
optimization is that only the portion of each subscript which
depends on the DO loop variable is computed on each pass through
the loop.

6.2.1.2.5 FORTRAN H Compiler

The level H compiler consists of a control program and five processing phases.
The compiler is an overlay structure that operates in a minimum of 89k bytes
of main storage. A region size of 300k bytes is specified in the GSFC FORTRANH
procedure. There is no known method of determining the number of FORTRAN
source statements which can be compiled under the H level. The programmer may
request the amount of storage used by the compiler by specifying the SIZE param-
eter on the EXEC card. Detailed information on use of this SIZE parameter is
contained in the FORTRAN G & H Programmer's Guide. NOTE: Some discrepancies
have been noted in the use of the SIZE parameter. Before making use of this
parameter please contact the PAC in building 3, room 133A, extension 6768.

The H compiler storage map and H compiler optimization are described below:

a. H Compiler Storage Map -- The H compiler storage map which is
generated by specifying the MAP option, lists the variable name,
its type and length, and relative storage locations. In addition,

6.2-13



STANDARD (IBM-SUPPLIED) PROCESSORS

the variable names are followed by single-letter codes which des-
cribe how the variable is used within the program. These codes
are often useful in debugging a program because they indicate
whether the variable was used on the left and/or right of an ex-
pression, whether the variable is in common or passed as a sub-
routine argument, etc.

In addition, if the XREF option is specified, a cross reference
listing is produced by the compiler. This listing consists of
names of variables followed by a list of internal statement numbers
in which the variables are used.

If the programmer is using the second level of optimization (OPT=2),
he may also request a structured source listing by coding the EDIT
option. This listing indicates the loop structure of the program.
Each loop is assigned a three-digit number, and entrance and exits
from the loop are marked.

b. H Compiler Optimization -- Three levels of optimization are
available in the H compiler. The desired optimization level
should be coded in the parameter field of the EXEC statement:

1. OPT=0 -- The OPT=0 level causes no optimization of the
object code produced. Only a basic register assignment
is made; that is, the S/360 is treated as if it only had
three available registers -- a single-branch register, a
base register, and an accumulator. Therefore, the code
produced is less efficient in terms of execution speed,
and it is recommended that this level not be used.

2. OPT=l -- This is the sysgene'd default and its use is
recommended. Compilation time is insignificantly in-
creased, while the execution time of the resulting load
module is significantly decreased. The first level of
optimization takes advantage of all available S/360
registers and performs full register assignment. The
entire program is treated as a loop and subdivided into
text blocks. Frequently used variables and constants
are maintained in registers to eliminate excessive
register loading and value storing. In addition, branch-
ing optimization is performed by the generation of RX
instructions, when possible. This eliminates a register
load and reduces the number of necessary address
constants.

3. OPT-2 -- The second level of optimization uses the optimiza-
tion techniques of OPT=1, with some additional optimization

6.2-14



STANDARD (IBM-SUPPLIED) PROCESSORS

methods. Like OPT=l, full register assignment and branching
optimization is used; however, this is performed on a loop-
by-loop basis and is therefore more effective. The compiler
analyzes the loop structure of the program.

In addition, the H compiler recognizes and replaces redundant computations.
Common expression elimination is performed (i.e., unnecessary recomputa-
tion of identical expressions is eliminated). When logically possible, the
compiler moves computations which need not be calculated within a loop out-
side the range of the loop. The compilation time using OPT=2 is signifi-
cantly longer than OPT=0, OPT=1l, or G compile time; however, the object code
produced is more concise and efficient. Thus, execution time of programs
compiled with optimization is shorter. Comparisons of large programs using
OPT=2 generally indicate run times that are a minimum of two times faster
than are available with FORTRAN G or OPT=0O. Instances of a factor of 14
to 15 times greater speed have been noted with the use of OPT=2.

There are some cases in which the object code generated by OPT=2 is in
error. However, the number of these cases is small. Because of the great
saving of execution time, it is recommended that programmers use the opti-
mization feature, but with a careful examination of output results. One
approach is to check test case results by comparing a run made with OPT=1
and OPT=2 to determine if discrepancies exist. The use of OPT=0 is dis-
couraged.

The debug package available with FORTRAN G may not be used with FORTRAN H.
However, the extended error handling feature is provided. This allows the
user to monitor certain error codes, and to take appropriate action.

6.2.1.2.6 FORTRAN Programming Considerations

The following programming considerations should be noted:

a. Boundary Alignment -- The programmer must insure that all
variables defined in the FORTRAN COMMON and EQUIVALENCE
statements have proper boundary alignment. Full words
must begin on full word boundaries. Boundary alignment
is a system generation option which is not available for
FORTRAN on M&DO computers. Corrective boundary alignment
will not be made. Boundary violations will result in speci-
fication errors (completion code 0C6) when the variables
are referenced in the program.

b. Sequential Data Sets -- FORTRAN sequential data sets which are
read or written without format control must have a record format
of variable span or variable block span specified (VS or VBS).
Such records may not be described as fixed length even if the
actual records are fixed length. If the RECFM parameter is not
explicitly coded in the DCB, a default RECFM of VS is used. If
some other RECFM is used to describe data sets without format
control, ABEND occurs with a completion code of OCO or OC5.

6.2-15



STANDARD (IBM-SUPPLIED) PROCESSORS

c. Equivalence Statements -- Array names appearing in an equivalence
statement must have a subscript explicitly coded. If a subscript
is not coded, a compiler diagnostic results. This is a language
violation which was not previously detected.

d. Block Data -- Each labeled common area used in a block data sub-
program must be dimensioned to the actual size of that common block.
If this is not done, the Linkage Editor generates an error code
(IEW0552). The Loader does not produce a diagnostic for this error;
however, incorrect results may be generated.

e. Rewind -- Rewind should not be issued for SYSOUT data sets. If
it is used, no output is produced.

f. Backspace - The backspace statement backspaces one logical record
rather than one physical record. Care should be taken when read-
ing, backspacing, and writing the same data set, since a read opera-
tion followed by a write operation may give unpredictable results.
This is a known error in the FORTRAN I/O routines which will be
corrected with release 20.

g. Real Element Assignment -- The assignment of a real element to a
complex variable may cause problems; compilation may be deleted
or an incorrect object code program check may be made during execu-
tion.

6.2-16



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.2 PL/I

The PL/I language originated from efforts of a joint SHARE and IBM com-
mittee. PL/I combines many of the functional capabilities of FORTRAN IV,
COBOL, ALGOL, and list processing languages. In addition, some features

were incorporated which are not found in any of the existing high-level

programming languages. IBM adopted PL/I as a major programming language
for the S/360 computers and fostered the development of the language.
Some of the significant features of PL/I are:

* The capability to specify actions to be taken in the case of
hardware interrupts, errors not related to hardware such as data
conversion, and programmer-specified conditions

* Multi-tasking facilities

* Bit and byte string manipulation, including substring, concatena-
tion and boolean operations

* Extensive debugging facilities, providing for monitoring the set-
ting of variables, checking for subscripts going out of range of
an array, and tracing the flow through specified areas of a program

Details on these and other facilities may be found in the PL/I Primer,
Form GC28-6808, and the PL/I Reference Manual, Form GC28-8201. PL/I for
FORTRAN USERS, Form GC20-1637, is also useful to FORTRAN programmers.

6.2.2.2 PL/I Compiler

The PL/I processor consists of a compiler which accepts statements in the
PL/I language and calls subroutines from the PL/I library. Version 5.3b
is currently in use. The program name of the PL/I compiler is IEMAA.

The compiler is comprised of a control module that remains in main storage
throughout compilation, and a series of subroutines (phases) that are loaded
and executed in turn by the control module. One phase is the preprocessor
(compile-time processor) which can modify source statements or insert addi-
tional source statements before compilation commences. Because PL/I may use
either a 48-character set or 60-character set, a preprocessor phase is needed
to convert the 48-character set to the'60-character set.

6.2-17



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.2.2.1 Data Sets

The compiler requires several optional data sets; the exact number of data
sets depends on the optional facilities requested. These data sets and
their characteristics are shown in Tables 6.2-5 and 6.2-6.

Additional information may be found in the PL/1 (F) Programmer's Guide
(GC28-6594).

6.2.2.2.2 Options

PL/I has a wide range of options which may be specified at compile time.
These options are shown in Table 6.2-7. Because the PARM=field is limited
to 100 characters, abbreviated names were developed and are listed with
the standard default values (GSFC default values are also shown).

The GSFC default options for PL/I are shown below. Those which differ from
the IBM standard default options are flagged with an asterisk.

DESIGN=F
SIZE=200000 * (225280 on Model 65) TYPERUN=LOAD
OPT=1 PUNCH=NODECK
STMDIAG=STMT * LINECNT=60 *
OBJCODE=OBJIN * OPRINT=OP
M91 * MACLIST=NOSOURCE2 *
DICTYPE=NOEXTDIC SORLIST=SOURCE
CMPTIME=MACRO * LEVCNT=NONEST
COMPILE=COMP ATRLIST=ATR *
MCPUNCH=NOMACDECK REFLIST=XREF *
CHARSET=CHAR60 EXTLIST=EXTREF *
SORCODE=EBCDIC OBJLIST=NOLIST
SORMGIN=(2,72) MSGLEV=FLAGW
PAGECTL=1 SYNTXLV=SYNCHKT

6.2-18



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-5. PL/I Compiler Optional Data Sets

Associated

ddname Purpose Compiler Option

SYSIN Primary input (PL/I source statements)

SYSPUNCH Punched card output DECK, MACDCK

SYSLIN Load Module output LOAD

SYSUT1 To contain overflow from main storage

SYSUT3 Storage for:

1. Converted source module when 48- CHAR48
character set is used

2. Source statements generated by pre- MACRO, COMP
processor

SYSPRINT Listing

SYSLIB Library containing source statements for MACRO
insertion by preprocessor

6.2-19



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-6. PL/I Compiler Optional Data Sets Characteristics

Reserved Record Default
Possible Device Record Buffer Area No. of Size Block Size

ddname Classes Format (in bytes) Buffers (in bytes) (in bytes)

SYSIN SYSDA or input F,FB,U 1000 2 100 (max)
job stream
(specified by
DD*)

SYSPUNCH SYSDA,SYSOUT-B F,FB 400 1 80 7280

SYSLIN SYSDA F,FB 400 1 80 3200

SYSUT1 SYSDA F - 1024 -

SYSUT3 SYSDA F,FB,U 160 80 -

SYSPRINT SYSDA or V,VBA 258 2 125 7254
SYSOUT=A

SYSLIB SYSDA F,FB,U - 100 (max)

6.2-20



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-7. Compiler Options, Abbreviations, and Standard Defaults

Abbreviated Standard
Compiler Options Names Defaults

SIZE=yyyyyyK 999999 MAX SIZE 999999
OPT=n O O=1

Control STMTJNOSTMT ST1NST NOSTMT
Options OBJNM=aaaaaaaa N

M911NOM91 M911NOM91 NOM91
EXTDICINOEXTDIC ED I NED NOEXTDIC

Preprocessor MACROINOMACRO MNM NOMACRO
Options COMPI NOCOMP C NC COMP

MACDCK INOMACDCK MDINMD NOMACDCK
OBJOUT I OBJIN OBJOUT

Input CHAR601CHAR48 C601 C48 CHAR60
Options BCDIEBCDIC BIEB EBCDIC

SORMGIN=(mmm,nnn[,ccc]) SM SM=(2,72)

Output LOAD I NOLOAD LD NLD LOAD
Options DECK I NODECK D ND NODECK

LINECNT=-xxx LC LC=50
OPLISTINOOPLIST OLINOL OPLIST
SOURCE21NOSOURCE2 S21NS2 SOURCE2
SOURCE I NOSOURCE S I NS SOURCE

Listing NESTINONEST NTINNT NONEST
Options ATR.I NOATR A NA NOATR

XREF NOXREF X NX NOXREF
EXTREF] NOEXTREF E.[INE NOEXTREF
LISTINOLIST LINL NOLIST
FLAGW I FLAGE FLAGS FW I FE IFS FLAGW

6.2-21



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.3 ASSEMBLER (F)

The OS/360 Assembler F is a processor which accepts programs written in

a symbolic language (ALC). This is a non-specialized language providing
a mnemonic for each machine instruction and a set of pseudo operations used

for defining data areas, boundary alignment, base register usage, etc. In

addition, it has a powerful macro capability, allowing the user to define

and use macro instructions of his own design, and to use any of the stan-

dard system macros. The system macros offer a convenient way for the ALC pro-

grammer to request supervisor and I/O services.

The program name for the ASSEMBLER F processor is IEUASM. The assembler
is invoked by executing the cataloged procedure, // EXEC ASSEMBLY. A mini-

mum region of 100K bytes is required for this program.

NOTE: Another Assembler, Assembler G, which was written by the University
of Waterloo, Waterloo, Ontario, is available on the GSFC 360 computers.
It is strongly recommended that this more efficient assembler be used.
For more information on Assembler G consult paragraph 19.3.1.3.

6.2.3.1 Data Sets

Table 6.2-8 lists the assembler data set requirements and characteristics
based on a minimum core size of 44k bytes. Because the region specified
in the GSFC procedure library is 100K bytes, block sizes and buffer numbers
may be increased. The SYSLIB data set contains the macro library. Additional
macro and/or source module libraries may be concatenated to SYSLIB.

6.2.3.2 Options

The assembler options for the model 95:

PARM=' LOAD,NODECK,LIST,NOTEST,XREF,LINECNT=58,ALGN,OS,NORENT'

The prefix NO is added or deleted accordingly to request the opposite of the
default value. The exceptions to this are LINECNT where a new value between
01-99 must be specified, and the operating system name which will be OS or
DOS.

6.2-22



Table 6.2-8. Assembler F Data Set Characteristics

SYSUT1
SYSIN SYSLIB SYSPRINT SYSPUNCH SYSGO SYSUT2

SYSUT3

LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A

RECFM User must specify in User must specify in F and M set by F set by assembler, F set by assembler Fixed for U
LABEL or DD card LABEL or DD card assembler, user may user may specify B user may specify B

specify 8 and/or T and/or T in label or and/or T in label or
FBST, FBT FBST, FBT in label or DD card DDO card DD card

FM, FMB. FMT, FMBT F,FB,FT.FBT F,FB,FT,FBT

BLKSIZE User must specify User must specify Optional, but must be Optional, but must be Optional, but must be User can not specify
© in LABEL or DD card, in LABEL or DD card, a multiple of LRECL; a multiple of LRECL; a ri;!tiple of LRECL; maximum of 3624

must be a multiple of must be a multiple of if omitted BLKSIZE = if omitted BLKSIZE = if omitted BLKSIZE = minimum of 1739 Ct
LRECL LRECL LRECL LRECL LRECL

BUFNO Optional; if omitted Set by assembler Optional; if omitted Optional; if omitted Optional; if omitted User can not specify
2 is used to 1 2 is used 3 is used for unit 3 is used for unit either 1 or 2

record and 1 for other record and 1 for other
devices devices

For 44K BLKSIZE times BLKSIZE can not BLKSIZE times BLKSIZE times BLKSIZE times
availability BUFNO can not be be greater than 3600 BUFNO can not be BUFNO can not be BUFNO can not be

N) greater than 3600 greater than 1210 greater than 400 greater than 400

For calculating L1 = BLKSIZE L2 
= 

BLKSIZE L3 = BLKSIZE L4 = BLKSIZE L5 = BLKSIZE
core times BUFNO times BUFNO times BUFNO times BUFNO
requirements

© Minimum core required for the assembler is the largest of the following: (1) 45056
(2) L 1 + L2 + 41000

(3) L3 + L4 + L5 + 41000

© Maximum core that the assembler can effectively use = L4 + L5 + 535,000

(D U = undefined, F = fixed length records, B = blocked records, S = standard blocks, T = track overflow, M = machine code carriage control.

® Blocking is not allowed on unit record devices. Blocking on other direct access can not be greater than the track size unless T is specified on RECFM.

O For MVT environment add 5,000 for core required.
A smaller blocksize may have to be specified for SYSLIB if global or local dictionaries overflow. See item 4 under "Correction of Dictionary Overflow."



STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.4 RPG

The S/360 Report Program Generator (RPG) language is used to generate reports
from one or more input files and to print the reports in a user-defined for-
mat. It is efficient and easy to use but is less sophisticated than other
high-level languages. RPG is a problem-oriented language in which each pro-
gram is designed to print a specific report from a specific file or files.

The program name for the RPG processor is IESRPG. The EXEC statement is in
the form // EXEC PGM=IESRPG which must be coded by the programmer unless
the cataloged procedure is used, in which case it would be // EXEC RPG.

6.2.4.1 Data Sets

The RPG compiler can use seven data sets (five are required). Each data set
has a specific ddname, function, and device requirements. All but the SYSIN
data set may be included in a cataloged procedure. These data sets are listed
in Table 6.2-9.

6.2.4.2 Options

The RPG processor has a limited number of options which are passed to the
compiler through the PARM field in the EXEC statement:

DECK ,LOAD ,LIST
PARM = ' NODECK ,NOLOAD ,NOLIST

The progranmmer specifies the options which are defined as:

DECK -- The object module is placad on the device specified in
the SYSPUNCH DD statement, (usually the card punch).

LOAD -- The object module is placed on the device specified in
the SYSGO DD statement, (usually intermediate storage).

LIST -- An output listing is written on the device specified in
the SYSPRINT DD statement.

The underlined PARM options are the default values that will be assumed if
the PARM option is not specified.

6.2-24



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-9. RPG DD Names Required

ddname FUNCTION DEVICE REQUIREMENTS

SYSIN reading the source * card reader

program * intermediate storage

SYSPRINT writing the storage * printer
map, linking, and * intermediate storage
messages

SYSPUNCH output data set * card punch
for the object * intermediate storage
module deck

SYSUT1 work data set * direct-access
needed by the * magnetic tape
compiler during
compilation

SYSUT2 work data set * direct-access
needed by the * magnetic tape
compiler during
compilation

SYSUT3 work data set * direct-access
needed by the * magnetic tape
compiler during
compilation

SYSGO output data set e direct-access
for the object * magnetic tape
module used as
input to the
Linkage Editor

6.2-25



STANDARD (IBM-SUPPLIED) PROCESSORS

6.3 LARGE UTILITIES

The system and data set utilities are described in Section 9 of this User's
Guide. The Linkage Editor, Loader, and Sort/Merge programs perform utility
functions; since they are larger processors, their descriptions are included

in this section. The Linkage Editor or Loader is required to prepare the

output of any of the language processors for execution. Sort/Merge is

a generalized program used for sorting data contained in one or more data

sets.

6.3.1 LINKAGE EDITOR

The Linkage Editor prepares the output of the language processors for execu-

tion. Primary inputs to the Linkage Editor are object modules and Linkage
Editor control cards. Additional inputs can be either object modules and
control statements, or load modules. The Linkage Editor processing facili-
ties are provided either automatically or in response to control statements
prepared by the programmer. These facilities combine and edit modules to

produce an executable load module.

The primary output of the Linkage Editor is a load module which is placed in
a library (a partitioned data set) as a named member. This library may be
either permanent or temporary. In contrast, the Loader does not produce a
load module that can be saved. The secondary output of the Linkage Editor
is diagnostic output.

The level F 128K version of the Linkage Editor is in use on the M&DO com-
puters.

The statement most commonly used to invoke the Linkage Editor is // EXEC
PGM=IEWL, which invokes the largest Linkage Editor design available on
the system. On the M&DO computers, this statement invokes the 128k design
of the level F Linkage Editor. A particular design level may be invoked
by using its program name in the EXEC statement if that level is available
(see the footnotes to Table 6.3-1). The cataloged procedures, LINK and

LINKGO, are the recommended means for users to invoke the Linkage Editor.
A listing of these procedures and details in their use are presented in
paragraphs 19.3.2.1 and 19.3.2.3, respectively.

The user should refer to the IBM Manual, Linkage Editor and Loader (GC28-6538)
for a more complete description of the Linkage Editor.

6.3.1.1 Options

As with the language processors, the Linkage Editor has several options which
increase its versatility. These may be divided into several categories as
follows:

6.3-1



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-1. Linkage Editor Design Levels

USED ON IBM MODEL
PROGRAM MINIMUM CORE 4

NAME (in bytes) 95 75 65

IEWLF440 44K X1

IEWLF880 88K X1

IEWLF128 128K X X 1  x

IEWL-- X2  X2  X2

LINKEDIT -- X 3  X 3  X3

1
On the model 75, all F level Linkage Editor names invoke the 128K design
level.

2
Using PGM=IEWL on the M&DO computers invokes the largest Linkage Editor
design available, which is the 128K design level.

3
Invokes the 128K design level of the Linkage Editor.

4
Add 8K for system overhead.

6.3-2



STANDARD (IBM-SUPPLIED) PROCESSORS

Module Attributes Meaning

DC Downwards compatible
HIAR* Hierarchy
NE Not editable
OL Only loadable
OVLY Overlay
REUS Re-usable
RENT Re-enterable
REFR** Refreshable
SCTR Scatter format
TEST* Test (use of TESTRAN)

Space Allocation Meaning

SIZE*** The amount of main storage to be used
by the level F Linkage Editor

DCBS Specifies blocksize for the SYSLMOD
data set

Output Options Meaning

LIST List Control Statements
MAP Request a MODULE MAP
XREF Request cross reference table

Special Processing
Options Meaning

XCAL Exclusive Call
LET Let execution continue
NCAL No call (do not try to resolve external

references)

*Not supported on the M&DO computers

**Used primarily by systems programmers.

***SIZE=(240K,72K) Value used at sysgen time.

Each option desired must be explicitly stated in the PARM parameter of the
EXEC card. Some options are stated in the cataloged procedures, while others
must be coded by the programmer. The user should refer to Section 19 of
this User's Guide, or to a listing of the Procedure Library (PROCLIB) to
determine if the options included meet his requirements. Note that, when
overriding the PARM parameter in a cataloged procedure, all options desired
must be explicitly stated in the override statement; otherwise, those op-
tions not stated will default to their system-generated value.

6.3-3



STANDARD (IBM-SUPPLIED) PROCESSORS

6.3.1.2 Data Sets

The Linkage Editor uses five data sets (four are required). The DD state-
ments for these data sets must use the preassigned ddnames given in Table 6.3-2.

The DCB characteristics of these data sets are given in Table 6.3-3.

6.3-4



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-2. Linkage Editor ddnames

Data Set ddname Required

Primary input data set SYSLIN Yes

Automatic call library SYSLIB Only if the automatic library call
mechanism is used

Intermediate data set SYSUT1 Yes

Diagnostic output data set SYSPRINT Yes

Output module library SYSLMOD Yes

Table 6.3-3. DCB Requirements

LRECL BLKSIZE RECFM

80 F,FS

Primary input SYSLIN 80 400,800,3200 FB,FBS

Object modules and/ 80 80 F,FS
Secondary or control statements 400,800,3200 FB,FBS
Input

Load modules Maximum for equal to U
* SYSLIB device, or LRECL
* Included modules one-half of

value2 of
SIZE option
whichever is
smaller

SYSPRINT 121 121 FM
121 605,1210,4840 FBM

Output
SYSLMOD Maximum track equal to U

size for de- LRECL
vice or 1/2
of value2 of
SIZE option,
whichever is
smaller

6.3-5



STANDARD (IBM-SUPPLIED) PROCESSORS

6.3.2 LOADER

The Loader combines in one job step the basic editing functions of the
Linkage Editor and the loading functions of program fetch. It is designed
for high-performance loading of modules that do not require the special
processing facilities of the Linkage Editor, as does overlay. The Loader
does not produce load modules for program libraries.

The Loader can be referred to by its program name, IEWLDRGO, or its alias,
LOADER. It can be invoked through the EXEC statement // EXEC PGM=LOADER
or through the LOAD, ATTACH, LINK, or XCTL macro instructions.

When changing a program to use the Loader instead of the Linkage Editor, the
SIZE parameter specified in the PARM field should be equal to the region
normally required by the GO step. The REGION specified should be the SIZE
value plus 30K for Loader overhead. For example, if the GO step when using
LINKGO normally requires 120K, specify

// EXEC LOADER,PARM=' SIZE=120K,EP=MAIN' ,REGION=150K

when using the Loader. See paragraph 19.3.2.4 for a description of the
LOADER cataloged procedure and its use.

6.3.2.1 Data Sets

The loader uses three DD statements -- SYSLIN, SYSLIB, and SYSLOUT. (These
ddnames can be changed during system generation with the LOADER macro in-
struction.) The SYSLIN DD statement must be used in every loader job.
The other two statements are optional.

The following considerations apply to the DCB parameter of SYSLIN, SYSLIB,
and SYSLOUT:

* For better performance, BLKSIZE and BUFNO can be specified.

* If BUFNO is omitted, BUFNO=2 is assumed.

* Any value given to BUFNO is assumed for NCP (number of channel
programs).

* If RECFM=U is specified, BUFNO=2 is assumed, and BLKSIZE and
LRECL are ignored.

* RECFM=V is not accepted.

* RECFM=FBSA is always assumed for SYSLOUT.

6.3-6



STANDARD (IBM-SUPPLIED) PROCESSORS

* If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB.

* If BLKSIZE is omitted, the value given to LRECL is assumed.

* LRECL=121 is always assumed for SYSLOUT.

* If LRECL is omitted, LRECL=80 is assumed for SYSLIN and SYSLIB.

Table 6.3-4 illustrates the basic format of the Loader input deck.
Table 6.3-5 is a load-and-go procedure using the SYSLIN data set as the
only input. Table 6.3-6 represents a Loader program using the SYSLIB and
SYSLOUT data sets and having program data in the input stream.

6.3.2.2 Options

Because of the load-and-go function of the Loader, the PARM operand of the
EXEC statement is used to specify options for the Loader and the loaded pro-
gram. The PARM field has the following format:

PARM= (loaderoptions/programoptions)

Those options before the slash apply to the Loader. Those following the
slash, if any, are passed to the loaded program.

6.3-7



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-4. Input Deck for the Loader (Basic Format)

//name JOB parameters
//name EXEC PGM=LOADER, PARM= (parameters)
//SYSLIN DD parameters
//SYSLIB DD parameters (optional)
//SYSLOUT DD parameters (optional)
// (optional DD statements and data required for loaded program)

Table 6.3-5. Input Deck for a Load Job

//LOAD JOB MSGLEVEL=1
//LDR EXEC PGM=LOADER
//SYSLIN DD DSNAME=MASTER,DISP=OLD
// (DD statements and data required for execution of MASTER)

Table 6.3-6. Loader and Loaded Program Data

//LOAD JOB MSGLEVEL=1
//LDR EXEC PGM=LOADER,PARM=MAP
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
//SYSLOUT DD SYSOUT=A
//FT06F001 DD SYSOUT=A
//SYSLIN DD *

(Loader data)
//i FTr05F001 D *

(Loaded program data)

6.3-8



STANDARD (IBM-SUPPLIED) PROCESSORS

6.3.3 SORT/MERGE

The OS/360 Sort/Merge package provides the capability to re-order records

within files:

* Sorting and merging operations may be performed on from 1 to 64

fields which may be in any combination of the following formats --
character, decimal (packed or zoned), arithmetic (fixed or float-

ing), or binary strings.

* The sorting and merging keys may be from 1 to 256 bytes long, and
different keys may be ordered by different rules (ascending, de-

scending, or user-specified) within a single run.

* The user may specify the type of sort used (polyphase, oscillating),
and the type of intermediate storage (tape or disk).

* The user may bypass the first "n" records on the input.

* Input data may be sequential data sets of fixed or variable
length, and may be blocked or unblocked.

The name of the Sort program is IERRCO00. It requires a minimum of 15k bytes
main storage; however, Sort/Merge performance improves as the amount of main
storage available to the program increases. Approximately 44k bytes of main
storage are required for efficient operation. At least one selector channel
or one multiplexor channel is required. The amount of intermediate storage
required for sorting operations depends on the size of the input data set.
At least three work units (data sets) are required. More may be used. They
may be on the same physical device, but it is more efficient to separate
them. Refer to IBM Form #GC28-6662 for Sort/Merge timing estimates. See
paragraph 19.3.3 for a description of the Sort cataloged procedure and its
use.

6.3.3.1 Data Sets

A variety of DD statements are required depending on the use of a cataloged
procedure, sort-only operations, merge-only operations, use of the checkpoint
facility, and user-written modification routines. Table 6.3-7 provides a
JCL summary for the Sort/Merge program.

6.3.3.2 Options

The Sort/Merge program must know what to do with the input data. This infor-
mation is provided by five Sort/Merge control statements:

6.3-9



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-7. Summary of Job Control Language Statements for Sort/Merge
(Sheet 1 of 2)

Statement Purpose When Required

//jobname Job Introduces the job. At all times.

//stepname EXEC Introduces the step. At all times.

//SYSPRINT 1  DD Used by Linkage Editor. When you do not use a cata-
loged procedure and have
modification routines that
require link editing.

//SYSLMOD1  DD Defines Linkage Editor out- Same as for SYSPRINT.
put data set.

//SYSUTll1  DD Defines work area for Same as for SYSPRINT.
Linkage Editor.

//SYSLIN1  DD Defines input data set for Same as for SYSPRINT.
Linkage Editor.

//SORTLIB1  DD Defines data set that con- When you do not use cata-
tains Sort/Merge program loged procedures SORT or
modules. SORTD.

//SYSOUT 1  DD Defines system output data Same as SORTLIB.
set.

//SORTIN DD Defines input data set for For a sort, at all times unless
a Sort. LINK, ATTACH, or XCTL is used

to invoke sort and the input
data set is inserted by your
routine at Sort/Merge exit E15.
Not used for a merge.

6.3-10



STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-7. Summary of Job Control Language Statements for Sort/Merge

(Sheet 2 of 2)

Statement Purpose When Required

//SORTIN01-16 DD Define input data sets for For a merge, at all times.
a merge. Not used for a sort.

//SORTWK01-32 DD Define intermediate storage For a sort, at all times.
data sets for a sort. Not used for a merge.

//SORTOUT DD Defines Sort/Merge output At all times, unless LINK,
data set. ATTACH, or XCTL is used to

invoke sort and your routine
disposes of output via Sort/
Merge exit E35.

//SORTMODS DD Defines a temporary data When you supply modification
set for your modification routines through the system
routines in SYSIN. input stream.

//SORTCKPT DD Defines data set for check- When you use the checkpoint
point records. facility.

//SYSIN DD * Indicates that data set con- At all times.
taining Sort/Merge control
statements follows in input
stream.

1
These data sets are provided by the GSFC-cataloged SORT procedure.

6.3-11



STANDARD (IBM-SUPPLIED) PROCESSORS

a. SORT Statement -- This statement provides information about control
fields and data set size. The statement is used with a sort job;
it is not used for a merge-only job.

b. MERGE Statement -- This statement provides the same information as
a SORT statement, and is used with a merge job. This statement
is not used for a sort operation.

c. RECORD Statement -- This statement provides record length and
type information, and is required only when modification routines
change record lengths during Sort/Merge execution.

d. MODS Statement -- This statement associates modification routines
with particular Sort/Merge program exits and is required only when
modification routines to be executed at Sort/Merge exits are sup-
plied. (Section 3, Program Modification, describes these exits
and the requirements for routines that use them.)

e. END Statement -- This statement signifies the end of a related
group of Sort/Merge control statements and is not required.

Further information on these options can be found in the IBM manual Sort/
Merge (GC28-6543).

6.3-12



ADDED PROCESSORS

SECTION 7

ADDED PROCESSORS

7.1 GENERAL DISCUSSION

In the wide range of data processing operations and data manipulations
there are many areas which are not covered by the IBM-supplied processors.
These requirements are usually filled by proprietary packages, such as the
Boole and Babbage problem program analyzer, and user-written routines such
as the data manipulation routines. Many of these routines, such as FORMAC
and GTS are written to extend the capabilities of existing processors.

7.1-1



ADDED PROCESSORS

7.2 BOOLE AND BABBAGE

The Problem Program Analyzer, a program that analyzes and measures Problem

Program Evaluator (PPE), is part of the Boole and Babbage System Measure-
ment Software (SMS/360) for S/360 computers. The programmer can use the
Problem Program Evaluator to locate areas in his program where large amounts

of time are consumed, and thus determine the parts of the program where effi-

ciency might be increased.

The PPE analyzer is recommended for those users who have programs to be used

for a large number of hours, and who are willing to spend the needed time to

re-work those sections of their programs which require large amounts of time.
This is usually confined to a very few small blocks of code and does not
normally involve extensive rewriting of programs.

PPE is particularly helpful when used during the debugging stages of programs
under development. It can be used to test alternative coding techniques and

to indicate potential sources of wait time.

The PPE program consists of two parts. The first part is the Extractor, which
samples the execution of the user's program (at intervals which can be speci-
fied by the user) and gathers data on what is happening. The second part
is the Analyzer, which reports these data.

The Extractor is initiated within the same step as the problem program, which
runs as a subtask under the Extractor. For best results, analysis of a pro-
duction program should be done during an actual production run. The user
can specify various levels of detail for the Code Activity Report developed
by the Analyzer program. This report may be prepared to cover all or selected
portions of the data from one or more Extractor data sets.

The user must furnish his problem program in object form on cards, tape, or
disk, or as a load module on disk. In any case, when he compiles it, he
must, include the list parameter in his EXEC card, so that he will receive
a listing of his object program for later comparison with the Analyzer
report. (The parameter is "LIST" for FORTRAN, PL/I, and assembly language.)

If the test is not being done during an actual production run, the user may
also supply test data to be processed by the problem program.

The user may also input the time sampling interval and any identifying in-
formation, such as programmer name, machine ID, and a unique run number,
that he wishes printed on the Code Activity Report.

7.2-1



ADDED PROCESSORS

The Code Activity Report furnishes the user with the following items of in-
formation which may be used along with his object program listing to help
determine where he may improve his program:

1. Identifying information such as programmer's name and location.

2. For each data set provided by the Extractor program to the Analyzer
program, such items as DS name, JOB name, step name, extraction
date and time, region bounds, sample bounds (relative to the region),
sample interval in milliseconds, and related data.

3. Percentage of activity (excluding I/O wait), outside of and within
the sample boundaries, giving a measure of overhead for the pro-
gram, such as the overlay supervisor.

4. Percentage of time spent in I/O wait state for each data set used
by the program (SYSIN, SYSPRINT, SYSUT1, SYSABEND, etc.), thus
identifying potential I/O improvements through blocking and buffer-
ing.

5. Module map of load modules encountered in the program being
tested, showing for each load module its address relative to the
region, percent of run time, whether it contained overlays, and
whether a report on it was included in the Analyzer report.

6. Study report for each specified load module, or in the case of
overlay programs for each requested segment, including:

7. Study report for a selected segment of the load module, including:

a. Bounds for the study report. (These can be specified to be
less than the entire module to facilitate examination of
small areas of code.)

b. Percentage of executed instructions (excluding I/O wait) out-
side of and within the study boundaries.

c. Percentage of time spent in I/O wait state for each data set.

d. Percentage of time spent in a wait state (excluding (I/O wait),
with addresses where each wait state occurred.

e. Percentage of time spent executing SVCs.

7.2-2



ADDED PROCESSORS

f. A histogram which breaks the load module (or study bounds)
into small intervals. The percent of run time spent in

each interval is listed along with a cumulative count.

The default interval size is 32 bytes, but this can be

varied by the analyst. By manipulating the study bounds

and histogram interval size and working back through

Linkage Editor and compiler object listings, it is possi-

ble to identify those source statements which cause the

most execution time.

Programmers desiring to use the PPE analyzer should contact one of the Boole

and Babbage representatives in Building 3, Room 133-C, extension 2863. A

representative will provide assistance in setting up the PPE run and in inter-

preting the information supplied in the Code Activity Report. On the basis of

this information, he will determine what portions of the program, if any, may

be improved.

Note: Boole and Babbage should not be used in programs where the system

library routine REMTIM is used, unless REMTIM is not entered during the

time Boole and Babbage is running.

The cataloged procedure BB is used for executing the Boole and Babbage

Problem Program Evaluator. The three steps in this procedure are a LINK

step, a GO step, and an analysis step (BSTEP2).

Note: The cataloged procedure BB should not be used for programs which use

the multi-region feature of the Linkage Editor. A special version of PPE is

available. Contact one of the Boole and Babbage representatives for assistance.

The input to the LINK step is the same as that for the LINK procedure. The
program to be analyzed should first be compiled using the LIST option to get
an assembler language listing of the source program. This list will be used
later as an aid in the analysis of the program. The output of the LINK step
is a load module, called FORT2, which is placed in the partitioned data set
&&BOOLIB.

The GO step executes the program PPDEXT1 which, in turn, executes the pro-
blem program named FORT2. While the problem program is executing, the
Extractor program takes readings, at specified intervals, of the amount
of time spent in the wait state and in executing sets of instructions.
These data are placed in the data set &&PPDEXT, which is passed to the
analyzer program, PPANAL, in the third step, BSTEP2.

The third step executes the analyzer program, PPANAL, which processes the

data in &&PPDEXT and prints the report.

7.2-3



ADDED PROCESSORS

In the following example, the BB procedure is executed following a compile

step:

//stepname EXEC BB
//GO.INPUT1 DD *
FORT2,2, DSOW
//GO.DATA5 DD *

(problem program input data)
//BSTEP2.INPUT2 DD *
ANAME=programmer

The input control card to PPDEXT1 is:

FORT2 ,n,DSOW

where:

FORT2 is the procedure assigned name of the problem program

n is an integer, where n multiplied by 16.6 milliseconds is the timing
interval between samples

DSOW is Data Set Oriented Wait

The optional input control card to PPANAL is:

ANAME=programmer

where:

programmer is any combination up to 24 characters, including leading
blanks and punctuation ( other than commas, which are not allowed).

Additional DD statements for the LINK and GO steps may be included as re-
quired, but must conform to the standard rules for JCL and cataloged pro-
cedures.

Users requiring assistance with the BB procedure should contact the Boole and

Babbage representative in Building 3, extension 2863. User's Guides, giving

details of various parameters and options, plus instructions for analysis, are

also available from this source.

7.2-4



ADDED PROCESSORS

A listing of this procedure follows:

MEMBER NAME BB
ALIASES BOOLE
//DEFAULT PROC REG1=200K, REG2=100K, REGM=150K,LTRK=20,BTRK=20,
// CON='(5,LT) ',MAP=ONLY
//LINK EXEC PGM=IEWL,PARM='LIST,MAP' ,COND=(5,LT),REGION=250K
//LOADLIB DD DSN=SYS2.LOADLIB,DISP=SHR
//NEWLIN DD DUMMY

//SYSLIB DD DSN=SYS2.DUMMY,DISP=SHR
// DD DSN=SYS2.DUMMY,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS2.GSFCLIB,DISP=SHR
// DD DSN=SYS1.PLlLIB,DISP=SHR
// DD DSN=SYS1.SSPAK,DISP=SHR
//SYSLMOD DD DSN=&&BOOLIB(FORT2),DISP=(NEW,PASS),UNIT=DISK,
// SPACE=(TRK, (&LTRK,10,1))
//SYSPRINT DD SYSOUT=A,DCB= (RECFM=FBM,LRECL=121,BLKSIZE=1210)
//SYSUDUMP DD SYSOUT=A,SPACE= (TRK,15)
//SYSUT1 DD UNIT=DISK,SPACE= (CYL,(2,2)),SEP=SYSLMOD
//TAPELIB DD DUMMY,DISP=(OLD,KEEP),LABEL= (1,BLP),UNIT=9TRACK,
// VOL=SER=TAPEIN,DCB= (RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE),DCB=RECFM=FB
// DD DDNAME=OBJECT
//MAP EXEC PGM=IMBMDMAP,COND=&MAP,REGION=&REGM
//SYSPRINT DD SYSOUT=A

//BABBAGE DD DSN=&&BOOLIB(FORT2),DISP=(OLD,PASS)
//GO EXEC PGM=PPDEXT1,COND= (5,LT),REGION=&REG1
//STEPLIB DD DSN=SYS2.SMSLIB,DISP=SHR

// DD DSN=&&BOOLIB(FORT2),DISP=(OLD,PASS)
//FT05F001 DD DDNAME=DATA5

//FT06F001 DD SYSOUT=A,DCB= (RECFM=VBA,LRECL=137,BLKSIZE=7265,BUFNO=l)
//FTO7F001 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200,BUFNO=l)
//PPE2EOU2 DD DSN &&PPDEXT,DISP=(NEW,PASS),DCB=(RECFM=F,BLKSIZE=512),
// SPACE=(TRK,(&BTRK,10)),UNIT=DISK
//PPE2EERR DD SYSOUT=A,SPACE=(TRK,(0,1))
//PPE2EIN1 DD DDNAME=INPUT1
//SYSUDUMP DD SYSOUT=A
//BSTEP2 EXEC PGM=PPANAL,COND=&CON,REGION=&REG2
//STEPLIB DD DSN=SYS2.SMSLIB,DISP=SHR

//FT04F001 DD DSN=&&PPDEXT,DISP=(OLD,PASS)
//FT05F001 DD DDNAME=INPUT2
//FT06F001 DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265)
//SYSUDUMP DD SYSOUT=A

7.2-5



ADDED PROCESSORS

7.3 FORMAC

FORMAC is an extension of the PL/I (F) compiler. It provides the capability
to perform formal algebraic manipulation of variables and expressions within
a PL/I numeric evaluation of formally derived expressions, using any desired
data. Thus, algebraic formulas of great complexity may be derived and printed

as formal expressions, together with numeric results obtained from evaluation

of the expressions using specified data.

The PL/I-FORMAC Interpreter allows the user to set a FORMAC variable equal to

a symbolic algebraic expression. This variable may, in turn, be included in

another symbolic expression, and in this fashion extensive algebraic formulas
may be constructed.

Various subroutines perform editing and formal manipulation of expressions.
Included are such capabilities as analytic differentiation, formal function
evaluation, expansion of integer powers of expressions, true rational arith-

metic, and symbolic complex arithmetic.

Editing capabilities allow formal factorization, combination of terms, and
substitution of complicated expressions.

Formally derived expressions may be numerically evaluated and used as PL/I
variables in numeric algorithms.

The FORMAC interpreter uses the full PL/I capability; hence, all legal PL/I

subroutine names may be used as FORMAC variables.

A limited knowledge of PL/I is sufficient to allow use of FORMAC. For

instance, familiarity with PL/I input and output capabilities, BEGIN-END

brackets, and the PROCEDURE statement would provide a FORTRAN programmer

with a knowledge base sufficient to use FORMAC.

Extensive formal manipulation of algebraic expressions has direct applica-
tion in analysis, celestial mechanics, and optimization theory, although
it is not limited to these fields. The following is intended as an indica-

tive, but not exhaustive, list of suggestions:

1. FORMAC may be used to derive high order Runge-Kutta type formulas
for integration, analytic expressions for terms in function approx-
imation, and Taylor-series approximations of arbitrary functions.

2. FORMAC may be used to generate and combine formal power series to

obtain analytic expressions for solutions of orbital elements.

These expressions may then be formally differentiated to provide

error-analysis capabilities.

7.3-1



ADDED PROCESSORS

3. Solutions to linear programming problems, trajectory optimization,
and control-type problems often use methods based on gradient tech-
niques requiring expressions for first- and second-order deriva-
tives of complicated expressions in several variables. FORMAC may
be used to generate their numeric evaluation.

The FORMAC cataloged procedure consists of a preprocessor, compile, LINK,
and GO steps. The PL/I source deck is input to the FORMAC program in the
preprocessor step. The output of the FORMAC program is a temporary data
set called &SRCE which is passed to the PL/I compiler. The changed version
is compiled, linked, and executed.

To execute the FORMAC procedure, the following is coded:

//s tepname EXEC FORMAC
//STEPl.SYSIN DD *

(source deck)
//STEP4.SYSIN DD *

(data)

If a punched object deck is required, the following is coded:

//stepname EXEC FORMAC ,PARM=DECK
//STEPl.SYSIN DD *

(source deck)
//STEP2.SYSPUNCH DD DSN=DECK,SYSOUT=B
//STEP4.SYSIN DD *

(input data)

7.3-2



ADDED PROCESSORS

A listing of this procedure follows:

MEMBER NAME FORMAC
//STEP1 EXEC PGM=MINIMAC,REGION=200K
//STEPLIB DD DSN=SYS2. MINIMAC ,DISP=SHR
//SYSPRINT DD SYSOUT=A,SPACE=(CYL,(3,1))
//SYSUT3 DD UNIT=DISK,DCB=(RECFM=FB,LRECL=80,BLKSIZE=80),
// SPACE=(80,(4000,2000)),DSNAME=&SRCE,DISP=(,PASS)
//STEP2 EXEC PGM=IEMAA,PARM='S,ST,NT,SM=(2,80) ',COND=(16,EQ,STEP1)

//STEPLIB DD DSN=SYS2 .V43 .PL1 ,DISP=SHR

//SYSPRINT DD SYSOUT=A,SPACE=(CYL, (5,1))
//SYSLIN DD DSNAME=&LOADSET,DISP=(MOD,PASS),UNIT=DISK,
// SPACE=(80,(250,100))
//SYSUT3 DD UNIT=DISK,SPACE=(80,(250,250)),SEP=SYSPRINT
//SYSUT1 DD UNIT=DISK,SPACE=(1024,(60,60)), ,CONTIG),
// SEP= (SYSUT3,SYSLIN, SYSPRINT)
//SYSIN DD DISP=(OLD,DELETE),DSNAME=&SRCE
//STEP3 EXEC PGM=IEWL,PARM='XREF,LIST,LET,DCBS ' ,COND=((16,EQ,STEPl),
// (9,LT,STEP2)),REGION=300K
//SYSLIB DD DSN=SYS2.FORMAC,DISP=SHR
// DD DSN=SYS2.V43.PL1,DISP=SHR

//SYSLMOD DD DSN=&GOSET(GO),DISP=(MOD,PASS),UNIT=DISK,
// SPACE=(3702, (50,20,1))
//SYSPRINT DD SYSOUT=A,SPACE=(CYL,(2,1))
//SYSUT1 DD UNIT=DISK,SEP=(SYSLMOD,SYSLIB),SPACE=(1024,(200,20))
//SYSLIN DD DSN=&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//STEP4 EXEC PGM=*.STEP3.SYSLMOD,
// COND=((9,LT,STEP3), (9,LT,STEP2), (16,EQ,STEPl))

//SYSPRINT DD SYSOUT=A,SPACE=(CYL, (1,1))

//SYSUT1 DD UNIT=DISK,DCB=(RECFM=F,BLKSIZE=829),
// SPACE=(829,1000)
//SYSABEND DD SYSOUT=A
// SPACE= (CYL, (0,1))

The input to the compile step (STEP2) is the modified version (&SRCE) of

the source deck. The output of the compile step is the data set &LOADSET
which is passed to the LINK-EDIT step (STEP3). Additional input decks may

be input to STEP3 through the SYSIN DD statement:

//STEP3.SYSIN DD
(object deck(s))

The output of STEP3 is an executable load module FORMAC stored in the PDS
&GOSET. This program is executed by STEP4 of the FORMAC procedure.

7.3-3



ADDED PROCESSORS

7.3.1 REFERENCES

For further documentation on FORMAC, contact Mrs. Pat Barnes, extension 6796,
in the GSFC Program Library in Building 3, Room 133.

7.3-4



ADDED PROCESSORS

7.4 GPSS V

GPSS V is a simulation program applicable where the simulation model
deals with discrete items, events, and timing, such as in scheduling.

GPSS is useful in the solution of problems involving a network of discrete
units where operations are being performed on them, and where the user can

describe quantities, timing, and operations in a block diagram.

GPSS requires no previous programming knowledge. The user prepares the block

diagram, using certain standard flowchart symbols to represent some step in
the action of his system.

GPSS uses "transactions" to represent different things, depending on the sys-
tem being simulated. For example, a "transaction" could be messages in a
communication system, electrical pulses in a digital circuit, or records in
a data processing system.

The system that the user wishes to simulate by means of GPSS must be described
as a block diagram with blocks representing activities. The sequence in which
activities are to be executed is indicated by the lines joining the blocks.
Where a choice of activities is desired, the user draws more than one line
leaving a block. The condition determining the branching is stated at the
block.

GPSS block diagrams (unlike most diagrams in which the form of the diagram
depends on the ideas of the user) use blocks that have precise meanings, so
that the programming language may be based on them. There are 37 specific
block types, each of which represents a characteristic action of systems.
In GPSS, a set of subroutines is associated with each type of standard block.
Therefore, the programmer must draw his block diagram for GPSS, using only
these block types.

Moving through the system being simulated are entities dependent on the na-
ture of the system. For instance, communication systems are involved with
movement of messages and data processing systems with records. In simula-
tion, the movement of these entities (transactions) from block to block in
simulated time reflects the sequence of events in real time.

The user may create entities and track them through the network, tabulating

their paths, waiting times, queue lengths, and other pertinent statistics.
The results may be displayed in tabular form or in histogram plots on the
printer.

7.4-1



ADDED PROCESSORS

7.4.1 GPSS V APPLICATIONS

Several scheduling applications might be suitable for solution by GPSS.
One might be the simulation of a computer system in order to uncover bottle-
necks. Another might measure the response of the CRJE/CRBE service and the
effect of different types of terminals or numbers of dial-up stations.

Another application might be in the simulation of new scientific satellites
in which the various experiments encode their data digitally and must com-
pete for the PCM telemetry transmission equipment. A GPSS simulation would
measure the data lost, demands on the transmission equipment, and whether
such a concept were feasible.

A listing of this procedure follows:

MEMBER NAME GPSS
//SOURCE EXEC PGM=DAG01V,PARM=C,REGION=300K
//STEPLIB DD DSN=SYS2.GPSS,DISP=SHR
//DINTERO DD UNIT=DISK,SPACE=(CYL, (1,1)) ,DCB=BLKSIZE=7144
//DINTWORK DD UNIT=DISK,SEP=DINTERO,SPACE= (CYL,(1,1)),DCB=BLKSIZE=7236
//DOUTPUT DD SYSOUT=A,DCB=BLKSIZE=7182
//DREPTGEN DD UNIT=DISK,SPACE=(CYL,(1,1)),DCB=BLKSIZE=7280
//DSYMTAB DD UNIT=DISK,SPACE=(CYL,(1,1)),DCB=BLKSIZE=7112

To execute the procedure, the following is coded:

//stepname EXEC GPSS
//SOURCE.DINPUT1 DD *

(formatted input deck)
/*

GPSS is available on the M&DO model 95 computer.

7.4.2 REFERENCES

Contact Mrs. Pat Barnes, extension 6796, in the GSFC Program Library,
Building 3, Room 133, for further documentation on GPSS. Refer to the IBM
manuals, General Purpose Simulation System V Introductory User's Manual
(SH20-0866), and the General Purpose Simulation System V User's Manual
(SH20-0851) for more detail on GPSS. The above IBM manuals are available only
through purchase from IBM.

7.4-2



ADDED PROCESSORS

7.5 GRAPHICS TERMINAL SERVICE (GTS)

Graphics Terminal Services (GTS) provide support services for the 2250

and 2260 display terminals. GTS is functionally identical for both de-

vices, but they have different operational characteristics because of

hardware differences.

The five major function groups are:

1. Log-on/Log-off - This function provides the means to initiate

and terminate the terminal.

2. Data set editing - This function allows the user to create,

display, and modify card-image data sets on direct-access

devices.

3. Job scheduling - This function allows the user to display and

modify cataloged procedures for job submission, enter all JCL

directly through the terminal, or display and modify the JCL

from the preceding job for use in the current job.

4. Job output processing - This function allows the user to

visually examine job output and to have any or all output

printed, as desired.

5. Job status - This function allows the user to examine all jobs

that he has submitted through the terminal.

For more detailed information on GTS, see paragraph 12.1.3.

7.5-1



ADDED PROCESSORS

7.6 BIT-MANIPULATION ROUTINES

The FORTRAN language does not have the bit manipulation capabilities of
the 360 Assembler Language. To increase the data processing capabilities
of S/360 FORTRAN, routines have been added to the GSFC Library for the
logical manipulation of 32-bit data words. All operate as FORTRAN functions,
and the user must be careful of fix/float conversions. The routines were
written by Jack Balakirsky, Code 531.

1. A=AND(B,C) ANDs real arguments B and C bit by bit

2. I=LAND(J,K) AND for integer and logical* expressions

0 0 0 I
AND 0 1 0

1 J 0 I0 II I I I

3. A=OR(B,C) ORs real arguments B and C bit by bit

4. I=LOR(J,K) OR for integer and logical* expressions

Ip I q  p+q

0 0 1
I I I

OR o 1 I 1 1

SIll0 1

5. A=XOR(B,C) ORs (exclusive) real arguments B and C bit by bit

6. I=LXOR(J,K) Exclusive OR for integer and logical* expressions

p  
Ip*q I

0 0 0
o I o lo l

I I IEXCLUSIVEOR 1 011 1

1 1 0 1
I 1 i 1 1 0

7. A=COMPL(B) Stores the one's complement of B in A

8. I=LCOMPL(J) Ones complement for integer and logical* expressions

P -PI p pl

ONE'S COMPLEMENT 0 1 I
1 0

*The function and its arguments must be defined in a LOGICAL statement,

i.e., LOGICAL LAND, J,K.

7.6-1



ADDED PROCESSORS

9. SHFTL Shifts the bit configuration of J to the left,
n positions. All 32 bits participate in the
shift. High-order bits are shifted out and lost.
Zeros are inserted in the low-order vacated
positions.

INTEGER SHFTL LOGICAL SHFTL,A,B

I=SHFTL(J,n) A=SHFTL(B,n)

10. SHFTR Shifts the bit configuration of J to the right,
n positions. All 32 bits participate in the
shift. Low-order bits are shifted out and lost.
Zeros are inserted in the high-order vacated
positions.

INTEGER SHFTR LOGICAL SHFTR,A,B

I=SHFTR(J,n) A=SHFTR(B,n)

11. FSHFTL Shift left for real variables
A=FSHFTL(B,n)

12. FSHFTR Shift right for real variables
A=FSHFTR(B,n)

13. BITON** Sets to 1 the nth bit position (n=0-31) of B and
stores the result in A. B remains unchanged.

INTEGER BITON,A,B LOGICAL BITON,A,B

A=BITON (B,n) A=BITON (B,n)

**Routines BITON, BITOFF, AND BITFLP operate on only one bit of a 32-bit word.

7.6-2



ADDED PROCESSORS

14. BITOFF** Sets to zero the nth bit position (n=0-31) of B
and stores the result in A. B remains unchanged.

INTEGER BITOFF,A,B LOGICAL BITOFF,A,B

A=BITOFF(B,n) A=BITOFF(B,n)

15. BITFLP** Complements the nth bit position (n=0-31) of B
and stores the result in A. B remains unchanged.

INTEGER BITFLP,A,B LOGICAL BITFLP,A,B

A=BITFLP (B, n) A=BITFLP(B,n)

**Routines BITON, BITOFF, and BITFLP operate on only one bit of a 32-bit word.

7.6-3



ADDED PROCESSORS

7.7 CONTINUOUS SYSTEM MODELING PROGRAM (CSMP)

7.7.1 GENERAL DESCRIPTION OF THE PROGRAM

The following excerpt was taken from the IBM System/360 Continuous System

Modeling Program User's Manual, GH20-0367-4.

S/360 CSMP is a "continuous system simulator" that combines

the functional block modeling feature of "digital analog simulators",

such as 1130 CSMP II, with a powerful algebraic and logical model-

ing capability. Designed for use specifically by the engineer or

scientist, it requires only a minimum knowledge of computer pro-

gramming and operation. The input language enables a user to

prepare structure statements describing a physical system, start-

ing from either a block diagram or a differential equation repre-
sentation of that system. Simplicity and flexibility are salient

characteristics of this language. A knowledge of basic FORTRAN
is helpful but not necessary.

The program provides a basic set of 34 functional blocks

(also called functions), plus means for the user to define func-

tions specially suited to his particular simulation requirements.

Included in the basic set are such conventional analog computer
components as integrators and relays plus many special purpose
functions like delay time, zero-order hold, dead space, and limiter
functions. This complement is augmented by the FORTRAN library
functions, including, for example, cosine, and absolute value.

Special functions can be defined either through FORTRAN programming
or, more simply, through a macro capability that permits individual
existing functions to be combined into a larger functional block.
The user is thereby given a high degree of flexibility for dif-
ferent problem areas. For example, by properly preparing a set

of special blocks, he can restructure S/360 CSMP into a problem-
oriented language for chemical kinetics, control system analysis,
or biochemistry. In effect, S/360 CSMP does not have to operate
within the framework of a digital analog simulator language, but

can take on the characteristics of a language oriented to any

particular special purpose field in continuous system simulation.
Application-oriented input statements are used to describe

the connections between the functional blocks. S/360 CSMP also

accepts FORTRAN statements, thereby allowing the user to readily
handle complex nonlinear and time-variant problems. A translator
converts these structure statements into a FORTRAN subroutine
"UPDATE" which is then -ompiled and executed alternately with a

selected integration routine to accomplish the simulation.

7.7-1



ADDED PROCESSORS

FORTRAN IV (Level G) is used as the source language for
approximately 95% of this application package; those operations
not readily performed in FORTRAN IV (Level G) are coded as sub-
routines in System/360 Assembler Language. All routines operate
under Operating System/360. All calculations are done in single-
precision, floating-point arithmetic.

7.7.2 AVAILABILITY AND REQUIRED JCL

CSMP (modification level 3) is available on the M&DO 360/95 and the SESCC
360/91 and 360/75.

To execute the cataloged procedure on the 360/95 code:

// EXEC CSMP

//CSMP.SYSIN DD *
(source deck)

/*

Code the following to obtain punched output for FORTRAN unit 7:

// EXEC CSMP
//CSMP.FT07001 DD SYSOUT=B
//CSMP.SYSIN DD *

(source deck)
/*

7.7.3 REFERENCES

IBM System/360 Operating System manuals.

* System/360 Continuous System Modeling Program, Application
Description (GH20-0240)

* System/360 Continuous System Modeling Program User's Manual
(GH20-0367)

* System/360 Continuous System Modeling Program Operator's
Manual (GH20-0368)

7.7-2



ADDED PROCESSORS

7.8 SIMSCRIPT 11.5

The SIMSCRIPT II language provides the user with a tool for discrete-event

simulation and systems programming. SIMSCRIPT II.5, Release 7, is a pro-
prietary product from Consolidated Analysis Centers, Inc. (C.A.C.I.). It
supports programs written in an enhanced version of the SIMSCRIPT II language.

7.8.1 RECENT MODIFICATIONS

Release 7 is a major revision to the C.A.C.I. SIMSCRIPT 11.5 COMPILER. Full

compatibility has been retained with Release 6 for most cases. Programs makin
use of the ACCUMULATE and TALLY statements, and programs using the calendar
time facilities should be fully recompiled with the Release 7 compiler and
library. Release 7 requires an additional 70K memory since it is no longer
an overlay structure.

7.8.2 AVAILABILITY

SIMSCRIPT 11.5, Release 7, is available on the M&DO 360/95. To aid the
SIMSCRIPT programmer, the cataloged procedures SIM25C and SIM25LG are avail-
able in SYS1.PROCLIB to provide the necessary Compile and LINKGO JCL.

7.8.3 REFERENCES

Documentation on SIMSCRIPT 11.5 may be viewed in the Program Library,
Building 3, Room 133, Extension 6796.

* SIMSCRIPT II S/360-370 References Handbook

* SIMSCRIPT II S/360-370 User's Manual

The documents may be purchased from a branch office of C.A.C.I. located in
Arlington, Virginia. For further information contact Mrs. Pat Barnes in the
Program Library.

7.8-1



ADDED PROCESSORS

7.9 TIMING ROUTINES

Several FORTRAN callable timing routines, with different run-timing capabili-
ties, are available for use on the M&DO computers.

7.9.1 REMTIM

REMTIM returns the remaining time in a user's job.

CALL REMTIM(I,J)

where I = CPU time remaining for the user's job in seconds, and J = the I/O
time remaining for the user's job in second.

The difference between two successive calls may be used for interval timing.
Note that the clock is counting down here, not increasing.

7.9.2 ZTIME

ZTIME produces the date and time of day in alphanumeric form. The routine was
written by Mr. Frank G. Ross.

CALL ZTIME(AREA,NUM) where

AREA is a storage area which will receive the output

NUM is an integer constant or variable specifying the output desired.

Values for NUM size of area output form
1 - time of day (12 characters) HH.MM.SS.TH
2 - date (16 characters) MON DEC 10, 1972
4 - Anti (.!ii1nn) (7 characters) 72.247

8 - date (9 characters) 12/15/72

Any and all combinations of the above values can be used. Just allow enough
space for output. A LOGICAL *1 array initially blanked out via the DATA
initialization statement is the usual method.

7.9.3 TIME

TIME returns the time since midnight, in hundredths of seconds.

CALL TIME(I)

Where I is a full-word fixed point number.

7.9-1



ADDED PROCESSORS

7.9.4 FTIMIN,FTIMOT AND TIMEIN,TIMOUT

The above paired routines are used to calculate elapsed (wall clock) time,
at the user's discretion.

CALL FTIMIN CALL TIMEIN

Are used to initiate the timing interval.

CALL FTIMOT(X) CALL TIMOUT(I)

X = seconds (floating point) I = hundreds of seconds (fixed)

Return the elapsed time since the call to the first routine.

FTIMOT(TIMOUT) may be called more than once. Each call returns the total
elapsed time since FTIMIN(TIMEIN) was initialized.

A subsequent call to FTIMOT(TIMOUT) reinitializes the timing cycle.

Further information regarding the use of any of the above routines may be
obtained from the Programmer Assistance Center, Building 3, Room 133A,
Extension 6768.

7.9-2



WDDED PROCESSORS

7.10 SCIENTIFIC SUBROUTINE PACKAGE (SSP)

The Scientific Subroutine Package consists of over 250 FORTRAN callable sub-

routines, input-output free, which can be combined with a user's input, output
or computational routines to meet his individual requirements. 200 of these
subroutines are presented in both single and double precision mode. The pri-
mary purpose of this package is to make available a basic mathematical and

statistical subroutine library to aid the user in the development of his own

FORTRAN library. The user may supplement or modify the collection to meet
his needs.

7.10.1 BASIC CHARACTERISTICS OF THE SSP PACKAGE

1. All subroutines are free of input/output statements.

2. Subroutines do not contain fixed maximum dimensions for the data
arrays named in their calling sequences.

3. All subroutines are written in FORTRAN.

4. Many matrix manipulation subroutines handle symmetric and diagonal
matrices (stored in economical, compressed formats) as well as
general matrices. This can result in considerable saving in storage
for large arrays.

5. The use of the more complex subroutines (or groups of them) is
illustrated in the program documentation by sample main programs
with input/output.

6. All subroutines are documented uniformly.

7.10.2 AVAILABILITY

The Scientific Subroutine Package is available on all of the M&DO 360 computers.
On the 360/95 and 360/75 (Cl) the routines are automatically supplied through
LINKLIB. On the 360/65 the use of a STEPLIB or JOBLIB card is required.

7.10.3 REFERENCES

Further information concerning the Scientific Subroutine Package subroutine

may be obtained from the Program Library, Building 3, Room 133, Extension 6796.

7.10-1



SYSTEM, PROCESSOR, AND USER LIBRARIES

SECTION 8

SYSTEM, PROCESSOR, AND USER LIBRARIES

8.1 GENERAL DISCUSSION

A "library" is a partitioned data set (PDS) that resides on a direct-access
volume and has a directory which identifies the members by name and location.
Libraries contain routines widely used at an installation and are therefore
made easily accessible. OS/360 libraries fall into the following categories:

a. System Libraries -- These libraries are considered part of the op-
erating system and usually reside on the system residence volume,
although they may reside on other direct-access volumes. Examples
of libraries in this category are SYSI.LINKLIB and SYS1.PROCLIB.
Libraries concatenated to the automatic call library (SYSLIB) in
the cataloged procedure may be considered to be system libraries.
See subsection 8.12 for a description of SYSLIB.

b. Libraries required when using processors available under OS/360 --
The libraries in this category include the IBM-supplied libraries
SYSl.FORTLIB (its extension, SYS2.GSFCLIB), SYS1.MACLIB, and
SYS1.PLILIB. The routines may be referenced explicitly by the pro-
grammer (such as the CALL in a FORTRAN program) or used as required
by the system (e.g., the input/output routines used in FORTRAN).

c. User libraries and other libraries that are created or maintained
by the user or systems programmer to best accommodate installation
requirements -- These include libraries developed by users of such
systems as Definitive Orbit Determination System (DODS) and Attitude
Determination, as well as programs designed to give the individual
capabilities not incorporated into the existing system, such as the
Stromberg Datagraphics 4060 package or GPSS V. Private libraries
are also defined by this third category.

A library is a data set and may therefore be created during any job
step by defining the library in a DD statement. The library may be
given a simple or qualified name and may be passed, kept, deleted,
or cataloged. A library may be called a source, object, or load li-
brary, depending on the type of modules it contains. In the use of
libraries, one may encounter the terms JOBLIB, STEPLIB, and SYSLIB.
These are discussed in subsections 8.10, and 8.11, and 8.12.

8-1



SYSTEM, PROCESSOR, AND USER LIBRARIES

8.1.1 REFERENCES

IBM System/360 Operating System manuals.

* System Generation (GC28-6554)

• INTRODUCTION (GC28-6534)

* Supervisor and Data Management Macro Instructions (GC28-6647)

8.2 LINKLIB

The link library (SYS1.LINKLIB) is designated as the System Library. It
contains the most frequently used programs, such as the non-resident system
routines, language processors, the Linkage Editor and Loader, utilities, and
other IBM-supplied programs. It also contains frequently used user-written
programs. Any program in this library can be executed by coding PGM=program
name in the EXEC statement of a job step. LINKLIB is always available to all
steps of all jobs. The control program provides the necessary data control
block and establishes the logical relationship between the user's program
and the library.

When the system is IPLed, two or more libraries may be concatenated to the
link library; for example, on the model 95 LINKLIB consists of SYS1.LINKLIB,
SYS2.LINKLIB, SYS2.GSFCLINK, and SYS3.GSFCLINK. The 75 (Cl) link library
consists of SYS1.LINKLIB, SYS2.LINKLIB, and SYS2.GSFCLINK.

8.2.1 REFERENCES

IBM System/360 Operating System manual.

* System Prograinmer's Guide (GC28-6550)

8.3 PROCLIB

A procedure library (PROCLIB) is a partitioned data set containing job control
language statements for standard, frequently run jobs. A particular set of
such JCL statements in a PROCLIB is referred to as a cataloged procedure.
Cataloged procedures may be referenced on an EXEC card in the job stream to
cause the inclusion of the designated set of JCL, thus reducing the number of

JCL statements to be supplied by the user. This not only reduces the burden

on the user, but also reduces error probabilities in preparation of JCL.

Details on the usage of cataloged procedures are presented in Section 5.

There is a procedure library named SYS1.PROCLIB on each of the M&DO compu-
ters, containing cataloged JCL procedures for all standard processors (such

as FORTRAN, PL/I, and Linkage Editor). A partial list of cataloged proce-
dures in SYS1.PROCLIB for the M&DO 360/95 computer is found in subsection 19.3.

8-2



SYSTEM, PROCESSORS, AND USER LIBRARIES

The Models 95 and 75 (Cl) have a second procedure library, named SYS2.USERPROC,
which is concatenated with SYS1.PROCLIB. This library contains cataloged
procedures for frequently used user-written programs. Before a procedure
can be placed on the SYS2.USERPROC, the following conditions must be met:

a. The procedure must be checked out - no "JCL errors" are allowed.

b. The procedure must have at least 15 cards or must be used at least
five times per day.

A procedure which meets the above conditions may be placed in the SYS2.USERPROC
by submitting a written request, accompanied by a listing of the procedure and
the deck necessary to update SYS2.USERPROC, to the computer manager,
Mr. Harry G. Bitting, Code 531. Subsequent updates must. follow the same rules.
Please note that SYS2.USERPROC is restricted to procedures for execution of
user programs; procedures for compilations, assemblies, or linkage edits will
not be approved.

8.3.1 REFERENCES

See subsection 19.3 for a description of the GSFC standard cataloged proce-
dures.

IBM System/360 Operating System manual.

* Job Control Language Reference (GC28-6704).

8.4 SVCLIB

The members of the Supervisor Call (SVC) library (SYSl.SVCLIB) are non-resi-
dent SVC routines, the data management access methods, and the system's
standard error recovery routines (SER). These members are in load module
form.

This library is primarily of interest to the systems programmer.

8.4.1 REFERENCES

IBM System/360 Operating System manuals.

* System Programmer's Guide (GC28-6550)

* System Generation (GC28-6554)

8-3



;YSTEM, PROCESSOR, AND USER LIBRARIES

8.5 MACLIB

The macro library, SYS1.MACLIB, is a collection of macro definitions that can

be used in assembler language programs at GSFC. Once a macro definition

has been placed in the macro library, the definition may be used by writing
its corresponding macro instruction in a source program.

A macro definition included in a source deck is called a programmer macro defi-

nition, and a macro definition residing in the macro library is called a system

macro instruction. There is no difference in function and they will be expanded

in the same way. However, because syntax errors are handled differently, a
macro definition should be thoroughly debugged as a programmer macro before
being entered in the macro library. Non-IBM macros are contained in
SYS2.GSFCMAC on the 360/95.

8.5.1 REFERENCES

IBM System/360 Operating System manual.

* Assembler Language (GC28-6514)

8.6 FORTLIB

The FORTRAN library, SYS1.FORTLIB, is a PDS which contains a group of FORTRAN

subprograms. These programs, used by FORTRANG and FORTRANH, are provided by

IBM to perform specific functions such as mathematical functions and input/output
processing. New modules may be added and other modules deleted to meet the
needs of a specific installation. (See Section 7.10, Scientific Subroutine

Package.)

On the M&DO 360 computers the libraries concatenated to SYSLIB, the automatic

call library, are SYS1.FORTLIB, SYS2.GSFCLIB, SYSl.PLlLIB, and SYS1.SSPAK.

Other libraries (such as SYS2.SD4060) may be added to SYSLIB by overriding the
dummy SYSLIB allocations provided. Refer to SYSLIB, Subsection 8.12, and the
LOADER, LINK, and LINKGO procedures, paragraphs 19.3.2.4, 19.3.2.1, and

19.3.2.3.

8.6.1 REFERENCES

IBM System/360 Operating System manuals.

* FORTRAN IV (G and H) Programmer's Guide (GC28-6817)

* FORTRAN IV Library Subprograms (GC28-6596)

8-4



SYSTEM, PROCESSOR, AND USER LIBRARIES

8.7 PLILIB

The PL/I subroutine, SYS1.PLILIB, is a system library that houses a set of
load modules that, during execution of a PL/I program, supplement the machine
instructions generated by the compiler. These modules can be divided into
two groups:

a. Modules that serve as an interface between compiled code and the
facilities of the operating system -- These modules are concerned
primarily with input and output, storage management, and error and
interrupt handling.

b. Modules that perform data processing operations during program exe-
cution -- These modules handle, for example, input/output editing,
data conversion, and many of the PL/I built-in functions.

8.7.1 REFERENCES

IBM System/360 Operating System manuals.

* PL/I (F) Programmer's Guide (GC28-6594)

* PL/I (F) Subroutine Library (GC28-6590)

8.8 LOADLIB

SYS2.LOADLIB is a GSFC load module library. On the models 95 and 75, the
load module library is concatenated with the automatic call library in the
LINK and LINKGO procedures. Programs to be entered in LOADLIB must meet
certain conditions of size and usage before being accepted. These condi-
tions are listed below, as stated in the M&DO 360 Computer Bulletin #3:

a. Programs or subroutines must be checked out.

b. They must be used not less than once a day.

c. Their size must not exceed 250k bytes of memory.

d. Each member name must be of the following format -- USRIDXXX
(e.g., GAFGR001).

e. A written request accompanied by a copy of the Linkage Editor map
must be submitted to the computer manager, Mr. Harry G. Bitting,
Code 531, for approval.

8-5



SYSTEM, PROCESSOR, AND USER LIBRARIES

f. After approval is granted, procedure SAVEPROG must be used to enter

the member into the library. Refer to paragraph 19.3.6 for a des-

cription of the SAVEPROG procedure.

8.8.1 REFERENCES

IBM System/360 Operating System manual.

* Linkage Editor and Loader (GC28-6538). See automatic call library.

8.9 TELCMLIB

The members of the telecommunications library (SYS1.TELCMLIB) are load modules

which support the optional telecommunications access methods specified at

system generation. The access methods supported by SYS1.TELCMLIB are the

Basic Telecommunications Access Method (BTAM) and Queued Telecommunications

Access Method (QTAM). SYS1.TELCMLIB must be specified at system generation if

either or both of these access methods are to be generated.

8.9.1 REFERENCES

IBM System/360 Operating System manuals.

* System Generation (GC28-6554)

* Introduction to Teleprocessing (GC30-2007)

* Linkage Editor and Loader (GC28-6538)

8.10 SYSLIB

The ddname, SYSLIB, defines the automatic call library of the Linkage Editor.

SYSLIB contains libraries which are comprised of modules required by

language processors and other processing systems. The SYSLIB libraries in

the LOADER, LINK, and LINKGO procedures on the M&DO computers are shown in the

following chart:

Models 95 and 75 Model 65

LOADER/LINK/LINKGO LOADER/LINK/LINKGO

SYS2.DUMMY SYS2.DUMMY
SYS2.DUMMY SYS2.DUMMY
SYS1.FORTLIB SYS1.FORTLIB
SYS2.GSFCLIB SYS1.PLlLIB

SYS1.PLILIB

SYS1.SSPAK

8-6



SYSTEM, PROCESSOR, AND USER LIBRARIES

The SYSLIB statement in these procedures concatenates the libraries which
provide the routines required by a majority of users. Users requiring
routines in a private library can concatenate that library to SYSLIB by
coding.:

//LINK.SYSLIB DD DSN=pvtlib,DISP=SHR,
// UNIT=2314 ,VOL=SER=xxxxxx

If the library is cataloged, the UNIT and VOL parameters are not required.

Note that SYSLIB in the procedures is coded with a DSN=SYS2.DUMMY to simplify
the concatenation of a private library.

An example of the addition of a private library is the user who requests the
SD4060 plot package. The routines for this package are stored in the library
named SYS2.SD4060. This library is concatenated to SYSLIB by coding:

//LINK. SYSLIB DD DSN=SYS 2. SD4060 ,DISP=SHR

8.10.1 REFERENCES

IBM System/360 Operating System manual.

* Linkage Editor and Loader (GC28-6538)

Also, refer to Subsection 8.6, FORTLIB.

8-7/8-8



UTILITIES

SECTION 9

UTILITIES

9.1 GENERAL

9.1.1 NATURE OF UTILITIES

Utility programs are written to perform common functions associated with
the creation and maintenance of S/360 data sets. They are invoked by the
EXEC card:

//stepname EXEC PGM=utilityname

and are told what to do through the use of control cards called utility
control statements. These control cards can be used individually or in
combination to perform a variety of operations such as the copying, moving,
printing, punching, reblocking, updating, deleting, and cataloging of data
sets, and the dumping, restoring, mapping and analyzing of direct-access
storage devices. In some cases, the desired operation may be accomplished
by more than one utility.

9.1.2 HOW TO CHOOSE A UTILITY

The IBM utility programs offer a wide range of functions which process
data from the volume level to the record level. Those system utilities
whose name begins with IEH can operate at the volume or data set level.
Those data set utilities whose name begins with IEB process data at the
data set level or below. This overlap may sometimes cause confusion in
choosing a utility for a particular purpose.

Three major factors in choosing a utility are the operation to be performed,
the level of data to be processed, and the data set organization.

Table 9.1-1 may be used in selecting a utility by application. This table
allows the user to find the proper utility by using the terms with which
he is most familiar.

9.1-1



Table 9.1-1. How to Select a Utility*

SUBSECTION REFERENCE- X 4 4f

APPLICATI ON I

IN A DIRECTORY OF

DIR I ECT-ACCESS 1

VOLUME X 1
CONTENTS OFAPDS 2CATALOG

MEMBEROF A PDS X X

t,) OF A SEQUENTIAL DATA

SETOR INPUT CARD DECK 
X 1OR

CREATE A OF A VOLUME 1

BACKUP COPY OF A SEQUENTIAL
DATA SET X X 2 1 X

OF A PDS OR A MEMBER X X
OF A PDS 2 1 X

UPDATE A PDS (AND/OR ALLO-
CATE SPACE) X X X X 1 X X

A MEMBER OF A PDS
WITH 80 BYTE
LOGICAL RECORDS X

A SEQUENTIAL DATA
SET X 1 2

COMPRESS A PDS 2
A SEQUENTIAL DATA

SET X

*THE NUMERALS 1 AND 2 DESIGNATE THE ROUTINE USLIALLY BEST SUITED FOR OPERATION.



Table 9.1-1. (Cont'd)

SUBSECTION REFERENCE -
UTILITY A

%, 'V 9 (W \'' tL ( 40 Q) N g Q0
APPLICATION 0 b W W W W ' W W W C 0Y C W

EXPAND APDS 2 1 X X

A SEQUENTIAL DATA
SET 1 2 X

CONVERT DATA FROM SEQUENTIAL TO
SET ORGANI- PARTITIONED 1 X X
ZATION FROM PARTITIONED

TO SEQUENTIAL X X 1

CREATE A PDS 1 2 X

CREATE A
SEQUENTIAL

W DATA SET 2 1 X X

CREATE FILES OF TEST DATA X
BY EDITING EXISTING

FILES X

TAPE TESTING X

LABEL A 7-TRACK OR 9-TRACK
MAGNETIC TAPE X

INITIALIZE A DASD X

MISCELLA- BUILD OR DELETE AN
NEOUS INDEX'OR INDEX

ALIAS X
BUILD AND MAINTAIN

A GENERATION
DATA GROUP INDEX X

CONNECT OR RELEASE
TWO VOLUMES X

MAP A LOAD
MODULE X

*THE NUMERALS 1 AND 2 DESIGNATE THE ROUTINE USUALLY BEST SUITED FOR OPERATION.



UTILITIES

9.1.3 UTILITY CATEGORIES

Utility programs fall into two broad categories:

a. IBM-supplied utilities

* System utilities (IEHMOVE, IEHLIST, IEHINITT, IEHDASDR,
IEHPROGM)

* Data Set utilities (IEBGENER, IEBCOPY, IEBPTPCH, IEBUPDTE,
IEBDG)

b. Other utilities (PATRICK, MAPDISK, LISTPDS, PDSUR, IEFBR14, IEBFGR,
OSSLIP)

The IBM utilities contain system utilities, which are used to maintain
volumes of data at an organizational level, and data set utilities, which
are used to process data at the data set or record level. The other utili-
ties include user-written programs and a module of the S/360 Operating
System (IEFBR14). IEFBR14 is not generally classified as a utility, but is
used to perform data set allocation and disposition utility functions.

The IBM-supplied utilities are all documented in IBM System/360 Operating
System Utilities (Form GC28-6586). Documentation is generally available for
user-written utilities and may be obtained by calling Mrs. Pat Barnes
(extension 6796) in the GSFC Program Library, Building 3, Room 133.

9.1.4 UTILITY CONTROL STATEMENTS

The four fields of utility control statements are: Name, Operation, Operand,
and Comment. The Name field begins in column 1 (except IEBUPDTE) and is
followed by a space. Each of the other fields must be preceded and followed
by a space, as shown in tile following general form...at:

Name Operation Operand(s) Comments

The IEBUPDTE control statements must start with a ./ in columns 1-2 and the
Name (if any) begins in column 3. The remainder of the statement is the
same as the described format.

Depending upon the utility used, the control statements identify the func-
tion to be performed, the specific volume or data set to be processed, and
any parameters which modify the operation.

The name field begins in column 1 (column 3 for IEBUPDTE) and conforms to the
usual rules for S/360 names, i.e., it can be from one to eight alphanumeric
characters, the first of which must be alphabetic. When the name field
is not used, column 1 of the control card (column 3 for IEBUPDTE) must be
blank. The name field is required only in the IEHINITT utility. It is
generally not used in the other utilities, but may be used if desired.

9.1-4



UTILITIES

The operation field identifies the type of control statement. It may specify

an operation to be performed, or may provide information which further defines

the extent of the operation. This field begins before column 17 and must be

preceded and followed by at least one blank. If the name field is not used,

the operation field may begin in column 2. It is helpful to either right
align or left align all operation fields to improve readability. Indenting
an operation field may be used to indicate a reference to the preceding opera-
tion.

The operand field consists of keyword parameters separated by commas. The

keywords are defined in the utility program and contain information such as

volume and data set identification.

The comments field must be preceded by a blank and may contain any information.

Utility control statements are most often supplied in punched card form in

the input stream, but may also be supplied as a sequential data set or as a

member of a PDS.

The rules for continuation of utility control statements are as follows:

a. Interrupt the field after any comma before column 72.

b. Punch a non-blank character in column 72.

c. Continue in column 16 of the continuation card.

9.1.5 UTILITY PECULIARITIES

a. IEH utilities are unique in that the DD cards specify volume
identification but do not reference the data set name, i.e., they
do not contain the DSNAME parameter.

b. Derived names for devices should not be used in utility control or
DD statements.

For DISK use: VOL=2314=serial number
but not: VOL=DISK=serial number

For TAPE use: VOL=2400=serial number
but not: VOL=9TRACK=serial number

c. In the IEH utilities, space allocation for moved data sets is
provided by the utility program and does not need to be coded in
the JCL. Space may also be preallocated by the utility IEHPROGM
or IEFBR14, or on a DD card in the program being executed.

9.1-5



UTILITIES

9.1.6 NOTES ON EXAMPLES

In the examples in Section 9, the JOB card is not shown, but the user must
supply one when executing his program. In some examples, additional steps
are shown to illustrate the relationship between the utility and other steps
within the job.

The use of the delimiter /* is optional when the input stream is defined by:

//SYSIN DD *

It does serve the purpose of visually identifying the end of an input data set.

The delimiter is required when the input stream is defined by:

//SYSIN DD DATA

The input data must not include a /* card because this card signifies the last
card in the input stream.

9.1.7 RETURN CODES

The term RETURN CODE is the name of the condition codes returned by S/360
OS utilities. The return code indicates the level of success when executing
an OS utility and may be tested using the COND execution parameter of the
following step. The return codes vary in increments of 4 from 00 for suc-
cessful completion to 16 for the most severe errors. The exact meaning for
each value varies for each utility.

9.1-6



UTILITIES

9.2 SYSTEM UTILITIES

9.2.1 IEHMOVE

The IEHMOVE system utility moves or copies logical groups (volumes, data

sets, catalogs) of S/360 data. IEBCOPY is much faster than IEHMOVE and its

use is recommended (see Table 9.1-1).

Data to be moved may be:

a. Sequential or partitioned data sets.

b. Resident on one or more volumes (up to 5).

c. Cataloged or uncataloged.

d. A catalog or portions of a catalog.

e. A BDAM data set containing variable length spanned (VS or VBS)

records.

Members of moved or copied data sets may be merged, renamed, replaced, and

selectively included or excluded.

9.2.1.1 MOVE versus COPY

A MOVE operation differs basically from a copy operation in that upon
successful completion, MOVE scratches the source data set from direct-access
volumes, whereas COPY leaves the source data intact. Also, MOVE updates
the catalog entry for cataloged data sets to point to the MOVED data set,
whereas COPY does not change the catalog entry.

If for some reason the MOVE operation cannot be successfully completed,
the source data set is not scratched. Also, if space has been allocated
by the IEHMOVE program, all data being moved or copied is scratched from

the receiving volume.

If space has been previously allocated for the new data set (by this or a
previous job), no data that has been MOVED or COPIED is scratched. Utility
messages tell the user which data sets or members have been moved and the
type of error which occurred.

If an ABEND occurs during execution of IEHMOVE, IEHMOVE is not able to
complete the aforementioned housekeeping functions. The partially built
new data set remains on the receiving volume. Before resubmitting the
IEHMOVE step, one must scratch the partially built new data set from the

receiving volume; otherwise, IEHMOVE will treat the operation as a merge
of previously allocated data sets. This is not desirable, since it is
possible that some of the alias names will not be updated.

9.2-1



UTILITIES

For example, if the IEHMOVE program has moved 104 members of a 105-member

partitioned data set, and on moving the 105th member, an I/O error is
encountered, then:

* If space was allocated by the IEHMOVE program, the entire

partitioned data set is scratched from the receiving volume.

* If space was previously allocated, no data is scratched from the

receiving volume. In this case, after determining the nature

of the error, the user need move only the 105th member into the

receiving partitioned data set.

The following table illustrates catalog maintenance by MOVE and COPY.

FOR CATALOGED DATA SETS

OPERANDS MOVE COPY

FROM not used Catalog updated Catalog not changed

UNCATLG not used

FROM not used Catalog entry deleted Catalog entry deleted
UNCATLG used

FROM used Catalog not changed Catalog not changed
UNCATLG not used

CATLG used (Not applicable) Catalog updated

FOR UNCATALOGED DATA SETS

OPERANDS MOVE COPY

FROM used Catalog not changed Catalog not changed
CATLG not used

CATLG used (Not applicable) Catalog updated

9.2-2



UTILITIES

9.2.1.2 Example - MOVE

An example of moving a PDS from disk to disk with space allocated by the

IEHMOVE program is shown below:

// EXEC PGM=IEHMOV'E,REGION=100K
//SYSPRINT DD SYSOUT=A

//SYSUT1 DD UNIT=2314,VOL=SER=GlSCR, DISP=OLD
//DISKNEW DD UNIT=2314,VOL=SER=xxxxxx,DISP=OLD

//DISKOLD DD UNIT=2314,VOL=SER=yyyyyy,DISP=OLD
//SYSIN DD *

MOVE PDS=sourcpds, TO=2314=xxxxxx ,FROM= 2314=yyyyyy

9.2.1.3 Example - COPY (Sequential Data)

An example of copying a sequential data set from labeled tape to disk, with

space allocation provided by the IEHMOVE program, is shown below:

//STEP1 EXEC PGM=IEHMOVE,REGION=100K
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2314,DISP=OLD,VOL=SER=GlSCR1

//TAPEIN DD UNIT=2400,DISP=OLD,VOL=SER=xxxxxx
//DISKOUT DD UNIT=2314,DISP=OLD,VOL=SER=GlSCR2
//SYSIN DD *

COPY DSNAME=seqset,TO=2314=GlSCR2 ,FROM=2400=xxxxxx

Where xxxxxx would, in this case, be replaced by the user's 9-track tape

serial number. GlSCRl and G1SCR2 are 'scratch packs' on the 360/95.

9.2.1.4 Example - COPY (Multi-volume Sequential Data)

An example of copying a multi-volume sequential data set from three labeled

9-track tapes to one disk is shown below:

//MULTI EXEC PGM=IEHMOVE,REGION=100K
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2314,VOL=SER=GlSCR1,DISP=OLD
//TAPE DD DISP=(OLD,KEEP),UNIT=(2400-9,,DEFER),
// VOL=SER= (xxxxxx, yyyyyy, zzzzzz)
//DISK DD UNIT=2314,DISP=OLD,VOL=SER=GI1SCR3
//SYSIN DD *

COPY DSNAME=seqdata,TO=2314=GISCR3, X
FROM=2400=(xxxxxx,3,yyyyyy,l,zzzzzz,l)

The format on the FROM operand is:

FROM=(tapeno,seqno,...)

9.2-3



UTILITIES

where the tape number and file sequence number are listed for each tape on
which the file resides. In this example, the data set is the third file

on tape xxxxxx, and the first file on tapes yyyyyy and zzzzzz.

Notes:

a. Since the LABEL parameter is omitted on the TAPE DD card, the
system default LABEL=(1,SL) is assumed.

b. When using unlabeled tapes, the FROMDD keyword would have to

be included on the COPY DSNAME statement, i.e., (FROMDD=TAPE),
to make DCB and LABEL information available. The DCB parameter
is mandatory only when dealing with UNLOADED data sets (see
paragraph 9.2.1.6) and must be of the form (RECFM=FB, LRECL=80,
BLKSIZE=800).

c. Specify DISP=OLD on Utility DD cards to prevent the inadvertent
deletion of data sets.

9.2.1.5 Example - COPY (Multiple Data Sets)

An example of copying multiple data sets from one tape to one or more disk
volumes is shown below:

//MULTDAT EXEC PGM=IEHMOVE,REGION=100K
//SYSPRINT DD SYSOUT=A
//TAPEIN DD UNIT=2400,VOL=SER=xxxxxx,DISP=OLD,
// LABEL= (1 ,BLP) ,DCB= (LRECL=80 ,RECFM=FB,
// BLKSIZE=3520)
//DISKOUT DD UNIT= 2314 ,VOL=SER=yyyyyy ,DISP=OLD
//SYSUTl DD UNIT=2314 ,VOL=SER=zzzzzz ,DISP=OLD
//SYSIN DD *

COPY DSNAME=seqsetl.TO=2314=vyyvyyy X
FROM= (xxxxxx,3) ,FROMDD=TAPEIN

COPY DSNAME=seqset2,TO=2314=yyyyyy, X
FROM=(xxxxxx,4),FROMDD=TAPEIN

COPY DSNAME=seqset3,TO=23 4=yyyyyy, X
FROM=(xxxxxx,7),FROMDD=TAPEIN

In this example, three sequential data sets are copied from an unlabeled
9-track tape to a 2314 disk volume. One copy statement is required for
each data set to be copied. The format of the FROM operand is:

FROM=(tapeno,seqno)

See paragraph 9.1.4 for the rules for continuation of utility control
statements.

PRECEDING PAGE BLANK NOT FILMED

9.2-4



UTILITIES

9.2.2 IEHLIST

IEHLIST can be used to list the names of entries in a catalog, the names

in a directory of a partitioned data set, or a volume table of contents

(VTOC). This is particularly useful in listing the system catalog, the

member names of the procedure library, or in determining what data sets

are on a particular disk volume.

9.2.2.1 System Catalog Listing

The example below may be followed when listing the system catalog on any

one of the M&DO computers. The listing includes the fully qualified name

of each applicable cataloged data set and the serial number of the volume

on which it resides.

//LISTCLG EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//NUCLEUS DD VOL=REF=SYS1.NUCLEUS,DISP=OLD
//SYSIN DD *

LISTCTLG

Note: The volume serial number could be stated explicitly as VOL=SER=

G1SYS1; this would restrict the example to the model 95 only.

By omitting the VOL=device=serial field on the LISTCTLG card, the catalog

is assumed to reside on the system residence.

To list a catalog other than the system catalog, the DD card must refer to
the volume on which the catalog is located; the volume would be specified

in the utility control card as shown below for a disk.

//LIST EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A
//CATALOG DD VOL=SER=xxxxxx,DISP=OLD,UNIT=2314
//SYSIN DD *

LISTCTLG VOL=2314=xxxxxxx

9.2.2.2 Member Name Listing

To list the member names of either a private or system PDS, the example
below may be followed.

//LIST EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
//DD1 DD UNIT=-2314,VOL=SER=xxxxxx,DISP=OLD
//SYSIN DD *

LISTPDS DSNAME=name,VOL=2314=xxxxxx
LISTPDS DSNAME=name,VOL=2314=xxxxxx,FORMAT

PRECEDING PAGE BLANK NOT FILMED 9.2-7



UTILITIES

The FORMAT option causes the fields of the directory entries in a PDS to

be edited and formatted. The formatted listing may only be specified for

a PDS whose members have been created by the linkage editor.

Up to 10 partitioned data sets may be listed by one execution of this utility.
One control statement is required for each PDS listed. The PDS's may reside

on several volumes; one DD card is required for each volume referenced.

9.2.2.3 Volume and Data Set Status

The user must constantly be aware of the status of the volumes and data sets
with which he is working. This is particularly true of the special systems
where many tasks may be using the same programs and data.

LISTVTOC provides the user with a choice of;

a. A formatted listing (FORMAT option) of the VTOC, giving an in depth
description of the data sets residing on the volume.

b. An abbreviated, edited listing (default) of the VTOC.

c. A hexadecimal dump (DUMP option) listing of the DSCB's in the VTOC.

For general use, the FORMAT option is recommended.

The following example lists the VTOC on the four volumes designated; each
control card is explained below.

//LISTVTOC EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260

//VTOC1 DD UNIT=2314,VOL=SER=GlSYS 1DISP=OLD
//VTOC2 DD UNIT= 2314 ,VOL=SER=xxxxxx,DISP=OLD
//VTOC3 DD UNIT=2314,VOL=SER=yyyyyy,DISP=OLD
iv/ VTOC 4 DD UNIT=2314.VOLT=SER=zzzzzz.DISP---OLD
//SYSIN DD *

LISTVTOC

LISTVTOC VOL=2314=xxxxxx

LISTVTOC FORMAT ,VOL= 2314=yyyyyy
LISTVTOC DUMP,VOL=2314=zzzzzz

Notes:

a. Each volume referenced by a control statement must have a
corresponding DD card.

b. The default volume in the first control statement is the system's
residence device.

9.2-8



UTILITIES

The four control statements, taken in order, specify:

a. The abbreviated, edited format listing of the system's residence

volume (default).

b. The abbreviated, edited format of the VTOC for volume xxxxxx.

c. The formatted listing of the VTOC for volume yyyyyy.

d. The hexadecimal dump of the VTOC for volume zzzzzz.

9.2.2.4 VTOC Data Set Entries

The user is often interested in knowing if a particular data set is on a

specified volume, and the actual space occupied by the data set on that

volume.

The following example will list the VTOC entry for the data set if it is

present on the given volume.

//LISTVTOC DD PGM=IEHLIST
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
//VTOCl DD UNIT-2314,VOL=SER=xxxxxx,DISP=OLD
//SYSIN DD *

LISTVTOC FORMAT,VOL=2314=xxxxxx,DSNAME=name

Note: Specify DISP=0OLD on Utility DD cards to prevent the inadvertent deletion

of data sets.

9.2-9



UTILITIES

9.2.3 IEHINITT

This utility program places standard volume labels on 7- or 9-track magnetic
tapes. A STANDARD LABEL (SL) is one which has a format acceptable to the
S/360 Operating System, and contains the user-specified volume serial number
and owner name. GSFC users should use their programmer ID in place of owner
name. In addition to the standard label, a dummy header record, containing
the characters HDR1 and 76 EBCDIC zeros, is created, followed by a tape
mark.

IEHINITT has the following capabilities:

a. Any number of 7- and 9-track tapes may be initialized in one exe-
cution.

b. One or more tape drives may be used.

c. Serial numbers may be numeric or alphanumeric, but cannot contain
blanks, commas, apostrophes, equal signs, or special characters.

d. Each control statement must have a corresponding DD statement
with the same name.

e. If serial numbers are to be incremented by the utility, they must
contain exactly six numeric characters.

f. After being labeled, the tapes may be rewound and unloaded, or
rewound to load point.

An example of IEHINITT used to label two 9-track tapes follows below.

//LABELIT EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//MYTAPES DD DCB=(DEN=3) ,UNIT=(2400,1,DEFER)
//* Any ddname can be used. A 1600 BPI,
//* 9-track unit is assigned.
//* Deferred mounting must be requested.
//* As many similar tapes as desired may be
//* labeled, with one DD card.
//SYSIN DD *
MYTAPES INITT OWNER=' ZCSAA' ,SER=1252H
MYTAPES INITT OWNER=' ZCSAA' , SE R=1782G

The name on the INITT card (in this example, MYTAPES) must begin in column 1
and agree with the ddname of the DD card to which it refers.

9.2-10



UTILITIES

It is impossible to guarantee that a tape may not be accidentally written
over. It may erroneously be mounted by the operator or erroneously re-
quested by someone else. However, the use of labeled tapes will insure
that the correct tape is mounted when the labeled tape user requests it.
This could avoid a situation in which the user's program processes data
from an improperly mounted tape, or possibly from his own tape, which has
been overwritten by someone else.

When labeled tapes are used to receive data, additional identifying infor-
mation is written onto the label. The HDR1 record is filled with operating
system and device-dependent data, and an HDR2 record, containing data set
characteristics, overwrites the tape mark. A tapemark is written after the
HDR2 record.

Because DCB information is written on labeled tapes when data are received,
the DCB parameter is not required in the JCL when the tape is subsequently
used as input.

Users should not attempt to use IEHINITT to label a tape which currently
contains data because the first file will be lost.

Additional information may be found in the following manuals: IBM System/360
Operating System: Tape Labels (GC28-6680), and IBM System/360 Operating
System: Utilities (GC28-6586).

9.2-11



UTILITIES

9.2.4 IEHDASDR

The IEHDASDR utility is the primary maintenance program for direct-access

volumes used under the IBM S/360 Operating System.

This utility can:

a. Dump and restore the contents or portions of a direct-access volume
to one or more volumes of the same device type, magnetic tape, or
to the system output device.

b. Label and analyze a direct-access volume for defective tracks,
and assign alternate tracks for those found defective.

c. Assign alternate tracks for specified defective or questionable

tracks without analyzing the tracks.

d. Change the label on a direct-access volume (on-line and off-line

capability).

e. Perform track formatting functions without analyzing the tracks.

f. "QUICK DASDI" - bypasses all surface analysis and track formatting,
writing only a VTOC, record zero, home address and volume label.

g. Dump a bad track to a printer.

Caution: Misuse of IEHDASDR can destroy an entire volume of data. This

program should be used only under the direction of a system programmer.

For further information, refer to the IBM System/360 Operating System:
Utilities Manual (GC28-6586).

9.2.5 IEFBR14

IEFBRI4 is a program which is used for space allocation and dispostion
handling of data sets and to check JCL for syntax errors.

All that is required is to use the EXEC statement:

//STEP 1 EXEC PGM=IEFBRI4

followed by the JCL to be processed, such as:

//OUTPUT DD DSN=name,VOL=SER=xxxxxx,UNIT=2314,
// DCB=(RECFM=FB,LRECL=80,
// BLKSIZE=3200),DISP=(NEW,PASS),
// SPACE=(CYL,(10,5))

Any data sets allocated in this manner will have a disposition of DISP=OLD
when used in later job steps.

9.2-12



UTILITIES

9.2.6 IEHPROGM

The IEHPROGM provides several directory, VTOC, and catalog maintenance

functions. It can be used to scratch, rename, catalog, or uncatalog a

data set; and to scratch or rename a member of a PDS. These functions

will be discussed in succeeding paragraphs. It is important to note that

a DD statement must be included for each volume that will be referred to

in the IEHPROGM job step.

The following IEHPROGM capabilities will not be discussed in this docu-

ment. Users requiring these operations should contact the PAC in Build-

ing 3.

a. Building or deleting an index or an index alias.

b. Building and maintaining a generation data group index.

c. Connecting or releasing two volumes.

9.2.6.1 IEHPROGM versus IEFBR14

Both IEHPROGM and IEFBR14 can allocate, delete, catalog, and uncatalog a

data set. Except for allocation, the IEHPROGM functions are explicitly

stated in the utility control cards, while IEFBR14 relies on the DD state-

ment parameters and the OS data management routines to perform the required

allocation or disposition of data sets.

Although both utilities can be used to perform catalog functions, IEHPROGM

has the following capabilities not available to DISP=(,CATLG), which would

be used by IEFBRI4.

a. The CATLG operation automatically creates lower level indexes
when required.

The UNCATLG operation may be used to delete entries from the

lower level indexes of the catalog. (Note that when speaking

of index levels, the highest level of index in A.B.C.D would

be A, the lowest D.)

b. The CATLG operation can create entries in catalogs other than the

system catalog. The UNCATLG operation can delete entries from

catalogs other than the system catalog.

There are also some differences in execution which are discussed in the fol-

lowing recommendations:

a. Users should use IEFBR14 to allocate data sets. Both utilities

depend on the DD statement for allocation, but IEFBR14 is more

efficient and less likely to have conflicts with utility control

cards.

9.2-13



UTILITIES

b. For the scratch, catalog, and uncatalog functions, IEFBR14 is
easier to use if the data set is known to still exist and its
status does not conflict with the requested disposition. If a
conflict does occur, it will cause an abnormal termination.
IEHPROGM should be used if the volume is known and the user does
not know the actual status of the data set. This utility will
print a message describing the error condition, and continue to
the next step. However, the bypassed step will get a condition
code of 8.

9.2.6.2 SCRATCH Operation

The SCRATCH operation is used to scratch a data set or member. To scratch
a data set with an unexpired expiration date, the PURGE operand should be
used. The user must supply the DSNAME and VOL operands to scratch a data
set; to scratch a member, the MEMBER operand must also be used. The MEMBER
operand should be punched before the DSNAME operand. In this manner, if
a mistake is made in continuing a card, the user will not inadvertently
scratch the library while attempting to scratch a member.

SCRATCH does not automatically uncatalog a scratched data set.

The VTOC and SYS operands should not be used, except by those familiar with
their operation. Improper use of these operands could wipe out a disk.

9.2.6.3 RENAME Operation

The RENAME operation is used to change the name or alias of a data set or
member residing on a direct-access device. The user must supply the old data
set name (DSNAME), the volume on which it resides (VOL), and the new name
to be assigned (NEWNAME). If a member is being renamed, the old member name
(MEMBER) must also be supplied.

RENAME does not automatically update the catalog.

9.2.6.4 CATLG Operation

The CATLG operation is used to catalog a data set. It can be used with a
RENAME operation to catalog a data set under its new name. The user must
supply the data set name (DSNAME) and the volume on which the data set
resides (VOL).

The CATLG operation automatically creates lower-indexes, if required.

9.2-14



UTILITIES

9.2.6.5 UNCATLG Operation

The UNCATLG operation deletes (uncatalogs) an entry from the lowest level

index of the catalog. UNCATLG can be used to uncatalog scratched data sets

and the old name of a RENAMED data set. The user must supply the fully

qualified name (DSNAME) of the data set to be uncataloged.

9.2.6.6 SCRATCH/UNCATLG Example

//DELETE EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//SCRATCH DD UNIT=2314,VOL=SER=xxxxxx,DISP=OLD
//SYSIN DD *

SCRATCH DSNAME=DODS.FUNC OPS,VOL=2314=xxxxxx,PURGE

UNCATLG DSNAME=DODS. FUNC .OPS

This example scratches the data set DODS.FUNC.OPS from the volume on which

it resides. It does this by removing the Data Set Control Block (DSCB)

for the data set from the Volume Table of Contents (VTOC) on the volume on

which the data set resided. The UNCATLG operation removes OPS, the lowest

level index in the structure DODS.FUNC.OPS from the catalog. Note that

PURGE must be used when scratching a data set with an unexpired expiration
date.

9.2.6.7 RENAME/CATLG Example

//RENAME EXEC PGM=IEHPROGM
//SYSPRINT DD SYSOUT=A
//DATSET DD UNIT=2314 ,VOL=SER=xxxxxx,DISP=OLD
//SYSIN DD *

RENAME DSNAME=DODS. FUNC.OPS, VOL=2314=xxxxxx, X
NEWNAME=DODS. FUNC. COM

UNCATLG DSNAME=DODS. FUNC. OPS
CATLG DSNAME=DODS .FUNC.COM,VOL=2314=xxxxxx

After the data set DODS.FUNC.OPS has been renamed, the old name must be

removed from the catalog and the data set cataloged under its new name.

9.2-15



UTILITIES

9.3 DATA SET UTILITIES

9.3.1 IEBCOPY

IEBCOPY may be used only with partitioned data sets. IEBCOPY is used at
the data set or member level to;

a. Copy an entire PDS. This will compress the data set by excluding
the space formerly occupied by members which had been deleted.

b. Expand a data set by merging new members.

c. Compress a data set by copying selected members into a new
data set.

d. Compress a data set by copying inplace, freeing the space occu-
pied by a scratched member, The members are copied consecutive-
ly, and all free space is placed at the end.

e. Recreate a data set by copying and specifiying a larger space
allocation than that allocated for the original data set. This
is useful when the data set has exhausted its primary, secondary,
or directory allocations.

If selected members are to be merged or copied, the COPY and MEMBER state-
ments are required.

The COPY statement specifies whether the member names listed in the MEMBER
statement will be included or excluded, and the maximum number of names
that will be used.

The MEMBER statement lists the member names to be included or excluded.

9.3.1.1 Copying a PDS

To copy a PDS in its entirety, the following example below should be followed.

//COPY EXEC PGM=IEBCOPY,REGION=200K
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
//INOUT4 DD DSN=oldpds,UNIT=2314,DISP=(OLD,DELETE,KEEP),
// VOL=SER=xxxxxx
//INOUT5 DD DSN=newpds,UNIT=2314,DISP=(NEW,KEEP),
// VOL=SER=yyyyyy,
// DCB= (RECFM=FB ,LRECL=80 ,BLKSIZE=3200),
// SPACE=(TRK, (20,5,4))
//SYSUT3 DD UNIT=2314,SPACE=(CYL,(,1))
//SYSUT4 DD UNIT=2314,SPACE=(CYL,(1,1))
//SYSIN DD*
COPYIT COPY OUTDD=INOUT5,INDD=INOUT4

9.3-1



UTILITIES

Notes:

a. The old data set (oldpds) has been copied and given a new name

(newpds) .

b. If the volumes for INOUT4 and INOUT5 are the same, the dsnames

must be different; if the volumes are different, the dsnames may

be the same or different,

c. The SYSUT3 and SYSUT4 DD cards define data sets to be used if

more space is required for the input PDS's directory entries and

the output PDS's directory blocks respectively.

d. The input data set is scratched at the end of the job.

DISP=(OLD,DELETE,KEEP) should be used so that if the step

terminates abnormally, the old (input data set) will not be

destroyed.

IEBCOPY expands an existing data set by merging selected members from another

data set.

//COPY EXEC PGM=IEBCOPY,REGION=200K
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
//INOUT1 DD DSN=OLDPDS,DISP=(OLD,KEEP),UNIT=2314,
// VOL=SER=xxxxxx
//INOUT2 DD DSN=EXPANDIT,DISP=(OLD,KEEP) ,UNIT=2314,
// VOL=SER=-xxxxxx
//SYSIN DD *
COPYIT COPY OUTDD=INOUT2,INDD=INOUT1

SELECT MEMBER=G,S,F,C

Notes:

a. Only members G,S,F,C, of the input data set (OLDPDS) will be

copied onto the output data set (EXPANDIT).

b. Although the old and new data sets should have the same DCB
characteristics it is not mandatory under Release 21 for fixed
length or variable length records, which can be reblocked or
deblocked within the program. However, undefined records
(RECFM=U), keyed records or track overflow records cannot be
reblocked or deblocked and care should be exercised in their
use.

c. The two data sets are on the same volume but could be placed on
different volumes.

9.3-2



ILITIES

3.1.2 Compress Inplace

mpress inplace frees the space occupied by scratched data sets.

COMPRESS EXEC PGM=IEBCOPY, REGION=200K
SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
INOUT2 DD DSN=OURPDS,DISP=OLD,UNIT=2314,VOL=SER=xxxxxx
SYSUT3 DD UNIT=2314,SPACE (CYL, (1 ))
SYSUT4 DD UNIT=2314,SPACE=(CYL,(1,1))
SYSIN DD *
PYIT COPY OUTDD=INOUT2,INDD=INOUT2

tes:

a. The INOUT2 DD card defines the PDS to be compressed.

b. The SYSUT3 and SYSUT4 DD cards define data sets to be used if
more space is required for the input PDS's directory entries
and the output PDS's directory blocks respectively.

c. The data set will be compressed in place as the OUTDD and INDD
operands both refer to the same DD card, INOUT2.

d. Compress inplace cannot be used for data sets using the track
overflow feature.

e. Compress inplace should not be used on system data sets.

utions The user should create a backup copy before performing a compress
place.

a job aborts while performing a compress inplace, the entire data set will
- * Ldestroyed. Aborted runs car 'e LCaused by errors, mtatch mtluS L

e machine going down, etc. To be safe, a backup copy should be created.

3.2 IEBGENER

BGENER is the primary utility used to modify the data set organization and
rmat of sequential and partitioned data sets. Its major uses ares

a. Copying sequential input from card, tape, or disk to either
printer, punch, disk, or tape, with or without editing.

b. Creating or expanding a PDS from either a sequential data set
or a partitioned member used as input.

c. Creating sequential output from a member of a PDS used as input.

9.3-3



UTILITIES

d. Converting data format to packed decimal, unpacked decimal, BCD,
or EBCDIC.

e. Changing the blocksize or logical record length of a data set.

f. Rearranging, omitting, or changing specified data fields.

9.3.2.1 Copy Sequential Data Sets

IEBGENER is frequently used to print or punch sequential data sets consist-
ing of either data, source programs, JCL, or a combination of both. The
following example should be used to punch the contents of a sequential data
set:

//DUPE EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSN=name,VOL=SER=xxxxxx,UNIT=2314,DISP=OLD
//SYSUT2 DD SYSOUT=B,SPACE-(CYL,(1,1)) ,DCB=(LRECL=80,
// BLKSIZE=3200, RECFM=FB)
//SYSIN DD DUMMY

Notes:

a. A comment should be placed on the job submission slip, informing
the operator that punch output is expected.

b. Through proper specifications on the SYSUT2 card, this example
could be used to copy a sequential data set to printer, tape, or
DASD devices.

c. By changing the SYSUT1 card, the sequential input could also re-
side on magnetic tape.

9.3.2.2 PDS Member Copying

To copy a member of a PDS as a sequential data set to a standard labeled tape,
the example below should be followed:

//UNLOAD EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=2314,VOL=SER=xxxxxxx,DISP=(OLD,KEEP),
// DCB= (RECFM=FB ,LRECL=80 ,BLKSIZE=3200),
// DSN=SRCLIB (MMBR)
//SYSUT2 DD UNIT=9TRACK,VOL=SER=xxxxxxx,DISP=(NEW,KEEP),
// DCB=*.SYSUT1,DSN=MMBR
//SYSIN DD DUMMY

9.3-4



UTILITIES

In the preceding example, a member of a source library was copied to standard

labeled 9-track tape.

The DCB=*.SYSUT1 parameter tells the system that SYSUT1 and SYSUT2 will

have the same DCB characteristics. The user may refer to the manual, IBM

System/360 Operating System: Utilities (GC28-6586), for further information

on IEBGENER.

9.3-5



UTILITIES

9.3.3 IEBPTPCH

The IEBPTPCH program prints or punches the contents of;

a. A partitioned or sequential data set in its entirety.

b. A member or members of a PDS.

c. Selected records from a PDS or sequential data set.

d. An edited version of a PDS or sequential data set.

e. A directory of a PDS.

This is particularly useful in printing members of a PROCLIB, private
library, source libraries, or other collections of data.

9.3.3.1 IEBPTPCH versus IEHLIST

a. IEBPTPCH should be used to list the records within the data set

or member.

b. IEHLIST should be used to list member names of a PDS.

c. For printing or punching a PDS, LISTPDS is strongly recommended
(refer to paragraph 9.4.7).

9.3.3.2 Operations/Operands

The required operation is PRINT or PUNCH. The other operations are depen-

dent upon the data set organization or optional requirements of the user.

All PRINT/PUNCH operands apply equally to both operations, except two

operands which control the PRINT format, and two which control punch card

sequence numbering. The other major difference is the default record size,

which is 120 characters for PRINT and 80 characters for PUNCH. The oper-

ands for MEMBER, TITLE, RECORD, LABELS, and EXITS operations apply equally

to PRINT or PUNCH.

The examples in the succeeding paragraphs require only minor changes, if

any, to apply equally to PRINT or PUNCH operations.

9.3.3.3 Print a PDS

The records of each member of the PDS will be printed as separate groups.

9.3-6



UTILITIES

//PRINT DD PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSN=dsname,DISP=SHR,UNIT=2314,VOL=SER=xxxxxx
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT TYPORG=PO,MAXFLDS= 3
TITLE ITEM=('Model 95 DATA SET dsname',50)
RECORD FIELD=(80,1,,21)

The SYSUT1 DD statement defines the input data set. The SYSUT2 DD state-
ment defines the output (printed) data set, and cannot be blocked.

In this example, the data set records are listed in groups of 80 characters,
as specified by the RECORD operation. The MAXFLDS operand specifies that up
to three FIELD statements can occur in the control data set. The FIELD
statement shown will center the output on the page. The TITLE operation spe-
cifies a title record starting in print position 50. To print all records
of a PDS, the MEMBER statement should not be used.

Note: TYPORG=PS, specifying an organized sequential input data set, is the
system default when TYPORG is omitted.

9.3.3.4 Print PDS Records

To print the records of selected members of a PDS, the utility control cards
listed below should be used with the JCL from example 9.3.3.3.

PRINT TYPORG=PO, MAXFLDS=2, MAXNAME=2
MEMBER NAME=membername 1

RECORD FIELD= (80)
MEMBER NAME=membername 2

RECORD FIELD= (80)

MAXNAME refers to the maximum number of MEMBER statements that follow the
PRINT statement.

If the RECORD statement is removed, the records will print in standard PRINT
format, i.e., groups of eight characters, separated by two spaces.

9.3.3.5 Print Sequential Data Set Records

To print records from a sequential data set, the following control set should
be used:

With editing defined by the RECORD statement:

PRINT MAXFLDS-1
RECORD FIELD (80)

9.3-7



UTILITIES

Without editing (standard PRINT format):

PRINT

9.3.3.6 Record Punching

Records can be punched, assigning sequence numbers with a standard increment.

This is useful in punching a deck from a source library and changing the se-
quence numbers of the statements.

//PUNCH EXEC PGM=IEBPTPCH

//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=srclib,UNIT=2314,DISP=OLD,VOL=SER=xxxxxx,

// DCB=(RECFM=FB,LRECL= 80,BLKSIZE=3200)
//SYSUT2 DD SYSOUT=B
//SYSIN DD *

PUNCH TYPORG=PO,MAXFLDS=1,CDSEQ=00001000, X
CDINCR=100,MAXNAME=l

MEMBER NAME=srcdeck
RECORD FIELD=(72)

This example punches the records of member SRCDECK of data set SRCLIB. Posi-

tions 1-72 in the output card are taken from the records in the data set;

positions 73-80 are generated from the CDSEQ and CDINCR operands which start

with the number 1000 and increment by 100 for each new card.

If a sequential data set is to be processed in the same manner, the following
control cards should be used:

PUNCH MAXFLDS=1,CDSEQ=00001000,CDINCR=100
RECORD FIELD=(72)

9.3.3.7 STRTAFT, STOPAFT Options

A new option, STRTAFT, has been added to the PRINT and PUNCH statements of the

IEBPTPCH program under Release 21. By specifying the STRTAFT option for a

sequential data set, one may specify the number of logical records to be skip-
ped before printing or punching the data set. For partitioned data sets (PDS),

STRTAFT specifies the number of logical records to be skipped in each member

of the PDS.

Under this and previous versions of IEBPTPCH one could specify the number of

logical records to be printed or punched for a sequential data set or for each

member of a PDS through the use of the STOPAFT option.

9.3-8



UTILITIES

9.3.4 IEBUPDTE

IEBUPDTE is used primarily to update source program libraries, procedure li-
braries, and other partitioned data sets with 80-byte logical records. This

utility can be used to add, copy, and replace members of a PDS. It can
create a PDS from sequential input, and can convert a PDS to sequential
organization. Records within data sets or members can be added, deleted,
replaced, or renumbered.

When a member is updated, the output may be (1) a new data set incorporating
the specified changes, and leaving the source member unchanged; (2) an up-
dated copy of the member written in the space originally allocated to the
data set; or (3) a new data set written with the space actually occupied by
the source member. In case (3), initiated by the UPDATE=INPLACE operand,
IEBUPDTE permanently changes the source member and allows update only by
replacement of existing records. However, if a new data set is created, it
may reside on either the same or a different volume. If it resides on a
different volume, it may have the same DSNAME; if it is on the same volume,
it must have a different DSNAME.

Six types of utility control statements are provided to control the many capa-
bilities of this program.

a. Four FUNCTION statements (ADD,REPL,CHANGE,REPRO) specify the general
operation to be performed. Additional information, such as member
name, organization, and sequence field columns, are provided by the
operands.

b. Two DETAIL statements, NUMBER and DELETE, are used in conjunction
with the FUNCTION statements for deleting and resequencing specified
logical records. Beginning sequence numbers, increments, and in-
serted records can be specified by the operands.

c. A DATA statement is the actual data to be used as a replacement
record, or the new data to be added to the existing data set.
The input DATA statements must have a sequence number in the
same positions as the existing data set, including leading zeroes,
if punched, usually in columns 73-80. If the numbers are in
columns other than 73-80, the length and relative position must
be specified in a SEQFLD keyword within a preceding FUNCTION
statement. Data statements with a corresponding sequence number
in the existing data set will replace the existing data record;
those with no corresponding number will be inserted following
the last (if any) sequenced input card and/or according to the
specifications on the NUMBER statement.

d. LABEL statements indicate specified records to be used as user
labels.

9.3-9



UTILITIES

e. ALIAS statements allow the user to retain and/or assign alias
names to output data sets.

f. The ENDUP statement indicates the end of data for the SYSIN data
set.

All utility statements except the DATA statements are identified by ./
in columns 1-2, and can have a name (optional), in columns 3-10. At
least one blank must precede the operation field.

9.3.4.1 Updating a Member of a PDS

In the following example, a member of a PDS is updated by change cards and
deletions. The copy is placed on a different volume with a different DSNAME.

For the sake of illustration, it is assumed that the old PDS is a source
program library and that the project to be performed is to modify a member
and compile, link, and go with the modified version. If the new version
checks out properly, the old member will be replaced with the new version
(see paragraph 9.3.4.2).

The data statements following the CHANGE control card will replace those
statements which have corresponding sequence numbers in the input member;
those with no corresponding sequence number will be inserted. The DELETE
statement will delete all records with sequence numbers from 1540
through 1670.

//JOB card
//STEP1 EXEC PGM=IEBUPDTE,PARM=MOD
//SYSUT1 DD DSN=oldpds,DISP=(OLD,KEEP) ,UNIT=2314,
// VOL=SER=xxxxxx
//SYSUT2 DD DSN=newpds ,DISP= (OLD,PASS) ,UNIT=2314,
// VOL=SER=yyyyyy
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
./ CHANGE NAME=oldmember,LIST=ALL

(Data statements with sequence number in columns 73-80)

./ DELETE SEQ1=1540,SEQ2=1670
//STEP2 EXEC FORTRANG
//SOURCE.SYSIN DD DSN=newpds(oldmember),DISP=(OLD,KEEP),
// UNIT=2314,VOL=SER=yyyyyy
//STEP3 EXEC LINKGO
//GO.DATA5 DD *

(Data for program being executed)

9.3-10



UTILITIES

Notes:

a. The data set newpds on the SYSUT2 card existed previous to

the execution of this job. If the SYSUT2 card had contained
a new data set, space would have had to be allocated on the
direct-access device receiving the data set, a DISP=(NEW,PASS)
would have had to be specified, and the DCB parameters in-
cluded. The DCB parameters should be the same as those speci-
fied on the SYSUT1 DD card for the input data set.

b. Only one member may be updated per step.

c. The old master (SYSUTI) is not changed.

9.3.4.2 Replacing a Member in a PDS

Assuming that the modified version from paragraph 9.3.4.1 has executed
satisfactorily, the old member is now replaced with the new version of
the same name.

// EXEC PGM=IEBUPDTE, PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=newpds,DISP=(OLD,DELETE,KEEP),
// UNIT=2314,VOL=SER=yyyyyy
//SYSUT2 DD DSN=oldpds,DISP=(OLD,KEEP),
// UNIT=2314, VOL=SER=xxxxxx
//SYSIN DD *
./ REPL NAME=oldmember
./ ALIAS NAME=oldalias
./ ALIAS NAME=newalias

The member name must be the same in both data sets to use the REPL func-
tion. Alias names must be updated by the ALIAS statement. The first
ALIAS ..tatemi updates an old alias to point to the new member; the
second ALIAS statement assigns a new or second alias to the new member.

9.3.4.3 Adding a New Member to a PDS

This example may be used to add a member to a source program library or
to add a procedure to a procedure library. The new member is input as a
sequential data set in the input stream.

// EXEC PGM=IEBUPDTE,PARM-MOD
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=oldpds,DISP-(OLD,KEEP),UNIT=2314,
// VOL-SER=xxxxxx
//SYSUT2 DD DSN=oldpds,DISP=(OLD,KEEP),UNIT-2314,
// VOL-SER=xxxxxx
//SYSIN DD *
./ ADD NAME-newmember,LIST=ALL

(DATA statements for newmember; sequence numbers appear in columns 73-80)

9.3-11



UTILITIES

The member is added after the last existing member, and the name is placed
in its collating sequence in the directory.

9.3.4.4 Copy a Member of a Partitioned Data Set and Convert to Sequential
Organization

A portable backup copy of a member can be made by copying to tape and con-
verting to sequential organization. The source member remains unchanged.
The example shown here is a copy and renumber only; DATA statements and the
DELETE statement could be used to copy and modify the output.

// EXEC PGM=IEBUPDTE
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSN--oldpds,UNIT2 314,VOL=SER=xxxxxx,
// DISP=- (OLD,KEEP)
//SYSUT2 DD DSN=newseq,UNIT=2400-4,VOL=SER=yyyyyy,
// DISP= (NEW, KEEP),DCB= (RECFM=FB, LRECL=80,
// BLKSIZE=3520),LABEL=(1,BLP)
//SYSIN DD *

/ CHANGE NEW=PS,NAME=amembr,LIST=ALL
./ NUMBER SEQ1=ALL,NEW1=1000, INCR=100

This example:

a. Copies a member (amembr) of the partitioned data set (oldpds) to
a 9-track unlabeled tape.

b. Converts the member to sequential organization (NEW=PS).

c. Renumbers the entire output data set with a starting number of 1000
and increments of 100.

d. Lists the output data set.

Note: The default for PARM on the EXEC card is PARM=MOD.

By changing the set of control cards, this example could be used to add, re-
place, or delete records or blocks of records. The following control cards
illustrate these functions:

/ CHANGE NEW=PS,NAME=amembr,LIST=ALL

(DATA statements with sequence number in columns 73-80)

./ DELETE SEQl=1560,SEQ2=1600

(DATA statements with sequence number in columns 73-80)

9.3-12



UTILITIES

9.3.4.5 Update Inplace

UPDATE=INPLACE allows the user to update a member within the space it actually

occupies in the data set on the direct-access device.

DATA statements can be replaced only; no adds or deletes are allowed. Renum-

bering and header label modification are the only other functions permitted.

// EXEC PGM=IEBUPDTE,PARM=MOD

//SYSPRINT DD SYSOUT=A

//SYSUT1 DD DSN=oldpds,DISP=OLD,
// UNIT=2314, VOL=SER=xxxxxx
//SYSIN DD *
./ CHANGE NAME=member ,UPDATE=INPLACE

DO 140 J=IBEGIN,LENGTH 00016100
140 CONTINUE 00017500
160 IF(L.EQ.0) GO TO 130 00017560

The FORTRAN statements numbered 16100, 17500, and 17560 are permanently

replaced by the DATA statements in the input stream. The input DATA state-
ments must have corresponding statements in the member to be updated. With

the UPDATE=INPLACE operand, the SYSUT2 DD statement need not be coded.
Only one member may be updated per job step.

9.3-13



UTILITIES

9.3.5 IEBDG

Because of the great detail required to properly describe this utility, the
following description will emphasize functional usage. The user is referred
to the IBM System/360 Operating System: Utilities Manual, (GC28-6586) for
details and examples.

The IEBDG utility provides test data for use in debugging new programs and
testing changes to old programs. It is important to use data which can be
easily analyzed for correct results. For this reason, IEBDG provides a
wide variety of IBM-supplied or user-supplied data formats.

Test data can be generated completely from utility control cards or from
a combination of input data and control cards. Several input files may
be defined, but only one output file is allowed per set of utility control
statements. Input and output may consist of sequential, indexed sequential,
or partitioned data sets.

In some production runs where several data sets are used concurrently, it
may be more economical to combine the data fields being used into one data
set. This may be accomplished with IEBDG by defining the existing data
fields and creating records composed of only these fields.

9.3.5.1 Functional Concepts

Although the detailed operation may become quite complicated, the functional
concept is easily understood. Control cards are used to provide the follow-
ing functions:

a. DSD marks the start of a set of utility control cards, and names
the input and output data sets.

b. FD names and defines the contents of all data fields being created
by the program, and names and defines the location of all data
fields being copied from input records.

c. CREATE defines the record format of each record type to be created,
using the data field named in the FD statements.

d. REPEAT states the number of times that a group of records will be
repetitively created.

e. END completes each set of control statements.

9.3-14



UTILITIES

One set of control statements is required for each output file to be created.

Execution of the program creates the specified number of records.

The most important concept of IEBDG is the capability to modify the data

field for each record being created. These modifications are specified in

the ACTION and INDEX/CYCLE/RANGE operands of the FD statement.

The user may select one of seven different actions by which the contents of

each field defined by an FD statement may be modified each time the record

is created. This allows the records in a group to vary instead of remain-

ing fixed.

The INDEX/CYCLE/RANGE operands provide the ability to increment numeric

fields by a specified value (INDEX) after a specified number of records have

been created (CYCLE). Thus, each record or group of records may be assigned
a unique identification field. The RANGE operand limits the value of the

field being incremented.

9.3.5.2 Detailed Functions

Detailed functions are controlled by the FD, CREATE, and REPEAT statements.

a. The user defines the data fields to be used giving the data

field name, format, length, starting location in the output
record, and actions to be performed on the field. If the
field is being extracted from an input data set, the DDNAME
and input field location are also specified. One Field Defini-

tion (FD) statement is required for each field to be used.

b. One CREATE statement is used to define the contents of each
record to be created. The CREATE statement initializes the
output record with a fill character; places the input record,
if any, left-justified in the output record; and places a
CREATE statement picture in the output record in that order.
The user may specify the number of records to be created by
the CREATE statement. One CREATE statement is required for
each record format.

c. The REPEAT statement allows the user to repetitively execute
a group of CREATE statements.

The REPEAT/CREATE statements are analogous to the FORTRAN DO loop, where
CREATE represents the inner DO and is executed in its entirety for each
repetition specified by the REPEAT statement.

9.3-15



UTILITIES

9.4 OTHER UTILITIES

9.4.1 MAPDISK

MAPDISK is a utility program supplied by GSFC to enable users to obtain
precise information about the contents of any direct-access storage
device (DASD). A new faster version, written by Eugene A. Czarcinski, Code 531,
is now in use on all of the M&DO 360 computers.

This program will list the following information for every data set on
the DASD:

* Data Set Name (DSNAME)

* Data Set Organization (DSORG)

* Record Format (RECFM)

* Logical Record Length (LRECL)

* Block Size (BLKSIZE)

* Number of extents used

* Beginning and ending track addresses

* Creation Dates

* Purge Dates

* File Serial Numbers

* Volume Sequence Numbers

* Total number of tracks allocated

* Total number of tracks used

* Number of Directory Blocks Allocated

* Number of Directory Blocks Used

In addition to this information about each file on the DASD, the MAPDISK
program will list the amount of free space remaining on the volume and in
the VTOC.

9.4-1



UTILITIES

9.4.1.1 MAPDISK JCL (All M&DO 360 Computers)

The following JCL is required to execute the program MAPDISK.

//MAP EXEC PGM=MAPDISK
//SYSPRINT DD SYSOUT=A

Additional JCL cards must be added to identify the devices to be mapped.
Normally, this additional JCL consists of DD cards that explicitly identify
the direct access storage device (DASD) volume, and are usually of the form:

//ddname DD DISP=SHR,UNIT=xxxx,VOLSER =ssssss

where:

* ddname = any name

• xxxx = a valid unit type for a DASD
* ssssss = the volume serial number

Devices allocated by DD cards whose.ddnames are SYSPRINT, SYSUT1, SYSUDMP,
SYSABEND, STEPLIB, or JOBLIB are not mapped.

9.4.1.2 PARM Field Options

The following program options may be specified in the PARM field on the EXEC
card (default PARM values are underlined).

E_/NOEXT - Specify whether or not the locations of the data set
extents are to be printed in the data set listing
(as before, with the older MAPDISK program). Note
that even with NOEXT, the number of extents is given
in the data set listing, and the extents are given in
the track listings that follow (also as before).

PDS/NOPDS - Specify whether or not the information about partitioned
data set (PDS) directory blocks allocated and used is
to be obtained. A substantial savings in job time
can be realized by using the NOPDS option.

9.4.1.3 MAPDISK Cataloged Procedure (360/95) Only)

A cataloged procedure MAPDISK exists on the Model 95 which invokes the program
MAPDISK, and maps, by default, the user pack GlUSR1. The procedure appears as
follows:

//DEFAULT PROC Ul=2314,V1=GlUSR1
//MAPDISK EXEC PGM=MAPDISK
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DISP=SHR, VOL=REF=SYS 1. SVCLIB
//SYSUDUMP DD SYSOUT=A
//DASDDD DD UNIT= &U1,VOL=SER=&V1,DISP=SHR

9.4-2



UTILITIES

9.4.2 PATRICK

PATRICK is a utility program designed for copying, dumping, and error check-
ing any sequential data set on disk, tape, or cards. It can handle up to
255 files starting with any file and ending with any file. PATRICK is

available on the 360/95 and 360/75, but not on the 360/65. It can be used
to perform such functions as:

* Card to card Tape to card Disk to card

* Card to tape Tape to tape Disk to tape

* Card to disk Tape to disk Disk to disk

It should be noted here that some functions, such as card to tape and tape

to card, should be done on the model 30 provided for that purpose.

9.4.2.1 PATRICK Execute Card

The following is a sample PATRICK EXEC card:

//COPY EXEC PGM=PATRICK,PARM= '9TN,002,004,003' ,REGION=85K

The first three PARM parameters indicate the routine to be performed, the first
file to be copied, and the last file to be copied. The value of the third

parameter must be greater than or equal to the value of the second parameter.
The fourth parameter, which is optional, designates the output tape file num-
ber onto which the input tape file(s) are to be copied. The above example
would be used to copy input tape files 2 through 4 onto an output tape as files
3 through 5.

Note: When duplicating tape files (and the fourth positional parameter is
absent) PATRICK uses the second positional parameter as the file position to
be written on the output tape. If the following is coded:

// EXEC PGM=PATRICK,PARM= ' 9TN,002,003 '

Patrick will duplicate the second and third files on the input tape, to the
second and third files on the output tape.

9.4.2.2 ROUTINE Parameter

The first parameter, called the ROUTINE parameter, consists of three charac-
ters, as follows:

a. The first character -- this describes the input data set:

* 7 - indicates a 7-track tape

• 9 - indicates a 9-track tape, disk, or card data set

9.4-3



UTILITIES

b. The second character -- this indicates the operation to be
performed:

* T - create duplicate of input data set

* N - no duplicate created

c. The third character -- this indicates the type of printed output
or dump:

• O - for octal; used for 7-track tapes with convert and
translate off.

* H - for hexadecimal; used for 9-track tapes with non-EBCDIC
characters such as binary tapes, 7-track tapes with convert
on, or used any time a hex printout is desired.

* B - for BCD or EBCDIC; used for 9-track tapes with EBCDIC
characters or 7-track BCD tapes with translate on. This
printout is formatted 80 characters per line.

* N - for no printout.

* L - for list; used to list each record, but not print out the
record itself. It will print only record number, blocksize,
and file number. This works best using RECFM=U in the DCB
on the DD card. (See following information on DD cards.)

There are two exceptions to the format of the ROUTINE parameter:

TST - used for tape testing

DMP - used to generate a formatted d of a neti c tape

Figure 9.4-1 illustrates the valid entries for the ROUTINE parameter.

9.4.2.3 REGION Parameter

The region required for execution of PATRICK is computed by the following
algorithm:

Program Size 10K
2 x (BLKSIZE of IN1 DD card) ? K
2 x (BLKSIZE of OUT1 DD card) ? K
OUT2 DD card 20K

TOTAL (MIN. of 60K)

9.4-4



UTILITIES

INPUT DATA SET

OUTPUT 7-TRK 7-TRK 7-TRK

IDENTICAL TYPE OF 9-TRK 9-TRK (CONVERT (TRANSLATE (NONE

SET PRINTOUT EBCDIC ANY ON) ON) ON)

YES EBCDIC 9TB --- --- 7TB ---

YES HEX 9TH 9TH 7TH 7TH ---

YES OCTAL --- --- --- --- 7TO

YES LIST 9TL 9TL 7TL 7TL 7TL

YES NONE 9TN 9TN 7TN 7TN 7TN

NO EBCDIC 9NB --- --- 7NB --

NO HEX 9NH 9NH 7NH 7NH ---

NO OCTAL --- --- --- --- 7NO

NO LIST 9NL 9NL 7NL 7NL 7NL

NO DMP DMP DMP DMP DMP ---

TEST ONLY TST TST TST TST TST

Figure 9.4-1. Entries for Routine Parameter for PATRICK

9.4-5



UTILITIES

9.4.2.4 PATRICK DD Cards

PATRICK uses three DD cards to describe the input data set (IN1), output
copy (OUT1), and printed output (OUT2):

* The IN1 DD card is the normal input data set and is always

required.

* The OUT1 DD card is required only if T (CREATE duplicate of
input data set) is used in the PARM field on the EXEC card
(e.g., 9TH).

* The OUT2 DD card is the SYSOUT card and is always required.
If this card is omitted, a user 413 ABEND occurs.

9.4.2.5 Example of Copying Tape to Disk

This example illustrates copying a 9-track tape to disk with an EBCDIC
printout of the data being copied. EROPT=ACC will accept an I/O error
and print the error analysis message.

//COPY EXEC PGM=PATRICK,PARM='9TH,001,001' ,REGION=100K
//IN1 DD UNIT=9TRACK,VOL=SER=xxxxxx, LABEL= (,SL),
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3520,
// DEN= 3,EROPT=ACC),DISP= (OLD,KEEP),DSN=--------
//OUT1 DD UNIT=2314,VOL=SER=yyyyyy,SPACE=(CYL,(5,5)),
// DCB= (RECFM=FB,LRECL=80,BLKSIZE=3520,
// EROPT=ACC) ,DISP= (NEW,KEEP)
//OUT2 DD SYSOUT=A,SPACE = (CYL,(5,1))

The DCB parameters must agree with the data actually present on the tape;
the values shown here are for illustrative purposes only.

9.4.2.6 Tape Testing Example

The TST parameter causes the program to check a tape for errors, print out
a message describing the error, and print the bad record in hex and EBCDIC
if data was transferred. The number of bytes transferred will be printed
as the record length. (This length is the length of the physical record
[block] in which the error was detected minus the number of unreadable
bytes.) The following information is printed:

* Jobname

0 Stepname

* Unit address or unit detecting error

* Device type

9.4-6



UTILITIES

* DD name of data set (IN1)

* Operation attempted (GET)

• Error description -- General Description; will vary by device

* Block number for tape or track address for direct access

* Access method (QSAM)

* Sense bytes in hexadecimal

The following is a sample program for tape testing:

//TEST EXEC PGM=PATRICK,PARM' TST,001,007 ', REGION=100K
//IN1 DD UNIT=9TRACK,VOL=SER=xxxxxx,LABEL=(,SL),
// DISP= (OLD,KEEP) ,DCB= (RECFM=FB,LRECL=80,BLKSIZE=3520,
// DEN=3, EROPT=ACC) , DSN--------
//OUT2 SYSOUT=A,SPACE= (CYL, (5,1))

9.4.2.7 DMP Parameter

The parameter DMP will produce a dump of a tape like the dump given at ABEND.
It will format the dump like an ABEND dump with a hex printout on the left
side of the paper and EBCDIC on the right side. Any unprintable character
will be made blank. This printout is effective only with 7-track BCD tapes
with 'translate' on or 9-track EBCDIC tapes. Binary tapes can be dumped
more efficiently using either a hex dump for 9-track or octal dump for
7-track.

To dump a few records from a tape, a small space should be allocated,
e.g., SPACE=(CYL,1). This will print about 1000 lines of output and
abend with a B37 completion code, but the output will be printed.

To estimate the amount of space required to print a data set, one cylinder
should be allowed for each 1000 lines. A line contains 80 bytes for an
EBCDIC printout, 48 bytes for hexadecimal, and 48 bytes for octal.

9.4.2.8 Other Uses

• Finding blocksize -- If the blocksize of a file on tape is
unknown, the third character of the ROUTINE parameter has a
list option (L) which will print only the record number,
block size, and file number. The following JCL specifications
should be made:

* EXEC card - use 7NL or 9NL for the ROUTINE parameter, as
appropriate

9.4-7



UTILITIES

* IN1 DD card - use RECFM=U,BLKSIZE-32000

* OUT1 DD card - use DUMMY

* OUT2 DD card - a small space should be allocated to dump
only a few lines

0 Multiple Printouts of Data Sets -- Multiple printouts of data
sets on disk can be achieved by using several executions of
PATRICK to print one copy per execution. When the data set is
first created, it should be given a temporary data set name,
and the DCB information, UNIT=DISK, and DISP=(NEW,PASS) should
be specified. To reprint the temporary data set in the next
job step with PATRICK, the following JCL changes should be made:

- EXEC card - PARM='9TN,001,001'

- IN1 DD card - UNIT=-DISK,DISP=OLD,DSNAME=temporary data
set name

- OUT1 DD card - DUMMY

- OUT2 DD card - SYSOUT=A,DCB=same as IN1; DISP=PASS must
be used to pass the data set to each step until all
PATRICK steps are executed

The data set will be deleted at the end of the job because it
was created as temporary.

* A tape-to-tape copy may be done by changing the OUT1 DD card of
the tape-to-disk example to reflect tape output. The following
changes can be used for more efficient tape-to-tape copying.
RECFM=U and a blocksize equal to or larger than the largest block
size on IN1 should be used. The user should do the same for OUT1.
The records will be copied in their proper size, and less CPU
time will be used for blocked records.

9.4-8



UTILITIES

9.4.3 IEBFGR

IEBFGR is a utility whose function is to delete or rename members of a
PDS. It can also be used to create an alias for an existing member of
a PDS. The program was written by Frank G. Ross.

9.4.3.1 Control Cards

The control cards are free format, and the information may appear in
columns 1-63, as shown in the following examples:

DELETE MEMBER=membername to be deleted

RENAME MEMBER=oldname, NEWMEM=new name

ALIAS MEMBER=membername, NEWMEM=alias

9.4.3.2 IEBFGR Example

//FRANK EXEC PGM=IEBFGR
//SYSPRINT DD SYSOUT=A
//DDI DD DSN=name,UNIT=2314,VOL=SER=xxxxxx,
// DISP= (OLD,KEEP)
//SYSIN DD *
DELETE MEMBER=membername
RENAME MEMBER=oldname ,NEWMEM=newname
ALIAS MEMBE IR=membername, NEWMEM=newali as

where the input DD statement must be named DD1.

Diagnostics are issued for the action taken.

9.4-9



UTILITIES

9.4.4 OSSLIP

The Operating System Source Library Inquiry Program (OSSLIP) is a program
designed to store, retrieve, and update sets of card image records in a
sequential data set. Each set of cards is called a "MEMBER" of the sequen-
tial data set. The first record of each set is called the HEADER RECORD
and contains the member name and other identifying information. Each member
is stored by name and may be retrieved, modified, or deleted by name.

The OSSLIP data may contain any type of source data such as source pro-
grams, data, or procedures. Object decks may also be stored, retrieved,
and deleted. The order of the members (as defined by the user) does not
have to be alphabetic.

9.4.4.1 Control Card Format

OSSLIP uses fixed-format control cards to specify the operations to be
performed and related operands. The control card format is:

* Operation field - Columns 1-6 specify one of eleven (11) opera-
tions available.

* Options field - Column 7 may contain a character which specifies
an available option.

* Member ID field - Columns 8-30 contain the name of the member to
be processed and other optional information. The name contains
one to eight alphanumeric characters, beginning with a letter
and omitting imbedded blanks. The name may be specified in
one of two ways. If it is the first string of non-blank
characters in the field, it may be left-justified or preceded
by one or more blanks; it must be followed by at least one
blank. Any other information must follow the name. The name
may appear anwhere in the field if it- ics preedler and followed
by a delimiting character, i.e., xnnnnnnnny. The delimiting
characters may be the same or different and are used by a SCAN
parameter in other operations to identify the member name.

The member ID field in the control cards must match the member
ID field in the label header records in the SLIPIN data set.

* Member name field - Columns 31-38 are used only with the MEMBER
operation.

0 Comments - Columns 31-80 may contain any comments (39-80 in the
MEMBER statement).

9.4-10



UTILITIES

9.4.4.2 JCL Conventions

OSSLIP uses the standard SYSPRINT and SYSPUNCH DD statements. The input

source file is defined by the SLIPIN DD statement; the output is defined

by the SLIPOUT DD statement. SYSIN defines the normal input, including

control cards and data. If an alternate input tape is used, it is defined

by any valid DD name which is then used on the INCLUD control card. Mem-

bers from a SLIP tape may be placed in a PDS called SLIPPDS, which must be

defined by a DD statement.

The source tape, SLIPIN, is retained, and a new tape, SLIPOUT, is written

by merging the SLIPIN data with the data from SYSIN or a tape containing

card images. These data must be in the same sequence as the members on
SLIPIN. The operations are discussed in detail in the following section.

The normal mode of operation for OSSLIP is to read decks as SYSIN data.

However, OS/360 will scan any JCL cards imbedded in a library program,

usually with undesirable results. It is preferable to "card-to-tape" new

input for each OSSLIP run, at least if OS/360 programs are included.

9.4.4.3 Operations

The OSSLIP utility control statements may be divided into three general

categories:

* Operations which directly modify members of the SLIPIN data set

(UPDATE, DELETE, RENAME).

* Operations which specify a tape action (INCLUD, COPYTP, REWIND).

* Operations which process the SLIPIN data set (LSTALL, MEMBER,

PUNCH1, LSTONE, LSTPCH).

9.4.4.4 UPDATE, DELETE, RENAME

UPDATE adds, replaces, or changes members in the SLIPOUT data set. An

UPDATE card precedes each set of update cards. Columns 8-30 are compared

to the header labels on SLIPIN. The old member, if any, and its header

label are deleted. The new header label is formed from columns 8-80 of

the UPDATE card, and the new member is read in from SYSIN (or from the

DDNAME defined in an INCLUD card). If the UPDATE card does not match an

existing header label, the new member is placed at the end of the SLIPOUT

data set. A './END' card denotes the end of the input card deck and must

precede another UPDATE card or other control card.

9.4-11



UTILITIES

An "S" in column 7 of an UPDATE card will cause sequence numbers to be
generated in columns 73-80 of the cards, as they are written on SLIPOUT.
The default increment value is 10, but may be altered to 1-99999 by the
execution parameter INCR=XXXXX.

A "P" in column 7 of the UPDATE card denotes a partial update in which
cards are to be added, deleted, or replaced within a member. A card with
the same sequence member as an existing record will replace itj cards with
no matching number will be added. A card with './DELETE' in columns 1-8
and a sequence number in columns 73-80 will cause that record to be de-
leted. A './END' card denotes the end of the input data set for a partial
update.

Each new deck to be added or changed on a library tape must be preceded by
an UPDATE card and followed by an './END' card. A succession of such decks
must be in ascending sequence by position on the tape.

DELETE deletes the member specified in columns 8-30 of this control card
from the SLIPOUT data set.

RENAME replaces columns 8-80 of the header label for the member specified
in columns 8-30 of the control card, with columns 8-80 of the card follow-
ing the RENAME card.

9.4.4.5 INCLUD, COPYTP, REWIND

INCLUD directs OSSLIP to use DDNAME xxxxxxxx as input instead of SYSIN.
If input is to be provided on an alternate input tape or direct-access de-
vice, the decks must first be written on the input device, in ascending
order with an './END' card following each deck. The UPDATE cards are
supplied on SYSIN following an INCLUD card. These UPDATE cards must match
the decks on tape or disk one-for-one, since there is no way for OSSLIP
to verify the correct correspondence between them.

Merging two SLIP data sets may be done by defining one as SLIPIN and the
other on an INCLUD card. This INCLUD control card followed by a COPYTP
control card will result in a SLIPOUT data set containing all the members
contained on the tape or data set specified by the INCLUD card, followed
by all those on SLIPIN.

COPYTP copies the SLIPIN data set onto SLIPOUT.

REWIND rewinds SLIPIN and resets all switches and counters. SLIPOUT and
SYSPUNCH are closed with data set disposition provided by the DD cards.

9.4-12



UTILITIES

9.4.4.6 LSTALL, MEMBER, PUNCH1, LSTONE, LSTPCH

LSTALL lists all header labels on SLIPIN and the number of cards on each
MEMBER. Certain characters in column 7 of the LSTALL card will cause
control cards to be punched for all MEMBERS on SLIPIN for later use.

Character in Control Card Punched for
Column 7 Every MEMBER on SLIPIN

A UPDATE
B LSTPCH
C MEMBER
X LSTONE
Y PUNCH1
Z DELETE

MEMBER writes the member specified in columns 8-30 of this control card
into the partitioned data set defined by SLIPPDS (a direct-access storage
device defined on a DD card). The name given to the MEMBER of the SLIPPDS
data set is defined in columns 31-38. An "S" in column 7 of the control
card will cause sequence numbers to be generated in columns 73-80 of the
card images as they are written on SLIPPDS.

PUNCH1 punches cards from the member on tape specified in columns 8-30.
An "S" in column 7 causes sequence numbers to be punched in columns 73-80
of the cards. An "M" in column 7 causes the selected member to be written
into SLIPPDS. The name assigned to the member in SLIPPDS is the value taken
from the member ID field of the header label by one of two methods:

* The member ID field is scanned for the first non-blank charac-
ter. The member name starts with the first non-blank character
and is up to eight characters in length. It is terminated by
a blank character.

* If the execution parameter SCAN=XY is used, the member name
must be in the form XnnnnnnnnY. The member ID field is scanned
for the first SCAN parameter (X). The member name is the one
to eight characters which occur between the first delimiter (X)
and the second delimiter (Y).

A "B" in column 7 causes both options specified by "S" and "M" to be
performed.

LSTONE lists the cards for the member specified in columns 8-30 of the
control card. See PUNCH1 for options. This operation may be used
to closely check the update of a particular member.

9.4-13



GTILITIES

LSTPCH lists and punches cards for the member specified in columns 8-30.

See PUNCH1 for options.

9.4.4.7 UPDATE, RENAME, DELETE Example

//SLIP EXEC PGM=OSSLIP

//SYSPRINT DD SYSOUT=A

//SLIPIN DD UNIT=9TRACK, VOL=SER=xxxxxx,LABEL=(1,BLP),

// DISP=(OLD,KEEP),DCB=(RECFM=FB,LRECL=80,

// BLKSIZE=3200),DSNAME=SLIPIN

//SLIPOUT DD UNIT=9TRACK,VOL = SER=xxxxxx, LABEL= (, BLP),

// DISP= (NEW ,KEEP) ,DSNAME=SLIPOUT,

// DCB=*.SLIPIN

//SYSIN DD
UPDATEM SRCEDECK

(New deck to replace existing deck)

./END
UPDATEPASTRO

(Change cards with sequence number in columns 73-80)

./END
RENAME STARFIRE

(Rename card with new name, comments, etc.)

DELETE SATELLITE

In the above example:

* A new member replaces an old member with the same name (SRCEDECK).

* A partial update is made to the ASTRO member.

* The header label for member STARFIRE is replaced by columns 8-80

of the card following the RENAME card.

* The member SATELLITE is deleted.

9.4.4.8 INCLUD Examples

//SLIP EXEC PGM=OSSLIP
//SYSPRINT DD SYSOUT=A

//SLIPIN DD UNIT=9TRACK,VOL=SER=xxxxxx,

// LABEL= (,SL),DISP=(OLD,KEEP),DSNAME=SLIPIN,

// DCB=(RECFM=FB,LRECL=80 ,BLKSIZE=3200)

9.4-14



UTILITIES

//SLIPOUT DD UNIT=9TRACK,VOL=SE R=xxxxxx,
// DSNAME=SLIPOUT,

// DISP= (OLD,KEEP) ,DCB=*.SLIP.SLIPIN,
// LABEL= (,SL)
//SLIPNEW DD UNIT=9TRACK,VOL=SER=zzzzzzz,LABEL=(,SL),
// DISP=(OLD,KEEP) ,DCB=*.SLIP.SLIPIN,
// DSNAME=SLIPNEW
//SYSIN DD *

The following sets of control cards may be used as input to SYSIN.

INCLUD SLIPNEW
UPDATE SRCEDECK
UPDATEMASTRO
UPDATEPSATELLITE

The card sets for the update must be on SLIPNEW; each set must be followed

by a ./END card; the sets must be in the same sequence as the control cards,
and have a one-to-one correspondence; both must be in the same sequence as
the SLIPIN data set.

INCLUD SLIPNEW
COPYTP

This set of control cards will copy SLIPNEW to SLIPOUT, followed by SLIPIN.

9.4-15



UTILITIES

9.4.5 UPDATE UTILITY FOR SOURCE AND OBJECT FILES

Known locally as Charlie Newman's Utilities, these two routines were
written by Charles R. Newman, Code 582. They allow a programmer to
make symbolic updates to selected subprograms, compile these updated
routines, and update an object file deleting the old object decks. The
source and object files handled by these routines are sequential data
sets. When used to update both source and object files or to list the
source file, these routines result in a considerable saving of computer
time in comparison to the OS/360 utilities. The routines are written in
FORTRAN for OS/360 and are run on the IBM 360, models 91 and 95.

The object decks for the utility routines are on the GlUSR1 disk pack
(360/95) and may be used as follows:

Source Utility Program,
//stepname.SYSLIN DD DSN=G1.G7CRN.SUP,DISP=SHR,
// UNIT=2314 ,VOL=SER=GlUSR1

Object Utility Program,
//stepname. SYSLIN DD DSN=G1. G7CRN. OUP, DISP=SHR,
// UNIT=2314 ,VOL=SER=GlUSR1

The GSFC Computer Program Library number for these routines is D00145;
they are described in the GSFC document X-551-69-409.

9.4-16



UTILITIES

9.4.6 LOAD MODULE MAP PROGRAM (IMBMDMAP)

The program IMBMDMAP is designed to aid the system programmer in the diagnosis

of system or application program failures.

Used in conjunction with main storage dumps, the load module map enables

the user to identify and locate individual control sections and their entry

points, and to verify load module attributes and alias.

A load module map produced by IMBMDMAP contains edited information regarding

the control sections (CSECTS), entry points (EP), aliases, external ref-

erences, attributes, type codes, overlay segments, and hierarchy desig-

nations for each load module for which a map is requested.

IMBMDMAP may be used to map:

" A Systems nucleus

* The link pack area

* Any load module previously link edited into a PDS

The cataloged procedure to execute the program IMBMDMAP on the model 95 is

called LDMODMAP; on the model 75, it is called MAPNUC (map nucleus). The mode

65 does not have a cataloged procedure, but has the mapping procedure,

IMBMDMAP, in SYS1.LINKLIB.

A fuller description of IMBMDMAP may be found in the IBM manual, Service Aids

(GC28-6719).

9.4-17



UTILITIES

9.4.7 LISTPDS -- SOURCE LIBRARY UTILITY LISTING PROGRAM - VERSION 6.1

LISTPDS is an OS/360 partitioned data set utility program for listing and/or
punching source libraries. It generates formatted listings of the PDS's direc-
tory, the contents of processed members, as well as (optionally) punching the
contents of processed members. The primary purpose of LISTPDS is for proc-
essing standard 80-byte per logical record source and macro libraries. Special
functions and formatting handles the processing of CRJE/CRBE format (88-byte)
libraries. In addition, LISTPDS will handle libraries with RECFM=U, V, or VB
although processing of such libraries is not its primary purpose. The major
design criteria for LISTPDS was efficient, high performance (high speed) opera-
tion. LISTPDS was designed and developed by Eugene A. Czarcinski, Code 531.

9.4.7.1 LISTPDS I/O Files and Their Functions

FILE NAME FUNCTION

SYSPRINT required, normally SYSOUT=A.
This file contains a formatted listing of the PDS's
directory with page number references to 'SYSLIST'
(table of contents). It also has any diagnostic or
informational messages which are generated by LISTPDS.

SYSLIST optional, normally SYSOUT=A.
This file contains formatted listings of the contents
of the processed members of the PDS. Each member
starts on a new page.

SYSPUNCH optional, normally SYSOUT=B.
This file contains the 'punched' output of the proc-
essed members. All output is in the form of 80-byte
logical records with one or more 'cards' punched per
source record (depending on the length of the source
record). For CRJE/CRBE files, the last 80 bytes of a
source record is punched. (The last 80 bytes in a
CRJE/CRBE library source record is the standard card
image.)

SYSIN optional, normally specified as //SYSIN DD *
This file contains card images which specify the namesof 'selected' members to be processed. The specified
names must begin in columns 1 and more than one name
can be specified per card by separating names with com-
mas. No imbedded blanks are permitted as card scan term-inates on a blank. Only columns 1-72 are processed
(73-80 are ignored). If SYSIN is a NULLFILE(DUMMY) or
omitted, all members are processed. Note--concatenated
SYSLIB PDS's are not permitted if SYSIN is used.

9.4-18



UTILITIES

SYSLIB required, normally DISP=SHR,DSN= . . .
This file specified the partitioned data set(s) which
are to be processed by LISTPDS. If selected members
(SYSIN) are to be specified, only one library can be
specified (others are ignored). However, if all mem-
bers are to be processed, multiple libraries can be
specified by means of concatenated DD statements.
Standard OS/360 conventions and restrictions apply to
the use of concatenated PDS's with LISTPDS. Processing
of concatenated PDS's will be performed in the order
of concatenation.

*NOTE* All output data sets - SYSPRINT,SYSLIST,SYSPUNCH - are full-track
blocked.

9.4.7.2 Standard ddnames for LISTPDS I/O files

file=SYSPRINT ddname=SYSPRINT
file=SYSLIST ddname=SYSLIST
file=SYSPUNCH ddname=SYSPUNCH
file=SYSIN ddname=SYSIN
file=SYSLIB ddname=SYSLIB

9.4.7.3 Execution Examples

List CRJE library -

//LISTPDS EXEC CRJELIST, USRID=YOURS

List selected members of the system procedure library -

//LISTPROC EXEC LISTPDS,DSN='SYS1.PROCLIB'
//SYSIN DD *
INITS,FORTRANG,FORTRANH
PL1
LINK,LINKGO

List multiple libraries -

//LISTPDS EXEC PGM=LISTPDS
//SYSPRINT DD SYSOUT=A
//SYSLIST DD SYSOUT=A
//SYSLIB DD DISP=SHR,DSN=USER.MACLIBI
// DD DISP=SHR,DSN=USER.MACLIB2
// DD DISP=SHR,DSN=USER.SOURCE1
// DD DISP=SHR,DSN=USER.SOURCE2

9.4-19



UTILITIES

List Directories only of multiple libraries -

//LISTPDS EXEC PGM=LISTPDS,PARM=LISTDIR
//SYSPRINT DD SYSOUT=A
//SYSLIB DD DISP=SHR,DSN=CRBE.LIB.USRID
// DD DISP=SHR,DSN=USER,SOURCE
// DD DISP=SHR,DSN=USER,MACLIB
// DD DISP=SHR,DSN=USER.LINKLIB

Punch specified members with IEBUPDTE control cards and no listing -

//PUNCH EXEC LISTPDS,DSN='YOUR.LIB' ,PARM='NOLIST,DECK,UPDTE'
MEMBER1, MEMBER2

LISTPDS run parameters (specified on EXEC STMT)-

LIST/NOLIST Default=LIST, controls output to SYSLIST

DECK/NODECK Default=NODECK, controls output to SYSPUNCH

LISTDIR Similar to NOLIST but produces no record count for
processed members (less I/O used)

UPDTE/NOUPDTE Default=NOUPDTE, if punched output is being
generated, 'UPDTE' will cause an IEBUPDTE ADD
statement to be inserted between members

SSI/NOSSI Default=SSI, if a deck is being punched and
UPDTE is in effect, then SSI/NOSSI controls
whether SSI information is placed on the IEBUPDTE
control card

RITS/CRBE Default=neither RITS or CRBE, used to call for
special processing for a RITS or CRBE library.

CRJE Default='NO', similar to 'RITS' or 'CRBE'. Used
to call for special processing/formatting for
a CRJE library.

LINECNT=NN Default=LINECNT=60, controls the number of lines
per page for SYSPRINT and SYSLIST

XLATE/NOXLATE Default=XLATE, controls the use of a 'TR' instruc-
tion for SYSPRINT and SYSLIST output--XLATE only
permits the standard 64 character printing

TEXT/NOTEXT Default=TEXT, controls selection of a translate
table for 'XLATE'...TEXT will convert lowercase
to uppercase letters for printing

9.4-20



UTILITIES

TRUNC/NOTRUNC Default=TRUNC, if the source logical record is
longer than 100 bytes, TRUNC will only print the
first 100 bytes. If NOTRUNC is used, then a log-
ical record is printed on one or more lines as
needed.

HEXOUT/NOHEXOUT Default=NOHEXOUT, controls conversion of source
characters to their hexadecimal equivalent for
printing.

EROPT=TERM/ACC Default=EROPT=TERM, 'EROPT=TERM' will cause
LISTPDS termination if an I/O error is detected
reading SYSLIB. 'EROPT=-ACC' will cause LISTPDS
to continue processing even though an I/O error
has occurred.

9.4.7.4 LISTPDS Abnormal Termination Completion Codes

LISTPDS generates no user ABEND codes. All ABEND completion codes will
be standard system-type codes.

9.4.7.5 LISTPDS Return Codes

RC=00 normal processing completed
RC=04 warning..unusual condition occurred
RC=08 error
RC=12 serious error
RC=16 terminating error
RC=20 error detected opening the SYSPRINT file

9.4.7.6 Symbolic Parameters and the Standard Run Defaults

The standard run parameters for the LISTPDS program are specified through
symbolic parameters which are specified at assembly time. The standard
set of defaults for LISTPDS are --

LIST,NODECK, NOUPDTE, XLATE, SSI, TRUNC, NOHEXOUT, TEXT, EROPT=TERM,
LINECNT=60

These defaults can be modified by changing the symbolic parameter set
statements in the LISTPDS source deck.

9.4.7.7 LISTPDS Program Design

LISTPDS is designed as a serially reusable, block loaded, single load
module, nonoverlay utility program with optimization for high perform-
ance (efficient) I/O operations. Except for the use of the EDIT (ED)
instruction, LISTPDS is coded entirely with Standard Instruction Set (360)
instructions. It does use the extended mnemonics for register branches
and requires use of ASSEMBLER(G) (or IBM's ASSEMBLER(F)). The QSAM Locate

9.4-21



UTILITIES

Mode Access Method is used for all I/O operations except those dealing with
SYSLIB, for SYSLIB I/O operations the BSAM/BPAM access method is used for
both directory reading as well as PDS member reading. LISTPDS does not use
the BLDL/FIND system function for reading the directory but instead performs
its own directory reading using BSAM/BPAM. A table is constructed (in core)
for the directory of the PDS currently being processed.

9.4.7.8 LISTPDS Diagnostic Messages

*NOTE* All diagnostic messages are outputted to the SYSPRINT file except
the 'SYSPRINT OPEN ERROR' message which is outputted to the operator/
programmer via a WTO. The WTO will cause a 'write to programmer' message
to be issued.

LPDSOOI OPEN ERROR ON SYSPRINT.
The job name is plugged into the message and the message is
issued via a WTO. Execution is terminate, RC=20.

LPDSO1I DIRECTORY I/O ERROR - (SYNAD MESSAGE)
Synchronous error info is obtained from the system and the
message is issued when an error is detected reading a PDS
directory.

LPDSO2I PDS DATA READ ERROR - (SYNAD MESSAGE)
Synchronous error info is obtained from the system and the
message is issued when an error is detected reading the con-
tents (member) of a PDS. Execution is continued or terminated
depending on the EROPT specification.

LPDS03I EXECUTION ABORTED.
A terminating error has occurred. Execution is aborted with
RC=16. The SYSPRINT and SYSLIST files have been closed.

LPDSO4I OPEN ERROR FOR
an error has been detected, open the specified file.

LPDSOSI WARNING--PARAMETER SPECIFICATION ERROR
The EXEC statement PARM specified has an error or unrecognized
keyword...execution continues with RC=04.

LPDS06I INVALID DCB SPECIFICATIONS FOR SYSLIB DD.
In checking the SYSLIB DCB after opening it, invalid or unsup-
ported PARMS were specified. The message includes one of the
following to describe the invalid specification -

MACHINE CONTROL CHARACTERS NOT SUPPORTED
VARIABLE SPANNED RECORDS NOT SUPPORTED
BLKSIZE INVALID
INVALID RECFM
TRACK OVERFLOW NOT SUPPORTED

9.4-22



UTILITIES

LPDS07I WARNING--RITS/CRBE SPECIFIED BUT LIBRARY DCB PARMS NOT COMPAT-
ABLE. RITS/CRBE PROCESSING DELETED
Although RITS or CRBE was specified on the EXEC statement PARM,
the library to be processed does not conform to standard RITS/
CRBE conventions. The special processing request is deleted and
processing continues with RC=04.

LPDS08I ERROR--PDS DIRECTORY NOT STANDARD FORMAT.
Format error detected reading the PDS's directory. Execution
is terminated.

LPDSO9I UNABLE TO OPEN . OPTION DELETED.
The specified ddname/file could not be opened. The correspond-
ing run option request was delted (SYSLIST-for list SYSPUNCH-
for deck). Processing continues with RC=04.

Any questions concerning the use of LISTPDS should be directed to the PAC,
building 3, room 133A, extension 6768.

9.4.8 PDSUR --- PARTITIONED DATA SET UNLOAD/RELOAD UTILITY PROGRAM

PDSUR is a data set utility program designed to create backup copies of
partitioned data sets (UNLOAD) or to restore backup copies to disk (RELOAD).
It is designed to be compatable with the IBM system utility IEHMOVE. That
is, PDSUR uses the same unloaded format as IEHMOVE. Thus, partitioned data
sets which have been unloaded by PDSUR can be reloaded by IEHMOVE (or
vice versa). PDSUR has been designed as a data set utility rather than a
system utility and thus requires that disk data sets be allocated through
JCL. PDSUR was written by Eugene A. Czarcinski, Code 531.

9.4.8.1 HISTORY

The development of PDSUR was prompted by some of the operating ineffi-
ciencies and problems of IBM's IEHMOVE. PDSUR utilizes main storage (core)
for all tables and workareas rather than disk as IEHMOVE does. Thus, the
number of I/O operations required for unloading is less for PDSUR as com-
pared to IEHMOVE. For reloading, PDSUR and IEHMOVE required about the
same I/O time. However, PDSUR does not need to know the specific volume
serial number for reloading as IEHMOVE does (it can be specified through
JCL or the Operating System can assign a specific volume).

9.4.8.2 FEATURES AND INCOMPATIBILITIES

As compared to IEHMOVE, PDSUR has a number of differences in its design
and operation. Major features and differences are listed below

PDSUR uses main (core) storage for tables and workareas

9.4-23



UTILITIES

- The default BLKSIZE for UNLOAD I/O is 800 (for labeled tape,
unlabeled tape or sequential disk)

- Space for disk data sets must be allocated through JCL...PDSUR
does not dynamically allocate space as IEHMOVE does

- PDSUR only handles loading and unloading of partitioned data sets

- PDSUR will handle unloaded data set blocksizes larger than 800 bytes
for both UNLOAD and RELOAD (IEHMOVE will not)

- Since PDSUR uses QSAM for unloaded-PDS I/O operations, EROPT can
be used to accept I/O errors and attempt data recovery from a
damaged tape.

- For all practical purposes, all I/O operations performed by PDSUR
are device independent. 'PDSUR' allows the unloaded data set to
reside on disk, tape or any other device supporting sequential
access.

- PDSUR allows specification (selection or exclusion) of members
on both unloading and reloading.

- For fixed length records only (RECFM=F/FB), PDSUR allows reblock-
ing on reload. Thus, a PDS which was DCB=(RECFM=F,LRECL-80,
BLKSIZE=80) can be reloaded with DCB=(RECFM=FB,LRECL=80,
BLKSIZE=3200). This also allows reloading a PDS which was on a
2314 with BLKSIZE=7280 to be reloaded to a 2321 with BLKSIZE=2000.

- For all RECFM except F/FB, PDSUR will take the largest of the old
BLKSIZE (TODD=), the BLKSIZE specified in JCL, or the BLKSIZE speci-
fied in the unloaded (FROMDD=) data set.

The unloaded data set must be a sequential data set. It may be a
member of PDS. The unloaded data set will normally be on tape

A LIST function has been incorporated to list the contents (member
names) of an unloaded file.

9.4.8.3 Access Methods Used

For SYSIN, SYSPRINT and all unloaded data set I/O QSAM Locate Mode for fixed
length records is used. For all PDS I/O BPAM is used.

9.4.8.4 Control Cards (Entered via the 'SYSIN' File)

All control specification must be contained on the first 72 columns
of an 80 byte card image (continuation cards are not handled).

9.4-24



UTILITIES

- Each control card must consist of two fields; command and

operand.

- The command field may or may not start in column 1 of the card

(blanks may proceed the command and are ignored).

- One or more blanks (max of 16) must separate the command and

operand fields.

- Operands in the operand field must be separated by commas.
Operand scanning is terminated by a blank or column 72.

In the following, valid abbreviations are given in parentheses following
the specified command or operand keyword.

**COMMAND **FUNCTION

UNLOAD (U) Specifies that an UNLOAD (backup creation) opera-
tion is to be performed.

RELOAD (R) Specifies that a RELOAD (backup restore) operation
is to be performed.

LIST (L) Specifies that a LIST operation is to be performed
(only the FROMDD operand is required and used).

MEMBER (M) Specifies member names for the select or exclude
option specified on the previous UNLOAD or RELOAD
control card more than one member card can follow
an unload/reload card so that many names can be
specified. The operand field must contain one or
more member names separated by commas.

**OPERAND KEYWORD **FUNCTION

FROMDD=(F=) For UNLOAD this specifies the ddname for the PDS.
For RELOAD this specifies the ddname for the tape.

TODD=(T=) For UNLOAD this specifies the ddname for the tape.
For RELOAD this specifies the ddname for the PDS.

REPLACE (R) For UNLOAD ignored.
For RELOAD use the 'REPLACE' option when 'stow'ing
directory entries. If a member name exists for a
name or alias, it is replaced.

LEAVE (L) At the end of the specified operation, the tape
file is closed with 'LEAVE' option thus leaving

9.4-25



UTILITIES

the tape mounted even if DISP=(OLD,KEEP) is
specified...normally a tape is unloaded if KEEP
is specified.

SELECT (S) For UNLOAD/RELOAD process only those member or
alias names specified on following member cards.

EXCLUDE (E) For UNLOAD/RELOAD do not process the member or
alias names specified on following member cards.

(SELECT and EXCLUDE are mutually exclusive options and PDSUR uses the last
one specified)

9.4.8.5 Typical Instream Proc

The following instream proc is shown to illustrate the basic JCL required
to run PDSUR

//PDSUR PROC REG=50K
//PDSUR EXEC PGM=PDSUR, REGION=&REG
//SYSPRINT DD SYSOUT=A
//SYSDUMP DD SYSOUT=A
// PEND

The above proc is used in the examples given below.

9.4.8.6 Examples --

- UNLOAD TWO PDS'S
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DISK, TODD=TAPE
U F=D2,T=T2
//DISK DD DISP=5J HR,D5N=SYS1.PRCLIB
//D2 DD DISP=SHR,DSN=USER.LINKLIB
//TAPE DD DISP=(,KEEP),DSN=A,LABEL= ,UNIT=2400-4,
// VOL=SER=TAPE
//T2 DD DISP=(,KEEP),DSN=B,LABEL=2 ,VOL=REF=* .TAPE

- RELOAD A PDS
// EXEC PDSUR
//SYSIN DD *
RELOAD FROMDD=DD1,T=DD2,R
//DD1 DD DISP=OLD,DSN=M2.USRID.T
//DD2 DD DISP=OLD,DSN=M2.USRID.DISKLIB

9.4-26



UTILITIES

UNLOAD AND RELOAD IN SAME JOB STEP
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DD1, TODD=DD2
RELOAD FROMDD=DD3, TODDDD 1
//DDI DD DISP=OLD,DSN=M2.USRID.LINKLIB
//DD2 DD DISP=(,KEEP),DSN=M2.USRID.BAKUP,LABEL=3,
// UNIT=2400-4,VOL=SER=TAPSER
//DD3 DD DISP=OLD,DSN=M2 .USRID.OLDTAP ,LABEL=10,
// UNIT=2400-4,VOL=SER=OLDTAP

LIST SOME OLD UNLOADED PDS'S
// EXEC PDSUR
//SYSIN DD *
LIST FROMDD=DD1,LEAVE
LIST F=DD2,LEAVE
L FROMDD=DD3, L
//DD1 DD DISP=OLD,DSN=M2.USRID.F1,LABEL=1 ,UNIT=2400-4,
// VOL=SER=OLDPDS
//DD2 DD DISP=OLD,DSN=M2.USRID.F2,LABEL=5 ,VOL=REF=*.DD1
//DD3 DD DISP=OLD,DSN=M2. USRID.F3,LABEL=9,VOL=REF=*.DDI

UNLOAD WITH SOME SELECTS AND EXCLUDES
// EXEC PDSUR
//SYSIN DD *
UNLOAD FROMDD=DD1,TODD=DD2 ,S
MEMBER PROG1,PROG2,PROG3, PROG4
UNLOAD FROMDD=DD1,TODD=DD3,E
MEMBER PROG1,PROG2,PROG3,PROG4 ,PROGX
//DDI DD DISP=SHR,DSN=M2.USRID.LINKLIB
//DD2 DD DISP=(,KEEP),DSN=USRID.X1,LABEL=l,UNIT=2400-4,
// VOL= (PRIVATE,RETAIN, SER=xxxxxx)
//DD3 DD DISP=(,KEEP),DSN=USRID.X2,LABEL=2,VOL=REF=*.DD2

RELOAD WITH SOME SELECTS AND EXCLUDES
// EXEC PDSUR
//SYSIN DD *

RELOAD FROMDD=DD1, TODD=DD2, LEAVE, S
MEMBER PROGl,PROG2
RELOAD FROMDD=DD1,TODD=DD3,EXCLUDE
MEMBER PROG3,PROG4
MEMBER PROG5,PROGA

//DDI DD DISP=OLD,DSN=M2.USRID.T,LABEL5 ,UNIT=2400-4,
// VOL=SER=BKPTAP
//DD2 DD DISP=OLD,DSN=M2.USRID.LIB1
//DD3 DD DISP=OLD,DSN=M2.USRID.LIB2

Any questions concerning the use of PDSUR should be directed to the PAC,
building 3, room 133A, extension 6768.

9.4-27



UTILITIES

9.4.9 CONSEQ

Program CONSEQ is designed to convert all or specified members of a library
from partitioned data set (PDS) format to sequential organization. CONSEQ
was written by Reg S. Mitchell, Code 324.

9.5.9.1 Uses and Advantages

The sequential output data can be used directly as input to a compiler, or
it may be punched or even printed if desired. There are no title or other
delimiter records placed between members on the output data set. The pro-
gram may be used to generate source program tapes for non-IBM installations
that cannot use an unloaded PDS. CONSEQ is much faster than the IBM utility
IEBPTPCH, especially if the output is blocked. Time savings on the order
of 10 to 1 or better may be obtained when punching cards (I/O time - with
a block size of 3200).

9.4.9.2 Method of Operation

The program reads the directory of the specified PDS and builds a member
directory in core (similar to the list created by a BLDL macro instruction).
Up to 999 member entries can be stored in the current version. This permits
all member searches to be done in core without further reference to the data
set's directory records. After building the directory, the input control
unit, SYSIN, is opened and checked for specific member request cards. If
no cards are present, all the members of the PDS are converted to sequential
organization. If member cards are present, each card is decoded and the
requested members placed in the output data set. The cards themselves are
free-form and contain any number of member names--in any order--separated
by commas and/or blanks. If a name is misspelled, a diagnostic message is
printed and the next name processed. For each member converted, a line is
printed containing the member name and number of records moved. After the
last member has been processed, a summary line is printed containing a count
of members converted.

9.4.9.3 Messages and Codes

Messages are fixed length, blocked, with ASA carriage control (RECFM=FBA),
and are 80 bytes long (LRECL=80). Messages are either informative or diag-
nostic. If certain error conditions are found, a message is printed and
either a dump is produced (user ABEND) or a condition code is set. The
condition code may be checked by subsequent EXEC statements if desired.

nnnn MEMBERS IN DIRECTORY

Informative message.

BLDL LIST FULL

9.4-28



UTILITIES

This message indicates that there is not enough room in core for the entire
directory. Currently, space is defined for up to 999 entries. Member proc-
essing is continued and a condition code of 4 is returned.

MEMBER name CONVERTED (nnnn RECORDS)

Informative message produced after a member has been processed.

MEMBER name NOT IN DIRECTORY

The specified member name could not be found in the directory. Processing
continues with the next member name. A condition code of 4 is returned.

DIRECTORY NOT IN ALPHA ORDER

This message should never occur, since it represents a serious error in the
PDS directory. The run is terminated with a User Completion Code of 021.

EMBER name IS AN ALIAS NAME

The member name printed is an alias and the member was not converted. This
message occurs only when the all-member option is being used. The reason is
to prevent processing the same physical member several times. If a member
is specifically requested, it will be processed.

*END OF JOB* nnn MEMBERS CONVERTED (tttttt RECORDS)

Tally of members processed. If no members were processed, a condition code
of 12 is returned.

User Completion Code = 081

This is caused by trying to process a PDS containing records with other than
a fixed-block format (i.e., a load module).

I/O Error Message

This is the message produced by the SYNADAF macro and applies to I/O errors
on the input PDS.

9.4.9.4 JCL

If the program is run using a punched object deck, the following JCL is needed
to load it.

//GO EXEC PGM=LOADER, PARM=' EP=CONSEQ, SIZE=2 8K'
//SYSLOUT DD SYSOUT=A,SPACE= (TRK, 1),
// DCB= (LRECL=121,BLKSIZE=1210)
//SYSLIN DD *

{CONSEQ object deck (51 cards)

9.4-29



UTILITIES

If CONSEQ is in load module form on a library, only the EXEC and STEPLIB
cards are needed. (The examples shown apply specifically to the 360/95.)

//GO EXEC PGM=B9RSMCSQ
//STEPLIB DD DSN=SYS2.LOADLIB,DISP=SHR

The above cards are followed by the DD cards needed by CONSEQ (i.e., SYSPRINT,
PDSIN, SEQOUT, and SYSIN).

//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=800

The fixed fields are RECFM=FBA and LRECL=80. The block size may be any
convenient multiple of 80.

//PDSIN DD DSNAME=libname,DISP=SHR

Other fields (i.e., UNIT and VOLUME) may be needed if the data set is not
catalogued or passed from an earlier step. The DISP field may also be changed
to represent an alternate disposition action.

The SEQOUT DD card is made to reflect the destination of the converted members.
For example, to generate a seven-track program tape, use the following:

//SEQOUT DD UNIT=2400-7,DISP=(NEW,KEEP),
// DSN=NONIBM,LABEL=(,BLP),
// DCB= (BLKSIZE=3200,TRTCH=ET,DEN=1),
// VOL=SER=nnnn

The RECFM is fixed as FB. The LRECL will be made to match the input PDS
unless stated on the DD card. Large blocking factors are recommended to
reduce I/O time. For CRJE input files, an LRECL of 80 will cause the eight
byte count field to be skipped.

For a punched output, use:

//SEQOUT DD SYSOUT=B,DCB=BLKSIZE=3200

//SYSIN DD *

If all members are desired (in alphabetical order), no input cards are needed.
SYSIN may be made "DUMMY" in this case, but a BLKSIZE is still needed, i.e.,
//SYSIN DD DUMMY,DCB=BLKSIZE=80. If certain selected members are desired,
cards containing their names should follow the SYSIN DD card. Several ex-
amples of acceptable cards are shown below. The only requirement is that
each name be followed by a comma or blank(s).

9.4-30



UTILITIES

Col. 1 Col. 72

FORTRANG, PLI, FORTRANH,MYPROC,
LISTNEWS , ASEMBLRF

LOADER

9.4.9.5 Example

The following deck was used to punch members MPYAD, TRDlD, and TRD1C from an
unloaded PDS named SOURCE contained on a nine-track labeled tape.

//GET EXEC PGM=-IEFBRI4
//VOL DD UNIT=2314,DISP=(NEW,DELETE),
// SPACE=(TRK,(40),,CONTIG)
//* PREALLOCATED WORKFILE FOR RELIABILITY
//MOVE EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260

//SYSUTI DD UNIT=2314,DISP=OLD,VOL=REF=*.GET.VOL
//DISK DD UNIT=2314,DISP=OLD,VOL=SER=GISCR9
//TAPE DD UNIT=2400-9,DISP=(OLD,KEEP),

// LABEL=(2, SL), DSN=SOURCE,
// DCB= (RECFM=FB,LRECL=80,BLKSIZE=800),
// VOL=SER=4030G
//SYSIN DD *

COPY PDS=SOURCE,TO=2314=G1SCR9,FROM=2400= (4030G,2), X
FROMDD=TAPE

//GO EXEC PGM=B9RSMCSQ,COND= (4,LT,MOVE)
//STEPLIB DD DSN=SYS2.LOADLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=800
//PDSIN DD UNIT=2314,DISP=(OLD,DELETE),
// DSN=SOURCE, VOL= SE R=GISCR9
//SEQOUT DD SYSOUT=B,DCB=BLKSIZE=3200
//SYSIN DD *

MPYAD, TRD1D,TRDIC

/*9.4-31/9.4-32

9.4-31/9.4-32



AUTOFLOW

SECTION 10

AUTOFLOW

10.1 INTRODUCTION

AUTOFLOW, a proprietary software system of Applied Data Research, Inc., auto-
matically translates the source language of a program into flowcharts, and
then prints them out on the printer. Alternatively, the programmer may choose
to have his flowcharts on an output tape for later use.

Flowcharting of programs is a service done on the SESCC S/360-75J in Building 1,
for programs written for the IBM S/360 computers, as well as the CDC 3200,
DDP 24, 124, 224, XDS 920, 930, 9200, 9300, and Univac 1108 computers. Instruc-
tions for the use of AUTOFLOW are summarized in this section of the User's Guide.

10.2 GENERAL DESCRIPTION

AUTOFLOW accepts as input either decks or tapes in COBOL, FORTRAN, PL/I, or
assembly language for the S/360; and also assembly language or FORTRAN decks
or tapes for CDC, DDP, XDS, and Univac 1108 computers. AUTOFLOW, and its
preprocessors for computers other than S/360, follows all the rules pre-
scribed by the programming manuals of the particular computer being flow-
charted.

Accompanying the flowcharts are tables of contents and cross references;
tables of diagnostics pointing out logic errors, syntax errors, missing
references, etc.; and an optional listing of the source program. (AUTO-
FLOW prints up to 1000 large flowchart pages for each program. This is
enough for most large programs.)

In addition, AUTOFLOW has special chart-oriented languages. By punching
special chart codes in the comments portion of cards, the programmer can
adjust details in the flowcharts, or add more explanatory text.

10-1



AUTOFLOW

AUTOFLOW accepts the following different kinds of source programs:

1. S/360 programs:

" Cards or tape input.

* Single program or multiple programs in one job.

* One or more languages, including assembly, FORTRAN, PL/I,
and COBOL.

2. CDC, DDP, SDS, and Univac 1108 programs:

* Cards or tape input.

* Single program or multiple programs in one job.

* Assembly language and FORTRAN.

* Univac 1108 List Tape.

10.3 AUTOFLOW JOB SUBMISSION

The three requirements that apply to all programs submitted for flowcharting,
regardless of the computer the program was written for, or whether the source
program is on cards or magnetic tape, or the type of output desired, are: a
job submission slip for the computer facility in Building 1 a S/360 JOB
card (a punched card that precedes the deck); and the applicable set of job
control cards to execute AUTOFLOW.

10.3.1 JOB SUBMISSION SLIP

This form (obtainable at the dispatcher's desk in Building 1) must have, in
addition to certain self-explanatory entries (such as tape numbers, if any)
some added instructions written in the REMARKS space to indicate to the opera-
tor any special output, special printer-control, special paper, or required
region size. If the user indicates special types of output, other instruc-
tions are required on the job submission slipp these are discussed in the
following paragraphs.

10.3.1.1 Remarks for Standard AUTOFLOW Output

The following information is written under REMARKS:

Q = 8 LPI. Convex-fold, 2-part, plain paper. Region = 250K.

This AUTOFLOW output must be run on a special printer, at night; therefore,
the user may not receive his job until the following morning; or at busy times,
he may have to wait another 24 hours.

10-2



10.3.1.2 Remarks for Regular Tape or Plotter Tape Output

For quick turnaround, at the cost of appearance, AUTOFLOW output can be
accepted on the regular printer, single copy, on lined paper instead of
plain paper. Since the regular print control is set at 6 lines per inch
(instead of the 8 LPI mentioned above), the flowcharts will be spread out
over more paper, but will be quite readable; in this manner, a user's
AUTOFLOW job will be completed in one day. To use this option, the job
submission slip should include the following remark: Region = 250K. All
references to Q output or plain paper should be eliminated. This can be
done by inserting the following DD card in the deck:

//SYSPRINT DD SYSOUT=A

10.4 THE JOB CARD FOR AUTOFLOW RUNS

The program (deck or tape) must be accompanied by a standard Goddard S/360
JOB card, and by applicable job control cards as described in the referenced
documentation. Note that the JOB card and the job control cards must be
punched on the Model 029 keypunch, no matter what type of keypunch was
used for the source program.

The JOB card is the first card in the deck, and contains the following re-
quired accounting information.

10.4.1 REQUIRED ENTRIES

The required format of the JOB card for an AUTOFLOW run is the same as
the standard GSFC S/360 JOB card. Special AUTOFLOW parameter values are
described in Table 10.4-1.

Table 10.4-1. AUTOFLOW JOB Card Parameter Values

//G3ZZZxxx JOB (G3 0191311F,P,G00169,mmm,nnn),DIS

Col. 3-7 G3ZZZ - ID to be used for all AUTOFLOW runs.

Col. 8-10 xxx - Programmer's initials or other identification.

Col. 17-21 G3019 - AUTOFLOW sponsor number.

Col. 30-35 G00169 - The required program number for all AUTOFLOW
jobs on the S/360, no matter what program number the source
deck usually runs under.

Col. 37-39 mmm - Minutes of estimated CPU time, padded at left with leading
zeroes. Normally, 5 minutes should be enough for a source

10-3



AUTOFLOW

deck no larger than one carton of cards. If the user under-

estimates the required CPU time, his job will be terminated

without a printout, and he will receive a system code of 322.

In this case, he should repunch these columns on his JOB

card to increase the time estimate, and should resubmit the

job. (It is much safer to overestimate.)

Col. 40-42 nnn - Minutes of estimated I/O time. Usually AUTOFLOW I/O time

runs about double the CPU time. However, the user should

be generous in his estimate. (If he underestimates I/O time,
he will receive a system code F22, and the job will ter-

minate without completing the printout. In this case, he
should repunch these columns to increase I/O time, and
should resubmit the job.)

Col. 45-47 DIS - The user's box number at the S/360-75 computer room. If

the user does not have a box there, he should punch DIS in

these columns, and ask the dispatcher for the job.

In the event that the user submits two or more separate programs for AUTOFLOW
flowcharts at the same time, or submits a second program before receiving
the first one back, he must use a different job name on each of the jobs.
(For example, if one job has a name of G3ZZZJOE, he could vary this, for the

second job, to G3ZZZJO2, etc.) This is necessary because the S/360 OS MVT

processes many jobs at the same time, and the presence of two jobs with the

same name may cause unpredictable problems.

10.5 AUTOFLOW JOB CONTROL CARDS

The third requirement for submitting any program for AUTOFLOW flowcharting

is a set of job control cards appropriate to (1) the computer for which the

program was written, (2) the symbolic language(s) used, (3) the type of
source input (deck or tape), and (4) the type of output desired (computer
printout or tape). In order to reduce the number of job control cards which

the user must punch, cataloged procedures are provided for the various kinds

of AUTOFLOW jobs.

10.5.1 CATALOGED PROCEDURES: ADRFLOW, PPEX

Cataloged procedures for executing AUTOFLOW programs exist in the S/360-75
procedure library. To use these sets of control cards, a control card should
be furnished, including the EXEC instruction and the name of the procedure
(e.g., // EXEC ADRFLOW). In addition, other job control cards should be sup-
plied, as required. (Note: To permit retaining in the program the existing

job control cards that were put there for regular processing of the source
program, a //INPUT DD DATA card should be used in all the deck setups, in-
stead of a //INPUT DD * card.)

10-4



AUTOFLOW

The cataloged procedures are:

1. ADRFLOW: For S/360 programs (assembly language, FORTRAN, PL/I,
or COBOL).

2. PPEX: For programs written for CDC, DDP, XDS, or Univac computers,

for which AUTOFLOW must use a preprocessor (assembly language or
FORTRAN only).

10.5.2 ADRFLOW PROCEDURE

//DEFAULT PROC OUT=Q,SET=--' G.S.F. C',CHAIN=PN,DEPTH=150,LINEAR=NO
//ADR EXEC PGM=AUTOFLOW,REGION=250K,
// PARM=' &SET, CHAIN=&CHAIN,DEPTH=&DEPTH, LINEAR=&LINEAR'
//STEPLIB DD DSN=SYS 2. AUTOFLOW ,DISP=SHR
//SYSAF01 DD UNIT=2314,SPACE=(CYL, (20,10)),
// DCB= (,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAF02 DD UNIT=(2314,SEP-SYSAF01),SPACE=(CYL,(20,10)),
// DCB=(,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAF03 DD UNIT=(2314,SEP=(SYSAFO1,SYSAF02)),SPACE=(CYL,(20,10)),
// DCB=-(,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAF04 DD UNIT= (2314,SEP= (SYSAFO1,SYSAF02,SYSAF03)),
// SPACE=(CYL,(20,10)),
// DCB=(,BUFNO=2 ,BUFL=7000 ,BLKSIZE=7000)
//SYSAF05 DD UNIT=2314,SPACE=(CYL,(20,10)),
// DCB= ( ,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAF06 DD UNIT=(2314,SEP=SYSAF05),SPACE=(CYL,(20,10)),
// DCB=(,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSPRINT DD SYSOUT=&OUT ,DCB= (RECFM=FBM,LRECL=133,BLKSIZE=3325)
I/* -CWB-

To execute this procedure, code:

//PLOT EXEC ADRFLOW
//INPUT DD DATA

(source program deck, including JCL)
/*
//SYSIN DD *
INPUT FORTRAN (LIST,NAMSQ) Any title up to 26 letters

(Autoflow parameter card1 - LANGUAGE Dependent)
./ MODEND to terminate the source module
/* to terminate the parameter statements

1The language-dependent parameter card format and subsequent additional chart
listings may be found in the manuals listed in paragraph 10.5.4.

10-5



AUTOFLOW

LIST = Source module listing, spaced as specified at AUTOFLOW System
generation time.

NAMSQ = Sequenced paragraph or label name listing.

When the source input resides on tape the following setup should be used:

//PLOT EXEC ADRFLOW
//TAPINP DD UNIT=(u),VOL=SER=(v),LAEL= (w),
// DISP=(OLD,KEEP),DCB=(x)
//SYSIN DD *
AUTOFLOW parameter statement
/* To terminate the parameter statements

The values for u, v, w, and x are tape dependent.

10.5.3 PPEX PROCEDURE

//DEFAULT PROC OUT=Q,TAPENO=LLFILE
// EXEC PGM=PPCTRL,REGION=250K
//STEPLIB DD DSN=SYS2.AUTOFLOW,DISP=SHR
//TAPINP DD DCB=(BLKSIZE=2000,DEN=1,TRTCH=ET) ,DISP=(OLD,PASS),
// UNIT=(7TRACK,, DEFER) ,LABEL=(,BLP) ,VOL=SER=&TAPENO,DSN=NU&TAPENO
//IPRINTDD DD SYSOUT=&OUT,DCB= (RECFM=FBM,BLKSIZE=3325)
//IPSTDD DD UNIT=2314,DCB=BLKSIZE=6720,SPACE=(CYL,(10,10))
//DATADD DD UNIT=2314,DCB=BLKSIZE=6720,SPACE=(CYL,(10,10,10))
//SYSIN DD UNIT=2314,SPACE=(80,(20,10))
//EDLDD DD UNIT=2314,SPACE=(CYL,(3,3))
//SYSPRINT DD SYSOUT=&OUT,DCB=(RECFM=FBM,LRECL=133,BLKSIZE=3325)
//SYSAF01 DD UNIT=2314,
// SPACE=(CYL, (20,10)),
// DCB=(,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAFO2 nD UNIT=(2314, SEP=SYSA01),

// SPACE=(CYL,(20,10)),
// DCB= (,BUFNO=2,BUFL=7000, BLKSIZE=7000)
//SYSAF03 DD UNIT=(2314,SEP=(SYSAF01,SYSAF02)),
// SPACE=(CYL,(20,10)),
// DCB=(,BUFNO=2 ,BUFL=7000, BLKSIZE=7000)
//SYSAF04 DD UNIT=(2314,SEP=(SYSAF01,SYSAF02,SYSAF03)),
// SPACE=(CYL,(20,10)),
// DCB= ( ,BUFNO=2,BUFL=7000,BLKSIZE=7000)
//SYSAF05 DD UNIT=2314,SPACE=(CYL, (20,10)) ,DCB=(BLKSIZE=7000,
// BUFL=7000,BUFNO=2)
//SYSAFO6 DD UNIT=(2314,SEP=(SYSAF05)) ,SPACE=(CYL, (20,10)),
// DCB=(BLKSIZE=7000 ,BUFL=7000,BUFNO=2)

10-6



AUTOFLOW

To execute this procedure, code:

//PLOT EXEC PPEX,PARM=PPUNIV (for Univac)
//PLOT EXEC PPEX,PARM=PPCDC (for CDC 3200)
//PLOT EXEC PPEX,PARM=PPSDS (for XDS models 920,

930, 9200, 9300)
//PLOT EXEC PPEX,PARM=PPDDP (for DDP)
//CDINP DD DATA
*$TITLE Any title up to 26 letters
*$$LIST=Y to obtain a source module listing (optional)

(source program deck)
*$$TAPE (Only if source is on tape)
/*

10.5.4 REFERENCES

Information related to AUTOFLOW may be found in the following manuals:

AUTOFLOW Operation Guide - IBM System/360 (P601A)
AUTOFLOW Reference Manual - FORTRAN Series (P300A)
AUTOFLOW Reference Manual - ASSEMBLY Series (P400A)
AUTOFLOW Reference Manual - PL/I Series (P500A)
AUTOFLOW Reference Manual - COBOL Series (P200A)

The manuals may be viewed in the GSFC Program Library, Building 3, Room 133.
They may also be purchased from Applied Data Research, Inc.

10-7/10-8



OS EXECUTIVE FEATURES

SECTION 11

OS EXECUTIVE FEATURES

11.1 SYSTEM VIEW OF DATA MANAGEMENT

Data Management is that portion of the operating system that carries out
the identification, cataloging, storage, and retrieval of data sets. A
data set for the OS/360 System is a collection of related data that is
broken into groups of information called records. (Note: On second-
generation computers a data set was referred to as a "file" of informa-
tion.) A logical record may be defined in terms of the information it
contains. For example, discrete information concerning users of the 360
system could be stored in a data set consisting of one logical record per
user. A physical record may be defined by the manner in which it is stored
and retrieved. Logical records may be grouped together (blocked) or be
separated by a gap (unblocked) or broken into segments (spanning two or
more physical records).

The standard unit of peripheral storage is a volume which may be a
magnetic tape, disk pack, drum, or data cell. All direct-access volumes
must have a volume label (magnetic tapes may or may not be labeled) so
that they are readily identifiable to the system. The label for a Direct-
Access Storage Device (DASD) contains the volume serial number and a
pointer to the Volume Table of Contents (VTOC). The VTOC contains the
name, description, and location of each data set stored on the volume,
plus a record of the unused areas on the volume. For magnetic tape
volumes, a standard label consists of a volume label and groups of data
set labels. There is no VTOC on a tape volume. The volume label is the
first record on the tape and contains the volume and owner identifications.
This is followed by the data set header record, a tape mark, the data set,
and the data set trailer record. Many data sets may be placed on tape
in this manner. The final data set trailer record would be followed by
two tape marks. The information contained in the header and trailer rec-
ords is made available to the system and is used in conjunction with or in
place of information normally supplied by the DCB parameter on the Data
Definition (DD) card.

The Data Management System communicates with a program through a set of
standard interfaces: the Data Control Block (DCB) which is built by a
program at compile time; the Data Definition (DD) statement (in the job
control stream); the Data Set Control Block or label (DSCB), which is
actually part of the data set; and the system macro instructions which
provide access to the Operating System facilities.

11.1-1



OS EXECUTIVE FEATURES

A job step can place a data set in direct-access storage by a DD statement
in the job control stream; the DD statement must specify the type of unit,
(e.g., disk), volume id, data set name, disposition, and space required.
At the time the job step is initiated, the space is allocated and a label
is created for each area requested. During job step execution, the label
is completed and updated via OPEN and CLOSE macro instructions. The system
and user can also create temporary data sets. Temporary data sets are
designed to last only for the job step or the life of the job and are then
deleted by the system.

The Data Management System provides the facility of cataloging frequently
used data sets. The catalog is maintained in direct-access storage and
contains information to identify the volume containing the cataloged data
set and the device type, freeing the programmer from specifying that infor-
mation on the DD card referring to the data set.

The OS/360 Data Management System provides the programmer with the capa-
bility of organizing a data set in one of four ways:

a. Sequential Organization

Data sets residing on serial-access devices, such as magnetic
tapes, must have sequential organization. This organization
is optional for data sets residing on direct-access devices.

b. Indexed Sequential Organization (For direct-access devices only)

Records are stored sequentially with a key (record-identifier)
contained in the record. The system maintains an index of the
record locations; this system allows the records to be accessed
by key as well as sequentially.

c. Direct Organization (For direct-access devices only)

Records are randomly accessed by specifying their relative posi-
tion in the data set, or by the absolute record address appro-
priate to the device.

d. Partitioned Organization (For direct-access devices only)

A data set is divided into members which are organized sequen-
tially. Member names and locations are kept in a directory
associated with the data set. The members consist of one or
more blocks. This organization allows the random retrieval of
named blocks of data which are sequentially organized.

11.1-2



OS EXECUTIVE FEATURES

In addition to having the capability of organizing data sets in the manner
described above, the programmer also has a choice of different methods for
accessing the data set. The queued access method, which only applies to
sequential data sets, manages the buffers automatically for the programmer.
The basic access method gives the programmer control over the blocking and
buffering.

A Data Control Block (DCB) is associated with each data set referenced by
a program. The DCB must be initialized before any data transfer can take
place. The data control block is generated and partially initialized by
the DCB macro instruction at compile time. The OPEN macro instruction
generates a call at execution time to a routine which completes the DCB
with information from a DD statement in the job stream, or from a data set
label. The OPEN routine also loads and resolves the required access routines,
prepares the buffer areas, generates channel command lists, and initializes
data sets by reading (or writing) data set labels.

To summarize, the Data Management System provides a great deal of flexibility
in organizing and accessing data sets, and, by dynamically loading the rele-
vant routines at execution time, source programs can be generally device-
independent.

11.1-3



OS EXECUTIVE FEATURES

11.2 SYSTEM-ORIENTED MACROS

The OS Executive provides to the problem program a wide variety of services
through the use of assembly language macros. (FORTRAN and other higher
level language programmers have many of the services available through the
language itself.) These macro instructions allow the programmer to specify
the function and required parameters in a straightforward manner; SVC in-
instructions do not have to be used directly. A complete list of macro
instructions with coding requirements and macro expansions is found in
IBM Supervisor and Data Management Macro Instructions (GC28-6647).

The data management macro instructions provide the means to access data sets,
build DCBs, buffer pools, etc., for the various access methods. A list of
some of the relevant macro instructions with access methods is in Table 11.2-1.

In the area of supervisor macros, means are provided to manage the resources
at the programmers' disposal, i.e., ENQ is used to request the use of a
serially re-usable resource, and GETMAIN is used to allocate main storage.

Other services are provided to: (1).create subtasks (ATTACH macro), (2) wait
for events (WAIT macro), (3) control the execution (CALL and RETURN macros),
(4) bring load modules into main storage (LOAD macro), (5) load an overlay
segment (SEGLD macro), and (6) dump portions of the program (SNAP macro).
The ABEND macro can be used to abnormally terminate a task. The SPIE and
STAE macros are used to control interrupt exit processing and ABEND processing.

A summary of supervisor macro instructions is contained in Table 11.2-2.

11.2-1



OS EXECUTIVE FEATURES

Table 11.2-1. Access Method Macros

Access Method

QQ B B B B
Macro S I S P I D Macro Instruction Function

Instruction A S A A S A
M A M M A M

M M

DCB . . . . Generate a data control block
OPEN . . . . . . Open a data control block
CLOSE . . . . . . Close a data control block
BUILD . . . . . . Structure named area as a buffer pool
GETPOOL . . . . . . Allocate space to and format buffer pool
FREEPOOL . . . . . . Liberate buffer-pool space
GET . . Obtain a record from an input data set
PUT . . Include a record in an output data set
PUTX . . Include an input record in an output data se
RELSE . . Force end of input block
TRUNC . Force end of output block
FEOV . . Force end of volume
CNTRL . . Control reader or printer operation
PRTOV . . Test for printer carriage overflow
SETL . Set lower limit for scan
ESETL . Postpone fetching during scan
CHECK . . Wait for I/O completion and verify proper op
NOTE . . Note where a block is read or written
POINT . . Point to a designated block
FIND . Obtain the address of a named member
BLDL . Build a special directory in main store
STOW Update the directory
RELEX . Release exclusive control of a block
FREEDBUF . . Free dynamically obtained buffer
GETBUF . . . . Assign a buffer from the pool
FREEBUF . . . . Return a buffer to the pool
WAIT . . . . Wait for I/O completion
READ . . . . Read a block
WRITE . . . . Write a block

11.2-2



OS EXECUTIVE FEATURES

Table 11.2-2. Supervisor Service Macros

Macro
Instruction Function

ABEND Abnormally terminate a task

ATTACH Create a new task

CALL Pass control to a control section

CHKPT Take a checkpoint within a job step
DELETE Release a load module

DEQ Release a serially re-usable resource

DETACH Delete a subtask
ENQ Request a serially re-usable resource

FREEMAIN Release allocated main storage

GETMAIN Allocate main storage
IDENTIFY Add an entry point
LINK Pass control to a load module
LOAD Bring a load module into main storage

POST Signal event completion
RETURN Return control

SAVE Save register contents
SEGLD Load overlay segment
SNAP Dump main storage and continue processing

SPIE Specify program interrupt exit

STAE Specify ABEND exit
STIMER Set interval timer
TIME Provide date and time
TTIMER Test interval timer
WAIT Wait for event
XCTL Pass control to a load module

11.2-3



OS EXECUTIVE FEATURES

11.3 CONDITION CODES AND COMPLETION CODES

One useful feature of OS is the ability to pass codes to subsequent steps
of a job. Two types of codes may be passed. When a job step terminates
normally, the code is usually referred to as a condition code. When a
job step terminates abnormally, the code is referred to as a completion code.
In either case, not returning a code is equivalent to returning a code of zero.

When a job step terminates normally, a condition code is set by the pro-
cessing program. The condition code can be a decimal value from 0-4095. In
FORTRAN, PL/I, or an assembly language program, the code can be set by the
programmer during program execution. Most system processors set the code to
indicate the severity level of the most severe error encountered. There is
only one condition code returned per job step. The condition codes can be
tested by setting condition (COND) parameters in the JOB and EXEC statements;
thus, subsequent processing of job steps can be made dependent on the condition
codes of previous steps. Refer to Section 5 of this User's Guide and the IBM
Job Control Language Reference (GC28-6704) for more information on the COND
.arameter.

When a job step terminates abnormally, a completion code is set, either by
the programmer (as in the ABEND macro), in which case it is preceded by a "U"
for user, or by the operating system, in which case it is preceded by an "S"
for system. The meanings of the codes set by the system are explained in
Messages and Codes (GC28-6631). The meanings of completion codes set by pro-
blem programs (in this sense the compilers, etc., are problem programs) must
be explained in their associated documentation.

11.3-1



OS EXECUTIVE FEATURES

11.4 DUMPS OF VARIOUS KINDS AND HOW TO GET THEM

The OS Executive provides the capability of dumping the executing program
areas (and relevant portions of the system) upon abnormal termination of
a job step. When a dump is taken, it is written on a data set. A DD state-
ment for this data set must be included in the job control statements per-
taining to the job step.

There are two kinds of abnormal termination dumps, characterized by the
DD names that must appear on the DD statements defining the associated data
sets. These are the SYSABEND dump and the SYSUDUMP. The SYSABEND dump
routine prints out the system nucleus, the trace tables through supervisor
calls, and the contents of the dynamic program area. The SYSUDUMP only
prints out the dynamic program area. To insure that the dump card is
positioned properly in the deck, the user should precede the SYSABEND or
SYSUDUMP ddname by the procedure stepname (where applicable) and place it
after any other card inserts for that procedure step, e.g.:

//GO. SYSABEND DD SYSOUT=A
or

//GO.SYSUDUMP DD SYSOUT=A

A SYSUDUMP is sufficient for problem program debugging. The SYSABEND
should only be used at the request of a system programmer, as it produces
a larger volume of output.

For printing by another JOB, the normal parameters for a NEW data set
should be used, but a condition disposition of KEEP should be made, e.g.:

DISP= (NEW, ,KEEP)

so that the data set is not deleted when the step terminates abnormally.

If more than one dump DD statement is used in a job step, only the first
one is honored; the rest are ignored. Refer to subsection 21.4 (Dumps) and
IBM SRL GC28-6670 (Programmer's Guide to Debugging) for information on in-
terpreting dumps and dump formats.

11.4-1



OS EXECUTIVE FEATURES

11.5 CHECKPOINT/RESTART

When a long job terminates abnormally, time is lost if the job must be

entirely rerun. In order to minimize the lost time, the OS Executive

supports a checkpoint/restart feature which, under program control, dumps

the program area and relevant system tables to a checkpoint data set.

The job step may be restarted from one of these checkpoints. Alternatively,
restart at the step level can be performed, either automatically or at a

later time. Automatic step restart can be requested via the RD parameter,

in a JOB or EXEC statement. (See Job Control Language Reference (GC28-6704)

for details.) An automatic restart must be authorized by the computer operator.

All data sets in the restart step with the disposition of NEW are deleted;

those data sets with the disposition of OLD, MOD, or PASS are kept. When

requesting automatic restart, MSGLEVEL=(1,0) or MSGLEVEL=(1,1) must be coded

on the JOB statement. Using the RD parameter on the JOB statement causes any

RD parameters on the EXEC statements to be ignored. Step names must be unique;

if a step that does not have a unique name terminates abnormally, the first

step having that name is restarted. The OS Advanced Checkpoint/Restart Manual,

GC28-6708, has a list of the completion codes that qualify a step for automatic

restart. A deferred step restart can be accomplished by resubmitting the job

with the RESTART parameter coded on the JOB statement.

The checkpoint feature is called via the CHKPT macro instruction (ALC),

RERUN statement (COBOL), or CALL IHECKPT (PL/I). Restart from a pro-

grammed checkpoint can be automatic (using the RD parameter) or deferred.

Great care must be taken in the design of programs using the checkpoint

feature to insure that the portion of the program between checkpoints is

repeatable. This means that input data sets should not be altered; for

example, a matrix should not be inverted on top of itself (i.e., a sep-
arate array should be used).

Note: As of this printing checkpoint/restart and step restart function correctly

under Release 21.6. Since the use of checkpoint/restart may lead to

intense operational difficulties, the system programmer responsible for

coordinating system programming activities on that particular computer

should be contacted prior to its use. Refer to paragraphs 3.2.2, 3.3.2,
3.4.2, and 3.5.2.

11.5-1



OS EXECUTIVE FEATURES

11.6 ROLL-OUT/ROLL-IN

ROLL-OUT/ROLL-IN is described in Planning for Roll-Out/Roll-In (GC27-6935).
This feature is not presently supported at GSFC. Its use requires a cata-
loged data set on a direct-access device, the inclusion of certain routines
in the system nucleus at IPL time, and specification of the ROLL parameter
in the JCL.

The use of ROLL-OUT is to the REGION parameter what a secondary allocation
is to the SPACE parameter. Its value is that it allows a dynamic program to
specify a minimum region size, so that it does not tie up more storage than
necessary, and to get more than this minimum when required during execution.
Without the ROLL-OUT feature, a job step must request the maximum region
size it will use at any time before it can start executing; it cannot obtain
more core after it starts than declared in the REGION parameter. ROLL-OUT
allows a step to use any unallocated core in the system, regardless of
region size. Once all core is allocated, the OS Supervisor will attempt
to roll-out a lower priority job, if more core is requested.

11.6-1



OS EXECUTIVE FEATURES

11.7 SUPERVISOR PROCEDURES

Several sets of system procedures exist in the PROCLIB. They are executed
not by a job, but by a START command issued by the operator. Three of these
procedures which directly affect each job run, are known as reader, initia-
tor, and writer procedures. A job is entered into the queue by the reader-
interpreter, executed by the initiator, and, if any system output was pro-
duced, printed by a writer procedure.

As these procedures are initiated by a START command, the programs they call
operate under a system protection key of zero.

11.7.1 READER-INTERPRETER PROCEDURES

The reader-interpreter reads the input stream. The input stream consists of
JCL and data. The interpreter converts the JCL to tables and places them in
the job queue to form the input queue. The data are spooled as they are
read.

The JOB card is converted into a Job Control Table (JCT). Each EXEC card
is converted to a Step Control Table (SCT). The JCT points to the first
SCT, which points to the next SCT, etc. Each DD card is converted to a Job
File Control Block (JFCB). All JFCBs for a step are chained together; the
SCT points to the JFCB chain.

A JFCB is also built for each SYSIN data set encountered. For SYSOUT data
sets, space is reserved in the output queue, but nothing is actually placed
in the output queue at this time.

The reader procedure consists of an EXEC card for the reader program and
three DD cards. A parameter containing reader default values is supplied
to the reader program. The reader reads the input stream until it reaches
an end-of-file, when it terminates. At GSFC, the operators keep the reader
active by entering NULL cards between JOBs. Otherwise, they would have to
restart the reader for each job.

The parameter supplied to the reader supplies default values for the job
steps read by the reader. Those defaults which affect jobs at GSFC are the
primary and secondary space allocations for SYSOUT data sets and REGION size.
(See Table 11.7-1.)

11.7-1



OS EXECUTIVE FEATURES

Table 11.7-1. DEFAULT SYSOUT/REGION Space Allocations
(in tracks)

SPACE ALLOCATION S/95 S/75 S/65

SYSOUT Primary 20 20 20

Allocation Secondary 40 40 40

REGION Size 64K 80K 100K

Several other values which are supplied by the reader at other installations
are superceded by the job stream manager or the accounting routines at GSFC.

The three data definitions in the reader procedure define the input stream
(this is usually a card reader, but can be a tape or direct-access data set),
the procedure library, and the SPOOL unit for data in the input stream. Sev-
eral of these values may be overridden by the operator when he starts the
procedure. Since the procedure is simply a named member in SYS1.PROCLIB,
several different versions can and do exist.

The DD which defines the PROCLIB can define any library or concatenation.
The "DODS-Reader" concatenates DODS.PROCLIB to SYS1.PROCLIB. The S/95
readers concatenate the user PROC Library. Several readers may be active at
once, each reading an input stream from a different device.

The DD which defines the SPOOL device has a value for the blocking factor.
This may be overridden on the DD card defining input data.

The interpreter scans the JCL. If any format errors are detected, the job
is immediately flushed. However, the JCL cards are still scanned for syn-
tax errors. Certain errors in data set and device allocation cannot be
determined until the job is initiated. The interpreter reads any procedures
referenced, merges the override cards, and makes the required symbolic sub-
stitutions.

11.7.2 INITIATOR-TERMINATOR PROCEDURES

The initiator-terminator consists of several modules which perform the tasks
of job initiation, step initiation, step termination, and job termination,
as necessary. Appropriate exits are taken to the accounting routines and

11.7-2



OS EXECUTIVE FEATURES

to device allocation and de-allocation routines. Each initiator is started

by the operator to a specific class or classes of jobs (see Table 18.3-2).
Input queues (in priority order) for these classes are searched, and jobs
initiated.

An initiator requires a 60K region for its own operation. The problem pro-
gram overlays the initiator when it is loaded. If the problem program re-

quires more core than is available, it must wait until the resource becomes

available. Before the advent of "express cancel" in Release 19, a job could

not be cancelled until it was initiated. Therefore, jobs which requested a
resource that was permanently unavailable (i.e., more core than the machine
had or a non-existent I/O device) could not be cancelled, but remained in the
WAIT state until the next IPL. A job may have to WAIT on core, I/O units, or

data sets (see DISP in Section 17).

The initiator loads the JCT, SCT, JFCB, and other tables from the input
queue into the step's region. SPACE for new direct-access data sets is
allocated, as well as units (unless DUMMY or DEFER is specified). It is
only at step initiation time that an OLD data set (which is not there)
or a NEW data set (which is there) are treated as JCL errors. The initia-
tor checks the COND status to see if the step should be executed. If the
step passes, the program requested is loaded. Otherwise, and after the
main program executes a return, the terminator is called. The terminator

disposes of the data sets according to the JFCBs, and puts the system
messages on the output queue. This is why programs which incorrectly ad-
dress core can cause initiators to ABEND. If these tables are incorrect,
the terminator can ABEND, and system output from that step is lost, since
the output queue will not have been completed.

The terminator determines from the SCT chain whether the job is complete.
If so, it queues all the SYSOUT data on the output queue. Space was re-
served for these queues by the interpreter. The terminator returns to the
initiator, which initiates the next step of the job or the next job from
the input queue.

11.7.3 SYSTEM OUTPUT WRITERS

System output writers are started by the operator. They are assigned to
an output device and class(es). Jobs in the output queue are selected
and printed on a priority basis. The priority is the same as was assigned
to the job when it was executed. The operator has the option of raising
or lowering the priority of jobs waiting to be printed.

The operator can also assign data sets waiting to be printed to other
classes. There are some exceptions, however. For example, CRJE output
(CLASS=R) and RJE output (CLASS=U) cannot be changed by the operator
while those systems are in operation.

11.7-3/11.7-4



GRAPHICS

SECTION 12

GRAPHICS

12.1 2250

12.1.1 GENERAL HARDWARE CAPABILITIES

The 2250 display unit basically consists of a CRT screen on which images
are displayed under programmed control from a System/360 central process-
ing unit. Optional features enable a 2250 user to enter data into the
computer.

Images on the 2250 screen fade rapidly and must be continually regenerated.
Regeneration is accomplished by programming (for an unbuffered display unit)
or, automatically, by the display control or the buffered 2250, model 1.

The basic 2250 displays graphic information in several formats: as points,
as horizontal and vertical vectors of unrestricted length, or as 45 degree
vectors of limited length. This information is used to form such displays
as characters, graphics, charts, and sketches.

The M&DO IBM System/360 models 95 and 75 are configured with 2250s, model 1.
The M&DO IBM System/360 model 65 is configured with 2250s, model 3, with
one 2840, model 2 display control unit. The features included are:

* Absolute vectors

* Light pen

• Character generator

* Alphameric keyboard

* Programmed function keyboard

The absolute vectors feature allows vectors of any length at any angle to
be drawn on the 2250 screen.

The light pen feature enables man-machine communication. The light pen is
a pen-like device which, when pointed at a portion of the display image,
causes an interrupt. By means of a computer program, this interrupt is in-
terpreted (the portion of the displayed image being pointed to is determined)
and the appropriate action is taken. Such action, for example, might be the
addition, deletion, or rearrangement of displayed data.

12.1-1



GRAPHICS

The character generator feature enables the 2250 to translate one System/360

eight-bit-byte representation of an alphameric character into a sequence of

analog signals which trace the character on the CRT display area. A stan-

dard character set of 63 alphabetics, numerics, and special symbols is pro-

vided; two character sizes are program-selectable.

The alphameric keyboard feature is a typewriter keyboard. It is another

means of man-machine communication. The user may compose messages consist-

ing of letters, numbers, or symbols, or may perform editing functions. If

the 2250 is equipped with a character generator, messages are sent to the

buffer; otherwise, messages are sent directly to the computer.

The programmed function keyboard feature consists of keys, indicators, and

overlay code sensing switches. For each key or overlay code, there is

usually an associated computer program (subroutine). When a key is de-

pressed, an interrupt is generated. The interrupt is interpreted by a

computer program and control is passed to the associated subroutine for appro-

priate action.

In addition to the features just described, the 2250, model 3's, and the 2840,
model 2 display control unit, on the IBM System/360, model 65, at GSFC are
equipped with the graphic design feature.

The graphic design feature replaces the light pen feature. Both features
cannot be on the same 2250. The graphic design feature is available only
if the absolute vector feature is included and the 2250 is equipped with an
operator control panel. The graphic design feature adds six graphic orders,
which provide expanded light-pen capabilities and additional modes for
drawing vectors. It provides tracking, sketching, incremental point plot-
ting, and vector drawing capabilities.

The fiber-optic light pen provided with the graphic design feature allows
fast detection response for light-pen tracking and similar operations.

his pen is equipped with CL sring LCLa=%L tip switch whi laces th

foot switch provided with the normal light-pen feature. Graphic orders
added with the graphic design feature can enable or disable light pen
detection interrupts, and can permit light pen detection interrupts to
occur independently of light pen switch action.

Display (buffer) programs written for the 2250, model 1, equipped with the
graphic design feature, can be operated in their entirety by a 2250, model 3,
and a 2840, model 2 display control unit.

12.1.2 POLICIES AND PROCEDURES GOVERNING USE OF GRAPHICS - M&DO 360
COMPUTERS

M&DO 360/95 - The devices covered by these rules are those for general use.
They presently include one IBM 2250 (OEl) and two IBM 2260 (0A2, 0A4) devices

12.1-2



GRAPHICS

located in Room 137, Building 3. The other display devices in that room are

governed by special regulations arranged separately with the users of those

displays.

1. All jobs that allocate display devices must be submitted through
the dispatcher in Room 167. The job slips of each of these jobs
should be plainly marked with the word "GRAPHICS," and the dis-

patcher's attention should be directed to that note. These jobs
will be taken immediately to the operations area where they will be

loaded into the system. Jobs submitted from remote devices that
allocate displays will be automatically cancelled by the operators.

2. The Job Stream Manager was modified and now assigns priority 10 to

all jobs that request < 400K memory, and a priority of 9 to all

graphics jobs requiring > 400K memory. Jobs requesting a 2250 dis-

play will be placed into job class 5, and jobs requesting a 2260
display will be placed into job class 7.

3. Users of display devices should allow at least 15 minutes from time
of job submittal to activation of the device when there is no one

using the display. Any questions should be directed to the 360/95
floor monitor (Ext. 6781) who will assist in getting graphics jobs
started with a minimum of delay.

4. A log sheet will be provided with each display. After a job is
dropped at the dispatch office, the user should immediately com-
plete the necessary information on the appropriate log. When his
job starts on the tube, the start time should be entered immediately.
From that time a maximum of 30 minutes shall be considered nominal.
At the conclusion of 30 minutes, the next person in the queue may
request that the device be yielded. In the event the log is not
properly completed, the user may be requested to yield the device
immediately. Disputes should be referred to the 360/95 floor
monitor.

M&DO 360/75

1. Jobs requesting use of display devices must be submitted to the
dispatch office in Room 167, Building 3. The job slip should be
clearly marked with the word "GRAPHICS," and this note should be
brought to the attention of the dispatcher. The job will be taken
immediately to the operator of the system, who will enter the job
into the system as the next job. The user should announce his
presence to the operator and then go to the display and await job
initiation. Undue delays, in excess of 15 minutes, and other ir-
regularities or questions should be directed to the floor monitor,
who can be reached on Ext. 6781.

12.1-3



GRAPHICS

2. Jobs submitted through the display device will not be accepted.

Questions concerning graphics software should be referred to the Programmer
Assistance Center, Room 133A, Building 3, Ext. 6768.

Scheduling

Under certain conditions the display devices may be scheduled on either com-
puter for a specific use at a specific time. All such arrangements must be
made in advance with the computer manager, and rules governing their use may
be modified during those times. Such modifications will be negotiated for
a specific situation and will be negated upon conclusion of the event. Sched-
uled times will be posted prominently near the displays involved.

12.1.2.1 Inclusion of $ in Graphic Job Userid

All users of the M&DO 360 graphic-type terminals (2250 and 2260) should in-
sert a $ as the eighth alphanumeric character in the job card userid. The
system loads all jobs so designated from the top of memory down so that they
reside in low speed memory. This is very important because most graphic
jobs reside in the computer for lengthy periods while making little use of
the resources.

The system (reader/interpreter) automatically converts the eighth alphanu-
meric character of the userid to a $ when a DD card containing UNIT = 2250
or 2260 is encountered. This change may cause confusion at the operator's
console if the job submittal slip has an alphanumeric character other than
$ as the last character.

12.1.3 GTS

Graphics Terminal Services (GTS) provides services which support the
IBM 2250 and 2260 display terminals. GTS operates as a problem program
in a region of 'MVTr and requires a region size of 35K for the 2260 and 70K for
the 2250. The services provided by GTS allow the graphics terminal user to
be largely independent of the normal computer room procedures.

GTS services may be grouped into five major functions which are discussed in
the following paragraphs. The five functions are:

1. Log-on/Log-off

2. Data set editing

3. Job scheduling

4. Job output processing

5. Job status

12.1-4



GRAPHICS

Because of the hardware differences of the 2250 and 2260, these functions
have different operational characteristics; however, the functional charac-
teristics are identical.

12.1.3.1 Log-On/Log-Off

The GSFC graphics terminal user must identify himself to the system in much
the same manner that a JOB card identifies a job to be run. He must enter
his five-character programmer ID and all accounting information normally
entered within the parentheses on a JOB card, including the commas and a
three-character box number; all information is provided in the same sequence
as in the JOB card.

When the user is finished with the terminal, he performs the Log-off opera-
tion, as follows, thus clearing his name and account number from the account-
ing log.

1. To terminate the 2260, the user types in an "F," and an "enter."

2. To terminate the 2250, the ALT code and CANCEL key are used.
The user should point the light-pen at the TERMINATE portion of
the display, and repeat this operation until the keyboard becomes
locked.

12.1.3.2 Data Set Editing

GTS allows the user to create and maintain sequential or partitioned card-
image data sets on direct-access files. The data sets may be blocked or
unblocked. These data sets can be modified by inserting or deleting card-
images or by changing existing cards.

The data set can be considered to consist of pages of card images on a
continuous scroll. The user may specify "UP" or "DOWN" to position the
scroll to a new page.

To initiate the data set editing feature, the user must specify the DS
name, member (if any), and volume serial number of the volume containing
the data set.

Any number of data sets can be created and/or edited during any one GTS
session.

12.1.3.3 Job Scheduling

Non-graphics jobs submitted through GTS to the 360 computer are treated
as any other jobs entering the system. Refer to Job Stream Manager, Sec-
tion 18.3.

12.1-5



GRAPHICS

Prior to scheduling, the user sets up his run "deck" by specifying the JCL

required. He may reference a cataloged procedure, display the procedure

on the screen, and make any changes desired. The JCL edit facility is limited

to 100 card-images on the 2250, and 200 card-images on the 2260.

If no procedure exists, the user enters all JCL through the terminal.

For reruns or jobs using similar JCL, the GTS user may "RECALL" the JCL

from the previous job and modify that JCL (if necessary) for the. current

job.

If a graphics job (one that requires use of the terminal to execute) is
scheduled, GTS automatically terminates itself and is scheduled to regain
control of the terminal when the graphics job terminates.

Selection of the "OTHER" option allows the user to attach a program as
a subtask from the GTS monitor. When the task terminates, the completion
code is displayed on the screen.

Up to eight parameters may be passed to the attached program. The passing
format of these parameters is as follows:

Register 1 points to a list of ADCONS. The last one has the high-
order bit set to 1 (i.e., '80xx xx xx'), which points to an 8-byte
area containing the parameter passed. All ADCONS and 8-byte areas
are on full word boundaries.

"OTHER" is a GSFC-added option.

12.1.3.4 Job Output Processing

After a job has terminated, the GTS user may view the output data sets and
select any or all to be printed by the system printers. The terminal may
be manipulated to view any portion of the output data sets.

12.1.3.5 Job Status

This service allows the GTS user to review the status of all the jobs that
he has entered into the system from his terminal.

12.1.4 GRAPHIC SUBROUTINE PACKAGE (GSP)

The Graphic Subroutine Package (GSP) enables a programmer to create dis-
plays (consisting of figures constructed with points, lines, and charac-
ters) on one or more IBM 2250 Display Units attached to an IBM Systen/360
Computing System.

12.1-6



GRAPHICS

GSP has facilities for data scaling, concurrent display of multiple graphic
data sets, scissoring, displaying, and editing of both textural and purely
graphic information. It provides basic software support for the handling
of light pen, typewriter and function key interrupts.

GSP also enables the user to group graphic display elements (lines, points,
words) into nested sequences and to manipulate the resultant sequences as
single display elements. All these features make GSP an extremely flexible
and powerful graphic display package.

The set of subroutines provided is to be used in conjunction with the
FORTRAN, COBOL, or PL/I languages. The execution of each subroutine is
requested by using the CALL statement.

Errors that occur while the GSP program is communicating with the 2250
are handled automatically by standard IBM error-handling routines.

GSP may be used with any IBM System/360 Operating System that contains
Graphic Programming Services (GPS) for the 2250, with basic attention
handling. The 2250s attached to the system may be any combination of
models 1 and 3, but must be equipped with absolute vectors and a buffer.

GSP can be used by programs written in the E, G, or H levels of the FORTRAN
IV language in COBOL (F), in PL/I (F), or in assembly language.

12.1.4.1 GSP Facilities and Capabilities

GSP provides the following facilities and capabilities:

* Data scaling

* Displaying multiple data sets concurrently

* Scissoring

* Displaying multiple connected line segments, i.e., simple figures
with a single subroutine call

0 Grouping displays into n nested sequences and manipulating the
resultant sequences

* Updating and editing both textual and purely graphic information

* Software support for handling the light pen, typewriter keyboard,
and function keys

GSP is an extremely flexible and powerful package and, except for the ini-
tialization procedures, is fairly easy to use.

12.1-7



GRAPHICS

12.1.4.2 Programming Requirements

Preparation of the GSP graphic program requires that the programmer:

1. Establish communication links between the program and GSP (initia-
tion subroutines).

2. Identify the 2250s on which displays are to be produced (initiation
subroutines).

3. Define one or more graphic data sets (initiation subroutines).

4. Define the characteristics of the data used to produce the
display (option definition subroutines).

5. Create the graphic orders and data necessary for the display
(image generation subroutines).

6. Cause the display to be produced on the 2250 screen (image
control subroutines).

7. Modify the images making up the display as desired (image con-
trol subroutines).

8. Establish communication between the GSP program and the 2250
operator, if desired (attention related subroutines).

9. Terminate the display by the use of GSP (termination subroutines).

12.1.4.3 JCL

The GSFC Linkage-Editor procedure LINKGO requires the following JCL for
using GSP with FORTRAN:

//STEP2 EXEC LINKGO
//LINK.OBJECT DD *

INCLUDE SYSLIB(IHCGSP03)

The GSFC Linkage Editor procedure LINKGO requires the following JCL for
using GSP with PL/1:

//STEP2 EXEC LINKGO
//LINK.OBJECT DD *

INCLUDE SYSLIB (IHEGSP01)
INCLUDE SYSLIB(IHEGSP02)
INCLUDE SYSLIB(IHEGSP03)

12.1-8



GRAPHICS

12.1.4.4 PL/I Restrictions

The following restrictions are imposed when using GSP on a PL/I program:

1. Program status cannot be checked after a CALL to a GSP subrou-
tine (e.g., return codes).

2. Input to GSP subroutines must be specified as either full word,
binary fixed-point data, or binary floating point data.

3. Arguments for GSP subroutines must be scalar constants, variables,
or expressions, depending on the requirements for the particular
argument.

4. When a structure is used, the qualified name of the element must
be passed as the argument in calls to GSP subroutines.

5. Fixed- or variable-length character strings may only be used as
the 'text' argument for PTEXT and PLSTR, or as the 'storageloc'
argument for GSPRD. The 'count' argument in each CALL must be
equal to the current length of the string.

6. All arrays specified in calls to GSP subroutines must be sub-
scripted.

12.1.4.5 References

A detailed description of each of the subroutines is described in the publi-
cation IBM System/360 Operating System: Graphic Subroutine Package (GSP)
for FORTRAN IV, COBOL, and PL/I, form GC27-6932.

12.1.5 GRAPHIC PROGRAMMING SERVICES (GPS)

The IBM 2250 Graphic Programming Services provide the user with the facili-
ties for developing, both at assembly time and at execution time, the data
used to define an image. By means of a graphic access method, GPS also
provides the facilities for transmitting the image-defining data to a dis-
play unit and for writing routines for man-machine communication. The
graphics access method must be included at SYSGEN in order to use GPS. GPS
is currently available on all M&DO computers.

GPS is designed primarily for assembly language programmers. It is more
difficult to use than GSP, but provides more direct control over display
functions. The control blocks for graphic routines must be supplied by
the user (they are handled automatically by GSP). Data buffer management
and buffer graphic programs are provided by the user by means of assembly
language macros.

12.1-9



GRAPHICS

Assembly initialization and service macro instructions provide a means of

controlling the following assembly-time counters:

1. X-coordinate beam-position counter

2. Y-coordinate beam-position counter

3. Buffer-location counter

All of these counters may be initialized and reset as desired by the pro-
grammer.

A graphic program consists of a sequence of graphic orders interleaved with
data bytes. Graphic orders and data bytes can be created by using order and
data generation macro instructions. The graphic order determines the type
of operation to be performed (e.g., drawing a dot, a character, or a line).
The data bytes are interpreted with respect to the type of operation defined
(e.g., coordinates of a point or alphameric characters).

GPS provides a Graphic Data Output Area (GDOA) and its associated Output
Area Control Block (OACB) to aid the programmer in handling lengthy or nu-
merous graphic order programs. The GDOA is a programmer-defined area in
main storage where graphic orders and data are stored prior to their trans-
mission to a graphic-device buffer. The OACB is defined by the programmer
and contains parameters used in controlling the storage of graphic orders
and data in the GDOA (e.g., location and size of GDOA, positioning of
graphic orders and data in the GDOA, ultimate location of graphic orders
and data in the buffer, and the address of the programmer's overflow
routine to avoid exceeding the limit of the GDOA).

Problem Oriented Routines (PORs) generate sequences of graphic orders and
data, dynamically, at object time. By means of input parameters, a wide
variety of images can be produced from graphic order program segments
generated by PORs.

When multiple graphic devices share a buffer, the buffer management facil-
ities provided by the graphics access method help optimize the allocation
of buffer storage among them. Buffer storage is shared, in the 2840 Dis-
play Controller, among two or more 2250 model 2 or 3 display units.

Input/output functions for graphic devices are analogous to those for
other input/output devices. The graphics access method provides macro
instructions generally similar to those provided by other access methods
(e.g., DCB, OPEN, CLOSE, GREAD, GWRITE, GCNTRL, and GREADR). These macro
instructions, however, have a special form and somewhat special functions
when they apply to graphic devices.

12.1-10



GRAPHICS

Man-machine communication is made available by attention handling routines
which act on interrupts received when the operator depresses a key on the
alphameric keyboard or the programmed function keyboard, or by touching
a part of the existing display with the light pen. The graphics access
method provides two levels of attention handling, "basic" and "express."

The Basic interrupt handler branches directly to the user attention hand-
ling routine. This allows immediate action on an interrupt, eliminates
the need for polling, and queues interrupts that occur at moments when they
cannot be handled. The Express interrupt handler sets flags in control
blocks but returns control to the interrupted user program which periodi-
cally checks the flags to detect the interrupt.

A detailed description of each of the macros provided by GPS is described
in the publication, IBM System/360 Operating System, Graphic Programming
Services for IBM 2250 Display Unit, form GC27-6909.

12.1.6 SCOPLT

The OS/360 SCOPLT (Scope Plot) routine provides the capability for users
of the IBM 2250, model 1, Graphic Display Device (Scope) to obtain a hard
copy of the screen image upon demand. This routine may be used with either
on-line or off-line Calcomp plotting systems, including the model 835.

Application programs for the IBM 2250 are usually written in FORTRAN, with
the aid of a special graphics subroutine library called GPAK (developed
jointly by IBM and the SHARE User's Group). The GPAK subroutines are called
by the FORTRAN program to create a sequence of graphic orders and to "write"
these into the Scope buffer. The buffer orders then produce the image on
the screen, independently of the main computer.

The programmer arbitrarily assigns one of the keys of the Function Keyboard
for the purpose of requesting a plot of the screen image. When the key is
pressed, the application program calls the SCOPLT routine, which then reads
the IBM 2250 buffer into core storage, translates the graphic orders into
equivalent plot commands, and returns to the calling program with an error
code.

The application program must call PLOTS before calling SCOPLT in order to
open the plot tape and initialize the PLOT subroutine with the buffer ad-
dress and size. Since SCOPLT may be invoked several times, it does not
write a "999" block address at the end of each plot. This should be done
by the calling program when the Scope user is finished. Since GPAK allows
partitioning of the Scope buffer into "areas," each of which may be loaded
separately, the SCOPLT routine also permits any number of these buffer
areas to be plotted. This is specified in the calling sequence by defin-
ing the first and last positions (0-8191) of each buffer area.

12.1-11



GRAPHICS

12.1.6.1 Plot Generation

The IBM 2250 screen is about 12" square and contains 4096 x 4096 raster
units (r.u.). However, coordinate values must be a multiple of four when
actually used in a graphic order, so the net resolution is 1024 x 1024.
SCOPLT scales the X,Y screen coordinates to page coordinates which results
in a 10.24" x 10.24" plot with the same accuracy as the screen-image,
and 400 r.u. per inch resolution. The Beam bit (blank/unblank) is recoded
to the appropriate plotter pen status code (up or down). The PLOT and
SYMBOL routines are called to generate the required plotter commands.
(Note: The revised standard SYMBOL routine should be available to assure
proper scaling of characters.)

The plot is drawn with "corner lines" to indicate the boundaries. Coor-
dinates that exceed the maximum are indicated by drawing a box symbol just
outside the boundary. "Null" characters are considered spaces. Charac-
ter strings that run outside the plot are not truncated, nor do they "wrap-
around" unless a "new-line" character is detected.

Only the Basic graphic character size is currently supported, resulting
in a 0.14" character height, with 74 characters per line border-to-border.
Screen "points" are drawn as plus (+) symbols to assure ink flow from the
pen.

12.1.6.2 Availability and References

SCOPLT resides in the same library (SYS2.GSFCLIB) which contains the PLOT
and SYMBOL routines.

For further documentation, contact Mrs. Pat Barnes, extension 6796, in the
GSFC Program Library in Building 3.

12.1-12



GRAPHICS

12.2 2260

12.2.1 GENERAL HARDWARE CAPABILITIES

The IBM System/360, models 95 and 65, at GSFC, is configured with IBM 2260
Display Units, model 1, with an IBM 2848 Control Unit, model 3. The IBM
System/360, model 75, at GSFC, is not equipped with any 2260 devices.

This section describes the general capabilities of the 2260, model 1, with
a 2848, model 3.

The IBM 2848/2260 provides the ability to access and display computer data
conveniently and faster than by more conventional means. It makes the data
available as a visual display that can be read directly and is ideally suited
for applications that require immediate data acquisition capabilities.

Provision has been made for display station input and inquiry capabilities
by including the optional keyboard feature. Input messages generated at
the keyboard are displayed on the CRT as they are composed. This permits
the user to verify a message before it is transferred.

An inquiry can be quickly entered into the computer, processed, and the de-
sired information displayed on the screen. The displayed data can be anal-
yzed, updated, and returned to the computer for additional processing.

The 2260 Display Unit can operate at distances up to 2000 cable feet from
the associated 2848. A maximum of 12 rows, each containing 80 characters,
may be displayed on the CRT when using the model 3 2848 control unit.

For additional information,-refer to the publication IBM System/360 Compo-
nent Description: IBM 2260 Display Station, IBM 2848 Display Control,
form GA27-2700.

12.2.2 SOFTWARE SUPPORT

Graphic Programming Services (GPS), a set of macro instructions and control
routines, may be used with one or more IBM 2260 Display Stations associated
with an IBM 2848 Control Unit which is connected directly to the processing
unit through either a multiplexor channel or a selector channel.

Input/output control macro instructions are used for: (1) data transmission
and control functions, (2)creating Data Control Blocks (DCBs), and (3) estab-
lishing and terminating system communication between problem programs and
display stations. Input/output control routines create Channel Command Words
(CCWs), issue supervisor calls to execute channel programs, and control data
transmission between main storage and display station buffer storage.

12.2-1



GRAPHICS

Interrupts are generated at the keyboard and may be processed either by the
"Basic" or "Express" attention handling facilities.

Basic attention handling automatically detects interrupts and routes them
to specified user-written routines.

Express attention handling does not automatically detect interrupts. The
programmer must periodically check for the occurrence of interrupts; when
received, control is transferred to specified user-written routines.

For a detailed description of the GPS macro instructions and control rou-
tines, refer to the publication IBM System/360 Operating System, Graphic
Programming Services for IBM 2260 Display Station (Local Attachment),
form GC27-6912.

12.2.2.1 2260 Subroutine Package

In response to many requests by 2260 terminal users, a set of routines to
utilize the 2260 (2260 Subroutine Package) was written by Mr. Frank Ross,
extending the standard 2260 capabilities. This set of subroutines is pri-
marily designed to be called from FORTRAN programs, but may also be called
by assembly programs. They are stored in SYS2.GSFCLIB.

This set allows the caller to open, close, read/write a buffer display,
read/write a line, insert a cursor, read keyboard input, specify an atten-
tion routine, wait for an interrupt, and delete the routine.

The calling formats, functions, and interdependence follow for each sub-
routine. The attention handling is basic, and the option of individually
addressing multiple units is supported. The entire package uses less than
2K bytes of memory, plus the access methods. All routines require a common
they share it) en-wrd array which is used for communication and

return codes.

1. GOPEN (IFT,COMM)

a. Where: IFT is an integer (I4) variable equal to the
FORTRAN unit number describing the 2260 device.

* COMM is the first word of the seven-word work
area common to all graphic subroutines
using the device.

*This seven-word array is not to be used by the caller. It can be an inte-
ger or real array.

12.2-2



GRAPHICS

b. Purpose: To open and initialize the graphic device.

c. When called: Called first before any other subroutine

(graphic). Only should be called once.

d. Dependence: None, but must be the first subroutine (gra-
phic) called.

2. GCLOS (IFT,COMM)

a. Where: IFT is an integer (I4) variable equal to the
FORTRAN unit number describing the 2260 device.

COMM is the first word of the seven-word sub-
routine work area.

b. Purpose: To close the graphic device.

c. When called: The last graphic subroutine called. Only
should be called once.

d. Dependence: "GOPEN" must have been issued before "GCLOS"
is called.

3. GSPAR (COMM)

a. Where: COMM is the first word of the seven-word work
area.

b. Purpose: To specify and enable the honoring of 2260
interrupts.

c. When called: After "GOPEN" and before "GWAIT", "GCUR", "GDAR",
or "GCLOS."

d. Dependence: Designed to be used with "GWAIT" or "GCUR."
This routine can only be called once unless a
"GDAR" has been issued; then another "GSPAR"
may be used.

4. GWAIT (COMM[,UNITI)

a. Where: COMM is the first word of the seven-word work
area.

UNIT (optional) is an (14) integer variable
which will be filled with the tube number for
the interrupt if multiple tubes are being used.

12.2-3



GRAPHICS

b. Purpose: To place the program in a wait state until
a 2260 interrupt is received.

c. When called: After "GOPEN" and "GSPAR".
Before "GDAR" and "GCLOS".

d. Dependence: Needs "GSPAR" to set up the routine to take
caller out of wait state when interrupt is
received. No limit to the number of calls.

5. GDAR (COMM)

a. Where: COMM is the first word of the seven-word work
area.

b. Purpose: To delete and disable the honoring of 2260
interrupts.

c. When called: After "GOPEN" and "GSPAR"; before "GCLOS".

d. Dependence: Both "GOPEN" and "GSPAR" must have been called
before calling GDAR. Can only be used after a
"GSPAR". This routine cancels a "GSPAR," and
therefore can be called once for each "GSPAR"
called.

6. GICUR (COMM,AREA,TYPE,LINE[ ,UNITI)

a. Where: COMM is the first word of the seven-word work
area.

*AREA is the Dummy Variable (14,R*4)

*TYPE is the Dummy Variable (I4,R*4)

LINE is the Integer Variable (14) from 1 to 12
which specifies the line number into which
cursor and start symbol are to be placed.

UNIT is the (optional) integer variable (14)
specifying the unit for the opening of multi-
ple units.

*Presently ignored

b. Purpose: To insert a start symbol '-." and cursor into
the specified line.

12.2-4



GRAPHICS

c. Dependence: Must have called "GSPAR" before calling GICUR.
Must call "GWAIT" in order that the interrupt
be honored from the end-of-keyboard-data
interrupt of the data being entered.

d. Return: The fifth word of the seven-word work area
contains zero if the operation was successful.

7. GRCUR (COMM,AREA,TYPE,LEN[,UNIT])

a. Where: COMM is same as in "GICUR" and all other
routines.

AREA is the first byte of array into which
the data will be transferred.

*TYPE is the Dummy Variable (I4).

LEN is the integer variable (14) specifying
the number of characters to transfer.

UNIT (optional) is the same as in "GICUR".

*Presently ignored

b. Purpose: To read and transfer data between the start
symbol and the cursor. (Note that the
maximum characters per line with start
symbol is 79; since start symbol takes one
position; start symbol not transferred.)

c. Dependence: Must have previously called "GICUR" and "GSPAR".
The fifth word of the seven-word work area
contains the following codes and meanings
(in 14 format):

=0 Everything correct
=4 Data entered from keyboard less than re-

quested read length
:8 Data entered from keyboard greater than

requested read length
-12 Did not call "GICUR" previously to calling

"GRCUR"

12.2-5



GRAPHICS

8. GWBUF (COMM,AREA,KEY(,UNIT]) and GRBUF (COMM,AREA,KEY[,UNIT])

These are the write buffer and read buffer routines, respectively.

a. Where: COMM is the first word of seven-word work area.

AREA is the first location of array having
data to be transferred or to receive data.

This array must be 960 bytes long. Data
transferred in "A" format (characters).

KEY is the integer variable whose value deter-
mines whether keyboard restore is to take
place.

=0 with keyboard restore
#0 without keyboard restore

UNIT is the optional integer variable specifying
the unit when opening multiple units.

b. Purpose: To transfer user data (960 bytes) to and
from the 2260 buffer. User's array should
be in "A" type format.

c. When called: After "GOPEN" and before "GLCOS." No limit
to number of calls.

d. Dependence: "GRBUF" should not be called, unless a pre-
vious "GWBUF" has been used, since garbage
will be read in.

e. Return: The fifth word of the seven-word work area
contains zero if the read/write operation was
successful. It contains a non-zero value
if the read/write failed.

9. GWLIN (COMM,AREA,KEY,LINE[,UNIT]) and GRLIN (COMM,AREA,KEY,LINE[,UNIT])

a. Where: COMM is the first word of the seven-word work
area

AREA is the first byte of the area which con-
tains 80 bytes of data to be transferred or
to receive 80 bytes of data ("A" format data).

KEY is the integer variable (14) whose value
determines whether keyboard restore is to
take place.

12.2-6



GRAPHICS

=0 with keyboard restore
#0 without keyboard restore

LINE is the integer variable (14) giving line
number (1-12) to be acted upon.

UNIT is the optional integer variable

specifying the unit when opening multiple units.

b. Purpose: To transfer one line of 80 characters to or
from the 2260 device. Data should be in "A"
type format.

c. When called: After "GOPEN" and before "GCLOS."

d. Dependence: "GRLIN" should not be called unless the 2260
has had a previous display produced on it.

e. Return: The fifth word of the seven-word work area
contains zero if the operation was successful.
It contains a non-zero if the read/write
failed.

10. GEBUF (COMM[,UNIT])

This subroutine complete erases the 2260 screen.

a. Where: COMM is the first word of the seven-word
work area.

UNIT (optional) is the integer variable speci-
fying the unit when multiple units have been
opened.

b. Purpose: Erases the 2260 screen.

c. When called: After "GOPEN" but before "GCLOS."

d. Dependence: None

e. Return: The fifth word of the seven-word work area
contains zero if successful, non-zero if un-
successful.

12.2-7



GRAPHICS

12.3 PLOTTERS

The system library on the model 95 contains software plotting aids callable
from FORTRAN programs for the following plotting devices:

1. Stromberg-Carlson 4020 Plotterl

2. Stromberg-Datagraphics 4060 Plotter

3. CalComp 770/780 Plotter

4. On-line printer

12.3.1 STROMBERG-CARLSON 4020 PLOTTER (SC-4020)1

This is a cathode ray microfilm plotter with a plotting area of 7" by 7"
(hard copy) or 35 mm microfilm.

When generating the plot tape, the following JCL cards are required to in-
clude the plot routines from the system library and to define the output
tape using FT10:

//PLOT EXEC LINKGO
//LINK.SYSLIB DD DSN=SYS2.SC4020,DISP=SHR
//GO.FTIOF001 DD DSN=useridxxx,UNIT=7TRACK,
// LABEL=(,BLP),DISP=(NEW,KEEP),
// VOLUME=SER=xxxxxx,DCB=(BLKSIZE=1200,
// TRTCH=C,DEN=1)

where:

userid = the programmer's regular five-character ID, plus three

VOL=SER=xxxxxx: For xxxxxx, the user substitutes his own tape number.

SC-4020 may also be executed using the LOADER procedure.

1
The SC-4020 plotter is no longer available at the GSFC. The Stromberg
Datagraphics 4060 (paragraph 12.3.2) has a 4020 simulator and for a limited
time tapes generated for the 4020 will be processed on the SD-4060. When
using the SD-4060 in SC-4020 mode, the maximum block size that should be
used is 1536, in order to allow space for the simulation routine. Use of
a larger block size will cause degradation of plotting speed in the SD-4060.
Users are urged to convert their programs for direct processing by the
SD-4060.

12.3-1



GRAPHICS

12.3.1.1 References

For more detailed information about the SC-4020 plot routine, see the SC-4020
Microfilm Recorder User's Manual, prepared by Computer Sciences Corporation
under NASA contract NAS5-9758.

12.3.2 STROMBERG-DATAGRAPHICS 4060 PLOTTER

The Stromberg-Datagraphics 4060 plotter was formerly called the Stromberg-
Carlson 4060 plotter. The latest plot package contains 3-D and polar plot
routines.

This plotter is located in Building 23, and a generated plot tape for the
purpose of obtaining hard copy or microfilm may be submitted at the Univac
1108 dispatcher's desk there.

When generating the plot tape, the following JCL cards are required to
include the plot routines from the system library and to define the out-
put tape on SD4060ZZ.

//PLOT EXEC LINKGO
//LINK.SYSLIB DD DSN=SYS2.SD4060,DISP-SHR
//GO.SD4060ZZ DD DSN=useidxxx,UNIT=7TRACK,
// LABEL=(1,,BLP) ,DISP=(NEW,KEEP),
// VOL=SER=xxxxxx,DCB=(DEN=n,TRTCH=C,
// RECFM=F,BLKSIZE=720)

Where:

userid is the programmer's regular five-character ID, plus three charac-
ters of his choosing.

n = 1 for 556 BPI

n = 2 for 800 BPI

xxxxxx is replaced by the user's tape number.

720 is the maximum blocksize that can be processed efficiently by the SD-4060.
SD4060 may also be executed using the LOADER procedure.

12.3.2.1 P360 - Output To Microfilm (Scientific Font)

P360 is an SD-4060 processor that allows the user to process a 7-track tape
generated on the IBM 360 series of computers. The output is 16-mm positive-
appearing microfilm. Both standard ASA (American Standard Association) and
machine codes for the IBM 1403 printer carriage control characters are

12.3-2



GRAPHICS

accepted. A print list (print all characters, i.e., no control characters)
is included.

P360 restrictions are as follows:

1. Standard OS tape labels are required.

2. Any BLKSIZE, RECFM, and LRECL is valid provided the BLKSIZE is
less than or equal to 2560 bytes. Since most microfilm appli-
cations entail large amounts of output, you should normally use
the largest blocking factor within the above restrictions.

3. If you use RECFM=V, you must use TRTCH=C. When TRTCH=C is speci-
fied, the largest blocksize allowable is BLKSIZE=1920.

TRTCH=ET gives invalid output for special characters such as (,), &, and =.
In addition, the carriage control character "+" will not work properly if
you use TRTCH=ET.

Example of overriding the normal SYSOUT writer output (assuming the DCB
parameters are compatible with your program).

//GO.FT06F001 DD UNIT=2400-7,DISP=(,KEEP) ,LABEL= (1,SL),
// DCB= (BLKSIZE=1920 ,LRECL=137,RECFM=VBA,TRTCH=C,DEN=2),
// DSN=--------,VOL=SER=------

Tapes to be processed should be brought to the SD-4060 dispatcher in building
23, room E220. Care should be taken when filling out the instruction card
to ensure that the name P360 is written under "Scrip Processor." For
"number of frames" of microfilm output, insert the number of pages of
printed output usually received.

12.3.2.2 P36B - Output to Microfilm (Business Font)

P36B is a new processor now available for producers of 360 print tapes. The
present system, P360, produces a scientific font. The new system, P36B,
produces a business font; their differences are:

P360 P36B
Character Character

+ &

No change in the format or mode settings is required. Except for the above
character changes, P36B is identical in all ways to P360.

12.3-3



GRAPHICS

12.3.2.3 References

Refer to the Universal SD-4060 System and Software Manual, dated June 22, 1970.
This manual may be obtained from either Mr. Donald Kennedy, Building 23,
Room W201, extension 6992, or Mr. George Fleming, Building 23, Room W207,
extension 6346.

12.3.3 CALCOMP 770/780 PLOTTING SYSTEM

The Calcomp 770/780 plotter is a pen plotter that offers a good compromise
between speed and accuracy. With a resolution of .005 inches, the Calcomp
can quickly produce a large series of plots on its drum plotter. For most
general purpose plots, the Calcomp 30" drum plotter is perhaps the most
convenient plotter in terms of time and quality. The plotting surface of the
770/780 is 30 inches x 120 feet. The user produces a magnetic tape and takes
it for off-line plotting to Building 1, Room 8, (extension 6277).

The 770 plot routines are described in the CalComp Digital Recorder User's
Manual. The 780 routines are a later, improved version from CalComp, for
which no documentation is generally available.

When generating the CalComp 770/780 plot tapes, the following JCL is re-
quired:

For CalComp 770 plot tapes, use:

//PLOT EXEC LINKGO
//LINK.SYSLIB DD DSNAME=SYS2.CAL770,DISP=SHR
//GO.PLOTAPE DD DSN=useidxxx,UNIT=7TRACK,
// LABEL=(,BLP),VOL= SER=xxxxx,DCB=DEN=1

For CalComp 780 plot tapes, use:

//PLOT EXEC LINKGO
//LINK. SYSLIB DD DSNAME=SYS2. CAL780, DISP=SHR
//GO. PLOTTAPE DD DSN=useidxxx, UNIT=7TRACK,
// LABEL=(,BLP),VOL=SER=xxxxxx,DCB=DEN=l

Where:

userid is the programmer's regular five-character ID, plus three
characters of his choosing.

VOL=SER=xxxxxx: For xxxxxx, the user substitutes his own tape
number. The plot tape generated will be a 7-track tape at 556 BPI.

12.3-4



GRAPHICS

Note: Notice the different spelling in the DD cards above:

PLOTAPE for the 770 routine, but PLOTTAPE for the 780

routine.

12.3.3.1 References

Refer to the CalComp Digital Recorder User's Manual for further documenta-

tion.

12.3.4 CPLOT PROGRAM

This is a set of subroutines, simple to use, designed to aid in plotting on

the CalComp 770. The subroutines were originally written to be used in con-

junction with the CalComp 570 (no longer available at GSFC), and only 10

inches of the 30-inch plotting area will be used. The routines automati-

cally perform scaling and labeling to produce plots on a user-defined grid.

The CPLOT routines are contained in the standard FORTRAN library, FORTLIB,

but the user must also include the LINK.SYSLIB and the DD control cards

described for the CalComp 770 subroutines. For example, in addition to

using the applicable calling sequences for the CPLOT routines, the user must

add the following JCL cards:

//PLOT EXEC LINKGO
//LINK.SYSLIB DD DSNAME=SYS2.CAL770,DISP=SHR
//GO.PLOTAPE DD DSN=useidxxx,UNIT=7TRACK,
// LABEL= (,BLP) ,VOL=SE R=xxxxxx, DCB=DEN=l

Where:

xxxxxx is replaced by the users tape number

12.3 4 1 References

For further documentation, contact Mrs. Pat Barnes in the GSFC Program

Library, Building 3, extension 6796.

Refer to the memorandum from Mr. D. Y. Sumida, Code 603, Subject: CPLOT,
dated September 1, 1967, and a manual titled CPLOT CalComp Plotter Routine,
Direct-Couple System for FORTRAN II, FORTRAN IV, Theoretical Division.

12.3.5 PRPLOT PROGRAM

The PRPLOT program is a S/360 version of the 7090/7094 UMPLOT routines.
This is a set of subroutines designed to plot on the standard computer

printer (SYSOUT=A). It is callable from FORTRAN and requires no DD or
SYSLIB cards.

12.3-5



GRAPHICS

The output and usage are similar to CPLOT, to allow the user to check out
his program with quick turnaround before using a plot tape.

12.3.5.1 References

For documentation on PRPLOT, refer to the Laboratory for Theoretical Studies,
System 360, Bulletin No. 5, from P. Smidinger, dated September 26, 1966,
Subject: PRPLOT, A 360 Printer Plotting Program, with attachment from the
University of Michigan Computing Center, dated March 1, 1961, on UMPLOT
subroutine.

12.3.6 WOLF PLOTTING AND CONTOURING PACKAGE

The WOLF Plot Package is available on the M&DO 360/95. It is a complete sys-
tem for producing printer, SD4060, Gerber, CAlcomp or SC4020 plots. The package
has been designed to be highly flexible and easy to use. Any plot from a quick
simple plot (which requires only one call to the package) to highly sophisticated
plots (including motion picture plots) can be easily generated with only a basic
knowledge of FORTRAN being necessary.

A typewriter mode is available which conveniently allows plotting of charac-
ter information on the SD4060 or SC4020 (with optional printer simulation).
This is especially useful as a printer substitute for large amounts of
output.

12.3.6.1 Plotter Output

The WOLF Plot Segment can produce output for any combination of the follow-
ing plotters.

1. The printer plotter produces plots as part of the output and
listing of a job. In general, these plots are crude since the
printer has a resolution of only one character space. However,
the plots are immediately available after the job is run and offers
a good quick look. And for simple plots, the results can be quite
acceptable. Furthermore, these plots offer simulations of other
plotter output.

2. Stromberg-Datagraphics 4060 Plotter. (See subsection 12.3.2.)

3. CalComp 770/780 Plotter. (See subsection 12.3.3.)

4. Stromberg-Datagraphics 4020 Plotter. Not available at GSFC (see
subsection 12.3.1).

5. Gerber Plotter. Not available at GSFC.

All output for the above plotters can be produced simultaneously.

12.3-6



GRAPHICS

Types of plots currently supported:

* Linear

* Semi-log

• Log-log

* Polar

* Tabular data using the FORTRAN WRITE statement

* 3d linear

" Affine transformations

There is also a complete labeling facility enabling:

* Horizontal labels

* Vertical labels

* Diagonal labels

* Vector characters of a requested size (special character fonts
easily implemented)

* Rotated Letters

These may be placed on the plot according to either device coordinates (ob-
ject space) or the user's plotting coordinates (subject space). The gridding
routines label the arid lines according to the user's specification. The
package includes routines for dynamically determining both esthetic grid
limits for linear plots and formats for grid line values. An editing routine
is also included for converting floating point or integer numbers to EBCDIC
characters in either integer, decimal, or exponential format.

A quick-plot facility is available for linear plots (2d and 3d). The rou-
tines establish grid-limits from the data and invoke the gridding and plotting
routines.

An open grid feature is also implemented. The interior lines of the grid
overlay are suppressed.

12.3-7



GRAPHICS

There is an auxiliary set of routines available for producing special line
features. These were developed especially for use with the contouring seg-
ment. They include:

* Multiple lines - number and separation user specified.

* Dashed lines - dash sizes and sequence is user specified.

* Tic marks - size and angle with the plotted line is arbitrary.

12.3.6.2 Required JCL

To use the Wolf Plotting and Contouring Package on the 360/95, the user must
override the //SYSLIB DD card in the LINK step as follows:

//LINK.SYSLIB DD DSN=SYS2.WOLFPLOT,DISP=SHR

Any difficulties in the use of this package should be reported to the PAC
in Building 3, Room 133A, extension 6768.

12.3.6.3 Reference

The document, The Wolf Plotting and Contouring Package (General Plotting
and Contouring Program), GSFC Computer Program Library #A00227, is available
from the Program Library, Building 3, Room 133, extension 6796.

12.3.7 MARK IV

The primary function of the MARK IV File Management System is to provide the
ability to manipulate files of data. The description of these files is in-
dependent of the files themselves. The structures and format of a file and
the records (entries) within that file are defined to the system and stored
in a dictionary. The transactions which are used to create or update data
files are likewise defined to the system and stored in a dictionary. These
definitions identify the data that will update the file and specify the up-
dating action to be performed.

After the files and their transactions have been defined, file maintenance
can be performed. When the user specifies that a particular file maintenance
is to be invoked, the system reads the master file, reads the transactions,
and does the updating.

Once files have been created, information requests can be made. These re-
quests are used to select entries from a file, select specified data from
the entries for computation and logical processing and specify the desired
output. This output takes the form of reports, intermediate result files,

12.3-8



GRAPHICS

subsets of the original file, or combinations of all of these. In addition,
the system has the ability to process multiple input files simultaneously.

Requests that are to be repetitively used can be batched and stored in a sys-
tem catalog as a request group. Each cataloged job can be modified by batch-
ing additional requests with it. For example, ad hoc requirements can be
combined with a cataloged job for processing, thus alleviating the need for
multiple file passes. If any requests contain errors, they are not proc-
essed, and further do not impact the processing of other valid requests.

12.3.7.1 Availability

MARK IV is available on the SESCC 360/91 and 360/75, and the M&DOD 360/95
computers.

12.3.7.2 Additional Information

Because of the broad areas of application for this program, potential MARK IV
users are requested to contact Mr. Dennis M. Giblin, extension 4587, Code
603.2, for additional information concerning its use.

12.3.7.3 Classes

MARK IV classes are arranged through the Organization and Employee Develop-
ment Branch, Manpower Utilization Division. Students are selected through
a survey conducted each spring.

12.3.7.4 Manuals

MARK IV manuals may be obtained by writing to:

Informatics, Inc.
MARK IV Order Desk
21050 Vanowen Street
Canoga Park, California 91303

Prices for manuals are as follows:

Reference Manual $6.50
Operations Guide 6.50
Pracniques Handbook 4.00
User's Guide 4.00

These prices do not include binders. A binder can be purchased for any
manual for $1.00.

12.3-9



REMOTE JOB ENTRY

SECTION 13

REMOTE JOB ENTRY

13.1 GENERAL DISCUSSION

13.1.1 NATURE OF REMOTE JOB ENTRY (RJE)

The Remote Job Entry (RJE) facility of the operating system provides, for
users of the IBM 360/95, an efficient and convenient method for entering jobs
submitted from remote work stations into the job stream. Once a job has
been entered into the job stream by RJE, execution of the job proceeds under
the supervision of the operating system job management routines. All data
sets created by the job are handled by the operating system data management
routines. Output data sets that have been created by remotely submitted
jobs and that are to be returned to the remote user are placed in a sepa-
rate output class. These data sets are removed from this output class and
returned to the remote user under the direction of the RJE program. This
type of operation provides a remote user with the same batch-computing
facility that is available at the central installation.

Note: The RJE system was designed by IBM so that all of a job's JCL is re-
turned to the RJE terminal. This has been changed by a GSFC modification.
One now has the option of having the JCL printed at the 360/95 or at the
terminal. The presence of the parameter ACCT=CENT on any EXEC card will mean
that the JCL, upon job completion, will be printed at the 360/95. Because of
job queue space limitations, RJE users are encouraged to make as much use of
this parameter as possible, especially on those jobs which are not likely to
run until the evening.

This feature works independently of the JED commands.

ACCT=CENT is ignored if the job is submitted through the dispatcher or CRJE.

Example: Job submitted through RJE with JCL to be printed at the 360/95.

// (Job Card)
//STEPX EXEC PGM=XYZ,ACCT=CENT

13.1.2 RJE FACILITIES

13.1.2.1 Hardware

For M&DO users, the central computer is the IBM 360/95, equipped with a 2703
type Transmission Control Unit. The remote terminals are IBM 2780 Data Trans-
mission Terminals, each containing a card reader, a punch unit (with one
exception) and a line printer. The terminals are connected to the central
system either by leased-line or dial-up data phone units.

13.1-1



REMOTE JOB ENTRY

During regularly scheduled hours of operation, special circumstances may make

it necessary to alter the status of RJE service. A pair of signal lights is

provided at each terminal which signifies the current RJE status. 
In fairness

to all users of the system, these signals should be obeyed without exception.

The following code will be used:

GREEN RED KEY

ON OFF RJE is fully operational:

Okay to submit jobs or retrieve output.

ON ON RJE is running but 360/95 is overloaded:

Hold all submits. Okay to retrieve

Output.

OFF ON RJE is temporarily out of service:

Will be back soon (hopefully).

OFF OFF RJE not in service:
Normal hours are 8 a.m. to 8 p.m.

daily except weekends and holidays.

13.1.2.2 The RJE System

The RJE user communicates with the RJE system (actually a high priority task

running on the 360/95, using 150K of core) through the use of work station

commands. Work station commands can be placed between jobs in the input stream;

however, they must not be placed within the physical limits of a job.

Through the use of work station commands:

a. The user can specify that the job output be returned immediately

or deferred until requested. In the event of a cold start, all

RJE jobs currently in the system will be lost. The operator will

attempt to notify the user through dispatch by returning a card

containing the job name and a message, "LOST IN IPL." A warm start

will cause the remaining steps in the job to be flushed. No

completion code or other indication will be provided. A warm

start should be suspected when the job stops executing for no

apparent reason after running normally for awhile.

b. There are two sets of ID's established for the terminal and user.

The first is established with the RJSTART command and is the

Terminal ID.

RJSTART GSFC#5

13.1-2



REMOTE JOB ENTRY

The second set (id, password) is established with the LOGON command
and is the userid. At GSFC, each terminal has a unique dedicated

userid (see 13.1.3).

.. LOGON GA5,KEY

In this case, the id GA5 is the userid corresponding to terminal

GSFC#5. No terminal id or userid should ever be used unless it is

properly assigned to the user's terminal. The user can direct job
output to his userid, to an alternate userid, or to the control system
output devices. Only the userid used when submitting the job, or an

alternate userid specified by the submitter, can be used to remotely
receive job output.

c. The user can request notification of job completion, including an
indication of normal or abnormal termination.

d. The remote operator can discontinue in-process printing to read

in cards and continue the printing at a later time by command.
Some duplication may appear when printing resumes, since it starts
at the beginning of the buffer. Messages pertaining to the cards
being fed in will be printed at the conclusion of the interrupted
printout, except for error messages, which are printed out immediately.

e. Should other than the standard forms be required, the user can
specify the requested form numbers. The RJE system will auto-
matically discontinue output and send a message to the remote
operator, who may continue output after satisfying the form change
request.

Work station commands precede the job to which they apply. If a work station
command is received in the middle of a job, it will be processed as part of

the job, not as an RJE command. The commands are of the form:

COLUMNS

1 & 2 3 4-71 72 73-80

BLANK COMMAND * Sequence number
(Optional)

*A non-blank character in column 72 is required to continue a command.

The continued command must have periods in columns 1 and 2 and be blank
from columns 3 to 15. The operand being continued must begin in column

16, or it will be treated as a comment. (The JED command is the only

one which may be continued.)

Table 13.1 illustrates the available commands and their usage.

13.1-3



REMOTE JOB ENTRY

13.1.3 LOCATIONS OF RJE TERMINALS

There are currently six RJE Terminals connected to the IBM 360/95. These
terminals are installed in the following locations:

Location Room Work Station Userid Person in Charge Extension
or

Termid

NASA/GSFC Bldg. 23 C220 GSFC#1 GAl Mr. Charles Newman 5666
NASA/GSFC Bldg. 4* 112 GSFC#4 GA4 Mr. Joseph Morris 2531
NASA/GSFC Bldg. 17 S41 GSFC#3 GA3 Mr. Walt Dennison 6506
NASA/GSFC Bldg. 7 130A GSFC#2 GA2 Mr. Reg Mitchell 5549
Computer Sciences
Corporation
Silver Spring 623 GSFC#5 GA5 Mr. Dave Berkowitz 589-1545

X395
NASA/GSFC Bldg. 11 S125 GSFC#6 GA6 Mrs. Marjorie Johns 6544

*Dial-up data phone units - current phone number of the 360/95 is 474-5230.

All locations are equipped with the IBM 2780 Data Transmission Terminal,
Model 2, except for the GSFC location in Building 7, which contains a
DATA 100 terminal, which has card read and print capabilities. The 2780-2
has card read, punch, and print capabilities.

13.1.4 COMPUTERS SUPPORTING RJE

The only M&DO computer supporting RJE is the 360/95. Refer to paragraph 2.3.2
of this User's Guide for job submission procedures.

The SESCC Model 91K (see paragraph 2.4.1) also supports RJE. It has one IBM
2780 line and one IBM 1130 available for use.

13.1.5 TAPE MOUNTS

Refer to paragraph 2.3.4 of this User's Guide for a discussion of the policy
and procedures pertaining to the use of tapes in RJE submitted jobs.

13.1.6 POLICY AND RESTRICTIONS

Anyone having a valid programmer id and sponsor number (see paragraphs 2.1.2
and 2.1.3) is authorized to use the RJE facilities. During regular RJE oper-
ating hours (8:00 a.m. to 8:00 p.m., Monday through Friday, excluding holidays)
programs with a CPU or I/O time exceeding 15 minutes, or which use more than
700K bytes of memory, will fail with the message:

"***JOB FAILED FOR EXCEEDING CORE SIZE LIMIT."

13.1-4



REMOTE JOB ENTRY

13.1.7 REFERENCES

1. IBM System/360 Operating System Remote Job Entry, Form GC30-2006.

2. IBM 2780 Data Transmission Terminal - Component Description,
Form GA27-3005.

13.1-5



Table 13.1. RJE COMMANDS

Command Operands Function Example

1. RJSTART Terminal id Attaches and identifies a work .. RJSTART GSFC#1
station to the system. This This will attach station #1 to the
must be the first command re- RJE system.
ceived from an inactive (not
attached) work station.

,BRDCST=YES .. RJSTART GSFC#1,BRDCST=YES
This will print messages of system
interest on the remote printer after
attaching the work station to the
RJE system.

a ,BRDCST=NO .. RJSTART GSFC#1,BRDCST=NO
This is the default value and is
the same as .. RJSTART GSFC#1.

2. RJEND (no operand) Detaches a work station. All .. RJEND
messages directed to the work This will detach a work station from
station are transmitted before RJE.
the station is logically de-
tached. No more job output
will be returned to the work
station after the RJEND com-
mand is accepted.

3. LOGON userid,key Begins a user session. As cur- .. LOGON GA1,KEY
rently set up at GSFC, there User #1 is ready to begin a session.
is usually only one userid, A user cannot be logged on at more
e.g., GA1, per work station, than one work station at a time. If
'Key' for all GSFC stations a user desires to change work sta-
is actually the word KEY. tions, he must log off at his old

work station before logging on at
the new work station.



Table 13.1. (Cont'd)

Command Operands Function Example

4. LOGOFF (no operand) Completes a user session. .. LOGOFF
A user has completed a session. No
more work will be accepted from the
station until another LOGON command
is entered. However, immediate out-
put will still be directed to the
work station.

5. OUTPUT J=jobname Requests specific job output. .. OUTPUT J=ABCDE001
Print and punch outputs from job
ABCDE001 are returned to the termi-
nal from which they were submitted
if the user originated it or if the
user has been named as a valid re-
cipient of the output.

U=userid Requests all deferred output .. OUTPUT U=GAl
for an id. All deferred jobs for which GAl is

a valid recipient are returned.
This is valuable for jobs requir-
ing punch output.

Requests for all jobs naming .. OUTPUT *
the current id as a valid Jobs submitted under other id's
recipient. naming the current id as a valid

recipient of output will be re-
turned. The user may route a job
to another work station and obtain
the output with this command.

(no operand) This is identical to U=userid. .. OUTPUT
All deferred jobs submitted by the
current id will be returned.



Table 13.1. (Cont'd)

Command Operands Function Example

6. CONTINUE Requests discontinued output.
Output may have been discon-
tinued because of a forms
change, operator intervention,
or equipment failure during
an output operation. When
interrupted output is being
held for a work station, no
output will be returned to
the work station until a CON-
TINUE command is received.
However, RJE will continue to
accept work from the station.

SThe full JCL is always returned
to the RJE terminal (see bottom

CDof page 13.2-2).

BEGIN Retransmits entire data set. .. CONTINUE BEGIN

Data set is retransmitted from be-
ginning - this command is used when
there is a paper problem.

NO Discontinues printing data .. CONTINUE NO
set. Method: Press STOP, The current data set is lost. One
then START on the printer. CONTINUE NO command is required for
TERM ADDR light will come on. each data set in a job if the print-
Turn dial to OFFLINE and then ing is to be suppressed. This will
back to TSM/TRSP. Ready the allow suppressing a dump (acciden-
printer. Place a CONTINUE NO tally set remote) while still obtain-
card in the card reader, ready ing the remaining output. JCL can-
the EOF button, and press not be discontinued through the use
START to read the card. The of the CONTINUE NO command.
alarm will sound until the
printer resumes printing.



Table 13.1 (Cont'd)

Command Operands Function Example

6. CONTINUE (no operand) Continues interrupted output. .. CONTINUE
(Cont'd) This card may be used after an equip-

ment failure is corrected (fix the
paper or ready the punch). With
blocked records, there is a possi-
bility of duplicate output, since
transmission is resumed at the be-
ginning of a block.

7. DELETE jobname Deletes the job name from the .. DELETE ABCDE001
J=jobname system if the user (id) is The job ABCDE001 is deleted when the

identical to the one submit- message, "IHK107IJOB DELETED ABCDE001
ting the job. All output di- GAl" is returned. The user may not
rected to the terminal is de- re-use the job name until the mes-
leted. If the job has already sage is returned.
run, permanent data sets cre-
ated by the job remain intact.
Output to the central computer
will be printed.

(no operand) Removes from the system all .. DELETE
jobs under the current LOGON This is used (very cautiously) to
id. delete all jobs in the current user

stream when the possibility of dupli-
cate jobnames must be avoided.

8. ALERT Requests that the system
notify the user that his de-
ferred output is ready.

0
w



Table 13.1. (Cont'd)

Command Operands Function Example

8. ALERT J=jobname Notifies a specific completion. .. ALERT ABCDEO01
(Cont'd) jobname The command remains pending until

job ABCDE001 is completed. If the
job is not in the system, a mes-
sage is returned to that effect and
the command is rejected.

Notifies any job for which the .. ALERT *
current userid is a valid re- This command is useful when the user
cipient. As currently set up expects job output from another user
at GSFC, there is usually only and wishes to be notified when it is
one userid, e.g., GA1, per available.

Swork station.

/ Cancels all pending ALERT com- .. ALERT /
o mands issued by this work sta- There is no selective canceling of

tion. ALERT commands.

(no operand) Alerts information returned .. ALERT
for all user jobs. This is similar to a status command

in that a message is printed when a
job finishes.

1
9. STATUS J=jobname Returns the status of a job. .. STATUS J=ABCDE001

Returns the status of ABCDE001.

U=userid Specifies all current jobs .. STATUS GA1 or .. STATUS
or submitted by id. No operand All jobs submitted by GAl or the

(no operand) treated as current id. current user are displayed on the
printer.



Table 13.1 (Cont'd)

Command Operands Function Example

1
STATUS * Specifies all jobs for which .. STATUS *

(Cont'd) the current user is a valid A user may wish to know of jobs sent
recipient, e.g., at GSFC it to him by other users, as well as

could mean anyone who had sub- his own jobs.
mitted a job from a particular
terminal.

T Specifies all jobs submitted .. STATUS T

by a work station. A work station may use this command
just before initiating closedown to
determine if any job is waiting to
print.

10. BRDCSTR none Returns a copy of broadcast .. BRDCSTR

messages sent by the central Messages such as the next scheduled
operator. closedown may be returned.

11. MSGR M='text' Sends a message of 40 or fewer .. M='MESSAGE'

characters to the operator if The word 'MESSAGE' and the userid

the T and U parameters are are displayed to the central opera-
omitted. tor or the user specified by T or U.

1
If the STATUS response indicates that the job is not in the system, the following possibilities may have

occurred:
a. Immediate output - The output may have already been returned.

b. Deferred output with alternate recipient - Alternate has retrieved output using an OUTPUT command.

c. Shared userid - Other persons sharing userid may have received output.
d. Job may have been deleted by user or another user sharing that userid.

e. Central operator retrieved the job with a CENOUT command.
f. A cold start may have occurred.



Table 13.1. (Cont'd)

Command Operands Function Example

11. MSGR U=userid Routes the message to the user- .. MSGR M='MESSAGE',U=GA1
(Cont'd) id named, if he is logged on.

T=termid Sends a message to the terminal .. MSGR M='MESSAGE',T=GSFC#1
specified. The message is held The word 'MESSAGE' is printed on
until the terminal is active. terminal #1 when it comes on line.

U and T can be used together to
send a message to a special user
of a terminal if he is logged on.

12. JED The JED statement is not re-
quired as part of the job entry.
If it is omitted, the follow-
ing system defaults are assumed:
1. Immediate output.
:2. No notification of job com-

pletion.
3. All output returned to user.
The JED statement is the only
control statement which may be
continued. (See page 13.1-2 for
rules on continuation.) If the
JED statement contains syntax
errors, the statement will be
rejected; however, the job is
accepted and processed, using
the above-mentioned defaults.

OUTPUT=IMMED The default option requests .. JED OUTPUT=IMMED
that the output go to the sub-
mitter when the job is fin-
ished.



Table 13.1. (Cont'd)

Command Operands Function Example

12. JED OUTPUT=DEFER Holds output until requested by .. JED OUTPUT=DEFER
an OUTPUT card. This is useful for punch jobs or

jobs requiring form changes. This
is especially useful when a dump is
expected. The user can get the be-
ginning of the dump and cancel the
remaining section with a CONTINUE
NO card.

OUTPUT= Defers output, and both the .. JED OUTPUT= (DEFER,GA1)
(DEFER, submitter and the alternate The original submitter or the id
userid) recipient may request the only GA1, may obtain the output.

copy of the output.

SNOTIFY=SOURCE Notifies the original submit- .. JED NOTIFY=SOURCE
ter of job completion.

NOTIFY=BOTH Notifies both the original .. JED NOTIFY=BOTH
submitter and the alternate
named in the OUTPUT para-
meter when the job has been
completed.

NOTIFY= Presents the original submit- .. JED NOTIFY=(SOURCE, 'CALL DOE,
(SOURCE, ter with the text, limited to 9999,FOR PUNCH.') This is useful
'text') 25 characters, when the job when punch output is expected, and

finishes. the user wishes to be present to
claim his deck.

NOTIFY=(BOTH, Presents the original and an .. NOTIFY=(BOTH,'MESSAGE HERE.')
'text') alternate named on the OUTPUT

card with the text, limited
to 25 characters.



Table 13.1. (Cont'd)

Command Operands Function Example

12. JED CENTRAL=ALL Returns the JCL for the partic- .. JED CENTRAL=ALL
(Cont'd) ular job to the remote printer. The user is encouraged to use

All other SYSOUT data sets (as MSGLEVEL=(2,0O) on the job card,
specified on the job's DD whenever possible, to avoid long
cards), including punched JCL expansions on the remote
cards, are sent to the cen- printer.
tral system output devices.

CENTRAL= Sends the named data sets to .. JED CENTRAL=(SOURCE.SYSPRINT,
(stepname. the central devices. All other GO.SYSUDUMP) This will send the
ddname,step- SYSOUT data sets are returned printed output of the compiler
name.ddname) to the remote terminal. and a dump, if produced, to the

Scentral printer. The program out-
put will still return to the remote
printer.

NOTES:

* Do not stack jobs if the second, third, etc., job has a JED card. This, on occasion, will cause
all but the first JED to fail. To feed in multiple jobs containing JED statements, feed them one
at a time and only after the message "IHK117I JOB ACCEPTED jobid term userid........... .DEFAULT or
JED" is returned.

* Jobs requiring large volumes of punched or printed output should be sent via central site
(.. JED CENTRAL=ALL).

* If the terminal does not have a punch unit, the CENTRAL= parameter must be used to route all
punch output (SYSOUT=B) to the central punch. Otherwise, a term address error (see error pro-
cedures) will occur when the job needs a punch.

* On dial-up units (which are disconnected automatically by the RJE system after several minutes
of disuse), OUTPUT=DEFER is recommended to prevent remote output from interfering with other
users' input operations when they log on.



Table 13.1. (Cont'd)

* Terminal users should interrogate "Broadcast" for the latest information concerning RJE (see page
13.1-8). In the event of a "Cold Start" the information will be entered so that users may be
aware of possible lost jobs.



REMOTE JOB ENTRY

13.2 OPERATING THE RJE TERMINAL

13.2.1 OPERATING GUIDELINES

The following guidelines are presented to enable the user to operate and
submit jobs to the 360/95 via RJE.

To ready the IBM 2780 Transmission Terminal for operation, the user must:

a. Turn on the power switch located on the right side of the card
reader. This provides power to the reader and printer.

b. Depress the NPRO key to remove cards that may be in the reader.

c. Set dial (rotary mode switch) to TSM/TRSP.

d. Depress the START key on the printer.
Dial-up only: Call computer (tel.no.: 474-5230) with data phone
in talk position. After hearing high pitched tone, punch VBDATA
button and hang up phone.

e. Log on to the computer by placing the RJSTART and LOGON cards
into the card hopper.

f. Depress EOF key. END OF FILE and DATA SET READY lamps will then
be lit. If END OF FILE lamp does not light up and the AUTO TURN-
AROUND light is on, turn the AUTO-TURNAROUND light off by depress-
ing the button, and then depress the EOF key once again.

g. Depress and hold START key to ready the card reader. The message
"RJSTART ACCEPTED USER LOGGED ON GAx" will be displayed on the
printer as soon as the computer accepts the log on. The message
is not readily visible, however. Hit CARRIAGE STOP and CARRIAGE
SPACE key several times to display the message. Push the START
on the printer to ready the printer.

h. Silence the operator attention alarm, which will sound to notify
the user that the system is ready to accept cards. To silence the
alarm, push STOP on the card reader and START on the printer.

i. Put cards in hopper and depress EOF key.

j. Depress and hold START key on reader to ready reader and read cards.
(Key must be held down until several cards have fed in.)

k. When the alarm sounds, indicating the job has been read in, and
a message indicating the job has been accepted is printed, hit
STOP and CARRIAGE SPACE on the printer to silence the alarm; view
the message, and hit START on the printer.

13.2-1



REMOTE JOB ENTRY

To close down a terminal:

a. Read LOGOFF and RJEND cards into the system.

b. Wait for acceptance message to come out through the printer.

c. Turn the power switch to the POWER OFF position.

Once the terminal is logged on, submit jobs exactly as to the dispatcher; i.e.,
the JCL and other cards in the deck are identical. To submit a job:

a. Depress the NPRO key to remove any cards that may be in the reader.

b. Straighten deck and place face down with 9 edge in the back of the
card hopper, and replace the lid on the deck with metal edge forward.

c. Rotate the rotary dial (mode switch) to reset terminal, if necessary.
Set the mode switch to TSM/TRSP before reading cards.

d. Press END OF FILE key to light END OF FILE light.

e. Press START key on printer to ready printer.

f. Press and hold START key on reader until READY light comes on.

After the deck has been read in, a message will be displayed on the printer:

"IHK117I JOB ACCEPTED jobname GAx SCHED nnnn DEFAULT"
JED

where:

* jobname is the job name from the JOB card

* GAx is the terminal designation

* nnnn designates the order of execution scheduled

" DEFAULT indicates that the printout will be directed to the terminal
as soon as it is ready (OUTPUT=IMMED)

* JED indicates that a JED card preceded the JOB card - output will be
handled as directed by the JED commands

If the printout is long, or if punch output is expected, refer to paragraphs
13.1.1 and 13.1.2 of this User's Guide for examples of how to route part or all
of the printout to the system printers.

13.2-2



REMOTE JOB ENTRY

To avoid long JCL expansions on commonly used procedures, do not use the
MSGLEVEL parameter on the job card, in which case the system default value of
MSGLEVEL=(2,0) will be invoked.

This will cause the system to print only the JCL cards supplied by the user.
The printout starting with "XX" and all of the allocation messages will be
eliminated.

13.2.2 PUNCHED OUTPUT (MODEL 2 ONLY)

Since the 2780-2 has just one card feed which functions as both reader and
punch, the system does not begin punching whenever it has punch output. The
TERM ADDR lamp will light to indicate an "error" condition which must be
cleared. To punch data:

a. Clear the error condition by rotating the dial from TSM/TRSP to
off-line and back to TSM/TRSP. This will also place the printer in
a not ready state.

b. Ready the printer. (Push the START key on the printer.)

c. Load a CONTINUE card and sufficient blank cards into the reader.

d. Press the END OF FILE and AUTO-TURNAROUND keys on the reader/punch
unit.

e. Press the START key on the reader until the READY light comes on.
The read/punch unit may pause for a few seconds before it starts
punching cards.

f. After the punching stops, and the program continues printing,
press the AUTO-TURN AROUND key on the reader to turn out the light,
au.d 6.- remove the exccss blank cards from the reader hopper.

Press the NPRO key on the reader/punch to remove the two cards re-
maining in the unit.

13.2.3 OPERATOR ATTENTION ALARM

Unless output has been deferred (see paragraph 13.1.2 for examples of
deferred output), the job will start to print out as soon as it has run
and the terminal is in a ready state. When output is completed, or a
condition exists that requires an operation such as punching cards, an
alarm will sound. If no error conditions exist, remove the output from
the printer by pressing CARRIAGE STOP and CARRIAGE RESTORE. Ready the
printer and the terminal. If the alarm sounds and error lights are on,
see paragraph 13.2.4 of this guide.

13.2-3



REMOTE JOB ENTRY

13.2.4 ERROR PROCEDURES

The following is a list of procedures to be followed if an error lamp

is lit on the card reader:

HOPR -

a. Remove card deck.

b. Depress the NPRO key.

c. Replace deck in card hopper.

d. Depress the EOF key.

e. Depress and hold START key to ready the reader.

LINE - There may be several reasons for this lamp to be lit:

a. The 360 system is inoperative.

b. The RJE system is inoperative.

c. The system is overloaded and will not accept any
additional jobs.

Correction procedures for any of the above errors are as
follows:

* Wait a few seconds to determine if the system will
return to normal operations.

* Remove card deck, depress the NPRO key, read in RJSTART
and LOGON cards, and wait for an error message to be
printed.

* Call the 360 computer operator (tel. no.: 982-5395) to
determine if the system is inoperative.

If the job card is read in, the name on the job card must
be changed since the system will not duplicate jobnames,
e.g., change ABCDE001 to ABCDE002.

INCP and EQUIP CHK -

a. Remove the card deck from the hopper.

b. Depress the NPRO key - two cards will come out of the
card reader.

13.2-4



REMOTE JOB ENTRY

c. Place the two cards in the card hopper with the remain-
der of the job.

d. Depress the EOF key.

e. Depress and hold the START key to ready the reader.
The INCP light will come on if the user and terminal are
not logically connected to RJE. In this case, RJSTART
and LOGON cards must be entered before further input can
take place.

PUNCH STA -

When this lamp is illuminated, a card jam has occurred. If
an experienced operator is available, he will be capable of
removing the card jam. In the event that it is necessary for
the programmer to remove the damaged cards, the following
steps should be taken:

a. Clear the top of the card reader of all card decks,
pencils, and other items.

b. Standing at the back of the equipment, open the right-
hand side cover and then the rear cover.

c. Locate the jammed card under the card guide of the
read or punch station.

d. Lift the two clear card guides.

e. Pull black spring and lift steel photocell holder guide.

f R umove cards from read station.

g. To remove jam in punch station:

1. Leave machine power on.

2. Rotate hand wheel clockwise 1/2 revolution.

3. Depress spoon-shaped lever and remove card by hand.

h. Close steel photocell holder and two plastic card guides.

EQUIP CHECK -

a. Press STOP key on reader.

b. Remove cards from hopper.

13.2-5



REMOTE JOB ENTRY

c. Press NPRO key to clear feed.

d. Press CHECK RESET key.

e. Remove last two cards from stacker and place in hopper.

f. Reload cards.

g. Depress and hold START key on reader to ready the
reader.

DATA CHECK -

a. Press STOP key on reader.

b. Remove cards from hopper.

c. Press NPRO key to clear feed.

d. Remove or correct card containing illegal punch.

e. Press CHECK RESET key.

f. Reload cards.

TERM ADDRESS -

The printer or punch was not ready to receive output.

a. Rotate the MODE switch (dial) to OFF LINE and then back to
TSM/TRSP.

b. Place cards in hopper, press EOF, press START on printer,
and read in the CONTINUE card.

SYNC CHECK - OVERRUN

a. Open front cover of printer. The latch is under the front
center of the cover.

b. Set typebar motor switch to TYPEBAR REMOVAL.

c. Rotate typebar thumbwheel to align upper-left edge of
typebar guides with red arrow on guide holder. The thumb-
wheel is just to the front and right of the ribbon spool.

d. Turn typebar motor switch back to ON position.

13.2-6



REMOTE JOB ENTRY

e. Close cover on printer.

f. Press RESET.

g. Rotate dial to OFF LINE and then to TSM/TRSP.

h. Press START on printer.

i. Read in a CONTINUE card.

NOTE: This condition occurs without any error light indication on some
units. The only clue is that the printer READY light goes off and will
not come on when START is pushed. Executing steps (a) through (c) above
will verify if the typebar has slipped.

END OF FORM - Form check

a. Turn off alarm by hitting STOP on card reader.

b. Open cover on printer by lifting latch on underside of
front cover. Hit CARRIAGE RESTORE until all the paper
has been fed out.

c. Lift all four paper guides and print position indicator
(located directly in front and distinguished by its raised
plastic bar with numbers).

d. Set form brake to bottom position. Form brake is located
on far-left side of printer, having numbers 0 to 5.

e. Turn clutch (black teardrop shaped button located to left
of paper guide) to OUT and push CARRIAGE RESTORE.

f. Slide paper in from left side of printer and place on
guides; close guides and print-position indicator.

g. Line paper perforation up with top of ribbon by turning
black knob located on right side of carriage.

h. Set form brake to 2.

i. Set clutch to IN and press carriage restore to check height.
If incorrect, repeat steps (e) and (g).

j. Follow steps (e) through (i) of the procedure given for
SYNC CHECK.

13.2-7



REMOTE JOB ENTRY

OTHER ERROR CONDITIONS NOT NOTED - When other conditions not noted have

occurred, use the RJSTART and LOGON cards. Then see local person

in charge of terminals (see 13.1.3). If he cannot help, he will
call IBM service for aid.

13.2-8



REMOTE JOB ENTRY

13.3 PROGRAMMING CONSIDERATIONS

13.3.1 CODE STRUCTURE

The IBM 2780 Transmission Terminal can operate with any of three code struc-
tures: Six-Bit Transcode, EBCDIC, and USASCII. All terminals on the IBM 360/95
use EBCDIC, which is the primary code structure for the S/360.

13.3.2 CARD READ/PUNCH

The card read/punch unit of the IBM 2780 Data Transmission Terminal provides
the terminal with card input and output capabilities. The card read/punch unit
can read up to 400 cards per minute (cpm) and punch up to 355 cpm, except for
the terminal in Building 7 which has no punching capabilities. (The actual
throughput speed of the card read/punch will vary, depending on the number of
card columns that are read or punched and the type of transmission facilities
used.)

The card read/punch has a hopper with a capacity of about 1200 cards, a card
path with read and punch stations, and a single radial stacker with a capacity
of 1300 cards. The stacker can be emptied without stopping the unit. Cards
feed parallel from the hopper into the card path, move serially through the
read and punch stations to a cornering station, and pass parallel into the
stacker transport. Since cards move serially through the read and punch sta-
tions, simultaneous reading and punching operations are not possible.

13.3.3 PRINTERS

The IBM 2780 Print Unit, which is similar in appearance and operation to the
IBM 1443 Printer, provides printed output for the terminal when operating
on-line, and enables a card reader-to-printer listing operation to be per-
formed when operating off-line (see subsection 13.4).

The maximum rated speed of the printers served by the IBM 360/95 RJE facility
is 200 lines per minute. All printers use the EBCDIC character set and print
up to 144 characters per line. Character density is 10 per inch, thereby pro-
viding a printing line of 14.4 inches.

All characters of the character set are mounted on a typebar that travels
horizontally on the paper. The typebar ensures that each character of the
character set successively passes each print position. To print, a magnet
releases a spring-loaded hammer at the proper time, so that the desired
character is pressed against the ribbon and paper. Characters to be printed
are checked for parity while in the buffer and before printing takes place.
A parity-check error at the receiving terminal results in an EOT (end-of-
transmission) character being encoded in place of the normal block-checking
response. This may result in a partially printed line, depending on when
the error was detected.

13.3-1



REMOTE JOB ENTRY

13.4 OUTPUT

Output at the work stations involves a number of options which are speci-

fied in the job entry definition statement (JED) and work station commands:

* The output is directed to the source work station by default as

soon as the job is completed and the work station is available

to receive it. The output may be deferred or routed to another
station.

* The output may be left at the central system until the user

requests it.

* The output may be directed to an alternate user by the originator.

* Output may be requested at any work station, either by the origin-
ator or by a user named as the alternate recipient. The recip-
ient who first requests the output receives the only copy of the

output.

* The remote user may make multiple copies of his output available
to either himself or an alternate by writing his output to a

named data set and submitting a job step that executes an OS data
set utility program, IEBPTPCH, to copy the output to SYSOUT.
The IEBPTPCH program is described in paragraph 9.3.2 of this
User's Guide.

* Notification of job completion may be requested. This notifica-
tion includes indication of normal or abnormal termination.

Details of the Job Entry Control Language specifications for output control
are given in Table 13.1. RJE Commands and in the IBM System/360 Operation

System Remote Job Entry publication, Form GC30-2006.

13.4-1



REMOTE JOB ENTRY

13.5 USE OF THE IBM 2780 TERMINAL OFF-LINE

The RJE terminal is capable of listing cards at any time. The IBM 360/95
does not have to be functioning to use this facility. Before a transmit opera-
tion, the operator can run an off-line listing of the cards to be transmitted,
in order to check the accuracy of the cards. The listing will also indicate
any invalid characters, as printing will stop on illegal characters. Any
necessary corrections can then be made before the actual transmit operation,
thus providing a more efficient and smoother transmit run. When operating off-
line, the card read/punch reads cards and prints them on the printer, one
line per card.

For the IBM 2780 terminal to be operational, the main-line switch must be
turned on and all interlocks satisfied. To operate in the off-line mode, first
check:

a. That paper and carriage tape are properly positioned at channel,
and press CARRIAGE RESTORE to position paper to top of page.

b. That all interlock conditions are satisfied, i.e., all cabinet
doors are closed.

Then:

a. Load the cards into the hopper.

b. Turn dial to OFF LINE.

c. Press START on printer to ready the printer.

d. Press START on the reader until the READY light comes on and
the listing starts.

e. when off-line operation is complete, rotate the dial to TSM/TRSP
and ready the printer to allow other output to print.

The 2780 terminal will read cards and print until the machine runs out of
cards. The printer will stop with a DATA CHECK if an illegal character is
encountered. To clear this condition:

a. Remove remaining cards from the hopper.

b. Press NPRO to clear the reader.

c. Press RESET to clear the error condition.

d. Press START on the printer to ready it.

e. Reload the remaining cards in the reader and press START on the
reader.

13.5-1



REMOTE JOB ENTRY

13.5.1 NORMAL STOPS

13.5.2 HOPPER EMPTY

The READY light turns off (card read/punch panel) after the last card has

been read and processed. If more cards are to be processed, load them into

the hopper and depress the START key.

13.5.3 STACKER FULL

The READY light turns off when the stacker is full. To restart, remove cards
from the stacker and press the START key on the card read/punch to resume
listing.

When the off-line operation is finished, the dial should be returned to TSM/
TRSP, and START pressed on the printer to ready the 2780 terminal in case out-

put is waiting.

13.5-2/13.5-3



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

SECTION 14

CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

14.1 GENERAL DISCUSSION

The Conversational Remote Job Entry (CRJE) and the Conversational Remote
Batch Entry (CRBE) are two file manipulation and job submission systems sup-
ported by the IBM 360 computing systems and the IBM 1050 series and 2741 type
communication terminals. The user and the CRJE/CRBE system actually enter
into a dialogue. The user is in constant communication with the system,
which responds to his queries and commands. This system provides complete
facilities for the storage and maintenance of source code, JCL, and data,
and allows the user to submit jobs through remote 1050 and 2741 type terminals.
CRJE provides FORTRANG, FORTRANH, and PL/1 prescans to detect syntax errors
on a line-by-line basis as the code is entered. A FORTRANH prescan is
available under CRBE. These systems are also useful for the running of opera-
tional programs requiring rapid turnaround. On the 360/95 any job requiring
700K or less core storage and 15 minutes or less CPU or I/O time can be sub-
mitted through CRJE just as through dispatch. Jobs which are larger or run
longer may be submitted through CRJE in the evenings. Simple utilities are
available for placing card files on disk for access by CRJE and CRBE or for
obtaining an actual deck from the disk files, if it is required. The CRJE
and CRBE user has the capability of creating his own files directly at the
terminal keyboard, thus eliminating the need for cards. A new user already
familiar with OS/360 should be able to obtain reasonable proficiency at CRJE
or CRBE after only a few days of use because the required commands are
English-like in their structure and easy to use. This section is primarily
concerned with CRJE on the 360/95, and supplements the information in the
IBM Conversational Remote Job Entry Terminal User's Guide, GC30-2014. In-
formation on CRBE may be found in the CRBE User's Guide, the SESD User's
Guide, and the GSFC Computer Newsletters.

Information concerning the conversion from the Remote Input Terminal System
(RITS) to CRJE, on the 360/95 computer, can be found in several of the
January, 1973 M&DO Computer Bulletins.

14.1.1 LOCATION OF TERMINALS

There are numerous 1052 and 2741 type communication terminals located through-
out GSFC. Each of these terminals is open for "public" use. Terminals
located in individual offices may be used by anyone requiring access to the
CRJE or CRBE facilities. Problems of terminal accessibility and location
should be referred to Mr. Harry Bitting, Building 3, Room 128, extension 6886.
There is a 1050 data communication system located in Building 3, Room 133.
This terminal is capable of reading small amounts of cards and paper tape
while on-line to the 360 system.

14.1-1



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

Refer to the IBM 1050, Operator's Guide (Form GA24-3125) for detailed in-

structions and background information on the use of the 1050 for reading
cards.

14.1.2 COMPUTERS SUPPORTING CRJE AND CRBE

Supporting Telephone Console System
Computer Service Number Administrator

360/95 CRJE 982-3116 5395 Government Monitors,
(Dial 36 Ext. 6781, Room 103,
at GSFC) Building 3

SESD 360/75 CRBE 982-3113 2671 Mr. John Garten, Ext. 6596
(Dial 33
at GSFC)

SESD 360/91 CRBE 982-3112 6015 Mr. John Garten, Ext. 6596
(Dial 32
at GSFC)

360/75 (C2) CRBE 982-3115 5130
(Dial 35
at GSFC)

Note: The CRBE System on the 360/75 (C2) is available on a very limited
basis to selected personnel making use of the C2 system.

Requests for user IDs and notification of changes in sponsor numbers should
be forwarded to the appropriate system administrator. New users are re-
quired to complete a user's course (see paragraph 14.1.9 for course informa-
tion) or show proficiency in RITS, CRBE, CRJE, or some similar system.

14.1.3 HOURS OF SERVICES

The normal operational hours are from 8:00 a.m. to 8:00 p.m., Monday through
Friday. CRJE on the IBM 360/95 may not be available when the computer
is being used to support a launch. If the user needs CRJE at other than
normal working hours, the 360/95 computer operator (extension 5395) should
be contacted for assistance.

14.1.4 TAPE MOUNTS

Paragraph 2.3.4 of this User's Guide contains a discussion of the policies
and procedures pertaining to the use of tapes in CRJE-submitted jobs. The

14.1-2



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

TAPES(SYSTM) file, available on the IBM 360/95, contains the latest infor-
mation about tapes for the model 95. To list this file, the following
command must be entered:

edit tapes(systm)
list

14.1.5 NOMINAL SPACE ALLOCATIONS

Each authorized user is assigned one cylinder on a 2316 disk pack to hold
his permanent files. Indications of space becoming filled are given by
frequent user library condensations, resulting in the compression of the
user's space (i.e., by removing those files which have been purged or re-
placed and are no longer accessible).1 The user can limit his library con-
densations by using smaller files when frequent modifications become
necessary. For example, FORTRAN programs can be divided into sections during
debugging when frequent program changes are necessary. The use of a DSLIST
(see paragraph 14.2.6) to join the sections for submission to the FORTRAN
compiler will eliminate any possibility of confusion when running the jobs.
Each cylinder holds about 1200 cards.

14.1.6 NEWS FILES

The CRJE System, on the IBM 360/95, maintains an active news file, NEWS(SYSTM),
with up-to-date information of interest to users. This file should be
accessed and listed periodically to keep informed concerning CRJE develop-
ments.

14.1.7 ASSISTANCE

Programmer and CRJE assistance for the IBM 360/95 is available during normal
working hours in Building 3, Room 133A, extension 6768. CRBE assistance is
available from the system administrator, Mr. John Garten, in Building 1,

1
A message is not generated when a condense is being done on a CRJE user
file. However, long periods of delay when attempting to SAVE ones data
set may be an indication that the system is doing a condense on that file.
The following message will appear when a condense is attempted and no more
space is available:

IHK395 LIBRARY FULL, ENTER DSNAME FOR DELETION

at which time you may enter a data set name to be deleted in an attempt to
free up sufficient space to SAVE the active data set.

14,1-3



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

Room 247, extension 6596. All I/O errors while reading or writing into CRJE
files should be reported immediately to Mr. Harry Crispell (extension 6797)
so that an attempt may be made to regenerate the files (360/95 only) to
insure against hardware malfunctions causing lost data. Suspected 1050 or
2741 hardware problems should be directed to the system administrator.

14.1.8 REFERENCES

The information related to CRJE and CRBE can be found in the following IBM
manuals: (1) Conversational Remote Job Entry Terminal User's Guide,
GC30-2014 and (2) CRBE Conversational Remote Batch Entry. Both manuals may
be obtained from the Manual Library in the Building 16 Annex, Room 25,
extensions 4672 and 2186.

Subsection 14.4 of this guide contains examples of utilities useful for
printing, punching, or building files used by CRJE. Section 9 of this
guide contains examples of utilities of general interest which may be used
through CRJE-submitted jobs.

14.1.9 CRJE AND CRBE CLASSES

CRBE classes are arranged through Mr. John Garten, Building 1, Room 247,
extension 6596. CRJE classes are arranged by the Organization and Employee
Development Branch, Manpower Utilization Division. Students are selected
through a survey conducted each spring. An ID will not be issued to anyone
until he completes a class or can demonstrate proficiency in CRJE, RITS,
or CRBE.

14.1-4



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

14.2 PROGRAMMINGoCONSIDERATIONS

14.2.1 GENERAL DISCUSSION

The 1050 and 2741 series terminals offer a slow printer intended for data
sampling and not for long output. CRJE and CRBE support facilities which
permit the user to choose those data sets he wishes through the terminal.
Data sets to be printed fully can be sent to the system printers available
at the 360 computers.

14.2.2 LINE LENGTH

The 1050 and 2741 terminals support a line length of 120 characters. If
the logical record size of an output data set exceeds 120, CRJE truncates
the records to 120 characters. To eliminate the truncation of records,
one must include override cards to change the record length and blocksize
of the data set.

The override cards should also reflect the output class (SYSOUT=R) for out-
put to be displayed at the terminal. For example, the output data set
containing the FORTRAN listing from the compiler can be retrieved if the
following card is included:

//COMPILE EXEC FORTRANH,PARM=' OPT=2,NOMAP,NOXREF,NOLIST'
//SYSPRINT DD SYSOUT=R,DCB=(RECFM=FB,LRECL=120,BLKSIZE=3480)

The output from the user's program can be retrieved by adding the required
override card in the LINKGO or LOADER step. This card should reflect the
programmed line length as closely as possible. For example:

//LOAD EXEC LOADER
//FTO6F0 DD SYSOUT=R,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3520)

Other files to be displayed through CRJE may be specified in a similar
manner.

14.2.3 RETURN OF OUTPUT TO THE REMOTE TERMINAL

The user has the option of displaying output from his job at the terminal by
specifying SYSOUT=R on the appropriate DD card(s). Other output data sets
will be printed at the 360/95 as usual (SYSOUT=A). Until recently, be-
cause of the design of the CRJE system, all of a jobs JCL was returned to
the terminal. This has been changed through a GSFC modification. One now
has the option of having the JCL printed at the 360/95 or at the terminal.
The presence of the parameter ACCT=TERM on any EXEC card ensures that upon
the completion of that job, the JCL and SYSOUT=R output (if present) will
remain in the job queue for the submitter to retrieve.

14.2-1



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

Example: Job submitted through CRJE with the JCL and SYSOIt=R output held

for terminal delivery.

// (Job Card)
//STEPX EXEC PGM=XYZ,ACCT=TERM

NOTES: Because of job queue space limitations users are encouraged NOT to

use the ACCT=TERM parameter.

ACCT=TERM must be specified when SYSOUT=R is desired, and in which

case, the JCL will also be returned to the terminal.

ACCT=TERM is ignored if the job is submitted through the dispatcher

or RJE.

14.2.4 RETRIEVAL OF USER DATA SETS FROM THE CRJE TERMINALS ON THE 360/95

Since only cataloged physical sequential or partitioned data sets can be

retrieved by CRJE users at their terminals, one cataloged data set entry

has been provided in the system catalog for every CRJE user. The catalog
entry is of the form 'CRJ.USERID.OUT' and will point to one of the system

scratch packs. In conjunction with these catalog entries, two procedures

are provided in the system procedure library, CRJEALC and CRJESCR.

CRJEALC is used to allocate space for the cataloged data set entry either
as a physical sequential or a partitioned data set. It has the form:

//DEFAULT PROC FMT=FB,REC=80,BLK=800,TRK=2,DIR=0
//CRJEALC EXEC PGM=IEFBR14
//ALLOCATE DD DSN=CRJ.&ID..OUT,UNIT=2314 ,VOL=REF=CRJ.&ID..OUT,
// DISP=(,KEEP),SPACE=(TRK,(&TRK,2,&DIR)),
// DCB=(RECFM=&FMT,LRECL=&REC,BLKSIZE=&BLK)

At the minim , r w13 have t be spe-cifeA -9-- e symbli

eter ID=USERID. Checking the default values of the other symbolic parameters

we see that:

// EXEC CRJEALC,ID=GLHRD

will allocate space of 2 tracks for a physical sequential data set
CRJ.GLHRD.OUT with a fixed blocked format (blocksize 800, record length 80)
on one of the system scratch packs. The other symbolic parameters can be
used as follows:

FMT (for Record Format Parameter), REC (for Logical Record Length),
BLK (for Blocksize), and TRK (for the number of tracks to be assigned
to this data set). The DIR symbolic parameter is used to specify a

14.2-2



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

partitioned data set and will specify the number of directory blocks

for this data set.

CRJESCR is used to scratch the cataloged data set CRJ.USERID.OUT, but not

the catalog entry. The catalog entry is reusable. Only the userid has to

be provided for this procedure. For example:

// EXEC CRJESCR,ID=USERID

CRJE users will not be permitted to catalog any data sets in the system

catalog. Use of the procedures CRJEALC and CRJESCR will enable the CRJE

programmers to create and scratch cataloged data sets without the necessity

of recataloging the data set for every use. Let us illustrate the procedure

used for entering a data set created by a job into a user CRJE library.

1. A job of the following form is submitted:

// JOB CARD
// EXEC CRJEALC,ID=USERID
// EXEC FORTRAN
// EXEC LOADER
//FT12F001 DD DSN=CRJ.USERID.OUT,DISP=OLD

2. At the completion of the job, the created output data set is re-
trieved at the terminal with this command:

edit 'CRJ.USERID.OUT'

This data set can then be listed and placed in the user's library with the
SAVE command.

3. Immediately thereafter the following job should be submitted to
delete the data set on the scratch pack:

// JOB CARD
// EXEC CRJESCR,ID=USERID

When multiple physical sequential data sets are to be retrieved from a job
or a set of related jobs, a partitioned data set should be created with
CRJEALC and the individual sequential data sets placed as members of the
partitioned data set. Care must be exercised when multiple members of a
partitioned data set are created within a single jobstep in a FORTRAN pro-
gram. The procedure for doing this is given in the GSFC Computer Newsletter
No. 41 and in the FORTRAN IV (G&H) Programmer's Guide, GC28-6817-2, Pages 52
and 53, Partitioned Data Set Processing.

14.2-3



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

Users are reminded that this procedure need not be used for any terminal out-
put data sets that are not to be saved in the programmer's CRJE library. In
this case the system output Class R should be specified on the DD card and
the data set should be retrieved with the OUTPUT command for the job. After
the Class R output is completely listed, it is automatically deleted by the
system.

14.2.5 EDITING AN OS DATA SET

A CRJE user may EDIT, LIST, and if he so desires, SAVE any sequential or
partitioned data set member stored on a volume recognized by CRJE. Currently
a user may retrieve from the following 2316 disk packs: GlSYS1, GlSYS2,
GICRJl, GlCRJ2, GlUSRI, GlUSR2, GlSCR1 through GlSCR9, and from the GlDRMl
and GlDRM2 2301 drums. The user must specify the fully qualified name of
the data set, which must be cataloged and contained within a single volume
of direct-access storage device. For example, when modifying a procedure by
inserting override cards, the user must place these cards in the same rela-
tive position as they appear in the procedure. A copy of the procedure may
be brought and displayed by:

edit 'sysl.proclib(fortranh)' nonum

Where the entire data set name has been enclosed in single quotes and the
member name of the partitioned data set has been specified and enclosed in
parentheses.

14.2.6 USING A DSLIST

A DSLIST can be created with the command:

edit dsname new dslist

The resultant file must contain the names of CRJE data sets.

edit testrun new dslist nonum
10 filea (name of first CRJE data set for DSLIST)
20 fileb (name of second CRJE data set for DSLIST)
30 filec (name of third CRJE data set for DSLIST)
40 (If no other files are to be entered into this DSLIST enter a

NULL line to close the list)
save
end

To submit the job, the user need only enter:

submit testrun

The submitted job will consist of CRJE files -- filea, fileb, and filec.

14.2-4



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

14.2.7 DELETION OF SEQUENCE NUMBERS IN CRJE FILES

The following method may be used for deleting sequence numbers in columns

73-78 of a CRJE member.

edit membername,num
ren
save deletseq (the name deletseq must be used)
end
exec numbers(systm)

The exec numbers(systm) command deletes the sequence numbers through its

execution of a CLIST in the system library. The maximum number of lines

that can be processed in a member is 200. During the execution of the

CLIST, the message 'LINE NOT FOUND XXX' will begin printing when there are

no more lines to be processed in the member. The message continues until

either the number of cards processed plus the message being printed totals

200, or until the loop is disabled by hitting the request button, thus inter-

rupting the printing (after multiples of 10 lines have printed), and entering

the next command. This may be used to SAVE the member under the original

member name whose sequence numbers were deleted.

The member named DELETSEQ may now be deleted, since it is of no further value
at this point.

NOTE: This method uses the CHANGE command which does its compare on the num-

bers 00000010 through 00002000 in columns 73-80. Do not use this procedure

if the sequence numbering exists in other columns.

14.2.8 NOTIFY PROGRAM USED IN CONJUNCTION WITH CRJE

The 'NOTIFY' program, written by Gene Czarcinski, Code 531, is available on

the 360/95. The program, invoked as the last step of a job, sends messages

about the execution of the job to the CRJE user. The user has the responsi-

bility of supplying the necessary parameters for the program. This program

is the same as on the SESCC 360s with minor differences to the user.

To retrieve the messages at your terminal, sign on CRJE and do a LISTBC com-

mand. If the job has completed, the message returned will depend on the param-

eters that were specified for program 'NOTIFY'. For example, the message

CRJE MSG FR CENTRAL GLHEC111 DONE: FINISHED 01-R0000

was generated using the following EXEC card for program 'NOTIFY':

// EXEC PGM=NOTIFY,REGION=30K,COND=EVEN,PARM=-- 'ALL,GLHEC,FINISHED'

14.2-5



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

If you are signed on CRJE when your job completes, the messages will automat-

ically be returned to your terminal. When you enter a LISTBC command and the

job is still waiting to be executed, the response will be 'NO BROADCAST MSGS'.

There are parameters in the PARM field of the EXEC card that the user must
supply or let the default options be selected. They are:

1) BASIC - Sends jobname, optional user message, and highest
return code or last Abend code.

POSITION (1) 1) ALL - Sends jobname, optional user message, and step num-
ber, procedure step name or step name. DEFAULT-BASIC

POSITION (2) 2) CRJE user ID to which message is to be sent. DEFAULT -
The first 5 characters of the jobname.

POSITION (3) 3) Optional user message of up to 8 characters.

EXAMPLES:

1) // EXEC PGM=NOTIFY,REGION=30K,COND=EVEN,PARM='ALL,XXXXX,FINISHED'

The PARM field in the above example would give the user all messages avail-
able, XXXXX is a CRJE ID other than the user ID on the job card, and FINISHED
is an optional message the user wanted to be printed at his terminal.

2) // EXEC PGM=NOTIFY,REGION=30K,COND=EVEN,PARM=',,FINISHED'

The user who submitted the above program is letting the defaults of BASIC and
the first 5 characters of the jobname be selected, plus has asked for the addi-
tional message 'FINISHED' to be printed.

3) // EXEC PGM=NOTIFY,REGIONU=30K.COND=EVEN

In the above example, all the defaults are selected and no optional user mes-
sage is requested.

14.2-6



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

14.3 UTILITIES IN CRJE

CRJE and CRBE support, without exception, all standard OS utilities. However,
there are a number of special uses of utilities through CRJE to aid in running
jobs. These may be exercised, with small modifications, under CRBE.

14.3.1 BUILDING CRJE FILES FROM DECKS

The program CRJEUPDT may be used to store decks for alter processing by CRJE.
This program places the member(s) directly into your CRJE library.

Example // EXEC CRJEUPDT,ID=XXXXX
//SYSIN DD (* OR DATA--DEPENDING ON INPUT)
./ ADD NAME=FILE1

(INPUT CARDS)
./ ADD NAME=FILE2

(INPUT CARDS)
./ ENDUP
/*

NOTES:

1. XXXXX, is the user ID of the CRJE library where the data is to be
stored.

2. After using CRJEUPDT, LOGON and assign the proper file attributes for
that member(s) with the EDIT command.

3. /* cards must be removed from the deck being placed on CRJE, since the
program terminates when it reads a /* card. The final /* is required
to terminate the "//SYSIN DD DATA" field.

14.3.2 LISTING CRJE FILES

The procedure CRJELIST will print an entire user's library with one control
card, as follows:

//LIST EXEC CRJELIST,USRID=GAAZZ

NOTES:

1. If "USRID=" is omitted, the system news files are listed.

2. A few members can be listed by using the print utility (see para-
graph 14.4.4).

14.3-1



CONVERSATIONAL REMOTE TERMINAL SERVICE (CRJE/CRBE)

14.3.3 PUNCHING SELECTED CRJE FILES

To punch a deck from a CRJE file, the following CRJE job may be executed:

SUBMIT JOBCARD,PUNCH(SYSTM),MEMBER(S) TO BE PUNCHED

NOTES: In the above example (JOBCARD) is a valid JOBCARD in a users library.

1. Any number of CRJE files may be punched at one time.

2. If only a small amount of punch output is expected, the operator
should be informed by:

SEND 'CRJE JOB XXXXXXXX EXPECTS PUNCHED OUTPUT'

3. The file PUNCH(SYSTM) uses the utility IEBGENER which punches
copies of anything it sees as data.

4. Remove all /* cards from within your member(s) to be punched. The
procedure used to punch your member(s) terminates upon encountering
a /* card.

14.3.4 PRINTING SELECTED CRJE FILES

The file PRINT(SYSTM) may be used to list selected members of a CRJE library
if a total library listing is not desired. To obtain a list, the following
CRJE job should be submitted:

SUBMIT JOBCARD,PRINT(SYSTM),MEMBER(S) TO BE PRINTED

NOTES: In the above example (JOBCARD) is a valid JOBCARD in a users library.

i. Any number of CRJE files may be Drinted at one time.

2. The file PRINT(SYSTM) uses the utility IEBGENER which prints copies
of anything it sees as data.

3. Remove all /* cards from within your member(s) to be printed. The
procedure used to print your member(s) terminates upon encountering
a /* card.

4. Members created with the (TEXT) file attribute cannot be printed.

14.3-2



APL - A PROGRAMMING LANGUAGE

SECTION 15

APL - A PROGRAMMING LANGUAGE

15.1 GENERAL

The APL language was developed by K. E. Iverson and first outlined in the

book, A Programming Language. This work has become a classic in program-

ming literature. The language supplies the conciseness necessary to main-

tain a clear picture of a problem, and includes the precision required for

essential detail. Most of the notation used in the language is common to

ordinary mathematics.

APL is a Program Product supplied by IBM. It is a conversational time-

sharing system accessed through remote terminals. Recently the Agoranomic

Teleprocessing Systems, Inc. (ATS) Extended File System has been added to APL,

enhancing its capabilities (see subsection 15.7). All APL programs execute

line by line as they are entered from a terminal, rather than executing in

the usual Compile, Link, Go sequence. This results in two distinct differences

between APL and other languages:

1. JCL is never required to use APL; thus, a high degree of computer

independence is maintained.

2. If the user sees an error developing as his program is running,

he can stop the program, correct program or data errors, and

resume processing.

The total range of uses for APL appears limitless; however, there are some

areas in which it is a particularly convenient language. Vector and matrix

functions are fully developed and easy to use. All conceivable mathematical

operations, including a number of integration schemes, many as elementary

functions, are available. Literal data handling is straightforward. Large

data bases are easily handled. The example below demonstrates the concise-

ness of APL. It finds the average of a vector A, of size N, in FORTRAN

and APL.

15-1



APL - A PROGRAMMING LANGUAGE

FORTRAN APL

DO 10 I = 1, N TOTAL - +/A - pA
10 TOTAL = TOTAL + A(I)

TOTAL = TOTAL/N

15.2 LIBRARIES

Mrs. May Wilson Adams, GSFC extension 6797, has compiled a document (Guide For
APL Libraries, X-543-71-69) which contains all of the library functions
currently available at the GSFC for the APL user, their uses, and ways to
use them. The document has been sent to all registered APL users.

A list of holdings in each library can be obtained by typing:

)LIB x

where x is 1, 3, 4, 5, 6, 7, 9, 12, 100, or 999. A description of a
holding can be obtained by typing:

)LOAD x INDEX
DESCRIBE

with the exceptions of libraries 999 and 1. Library 999 uses INDEX2
rather than INDEX. Library 1 has no index.

Library 1 contains a news file updated to reflect the latest APL system
status. To receive a copy, type:

)LOAD 1 NEWS
APLNOW MM DD YY

This will print all news items since the MM (mnth), DD (da, and YY (.year)
specified.

15.3 USING APL

An APL/360 system is made up of a control computer (the M&DO 360/95), an APL
operator's terminal (currently a 2741), and a number of remote terminals.

15-2



APL - A PROGRAMMING LANGUAGE

Virtually any remote terminal will work with APL; currently, mostly IBM 1050s
are available at GSFC. A special APL character set is utilized by APL to
provide unambiguous communication between the computer and the user. This
character set is available on a selectric printing element (golfball) number
1167988. In conjunction with the typing element, a special set of APL char-
acter overlays (IBM form X20-1783) is available for attachment to the terminal
keyboard. The application form for obtaining an APL id is provided at the end
of this section.

15.4 SIGN-ON PROCEDURE - 1050 TYPE TERMINALS

The user must mount the APL golfball. He must turn on the terminal power
switch, and set the following switches on the control panel to the indi-
cated settings:

SWITCH SETTING

ATTEND/UNATTEND ATTEND
PRINTER SEND-RECEIVE
KEYBOARD ON
EOB MANUAL

The TEST switch should be OFF. The RESET LINE key should be pressed if the
RECEIVE ALARM light is on. If the receive alarm light does not shut off,
the user may be out of paper or have a terminal hardware problem. Hardware
problems should be reported to the Government Monitor on extension 6781.
The DATA CHECK button should be depressed if the adjacent white light is
on.

The user may dial the computer by pressing the data phone TALK button,
lifting the receiver, and dialing 34 at GSFC (982-3114 off-site). When the
computer "answers" with a high-pitched tone, he must press the "DATA" button
on the data phone and replace the receiver. (If the computer does not
"answer" by the second ring, the user should hang up and try again later.)

Then the user presses the REQUEST key. When the PROCEED light goes on
and the keyboard unlocks, he enters:

)xxxx

where xxxx is the user's APL number. To terminate each line, the user must
press RETURN, and then simultaneously press the ALTN CODING and EOB buttons.

At the completion of the user's first session, he must assign himself a
lock (password) for his APL id. He does this by typing:

)OFF:yyyy

15-3



APL - A PROGRAMMING LANGUAGE

where yyyy is the password. The user must remember it, as there is no
other record of this password. The password may be any length; however,
only the first eight characters are checked by the system.

The next time the user signs on, he enters:

)xxxx:yyyy

where x and y are as defined above.

The user may change his password, using the sign-off step with the new
lock.

The user need not re-enter his password each time he signs off; he merely
enters:

)OFF

15.5 OPERATOR COMMUNICATION

The 360/95 operator is not the APL system operator. Messages routed to the
APL operator go to the APL operator's terminal in Room 129, Building 3, ex-
tension 6797. Questions directed to the APL operator may go unanswered if
there is no one present when the message is sent.

15.6 APL COURSES

There are currently two different APL courses available in the GSFC APL
library. They are referenced in the document, Guide For APL Libraries,
X-543-71-69.

Library 1 contains a self-teaching APL course called APLCOURSE. One may
access it by:

)LOAD 1 APLCOURSE
DESCRIBE

The resultant description is clear.

Library 999 also contains a self-teaching APL course. It may be accessed
by typing:

)LOAD 999 A
START

15-4



APL - A PROGRAMMING LANGUAGE

For an introduction to the course:

)LOAD 999 CATALOG
DESCRIBE

Note that all references in the text to Library 9 should read Library 999.

A formal APL course is also presented at GSFC. Candidates are selected from
a survey sent out every spring by the organization and Employee Development
Branch, Manpower Utilization Division.

15.7 EXTENDED FILE SYSTEM

Through the addition of the Agoranomic Teleprocessing Systems, Inc. (ATS)
Extended File System, the capabilities of APL have been greatly expanded.

The Extended File System permits the use of a data base larger than the 32K
byte workspace normally defined through the APL system. This data is most
efficiently handled by vector or matrix manipulation.

The capability of performing I/O external to the APL system is another enhance-
ment. File I/O to such devices as magnetic tape, the card reader/punch and
the high speed printer is accomplished through the use of standard IBM utility
programs. Requests for workspaces greater than 32K bytes and I/O external to
APL should be directed to Mrs. May Wilson Adams, extension 6797.

The numeric formatting facility gives the user a high degree of control over
the formatting of numeric output data. The APL functions written to accomplish
this require considerably more execution time. The format operator is used
much in the same manner as the IBM System/360 'EDIT' instruction (see the
Prindiples of Operation Manual, GA22-6821).

The Extended File System offers the APL programmer the capability of function
execution at batch processor speeds. Thus, a long iterative, looping routine
that could not be economically run in APL could be coded in Assembly Language,
called or referenced through APL, and then run as a BAL program.

The 'PRM' routine permits the manipulating of APL function lines just as
though they were elements of a variable.

The 'FLOS' routine will convert a function to a vector or vice-versa, to allow
the function to be loaded or saved from within another function, thus making
it possible to pass the name of a function or variable to a subordinate func-
tion.

Also included are an automatic tab setting feature and a translate feature
that permits any variable to be translated using a user supplied translate
table.

15-5



APL - A PROGRAMMING LANGUAGE

The above extensions are more fully described in the ATS User's Manual For
Extended File System, available from Mrs. Adams, extension 6797.

15.8 MINIPERT PROGRAM

MINIPERT, a PERT (Program Evaluation and Review Technique) program leased from
IBM and installed on the M&DO 360/95 APL system, provides the APL user with a
quick, clean Critical Path Method (CPM) for project management. A maximum of
200 activities with minimal description can be handled in the current APL
workspace. Up to 10 subnetworks may be integrated into the total network.

Milestone summarization and manpower loading, as well as various charts and
diagrams, are included within MINIPERT capabilities. Public library 835 con-
tains the five workspaces MINIPERT, MINIREPORTS, DIAGRAM, NEWDIAGRAM, and
MANPOWER.

15-6



APL - A PROGRAM ING LANGUAGE

15.9 REFERENCES

1. A Programming Language, by K. E. Iverson (Wiley, 1962) is a basic
reference and one every serious student will want to read. It
completely outlines the language and illustrates hundreds of pro-
grams and applications for which APL is suited.

2. The APL 360 Primer (IBM Form GH20-0689), provides an introduction
to APL 360 for a programmer with no APL background. At least the
first three chapters of the Primer should be read before using
the APL terminal.

3. The APL 360 User's Manual (IBM Form SH20-0906), provides some
elementary and many advanced examples. It describes sample work
sessions and covers advanced APL topics.

4. The APL 360 Reference Manual, by Sandra Pakin (Science Research
Associates, 1968), is an adequate reference for experienced APL
users. Miss Pakin uses the APL notation to describe each available
APL function.

5. Time Sharing Languages: APL (Auerbach Info., Inc., 1970), is
an excellent history and language summary. This report is use-
ful in the beginning phases of learning the language, since it
provides a clear explanation of the primitive APL operations
most used by the APL student.

6. APL/360 An Interactive Approach, by Leonard Gilman and Allen J. Rose
(John Wiley & Sons, Inc., 1970), is almost a complete course in
itself. It is highly recommended.

7. Guide For APL Libraries, by G. M. Wilson, provides the user with a
list and brief description of the functions available in the GODDARD
APL public libraries.

8. Users Manual For APL Extended Files System, by Agoranomic Teleproc-
essing Systems, Inc. (revised for use at GSFC by M. W. Adams), des-
cribes the ATS extensions to the APL system.

9. MINIPERT Program Description and Operations Manual (IBM Form
SH20-0995), fully describes the IBM Program Product, MINIPERT.

15-7



APL - A PROGRAMMING LANGUAGE
COMPUTER MANAGEMENT BRANCH

APL APPLICATION

Date

INSTRUCTIONS: Complete this Form and send to Code 531.1 Attention: Mrs. May W. Adams

Name

GSFC Programmer ID Sponsor number(s)

I Goddard Employee [ Contract Employee

Code Company:

GSFC sponsor CodeU Other

Authorized
Telephone Bldg. Room By:

I am experienced in the use of: [ RITS/CRBE [ FORTRAN

7 360 Assembler Language [ PL1

F- Other

List any previous APL experience

List suggestions or comments?

(Signature)

NOTE: You will be required to maintain a LOCK on your ID. Users failing to do so will be deleted from the
system.

540-23(8/72) APL PRIME AND APL USERS MANUAL(IBM NOS. GH20-0689-1 AND SH20-0906-0) MAY BE OBTAINED FROM THE PROGRAM
LIBRARY IN BLDG 16 - x 4672.

15-8



MEMORY USAGE

SECTION 16

MEMORY USAGE

This section describes: (1) ways of specifying the memory required by a job
step, (2) means of reducing the storage required by a program via the use

of program overlays, (3) the technique of breaking a program into a series

of job steps, and (4) the use of the ATTACH, LINK, and XCTL macros to dyna-

mically load and transfer control to load modules.

16.1 GENERAL MVT CONSIDERATIONS

One significant feature of MVT, with respect to memory, is that the program-
mer does not know where his program will be loaded; the load origin can

change from run to run. Since the M&DO computers have high-speed and low-

speed memory the load origin can materially affect run timing. The higher

speed memory is installed in the lower hardware addresses (starting at 0);

however, the normal loader allocates memory from the top of memory down.

Models 95, 75, and 65 use a special version of the Loader which allocates from

the bottom of memory up. Jobs having a $ as the last character in the jobname
are the only ones loaded from the top of memory down. Without memory hierarchy
support, there is no other way a programmer can specify which type of memory
he wishes to allocate to his program. Memory hierarchy support is a SYSGEN

option currently not taken on the M&DO computers. Programs requiring more

than 700K of memory should be overlaid; otherwise, they can only be scheduled
for overnight runs of the model 95 (see subsection 18.3).

16.2 REGION PARAMETER

The REGION parameter is the means by which a programmer tells the system the

amount of memory required by the job step. On the M&DO 360 computers the

REGION parameter may only be specified on the EXEC statement. If specified on

the JOB statement a JCL error will result, and the following message will be

issued.

IEF632I FORMAT ERROR IN THE REGION FIELD

If the REGION parameter is omitted from the EXEC card(s), a default value (as

established by the input reader procedure) is assigned. The form of the REGION

parameter is

a. REGION=nnnnnK
or

b. REGION.procstepname=nnnnnK

where nnnnn is the number of contiguous 1024-byte blocks required.

16-1



MEMORY USAGE

When (a) is used on an EXEC card, all REGION parameters in a cataloged proce-
dure will be overridden. The use of (b) overrides the REGION parameter in the
named step only.

The amount of core requested on the REGION parameter affects the class of
the JOB in scheduling (refer to Table 18.3-1). A job requesting more than
700K will be run overnight. Jobs requesting 2000K or more will be held until
the programmer confirms by phone that there was no error in the REGION parameter.

An "excessive memory allocation limit" has been imposed on the M&DO 360 compu-
ters. That is, any job exceeding a limit of 50K memory not used by a job step,
will be cancelled at the end of that job step. Users having single job steps
are encouraged to check their programs for excessive memory requests, since
single step jobs are not affected by this restriction.

See subsection 18.3 for a discussion of job class and priority on the M&DO
computers.

The form of the REGION parameter that specifies storage hierarchy require-
ments should not be used, as storage hierarchy support is not available on
any of the M&DO computers.

16.3 MULTI-STEPPING

Very large and long-running programs are better handled by dividing them
into separate job steps. This allows the programmer to generate a re-
start capability in case a portion of the program terminates abnormally
(see subsection 11.5). Further, the subdivision into job steps can result
in better use of the system; only that amount of space required for each
step is used, instead of the maximum amount required for the job.

The most convenient method of calling one program (such as the Sort pack-
age) from another program is by means of a separate job step. This method
eliminates recoding or recompiling the program when a change in the Sort
parameters is required; only the JCL need be changed.

16.4 ATTACH, LINK AND XCTL MACRO INSTRUCTIONS

In a very large and complex program, sometimes the required overlay struc-
ture cannot be statically determined. For these dynamic structures, the
programmer can maintain control over which modules are to be loaded, and
when this loading is to occur.

The ATTACH macro instruction causes a specified load module to be loaded
(if necessary), creates a new task (with the specified priority), and
transfers control to the new task while the old task continues execution.

16-2



MEMORY USAGE

The LINK macro instruction is used to load a module (if necessary) and to
transfer control to the new load module at the specified entry point. Re-
turn is made via the RETURN macro instruction.

The XCTL macro instruction is like the LINK macro, except that the calling
module is deleted after the call; thus, no return is possible. Care should
be taken not to mix XCTL macros with direct branch instructions between
modules; instead, the module that issues the XCTL should have control
passed to it via a LINK. Refer to IBM OS Supervisor Services and Macro
Instructions (GC28-6646), for information, and IBM OS Data Management Macro
Instructions (GC26-3794), for information and coding examples.

16.5 OVERLAYS

When a program becomes large (especially if it is over 700K), the overlaying
technique should be used. Overlaying consists of analyzing the program
to find independent areas of the program. Phese mutually exclusive areas
can be loaded into the same region of core storage, with one part "overlaying"
the other as necessary. Data are usually passed through common areas in
segments that are in the common path of the exclusive segments.

Each time a reference ij made to a routine in one of the overlay segments,
that segment is brought into core. Care should be taken not to cause very
frequent calls between segments in the same region, as this will increase the
program's execution time.

Reference may be made to an overlay segment by a CALL statement (or macro
instruction), by a branch instruction, or by a SEGLD or SEGWT macro instruction.
Refer to IBM OS Data Management Macro Instructions (GC26-3794) for more in-
formation.

A program's overlay structure is declared via the Linkage Editor statements
INSERT and OVERLAY. Refer to Section 22 and the manual, Linkage Editor
and Loader, IBM (GC28-6535), for examples of overlay structures and coding.

16.6 MEMORY HIERARCHY SUPPORT

Hierarchy support is explained in the IBM manual, Planning for Hierarchy
Support (GC27-6942). It is a SYSGEN option and is not supported at GSFC.
Hierarchy support is normally used on machines with two types of storage,
one faster than the other. It allows the programmer to assign an executable
code to the faster storage and data to the slower storage.

If storage hierarchy support is generated into an operating system, it affects
all jobs run by that system. In order to use hierarchies efficiently, a job
must be compiled, linked (or loaded), and executed with hierarchy support in
mind. If not (and the overwhelming majority of software is not), system per-
formance may be seriously degraded. The Assemble and Linkage Editor are
presently the only processors which support the hierarchy feature.

16-3



MEMORY USAGE

16.7 MEMORY TRADE-OFFS

One of the decisions that a programmer commonly makes is whether to save
execution time at the expense of using additional memory. These considera-
tions affect many areas of a program, such as whether to use double buffering
on I/O at the expense of the extra buffer, whether to use a smaller blocksize
which degrades I/O time and space but requires less core, or whether to
use subroutines instead of inline code, i.e., trading off a slight decrease
in execution time in order to increase the program area caused by repetition
of the inline code. A trade off that does not deal directly with memory
is the use of the FORTRANH AND PL/I (F) option 2, which, while taking longer
to compile, provides gains in speed of execution and better core usage.

These considerations are primarily the concern of programmers developing
programs for a production environment. A program that will only run once
does not particularly benefit from the extra time a programmer spends in
fine tuning.

16-4



DATA MANAGEMENT TECHNIQUES

SECTION 17

DATA MANAGEMENT TECHNIQUES

17.1 GENERAL ASPECTS OF DATA MANAGEMENT

The IBM manual, OS Data Management Macro Instructions, GC26-3794, describes

the access methods provided by OS. Subsection 5.5 and 5.6 discuss the format

and coding of the basic DD parameters. This section presents some techniques

and pitfalls of significance on M&DO computer systems.

17.1.1 USE OF NAMES

The following names are of importance to data management: DSNAMEs, DDNAMEs,

UNIT names, and VOLUME names. When writing a program, the programmer codes

instructions which act on files. The programmer codes a data control block

(DCB) explicitly in assembly language and implicitly in FORTRAN and PL/I.

Within the DCB is a reference to a data definition statement or DDNAME. The

DD card refers to a data set or sets by DSNAME. These data sets reside on

VOLUMES which are mounted on devices (UNIT name on DD card). Volumes are

referred to by serial numbers and devices are referred to by unitnames;

unitnames are discussed in Section 19.

17.1.1.1 DDNAMES

The use of DDNAME as an operand is described under "Postponing Data Set

Definition" in paragraph 5.6.6.6. In this section, the term ddname will

refer to its use in the name field of the DD card. The ddname coded in

the DD card corresponds to the filename defined in the program. This file-

name is defined by the name field of the DCB macro in ALC, and by the

filename in PL/I. In PL/I, input files default to filename SYSIN, and

output files default to SYSPRINT. In FORTRAN, ddnames are formed from the

FORTRAN Reference Number (FRN) and the FORTRAN sequence number. FRN nn

defines a ddname FTnnFyyy, where yyy is the FORTRAN sequence number. The

FORTRAN sequence number is somewhat of an anachronism in OS 360, as direct-

access devices do not have files and the LABEL parameter provides the

file sequence for tape. Historically, FORTRAN has used certain FRNs for

specific purposes, e.g., five for card-to-tape input, six for printer

output, and most FORTRAN procedures have DD statements to support this

usage. In fact, the FORTRAN coder can use any available FRN for any

purpose by appropriately defining his DD card. The FORTRAN programmer

17.1-1



DATA MANAGEMENT TECHNIQUES

can bypass the limit on FRNs by indicating that he is using a new FORTRAN
sequence number. The coding to accomplish this is described in the
FORTRAN G&H Programmer's Guide, GC28-6817, under FORTRAN sequence num-
ber. It is not recommended unless necessary, and comments should be
inserted to indicate what is occurring.

Each job step may contain up to 254 ddnames. By concatenation, these DDs
may reference many more data sets. If the ddname is not referenced by the
program, data management allocates and de-allocates these data sets.

Five ddnames are listed by the system for special purposes. Therefore,
they should not be used as ddnames by problem programs. These names and
their use are:

ddname DPSCRIPTION REFERENCE

JOBLIB Defines a private pro- 5.4
gram library for the
duration of the job.

STEPLIB Defines a private pro- 5.4
gram library for the
duration of the step.

SYSABEND Defines a dump data set. 21.4

SYSUDUMP Defines a dump data set. 21.4

SYSCHK Defines the checkpoint GC28-6538
data set.

17.1.1.2 DSNAMES

The DD card associates a file defined (in the DCB) in the program with
data for a particular run. Since the DD card can be changed from run to
run, programs can process many distinct data sets as long as the attri-
butes are within the scope of the program.

The DSNAME field can be up to 44 characters long. A maximum of 8 charac-
ters can be used at each level of indexing with each level separated by
a period (.). Although 22 levels are possible, since the fully qualified
name, i.e., including all levels, must be used in the DSNAME parameterl
this can prove tedious if the user tends to use long names.

17.1-2



DATA MANAGEMENT TECHNIQUES

Lower levels of indices must be built (by IEHPROGM - Section 9) before
indexed data set names may be cataloged by data management. IEHPROGM
will generate index levels, as necessary, if it is used to catalog a
data set. If the programmer does not use the catalog, the entire data
set name is treated as a single field by data management. In searching
the catalog, each index level is matched until the lowest level is found.
This level contains user-supplied unit and volume information for the
data set. When referring to the catalog, the data set is defined as
existing (DISP=OLD or SHR) while the UNIT= and VOL=SER= parameters are
not coded on the DD card. Of course, if the data set is not where the
catalog says it is, a JCL error will occur when the VTOC or label is
searched. Scratching a data set does not uncatalog it unless it was
deleted by the job that referenced it via the catalog. Every entry in
the catalog must be unique. On the other hand, the same DSNAME may
appear in every VTOC and every tape file. This is not recommended,
however. Backup copies are sometimes maintained by keeping data sets
on two volumes and switching the catalog pointer from one to the other.

17.1-3



DATA MANAGEMENT TECHNIQUES

17.1.2 VOLUME STATES AND ATTRIBUTES

Volumes can be assigned different states, depending on the type of data
set being defined and the manner in which a volume is requested. The
volume state controls volume sharing and volume demounting.

A request for a volume can be specific or nonspecific. A specific
volume request includes the volume's serial number(s), e.g.:

VOLUME=SER=nnnnnn

which states the serial number explicitly.

Reference can be made to a previously defined data set, e.g.:

VOL=REF=*.stepname .ddname

VOLREF=* . stepname .procstep .ddname

or

VOLUME=REF=dsname

which states that the serial number is the same as that defined in the
reference.

A nonspecific volume request has neither the SER parameter nor the REF.
For a complete discussion on the VOLUME parameter and the subparameters
defined above refer to the Job Control Language Reference (GC28-6704) manual,
and to PRESRES in the System Programmer's Guide (GC28-6550) for an indepth
explanation of volume states. Refer to the OS Operator's Guide (GC28-6540)
for a discussion of the MOUNT, UNLOAD, and VARY commands.

17.1.2.1 Physical Volume Attributes

Because direct-access volumes can be used concurrently by more than one
job, they can assume different volume states than tape volumes, as shown
in Table 17.1.2-1. The following discussion applies to direct-access
volumes, except where noted.

A mounted volume may have the physical attribute of being permanently
resident, reserved, or removable. This characteristic of a mounted volume
determines if and when a volume is demounted.

17.1-4



Table 17.1.2-1. Volume States and Their Characteristics

Temporary Nontemporary
Data Set Data Set

Volume State Type of Volume Request How Assigned How Demounted

Public/Permanently Nonspecific Specific PRESRES Entry or by default Always mounted
Resident or Specific

Private/Permanently Specific Specific PRESRES Entry Always mounted
Resident

Storage/Permanently Nonspecific Nonspecific PRESRES Entry Always mounted
Resident or Specific or Specific

Public/Reserved Nonspecific Specific PRESRES Entry or MOUNT command UNLOAD command
or Specific

Private/Reserved Specific Specific PRESRES Entry or MOUNT command UNLOAD command
(Tape and direct (Only MOUNT command for tape.)
access)

Storage/Reserved Nonspecific Nonspecific PRESRES Entry or MOUNT command UNLOAD command
or Specific or Specific

Public/Removable Nonspecific Specific VOLUME=PRIVATE is not coded in When drive is required
or Specific the DD statement. by another volume.

Private/Removable Specific Specific VOLUME=PRIVATE is coded in the After its use, unless

(Tape and direct DD statement (Specific request RETAIN or PASS is

access) or a nontemporary data set for coded.
tape also causes this assignment.)

Scratch (Tape only) Nonspecific Nonspecific Any tape data set (Scratch volume When drive is required 0
or Specific or Specific becomes private if VOLUME=PRIVATE by another volume.

is coded, specific request is t
made, or data set is nontemporary.)



DATA MANAGEMENT TECHNIQUES

1. Permanently Resident. Under normal conditions permanently resident
volumes are never demounted. This may be because of a system con-
straint (the IPL volume and the volumes containing the system data
sets), or an IPL parameter making reference to the volume. For
example, the system checks to see that all permanently resident
volumes are actually mounted. A list of the permanently resident
volume serial numbers available to users of the 360/95 is found in
paragraph 3.2.5.

2. Reserved. A volume becomes reserved as a result of an operator
MOUNT command, or by a specification at IPL time. Once mounted,
the volume remains mounted until an operator UNLOAD command is
issued. Volumes to be used by a group of related jobs are usually
designated reserved to avoid repeated mountings and demountings.
On the M&DO computers, jobs are usually batched by the volumes
they require; direct-access volumes which are not permanently
resident are usually reserved.

3. Removable. A removable volume is one that is neither per-
manently resident nor reserved. The system mounts and demounts
volumes to satisfy the requirements of the jobs being processed.
Tapes volumes on the M&DO computers (as well as most scientific
computing centers) are always treated as removable volumes.

17.1.2.2 Logical Volume Attributes

In addition to the physical attribute, a volume has a logical attribute,
which determines a volume's availability for allocation of data sets:
public, private, storage, or scratch (tapes only). These characteristics
govern the system's selection of a volume when a nonspecific request is
made, i.e., when neither VOL=SER nor VOL=REF is coded.

1. Public. A public volume is one on which the svystem can alnocate
space to a temporary data set when a nonspecific volume request
is made, and PRIVATE is not coded as a VOLUME subparameter.

2. Private. A private volume is one on which the system cannot
allocate space to a temporary data set when a nonspecific
volume request is made unless PRIVATE is coded as a VOLUME
subparameter. When a PRIVATE nonspecific request is made,
the system requests the operator to mount a volume. This
volume then assumes the characteristics of a private, remov-
able volume. If the user desires to use an existing private
volume, he must make a specific request for that volume.

17.1-6



DATA MANAGEMENT TECHNIQUES

3. Storage. The system may allocate a storage volume to either
a temporary or permanent data set as long as VOL=PRIVATE or
SER or REF are not coded. (The 360/95 scratch disks, GlSCRO -
G1SCR9, are storage volumes.)

4. Scratch. A removable tape volume can be assigned the use
attribute of scratch or private. The use attribute of scratch
is assigned when the PRIVATE subparameter is not coded, a non-
specific volume request is made, and the data set is temporary.
The use attribute of private is assigned when the PRIVATE sub-
parameter is coded, a specific volume request is made, or the
data set is nontemporary. A scratch volume is demounted when
its unit is required by another volume. If a data set on a
scratch volume is PASSed, the scratch volume does not become
PRIVATE in the receiving step unless PRIVATE is coded in the
receiving step.

If an attempt is made to KEEP a scratch volume, the disposition
is changed to PASS, which may result in the volume being re-
assigned to another job before being demounted.

Note: All DD cards that define tape data sets should include a DSNAME.
Otherwise the system assigns a long temporary data set name which
gets printed at the operator's console as part of the MOUNT and
KEEP messages.

17.1-7



DATA MANAGEMENT TECHNIQUES

17.1.3 RECORD FORMATS

Three record formats are available:

1. F - Fixed Length Records

2. V - Variable Length Records

3. U - Unformatted Records

17.1.3.1 Spanning

Spanned records were originally a FORTRAN feature but are now supported

by data management. They allow the programmer to process records which

are longer than the physical blocksize. Spanning uses the record des-

criptor field of variable records to describe a segment of the record.

Spanning may be used with either blocked or unblocked variable records,

by coding an "S" in the RECFM subparameter, i.e., VS or VBS. In FORTRAN,

spanning is associated with unformatted I/O. Prior to OS release 17,
the FORTRAN I/O routines handled spanning. In OS release 17, support of

this feature was removed from the FORTRAN I/O routines and placed in the

OS data management routines. Records which have been written with older

versions of FORTRAN (i.e., the executable load module was link edited

with a release 16 or older FORTLIB) can be retrieved by later versions

by coding an "S" in the RECFM. Since the older data management routines

ignore the "S" in the RECFM, cataloged procedures containing the "S" may

be used by load modules of both types.

17.1.3.2 Blocking and Buffering

Blocking is the grouping of multiple logical records into a single physi-

cal record. This reduces the number of record gaps required to separate

the physical records, thus allowing more logical records to be contained

on a volume. By reducing the number of accesses required, blocking saves

CPU cycles needed for I/O control, avoids some WAITS, and actually saves

the programmer I/O charge time since the charge is determined by the num-

ber of accesses made. Because the physical records are longer, each trans-

mission is longer (although total transmission time is reduced) and every

buffer must be larger; this requires more core.

All I/O equipment requires record gaps to separate physical records. On

9-track tape, this gap is six-tenths of an inch of erased tape (at 1600

bpi, this would store 960 bytes of data). On disk, the record gap is

supplied by control characters written out with the record in unblocked
format; 40 80-byte unblocked records (total 3200 bytes) can be written on

a 2314 track. At full track blocking, 91 80-byte records (total 7280

bytes) can be written. On remote devices the record gap may cause line

turnaround or require acknowledgement. The point is that each of these

items requires resources of time or space which must be subtracted from

the total resources available to the system.

17.1-8



DATA MANAGEMENT TECHNIQUES

Blocksizes for direct-access data sets should be chosen so that they fit

the track. Refer to Table 3.6-2 to determine how many blocks will fit on

each device. Two 3520-byte blocks (each containing 44 80-byte records)
will fit on a 2314 track. Any increase in the blocksize (over 3520 bytes)

would be regressive until the blocksize increased to 7040 bytes. There is
no track limit to the blocksize for tape files, but the desirability of

being able to shift from one medium to another should be considered. Tape

blocks longer than 214-1 must be handled in a special way (LRECL=X) and

should be used only when justified.

Fixed and variable records may be blocked. In fixed-block format, the
blocksize is a multiple of the record length. Variable records are pre-
ceded by a 4-byte record descriptor word. The LRECL is four greater than

the longest record that may be written or read by the program. Variable

blocks are preceded by a block descriptor word. The-blocksize is at least
four greater than the LRECL (i.e., eight bytes greater than the longest
record) unless the records are spanned. Unblocked variable records con-
tain both the block and the record descriptor words.

The BUFNO subparameter of the DCB parameter allows the user to specify
the number of buffers to be used for a data set. The system default is

two buffers per data set. Users who override the two-buffer default with
BUFNO=1 should note that, in addition to decreasing system efficiency, the
clock time required to process data using only one buffer is increased.

17.1.3.3 Choosing A Format

In choosing a format, the user should examine the logical records. If the
records are relatively the same length, an easy, fixed format is appropriate.
If not, the user should attempt to determine the length of both the longest
record and the median record. If these records are nearly the same, then
the fixed format may still be most efficient.

Because of the record descriptor word and the overhead in processing it,
a fixed-length format has an advantage over a variable format if the records
are of nearly equal size. If the records are not of equal size, the time
and space wasted in padding and stripping may more than offset the inherent
advantages of fixed format. If the length of the longest record greatly
exceeds the length of the median record, a variable format is more efficient
than a fixed format. If the length of the longest record causes the block-
size to exceed a maximum for the storage device, or if the buffer length
is too long for the available memory, then (variable) spanned records should
be used.

17.1-9



DATA MANAGEMENT TECHNIQUES

Unformatted records are the equivalent of variable unblocked records without

the record descriptor word. They have the advantage of saving the four

bytes used and the time required for checking; however, there is no

check to see that a full record has been read.

If the user is writing in ALC and using variable format, either the data

must be aligned on a word boundary, or must be processed by instructions
which do not require full word alignment; otherwise, specification errors

will occur.

17.1-10



DATA MANAGEMENT TECHNIQUES

17.1.4 TO QUEUE OR NOT TO QUEUE

For the usual data management applications, the Queued Sequential-Access

Method (QSAM) is recommended. QSAJ relieves the programmer of the respon-

sibility for blocking and buffering. The system code is more efficient

than that of the average coder. QSAM has a look-ahead for filling and
emptying buffers, thus reducing I/O wait time.

BSAM gives the programmer more control, which he should exercise, if

necessary. The access methods applicable only to direct-access devices

are discussed in subsection 17.2. The EXCP and XDAP methods are mentioned

in subsection 17.1.9 and in The System Programmer's Guide (GC28-6550).

17.1-11



DATA MANAGEMENT TECHNIQUES

17.1.5 EFFICIENT USE OF CHANNELS AND ACCESS MECHANISMS (SEP AND AFF)

The path used in transferring data between an I/O device and core storage
is called a "channel". In balancing and optimizing I/O operations, channel
separation, channel affinity, unit affinity, and unit separation provide
useful controls. Channel separation, by definition, includes unit sepa-
ration. Separation and unit affinity requests are made in terms of pre-
viously defined DD statements. Channel affinity requests are made in
terms of previously coded channel separation requests.

The use of separate channels for I/O operations allows for greater overlap
and results in faster execution when concurrent operations are required.
The use of separate units for disk operations also results in faster exe-
cutions by reducing arm movement.

17.1.5.1 Channel Separation

In coding, channel separation or channel affinity is a parameter of the DD
statement:

SEP= (ddname)

or

AFF= (ddname)

where ddname refers to the name of one or more previous DD statements in
the same job step.

When coding the DD cards, the user should define the most used file first,
the second most used file next, and so on. An attempt may be made to put
each file on a separate channel. However, with large jobs this may prove
to be cumbersome, if not impossible, since there are a limited number of
channels available. Consequently, subsequent files may be defined with
affinity to previous separate requests. Affinity requests are a short-
hand way of indicating that the previous separation is required. Channel
affinity does not mean that a unit will be allocated to the same channel
as that assigned to the unit in the file to which it requested affinity;
rather, it means that the unit will be separated from the same files as
its affinate files.

The Sort procedure provides an example of channel separation. The original
input is output to a work file; in turn, it becomes input which is output
to another work file, and so on. Since I/O overlap is important, the user
codes, along with the other parameters:

17.1-12



DATA MANAGEMENT TECHNIQUES

//SORTIN DD etc.
//SORTWK01 DD SEP=SORTIN
//SORTWKO2 DD SEP=SORTWKO1
//SORTWKO3 DD AFF=SORTWK01
//SORTWK04 DD AFF=SORTWK02

SORTWK03 could be coded as SEP=SORTIN.

Many compilers split their intermediate work areas into several data sets
and then print and punch their output. Since a punched deck and an object
module are produced, there are three output data sets. In this case, the
codes are:

//SYSIN DD etc.
//SYSPRINT DD SYSOUT=A
//SYSUTl DD SEP=(SYSIN,SYSPRINT),etc.
//SYSUT2 DD SEP=(SYSIN,SYSPRINT,SYSUTI),etc.
//SYSPUNCH DD SEP=(SYSPRINT,SYSUT1,SYSUT2),etc.
//SYSGO DD SEP=(SYSPRINT,SYSUT1,SYSUT2,SYSPUNCH),etc.

The use of multiple ddnames in channel separation requests on smaller
machines (with fewer channels) forces the operator to reply 'NOSEP' to
those requests which cannot be honored. In this case, the compiler
example should be coded as follows:

//SYSIN DD etc.
//SYSPRINT DD SYSOUT=A
//SYSUTl DD SEP=(SYSIN,SYSPRINT),etc.
//SYSUT2 DD AFF=SYSUT1,etc.
//SYSPUNCH DD SEP=SYSPRINT,etc.
//SYSGO DD SEP=(SYSPRINT,SYSPUNCH)

This works as long as three channels are available.

Channel separation is not possible when using the data cell; the use of
unit separation, though possible seriously degrades performance, as the
bins are considered separate units.

17.1.5.2 Unit Separation

Unit separation or affinity is a subparameter of the UNIT parameter:

UNIT=AFF=ddname

or

UNIT=(2314,SEP=ddname)

17.1-13



DATA MANAGEMENT TECHNIQUES

A channel or unit may have affinity to only one other ddname. Channel or

unit separation may be applied to up to 8 ddname names of previous DD cards

in the same job step.

Unit separation is useful for direct-access data sets which may be used

concurrently. If both data sets were on the same unit, the access mech-

anism would be moving between the data sets as they were being accessed.
If the data sets were on separate units, the arm contention is eliminated,
although there may be other arm contention arising from programs being run

concurrently. Since only one data set may be open on a tape, unit sepa-
ration is implied for the tapes, unless affinity is requested.

In tape operations, unit affinity can be used to obtain deferred mounting.

Unit affinity can only be used for devices with removable volumes. In

requesting unit affinity on the 2321 data cell, the data sets will have

the same unit, but may be assigned different bins. Unit affinity, by

definition, includes channel affinity.

17.1-14



DATA MANAGEMENT TECHNIQUES

17.1.6 DATA SET PROTECTION

After completely checking out a program, it is frustrating to discover

that a key data set has been lost with no back-up. The user should learn

from the experience of others to protect valuable data sets.

17.1.6.1 Physical Protection

Except for card decks and listings, the average programmer does hot usually

have custody of his data sets. Certain precautions should be noted for

those occasions when he does handle volumes.

* Cards are subject to warping and swelling when exposed to

moisture or high humidity. They may also be nicked or worn

by rubber bands or by handling. These conditions cause feed

checks or jams. Cards should be protected by end boards (stiff

cardboard), double rubber bands, boxes, trays, and cases. Even

when boxes or trays are used, rubber bands should also be used;

however, they should not be stretched so tightly as to damage

the cards.

* Certain punches (2780 and 1442) use the same path for reading

and punching. If a deck is readied when the device is selected

for punching, that deck will be punched.

* Multipart listings tend to pick up smudges from handling.

Certain types of paper are damaged by heat.

* Magnetic recordings consist of tapes, disks, and data cells.

Their information content may be destroyed or damaged by proxi-

mity to equipment or electrical lines which emit magnetic fields.

Heat and mishandling may warp the surfaces so that read heads

cannot function properly. Dirt also prevents the proper func-

tioning of heads.

* Disk packs and tapes have been destroyed in the trunks of cars

that were parked in the summer sun. When transporting tapes

from one building (or air-conditioned room) to another, the tape

should be allowed at least three hours to reach equilibrium (24

hours, to be safe).

e File protect rings should be used. IBM tape drives have an

interlock which disables the write circuits when a tape does

not have a ring in place. Since FORTRAN opens tapes for INOUT,

the operators stick a ring in the tape. This bypasses the pro-

tection. To prevent this, override the LABEL parameter with IN

for input or OUT for output, as appropriate. See paragraph

5.6.6.7.

17.1-15



DATA MANAGEMENT TECHNIQUES

17.1.6.2 Logical Protection

OS has several software features for data set protection. One is the
PASSWORD option. Another is the expiration date in the data set label.
Both of these features require operator acknowledgement to overwrite a
data set. Neither provides much protection if stand-alone or non-OS
programs are used on the computer. Neither provides much protection for
tape files when Bypass Label Processing (BLP) is allowed.

The PASSWORD option allows the programmer to specify write or read-and-
write protection for a data set. To open a protected data set, the opera-
tor must reply with the password. Unless the programmer operates the sys-
tem himself, he must make the password known to the operator. The PASSWORD
data set must be built by a systems programmer. For most applications, the
PASSWORD option requires more effort to use than the protection it affords.

For labeled data sets (all direct-access and standard label (SL) tapes)
an expiration date may be given (see paragraph 5.6.6.7). The form
LABEL=EXPDT=yyddd defines it absolutely and is preferable for data sets
whose utility will cease on a given date. For most users, the form
LABEL=RETPD=nnnn is preferable. The system adds the number of days
specified to the current (system) date; this becomes the expiration
date. Expiration dates are recommended only for Read Only files. If
a file is to be updated, the operator must indicate each time a data
set with an unexpired expiration date is opened for writing. If he does
this often, he not only uses his time, but the reply becomes a habit.
This defeats the protection. The PURGE parameter of the IEHPROGM and
IEHDASDR utilities override the expiration date.

17.1.6.3 Backup

See Section 9 (Utilities) for examples of creating back-up copies of data
sets.

17.1-16



DATA MANAGEMENT TECHNIQUES

17.1.7 ERROR OPTIONS

The EROPT subparameter of the DCB parameter allows the user to specify the

action to be taken if an erroneous block is encountered and there is no

SYNAD routine specified (see Supervisor and Data Management Services,

GC28-6646). The actions allowed are:

1. ACC - accept the erroneous block

2. SKP - skip the erroneous block

3. ABE - ABEND task on erroneous block

The default for the EROPT subparameter is ABE.

The EROPT subparameter is coded as:

ACC)
DCB=EROPT= SKP

ABE

Suggested uses for these options are: to ABEND where a missing or erroneous

record would destroy the value of a run, e.g., for compiler input, to ACCEPT,

e.g., on a printed output file, or to SKIP, e.g., on the update of an ISAM

or direct-access file where the missing transaction could be processed

later.

Where potential errors can be anticipated and corrective action taken, an

error exit (&SYNAD in the DCB in ALC, ERR in the READ in FORTRAN) should

be specified. This allows the programmer to take appropriate action at

the time an error occurs.

17.1-17



DATA MANAGEMENT TECHNIQUES

17.1.8 GENERATION NUMBERS

When a cataloged data set is updated regularly, and previous versions of the
data set are to be kept, the creation of a generation data group is indicated.
Refer to the Job Control Language Reference (GC28-6704), for information on
creating and retrieving generation data sets.

17.1-18



DATA MANAGEMENT TECHNIQUES

17.1.9 GATHER WRITE AND SCATTER READ

On some computers (1400 series), a block of data was read and written from

contiguous addresses. On other computers (701X series), by coding channel
commands a programmer could read a block of data and place it in non-
contiguous areas or write a block of data from non-contiguous core. This
feature is especially valuable when the user wants large physical blocks,
without allocating a large buffer or expending CPU cycles to move edited
data to a buffer.

FORTRAN and PL/I coders apparently have this facility by using lists and

strings. ALC coders may obtain these advantages by coding EXCP or XDAP macro
instructions. These techniques are described in the System Programmer's

Guide, GC28-6550. It should be noted that it is much more difficult to write

and debug EXCP and XDAP macros than to use standard access methods.

17.1-19



DATA MANAGEMENT TECHNIQUES

17.1.10 DISPOSITION PARAMETER; PRIVATE, SHARED, MOD DATA SETS

The Disposition (DISP) parameter reflects the status of a data set with re-

spect to the current job step, and the disposition of the data set after the
job step is completed, both normally and abnormally. If a data set has been
created prior to the job step, it will have a status of OLD, SHR, or MOD, de-
pending on the processing to be done. The SHR option allows other jobs to
use the data set concurrently. If a data set does not already exist, the NEW
option should be used. When a NEW data set is to be passed, the last receiv-
ing job step must specify a disposition other than PASS, or the data set will
be DELETED at the end of the job. The second and third subparameters specify
the disposition of the data set, depending on normal and abnormal termination,
respectively. The available options are KEEP, DELETE, CATLG, or UNCATLG.
PASS is available as a disposition only for normal termination of the job step.

The default values for the DISP parameter are NEW, DELETE. Note that if
OLD or SHR is coded, the default dispositions are KEEP,KEEP. The default
disposition for abnormal termination is to take the normal termination
disposition.

When MOD is used, if the data set does not exist, it is treated as NEW;
if it already exists, it is treated as OLD. Any records written are added
after the last previously written record in the data set.

If a job step is updating a data set that has a status of SHR, it should
ENQueue and DEoueue to obtain sole possession of the data set while it is
being updated. Normally, a data set to be updated should have a status of
OLD rather than SHR. However, the OS scheduler will ENQueue an OLD data
set for the duration of the job, not just the one step in which OLD is en-
coded. This is true for all data sets (disk, tape, drum, and datacell). For
a long running job, and especially one in which a data set may occasionally
be written but is normally read, it is possible to execute more than one such
job concurrently by using a status of SHR and ENQueuing and DEQueuing under
program control.

17.1-20



DATA MANAGEMENT TECHNIQUES

17.2 DIRECT-ACCESS CONSIDERATIONS

This section expands on some items applicable only to data sets on direct-

access devices.

17.2.1 DATA SET ORGANIZATION (DSORG SUBPARAMETER)

The data set organizations available with direct-access devices are: Se-

quential (PS), Partitioned (PO), Direct (DA), and Indexed Sequential (IS).

Sequential Organization is the only one that gives complete device independ-
ence, as tapes and unit record devices only accommodate sequential data

sets. In sequential organized data sets the information is processed in

the order in which it appears on the device. Sequential organization gives
the user the choice of queued or basic access methods.

A partitioned data set (PDS) is composed of individual members, whose names

are contained in a directory index that is part of the data set. Each mem-

ber has sequential organization. The chief advantages of a partioned data

set are that the members can be accessed and updated individually, and that

space allocation may be made for the whole data set, with a variable number
of members.

The address of a data set on a direct-access device is obtained from the
Data Set Control Block (DSCB) which is an entry in the Volume Table of Con-

tents (VTOC). The address of a member of a partitioned data set is obtained
from the data set directory by a BLDL macro. It is placed in the directory
by a STOW macro. When a data set is scratched, its name is removed from the

VTOC. The addresses of the tracks it occupies are returned to the free space

queue which is in a special DSCB in the VTOC. The data set is not obliterated
but its pointer is removed, making it inaccessible. When a member of a par-
titioned data set is deleted or replaced, its pointer is removed or altered.
However, there is no free space queue in the directory. Additions or updates
take place at the end. The tracks formerly used by updates or deleted mem-
bers become unusable. The data set must be compressed. (See Section 9,
Utilities, for a discussion of compressing a PDS.)

A direct-access data set allows the programmer to access individual records
as required, rather than having to access all records preceding the one of
interest. For example, to access the 50th record in a direct-access data
set, the user need only specify the 50th record in the I/O statement.
To access the 50th record in a sequential data set, records 1 through 49

17.2-1



DATA MANAGEMENT TECHNIQUES

must already have been accessed. (Refer to paragraph 17.2.3 for a discussion
of FORTRAN direct-access data sets.) FORTRAN programmers may access members
of partitioned data sets by coding the member name in the DSNAME parameter.
In this case, the supervisor routines issue the BPAM macros when allocating
and the program treats the member as a sequential data set. The LABEL
parameter must be set to IN or OUT, not defaulted.

The directory of a partitioned data set corresponds to the index of an
indexed sequential data set. While the directory is part of a partitioned
data set, the index is separate from an indexed sequential data set. The
index is usually maintained on the highest speed direct-access device avail-
able. As in the direct-access method of organization, records may be ac-
cessed selectively. Unlike the direct-access method, there need not be a
one-to-one correspondence between the existing and potential keys. Records
may be deleted and inserted at any point in the file. Overflow areas are
provided.

The DSORG subparameter is used to specify the data set organization in the
DD statement, i.e.:

DCB=DSORG=  PO
DA
IS

17.2-2



DATA MANAGEMENT TECHNIQUES

17.2.2 SPACE DETERMINATION AND SPECIFICATION (SPACE PARAMETER)

The amount of space necessary to contain a given amount of data is pri-
marily a function of the blocksize. For example, with logical records

of 80 characters using a blocksize of 80, a track on the 2314 disk will

hold 40 records; when the blocksize is equal to 7280, a track disk will

hold 91 such records. Table 3.6-2 gives direct-access device character-

istics that will aid in determining how many records will fit in a track.

In allocating space for a partitioned data set, allowance must be made
for the directory entries. The directory space is allocated in 256-byte

blocks (28 per 2314 track). Each block holds from three to seven direc-

tory entries, with an average of five entries per block for load and
object modules. Source and procedure module directory entries are shorter,

and up to 12 will fit in each block, depending on the presence and amount

of optional data. An entry is required for each alias, as well as for
each member name. Any part of the directory track left over will be allo-
cated to the first member if the blocksize is small enough to fit in the

remaining space.

If full blocking is used for the data set, the programmer may wish to
allocate entire tracks for directory records, as shown in the following

table:

DEVICE DIRECTORY BLOCKS/TRACK

2301 45

2303 12

2314 17

When allocating space to data sets, the allocation may be made in terms of

blocks, tracks, or cylinders. Block allocation provides device independence
since the space allocated remains the same; whether it is being allocated
to a disk, drum, or data cell. By using the ROUND subparameter (when allocat-
ing in blocks) an integral number of cylinders is allocated. Data sets
requiring a large number of tracks should be specified with the cylinder
option (CYL), as the allocation of tracks may cross cylinder boundaries,
thereby degrading performance. FORTRAN DA (direct access) data sets must
be allocated in blocks to agree with the DEFINE FILE statement.

All allocations are made in contiguous units where possible; however, if the
contiguous space requested is not available, the available contiguous space
is allocated and the remaining primary allocation is added as one or more
secondary (overflow) allocations. This has the disadvantage of reducing
the total number of secondary allocation requests (15) that can be made.
The CONTIG option is available to force a contiguous allocation of tracks
or cylinders.

17.2-3



DATA MANAGEMENT TECHNIQUES

The RLSE subparameter, which had not been reliable prior to Release 19, now
works as stated and its use is encouraged. When your data set is closed
unused space is given back to the system and becomes available for use by
other data.

ABSTR (not shown in above format) should not be used unless the user has
consulted the PAC, Building 3, Room 133.

If the program being executed runs more efficiently with a larger space
allocation (i.e., SORT/MERGE), but the user is unsure of the maximum
contiguous space available, the user should code MXIG. This will allocate
the largest block of contiguous space on the volume.

The SPACE parameter need only be specified when creating data sets on
direct-access devices.

The SPACE parameter is coded:

TRK,
SPACE=( CYL, (xxxxx[,yyyyl[,dddd]) ,RLSE, CONTIG][,ROUND])

nnnnn , MXIG
ALX

where:

nnnnn is the average block length in bytes

xxxxx is the number of units required (either tracks, cylinders,
or blocks).

yyyy is the number of secondary (overflow) units required

dddd is the number of directory blocks required - for partitioned
data set onlyv

For further information concerning the SPACE parameter refer to the IBM
manual Job Control Language Reference, GC28-6704.

17.2-4



DATA MANAGEMENT TECHNIQUES

17.2.3 USE OF FORTRAN DA FACILITIES1

Direct-access data sets are available to FORTRAN users; however, records

must be transmitted only by FORTRAN direct-access I/O statements. Direct-

access data sets must reside on direct-access volumes. The DEFINE FILE

statement must be used, and the FORMAT statement must conform to the DEFINE

FILE statement. For example, the following DEFINE FILE statement in a

FORTRAN program:

DEFINE FILE 8(100,50,E,NEXT)

could be used with a FORMAT statement:

FORMAT (I2,4F12.7)

It is significant that the FORMAT statement must not specify a greater

number of bytes than the maximum record size in the DEFINE FILE statement.
On the DD statement, ddname must be:

FTxxF001

where xx corresponds to the reference number in the DEFINE FILE statement.

The corresponding DD statement could be

//FT08F001 DD DSNAME=name,DISP=(NEW,KEEP),
// LABEL= (,SL),UNIT=DISK,

// VOLUME= (PRIVATE, RETAIN),

// SPACE=(50,100,,CONTIG),
// DCB= (RECFM=F,BLKSIZE=50)

The significant factor above is the relationship of the SPACE and DCB
parameters to the DEFINE FILE statement. The SPACE parameter on the DD
statement must be specified in blocks, and care must be taken that the units
conform to the characteristics described in the DEFINE FILE statement.

1The Direct Access Input/Output (DAIO) package (originated locally) is a more
effective way of making use of direct access capabilities via FORTRAN. The
package, written by IBM at GSFC, has been extensively modified by
Mr. John S. Daunis, of the building 3 PAC. Additional information and timing
comparisons are found in subsection 17.2.6.

17.2-5



DATA MANAGEMENT TECHNIQUES

17.2.3.1 DCB Assumptions for FORTRAN Load Module Execution

For compilation, the LRECL value for the following data sets is fixed and
cannot be altered by the programmer:

Data Set LRECL Value

SYSPRINT 120(G), 137(H)
SYSIN 80
SYSPUNCH 80
SYSLIN 80

The SYSPRINT, SYSIN, and SYSPUNCH compiler data sets can contain blocked
records.

The BLKSIZE value must be an integral multiple of the corresponding LRECL
value. The maximum BLKSIZE value is limited only by the type of input/
output device (see Table 17.2-1).

For load module execution, specifications depend on record type. For
F-type records, the BLKSIZE value must be an integral multiple of the
LRECL value; for V-type records, BLKSIZE must be specified as 4+n x LRECL
(where n is the number of records in the block); for U-type records, no
blocking is permitted. Note that the BLKSIZE and LRECL range is limited
only by the type of device used to directly write the data set. Load
module DCB parameter default values are shown in Table 17.2-2.

Refer to FORTRAN IV Language (GC28-6515), and FORTRAN IV Programmer's
Guide (GC28-6817) for further information.

17.2-6



DATA MANAGEMENT TECHNIQUES

Table 17.2-1. BLKSIZE Ranges: Device Considerations

BLKSIZE RANGES

DEVICE TYPE F AND U RECORD TYPE V RECORD TYPE

CARD READER 1 - x 80 9 x 5 80

CARD PUNCH 1 5 x 81 9 5 x 89

PRINTER:

120 SPACES 1 : x g 121 9 x ! 129

132SPACES 1 5 x 5 133 9 x 5 141

144 SPACES 1 x : 145 9: x : 153

MAGNETIC TAPE 18 _x 32,760

DIRECT ACCESS: WITHOUT TRACK OVERFLOW 1  WITH TRACK OVERFLOW 1

2301 15 x 5 20,483 1 < x - 32,760

2302 1 5 x e 4984 1 : x < 32,760

2303 1 < x < 4892 1 5 x < 32,760

2311 1 x < 3625 1 5 x _ 32,760

2314 1 < x 7294 1 s x 5 32,760

If RECFM = V, the minimum block size is 9.

17.2-7



DATA MANAGEMENT TECHNIQUES

Table 17.2-2. Load Module DCB Parameter Default Values

SEQUENTIAL DATA SETS DIRECT-ACCESS DATA SETS

DATA SET DEFAULT DEFAULT DEFAULT DEFAULT LRECL
REFERENCE

NUMBER DDNAME BLKSIZE1  RECFM 2  RECFM OR BLKSIZE

1 FT01Fyyy 800 U F

2 FTO2Fyyy 800 U F THE VALUE

3 FTO3Fyyy 800 U FA 3  SPECIFIED AS THE

4 FT04Fyyy 800 U F MAXIMUM SIZE OF

5 FTO5Fyyy 80 F F A RECORD IN THE

6 FT06Fyyy 133 UA 3  F DEFINE FILE

7 FT07Fyyy 80 F F STATEMENT.

8 FTO8Fyyy 800 U F

99 FT99Fyyy 800 U F

1 If the records have no FORMAT control, the default LRECL is 4 less than BLKSIZE, where the default
BLKSIZE is as specified in this table. For direct-access data sets, blocksize is usually limited by track capacity,

unless track overflow has been specified.

2 If the records have no FORMAT control, the default RECFM is V (F if it is direct access).

3 The first character in the record is for carriage control.

17.2-8



DATA MANAGEMENT TECHNIQUES

17.2.4 TRACK OVERFLOW

The Track Overflow option is obtained by coding the character "T" in the
RECFM subparameter. Its effect is to continue the writing of a block over
a track boundary to the next track. It will not continue over a cylinder
boundary or to a new extent (allocation). The spanning option(s) can be
used to write records longer than a convenient blocksize, (see para-
graph 17.1.2). Track Overflow is standard on the 2314, but for the 2303
and 2321, it requires a hardware feature and a SYSGEN option. For these
devices it is supported on the 360/95, 360/75, and 360/65. The use of
this feature for non-temporary data sets is not recommended and should
be discussed with the system programmer responsible (see paragraphs
3.2.2, 3.3.2, and 3.5.2).

17.2-9



DATA MANAGEMENT TECHNIQUES

17.2.5 MULTI-UNIT FILES

Occasionally, a file will require more space than is available on one
volume. In this case, multiple volumes must be allocated to the file.
If specific volume references are made, all the serial numbers must be
specified.

Multivolume files can be allocated in these ways:

UNIT= (device ,volcount)
VOL=SER=(#1,#2,...,#n)
VOL= (PRIVATE,, ,n)

More volumes in the VOLUME parameter than units in the UNIT parameter may
be specified, but these must be coded PRIVATE. Otherwise, the volumes
mounted first cannot be de-mounted during the job step. If the number of
units equals the number of volumes, the user need not code PRIVATE. If
specific serial numbers are coded (i.e.,[VOL=SER= ser#l,ser#2,...,ser#n]),
and the data set is cataloged, all the serial numbers specified are cata-
loged, whether used or not. Otherwise, only those volumes actually used
are cataloged. The SPACE parameter must have a secondary allocation for
multi-volume data sets. BPAM and FORTRAN direct-access data sets are limited
to one volume.

It is easier to retrieve a multi-volume file if it is cataloged. In this
case, only the DSN and DISP parameters need to be coded. The UNIT para-
meter may be used to allocate multiple units for parallel processing.

17.2-10



DATA MANAGEMENT TECHNIQUES

17.2.6 DIRECT ACCESS I/O PACKAGE (DAIO)

The Direct Access I/O Package (DAIO) was written to provide programmers with
a more efficient means of using direct access for unformatted data sets. It
consists of three subroutines; one for reading, one for writing, and one for
closing, which can be called from FORTRAN, PL/1 and Assembly Language programs.

A direct access data set can be thought of as a series of sequentially numbered
records with corresponding locations on disk (record one, record two, etc.).
The number of permissable records, the size of the records, and the blocking
factor is determined by the JCL DD card that defines the data set. When the
user writes a record into the data set, he specifies the number which corre-
sponds to the logical record on the data set. For example, if the user asked
to read record three, he would read the third logical record on the data set.
The record most recently written in the specified location will be read. Rec-
ords may be read or written in any order. It is the user's responsibility to
only read records that have previously been written.

The standard OS/360 access methods require that a direct access data set be
initially created sequentially. This means that if records are missing when
the data set is created, skeleton records (dummy records) must be written in
place of them. FORTRAN DEFINE FILE I/O routines write skeleton records for
the entire data set when the first WRITE statement for a new data set is
executed. The DAIO routines, however, were written so that skeleton records
are required only when all the following conditions are met:

1. The data set is new

2. There is more than one record per track. (For a 2314 this means
that the record size is less than 3521 bytes.)

3. Records are not created in sequential order.

When these three conditions are met, skeleton records are written for any
records skipped while creating the data set. For example if record 3 is the
first record written, skeleton records are written for records 1 and 2. If
subsequently record 5 is written, a skeleton record will be written for record 4.
If at a later time record 1, 2, or 4 is written, the actual record will replace
the skeleton record. (A skeleton record consists of all binary zeros.)

17.2.6.1 Description of Routines

1. CALL DWRITE (NUNIT,NRECNO,AREA)
NUNIT = Logical unit number
NRECNO = Record Number indicating location into which record is to

be written on the data set.
AREA = Beginning of area from which data is to be written.

17.2-11



TIMING COMPARISONS

DEFINE FILE OLD DAIO NEW DAIO
DA DA DA

CPU I/O STORAGE CPU I/O STORAGE CPU I/O STORAGE BLK SIZE

(in seconds) (in seconds) (in seconds) (bytes)

*RECORD SIZE .24 16.85 2TRK .24 15.40 2TRK .19 6.15 1TRK 6400 H

32 bytes

*RECORD SIZE .45 17.10 6TRK .42 15.80 6TRK .27 7.60 5TRK 7040

320 bytes

*100 Records Random Reads and Writes of Full Set. This is the most
favorable text for Define File.



DATA MANAGEMENT TECHNIQUES

This routine writes a record on the logical unit specified. The second

parameter gives the location into which the record is to go. This must be

an integer between 1 and N where N is the maximum number of records in the

data set. The record is taken from consecutive core locations starting with

the third parameter. The size of the record is determined by the data set

attributes initially specified on the DD card when the data set was created

(DCB parameters LRECL for blocked and BLKSIZE for unblocked). The record

written will replace any record previously written into the same location.

2. CALL DREAD (NUNIT,NRECNO,AREA,&ERR)
NUNIT = Logical unit number

NRECNO = Record Number indicating location from which record is to

be read from the data set.
AREA = Beginning of area into which data is to be read

&ERR = Statement number to which control is to be passed if an

I/O error is encountered.

This routine reads a data record from the logical unit specified into conti-

guous locations starting with the third parameter. The second parameter gives

the location within the data set from which the record is to be read. If an

I/O error is encountered, control is transferred to the statement number given

as the alternate return.

3. CALL DCLOSE (NUNIT)
NUNIT = Logical unit number. It must be a four-byte integer on a

word boundary.

This routine closes the DAIO data set on the logical unit specified and

releases all associated core. If a DAIO data set was not open for this logical

unit, this is in effect a NO-OP.

In order to support data sets used by multiple programs simultaneously, an

optional parameter has been added to DREAD and DWRITE. This parameter will

cause a physical read or write of the record from or to disk. This overrides

normal processing where a block remains in core until a record accessing another

block is called for. Caution must be used in exercising this option, otherwise

the advantages of blocking records will be lost.

CALL DREAD (NUNIT,NRECNO,AREA,IPHY,&ERR)

NUNIT = Same as previous explanation
NRECNO = Same as previous explanation
AREA = Same as previous explanation
IPHY = Integer 1*4 value of 0 - Parameter is ignored

-1 - Will cause a physical read of the
block in which the record resides
on disk.

&ERR = Same as previous explanation

17.2-13



DATA MANAGEMENT TECHNIQUES

CALL DWRITE (NUNIT,NRECNO,AREA, IPHY)

NUNIT = Same as previous explanation
NRECNO = Same as previous explanation
AREA = Same as previous explanation
IPHY = Integer 1*4 value of 0 - Parameter is ignored

-1 - Will cause a physical write of
the block in which the record
resides on disk.

17.2.6.2 Restrictions

NUNIT and NRECNO must be specified as integer numbers and located on a full
word boundary.

Programs with other than a FORTRAN main routine will not be closed by the
system at the end of the program. It is the responsibility of the user in
this case to close his DAIO data set himself by calling DCLOSE. DAIO uses
standard FORTRAN Linkage conventions. DAIO uses IBCOM for end of program
processing. If the program does not exit through IBCOM (PL1, Assembler) this
call may be excluded in the program linkedit.

17.2.6.3 Programming Notes

A new feature to this package is the ability to block records. This is accom-
plished by specifying both LRECL and BLKSIZE as DCB parameters. The BLKSIZE
must be a multiple of the LRECL. If only the BLKSIZE parameter is specified,
no blocking will occur.

UNBLOCKED
//FT10F001 DD UNIT=2314,SPACE=(TRK,(2,2)),
// DCB=(RECFM=F,BLKSIZE=25)

BLOCKED
//FT10F001 DD UNIT=2314,SPACE=(TRK, (2,2)),
// DCB= (RECFM=FB, LRECL=25,BLKSIZE=5 00)

Blocking for temporary data sets is useful if it is anticipated that a number
of records will be read or written sequentially, or to reduce the space alloca-
tion for a large data set. For permanent data sets blocking will reduce the
required disk space. In either case, the I/O charges and resource requirements
will be reduced.

One I/O buffer from subpool five is used for blocked data sets. Unblocked data
sets read and write directly into the program.

17.2-14



DATA MANAGEMENT TECHNIQUES

17.2.6.4 I/O Errors

If a permanent I/O error is detected during a read (or read backward) operation,
certain information about the error is made available in a common area called

FERMSG before the alternate return is taken. This information can be printed
or used by the user if desired. The common area contains a full word integer
array, 26 words long. The contents of this array is as follows:

WORD CONTENTS

1 Buffer address

2 Number of bytes

3-22 EBCDIC message for printing

23 IOBFLAG1, IOBFLAG2, Sense bytes 0 and 1

24 Sense bytes 2, 3, 4, and 5

25 ECB completion code and CCW address from CSW

26 Last 4 bytes of the CSW

The first 22 words of this array are derived from the message created by the
SYNADAF macro-instruction (see Supervisor and Data Management Macro Instruc-
tions GC28-6647) and from the UCB. (Volume serial number from the UCB is
stored in the message in place of stepname.) The remaining 4 words are de-
rived from the first 4 words of the IOB and the sense information in the UCB.
(See System Control Blocks GC28-6628.)

To make the information available in the users program, the following common
statement may be used:

COMMON/FERMSG/IMES (26)

The message can then be written when an I/O error occurs with the following
write statement:

WRITE (6,100) IMES
100 FORMAT (1X, Z8, 16, 20A4, 4(lX,Z8))

A message written in this manner will contain the following items separated
by blanks and/or commas:

1. Buffer address (hex)

2. Number of bytes read (decimal)

17.2-15



DATA MANAGEMENT TECHNIQUES

3. Jobname

4. Volume serial number (from UCB)

5. Unit address

6. Device type

7. DD name

8. Operation attempted

9. Error description

10. Tape: block number (decimal)
Direct access: track address BBCCHHR (hex)
Unit Record: asterisks

11. Access method

12. IOBFLAG1, IOBFLAG2, IOSENSO, IOSENS1 from the IOB. For a description
of the first two see System Control Blocks, IOB description. For
the second two, see the component description manual for the I/O de-
vice.

13. Sense bytes 2-5 from the UCB. For a description of these, see the
component description manual for the I/O device.

14. ECB completion code and Channel Status Word (CSW) command address
portion. See System Control blocks for the ECB code.

15. Last 4 bytes of CSW (status and residual count field). See the
System/360 reference card (green card) for the format of the CSW.
The residual count indicates how many bytes were remaininc to be
read or written when the operation was terminated.

17.2.6.5 User ABENDS

101 - BLKSIZE specified is too large for device

102 - Unit is being used for FTIO

103 - System error at EOV

104 - Blocked - Cannot read physical when last I/O was write to same buffer

105 - Zero or negative NRECNO

17.2-16



DATA MANAGEMENT TECHNIQUES

106 - NRECNO out of data set range

107 - NUNIT out of range, zero, or negative

108 - Unsuccessful open

109 - I/O error trying to write an update record

110 - I/O error trying to write a skeleton record

111 - I/O error trying to write a new record

17.2.6.6 Table Formats

Unit Table Format:

Word 1 Code Byte ist DCB Address

Word 2 Code Byte 2nd DCB Address

Word 50 Code Byte 50th DCB Address

The unit table is in a CSECT called FUNITABL and contains one 4-byte entry for
each logical unit number, 1 - 50. The first byte of each entry contains a
code indicating the status of the unit as follows:

00 - Unit is not currently active
01 - DCB is open for input
02 - DCB is open for output
03 - DCB is open for reading backwards
04 - DCB is allocated but not open
FF - DCB is open for direct access

If core storage for the DCB has been allocated (any code except 00) the low
order 3 bytes of the entry contain the DCB address. (In the case of a direct
access unit, this is also the address of the direct access control block.) If
the code byte is 00 and the remainder of the entry contains an address, this
unit was previously used but the FTIO UNLOAD subroutine or DAIO DCLOSE sub-
routine has been called and the DCB area has been freed.

17.2-17



DATA MANAGEMENT TECHNIQUES

Direct Access Control Block Format:

Dec Hex

0 0 DCB - EXCP DCB for this unit

52 34 Extent Table

One word for each of the 16 possible extents. Contains
number of records that will fit in this extent. (Valid
only for extents used)

116 74 Highest record number written

120 78 Tracks per cylinder Record per track

124 7C Number of extents used *Current Block Number
in Buffer

128 80 *Flags *I/O Buffer Address

132 84 *Blocking Factor *LRECL

The Direct Access Control Block (DACB) for any unit can be found by looking
up its address in the unit table (csect FUNITABL). This table has one 4-byte
entry for each unit. To find the address for logical unit N, look up V
(FUNITABL)+(N-1)*4. Space for this (DACB) is allocated from subpool 5.

Additional information concerning the use of DAIO may be obtained from the
Building 3 PAC, Room 133A, Extension 6768.

*Zero unless blocking is used.

17.2-18



DATA MANAGEMENT TECHNIQUES

17.3 TAPE CONSIDERATIONS

Tapes are, by their nature, less reliable than direct-access devices; their

use should be carefully considered. Tape volumes only support sequential
data sets. Since tapes may have errors, care should be taken in the pro-
gramming to allow for and cope with these errors. For M&DO computers, the
highest available density is 800 bpi for 7-track and 1600 bpi for 9-track.

17.3.1 9-TRACK TAPES

Nine-track tapes should be used when tapes are to be accessed from an IBM 360.
Density of 1600 bpi should be specified (DEN=3). Density should always be
specified, as the defauAts may be different in various procedures. The
blocksize should be as large as possible, but not greater than 32000 bytes.
The spanned record format may be used for very long records. Record format
should be F or V, as format U cannot be blocked. RECFM=FB or VB or VBS
should be used.

17.3.2 7-TRACK TAPES

Seven-track tapes are used when machine independence is required, as when
transferring data for use on an IBM 7094 or Univac computer. In general,
the density should be the highest reliable density available on the com-
puter receiving the generated tapes. The TRTCH option may be used to spe-
cify data conversion (C), even parity (E), translation (T), or even parity
and translation (ET). Care must be taken that the labels, if used, have the
same parity as the data. Again, the programming should include handling for
errors. Only sequential data set organization is possible on tape volumes.

The Convert/Deblock routines, described in subsection 20.3, will prepare
binary input from a 7-track tape by expanding the 6-bit byte to an 8-bit
byte (deblocking); the convert routines will convert the buffers returned
by the deblock routines to the S/360 structure.

17.3.3 INTERNAL TAPE LABELS

Standard labels should be used whenever possible, both to avoid operational
errors, and to save time (and possible errors) in JCL. When standard labels
are used, the DCB subparameters, specified when the data set was created, are
incorporated in the label. Refer to paragraph 5.6.6.7 for coding of the
LABEL parameter.

17.3-1



DATA MANAGEMENT TECHNIQUES

17.3.4 MULTIFILE REELS, MULTIREEL FILES

When multifile reels are used, care must be taken to specify the same den-
sity and parity for all files. Standard labels should be used insofar as
possible. Because multifile tape volumes cannot be updated, they are pri-
marily useful only for archives or libraries. The relative file position
must be specified in the LABEL parameter (see paragraph 5.6.6.7).

MULTIREEL files can be created in at least the following four ways:

* UNIT=--(device,volcount,DEFER)

* VOL=SER=(ser#1,ser#2,...,ser#n)

* VOL=(PRIVATE,,,volcount)

* VOL=(,,, volcount)

If standard labels are used, multireel files can be retrieved as a single
data set. If not, each reel must be treated as a concatenated data set.

If the data set is cataloged, it may be retrieved without specifying the
volume parameter. The UNIT parameter is necessary only if parallel process-
ing is desired. If only one unit is allocated, the volumes are mounted in
sequence on that unit. If more than one unit is allocated, the next volume
will be processed while the prior volume is unloading. If "P" is specified
for the number of units, as many units as volumes are allocated.

17.3-2



DATA MANAGEMENT TECHNIQUES

17.3.5 USE OF THE DISP PARAMETER

The following information on using the DISP field on the DD card for tapes is

very important in saving valuable system overhead time and in protecting your

data and program from operator intervention.

Code DISP=(x,y) when:

NEW - The tape is to be written
x is OLD - The tape is to be read

MOD - To add on to the end of a tape

When:

PASS - Tape will forward-space to the end of the file. (The

channel will be tied up during this operation, which
y is is undesirable.)

DELETE - Tape will rewind to the load point

KEEP - Tape will rewind and unload.

Note: DISP=(xxx,PASS) will cause the drive to forward-space either to the end
of the file or the end of the tape in the event of a program abend in the middle
of a file. While spacing, no other activity can take place on the channel, and
the system must wait for the tape to finish. Thus, DELETE or KEEP should be
used whenever possible.

17.3.6 OTHER TIPS FOR TAPE USERS

1. Using the same tape drive for several tape data sets.

When a FORTRAN program closes a tape data set, it "leaves" the tape
mounted on the drive until the end of the job step. This causes
problems for those who wish to use UNIT=AFF=..., to conserve tape
drives during their step execution.

The simple solution to this problem is to call the FTIO routine named
UNLOAD. This will unload the tape from the drive and make it available
for a data set on another tape.

2. Listing multiple volume serial numbers with DISP=MOD.

It is possible to list multiple volume serial numbers with DISP=
(MOD,...) specified, if you indicate the actual tape (by number in
the list) on which writing is to begin. For example, if your DD card
specifies

DISP=(MOD,PASS),
and

VOL=(,,2,SER=TAPE1,TAPE2,TAPE3))

17.3-3



DATA MANAGEMENT TECHNIQUES

new data will be written starting at the first end-of-file mark on
TAPE2. If the sequence number is omitted, the last tape in the se-
quence will be mounted when DISP=(MOD,...) is specified.

3. Object module input from tape.

When you use a tape for object module input to the linkage editor
step of your job, don't forget to KEEP the tape data set at the end
of the LINK step. Otherwise, when PASS is used, the tape drive is
allocated needlessly for the remainder of the job.

17.3-4



DATA MANAGEMENT TECHNIQUES

17.3.7 FTIO (FORTRAN INPUT/OUTPUT) ROUTINES

This set of routines was written to cut down on CPU time required to do I/O

from a FORTRAN program.

It can be used if the following conditions are satisfied:

1. Nonformatted I/O is wanted

2. All data for a record is contiguous in core

3. Backspacing is not required

QSAM locate rmode is used for all I/O operations in these routines.

17.3.7.1 Entry Points

FREAD(A,N,L,&END,&ERR) Reads a record of length L from FORTRAN
FREAD(A,DDN,L,LC,&END,&ERR) unit N into contiguous locations starting

at A. Transfer to statement 'END' on EOF,
and 'ERR' on I/O error. If the first byte
of DDN is an EBCDIC letter, the 8 char-
acters specified in DDN are used to define
the DD name of the subject unit and the
value of LC is used as the locate switch.

FREADB(A,N,L,&END,&ERR) Same as FREAD except record is read back-
FREADB(A,DDN,L,LC,&END,&ERR) wards. Only RECFM=F or RECFM=FB records

may be read backwards.

FWRITE(A,N,L) Writes a record of length L onto FORTRAN
FWRITE(A,DDN,L,LC) unit N from contiguous core locations start-

ing at A. If the first byte of DDN is an
EBCDIC letter. The 8 characters specified
in DDN are used to define the DD name of
the subject unit and the value of LC is
used as the locate switch.

REWIND(N) Rewinds FORTRAN unit N or the unit whose
REWIND(DDN) DD name appears in DDN if the first byte

of DDN contains an EBCDIC letter.

UNLOAD(N) Dismounts FORTRAN unit N or the unit whose
UNLOAD(DDN) DD name appears in DDN and frees core space

OCCUPIED BY BUFFERS, DCB, and JFCB.

POSN(IO,N,NFILE) Positions FORTRAN unit N to file NFILE of
POSN(IO,N,NFILE,NC,DSN) the data set specified in DSN, of length

17.3-5



DATA MANAGEMENT TECHNIQUES

NC bytes where (0 < NC < 45), if the
fourth and fifth parameters are specified.

IO = 1; for input
IO = 2; for output

IO = 3; for RDBACK

See note below.

LEAVE(N) Closes DCB for FORTRAN unit N or the unit
LEAVE(DDN) whose DD name appears in DDN with the leave

option specified.

MOUNT(IO,N,DT) Mounts the tape volume specified in DT with
MOUNT(IO,N,DT,NF) the data set name specified in DSN, of
MOUNT(IO,N,DT,NC,DSN) length NC bytes (0 < NC < 45), on FORTRAN
MOUNT(IO,N,DT,NC,DSN,UF) unit N and positions it to file NF according

to the number of parameters specified.
IO = 1; for input
IO = 2; for output

IO = 3; for RDBACK

See note below.

MEMBER(IO,N,DNAME) Positions to specified member in a parti-
tioned data set.

IO = 1; for input
IO = 2; for output

IO = 3; for RDBACK
See note below.

Note: N may be replaced by a doubleword containing the DD name of the subject
unit in any calls to MOUNT, POSN, or MEMBER.

17.3.7.2 Abend Dumps Given

User Code = 201 FORTRAN unit number greater than 50

User Code = 210 Illegal first parameter for a call to POSN MOUNT or
MEMBER.

User Code = 202 Unit being used for direct access

User Code = 220 Invalid record length

User Code = 203 Length of data set name less than or equal to zero
or greater than 44.

User Code = 230 Unsuccessful open due to missing DD card

17.3-6



MACHINE INDEPENDENCE

SECTION 18

MACHINE INDEPENDENCE

18.1 COMMON CONFIGURATION SUBSET

In order to achieve a certain degree of machine independence among M&DO 360

computers, the subset of devices common to the 360/95, 75's, and 65 should be

used. The program should also fit into the core requirements of the 360/65,

which has the least main storage. Table 18.1-1 shows the common configura-
tion subset and the storage devices available on each of the computers.

18.2 PHYSICAL TRANSFER OF DATA SETS

Programs using data sets located on direct-access storage devices on one

computer could have the data sets unloaded to tape and restored to another
computer, as needed. Smaller data sets may be in card form. It is not
advisable to move a 2316 disk pack between computers unless the transfer
involves many data sets and the user has ascertained that:

1. A drive will be available on which to mount the pack.

2. No users will request the pack while it has been removed.

When transferring the volume to another M&DO S/360, the operator must be
notified that the volume is available, so that the job is not cancelled
when the volume is requested. To transfer a data set from a public or
non-removable volume, the utility IEHMOVE can be used (see Section 9, User
Utilities).

When transferring data sets or programs to a computer other than a 360, the
user should be aware of possible limitations imposed by that computer, i.e.,
the conversion of EBCDIC source statements or data to BCD or other charac-
ter sets; the absence of 9-track tape drives, and therefore the conversion
of 9-track tapes to 7-track, with a possible limitation of 200 or 556 BPI;
the difference in word lengths (32 bits for the 360 computers, 36 bits
for the 7094); and differences between the languages acceptable to the com-
pilers (see Section 6 for a discussion of FORTRAN language differences).

Section 20, Conversion Aids, describes routines available for conversion of
data sets from the IBM 7094.

18-1



MACHINE INDEPENDENCE

Table 18.1-1. Configuration Summary

Common
Subset 65 75(Cl) 95 75(C2)

Core 1536K 1536K 2048K 5120K 2048K

2314
Disk Units 2 2 2 3 2

Drum 1 1 2 2 2

Data Cell 0 0 1 1 1

7-Track
Tape 2 2 3 4 3

9-Track
Tape 4 4 5 8 7

PRINTER 2 2 4 5 3

CARD
Reader 1 1 2 2 2

PUNCH 1 1 1 2 1

2250 Display 2 2 2 2 2

2260 Display 0 8 0 8 0

18-2



MACHINE INDEPENDENCE

18.3 DIFFERENCES IN RUN PRIORITY DETERMINATION AND SET-UP RESTRICTIONS

18.3.1 JOB STREAM MANAGER (JSM)

The Job Stream Manager (JSM) is available on the 360/95, Orbit 360/75

and the 360/65. The function of JSM is primarily that of placing jobs

into job classes based upon the resources required by each job. Initi-

ators are then started to job classes in such a mixture that all of the

resources of the machine (e.g., tape drives) are allocated to actively

running jobs, without having jobs waiting in the initiation stage because

they require resources that are currently allocated to other jobs. Waits

of this kind prevent additional jobs from entering initiation and, con-

sequently, make it most difficult for the machine to process the maxi-

mum of 15 jobs concurrently. In performing its function, JSM also includes

the assignment of internal priorities based upon estimated running time.

JSM is not a standard feature of OS/360. It was acquired from another

installation and further modified locally to adapt it to the GSFC environ-

ment. It has been our experience that each new release of OS/360 required

extensive modifications to JSM to permit it to be carried over to the new

release. Also, IBM has included the System Management Facility (SMF) in

recent releases of OS/360 (JSM predates SMF).

18.3.2 GSFC JOB STREAM MANAGER

In order to minimize the maintenance problem, as well as to extend JSM to

include features not present in the original version, JSM has been re-

written. The new version of JSM interfaces with OS/360 through "SMF exits,"

which IBM is committed to maintain as standard system features.

The new JSM is capable of assigning up to 36 job classes. There have been

configuration changes (particularly, the number and type of tape drives) since

JSM was originally installed. The new JSM has been carefully contrived to

accommodate, in optimal fashion, the current tape configuration. The new JSM

also takes the memory requirement of each job into account in classifying jobs,
whereas the original JSM did not. JSM will use the maximum REGION required

by any step of a given job, as stated on the EXEC card, or implied as a

default value through the use of cataloged procedures. The various job

classes and the conditions under which jobs are assigned to these classes
for the new JSM are shown in Table 18.3-1.

The assignment of priorities has been somewhat divorced from the new JSM, and

this function is now part of the Reader/Interpreter. However, to insure the

first-in, first-out scheduling of all graphics jobs, independent of CPU or

I/O time estimates on the job card, JSM has been modified on the M&DO 360/95

and 360/75 to assign one common priority to all jobs requiring the 2250 or
2260 display units. Other priority assignments have also been reviewed, and

the prevailing situation is shown in Table 18.3-2.

18-3



MACHINE INDEPENDENCE

Table 18.3-1. S360/95 Job Stream Manager Class Assignments

RESOURCE RESTRICTIONS

TAPE

CLASS CORE (<) 9-Track 7-Track

** A 200 -- -

B 300 -- -

C 500 --
D 700 -- -

E 300 1 --
F 500 1 --
G 700 1 --
H 300 2 --
I 500 2 --
J 700 2 --
K 300 3 --
L 600 3 --
M 300 -- 1
N 500 -- 1
0 700 -- 1
Q 300 -- 2
R 600 -- 2
S 300 1 1
T 500 1 1
U 700 1 1
V 300 1 2
W 600 1 2
X 300 2 1
Y 600 2 1
Z 700 All Others

Special

Class 1 - CAIRS (Operational Job)
Class 5 - Graphics - 2250 Jobs
Class 6 - Attitude Determination Jobs
Class 7 - Graphics - 2260 Jobs
Class 8 - CAIRS (Other Jobs)

**Time Estimate of a Half-Minute or Less Only.

18-4



MACHINE INDEPENDENCE

Table 18.3-2. Priority Within a Job

Class Queue

PRIORITY TIME (Minutes)*
CPU and I/O

11 _ 1/2**

10 _ 1***

9 < 2

8 < 3

7 5

6 8

5 12

4 < 15

3 < 20

2 25

1 > 25

*Priority is based on the larger of the

CPU or I/O estimate.

**The 1/2 minute time estimate is not available
on the 360/75's and 360/65 in building 14.

***This is an exception to the rule (*). Priority

is determined by CPU 1 and I/055.

18-5



MACHINE INDEPENDENCE

As with the original JSM, initiators are started to certain job classes
and, in the event that a given class is depleted of jobs, there are de-
faults so that an initiator does not unnecessarily remain idle. Also,
since there was a maximum of 15 initiators (this limit has been raised by a
GSFC modification), and there are (presently) 32 classes to which jobs may
be assigned, there are certain job classes which can be reached only through
this default action. Table 18.3-3 lists the primary and default classes to
which initiators are started, provided the system is brought up with the
console command provided for that purpose. The table is to be read from
left to right. That is, on the first line, the initiator first looks at
class M. If there are no jobs in class M, it next defaults to class D, then
to 0, etc. The figures to the right in the table summarize the 7- and 9-track
tape requirements, respectively, for the primary and first default class for
each initiator.

Jobs within a class are run on a priority basis, i.e., the job having the
shortest total estimated run time will be run first. The relative posi-
tion of jobs within a class waiting to be executed will change as new jobs
are introduced into the class. The run time estimate is supplied by the
programmer on the job card where estimated CPU and I/O time is inserted.
A job that exceeds the shorter of the two estimates will "time out" and
be cancelled by the system with a 322 ABEND for CPU timeout and an F22 for
I/O timeout. Therefore, although one may desire to insert a low run time
to obtain a higher priority, it is important that the estimate be fairly
accurate to avoid the necessity of rerunning the job. See subsection 5.3.1,
GSFC Job Card Format.

Set-up restrictions on the 95 are that jobs requiring more than 15 minutes
of CPU or I/O time or more than 700K of storage will not be run during the
day shift.

18-6



MACHINE INDEPENDENCE

Table 18.3-3. Initiator's Order of Searching Job Class Queues

INITIATORS PRIMARY CLASS SECONDARY CLASS

9-TRACK 7-TRACK 9-TRACK 7-TRACK

1 CAIRS OPERATIONAL JOB

5 2250 JOBS

6 ATTITUDE DETERMINATION JOBS

7 CAB 2260 JOBS AND OTHERS 0 0

ABEFCDH 0 0 0 0

ABVCDNS 0 0 0 0

8EFGLAB 1 0

EHXCAFB 1 0 2 0

FDYCBAZ 1 0 0 0

HAICDOB 2 0 0 0

IRUABCD 2 0 0 2

8MNOKEB 0 1

QGWBMTA 0 2 1 0

STIJMNA 1 1 1 1

18-7



MACHINE INDEPENDENCE

18.4 RUN TIME ESTIMATES FOR DIFFERENT IBM 360 MODELS AND TIMING
DIFFERENCES BETWEEN LCS AND MAIN MEMORY

Although the IBM models 65 and 75 both have the same memory cycle time,
the model 75 CPU has about 1.5 times the processing speed of the model 65
because the model 75's memory is interleaved four ways, instead of two
ways, as on the model 65. The model 95 CPU cycle time is 3.3 times
faster than the model 65. In practice, however, it is from 3 to 9 times
faster than the model 75, making it 4.5 to 13.5 times faster than the
model 65 in computing.

The primary reason that run time estimates vary is the factor introduced
by the presence of Large Core Storage (LCS) in combination with main
memory. Since the programmer has no control over the type of core in
which his program will be loaded, the running time varies, depending on
how much of the slower storage is used by the program. The starting address
of the region used by a job step is listed as part of the accounting infor-
mation at the end of each job step. Occasionally, the user may notice that
(because his program ran in the faster core) the program execution time has
decreased. However, do not decrease the time requirements on the job card
since the next run may run in the slower core and the job will time out.

Table 18.4-1 shows the timing differences between LCS and main memory
on the models 65, 75, and 95.

Table 18.4-1 Comparative Memory Timing

Model LCS Cycle Time Main Memory Cycle Time

65 81usec 0.75lsec

75 81sec 0.75/isec

95 0.12psec (THIN FILM) 0.75Usec (CORE MEMORY)

18.5 DIFFERENCES BETWEEN GSFC SOFTWARE AND OTHER INSTALLATIONS

When moving programs from one installation to another, it is advisable to
consult the PAC. Useful information includes the JCL to be executed, the
Stage I SYSGEN listing, a listing of the catalog, and a print of the
Procedure Library (PROCLIB) of the target computer. Other helpful infor-
mation includes a listing of the PARMLIB and the directory of the LINKLIB.

The Stage I SYSGEN listing will indicate the processor and system defaults,
the hardware configuration, and the unit names in use. The catalog list-
ing will be useful in determining which data sets will be directly avail-
able, and which will require volume references. The PROCLIB listing is
necessary to determine if the same cataloged procedures are available

18-8



MACHINE INDEPENDENCE

and if there are differences in them such as default options, data defini-

tion parameters, etc., which must be overridden in order to be able to

use them. The PARMLIB (PRESRES member) will show which volumes may be
mounted. The directory of the LINKLIB will show which programs and versions

of processors are available.

Areas of difference between computer centers will be found in:

* Job statement format, including use of region, priority, and job class

information

* Procedure names for standard processors

* JCL and compiler defaults

* Generic and derived unit names

* Job libraries and compiler run time libraries

* OS release -- this may not be the same as the one in use at GSFC

18.5.1 JOB STATEMENT AND ACCOUNTING DIFFERENCES

Subsection 5.3.1 describes the GSFC job card format. If another installa-

tion does not require accounting information, the GSFC job card will pass.

However, if the target installation has a job card format using either the

name, accounting, or programmer's ID field, the job card will have to be

changed.

The M&DO 360 computers do not use the CLASS, PRTY, REGION, or TIME fields on
the job card.

Other installations may require the use of the TIME parameter on the EXEC
card. See paragraph 18.5.3 for further information.

18.5.2 PROCEDURE NAMES

The IBM-supplied procedures are not in any of the procedure libraries of

the M&DO computers. Those in use are local procedures designed to make the
best possible use of the existing resources.

For execution on another computer system, application oriented procedures
would have to be included as part of the job being submitted. If symbolic
parameters are not used (or are removed), the procedure can be entered in
the job stream. If the application is to be run frequently on the other

computer, the procedure should be entered into that system's procedure
library. Systems using OS Release 19 or later may enter procedures, in-

cluding symbolic parameters, in the job stream. See paragraph 18.5.5 for
another way to accomplish this.

18-9



MACHINE INDEPENDENCE

18.5.3 GENERIC AND DERIVED UNIT NAMES

Users have been cautioned elsewhere as to the liabilities in using specific
unit addresses. Most IBM 360 systems have a card reader at OOC and a printer
at OOE. These are nearly always used for SYSIN and SYSOUT, and therefore
are not available to applications programs. For other devices, it is the
exception for two devices to have the same specific address on different
systems. Jobs allocating specific devices stand an excellent chance of being
cancelled by the 360 operator.

Derived unit names are a SYSGEN option. Some, such as DISK, are almost stan-
dard. Others, such as 2400-9, may only be used at a particular installation.
Even when two installations have the same derived unit names defined, they
will often include different units in the collection. At one installation,
DISK may refer to 2314s, at another to 2311s. On the other hand, jobs which
refer to UNIT=DISK will be acceptable if SPACE is allocated in blocks and
the DCB parameters are acceptable.

Generic unit names will define the same device on any 360 to which the device
is attached. For example, 2400-4 is always a dual density tape drive. For
a list of the derived names in use at GSFC, refer to paragraph 19.2.2.

18.5.4 JOB AND MODULE LIBRARIES

When moving an application program to another computer system, if the JCL
makes any specific volume references (VOL=SER=xxxx or VOL=REF=xx), either
these volumes must be moved or the references changed to coincide with
those of the new computer system. If the application is to be executed,
the executable load module and permanent data base (if any) will be required.
If the application program is to be maintained as well, then source modules
and procedures may also be required.

Paragraph 9.2.1 on the IEHMOVE utility provides an example of moving a load
Imdule. Since IEHMOVE can copy both sequential and partitioned data sets,
all data sets necessary to execute an application program can usually be
copied in one operation. Another possibility is that all necessary data sets
be located on one or more removable volumes which can be transported between
computers or dumped and restored, using IEHDASDR.

In the DODS system, for example, the permanent data base is located on one
disk pack. The system data sets are on another disk pack. To move the DODS
application to another computer, one would transport these two disk packs and
make two modifications to the operating system. These modifications connect
the DODS procedure library and the DODS catalog to the operating system.

Certain procedures and OS features may be added by an installation, The
formatted dump is a GSFC feature. MAPDISK or ADDTOLIB may not be available
at another installation.

18-10



MACHINE INDEPENDENCE

18.5.5 OS RELEASE DIFFERENCES

Until recently IBM had issued a new release of the Operating System every nine

months. The current release (21) is the last major release of the Operating
System. The acceptance of a new release for the M&DO 360 computers depends

upon such factors as:

1. Impact upon the user, e.g., what changes have to be made to exist-

ing programs?

2. Improvements to be gained in systems performance.

3. Improvements to be gained in software features (additional facili-

ties, corrections, or improvements to existing facilities).

Before a new OS release becomes the standard release, the M&DO systems pro-

grammers go through a rather complex three-phase checkout procedure to

insure that the release has little, if any, detrimental effect upon the user.

Other installations may update to every or every other release; they may

freeze at a given release; or they may obtain an advanced system from IBM

on a pre-release basis.

Since new features are added to OS at each release, and old features may be

modified or dropped, OS differences between installations must be taken

into account. Installations also modify OS features. Some of these modi-

fications are transparent, i.e., the user does not notice them. Others,
such as the elimination of the RLSE or BPL parameters, may cause a JCL

error or an inappropriate action if the user is unaware of the change.

18.5.6 OS OPTION DIFFERENCES

In addition to configuration and procedural differences, another installa-

tion may not be using OS/MVT as the control program. The other possibilities

in an OS System are OS/MFT and OS/PCP.

Areas of concern in converting to a non-MVT OS are:

* Region size - MFT has regions of fixed size, called partitions.
Most installations using MFT or PCP do not have more than 512K

bytes of core (depending on the S/360 model). PCP does not

have regions or partitions, since it only runs one job step at

a time.

* Multitasking - PCP does not support multitasking; MFT and MVT
both provide multitasking facilities, but differ in usage. The

associated macro instructions, for example, have different formats
and different effects, depending on whether MVT or MFT is being

used. For details on these differences, refer to the IBM manuals

18-11



MACHINE INDEPENDENCE

Concepts and Facilities (GC28-6535) and OS/360 Planning for
Multiprogramming with a Fixed Number of Tasks MFT (GC27-6939).

* SYSIN data sets - PCP only allows one input stream data set per
job step, which must be the last data set in the job step and
must be followed by a /* card.

In general, higher level language programs will be more successfully trans-
ferred to an MFT or PCP system; the less complex the program, the better
chance it has of being successfully transferred. For assistance, the user
should consult the PAC (Building 3, Room 133A, extension 6768) and the
system programmers at the new installation.

18-12



GSFC STANDARDS

SECTION 19

GSFC STANDARDS

19.1 PROCESSORS AND PROCEDURES

In September, 1968, the GSFC Standards Group implemented a set of standard
cataloged procedures on the M&DOD and SESCC computers. These procedures
(updated Fall, 1971) use the standard IBM processors (such as compilers,
assemblers, and Linkage Editor). The procedures are not IBM-supplied proce-
dures but are unique to the GSFC computer facility. However, standard IBM
rules for using cataloged procedures and for overriding DD cards within a
procedure are applicable to the GSFC standard procedures. The rules are
described in the IBM manual Job Control Language Reference (GC28-6704).

19.1.1 GSFC STANDARD RULES

The following rules were adopted to define the standards for GSFC procedures:

* The standard name for a language processor consists of a name and
and level (such as FORTRANH, FORTRANG, and PLlF).

* The general name for a processor is the one that is most desirable
for a particular computer (i.e., FORTRAN refers to FORTRANG on the
model 95 and to FORTRANH on the model 75).

* Stepnames for compile, link, and execute steps have the names
SOURCE, LINK, and GO, respectively.

* The procedure name and stepname for most small procedures are
the same.

* All DD cards in a procedure are in alphabetic order, except in
a case, for example, when it is to be overridden with DD * by
the user.

* All procedures use GSFC standard unit names.

19.1-1



GSFC STANDARDS

* For all FORTRANi programs, the following are the GSFC standard
data sets:

Reference
Number DD Name

Card input 5 FT05F001

Printed output 6 FT06F001

Punched output 7 FT07F001

19.1-2



GSFC STANDARDS

19.2 UNIT NAMES

There are three forms of unit names - specific, generic, and derived.
Specific names refer to individual devices such as an actual address.
Generic names refer to all devices of the same type. Generic and speci-
fic unit names are automatically produced at system generation for the
I/O devices and their addresses, respectively. Derived unit names are
specified by the installation at system generation to group or subdivide
classes of units. Refer to paragraph 5.6.6.10 for a more complete dis-
cussion of the unit parameter.

19.2.1 GENERIC UNIT NAMES

A generic unit name should be used for old data sets and also for new
data sets which are to be cataloged or placed on a specific volume. Generic
unit type numbers are automatically established at system generation.
Each unit type number has the format of either nnnn or nnnn-x, where nnnn
is the basic unit type and -x is used to indicate a variation of the basic
unit (e.g., 2400 for any 9-track tape drive or 2400-4 for a 9-track, dual-
density tape drive).

The following generic names are available on the GSFC computers where the
corresponding unit is attached:

Unit Type Unit

2400 2400 series 9-Track Magnetic Tape
Drive that can be allocated to a
data set written or to be written
in 800 bpi when the dual-density
feature is not installed on the
drive or in 1600 bpi when the dual-
density feature is installed on the
drive.

2400-1 2400 series Magnetic Tape Drive with
7-Track Compatibility and without
Data Conversion.

2400-3 2400 series 9-Track Magnetic Tape
Drive that can be allocated to a
data set written or to be written
in 1600 bpi density.

2400-4 2400 series 9-Track Magnetic Tape
Drive having an 800 and 1600 bits-
per-inch (density) capability.

19.2-1



GSFC STANDARDS

it Tpe Unit

2301 2301 Drum Storage Unit

2303 2303 Drum Storage Unit

2314 2314 Disk Storage Facility

2321 any bin mounted on a 2321

data cell drive.

2250-1 2250 Display Unit, Model 1

2260-1 2260 Model 1 Display Station

(Local Attachment)

A more detailed description of the IBM unit names may be found in the IBM

manual Job Control Language Reference (GC28-6704).

19.2.2 DERIVED UNIT NAMES

Derived unit names are defined by system programmers when the system is

generated. They are used to spread nonspecific allocation requests over as

large a number of devices as possible. Due to a system limitation, derived

unit names should not be used when cataloging procedures. They should not

be used with a specific volume request, because the system may allocate

a unit that cannot support the volume. They also should not be used in

utility control statements. In all other cases, derived unit names may

be used when allocating new or temporary data sets.

The recommended derived unit names are listed below and should be used

where applicable:

9TRACK, 2400-9 - Any 9-track magnetic tape drive

7TRACK, 2400-7 - Any 7-track magnetic tape drive

DISK - 2314 direct-access storage facility

CELL - Any cell mounted on the 2321 data cell drive

DRUM - Designates the 2301 or 2303 drum storage unit

attached to the particular computer

2250 - Designates the 2250-1 or 2250-3 display units

attached to the particular computer

2260 - Designates the 2250-3. or 2260-2 display units

attached to the pa;-ticaz cjputer



GSFC STANDARDS

19.2.3 SPECIFIC UNIT NAMES

Generic and derived unit names indicate only a device type which has
certain capabilities and functional characteristics. To specify a parti-
cular unit, a three-character device address is required. An example of
this address is UNIT=0D5 for channel 0, control unit D, unit 5. To re-
quest a specific bin on a specific 2321, code UNIT=address/bin, where bin
is a numeric digit (0-9).

Specific unit names should only be specified for the initialization option
of a IEHDASDR utility or for hardware checking. Improper use of this para-
meter, such as specifying a unit which is not available, causes a wait for
the device and increases the chance of cancellation. For direct-access
devices, and the data cell in particular, if the volume requested is not
mounted at the time of request or is mounted on another device, cancellation
will normally result.

19.2-3



GSFC STANDARDS

19.3 GSFC STANDARD CATALOGED PROCEDURES

The procedures discussed in the following paragraphs are the most commonly

used procedures in SYS1.PROCLIB. It is important that the user be familiar

with what they are, what they do, and how to use them. The procedures are

periodically reviewed for accuracy and efficiency and are updated when changes

are necessary due to changes in the software, configuration, etc.

The procedures listed in this section are taken from SYS1.PROCLIB on the

360/95 and are provided for illustrative purposes only. The user should

always refer to a current listing of the PROCLIB before using a cataloged
procedure.

The PAC in Building 3, Room 133A maintains current listings of the procedure

libraries in the M&DO computers. When using two different systems, the
appropriate procedures must be compared to insure that any differences
will not affect execution of the program.

A permanent data set name should be used for data sets on tape; otherwise,
the Operating System will create a unique name of up to 44 characters.

This 44-character name takes approximately 2.5 to 3 seconds to be printed
on the operator's keyboard, as opposed to .5 seconds for the standard
eight-character data set name.

The following rules apply when overriding, adding, or nullifying parameters
in a cataloged procedure step. The overrides are not permanent. They remain
in effect only during the current execution of the program and pertain only to
the program doing the overriding. The cataloged procedure in the system
PROCLIB remains unchanged.

* The DD statements must have the name field of the form
procstepname.ddname, e.g., GO.SYSIN.

* Overriding DD statements must be in the same order in the
input stream as the corresponding DD statements in the cata-
loged procedure. Otherwise, the statements which are out of
sequence will be added to the end of the procedure step and the
first (original) DD statement will be used.

* DD statements to be added must follow overriding DD statements
for the step; the ddname used must be different from the other
ddnames in the procedure step.

19.3.1 COMPILER PROCEDURES

The four major GSFC standard compiler procedures and their applications are:

* ASEMBLRG -- executes the University of Waterloo level G Assembler

" FORTRANG -- executes the G level FORTRAN compiler

19.3-1



GSFC STANDARDS

* FORTRANH -- executes the H level FORTRAN compiler

* PL1F -- executes the PL/I F level compiler

Each of these procedures executes the IBM-supplied processor for the language

except for ASEMBLRG, as indicated.

Refer to subsection 6.2 for a description of the Language Processors asso-
ciated with the GSFC standard compiler procedures.

The minimum coding required to execute each of these procedures is:

//stepname EXEC procedurename
//SOURCE.SYSIN DD *

(source deck(s))

where:

* procedurename is the name of the cataloged procedure to be executed.

* The input is in card form in the input stream.

19.3.1.1 Input

The input to each of the compiler procedures is defined by the SYSIN DD card.
Input may be in card form in the input stream, card images on tape or disk,
or as a source module passed from a previous step.

An example of input on tape is:

//stepname EXEC procname
//SOURCE.SYSIN DD UNIT=9TRACK,VOL=SER=xxxxxx,
// LABEL= (,SL,,IN),DISP=OLD,DSN=yyyyyy

For input on disk, the SOURCE.SYSIN statement must be changed to:

//SOURCE.SYSIN DD DSN=name,UNIT=DISK, VOL=SER=xxxxxx,DISP=OLD

For a source module passed from a previous step, the following statement
is used:

//SOURCE.SYSIN DD *.STEP1.OUTPUT,DISP--OLD

where:

STEP1 is the name of the previous step

19.3-2



GSFC STANDARDS

OUTPUT is the ddname of the statement in the previous step which
defines the data set being passed

For a cataloged data set on disk, the following statement is coded:

//SOURCE.SYSIN DD DSN=name,DISP=OLD

It is often necessary to accept input from more than one source as shown
in the following example:

//stepname EXEC procname
//SOURCE.SYSIN DD UNIT=9TRACK,VOL=SER=xxxxxx,
// LABEL=(,SL),DISP=OLD,DSN=yyyyyy
// DD *

(source deck(s))

This example concatenates input from a 9-track labeled tape and from source
decks in the input stream.

19.3.1.2 Output

The standard output of each of the compiler procedures is a temporary data
set on disk called &&OBJMOD which has a disposition of DISP=-(MOD,PASS). This
data set is normally passed to the LINK step of the LINK or LINKGO procedures;
it may also be punched, written on tape or disk, or placed in a library.

For object module output on tape, the following coding is used:

//stepname EXEC procname
//SOURCE.SYSLIN DD LABEL=(,SL,,OUT),
// UNIT=9TRACK,VOL=SER=xxxxxx,
// DISP= (NEW,KEEP),DSN=yyyyyy
//SOURCE.SYSIN DD *

(source deck(s))

To output the module as a permanent data set on disk, a permanent name and
volume number are provided:

//SOURCE.SYSLIN DD DSN=name,VOL=SE R=xxxxxx,
// UNIT=2314,DISP=(NEW,KEEP)

For ASEMBLRF, the ddname is SYSGO rather than SYSLIN; the override ddname
is SOURCE.SYSGO.

19.3-3



GSFC STANDARDS

19.3.1.3 Assembler G

Assembler G is available on all of the GSFC large scale 360 computers. It may
be called by executing the cataloged procedure ASEMBLRG.

MEMBER NAME ASEMBLRG
ALIASES ASMG

//DEFAULT PROC DECK=NODECK
//SOURCE EXEC PGM=ASMGASM,PARM='FX,ED,RD,B,&DECK',REGION=200K
//STEPLIB DD DSN=SYS2.ASMG,DISP=SHR
//SYSLIB DD DSN=SYS1 .MACLIB,DISP=SHR
// DD DSN=SYS2.GSFCMAC,DISP=SHR
//SYSLIN DD DSN=&&OBJMOD,DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200),
// UNIT=DISK,DISP=(MOD,PASS),SPACE=CYL,(1,1))

//SYSPRINT DD SYSOUT=-A,DCB=(RECFM=FB,LRECL=121,BLKSIZE=7260)

// UNIT= (DISK,SEP=SYSLIN)

//SYSPUNCH DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)

//SYSUDUMP DD SYSOUT=A,SPACE= (TRK,5)
//SYSUT1 DD UNIT=(DISK,SEP=(SYSLIN,SYSPRINT)),
// SPACE=(CYL,(2,2)),DCB=BLKSIZE=7294
//SYSUT2 DD UNIT=(DISK,SEP=(SYSLIN,SYSPRINT,SYSUT1)),
// SPACE=(CYL,(2,2)),DCB=BLKSIZE=7294
//SYSUT3 DD UNIT=(DISK,SEP=(SYSLIN,SYSPRINT,SYSUT1,SYSUT2)),
// SPACE=(CYL, (2,2)) ,DCB=BLKSIZE=7294

Some advantages of Assembler G are:

1. It runs in batch mode: that is, one can assemble more than one
CSECT per step.

2. It is completely compatible with Assembler F but faster.

3. It can assemble and execute in the same step, provided there are no
external references (V-type ADCON) in the program to be assembled.

4. It has a higher SYSUT1,2,3 blocking than Assembler F, therefore, less
I/O charge.

5. One can define his own instruction set if he so desires.

19.3-4



GSFC STANDARDS

EXAMPLE

//JOB CARD

//Stepl EXEC ASMG

//SYSIN DD *
One CSECT

END
Two CSECT

END

N CSECT

END

The GSFC Standards Committee has decided that NODECK be the default option.
Therefore. to obtain an object deck code DECK=DECK on your EXEC card.

//Stepl EXEC ASMG,DECK=DECK

Further information concerning the University of Waterloo's level G assembler
may be obtained by including the following card in an input deck for the 360/95.

//INFO EXEC PGM=DOCUMENT, PROGRAM=ASMG
(Refer to subsection 4.7.)

19.3-5



GSFC STANDARDS

19.3.1.4 FORTRANG

FORTRANG executes the FORTRAN G level compiler.

MEMBER NAME FORTRANG
ALIASES FORTRAN

//DEFAULT PROC FORTRAN=IEYFORT,NBLK=40
//SOURCE EXEC PGM=&FORTRAN,REGION=150K
//SYSLIN DD DSN=&&OBJMOD,SPACE= (3200, (&NBLK, 10) ,, ,ROUND) ,UNIT=DISK,
// DISP= (MOD,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=A,DCB(RECFM=-FBA,LRECL=120,BLKSIZE=3200),
// UNIT=(DISK,SEP=SYSLIN)
//SYSPUNCH DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSUDUMP DD SYSOUT=A,SPACE=(TRK,5)

The output of the following compilation is a punched object module deck and

the temporary data set &&OBJMOD:

//stepname EXEC FORTRANG,PARM=DECK
//SOURCE.SYSIN DD *

(source deck(s))

On the model 95, the alias FORTRAN invokes the FORTRANG procedure; on

models 65 and 75, the alias FORTRAN invokes the FORTRANH compiler.

19.3.1.5 FORTRANH

FORTRANH is the procedure to execute the FORTRAN H level compiler as follows:

MEMBER NAME FORTRANH

//DEFAULT PROC FORTRAN=IEKAAOO,NBLK=40
//SOURCE EXEC PGM=&FORTRAN, REGION=300K
//SYSLIN DD DSN=&&OBJMOD,SPACE=(3200,(&NBLK,10) ,, ,ROUND) ,UNIT=DISK,
// DISP=(MOD,PASS),DCB=(RECFM=FB,LRECL= 80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=A,DCB= (RECFM=VBA,LRECL=137,BLKSIZE=7265),
// UNIT= (DISK,SEP=SYSLIN)
//SYSPUNCH DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSUDUMP DD SYSOUT=A,SPACE= (TRK,5)
//SYSUT1 DD SPACE=(TRK,(0,5)),UNIT= (DISK,SEP=(SYSLIN,SYSPRINT))
//SYSUT2 DD SPACE=(CYL,(1,1,)),
// UNIT= (DISK,SEP=(SYSLIN,SYSPRINT,SYSUT1))

To get a punched object deck and the temporary data set &&OBJMOD, the follow-

ing JCL is used:

//stepname EXEC FORTRANH,PARM=DECK
//SOURCE.SYSIN DD *

(source deck(s))

19.3-6



GSFC STANDARDS

If only an output deck is desired, PARM='DECK,NOLOAD' is coded.

The alias FORTRAN invokes the FORTRANH compiler on the model 75 and model 65;
it invokes the G level compiler on the model 95.

The region size for FORTRAN H is 300K on the models 95 and 75, and 275K on
the model 65.

19.3.1.6 PL/

PLl is the procedure to execute the PL/I F level compiler as follows:

MEMBER NAME PLl
ALIASES PLI
ALIASES PL1F

//SOURCE EXEC PGM=IEMAA,PARM=NOLIST,REGION=250K
//STEPLIB DD DSN=SYS2.LINKLIB,DISP=SHR
//SYSLIN DD DSN=&&OBJMOD,UNIT=DISK,DISP=(MOD,PASS),
// SPACE=(CYL, (1,1)),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=125,BLKSIZE=7254),
// UNIT= (DISK,SEP=SYSLIN)
//SYSPUNCH DD SYSOUT=B,DCB= (RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSUDUMP DD SYSOUT=A,SPACE=(TRK,5)
//SYSUT1 DD SPACE= (CYL, (1,1)) ,UNIT= (DISK,SEP= (SYSPRINT,SYSLIN))
//SYSUT3 DD SPACE=(CYL,(1,1)),
// UNIT=(DISK,SEP=(SYSLIN,SYSPRINT,SYSUT1))

This procedure currently uses version 5.3b of the PL/l compiler on the
models 95, 75 and 65.

To get a punched deck, the following coding is used:

//stepname EXEC PL1,PARM=DECK
//SOURCE.SYSIN DD *

(source deck(s))

The standard procedure name for PL/I is defined to be PLIF, but the name
actually used on the M&DO computers is PL1.

19.3.2 LINK-EDIT AND EXECUTE

There are four GSFC standard procedures used to link-edit and to execute a
previously compiled program.

LINK and GO are two single-step procedures used to link-edit and to execute a
previously compiled program, respectively.

19.3-7



GSFC STANDARDS

LINKGO is a two-step procedure which incorporates the two functions of LINK

and GO.

LOADER is a one-step procedure which is used to load-and-go with previously

compiled programs. It lacks some of the capabilities of the Linkage Editor;

however, it is much more efficient when the full capabilities of the Linkage
Editor are not needed.

Refer to subsection 6.3 for a description of the Linkage-Editor and Loader

programs associated with the LINK-EDIT procedures.

19.3.2.1 LINK

LINK is a single-step procedure which executes the 128K Linkage Editor to

process previously compiled programs as follows:

MEMBER NAME LINK

//DEFAULT PROC NBLK=40

//LINK EXEC PGM=IEWL,PARM= (MAP,LIST) ,COND= (4,LT) ,REGION=250K

//LOADLIB DD DSN=SYS2.LOADLIB,DISP=SHR

//NEWLIN DD DUMMY
//SYSLIB DD DSN=SYS2.DUMMY,DISP=SHR

// DD DSN=SYS2.DUMMY,DISP=SHR
// DD DSN=SYS1. FORTLIB,DISP=SHR
// DD DSN=SYS2.GSFCLIB,DISP=SHR
// DD DSN=SYSl.PLlLIB,DISP=SHR
// DD DSN=SYS1.SSPAK,DISP=SHR
//SYSLMOD DD DSN=&&LODMOD (GSFC),DISP=(NEW,PASS),UNIT=DISK,
// SPACE= (3072, (&NBLK,40,1))
//SYSPRINT DD SYSOUT=A,DCB= (RECFM=FBA,LRECL=121,BLKSIZE=1210),
// UNIT=(DISK,SEP=SYSLMOD)
//SYSUDUMP DD SYSOUT=A,SPACE=(TRK,5)
//SYSUT1 DD UNIT= (DISK,SEP=(SYSLMOD,SYSPRINT)) ,SPACE=(CYL,(2,2))
//TAPELIB DD DUMMY,DISP= (OLD,KEEP) ,UNIT= (9TRACK, ,DEFER) ,LABEL= (,BLP),

// DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE),DCB=RECFM=FB
// DD DDNAME=OBJECT

The LINK procedure is normally executed following one of the compiler proce-
dures. The output of the compiler (&&OBJMOD) is passed as input to the
Linkage Editor and is defined by the SYSLIN DD statement.

The output of the LINK procedure is a member (GSFC) of the temporary parti-
tioned data set &&LODMOD. This PDS has a disposition of DISP=(NEW,PASS) and

is passed to the next step.

19.3-8



GSFC STANDARDS

The automatic call library (SYSLIB) contains the libraries which are most
commonly required by GSFC programmers. Additional libraries may be concate-
nated to SYSLIB by coding:

//LINK.SYSLIB DD DSN=MYLIB,DISP=SHR

This statement overrides the SYS2.DUMMY which is provided for that purpose.
If the private library is not cataloged, the UNIT and VOL DD parameters must
be supplied.

If more than two libraries are to be added via LINK.SYSLIB, care must be taken
so that desired libraries are not deleted. For example, to add three libraries
without overriding SYS1.FORTLIB and SYS2.GSFCLIB, the following procedure would
be used:

//LINK.SYSLIB DD DSN=MYLIB1,DISP=SHR
// DD DSN=MYLIB2,DISP=SHR
// DD
// DD

// DD DSN=MYLIB3,DISP=SHR

The LINK procedure is executed by the statement:

//stepname EXEC LINK

Input to the Linkage-Editor may include previously compiled object decks
(as card input) and the passed data set &&OBJMOD, as shown in the following
example:

//stepname EXEC LINK
//LINK.OBJECT DD *

(object deck(s))

Or object decks only:

//stepname EXEC LINK
//LINK.SYSLIN DD *

(object deck(s))

The TAPELIB and NEWLIN DD cards are included in the procedure to facilitate
the input of object modules on tape or disk. The parameters on the TAPELIB
card have been coded to define tape input. When using NEWLIN, the user must
code all of the necessary DD parameters. The following example illus-
trates the use of TAPELIB and the Linkage-Editor control cards required to
include the data set identified by TAPELIB:

//stepname EXEC LINK
//LINK.TAPELIB DD DSN=name, LABEL (,SL),VOL=SER=xxxxxx
//LINK. SYSLIN DD *

INCLUDE TAPELIB
ENTRY MAIN

19.3-9



GSFC STANDARDS

Object modules on tape may be entered directly through SYSLIN by using the

following override card:

//stepname EXEC LINK
//LINK.SYSLIN DD UNIT=9TRACK,VOL=SER=xxxxxx,

// LABEL=(,SL),DISP=(OLD,KEEP) ,DSN=yyyyy

In this example, the Linkage-Editor control cards are not required.

There are several differences between the LINK procedures on the three M&DO

computers:

* PGM=IEWLF44 on the model 75 executes the 128k Linkage Editor.

* PARM=NCAL is specified on models 75 and 65, but not on the model 95.

* The SYSLIB DD statement on the models 95 and 75 contain several data

sets not available on the 65.

NOTE: When multiple link steps occur within the course of one job, each link

step creates a temporary load module named &&LODMOD(GSFC). If the system allo-
cates &&LODMOD to the same volume in more than one step, the job will abend
because of duplicate names on the same volume. If the system allocates differ-
ent volumes to &&LODMOD, then at the end of the job only the last copy of data
set &&LODMOD is deleted because the system has kept track of only one copy. As
a result, disk space is wasted and remains unusable until IPL or until the disk
is purged. To avoid this problem, code the following in each GO step to delete
the load module:

//GO.X DD DSN=&&LODMOD,DISP=(OLD,DELETE)

19.3.2.2 GO

GO is the single-step procedure which logically follows the LINK procedure.
If the GO procedure is to be used immediately following the LINK procedure,
the LINKGO procedure (see paragraph 19.3.2.3) is recommended. The LINK and
GO are used separately when some processing is to be executed between the
LINK and GO steps, or if multiple executions of a program are required. A

listing of this procedure follows:

MEMBER NAME GO

//GO EXEC PGM=*.&STEP..LINK.SYSLMOD,COND=(4,LT),REGION=100K
//FT05F001 DD DDNAME=DATA5
//FT06F001 DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265)
//FT07F001 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265),
// SPACE=(CYL,(0,1)), UNIT=(DISK,3)

19.3-10



GSFC STANDARDS

The EXECUTE statement in the GO procedure points to the load module created
by the LINK procedure as the program to be executed. The user must provide
the program stepname which executed the LINK procedure, as shown in the
following example:

//LINKIT EXEC LINK
//GOGO EXEC GO,STEP=LINKIT
//GO.DATA5 DD *

(data)

The program stepname LINKIT replaces the symbolic name &STEP in the PGM=
statement in the GO procedure. The program to be executed is then defined
by PGM=*.LINKIT.LINIT.LINK.SYSLMOD.

The input to the program is a card deck in the input stream.

The GO procedure is written for the FORTRAN programmer. The names of the
DD statements for input, print, and punch are the standard FORTRAN ddnames.

19.3.2.3 LINKGO

LINKGO is a two-step procedure which combines the functions of the LINK and
GO procedures. It is used when the user wishes to link-edit and immediately
execute the resulting load module. A listing of this procedure follows:

MEMBER NAME LINKGO
//DEFAULT PROC NBLK=40
//LINK EXEC PGM=EWL,PA M MAP,LIST) ,COND= (4,LT) ,REGION=250K
//LOADLIB DD DSN=SYS2,LOADLIB,DISP=SHR
//NEWLIN DD DUMMY
//SYSLIB DD DSN=SYS2o DUMMY, DISP=SHR
// DD DSN=SYS2.DYMMYDISP=SHR
/1 DD DSN'-SYSl OR iIB,DISP=SHR
// DD DSN=SYS2,GSFCLIB,DISP=SHR
// DD DSN=SYS .PLlLIB,DISP=SHR
// DD DSN=SYSIoSSPAK,DISP=SHR
//SYSLMOD DD DSN=&&LODMOD(GSFC),DISP=(NEW,PASS),UNIT=DISK,
// SPACE= 3072, (&NBLK,40,l))
//SYSPRINT DD SYSOUT=ADCB= (RECFM=FBA,LRECL=121,BLKSIZE=1210),
// UNIT=-(DISK,SEP=SYSLMOD)
//SYSUDUMP DD SYSOUT=A,SPACE=(TRK,5)
//SYSUT1 DD UNIT= (DISK, SEP= (SYSLMOD,SYSPRINT)) ,SPACE=(CYL, (2,2))
//TAPELIB DD DUMMY,DISP=(OLD,KEEP) ,UNIT=(9TRACK, ,DEFER) LABEL= (,BLP),
// DCB= (RECFM=FB,LRECL=80, BLKSIZE= 3200)
//SYSLIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE),DCB=RECFM=FB
// DD DDNAHE=OBJECT
//GO EXEC PGM=.LINK. SYSLMOD ,COND= (4 ,LT),REGION=100K
//FT05F001 DD DDNAME=DATA5

19.3-11



GSFC STANDARDS

//FTO6F001 DD SYSOUT=A,DCB=(RFCFM=VBA,LRECL=137,BLKSIZE=7265)

//FT07F001 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSPRINT DD SYSOUT=A, DCB= (RECFM=VBA,LRECL=137 ,BLKSIZE=7265),
// SPACE=(CYL,(0,1)),UNIT=(DISK,3)

The minimum control cards required to execute the LINKGO procedure are:

//stepname EXEC LINKGO
//GO.DATA5 DD

(data)

In this example:

* The input to the Linkage Editor is the passed data set &&OBJMOD.

a No additional libraries are required for the automatic call library

(SYSLIB).

* The data is in the input stream.

Any changes or additions to the DD statements in the LINKGO procedure require
additional JCL statements. The user wishing to make any changes or additions
should read the comments in paragraphs 19.3 and 19.3.2.1.

Note that the EXECUTE statement of the GO step executes the load module created
by the LINK step. The user does not have to code a program stepname
as he does when using the separate LINK and GO procedures.

The LINKGO procedure on the models 95 and 75 has several SYSLIB data sets not
provided on the model 65. The user should be sure that all required rou-
tines are available.

19.3.2.4 LOADER

The LOADER procedure, used to execute the Loader program, is an efficient
method of combining the functions of LINK and GO into one job step. It
can substantially reduce the execution time of the linkage functions. Use
of this procedure is recommended when the Linkage Editor control statements
(such as INCLUDE, NAME, XREF, and OVERLAY) are not required; only the MAP,
LET, NCAL, and SIZE options are supported. See paragraph 6.3.2 for a descrip-
tion of the Loader processing functions and limitations, and the IBM manual
Linkage Editor and Loader (GC28-6538) for a complete description of the
Loader. A listing of this procedure follows:

MEMBER NAME LOADER
ALIASES LOADR

//GO EXEC PGM=LOADER,PARM='MAP,CALL',COND=(4,LT),REGION=200K
//LOADLIB DD DSN=SYS2.LOADLIB,DISP=SHR

19.3-12



GSFC STANDARDS

//SYSLIB DD DSN=SYS2.DUMMY,DISP=SHR
// DD DSN=SYS2.DUMMY,DISP=SHR
// DD DSN=SYS1.FORTLIB,DISP=SHR
// DD DSN=SYS2.GSFCLIB,DISP=SHR
// DD DSN=SYS1.PLlLIB.DISP=SHR
// DD DSN=SYS1.SSPAK,DISP=SHR
//SYSLOUT DD SYSOUT=A,DCB=(RECFM=FBSA,LRECL=121,BLKSIZE=7260)
//SYSLIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE)
// DD DDNAME=OBJECT
//FT05F001 DD DDNAME=DATA5
//FT06F001 DD SYSOUT=A,DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265)
//FTO7F001 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)
//SYSPRINT DD SYSOUT=A,DCB= (RECFM=VBA,LRECL=137,BLKSIZE=7265),
// SPACE= (CYL, (0,1)),UNIT=(DISK,3)
//SYSUDUMP DD SYSOUT=A,SPACE=(TRK,5)

The minimum requirements for the loader step of a compile and execute are:

//stepname EXEC LOADER
//GO.DATA5 DD *

(data)

where the input data set (&&OBJMOD) is passed from a previous compile step
and the data is in the input stream.

In addition to the data set passed by a previous compile, the Loader accepts
object modules and/or load modules from either tape, disk, or the input
stream. Data to be processed by the executable load module created by the
Loader may be input by tape, disk, or card.

The input to the Loader in the following example is &&OBJMOD and object
modules in the input stream; the input to the executable load module
created by the Loader is data cards in the input stream:

//stepname EXEC LOADER
//GO.OBJECT DD *

(object module(s))
//GO.DATA5 DD *

(data)

A frequent practice at GSFC is to load-and-go with object decks. The input
to the problem program is data cards in the input stream:

//stepname EXEC LOADER
//GO.SYSLIN DD *

(object deck(s))
//GO.DATA5 DD *

(data)

19.3-13



GSFC STANDARDS

In the following example, the input to the Loader is &&OBJMOD and load

modules are on disk; the input to the executable program is on tape:

//stepname EXEC LOADER
//GO.OBJECT DD DSNN=loadpds,UNIT=2314,
// VOL=SER=xxxxxx, DISP=OLD
// DCB=BLKSIZE=3702
//GO.DATA5 DD UNIT=9TRACK,VOL=SER=yyyyyy,
// LABEL= (,SL),DISP=OLD,DSN=zzzzzz

The user can also use override cards to specify additional data sets to
be concatenated with SYSLIB and to request punched output by overriding
FT07F001.

As in the LINK and LINKGO procedures, there are differences between the
LOADER procedures on the M&DO computers. The SYSLIB DD statement on the
model 95 and 75 contain several data sets not available on the 65.

On the model 65, the user must supply the DCB parameter for FT06F001 and
FT07F001.

19.3.3 SORT

The SORT procedure executes the IBM-supplied Sort/Merge program. The pro-
cedure contains the SYSLIN and SYSLMOD DD statements which allow the pro-
grammer to specify user exits which require the Linkage Editor.

For normal Sort/Merge usage, the user must supply his own sort work areas,
SYSIN DD card, and Sort/Merge control statements. A listing of this pro-
cedure follows:

MEMBER NAME SORT
//DEFAULT PROC NBLK=40
//SORT EXEC PGM=SORT,REGION=220K
//SORTLIB DD DSN=SYS1.SORTLIB,DISP=SHR
//SYSLMOD DD DSN=&&LODMOD (GSFC), UNIT=DISK,SPACE= (3072, (&NBLK,40,1))
//SYSOUT DD SYSOUT=A
//SYSPRINT DD DUMMY
//SYSUT1 DD UNIT= (DISK,SEP=SYSLMOD),SPACE=(TRK,(20,10))
//SYSLIN DD DSN=&&LOADSET,SPACE=-- (TRK,(20,10)),
// UNIT= (DISK,SEP=SYSLMOD)
//SYSUDUMP DD SYSOUT-A,SPACE=(TRK,5)

* Use channel separation when possible.

* Assign SORTWK areas of equal size.

* The tracks of a work area must be contiguous.

19.3-14



GSFC STANDARDS

" Do not use the DATACELL for sort work areas.

" The size of a work area is dependent on the record size, number
of records, and number of work areas assigned. Refer to the IBM
manual SORT/MERGE (GC28-6543) for the formula to determine work
area size. A good rule of thumb is to use a total area of 1.25
times the size of the input and to divide this into three or more
work areas as required.

* On the 2314 disk, all necessary devices should be assigned;
however, only one work area per device should be used. For
all but very large sorts, the user should limit work areas
to four devices in order to prevent tying-up the system.
If contiguous space is not available, the user must decrease
the size of his work areas and increase the number. Because
the space available for each 2314 varies continuously, no
set of work areas is guaranteed to be sufficient every time.

The following example represents the general format of the coding re-
quired to execute the SORT procedure. Note that the SORTWK cards are
not preceded by the procedure stepname (SORT. SORTWK01) as is usually
the case when adding to or overriding a procedure. This exception is
allowed only for single-step procedures, but is seldom used except
with the sort DD cards. The SYSIN DD statement has been coded SORT.
SYSIN, although the prefix SORT is not required here:

//stepname EXEC SORT
//SORTIN DD DSN=input,UNIT-=2314,VOL=SER=-xxxxxx,
// DISP=(OLD,KEEP),DCB=(RECFM=FB,
// LRECL=80,BLKSIZE=3200)
//SORTOUT DD DSN=output,DISP=(NEW,PASS),
// UNIT=2314,

// SEP=SORTIN,SPACE=(TRK, (350),,CONTIG)
//SORTWKO1 DD UNIT=2314,SEP=SORTIN,
// SPACE=(TRK,(100),,CONTIG)
//SORTWK02 DD UNIT=2314,AFF=SORTOUT,
// SPACE= (TRK, (100),,CONTIG)
//SORTWK03 DD UNIT=2314,SEP=SORTIN,
// SPACE=(TRK,(100),,CONTIG)
//SORTWK04 DD UNIT=2314,AFF=SORTOUT,
// SPACE= (TRK, (100),,CONTIG)
//SORT.SYSIN DD *

(sort control cards)

Although this example is coded for work areas on disk, tape units may also
be used for input, output, and work areas for sorting.

19.3-15



GSFC STANDARDS

In this example, the SORTOUT data set is coded to be passed to a following

step. If a permanent copy of the data set is required, it may be put on

tape or disk. If placed on a private disk, the user should code the volume

serial number and request that the volume be placed on a different channel

from SORTIN. If SORTOUT is to be kept on a scratch pack, the user should

check with the PAC to determine the channel location of each scratch pack.

The SORT procedure on the 65 does not contain the SYSPRINT, SYSLMOD, and

SYSUT1 DD cards, and thus cannot handle user modifications. They are essen-

tially different procedures under the same name.

On the model 65, SORTD is the member name and SORT is an alias. On the

models 95 and 75 SORTD is a different sort procedure.

See paragraph 6.3.3 for more information on the SORT procedure, and 
the IBM

manual SORT/MERGE (GC28-6543) for a complete discussion of the requirements

and facilities of Sort/Merge.

19.3.4 PRNTPROC

The PRNTPROC procedure executes the program LISTPDS to print the contents of

the standard GSFC cataloged procedures (located in the partitioned data set

SYS1.PROCLIB). On the models 95 and 75, only selected members of SYS1.PROCLIB

are printed; the complete SYS1.PROCLIB on the modle 65 is printed. Each member

is printed beginning on a new page.

MEMBER NAME PRNTPROC
//PRNTPROC EXEC PGM=LISTPDS

//* THIS PRINTS THE GSFC STANDARD CATALOGED PROCEDURES

//DD02 DD SYSOUT=-A
//DD03 DD SYSOUT=A

//DD05 DD DSN=SYS1.PROCLIB,DISP=SHR

//DD06 DD DSN=SYS1.PROCLIB(PRTPROC2),DISP=SHR

To use PRNTPROC the user needs only to code:

//stepname EXEC PRNTPROC

The utility control statements are stored in PRTPROC on the model 65 and in

PRTPROC2 on the models 95 and 75.

19.3.5 ADDTOLIB

ADDTOLIB is a two-step procedure for adding object modules to a user's private

library which may be used as a private automatic call library. ADDTOLIB exe-

cutes the program LIBRYGN2 to search the input object decks, to find the CSECT

and entry point names, to generate alias and entry point names, and to generate

19.3-16



GSFC STANDARDS

alias cards and a name card for the Linkage Editor. The LINK step executes the
program SAVELIBS to link the object modules into the user's library. A listing
of this procedure follows:

MEMBER NAME ADDTOLIB

//DEFAULT PROC NBLK=40
//LIBNAME EXEC PGM=LIBRYGN2,PARM='#',REGION=150K
//SYSLIB DD DSN=SYS2.DUMMY,DISP=SHR
//SYSOUT DD DSN=&&LIBMOD,SPACE= (3200,(&NBLK,80),,,ROUND),UNIT=DISK,
// DISP=(NEW,PASS),DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=81,BLKSIZE=7290)
//SYSPUNCH DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=7280)

//SYSIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE),DCB=RECFM=FB
//LINK EXEC PGM=IEWL,PARM='LIST,NCAL,MAP' ,REGION=250K
//LOADLIB DD DSN=SYS2.LOADLIB,DISP=SHR
//NEWLIN DD DUMMY
//SYSLMOD DD DUMMY
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121,BLKSIZE=1210)

//SYSUT1 DD UNIT=DISK,SPACE=(CYL,(1,1))
//SYSLIN DD DSN=&&LIBMOD,DISP=(OLD,DELETE)

NOTE: PARM='#' will appear as PARM='=' on a 360/95 printout since the # char-
acter is not available on the HN print train (see paragraph 3.7.4).

The input to the LIBRYGN2 program of the LIBNAME step is the temporary data set
&&OBJMOD which is created in a previous compile step. Object decks may be used
in addition to, or in place of, &&OBJMOD. The output of this step is the tem-
porary data set &&LIBMOD which contains the object modules and the generated
alias and name cards.

&&LIBMOD is input to the SAVELIBS program of the LINK step. The output is a non-
executable load module which is stored in the data set named by the user in the
SYSLMOD DD statement.

The following cards are required to execute the ADDTOLIB procedure:

//stepname EXEC ADDTOLIB
//LINK.SYSLMOD DD DSN=Gl. userid.Lxxxxxx,
// DISP=SHR

where:

G1 = the code for the model 95 (G3 is the code for the
model 75(C1), H1 for the model 75(C2), and G2 is
used for the model 65).

userid = the programmers ID.

Lxxxxxx = the user-supplied name of the data set being saved.

19.3-17



GSFC STANDARDS

If object decks are used in place of &&OBJMOD, the following is coded:

//stepname EXEC ADDTOLIB

//LIBNAME.SYSIN DD *
(object deck(s))

//LINK.SYSLMOD DD DSN=Gl.userid.Lxxxxxx,DISP=SHR

The name card generated by the LIBRYGN2 program contains the CSECT name

unless there is an entry point with the same address as the CSECT name, or

unless the CSECT name contains one of the exclude list characters; the first

nonexcluded name is put on the name card.

Alias cards are generated for the first five nonexecutable entry points

which have not been used on the name card. To change the exclude list,

use the following:

//stepname EXEC ADDTOLIB,PARM.LIBNAME='charstring'

where charstring is the set of characters which is used to exclude all names

containing any one or more of the set. A specified character string over-

rides any defaults used, such as the # or = symbols.

Note: Only one member with a given name can be in a library at any time.

Thus, FORTRAN main programs, which are all called MAIN by the compiler, must

be renamed by recompiling, using:

//stepname EXEC FORTRAN,PARM='NAME=name'

There are no differences between ADDTOLIB on the model 95 and model 75.

ADDTOLIB is not available on the model 65.

Contact Mrs. Pat Barnes in the GSFC Program Library, Building 3, extension 6796,

for further documentation on ADDTOLIB.

For assistance in using ADDTOLIB, contact the Building 3 PAC, Room 133A, exten-

sion 6768.

19.3.6 SAVEPROG

The SAVEPROG procedure executes the 128K Linkage Editor to link edit programs

into SYS2.LOADLIB. The input to SAVELIBS is the temporary data set &&OBJMOD

created in a previous compile step and a NAME control card which uniquely

identifies the member being placed in LOADLIB. The name is composed of the

user's five-character registered ID and three alphanumeric characters se-

lected by the user. The output of SAVEPROG is a nonexecutable load module

stored as a member of SYS2.LOADLIB. A listing of this procedure follows:

MEMBER NAME SAVEPROG
ALIASES SAVE
//LINK EXEC PGM=IEWL,PARM='LIST,NCAL,MAP',REGION=250K
//LOADLIB DD DSN=SYS2.LOADLIB,DISP=SHR

19.3-18



GSFC STANDARDS

//NEWLIN DD DUMMY
//SYSLMOD DD DSN=SYS2.LOADLIB,DISP=SHR
//SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=121, BLKSIZE=1210)
//SYSUDUMP DD SYSOUT=A,SPACE = (TRK,5)
//SYSUT1 DD UNIT=(DISK,SEP=(SYSLMOD,SYSPRINT)),SPACE=(CYL,(1,1))
//TAPELIB DD DUMMY,DISP= (OLD,KEEP) ,UNIT= (9TRACK,,DEFER) ,LABEL= (,BLP),
// DCB= (RECFM=FB,LRECL=80,BLKSIZE=3200)
//SYSLIN DD DSN=&&OBJMOD,DISP=(OLD,DELETE),DCB=RECFM=FB
// DD DDNAME=OBJECT

Input to SAVEPROG may be the passed data set &&OBJMOD, object decks, or object
modules on tape. At this point, the reader should refer to paragraph 19.3.2.1
to review the LINK examples and to compare the LINK and SAVEPROG procedures.

The input process is the same for both procedures; the output of LINK is an
executable load module stored in &&LODMOD, while the output of SAVEPROG is
a nonexecutable load module saved in SYS2.LOADLIB.

The following example illustrates the use of SAVEPROG after a FORTRAN compile:

//stepname EXEC FORTRAN
//SOURCE.SYSIN DD *

(source deck(s))
//stepname EXEC SAVEPROG
//LINK. OBJECT DD *

NAME userid xxx(R)

The SAVEPROG procedures are the same on the 360/95 and 75 (Cl).

The region size is 250k for the models 95 and 75 and 200k for the model 65.
The model 65 SAVEPROG procedure executes the 128k F level Linkage Editor.
(IEWLF128) contains a SYSLIB DD statement and specifies PARM=(XREF,LET,LIST,
NCAL) on the execute card.

Contact Mrs. Pat Barnes in the GSFC Program Library, Building 3, exten-
sion 6796, for further documentation on SAVEPROG.

For assistance in using SAVEPROG, see the PAC in Building 3.

19.3.7 BB

BB is the three-step procedure to execute the Boole and Babbage Problem Pro-
gram Analyzer which is used to measure and analyze Problem Program Efficiency
(PPE). Descriptions of the Boole and Babbage System and the cataloged pro-
cedure BB are presented in subsection 7.2.

19.3-19



GSFC STANDARDS

19.3.8 FAPCON

FAPCON is the procedure used to execute the FAPCON program which converts

S/360 FORTRAN IV programs in EBCDIC or BCD from single precision to double

precision. A description of this procedure and its usage is presented in

subsection 20.2.

For further documentation, contact Mrs. Pat Barnes, in the GSFC Program
Library, Building 3, extension 6796.

19.3.9 FORMAC

FORMAC is a cataloged procedure used for executing the FORMAC processor,
an extension of the PL/I compiler which provides the capability to perform

formal algebraic manipulation of variables and expressions within a PL/I
program.

See subsection 7.3 for a description of the FORMAC program and the cata-
loged procedure, FORMAC, used for executing this program.

Users desiring more detailed information about FORMAC should contact
Mrs. Pat Barnes in the GSFC Program Library, Building 3, extension 6796.

19.3.10 GPSS V

GPSS V is a procedure for execution of the General-Purpose Simulation
System, applicable where the model deals with discrete items, events,
and times.

Input to GPSS is a formatted data deck representing a special block diagram
coded by the user.

Refer to subsection 7.4 for a description of the GPSS program and the
cataloged procedure, GPSS, used for executing this program.

For more complete information on GPSS, contact Mrs. Pat Barnes in the
GSFC Program Library, Building 3, extension 6796.

19.3-20/19.3-21



CONVERSION AIDS

SECTION 20

CONVERSION AIDS

Conversion aids are used to make programs or data created for one computer
system acceptable to another computer system, or to convert source programs
written in one language to another language.

These aids are particularly useful in converting data from the 7090/94,
which uses a 36-bit word, to a form acceptable to the OS/360, which has a
32-bit word. Other programs assist in converting 7090/94 FORTRAN to S/360
FORTRAN IV, single-precision FORTRAN programs to double-precision, and
FORTRAN IV source statements to PL/I. Some of these programs also edit
and renumber FORTRAN source programs.

The various programs are highly restricted by the type of input that is
acceptable and by the extent of conversion they will perform. They usually
indicate those statements which must be hand converted. For more complete
documentation, the user should contact Mrs. Pat Barnes (extension 6796) in
the GSFC Computer Program Library in Building 3, Room 133.

20.1 DATA STATEMENT SIFT PROGRAM

SIFT is a conversion aid for installations converting from 7090/94 FORTRAN
to OS/360 FORTRAN IV. SIFT's main function is to convert a DATA statement
containing an implied DO into a DATA statement(s) acceptable to OS/360
FORTRAN IV. The program also flags any DATA statements which contain
hollerith or actual initialization values.

SIFT is available on the IBM model 360/95.

20.1.1 INPUT/OUTPUT

The input to SIFT is a 7090/94 BCD FORTRAN source deck. The output contains
a listing and a resequenced BCD deck.

The listing produced by SIFT shows the records read and generated by SIFT.
Each input record has a number appearing to the left of it; each record gen-
erated or reproduced by SIFT has a number appearing to the right of it. Thus,
each record which is reproduced exactly has numbers appearing on both sides
of it.

20.1-1



CONVERSION AIDS

DATA statements with an implied DO have the input record listed first, fol-

lowed by the generated statements. DATA statements flagged for hand conver-

sion have ***HAND CONVERT*** appearing to the right of the output sequence

number.

20.1.2 RESTRICTIONS

The value of SIFT is limited by the following restrictions:

1. The input deck must be free of errors.

2. A data statement is limited to 200 comment cards.

3. Variables within an implied DO may appear only in the innermost
DO.

4. Each subscript of a variable within an implied DO must be an inte-
ger variable controlled by the implied DO, or it must be an integer
constant.

5. The DATA statement must not contain redundant parentheses.

6. Array names which appear in the same list as an implied DO are
treated as scalars.

7. Groups which contain hollerith or actual data are flagged for hand
conversion, without expanding any implied DOs.

20.1.3 REFERENCES

Further information pertaining to SIFT may be obtained by referring to program
number G00073, available at the GSFC Computer Program Library.

20.1-2



CONVERSION AIDS

20.2 FAPCON

FAPCON is used to convert S/360 FORTRAN IV source programs punched in
EBCDIC or BCD from single-precision to double-precision format. This
program converts all real variables, function calls, constants, and FORMAT
statements. The REAL*8 specification is also replaced.

A FAPCON procedure is available in SYS1.PROCLIB on the 360/95.

20.2.1 INPUT/OUTPUT

The input is FORTRAN IV source subprograms in card image form. They may
be punched in BCD or EBCDIC code.

The output contains a listing of the modified FORTRAN IV subprogram and a
modified tape or deck, as requested. Each modified statement is prefixed
in the left-hand margin by the number of changes made to it. Any unusual
conditions encountered are noted by diagnostic messages.

20.2.2 PROCESSING CAPABILITIES

Most FORTRAN statements are not changed. Those which are changed are:

1. IMPLICIT

2. Arithmetic and logical statements

3. Arithmetic IF

4. Logical IF

5. Call

6. Statement functions

All IMPLICIT statements are deleted. The following statement is added as the
first statement of a MAIN program or as the second statement of a subprogram:

IMPLICIT REAL*8 (A-H,O-Z,$)

The following rules govern the changes which are made to the remainder of the
items in the preceding list:

1. All real constants are changed to double precision.

2. All real library function names are changed to their corresponding
double-precision function names, except those which are dimensioned,
those which appear in an EXTERNAL statement, and those which are
used as scalar variables.

20.2-1



CONVERSION AIDS

3. The portion of an arithmetic IF statement within the outermost
parentheses is treated as an arithmetic statement.

4. The portion of a logical IF statement within the outermost paren-
theses is treated as a logical statement. The portion to the right
of the rightmost parenthesis is treated as a separate FORTRAN state-
ment.

The specification statements EXPLICIT, DIMENSION, and COMMON are not changed,
but their variable names are examined for possible dimensioning of FORTRAN-
supplied function names. It is the programmer's responsibility to assure
proper boundary alignment for the DIMENSION, COMMON;, and EQUIVALENCE state-
ments.

EXTERNAL subprogram statements are not changed, but the names declared are
examined for possible identity to FORTRAN-supplied function names.

20.2.3 RESTRICTIONS

The FAPCON program imposes the following restrictions on the user:

1. A FORTRAN statement may not exceed 20 cards. A warning message is
printed for any statement exceeding that limit.

2. No more than 50 comment cards may appear consecutively. If the
number exceeds 50, those after the 50th are deleted.

3. Explicit length specification of FORTRAN-supplied REAL library func-
tion names are ignored; such names are changed to their double-
precision equivalents, unless the statement is dimensioned. For
example, REAL*4 SIN is changed to DSIN; REAL*4 SIN(4) is not changed.

4. Each FORTRAN ..subprogram -- _ -t a

pzu'I rarxI i.. eniU wi.I l Zd bL OUiI L X LJL LIL

succeeding subprogram will be treated as an extension of the pre-
vious one.

5. Only one sequential data set (or file) may be processed by FAPCON
in any one pass. In order to process a tape containing n files,
FAPCON would have to be executed n times.

20.2.4 JCL

A listing of the JCL example and cataloged procedure to execute the FAPCON
program follows:

20.2-2



CONVERSION AIDS

MEMBER NAME FAPCON
//SOURCE EXEC PGM=FAPCON, REGION=2 50K
//COMPILE DD DSNAME=&NEW,DISP=(,PASS),UNIT=-DISK,SPACE=(CYL,(5,1)),
// DCB= (RECFM=F,BLKSIZE=80)
//PUNCH DD DUMMY
//SYSPRINT DD SYSOUT=A
//SYSIN DD DUMMY

To execute this procedure for punched input and output, the user must code
the following:

//stepname EXEC FAPCON, PARM=xx
//SOURCE.PUNCH DD DSN=&DECK,SYSOUT=B
//SOURCE.SYSIN DD

(source deck)

Where:

xx in the EXEC card must be either DD or EE; DD will cause all E
format specifications to be changed to D; EE will leave all E format
specifications unchanged.

The source module is also output as a temporary data set, &NEW, which is
passed to the next step which is normally a compile step.

The user may also specify input and output on either tape or disk by over-
riding SYSIN and SYSPUNCH with the appropriate DD parameters.

20.2.5 REFERENCES

Complete documentation may be found in program number G00199, in the GSFC
Program Library.

20.2-3



CONVERSION AIDS

20.3 DEBLOCK/CNVRT PACKAGE

The DEBLOCK/CNVRT package is used to convert 7-track tapes with 36-bit data
words to a format compatible with the S/360 32-bit word.

The four DEBLOCK routines read any 7-track tape and expand the 36-bit word
by appending two high-order zeros to each group of six-bits, creating an
eight-bit byte used by the S/360.

The FORTRAN programmer cannot directly access the record retrieved. The
CNVRT routine uses one of 10 possible conversions to convert the data re-
trieved by the DEBLOCK routines into the S/360 structure.

A call to any of the DEBLOCK routines returns the address of the logical rec-
ord retrieved; the assembly language programmer then uses this address to
process the data.

When working with binary data, the CMPRS routine strips the appended zeros
from each byte and reconstructs the binary structure of the 7090/94 word.

20.3.1 DEBLOCK SUBROUTINES -- DBFOR, DBDCS, DBFDCS

The DEBLOCK subroutines DBFOR, DBDCS, and DBFDCS read 7-track tapes having
7094 records with FORTRAN, Direct Couple System (DCS), or FORTRAN-DCS
control words, respectively. The logical record is stripped of control
words (maximum of four); each six consecutive bits of the 7094 word have
two high-order zero bits appended to them, and each is located in continuous
bytes in the S/360. The address of the retrieved record is returned in the
second parameter of the CALL statement and is available to the CNVRT routine
or to an assembly language program. These routines read single files
only.

O%2f. . I rNDJ BOCK STU..OUTINE., -- DBGE

The DBGEN subroutine reads any 7-track tape and retrieves a physical record.
It is assumed that there are no control words and that the tape is unblocked.
As in the other DEBLOCK subroutines, the six-bit groups are expanded to
eight bits and stored in the IBM 360. The address of the first byte stored
is returned in the first parameter of the CALL statement. DBGEN reads
multi-file tapes.

DBGEN contains a DCB (Date Control Block) and issues an OPEN macro. Therefore,
the PL/l or Assembler Language programmer who calls DBGEN must not provide a
DCB or OPEN macro in the calling routine.

A new option is now available in DBGEN that may be of value to users when
processing multi-file tapes. Using a third parameter, set to an integer value
greater than 0 but less than 256, the user can indicate that the first record
of the next file is to be read. If normal processing is to be continued (i.e.,

20.3-1



CONVERSION AIDS

reading the next record of the current file), the user may either continue
calling DBGEN with the usual two parameters or he may add a third parameter
whose value is zero.

A call to DBGEN may result in a U0256 abend. This occurs either when the
GENTAP data set cannot be opened or when a SYNAD exit is taken and the exit
is caused by an error not included in the following list.

RETURN CODE EXPLANATION

0 Normal return
1 End-of-file
4 Permanent read error (possibly trying to

read data into bad location)
16 Wrong length record. Truncated record is

available for processing.
32 Data or control check. Data is returned but

its validity is questionable.
64 Protection check. Terminate processing.

The new package has been made significantly more efficient. Users who proc-
ess many calls during one run should see a marked improvement in their run
time.

20.3.3 SUBROUTINE CNVRT

This subroutine converts the data returned by one of the DEBLOCK routines
into the S/360 structure. The possible data conversions are:

1. Single-precision 7090 floating point to either single-precision
or double-precision S/360 floating point.

2. Double-precision 7090 floating point to either single-precision
or double-precision S/360 floating point.

3. 36-bit 7090 fixed point to S/360 single-word fixed point, single-
precision floating point, or double-precision floating point.

4. 7090 BCD to S/360 EBCDIC.

5. 7090 decrement to S/360 floating point.

6. Move 36 bits without conversion to the leftmost 36 bits of a S/360
double word.

7. Move specified numbers of 7090 words into the data area as a conti-
guous bit stream.

The required data conversion is requested by a value in one of the parameters
of the CALL statement.

20.3-2



CONVERSION AIDS

20.3.4 SUBROUTINE CMPRS

After a 7090/94 tpae has been read in and expanded by one of the DEBLOCK

routines, the CMPRS routine may be used to remove the two high-order zero bits

and compress the 7090 word to its original structure. The user may specify in
the CALL parameters whether he wants six bytes compressed to four and one-half-

bytes (36 bits) or 12 bytes compressed to nine bytes (72 bits). If more

than one word is to be compressed, each four and one-half-byte group starts

on a byte boundary and is separated by a one-half byte from the next four and

one-half-byte group.

20.3.5 JCL TO USE DEBLOCK/CNVRT

The programmer must supply a DD card to identify his tape to the DEBLOCK sub-

routine being used. The DD name depends on the subroutine being used:

Subroutine ddname

DBGEN GENTAP
DBFOR FORTAP
DBDCS DCSTAP
DBFDCS DBTAPE

Each DEBLOCK subroutine requires the DSNAME, UNIT, VOL, LABEL, and DISP
parameters in the DD statement, but the DCB requirements differ as shown:

DBGEN: DCB= (LRECL, BLKSIZE, DEN,TRTCH)
DBFOR: DCB=(LRECL,BLKSIZE,DEN)
DBDCS: DCB= (DEN)
DBFDCS: DCB=(DEN)

The following is an example of JCL used to identify an input tape to the

DBGEN subroutine:

//STEP1 EXEC LINKGO
//GO.GENTAP DD DSNAME=name,UNIT=7track,
// VOL=SER=xxxxxx,LABEL=(,BLP) ,DISP=OLD,
// DCB= (LRECL=606,BLKSIZE=606,DEN=1,TRTCH=C)

Note: The values of LRECL and BLKSIZE are equal to the physical FORTRAN
record (including the FORTRAN control word) times six.

This is a 7-track unlabeled tape with a density of 556 bpi. It is read with
the data conversion feature on (TRTCH=C).

20.3.6 REFERENCES

Users desiring further documentation for DEBLOCK/CNVRT subroutines should
contact Mrs. Pat Barnes (extension 6796) in the GSFC Program Library in
Building 3.

20.3-3



CONVERSION AIDS

20.4 DATCON

The DATCON package is a set of assembler language routines used to write 7090
and 1107 format tapes, complete with FORTRAN and 1107 control words. DATCON
is available on the M&DO 360/65, 75, and 95, and may be called from FORTRAN.

20.4.1 CALL STATEMENTS FOR DATCON

There are four forms of the CALL statement to DATCON:

1. The first CALL is issued only once in the program and is issued
before any other CALL. It sets up the program to convert for either
7090 or 1107.

2. The second CALL is issued once for each tape generated by DATCON.
It must be issued before the third or fourth CALL for that tape.
This CALL tells the DATCON routine the FORTRAN logical unit number
(between 1 and 30, inclusive) on which the tape is to be written.
It also tells the number of 36-bit words to be put in one record
on the output tape.

3. The third CALL is issued once for each data conversion. It may be
issued one or more times before the fourth CALL is issued. This
CALL contains the parameters which define the type of conversion
to be executed.

4. The fourth CALL is issued when a record is ready to be physically
written on the 7-track output tape. This CALL specifies the
FORTRAN logical unit number and whether the data to be written is
a record, end-of-file mark, or end-of-volume marker.

20.4.2 JCL FOR DATCON

The output file must be identified in the GO step by a DD statement with the
format:

//GO.FTxxF001 DD DSNAME=name,
// UNIT=7TRACK, VOL=SER=yyyyyy,
// LABEL= (,BLP) ,DISP=(NEW,KEEP),
// DCB= (BLKSIZE=zzz, DEN=l)

Where:

xx=FORTRAN logical unit number, as specified in CALL statement.
zzz=A value greater than or equal to the largest output record.
yyyyyy=Volume serial number of the output tape.

20.4-1



CONVERSION AIDS

20.4.3 REFERENCES

Further information pertaining to DATCON may be obtained by referring to

program number GA00042, available in the GSFC Computer Program Library in
Building 3.

20.4-2



CONVERSION AIDS

20.5 TIDY

TIDY is a FORTRAN program that renumbers and edits other FORTRAN source pro-
grams whose statement numbering has become unwieldy and whose readability
has deteriorated. This deterioration results from many revisions, patches,
and corrections that are typical of reworked programs. TIDY processes
programs routine-by-routine and punches new versions of the programs, with

the following characteristics:

1. All statements increase in consecutive order.

2. Only statements referred to by other statements retain statement
numbers.

3. All statement number references are updated to conform to the num-
bering scheme.

4. All FORMAT statements are collected and appear at the end of each
routine.

5. All FORMAT and CONTINUE statements that are not referenced are
deleted.

6. Blanks are inserted in the FORTRAN statements to improve readability;
excessive blanks in the statements are deleted.

7. Comments are processed to delete excessive blank comments and to
eliminate comments from the FORTRAN statement number and continuation
fields.

8. All cards are labeled with a unique letter-number combination. TIDY
is entirely written in ASA FORTRAN, and accepts and processes all ASA
FORTRAN statements, as well as some IBM and CDC dialect statements.

20.5.1 References

For further information, see programs 000512 and 000604 in the GSFC Computer
Program Library.

20.5-1



CONVERSION AIDS

20.6 OTHER AIDS

The conversion aids described in this subsection are not currently available

on any of the M&DO computers. They may be obtained upon request from the
GSFC Computer Program Library.

20.6.1 PK ALTR

PK ALTR is a conversion aid for 7090/94 users who will be running FAP or IBMAP
coded applications on the S/360 machine. Given a FAP or IBMAP source deck,
PK ALTR produces an equivalent program in S/360 assembly language, each source
statement producing an average of one or two S/360 instructions. All source
statements except I/O, macro definition, and XEC are translated. PK ALTR
flags these exceptions, as well as any potential ambiguities or mistranslations,
for the user to correct manually. PK ALTR is written in FAP and runs under the
FMS monitor, requiring a 32K 7090 with eight tape drives.

20.6.1.1 References

Users desiring further documentation for PK ALTR subroutines should contact
Mrs. Pat Barnes (extension 6796) in the GSFC Program Library in Building 3.

20.6.2 FORTLCP

FORTLCP is used to convert FORTRAN IV statements into PL/I statements having
the same meaning and effect.

20.6.2.1 Capabilities

FORTLCP does the following:

1. Detects and flags those FORTRAN IV statments that have no PL/Iequivalents, oz which may result 2i --- igous t-aislatios.

2. Produces an output listing of the PL/I program, and optionally,
the original FORTRAN statements.

3. Produces, when specified by the user, the converted program on
cards, tape, or disk.

4. Makes optional editing features available.

20.6-1



CONVERSION AIDS

20.6.2.2 Restrictions

FORTLCP has the following restrictions:

1. Hexadecimal and octal constants are not converted.

2. Assigned variables cannot be used for any purpose other than for

the assigned GO TO statement.

3. Transfers back into a DO loop are not allowed.

4. An implied DO in a DATA statement is not converted.

5. Initial values assigned to variables in EQUIVALENCE statements
should be adjusted by the user.

6. Cannot simulate the effect of some FORTRAN subprograms.

7. Use of the following PORTRAIN IMPLICIT statement causes a 322 ABEND:

IMPLICIT REAL*8 (A-Ii,O-B)

20.6.2.3 References

Users desiring further documentation for FORTLCP subroutines should contact

Mrs. Pat Barnes (extension 6796) in the GSFC Program Library in Building 3.

20.6-2



CONVERSION AIDS

20.7 DACUT9

DACUT9 is a set of System/360 Assembler Language subroutines which write
7094 FORTRAN unformatted (binary) tapes, complete with FORTRAN control
words. The subroutines are FORTRAN callable. The DACUT9 subroutine
package uses about 4k bytes of memory plus work areas the size of the
records being written. At least one 7-track tape unit with the convert
feature is needed.

20.7.1 INDIVIDUAL SUBROUTINES

A discussion of the individual DACUT9 subroutines follows:

GOBUILD: This routine sets up registers for the BUILD routine.

BITSTR: This routine takes care of all bit string conversions.
It handles all the addressing of input and output
areas.

CHAR: This routine translates character strings to 7090
code by means of a translate table. The translated
characters are then moved to the output area.

INTEGER 2
INTEGER 4
INTEGER: These routines handle all possibilities of integer

conversion: S/360 short or long form for the 7090.
The resulting numbers are in the proper format, with
complementing where necessary and the proper sign
affixed.

BUILD: This routine obtains the output area for the writing
of records, and builds the DCB's required. The entry
(four System/360 words) in the table of logical units
being written on is filled in with the initial values.
The address of the table is returned to the calling
routine. The DCB is built and opened. The output
area provided by this routine is about 30% larger
than asked for to allow for the FORTRAN control words.

WRITE: This routine handles all the "housekeeping" involved
in writing of records on tape. It affixes the FORTRAN
control words where required (these control words are
not used with bit strings), branches to the OUTAPE
routine to actually write the tape, and initializes
all values in the table entry after completing the
write.

20.7-1



CONVERSION AIDS

OUTAPE: This routine, called from WRITE, handles the actual

process of writing of record on 7-track tape. It

places the proper information in the Data Event
Control Block (DECB), writes and checks the record.

SEARCH: This routine, given a tape number, returns the
address of the table element corresponding to that
tape. The routine is used by almost all the other
routines.

ABEND: This routine places in the Abend macro the code
corresponding to the type of error mode. This code
appears on the core dump as USER = xxxx, where xxxx
is the numeric code for the error.

F36F90: This routine handles conversion of floating point
numbers to 7090 format. Either single- or double-
precision numbers may be input to the routine, and
the result can be 7090 short or long form.

FLOAT: This routine sets up linkage and handles housekeeping
for the floating-point routine (F36F90).

20.7.2 REFERENCES

The document DACUT9 is available in the GSFC Program Library (exten-
sion 6796) in Building 3, Room 133. This document contains a discussion
of the DACUT9 CALL statements and parameters, error codes, a sample pro-
gram, and examples of the DD cards required to use DACUT9.

20.7-2/20.7-3



DEBUGGING FACILITIES

SECTION 21

DEBUGGING FACILITIES

21.1 INTERPRETING SYSTEM MESSAGES

The general format of a system message is as follows:

AAAnnnB

where:

AAA is a three-letter prefix that identifies the module or pro-

cessor (or set of processors) giving the message

nnn identifies the specific message; the first digit of nnn often
identifies the program having the error

B is an indicator that describes the type of message being given:

I = information only

A = action required (i.e., an operator message)

W = wait, processing stopped until action taken

D = decision required by operator

E = eventual action required by operator

The modules and processors that correspond to the three-letter prefix, plus
the first-digit specifications (where applicable) are shown in Table 21.1-1.

The full text of the messages corresponding to the codes are contained in
the IBM manual, Messages and Codes, GC28-6631. The text may list several

possible reasons for the ABEND, or, its meaning may seem unclear. If such
difficulties are encountered, contact the PAC, extension 6768, Building 3,
Room 133A.

ABENDs are usually accompanied by system completion codes, discussed in
subsection 11.3; they are also listed in Messages and Codes.

21.1-1



DEBUGGING FACILITIES

Table 21,1-1. System Message Prefixes

IEA Supervisor Messages

IBC Independent Utility Messages

IEB Data Set Utility Messages

IEBOnn IEBEDIT

IEBlnn IEBCOPY

IEB2nn IEBCOMPR

IEB3nn IEBGENER

IEB4nn IEBPTPCH

IEB5nn IEBUPDAT

IEB6nn IEBISAM

IEB7nn IEBDG

IEB8nn IEBUPDTE

IEC Data Management Messages

IECOnn End of Volume

!EClnn Open

IEC2nn Close

IEC3nn Catalog Management

IEC4nn Checkpoint/Restart

IEC6nn Direct-Access Device Space

Management

IEC7nn Tape Label Creation

IEC8nn BTAM/QTAM

IED Telecommunications Access Method
(TCAM) Messages

21.1-2



DEBUGGING FACILITIES

Table 21.1-1. (Cont'd)

IEE Master Scheduler Messages

IEF Job Scheduler Messages

IEG TESTRAN Messages

IEH System Utility Messages

IEHlnn IEHLIST

IEH2nn IEHPROGM

IEH3nn, IEH4nn IEHMOVE

IEH5nn IEHUCSLD

IEH6nn IEHINITT

IEH7nn IEHIOSUP

IEH8nn IEHDASDR

IEI System Generation Messages

IEK FORTRAN IV H Messages

IEM PL/1 F Messages

IEP COBOL E Messages

IER SORT/MERGE Messages

IES RPG Messages

IEU ALC F Messages

IEW Loader/Link Edit

IEX ALGOL

IEY FORTRAN IV G Messages

IFF Graphic Programming Services
Messages

21.1-3



DEBUGGING FACILITIES

Table 21.1-1. (Cont'd)

IHB Supervisor and Data Management
Assembler Macro Expansion Messages

IHC FORTRAN IV Object Program Messages

IHD COBOL E Object Program Messages

IHE PL/1 Object Program Messages

IHI ALGOL Object Program Messages

IHJ Check/Restart Messages

IHK RJE and CRJE Messages (sent to
Central Operator)

IMx Service Aids Messages

21.1-4



DEBUGGING FACILITIES

21.2 IMPRECISE INTERRUPTS ON THE 360/95 AND WHAT TO DO NEXT

Imprecise interrupts occur on the model 95 because several instructions can

be in execution at once. When an additional instruction enters execution

(even though previous ones may not have finished), the instruction counter

is updated. This means that when one of the instructions causes a program

exception interrupt, the system cannot tell which of the several instructions

in execution caused the exception.

The cause of the interrupt is found in the old PSW double word (location hex

28 of a dump), in digits five through seven, when bits 27-31 and 32-33 = 0.

PSW Related
Digits Completion

5-7 Code Interrupt Type

800 0C4 Protection - possible cause, trying to

store into a location outside of the

program

400 OC5 Addressing - addressing a location
outside of the jobs region

200 0C6 Specification - possible cause, boundary
alignment

100 0C7 Data - applies to decimal operations,
therefore inapplicable on the 95

080 0C8 Fixed-point overflow

040 0C9 Fixed-point divide check

020 OCC Floating-point exponent overflow

010 OCD Floating-point exponent underflow

008 OCE Significance

004 0CF Floating-point divide check

A combination of the above codes may occur, e.g,, 030 would mean that both

underflow and overflow occurred. Sometimes, digits five through seven
contain information which is meaningless.

The preceding table applies only when digit seven is even, digit eight
is zero, and digit nine is less than four.

21.2-1



DEBUGGING FACILITIES

Suppose that an old PSW is:

F F 5 5 0 0 4 0 2 2 1 3 0 8 E 6
5th 6th 7th 8th 9th

The above table can be used since digit seven = 4 (even), digit eight is
zero, and digit nine is two (less than four). The related condition code
is OCF, a divide check. If there is no STAE traceback available to find
the FORTRAN statement causing the divide check, or an assembler listing
of the FORTRAN program, some of the following reasons for OCl-OCF errors
should be considered:

a. The arguments in CALL and subroutine statements do not agree in
number and type.

b. A subscript was used which was out of range of the defining
dimension statement.

c. Variables have not been initialized.

d. Transfer was made to the middle of the DO loop.

e. CALL statements of form CALL SUB (A,1,2) where SUB changes
arg 2 and arg 3.

f. There is an incorrect or missing DD card.

g. An unformatted READ or WRITE exists, with units referenced by
formatted I/O statements (unformatted I/O must use RECFM=VS or
VBS on DD card).

h. There are missing or misnamed JCL statements.

These reasons are not matched with specific interrupt types because each of
the errors can precipitate various interrupts, depending on the exact
situation.

If none of these reasons seems to apply, the PAC Center should be consulted,
Building 3, Room 133A, extension 6768.

21.2-2



DEBUGGING FACILITIES

21.3 ERROR TRACEBACK

When the FORTRAN Extended Error Handling facilities (see paragraph 21.5.2)

are not used, the built-in error handling facility of the FORTRAN compiler

is in effect. When an error occurs, the compiler takes the standard fixup,
described in Appendix D of the FORTRAN G&H Programmer's Guide, (GC28-6817),

"Execution Error Messages."

In addition to the standard fixup, the error handler also provides a trace-

back to enable the programmer to find the FORTRAN statement associated with

the error. The chain of subroutines is shown in the traceback, in reverse

order. Next to the subroutine name there is a number that refers to the

ISN of the statement in the calling routine. In Table 21.3-1, ISN20 in

MAIN calls COMP, and ISN17 in COMP calls FNDTSK, which calls IBCOM. Regis-
ters 14, 15, 0, and 1 are displayed to the right of each routine. Regis-

ter 14 gives the address to which the routine would have returned; register

15 shows the entry point of the routine. R1 contains a pointer to a list of

addresses indicating the variables passed to the called program. The entry

point of the main program is shown in hex below the summary. Next is a

message describing the action taken and the results. The error code is

on the last line; looking up this code in the FORTRAN G&H Programmer's Guide

will show what the standard fixup is for this error. For I/O errors, the
record having the error is printed below the text (not shown). If the ERR

option was specified in the I/O statement, control is returned there, after

the fixup.

21.3-1



DEBUGGING FACILITIES

Table 21.3-1. Example of Error Traceback

TRACEBACK ROUTINE CALL FROM ISN REG. 14 REG. 15 REG. 0 REG. 1

IBCOM 00033DAC 00037260 00000024 00033BDC

FNDTSK 0017 620346C6 00033A78 00045990 00034138

COMP 0020 42030B76 00034038 00000001 000309C8

MAIN * 4005AABE 00030808 FF000018 0005A7FO

ENTRY POINT = 00030808

STANDARD FIXUP TAKEN , EXECUTION CONTINUING

IHC215I CONVERT - ILLEGAL DECIMAL CHARACTER *

21.3-2



DEBUGGING FACILITIES

21.4 DUMPS

An ABEND error is caused by an SVC issued by the processing program, prob-
lem program, or supervisor if it is unable to continue processing. Both
ABEND and SYSUDUMPs are caused by the ABEND SVC (appropriately numbered 13).

An ABEND is most often issued by the supervisor in response to a program

interrupt. The interrupt handler in the NUCLEUS fields the interrupt,

determines the cause, and decides if the error is recoverable. If it is

not, an ABEND is issued for the task causing the interrupt.

The fact that the ABEND is issued by the interrupt handler means that the

displayed PSW and REGS AT ENTRY TO ABEND do not refer to the user or process-

ing program, but rather to the interrupt handler (where the user issues the

ABEND, reference is to the user program).

The first four dumps listed below are in most MVT OS systems; the fifth is

local to the M&DO 360/95, 360/75 (Cl), and 360/65.

1. SYSUDUMP - a full core dump, listing all control blocks for
the user's region (such as TCBs, RBs, DEBs, etc.), plus
the user's region. A SYSUDUMP is only given when a //SYSU-

DUMP DD card is included in the JCL for the job step.

2. SYSABEND dump - same as SYSUDUMP, but in addition, it has dumps

of the NUCLEUS and a TRACE TABLE of interrupts. Normally,-the
SYSUDUMP should be sufficient. A //SYSABEND DD card will pro-

vide a SYSABEND dump.

3. SNAP dump - produced by assembler language SNAP macro; job con-
tinues processing. The FORTRAN PDUMP is equivalent to the SNAP
dump. See the Supervisor and Data Management Macro Instructions
manual, GC28-6647, for details.

4. Stand-alone dump - used for system crashes to dump all of core.
The dump is formatted by service aid utilities. No formatting
of control blocks.

5. GSFCDUMP - obtained via CALL STAE, it prints an abbreviated for-
matted dump on the data set indicated by the //GSFCDUMP DD card.
For details, see M&DO Computer Bulletin No. 9.

21.4-1



DEBUGGING FACILITIES

21.5 FORTRAN DEBUGGING AND ERROR HANDLING

21.5.1 FORTRAN DEBUGGING PACKAGE

The FORTRAN Debugging Package, available with FORTRANG, is a programming
aid to facilitate error determination in FORTRAN source programs. The
debug package provides the capability of tracing program flow, displaying
values of variables, and checking subscripts for proper range. The debug
control statements are TRACE ON, TRACE OFF, and DISPLAY variable list.
These statements, along with several examples, are described in the FORTRAN
Language publication. The debug statements are fairly easy to use and
may be inserted anywhere within the program. A statement of the form AT
statementnumber is used to indicate the place within the program where
debugging is desired. The major limitation of the debug facility is that
the debugging information cannot be conditionally controlled.

21.5.2 FORTRAN EXTENDED ERROR HANDLING

Certain errors in FORTRAN programs are monitored by the FORTRAN Error Moni-
tor at execution time. For these errors, the FORTRAN Error Monitor prints
a message indicating the type of error which occurred, traceback informa-
tion containing the last sequence of subroutine calls, and contents of cer-
tain registers; in addition, for each type of error, the Error Monitor takes
some specific action, e.g., terminating the job step, setting a value to
zero, or continuing execution. For each particular error that is detected,
the normal action taken by the Error Monitor is referred to as "standard
corrective action." The purpose of the extended error handling facility is
either to permit the user to specify certain user-desired actions to be
taken upon error occurrence, in place of the standard corrective action,
or to change the number of allowable errors of a given type.

A detailed explanation of the extended error facility is given in the
FORTRAN G&H Programmer's Guide, (GC28-6817). The following is an example
of one possible ue of error handlinmg

Suppose while executing a FORTRAN program, IHC210 errors are pro-
duced, indicating that a floating-point underflow has occurred.
This is not a fatal error; normally, an unlimited number of oc-
currences is permitted for this type of error. If the program-
mer is unable to identify the variable producing this error, he
may desire a core dump to check the values of certain variables
at the time the error occurred. The programmer could cause this
error to be fatal by inserting the following two statements in
the program in which the error occurred:

EXTERNAL MYDUMP

CALL ERRSET (210,2,1,2,MYDUMP), where MYDUMP is a written
subroutine, such as:

21.5-1



DEBUGGING FACILITIES

SUBROUTINE MYDUMP
CALL ABEND (99)

RETURN
END

The above insertion causes a transfer to the user subroutine
MYDUMP after one occurrence of the HC210 error. Error trace-
back information will also be printed. The number of error
occurrences permitted is user-specified by the use of the
second parameter in the ERRSET call. Also, the fourth para-
meter can control the printing of the traceback.

There are many uses of the extended error facility. It is suggested that
the user refer to the FORTRAN G&H Programmer's Guide for a more thorough
explanation of the use of this facility.

21.5-2



DEBUGGING FACILITIES

21.6 TESTRAN

TESTRAN is an assembly language set of macro instructions that provide exe-

cution time debugging facilities to problem programs. Services are performed

at specified points in the problem programs, as ordered by the TESTRAN state-

ments. TESTRAN macro instructions and problem program instructions can be

intermixed, grouped separately, or independently assembled (to be merged by

the Linkage Editor).

TESTRAN statements provide the capability of dumping and tracing selected

areas of the program, either unconditionally or on selected criteria. By

using the various TESTRAN options, it is possible to use TESTRAN to debug

overlay programs or dynamically serial or dynamically parallel programs.
TESTRAN modules are neither re-enterable nor re-usable, so care should be

taken that a module has been closed before it is re-opened.

The IBM manual, TESTRAN, GC28-6648, gives examples of the use of TESTRAN state-
ments, TESTRAN syntax, and TESTRAN data set JCL.

Note: For lack of use, TESTRAN has been removed from the M&DO 360 computers

21.6-1



DEBUGGING FACILITIES

21.7 PRINTING DATA SETS FOR DEBUGGING

21.7.1 CORE DUMPS

Several types of post-mortem dumps are available, as shown in this table:

Table 21.7-1. Post-mortem Dumps

DDNAME CALL REFERENCES PUBLICATION

SYSABEND ABEND 11.4 and 21.4 GC28-6670

SYSUDUMP ABEND 11.4 and 21.4 GC28-6670

GSFCDUMP STAE 21.4 T&DS (M&DO) Bulletin, #9

PLIDUMP IEHDUMP GC28-6594

These, and some others, are obtained by defining them as SYSOUT data sets.

Alternatively, they can be written to intermediate devices and processed
later by a utility or editing routine. The TESTRAN output (SYSTEST) is pro-

cessed by an editing routine. Dumps are usually output to intermediate de-

vices on systems which are print-bound; in this way, the printer is not tied

up with a 200-300 page dump, unless it is absolutely necessary. At the same

time, the dump is available, if needed, without having to rerun the job.

The following DD statement is coded in the job step:

//SYSUDUMP DD DSN=pgiddump ,DISP=(, ,KEEP),
// DCB=(RECFM=VBA,LRECL=137,BLKSIZE=7265),
// UNIT=DISK,SPACE=(TRK,(50,100))

To print the dump, it is necessary to execute the following job:

//JOBNAME JOB required jobcard information
//PRINT EXEC PGM=IEBGENER
//SYSUT1 DD DSN=pgiddump,DISP=(OLD,DELETE,KEEP),
// UNIT=DISK,VOL=SER=volid
//SYSPRINT DD DUMMY
//SYSIN DD DUMMY
//SYSUT2 DD SYSOUT=A

The volume identifier (volid), as shown in the example above, would

be determined from the de-allocation messages of the first run,

21.7.2 DYNAMIC DEBUG OUTPUT

While writing a program, a programmer will often include debug aids. These
may include SNAPSHOTS (ALC), PDUMPS (FORTRAN), CHECK lists (PL/I), or hand
coding, such as writing out input or intermediate variables. The programmer
may desire routing these debug outputs to data sets other than the normal
outputs. Many FORTRAN programmers write all output to file six (FT06F001).

21.7-1



DEBUGGING FACILITIES

Several outputs will appear intermixed and more than likely cause confusion;
however, by putting all output on one data set, the programmer gains the
advantage of seeing the output in chronological order. Special precautions
must be taken when multi-tasking (in ALC or PL/I). If two tasks both
use the same data set, one task will overwrite the data of the other. Only
one DCB may be opened at any time for a data set, or the results will be
unpredictable.

21.7.3 INTERMEDIATE OUTPUTS

In order to debug a program, it is often desirable to look at some input
or output data. The IEBPTPCH and IEBGENER utilities are useful. They are
described in Section 9 and in the IBM manual, OS Utilities, GC28-6586.
Among the options available are field editing (spacing), character format
conversion (Hex), selective printing (every Nth record), and limit printing
(start or stop after n records).

For JCL, system, and procedural problems, a trip or call to the PAC is ad-
visable.

21.7-2



DEBUGGING FACILITIES

21.8 B37s, D37s, E37s

The system completion codes -- B37, D37, and E37 -- refer to situations

involving (1) lack of space on a volume, (2) insufficient primary track

allocation with no secondary allocation, or (3) inadequate number of

volumes, or (4) exhaustion of all 16 extents. See the IBM manual,

Messages and Codes, GC28-6631, for a detailed description of these errors.

The programmer's primary consideration when encountering one of these

errors is to find out which data set has a space problem. To find the

data set that ran out of space, the next to last SVRB in the formatted

part of the dump (first or second page) must be found. Register 2 in

this section contains the DCB address. This address (rightmost six hex

digits) should be matched with a DCB address in the tables following the

formatted TIOT. This address appears to the right of the DCB under each

DDNAME in the tables. The DDNAME that has the same DCB address as that
in Register 2 indicates the data set which ran out of space.

Once the offending data set has been identified, a check must be made to

ascertain that a program error, such as a loop in an output routine, did

not cause the overflow. If a program error has not caused the overflow,

then a legitimate space problem exists. If the data set is not a SYSOUT

data set, then the user(s) must have allocated it. It is therefore nec-

essary to calculate again the amount of space required.

The system provides a default allocation (TRK,(20,40)) for SYSOUT data

sets. If this is insufficient, more space may be allocated by including

the SPACE parameter on the DD card defining the SYSOUT data set. A reverse

application of the SPACE parameter is to use a D37 to limit the amount of

output on a data set. Each track allocated provides space for about one

page of output at full track blocking. (No secondary should be allocated

when using this technique.) This technique leads to an interesting case

when a job step ABENDS with two completion codes: the first is legitimate;

the second is an X37 which occurs during ABEND processing.

If sufficient space has been allocated, several problems could have caused

the overflow. For a D37, no secondary was allocated; therefore, a larger
primary or secondary must be allocated. For a B37 or an E37, either all 16

extents were allocated, or the VTOC was full. Although it is unlikely for
a full VTOC to be encountered on a scratch or system pack, due to free-

space-fragmentation, 16 extents could have been used before all the requested

space was allocated. (A diskmap or LISTVTOC of the volume involved would

show the condition of its VTOC.) The user must either request that the job

be run after scratch packs are scratched, or allocate more units in the UNIT

parameter. (Partitioned data sets, however, cannot be extended to other

volumes.) Care must be exercised in assigning a sequential data set to more

than one volume since the system will allocate up to 16 extents (if the space
is available) on each of the assigned volumes.

21.8-1



DEBUGGING FACILITIES

The "STAE" subroutine will give the ddname, unit address, volume, and
formatted DEB of the data set encountering the B, D, or E37.

The scratch packs tend to fill up when the system is unstable. When the
system is IPLed on a "warm start" basis, all jobs which were executing when
the system went down are terminated. As part of the termination processing,
their temporary data sets are de-allocated, i.e., deleted. Messages in-
dicating which data sets have been deleted appear on the operator's con-
sole. However, if a "cold start" must be performed, the de-allocation
does not take place. The data sets are scratched as part of the "cold
start" procedure.

An excellent manual for debugging dumps is An Introduction To OS/360 MVT
Control Logic and Debugging With MVT Core Dumps, IBM manual number Z77-9058,
obtainable from Mrs. Pat Barnes, extension 6796.

21.8-2



DEBUGGING FACILITIES

21.9 SIGPAC

The latest version of SIGPAC is now available on the 360/95. SIGPAC is a

software system that gives the programmer the ability to trace and indicate

the significance of numerical calculations in a PORTRANG1 program. Primarily

then, SIGPAC

(a) Permits the testing and localizing of weaknesses within numerical

procedures for abnormal error propagation from generated (primarily
truncation) errors.

(b) Provides an objective basis for determining when single precision

gives adequate significance or when double precision should be used.

SIGPAC accomplishes this by means of a source-program pre-processor (called

SIGSCAN) which scans the user's program and translates it into a revised

source-program which is then compiled by a conventional FORTRAN compiler.

This pre-processor step will use about 520K bytes of memory. The resulting

execution of the user's program under SIGPAC will provide output that is

identical to that obtained with a normal compilation and execution plus an

indication on the number of significant digits in each parameter as specified

by the user.

The primary step in using SIGPAC is a thoughtful examination of the source

program and planning of the testing process. Some increase in CPU time re-
quirements can be expected when using SIGPAC; however, this increase can be
minimized if only pertinent arithmetic statements are examined. To facilitate
the use of SIGPAC, the catalogued procedure SIGPAC, consisting of the pre-
processor step, the compilation step (via FORTRAN G), and the execution step

(via the LOADER), has been placed on the 360/95 and 360/91. For further
information concerning SIGPAC contact Mrs. Isabella J. Cole, Code 582.3,
extension 6683. Copies of the User Manual may be obtained from the GSFC Pro-
gram Library, Building 3, Room 133, Extension 6796.

iCoding in the FORTRANG program must conform to the American National Standards
Institute, New York, New York, Standard No. X3.9 of 1966 (abbreviated as
ANSI-X3.9-1966.)

21.9-1/21.9-2



OVERLAY CONSIDERATIONS

SECTION 22

OVERLAY CONSIDERATIONS

22.1 INTRODUCTION

OS provides the programmer with the capability of overlaying one part of
his program with another, thus reducing the amount of storage necessary to

run the program. The structure of an overlay program is specified at the

Link Edit step. At execution time, each overlay is loaded, using the Over-
lay Supervisor, as required by the program.

Frequently run programs, using over 400K of core storage, benefit if they
are formatted in overlays. One factor in determining job classes is the
region size; therefore, any reduction in region size (due to overlaying)
may put the job in a class to which more initiators are started. This
should provide a noticeably faster turnaround time, at little cost to the
total CPU and I/O time for the job.

The following subsections present programming considerations when overlaying
a program, the definitions of the elements of an overlay program, and the
Linkage Editor control cards required to achieve an overlay structure.
For assistance in overlaying currently running programs, or in designing

a program for overlay, the PAC should be consulted in Room 133A, Build-
ing 3, extension 6768.

For further reference, see Linkage Editor and Loader, IBM (GC28-6538).

22.1-1



OVERLAY CONSIDERATIONS

22.2 DEFINITIONS

SEGMENT: The smallest portion of the program that can be loaded as one
logical unit at execution time.

NORMAL OR NON-OVERLAY PROGRAM: One segment containing a main routine (may
contain many subroutines and/or common blocks).

TREE: The graphic representation of an overlay program, showing which portions
(segments) are in core at any time.

ROOT SEGMENT: It remains in memory throughout the execution of the program,
and should be used for control of the program functions. The root segment
is part of every path. (See Figure 22.2-1 for an example of a tree.)

PATH: All segments in line between the segment currently executing and
the root segment. In Figure 22.2-1, path is pictured by drawing a line
upward from the segment being considered (REPLACE for example) through
every higher segment (SMOOTH), until the root segment (CONTROL) is reached.
When a segment is in memory, all segments in its path (above it) are in
memory also. Thus, in the example, a call from CONTROL to REPLACE would
automatically load SMOOTH into memory.

OVERLAY REGION: The contiguous area of main storage which contains one
"tree" of a program. An overlay program may contain up to four regions,
and thus four trees may be built. The term "region," used in overlay dis-
cussions, should not be confused with the same term used to specify the
main storage required for a job step. Each of the four (maximum) regions
of an overlay program run in the one storage region specified for the job
step.

MULTIPLE REGIONS: More than one overlay region. Used when the program
becomes so complex that it is desirable to be loading one path while exe-
cuting another path. Multiple regions are also used when the root segment
is large enough to benefit from being overlaid. When multiple regions are
used, each region has its own tree, and is independent of other regions,
except that segments have access to segments that are not in 'their path.
Thus, a program tree that has identical sub-trees on more than one branch
is a good candidate for multiple regions. Figure 22.2-2 illustrates a
program structure that will benefit from multiple regions; Figure 22.2-3
shows the structure divided into two regions. Note in Figure 22.2-3, the
routines READ and ERROR appear in the first tree more than once, and are
put into the second region in the second tree.

22.2-1



OVERLAY CONSIDERATIONS

CONTROL
(ROOT SEGMENT)

CONTIN SMOOTH CONTOUT

ERROR FORMAT PRINT
INPUT EDIT CORRECT REPLACE PRINT OUTPUT OUTPUT

PRINT OUTPUT OUTPUT

CALCULATE

PREDICT CORRECT 2

Figure 22.2-1. Example of Tree Structure

22.2-2



0

MAIN

INPUT COMPUTE OUTPUT

READ EDIT BUILD I READ MVIERGE SORT WRITE SCAN

\ /

ERROR ERROR ERROR

Figure 22.2-2. Tree Diagram



MAIN
REGION ONE

INPUT COMPUTE OUTPUT

EDIT BUILD MERGE SORT WRITE SCAN

REGION TWO
0

READ ERROR

8
0

Figure 22.2-3. Tree DiagramE



OVERLAY CONSIDERATIONS

INCLUSIVE SEGMENTS: They can be in main storage at the same time. That

is, the segments containing the routines CORRECT2 and CALCULATE are in-
clusive, since a path can be drawn to include them both.

EXCLUSIVE SEGMENTS: They are in the same region, but not in the same path.
The segments containing EDIT and INPUT are exclusive, since one will always

overlay the other in memory.

COMMON SEGMENT: This occurs where two separate paths join. The segment

containing CONTIN is the common segment to the segments containing INPUT

and EDIT.

'22.2-5



OVERLAY CONSIDERATIONS

22.3 PROGRAMMING CONSIDERATIONS

22.3.1 GENERAL

A good overlay structure corresponds to the logical flow of the program.
An overlay tree that corresponds to the program must be constructed before
a program call can be overlaid. Each major level should perform one logical
function, and should not need to be frequently recalled after it has been
overlayed. A call to an overlay segment should not be placed inside a tight
loop.

Exclusive segment references are legal only if there is a reference to
the exclusive segment in a common segment. In Figure 22.2-1, references
between INPUT and CONTIN are inclusive; references between INPUT and EDIT are
exclusive (but legal); and references between INPUT and PREDICT are exclu-
sive and illegal (unless specific references are included in CONTROL).

22.3.2 COMMON ROUTINES AND DATA

Only one copy of a routine should appear in the tree. If it is necessary
logically for a routine (or group of routines) to appear more than once,
then either a separate overlay region should be used for those routines,
or the routines should be moved up in the tree until they are high enough
to be common to all branches in which they are to appear. If it is desir-
able for a routine to appear in several segments, the routine must be named
differently each time it appears.

System service routines normally are included in the root segment. If
their use is limited to some branches, they may be placed in lower segments --
especially special packages like mathematical or plotting routines. Any rou-
tine that issues an OPEN cannot be overlaid until a CLOSE is issued; in
FORTRAN, this is handled by leaving IBCOM in the root segment.

Only the original copy of a segment (present at start of execution) is kept;
each time an overlay segment is called, the routine reverts to the original
code. This means that variable data to be passed between routines cannot be
kept in the code that is overlaid. Instead, data to be passed should be kept
in data sets, common blocks, or block data subprograms. Common blocks should
be positioned so that they are located in the common segment of the segments
that share the data. Figure 22.3-1 shows a portion of a tree with common
blocks COM1 and COM2.

22.3-1



OVERLAY CONSIDERATIONS

SMOOTH
COM2
COM1

ERROR
CORRECT REPLACE RR

PRINT

Figure 22.3-1. Example of a Tree Portion

The common block COMI is used to communicate error data between CORRECT,
REPLACE, and ERROR PRINT. This block must be in SMOOTH, since SMOOTH is
the common segment (it is in all three paths) to the three routines. The
common block COM2 is used only by CORRECT. It was not placed in the
CORRECT (no pun) segment since CORRECT may be called in repeatedly, and
the flags and counters must be preserved for each call.

Variable data initialized via data statements or block data subprograms
should be placed in the next higher common segment (like COM1 above).
(Data statements should be made into block data subprograms before being
moved.)

Constant data can remain in the lowest segment needed, since the values
do not change during execution.

It is important to recall the general rule that the length of each data
statement in a block data subprogram must correspond to the length of the
common block it is initializing. Note also that common blocks are more
efficient than calling sequence arguments, because they occupy less storage
and are passed more quickly than arguments.

22.3-2



OVERLAY CONSIDERATIONS

22.3.3 OVERLAY TREES

Keeping in mind that the overlay structure should correspond to the logical
structure of the program, it should be designed with the minimum practical
number of repeat calls to a segment. For example, in Figure 22.3-2, after
the INPUT segment has been called in, it should stay in until a set of
input data has been processed.

When determining the tree for a program, each subprogram and labeled common
set must have a unique name. A subprogram can only appear once in the tree.
A labeled common set only appears in the tree in the highest segment that
references it.

Before the Linkage Editor control cards are made up, a copy should be made
of the tree listing all routines and common blocks in each segment.

Looking at the tree in Figure 22,3-2, the overlay levels are indicated by
the horizontal line over the exclusive segments. These levels (two, in this
diagram) should be given names to be used by the Link Editor.

The size of an overlay level can be determined roughly from the length of
the longest segment at that level, since the load point of each segment at
a given level is the same. In addition to a program's object code, there
are tables within each segment that list other segments that can be called
by an individual segment.

22.3-3



OVERLAY CONSIDERATIONS

MAIN
DRIVER1
MATH1

LEVEL 1 (LEVONE)

I
SMOOTHC MATH2MATH2

INPUTC SMOOTH1 OUTCCALC
INCOM COM1 MATHCOM OUTCOM

COM2

LEVEL 2 (LEVTWO) LEVEL2 (LEVTWO)

INPUT EDIT GUESS FIX

LEVEL 2 (LEVTWO) LEVEL 2 (LEVTWO)

CORRECT
CORR1 REPLACE FIND FORMAT OUTPUT
CORR2 ERPRT
CORCOM

Figure 22.3-2. Tree Diagram

22.3-4



OVERLAY CONSIDERATIONS

22.4 LINKAGE EDITOR CONTROL CARDS

Input cards to the Linkage Editor are placed after the //SYSLIN DD * card.

INCLUDE or ENTRY cards should remain in their usual position in front of

the overlay cards. The overlay cards are OVERLAY name (region) and INSERT

Subl,Sub2,.... ,Subn.

To determine the order of the OVERLAY and INSERT cards, the user refers to

his tree, as directed in Table 22.3-2. Each level (1 and 2) is referenced
on an OVERLAY card; the routines that make up a segment in the level follow

on the INSERT card. There must be an INSERT card for each OVERLAY card.
The root segment need not be considered an overlay level, since all rou-
tines present, but not named on INSERT cards, automatically go into the root.

Utilizing the tree diagram (Figure 22.3-2), the user must proceed to describe

his tree structure by going from top to bottom on one branch (leftmost) and
from left to right, finishing all of one branch before going to the next.

The OVERLAY and INSERT cards for the example in Table 22.3-2 are given

below:

OVERLAY LEVONE
INSERT INPUTC,INCOM

OVERLAY LEVTWO

INSERT INPUT

OVERLAY LEVTWO
INSERT EDIT

OVERLAY LEVONE
INSERT SMOOTHC,SMOOTH1,COM1,COM2

OVERLAY LEVTWO
INSERT CORRECT,CORR1,CORR2,CORCOM

OVERLAY LEVTWO
INSERT REPLACE

OVERLAY LEVTWO
INSERT ERROR ,FIND,ERPRT

OVERLAY LEVONE
INSERT MATH 2, CALC ,MATHCOM

OVERLAY LEVTWO
INSERT GUESS

OVERLAY LEVTWO

INSERT FIX
OVERLAY LEVONE

INSERT OUTCOUTCOM
OVERLAY LEVTWO

INSERT FORMAT
OVERLAY LEVTWO

INSERT OUTPUT

All Link Editor input cards must have column 1 blank,

22.4-1



OVERLAY CONSIDERATIONS

During program development, the parameters

PARM=(XREF,OVLY,XCAL)

are recommended since the cross reference table can be useful in optimizing
overlay programs. In general, only PARM=OVLY is required: e.g.,

//BUILD EXEC LINKGO,PARM=OVLY
or

//BUILD EXEC LINKGO,PARM=(OVLY,XREF,XCAL).

The cross reference table can be used to determine the longest path; once
the longest path is known, efforts can be made to reduce it, either by mov-
ing some routines into the root segment or by generating more overlay seg-
ments.

The XCAL parameter is necessary when exclusive references are made; nor-
mally, exclusive references cause the load module to be marked unexecutable.
The XCAL option checks for valid exclusive references and only marks the
load module unexecutable if there are invalid exclusive references. The
LET option allows valid or invalid exclusive references; there will be
unpredictable results if an invalid exclusive reference is executed.

The Boole and Babbage package can be used to determine how much time is
spent in each path, and how often a given segment is called. This kind of
information is essential in optimizing large overlay programs. See sub-
section 7.2 for information on the use of the Boole and Babbage system.

22.4-2



REFERENCES

SECTION 23

REFERENCES

Key for Sources

IBM Standard Reference Library (SRL) manuals - GSFC Manual A

Library, Building 16 annex, Room 25, 982-4672 or 982-2186.

GSFC Program Library documentation - Mrs. Pat Barnes, Program B

Librarian, Code 532, Building 3, Room 133, 982-6796

The M&DO 360 Computer Bulletin (formerly T&DS Computer C

Bulletin) and M&DO 360 Computergram are circulated automat-

ically to most M&DO computer users.

GSFC Computer Newsletter - Mr. Dave Kohnhorst, Code 601, D
extension 6697.

Subject Document Source

Current Local GSFC Computer Newsletter D
Information published as needed by GSFC

GSFC Microfilm Newsletter D
published as a subsection of
the GSFC Newsletter

M&DO 360 Computer Bulletin C
M&DO 360 Computerqram

prepared by the Computer
Management Branch on an
as needed basis

IBM Bibliographies GA22-6822: IBM System/360 A
and System 370 Biblioraph

GA24-3089: IBM SRL A
Bibliography Supplement -
Teleprocessing

23-1



REFERENCES

Subject Document Source

IBM Master Index IBM System/360 Operating A
System Systems Reference
Library Master Index

GSFC Library Guides Catalog of the GSFC Computer B
Program Library

X-540-69-107: A Programmer's B
Guide to the Goddard Space
Flight Center Computer
Program Library

General System GA22-6821: IBM System/360 A
Documentation Principles of Operation

GC20-1619: Catalog of Programs A
for IBM System/360

GC20-1646: A Programmer's A
Introduction to IBM System/360
Assembler Language

GC20-1649: Introduction to IBM A
S/360 Direct Access Devices and
Organization Methods

GC20-1699t A Data Processing A
Glossary

GC27-6909: IBM System/360 A
Operating System Graphic Pro-
gramming Services for 2250
Display Unit

GC27-6935: IBM System/360 A
Operating System Planning for
Rollout/Rollin

23-2



REFERENCES

Subject Document Source

General System GC27-6942: IBM System/360 A
Documentation Operating System Introduction

to Main Storage Hierarchy
Support for IBM 2361 Models 1
and 2

GC28-6534: IBM System/360 A
Operating System Introduction

GC28-6535: IBM System/360 A

Operating System Concepts and
Facilities

GC28-6538: IBM System/360 A
Operating System Linkage Editor

GC28-6540: IBM System/360 A
Operating System Operator's Guide

GC28-6543: IBM System/360 A
Operating System Sort/Merge

GC28-6550.: IBM System/360 A
Operating System - System
Programmer's Guide

GC28-6554: IBM System/360 A
Operating System - System
Generation

GC28-6586: IBM System/360 A
Operating System Utilities

GC28-6628: IBM System/360 A
Operating System - System
Control Blocks

GC28-6631: IBM System/360 A
Operating System Messages and
Codes

23-3



REFERENCES

Subject Document Source

General System GC26-3794: IBM.System/360 A
Documentation Operating System Data

Management Macro Instructions

GC28-6647: IBM System/360 A
Operating System Supervisor
and Data Management Macro
Instructions

GC28-6648: IBM System/360 A
Operating System TESTRAN

GC28-6656: IBM System/360 A
Operating System Checkpoint/
Restart

GC28-6662: IBM System/360 A
Operating System Sort/Merge
Timing Estimates

GC28-6670: IBM System/360 A
Operating System Programmer's
Guide to Debugging

GC28-6680: IBM System/360 A
Operating System Tape Labels

GC28-6704: Job Control Language A
Reference

GC28-6708: IBM System/360 A
Operating System Advanced
Checkpoint/Restart Planning
Guide

GC28-6719: Service Aids A
(Release 19)

23-4



REFERENCES

Subject Document Source

Assembly Language GA22-6821: IBM System/360 A

Principles of Operation

GC26-3756: IBM System/360 A

Operating System Assembler (F)

Programmer's Guide

GC28-6514 IBM System/360 A

Operating System Assembler

Language

A Guide To Using The University B

of Waterloo Level G Assembler

For the IBM/360

FORTRAN GC28-6515: IBM System/360 A

FORTRAN IV Language

GC28-6596: IBM System/360 A

FORTRAN IV Library Subprograms

GC28-6817 IBM System/360 A

Operating System FORTRAN IV

(G and H) Programmer's Guide

GC28-6818: IBM System/360 A

FORTRAN IV Library: Mathe-

matical and Service Subprograms

GH20-0166: System/360 Scientific A

Subroutine Package Version III:

Application Description

GH20-0205: System/360 Scientific A

Subroutine Package Version III:

Programmer's Manual

ASA FORTRAN (ANSI, X3.9 - 1966) B

PL/I E20-0312 .Preface to PL/I Pro- A

gramming in Scientific Computing

GC28-6590 IBM System/36u A

Operating System PL/I Subroutine

Library Computational Subroutines

23-5



REFERENCES

Subject Document Source

PL/I GC28-6594: IBM System/360 A
Operating System PL/I (F)
Programmer's Guide

GC28-6808: A Programming A
Language/One Primer

GC28-8201: IBM System/360 A
PL/I Reference Manual

GC33-2002: IBM System/360 A
Conversion Aids: FORTRAN IV-
to-PL/I Language Conversion
Program for IBM System/360
Operating System

GH20-0544: System/360 Scientific A
Subroutine Package (PL/I) Appli-
cation Description Manual

GH20-0586: System/360 Scientific A
Subroutine Package, PL/I Program
Description and Operations Manual

GY33-6003: IBM System/360 A
PL/I Language Specifications

SC20-1637: PL/I Guide for A
FORTRAN Users

SC20-1651: A Guide to PL/I for A
Commercial Programmers

SC20-1689: Introduction to the A
Compile-Time Facilities of PL/I

360Dt03.3.004: IBM Contributed B
Program Library, PL/I FORMAC
Interpreter

23-6



REFERENCES

Subject Document Source

Report Program GC24-3337: IBM System/360 A
Generator (RPG) Operating System Report Program

Generator Language

APL SH20-0906: The APL/360 User's A
(Refer to Sec- Manual
tion 15.9 REFERENCES)

GH20-0689: The APL/360 Primer A

Remote Terminal GC30-2012: Conversational Remote A
Systems Job Entry Concepts and Facilities

GC30-2014: Conversational Remote A
Job Entry Terminal Users Guide

CRBE Conversational Remote Batch A
Entry

GA24-3125: IBM 1050, Operators A
Guide

GA27-3005: IBM 2780 Data Trans- A
mission Terminal - Component
Description

GC30-2006: IBM System/360 A
Operating System Remote Job Entry

GC30-2007: IBM System/360 A
Introduction to Teleprocessing

Graphics 2260 Subroutine Package, B
by Frank Ross, Systems Programmer,
Computer Management Branch

GC27-6912: IBM System/360 A
Operating Syste.4 Graphic
Programming Services for
IBM 2260 Display Station
(Local Attachment)

23-7



REFERENCES

Subject Document Source

Graphics GC27-6932: IBM System/360 A

Operating System Graphic
Programming Services for
FORTRAN IV

GC27-6933: IBM System/360 B
Operating System User's Guide
for Job Control from the
IBM 2250 Display Unit

Plotters CalComp Digital Recorder B
User's Manual, prepared by
Computer Sciences Corporation,
January 1967, with Update
Packages A, B, C and D

Gerber Plotter Subroutine B
Package for OS 360 User's Guide,
prepared by Vitro Services, Inc.,
under NASA contract NAS5-9241.

GSFC Newsletter No: 13, D
September 16, 1968

Laboratory for Theoretical B

Studies, System 360, Bulletin
No. 5 from Mr. P. Smidinger,
September 26, 1966, subject
"PRPLOT, A 360 Printer Plotting
Program" with attachment from
the University of Michigan
Computing Center, dated March 1,
1961, on UMPLOT subroutine.

The Wolf Plotting and Contouring B
Package (General Plotting and
Contouring Program), GSFC Program
#A00227.

23-8



REFERENCES

Subject Document Source

Plotters Memorandum from Mr. D. Y. B
Sumida, Mathematics and
Computing Branch, subject:
"CPLOT", dated September 1, 1967,
with earlier manual titled CPLOT
CalComp Plotter Routine, Direct-
Couple System for FORTRAN II,
FORTRAN IV, Theoretical Division

Programmer's Reference Manual for B
the Integrated Graphics Software
Systems, Volume 1, Applications
Programmer's Guide: Document
9500360, prepared by Stromberg
Datagraphics, Inc. (formerly
Stromberg-Carlson) and the Rand
Corporation

Universal SD-4060 System and B
Software Manual, Stromberg
Datagraphics, Inc., June 22, 1970.

SCOPLT, prepared by CalComp Systems B
Software

Conversion Aids DACUT9 B

DATCON (GSFC Program #A00042) B

23-9



REFERENCES

Subject Document Source

Conversion Aids FAPCON (GSFC Program #G00199) B

SIFT (GSFC Program #G00073) B

Subroutine Package for Conver- B
sion of 7090 7-track Tapes to
Formats Compatible to S/360

User's Guide to Deblock, B
Conversion and Clock Subroutines

User's Guide to Subroutine UNPACK B

Automatic GSFC documentation and various B
Flowcharting documents from Applied Data

Research, Inc., on flowcharting
programs written for both S/360
computers and for others - CDC,
UNIVAC, SDS, and DDP.

Hardware, Operating Computation Division ADP B
Instructions Equipment Guide

A22-6884: IBM System/360 A
Model 65 Functional Character-
istics

A22-6889: IBM System/360 A
Model 75 Functional Character-
istics

A22-6907: IBM System/360 A
Model 91 Functional Character-
istics

GA22-6810: IBM System/360 A
System Summary

GA22-6866: IBM System/360 A
Component Description 2400 Series
Magnetic Tape Units

23-10



REFERENCES

Subject Document Source

Hardware, Operating GA22-6895: IBM System/360 A

Instructions Component Descriptions - 2301
Drum Storage and 2820 Storage
Control

GA24-3073: IBM 1403 Printer A

Component Description

GA24-3231: IBM System/360 A
Model 30, Functional Character-
istics

GA26-3599: IBM System/360 A
Component Descriptions - 2314
Direct Access Storage Facility
and 2844 Auxiliary Storage Control

GA26-5889: IBM System/360 A
Model 20, System Summary

GA26-5988: IBM System/360 A
Component Descriptions - DASD
for 2841

GA27-2700: IBM System/360 A

Component Description 2250
Display Unit Model 1

'GA27-3005: IBM 2780 Data Trans- A
mission Terminal - Component
Description

GC28-6540: IBM System/360 A
Operating System Operator's Guide

CSMP GH20-0240: System/360 Continuous A
System Modeling Program, Applica-
tion Description

GH20-0367: System/360 Continuous A
System Modeling Program User's Guide

GPSS GH20-0186: General Purpose A
Simulation System/360 - Appli-
cation Description

GH20-0304: General Purpose A
Simulation Sytem 1360 Intro-
duction - Uuer' Manual

23-11



REFERENCES

Subject Document Source

GPSS GH20-0311: General Purpose A
Simulation System/360 - Operator's
Manual

GH20-0326: General Purpose A
Simulation System/360 - User's
Manual

Miscellaneous OSSLIP (GSFC #G00231) B

Systems Measurement Software B
(SMS/360) User's Guide for PPE,
Boole and Babbage, 1969

Utility to Update Source and B
Object Files on Tape, by Charles R.
Newman GSFC Code 582. (GSFC
#D00145 and GSFC Document
X-551-69-409)

Pocket GX20-1703: IBM System/360 A
Reference Cards Reference Data Card

GX20-1710: IBM 2314 Direct Access A
Storage Facility Capacity and
Transmission Time Reference Card

GX20-1733: IBM System/360 A
Operating System Data Manaement
Macro Instructions

GX20-1738: System/360 Reference A
Data Assembler Language Supervisor
Macro Instructions

Pocket GX20-1739: System/360 Reference A
Reference Cards Data Linkage Editor

GX20-1760: Examples of Control A
Cards for System/360 Operating
System

23-12



INDEX

INDEX

ABEND, 11.7-3; 21.4-1; 21.7-1 Block Data Subprogram, 6.2-16

ABEND SVC, 21.4-1 Blocking, 17.1-8

Abnormal Termination, 11.4-1 BLP, 5.6-24; 17.1-16

Absolute Vectors, 12.1-1 Boole and Babbage, 7.2-1; 4-2; 22.4-2

Access Method Macros, 11.2-1 Boole and Babbage Problem Program
ADD (IEBUPDTE), 9.3-11 Analyzer, 7.1-1
ADDTOLIB, 19.3-16 Boundary Alignment, 6.2-15

ADRFLOW, 10-4 BRDCSTR, 13.1-11
AFF, 17.1-12; 5.6-30 BSAM, 17.1-11
ALERT, 13.1-9 BTAM, 8-6
ALIAS Statements, 9.3-10; 9.3-11 BUFNO, 17.1-9
Alphameric Keyboard, 12.1-2
American National Standards CAIRS System, 2.2-5

Institute (ANSI), 6.2-2 CalComp 570, 2.4-3; 12.3-5
American Standards Association CalComp 770 Subroutines, 12.3-4

(ASA), 6.2-2 CalComp 770/780, 2.4-3; 12.3-4

APL (A Programming Language), 15-1 Card and Tape Processing
APL Courses, 15-4 Services, 2.3-6
APL Extended File System, 15-5 Catalog, 11.1-2
APL MINIPERT, 15-16 Cataloged Data Sets (CRJE) 14.2-2;
APL News File, 15-2 14.2-4
APL Space Allocation, 2.2-3 Cataloged Procedures, 2.2-4; 5.5-1;
ASCII Tapes, Printing of, 3.6-1 19.1-1; 19.3-1
ASSEMBLER(F), 6.2-22; 4-2; 6.1-1 Category Code, 2.1-2
ASSEMBLER G, 4-2; 19.3-4; 6.2-22 CATLG, 17.1-20; 5.6-11; 9.2-14
ATSPAK, 2.3-6 CDC 160A, 3.6-1
ATTACH Macro, 16-2; 16-1 CHANGE, 9.3-10
ATTACH Macro Instruction, 16-2 Channel Separation, 17.1-12; 19.3-14
Autoflow, 10-1 Character Generator, 12.1-2
Autoflow Services, 2.3-8 Charlie Newman's Utilities, 9.4-16

CHECK Lists, 21.7-1
B37 Abend, 21.8-1 Checkpoint/Restart, 11.5-1
Backspace, 6.2-16 CHKPT Macro Instruction, 11.5-1
Backward References, 5.6-2 Classes, (JOB), 5.3-6; 18-3
Basic Access Method, 11.1-3 CMPRS, 20.3-3
Basic Telecommunications Access CNVRT, 20.3-1

Method, 8-6 COBOL, 6.1-1
BB, 19.3-19 Code Activity Report, 7.2-1
BCD, 3.7-6; 20.3-2 Cold Start, 21.8-2
BEEF, 4-2 COMMON, 6.2-15
Binary Coded Decimal (BCD), Common Block, 6.2-16

3.7-6; 20.3-2 Common Configuration Subset, 18-1
Binding of Computer Common Segment, 22.2-5

Printouts, 2.3-7 Compiler Input, 19.3-2
Bit Manipulation Routines, Compiler Output, 19.3-3

7.6-1; 4-3 Compress Inplace, 9.3-3
Block Data, 6.2-16 Compressing a PDS, 9.3-3

I-1



INDEX

Computer-Assisted Interactive DATCON, 20.4-1; 4-2
Resource Scheduling DBDCS, 20.3-1

(CAIRS), 2.2-5 DBFDCS, 20.3-1

Condition Code, 5.3-6; 11.3-1 DBFOR, 20.3-1

COND Parameters, 5.5-3; 11.3-1 DBGEN, 20.3-1
CONSEQ, 9.4-28 DCB Parameter, 5.6-3
CONTINUE (RJE), 13.1-8 DDNAME, 5.6-21; 17.1-1

13.2-3; 13.2-6 DDP-24, 3.6-1
Continuous System Modeling DD *, 5.6-39

Program (CSMP), 7.7-1 DD DATA, 5.6-39
Control Program, 3.1-1 DD DUMMY, 5.6-41
Conversational Remote Batch DD Statement (see Data Definition

Entry (CRBE), 14.1-1 Statement)
Conversion Aids, 20.1-1 DEBLOCK, 20.3-1
Converting Data, 20.1-1 DEBLOCK/CNVRT, 20.3-1; 4-3
COPY (IEHMOVE), 9.2-1 Debugging Facilities, 21.1-1
Core Dumps, 21.7-1 Decimal Instruction Set, 3.2-6
CPLOT, 12.3-5 Deck Setup, 5.3-1
CRBE, 4-2; 14.1-1; 14.1-3 Decollating, 2.3-7
CREATE Statement (IEBDG), 9.3-14 Dedicated Peripherals, 2.2-3
CRJE, 14.1-1 DEFER, 5.6-31
CRJE and CRBE Classes, 14.1-4 Deferred Output (RJE), 13.1-7
CRJE Authorization, 2.1-2 Define File, 17.2-3; 17.2-5
CRJE, Hours of Service, 2.3-2 Definitive Orbit Determination
CRJE News File, 14.1-3 System (DODS), 2.2-5
CRJE/RJE Tape Mounts, 2.3-2 DELETE (RJE), 13.1-9
CRJE Space Allocation, 2.2-3 DELETE (IEBUPDTE), 9.3-10
Cross Reference, 6.2-10, 6.2-14 DELETE (DISP parameter), 17.1-20
CRT, 12.2-1 Delimiter Statement, 5.7-1
CRT Screen, 12.1-1 DEN, 5.6-6
CSMP, 7.7-1 Derived Unit Names, 18-10; 19.2-1;
CPU Time, insufficient, 5.3-6 19.2-2
CYL, 17.2-4 Design Levels, 6.1-1

Device-Independent, 11.1-3
D37 Abend, 21.8-1 Direct-Access Data Set, 17.2-1
DAIO, 17.2-11 Direct Access I/O Package (DAIO),
Data Control Block, 5.6-3; 11.1-1; 17.2-11

11.1-3 Direct-Access Storage Device
Data Definition Statement, 5.2-2; (DASD), 3.7-1

5.6-1, 11.1-1 Direct Organization, 11.1-2
Data Management, 11.1-1 DISP, 5.6-7; 17.1-20; 17.3-3
Data Management System, 11.1-1 Dispatching Stations, 2.3-1
Data Set Control Block or Display Variable List, 21.5-1

Label (DSCB), 11.1-1 Document, 4-4
Data Sets, 11.1-1 DODS Reader, 11.7-2
DATA Statement, 20.1-1 DODS System, 2.2-5; 18-10
Data Set Name, 5.6-15 DOTTE1, 2.3-6
Data Set Utilities, 9.3-1 DOTTE2, 2.3-6
DACUT9, 4-2; 20.7-1 DSNAME, 17.1-2; 17.1-1
DATASIFT, 4-2; 20.1-1 DSORG, 17.2-1

I-2



INDEX

Dumping a 7- or 9-track tape, 2.3-6 GDAR, 12.2-4

DUMPS, 21.4-1; 21.7-1; 11.4-1 GEBUF, 12.2-7

Duplicating, 2.3-6 General Purpose Simulation

System, 19.3-20

E37 Abend, 21.8-1 Generic Names, 19.2-1

EAM and Related Services, 2.3-6 Generic Unit Names, 19.2-1; 18-10

EBCDIC, 3.7-4, 13.3-1, 20.3-2 GICUR, 12.2-4

ECAP, 4-2 GO, 19.3-7; 19.3-10; 19.3-11

ENDUP Statement, 9.3-10 GOPEN, 12.2-2

EDIT Option, 6.2-14 GPAK, 4-3; 12.1-11

Equivalence Statements, 6.2-15; 6.2-16 GPCP, 4-2

EROPT, 17.1-17 GPSS V, 4-2; 7.4-1; 19.3-20

Error Handler (FORTRAN), 21.3-1 Graphic Access Method, 12.1-1

Error Messages, 6.2-10 Graphic Design, 12.1-2

Error Traceback (FORTRAN), 21.3-1 Graphic Policies and Procedures, 12.1-2

Estimating Computer Time, 5.3-5 Graphic Programming Services (GPS),

Exclusive Call, 6.3-3 12.1-9; 12.2-1

EXEC Statement, 5.2-2; 5.5-1; 8-2 Graphic Subroutine Package (GSP),

Executable Load Module, 18-10 12.1-6

EXPDT, 5.6-28 Graphic Terminal Service (GTS), 7.5-1

Express Cancel, 11.7-3 GSFC Computer Newsletter, 1.1; 4-4

Extended File System (APL), 15-5 GSFCDUMP, 21.4-1; 21.7-1
GSFC Manuals Library, 2.3-10

FAP Conversion, 20.6-1 GSFC PROCLIB, 18-8

FAPCON, 4-2; 20.2-1; 19.3-20 GSFC Standard Data Sets, 19.1-2

Field Engineer Assistance, 2.3-9 GSFC Standards Group, 19.1-1

Flowcharts, 10-1 GSP, 4-3

FORMAC, 7.3-1; 4-2; 7.1-1; 19.3-20 GSPAR, 12.2-3

FORTLCP, 4-3; 20.6-1 GTS, 7.5-1; 4-3; 7.1-1; 12.1-4

FORTLIB, 8-4 GWAIT, 12.2-3

FORTRAN, 6.1-1; 6.2-2 GWBUF, 12.2-6

FORTRAN Debugging Package, GWLIN, 12.2-6

21.5-1
FORTRAN Error Monitor, 21.5-1 Hardware Configuration, 2.4-1; 3.2-1;

FORTRAN Extended Error Handling, 3.3-1; 3.4-1; 3.5-1
21.5-1 H Compiler Optimization, 6.2-14

FORTRAN(G), 4-2; 19.3-6 H Compiler Storage Map, 6.2-13

FORTRAN G Compiler, 6.2-10 Hierarchy Support, 16-3

FORTRANI(H), 4-2; 19.3-6 Hollerith, 3.7-6; 20.1-2

FORTRAN H Compiler, 6.2-13 Honeywell DDP-24/H632, 3.6-1

FORTRAN IV, 6.2-2
FORTRAN Library, 8-4 IBCOM, 21.3-1

FORTRAN/PL1 Conversion, 20.6-1 IBM Supplied Procedures, 18-9

FRN (FORTRAN), 17.1-1 IBM Supplied Value, 18-10

FTIMIN, 7.9-2 IBM 360/20, 2.4-1; 3.6-1

FTIMOT, 7.9-2 IBM 360/30, 3.6-1; 2.4-1
IBM 360/65, 3.5-1

GCLOS, 12.2-3 IBM 360/75 (Cl), 3.3-1

G Compiler Optimization, 6.2-13 IBM 360/75 (C2), 3.4-1

G Compiler Storage Map, 6.2-13 IBM 360/95, 3.2-1

I-3



INDEX

IBM 7094, 2.4-2 Job Stream Manager, 18-3
IBMAP Conversion, 20.6-1 Job Submission Slip, 2.1-1; 5.1-1;
IEBCOMPR, 21.1-2
IEBCOPY, 9.3-1; 21.1-2 KEEP, 17.1-7; 17.1-20
IEBDG, 9.3-14; 21.1-2 Keypunching Services, 2.3-6
IEBEDIT, 21.1-2
IEBFGR, 9.4-9 LABEL Statements, 5.6-26
IEBGENER, 9.3-3; 21.1-2; 21.7-1; Language Translators, 3.1-1

21.7-2 LCS, 18-8
IEBISAM, 21.1-2 LET Option, 19.3-12
IEBPTPCH, 9.3-6 Library Subroutines, 6.1-1
IEBUPDAT, 21.1-2 Light Pen, 12.1-1
IEBUPDTE, 9.3-9; 21.1-2 LIBRYGN2, 19.3-16
IEFBR14, 9.2-12 LINK, 19.3-7; 19.3-8; 19.3-9;
IEHDASDR, 9.2-12 19.3-12
IEHDUMP, 21.7-1 Linkage Editor, 6.1-1; 6.3-1; 19.3-7;
IEHINITT, 9.2-10; 21.1-3 19.3-8; 22.4-1
IEHIOSUP, 21.1-3 Linkage Editor F, 4-2; 6.3-1
IEHLIST, 9.2-7; 9.3-6; 21.1-3 Link-Edit, 19.3-7
IEHMOVE, 9.2-1; 18-1; 21.1-3 LINKGO, 19.3-7; 19.3-11
IEHPROGM, 9.2-13; 21.1-3 LINKLIB, 8-2, 4-1
IEKAA00, 6.2-8 Link Library, 8-2
IEMAA, 6.2-17 LINK Macro, 16-2; 16-1
IEUASM, 6.2-22 LINK Macro Instruction, 16-2
IEWLDRGO, 6.3-6 LISTPDS, 9.4-18
IEWLF128, 19.3-19 Loader, 19.3-12; 4-2; 6.1-1; 6.3-6;
IEYFORT, 6.2-8 19.3-8
IMBMDMAP, 9.4-17 LOADLIB, 8-5
Imprecise Interrupts, 21.2-1 Load Module Library, 8-5
Index Sequential Organization, Logical Volume Attributes, 17.1-6

11.1-2 LOGOFF, 13.1-7
Initiator Default (360/95), 18-3 LOGON, 13.1-6; 13.2-1; 13.2-8
Initiator-Terminator, 11.7-2
Interpreting, 2.3-6 M&DO Hardware Facilities, 3.1-1
In*rrtrr- Hand .err, 1. A1 O..U -n. 30./, 3- -

I/O Time, Insufficient, 5.3-6 M&DO IBM 360/75 (Cl), 3.3-1
M&DO IBM 360/75 (C2), 3.4-1

JCL, 5.2-1; 12.1-8 M&DO IBM 360/95, 3.2-1
JCL Output (RJE), 13.2-3 M&DO 360 Computer Bulletins, 1-1; 4-4
JED, 13.1-3; 13.1-12; 13.4-1 M&DO 360 Computergram, 4-4
Job Card Format, 5.3-1; 5.3-3; Machine Independence, 18-1

18-9 MACLIB, 8-4
Job Card Validation, 5.3-2 Macro Definition, 8-4
Job Class, 5.3-6; 16-2; 18-3 Macro Instruction, 8-4; 11.2-1
Job Control Language, 5.2-1 Macro Library, 8-4
Job Control Table (JCT), 11.7-1 Manuals Library, 2.3-10
Job File Control Block MAP Option, 6.2-11; 19.3-12

(JFCB), 11.7-1 MAPDISK, 9.4-1
JOBLIB, 4-1; 17.1-2; 5.4-1; 5.4-2 MARK IV, 12.3-8
Job Scheduler, 3.1-1; 3.1-2; 21.1-3 Master Scheduler, 3.1-1; 3.1-2;

21.1-3

I-4



INDEX

Memory Hierarchy Support, 16-3 Overlay Supervisor, 22.1-1
Memory Timing, 18-8 Overlay Trees, 22.3-3
Memory Usage, 16-1 Override, 5.5-2; 19.3-1
MERGE Statement, 6.3-12
Messenger Service, 2.3-1 P36B, 12.3-3
Microfilm, 12.3-1; 12.3-2 P360, 12.3-2
MINIPERT, 15-6 PAC, 1-1; 2.3-8; 19.3-1
MOD, 17.1-20 Paper Tapes, 3.7-7
MODS Statement, 6.3-12 PARM, 5.5-2
MOVE (IEHMOVE), 9.2-1 Partitioned Data Set (PDS), 8-1; 9.3-6;
MSGCLASS=R, 14.2-1; 14.2-2 9.3-10; 17.2-1
MSGLEVEL=(2,0), 13.2-3 Partitioned Organization, 11.1-2
MSGR (CRJE), 13.1-11 PASSWORD, 17.1-16
Multifile Reels, 17.3-2 PATH (Overlay), 22.2-1
Multiple Executions, 19.3-10 PATRICK, 9.4-3
Multiple Regions (Overlay), 22.1-2 PDSUR, 9.4-23
MULTIREEL Files, 17.3-2 PDUMPS, 21.7-1

Peripheral And Accessory
Name Field, 5.2-2 Equipment, 3.6-1
NCAL Option, 6.3-3; 19.3-12 Permanently Resident Volume, 17.1-6
NEW, 17.1-20 PERT (See APL MINIPERT)
NEWLIN DD, 19.3-9 Physical Attribute, 17.1-4
Nine-Track Tapes, 17.3-1 PK ALTR, 20.6-1
NOTIFY Program, 14.2-5 PL1DUMP, 21.7-1
NUCLEUS, 21.4-1 PL/I, 6.2-17; 19.3-1
NULL Statement, 5.7-1 19.3-7; 6.1-1; 20.6-1
NUMBER, 9.3-12 PL/I LIB, 8-1; 8-5

PL/I (Version 4.3), 4-2
Object Code, 6.2-10 PL/I (Version 5.3b), 4-2
Object Modules, 6.1-1 PLOT, 12.1-11
OLD, 17.1-20 PLOTS, 12.1-11
Old PSW, 21.2-1 Plotters, 2.4-2; 12.3-1
Operand Field, 5.2-2 PPEX, 10-4; 10-5
Operating System Modules, 8-2 Print Train (1403 Printer), 3.7-3
Operation Field, 5.2-2 Printing Card Decks, 2.3-6
OPT=0, 6.2-14 Priorities, 2.2-3; 5.3-6
OPT=1, 6.2-14 Priority Determination, 18-3
OPT=2, 6.2-14 PRIVATE, 17.1-6
Organization Code, 2.1-1 Private Libraries, 5.5-1; 8-1
OSSLIP, 9.4-10 Private Volumes, 2.2-2; 17.1-6
OS Release Differences, 18-11 PRNTPROC, 19.3-16
OS Utilities, 4-2 Problem Program Efficiency
OS/360 Assembler F, 6.2-22 (PPE), 7.2-1
OUTPUT (RJE), 13.1-7; 13.4-1 Procedure Library (PROCLIB),
Output Routing, 2.3-2 8-2; 18-8; 18-9; 19.3-1
Overlay, 22.1-1; 16-3 Program Interrupt, 21.3-1
OVERLAY and INSERT Cards, 22.4-1 Program Library Services, 2.3-9
Overlay Considerations, 22.1-1 Program Number, 2.1-1
Overlay Level, 22.3-3 Programmed Function
Overlay Region, 22.2-1 Keyboard, 12.1-2

I-5



INDEX

Programmer Assistance Center RLSE, 5.6-29

(see PAC) ROLL-OUT/ROLL-IN, 11.6-1

Programmer ID, 2.1-1 ROOT Segment (Overlay), 22.2-1

Programmer Macro Definition, 8-4 RPG, 4-2; 6.2-24
Project Number, 2.1-2 Run Time Estimates, 18-8

Protection Key, 11.7-1
PRPLOT, 12.3-5 Sampling Interval (Boole & Babbage), 7.2-1

PRTPROC2, 19.3-16 SAVEPROG, 19.3-18; 8-6

PSW, 21.2-1; 21.4-1 SAVELIBS, 19.3-17

Public Volume, 17.1-6 Scheduling and Priorities, 2.2-3

PURGE Operand, 9.2-15 Scientific Subroutine Package (SSP),
4-2; 7-10.1

QSAM, 17.1-11 SCOPLT, 12.1-11
QTAM, 8-6 Scratch Operation, 9.2-14

Queued Access Method, 11.1-3 Scratch Volume, 17.1-7

Queued Sequential-Access SC 4020 Plot Package, 4-3; 2.4-2; 12.3-1

Method, 17.1-11 SD 4060 Plot Package, 4-3; 2.4-2; 12.3-2

Queued Telecommunications Access SEGMENT (Overlay), 22.2-1
Method, 8-6 SEGLD, 16-3

SEGWT, 16-3
RD Parameter, 11.5-1 SEP, 5.6-30; 5.6-31; 17.1-12
Reader-Interpreter, 5.2-1; 11.7-1 Sequencing, 2.3-6
Real Element Assignment, 6.2-16 Sequential Data Sets, 6.2-15

Record Formats, 17.1-8 Sequential Organization, 11.1-2

Record Statement (IEBPTPCH), 9.3-8 Service Programs, 3.1-1
Record Statement (SORT/MERGE), SESCC 360/75J, 2.4-1

6.3-12 SESCC 360/91K, 2.4-1
Reformatting, 2.3-6 SESCC IBM 7094-II, 2.4-2
REGION Parameter, 5.5-3; 16-1 SESD User's Guide, 2.4-1; 14.1-1
REGS, 21.3-1 Seven-Track Tapes, 17.3-1; 20.3-1
Remote Job Entry (RJE), 2.3-1; SHR, 17.1-20

13.1-1 SIFT, 20.1-1
Remote Work Stations (RJE), 13.1-1 SIGPAC, 4-2; 21.9-1
Removable Volumes. 17.1-6 SMmrTP TTS 78-1

REMTIM, 7.9-1 SIZE Parameter, 6.2-11; 19.3-12
RENAME Operation, 9.2-14 SNAP Dump, 21.4-1
REPEAT Statement, 9.3-15 Snapshots, 21.7-1
REPL (IEBUPDTE), 9.3-11 Software Status, 4-1
Report Finishing, 2.3-7 SORT, 19.3-14; 6.3-9

Sorting, 2.3-6
Reproducing, 2.3-6 SORT/MERGE, 4-2; 6.1-1; 6.3-9;
Reserved, 17.1-6 19.3-14
RETPD, 5.6-28 Sort Work Areas, 19.3-14
Return Codes, 9.1-6 Source Code, 6.2-10
RETURN Macro, 16-2 SPACE, 5.6-29; 17.2-3; 17.2-4
Rewind, 6.2-16; 2.3-2 Space and Earth Sciences Computing
RJE, 13.1-1; 4-2 Center (SESCC), 2.4-1
RJE, Hours of Service, 2.3-1 Spanned Records, 17.1-8
RJEND, 13.1-6 Specific Names, 19.2-1
RJSTART, 13.1-6; 13.2-1; 13.2-5; Specific Unit Names, 19.2-3

13.2-8

I-6



INDEX

Sponsor Number, 2.1-1 SYS2.GSFCMAC, 8-4
SSP, 4-2; 7.10-1 SYS2.LINKLIB, 8-2
STAE, 21.7-1 SYS2.LOADLIB, 8-5
STAE Traceback, 21.2-2 SYS2.SD4060, 12.3-2; 8-4
Stand-alone Dump, 21.4-1 SYS2.USERPROC, 8-3
Standard Data Sets, 6.2-8 SYS3.GSFCLINK, 8-2
Standard Error Recovery, 8-3 S/360 Operating System, 4-1
Standard Labels, 17.3-1 S/360 Report Program Generator
START Command, 11.7-1 (RPG), 6.2-24
STATUS (RJE), 13.1-10; 13.1-8
Step Control Table (SCT), 11.7-1 Table Overflow, 7.4-3
STEPLIB, 17.1-2; 5.4-1 Tape Densities, 5.6-6
Storage Maps, 6.2-10 TAPELIB, 19.3-9
Stromberg-Carlson 4020 Plotter, Tape Considerations, 17.3-1

2.4-3; 12.3-1 Tape Library, 2.3-3
Stromberg-Datagraphics 4060 Tape-to-Card, 2.3-6

Plotter, 2.4-2; 12.3-2 Tape-to-Tape, 2.3-6
Structured Source Listing, 6.2-10 TELCMLIB, 8-6
Supervisor, 3.1-1; 3.1-2 Telecommunications Library, 8-6
Supervisor Call (SVC) Library, 8-3 Temporary Data Sets, 2.2-1
Supervisor Service Macros, 11.2-3 Terminal ID (RJE), 13.1-4; 13.1-6
SVC, 21.4-1 TESTRAN, 21.6-1
SVC Instructions, 11.2-1 TIDY0 4-3; 20.5-1
SYMBOL Routine, 12.1-12 TIME, 7.9-1
SYSABEND, 21.4-1; 17.1-2; 21.7-1 TIMEIN, 7.9-2
SYSABEND Dump, 11.4-1; 21.4-1 Timing Routines, 7.9-1
SYSUDUMP, 11.4-1; 21.4-1 TIMOUT, 7.9-2
SYSCHK, 17.1-2 TRACEOFF, 21.5-1
SYSLIB, 8-6; 19.3-8; 19.3-11; 19.3-12; TRACEON, 21.5-1

19.3-14 Track Capacities for different
SYSOUT=B (RJE), 13.1-13 record lengths, 3.7-1
SYSOUT Writers, 5.6-42 Track Overflow, 17.2-9
SYSUDUMP, 21.4-1; 11.4-1; 17.1-2; Transmission Control Unit (RJE),

21.7-1 13.1-1
System Macro Instructions, 8-4 TREE (Overlay), 22.2-1
System Measurement Software TRTCH, 5.6-7; 20.3-3

(SMS/360), 7.2-1 Type of Run Code, 2.1-2
System Message, 21.1-1 TYPRUN=HOLD, 5.2-3
System Message Prefixes, 21.1-2
System Output Writers, 11.7-3 UNCATLG, 17.1-20
SYS1.FORTLIB, 8-4; 8-1 UNCATLG Operation, 9.2-15
SYS1.LINKLIB, 8-2; 8-1 UNIT, 5.6-31
SYS1.MACLIB, 8-1; 8-4 Unit Names, 19.2-1
SYS1.PLILIB, 8-5; 8-1 Univac 1108, 2.4-2
SYS1.PROCLIB, 8-3; 8-1; 19.3-16 Univac 1108 FORTRAN V, 6.2-2
SYS1.SSPAK, 8-4 Unload/Load, 9.2-5
SYS1.SVCLIB, 8-3 UNPACK, 4-3
SYS1.TELCMLIB, 8-6 Update Utility for Source and
SYS2.GSFCLIB, 8-1; 8-4 Object Files, 9.4-16

I-7



INDEX

USASCII, 3.7-4; 13.3-1

USASCII-8 Tapes, Printing of, 3.6-1

Use of Private Volumes, 2.3-6

User Data Sets, 2.2-1

Userid (RJE), 13.1-2

Utilities, 9.1-1
Utility Categories, 9.1-4

Utility Control Statements, 9.1-4

Utility Pecularities, 9.1-5

Volume, 11.1-1
Volume Label, 11.1-1

Volume States, 17.1-4

VOLUME Subparameter, 5.6-37; 17.1-4

Volume Table of Contents

(VTOC), 11.1-1
VTOC Data Set Entries, 9.2-9

Warm Start, 21.8-2
Wolf Plotting and Contouring Package,

12.3-6
Work Station Commands (RJE), 13.1-2

Writer News Newsfile, 4-4
Writer Procedure, 11.7-1

XCTL Macro, 16-2; 16-1

XCTL Macro Instruction, 16-3

XREF Option, 6.2-14
ZTIME, 7.9-1
360/20, 2.4-1; 3.6-1

360/30, 2.4-1; 3.6-1

360/65, 3.5-1
360/75 (Cl), 3.3-1

360/95, 3.2-1
1050 Terminals, 14.2-1
2250 Display Unit, 12.1-1

2260 Display Unit, 12.2-1
2260 Subroutine Package, 12.2-2

2400-Series Tape Drives, 3.7-3

2741 Terminals, 14.2-1
2780 Data Transmission Terminals,

13.1-1; 13.1-4; 13.5-1
7090/7094 FORTRAN, 20.1-1

7090/7094 UMPLOT, 12.3-5
7090/94, 20.3-2; 20.6-1; 2.4-2

1-8


