

CARNEGIE-MELLON UNIVERSITY Applied Space Sciences Program

FINAL REPORT
NASA Grant NGR-39-087-026
"ATTITUDE DYNAMICS OF SPIN-STABILIZED

SATELLITES WITH FLEXIBLE
APPENDAGES"

Marc L. Renard
(Principal Investigator)

Hou L, Reand
Pittsburgh, September 1973
Dr. Marc L. Renard Associate Professor of Applied Space Sciences and
Electrical Engineering

The author of this report wishes to gratefully acknowledge the support of this work by the NATIONAL AERONAUTICS and SPACE ADMINISTRATION.

Of particular value to him were discussions held with Drs. J.V. Fedor, T. Flatley, R. Montgomery and S.J. Paddack of GSFC, on the subject of satellite IMP-I, and with Dr. D.L. Blanchard on UK-4.

Contributing to this project as Research Engineers were, in chronological order and for various lengths of time: J.E. Rakowski, P. Stakem, W. Keksz, R. Sridharan, J. Russial and N. Winowich. We are also indebted to Miss Cheryll Conaway, formerly of the Applied Space Sciences Program, for her help in typing and editing the present report.

TABLE OF CONTENTS

Page No.

Cover Page

Acknowledgements
Table of Contents

Chapter 1	Object of the study	1-1 to 1-2
Chapter 2	A Study of Modal Shapes and Eigenfrequencies of Flexible Appendages on a Spin-Stabilized Satellite	$2-1$ to 2-69
Chapter 3	Applicaton to Some Problems of Satellite Dynamics	$3-1$ to 3-23
Chapter 4	Simulation of the Motion of the Central Rigid Body and its Elastic Appendages	4-1 to 4-46
Chapter 5	Simulation of the Satellite Attitude Motion and Stability Studies	5-1 to 5-47
Chapter 6	Other Topics	6-1 to 6-6
Chapter 7	General Conclusions	7-1

CHAPTER 1

Object of the Study

In recent years, the study of the attitude dynamics of a spacecraft considered as a partly rigid, partly elastic or articulated body has become of increasing importance ${ }^{[1-1]}$. At first, such work did not present such a degree of urgency, as many investigations concentrated on rotational and librational dynamics of essentially rigid spacecraft, as is apparent from the reviews of D.B. De Bra ${ }^{[1-2]}$ and R.E. Roberson ${ }^{[1-3,1-4]}$. Any elastic body effects are conspicuously absent of V.V. Beletskii's classic book on the "Motion of an artificial satellite about its center of mass" who writes at the outset that "the discussion is confined to problems which fall within the scope of the dynamics of rigid bodies".

Satellites became increasingly "elastic", as booms were extended tens and hundreds of meters from the central body ${ }^{[1-5, ~ 1-6, ~ 1-7]}$ or as large solar panels or manned toroiddl space stations are considered ${ }^{[1-8]}$. Three methods are most commonly used in the study of the dynamics of the elastic spacecraft: discretization by modeling the continuous system by finite elements; modal representation; and the Likin's ${ }^{[1-9]}$ method of hybrid coordinates.

The present work uses the modal approach. It is a study of the relevant equations and parameters in the dynamical analysis of the attitudes motion of a spin-stabilized spacecraft having flexible appendages. It is principally aimed at developing working tools, such as stability diagrams, tables or simulation analyses by means of computer
programs. These programs are of low time-consumption, and their use is quite easy to learn. As such, it is hoped that they will prove valuable to the engineer engaged in the design of spin-stabilized elastic spacecraft.

A Study of Modal Shapes and Eigenfrequencies of

Flexible Appendages on a Spin-Stabilized Satellite

2.1 Introduction

In order to study the dynamics of the spin-stabilized satellite with flexible appendages, by the methods of generalized dynamics, the contindum of the elastic parts should be represented by generalized coordinates $q_{i}(i=1,2, \ldots)$. The q_{i} are fur tions of time describing the amplitude of the non-dimensional displacements, $\frac{{ }^{w_{k}}}{\ell}$, of boom k at abscissa $\xi \equiv \frac{x}{l}$, in terms of modes $\Phi_{i}(\xi)$

$$
\begin{equation*}
w_{k}(\xi) \frac{1}{\ell}=\sum_{i}^{\sum} q_{i}(t) \Phi_{i}(\xi) \tag{2.1-1}
\end{equation*}
$$

w_{k} will be (in the assumption of small displacements) along y for equatorial displacements (E) and along z for meridional displacements (M) (See Fig. 2.1).
ξ, η, ζ are the geometric coordinates x, y, z non-dimensionalized by l, undeflected length of the boom. $\xi_{0}=\frac{x_{0}}{l}$ is the non-dimensional radius of the central hub.

The system of mode shapes, Φ_{i}, adopted here are the modes of the rotating structure corresponding to the boom's Etkin number ${ }^{[2-1]}$ $\bar{\lambda}=\frac{\rho \ell^{4}}{E I} \omega_{s}^{2}$ and non-dimensional radius $\xi_{0}=\frac{x_{0}}{\ell}: \rho$ is the (uniform)
lineal density of the boom, in units of mass/length. E is the boom's Young modulus, in units of force/unit area, I is the geometric moment of inertia of the boom's cross section, in units of length ${ }^{4}$, and ω_{s} is the spin rate, in rad./sec. Thus $\bar{\lambda}$ is non-dimensional. Finally, x_{0} is the radius of the central hub, at which distance the elastic boom is assumed to be cantilevered. As will be seen, these significantly depart in shape and frequency from those of the non-rotating structure corresponding to $\bar{\lambda}=0$ and $\xi_{0}=0$.

In the following, it is assumed that only antisymmetric motions are considered, or that the motion of the $C M$ away from the origin is negligible. The latter amounts, as has been shown by F. Vigneron ${ }^{[2-2]}$, to assuming that the central mass M_{c} is sufficiently large for terms of order

$$
\rho \ell\left(\frac{\rho \ell}{M_{c}}\right)^{2}\left[\int_{\text {boom }} w d x\right]^{2}
$$

to be neglected in comparison with terms like

$$
P \int_{\text {boom }} w^{2} d x
$$

Typically, for the ALOUETTE and ISIS satellites, Ref. [2-2]gives the values: $\frac{\rho \ell}{M_{c}}=0.005$ to 0.01 (copper-bery11ium booms)

2.2 Equations of Motion: equatorial vibrations

2.2.1 Basic equation

We shall first consider motions in the "equatorial" plane of the satellite, i.e. (x, y) or (ξ, n). These were the first type of vibrations considered by this author and J.E. Rakowski ${ }^{[2-3]}$.

Any section of boom located at ρ, of abscissa x, is in rotational equilibrium under the action of (Fig. 2.1).

- bending moment from the left, which for pure flexure in the equaltrial plane, is

$$
\begin{equation*}
\mathrm{dM}_{\mathrm{e} 1}=-\mathrm{EI} \frac{\partial^{2} \mathrm{w}(\mathrm{x})}{\partial \mathrm{x}^{2}} \overrightarrow{\mathrm{i}}_{\mathrm{z}} \tag{2.2-1}
\end{equation*}
$$

in which $w(x)$ is the assumed small displacement of the boom element in the y-direction, and $\overrightarrow{1}_{z}$ is the unit vector along the z-direction.

- the moment about ρ of inertia forces

$$
\mathrm{d}_{\mathrm{F}}^{\mathrm{in}}=-\rho \mathrm{dx}_{1} \ddot{\vec{r}}_{Q}
$$

imparted by the particles of the boom to the right of ρ, i.e. having abscissa between x and ℓ.

Therefore,

$$
E I \frac{\partial^{2} w(x)}{\partial^{2} x^{2}}=-\int_{x}^{\ell} \rho d x_{1}\left\{\left[\vec{r}_{Q}-\vec{r}_{r}\right] \wedge \ddot{\vec{r}}_{Q}\right\}_{z}
$$

In terms of their components, we have

$$
\begin{aligned}
& \vec{r}_{P_{Q}}=\vec{r}_{Q}-\vec{\pi}_{p}=\left(x_{1}-x\right) \vec{I}_{x}+\left(w\left(x_{1}\right)-w(x)\right) \vec{i}_{y}=\left[\begin{array}{c}
x_{1}-x \\
w\left(x_{1}\right)-w(x) \\
0
\end{array}\right] \\
& \vec{r}_{Q}=\left(x_{0}+x_{1}\right) \vec{i}_{x}+w\left(x_{1}\right) \vec{t}_{y}=\left[\begin{array}{c}
x_{0}+x_{1} \\
w\left(x_{i}\right) \\
0
\end{array}\right]
\end{aligned}
$$

Thus

$$
\begin{aligned}
\stackrel{\rightharpoonup}{r}_{Q} & =\dot{w}\left(x_{1}\right)+\vec{\omega} \wedge \vec{r}_{Q} \\
& =\left[\begin{array}{l}
-w\left(x_{1}\right) \omega_{z} \\
\dot{w}\left(x_{1}\right)+\omega_{2}\left(x_{0}+x_{1}\right) \\
\omega_{x} w\left(x_{1}\right)-\omega_{y}\left(x_{0}+x_{1}\right)
\end{array}\right]
\end{aligned}
$$

Also

$$
\left.\begin{array}{rl}
\ddot{\vec{r}}_{Q} & \left.=\frac{\partial}{\partial t}\left(\dot{\vec{r}}_{a}\right)+\vec{\omega} \Lambda \dot{\vec{r}}_{Q}=\left\lvert\, \begin{array}{ll}
-\dot{\omega}_{z} w\left(x_{1}\right)-\omega_{z} \dot{w}\left(x_{1}\right) \\
\dot{\omega}_{z}\left(x_{0}+x_{1}\right)+\dot{w}\left(x_{1}\right) \\
\dot{\omega}_{x} w\left(x_{1}\right)+\omega_{x} \dot{w}\left(x_{1}\right)-\dot{\omega}_{y}\left(x_{0}+x_{1}\right)
\end{array}\right.\right] \\
& +\| \begin{array}{cc}
\omega_{x} & \omega_{y} \\
-w\left(x_{1}\right) \omega_{z} & \omega_{z}\left(x_{1}\right)+\omega_{z}\left(x_{0}+x_{1}\right)
\end{array} \omega_{x} w\left(x_{1}\right)-\omega_{y}\left(x_{0}+x_{1}\right)
\end{array}\right] .
$$

Under the assumption of small displacements and transverse angular rates, terms of order $w^{2}, \omega_{x} \omega_{y}, \omega_{x}^{2}, \omega_{y}^{2} \ldots$ are neglected, and $\ddot{\vec{r}}_{Q}$ reduce to

Finally, along $\overrightarrow{1}_{z}$
and neglecting quantities of smaller order

With the same notation as above, let $\xi_{1}=\frac{x_{1}}{\ell}, \eta_{l}=\frac{w\left(x_{1}\right)}{\ell}, \alpha=\frac{\rho \ell^{4}}{E I}$; this becomes

$$
\begin{aligned}
& \frac{E_{1} I}{\ell} \frac{\partial^{2} \eta}{\partial \xi^{2}}=-\rho l^{3} \int_{\xi}^{\ell}\left\{(\xi _ { 1 } - \xi) \left[\left(\eta_{1}-\omega_{工}^{2} \eta_{1}\right)+\dot{\omega}_{z}\left(\xi_{0}+\xi_{1}\right)+\omega_{z}^{2}(\eta, \eta)\right.\right. \\
&\left.\left(\xi_{0}+\xi_{1}\right)\right] d \xi
\end{aligned}
$$

With the abbreviated notation $\eta_{\xi, \ldots}=\frac{\partial^{k} \eta}{\partial \xi^{k}}$, we obtain

$$
\eta_{\xi \xi}=-\alpha \int_{\xi}^{1}\left[\left(\eta_{1}-\eta\right) \omega_{z}^{2}\left(\xi_{0}+\xi_{1}\right)+\left(\xi_{i}-\xi\right)\left(\dot{\omega}_{z}\left(\xi_{0}+\xi_{1}\right)+\eta_{1}-\omega_{2}^{2} \eta_{1}\right){\underset{j}{d} \xi_{1}^{(2-4)}}_{2-4)}^{\text {times }}\right.
$$

Taking the derivative of (2.2-4) with respect to ξ, and using Leibniz's
formula, $f\left(\xi_{1}, \xi\right)$ being the integrand,

$$
\begin{aligned}
\eta_{\xi \xi \xi}= & \alpha \hat{\gamma}\left(\xi_{1}=\xi_{\xi}, \xi\right)-\alpha \int_{\xi}^{1}\left[-\eta_{\xi} \omega_{z}^{2}\left(\xi_{0}+\xi_{1}\right)-\left(\eta_{1}-\omega_{z}^{2} \eta_{i}\right)-\omega_{z}\left(\xi_{0}+\xi_{i}\right)\right] d \xi_{1} \\
& -\alpha \int_{\xi}^{1}\left[-\eta_{\xi} \omega_{z}^{2}\left(\xi_{0}+\xi_{1}\right)-\left(\ddot{\eta}_{1}-\omega_{z}^{2} \eta_{1}\right)-\dot{\omega}_{2}\left(\xi_{0}+\xi_{i}\right)\right] d \xi_{i}
\end{aligned}
$$

Finally

$$
\begin{aligned}
\eta_{\xi \xi \xi \xi}= & -\alpha \eta_{\xi} \omega_{2}^{2}\left(\xi_{0}+\xi\right)-\alpha \dot{\omega}_{2}\left(\xi_{0}+\xi\right)-\alpha\left(\eta-\omega_{z}^{2} \eta\right)+\alpha \\
& \int_{\xi} \dot{\xi}_{\xi} \eta_{\xi} \omega_{2}^{2}\left(\xi_{0}+\xi_{1}\right) d \xi \\
= & -\alpha \eta_{\xi} \omega_{2}^{2}\left(\xi_{0}+\xi\right)-\alpha^{\prime} \dot{\omega}_{2}\left(\xi_{0}+\xi\right)-\alpha\left(\eta^{*}-\omega_{2}^{2} \eta\right)+\alpha \omega_{2}^{2} \eta_{\xi \xi}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]
\end{aligned}
$$

The non-dimensionalization is completed by introducing the non-dimensional Etkin's number ${ }^{[2-1]}$

$$
\bar{\lambda}=\alpha \omega_{Z}^{2}=\frac{\ell^{\ell^{4}}}{E I} \omega_{2}^{2} \div\left(\frac{\omega_{Z}}{\omega_{C A N T, N R}}\right)^{2}
$$

where $\omega_{\text {cant }}$ is the first cantilever frequency of the non-rotating boom. It is to be stressed that $\bar{\lambda}$ is a constant only if ω_{z}, the satellite spinrate, may be considered such. Equation (2.2-5) is rewritten in the form

$$
\begin{gather*}
\eta_{\xi \xi} \xi_{\xi}-\bar{\lambda} \eta_{\xi \xi}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}\left(1-\xi_{0}\right)\right]+\bar{\lambda} \eta_{\xi}\left(\xi+\xi_{0}\right) \\
+\alpha \ddot{\theta}_{0}-\bar{\lambda} \eta=-\alpha \dot{\omega}_{z}\left(\xi+\xi_{0}\right) \tag{2.2-6}
\end{gather*}
$$

So far, quantities which have been neglected were of order ε^{2} of smallness, or smaller. Now $\alpha \dot{\omega}_{z}$ itself is of order ε^{2}, ie. with $\mathrm{d} \phi=\omega_{z} \mathrm{dt}$

$$
\frac{\bar{\lambda}}{\omega_{z}^{2}} \dot{\omega}_{z} \div \bar{\lambda} \frac{d \omega_{z} / \omega_{z}}{d \phi}
$$

if the product $\bar{\lambda} \times$ the percentage change of ω_{z} per unit angle of rotaLion is very much smaller than quantities assumed to be of order ε.

Assuming that such is the case, we are then left with the homogeneous Equation (2.2-6) with a r.h. side equal to zero.

$$
\begin{align*}
& \eta_{\xi \xi \xi \xi}-\bar{\lambda} \eta_{\xi \xi}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]+\bar{\lambda} \eta_{\xi}\left(\xi+\xi_{0}\right) \tag{2.2-7}\\
&-\bar{\lambda} \eta+\alpha \eta=0
\end{align*}
$$

2.2.2 Solution of the basic equation

$$
\text { Using separation of variables, with } '=\frac{d}{d \tau}=\frac{d}{d\left(\omega_{z} t\right)}
$$

$$
\tau=\omega_{z} t
$$

$$
\begin{equation*}
\eta_{j}=\Phi_{j}(\xi) T_{j}(\tau) \tag{2.2-8}
\end{equation*}
$$

Hence

$$
\Phi_{j}^{(i v)}-\bar{\lambda}_{j}^{(2)}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]+\bar{\lambda}_{\Phi_{j}}^{(1)}\left(\xi+\xi_{0}\right)-\bar{\lambda}\left(1+\bar{\omega}_{j}^{2}\right) \bar{\Phi}_{j}=0
$$

yielding

$$
T_{j}=\sin \left(\overline{\omega_{j}} \tau\right)=\sin \cos \left(\omega_{j} t\right)
$$

where ω_{j} is the j th eigenfrequency of the equatorial vibrations associated with $\left(\xi_{0}, \bar{\lambda}\right)$. This equation is in agreement with that obtained by Etkins and Hughes ${ }^{[2-1]}$, in the special case $\xi_{0}=0$.

Determination of ω_{j} (or $\bar{\omega}_{j}$) from Equation (2) proceeds as follows. Equation (2) is linear, with ξ varying coefficients. Thus any linear combination of solutions of (2) is a solution of (2).

Let $\ell_{3, j}$ be the solution satisfying the b.c.

$$
\xi=0: \begin{array}{cccc}
\xi & 0 & 1 & 0 \tag{2.2-9}\\
& \phi_{j} & \phi_{j}^{(1)} & \phi_{j}^{(2)} \\
\phi_{j}^{(3)}
\end{array}
$$

and $X_{4, j}$ be the solution satisfying

$$
\left.\xi=0: \quad \begin{array}{c}
0 \tag{2.2-10}\\
\phi_{j}
\end{array} \stackrel{0}{j}{ }^{11}\right) \quad{ }_{\phi_{j}(2)}{ }_{\phi}^{1}(3)
$$

Therefore, the desired solution, which satisfies the "builtin, free" boundary conditions

$$
\begin{array}{lllll}
\text { conditions } & \phi_{j} & \phi_{j}^{(1)} & \phi_{j}^{(2)} & \phi_{j}^{(3)} \\
\xi=0 & 0 & 0 & & \tag{2.2-12}\\
\xi=1 & & & \\
\xi & & 0 & 0
\end{array}
$$

is of the form

$$
\begin{equation*}
C_{3} \delta_{3, j}+C_{4} \delta_{4, j} \tag{2.2-13}
\end{equation*}
$$

with C_{3}, C_{4} unknown. (2.2-11) is automatically satisfied by (2.2-13). Expressing (2.2-12)

$$
\left.\left.\begin{array}{ll}
C_{3} & f_{3, j}^{(2)}
\end{array}\right]_{\xi=1}+C_{4} \ell_{4, j}^{(2)}\right]_{\xi=1}=0
$$

In order to be satisfied for nonzero values of $C_{3}, C_{4}, \bar{w}_{j}$ should be such that the determinant

$$
\begin{equation*}
D\left(\bar{\omega}_{j}\right)=\left[f_{3, f}^{(2)} \rho_{4, j}^{(3)}-f_{3, j}^{(3)} f_{4, j}^{(2)}\right]_{\overline{\omega_{j}}, \xi=1}=0 \tag{2.2-16}
\end{equation*}
$$

The successive eigenfrequencies, $\bar{\omega}_{j}$, are determined to any prescribed accuracy by iteration $, \delta_{1, j}, \ell_{2, j}$ are determined by numerical integratron of differential equation (2), subject to bic. (9) and (10.) respectively.

The modal shapes, $\Phi_{j}(\xi)$, which as expected are defined only to an arbitrary multiplicative constant, are determined, once $\bar{\omega}_{j}$ is known, as

$$
\begin{equation*}
\Phi_{j}(\xi)=C_{3}\left[\delta_{3, j}-\frac{\delta_{3, j}^{(2)}}{\delta_{4, j}^{(2)}} \delta_{4, j}\right]_{\overline{\omega_{j}}} \tag{2.2-17}
\end{equation*}
$$

2.23 Orthogonality of the mode shapes

It is now proven, that given $\bar{\lambda}, \xi_{0} \geq 0$, the modes ϕ_{j}, ϕ_{k} are orthogonal, ie.

$$
\left\langle\Phi_{j}, \Phi_{k}\right\rangle=\int_{0}^{i} \Phi_{j}(\xi) \Phi_{k}(\xi) d \xi=0
$$

Note that $\left.\left\langle\Phi_{j}, \Phi_{j}\right\rangle=\int_{0}^{1} \Phi_{j}^{2} d \xi_{\text {def }} m_{, j, j}\right\rangle 0$
Let \mathcal{L} be the operator

Now

$$
\frac{\partial^{4}}{\partial \xi^{4}}-\bar{\lambda}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right] \frac{\partial^{2}}{\partial \xi^{2}}+\bar{\lambda}\left(\xi+\xi_{0}\right) \frac{\partial}{\partial \xi}-\bar{\lambda}
$$

$$
\begin{align*}
\mathcal{L}\left(\Phi_{j}\right) & =\bar{\lambda} \bar{\omega}_{j}^{2} \Phi_{j} \\
\text { and } \mathcal{L}\left(\Phi_{k}\right) & =\bar{\lambda} \bar{\omega}_{k}^{2} \Phi_{k} \tag{2.2-18}
\end{align*}
$$

Then, from multiplying by ϕ_{k} and ϕ_{j} respectively, and substracting

$$
\begin{aligned}
& \Phi_{j}^{(4)} \Phi_{k}-\Phi_{k}(4) \Phi_{j}-\bar{\lambda}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}\left(1-\xi_{0}\right)\right]\left[\Phi_{j}^{(2)} \Phi_{k}-\Phi_{k}^{(2)} \Phi_{j}\right] \\
& +\bar{\lambda}\left(\xi+\xi_{0}\right)\left(\Phi_{j}^{(1)} \Phi_{k}-\Phi_{k}^{(1)} \Phi_{j}\right)=\bar{\lambda}\left(\bar{\omega}_{j}^{2}-\bar{\omega}_{k}^{2}\right) \Phi_{j} \Phi_{k}(2.2-19)
\end{aligned}
$$

Integrate with respect to ξ, from $\xi=0$ (root) to $\xi=1$ (tip),

$$
\begin{aligned}
\int_{\text {loom }} \Phi_{j}^{(4)} \Phi_{k} d \xi & \left.=\Phi_{j}^{(3)} \Phi_{k}\right]_{\text {nook }}^{t i p}-\int_{\text {loom }} \Phi_{j}^{(3)} \Phi_{k}^{(1)} d \xi \\
& \left.=-\Phi_{j}^{(2)} \Phi_{k}^{(1)}\right]_{\text {nook }}^{i_{j}}+\int_{\text {loom }} \Phi_{j}^{(2)} \Phi_{k}^{(2)} d \xi \\
& =\int_{\text {loom }} \Phi_{k}^{(4)} \Phi_{j} d \xi
\end{aligned}
$$

Thus

$$
\int_{\text {loom }}\left\{\Phi_{j}^{(4)} \Phi_{k}-\Phi_{k}^{(4)} \Phi_{j}\right\} d \xi=0
$$

Next compute
(1)

$$
\begin{aligned}
& \left.\int_{\text {loom }} \frac{1}{2}\left(1-\xi^{2}\right) \Phi_{j}^{(2)} \Phi_{k} d \xi=\frac{1}{2}\left(1-\xi^{2}\right) \Phi_{j}^{(1)} \Phi_{k}\right]_{\text {root }}^{t i p}+\int_{\text {loom }} \Phi_{j}^{(1)}\left[-\frac{1}{2} \Phi_{k}^{(1)}\left(1-\xi^{2}\right)+\xi \Phi_{k}\right] d \xi \\
& \left.\int_{\text {loom }} \frac{1}{2}\left(1-\xi^{2}\right) \Phi_{k}^{(2)} \Phi_{j} d \xi=\frac{1}{2}\left(1-\xi^{2}\right) \Phi_{k}^{(1)} \Phi_{j} \cdot\right]_{\text {root }}^{t i f}+\int_{\text {loom }} \Phi_{k}^{(1)}\left[-\frac{1}{2} \Phi_{j}^{(1)}\left(1-\xi^{2}\right)+\xi \Phi_{j}\right] d \xi
\end{aligned}
$$

(3)
(4)

Terms corresponding to (1) and (3) will cancel in the difference. Terms (2) and (4) will cancel the terms resulting from the last term in ξ, in (2.2-19).
in the 1.h. side of (2.2-19). Finally
(5)
(V)
$\left.\int_{\text {loon }} \xi_{0}(1-\xi) \Phi_{j}^{(2)} \Phi_{k} d \xi=\xi_{0} \Phi_{j}^{(1)}(1-\xi) \Phi_{k}\right]_{\text {root }}^{i_{p}}-\xi_{0} \int_{\text {luau }} \Phi_{j}^{(1)}\left[-\Phi_{k}+(1-\xi) \Phi_{k}^{(1)}\right] d \xi$
$\left.\int_{\text {loom }} \xi_{0}(1-\xi) \Phi_{k}^{(2)} \Phi_{j} d \xi=\xi_{0} \Phi_{k}^{(1)}(1-\xi) \Phi_{k}\right]_{\text {Root }}^{i i_{k}}-\xi_{0} \int_{\text {loom }} \Phi_{k}^{(1)}\left[-\Phi_{j}+(1-\xi) \Phi_{j}^{(1)}\right] d \xi$
(6)
(B)

Again, terms (7) and (8) will cancel in the difference. Terms (5) and (6) will cancel the terms resulting from the last term in ξ_{0}, in the lh. side of (2.2-19). We are left with

$$
\begin{align*}
& \bar{\lambda}\left(\bar{\omega}_{j}^{2}-\bar{\omega}_{k}^{2}\right) \int_{\text {loom }} \Phi_{j}(\xi) \Phi_{k}(\xi) d \xi=0 \\
& \int_{\text {loom }} \Phi_{j} \Phi_{k} d \xi=0 \quad(j \neq k) \tag{2.2-20}
\end{align*}
$$

The modal mass, $m_{j}\left(\bar{\lambda}, \xi_{0}\right)$, is defined, for $j=k$, as

$$
\begin{equation*}
m_{i, j} \equiv \int_{\text {def }} \Phi_{\text {loom. }}^{2} d \xi \tag{2.2-21}
\end{equation*}
$$

in which $\Phi_{j}(\xi)$ is normalized to correspond to a unit deflection at the boom's tip, $\xi=1$. The following quantity, to appear later, is also of interest

$$
\begin{equation*}
m_{2, j} \equiv \int_{\text {de }} \xi_{1} \Phi_{j}(\xi) d \xi \tag{2.2-22}
\end{equation*}
$$

with $\xi_{1}=\xi_{0}+\xi$, varying between ξ_{0} (root) and $\xi_{0}+1$ (tip). It is readily determined when the modal shape, $\Phi_{j}(\xi)$, is known.

Also, for later use, two identities are given here, which are obtaine by multiplying Eq. (2.2-19) written for ϕ_{j}, by ϕ_{k}, and integrating over the boom,

$$
\begin{aligned}
& \frac{1}{\bar{\lambda}} \int_{\text {loom }} \Phi_{j}^{(4)} \Phi_{k} d \xi=\frac{1}{\bar{\lambda}} \int_{\text {loom }} \Phi_{j}^{(2)} \Phi_{k}^{(2)} d \xi=\int_{\text {loom }} \frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] \\
& \Phi_{j}^{(2)} \Phi_{k} d \xi-\int_{\text {form }}\left(\xi+\xi_{0}\right) \Phi_{j}^{(1)} \Phi_{k} d \xi \\
& +\left({\overline{a_{s}}}^{2}+\bar{\omega}_{j}^{2}\right) \int_{\text {loom }} \Phi_{j} \bar{\Phi}_{k} d \xi \\
& =-\int_{\text {loom }} \Phi_{j}^{(1)} \Phi_{k}^{(1)} \frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] d \xi \\
& +\int_{\text {hroom }} \Phi_{j}{ }^{(\prime)} \Phi_{k}\left(\xi+\xi_{0}\right) d \xi-\int_{\text {loom }} \Phi_{j}^{(\prime)} \Phi_{k} \\
& \left(\xi+\xi_{0}\right) d \xi+\left(\bar{\omega}_{j}^{2}+\bar{\omega}_{j}^{2}\right) \int_{h_{00 m}} \Phi_{j} \bar{\Phi}_{k} d \xi .
\end{aligned}
$$

Thus, for $j \neq k$

$$
\frac{1}{\lambda} \int_{l_{\text {locm }}} \Phi_{j}^{(2)} \Phi_{k}^{(2)} d \xi+\int_{l_{\text {oom }}} \Phi_{j}^{(1)} \Phi_{k}^{(1)} \frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] d \xi=0 .(2.2-23)
$$

and for $j=k$

$$
\frac{1}{\lambda} \int_{\text {loom }} \Phi_{j}^{(2)} \bar{\Phi}_{j}^{(2)} d \xi+\int_{\text {loom }} \Phi_{j}^{(1)} \Phi_{j}^{(1)} \frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] d \xi=\left(\bar{\omega}_{j}^{2}+\bar{\omega}_{j}^{2}\right) m_{i, j}(2.2-24)
$$

2.3 Equations of motion: meridional vibrations

The developments in the case of motions in the (x, z) plane, of a boom located along axis $+x$ in its undeflected position, or "meridional" vibrations, closely parallels those for equatorial vibrations, given in Section 2.2. In the following, only those terms which depart from the ones in Section 2.2 will be given in detail.

2.3.1 Basic equation

The equation expressing the equilibrium, at any section " x " of the boom, at point P, between the flexure moment from the left and the
moment , about P, of inertia forces imparted by the particles Q of the boom to the right of P (i.e. those having an abscissa x, between x and ℓ, reads

$$
E I \frac{\partial^{2} w(x)}{\partial x^{2}}=\int_{x}^{l} \rho d x_{i}\left[\left(\overrightarrow{r_{a}}-\overrightarrow{r_{p}}\right) \wedge \vec{\pi}_{a}^{\infty}\right]_{y}
$$

Now $w(x)$ is an elastic displacement parallel to z. Computing the relevant quantities,

$$
\begin{aligned}
& \vec{\pi}_{P Q}=\left(x_{1}-x\right) \vec{i}_{x}+\left(w\left(x_{1}\right)-w(x)\right) \vec{i}_{z} \\
& \vec{r}_{Q}=\left(x_{0}+x_{1}\right) \vec{i}_{x}+w\left(x_{i}^{\prime}\right) \vec{i}_{z}
\end{aligned}
$$

Thus

$$
\vec{k}_{a}^{\vec{K}_{a}}=\left[\begin{array}{l}
\omega_{y} w\left(x_{1}\right) \\
\omega_{z}\left(x_{0}+x_{1}\right)-\omega_{x} w^{\prime}\left(x_{1}\right) \\
\dot{\omega}^{\prime}\left(x_{1}\right)-\omega_{y}\left(x_{0}+x_{1}\right)
\end{array}\right]
$$

Also

$$
\begin{aligned}
& \vec{r}_{Q}=\frac{\partial}{\partial t}\left(\stackrel{\ddot{r}_{Q}}{\vec{r}_{Q}}\right)+\vec{\omega} \wedge \stackrel{0}{r_{Q}} \\
& \overrightarrow{r_{Q}}=\left[\begin{array}{l}
\dot{\omega}_{y} w\left(x_{1}\right)+2 \omega_{y} \dot{b}_{i}\left(x_{1}\right)-\left(x_{0}+x_{i}\right)\left(\omega_{y}^{2}+\omega_{z}^{2}\right)+\omega_{x} \omega_{z} w\left(x_{1}\right) \\
-\dot{\omega}_{x} w\left(x_{1}\right)-2 \omega_{x} \dot{w}\left(x_{1}\right)+\left(x_{0}+x_{1}\right)\left(\omega_{x} \omega_{y}+\dot{\omega}_{z}\right)+\omega_{y} \omega_{z} w\left(x_{1}\right) \\
\dot{\omega}\left(x_{1}\right)-w\left(x_{1}\right)\left(\omega_{x}^{2}+\omega_{y}^{2}\right)+\left(x_{0}+x_{i}\right)\left(\omega_{x} \omega_{z}-\omega_{y}\right)
\end{array}\right]
\end{aligned}
$$

Again, under the assumption of sma11 displacements and transverse angular rates, terms of order $w^{2}, \omega_{X} \omega_{y}, \omega_{x}^{2}, \omega_{y}^{2} \ldots$ are neglected. \vec{r}_{Q} reduces to

$$
\underset{Q}{\stackrel{\rightharpoonup}{n}}=\left[\begin{array}{l}
-\left(x_{0}+x_{1}\right) \omega_{z}^{2} \\
\left(x_{0}+x_{i}\right) \stackrel{\omega}{z}^{0} \\
\frac{0}{\omega}\left(x_{1}\right)+\left(x_{0}+x_{1}\right)\left(\omega_{x} \omega_{z}-\omega_{y}\right)
\end{array}\right]
$$

Along \vec{I}_{y},

$$
\left[\begin{array}{cc}
\overrightarrow{\pi_{0}}-\vec{r} \\
a_{p} & \stackrel{\rightharpoonup}{r} \\
\vec{a}^{\prime}
\end{array}\right]_{j}=\left|\begin{array}{cl}
w\left(x_{i}\right)-W(x) & x_{1}-x \\
w\left(x_{1}\right)+\left(x_{0}+x_{1}\right)\left(\omega_{x} \omega_{2}-\omega_{y}\right) & -\left(x_{0}+x_{1}\right) \omega_{z}^{2}
\end{array}\right|
$$

Substituting into (2.3-1), and non-dimensionalizing

$$
\begin{align*}
& \frac{E I}{\ell} \frac{\partial^{2} \eta}{\partial \xi^{2}}=-q l^{3} \int_{\xi}^{\ell}\left\{\left(\xi_{1}-\xi\right)\left(\ddot{\eta}_{1}+\left(\xi_{0}+\xi_{1}\right)\left(\omega_{x} \omega_{2}-\omega_{y}\right)\right)+\omega_{z}^{2}\left(\eta_{1}-\eta\right)\right. \\
& \\
& \left.\quad\left(\xi_{0}+\xi_{i}\right)\right\} \operatorname{lot} \tag{2.3-2}\\
& \eta \xi \xi_{\xi}=-\alpha \int_{\xi}^{\ell}\left\{\left(\eta_{1}-\eta\right) \omega_{2}^{2}\left(\xi_{0}+\xi_{1}\right)+\left(\xi_{1}-\xi\right)\left(\xi_{0}+\xi_{i}\right)\left(\omega_{x} \omega_{2}-\omega_{y}\right)\right. \\
& \left.+\left(\xi_{1}-\xi\right) \eta_{1}\right\} d \xi_{1}
\end{align*}
$$

Comparing (2.3-2) to (2.2-4), it is seen that terms (b) and (c) in (2.3-2) differ in the following way from the corresponding ones in (2.2-4)
(b) here has a factor $\left(\omega_{x} \omega_{z}-\dot{\omega}_{y}\right)$ instead of $\dot{\omega}_{z}$
(c) here has a factor $\ddot{\eta}_{1}$ instead of $\ddot{\eta}_{1}-\omega_{z}^{2} \eta_{1}$

Therefore, with these changes, the equation analogous to (2.2-6) which describes the meridional vibrations should be

$$
\begin{equation*}
\eta_{\xi \xi \xi \xi}-\bar{\lambda} \eta_{\xi \xi}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]+\bar{\lambda} \eta_{\xi}\left(\xi+\xi_{0}\right)+\alpha \dot{\eta}_{\eta}=-\alpha\left(\omega_{x} \omega_{2}-\omega_{y}\right)\left(\xi+\xi_{0}\right) \tag{2.3-3}
\end{equation*}
$$

So far, quantities neglected have beén of order ε^{2} of smallness, or smaller. Now, in order for the r.h. side of (2.3-3) to be of order ε^{2}, we should have

$$
\begin{aligned}
\alpha \omega_{z}^{2} \frac{\omega_{x}}{\omega_{z}} & =\bar{\lambda} \frac{\omega_{x}}{\omega_{z}} \\
\alpha \frac{d \omega_{y}}{d t} & =\bar{\lambda} \frac{d \omega_{y} / \omega_{z}}{d \phi}
\end{aligned}
$$

very small compared to quantities assumed to be of order E. If such is the case, we are left with homogeneous equation

$$
\begin{align*}
\eta_{\xi \xi \xi \xi} & -\bar{\lambda} \eta_{\xi \xi}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]+\bar{\lambda} \eta_{\xi}\left(\xi+\xi_{0}\right) \\
& +\alpha \eta_{0}^{*}=0 \tag{2.3-4}
\end{align*}
$$

(2.3-4) differs from (2.2-7) only in that term - $\bar{\lambda} n$ of (2.2-7) is not present.

2.3.2 Solution of the basic equation

After separation of variables and non-dimensionalizing time by $\tau=\omega_{z} t$, the solution to (2.3-4) will be

$$
\eta_{j}=\Phi_{j}(\xi) T_{j}(t)
$$

in which $T_{j}=\sin _{\cos }^{j}{ }_{j}=\sin \bar{\omega}_{j} t$, and Φ_{j} satisfies the differential equation

$$
\begin{align*}
\Phi_{j}^{(w)}- & \bar{\lambda}_{j}^{(2)}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}(1-\xi)\right]+\bar{\lambda} \Phi_{j}^{(1)}\left(\xi+\xi_{0}\right) \tag{2.3-5}\\
& -\bar{\lambda} \bar{\omega}_{j}^{2} \Phi_{j}=0
\end{align*}
$$

As expected, this equation is the same as that obtained in (2.2-8) for equatorial vibrations provided the substitution of

$$
\begin{equation*}
\bar{\omega}_{j}^{2} \text { in (2.3-5) is made for }\left[\left(1+\bar{\omega}_{j}^{2}\right)\right] \text { in }[2.2-8] \tag{2.3-6}
\end{equation*}
$$

Therefore, the method outlined in Section (2.2.2) to solve for $\bar{\omega}_{j}$ can be adopted and followed without any other modification than that spectfied by (2.3-6). In fact, program SEARCH DP, which obtains the first three eigenvalues

$$
\omega_{1}, \omega_{2}, \omega_{3}
$$

given a pair ($\bar{\lambda}, \xi_{0}$), iteratively solves an equation such as (2.3-5),

$$
\begin{gather*}
\Phi_{j}^{(i N)}-\bar{\lambda} \Phi_{j}^{(2)}\left[\frac{1}{2}\left(1-\xi^{2}\right)+\xi_{0}\left(1-\xi_{0}\right)\right]+\bar{\lambda}_{j}^{(1)}\left(\xi+\xi_{0}\right) \\
+\operatorname{COEF*} \Phi_{j}=0
\end{gather*}
$$

in which the coefficient "COEF" is determined as follows:

2.3.3 Orthogonality of the mode shapes

Modes $\phi_{j}(\xi)(j=1,2 \ldots)$ for meridional vibrations can be proven to be orthogonal, as in Section (2.2-3), since Equation (2.2-19) holds equally well in the present case. Thus

$$
\int_{\text {boom }} \phi_{j} \phi_{k} d \xi=0 \quad j \neq k
$$

and we define, for case M,

$$
\begin{align*}
& \mathrm{m}_{1, j} \mathrm{~d} \overline{\overline{\bar{e}} \mathrm{f}} \int_{\text {boom }} \phi_{\mathrm{j}}^{2} \mathrm{~d} \xi>0 \\
& \mathrm{~m}_{2, \mathrm{j}} \text { dē产f } \int_{\text {boom }} \phi_{\mathrm{j}} \xi_{1} \mathrm{~d} \xi \tag{2.3-10}
\end{align*}
$$

with $\xi_{1}=\xi_{0}+\xi_{0}$
With the substitution $\bar{\omega}_{s}^{2}+\bar{\omega}_{j}^{2}$ in $(2.2-8) \rightarrow \bar{\omega}_{j}^{2}$ in (2.3-5), the following relations, valid for meridional vibrations, are deduced straightforwardly from Equations (2.2-23) and (2.2-24)
for $j \neq k$

$$
\begin{equation*}
\frac{1}{\lambda} \int_{\text {loom }} \Phi_{j}^{(2)} \Phi_{\beta}^{(2)} d \xi \int_{\text {loom }} \Phi_{j}^{(1)} \Phi_{k}^{(1)} \frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] d \xi=0 \tag{2.3-11}
\end{equation*}
$$

and for $j=k$

It should be noted here that for the same pair of values ($\bar{\lambda}, \xi_{0}$), if (COEF) ${ }_{j}$ is the value to be given to COEF in (2.3-7), in order for the determinant (2.2-16) to vanish, then '

$$
(\mathrm{COEF})_{j, E}=(\mathrm{COEF})_{j, M}=\mathrm{COEF}
$$

or

$$
\bar{\omega}_{j, E}^{2}\left(\bar{\lambda}, \xi_{0}\right)+1=\bar{\omega}_{j, M}^{2}\left(\bar{\lambda}, \xi_{0}\right)
$$

whereas the modal shapes determined from (2.3-7) with the value (COEF) ${ }_{j}$ of COEF have to be the same in cases E and M

$$
\bar{\Phi}_{j, E}\left(\bar{\lambda}, \xi_{0}, \bar{\omega}_{f, E}\right)=\Phi_{\partial, M}\left(\bar{\lambda}, \xi_{0}, \bar{\omega}_{d, M}\right)
$$

In (2.3-13), if it is found more convenient to non-dimensionalize
by a quantity proportional to the lst eigenfrequency of the non-rotating cantilever boom, namely

$$
\omega_{N R}^{*}=\left(E I / \rho \ell^{4}\right)^{1 / 2}
$$

then (2.3-13) becomes

$$
\begin{equation*}
\left(\frac{\omega_{d, E}}{\omega_{N R}^{*}}\right)^{2}+\left(\frac{\omega_{I}}{\omega_{\text {NR }}^{*}}\right)^{2}=\left(\frac{\omega_{d, E}}{\omega_{N R}^{*}}\right)^{2}+\bar{\lambda}=\left(\frac{\omega_{d, H}}{\omega_{N R}^{*}}\right)^{2} \tag{2.3-14}
\end{equation*}
$$

as illustrated in some examples of Section (2.8)
2.4 Program determining the modal frequencies for equatorial or meridional vibrations: SEARCH DP.

Program SEARCH DP, listed at the end of the present chapter, is written in FORTRAN V and implements the developments of Section 2.2 and 2.3.

The calculations are carried out in double precision, which suffices for values of $\bar{\lambda}$ up to about 5,000 . For higher values of λ, an arbitrary N-precision, scheme had to be used: this is described in Section 2.7.
2.4.1 Description of the program

Number of statements (including comment cards) : about 270
Input: - 1 card giving $Q=E$ or $M ? ; \bar{\lambda} ; \xi_{0}$ in format (A1, $F 6.5, G 5.4$)
Output: 1) - A heading, specifying "Equatorial case" or "Meridional case"
2) - 'The values of a "frequency" number" defined as $\sqrt{\bar{\lambda}}$

- Lines giving the value of determinant of Equation (2.2-16), called here FE 34 ; the value of $\sqrt{C O E F}$, the value of index U, number of trials in μ before converging to the root of $\cong\left(\bar{\omega}_{j}\right)=0$
- Lines labeled KKK number of iterations, giving the successive values of the determinant as μ is changed to obtain convergence of the determinant to zero. The iteration stops when μ_{k+1} differs from μ_{k} by less than 10^{-4}.
- A statement that "MU converged" giving the value of FE34 and μ.
- A•print-out of FE34, $\mu, \bar{\lambda}$, and NATFRQ, defined as $\frac{\omega_{j}}{\omega^{*}}$

$$
{ }^{\omega} \mathrm{NR}
$$

- The value of the step in μ, DLT, and the value of the order of the eigenvalue, j or NOR

3) same for $\mathrm{j}=2,3$, in that order.

2.4.2 Schematic flow chart:

The following flow chart schematically describes the main control flow in SEARCH DP.

2.4.3 Comments

a) It has been numerically determined ${ }^{[2-4]}$ that 100 steps across the boom's length would suffice, over the range of $\bar{\lambda}$ and ξ 。 investigated, to obtain eigenvalues agreeing up to the $5^{\text {th }}$ digit with those obtained with 200 steps across the boom's length. The "100-steps" are therefore incorporated as a "fixed" feature in program SEARCH DP.
b) A method of linear interpolation is used for finding the roots of $\left(\bar{\omega}_{j}\right)=0$. The iteration on μ (or equivalently the eigenvalue to be) stops when two successive values of μ, in the iteration process, agree to at least 0.1%.
c) The integration method is a simple Runge-Kutta with fixed step, having a per step error of the order of Δx^{5}.
d) Using double-precision arithmetic, the number of significant digits retained in the two terms in \mathscr{D}, in Equation 2.2-16, does not suffice for values of $\bar{\lambda}$ larger than about 5,000 , and an arbitrary precision package ("NP" - package, N > 0 integer) had to be developed and is described in Section 2.7.
2.4.4 Listing and sample output

A listing and a sample output of program SEARCH DP are given at the end of this chapter.
2.5 Program Determining the Modal Shaptes ϕ_{j} and "Masses" $m_{1, j}, m_{2, j}$: MODE

MODE is a Fortran-V, double precision program determining the modal shapes, normalized to unit deflection at the boom's tip,

$$
\phi_{j}(\xi) \quad j=1,2,3
$$

which are solutions of Equation 2.3-7, in which

$$
\bar{\omega}_{j} \text { is the } j \text { th eigenvalue determined by SEARCH DP }
$$

$$
\begin{aligned}
& \operatorname{COEF}=(\mathrm{COEF})_{j, E}=(\operatorname{COEF})_{j, M} \\
& (\mathrm{COEF})_{j, E}=1+\bar{\omega}_{\mathrm{j}, \mathrm{E}}^{2} \\
& (\mathrm{COEF})_{j, M}=\bar{\omega}_{j, M}^{2}
\end{aligned}
$$

2.5.1 Description of program MODE

Number of statements (including comment cards): 158
Input: - 1 card giving IE - E or M ; $; \mathbf{j} ; \bar{\lambda} ; \xi_{0}$:
$\mu=$ COEF (to be used in Equation 2.3-7)
in (A1, I1, 3G12.6 format)
Output: 1) - A heading, specifying "Equatorial Case" or "Meridional Case"
2) - The values of $\mu_{j}=\operatorname{COEF}_{j}$ (as obtained from SEARCH DP), $\bar{\lambda}, \xi_{0}, j(1,2$ or 3$)$

- The values of $m_{1, j}=\int_{\text {boom }} \Phi_{j}^{2} \mathrm{~d} \xi ; \mathrm{m}_{2, \mathrm{j}}=\int_{\text {boom }}\left(\xi_{\circ}+\xi\right) \Phi_{j} \mathrm{~d} \xi ;$
$\frac{m_{2, j}}{m_{1, j}} ; \frac{m_{2}^{2}}{m_{1, j}}$ which are of interest in the dynamical
simulation of the evolution in time of the spacecraft angular rates ($\omega_{x}, \omega_{y}, \omega_{z}$) and modal coordinates $\left(q_{j}\right)$
- The deflection $\Phi_{j}(\xi)$ as a function of ξ; I, the station index, varying from $I=1$ (at the root) I = 101 (at the tip), in steps of 2.
2.5.2 Schematic flow diagram. The main control flow in MODE is as follows:

2.5.3 Comments

a) The number of steps of integration, experimentally determined to give values of μ agreeing up to the 5 th digit when solving the step size, was found to be 100. As in 2.4 .3 and SEARCH DP, the the 100 steps are a fixed feature incorporated in the program.
b) The method of integration is Runge-Kutta with fixed step. ,
c) The calculations are carried out in double-precision, which should suffice for values of $\bar{\lambda}$ of up to 10,000 . The data μ_{j}, however, might have had to be determined with the use of "NP" arbitrary precision package.

2.5.4 Listing and sample output.

A listing and a sample output of program MODE are given at the end of this chapter.
2.6 Parametric Study of Eigenfrequencies and Modal Shapes as a Function of $\bar{\lambda}$ (Etkin's Number) and ξ_{0} (Non-Dimensional Radius of the Hub)

Given the design parameters $\bar{\lambda}$ and ξ_{0}, the study of the eigenfrequencies ω_{j}, (which normalized to ω_{s}, are noted $\bar{\omega}_{j}$, and to $\omega_{N R}^{*}=\left(\frac{E I}{\rho l^{4}}\right)^{1 / 2}$, are noted $\frac{\omega_{j}}{\omega_{N R}^{*}}$) will be made easier by using several programs described hereunder.

2.6.1 Preliminary Comment

First of all, it should be emphasized here that there is no point in comparing mode shapes ϕ_{j} for "E" and " M ", since they are the same solutions to Equation (2.3-7), for $\operatorname{COEF}_{j}=\operatorname{COEF}_{\mathrm{j}, \mathrm{E}}=\operatorname{COEF}_{\mathrm{j}, \mathrm{M}}$, once j has been chosen and $\bar{\lambda}$ and ξ_{0} have been given. Any slight
numerical departure, such as described in Ref. [2-4], 2-5] could only result from the inaccuracy is determining the eigenfrequency (0.1% relative accuracy on 1 , in program SEARCH DP). Only the eigenfrequencies $\bar{\omega}_{j, E}, \bar{\omega}_{j, M}$ corresponding to these modal shapes will be different.
2.6.2 Program computing dynamical parameters, given $\bar{\lambda}, \xi_{0}$: PARAM.

Program PARAM, written in FORTRAN-V, will permit to get a quick look at various relevant dynamical parameters, given $Q=E$ or $M, \bar{\lambda}$ and ξ_{0}, namely

$$
\begin{aligned}
& m_{1, j} \\
& m_{2, j} \\
& \left(m_{2} / m_{1}\right)_{j} \quad \text { and } j=1,2,3 \\
& \left(m_{2}^{2} / m_{1}\right)_{j}
\end{aligned}
$$

and also the sum over one, two, three modes

$$
\sum_{j} \frac{m_{2, j}^{2}}{m_{1, j}}
$$

a quantity to be used later in this work. It will also plot the mode shapes (up to $j=3$) in the computer printout.

The data entered are

$$
\begin{array}{ll}
\bar{w}_{j, M}(j=1,2,3) & \begin{array}{l}
\text { obtained from SEARCH DP }, \\
\text { case } M
\end{array}(\text { NDS }=0)
\end{array}
$$

$$
\bar{\lambda}
$$

$$
\xi_{0}
$$

The program basically computes $\Phi_{j}(\xi)$ and the relevant integrals, $m_{1, j}, m_{2, j}$ etc... as deffned before.

A listing and a sample output of program PARAM is given at the end of this chapter.

2.7 Arbitrary Precision Package: MP (for use on OS) and P ($\mathrm{N}-$ Precision Package), in Fortran.

2.7.1 Motivation

An earlier version of SEARCH DP had been written ${ }^{[2-4]}$ to alleviate a problem of numerical stability at large values of $\bar{\lambda}$ (higher than about 5,000). This version used on IBM-library multiple precision (MP package). It was found, however, that this package was unavailable in a TSS environment. Therefore, an arbitrary precision package (NP) was written in Fortran V, and used for finding the eigenvalues $\bar{\omega}_{j}$ at values of $\bar{\lambda}$, and the accuracy of determinant D in Equation (2.2-16) will be critically affected when taking differences of very large numbers.

MPAP (Multiple Precision Arithmetic Package) is present in the Internal Library of the IBM-360. The routine calls on specialized subroutines to perform floating point calculations with precision to be specified by the programmer (typically, here, quadruple precision was required).

MP-SEARCH, as used in Ref. [2-4], and MP-MODE, are thus basically MPAP versions of SEARCH and MODE. Their one disadvantage, as expected, is
an increased running time, of the order of 1.5 minutes for eigenvalue (IBM/360). For this reason, it is important that the eigenvalues or modal quantities of MP-MODE obtained for high $\bar{\lambda}$ be stored for later use in the simulation (Option MG1V $=1$ in program FLEXAT, see Chapter 5), and that interpolation be used whenever possible.
2.7.3 MuItiple precision in TSS: MP-package

Written in FORTRAN for case of conversion to any machine, N-PRES is a multiple-precision arithmetic system for scientific calculation It may be used on any machine which stores one integer per work, where a word is ≥ 31 bits long.

2.7.3.1 Short description of the program

2.7.3.1.1 Representab1e numbers.

Let N, M be integers

$$
2 \leq N \leq 16
$$

All numbers in the program are considered floating point constants of $+N$ precision, expressed in scientific notation. Thus, for $N=3$, or precision $4 N=12$, we could have
$.371246875003 * 10 * * 8371$
The exponent must always be an integer, positive, negative or zero and less than or equal to 4 decimal digits long. Thus a number such as $\pm d_{1} d_{2} \ldots d_{60} * 10^{+D_{1} D_{2} D_{3} D_{4}}$
2.7.3.1.2 Internal Storage (Multiple-point, floating)

The mantissa is stored 4 digits to a word, in "N" digits.
The exponent takes up the $N+1$.tion (Any $1 \leq N \leq 16$)

$$
\begin{aligned}
& \text { Examp1e: for } M=3, N=2 \\
& 8.4326 \times 10^{4}=.84326000 \times 10^{5} \\
& 6.0 \times 10^{4}=.6 \quad \times 10^{2}
\end{aligned}
$$

represented as

NUMBER 1	NUMBER 2	
8	6	
4	0	Word 1
3	0	
2	0	
6	0	
0	0	Word 2
0	0	
0	0	
0	0	
0	0	
0	2	

All operations are designed to handle such units, called N-CONS (for N constant).
2.7.3.1.3 Quick guide to operations and subroutines

Name Subroutine Function (all operating with N cons)
INIT Initialize the N-precision system
INPUT
OUTPUT
Input
Output
CIN
Convert integer to $\mathrm{N}-\mathrm{CON}$
CNI
Convert N -CON to integer
CFN Convert floating point to $\mathrm{N}-\mathrm{CON}$
CNF Convert N-CON to floating point
NABS \quad Mem (Add) $\leftarrow A B S[M e m(A d d)]$
NPWR $\operatorname{Mem}(A d d) \leftarrow[\operatorname{Mem}(A d d)] * * P$
with P a parameter to NPWR
NSCL
Mem (Add) $\leftarrow[\operatorname{Mem}(A d d)] * 10 * * S$
with S a parameter to NSCL
Name Subroutine function (all operating, with N cons)
NCMPR if $\operatorname{Mem}(A d d 1)=\operatorname{Mem}(A d d 2), A=B$
if Mem(Add 1$)>\operatorname{Mem}(A d d 2), A>B$
if Mem(Add 1) < Mem(add 2), A < Bwith A, B, parameters to NCMPRCOPY
Mem (Add 2) \leftarrow Mem (Add 1)
RENORM
Internal use only
PUNCH Output to punch
IMUL $\quad \operatorname{Mem}(A d d) \leftarrow \operatorname{Mem}(A d d) * I$
$I=\mid$ integer $\mid \leq$ limit
FDIV
Mem(Add) \leftarrow Mem(Add) $/ F$
F = floating point
MADD
MSUB $\quad \operatorname{Mem}(\operatorname{Add} 3) \leftarrow \operatorname{Mem}(\operatorname{Add} 1)-\operatorname{Mem}(\operatorname{Add} 2)$
MMUL Men(Add 3) $\leftarrow \operatorname{Mem}(A d d .1) \div$ Mem (Add 2)
MDIV
Mem(Add 3) $\leftarrow \operatorname{Mem}(A d d 1)+\operatorname{Mem}$ (Add 2)
Mem (Add 3) $\leftarrow \operatorname{Mem}($ Add 1) $/ \operatorname{Mem}(A d d 2)$
2.7.3.2 Some examples of N-precision programming
2.7.3.2 Square root
A. Algorithm: Newton-Raphson
Let $B=\sqrt{A}$, with old $B=1$
the $B=\frac{1}{2} \quad\left(\frac{A}{O l d B}+\right.$ old $\left.B\right)$
If $\mathrm{Abs}(01 \mathrm{~d} \mathrm{~B}-\mathrm{B})>\mathrm{B} \div 10 * *$ limit
O1d B = B
Else done
B. Fortran Progarm:

Limit $=-12$
Read $(5,1) \mathrm{A}$
1 Format (F10.2)
01d $B=1$.
$2 B=(A / 01 d B+$ old $B) / 2$
$X=A B S(01 d B-B)$
$\mathrm{Y}=\mathrm{B} * 10 * *$ Limit
If (X, LE. Y) GØ Tø 3
01d $B=B$
GO TO 2
3 WRITE $(6,4) B, A$
4 FORMAT ('山', F10.2, 'نـ IS SQUARE ROOT OF, F10.2)
STOP
END
C. N-Precision Program

IMPLICIT INTEGER (A-Z)
CALL $\operatorname{INIT}(1,4)$
CON V $=-12$
$\mathrm{A}=1$
$B=2$

01d $=3$
TWO $=4$
$\mathrm{X}=5$
$Y=6$
HALF $=7$
CALL Input (A)
Call $\operatorname{NSCL}(A, 1)$
CALL CIN(TWO,2)

Comments

(a11 N-cons.)
(16 digits of precision, $N=4$) . (1imit)
(Allocation of variable names to N -con addresses)
(N -con at address TWO contains the value 2)
Call CIN(Old B,1) (N-con. at address 'Old B'
Call CFN(HALF,.5)
Call Output (HALF)
Call Output(A)
$Q=1$
Call $\operatorname{MDIV}(A, 01 d B, B)$
Cal1 MADD (B,01d B, B)
Call MMUL(B, HALF, B)
Call Output(B)
Call HM
Call MSUB(B,Old B,X)
Call NABS (X)
Call COPY (B, Y)
Call NSCL (Y,CONV.)
Call $\operatorname{NCMPR}(X, Y, I, J)$
If (I. LE. J) GO TO 2 x
Call COPY (B, o1d B)
GO TO 1
CONTINUE
Ca11 HM
(Write out results)
2.7.3.2.2 Conversion of a statement from SEARCH $n P$
Consider the FORTRAN statement of SEARCH DP:
IF (FE34ヶDECID) 52, 51, 50.
The N-PREC. translation would be
CALL MMUL(DECID, FE34, TEMP)
CALL NCMPR (TEMP,ZERO,I,J)
If (I.LT. J) GO TO 52
If (J.EQ. J) GO TO 51.
50 CONTINUE
2.8 Results from programs SEARCH DP, MP and NP

The frequencies $\bar{\omega}_{j}$ (normalized to $\omega_{s}=1$) for $j=2$, are given
for case M. Those for case E are immediately obtained from

$$
\bar{\omega}_{E, j}^{2}=\bar{\omega}_{M, j}^{2}-1
$$

Also given below is the quantity $\sum_{j=1}^{3} \frac{m_{2}^{2}}{m_{1, j}}$, which will be of special importance in Chapters 4 and 5. The first non-dimensional frequency x $\omega_{i} \sqrt{\rho \ell^{4} / E I}$ is also represented, for cases E and M, and various values of ξ_{0}, on Fig. 2.2.

CASE M - FIRST NONDIMENSIONAL NATURAL FREQUENCY

0.00	0.10	0.25	0.50

0	3.681	3.703	3.734	3.787
5	1.913	1.953	2.013	2.107
10	1.555	1.605	1.675	1.788
20	1.339	1.395	1.476	1.601
30	1.256	1.316	1.401	1.531
50	1.183	1.246	1.335	1.469
100	1.120	1.186	1.278	1.417
200	1.050	1.148	1.242	1.385
500	1.034	1.016	1.104	1.214

NOTE: $\bar{\omega}_{E}=\left(\bar{\omega}_{M}^{2}-1\right)^{1 / 2}$

$$
\left(\omega_{i}\right)_{\bar{\lambda}=0}=3.518\left(\frac{E I}{\sum^{4}}\right)^{1 / 2}
$$

CASE M - SECOND NONDIMENSIONAL NATURAL FREQUENCY $\quad \bar{\omega}_{2}=\omega_{2} / \omega_{s}$

NOTE: $\quad \bar{\omega}_{E}=\left(\bar{\omega}_{M}^{2}-1\right)^{1 / 2}$

$$
\left(\omega_{2}\right)_{\bar{\lambda}=0}=21.91\left(\frac{E I}{\left[l^{4}\right.}\right)^{1 / 2}
$$

$$
m_{2,1}^{2} m_{1,1}
$$

(UNE NODE)

NOKDTMENSCONAL DYNATCAL PARATETERS

SUR OVLR 3 MOLES

$\bar{\lambda} \varepsilon_{0}$	0.0	0.10	0.25
10	0.3328	0.4401	0.6336
100	0.3329	0.4404	0.6343
1000	0.3332	0.4413	0.6366
$4=0.3333$	$\Delta=0.4433$	$\Delta=0.6458$	

[2-1] ETKIN, B. and HUGHES, P.C.: "Explanation of the anomolous spin behavior of sateliites with long flexible antennae, Jour. of Spacecraft and Rockets, 4, 9, 1139-1.145.
[2-2] VIGNERON, F.R.: "Stability of a Freely Spinning Sateliite of Crossed-Dipole Configuration." CASI Trans., 3, 1, 8-9, March 1970.
[2-3] RENAKD, M.L. and RAKOWSKI, J.E.: "Equatorial Vibrations of a Long Flexible Boom on a Spin-Stabilized Satellite of NonZero Radius," Proc. of the Astronautical Congress, October 1969. Vo1. 1, pp. 35-53, E. Lunc (Editor), Pergamon Press, 1971.
[2-4] RAKONSKI, J.E.: "A Study of the Attitude Dynamics of a SpinStabilized Satellite Having Flexible Appendages," Ph. E. Thesis, Mech. Engrg., Carnegie-Mellon University, December 1970.
[2-5] RAKOWSKI, J.E. and RENARD, M.L.: "A Study of the Nutational Behavior of a Flexible Spinning Satellite Using Natural Frequencies and Modes of the Rotating Structure," Paper 70-1046, presented at the AAS/AIAA Astrodynamics Conference, Santa Barbara, August, 1970.

FIG. 2-1. GEOMETRY OF SPINNING SATELLITE WITH FLEXTBLE APPENDAGE.

Equatorial vibrations.

Meridional vibrations.

FIG. 2-2. FREQUENCY OF FUNDAMENTAL MODE VS $\bar{\lambda}$.

PROGRAM LISTING AND
 SAMPLE OUTPUT


```
C
ッバいい!い
                                    2-41
                                    THIS PROGRANG INGS THE FIKST THRFE ETGENVALUES (NOS) FOR THF ROTATING
    BOOM IN EITHER EQUARORIML OR MERIUION, FLEXUIRE
    IT..WILL COMPUTE THESE ACCURATELY FOR VALUES OF LAMDA UP TO
    APPHOXIMAIELY 500U
    DOUNLE PREC1S10NMP(4),K(4),M(4),L(4)+E3(101),E31P(101),E32P(101).
    1FE34,OECID,IVAL,HY,CMUNJ,EOOMG,ESTRJ,ESHR4,FEPRV,
    1E3.3P(101),E34P(101),E4(101),F41H(101),F42P(101),E43P(101),
```



```
        4 Wi_T,UP,D,NOSIO,SI
            REAL il_NN,LAM,NATFRQ
            INTEGER I,O,N,Z, NINT,INTER,*PR,U,NOK,KKK,Q
                UATA/LM/LHM
C
C IWPUT DATA IS E OK MILAMBUA,PSI-ZERU
C
    18._._READ(5,2U,LNO=22)O,LAM,SIO
    20 FORMAT(A1,F6.5,G5.4)
        NDS=1
        IF(Q.EG.LM)NDS=0
        IF(ivuS.E(*, \) wR\TC.(0,15)
        IF(NLUS.EN.U):ARITE(6,17)
    16. FORMAT(' EVUATORIAL CASE'//)
    17:FOKMAT(' MCRIDIONAL CASE///)
    WRITE(6,2I) LAM,SIO
    21 FORMAI(1H,'LAM=',F12.6,3X,'S10=',DY.31)
    KKK=1
    R=0
    U=1
    Fe34=0.
        mitj=1.00-5
            EPSB=1•0!-14
        M=0
        FEFRV=0.
    EP50=10.**-14
C. SET NOPT = 1 FOR KEVENSED I TEGRNTIUN (TIP TO RONT)
        WOPTE1
        NDS = OLMECTION SWITCH
        WHEN HDS = 1. SEARCH FOR CQINATORIAL ROOTS.
        WHEN NOSS = ", SEAKCH, FOK WEHIDIAN RUOTS.
            NOR=1
            N=1
            OLT=1.
            IA=0
            NINT=100
            INTER=N\perpNT+I
            ANFRO=SURI (LAM)
            NKITE(fofil) A,FRO
            60. FORMAT(1H .'NFRQ=SORT LAM=',F10.5)
            99 SI=0.
            TVAL=FES4
            Jコ=U
C CLEAK ARKAYS
            (0) 31 I=1.4
```

```
            K(1)=0.
        L(I)=0.
        M(I)=0.
    31. P(I)=U.
        00 1 1=1.101
        E34P(1)=0.
        E44P(1)=0.
        E33+}(1)=0
        E43P(1)=0.
        E32P(1)=0.
        E42P(1)=0.
        E31P(1)=0.
        E41r(1)=0.
        E4(I)=0.
        1 E3(I)=0.
            H=1./FLOA1(ivINT)
C
            SET INITIAL CUNOITIOINS ON THE S.3 ANO S4 SOLUTIONS
            D=3
    8 IF(U.EO.4) GO TO &
        EU=0.
        Bu=0.
        IF(INOPT.GT.U) GO TO 12
        E.3つP(1)=1.
        BO=E32P(1)
        GO TO 13
    1) ES(1)=1.
        EO=E.3(1)
    13 CO=%.
        A0=0.
        GO TO }
    2 AO=0.
        CO=U.
        IF(NOPT.GT.0)GO TO }1
        E43P(1)=1.
        CO=643P(1)
        GO T0 15
    14 E41P(1)=1.
        AU=E41P(1)
    15 BO=0.
        E0=0.
    3. }A=A
        B=BO
        C=CO
C- BEGIN RUNGA KUTTA INTEGRATION
C
    4 I}\quad\textrm{I}=
        Niv=1%
        SI=(iNin-l.)**H
    5 n(I)=H*A
        L(I)=1**S
        M(I) =14*C
        Mul=1.+MU*Mu
        IF(NDS.CQ.1) (GO TO }4
```

Mu1－Mu1－1．
 IF（ivOHT．GT．U）．．P（I）$=((-S I * S I+2 . * 5 I *(1 \cdot+510)) / 2 * * B$
$1+(1,-5 I+510) * A+\operatorname{ivU} L * E) * L A M * H$
SI＝（NiN－1．）$* 1$
$I=I+1$
IF（I．UT． 3 ）＿． 10 O．TO． 6
$Z=I-1$
$E=E U+K(Z) / 2$ ．
$A=A \cup+L(Z) / 2$ ．
$B=B C+i=(2) / 2$.
$C=C O+P(Z) / 2$ ．
$S I=S I+H / 2$ ．
GO TO 5

$E=E \cup+K(3)$
$A=A 0+L(3)$
$i 3=30+i v i(3)$
$C=C 0+P(3)$
SI＝SI＋H
GO TO 5
7 IF（U．EQ．4）GOTO 9
SI＝NN＊H
$Z=N+1$
$E 马(Z)=E 3(N)+(\kappa(1)+2 * * N(2)+2 * * k(j)+K(4)) / 6$ 。

E32P（ 2$)=E 32+(v)+(n(1)+2 \cdot *(2)+2 \cdot *(3)+N(4)) / 5$.
E33P（ $\angle)=E 33 P(N)+(p(1)+2 \cdot * p(2)+2 . *(j)+p(4)) / 6$ ．

$1-(5 I+S I U) * E S 1 j(\angle)+M U 1 * E J(7))$

$E=E 3(N+1)$
$A=E 31 H(N+1)$
$B=E 32+(N+1)$
C＝Eう3P $(N+1)$
EOニE
$A O=A$
$B 0=0$
$\mathrm{CO}=\mathrm{C}$
$N=N+1$
IF（N．LT．INTCR）GO TU 4
EMON3＝EJ2R（LNTER）
ESHR3＝EJ3P（INTER）
IF（IVOPT．GT．U）EMOM3＝E3（INTER）
IF（NONT．GTOU）ESHR3＝ESIN（XVER）
$\mathrm{O}=4$
60108
$9 \quad$ SI＝NN： 4
Z＝N＋1
$E 4(2)=E 4(N)+k(1)+2 \cdot * n(2)+2 \cdot * k(3)+K(4)) / 6$.
$\mathrm{E} 41 \mapsto(<)=\varepsilon_{0}+1 P(i v)+(L(i)+2 * L(2)+2 . * L(j)+L(4)) / 6$ ．

$\left.1 * E 42 P(Z) / 2 \cdot+(1 \cdot-51+5 I U) * E 41 P(2)+M U 1 * F_{4}(2)\right)$
$E=F 4(N+1)$
$A=E 41 H(N+1)$
$B=E 42 P(i v+1)$
$C=E 43 P(N+1)$
EO=ビ
AO二A
$\mathrm{BO}=\mathrm{B}$
$\mathrm{CO}=\mathrm{C}$
$N=N+1$
IF (N.LT. INTER) GO TO 4
EMOM4 $=E 42$ P (INTEN)
ESHR4二E43ト (1 NTER)
IF (NOHT.GT.U) EMOM4 $=F .4$ (INTFK)
IF (NOHT.GT.U) ESHR4=EムIP (NTER)
C
RUNGA KUTTA FINISHEU
HOW REGGN LINEAR INTEKPULATION
Fe334 15 ThE VALIJE OF THE DETERMINANi (S3 aNO S4)
C
FE $34=$ EMOA $5 *$ ESHR4-ESIRJ*EMOM4
IF (K.ED.1) GO TO 51
IF $(U \cdot C 0.1)$ GO TO 50
IF (FES4*OECND)52.51.50
50 DECID=FE34
LASEMU
LASS=LAS
WRITE (6.85)FE 34 MU. U

MUにMU DLT
$u=u+1$
Gu To 99
52 UP=inU
OwHELAS
HY = FESH
TVAL=rESH
51 If (ABS (FES4) LEEDPSO GO rO 53
IF (ABS(UECIU). LE.EPSB) 60 TO 42

$R=1$
IF (FESH*OEC1D)55.51.56
55 UP=政
MU=UNV-(D)N-UP)*DECID/(DECTD-FEJ4)
KKK=KKK+1
$E P S C=A B S(A B S(M 1)-A B S(L A S S))$
IF (EPSC.LTOMU*10.**-th) GO TO 10
LASS $=\mathrm{MU}$
GO T0 58
56 DwN=inU
DECID $=\mathrm{FE} 3_{4}$
MIFUWI-(DNOUP) $\because D E C I D /(O E(: I O-H Y)$
$K K K=K \kappa K+1$
EPSC=ABS (nGD (AU) - ABS (LASS))
If (CPSC.LT•时*1U.**-4) GO TO 10°
LASSEMI
5H FEL=AES (FEPHV)-ABS(FESH)
IF (ABS (FE1).GT. 1.0U-14) GOTO B?
$I A=I A+1$

İ̈(IA.LT.6) GO 10 BC
WRITE(6,8.) FEE 34
83 FORMAT(1H... ISTUCK OH THLS FE34:.DI?.6)
I $A=0$
$F E P R V=0$.
G0 TO 53
82. $\mathrm{FEPRV}=\mathrm{FE} 34$

GU TO 99
42... WRITE(6.45)UECID

43 FORMAT (1H , NO GOOD DEC $10=9$ D12.6)
GO TO. 53
10 WRITE(GO11) FE34, mU

WRITE (6.54) FE34, MU, LAM, NATFRQRE

WHITE $(6,8 n)$ OLTINUR

IF (NOR.EO.3) GO TU 37
NORENUR+1
$\mathrm{R}=0$
$U=1$
KкK=1
MUEMUSDLT
G0 1099
$37 \quad$. $10=1 \cdot 00-6$ WRITE(0.100)
1011 FORMAT('1')
NOR=1
KKK=1
ULT=1.
$R=0$
U=1
22 CALL EXIT
END

$10.000000 \quad S I 0=.100+000$

$.100+001$
$.102 \times 30+6102$
：4u31．yy＋nu2
$.7159 b 5+n 02$
$.104735+1103$
． $151555+1103$
$.193483+1103$
－2うטらすら＋n03
2b0260＋1003
$.20 .320+n 03$
$.243054+1003$
.1 －100． $7+003$
$.1549754+002$
$N O R=2$

1 rE34－．708675＋0U2 Mu $204091+002$
F5．34 • 722508＋1161 M， $199042+002$

4 tE．34．368619－0U1 M0．199993＋1022

$.368 n 19-001$
nil $=.199495+002$
LAM＝10．00U000
NATFRQ＝
$.632439+0 ?$
$-A \cdot 1=10.000000-510=.100+000$
$\mathrm{M} I=-360+40+001 \quad U=$ ？
$M J=.460440+001 \quad U=3$
$M U=.5601440+001 \quad U=4$
$u=5$

1	resu－ 1 Gib6u3＋001	N	$760445+001$
2	$F 634-.483714+000$	M1	$743775+001$
KN 3	－E34－．175355－0U1	M	$747491+001$
4	FE34－．n23739－003	M	．747623＋401

$\because 4=-623739-n 03 \quad$ MIJ $=.747620+001 \quad \operatorname{LAN}=\quad 10.000000 \quad$ NATFQO $=.236421+0 ?$
$.100+001$
$.164000+n 02$
.407 シidatnuz
$.72570 u+n 02$
$.114300+103$ $.152709+n 03$
$.194: 97+003$ ． $231.252+003$ $.256571+n 03$ ． $2530443+n 03$ $.241508+n 03$ $.163500+1003$
$.795476+1002$

NUR＝ 2
$\mathrm{m}_{1}=-847620+001$
$m u=.9471220+001$
vilJ＝． $10^{1}+763+002$
MU1 $=.114763+002$
MU $=-124763+1002$
$m 11=.134763+002$
m m＝．144763＋002
vilu $=.154763+002$
inlu $=.164705+002$
$\mathrm{wilf}=.174760+002$
MUに $164763+1102$－
intl＝．19476j＋u0 $\quad u=12$
rE34．．．7886．30＋042 NJ $204763+0022$
7． $\mathrm{FB} 54 \cdot 732702+001$ Mil $\cdot 199780+00 \%$
3 FE．34 ． 57876 ？＋0U0 NU •20020y＋U0L
4 F．F4 ． $450579-001 \quad$ M4 •200242＋002

$.10 u+001 \quad$ NOR $=3$

PROGRAM LISTING

AND

SAMPLE OUTPUT

MøDE

MODE
THIS PROGRAM CALCUIATES THE MODE SHAPES
GIVEN THE EIGENVALLFS,LAMEOA: ANT PSI-ZERO
REVERSED INTEGRATIDN METHOA ONLY. CASE E OR CASE M -SPECIFY ON INPUT.....
IMPLICIT DOUBLE PRFCISION(A-H.O-Z)
INTEGER D.ZI
DOUBLE PRECISION MU:LAM, MUI
DOUBLE PRECISIONK(4), L(4), M(4) P(4)

OATA/LE/IHE
NPRI=1 FOR PRINTED OUYPUT/NPRI=O FOQ PUNCHED OUTPUT
READ(5,18O) NPRJ
1AOFORMAT(1)
MAKE SURE MU IS THE CORRECT ONE FNR"ETTHER THE OR MCASE.
READ(5,93) IE,JZ,LAM,SIO,MU

93 FORMAT（A1．11，3G1206）
WRITE（6，10！）IE
01 FOPMATIIHI，CASE：， 2×0 II：／1
HRITE（6，95）MU，LAM，510，JZ

$\mathrm{N}_{\mathrm{D}} \mathrm{S}=\mathrm{D}$
IF（LE．EQ。IE）NDS＝1
$N I N T=100$
HHzl：／FLOAT（NINT）
$I N T E R=N I N T+I$
$H=H H$
$A N F R Q=D S O R T(L A M)$
WRITE（6：1）ANFRQ
$F \cap R M A T(A N F E E Q=1 D I D \cdot 5)$
$D=3 \quad i \cdot C$.
$E \cap=1$.
$A O=0$ ．
$C O=0$ ．
$\mathrm{BO}=0$ 。
$E=1$ 。
$A=0$ ．
$B=0$.
$C=0$ 。
$E v=1$ ．
Er． $3(1)=1$ ．

$D=3$ INTEGRATION

$D=3$

$N=1$
$1=1$
$N A=F L O A T(N)$
St＝（NN－1．）＊HH
$K(1)=H * A$
$L(1)=H * B$
$M(1)=H \quad C$
$M U 1=M U \bullet N+1$ ．
JF（NDS．EQ．1）GOTO 40
MUI $=\mathrm{MUI}-1$ ．
$40 \ldots P I=-(S I * S I) / 2$.
$P 1=3 \quad(P 1+S 1 *(S 10+1 \cdot 1)$
$P ?=A \cdot((510-S I)+10)$
$P 4=E$ लMU！
$P(I)=h\left(L A M \&\left(P^{4}+P!+P 3\right)\right.$
$S \cdot I=(N N=$ ！$\cdot)$ •HH
$1=1+1$
IF（I．GT．3）GOTO 61
2．！$=1-1$
$E=E 0+K(Z I) / 2$.
$A=A 0+L(7.1) / 2$.
$B=80+M(Z 1) / 2$.
$C=60+P(Z I) / 2$ ．
SI＝S！${ }^{4} \mathrm{H} / 2$ 。
GaIO 5
IFil．GT．4）GOT07
$E=K(3)+E O$
$A=A O+L(3)$
$B=80+M(3)$
$C=C O+F(3)$
Si＝SI＋H
GOTO 5
SI＝NN＊HH
$E V=E V+(K(1)+K(4)+2.0=(K(2)+K(3))) / \kappa$ ．
$E V 1=E V 1+(L(1)+L(4)+2.0 *(L(2)+L(3))!/ 6$ ．
$E \vee 2=E V 2+(M(i)+M(4)+2 .(M(2)+1 .(3))) 16$.
$E \vee 3=E \vee 3+(P(1)+P(4)+2 \cdot(P(2)+P(3))) / 6$.
$P_{1}=-5 I \circ S I / 2$.
P！$=((S 10+1 \cdot) * S!+P 1) * \vee 2$
$P 3=(510-S I+1 \cdot)$ © EVI
P4＝MUI EV
$E \vee 4=(P 1+P 3+P 4) Q A M$
$E=E V$
$A=E V!$
$B=E \vee 2$
$C=E \vee 3$
$E \cap=E$
$A O=A$
$B \rightarrow=B$
$\mathrm{CO}=\mathrm{C}$
RUNGA KUTTA FINISHED
$N=N+1$
IFID．EQ．4）GOTO 70
EG3（N）＝EV
GOTO 71
$E(, 4(H)=E V$
1F（N．LT．INTER）GOTO 4
IF（D．EQ．4）GOTO 9
E4OM3＝EV
RESET FOR D＝4 INTEGRATION
$0=4$
$C A S E D=4 \quad 1 \cdot C$.
$A \cap=1$ ．
$E O=0$ 。
$\mathrm{B} \cap=0$ ．
$\mathrm{C} O=0$ 。
$A \pm 1$ ．
$E=0$ 。
$B=0$ ．
$C=0$ 。
$E V=0$ 。
EV2 $=0$ 。
$E y 3=C$
$E \vee 4=0$ ．
$E \vee I=A O$
$\mathrm{N}=1$
GOYO 4
EMOM4＝EV
ALF＝EMOM $3 / E M O M 4$
DO $72 \mathrm{LB}=1.101$
$L L=102-L B$

$$
B A P T(L L)=E G 3(L B)=A L F O G 4(L E)
$$

72
\qquad
CONTINUE

$$
B E T=B B P T(1 O 1)
$$

$$
D \cap 73 L C=1.101
$$

73

$$
B P T(L C)=B B P T(L C) / B E T
$$

CONTINUF

$$
S M=0.000
$$

$$
\text { DO } 216 \text { I }=2.101
$$

$$
S M=S M+(B P Y(1)+B P T(1=1) 1 / 20 \cdot((F L O A T 11)=1.5) 0 \mathrm{HH}+5,0) 0 \mathrm{HH}
$$

216
CONTINUE
\qquad
\qquad
\qquad

$$
A M 2=S M
$$

$$
S M=0.000
$$

$$
\begin{aligned}
& S M=0.0 D Q \\
& D O 218 \quad I=2.101
\end{aligned}
$$

$$
S N \square S H+(B P T(1) \text { Q } R P T(1)+B P T(1-1) A B P T(1-1),(2.0 * H H
$$

CNNTINUE

$$
A H 1=S M
$$

$$
C O R=A M 2 * A H 2 / A M I
$$

SQOT=AM2/AMI
WRITE $(6,74)$ AMI, AMZ, SINOT, COR

IF(NPR1) 181,181,182

182 Continue

$$
\text { NRITE }(6,76) \quad(B P T(1), 1,1=1,101.2)
$$

GO TO 75

$$
181 \text { PUHCH } 77,(B P T(11,1=1,101,2)
$$

75
CONTINUE

$$
\begin{aligned}
& 76 \text { FORMATI. BPY }=1012.6 .3 \times, 1:=131 \\
& 77 \text { FOIMAT }(G I 1.5) \\
& \text { STOP } \\
& \text { END }
\end{aligned}
$$

iP ATION:
NO DIAGNOSTICS.

CASE E

PROGRAM LISTING

AND

SAMPLE OUTPUT

PARAM

```
    TEST OF SUARUUTINE अAKAM
    |NFGGR PLOTS
    \alphaFAl. LA:1
    OOUBLE ORFC1SIO, NU(3),SIO
    Co:mON/0ME/i_NH,FIO
    Co!mj:/T:0/4
    Co,*OH/FIVE/SNJ*2,Lm,AUXI
    CO!m0N/N!NE/\O):
    COMMON/GRAF/BLJTS
```



```
201 FgEmat(1S,F120.,G(2.6,A3)
    2F40(5,202) (4J(K),K=1.H0DE)
2п2 FO!&AT(3O12.0)
    CALI PAQAM
    STOP
    EN:
```

SunaOylime PARAM
SUROJTIME OARA, IS DEGGNEO 10 COMPUTE AND OUYPUT PARAMFTERS MI, A2, AT/A1, FD M2SQUAREM/ME AMO THEIR SUMS THROUGHOUT THE THE FINST TAGEE BUOES A ALSO $\therefore L L$ PLOT OUT THE FGRGT THEEE HOOES IF DESIREOE CMLLER THR:MAJN JUST AS CASEN...

MU（MODE1 IS ENTERED IN COMMON

COAMON／ONE／LAN，SIO

COHMON／FIVE／NAHX2のB，AUXI
COMMON／N1 UE／HOOC．
Com！ON／GRAF／PLOTS
REAL HN LIAM
INTEGER 1，D，W，Z，NINT，TNTER，FLOTS
DIMFNSIO：0．jTPUT（23），／MU（3）

NAi．X2IS A PLOT CONTMOL PARABETER
NDS＝O FOR MERIDIONAL CASE／NOS＝I FOR EQUATORIAL C．SE

Na： $\mathrm{X} 2=17 \mathrm{I}$
He，TE（b，347）P！ot5
Foenat（1H！，PARAM
$\mathrm{PLOT}=, \quad \mathrm{A}_{\mathrm{h}} / / 1$
$\mathrm{NOPT}_{\mathrm{O}}^{\mathrm{O}}=1$
Wis＝0
MOOES＝ 3
$N_{i: T}=10 \mathrm{O}$
INTER＝NLNT＋1
OO ？ 4 MODE＝ $1, M O D E S$
$\mathrm{S}_{\mathrm{i}}=0$.
$w^{2}=1$

ClEAR ARGAYS
$00 \quad 31 \quad 1=1,4$
$\mathrm{K}(1)=0$ 。
L（1）＝0．
M（1） $\begin{aligned} 1 \\ \text {（1）}\end{aligned}$
$31 \quad \mathrm{P}(\mathrm{J})=\mathrm{a}$
O0 1 $1=1,101$
E34p（1）＝0．
$\mathrm{F}_{\mathrm{H}}^{4} 4 \mathrm{f}=(\mathrm{P})=0$ 。
E．3．3P（I）＝0．
E43p（ 1$)=0$ 。
E3？\quad（ $)=$ 。
Eqグア（1）＝y．

E゙み1
E4（1）$=0$ 。
E $3(1)=3$ 。

THAS SECTITH GO：PDTES THF FJRST MOCE GHAYE ANO TMEA THE MONE SHAPE
PARAMETEAS Al：ivD A2 FOR CASE A．
$0=$ ？

ヒ0ッ0。
iso $0=0$ 。

```
    IF(NOPT•GT•J) GO TO 1Z
    E3刀口(1)=1.
    30=%%32P(1)
    GO TO 13
1) E3(1)=1.
    L0=f3(1)
13 C0=?.
    AO=0.
    GO TO 3
2 A0=0.
    CO=0!
    |F(NOP1.GT.J)SO TO 14
    E430(1)=1.
    CO=E43P(1)
    OOTD 15
14 E゙q1\Gamma(1)=1.
    AO=E4)P(1)
    l% BO=!.
    EO=0.
3. }A=A
    B=P0
    C=CO
    E=FO
    iv=1
    I=1
    NN=M
```



```
5 K(1)=H*A
    L(1)=H*B
    M(1)=+!
    M|!=10+MU(MODEI NU(NOGE)
    lf(toSeEQ.l) GJ TO 40
    MU!=MU1-1.
```



```
    S I = ( N-N-1 0)*,1
    I= l+1
    IF(I•GT.3) 60 ry b
    z=1-1
    E=f0+k(Z)/2.
    A=A0+L(Z)/2.
    d=\mp@code{O+M(Z)/Z。}
    C=CO+p(2)/2.
    `!=51+H/2.
    G0 TO 5
    6 IF(1.GT.4) G0 1% 7
    E=FO+K(3)
    A=40+L(3)
    B=E0+:1(3)
    C=C0+P(3)
    S 1=SI+H
    Go T0 S
    7 lF(O.EQO+) GOTO 9
    ST=NNO:t
    Z=0+1
    E3(Z)=E3(N)+(K(!)+2.*h(2)+2.0k(3)+K(4))/60
    E31p(Z)=E31p(&)+(L(1)*70eL(2)+2*L(`) +L(4))/60
```

```
        E32P(Z)=E32P(N)+(M(1)+2•OM(2)+2.0M(3)&N(4))/6.
        E33P(Z)=E33P(N)+(P(1)+?**(Z)+Z.*P(3)+P(4))/60
        E34p(z)=LAMo(1(SIO+10)402-(SI+5IO)*+2)&E32F(Z)/2.
    1-(51+5IO) &E3(H(7)+M1) & E3(Z))
        IF(NOPTOGTOn) E34P(7)=LANO((1510+1.10*2-(100S1+510)002)
```



```
    E=E,3(N+1)
    A=E31P(N+1)
    B=f.32P(N+1)
    C=E.330(N+1)
    E O=E
    AO=;
    B0=0
    CO=C
    N=N+1
    1F(NOLTOINTER)GOTO
    EMOM3=E32P(1NTER)
    1F(NOP)\cdotGTOG)EMOM3=F.3(INTEN)
    O0 30 I=1,INTER
    3n MM*3(1)=E3(1)
    O=4
    G0 TO &
    9 S1=NN:H
    Z=的+1
    E4(Z)=E4(N)+(K(1)+2.*k(2)+2.*N(3)+K(4))/6.
    E4!p(2)=E41p(N)+(L(1)+200L(2)+2.2L(7)+L(4))/6.
    E42F(Z)=E&2P(N)+(M(1)+2O*M(2)+2.*M(3)+N(4))/H0
    E43P(Z)=E+3O(in)+(P(1)+ZOOP(2)+2.0P(Z)+P(4))/6.
    E44P(Z)=1_4M*(t(510+1*)0*20(5I+510)0*2)*E42P(Z)/2.
    1=(G1+510)*E+1F(2)*M(j)*E4(Z))
```



```
    E=E4(N+1)
    A=E41P(N+1)
    B}=E+2P(N+1
    C=5430(N+1)
    EO=F
    AO=A
    OO=B
    Co=C
    N=M+1
    IF(N-L.T-|NTFG)GO TG 4
    EM\capM4=E42P(INTER)
    IF(GOPTOGT-O) EYOM4=E&(INTER)
    OO 32 1=1. INTEX
3) MM\times4(1)=E4(1)
    ALFA=EMOH3/ENOM4
    BE!A=MM\times3(101)-ALFA*M:, 4(101)
    lF(NO!T-GT•O) 3ETA=:&MX3(1)-NLFA*MMXA(1)
    DO 102 LG=1,101
    LI=1.B
    IF(NOFTOGT•T) LL=10フ-1.A
192 BP!(LLONOBE)=(MMX3(LG)-ALFAOMMX4(LG))/AETA
    00512 La=1,101
    AUK! = 5FT(LQ,MOD:%)
    |F(PLOISOEQ**YES*) (ALI. PLOT
, COHTINUE
    SM=9.
```

$D_{0} 2161=2.101$
218AM?(MODE) $=5 \mathrm{M}$
$S_{M=4}=$
$00219 \quad 1=2.101$

 A! 1 (MGUE) \(=5 \mathrm{M}\)

 comtlinue
 END OF NODE SHAFE ANO MOLE PARAMETER CALCULATION

outputa	1	$1=510$
Outpute	2	$1=L a i l$
outpute	3	$1=$ M: ${ }^{\text {(1) }}$
0upputa	4	$)={ }_{1} \cdot(2)$
Outputi	5	$1=4 \cup(3)$

Zmu(1)=5QRT(OUTPUT(a) a outpur (3) =10)

OUTOUT $\left.^{\text {U }} \mathrm{b}\right)=\mathrm{AM}(1)$
OUTPUT(7)=AMI(2)
OUTPUT(B) =AMi(3)
outpur \quad gi=sm2(1)
OUTFUT(10)=AMZ (2)
Output (11)=AN2(3)
OUTHUT(12)=AM2(1)/AF111)
$0_{\text {utput }}(13)=\operatorname{AM} 2(2) /$ Anl(2)
OUTPUT(14) =AM2(3)/AH1(3)

OUTFUT(16) o OUTPUT(13) esn2(2)
OUTPUT(17) =OUTPUT(14)aAM2(3)
OuTpUT(19)=outpuT(12)
OUTFUT(19) =OUTPUT(1m) +0UTPUT(13)

OUTFUT(21)=0UTP:!T(15)
OUTPUT(22) =OUTPuT(2) +CUTPUT(1A)
OUTPUT(23)=0UTPUT(22)+CUTPUT(17)
WR:TE(6.501) GUTPUT

G/1H , M///lM, M, MONE IO.O

1/1

O. \quad //I/IH , SUM OVER 1 MOUE O

WRITE 6,502$)$ (ZMU(1)01 $=1,3)$

RETURN
ENO

LATION:
No DIAGNGSticso

```
ANV LEVE: 2206.0026 (EXECB LEVEI E゙12OI-0ח11)
```


EntPY FOINT OGO341

Entey FOINT OGO341


```
onot．
0003
cuncul
```



```
（BLSCK，NAME）
```

1BLGCK，TYPE，RELATIUE LOCATIO F，NAMG）

0001		000013	1219	0 OOO		000402	14 F
0901		g00131	1716	Onol		000137	1776
0001		¢0． 205	2736	0 nci		000213	2306
060		¢0¢347	4 F	0 mog		0100370	7 F
0000	R	Cac Cl^{3}	Ap	0000	F	$\therefore 00344$	A1
cre 3		cicoo 3	G\＆M品	Un00		000414	1F」Pr
万oc3	12	cotoob	LAM	0000	R	cotorol	LlME．
cosia	1	r．00346	M1	$0 \mathrm{Cin4}$	1	－0tool	N
00 Ca	R	ro015 7	Save．	0003	$1)$	arooml	510

SuspouT INE FLOT
TH：S SUAGOUTIME PLOTS MUTATIOM AMGLF VS N CO＊HON／GME／LAM，SIO，GAOA，FKX，PKY
Confor／flVE／AROM，CA
COMAOM／NJNE／HCOE
OOHELE PRECISION SIO

U1HENSIOM SAVE（100），LINE（110）AB（S）．AH（S）
OATA LILAHK，STAR，DOT／1H，IHO．IH，；
If（4．NE． 1 ）go TO 2
$N_{1}=(14 K+50) / 100$
U0 $1 \quad J 1=1,100$
$S_{A V E}(J 1)=0$ 。
$J_{1}=0$
M $A x=0$ 。
$11=C$
$S_{\text {Irak }}=510$

Flot OF MODESHAPE FOR
$\angle A M A D A=10$.
SI-LERO $=.10$
AODE $=1$

FIPST MODE (CONTINUED)

PLOT OF MODESHAPE FOR
$L A M S D A=10$.
$51-2 E R O=.10$
MODE = 2


```
PLOT OF MOUFSHAPE FOR
LAHBOA \(=10\).
\(51-2 E h O=.10\)
MODE = 3
```


THIRD MODE (CONTINUFD)

MUVS AKF FOR CASE M

Hz OVER M1 MODE 1＊．．．．．．．．．．．．．．．28255880

12 SwUAREO OVER M1 MOUE 3．．．．．．OO317790

弓UN OVEF 2 MODES OF N2．12／il．．． $435 y 0482$

1．Uだ3。 19.9995

CHAPTER 3

Application to Some Problems of Satellite Dynamics

The present chapter considers the use that can be made of the results of the previous chapter in some problems of interest in satellite dynamics ${ }^{[3-1]}$. A first field of application is in studying the mutational divergence of a satellite equipped with flexible appenages, but this is the topic of Chapter 4 and 5 . We shall be considering here some other problems, such as the simulation of free oscillations, thermal flutter and variation of the spin rate due to the booms motion.

3.1 Simulation of free oscillations

3.1.1 Generalities

In a motion of type E (equatorial) or M (meridional), the free oscillations can be simulated in the following manner. Given N modes, $\Phi_{j}(\xi), \xi=1, \ldots N$, with associated frequencies $\bar{\omega}_{j}$, and given an inftia distribution of displacements and velocities ($t=\frac{t_{\text {dim }}}{1 / \omega_{s}}$)

$$
\eta(\xi, 0)=\eta_{0}(\xi) ; \eta_{t}(\xi, 0)=\left(\frac{\partial \eta}{\partial t}\right)_{t=0}=\eta_{t, 0}(\xi)
$$

the displacement is written as a sum of modes

$$
\begin{aligned}
& \eta_{j}=\sum_{j=1}^{N} \phi_{j}(\xi)\left(c_{j} \cos \bar{\omega}_{j} t+s_{j} \sin \bar{\omega}_{j} t\right) \\
& \eta_{t}=\sum_{j=1}^{H} \phi_{j}(\xi) \bar{\omega}_{j}\left(-\hat{c}_{j} \sin \bar{\omega}_{j} t+s_{j} \cos \bar{\omega}_{j} t\right)
\end{aligned}
$$

Then

$$
\begin{aligned}
& c_{j}=\frac{1}{m_{1, j}} \int_{\text {loom } \eta_{0} \phi_{j}(\xi) d \xi}^{s_{j}=\frac{1}{m_{1, j} \bar{\omega}_{j}} \int_{l_{\text {loom }}} \eta_{t, 0} \phi_{j}(\xi) d \xi} .
\end{aligned}
$$

As an example, Figures 3.1 and 3.2 are meant to illustrate that
starting with an initial shape identical to the first mode at $\bar{\lambda}=10$, $\xi_{0}=0.1$, with no initial velocities, the stationary wave which exists In this case cannot be maintained if $\bar{\lambda}$ is changed to 100 . Not only has the frequency changed appreciably (τ; is the period of the first mode oscillation for $\bar{\lambda}=10, \xi_{0}=0.1$), but the second mode is present to an appreciable extent.

3.1.2 Application to Satellite UK-4

From data received through NASA GSFC on satellite UK-4, we computed the eigenfrequencies and modal shapes for satellite UK-4. This satellite has the following physical characteristics:

UK-4 Cowputations

$$
\begin{aligned}
\omega_{\mathrm{s}} & =30 \mathrm{rpm} ; 15 \mathrm{rpm} ; 6 \mathrm{rpm} \\
\rho & =0.00058 \mathrm{Ib} \text { mass } / \mathrm{in} \\
& =\frac{5.8 \times 10^{-4}}{2.54} \times 10^{2} \times .45359 \mathrm{~kg} / \mathrm{m} \\
& =1.036 \times 10^{-2} \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& \text { EI } \quad=10^{3} \mathrm{lbF} \mathrm{Kr} \mathrm{~m}^{2} \\
& =10^{3} \times 4.448 \text { newton } 1 \mathbf{i n}^{2} \\
& =10^{3} \times 4.448 \times 2.54^{2} \times 10^{-4} \text { newton } m^{2} \\
& =2.869 \text { newton }-m^{2} \\
& =11.6 \text { inches } \\
& =276 \text { inches }=7.01 \mathrm{~m} \\
& \xi_{0}=\frac{x_{0}}{\ell}=.042 \\
& I_{z h} \\
& =18.348 \text { slug } \mathrm{ft}^{2} \\
& 1 \text { slug }=14.5938 \mathrm{~kg} \text { mass } \\
& I_{z h}=18.348 \times 32.1741 \times .4539 \mathrm{~kg} \mathrm{ft}^{2} \\
& =24.870 \mathrm{~kg}^{2}{ }^{2} \\
& I_{x h}=17.41 \text { slug } \mathrm{ft}^{2} \\
& I_{y h}=16.54 \text { slug } \mathrm{ft}^{2} \\
& \text { EIKIN'S NUABER: } \bar{\lambda}=\omega_{s}{ }^{2} \frac{\rho \ell^{4}}{E I} \\
& \bar{\lambda}_{30 \mathrm{rpm}}=\left(\frac{30 \times 2 \mathrm{r}}{60}\right)^{2} \times 1.036 \times 10^{-2} \times \frac{(7.01)^{4}}{2.869} \\
& =(3.141592)^{2} \times 1.036 \times 10^{-2} \times 7.01^{4} / 2.869 \\
& =86.06
\end{aligned}
$$

$\bar{\lambda}_{15 \mathrm{rpm}}=\frac{1}{4}(\bar{\pi})_{30 \mathrm{rpm}}=\frac{86.06}{4}=21.515$
$\bar{\lambda}_{6 \mathrm{rpra}}=\frac{86.06}{25}=3.44$

Data for programs:
$\bar{\lambda} \quad=1 ; 3.44 ; 10 ; 16.8 ; 21.515 ; 50 ; 86.06 ; 100$
$\xi . \quad .042$
$\overline{\mathrm{I}}_{\mathrm{p}} \quad$ determined from

$$
\left[\left(\frac{I_{\mathrm{Ih}}}{\mathrm{I}_{\mathrm{xh}}}-1\right)\left(\frac{I_{z h}}{\mathrm{I}_{\mathrm{yh}}}-1\right)\right]^{1 / 2}=\frac{I_{z}}{\bar{I}_{\mathrm{p}}}-1
$$

giving

$$
\frac{I_{z h}}{\bar{I}_{p}}=1.0767
$$

Results (see graphs)

Graph 1: Resonance on thermal flutter at $\bar{\lambda}=.4$ or $\bar{\lambda}=16$. , i.e. at spin rate

$$
\omega_{\mathrm{s}}=\omega_{1, \mathrm{rot}}=1.35 \mathrm{rad} / \mathrm{sec}=12.9 \dot{\mathrm{rpm}}
$$

Graph 2 : Mode shapes

$$
\omega_{\mathrm{s}}=6 ; 15 ; 30 \mathrm{r} . \mathrm{p} \cdot \mathrm{~m} .
$$

SATELLITE UK4: ATTITUDE STABILITY

Table I: Case M

ω (rpm)	6	10.2	13.25	15	22.8	30	32.3
$\bar{\lambda}$	3.44	10.0	16.8	21.51 .5	50	86.06	100.0
$\sqrt{\bar{\lambda}}$	1.84	3.162	4.1	4.64	7.07	9.28	10.0
$\omega_{n_{1}} \sqrt{\frac{2 \ell^{4}}{E I}}$	4.08	4.98	5.76	6.24	8.56	10.75	11.48
$\omega_{n_{1}}$	1.38	1.685	1.945	2.11	2.895	3.63	3.88

Table II: Case E

ω (rpm)	3.23	6.0 .	10.2	13.25	15	22.8	30	32.3
$\bar{\lambda}$	1.0	3.44	10.0	16.8	21.515	50	86.06	100.0
$\sqrt{\lambda}$	1.0	1.84	3.162	4.1	4.64	7.07	9.28	10.0
$\omega_{n 1} \sqrt{p e^{4} / E I}$	3.55	3.64	3.85	4.05	4.18	4.82	5.44	5.64
$\omega_{n_{1}}(\mathrm{~Hz})$	1.2	1.23	1.30	1.37	1.415	1.63	1.84	1.905

$\sqrt{\rho \ell^{4} / E I}=\sqrt{8.715}=2.96$

Resonance on Thermal Flutter at $\sqrt{\lambda}=4.00, \bar{\lambda}=16.0$

$$
\begin{aligned}
\omega_{s}=\omega_{n}: 4.0 / 2.96 & =1.35(\mathrm{~Hz}) \\
& =12.90 \mathrm{rpm}
\end{aligned}
$$

$K_{p}>1$ No posigrade resonance No nutational instability

Var, of spin rate for 10% defi.
. $57 \% \quad 30 \mathrm{RPM}$
$.785 \% \quad 15 \mathrm{RPM}$

Fig. 3.3 represents the first mode of vibration for the three values of the spin rate being contemplated. Centrifugal effects are noted as Etkin's number $\bar{\lambda}$ is increased.

3.2 Resonant thermal flutter

3.2.1 Determination of resonant frequency

It has been shown by Etkins and Hughes ${ }^{[3-2]}$ that assuming a relatively simple model for the boom's thermal curvature \bar{n} TO (ingependent of ξ) due to the sun's heat input during the spinning motion, the steady-state oscillation of the booms would be described by

$$
\eta=\bar{\pi}_{T_{0}} \cos \omega_{s}\left(t-t_{0}\right)
$$

In order to find for which spin rate ω_{s} the motion will diverge (have an amplitude tending to infinity), these authors solved equation for boundary conditions,

$$
E(0)=0 \quad E^{\prime}(0)=0 \quad E^{\prime \prime}(0)=\bar{x} T 0 \quad E^{\prime \prime \prime}(0)=0
$$

and vary $\bar{\lambda}$ until very large values of $\Phi(1)$ are observed. The analysis was limited to satellites of zero radius.

An alternative approach was proposed ${ }^{[3-1]}$, which is recalled
here. If in Equation ($2 \cdot 2^{-}$8), we let ω_{l} tend continuously to ω_{s} along the eigenfrequencies curves $\bar{\omega}_{1}\left(\bar{\lambda}, \xi_{0}\right)$; the spatial part of a solution to Equation (2.2-7), normalized to unity at the tip, satisfies bic.

$$
\phi(0)=0 \quad \phi^{\prime}(0)=0 \quad \phi^{\prime \prime}()=0 \quad \phi^{\prime \prime \prime}(1)=0
$$

In order to also admit boundary conditions 0,0 for the zeroth and first
derivatives at $\xi=0, \bar{X}_{\text {TO }}$, 0 for the second the third derivatives at $\xi=1, \bar{\phi}\left(\bar{\lambda}, \xi_{0}\right)$ should be scaled $u p$ by an infinite factor, i.e., the amplitude at the tip tends to infinity. Thus, resonance on thermal flutter will correspond to the intersection of the curve, for given ξ_{0}

$$
\omega_{1}\left(\frac{p l^{4}}{E I}\right)^{1 / 2}=f(\sqrt{\lambda})
$$

with the bisectrix of the first quadrant (Fig. 3.4)

$$
\frac{\omega_{1}}{\omega_{3}}=1
$$

No thermal flutter resonance can occur for
a) $\xi_{0} \geqslant 0.7$
b) second or higher modes
as is shown on Fig.2•2.

3.2.2 App1ication to UK-4

Using the above data for UK-4, the thermal flutter resonance point was found at (Fig. 3.5)

$$
\bar{\lambda}=16.0 \quad\left(\xi_{0}=0.042\right)
$$

and for the physical characteristics of the satellite, this translates to

$$
\omega_{s, \text { vitiaal }}=1.35 H_{x}=12.90 \mathrm{r} \mathrm{f} \cdot \mathrm{me} .
$$

a spin rate to be avoided for steady-state operation.
3.3 Variation of the spin rate due to the free oscillations
3.3.1 Method of calculation

It is often of interest to satellite users to know what amount of spin rate variation can be expected, due to the vibrations of
the boom. The equatorial vibrations will cause a very slight variation of the spin rate described by

$$
I_{l m b} \frac{d \omega_{s}}{d t}=T
$$

where T is a torque due to the moment at the oof of t boom and to the she r force acting through the central hub radius. This is described in non-dimensional form by ($\bar{\tau} \equiv \omega_{*} t$)

$$
\begin{aligned}
\frac{d \bar{\omega}}{d \bar{Z}} & =\frac{1}{I_{\text {hl }} \omega_{1 R}} \frac{E I}{\ell} \eta_{\max }\left[\eta_{\xi \xi}-\xi_{0} \eta_{\xi \xi \xi}\right]_{\xi=0} \\
& =\frac{\rho^{3}}{I_{\text {Pul }}} \frac{1}{\sqrt{\bar{x}}} \eta_{\text {max }} \bar{T} \\
\bar{T} & \equiv\left[\eta_{\xi \xi}-\xi_{0} \eta_{\xi \xi \xi}\right]_{\xi=0}
\end{aligned}
$$

or, after integration, and with $\Gamma \frac{\overline{\overline{e x}} \mathrm{f}}{} \frac{\rho \ell^{3}}{\mathrm{I}_{\text {hub }}}$,

$$
\begin{equation*}
\left[\frac{\Delta \omega_{s}}{\omega_{s}}\right]_{\max } \frac{1}{\Gamma \eta_{\max }}=\frac{1}{\sqrt{\bar{\lambda}}} \int_{0}^{\bar{\tau}_{*}} \bar{T} d \bar{\tau} \tag{3.3-1}
\end{equation*}
$$

in which $\bar{\tau}^{*}$ is the value of $\bar{\tau}$ maximizing the integral. This value can be obtained using a program such as SIM, which is listed at the end of this chapter.
3.3.2 Application to UK-4

Using the above data for satellite $\mathrm{UK}-4$, the maximum variation of the spin rate for an assumed 10% deflection of the boom was determined to be

$$
\begin{aligned}
& 0.57 \% \text { at } \omega_{s}=30 \mathrm{r} . \mathrm{p} \cdot \mathrm{~m} . \\
& 0.755 \% \text { at } \omega_{\mathrm{s}}=15 \mathrm{r} . \mathrm{p} \cdot \mathrm{~m} .
\end{aligned}
$$

[3-1] RENARD, M.L. and RAKONSKI, J.E.: "Equatorial Vibrations of a Long Flexible Boom on a Spin-Stabilized Satellite of Non-Zero Radius," Proc. of the Astronautical Congress, October 1969. Vol. 1, pp. 35-53, E. Lunch (Editor), Pergamon press, 1971.
[3-2] ETKIN, B. and HUGHLS, P.C.: "Explanation of the anomolous spin behavior of satellites with long flexible antennae," Jour. of Spacecraft and Rockets, 4, 9, 1139-1145.

FIg. 3-1. FIRST MODE VIBRATION IN ROTATING AXES: FOR THE REFERENCE CASE $\because \because$

FIG. 3-2. VIBRATION IN ROTATING AXES WITH THE REFERENCE CASE FIRST MODE AS INITIAL SHAPE.

Satellite UK-4: Mode Shapes

FIG. 3-3. FIDST IUNDE SHADE FOR UK-4.

FIC. $3-\mathrm{A}$ - RESONANT VALUES OF THE FUNDAMENTAL FREQUENCY

FIG. 3-5. RESONANCE ON THERMAL FLUTTER: UK-4.

FTG. 3-6
SPIN VARIATION versus $\bar{\lambda}$

PROGRAM SIM
LISTING

SOUP ET3OMR18, ,PRINT,BCD

a FOR 'SIM

SUBROUTINE SIM(NDS)
DOUBLE PRECISTON MUTXNOTYNO
REAL NU
INTEGER SAM
THIS PRJGRAM COMPUTES THE UISPLACEMENT OF THE FREELY VIBRATING ROTATING BOOM AT SPECIFIED STATIONS, STARTING FROM A GIVEN OI SPLACEMENT INITIAL CONOITIDN
If COMPUTES THE NONDIMENSIOVAL. SPIN VARIATION AND INDUCED NUTATION ANGLE FOR EITHER THE EQUATORIAL OR YERIDIAN BODM (SEE NJS BELOW)

COMMJY/OMETMUTLAM:SIO;RGAMA゙, PK;NU;XNO;YNO
DOUBLE PRECISION COR,MEI,ME 2
DOUBLE PRECISION P(4),K(4), M(4) , L (4), E3(101), E31P(101),E32P(101),
IE33P(101), E34P(101),E4(101),E41P(101),E42P(101),E43P(101).
3E44P (101), A, B, C, E, AD, BO, CO, EO,
4SIO,SI

DOUSCE PRECTSTON EDA(2), EIG(2)

REAL H,NN,LAM
INTEGER I, D, N, Z, NINT,INTER
DOUBLE PRECISION ELSM3(2), ELSM4(2)
DOUBLE PRECISION EMOM3(2), EMOM4 (2), ESHR3(2), ESHR4(2),
1RMDA 3(2), RMOM4 (2), RSH2 3(2), RSHR4(2), BPT(101, 2), TFAC (2),
2COFOIS (2,2), $A L F A(2), \quad M M \times 3(101,2), M M \times 4(101,2)$, BETA(2), MUL
DIMENSI ON AA $(2,2), B B B(2), C C C(2), G A M A(2), C C 2(2)$
INTEGER PPP(2),QQQ(2)
DOUBLE PRECISTOURTORK, DTORK, EDA 2P 1,EDA 3P 1
REAL DLTT,MODE
GAMA(1)=RGAMA
GAMA 2 T $=0.0$
EIG(1)=MU
$E \mathrm{E} G(2)=0$.
EDA(1) $=$ XNO
EDA (2) =YND
I END=1
$14 \times 1=27$
$S T P=25$.
$N R=2$
C*** THIS PROGRAM USES REVERSED INTEGRATION ONLY WRITE (6,300)
300 FORMAT('OSIMULATION ENTEREO')
NDS $=$ UIRECTIUN SWITCH
NDS $=1$ IV PLANE $=0$ OUT OF PLANE C\&* SET IBIG=1 TO READ BIGMODE 1 DNLY

$$
\text { IVAR }=1
$$

74. $A N F R G=S Q R T$ (LAM)WRITE 6,60) ANFRQ
60 FORMAT $1 H$, TNFRQ $=S Q R Y$ LAM $=1, F 10.51$
$99 \quad$ SI $=0$.
C CLEAR ARRAYS
DO $31 \quad \mathrm{I}=1,4$
$K(I)=0$.
$1(I)=0$ 。
$31 \quad P(I)=0$.
$00 \mathrm{I} \mathrm{I}=1,101$
E34P(I)=0.
$\mathrm{E} 44 \mathrm{P}(1)=0$.
E33P(I) $=0$.$E 43 P(1)=0$.
E32P(I) $=0$.
$E 42 \mathrm{P}(I)=0$.
E31P(I) $=0$.
E41P(I) $=0$.
$E 4(I)=0$.
$1 E 3(1)=0$.
$H=1 . / F L O A T(N I N T)$
$D=3$
8 IF(D.EQ.4) GO TO 2
BO=0.
E3(1)=1.
$E O=E 3(1)$
$\mathrm{CO}=0$.
$A O=0$.
GO.TO 3
$2 \quad \mathrm{CO}=0$.
E41P(1)=1.
$A O=E 41 P(1)$
$80=0$.
$\mathrm{EO}=0$.
$3 A=A D$
$B=B 0$
$C=C O$
$E=E O$
$\mathrm{N}=1$
$4 \quad \mathrm{I}=1$
$N N=N$
$S I=(N \cdot N-1) \neq$.
$5 \quad \mathrm{~K}(\mathrm{I})=\mathrm{H} * \mathrm{~A}$
$L(I)=H * B$
$M(I)=H * C$
MUl=1.+EIG(KK) そEIG(KK)
IF(NDS.EQ. 1) GO TO 40
$M U I=M U 1-1$.
$P(I)=(1-S I * S I+2 . * S I *(1 .+S I O)) / 2 * * B$
$1+(1 .-S I+S I O) * A+M U I * E) * L A M * H$
$S I=(N N-1) *$.
$I=1+1$
IF(1.GT. 3) GOTO 6
$Z=1-1$
$E=E O+K(Z) / 2$.
$A=A 0+L(Z) / 2$.
$B=B C+M(Z) / 2$.
$\mathrm{C}=\mathrm{CO}+\mathrm{P}(Z) / 2$.
SI=SI+H/2.
GOTC5
IF(I.GT.4) GOTO 7
$E=E O+K(3)$
$A=A O+L(3)$
$B=80+\mathrm{M}(3)$
$C=C O+P(3)$
$S I=51+H$
60505
IFID.EQ. 41 GOTO 9
$S I=N: V^{*}+H$
$\mathrm{Z}=\mathrm{N}+\mathrm{I}$
$E 3(Z)=E 3(N)+(K(1)+2 . * K(2)+2 . * K(3)+K(4)) / 6$.
E31P $(2)=E 31 P(N)+(L(1)+2 . * L(2)+2 . * L(3)+L(4)) / 6$.
E 32P $(2)=E 32 P(N)+(M(1)+2 . * M(2)+2 . * M(3)+M(4)) / 6$.
$E 33 P(2)=E 33 P(N)+(P(1)+2 . \neq P(2)+2 . * P(3)+P(4)) / 6$. $E 34 P(2)=\operatorname{LA} *(1(1510+1) * * 2-.(1 .-S 1+S(3) * * 2)$
1*E $32 P(Z) / 2 .+(1 .-S I+S I O) * E 31 P(Z)+M U 1 * E 3(Z))$
$E=E 3(V+1)$
$A=E 3 T^{-} P(N+1)$
$B=E 32 P(N+1)$
$C=E 33 P(N+1)$
$A O=A$
$\mathrm{BO}=6$
$4 \begin{array}{r}E O=E \\ C O=C\end{array}$
$\mathrm{N}=\mathrm{N}+1$
IF(N.LT.INTER) GO"TO 4
EMOM $3(K K)=E 3([$ NTER)
ELSM $3(K K)=E 32 P(1)$
RMOM $3(K K)=E 32 P(I N T E R)$
ESHR $3(K K)=E 33 P(1)$
RSHR $3(K K)=$ E33P(INTER)
DO $28 \mathrm{I}=1,101$
$8 \quad M M \times 3(I, K K)=E 3(I)$
$\mathrm{D}=4$
GOTU 2
$S I=N \bar{N}+\mathrm{H}$
$\mathrm{Z}=\mathrm{N}+\mathrm{L}$

E41P(Z) =E4IP(N)+1L(1)+2.*L(2)+2. $+L(3)+L(4)) / 6$.
$E 42 P(Z)=E 42 P(N)+(M(1)+2.4 M(2)+2 . * M(3)+M(4)) / 6$.
$E 43 P(2)=E 43 P(N)+(P(1)+2 . * P(2)+2 . * P(3)+P(4) 1 / 5$.
E44P (Z) $=L A M *(((S I O+1) * * 2-.(1 .-S I+S I O) * * 2)$
1*E42P(Z)/2.+(1.-SI+S10)*E41P(Z)+MU1*E4(Z))
$E=E 4(N+1)$
$B=E 42 P(N+1)$
$C=E 43 P(N+1)$
$\mathrm{EO}=\mathrm{E}$
$A 0=A$
$\mathrm{BO}=\mathrm{B}$
$\mathrm{CO}=\mathrm{C}$

$\mathrm{N}=\mathrm{N}+1$

IF(N.LT.INTER) GO TO 4
EMOM4 (KK) $=$ E4 (INTER)
ELSM4(KK) $=E 42$ P(1)
RMOM4(KK)=E42P(INTER)
ESHR4 $(K K)=E 43 P(1)$
RSHR4(KK) FE43P(INTER)
DO $29 \mathrm{I}=1,101$
29 MMX4 (I, KK $)=E 4(I)$
94 CONTINUE
ALFA $(K K)=E M J M 3(K K) / E M O M 4(K K)$
BETA(KK)=MMX3(1,KK)-ALFA(KK)*MMX4(1,KK)
GAMA (KK) $=E I G(K K) \# S Q R T(L A N)$
DO $102 \mathrm{LB}=1,101$
$L L=102-L B$
102 BPT (LL, KK $)=(M M \times 3(L B, K K)-A L F A(K K) * M M \times 4(L B, K K)) / B E T A(K K)$ SUM=0.
DO $216 \quad \mathrm{I}=2,101$
216 SUM $=S J M+(B P T(I, 1)+B P T(I-1,1) / 2 . *((F L O A T(I)-1.5) * H+S I 0) * H$ ME2 $=$ SUM
SUM $=0$.
DO $218 \quad 1=2,101$
218 SUM $=$ SUM $+(B P I(1,1) * * 2+B P r(I-1,1) * * 2) / 2 . * H$
$M E L=S U M$
$C O R=M E 2 * M E 2 / M E 1$
IF(IFRST.NE.1) GO ro 92
$\operatorname{EDA}(1)=B \mu(51,1)$
EDA(2) =BPT(101,1)
92 WRITE(6.98) EDA(1),EDA(2)
98 FORMATIIH, 'INITIAL DISPLACEMENTS', $6 \mathrm{X}, \mathrm{F} 12.6,3 \mathrm{x}, \mathrm{F} 12.6 / 1$
WRITE(6,105) ME1,ME2,CCR,NOS

$13 \mathrm{X}, \mathrm{NDS}=1,131$)
72 IF(IBIG.NE.1) 60 TO 73
GAMA(1)=EIG(1)*ANFRQ
GAMA (2) $=0$.
CC2 $(1)=1$.
$\operatorname{CC2}(2)=0$.
ALFA(2) $=0$.
$\operatorname{RMOM} 3(2)=0$.
RMOM4(2) $=0$.
RSHR $3(2)=0$.
RSHR 4(2) $=0$.
$\operatorname{ELSM} 3(2)=0$.
ELSM4(2) $=0$.
$\operatorname{ESHR} 3(2)=0$.
$\operatorname{EIG}(2)=0$.

73 DO 213 I=1,2

```
213 WRITE 6,214\()\) ALFA(T),
214 FORMAT (1H, 'ALFA \(=1,012.6,3 X, 1 K K=9,131\)
```

TFTBIG.EQ.I) GOTO 109
DO $104 K K=1,2$
$M M=51$
DO $104 \mathrm{LL}=1,2$
THESE COEFFICIENTS FIT THE BOOM TO INITIAL DISPLACEMENTS
COFDIS (LL,KK) $=$ BPT(MM,KK)
AA(EL,KK)=COFDIS(LL,KK)
$104 M M=M M+50$
c
C GJRTS OSED TO INVERT THE COEFFICIENT MATRIX
C
CALL GJR(AA,2,BBB,CCC,PPP,DQQ,\$113)
$00161 \quad t=1, N R^{-}$
SUMM $=0$.
$00^{-1} 60-\mathrm{J}=1 ; \mathrm{N}$?
160 SUMM $=\operatorname{SUMM}+A A(1, J) \neq E D A(J)$
CC2(I) = SUMM
161 WRITE(6,162)CC2(I),I
162 FORMAT (1H ${ }^{\circ}$ 'CC2 $=1$, E12.6; $3 \mathrm{X},{ }^{2} \mathrm{I}=1 ; 13$)
c
CTODAL SOLUTION FORM HERE
C
$109 \mathrm{FF}=0$.
FEE=0.
RTORK $=0$:
DTORK=0.
$\mathrm{TINT}=0$ 。
DLTT $=1.0 /(S T P * G A M A(1)) * 2 . * 3.1416$
WRITF (6,50)OLTT
50 FORMAT(IH , 'OLTT=:,F10.5/)
$S F A C=1 . / E I G(1)$
WRITE (6.131) SFAC
131 FORMAT IH', THE NO. OF RUT CYC PER FUND VIBCYCIS, FIO.t1)
CO $122 \mathrm{I}=1$, MAXT
T=DLTT*FLOAT(I-1)
DO $129 \mathrm{KK}=1,2$
129 TFAC $(K K)=C C 2(K K) * C O S(G A M A(K K) * T)$
EDAZPl=0.
$E D A 3 P 1=0$.
EDAE2 $=0$.
EDAE $3=0$.
DO $117 \mathrm{KK}=1,2$
SUM $2=($ RMOM $3(K K)-A L F A(K K)$ \#RMOM4 $(K K)) \div \Gamma F A C(K K)$ SUM $3=($ RSHR $3(K K)-A L F A(K K) \neq R \operatorname{SHR} 4(K K)) \div T F A C(K K)$ SUM $=(E L S M 3(K K)$-ALFA(KK) \ddagger ELSM4 (Kく)) *TFAC(KK) SUMT $=(E \operatorname{SHR} 3(K K)-A L F A(K K) * E S H R 4(K K)) * F F A C(K K)$ EDAE $2=$ EDAE $2+5 U M 6$
EDAE3=EDAE3-SUM7
EDA2Pl = EDA2Pl + SUM2
119
RTORK = EDAZPI-S IO EEDA $3 P I$
AVTK = (RTORK+DTORK)/2.
DTORK=RTORK
IFI I.NE.1) GO TO 134
AVTK $=0$.
134 TINT=TINT+AVTK*DLTT/ANFRQ
$F E E=360$. *SFAC $\ddagger F L O A T(I-1) / S T P$
IFIFEE-360.1140,140,117
$117 \mathrm{FF}=F F+1$
$F E E=F E E-360$.
140 IFMI.NE. 1) GO TO 44
WRITE(6,215)T,FEE,FF
WRITE 6,130$)$ EDA 2P 1 , EDAE 2, EDA 3P 1, EDAE 3
130 FORMAT (IH , 'ELAS RMOM:, D12.6, 3X,'TIP MDM',E12.6,3X; I'RSHEAR='.D12.6,3X.'TIP SHEAR',E12.6/1
WRITE(6,41)IINT
41 FORMAT $11 \mathrm{H}, 1 /$ SQRT
SUM $=0$.
DO $112 \mathrm{KK}=1,2$
MODE=BPT(LL,KK)*TFAC(KK)
112 SUM = SUM + MODE
IF(I.EQ.1) GO TO 114
IF(IVAR.EQ.I) GO.TO 111
114 WRITE(6,115) SUM,11
111 continue
115 FORMAT (1H, 'ADA',E12.6,3X,'STATION',I 3)
IF(IVAR.NE.1) GO TO 122
WRITE 6,121$)$ SUM, IINT, T, I
122 CONTINUE
121 FORMATIIH, 'ENDISPI,F12.6,3X,'TIVT',E12.6,3X,'T',F9.3.3X.'I',I 31
120 WRITE $(6,568)$
568 FORMAT(1H /)
GO 10100
113 SAM=?
WRITE $(6,116)$ SAM
116 FORMAT(1H, 'GJR DUMPED SAM=',I 3$)$
100 CONT INUE
GO $104 ?$
42 RETURN
C
END
CAROS IN $=316$, CARDS OUT $=\ldots$, PAGES OUT $=\ldots 6$

```
    INTEUEOR N&P(N),Q(N)
    DIME:VSION A(N,N),j(N),C(N)
    EPS=i.*(10.)**-7
101 EPS=SPS/10.
    IF(EPS.LT.10.**-15) vO TU 102
    00 os k=1.is
    PIvor=u.
    DO 5 I=K, 访
    00 5 ЈニK,N
    IF(ASS(n(I,J)).LE.ABS(PIVOT)) GO TU.S
    PIVOI=A(1,J)
    p(k)=1
    o(K)=J.
    5 COivtlive
    IF(ASS(PIVOT).LE.EPS)GO TO 101
    IF(P(K)-K)も.10.ó
    6 0% 7 J=1,N
    L=P(心)
    Z=A(L.J)
    A(L,J)=A(K,J)
    7. A(K,U)=Z
    10 IF(G(n)-K)11.15.11
    11 U0 12 I=1,iv
        L=O(K)
        Z=A(1,L)
        A(I,L)=A(I,K)
    12 A(IOK)=Z
    15 00 25 u=1,iv
    IF(u-K)20,16,20
    16 m(J)=1./PIVOT
    c(j)=1.
    GO 10 22
    20.B(J)=-A(K,J)/PIVOT
    c(J)=a(J,k)
    22 A(K,J)=0.
    A(J,K)=0.
    25 CONID:NuE
    DO Ju l=1in
    00 3u J=1,N
    30 A(f,j)=A(I,J)+C(I)*B(J)
    35 CONILNUE
        OO 5u m=1, N
        K=N-N+1
        IF (P(K)-K)40.450.40
    40 LO 43 1=1,iv
    L=p(k)
    <二A(1OL)
    A(I,L)=A(I,K)
    A(IOK)=2
    4 3 ~ C O N I L ! N J E ~
    45 IF(G(K)-K)40.5U146
    4600 4.3 J=1%N
    L=心(x)
    Z=A(i,N)
    A(L,J)=n(K,J)
    A(K,J)=Z
    4% CONTH.NUE
    50. CONTIMNE
    RETURiN
    102 WR&T:(0.1u3)
    lu3 FORMMr(21itu gJir coulu NOT wo IT)
        RETURIS 7
    FN|)
```


CHAPTER

Body and its Elastic Appendages

4.1 Introduction

In the previous chapters, the problem of determining the modal shapes and frequencies of the rotating structure was examined, and applications were studied in which these modes are utilized.

In the present chapter, equations of motion are written for the generalized coordinates representing the flexible structure and for the angular rates of the central rigid body. A simulation of the spacecraft motion is then possible. Various cases of simulation are examined, and the effect of modal truncation and of nonlinear terms is discussed.
4.2 Modal Equations of Motion: equatorial vibrations (Case "E", for equatorial)

4.2.1 Constancy of \vec{H}.

In what follows, it is assumed that the motion of the center of mass of the spacecraft is negligible (or that only antisymnetric motions of the booms are considered) and that the "limited approach" is taken ${ }^{[4-1]}$, i.e. the motion of the spacecraft's center of mass in inertial space can be determined independently of the attitude.

If over the time of interest, i.e. a few tens of spin periods or so, the torque-impulse due to all environmental attitude perturbing torques (gravity-gradient, solar pressure, magnetic, etc.) can
be considered as negligible, then very sensibly the moment of momentum \vec{H} about the center of mass remains constant:

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}=\overrightarrow{\mathrm{H}}(0)=\text { constant vector } \tag{4.2-1}
\end{equation*}
$$

in which $\overrightarrow{\mathrm{H}}$ is the value of $\overrightarrow{\mathrm{H}}$ at $t=0$.

4.2.2 Representation of the elastic appendages

Consider a particle of a boom,having non-dimensional abscissa ξ, located along axis $+x$ in its undeflected position. Its elastic displacement, $\eta=\frac{W(x)}{\ell}$, is represented in terms of the modes $\Phi_{j}\left(\xi=\frac{x}{\ell}\right)$

$$
\eta_{+x}=\sum_{j=1}^{N} q_{j}(\bar{t}) \Phi_{j}(\xi)
$$

in which the q_{j} are non-dimensional amplitudes, dependent on the nondimensional time $\bar{t}=\omega_{s} t$, with $\omega_{s}=\frac{2 \pi}{\tau_{s}}$ the angular spin rate of the satellite in its nominal motion. N is some positive integer, which specifies the number of terms after which the series is truncated.

We recall that the $\Phi_{j}(\xi)$ are orthogonal modes, normalized to unit deflection at the boom's tip, so that

$$
\begin{array}{ll}
\int_{\text {boom }} \Phi_{j}(\xi) \Phi_{k}(\xi)=0 & j \neq k \\
m_{1, j} d \overline{\bar{e}} f \int_{\text {boom }} \Phi_{j}^{2}(\xi) \mathrm{d} \xi>0 & j=k
\end{array}
$$

$$
\xi_{1}=\xi+\xi_{0} ;
$$

both $m_{1, j}, m_{2, j}$ are assumed to be known quantities, determined as in Chapter 2.
4.2.3 Kinetic energy contained in the elastic structure

The total kinetic energy, T, is made out of two parts: one is independent of the generalized coordinates q_{j} and the other one, T_{1}, depends on the q_{j} and appears as the integral of a density T_{1}. More specifically (Fig. 4.1)

$$
\begin{equation*}
\mathrm{T}=\sum_{\text {all }} \sum_{\mathrm{particles}} \frac{\overrightarrow{\mathrm{v}}^{2}}{2} \tag{4.2-6}
\end{equation*}
$$

with $\left.\quad \vec{v}_{m}=\vec{\omega}_{\omega} \stackrel{\rightharpoonup}{r}_{m, 0}+\vec{\delta}\right)+\dot{\vec{\delta}}$
in which $\vec{\omega}$ is the instantaneous rotation, $\vec{r}_{m, 0}$ is the vector coordinate to m in its reference position and $\vec{\delta}$ is the elastic displacement from $\overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}$.

Computing T,

$$
\begin{aligned}
& T=\sum_{R i \varphi, D D+F L E x, C L L} \frac{m}{2}\left(\vec{\omega} \wedge \vec{r}_{/ M, 0}\right)^{2}+\sum_{\substack{\text { FLEXIbLE }}}\left\{\frac { i } { 2 } m \left[(\vec{\omega} \cap \vec{\delta})^{2}+2\left(\vec{\omega} \Lambda \vec{r}_{m, 0}\right) \cdot(\vec{\omega} \wedge \vec{\delta})\right.\right. \\
& \text { ewers } \\
& \left.+2\left(\vec{\omega} \wedge \vec{i}_{m, 0}\right) \cdot \overrightarrow{\vec{\delta}}^{\text {Rim }}+2(\vec{\omega} \Lambda \vec{\delta}) \cdot \vec{\delta}+\vec{\delta}^{2}\right\}
\end{aligned}
$$

Now, for small linear displacements of the elastic parts

$$
\begin{aligned}
\vec{\delta} & =\begin{array}{c}
v \vec{I}_{y} \\
\vec{\omega} \Lambda \vec{\delta}
\end{array}=\left(\begin{array}{c}
-w \omega_{z} \\
0 \\
w \omega_{x}
\end{array}\right)
\end{aligned}
$$

Thus

$$
\sum_{\substack{\text { ALL ELASTIC } \\ \text { FORTS }}} \frac{1}{2} M(\vec{\omega} \wedge \vec{\delta})^{2}=\sum \frac{1}{2} m\left(\omega_{z}^{2}+\omega_{x}^{2}\right) w^{2}
$$

If ω_{x}, ω_{y}, w are assumed to be of first order of smallness, (4.2-9) is rewritten

$$
\begin{equation*}
\sum \frac{1}{2} w^{2}\left(w_{z}^{2}\right)+0\left(\epsilon^{4}\right)=\sum \frac{1}{2} w^{2} \omega_{s}^{2}+O\left(\epsilon^{3}\right) \tag{4.2-10}
\end{equation*}
$$

in which ω_{s} is the (constant) nominal value of the spin rate.

$$
\vec{w}_{\omega} \vec{r}_{\mathrm{m}, 0}=\left(\begin{array}{c}
0 \\
\omega_{z} x_{1} \\
-\omega_{y} x_{1}
\end{array}\right)
$$

Then

Furthermore,

$$
\begin{equation*}
\sum_{\substack{A L L \\ E L . F A R T S}} \frac{1}{2} m \stackrel{\circ}{\delta}^{2}=\sum \frac{1}{2} m \stackrel{\rightharpoonup}{W}^{2} \tag{4.2-12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{2} \sum_{\substack{A L 1 \\ E L, B A R T S}} 2 m\left(\vec{\omega} \wedge \vec{r}_{m, 0}\right) \cdot \stackrel{\rightharpoonup}{\delta}=\sum m_{1} \omega_{z} x_{1} \dot{w} \tag{4.2-13}
\end{equation*}
$$

Finally,

$$
\begin{equation*}
\frac{1}{2} \sum_{\substack{A L L \\ E L, f A R T S}} 2 m(\vec{\omega} \wedge \vec{\delta}) \cdot \vec{\delta}=0 \tag{4.2-14}
\end{equation*}
$$

Introducing expressions (4.8-10) through (4.2-14) in Equations (4.2-8), we obtain

$$
\begin{equation*}
T=T_{0}+\frac{1}{2} \int_{0}^{2} \rho d s\left(w^{2} \omega_{s}^{2}+\dot{\omega}^{2}+2 \omega_{z} x_{1} \dot{w}\right)+0\left(\varepsilon^{3}\right) \tag{4.2-15}
\end{equation*}
$$

Since the element of curvilinear abscissa, ds, is related to dx by

$$
\mathrm{ds}^{2}=\mathrm{dx}^{2}+\mathrm{dy}^{2}=\mathrm{dx}^{2}\left(1+\left(\frac{\partial \mathrm{w}}{\partial \mathrm{x}}\right)^{2}\right)
$$

or

$$
\begin{aligned}
d s & =d x\left(1+\left(\frac{\partial w}{\partial x}\right)^{2}\right)^{1 / 2} \\
& =d x\left(1+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2}+\ldots\right)
\end{aligned}
$$

and

$$
d x=d s\left(1-\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \ldots\right)
$$

Therefore, consistent with the order of magnitudes retained explicitly, (4.2-15) can be rewritten with x instead of s as the integration variable,

$$
\begin{equation*}
\mathrm{T}=\mathrm{T}_{0}+\frac{1}{2} \int_{0}^{\ell} \rho \mathrm{dx}\left(w^{2} \omega_{\mathrm{s}}+\dot{\omega}^{2}+2 \omega_{\mathrm{z}} \mathrm{x}_{1} \dot{w}\right)+0\left(\varepsilon^{3}\right) \tag{4.2-16}
\end{equation*}
$$

The "flexible body" part of T_{0}, however, has to include a correction term, since for terms involving

$$
\int_{0}^{\ell} x^{2} d s=\int_{0}^{\ell} \underset{0}{x^{2}} d x+\frac{1}{2} \int_{x^{\text {upper }}}^{\ell} \mathrm{xpper}^{2}\left(\frac{\partial w}{\partial x}\right)^{2} d x
$$

i.e. with an integrand of zeroth order of magnitude, we can write

$$
\begin{equation*}
\int_{0}^{l} x^{2} d s=\int_{0}^{l_{\text {upper }}} x^{2} d x+\frac{1}{2} \int_{0}^{l_{\text {uffer }}} x^{2}\left(\frac{\partial w}{\partial x}\right)^{2} d x \tag{4.2-17}
\end{equation*}
$$

Neglecting terms of $3^{\text {rd }}$ order of smallness,

$$
\int_{0}^{l} x^{2} d s=\int_{0}^{l} x^{2} d x-l^{2}(l-l \text { leper })+\frac{1}{2} \int_{0}^{l} x^{2}\left(\frac{\partial W}{\partial x}\right)^{2} d x(4.2-18)
$$

and using (4. 2-17),

$$
\begin{equation*}
\int_{0}^{l} x^{2} d s=\int_{0}^{2} x^{2} d x-\frac{1}{2} \int_{0}^{l}\left(l^{2}-x^{2}\right)\left(\frac{\partial w}{\partial x}\right)^{2} d x \tag{4.2-.19}
\end{equation*}
$$

Now, if the integrand is

$$
x_{1}^{2}=\left(x_{0}+x\right)^{2}=x^{2}+2 x_{0} x+x_{0}^{2}
$$

we obtain

$$
\begin{aligned}
& \int_{0}^{l} x_{0}^{2} d s=x_{0}^{2} l=x_{0}^{2} \int_{0}^{l} d x \\
& \int_{0}^{\ell} x d s=\int_{0}^{l} \text { uffer } x d x+\frac{1}{2} \int_{0}^{l_{\text {uffer }}} x\left(\frac{\partial w}{\partial x}\right)^{2} d x
\end{aligned}
$$

or neglecting terms of third order of smallness

$$
\begin{aligned}
\int_{0}^{l} x d s & =\int_{0}^{l} x d x-l(l-l \text { ieper })+\frac{1}{2} \int_{0}^{l} x\left(\frac{\partial w}{\partial x}\right)^{2} d x \\
& =\int_{0}^{l} x d x-\frac{1}{2} \int_{0}^{l}(l-x)\left(\frac{\partial w}{\partial x}\right)^{2} d x
\end{aligned}
$$

Finally,

$$
\int_{0}^{l} x_{i}^{2} d s=\int_{0}^{l} x_{i}^{2} d x-\frac{1}{2} \int_{0}^{l}\left[\left(l^{2}-x^{2}\right)+2 x_{0}(l-x)\right]\left(\frac{\partial w}{\partial x}\right)^{2} d x
$$

Therefore, T_{0} is rewritten, with $\Phi(\vec{\omega})$ the inertia dyadic of the rigidified, undeflected total reference body as

$$
\begin{equation*}
T_{0}=\frac{1}{2} \vec{\omega} \cdot \Phi(\vec{\omega})-\frac{1}{2} \int_{0}^{l} \rho d x \frac{1}{2}\left[\left(\ell^{2}-x^{2}\right)+2 x_{0}(l-x)\right]\left(\frac{\partial w}{\partial x}\right)^{2} d x \tag{4.2-20}
\end{equation*}
$$

Collecting. (4.2-1.6) and (4.2-20)

$$
\begin{aligned}
& I=\frac{1}{2} \vec{\omega} \Phi(\vec{\omega})+\frac{1}{2} \int_{0}^{l} \ell d x\left(w^{2} \dot{w}_{3}+\dot{w}^{2}+2 \omega_{2} x \dot{w}-\frac{1}{2}\left[\left(l^{2}-x^{2}\right)\right.\right. \\
&\left.\left.+2 x_{0}(l-x)\right]\left(\frac{\partial}{\partial x}\right)^{2}\right) d x+O\left(\epsilon^{3}\right) \quad(4.2-21)
\end{aligned}
$$

4.2.4 Potential energy of the elastic structure

For pure flexure in the (x, y) plane, the potential energy is given by

$$
V=\frac{E I}{2} \int_{0}^{\ell}\left(\frac{\partial W}{\partial x^{2}}\right)^{2} d x+0\left(\varepsilon^{3}\right)
$$

where it is legitimate to use x, instead of s, as the integration variable, to the order of the terms explicitly retained.
4.2.5 Equations of motion for the elastic modes, equatorial vibrations.
4.2.5.1 Equation for the j th coordinate, q_{j}

At this point we introduce the modal representation (4.1-2). For the sake of simplicity, let the bars on $\bar{t}=\left[\frac{t}{I / \omega_{s}}\right]$, be dropped. Furthermore, let the energies be non-dimensionalized by

$$
\rho \ell^{3} \omega_{s}^{2} \quad \text { and the lengths by } \ell
$$

Although $\bar{\omega}_{s}$, non-dimensional value of the nominal satellite spin-rate,
is 1 , we shall for clarity retain it in the equations.
In non-dimensional form, with designating derivatives with respect to \bar{t}, and $\xi_{1}=\xi+\xi_{0}$,

$$
\begin{align*}
\vec{T}= & \frac{1}{\rho \hat{l}^{3} \omega_{s}^{2}}\left(\vec{T}-\frac{1}{2} \vec{\omega} \cdot \Phi(\vec{\omega})\right)=\frac{1}{2} \int_{\text {boom }}\left(\dot{\eta}^{2}+\eta^{2} \vec{\omega}_{S}^{2}+2 \bar{\omega}_{z} \dot{\eta}_{3}\right. \\
& -\frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right]\left(\frac{\partial \eta}{\partial \xi}\right)^{2} d \xi \\
\bar{V}= & \frac{1}{2 \bar{\lambda}} \int_{\text {boom }}\left[\frac{\partial^{2} \eta}{\partial \xi_{,}^{2}}\right]^{2} d \xi
\end{align*}
$$

with $\bar{\lambda}=\frac{\rho \ell^{4}}{E I} \omega_{s}^{2}$, as in Chapter 2 .

Now let, with t the non-dimensional time,

$$
\eta=\sum_{j=1}^{N} q_{j}(t) \Phi_{j}(\xi)
$$

Then

$$
\begin{aligned}
& \begin{array}{l}
\dot{n}=\sum_{j=1}^{N} \dot{q}_{j} \bar{\Phi}_{j} \\
n^{2}=\sum_{j=1}^{N} \sum_{k=1}^{N} q_{j} q_{k} \bar{\Phi}_{j} \bar{\Phi}_{k}
\end{array} \\
& \dot{\eta}^{2}=\sum_{j=1}^{N} \sum_{k=1}^{N} \dot{q}_{j} \dot{q}_{k} \bar{\Phi}_{j} \bar{\Phi}_{k} \\
& \frac{\partial \eta}{\partial \xi}=\sum_{j=1}^{N} q_{j} \frac{d \Phi_{j}}{d \xi} \\
& \left(\frac{\partial n}{\partial \xi}\right)^{2}=\sum_{j=1}^{N} \sum_{k=1}^{N} q_{j} q_{k} \frac{d \cdot \Phi_{j}}{d \xi} \frac{d \Phi_{k}}{d \xi}
\end{aligned}
$$

Similarly,

$$
\left(\frac{\partial^{2} \eta}{\partial \xi^{2}}\right)^{2}=\sum_{j=1}^{N} \sum_{k=1}^{N} q_{j} q_{k} \frac{d^{2} \Phi_{j}}{d \xi^{2}} \frac{d^{2} \Phi_{k}}{d \xi^{2}}
$$

$$
\begin{aligned}
& \text { Thus, the Lagrangian function is } \begin{array}{l}
\overline{2} \equiv \frac{1}{2} \vec{\omega} \cdot \bar{\Phi}(\vec{\omega})+\bar{T}-\bar{V}=\frac{1}{2} \int_{b \xi_{j=1}}^{N} \sum_{k=1}^{N}\left[\dot{q}_{j} q_{k} \Phi_{j} \Phi_{k}+\bar{\omega}_{s}^{2} q_{j} q_{k} \Phi_{j} \Phi_{k}+2 \omega_{z} \dot{q}_{j} \xi_{i} \Phi_{j}\right. \\
\\
\left.\quad-\frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] q_{j} q_{k} \frac{d \phi_{j}}{d \xi} \frac{d \phi_{k}}{d \xi}-\frac{1}{\bar{\lambda}} q_{j} q_{k} \frac{d^{2} \Phi_{d} d^{2} \Phi_{k}^{+}}{d \xi^{2}} d \xi^{2}\right](4.2-24)
\end{array}
\end{aligned}
$$

Now, for any $i=1,2 \ldots$,

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathscr{L}}{\partial \dot{q}_{i}}\right)-\frac{\partial \mathscr{L}}{\partial \dot{q}_{i}}=0 \tag{4.2-25}
\end{equation*}
$$

We recall that, as in (4.2-3), (4.2-4), (4.2-5)

$$
\begin{aligned}
& \int_{\text {boom }} \phi_{j} \phi_{k} d \xi=0 \quad(j \neq=k) \\
& \int_{\text {boom }} \phi_{j}^{2} d \xi \equiv m_{1, j} \\
& \int_{\text {boom }} \phi_{j} \xi_{1} d \xi \equiv m_{2, j}
\end{aligned}
$$

the ϕ_{j} having been previously normalized to unit deflection at the boom's tip. Using these relations, and (4.2-25) for $i=j$, after defining

$$
\begin{align*}
& a_{j k}=a_{k j} d \overline{\overline{e ́ f}} \frac{1}{2} \int_{\text {boom }}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] \frac{d \Phi}{\partial \xi} \frac{d \Phi_{k}}{d \xi} d \xi \tag{4.2-26}\\
& \mathrm{~b}_{\mathrm{jk}}=\mathrm{b}_{\mathrm{kj} \text { dent }} \overline{\overline{e x}}_{\mathrm{f}} \int_{\text {boom }} \frac{\mathrm{d}^{2} \phi_{\mathrm{j}}}{\mathrm{~d} \xi^{2}} \frac{\mathrm{~d}^{2} \phi_{\mathrm{k}}}{\mathrm{~d} \xi^{2}} \mathrm{~d} \xi . \tag{4.2-27}
\end{align*}
$$

we obtain, for the j th modal coordinate

$$
m_{1, j} \ddot{q}_{j}-m_{1, j} \bar{u}_{s}^{2} q_{j}+\sum_{k=1}^{N} a_{j k} q_{k}+\frac{1}{\lambda} \sum_{k=1}^{N} b_{j k} q_{k}=-m_{i j} \dot{\bar{\omega}}_{2} \quad(4.2-28)
$$

4.2.5.2 Evaluation of the coefficient of q_{j}

We now evaluate the coefficient of q_{j} in (4.2-28), say c_{j},

$$
\begin{equation*}
c_{j} \equiv \frac{1}{\lambda} \sum_{k=1}^{N} b_{j k}+\sum_{k=1}^{N} a_{j k}-m_{i, j} \bar{w}_{s}^{2} \tag{4.2-29}
\end{equation*}
$$

From Equation (2.2-23), written in terms of $a_{j k}, b_{j k}$,

$$
\begin{aligned}
& \frac{1}{\bar{\lambda}} b_{j k}+a_{j k}=0 \quad j \neq k \\
& \frac{1}{\bar{\lambda}} l_{j j}+a_{j \gamma}=m_{1, j}\left(\bar{\omega}_{j}^{2}+\bar{\omega}_{s}^{2}\right) \quad j=k
\end{aligned}
$$

Thus (4.2-28) takes the simple form

$$
m_{1, j} \ddot{q}_{j}+m_{1, j} \bar{\omega}_{j}^{2} q_{j}=-\frac{m_{2, j}}{m_{l, j}} \dot{\bar{\omega}}_{z}
$$

or

$$
\begin{equation*}
\ddot{q}_{j}+\bar{\omega}_{j}^{2} q_{j}=-\frac{m_{2, j}}{m_{1, j}} \dot{\bar{\omega}}_{z} \tag{4.2-30}
\end{equation*}
$$

A few remarks should be made regarding (4.2-30) First of all, the modal equations for the $j^{\text {th }}$ coordinate reduce to a harmonic motion, in the case where $\bar{\omega}_{z}$ is constant. Second, as has been seen in Chapter 3, the "driving amplitude", measured by the non-dimensiona1 ratio

$$
\frac{m_{2, j}}{m_{1, j}}
$$

is strongly a function of ξ_{0}, and to a lesser extent of $\bar{\lambda}$, Etkin's number. Thirdly, it should be noted that it is only because, for the sake of consistency, the difference of an integral in s (curvilinear abscissa) and $\underset{=}{x}$ was carefully considered when the integrand
was a quantity of zeroth order (as detailed above), that term

$$
-m_{1, j} \bar{\omega}_{s}^{2} q_{j}
$$

could. finally be cancelled in Equation (4.2-30). Failure to make this distinction leads to having this extra term still present in the final equation and in order to "fall back" on (4.2-30), one has to introduce, rather belatedly, an additional term due to a "rotational potential" ${ }^{[4-2]}$. Finally, if linear distributed damping is introduced, Equation (4.2-30) takes the form

$$
\begin{equation*}
\ddot{q}_{j}+2 \nu \bar{\omega}_{j} \dot{q}_{j}+\bar{\omega}_{j}^{2} q_{j}=-\frac{m_{2, j}}{m_{1, j}} \dot{\bar{\omega}}_{z} \tag{4.2-31}
\end{equation*}
$$

whose derivatives are taken with respect to non-dimensional time.
4.3 Modal Equations of Motion: meridional vibrations (Case " M ", for meridional)

Without repeating in the same detail the explanations of Sectimon 4.2, we now derive the modal equations in the case of motions parallel to axis-z (meridional vibrations). Only the relevant differences are underlined.

4.3.1 Constancy of \vec{H}

In the absence of attitude perturbing torques, the torque-free motion has the integral

$$
\begin{equation*}
\overrightarrow{\mathrm{H}}=\vec{H}_{0} \tag{4.3-1}
\end{equation*}
$$

where \vec{H}_{0} is the value of the moment of momentum at $t=0$.

4.3.2 Representation of the elastic appendages

The displacement $n(x)=\frac{W(x)}{\ell}$ of an element of boom located at $\xi=\frac{x}{\ell}$ of axis +x in terms of the modes $\Phi_{j}(\xi)$ for meridional motions is

$$
\eta_{t x}=\sum_{\delta=1}^{n} q_{d}(\bar{E}) \dot{\Phi}_{j}(\xi)
$$

Again q_{j} are non-dimensional amplitudes, functions of the mondimensional time $\bar{t}=\frac{t}{I / \omega_{s}}$. N is positive integer specifying the number of terms after which the series is truncated.

The "meridional" modes are orthogonal

$$
\int \text { boom } \phi_{j}(\xi) \phi_{\mathrm{k}}(\xi) \mathrm{d} \xi=0 \quad j \neq \mathrm{k}
$$

and we have defined

$$
\begin{align*}
m_{1, j} & \equiv \int_{\text {boom }} \phi_{j}^{2}(\xi) \mathrm{d} \xi>0 \\
m_{2, j} & \equiv \int_{\text {boom }} \xi_{1} \phi_{j}(\xi) \mathrm{d} \xi \text { with } \xi_{1}=\xi+\xi_{0}
\end{align*}
$$

These quantities are known as functions of $\bar{\lambda}$, Etkin's number, and $\xi_{0}=\frac{x_{0}}{\ell}$, hub non-dimensional radius.
4.3.3 Kinetic energy contained in the elastic structure

With the same notations as in Section 4.2.3,
$T=T_{o}$ (rigid part $+f$ lexible part) $+T_{1}$

Now

$$
\begin{gathered}
\vec{\delta}=w \vec{I}_{z} \\
\vec{\omega} \wedge \vec{\delta}=\left(\begin{array}{c}
\omega_{y} w \\
-\omega_{z} w \\
0
\end{array}\right)
\end{gathered}
$$

and

$$
\sum_{\substack{\text { GHEL, } \\ \text { PARTS }}} \frac{1}{2} m(\vec{\omega} \wedge \vec{\delta})^{2}=\sum \frac{1}{2} m w^{2}\left(w_{x}^{2}+\omega_{y}^{2}\right)=O\left(\epsilon^{4}\right)(4 \cdot 3-6)
$$

Let $x_{1}=x+x_{0}$. Then

$$
\vec{\omega} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}=\left(\begin{array}{c}
0 \\
\omega_{\mathrm{z}} \mathrm{x}_{1} \\
-\omega_{\mathrm{y}} \mathrm{x}_{1}
\end{array}\right)
$$

The next terms are

$$
\begin{align*}
& \frac{1}{2} \sum_{\text {ALL }} 2 m\left(\vec{\omega} \wedge \vec{r}_{m, 0}\right) \cdot(\vec{\omega} \wedge \vec{\delta})=\frac{1}{2} \sum\left(-2 \omega_{s} \omega_{x} x_{i} \omega\right)+O\left(\epsilon^{3}\right)(4.3-7) \\
& \sum_{A L E L,} \frac{1}{2} m \stackrel{\dot{\delta}}{ }^{2}=\sum \frac{1}{2} m \dot{W}^{2} \\
& \text { parts } \\
& \frac{1}{2} \sum_{A L L} 2 m\left(\vec{\omega} \wedge \vec{r}_{m, 0}\right) \cdot \stackrel{\circ}{\vec{\delta}}=-\frac{1}{2} \sum 2 m \hat{\omega}_{\mathrm{TS}} \vec{x}_{1} \dot{\omega} \\
& \frac{1}{2} \sum_{\substack{A L L \\
E L, P A R T S}} 2 m(\vec{\omega} \wedge \vec{\delta}) \cdot \vec{\delta}=0 \text {. } \tag{4.3-10}
\end{align*}
$$

Introducing expressions (4.3-6) through (4.3-10) into (4.2-8), and since we can substitute $d x$ for as when the integrand is of first order of smallness, or smaller,

$$
\begin{gather*}
T=\frac{1}{2} \dot{\omega} \dot{d} \phi(\vec{u})+\frac{1}{2} \int_{0}^{\ell} \rho d x\left(\dot{w}^{2}-2 \omega_{s} \omega_{x} x_{1} w-2 \omega_{y} x_{1} \dot{w}-\frac{1}{2}\left[\left(\ell^{2}-x^{2}\right)\right.\right. \tag{4.3-12}\\
\left.\left.+2 x_{0}(\ell-x)\right]\left(\frac{\partial w}{\partial x}\right)^{2}\right)+0\left(\varepsilon^{3}\right)
\end{gather*}
$$

4.3.4 Potential energy of the elastic structure

For pure flexure in the (x, z) plane, the potential energy is

$$
V=\frac{E I}{2} \int_{0}^{\ell}\left(\frac{\partial^{2} w}{\partial x^{2}}\right)^{2} d x+0\left(\varepsilon^{3}\right)
$$

Again, it is legitimate to use x, instead of s, as the integration, to the order of the terms explicitly retained.
4.3.5 Equations of motion: elastic modes, meridional vibrations

5.3.5.1 Equation for the j th coordinate, q_{j}

The kinetic energy, T, and potential energy, V, are non-dimensionalized by the quantity $\rho \ell^{3} \omega_{s}^{2}$. Note that, although $\bar{\omega}_{s}$, nondimensional value of the nominal satellite spin rate, is 1 , it is retained as " $\bar{\omega}_{s}$ " in the equations. Let $T_{r b}=\frac{1}{2} \vec{\omega} . \Phi(\vec{\omega})$.

$$
\begin{aligned}
& \bar{T} \equiv \frac{T}{d i f}=\frac{T_{r b}}{i^{2} \omega_{s}^{2}}+\frac{1}{2} \int_{i^{3} \omega_{s}^{2}}\left(\dot{\eta}^{2}-2 \bar{\omega}_{s} \bar{\omega}_{x} \xi_{i} \eta-2 \omega_{y} \xi_{1} \dot{\eta}-\frac{1}{2}\left[\left(1-\xi^{2}\right)\right.\right. \\
&\left.\left.+2 \xi_{0}(1-\xi)\right]\left(\frac{\partial \eta}{\partial \xi}\right)^{2}\right) d \xi \\
& \bar{V} \equiv \frac{V}{\operatorname{deg}^{2}}=\frac{1}{2 \bar{\lambda}} \int_{\text {loom }}\left(\frac{\partial^{2} \eta}{\partial \xi^{2}}\right)^{2} d \xi
\end{aligned}
$$

With the same substitutions as in (4.2), we obtain the Lagrangian

$$
\begin{aligned}
\bar{\alpha}=\frac{T_{i}}{\rho \rho^{3} \omega_{s}^{2}} & +\frac{1}{2} \int_{0}^{1} \sum_{j=1}^{N} \sum_{k=1}^{N}\left[\dot{q}_{j} q_{k} \Phi_{j} \Phi_{k}-2 \bar{\omega}_{s} \bar{\omega}_{k} \xi_{i} q_{j} \bar{\Phi}_{j}-2 \bar{\omega}_{y} \xi_{1} \dot{q}_{j} \Phi_{j}\right. \\
& \left.-\frac{1}{2}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] q_{j} q_{k} \frac{d \phi_{j}}{d \xi} \frac{d \phi_{k}}{d \xi}-\frac{1}{\bar{\lambda}} q_{j} q_{k} \frac{d^{2} \xi_{j}}{d \xi^{2}} \frac{d^{2} \Phi_{k}}{d \xi^{2}}\right] d \xi
\end{aligned}
$$

Now define

$$
a_{j k}=a_{k j} \quad \overline{\overline{=}} \frac{1}{2} \int_{b o o m}\left[\left(1-\xi^{2}\right)+2 \xi_{0}(1-\xi)\right] \frac{d \phi_{j}}{d \xi} \frac{d \phi_{k}}{d \xi} d \xi
$$

$$
\mathrm{b}_{j k}=\mathrm{b}_{\mathrm{kj} \text { de }} \overline{\overline{\mathrm{e}} \mathrm{f}} \int_{\mathrm{boom}} \frac{\mathrm{~d}^{2} \phi_{j}}{\mathrm{~d} \xi^{2}} \frac{\mathrm{~d}^{2} \phi_{k}}{\mathrm{~d} \xi^{2}} \mathrm{~d} \xi
$$

For modal coordinate q_{j}, the Lagrangian equation is, with Equations (4.3-3) through (4.3-5),

$$
\begin{equation*}
m_{1, j} \ddot{q}_{j}+\frac{1}{\bar{\lambda}} \sum_{k=1}^{N} b_{j k}+\sum_{k=1}^{N} a_{j k}=+m_{2, j}\left(\dot{\bar{\omega}}_{y}-\bar{\omega}_{s} \bar{\omega}_{x}\right) \tag{4.3-14}
\end{equation*}
$$

4.3.5.2 Evaluation of the coefficient of q_{j}

From Equations (2.3-11,12) , Section 2.23, we obtain

$$
\begin{aligned}
& \frac{1}{\bar{\lambda}} b_{j k}+a_{j k}=0 \quad j \neq k \\
& \frac{1}{\lambda} b_{j j}+a_{j j}=\bar{\omega}_{j}^{2} m_{1, j} \quad j=k
\end{aligned}
$$

Thus Equation (4.3-14) can be rewritten in the form

$$
\begin{equation*}
\ddot{q}_{j}+\bar{\omega}_{j}^{2} q_{j}=\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}} \underset{y}{ }-\bar{\omega}_{s} \bar{\omega}_{x}\right) \tag{4.3-15}
\end{equation*}
$$

in which $\bar{\omega}_{j}$ is the $j^{\text {th }}$ eigenfrequency of meridional vibrations, a function of $\bar{\lambda}$ and ξ_{0}.

Again, if linear distributed damping is introduced, the equation of motion becomes

$$
\begin{equation*}
\ddot{q}_{j}+2 v \bar{\omega}_{j} \dot{q}_{j}+\bar{\omega}_{j}^{2} q_{j}=\frac{m_{2, i}}{m_{1, j}}\left(\bar{\omega}_{y}-\dot{\bar{\omega}}_{s} \bar{\omega}_{x}\right) \tag{4.3-16}
\end{equation*}
$$

$\frac{\mathrm{m}_{2, j}}{\mathrm{~m}_{1, j}}$ thus appears as a "driving amplitude". As seen in Chapter 2, it is also strongly dependent on ξ_{0}, and to a lesser extent on Etkin's number $\bar{\lambda}$.
4.4 Equations for the rates: equatorial vibrations (Case "E")

The equation for the time derivatives of the rates are now derived from the constancy of the moment of momentum for the torquefree motion, as given in (4.2-1).

Since, about the center of mass,

$$
\begin{aligned}
& \vec{H}=\vec{H}(0)=\int \overrightarrow{\mathrm{r}} \Lambda \overrightarrow{\vec{r}} \mathrm{dm} \\
& \overrightarrow{\mathrm{H}}=\int \overrightarrow{\mathrm{r}} \Lambda \ddot{\vec{r}} d \mathrm{~m}
\end{aligned}
$$

Computing, with the same notations as in 4.2 and 4.3,
$\overrightarrow{\mathrm{r}}=\vec{\delta}+\vec{\omega} \Lambda\left(\overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}+\vec{\delta}\right)$
$\vec{r}=\vec{\delta}+2 \vec{\omega} \Lambda \vec{\delta}+\dot{\vec{\omega}} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}+\dot{\vec{\omega}} \Lambda \vec{\delta}+\vec{\omega} \Lambda\left(\vec{\omega}_{s} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}\right)+\vec{\omega} \Lambda(\vec{\omega} \Lambda \vec{\delta})$
Let $\dot{\vec{H}}$ be divided between a part "relating to $\vec{r}_{m, 0}$ ", \vec{H}_{I}, and a part relating to $\vec{\delta}, \dot{\vec{H}}_{I I}$

$$
\dot{\vec{H}}=\dot{\vec{H}}_{I}+\dot{\vec{H}}_{I I}
$$

and

$$
\begin{align*}
& \dot{\vec{H}}_{I}=\int_{\text {boom }} \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0} \Lambda\left\{{\left.\dot{\vec{\omega}} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}+\vec{\omega} \Lambda\left(\vec{\omega} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}\right)\right\} \mathrm{ds}}^{\dot{\vec{H}}_{\mathrm{II}}=\int_{\text {boom }}[\overrightarrow{\mathrm{r}} \Lambda\{\ddot{\vec{\delta}}+2 \vec{\omega} \Lambda \dot{\delta}+\vec{\omega} \Lambda \vec{\delta}+\vec{\omega} \Lambda(\vec{\omega} \Lambda \vec{\delta})\}}\right. \\
& \left.\quad+\vec{\delta} \Lambda\left(\dot{\vec{\omega}} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}\right)+\vec{\delta}\left(\vec{\omega} \Lambda\left(\vec{\omega} \Lambda \overrightarrow{\mathrm{r}}_{\mathrm{m}, 0}\right)\right)\right] \mathrm{ds}
\end{align*}
$$

Note that as has been seen in Section (4.3) and (4.3)
$d s=d x\left(1+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2}\right)+$ higher order terms
in which the elastic displacement (along +y) is

$$
\begin{equation*}
\vec{\delta}^{\prime}=w(x) \overrightarrow{1}_{y} \tag{4.4-4}
\end{equation*}
$$

Therefore, if $\bar{\omega}_{x}, \bar{\omega}_{y}$ (normalized to ω_{s}, nominal value of the satellite spin rate) and $\eta(x)=\frac{W(x)}{\ell}$ are considered to be of first order of smallness $(O(\varepsilon))$, the equations for the rates deduced from (4.4-1) should be written with

$$
-\int_{\text {boom }}[\cdots] d s=\int_{\text {boom }}[\cdots] d x
$$

for integrands of zeroth order of smallness, or smallex, if only quantities of first-order of smallness, or larger, are retained . Thus, neglecting terms of order 3 of smallness, or smaller (with $\int_{b o o m}[\cdots] d s=\int_{b o o m}^{[\cdots]}[d x$ for an integrand of first order of smallness, or smaller),

$$
\begin{aligned}
& \stackrel{\dot{\vec{H}}}{I I})_{x}=\int_{\text {Qoom }}-x_{1} \dot{\omega}_{j} W d x \\
& \left.\dot{(\vec{H}}_{I I}\right)_{y}=\int_{f_{\infty} \omega_{1}} x_{1}\left(-2 \omega_{z} w \dot{w}_{x} w-\omega_{y} \omega_{x} w\right) d x \\
& \underset{\left(\dot{\vec{H}}_{\mathrm{II}}^{z}\right.}{ }=-\int_{\text {boum }} x_{1} \ddot{W} d \mathrm{~L}_{2}
\end{aligned}
$$

Now, neglecting terms of order 2 of smallness, or smaller (with $\int_{\text {boom }}[\cdots] d s=\int_{\text {boom }}[\cdots] d x$ for an integrand of first order of smallness or smaller)

$$
\left(\stackrel{\dot{\vec{H}}}{I I}^{x}\right)_{x}=\left(\stackrel{\overrightarrow{\mathrm{H}}}{I I}^{y}\right)_{y}=0
$$

in the analysis.

$$
\int_{\text {boom }}[\cdots] \mathrm{ds}=\int_{\text {boom }}[\cdots]\left[1+\frac{1}{2}\left(\frac{\partial W}{\partial x}\right)^{2}\right] \mathrm{dx}, \text { in a manner similar }
$$

to the one used in Section 4.2 and 4.3 , if the integrand is of zeroth order of smallness, and if quantities of second order of smallness, or larger, are to be retained in the analysis.

With this qualification in mind, the various terms in the integrand
of (4.4-2) are computed without eliminating smaller terms at this point.

$$
\begin{align*}
& \vec{\delta}=w \vec{i}_{y} \\
& \vec{\pi}, \stackrel{\ddot{r}}{\vec{\delta}}=\left[\begin{array}{cc}
0 \\
0 & \\
\lambda_{1} & \ddot{w}
\end{array}\right] \\
& 2 \vec{\omega} \wedge \vec{\delta}=2\left[\begin{array}{cc}
-\omega_{x} & \dot{w} \\
0 & \\
\omega_{x} & \dot{W}
\end{array}\right] \\
& 2 \vec{r} \wedge(\vec{\omega} \wedge \vec{\delta})=2\left[\begin{array}{ccc}
\omega_{x} & w & \dot{W} \\
-x_{i}^{\prime} & \omega_{n} & \dot{W} \\
\omega_{z} & w & \dot{W}
\end{array}\right] \\
& \begin{array}{l}
\vec{\pi} \wedge(\vec{\omega} \wedge \vec{\delta})=\left[\begin{array}{cc}
\dot{\omega}_{x} & w^{2} \\
-x_{1} & \dot{\omega}_{x^{2}} \\
\dot{\omega}_{z} & w^{2}
\end{array}\right]_{c} w \\
\vec{\delta} \wedge\left(\dot{\vec{w}} \wedge \vec{r}_{m, 0}\right)=\left[\begin{array}{cc}
-2_{i} & \omega_{y} \\
0 \\
0
\end{array}\right]
\end{array} \\
& \vec{\delta} \wedge\left(\vec{\omega} \wedge\left(\vec{\omega} \wedge \vec{r}_{m, 0}\right)\right)=\left(\begin{array}{l}
x_{1} \omega_{x^{\prime}} \omega_{z} w^{\prime} \\
0 \\
x_{1}\left(\omega_{y}^{2}+\omega_{z}\right) \omega_{z}
\end{array}\right) \\
& \vec{r} \wedge\left(\vec{\omega} \wedge(\vec{\omega} \wedge \vec{\delta})=\left[\begin{array}{l}
\omega_{z} \omega_{y} w^{2} \\
-x_{i} \omega_{y} \omega_{z} w \\
-x_{1}\left(\omega_{x}^{2}+\omega_{z}^{2}\right) w
\end{array}\right]\right. \\
& \stackrel{\dot{\vec{H}}}{I I}_{z}=\int_{\text {bout }} x_{i} \ddot{\dot{W}} d x+O\left(\epsilon^{2}\right) \\
& \left.\dot{\vec{H}}_{\mathrm{I}}\right)=\left[I_{z} \dot{\omega}_{x}+\left(I_{z}-I_{y}\right) \omega_{y} \omega_{z}\right] \vec{l}_{x}+\left[I_{y} \dot{\omega}_{y}+\left(I_{x}-I_{z}\right) \omega_{z} \omega_{x^{\prime}}\right] \vec{l}_{y} \\
& +\left[I_{z} \dot{\omega}_{z}+\left(I_{y}-I_{x}\right) \omega_{x} \omega_{y}\right] \vec{'}_{z} \tag{4.4-5}
\end{align*}
$$

if it can be assumed that x, y, z are principal axes of inertia of the total, rigidified spacecraft, of total moments of inertia I_{x}, I_{y}, I_{z} about the corresponding axes.

To summarize, we have, to order ε, the following equations for the rates, in case E ,

$$
\begin{align*}
& \dot{\omega}_{x}=-\frac{I_{z}-I_{y}}{I_{x}} \omega_{y} \omega_{s} \\
& \dot{\omega}_{y}=-\frac{I_{x}-I_{z}}{I_{y}} \omega_{s} \omega_{x} \\
& \dot{\omega}_{z}+\frac{I}{I_{z}} \int_{\text {boom }} \ddot{w}_{1} d x=-\frac{I_{y}-I_{x}}{I_{z}} \omega_{x} \omega_{y} \approx 0, \text { to } 0(\varepsilon) \tag{4.4-6}
\end{align*}
$$

Let the time, t, be non-dimensionalized as $\bar{t}=\frac{t}{1 / \omega_{s}}$ (from now on, - will designate derivatives with respect to \bar{t}); the lengths are nondimensionalized by ℓ, length of the boom, and $\xi=\frac{X}{\ell}, \xi_{0}=\frac{X_{0}}{\ell}$, $\eta=\frac{W}{Z} ; k_{x} \equiv \frac{I_{x}}{I_{z}}, k_{y} \equiv \frac{I_{y}}{I_{z}}$. We obtain

$$
\begin{align*}
& \dot{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y} \\
& \dot{\bar{\omega}}_{y}=-\frac{k_{x}-1}{k_{y}} \bar{\omega}_{x} \\
& \dot{\bar{\omega}}_{z}=-\frac{\ell^{3}}{\bar{x}_{z}} \int_{\text {boom }} \ddot{m}_{i} d \xi \tag{4.4-7}
\end{align*}
$$

Using the modal expansion in terms of $\phi_{j}(\xi)$, having eigenfrequencies $\bar{\omega}_{j, E}$, with $\bar{\Phi}_{j}$ and $\bar{\omega}_{j, E}$ functions of $\bar{\lambda}$ and ξ_{0},

$$
\begin{equation*}
\dot{\bar{\omega}}_{z}=-\frac{\rho^{l^{3}}}{I_{z}} \int_{l_{\text {room }}} \sum_{j=1}^{N} q_{j} \phi_{j}(\xi) \xi_{1} d \xi \tag{4.4-7}
\end{equation*}
$$

Now, from Equation (4.2-31), with $\bar{w}_{j}=\bar{\omega}_{j, E}$

$$
\ddot{q}_{j}=-\frac{m_{2}, j}{m_{1, j}} \dot{\bar{\omega}}_{z}-2 \nu \bar{\omega}_{j} \dot{q}_{j}-\bar{\omega}_{j}^{2} q_{j}
$$

Substituting

$$
\stackrel{\circ}{\omega}_{z}\left(1-\frac{p^{l^{3}}}{I_{z}} \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)=\frac{p^{3}}{I_{z}} \sum_{j=1}^{\infty}\left[2 \nu \bar{\omega}_{j} q_{j}+\bar{\omega}_{j}^{2} q_{j}\right] m_{2, j} \quad(4.4-8)
$$

Thus the normalized moment of inertia is apparently reduced from the value 1, due to the flexibility of the boom, by an amount equal to

$$
\begin{equation*}
\frac{l^{l^{3}}}{I_{z}} \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}} \tag{4.4-9}
\end{equation*}
$$

or writing, with $I_{z h}=$ moment of inertia, about z, of the central hub, and

$$
\begin{align*}
& \Delta \equiv \xi_{0}^{2}+\xi_{0}+\frac{1}{3} \tag{4.4-10}\\
& I_{z}=I_{z h}+\rho \ell^{3} \Delta \tag{4.4-11}
\end{align*}
$$

the non-dimensional inertia correction becomes, in Equation (4.4-8), with $\quad \Gamma_{\mathrm{den}} \overline{\overline{\bar{e}}} \mathrm{f} \frac{\rho \ell^{3}}{I_{z h}}$,

$$
\begin{equation*}
-\frac{I}{1+\Gamma \Delta} \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{i, j}} \tag{4.4-12}
\end{equation*}
$$

and (4.4-8) is rewritten (Rate equations for case E)

$$
\begin{aligned}
& \dot{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y} \\
& \dot{\bar{\omega}}_{y}=-\frac{k_{x}-1}{k_{y}} \bar{\omega}_{x} \\
& \frac{\circ}{\bar{\omega}_{z}}\left(1-\frac{\Gamma}{1+\Gamma^{\prime} \Delta} \sum_{j=1}^{N} \frac{m_{2, \delta}^{2}}{m_{1, \gamma}}\right)=\frac{\Gamma}{1+\Gamma^{\prime} \Delta} \sum_{j=1}^{N}\left[2 \nu \bar{\omega}_{j} \dot{q}_{j}+\bar{\omega}_{j}^{2} q_{j}\right] m_{2, j}
\end{aligned}
$$

The stability of the motion, in the presence of equatorial vibrations, as studied in Chapter 5, can be done on the basis of equations
(4.2-25) for the modal coordinates
(4.4-13) for the angular rates
with $N=1,2$ or 3 , depending on the number of modes retained in the analysis.
4.5 Equations for the rates: meridional vibrations (Case " $M^{\prime \prime}$)
4.5.1 Equations for the rates, boom along the direction

Without repeating the development of Section 4.1 .1 , the components of $\dot{\vec{H}}_{\text {II }}$, in expression (4.4-2) are rederived for an elastic displacement $\vec{\delta}$ parallel to axis -z.

$$
\begin{aligned}
& \vec{S}=w(x) \overrightarrow{l_{z}} \\
& \vec{r} A \vec{\delta}=\left[\begin{array}{c}
0 \\
-w_{i} w \\
0
\end{array}\right]
\end{aligned}
$$

$$
2 \vec{\pi} \wedge(\vec{\omega} \cap \dot{\vec{\delta}})=2\left[\begin{array}{ccc}
0 \\
\omega_{x} & w_{i} & \dot{6} \\
\omega_{y} & w_{i} & \dot{\omega} \\
-x_{y}, & \omega_{x} & \dot{w}
\end{array}\right]
$$

$$
\begin{aligned}
& \vec{\pi} \wedge(\dot{\vec{\omega}} \wedge \vec{\delta})=\left[\begin{array}{c}
\dot{\omega}_{x} w^{2} \\
\dot{\omega}_{y} w^{2} \\
-x_{1} \\
\dot{\omega}_{x} \\
w
\end{array}\right] \\
& \vec{r} \wedge(\vec{\omega} \wedge(\vec{\omega} \wedge \vec{\delta}))=\left[\begin{array}{l}
-\omega_{z} \omega_{y} w^{2} \\
-\omega_{x} \omega_{z} w^{2}+x_{1}\left(\omega_{x}^{2}+\omega_{y}^{2}\right) w \\
x_{1} \omega_{z} \omega_{y} w^{\prime}
\end{array}\right] \\
& \vec{\delta} \wedge(\dot{\vec{\omega}} \wedge \vec{r} \\
& \vec{\delta} \wedge\left(\vec{\omega} \wedge\left(\vec{\omega} \wedge \overrightarrow{r_{m, 0}}\right)\right)=\left[\begin{array}{c}
x_{m} w \dot{\omega}_{z} \\
0 \\
0
\end{array}\right] \\
& \vec{\delta} \wedge\left[\begin{array}{l}
-x_{1} \omega_{x} \omega_{y} w^{\prime} \\
-x_{1}\left(\omega_{y}^{2}+\omega_{z}^{2}\right) w \\
0
\end{array}\right]
\end{aligned}
$$

Neglecting terms of order 3 of smallness,

$$
\begin{aligned}
& \left.\dot{\vec{H}}_{I I}\right)_{z}=\int_{b o o m} x_{1} w \dot{\omega}_{z} p d r \\
& \left.\dot{(\vec{H}}_{I I}\right)_{y}=\int_{b o o m} x_{1}\left(\dot{w}_{w}-w\right)\left(\omega_{z}^{2}+\omega_{y}^{2}\right) p d x \\
& \left.\dot{\overrightarrow{(\vec{H}}}_{I I}\right)_{z}=\int_{b o o m} x_{1}\left(\omega_{z} \dot{\omega}_{y} w-\omega_{x} \dot{w}-\dot{\omega}_{x} w\right) p d x
\end{aligned}
$$

Neglecting terms of order 2 of smallness,

$$
\begin{aligned}
\left.\dot{\vec{H}}_{I I}\right)_{x}= & \left(\dot{\vec{H}}_{I I}\right)_{z}=0 \\
\left(\dot{\vec{H}}_{I I}\right)_{y}= & -\int_{b o o m} x_{i}\left(\dot{w}+w \dot{\omega}_{S}^{z}\right) \rho d x \\
\left.\dot{\vec{H}}_{I}\right)= & {\left[I_{x} \dot{\omega}_{x}+\left(I_{z}-I_{y}\right) \omega_{y} \omega_{z}\right] \vec{i}_{x}+\left[I_{y} \dot{\omega}_{y}+\left(I_{x}-I_{z}\right) \omega_{z} \omega_{x}\right] \vec{i}_{y} } \\
& +\left[I_{z} \dot{\omega}_{z}+\left(I_{y}-I_{x}\right) \omega_{z} \omega_{y}\right] \vec{i}_{z}
\end{aligned}
$$

with the same assumption as in 4.4
To summarize, we have to order ε, after non-dimensionalization of time by $1 / \omega_{s}$, and with $k_{x}=\frac{I_{x}}{I_{z}}, k_{y}=\frac{I_{y}}{I_{z}}$,

$$
\begin{align*}
& \dot{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y} \tag{4.5-1}\\
& \dot{\bar{\omega}}_{y}=\frac{k_{x-1}}{k_{y}}+\frac{q l^{3}}{I_{y}} \int_{k_{\text {nom }}}(\ddot{\eta}+\eta) \xi, d \xi \\
& \dot{\bar{\omega}}_{z}=0
\end{align*}
$$

In the second of equations (4.5-1),

$$
\frac{e^{\ell^{3}}}{I_{y}}=\frac{e^{l^{3}}}{I_{z} k_{y}}=\frac{1}{k_{y}} \frac{\Gamma}{1+\Gamma \Delta}
$$

Using the modal expression for $\eta_{M}=\sum_{j=1} q_{j}(t) \Phi_{j m}(\xi), \phi_{j}(\xi)$ being the j th modal shape having associated frequency $\bar{\omega}_{j, M}$,

$$
\int_{\text {loom }} \sum_{j=1}^{j i}\left(q_{j}^{0}+q_{j}\right) \Phi_{j} \xi_{1} d \xi=\sum_{j=1}^{N} q_{j} m_{2 j}+\sum_{j=1}^{N} q_{j} m_{2}, j
$$

Since, from Equation (4.3-16), with $\bar{\omega}_{s}=1$,

$$
\ddot{q}_{j}=-\bar{\omega}_{j}^{2} q_{j}+\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}}_{j}-\bar{\omega}_{x}\right)-2 \nu \bar{\omega}_{j} \dot{q}_{j}
$$

we obtain in (4.5-1)

$$
\begin{aligned}
& \dot{\bar{\omega}}_{x^{\prime}}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y} \\
& \dot{\bar{\omega}}_{y}\left(1-\frac{\Gamma}{1+\Gamma \Delta} \frac{1}{k_{y}} \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)=-\bar{\omega}_{x^{\prime}}\left(\frac{k_{x}-1}{k_{y}}+\frac{1}{k_{y}} \frac{\Gamma}{1+\Gamma \Delta} \sum_{j=1}^{N_{i}} \frac{m_{a_{i, j}}^{2}}{m_{i, j}}\right) \\
&\left.+\frac{\Gamma}{1+\Gamma \Delta} \frac{1}{k_{y}} \sum_{j=1}^{N} m_{2, j}\left(1-\bar{\omega}_{j}^{2}\right) q_{j}-2 \nu \overline{\omega_{j}} \dot{q}_{j}\right\} \quad(4.5-2) \\
& \dot{\bar{\omega}}_{z}= 0
\end{aligned}
$$

Investigation of the stability of the motion in the presence of meridional vibrations, as studied in Chapter 5, will be carried
out on the basis of equations

> (4.3-16) for the modal coordinates
> (4.5-2) for the angular rates
with $N=1$, 2 or 3 , depending on the number of modes retained in the analysis. Since so far we have been considering a single boom located along the +x axis, it is of importance to generalize the analysis to multi-booms configurations. This is done in the following section.

4.6 Generalization to Multiple-Boom Geometry

The equations for therates and modal coordinates were given, for equatorial vibrations, by Equations (4.4-13) and (4.2-25), respectively, and for meridional vibrations by Equations (4.5-2) and (4.3-16) respectively, in the case of a single boom located along the +x axis. In the present section, we proceed to generalize the developments to the case of multiple-bootn arrangements located in plane (x, y) (A plane containing axes x_{p}, y_{p}, two principal axes of inertia of the ellipsoid in inertia of the rigidified, total spacecraft) (Fig. 4.1).

In order to allow for various possibilities, the following definitions and notations are used
$-k_{x} d \overline{\overline{\bar{e}}} \frac{I_{x}}{I_{z}}, k_{y} d \overline{\overline{\overline{e n}}} \frac{I_{y}}{I_{z}}$ are ratios, smaller than one for quasirigid body stability, which relate to principal moments of inertia I_{x}, I_{y}, I_{z} of the total, rigidified structure.

- given the Etkin's number, $\bar{\lambda}_{k}$, and non-dimensional radius $\xi_{0, k}$, for boom " k ", the notation :
$-\Phi_{j, k}\left(\bar{\lambda}_{k}, \dot{\xi}_{0, k}\right)$ is used for the j th modal shape corresponding to these values of $\bar{\lambda}$ and ξ_{0} (there is no necessity to distinguish between Φ_{j} for the equatorial vibrations as opposed to Φ_{j} for meridional vibration, since they are the same)
$-m_{2, j, k} \equiv \int_{\ell_{\text {dom }} k} \xi_{i, k} \Phi_{d, k}\left(\xi_{K}\right) d \xi_{k}$
$m_{1, j, k} \equiv \int_{\text {loom } k} \bar{\Phi}_{j, k}^{2}\left(\xi_{k}\right) d \xi_{k} \quad \xi_{i, k} \equiv \xi_{0, k}+\xi_{k}$ and all $\Phi_{j, k}$ are normalized to a unit deflection at the tip.
- $\bar{w}_{j, k}$, a function of $\bar{\lambda}_{k}, \xi_{0, k}$, for given j, is the j th eigenfrequency for equatorial vibrations. whereas $\bar{w}_{j, k}$ is the j th eigenfrequency for meridional vibrations. For the same pair $\left(\lambda_{k}, \xi_{0, k}\right)$, we have from Equation

$$
\bar{\omega}_{j, k}^{2}+1=\bar{\omega}_{j, k}^{2} \quad(\operatorname{all} j, k)
$$

$-q_{j, k}$ is the j th modal coordinate (of type E, or M depending on which equations contain it) for boom k.

- ζ_{k} is the angle between the boom's undeflected position (an axis normal to $Z_{p} \equiv z$, thus contained in $p l a n e x_{p}, y_{p}$) and axis x_{p} of the ellipsoid of inertia.
$-\Gamma_{k} \equiv \frac{\left(e^{l^{3}}\right)_{k}}{\left(I_{z, h}\right)_{k}} ; \Delta_{k} \equiv \frac{1}{3}+\xi_{0, k}+\xi_{0, k}^{2}$
4.6.1 2 pairs of booms at right angle, along two principal axes of inertia

In this case, we assume that booms $(+x,-x)$ are aligned on x_{p}, principal axis of inertia, and that booms (+y, $-y$) are normal to
$(+x,-x)$, thus aligned on principal axis of inertia y_{p} (Fig. 4-1). In order to generalize the previously obtained equations for the modal coordinates and angular rates, we observe that in these equatịons,

$$
(x, y, z) \text { are a r.h.s. system, with }
$$

ty in case E
BOOM ALONG $+x$, deflection q along
$+z$ in case M

Now consider the boom along - x . Equations analogous to these derived for the $+x$ boom will apply, substituting

	for	the expression
axis	x	axis $-x$
axis	y	axis $-y$
axis	z	axis $-z$
	q_{x}	along z

since $(-x,-y,-z)$ is a direct system. The deflection q_{-x}, along $-y$ (i.e. in case E), will be measured, for the sake of convenience, along axis $+y$, in the same manner as q_{+x} is measured. Therefore, in the analogous equations, written for case E, substitute
for the expression

$$
\begin{equation*}
q_{+x} \text { along +y } \quad-q_{-x} \text { along }+y \tag{4.6-1}
\end{equation*}
$$

Similarly, the substitutions needed are, in the following cases:
boom along ty axis Substitute

for	the expression
axis x	axis y
axis y	axis $-x$
axis z	axis z
q_{+x} along z	q_{-y} along z
q_{+x} along $+y$	$-q_{y}$ along $+x$

boom along -y axis Substitute

for	the expression
axis x	axis $-y$
axis y	axis x
axis z	axis z
q_{+x} along z	q_{-y} along z
q_{+x} along y	q_{-y} along $+z$

Effecting these substitutions in Equations (4.4-13) and (4.2-31), we obtain

Equatorial vibrations (case E)
It should be recalled that $\bar{\omega}_{j, k}$ refers to "E" type, jth eigenfrequency of boom " k ". Although this is not done explicitly, the ' v " could be subscripted to account for different damping ratios in the various booms.

Rates

Booms $-x,+y,-y:$ the equations for $\stackrel{\dot{\omega}}{x}, \dot{\ddot{\omega}}_{y}$ in (4.4-13) remain unchanged.

The equations for $\dot{\bar{\omega}}_{z}$, in (4.4-13), redd
-x boom:

$$
\begin{aligned}
& \frac{\dot{\omega}_{z}}{\omega_{y}}\left(1-\frac{\Gamma_{-x}}{1+\Gamma_{-x} \Delta_{-x}} \sum_{j=1}^{N} \frac{m_{2, d_{1}-x}^{2}}{m_{j_{2} d_{1}-x}}\right)=-\frac{\Gamma_{-x}}{1+\Gamma_{-x} \Delta_{-x}} \sum_{j=1}^{N}\left(2 \nu \vec{j}_{j_{1}-x} \dot{q}_{j_{i}-x}+\bar{\omega}_{j_{j}-x}^{2} q_{d_{j-x}}\right) \\
& \text { ty boom: }
\end{aligned}
$$

$$
\dot{\omega}_{z}\left(1-\frac{r_{y}}{1+r_{y} \Delta y} \sum_{j=1}^{N} \frac{m_{1, j, y}^{2}}{m_{1, j, y}}\right)=-\frac{\Gamma_{y}}{1+r_{y} \Delta y} \sum_{d=1}^{N}\left(2 \nu \bar{\omega}_{j, y} \dot{q}_{j, y}+\vec{\omega}_{j, y}^{2} q_{j, y}\right)
$$

$$
\begin{aligned}
& \dot{\bar{\omega}}_{z}\left(1-\frac{\Gamma_{-y}}{1+\Gamma_{-y} \Delta-y} \quad \sum \frac{m_{2, d}{ }^{2}-y}{m_{1, d_{1}-y}}\right)=\frac{\Gamma_{-y}}{1+\Gamma_{-y} A_{-y}} \sum_{j=1}^{N}\left(2 \nu \bar{\omega}_{d_{i}-y} \dot{d}_{i-y}+\bar{\omega}_{d_{1}-y}^{2} d_{d_{i}-y}\right) \\
& \text { Modal Coordinates: }
\end{aligned}
$$

-x boom:
$+y$ boom:

$$
\begin{equation*}
\ddot{q}_{j_{i} y}+2 \nu \bar{w}_{j, y} \dot{q}_{d, y}+\bar{w}_{j}^{2} q_{d, y}=\frac{m_{2}, f_{1} y}{m_{1, d}, y} \dot{\omega}_{z} \tag{4.6-5}
\end{equation*}
$$

-y boom:

$$
\begin{aligned}
& \dot{q}_{d, y}+2 y \bar{\omega}_{\delta,-y} \dot{q}_{\partial, y}+\bar{\omega}_{\gamma}^{2} q_{d_{1}-y}=-\frac{m_{2, f}-\gamma}{m_{i, f}-y} \dot{\omega}_{z} \\
& \text { idional vibrations (case M) }
\end{aligned}
$$

Again, $\bar{\omega}_{j, k}$ refers to " M " type, $j t h$ eigenfrequency of boom " k ", and although this is not explicitly done, the v 's could be subscripted to account for different damping ration in the various booms.

Rates

Booms $-x,+y,-y:$ the equation for $\dot{\bar{\omega}}_{z}$ remains unchanged, in $(4,5-2)$
The equations for $\dot{\bar{\omega}}_{x}, \dot{\bar{\omega}}_{y}$ (4.5-2) read, with $b_{k} \equiv \frac{\Gamma_{k}}{1+\Gamma_{k}^{\prime} \Delta_{k}} ; k=+x,-x^{2},+y,-y$
-x boom:

$$
\begin{aligned}
& \dot{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y}
\end{aligned}
$$

$$
\begin{aligned}
& -\frac{b-x}{k_{y}} \sum_{j=1}^{N} m_{2, j,-x}\left\{\left(1-\bar{w}_{j-x}^{2}\right) q_{j,-x}-2 \mu \bar{w}_{j,-x} q_{j,-x}^{i}\right\}
\end{aligned}
$$

+y boom.

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{a}_{x}\left(1-b_{y} \frac{1}{k_{x}} \sum_{j=1}^{N} \frac{m_{2, d_{1} y}^{2}}{n_{1, j, y}}\right)=-\bar{w}_{y}\left(\frac{1-k_{y}}{k_{x}}-\frac{1}{k_{x}} b_{y} \sum_{j=1}^{N} \frac{m_{2, d, y}^{2}}{k_{1, j, y}}\right) \\
& -k_{y} \frac{1}{k_{x}} \sum_{j=1}^{N} m_{2, j, y}\left\{\left(1-\bar{w}_{d_{i} y}^{2}\right) q_{y, y}-2 \nu \bar{w}_{j, y} \dot{q}_{j, y}\right\}
\end{aligned}
$$

$$
{\stackrel{\leftarrow}{\omega_{y}}}_{y}-\frac{k_{x}-1}{k_{y}} \bar{\omega}_{x}
$$

-y boom.

$$
\begin{align*}
& +\frac{b-y}{k_{x}} \sum_{j=1}^{N} m_{2, d_{1}-y}\left\{\left(1-\bar{\omega}_{j_{1}-y}^{2}\right) q_{d,-y}-2 \nu \bar{\omega}_{j} \dot{q}_{j,-y}\right\} \\
& \stackrel{o}{\omega}_{y}=-\frac{k_{x-1}}{k_{y}} \bar{\omega}_{x} \tag{4.6-6}
\end{align*}
$$

Modal Coordinates:
-x boom:

$$
\ddot{q}_{f_{j}-x}+2 p \bar{\omega}_{f_{x}} \dot{q}_{f,-x}+\bar{\omega}_{j_{j} x}^{2} q_{f_{,}-x}=-\frac{m_{2, j_{1}-x}}{m_{1, f,-x}}\left(\dot{\bar{\omega}}_{y}-\bar{w}_{x}\right)
$$

$\pm y$ boom

$$
\ddot{q}_{j, y}+2 \gamma \vec{\omega}_{j_{y}, y} \ddot{q}_{j, y}+\bar{\omega}_{j_{1} y}^{2} q_{j_{1} y}=-\frac{m_{2, j, y}}{m_{1, j} y}\left(\dot{\vec{\omega}}_{x}+\vec{\omega}_{y}\right)
$$

-y boom:

$$
\begin{align*}
& \dot{q}_{j,-y}+2 y \bar{\omega}_{d_{1}-y} \dot{q}_{j,-y}+\bar{\omega}_{j-y}^{2} q_{j,-y}=\frac{n_{2}, d_{j}-y}{n_{i, j},-y}\left(\frac{o}{\omega_{x}}+\bar{\omega}_{y}\right) \tag{4.6-7}\\
& \text { 4.6.1.1 The Four Different booms }
\end{align*}
$$

Let

$$
b_{k} \underset{\operatorname{def}}{\overline{=}} \frac{\left(i^{i j}\right)_{k}}{I_{z}} \quad \Gamma_{k}=\frac{\left(p l^{3}\right)_{k}}{\left(I_{2} k_{k}\right)_{k}} \quad \Delta_{k}=\frac{1}{3}+\xi_{0, k}+\xi_{0, k}^{2}
$$

The equations of motion become.

Equatorial vibrations (case E):
Rates $\quad k=+x,-x,+y, \cdots y j=1,2, \ldots N$;

$$
\frac{\dot{w}}{x}=-\frac{1-k_{y}}{k_{x}} \vec{w}_{y}
$$

$$
\overline{\bar{w}}_{y}=-\frac{k_{x}-1}{k_{y}} \overline{i v} \pi
$$

$$
\begin{align*}
& \dot{\bar{w}}_{z}\left(1-\sum_{k} b_{k} \sum_{j=1}^{N} \frac{m_{2, \gamma, k}^{2}}{m_{1, \gamma, k}}\right)=\sum_{j=1}^{N}\left[b_{x}\left[2 \nu \bar{w}_{j, x} \dot{q}_{j, x}+\bar{w}_{j, x}^{2} q_{j, x}\right]-l_{-x}\left[2 \nu \bar{w}_{j,-x_{j}}^{\dot{q}}{ }_{j,-x}\right.\right. \\
& \left.+\bar{\omega}_{\delta_{j}-x,}^{2} q_{d_{2}-x}\right]-\sum_{j=1}^{N}\left[b_{y}\left[2 \nu \bar{\omega} \dot{\omega}_{d_{1} y} \dot{q}_{j_{, y}}+\bar{\omega}_{j}^{2} q_{d, y}\right]-b_{-y}\left[2 \nu \bar{\omega}_{d_{j}-y} \dot{q}_{d_{j},-y}+\bar{\omega}_{j,-y}^{2} q_{d_{1}-y}\right]\right] \tag{4.6-8}
\end{align*}
$$

Modal coordinates:
For $\mathrm{j}=1,2, \ldots \mathrm{~N} ; \mathrm{k}=+\mathrm{x},-\mathrm{y}$

$$
\begin{equation*}
\ddot{q}_{d, k}+2 \nu \bar{\omega}_{d, k} \dot{q}_{d, k}+\bar{\omega}_{j}^{2} q_{d, k}=-\frac{n_{2, j, k}}{m_{1, j, k}} \stackrel{\theta}{\omega}_{z} \tag{4.6-9}
\end{equation*}
$$

For $j=1,2, \ldots N ; k=-x,+y$

$$
\ddot{q}_{j_{1} k}+2 \nu \bar{\omega}_{j_{1} k} \dot{q}_{\gamma_{1} k}+\bar{\omega}_{j}^{2} q_{j_{1} k}=\frac{m_{2, j, k}}{m_{1, j, k}} \dot{\bar{\omega}}_{2}
$$

Meridional vibrations (case M)
Rates: With k taking the values indicated; $j=1,2, \ldots N$;

$$
\begin{align*}
& \left.\stackrel{\bar{\omega}}{2}^{\left(1-\frac{1}{k_{n}}\right.} \sum_{k=+y_{j}, y} b_{k} \sum_{j=1}^{N} \frac{m_{2, l_{j}}^{2} k}{a_{1, j}, k}\right)=-\bar{\omega}_{y}\left(\frac{1-k_{y}}{k_{x}}-\frac{1}{k_{x}} \sum_{k+y_{i}-y} l_{k} \sum_{j=1}^{N} \frac{m_{2, j}, k}{m_{1}, j, k}\right) \\
& -\frac{1}{k_{x}}\left[b_{y} \sum_{j=1}^{N} m_{2, d, y}\left\{\left(1-\bar{\omega}_{d, y}^{2}\right) q_{d, y}-2 \nu \bar{w}_{j, y} \dot{q}_{d, y}\right\}\right. \tag{4.6-10}\\
& \left.-b_{-y} \sum_{j=1}^{N} m_{2, j,-y}\left\{\left(1-\bar{w}_{d_{1}-y}^{2}\right) q_{d,-y}-2 \nu \bar{\omega}_{j,-y} \dot{q}_{d,-y}\right\}\right] \\
& \dot{\bar{\omega}}_{y}\left(i-\frac{1}{k_{y}} \sum_{k=+x_{j}-x} l_{k} \sum_{j=1}^{N} \frac{m_{2, d, k}^{2}}{m_{1, j, k}}\right)=-\bar{\omega}_{x}\left(\frac{k_{x}-1}{k_{y}}+\frac{1}{k_{y}} \sum_{k=+x,-x} b_{k} \sum_{j=1}^{N} \frac{m_{2, d, k}^{2}}{m_{1, j, k}, k}\right) \\
& +\frac{1}{k_{y}}\left[\hat{b}_{x} \sum_{j=1}^{N} m_{z, j, x}\left\{\left(1-\bar{w}_{d_{1} x}^{2}\right) q_{j, x}-2 \nu \bar{\omega}_{j, x} \dot{q}_{j, x}\right\}\right. \\
& \left.-b_{-x} \sum_{j=1}^{N} m_{2, j,-y}\left\{\left(1-\bar{\omega}_{j,-x}^{2}\right) q_{j_{1}-x}-2 \nu \bar{\omega}_{j_{1}-x} \dot{q}_{j,-x}\right\}\right] \\
& \dot{\bar{\omega}}_{z}=0 \tag{4.6-10}
\end{align*}
$$

Modal coordinates

For $j=1,2, \ldots N ; k=+x,-x,+y,-y ;$

$$
\begin{aligned}
\ddot{q}_{j, k}+2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}+\bar{\omega}_{j}^{2} q_{j, k} & =\frac{m_{2, j, k}}{m_{1, j, k}}\left(\dot{\bar{\omega}}_{y}-\bar{\omega}_{x}\right) \quad k=x \\
& =-\frac{M_{2, \gamma, k}}{m_{1}, \gamma, k}\left(\dot{\bar{\omega}}_{y}-\bar{\omega}_{x}\right) \quad k=-x \\
& =-\frac{m_{2, j, k}}{m_{1}, j_{1} k}\left(\dot{\bar{\omega}}_{x}+\bar{\omega}_{y}\right) \quad k=y \quad(4.6-11) \\
& =\frac{m_{2, j, k}}{M m_{1}, j_{1} k}\left(\dot{\bar{\omega}}_{x}+\bar{\omega}_{y}\right) \quad k=-y
\end{aligned}
$$

4.6.1.8 Aligned booms identical; different booms along (+x, +y). Equations (4.6-8) and (4.6-9), or (4.6-10) and (4.6-11) re simplified, in view of the relations

$$
\begin{aligned}
& \Gamma_{x}=\Gamma_{-x} ; \xi_{0, x}=\xi_{0,-x} ; \Delta_{x}=\Delta_{-x} ; l_{x}=b_{-x} ; \bar{w}_{d, x}=\bar{w}_{j,-x} ; m_{2, f_{2} x}=m_{2, \gamma_{1}-x} ; n_{1, \gamma, f, x}=m_{1, \gamma,-x} \\
& \text { and similar ones for subscripts } y,-y .
\end{aligned}
$$

Equatorial case:

Rates: With $\mathrm{j}=1,2, \ldots \mathrm{~N}$;

$$
\begin{aligned}
& \dot{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{\omega}_{y} \\
& \dot{\bar{\omega}}_{y}=-\frac{k_{x}-1}{h_{y}} \bar{\omega}_{x}
\end{aligned}
$$

$$
\dot{\bar{\omega}}_{z}\left(1-2 b_{x} \sum_{j=1}^{N} \frac{m_{2, d, x}^{2}}{m_{1, j, x}}-2 b_{y} \sum_{j=1}^{N} \frac{m_{2, d, y}^{2}}{m_{1, f, y}}\right)=b_{x} \sum_{j=1}^{N} m_{2, b, x}\left[\left(2 \nu \bar{\omega}_{j, \times} \dot{q}_{j x}(4.6-13)\right.\right.
$$

$$
\left.\left.+\bar{\omega}_{j, x}^{2} q_{j, x}\right)-\left(2 \nu \bar{\omega}_{j, x} \dot{q}_{j,-x}+\bar{\omega}_{j, x}^{2} q_{j,-x}\right)\right]-b_{y} \sum_{j=1}^{N} m_{2, j, y}\left[\left(2 \nu \bar{\omega}_{j, y} \dot{q}_{j, y}+\bar{\omega}_{j}^{2} q_{j, y}\right)\right.
$$

Modal coordinates:

$$
\begin{equation*}
\left.-\left(2 \nu \bar{\omega}_{j, y} \dot{q}_{j,-y}+\bar{\omega}_{j, y}^{2} q_{d,-y}\right)\right] \tag{4.6-13}
\end{equation*}
$$

Same as (4.6-9), with Equations (4.6-12).

Meridional case:

Rates: With $j=1,2, \ldots, N$;

$$
\begin{aligned}
& \stackrel{\stackrel{\omega}{\omega}}{\omega_{2}}\left(1-\frac{2}{k_{x}} b_{y} \sum_{j=1}^{N} \frac{m_{2, j_{i} y}^{2}}{m_{i_{1}, j, y}}\right)=-\bar{\omega}_{y}\left(\frac{1-k_{y}}{k_{x}}-\frac{2}{k_{x}} \sum_{j=1}^{N} \frac{m_{2, j, y}^{2}}{m_{1, j} j_{i} y}\right) \\
& -\frac{1}{k_{x}} b_{y} \sum_{j=1}^{N} m_{2, j, y}\left\{\left[\left(1-\bar{\omega}_{j, y}^{2}\right) q_{j, y}-2 \nu \bar{\omega}_{j, y} \dot{q}_{j, y}\right]-\left[\left(1-\bar{\omega}_{d, y}^{2}\right) q_{j,-y}-2 \nu \bar{\omega}_{j}, \dot{q}_{j} \dot{q}_{j,-y}\right]\right\} \\
& \stackrel{o}{\omega}_{y}\left(1-\frac{2}{k_{y}} b_{x} \sum_{j=1}^{N} \frac{m_{2}^{2} d_{1} x}{m_{1, f, x}}\right)=-\bar{\omega}_{x}\left(\frac{k_{x}-1}{k_{y}}+\frac{2}{k_{y}} b_{x} \sum_{d=1}^{N} \frac{m_{2}^{2} d_{1}, d_{1} x}{1, j_{1}}\right) \\
& +\frac{1}{b} b_{x}^{N} \sum_{i}^{N} \quad\left[\left(1-\omega^{2}\right) q-0\right]^{(4.6-15)} \\
& \left.-\left[\left(1-\bar{\omega}_{j_{x}^{2}}^{2}\right) q_{j_{1}-x}-2 \nu \bar{\omega}_{j_{x}} \dot{g}_{j,-x}\right]\right\} \\
& \dot{\vec{w}}_{2}=0
\end{aligned}
$$

Modal coordinates:
Same as (4.6-11), with Equations (4.6-12)
4.6.1.3 Identical booms along $x,-x, y,-y$

In this case, we can use in common for all booms, the notations

$$
\bar{\omega}_{j}, m_{1, j}, m_{2, j}, r, \Delta, \xi_{0}, b
$$

Thus Equations (4.6-15) and (4.6-16) are simplified as follows:

Equatorial case:

Rates: With $j=1,2, \ldots N$;

$$
\begin{aligned}
& \stackrel{ष}{\bar{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \vec{\omega}_{y} \\
& \dot{\bar{\omega}}_{y}=-\frac{k_{x}-1}{k_{y}} \vec{\omega}_{x} \\
& \dot{\omega}_{z}\left(1-4 b \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{i, j}}\right)=2 l \sum_{j=1}^{N} m_{2, j}\left[\bar{\omega}_{j}^{2}\left(q_{j, x}+q_{j,-y}-q_{j,-x}^{(4.6-17)}-q_{j,-y}\right)\right. \\
& \left.+2 \mu \bar{\omega}_{j}\left(q_{j, x}+\dot{q}_{j,-y}-q_{\delta,-x}-q_{j, y}\right)\right]
\end{aligned}
$$

Modal coordinates: With $j=1,2, \ldots . N$;

$$
\begin{align*}
& \ddot{q}_{j, x}+2 \nu \bar{a}_{j} \ddot{q}_{j, x}+\bar{\omega}_{j}^{2} q_{d, x}=-\frac{m_{2, d}}{m_{1, j}} \underline{\bar{\omega}}_{2} \\
& q_{j_{i}-x}+2 \nu \bar{\omega}_{j} \dot{q}_{j_{1}-x}+\bar{\omega}_{j}^{2} q_{j,-x}=\quad \frac{m_{2, j}}{m_{1, j}}{\frac{0}{\omega_{2}}} \\
& \dot{q}_{j, y}+2 v \bar{\omega}_{j} \dot{q}_{j, y}+\bar{\omega}_{j}^{2} q_{j, y}=\frac{1 n_{2 j} \dot{m}_{2}}{m_{1, j}} \tag{4.6-18}\\
& q_{j,-y}^{0}+2 \nu \bar{\omega}_{j} q_{j,-y}+\bar{\omega}_{j}^{2} q_{j,-y}=-\frac{m_{2, j}}{m_{1, j}} \dot{\bar{\omega}}_{z}
\end{align*}
$$

Meridional case:
Rates: With $\mathrm{j}=1,2, \ldots \mathrm{~N}$;

$$
\begin{aligned}
& \dot{\bar{\omega}}_{x}\left(1-\frac{2}{k_{x}} b \sum_{j=1}^{N} \frac{m_{2}^{2}, j}{m_{1, j}}\right)=-\bar{\omega}_{y}\left(\frac{1-k_{y}}{k_{x}}-\frac{2}{k_{x}} b \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right) \\
& -\frac{i}{k_{x}} b \sum_{j=1}^{N} m_{2, j}^{1, j}\left\{\left(1-\bar{\omega}_{j}^{2}\right)\left(q_{j, y}-q_{j,-y}\right)-2 v \bar{\omega}_{j}\left(\dot{q}_{j, j}-\dot{q}_{j, j}\right)\right\} \\
& \dot{\bar{\omega}}_{x}\left(1-\frac{2}{k_{y}} b \sum_{j=1}^{N} \frac{m_{2}^{2}, d}{m_{1, \delta}}\right)=-\bar{\omega}_{x}\left(\frac{k_{x}-1}{k_{y}}+\frac{2}{k_{y}} l \sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right) \\
& +\frac{1}{k y} \ell \sum_{j=1}^{N} m_{2, f}\left\{\left(1-\bar{\omega}_{j}^{2}\right)\left(q_{j, \lambda}-q_{j,-x}\right)-2 \mu \bar{\omega}_{j}\left(q_{j, x}-q_{j,-x}\right)\right\} \\
& \frac{\circ}{\omega_{z}}=0
\end{aligned}
$$

Modes: With $j=1,2 \ldots . . N ; k=+x,-x,+y,-y$

$$
\begin{align*}
\ddot{q}_{j, k}+2 \nu \bar{\omega}_{j} \dot{q}_{d, k}+\bar{\omega}_{j}^{2} q_{j, k} & =\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}}_{y}-\bar{\omega}_{x}\right) \quad k=x \tag{4.6-20}\\
& =\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}}_{y}-\bar{\omega}_{x}\right) \quad k=-x \\
& \text { or } \\
& =-\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}}_{x}+\bar{\omega}_{y}\right) \quad k=y \\
& \text { or } \\
& =\frac{m_{2, j}}{m_{1, j}}\left(\dot{\bar{\omega}}_{x}+\bar{\omega}_{y}\right) \quad k=-y
\end{align*}
$$

An alternate form of the equations for the rates has been used in the computer programs described in Chapter 5.

Let

$$
\begin{aligned}
& K_{h_{x}} \equiv \frac{I_{z, f} \text { fut }}{I_{x}, \text { min }} \\
& K_{\text {My }} \equiv \frac{I_{\text {def }} \text { Rel }}{I_{y_{1} \text {, Rubs }}}
\end{aligned}
$$

Assume furthermore that the motion is antisymmetric, ie. $q=-q_{x}$,

$$
\begin{aligned}
& q_{-y},=-q_{y}: \text { Then } \\
& k_{x}=\frac{I_{x}}{I_{z}}=\frac{I_{x} \text { hubble }+2 \Delta \ell^{3}}{I_{z_{1}} h_{u b}+4 \Delta p l^{3}}=\frac{\frac{1}{K_{h x}}+2 \Gamma \Delta}{1+4 \Gamma \Delta} \\
& k_{y}=\frac{I_{y}}{I_{z}}=\frac{\frac{1}{K_{n y}}+2 \Gamma \Delta}{1+4 \Gamma \Delta}
\end{aligned}
$$

and the rates, as given in (4.6-17) and (4.6-19), respectively, can be rewritten:

Case E:

$$
\begin{align*}
& \dot{\bar{\omega}}_{x}=-\frac{1-\frac{1}{k_{n y}}+2 \Gamma \Delta}{\frac{1}{k_{h x}}+2 \Gamma \Delta} \bar{\omega}_{y} \tag{4.6-21}\\
& \dot{\bar{\omega}}_{y}=-\frac{\frac{1}{k_{i x}}-2 \Gamma \Delta-1}{\frac{1}{k_{h y}}+2 \Gamma \Delta} \bar{\omega}_{x} \\
& \dot{\bar{\omega}}_{z}=-\frac{e \Gamma\left[\sum _ { j = 1 } ^ { N } m _ { 2 , j } \left[\bar{\omega}_{j}^{2}\left(q_{y}-q_{x}\right)+2 \nu \bar{\omega}_{j}\left(\dot{q}_{y}-\dot{q}_{x}\right)\right.\right.}{1+4 \Gamma\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)}
\end{align*}
$$

$\frac{\text { Case } M:}{\dot{\bar{\omega}}_{X}}=-\frac{\left[1-\frac{1}{k_{k y}}+2 r\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)+2 r \sum_{j=1}^{N} m_{2, j}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, y}-2 \nu \bar{\omega}_{j} \dot{q}_{j, y}\right]\right.}{}$

$$
\begin{align*}
& \dot{\bar{w}}_{y}=-\frac{\frac{1}{k p_{1 x}}-1-2 r\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, d}^{2}}{m_{1, j}}\right)-2 \Gamma \sum_{j} m_{2, j}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, x}-2 \nu \bar{w}_{j} \dot{q}_{j, x}\right]}{\left.\frac{1}{\dot{k}_{p y}}+2 r \Delta-\sum_{j=1}^{N} \frac{m_{2}^{2}}{m_{1, j}}\right)} \\
& \dot{\vec{w}}_{z}=0 \tag{4.6-22}
\end{align*}
$$

If furthermore, the transverse moments of inertia of the hub are equal, ie.

$$
\begin{aligned}
& I_{x, \text { hub }}=I_{y, h u b} \\
& k_{p}=k_{p x}=k_{r y}
\end{aligned}
$$

the above equations for the rates simplify to

Case E:

$$
\begin{align*}
& \stackrel{\rightharpoonup}{\vec{\omega}}_{x}=-\frac{1-\frac{1}{k_{r}}+2 r \Delta}{\frac{1}{k_{r}}+2 \Gamma \Delta} \bar{\omega}_{y} \\
& {\stackrel{\Delta}{\omega_{y}}}_{y}=-\frac{\frac{1}{k_{r}}-2 \Gamma \Delta-1}{\frac{1}{k_{p}}+2 r \Delta_{r i}} \bar{\omega}_{x} \tag{4.6-23}\\
& \dot{\bar{\omega}}_{2}=-\frac{\bar{K}_{p}+2 \Gamma\left[\sum_{j=1}^{N} m_{2, j}\left[\bar{\omega}_{j}^{2}\left(q_{j}-q_{x}\right)+2 \nu \bar{\omega}_{j}\left(\dot{q}_{y}-q_{x}^{c}\right)\right]\right]}{1+4 \Gamma\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{n n_{1, j}}\right)}
\end{align*}
$$

Case M:

$$
\begin{aligned}
& \text { M: } \\
& \dot{\bar{\omega}}_{x}=-\frac{1-\frac{1}{k_{N}}+2 r\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)+2 \Gamma \sum_{j=1}^{N} m_{2, j}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, y}-2 \nu \bar{\omega}_{j} q_{j, j}\right]}{\frac{1}{k_{k}}+2 \Gamma\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)} \\
& \dot{\bar{\omega}}_{y}=-\frac{\frac{1}{k_{k}}-1-2 r\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{1, j}}\right)-2 \Gamma \sum_{j=1}^{N} m_{2, j}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, x}-2 \nu \bar{\omega}_{j} \dot{q}_{j, x}\right]}{\frac{1}{k_{p}}+2 \Gamma\left(\Delta-\sum_{j=1}^{N} \frac{m_{2, j}^{2}}{m_{i, j}}\right)}
\end{aligned}
$$

4.6.2 "B" booms in x, y plane, necessarily along principal

 axes of inertia.The booms are all contained in plane x_{j}, y_{h}, with x_{h}, y_{h} as two transverse axes of inertia of the rigidified structure, and are normal to z_{p}, satellite spin axis. With the notations introduced in the beginning of Section $4.6, \zeta_{k}$ is the angle between the axis of the boom and axis x.

Let $q_{j, k}$ be the j th modal coordinate of boom k. The equations for the modal coordinates and the rates, written in Sections 4.2 to 4.5 for the " $+x$ boom", along a principal axis of inertia, will be modified as follows:

4.6.2.1 $+x$ boom " k "; angle ζ_{k} with x_{p}

Equatorial case.

Modal coordinate:

$$
\ddot{q}_{j, k}+2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}+\bar{\omega}_{j,}^{2} q_{j, k}=-\frac{n_{2, j, k}}{m_{1, j, k}} \frac{0}{\omega_{z}}
$$

Rates: $X \equiv x_{p}, y \equiv y_{p},{ }^{\prime} z_{1} \equiv z_{p}$

$$
\begin{aligned}
& \dot{\vec{\omega}}_{x}=-\frac{1-k_{y}}{k_{x}} \vec{\omega}_{y} \\
& \dot{\vec{\omega}}_{y}=-\frac{k_{x}-1}{k_{y}} \vec{\omega}_{x}
\end{aligned}
$$

$$
\dot{\omega}_{\psi_{y}}\left(1-\frac{\left(e^{\left.l^{3}\right)_{k}}\right.}{I_{4}} \sum_{j=1}^{N} \frac{m_{2, j, k}^{2}}{m_{k_{1}, j, k}}\right)=\frac{\left(\rho p^{3}\right)_{k}}{I_{4}} \sum_{j=1}^{N} m_{2, j, k}\left[2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}+\bar{\omega}_{j, k}^{2} q_{j, k}\right]
$$

Meridional case

$$
\begin{array}{r}
\text { since } \dot{\bar{\omega}}_{y} \text { in (4.3-16) becomes }-\frac{\bar{\omega}_{X}}{x} \operatorname{sen} \xi_{k}+\dot{\bar{\omega}}_{y} \operatorname{sog} \xi_{k} \\
\bar{\omega}_{x} \text { in (4.3-16) becomes } \bar{\omega}_{x} \operatorname{sog} \xi_{k}+\bar{\omega}_{y} \sin \xi_{k}
\end{array}
$$

Rates:
In the case of a " +x " boom, Equation (4.5-1) shows that the vibrations parallel to the z-axis generate a torque along the diraclion normal to "+x", i.e. "+y" having projections:

$$
\begin{array}{ll}
\left(p l^{3}\right)_{k} \int_{\text {loom }}\left(\ddot{\eta}_{\eta}+\eta\right) \xi_{1} d \xi \times\left(-\operatorname{sun} \xi_{k}\right) & \text { ALoNG } \times p \\
\left(p l^{3}\right)_{k} \int_{\text {loom }}(\dot{\eta}+\eta) \xi_{1} d \xi \times\left(\cos \xi_{k}\right) & \text { ALONG } y_{p}
\end{array}
$$

The equations for the rates will read, before dividing by I_{x}, I_{y} respectively,

$$
\begin{aligned}
& I_{x} \dot{\bar{\omega}}_{x}+\left(I_{z}-I_{y}\right) \bar{\omega}_{y}=\left(\rho p^{3}\right)_{k}\left(-\sin \xi_{k}\right) \sum_{j=1}^{N} m_{2, j, k}\left[\left(1-\bar{\omega}_{j, k}^{2}\right) g_{j, k}-2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}\right] \\
& +\left(\rho l^{3}\right)_{k}\left(-\sin \xi_{k}\right) \sum_{d=1}^{n} \frac{m_{2, j, k}^{2}}{m_{1, j, k}}\left(-\dot{\bar{\omega}}_{x}+m \xi_{k}+\bar{\omega}_{y} \cos \xi_{k}-\bar{\omega}_{x} \cos \xi_{k}-\bar{\omega}_{y}+\sin \xi_{k}\right) \\
& I_{y} \dot{\bar{\omega}}_{y}+\left(I_{x}-I_{z}\right) \bar{\omega}_{x}=\left(p l^{3}\right)_{k}\left(\cos \xi_{k}\right) \sum_{j=1}^{N} m_{2, j, k}\left[\left(1-\bar{\omega}_{j,}^{2}\right)_{q_{j, k}}{ }_{(4.6-28)}\right. \\
& \left.-2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}\right]+\left(p b^{3}\right)_{k}\left(\cos \xi_{k}\right) \sum_{j=1}^{N} \frac{m_{i, j}^{2}, k}{m_{i, j, k}}\left(-\dot{\bar{\omega}}_{x} \sin \xi_{k}+\dot{\bar{\omega}}_{y} \cos \xi_{k}-\bar{\omega}_{x} \cos \xi_{k}\right. \\
& \left.-\bar{\omega}_{y} \cdot \sin \zeta_{k}\right) \\
& \dot{\bar{\omega}}_{z}=0
\end{aligned}
$$

Now define the following coefficients

$$
\begin{aligned}
& A_{11} \equiv I_{x j}-\left(\rho \rho^{3}\right)_{k} \sin ^{2} \xi_{k} \sum_{j=1}^{n_{j}} \frac{m_{2, j, k}^{2}}{m_{1, j, k}} \\
& A_{12} \equiv\left(p l^{3}\right)_{k j} \operatorname{don} \xi_{k} \cos \xi_{k} \sum_{d=1}^{N} \frac{m_{2, d, k}^{2}}{m_{1, j, k} k} \\
& A_{21} \equiv\left(p l^{3}\right)_{k} \sin \xi_{k} \cos \zeta_{k} \sum_{j=1}^{N} \frac{m_{2, d, k}^{2}}{m_{m_{1}, j, k}} \\
& A_{22} \equiv I_{y}-\left(\rho \theta^{3}\right)_{k} \cos ^{2} \xi_{k} \sum_{j=1}^{N} \frac{m_{2, j, k}^{2}}{m i_{1}, j, k} \\
& a_{11} \equiv \frac{A_{11}}{I_{x}} \\
& d_{42} \equiv \frac{A_{12}}{I_{X}} \\
& a_{21} \equiv \frac{A_{21}}{I_{y}} \\
& a_{22} \equiv \frac{A_{22}}{I_{y}}
\end{aligned}
$$

Let

$$
\begin{aligned}
& f_{1, k} \equiv \frac{\left(p l^{3}\right\}_{k}}{I_{x}}\left(-\sin \xi_{k}\right) \sum_{j=1}^{N}\left\{_{m_{2, j, k}, k}\left[\left(1-\bar{\omega}_{j, k}^{2}\right) q_{j, k}-2 \nu \bar{\omega}_{j, k} q_{j, k}\right]\right. \\
&+\frac{m_{2, d, k}}{m_{1, j, k}}\left(-\bar{\omega}_{x} \cos \xi_{k}-\bar{\omega}_{y} \sin \xi_{k}\right) \\
& f_{2, k \text { de j }} \equiv \frac{\left(p l^{3}\right)_{k}}{I_{y}}\left(\cos \xi_{k}\right) \sum_{j=1}^{N \sum_{j}}\left\{m_{2, j, k}\left[\left(1-\bar{\omega}_{j, k}^{2}\right) q_{j, k}-2 \nu \bar{\omega}_{j, k} q_{j, k}\right]\right. \\
&\left.+\frac{m_{2, j, k}}{m_{1, j, k}}\left(-\bar{\omega}_{x} \cos \xi_{k}-\bar{\omega}_{y} \sin \xi_{k}\right)\right\}
\end{aligned}
$$

System (4.6-28) is rewritten

$$
\begin{aligned}
& a_{11} \dot{\bar{\omega}}_{x}+a_{12} \dot{\bar{w}}_{y}=f_{1, k} \\
& a_{21} \dot{\bar{w}}_{x}+a_{22} \dot{\bar{w}}_{y}=f_{2, k}
\end{aligned}
$$

$$
\text { Let } D_{k}=a_{11} a_{22}-a_{21} a_{12}=1-\left(\rho^{3}\right)_{k}\left(\frac{\sin ^{2} \xi_{k}}{I_{x}}+\frac{\cos ^{2} \xi_{k}}{I_{y}}\right)_{j=1}^{N} \frac{n_{2, j, k}^{2}}{m_{1, j, k}}
$$

Then the equations for the rates are

$$
\begin{align*}
& \dot{\bar{\omega}}_{x}=\frac{a_{22} \dot{l}_{1, k}-a_{12} f_{2, k}}{D_{k}} \\
& \dot{\bar{\omega}}_{y}=\frac{a_{11} l_{2, k}-a_{21} l_{1, k}}{D_{k}} \tag{4.6-29}\\
& \dot{\bar{\omega}}_{z}=0
\end{align*}
$$

4.6.2.2 General case: " B " booms, making angles $\zeta_{k}(k=1, \ldots, B)$ with x_{p}.
Equations (4.6-28) will, in the general case of B booms, at angles $\zeta_{k}(k=1, \ldots, B)$, have $r . h$. sides with sums over k, in
addition to the summation over j. Important note: all modal displacements are referred to the $+z$ axis (case M) or to the normal " y_{k} " to the boom " x_{k} " (in case E) such that $\left(x_{k}, y_{k}, z\right)$ is a direct system.

Equatorial case:

Modal coordinates:

$$
\begin{equation*}
\ddot{q}_{j_{1} k}+2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}+\bar{\omega}_{j, k}^{2} q_{j, k}=-\frac{m_{2_{j, j}} k}{m_{1, j} k} \dot{\bar{w}}_{z} \tag{4.6-30}
\end{equation*}
$$

in which expression (4.6-31) is substituted.

Rates:

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{w}_{x}=-\frac{1-k_{y}}{k_{x}} \bar{w}_{y} \\
& \dot{\bar{w}}_{y}=-\frac{k_{x}-1}{k_{y}} \bar{w}_{x}
\end{aligned}
$$

$$
\dot{\omega}_{z} \cdot\left(1-\frac{1}{I_{m_{2}}} \sum_{k=1}^{B}\left(p l^{3}\right)_{k} \sum_{j=1}^{N} \frac{m_{2, j, k}^{2}}{m_{1, j}, k}\right)=\frac{1}{I_{z}} \sum_{k=1}^{B}\left\{\left(p p^{3}\right) \sum_{k j=1}^{N} m_{i, k, k}\left[2 \nu \bar{\omega}_{j_{1} k} q_{j} j_{j}+\bar{\omega}_{j_{1} k}^{2} q_{j_{1} k}\right)\right\}
$$

Meridional case:

Modal coordinates:
in which expression (4.6-33) is substituted

$$
\begin{aligned}
& c_{11} \equiv 1-\sum_{k=1}^{B} \frac{\left(p l^{3}\right)_{k}}{I_{x}} \sin ^{2} \xi_{k} \sum_{j=1}^{N} \frac{m_{2, \gamma, k}^{2}}{m_{1, j, k}} \\
& c_{12} \sum_{\operatorname{def}} \sum_{k=1}^{B} \frac{\left(p p^{3}\right)_{k}}{I_{x}} \sin \xi_{k} \cos \xi_{k} \sum_{j=1}^{1} \frac{m_{2}^{2} j_{1, k}}{n_{1, j, k}} \\
& c_{21} \equiv \sum_{k, j}^{B} \frac{\left(\rho^{3}\right)_{k}}{I_{y}} \sin \xi_{k} \cos \xi_{k} \sum_{j=1}^{N} \frac{m_{2, j, k}^{2}}{m \mu_{1, j, k}} \\
& i_{22} \equiv 1-\sum_{k=1}^{B} \frac{\left(p l^{3}\right)_{k}}{I_{y}} \cos ^{2} \xi_{k} \sum_{j=1}^{N} \frac{m_{2, d, k}^{2}}{m_{1, j, k}} \\
& \text { D. } \overline{\operatorname{def}} e_{11} e_{22}-e_{21} c_{12} \\
& =1-\sum_{k=1}^{B}\left(\rho l^{3}\right)_{k}\left(\frac{\sin ^{2} \xi_{k}}{I_{X}}+\frac{\cos ^{2} \xi_{k}}{I_{Y}}\right) \sum_{j=1}^{N} \frac{m_{2, j, k}^{2}}{\min _{1, j, k}} \\
& f_{1}=\sum_{k=1}^{B} \frac{\left(j^{j^{3}}\right)_{k}}{I_{x}}\left(-\sin \xi_{k}\right) \sum_{j=1}^{N}\left\{_{2, \gamma, k}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, k}-2 \nu \bar{\omega}_{j, k} \dot{q}_{j, k}\right]\right. \\
& \left.+\frac{m_{2, \gamma, k}^{2}}{m_{1}, y_{,} k}\left(-\bar{\omega}_{x} \cos \xi_{k}-\bar{\omega}_{y} x_{\%} \xi_{k}\right)\right\} \\
& i_{2} \equiv \sum_{\text {daj }}^{B} \frac{\left(\hat{i}^{3}\right)_{k}}{I_{x}}\left(\cos \xi_{k}\right) \sum_{j=1}^{\prime \prime}\left\{m_{2, j, k}\left[\left(1-\bar{\omega}_{j}^{2}\right) q_{j, k}-2 y \bar{\omega}_{j, k} \dot{q}_{j, k}\right]\right. \\
& \left.+\frac{m_{2_{1, f, k}}^{2}}{m_{1, f, k}}\left(-\bar{\omega}_{x} \cos \xi_{k}-\bar{\omega}_{y} \sin \xi_{k}\right)\right\}
\end{aligned}
$$

we obtain the equations

$$
\begin{align*}
& \dot{\bar{\omega}}_{x}=\frac{c_{22} f_{1}-c_{12} f_{2}}{D} \\
& \dot{\bar{\omega}}_{y}=\frac{c_{11} f_{2}-c_{21} f_{1}}{D} \tag{4.6-33}\\
& \dot{\bar{\omega}}_{z}=0
\end{align*}
$$

The above formulation is the most general that will be considered in this work.
4.6.3 System considering meridional and equatorial vibrations simultaneously. (B booms in X, Y plane, not necessarily along a principal axis of inertia).

In the Lagrangian formulation, for an elastic displacement

$$
\begin{aligned}
& \vec{W}_{\text {total }}=W_{E}(x) \vec{l}_{y}+W_{M}(x) \vec{l}_{z} \\
& V=\sum_{\substack{A L L \\
\text { Soot }}} \frac{E I}{2} \int_{\text {Boom }}\left[\left(\frac{\partial^{2} W_{E}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} W_{A}}{\partial x^{2}}\right)^{2}\right] d s+C\left(t^{3}\right)
\end{aligned}
$$

and the kinetic energy is, if $\eta_{E}=\frac{w_{E}}{\ell_{k}}, \eta_{M}=\frac{w_{M}}{\ell_{k}}$, etc.,

$$
\begin{aligned}
& T=T_{\substack{B 14 \omega \\
B O D Y}}+\frac{1}{2} \sum_{\substack{A L L \\
B \cos S}}\left(\rho l^{3}\right)_{k}^{k} \omega_{S}^{2} \int_{\operatorname{lonm}^{k}}\left(\dot{\eta}_{E, k}^{2}+\dot{\eta}_{M, k}^{2}+\eta_{E, k}^{2}\right. \\
& +2 \bar{\omega}_{工} \xi_{i, k} \dot{\eta}_{E, k}-2 \bar{\omega}_{x} \xi_{i, k} \eta_{M, k}-2 \vec{\omega}_{y} \xi_{i, k} \ddot{\eta}_{M, k}-\frac{1}{2}\left[\left(1-\xi^{2}\right)\right. \\
& \left.\left.+2 \xi_{0}(1-\xi)\right]\left[\left(\frac{\partial \eta_{M, \beta}}{\partial \xi}\right)^{2}+\left(\frac{\partial \eta_{E_{1}, B_{0}}}{\partial \xi}\right)^{2}\right]\right) d \xi
\end{aligned}
$$

It can readily be seen that when η_{E}, η_{M} are expanded in their modes $\Phi\left(\bar{\lambda}, \xi_{0}\right)$, with associated frequencies $\bar{\omega}_{j, h}, \bar{\omega}_{\mathrm{j}, \mathrm{k}}$, the corresponding modal equations for

$$
\underset{\mathrm{E}, \mathrm{k}}{q_{j}} \quad \underset{\mathrm{M}, k}{ }
$$

are uncoupled. For "E", only $\dot{\omega}_{z}$ will appear in the r.h. side, and this quantity is a function of the $q_{j, k}$ only. For " $M^{\prime \prime}$, only $\bar{\omega}_{x}, \bar{\omega}_{y}$,
$\dot{-}$ $\dot{\bar{\omega}}_{\mathrm{x}}, \dot{\bar{\omega}}_{\mathrm{y}}$ will appear in the $\mathrm{r} . \mathrm{h}$. sides, and these quantities are functions of the $q_{j, k}$. Hence, in the total system,

- the two first equations of (4.6-33) are those for $\dot{\bar{\omega}}_{X}, \dot{\bar{\omega}}_{Y}$
- the last equation of $(4.6-31)$ is the one for $\dot{\vec{\omega}}_{z}$
- the modal coordinate equations for $q_{j, k}$ are given by (4.6-32)
- the modal coordinate equations for $q_{j, k}$ are given by (4.6-30)

4.7 Conclusion

The equations of motion of the spinning spacecraft having flexible appendages have been derived in a rather general case, using the modes of the rotating structure at the nominal spin rate, and for a central hub of non-zero radius. They were found to be in agreement with some other published results ${ }^{[4-3]}$ in the limit case of a central body of zero radius, and can be used with profit in the numerical simulation of flexible spacecraft motions.

$[4-1]$	BELETSKIT, V.: Motion of an Artificial Satellite About
	lished for NASA and NSF, Israel Program for Scientific
	Translations, Jerusalem, 1966 (NASA TT F-429).
[4-2]	RAKOHSKI, J.E.: "A Study of the Attitude Dynamics of a
	Spin-Stabilized Satellite Having Flexible Appendages,"
	Ph.D. Thesis, Mech. Engrg., Carnegie-Mellon University,
	December 1970.
3	UGHES, P.C. and FUNG, J.C.: "Liapunov Stability of Spíining Satellites with Long Flexible Appendages." Celestial
	Satellites with Long Flexible Appendages." Celestial Mechanics, 4, 295-308, 1971.

FIG. 4-1 MULTI-BOOM GEOMETRY

CHAPTER 5

Simulation of the Satellite Attitude Motion and Stability Studies

5.1 Motivation

In the present chapter, we present a simulation study of the evolution with time of the satellite attitude, from which stability charts can be obtained for use by the satellite designer. Of particular interest is the "nutational divergence" phenomenon, in which the satellite, although stable if it were "quasi-rigid", exhibits a steadily increasing nutation angle. Its spin axis thus drifts away from the invariant angular momentum vector, on which it is assumed to be aligned initially. This instability is due only to the dissipative motion of the elastic appendage.

To this effect, a set of computer programs, "ELEXAT", has been developed which numerically integrates the equations of motion and prints or graphically outputs the variables of interest. This program quite markedly differs from earlier versions we have used in the work, as will be explained later. The version given here accommodates three modes of the rotating structure and a dissymetric central body, and since it permits an easy visualization of the qualitative features of the attitude motion, it should appeal to the satellite project engineer.
5.2 A Package for the Simulation of the Spacecraft with Flexible Appendages.

5.2.1 Generalities

FLEXAT is a set of programs, written in FORTRAN V, which were
mostly run on the UNIVAC 1108 at Carnegie-Me11on University. It is composed of the following parts:
a) A short "MAIN" program calling on the relevant SUBROUTINES.
b) A subroutine CASEM 2 called upon to study the stability of the meridional vibrations. This subroutine internally calls on its own subroutine RATES, which computes the angular rates $\dot{\bar{\omega}}_{\mathrm{X}}, \dot{\bar{\omega}}_{\mathrm{y}}, \dot{\bar{\omega}}_{z}$.
c) A subroutine CASEE 2 called upon to simulate the equatorial vibrations. Again, this subroutine internally calls on its own subroutine RATES, which computes the angular rates $\dot{\bar{\omega}}_{\mathrm{x}}$, $\dot{\bar{\omega}}_{\mathrm{y}}$. In particular, this subroutine can be used to simulate the nutational divergence occurring when the GMI (greater moment of inertia) rule is violated, for the rigidified body.
d) A subroutine SEARCH (NDS) called by the MAIN program and yielding the eigenfrequencies $\bar{\omega}_{j}$ (up to $j=3$, if required) of the rotating structure, corresponding to the specified values of $\bar{\lambda}, \xi_{0}$. This subroutine, for the essential part, is the same as that described in Section 2.4.
e) A subroutine PLOT, called internally in either CASEM 2 or CASEE 2, giving a graphical output of the evolution with time of the satellite nutation angle, over a number of satellite spin periods (generally taken to be 10 to 20).

Each of these parts is now discussed in more detail.

5.2.2 program MAIN

In this program, COMMON, DIMENSION etc. are given. Then the "unchanging parameters" are specified by cards. The listing given at the end of this chapter, for example, specifies

NSKP : skip the printing of 60% of the results is desired (NSKP $=1$) else $\operatorname{NSKP}=1$; all results plotted in both cases

NめRU=NSUP $=3$: include 3 moda1 coordinates for each boom.
XNØ (1) $=0.05$: the " x-boom" and the $"-x$-boom" have modal deflections (lst mode) equal to ± 0.05 times the length of the boom

XN \varnothing (2) ...YN $\varnothing(3):$ the \pm " x -boom" and the \pm ". y-boom" have zero modal deflections, for the 2 nd and 3 rd modes.
$\mathrm{NU}(1) \mathrm{NU}(3)=0.05$: same damping ratio on the 3 modes
CASE $={ }^{\prime} \mathrm{M}^{\prime}$: meridional vibrations
$S I O=0 \quad:$ value of ξ_{0}
LAM $=10 \quad:$ value of $\bar{\lambda}$
MGIV : a switch. If equal to 1 , the eigenfrequencies $\bar{\omega}_{j}$ and $m_{1, j}, m_{2, j}$ are given as data (they are assumed to be known from a previous study, or from a table). If equal to 0 , the $\overline{\hat{w}}_{j}$ and the other quantities will be obtained "on line" by calling SEARCH(1) (in case E) or SEARCH (0) (in case M)

GAM : Γ in the developments of Chapter 4.
PKX,PKY : ratios $K_{p x}=I_{z, h u b} / I_{x, h u b} ; K_{p y}=I_{t, h u b} / I_{y, h u b}$ These measure dissymmetry of the ellipsoid of inertia of the central body.

PREC: : the integration interval in time is equal to $\frac{{ }^{\tau} \text { spin }}{75}$ or $\frac{2 \pi / \omega_{j}}{75}$ (with $j=$ PREC) whichever the smaller. It has been found sufficient to take $\operatorname{PREC}=1$.

MAXP : maximum number of such periods (defined under PREC) to be considered.

MODES : 3 (should be the same as N \varnothing RU, NSUP). Three modes are retained.

5.2.3 Subroutine SEARCH (NDS)

This subroutine has already been described in Chapter 2. It obtains $\bar{\omega}_{j}$ In the relevant case (E or M) for $j=1,2, \ldots$ NSUP. Note that
a) NDS is an argument given in MAIN (O for case M; for case E)
b) SEARCH is bypassed if MGIV $=1$, i.e. if the eigenfrequencies in the case of interest are externally given, other than completed on line.

5.2.4 Subroutines CASEM2, CASEE2

This subroutine, fed with the $\bar{\omega}_{j}, m_{1, j}, m_{2, j}$ values obtained from data or computed in SEARCH, proceeds to integrate equations (2.2-8) or (2.3-5), as the case may be, if MGIV $=0$, and bypasses the procedure if MGIV $=1$.

It then proceeds to compute the quantity

$$
\operatorname{NSUP}_{j=1} \frac{m_{2, j}^{2}}{m_{1, j}}
$$

The equations which are integrated are those for

$$
q_{x, j}, q_{y, j}, \bar{\omega}_{x}, \bar{\omega}_{y}, \bar{\omega}_{z}
$$

The system is thus of order 4 NSUP +3 . The rates are computed in an internal subroutine "RATES". Antisymmetric vibrations are assumed, so that $q_{x, j}=-q_{-x, j} ; q_{y, j}=-q_{-y, j}$. The four booms are assumed to have
the same geometric and structural properties (thus same $\xi_{0}, \bar{\lambda}, \Gamma, \rho \ell^{3}$), to be along the principal axes of inertia of the rigidified structure ($\zeta_{k}=0$, π for the x-booms, $\zeta_{k}=\frac{\pi}{2}, \frac{3 \pi}{2}$ for the y-boom, in Chapter 4). The ellipsoid of inertia need not be of revolution ($K_{p x} \neq K_{p y}$). Thus the relevant equations have been written as equations

$$
\begin{array}{ll}
(4.6-20) \text { and }(4.6-24) & \text { for program CASEM2 } \\
(4.6-18) \text { and }(4.6-23) & \text { for program CASEE2 }
\end{array}
$$

Different assumptions (booms of different length, structural properties) could easily be considered by the user,for any special application, after a rather simple rewrite of the equations, as given in Chapter 4, or a suitable distinction between " Γ_{x} ", " Γ_{y} ", ... etc. rather than the common " Γ "... adopted here.

The method of integration is RUNGE-KUTTA with fixed step , the latter being computed in the program as some function of the spin period or of the vibration period of the j th mode, as precised in 5.2.2. under "PREC".

The output consists of a print of the case data, of the quantities ${\underset{j}{\text { NSUP }}}^{\sum_{1}} \frac{m_{2, i}^{2}}{m_{1, j}} ; \Delta, v_{l}, v_{2}, v_{3} ; \bar{\omega}_{j}, m_{1, j}, m_{2, j}(j=1, \ldots$ NSUP $) ;$ H initial $=\frac{\left|\vec{H}_{o}\right|}{I_{z h}}$ (assuming \vec{H}_{0} and z are initially aligned); then tables giving

$$
\mathrm{q}_{\mathrm{x}, 1} \quad \mathrm{q}_{\mathrm{y}, 1} \quad \mathrm{q}_{\mathrm{x}, 2} \quad \mathrm{q}_{\mathrm{y}, 2} \quad \mathrm{q}_{\mathrm{x}, 3} \quad \mathrm{q}_{\mathrm{y}, 3} \quad \bar{\omega}_{\mathrm{x}} \quad \theta \quad \text { STEP }
$$

(angle of nutation, degrees)

There exists an option to skip the printing of the first 60% of the results over the time interval considered, which makes sense if one is only interested at looking at the long-term behavior.

5.2.5 Subroutine PLØT

The PLOT routine graphically presents the results of the above computation. PLOT is internal to CASEM2 or CASEE2, as the case may be.
5.3 Results from simulation study, using FLEXAT
5.3.1 Comparison between the present and some previous results

As compared to the approach previously taken by J. Rakowski and the present author $[5-1,5-2]$, the equations used in the present simulation do not include "extra" non-1inear terms such as q_{x}^{2}, q_{y}^{2}, $\omega_{x} \omega_{y} \ldots$ Including these terms, although they appear in the derivations of Chapter4, did not seem fully consistent with writing the contributions to the kinetic and elastic energy with some terms of order 3 of smallness neglected (such would be the case, for instance, if $\int\{\cdots\} d x=\int\{\cdots\} d s$, with the integrand of first order of smallness).

However, strictly for the sake of comparison, the stability boundaries, derived as explained in 5.3 .2 , were compared in a large number of cases using, on one hand, the equation with the extra non1inear terms, and on the other hand the equations obtained in Chapter 4.

In no cases were the differences of much significance. All were well within the sampling interval ($\mathrm{K}_{\mathrm{p}} \pm .016$).

5.3.2 Parametrization of the stability chart

Following the notation adopted earlier ${ }^{[5-1,5-2]}$, it is proposed to define a stability chart as follows, in the symetric case $\left(K_{p x}=K_{p y}=K_{p}\right)$ (See Fig. 5.1)

- abscissa: $\quad K_{p}=\frac{I_{p, h u b}}{I_{z, h u b}}$, a measure of the asymmetry of the ellipsoid of inertia of the central body.
-ordinate: $\Gamma=\frac{\ell^{\ell^{3}}}{I_{z, h}}$, a measure of the relative importance of the inertia of a boom ($\frac{1}{3} \rho l^{3}$, if $\xi_{0}=0$), and the inertia of the hub. A11 things being equal, small booms of small mass will give small values of Γ.
- parameter of the plane:
$\xi_{\circ}=f i x e d$ non-dimensional radius of the hub (referred to the booms length)
- parameters of the curves:

$$
\begin{aligned}
\bar{\lambda}=\frac{\pi \ell^{4}}{\mathrm{EI}} \omega_{\mathrm{S}}^{2} \div & \left(\frac{\omega_{\mathrm{S}}}{\omega_{\text {cant }}}\right)^{2} \text {, a ratio of certrifugal to elastic } \\
& \text { forces, large for high spin rates or very } \\
& \text { flexible booms (E, I small; } \rho \ell^{4} \text { large) }
\end{aligned}
$$

Thus $\bar{\lambda}=$ constant curves will be drawn on the (K_{p}, Γ) plane, for $\xi_{0}=$ constant, corresponding to the observed limit of stability, i.e. a point, at given $\Gamma, \xi_{o}, \bar{\lambda}$, such that any slight increase in K_{p} causes stability of the observed motion, the nutation angle tending asymptotically to zero; whereas to the left of it (decreasing K_{p}), the motion is observed to be unstable, the nutation angle steadily increasing with time.

In the asymmetric case, one more degree of freedom exists, and the chart will draw $\bar{\lambda}=$ constant curves, corresponding to the observed
limit of stability, for given $\xi_{0}, K_{p y}$, in a (Γ, $K_{p x}$) plane of representation.

5.3.3 The GMI rule

As described in [5-3], a rigid body undergoing a torque-free motion about its center of mass, but having internal energy dissipation, has a stable spinning motion only about its maximum axis of inertia, i.e. if

$$
\begin{equation*}
\frac{I_{z}}{I_{x}} \text { and } \frac{I_{z}}{I_{y}}>1 \tag{5.3-1}
\end{equation*}
$$

If one of these ratios was one, there would be no preferred axis of rotation about which the satellite would spin after an initial nutation has been removed by energy dissipation. Condition (5.3-1) is commonly referred to as the GMI rule (or greatest moment of inertia rule).

In the stability chart, planes described above, condition (5-1) will be represented, in the symmetrical case

$$
I_{x}=I_{y}=I_{p}
$$

by a locus of equation

$$
2 \Gamma \Delta>\frac{1}{K_{p}}-1
$$

or

$$
2 \Gamma\left(\frac{1}{3}+\xi_{0}+\xi_{0}^{2}\right)>\frac{1}{k_{p}}-1
$$

These curves will, whatever the value of ξ_{0}, tend to the common point

$$
\Gamma \rightarrow 0 \quad K_{p} \rightarrow 1
$$

which they should not include. This corresponds to the case where the satellite has no flexible appendages ($\rho \ell^{3} \rightarrow 0$) and a spherical ellipsoid of inertia. The curves are shifted to the left as ξ_{0} in-
creases (Fig. 5.1). Their $\bar{\lambda}$ parameter is $\bar{\lambda}=0$.

Conclusion

For the stability of the satellite with perfectly rigid appendages, and of the satellite with flexible appendages in the presence of equatorial vibrations (as explained in 5.3.4), the greatest moment of inertia rule

$$
I_{x}>I_{x} I_{y}
$$

should be satisfied for the total, rigidified satellite. On the ($\mathrm{P}, \mathrm{K}_{\mathrm{p}}$) stability charts, the design point

$$
\left(\Gamma, K_{1}\right)
$$

for given

$$
\xi_{0}, \bar{\lambda}
$$

should be to the right (i.e. in the region not including the origin) of the Quasi-Rigid (QR) locus given by Equation (5-3).

5.3.4 Stability with equatorial vibrations

Stability in the presence of equatorial vibrations, was found to be equivalent to quasi-rigid body stability. The stability condition for case E is thus the same as the $Q . R$. body condition given in Equation (5.3-3). This result: is in good agreement with Hughes and Fung $[5-4]$ analysis in the case where $\xi_{0}=0$. Two examples are given in Fig. 5-2 and 5-3.
5.3.5.1 Stability charts (case M), using three-mode analysis Using the FLEXAT program with subroutine CASEM2, and retaining the three modes in the simulation, figures such as 5.4 to 5.7 can be pro-
duced. Each of them corresponds to the same value of $\Gamma=10$ and $\xi_{0}=0.1$. For $\bar{\lambda}=100$, two values of K_{p} are considered. . corresponding to a slightly unstable or a slightly stable condition (Fig. 5.4, 5.6). The same applies to a higher $\bar{\lambda}$ case $(\bar{\lambda}=1,000)$ (Fig. 5.6, 5.7)

The final results of the three-mode stability analysis in the presence of meridional vibrations are summarized on charts 5-8, 5-9, 5-10 for values of $\bar{\lambda}=0$ (Quasi-rigid body case) to $\bar{\lambda}=10,000$, and for $\xi_{0}=0,0.1,0.25$.

IMPORTANT NOTE: When using program FLEXAT, with subroutines SEARCH and CASEM2, for $\bar{\lambda} \lambda 5,000$, the values of the relevant frequency and modal quantities:

$$
\bar{\omega}_{\bar{k}, M}, m_{i, j}, m_{2, j}
$$

should be given as input data, using option MGIV $=1$, or described in Section 5.2.2. Quantities (5.3-4) cannot be obtained on line using program SEARCH DP, for such high values of $\bar{\lambda}$. They have been obtained using a multiple precision version (OS-MP or NP-package) of SEARCH, which is rather time-consuming and should be run only to set up tables such as in Section 2.8, for interpolation purposes.

5.3.5.2 Effect of higher modes, and of modal truncation

As the tables in Section 2.8 show, the effect of higher order modes $(j=2,3)$ on the motion parameters is as follows:
a) $\sum_{j=1}^{H s s_{i}} m_{2, j}^{2} / m_{1, j}$

For small values of $\bar{\lambda}$, the changes of this sumby increasing NSUP from 1 to 2,3 is at most 2.5% for $\xi_{0}=0$, and 9% for $\xi_{0}=0.25$.

For large values of $\bar{\lambda}(\bar{\lambda}=5,000)$, the corresponding changes are 0.03% for $\xi_{0}=0$, and 0.5% for $\xi_{0}=0.25$.
b) $\frac{m_{2, j}}{m_{1, j}}$ (amplitude in r.h. side of j th modal equation)

It can be seen that this ratio is at most 25% (for $j=2$) of the value corresponding to $\mathbf{j}=1$, when \mathbf{j} is increased to 2,3 .
c) $m_{2, j}$ (amplitude of some terms in the rah. side of the rate equations).

The same comments apply to $\mathrm{m} ., \mathrm{j}$.
To assess the effect of higher modes qualitatively, it should be remembered that, when non-dimensionalized by ω_{z},

$$
\bar{\omega}_{d, M}>1 \quad j=1, \ldots 1 / s_{i j}
$$

and the forcing frequency (precision frequency in body-fixed axes)
on the terms would be, for $\left|q_{x}\right|,\left|q_{y}\right| \ll 1$,
as opposed to

$$
\bar{\omega}_{F_{,}, e l} \approx \frac{1-\frac{1}{k_{i}}+2 r\left(\Delta-\frac{m_{2}{ }^{2}}{m_{1}}\right)}{\frac{1}{K_{p}}+2 \Gamma\left(\Delta-\frac{m_{2}{ }^{2}}{m_{1}}\right)}
$$

$$
\bar{\omega}_{F, \text { maid }}=\frac{1-\frac{1}{k_{p}}+2 \Gamma \Delta}{\frac{1}{k_{\mu}^{\prime}}+2 \Gamma \Delta}
$$

for a quasi-rigid body.
Note that $\frac{\mathrm{m}_{2}^{2}}{\mathrm{~m}_{1}}$ is always smaller than Δ. Typically, for

$$
\begin{aligned}
& \xi_{0}=0.1 ; \Delta=0.443 \\
& \frac{m_{2}^{2}}{n_{1}}=0.419 \text { for } \bar{\lambda}=0 ; 0.430 \text { for } \bar{\lambda}=100 ; 0.4 .37 \text { for } \bar{\lambda}=1,000 .
\end{aligned}
$$

Therefore, in an approximate sense, it can be said that angular rates $\bar{\omega}_{F}$ will not appreciably excite modes $2,3, \ldots$ which are larger than $\bar{\omega}$, by a factor of several units at least.

With these observations in mind, we now discuss the conclusions of a detailed study of the effect of modal truncation on the stability charts $\left(\Gamma, K_{p} ;\right.$ constant $\left.\bar{\lambda}, \xi_{0}\right)$.

It was indeed observed in the simulation that higher modes never developed to amplitudes of more than a few \% of the amplitudes of the first mode, assuming i.e. which can be considered as "normal" for the initial deflection, namely close to the shape of the first mode Φ (ξ).

Within the accuracy retained in establishing the stability charts ($K_{p} \pm 0.015$), no noticeable difference could be reported between the stability chart determined here on the basis of three modal coordinates for each boom, and that we obtained on the basis of a single modal coordinate . Se .ing times, however, were larger.

The results of the 3 -mode analysis, using program FLEXAT, are summarized in: Figures . 5.8, 5.9, 5.10.
5.3.5.3 Effect of some higher order terms

As was mentioned in 5.1, there was a lack of consistency in retaining some non-1inear terms of order 2 in the equations and neglecting some others. Equations (4.6-20) and (4.6-24) were used in the present stability simulation. It should be noted that little difference resulted in the stability charts. The angles of nutation, however, are
computed here by

$$
\theta=\text { nutation angle }=\arcsin \left(\frac{\sqrt{H^{2}+H_{y}^{2}}}{\mathrm{H}_{\text {tot }}}\right)=0(\varepsilon)
$$

and since they involve quantities of first order of smallness, should be accurate, whereas the use of formula

$$
\cos \theta=\frac{H_{2}}{H_{t_{0} t}}=1-O\left(\epsilon^{2}\right)
$$

will see θ critically effected by terms of $0\left(\varepsilon^{2}\right)$, none of which should then have been neglected.
5.3.5.4 Parametric studies for $I_{x} \neq I_{y}$ (Ellipsoid of inertia not of revolution)

With the particular geometry considered here,
$I_{y}<I_{x}$ \& I_{z} implies that

$$
I_{y, h, b}<I_{x, \text { hub }}
$$

or
$k_{p y y}>K_{p u x}$

A set of parameters is chosen, namely

$$
\xi_{0}, \bar{\lambda}, \Gamma \text {, number of modes. }
$$

In the ($K_{p y}, K_{p x}$) plane, the bisectrix of the first quadrant, $K_{p x}=K_{p y}$, will correspond to the symmetric case,

$$
K_{p x}=K_{p y}=K_{p}
$$

and the limit of stability $\mathrm{K}_{\mathrm{p} *}$, such that $\mathrm{K}_{\mathrm{p}}>\mathrm{K}_{\mathrm{p} *}$ will. ensure stability of the motion, was found previously. Furthermore, in order to satisfy the GMI rule, we must have

$$
\begin{aligned}
& \text { st have } K_{\text {pr e }}>\frac{1}{1+2 \Gamma \Delta} K_{\text {pr }}
\end{aligned}
$$

In order to determine the parameter region to be studied with program FLEXAT, it is useful to note that
or $\quad \frac{i}{k_{p y}}-\frac{i}{k_{p x}}<1$
and $\quad \frac{1}{k_{k y}}+\frac{1}{k_{p x}}>1$

Similarly, from

$$
\begin{aligned}
& -1<\frac{I_{z h}-I_{x h}}{I_{y} h}<1 \\
& \frac{1}{k_{k x}}-\frac{1}{K_{k y}}<1
\end{aligned}
$$

This is most conveniently represented on a $\left(1 / K_{p x}, 1 / K_{p y}\right)$ plane. (Fig. 5.11). Thus, if

$$
x_{*} \equiv \frac{1}{k_{p x}} \quad y_{*} \equiv \frac{1}{k_{p y}}
$$

the admissible domain of study is bounded by

$$
\begin{array}{ll}
y_{*}-x_{*}<1 & x_{*}<1+2 \Gamma \Delta \\
y_{*}+x_{*}>1 & y_{*}<1+2 \Gamma \Delta \\
x_{*}-y_{*}<1 \\
x_{*}>0 \quad y_{*}>0
\end{array}
$$

In particular, for a constant ratio of $\frac{K_{p x}}{K_{p y}}$ (or $\frac{I_{y h}}{I_{x h}}$), the limits are shown by circles on Fig. 5.11.
5.4 Conclusions

A program has been developed for stability studies and simulation of the nutational motion of a spinning satellite with flexible appendages. The results of this program can be used with profit in the preliminary attitude design, to ascertain stability, determine the importance of structural damping and study the rate at which nutation is generated or removed from the system.
[5-1] Rakowski, J.E. and Renard, M.L.: "A Study of the Nutational Behavior of a Flexible Spinning Satellite Using Natural Frequencies and Modes of the Rotating Structure," Paper 70-1046, AAS/ATAA Astrodynamics Conference. Santa Barbara, August 1970.
[5-2] Rakowski, J.E.: "A Study of the Attitude Dynamics of a Spin-Stabilized Satellite having Flexible Appendages," Ph.D. Thesis, Mechanical Engineering, Carnegie-Mellon University, December 1970.
[5-3] Thomson, W.T.: Space Dynamics, John Wiley Ed., 1963.
[5-4] Hughes; P.C. and Fung, J.C.: "Liapunov Stability of Spinning Satellites with Long Flexible Appendages." Celestial Mechanics, 4, 295-308, 1971.

FIG. 5-1. SQUASI-RIGID BODY STABILITY

FIG. 5-2.Stability chart. Case E.

FIG.5-3. Stability chart. Case E.

PLOT OF NATATIDM AHELE IN DEGREES VS H FOK
LAMBDA= 19?.
$51-2 E R U=.10$
$\because A M A=10.00 \cap$
$F K X=-2200$
$P K Y=.2200$
PREC=1
$M A X P=15$
MOOES = 3

FIG. 5-4

PLOT OF NUTATION ANGLE IN DEGREFS VS N FOH
LAMBDA $=100$.
$51-2 E R O=.11$
GAMA=10.0日:
$P K X=2800$
PKY=.2日00
$P R E C=1$
$M A X=15$
MOOES $=3$
$3 \ldots$.

FIG. 5-5

FIG. 5-5
(Continued)

PGOF UF NITGTION ATGLE IN ARGREES VS IN FOK
$\operatorname{LABBDA}=1000$.
S1-ZERO = 10
GAMA = 10.no:
PKX= 3500
PKY= - 3500
PREC=1
HAXP $=15$
MOUES = 3

$7-.05$	0	.85	1.71	3.56	3.42	4.27

促

FIG. 5-6

FIG.5-6
(Continued)

```
PlOT OF NIITATION ANGLE IN DEGREES VS N FOR
SI-LEKO=.10
GAMA=-10.000
PKX=.4000
PKY=*4000
PRFC=1
MAXP=15
MOUES=3
```


FIG. 5-7
(Continued)

FIG. 5.8 Stabjlity Diagram. Case M. 3 Modes.

FIG. 5.9 Stahility Diagram. Case M. 3 Modes.

FIG. 5-10. Stability Diagram, Case M. 3 Modes.

FIG. 5-11. $\mathrm{X}^{*}, \mathrm{X}^{*}$ DIAGRAM.

```
THIG IS THE MAIN PROGNAM BUIGH IAPUTS DATA AGD CALLG PHE SURPRUGRAMS
```



```
RFA! LAM,NU,PKX,PKY,GAMA
    INTEGER FiREC,CASE
    O|MEVSl0:! Nu(3)
    CON!!ON/O:TV/GAMA,PKX, FKY,XNO,YMO,NU
    CO:MDN/LEM/LNM,SIO
    ComMON/7Em/Omu
```



```
    COMm\:N/FOUR/IG, LM,NORU
    COHMON/S:X/HAXP,PREC
    COMNOU/EDIT/NSKF,MGTV
```



```
    Data/LiA/1HM
NSKP=0 SKIP MOG PRINTINGOPLOT ALI
NSKP=1 SK!P 6O PERCEHT OF PRINT,INITOALLY,PIOT ALL
    NSKP=0
    UNCHAOGING PAKANETEGS
```

```
NOQu=3
NSHP=3
MODE'S=3
Nu(1)=0.05
N(1)
NU(z)=0.05
x
A0, !21=0.
xNm(3)=?.
YNO(1)=-.02
YN\cap(2)=3.
YNO(3)=0.
Fqre=1
MAXF=!与
```

```
c
C MGIV=1 MEANS MODAL QuANTITIES ARF INO|T DATA
        Mg, 1:=?
        IF(MG!V.E.J.g\ GO TO I!
    JNSFRT VA!JES UF OME:A-J,AMI-J.AM2-J HFRF IF GGIV=1
    AS ANAY CAKOS NFEDED AS THREE TIMES OUNBER OF MODES
1!」Cの:T1NuE
    C&GF=!日"
    LAO}=1000
    S IT=0.1
    17=1
    IF(:0.{日, LM) 1%=0
    CA!L SEARCH(12)
    GAMA=1% %
    PKX=0.4
    PKY=0.4
    CAlI. CASEM2
    PKy=0.35
    PKY=0.35
    CaLL CASEM2
    LAOT=100.
    S10=0.1
    1 Z=1
    IF(IQ.EQ.I_M) IZ=「
    CN:L SEARCH(1L)
    PKx=0.22
    HKY=0.22
    CALL GASEH2
    PKx=0.2B
    PKr=0. 2t
    CALI CASEH2
    STOF
    E+N:
```

THIS PROGRAM FINDS THF FIRST THRFE EIGENVALUES IMU，FOR THFEROTAIING BOOM IN EITHER．FQUATOKIAL OK SERIDION FLFXURE IT WILL COMPUTE THESE ACGURATELY FOF VAI．UES OF LAMDA UP TO APPRTXIHATELY 50 BE

4 DIT，UF，DON，510，SI
DI：FASION OMU\｛3）
REAL HINA，LAM，ivaTFRO

COANOM／ZEN／OMU

CommON／LE：J／AM•S！ 0
SET HOPT＝ 1 FOR REVEKSED INTEGFMTION ITIP TO ROMTI
WDS＝DIRECTION SHI PCH
NHEN NDS＝1，SE゙ARCH FOH EOUATORIAL ROOTS，
WHEN HDS＝O，SEARCH FOR MEVIDIUM ROOTS
1F（N0S•E．J．1）NRT（E．（6，16）

FORMAT：IEQUATORIAL CASFE／／I
17 FORAAT（MMERIOIDNAL CASE／／）

$K_{K K}=1$
R $=0$
$U=1$
FET4＝0．
$M_{1}=1 \cdot 30-6$

$$
\operatorname{EPS} 3=1 \cdot 00-14
$$

$\vec{A}=0$
$F E P^{2} R V=0$ ．
FF～二日 $=10 * *=14$
NOP1 $=1$
NOR＝1
$N=1$
DT．T＝1．
$14=0$
NTMT＝IUO
1MTER＝N1NT＋1

WRITE（B，SO）ATHRO

$94 \quad \$_{1}=0$.
VVAFFE3＇t
$J, j=0$
DO $31 \mathrm{I}=1.4$

$$
K(I)=0 .
$$

$L(1)=0$ ．
（11） 1 ＝
$3_{1} \quad \mathrm{~F}_{1}(1)=0$ 。
10 $1 \quad 1=1,101$
E34p（ $)=$ O．
E44i（1）＝0．

E43P（ 1$)=0$ 。
Kフ2p（1）＝9．

E4フp（1）＝ワ。
E3jr（1）$=0$ 。
E41p（：）＝0。
$E_{4}(1)=0$ 。
$E_{3}(1)=0$ 。
H＝1．／FLOAT（ALNE）

SET INITIAL CONIATIONS ON THE צB AND S4 SOLUTIORS
$D^{1}=3$
1F（D．EQ．4） 50 TO2
$E_{0}=0$ ．
Un＝0。

F_{3} gp $(1)=14$
do $=\mathfrak{r} 37211$
טO TO 13
$t 3(1)=1$ 。
E．OEE $3(1)$
$\mathrm{CO}=\mathrm{O}$ 。
$\mathrm{A}_{\mathrm{O}} \mathrm{O}=\mathrm{O}$ 。
vo TO 3
$\mathrm{A}_{0}=0$ ．
$\mathrm{CO}_{0}=0$ 。

ビयア（1）＝1。
CO＝E43は（1）
Go ro 15
E4｜p（ 1$)=1$ ．
AO＝E41P（1）
$30=9$ 。
ビO＝O．
$A=10$
$D=80$
$C=C O$
$\varepsilon=\mathrm{E} O$
以EG1：RUNGA KUTTA INTGGIMATON

```
N=1
I=1
NN=N
51= (NN-1.) N
K(1)=4*A
L(1)=:&*B
A(1)=H*C
```



```
    IF(NDSPEO&1) GO TO 40
MU:= 什!-1.
```



```
&F(nOPT-GT*G) ;(1)=,(-GI*SI+2.*51*(%)+5!0))/2.*0
1+(1.-SI+S(0)*A+AUI*(E)* AN*H
S = (NN-1, )*H
l=1+1
1F(10GT0.3) GO !0 6
L=1-1
E=[0+k(Z)/2.
A=A0+i_(%)/2.
```

```
    H=,:0+11(2)/2.
    C=(0+p(Z)/2.
    SI=SI+H/2.
    40 ro 5
    IF{10GTO4,GOTOT
    E=O O+K(3)
    A=40+12(3)
    is=20+1(3)
    C=ro+P(3)
    SI=SI+H
    6) 10 5
    1F(0.tG.4) gorga
    S!=\N*:1
    L = \because+1
    E 3(2)=E3(N)+(K{1)+2.*N(2)+2.*N(3)+K(4))/6.
```



```
    E32P(7)=F32P(N)+(H(1)+2**H(2)+2.*M(3)+M(4))/6.
    E 33p(Z)=E33F(iv)+(P(1)+20*P(2)+2*P({)+P(4))/6*
    E.34P(Z)=LAN*((1)IU+1-)**2-(SI+SIO)**2)*E3?P(Z)/?.
```



```
    E. =F 3( (N+1)
    A=F31P(N+1)
    O}=[32\mp@code{2N}N+1
    C=E33P(iv+1)
    O=f
    AO=A
    00=5
    CO=C
    N=|+!
    IF(IfOLTOINTER) GU 「0 4
    EMOM3=E32P(INTEQ)
    ES:&R3=E33P(INTER)
```



```
    IF(NOPT-GT.O) ESARB=E3,P(INTER)
    U=?
    Go TO-B
    SI=NN+H
    l:= :+ !
```



```
1-{GI+G{!}*E41P(z)+M!1*F'{(Z))
```



```
    t=E4(N+1)
    \lambda= F-41!)(iv+1)
```



```
    C=F43F(N+C)
    EO=E
    AO=A
    130=3
    CO=C
    N=:i+1
```


RUNGA KUTTA FJNGSMED
HOW AEGIN LINEAR JNTERPOLATION
FEBq IS 「HE VALUR：OF rhe OETEEMIMAMT（S3 AND 54）

DECTO＝FR．34
LAS $=0$
LASS $=\mathrm{LAS}$
WRITE（A，MS）FC34，MU，U

$H \geq=M U+1) L T$
$U=1+1$
טก T0 99
$U_{1}=110$
UWin＝LSS
$11 Y=F \& 34$
TVAL＝FE34

に＝1

UP＝か！

$K K K=K K K+;$

LASS＝ 11
$\mathrm{a}_{0} 0 \mathrm{TO} 58$
D $\mathrm{m} \mathrm{n}=\mathrm{mu}$
UEC10＝FE34

$K K K=K K K+1$
EpsC＝AES（AES（PU）－ABS（IASS））

LASG＝1UU

IF（AtSSFK1）GTG1•0！－14）GOTO 22
I $A=1 A+1$
IFIIA－LT＋E）GOTO 82

$14=$ ？
1EPKV＝0．
$\because O$ TO 53
FFRRV＝FE34
WO TO 9 ？
WRITF（6．43）DECIf，

נロ TO 5 S
WR1TE（0．1；）FE34，MU

5_{3} NATFFO=MU*SORT:AN)

Hf:TE(6, AG) DLT, NOR

FOF = $\mathrm{HOR}+1$
$i=0$
$U=1$
k. $k^{\prime} k=1$

Hu=F:U+LLT
$7 \% 6$ CovTll:
2 RETUはい
LNO.

UOURLE PRFCISIOR XHOO13），YNOO（3）

UOURLE FHECISIOH，UH2（3），AH21（3），XNO（3），YNO（3）

UOMBLE FRFCISIG：ACY（3）SOH

00 $711 \mathrm{j}=1$ ．WSUP

$\pm 10 R=510$

S：HULATION
SET NOFT＝I FOR REVEKSED INTEGRATION
WUS $=$ OLEECTIOH SWITCH
WOS $=1 \mathrm{IN}$ FLAME，$=0$ OUT OF PI＿ANE．
HOPT $=1$
HOSO
$\mathrm{N}_{1} \mathrm{H} T=100$
INTFR＝NIMT＋！
WRITE（G， $951 \mathrm{LAM,SIOR,GAMA,PKX,HKY}, \mathrm{PREC}, \mathrm{NAXP,MOTES}$

LF（MGIV•Eijel）GO TO 340
UO 34 HCDE＝1，MUNES
$99 \quad 5 \mathrm{I}=0$.
$\mathrm{N}=1$
H＝1．／FLOAT（S）NT）
CLEAR ARFAYS
U0 $311=1,4$
$k(1)=0$ ．
$L(1)=C$ ．
$11(i)=\mathrm{C}$ ．
$31 \quad r(1)=0$.
Do ！ $1=1,101$
E3ヶf（））＝0。

E3ว 3 （ 1 ）$=$ ○。
E93P（1）$=0$ 。
E3つP（1）＝6。
と4ว攺（！）＝0．
E31F（））＝0．
E41F（1）＝0．
6． $4(1)=0$ ．
1

k． $3(1)=0$ 。

THIS SECTIMA CUMFUFS THE FIRST MODF \＆HAPE MMM THEN THF MODE SMAPE FAKAMETERS HIANO UR FOR CASE A

```
    t. }\textrm{g}=0
    \bullet0=0
    1F(NOFT.GT.O).GO TO 12
    E32p(1)=1.
    B0=F32%{1)
    G0 TO 13
12に3(1)=1.
    to=63(1)
13 CO=ח.
    +0=0:
    GO TO 3
2 AO=0.
    CO=0.
    1F(NONT•GT.C:(,G 10 14
    t43P(1)=1.
    CO=E43F(1)
    GO TO 15
14 E41F(1)=1.
    AO=F41P(1)
15 EO=0.
    k O=0.!
3 K=AO
    b=日0
    C=CO
    E=E
    N=1
4.. 1=1
    NN=N
    SI=(NH-1:)*H
5 K(i)=H*A
    L(!)=ん*&
    H(1)=+;*C
    MU!=1.+MO(MOCL) MO(HOOE)
    iF(NDSEEG.1) GO TO 40
    MU!=M1!!-1.
```



```
    JF(MOPT.CT•I) F(I)=,(-5:*SI+2.*Sl*(1*+510);/2,*B
    1+(1.-SI+S!(1)*A+NUI*E)*LAM*H
    SI={NA-1.;)H
    L=1+1
    IF(I.GT.3) 60 T0 6
    L=1-1
    L=E0+k(2)/2.
    A=An+L(Z)/Z.
    b=50+11(2)/2.
    C=CO+r(Z)/2.
    Si=51+H/%.
    G0 ro b
G. IF(I.GT.4) G(i TO 7
    E=EO+K(3)
    A=A0+L(3)
    v=00+1:(3)
    C=(0)+P(3)
    Si=5l+H
    GO TO 5
    7 1F(D.EQ.4) 60T0 9
    SI=MN*H
    L=i+1
```

```
    E 3(7)={3(N)+1k(1)+2.*&(2)+2.*&(3)+K(4))/G0
    E3!P(Z)=E31f(N)+(L(1)+200L(2)+2.0L(a)+L(4))/6.
    [3)P(Z)=E32P(fu)+(M(1)+20OM(2)+2.OM(3)+N(4))/6.
    E.33F(%)=6 33F(1+)+(F())+2**P(2)+2**F({)+F(4))/6。
    E34F(Z)={A|*((15IG+1*)**2-(SI+SI0)*#2)*E32P(7)/%。
    1-(51+510)-E3):(7)+M!1*E3(Z))
```



```
    1*[32P(Z)/2.+(10-5!+5I0)*E31P(%)+HU1.E3(Z))
    L=F3(1+1)
    A=E31F(N+1)
    B=L32P(N+1)
    C=5.33F(N+1)
    EO=E
    AO=A
    HO=8
    CO=C
    N=N+!
    1F(N!\T.INTFR) GO TO 4
    EMOM3=E32F(JHTEP)
    IF(NGFT.GT-CI) E&OM3=E3(INTER)
    DO 30 I=1,INTEE
    30 mMx3(1)=E3(I)
    D=4
    GOT0 k
    9 SI=NI#H
    Z=1!+1
    F.4(7)=F4(N)+(k(1)+2.*K(2)+2.*k(3)+k(4))/60
    E41F(2)=E41p(N)+(L(1)+2*LL(2)+2.*L(?)+L(4)j/6.
    E42p(Z)=E42P(N)+(M(1)+2*dM(2)+2.0M(1)+M(4):/6.
    E43P(Z)=E43P(Hi+(P(1)+2*OP(2)+2.0P(7)+P(4))/6.
```



```
    1=(51+510)*E41P(Z)+H(1)*ビ4(Z))
```



```
    1*E42P(Z)/2*+(1c-SI+SIO)*E'1F(%)+NUl*Eq(Z))
    E=F4(H+1)
    A=F41P(N+1)
    B=5.42 F'(H+1)
    C=F43P(H+1)
    EO=F
    H0= 人
    80=6
    CO=C
    N= F:4 1
    IF(NOLT,THTEP) GO TG &
    E#0:44=&42P(1MTE.E)
    IF(NOFT,Gra(H) EMOM4=EA(INTER)
    UO 32 I=1, 1NTEH
    14<4(1)=F4(1)
    ALFA= filom3/E.HOMA
```



```
    IF(MOPTOGT:O) GFFTA=MM&3(1)-ALFA*MMXA!})
    00 102 L.L=1,10!
    1.L = 1. 3
        1F(OOPT.GT*O) LI=\UZ-LE
```



```
        SM=0.
        Un 216 1=%,101
```


Aリ2（110LC）＝SM
$\dot{S} \mathrm{~N}=\mathrm{Ci}$
io $014 \quad 1=2.101$

$A M 1(M O D E)=S H$
3：CONT：NUE
EMO OF MOUE SHAPE AND MODE PARAGFTFR CAIGULATION
ALI．VARJABIES APE NOH－DIMENSIGHAL
NF IS THE STEF DUNMY
WPI 15 THE INTERNAI．Y CALCULATED PRINT INTERUAL．
KMAX 15 THE WUMBER OF SEGMEMTS IN THE SMALLFST PFRIOD
NX DETERNINES HOW MUCH OF THE SIFUL，TIGN IS FRINTED OUT
$G_{A M A}=\mathrm{R} 110 * \mathrm{~L} * 3 /:-\mathrm{H}_{\mathrm{B}}^{\mathrm{B}}-2$
COR＝SUM OVER A MODES OF TH SQUAEFD SVER．M
340 COHTIHUE
KHin $x=75$
$I_{R}=$ MU（PREC）
IF（PREC•NE•1）MPI＝NP！（R
${ }^{1} \mathrm{BFRQ}=\mathrm{HU}(\mathrm{PREC})$
PFAC＝1•／FLOAT（K！nX）
PER＝B．＊（ATA！（1．））
IFIRFRQ．GT．1．）PLK＝PER／HU（PREC）
$H=P E R * P F A C$
HK＝MAYPかKけAX

$N X=.6014 K$
$N P I=(1 / K-4 x) / 60$
COR＝0．
$D_{0} 202 \quad J=1$, MOOES

ODELT $=$ DELTA
SCOR＝COR
WRITE（O，97）DCOR，DDELT，NU

UO 203 JU＝1，MOUES
OAM1（JW）＝AMJ（Jid）

－203 conitlune
U0 406 JH＝1，M0DES

$Z K!=10+2 *$（GAMAZADELT
$36 \quad x_{1}=10 / H K X$
$Y_{1}=1 \cdot /$ FR $^{\prime} Y$
Derime I：ITIAL combitions

```
    OMKO=O.
    OMYO=?.
    0#20=1。
```



```
    DMXDO=?3.
    JMYDO:O!
    OMZOO=0.
    THESE 1.C. ALISN Z-AXIS ON HOUFCTOR
    WO 404 Jia=1,NGOES
```



```
4n4 UMYO=ONYG+GAMAZ*OM2O#YNO(J:W)/(Y1+20&GAHA*DELTA)
    00 405 j% = 1,3
    ANDO(NW) =0. 
    YN!,O(N:N)=0.
    V(1, JW)=XNO(.JW)
    V(2,J:I =YNO(JW)
    V(3, JW)=XNOO(JW)
105 V(4,J:%)=YNOO(JN)
    V(5,1)=OHXO
    V(t,1)=0MY0
    V(7,1)=0,420
    V(A,1)=0NXDO
    V(7,1)=014YD0
    V(10, 1)=014200
    LO 98 J=1,10
    0) 9& ل**=1,11OOES
```



```
        N=1
        NP=1
    बAR L=1
Su contlhue
    RHidgF KUTTA INTETSRATION
        W0 407 Jw=1,MDUES
```



```
        x (0MEGAO!vi5,11-0V19,1))
```



```
        x (UMEGAol}V(&,1)+DV(8,1))
            AK(1, ), J", =H0DV(3, J:%)
```



```
            AK(3,I, Jw)=H#,dCX(Jiv)
407 AK(4,1,Jk)=H*ACY(JW)
            AK(5,1,1, =H%j)\(0.1)
            AK(6,1,1 )=140V(9,1)
```



```
            I= i+1
            IF(I:GT•3) GOTO 60
            L=1-1
    DO q1 J=1.7
    UO จ1 JW=1,1900FS
!1 DV(J,Jw)=V(J!いい)+AK(J.Z.J!%)/?.
    CALL RATES
    Go ro 50
    bo
    IF(IOGT.4) GO TO 91)
    00 10 J=1,7
    1.O 10 JH=1,HONES
```

$10 \quad$ UV（．J，Ji，$)=V(, J, J i)+A K(, 1,3, J, 0)$
CALI FATI：S
－ 0 ro bu
加 0_{0} 11 $\quad \mathrm{J}=1.7$

$C(1 J, J F)=A K(J, 1, J W)+200\left(A K(J, 2, J W)+A K(J, 3, J W)+A K\left(J, 4, J^{N}\right)\right.$

vo 84 J＝1．7
DO \＆ 9 JW＝1，moblis
89
？V（J：Jw）＝V（J．J！）
call rates

RUIVGE KUTTA FI：USHEO

WOM CALCULATE UUTFUT WAKIABI．ES
IF（NP．NEOI）GOTO 41
COMPUTE COMPDWIMTS OF H－VECTOF IN GODY－FIXEO AXES

UO $451 K F=1$ ，USリト
$A M X=A M X+A M Z(K F) *(V(4, K F)-V(7, K F) * V(\overline{1}, K F)) * G A M A Z$

$A_{M}=Z K I * V(7,1)$
$A S O=A M X * A M X+A M Y * A B Y+A C Z * A M Z$
：150 50 क0र个（HSO）
$U_{H X Y}=A M X+A M X+A^{\prime} H Y * A H Y$
$O_{H} X Y=5 Q R T(U \| X Y)$
$\mathrm{H}_{1}=3.141592$
${ }^{1} \mathrm{E}_{\mathrm{G}}=1 \mathrm{ED} \cdot \mathrm{H} / \mathrm{F}$
CA＝DEG＊S AN（OHXY／HSQ）
1F（NSKFOFQ－T！ B （O TO 427

427 GONTINUE
IF（N•NEO GO TO 29
＊RITET6．331 1154
33 FOPMAT（IH，＂IH1TIAL H＝＇，E120，）
シRITE（ 6,9 （t）

27 Gorjtinue
1FUPPNE． 1 ）GO TO 41
WHITE OUTPIU VANIGBLES
 1CA，M

$41 \quad N P=A P+1$
1F（NP•EQ－HP！ 1 NP＝1
CALL PLOT
$i v=n+1$

GO TI SE

[^0]
Common／7Fは／OHU
Co．MON／TAREE／HODES

DO $711 \quad \mathrm{~J}!=1$, NSUP

AUX1 $=-1 \cdot /(X 1+G A M A Z \cdot(D F 1$ FA＂COR）$)$

AUX2 $=-1 \cdot /(Y 1+G A M A 2+\{U E L T A=C O R)\}$

UV（10，1）＝0．
Un 12 J＝1，MODES

DV：
\times HU（．j）कीU（J）－UN2（J）कnv（3，1））
12 Cnrtinde
If（T－LE．4）REYURH
$\forall(n, 1)=0 \vee(0,1)$
$\forall(9,1)=0!(9,1)$
$V(10,1)=0 V(10,1)$
Returil

SUEAOUT INE PLOT

COMMOH／OML／jAMA，PKX，FKY，XNO，Y：O，NU
Cominon／LEN／InASSIO
CoHtMON／THREE／HOOES
COMMON／FIVE／HK，H，CA
GO：MON／SIX／MAXY，PEEC
WOUPLE PRFCISIGW SIO
HEAL HAX，LAH，LINT．：
U1GENSIO日 SAVE（101］），LIAE（11O）．AF（5）．AN（5）
DATA BLAMK，STAR，DOT／1H，1H＊，lH：！
IF（HOUE－1）GO TO 2
$M_{1}=(1(1 k+5,0) / 1100$
U0 $1 \mathrm{Jt=1,100}$
$1 \quad S A V+1.11=0$ ．
$1=0$
私 $\bar{y}=0$ 。
i $1=0$
Sinn＝S10

$\left.J_{1}=J\right\}+1$
$S_{A V E}(J)=C A$
IF（AHS（CA）•CT．HAX）HAX＝AgS（CA）
3 IF（ll．HE．VK）UtTuRN
＊RITE（t，t）

UO o $11=1,5$

$A N(11)=-A) \neq(60 \cdot-10 \cdot 01 \mid)$

$11=0$
WRITE（ 6,7 ）AN，1，1，AP

以O 日 J！$=1.11!$
LIHE（Ji）＝BLABK

WRITE（6．？）LINE
Fopmat（：H，12X，110A1）
U0 $10 \mathrm{~J}:=1,110$
$10 \quad L I A_{0}(11)=5 T A P$
WRTTECB，TILIHE
DO $11 \mathrm{~J}=1: 110$
11 LINE（JI） 1 LULANK
$0013 \mathrm{Ki=1.100}$
$J_{1}=5 A V E(k I) / A 1+56 \cdot 5$
$\mathrm{L} 1 \mathrm{NE}(56)=5 \mathrm{TAR}$
IF（K：／10＊1O．NLーK1）OOTO 12
$t-1$ SE（55）＝5TAR？

Writil（b， 9 ）L（Nf：
1F（K）／1O＊JOANOKI）GO TO 15
1F（J）．GE．SO．ANB，JU．LE．54）GO TO 15

WR！Tに（6：14）H1

$13 \quad L I$ LE $(55)=3 L$ niNK
広ETURN
CHO

CHAPTER
 6

Other Topics

The present chapter contains a short note on the use of the stability charts in deployment dynamics, and two bibliographical reports on passive nutation damping devices.
6.1 Stability charts and deployment dynamics
6.11 Dynamic parameters during deployment

A deployment phase such as the one for IMP-I may be summarized as follows, if H, $\ell, \xi_{0}, \omega_{s}$ designate the angular momentum, length of booms, non-dimensional radius of the hub $\left(\frac{x_{0}}{\ell}\right)$, and spin rate ω_{s} - or +

We define a "state" as a set of values $\ell, \xi_{0}, \omega_{s}$, H. If non-dimensional variables are used, let

$$
\mathrm{H}_{0} \quad \equiv \mathrm{jef} \mathrm{H}(\ell=0)=\mathrm{I}_{\mathrm{zh}} \omega_{\mathrm{S}_{0}}
$$

$$
\begin{array}{ll}
h(\text { any state }) \\
\text { dēf } \\
\overline{\overline{e n}} \frac{H(\text { any state })}{H_{0}} & h(\ell=0)=1 \\
\omega_{\mathrm{s}}\left(0^{-}\right)_{\text {dēf }} \omega_{\mathrm{s}_{0}} &
\end{array}
$$

Thus

$$
\begin{equation*}
h=\frac{I_{z^{\omega}} \omega_{s}}{H_{0}}=\frac{(1+4 \Gamma \Delta) I_{z h}}{I_{z h} \omega_{s_{0}}}=\left(1+4 \Gamma\left(\xi_{0}^{2}+\xi_{0}+\frac{1}{3}\right)\right) \frac{\omega_{s}}{\omega_{s}} \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
& \Gamma=\frac{\rho \ell^{3}}{I_{z, h}} \\
& \Delta=\xi_{0}^{2}+\xi_{0}+\frac{1}{3} \\
& I_{z, h}=\text { moment of inertia of central hub about " } z^{\prime \prime} . \\
& \rho \quad=\text { linear density of boom }
\end{aligned}
$$

In view of these definitions, an extension maneuver at $t=$ corresponds to

$$
\begin{aligned}
h(t+0) & =h(t-0) \\
\ell(t+0) & =\ell(t-0)+\Delta \ell \\
\frac{\omega_{s}(t \pm 0)}{\omega_{s}(t-0)} & =\frac{(1+4 \Gamma \Delta) t-0}{(1+4 \Gamma \Delta) t+0}
\end{aligned}
$$

in which Δl is specified.
A respin maneuver at $\underline{\underline{t}}$ will give

$$
\begin{aligned}
& h(t+0)=h(t-0)+\left(1+4 \Gamma\left(\xi_{0}^{2}+\xi_{0}+\frac{1}{3}\right)\right)_{t+0} \frac{\omega_{S}(t+0)-\omega_{S}(t-0)}{\omega_{S}^{-}(0)} \\
& \left(1+4 \Gamma\left(\xi_{0}^{2}+\xi_{0}+\frac{1}{3}\right)\right)_{t+0}=\left(1+4 \Gamma\left(\xi_{0}^{2}+\xi_{0}+\frac{1}{3}\right)\right)_{t-0}
\end{aligned}
$$

in which $\delta \omega_{s}(t)=\omega_{s}(t+0)-\omega_{s}(t-0)$ is specified.

For a satellite of given hub ($x_{0}, I_{z h}$ specified)

$$
\begin{equation*}
\xi_{0}=\frac{x_{0}}{\ell}=x_{0} \cdot\left(\frac{\rho}{\Gamma I_{z h}}\right)^{1 / 3}=\frac{x_{0} \rho^{1 / 3}}{I_{z h}^{1 / 3}} \frac{1}{\Gamma^{1 / 3}}=\vec{S} \frac{1}{\Gamma^{1 / 3}} \tag{2}
\end{equation*}
$$

with $\overline{\mathrm{S}}$ a fixed non-dimensional number dee f $\frac{\mathrm{x}_{0} \rho^{1 / 3}}{\mathrm{I}_{\mathrm{zh}}{ }^{1 / 3}}$
Now, substituting (2) for ξ_{0} in Equation (1)

$$
\omega_{s}=\omega_{s_{0}}\left[1+4 \Gamma\left(\bar{S}^{2} \Gamma^{-2 / 3}+\bar{s} \Gamma^{-1 / 3}+\frac{1}{3}\right)\right]^{-1} h
$$

If $\ell=$ is specified in any state,

$$
\Gamma=\frac{\rho \ell^{3}}{I_{z, h}}
$$

can be computed.
To that state there corresponds an Etkin's number

$$
\bar{\lambda}=\frac{\rho \ell^{4}}{E I} \quad \omega_{s}^{2}=\frac{\rho \ell^{4} \omega_{S_{0}}^{2}}{E I x_{0}^{4}} x_{0}^{4}\left[1+4\left(\bar{S}^{1} \Gamma^{1 / 3}+\overline{\mathrm{S}} \Gamma^{2 / 3}+\frac{1}{3} \Gamma\right)\right]^{-2} h^{2}
$$

The quantity $\frac{\rho x_{0}^{4}}{E I}$ is specified for a given design. Let $\overrightarrow{\mathrm{R}}$ be the non-dimensional quantity

$$
\begin{aligned}
& \bar{R} \equiv\left(\frac{\omega_{s_{0}}}{\omega_{1}}\right)^{2} \\
& \omega_{\text {deg }}^{2} \equiv \frac{E I}{l x_{0}^{4}}
\end{aligned}
$$

Then

$$
\begin{align*}
\bar{\lambda} & =\bar{R} \xi_{0}^{-4}\left[1+4\left(\bar{S}^{2} \Gamma^{1 / 3}+\bar{S} r^{2 / 3}+\frac{1}{3} \Gamma\right)\right]^{-2} h^{2} \\
& =\frac{\bar{R}}{\bar{S}^{4}} \Gamma^{4 / 3}\left[1+4\left(\bar{S}^{2} r^{1 / 3}+\bar{S} r^{2 / 3}+\frac{1}{3} \Gamma\right)\right]^{-2} h^{2} \tag{3}
\end{align*}
$$

(2) and (3) thus give $\xi_{0}, \bar{\lambda}$ during the "states" of deployment as functions of boom's. length and angular momentum. In these relations, $\overline{\mathrm{R}} /{ }^{\prime} \omega_{s o}$ and $\overline{\mathrm{S}}$ are fixed for any given design.

6.1.2 Stability during deployment

The determination of the stability during deployment will thus proceed as follows:
a) $\overline{\mathrm{R}} / \omega_{\mathrm{s}_{0}}$ in computed (a fixed quantity), then $\overline{\mathrm{R}}$ for $\omega_{s_{0}}$ given.
b) $\overline{\mathrm{S}}$, a fixed quantity, is computed: given the state $\omega_{s}, \ell, \xi_{0}$ and H for some t :
c) compute h ;
d) compute Γ ();
e) compute $\Delta\left(\xi_{0}\right)$;
using the relevant formulae for either respin or extension maneuver
f) compute $\bar{\lambda}$ from (3):
g) determine the stability of the corresponding (K_{p}, Γ) point on the stability chart corresponding to the computed values of $\bar{\lambda}$ and ξ_{0}, using program FLEXAT of Chapter 5 .

6.2 A SURVEY OF PASSIVE NUTATION DAMPING TECHNIQUES

Prepared by
William O. Keksz

In this paper, severed mothods of passive nutation damping aro surveyod. In a revjow of rigid body dynamics, conditions of stability ore presented. Ball, pendulum, and fluid dompers are survered, among others, along with effects of magnetio and cravitationel forcues and stricturel hysteresis enorgy dissipation. Finally, x few active and semipassive systems are mentioned in the way or comparison.

A, B, C	Monents of incrtia about x, y m axes
$\mathrm{D}^{\prime} \mathrm{E}^{\prime} \mathrm{F}^{\prime}$	products oit incrita for $x y$, x\%, y\% planos
x, y, z	Body-fixed axes, z along spin axis
X, Y, Z	Incrital axes, z elong $\overrightarrow{\text { If }}$
ד	Total angular velocity
P, 4, ${ }^{\text {r }}$	Components of $\vec{\infty}$ along x, y, z axes
(${ }^{\circ}$	$d() / d t$
$\stackrel{\text { H }}{ }$	nngular momentum
$\mathrm{q}_{\mathbf{i}}$	General jzed coordinates
L_{Ca}	Moment in direction of a_{i}
φ, θ, φ	Euler's angles
$\dot{\psi}$	Precession rate
i	Spin rate
θ	Nutation angle.
γ	Magnetio or structural hysteresis factor
$\omega_{\text {ti }}$	$\left(p^{2}+r^{2}\right)=$ component of \vec{e} in $x y$ plane
λ	$(\mathrm{C}-\mathrm{A}) / \Lambda$
Ω	$\lambda 1=$ foxcing freauency
i	$(-1)^{1 / 2}$
$\hat{\mathbf{i}}, \hat{j}, \hat{k}$	Unit vectors alane x, y, z
M	Mass of main body
m	Damper mase
s	Radius of gyration
	Other symbols are defined throughout the
	as needed.

If. Review of Rigid loot Dynamics [BR]
A. Derinitions
l. Euler's Angles

If X, Y, Z is fixed in space and x, y, z is the body fixed system, we define the Euler Angles ψ, θ, and φ in Fig. II-I. The spin axis is along z, ard:

$$
\begin{aligned}
& \dot{\varphi}=\text { precession rate } \\
& \theta=\text { nutation angle } \\
& \dot{\varphi}=\text { spin rate }
\end{aligned}
$$

The unit vectors $\hat{i}, \hat{j}, \hat{L}$ lie along x, y, z.
We have:

$$
\begin{aligned}
{\left[\begin{array}{l}
x \\
y \\
Z
\end{array}\right]=} & {\left[\begin{array}{c}
(\cos \varphi \cos \psi-\sin \varphi \cos \theta \sin \psi) \\
(\cos \varphi \sin \psi+\sin \varphi \cos \theta \cos \psi) \\
(\sin \theta \sin \varphi)
\end{array}\right.} \\
& (-\sin \varphi \cos \psi-\sin \psi \cos \theta \cos \varphi)\left(\begin{array}{c}
(\sin \theta \sin \psi) \\
(-\sin \varphi \sin \psi+\cos \varphi \cos \theta \cos \psi) \\
(-\sin \theta \cos \psi) \\
(\sin \theta \cos \psi)
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
\%
\end{array}\right]
\end{aligned}
$$

2. Angular Velocity

If $\bar{w}=\omega_{x} \hat{i}+\omega_{y} \hat{j}+\omega_{z} \hat{k}$ is the total angular velocity of the body, then:

$$
\left[\begin{array}{l}
\omega \\
x \\
(\omega \\
\omega_{z}
\end{array}\right]=\left[\begin{array}{ccc}
(\sin \theta \sin \varphi) & (0) & (\cos \varphi) \\
(\sin \theta \cdot \cos \varphi) & (0) & (-\sin \varphi) \\
\cdots(\cos \theta) & (1) & (0)
\end{array}\right]\left[\begin{array}{l}
\dot{\varphi} \\
\dot{\varphi} \\
\dot{\theta}
\end{array}\right]
$$

Note that r is not the spin rate.

In most cases, the linear velocity of the center of mass is ignored for damper analysis.
3. Angular Momentum

The above is the anguler momentum in x, y, z. a or most cases, we can ignore the extomal forques prodeoed by ejectromagnotic rields and gravitational gradients. Thus in is constent in inertial space (X, X, Z), and thus we can align the Z agis along $\overrightarrow{\mathrm{H}}$. If x, y, z are aligned along the princtiple ares of the body, $D^{\prime}, E^{\prime}, F^{\prime}=0$, and $: \overrightarrow{\mathrm{H}}=\Lambda \mathrm{p} \hat{\mathrm{i}}+\mathrm{Bq} \hat{\mathrm{j}}+\operatorname{Cr} \hat{\mathrm{F}}$
where $\mathrm{p}, \mathrm{g}, \mathrm{r}$ are the $\left.\left.\omega_{x}, 0_{y}\right)_{y}\right)_{y}$ for aligmant with the principle ares.
4. Kineもjo maergy

The kinotic energy of the bocy is:

and for tho principle axes:

$$
T=1 / 2\left(A D^{2}+B Q^{2}+C V^{2}\right)
$$

5. Eulex's Equations

Hore Enler's Equations are presonted only ior a princinle aris x, y, z :

$$
\begin{aligned}
& \mathrm{L}_{1}=A \dot{p}+\mathrm{CP}(C \cdots B) \\
& \mathrm{L}_{2}=B \dot{Q}+\operatorname{pr}(A-C) \\
& \mathrm{L}_{3}=C \dot{C}+\operatorname{pr}(B-A)
\end{aligned}
$$

Whero ${ }^{1}{ }_{1}, L_{2}$, and I_{3} are tho extornal mononts about the corrosmonding princtiple ares; hero thoy wiol usmally be rexa.
6. Jojnsot minjpoid

For a rigid body, $\mathrm{i}=$ constant, and thus: $\frac{\overrightarrow{6} \cdot \vec{j}}{\vec{T}}=\frac{2 T}{\mathrm{I}}=?$
This must be the component of $\overrightarrow{\text { cos }}$ along $\overrightarrow{\mathrm{E}}$ and Z. If both sides of the enorgy relationship are divided by T, we get:

$$
1=\frac{p^{2}}{2 \pi / \Lambda}+\frac{q^{2}}{2 \pi / B}+\frac{x^{2}}{2 \pi / C}
$$

This is the Poinsot ellipsoid. If a plane is placed perm pendicular to \vec{H} a distance q from the center of this ellipsoids we see the roinsot ellipsoid rolls on the plane (called the invariant planc), without silipping. The contact point is the tip of \vec{f} (Fig.TM-2). The curve treced out by the contact point on the plane is the herpolhode, and that on the ellipsoid is the polhode.
7. Body and Space Cones (Axisymmedric Body)

From the above we see that $\vec{\omega}$ sweeps out a surface in both the x, y, z and X, Y, Z frames. $I f \theta=0$ and we have an axisymmetric hody (A=B) thon these are both right circular concs, Fom the relations between p, fr and $\dot{\psi}, \dot{0}, \dot{\varphi}$ substituted into the Bulor moment equetions, we have:

$$
\ddot{\varphi}=\frac{C \dot{\varphi}}{(A-C) \cos \theta}
$$

(a) C>s: \bar{y} and φ are oppostue in sign, and uns is known as roirograde precession.
(b) C<A: $\dot{\psi}$ and $\dot{\varphi}$ have the same sign, and this is monn as direct or posigrade preecssion.

Fig. TIM $:$ Euler's angles.

Fig. JI-2: Pojnsot ellinsoid.

(b) Direct procossion; $C<A$.

Pig. ITm 3 : Procession of bociy cone rolling on spece cone. $\overrightarrow{(x)}$ is along the line of contact.

The body cone rolling on the space cone for each of these cases is illustrated in Fig. IT -3. Tho angie between $\vec{\varphi}$ and $\vec{\omega}$ is k:
$\tan x=\left(p^{2}+\mathrm{C}_{1}^{2}\right)^{1 / 2} / r=\operatorname{cel}_{\mathrm{r}}^{1} / r$
where $\left(C_{T}\right.$ is the component of \vec{a} lying in the x, y plane. The angle between \vec{F}^{*} and 算 is θ :

- $\tan \theta=(A / C) /\left(\omega_{\mathrm{T}} / x\right)$

By substituting $\Omega=[(C-A) / A] r=\lambda r$ into the
Euler equations, we have:

$$
\dot{\mathbf{p}}+\Omega q=0 \quad \Rightarrow \quad \ddot{p}=-\Omega \dot{q}
$$

$$
\ddot{q}-\Omega p=0
$$

Thus $\ddot{p}+\Omega^{2} p=0$
and $p=p_{0} \cos \Omega t+\left(\dot{p}_{0} / \Omega\right) \sin \Omega t$
$q=p_{0} \sin \Omega t-\left(p_{0} / \Omega\right) \cos \Omega t$
These $7 a s t$ imply that $\left.w_{r}=(1)^{2}+4^{2}\right)^{1 / 2}$ rotates about the $\%$ axis at the rate Ω.

By using a complex analysis, Ames and homaghon show that [J]:

$$
\omega_{T}=\left[\frac{H^{2}-2 C T}{A(A-C)}\right]^{1 / 2} e^{i \Omega t}
$$

8. A Note on Unsymmetrical Bodies

The relations for \vec{w} are given by thomson for the case $A \ggg C$ and $n^{2}<2 T B$, a boy spuming about its axis of least incrita [33a]:

$$
\mathbf{p}=\left[\frac{1^{2}-2 T C}{A(A-C)}\right]^{1 / 2} \operatorname{con} f\left(t-t_{0}\right)
$$

$$
\begin{aligned}
q & =\left[\frac{n^{2}-2 \mu C}{3(3-C)}\right]^{1 / 2} \operatorname{sn} r\left(t-t_{0}\right) \\
r & =-\left[\frac{2 M A-n^{2}}{C(A-2}\right]^{1 / 2} d n f\left(t \cdots t_{0}\right) \\
\text { where } f & =\left[\frac{(1-C)\left(2 T A \cdots n^{2}\right)}{A B C}\right.
\end{aligned}
$$

and the modulus of the eflipticefunctions is:

$$
k=\left[\frac{(A-B)}{(B-C)}\left(\frac{\left(H^{2}-2 m C\right)}{\left(2 m-H^{2}\right)}\right]^{1 / 2}\right.
$$

This results in spin about the z axis with a superimposed wobble, with a $\theta_{\text {max }}$ and $\theta_{\min }$:

$$
\begin{aligned}
& \cos ^{2} \theta_{\mathrm{nax}}=C\left(2 T B-\mathrm{H}^{2}\right) /(B-C) \mathrm{H}^{2} \\
& \cos ^{2} \theta_{\mathrm{nin}}=C\left(2 \mathrm{~T} A-\mathrm{H}^{2}\right) /(A-C) \mathrm{H}^{2}
\end{aligned}
$$

B. Miscellaneous Concopts

1. Stability of a Rigid Body.

For a rigid body, T is a constant. If we let tho initial condition be:
$p=p_{1}+\epsilon$
q, r small
where ϵ is small, ve can differentiate the Euler equations and substitute for p, q, x and $\dot{p}, \dot{q}, \ddot{r}$. Then:
$q_{q}+p_{1}{ }^{2} q(A-B)(A-C) / B C=0$
$\ddot{r}+p_{1}{ }^{2} r(A-B)(A \ldots C) / B C=0$
These are stable onty ir $(A-B)$ and $(A-C)$ are of the same sign. Thus thoy are unstable only if A is the in.. termediate rotational inertia.
2. Energy and Stanil.jty

In a real spacocrart, there is alrays an enorgy loss
due to flexure of nomigid parts, magnetic hysteresis, etc. Thus we have jp <o.

For an axisymotric body, we have:

$$
\begin{aligned}
& 2 T=\Lambda \varphi_{T}^{2}+C r^{2} \\
& \mathrm{H}^{2}=\Lambda^{2} \omega_{\mathrm{T}}^{2}+\mathrm{C}^{2} \mathrm{r}^{2}
\end{aligned}
$$

Since $C x=I \cos \theta$:

$$
H^{2}-2 T \Lambda=\cos ^{2} \theta H^{2}(C-\Lambda) / C
$$

or $\quad T=H^{2}\left[1-\cos ^{2} \theta(C-A) / C\right] / 2 A$
Since there are no external torques, I is constant, and

$$
\begin{aligned}
\dot{T} & =\left[H^{2}(C-A) / A C\right](\sin \theta \cos \theta) \dot{\theta} \\
& =\left(H^{2} \lambda / C\right)(\sin \theta \cos \theta) \theta
\end{aligned}
$$

Thus, for decreasing T, θ decreases only in $C>A$, and the satellite is spinning about its axis of maximum inertia. This is the stable condition. For a prolate body, there must be an energy input for stability, which implies an active nutation control.

The change in energy required to stabilize a prem ceasing body con easily be found. The desired energy state is:

$$
\mathrm{T}_{\mathrm{f}}=1 / 2 \mathrm{Cr}_{\mathrm{f}}^{2}
$$

where the subscript f denotes final condition. Since I^{2} is constant [36]:

$$
\mathrm{H}^{2}=\Lambda^{2}{ }^{2} f_{\mathrm{T}}^{2}+\mathrm{C}^{2} \mathrm{r}^{2}=\mathrm{C}^{2} \mathrm{r}_{\mathrm{f}}^{2}=\mathrm{H}_{\mathrm{f}}{ }^{2}
$$

When $\mathrm{r}_{\mathrm{f}}^{2}=(A / C) \cos ^{2}+\mathrm{r}^{2}$
Thus $\Delta T=\left|T \cdots T_{f}\right|=\left|1 / \Delta(1 \times N / C) \omega_{T}{ }^{2}\right|$

For an oblate body $(\Lambda<C)$, this is the precessional energy, the anount to be removed, for a prolate body, it is the amount to be added.
$\operatorname{Also} \theta_{\mathrm{N}}=(r-\Omega) \tan \theta=(C / A) r \tan \theta$

ITT. Passive Dampers

Unless stated otherwise, the satellite will be assumed axisymmetric about the $z(\operatorname{spin})$ axis, $A=\beta$, and oblate $(A<C)$ for the below.
A. Ballitype $[4 ; 24,36]$.

1. Nounted in the Meridian Plane

This type was first used in Telstar and later in ESRO IT: "rhese consist of a ball allowed to roll insjde a circular cross section curved tube which is filled with a gas. Two are used, dianetrically opposed, to majntain symmetry, and mounted in a plane through the spin aris. Energy dissapation comes about through viscous friction between the ball and gas, rolling friction between the ball and tube wall, and collision of the ball with the tube end, the latter only at large nutam tion angles.

Such a system is shown in Fig. IIX-1. According to Yu, the rotational motion of the ball (of radius a) is given:

$$
(2 / 5) m a^{2}(\ddot{\alpha} d / r)=1 \pi a-N
$$

where k is the friction force at the contact point, and N the rolling friction iorque. N is approximately an ordor of magnitude smaller than the viscous texta Neslecting N and assuming θ small, the motion of the ball

Fip: IfTml: Ball-type dmper mounted in menjdian plane.
is desmilued by:

$$
\ddot{\alpha}+(50 / 7 m) \alpha^{2}+\left(5 b m^{2} / 7 n\right) \alpha=(5 b / 7 \Omega) \cos \Omega t
$$

where c is the coerideient of viscous firiction. The fime avorage rate of energy dissipation iss for viscous friotion:

$$
\overline{\mathrm{dT}} / \mathrm{dt}=\mathrm{T}_{\mathrm{v}} \Omega / 2 \pi=-\dot{\mathrm{c}}^{2} \Omega^{2} \alpha_{0}^{2} / 2
$$

where $\alpha_{0}=\theta\left(1-\Omega^{2} / r^{2}\right)\left[\left(1-\Omega^{2} / \mathrm{P}^{2}\right)^{2}+4 n^{2} \Omega^{2} / \mathrm{p}^{4}\right]-1 / 2$

$$
\mathrm{n}=5 \mathrm{c} / 14 \mathrm{~m}
$$

and $P=\left(5 h x^{2} / 7 R\right)^{1 / 2}$ is the natural fremuoncy, the square root of the α coefficient.

We end un with an expotential damping:

$$
\theta=\theta_{0} e^{-t / \gamma}
$$

and $\gamma=\frac{\left.5 \operatorname{cl}\left(1-n^{2} / \mathrm{P}^{2}\right)^{2}+\operatorname{cn}^{2} \Omega^{2} / \mathrm{p}^{4}\right]}{\operatorname{man}^{2} \lambda(\lambda \div 1)^{2}(1-\lambda)^{2}}$
If rolling friction diseipation is included:

$$
\overline{d W}_{r} / \mathrm{dt}=2 \mathrm{FR} \mathrm{\alpha} \alpha_{0}|\Omega| / \pi
$$

wherc F is the rohling fricition, and:

$$
\begin{aligned}
\theta & =\left(\theta_{0}+\mu\right) \mathrm{e}^{-t / \tau^{\prime}} \because \mu \\
\gamma^{\prime} & =\gamma \ln \left[\left(1+\theta_{0} / \mu\right) /\left(1+\theta_{0} / \kappa \theta\right)\right]
\end{aligned}
$$

Numericel comptations show that μ is substantially less than one degree. Thus the viscouswonly results can be used if Θ_{0} is somewhat greator than one degree.

The dompine time can be greatly reduced by designing a resonant eystem, making $P=\Omega$: then:

$$
n_{r e s ;}=50 / 7 \lambda^{2}
$$

The timo constant is then:

$$
\gamma_{\text {res }}=28 \log \lambda / 5 \operatorname{mon}^{2}(\lambda+1)^{2 x^{2}}(3-\lambda)^{2}
$$

A resonant damper coald not be used in Telstar bew cause λ was close to zoro and roon had to be made for an electronics package, preventims a small value of b.
T. is possible to conceive of dampers using strajght tubes or tubes concave ontward. It is easily seen, horever, that the equilibriun position for the bajl during mutation mould be at the ends of the tubes, and the final spin axis would not coincide vith that of the satellite without the balls.

The parametors for Telstar were $A / C=.95$, $\dot{\varphi}=20 \mathrm{~m} 180 \mathrm{rpm}, \mathrm{R}=15 \mathrm{f}, \mathrm{m}=0.002 \mathrm{t}$ slug, $a=0.24 \mathrm{in}$ (tungsten for its large density), $c=0.00193$ Ib-sec/ft. (neon for its high viscosity). The theoretical damping time was calculated to be a maximum of obout threc minutes.

Note that a gas of low viscosity should be used for a tunce (resonent) damper, as n, proportional to c, appears in the numerator of the expression for $\mathcal{T}_{\text {res }}$.

The problems in this cinalysis are due to the assuned smatl θ and linearizetion of the equations. G.T. Kossyk dovised a ground test of a model supported at its conter of gravity which showed that the experimental $\%$ wes about four timos that calculated using the mean value of the transvorse inerija moments, and mino ijnos thet using the minimm value. Taking these fac.
tors into account, the Y for Telstar was calculatod to be no more than thirty minutes.
2. Momecd in a plame Parallel to the Equatorial

Two of this type were mounted in Pleors and one in the HBOS spaceorart, whioh also used a liquid damper.

If h is the distance from the damper plane to the center of gravity, Routh civiteria applied to the Euler equations indicate that $b / n<1 \cdots m^{2} / A$ is necessary for stabjuity. Also, optjmum damping (minimum γ) is given by a viscous friction coefficient of:

$$
c_{o p t}=\operatorname{mn}^{2} r\left[14 \operatorname{mn}^{2}(\lambda+1)^{3} / 5 \Lambda \lambda\right]^{1 / 2} .
$$

This results in:

$$
\gamma_{o p t}=(1 / r)\left[5 G_{A} \lambda / \min ^{2}(\lambda+1)^{3}\right]^{1 / 2}
$$

Experimental results agree vell with the theoretion cal. For two dampers and $\lambda=0.61, h=0.15 \mathrm{~m}, \mathrm{R}=0.2 \mathrm{~m}$, $r=0.2 \mathrm{red} / \mathrm{sec}$, anc 250 gm give a maximum γ of 120 sec for reasonable θ. The experimentel result was 130 see. With all parameters equal, the efriciency ratio of the equatorial to meridian damper is $[(1+\lambda) /(1 \sim \lambda)]^{2}$.
B. TJBAM Demper $[24,25]$

Whe TEAM damper, used ix Tiros, is essentially the same in concopt as tho meridian-mounted ball dampor. A small mass fitted with rollers is allowod to run along a curved monoraje (pis. TJT-2) 。 Jine differebce lies in that there is no fluid involved, so only rojling friotion exists. from the ball amper analyeis, it can be

Fig. TITM3: Tiros TEAM domper.
secn that this would bohave roll onyy at small θ.

For Tixos, the damer mass was about 0.001 of the toial satcllite mess, and assuced a θ of less than 0.5 degreos. The time to damp from 2.5 to 0.5 degroes was aboti one minute. lt was chosen beanse tests showed that the tube radius of tho ball damper would be greater than the track radius of TEMM. ATso, it ras found that the ball domper regurred an A / C not less than $1.6(\lambda \& 0.37 \%)$, where A / C for Tixos was 1.45 $(\lambda=0.31)$ 。

C. Penculum Demper

1. Spin Axis Pivoted

The motion sor a satellite with a pendulun pivoted. on the spin axiss and moving in a plane perpendicular to the aris was described by Cartwright, Mossingill, and rxuoblood [6]. The dwiving requency of the pendum lum is the frequency of the acceleration due fo matation, $\Omega=\lambda \mathrm{r} . \quad \mathrm{Fi}$ hout frietion the pendulum vould oscillate in synchronimm opposite $\overrightarrow{c e}_{\mathrm{m}}$ at Ω, as in Fig. ITIm3a. Hovever, if the pivot exerts a rxictional torque, the pendulum less behind this position by an angle δ (fig. Itim3b). The resulting tornue on the axisymotric main body ceuces the damping. As this lag angle incroases, so does the damping produeing the convex porion or Fig. ITY 3 , and called the "putation symohonous" mode.

Mhen δ reaches 90 degrees, however: the pendulum is no longer in syno with $\vec{c}_{\mathrm{r}}^{\mathrm{m}}$, but is drivon toward syn.. chontem with r. This is a docreasjng-mato decay rith
a mamermasod convorpobt osedilation. Ti would be dom sirable to moke the tramifion, botwen the two moces at as small e a as possible.

If tho mass is ascumed small so thet the $\overrightarrow{e x}_{\text {m }}$ rotates preotsoly at the nutation rate $(\lambda+1) x^{2}=\Omega+x$ in iner. tial sface, and Ω small, we hove:

$$
\begin{aligned}
& \dot{\theta}=(m \ell h / h)(\lambda+1) n \sin \alpha \\
& \left.\ddot{\alpha}+\left(c_{p} / m\right) \alpha+(h / \ell)(\lambda+1) n^{2} \theta \sin \alpha=-\left(c_{p} / n\right) \lambda\right]
\end{aligned}
$$

where α is the anerlo botween the x aris and \vec{a}_{m}, ossumed approximadely equal to C^{6}. Also, c_{p} is the friction coefficient of the relative velocity between the pendulum and moin booy.

Compater analysis has shown that the α temm can be neglected. To find the time and mutation angle at oransition betwech modes, ve $\operatorname{set} \alpha=\pi / 2$, and integrate the above eruations. Thus:

$$
\begin{aligned}
\theta_{*} & =-c_{p}(\ell / \operatorname{mon}) \lambda /(1+\lambda)^{2} \\
t_{*} & =\left[\left(\theta_{0}^{2} \cdots \theta_{*}^{2}\right) / c_{p} \ell^{2}\right](c / 2 \lambda)
\end{aligned}
$$

Numerjoal integration of exact eduatjons show that the first equation overestimates θ_{*} by as much as a factor of 2 , andthe second miderestimates $t_{\#}$ by as moch as a rector of 2. Also, for these equetions to be valid, α

$$
\mathrm{m} \cdot \ell^{2}<c \theta_{0}^{2}(\mathrm{~N} / \mathrm{C}) /(1-A / C)
$$

is a nocossary condition for their validity.
Becouse of its nonsymmetry, there will be a smajl finel mutation anglo vaen only ame damper is usca:

$$
\theta_{1}=(m / h / C)(\lambda+1) / \lambda
$$

Fis, fTT.-3: Axiallymounted pendulm.

If c_{p} is large, t_{*} decreases but $\theta_{\%}$ increases. If c_{p} is an increasing function of velocity, there will be strong damping at the beginning. As the relative velocity decreases, so does e_{p}, and the dampermain body system is decoupled enongh to delay transition,

Another improvement would be to use two pendulums of differont radii. Experimental results show these to act indepencently, the long one dmping quickly at large θ (FigoIII-3d), the show at small θ.
2. Pjroted Away From the Spin Axis

The problem of a pendulum moving in a plane perpendicular to the spin axis and pivoted at a point avay from the axis have been studied by maseltine [16, 17] and Nowirk, Haseltine, and Pratt [23].

If η is the rotation requited to reach a point on the body, the binetic energy of the system is [23]:

$$
T=1 / 2\left[C \delta^{2}+A \varphi_{T}^{2}+\bar{n}\left(\xi \times r_{m}^{2}\right]\right.
$$

where $\vec{s}=x+\dot{\eta}$

$$
\overline{\mathrm{n}}=\mathrm{Mm} /(\mathrm{M}+\mathrm{m})
$$

and-x mis the distance from the conten-of-gravity to the damper mass.

Using a set of modified lagrengian oquations:

$$
\mathrm{d}\left(\partial \mathrm{~J} / \partial \mathrm{q}_{\mathbf{i}}\right) / \mathrm{dt}=\mathrm{H}_{\mathrm{q}_{1} \mathrm{j}}
$$

pig. MT-4: oriset.

(a) Off-design equilibrium for two offsct pendulums.

(b) Onfodesign equjibriwn for four pendulums.

Fig. ITI-5: offset pendulua dampers.
in which all the ti are zero except:

$$
\mathrm{L}_{\eta}=-\mathrm{c} p \mathfrak{j}
$$

The following equations result:

$$
\begin{aligned}
& \dot{\underline{q}}=-\left(c_{p} / \hat{A}\right)(\underline{\underline{L}}-r) \\
& \dot{r}=\bar{A} c_{p}(x-r) /\left(\bar{A} \bar{C}-\overline{\mathrm{D}}^{2}\right)
\end{aligned}
$$

$$
+\hat{C} \overline{\mathrm{D}} \Omega \mathrm{p} /\left(\overline{\mathrm{A}} \overline{\mathrm{C}} \cdots \overline{\mathrm{D}}^{2}\right)+\mathrm{pq}
$$

$$
\dot{q}=-p r+\bar{C} \bar{C} p /\left(\bar{A} \bar{C}-\overline{\mathrm{D}}^{2}\right)
$$

$$
+\bar{D} c_{p}(\bar{d} \cdots r) /\left(\bar{A} \bar{C}-\bar{D}^{2}\right)
$$

$$
\dot{p}=(\bar{A}-\overline{\mathrm{C}}) \mathrm{q} \mu /(\overline{\mathrm{A}}+\overline{\mathrm{C}})
$$

$$
+\mathrm{C} q /(\bar{\Lambda}+\overline{\mathrm{C}})-\overline{\mathrm{D}}\left(r^{2}-\mathrm{q}^{2}\right) /(\bar{\Lambda}+\overline{\mathrm{C}})
$$

where $\bar{\Lambda}=A+$ my 2

$$
\begin{aligned}
& \overline{\mathrm{c}}=\overline{\mathrm{m}}^{2} \\
& \overline{\mathrm{D}}=\overline{\mathrm{m}} \mathrm{my}
\end{aligned}
$$

and y is the y coordinate of the mess. No shall angle assumptions have been mare. ff however, θ and mare small, Φ constant, and other limiting assumptions are made:

$$
\begin{aligned}
\ddot{S}= & -c_{p}(\stackrel{S}{S}-\Phi) / \overline{\mathrm{C}} \\
& +(\mathrm{CD} / 2 A \bar{C}) \underline{S}\left(\dot{U} c^{i S}+\dot{U} e^{i S}\right) \\
\ddot{U}- & \mathrm{i}(\mathrm{C} / \Lambda) \overline{\mathrm{S}}=-(\mathrm{D} / \hat{\mathrm{L}}) \dot{S}^{2} \mathrm{e}^{\mathrm{iS}}
\end{aligned}
$$

where $s=\varphi+\varphi$

$$
\begin{aligned}
& \stackrel{S}{S}=x \\
& U=\sin \theta(\cos p+i \sin \varphi)
\end{aligned}
$$

Thus $|y|=\sin \theta \cong \theta$.

Jheo dinferont solutions were triod for this set of equations:
(a) The stable solution in when tho damper does not rotate retative to the main body. Then $|\mathrm{U}| \cong \theta_{0}=$ constant.
(b) "Slow demping" in wich the damper hos a small oscillation about a fixed point on the body, resultims in:

$$
\begin{aligned}
& \theta=\theta_{0} c^{-k / \tau} \\
& \tau=\left\{\frac{\left(2(C-A) A c^{2}\left[\left(c_{p} / \bar{C}\right)^{2}+(C-A)^{2} \underline{p}^{2} / \bar{C}^{2}\right]\right.}{C \bar{D}^{2} c_{p}}\right\}
\end{aligned}
$$

(c) "Fast damping" in wion tho damper rotatos at the nutation frouthey $C x /$. This solution is good only when θ is not smell:

$$
\theta^{2}=\theta_{0}^{2}-\left[2 c_{p}(\mathrm{C}-\Lambda) / \mathrm{CA}-2 m \mathrm{D}^{2} \mathrm{C} \bar{p}^{3}\right] \mathrm{t}
$$

The adventage of offsetting the pivot point from the axis is that it would appeax that tho pendulum wijl align itself radially outward from the pivot. Then a countermass could be mounted from the dgajibinum postition to preserve the symetry or the setellite, with no residual moblo. An alternate is to omploy two diametrically opposed pendulums (fig. Tri-1).
for a pendulum offset a distance b and of arm length \mathscr{O}, the frequency is:

$$
\frac{\omega}{27} \sqrt{\frac{b}{l}+\frac{h C}{l A} \tan \theta}
$$

Fox resonance:

$$
\ell \cong[n+(\lambda+1) n \theta] / \lambda^{2} \rightarrow b / \lambda^{2}
$$

assuming $\omega=r$, for $\operatorname{small} \theta$. If \geqslant is only slightly greater than zero, l can be barge. A solution is to use a pendulum of radius of gyration s. Then:

$$
l=[b+(\lambda+1) h \theta] / \lambda^{2}\left(1+s^{2} / l^{2}\right)
$$

Haseltime [16] has shown that, when:

$$
(\ell / \mathrm{b})\left[\mathrm{mh}^{2} /(\mathrm{C}-\Lambda)-(\mathrm{m} / \mathrm{M})\right] \times 1 / 2
$$

The angle between the two dampers will not be 180 de. gros jun the stood state (Fig. IIImbe). Then:
$\cos \beta=$ lessor of one or $b(C-A) / 2 m 2^{2} l$ and the apparent wobble angle is approximately $(2 m b l \sin \phi) /(C-A)$.

Haseltino also studied the motion with four dentcal pendulums mounted 90 degrees apart. Again, expertmental 'results shoved possible equilibrium positions resulting in a residual wobble (fig.TJT-5b).
D. Litquid Dampers
l. Spin Axjs Comecnirico

The use of an annulus partially filled vith a dense, high viscossty 1 iguid, usually moreury, has proven very populax; it was first used in Syncom and the mpplorer series [24]. Jho basic theory wes Jaid ont by carrier and Miles [5] for lamilar flow. The equetions of motion for the body are simjar to those for the pendujum, since both systems are ejreularly constrained. The dimensions of the system are given in Fig. IMI-6. For small θ; it was assumed that the liquid wes in contact with the entire outer surface of the annulus. The rate at which energy is dissipated throughout the fluid is, if ρ is the donsity:

$$
\dot{T}=-\rho \neq \iiint(\vec{v} \times \vec{v})^{2} d V
$$

where \vec{v} is the fluid velocity, v is the kimematic viscosity, and dv is a differential element volune. Asm suming the irrotational component of velocity canot contribute to the intogral:

$$
\dot{\mathrm{T}}=-8^{1 / 2} \pi \mathrm{Cl}^{2} \rho(\dot{\psi} \mathrm{n} \theta)^{2}|\dot{\varphi}| \mathrm{n}_{*}^{2}|\mathrm{\theta}| /|\Lambda|^{2}
$$

whore $n_{*}=(1+\lambda)^{2}\left(1-a_{*} / r\right)^{2}$

$$
\begin{aligned}
& G=\left(i \dot{\varphi} R^{2} / \gamma\right)^{1 / 2} \\
& \Lambda=\left(n_{\#}-n\right) \mathrm{G}+\left(n_{*}+n\right) \\
& n=1+2 \lambda \cdots \lambda^{2}
\end{aligned}
$$

This results in a time constant of decay for θ of:

$$
\tau:=\Gamma \hat{A} / n^{?} h^{2} \rho|\dot{\varphi}|
$$

and $\Gamma=\frac{\lambda\left[\left(n_{*}-n\right)^{2}|Q|^{2}+2^{1 / 2}\left(n_{*}^{2}-n^{2}\right)|Q|+\left(n_{*}+n\right)^{2}\right]}{32^{1 / 2} y(\lambda+1) n_{*}^{2}|G|}$

This is at a minimm in the ncighborhood of $n_{*}=n_{0}$ Then:

$$
\Gamma_{\min }=\lambda / 8^{1 / 2} \pi(\lambda+1)|G|
$$

and , $i \hat{i} a_{n} / R \ll l:$

$$
a_{x} \approx n\left[\lambda^{2} /(1+\lambda)^{2}+1 / 2^{1 / 2}|G|\right]
$$

is the resonant anadition. The variation in inickness of a_{*} has been assumed small.

For large θ, the riuid completely fills the cross section of the amulus over an angle (Fig. ITT-7) . The energy dissipation is then:

$$
\dot{T}=-4|\dot{\varphi}|^{2} \cdot 5_{1}^{3} \rho v^{1 / 2}(a+d) 0^{1 / 2}
$$

The time constant for lare is:

$$
\gamma=\Lambda|\dot{\varphi}| \theta^{2} / \delta|\dot{\varphi}|(|\dot{\varphi}| \nu)^{1 / 2} \Gamma_{i}^{3} \rho(\varepsilon+d) \omega^{1 / 2}
$$

For $\mathrm{R}=10 \mathrm{~cm}, \mathrm{~h}=10 \mathrm{cms} \mathrm{a}=0.25 \mathrm{cmi}, \mathrm{a}_{2}=0.05 \mathrm{~cm}$, $A=1.3 \mathrm{~kg} \mathrm{~m}^{2}, \lambda=1 / 3, \omega=12 \mathrm{rad} / \mathrm{sec}, \rho=13.6 \mathrm{gm} / \mathrm{cc}$, and $\nu=10^{-3} \mathrm{~cm}^{2} / \mathrm{sec}$ give a damping time of 14 sec for small θ. If a resonent demper wexe designed, a_{*} would bc 0.637 cm and $\gamma=0.00044$ sec.

The large θ result for the above parameters and $\theta_{0}=1 / 6,0=5$, and $(a+d)=1 / 2$ mives $\gamma=200 \mathrm{sec}$. However, the leynolds number is past critical for
 obout 70 see.

The above would indicate that it wond be desirable to dosign the dompor for resonance forever, a stuby by fityotbon and smith [35] show that significant en.. ergy oan be stored jn the surface waves on the fluid

Fig.tIT-6: Damper paraneters.

Fig. XIt-7: Large

Fig.ITIw 8: Wobole noar resongnce.

Fig. Ifto0: Experimentol. comperison of ball \& fluid dampers of equal mess.
near resonance, with the result that energy is tradm ed back and forth betreen liguid and rigid body. Whis can rosult if the domper mass is as little as 2% of the majn bogy, resulting in a history of θ as shown. in Fig.tTrms [21]. This can be overconc by damping the wave motion by the use of baffles, filling the void with a light liduid such as alcohol, or using enough daming fluid so that the void is small and the waves impact the inner surface of the damper. Also, dampex masses are usually much smaller than 2% of the main body, weighe.

The advantage of this configuration is that it assures symmetry in the steady state, with no apparent residual wobble, as is the case with single, and some mulfiple, pendulums. A comparison of a iluid damper and single sipin axis pivoted pendulum damper of equal mass from experinental results is shown in Fig.III--9[6].

The meos usod a spin axis concentric mercury and alcohol dampex for small θ, Jess than hale a degree, and one equatoizal ball damper for fast damping at larger θ.
2. Unsymmetrically Mounted

Ayache and Lynch anetized ioroidal and rectangular dempers of circular cross section and a U-shaped resonent dampor mounted in planes parajlel to the spin axis [2] in texms of a frictionall coupling factor $\hat{i}_{\text {Ds }}$ inversely pronortional to the time constant only the
result e are presented here This jas for small Ω only, tho spacecraft nearly despun. "hose of the stabilizeton is due to a rhymed on the spin axis.

For a toroidal damper as described in Fig.IIT-10a:

$$
x_{D S}=1 / 2 \Omega_{\text {mag }} i /\left[(1-K)^{2}+K^{2}|A|^{2}+2 K(1-K) \beta_{0}\right]
$$

where $A=2 J_{1}\left(\beta_{0}\right) / \beta_{0} J_{0}\left(\beta_{0}\right)$

$$
\begin{aligned}
& \beta_{0}=a_{\mathrm{l}}(\mathrm{i} \Omega / \gamma)^{1 / 2} \quad \mathrm{~K}=(\mathrm{r} / \Omega)^{2}(\pi r-1 / 2(\eta) / \pi \\
& J_{0}, J_{1}=\text { vessel functions of order zeno } \\
& \text { and one, respectively. }
\end{aligned}
$$

This is plotted vs. $a_{t}(\Omega / \nu)^{1 / 2}$ for various bubble sines in Piso ITIM10b, where at is the tube inside radius.

The rectangular damper has a frictional coupling factor ($1-W^{2}$) that of the toroidal, where (fig.try-ioe):

$$
W=(a-b) /(a+b)
$$

This means a greater time constant.

For the Unshaped damper (Tjg.ITI-11):

$$
\hat{I}_{D S}=1 / 2 i \operatorname{mag}\left[\frac{2 A \cdots\left(K_{*} A_{*} / A_{t}\right)(1-\Omega)}{2 \cdots 2 K_{\%}(1-A)}\right]
$$

whore $\mathrm{K}_{2}=2\left(A_{\mathrm{t}} / A_{i}\right)\left(\mathrm{I} / \Omega^{\prime}\right)^{2} \mathcal{L}_{\mathrm{s}} / X$

$$
A_{*}=\left(\nabla_{t}+\Psi\right) / J_{0}\left(\beta_{0}\right)
$$

Fig. III-10: Toroidal and rectangular liquid dampers mounted along transverse axis.

Fig. IfI-II: U-shaped liquid damper.

$$
\begin{aligned}
& v_{t}=\text { velocity of the tube wall } \\
& \Psi=\left(N-v_{t} c_{\%}\right) /\left(-i \Omega^{2}\right) \rho \\
& c_{*}=\rho r^{2} \ell / l_{\mathrm{s}} \\
& N=\left(2 c_{\%} / a_{i}^{2}\right) \int_{0}^{0} e_{0} d r_{*} \\
& r_{*}=\text { radial distance from tube eenter }
\end{aligned}
$$

E. Disk Type [26]

In thjes, a disk is mounted on a ball and socket at the center of gravity. Fox best resutts, the fricm tion shout be small. To my knowledge, this type has only been used in a test model by Perkel.

When the catire body is spiming smoothly and then dieturbed, the disk damp down more cuickly than the main body. For small friction, the damper plane is perpendicular to the precession cone axis. Up to a point, greater friction causes faster damping. The limit is when stiction occurs, freezing the damper.

The damping is erponential:

$$
\begin{aligned}
& \theta=\theta_{0} \mathrm{c}^{-t / \gamma} \\
& \gamma^{-1}=\frac{\theta_{\hat{1}}}{\theta_{0}} \frac{C_{1}}{\Lambda}\left[1-\frac{C \Lambda_{D}}{C_{D}^{A}}\right] \times\left[1-\left(\frac{\theta_{1}}{\theta_{0}}\right)^{2}\right]^{1 / 2}
\end{aligned}
$$

where $C_{D}, A_{D}=$ polar and tranverse momonts of inertia of the dompor
$\theta_{1 D}=$ initial angle betweon $\overrightarrow{I I}$ and disli axis.

Tf the angle between the dish and body axes is small, r may be approximated by π / C. .

The stiction moblem can be overcome by usiag a lubricated boaring. Fhe viscous friction constant for minimum τ is:

$$
\mathrm{K}_{0}=\mathrm{C}_{\mathrm{D}}\left(1-\mathrm{CA}_{\mathrm{D}} / \mathrm{C}_{\mathrm{D}} \mathrm{~A}\right)(\lambda+1) \mathrm{r} / \lambda_{0}
$$

F. Mass-spring Systems

1. Perpendicular to Spin Axis

Wedleigh, Galloway, and Mathor have treated a spring-moss system mounted on and perpendicular to the spin axis [35]. If K is the spring constant, c the danping, and ω_{n} the natural freguency:

$$
\dot{\mathbf{r}}=0
$$

$$
\dot{p}+\Omega q=0
$$

$$
\dot{q}-\Omega p-2\left(c / c_{c}\right)\left(\omega_{n} n / A\right) \dot{x}-(K h / A) x=0
$$

$$
\ddot{x}+2\left(c / c_{c}\right) \omega_{n} \dot{x}-\left(q^{2}+r^{2}-\omega_{n}^{2}\right) x+h r p+h \dot{q}=0
$$

$$
\omega_{n}=(K / m)^{1 / 2} \text { and } c_{c}=2 /(K \mathrm{~m})^{1 / 2} .
$$

If it is assumed hot the simusoidal character of the spinaing body is not affected:

$$
p=p_{0} \exp \left(-F_{*} t / 2\right) \cos \Omega t
$$

vinere $\mathrm{F}_{\%}$ is the hayteigh dissipation function:

$$
F_{*} / 2=\frac{m_{n}^{2}\left(c / c_{c}\right) n_{n} \lambda(\lambda+1)\left(1+\lambda^{2}\right)}{\left.\Lambda\left\{\left[(c)_{n} / x\right)^{2}-1-\lambda^{2}\right]^{2}+4\left(c / c_{c}\right)^{2}\left(\omega_{n} / r\right)^{2} \lambda^{2}\right\}}
$$

Fig. ITTm12: Performence of mass-spring dampers mounted on and perpendicular to the spin axis.

The maximum ampitude of the mass oscillation is:

$$
x_{\text {max }}=\theta_{0} \ln _{x}(x+\Omega) / 2\left(c / c_{c}\right) \cos _{11} \Omega
$$

Finally, the nutation angle is exprossed:
$\left.\theta^{2}=\left[q_{0} /(x+\Omega)\right]^{2}\right\} \exp \left[\cdots F_{*} t / 2+i(r+\Omega) t\right]-\left.1\right|^{2}$
Because this system will be slightly asymmetrice this converges to an apparent wobile angle of $c_{0} /(x+\Omega)$.

In a laboratory test, vith cos $\cong 30 p s, c / c_{c} \cong 0.5$, $\omega_{n} / 1 \cong 1.1, m^{2} / A=0,00135$, and an initial spin oi 3 cps, all nutation damped out in 6 sec. See Fig. TITml?.
2. ParalleJ to Spin Axis

Such a damper is interently undalanced. The mum tation angle is a decreasing exponential with a superimposed convergent aseillation。 Agajn, however, the apparent residual wobble is small [21]: The damper is not on the spin axis.
G. Spherical

A pondulum pivoted in a ball and sooket and immersed in a fluid wes mounted on the despun poxtion of oso [9]. Howevor, it will work for a single body satcjlife for $C / A=1$.

If $p_{2}=(c / \Lambda) \dot{p}$ and c is the damping constant of tho fluti:

$$
\gamma=1 / \Delta \alpha / h^{2} n^{2} \psi^{2}
$$

For resonance:
$(\mathrm{c} / A) \dot{\varphi}=1.745\left(\mathrm{Tr}_{\mathrm{d}}\right)^{1 / 2} /\left(\mathrm{m} \ell^{3}+2.467 \mathrm{ml} \mathrm{S}^{2}\right)^{1 / 2}$
where ℓ is the pendulum leneth, I_{d} is the diemetrad moment of inortia of the pendulum wire, and s is the transverse radius of gyration of the bob,

Fox oso, there was no evidence of nutation for 8000 orbital pesses".
I. Massondrum Sysicm

This is another systom devised by Portel [26]. and conctets of two masseg strung on wites which are wramped aromd a drum. The drum is connected to the main body concentric with the spin axis by a tortional spring-damper system. When nutation occurs, there is a rostonjng torgue duc to the relative dentection of the wires in addition co energy dissipation in the dampers. Fig.IJT-13.

Experimental work on a lab model indicated this system ras capable of damping the nutation of a prom late body. of course, if the cablos wore Jong enough, the actual polar inertia momont could be greater than that of the prolato masn body atone, possibly greater than the iransverse moment of inortia.

Fig. TII-l3: Mass-drum nutation damper and spin rote control.

Anothos possibility abong these lines would be to dimpence with the drum, momting masses on denmed springs on the outside of the spaceorant, opposite each other. In this case therc would be no disect coupliug of the motion of the tro dampers.
I. Magnotic Domping

One method is used to alifn the spin axis of a spacocraft along the local extcral magnetic field. A strong, permanent magnet is mounted in the spocew craft along the axis. This method vas used in ThANGIf 13 and 2A. The bijn had to be reduced to below 0.1 rpse otherwise, the oblate specocraft could have overeone the magnetic torgne and assured an attitude insed in space [15].

Enersy diseipetion also comes abowi fhrough eddy curronts and mognctic hysterosis. If a rod is rotating about a transverse axis perpendieular to the externel. fichd, tho component of the field along the rod is a function of time, and thus there must be an induced curient. This eday current causes heat to be radiated due to the resistance of the members. For a spacecraft of poler moment C, n moner of permeable xods of volume V and damoter D, and spimoing

$$
\begin{aligned}
& \omega=\omega_{0} \exp \left[\left(\cdots \sum_{e} / 2 H^{2} \mathrm{C}\right) t\right] \\
& \left.\mathrm{k}_{\mathrm{e}}=6.25 \pi^{2} \mathrm{\sigma}^{n} \mathrm{e}^{n} \rho_{\%}^{-7}\left(\mathrm{~B}_{n}{ }^{2}\right)_{\mathrm{e}} \mathrm{~V}\right)^{2} \times 10^{-11} \operatorname{erg} \mathrm{sec}
\end{aligned}
$$

Where $\sigma_{e}=$ soparation erfcet due fo distance betwoen $\operatorname{rods}\left(\sigma_{e}^{-}=1\right.$ for ∞)"
$\rho_{*}=$ resistivity of rad (ohm-cm)
$\left(B_{m}^{2}\right)_{e}=$ averoge of scuare of maximum flute density over entire length of rod for one oxbit (gauss ${ }^{2}$).

Hysteresis daming is due to the friction between the magnetic domains in the spacecraft. fhis results in a linear demping.

Note thot in all of tho above, there are external. torques, and angulas momentum is not conservod. Since there are energy losses, however, they can be applied to nutation demping. The latter two meshods will genexally couse onergy loss no matter what the oriontaw tion of the satollite is intended to be, fixed in space.

In general, the magnotic torques are disturbences that muet be overcone by other mutation dompers, and thurs are benericial only for spin removal and alignmest with the local magnetic field.
J. Grovity Gradient

As in the ajove, this can be usod for nutation damping only whon the epin is very low, and the spin axis (atways a prolate body in this case) oriented toward earth. por bisis typo of spaccojaft, no spin is usually destred along this axis. In satellites
not meant to be gravity gradiont stabilizod, it is a disturbance to be overcome by the nutation domper. $[20,32]$.

Acoorabig to mhomson, the forque on a satellite vith suin axis pempendjoular to the orbital plane is:

$$
L=3 \omega_{\#}^{2}(A \cdots C) \theta_{e}
$$

where $\theta_{e}=$ eeviation of spin axis from nomal to or" bital plane cowaxds earth (smell)

$$
\epsilon_{*}=\text { orbital angular velocsty }
$$

and L is about the axis tangent to the orbit. Conditions for stability are derined in terms of:

$$
\begin{aligned}
& \begin{array}{c}
\mathrm{b} / 2 \omega_{*}^{2}= \\
\\
\left.-1 / 2\left[-5 \lambda-(1-\lambda)^{2}\right]+\left(\dot{\varphi}_{1} / \omega_{\#}\right)^{2}(\lambda+1)^{2}\right)(\lambda+1) \lambda \\
c / \omega_{*}^{1}=4 \lambda^{2}+5\left(\dot{\varphi}_{1} / \omega_{\#}\right) \lambda(\lambda+1)+\left(\dot{\varphi}_{1} / \omega_{\#}\right)^{2}(\lambda+1)^{2} \\
\dot{\varphi}_{1}=\text { spin relative to the tangent to the orbit } \\
\text { For stability: } \quad b^{2} / 2 \omega_{*}^{2}<0
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& c^{2} / \omega_{*}^{4}>0 \\
& \left(b / 2 \omega_{*}^{2}\right)^{2}>c / \omega_{*}^{2}
\end{aligned}
$$

K. Structural Energy Dissipation

No structure is perfectly rigid, and the aceeleram tions on a precessing spacecraft will cause energy loss through mechanical hysteresis. Usually, however, part or parts of the epaecoratt can be considered rigid with energy dissipation only from the relatively flexible parts, such es antennae or sol or panels. fro examples have been mated by Thomson $[31,33]$.

We have already shown that, for no external torques: $\dot{T}=\left(n^{2} \lambda / 0\right)(\sin \theta \cos \theta) \dot{\theta}$
for an axisymetrio body the energy loss fer cycle or stress per unit volume is:

$$
\gamma \sigma^{2} / 2 \mathrm{E}
$$

where E is Yong's modulus, o the normed stress, and $\not \partial$ the hysteresis factor. Integrating this over the whole structure, for period of stress oscillation t_{0} :

$$
\int\left(\gamma \sigma^{2} / 2 \operatorname{te}{ }_{0}\right) d V=\dot{I}
$$

Considering an arbitrary point on the spacecraft at coordinates (x, x), we can commute the acceleration at that point, which is the excitation. If $\dot{\theta}$ is comparatively small:

$$
\begin{aligned}
\overrightarrow{0}= & (\dot{\psi} \sin \theta \sin \varphi) \hat{i}+(\dot{\varphi} \sin \theta \cos \varphi) \hat{j} \\
& +(\dot{\varphi}+\dot{\psi} \cos \theta) \hat{k} \\
\dot{\vec{c}} \overrightarrow{\rangle}= & \dot{\varphi} \dot{\sin } \theta(\cos \varphi \hat{i}-\sin \varphi \hat{j})
\end{aligned}
$$

Note that (x, z) does defino an arbitrary point in the spaceorait, not restrietod to one plane because of the arisymmetry. Tif the rejative motion of the points on the spacecrart con be considered small, the aceelcation at a point is:

$$
\vec{a}=\vec{e} \times(\vec{a} \times \vec{l})+\dot{\vec{a}} \times \vec{l}
$$

where $\vec{e}=x \hat{j}+2 \hat{k}$.

For an example, let us assume that the elastic part of a spacecraft serves only the function of energy dissipation, and the deflections eause no changes in the inertia. The satellite in Figotitmbe consists of two disks, each of inertia C_{1} and A_{1}, and mass M_{1}, connectec by a flexible tube of radius x_{1} and length 2.e. The gyroscopic monent requined by each disk is:

$$
\mathrm{L}_{\mathrm{G}}=\mathrm{C}_{1}(\dot{\varphi}+\dot{\psi} \cos \theta) \dot{\psi} \sin \theta=A_{\jmath} \dot{\psi}^{2} \sin \theta \cos \theta
$$

and $C=2 C_{1}$

$$
A \cong 2\left(A_{1}+H_{1} \ell^{2}\right)
$$

Then $L_{G}=M_{1} l^{2} \dot{\psi}^{2} \sin \theta \cos \theta$
The moment distribution is lincer:

$$
\mathrm{L}_{\mathrm{Z}}=\mathrm{L}_{g} \mathrm{Z} / \ell
$$

and thus the moximum stress is:

$$
\sigma=I_{z} x_{1} / x
$$

whore fis the cross-seotional monent of inertia of the tube. Subatituting these into the cnerey dissipar tion cquation:

$$
\begin{aligned}
\dot{\theta} & =(y / 24 \pi \operatorname{H})\left(r_{1} R^{2} x_{1} / I\right)^{2}(V / O)(C / A)^{4} \omega_{0}^{3} \sin \theta \cos ^{2} \theta \\
& =K \sin \theta \cos ^{2} \theta
\end{aligned}
$$

Fig. ITJ-14: Structural energy dissipation example.

Fig. Trims: Voriation in rote of tumbing.

This is shown in FigeTYImis. V is the volume of the stressed material and ω_{0} the initial angular velocity

$$
\begin{aligned}
& \text { If } \hat{A} \Rightarrow \theta, \text { such as for a missile: } \\
& \vec{a}=2 \cos _{0}^{2} x(C / A) \sin \theta \cos \theta \sin \varphi \hat{H}=a \hat{k}
\end{aligned}
$$

If we consider the inertia of the deflected mem beys, resonance is observed. Pig. II T-16 shows a cylixdrücol spacecraft of radius R, with four beams of length. $\hat{\ell}$. If tho clastic deformations $w(\xi, t)$ are as. sunned small and in the z direction only:

$$
\mathrm{BI} \frac{\partial^{4} \mathrm{v}}{\partial \xi^{4}}+\frac{m}{\ell} \frac{\partial^{2} \mathrm{w}}{\partial t^{2}}=a_{\mathrm{w}} \frac{\mathrm{~m}}{\ell}
$$

Where m and I are the mass and crossmsectional moments of inorita for the beams. This gives:

$$
\begin{aligned}
\dot{\theta} & \left.=K_{*} \sin \theta \cos ^{2} \theta /\left[(1-\}^{2} \cos ^{2}\right)^{2}+(\gamma / 2 \pi)^{2}\right] \\
K_{*} & =16 \operatorname{cog}\left(\alpha_{1} \beta_{1} n+1\right)^{2}\left(\theta_{0}^{3} / \pi A^{2} \beta_{1}^{4} e^{2} \Omega_{1}^{2}\right. \\
\rho & =(1-c / A)\left(\theta_{0} / \Omega\right. \\
\Omega & =\text { first natural frequency of beams }
\end{aligned}
$$

Also, α_{1} and β_{1} are tabulated in $[37]$. This is shown graphically in Fig e IJT-17, which clean shows reasonane effects. The envelope of this curve is the same shane as the curve in fig. IT T-15.

Fig. ITI-IG: Satellite with our elastic beams.

Fig. ITI-d7: ncsonance eifects.

IV. Semipastive and netive systcms

Snch systems rill be mentioned here only in pass.. ing. Active systems have energy sources activated either by onmboard sensing equament or groma command. Semipasisive heve energy sources thet either remain constant or react naturally to attitude changes.
A. Oscilleting Mass

This was proposed by Kane and Sobala [10]. Two messes, diamotriogly opposed, are foreed to oscillate back and forth along the spin axis at constant frequenm cy. The spin axis (axis of symmetry) is nownat to the orbital plene. This is capable of maintaining attitude at very low spin rates.
B. Dual Spin

The general reasoning benind dual spin givaceoraft vith dospun damers was most recently onifined by \because. Tonkin [3A]. Fis. TV-1 shows the position of \bar{w} relative to Il for oblato and molate bocies. We havece h
 Fespectively. Note thot the w in ereatonse is oppom Gitc in sjen. An internel torque to reduce matetion must be of zoro averege value (it concorvod) ena romove encrey for oblate bodies or injoct it fox prolato. The first requixemont means that the requimed forcto is

(b) Prolatc spacecraft.

Fig. IXI-1: Torques required for damping.
noxmal $\hat{i} \vec{H}$ and spimbng with $\dot{\psi}$ in inextiad space. Since pomor is the soalar product of torque and anm gular velocity, the torque requised must be epposite ω_{c} for oblate bodies and of the same senae as co for prolate bodies.

The torques producod by a danper dissipate energy, thus the component normal to it is opposite ω_{c}. There is also a component along the opin axis, thus dhanging the spin of the body upon which the damper is monnted. If the domper is despun, the motor must compensate for this speed differential. This is the source of energy injection for the prolate body. Sev. eral references are mesented in the bibliography.

C. Marnetic

As was shown before, eddy euments indueed by the carth's magnetic field can cause torguos on a spacem crait. This can be ovexcome by sumplying a torguing coil whose axis is nowmal to the spin axis with a curm rent 180 degrees out of phase with the externelly induced par [14]. The soin axis can be oriented by another coil whoc axis is parallol to the spin axis. The current in this is smitched on and off, and the torate being a simusoid witlo on, to give gero avarage torgue on one transverse axjs, and a resultant torgue on the oblimer.
D. Jot Pulse

Another method of sumplying tordue is to activate a single attitude motor aligned parallel with the spin axis. fhe pulsing js controlled by an onmbord mutam tion senson, fixing when the motor is inside the body cone [15].
V. Bibjograjhy

1. Mnes, J., and Mumaghen, F., Theoreticul Mechanies, Dover Publicotions, Inc., N.Y., N.Y., 1.929, p.217.
2. Aysche, K., and Jynch, R., "Analyses of the Perfoxmance of Liquid Dempers for Nutation in Spacecratt," Joumal of Spacecraft and loobets, 6; 12, Dee. 1969, p. 1385 .
3. Bainum, P., Fueschel, P., and Mackison, D., "Motion and Stability of a Dual-Spin Satellite with Nutation Damping," Journal of Spaceorart and Rocketis, 7; 6 , June 1970, 5. 690.
4. Barbier, Y: Reynand, P.s and De Samiville, Bo, "Development of a pamily of Ballmpype Nutation Dampers," Bendir mechnical Journal, vi, Sprine 1968, p.99.
5. Carrier, G., and Miles, J., "On the Ammilar Damper for for a Frecly Precessing Gyroscope," Jowmal of Leglice Mechanics, va7; June 1960, p. 237.
6. Cartwight, Wos Massimgill, R., Trueblood, R., "Circum lar Constraint Nutation Dempers," ATAA Journal, $1 ; 6$, June 1963: p.1375.
7. Cloutjer, Ge, "Nutation Demper Instability on SpinStabilizod Spacecraft," AThA Jounnal; 7; 11, Nov. 1969, p. 2110.
8. Cole, R., Blestrand, M. and otNejll, m., "Attifude Control of Rotating satellites," AnS Journal, oct. 1961, 1.1447.
9. Cxaig, B. "Nutation Damper for OSO," Astronautios and Accosnece puminocring, Dec. 1963, p.50.
10. De Bra, D. "Principles and Devolopments fa passive Attitude Control," Hecent Deqolopments in Spenc Flimht Mehantos," Anexican Astromationt Society, Washington, D.C., 1966, p. 159.

1]. Diemel, R., Mechanics of the Gyroscope, The macmillan Co., N.Y.: N.Y.; 1929, p. 68:
12. De Lisle, J., Ogletree, Eos and mildebrant, B., "Phe Application of Gyrostabilizers to orbiting Vohicles;" Torgues and Attiture Sencing En Eenth Sotellites, Academic Press Inc., N.Y., N.Y., 1964, p.31.
13. Fischen, R., "Magnetje mamping of the Anemar motions of Baxth Satellites," ATS, Journet, Sept. 1961, p. 1210.
14. Grasshofr, L.; "A Method ror Controliling the Attitude of a Spin-Stabilined Satollite," AnS Journel, May 1961, p. 646.
15. Graschorif, t. "th onboard, Closedmboop, Mutation Control system for a Spin-stabilized Spaceciraft, " Journal. or Spacoceart ond pochets, May 1968, p.530.
16. Hascltine, li. " "Passive maming on mobling satelljtes: General Stability pheory and Bxample," Journat of the Aecospece Seiences. v20, May 1962, 1.543.
17. Mascltinc, Wo, Nutation Damping Rates for a Spinning Satellite," Nerognace Gnginecring 2l; 3, March 1962, p.lo.
 Stabilizod Sotellites," Royal nirceatt Establighment Technioal Report 67009, Jano, 1967.

1. Kano, T., and Sobela, D. "A New Method for Atitude Stabilization, "AJMA Journal; 1;G, Jhme 1963, p.1365.
2. Kane, R.s Marsh, We, and Wilson, Wo, "Letter to the Editor," The Jompar of the Astronautical Scioness. Sept. 1962, p.108.
3. Kinoblor, M. "Gyroscopic Motion of an Unsymentical Satellite Under No Bxiemnal Porces," NaSAmp-m-506, July 1960 .

2?. Lancion, V_{0}. and Stemaxt, B., "Nutational Stability of ari axisymmetric Body Conteming a Rotor " Jomenal of Spacecreft zad roetcets, Nov.-DCe. 1964, p. 682 .
23. Nembirk, H. Hasoltine, \because. , and Pratit, "Stobjlity of Rotating Space Vehicucs," Proceedjuge of tho The, April 1960, p.743.
24. Nord-Aviation, "Bitude sur la Comparison d" Amortisseure de Nutadion," NB-940-030, Dec. 1965.
25. Perkex, 7. " "Tiros S Sin Stabilization," Astrongutos, Junc 1960, p. 38.
26. Porkel, F. "Space Vehiclo Attitude problems," Advances in Astroneuticel Scichoer Vol. A, Plenun Press, Theo, N.Y., N.X., 1958, 1.1.73.
27. Reiter, G., and Thomson, H., "Rotetional Motion of Passive Space Vehicies," Tomges and Atitude Sensing in Earth Setellites, Academic press Tmo., N.Y., Novo, 1964, 3. 1.
28. Noberson, R., "Torques on a Satellite Vepicle From Internal Moving Parts," Journal of Aonlied Moehontos, June 1958. p. 196.
20. Schnapi, ho, "Rivos I, TI, and TTT - Desien and Perpormance," Acrompee Engineering, $21 ; 6$, June 1962, p. 34.
30. Sen, A., "Stability of a Dualmspin Satellite with a Pour-Mass Nutation Domiger," mTAA Jomunel, E; 4, Apr. 1970 , p.822.
\qquad
31. Thomen, V., and leitor, Ge, "ttbtude Derift of Spece Vehiclos," 7; 2, The Journel of the hetronenticel Scionces, 7; 2, Felj. 1960, p.29.
32. Thomson, Wo, "Spin Siabilization of Attitwde Kganst Gravity Torcue," the Jonmat of tho nstronentioat Sciences, $3 ; 1,1962, ~ 1.31$.
33. Thomson, Wo, Thtroduction to Smace briamies, John Wiley \& Sons, Tnc. loc3.

33a. Thomson, Y. and neiter, G. Motion of an Asymetric spimninc body wjeh Ineernal Dissapation," AThA dournal. 1; 6, June 1963, p.1420.

34: Tonkin, S., "Despun Nutation pempers on Spinning Sate. ellites," JBIS, v.23, oct. 1970, p.661.
35. Fitogibban, D. and Smith, w. "Pinal Report on Study of Viscots Liquid Passtye Vobble mamers for Spimine

3G. Colombo, G., "On the lotion of Explorex XI Around its Centor of Mass," forumos and Atitube Senstne in Barth Satelljtes, Acanemjo press The. N. Y., N. X., 196\&, p. 175 .
37. Leon, H., "Spun Dymonics of nockets and Space vebieles in Veounar" Tochnicel Eoport TRw59-0000-0078, Space Technology Leboraroxios, Inc. Sept. 1959.

6.3 EFFECTS OF A TOROIDAL LIQUTD NUTATION DAMPER MOUNTED ON A TRANSVERSE AXIS OF AN AXISYMMETRIC SINGLE-SPIN SATELLITE

Prepared by
William O. Keksz

ABCRAC

In this paper, an atemat is mate to disconcor thr parmeters relevant to the porformance of a toroidal liquid mutation damper mounted with its axis along a transverse axis of a single-spin sablifite. Small inm itial values of the nutation ante ($<\mathcal{l}^{\circ}$) wore assumed. By fescribing dissipation of emergy w the rluid, , time constant for the nutation antele is found as forstion of a Bessel function of romplox armanent.

NOMENCLATURE

```
    a Small radius of torus
    a* Radial coordinate within torus
    A Function of B & only
    C Constant
    H Magnitude of angular momentum of satellite
\hat{i}
    \mp@subsup{\hat{r}}{z}{}}\mathrm{ Unit vector along spin axis
I
    spin axes, respectively
    (-1)
    Jo Bessel function of order zero
    K Kinetic energy of satellite
    q Argument of Bessel function = a* (j\dot{\varphi}/\nu
    r
    S Surpace area of control volume
    t Time
    T Function op time only
    v Fluld velocity
    va}\mathrm{ Fluid velocity at wall (a* = a)
    v
    V Volume
```

$$
\begin{array}{ll}
\text { W } & \text { Work done on fluid } \\
\omega & \text { Angular velocity } \\
\psi & \text { Precession angle } \\
\hline & \text { Spin angle } \\
\mu & \text { Fluid density } \\
\nu & \text { Absolute viscosity } \\
\gamma & \text { Kinematic viscosity } \\
\left({ }^{\circ}\right) & \text { Timear derivative except for } T \\
()^{\prime} & \text { Derivative Por A and } T \\
\left.()^{\prime}\right) & \text { Magnitude of complex () } \\
\theta & \text { Angle of nutation }
\end{array}
$$

The minimum energy condition for a spinning axisymmetric body is when the angular velocity is alined with the axis of maximum inertia. When there are no external torques, the magnitude of the angular momentum,

$$
H=\left(I_{t}^{2}\left(w_{x}^{2}+w_{y}^{2}\right)+I_{z}^{2} w_{z}^{2}\right)^{1 / 2},
$$

is constant. Values for $\left(\beta_{x}\right.$ and ω_{y} exist when the nutation angle is not zero. Here we have assumed the momentum of the damper to be small. We also have

$$
2 K=I_{t}\left(\omega_{x}^{2}+\omega_{y}^{2}\right)+I_{z_{z}} \omega^{2}
$$

as twice the kinetic energy, again assuming the motion of the damper small. If the nutation angle decreases slowly, we have the angular velocity in the satellite frame given by

$$
\begin{gathered}
\vec{\omega}=\hat{i}_{x}(\dot{\psi} \sin \theta \sin \varphi)+\hat{i}_{y}(\dot{\psi} \sin \theta \cos \varphi) \\
+\hat{i}_{z}(\dot{\varphi}+\dot{\psi} \cos \theta)
\end{gathered}
$$

and the precession speed,

$$
\dot{\psi}=I_{z} @_{z} / I_{t} \cos \theta=I I / I_{t} .
$$

Combining these equations gives

$$
H^{2}-2 K I_{t}=\left(H^{2} / I_{z}\right)\left(I_{z}-I_{t}\right) \cos ^{2} \theta
$$

If there is energy dissipation, as with a damper, H remains constant while K decreases. Thus (5),

$$
K=\left(H^{2} / I_{t} I_{z}\right)\left(I_{z}-I_{t}\right)(\sin \theta \cos \theta) \dot{\theta}
$$

With a liquid damper, energy dissipation ocours because of viscous effects, bein: represented by the time rate of work done on the fluid by the wall of its container (2),

$$
\begin{aligned}
\dot{W} & =\int S \vec{\tau} \cdot \overrightarrow{\mathrm{v}} d S \\
& =\frac{d}{d t} \int V \frac{v^{2}}{2} \rho d v \\
& =-\dot{K}
\end{aligned}
$$

The damper is illustrated in Fig. 1 . From the above, it is seen that the velocity distribution of the liquid must be found. Assuming that a<< r_{t}, the velocity of the tube wall relative to the liquid is riven by $v_{a}=r_{t} \omega_{x}$ or

$$
\mathbf{v}_{\mathrm{a}}=\mathrm{r}_{\mathrm{t}} \dot{\psi} \sin \theta \sin \varphi .
$$

It is assumed that the velocity will be entirely tancential to the torus, and pressure variations due to centrifugal body forces are small. Thus the fluid momentum differential vector equation (for a particular θ),

$$
\rho \partial \mathrm{v} / \partial \mathrm{t}=-\vec{\nabla} \mathrm{P}+\mu \nabla^{2} \overrightarrow{\mathrm{v}}
$$

becomes $\rho \partial v / \partial t=\mu \nabla^{2} \vec{v}$,
or, introducing the kinematic viscosity $\nu=\mu / \rho$, $\partial v / \partial t=\nu \nabla^{2} v$.

In` cylindrical coordinates, this is

$$
\frac{\partial v}{\partial t}=\frac{\mu}{a_{*}} \frac{\partial}{\partial a_{*}}\left(a_{*} \frac{\partial v}{\partial a_{*}}\right) .
$$

Assuming that the solution is a product of a function A of $a_{2 p}$ only, and T of t only, we have

$$
A{ }^{\prime}=T\left(a_{*} A\right)^{\prime} / a_{*}
$$

or $a_{*} A T^{\prime}=T\left(A^{\prime}+a_{*} A^{\prime \prime}\right)$.
If transients due to initial conditions are considered to damp out quickly, the time function will be in phase with v_{a}. Thus we let $T=\sin \varphi$. Then,

$$
a_{*} A \varphi \cos \varphi=\psi \sin \varphi\left(A^{\varphi}+a_{*} A^{\prime \prime}\right)
$$

Rearranging terms result in

$$
a_{*} A^{\prime \prime}+\Lambda^{\prime}-(\dot{\varphi} / \nu) \cot \varphi a_{3} \Lambda=0
$$

which is rather difficult to solve. The coefficient in the third term is a function of time; it cannot be averaged over one revolution for p to give a constant, for cot has of ines of infinity.

A simpler model may be had by assuming we have another damper, identical to the first, mounted on the y axis. Then we can represent the rotation of the transverse component of the angular velocity vector using complex variables. Since

$$
\begin{aligned}
& \omega_{x}=\dot{\varphi} \sin \theta \sin \varphi, \\
& \omega_{y}=\dot{\varphi} \sin \theta \cos \varphi,
\end{aligned}
$$

and $\quad e^{-j \varphi}=\cos \varphi-j \sin \varphi$,
the velocity component in the $x y$ plane can be described by a phasor,

$$
j \omega_{x}-\omega_{y}=-\omega_{x y} e^{-j \varphi},
$$

where $\omega_{x y}=\left(\omega_{x}{ }^{2}+\omega_{y}{ }^{2}\right)^{1 / 2}$.

$$
=\dot{\varphi} \sin \theta
$$

is the phasor magnitude.

Since we now have the term $e^{-j \varphi}$ as the excitation, we let this be equal to T_{2}. Then,

$$
\mathrm{T}_{2}{ }^{\prime}=-j \dot{\varphi} \mathrm{e}^{-j \varphi}=-j \dot{\varphi} \mathrm{~T}_{2}
$$

and the equation for the fluid velocity position dependfunction A becomes

$$
a_{*} A^{\prime \prime}+A^{\prime}+(j \dot{\varphi} / \nu) a_{*} A=0,
$$

or

$$
a_{*}^{2} A^{\prime \prime}+a_{*^{\prime}} A^{\prime}+(j \dot{\varphi} / \nu) a_{*}^{2} A=0 .
$$

This is a complex Bessel equation, the solution of which is (1)

$$
\mathrm{A}=\mathrm{CJ}_{0}(\mathrm{q}),
$$

where $q=a_{*}(j \dot{\varphi} / \nu)^{1 / 2}$
and C is a constant, which may be found by examining the velocity at the wall, which is given by

$$
v_{a 2}=-r_{t}\left(\omega_{x y} e^{-j \varphi} .\right.
$$

If we define A at $a_{i *}=a$ as $J_{0}\left(q_{a}\right)$ where

$$
q_{a}=a(j \dot{\varphi} / \nu)^{1 / 2}
$$

then

$$
C=r_{i}\left(\mathbb{x y} / J_{0}\left(q_{a}\right)\right.
$$

Thus we have

$$
v_{2}=A T_{2}=r_{\hat{t}} \cos \left(J_{0}(q) / J_{0}\left(q_{a}\right)\right) e^{-j \varphi}
$$

Using this expression in the integral for work done on the fluid will result in a complex function. This would represent two energy flows for dissipation, ninety degrees out of phase with each other. Averaged over one revolution for φ, the work done could be represented by the magnitude of the complex work. Also at this point we can say that this is twice the energy dissipation rate for a single damper. Thus for the single damper,

$$
\begin{aligned}
\dot{W} & =1 / 2\left|\dot{W}_{2}\right| \\
& =1 / \frac{d}{\dot{d} t} \int_{v}^{1 / 2} \rho\left|v_{2}\right|^{2} d v_{2}
\end{aligned}
$$

$$
=\frac{\rho}{4} \frac{d}{d t} \int_{V}\left|r_{t} \omega_{x y}\left(J_{0}(q) / J_{0}\left(q_{a}\right)\right) e^{-j \varphi}\right|^{2} d V_{2}
$$

$$
=\frac{\rho_{t}{ }^{2} \omega_{x y}^{2} \dot{\varphi}}{4\left|J_{0}\left(q_{a}\right)\right|^{2}} \int_{0}^{a}\left|J_{0}(q) e^{-j \varphi}\right|^{2}\left(4 \pi r_{t}\right)\left(2 \pi a_{*}\right) d a_{*}
$$

$$
=2 \rho r_{t}^{3} \omega_{x y}^{2} \pi^{2} \dot{\varphi}\left|e^{-j \varphi} / J_{0}\left(q_{a}\right)\right|^{2} \int_{0}^{a}\left|J_{0}(q)\right|^{2} a_{x} d a_{*}
$$

At any instant,

$$
\left|e^{-j \varphi}\right|^{2}=\cos ^{2} \varphi+\sin ^{2} \varphi=1
$$

Making this substitution, we have

$$
\dot{W}:=2 \rho r_{t}^{3} w_{X y}{ }^{2} \pi^{2} \dot{\varphi}\left|v_{0}\left(q_{a}\right)\right|^{-\dot{2}} \int_{0}^{a}\left|\cdot j_{0}(q)\right|^{2} a_{*} d a_{*}
$$

For a given value of θ, we have

$$
\dot{\phi}=I_{z} \dot{\theta} /\left(I_{t}-I_{z}\right) \cos \theta
$$

and $\omega_{z}=\dot{\varphi}+\dot{\varphi} \cos \theta$
Thus $\omega_{z}=\dot{\varphi}+I_{z} \dot{\varphi} /\left(I_{t}-I_{z}\right)$
$=\dot{\varphi}\left(\mathbb{I}+\mathbb{I}_{Z} /\left(I_{t}-I_{Z}\right)\right)$
$=\dot{\varphi} I_{t} /\left(I_{t}-I_{z}\right)$.
Also, again for a particular θ with $\dot{\theta}$ small,

$$
\tan \theta=I_{t} \omega_{x y} / I_{z} \omega_{z}
$$

Rearranging terms gives

$$
\omega_{x y}=\omega_{z}\left(I_{z} / I_{t}\right) \tan \theta .
$$

Substituting the relation between ω_{z} and $\dot{\varphi}$, we have

$$
\omega_{x y}=\dot{\varphi}\left(I_{z} \tan \theta\right) /\left(\dot{I}_{t}-I_{z}\right)
$$

If we assume no external torques and the momentum of the damper relative to the satmlite main body small, the Euler equations for the satellite are

$$
\begin{aligned}
& 0=I_{t} \dot{\omega}_{x}+\left(I_{z}-I_{t}\right) \omega_{y^{\prime}} \omega_{z}, \\
& 0=I_{t} \dot{\omega}_{y}-\left(I_{z}-I_{t}\right) \omega_{x} \omega_{z},
\end{aligned}
$$

and

$$
0=I_{z} \dot{\hat{\omega}}_{Z}
$$

Thus we can take ω_{z} constant during the damping action, and therefore $\dot{\varphi}, \psi$, and $\omega_{x y}$ may also be held constant. Note that this requires that H_{x} and H_{y} be small compared to H_{z}, thus meaning θ is small ($\& 12^{\circ}$); therefore

$$
\sin \theta \cong \theta
$$

$\cos \theta \cong 1$,
$2 \tan \tan \theta \cong \theta$.
The equation for $w_{x y}$ is then

$$
\omega_{x y}=\dot{\varphi} \theta I_{z} /\left(I_{t}-I_{z}\right)
$$

and substituting this into the expression for \dot{W},

$$
\dot{W} \cong \frac{2 \rho r_{y}^{3} r^{2} \dot{\varphi}^{3} I_{z}^{2} \theta^{2}}{\left(I_{t}-I_{z}\right)^{2}\left|J_{0}\left(q_{a}\right)\right|^{2}} \int_{0}^{a}\left|J_{0}(q)\right|^{2} a_{*} d a_{*}
$$

Also, the equation for \dot{K} becomes

$$
\dot{K} \cong\left(H^{2} / I_{t} I_{z}\right)\left(I_{z}-I_{t}\right) \theta \dot{\theta}
$$

But, for $\operatorname{small} \theta$,

$$
H \cong I_{z} \mathscr{W}_{z}=\dot{\varphi} I_{t} I_{z} /\left(I_{t}-I_{z}\right)
$$

Thus $\dot{K} \equiv\left[\frac{I_{t} I_{z}}{I_{t}-I_{z}}\right]^{2}\left[\frac{I_{Z}-I_{t}}{I_{t} I_{z}}\right] \theta \dot{\theta}$

$$
=\dot{\varphi}^{2} \theta \dot{\theta} I_{t} I_{z} /\left(I_{t}-I_{z}\right)
$$

Setting $\dot{W}=-\dot{K}$, we have

$$
-\dot{\theta} I_{t}=\frac{2 \rho r_{t}^{3} r^{2} I_{z} \theta \dot{\varphi}}{\left(I_{t}-I_{z}\right)\left|J_{0}\left(q_{a}\right)\right|^{2}} \int_{0}^{a}\left|J_{0}(q)\right|^{2} a_{*} d a_{*}
$$

or $\dot{\theta}+\left[\frac{2 \rho r_{t}^{3} r^{2} I_{z} \dot{\varphi}}{I_{t}\left(I_{t}-I_{z}\right)\left|J_{0}\left(q_{a}\right)\right|^{2}} \int_{0}^{a}\left|J_{0}(q)\right|^{2} a_{*} d a_{*}\right] \theta=0$.
The term in brackets is almost constant for small nutdion angles, and is thus the inverse of the time constant for a decreasing exponential solution. Thus

$$
\theta=\theta_{0} \exp \left(-t / t_{c}\right),
$$

where $t_{c}^{-1}=\frac{2 r_{t}^{3} \pi^{2} I_{z} \ddot{\varphi}}{I_{t}\left(I_{t}-I_{z}\right)\left|J_{0}\left(q_{a}\right)\right|^{2}} \int_{0}^{a}\left|J_{0}(q)\right|^{2} a_{*} d a_{*}$.
and θ_{0} is the initial nutation angle. This may also be expressed using the approximation for angular momentum by

$$
t_{c}^{-1}=\left(2 r_{t}^{3} \pi^{2} H / I_{t}^{2}\left|J_{0}\left(q_{a}\right)\right|^{2}\right) \int_{0}^{a}\left|J_{0}(\eta)\right|^{2} a_{*} d a_{*}
$$

Fig. 1. Positioning of damper.

Fig. 2. Coordinates within damper. Not to scale, as actually $r_{t} \gg a$.

CONCLUSTON

The above is valid for small initial nutation angles for an axisymmetric single-spin satellite. Values for complex Bessel functions may be found in references 3 and 4. However, these are good only for Bessel functions in which the magnitude of the complex argument q is less than ten. However, the best liquid for use in the damper is mercury because of its high density; its kinematic viscosity is $(0.5) 10^{-6} \mathrm{Pt} / \mathrm{sec}$ at $75^{\circ} \mathrm{F}$. Since q is inversely proportional to the square root of ν, its magnitude will be on the order of 10^{2} or 10^{3} for reasonable values of \dot{p}. Bessel functions for complex arguments of these magnitudes have not been tabulated, and must be calculated.

BTBLIOGRAPIY

1. Ayache, K., and R. Lynch, "Analyses of the Performance of Liquid Dampers for Nutation in Spacecraft," Iurnal of Spacecraft and Rockets, v.6, n.9, Dec. 1969 , pp.1385-1389.
2. Hansen, A.G., Fluid Mechanics, Wiley, New York, 1967, p. 124 .
3. Jahnke, E., and F. Emide, Tables of Functions, 41h. ed., Dover, New York, 1945, p. 266.
4. Mathematical Tables project, National bureau of Standards, Table of the Bessel Functions $J_{0}(z)$ and $y_{1}(z)$ for Complex Arguments, Columbia University Press, New York, 1943, pp.182-201.
5. Thomson, W.T., Introduction to Space Dynamics, wiley, New York, 1961.

CHAPTER 7

Genera1 Conclusions

As a result of the present study, equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-I have been considered.

[^0]: SUAROUTINE RATL゙S
 THIS ROUTINE CALCULATES THE DFRIVATYES OF THE aNGULATE RATFS

