N74=14927

Unclas
15764

G3/08

00) MISSICN AND DATA
USER'S GUIDE (NASA)
CSCL 09B

(NASA=TH=¥=69900)

OPERATIONS IBM 360
589 p HC $27.50

2

10

MISSION AND DATA OPERATIONS
IBM 360

USER'S GUIDE

Prepared for

Goddard Space Flight Center
Greenbelt, Maryland 20771

Prepared by

Mr. Jack Balakirsky
Operating Systems Maintenance Section
Goddard Space Flight Center
GSFC Code 531.1

and

Computer Scilences Corporation
8728 Colesville Road
Silver Spring, Maryland 20910

July 1973

FREFACE

This is a major revision of, and obsoletes, the September 1971 edition of the
MEDO IBM 360 User's Guide. Changes and additions to the text and illustrations
are indicated by a vertical line on the outside margin of the page.

The purpose of this document is to provide a central reference vehicle for

all information relating to the use of the M&DO IBM 360 computer facilities.
While the primary objective is to provide information relating specifically

to the M&DO Mission Operations Computing Center, which may not be found else-
where, there has been an attempt to include sufficient additional information
so that a user may either £ind the information he needs directly or be referred
to the proper document for more detailed information.

It is also intended that this document be continually updated, as new versions
of the operating system are installed, changes are made to the configuration
and the operating environment; all pertinent information regarding these changes
will be distributed as updates to this document.

The MaDO IEM 360 User's Guide is available to all users of the M&DO IBM 360
computers, including both GSFC and contractor personnel. Readers are encour-
aged to offer suggestions as to the content and organization of the document
so that these may be considered for inclusion in future updates.

This document was prepared from an outline developed by Robert C. Danek of the
Computer Management Branch, Code 531. The document necessarily contains a
considerable amount of information edited from other publications. Appreciation
is extended to the many personnel at Goddard who contributed their expertise in
the development of this User's Guide and especially to Frank J. Pajerski, Jr.,
Code 531.1, for his many suggestions concerning this revised edition.

Jack Balakirsky, Ceode 531.1
Goddard Space Flight Center
Greenbelt, Maryland 20771
982~6797

PRECEDING PAGE BLANK NOT FIL.MED

iii/iv

TABLE OF CONTENTS

Section 1 -~ Introduction & &« = ¢ & & & & & &«

PUIPOBE. « « « « s+ & = s s = s s s s » o @
Organization of This Document.

- Pmtowl L I L A & B B & & & & r 2 =

Bl W W W Wb W W W W W W W RN NNDB NN MR e e e e et et

DNV bW

P
* s 0 . & & v 8 0
WO~ WUmd Wwh =

- L)

= DD~ R W N

O

L
L

NRNMMNMOBNNRDOMNMNUNMMNNROMUONNOMOOMMRNNDRODRONMNMBOBRMNROONNNLNNDN.

=

N.NDNN

L]

[
* 9

LUR P

Authorization for Computer Use
General Discussion . . « « + « ¢ & 2 « &
Programmer Identification Code (Programmer
Sponsor Number . . « ¢« « « 2 o = = = « = »
Program Bumber . . . « ¢« « ¢ « s ¢ ¢ o & «
Project NumbeY . . . « + + + o o s o o » &«
Category Code. ¢ &« o ¢« ¢ 2 & o &

Tmeofmccﬁe..-......-oo-'

CRJE Authorization . . « v « o ¢ o ¢ ¢ & &
Approval Requirements for Dedicated Use of
General Discussion
User Data Sets
Private Volumes.

a & & & & ¢ 4 »

CRJE Space Allocation. .
APL Space Allocation . .
Dedicated Peripherals. . . .
‘Scheduling and Priorities. .
User Addition to Procedure Library e s e

Application-~Oriented Systems

Job Submission Procedures and Operations .
Dispatching Stations . . . « + « & ¢ & & &
Remote Job Entry (RJE)
Conversational Remote Job Entry (CRJE) . .
CRJE/RJE Tape Mounts
Tape Library . « . = « « « + + &
Use of Private Volumes
Plotter Outputs. . . « ¢« « v o + &« « « » =
EAM and Related Services .
AUTOFLOW Services.
User Assistance.

L] L L] - - []
* = 8 @
L]
L] L L] + L]
L]
L]
L]

L] - .
»
[]
.
-

- - -

s & * =
-

L . - L]

L] L] - "

Program Library Services .
GSFC Manuals Library . .

- . = e =

Other Faclilities at the Goddard Space Flight

» & = a

Center.

Space and Earth Sciences Computer Center (SESCC)
IBM 360/91KI - L] L] L] - - - . - - L] » - - - - -

SESCC 360/75F. . 2 4 o o 4+ o o o &«
Other Supporting Services.
Other Computers. . . . « « « « « &
Plotters &« &« « ¢ 5 s = &«

R T T)

® L J L4 -

*

.

-

-

L] - L] » -

.
- - - L]

- - - . .
- .

*« & s =

@

QNWNNNN?NNNNNHHH

. s .
USSR

i
b WwWwWwWwhhDFEMNMRBDNON

- L] - - -
1

.
]

f
DDA N

MRNONMBRBNMNNNNNOONDNNNRONNRNDNDNNNRDOND

a
wwwl.;auuw

[}
o]

N
.

W
]
L+]

[
1

-

(=

NN
L3 w
1 [}
[d 0

2.4-1
2.4-1
2.4~1
2.4-2
2.4-2

TABLE OF CONTENTS (Cont'd)

Section 3 - M&DO Hardware Facilities

Genheral Discussion « « ¢ & & o + =+ =+ o
Operating System « + ¢ « &« o o »
Control Program. . . + « + o o » = = = =
MEDO IBM 360/95. . « & o« » o o &+ = 2 o s
Locatien c s e et & & s =
Scheduling and Operations .
Hardware Confiquration « « «
Unit A3Aress . . + + » 2 = & s o & s e s
Volume Serial NumbexsS. . « « » « + + »
SOftWare . . « « o = « o » » & s o s =2 =
M&DO IBM 360/75 (Cl) . « & & ¢ & & & & &
ToCation « « & ¢ o o o ¢ & o 2 ¢ v v = =
Scheduling and Operations. . « . « « « &
Hardware Configquration « « + « &
Unit AddressSes . . + + « « = o s = s + o
Serial Numbers . « ¢« =« « s s ¢ o o o o =
Software . . + « « « « v o & & 5 8 & & =
M&DO 360/75 {C2) o . v o ¢ & o o & o = »
Location o o« ¢« ¢« ¢ o o o 5 » o & & + &
Scheduling and Operations. + .« .
Hardware Configuration . . « ¢ ¢ « ¢ «
Unit AdAresSses . . « « & o v o« o 2 o & »
Volume Serial Numbers. . . + + o « o = =«
SoftWATE . & « 2« 2 o = s ¢ o s a2 4 & & »
MEDO IBM 360/65. . o v o o« o s o o o » =
Location . + « v 4 « + o o + 4 s & « & &«
Scheduling and Operations. . + + « o« « &
Hardware Configuration . . . « « + « . .
Unit AdAresses . . « « + s ¢ = 2 o« s » o
Serial Humbers . » ¢« + + = « =« s o & o &
Software . + . « « ¢ & o = . . - e
Peripheral and Accessory Equipment s o
Location . « &« + & o 4 ¢ ¢ s o o ¢ o o =«
IBM 360 Models 20 and 30 . . « « « + « &
CDC 160A . & & & & & ¢ o ¢ o 2 2 s o o =
Honeywell DDP-24/H632. +« + o o s+ o o o =
References . . « « ¢ o o o » o a s =« = &«
Unit Characteristics « « . . .
Direct-Access Devices. . . + « « + .« . &
IBM 2400-Series Tape Drives.
Other Hardware Components. . . . « « « .
Character Sets and Codes . . . + + + « &

L] . L[] L] - L]
- L] L] -
]

*
3

* .
U W

- -
Bk B WW W WWWWRRRNNDNON -
L I

. %
)
N e W

W W W WWwWWwwWwwwwiwww
* * @ » -
5 e

*
»

Wi Wwiwiww
4 ® & 8 ¢ =
o de b
[. . % &
N W

-
*

« o+ 2 x
. =
A bW

*
*

s & 8 & 3+ 4
r . P
oW - 0o W b

uuuuwwuw&nuwwuwwwu
NNt
» []

vi

L]
I I
S XL

Ld
wwwuuuv.iaulumum

-
1

- -
1
AW

.
I

WWwWwWWwwwwwiwwwwwwiww
+*

1
w

-

&

. »
]

»
1

mmwmmm?hhahbh

[] L]
i 1
P -G SR PR

Tmé\mm

1
WWwwkHEHOMNWDEe--

-l-l--l*-'-l--ld'iﬂ'\

WWWwWWwLwLwWwwwwLwWwWwwbbwewww
L]

TABLE OF CONTENTS (Cont‘'d)

Section 4 - SOFLWATE SLALUS. « « o « « « o o s 5 s ¢ ¢ o =+ o

*« 8 .

N AW N

‘0

Section 5

General Discussion . « + « « « ¢ s & = 2 ¢ s 2 2 o
Current Software Status. . .« « « « ¢« o s o & = = + »

Writer News Plle . ¢ ¢ « « & ¢ = = 2 & ¢ 2 o ¢ ¢ ¢ =

MEDO 360 Computer Bulletin . . . « ¢ ¢ = « & o = o @
M&DO 360 Computerdgram, « =« « « ¢« ¢ » o « s o & ¢ = &
GSFC Computer Newsletter . . . « « « o + ¢ « ¢« s &
Document « « « = = = & s & = a s + +# s o s & + + & @«

- Job set'UE s = & 5 B = & 8 w ® & 4 = = e & & »2 &« =

b Wi tWW W WNNRNNND P

- . »
. - []
.

. . .
W=

(LR N N RS R R

»
.

» & @
* =
vk W

)
L4

+* & & =
O\O\O\G\G\GO\O\C\Q\UIU!UIUI:&.JL
W N

« & % s ® - s @
« & s » . » P
O WN W N

nmnumaunuueguuuoaaooaaoean,

Ceneral Information. . ¢« + « o & o & « + & o & 2 »

Scope of This Section. « . « ¢ s o s o ¢ « ¢ ¢ ¢ + =

Job Submission SMips . « + ¢« ¢« s & 2 ¢ ¢ 6 e e = ..
Job Control Lanquage . « « « + s+ « = s s s = o ¢ =
PUFDOSE. ¢ + + = = + s s o # & 2 s s = % 2 + s = & &
Operation Considerations + + . « « ¢« &« & « &
General Format of JCL Statements . . . + « « + +» o &
Job Sequencing .« . ¢ « 2« ¢ s s s & 2 s s s s s s s w
Deck SetUp « ¢ « » = s + + ¢ o 2 2 = o ¢ & ¢ 2 o = o
Job Card FOrmat. . « o« » « = = = = + s « = s 5 o &
Estimating Computer Time e s e e e s e

Completion Codes for Insufficient CPU or I/0 Job Times

Priorities . ¢« « &4 ¢ ¢ o ¢ ¢ ¢ o = & & & + 2 8 a2 = .
ClAaSS8ES. « + o « = « + » « s s = & % & s & 5 s a s »
STEPLIB and JOBLIB Cards « « o« + o s = = % » + s o o
STEPLIE DD CAYd. . . « ¢ s + o« s = = = o s s o » » =
JOBLIB DD Card .« . o« + « ¢ + s s s s ¢ % & + s o 2 »
Reference. e % s a8 = 4 8 & & 2 8 = s = &
Execute (EXEC) Card e e e s e s s e e s e s e e
General Discusslon . + + ¢ ¢« o ¢ & ¢ 5 s s s e s o o
Executing Programs and Cataloged Procedures.
EXEC Card Parameters8 . . « « « « s o + s o« o a » + &
The Data Definition (DD) Statement . . . « « & &+ 4+ &
General Discussion « . + + « + ¢ o o ¢ s = = = 2 » =
The DD CAYAdE .+ « + 2 o o « o o o 4 o o & 5 = & s = =
Continuation of DD Cards « +« ¢« o« ¢« = = =« ¢ & & + « @
Abbreviations in DD Statements + « « « .« . «
Backward References (*.name.name). e e .
Parameters in the Operand Pield of the DD Statement.
Defining Data in the Input Stream (DD * or DD Data).
Bypassing I/0 Operations on the Data Set (DUMMY) . .
Defining the System Output Stream.

vii

4-1

4-1
4-1
4-4
4-4
4-4
4-4
4-4

wn
.
H
I
et

[] .
VLU 0 oot o o W W WWNNNONNNE R

« = 8 & & W 2 +

ChG\G\O\O\-O\O\G\d\G\UIUt

*

mroaguununuaaetnoaunnaaoouonoaouaunnnna
L

"t F L 110 03¢t
FNRNHHMAOURNWMNRERRNHEFEH

| LT DT FL DS S D S N T |

BB W W N R R e

TABLE OF CONTENTS (Cont'd)

Section 5 (Cont'd)

5.7 DELIMITER and Null Control Cards . . .+ « ¢ « & o ¢ s o o =
5.7.1 DELIMITER Statement. . . . &+ 4 & « & ¢« ¢ ¢ 4 o = » s s « =
5.7.2 Null Statement . « « &« & & 2 =« & o o ¢ ©« ¢ = » » 2 s » &=

Section 6 -~ Standard (IBM-Supplied) Processors . . . « « « « « « « »

General. . . . « « ¢ ¢ ¢ = = & A s 4 e 8 & e+ 5 & 8 s = =
mguage Processors. . « « « s + &« ¢ % & * e B =2 = 8 5 & =
FORTRAN IV ., . & ¢ + ¢« o o & s + s & » ® = ® = a & 8 & @

L] -

mmma\mg\mmmm
WWwWwwhNe N -
[LR

AssembleY (F). o« ¢ « ¢ ¢ o 2 2 2 = « 2 2 s s « & % o o s =
Large Utilities. . . . ¢ & & 4 6 4 &t 4 ¢ ¢ o o ¢ o o ¢ o =
Linkage EJitor . « « o ¢ & ¢ o o o s o 2 2 = &« 2"« « 2 o =«
Loader . . v ¢ ¢ ¢ v ¢ 5 5 5 8 & 8 2 8 8 & + & s+ 6 4 » o «
Sort/Merge . « + « v s s ¢ 5 % s 8 s s s & b 4 4 e k. omon

.
»
[P

Section 7 ~ AAded ProCeSSOLS . + o « « = « 2 » = s 2 s 2 a s s 2 s =«

General DiScussion . . . ¢ . & c v 4 4 4 4 b e e s s e . .
Boole and Babbage. + » s « s = s 2 o o « s & o o ¢ « = = =
PORMAC . . & & 4 4 5 ¢ o o o ¢ o = s 2 a =« = 5 &« & 2 o s
.1 References ¢ & & ¢« 4 4 ¢ ¢ « ¢ o a o = o« s o s & »
GPSS V & v v 4t v s & o et 2.8 s o s s 2 2 % « &« & = » 2 a
.1 GPSS V Applications . . ¢ & 4 & ¢ 4 & « 2 & ¢ o & « & &
2 References . . . « v & o s ¢ 4« ¢ o o o 2 s = s = a s s & &
Graphics Terminal Service {GTS). « « o « =« = = = o « « « o
Bit-Manipulation Routines ¢« ¢ v & & = o o » » o »
Continuous System Modeling Program (CSMP).
General Description of the Program . . . « + « « o o o o« &
Availability and Required JCL . & o « o« & & o o « = « & »
RefEI@NCEE « o « o o o s+ o o ¢ o o o o & 2 o o & 6 « o « @
Simgeript IX.5 4 . v v ¢ o o o o o 5 = 0 o o o o 5 s & s o
Recent Modifications & & & ¢ ¢ & 4 o ¢ ¢ = = = a =
Availabilit¥ o . o ¢ 4 o v 4 o o « & 5 o s 8 o 5 s a a o =
References . « o+ v v v o ¢ 2 o 2 4 o o « » ©« o o « o s s o
Timing ROUtines . . & % ¢ 4 ¢ « o ¢ o = « « ©« s o o s & o
BEMTIM . . o o o o » 2 2 & 2 o a s © a o o« v« a 2 a s s & @
ZTIME o 4 ¢ v ¢ « 4 © ¢ & 5 ¢ 2 2 s o s« o » o s s s s = =
TIME = s e & o 2 s & = = = & & &
FTIMIN,FYIMOT and TIMEIN,TIMOUT * » = 2 3 & 5 & & b e o

Scientific Subroutine Package {SSPJ. . . . o o « o o « « »
Basic Characteristics of the SSP Package . « « « « « o o o

DO NI EA R R WWN -

[]
W N

@ o & & & = .
a
W A

o

)
L]
[N SR

L]
H WO WWgWwo o
L] -

e B e B B IS IS RS RS SER-SENREK RPN SES IR N IR BE RN RN BEN BN RN RN
[= =]

L]
| ol

viii

PL/I . » 4 & 4 & & & 3 & 4+ s & s B &8 w w e v = a a & = 2 @

-l
2=
- 3-
3™
o g™
N

) a’~:s:~3-JO\?|a.a.a-u:cu|u -
[I X T R R Y I I R QAL

o
1

.
I

o
[}

*

1
A N

e e B B IR IR IR I R RS LS RS PUS REX R SRS BEN SRR RN REN JPN RPN RPN
*

L]
HH'«D\D‘?\D\D@Q

75
[~y

Ed

Section 7

TABLE OF CONTENTS (Cont'd)

(Cont'd)

Section 8

Availability..-ccoc--o'oo.-
Referances . . « « o o« o o ¢ o o « o = &

- System, Processor, and

| ol

- * - L 3
L] -
I

wmmmmmmmmpmmmmmmwmmm
HH\D\D@@\I\!O‘OMW?&&HNNHH
| od

. s &

.
|

- L 3 L] - L)
- [] L
N =

-

P
[= =)

L]
[

n
o®
Q
2
e
8
O

General Discussion
References . . « = o « s + s s
LINEIB . = = o« = o = ¢ s & % % s s & =
References . . . « + ¢ + ¢ = &
PROCLIB. &« ¢« + ¢ o s s ¢ o s » a s s &
ReferencesS . « ¢« » = » o «

SVCLIB ¢ « s « = o s s s 5 8 6 & s o« o =
References . . = o ¢ ¢ =« o & o 2 = s =« »
MACLIB . © 2 « « ¢ & % ¢ & & s s s & = »
References . « « + ¢ o o 2 s =« s s « o =
FORTLIB . . + =« = o a s o s % % & + & &
RefEYencesS . v « « o« o o ¢ ¢ o s 5 s + »
PLILIB v « « ¢ o s 5 = o o s o o s s + =
References . . -« « « o o o o s o & o o
LOBDLIB . o & = « « % + o & 4 & 2 o o &
References . o« o« ¢« s« o 2 s s o o » a s #
TELCMLIB .« ¢ & « & = = = « s 4 s o ¢ s &
References . . + « o ¢ o o o » s 5 = o« @
SYSLE - - - - L] L] L] » L) » - - - - - - -
References « « « o« « o = « 2+ o s o & o »

- Dtilities.

*» & 9
LI N E B U)

L
.

*
bW

YOOWWOOVVLOLVLYOVYVYOYYY
WA R M RN R N s et i ot et b b s

General

Nature of Utilities . . . « & & &« & &+ &
How to Choose a Utility
Utility Categories . « + « + o » ¢ = & »
Utility Control Statements
Utility Pecularities . « « . « o« = « «
Notes on Examples . . . + « « o & « s &
Return Codes . . e 5 s ° e % s e s oa s

System Utilitles .
IEHMOVE
IEMST L) Ll * L4 -
JEHINITT o o « o« + o o = = s o s s » = @
IEHDASDR . « « & &«

IEFBR14 > & e e * 8 ¢ ® & B8 2 * * * &
mwmﬂ - - - - L] L] - - o L] L] L] - - -
Data Set Utilities 3 ®w ® % 5 = 8 & = =

ix

s » & * & @

- L] - - - [] - » L] L] -

[] - L L] -

L] L] Ll L]

- L] - L] L] L L] - L]

. L] - & L - - * L]

* s & =

L] - L L] L] L] L] - - L] L]

L L] L] L L] L] > L]

[I T T]

L] L] L L[] L] - L[] - L] -

L] L] L] » - . L] L]

. & = » a8 ¥ + &

. L] * B

L] . * L] []

L] - [] L]

. » . L] - *» » L] . - [

» - L] L

7.10-1
7.10-1

. 1_6
2=1
.2=1

TABLE OF CONTENTS (Cont'd)

Section 9 (Cont'd)

*
.

L]
*

)
. s .
[, TS

*
L]

s & 0 =
. 4 4 »
~N AW bW N

\DW\D\D&D\D&D@EDW\DW\D
B e B e B B b B W W W oW W
»

n
.

-9
s +]

9.4.9

IEBCOPY. o« ¢ o s 2 o o« 2 o s s & o % & s & o & 5 » =
TJEBGENER . ¢« & 2 2 » 2 o s = o ¢ ¢ & » a2 » a =« » = a
IEBPTPCH . + &« ¢+ 2 s a s« 5 s o # & & s 3 » « = » = @
IEBUPDTE . « « ¢+ 4 = = s s s & o o s o % 2 » « s » =
IEBDG .+ 4 ¢ & » 2 » o s« = 3 % o & & & & 8 s « o & a
Other Utilities . . ¢ ¢ 4 ¢« ¢ o o s o s s o 2 o &
MAPDISK &« ¢ ¢ o o # o & s % a 5 % s # & % a8 & o ¢ &
PATRICK ¢ ¢ o o « o s o s o 5 s = a s € % a8 s o o &«
IEBPFGR . « o « ¢ # + s 2 a s o o s s s % 5 ¢ & & » &
OSSLIP . 2 + o o « o ¢ o & » o & & &« 5 3 & o s «a s =
Update Utility for Source and Object Files
Load Module Map Program (IMEMDMAP) -
LISTFDS ~- Source Library Utility Listing Program -

Vergion 6.1 . . . + v ¢« 4 ¢ s 2 o 5 s a 8 s ¢ o o
PDSUR --- Partitloned Data Set Unload/Reload Utility

PrOGram . + = s = o o s s = s a8 » & # % & ¢ &
CONSEQ v + = = « = 2 = « 2 s o s « s o o o s v o o &

Section 10 = AUTOFLOW a ® & ©® ® & 4 % ® ® s - & & & & 85 & s =

10.1
10.2
10.3

Introduction . . ¢ ¢ ¢ & ¢ o o 4 & ¢ o s e s 2 s o .
General Description . . ¢ & & ¢ ¢« ¢ & &« o ¢ = + o «
AUTOFLOW Job Submission . . = &« &« &« &« o o o o & & &
Jobp Submission Slip e 2 s e 3 e e e e s .
The Job Card for AUTOFLOW Rnns T T T S PP
Required Entries . ¢« v +v ¢ « ¢« o ¢« o o o » s o s & =
AUTOFLOW Job Control Cards « v o o ¢ s o 2 o 0 » o »
Catalpoged Procedures: ADRFLOW, PPEX . . , . - - « «
ADRFLOW ProcedUre . . « « 2 2 o s = » o o & s ¢ o &
PPEX ProceduXe . - v« « o o o « o = s o » s & o » o »
References .« 4 « « o o o o o 5 o o o« 6 o 5 s s s o =

Section 11 - OS Exemtive Features . . . = = a & s @ B w & u »

11.1
1l.2
11.3
11.4
11.5
11.6
11.7
11.7.1
11.7.2

System View of Data Management « = + « « =
SystemOriented Macros8 . « . «. =« = = = « = = » = » «
Condition Codes and Completion Codes . e s s w e
Dumps of Various Kinds and How to Get Them s s s & »
Checkpoint/Restart . . .« « + « « o ¢ o o « s s & & o
ROLL-OUT/ROLL-IN . « o ¢ = v = « o = o s + s s s » =
Supervisor Procedures . « o+ « s o o o o o o o o o @
Reader~Interpreter Procedures . .« ¢ o + o« s o » +

Initiator"Teminator Pmcedures 8 e + ® e+ 2 e e

9,3-1
9,3-3
9.3-6
9.3-9
9.3-14
9.4-1
9.4-1
9.4-3
9.4-9
9.4-10
9.4-16
9.4-17

9. 4"'18

904-23
9.4-28

10-1

10-1
10-1
10-2
10-2
10-3
10-3
10-4
10-4
10-5
10-6
10-7

11.1-1

11.1-1
1l.2~1
11.3-1
11.4-1
11.5-1
11.6-~)
11.7+1
11.7-1
11.7-2

TABLE OF CONTENTS (Cont'd)

Section 11 (Cont'd)

11.7.3 System Output Writers

Section 12 - Graphies & . v v . 4 0 . 0. .

2250 . . 4 v 4 e e e « a5 s s 4+ s s s

General Hardware Capabilities s e s e

Policies and Procedures Governing Use of
MEDO 360 Computers . . o « o & o & + .

e el
oo R
.
e o
-

N

12.1.3 GTE & & i 4 e ot i e 4 s e 1 e e e ..
12.1.4 Graphics Subroutine Package (GSP) . . .
12.1.5 Graphic Programming Services (GPS) . . .
12.1.6 SOOPLT & 4 v ¢ 4 2t 4 ¢ ¢ o o 2 o o »
12,2 2260 . . i 4 e e s e h s e e e e e
12.2.1 General Hardware Capabilities . , . . .
12.2.2 Software Support
12.3 Plotters . . . & & ¢« v v v v 4 4 o o o
12.3.1 Stromberg-Carlsen 4020 Plotter (SC-4020)
12.3.2 Stromberg-Datagraphics 4060 Plotter . .
12.3.3 CalComp 770/780 Plotting System
12.3.4 CPLOT PrOgram . . . « « a s« s o « » & a
12.3.5 PRPLOT PYOQYAM . « v 4 4 « 2 « o o o »
12.3.6 Wolf Plotting and Contouring Package . .
12,3.7 0 3 .

Section 13 - Remote Job Entry

13.1 General Discussion
13.1.1 Nature of Remote Job Entry (RJE)

13.1.2 RJE Facilities 0 v v v o W
13.1.3 Locations of RJE Terminals
13.1.4 Computers Supporting RTE
13.1.5 Tape Mounts « . ¢« 4 & . .
13.1.6 Policy and Restrictions . . .,
13.1.7 References v v v o o« o « o .
13.2 Operating The RJE Terminal
13.2.1 Operating Guidelines,
13.2.2 Punched Output (Model 2 Only)
13.2.3 Operator Attention Alarm . . ., ,
13.2.4 Exror Procedures « o o
13.3 Programming Considerations . ,
13.3.1 Code Structure . . . + . + v o v 4 o u .
13.3.2 Card Read/Punch,

13.3.3 Printers ¢ v 4 4 4 4 0 0w . . .
13.4 Output 4o v v o i ...

xi

11.7-3
12.1-21

12 01-1
12.1-1

12.1-2
12.1-4
12.1-6
12,1-9
12.1-11
12.2-1

» 12.2-1

12,2-1
12.3-1
12.3-1
12,3-2
12.3-4
12.3-5
12.3-5
12.3-6
12.3-8

13.1-1

13,1-1
13.1-1
13.1-1
13.1-4
13.1-4
13.1-4
13.1-4
13.1-5
13.2-1
13.2-1
13.2-3
13.2-3
13.2-4
13.3-1
13.3-1
13.3-1
13.3-1
13.4-1

TABLE OF CONTENTS (Cont'd)

Section 13 (Cont'd)

pse of the IBM 2780 Terminal Off-Line . . . « « . « =«
1l Normal SHOPS « = « +» « s o « s o s s s o o s s o & & =
o2 Hopper EntI¥Y. . « « o« o o = s s o o = = s « ¢ o s o o =
3 Stacker FUll . « + = « = ¢ 5 52 s & o » = s + & o = = s

P

g
L]

(S S RE]
[]

[N]
.

Section 14 - Conversational Remote Terminal Service (CRJE/CRBE).

General DiscusSion + « « + « s s s & = s & 2 o s o o o
Location of Terminals e = s 4 e s e s e
Computers Supporting CRJE and CRBE e e e s & s e v e
Hours of Services ¢ + 5 o o s «a o s & 4 o = =
Tape MOUNEE . ¢ « = « & o o ¢ o ¢ o o o o ¢ = = o = &
Nominal Space Allocations . . . « « « + o & o o o ¢
News FileB o « o o o o # = & s ¢ s a s s o & o ¢ & » =
ABSISLANCE + « « « « = a o o & o = s & 5 » v o+ & o =
RofOYBINCES + =« « o o 5 s o o o o =« o o 4 & » = & » = =
CRIE and CRBE ClaBBe8 . + s « « s s 4 = o o s & o » o
Programming Considerations . + « « « « ¢ ¢ & o o o o«
General DisScussion . ¢« + « o « 4+ 4 « s 2 o+ 4 = e v . .
Line Length .« « « « s o « = o + o o o o o & = = o .
Return of Output to the Ramote Terminal . .
Retrieval of User Data Sets from the CRJE Term;nals on

the 360/95 . . « ¢« =« s =« = s 5 o a =2 o & 2 s o « & =
Editing an OS Data Set . + « « ¢ o « & o ¢ o o s + o =
Uging a DSLIST . « « « s « « = e a2 = s 4 e = 3 = »
Deletion of Sequence Numbers in CRJE Files + ¢« « « « »
NOTIFY Program Used in Conjunction with CRJE
Utilities IN CRIE . ¢ « &+ &+ o o o o o = s s o = & & »
Building CRJE FPiles Prom Dacks . . . + « & ¢ & = = o
Listing CRJIE Files . . + « 4+ o o o s o o s ¢ o o = =«
Punching Selected CRIE FPiles . . « ¢ « » « & o o o =
Printing Selected CRJE Piles . . « ¢ « = « + & ¢ = = &

+*
L]

L]
VO &EWN M

*
L]

.
.
W

et o B b b e

N N N N N N N N N

NMNNRNRE R R R
[]

. L] [] +* » L]
° s 8 a s
® O,

*

b pt et e
N S N N
L]
WWwWwWwhNRN

PR

.
L] .

Section 15 - APL - A Programming Language . . « = « « =« « = « &

15.1 GENeYAl . + ¢ o o « « + o s n s B + & s e = s s s & »
is.2 Libraries . .+ o « « o s o s o = » s + s 2 5 % s + o =
15.3 USING APL + v & + + o o o o s a s o s 2 o = o o » » =
15.4 Sign-on Procedure - 1050 Type Terminals « + »
15.5 Operator Communication . « « « 4+ « &+ = o & « o o 5 o
15.6 APL COULSEE .+ « o o s o o s % & o » s % & 5 s a o & =
15.7 Extended File System . . « « o 2 o s s 2 s & & &+ o s &
15.8 MINIPERT PrOGram . o s+ + » = o o = = o s« = = » a + o =
15.9 RefeXenCeS . « « =« 4 = s 5 & s 2 s = & 8 s a = » + a =

xii

13.5-1
13.5-2
13.5-2
13.5-2

14.1-1

14.1-1
14- 1"1
14.1-2
14.1-2
14.1-2
14.1-3
14.1-3
14.1-3
14.1-4
14.1-4
14.2-1
14,2-1
14,2-1
14,2-1

14.2-2
14.2-4
14.2-4
14.2-5
14.2-5
14.3-1
14.3-1
14.3~-1
14.3-2
14,3-2

15-1

15-1
15-2
15-2
15-3
15-4
15-4
15-5
15-6
15~7

TABLE OF CONTENTS (Cont'd)

Section 16 — Memory Usage . . . &% & 4 v v ¢ ¢ o s o o o o o o & o

16.1
16.2
16.3
le.4
16.5
16.6
16.7

General MVT Considerations v &+ &+ ¢ ¢ ¢ ¢ o & & &
Region Parameter & & v v ¢ v o« = = 2 s s « o =
Multi-Stepping
Attach, Link and XCTL Macro Instructions « » »
OVeXlayS + o ¢ o « « & 2 & 2 & & o 5 s = 2 « s s s o &« »
Memory Hierarchy Suppbort ¢« ¢ 4 4 o o « « « o s =
Memory Trade-offs ¢ ¢« 4 ¢ & ¢ ¢ o o o o = =

Section 17 - Data Management Techniques, . .« . . .

b

NN g
L]

H e
-

ok W B

[< BEN -,

(=]

o e »
P M
[« L5, - S SURY Xy P

.
@

b B i B B IR S J0N BEN R R Rl i A AT

o

P
)
~SI G S W

L]
W wWwiw WWWwhR RN MMM M e e

B bt 0 b et et el e el s e s
M e -
-

General Aspects of Data Management & « » « « »
Use of Names . . ¢ & & &t 4 4 4 v & o o 2 o & o = = « o =
Volume States and Attributes . . . « v ¢ v & « « o & & »
Recozd FOXMALS . &« & ¢ 4 ¢ 4 v v o « o 2 s + s = s = « «
To Queue or Not to Queue ., . . ¢« v v « o o o « . .
Efficient Use of Channels and Access Mechanisms (SEP

Aand AFP) . & & 4 & 5 4 6 4 e e s s s s s e e e e e
Data Set Protection . + . v ¢ v &« o 4 o s o = s = = » &«
Error Optlong . . . & &t v 4 ¢ ¢ &t ¢ 2 o o o s o « = & o
Generation Numbers . . . « & & ¢ & 4 4 2 ¢ o o s = = o s
Gather Write and Scatter READ & &4 4 ¢ « o = o »
Disposition Parameter; Private, Shared, MOD Data Sets .
Direct-Access Congsiderations v v ¢« « o « o o »
Data Set Organization (DSORG Subparameter)
Space Determination and Specification (Space Parameter).
Use of FORTRAN DA Facilities . o v & v v o 2 o ¢ & « o
Track Overflow . . ¢ &« 4 & 4 ¢ ¢ = o o o ¢ o s s ¢ = = o
Multi-Unit Piles . & . & & 6 ¢ ¢ o o o = 2 2 s s o v « »
Direct Access I/O Package (DAIO) . v « « « o o o o « o
Tape Considerations ¢« ¢ v o ¢ ¢ = 2 & & &« »
G-Track TAPES & & o v ¢ & 2 4 4 o = = & o o s o « o o »
7-Track TAPS8 + s o + o = o s 0 2 6 o o s s o s o o = »
Internal Tape Labals o« o & « 2 « 5 o o s o = = « 5 o o =
Multifile Reels, Multireel Files v & & o o o o »
Use of the DISP Parameter . . o o ¢ o« © a o o o o o a &
Other Tips for Tape USErS . + o v 2 o ¢ « o o s o o o «
FTIO (FORTRAN Input/Output) Routines o « o o o .

Section 18 - Machine Independence . . . « v o v o o o o o o o o «

ig.l
ig.2
18.3

Common Configuration SubSet . ¢ . v « ¢ o o « o 2 = o o

Physical Transfer of Data Set8 . o v o o ¢ o o o « o o o

Differences in Run Priority Determinatiorn and Set-up
Restrictions . . . ¢ & & ¢ ¢ ¢ it 4 4 4 o 4 e v 6 o .

xiii

l6-1

l6-1
16-1
16-2
l6-2
16-3
l6-3
16~4

17.1-1

17.1-1
17.1-1
17.1-4
17.1-8

17,1-11

17.1-12
17.1-15
17.1-17
17.1-18
17.1-19
17.1-20
17.2-1
17.2-1
17.2-3
17.2-5
17.2-9
17.2-10
17.2-11
17.3-1
17.3-1
17.3~1
17.3-1
17.3=2
17.3-3

. 17.3-3
- 1703-5

18=-1

18-]
18-1

18-3

TABLE OF CONTENTS (Cont'd)

Section 18 {Cont'd)

18.3.1 Job Stream Manager (ISM) . . . « « & &+ o ¢ s o o s o o o 18-3

18.3.2 GSFC Job Stream Manager . . . - . e s ow e .« s« s+ « 18-3
18.4 Run Time Estimates for Different IBM 360 Models and

Timing Differences Between ICS and Main Memory - 18-8
18.5 Differences Between GSFC Software and Other

INsStallationsS .« « « » &+ » o o = & & = 3 s s % e s oa s e ig-8
18.5.1 Job Statement and Accounting Differences . . . + . . + - 18-9
18.5.2 Procedure NamMeS . . « « » « « & o & » & * o = s & & o & = 18-9
18.5.3 Generic and Derived Unit Names . . . = « ¢ « = o s o & & & 18-10
18.5.4 Job and Module Libraries . . « + ¢« o o o o s o o o o & & 18-10
18.5.5 0S Release DIifferences . . « + s = « « s = o & & 2 o ¢ v o 18-11
18.5.6 0S Option Differences . . « « +» o« o + o o s o = = o o o 18-11

Section 19 -~ GSFC StandardB. . « « « « =+ s s = » ¢ &+ s & + & = o « 19.1-1

19.1 Processors and Procedures. . + « « » « o » = = « o+ s = o o 19,1-1
19 - 1 - 1 GSFC Standard RUleS 4 & 85 & % & ® ® ® # & @ e & & 3 = & & = 19 . 1-1
19 - 2 Unit NHAMES . 4+ ¢« # & &« o + = a s » & % &« » & & = ¢« & & » = 19 . 2—1

19.2.1 Generic Unit Names . . « + = = = = ¢ + = s o a s o s s o = 19.2-1
19.2.2 Derived Unit Mames . « « = s o = = = = s = s s « = =« » =« = 19.2-2
19.2.3 Specific Unit Names. . . + « .« e e s s e s s e w e s s 19.2-3
19.3 GSFC Standard Cataleged Procedures e -
12.3.,1 Compiler Procedures. . « « s x o s » = & s + = = & = s = o 19.3-1
19.3.2 Link-Edit and Execute . . ¢ « o« o = o s 2 = s 2 o 2 s 0+ e 19.3-7
19.3.3 GORT . & o o o o o s o 2 s « s = o o o o a o s o = s s s « 19.3=14
19.3.4 PRNTPROC « « o = o s o s 2 & s s 2 s & s & » & a = = s = & 19.3-1€
19.3,5 ADDTOLIB + « » o o o o o o o = 2 s o s o o o o o o o+« » 19,3-1€
19.3.6 SAVEPROG . « « s = o » a 2 & % & % s s & o = + & & 5 & ¢ =& 19.3-1¢
19.3.7 N & O
19.3.8 FAPCON . . . & 4 a o o s ¢ o o s o s s = = o s s o s o o« 19.3-2¢(
19.3.9 FORMAC ¢« &« o » = « o 5 o 5 5 8 & s s » & s . o a 8 3 s = & = 19.3-2
19.3.10 GPSE V v o s o o o o o « s o o o s s o o o s s o s o v o o 19.3-%

Section 20 — Conversion ALdsS . « ¢ « & o ¢ + s o 2 o & v 2 e 4 s s . 20.1~1

-*

Data Statement SIFT Program . . + s = + s o s = s ¢ = s & 20.1-1
Input/Output o+ « o ¢ « &+ & 2 o o s o 2 e e s e = v s s 2. 20.1-1
RESEYICEIONS + « o o « s o s o o = = s s s = ¢ o o« =« o o o 20.1=2
REFEYENCEE « o o o = o o o o s o = = 8 s o s o o o s o o » 20.1=2
FAPCON . o o v o o o o o o o s 2 2 s + 8 s 5 o o o s ¢ o o 20,2=1
Input/Output . e s s s a s s me saas e s s 20.2-1
Processing Capabilities e e e s s s s m e e s s s s s 20.2-)
ROSEXICLIONS « o o o o « o o » o » o o o = o s s s & + s o 20.2=2
JCL &+ v s o o o o s 8 s 2 8 s 2o o o o 8 2 o s e = a5 s 20.,2=2

- [] L]
. P
w -

*
»

RN RN
000000000
-
RN RN

W N

xiv

PABLE OF CONTENTS (Cont'd)

Section 20 (Cont'd)

REFEYENCEE + 2 v « = = = o + s » s + s & 2 s a = = » =« « o« 20,2-3
DEBLOCK/CNVRT Package .+ + « 2 « = = 2 « = o o o + » » o« » 20.3-1
DEBLOCK Subroutines -~ DEFOR, DBDCS, DBFDCS+ &+ « & 20.3-1
DEBLOCK Subroutine == DBGEN . « « « &« » « s 4« s o o « = » 20.,3=1
Subroutine CHVRT . . « « + « o « » o+ » 5 2 a o = = o o + » 20.3-2
Subroutine CMPRS ., . « o « o = = © » o = =« « « « = =« s« » « 20,3-3
JCL to use DEBLOCK/CNVRT .+ .+ 4+ o « s o o o o 5 « s s » » » 20.3-3
REfEYENCEE « + « « « « = o o + o o = s o o s 2 o s o o » » 20.3-3
DATCON . & « + « 5 s « = = o s 4 6 s 2 s o s s o s o » » « 20.4-1
Call Statements for DATCON . . « v « « « + o« « a s« = s » » 20.4-1
JCL fOr DATCON + + « « =« « o = o s = o & + 2 a o« o« « « ¢ o 20.4-1
REFEYENCES + v v « + o o » o = = ¢ & 5 ¢ o s o » s o o « o 20.,4=2
TIDY &+ o o o o o 5 o a s 2 o » o = o =« o« = = s « a s o » « 20.5-1
RefOrences . + « « = « = s o« s s s &« 2 s &« 2 = % « =« o » « 20,5-1
Other BidS .+ « « =« + ¢ « o = o 2 s+ ¢ o s = 2 « « &« o« ¢ « » 20,6-1
PE ALTR + + o o s « = o o o o o s o« = s s a a s « = s » » 20.6-1
FORTICP 4 + & = = * o » = s o = & « &« s o 2 s s« s s o » » 20.6-1
DACUTD o +« ¢ + « « = « o = o« s & o« & s s s s o s v o = » o+ 20.7-1
Individual Subroutines . . « ¢« « 2 « o + o = s o s o o « 2 20.7=1
REfEIENCEE o« « o o = ¢ o ¢ s o o o o 2 s a s = v = + 2 o « 20.7=2

wn

SISO STN SRS SIS Y]
R
. e ¢

.
bWl

%)

L)
. *

BANMN
0DO0OCO0OO000O000DD0O0O0ODOO0O0DOO0O0
[]

L [] L] » - -
- [] -
N

-
NN T BB W W W W W W N
.
W N

NN NNDNMNN
[]
N b

Section 21 = Debugging Facilities « « « ¢« ¢« ¢ + &+ & o+ « 21.1-1

21.1 Interpreting System MesSsages . . o+ ¢ « + 2 = « « &+ ¢ » « 21.1-1
21.2 Imprecise Interrupts on the 360/95 and What Te Do Next . . 21.2-1
21.3 Exror Traceback . « 2 « o s # + » 2 s o s s o 2 o« » = « =« 21.3-1
21.4 DUMPS . + « « = & o s o s 2 s s « a o s 2 s s« s 32 s » =« » 21.4-1
21.5 FORTRAN Debugging and Error Handling . . .+ . . « . « « . . 21.5-1
FORTRAN Debugging Package . . « + + « 2 o s « = o = = +» » 21.5"1
FORTRAN Extended Error Handling . . + ¢« « « o « o « o« « o 21.5-1
TESTRAN .+ o o = + s s s ¢+ & s s s 2 s & 2 o« o« s s s« 2 « « 21.6~1
Printing Data Sets for Debugging « 21.7-1
Core DUMPS + « o & o o & « 5 % s 2 s s v o« o« o a » 2 » «» « 21,7-1
Dynamic Debug Qutput . . . + ¢ ¢« & « 2o o« & & 2 2 o 2+ » 2 2L.7=1
Intermediate Outputs . . « « « « & & + « & = = a o « » « o 2}.,7-2
B375, D375, E375 . « & + + o s o s + a2 s s a s s « =« » « » 21.8-1
SIGPAC . v o « 2 2 s = 5 s + + = + % % # » o s s o« o« « « « 21.9-1

[+
ol
.

NN RN
HiH R HRR
.
VWO~~~ G W
L] »
N

s s o
. »
W N

Section 22 - Overlay Considerations . . .+ + ¢« + & ¢ ¢ ¢ ¢« ¢ « & « o 22,1-1

22.1 INtroduction o &+ &+ ¢ v ¢ v ¢ o+ v ok o+ o+ e o+ s e e s o« a « 22,11
22.2 Definitions . & & ¢ ¢ ¢ & + & & 2 s o s s s s s s s s o o 22.2~1
22.3 Programming Considerations « « ¢« & ¢ & & ¢ & . . 22,3-1
22.3.1 General . . . v ¢ + s s v = x s on s e sw s e woe n s s os 22.3=1

TABLE OF CONTENTS (Cont'd)

' Section 22 (Cont'd)

22,3.2 Common Routines and Data
22.3.3 ‘Overlay Trees & « & = = » « « «
22,4 Linkage Editor Control Cards

Section 23 - Ref&rences . B & 4 & & & B & « =

Index

xwi

22.3-1
22.3-3
22.4-1

23-1

. .
[§

]
el o SN I S P

L]
Pehh

Mwmywwuuup
-
bN?\O\UI

Table

'-I'-i-l'-l

RN b WWWW
L]
HWNPF B WD

!

-« 8 »

L - L]
Trekd

]
WY OIOANBWN

a\mmasm_c\mmasmm

LIST OF ILLUSTRATIONS

M&DO IBM 360 User'S Guide Reading Plan . ., . . .

Equipment Configuration: IBM 360 System, Model 95
Equipment Configuration: IBM 360 System, Model 75
Equipment Configuration: IBM 360 System, Model 75
Equipment Configuration: IBM System 360, Model 65

IBM 360/20 MEDO . & v v v ¢ o o o o 2 & s »
IBM 360/30 MEDO . & 2 « + 4+ 4 2 « o o « & o &«
Usage of Compiler Data Sets
Entries for Routine Parameter for PATRICK . .
Example of Tree Structure
Tree Diagram . . « & 2 4 + = o o s 2 s ¢ « =
Tree Diagram &« 4+ & ¢ s & = « s = o« o «
Example of a Tree Portion « + . « . .
Tree Diagram & & & 4 & & o o o« « o « =

LIST OF TABLES

birect Access Device Characteristics
Track Capacities ¢« & & v & o o o «
Print Trains in Use on the Ms&DO 1403 Printers.
2400 Series Magnetic Tape Unit Characteristics
Available Software on M&DO Computers

JCL Statement Sequence + 4 4+ « « o « .

Job Card POXMAt. & & ¢ & ¢ o « « o o o o o « o
Completion Codes . . 4 « 4+ v ¢ ¢ v o 2 o« «

Camparisoen of S/360 FORTRAN IV, ANSI FORTRAN, 7094

FORTRAN IV, and_llos FORTRAN V . . . & o o« «
FORTRAN G Data Sets - DCB Parameters
FORTRAN H Data Sets - DCB Parameters

Default Options for FORTRAN G and FORTRAN H Campilers.

PL/I Compiler Optional Data Sets

PL/I Compiler Optional Data Sets Characteristics ., .
Compiler Options, Abbreviations, and Standard Defaults

Agdsembler F Data Set Characteristics
RPG DD Names Required.
Linkage Editor Design Levels
Linkage EQitor ddnames . . o« « + % o o « » « »
DCB Requirements ¢ v v ¢ v o 2 o o o »

xvii

L] - - -

1
w

1

WNWWWwWwwiwe
-
[¥) cuc\gnn w N
-l WNNN N

-9
1
V]

1
™

N
]
L]
.Y
]

2
22.2-3
22,2-4
22.3-2

22.3-4

3.7-2
3.7-2
3.7-4
3.7-5
4~2

5.3~1
5.3-3
5.3-6

6.2-4
6.2-9
6.2-9
6.2-11
6.2-19
6.2-20
6.2-21
6.2-23
6.2-25
6,3-2
6.3-5
6.3-5

Table
6.3-4
6.3-5
6.3-6
6.3~7
9.1-1
11.2-1
il.2-2
11.7-1
13.1
17.1.2-1
17.2-1
17.2-2
18.1-1
18.3-1
18.3-2
18,3-3
21.1-1
21.3-1
21,7-1

LIST OF TABLES (Cont'd)

Input Deck for the Loader (Basic Format} . . .
Input Deck for a Load Job. « « « « « » « « « =

Loader and Loaded Program Data

Summary of Job Control Language Statements for

SOrt/Merdge . « - » o o + « = a v + & & v 4
How to Select a Utility. . . . « + = +» « « &
Access Method MACYOS « « « s+ + s o » s 5 o s
Supervisor Service Macros. . « « « s + o + .

DEFAULT SYSOUT/REGION Space Allocation (in tracks)

RIE CommandsS . « « + & « = s s = = 5 = s = »
Volume States and Their Characteristics. . .
BLKSIZE Ranges: Device Considerations . . .
Load Module DCB Parameter Default Values . .
Configuration Summary. . . - « « ¢ « « « « =
5360/95 Job Stream Manager Class Assignments
Priority Within a Job Class Queue.

Initiator's Order of Searching Job Class Queues.
System Message Prefixes. . . « « « & & & o v = >
Example of Error Traceback . . + « « « « = « =+ &

POSt—mortem Dmps » 4 # 6 & % # 5 8 w & 3 == &

xviii

INTRODUCTION

SECTION 1

INTRODUCTION

1.1 PURPOSE

Operating System 360 (05 360) is a powerful control program amply documented -
the manuals produced by IBM relating to 08 360 require more than six feet of
shelf space. It is not the intention of this guide to duplicate IBM's efforts.
Operating System 360 is quite flexible and usually no two implementations of
0S5 360 will be the same. It is because of this flexibility that the need
arises for a local User's Guide. (The purpose of this manual is to serve as

an introduction to the M&DO computer systems and to supplement all other rele~
vant documentation,to be referenced. Because of its index structure, the user
will be able to reference those sections pertinent to his needs; This is not
a programming manual; where a user needs to learn a language or a system, it
will be necessary to review the referenced documents.

It is intended that this User's Guide be complete (within its scope) and up
to date. Periodic revisions will be made; however, it will be impossible to
maintain the guide completely up to date. To fill the interim, refer to the
M&DO 360 Computer Bulletins and the GSFC Computer Newsletter, Usually, perti-~
nent information is also posted in the Programmer Assistance Center (PAC) and

dispatch areas.

INTRODUCTION

1.2 ORGANIZATION OF THIS DOCUMENT

This User's Guide has been developed, and will be maintained on magnetic
tape through the use of the IBM MT/ST system {a Selectric typewriter with
cassette tape units). It is organized in such a way as to permit updating
without the need to renumber all of the preceding or succeeding pages; that
is, the document is paginated according to two-digit subsections (e.g..
14.1-1, 14.1-2, etc.). Exception to this occurs in those places where the
subsections are very short. In these cases, more than one two-digit sub-
section may occur on the same page, and the page numbers are relative to
the entire section.

When the document is updated, the new or replacement pages will contain
the date of revision at the top left corner, and any modified lines of

text will be indicated by a vertical line in the outside margin. This

major revision (July 1973) will not contain the date of revision at the
top left corner of each revised page.

To assist the user in locating a particular area of interest in the User's
Guide, several facilities are offered:

1. Table of Contents
2. List of Illustrations
3. Index

4. Chart showing logical groupings of sections in the User's Guide
and interrelationships between them (facing page)

In addition, the upper right hand corner of each page repeats the major
section heading to which it belongs, to facilitate thumbing through the
document.

Effort has been made, through redundancy and cross-referencing, to cover
each area of interest in all contexts to which they are related. Finally,
references to other sources for additional information are given through-
out the text, and in Section 23,

-

y-1/€-1

1. INTRODUCTION TABLE OF CONTENTS I

INDEX]
GENERAL INFORMATION \ SPECIFIC INFORMATION
GskC
ENVIRON- JcL 5. JOBSETUP
MENT 2. PROTOCOL 162 REGION PARAMETER
3. HARDWARE FACILITIES 165 OVERLAYS
4. SOFTWARE STATUS 17. DATA MANAGEMENT
7. ADDED PROCESSDRS TECHNIQUES
18. MACHINE INDEPENDENCE 19. GSFCSTANDARDS
20. CONVERSION AIDS 22. OVERLAY
= CONSIDERATIONS
087350 % 6.2 LANGUAGE PROCESSORS |
. ROCESSORS
ﬁg:“:;gE“' 11. 0S EXECUTIVE FEATURES '
16. MEMORY USAGE LINKAGE u
B. STANDARD PROCESSORS ————_| 63 LARGE UTILITIES |
17. DATA MANAGEMENT EDITOR, LOADER
TECHNIQUES DEBUGGING [}
| 21. DEBUGGING FACILITIES |-
UTILITIES
9. UTILITIES B. USER AND
63 LARGE UTILITIES PROCESSOR LIBRARIES
7. ADDED PROCESSORS
GRAPHICS
121 2250
122 2250
\—w{ 1232 PLOTTERS -
REMOTE
3. RIE
TERMINAL 14. CRJE/CRBE
SYSTEMS 15. APL

—‘AE_%..' 10, AUTOFLO 1
FLOWCHARTING . Low]

| 23 REFERENCES

QOU.LNI

PROTOCOL

SECTION 2

PROTOCOL

2.1 AUTHORIZATION FOR COMPUTER USE

2.1.1 GENERAL DISCUSSION

All programmers must use identifying accounting information when submitting
jobs to be run on GSFC computers. This information must be punched into the
JOB card (Subsection 5.3) and indicated on the Job Submission Slip (Subsec-
tion 5.1) when computer time is desired. 2 document (X541-69-379) issued by
the GSFC Computer Services Section outlines the details for completing the
registration form required of potential computer users. Copies can be
obtained from Mr. Gerald R. Quigley, GSFC Building 3, Room 162, Extension 4923,
The following paragraphs describe the accounting information required in the
JOB card and Job Submission Slip.

2.1.2 PROGRAMMER IDENTIFICATION CODE (PROGRAMMER ID)

Pormat: ooiii

The first two characters identify the organization ceodé; the last three are
the programmer's initials. If the programmer has only two initials, or if
ancther user has the same initials, the third character in the code will be a
numeric digit.

2.1.3 SPONSOR NUMBER

FPormat: ssxxx

The first two characters identify the sponsor; i.e., the organization for
whom the computer use has been authorized. The last three digits identify
the specific problem being sclved for that organization.

2.1.4 PROGRAM NUMBER

Format: pppppp

This six-character number identifies a particular program or system of pro-
grams, and is used by the GSFC Computer Program Library to register any pro-
gram offered. Refer to paragraph 2.3.11 of this User's Guide for details on
the function of the Library.

2.1-1

PROTOCOL

At the time a new programming effort is initiated, it is the responsibility
of the programmer (or his sponsor} to obtain a program number from the
Library, Extension 2186 or from a computer manager.

2.1.5 PROJECT NUMBER

Format: pppp

This four-digit code identifies the individual spacecraft or experiment with
a given program. (Refer to Document X-541-69-379 for a detailed description).

2.1.6 CATEGORY CODE
Format: ¢
This one-digit c¢ode identifies the type of work being processed. The cate-

gories are described in detail in Document X-541-69-379 and are summarized
below:

Code Title

1 Scientific and Engineering
2 Data Reduction

3 Mission Control

4 Simulation

S Administrative

2.1.7 TYPE OF RUN CODE

Format: ¢t

This one-digit code identifies a run as test (T), production (P), or an
extended code for rerun and downtime (refer to Document X-541-69-379 for
a detailed description).

2.1,8 CRJE AUTHORIZATION

Use of the Conversational Remote Job Entry (CRJE), which provides remote access
to the IBM 360/95 system, requires registration with the Computer Services
Section, GSFC Building 3, Room 103, Extension 678lL. BAn applicant must have

a programmer ID and sponser number and must attend the CRJE seminar, or show

& proficiency in RITS or CREBE before he will be authorized as a CRJE user.
After his application is approved, he may then use any of the terminals,
identifying himself by his programmer ID, password, and sponsor numbeér.

2.1-2

PROTOCOL

2.2 APPROVAYL REQUIREMENTS FOR DEDICATED USE OF RESOURCES

2.2.1 GENERAL DISCUSSION

The IBM 360/95 is the M&DO general support computer. Although all systems
are available to any authorized user, the Model 65 and Models 75 are devoted
almost entirely to their assigned projects and have little time available.

Bll computer facilities are operated on a limited access basis. The respon-
sibilities for scheduling, cperation, and maintenance of this equipment and
supporting services are assigned to specified personnel and provided as a
service to authorized users. Except for certain designated locations, access
to the areas occupied by the equipment and supporting functions is limited

to operating and management personnel assigned the responsibility of operat-
ing the facility. Users of the computing service, i.e., programmers and
experimenters, are allowed access to these facilities only when the nature

of their requirement is such that it cannot be satisifed by the normal opera-
tional mode. 1In such a case, special arrangements for access must be made
with the GSFC computer manager. Mr. Harry G. Bitting, Building 3, Room 130,
Extension 6886, is the computer manager for the 360/95, 360/75's, and 360/65.
Unauthorized personnel are not permitted to operate any part or component of
the computers or other support equipment, as designated personnel are assigned
this task.

2.2.2 USER DATA SETS

The Model 95 has nine scratch packs {VOL=SER=G1SCR1 through VOL=SER=G1SCR9)
Permanently mounted for the storage of temporary user data sets. A tempo-
rary data set is one which exists only for use within a job and which will
be deleted upon completion of the job. To assign a temporary name, code
the keyword parameter DSN=&name or DSN=&&name in the DD card. Replace the
term name with any l1l- to 8~character name not used by another temporary
data set in the job. To assign the data set to one of the scratch packs,
code the keyword parameter UNIT=DISK, and the system will assign the data
set to a scratch pack having the amount of requested space available.

The DISP parameter on the DD card should be coded as DISP=(NEW,DELETE) or
DISP= (NEW,PASS ,DELETE) if the data set is to be used in a subsequent jcb
step. The use of temporary data sets is strongly encouraged, since it
frees space for use by other users after the job has been completed.

It is, of course, essential for users to have the capability of retaining
their data sets con-line from one day to the next or for an indefinite period
of time. The computer manager has made a provision for this by allocating
on—-line storage for user data sets cn the Model 95.° Currently, two 2316

disk packs (VOL=SER=GlUSRl, VOL=SER=GlUSR2)} and two 3021 bins on the 2321
data cell (VOL=SER=GlUSR3 and VOL=SER=GlUSR4) are allocated for this purpose.
Because of the limited nature of these resources, procedures have been estab-
lished to control their use. B2al)l data sets placed on the user packs must
conform to the standards adopted by the GSFC 0S/360 Software Standards
Committee.

2-2-1

PROTOCOL

e Data sets must be named in the form
%n.USRID. SPONS.NAME

where Xn is the 2-character machine station code,
e.g. G, M2, K3, Hl, etc.

USRID is the S5-character user identification.
SPONS is the S-character sponsor identification.
NAME is any name consisting of 1 to 8 characters.

Example: Gl.GA2AG.GA004.MONORC
] Secondary extents may not be specified.

(] Data sets allocated prior to March 1, 1972, may retain the previous
standard naming convention:

XX, YYYYY.ZZ222227
where:

xx = System Designation (360/95 = Gl)
yyyyy = User Identification (e.g., G3GRQ)
zzzzzzzy = Optional Identification (e.g., MYSET1)

Data sets which do not conform to the above conventions will be
eliminated without further notice.

] All allocations of user storage areas will be made only with
the knowledge and approval of the computer manager. BAll such
regquests should be forwarded to the computer manager with a
written explanation of the action desired. Unapproved alloca-~
tions will be scratched without prior notice te the owner of
the data set.

® On the first working day of each month, users will receive a
memorandum listing the data sets that are available on the user
packs. Users must indicate the disposition of each data set
and return the memorandum to the computer manager. Failure to
return the memorandum within one week will result in the user's
data sets being scratched.

2.2.3 PRIVATE VOLUMES
A request for a disk pack or data cell must be made in writing by the sponsor -

not the individual programmer - and approved by the Chief of the Mission
Operations Computing Center. The programmer presents the approved request to

2.2-2

PROTOCOL

the Computer Services Section. Building 3, Room 103, where the packs and cells
are dispensed. Disk packs and data cells are issued with the manufacturer's
number, a permanent GSFC number, and a temporary volume labhel. The label
contains a code representing the organization, user, and job. The device

is identified by this code until it is returned and re-issued under a different
label. Once issued, the devices are stored in the vicinity of the computer
room under controlled conditions. Requests for moving the device from

one system to another will be honored, but prior permission should be obtained
from the computer manager. A device may be removed from the Building 3 area

by obtaining permission from the computer manager and by completing a
"charge-out" card. These devices are accountable equipment and are the
responsibility of the Mission Operations Computing Center.

2,2.4 CRJE SPACE ALLOCATICN

After receiving authorization to use CRJE (see Paragraph 2.1.8), a user will
have allocated one cylinder (20 tracks) of space. This space will be on one
of two 2316 packs - either GICRJ1 or GLCRJ2. Refer to Paragraph 2.3.3 for
detailed information on CRJE services and hours of operation.

2.2.5 AP, SPACE ALLOCATION

Each user of the 360/95 APL system is given 10 work spaces in which to SAVE
his functions or data. Each work space has a length of 36,000 bytes. Un-
like the CRJE or CRBE user libraries, the APL user work spaces are not
partitioned data sets; rather, they are structured together internal to the
APL system. They are not readily distinguishable by anyone other than the
user of the work space, and then, only when the work space is being used
through APL. A backup to the APL system (including a daily dump of user
work spaces) is maintained in the event of APL disk failure.

2,2.6 DEDICATED PERIPHERALS

One of the prime functions of OS 360 on the M&DO computers is to utilize
efficiently all available system resources in order to maximize throughput
and minimize turnaround time. The moment that any peripheral device (e.q.,
disk drive, tape drive, printer) is dedicated to an individual user's job, the
system operates much less efficiently. Hence, the use of dedicated periph-
erals is discouraged, and requests for the use of dedicated peripherals

should only be submitted when required for a launch or other emergency
circumstance. All such requests must be submitted in writing to the com-
puter manhager.

2.2.7 SCHEDULING AND PRIORITIES

¢

Scheduling of the computers is under the control of the Computer Services
Section, Mission Operations Computing Center. A schedule is issued weekly,
indicating blocks of time for specific Divisions and/or programmers. The

2,22

PROTOCOL

normal processing of a job 1s accomplished without obtaining a priority and
is run in log number order, within the scheduled block of time for "general

support”.

Generally, individual jobs requiring more than 15 minutes CPU or 1/0 time

will be retained for the night shifts to process. The exception to this would
be priority or programmer-present work, operating within the scheduled block
time. For convenience and speed in processing, IBM 360/95 jobs may be batched
together and loaded onto tape off-line, utilizing the IEM 360/30. This action
eliminates mich of the card handling and setup time that would be required to
process individual jobs on the computer. Similarly, the processed output may
be stacked on one or more tapes for listing off-line.

Once a job has been entered into an M&DO computer, an addition to the operating
system, known as the Job Stream Manager, further classifies jobs and establishes
priorities. Each job is automatically assigned to one of 25 classes (A-0, Q~Z)
on the basis of the amount of memory (REGION size) and the number of tape drives
required by the job. Numeric classes 0 through 9 are used for such programs as
ADL, CAIRS, and 2250 and 2260 graphics-type terminal systems. They are also
assigned as needed during satellite launches and under other special conditions.
The Job Stream Manager uses the estimated run time as the basis for the assign-
ment of priorities, with shorter runs being processed first. On the MEDO com~
puters, the priority (PRTY=) and class (CLASS=) parameters on the JOB card are
ignored if they are present,

2,2.8 USER ADDITION TO PROCEDURE LIBRARY

The use of cataloged procedures (refer to the IBM Job Control Language Reference
(GC28-6704) manual) can considerably simplify the execution of many programs.
Due to space limitations,the following conditions must be met before procedures
can be placed in the 360/95 user PROCLIB (DSNAME=SYS2.USERPROC):

a. The procedure must be necessary for the execution of a user pro-
gram. Procedures for cempilations, assemblies, or link edits may
not be entered.

b. The procedure must be checked out.

c. The procedure must be at least 15 cards, or it can be any size
if it is used at least five times per day.

d. A written request accompanied by a listing of the procedure and
the deck necessary to update 5YS2.USERPROC must be submitted to
the IBM 360/95 computer manager before space allocation can be
granted. Subsequent updates to previously approved procedures
must also follow the above rules.

2.2-4

PROTCCOL

2.2,9 APPLICATION-ORIENTED SYSTEMS

There are many specialized programming systems in use by the M&DO which are
utilized by particular groups of individuals, but which are not for use by
the general public. These processors are programs or series of programs
designed to perform a particular function and assist particular projects.
The following are examples of such processors.

2.2.9.1 Computer-Assisted Interactive Resource Scheduling (CAIRS)

This system assists the Operations Center branch in the control, production,
and scheduling of the tracking and data acquisition stations in support of
scientific satellite missions. The CAIRS system is utilized continuously
throughout the day, and hence is resident on two 2316 disk packs permanently
mounted on the Model 95. CAIRS is written in Assembly Language and PL/1

and functions on a real-time basis from remote terminals. Users requiring
more information about the CAIRS system should contact Mr. Carl E. Gustafson,
Code 512, Extension 4939, or Mr. Robert H. Adams, Code 512, Extension 4938,

2.2.9.2 Definitive Orbit Determination System (DODS)

This system is designed to meet the orbit determination needs and to support
tracking prediction operations associated with scientific and applications
spacecraft programs of NASA and the space community. The primary purpose of
DODS is to compute crbits of various satellites for surveillance and research
at GSFC, and includes a number of data processing functions to make this com-
putation as automatic and effortless as possible. DODS operates on either

the Model 75 (Cl) or Model 95. Users requiring more information on DODS should
contact Mr. Paul Shapiro or Mr. Kenneth E, Lehtonen Code 571, Extension. 2589.

2.2-5

PROTOCOL

2.3 JOB SUBMISSION PROCEDURES AND OPERATIONS

2.3,1 DISPATCHING STATICNS

2.3.1.1 General Processing Flow

The initial step in processing a computer work unit for the Models 75 and

9% is the submission of a computer job to the Dispatch Station in Building 3,
Room 167, Extension 6733. The jobs for the Model 65 are submitted to the
Dispatch Station in Building 14, Room S4, Extension 2195. The submission
must be accompanied by the proper forms and instructions, program and data
decks, if required, and all tape files which are not in the tape library
associated with the operation. The work must be identified by an authorized
programmer identification code.

Personnel at the Dispatch Station will examine the submission to determine
that required forms, instructions, and data are provided. If the submission
is determined to be incomplete, it will be returned to the requester immedi~
ately; if it is complete, 'it will be logged and processed. After processing,
the appropriate input and output items are placed in the user's output box.

2.3.1.2 Problem Report

If it is felt by the programmer that his work has not been properly processed,
a Problem Report form is available at the Programmer Assistance Center, Build-
ing 3, Room 133A, Extension 6768, (see Paragraph 2,3.10.1) to indicate the
problem. The Problem Report form is self-explanatory.

2.3.1.,3 Messenger Service

Users need not go directly to the Dispatch Stations to submit jobs. GSFC
maintains a messenger service which will pick up and deliver jobs to remote
locations, both at GSFC and off-site. The locations serviced and hours of
delivery are posted at the dispatcher's office, or they may be obtained by
calling Extension 6733.

2.3.2 REMOTE JOB ENTRY (RJE)

2.3.2.1 Job Submission

RJE services are normally available on the IBM 360/95 bhetween the hours of

8 A.M. to B P.M., Monday through Friday, excluding holidays. RJE may not
be available if the 360/95 is being used to support a launch. Refer to
Section 13 of this User's Guide for detailed information concerning job sub-
mitted via RJE,

£ 31

PROTOCOL

2,3.2,2 Output Routing

The output from a job submitted wvia RJE may be directed to the user's work
station, to an alternate user, or to the system output writer for delivery
through the Dispatch Station, Refer to Section 13 of this User's Guide for
detailed information on the capabilities and uses of RJE.

2.3.3 CONVERSATIONAL REMOTE JOB ENTRY (CRJE)

2.3.3.1 Hours of Service

CRJE services are available on the IBM 360/95 from 8 A.M. to 8 P.M., Monday

through Friday, excluding holidays. CRJE may not be available if the 360/95
is being used to support a launch. During nonscheduled hours, CRJE will be

made available within 30 minutes after a request is received. Calls should

be made to the shift leader on extension 5820,

2.3.3.2 Output

The printed results of a run can be obtained either from the 1403 printers
located at the 360/95 (SYSOUT=A)}, at the user terminal (SYSOUTw=R), or a
combination of the two. Consult Section 14 of this User's Guide and the
Conversational Remote Job Entry User's Guide (GC30-2014) for complete details.

2.3.4 CRJE/RJE TAPE MOUNTS

Jobs submitted to the IBM 360/95 via CRJE or RIE which require the mounting
of specific tapes cannot be processed unless these tapes are readily avail-
able in the machine area, In order to insure proper handling of such jobs,
the user must include the tape numbers in the VOLUME=SER= fields of the
appropriate DD statements of the submitted job.

Jobs which call for specific tape mounts will be CANCELED if the required
tapes are not in the machine room. If output tapes are to be retained, they
must be supplied beforehand. Scratch tapes may be used without notifying
the dispatcher. However, they will not be saved after the completion of a
job, When a job requires the use of a scratch tape, simply omit the VOLUME
parameter from the DD card.

Private volume disk packs or data cells may be referenced only if it is
known that the required volumes are already mounted according to a predeter-~
mined schedule. CRJE or RJE initiated mount requests for private volume
direct access devices will not be honored.

Jobs submitted through the dispatcher that request the mounting of private
volumes will be held until the volumes are scheduled to be mounted.

2.3-2

PROTOCOL

2.3.5 TAPE LIBRARY

The function of the Magnetic Tape Library is to issue, receive, and release
magnetic tapes for use in the M&DO 360 computer complex.

The various jobs submitted for processing may require a tape from the tape
library as input, and the resultant output may need to be filed. A Perma-
nent Save Tape Label is submitted by the user/programmer to the tape library
with the job and contains all the pertinent information concerning the tape,
with the exception of the tape number, which is supplied by the tape librar-
ian or the operator. This card is in two parts: one part is applied to the
tape as a label, the other is sent to the Keypunch Section for punching into
a permanent file card.

Remote users of the 360/95 no longer have to call in their tape requirements,
since the tape library is now located in the 360/95 area. New output tapes
to be saved, however, should be supplied beforehand.

On the other MsDO 360 computers, magnetic tapes are obtained from the library
by the operator or dispatcher as the work is being prepared for the computers.
Remote terminal users must telephone the tape library to request that a tape
be placed in the appropriate computer area prior to submitting a job calling
for that tape.

2.3.5.1 Tape Library Procedures Now In Effect

1. The basic retention period for "SAVE" tapes is 60 days. At the end
of the 60-day period the "SAVE" tape will be released unless action
is taken by the tape's originator. Options available are as follows:

ae Permit release of tape.

b. Extended retention (an additional 60-day period). Request
must be signed by originator's GSFC Branch Office or equiva-

lent, and approved by computer manager. {(See Subsec-
tion 2.3.5.2.)

c. Withdrawal of tape from library. Request must be signed by
originator's GSFC Branch Office or equivalent, This trans-
fers future custody of the tape to that Branch who may store
it in their own facility, send it to remote storage {see
GMI 2430.2) or release the tape back to the library when it
is no longer needed. (See Subsection 2.3.5.2.)

NOTE: The library no longer sends user tapes to remote storage.

2. Blank tape will not be issued by the tape library. Users wishing
to retain output tapes will be required to submit the tape with

2- 3-3

PROTOCOL

the job. Blank tape may be obtained from center stock by. submitting
through proper channels a form number GSFC 20~7, Stores Stock Requi-
gition., The stock number for new 1600 BPI tape iz 7440-130-3273 and
is issued in lots of one. The Stock No. for rehabilitated tape cer-
tified at 1600 BPI is 7442-R22-4444 and comes in cartons of ten tape:

3. Tape may be withdrawn from the active library by the tape's origin-
ator for the purpose of using it on other Center computer systems.
{See Subsection 2.3.5.2.) These requests must be made in writing
and must not exceed 30 days. Failure to return tape at the con-
clusion of the specified 30-day period will cause the tape to be
transferred to the custody of the withdrawing individual.

4. Custody of all tape now in remote storage has been transferred to
the originator's sponsor.

5. Non-library tapes submitted for processing with jobs will not be
held at the computing facility but will be returned with the com-
pleted job.

2.3.5.2 Tape Library Forms

MOCC PERMANENT TAPE WITHDRAWAL RECEIPY

DATE : TAPE NUMBER

REQUESTOR’S NAME

CODE TELEPHONE
BRANCH APPROVAL
CODE TELEPHONE

COMPUTER MANAGER APPROVAL

DATE

PROTOCOL

MOCC EXTENDED TAPE RETENTION REQUEST

PLEASE EXTEND THE RELEASE DATE OF THE FOLLOWING LIBRARY TAPES AN ADDITIONAL 60 DAYS.

TAPE NO. DATE
TAPE NO. DATE
TAPE NO. DATE
TAPE NO. DATE
TAPE NO. DATE

REQUESTOR’S NAME

CODE

TELEPHONE

BRANCH APPROVAL

CODE

TELEPHONE

COMPUTER MANAGER APPROVAL

DATE

TAPE NO.

M&DO LIBRARY TAPE WITHDRAWAL RECEIFT

DATE WITHDRAWRN

TEMP. LOCATION OF TAPE

DATE TO BE RETURNED

DATE RETURNED

NAME OF BORROWER

CONTRACTOR NAME

GSFC CODE

PROGRAMMER ID

TELEPHONE

SIGNATURE OF BORROWER

2.3-5

PROTOCOL

2.3.6 USE OF PRIVATE VOLUMES

During daytime operations (8 A.M. to B P.M.}, 23 of the 24 disk drives avail-
able on the IBM 360/95 have permanently mounted packs. The remaining one is
normally reserved for private user packs, such as ATSPAX, DOTTEl and DOTTE2.
The mounting of private disk packs and data cells could reduce the efficiency
of normal operations and is not encouraged.

2,3.7 PLOTTER QUTPUTS

There are several types of plotters available at GSFC for use by qualified
personnel. -Programs run with the appropriate JCL will produce cutput tapes
which may then be used on the desired plotter to furnish the necessary plots,
Plotters are discussed more fully in Paragraph 2.4.5.

2.3.8 EARM AND RELATED SERVICES

Computer Sciences-Technicolor Asscciates (CSTA), a GSFC contractor, is respons:
ble for computer operations, dispatch service, the tape library, keypunching,

and all EAM related services,

2.3.8.1 Card and Tape Processing Services

Two computers, an IBM 360/20 and 360/30, are available around-the-clock for
card and tape processing services. The user need not prepare any control or
JOB cards, but must complete a request slip (available in the Dispatch Sta-
tion Building 3, Room 167, Extension 6733) indicating the service he wants
performed and the density, mode, and DCB information for any tapes being
used.

The Model 20 services provided include sorting, sequencing, interpreting,
duplicating (up to four copies at once}, reformatting, and printing card
decks. It can also be used to convert 026 (BCD) punched cards to 029
(EBCDIC) cards and vice versa.

The Model 30 services provided include tape-to-print, tape-to—-tape, tape-
to-card, card-to-tape, and dumping a 7- or 9-track tape of any standard

mode with 200, 556, or 800 BPI density. Nine-track tapes cannot be copied

to another 9-track tape, as only one 9-track tape drive is available. Seven-
track tapes may be copied to either 7- or 9-track tapes. The Model 30 can

be used for both blocked and unblocked tapes, but users must indicate the
block size and logical record length on the request slip.

2.3.8.2 Keypunching Services

A variety of keypunching services are provided to GSFC personnel in support
of work directed to and through the large-scale computers. All work is key-
punched and verified in sequential order, unless a priority or express run is
specified.

2.3-6

PROTOCOL

111 work submitted for keypunching must be logged through the central dis-

>atcher. A log number will be assigned to the job and the job will then be
forwarded to the Keypunch Operation., Completed work will be returned to the
Jispatch area, where it may be retrieved by the submitter after it has been

logged out.

\n express submittal is defined as a job containing 25 cards or less to be
teypunched and/or verified. A priority submittal can be of any length and
the priority assigned is a function of the importance of the job. This pri-
rity may come from the Computer Services Section or from the CSTA Supervisor
»>f the Operations Department. 2ll keypunching work is verified as a standard
sractice. MNormally, this verification is accomplished by an operator other
than the one who has keypunched the job.

A1l work submitted for keypunching must be coded on standard coding forms,
such as those for FORTRAN, Assembler Language, or Eighty Column General Pur-
pose. All entries on the coding sheets must be printed. Handwritten requests
+ill be returned without being punched. Submitters are requested to erase

any errors thoroughly - do not scratch through. Proper columns and spacing
should be indicated. Requests for rearrangement of cards cannot be accom-
modated. All jobs will be keypunched and returned in the same oxder as they
appear on the coding sheets. The EAM work request has provisions for indi-
cating a sorting operation, and jobs requiring a rearrangement of cards may

be handled in this way.

To avoid confusion, the following conventions have been established in coding
forms at GSFC:

LETTERS: I, O, 8
NUMBERS: 1, #, 2

2.3.8.3 Notes on IBM 026/029 Card Punches

There are two types of keypunches available to users: the IBM 026 Printing
Card Punch and the IBM 029 Card Punch. The IBM 026 is controlled by a pro-
gram card and by the keyboard switches and keys. The program card controls
automatic skipping and duplicating, field definition, and alphabetic shifting.
The IBM 029 has a two-program card which can be alternated at will either be-
tween punched cards or in the course of punching a single card. The IBM 026
has a 48-character keyboard for punching data in BCD format. The 64-charac-
ter keyboard on the IBM 029 is intended for punching data in EBCDIC. The
card codes produced by these keypunches are discussed in paragraph 3.7.4.3

2.3.8.4 PReport PFinishing

Report finishing includes the decollating, reproducing, and binding of com-

puter printouts. This service is available 24 hours per day. The decollator
separates multiple~ply printouts from their carbons and refolds them individ-.
ually. The removal of margins is optional. Since only the first four copies

2¢ 3-7

FROTOCOL

of computer printouts are legible, copies in excess of four are made on the
Xerox 2400. Document binding may take one of two forms. A continuous listing
is glued along the top edge and secured between front and back covers. Side-
~edge glueing is feasible only with single-sheet listings reproduced on the 2400.

2.3.9 AUTOFLOW SERVICES

AUTOFLOW 1s a proprietary software system of Applied Data Research, Inc.,
that automatically translates the source language of a program into flow-
charts, and then prints them out on the printer. The programmer may choose
to have his flowchart put on an output tape for later use,

AUTOFLOW can assist in debugging a program by means of a flowchart in the
early stages of the program, or can provide final documentation. Accompany-
ing the flowcharts are tables of contents and cross references; tables of
diagnostic messages pointing out program-logic errors, syntax errors, miss-
ing references, etc.; and an optional listing of the source program.

In addition, AUTOFLOW has special features that enable the programmer to
adjust detaills in the flowcharts by means of additional coding. Since AUTO-
FLOW makes use of program comments in the flowcharts, generous use of com-
ments in the program results in more meaningful flowcharts.

AUTOFLOW accepts as inputs either decks or tapes in COBOL, FORTRAN, PL/l, or
assembly language for the 5/360, and assenmbly language or FORTRAN decks or
tapes for CDC 3200, DDP 224, XDS 930, and Univac 1108 computers. AUTOFLOW,
and its preprocessor for computers other than the S/360, follows all the
rules in the programming manuals of the particular computer being flowcharted.

See Section 10 for a more detailed description of AUTOFLOW.

2.3.10 USER ASSISTANCE

Goddard Space Flight Center utilizes both Government employees and contractor
personnel to provide individual programmers and users with the best assistance

possible,

2.3.10.1 Programmer Assistance Center (PAC)

Five programmers are on duty in the Programmer Assistance Center, Building 3,
Room 133A, Extension 6768, from 8 A.M. to 4:30 P.M., Monday through Friday,
to provide users with error analysis and correction. Users will be requested
to complete a Computer System Problem Report while one of the programmers
examines the user's problem., To aid the programmer, users should request

a SYSUDUMP dump for the job steps which terminate abnormally.

The personnel in the PAC will also provide cperational assistance for users

unfamiliar with the 360 Operating System, Job Control Language, or GSFC stan-
dards and procedures. The function of the PAC has been expanded recently %o

2.3=8

PROTOCOL

include aiding the programmer in the optimization of his program. This can
be done through the better allocation of resources, reduced CPU and I/0 time,
lower memory requirements, etc. Those interested in having a more efficient
program should contact the PAC on extension 6768. Information concerning the
optimization of source code is contained in Subsection 7.2.

2.3.10.2 CRJE/APL Assistance

Users with problems related to CRJE or APL should contact the PAC.

2.3.10.3 GSFC Systems Programmer Assistance

The GSFC systems programmers are not available for general assistance. All
matters related to programming and system difficulties should be directed

to the programmers in the PAC. If the individuals on duty are unable to
resolve the question satisfactorily, they will consult with the GSFC Techni-
cal Representative, who will determine if a GSFC systems programmer should
be consulted.

2.3.10.4 Field Engineer Assistance

No user, whether a Goddard or a contractor employee, may contact the Field
Engineers directly. Any problem which is caused by a hardware failure must
be brought to the attention of the computer managexr or the PAC programmers.

2.3.11 PROGRAM LIBRARY SERVICES

The Goddard Space Flight Center has established a Computer Program Library,

a repository for computer programs and related documentation generated by

and for GSFC. As such, the GSFC Computer Program Library is a center for

the collection, storage, and retrieval of all computer programs, systems,
subroutines, and their attendant documentation. This library also has access
to programs and documentation from sources outside the Center. 1In establish-
ing this library, the GSFC has several objectives:

® Avoid duplication of effort

e Reduce programming time

[] Reduce programming cost
A means toward achieving these objectives is to make previously programmed
material more widely available. Although previous efforts may not have ful-
filled current needs, access to techniques employed by other programmers is
often helpful in shortening the time required for new developmental activities.,
GSFC Report X-540-69-107 describes the functions and activities of the Pro-

gram Library in greater detail. A copy of this may be cbtained from Mrs.
Pat Barnes, Code 532, Extension 6796.

2.3-9

PROTOCOL

2.3.12 GSFC MANUALS LIBRARY

2.3.12.1 lLocation, Hours of Service, and Approval Requirements

GSFC maintains a manuals library where Government personnel may obtain copies
of computer manufacturers' manuals and related forms. This service is also
available to contract personnel when their contract stipulates that GSFC will
supply computer manuals. Manuals may be obtained by completing a Goddard
Space Flight Center Technical Manual Request, form 540-20 {6/70), and obtain-
ing the approval of the responsible Divisien Chief.

The Library is located in Building 16 Annex, Room 115, which is most easily
reached from the rear entrance (the end of the Annex that faces Building 16).
Library hours are 8 A.M., to 4:30 P.M. daily. Requisitions will be filled
from stock on the shelves or will be ordered. Users may telephone the
Library, Extension 4672, to obtain additional information.

2.3.12,2 Types of Manuals Stocked

In general, supplies include those items needed by users of Goddard camputers,
and include the following types of publications:

@ Manuals on IEM §/360 computers
e Manuals on 1IBM 7090/7094 computers
® IBM coding forms

® Other items, such as the SD4060, CalComp and Gerber plotter
manuals.

The Librarian maintains a current bibliography of manuals at the desk, so
that users can check titles and current revision dates of manuals requested.

2.3-10

OTOCOL

4 OTHER FACILITIES AT THE GODDARD SPACE FLIGHT. CENTER

1.1 SPACE AND EARTH SCIENCES COMPUTING CENTER (SESCC) IBM 360/91K

= SESCC 360/91X computer is located in the basement of Building 1. The

0/91K is currently operating under Release 20.6 of the IBM S/360 Operating
stem with MVT. It has on-line graphics, and serves a humber of CRBE and

E users. This computer has the regular assembler and compilers, plus some
the special programs available on the SESCC Model 75J. (NOTE: The Model 91
s no decimal arithmetic feature; consequently, all decimal-instruction pro-
ams must be directed to the Model 75.)

4,2 SESCC 360/753

g SESCC 360/75J computer is also located in the basement of Building l.

e 360/75J is currently operating under Release 20.6 of the IBM S/360 Oper~

ing System with MVT. It has on-line graphics, and serves several remote

rminals (CRBE) both at Goddard and off-site. This computer has in its

stem library a number of special programs of general interest, in addition
the reqular assembler and compilers. For further information concerning

e SESCC 360/91 or SESCC 360/75 consult the SESD User's Guide.

4.3 OTHER SUPPORTING SERVICES
pporting services are available and include:

1. IBM S/360, Model 30 computer in Building 26, used for off-line sup-
port of the SESCC 7094.

2. Model 029 keypunch machines for self-service, in Buildings 21 and 26.

rooms near the SESCC Building 1 computer facility, the following support
rvices are available:

1. IBM §/360, Model 20 computer for off-line support to the SESCC
360/91K and 360/75J. It is used for such operations as card-to-
printer listing, 026-to-029 conversion, reproduction, interpreta-
tion, sequencing, gang punching, and sorting.

2. ¥eypunching service.

3. Model 029, kefpunch machines for self-service.

re detailed information on these services may be found in the SESD User's
ide. . AR

2.4-1

PROTOOOL

2.4.4 OTHER COMPUTERS

Other "category A" (general purpose) computers available for use at the
Goddard Space Flight Center include:

1, The SESCC IBM 7094-II computer. With 65K words of core and 1301-2
disk capability, this computer is located in Building 26 and intended
primarily for use by the National Space Science Data Center personnel.
More detailed information may be found in the SESD User's Guide.

2. The Information Processing Division's Univac 1108, which has 196,000
word memory, 512,000 words of fast drum storage, 419,200 words of
medium~speed drum storage, and 44,000,000 words of low-speed drum
storage. This computer, located in Building 23, has two CPU's shar-
ing the resources, which include 33 IBM-compatible 7-track tape
drives. The Univac 1108 supports various satellite projects, in-
cluding the Orbiting Geophysical Observatory (0GO), Orbiting Solar
Observatory (0S0), Applications Technology Satellite (ATS), and Orbit-
ing Astronomical Observatory (OAO) projects. More detailed informa-
tion on the Univac 1108 may be obtained from Mr. Eugene Grunby,
Extension 6428 or Mr. Mike Mahonhey, Extension 6028.

2,4.5 PLOTTERS

2.4.5.1 Stromberg - Carlson 4020 Plotter {SC 4020)

The SC 4020 is a cathode-ray-tube microfilm plotter having options for 35 mm
or 16 mm microfilm, or 7" x 7" hardcopy. It is no longer available at Goddard;
having been replaced by the Stromberg-Datagraphics 4060 Plotter.

2.4.5.2 Stromberg - Datagraphics (Formerly Stromberg - Carlson)
4060 Plotter

The SD 4060 Stored Program Recording System represents an improvement over
the SC 4020 unit described in the previous paragraph. It is located in
Building 23, Room 220, Extension 4434.

The 4060 system contains a Product Control Unit, which is a modified
Honeywell DDP 516 computer that controls information flow and formats the
output. This results in greater flexibility and higher operating speed.
The major advantages of the SD 4060 over the S5C 4020 are:

1. Hard copy is made available through the xerox copyflow process,
which allows the production of 8-1/2" x 11", 11" x 14", and strip
chart.

2. The graphics portion of a 4060 job takes only 25 percent as much
execution time as a comparable 4020 job.

204-2

PROTOCOL

3. The resolution of the 4060 output is 12.5 times greater than that
of the 4020 output.

Additional information about the SD 4060 may be obtained from the Universal
4060 System and Software Manual available through Mr. Don Kennedy, Extension
6992, or Mr. George Fleming, Extension 6346, both in Building 23,

Software packages for generating SD 4060 plot tapes on the MaDO 5/360 com-
puters are described in Section 12 of this document. Tapes generated for
the SC 4020 may alsoc be used on the SD 4060, However, this is inefficient
since it makes the 4060 simulate the 4020 and this procedure is not
encouraged.

2.4.5.3 CalComp 570 Plotting System

The CalComp 570 Magnetic Tape Plotting System (formerly in the 5/360-91 com-
puter room) is nho longer available at GSFC.

2.4.5.4 CalComp 770/780 Plotting System

There are two CalComp Model 780 Magnetic Tape Plotting Systems located in
Building 1, Room B8, Extension 6277. Each system consists of a Model 762 dig-
ital recorder, a tape transport, and a tape control unit. The Model 763 dig-
ital recorder is a drum plotter, similar to the 565R unit used with the 570
System, but with several added features--the plotting surface is 30 inches by
120 feet, and the plotter is capable of operating in the "ZIP" mode. This
mode is used to reduce plotting time when the plot consists of long, smooth
lines without abrupt changes in direction.

The 780 tape transport accepts 7-track tapes recorded at 200 BPI or 556 BPI.
These tapes may be prepared on IBEM 360 computers through the use of the 770/
780 plotter packages, as described in Section 12, For further information,
refer to the CalComp Digital Recorder User's Manual.

2.4-3/2.4-4

M&DO HARDWARE FACILITIES

SECTION 3

M&DO HARDWARE FACILITIES

3.1 GENERAL DISCUSSION

This section discusses, in general terms, the Operating System (0S) used
on the 360 computers at Goddard. Later sections discuss specific machines
and hardware characteristics.

3.1.1 OPERATING SYSTEM

The Models 25, 75, and 65 operate under a program package referred to as
OS/MVT (Operating System with Multiprogramming with a Variable Number of
Tasks). Multiprogramming is that operation of a processor which permits
programs to be executed in such a way that none of the programs needs be
completed before another is started or continued. This capability is
directed toward minimizing periods of idleness in any one part of the system.
The scheduling program assigns one activity to the central processor while
other activities are awaiting the completion of the input/output operations,
and these activities are executed in such a way that those components that
can function simultaneously are put to the fullest possible use. With MVT,
the processor can service up to 15 jobs, each containing several tasks.

The operating system consists of a control program and a variety of process-
ing programs. The latter include language translators, service programs, and
user-problem programs. The exact composition of the operating system is flex-
ibkle. All OS programs are stored in libraries on direct-access devices, Those
basic to the system remain in memory:; infrequently-used programs are stored
on-line on direct-access storage devices and copies brought forward as needed.
Furthermore, user-designed programs can be incorporated into the operating
system for the duration of a single job or they may be stored in libraries

and remain a part of the system for an extended period of time.

3.1,2 CONTROL PROGRAM

The control program directs the order in which jobs are processed, the work
flow within the system, and input/ocutput operations. It has three major parts:
the job scheduler, the master scheduler, and the supervisor, These parts re-
main in core indefinitely. In additijon to these, a group of supplementary
routines is also available. These are brought into core from auxiliary storage,
as needed.

3.1-1

M&DO HARDWARE FACILITIES

The job scheduler reads job definitions from input/output devices; allocates
input/output devices to each job; initiates the execution of the processing
program specified for each job; processes selected output produced during each
job; and provides records of work processed. In addition to performing these
standard functions, the job schedulers for Goddard's 360 systems are uniquely
tailored to classify jobs and establish their priorities. Refer to Para-
graph 2.2.7 of this User's Guide for further details on the job scheduleys.

The master scheduler is a two-way communication link between the operator
and the system. The operator can issue commands to the master scheduler,
alerting the system to a change in the status of the input/output devices;
altering the operation of the system; and requesting information on the
status of the system. Goddard's 360 systems provide extended communication
with the operator: the master scheduler keeps the operator informed of
where jobs are coming from and where they are going.

The supervisor is the control center of the operating system. It provides

a nurber of services for other parts of the system, either in response to a
specific request (e.g., request for storage space) or in response to some
contingency (e.q., hardware malfunction). These services include allocating
main storage space required by programs during their execution; sharing
areas of main storage among routines that need not be in main storage at the
same time; loading programs into main storage; controlling the concurrent
execution of programs and routines; scheduling and controlling input/output
operations; providing the time of day and other timing services; and provid-
ing standard procedures that assist in diagnosing exceptional conditions.

3.1-2

M&DO HARDWARE FACILITIES

3.2 MsDO IBM 360/95

3.2.1 LOCATION

The MsDO Model 95 computer is located in Building 3, Room 153. Its systems
hardware and on-line and off-line peripheral devices are described below.

3.2.2 SCHEDULING AND OPERATIONS

The Computer Manager for the M&DO 360/95 is Mr. Harry G. Bitting, Building

3, Room 130, Extension 6886. The Systems Programmers respongible for coordi-
nating system programming activities on the 360/95 are Mr. Eugene A. Czarcinski,
Building 3, Room 133E, Extension 6710 and Mr. Frank J. Pajerski, Jr.,

Building 3, Room 127, Extension 6798.

Users may submit jobs to the Model 95 through the Dispatch Station, Building
3, Room 167, Extension 6733, or through remote terminals.

The systems programners responsible for the remote terminal systems such as
CRJE (Conversational Remote Job Entry) and APL (A Programming Language) are
Mr. Harry E. Crispell and Mrs. May Wilson Adams both located in Building 3,
"'Room 129, Extension 6796.

3.2.3 HARDWARE CONFIGURATION
As shown in Figure 3.2-1:

a. Model 20957 Central Processing Unit (CPU). 'This unit addresses
main storage, performs ‘logical and arithmetic functions, and
initiates communication between main storage and external devices.
The CPU has a basic machine cycle time of 60 nanoseconds.

b. Model M-120-JF Processor Storage. This has 1024K bytes of thin-
film memory. It operates at a basic machine cycle time of 120
nanoseconds. :

c. Model 2395-2 Core Storage. This has 4096K bytes of high-speed
core, with a basic cycle time of 7530 nanoseconds.

d. Model 2250-1 Master Console and 2260-1 and 1052 Alternate Consoles.

e. One 2860-1 Selector Channel with a 2314-Al1 Direct-Access Storage
Facility attached. The 2314-Al has a capacity of 233,408K bytes.

[A A

SHILITIOVNS TIYMAUVH OABH

M-120-4
0nF 23952 THIN FILM
CORE STORAGE 2055 MEMDRY
1062-7 oE7 Rkl PROCESSOR 1248
KEYBOARD 1,048 676 BYTES
22501
21501 | J
CRT
CONSOLE DISPLAY
(CONTINUED ON NEXT PAGE)
70 MADO [
CHANNEL 0 2870-1 MULTIPLEXCR CHANNEL
SELECTOR SUBCHANNELS
o oc oD 0E
27031 28032
28211 2821-3 28216 2848-3 TRANS, TAPE
CONTROL CONTROL CONTROL CONTROL CONTROL CONTROL
080 0nc no poc 000 1050, 2741 TYPE, AND
2780-2 REMOTE
TERMINALS
25401 2540-1
2701 CARD ;;?S‘#E‘R CARD
PDA AEAD/PUNCH READ/PUNCH
OAG-0AT
001
cAIRS 1403-N1
1403-M1
PRINTER PRINTER

Figure 3.2~1.

Equipment Configuration:

O
TO CYC ADAPTER
ON CH-1 380,75 {C1)
oCF

IEM 360

System, Model 95 (Sheet 1 of 2)

TO CTC ADAPTER ON
CH. 1 360/75 {C2)
aDF

£€-Z°E

(CONTINUED FROM PRECEDING PAGE}

2860-3 SELECTOR CHANNEL

2860-1 SELECTOR CHANNEL

3

28201
DRUM
CONTROL

23141
DISK

140-147

—

Figure 3.2-]1.

2841-1
STORAGE
CONTROL

Equipment Configuration:
System, Model 95 (Sheet 2 of 2)

23141
DISK

230-237

2314-A1
DISK

330-337

—

STILITIOV FUYMTIYH OQ9W

M&DO HARDWARE FACILITIES

f. Three 2860-3 Selector Channels with:

1. Two 2314-1 Direct Access Storage Facilities, containing
233,408K bytes each,

2. One 2321-1 Data Cell, containing 400,000K hytes.
3. Two 2301-1 Drum Storage Units, containing 4,000K bytes each.

4, A Channel-to-Channel adapter which can be used to tie the
Model 95 together with the 360/75 (Cl) or 360/75 (C2).

5. One 2-Channel Switch.

g. One 2870-1 Multiplexor Channel, including three selector subchan-
nels with:

1. Two 2250-1 Graphic Display Units

2. Eight 2401-6 2-track tape drives

3. Four 2401-3 7-track tape drives

4, T™wo 2540-1 Card Read Punches

5. Five 1403-N1 Printers with an HN Print Chain
6. One 2701-] Data Adapter Unit

7. One 2703-1 Transmission Control Unit for attaching IBM 1050,
2741 type, and 2780-2 remote terminals to telephone lines

a. Eight 2260-1 Alphameric CRT Displays
3.2.4 UNIT ADDRESS
The following are the device addresses for unitg attached to the Model 95.

They are presented here for the reader's edification; however, unit ad-
drasses should never be used in the UNIT field on DD cards.

3.2=4

M&DO HARDWARE FPACILITIES

Device Type Address

2150/1052 *01lF

2314-al 330-337

2314-1 230-237, 140-147
2321-1 2E3

2301-1 1co, 1cl

2250-1 *0E7, OEQ-0FE1l
2401-6 0C2-0C5, 0Db2-0D5S
2401-3 oco, 0Cl, 0ODG, OD1
2540-1 00C, 0lc, 00D, 01D
1403-N1 001-003, 00E, OOF
2260-1 OAO-0RAG&, *OA7

*Reserved for cperators consocles.

NOTE: The 2250 (0El) and 2260's {0A2, OA4) available for general use are
located in Building 3, Room 137. The other 2250 and 2260's are dedi-
cated to specific projects.

3.2.5 VOLUME SERIAL NUMBERS

In the volume label of each Direct-Access Storage Device (DASD) is a unigue
serial number, referenced by the keyword parameter VOL=SER=volume in the DD
card. The following is a list of the serial numbers assigned to the DASDs
normally mounted on the Model 95:

Device Volume
Type Use Serial Number
2314 Work or G1SCR1 through
scratch packs G1SCR9

2314 Storage of user GlUSR1 and
data sets GlUSR2

2321 Storage of user GlUSR3 and
data sets GlUSR4

2301 Storage of system G1DRM1 and
data sets G1DRM2

2314 Storage of system GlS¥S1l and
and user data sets Gl8Y¥S2

2314 Used by the CRJE G1CRJ1, GlCRJ2

and the APL system APLRIT, APLR19

The other seven packs are private user packs, such as CAIRS1, DODS packs,
etc. '

3.2-5

M&DO HARDWARE FACILITIES

3.2.6 SOFTWARE

The 360/95 is currently operating under Release 21.6 of the IBM 5/360 Operat-
ing System with MVT. The Model 95 is not equipped with a decimal instruc-
tion set and can only simulate these instructions through software technigues.
Since the simulation is extremely slow, lengthy decimal operations should

be performed on Models 65 or 75, which are equipped with the decimal
instruction set.

The following 360 instructions use decimal arithmetic.

AP - Add decimal

cp -~ Compare decimal
DP - Divide decimal
MP - Multiply decimal
SP - Subtract decimal
ZAP - Zero and add

3.2-6

M&DO HARDWARE FACILITIES

3.3 MeDO IBM 360/75 (Cl)

3.3.1 LOCATION

The Model 75 (Cl) is located in Building 14, Room 100. It is used pri-
marily to perform attitude and orbit determination work. However, when

the work load warrants it, general purpose jobs will be run when so indicated
by the user on his submittal form. Its systems hardware and on-line and
off-line peripheral devices are described below.

3.3.2 SCHEDULING AND OPERATIONS

The Computer Manager for the M&DO 360/75 Cl is Mr, Harry G. Bitting, Building
3, Room 130, Extension 6886. The Systems Programmers responsible for coor-
dinating system programming activities on the C1 are Mr. Calvin W. Curlen,
and Mr. Herbert R. Durbeck, Building 3, Room 133E, Extension 6710 and

Mr. Larry G. Hull, Building 3, Room 126, Extension 5308.

Users may submit jobs to the Model 75 through the Dispatch Station in
Building 3.

3.3.3 HARDWARE CONFIGURATION
As shown in Figure 3.3-1, the system components are:

a. Model 2075-J CPU, with a basic machine cycle time of 195 nano-
seconds (equipped with the standard, decimal, and floating point
instruction sets).

b. Two Model 2365-3 Processor Storage Unite with a capacity of 512K
bytes each, of high-speed storage, and a bagic machine cycle time

of 750 nanoseconds.

c. One Model 236l-1 Core Storage unit, with a capacity of 1024K bytes
of Large Core Storage (LCS), and a cycle time of 8 microseconds.

d. One Model 2150/1052 Typewriter Console.
e. One 2860-2 Selector Channel with:

1. One 2314-1 Direct-Access Storage Facility, with a capacity
of 233,408K bytes.

2. Two 2303-1 Drum Storage Unit, each with a capacity of 4,000K
bytes.

3.3-1

-g'¢t

3611
CORE STORAGE

SHILITIONA E&VMGHVH oaeu

2045
1049578 BYTES PR]
10627 o1F B 0cESSa 1,048,576 BYTES
KEYBOARD 75 1
2160-1
CONSOLE
2870-1 MULYIPLEXOR CHANNEL 2B50-2 SELECTOR CHANNEL 8801
20003
SELECTOR SUBCHANNELSE STORAGE CHANNEL TO COMMUNICATION SELEGTOR
1 2 'ET‘AANNSNFEELR CHANNEL CHANNEL CHANNEL
o oG i o0 0E aF 8 ADAPTER 5
15 l l
CHA LD
UNIVAL 404
10 360728 VSTEM
12l SUBCHANNEL aveme
ot
*29111 . .
swiITCH 28711 z7021 0022 Z1-1 oty 284S 23181
TCH SWITCH 2841-2
BOX CONTROL CONTROL TARE bl FiLE DISK
P BOX HOX CONTROL
il ONTADL oo, o, CONTROL 230237
2770 m l l L l £30-837
caNg [sbaz 1060, 2741
TYPE REMDTE
TERMINALS
1403-M1 "
2821-3 PRINTER 28215 28032 zg‘?r‘ 23031
CONTROL (CONTROL LONTAOL LAY DRUM 95
oot
wr
1403-N1 “ 3031
PRAINTER
D2 (= DocC oop
25401 265401
2601-81
CAAD READ/ (CARD READ/
e PaNGH CARD READER PaneH

14D3-N1

PRINTER
00E
u__/i_
MR | vacat “
*HAROWARE SHARED BY THE C1 AMD G2 GOMPUTERS
15 GHOWN (N FIGURE 3.4-1 ASWELL A8 IN FIGURE 3.3-3.

0C0-0c7

Figure 3.3-1. Equipment configuration: IBM 360
System, Model 75 (Cl)

M&DO HARDWARE FACILITIES

£. One 2860-1 Selector Channel with:

1, One 2314-A1 Direct-Access Storage Facility, with a capacity of
233,408BK bytes.

g. One 2870-1 Multiplexor Channel, including four selector subchannels
with:

1. One hard-wired 2250-1 Display Unit

2., Five 2401-6 9-track tape drives

3. Three 2401-3 7-track tape drives

4. One 2501-Bl Card Reader

5. One 2540-1 Card Read Punch

6. Two 1403-Nl1 Printers with a QN print chain

7. One 2702-1 Transmission Control Unit fo: the attachment of
CRJE remote terminals

8. One 2321-1 Data Cell, with a capacity of 400,000K bytes.
For units switchable between the (Cl) 75 and the (C2) 75 see paragrarh 3.4.3.
In addition, varicus communication channels are present for interfacing with
the Model 95, and Univac 494 system.
3.3.4 UNIT ADDRESSES
The following are the device address for the units attached to the Model 75

{Cl). They are presented here for the reader's edification; however, unit
addresses should never be used in the UNIT field on DD cards.

Device Type Address
2150/1052 QlF

2314-1, Al 230-237, 530-537
2321-1 0r3

2303-1 196, 197

2250~] OEQ

2401-6 oCcl-~0Cs

2401-3 0COo, 0Ce-0C7
2501-B1 04C

2540-1 00C,00D,01C,01D
1403-N1 002,003

2702 020-027, 030-037

M&DO HARDWARE FACILITIES

3.3.5 SERIAL NUMBERS

The volume serial numbers for the DASDs on the Model 75 (Cl) are as follows:

Scratch or work
System packs

Libraries

bDevice
Type Use
2314-1
packs
2314-1
2321-1 User
2303-1

System storage

3.3.6 SOFTWARE

The 360/75 (Cl) is currently operating under Release 21.6 of the IBM S/360

Operating System with MVT.

Volume
Serial Number

G35CRO - G35CR4,
H1SCR1, H1SCR2, H1SCR4
G38Y¥50, G3s5YSl

G3UsSR1
G3DRMO, G3DRM1

3.3-4

M&DO HARDWARE FACILITIES

3.4 MeDO 360/75 (C2)

3. 4.1 LOCATION

The IBM 360/75 (C2) computer, located in Building 14, Room 100, is the
primary support system for the Goddard Real Time System (GRTS). The C2 is
used primarily to perform attitude and orbit determination work. Its system
hardware and on-line and off-line peripheral devices are described below.

3.4.2 SCHEDULING AND OPERATIONS

The Computer Manager for the Model 75 (C2) is Mr. Harry Bitting, Building 3,
Room 130, Extension 6886. The systems programmers responsible for coordi-
nating system programming activities on the C2 are Mr. Larry G. Hull,
Building 3, Room 126, Extension 5308, and Mr. Herbert R. Durbeck, and

Mr. Calvin W. Curlen, Building 3, Room 133E, Extension 6710.

3,4.3 HARDWARE CONFIGURATION

The system components for the Model 75 (C2) are as follows:

a. A Model 2075-J Processing Unit {equipped with the standard,
decimal, and floating point instruction sets)

b. Two Model 2365-3 Processor Storage units, with a capacity of 512K
bytes each, of high speed storage, and a basic machine cycle time
of 750 nanoseconds.

c. One Model 2361-1 Core Storage with 1024K bytes of LCS

d. One 2B860-1 Selector Channel with:

1. One 2314-A1 Direct Access Storage Facility, with a
capacity of 233,408K bytes of storage

e. One 2860-2 Selector Channel with:

1. One 2314~1 Direct Access Storage Facility, with a capacity
of 233,408K bytes of storage

2. Two 2303-1 Drum Storage devices, each with a capacity of 3900K
bytes

f. One 2870-1 Multiplexer Channel with four selector subchannels with:
1. Two switchable 2250-1 Display Units

2. One hard wired 2250-1 Display Unit

3.4-1

-F't

UNIVAC 484 .
SYSTEM
1 1062.7°
KEYBOARD
COMMUNICATION (2] 23853
CHANNEL 2308.3 cru g-onma 2075 iy
2618 ou 1048676 BYTES
" 1,048,576 BYTES s
28801 Z860-2 SELECTOR CHANNEL 2870-1 MULTIPLEXOR CHANNEL
BTORACE o BELECTOR SUBCHANNELS
B CHANNEL 2 1 [
oF I x
[
2314-A1 23141 28411 28411 28216 s2e111
s DISK FILE FILE carDpTR | | L stTeH
230237 CONTROL CONTROL CONTROL A TAOL oK,
‘\._‘_‘___./
g 1
Z g 140341
I [PRINTER CARD/PTR
s 4 . DOE CONTROL
& 23211 J
F DATA T
CELL
DRIVE ou2
\/ 1403-N1 140301
PRINTER PRIBTER
28032
MAGNETIC 5401 003
cONTROL CARD RDR PRINTER
. o00c-00D |
—
*2811-1
St [oD
BOX 9ac
270214
DATA
ADAPTER
uNIT 130381 —
PRINTER
DISPLAY ‘ i 1 L'/_
0E3 CONSOLE 5 LINES
2o50-1* FOR
REMOTE TERMINALS

"HARDWARE SHARED BY THE C1 AND C2 COMPUTERS I
SHOWN IN FIGURE 3.3-1 AB WELL AS IN FIGURE 3.1-:‘.3 §

Figure 3.4-1.

FROM SUBCHANNEL 00 ON 360/25 (C1)

TO SWITCH BOX 2914-1 (2 x 4} ON 380/76 (C1)

FROM SWITCH BOX 2914-1 {2 x) ON 360/75 (C1}

Equipment Configuration: IBM 360

System, Model 75 (C2)

SEILITION TYYMTEYH Oa%H

FROM CH, 0 ON

360/76 {C1)

M&DO HARDWARE FACILITIES

3. Eight 2401-6 9-track tape drives (the 4 drives OD1-0D4 are
switchable with the Model 75 (Cl))

4, Two 2401-3 7-track tape drives (drive ODO is switchable with
the Model 75 (Cl)

S. Five 1403-Nl1 Printers (3 are shared with the Model 75 (Cl)}

6. T™wo 2540-1 Card Read Punches (one is switchable with the
Model 75 (Cl))

7. One 2321-1 Data Cell containing 400,000K bytes of storage

B. One 2702-1 Transmission Control Unit for the attachment of
CRJE remote terminals.

q. Cne 2150/1052 Typewriter Console

h, Various communication channels for interfacing with the Model 95,
the Univac 494, and IBM 1050 and 2741 type remote terminals.

3.4.4 UNIT ADDRESSES

The following are the device addresses for the units attached to the Model 75
(C2). 'They are presented here for the readers edification; however, unit ad-
dresses should never be used in the UNIT field on DD cards.

Device Type Address
2150/1052 OlF

2314-1 230-237

2314-al 530-537

2321-1 OF3

2303-1 196, 197

2250-1 OEQ (0El, 0E2 switchable)
2401-6 0Cl1l-0C4, OD1-0D3
2401-3 0CG, 0ODO, OD4
2540~1 00C, 04C, 00D
1403-N1 001, QOE, QOF

3.4~3

M&DO HARDWARE FACILITIES

3.4.5

The volume serial numbers for the DASDs on the Model 75 (C2) are as follows:

Device

Txge

2314-1,
Al

2314-1,
Al
2314-1,
Al
2314-1,
al
2321-1

2303-1

3.4.6 SOFTWARE

The 360/75 (C2) is currently operating under Release 21.6 of the IBM S§/360

VOLUME SERIAL NUMBERS

Use

Scratch or work
packs

Goddard Real Time

System (GRTS)
System packs

User libraries
User libraries

System storage
Seratch or work

Operating System with MVT.

YVolume
Serial Number

H1SCR1, HI1SCR2,
H1SCR4, G3SCRO,
G3SCR1
H1RTS1~H1RTS4

H1LIBS, H1IPLB
H1ARTS, H1ART2
{GRTS source
libraries)

H1DRM2
H1DRM1

3.4-4

M&DO HARDWARE FACILITIES

3.5 MsDO IBM 360/65

3.5.1 LOCATION
The Model 65 is located in Building 14, Room E4. It is used primarily to

support the Orbiting Astronomical Observatory (QOAO} project. Its systenms
hardware and on-line and off-line peripheral devices are described below.

3.5.2 SCHEDULING AND OFERATICNS

The Computer Manager for the M&DO 360/65 is Mr. Harry Bitting, Building 3,
Room 130, Extension 6886. The Systems Programmer responsible for ccordinating
system programming activities on the 360/65 is Mr. Dave Spiegel, Building 3,
Room 127, Extension 6798,

Users may submit jobs to the Model 65 through the Dispatch Station, Build-
ing 14, Room S4, Extension 2195,

3.5.3 HARDWARE CONFIGURATION
As shown in Figure 3.5-1, the system components are:

. Model 2065-I CPU, with a basic machine cycle of 200 nanoseconds.
(Equipped with the standard, floating point, and decimal instruc-
tion sets).

b. Two Model 2365-2 Processor Storage units with a capacity of 256K
bytes each of high-speed storage and a basic cycle time of 750

nanoseconds.

c. One Model 2361-1 Large Core Storage unit with a capacity of 1024K
bytes and a-cycle time of 8 microseconds.

d. One Model 2150 console with two Model 1052 typewriter attachments.
e. One 2860-1 Selector Channel with:

1. Two 2314-1 Direct~Access Storage Facilities, with capacities
of 233,408K bytes each.

2. One 2303-1 Drum Storage Unit, with a capacity of 3,913K bytes.

3.5-1

Z-5°¢

23611 12) 23852
o0F CORE STORAGE 20851 PROCESSOR
1,048,676 BYTES PROCESSOR STORAGE
1062-7 Bus 524,288 BY TES
| KevBOaRD 7B
2150-1 10827
CONSOLE KEYBOARD
)
2870-1 MULTIPLEXOR CHANNEL 2860-1 SELECTOR CHANNEL
SELECTOR SUBCHANNELS
0 1
oc oo l 0E
27011 28215 3 25032 28032 2840-2
CONTROL CONTROL comzs, TAPE TAPE DISPLAY 2841-1 23141
CONTROL CONTROL CONTROL CONTROL DISK
04 230-237
DS 830
COMPUTER
1403N1
24013 243 22503
PRINTER MAG MAG CRT 0E0
TAPE TAPE DISPLAY
1403-N1 w w o€
23031
0c00c2 ORUM
26401 0D0-0D2
CARD
READ/PUNCH
197 OR 297
00C-00D

Figure 3.5-1.

Model 65

Equipment Configuration: IBM System 360,

SALLITIOVd HIVMOEYH OUSH

M&DO HARDWARE FACILITIES

f. One 2870~1 Multiplexor Channel, including three selector sub-
" channels with:

1. ‘Two 2250-3 Display Units
2. Two 2401-6 9-track tape drives (800 and 1600 BPI)
3. Two 2401-3 9-track tape drives (800 BPI)
| 4, Two 2401-3 7-track tape drives
5, One 2540-1 Card Read Punch
6. Two 1403-N1 Printers with a ON print chain
7. Eight 2260-1 Display Units

8. One 2701-1 Transmission Control Unit, used for communication
with SDs 930.

NOTE: The Model 65 has two 9-track tape drives that read/write only at 800
BPI. It alsoc has two dual density 9-track tape drives that read/write
at 800 and 1600 BPI. To insure allocating a 9~track dual density drive,
code UNIT=2400-4,

3.5.4 UNIT ADDRESSES
The following are the device addresses for the units attached tc the Model 65,

They are presented here for the reader's edification; however, unit addresses
should never be used in the UNIT field on DD cards.

Device Type Address
2150/1052 QlF,009
2314-1 130-137
2314-1 230-237
2303-1 197

2401-6 0Cc2,0D2
2401-3 9-track 800BPI 0C1,0D1
2401~3 7-track 0C0,0Do
2540-1 00C, 00D
1403~N1 O0E,OCF
2260-1 050~057
2250-3 0EQ-0EL

3.5-3

M&DO HARDWARE FACILITIES

3.5.5 SERIAL NUMBERS

The volume serial numbers for the DASDs on the Model 65 are as follows:

Device Volume

Type Use Serial Number
2314-1 Scratch packs G2SCR1 - G25CR4
2303-1 System storage G2DRUM

3.5.6 SOFTWARE

The 360/65 is currently operating under Release 21.6 of IBM S/360 Operating
System with MVT,

3.5-4

M&DO HARDWARE FACILITIES

3.6 PERIPHERAL AND ACCESSORY EQUIPMENT

3.6.1 LOCATION

The IBM 360/20, 360/30, the Honeywell DDP-24/H632 and the CDC 160A systems
are located in the Main Computer Room, Building 3, Room 153. One IBM

360/30 is located in the Riggs Building. All requests for work to be
performed on these systems are submitted to the Dispatch Station, Building 3.
3.6.2 IBM 360 MODELS 20 AND 30

The smaller models of the IBM 360 system are used primarily to prepare input
and output for the larger computing systems.

3.6.2.1 360/20

The Model 20 provides the card-processing services described in Paragrarph
2.3.8,1 of this manual.

3.6.2.2 360/30

The 5/360 Model 30 uses the following utilities for operations such as
tape-to-print, card-to-tape, tape-to-punch, tape copying, octal dump, hex
dump, and the printing of USASCII-B tapes.

DEBE is used for operations such as copying from card or tape to either card,
tape, or print. DEBE will handle either 7- or 9- track tapes.

The System/360 Multiple Utility Program is used for multiple card-to-tape,
tape-to-print, and tape-to-punch operations with 7- or 9-track tapes.

The Basic Programming System (BPS) Utility Programs are used for multiple
card-to-tape, tape-to-print, and tape-to-punch operations with 7- or 9-track
blocked or unblocked tapes, and tape-to-tape or tape compare with 7-track tapes.
The Octal Tape Dump Utility is used to dump 7-track tapes in octal format.

The Hex Tape Dump Utility provides a hex dump of 7- or 9-track unblocked tapes.

The Block Tape utility is used to print blocked tapes. The default blocksize
is 7200; any other blocksize must be stated explicitly.

The DDP utility is primarily used to print fixed blocked Honeywell USASCII-8
tapes on the Model 30.

3.6~1

M&DO HARDWARE FACILITIES

Execution of the utility programs is under the control of the operator. The
user needs only to specify the function to be performed and any identifying
information. For correct and efficient operation, the user must specify:

e 7- or 9-track tape (800 bpi only)
] Density

) Blocksize

e Mumber of files on tape

® Any special instructions required to further define or clarify the
operation

Since there is only one 9-track drive on this system, 9-track tapes cannot be
duplicated.

The Model 30 in the Riggs Building supports the IBM 360/75 (C2) system. It
performs data transfer operations similar to those performed by the Model 30 in
Building 3. In addition, it is uniquely equipped for printing documents;

its printer has a text-train character set (i.e., a full upper and lower case
and all special characters).

3.6.3 CDC 160A

The CDC 160A system interfaces the local STADAN operations and the various
tracking stations involved in those operations. Predicted orbit data gen-
erated by the 360/75 system are transferred from magnetic tape to paper
tape and relayed via teletype.

3.6.4 HONEYWELL DDP-24/H632

The DDP-24/H632 units are two highly versatile computers designed for applica-
tions involving control, monitoring, and computations in a wide range of
processes., Most internal operations of the DDP-24 computer are performed in
10 microseconds or less, including access time, and operations of the HE32
computer are performed in less than 1 microsecond.

The DDP-24/H632 complex at GSFC has four basic applications. First, it simulates
the STDN to check out the operational programs of the real-time system. Sec-
ond, it receives, edits, and records low-speed tracking data during missions.
Third, it transmits acquisition pointing data and acquisition scheduling mes-
sages via four teletype lines to the tracking sites. Fourth, it performs
variant difference analysis of high-speed data in support of missions. All of
these applications are performed in a real-time environment.

3.6-2

£€-9°¢

PROCESSING
UNIT 4K
2020 B2

MULT) FUNCTION
CARD MACHINE

2560 A-1

Figure 3.6-1.

PRINTER
1403-2

—

IBM 360/20 MsDO

SATLITIOVA MINMMIVH OQ3H

b-o'¢

PROCESSING
UNIT 16K BYTES
2030 D

MAG TAPE
CONTROL
24031

Fiqure 3.6-2.

KEYBOARD
10526

CONTROL UNIT
CARD/PRINTER
28215

/ﬁﬁ CONTROL

UNIT
1051-N1

CARD READ
PUNGH
1000/300 CPM
25401

IEM 360/30 M&DO

PRINTER
1100 LFM
1403 N-1
1416-%

PRINTER
1100 LPM
1403 N-1

1416-1

SHILITIOVL FIVMMIYH Od%W

M&DO HARDWARE FACILITIES

Further information concerning the DDP-24/H632 complex may be obtained from
Mr. Thomas J. Flannigan, Code 573, Extension 6031.

3.6.5 REFERENCES
IBM Reference Manual, IBEM System/360 Model 20, System Summary, Form GA26-5889.

IBM Reference Manual, IBM System/360 Model 30, Functional Characteristics,
Form GA24-3231.

CDC Reference Manual, Control Data 160 Camputer, Publication No. 60002300.

Honeywell H632 General Purpose Computer, Reference Manual, Document No.
130071960E,

DDP-24 Reference Manual, Document No. 71-157.

M&DO HARDWARE FACILITIES

3.7 UNIT CHARACTERISTICS

3.7.1 DIRECT-ACCESS DEVICES

A Direct-Access Storage Device (DASD) is one on which each physical record
has a discrete location and a unique address. Thus records can be stored

on a DASD in such a way that the location of any one record can be determined
without extensive searching. Records may be accessed serially, but they may
be organized so that they may be accessed directly.

The three types of DASDs are: the disk, the drum, and the data cell. Each
is described in great detail in Introduction to IBM System 360 Direct-
Access Storage Devices and Organization Methods, Form GC20-1649. Table
3.7-1 which is extracted from the above-mentioned document, summarizes the
characteristics of each type.

In the table, the capacity of a track is expressed in terms of the maximum
number of data bytes. This maximum may be achieved when there is one physi-
cal data record (block) per track formatted without a key. As the track is
divided into multiple data records, the additional address markers, count
areas, and gaps reduce the number of bytes available for data.

Table 3.7-2 gives the capacity from the standpoint of how many physical data
records of a given length will fit on a track. In some cases, the table cannot
be used and the number of records per track for a given record design must be
calculated, using the formulas discussed in the Introduction to IBM System 360
Direct-Access Storage Devices and Organization Methods, from which the table

is extracted.

Note that the table is divided into two parts, since the capacity varies
depending on whether records are formatted with or without keys. Normally
at Goddard, records are formatted without keys. Examples using the table:

*® Device is the 2314, records are unblocked and formatted without
keys, and data length is 400 bytes, There will be 14 records
per track.

L Device is the 2321, records are unblocked, and formatted with
keys, data length is 100 bytes, and key length is 8 bytes. In
using the right-hand side of the table, the number to look up is
data length plus key length ~ in this example, 108. There will
be 9 records per track.

® Device is the 2301, records are blocked and formatted without
keys, blocking factor is 3, and logical record length is 3800
bytes. The data area will be 2700 bytes, so there will be 7
blocks of 3 records each or 21 logical records per track.

3.7-1

M&DO HARDWARE FACILITIES

Table 3.7-1. Direct Access Device Characteristics

Bytes per Access Motion {MS)
Tracks Rotation | Transfar
Storage per Devica {ms} Rate
Device | Medium | Cylinders Cylindar Track | Cylinder (Million) Min, | Max. | Avg. Fult} {K8)
Pack: 200 Pack 2917
2314 Disk Model A1 0 7204 145,880 Model Al 25 | 130 | 60 5 312
Total: 1600 Total: 233,408
Modet A2 Model AZ
Towl! 1000 Total: 145,880
2303 Drum 80 10 4892 48,920 39 0 o] o 115 303.8
220 Drum 1 200 20483 4.09 4.09 [+] 4] 0 175 1200
{Million)
2221 Strip Strip: i
af 5 20 2000 40,000 400 95 | 600 | 350* 6O 56
ape Array:
10,000

* Agsuming that the previously addressed strip has already been restored. |f this assumption cannat be made, average access time is 564 ms.

Table 3.7-2, Track Capacities

Maximum Bytes per Physical Record Physical Maximum Bytes per Physical Record
Formatted without Keys Records Farmatted with Keys
per
314 2303 30 2321 Track 2314 2303 230 23N
7204 4892 | 20483 2000 t 7249 4854 | 20430 1984
3520 2392 | 10176 936 2 3476 2354 {10122 820
2298 1558 &139 592 3 2254 1520 6686 576
1693 1142 5021 422 4 1649 1od 4968 408
1332 892 3990 320 B 1288 B854 3937 306
1092 726 3303 %3] 1049 687 3250 238
921 606 2812 205 7 827 568 2769 190
793 517 2444 169 8 750 479 23, 154
694 447 2157 142 9 650 406 2104 128
615 302 1928 2 k] 10 51 354 1875 103
550 346 1741 101 11 606 o8 1688 85
a96 308 1585 BB, 12 452 270 1532 70
450 276 1452 13 13 a07 8 1399 58
411 249 1339 62 14 368 n 1286 a7
377 25 1241 B3 18 X33 187 1188 a8
347 204 1165 44 16 3am 166 oz 29
N 186 1079 37 17 277 148 1026 21
298 169 1012 30 18 254 3 959 15
276 155 952 24 19 233 17 899 9
258 142 887 20 20 5 104 844
241 130 848 15 2% 198 a2 795
226 119 804 10 22 183 81 751
211 109 763] 23 168 N o
199 100 726 24 66 62 873
187 82 691 25 144 54 838
176 84 659 26 133 48 606
166 77 630 27 123 39 577
157 Fil 603 28 114 32 550
148 654 577 29 106 28 524
139 68 554 30 e5 20 501

M&DO HARDWARE FACILITIES

3.7.2 IBEM 2400-SERIES TAPE DRIVES

IBM magnetic tape is a continuous recording medium similar to the tape used
in home recorders. Data are recorded in magnetized spots or bits, are perma-
nent, and can be retained for an indefinite period. As data are recorded, the
previous information is erased, thus permitting repetitive use of the tape.
IBEM Form GA22-6866, IBM System/360 Component Descriptions, 2400-Series Mag-
netic Tape Unit, contains a comprehensive presentation of the characteris-
tics, functions, and features of the IBM 2400-Series Magnetic Tape Units.
Table 3.7-4 summarizes the main characteristics.

3.7.3 OTHER HARDWARE COMPONENTS

The Computation Division ADP Equipment Guide discusses other hardware
components, such as EAM equipment, card readers and punches, printers, other
types of magnetic tape units, display consoles, remote terminals, direct
access external storage devices, control units, line attachments, and
processors and storage units.

3.7.4 CHARACTER SETS AND CODES

3.7.4.1 Character Sets

IBM has 12 standard character sets which can be used on the Model 1403 printer
and which provide for printing any set of up to 240 graphics. The print train
normally used on the GSFC printers is suitable for most purposes and provides
the best combination of speed and readability. The more characters available
for printing, the slower the printing operation will be. The following print
traing are available on the Model 1403 printers. Refer to Table 3.7-3.

Camputer Print Train Number of 1403's

360/95 HN 5

360/75 (C1) HN 2 (switchable with C2)
ON 2

360/75 (C2) HN 3 (1 switchable with Cl)

360/65 ON 2

360/30 RN 2

M&DO HARDWARE FACILITIES

Table 3.7-3. Print Trains in Use on the M&DO 1403 Printers

M
noter [123las8[78 ERIERLCE wx v zla, ([s K tmnofrar]. s-[as clo e elawale . 1|
e L/ (B0 GRAPHICS - 45 PREFEARED)

12 3}a6 6|76 8|0 XY/ S T/UVW , =ld kLMNO|lranl-2i(aBC|DE FlJGHI|+ .)

=T~
#|ml @)
w| w| | wf &

“RN” FORTRAN COBOL COMMERCIAL {62 GAAPHICS - 47 FREFERRED|

123456?BBOXYISTUVW'GS',=JKLMNOPQR-Z(ABCDEFGHI+.D

Rw | R
LA IR IR

NOTE I: Five full sets per cartridge arrangement.

Refer to the IBM System/360 Operating System Operator's Guide, Form GC28-6540
and the IBM 1403 Printer, Form GA24-3073 for information concerning other
character sets.

3.7.4.2 Computer Codes

The System 360 accepts two principal, coding schemes: Extended Binary Coded
Decimal Interchange Code (EBCDIC) and USA Standard Cede for Information
Interchange (USASCII).

EBCDIC uses eight binary positions for each character format, plus a position
for parity checking. By using eight-bit positions, 256 different characters
can be coded. This code permits, for instance, the coding of uppercase and
lower case alphabetic characters, a wide range of special characters, and
many control characters that are meaningful to certain input/output devices.
At present, many bit patterns have no assigned function (control or graphic).
They are reserved for future assignment. EBCDIC is one of the two principal
coding schemes for System 360,

USASCII is a seven-bit code developed through the cooperation of users of
equipment of communications and data processing industries, in an attempt to
simplify and standardize machine-to-machine and system—-to-system communication.

Because the System 360 has an eight-bit character capacity, it was necessary

to expand USASCII to an eight-bit representation. This expanded representa-

tion is referred to by IBM as USASCII-8. This code may be used for internal

processing and input/output purposes with System 360 in those media for which
USASCII has been standardized.)

3.7-4

S-L°¢

Table 3.7-4.

2400 Series Magnetic Tape

Unit Characteristics

2420
2401 - 2404 Tapa Units 2415 Tape Units Tape Unit
Characteristics Modsl 1 Model 2 Model 3 Model 1-2
Modeal 1 Model 2 Model 3 Model 18 | Model 7
Modal 4 Model 5 Model 6 odel 4-6
" § Track 9-Track 9-Track O-Track 8-Track
umber of Tracks NRZI 7-Track NRZI 7-Track NRZI 7-Track NRZ) 7-Track 9-Track
and NRZ| NRZ| NRZI NRZI PE
Recording Mathod 9-Track PE 9-Track PE 9-Track PE
800 800 800 800 800 800 800 800
Density {BPI) 556 656 556 556 1600
Bytes per inch 1500 200 1600 200 1600 200 1600 200
30,000 30,000 60,000 0,000 90,000 90,000 15,000 15,000
Dats Rata 20,850 41,700 62,500 10,425 320,000
tos/S .
(Bytes/Sec) 60,000 7.500 120,000 15,000 80,000 22,500 000 3,700
31.5 75.0 1125 18,75
Tape Speed 37.5 75.0 1125 1875 200
{In/Sec) 7.5 75.0 1125 18.75
0.6 0.6 0.6 0.6
Interblock Gap .75 75 75 .75 0.5
{Inchas)
06 06 0.6 - 0.6
Nominal 16.0 8.0 5.3 32.0
IRG Time 16.0 8.0 53 32.0 30
{In/MS.) 16.0 8.0 3 32.0
Rewind 30 14 1.0 4.0
Time 3.0 14 1.0 4.0 10
{In/Min} 3.0 14 1.0 40
Rewind & 2.2 15 1.1 4.0
Win
Unload Vs 2.2 15 11 ‘ 40 1.1
(In/Min) %2 1.5 1.1 X

SAILITIONA IHYMTYYH Od%W

M&DO HARDWARE FACILITIES

The coding and character representation for EBCDIC and USASCII may be found
in IBM System 360 Principles of Operation, Form GA22-6821. EBCDIC is an
extension of Binary Coded Decimal (BCD) interchange code, which is used
extensively on second-generation equipment (e.g., IBM 1401, 1410, 7010,
7090, and 7094 Data Processing Systems). Refer to the green card (IBM
System 360 Reference Data, Form X20-1703) for the relationship between
EBCDIC and BCD.

3.7.4.3 Card Codes

The standard Hollerith card code uses the twelve possible punching posi-
tions of a vertical column on a card to represent a numeric, alphabetic,

or special character. The twelve-hole positions are divided into two

areas, numeric and zone. The first nine-hole positions from the bottom

edge of the card are the numeric hole positions and have an assigned value
of @, 8, 7, 6, 5, 4, 3, 2, and 1, respectively, the remaining three posi-
tions, 0, 11, and 12, are the zone positions. (The 0 position is considered
to be both a numeric and a zone position.)

The numeric characters 0 through 9 are represented by a single hole in a
vertical column. For example, 0 is represented by a single hcle in the 0
Zone position of tlie column.

The alphabetic characters are represented by two holes in a single vertical
column, one humeric hole and one zone hole. The alphabetic characters A
through I use the twelve-zone hole and a numeric hole 1 through 2, respect-
ively. The alphabetic characters J through R use the eleven-zone hole and
a numeric hole 1 through 9, respectively. The alphabetic characters S
through % use the O-zone hole and a numeric hole 2 through 2, respectively.

The standard special characters §, *, %, and so on, are represented by
one, two, or three holes in a column of the card and consist of hole pat-
terns not used to represent numeric or alphabetic characters.

The card punch configuration for these characters may be found on the IBM
green card (IBM System/360 Reference Data, Form X20-1703). Since EBCDIC
contains more characters in its set than does BCD, the 029 keypunch offers
more special characters than the 026. In addition, there are different
nole patterns on the two keypunches for five of the special characters.

307"6

M&DO HARDWARE FACILITIES

These characters and the card codes for each of the two keypunches are
shown below:

Keypunch Code

Character 026 029

12 12-8-6
3 8-6
g-4 12-8-5

12-8-4 11-8-5
4

+
(
}
! 8-5

3.7.4.4 Paper Tape

Punched paper tape serves much the same purpose as punched cards. Developed
for transmitting telegraph messages over wires, paper tape is now used for
data processing communication as well. For long-distance transmission,
machines convert data from cards and keyboard strokes to paper tape, send
the information over telephone or telegraph wires to produce a duplicate
paper tape at the other end of the wire, and reconvert the information to
punched cards, for later processing.

Data are recorded as a special arrangement of punched holes, precisely
arranged along the length of a paper tape. Paper tape is a continuous
recording medium, as compared to cards, which are fixed in length. Thus,
paper tape can be used to record data in records of any length, limited
only by the capacity of the storage medium into which the data are to be
placed or from which the data are received.

Data punched in paper tape are read or interpreted by a paper tape reader
and recorded by a paper tape punch.

3.7-7

SOFTWARE STATUS

SECTION 4

SOFTWARE STATUS

4.1 GENERAL DISCUSSION

In the dynamic environment of the S/360 Operating System, the status of
software items is continually changing through new system releases, de-
velopnent of new or improved lanquage processors, updating of proprietary
packages, and countless other modifications. Most of these changes are
compatible with previous versions or require only minor modifications to
existing programs. Software packages are available directly through
LINKLIB; however, they may be stored in a private library and called by
the use of a JOBLIB or STEPLIB card. Users desiring to use programs not
available on an M&DD computer should contact the PAC for information on
how to temporarily include them in the system. B2As changes are made to
the system, they will be announced in the GSFC Newsletter, the M&DO 360
Computer Bulletin, and by notices in the Programmer Assistance Center.
Users are strongly urged to use this information to maintain an up-to-
date knowledge of the M&DO computer systems.

4.2 CURRENT SCOFTWARE STATUS

Table 4.2-1 presents the software available on the M&DO computers. Be-
cause the system libraries are continually being updated to satisfy the
requirements of changing user demands, the user should verify that his
required programs are (1) still available and (2) stored in the specified
library.

Release 21.6 of the Operating System is in use on all of the MaDQ 360
computers.

SOFTWARE STATUS

Table 4.2-1. Available Software on M&DO computers (Sheet 1 of 2)
ITEM SECTION 380/95 360/75 (C1) 360/65

OPERATING SYSTEM RELEASE RELEASE 21.6 | RELEASE 21.6 | RELEASE 21.6
NUMBER OF BYTES OF USER MEMORY 2700K 1800K 1500K
DEFAULT REGION SIZE 64K 80K 100K
PROCESSORS:

ASSEMBLER (G} 19.3.13 J J J

ASSEMBLER {F) 6.2,19.3. X X X

FORTRAN (G) 6.2, 19.3.1 X X X

FORTRAN (H) 62, 19.3.1 X X X

DAIO (DIRECT ACCESS INPUT/

OUTPUT) 17.2.6 X X N
LOADER 6.3.1,1932 | X b X
LINKAGE EDITOR (F) 6.3.1,193.2 | X X X
PL/1 (VERSION 4.3} 6.2,19.3.1 g J N
PL/1 (VERSION 5.3b) 62, 19.3.1 X X J
APL (A PROGRAMMING LANGUAGE) 15 X N N
CRBE (CONVERSATIONAL REMOTE

BATCH ENTRY) 14 N N N
CRJE (CONVERSATIONAL REMOTE

JOB ENTRY} 14 X N N
RJE {(REMOTE JOB ENTRY) 13 X N N
0S UTILITIES 9 X X X
RPG s x x N
SORT/MERGE 6.4,19.3.3 X X X
FAPCON {FORTRAN SINGLE TO

DOUBLE PRECISION CONVERT) 20,2,19.38 | X X N
FORMAC (FORMULA MANIPULA-

TION COMPILER) 7.3,19.39 J J N
SIGPAC (SIGNIFICANCE PACKAGE) 21.10 J N N

OTHER SOFTWARE PACKAGES:
BEEF (BUSINESS AND ENGINEERING

ENRICHED FORTRAN) * N N N
BOOLE & BABBAGE (PROBLEM _

PROGRAM ANALYZER) 7.2,19.37 J J J
CALCOMP 770 1233 3 N J
CALCOMP 780 1233] N N
CSMP (CONTINUOUS SYSTEM

MODELING PROGRAM) 7.8 J J N
ECAP (ELECTRONIC CIRCUIT

ANALYSIS PROGRAM) * N N N
GPCP IGENERAL PURPOSE

CONTOUR PROGRAM) * N N N
GPSS (GENERAL PURPOSE

SIMULATION SYSTEM) 74,19.3.10 | J N N
MARK IV 1237 J N N
SIMSCRIPT I11.5 i 7.7 J N N
SSP {SCIENTIFIC SUBROUTINE

PROGRAM) 7.10 X X J

CONVERSION AIDS:
DACUTS (WRITE 7094 BINARY TAPES

FROM S/360 FORTRAN) . N N N
DATASIFT (DATA STATEMENT

SIFT PROGRAM) 20.1 N N N
DATCON (WRITE 7094 OR 1108

BINARY TAPES FROM $/360

FORTRAN) 204 G G F

SOFTWARE STATUS

Table 4.2-1. Avallable Software on M&DO Computers {(Sheet 2 of 2)

ITEM SECTION 360/95 360/75 {C1} 360/65

DEBLOCK/CNVRT (CONVERT 7094

BINARY TAPES TO S/360) 203 G G F
FORTLCP (EORTRAN TO PL/M

CONVERSION) 205 N N N
TIDY (REFORMAT FORTRAN

SOURCE PROGRAMS) 20.6 N N N
UNPACK {USE 7094 PACKED DATA

ON 5/360) * G G F

GRAPHICS:

GPAK (GRAPHICS SUBROUTINE

LIBRARY) * N N N
GSP (GRAPHICS SUBROUTINE

PACKAGE) 12.1 X X X
GTS (GRAPHICS TERMINAL SYSTEM) 75 J J J
SC4020 PLOT PACKAGE 123 J J N
SD4060 PLOT PACKAGE 123 J J N
WOLF PLOTTING AND CONTOURING

PACKAGE 12.3 J J N

BIT MANIPULATION ROUTINES: 76 G G F

AND :

OR {INCLUSIVE OR}
EXCLUSIVE OR

ONES COMPLEMENT

BITON (SET ABIT TO 1)
BITOFF (SETABITTO D)
BITFLP (COMPLEMENT A BIT}

SHIFT LEFT
SHIFT RIGHT
TIMING ROUTINES:
FTIMIN, FTIMOT 794 G G F
TIMEIN, TIMOUT 7.94 G G F
REMTIM 7.9.1 G G F
TIME 793 G G F
ZTIME 7.92 G G F
KEY:
X = AVAILABLE THROUGH LINKLIB
J = AVAILABLE JN ANOTHER LIBRARY; MUST USE JOBLIB, OR CATALOGED PROCEDURE HAS A STEPLIB

OR SYSLIE CONCATENATION

NOT AVAILABLE

GSFCLIE {(EXTENSION OF FORTLIB)

FORTLIB

NOT INCLUDED IN THIS DOCUMENT. CONTACT MRS. PAT BARNES IN THE GSFC PROGRAM LIBRARY IN

BUILDING 3.

** = NOT INCLUDED IN THIS DOCUMENT. SEE THE APPROPRIATE IBM MANUALS FOR DOCUMENTATION AND
THE SYS51.PROCLIB OF THE APPROPRIATE COMPUTER FOR THE CATALOGED PROCEDURE.

D2
oo

SOFTWARE STATUS

4.3 WRITER NEWS FILE

Writer News is available on all of the M&bDO 360 computers. It provides
current news of interest to the computer user by inserting a brief file
of information after the job header page in the printed output.

4.4 M&DO 360 COMPUTER BULLETIN

The M&DO 360 Computer Bulletin is published on an as-needed basis. It is
distributed to members of the M&DO 360 User's Committee, which is responsible
for passing the information contained in the bulletin along to the pecople

it represents. Additional copies may be obtained from the Computer Manage-
ment Branch, Code 531, extensicn 6887,

4.5 MsDhO 360 COMPUTERGRAM

The M&DO 360 Computergrams are tutorial in nature. They are designed to aid
the user in making better use of the available 360 hardware and software.
They are distributed in the same manner as the M&DO 360 Computer Bulletin.

4.6 GSFC COMPUTER NEWSLETTER

The GSFC Computer Newsletter is also published on an as-needed basis. Copies
may be obtained from Mr. Dave Kohnhorst, Code 601, extension 6637,

4.7 DOCUMENT

Information is available in the cataloged data set SYS2.DOCUMENT concerning
new and improved versions of software packages in use on the M&DO 360 com-
puters. To retrieve the entire DOCUMENT library code:

J//INFO EXEC LISTPDS,DSN="5¥S2,DOCUMENT"’

To retrieve information for a particular software package the program name
(in this example ASMG) must be used.

//INFO EXEC DOCUMENT , PROGRAM=ASMG

4-4

JOB SET-UP

SECTION 5

JOB SET-UP

5.1 GENERAL INFORMATION

5.1.1 SCOPE OF THIS SECTION

This section explains the fundamental details of setting up a deck of JCL
and data cards as a job, and submitting them to be run on a M&DO computer.
Items explained are the job submission slips and the IBM Operating System
Job Contyxol Language or JCL. The JCL also controls input and output of
data, as well as the allocation of input/output devices to the job.

5.1.2 JOB SUBMISSION SLIPS

Available at the dispatcher's desk are three-part slips which must be com-
rleted and attached securely to the job being submitted. The user fills

in certain informaticn exactly as it appears on the job card including
sponsor number, programmer I.D., job name, box number, and length of run.
As on the job card, both CPU and I/0 times should be put in the appropriate
boxes on the slip. In addition, if tapes or private packs are to be used,
the user must write the identifying numbers on the slip. This is important
because it forewarns the computer operator that a particular volume will be
required by the job. The operators separate jobs into batches depending

on their use of private packs. This reduces the time required to exchange
these volumes.

There is a space on the job submission slip for required storage. The opera-
tors of the smaller computers use this information to determine whether they
can start another job. The remarks section should be used to indicate spe-
cial requirements, such as a particular machine on which the job is to be run.

5.1-1

JOB SET-UP

5.2 JOB CONTROL LANGUAGE

5.2.1 PURPOSE

The 360 operating system was intended to be very flexible ~ it assumes many
of the functions which are performed manually in less sophisticated systems.
The OS loads and initiates programs, monitors their execution, and terminates
them when necessary. In order to perform these functionms, the control pro-
gram must be given instructions for each Job that it will monitor. In S/360
these jnstructions are given in the Job Control Language {JCL) which must
accompany every job to be run.

5.2.2 OPERATION CONSIDERATIONS

In order to give the user a clearer understanding of the meanings of the
various JCI statements and operands, the following discussion very briefly
presents the sequence of events by which the operating system reads the JCL,
schedules jobs, and allocates resources.

JCL is read into the operating system by a “reader-interpreter" which is des-
cribed in Subsection 11.7. The reader processes the "input stream" which
contains JCL and input data. JCL is distinguished from the other data in the
input stream by the first two characters in each card. With the exception of
the delimiter or /* card which ends or delimits a section of data in thé input
stream, all JCL cards start with // in columns 1 and 2.

As the "reader" reads the input stream, it buffers (spools) the data to disk.
The "interpreter" scans the JCL diagnosing format errors, breaks the infor-
mation down, and places it on the job queue (the SYS1.SYSJOBQE data set)
where it also places pointers to the input stream data which has been spooled
onto the disk. If it finds a JCL error, it assigns a priority 14 (highest

in the system) to the job and flushes it out of the system. An "initiator"
looks at the job queue and pulls the job and data off the queue, in their
proper turn, based on priority and job class. The initiator selects the job
from the job queue, analyzing the I/O requirements of the job, allocating
devices to fill the requirements, issuing volume mount instructions where
needed, and verifying that the correct volumes were mounted. Once the job

is completely executed, the terminator terminates it, de-allocates its

data sets and volumes, and passes it back to the job gueue. From there

the writers pick up the system messages and system output data, which have
been spooled out during execution of the job, and print them. The operators
pick up the printed output and punched cards, if any; place them together with
the job submission slip, input deck, tapes, and whatever else was submitted;
and send them back to the dispatcher for delivery to the programmer.

5.2=-1

JOE SET-UP

5.2.3 GENERAL FORMAT OF JCL STATEMENTS

There are eight types of JCL statements. Four are normally used by program-
mers. These are the JOB statement, EXECUTE statement, DATA DEFINITION (DD)
statement, and the DELIMITER or /* statement. Four other JCL cards exist:
the NULL statement or // card used by the operators at Goddard to separate
jobs; the COMMENT statement -- that is the //* card in which programmers may
put comments as an aid in documenting their JCL; the PROC statement, which
is used only in cataloged procedures; and the COMMAND statement, which may
be used by operators to enter commands in the input stream rather than from
the console.

The general format of JCL cards is a // in columns 1 and 2 followed by a
name field, an operation field, and an operand field, followed by a comments
field. The name field begins immediately after the second slash, while the
name, operation, operand, and comment fields are separated from each other
by one or more blank spaces. The operand and comments fields may also be
continued on successive cards.

5.2.3.1 Name Field

Occasionally, the name field may be omitted, but preferably should be in-
cluded, as it identifies a control card so that other JCL cards or system
functions can refer to it. It can be from one to eight characters in
length and can contain any alphanumeric or "national” characters. The
alphanumeric characters are A to Z and 0 to 9, and the national characters
are the @ sign, the $ sign, and the number or pound sign, #.

5.2.3.2 Operation Fielgd

The operation field specifies the type of control card, JOB, EXEC, Db, PROC,
or an operator's command. The other types of JCL cards (i.e., comment, de-
limiters, null) do not have operations.

5.2,3.3 QOperand Field

The operand field contains parameters. Some of these parameters are posi-
tional. That is, they are only legal in a certain position within the oper-
and. Others are of the keyword format: (KEYWORD=value (s)) , where "keyword" is
the name of the parameter and "value" is the value assigned to that parameter.
Some parameters also have subparameters, which likewise may be positional

or keyword. Parameters are separated by commas (blanks are not permitted).
Positional parameters must be coded in the order specified before any key-
word parameters. The absence of a positional parameter is indicated by the
coding of a comma in its place. If the absent positional parameter is the
last parameter, or if all other positional parameters are also absent, re-
placing commas should not be coded. Parameters with multiple values must

5.2-2

JOB SET-UP

be coded within parentheses. That is, subparameters which are likewise
separated by commas are coded surrounded by parentheses so that the scanning
routines of the reader-interpreter do not interpret them as separate prime
parameters. The keyword parameters may be coded in any order after the
positional parameters.

If any characters are used other than the alphanumeric or national charac-
ters (and occasionally a period or a hyphen) in some subfields, the para-
meter must be enclosed in single quotes. If a quote or an apostrophe is
used within the field, it must be doubled.

5.2.3.4 Comments

Comments may be coded on any JCL card by leaving cne or more blanks between
the last field and the beginning of a comment. This is true even if the
operand field is to be continued. The operand field can continue no further
than column 71 of the card. If the operand will not fit on one card, or if
it is desired to split the parameters onto separate cards for readability

or any other reason, the field must be interrupted after a complete para-
meter®*, including the comma that follows it, at or before column 71, and a
// must be coded in the next card; the interrupted card is continued in
column 4 to 16. If the continuation card is begun after column 16, the con-
tinuation is treated as a comment.

Besides interrupting after a complete parameter in order to continue, certain
subparameters can be interrupted. These are in the account and PARM fields
on execute cards; condition parameters on job and execute cards;: and the DCB,
VOL=SER, SEP, and UNIT=SEP parameters on DD cards.

5.2.4 JOB SEQUENCING

On occasion, the user may need to run multiple jobs which are order-dependent,
i.e., the execution of cne job is dependent upon the successful completion of
another job.

The introduction into the system of one job followed by another is no guaran-
tee that the second job will be run last. Depending upon multiple considera-
tions, including I/0 and CPU times and the size of the region required, the
second job might well execute first.

*Continuation cards were originally specified by coding a non-blank charac-~
ter in column 72. This is no longer required, but is sometimes seen in
older procedures. Under this old system, a continuation card had to start
in column 16. However, this is no longer true.

The only reliable means to prevent one job from being selected for process-

ing until after another job has terminated is to code the keyword parameter
TYPRUN=HOLD in the JOB card of the job which is to be executed last. The

5.2-3

JOB SET-UP

job is then held until a RELEASE command is issued by the operator. The oper-
ator must be informed (by means of the comments field on the job submission
slip) about what should be done and when the job should be released. Failure
to do so may cause the job to be released prematurely.

5.2-4

JOB SET-UP

5.3 DECK SETUP

The following table presents the sequence in which JCL statements are to be
placed when setting up a job.

Table 5.3-1. JCL Statement Sequence

SECTION
JCYL. STATEMENT FUNCTION REFERENCE

JOB Defines a job and supplies accounting 5.3.1
and other information about the job to
the system.

JOBLIB Indicates that a private library is to 5.4.2
be searched for the program(s) to be
executed. This card is not needed for

a program which is on the system library.

EXEC Defines a "job step”, naming the program 5.5
to be executed (or the cataloged proce-
dure to be referenced).

STEPLIB Indicates that a private library is to 5.4.1
be searched for the program(s) to be
executed. This card is not needed for

a program which is on the system library.

DD Defines a data set to be referenced by the 5.6
job step. One DD statement is required
for each data set referenced.

A job may have multiple steps by the use of multiple sets of EXEC and

DD cards. The completion of the last step in a job is marked with a JOB
statement associated with the succeeding job, or a NULL statement (subsec-
tion 5.7.2). When a DD DATA statement is used to define the input stream
the last card of the job must be a delimiter statement (/*).

The number of EXEC and DD statements allowed per job varies, depending upon

the limit of the job queue space. Any job which has too many EXEC and

DD statements for the system to handle will be ABENDed with a completion

code of 422. 1If possible, the job should be subdivided into several different
jobs and submitted separately. If it is not feasible to do so, the programmers
in the PAC (see paragraph 2.3.10) should be consulted.

5.3.1 JOB CARD FORMAT

The JOB card format is as follows:

//useidxxx JOB (ssssscpppp,r,prgram,tttttt),box,MSGLEVEL=(x,y)

5.3=1

JOB SET-

The JOB card is the first card in a deck of cards submitted as a S/360
computer job. The format is determined by the GSFC accounting proce-
dures, and entries must be exactly as shown in Table 5.3-2, More detailed
information about the GSFC accounting procedures may be found in subsec-
tion 2.1 of this User's Guide.

NOTE: It is imperative that the correct programmer ID, sponsor number,
project code, and program number be used on the JOB card. Incorrect use o
any of the above will cause the job to fail with a message printed as to
which field is in error. After an error is detected in one of the fields,
remaining fields are not scanned.

5.3-2

JOBR SET-UP

Table 5.3-2. Job Card Format

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

Col.

3-10

i2-14

17-21

22

23-26

28

30-35

37-39

40-42

45-47

49-57

The programmer's S5-letter ID, plus three more characters that
are unique to that job. The combination makes up the job
name. (useidxxx)

The Word "JOB"

The sponsor number (sssss)

The category code (c)

The project code (pppp)

The run type, as follows: ({(r)

T for test

P for production run

R for hardware-error run

S for tape-error rerun

o for software-error rerun
U for operator—-error rerun

Program number (prgram)
Estimate of CPU time (minutes) needed to run the job. (ttr)l

Estimate of I/O time (minutes) needed for the job. {Note:
the operating system will assign a priority to the job,
based on the greater of the two time estimates. If either
the CPU or I/0 estimate is exceeded by the job, the run will
be ABENDed. See the discussion below of completion codes
for insufficient time.) {ttt}l

Box number at the computer facility. A user who does not have
a box assigned should request one from the dispatcher. (box)

MSGLEVEI=(x,y): Informs the job scheduler as to which JCL
and allocation/termination messages are to be printed.
(Continued on the following page}

1300 is valid for CBU or I/O time on the 360/95 and represents a time request
of 1/2 minute. HOO is not valid on the M&DO 360/75's and 360/65.

5.3-3

JOB SET-UP

Table 5.3~2., (Cont'd}

The value of x may be:

0 Only the JOB statement is to be printed (default value).

1 All JCL statements, catalecged procedures, and over-
rides to cataloged procedures appear in their proper
sequence,

2 Only input job control statements (cataloged procedure
statments will not appear).

The value of y may be:

0 No allocation/termination messages are to appear, unless
the job abnormally terminates. If this occurs, these
messages will appear as output.

1 All allocation/termination messages will appear (default

value).

NOTE: If MSGLEVEL=(X,Y) is omitted, the system defaults to (2,0) on the M&DO
360/95 and 75's and (1,1) on the 360/65.

5.3-4

JOB SET-UP

5.3.2 ESTIMATING CCMPUTER TIME

A new, optional software feature has been implemented that permits work to be
run on the most available equipment capable of processing the given job. 'Only
the submitter can determine whether, for example, the 360/75 can process a job
originally set up for the 360795, and it is his responsibility to make this
determination. The greatest deterrent to such interchangeability has been in
the area of CPU time estimates. If time is estimated for the 360/95, it may
run out on a slower machine. Conversely, if time were estimated for the 360/75
or 360/65, it would suffer an artificially lower priority if run on the 360/95.
The optional feature automatically adjusts the CPU time estimate if the job is
loaded on a machine other than the one estimated for. 1In the absence of the
optional JOB card field described below, no time estimate adjustment will be
made by 0S/360. The option consists of two digits and a period preceding the
"hox number” on the JOB card.

//jobident JOB (...account info...) ,xx.box
where xx is either 65, 75, 91, or 95 and designates the machine to which the
CPU time estimate in the accounting information applies. If run on a differ-
ent machine, this figqure is adjusted according to the factors shown in the
following table.

Actual For

Estimated For 360/65 360/75 360/91 360/95
360/65 1 0.80 0.67 0.5
360/75 1.25 1 0.50 0.33
360/91 4 3 1 0.80
360/95 5 4 1.25 1

For example, if you estimate x minutes to run a job on the 360/95 that is
actually run on the 360/75, you will get 4x minutes of CPU time. Experience
may dictate some adjustment in these factors in the future, in which case
prior notification will be issued.

Note that 360/95 EMS (core memory) is assumed, not thin film. High-speed
memory is assumed for the 360/75 and 360/65. Also, graphics users must still
plan to run jobs in LCS on the 360/75, and the user must still include ade-
quate CPU time. Finally, in order to avail himself of the best possible serv-
ice, the user must indicate, on the handwritten job slip, the machines on which
his jobs can be run.

This is not an automatic transferral of job decks from one machine to another
via a communications link. Hence, it would be an inappropriate (though harm-
less) addition to the JOB card for CRJE or RJE submitted work.

5.3-5

JOB SET-UP

While parameters other than TYPRUN=HOLD can be inserted in the operand field
on the job card, their use is not generally recommended. MSGCLASS can be
used to force system output to a special printer (see SYSOUT discussion).
The CLASS, PRTY, and TIME parameters are ignored. Use of the REGION param-
eter will cause a JCL error (See subsection 16.2). The parameters which can
be coded on the EXEC card should usually be coded there, as their effect is
more precise,

5.3.3 COMPLETION CODES FOR INSUFPICIENT CPU OR I/0 JOB TIMES

Completion codes that will be returned to the user, if the job exceeds his
CPU or 1/0 time estimates, are shown in Table 5.3-3.

Table 5.3-3. Completion Codes

CPU Time I/0 Tinme
Computer Completion Code Completion Code
5/360-95 322 ¥22
§/360~75 322 F22
5/360-65 322 F22

On printouts received, both CPU and I/0 time will be given tec allow refine-
ment of original estimates. I/0 time will also be broken down by device
type (tape, disk, drum, etc.) so that the components of the total are avail-
able.

5.3.4 PRIORITIES

As discussed in paragraphs 2.2.7 and 18.3.1 of this User's Guide, the
job stream manager utilizes the CPU and I/0 time punched into the JOB card
to establish priorities.

The larger of these two numbers is compared with an jinternal table to estab-
lish the priority for the job. The shorter the job, the higher its priority.
The values used are shown in Table 18.3-3.

5.3.5 CLASSES

The job stream manager assigns aa class to each job, depending on the resources
(core and I/O units) required. Table 18.3-1 shows the breakdown used by the S/95.
There is a separate job queue for each class. As the initiators pull jcbs

from specific queues and in a specific order (Table 18.3-2 shows this order

for §/95), the class into which a job is placed will affect its scheduling.

5.3-6

JOB SET-UP

5.4 STEPLIE AND JOBLIB CARDS

The execution of any program or load module not in the system library
(SYS1.LINKLIB and its extensions) requires that a STEPLIB or JOBLIB state-
ment be used to identify that library by data set name. It is highly recom-
mended that use be made of STEPLIB rather than JOBLIB since the STEPLIB card
causes the private library to be searched for that job step only. The JOBLIB
card causes the private library to be searched in every job step.

5.4.1 STEFLIB DD CARD

The major function of the STEPLIB statement is to make programs which reside
in a private library available to the operating system. When the STEPLIB
statement is encountered, the operating system concatenates the private li-
brary with the system library (SYS1.LINKLIB) . When a request is made for the
program, the operating system searches first in the private library and then
in the system library. This is especially useful when working with more than
one version of the same program. The alternate version in the private library
may be STEPLIBed when its use is required. Removing the STEPLIB card makes
available the wersion in the system library.

The STEPLIB card can appear in any position among the DD statements for that
job step. If the private library referenced is cataloged, the operand field
requires only the DSNAME and DISP parameters. If only the first operand of
the DISP parameter is coded, the second operand will default to PASS, The
first cperand may be NEW, OLD, or SHR. SHR is the recommended disposition
for libraries which may be required by other users. If the library ig not
cataloged, volume and unit information must also be provided.

If a private library is created within the job step, code DISP= (NEW,CATLG)

or DISP=(NEW,KEEP) on the DD card and DISP=NEW on the STEPLIB card, If KEEP
or CATLG are not specified on the library DD card the library will be deleted
at the end of the job step. Space for the data set should be allocated on
the STEPLIB card.

A STEPLIB DD statement can appear in a cataloged procedure and can be referred
to by, or passed, to other steps of the same job. As with ordinary DD state-
ments, a sequence of DD statements may be concatenated with the STEPLIB card
so that they are effectively read as one.

The JOBLIB DD statement need not appear in a job in order to use the STEPLIB
DD statement. If both JOBLIB and STEPLIB DD statements appear in a job, the

JOBLIE definition is ignored for any step that contains the STEPLIB defini-
tion.

5. 4—1

JOB SET-UP

5.4.2 JOBLIB DD CARD

The JOBLIB statement must immediately follow the JOB card. It defines a pri-
vate library for the duration of the job. Those parameters required to retrieve
a data set are coded as in the STEPLIB statement. If the user wants the JOBLIB
definition ignored but the step does not require use of another private library,
the system library must be defined on the STEPLIB DD statement as shown in the
following statement:

//STEPLIB DD DSN=SYS1.LINKLIB,DISP=SHR
A JOBLIB statement cannot appear in a cataloged procedure.

Reference back to the JOBLIB is the same as for other DD statements. When a
library is JOBLIBed, the user must insure that subroutine libraries having sup-
porting modules are added to the SYSLIB DD statement in the LINK and LINKGO
procedures. One example of this {on the M&DO 360/75) is the PL/I Version 4.3
processor which is in SYS3,LINKLIB and the PL/I Version 4.3 subroutines which
are in SYS2.PLILIB. The user must code both:

//JOBLIB DD DEN=SYS53,LINKLIB,DISP=SHR
and
//LINK,.SYSLIB DD DSN=SYS2,.PL1LIB,DISP=SHR

The libraries are searched in the order in which the DD statements appear, with
the system library searched last.

When concatenating private libraries, as when concatenating any data sets, the

- ddname must be omitted from all the DD statements defining private libraries,
except the first DD statement. The first statement must specify a ddname of
JOBLIB or STEPLIB. If JOBLIB is specified, the entire group must appear immed-
iately after the JOB statement. If STEPLIB is specified, the entire group would
appear as one of the DD statements for a particular step.

5.4.3 REFERENCE
IBM System/360 Operating System manual.

® Job Control Language Reference (GC28-6704).

504-2

JOB SET-UP

5.5 EXECUTE (EXEC) CARD

5.5.1 GENERAL DISCUSSION

This card is always the first card after the JOB card (except when a JOBLIB
card is used). When more than one job step is used (for example: compile,
link-edit, and execute), the EXEC card is the first card in each step.

The EXEC card may or mayrnot have other entries added to it, depending on the
circumstances, as explained under individual descriptions of cataloged proce-
dures and various programs and in subsection 5.5.3.

Although the name field of the EXEC card may be left blank, this name
(chosen by the user) is so often required as a stepname that it is always
good programming practice to use one. The job step name must be used if
later control statements refer to the job step in any way. Further, this
step name is used by the system to return CPU and I/O time to the user and
as step identification with certain diagnostics. Each stepname in a job
must be unique. The makeup of the stepname is the same as that for the JOB
card, i.e., one to eight alphanumeric or national characters (@,$,#).

5.5.2 EXECUTING PROGRAMS AND CATALOGED PROCEDURES

The principal function of the EXEC statement is to identify the program to
be executed or the cataloged procedure to be used. Programs to be executed
can reside in three types of libraries, as follows:

1, The system library. This is a partitioned data set (PDS), named
SYS1.LINKLIB, which is used to store frequently used programs.
To execute a program that resides in the system library, the
user should code:

//step EXEC PGM=progname
vhere progname is the name of the program.

2. Private libraries. These are partitioned data sets which store
groups or programs not used frequently encugh to warrant their
inclusion in the system library. These private libraries must
be identified on a JOBLIB or STEPLIB statement.

3. Temporary libraries. These are temporary partitioned data sets
created to store a program until it is used in a later step of
the same job. To execute a program from a temporary library,
the user should code:

//step EXEC PGM=*,stepname.ddname

5.5-1

JOB SET-UP.

where stepname and ddname are the names of the job step and the
DD statement where the temporary library was created (usually
LINK.SYSIMOD). HNote that the DD statement referred to must con-
tain the member name of the program as well as the DSNAME of the
library.

To execute a program that resides in a private library, the same format is used
as for a program residing in the system library.

Instead of executing a particular program, a job step may use a cataloged
procedure. A cataloged procedure can contain control statements for sev-—
eral steps, each of which executes a particular program. Cataloged proce-
dures are members of a library (PDS), named SYS1,PROCLIB and (models 95 and
75 (Cl)) SYS2.USERPROC. To request a cataloged procedure, the user should
code:

//step EXEC procname
or
//step EXEC PROC=prochame

where procname is the member name associated with the cataloged procedure.
5.5.3 EXEC CARD PARAMETERS

Several parameters can be included on EXEC cards. Users of M&DO computers
will find the PARM, COND, and REGION parameters useful or necessary. Many
cataloged procedures supply them. When adding or overriding EXEC card
parameters of cataloged procedures, certain precautions must be taken.
Cataloged procedure steps must be overridden in order, i.e., all overrides
to STEPl must be coded on your EXEC card before any overrides of STEP2.
Other precautions are mentioned in paragraphs 5.5.3.1 and 5.5.3.3.

5.5.3.1 PARM

The PARM parameter is used to pass options to a program. The program must
be designed to accept the PARM information; otherwise, the field is ignored.
When overriding a cataloged procedure, the overriding PARM field will com-
pletely replace the one in the cataloged procedure, Those options not
stated will revert to the defaults {chosen at system generation time) which
are not necessarily those stated in the cataloged procedure. In multi-step
procedures overrides should be coded as "PARM.stepname" rather than just
"PARM", as the latter format will only override the PARM field in the first
step of the cataloged procedure.

JOB SET-UP

5.5.3.2 COND

The COND field on the EXEC card is used to conditionally execute or skip a
job step, depending on the completion and condition code set by a preceding
step. The code returned by the preceding step is compared to the number
specified in the COND statement. If the comparison is satisfied, the step

is bypassed. Use of the format COND=(n,cp) tests all preceding steps. Use
of the format COND={n,cp,stepname) tests a particular step. Up to eight
different tests can be made against the condition codes by coding COND=
{{n,cp,STEP]}, (n,cp,STEP2),(...}). There is only one condition code returned
per job step.

COND=EVEN and COND=ONLY test for an abnormal termination (ABEND} of a pre-
vious step. They can be used in conjunction with the COND= tests described
in the above paragraph. However, COND=EVEN and COND=ONLY cannot be used in
the same job step. COND=EVEN execute this step even if one or more preceding
job steps abnormally terminated. COND=ONLY execute this step only if one or
more of the preceding job steps abnormally terminated. They are useful

for steps which list the contents of intermediate files or restore things
which might have been left in disarray by the abnormal termination. They
will not be effective if a JCL error or a condition which set a completion
code of n22 caused the ABEND, or if any return code tests specified in the
job step have been satisfied.

5.5.3.3 REGION

The REGION parameter must be used if a step requires more core than the de-
fault region size provided by the reader-interpreter procedure. The default
value varies from machine to machine (refer to Table 4.2-1). Most cataloged
procedures have the proper region specified for each step. The use of REGION
on a step basis results in the best use of system resources. The use of
REGION on the JOB card is not permitted, and, if used, will result in a JCL
error (see subsection 16.2).

Lack of sufficient REGION will result in an ABEND with a code of 804 or 80A.
Since some system tasks, such as access method routines and buffers, require
core in a user's region, a REGION parameter must be large enough to include
these tasks, as well as the specified program. 10K is usually sufficient for
these system routines as well as for an ABEND condition.

NOTE: The result of the COND parameter when specified on the JOB card
differs from that when specified on the EXEC card. If a JOB card
return code test is satisfied subsequent steps are bypassed and
the job is terminated. If an EXEC card return code test is satisfied,
the step is bypassed. COND=EVEN and COND=ONLY cannot be used on the
JOB card.

5.5-3

JOB SET-UP

5.6 THE DATA DEFINITION (DD} STATEMENT

5.6.1 GENERAL DISCUSSION

For general instructions on preparing the DD control cards, refer to the

IBM manuals, Job Control Language Reference, Form GC28-6704. The following
paragraphs present an overview of the DD card, along with the supplementary
information unique to GSFC and the M&DO facilities. More detailed information
on specific techniques and parameters may be found in Section 17.

5.6.2 THE DD CARDS

Data sets used by processing programs must be represented by DD statements
in the job stream. The DD statements pertaining to a particular job step
follow the EXEC statement associated with that step., A DD statement must
contain the term DD in its operation field. Although all parameters in the
DD statement's operand field are optional, a blank operand field is invalid,
except when overriding DD statements defining concatenated data sets.

The general form of the DD statement is:
//ddname DD operands

Like the EXEC card, the DD operand consists of positional and keyword para-
meters (refer to subsection 5.2.3 of this guide),

5.6.3 CONTINUATION OF DD CARDS

If the operand of a DD card will not fit on one card, it may be continued.
This is explained in subsection 5.2.3 of this guide. (Note: In this User's
Guide, because of space limitations on the printed page, the examples of
control cards are necessarily shorter than the full 71 columns allowed on
an actual card, but the examples follow all of the above rules for continu-
ing statements.)

5.6.4 ABBREVIATIONS IN DD STATEMENTS

As explained in the IBM Job Control Language Reference manual, certain abbre-
viations are allowed in the DD statements, and are useful in saving space on

a control card. (Note: These abbreviations are not allowed in utility control
cards.)

In this User's Guide, both the abbreviated form and the full form are used
in examples of DD cards. The two parameters with their abbreviations are:

® VOLUME or VOL

® DSNAME or DSN

5.6-1

JOB SET-UP

For example, both of the following versions of a statement are recognized by
the system:

//BOURCE , COMPILE DD DSNAME=TAPOUT , UNIT=9TRACK,VOLUME=SER=tapeid,

Vi4 DCB= {RECFM=F, BLKSIZE=80,DEN=2) ,LABEL=(,BLP) ,

/7 D1SP= (NEW,KEEP)
or

//SOURCE , COMPILE DD DSH=TAPOUT , UNIT=9TRACK,VOL=SER~=tapeid,

// DCB= (RECFM=F , ELKSIZE=80,DEN=2),

7/ LABEL= (, BLP) ,DISP= (NEW, KEEP)
5.6.5 BACKWARD REFERENCES (*.name.name)
The user may save time and avoid errors in copying information onto a DD
card from an earlier DD card in the same job by writing a backward reference
in the form of:

* _ stepname.ddname
For example, assume that the user has several job steps, and that in the one
named STEP2 there is a SYSPRINT DD card containing complete DCB information
that will be used in exactly the same manner in STEP4. Therefore, in STEP4
he writes this card:

//SYSPRINT DD SYSOUT=A,DCB=*.STEP2.SYSPRINT
Or assume that the user has this statement in STEPl:

//CARD4A DD DSH=E&WORK1
and he desires to refer in several later job steps to the same data set name.
He may, instead of repeating DSH=&&WORK1l, write:

DSN=*, STEP].CARD4
If the earlier DD card is in the same job step, he writes:

DSN=*,ddname
If the DD statement referred to is in a cataloged procedure within the sys-
tem procedure library, and the user desires to refer to the statement from
outside the procedure, he must give the step name that invoked the procedure,

the name of the step within that procedure, and the name in the DD statement
within that step of the procedure:

*_jobstepname.procstepname.ddname

5.6-2

JOB SET-UP

5.6.6 PARAMETERS IN THE OPERAND FIELD OF THE DD STATEMENT

The following parameter descriptions should be used as a quide to the

use of parameters in the operand field of the DD statement. They are not
complete; therefore, the user is referred to the IBM Job Control Language
Reference (GC28-6704) manual for a more detailed description., Section 17
of this document contains further discussion of some of these parameters
as they apply to M&DO computer use.

In the following descriptions, the format of the parameter is shown first,
followed by a discussion of its more important subparameters and comments,
if any.

The symbols used in displaying the parameter formats are as follows:

% } = Choose one
[] = Optional; if more than one line is enclosed, choose one or
nona.

5.6.6.1 Data Control Block

Each data set that is to be read or written must have a data control biock
associated with it. The data control block is originally constructed in
the processing program by a DCB macro instruction. This data control block
can be completed when the DCB macro instruction is issued, or at execution
time through the DCB parameter on the DD statement and the data set label,
if one exists. The format of the DCB parameter is as follows:

DCB=(list of attributes}

DCE=(dsname [1list of attributes])
* ., ddname
*_ stepname,ddname
*, stepname.procstepname . ddname

5.6.6.1.1 Rules for Coding
a. Separate each DCE keyword subparameter with a comma.

b. If the DCB parameter value consists of only one keyword sub-
parameter, a data set name, or a backward reference, the user
need not enclose it in parentheses.

c. All DCB subparameters, except BLKSIZE and BUFNO, are mutually
exclusive with the DDNAME parameter; therefore, when the DDNAME
parameter is coded, the user should not code any DCB subpara-
meters except BLKSIZE and BUFNO. The DCB subparameters BLKSIZE
and BUFNO have meaning when coded with the DDNAME parameter.

5.6-3

JOB SET-UP

5.6.6.1.2 Completing the Data Control Block

When more than one source is used to complete the data control bleck, a
merging process takes place. First, information coded with the DCB macro
instruction is placed in the data contrxol block. Then, information coded

on the DD statement is placed in unfilled sections of the data control blocks.
Finally, information in the data set label, if one exists, is placed in

still unfilled sections of the data control block. DCB information may

also be provided by default options assumed in the OPEN macro instruction

and by the user's program, either before the data set is opened (by using

the DCBD macro instruction) or in the DCB exit routine. Refer to the chapter
"Interface With the Cperating System" in Supervisor and Data Management Macro
Instructions (GC28-6647) for details.

5.6.6,1.3 DCB Macro Instruction

The DCB macro instruction includes information about the data that is
unlikely to change each time the processing program is executed. Balso,
it includes any information that is not related to the DCB parameter and
the data set label (e.g., MACRF, DDNAME, EXLST).

5.6.6.1.4 DCB Parameter

The DCB parameter is coded on the DD statement and includes all the infor-
mation that is not specified by any other source. How to specify DCB
information on the DD statement is described in 5.6.6.1.6 below.

5.6.6.1.5 Data Set Label

If the data set already exists and has standard lzabels, certain information
is contained in the label that can be used to complete the data control

block. For tape, the data set label can contain the data set's record format,
block size, logical record length, tape recording density, and for 7-track
tape, tape recording technique. For direct access, the data set label

can contain the data set's organization, record format, blocksize, logical
record length, and if the data contains keys, the key length and relative

key position.

5.6.6.1.6 Specifying DCB Information on the DD Statement
The DCB parameter must be coded on the DD statement unless the data control
block is completed by other sources. There are several ways of specifying

DCB information on the DD statement. The user can:

a. Supply all pertinent DCB keyword subparameters on the DD
statement.

b. Tell the system to copy DCB information from the data set
label of an existing cataloged data set.

5.6-4

JOB SET-UP

c. Tell the system to copy DCB information from an earlier
DD statement in the same job.

If the user is extending a data set which has standard label, the blocksize
information in the data control bleck must agree with the blocksize specified
in the data set label. Conflicting information may make the data set
unusable by later jobs. The user should especially take care when extending
sequential data sets (tape or direct access) with DISP=MOD or adding or re-
placing members on a partitioned data set.

5.6.6.1.7 Supplying DCB Keyword Subparameters

The DCB information required to complete the data control block can be
listed as keyword subparameters in the DCB parameter; subparameters are
separated by commas. If the processing program and the DCB parameter supply
the same subparameter, the subparameter on the DD statement is ignored.
Valid DCB keyword subparameters and the values that can be assigned to

them are listed in Job Control Language Reference {GC28-6704), under
"Glossary of DCB Subparameters."”

5.6.6.1.8 Copying DCB Information From a Data Set Label

To save time in coding the DCB parameter, the user can tell the syztem to
copy the DCB information from the data set label of a cataloged data set

on a currently mounted direct~access volume, The data set must have standard
labels. A permanently resident volume is the most likely place from which

to copy such information because it is always mounted. The user should

code in the DCB parameter the data set name of the rataloged data set.

The name coded cannot contain special characters, except for periods used

in a qualified name.

The following DCB keyword subparameters can be copied from the data set
label: DSORG, RECFM, OPTCD, BLKSIZE, LRECL, KEYLEN, and RKP. The volume
sequence number and expiration date of the cataloged data set are also copied
unless these are specified in the DD statement. I€ the user ccdes any

DCB keyword subparameters following the name of the cataloged data set,

these =subparameters override any of the corresponding subparameters that

were copied. Valid DCB keyword subparameters and the values that can be
assigned to them are listed in Job Control Language Reference (GC28-6704),
under "Glossary of DCB Subparameters,”

5.6.6,1.9 Copying DCB Information From an Earlier DD Statement

Another way to save time in coding the DCB parameter is to tell the system

to copy the DCB information from an earlier DD statement in the same job.

The earlier DD statement can be contained in the same job step, an earlier

job step, or a cataloged procedure step. If the user codes any DCB keyword
subparameters following the reference to the DD statement, these subparameters

5.6~5

JOB SET-UP

override any of the corresponding subparameters that were copied. If the
DD statement defines an existing data set and contains the DCB parameter,
the system copies those subparameters from the earlier DD statement that
were not previously specified for the existing data set. Valid DCB keyword
subparameters and the values that can be assigned to them are listed in

Job Control Language Reference (GC28-6704), and Supervisor and Data
Management Macros (GC28-6647).

5.6.6.2 DEN

it is good programming practice to specify tape density in the DCB infor-
mation, rather than to take the default option, because this eliminates
errors in remembering default options. Also, default density may vary
from one computer to another because of system generation options, while
these differences may be unknown to the user. Write:

DCB=DEN=I
where n is the desired density, as shown below.

Tape densities, used on M&DO computers, and the code for their use, are
as follows:

BPI if BPI if BPI if BPI if
DEN=(DEN=1 DEN=2 DEN=3
Tape Drive
7-Track 200 556 800 Not
Allowed
9-Track Not Not BOO 1600
Allowed Allowed

The default density for all 9-track drives on the modules 95 and 75 is 1600 BPI.
mhe model 65 has two 800 BPI 9-track drives and two dual density B00-1600 BPI

9-track drives. To insure allocating a dual density drive on the 360/65,
code UNIT=2400-4.

5.6-6

JOB SET-UP

$.6.6.3 TRTCH

The tape recording techniques parameter is used to differentiate the various
recording techniques which may be used with 7-track tapes. Allowable values
are:

C - Data Conversion

When reading tape, four 6-bit characters from tape fill three
8-bit bytes in core. When writing, three 8-bit bytes from
core f£ill four 6-bit characters. All M&DO 7-track drives
support data conversion. At other centers, the user should
code UNIT=2400D-2 to ensure that the 7-track drive supports
data conversion.

E - Even Parity

Most 1400 series tapes and formatted tapes on 7000 series
computers were written in even parity.

T - Translate

BCD-to~EBCDIC translation is to be performed when reading;
EBCDIC-to~BCD translation is to be performed when writing.

ET - Both Even Parity and Translation

In the absence of the TRICH parameter, the 7-track tape is
read/written in odd parity, without conversion or translation.

The result - When read from tape to core the 6 bit character will be con-
verted to an 8 bit byte by having zeros stored in its two high order bits.
When read from core to tape an 8 bit byte will be converted to a 6 bit
character by having its two high order bits truncated.

5.6.6.4 Disposition

The DISP parameter describes to the system the status of a data set and
indicates what is to be done with the data set after termination of the
" 4Job step that processes it or at the end of the job. The user can indi-
cate in the DISP parameter one disposition to apply if the step terminates

506"'7

JOB SET-UP

normally after execution and another to apply if the step terminates
abnormally (conditional disposition). The format of the DISP parameter
ig as follows:

5.6.6.4.1

a.

b.

DISP={ NEW « DELETE » DELETE)
OLD + KEEP KEEP
SHR PASS + CATLG
MOD, ¢« CATLG » UNCATLG
+ UNCATLG

Rules for Coding

If only the first subparameter is coded, the user need not
enclose it in parentheses.

If the data set is new, the user can omit the subparameter
NEW. However, if the user specifies a disposition or
conditional disposition, he must code a comma to indicate
the absence of NEW.

The user can omit the DISP parameter if a data set is created
and deleted during a job step.

If the usexr does not want to change the auvtomatic disposition
processing performed by the gystem, he need not code the
second subparameter. (When the second subparameter is not
<odsd, tho syctom eutunatically keeps data sets that did
exist before the job and automatically deletes data sets

that did not exist before the job.) If the user omits the
second subparameter and codes a conditional disposition,

he must code a comma to indicate the absence of the zecond
subparameter. '

The DISP, SYSOUT, and DDNAME parameters are mutually exciu-
sive parameters; therefore, when SYSOUT or DDNAME is coded,
do not code the DISP parameter.

Refer to subsection 17.3.5 for the use of the DISP parameter
when using tapes.

S.6-8

JOB SET-UP

5.6.6,4,2 Specifying the Data Set's Status

A data set is either a new data set or an existing data set. What the
user plans to do with the data set determines which status he codes as

the first subparameter of the DISP parameter. There are four different
states that can be coded in this position. This subparameter allows the
ugser to tell the system: the data set is to be created in the job step --
NEW; the data set existed before this job step -- OLD; the data set can
be used by other concurrently executing jobs —- SHR; the data set is to
be lengthened with additional output -- MOD.

a. Specifying NEW as the Data Set's Status

Specifying NEW as the first subparameter of the DISP
parameter tells the system that the data set is to be
created in the job step and may be used by the processing
program tc contain output data. If the user omits the
subparameter NEW, the system assumes the data set is to
be created. in the job step. When the status of a data
set is NEW, the user must code on the DD statement all of
the parameters necessary to define the data set.

b. Specifying OLD as the Data Set's Status

Specifying OLD as the first subparameter of the DISP para-
meter tells the system that the data set existed before this
job step. The data set will not be allocated to another
JOB until this JOB terminates. Code OLD only when you want
exclusive use of the data set, e.g., when you are updating
the data set.

c. Specifying SHR as the Data Set's Status

Specifying SHR as the first subparameter of the DISP para-
meter tells the system that the data set resides on a
direct-access volume and other jobs that are executing
concurrently with this job step may simultaneously use
{share) the data set. When SHR is specified, any job step
that uses the data set should only read the data set.

If the user codes DISP=(SHR,DELETE) the system assumes OLD
instead of SHR. Once SHR is specified for a data set,
every reference to that data set within the job must be
specified by SHR, or the data set can no longer be used
by concurrently executing jobs.

5.6-9

JOB SET-UP

Specifying MOD as the Data Set's Status

Specifying MOD as the first subparameter of the DISP para-
meter tells the system that when the data set is opened
for output, the read/write mechanism is to be positioned
after the last record in the data set. MOD is specified
when the user wants to add records to a data set with
sequential, indexed sequential, or partitioned organization.
MOD should not be specified for data sets with direct
organization. When MOD is specified and the number of
volumes required to lengthen the data set may exceed the
number of units requested, a volume count should be speci-
fied in the VOLUME parameter. This ensures that the data
set can be extended to new volumes.

When MOD is specified, the system first assumes the data
set exists. However, if the system cannot find volume
information for the data set -—- on the DD statement, in
the system catalog, or passed with the data set from a
previous step —— the gystem then assumes that the data set
does not exist and the data set is created for the job
step. If the NEW data set is to be written to disk, space
allocation must appear on the DD card. If space has been
requested on the DD card and the data set is not NEW, the
allocation request will be ignored. Specifying MOD for a
new sequential data set causes the read/write mechanism to
be positioned after the last record in the data set each
time it is opened for output, MOD is often used for tem-
porary passed data sets in those cataloged procedures which
may be used repetitively within a job. For instance, a
programmey may wish to compile both an ALC module and a
FORTRAN module, load them together, and execute the load
module, If the object module output of the compiler steps
of the cataloged procedures specified NEW, the programmer
would be forced to override this parameter for every pro-
cedure but the first. MOD works in either case.

1f MOD is gpecified and volume information exists, the first
volume of a multivolume data set will be mounted unless
DEFER is specified in the UNIT parameter or (for tape data
sets only) the VOLUME=REF parameter is used.

When a user lengthens a data set that has standard labels,
PCB information in the data control block must agree with
the DCB information contained in the data set label. Con-
flicting DCB information, specifically conflicting block
sizes, may make the data set unusable by later jobs. There-
fore, the DCB information contained in the data set label
should not be coded on the DD statement, If this DCB

5.6-10

JOB SET-UP

information is coded in the DCB macro instruction, it
must agree with the information contained the data set
label.

If a user extends a data set that has Fixed-Block spanned
(FBS) records, and the last block was a truncated one, an
end-of-data set condition occurs when the truncated bleck
is encountered. If an attempt is made to read the data
set backward on magnetic tape, processing is terminated
irmediately (with an end-of-data set condition) upon read-
ing the truncated block,

5.6.6.4.3 Specifying a Disposition for the Data Set
The second subparameter of the DISP parameter tells the system what is
to be done with the data set after normal termination of the job step.
There are five dispositions that can be specified for a data set. These
dispositions allow the user to:

® Delete a data set ~- DELETE.

Keep a data set —-— KEFP.

[Pass a data set to a later job step — PASS.

) Cataleg a data set -- CATIG.

] Uncatalog a data set -- UNCATLG.
When the second subparameter is not coded, data sets that existed before
the job continue to exist and data sets that were created in the job step
are deleted.
The system ignores the disposition the user has coded and automatically
keeps existing data sets and deletes new data sets when the step is
abnormally terminated before the step begins execution, e.g., primary direct-

access space cannot be obtained.

Sometimes the system does not perform disposition processing. The system
does not disposition processing of data sets when:

] The job step is bypassed because of an error that is found
during interpretation of control statements, e.g., a control
statement containing errors is read.

[] The job step is bypassed because a return code test is
satisfied,

5.6-11

J0B SET-UP

The job step makes a nonspecific request for a tape volume
and the data set is never opened. There is one exception
to this: Aif the data set is defined as a new generation
data set, the system performs the requested disposition.

The job step requests that the mounting of a direct-access
volume be deferred and the data set is never opened.

Except for the cases mentioned above, the specified disposition is in
effect for the data set if the job step terminates normally or abnormally
and the user has not specified a condition disposition as the third sub-
parameter of the DISP parameter.

a.

Specifying DELETE as the Disposition

Specifying DELETE tells the system that the user wants the
data set's space on the volume released. DELETE is the only
valid disposition that can be specified for a data set
assigned a temporary name OY nO name. If the data set
resides on a tape volume, the tape is rewound and the volume
becomes available for use by other data sets at the end of
the job step. If the data set resides on a direct-access
volume, the system removes the volume table of contents
entry associated with the data set and the data set's space
ig available for use by other data sets at the end of the
job step. However, if the direct-access data set's expira-
tion date or retention period has not expired, the system

. does not delete the data set., The usexr can use the IEHPROGM

utility program to remove the volume table of contents entry.

If the data set is cataloged, its entry in the system catalog

is also removed, provided the system obtained volume information
for the data set from the catalog, i.e., the VOL=SER= and
UNIT=parameters were not coded on the DD statement, If the
system did not obtain volume information from the catalog,

the data set is still deleted, but its entry in the catalog
remains. In this case, the user may use the IEHPROGM

utility program to delete the entry.

Specifying KEEP as the Disposition

Specifying KEEP tells the system that the user wants the
data set kept intact.

Specifying CATLG as the Disposition

Specifying CATLG tells the system that the user wants the
system to create an entry in the system catalog that points

5.6-12

JOB SET-UP

to this data set. The disposition of CATLG alsc implies

a disposition of KEEP. Once the data set is cataloged, the
user can retrieve the data set in later job steps and jobs

by coding the DSNAME parameter and a status of other than
NEW in the DISP parameter. The VOL=SER= and UNIT= parameters
are not required.

If the data set's name is enclosed in apostrophes, the data
set must not be assigned a conditional disposition of CATLG.
If the data set has a qualified name, e.g., A.B.C., the user
must have created all but the lowest level of the name as
indexes in the catalog before asking that the system catalog
the data set. This is done using the IEHPROGM utility pro-

g‘rm.
Specifying UNCATLG as the Disposition

Specifying UNCATLG tells the system that the user wants the
data set's entry in the system catalog removed. UNCATLG
does not tell the system to delete the data set. Later jobs
that use this data set must provide on the DD statement all
of the parameters necessary to define the data set.

Specifying PASS as the Disposition

Specifying PASS as the second subparameter of the DISP
parameter tells the system that the data set is to be passed
after it is used in a job step. This permits another job
step in the same job to use this data set without having
retrieval and disposition processing done by the system.

The user continues to code PASS each time the data set is
referred to until the last time it is used in the job. At
this time, the user assigns it a final disposition. If he
does not assign the data set a final disposition, the system
deletes the data set if it was created in the job and keeps
the data set if it existed before the job.

when a subsequent job step wants to use the passed data set,
the user must include a DD statement for the step. On this
DD statement, he must always code the DSNAME and DISP para-
meters, as follows:

® The DSNAME parameter identifies the data set. The user
should either code the data set's name or make a back-
ward reference to any earlier DD statement in the job
that defines the data set.

3.6-13

JOB SET-UP

) The DISP parameter specifies the data set's status and
disposition., (If a later step is to use this data
set, the user should specify a disposition of PASS;
if this is the last job step that uses this data set,
the user should specify the data set's final disposi-
tion.)

The other parameters the user may code are UNIT, LABEL, and
DCB. The user should code:

® The UNIT parameter if he wants more than one device
allocated to the data set.

® The LABEL parameter if the data set does not have
standard labels.

® The DCB parameter if the data set does not have standard
labels and the first DD statement that defines the passed
data set contains the DCB parameter.

If geveral data sets used in the job have the same name, the
user can only pass one of these data sets at a time. A job
step must refer to a passed data set and assign a disposition
of other than PASS to the data set before another data set
with the same name can be passed.

5.6.6,4.4 Specifying a Condition Disposition for the Data Set

The third subparameter of the DISP parameter tells the system what is

to be done with the data set if the step abnormally terminates. If the
user does not specify a conditional disposition and the step abnormally
terminates, the system uses the disposition specified as the second sub-
parameter of the DISP parameter to determine what is to be done with the
data set. (There are a few exceptions and they are noted in para-

graph 5,6.6.4,3.) 1If a passed data set has not been received and a job
step abnormally terminates, the passed data set assumes the conditional
disposition specified the last time it was passed. 1In this case, condi-
tional disposition processing is done at job termination, not at step
termination.

There are four conditional dispositions. When a job step abnormally ter-
minates, these conditional dispositions allow the user to:

L Delete a data set -- DELETE.
® Keep a data set -- KEEP.

® Catalog a data set -- CATIG.

5 - 6-14

JOB SET-UP

® Uncatalog a data set -— UNCATLG.

Note: A scratch volume will be rewound, unloaded, and a KEEP message issued
to the operator during abnormal termination of a job step when: (1) a
temporary data set written on the scratch volume has been assigned a non-
temporary name, and (2) a conditional disposition of KEEP has been assigned
to the data set.

5.6.6.5 Data Set Name

When the user creates a data set, he should use the DSNAME parameter to
assign a name to the data set. The data set name is part of the informa-
tion stored with the data set on a labeled volume. Later, when another
job step or job wants to use the data set, it identifies the data set
name in the DSNAME parameter; the system uses the data set name to locate
the data set on the volume. On an unlabeled (tape) volume, the data set
sequence number in the LABEL parameter is used to locate the data set.

How the user codes the DSNAME parameter depends on the type of data set
and whether the data set is nontemporary or temporary. Note that the
disposition should correspond to the temporary or nontemporary status
implied in the DSNAME parameter.

The format of the DSNAME parameter is as follows:

1DSNAME = dsname
DSN dsname (member name)
dsname {generation number)
dsname {area name)
&&dsname
&sdshame (member name)
s&dsname {area name)
* _ddname
* , stepname,.ddname
* _stepname.procstepname,ddname

5.6.6.5.1 Rules for Coding

a. An unqualified data set name may consist of one to eight
characters. The first character must be an alphabetic or
national (@,$,#) character; the remaining characters can be
any alphanumeric or national characters, a hyphen, or an over-
punched ampersand zero (12-0 punch}). A temporary data set
name can consist of one through eight characters, excluding
the ampersands; the first character following an ampersand
mist be an alphabetic or national character.

5.6-15

JOB SET-UP

b. A qualified name may consist of up to 44 characters, includ-
ing periods. For each eight characters or less there must
be a period, and the character following a period must be an
alphabetic oxr national (@,$,#) character.

C. The user need not code the DSNAME parameter if the data set is
created and deleted in the job, i.e., if the data set is

temporary.

d. The DSNAME and DDNAME parameters are mutvally exclusive para-
meters; therefore, when the DDNAME parameter is coded, the user
should not code the DSNAME parameter.

Sometimes it may be necessary or desirable to specify a data get name that
contains special characters. If the name contains special characters, the
user must enclose the name in apostrophes (5-8 punch), e.g., DSNAME='DAT+5'.
If one of the special characters is an apostrophe, the user must identify
it by coding two consecutive apostrophes {two 5-8 punches) in its place,
€.9., DSNAME='DAY''SEND'. A data set name enclosed in apostrophes can
congist of one through 44 characters.

There are cases when the user’'s data set name must contain required special
characters which tell the system something about the data set (e.g., & in
DSNAME=&&name are required special characters that tell the system that
this is a temporary data set). In these cases, the data set name must nct
be enclosed in apostrophes because the system will not recognize the re-
quired special characters as having any special significance. The follow-
ing data set names contain special characters that tell the system some-
thing about the data set and, therefore, cannot be enclosed in apostrophes:

-] DSNAME=name (member name)

- DSNAME=name (area name)

® DENAME=name (generation number)

e DSNAME=&&name

® DSNAME=* , stepname . ddname

The following rules should be observed:

® If the data set is to be cataloged, the data set name cannot
be enclosed in apostrophes.

& If the data set name begins with a blank character, the data set
is assigned a temporary data set name by the system.

5.6-16

JOB SET-UP

3 If the data set name ends with a blank character, the biank is
ignored.

® If the only special character is a period or & hyphen, the user
need not enclose the data set name in apostrophes.

5.6.6.5.2 Copying the Data Set Name From an Earlier DD Statement

The name of a data set that is used sewveral times in a job, whether speci-
fied in the DSNAME parameter or assigned by the gystem, can be copied
after its first use in the job. This allows the user to easily change
data sets from job to job and eliminates assigning names to temporary
data sets. To copy a data set name, the user should refer to an eariler
DD statement that identifies the data set. When the earlier DD statement
is contained in an earlier job step, the user should code DSNAME=* step-
name,ddname; when the earlier DD statement is contained in the same job
step, he should code DSHAME=*,ddname; when the earlier DD statement is
contained in a cataloged procedure step called by an earlier job step, he
should coede DSNAME=*®,stepname.procstepname.ddname.

5.6.6.5.3 Creating or Retrieving a Nontemporary Data Set
If the data set is nontemporary, the user can identify:
® A permanent data set, by coding DSNAME=dsname.

] A member of a nontemporary partitioned data set, by coding
DSHAME=dsname (member name}.

. & generation of a nontemporzary generation data group, by coding
DSNAME=dsname {number).

e An area of a nontemporary indexed sequential data set, by coding
DSNAME=dsname (area namej.

5.6.6.5.4 Creating or Retrieving a Temporary Data Set
If the data set is temporary, the user can identify:
® A temporary data set, by coding DSNAME=gLdsname.

® A member of a temporary partitioned data set, by coding
DSHAME=&&dsname (membeyr name) .

) An area of a temporary indexed sequential data set, by coding
DSNAME=&&dsname {area name).

5.6-17

JOB SET-UP

5.6.6.5.5 MNontemporary Data Sets

when a nontemporary data set is created, it is assigned a name in the DSNAME
parameter and is assigned a disposition of KEEP or CATLG. (A data set
assigned a disposition of KEEP may be assigned a disposition of CATLG by

a later job step or job.) The name a user assigns to a nontemporary data
set must be specified in the DSNAME parameter by all other steps and jobs
that want to use the data set.

A nontemporary data set name can be either an unqualified or gualified
name. An unqualified data set name consists of one through eight charac-
ters. The first character must be an alphabetic or national (@,#,$)
character; the remaining characters can he any alphanumeric or national
characters, a hyphen, or an overpunched ampersand zexro (12-0 punch}.

A qualified data set name consists of one through 44 characters (includ-
ing periods), except when the qualified name identifies a generation data
group. In this case, the data set name may consist of only one through 35
characters (including periods). For each eight characters or less there
must be a period, and the first character of the name and the character
following a period must be an alphabetic or national (@,#,$) character.

If the user assigns a qualified name to a data set that is to be cataloged,
all but the lowest level of the nhame must already exist as indexes in the
system catalog before he can request the system to catalog the data set.
An index level is created by using the IEHPROGM utility program. Once

the indexes are established, the data set can be cataloged.

When the user requests a data set that is catalcged on a control volume
(e.qg., DODS) other than the system catalog, the system attempts to mount
this control volume if it is not already mounted. After the system
obtains the pointer to this data set, the control volume may then be de-
mounted by the system if the unit on which it was mounted is required by
another volume. If the user plans to delete, uncatalog, or recatalog the
data set, the volume must be mounted during disposition processing (at the
end of the job step) in order for the pointer to be deleted or revised.
The user can ensure that the volume remains mounted by requesting the
operator to issue a MOUNT command for this wolume before the job step is
initiated. If the user does not use the MOUNT command to mount the volume,
and if the volume is not mounted during disposition processing, then, aftexr
the job has terminated, he must use the IEHPROGM utility program to delete
or revise the pointer in the control volume. (In order for the system to

. mount a control volume, the control volume must be logically connected to
the system catalog. ' This is done using the CONNECT function of the
TEHPROGM utility program, which is described in the IBM System/360 Operating
System Utilities (GC28-6586) publication.)

5.6-18

JOB SET-UP

5.6.6.5.6 Temporary Data Sets

Any data set that is created and deleted within the same job is a temporary
data set. A DD statement that defines a temporary data set need not in-
clude the DSNAME parameter; the system generates one for the user. Tempo-
rary data set names should not be used for tape data sets, as they cause
excessive printout on the operator's console. The user should use a
permanent form of the DSNAME.

If the user includes the DSNAME parameter, the temporary data set name
can consist of one through eight characters and is preceded by two
ampersands (&&). The character following the ampersands must be an
alphabetic or national (@,#,$) character; the remaining characters can

be any alphanumeric or national characters. (A temporary data set name
that is preceded by only one ampersand is treated as a temporary data

set name as long as no value is assigned to it either on the EXEC state-
ment for this job step when it calls a procedure, or on a PROC statement
within the procedure.) If a value is assigned to it by one of these means,
it is treated as a symbolic parameter. Symbolic parameters are discussed
in Appendix A of Job Control Reference (GC28-6704).

The system generates a qualified name for the temporary data set, which
beging with SYS and includes the jobname, the temporary name assigned
in the DSNAME parameter, and other identifying characters.

If the user attempts to keep or catalog a temporary data set (he speci-
fies a disposition of KEEP or CATLG in the DISP parameter), the system
changes the disposition to PASS and the data set is deleted at job ter-
mination. However, this change is not made for a data set on a tape
volume when the follewing conditions exist: (1) the data set is new;

(2) the data set is not assigned a name; and (3) DEFER is specified in the
UNIT parameter. The data set is deleted at job termination, but the sys-
tem tells the operator to keep the volume on which the data set resided
during the job.

5.6.6,5.7 Members of a Partitioned Data Set

A partitioned data set consists of independent groups of sequential rec-
ords, each identified by a member name in a directory. When a user wants
to add a member to a partitioned data set or retrieve a member, he must
specify the partitioned data set name and follow it with the member name.
The member name is enclosed in parentheses and consists of one to eight
characters. The first character must be an alphabetic or national (@,$,#)
character; the remaining characters can be any alphanumeric or national
characters.

5.6-19

JOB SET-UP

5.6.6.5.8 Generations of a Generation Data Group

A generation data group is a collection of chronclogically related data
sets that can be referred to by the same data set name. When a user wants
to add a generation to a generation data group or retrieve & generation,
he must specify the generation data group name and follow it with the
generation number. The generation number is enclosed in parentheses and
the number is a zero or a signed integer. A zero represents the most
current generation of the group; a negative integer represents an older
generation; a positive integer represents a new generation that has not
as yet been cataloged.

To retrieve all generations of a generation data group {up te 255 genera-
tions), the user should code only the group name in the DSNAME parameter
and the DISP parameter,

A complete discussion of creating and retrieving generating data sets
is contained in "Appendix D: Creating and Retrieving Generation Data
Sets" in Job Control Language Reference (GC28-6704),

5.6-20

JOB SET-UP

5.6.6.6 Postponing Data Set Definition

The DDNAME parameter allows the user to postpone defining a data set until
later in the same job step. In the case of cataloged procedures, this
parameter allows the user to postpone defining a data set in the procedure
until the procedure is called by a job step.

The DDNAME parameter is most often used in cataloged procedures and in job
steps that call procedures. It is used in gataloged procedures to post-

pone defining data in the input stream until a job step calls the procedure.
(Procedures cannot contain DD statements that define data in the input
stream, i.e., DD * or DD DATA statements.) It is used in job steps that

call procedures to postpone defining data in the input stream on an over-
riding DD statement until the last overriding DD statement for a procedure
step. {Overriding DD statements must appear in the same order as the corres-
pending DD statements in the procedure.)

The DDNAME parameter is coded as follows:
DDNAME=ddname

where ddname is the name of a following DD statement in the same job step
that defines this data set,.

5.6.6.6,1 Rules for Coding

a. The only parameters that can be coded with the DDNAME parameter
are the DCE subparameters BLKSIZE and BUFNO.

b, The DDNAME parameter cannot appear on a DD statement named
JOBLIB.

c. The user can code the DDNAME parameter up to five times in a job
step or procedure step. However, each time the DDNAME parameter
is coded, it must refer to a different ddname.

d. If the data set, which will be defined later in the job step,
is to be concatenated with other data sets, the DD statements
that define these other data sets must immediately follow the
DD statement that includes the DDNAME parameter.

5,6.6.6,2 Coding the DDNAME Parameter
When the system encounters a DD statement that contains the DDNAME para-

meter, it saves the ddname of that statement. The system also temporarily
saves the name specified in the DDNAME parameter so that it can relate

5.6-21

JOB SET-UP

that name to the ddname of a later DD statement. Once a DD statement with
that corresponding name is encountered, the name is no longer saved. For
example, if the system encounters this statement:

//RBC DD DDNAME=JACK

the system saves ABC and, temporarily, JACK. Until the ddname JACK is
encountered in the input stream, ABC defines a dummy data set.

When the system encounters a statement vhose ddname has been temporarily
saved, it does two things: (1) it uses the information contained on this
statement to define the data set; and (2) it associates this information
with the name of the statement that contained the DDNAME parameter. The
value that appeared in the DDNAME parameter is no longer saved by the
system. To continue the above example, if the system encounters this
statement:

//IACK DD DSNAME=NIN,DISP= (NEW,KEEP) ,UNIT=2400

the system uses the data set name and the disposition and unit informa-

tion to define the data set; it also associates the ddname of the state-
ment that contained the DDNAME parameter with this information. 1In this
example, the ddname used is ABC; the ddname JACK is no longer saved.

The data set is now defined, just as it would be if the user had coded:

//RBC DD DSNAME=NIN,DISP= (NEW, KEEP) ,UNIT=2400

The system associates the ddname of the statement that contains the DDNAME
parameter with the data set definition information. It does not use the
adname of the later statement that defines the data set. Therefore, any
references to the data set, before or after the data set is defined, must
refer to the DD statement that contains the DDNAME parameter, not the DD
statement that defines the data set. The following sequence of control
statements illustrates this:

//DD1 DD DDNAME=LATER

//LATER DD DSN=SET12,DISP=(NEW,KEEP) ,UNIT=2314,VOLUME=SER=G3SCRO,
/7 SPACE= (TRK, (20,5))

//bD12 DD DSN=SET13,DISP= (NEW, KEEP) , VOLUME=REF=*.DD1,
!/ SPACE=(TRK, {40,5))

5.6-22

JOB SET-UP

¥When the user wants to concatenate data sets, the unnamed DD statements
mist follow the DD statement that contains the DDNAME parameter, not the

DD statement that defines the data set. The following sequence of control
statements illustrates this:

//DbAa DD DDNAME=DEF INE
// DD DSN=A.B.C,DISP=0OLD
/7 DD DSN=SEVC,DISP=0LD,UNIT=2314,VOL=SER=G1SCR1

//DEFINE DD *
data
/*

The user can use the DDNAME parameter up to five times in a job step or

procedure step. However, each time the DDNAME parameter is coded, it
must refer to a different ddname.

5.6-23

JOB SET-UF

5.6.6.7 Data Set Labels

Labels are used by the operating system to identify volumes and the data
sets they contain, and to store data set attributes. If data set labels
are present, they precede each data set on the volume. Data sets residing
on direct-access volumes always have data set labels. These data set
labels are contained in the volume table of contents at the beginning of
the direct-access wolume.

A data set label may be a standard or nonstandard label. Standard labels
can be processed by the system; nonstandard labels must be processed by
nonstandard label processing routines, which are not included in the M&DO
systems. Data sets on direct-access volumes must have standard labels.
Data sets on tape volumes should have standard labels, but can have non-
standard labels or no labels.

Tape label definitions and associated tape label processing are included
in the Tape Labels (GC28-6680) publication.

The LABEL parameter is coded as follows:

LABEL#([data set gequence numbeﬁ] »SL. ¢+ IN ,EXPDT=yydde)
+NL , ,OUT RETPD=nnnn
,BLP

I
5.6.6.7.1 Rules for Coding

a. All the subparameters except the last subparameter in the LABEL
parameter are positional subparameters. Therefore, if the user
wants to omit a subparameter, he must indicate its absence with
a comma.

b. 1f the only subparameter the user wants to specify is the data
set sequence number, RETPD or EXPDT, he can omit the parentheses
and commas and code LABEL~data set sequence number, LABEL=RETPD=
nnnn, or LABEI=EXPDT=yyddd.

c. If the data set has standard labels, the user can omit the sub-
parameter SL. ‘

4. When the user is defining a data set that resides or will reside
on a direct-access volume, only SL can be specified as the second
subparanmeter.

e. The LABEL, DDNAME, and SYSOUT parameters are mutually exclusive

parameters; therefore, if DDNAME or SYSOUT is coded, the user
should not code the LABEL parameter.

5.6-24

JOB SET-UP

5.6.6.7.2 When to Code the LABEL Parameter

The LABEL parameter must be coded if:

® The user is processing a tape data set that is not the first data
set on the reel; in this case, he must indicate the data set
gequence number,

® The data set labels are not standard labels; the user must indi-
cate NL or RLP,

® The user wants to specify what type of labels a data set is to
have when it is written on a scratch volume; he must indicate
the label type.

) The data set is to be processed only for input or output and
this conflicts with the processing method indicated in the OPEN
macro instruction; the user must specify IN, for input, or OUT,
for output. This option should be used when applicable for
FORTRAN sequential data sets.

) The data set is toc be kept for some period of time; the user must
indicate a retention period (RETPD) or expiration date - (EXPDT).

5.6.6.7.3 The Data Set Sequence Number Subparameter

When the user wants to place a data set on a tape volume that already con-
tains one or more data sets, he must specify where the data set is to be
placed, i.e., the data set is to be the second, third, fourth, etc., data
set on the volume. The data set sequence number causes the tape to be
positioned properly so that the data set can be written on the tape or
retrieved.

The data set sequence number subparameter is a positional subparameter and
is the first subparameter that can be coded. The data set sequence number
is a 1~ to 4-digit number. The system assumes 1, i.e., this is the first

data set on the reel, if the user omits this subparameter or if you code 0.

When the user requests the system to bypass label processing (BLP is coded
as the label type in the LABEL parameter} and the tape volume contains
labels, the system treats anything between tapemarks as a data set. There-
fore, in order for the tape with labels to be positiocned properly, the data
set sequence number must reflect all labels and data sets that precede the
desired set. Section I of the Tape Labels (GC28-6680) publication illus-
trates where tapemarks appear.

5.6-25

JOB SET-UP

5.6.6.7.4 The Label Type Subparameter

The label type subparameter tells the system what type of label is asso-
ciated with the data set. The label type subparameter is a positional
subparameter and must be coded second, after the data set sequence number
subparameter. The user can omit this subparameter if the data set has
standard labels.

The label type subparameter is specified as:
® SL ~- if the data set has standard labels.
® NL -- if the data set has no labels.
® BLP -- if the user wants label processing bypassed.

SL is the only label type that can be specified for data sets that reside
on direct-access volumes.

When SL is specified, or the label type subparameter is omitted and the
data set has standard labels, the system can ensure that the correct tape
or direct-access volume is mounted. When the user specifies NL or ELP,
the operator must ensure that the correct tape volume is mounted. If the
user specifies NL, the data set must have no standard labels.

For cataloged and pagsed data sets, label type information is not kept.
Therefore, any time the user refers to a cataloged or passed data set
that has other than standard labels, he must code the LABEL parameter and
specify the label type.

BLP is not a label type, but a request to the system to bypass label pro-
cessing. This specification allows the user to use a blank tape or over-
write a 7-track tape that differs from his current parity or density speci-
fications. Bypass label processing is an option of the operation system.

Note for BLP: Each file of a standard label tape is preceded and followed
by a label. This means that for every file of data there are actually three
files that the system must read. Therefore, in order to read the nth data
file of a standard label tape using LABEL=(X,BLP), you should determine X
by the formula

X = 3n-1,

The label type subparameter can also be specified when the user makes a
nonspecific volume request for a tape volume (i.e., no volume serial
numbers are specified on the DD statement) and he wants the data set to
have a certain type of label. IXf the volume that is mounted does not
have the corresponding label type he desires, he may be able to change
the label type.

5.6-26

JOB SET-UP

When you specify NL and the operator mounts a tape volume that contains
standard labels, the user may use the volume, provided: (1) the expira-
 tion date of the existing date of the existing data set on the volume has
‘passed; and (2) the existing data set on the volume is not password pro-
tected; and (3) he makes a nonspecific volume request. All of these
conditions must be met. If they are not, the system requests the operator
to mount another tape volume,

When the user specifies SL and the operator mounts a tape volume that
contains other than standard labels, the system requests the operator to
identify the volume serial number and its new owner before the standard
labels are written,

5.6.6.7.5 The IN and OUT Subparameters

The basic sequential access method (BSAM) permits a specification of

INOUT or OUTIN in the OPEN macro instruction as the processing method.

If the user has specified either of these processing methods in the OPEN
macro instruction and wants to override it, he may do so by coding either
the IN or OUT subparameter. For FORTRAN users, the IN and OUT subparameters
provide a means of specifying how the data set is to be processed, i.e.,

for input or output. Whenever a FORTRAN tape operation is executed, the
system, in the absence of additional information, will CPEN that data set
for IN-OUT operations. This requirxes a reply by the console operator before
any tape operation can take place. This, in turn, creates overhead and
introduces an additicnal human element into the execution of the program.

when INOUT is specified in the OPEN macro instruction and the user wants
the data set processed for input only, he can specify the IN subparameter.
When the IN subparameter is coded, any attempt by the processing program
to process the data set for output is treated as an error. If the user
does not override the INOUT specification for tape volumes, the operator
must insert a ring negating the file protection feature.

When OUTIN is specified in the OPEN macro instruction and the user wants
the data set processed for output only, he can specify the OUT subpara-
meter. When the OUT subparameter is coded, any attempt by the processing
program to process the data set for input is treated as an error.

The IN and OUT subparameters are positional subparameters. If either is
coded, it must appear as the fourth subparameter, after the data set
sequence number subparameter, the label type subparameter, and the PASSWORD
subparameter, or the commas that indicate their absence.

5.6-27

JOB SET-UP

5.6.6.7.6 The RETPD and EXPDT Subparameters

When it is necessary that a data set be kept for some period of time, the
user can tell the system how long it is to be kept when he creates the data
set. As long as the time period has not expired, a data set that resides
on a direct-access volume cannot be deleted by or overwritten by another
job step or job. (If it is necessary to delete such a data set, the

user can use the IEHPROGM utility program to delete the data set. The
IEHPROGM utility program is described in the IBM Utilities publication,
GC28-6586.)

There are two different ways to specify a time period: (1} tell the system
how many days you want the data set kept (the RETPD subparameter) or

{(2) tell the system the exact date after which the data set need no longer
be kept (the EXPDT subparameter).

If the user codes the RETPD subparameter, he specifies a 1~ to 4-digit
nunber, which represents the number of days the data set is to be kept.

If he codes the EXPDT subparameter, he specifies a 2-digit year number and
a 3-digit Julian day number (e.g., July 1, 1976 would be 76182), which
represents the date after which the data set need no longer be kept. When
neither the RETPD or EXPDT subparameter is specified for a new data set,
the system assumes a retention period of zero days.

The RETPD or EXPDT subparameter mast follow all other subparameters of

the LABEL parameter. If no other subparameters are coded, the user can
code LABEL=RETPD=nnnn or LABEL=EXPDT=yyddd,

506-28

JOB SET-UP

5.6.6.8 Obtaining Space for Direct-Access Data Sets

The format of the SPACE parameter is as follows:

SPACE=(|TRK . (quantity sincrement (directory|)
CYL ’ s index
blocksize

+RLESE , CONTIG + ROUND:)
r MXIG
s e ALX

The SPACE parameter must be specified when creating new direct-access data
sets,

Space can be requested in terms of cylinders, tracks, or blocks. For most

efficient use space should be allocated in cvlinders. Refer to subsection
17.2 for a. further description of the SPACE parameter.

5.6-29

JOB SET-UP

5.6.6.2 Channel Optimization

SEP= {ddnames)
AFF=ddname

A maximum of eight ddnames previously defined in the step may appear in the
SEP parameter. The parentheses are unnecessary if only one ddname is coded.
The AFF parameter must refer to a prior data definition statement which
contains the SEP parameter. Refer to subsection 17.1.5 for a further dis-
cussion of channel optimization.

5.6-30

JOB SET-UP

5.6.6.10 Allocating an I/0 Unit

Before the data set can be used as input to a processing program or
written as output by a processing program, the volume on which a data
set resides or will reside must be mounted on an input/output device.
The UNIT parameter provides the system with the information it needs to
assign a device to the data set. The format of the UNIT parameter is as
follows:

UNIT={(unit address [,unit count [,DEFER] [,SEP=(ddname,...)])
device type P
group name .

UNIT=AFF=ddname
5.6.6.10.1 Rules for Coding

a. If the only subparameter coded in the UNIT parameter is the
first subparameter, the user need not enclose it in parentheses.

b. The user need not code the unit count subparameter if he wants
only one device assigned to the data set.

c. The UNIT and DDNMAME parameters are mutually exclusive parameters;
therefore, if DDNAME is coded, do not code the UNIT parameter.

5.6.6.10.2 Identifying the Device

The user must identify to the system the specific device he wants or the
type of device he wants. To identify a specific device, he must specify
a unit address. When a unit address is coded, the system assigns the user
that unit.

The user should not identify a device by its unit address unless it is
absolutely necessary. Specifying a unit address limits unit assignment
and may result in a delay of the job and other following jobs if the unit
is being used by another job or in cancellation by the operator if the
unit is not available.

5.6.6.10,3 Device Type

Device types correspond to particular set of features of input/output
devices. When the user codes a device type, he allows the system to assign
any available device of that device type. For example, if the device type
he wants is a 2314 Disk Storage Drive, he codes UNIT=2314. The system
assigns space on an available 2314. If only one device in the system is

of that device type, the system assigns space on that device. If there

is more than one device in the system of that device type, there is a
certain degree of device independence.

5.6-31

JOB SET-UP

The device types available on M&DO systems and their descriptions are
2400-7 and 2400-9 are device type names added to the IEM
device type list by the GSFC system programmers at system generation
time. (The user can code only those device types that were defined

listed below.

during system generation.)

TAPE
Device

2400 series 9-Track Magnetic Tape Drive
that can be allocated to a data set
written or to be written in 800 bpi when
the dual-density feature is not installed
on the drive or in 1600 bpi when the dual~
density feature is installed on the drive.

2400 series Magnetic Tape Drive with
7-Track Compatibility and Data Conversion.

2400 series 9-Track Magnetic Tape Drive
that can be allocated to a data set written
or to be written in 1600 bpi density.

2400 series 9-Track Magnetic Tape Drive
having an 800 and 1600 bpi density capa-
bility.

DIRECT ACCESS

Device Type 5/95 8/75 8/65
2400 X X X
2400-2 X X X
2400-7

2400-3 X X X
2400-4 X X X
2400-9

Device Type 5/25 §/75 8/65
2301 X - -
2303 - X X
2314 X X X
2321 X X -

Device
2301 Drum Storage Unit
2303 Drum Storage Unit
2314 Storage Facility

Any bin mounted on a 2321 data cell drive

The 2301 and 2303 Drum Storage Units are reserved for system data sets.

5.6~-32

Device Type 5/95 8/75 5/65
1052 X X X
1403 X X X
2501 - X -
2540 X X p 4
2540-2 X X X
Device Type 5/95 8/15 §/65
2250-1 X X -
2250-3 - - X
2260-]1 X - X
5.6.6,10.4 Group Name

JOB SET-UP

UNIT RECORD
Device
1052 Printer~Keyboard
1403 Printer
2501 Card Reader
2540 Card Read Punch (read feed)

2540 Card Read Punch (punch feed)

GRAPHIC
Device
2250 Display Unit, Model 1
2250 Display Unit, Model 3

2260 Model 1 Display Station (Local
Attachment)

A group name is one through eight alphanumeric characters and identifies a
device or a group of devices.
of the same type or different direct access and tape device types. Group
names are established during system generation.

The group of devices can consist of devices

When a user codes a group name, he allows the system to assign any avail~
able device type that is included in the group. (If a group consists of
only one device type, as is true of all the GSFC group names, the system

assigns that device.)

For example, if all 2314 Disk Storage Units are

included in the group named DISK and the user codes UNIT=DISK, the system
assigns an available 2316 disgsk pack on a 2314 device.

Subsection 19.2 contains a list of the GSFC standard group names.

5.6-33

JOB SET-UP

5.6.6.10.5 Unit Count

The unit count subparameter indicates how many devices the user wants
assigned to a data set. If he does not code this subparameter, or codes O,
the system assigns one device. (If he receives a passed data set or refers
the system to a cataloged data set or earlier DD statement for volume and
unit information (VOLUME=REF=reference), the system assigns one device,
even if more devices were requested in an earlier DD statement.) Only in
one case may the system assign more than one device: when two DD state-
ments in a step request use of the same volume. If either of thegse two

DD statements requests any other volume(s), the system assigns an addi-
tional device.

For operating efficiency, the user can request multiple devices for a
multivolume data set or for a data set that may require additional volumes.
When each required volume is mounted on a separate device, time is not
lost during execution of the job step while the operator demounts and
mounts volumes. The maximum number of devices that can be requested per
DD statement is 59.

A partitioned data set cannot be extended to other volumes. It must reside
on a single direct access storage device (DASD). Care must be exercised in
assigning a sequential data set to more than one DASD since the system will
allocate up to 16 extents (if the space is available) on each of the assigned
volumes.

In the following cases, the user should always code the unit count sub-
parameter when the data set may be extended to a new volume:

) If the data set resides on a permanently resident or reserved
volune., In these two cases, the volume cannot be demounted in
order to mount another wvolume.

® If the data set is assigned space through suballocation. Code
the unit count subparameter on the DD statement that requests
the space to be suballocated.

The unit count subparameter is a positional subparameter, and it shares

the same position as the subparameter P. If neither of these subparameters
is coded and the DEFER or SEP.subparameter follows, code a comma to indi-
cate the absence of the unit count subparameter and the subparameter P.

5.6,6.10.6 Parallel Mounting

Requesting parallel mounting has the same effect as specifying a unit
count, i.e., more than one device is assigned to the data set. When
parallel mounting is requested, the system counts the number of volume
serial numbers specified in the VOL=SER=parameter on the DD statement
and assigns to the data set as many devices as there are serial numbers.

5.6-34

JOB SET-UP

(For cataloged data sets, the system counts the number of volume serial
numbers contained in the catalog.) The user can request parallel mount-
ing by coding the letter P in place of the unit count subparameter.

The subparameter P is a positional subparameter, and it shares the same
position as the unit count subparameter. If neither of these subparameters
is coded and the DEFER or SEP subparameter follows, code a comma to indi-
cate the ahsence of the subparameter P and the unit count subparameter.

5.6.6.10.7 Deferred Mounting

The DEFER subparameter requests the system to assign the required units
to a data set and to defer the mounting of the volume(s) on which the
data set resides until the processing program attempts to open the data
set. The DEFER subparameter should only be coded on DD statements that
define data sets residing on removable volumes. The DEFER subparameter
cannot be coded on a DD statement that defines an indexed sequential data
set or that defines a new data set that is to be written on a direct-
access volume, because space cannot be allocated to the data set.

If the user requests deferred mounting of a volume and the data set on
that volume is never opened by the processing program, the volume is not
mounted during the execution of the job step. If a later job step refers
to that data set, the system may assign a different device to the data
set than was originally assigned to it.

If the user requests deferred mounting of a private volume (a private disk
pack or data cell or any specific tape) and has not filled in the serial
number on his computer request form, the following sequence of events may
take place: (1) the user's job will be read in and be executed; (2) the
deferred data set will be opened; (3} the requested wvolume will not be
available; (4) the operator will cancel the user's job; and (5) the user
will be charged for all the time used,

5.6.6.10.8 UNIT Separation and Affinity
These topics are discussed in paragraph 17.1.5.2.
5.6.6.10.9 When Not to Code the UNIT Parameter
Except in a few cases, the UNIT parameter is always coded on a DD statement
that defines a data set that requires one or more devices. In the follow—
ing cases, the system obtains the required unit information from othex
sources. Therefore, the user need not code the UNIT parameter:

™ When the data set is cataloged. For cataloged data sets, the

system obtains unit and volume information from the catalog.
However, if VOLUME=SER=serial number is coded on a DD statement

5.6-35

JOB SET-UP

that defines a cataloged data set, the system does not look

in the cataleog. In this case, the user must code the UNIT
parameter. If the VOLUME parameter is not coded but the user
requests a device in the UNIT parameter, the request is ignored.

When the data set is passed from a previous job step. For
passed data sets, the system obtains unit and volume infor-
mation from an internal table. However, if VOLUME=SER=serial
number is coded on a DD statement that defines a passed data
set, the system does not look in the internal table. In
this case, the user must code the UNIT parameter. If the
VOLUME parameter is not coded but the user requests a device
in the UNIT parameter, the request is ignored.

When the data set is to use the same volumes assigned tc an
earlier data set, i.e., VOLUME=REF=reference is coded. In
this case, the system cbtains unit and volume information
from the earlier DD statement that specified the volume
serial number or from the catalog. If the user requests a
device in the UNIT parameter, the request is ignored.

When the data set is to share space or cylinders with an
earlier data set, i.e., SUBALLOC or SPLIT is coded. In this
case, the system cbtains unit and volume information from the
earlier DD statement that specifies the total amount of space
required for all the data sets. If the VOLUME parameter is
coded, it is ignored. 1If the user requests a device in the
UNIT parameter, the request is ignored.

In all of these cases, the user can code the UNIT parameter when he wants
mere devices assigned.

5.6-36

5.6.6.11

JOB SET-~UP

Defining a Volume

A volume can be a tape reel, a disk pack, a data cell, or a drum. The
VOLUME parameter provides information about the volume or volumes on
which an input data set resides or on which an output data set will

reside,

Before a data set can be read or written, the volume on which the data
set resides or will reside must be mounted. PFor an existing data set,
the user must identify the volume or volumes on which the data set
resides by making a specific volume request. For a new data set, the
user can make a specific volume request or let the system select a volume
for him by making a nonspecific volume request. The VOLUME parameter

is specified as follows:

VOL

=

([PRIVATE] [,RETAIN} [.volume sequence number] [volume count]

r r

E] SER= ({serial number,...)
REP=dsnamne
REF=*ddname)
REF=%, gtapname ,ddname
REF=*, stepname.procstepnane.ddname

5.6.6.11.1 Rules for Coding

aa

b.

C.

e,

The volume sequence number subparameter can be one to four
digits.

The volume count subparameter is a number from one through 255.

If the only subparameter the user is coding is PRIVATE, he
need not close it in parentheses.

If the only subparameter the user is coding is SER or REF, he
codes VOLUME=SER={serial number,...) or VOLUME=REP=reference.

If the list of volume serial numbers consists of only one serial
number, the user need not enclose the gerial number in paren-
theses.

The VOLUME, DDNAME, and SYSOUT parameters are mutually exclusive
parameters; therefore, if DDNAME or SYSOUT is coded, do not code
the VOLUME parameter.

The VOLUME parameter should not be used to retrieve a data set
vhich is cataloged or passed.

5.6-37

JOB SET-UP

5.6.6.11.2 Specific Volume Request

A specific volume request informs the system of the volume's serial
nurber. Any of the following implies a specific volume request:

1. The data set is passed from an earlier step or is cataloged.
2, VOLUME=SER=serial number is coded on the DD statement.

3. VOLUME=REF=reference is coded on the DD statement, referring
to an earlier specific volume request.

When the user makes a specific volume request, he can code the PRIVATE
subparameter or the PRIVATE and RETAIN subparameters in the VOLUME
parameter. For passed data sets, he can alse code the volume count
subparameter. For cataloged data sets, he can also code the sequence
number and volume count subparameters.

5.6.6.11.3 Nonspecific Volume Request

A nonspecific volume request can be made only if the user is defining a
new data set. When he makes a nonspecific volume request, the system may
assign his data set to a volume that is already mounted, or may cause a
volume to be mounted. What the system does depends on the volume state
of the volumes that are already mounted. The volume states that mounted
volumes can assume and how they affect volume selection are described
under "Volume States" in Section 17.

When you make a nonspecific volume recquest, you can code the PRIVATE
subparameter, or the PRIVATE and RETAIN subparameters, and the volume
count subparameter in the VOLUME parameter.

5.6-38

JOB SET-UP

5.6.7 DEFINING DATA IN THE INPUT STREAM (DD * or DD DATA)

The input stream can be on a card reader, a magnetic tape, or a direct-
access device,

Data in the input stream are written onto a direct-access device to allow
for high-speed retrieval when the data are required. The reader proce~
dure assigns two buffers to the data control block plus a blocking factor
(3200 bytes per block) to be used to block the data in the input stream
when they are placed on the direct-access device. The user can assign a
smaller blocking factor by including the DCB subparameter BLKSIZE on the
DD * or DD DATA statement, e.qg., DCB=BLKSIZE=80, He can also assign the
number of buffers by including the DCB subparameter BUFNO, e.g., DCB=
(BLKSIZE=3200,BUFNO=2).

If the processing program does not read all the data in an input stream,
the remaining data are flushed without causing abnormal termination of
the job.

5.6.7.1 Rules for Coding

a. In MVT, there may be more than one DD * and/or DD DATA state-
ment per job step.

b. In MVT, when the user calls a cataloged procedure, he may adgd
more than one DD * and/or DD DATA statement to a procedure step.

. In MVT, if the data are preceded by a DD * statement, a
delimiter statement (/*) following the data is optional.

d. If the data are preceded by a DD DATA statement, a delimiter
statement (/*) following the data is required.

e. The data cannot contain the characters /* in columns 1 and 2.
PL/I comments begin with /*, but most PL/I coders begin in
column 2, which is the default starting position.

£. In MVT, the DCB subparameters BLKSIZE and BUFNC have meaning
wvhen coded on a DD * or a DD DATA statement. Any other para-
meters coded on a DD * or DD DATA statement are not used but
are checked for syntax.

g. A cataloged procedure cannot contain either a DD * or a DD DATA
statement.

h. Code the DATA parameter instead of the * parameter when the
data contains job control statements.

5.6~39

JOB SET-UP

The user can include several distinct groups of data in the input stream
for a job step or procedure step. The system can recognize each group of
data if the user precedes each group with a DD * or DD DATA statement,

or follows each group with a delimiter statement (/*), or both. (If he
leaves out the DD DATA or DD * statement for a group of data, the system
provides a DD * statement having SYSIN as its ddname.)

The following rules apply when data are entered through an input stream:
) The input stream can be on any device supported by QSaM.
® The characters in the records must be coded in BCD or EBCDIC.

5.6.7.2 The DCB Subparameters BLKSIZE and BUFNO

BLKSIZE and BUFNC may be coded on a DD statement that contains the DDNAME
parameter, which refers to another DD statement. If, in turn, the refer-
enced DD statement defines data in the input stream, these DCB subparameters
are used to block the data. However, if the referenced DD statement con-
tains its own DCB subparameters BLKSIZE and BUFNO, these values override
those on the DD statement that contains the DDNAME parameter.

5 a6_40

JOB SET-UP

5.6.8 BYPASSING /0 OPERATIONS ON THE DATA SET {DUMMY)

The DUMMY parameter, a DD statement positional parameter, allows the
user to bypass input/output operationsg, device and space allocation,
and disposition of data sets referred to by the basic sequential or
queued sequential access method. This facility can be used to suppress
the writing of certain output data sets, such as assembler listings,
and to update new master files with a dummy detail file. Bypassing
operations on noncritical data sets also results in a saving of time
when a program is being tested. To use this facility, DUMMY is coded
as the first parameter in the operand field.

DUMMY specifies that no devices or external storage space is to be
allocated to the data set, no disposition processing is to be performed
on the data set, and, for BSAM and QSAM, specifies that no input or
output operations are to be performed on the data set.

5.6.8.1 Fules for Coding

1. The user can code the DUMMY parameter by itself or follow it
with all the parameters necessary to define a data set.

2. If the DUMMY parameter is coded and an access method other
than the basic secquential access method (BSAM) or queued
sequential access method (QSAM) is requested to read or write
the data set, a programming error occurs.

5.6.8,2 The Function of the Dummy Parameter

When the user uses either the basic sequential or queued sequential access
mathod, the DUMMY parameter allows his processing program to execute
without performing input or output operations on a data set. When the
processing program asks to write a dummy data set, the write request is
recognized, but no data are transmitted. When the processing program
asks to read a dummy data set, an end-of-data-set exit is taken imme-
diately.

Besides bypassing input or output operations on a data set, the DUMMY
parameter causes the UNIT, VOLUME, SPACE, and DISP parameters, when
coded on the DD DUMMY statement, to be ignored (if coded, these para-
meters are checked for syntax). Therefore, no devices or external
storage space is allocated to the data set and no disposition processing
is performed on the data set.

If the user knows that certain parts of a program "work" and need not

be processed each time the job is submitted for testing, the DUMMY para-
meter can help save time., The DUMMY parameter can also be used to suppress
the writing of data sets, such as output listings, that the user does not
need.

5.6-41

JOB SET-UP

5.6.9 DEFINING THE SYSTEM OUTPUT STREAM

SYSOUT= (classname [,program name [,form number]ﬂ

’

5.6.9.1 Rules for Coding

a. The classname can be any alphanumeric character (A-Z, 0-9).
See paragraph 5.6.9.4.

b. The form number is one to four alphameric and national (@,$,#)
characters.

c. If a program name and form number are omitted, the user need
not enclose the classname in parentheses.

d. The UNIT, SPACE, OUTLIM ({(Release 19 and later only), and DCB
parameters can be coded with the SYSOUT parameter. Besides
the mutually exclusive parameters listed below, other param-
eters codes with the SYSOUT parameter are ignored.

e. The DISP, DDNAME, AFF, SEP, VOLUME, LABEL, SPLIT, and SUBALLOC
parameters and the SYSOUT parameter are mutually exclusive
parameters; therefore, if any of these parameters are coded,
do not code the SYSOUT parameter. To override a SYSOUT para-
meter in a cataloged procedure, code the DISP parameter,

5.6.9.2 Advantages of Coding the SYSOUT Parameter

When a user wants a data set printed on an output listing or in the form
of punched cards, he can code the UNIT parameter and identify the unit
record device he wants, or code the SYSOUT parameter and specify the
class that corresponds to the type of unit record device he wants. There
are advantages to coding the SYSOUT parameter:

a. During execution, the output data set is written to a direct-
access device, and a system output writer writes the data set
to a unit record device at a later time. This allows greater
flexibility in scheduling print and punch operations, and
improves operating system efficiency. The user can also write
his output data set directly to a unit record or magnhetic tape
device,

b. The output data set and system messages resulting from the job
can be assigned to the same type of unit record device. This
is accomplished by specifying the same classname in the SYsouT
and MSGCLASS parameters. (The MSGCLASS parameter is coded on
the JOB statement.)

5 .6—42

JOB SET-UP

c. When a user wants the output data set printed or punched on
a special output form, he can specify the form number in the
SYSOUT parameter and let the system inform the operator at
the time the data set is to be written what form is to be
used. The use of this parameter is not encouraged. When
multiple copies of a printout are desired they may be obtained
by submitting the original to the 360/95 dispatcher to be
duplicated on the Xerox 2400, The Xerox 2400 will reduce
11 x 14 7/8 inch pages to 8 1/2 x 11 inch pages. It can
sort and collate up to 29 sets in one pass of the original
listing.

d. The reader-interpreter procedure provides a default
SPACE= {TRK, (20,40)) allocation. This may be overridden. If
the cataleged procedure or program do not provide DCB informa-
tion, it must be provided in the DD card. A SPACE allocation
of (TRK,5) is sometimes used on a SYSUDUMP card to print the
first pages of a dump.

5.6.9.3 Coding Other Parameters with the SYSOUT Parameter

The UNIT, SPACE, OUTLIM and DCB parameters can be coded with the SYSOUT
parameter. The DDNAME, DISP, AFF, SEP, VOLUME, LABEL, SPLIT, and
SUBALLOC parameters are mutually exclusive with the SYSOUT parameter;
any other parameters that the user codes with the SYSOUT parameter are
ignored.

The user can write output data sets destined for unit records devices

to a direct-access device instead of immediately writing the data set

to the desired unit record device. Later, a system output writer writes
the data set to the desired unit record device. In the UNIT parameter,
he can request what type of direct-access device he wants for writing

the output data set, how many devices he wants (up to a maximum of five),
and unit separation from other data sets defined in the job step. In

the SPACE parameter, he can specify how much space should be allocated

to the data set and that unused space is to be released. If he amits

the UNIT parameter, the system assigns a device; if he camits the SPACE
parameter, the system assigns the amount of space to be allocated. These
values are part of the PARM parameter field in the input reader procedure
used to read the input stream.

The user can also write an output data set directly to the desired unit
record or magnetic tape device. When direct system output is desired,
the operator selects a unit record or magnetic tape device for a class

by issuing a START DSC {Direct System Output) command. In addition to
the SYSOUT parameter, the DCB and UCS parameters can be coded. If the
SYSOUT subparameters other than classname are coded, the specified infor-
mation is ignored. The UNIT and SPACE parameters are also ignored if
direct system output processing is used. Since the type of processing

to be used may not always be known, it is advisable to code these para-
meters in case an intermediate direct-access device is used.

5.6-43

JOB SET-UP

The DCB parameter can be coded with the SYSOUT parameter to complete
the data control block associated with the output data set. The infor-
mation contained in this data control block is used when the data set
is written to the direct-access device and read by the system output
writer. However, the output writer's own DCB attributes are used when
the data set is written to the desired unit record device.

The OUTLIM parameter allows the user to specify a limit for the number
of logical records he wants included in the output data set being routed
through the cutput stream. The OUTLIM parameter has meaning only in
systems with the System Management Facilities (SMF) option with system,
job, and step data collection, Unless the SYSOUT parameter is coded in
the operand field of the same DD statement, the OUTLIM parameter is
ignored.

5.6.9.4 The Classname

When the user codes the SYSOUT parameter, he indicates a classname. A
classname is an alphanumeric character (aA-Z, 0-9) that indicates the out-
put class desired. Each installation specifies what classnames corres-
pond to what output classes. Therefore, when the user specifies a
classname, the operator knows what type of output device the user wants,
and he ensures that a system output writer is available to write the
output data set to the desired cutput device.

The system determines where system messages resulting from a job are to
be written based on what is coded in the MSGCLASS parameter on the JOB
statement, If the MSGCLASS parameter is not coded, system messages
associated with the user's job are routed to the default output class
specified in the PARM field of the input reader procedure. The default
for the MSGCLASS parameter is A unless changed by the user's installa-
tion., Class A corresponds to a printer, If the user wants his output
data set and the system messages resulting from the job written to the
same unit record device, he simply codes the same classname in both the
MEGCLASS and SYSOUT parameters, or omits the MSGCLASS parameter and codes
his installation's default output class in the SYSOUT parameter.

a. SYSOUT=A - This is the regular printout from the on-line printer.
It is on regular paper, 6 lines per inch.

b. SYSOUT=B ~ This is the card punch, for punched decks.

c. SYSOUT=C - This is the same as class A output, but printed with a
lower priority.

d. SYSOUT=R -~ This is used only for CRJE.
e. SYSOUT=U - Any jobs left in the system after RJE is shut down,

and which have specified SYSOUT=U, will be printed on the system
printer in the computer center.

5.6~-44

JOB SET-UP

$5.6.9.5 Job Separators

The user's output data are preceded by a job separator - a series of three
listing pages or three punched cards that separate the output data sets of
different jobs. The output data sets from these jobs were written to the
same unit. Each page or card containg the name of the job whose data
follows, and identifies the output class and box number. The page separator
also containg the identification of the printer that processed the output,
the time of day and date of printing, a consecutive number, and the ID's of
the last eight jobs printed at the printer. Job separators make it easier
for the operator to separate the data produced by the user's job from the
data of other jobs.

On the 360/95 all remotely submitted jobs (CRJE, RJE, graphic terminals)
have an X printed to the far right of the second line on the header page.
This makes the job reading identifiable to the operator as one having been
submitted remotely and for which there is no job submitted form.

5.6-45

JOB SET-UP

5.7 DELIMITER AND NULL CCNTROL CARDS

5.7.1 DELIMITER STATEMENT

The DELIMITER statement marks the end of a data set in the input stream

and is used to separate data in the input stream from the job control state-
ments that follow the data. The DELIMITER is coded with the characters /%
in columng)} and 2, with the other columns blank.

It should be noted that the /* card is not needed, except after data intro-
duced by a DD DATA statement. Following data introduced by a DD * state-
ment, the /* card may be used or omitted at the user's discretion. In the
JCL examples shown in this User's Guide, note that the /* card sometimes

is used for clarity, but is otherwise omitted. Refer to paragraph 5.6.7
for a discussion of DD * and DD DATA.

5.7.2 NULL STATEMENT

The NULL statement is used to mark the end of a job's control statements and
data. A NULL statement causes the scheduler to look for the next JOB state~
ment. If there are any cards between the NULL statement and the next JOB
statement, these cards are flushed from the input stream. The NUJLL statement
is coded with the identifying characters //, in columns 1 and 2, with all
other columns blank.

5.7-1

STANDRRD (IBM-SUPPLIED} PROCESSORS

SECTION &

STANDARD (IBM~SUPPLIED)} PROCESSORS

6.1 GENERAL

Computer manufacturers customarily furnish software to facilitate the use
of their computers. This software is comprised of an operating system,
processors used in program preparation, and utility programs for perform-
ing certain standard functions. This section describes the IBM-supplied
processors which are available on the M&DO computers, including the lan-
guage processors -- FORTRAN, PL/I, RPG, and Assembler (F); and the large
utilities -- Linkage Editor, Loader, and Sort/Merge. Note that COBOL is
hot supported on M&DO computers.

The language processors translate symbolic statements into machine instruc-
tions, producing cbject modules. The object modules must undergo two
additional steps - linkage editing and loading - before they become exe-
cutable programs. This is done so that a number of separately compiled
programs, including library subroutines, may be combined into a single

load module. The linkage editor combines and edits modules to produce

a single load module that can be brought into main storage for execution
by program fetch. The linkage editor provides several processing facil~
ities that are performed either automatically or in response to control
statements prepared by the programmer.

The loader combines the basic editing and loading functions of the link-
age editor and program fetch in one job step. It is designed for high
performance loading of modules that do not require the special process-
ing facilities of the linkage editor and fetch, such as overlay. The
loader does not produce load modules for program libraries.

Some of the processors are available in several "design levels" (e.qg.,
FORTRAN G and FORTRAN H). Originally, the letter designating the design
level corresponded to the amount of memory required in the host computer

in order to execute the processor. For example, a computer with G level
memory (128k) or larger would be needed to use FORTRAN G. However, because
of the MVT enviromment and variations in the choice of operating sgystem
configurations on a given computer, only the size of the region in which
the compiler operates is of concern. Further, some of the Processors,
notably the Linkage Editor, are subdivided into several design levels within
these stages. 1In general, the higher design levels require increasingly
more memory and sometimes offer additional capabilities.

6.1-1

STANDARD {IBM-SUPPLIED) PROCESSORS

6.2 LANGUAGE. PROCESSORS

The most widely used language at GSFC is FORTRAN IV for use in mathematical
and scientific applications. Paragraph 6.2.1 briefly describes the evolu-
tionary development of FORTRAN IV and points out the major differences
between the FORTRAN IV language as supported by the FORTRAN G and H compilers,
and the FORTRAN compilers on the IEM 7094 and Univac 1108. ANSI FORTRAN IV
specifications are also given. Differences between the FORTRAN G and H
compilers are presented in paragraph 6.2.1.1. PL/I is a more recently de-
veloped language than FORTRAN and is more comprehensive, suitable for commer-
cial applications as well as scientific applications. RPG is a language
designed for report generation.

6.2-1

STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.1 FORTRAN IV

The FORTRAN language has undergone an evolutionary development, beginning

with the original FORTRAN compiler for the IBM 704 in 1956. This processor
was modified in 1958 to accept an augmented language known as FORTRAN II

and, subsequently, processors for FORTRAN II became available on a variety

of computers. The language was further extended in 1962 with the advent of
FORTRAN IV. While FORTRAN IV is a more general language, it is defined so
that it is in some ways incompatible with FORTRAN II. To facilitate the
transition, some FORTRAN IV processors were designed to accept certain

FORTRAN II features which had been eliminated from FORTRAN IV. Among these
are the PRINT and PUNCH statements, and the READ statement with an implied
unit number. As FORTRAN processors proliferated, a number of language dif-
ferences arose, since there was no existing body charged with controlling

the development of the language. Finally, in 1966, the American Standards
Association {ASA), currently known as the American National Standards Insti-
tute (ANSI), established a standard definition of FORTRAN based upon FORTRAN IV.
This standard did not attempt to extend the language, but to define those fea-
tures which were in current use and which were considered valuable. It

did not contain any of the extended features supported by some processors which
tended to depend upon the capabilities of a particular computer or operating
system. Extension of this type, therefore, continues to appear in later pro-
cessors, while ANSI FORTRAN was used as the base.

The IBM S/360 FORTRAN IV language embraces the complete ANSI FORTRAN and in-
cludes some additional features which give the user greater control over S/360
facilities and which offer increased generality. Among the most significant
extensions are direct-access input/output, the IMPLICIT statement, mixed-

mode expressions, and the length specifications on arithmetic variables.

The table in paragraph 6.2.1.1 presents the language features supported by

the IBM FORTRAN IV {G and H) compilers which are not part of ANSI FORTRAN.
This table also provides a comparison of ANSI FORTRAN with 7094 FORTRAN IV

and 1108 FORTRAN V.

Additional information on the use of these features may be cobtained from

the IBM FORTRAN IV Language, Form ((28-6515, and IBM System/360 Operating
System FORTRAN IV (G and H) Programmer's Guide, Form GC28-68l7. For detailed
information on ANSI FORTRAN, the reader is referred to ASA FORTRAN (ANSI,
X3.9 - 1966).

6.2.1.1 Major Language Differences

The major differences between IBM S/360 FORTRAN IV (G and H compilers) and
the FORTRAN supported by the IBM 7094 and Univac 1108 computers are presented
here,

STANDARD (IBM-SUPPLIED) PROCESSORS

In relating S/360 FORTRAN to that of the 7094 and 1108, it is important to
note that the IBM 7094 FORTRAN IV compiler predates ANSI FORTRAN, and thereby
was a direct influence on development of ANSI FORTRAN. This compiler supports
some features which are a carry over from FORTRAN II, such as the PRINT and
PUNCH statements, and the READ statement with implicit unit designation.

These were eliminated from ANSI FORTRAN in the interest of generality, but
were carried into the S$/360 FORTRAN IV to facilitate conversion of 7094 pro-
grams to the S/360. Other than these considerations, the 7094 FORTRAN IV is
essentially the same as ANSI FORTRAN.

The Univac 1108 FORTRAN V compiler is a more recent development than ANSI
FORTRAN and extends upon it, as does the S/360 FORTRAN IV. The 1108 extensions,
however, differ considerably from those of the $/360. While it is not

within the scope of this document to describe the 1108 FORTRAN V language,

those features of S5/360 FORTRAN IV which are supported by the 1108 FORTRAN

V will be noted.

Any discussion which compares a programming language as supported by dif-
ferent computers must also deal with certain considerations imposed by the
hardware. Word size, for instance, affects the precision of numeric values.
It also influences the way in which character data is manipulated by the
program. On the 7094 and 1108, for instance, six characters can be con-
tained in a word, while on the §/360, only four characters are possible.

The bit configurations for characters may also vary from one machine to
another,

Table 6.2-1 presents a comparison of S/360 FORTRAN IV, ANSI FORTRAN, 7094
FORTRAN IV, and 1108 FORTRAN V. Along with linguistic differences, differ-
ences imposed by hardware are also shown. This table is not intended to
be all inclusive; it uses the §/360 FORTRAN as a base, i.e., those features

of 1108 FORTRAN which are not part of 5/360 FORTRAN are not represented in
the table.

The above discussion relates to considerations which affect the way that a
FORTRAN program is written. There are many other considerations, such as
the use of the compiler and interfaces with the operating system, which are
completely dependent on a specific implementation and the host environment.
There are differences, for instance, in the degree and types of optimization,
debugging facilities, and limitations of each compiler. For details of
these considerations as related to the 5/360 G and H compilers, refer to

the IBM System/360 Operating System FORTRAN IV (G and H) Programmers Guide,
Form GC28-6817.

6.2-3

v-¢°9

Table 6.2~1.

S/360 FORTRAN Features

Direct-access I/0 statements

DEFINE FILE

FPIND

READ, WRITE with

a'r parameter

END, ERR parameters in READ

statenent

NAMELIST statement

PRINT, PUNCH statements

READ with implieit unit number

ANST

No

No

No

No

No

No

No

Comparison of 5/360 FORTRAN IV, ANSI FORTRAN,
7094 FORTRAN IV, and 1108 FORTRAN V

7094

No

No

No

No

Yes

Yes

Yes

1108

No

No

No

Yes

Yes

Yes

Yes

Notes

Allows the user to specify the location
{relative record number) within a data
set of the record to be accessed.

Specifies the data set characteristics
{such as record size, number of records)

Provides an overlap of record accessing
and processing.

Specifies the data set reference number
(unit number) and the relative position
of the record within a data set.

Specifies the recovery points in case of
an error condition or end of data.

Allows the names of variables to be input/
output to be specified separately from the
READ/WRITE statement.

Provides compatibility with other
FORTRAN IV compilers (which predate
the ANSI standard).

SHOSSHED0Ed (QIIT4dNS-WEI) QEYANULS

§=-2'9

$/360 FORTRAN Features

T Format Code

Z Format Code

ENTRY statement

Nonstandard returns from sub-
routines {statement label
parameters in CALL statement,
RETURN:)

Length specification of varia-
ables as part of type speci-
fication

IMPLICIT statement

Initial data values in type
specification

Table 6.2-1.

ANST

No

No

No

No

No

No

No

7094

No

No

Yes

Yes

Noe

Ro

No

1lo8

Yes

No

Yes

Yes

No

Yes

Yes

Notes

Specifies the actual character position
within a record (as opposed to the rela-
tive position, as with X format).

Specifies hexadecimal data--replaces O
format for 5/360.

Provides for multiple entry points into
a subprogram.

There are syntax differences in statement
label parameters between various implemen-
tations. Check the appropriate pro-
gramming manual for specifics.

Gives the user greater contrel over the
amount of storage occupied by variables,
and over the resulting precision.

Gives the user the means to establish his
own default type attributes for variables
not explicitly declared.

Accomplishes the same result as the DATA
statement, but is more convenient to use.

SHOSSIDONd (AEITddNS-WEI) TEIVANYLS

9-2°9

5/360 FORTRAN Features

Hexadecimal constant

Literal enclosed in apostrophes

PAUSE 'message'

Mixed mode expressions

Generalized subscripts

Maximam number of dimensions

in an array = 7

Adjustable dimensions

Table 6.2-1.

ANSI 7094 1108

No No No
No Nol No
No No No
No No Yes
No No Yes
3 7 7

Yes Yes Yes

{(Cont'd)

Notes

May be used as data initialization
value.

Eliminates the necessity of counting
characters, as with hollerith constants.

Allows for an alphanumeric message to
be sent to the operator (1108 FORTRAN
allows for six alphanumeric characters,
without the apostrophes).

The type of result depends on the com—
bination of operands.

The result is converted to integer, if
necessary.

For the 7094, the values of the arquments
that represent the array dimensions must
agree with the dimensions of the actual
array. For other versions, they may be
less than the actual dimensions.

SH0SSAIOYd (AT TIANS-WHI) . IVANYIS

L-2°9

Table 6.2-1. (Cont’'d)
S/360 FORTRAN Features ANSI 7094 1108 Notes
Integer, maximum - 23503 2359 These are hardware considerations.
magnitude = 231

Integer, maximum - 11 11
decimal digits = 10

Real, maximum - 1038 1038
magnitude = 1075

Real, maximum - 17 17
decimal digits = 16

SH0ssEO0dd (AFIT4dNS-HAT) QUVANYLS

STANDARD {IBM-SUPPLIED) PROCESSORS

6.2.1.2 FORTRAN IV Compilers

The FORTRAN IV compilers accept programs written in the FORTRAN IV language
(as defined in the IBM System/360: FORTRAN IV publication), as input, and
produce, as output, machine langquage cbject modules which in turn may

be used as input to the Loader or Linkage Editor for execution as problem
programs. Two different FORTRAN compilers are available on the MsbO comput-
ers — FORTRAN level G, and FORTRAN level H, The major difference between
these two levels is in the internal compiler processing, which results in
differences in generated object code and differences in the compiler printed
output. However, both compilers operate on an identical syntactic set of
FORTRAN source statements; therefore, a FORTRAN source program may be

used as input to either compiler. 1In general, the level H compiler has an
extended range of options which provide the user with increased flexibility
in specifying compiler operations and compiler output.

The name of the FORTRAN G compiler is IEYPORT; the name of the FORTRAN H
compiler is IEKAA0O. Most of the following discussion refers to the GSFC
FORTRAN procedures as available on the M&DO computers. Users desiring to
write their own compile procedures, rather than use the ones available in

the system procedure library, must use an execute statement with a compiler
name (e.g., // EXEC PGM=IEYFORT or PGM=IEKAAOO) and must supply the necessary
DD statements for the compiler.

6.2.1.2.1 GSFC FORTRAN Procedures and Compiler Data Sets

The FORTRAN compiler is normally invoked by executing the appropriate GSFC
procedure. The G compiler is invoked by an execute statement of the form:

// EXEC FORTRANG,PARM=,,...... 1
and the H compiler is invoked by the statement:
// EXEC FORTRANH,PARM=........, 1l

Several standard data sets are used by the compiler during its processing.
Each data set has a specific functional use and specific device requirements.
Standard assumptions are made for the DCB parameter of the data sets used

by the compilers. Table 6.2-2 contains data set definition DCB parameters
for the G compiler. Table 6.2-3 contains the DCB values for the H compiler
data sets. Of the DCB values in these two tables, only the values for block-
size can be overridden with a DD statement. The user may alsc specify the
number of buffers to be used for compiler data sets. If the buffer number

is not supplied, the QSAM default is used. The buffer defaults are three
buffers for the card read punch {IBM 2540) and two buffers for all other de-
vices. The compilers' use of these data sets is mentioned in conjuction with
the discussion of compiler options which follows.

lsee paragraph 6.2.1.2.2

6.2-8

STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-2, FORTRAN G Data Sets - DCB Parameters

DDNAME RECFM LRECL BLKSTZE
SYSLIN FB 80 3200
SYSPRINT FBA 120 7200
SYSPUNCH FB 80 7280
SYSINZ FB 80 3200

Table 6.2-3. FORTRAN H Data Sets - DCB Parameters

DDNAME RECFM LRECL BLKSIZE
SYSLIN FB 80 3200
SYSPRINT vBA 137 7265
SYSPUNCH FB 80 7280
SYSUT1 FB 105 3465
SYSUT2 FB 1024 4096
40961
SYSINZ FB 80 3200

1

The value is within this range. The actual wvalue is calculated during
execution.

2

The SYSIN data set is not defined in the GSPC procedure. If a SYSIN DD
card is not added by the user, the following card - //SYSIN DD * is auto-
matically generated by the system.

6.2-9

STANDARD (IBM-SUPPLIED) PROCESSORS

From the tables, it can be seen that the H compiler uses two more data sets
than does the G compiler. These two data sets are used for temporary work
space to process the additional options available with the H compiler.

6.2,1.2.2 Compiler Options

Compiler options are a series of keywords that direct the processing in
terms of the type of output which the compiler generates. The compiler
options for the G and H compilers are identical with the exception that the
H compiler has three additional options not available in the G compiler.

The compiler options are set during system generation. The option values
set at SYSGEN are called default options. A list of these default options
is presented in Table 6.2~-4. The user may request options other than the
standard defaults by explicitly coding the desired options in the PARM field
of the EXEC statement. The available options are explained in detail in the
FORTRAN G & H Programmer's Guide. Figure 6.2-1 describes the relationship
between the specified options and compiler data sets.

All compiler listings of source code, object code, storage maps, error mes-
sages, structured source listing, and cross references are output to
SYSPRINT. Object modules generated by the compiler are output to SYSLIN,
which can be used as input to the Loader or Linkage Editor. Requested
punched object decks are output to SYSPUNCH. The H compiler uses its two
additional data sets (SYSUT1 and SYSUT2) for temporary work space while
creating the structured source listing (available only in conjunction with
OPT=2) and the cross reference listing.

6,2,1,2.3 Multiple Compilations

Both the G and H compilers are designed to facilitate multiple compilations:
the compiler control program design is such that reloading of the compiler
is umnmecessary to accomplish compilation of multiple source modules.
Therefore, SYSIN input of source statements to the compiler may contain sev-
eral FORTRAN source modules. In compiling multiple FORTRAN source modules,
the NAME option can be used to specify the NAME assigned to the main FORTRAN
program. If the NAME option is not specified, the compiler assumes the name
MAIN for the main program. The name of a FORTRAN subprogram is the name
specified in the SUBROUTINE or FUNCTION statement.

6.2.1.2.4 FORTRAN G Compiler
The G compiler consists of a control program and five processing phases. The
compiler operates in a minimum of 80k bytes of main storage. This includes

space for compiler code, data access routines, and work space for compiler
tables. The reqgion size available for the compiler is directly related to

6 - 2-10

STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-4. Default Options for FORTRAN G
and FORTRAN H Compilers

H Compiler Default Options G Compiler Default Options

5/360 Model 95 §/360 Model 75

5/360 Model 95 5/360 Model 75

1

SOURCE SOURCE SOURCE SOURCE
NOLIST NOLIST NOLIST NOLIST
EBCDIC EBCDIC EBCDIC EBCDIC
NODECK NODECK NODECK NODECK
LOAD LOAD LOAD LOAD

mapt MAP map! MAP
LINECNT=60 LINECNT=60 LINECNT=60 LINECNT=60
NAME=MAIN NAME=MAIN NAME=MAIN NAME=MATN
ipl 1D ot D

OPT=1 OPT=1

NOXREF NOXREF

NCEDIT NOEDIT

SIZE=250K SIZE =250K

6.,2-11

These options differ from those defaults in the IBM FORTRAN procedures.

SYSIN

FORTRAN
SOURCE

FORTRAN
COMPILERS

FOR ALL

STANDARD

{IBM-SUPPLIED) PROCESSORS

FORTRAN H ONLY

COMPILATIONS ERAOR AND .
> WARNING
MESSAGES
SOURCE
OPTION SOURCE
MODULE -
LISTING
LIST OPTION OBJECT -
- MODULE 1
LISTING
SYSPRINT -
DATA SET
MAP OPTION STORAGE .
MAP
DECK OPTION PUNCHED N SYSPUNCH
B el DATA SET
MODULE
LOAD op-ncmr OBJECT _ SYSLIN
MODULE DATA SET
EDIT OPTION INTERMEDIATE
==~ QUTPUT FOR - SYSUT1 -
EDIT DATA SET
XREF OPTION “:)TL:E Tr:rn;n;g;e _ SySUT2
XREF DATA SET

Figure 6.2-1.

Usage of Compiler Data Sets

6.2-12

STANDARD (IBM-SUPPLIED) PROCESSORS

the maximum number of source statements which can be compiled. Therefore, if
compilation is deleted because the main program or a subroutine is too large,
an increase of the region specified in the EXEC statement will normally permit
successful compilation. A region size of 100k is estimated to be adequate to
compile 400 source statements. To adjust the region size to accommodate
smaller or larger programs, IBM suggests allowing 75 bytes per source state-
ment. A region size of 150K on the M&DPO 360/95 is specified in the GSFC
FORTRAN G procedure. A description of the G compiler storage map and G com-
piler optimization follows?

a. G Compiler Storage Map —— The FORTRAN G storage map, produced if
the MAP coption is specified, consists of a list of wariables
classified by their type (such as scalar variables and array
variables) followed by a relative address. The map which is
produced is not as useful as the H compiler storage map (which
contains additional information useful in debugging). The
options for structured socurce listing and cross reference list-
ing are not available with the G compiler.

b. G Compiler Optimization =~- The G compiler performs less exten-
sive optimization than the H compiler. The optimization proce-=
dure operates over DO loops, and an attempt is made to optimize
subscripting operations within the loop. During the optimization
phase, decisions are made on the basis of fregquency of use, as
to which subscript expressions are to be kept in general registers
and which are to be maintained in storage. The result of this
optimization is that only the portion of each subscript which
depends on the DO loop variable is computed on each pass through
the loop.

6.2.1.2.5 FORTRAN H Compiler

The level H compiler consists of a control program and five processing phases.
The compiler is an overlay structure that operates in a minimum of 89k bytes

of main storage. A region size of 300k bytes is specified in the GSFC FORTRANH
procedure. There is no known method of determining the number of FORTRAN

source statements which can be compiled under the H level. The programmer may
request the amount of storage used by the compiler by specifying the SIZE param-—
eter on the EXEC card. Detailed information on use of this SIZE parameter is
contained in the FORTRAN G & H Programmer's Guide. NOTE: Some discrepancies
have been noted in the use of the SIZE parameter. Before making use of this
parameter please contact the PAC in building 3, room 133A, extension 6768.

The H compiler storage map and H compiler optimization are described below:

a. H Compiler Storage Map -- The H compiler storage map which is
generated by specifying the MAP option, lists the variable name,
its type and length, and relative storage locations. In addition,

6.2-13

STANDARD (IBM-SUPPLIED) PROCESSORS

the variable names are followed by single-letter codes which des-
cribe how the variable is used within the program. These codes
are often useful in debugging a program because they indicate
whether the variable was used on the left and/or right of an ex-
pression, whether the variable is in common or passed as a sub-
routine argument, etc,

In addition, if the XREF option is specified, a cross reference
listing is produced by the compiler. This listing consists of
names of variables followed by a list of internal statement numbers
in which the variables are used.

If the programmer is using the second level of optimization (OPT=2),
he may also request a structured source listing by coding the EDIT
option. This listing indicates the loop structure of the program.
Each loop is assigned a three-digit number, and entrance and exits
from the locop are marked.

H Compiler Optimization -— Three levels of optimization are
available in the H compiler. The desired optimization level
should be coded in the parameter field of the EXEC statement:

1. OPT=0) -- The OPT=0 level causes no optimization of the
object code produced. Only a basic register assignment
is made; that is, the S/360 is treated as if it only had
three available registers -- a single-branch register, a
base register, and an accumulator. Therefore, the code
produced is less efficient in terms of execution speed,
and it is recommended that this level not be used.

2. OPT=l -- This is the sysgene'd default and its use is
recommended. Compilation time is insignificantly in-
creased, while the execution time of the resulting load
module is significantly decreased. The first level of
optimization takes advantage of all available $/360
registers and performs full register assignment. The
entire program is treated as a loop and subdivided into
text blocks. Frequently used variables and constants
are maintained in registers to eliminate excessive
register loading and value storing. In addition, branch-
ing optimization is performed by the generation of RX
instructions, when possible., This eliminates a register
load and reduces the number of necessary address
constants,

3. OPP=2 -~ The second level of optimization uses the optimiza-
tion techniques of OPT=1, with some additional optimization

6.2-14

STANDARD (IBM-SUPPLIED} PROCESSORS

methods. Like OPT=1l, full register assigmment and branching
optimization is used; however, this is performed on a loop-
by-loop basis and is therefore more effective. The compiler
analyzes the loop structure of the program.

In addition, the H compiler recognizes and replaces redundant computations.
Common expression elimination is performed {(i.e., unnecessary recomputa-
tion of identical expressions is eliminated). When logically possible, the
compiler moves computations which need not be calculated within a loop out-
side the range of the loop. The compilation time using OPT=2 is signifi-
cantly longer than OPT=0, OPT=1, or G compile time; however, the object code
produced is more concise and efficient. Thus, execution time of pregrams
compiled with optimization is shorter. Comparisons of large programs using
OPT=2 generally indicate run times that are a minimum of two times faster
than are available with FORTRAN G or OPT=0. Instances of a factor of 14

to 15 times greater speed have been noted with the use of OPT=2,

There are some cases in which the object code generated by OPT=2 is in
erroy. However, the number of these cases is small. Because of the great
saving of execution time, it is recommended that programmers use the opti-
mization feature, but with a careful examination of output results. One
approach is to check test case results by comparing a run made with OPT=l
and OPT=2 to determine if discrepancies exist. The use of OPT=0 is dis-
couraged.

The debug package available with FORTRAN G may not be used with FORTRAN H,
However, the extended error handling feature is provided. This allows the
user to monitor certain error codes, and to take appropriate action.

6.2.1.2.6 FORTRAN Programming Considerations
The following programming considerations should be noted:

a. Boundary Alignment -- The programmer must insure that all
variables defined in the FORTRAN COMMON and EQUIVALENCE
statements have proper houndary alignment. Full words
must begin on full word boundaries. Boundary alignment
is a system generation option which is not available for
FORTRAN on M&DO computers, Corrective boundary alignment
will not be made. Boundary violations will result in speci-
fication errors (completion code 0C6) when the variables
are referenced in the program.

b. Seguential Data Sets -~ FORTRAN sequential data setsg which are
read or written without format control must have a record format
of variable span or variable block span specified (VS or VBS).
Such records may not be described as fixed length even if the
actual records are fixed length. If the RECFM parameter is not
explicitly coded in the DCB, a default RECFM of VS is used. If
some other RECFM is used to describe data sets without format
control, ABEND occurs with a completion code of QCO or 0CS.

6.2-15

e.

STANDARD (IBM-SUPPLIED) PROCESSORS

Equivalence Statements -- Array names appearing in an equivalence
statement must have a subscript explicitly coded. If a subscript
is not coded, a compiler diagnostic results. This is a language
viclation which was not previously detected.

Block Data ~— Each labeled common area used in a block data sub-
program must be dimensioned to the actual size of that common block.
If this is not done, the Linkage Editor generates an error code
(IEWO0552). The Iovader does not produce a diagnostic for this error;
however, incorrect results may be generated.

Rewind -- Rewind should not be issued for SYSOUT data sets. If
it is used, no cutput is produced.

Backspace ~- The backspace statement backspaces one logical record
rather than one physical record. Care should be taken when read-
ing, backspacing, and writing the same data set, since a read opera-
tion followed by a write operation may give unpredictable results.
This is a known error in the FORTRAN I/0 routines which will be
corrected with release 20.

Real Element Assignment —— The assignment of a real element to a
complex variable may cause problems; compilation may be deleted

or an incorrect object code program check may be made during execu-
tion.

6.2-16

STANDARD (IBM-SUPPLIED} PROCESSORS

6.2.2 PL/I

The PL/I language originated from efforts of a joint SHARE and IEM com-
mittee. PL/I combines many of the functional capabilities of FORTRAN IV,
COBOL, ALGOL, and list processing languages. In addition, some features
were incorporated which are not found in any of the existing high-level
programming languages. IBM adopted PL/I as a major programming language
for the $/360 computers and fostered the development of the language.
Some of the significant features of PL/I are:

. The capability to specify actions to be taken in the case of
hardware interrupts, errors not related to hardware such as data
conversion, and programmer-specified conditions

® Multi-tasking facilities

o Bit and byte string manipulation, including substring, concatena-
tion and bcolean operations

e Extensive debugging facilities, providing for monitoring the set-
ting of variables, checking for subscripts going out of range of
an array, and tracing the flow through specified areas of a program

Details on these and other facilities may be found in the PL/I Primer,
Form (GC28-6808, and the PL/I Reference Manual, Form GC28-8201. PL/I for
FORTRAN USERS, Form GC20-16137, is also useful to FORTRAN programmers.

6.2.2.2 PL/I Compiler

The PL/I processor consists of a compiler which accepts statements in the
PL/T language and calls subroutines from the PL/I library. Version 5.3b
is currently in use. The program name of the PL/I compiler is IEMAA.

The compiler is comprised of a control module that remains in main storage
throughout compilation, and a series of subroutines (phases) that are loaded
and executed in turn by the control medule. One phase is the preprocessor
{compile-time processor)} which can modify source statements or insert addi-
tional source statements before compilation commences. Because PL/I may use
either a 48-character set or 60-character set, a preprocessor phase is needed
to convert the 48~character set to the 60-character set.

6.2-17

STANDARD (IBM-SUPPLIED) PROCESSORS

6.2.2.2.1 Data Sets

The compiler requires several optional data sets; the exact nurmber of data
sets depends on the optional facilities reguested, These data sets and
their characteristics are shown in Tables 6.2~5 and 6.2-6.

Additional information may be found in the PL/l (F) Programmer's Guide
{GC28-6594).

6,2.2.2.2 Options

PL/I has a wide range of options which may be specified at compile time.
These options are shown in Table 6.2-7, Because the PARM=field is limited
to 100 characters, abbreviated names were developed and are listed with
the standard default wvalues (GSFC default values are also shown).

The GSFC default options for PL/I are shown below. Those which differ from
the TBM standard default options are flagged with an asterisk.

DESIGN=F

SIZE=200000 * (225280 on Model 65} TYPERUN=LOAD
OPT=} PUNCH=NODECK
STMDIAG=STMT * LINECNT=60 *
OBJCODE=0OBJIN * OPRINT=0P

M3l * MACLIST=NOSOURCEZ *
DICTYPE=NCEXTDIC SORLIST=SOURCE
CMPTIME=MACRO * LEVCNT=NCNEST
COMPILE=COMP ATRLIST=ATR *
MCPUNCH=NOMACDECK REFLIST=XREF *
CHARSET=CHARG0 EXTLIST=EXTREF *
SORCODE=EBCDIC OBJLIST=NOLIST
SORMGIN=(2,72) MSGLEV=FLAGW
PAGECTI=1 SYNTXLV=SYNCHKT

6.2-18

STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-5. PL/I Compiler Opticnal Data Sets

insertion by preprocessor

Associated
ddname Purpose Compiler Option
SYSIN Primary input (PL/I source statements)
SYSPUNCH Punched card output DECK, MACDCK
SYSLIN Load Module output LOAD
SYsuT1 To contain overflow from main storage
sSYsur3 Storage for:
1. Converted source module when 48~ CHAR4B
character set is used
2. Source statements generated by pre- MACRO, COMP
Processor
SYSPRINT Listing
SYSLIB Library containing source statements for MACRO

6.2-19

STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.2-6, PL/I Compiler Optional Data Sets Characteristics

Reserved Record Default

‘ Possible Device | Record | Buffer Area | No. of Size Block Size
ddname Classes Format {in bytes}) | Buffers | (in bytes) | {in bytes)
SYSIN SYSDA or input | F,FB,U 1000 2 100 (max) -

job stream

(specified by

DD * }
SYSPUNCH SYSDA, SYSOUT=B F,FB 400 1l 80 7280
SYSLIN SYSDA F,FB 400 1 80 3200
SYsSUTl SYSDA F - 1024 -
SYSUT3 SYSDA) F,FB,U 160 80 -
SYSPRINT SYSDA or V,VBA 258 2 125 7254

SYSOUT=A
SYSLIB SYSDA F,FB,U - 100 {max)

6.2-20

STANDARD (IBM-SUPPLIED} PROCESSORS

Table 6.2-7. Compiler Options, Abbreviations, and Standard Defaults
Abbreviated Standard
Compiler Options Names Defaults
SIZE=yyyyyyK 999999 Max SIZE 999999
OPT=n o o=1
Control STMT | NOSTMT ST{NST NOSTMT
Options OBJNM=aaaaaaaa N -
M91|'NOM21 M91| HOMS] NOM91
EXTDIC |NOEXTDIC ED|NED NOEXTDIC
Preprocessor MACRO | NOMACRO M| MM NOMACRO
Options COMP | NOCOMP CiNC comp
MACDCK. |HOMACDCK MD| NMD NOMACDCK
OBJOUT [OBJIN OBJOUT
Input CHARG0 | CHAR4S C60[C48 CHARGE0
Options BCD|EBCDIC B|EB EBCDIC
SORMGIN= (mmm,nnn(,cce]) sM sM=1{2,72)
Output LOAD | NOLOAD LDj NLD LOAD
Options DECK |NODECK D|ND NODECK
LINECNT=xxX C LC=50
OPLIST | NOOPLIST OL| NOL OPLIST
SOURCE2 | NOSOURCE2 S2|Ns2 SOURCE?2
SOURCE | NOSOURCE S| NS SOURCE
Listing NEST| NONEST NT|NNT NONEST
Options ATR.| NOATR A} NA NOATR
XREF | NOXREF XjNX NOXREF
EXTREF | NOEXTREF E|NE NOEXTREF
LIST|{NOLIST L|NL NOLIST
FLAGW | FLAGE | FLAGS FWIFE|FS FLAGW

6.2-21

STANDARD (IBM-SUPFLIED) PROCESSORS

6.2.3 ASSEMBLER (F)

The 05/360 Assembler F is a processor which accepts programs written in

a symbolic language (ALC). This is a non-specialized language providing

a mnemonic for each machine instruction and a set of pseudo operations used
for defining data areas, boundary alignment, base register usage, etc. In
addition, it has a powerful macro capability, allowing the user to define

and use macro instructions of his own design, and to use any of the stan-

dard system macros. The system macros offer a convenient way for the ALC pro-
grarmer to request supervisor and I/O services.

The program name for the ASSEMBLER F processor is IEUASM. The assembler
is invoked by executing the cataloged procedure, // EXEC ASSEMBLY. A mini-
munm region of 100K bytes is required for this program.

NOTE: Another Assembler, Assembler G, which was written by the University
of Waterloo, Waterloo, Ontario, is available on the GSFC 360 computers.
It is strongly recommended that this more efficient assembler be used.
" For more information on Assembler G consult paragraph 19.3.1.3.

6.2.3.1 Data Sets

Table 6.2-8 lists the assembler data set requirements and characteristics
based on a minimum core size of 44k bytes. Because the region specified

in the GSFC procedure library is 100K bytes, block sizes and buffer numbers
may be increased. The SYSLIB data set contains the macro library. Additional
macro and/or source module libraries may be concatenated to SYSLIB.

6.2.3.2 Options

The assembler options for the model 95:
PARM="LOAD,NODECK,LIST,NOTEST , XREF , LINECNT=58 ,ALGN ,05 ,NORENT*

The prefix NO is added or deleted accordingly to request the opposite of the

default value. The exceptions to this are LINECNT where a new value between

01-99 must be specified, and the operating system name which will be 0S or
DOS.

6 - 2—22

€2-2°9

Table 6.2-8.

Assembler F Data Set Characteristics

S
YSPUMCH
SYSIN SYSLIB SYSPRINT SYSPUNC SYSGO SveLTE
LRECL Fixed a1 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed a1 80 N/A
RECFM User must specify in User must specify in F and M szt by ¥ set by assembler, F set by assembler Fixed for U
LAHEL er 0D card LABEL or DO card assernbler, user may user may specify B user may specify B
E,FS, FBS, FB, F,FS, FBS, £4, .!DBGI"V Bandfor T andjor T in lahel or andfoer T in label or
EBST, FBT FBST, FAT in label or ©D cavd DD card OD card
FM, FMB, FMT, FMBT F FB,FT, FBT F, F8, FT, FBT
BLKSIZE User must spacify User muse specify Optional, but rmust be Dptional, but must he Optional, but must be User can not specily
in LABEL or DO card, in LABEL or DD card, a muitipde of LRECL ; a muitipte of LRECL; a8 muttiple of LRECL; maximum of 3624
must be a multipla of must be a multiple of it omitted BLKSIZE = if omitted BLKSIZE = if pmitted BLKSIZE = minimum of 1739
LRECL LRECL LRECL LRECL LRECL
BUFNO Optional; if omitted Set by assambler Dptionay; if amitted Optional; if amitted Optional; if omitted User ean not speciy
2 is usad w1 2 is used 3 is used for unit 3is used far unit either 1 or 2
record and 1 for ather record and 1 for other
devicas devices
For 44K BLKSIZE tires BLKSIZE ean not BLXSIZE times BLKSIZE times BLKSIZE times
availahility BUFND can not ba be preater than 3600 BUFMO gan not be BUFNO can not be BUFNO can not be

greater than 3600

@

graater than 1210

greater than 400

greater than 400

For calculating L1 = BLKSIZE LZ = BLKSIZE L3 = BLKSIZE L4 = BLKSIZE L5 = BLKSIZE
core times BUFNG times BLUFNC times BUFNQ times BUFNO
reguirements

@ Minimum core required for the assembler is the largest of the following: (1) 45056

(2) Ly+iy + 41000
(3t La+Ly+Lg+41000

Maxirmum ¢ore that the assembler ean effectively use = Ly + Lg+ 635,000

PERe | @

U = undefined, F = fixed length records, B = blocked records, § = standard blocks, T = track owverfiow, M = machine code carriage contral.

Blocking is not ailowed on unit recard devices, Blocking on other direct access can not be greater than the track size unless ¥ is specified on RECFM,
For MVT enviranment add §,000 far core requived.
A smaller blocksize may have ta be specified for SYSLIB if global or local dictionaries overflow, See item 4 under "Cerrection of Dictionary Overflow.”

SHOSSAOCOEd (QAITddNS-WET) QUVANVLS

STANDARD (IBM~-SUPPLIED) PROCESSORS

6.2.4 RPG

The S/360 Report Program Generator (RPG) language is used to generate reports
from one or more input files and to print the reports in a user-defined for-
mat. It is efficient and easy to use but is less sophisticated than other
high~level languages. PRPG is a problem-oriented langunage in which each pro-
gram is designed to print a specific report from a specific file or files.

The program name for the RPG processor is IESRPG. The EXEC statement is in
the form // EXEC PGM=IESRPG which must be coded by the programmer unless
the cataloged procedure is used, in which case it would be // EXEC RPG.

6.2.4.1 Data Sets

The RPG compiler can use seven data sets (five are required). Each data set
has a specific ddname, function, and device reguirements. All but the SYSIN
data set may be included in a c¢ataloged procedure. These data sets are listed
in Table 6.2-9,

6.2.4.2 Options

The RPG processor has a limited number of options which are passed to the
compiler through the FARM field in the EXEC statement:

DECK « LOAD {LIST
PARM = ' NODECK NOLOAD +NOLIST

The programmer specifies the options which are defined as:

DECK ~- The object module is placad on the device specified in
the SYSPUNCH DD statement, (usuwally the card punch).

LOAD -- The object module is placed on the device specified in
the SYSGO DD statement, (usually intermediate storage).

LIST -~ An output listing is written on the device specified in
the SYSPRINT DD statement.

The underlined PARM options are the default values that will be assumed if
the PARM option is not specified.

6.2-24

STANDARD {IBM-SUPPLIED) PROCESSORS

Table 6.2-9. RPG DD Names Required

ddname FUNCTION DEVICE REQUIREMENTS
SYSIN reading the source ¢ card reader
program e intermediate storage
SYSPRINT writing the storage e printer
map, linking, and e intermediate storage
messages
SYSPUNCH output data set e card punch
for the object ¢ intermediate storage
module deck
SYSUTI work data set e direct-access
needed by the # magnetic tape
compiler during
compilation
SYSUT2 work data set s direct-access
needed by the e magnetic tape
compiler during
compilation
SYSUT3 work data set e direct-access
needed by the e magnetic tape
compiler during
compilation
SYSGO output data set ¢ direct-access
for the object # magnetic tape
module used as
input to the
Linkage Editor

6.2-25

STANDARD {IBM-SUPPLIED) PROCESSORS

6.3 LARGE UTILITIES

The system and data set utilities are described in Section 9 of this User's
Guide. The Linkage Editor, Loader, and Sort/Merge programs perform utility
functions; since they are larger processors, their descriptions are included
in this section. The Linkage Editor or Loader is required to prepare the
output of any of the language processors for execution. Sort/Merge is

a generalized program used for sorting data contained in one or more data
sets.

6.3.1 LINKAGE EDITOR

The Linkage Editor prepares the output of the language processors for execu-~
tion. Primary inputs to the Linkage Editor are object modules and Linkage
Editor control cards. Additional inputs can be either object modules and
control statements, or load modules. The Linkage Editor processing facili-
ties are provided either automatically or in response to control statements
prepared by the programmer. These facilities combine and edit modules to
rroduce an executable load module.

The primary output of the Linkage Editor is a load module which is placed in
a library (a partitioned data set) as a named member. This library may be
either permanent or temporary. In contrast, the Loader does not produce a
load module that can be saved. The secondary output of the Linkage Editor
is diagnostic output.

The level F 128K version of the Linkage Editor is in use on the M&DO com-
puters.

The statement most commonly used to invoke the Linkage Editer is // EXEC
PGM=IEWL, which invokes the largest Linkage Editor desiagn available on

the system. On the M&DO computers, this statement invokes the 128k design
of the level F Linkage Editor. A particular design level may be invoked
by using its program name in the EXEC statement if that level is available
(see the footnotes to Table 6.3-1). The cataloged procedures, LINK and
LINKGO, are the recommended means for users to invoke the Linkage Editor.
A listing of these procedures and details in their use are presented in
paragraphs 19.3.2.1 and 19.3.2.3, respectively.

The user should refer to the IBM Manual, Linkage Editor and Loader (GC28-6538)
for a more complete description of the Linkage Editor.

6.3.1.1 Options

As with the language processors, the Linkage Editor has several options which
increase its versatility. These may be divided into several categories as
follows:

6. 3-1

STANDARD (IBM-SUPPLIED) PROCESSORS

Table 6.3-1. Linkage Editor Design Levels

4 USED ON IEM MODEIL

PROGRAM MINIMUM CORE

NAME (in bytes) 95 75 65
TEWLF 440 44K x1
IEWLF880 88K xt
IEWLF128 128K x x! x
IEWL - X2 x2 x2
LINKEDIT w—r x3 x3 3
1

On the model 75, all F level Linkage Editor names invoke the 128K design
level. |

2
Using PGM=IEWL on the M&DO computers invokes the largest Linkage Editor
design available, which is the 128K design level.

3
Invokes the 128K design level of the Linkage Editor.

4
Add BK for system overhead.

6.3-2

STANDARD (IBM~-SUPPLIED) PROCESSORS

Module Attributes Meaning

DC Downwards compatible

HIAR* Hierarchy

NE Not editable

OL Only loadable

ovVLY Overlay

REUS Re-usable

RENT Re-enterable

REFR** Refreshable

SCTR Scatter format

TEST* Test (use of TESTRAN)

Space Allocation Meaning

SIZE#*** The amount of main storage to be used
by the level P Linkage Editor

DCBS Specifies blocksize for the SYSLMOD
data set

Qutput Options Meaning

LIsT List Control Statements

MAP Request a MODULE MAP

XREF Request cross reference table

Special Processing

Options Meanin
XCAL Exclusive Call
LET Let execution continue
NCAL No call {(do not try to resclve external
references)

*Not supported on the M&DO computers
**Used primarily by systems programmers.
**¥STZE= (240K, 72K) Value used at sysgen time.

Each option desired must be explicitly stated in the PARM parameter of the
EXEC card, Some options are stated in the cataloged procedures, while others
must be coded by the programmer. The user should refer to Section 19 of

this User's Guide, or to a listing of the Procedure Library (PROCLIB) to
determine if the options included meet his requirements. Note that, when
overriding the PARM parameter in a cataloged procedure, all options desired
must be explicitly stated in the override statement; otherwise, those op-
tions not stated will default to their system-generated value.

6.3-3

STANDARD (IBM~-SUPPLIED) PROCESSORS

6.3.1.2 Data Sets

The Linkage Editor uses five data sets (four are required). The DD state-
ments for these data sets must use the preassigned ddnames given in Table 6.3-2,

The DCB characteristics of these data sets are given in Table 6.3-3.

6.3-4

Table 6.3-2.

STANDARD (IBM-SUPPLIED) PROCESSORS

Linkage Editor ddnames

Data Set ddname Required
Primary input data set SYSLIN Yes
Automatic call library SYSLIB Only if the automatic library call
mechanism is used
Intermediate data set SYSUT1 Yes
Diagnostic output data set SYSPRINT Yes
Output module library SYSLMOD Yes
Table 6.3-3. DCB Reguirements
LRECL BLKSIZE RECFM
80 F,FS
Primary input SYSLIN 80 400,800,3200 FB,FBS
Chject modules and/ 80 80 F,.FS
Secondary or control statements 400,800,3200 FB,FBS
Input
Load modules Maximum for equal to u
e SYSLIB device, or LRECL
¢ Included modules one~half of
value, of
SIZE option
whichever is
smaller
SYSPRINT 121 121 FM
121 605,1210,4840 | FBM
Output
SYSLMOD Maximum track egual tec U
size for de- LRECL

vice or 1/2
of value, of
SIZE option,
whichever is
smaller

6.3-5

STANDARD (IBM~SUPPLIED) PROCESSORS

6.3.2 LOADER

The Loader combines in one job step the basic editing functions of the
Linkage Editor and the loading functions of program fetch. It is designed
for high-performance loading of modules that do not require the special
processing facilities of the Linkage Editor, as does overlay. The Loader
does not produce load modules for program libraries.

The Loader can be referred to by its program name, IEWLDRGO, or its alias,
LOADER. It can be invoked through the EXEC statement // EXEC PGM=LOADER
or through the LOAD, ATTACH, LINK, or XCTL macro instructions.

When changing a program to use the Loader instead of the Linkage Editor, the
SIZE parameter specified in the PARM field should be equal to the region
normally required by the GO step. The REGICN specified should be the SIZE
value plus 30K for Loader overhead. For example, if the GO step when using
LINKGO normally requires 120K, specify

// EXEC LOADER,PARM='SIZE=120K,EP=MAIN', REGION=150K

when using the Loader. See paragraph 19.3.2.4 for a description of the
LOADER cataloged procedure and its use.

6.3.2.1 Data Sets

[P e

The loader uses three DD statements —-- SYSLIN, SYSLIB, and SYSIOUT. (These
ddnames can be changed during system generation with the LOADER macro in-
struction.) The SYSLIN DD statement must be used in every lcader job.

The other two statements are optional.

The following considerations apply to the DCB parameter of SYSLIM, SYSLIB,
and SYSLOUT:

® For better performance, BLKSIZE and BUFNO can be specified.
[If BUFNO is omitted, BUFNO=2 is assumed,

e Any value given to BUFNO is assumed for NCP (number of channel
programs).

e If RECFM=Y is specified, BUFNO=2 is assumed, and BLKSIZE and
LRECL are ignored.

) RECFM=V is not accepted.

[RECFM=FBSA is always assumed for SYSLOUT.

6.3-6

STANDARD (IBM~SUPPLIED) PROCESSORS

. If RECFM is omitted, RECFM=F is assumed for SYSLIN and SYSLIB,

® If BLKSIZE is omitted, the wvalue given to LRECL is assumed.

[LRECL=121 is always assumed for SYSLOUT.

™ If LRECL is amitted, LRECL=80 is assumed for SYSLIN and SYSLIB.
Table 6.3-4 illustrates the basic format of the Loader input deck,
Table 6.3-5 is a load-and-go procedure using the SYSLIN data set as the
only input. Table 6.3-6 represents a locader program using the SYSLIB and
SYSLOUT data sets and having program data in the ipput stream.

6.3.2.2 tions

Because of the load-and-goc function of the Loader, the PARM coperand of the
EXEC statement is used to specify options for the Loader and the loaded pro-
gram. The PARM field has the following format:

PARM= (loaderoptions/programoptions)

Those options before the slash apply to the Loader. Those following the
slash, if any, are passed to the loaded program.

STANDARD (IBM-SUPPLIED} PROCESSORS

Table 6,3-4., Input Deck for the Loader (Basic Format)

//name JOB parameters

//name EXEC PGM=LOADER, PARM= (parameters)

//SYSLIN DD parameters

//SYSLIB DD parameters {(cptional}
//5YSLOUT DD parameters {cpticonal)
Vi {optional DD statements and data required for loaded program)

Table 6.3-5. Input Deck for a Leoad Job

//LOAD JOB MSGLEVEI=1

//LDR EXEC PGM=LOADER

//SYSLIN DD DSNAME=MASTER, DISP=0LD

/7 {bD statements and data required for execution of MASTER)

Table 6.3-6. Loader and Loaded Program Data

//LOAD JOB MSGLEVEL=1l
//LDR EXEC PEM=LOADER, PARM=MAP
//SYSLIB DD DSNAME=SYS1.FORTLIB,DISP=SHR
J/SYSLOUT DD SYSOUT=A
//FT06F00) pD SYSOUT=A
//SYSLIN DD *
{Loader data)
//FTOSFO01 oD ®

{Loaded program data)

Ga 3"8

STANDARD (IBM-SUPPLIED} PROCESSORS

6.3.3 SORT/MERGE

The 0S/360 Sort/Merge package provides the capability to re-order records
within files:

e Sorting and merging operations may be performed on from 1 to 64
fields which may be in any combination of the following formats ——
character, decimal (packed or zoned), arithmetic (fixed or float-
ing), or binary strings.

® The sorting and merging keys may be from 1 to 256 bytes long, and
different keys may be ordered by different rules {ascending, de-
scending, or user-specified) within a single run.

. The user may specify the type of sort used (polyphase, oscillating},
and the type of intermediate storage (tape or disk).

. The user may bypass the first "n" records on the input.

) Input data may be sequential data sets of fixed or variable
length, and may be blocked or unblocked.

The name of the Sort program is IERRCO00. It requires a minimum of 15k bytes
main storage; however, Sort/Merge performance improves as the amount of main
storage available to the program increases. Approximately 44k bytes of main
storage are required for efficient operation. At least one selector channel
or cne multiplexor channel is required. The amount of intermediate storage
required for sorting operations depends on the size of the input data set.
At least three work units (data sets) are reguired. More may be used. They
may be on the same physical device, but it is more efficient to separate
them. Refer to IBM Form #GC28-6662 for Sort/Merge timing estimates. See
paragraph 19.3.3 for a description of the Sort cataloged procedure and its
use.

6.3.3.1 Data Sets
A variety of DD statements are required depending on the use of a cataloged
procedure, sort-only operations, merge-only operations, use of the checkpoint

facility, and user-written modification routines. Table 6.3-7 provides a
JCL summary for the Sort/Merge program.

6.3.3.2 Options

The Sort/Merge program must know what to do with the input data. This infor-
mation is provided by five Sort/Merge control statements:

6.3-9

STANDARD (IBM~-SUPPLIED) PROCESSORS

Table 6.3-7.

Summary of Job Control Langquage Statementé for Sort/Merge
(Sheet 1 of 2)

Statement Purpose When Required

//jobname Job Introduces the job. At all times.

//stepname EXEC Introduces the step. At all times,

//SYSPRINTL DD Used by Linkage Editor. when you do not use a cata-
loged procedure and have
modification routines that
require link editing.

//SYSLMODl DD Defines Linkage Editor out- Same as for SYSPRINT.
put data set.

//sysur1l DD Defines work area for Same as for SYSPRINT,
Linkage Editor.

//sYsLInl rD Defines input data set for Same as for SYSPRINT.
Linkage Editor.

//SORTLIBL DD Defines data set that con- ¥hen you do not use cata-
tains Sort/Merge program loged procedures SORT or
modules, SORTD.

//SYSOUTl DD Defines system ountput data Same as SORTLIB.
set.

/7 SORTIN DD Defines input data set for For a sort, at all times unless

a Sort. LINK, ATTACH, or XCTL is used
to invoke sort and the input
data set is inserted by your
routine at Sort/Merge exit E15.

Not used for a merge.

6.3-10

Ta.ble 6. 3"7 .

Statement

//SORTINO1-16

//SORTWKOLl-32

//SORTCUT

//SORTMODS

//SORTCKPT

//SYSIN:

1

STANDARD (IBM-SUPPLIED) PROCESSORS

Summary of Job Control Language Statements for Sort/Merge
(Sheet 2 of 2)

DD

bD

DD

bD

DD *

Purpose

Define input data sets for
a merge.

Define intermediate storage
data sets for a sort.

Defines Sort/Merge output
data set.

Defines a temporary data
set for your modification
routines in SYSIN.

Defines data set for check-
point records.

Indicates that data set con-

taining Sort/Merge control
statements follows in input
stream.

When Required

For a merge, at all times.
Not used for a sort.

For a sort, at all times.
Not used for a merge.

At all times, unless LINK,
ATTACH, or XCTL is used to
invoke sort and your routine
disposes of output via Sort/
Merge exit E35.

When you supply modification
routines through the system
input stream.

When you use the checkpoint
facility.

At all times.

These data sets are provided by the GSFC-cataloged SORT procedure.

6.3-11

STANDARD (IBM~SUPPLIED) PROCESSORS

4.

SORT Statement -- This statement provides information about control
fields and data set size. The statement is used with a sort job;
it is not used for a merge-only job.

MERGE Statement -- This statement provides the same information as
a SORT statement, and is used with a merge job. This statement
is not used for a sort operation.

RECORD Statement -~ This statement provides record length and
type information, and is required only when modification routines
change record lengths during Sort/Merge execution.

MODS Statement —- This statement associates modification routines
with particular Sort/Merge program exits and is required only when
modification routines to be executed at Sort/Merge exits are sup-
plied. ({Section 3, Program Modification, describes these exits
and the requirements for routines that use them.)

END Statement -- This statement signifies the end of a related
group of Sort/Merge control statements and is not required.

Further information on these options can be found in the IEM manual Sorﬁg
Merge (GC28-6543),.

Go 3-12

ADDED PROCESSORS

SECTION 7

ADDED PROCESSORS

7.1 GENERAL DISCUSSION

In the wide range of data processing operations and data manipulations
there are many areas which are not covered by the IBM-supplied processors.
These requirements are usually filled by proprietary packages, such as the
Boole and Babbage problem program analyzer, and user-written routines such
as the data manipulation routines. Many of these routines, such as FORMAC
and GTS are written to extend the capabilities of existing processors.

7.1-1

ADDED PROCESSORS

7.2 BOOLE AND BABBAGE

The Problem Program Analyzer, a program that analyzes and measures Problem
Program Evaluator (PPE), is part of the Boole and Babbage System Measure-
ment Software (SMS/360) for S/360 computers. The programmer can use the
Problem Program Evaluator to locate areas in his program where large amounts
of time are consumed, and thus determine the parts of the program where effi-
ciency might be increased.

The PPE analyzer is recommended for those users who have programs to be used
for a large number of hours, and who are willing to spend the needed time to
re-work those sections of their programs which require large amounts of time.
This is usually confined to a very few small blocks of code and does not
normally involve extensive rewriting of programs.

PPE is particularly helpful when used during the debugging stages of programs
under development. It can be used to test alternative coding techniques and
to indicate potential sources of wait time.

The PPE program consists of two parts. The first part is the Extractor, which
samples the execution of the user's program (at intervals which can be speci-
fied by the user) and gathers data on what is happening. The second part

ig the Analyzer, which reports these data.

The Extractor is initiated within the same step as the problem program, which
runs as a subtask under the Extractor. For best results, analysis of a pro-
duction program should be done during an actual production run. The user

can specify various levels of detail for the Code Activity Report developed
by the Analyzer program. This report may be prepared to cover all or selected
portions of the data from one or more Extractor data sets.

The user must furnish his problem program in object form on cards, tape, or
disk, or as a load module on disk. 1In any case, when he compiles it, he
must, include the list parameter in his EXEC card, so that he will receive

a listing of his object program for later comparison with the Analyzer
report. (The parameter is "LIST" for FORTRAN, PL/I, and assembly language.)

If the test is not being done during an actual production run, the user may
alsc supply test data to be processed by the problem program.

The user may also input the time sampling interval and any identifying in-

formation, such as programmer name, machine ID, and a unique run number,
that he wishes printed on the Code Activity Report.

7.2-1

ADDED PROCESSORS

The Code Activity Report furnishes the user with the following items of in~
formation which may be used along with his cbject program listing to help
determine where he may improve his program:

1. Identifying information such as programmer's name and location.

2. For each data set provided by the Extractor program to the Analyzer
program, such items as DS name, JOB name, step name, extraction
date and time, region bounds, sample bounds (relative to the region),
sample interval in milliseconds, and related data.

3. Percentage of activity (excluding I/O wait), outside of and within
the sample boundaries, giving a measure of overhead for the pro-
gram, such as the overlay supervisor.

4, Percentage of time spent in I/0 wait state for each data set used
by the program (SYSIN, SYSPRINT, SYSUT1, SYSABEND, etc.), thus
identifying potential I/0 improvements through blocking and buffer-
ing. -

5. Module map of load modules encountered in the program being
tested, showing for each load module its address relative tc the
region, percent of run time, whether it contained overlays, and
whether a report on it was included in the Analyzer report.

6. Study report for each specified load module, or in the case of
overlay programs for each requested segment, including:

7. Study report for a selected segment of the load module, including:
a. Bounds for the study report. (These can be specified to be
less than the entire module to facilitate examination of

small areas of code.)

b. Percentage of executed instructions (excluding I/0 wait) out-
side of and within the study boundaries.

c. Percentage of time spent in I/0 wait state for each data set.

d. Percentage of time spent in a wait state (excluding (I/0 wait),
with addresses where each wait state occurred.

e. Percentage of time spent executing SVCs.

7.2-2

ADDED PROCESSORS

E. 2 histogram which breaks the load module (or study bounds)
into small intervals. ‘The percent of run time spent in
each interval is listed along with a cumulative count.
The default interval size is 32 bytes, but this can be
varied by the analyst. By manipulating the study bounds
and histogram interval size and working back through
Linkage Editor and compiler chject listings, it is possi-
ble to identify those source statements which cause the
most execution time. '

Programmers desiring to use the PPE analyzer should contact one of the Boole
and Babbage representatives in Building 3, Room 133-C, extension 2863. 2
representative will provide assistance in setting up the PPE run and in inter-~
preting the information supplied in the Code Activity Report. On the basis of
this information, he will determine what portions of the program, if any. may
be improved.

Note: Boole and Babbage should not be used in programs where the system
library routine REMTIM is used, unless REMTIM is not entered during the
time Boole and Babbage is running.

The cataloged procedure BB is used for executing the Boole and Babbage
Problem Program Evaluator. The three steps in this procedure are a LINK
step, a GO step, and an analysis step (BSTEP2).

Note: The cataloged procedure BB should not be used for programs which use
the multi-region feature of the Linkage Editor. A special version of PPE is
available. Contact one of the Boole and Babbage representatives for assistance.

The input to the LINK step is the same as that for the LINK procedure. The

program to be analyzed should first be compiled using the LIST option to get
an assembler language listing of the source program. This list will be used
later as an aid in the analysis of the program. The output of the LINK step
is a load module, called FORT2, which is placed in the partitioned data set

&&BOOLIE.

The GO step executes the program PPDEXT1 which, in turn, executes the pro-
blem program named FORT2. While the problem program is executing, the
Extractor program takes readings, at specified intervals, of the amount
of time spent in the wait state and in executing sets of instructions.
These data are placed in the data set &&PPDEXT, which is passed to the
analyzer program, PPANAL, in the third step, BSTEP2Z.

The third step executes the analyzer program, PPANAL, which processes the
data in &&PPDEXT and prints the report.

7.2-3

ADDED PROCESSORS

In the following example, the BB procedure is executed following a compile
step:

//stepname EXEC BB

/ /G0 INPUT] DD *

FORT2,2,DS0OW

/ /GO .DATAS bD *
(problem program input data)

//BSTEP2. INPUT2 bD *

ANAME=Rrogrammer

The input control card to PFDEXT1 is:
FORT2,n,DSOW
where:
FORT2 is the procedure assigned name of the problem program

n is an integer, where n multiplied by 16.6 milliseconds is the timing
interval between samples

DSOW is Data Set Oriented Wait

The optional input contreol card to PPANAL is:
ANAME=programmer

where:

programmer is any combination up to 24 characters, including leading
blanks and punctuation (other than commas, which are not allowed).

Additional DD statements for the LINK and GO steps may be included as re-
quired, but must conform to the standard rules for JCL and cataloged pro-
cedures. ‘ |

Users requiring assistance with the BE procedure should contact the Boole and
Babbage representative in Building 3, extension 2863, User's Guides, giving
details of various parameters and options, plus instructions for analysis, are
also available from this source.

7.2-4

ADDED PROCESSORS

A listing of this procedure follows:

MEMBER NAME BB
BOOLE
//DEFAULT PROC REGl=200K,REG2=100K,REGM=150K,LTRK=20,BTRK=20,

ALTASES

//

//LINK
//LOADLIB
//NEWLIN
//SYSLIB
4

//

74

//

/7
//SYSLMOD
4
//SYSPRINT
//SYSUDUMP
//SYSUTL
//TAPELIB
4
//SYSLIN
4

//MAP EXEC

//SYSPRINT
/ /BABBAGE

/ /GO EXEC

//STEPLIB
/7

//FTO5F001
//FTO6F001
//FTO7F001

I ITTT AT
F A rrLLafAN L

4

//PPE2EERR
//PPE2EIN]
//S¥supuMp

EXEC

DD

DD
DD

DD
DD
DD
DD
DD

.

A

DD
DD
Db

CON=' (5,LT) ' ,MAP=ONLY

PGM=IEWL, PARM="'LIST,MAP ' ,COND= (5,LT) , REGION=250X
DSN=5YS2.LOADLIB,DISP=SHR

DUMMY

DSN=5¥52 . DUMMY , DISP=SHR

DSN=8YS2, DUMMY, DISP=SHR

DSN=SYS1.FORTLIB,DISP=SHR
DSN=8YS52 . GSFCLIB,DISP=SHR

DSN=SYS1.PL1LIB,DISP=SHR

DSN=8YS1.8SPAK,DISP=SHR
DSN=&&BOOLIB {FORT2) ,DISP= (NEW,PASS) ,UNIT=DISK,
SPACE= {TRK, (<RK,10,1))
SYSOUT=A,DCE= (RECFM=FBM, LRECL=121, BLKSIZE=1210)
SYSOUT=A, SPACE= (TRK,15)
UNIT=DISK,SPACE={CYL, (2,2)) ,SEP=SYSLMOD

DUMMY , DISP= {OLD,KEEP) , LABEL= (1, BLP} ,UNIT=9TRACK,
VOL=SER=TAPEIN,DCB= (RECFM=FB, LRECL=80, BLKSIZE=3200)
DSN=&&OBIMOD , DISP= (OLD,DELETE) , DCB=RECFM=FB
DDNAME=OBJECT

PGM=IMBMDMAP , COND=sMAP , REGION=®M

SYSOUT=2

DSN=&&BOOLIB (FORT2) ,DISP= (OLD,PASS)
PGM=PPDEXT] ,COND= (5,LT} , REGION=®L
DSN=8YS2.SMSLIB,DISP=SHR
DSN=&&BOOLIB (FORT2) ,DISP= (OLD,PASS)

DDNAME=DATAS

SYSOUT=Aa, DCB= (RECFM=VEA , LRECL=137, BLKSIZE=7265 , BUFNO=1)
SYSOUT=E, DCB= (RECFM=FEB , LRECL=80, BLKSIZE=3200, BUFNO=1)
DSN=&&PPDEXT, DISP= {NEW,PASS) ,DCB= (RECFM=F, BLKSIZE=512),
SPACE= (TRK, {&BTRK,10)) ,UNIT=DISK
SYSOUT=A, SPACE= {TRK, (0,1))

DDNAME=INPUT1

SYSOUT=A

//BSTEF2 FXEC PGM=PPANAL,COND=&CON, REGION=®2

//STEPLIB

//FTro4rool
//FTOSF001
//FTO6F001
//8YSUDuUMP

DD
DD
DD
DD
DD

DSN=S¥S52, SMSLIB,DISP=SHR
DSN=&&PPDEXT ,DISP= (OLD,PASS)

DDNAME=INPUT2
SYSOUT=A,DCB= (RECFM=VBA, LRECL=137, BLKSIZE=7265)
S¥YsouT=a

7.2-5

ADDED PROCESSORS

7.3 FORMAC

FORMAC is an extension of the PL/I (F) compiler. It provides the capability
to perform formal algebraic manipulation of variables and expressions within

a PL/I numeric evaluation of formally derived expressions, using any desired
data. Thus, algebraic formulas of great complexity may be derived and printed
as formal expressions, together with numeric results obtained from evaluation
of the expressions using specified data.

The PL/I-FORMAC Interpreter allows the user to set a FORMAC variable equal to
a symbolic algebraic expression. This variable may, in turn, be included in
another symbolic expression, and in this fashion extensive algebraic formulas
may be constructed.

Various subroutines perform editing and formal manipulation of expressions.

Included are such capabilities as analytic differentiation, formal function

evaluation, expansion of integer powers of expressions, true rational arith-
metic, and symbolic complex arithmetic.

Editing capabilities allow formal factorization, combination of terms, and
substitution of complicated expressions.

Formally derived expressions may be numerically evaluated and used as PL/I
variables in numeric algorithms.

The FORMAC interpreter uses the full PL/I capability; hence, all legal PL/I
subroutine names may be used as FORMAC variables,

A limited knowledge of PL/I is sufficient to allow use of FORMAC, For
instance, familiarity with PL/I input and output capabilities, BEGIN-END
brackets, and the PROCEDURE statement would provide a FORTRAN programmer
with a knowledge base sufficient to use FORMAC,

Extensive formal manipulation of algebraic expressions has direct applica=-
tion in analysis, celestial mechanics, and optimization theory, although

it is not limited to these fields. The fellowing is intended as an indica-
tive, but not exhaustive, list of suggestions:

1. FORMAC may be used to derive high order Runge-Kutta type formulas
for integration, analytic expressions for terms in function approx-
imation, and Taylor-series approximations of arbitrary functions.

2. FORMAC may be used to generate and combine formal power series to
obtain analytic expressions for sclutions of orbital elements.
These expressions may then be formally differentiated to provide
error-analysis capabilities.

7.3-1

ADDED PROCESSORS

3. Solutions to linear programming problems, trajectory optimization,
and control-type problems often use methods based on gradient tech-
niques requiring expressions for first- and second-order deriva-
tives of complicated expressions in several variables.

be used to generate their numeric evaluation.

The FORMAC cataloged procedure consists of a preprocessor, compile, LINK,
and GO steps. The PL/I source deck is input to the FORMAC program in the
preprocessor step. The output of the FORMAC program is a temporary data
set called &SRCE which is passed to the PL/I compiler.
is compiled, linked, and executed.

To execute the FORMAC procedure, the following is coded:

//stepname

//STEP1,SYSIN
(source deck)

//STEP4.SYSIN
(data)

If a punched obiject deck

//stepname
//STEP1,.SYSIN
(source deck)
//STEP2.SYSPUNCH
//STEP4.SYSIN
(input data)

EXEC FORMAC
DD *
8] *

is required, the following is coded:

EXEC FORMAC ,PARM=DECK
DD *
DD DSN=DECK,SYSOUT=B
DD *

7.3-2

FORMAC may

The changed wversion

ADDED PROCESSORS

A listing of this procedure follows:

MEMBER NAME FORMAC

//STEP1 EXEC PGM=MINIMAC, REGION=200K

//STEFLIB DD DSN=SYS2.MINIMAC,DISP=SHR

//SYSPRINT DD SYSOUT=Aa,SPACE=(CYL, (3,1))

//8Ysur3 ph UNIT=DISK,DCB=(RECFM=FB ,LRECL=80,BLKSIZE=80)},
/7 SPACE= (80, (4000,2000)) ,DSNAME=&SRCE ,DISP=(,PASS)
//STEP2 EXEC PGM=TEMAA ,PARM="'S,ST ,NT,SM=(2,80) ' ,COND=(16,EQ,STEP1)
//STEFLIB DD DSN=SYS2.v43.PLl,DISP=SHR

//SYSPRINT DD SYSOUT=A,SPACE=(CYL, (5,1))

//SYSLIN DD DSNAME=&LOADSET,DISP=(MOD,PASS) ,UNIT=DISK,

/S SPACE= (80, (250,100))

//SYSUT3 DD UMIT=DISK,SPACE=(80, (250,250)) ,SEP=SYSPRINT
//5YSUT1 DD UNIT=DISK,SPACE=(1024, (60,60)),,CONTIG),

// SEP= (SYSUT3,SYSLIN ,SYSPRINT)

//5YSIN Db DISP=(OLD,DELETE) ,DSNAME=&SRCE

//STEP3 EXEC PGM=1EWL,PARM="XREF ,LIST ,LET,DCBS' ,COND={(16,EQ,STEP1) ,
/7 {9,LT,STEP2)) ,REGION=300K

//SYSLIB DD DSN=5YS2.FORMAC,DISP=SHR

/7 DD DSN=SY¥S2.V43.PLl,DISP=SHR

//S¥YSIMOD DD DSN=&GOSET (GO) ,DISP=(MOD,PASS) ,UNIT=DISK,

/7 SPACE= (3702, (50,20,1))

//SYSPRINT DD SYSOUT=A,SPACE=(CYL, (2,1))

//SYSuT1 DD UNIT=DISK,SEP=(SYSLMOD,SYSLIB) ,SPACE=(1024,(200,20))
//SYSLIN DD DSN=&LOADSET,DISP={(0LD,DELETE)

/7 DD DDNAME=SYSIN

//STEP4 EXEC PGM=* ,STEP3.SYSLMOD,

// COND=((9,LT,STEP3) ,(9,LT,STEP2) , (16 ,EQ,STEP1))}
//SYSPRINT Db SYSOUT=A,SPACE=(CYL,(1l,1))

//8esuTl DD UNIT=DISK,DCB=(RECFM=F,BLKSIZE=829),

/7 SPACE= (829, 1000)

//SYSABEND DD SYSOUT=A

// SPACE={CYL, (0,1))

The input to the compile step (STEP2) is the modified version (&SRCE) of
the source deck. The output of the compile step is the data set &LOADSET
which is passed to the LINK-EDIT step (STEP3). Additional input decks may
be input to STEP3 through the SYSIN DD statement:

//STEP3.SYSIN Db *
{object deck(s))

The output of STEP3 is an executable load module FORMAC stored in the PDS
&GOSET. This program is executed by STEP4 of the FORMAC procedure.

7.3-3

ADDED PROCESSORS

7.3.1 REFERENCES

For further documentation on FORMAC, contact Mrs. Pat Barnes, extension 6796,
in the GSFC Program Library in Building 3, Room 133,

7.3-4

ADDED PROCESSORS

7.4 GPSS V

GPSS V is a simulation program applicable where the simulation model
deals with discrete items, events, and timing, such as in scheduling.

GPSS is useful in the solution of problems involving a network of discrete
units where operations are being performed on them, and where the user can
describe quantities, timing, and operations in a block diagram,

GPSS requires no previous programming knowledge. The user prepares the block
diagram, using certain standard flowchart symbols to represent some step in
the action of his system.

GPSS uses "transactions" to represent different things, depending on the sys-
tem being simulated. For example, a "transaction" could be messages in a
communication system, electrical pulses in a digital circuit, or records in

a data processing system.

The system that the user wishes to simulate by means of GPSS must be described
as a block diagram with blocks representing activities. The sequence in which
activities are to be executed is indicated by the lines joining the blocks.
Where a choice of activities is desired, the user draws more than one line
leaving a block., The condition determining the branching is stated at the
block.

GPSS block diagrams (unlike most diagrams in which the form of the diagram
depends on the ideas of the user) use blocks that have precise meanings, so
that the programming language may be based on them, There are 37 specific
block types, each of which represents a characteristic action of systems.

In GPSS, a set of subroutines is associated with each type of standard block.
Therefore, the programmer must draw his block diagram for GPSS, using only
these block types.

Moving through the system being simulated are entities dependent on the na-
ture of the system. For instance, communication systems are involved with

movement of messages and data processing systems with records., In simula-

tion, the movement of these entities (transactions) from block to block in

simulated time reflects the sequence of events in real time.

The user may create entities and track them through the network, tabulating
their paths, waiting times, queue lengths, and other pertinent statistics.
The results may be displayed in tabular form or in histogram plots on the
printer.

7.4-1

ADDED PROCESSORS

7.4.1 GPSS V APPLICATIONS

Several scheduling applications might be suitable for solution by GPSS.

One might be the simulation of a computer system in order to uncover bottle-
necks. Ancother might measure the response of the CRJE/CRBE service and the
effect of different types of terminals or numbers of dial-up stations,

Ancther application might be in the simulation of new scientific satellites
in which the various experiments encode their data digitally and must com-
pete for the PCM telemetry transmission equipment, A GPSS simulation would
measure the data lost, demands on the transmission equipment, and whether
such a concept were feasible.

A listing of this procedure follows:

MEMBER NAME GPSS

//SOURCE EXEC PGM=DAGO1V,PARM=C, REGION=300K

//STEPLIB DD DSN=SYS2.GPSS,DISP=SHR

//DINTERO DD UNIT=DISK,SPACE=(CYL,(l,1)),DCB=BLKSIZE=7144

//DINTWORK DD UNIT=DISK,SEP=DINTERO,SPACE=(CYL,(1,1)),DCB=BLKSIZE=7236
//DOUTPUT DD SYSOUT=A,DCB=BLKSIZE=7182

//DREPTGEN DD UNIT=DISK,SPACE=(CYL,(1,1}),DCB=BLKSIZE=7280

//DSYMTAR DD UNIT=DISK,SPACE=(CYL,(1l,l)),DCB=BLKSIZE=7112

To execute the procedure, the following is coded:

//stepnane EXEC GPSS
//SOURCE . DINPUT1 Db *

(formatted input deck)
/%

GPSS is available on the M&DO model 95 computer.
7.4.2 REFERENCES

Contact Mrs. Pat Barnes, extension 6796, in the GSFC Program Library,

Building 3, Room 133, for further documentation on GPSS. Refer to the IBM
manuals, General Purpcse Simulation System V Introductory User's Manual
(SH20-0866), and the General Purpose Simulation System V User's Manual
(SH20-0851) for more detail on GPSS. The above IBM manuals are available only
through purchase from IEM.

7.4-2

ADDED PROCESSCRS

7.5 GRAPHICS TERMINAL SERVICE (GTS)

Graphics Terminal Services (GTS) provide support services for the 2250
and 2260 display terminals. GTS is functionally identical for both de-
vices, but they have different operational characteristics because of
hardware differences.

The five major function groups are:

1. Log-on/Log-off = This function provides the means to initiate
and terminate the terminal.

2. Data set editing - This function allows the user to create,
display, and modify card-image data sets on direct-access
devices.

3. Job scheduling - This function allows the user to display and
modify cataloged procedures for job submission, enter all JCL
directly through the terminal, or display and modify the JCL
from the preceding job for use in the current job.

4. Job output processing = This function allows the user to
visually examine job output and to have any or all output

printed, as desired.

5. Job status - This function allows the user to examine all jobs
that he has submitted through the terminal,

For more detailed information on GTS, see paragraph 12.1.3.

7. 5—1

ADDED PROCESSORS

7.6 BIT-MANIPULATION ROUTINES

The FORTRAN language does not have the bit manipulation capabilities of

the 360 Assembler Language.

To increase the data processing capabilities

of 5/360 FORTRAN, routines have been added to the GSFC Library for the

logical manipulation of 32-bit data words.
and the user must be careful of fix/float conversions,

All operate as FORTRAN functions,
The routines were

written by Jack Balakirsky, Ceode 531,

1, A=AND (B, C)

2. I=LAND(J,K)

3. A=OR(B,C)

4. I=LOR(J,K)

5. A=XOR(B,C)

6. I=LXOR(J,K)

7. A=COMPL(E)

8. I=LCOMPL{J)

ANDs real arguments B and C bit by bit

AND for integer and logical* expressions

! P, g p.ql
P e 0o
AD o131 o]
L'y 1 00 1}
'1:1:1

ORs real arguments B and C bit by bit

OR for integer and logical* expressions

ORs (exclusive) real arguments B and C bit by bit

Exclusive OR for integer and logical* expressions

EXCLUSIVE CR

Stores the cne's complement of B in A

Ones complement for integer and logical* expressions

. p!

H :_

ONE'S COMPLEMENT | o 11 |
1 g !
1 1

*The function and its arguments must be defined in a LOGICAL statement,

i.e., LOGICAL LAND, J,K.

7.6~1

ADDED PROCESSORS

9, SHFTL Shifts the bit configuration of J to the left,
n positions. All 32 bits participate in the
shift, High=order bits are shifted out and lost,
Zeros are inserted in the low-order vacated

positions.,
INTEGER SHFTL LOGICAL SHFTL,A,B
I=SHFTL(J,n) A=SHFTL(B,n)

10. SHFTR Shifts the bit configuration of J to the right,

n positions. All 32 bits participate in the
shift., low-order bits are shifted out and lost,
Zeros are inserted in the high-order vacated

positions,
INTEGER SHFTR LOGICAL SHFTR,A,B
I=SHFTR(J,n) A=SHPFTR(B,n)

1l. FSHFTL Shift left for real variables

A=FSHFTL (B, n)

12. FSHFTR Shift right for real variables
A=FSHFTR(B,n)

13. BITON** Sets to 1 the nth bit position (n=0-31) of B and
stores the result in A, B remains unchanged.

INTEGER BITON,A,B LOGICAL BITON,A,B

A=BITON(B,n) A=BITON (B,n)

- .

. L

**Routines BITON, BITOFF, AND BITFLF operate on only one bit of a 32-bit word.

7.6-2

ADDED PROCESSORS

14, BITOFF** Sets to zero the nth® bit position (n=0-31) of B
and stores the result in A, B remains unchanged.
INTEGER BITOFF,A,B L.OGICAL BITOFF,A,B
A=BITCFF (B,n) A=BITOFF(B,n)

15, BITFLP** Complements the nth bit position (n=0-31) of B
and stores the result in A. B remains unchanged,
INTEGER BITFLP,A,B LOGICAL BITFLP,A,B
A=BITFLP(B,n) A=BITFLP(B,n)

* L

- -

**Routines BITON, BITCOFF, and BITFLP operate on only cone bit of a 32-bit word.

7.6~3

ADDED PROCESSORS

7.7 CONTINUOUS SYSTEM MODELING PROGRAM (CSMP)

7.7.1 GEMERAL DESCRIPTION OF THE PROGRAM

The following excerpt was taken from the IBM System/360 Continuous System
Modeling Program User's Manual, GH20-0367-4.

S§/360 CSMP is a "continuous system simulator" that combines
the functional block modeling feature of "digital analog simulators",
such as 1130 CSMP II, with a powerful algebraic and logical model-
ing capability. Designed for use specifically by the engineer or
scientist, it requires only a minimum knowledge of computer pro-
gramming and operation. The input language enables a user to
prepare structure statements describing a physical system, start-
ing from either a block diagram or a differential equation repre-
sentation of that system. Simplicity and flexibility are salient
characteristics of this language. A knowledge of basic FORTRAN
is helpful but not necessary.

The program provides a basic set of 34 functional blocks
{also called functions), plus means for the user to define func-
tions specially suited to his particular simulation requirements.
Included in the basic set are such conventicnal analog computer
components as integrators and relays plus many special purpose
functions like delay time, zero-order hold, dead space, and limiter
functions. This complement is augmented by the FORTRAN library
functions, including, for example, cosine, and absclute value.
Special functions can be defined either through FORTRAN programming
or, more simply, through a macro capability that permits individual
existing functions to be combined into a larger functional block.
The user is thereby given a high degree of flexibility for dif-
ferent problem areas. For example, by properly preparing a set
of special blocks, he can restructure S/360 CSMP into a problem-
oriented language for chemical kinetics, control system analysis,
or biochemistry. In effect, S/360 CSMP does not have to operate
within the framework of a digital analog simulator language, but
can take on the characteristics of a language oriented to any
particular special purpose field in continucus system simulation.

Application-oriented input statements are used to describe
the connections between the functicnal blocks. §/360 CSMP also
accepts FORTRAN statements, thereby allowing the user to readily
handle complex nonlinear and time-variant problems. A translator
converts these structure statements into a FORTRAN subroutine
"UPDATE" which is then ~ompiled and executed alternately with a
selected integration routine to accomplish the simulation.

7.7-1

ADDED PROCESSORS

FORTRAN 1V (Level G) is used as the source language for
approximately 95% of this application package; those operations
not readily performed in FORTRAN IV (Level G) are coded as sub=-
routines in System/360 Assembler Language. All routines operate
under Operating System/360. All calculations are done in single~
precision, fleating-point arithmetic,

7.7.2 AVAILABILITY AND REQUIRED JCL

CSMP (modification level 3) is available on the M&DO 360/95 and the SESCC
360/91 and 360/75.

To execute the cataloged procedure on the 360/95 code:

// EXEC CSMP
/ /CSMP.SYSIN Db *
(source deck)

/*

Code the following to cbtain punched output for FORTRAN unit 7:

// EXEC CSMP
//CSMP .FTO7001 DD SYSOUT=B
J/CSMP ,SYSTN j3]9] *

{source deck)

/*
7.7.3 REFERENCES
IBM System/360 Operating System manuals.

® System/360 Continuous System Modeling Program, Application
Description {GH20~0240}

L System/360 Continuous System Modeling Program User's Manual
(GH20-0367)

; e System/360 Continuous System Modeling Program Operator's
Manual (GH20-0368)

7.7=-2

ADDED PROCESSORS

7.8 SIMSCRIPT II.5

The SIMSCRIPT II language provides the user with a tool for discrete-event
simulation and systems programming. SIMSCRIPT II.5, Release 7, is a pro-
prietary product from Consolidated Analysis Centers, Inc. {C.A.C.I.). It
supports programs written in an enhanced version of the SIMSCRIPT II language.

7.8.1 RECENT MODIFICATIONS

Release 7 is a major revision to the C.A.C,I, SIMSCRIPT II.5 COMPILER, Full
compatibility has been retained with Release 6 for most cases. Programs makinp
use of the ACCUMULATE and TALLY staterments, and programs using the calendar
time facilities should he fully recompiled with the Release 7 compiler and
library. - Release 7 requires an additional 70K memory since it is no longer
an overlay structure.

7.8.2 AVAILABILITY

SIMSCRIPT II.5, Release 7, is available on the M&DO 360/95. To aid the
SIMSCRIPT programmer, the cataloged procedures SIM25C and SIM25LGC are avail=-
able in SYS1.PROCLIE to provide the necessary Compile and LINKGO JCL,

7.8.3 REFERENCES

Documentation on SIMSCRIPT IX.5 may be viewed in the Program Library,
Building 3, Room 133, Extension 6796,

) SIMSCRIPT II S5/360-370 References Handbock

® SIMSCRIPT II S/360-370 User's Manual

The documents may be purchased from a branch office of C.A.C.I. located in
Arlington, Virginia, For further information contact Mrs. Pat Barnes in the

Program Library.

ADDED PROCESSORS

7.9 TIMING ROUTINES

Several FORTRAN callable timing routines, with different run-timing capabili-
ties, are available for use on the M&DO computers.

7.9.1 REMTIM
REMTIM returns the remaining time in a user's job.
CALL REMTIM(I,J)

where I = CPU time remaining for the user's job in seconds, and J = the I/0
time remaining for the user's job in second.

The difference between two successive calls may be used for interval timing.
Note that the clock is counting down here, not increasing.

7.9.2 ZTIME

2ZTIME produces the date and time of day in alphanumeric form. The routine was
written by Mr, Frank G. Ross.

CALL ZTIME (AREA,NUM) where
AREA is a storage area which will receive the output

NUM is an integer constant or variable specifying the output desired.

values for NUM size of area output form

1l « time of day {12 characters) HH.MM.SS.TH

2 - date {16 characters) MON DEC 10, 1972
4 - date {(Julian) {7 characters) 72,247

8 ~ date {9 characters) 12/15/72

Any and all combinations of the above values can be used, Just allow enough
space for output. A LOGICAL *1 array initially blanked out via the DATA
initialization statement is the usual method.

7.9.3 TIME

TIME returns the time since midnight, in hundredths of seconds,

CALL TIME(I)

Where I is a full-word fixed point number.

7.9-1

ADDED PROCESSORS

7.9.4 FTIMIN,FTIMOT AND TIMEIN,TIMOUT

The above paired routines are used to calculate elapsed (wall clock) time,
at the user's discretion.

CALL FTIMIN CALL TIMEIN
Are used to initiate the timing interwval.

CALL FTIMOT (X) CALL TIMOUT(I)
X = seconds (floating point) I = hundreds of seconds (fixed)
Return the elapsed time since the call to the first routine,

FTIMOT (TIMOUT) may be called more than once. Each call returns the total
elapsed time since FTIMIN(TIMEIN) was initialized.

A subsequent call to FTIMOT(TIMOUT) reinitializes the timing cycle.
Further information regarding the use of any of the above routines may be

obtained from the Prograrmer Assistance Center, Building 3, Room 1334,
Extension 6768.

7.9-2

ADDED PROCESSORS

7.10 SCIENTIFIC SUBROUTINE PACKAGE (SSP)

The Scientific Subroutine Package consists of over 250 FORTRAN callable sub=-
routines, input-output free, which can be combined with a user's input, output
or computational routines to meet his individual requirements. 200 of these
subroutines are presented in both single and double precision mode. The pri-
mary purpose of this package is to make available a basic mathematical and
statistical subroutine library to aid the user in the development of his own
FORTRAN library. The user may supplement or modify the collection to meet

his needs.

7.10.1 BASIC CHARACTERISTICS OF THE SSP PACKAGE
1. All subroutines are free of input/output statements,

2, Subroutines do not contain fixed maximum dimensions for the data
arrays named in their calling sequences.

3. All subroutines are written in FORTRAN.

4, Many matrix manipulation subroutines handle symmetric and diagonal
matrices {stored in economical, compressed formats) as well as
general matrices. This can result in considerable saving in storage
for large arrays.

5. The use of the more complex subroutines (or groups of them) is
illustrated in the program documentation by sample main programs
with input/output.

6. All subroutines are documented uniformly.

7.10.2 AVAILABILITY

The Scientific Subroutine Package is available on all of the M&DO 360 computers,
On the 360/95 and 360/75 {Cl) the routines are automatically supplied through
LINKLIB. On the 360/65 the use of a STEPLIB or JOBLIB card is required.

7.10.3 REFERENCES

Further information concerning the Scientific Subroutine Package subroutine
may be cobtained from the Program Library, Building 3, Room 133, Extension 6796,

7 - 10-1

SYSTEM, PROCESSCOR, AND USER LIBRARIES

SECTION 8

SYSTEM, PROCESSOR, AND USER LIBRARTES

8.1 GENERAL DISCUSSION

A "library”" is a partitioned data set (PD3S) that resides on a direct-access
volume and has a directory which identifies the members by name and location.
Libraries contain routines widely used at an installation and are therefore
made easily accessible. 0S/360 libraries fall into the following categories:

a.

System Libraries -—- These libraries are considered part of the op-
erating system and usually reside on the system residence volume,
although they may reside on other direct-access volumes., Examples
of libraries in this category are SYS1.LINKLIB and SYS1.PROCLIB.
Libraries concatenated to the automatic call library (SYSLIB) in
the cataloged procedure may be considered to be system- libraries.
See subsection 8.12 for a description of SYSLIB.

Libraries required when using processors available under 05/360 --
The libraries in this category include the IBM=~supplied libraries
SYS1,FORTLIB (its extension, SYS2.GSFCLIB), SYS1.MACLIB, and
SYS1.PLILIB. The routines may be referenced explicitly by the pro-
grammer {such as the CALL in a FORTRAN program} or used as required
by the system (e.g., the input/output routines used in FORTRAN) .

User libraries and other libraries that are created or maintained
by the user or systems programmer to best accommodate installation
requirements -- These include libraries developed by users of such
systems as Definitive Orbit Determination System (DODS) and Attitude
Determination, as well as programs designed to give the individual
capabilities not incorporated into the existing system, such as the
Stromberg Datagraphics 4060 package or GPSS V, Private libraries
are also defined by this third category.

A library is a data set and may therefore be created during any job
step by defining the library in a DD statement, The library may be
given a simple or qualified name and may be passed, kept, deleted,
or cataloged., A library may be called a source, object, or load li-
brary, depending on the type of modules it contains. In the use of
libraries, one may encounter the terms JOBLIB, STEPLIB, and SYSLIB.
These are discussed in subsections 8,10, and 8.11, and 8,12,

SYSTEM, PROCESSOR, AND USER LIBRARIES

8.1.1 REFERENCES
IBM System/360 Operating System manuals.

] System Generation (GC28-6554)

® INTRODUCTION (GC28~6534)

® Supervigor and Data Management Macro Instructions (GC28-6647)

B.2 LINKLIB

The link library (SYS1.LINKLIB) is designated as the System Library. It
contains the most frequently used programs, such as the non-resident system
routines, language processors, the Linkage Editor and Loader, utilities, and
other IBM~supplied programs. It also contains frequently used user-written
programs. Any program in this library can be executed by coding PGM=program
name in the EXEC statement of a job step. LINKLIB is always available to all
steps of all jobs. The control program provides the necessary data control
block and establishes the logical relationship between the user's program
and the library.

When the system is IPLed, two or more libraries may be concatenated to the
link library; for example, on the model 95 LINKLIB consists of SYS1.LINKLIB,
SYS2.LINKLIB, SYS2.GSFCLINK, and SYS3,GSFCLINK. The 75 (Cl) link library
congists of SYS1.LINKLIB, SYS2.LINKLIE, and SYS2.GSPFCLINK.

8.2.1 REFERENCES

IBM System/360 Operating System manual.

® System Prograimmer's Guide (GC28-6550)

8.3 PROCLIE

A procedure library (PROCLIB) is a partitioned data set containing job control
lanquage statements for standard, frequently run jobs. A particular set of
such JCL statements in a PROCLIB is referred to as a cataloged procedure,
Cataloged procedures may be referenced on an EXEC card in the job stream to
cause the inclusion of the designated set of JCL, thys reducing the number of
JCL statements to be supplied by the user. This not only reduces the burden
on the user, but also reduces error probabilities in preparation of JCL.
Details on the usage of cataloged procedures are presented in Section 5.

There is a procedure library named SYS1,PROCLIB on each of the M&DO compu-
ters, containing cataloged JCL procedures for all standard processors (such
as FORTRAN, PL/I, and Linkage Editor). A partial list of cataloged proce-
dures in SYS1.PROCLIB for the M&DO 360/95 computer is found in subsection 19.3.

8-2

SYSTEM, PROCESSORS, AND USER LIBRARIES

The Models 95 and 75 (Cl) have a second procedure library, named SYS2.USERPROC,
which is concatenated with SYS1,PROCLIB, This library contains cataloged
procedures for frequently used user-written programs, Before a procedure
can be placed on the SYS2,USERPROC, the following conditions must be met:

a. The procedure must be checked out = no "JCL errors” are allowed,

b. The procedure must have at least 15 cards or must be used at least
five times per day. '

A procedure which meets the above conditions may be placed in the SYS2,USERPROC
by submitting a written request, accompanied by a listing of the procedure and
the deck necessary to update SYSZ2.USERPROC, to the computer manager,

Mr. Harry G. Bitting, Code 531, Subsequent updates must follow the same rules,
Please note that SYS2,USERPROC is restricted to procedures for execution of
user programs; procedures for compilations, assemblies, or linkage edits will
not be approved.

8.3.1 REFERENCES
4

See subsection 19.3 for a description of the GSPC standard cataloged proce-
dures.

IBM System/360 Operating System manual.

e Job Control Language Reference (GC28-6704}.

8.4 SVCLIB

The members of the Supervisor Call (SvC) library (SYS1.SVCLIB) are non-resi-
dent SVC routines, the data management access methods, and the system's
standard error recovery routines (SER). These members are in load module
form.

This library is primarily of interest to the systems programmer.

B.4.1 REFERENCES

IBM System/360 Operating System manuals,

® System Programmer's Guide (GC28-6550)

® System Generation (GC28-6554)

JYSTEM, PROCESSCOR, AND USER LIBRARIES

B.5 MACLIB

The macro library, SYS1.MACLIB, is a collection of macro definitions that can
be used in assembler language programs at GSFC., Once a macro definition

has been placed in the macro library, the definition may be used by writing
its corresponding macro instruction in a source program.

A macro definition included in a source deck is called a programmer macro defi-
nition, and a macro definition residing in the macro library is called a system
macro jnstruction. There is no difference in function and they will be expanded
in the same way. However, because syntax errors are handled differently, a
macro definition should be thoroughly debugged as a programmeyr macro before
being entered in the macro library. Non-IBM macros are contained in
SYS2.GSFCMAC on the 360/95,

8.5.1 REFERENCES
IBM System/360 Operating System manual.

® Assembler Language (GC28-6514)

8.6 FORTLIB

The FORTRAN library, SYS1.FORTLIB, is a PDS which contains a group of FORTRAN
subprograms. These programs, used by FORTRANG and FORTRANH, are provided by

IBM to perform specific functions such as mathematical functions and input/output
processing. WNew modules may be added and other modules deleted to meet the

needs of a specific installation. (See Section 7.10, Scientific Subroutine
Package.)

On the M&DO 360 computers the libraries concatenated to SYSLIB, the automatic
call library, are SYS1.PORTLIB, SYS2.GSFCLIB, SYS1.PL1LIB, and SY51.SSPAK.
Other libraries (such as SYS2.SD4060) may be added to SYSLIE by overriding the
dummy SYSLIB allocations provided, Refer to SYSLIB, Subsection 8.12, and the
LOADER, LINK, and LINKGO procedures, paragraphs 19.3.2.4, 19,3.2.1, and
19,3.2.3.

8.6.1 REFERENCES
IBM System/360 Operating System manhuals,

o FORTRAN IV (G and H) Programmer's Guide (GC28-6817)

) FORTRAN IV Library Subprograms (GC28-6596)

SYSTEM, PROCESSOR, AND USER LIBRARIES

8.7 PLILIB

The PL/I subroutine, 5¥S1.PLILIB, is a system library that houses a set of
load modules that, during execution of a PL/I program, supplement the machine
instructions generated by the compiler. These modules can be divided into
two groups:

a. Mcdules that serve as an interface between compiled code and the
facilities of the operating system -— These modules are concerned
primarily with input and ocutput, storage management, and error and
interrupt handling.

b. Modules that perform data processing operations during program exe-
cution -- These modules handle, for example, input/output editing,
data conversion, and many of the PL/I built-in functions.

8.7.1 REFERENCES
IBM System/360 Operating System manuals.

) PL/I (P) Programmer's Guide (GC28-6594)

. PL/1 (F) Subroutine Library (GC28-6590)

8.8 LOADLIB

SYS2.LOADLIB is a GSFC load module library. On the models 95 and 75, the
load module lijbrary is concatenated with the auntomatic call library in the
LINK and LINKGO procedures. Programs to be entered in LOADLIB must meet
certain conditions of size and usage before being accepted. These condi-
tions are listed below, as stated in the MsDO 360 Computer Bulletin #3:

a. Programs or subroutines must be checked out.
b. They must be used not less than once a day.
C. Their size must not exceed 250k bytes of memory.

d. Each member name must be of the following format —-- USRIDXXX
(e.g., GAFGROO1).

e. A written request accompanied by a copy of the Linkage Editor map
must be submitted to the computer manager, Mr. Harry G. Bitting,
Code 531, for approval.

SYSTEM, PROCESSOR, ARD USER LIBRARIES

f. After approval is granted, procedure SAVEPROG must be used to enter
the member into the library. Refer to paragraph 19.3.6 for a des-
cription of the SAVEPROG procedure.

8.8.1 REFERENCES
IBM System/360 Operating System manual.

® Linkage Editor and Loader (GC28-6538). See automatic call library.

8.9 TELCMLIB

The members of the telecommunications library (SYS1,TELCMLIB) are load modules
which suppert the optional telecommunications access methods specified at
system generation., The access methods supported by 8YS1,TELCMLIB are the
Basic Telecommunications Access Method (BTAM) and Queued Telecommunications
Access Method {QTAM), SYS1.TELCMLIB must be specified at system generation if
either or both of these access methods are to be generated.

8.9.1 REFERENCES
IBM System/360 Operating System manuals.

[System Generation {GC2B-6554)

® Introduction to Teleprocessing (GC30~2007)

e Linkage Editor and Loader (GC28-6538)

8,10 SYSLIRB

The ddname, SYSLIB, defines the automatic call library of the Linkage Editor.
SYSLIB contains libraries which are comprised of modules required by

language processors and other processing systems. The SYSLIB libraries in

the LOADER, LINK, and LINKGO procedures on the M&DO computers are shown in the
following chart:

Models 95 and 75 Model 65
LOADER/LINK/LINKGO LOADER/LINK/LINKGO

SYS2, DUMMY SYS2.DUMMY
SYS 2. DUMMY SYS2.DUMMY
S¥S1,FORTLIB 8YS1.FORTLIB
S¥52.GSFCLIB 8YS1.PL1LIE
S¥S1.PL1LIB
SYS1.S5SPAK

8-6

SYSTEM, PRCCESSOR, AND USER LIBRARIES

The SYSLIB statement in these procedures concatenates the libraries which
provide the routines required by a majority of users. Users requiring
routines in a private library can concatenate that library to SYSLIB by
coding:

//LINK.SYSLIB DD DSN=pvtlib,DISP=SHR,
// UNIT=2314,VOL=SER=XXXXXX

If the library is cataloged, the UNIT and VOL parameters are not required.

Note that SYSLIB in the procedures is coded with a DSN=SYS2,DUMMY to simplify
the concatenation of a private library.

An example of the addition of a private library is the user who requests the

SD4060 plot package. The routines for this package are stored in the library

named S¥YS52,5D4060. This library is concatenated to SYSLIB by coding:
//LINK,SYSLIB Db DSN=SY52,5D4060 ,DISF=SHR

8.10.1 REFERENCES

IBM System/360 Operating System manual.

. Linkage Editor and Loader (GC28-6538)

Also, refer to Subsection 8.6, FORTLIB,.

8-7/8-8

UTILITIES

SECTION 9

UTILITIES

9.1 GENERAL
2.1.1 NATURE OF UTILITIES

Utility programs are written to perform common funections associated with
the creation and maintenance of S/360 data sets. They are invoked by the
EXEC card:

//stepname EXEC PGM=utilityname

and are told what to do through the use of control cards called utility
control statements. These control cards can be used individually or in
combination to perform a variety of operations such as the copying, moving,
printing, punching, reblocking, updating, deleting, and cataloging of data
sets, and the dumping, restoring, mapping and analyzing of direct-access
storage devices. In some cases, the desired operation may be accomplished
by more than one utility.

9.1.2 HOW TO CHOOSE A UTILITY

The IBM utility programs offer a wide range of functions which process

data from the volume level to the record level. Those system utilities
whose name begins with IEH can operate at the volume or data set level.
Those data set utilities whose name begins with IEB process data at the
data set level or below. This overlap may sometimes cause confusion in
choosing a utility for a particular purpose.

Three major factors in choosing a utility are the operation to be performed,
the level of data to be processed, and the data set organization,

Table 9.1-1 may be used in selecting a utility by application. This table

allows the user to find the proper utility by using the terms with which
he is most familiar,

9.1-1

2-1"6

Table 2.1-1. How to Select a Utility*

SUBSECTION REFERENCE —
UTILITY

APPLICATION

LIST ENTRIES IN A CATALOG X
IN A VTOC 2

IN A DIRECTORY OF .

APDS 2 1

PRINT A TRACK OR
PRINT/PUNCH CONTENTS OF A
DIRECT-ACCESS
VOLUME X : 1
CONTENTS OF A PDS 2 1
MEMBER OF A PDS X X
OF A SEQUENTIAL DATA
SET
OR INPUT CARD DECK X 1 2 X

CREATE A OF A VOLUME 1 2
BACKUP COPY OF ASEQUENTIAL
DATA SET X X 2 1 X X

OF A PDS OR AMEMBER

OF APDS 2 1 X X X

UPDATE A PDS (AND/OR ALLO-
CATE SPACE) X X |x |x 1 X |x
A MEMBER OF A PDS
WITH 80 BYTE
LOGICAL RECORDS X
A SEQUENTIAL DATA
SET _ X 1 |2

COMPRESS APDS 2 1
A SEQUENTIAL DATA
SET X

*THE NUMERALS 1 AND 2 DESIGNATE THE ROUTINE USUALLY BEST SUITED FOR OPERATION,

£E-T'6

Table 9.1-1.

(Cont'd)

SUBSECTION REFERENCE —
UTILITY

APPLICATION
EXPAND APDS 1 X
A SEQUENTIAL DATA
SET 1 2
CONVERT DATA FROM SEQUENTIAL TO
SET ORGANI- PARTITIONED 1 X
ZATION FROM PARTITIONED
TO SEQUENTIAL X X
CREATE APDS 1 2z
CREATE A
SEQLIENTIAL
DATA SET 2 1
CREATE FILES OF TEST DATA X
BY EDITING EXISTING
FILES X

TAPE TESTING

LABEL A 7-TRACK OR 9-TRACK
MAGNETIC TAPE
INITIALIZE A DASD X
MISCELLA- BUILD OR DELETE AN
NEQUS INDEX' OR INDEX
ALIAS X
BUILD AND MAINTAIN
A GENERATION
DATA GROUP INDEX X
CONNECT OR RELEASE
TWO VOLUMES X
MAFP A LOAD
MODULE

*THE NUMERALS 1 AND 2 DESIGNATE THE ROUTINE USUALLY BEST SUITED FOR OPERATION.

SRILITILA

UTILITIES

9.1.3 UTILITY CATEGORIES
Utility programs fall into two broad categories:
a. IBM~supplied utilities

™ System utilities (IEHMOVE, IEHLIST, IEHINITT, IEHDASDR,
IEHPROGM}

L Data Set utilities (IEBGENER, IEBCOPY, IEBPTPCH, IEBUPDTE,
IEBDG)

b. Other utilities (PATRICK, MAPDISK, LISTFDS, PDSUR, IEFBR14, IEBFGR,
OSSLIP)

The IBM utilities contain system utilities, which are used to maintain
volumes of data at an organizational level, and data set utilities, which
are used to process data at the data set or record level. The other utili-
ties include user-written programs and a module of the $/360 Operating
System (IEFBR14). IEFBR14 is not generally classified as a utility, but is
used to perform data set allocation and disposition utility functions,

The IBM-supplied utilities are all documented in IBM System/360 Operating
Systen Utilities (Form GC28-6586). Documentation is generally available for
user~written utilities and may be obtained by calling Mrs, Pat Barnes
{extension 6796) in the GSFC Program Library, Building 3, Room 133,

9.1.4 UTILITY CONTRCL STATEMENTS

The four fields of utility control statements are: MName, Operation, Operand,
and Comment. The Name field begins in column 1 {except IEBUPDTE) and is
followed by a space. Each of the other fields must be preceded and followed

T o e - T o S T I YR U T _ U
Ry d Space, a5 sSNnown 11l UilcE LULLUWLIN Yyaellelal Lorniac:

Name Operation Operand (s) Comments

The IEBUPDTE control statements must start with a ./ in columns 1-2 and the
Name (if any) begins in column 3. The remainder of the statement is the
same as the described format.

Depending upon the utility used, the control statements identify the func-
tion to be performed, the specific volume or data set to be processed, and
any parameters which modify the operation.

The name field begins in column 1 (column 3 for IEBUPDTE) and conforms to the
usual rules for S/360 names, i.e., it can be from one to eight alphanumeric
characters, the first of which must be alphabetic. When the name field

is not used, column 1 of the control card (column 3 for IEBUPDTE) must be
blank. The name field is required only in the IEHINITT utility. It is
generally not used in the other utilities, but may be used if desired,

9.1-4

UTILITIES

The operation field identifies the type of control statement. It may specify
an operation to be performed, or may provide information which further defines
the extent of the operation. This field begins before column 17 and must be
preceded and followed by at least one blank. If the name field is not used,
the operation field may begin in column 2. It is helpful to either right
align or left align all operation fields to improve readability. Indenting
an operation field may be used to indicate a reference to the preceding opera-

tion.

The operand field consists of keyword parameters separated by commas. The
keywords are defined in the utility program and contain information such as
volume and data set jidentification.

The comments field must be preceded by a blank and may contain any information.

Utility control statements are most often supplied in punched card form in
the input stream, but may also be supplied as a sequential data set or as a
member of a PDS.

The rules for continuation of utility control statements are as follows:
a. Interrupt the field after any comma before column 72.
b. Punch a non-blank character in column 72.
c. Continue in column 16 of the continuation card,
9.1.5 UTILITY PECULIARITIES
a. IEH utilities are unique in that the DD cards specify volume
jdentification but do not reference the data set name, i.e., they

do not contain the DSNAME parameter.

b. Derived names for devices should not be used in utility control or
DD statements.

For DISK use: VOL~=231l4=serial number
but not: VOL=DISK=serial number

For TAPE use: VOI=2400=serial number
but not: VOI=9TRACK=serial number

c. In the IEH utilities, space allocation for moved data sets is
provided by the utility program and does not need to be coded in
the JCL. Space may also be preallocated by the utility IEHPROGM
or IEFBR14, or on a DD card in the program being executed.

9.1-5

UTILITIES

9.1.6 NOTES ON EXAMPLES

In the examples in Section 9, the JOB card is not shown, but the user must

supply one when executing his program. In some examples, additional steps

are shown to illustrate the relationship between the utility and other steps

within the job.

The use of the delimiter /* 1is opticnal when the input stream is defined hy:
//SYSIN DD *

It does serve the purpose of visually identifying the end of an input data set.

The delimiter is required when the input stream is defined by:

//8¥SIN DD DATA

The input data must not include a /* card because this card signifies the last
card in the input stream,

9.1.7 RETURN CODES

The term RETURN CODE is the name of the condition codes returned by 5/360

0S utilities. The return code indicates the level of success when executing
an 0S utility and may be tested using the COND execution parameter of the
following step. The return codes vary in increments of 4 from 00 for suc-
cessful completion to 16 for the most severe errors, The exact meaning for
each value varies for each utility.

9.1-6

UTILITIES

9.2 SYSTEM UTILITIES

9,2.1 IEHMOVE
The IEHMOVE system utility moves or copies logical groups (volumes, data
sets, catalogs) of S/360 data, IEBCOPY is much faster than IEHMOVE and its
use is recommended (see Table 9.1-1).
Data to be moved may be:

a. Sequential or partitioned data sets.

b, Resident on one or more volumes (up to 5).

c. Cataloged or uncataloged.

d. A catalog or portions of a catalog.

e. A BDBM data set containing variable length spanned (VS or VBS)
records.

Members of moved or copied data sets may be merged, renamed, replaced, and
selectively included or excluded.

9,2.1.1 MOVE versus COPY

A MOVE operation differs basically from a copy operation in that upon
successful completion, MOVE scratches the scurce data set from direct-access
volumes, whereas COPY leaves the source data intact. Alsc, MOVE updates

the catalog entry for cataloged data sets to point to the MCOVED data set,
whereas COPY does not change the catalog entry.

If for some reason the MOVE operation cannot be successfully completed,
the source data set is not scratched. Also, if space has been allocated
by the IEHMOVE program, all data being moved or copied is scratched from

the receiving volume.

If space has been previously allocated for the new data set (by this or a
previous job), no data that has been MOVED or COPIED is scratched. Utility
messages tell the user which data sets or members have been moved and the
type of error which occurred.

If an ABEND occurs during execution of IEHMOVE, IEHMOVE is not able to
complete the aforementioned housekeeping functions. The partially built
new data set remains on the receiving volume, Before resubmitting the
IEHMOVE step, one must scratch the partially built new data set from the
receiving volume; otherwise, IEHMOVE will treat the operation as a merge
of previously allocated data sets. This is not desirable, since it is
possible that some of the alias names will not be updated.

9.2-1

UTILITIES

For example, if the IEHMOVE program has moved 104 members of a 1l05-member
partitioned data set, and on moving the 105th merber, an I/0 exror is

encountered, then:

* If space was allocated by the IEHMOVE program, the entire
partitioned data set is scratched from the receiving volume,

L If space was previously allocated, no data is scratched from the

receiving volume.

In this case, after determining the nature

of the error. the user need move only the 105th member into the
receiving partitioned data set.

The following table illustrates catalog maintenance by MOVE and COPY.

FOR CATALOGED DATA SETS

OPERANDS

MOVE

CorY

FROM not used
UNCATLG not used

FROM not used
UNCATLG used

FROM used
UNCATLG not used

Catalog updated

Catalog entry deleted

Catalog not changed

Catalog not changed

Catalog entry deleted

Catalog not changed

CATLG not used

CATLG used

(Not applicable)

CATLG used (Mot applicable) Catalog updated
FOR UNCATALOGED DATA SETS

OPERANDS MOVE COoPY

FROM used Catalog not changed Catalog not changed

Catalog updated

UTILITIES

9.2,1,2 Example - MOVE

An example of moving a PDS from disk to disk with space allocated by the
IEHMOVE program is shown below:

V4 EXEC PGM=IEHMOVE , REGION=100K
//SYSPRINT DD SYSQUT=A
//SYSUT1 DD UNIT=2314,VOL=SER=GlSCRl, DISP=OLD
//DISKNEW DD UNIT=2314 ,VOL=SER=xxxxxX,DISP=OLD
//DISKOLD DD UNIT=2314,VOL=SER=yyyyyYy,DISP=0LD
//SYSIN DD *
MOVE PDS=sourcpds , TO=2314=xxxxxx ,FROM=2314=yyyyvy

9.2.1.3 Example - COPY (Sequential Data)

An example of copying a sequential data set from labeled tape to disk, with
space allocation provided by the IEHMOVE program, is shown below:

//STEP1 ‘ EXEC PGM=IEHMOVE , REGION=100K
//SYSPRINT DD SYSOUT=A
//8YSUT1 DD UNIT=2314,DISP=0LD,VOL=SER=G1SCR1l
//TAPEIN DD UNIT=2400,DISP=0LD, VOL=SER=XXXXXX
//DISKOUT DD UNIT=2314,DISP=0LD,VOL=SER=G1SCR2
//SYSIN DD *
COPY DSNAME=seqset,T0=2314=G1SCR2 ,FROM=2400=XXXXXX

Where xxxxxx would, in this case, be replaced by the user's 9-track tape
serial number. GlSCR1 and G1SCR2 are 'scratch packs' on the 360/95.

9.,2,1.4 Example - COPY (Multi-volume Sequential Data)

An example of copying a multi-volume sequential data set from three labeled
9~track tapes to one disk is shown below:

//MULTI EXEC PGM=IEHMOVE , REGION=100K
//SYSPRINT DD SYSOUT=A
//S¥YSuUT1 DD UNIT=2314,VOL=SER=G1SCR1 ,DISP=0LD
//TAPE DD DISP= (OLD,KEEP) ,UNIT=(2400-9, ,DEFER},
/7 VOL=SER= [XXXXXX,YYYYYY ZZ22ZZ)
//DISK DD UNIT=2314,DISP=0LD,VOL=SER=G1SCR3
//SYSIN DD *
COPY DSNAME=seqdata ,TO=2314=G1SCR3, X

PROM=2400= (xxxXxxx,3,yyyyyy,1l,zz2zz2,1)
The format on the FROM operand is:

FROM= {tapeno,Seqnc, ..)

UTILITIES

where the tape number and file sequence number are listed for each tape on
which the file resides. In this example, the data set is the third file
on tape xxxxxx, and the first file on tapes yyvyyy and zzzzzz,

Notes:

a. Since the LABEL parameter is omitted on the TAPE DD card, the
system default LABEL=(1,SL) is assumed,

b. When using unlabeled tapes, the FROMDD keyword would have to
be included on the COPY DSNAME statement, i.e., (FROMDD=TAPE),
to make DCB and LABEL information available. The DCB parameter
is mandatory only when dealing with UNLOADED data sets (see
paragraph 9.2.1.6) and must be of the form (RECFM=FB, LRECL=80,
BLKSIZE=800) .

c. Specify DISP=0LD on Utility DD cards to prevent the inadvertent
deletion of data sets.

9.2,1.5 Example - COPY (Multiple Data Sets)

An example of copying multiple data sets from one tape to one or more disk
volumes is shown below:

//MULTDAT EXEC PGM=IEHMOVE , REGION=100K
//SYSPRINT Db SYSOUT=A
//TAPEIN DD UNIT=2400,VOL=SER=xxxxxx,DISP=0LD,
i LABEL=(l,BLP} ,DCB= (LRECL=80 ,RECFM=FB,
/7 BLKSIZE=3520)
//DISKouUT DD UNIT=2314,VOL=SER=yyyyYyYy ,DISP=0LD
//8¥YsuTl oD UNIT=2314,VOL=SER=zzzzzz ,DISP=0LD
//SYSIN DD *
COPY DSNAME=segsetl,TO=2314=yvyyyyYV, X
FROM= (xxxx%xx,3) ,FROMDD=TAPEIN
COPY DSNAME=seqset2,T0=2314=yyyyyy, X
FROM= (xxxxxx,4) ,FROMDD=TAPEIN
COPY DSNAME=seqgset3,TO=23] 4=yyyyvy, X

FROM= {xxxxxx,7) ,FROMDD=TAPEIN
In this example, three sequential data sets are copied from an unlabeled
9-track tape to a 2314 disk volume. One copy statement is required for
each data set to be copied, The format of the FROM operand is:
FROM= (tapeno,segno)

See paragraph 9.1.4 for the rules for continuation of utility control
statements.

PRECEDING PAGE BLANK NOT FII.MED

9.2-4

9,2.2 IEHLIST

UTILITIES

IEHLIST can be used to list the names of entries in a cataleg, the names
in a directory of a partitioned data set, or a volume table of contents

(vroc) .

This is particularly useful in listing the system catalog, the

member names of the procedure library, or in determining what data sets

are on a particular disk volume.

9.2.2.1 System Catalog Listing

The example below may be followed when listing the system catalog on any

one of the M&DO computers.

The listing includes the fully gqualified name

of each applicable cataloged data set and the serial number of the volume

on which it resides.

//LISTCLG EXEC

//SYSPRINT DD

//NUCLEUS LD

//SYSIN DD
LISTCTLG

Note:

PGM=IEHLIST
SYSOUT=A

VOL=REF=S5YS51.NUCLEUS,DISP=0LD
*

The volume serial number could be stated explicitly as VOL=SER=

G15Y51; this would restrict the example to the model 95 only.

By omitting the VOL=device=serial field on the LISTCILG card, the catalog

is assumed to reside on the system

residence.

To list a catalog other than the system cataleg, the DD card must refer to

the volume on which the catalog is

located; the volume would be specified

in the utility control card as shown below for a disk.

//LIST EXEC

//SYSPRINT DD

//CATALOG DD

//SYSIN oD
LISTCTLG

9.2.2,2 Member Name Listing

To list the member names of either
below may be followed.

//LIST EXEC
//SYSPRINT DD
//DD1 DD
//SYSIN DD
LISTPDS
LISTPDS

PRECEDING PAGE BLANK NOT FILMED

PGM=IEHLIST

SYSOUT=A

VOL=SER=xxxxxx ,DISP=0LD,UNIT=2314
*

VOL=2 31 4=XXNHNXX

a private or system PDS, the example

PGM=IEHLIST
SYSOUT=A,DCB=BLKSIZE=7260
UNIT=2314,VOL=SER=xxxxxxX,DISP=0LD
*

DSNAME=name ,VOL=2 3] 4=XXXX XX
DSNAME=name ,VOL=23]14=xxxxxx, FORMAT

9.2—7

UTILITIES

The FORMAT option causes the fields of the directory entries in a PDS to
be edited and formatted., The formatted listing may only be specified for
a PDS whose members have been created by the linkage editor.

Up to 10 partitioned data sets may be listed by one execution of this utility.
One control statement is required for each PDS listed. The PDS's may reside
on several volumes; cne DD card is required for each volume referxenced.

9.2.2.3 Volume and Data Set Status

The user must constantly be aware of the status of the volumes and data sets
with which he is working. This is particularly true of the special systems
where many tasks may be using the same programs and data,

LISTVTOC provides the user with a choice of;

a. A formatted listing (FORMAT option) of the VIOC, giving an in depth
description of the data sets residing on the volume.

b. An abbreviated, edited listing (default) of the VTOC,
c. A hexadecimal dump (DUMP option) listing of the DSCB's in the VTOC.
For general use, the FORMAT option is recommended.

The following example lists the VIOC on the four volumes designated; each
control card is explained below.

//LISTVTOC EXEC PGM=IEHLIST
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
//VTOCL oD UNIT=2314,VOL=SER=G1SYS51,DISP=0LD
//VTOC2 DD UNIT=2314,VOL=SER=xXXxXX,DISP=0LD
//VTOC3 DD UNIT=2314,VOL=SER=yyyyYY ,DISF=0LD
//VTOC4 Db UNIT=2314 ,V0l=SFR=zz222zz ,NTSP=0LNO
//S¥SIN DD %

LISTVTOC

LISTVTOC VOL=2314=xXXXXX

LISTVTOC FORMAT ,VOL=2314=yyyyvyy

LISTVTOC DUMP ,VOL~=2314=zzzzz2
Notes:

a. Each volume referenced by a control statement must have a
corresponding DD card,

b. The default volume in the first control statement is the system's
residence device.

UTILITIES

The four control statements, taken in order, specify:

a. 'The abbreviated, edited format listing of the system's residence
volume (default),

b. The abbreviated, edited format of the VTOC for volume XXXxXX.
c. The formatted listing of the VTOC for volume YYYyYY.
da, The hexadecimal dump of the VIOC for volume zzzzzz.

9.2.2.4 VTOC Data Set Entries

The user is often interested in knowing if a particular data set is on a
specified volume, and the actual space occupied by the data set on that
volume.

The following example will list the VTOC entry for the data set if it is
present on the given volume.

//LISTVTOC DD PGM=IEHLIST
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=7260
Z/VToCl oD UNIT=2314 ,VOL=SER=xxXxxxX ,DISP=0LD
//SYSIN cD *
LISTVTOC FORMAT ,VOI=2 314=xxxxxXx , DSNAME=name

Note: Specify DISP=OLD on Utility DD cards to prevent the inadvertent deletion
of data sets.

9,2-9

UTILITIES

9.2.3 IEHINITT

This utility program places standard wveolume labels on 7- or 9=track magnetic
tapes., A STANDARD LABEI. (SL) is one which has a format acceptable to the
S/360 Operating System, and contains the user-specified volume serial number
and owner name. GSFC users should use their programmer ID in place of owner
name. In addition to the standard label, a dummy header record, containing
the characters HDR1 and 76 EBCDIC zeros, is created, followed by a tape
mark.

IEHINITT has the following capabilities:

a. BAny number of 7- and 9-track tapes may be initialized in one exe~
cution.

b, One or more tape drives may be used.

c. Serial numbers may be numeric or alphanumeric, but cannot contain
blanks, commas, apostrophes, equal signs, or special characters.

d. Each control statemen