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ABSTRACT

The effect of tidal friction on the inclination of the lunar orbit to the earth's

equator for earth-moon distances of less than 10 earth radii is examined. The

results obtainea bear on a conclusion drawn by Gerstenkorn and others which

has been raised as a fatal objection to the fission hypothesis of lunar origin,

namely, that the present nonzero inclination of the moon's orbit to the ecliptic

implies a steep inclination of the moon's orbit to the earth's equatorial plane in

the early history of the earth-moon system. This conclusion is shown to be valid

only for particular rheological models of the earth. In the case of a viscous

earth, the results indicate that the problem of wrenching the moon out of an

equatorial orbit into an inclined orbit to account for the present tilt of the lunar

orbit to the ecliptic must be faced in the accretion theory of the moon's origin

and possibly the capture theory, as well as in the fission theory. In this respect

all three theories are on the same footing. A solution to the inclination problem

is presented.

The treatment of tidal friction adopted here employs the approach of George

Darwin and pursues his suggested solution to the inclination problem in great

detail. The earth is assumed to behave like a highly viscous fluid in response to

tides raised in it by the moon. The moon is assumed to be tideless and in a

circular orbit about the earth. The equations of tidal friction are integrated

numerically to give the inclination of the lunar orbit as a function of earth-moon
iii
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distance. It is found that if the radius of the lunar orbit is greater than 3.83

earth radii, then the inclination of the moon's orbit to the earth's equator will

increase if the moon is perturbed from an equatorial orbit, provided the earth's

viscosity is greater than 1016 poises. The present inclination of the lunar orbit

to the ecliptic can be explained if the moon's orbit is perturbed about 30 out of

the equatorial plane at 3.83 earth radii, provided that the earth's viscosity is

not less than 1018 poises. It is also found that if the viscosity is large (greater

than 1016 poises), then, under certain conditions, the radius of the moon's orbit

may actually decrease temporarily, and then increase; and further, that an

upper limit can be placed on the inclination of the lunar orbit to the earth's

equator when the moon is 3.83 earth radii distant from the earth, regardless of

the moon's prior history.
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PREFACE

Readers unfamiliar with tidal friction should find Chapter I,

Section A and Appendix A of some value. A list of important

quantities for this work is given in Table 4. A list of correc-

tions of misprints in Peter Goldreich's important paper "History

of the Lunar Orbit" is given in Appendix F. Page numbers of

the reference "Darwin (1880)" refer to Darwin's paper as it ap-

pears in Scientific Papers by George Howard Darwin, Volume II,

1908.
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INTRODUCTION

Men have speculated about the tides for centuries. An ancient Chinese

scholar suggested that the earth lived, that the ocean was its blood, and that the

tides were the beating of the earth's pulse (Darwin 1962, pg. 76). An Arabian

scholar explained the rising of the tide as being caused by the heating of the

ocean by sunlight and moonlight (Darwin 1962, pp. 77-79). Others also suggested

that the tides were somehow caused by the sun and moon (Darwin 1962, pp. 79-

85), but it remained for Isaac Newton to advance the correct explanation for the

cause of the tides (Newton 1966). Newton realized that the lunar tides were

caused by a combination of gravitational pull and centrifugal effects which would

make the water in the oceans collect on the sides of the earth directly under and

directly away from the moon, thus giving the earth a bulge. A similar argument

holds for the solar tides.

Newton's theory of the tides was carried forward, notably by Bernoulli,

Laplace, Darwin, and Kelvin (Darwin 1962, pp. 86-88) to explain the rise and fall

of the oceans on the earth. Their efforts culminated in the work of Doodson and

Proudman (Doodson 1958).

George Howard Darwin, son of the famous Charles Darwin, considered not

only the problem of the tides raised on the earth by the moon, but also a more

subtle problem: the action of the tides on the motion of the moon (Darwin 1880).

He included in his investigations not only ocean tides, but also tides raised in the

bulk of the earth as well; these latter tides are called earth or body tides.

Darwin recognized that friction attending the tides, whether they are raised in

1
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the oceans or in the earth, would have profound effects on the moon's orbit. In

fact, tidal friction dominates the secular change in the moon's orbital elements.

Darwin assumed the earth to be a homogeneous, incompressible viscous

fluid in which tides were raised by the moon; the moon itself was assumed to be

a point-mass. He expanded the tidal disturbing function in a Fourier series and

integrated the equations for the secular change of the moon's orbital elements

backwards in time in an attempt to uncover the past history of the moon. Darwin

found that the moon orbited very close to the earth at some time in the distant

past. He speculated that the earth and moon were once a single primitive body,

and that resonance vibrations set up in the body by the sun caused the body to

fission, thus throwing the moon into orbit about the earth. Tidal friction then

caused the moon to move away from the earth to its present distance.

Jeffreys (1930) found that dissipation in the primitive body would be so

great that the vibrations would be damped out, making it impossible for the

moon to be torn out by the action of the sun. The fission theory of the origin of

the moon fell out of favor. It has been reproposed in more recent times by

Cameron (1963), Wise (1963), and O'Keefe (1969).

Modern interest in tidal friction was rekindled by Gerstenkorn (Alfven 1963),

who invoked tidal friction in a new hypothesis of lunar origin: capture of the

moon. Gerstenkorn's analysis lead him to propose that the moon was once an

independent planet in an orbit which carried the moon close to the earth. The

tidal interaction between the moon and earth captured the moon in a retrograde

orbit, which subsequently flipped over into the prograde orbit we see today.

MacDonald (1964) supported a many-moon hypothesis of lunar origin to

overcome a time-scale difficulty in tidal evolution. Singer (1968) inves-

tigated the problem of prograde capture, while the analysis of Goldreich (1966)
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lead him to favor accretion of the moon from a swarm of particles in orbit about

the earth.

The problems associated with the intimately connected questions of the

moon's origin and its orbital evolution are seen to be of surpassing interest

today. We will investigate here one of the problems of the early history of the

moon: the inclination of the lunar orbit.



CHAPTER I

TIDAL FRICTION AND THE INCLINATION PROBLEM

A. Qualitative Aspects of Tidal Friction

Some of the qualitative aspects of tidal friction will now be examined; for

fuller discussions see Goldreich (1972); MacDonald (1964); and Jeffreys (1962).

We will begin by dealing with a simplified picture of the earth-moon system.

The earth and moon are assumed to be the only two bodies in existence, with the

moon orbiting the earth in a circular orbit lying in the plane of the earth's

equator. In addition, the moon is assumed to be perfectly spherical, and the

earth to be without atmosphere or oceans, so that we are concerned only with

body tides in the earth.

Figure 1(a) shows the case where the earth exhibits no internal friction. In

this case if the earth behaved like a solid it would be perfectly elastic; if the

earth behaved like a liquid, it would have no viscosity. The tidal forces acting

on the earth cause it to bulge along the line joining the centers of the earth and

moon. The part of the bulge nearest the moon is raised by the pull of the moon's

gravity, which is greatest on the side closest to the moon. The part of the bulge

opposite the moon may be thought of as being thrown out by the centrifugal force

associated with the motion of the two bodies about their common center of mass.

In this case, there would be no evolution of the moon's orbit. The moon would

still revolve about the earth in a circular orbit, with only a slight change in the

earth's gravitational force from its value for an undistorted earth.

The situation changes, however, when friction is present in the earth; this

case is shown in Figure 1(b). In the simplest picture, the action of tidal friction

4
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makes the axis of the bulge swing away from the line joining the centers of the

earth and moon and reduces the size of the bulge. From the viewpoint of inertial

space (a frame fixed with respect to the distant galaxies), the bulge may be

thought of as being carried around by the earth's rotation. Note that in this case,

where the angular velocity of the earth is greater than the angular velocity of

the moon (relative to inertial space), the bulge leads the moon. The behavior of

the bulge may also be understood from the viewpoint of an observer standing on

the earth's equator. The observer would see the moon rise in the east and set

in the west because the angular velocity of the moon relative to the observer is

clockwise. In the frictionless case, a high tide would occur when the moon

reaches the observers zenith. If friction is present, however, the high tide does

not occur until after the moon has passed the zenith, since friction causes a de-

lay. Hence to the observer standing on the earth, the tidal bulge lags behind the

moon. If two lines are now drawn, one along the axis of the bulge and one joining

the centers of the earth and moon, we get exactly the case shown in Figure 1(b).

The tidal lag angle is the angle between the two lines.

If the angular velocity of the moon were greater than the angular velocity of

the earth, as in the case of Phobos orbiting Mars, or if the moon revolved in a

sense opposite to that of the earth, as in the case of Triton orbiting Neptune,

then the bulge would lag behind the moon (as viewed from inertial space).

We return to the simple system shown in Figure 1(b). The moon's gravity

pulls on the nearer part of the bulge with greater force than it pulls on the

farther part of the bulge, producing a net torque on the earth. This torque acts

in a sense opposite to the earth's rotation; hence the earth slows down. By re-

action, the bulge will exert a torque on the moon, causing the moon to "speed up"

and move away from the earth. Thus the moon was closer to the earth in earlier
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times. The total angular momentum of the system is conserved in this process,

but the total mechanical energy decreases as friction dissipates the energy into

heat.

Unfortunately, things are not as simple in reality as shown in Figure 1(b).

For one thing, the moon's orbit does not lie in the earth's equatorial plane; nor

is it circular but elliptical, which means the distance between the earth and

moon is continually changing. Also, body tides are present in the moon, com-

plicating the tidal interaction (MacDonald 1964). Further, the sun also raises

tides on the earth; lunar and solar gravity act on both the lunar and solar bulges.

The presence of the sun also creates a three body problem. The earth and moon

are not spherical even in the absence of tidal forces; the earth is flattened by

rotation, for example. Also, the actual shape of the tidal bulge is not necessarily

as simple as shown in Figure 1(b). The shape depends upon the model chosen

for the earth's properties. In general, the tidal forces distort the earth into a

figure resembling a triaxial ellipsoid.

The present-day earth has ocean tides and atmospheric tides as well as body

tides. The varying depths of the oceans, the flow of tidal currents, and the

irregular shape of coast lines make the ocean tides quite complex. The ocean

tides may be responsible for most of the dissipation of energy (see below). The

atmospheric tide is an observed semidiurnal variation in atmospheric pressure

caused by solar heating and not solar or lunar gravitational forces. This tide

lags behind the sun as viewed from inertial space, so that the gravitational

torque on the atmospheric tide tends to speed up the earth. This torque may be

comparable in magnitude to the solar ocean torque, tending to cancel it (Jeffreys

1962).



Observational evidence for tidal friction comes from a variety of sources.

Body tides are observed with sensitive gravimeters (Tomaschek 1957) from

which the lag angle may be deduced (MacDonald 1964). The tidal bulge can be

observed by its perturbing effects on the orbits of earth satellites (Newton 1968).

Celestial observations, both modern and ancient (Newton 1969), reveal the secu-

lar acceleration of the moon and the deceleration of the earth's spin. Agreement

between the different methods is rough, but they indicate the following (Goldreich

1972): the present-day lag angle in the simple picture of Figure 1(b) is between

20 and 30, with energy being dissipated at the rate of -2.6 x 1019 ergs/sec. The

moon is moving away from the earth at the rate of 3 cm per year, with the

earth's daily rotation period slowing down by 2 x 10- 5 seconds per year. The

work of Miller (1966) suggests that two thirds of the energy dissipation takes

place in the shallow seas, but the figure is uncertain and the actual seat of most

of the dissipation (whether in the oceans or in the earth) is unknown.

Remarkable evidence for tidal friction in the distant past exists in the form

of daily growth bands found in fossil coral and shellfish. The work of Wells

(1963) on fossil coral suggests that the year was about 400 days long 380 million

years ago, which is consistent with the current rate of slowdown of the earth's

rotation. A constant rate of slowdown over this time period has been called into

question by the fossil evidence found by Pannella et al. (1968), however.

It should be mentioned that tidal friction is important not only in planet-

satellite systems but also in sun-planet and binary star systems as well,

B. The Inclination Problem

We will investigate possible early histories of the inclination of the lunar

orbit. The problem of the inclination in the early stages of the moon's history

has been cogently summarized by O'Keefe (1972).



Goldreich (1966) investigated the history of the lunar orbit using the

assumptions of a circular orbit and weak tidal friction; this latter assumption

entails either low viscosity or imperfect elasticity in the earth. Goldreich found

that if the moon were 10 earth radii distance from the earth the inclination of

the moon's orbit to the earth's equator would have been about 100; at closer dis-

tances the inclination would have been even higher.

This result appears to rule out the fission theory of the moon's origin,

since if the rapidly rotating primitive body fissioned, the moon would be thrown

into an equatorial orbit around the earth, in contradiction to Goldreich's findings.

Darwin (1880), making assumptions similar to Goldreich's, came to much

the same conclusion; but Darwin originated the fission theory. How could

Darwin believe in a contradiction?

The crux of the matter is the assumptions that are made in modeling the

properties of the earth. Goldreich and other modern investigators (MacDonald

1964; Gerstenkorn (Alfven 1963)) considered the effects of weak tidal friction,

as did Darwin; but Darwin went on and examined the effects of high viscosity:

strong tidal friction (Darwin 1880).

Darwin found that if the moon were perturbed slightly out of an equatorial

orbit, then, under certain conditions, the tidal forces acting on the moon would

cause the inclination to grow. An earth which had a high viscosity in its early

history might then solve the inclination problem. Darwin seized upon this as

the answer and did not investigate the matter further.

We will follow Darwin's treatment in assuming a highly viscous earth in the

early stages of the earth-moon system and examine the inclination in more de-

tail; specifically, under what conditions the inclination will increase for small

initial perturbations.
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C. Proper Planes and the Inclination Problem

Let us now examine the inclination problem from the aspect of the proper

planes of the moon and earth. These planes were discovered by Laplace (1966)

and were used by Darwin (1880) in his treatment of tidal friction.

Laplace found that the plane of a satellite's orbit about an oblate planet

tended to maintain a constant inclination to a plane which he called the proper

plane of the satellite. We will follow Darwin and call this inclination J.

The proper plane lies intermediate between the plane of the planet's orbit

about the sun (the ecliptic plane for the earth) and the invariable plane (the plane

perpendicular to the total angular momentum vector of the planet-satellite

system). The angle between the ecliptic and proper planes Darwin called J/

If a satellite orbits far from a planet, the sun's influence dominates the inclina-

tion and the proper plane is nearly parallel to the ecliptic (J/, 0), so that the

satellite has very nearly a constant inclination to the ecliptic. If a satellite

orbits close to a planet, the oblateness of the planet dominates the inclination

and the proper plane is nearly parallel to the invariable plane. In this case the

satellite tends to maintain a constant inclination to the equatorial plane of the

planet (as shown later).

These two limiting cases are referred to by Goldreich (1966), who found

that the transition between the two came at a distance which he called the criti-

cal distance. This is the distance where the torque exerted on the satellite by

the planet's bulge is equal in magnitude to the torque exerted on the satellite by

the sun. The critical distance is about 10 earth radii for the earth-moon system.

At the present time the moon is about 60 earth radii distance from the

earth, so that the orbital plane of the moon keeps a nearly constant tilt to the

ecliptic. The angle J, between the proper plane and the ecliptic is about 8"
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(Darwin 1880) and the angle J between the proper plane and the moon's orbital

plane is about 509 '.

The earth also has a proper plane; the earth's equatorial plane tends to

maintain a constant inclination to its proper plane. The angle between the two

is called I, by Darwin, with the angle between the earth's proper plane and the

ecliptic being I. At present I/ is about 9" (Darwin 1880) and I is 23027 ' .

While the orbital plane of a satellite tends to maintain a constant angle J to

its proper plane, the orbital plane precesses in space, so that the vector normal

to the orbital plane sweeps out a cone around the vector normal to the proper

plane. This is diagrammed in Figure 2(a). Likewise, the earth's axis sweeps

out a cone around the vector normal to its proper plane. Both precessions have

the same speed and direction.

At small distances between the planet and satellite (i.e. when solar influence

can be neglected), the poles of the two proper planes merge with the pole of the

invariable plane, so that the orbital plane of the satellite and the equatorial

plane of the planet maintain a constant tilt to the invariable plane and each other,

as shown in Figure 2(b). Hence in this case the orbital plane of the satellite has

a constant inclination to the equatorial plane of the planet as mentioned earlier.

If the moon somehow formed or arrived in the earth's equatorial plane at a

distance of less than 10 earth radii, then the orbital plane, equatorial plane, and

invariable plane would all coincide and the inclination J of the moon's orbit to

its proper plane would be essentially zero. Subsequently, if tidal friction did

nothing to affect J as it pushed the moon steadily away from the earth, then at

the present time the moon would have essentially an ecliptic orbit (J and J ~ 0).

However, the present value of J is about 509 '. Thus, if it is assumed that the

moon did form close to the earth in the equatorial plane, then it must be



explained why the moon's orbit now has a five degree tilt to the ecliptic and not

a virtually zero tilt.

To put it another way, if the present five degree inclination is extrapolated

back into the past, the plane of the moon's orbit would be steeply inclined to the

equatorial plane of the earth when the moon was close to the earth. Therefore,

those theories of the origin of the moon which postulate the moon's formation in

the earth's equatorial plane must explain this discrepancy.

The effect of tidal friction in Goldreich's (1966) formulation on J, the in-

clination of the moon's orbit to its proper plane, can be extracted from his

Figure 7, which is reproduced here as Figure 3.

Goldreich's figure shows the inclination of the moon's orbital plane to the

ecliptic as a function of earth-moon distance. The inclination J/ of the moon's

proper plane to the ecliptic is so small at the present distance of 60 earth radii

that it is imperceptible in the figure, so that the moon's orbital plane appears

to keep a constant five degree inclination to the ecliptic for this distance. The

normals to the ecliptic, proper plane, and the cone swept out by the normal to

the lunar orbit for this case are shown in Figure 4(a). Note that the normal to

the ecliptic is inside the cone.

At about 30 earth radii the angle J becomes large enough to be noticeable

in Goldreich's figure, so that the variation in angle between the ecliptic and

orbital planes is clearly visible and the curve branches, showing the maximum

and minimum inclination. This situation is diagrammed in Figure 4(b). Note

that the normal to the ecliptic still lies inside the cone. Reference to this figure

should make clear that the inclination J of the lunar orbit to its proper plane can

be found from Goldreich's figure by adding the maximum and minimum;
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inclinations and dividing by 2. The inclination J, of the proper plane to the

ecliptic is then found by subtracting the minimum inclination from J.

At about 17.5 earth radii in Goldreich's figure the normal to the ecliptic

lies in the surface of the cone, so that the minimum inclination is zero and the

lower branch of the curve touches the horizontal axis. This is shown in

Figure 4(c).

Between 17.5 and 3 earth radii the normal to the ecliptic falls outside the

cone, as shown in Figure 4(d). The inclination J in this region is then found by

drawing a curve equidistant between two branches in Goldreich's figure and

measuring from the horizontal axis to that curve. The angle J is half the differ-

ence between the two branches.

Figure 20 shows J as a function of earth-moon distance as extracted from

Goldreich's figure by the above process (dashed curve). Note that the inclina-

tion of the moon's orbit to the proper plane increases as the distance decreases

below 13 earth radii. Darwin's small viscosity model gives a remarkably simi-

lar result (dotted line; see Chapter IV). This indicates that small tidal lag

angles cannot be invoked to drive the moon out of the earth's equatorial plane;

if it could, then J would decrease as distance decreases for small distances,

instead of increasing.



CHAPTER II

DARWIN'S APPROACH TO TIDAL FRICTION

We will now briefly outline George Darwin's approach to the problem of

tidal friction (Darwin 1879, 1880). Although Darwin treats the case of a planet

attended by two tide-raising satellites (such as the earth attended by the moon

and sun, where the latter may be treated as a satellite of the earth), we will re-

strict the discussion in this chapter to the moon and earth as an isolated system;

i.e. the presence of the sun will be neglected.

The following assumptions are made by Darwin: the earth is a homogeneous,

viscous, incompressible sphere. Body tides are raised in the earth by the moon.

The moon is taken to be a point-mass without rotational angular momentum. The

tide-raising potential generated by the moon is a second degree spherical har-

monic. The tidal disturbing potential generated by the earth is expressed as a

sum of second degree spherical harmonics. The effects of inertia are neglected

when solving for the response of the earth to the tide-raising force.

We will further restrict the discussion to a circular orbit for the moon

about the earth.

Before plunging into a discussion of Darwin's treatment we will discuss the

effects of the earth's rotational bulge on the motion of the moon.

Goldreich (1966) has shown in an elegant manner that the rotational flat-

tening of the earth produces no secular change in the magnitude of the orbital

angular momentum of the earth-moon system or in the earth's rotational angular

momentum; we denote these two quantities by Lm and L E, respectively.

13
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The orbital angular momentum LM of the system about the center of mass

of the system is

Lm = Md 2+ m.Qd2

where

M = mass of the earth

m = mass of the moon

0 = angular velocity of the earth and moon about the center of mass

d , = distance of the earth from the center of mass

d 2 = distance of the moon from the center of mass

Now by Kepler's third law

"G (M + m)

r3/2

where

G = universal gravitational constant

r = earth-moon distance

Also

m
dz = M + m r

d2 = M) r

We may now write

SM= m Mm r1 / 2
LM+ M
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LE is easily seen to be

LE = Cn

where

n = rotational angular velocity of the earth

C = polar moment of inertia of the earth.

We may show the constancy of other important quantities by using Gold-

reich's result of the constancy of LM and LE.

Clearly there is no secular change in the earth-moon distance r if there is

no secular change in L . Likewise, there is no secular change in the rotational

angular velocity of the earth n if there is no secular change in LE. Therefore r

and n are constant in the secular sense for the case of the rotational bulge.

We refer now to Figure 5, which shows the angular momentum triangle for

the earth-moon system. LT is the total angular momentum of the system and is

constant in both magnitude and direction because the system is isolated. It is

clear from the diagram that if L,, L E, and LT are unchanging, then j, the angle

between the plane of the lunar orbit and the invariable plane, and i, the angle be-

tween the plane of the earth's equator and the invariable plane, are constant.

Thus the rotational bulge of the earth produces no secular change in r, n, j, or i.

The flattening of the earth does make the lunar orbit precess in space. It is

clear from Figure 5 that the earth must precess at the same rate and in the

same sense as the lunar orbit. By conservation of angular momentum LT =

L' + LE so that the three vectors must lie in the same plane.

It should be clear, then, that if the longitude of the moon's node N is

measured along the invariable plane from the descending node of the intersection

of the earth's equatorial plane and the invariable plane, N must be zero.
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In this investigation we are chiefly concerned with secular changes in r, n,

j, and i; hence further consideration of the effects of the rotational flattening on

the moon's motion will be dispensed with.

It should be mentioned that the sun also causes no secular change in r, n, j

and i to the order of approximation carried out by Goldreich.

Let us now investigate the response of the earth to the tide-raising force

and the effect of the earth's response on the moon (see Appendix A for a deriva-

tion of the tide-raising potential and the tidal disturbing function).

The tide-raising potential at some point (x*, y*, z*) in the earth is given by

Equation (A-6) of Appendix A as

3 Gm 1r*V i 1]
Vt - rcos 2  - -

and is the first equation of §4 of Darwin (1880) with some notational changes.

r* is the distance from the center of the earth to (x*, y*, z*) and the angle 0

(which Darwin calls PM) is shown in Figure 21.

If the earth were a frictionless fluid the tide-raising force would raise a

tide on the earth, with the height of the tide a t being given by (Darwin 1879,

Equation 13):

15 Gm a 2 ( 2

t 4 g r cs 3-

where a is the radius of the earth and g is the gravitational acceleration at the

earth's surface. The earth would clearly bulge in this case as shown in Fig-

ure 1(a). Note that the height of the tide is inversely proportional to the cube

of the earth-moon distance.
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Darwin chose axes fixed in the earth and expanded (cos2 - in terms

of the direction cosines of both (x*, y*, z*) and the position of the moon (x, y, z).

Letting , 77 and ( be the direction cosines of (x*, y*, z*) and M 1 , M 2 , and M 3

the direction cosines of the moon, then cos E = t Mx + 7? M2 + M 3 and we

may write

15 Gm a 2  2 - M 2 22
t 4 g r 2 aMIM 2 + 2 2 2 + 2 7MM 3

(II-1)

3 + 2 + 72 2 2 M2 +M22 - 2M1
+ 2 + 3 3

after some algebraic rearrangements.

M 1 , M 2 , and M 3 depend upon i and j, the respective angles of the earth's

equator and the plane of the moon's orbit to a fixed plane, which, in the two body

problem, we take to be the invariable plane; n, the rotational angular velocity of

the earth; 0, the angular velocity of the moon in its orbit; N, the longitude of the

node of the moon's orbit measured from the descending intersection of the

earth's equatorial plane and the fixed plane along the fixed plane; and t, the time.

For example, M 1 is given by Equation (20) of Darwin (1880) as

M1 = p 2 p cos (X - e - N) + p2 q 2 cos (X + e - N) +Q2 2 COS (X + e + N)

+ Q2 q 2 cos (x - f + N) + 2P Qpq [cos (X + f) - cos(X - )]

Here P = cos (- i), Q = sin (-i), p = cos , q = sin , X = nt +

with x 0 a constant, and f = Qt + e, where E is the longitude of epoch. M 2 and

M3 may be written in a similar fashion. Notice that M1 is expressed as a sum
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of terms periodic in time, whose periods depend on linear combinations of n and

0; the same is true of M 2 and M3 .

The combinations of M 1, M 2, and M3 that appear in Equation (II-1) (M1 M2,
M2 - M2

, etc.) can also be written as sums of simple harmonics whose angular

speeds are linear combinations of n and n. (Table 1 gives the total number of

angular speeds which arise.) For instance, after considerable work Darwin

shows that M1 M2 may be written (Darwin 1880, Equation 25):

M1 M2  4 74 e2- (X - ) + 2m2 K2 e2V-X + K4 e2, (X + 8)

(II-2)

- 7r4 e- 2-I (X- 8) - 2 K2 e2 -2'iX - K4 e-2 (X + 8)

Here rr = Pp - Qqe+IN; K = Qp + Pqe N; 7 = Pp - Qq e - iN;

K = Qp + Pq e- - N; and 6 = e + N. Darwin put the sines and cosines in

exponential form for convenience in later work.

Equation (II-1) could now be written

15 Gm a 2 [ 1(m4e2v'l -0+ 2T2K2e2/"IX +
t - 4 2{ 4 4 e2 (X- ) + 2 2 2 2. .
t 4 4

by substituting in it the complicated expressions for M M 2, etc.

The equation above gives the displacement of the earth's surface when the

earth is composed of a frictionless fluid. What we now wish to find is the ex-

pression for a t when friction is present inside the earth.

It is assumed that the effects of friction are such that each simple time

harmonic that appears in the expression for at is multiplied by a factor to re-

duce the amplitude of the harmonic, and its phase is altered by a certain lag
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angle. For example, M, M 2 now becomes in the presence of friction (Darwin

1880, Equation 33)

4 F 1 r4 e [2(X-8)- 2f11 + F2n2 2 e- [2X - 2f

+ F 2 K 4 eVT1 [2(X+ 8)- 2f 2 ] - F7T 4 e-V/-I [2(X- 8)- 2fl

- F 2 72 K eIr-T [- 2 X + 2] _ F 2 K4 e- [2(X +)- 2 f 2 ]

Fl, F, and F 2 are amplitude factors and 2 f, 2 f, and 2 f 2 are the respective

phase angles. (Table 1 gives the amplitude factors and phase angles for all the

speeds.)

Darwin calls the above expression Y. M 2 - M 2 becomes 12 - 12, etc.,

so that now in place of (II-1), we have

15 Gm a2  2 _ 72 %2 - 2
t 4 g r3  2e79 + 2 2 2 + 2

(11I-3)

3 e 2 + 22 - 2 2 ( 2 + -2 - 2 .2
2 3 3

as the equation for the earth's surface in the presence of friction (Darwin 1880,

Equation 30).

The exact values of the amplitude factors and phase angles depend upon the

model chosen for the earth's properties. The model we are interested in is the

case where the earth is a fluid exhibiting Newtonian viscosity. Darwin (1879)

found the amplitude factors and phase angles for this case, which are given by

the following relations:
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tan [lag angle] = [angular speed] x gap

2gap

[amplitude factor] = cos [lag angle]

where p is the density of the earth and v is its viscosity.

An example of the above relations is

19 v
tan 2f = 2 (n - ) 2gap

F1 = cos 2 f

for the angular speed 2 (n - Q).

Now that rt has been found, our next step is to find the tidal disturbing

function R t acting on the moon. It has been derived in Appendix A and is given

by Equation (A-15):

4  fm+m 3
Rt (r', al, ') - G M pa (c t (a', ') (II-4)

where r' (which was called A in Appendix A) is the earth-moon distance, a' and

/3' are the longitude and colatitude of the moon in the earth-fixed frame, and p is

the earth's density. Primes are placed on the variables for reasons discussed

below and in Appendix A. Note that a t implicitly depends on r-3 (see Equation

II-3), so that the disturbing function is proportional to the inverse sixth power of

the earth-moon distance.

We now wish to know how the disturbing function changes the orbital ele-

ments of the moon. Here Darwin uses the Lagrange equations for the time

derivatives of the osculating orbital elements. These equations are derived e.g.

in Brouwer and Clemence (1961). Darwin uses four of the six equations in his

1880 paper, which we reproduce in his notation (Darwin 1880, Equations 1-4):
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dc 2fc 2  7R
dt G (M + m) a E

de c 1- e2 R l-e 2 (R a R\1
dt G (M + m) Ie a E e - 7 37]

dj C__e 1 3 R 1 -a R ) R\1
dt G(M + m) sin j N + tan 2 \ E /J

dN _ c 1 3R
sin dt G(M + m) -e 2  j

The only quantities not defined by us thus far are c, the semi-major axis of

the orbit; e, the eccentricity; T, the longitude of perigee (not to be confused with

7 used elsewhere in Darwin); and R, any disturbing function in general. Since

we are interested in the effects of the tides on the moon, we set R t equal to R.

Darwin alters the form of the equations to make them more convenient to

use for his purposes. For example, in the case of a circular orbit the first and

third equations become (Darwin 1880, Equations 11 and 13):

1 d6 _ -W
k dt 'E

6 dj 1 -W 1 'W
k dt sinj N + ta 2 j E

where now = , with c o being some reference distance, and c is now the

radius of the orbit; k is GMm n Co, with no being the angular velocity of the

Mm 1 2
moon at the reference distance c ; and W is M+m R, with C = Ma 2 =

5--p a s .
15
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The next step is to express W in terms of e, i, j, N, and E and evaluate the

derivatives of W to find the time rate of change of the moon's parameters.

Before we proceed, however, we must heed the warning given in Appendix A not

to confuse the moon's parameters as they enter in the role of tide-raising body

and in the role of tidally disturbed body, even though here the bodies are one

and the same (the moon). Let us therefore follow Darwin and place primes on

the parameters of the disturbed body (which we have already done in Equa-

tion 11-4). Our expression for W becomes (Darwin 1880, Equation 31):

277' _r[X' 2 - y' 2 912 - 92
W - X'Y' +22 +2Y' Z' Z

B 2 2

3 X' 2 + Y' 2 - 2 '22 + 9J2 - 2 2]
+ 2 X'Y'12 + 2 3 3

where X', Y', and Z' are the direction cosines of the moon in its role as dis-

turbed body, 7 = -0 /e 6 with 0o G- 3m (with a similar expression for 7i ),

and 2 gand g 5 a"

X' Y' is the same as Equation (1-2) save primed variables replacing the

X'2 - y2
unprimed variables; and similarly for 2 , Y' Z', etc. Primes must also

be placed on the parameters in the variational equations:

1 de' _ aW
k' dt aE'

' dj' 1 -W 1 'W

k' dt sin j' BN' 2 3 j E e

since they refer to the motion of the disturbed body. After differentiation the

primes may be dropped without fear of confusion. In fact, primes are not needed
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on X, , £ , j, since these quantities are not differentiated in the above equations;

nor are primes needed on k and -ro; hence primes on them may be dropped be-

fore differentiation.

Terms in W which remain periodic after differentiation and after the primes

have been dropped may be deleted at once from W, since we are interested in

only secular changes in the orbital parameters.

To illustrate the procedure the term

X'2 - y' 2 X2 - 2
2X'Y'1 'Y+ 2

2 2

appearing in W is (Darwin 1880, Equation 37)

1  r41 e [2 (8 ' - 8 ) - 2fl1 + 4 FT2 K 2 T' 2 
K'

2 e-2f /
4 F1  

4

F[ ( -0 2f 1 7T4 7T 1 4 e- 'I [2(O'- )- 2f 1

+ 4FT2K27T12 K2 eRvf2f + F2K44 e [2(0-8)+ 2f2 1

Periodic terms have been deleted. If x and x' had been included in the

above expression 2 (X - x') would appear in the exponentials of the first term in

curly brackets and -2 (X - X') in the exponentials of the second curly bracketed

term; but since primes are unnecessary on x, these terms disappear. Also,

0 = Q t + E and 0' = Q't + E'; but 0 = f', so that 8' - 6 becomes E' - E.

We will now apply one of the variational equations to the terms in W in

which the lag angle 2 f appears:

W2f r 414 e--L [2(e'-E)-2f] + 4 fT, 4 e-i [2(e'- )- 2f ]
2fs g 4
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1 d3 W2f
To find this term's contribution to we must find . Now E'

k dt 3 E'

does not appear in r4 , r4 ' , 7T4, or 7T 4, so that the derivative operates only on

the exponential terms. We obtain after differentiation

3 W2 f, 2T
SF 1 [47I r'4 eVi [2 (E'- ) - 2 fj 7474 e- 2 (e'- ) - 2 fl]

Dropping the primes, we have

a W2f 7 2

-E' F1 sin 2 f 1 74 ,4

where

7T = Pp - Qqe N, = Pp - Qqe- N ,

and

e2" i fl - e-2Vifl
sin 2 f

N is equal to zero when the earth and moon are the only two bodies in

existence [as discussed earlier], so that 7 =7T = cos 1 (i +i. Also, inthe

case of a viscous earth F1 = cos 2fl, making the contribution of the W2 f term

1 dtto k dt

17 T 2

-r8 sin 4fl2g 1

The other terms in W may be evaluated in similar fashion to finally give
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1 d6 1 7T2
k dt 2  L sin 4f - K sin 4 f2 + 47 ' sin 2g

(11-5)

- 4 7T2 K 6 Sin 2g 2 - 6 7 4 K4 sin 4 h]

as the secular rate of change of 5, where K = sin (i .

Similarly

-5 dj T 2 [1 1--' j_ [2 7 T7 K ssi 4f4f + 2 j7 K7 sin 4 f 2

3  1
+- K3 ( 2 - K2 ) sin 4 h- 17TrK [7 2 - 3K 2 ] sin2gl

1 1 2

'+ K ( 2 - K2 ) Sin 2 g + K (3 - K 2 ) Sin 2 g 2  (1-6)

gives the secular rate of change of j.

Equations (11-5) and II-6) are respectively Equations (73) and (71) of Darwin

(1880).

The secular rates of change of the earth's angular velocity n and the inclina-

tion i of the earth's equator to the invariable plane can be derived from (11-5)

and (11-6) by application of the law of conservation of angular momentum:

dn _7-2 [1 1 7
6
K- 2 7T8 sin 4 fl + 2 7 4 K 4 sin 4 f + K sin 4 f2 +  s6 K sin 2 gl

dt g 1  2 2 1

+ 72 K 2 (2 K2) 2 sin 2 g + 772 K
6 sin 2 g 2]

(Il-7)
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n di 1 7 K sin 4 f - 7T3 K 3 (T2 - K2) sin 4 f - Kr sin 4 f

1 1
+ K (7T2 + 3K 2 ) sin 2 g, - 7TK (7T

2 - K 2
)

3 sin 2 g

2 s 5(3n72 + K 2 ) sin 2g 2 -3 773 K
3 in (11-8)

These two equations are the last two equations of § 11 of Darwin (1880).

Equations (II-5) through (II-8) are central to our discussion.



CHAPTER III

TIDAL FRICTION AND LARGE VISCOSITY

A. Inclination of the Lunar Orbit to the Earth's Equator

In this chapter we discuss the secular motion of the moon for small

inclinations of the lunar orbit to the earth's equatorial plane for earth-moon

distances less than 10 earth radii. Equations (1-5) - (11-8) are not valid beyond

10 earth radii because solar influence would have to be considered (see Chap-

ter I, Section C). The effects of the sun beyond 10 earth radii are considered

later in Chapter IV.

The viscosity of the earth will be assumed constant throughout this discus-

sion. Variable viscosity is considered in Section D of this chapter.

Let us first write Equations (II-5) - (I1-8) in slightly altered form.

From Chapter II the moon's orbital angular momentum is

LM = -m Mm c

The earth's rotational angular momentum is

L E = Cn

The constant k introduced on page 21 is

C
k - GMm o c o

We wish to express our results with reference to a particular earth-moon

distance co; hence we can rewrite the first equation as

27
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L, = M Mm +,m bM

where

1Mb =m Mm c.

Since

k -
GMm o Co

bk = ) c 3/2
G (M + m) -

But by Kepler's third law

fo2 CO = G (M + m)

Hence

bk = C

Equations (II-5) - (11-8) may now be written as

dLM 1 r2

d 2 C [7 sin 4 fl - K8 Sin 4 f2 + 4 7 K2 Sin 2 g,

- 472 K 6 sin 2 g 2 - 6 7 4 K 4 sin 4h]

(III-1)
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S C L 7 K sin 4 f 1 + 7T3 K 3 sin 4 f + 7T K sin 4 f 2

3 1

- KK (7 (7 - K2 ) 2 sin 2 g + 7T7 --3 K 2 in 2 g2 (-2)

d L E _ 2 +1 1

d t 7- C - 778 sin 4 f + 2 74 K 4 sin 4 f + - K8 sin 4 f
dt 2 1 2 2

(111-3)

+ 776 K
2 sin 2 g, + 772 K 2 

(772 - K2) 2 sin 2 g + 7T2 K 6 Sin 2 g2]

di 7 c 1 1di £ [I--7T7 K sin 4 f - 7K 3 (7T2 - K 2 ) sin4f - 7T K7 sin 4 f
dt g LE 2 1 2  inf 2

SK (TT
2 + 3 K 2 ) sin 2 gl - 7K (7T2 - K2)3 sin 2 g

1 3

2 K 5 
(37T

2 + K
2 ) sin 2 g -2  K sin 4 (11-4)

Let be the inclination of the lunar orbit to the earth's equatorial plane;

then

1 = i+j

7= co[s (i + j = cos

K sin (i + j] sin-
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For small 'P (on the order of a few degrees or less) 7r 2 1 and K << 1.

Assuming small 1P and keeping terms through K 2 , Equations (III-1) - (m-4)

become

dLM 1 702 C 1

S12 [8 sin 4 fl + 47r6 K sin 2 gl] (111-5)

2
dj To 1 7 1 1 7 1
dt g C ~ 2 7 K sin- g K sin 4 f 2 K sin 2 g (IH-6)

dLE T 2 .1 1 8 sin 4 f + 6 K2 sin 2g + K2sin 2g] ( -7)dt - g C 12(I

dt g LE  12 K sin2g + - K sin4f - - '7 Ksin 2g (I-8)

where we have explicitly written ro /e6 for T.

Using the approximations

K = Sin
2 2

cos q 1
T2 8

We write Equations (11-5) - (M-8) as

dLM 1 C 1

dt -2 -12 [ (1 - 2) sin 4 f + P2 sin 2 g] (III-9)

dj 1 o 1 1dj 1 2  1 1 [sin 2 g, - sin 4 fl - sin 2 gt] (III-10)c- LM= 12
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dLE 2 1 1  2  12 )
dt C y (1 -q 2 ) sin 4 f, + 4- sin 2 g + 4 sin 2 g] (III-11)

2
di 1 T 1 1

S4 C 12 [sin 2 gl + sin 4 fl - sin 2 g] 4 (III-12)

neglecting powers of q' higher than 2.

If Equations (III-10) and (111-12) are added together we obtain the rate of

change of qj in time:

d 1  o C /1 1

(I1-13)

sin 4 f ( + sin 2 g *

Note that

dt

so that for 4 = 0, d 0.

If the moon orbits the earth exactly in the equatorial plane, then the inclina-

tion will remain zero.

If the moon is slightly perturbed out of the equatorial plane so that 4 > 0,

then the moon will move toward or away from the equatorial plane depending

upon whether

+L sin 2 g - sin 4 f1 - (i7iL + sin 2 g (I-14)
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is a negative or positive quantity, i.e.

(a) dt < 0 if (111-14) is negative

dt

(b) dt > 0 if (111-14) is positive

For case (a) an equatorial orbit would be stable since small perturbations

in i would drive the moon back toward the equatorial plane. In case (b) an

equatorial orbit would be unstable, because small perturbations in 4 would

cause the inclination to grow at a rate proportional to q. It is this second case

in which we are mainly interested; we therefore want to examine (111-14) in de-

tail to learn whether the tides can drive the moon away from the equatorial

plane.

We start with the coefficients of the sines of the lag angles.

+ is always positive

1 - is positive for c < 21 earth radii

Thus both these terms are positive in the region of interest. We next turn

our attention to the lag angle terms.

Equations (111-9) - (111-13) indicate that the tides which govern the evolution

of the earth-moon system for small inclinations are the tides with speeds n - 20,

2 (n - Q), and n, with the lag angles being g 1, 2 f, and g, respectively. These

tides are called O, M 2, and K, in Darwin (1883).

To learn something of the nature of these tides we refer to Figures 6 and 7.
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Figure 6 shows Q and n as a function of earth-moon distance for q = 0.

Here use is made of the equations

G (M + m)

C3/2

which is Kepler's third law, and

LI = L2 + L + 2 LE L cos

which is derived from the conservation of angular momentum. From this latter

equation we obtain (remembering q' = 0)

LE LT LT - m Mm c
n

C C C

Figure 7 shows the angular speeds of the tides as a function of distance.

The region to the left of the dashed line is inside the Roche limit (2.89 earth

radii) where the moon would be torn apart by the tidal stress if the moon lacked

cohesiveness; thus distances greatly inside the Roche limit are not physically

realistic. Note that both n and 2 (n - Q) are positive for distances greater than

the Roche limit, while n - 2Q changes sign at 3.83 earth radii (dotted line).

The distance where n - 2Q = 0 makes a convenient reference distance (at

this distance the earth's rotation period is about 5.25 hours and the moon's

orbital period about 10.5 hours). We henceforward take co as the earth-moon

distance where n = 20:

cO = 3.83 - a
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where a is the present radius of the earth (6.37 x 108 cm). All quantities with

zeros as subscripts refer to their values at this distance.

We now examine the sines of the lag angles. Using the identity

2 tan 0
sin 20

1 + tan2 0

and the assumption of viscosity we have

4 (n - 0) 5sin 4 f = (m-15)
1 + 4 (n - f) 2 (2

sin 2g = 2n (m-16)
1 + n2 C2

sin 2 gl 2(n - 2) (III-17)
1 + (n - 20)2 C2

where

19 v
2gap

and use has been made of the tangent formula for the lag angles (see page 20).

The signs of (111-15) - (111-17) are of the same signs as the respective

speeds; thus sin 4 f, and sin 2 g are positive while sin 2 g is negative for n < 2 0

and positive for n > 20.

From the above considerations we can assert that

d
t- < 0 for c < co

for all values of viscosity since each of the three terms in (III-14) is negative.

Hence an equatorial orbit is stable at least up to 3.83 earth radii distance.
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The sign of (111-14) for c > co depends upon the viscosity of the earth. To

prove this, we examine this expression in the limit of low viscosity and then in

the limit of high viscosity.

In the limit of low viscosity

(n - << 1

where from Figure 7

(n - ) 10 - 4 sec.

This implies v << 1015 poises.

In this case Equations (111-15) - (111-17) can be written as

4 (n - 2) (
sin 4 f = 4 (n - )

1 + 4 (n - f)2 2

2n (
sin 2 g 2n 2n 2

1 + n2 C2

2 (n - 2 R) (sin 2g ,  2 2 ) 2 (n - 2 Q)
1 + (n - 2f) 2 C2

It is convenient at this point to introduce Darwin's notation (Darwin 1880)

n

X decreases monotonically as the earth-moon distance increases (still remem-

bering ' - 0) and obviously has value 0.5 at co; see Figure 8.

Using this notation we have
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sin 4 f n 4(1-k)

sin 2g n ( * 2

sin 2 g1  n 2(1 - 2X)

and (III-14) becomes

n 2 ( + (1- 2X)-4 - (1 - )) - 2

This expression (see Figure 9(a)) was found to be negative by numerically

computing the expression in square brackets for various distances. Thus, for

small viscosities d_ < 0 everywhere outside the Roche limit and an equatorial
dt

orbit is stable.

In the limit of large viscosity for which

(n - >) >> 1

which implies

v >> 1015 poises

Equations (111-15) - (111-17) become

4 (n - R) ( 1 1 1
sin 4 f I = ( 1

1 + 4 (n - R)2 t 2 (n - ) n 1X
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2n 2 1
sin 2g ln - 1 2

I + n
2 2 n n

2 (n- 2 2) 5 2 1 2
sin g 1 + (n- 2)2 2 (n - 2) n 1- 2X

This last expression holds only in the regions away from c o ; see Figure 9(b).

earlier sin 2 g = 0 at c o = c while the expression above approaches infinity as c

approaches c o. The behavior of sin 2 g 1 near c o will be examined later.

For large viscosity (M-14) becomes

1n 1 -2 1 1 1 +

The expression in square brackets is positive for c > co; see Figure 9(b).

We next inquire about the behavior of sin 2 g, near c o where n 2 2 Q. We

make use of

b
L T - C%

G (M + m) c0

C3/2 C

Let

C = C - C + C = CO + X

where

X = C - CO .

x measures deviations in distance from c o . The expressions for Q and n

become
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= G (M+ m) Qo

3/2 3/2
c 3/2 (1 +

LT - C LT b1 +/ x
Sco/ co/

C C

If - << 1, then by Taylor seriesco

3 fo
S= o  2 co

b
LT- b - 2co x

2co  b
n n x

C o 2 co C

keeping only first order terms in x.

So we have

b 3 0o
n- 2 no 2coC x - 2 o + x

= no - 2o + 2 co C x

= o+

where

= c o 2 c o C
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Equation (m-17) becomes

2 ()
sin 2 gl

1+ x

Note that this expression is antisymmetric in x.

If E << c o (v >> 1015 poises), then sin 2g, has the features shown in Fig-

ure 10. Sin 2gl ranges from -1 at x = - to 0 at x = 0 to +1 at x = +E. The

peaks become sharper as the viscosity increases (and E decreases).

Both sin 4f 1 and sin 2g are only slowly varying for v >> 101 s poises and

are virtually constant between x = - E and x = + e. Further, both sin 4f 1 << 1

and sin 2g << 1 for v >> 1015 poises. Expression (III-14) is then seen to be

zero for c slightly greater than c o and the zero approaches co as the viscosity

increases; we may then speak of (111-14) as being zero for c = c o and positive

for c > c o with negligible error for large viscosities (>>10 s5 poises).

dWe conclude that d becomes strongly negative for c < c o and strongly

positive for c > co. Thus for viscosities >> 1015 poises an equatorial orbit is

unstable for c > c o and the moon will be driven away from the equatorial plane

if perturbed.

The transition of (III-14) from negative to positive for c > c o was found to

occur at a viscosity between 1015 and 1016 poises by numerical computation.

We summarize the major results of this section.

(i) L</ 0 for c < c o for all viscosities and an equatorial orbit is stable.

(ii) d_ < 0 for c > c o for viscosities less than about 1016 poises and an

equatorial orbit is stable.
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(iii) d> 0 for c > co for viscosities greater than 1016 poises and an
dt -

equatorial orbit is unstable.

These results hold for small values of q (the inclination of the lunar orbit

to the earth's equator).

B. Variation in the Earth-Moon Distance

Let us turn our attention to Equation (111-9) and write it as

d 1 702 C 1

dt - 2 [ - 2) sin 4 f 1 + p sin 2 g1

(I-19)

to show explicitly that we are discussing essentially the variation of the earth-

moon distance in time and not the orbital angular momentum.

In the limit of extremely small angles the q 2 terms can be neglected and

(11-19) becomes

d 1 r 2 Cd6 1 1sin 4 f (111-20)
dt 2 gb 612 )

so that only one tide governs the variation in distance. If v << 1015 poises, then

by the approximations of the previous sectio If v; and if v >> 1015 poises,

then -1
dt

The right side of Equation (111-20) is positive because sin 4f, is positive;

therefore the moon is driven away from the earth. Also, dt is greatest when

sin 4f 1 = 1, which occurs at a viscosity of about 1015 poises.

Equation (11-20) can be integrated to give
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1 1 2 C t 2
13 (513 - ~ 1 3 ) - 2 gb sin 4 fI dt

If sin 4 f l is only slowly varying, we have approximately

1 1 T C

1 (e13 13 0T2 C

13 23 13) 1 2 gb sin 4 f 1 (t 2 - tl)

for the dependence of distance on time.

Returning to Equation (111-20), if the equation is divided into Equation (11-10)

and into (111-12) we obtain equations which eliminate the time:

dj 1 b rsin 2g 1  sin 2 g
d 2 M L sin 4f 1- sin 4 fj

di 1 b [sin 2 gl sin 2 g
d 2 LE sin 4f sin 4f

If each side of these two equations is multiplied by kn, then

kn dj 1 LE [sin 2 gl sin 2 g
dkn d 2 L sin4f sin 4f

di 1 [sin 2 g sin 2g1
kn - i + 1

dfsin 4 f sin 4f

where we have used kb = C and LE = C n.

Now because 0 = i + j is very small, examination of Figure 5 shows that

LEi

giving
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=i+j j + i

Substituting, we have

1 sin 2 gl sin 2
knd 2 L sin 4 fl sin 4 f

di 1 LEsin 2 g l  sin 2 g
kn 1+- + 1- ikn d 2 + Lsi n 4 f sin 4 f

or finally

____ M) L [\ sin 4gf
d log j 2 + sin 24fl sin 2

kn L + - sin 2

d log i 1 j LE I sin 2gl sin 2 g
d6 2 L sin 4fl sin 4 f

Using our previous approximations for sin 2 g 1, sin 4 f1 , and sin 2 g in the limit

of low viscosity we obtain

kn d log i -1kn d - 2 L) 1

These equations are found in § 19 of Darwin's 1880 paper (Darwin 1880 pg. 312).

In the limit of large viscosity
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log j 2 4X(1-X )1
kn do[ 12 + (III-21)

d log i 1 LE 4 (1- )
kn d - 2 + 1+ (11-22)

These last equations are found in § 20 of the 1880 paper (Darwin 1880, pg. 317).

Equations (11-21) and (III-22) will be discussed when analyzing Darwin's

theory of the moon's origin.

We now return to Equation (III-19) and write it as

dt 2 1 b 2 [sin 4f - 2 sin 4 f, + p2 sin 2 g]

It is not generally true that

I~p2 sin 2g,1 << Isin 4 f1l

for small qp for viscosities greater than 1016 poises because I sin 2 g 1 may be

on the order of 1.

An example will illustrate this. Take

S= 1018 poises

sin 2 gl = 1

qp = 30 = 0.0052 radians

n - = 1.66 x 10- 4 sec - 1

Then

1
sin 4f (n ) = 0.0022
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qp2 sin 2 gl = 0.0027

q2 sin 4 f = 0.000006

Obviously in this case

I 2 sin 2 g, > sin 4 fl

The qj2 sin 4 f term is generally quite small and may be neglected giving

de 1 0C
dt- 2 gb 12 [sin 4 f1 + V2 sin 2gl]

The point of this example is that even for small q (on the order of a degree)

neglect of the qj2 sin 2 g 1 term may lead to serious error. In fact, this term

may have profound effects on the lunar orbit. We demonstrate this by examining

some possible histories of the lunar orbit.

Figures 11, 12, and 13, show i; sin 4f 1 , 2 sin 2g, and sin 2gl; and dt

respectively as functions of x for a viscosity of 1020 poises. (All computations

for Figures 11-14 were carried out with the computer program described in the

next section.) The initial conditions are chosen to be 'p ~ 0.40 at x = -0.4 x 10- 3

earth radii; it is labelled A in Figure 13.

Since

sin 4 f + q2 sin 2 g, > 0

d=
for the chosen starting condition, d t > 0 at A and the radius of the moon's

orbit increases, so that the moon moves away from the earth (to the right in the

figures). As the moon moves toward point B, its outward rate of motion becomes

slower and slower as qb2 sin 2 g, becomes more and more negative. Past point B
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increases and reaches a maximum at c. From c onward the rate of motion
dt

decreases. Note that t decreases for x < 0 and increases for x > 0.

Now if the radius of the moon's orbit is initially less than c o - E and the

radius of the orbit is expanding, it must be that

de > 0
dt -

at all points along its outward journey if the moon is to reach the outer regions

past c o . In other words,

sin 4 f + b2 sin 2 g >- 0

Now at x = -E, sin 2 g = -1 and the above condition becomes

sin 4 fl - 2 > 0

or

< sin 4 f

at x = -E.

Hence for initial conditions for which the radius of the lunar orbit is less

than co - E and expanding, the above restriction must hold: the inclination q

must decrease below a certain value at x = -e for the moon to gain the outer

dtregions. Thus, if such an orbit has a large inclination, dt becomes small as

the moon approaches x = - E and the moon "waits" near x = - E until q has

decreased enough to allow the moon past x = -E (d[ is negative for x < 0)

and into the outer regions.
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The net effect is that the distance x = -E acts as a "barrier" and will not

let the moon through until V has dropped below a critical angle, which we label

ce = /sin 4 f n - )

Critical angles for various viscosities are given in Table 2.

Information regarding the history of the inclination for orbits which have

> qI > for x < -E is lost at x = -E, since q must be less than or equal to q.

in all cases to get past the barrier.

Figure 14 gives an example of b initially so large that

sin 4 fl + q2sin 2 g1 < 0

so that now

dJ
< 0dt

and the moon moves toward the earth. It continues to do so until

sin 4 f I + p2 sin 2 g = 0

dfat point D in the figure. Here dt changes sign and the moon moves away from

the earth. Thereafter the moon's possible motion is as described before. In

this particular case qI is quite large as the moon approaches the barrier, so

that the moon must wait until qi drops below 2.70 (the critical angle for 1018

poises) before moving into the region past x = 0.0.

The effect of the barrier and the moon's orbit shrinking and then expanding

can occur only if the radius of the lunar orbit is less than co. If the moon
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formed or somehow arrived at a distance greater than co, then there is no

restriction on the inclination and the moon moves continually outwards, since

sin 2gl > 0 for c > co.

We summarize the major results of this section.

de 1 0C
(i) 2 - [sin 4 fl ]

for equatorial orbits

d 1 C
(ii) dIt - 2 b 12 [sin 4 f + b2 sin 2g l]

for viscosities greater than 1016 poises and ' on the order of a

degree

(iii) b < /sin 4 f at c = c o - E

for an expanding orbit

(iv) if sin 4f 1 + q
2 sin 2g 1 < 0 (for c < co) an orbit will contract, and

then expand.

C. Computational Results

The integration of Equations (H1-5) - (III-8) was carried out numerically

with a FORTRAN computer program using double precision variables' The pro-

gram is given in Appendix C. It was run on an IBM 360/91 computer at the

Goddard Space Flight Center, as well as on a Univac 1108 at the University of

Maryland.

*This program was also used to obtain results similar to those of Gerstenkorn (Alfven 1963).
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The program has the capability of integrating the full Equations (III-1) -

(III-4), but the contribution of the neglected terms was found to be insignificant

in the computations discussed below.

The viscosity v, time interval At, and the initial values of t, b, and 6 are

read into the program. From the initial data i, j, n, and Q are computed, as

well as LM and LE'

The program then iterates equations (I1-5) - (III-8) by computing the

changes in i, j, L , and LM according to the simple formula

dX
AX = At

dt

where X is i, j, LE, or LM. The new values become

XNew = XOld + AX

dX
is then recomputed from the new values and the process is repeated. At

dt

each step the new values of f, n, f, , i, and j are printed, as well as Ai, Aj,

and A V.

After a certain chosen number of steps N Q A t is adjusted so that the step

change in 6 A is constant for the remainder of the run. The reason for switching

from constant At to constant A 6 is to insure that the time intervals at the begin-

ning of the run are small enough so that the peaks in - near 5 = 1.0 are not

missed (most of the runs start near = 1.0). Later, as increases and the

change in 6 and the change in angles i, j, and q in time become small, constant A 5

is used to keep the run from becoming extremely long.

If at any step IA i/i I or IAj/j I exceeds some chosen fraction called CRIT

in the program the time interval for that step is halved and the step is repeated



49

until both IA i/i I and IA j/j I are less than CRIT. The purpose of introducing

CRIT is to avoid large changes in angle at any one step which would lead to

cumulative errors after many steps.

When e exceeds some chosen value XIMAX, or the total number of steps

exceeds NLAST, the run is terminated. At the end of each run the total angular

momentum is computed from the values of the last step of the run and is com-

pared to the initial angular momentum. This serves as a check on how well the

approximations used in writing (111-5) - (111-8) conserve angular momentum.

After a run is completed its accuracy can be checked by halving the time

interval of each step, doubling the number of steps, and repeating the run.

The program also has the capability of integrating backward in time as well

as forward.

The program was run for various viscosities for which the moon is per-

turbed from an equatorial orbit near c = c o . The relevant data for these runs

is summarized in Table 3. All runs stopped when the moon reached 10 earth

radii distance from the earth; beyond 10 earth radii solar influence must be

taken into account. No viscosities above 1021 poises were considered because

of the unrealistically long time scales involved.

Figure 15 shows i/ as a function of earth-moon distance for an initial per-

turbation of 30 for viscosities of 1015, 1016, and 1017 poises at c = c 0 . Note

that ip decreases as a function of distance for 1015 poises, but increases for

1016 and 1017 poises. This behavior is to be expected from the discussion

given in Section A of this chapter.

The program was run next for q/ = 0, at c = co - E for 1018, 1019, 1020

and 1021 poises (Figure 16). This is the largest possible value qb can have near
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c = c o .without suffering some further perturbation from an equatorial orbit.

Smaller initial angles at c = c o - E invariably gave smaller final angles at

10 earth radii.

Finally, Figure 17 shows q as a function of distance for viscosities of 1018

and 1021 poises for initial perturbations of 10, 20, and 30. Figures 18 and 19

give i and j respectively for the given initial perturbations. Curves for viscosi-

ties between 10 18 and 1021 poises fall between the respective curves given in

the figures.

Note that only when the initial perturbation is about 30 does q reach near

100 at 10 earth radii as required in Goldreich's model; or equivalently, does j

reach 60 at 10 earth radii.

D. Variable Viscosity

It was next assumed that the viscosity was not constant, but that the vis-

cosity v was a function of absolute temperature T and that the earth was cooling

down from an initially molten state. The purpose in doing this was to see

whether the earth could cool off enough to be solid and have a high viscosity by

the time the moon moved from the Roche limit (2.89 earth radii) to c o (3.83

earth radii). If so, the mechanism for driving the moon out of the earth's

equatorial plane may have been operative.

The dependence of v on T was assumed to have the form

v = Vo eE*/kT (III-23)

where

v o = a constant

E* = activation energy per atom

k = the Boltzmann constant.
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A theoretical derivation of this equation is given by Glasstone, Laidler, and

Eyring (1941). We have ignored the dependence of vo on T and have assumed it

to be a constant. Experimental data shows that this equation holds fairly well

for silicate melts (Clark 1966), with

v o 5 10 - 4 poises

E* ? 2- 5 eV/atom

Data on molten rocks are uncertain; the activation energy E* has approximately

the range given above, but vo may vary by orders of magnitude.

A cooling law for the earth was required to give the temperature T as a

function of time t. The law adopted here is derived in Appendix B. From Equa-

tion (B-5) of Appendix B we take the form of the cooling law as

To
T(t)

[1 + Z So (t - to)] 3

where

To = temperature at time to

S= surface temperatureZ=
average temperature of the earth

12 7r a 2 cr
MC

P

where

a = radius of the earth = 6.37 x 108 cm

a = Stefan-Boltzmann constant = 5.72 x 10 - s erg cm- 2 sec-1 deg - 4

M = mass of the earth = 5.98 x 1027 g

C was taken to be 1.0 x 10' erg/g-deg, giving
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S = 1.46 x 10-20 deg- 3

sec

The computer program given in Appendix D was used to give the moon's

distance, and the earth's temperature and viscosity, as a function of time. The

program differs from the program of Appendix C only in that the viscosity is

allowed to vary in time rather than remain constant. The moon was initially at

the Roche limit and in the equatorial plane of the earth, with the earth at a tem-

perature T 0 . Various values of v,, E*, Z, and To were used to see if the earth

could cool down near the melting point of rocks (about 1500 0K) by the time the

moon reached c 0.

The results may be briefly summarized. For E* Z 5 eV and v0 > 10 - 4

poises the temperature of the earth at c o did not drop below about 15000 for

1 1initial temperatures between 2000 0K and 30000K with Z - to - . For E* 23 2
4.3 eV and v0 in the neighborhood of 10 - 4 poises, the temperature of the earth

could fall below 12500 for the same ranges of initial temperature and values of Z.

Apparently large values of E* and v0 , which increase the viscosity at any given

temperature, hasten the moon past co before the temperature has a chance to

fall very low.

Due to the wide variation in results and ignorance of the interval condition

of the earth, it appears that we can make no definite statement as to whether the

earth could cool down sufficiently from a molten state to have a large viscosity

when the moon reaches c 0.



CHAPTER IV

SOLAR INFLUENCE

The history of the lunar orbit for distances greater than 10 earth radii,

where solar influence must be considered, will now be investigated. Our discus-

sion will be restricted to the behavior of J, the angle between the plane of the

lunar orbit and its proper plane. The angle j, the angle between the plane of the

lunar orbit and the invariable plane, is essentially J for distances less than

10 earth radii (see Chapter I, Section C). Hence at 10 earth radii we will join

our previous solutions for j as a function of distance to those we obtain for J

as a function of distance.

Darwin obtains the rate of change of J with respect to 6, with solar tides

included, in Section m of his 1880 paper. It-was found by assuming the inclina-

tions of the earth's equator and the lunar orbit to the ecliptic are small and

applying the variations of parameters technique in solving differential equations.

After a quite lengthy analysis he obtains (Darwin 1880, eq. 250, pg. 297):

dlog J 1 1 a' b

dL kn (K 1 - K2 ) 2  (1 K - a

(IV -1)

+ (K K {F(K2 + a) + (K 1 +a) + bG-aD]
(K1 - K2)

where

7T' 1 T'
a= m+ a = m = 1+- b = 1

7 2Xe 7
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' = m - - 2 + + 7 m

a' = -m 2 1 + + 7

7 -+ 72 + 1r3

8' i + - + + 6 ml

b' {1+( +6m

1 sin 4 f 1 - sin 2 gl + sin 2 g
2 sin 4 f

(sin 4fl+ sin 2 g - sin 2 g) - 2 sin 2g + sin 4f

2 sin 4 f

1 2 (1 + )sin 2g- 2sin 2g,
bG- aD = -m2 sin 4 f

kn Q 1 n 2

m - X - e -
n 2 g

K K= - a- K - K = - (a -) 2 4 a b

To 3 GMe

6 2 c3
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Me = mass of the sun

c e = earth-sun distance

The change of e with time is given by (Darwin 1880, eq. 227, pg. 293):

1 d _ 1 _2
k dt 2 1 sin 4 f (IV -2)

This is just the same equation as (111-20), where the only tide-raising body

was the moon. The two are the same because solar tides and the direct gravita-

tional force of the sun.on the moon produce no secular change in the moon's

distance.

The computer program of Appendix E integrates Equation (IV-1) from 10 to

60 earth radii for any desired viscosity. It assumes a constant step size in e.

The angular velocity of the earth n is computed by assuming the total angu-

lar momentum of the earth-moon system is conserved and that the moon re-

mains in the equatorial plane of the earth. (The neglect of the frictional effects

of solar tides and inclination leads to only small corrections in the final results.)

These assumptions make the right side of the equation independent of angle, so

that the solution of the equation has the form

J2 = e ()4" J1

where F (v, 6) is the right side of the equation and J 2 is J at e2, and J, is J at

the initial distance 61. A graph of J versus earth-moon distance c has the same

shape for a given viscosity regardless of the initial value of J; larger or small

initial values of J merely shift the curve up or down.

The program was first run for the present-day values J = 509' and g = 3.96

(60 earth radii) for a viscosity of 1012 poises to obtain the small viscosity limit.
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The result is shown in Figure 20 (dotted line). Note the close agreement with

Goldreich's curve (dashed line), where the lag angles are assumed to be equal.

The program was run again for a viscosity of 1010 poises. It showed negligible

difference in results from 1012 poises, so that the dashed line indeed repre-

sents the small viscosity limit.

The program was run next for a viscosity of 1018 poises to extend the curve

for j shown in Figure 19 for an initial perturbation in of 30. The resulting

curve is the upper solid line shown in Figure 20. The program was run again

for a viscosity of 1021 poises; it produced little change in the shape of the curve

from 10 to 60 earth radii; hence the curve shows the large viscosity limit in that

region. Note that the character of the large viscosity curve is quite different

from that of the small viscosity curve.

If the earth behaved as though it had a large viscosity from the time the

moon was at 3.83 earth radii to the present time, then an initial perturbation in '

of about 2.5* at 3.83 earth radii would be required to give the present value of J

of 5°9 ' . This is shown as the lower solid curve in Figure 20. However, viscosi-

ties greater than about 1017 poises give time scales of the orbital evolution

greater than the age of the solar system.

What is more likely is that the earth behaved like a liquid with high viscosity

in its early history and then like an anelastic solid or liquid with low viscosity

later on, which is what is observed today; so that the inclination J in Figure 20

started on the upper solid curve at 3.83 earth radii and switched over to the

dotted line, possibly somewhere in the region where the two curves merge beyond

15 earth radii. Darwin (1880, § 32, pg. 363) discusses the possibility of this kind

of behavior.



CHAPTER V

DISCUSSION

A. Critique of Assumptions Made

We shall now examine the important assumptions made in obtaining our

results for strong tidal friction.

One important assumption we have made is that the orbit of the moon re-

mains circular throughout its history, i.e. the eccentricity e of the lunar orbit is

zero. The work of Darwin (1880, Section V), Singer (1968), and MacDonald (1964)

shows that weak tidal friction decreases the eccentricity as we look back into the

past until the moon reaches about 3 earth radii from the earth, where the eccen-

tricity undergoes rapid changes. Since the present value of the eccentricity is

0.055, this would imply that neglect of the eccentricity when the moon was at the

reference distance of 3.83 earth radii would lead to negligible error in con-

sidering weak tidal friction.

However, use of Darwin's treatment of the eccentricity for viscosities

greater than 1017 poises indicates that e increases with time until the moon

reaches about 16 earth radii distance from the earth; at larger distances the

eccentricity rapidly decreases. This indicates that the eccentricity could have

been large for earth-moon distances of less than 16 earth radii. However, a

nearly circular orbit for the moon over its whole history is by no means ex-

cluded. The earth could have behaved as though it had a large viscosity when the

moon was less than 16 earth radii from it; beyond 16 earth radii the earth could

have behaved as though it had a small viscosity. If this were the case, then if the

57
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moon were in a nearly circular orbit at 3.83 earth radii, the eccentricity would

slowly grow to its present value as the moon moved outward to its present

distance.

Another assumption which we have made is that harmonics higher than the

second degree may be neglected in the tidal disturbing function (Equation 11-4).

To show that this approximation is a good one, we note that the second degree

harmonics in the disturbing function are multiplied by r where a is the

radius of the earth and r is the earth-moon distance; this may be seen from

Equations (II-3) and (1-4). If third degree harmonics were included in the dis-

turbing function, then they would be multiplied by ) ; likewise, fourth degree
10

harmonics would be multiplied by o, etc. Hence the third degree terms are

reduced by a factor of ) from the second degree terms. For r = 3.83a,

a) = 0.068. Also, the contribution of the third degree tides to the rate of

change in time of the inclination is small compared to that of the second degree

tides (see the discussion in the last paragraph of this section). Thus the restric-

tion to the second degree terms in the disturbing function leads to only a small

error.

We have further assumed that the moment of inertia of the earth C had its

present-day value of 8.11 x 1040 g-cm 2 = 0.33 Ma 2 . This implies that the

earth's core had already formed. Darwin assumed that the earth was homoge-

neous (C = 0.4 Ma 2 ), as well as incompressible, etc., for reasons of tractability

in solving for the response of the earth to the tidal force. Changing the moment

of inertia to its value for a homogeneous earth would lead to only slight correc-

tions in our results.

Heating of the earth by the dissipation associated with the friction does not

appear to be significant. The energy deposited in the earth as the moon moves

from the Roche limit at 2.89 earth radii to 3.83 earth radii amounts to 1.43 x
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1036 ergs. Assuming a specific heat of 107 ergs/g-deg, the average change in

temperature of each gram of matter in the earth is only 24°K.

Our most crucial assumption was that the earth behaved like a highly

viscous liquid (v >> 10 15 poises). Whether the earth could have behaved in this

manner when the moon was at 3.83 earth radii depended upon the rheological

properties of the earth at that time; these properties are unknown.

O'Keefe (1972) points out that since the tidal potential varies like the in-

verse cube of distance (Equation A-6, Appendix A), the tidal forces acting on the

earth were 4000 times greater when the moon was at 3.83 earth radii than they

are today, so that the material in the earth may have been near the elastic limit.

In such circumstances the earth may have behaved like a highly viscous liquid.

At the present time the mantle of the earth responds to the tidal forces like

an anelastic solid, with the tidal lag angles being small (MacDonald 1964). How-

ever, the mantle responds to deformations of the earth's surface caused by ice

loads as though it had a viscosity of about 1021 poises (Gutenberg 1959, Chap-

ter 9), requiring thousands of years to rebound after the removal of the loads.

(This may be explainable in terms of diffusion creep; see Kaula 1968, pgs. 101-

104). Now the period of the O tide with speed n - 2n is given by 2 7T/(n - 2Q), so

that the period ranges from infinity to about 5 hours as the moon moves through

3.83 earth radii distance. Hence if the earth has a characteristic response time

between these two extremes, then it should be excited by the O tidal force as the

moon passes through 3.83 earth radii. If the dissipation were great, then the lag

angle of the tide would be large. Hence it is by no means clear that the earth

would not respond as we have assumed, even with the present internal conditions

in the earth, where the characteristic response time is thousands of years.
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Our last important assumption was that the moon may have been perturbed

out of an equatorial orbit by 2.5 to 30 at 3.83 earth radii distance from the earth,

thus explaining the present inclination of the lunar orbit to the ecliptic. Whether

the moon could suffer such a perturbation is not clear; conditions at that time

may have been chaotic enough to produce it. However, several sources of the

perturbation may be ruled out. The first obvious source of perturbation is a

collision of a large meteoritic object with the moon. If such a collision occurred,

then large amounts of meteoritic nickel might be expected to spatter over the

moon's surface*. Large amounts of nickel are not observed in lunar samples.

The third degree harmonic in the earth's figure will not give rise to long period

perturbations in the inclination if the moon's orbit is circular. Further, it may

be shown from Equation 38 of Kaula (1964) that the tides associated with the third

degree harmonics in the tidal disturbing function give , just as in the
dt " , just as in the

second degree harmonics, but that these terms are much less important than

those discussed here. Also, the disturbance in the inclination caused by the pre-

cession of the earth's axis and the moon's orbit may be shown to be quite small

(<< 1). The question of the source of the perturbation remains open.

B. Relation of the Results to Theories of the Moon's Origin

We will now examine how our results relate to the theories of the origin of

the moon. The three principal theories, namely fission, accretion, and capture

are reviewed by Kaula (1971).

Darwin (1880) proposed that a primitive body rotating with a period close to

its natural oscillation period was disrupted into the earth and moon by resonance

oscillations induced in it by the sun. (That this was not at all likely was shown

*I am indebted to Dr. O'Keefe on this point.
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by Jeffreys 1930.) The moon would necessarily be thrown out in the equatorial

plane of the earth. Darwin was forced to assume that the primitive earth had a

very high viscosity to solve the inclination problem. He derived Equations (111-21)

and (III-22) which give rate of change of inclination with distance in the limit of

infinite viscosity. After commenting on the absurdity implied by the equations

that the rate of change of angle was infinite when the earth rotated twice as fast

as the moon revolved, he assumed that the viscosity merely had to be very large

to increase the inclination of the moon's orbit to the equatorial plane from an

infinitesimal disturbance to an appreciable angle. Darwin took this as the solu-

tion to the inclination problem and let the matter rest.

Our detailed analysis (Chapter III) shows that the initial perturbation in the

inclination of the moon's orbit to the earth's equator must be about 2.5-3.0' to

explain the present inclination, with the viscosity of the earth being greater than

1017 poises.

O'Keefe (1969) in his version of the fission theory suggested that the primi-

tive body had greater mass and twice the angular momentum of the present

earth-moon system. As the primitive body spun up, its figure progressed along

the sequence of the well-known Jacobi ellipsoids and pear-shaped figures (Jeans

1961) until it fissioned into the earth and moon. The system then lost mass and

angular momentum through intense heating. While taking over Darwin's results,

O'Keefe further suggested that even if the earth were molten after the moon and

earth separated, the moon's orbital evolution would not begin until the earth

cooled off appreciably, so that the moon would not arrive at 3.83 earth radii

until the earth's viscosity was quite high.

In Chapter III, Section D, we investigated the orbital evolution of the moon

as the earth cooled off for a number of different activation energies and coeffi-
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cients in Equation (111-23). In view of the wide variety of results obtained in the

temperature of the earth when the moon arrives at 3.83 earth radii, it appears

that the self-regulating mechanism proposed by O'Keefe does not exist.

The accretion theory states that the moon formed from a ring of particles

in orbit about the earth. The particles collided with each other and stuck to-

gether, ultimately building up into the moon.

The ring of particles would be expected to lie in the proper plane. The

orbits of particles inclined to the proper plane would precess, thus lowering the

chances of collision; at least all the orbits would intersect the proper plane,

favoring accretion there. If the moon accreted from the ring much beyond 3.83

earth radii, then the moon would tend to remain near the proper plane, so that

its present inclination to the ecliptic could not be explained. However, if the

moon formed in the proper plane within 3.83 earth radii (essentially in the equa-

torial plane), then the mechanism proposed here for driving the moon out of the

earth's equatorial plane could have come into play.

At any rate, regardless of how the moon arrived at 3.83 earth radii in the

equatorial plane of the earth, whether by fission or accretion, if the viscosity of

the earth was greater than 1017 poises, and the moon suffered a 2.5-3.00 per-

turbation in inclination at 3.83 earth radii, then the present inclination to the

ecliptic could be explained.

The capture theory has a simple answer to the inclination problem: the

moon was captured in a highly inclined orbit to begin with and tidal friction has

acted to decrease the inclination to its present value (Gerstenkorn 1969,

MacDonald 1964). Of course, these theories begin with the present inclination

of the moon's orbit to the ecliptic and solve the equations of tidal friction back-

ward in time to discover the/moon's inclination at capture.
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These theories once again assume weak tidal friction with small lag angles.

However, if the viscosity of the earth is greater than 1016 poises, and the moon

arrives at a distance less than 3.83 earth radii in an inclined orbit, then the

inclination must drop below the critical angle <c before the orbit can expand

past 3.83 earth radii (Chapter III, Section B). Thus for large viscosities

(greater than 1017 poises) the orbit becomes nearly equatorial and we are faced

with the same problem as before.

C. Summary of the Important Results

Assuming that the earth behaves like a viscous liquid in responding to the

tidal force, and that the moon is in a circular orbit about the earth, with the in-

clination of the lunar orbit to the earth's equator 20', then: *

(a) If the moon is less than 3.83 earth radii distance from the earth and

the inclination of the orbit to the earth's equator is steep, then the orbit

may contract and then expand, provided the viscosity of the earth is

greater than 1017 poises. The orbit will expand monotonically if the

viscosity is less than 1016 poises regardless of the inclination.

(b) The inclination of the lunar orbit to the earth's equator will decrease

or remain zero if the moon is closer to the earth than 3.83 earth radii,

regardless of the viscosity.

(c) The inclination of the lunar orbit to the earth's equator must be less

than 2.70 when the moon is at 3.83 earth radii if the earth's viscosity is

10 8 poises; at higher viscosities the inclination must be even lower.

(d) The lunar orbit will expand monotonically if the moon is at a distance

greater than 3.83 earth radii from the earth, regardless of the viscosity.

*<200 so that Equations (111-9) through (111-12) hold.
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(e) The inclination of the lunar orbit to the earth's equator will increase,

or decrease (or remain zero) for earth-moon distances greater than

3.83 earth radii depending upon whether the viscosity of the earth is

greater than, or less than 1016 poises.

(f) If the viscosity of the earth is greater than or equal to 1018 poises, and

the plane of the lunar orbit is perturbed about 2.5 to 3 degrees out of

the equatorial plane of the earth when the moon is just beyond 3.83 earth

radii, then the present five degree inclination of the moon to the ecliptic

may be explained.



APPENDIX A

DERIVATION OF THE TIDE-RAISING POTENTIAL

AND TIDAL DISTURBING FUNCTION

A. Derivation of the Tide-Raising Potential

Consider the top diagram in Figure 21. The center of mass of the earth is

located at point 0; the center of mass of the moon is at Q; and the center of mass

of the earth-moon system is located at point P. The earth and moon have

masses M and m respectively. The vector h is directed from P to O.

The center of mass of the system is taken to be at rest in inertial space,

with the earth and moon orbiting about P in circular orbits. The angular velocity

of either the earth or moon about P is .

The x* y* z* coordinate system has its origin at O and is rigidly attached to

the earth. The earth rotates about the Z* axis with angular velocity _n with re-

spect to inertial space. The vector r"* = (x*, y*, z*) is the position vector of

some unit mass element in the earth in the starred system.

The bottom diagram in Figure 21 shows that the moon is located at - =

(x, y, z) in the starred system, and the angle between Ji* and r is 0. s = r- r*

is the vector directed from the mass element to the moon. We take ISI = s,

r*I = r* and I rI = r, so that the earth and moon are separated by a distance r.

We wish to know the forces acting on the unit mass located at position F*.

Let us denote the total force on the unit mass as fT. Let us further write f, as

the sum of two forces, one being the gravitational pull of the moon f , and the

other being the sum of all other forces f (such as the earth's gravity, viscous

forces, etc.). Hence we have
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fT = f + fm (A-1)

f represents the total force on the unit mass as seen from an inertial

frame.

We now wish to find the forces acting on the unit mass in the frame in which

we have reduced the earth to rest, i.e. the forces as seen in the starred frame.

Since the starred frame is non-inertial, fictitious forces will be introduced.

Following Symon, Mechanics, Chapter 7, we write

-. - dn d2 h
f* T - n x (nx r*) - 2n x v* - r* - (A-2)dt dt 2

f * is the total force acting on the unit mass as seen from the starred

system. The second term on the right-hand side of Equation (A-2) is the cen-

trifugal force caused by the rotation of the earth on its axis. The third term is

the Coriolis force, with V* being the velocity of the unit mass in the starred

system. The fourth term arises from any variations in n. The last term arises

from the earth's motion about the center of mass of the system.

The third and fourth terms on the right-hand side of (A-2) will be assumed

to be negligible, as they would be if the earth were changing its rotation rate

only slowly and velocities relative to the earth were small. Equation (A-2) be-

comes in that case

-4d 2 h

f = f + f - nx (nx r*) - d(A-3)
m dt 2

where we have explicitly written f + f for fV.

Now
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dh
dt 

h

and

d2 h
d - x (nx h).

dt 2

Butx (xh)= 2 h ,whereh= - m
r M + m r. By Kepler's third

law 2 - G (M + m) so that we may write
r
3

d 2 h _ G(M + m) m r Gm -
r r

dt 2  r 3  M + m r r 3

We could have written this directly by recognizing that dt is just the

acceleration of the earth's center of mass due to the gravitational pull of the

moon.

Equation (A-3) becomes

Gm -
fT* = f + fm - n x (nx r*) - -- r (A-4)

r3

Let us now examine the f term in Equation (A-4). f is the gravitationalin M

force of the moon on the unit mass located at i*. We can write f as the gradient

of a potential:

fm = V* V (x*,y*, z*, , y, z) (A-5)

Here

V**+ j *+ * k*- x* y* z

denotes the gradient operator operating in the starred system; i*, j*, and k*, are

unit vectors along the x*, y*, and z* axes, respectively. V is the gravitational
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potential of the moon at r*. Note that V is a function of both the coordinates of

the unit mass and the coordinates of the moon, but that V* acts only on the

starred coordinates.

Taking the moon to be a point mass gives

Gm
s

We now proceed to expand V in spherical harmonics about the center of the

earth in the usual manner (Kaula 1968, Eq. 2.1.22):

Since

S=r - r*, s = (s s)' =  ( r + r* * 7* - 27 r*)

S(r
2 + r*2 - 2 r r* cos 0) r 1+ 2 - 2 cos )

We can thus write

V = + ( - 2 cos 0

Now

+ 2 cos

is of the form (1 + q)n where

q (r* 2 r*cos O

and
12"
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Expanding (1 + q)n as a binominal series gives

n (n - 1) 2
(1 + q)n = 1+ nq + 2! 2

so that our expression for V becomes

V - 1 + - cos + 3 s -  + ...
r r 2 r 3

where we have been careful to gather together terms in powers of r* . This is
r

nothing more than the familiar expression

V Pm (cos 8)
m=o

where Pm (cos 0) is the Legendre polynomial of order m.

r* r*
If r << 1 we can ignore powers of r higher than 2 so that we can

write

V Gm 1 + os + * OS2 E -

Let us set

Gm 3 r*\ 2  [
Vt = " -) s 2 E - (A-6)

which we will call the tide-raising potential. Note that Vt is a second degree

spherical solid harmonic function and [cos2 - is a second degree surface

harmonic.

We finally have
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Gm Gm r*
V = - + - - cos + Vr r r/

If we again write fm as the gradient of V we have

f = V* + Gm V* OS + V Vt

The first term on the right-hand side of the above equation is zero because

r2 = x2 + y 2 + z 2 and nowhere contains x*, y*, or z*. The function that the

operator V* acts on in the second term can be written

r* r* r cos _ x*x + y*y + z* z
- cos -
r2  r r

so that

-. *x + y*y + z*z r,

r 3  r

We are left with

r -
f = Gm- +V* Vt (A-7)

Substituting the above equation in (A-4) gives

r r
fT* f + Gm - + V* Vt - nx (nx r*) - Gm -

r3  r

or finally

fT = f. + V* Vt - n x (n x r*) (A-8)
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Note that the first term on the right side of Equation (A-7) cancels the term

associated with the motion of the earth about the center of mass of the system in

(A-4), leaving the V* V t term as the only term in (A-8) generated by the moon's

gravity. We were therefore justified in calling Vt the tide-raising potential.

We note in passing that the centrifugal force may also be written as the

gradient of a potential:

-nx (nx r*) = V* Vc (x*, *, z*)

where

Vc n2 (x*
2 + y*2)

with n = I n .

In this case Equation (A-8) becomes

fT* = f + V* Vt + V* Vc (A-9)

B. Derivation of the Disturbing Function

In this section we show how deviations from sphericity of the earth give

rise to a disturbing function.

Let us again take the starred coordinate system to be fixed in the earth with

its origin at the center of mass of the earth, and let 5 = (x, y, z) be the position

vector of some mass element in the earth and A = (x', y', z') be the position

vector of some point E exterior to the earth (see Figure 22). Let 5 = Is =

(x +y + z ) and A = A = (x'2 + y'2 + z 2 ). = A - is the vector

directed from the mass element to the exterior point E and has length F = IF .
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The gravitational potential at (x', y', z') is

U (x', y', z') =  dV (A-10)

where p is the density and dV the volume of the mass element, with the volume

integral evaluated over the volume of the earth.

The force on a unit mass at (x', y', z' ) would be given by V' U, where

V j* + j* + - k*.

Note that the gradient operator acts only on the primed coordinates.

We can expand r in a binomial series just as we did previously for s;

Equation (A-10) then becomes

U (x', y', z') = 1 + cos + 2- Cos 2  - + ... dV

where T/ is the angle between 8 and A.

If we neglect powers of (T) higher than 2 we have

U (x', y', z') = dV + cos dV

(A-ll)

+ 2 os2 - dV

The first term in Equation (A-11) is easily evaluated:

fGp d G f = GM
I d V = p - pd V=
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This term gives the inverse square force. The second term of (A-11) is zero

by virtue of having taken the origin of the coordinate system at the center of

mass of the earth. The third term is the disturbing function R I:

3 G 1

R ( x',y, z') = 2 AC 2  - dV (A-12)

with the subscript I reminding us that V'R I gives the force per unit mass in

inertial space.

Let us now write Equation (A-12) in spherical polar coordinates, with a and

p being the longitude and colatitude respectively of the mass element, and a'

and /' being the corresponding longitude and colatitude of the exterior point;

then

R, (A, ',2 A')3 2 [ S 3 sin 8 da d, d8
0 0 0

where

cos ' = cos a' sin /' cos a sin / + sin a' sin /' sin a sin 8 + cos P' cos /

and

dV = sin 8 2 da d d6

and r, is the distance from the earth's center to the surface of the earth.

Let us now write

rwhere a is the mean radius (of the earth and +(a , the "surface ineualit

where a is the mean radius of the earth and u (a, 8) the "surface inequality"
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which accounts for deviations of the earth's surface from sphericity, regardless

of how those deviations arise.

We introduce several assumptions at this point: first, that p is a function

of radial distance 8 only and not a function of a and P; second, that - << a;

and third, that a- (a, 8) may be written as a sum of second degree surface

spherical harmonics YM (a, 8) ( e = 2). Of course any surface displacement in

general may be expressed as a sum of surface spherical harmonics of all de-

grees. We retain only the second degree harmonics since these are the most

important.

The second assumption allows us to write R, (A, a', 8' ) as the sum of two

terms, with the first term containing the volume integral evaluated over the

spherical earth and the second term taking care of the "surface inequality":

where p, is the density at the earth's surface.

The first term vanishes by the first assumption because the integral over

the angular part is zero. We are left with

R ( a, - a4  (a,/) s sin da dJR (aa', = 2 A3 a p a j) 3d

Now by the third assumption o- (a, 8) is a sum of second degree surface

harmonics; cos 2 T' - - is also a sum of second degree harmonics. We then3
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recognize that the integral in the above equation is a sum of inner products of

spherical harmonics. By use of the orthogonality of the Y. (a, )'s and keeping

track of normalization constants we may finally write

RI (A, a', ') T=  - G p ) r (a',3' ) (A-13)

(See Kaula 1968, pgs. 65-67, for a general expansion in surface harmonics.)

The disturbing function R I at longitude a' and colatitude P' is seen to be

proportional to the displacement of the surface at that same longitude and lati-

tude; hence a body in the vicinity of the earth is acted upon by a disturbing func-

tion which is proportional to the height of the displacement of the earth's surface

where the position vector from the center of the earth to the body pierces the

earth's surface.

If harmonics of degree n where n > 2 had been included in our expression

for the surface displacement, then they would appear in our expression for the
n+l

disturbing function correspondingly multiplied by ( For distances far

from the earth << 1, so that these higher order terms are less important

than the second degree terms.

C. Conversion of R I to R

Equation (A-13) gives the disturbing function as seen inertial space. Gen-

erally we want the disturbing function acting on the moon referred to the (ac-

celerated) earth. We show how to find it below.

Let ri be the position vector of the earth in some inertial coordinate sys-

tem. Likewise let r 2 be the position vector of the moon in this same coordinate

system. (We still assumelthat the earth and moon are the only two bodies in
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existence.) Let r12 = r2 - rl be the position of the moon as seen from the

earth.

If V is the potential of the earth, then by Newton's second law

Mr, = -mVV

mr 2 = mVV

and

• M+m -V (/M+m )r VV = V V

M+m
r12 is the acceleration of the moon as seen from the earth, and M V

represents the potential of the earth as seen from the moon. It is then clear

that we must write

M+m
R(A,, ') = R,

4 a)_3

= rG M P a cr (a', 8') (A-14)

as the disturbing function acting on the moon as seen from the earth.

D. The Tidal Disturbing Function

The forces acting in Equation (A-9) displace mass on the earth; the dis-

placed mass acts gravitationally on the moon and affects its motion.

Assume that the earth responds separately to the centrifugal and the tide-

raising force so that we may write

o (a,8 = o c(a, + (a,
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where o- is the displacement of the earth caused by the centrifugal force and-r t

is the displacement of the surface caused by the tide-raising force. Equa-

tion (A-14) then becomes

R(A,a',8' Rc(A,a,8 + Rt(A,a,8)

where again the subscripts "c" and "t" mean "centrifugal" and "tidal" respec-

tively. We will call

4 /M+m\ lNa3

Rt (Ad,' ' )  7 p, a 0t (a',p') (A-15)

the tidal disturbing function.

At this point we must take great pains to make clear the distinction between

the tide-raising and tidally disturbed body. The two are not necessarily the

same and must in any case be kept mathematically distinct to avoid incorrect

derivations. We explain this below.

Suppose we wished to find the action of the tides raised on Mars by Phobos

on Mars' other moon Deimos. In the above discussion Phobos (the tide-raiser)

is at point r = (x, y, z), and Deimos (the tidally disturbed body) is at A =

(x', y', z'). The force per unit mass on Deimos caused by Phobos' tides is

- Rt -a Rt - - Rt _
V'Rt - i* + -- * + - k*.

-a 1 ay' z-a

Even though Rt depends on both x, y, z and x', y', z' the gradient operator acts

only on the x', y', z' coordinates. So much should be clear.

Now suppose we have the case we are interested in, namely the action of

the lunar tides raised on the earth on the moon itself. Here the tide-raiser is
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also the tidally disturbed body, and the positions (x', y', z') and (x, y, z) are the

same. We cannot drop the primes appearing in R t and apply the gradient

a- '- '
i* + - j* +- k*

'x By 'z

to find the force per unit mass of the moon however, since the gradient operator

can act only on the disturbed body's coordinates to retain the proper meaning of

force per unit mass; thus the distinction between the tide-raiser and tidally dis-

turbed body must be kept, even though they may be one and the same object.

Darwin keeps the distinction clear in his 1880 paper by introducing the in-

teresting artifice of giving the earth two satellites; the tide-raiser he calls

Diana and the tidally disturbed body is the moon. When considering the action

of lunar tides on the moon, Diana and the moon are, of course, the same object.



APPENDIX B

COOLING OF A PLANET BY RADIATIVE LOSS

Let us suppose that a planet in empty space is cooling off by radiating heat

into space from its surface according to the Stefan-Boltzmann law. Solar heating

is neglected, and the planet is not surrounded by an atmosphere.

Let us assume that the temperature distribution inside the planet has the

form

T(r, t) = T(t) F(r) (B-l)

where

t = time

r = radial distance

T (r, t) = temperature at distance r and time t

T s (t) = surface temperature at time t

F (r) = some function of radial distance

Note that the temperature distribution has spherical symmetry.

The planet radiates like a black body so that the amount of energy d Q given

off in a time dt is

dQ - 4 7T R2 crT(t) dt (B-2)

Here

R = radius of planet

a= Stefan-Boltzmann constant
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As the planet cools off, each element of mass d m inside the earth gives up

an amount of heat

dQdm = Cp dT(r, t) dm

in time dt, where Cp is the specific heat at constant pressure.

The total amount of heat given off by the planet in time d t is then

dQ = fMa of C dT(r, t) dm

the planet

This must be equal to Equation (B-2), so

JCp dT(r, t) dm -47 R2 cr T4(t) dt (B-3)

Now from Equation (B-l)

dT(r, t) = dTs(t ) F(r)

gives the change in temperature with time, so that Equation (B-3) becomes

fCpd Ts(t ) F(r) dm = dTs(t) fCp F(r) dm

= -4n R2 cr T4(t) dt

Let

C F(r) dm = I.

Note that if we assume p has spherical symmetry, we may write dm =

p (r) 47 r 2 dr to show dm as an explicit function of r.
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The above equation can be written

d T (t) 47T R 2 o,

T4 (t) I

This may be integrated to give

1 Ct 47 R2 o

47 R2

I (t - to)

which may be written

T, (to)
Ts (t) =  (B-4)

12 r R2a 1/3
1+ I T(t 0 ) (t - t o0 )

This expression gives the surface temperature as a function of time.

If F (r) is known, the temperature at any point r at time t is given by

Ts(to) F(r)
T (r, t) =  (B-5)

12 7 R2 oTs3 (t 1/3

1 +I (t - to

Now suppose that Cp is a constant so that we may write

I = CF(r)dm = C fF(r) dm

C M fT. (t) F (r) dm

Ts(t) M
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CpM fT(rt)dm <T (t)>
T (t) M p Ts(t)

where M is the mass of the planet and

T (r, t) dm

<T(t)> = M

is the average temperature inside the planet weighted by mass.

Set

T (t) _ surface temperature
< T (t)> average temperature

Z varies from ~ 1 to probably - for any plausible temperature distribution.

Also set

12 7T R20

MC
P

S has a characteristic value for each planet.

Equation (B-4) becomes using this notation

T, (to)
T (t) =  (B-6)

1 + ZS To3(to) (t- to)] / 3

To give an example, for the earth

R = 6. 37 x 108 cm

M = 5.98 x 10 2 7 g
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Cp 1 x 107 erg/g-deg

S = 1.47 x 10-2o deg-3
sec

For Z = and T (to) = 30000K T falls to half its value in about 1700 years.

To demonstrate that a temperature distribution of the form

T(r, t) = T (t) F(r) (B-l)

is not unrealistic, we note that the adiabatic temperature gradient is given by

dT aTg
= - p (B-7)dr C

P

where

a = coefficient of compressibility

g = gravitational acceleration

The above equation may be rewritten as

dT ag- dr
T CpP

If the right side depends solely on r, we have

log T )= C-- dr

or

T T e ag drT = T. e r = T F(r)
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where

Ts = surface temperature

and

F(r)= e cd

If the planet cools off in such a manner as to maintain the adiabatic tem-

perature gradient at all times, T s becomes a function of time and

T = Ts (t) F (r)

This is exactly the form which we assumed the temperature distribution

had.



APPENDIX C

COMPUTER PROGRAM FOR CONSTANT VISCOSITY

The computer program given in this appendix is discussed in Chapter III,

Section C, and in the comments listed in the program itself.
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C*****T-IS IS---T- E- --- --- --- ---- - -

C***** THIS PROGRAM INTEGRATES DARWINS (1880) EQUATIONS TO GIVE THE

C-- EVOLUT-ION OF THE -GO NS-T4 R CULA -GRI--FR"-A-C-ONSTANT VIeSCSVTY
C OF THE EARTH.

-C---- O-AR W I-44 880- -- IS-------- .------- -----
C CN THE SECULAR CHANGES IN THE ELEMENTS OF THE ORBIT OF A SATELLITE

C-- RE-VLVING ABOUT-A TtOAL-L4 GDSTORTE-PLANE --

C IN

-- C---- SC lENTIF-I-C -PAPE6-A--Y !-&IR-GER40ARD- 0ARW IN - -V-C 2- - PP 208-48
C CAMBRIDGE UNIVERSITY PRESS. 1908.

--...----- T-- ,----T --- t INSAR-- --PG2 $ as* 44hL2 -E aLTICr1Ne z '4a--

C AND THE TWO PRECEEDING EQUATION 75.)

- ------. T- E-- P-APER--CAN4-A.LS- -& =, FGCUD I0'
C PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY. VOL. 171. 1880.

--- ---P-- - ---- 9 J.----
C THE PROGRAM ALLOWS TWO APPROACHES - TO USE ALL THE TERMS IN

_- --------- A-A EQUAT4WNS - OR KEEP ONLY EPNS--P T D N DING sgC'nN
C CRDER IN K=SIN((I*J)/2). THE LATTER WE CALL THE SECOND ORDER

----- APFR -4A-TIN

C THE EQUATIONS CAN BE INTEGRATED FORWARD OR BACKWARD IN TIME*

--- C-----fEiSND-NUPON HET-Mt v*- M-TI-PE-G_-
C THE PROGRAM STARTS BY INTEGRATING WITH CONSTANT TIME INTERVALS

--- --- DES T,-i FOR- Q-S TEP ATE TER NOS4.. PS-4-SITCH$ES nSVR-
C CONSTANT LM INTERVALS (CHOSEN IN THE PROGRAM TO GIVE CXI= TO ABOUT

-f-- .-- --. ,.+, "-ALLT--T SU.ETTTE--PER -- H ANGE I 1 Oi- ! I c

C LESS THAN CRIT. IF THE FRACTIONAL CHANGE IS GREATER THAN CRIT* THE

I------ - TS 4$- -NT--T--F-aArT-NAL -CHANG= IESc TLANCR-T-
C CRIT WAS INTRODUCED TO PREVENT LARGE CHANGES IN ANGLE TO AVOIC

G Tm----- --- U l-Ii iR T TATAGM ONRSWIITCHCNG S FROM CONSTANT DELT TC
C CONSTANT DLM IS TO KEEP THE ITERATIONS FROM TAKING FOREVER. SINCE

-- C-------AT -IA-RGE X1 XI IS QUITE SXALl HR_-CST-A-T ELTT
C

-C-- - M OFr--- -AA--iS NOTATION - __

C.....C-ZERO =REFERENCE DISTANCE
SC--- M GA 7 AO-f-CMEGA AT C--7Rin
C.....SMALL K=C*(CMEGA-ZERC)*(C-ZERO)/(8IG G)*(SIG M)*(SMALL M)

LAllW7FRntL/latr;Zr. nfMail M)I/cf-7rFl**3

C...•GOTHIC SMALL G=(2/5)*(SMALL G)/(SMALL A)
C-.-..-..RT rSllVCII' RAl CRAVITATT1NAl C N-TNT _

C..***..SMLL A=RADIUS OF THE EARTH

r.---, IG U=MAR F T-F FADT.

C....SMALL M=NASS OF THE MOON
_C--- -.... CMA1 ICaA-tTATI#NAI CnNqTANT AT THF FARTHS SURFACE

C.....W IS THE DENSITY OF THE EARTH

C..;MIC HAUPF CIIRATItlTTFl RIC C FOCR DARWINS MU ARVF

C
rC*M***IIc CTPt S trlo npFFlywr TmF MrsT TMpnDTANT OJANTITPR-.

C***.. XI IS SQRT(EARTH-MOON DISTANCE/REFERENCE DISTANCE).
C--- .... 7r IS Tio PiFsPFWMrv nTANCF. IPDF TM UNIT i OF FATH DATT
C AND WHERE N=2*OMEGA.
r.-.- nOP RTITFAml. i-71VR'A5MaI A*aDO

C.**...N IS THE ROTATIONAL ANGULAR VELOCITY OF THE EARTH IN 10**-4 /SEC
S Ir -Ic MI TrDI M TE UAI WC GIVE 1 

IN I TIC DlRACDAM RY t l**ht Tn CT THF-

C . VALUE IN CGS UNITS.)
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Ce.... .OEGA IS TfE OR1BAektA- VtCIY-OF He-N UNtT3 -OP--
C 10**-4 /SEC.

-wr rP - u- * 0 AN C T~L BETEE+*- YE-5AR-SG4UTOR-IAL--N6A-- A#*D-TlE--- --

C PLANE OF THE MOONS ORBIT. PSI=I + J.
-r -tS - -ANGLE-E- EEE- -H--E*RF+HS--E4OATOR -A-PLANE AND T -- -
C INVARIABLE PLANE.

.J." I-S5 T E- -BETWEEN THE- -'OON- -RO8TAL -PLAN-AND F -4VAR AB----
C PLANE.

.S I* In * A J -PAI -S.-XPSI-X-- AN -X - APE-T44E -- -S -AGLE4--
C IN DEGREES.

--. O .C AO -J--AR6E-T4HE- C-AN$E-4N--THE-RESPECEAES-------------
C.....VIS IS THE EARTHS VISCOSITY IN UNITS OF 10*416 CGS.

-Gr---LM- -SES- T+5G-TAL-ANUL AR-- MGME4T O T -- YQPS-E-M-4N-KT -OP-
C 10**40 CGS.

-c--T . T-ATOANAL -ANGUL A-MGNTUM-F--T-4 -EA 4--N--U-TS--OF --
C 10**40 CGS. LE=C*N.

-- rm-0CLM A -N--CLE-ARE - ThE --RE PECIE-CHANGES -I--- M-ANO--LE-- -------
C.*...LT IS TI-E TOTAL ANGULAR MOMENTUM OF THE SYSTEM IN UNITS OF

C..***C IS THE MOMENT OF INERTIA OF THE EARTH IN LNITS OF 10**44 CGS.
C C-Z4ALL *Dw -
C.....T IS THE TIME IN UNITS OF IC**9 SEC. DELT IS THE CHANGE IN T.
C*****E SECTION-.----
C

C NOTATION) TIMES B (AS DEFINED HERE) IN UNITS OF 10**31 CGS.
e .-.-. 1S ZORTHOI GOSMALL A10(816 ?4ISIMAlLtt *iH*(SIG M1)(SPtALL IN
C LNITS OF 10**40 CGS. LMnB*XI.

C....A3 IS SORT((BIG G)*(BIG M+SMALL M)/(SMALL A)**3)/DS**3 IN UNITS OF
-C--- - **-4- SE-C.--GEA=CAt3---I-**- -).- -*T--

C
** .SECTION-EXPLAI THE -iTIAL INPUT DATA
C.....NRUN IS THE NUMBER OF DATA CARDS TO BE READ. ALL INITIAL DATA FOR

-C- A -A--S- -UI I CONTAINED CI- A -S-I"SINGL CARD
C.....CAIT IS T-E MAXIMUM CHANGE PERMITTED IN THE ABSOLUTE VALUES OF

.MTIMNE-tI O. BATCH ..OF lUh -4EAT--FORWARD IN TINE . AN ..
C MTIME=-I FOR INTEGRATION BACKWARD IN TIME.

---- - 0 4I -A- 0GJ'J I AI NGLE STP -

C.....ANGLE = INITIAL VALUE FOR PSI=I + J IN RADIANS.
--C-. ..- ---- It-I T----LlE F I ~ t- I_ 

'
x

C.....VISF = VISCOSITY OF THE EARTH IN UNITS OF 10**16 CGS.
G. " DELTI F - STEP IZ- 4,--T4--T IN--UNITs -OFc -10 __--_

C DELTIF SHOULD ALWAYS BE POSITIVE.
C.. .. X-I-MA-- TI" HMAXIMU rV : 1-CF-X -TO WHICHl THE P4ROGRAi INTEGRATE-
C THE RUN STOPS WHEN XI = XIVAX.
-r TSTART - NITTA' -VAI M-OF--MTE T-hl IITS= FT I Sni C - -
C*..NP - THE NUMBER OF ITERATICNS DESIRED USING CONSTANT STEP SIZE IN
C- TIME __

C.....NF=I, NL-I MEANS THE PROGRAM USES THE SECOND ORDER APPROXIMATION.
rC H..r . Ns M-l IAN TUi U0fl.DOAM ISFS Al I TMF TFRMA TN fARMINw

C EQUATIONS.
r gl 9 N isl MW-AhI 7L- D IFP.All DRUNA ROTH TI.F ~4P fND OflRPR

C APPROXIMATICN AND DARWINS FULL EQUATIONS ON THE INITIAL DATA.
.. 1--l GTS A CPECK ON THI HDATA RIOM nl TIhf Ih iS RD
C APPROXIMATICN BY ALVING THE STEP SIZES AND DOUBLING THE NUMBER OF
C STEPS -ND REPEAT ING-- TEIM l IF THE C . r NOT DS Ran: Nucl
C....NC2 PERFORMS THE SAME FUNCTION AS NCI FOR THE FULL EQUATIONS.
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N- --- i-r NASfT --- l-E--T-A*t-MUBR--CFT-STEPS PER MTTEO IN-ANY ONE RUtNr THE

C RUN TERMINATES IF NLAST IS EXCEEDED.

- 44***444If-SC G - - ---- -

C--------- C C--SE --------- ---- --- -- -----

ISH 0002 DOUBLE PRECISION DZEROtC*LT*Al A2oA3oA4oBoANGLEXIoVISLM.CCo

---- L-E--*4 E-A GAK,#-TK.rSF. -- TG -9G 1G t 1 -OL-E . DL. --- LT4T OETi- DS&--

2 XIMAX

------ -- ---.--- gOUSLE- PRECISION- A Y-l0.DELTI - --.-. ---

ISt 0004 DOUBLE PRECISION TF*SF*TF2,SF2.TG2*SG2.THtSH

-- -05----- 4E-PRC-IS-IN PS-OPS ---------- -----.------.

ISN 0006 DOUBLE PRECISION XIFVISF9DELTIF.TSTART

-)-8-7 -......- -PORILSE P IS-O -, T2- TJ ,T4 - 5
4 

TT-T7 T&T g-1 O-- ,14T2 * -1243*TI4-

1 T15T16*17T18T19*T20*T211T22,T23,T24*T25

-454-N0504--- ---- - OOUBL--RIC4S--SS.SJ+--4 >. --- --- ----

ISh 0009 DOUBLE PRECISION LRIR2.P3*DIIDJJ

-- t- - 0 - - C -04-,4 PRECS 44CNSO L1 ------------. ----

ISh 001*1 CZERO=3. 338705D C

-- 4 -04 ---- C=... . .. C c
ISfL 0013 LT=34.200

--- I- - --------DS-=DSQRT CZER -- . . .---. -.. . ..

ISL 0015 AI1.31IEI57D4*C/DZERO**6

- S-01-40--.- - - --A2=2. 56 00-- -. . . .

ISN 0017 EB3.6E1701DO*DS

--4- 0018 -AS=L.4010 DZEO*S) -O-_-....

ISK 0019 UI=0.ODO

-- -0020- RE D--4--- -Stt-54 )-NRUN-, CRI T-tMTI ME----- -- -- -. .

ISt 0021 t FORMAT (15#F10.215)

-- IS-1 0022-- -- ---- -- t00 NR-I .NRUN ----- --- ...

C*****THtS SECTION READS IN THE INITIAL DATA. ANGLE IS IN RADIANS.

--- S-N 4423- -0 a - ---RE-D- 4 AN-)--At.GLE.-XF VISF *DELT-IF-.-MAX.T-ST ART- -NP F.ML -C-INC2 -

I NLAST

----- S.-- 0024- - 2 -4FORMAT--(-09.2,01-4.2---4040.2- t4-42.7- ....

C*****ENC SECTION.

-- 40025 - - CO -100-NA=NF. . - ---- .---

ISh 0026 IF (NA .EO. I) NDNC1

S-IS* 0028 - IF 4kNA *EQ 2)- ND=NC2 ..

ISN 0030 NC= 1 + ND

SIS 0031 -------------- DO .100 NBa L NC - -- . . --..... _.. .. .

ISN 0032 NCECK=-I

- S--S- -0033 - 40 -xI=XIFE--

ISt 0034 NC=NP

IS--0035 -- IF (NB .EQ 2) N-Q;2*NP ..

IS#, 0037 VIS=VISF

-- S -t4--0038 ---- DETL=ELI- I--

ISF 0039 T=TSTART

- S 0~040 -- -A4VISA2 -.

C*****THIS SECTION WRITES OUT THE INPUT DATA.

-IS- 0041 .. WRITE (6.6) VIS --

ISt, 0042 6 FORMAT (IHl,/// IOXOHVISCCSITY,*DIO.2oIOH 10**I6CGS// )

-- 4s--043 WRITE (6.1s l-8 T IF*.XLMA..N C*NF.NAL. N Ci-Nr 2-
N L

AS 
_

-

ISt, 0044 18 FORMAT (5X*EDELTI=O10 .3IX9gHOlD**9 SECSX96HXIMAX=,CO.3.5X,
L 3H NO,= 55X, 3HNF=,11 S X, 3 hLIal sYX.&H C1 =al lt R *. 'NCRll2 LaSL--

2 6HNLASTSo15*///)

-1S SI 0045 - WRITE (6.52) CRIT*MTIME-

ISt 0046 52 FORMAT (5X.5HCRITSeFIO.4.5X6HMTIME=t.13///)

C** **TPIDS _SECT ION. W-IT T HE AI ..

C*****THIS SECTION WRITES THE HEADOING.
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___ __ C ..- AI. -QUANTi T T -#1tTt0ti -AR--tn--tt#-fT- S- t-It4 RooR
C NOTE THAT UNDER HEADINGS PSI* I AND J XPSI. XII. AND XJ ARE

-- -- --- - - -PR.N-- -Tw- f*i-VS-GI-VfING -ALL -AL-ES--f-N--DE6RES-A SSO--T44E-F IRf -I--AND--
C DJ LISTED (READING FROM LEFT TO RIGHT) IS FOR THE INFINITE

- - - -- ----- --- IiGe-SCI----I-T-- THE -I-NI-NFTE --V-SCG&IT- CN(E---IN--ANGLE---I-S- T BE -

C COMPAPED TO T-E ACTUAL CHANGE IN ANGLE (SECOND DI, DJ HEADING.)
19 - - -+6wth --- -- -- T-G

ISO 0048 7 FORMAT (6X,4HTIMEt9X.2HXI*PX@IHN*8X*5H PSI 93XoSHOMEGA.7X*2HDI.IOX

C*****ENO SECTION.

- -- .. ----- G***.. -V-IS-~C- T COMPUTES THWE-I4VI-TIAAL--LUES- O LE-Nt,--EGA -I- A0--J----
ISlk 0049 NT=O

-iSt - e I- -- --- -- -- _-- ---- ------

ISl 0051 CC=DCOS(ANGLE)

-S 052 - - - S IANGLE -- - - ---
ISO 003 XPSI=180.0*ANGLE/3.14I59

-flt "5-4 - IS -44 T15 Ofkf

ISh 0055 17 CONTINUE
S--- 056 -- - ----2- LE-t*-.**.--+ -SRT t M L*CC) *2 -+-T2 ---- 4)-.-- ..... .. ...

ISO 0057 XI=LM/E

IS? 0059 OMEGA=A3/(XI**3)

- +S -06 -------- -- SS.OS...t..ANG.. --- - -- -------- - --

ISN 0061 SJ=SS/CSQRT(SS**2 + (CC + LY/LE)**2)

---- S-I. 9--- ------- ----- dR-S INf -S----------- -- _-- - --

ISO 0063 t=ANGLE-J

- -"S--00-64- ----- 1**t8 0I 3-r+4-&59------- _

IS1 0065 XJ=180.0*J/3.14159
--. .....- ----.- EN -S ECT IN1 . ..-.-.. . .

C.....UI IS USED ONLY HERE TO FILL IN ZEROS.

-- ---- 66-- - -.- -- -- -- T--P S-- -EGA-- .--.---..--------......---

ISO 0067 5 AY=0.500*PSI

-- S- F"---------- --- f -A TEO.---_)-_ -- --- --- --

C*****THIS SECTION COMPUTES ALL THE TERMS IN DARWINS EQUATIONS.
-- +S1- -- SIAAY--.------- -- - -- - - --

ISt 0071 P=CCOS(AY)

- -COMPT4.E -T-ANGENTS. SINGS OF THE LAG-AHGLE----------------

IS 0072 TF=2.0*N*A4
-- S t-4073 --- - F2.0TF------ P-a *.(--OTF-**24------ --

ISh 0074 TF2=2.0*(h+CMEGA)*A4

-- 7 -8~ S --- S$-2.O0*-L -4-4TF-2 *24 a- ---------l - ....----.

ISO 0076 TG2=(N+2.0*CMEGA) *A4

ISh 0078 TH=2.0*OMEGA*A4

ISO 0080 TF =2.0*(N-CMEGA)A4
- -4--Q--S4902.8*-444F ' -1 04 TF it 2 __ __

ISO 0082 TG=N*A4
l i~t 0031 --- rtCWk SG2-i 31 ___---- --------
ISt 0084 TGI=(N-2.0*OMEGA)*A4

C...*.COIFUTE TIE TERMS.

ISL 0087 T2=2.0*P*4*K**4*SF
IS-) 0089 T4=P-m4.0K*8*-SG2 -"--:....

ISO 0089 T4-P*06***2*SGI
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31 0091o T6=P**2*K*6*SO2
-fS+-404 -- -- 4 *~SF-*- -* ---- _ ----

I1t 009.3 T8=K**e*SF2
*00-"94 ---T94v$*I2SC --------. -- ----- -2

IS. 0095 T10=4 O*P*:*2*K ::SG2

151. 0097 T12=0.O*P**7*K*SFI

151 0099 Tl*=O .SOO*P*K**7*5F2

151. 0101 T16-0.50P5K*(P**2-3.O:*K*2)*SGIl

1St. 0103 '"5 :.00P*K***(3.0*P**2-K**2)*SG2

351. 0105 T20=P**3*K**3*(P**2-K**2)*SF
-1-t.+--0406- T2&-0 raC*PttKt7*SF2__-__________

1St. 0107 T22=0.500*P**C*K*(P**2+3.0*c**2)*SGI

1St 0108*2 .005PKtP't-l2)t)SG_
151 0109T24-0.500*P*K**5*(3.***24K**2 )SG2

65 0110i Te-2 sD5- 'ttirbgQ*I-
C*****ENO SECTION.

C~**T~ISSETIN COIPUIES -THEI CHANGES IN LE. LM i- AND FOR DGtR'41NS-

C FULL EQUATIONS.

1SP. 0112 OLN=0.500*AI*(T7-TST9-.TIO-TlI)*DELT/(XI**12)

1Stk 0114 D1IAl*(Tlg-T20-T21,T22-T23-T24-T2S)*OELT/(LE*X1**12),
- C~ttt lENDS6C-T-ON-.---

ISt. 0115s GO TO 27
----Cttl'THIs CT1* OMUTES TIE TRs IN THE SECOND ORDER APPROXIMATION-

is#, 0116 26 K-CSIM.AY)
;6A 0117 -- P- 0GOeY -A

C.....COMPUTE 7HE TANGENTS, SINES OF THE LAG ANGLES.

351. 0119 SFI22.O*TFI/( 1.0 4 TFI**2)

151.k 0121 SG=2.0*TG/( 1.0 + TG**2)
SO 0123 TG1=-N-4 0*OMvGA%9A4

I1k 0123 SGI=2.0*TG1/( 1.0 + TGI**2)
1St 0391-2 O*4$W&42^9,

351. 0125 SH=2.0*T14,( 1.0 + TH**2)
gas, 0106 To-2 pV*A4A

1St. 0127 SF.2*O*TF/( 1.0 + TF**2)

C. COP'PUZZ :11-C TERIS-
1t 0128 TIO0.500*P**8*SFI

359 0324- X2P*hA*'f*ft*CGt
1St. 0130 T3aP**6*K**2*SG
131h 0232 IA.o**f*F

1St. 0132 T5-4.0*P**6*X*02*SGI
,so$ a134i T 0. 5n*Uk**79"*qr I

351. 0134 T7=P**3*t(**3*SF
NSP 0135 TA1AnP-**3C

ISP. 0136 T9=0.5OO*P**?*K*SGI
1StN 0137 11
1S%. 0138 TlI1O.500*P**5*K*SG

159 01!39*S

1St. 0140 T13=0.500*P**7*K*SFI
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ISF 0142 T1E=0.SDO*P#*7*K*SG1

tI S-$ -O**-a - * -- PTt*1--.500 **5***3*-- ------- ------------ -------- -

IS 0144 T17=0.5DO*P**7*K*SG

-IS* -0t45------ --- OtO*P-*-5K**34S5 ------- ----------------

ISN 0146 T19=1.500*P**3*K*43*SH

C*****THIS SECTION COMPUTES THE CHANGES IN LE* LMt J, AND I FOR THE

------- - Ztf---N-~fEfftEcR APR)CfMT49N-- -- __--- - --- -- ----

ISN 0147 36 DLE=-AI*(T1+T2+T3)*DELT/(XI**12)

S1- -01486--- --- eMi*O50*4-T4+4-)-Et-/-4Df2+2 ----- - ___

ISf 0149 DJ=AI*O.500*(P**7*K*SGI-P**7*K*SF1-P**5*K*SG)*DELT/(LM*XI**12)

-S- 0150------- ------ --- *A* .500*4( P* 7*K*S I +P**7*4KSF-P**K*4-*04E-L-T/-44E XI **-2----
C*****END SECTION.

-]J-t N- -- --- €- Tf trf- ---

C*****THIS SECTION INSURES THAT DI/l OR DJ/J NEVER EXCEEDS CRIT.
-~~lf+ Q- -- F--ft- --- .. Gv )---t ,-t9r 38- ......... .......... ..... ......

IS1 0153 38 IF (J - 0.0) 19919,39

1isP 01A- -39--- I CI/I

IS 0155 . IF (RI - 0.0) 47,46,46

IS 0157 46 CONTINUE

-fS-O-5 0 RJ -- -- -_J_

ISN 0159 IF (RJ - 0.0) 49,48,48

-I-St3S 0160 --- Rim RJ -

ISP 0161 48 CONTINUE

-It= G6g -" - Ie :,(R 1 RT-l 34.34.35----- _

ISN 0163 34 IF (RJ - CRIT) 19,19.35
-f h- :t- -- -- 35---0 / 0 ------------ ~ -

ISN 0166 IF (NA *EO. 1) GO TO 36
_.... .... --*- -- E - 2-G-- G 37- --------- --

ISN 0169 19 CONTINUE

C11*****EZ SEeCTII.
C*****THIS SECTION HALVES THE STEP SIZE WHEN NCI OR NC2 EQUALS 1. NCHECK

C. ---K-E--RAK-F WHETHER THE STEP S...ZE. . -H-ALVID .FOR.... 4-- ----

ISt. 0170 IF (NB .EO. 2) GO TO 41

-ISf G172 G0 TO 2 --- - --___ - --

ISN 017"3 41 NCI-ECK=-NCHECK

tIh Q171 IF (NC8CKY _11 1) Go TO 43
IS. 0176 GO TO 42

-I-C-T- 0-377 -- a .T -LT/A2 0
ISF 0178 IF (NA *Eo. 1) GO TO 36

--- -0 IF-- .N ----. .( - G- O TO 37--_ _ ___._-_

ISf 0182 42 CONTINUE

C*****THIS SECTION INCREMENTS THE IMPORTANT QUANTITIES.

Is%0183 orsi-vi 0 Di
ISL 0184 ItI + CI

IS . 0180 X1-t1800*I /3.1415

Icl 0187 XJ I-6n a 14i 15$
ISF 0188 PSI=PSI # DI + DJ

isp a119 .P.19 ._--*p.. _ 159

IStL 0190 LE=LE+OLE

IS% 0192 N=LE/C

ISk 01984 IOEGA-i(X'LN/BtI

ISh 0194 XI-LM/B
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-- f S- ---- ----- ,iF*oet- __- -- _

C.....NT=NUMBER OF ITERATIONS DONE SO FAR IN A RUN.
-*--96 -------- NFNT+ -- -

C*****ENC SECTION.
-- - -C*****T-- -I-S**FCIS 54T N-4MOMPTE- -(+4EAC+ANGES 1-4 AND--J f4--4E-M4T-- -------

C INFINITE VISCOSITY (DARWIN 1880 PAGE 317.)
-- - -C -. rCOPUTA-T-IC--iS- -NG--- BE4GUN--NT- L-M I .004 1AVGD --DtNI Y

ISN 0197 IF (XI - 1.000100) 31,32932
-I -- -31- -- G0+4 0 _0 _

ISh 0199 CJJ=O.00DO

-4 4-6- 20 ------ - --- 9 TO -3 - .-...

ISN 0201 32 L=C*OMEGA/(LT-LM)
R-- 4 2--- . ------- 41-4.*L-*-44 .- L-#.-L0-2- -~- ---------. .. . . .
ISP 0203 R2=0.5CO*(I.0O(LT-LM) + 1.0/LM)*(1.0 + RI)

- 4- -0204 -5-- ------ ----R OS-0 .04-4 k-4 4 --10 Q
ISk 0205 DII=DOLWR2*1

-IS N t. -- - - -OM*RJ*-- - --- ---
ISh 0207 33 CONTINLE

.-. C-** ** EN - - ----SECT

C*****THIS SECTION PRINTS OUT THE NEW VALUES FOR THE IMPORTANT

ISh 0208 WRITE (6. ) T.XI.N.XPSI.OMEGA.DII.DJJoXIIeXJE0I.DJODPSI
--I-S- 0-9 -- -t--- - -0 ORIMAT -4-IX O 0t 4X,-3. X-010.5. 1U-X - Elnl 0 .5 4.J04 0..n .

1 2(1Xq Fg.3)o3(1XDIO.4))
. - . .-- --. .. tEN - SI T-ION----------

C*****TIIS SECTION DECIDES WHETHER CONSTANT DELT CA CONSTANT DLM SHOULD

C.....STATEMENT 12 GIVES CONSTANT STEP SIZE IN TIME.
---- Q . STATFE*E*Tr--13--ANO-4- V -NiTANT ST- S - _______

IS# 0210 IF (NT - NQ)12e12913
-- 150--24 --- 1-3--- rLTDA8S(r (0 072084* rnr r4 ____
ISN 0212 IF (NA EOQ. 2) GO TO 50

-4 - ----- ---- -- 0 ------- - ----- _ __ _

ISN 0215 50 DELT=CABS(0.0072089DO*I**12/(A1*0.5Do *(TT7T8+Tg-TIO-T11)))
-44--I-t.-----4- - ~ Ot'-T-I-N(C JE- ---- -- - - ---- ___ ________

ISh 0217 GO TO 14

--- '-28--- - -8LT=ELY-- -- - -- --- - ---- -- -- --

ISt 0219 14 CCNTINLE

C.....SHOULD INTEGRATION BE FORWAPD OR BACKWARD IN TIME?

C.....IS NLAST EXCEEDED?
--- S-t'2--02a-- F- NLAT,.90--- - __ __ ____

C.....IS XIMAX EXCEEDED?

C*****THIS SECTION COMPUTES THE TOTAL ANGULAR MOMENTUM AT THE END OF THE
C ISER-VE-S- A CHuS- *ICK - rI AM MFI I TMF ITPRATIDNM tSCMMF WtRKS- .

ISh 0224 99 CC=DCCS(PSI)

ISN 0226 WRITE (6.11) LT9LTC
SS16 4 fl7 11 A / . NTIL t I1 tI AHFTNA Aht-. MflM

1.014.8)

IS 0229 STOP
1t6 02t ------ M- 0 _ __



APPENDIX D

COMPUTER PROGRAM FOR VARIABLE VISCOSITY

The computer program given in this appendix is discussed in Chapter III,

Section D, and in the comments listed in the program itself.

93
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CC**** **************

C-t*TRIS IS TIDEZ -- l.. -.. -- _ __ _________ ____ __

C***** THIS PROGRAM INTEGRATES DARWINS (1880) EQUATIONS TO' GIVE THE
-C .-... ELU.rIDN.- FTHE-MMnNS.j IRCL_ ARIUL nQaIT FOfr A VARIARBLF VISCOSITY

C OF THE EARTH.

-C __ __ ARWIM a___Ltj_._) .R__

C ON THE SECULAR CHANGES IN THE ELEMENTS OF THE ORBIT OF A SATELLITE

SC REVOLVING ABOUIT A. TIDALLY _.D-STORTEJDPLANET ... __

C IN
C SCIENTIFIC PAPERS BY._.SIR EORGE.WARD ARWIN VAOI 2 PP 208-382
C CAMBRIDGE UNIVERSITY PRESS, 1908.

-C .. ~IHEE QUAI .NS ARE_ G R_ .. P S_2R__A_N__2 _ __EQU.ALLNS 71 __73.
C AND THE TWO PRECEEDING EQUATION 75.)

C THE. PAPER -CA-_ALSO ~BEFOUND_ IN
C PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY* VOL. 171. 1880,

C PP 713,-8 $91-

C THE PROGRAM ALLOWS TWO APPROACHES - TO USE ALL THE TERMS IN

C DARWINS EOUAT1- C L OR KEEP ONLY TERMS UP TO AND INCLUDING SECOND

C ORDER IN K=SIN((I+J)/2). THE LATTER WE CALL THE SECOND ORDER

S APRR1Xi4ATU IA T ___- --

C THE EQUATIONS CAN BE INTEGRATED FORWARD OR BACKWARD IN TIME,

C DEPENDJhALGLPAIRNBETHER MT I ME=1 ORR -1. ____.____

C THE PROGRAM STARTS BY INTEGRATING WITH CONSTANT TIME INTERVALS

_ T I QES THIS FOR NO STEPSAFTER NO STEPS IT SWITCHES OVER TO

C CONSTANT LM INTERVALS (CHOSEN IN THE PROGRAM TO GIVE DXI= TO ABOUT

C. 0001i -ALL TIS_ASSUM HAT THE PER CENT CHANGE IN I OR J IS
C LESS THAN CRIT. IF THE FRACTIONAL CHANGE IS GREATER THAN CRIT, THE

__C_ INTRF.VAL- ISSHALVED UNTIL THE FRACTIONAL CHANGE IS LESS THAN CRIT.
C CRIT WAS INTRODUCED TO PREVENT LARGE CHANGES IN ANGLE TO AVOID

C CUMULATIVE ERROR. THE STRATAGEM OF SWITCHING FROM CONSTANT CELT TO
C CONSTANI DLM IS TO KEEP THE ITERATIONS FROM TAKING FOREVER, SINCE

C AT LARGE XI DXI IS QUITE SMALL FOR CONSTANT DELT.

C

C. ,.SOME OF DARWINS NOTATION.
C.....C-ZERO =REFRENCE DISTANCE

_Ct_,~CMEGA-ZERO=lMEGA AT C-ZERO
C.....SMALL K=C*(OMEGA-ZERO)*(C-ZERO)/(BIG G)*(BIG M)*(SMALL Mi

C.... TAU-ZEPO=(3/2)*(BIG G)*(SMALL M)/(C-ZERO)**3

C.....GOTHIC SMALL G=(2/5)*(SMALL G)/(SMALL A)

Ce****oIG G=UNIVERSAL GRAVITATIONAL CONSTANT
C.....SMALL A=RADIUS OF THE EARTH
CeeoBIG M=MASS OF THE EARTH.
C.....SMALL M=MASS OF THE MOON

LAmSMAHL LG=GRAVITATIONAL CONSTANT AT THE EARTHS SURFACE
C.....W IS THE DENSITY OF THE EARTH
C.....WE HAVE SUBSTITUTED BIG G FOR DARWINS MU ABOVE.
C

C*****THIS SECTION DEFINES THE MCST IMOORTANT QUANTITIES.
C.....XT IS SQRT(EARTH-MOON DISTANCE/REFERENCE DISTANCE).

C..,..DZERO IS TH7 REFERENCE DISTANCE. HERE IN UNITS OF EARTH RADII,

C AND WHERE N=2*OMEGA.

C. ..oDS=SQRT(DZERO). C-ZERO=SMALL A*DS.

C.....N IS THE ROTATIONAL ANGULAR VELOCITY OF THE EARTH IN 10**-4 /SEC

C (I.E. MULTIPLY THE VALUE GIVEN IN THE PROGRAM BY 10**-4 TO GET THF
C VALUE IN CGS UNITS.)
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C 10**-4 /SEC.
- OCT Tre TWEO I l A FTFPLMW TmH FADTMS FOlTnRTAt DIAM AML T ___

C PLANE ODF THE MOONS ORBIT. PSI=I + J.

f-C-..--.- .. THE~r.AMNlI -BTWEENt-E ?ARTHa FIllATORTAl Pt ANF AND THE ..___

C INVARIABLE PLANE.
S- -.-..- TI THF ANG' F RPTWFF N TP MOONS ORRITAL PI ANF AND TIF INVARIAR F

C PLANE.
C ,,... _DT1I A n A ARF TN RAITANS. XPST.XIT. AND XJ ARF THE SAMF ANGLES

C IN DEGREES.
C-----.nD.T4T, An lJ AEF THF CHANGFE IN THE RESPECTIVE ANGLES.

C.....VIS IS THE EARTHS VISCOSITY IN UNITS OF 10*16 CGS.
C-.-..lM TR _TEOaRITAL ANGtULAR MOMFNTUM OF THE SYSTEM IN UNITS OF
C 10**40 CGS.
rf.....I I THE 2-TATIOAI AMlfll AI MMFMTIlM OF THF PARTH IN UNITS OF

C 10**40 CGS. LE=C*N.
C-.... rM AND I AfL RF TF RFPFCTTVF CHANG S TN LM AMD I F.

C.....LT IS THE TOTAL ANGULAR MOMENTUM OF THE SYSTEM IN UNITS OF
-C4-- o--_ CGS-_
C.....C IS THE MOMENT OF INERTIA OF THE EARTH IN UNITS OF 10**44 CGS.
C CrMAl f*RKn.

C.....T IS THE TIME IN UNITS OF 10**9 SEC. DELT IS THE CHANGE IN T.
C*At* EENSEC1LaTN
C
C--.--At IR IfMAIl KI tTAIl-7FRlt**2/fIrGTHIC SMAIL G I tN OARWINS

C NOTATION) TIMES B (AS DEFINED HERE) IN UNITS OF 10**31 CGS.
f. a- TC RlDTIflrT. F.G*MA I A/IRTIG M4SMAI I M tfRTA. MiIfMAI l MIASn IN

C UNITS OF 10**40 CGS. LM=B*XI.
,,,,A IT I/(*ISUAll Gr.)*tMAII AIfrMAtLL MIITN UNITS OF 10**-12 CGS,
C.....A3 IS SQRT((BIG G)*(BIG M+SMALL M)/(SMALL A)**3)/DS**3 IN UNITS OF
C -- t- A RPC- DMGAA3/I( St**3SI.

C
t***kATHF TIMP VADATINM OF THP VTSCOSITY IS GITVEN BY

C VIS=VISZ*EXP(BB/TEMPI
C...VT7=CnFFFCTFNT OF VISCOSITY IN UNITS OF 10*16 CGS.

C.....BB=ACTIVATION TEMPERATURE IN DEGREES KELVIN.
_C--...TMP IS THF TEMPERATURE OF THE EARTH IN DEGREES KELVIN.

C.....THE TIME VARIATION OF TEMPERATURE OF THE EARTH IS GIVEN BY
r TFMP=TFMP7/tI 1 .O+BETA*ITEMPZ**3*(T-TSTARTI )**03331

C..**..TEMPZ=TEMPERATURE OF THE EARTH AT TIME TSTART, GIVEN IN DEGREES K.
..... RPETAM*IAPRFA OF FARTH)*(ITEFAN-ROLTZ. CONST)/(BIG M*SPECIFIC HEATI

C TIMES
r SURFACE TFMP./AVG. TEMP. OF EARTH, ROUGHLY FROM 1/2 TO MAYBE 1/50
C FOR SPF. HEAT=10**7 ERG/GRAM*DEG BETA=1.47 10**-11/DEG**3*10**9SEC

A.....TlnMER IS THE LOVEST TEMPFRATURE PERMITTEOD. F TEMP DROPS BELOW
C TLOWER IN THE EQUATION FOR TEMP. THEN TLOWER IS USED IN THE
* VIaCOITY EOUATION. TLnOpR IN DEGREES KELVIN.
C
C*****THIS SECTION EXPLAINS THE INITIAL INPUT DATA.
C..***NRUN IS THE NUMBER OF RUNS TO BE MADE. ALL INITIAL DATA FOR A RUN
r TI RFAr FROM TWO CONSECUTIVF CARDS.

C.....CRIT IS THE MAXIMUM CHANGE PERMITTED IN THE ABSOLUTE VALUES OF
C DT/T- AND.DJ/J IN A SINGLE STEP,
C.....MTIME=+1 FOR A BATCH OF RUNS INTEGRATED FORWARD IN TIME. AND
C MTIME-I FOR INTEGRATION BACKWARD IN TIME.
C.....ANGLE = INITIAL VALUE FOR PSI=I + J IN RADIANS*
C-.....- F INITIAL VALUE OF XI.

C*....VISF = VISCOSITY OF THE EARTH IN UNITS OF 10**16 CGS.
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C - VISF IS NOT USED--N-T IS FRtN, ,. , ,..... V L" AY BE USED.
C.....DELTIF = STEP SIZE IN TIME IN UNITS OF 10**9 SEC.

_C_1-.. - DELTIE- SHOULD ALWAYS. RFP TT TVF.

C.....XIMAX = THE MAXIMUM VALUE OF XI TO WHICH THE PROGRAM INTEGRATES.

C . THE RUN STOP-S, JWHENM X1T =_- 4A....___ ___

C.....TSTART = INITIAL VALUE OF TIME IN UNITS OF 10**9 SEC.

.... .NP THEb IUBER F__BAFITRATlTONS _EIRFD USING CONSTANT STEP SIZE IN

C TIMF.
. .F .N . LTLHE MANS THF PROGRAM USES THE SECOND ORDER APPROXIMATION.

Co....NF=2, NL=2 MEANS THE PROGRAM USES ALL THE TERMS IN DARWINS

C EOUATIONS

C.....NF=lo NL=2 MEANS THE PROGRAM RUNS BOTH THE SECOND ORDER

C APPROXIATONANDLARINS FULL EIATIONS ON THE INITIAL DATA.

C.....NC1=t GIVES A CHECK ON THE DATA RUN FOR THE SECOND ORDER

. ....... A NMATT& BA HALVING TIHESTEP SIZES AND DOUBLING THE NUMBER OF

C STEPS AND REPEATING THE RUN. IF THE CPECK IS NOT DESIRED. NC1=0.

.C....NC2E~ HORMHE&SAM_EFNCTION AS NC1 FOR THE FULL EQUATIONS.

C.....NLAST IS THE TOTAL NUMBER OF STEPS PERMITTED IN ANY ONE RUN. THE
C . R... UN__TMEINATFSF NLAST IS EXCEEDED*-------------- LF LAS
C*****END SECTION.

TIN On .nn.OULEF PRECISION DZERODC.LT.Al.A2.A3.A4.B.ANGLE*XI VIS.LMoCC.

1 LE.N.0MEGA.P*KoTF1 SFI eTGoSG*TGlSGleDLE.DLM. LTC.T.DELT.DS,

2___ i XIMAX

ISN 0003 DOUBLE PRECISION AYeDIDJ•DELTI
LTSN 0 04 __0 .0_ OUBL PRECISION TF.SF*TF2.SF2*TG2*SG29TH.SH

ISN 0005 DOUBLE PRECISION PSIoDPSI

TSN 0f ODBLF PRECISION XIF.VISF.OELTIF.TSTART

ISN 0007 DOUBLE PRECISION T1.T2*T3,T4.TST6.T7,T8T9T0TIO T T12*T13*T14.

__ __ .... .. 15 T 1* T17 T_ 9T20 T21 T22 T23 T24 T25

ISN 0008 DOUBLE PRECISION SS*SJJ.I

ISN 0009 __ __L__BI. jION L RI.R2 R3,DII DJJ

-ISN 0010 DOUBLE PRECISION TEMP.TEMPZ.BETATLOWERBB9EI1EE.VISZ
TAN D0011 D7wRO3 7 83387305DO

ISN 0012 C=8.11DO

_ISN 0013 .. ... IT=34.2D __

ISN 0014 DS=DSORT(DZERO)

_.TSN 0015 A=I .31317Df*C/DZERO**6
ISN 0016 A2=2.756DO0

15N 0017 B=3.681701DOQ*_DS

ISN 0018 A3=12.491 8500D/(DZERO*DS)

ISN 0019 ____ _UI=.DQ__
ISN 0020 READ (5S1) NRUN*CRIT*MTIME

ISN 0021 1 FORMAT (I5*FI0.2.IS)
ISN 0022 DO 100 NR=1.NRUN

C*****THIS SECTION READS IN THE INITIAL DATA. ANGLE IS IN RADIANS.

ISN 0023 READ (5.2) ANGLE XIFVISF.DELTIFXIMAX,TSTART.NP.NF.NL*NCI.NC2.

I NLAST

ISN 0024 2 FORMAT (D9.2sD1I.2.4DI0.2.I54T2sI7)

ISN 0025 READ (5.52) BB VIS Z.TEMPZ BETA*TLOWER

ISN 0026 52 FORMAT (5010.4)

C****END SECTION.

ISN 0027 DO 100 NAWNFoNL

ISN 0028 IF (NA .EQ. 1) NODNC1

ISN 0030 IF (NA .EQ. 2) NDNC2.

ISN 0032 -NC- 1 + NO

ISN 0033 00 100 NB=1.NC

ISN 0034 . NCHECKw-I

ISN 0035 40 XI=XIF
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I-S O036 . - . N=NP
ISN 0037 IF (NB .EQ. 2) NO=2*NP
-SN-0039 .--- -. ..... __ _._ ____ ________

ISN 0040 DELTI--DELTI
-ISN 0041 -t-- --- _

C*****THIS SECTION COMPUTES THE INITIAL VISCOSITY.
ISN 0042 - - - TEMP=TEWPZ/( (--.,0 BETAU.TE-MPZA *__T-ISTARItI*l.3331
ISN 0043 IF (TEMP - TLOWER) 50.50.51

.-ISOO0044 50 -... -TEMPTLO-WER __

ISN 0045 51 EI=BB/TEMP

- ISbL. 06 - EEwDEXPtE11

ISN 0047 VIS=VISZ*EE

SttC*****4tEN SECTION. _ __
ISN 0048 A4=VIS*A2

. t..T -I- .SECTI tIrS llt THE INPUMT DATA. ___
ISN 0049 WRITE (6.6)

ISN 0050 FORMAT -('1J --

ISN 0051 WRITE (6.53) BBSVISZ.BETA

-SN 0052 - 53 FORNII R=. 01~.-IX.7HDF RFF. - .CHVT-7 * 10.Ao. 110H1OttlA C
IGS,5X .5HBETA=.DIO.4.1X, I OH/10**9 SEC./)

-LS 01-4@ WRITE fA9.A TFMP7tl.IWFR

ISN 0054 54 FORMAT (5X,6HTEMPZ=ODIO.4lX7HDEGREES.SX.7HTLOWER=*D1O.4,IX7HDEG

IREES //)

ISN 0055 WRITE (6.18) DELTIF.XIMAXNQNFeNL.NClNC2*NLAST
ISM .006 -18P.OR.A.... -_ MAT x-HFI T1 .1- 9H109 S PC.SXdAHXTMAX=. 10.35X.

I 3HNO=,l5.5X.3HNF=I195X.3HNL= 15S X.4HNC1=I I.SX.4HNC2=j115X*
-- ----- F-HNIA Tw+T. I//)
ISN 0057 WRITE (6,57) CRIT.MTIME

ISN 005-8 - -7 FORMAT- tr5X,5CR-i=ErJ..L.-vXAHuMTMF=.I .///f
C*****END SECTION.

C** *4* THI SE.CTIDON WRITES. THE HEAITNG
C.....ALL QUANTITIES PRINTED OUT ARE IN UNITS GIVEN IN THE PROGRAM.

J T----NJnTF THAT - DER HFADTMNGS P5T. T. AND J XPSI. XTT. AND XJ ARF
C PRINTED. THUS GIVING ALL ANGLES IN DEGREES.

-- ISN 0059 . WRITE _ 7S) ........

ISN 0060 7 FORMAT (6X,4HTIMEs9x,2HXI9X,1HN.8X.5H PSI *3Xo5HOMEGA.7Xo3HVIS.9X
----- I AKTEP Z.ZH..AWH J. HX. 2HDTQ9X .2HO J 4, Q D $SI,/

C*****END SECTION.

T fSTHSCISTSECTl-MN. C-PUTES- -T INITIAL VALUES OF LE. N. OMEGA. I AND J
ISN 0061 NT=0O

.. ISN. 0062 LMB X .

ISN 0063 CC=DCOS(ANGLE)

1-IS L 0064 PSL=ANGLE ...
ISN 0065 XPSI=180.0*ANGLE/3.14159

-ISN0o0 - __ &6 -15 .-DELIDELT _
ISN 0067 17 CONTINUE

0SN046& -22_LEtLu C* +DSaWT.LALM*CCl**, + LT**2 - LM**2)
ISN 0069 XI=LM/B

. -S 007- .. ... __. . .

ISN 0071 OMEGA=A3/(X1**3)
ISrN 70022 -. SSIUANGLE
ISN 0073 SJ=SS/DSQRT(SS**2 + (CC + LM/LE)**2)

-SN-0074 . JDARSIN(SJ)
ISN 0075 I=ANGLE-J
__IS107_6 "UZa__LnXII .IL4M9- -__
ISN 0077 XJ=180.*J/3.14159

SC** k**FN .FTIl.n._

ISN 0078 WRITE (6,3) T.XINXPSI.OMEGAVIS.TEMP*XIIXJ
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C*****TrHIS SECTION COMPUTES THE VISCflSTTY.
ISIGQ0. -TSTART) ** 0.333)

ISN 0081 IF (TEMP - TLOWFR) 55*55.56
-11N 082 --- qMP- AIM~mlNE -__ ______________

!SN 0083 96 EX=BB/TEMP
JN00BA ______ FFrfFitPtFl) ________ ___ ________

ISN 0085 VIS=VISZ*EE

ISN 0086 AA=VIS*A2
ISN 0087 -IF-(NA. .E-. 11- -SO TO -2-6 - __

C*****trHIS SECTION COMPUTES ALL THE TERMS IN DARWINS EQUATIONS.
LODBS ~ K~DSIIAY "I-- -___ ______

1SN 0090 P=OCOS(AY)
C. ... C04P UTE -T ME -TANGENTS, S INIES OF THE-"AG- A NGL ES . -

ISN 0091 TF=2.0*N*A4
--ISN 01092 SF=2.O*TFII 1,.0*TF*a)--
ISN 0093 TF2=2.0*(N+OMEGAI*A4

IQN nQASF2=2,0*TF2/( I .+TF2**2)

ISN 0095 TG2=(N+2.0*DMEGAJ*A4
1 SlN Ongt (.1__ S:2ZZMII 2*-2I _____ __________

ISN4 0097 TH=-2.0*OMEGA*A4
____ SH=2.0*TH/(fl.OGTH**2)

ISN 0099 TF1=2.O*(N-OMEGA)*A4
1SN01A0 ~ ~~q~ =E1 -0#_TEIZl.AIIA ____________________

ISN 0101 TG=N*A&-
-ISN SG.*G/1-T*4i ______-__ ______

ISN 0103 TGI=(N-2.0*OMEGA)*A4
-ASM-0I0- --SGI2,9O0*T G1(I .0-+T 67**Z) _____ _____

C..COMPUTE THE TERMS.
1S~m AIaSTJfAa~'A A FI- -___ _____

ISN 0106 T2=-2.0*P**4*K**4*SF
15N-0101 3050K**F 7_________

TSN 0108 T4=P**6*K**2*SGI
.SOO9 -T5=P-2 k*2*Ij P**2-K**2)**2)*SG

ISN 011C T6=P**2*K**6*SG2

ISN 0112 TS=K**8*SF2
I SN 011~3 T=.**6'*2SI__
ISN 0114 TIO=4.0*P**2*K**6*SG2

-0N 115 -T I1-=Op *P,0*4# **4* ___ ___

ISN 0116 T12=0.S00*P**7*K*SFI
IqN~I 0117iP*3K**S ________ ___

ISN 0118 T14=0.500*P*K**7*SF2

-, SM.011J9----------151q)-OO*P**3*K**3*( P**2-K**2) *SH__ ____

ISN 0120 T16=0.500*P**5*K*( P**2-3.0*K**2)*SG1
ISNDI- T0050*** (*2 *2)**2)*SG____ _________

I SN 0122 T18=0.5D0*P*K**5*( 3.O*P**2-K**2 )*SG2
IS~~I2~ T19=0 .500*P**?*K*SFI ________________

ISN 0124 T20=P**3*K**3*( P**2-K**2 )*SF

-ASN 01 5 T21=0.5D0*P*K**7*SF2

ISN 0126 T22=0.5D0*P**5*K*(P**2+3.0*K**2)*SGI

,__tN_0127 T23=0.5300*P*K*( (P**2-K**2)**3)*S,
ISN 0128 T2*.0.500*P*K**5*(3.0*P**2,K**2)*SG2
I S N 01-q T25=1 .500*P**3*K**3*SH

C*****FNO SECTION.
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ISN 01:31 OLN=0.500*Al*(T7-T8+T9-TIO-Tl1)*0ELT/(XI**12)
-1 S.N-04"A .- A .- ~...-J*( .. A4LZ.Ik..ITI4&TI-T I ATI ?+TI)*nl TZilI M*Xtr** I g
ISN 0133 DI=A1*(T19-T20-T21+T22-T23-T24-T25)*DELT/(LE*Xl**12)

- - --. ~-.--- -- C****-tDN
ISN 0134 GO TO 27

C*****-r&uC qrTinm~ rnflu0Tpr- ymp FM SEON ORDERf~Jl l~F APPROlXIMATIOlN
ISN 0135 26 KO-SIN(AY)

C.....COMPUTE THE TANGENTS, SINES OF THE LAG ANGLES.

ISN 0138 SF1=2.0*TFl/(1.0 + TFI**2)
T Ca 022n

ISN 0140 SG=2.0*TG/tI.o + TG**2)
ISN 0 4 - - .-TGlt LN=2 l*flMEtAI*AA

ISN 0142 SG1=2.0*TGI/(1.0 + TG1**2)

ism 0144 SH=2.O*TH/C 1.0 + TH**2)

ISN 0146 SF=2.0*TF/(1.0 + TF**2)

ISN 0147 T1=0.5O0*P**8*SFI

ISN 0149 T3=P**6*K**2*SG
ICU a.= 15D'RSp
ISN 0151 TS=4.0*P**6*K**2*SGI

ISN 0153 T7=P**3*K**3*SF

ISN 0155 T9=0-.S00*P**7*K*SGI

ISN 0157 T11=0.500*P**5*K*SG

!SN 0150P T13=0.500*P**7*K*SF1
-JSN. afi- .

ISN 0161 TlS=0.SDO*P**7*C*SGI
TqI nA TIF,=l .';fl*P*.3g*K**4*SGI

ISN 0163 T17=0.500*P**7*K*SG
- ShL-fl1.6A-------.TIB=1.S0P4K*
!SN 0165 T19=1.500*P**3*K**3*SH

- - -- ****FNrD SECTIOfN.
C*****THIS SECTION COMPUTES THE CHANGES IN LE* LM* J9 AND I FOR THE

-________ -- SECOlND ORDER APPRflXTMATInN,
ISN 0166 36 OLE=-A1*(TI+T24T3)*DELT/(XI**12)

T ,N CtAf i M=Al*flRIfl0*lTp+TS)I*fFLT/tXT**12)
ISN 0168 0J=A1*O.5D0*(P**7*K*SGI-P**7*K*SFI-P**5*K*SG)*DELT/(LM*XI*.12)

.LS .. 0A9- nI=A I +5f8i44**~.*7KSF-*7KS~oLL*1.
ISN 0170 27 CONTINUE

C*****FNO 9CTIfN.

C*****THIS SECTION INSURES THAT 01/1 OR OJ/J NEVER EXCEEDS CRIT.
1 .SN 0-171- - IF.L "- -- 0-_________________________

ISN 0172 38 IF (J - 0.0) 19.19,39
T SN Aa73.a- ~3 R'OI/I
ISN 0174 IF (RI - 0.0) 47,465946
TSN flJ.7.... A7 0=-Q T
ISN 0176 46 CONTINUE
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ISN 0177 RJ=DJ/J
ISN 0178 IF (RJ - 0.0) 49948,48

ISN 0179. .... 49 ... RJ=-R ..... ...

ISN 0180 48 CONTINUE

ISN 0191 IF (RI.- CRIT) 3434,35 ...

ISN 0182 34 IF (RJ - CRIT) 19.19.35

ISN. 0183 .- -35.- DELI DELT/2 .-

ISN 0184 IF (NA .EQ. 1) GO TO 36

_Is_ IA.R 15- -~.I L G--- TO 37

ISN 0188 19 CONTINUE

C*****END SECTION .

C*****THIS SECTION HALVES THE STEP SIZE WHEN NC1 OR NC2 EQUALS 1. NCHECK

C KEEPS TRACK OF WHETHER THEFTEP S.ZE IS HALVED FOR THE CHECK.

ISN 0189 IF (NB .EQ. 23 GO TO 41

IS . 01 ...... ...... _. 2 ..........

ISN 0192 41 NCHECK=-NCHECK

ISN 0193 IF (NCHECK AEQA 1) GO TOA_..

ISN 0195 GO TO 42

ISN 0196 43 DEL=DELT/2 ,0- ........

ISN 0197 IF (NA .EQ. 1) GO TO 36

LSN 0.199- ... IFNAE~ 2) G O TO 37 _

ISN 0201 A2 CONTINUE

- ** _END SECTION. ___

C*****THIS SECTION INCREMENTS THE IMPORTANT QUANTITIES.

ISN 020.2 ....... .... DSP1I-- -- J

ISN 0203 1=I + DI

SMN D20- ------- 11.

ISN 0205 XII=18 .0 l/3.14159

ISN 0206 XJ=180.0*J/3.14159

ISN 0207 PSI=PSI + DI + DJ

ISN 0208 .. xP 18 O*PS-/3.14159

ISN 0209 LE=t.E+DLE

_ISN o2I..10- L--- ---- M Q-L L _-aL-+DL. . ..

ISN 0211 N=LE/C

SN. .0212 ... OMEGA=A3/(
X t
**3)

ISN 0213 XI=LM/B

-i SLO 21A-_ - .. TT+DELT_ - -- -- -

C*****END SECTION.
.. _NT= NUMBER OF ITERATIONS DONE SO FAR IN A RUN.

ISN 0215 NT=NT+1

Ct**-*THIS SECTION COMPUTES THE CHANGES IN I AND J IN THE LIMIT OF

C INFINITE VISCOSITY (DARWIN 1890 PAGE 317.)

C....._COMPUTATION _IS NfOT BEGUN_ UNTIL XI=1.0001 TO AVOID DIVIDING BY 0.

C....THIS SECTION IS USED ONLY IN THE CONSTANT VISCOSITY PROGRAM.

ISN 0217 IF (XI - 1.00O1D0) 31.32,32

.. 1Sbl 021. .D1.0.000

ISN 0219 DJJ=O.ODO

LSN-.0ZIa GO TO 33

ISN 0221 32 L=C*OMFGA/(LT-LM)

ISN 0222 RI=4.0*L*(1.0-L)/(1.
O
-2.O*L)

ISN 0223 R2=O.5DO*(I.O/(LT-LM) + 1.O/LM)*(1I0 + RI)

_SN 20_ R3=-0.500D (10/(LT-LM) + 1./LM)*(1*O-RI)

ISN 0225 OII=DLM*R2*I

.I SN_ 226- L .. . ..__ .JJ=DLM*R3*J

ISN 0227 33 CONTINUE

**__ C *T ENDSCTION. ________ ......
C*e**rTHIS SECTION PRINTS OUT THE NEW VALUES FOR THE IMPORTANT
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C UANTT-TES.
ISN 0228 WRITE (6.3) T.XI.N.XDSI.OMEGAVIS.TEMPXIITxJOItDJDPSI

4-Sc-022-9 3- -ORMAT-- 1X.1 0.4.1xD13.-1X. D 10.-1 XF73s2 1KID S). Ioi X 10.A .

I 2(1X. F9.3),3(IX.010.4))

S Cft**tEND -SECTION.-

C*4***THIS SECTIO DECIDES WHETHFR CONSTANT DELT OR CONSTANT DLM SHOULD

C BE USED. - ---. - --

C.....STATEMENT 12 GIVES CONSTANT STF
D 

SIZE IN TIME.

-- -- --.-C. .- STA-EMENTS-13-AND-6-- I V F tfCO-NT ANT STEP LZEILL -

ISN 0230 IF (NT - NO)1212913

-LS--L ... 13 -- EL-T DABS(0 .IO,{2 8O 9 A1 2/4a kaDaa 5DLTA T &15_-

ISN 0232 IF (NA .EQ. 2) GO T, 60
IS- 0234 - G T13 -6- - -

ISN 0235 60 DELT=DASS(O.0072089DO*X**12/(A1*0.500*(T7-T8+T9-T10-TI1)))
-Sb-023 - A.t -CONTLNUUE
ISN 0237 GO TO 14

ISN 0238 12 DELT=1DELII 1

ISN 0239 14 CONTINUE
... C*t***tEND SECTION.-

C....SHOULD INTEGRATION BE FORWARD OR BACKWARD IN TIME?

r-L nM1 E~.TF (MTTMF_____--- --- DI_-_-_D__FL_-

C.....IS NLAST EXCEEDED?
ISN 0242 . -- . LF LUT_-NLASTI 44..99-

C.....IS XIMAX EXCEEDED?

-ISbL O243 --. - F --XI MAXJ 5.-- __

C-****THIS SECTION COMPUTES THE TOTAL ANGULAR MOMENTUM AT THE END OF THE
C--.-T- J~ -I-SER-VES "Ac n.lla WEII THF rTPOATT N A rHFMF wno.S,..

ISN 0244 99 CC=DCOS(PSI)

ISN 024 E LTC=DSQRT(LZ-.AA2LJW**2 2.0 .LEtL4C. C).

ISN 0246 WRITE (6,11) LTLTC
--ISN 0247 11 FORMAT (///II0XtlBHINITIAL ANQ iG M LaD1A-aNd - JAfr E AL~ AN .MQ.=

I DI 4.1)
--4--SN 02A8 - -- -19-- CONINuE ---------- - __

ISk 0219 STOP
ISN 0250 . END



APPENDIX E

COMPUTER PROGRAM FOR SOLAR INFLUENCE

The computer program given in this appendix is discussed in Chapter IV,

and in the comments listed in the program itself.
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C***** THIS PROGRAM INTEGRATES THE FIRST OF DARWINS (1880) EQUATIONS

L Cs 13 J FINU iNt ANILt EltWUttN Ifm PLANM U INE MOUON UnUI1 oN

C THE PROPER PLANE FOR ANY CHOSEN VISCOSITY OF THE EARTH.

E - TlSlE ANCALE UttlWlttN TE- FLANt UP TIN LUNAR UNII ANU IH

C PROPER PLANE.

SUAKWIN (It58VU IS

C ON THE SECULAR CHANGES IN THE ELEMENTS OF THE ORBIT OF A SATELLITE

CL NVULVING A UAT 11UALLY ULISIOUit PLANEI

C IN

C --- S-C-It:N .11M PA PR M 1 .UGwE E HUWARU UMHWIiN VUL* 2, Pi- 2U8-8
C CAMBRIDGE UNIVERSITY PRESS. 1908.

L M A 1PRlPEK LAN ALSU DEt FUUNU AN

C PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY. VOL* 171. 1880.

C PP -3-- -891.

C

L*.e..IlM PROMGRAM INIGRAItS InEt EUAIUTON FRUM XAla3.v EU AA-l.U (0 lU
C 3.8 EARTH RADII).

C**.oolr INILiHAIlN IPnUM LANbt Al IU SMALL Al. It1 ANIb AEL I PUUNU UT

C SUBTRACTING THE NUMBER IN THE SUM COLUWN AT SMALL XI FROM THE

C UMUt I il1 ,Uiq S CLUMN At LAKGt Al iIl ANXL. a Al SMALL A IS

C THEN THE EXPONENT OF THE INTEGRAL TIMES J AT LARGE XI.

C*****THIS SECTION DEFINES THE MOST IMPORTANT QUANTITIES.

L* X**RI 13 iOKILtARIN-MUUN ULDSAN/EiWl- EEN UiI7ANLpe O

C...***OXI IS THE CHANGE IN XI.

L*..... U l lt M REFERENL ULlANLe ICtKt In UllIl U tEAKIH RAUle

C AND WHfRE N=2*OMEGA.

t* o o*Odl II Ut~LRte ~.LRJltrLL AJ O

C.....N IS THE ROTATIONAL ANGULAR VELOCITY OF THE EARTH IN 10**-4 /SEC

L 45ee MU.LIAILt ill VALUL GIlVt IN IltE PRGURAMN U l"-w 10 GtI lIlt

C VALUE t- CGS UNITS.)

L*e***UMQ ISA It .M5AAL ANGULAN VEtLULII UT FIlT IUUN IN UNIIJ UT

C 10**-4 /SEC.

*....... .A . .CA.l.i. E lA UaJLU l aI UnTI u . *.... C..

Ceo...LT IS THE TOTAL ANGULAR MOMENTUM OF THE SYSTEM IN UNITS OF

C*...oC IS THE MOMENT OF INERTIA OF THE EARTH IN UNITS OF 10**44 CGS*

-C C-MALL K*
Cooo.*B IS SORT((BIG G*SMALL A)/(BIG M+SMALL M))*(BIG M)*(SMALL M)*OS IN

-e-- -UN-ITS 0-- -1-**40- CGS. LM- B*X..
Co.***A2 IS 19/(2*(SMALL G)*(SMALL A)*(SMALL W))IN UNITS OF 10**-12 CGSo

*..... AJ 13 IS RTL6Ia # L 3 AlL ll JSMrL All* Ur.lITS-l O'
C 10**-4 SEC* OMEGA=A3/(XI**3).

C

t.*0 **UM Ur UIARWl lI N l llUN*

C.....C-ZERO =REFERENCE DISTANCE
S.. AT -- a

C****SMALL K=C*(OMEGA-ZERO)*(C-ZEROI/(BIG G)*(BIG M (SMALL M)

L*****IUAtJ-ZEA-td2LUA U$*JiW4LL M)IaO(C Zf!'Ul*

Co...*GOTHIC SMALL G=(2/5)*(SMALL GI/(SMALL A)

C- .o6516 - U I I. . .L-- R .. I. A.. ... L CONStts
C.o...SMALL A=RADIUS OF THE EARTH

CL*...***iG M =mASS In EA

C....SMALL I=MASS OF THE MOON
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....... oSMALL F~=6AVITAT INAL CUNH ANT AT THE EARTH 5URFACE

C.o...W IS THE DENSITY OF THE EARTH

. . .. W. E HAVE SUBSIITUTED BIG G FOR DARITNS MU- ABVE.

C
. -C * ORRESP NDEiNE-- ETWE-NURNURNOT TOUN AND OARWINS

C OUR XI IS DARWINS GREEK LETTER XI.

C TP TAU PRiME -- ------ ---- -----

C TZERO - TAU ZERO FOR THE MOON

C LDA - GREEK LETTER LAMBDA

C E- GORHIC SMALL E
C T - GREEK LETTER TAU

L - --- ---M -6UlTtT-M-ALL -R

C KI - KAPPA SUB-1 , K2 - KAPPA SUB-2

C

ISN 0002 DOUBLE PRECISION DXIVIS.XI.DZERO.CLToDS.A2eTPeTZER0,GGoA3oBoA4,

I_- beU1G.t 5.T;E Shel UG 1.501 i ,TF SS. SlFFRFsALPHAvAtBETAV

2 BL.ALPHPAPBETAP8BPoGAMoDELTATERMKI lK2.X1,X2,X3,ZI.X4.X5X6.

.3 -2-DLOGJ-
ISN 0003 DXI=O.0025DO

-15-- -000-4 DZER-U=- N8L33-T 30D 0

ISN 0005 CB8.1100

IS4 0007 DS=DSQRT(DZERO)

TS~ q--0U8 A-=-2.759 -

134 0009 TP=5.946692D-14

ISN00-- ~0 TERU 0 - 7/S RUSR-Z 0 ]

ISN 0011 GG6.156862D-7
TS l D- V0_ __ATTZ__E_4_T5D_7_-ER_ T_ _--

ISN 0013 8=3.68170100DDS
-- -C*** *.NVIS 5 TNI NUM H RUF VIT50UbIlk ST UI O REAW--e--....

ISn 0014 READ (594) NVIS

TSNDTN-01 -... -----ORWMn 5TAT- -5T

ISN 0016 DO 3 J21,NVIS
. ... V ;;. TSE S THE CHOSEN VTSCOSTTY THE -EARTH.;

C..oe.READ IN THE VISCOSITY.
ISN 007 -- EAD T 5- VT1 -- S.-- -- .......

ISN 0018 5 FORMAT (010.51)
TSN ~0- WRITE %6. 1--
ISn 0020 1 FORMAT (IHI)
I SN-002I--- - ----- R TE T-) -TTs-
ISN 0022 6 FORMAT (///,20X IOHVISCOSITY=DD10.5,lXeOH10**16 CGSt///)

ISN 0024 7 FORMAT (///.15X2HXI LXS5HDLOGJ.12X.3-ISUM///)

1SN U00 A4 VI5lrA __A

C..ooEVALUATE THE INTEGRAL*

ISN 0027 XI=3.94 D
-1-1 0028 DO -s 1-Th8-
ISN 0029 OMEGA=A3/(Xl**3)

tCEoioANGUCtAR UOENT~pOEIh( MTN-(t.INUM OF /TT_ -o

Coo.e*ORBITAL ANGULAR MOMENTUM = B*XI.

- ** I I D A -SSUM ING INT MOON STAY Inv TE -OUATIRtALPLANte

ISN 0033 N=(LT-BXI)/C

ISN 0032 E=(050O0)*(N**2)*I.OD-8/(GG)
-15m UU. 003 IL UAI t - - - - --

ISN 0034 M=C*N/(BXI)
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ISN 0033 -TPt T . . ..-.- . -.. . .... -.. .

C.o...HERE THE TANGENTS AND SINES OF THE LAG ANGLES ARE COMPUTED.
ISM UUO I =NWA4

ISN 0037 SG=2.0*TG/(1.O + TG**2)
IS oUS 00 - IM=N-d.U UtbA0rU- - -- - -UA4

ISN 0039 SG1=2O0*TGI/(10 + TG4**2)
ISN UU41 tfIzo*UN.*A4
ISM 0041 SF=2.0*TF/(1.O + TF**2)
LSN 4 I1r=2. wItN-uRNEGA1i*A4 - _ _____

ISM 0043 SFl=2.0*TI1/(1.O + TFI**2)
--- C - n t.n TE RMS IW1 THE rET UATtO- ARECO mPPUT JtuTE- oAT-oN -iS

C STRAIGHTFORWARD.
-15 0044 ALPrA- m -AT-ttt1 07It2.0*t D-AwElV

ISN 0045 A=M

N U4 U A= -------------
rSN 0047 BL=1.0

-tSN-OO48 -ALOPHP -MCT* 3rei/t2*L ETr)T- *trt *yr 7 t --- ) -

ISM 0049 AP=-M*(2.0*(1.O+Y**2) + 7.0*M)

ISN 0051 BP-(I.0O + Y**2 + 6.0*M)

ISM 0053 DELTA=(SF1+SGl-SG-2.0*Y*SG+(Y**2)*SF)/(2.0*SF1)

-I rSm0" u VMnK- u .u500*Me s.*(!*ao**u-S-2co SG~ur n SrI

ISN 0055 Kl=(-ALPHA-BETA-DSORT (ALPHA-BETA)**2+4.0A*BL))/2.0
--I9 UUJ) 00*5 -At-ITA-D i KM IFuu(K IIt ALn PHA"I"I 1Al*LFF *AFU )

ISN 0057 X1=-(KI+ALPHA)*(ALPHP-BETAP)

N UU5 A 2-A SBL I I ALPiA 7I/I 2vALPHAA -
S1 0059 X3=-BP*A

1 UTSmt00w U- AA- A m A FAX34tF1-AK2-)-**2-
ISN 0061 X4=GAM*(K2+ALPHA)

tSM - 09 2- 00 .. ........ r rn
ISN 0063 X6=TERM

C....DLOGJ IS THE CHANGE IN LOG J AT ANY ONE STEP*
1, 00U6 (ZrGr-iti','~s, 8,,D;iiais

C.....SUM IS THE SUMMATION OF THE DLOGJ S (I.E. THE INTEGRAL.)
-tS 65... ..------ S=S _-_Ot_ _----O~_r

ISN 0067 WRITE (6*8) XI.DLOGJ.S

ISN 0069 XI=XI-DX

tS 001 TO3 - P _OT

ISN 0071 STOP

ISMd~-- ------ N



APPENDIX F

ERRATA FOR GOLDREICH (1966)

The following are corrections of misprints in "History of the Lunar Orbit"

by Peter Goldreich as the article appears in Reviews of Geophysics, vol. 4,

pgs. 411-439, 1966. I do not claim to have caught all the misprints; some of

the corrections may result from my own misunderstanding; but this list should

be of use to readers of this classic paper.

pg. 416: Equation (9) should read:

I I
C''osS = Cos 2  cos (' - u) + sin 2 I cos (' + u) ''

pg. 417: Equation (12) is derived from Equation (7) by using the approximatior

cos I 1 - 82/2.

If this approximation is not used, then the expression in braces in

Equation (12) will read

14 83 32 + 3 8 32) cos 2 cos 2u

3 3 3
+ cos I (sin 2 ' sin 2u) + 8 82 cos 2 ' + 8 P2 cos 2u

The derivation of Equation (13) is still permissible, since the terms

containing (cos 2 ' cos 2 u) and (sin 2 ' sin 2 u) are periodic, so long

as ' u.
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pg. 417: Equation (14) and the line below it: How M / m enters into the discus-

sion is not apparent (to me).

pg. 419: Equations (19) should read:

,, d (Ha) d (hb)
-' anddt " d dt """

Equations (22), (23), (43a), and (43b) likewise need parentheses around

the whole quantity appearing in the differentiation operator.

pg. 419: Read " GM " for "1 " in the equation for Ki in Equations (21).

pg. 420: Two lines above Equation (29):
K1

" ... be derived by multiplying 2 ( •) H'- into equation 25,
K 2

2 (b - c) h into equation 26, 2 (a b) L into equation 27 ... "

pg. 423: Equation (41): Here " i" should be substituted for "- " on theM+m M

right side. Clearly the author ignores the " m " since << 1.M

pg. 423: The fifth line down from Equation (40) should read:

" of (39) having ... "

pg. 425: The next to the last line should read:
Next, dotting a~

" ... Next, dotting into equation 43a and into ... "H h

pg. 426: The line above Equations (51) should read:

" Using (1), (2), (6), and (21), we observe ... "

At. %
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pg. 426: The first equation of (51) apparently uses

dK 1  1 d e 1 d (COE) 2K 1 dH
dt 2KI , dt - 2K 1 C f dt - H dt

dC d f
This implies e d t <  C d t

pg. 426: The equation above (55) resolves vector T along two independent sets of

orthogonal coordinates; this procedure is ambiguous. Equations (69) -

(74) show that the expression for T is really the sum of the lunar and

solar torques, with the/first three vectors being the lunar torque re-

solved along (e,, e 2 , e 3 ) and the last three vectors being the solar torque

resolved along (f , f2 , f3).

pg. 427: Equation (58): MacDonald (1964) has sign q' = sign using
(1 - z2) 1 / 2

Goldreich's notation.

pg. 428: The right sides of the last two equations of (63) should read:

2mA
S.. - qB(q) sin 2 8'

7T a
6

2mA
S. ..- q'F(q) sin 2' "

77 a6

Confusion arises here because Goldreich corrects errors in Equa-

tions (42) and (44) of MacDonald (1964), but inadvertently includes "n"

in the last two equations of (63). I must confess that I do not know if the signs

of the two equations in my correction are right, since they depend on

MacDonald's derivation, which I could not follow in places.
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pg. 428: The author uses slightly different notation from Kaula (1964) in Equa-

tion (65); " m* " is brought outside of " B m " and written explicitly in

Equation (64).

pg. 428: Following the notation of Kaula (1964), " q " has been set equal to zero

in Equation (66).

pg. 429: The right sides of Equations (67) and (68) should both be multiplied by

" m " (the lunar torque) or "2) " (the solar torque).

pg. 429: The second term of Equation (69) and of (71) should each be multiplied

by " k 2 ".
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TABLE 1

The angular speeds, phase lag angles, and amplitude factors for the seven

tides are given. Adopted from Darwin (1880).



TABLE 1

Angular
2 (n - ) 2n 2 (n + ) n-2fQ n n+2 Q 20

speed

Phase lag
2 f 2 f 2 f g g g 2  2 h

angle

Amplitude
F F F2  G, G G2  H

factor
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TABLE 2

The critical angle qc for various viscosities is given. E is the distance

from co, where sin 2g 1 is zero, to where sin 2g 1 = +1.
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TABLE 2

Viscosity <c

(poises) (degrees) co

1017 8.5 8 x 10 - 3

1018 2.7 8 x 10 - 4

1019 0.85 8 x 10 -5

1020 0.27 8 x 10 - 6

1021 0.085 8 10 -7
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TABLE 3

Summary of computer data for the curves shown in Figures 15, 16, and 17.

The computer program itself is given in Appendix C. The column labelled ""

refers to its value when the moon is at or near 3.83 earth radii distance from

the earth. The column labelled "Time" gives the time required for the moon to

move from 3.83 earth radii to 10 earth radii. The quantities At, NQ, A, and

CRIT are explained in Chapter III, Section C.



TABLE 3

Figure Viscosity Time At
N Q A CRIT

number (poises) (degrees) (Years) (sec x 10-9)

15 101s  3 570 2.5 x 10 - 6  600 5 x 10- 4  0.05

15 1016 3 3600 2.5 x 10 - s  600 5 x 10 - 4  0.05

15 1017  3 3.6 x 104 2.5 x 10 - 4  600 5 x 10 - 4  0.05

16 1018 2.68 3.6 x 10 5  5 x 10 - 4  600 2.5 x 10 - 4  0.05

16 10' 9  0.85 3.6 x 106 5 x 10- 3  600 2.5 x 10- 4  0.05

16 1020 0.268 3.6 x 107 5 x 10 - 2 600 2.5 x 10 - 4  0.05

16 1021 0.085 3.6 x 108 2.5 x 10 - 2 2400 2.5 x 10 - 4  0.05

17 1018 1 3.6 x 10 s  5 x 10 - 4  1200 1.25 x 10- 4  0.025

17 1018 2 3.6 x 10 s  5 x 10 - 4 1200 1.25 x 10 - 4  0.025

17 1018 3 3.5 x 10 s  5 x 10 - 4  1200 1.25 x 10 - 4  0.025

17 1021 1 3.6 x 108 1 x 10-2 1200 1.25 x 10 - 4  0.025

17 1021 2 3.5 x 108 1 x 10 - 2  1200 1.25 x 10 - 4  0.025

17 1021 3 3.5 x 108 1 x 10 - 2 1200 1.25 x 10 - 4 0.025
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TABLE 4

The important quantities used in this work are listed.
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TABLE 4

Symbol Description Numerical value

a mean radius of the earth 6.37 x 108 cm

b LM/ 7.21 x 1040 g- 2
sec

c earth-moon distance -

co  3.83 earth radii 2.44 x 109 cm

e eccentricity of the lunar orbit

2 f lag angle of the tide with speed 2 (n - )

g gravitational acceleration at the surface 980.7 cm/sec 2

of the earth

g lag angle of the tide with speed n

5 ag 6.16 x 10-7 sec - 2
5 a

g 1  lag angle of the tide with speed n - 2 -

i angle between the invariable plane and the
earth's equatorial plane

j angle between the invariable plane and the -
moon's orbital plane

k C f 0 co 1.14 x 10 4 secGMm

m mass of the moon 7.35 x 10 25

n angular velocity of the earth

r radial distance measured from the center -
of the earth

t time

x C-c 0

C polar moment of inertia of the earth 8.11 x 10 4 4 g-cm 2
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TABLE 4 (Continued)

Symbol Description Numerical value

G universal gravitational constant 6.67 x 10 - 8 cm 3

g-sec 2

I angle between the ecliptic and the earth's -
proper plane

I/ angle between the earth's proper plane
and equatorial plane

J angle between the moon's proper plane -
and orbital plane

J/ angle between the ecliptic and the moon's -
proper plane

LE rotational angular momentum of the earth -

LM orbital angular momentum of the
earth-moon system

LT total angular momentum of the earth- 34.2 x 1040 g-cm2
secmoon system

M mass of the earth 5.98 x 1027 g

R disturbing function

T absolute temperature of the earth

( o b -1 Co
E 2c o  7.98 x 1014

19 V 2.76 x 10 - 12 v
2gap

1
K sin (i + j)

. /n
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TABLE 4 (Continued)

Symbol Description Numerical value

1
77 cos (i + j)

p density of the earth 5.5 g/cm3

cr displacement of the earth's surface

Gm T0-
7 - 0T = 3.37 x 10 -1 0 sec - 2

c
3  5-6

v viscosity of the earth

angle between the moon's orbital plane
and earth's equatorial plane = i + j

critical angle = sin 4 f

£ orbital angular velocity of the moon
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FIGURE 1

(a) The earth and its attendant tidal bulge is shown on the left and the moon on

the right in the figure. The moon orbits in the equatorial plane of the earth

in the same direction that the earth rotates. No friction is present.

(b) Friction is present. The diagrams are not to scale.
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FIGURE 2

(a) E is a vector normal to the ecliptic, P normal to the proper plane of the

satellite, and M normal to the plane of the satellite's orbit. M sweeps out a

cone about P. J is the angle between M and P, and J/ is the angle between

E and P.

(b) I is normal to the invariable plane of the planet-satellite system, A normal

to the planet's equatorial plane, and M normal to the satellite's orbital

plane. A and M sweep out cones about I when solar influence is negligible,

with all three vectors lying in a single plane.
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FIGURE 3

Figure 7 of Goldreich (1966), showing the inclination of the moon's orbital

plane to the ecliptic. Precession of the lunar orbit causes the inclination to

oscillate between the two branches of the curve.
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FIGURE 4

(a) E is normal to the ecliptic, P normal to the moon's proper plane. J, is

small compared to J so that the two vectors are nearly parallel and the

inclination of the moon's orbital plane to the ecliptic is nearly constant.

(b) J/ becomes appreciable so that the orbital plane clearly does not maintain

a constant inclination to the ecliptic.

(c) E lies in the surface of the cone swept out by the vector normal to the

lunar orbit and J/ = J.

(d) E falls outside the cone.

The diagrams are schematic only.
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FIGURE 5

The upper diagram shows the moon orbiting about the earth. LM is the

orbital angular momentum of the system and is perpendicular to the moon's

orbital plane. LE is the rotational angular momentum of the earth and lies

along the earth's axis, perpendicular to the equatorial plane. 4j is the angle

between the orbital and equatorial planes. The lower diagram shows the angular

momentum triangle. LT is the total angular momentum of the system. The

magnitudes of LE and LM are denoted by LE and LM, respectively.
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FIGURE 6

The rotational angular velocity of the earth n and the orbital angular velocity

of the mhoon 0 are shown as a function of earth-moon distance. The orbit of the

moon lies in the equatorial plane of the earth. The dashed line is the Roche

limit and the dotted line is the distance c where n = 2 n (3.83 earth radii).
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FIGURE 7

The angular speeds of the three principal tides are shown as a function of

earth-moon distance. Speeds n, 2 (n - 2), and n - 2Q correspond to the K 1 ,

M 2, and O tides, respectively. The orbit of the moon lies in the equatorial

plane of the earth. The dashed line is the Roche limit and the dotted line is the

distance c o where n = 2f (3.83 earth radii).
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FIGURE 8

X= /n as a function of earth-moon distance. The orbit of the moon lies

in the equatorial plane of the earth.
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FIGURE 9

(a) Expression (111-14) divided by n ( as a function of earth-moon distance in

the limit of low viscosity. The moon's orbit lies in the equatorial plane of

the earth.

(b) Expression (M1-14) multiplied by n as a function of earth-moon distance in

the limit of high viscosity. The moon's orbit lies in the equatorial plane of

the earth. The function is discontinuous at c o .
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FIGURE 10

Sin 2 g as a function of x for large viscosities (>> 1015 poises). The

function reaches its extreme values at - E and + E.
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FIGURE 11

The inclination q' as a function of x for two different initial values of q for

a viscosity of 1020 poises. In both cases must fall below tp at x = -E

(marked by the dot with the arrow) before the moon can pass to the outer regions.

The solid line is discussed in the text. The dotted line shows different initial

starting conditions. The lines are not displaced for clarity.
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FIGURE 12

qj2 sin 2 g, sin 4f 1 , and sin 2 g as functions of x for the case of the solid

line shown in the previous figure. Sin 2 g, is not to scale; it is reduced by a

factor of 105 compared to the other two functions. Sin 4 f, is nearly constant.
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FIGURE 13

for the case of the solid line shown in Figure 11.
t
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FIGURE 14

The inclination q as a function of x for 1018 poises for a large initial

value of q. The moon moves toward the earth until it reaches point D. There-

after it moves away from the earth. ¢ must drop below the critical angle qc

(marked by the dot with the arrow) before the moon can pass into the outer

regions.
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FIGURE 15

The inclination 'p as a function of earth-moon distance for viscosities of

1015, 10 16, and 1017 poises for an initial perturbation of 3* at c o (3.83 earth

radii).
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FIGURE 16

The inclination q as a function of earth-moon distance for viscosities of

1018, 1019, 1020, and 1021 poises. In each case ' = 'c at cO - E.
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FIGURE 17

The inclination ' as a function of earth-moon distance for 1018 poises

(solid lines) and 1021 poises (dashed lines) for perturbations of 1', 20, and 30 at

co (3.83 earth radii).
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FIGURE 18

The angle i as a function of earth-moon distance for 1018 poises (solid lines)

and 1021 poises (dashed lines) for perturbations in q of 10, 20, and 30 at co

(3.83 earth radii).
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FIGURE 19

The angle j as a function of earth-moon distance for 1018 poises (solid

lines) and 1021 poises (dashed lines) for perturbations in q of 10, 20, and 30 at

c o (3.83 earth radii).
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FIGURE 20

The inclination J of the moon's orbital plane to its proper plane for various

formulations of tidal friction. The dashed line is derived from Goldreich (1966),

where the three principal lag angles are equal to each other. The dotted line is

Darwin's result for low viscosities (<<1015 poises). The upper solid line shows

J for a perturbation in qj of 30 at co (3.83 earth radii) for a viscosity of 1018

poises. The lower solid line shows J for a perturbation of 2.50 in p at c o (3.83

earth radii) for a viscosity of 1018 poises. The dashed line, dotted line, and

lower solid line all give the present value of J at the present distance of 60 earth

radii.
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FIGURE 21

The point O is the center of mass of the earth and Q the center of mass of

the moon. The earth and moon circle P, the center of mass of the earth-moon

system, with angular velocity £. The earth rotates about the z* axis with

angular velocity n. Vectors n and h are displaced for clarity. r and i* are the

position vectors of the moon and mass element, respectively. 0 is the angle

between r and i*.
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FIGURE 22

The position vector of the exterior point E is A. 8 is the position vector of

a mass element in the earth. The angle between A and 8 is P.
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