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CHAPTER 1

Object of the Study

In recent years, the study of the attitude dynamics of a space-

craft considered as a partly rigid, partly elastic or articulated body

has become of increasing importance[l
-l ] . At first, such work did not

present such a degree of urgency, as many investigations concentrated

on rotational and librational dynamics of essentially rigid spacecraft,

as is apparent from the reviews of D.B. De Bra 
[ - 2 ] and R.E. Rober-

son[1 - 3 ,1- 4 ] . Any elastic body effects are conspicuously absent of

V.V. Beletskil's classic book on the "Motion of an artificial satellite

about its center of mass" who writes at the outset that "the discussion

is confined to problems which fall within the scope of the dynamics

of rigid bodies".

Satellites became increasingly "elastic", as booms were extended

tens and hundreds of meters from the central body[1-5, 1-6, 1-7] or as

large polar panels or manned toroidal space stations are considered
[I - 8]

Three methods are most commonly used in the study of the dynamics of the

elastic spacecraft: discretization by modeling the continuous system by

finite elements; modal representation; and the Likin's [I - 9 ] method of

hybrid coordinates.

The present work uses the modal approach. It is a study of the

relevant equations and parameters in the dynamical analysis of the

attitudes motion of a spin-stabilized spacecraft having flexible appen-

dages. It is principally aimed at developing working tools, such as

stability diagrams, tables or simulation analyses by means of computer
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programs. These programs are of low time-consumption, 
and their use

is quite easy to learn. As such, it is hoped that they will prove

valuable to the engineer engaged in the design of spin-stabilized

elastic spacecraft.
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CHAPTER 2

A Study of Modal Shapes and Eigenfrequencies of

Flexible Appendages on a Spin-Stabilized Satellite

2.1 Introduction

In order to study the dynamics of the spin-stabilized satellite with

flexible appendages, by the methods of generalized dynamics, the con-

tinuum of the elastic parts should be represented by generalized coor-

dinates qi (i = 1,2,...). The qi arekfur-tions of time describing

Wk
the amplitude of the non-dimensional displacements, -- , of boom k at

abscissa EE , in terms of modes 4'(D)

S q i(t ) i( )  (2.1-1)

wk will be (in the assumption of small displacements) along y for equa-

torial displacements (E) and along z for meridional displacements (M)

(See Fig. 2.1).

5, n, 1 are the geometric coordinates x,y,z non-dimensionalized

xo
by Z, undeflected length of the boom.E, = x is the non-dimensional

radius of the central hub.

The system of mode shapes, i., adopted here are the modes of the
1

rotating structure corresponding to the boom's Etkin 
number [2 -1]

-= _4 
W 2 and non-dimensional radius o = : p is the (uniform)

El s (
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lineal density of the boom, in units of mass/length. E is the boom's

Young modulus, in units of force/unit area, I is the geometric moment

of inertia of the boom's cross section, in units of length , and w is

the spin rate, in rad./sec. Thus X is non-dimensional. Finally, xo

is the radius of the central hub, at which distance the elastic boom

is assumed to be cantilevered. As will be seen, these significantly

depart in shape and frequency from those of the non-rotating structure

corresponding to = 0 and 5o = 0.

In the following, it is assumed that only antisymmetric motions

are considered, or that the motion of the CM away from the origin is

negligible. The latter amounts, as has been shown by F. Vigneron 2 -2

to assuming that the central mass M is sufficiently large for termsc

of order

[f ) [ w dx]2

c J
boom

to be neglected in comparison with terms like

pboom 
w2 dx

Typically, for the ALOUETTE and ISIS satellites, Ref.[2-2]gives the

values: - = 0.005 to 0.01 (copper-beryllium booms)
Mc

2.2 Equations of Motion: equatorial vibrations

2.2.1 Basic equation

We shall first consider motions in the "equatorial" plane of the

satellite, i.e. (x,y) or (E,n). These were the first type of vibrations

considered by this author and J.E. Rakowski[2
- 3]
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Any section of boom located at p, of abscissa x, is in rotational

equilibrium under the action of (Fig. 2.1).

- bending moment from the left, which for pure flexure in the equa-

torial plane, is

= 2 w ( x )  
(2.2-1)

dM =-EI 2del x2  z

in which w(x) is the assumed small displacement of the boom element

in the y-direction, and 1z is the unit vector along the z-direction.

- the moment about p of inertia forces

dFin = -p dx rQ (2.2-2)

imparted by the particles of the boom to the right of p, i.e.

having abscissa between x and R.

Therefore,

Elbfw(x) it

In terms of their components, we have

X x

iL a r' " +IVwV;K(X)- W(X)I

S(XoK,7  Xo + X7'

Thus

1-. -

L(Xj + ., ( Xs

X W A,)- 63 j ( "+ '



2-4

Also

(&, w x-)t- 7- (x )
It-- o m .. ) - ( - (L w(X )

( t 7 * ( 4 WZ(XO4 ,) tOX W (XOj (x 4)

(; w(x,) (,) + (, 60 W Xi

(x.+ xi) + A + w wz) . lx 1} 4 2 Cx (X
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Under the assumption of small displacements and transverse angular

rates, terms of order w , , 2, 2... are neglected, and rQ re-
xyrates, terms of x y

duces to

S w (x, - a2 (xX) - 2 , l(X

(X 6 + ( ) X XI) (2.2-3)

Finally, along 1z

i-x W(X,)- w(K)

F (, J(XI) (X,,+ X ) w z ± 1)

and neglecting quantities of smaller order

xl w(xl) p4
With the same notation as above, let 51= T 1 - , a= ; this

becomes

(& +.i) d



2-6

k
With the abbreviated notation . = - , we obtain

k times

Taking the derivative of (2.2-4) with respect to 5, and using Leibniz's

formula, f(1, ' ) being the integrand,

Finally

The non-dimensionalization is completed by introducing the non-dimen-

sional Etkin's number
[2- 1]

where wcant is the first cantilever frequency of the non-rotating boom.

It is to be stressed that A is a constant only if w , the satellite spin-

rate, may be considered such. Equation (2.2-5) is rewritten in the form

'9 7. -P . [ , j - C .,- / -_ ] .t - C + )
" z - w (2.2-6)
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So far, quantities which have been neglected were of order E
2 of

smallness, or smaller. Now a z itself is of order 62, i.e. with

d = w dt

if the product X x the percentage change of wz per unit angle of rota-

tion is very much smaller than quantities assumed to be of order c.

Assuming that such is the case, we are then left with the homogeneous

Equation (2.2-6) with a r.h. side equal to zero.

A +0(2.2-7)

2.2.2 Solution of the basic equation

d d
Using separation of variables, with ' - d

dT d(zz t)
z

. = j() T.(T) (2.2-8)

Hence

yielding

where w. is the jth eigenfrequency of the equatorial vibrations asso-
3

ciated with (, X). This equation is in agreement with that obtained

[2-1]inthe ial ase
by Etkins and Hughes , in the special case E. = 0.
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Determination of w (or mj) from Equation (2) proceeds as follows.

Equation (2) is linear, with varying coefficients. Thus any linear

combination of solutions of (2) is a solution of (2).

Let S3,j be the solution satisfying the b.c.

=o / (2.2-9)

and 4,j be the solution satisfying

S=0 0 0 0 1 (2.2-10)

Therefore, the desired solution, which satisfies the "built-in, free"

boundary conditions (2 '3)

' J d(2.2-11)
=o 0 0

0 (2.2-12)

is of the form

(2.2-13)

with C3 , C4 unknown. (2.2-11) is automatically satisfied by (2.2-13).

Expressing (2.2-12)

+- 4 - = O (2.2-14)

0 (2.2-15)
3;



2-9

In order to be satisfied for non-zero values of C, C4 , Z should

be such that the determinant

_( J. ,(3 ) _. , , = (2.2-16)

The successive eigenfrequencies, wj, are determined to any prescribed

accuracy by iteration , 1j, 2,j are determined by numerical integra-

tion of differential equation (2), subject to b.c. (9) and (to.)

respectively.

The modal shapes,(j,( ), which as expected are defined only to an

arbitrary multiplicative constant, are determined, once 7. is known,

as (2)

2. 3 - 7 ,(2.2-17)

2;.23 Orthogonality of the mode shapes

It is now proven, that given \, Co _ 0, the modes j, k are

orthogonal, i.e.

Note that < ) d , >0
< J de 6

Letct be the operator

Now

and () (2.2-18)
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Then, from multiplying by 4k and ,. respectively, and substracting

S )(2.2-19)

Integrate with respect to 5, from = 0 (root) to F= 1 (tip),

Thus

Next compute .

K (-2)

Terms corresponding to (1) and (3) will cancel in the difference. Terms

(2) and (4) will cancel the terms resulting from the last term in 5, in

(2.2-19).
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in the l.h. side of (2.2-19). Finally )

fo o (f/k) (2. 2-20)

The modal mass, m. (3 ,C=), is defined, for j=k, as

0 (2.2-21)

in which .(Q) is normalized to correspond to a unit deflection at

the boom's tip,C = 1. The following quantity, to appear later, is

also of interest

J j (2.2-22)

with E1 = o + 5, varying between 5, (root) and Eo + 1 (tip). It is

readily determined when the modal shape, 4.(M), is known.
3

Also, for later use, two identities are given here, which are ob-

tained by multiplying Eq. (2.2-19) written for %j, by k,' and integrating

over the boom,
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/I' Hi,-2  - ) -i 

Thus, for j k

If(- j ( f i" 0,0 T,2)+2 ,4~)jJo(2.2-23)

and for j = k

jf (z2 iLJ L(2.2-24)

2.3 Equations of motion: meridional vibrations

The developments in the case of motions in the (x,z) plane, of

a boom located along axis +x in its undeflected position, or "meri-

dional" vibrations, closely parallels those for equatorial vibrations,

given in Section 2.2. In the following, only those terms which depart

from the ones in Section 2.2 will be given in detail.

2.3.1 Basic equation

The equation expressing the equilibrium, at any section "x" of

the boom, at point P, between the flexure moment from the left and the
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moment , about P, of inertia forces imparted by the particles Q

of the boom to the right of P (i.e. those having an abscissa x,

between x and 2 , reads

Now w(x) is an elastic displacement parallel to z. Computing the

relevant quantities,

it (xO.->) C ±±j,) iz
Thus

Als o') - (W+,)

Also

xo + 1) x

.+ (x,) ( 4 X(( ) - 1o 60) - ()
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Again, under the assumption of small displacements and transverse

2 2 2
angular rates, terms of order w , , .. are neglected. r

reduces to

- (x0-~xo) Zj

+ ' (0.-

Along 1 ,

Substituting into (2.3-1), and non-dimensionalizing

or

4.(2.3-2)

Comparing (2.3-2) to (2.2-4), it is seen that terms (b) and (c) in

(2.3-2) differ in the following way from the corresponding ones in

(2.2-4)

(b) here has a factor ( - u ) instead of w
xz y z

2
(c) here has a factor i1 instead of n- "w z

Therefore, with these changes, the equation analogous to (2.2-6) which

describes the meridional vibrations should be

(2.3-31
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So far, quantities neglected have been of order c2 of smallness, or

smaller. Now, in order for the r.h. side of (2.3-3) to be of order

2' we should have

. c -c L

very small compared to quantities assumed to be of order E. If such

is the case, we are left with homogeneous equation

So/ = O (2.3-4)

(2.3-4) differs from (2.2e7) only in that term - Xn of (2.2-7) is

not present.

2.3.2 Solution of the basic equation

After separation of variables and non-dimensionalizing time by

T = wZt , the solution to (2.3-4) will be

n. = ( (S)T(t)

sin sin

in which T. = W.t = wt, and (. satisfies the differential

equation

2 (2.3-5)

As expected, this equation is the same as that obtained in (2.2-8)

for equatorial vibrations provided the substitution of

02 in (2.3-5) is made fo±r( in [2.2-8] (2.3-6)
S.
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Therefore, the method outlined in Section (2.2.2) to solve for w. can

be adopted and followed without any other modification than that speci-

fied by (2.3-6). In fact, program SEARCH DP, which obtains the first

three eigenvalues

W1' 2' 03

given a pair (, o), iteratively solves an equation such as (2.3-5),

(2.3-7)-

in which the coefficient "COEF" is determined as follows:

ase E or Case

E M

COEF = -X(l+w2 ) COEFF = -J2
j j

2.3.3 Orthogonality of the mode shapes

Modes j(5) (j = 1,2...) for meridional vibrations can be proven

to be orthogonal, as in Section (2.2-3), since Equation (2.2-19) holds

equally well in the present case. Thus

boom j kdC = 0 j#k 
(2.3-8)
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and we define, for case M,

m d=f b 2 d > 0 (2.3-9)
2,j def boom 1

m 2,j def bo d (2.3-10)

with 51= Eo + ~*

with the substitution w2 + 2 in (2.2-8) + w2 in (2.3-5), the follow-
s J j

ing relations, valid for meridional vibrations, are deduced straight-

forwardly from Equations (2.2-23) and (2.2-24)

for j#k

Sj S) jj d§=O. (2.3-11)

and for j=k

f ((2.3-12)

It should be noted here that for the same pair of values (X, Co),

if (COEF)J is the value to be given to COEF in (2.3-7), in order for

the determinant (2.2-16) to vanish, then

(COEF)jE = (COEF)j ,M = COEF

or

W2 (X,o) + 1 = o2 (X,5) (2.3-13)
j,E j,M

whereas the modal shapes determined from (2.3-7) with the value

(COEF)j of COEF have to be the same in cases E and M

In (2.3-13), if it is found more convenient to non-dimensionalize
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by a quantity proportional to the ist eigenfrequency of the non-ro-

tating cantilever boom, namely

N* (EI/pk ) 2/2
NR

then (2.3-13) becomes

(WI., () )2 (I
-- =~;ra - , + = ~ 0r (2.3-14)

as illustrated in some examples of Section (2.8)

2.4 Program determining the modal frequencies for equatorial or

meridional vibrations: SEARCH DP.

Program SEARCH DP, listed at the end of the present chapter, is

written in FORTRAN V and implements the developments of Section 2.2 and

2.3.

The calculations are carried out in double precision, which

suffices for values of X up to about 5,000. For higher values of

X, an arbitrary N-precision, scheme had to be used: this is described

in Section 2.7.

2.4.1 Description of the program

Number of statements (including comment cards): about 270

Input: - 1 card giving Q = E or M?; X; Eo in format (Al, F6.5, G5.4)

Output: 1) - A heading, specifying "Equatorial case" or "Meridional

case"

2) -'The values of a "frequency" number" defined as/
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- Lines giving the value of determinant of Equation (2.2-16),

called here FE34 ; the value ofFfr , the value of index U,

number of trials in p before converging to the root of() 
= 0

- Lines labeled KKK number of iterations, giving the successive

values of the determinant as p is changed to obtain convergence

of the determinant to zero. The iteration stops when pk+l

differs from pk by less than 10- 4 .

- A statement that "MU converged" giving the value of FE34 and U.

- A'print-out of FE34, V, X, and NATFRQ, defined as-

WNR

- The value of the step in p, DLT, and the value of the order

of the eigenvalue, j or NOR

3) same for j = 2, 3, in that order.

2.4.2 Schematic flow chart:

The following flow chart schematically describes the main con-

trol flow in SEARCH DP.
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2.4.3 Comments

a) It has been numerically determined
[2- 4] that 100 steps across the

boom's length would suffice, over the range of X and Eo investi-

gated, to obtain eigenvalues agreeing up to the 5 th digit with

those obtained with 200 steps across the boom's length. The

"100-steps" are therefore incorporated as a "fixed" feature

in program SEARCH DP.

b) A method of linear interpolation is used for finding the roots

of (5 ) = 0. The iteration on p(or equivalently the eigenvalue

to be ') stops when two successive values of p, in the itera-

tion process, agree to at least 0.1%.

c) The integration method is a simple Runge-Kutta with fixed step,

having a per step error of the order of Ax5

d) Using double-precision arithmetic, the number of significant

digits retained in the two terms in ) , in Equation 2.2-16,

does not suffice for values of X larger than about 5,000, and

an arbitrary precision package ("NP" - package, N > 0 integer)

had to be developed and is described in Section 2.7.

2.4.4 Listing and sample output

A listing and a sample output of program SEARCH DP are given at

the end of this chapter.
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2.5 Program Determining the Modal Shaptes j and "Masses" ml, j , m2,j:

MODE

MODE is a Fortran-V, double precision program determining the

modal shapes, normalized to unit deflection at the boom's tip,

j4.() j = 1,2,3

which are solutions of Equation 2.3-7, in which

Wj is the jth eigenvalue determined by SEARCH DP

COEF = (COEF)j,E = (COEF)j,M

-2
(COEF)j = 1 + .2

(COEF) =w
(COEFj ,M j ,M

2.5.1 Description of program MODE

Number of statements (including comment cards): 158

Input: - 1 card giving IE - E or M?; j; X; Eo:

v = COEF (to be used in Equation 2.3-7)

in (Al, Il, 3G12.6 format)

Output: 1) - A heading, specifying "Equatorial Case" or "Meri-

dional Case"

2) - The values of j = COEF. (as obtained from SEARCH DP),

X, Eo, j (1, 2 or 3)

- The values of m j  bo d ; m2 (0bo4m d;
boom i boom

2
m . m

- j, mL which are of interest in the dynamicalmi, j mlj
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simulation of the evolution in time of the space-

craft angular rates (Wx, y' , z) and modal coor-

dinates (qj)

- The deflection 0.(Q) as a function of C; I, the

station index, varying from I = 1 (at the root)

I = 101 (at the tip), in steps of 2.

2.5.2 Schematic flow diagram. The main control flow in MODE is

as follows:

I .E EO- ~IT J-

O(2-7I E.
.3),(:.C )MA~4

isl~JIN:E~. Fot '2-

Llf(23-;2

;sEXIT
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2.5.3 Comments

a) The number of steps of integration, experimentally determined to

give values of p agreeing up to the 5th digit when solving the

step size, was found to be 100. As in 2.4.3 and SEARCH DP, the

the 100 steps are a fixed feature incorporated in the program.

b) The method of integration is Runge-Kutta with fixed' step.

c) The calculations are carried out in double-precision, which

should suffice for values'of X of up to 10,000. The data v.,

however, might have had to be determined with the use of "NP"

arbitrary precision package.

2.5.4 Listing and sample output.

A listing and a sample output of program MODE are given at the

end of this chapter.

2.6 Parametric Study of Eigenfrequencies and Modal Shapes as a

Function of X (Etkin's Number) and Co (Non-Dimensional Radius

of the Hub)

Given the design parameters X and 5o, the study of the eigen-

frequencies w.,(which normalized to ws, are noted w., and to

* EI 1/2
mNR = ) , are noted k ) will be made easier by using several

pt9  NR

programs described hereunder.

2.6.1 Preliminary Comment

First of all, it should be emphasized here that there is no

point in comparing mode shapes cj for "E" and "M", since they are

the same solutions to Equation (2.3-7), for COEF = COEFjE = COEFM,

once j has been chosen and X and ., have been given. Any slight
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numerical departure, such as described in Ref. [2-4], 2-5] could only

result from the inaccuracy is determining the eigenfrequency (0.1%

relative accuracy on p, in program SEARCH DP). Only the eigenfre-

quencies wE. 
, WM corresponding to these modal shapes will 

be different.

q ,E j,M

2.6.2 Program computing dynamical parameters, given X,50
: PARAM.

Program PARAM, written in FORTRAN-V, will permit to get 
a quick

look at various relevant dynamical parameters, given Q = E or M, X

and Co, namely

m1,j

m2,j

(m2/ml) j  and j = 1,2,3

(m2/ml) j

and also the sum over one, two, three modes

a quantity to be used later in this work. It will also plot the

mode shapes (up to j = 3) in the computer printout.

The data entered are

oM (j = 1,2,3) obtained from SEARCH DP,

,M case M (NDS = 0)

The program basically computes 4.( ) and

the relevant integrals, ml j , m 2, etc... as defined before.
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A listing and a sample output of program PARAII is given at the

end of this chapter.

2.7 Arbitrary Precision Package: MP (for use on OS) and P (N-

Precision Package), in Fortran.

2.7.1 Motivation

An earlier version of SEARCH DP had been written 2 - 4 ] to alle-

viate a problem of numerical stability at large values of X (higher

than about 5,000). This version used on IBM-library multiple precision

(MP package). It was found, however, that this package was unavailable

in a TSS environment. Therefore, an arbitrary precision package (NP)

was written in Fortran V, and used for finding the eigenvalues w.

at values of X, and the accuracy of determinant Z in Equation (2.2-16)

will be critically affected when taking differences of very large

numbers.

MPAP (Multiple Precision Arithmetic Package) is present in the

Internal Library of the IBM-360. The routine calls on specialized

subroutines to perform floating point calculations with precision

to be specified by the programmer (typically, here, quadruple pre-

cision was required).

MP-SEARCH, as used in Ref. [2-4], and MP-MODE,are thus basically

MPAP versions of SEARCH and MODE. Their one disadvantage, a.s expected,is
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an increased running time, of the order of 1.5 minutes for eigenvalue

(IBM/360). For this reason, it is important that the eigenvalues or

modal quantities of MP-MODE obtained for high X be stored for later

use in the simulation (Option MG1V = 1 in program FLEXAT, see Chapter

5), and that interpolation be used whenever possible.

2.7.3 Multiple precision in TSS: M~-package

Written in FORTRAN for case of conversion to any machine, 
N-PRES

is a multiple-precision arithmetic system for scientific calculation

It may be used on any machine which stores one integer per 
work, where a

word is 1 31 bits long.

2.7.3.1 Short description of the program

2.7.3.1.1 Representable numbers.

Let N, M be integers

2 N 16

All numbers in the program are considered floating point 
constants of

+ N precision, expressed in scientific notation. Thus, for N = 3, or

precision 4N = 12, we could have

.371246875003,10**8371

The exponent must always be an integer, positive, negative 
or zero

and less than or equal to 4 decimal digits long. Thus a number such

as + d d2 '.d60 * 1 0D 1 D2D3D4

2.7.3.1.2 Internal Storage (Multiple-point, floating)

The mantissa is stored 4 digits to a word, in "N" digits.

The exponent takes up the N+1 ..tion (Any 1 ' N 16)
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Example: for M = 3, N = 2

8.4326 x 10 = .84326000 x 105

6.0 x 10 = .6 x 102

represented as

NUMBER 1 NUMBER 2

8 6
4 0 Word 1
3 0
2 0

6 0
0 0 Word 2
0 0
0 0

EXPO+ 0 0
0 0
0 0
5 2

All operations are designed to handle such units, called N-CONS (for

N constant).

2.7.3.1.3 Quick guide to operations and subroutines

Name Subroutine Function (all operating with N cons)

INIT Initialize the N-precision system

INPUT Input

OUTPUT Output

CIN Convert integer to N-CON

CNI Convert N-CON to integer

CFN Convert floating point to N-CON

CNF Convert N-CON to floating point

NABS Mem(Add) - ABS[Mem(Add)]

NPWR Mem(Add) - [Mem(Add)]**P

with P a parameter to NPWR

NSCL Mem(Add) - [Mem(Add)]*l0**S

with S a parameter to NSCL
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Name Subroutine function (all operating with N cons)

NCMPR if Mem(Add 1) = Mem(Add 2), A = B

if Mem(Add 1) > Mem(Add 2), A > B

if Mem(Add 1) < Mem(add 2), A < B

with A, B, parameters to NCMPR

COPY Mem(Add 2) - Mem(Add 1)

RENORMSHIFT Internal use only

PUNCH Output to punch

IMUL Mem(Add) - Mem(Add)*I

I = lintegerl < limit

FDIV Mem(Add) - Mem(Add)/F

F = floating point

MADD Mem(Add 3) - Mem(Add 1) + Mem(Add 2)

MSUB Mem(Add 3) Mem(Add 1) - Mem(Add 2)

MMUL Mem(Add 3) - Mem(Add .1) , Mem(Add 2)

MDIV Mem(Add 3) - Mem(Add 1) / Mem(Add 2)

2.7.3.2 Some examples of N-precision programming

2.7.3.2 Square root

A. Algorithm: Newton-Raphson

Let B = A , with old B = 1

1 A
the B = ( + Old B)

2 Old B

If Abs(Old B - B) > B*10** limit

Old B = B

Else done
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B. Fortran Progarm:

Limit = - 12

Read (5,1)A

1 Format (Fl0.2)

Old B = 1.

2 B = (A/Old B + Old B)/2

X = ABS(Old B-B)

Y = B*10**Limit

If (X, LE. Y) GO TO 3

Old B = B

GO TO 2

3 WRITE (6,4)B,A

4 FORMAT ('.', F10.2, ' IS SQUARE ROOT OF, F10.2)

STOP

END

C. N-Precision Program Comments

IMPLICIT INTEGER (A-Z) (all N-cons.)

CALL INIT(1,4) (16 digits of precision, N=4)

CON V = -12 (limit)'

A= 1

B = 2 (Allocation of variable
names to N-con addresses)

Old = 3

TWO = 4

X= 5

Y= 6

.HALF = 7

CALL Input(A)

Call NSCL(A,1)

CALL CIN(TWO,2) (N-con at address TWO contains
the value 2)
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Call CIN(Old B,l) (N-con. at address 'Old B'
contains the value 1)

Call CFN(HALF,.5) (Half contains 0.5)

Call Output(HALF) (Conversion OK; print
and check)

Call Output(A) (Print input number)

Q = 1 (Iteration Counter)

Call M~DIV(A, OldB,B) (B = A/Old. B)

Call MADD(B,Old B,B) (B = B+Old B)

Call MMUL(B,HALF,B) (B = B*.5)

Call Output(B) (write partial answer)

Call HM (How many subroutines called
so far. Print it out.)

Call MSUB(B,Old B,X) (X = B-Old B)

Call NABS(X) (X = Abs X)

Call COPY (B,Y) (Y - (B))

Call NSCL (Y,CONV.) (Y - (Y)0lO** CONV )

Call NCMPR(X,Y,I,J) (Result:

If X > Y, I > J

X < Y, I < J

X = Y, I = J)

If(I. LE. J) GO TO 2x (IF(ABS(B-Old B).LE.

B*0O**CONV) GO TO 2
Call COPY(B, Old B) (Old B = (B))

GO TO 1

CONTINUE (Done!)

Call HM (How many calls)

(Write out results)

2.7.3.2.2 Conversion of a statement from SEARCH DP
Consider the FORTRAN statement of SEARCH DP:

IF(FE34*DECID) 52, 51, 50 -

The N-PREC. translation would be

CALL MMUL(DECID, FE34, TEMP)

CALL NCMPR(TE24P,ZERO,I,J)

If(I.LT. J) GO TO 52

If(J.EQ. J) GO TO 51

50 CONTINUE
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2.8 Results from programs SEARCH DP, MP and NP

The frequencies w. (normalized to w = 1) for j = 2, are given
3 s

for case M. Those for case E are immediately obtained from

-2 -2
WE,j M, j -

3 m
Also given below is the quantity jE , which will be of special

j=1 ml,j

importance in Chapters 4 and 5. The first non-dimensional frequencyx

wi p24/EI is also represented, for cases E and M, and various

values of Co, on Fig. 2.2.
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CASE M - FIRST NONDIMENSIONAL NATURAL FREQUENCY

0.00 0.10 0.25 0.50

0 3.681 3.703 3.734 3.787

5 1.913 1.953 2.013 2.107

10 1.555 1.605 1.675 1.788

20 1.339 1.395 1.476 1.601

30 1.256 1.316 1.401 1.531

50 1.183 1.246 1.335 1.469

100 1.120 1.186 1.278 1.417

200 1.081 1.148 1.242 1.385

500 1.050 1.118 1.214 1.358

i000 1.034 1.104 1.201 1.346

3000 1.021 1.091 -1.188 1.339

7000 1.016 1.087 1.184 1.329

10000 1.013 1.083 1.181 1.327

NOTE: 5 = - 1

(cE .3.67/8 M12

=0 El i2
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CASE M - SECOND NONDIMENSIONAL NATURAL FREQUENCY W<" 2/(O

0.00 0.10 0.25 0.50

1 22.18 22.20 22.23 22.78

5 10.236 10.276 10.339 10.447

10 7.419 7.476 7.561 7.703

20 5.546 5.624 5.736 5.921

30 4.760 4.849 4.981 5.191

50 4.023 4.128 4.281 4.523

100 3.364 3.488 3.665 3.941

200 2.976 3.113 3.308 3.606

500 2.707 2.855 3.060 3.373

1000 2.603 2.754 2.964 3.282

3000 2.520 2.673 2.886 3.195

7000 2.490 2.644 2.857 3.178

10000 2.482 2.635 2.849 3.171

NOTE: O= (~ 2j - )i/2
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2

2,1 1,1

(oNE NODE)

co 0.00 0.0 0.25 0.50

0 0.3233 0.4190 0.5810 0.9250

I0 0.3249 0.4212 0.5893 0.9325

20 0.3260 0.4231 0.5929 0.9400

30 0.3268 0.4246 0.5957 0.9457

50 0.3280 0.4268 0.5997 0.9538

100 0.3297 0.4301 0.6056 0.9652

200 0.3311 0.4330 0.6111 0.9757

500 0.3323 0.4357 0.6165 0.9861

1000 0.3328 0.4371 0.6194 0.9916

3000 0.3331 0.4385 0.6224 0.9950

10000 0.3332 0.4392 0.6241 1.001

0.3333 0.4433 0.6458 1.0833
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NOND .IN EN S IONAL DYN A iCAL PARP IETR S

SUIt OVER 3 MODES

0.0 0.10 0.25

10 0.3328 0.4401 0.6336

100 0.3329 0.4404 0.6343

1000 0.'1332 0.441.3 o .6366

S= 0.3333 A= 0.4433 A = 0.6458

m2,12/ (ONE ODE)

0.00 0.10 0.25 0.50

0 0.3233 0.4190 0.5810 0.9250

10 0.3249 0.4212 0.5893 0.9325

20 0.3260 0.4231 0.5929 0.9400

30 0.3268 0.4246 0.5957 0.9457

50 0.3280 0.4268 0.5997 0.9538

100 0.3297 0.4301 0.6056 0.9652

200 0.3311 0.4330 0.6111 0.9757

500 0.3323 0.4357 0.6165 0.9861

1000 0.3328 0.4371 0.6194 0.9916

3000 0.3331 0.4385 0.6224 0.9950

10000 0.3332 0.4392 0.6241 1.001

0.3333 0.4433 0.6458 1.0833
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PROGRAM LISTING

AND

SAMPLE OUTPUT

SEARCH DP
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THIS ~ ~ ~ ~ ~ ~ ~ ~ ~~mj PIOk. ID IL[kTH~L G I\U FOR THF ROTATING

4*_C... BOOM IN El TtiiE EOUAf RoI AL OR MF< lj)I ON, FX(F-

I3 ..... . E3 UEC ID t I VAL P Hf P cYuMOO f F'AOMqi rES. IP,) rESHR' P FEPP V t .

3E4P[,(. 1),IA t 3 tC rEAU rLOtCu EOMUL.U IPs[rE3PSCLASLAS tLSS....
4 W1-PP DeilISl0, Sl

4$' . REAL iut NMLAM, NATFR0
INTEGER Iri.)NPZ, II NE#~,rttOKp

1* 20 FOfkNAT(Al,F6.5PG6,.4)

I IF( 0 -E -L-M ) N 0Jj)= 0

1F (uS * Et *u); ' I-Tr U( t 17)
16 FOWMAT(' EjU;TOR IA -CA'SE./) _

17 FORMiAT(' Mc-lr10O4AL CASE'//)

j 21 FORA(H t'LAM.l',F12.6:)3x,'S1o~lD9.5/)__ ______

F-E3 =0uI.

W 0 _ _ _ _

E.PSd=i 0 .**-.14I
4 u c SET NOPT 1, FOFR H~EErStrF li,iTEGRATIUN (TIP TrOROOTU __ _

+1* C
4 3- 4 -!lPT - .T= ~. __ 1 _ _ ____*_

*..C .--NDS, Dlt ECT!Ori C5'41TCH .....

-1- c wriEN i4iDS = t SE-AR Cr FOR~ C0uArOHTAL PUOTS,
N__ = or, SEAKCri FOi ,,iiW m OI

u ~ __ OLTZ1. - -- ----

1ik~U
N_ I N fr100
INTER.-NIN +1 --.---..--.--.---.- . .

-. ANFiko--S0R (LANO ___

.t I TE ((66) AiFRo
60. FOR mik T (I H NFRO hTwM' 19,-() T.~ J.--.---- F- 0.

99 S10.*
__TV AL F E-34

Jj=I

SC CLEAR ARRAYS __ ____ ___ __

Do 31 I1l
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b . K(I) ...
6b* L(I)=O.

,Es 31. P(I)=U.
00 1 1=1F101 --
E34P (I.)=0.
E44tP( 1)=0.

69* E3P (I )=0.

. .. . E r 3. P 1 I )=0..

E:52P(1)=0.
E 4 2P ( 1 ) 0.

7, E31P(1)=0.
E41P(1)=0.

E4(1)=0
7 , 1 3. ( I.).0

H= -. /FLOAI (NINT)

rjc C SET INIIIiL CONDITIONIS ON THE 53 Ad) S4 SOLUTIO!,S

D=3
.. IF(U. ) Lo GO TO 2_

EU=U.
ri* IF( OPT.GT.U) GO TO 12

S0=E2P (1)

Go TO 13
1* E3(I)=I.

-j* EO=E3(1) 
- --

13 CO=0

9 - GO TfO 3
2 AO0=O

CO=0.
90, IF(INOPT.GI.(J)GO TO 14
V E43P() 1.

S C 3P (1)- - -

4 :9 ... GO TO 15
1 _ 14_ E41P(1)=1.

AU=E4P(1)
115 BO=0.

10* EO=U

1+ C bEGIN RUNGA KUTTA I-4TTGki ION
C

1 I* 1 .= 1

., 51= ()

1 5 r( I)TH*A
11-> L(I)=i*t3

S, * ....- 1 . MU N U
119* ( I) *DS.c.) T 0Si :,L(I)=l

! , ' * ~ .. . . . . . .. - - - - - - --.. . . . .. .. . . .. . ... .. . .. ... . . ........ .... .. . ... . ... .. . . . ... .. . . . . ... . . ...... -- - - - - - - --



1* M......UIMU1-1. .. ....
141* 4 P(I)=((1.-S1*SI +2.*blsu*(t.-ST))/2. b-(S1 + iTO)*+MU v E) *LAM*H
i .... . ........ I F ( O PT . Gr 0)... P..( I (.(-S i *S L+2.. J~l . S I o 10) )_/2 - ..... . . .
I* 1+ ( 1 .- b I +S10) A + MUI*E)*L ALI\MH
4* . 1= (NN-1. )*ti . ...... .....

= I=I+1
i' * ............... IF ( I bT 3)_..0 .-TO .6... . ..... ..... ....

SZ=I-1
.1 ...2d ...... E=EU+ K (Z) 2...

A=AU+L(Z)/2.
1 u il+l(z)/2*

iji* C=CO+P(Z)/2.
. ... . .. SI=SI+IH/2. .

GO TO 5
S_ 6 . IF ( I T .r it _. O _._7__

1i- * E=EO+K(3)
1 A* A=AO+L(3)

.I. 51=5SI+H

PI.* 7 IF(ut.L.4) GOTO 9
1 * Sl=INN*H_ ... .. .... .... . .... .. ... ... ... ...N . ... ... ..... .. - - - - ....- - . . -.. .. . ... . . .-.- .. .. -.. .. ... .. ... ... . ........
1 . Z=N+1
1 . E3 (Z) =E3(,)+[ ( 1)+2K*( ()) +2 ,* ()+K U))./6.
. . EalP(Z)=E.'Jl r2)+(L( )+2.*L(2)+2.*L( )+i(4))/6.

I --- . . .. .... u 32P ( Z ). : I 1_.N )+.( , ! .. . ..€ .)+ .2 . .j + ,((. .).)_ !6,........... . ..
,'.( ZE33 ( ) =E33 (N)+(P 1+2. *P 2)++ (4) )/6.
m . . E63 4P (/) =LAM. ( ( 1 +1 ) **2- (5I+S10) **2 ) *E-3,2P (Z) /2•............ .....

I4 1-(SI+IU ) *E 1P(Z)+,UIE5(2) )
...... ........ IF (ijOPT.GT.u) E 34P(L)LA M* (((SIu+i.)** - 11..-SI+510 IO)*.*2 ......... . .

151 I1 *E3LP( Z ) 2 +. (1-SI1+bl0) ,E P(Z) +MIl E (Z) )
1 I. . . . 3( ,_ + 1)
ii AE31 P(N+1)
10 B=E32 (!I.+1)

1, CzE53P ( N+1 )

I iAO=
150\ BO=b
1. -CO=C

11 IF(1.LT.INJTER) GO TO 4
1 EMOM3=E52P ) -..NTER)...

ESHiR3=EJ3P (I N TE,)
1 . . . IF(NO.-T .GI' .u) EMO 3= E3( INT R )

I-- IF(NOPT.GT.U) ESHIR3ZEjtP(INTER)

l 9 SI=NNH
1 Z=N+1

_1_U E4 (Z) E4 (N) + (N (1) -2 *. * (2) +2. * () +. (4) /6.
17i E41PL)=E41P(;*)+(L(1)+*L()+.*L L
1 . E42P ( ) =E4P2P ( ) + (,V ( i) + .*i (2)+2 ,*,(, (+) +M (4) )/6.

1E43P (Z) :EL3P (ii) + (F (I) +2 .*P (2) + .*[ (3) +P(4) )/6. . .
17-, 4 ..... ..... E)4P L(Z) -LA I ( ( (1I U + 1 ) * * 2- ( I+SI ) *2.)_ ! E42P Z)/2. ........... .... ..

I (1- + S ( 1 +bl ) *EI+1P (Z) +M UI E4 ( ) )
, .. . . IF.( 1OPT_. Gr .u ).E414P ( ) Li _ (( ST0+ I .* -. .-_ 51_2 .
S 7I E42P(Z)12•+ ( .-S + I-)-*E-P-(Z)+'Ul.E4(Z))



2-44

SE=E4 (N+1)
17 * AzE41 (N+1)

. . . . B=E42 (N+1)
1 -E43P (N+1)

CAo=_

5 *CO=C.O - 'v -+1. ....

)- 7  IF(N.LT.INTLR) (O TO 4
.. EMOM4E42P(iNrEN)

! '9t-* ESHRi4- E43P ( I NTER )
u --. . _----. IF (NOPT.Gr. U) ErOm4 =FE (INr.ER)

I,* IF(NOPT.GT.u) ESHR4=E4 P(INTE R)

C RUINGA KUTTA FINISHE)
4* C HO W EGIN LINLAR lNfErPOiLATION

* C FE34 15 THE VALUE OF IHL DETER MIMINNT (S3i AND S4)

SC F E34 =MO M.i L3*SHR .- ES HR )* E MOM 4
. IF(.Er.1) .Q60 TO 51

199- IF(U.EO.1) GO TO bO
IF(,'jL 3*tC . I F ( F 2 .t Dr C1 

--) 52 t 3 ,50
211 Sn DECIDz=F34
2U 2 LAS=MU
2* LASS=LAS

, .. RITE .6, 85)FE 4 MUU
2U* 85F i, (IH ' FE3 D2 A5X ' i--;-2-ob'5X U 13)

* =...............U+DL
17;% J=U+l

Gu TO 99
2ub 52 UP=.U

OwNl=Lk SIfi.. . . NL S -.- -- S--. -~--- --- . --- -.-..------

HY=FE4-.
21* TVAL=:FE 6
;2." t51 IF(UBS(FE 4).LE.EPS) GO I'O 53
2i * IF(ABS(UECIU).LE.EPSR) O0 TO 42
2r N:, ITE ( He 8 ) NKK f FE64 PjMU

2 R FORviAT ( i H p I K' K 13t 3x pIFp34 , 2. ,3 , .Iu D 15. 6)

2 IF(FE'4*DECID)55,515b6
21 55 UP'MU

2 i;.* . _ . M =U 4 i-( D.vN.-UP ) *DEC I D/ (DEC I D-FE ) -----
2 KKK=KK +1

EPSC=/JBS(M8S ()-,ARS(LASS))
2 ... IF(LPSC.LTvU1U. *- L)GO TO 10

2Gc 0 '0TO 58

S _. 56 DwNM4U
2 DECID=FE34
•2. Yr =Mi vIUwi- -(D.,N-UP) :DEC 1 D/( DE(: I D-HY)

KKK=K K+1
2I1 EPSC=iABb(i (-IU)-AWS (LA5)S)
2 IF (EPSC.L r I U*U..*-4) 0GO TO ..............

23 :2 LASS=Mil
FF5bS F (FP=AbS(F V)-ARs(FEyo) ~ -...--...

2-i IF (A .-(Fl .GT . 1 . u-ll ) GOT U t2
Sz' ~ IA=1A+1



2 .  . . IF(IA.LIW ) GO TO 82
23/i* WR ITE 6 t. )FE4

o . 8 1- ORMAI (1H..., STUCK.O,' I .. , 12 ... -6 N" 11115-
IA=-OJL: . _ FEPV 0.3-1i* GO TO 51

82... FEPRV-FE34 ... .... .... ................... .

2 (11 Go TO 99
, .. . .WRITE(f.,L )uECID .... .........-.. .

43 FORiAT(1H P'NO GOOD DCilD='PD12. 6 )

Go TO. 53........ ... ........ ........

10 WRIIE(6l11) FE,34l,!IU
. 11 FuRMAT(IHOP 'M. COrqVEREU _FE34= ' D4.1 b,3X p.'MU-' D12 .2. ...

53 NATFRu= iU*SkRT ( LA', )

25.*__ .. .... .. iITE (6,54) FE3L,,iUL /M, AT RW .- ----
S1* 54 F OR MAI ( IHO, ' FE34 2 6' I 5 X ' MU '  -1  b b X 5 ' L A V, 'P F 1. 2 ° 6

_- -*: _1 5X vt N \ T F R ( ) '. E 2X'.E. 6, 12 bX, e----.W-. 1-- .--.-.... .. .. ---.. . . . . . .

253* WRITE(6,8r) DLT,NOR
: _ _ 8 6 I  FORMAT ( 1Ho, .' DLT-' , 9 bXD .--- ,'.NOR--._ 3 .

.

i* IF(NOR.EO.3) GO Tu 57

n ..... _rIJOR=N+1. -..------------
R=O

L .* . . U=. --

4 rKKK=1
2b . .U= + DLT........... M U+DL' ...................---. .. ........-......... -----

1 Go TO 99
:? 57 U 1•0 .6 I.....

2 wR-ITE(6,lOu)
10, FOR .AT('1.) --------................

ib* NOR=1
* . ............ . (KK - . -.. ...... ...... ... ... .......... ... ... ..... " ... .-.-............. .. . . . .... - - .

7 DLTI.

U=1;:e7 u* 6010 l _ .. . .... ... . ....... ................
27u* GOTO -1

22 CALL EXIT
;; END ................-.-.-....... ..----- ---. ..-- . ... --... ..-- ...... ..

il F tH ;,IVAC 110t FORTRtAN V CO.,PILATIO;,i. 0 *)I~GNOSTIC* MESSA E(S)

-i - ------ --.--.
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O'IT.f)1iAL CAcE

io~uonou Slo= .IOU+OOU

F 3 RTr& L A t 3.16228
t -3L. 1ui i+ 0 1. * uodOo-JOS

E, 4 .6o7 5,u+noo WAIJ= .100OUL+001 U=
_ _3 f 6-4- -9t+rO1 Mu 0'Jitjl_

Ff E34 . 1349'73+000 MU .120226-L00l
3 FLt 92 5 69? 5 -001 _Mo .12LP479+UOI

K 4 .E64 .48232-_5-002 M 1.) .125280+UJO1
EK 3_F4 .893275-003.. MU .125L+3o+UOI__

f6 FL, t 6 1652o4-003 MU o156~0

;-IWNVERED F34= It"5264 10 6 82 9 O71666uO6 ftJ= .I.e5+4*+uflI

v 165 ;64-n03 MU= -125469+001 LAM= I odo o J0UOAT)( .39-6769+0 1

nt e3,,52 (1 1 Mt= 9325,469+001 U=
t1119 I 6+o 0 2 IOU= .425469+001 __U= .3
£.12 ub 50+ 0 02 MLJ_ 9525,9+01 U=

I E , 90 NiU .7 2 5 46'+ 00 1 U= f

r__4-375+02 Nl ML, .25469+UO1 __

2 FE5 4 -.3 -).L10+ 0 00 M .7 377 3 b+ UJ0
F 3 i&t - . 7 9 11o; -ou I Mij .740274 +0 1............~.

4 -4. 15 9Lj 2 69 -MIUI ui *74078,)+U01
K P n FL.34-.3177V2-0U2 Mu *7'40oS b+00l

Ij :,ilJz .7409Th) UO1

F.-,-. 3 !7 79 2 -lO2 MiIJ .7t0905+001 L A :Zr 10 OOLJO NATFpo= *23l1295+02

J'.100f001 NOR= 2
i~+.16-o+fio2 iv U B4090b+001 U

E~ .L)6.L'j9+fIU2 WitJ= .94 091S, 0- 1
E .7 iSi b + n o2 'M= 1 U4j91)+(02 U=3

n,, 10 9?3 ~0 3 PA',J = 9114091+002 u) 4
-4 . 1 l bb+i 105 6 Pi1 * 124LJ9i+002 U=~

ivtj . 16 4 o 9 1+t)0 2 U: e,
.?5U;'tJ5+fI03' MZ *J= 1'44o9i.+002 U= 7

'~ L 252~ 03 oiu * 1~u f02 U =__
L2' ~ ~ b16+0'-i)+ i1 491+u,0' 9

!v_4 Ibbbo'7103 miZ * 18 Q oi9 + CjO n 1I h49?15L+002 rvi u. 194o91+u02 U= 12
F:Eu4-.7o8",715+OL2 MO *204091+O002

6 2 t~4 . 722 5 38 + 0 ( M 0 1 -)z~n42?_+ u0;
Kp - - *5193hi2+0(0 N" i.j 199966+00e?.

K - k.4 .668619-Ou1 NI * 199J96+UJO?

C 0:,, VQ /k ELLU FE34= .3681We27834bB/-U01 milzIJ= ) 99Cb+002

3bid9-0 01 ml)= -19999b+(O?2 L AMZ 1o0ounuo NATFqoc= .63'4:39+OP



1 .. 2-47..

.:Ei<DiOiAL CASE

*A.= uooo lOutJuOb UZ

-l! 4 28439e oo *'ll = . 7Ui79+rio U= Ijf -- 130 iIU9+001 IV U=-.) u + 0 . 2 ___ __

1 14409'4+01 Mu .20f()UfO+UO1
p0076Y4 0767:3+00 0 Mi, *1h415)+UO.
3 E 54 ~.i739,52-OUI Mu l-,)9923+u01

I(~~FE .14I0369-002 Muj .flh404+01
hLE.4 e112971-003 Mu .15'44a+uOI

A 1 ONViw&. icA f:--EI= *l12970,qt702, 636517-006 mU= *ho044b+UO1

L.3 + .11297i-1o03 .. I M.UJ *1604 40 +0 LAiM= 1U.uOuOuO NATFrO= .507373+01

.10oi- l jullv NO)R= I
i- -4 9 6 qE i ~5 + f -)044b+( )ll_~~?3 h04 ~tctn~ u

P,4 S 17 14 + 0 U 1 _lWJ= _360LiD+001 U= 2

4 114 - _ 12.3 1 ?- +.oh2U 0 4 ob+001 0_ 1 U=4
E '4 - f.rbrib + (0 1 - iaiz *66~041+b+1o 1 U= s ~ . . . ...

K I r .14 *1hf-ijo3+0ov1 V Li .7 6 0 4 4 +1 o L.-...-..----------- 0 1_--.

FE3,4!,48.714+000_ ML J713776+UO1
K., 17,j5T-OUl MH *7iL7490+0O1
K ~4 64-23769-003 MUi .747b?3+UOI

FE3=-.637394255'L7498172-UO 1I3 i .747 o2)6+UOi

trI7.62-/39r9U1113 M 1=747626+001 - LAM= 10.OOOnuO ATFoh 21=+O
.§I~~~.. .1U U ..... 2 6.. . . . . .2.. . . . . . - - - - -

L .1(10+GUI R~=
E4 6 4-- 6 ++ i02 iv L) .47o2i+(ol---U
.07 J+ 2 o;'= 49

7 ,bo j +_ fl 0 2-.. t- U- - -- -z e c417t)26+001 U=
7,;-A4 .7 r'76u + nh2 (it .1U'47Ef+O 02 U 3

.-*1 1Ul fz - 11476-5+0 02 U= 4

i D- L o 9 +,) MU= .147 76--002 U= 7
EI .194;/+7+03 = * 164166 2 (j =tl .231nol19o3 fqL= o 144166+"102 L)= 7

iLJ .1647b6+002 U= 9
*, 4 J2 1 tJzj+ (U 3 ivi i= 174 76 4-0 2 U= 10
16 1LiUi +110)3 W.LJ= 1b4 Y6',i+0O

9.,3 e Clt16 + (Iu2 iti = .194766+-O2 U 1?
I~ 1 i E 3 4i- 7 6 A 6 5 0 + 0 ) 12 Nid *204 763+-o''o;-:

r 2 FtC- .732Th2+±oul MU0 *1997S*0 02
3 *:iY 5711P%2+0u MU* -20.0242+00,,

jOUjvER','0U FL . : .450b7870441e69167 1-001 mil= .2002L'b+U0 2

34 . .5t o' 7 7 9-n o - Ml .- _iA)U= .2U0245+002 LAki 10.0OUOUO NATFoo= .6332294-02

100+001 rsjo= 3
------------- - -
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PROGRAM LISTING

AND

SAMPLE OUTPUT

MODE
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c', MnDE

C THIS PROGRAM CALCULATES THE MODE SHAPES
GIVEN--THE EIGENVALUFS,LAMBDA, ANr PSI-ZEROI REVERSED INTEGRATION METHO) ONLY. CASE E OR CASE M -SPECIFY ON INPUT

C
i ImPLICIT DOUBLE PRFCISION(A-H,O-Z)

INTEGER D,ZI
DOUBLE PRECISION MULAM,MU.I
DnUBLE PRECISION K(41 ,L(4),M(4),P(, 4 )

DIMENSION EG3( 101),Ec ,4(-n1 . RPT( Inl ),BPT(101
U--- AT A A/LE/-I HE

C NPRl=1 FOR PRINTED OUTPUT/NPRI=O FOQ PUNCHED OUTPUT

READ(rI l80) NPRI
FI1.A FOAT (II)

C AKE SU E MU IS T E CORRECT ONE F R EITHER TH E OR " CASE.
" READ(5S93) IE,JZ LA .*SIO ,MU



93 FORMAT(A/.I1,3G12*6)

RITTE(6 01) IE

101 FOPmAT( I HI 'CASE' 2x ,A I/
-RITE(6, 95) MUILAM,510 JZ

9S F'ORMAT(' MU=',D12*6,' LAM=',DI2 ,6,' STIO ',D120-,' J ',1l2)
NDS= .
N T 0 .!F(LE.EQIE)NDSs1
NINT=100

S HH=1 /FLOAT (NI NT)

S.... TER=N INT+1I

H=HH
ANFRQ=DSORT(LAM)

W R TE(6, )ANFRQ
. _... .E ..MAT ( ANFREQ='DO .5)_

r)3 iC.

EO=1*

E=1*
AOO0
RCr=O,

C=O0
- Ev=..... v=1.

Er.3(1)=1.

C 0=3 INTEGRATION

S 17 - -NT-- E-GR ---- --ON - . -- -.-- -- -----..--------- ------- ---
D=3
N= 1
I=I

SN =FLOAT (N)
S = ( NN-I * )HH

K( I =H*A
L( I)=H
M(.(_I ).=H * C
MUI=MU*'U+I

- - IF(NDS*EQI )GOTO 4o"1.. -- NDm MU I = GUO I - I. . ..----- - ---.. ..---------------.--...... . . ...

0 Pl=-(SIsSI)12*

A...*.. P= A ( !(5 - [ )+ 1 )
P'=E'MUI

P.t.).=h*LAM.(P +Pl+P3. . .....

S*I=( NN- I • *HH

I~ F (I ~ G T * 3 GT --- - ---- --.- ~ - -- - ------ . --------------.- -------- --------- -IF(IGT*3)GOTO 61

E=EO+K(ZI )/2*

__..A=AO+L (Z I )/2*
B=RO+M(ZI)/2.

C=-CO* P(ZI)/2

SI=SI H/2I +...

- -..G .r.TO 5
IF(I-.GT*4 GOTO 7

.E K (3)+EO
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B = B' 0 + M ( 3 ____ _____ _____ ____

G(ITO 5

m Ev20EV2+ (M(I ) +m ( '4 )+2. Cm ( 2 +(3)) /6*
EV30EV3+CPC1)+PC(fl+2..CP(2)+PC3))),/6a __ _

Pt =-S IOS 1/2.
pI=((Slo+,*)*S,+Pl*,v 2

- P3=.CSIO-sI.1 * I EVI

A~ E V _

B=EV 2 .

c RUNIGA KUTTA FINIsHFD

.!F(DEQ*.)rT+ 70.-

-E 6 3 (N) E V
GrnT0 71 _

0 E e~(N I 4 E v,
II FCNLT.INTER ) OTo 4

I FCDE . 4 )C0T0 9
Em Om 3=E V.

--I.. RESET FOR D=14 I NTEGRA TIOU .---------------

0 14

-3..ASE) D=4 I.C,

E =

B 0
EV=Oo
EV200,

-- GOT0 14

9 EmOM4=EV
ALF-EMOM 3/EMOM4 ___

0 72- C-lp=,IJ

_L L010 2
-L I .--- -- -- - - -. ---...-- . --.---.---- -
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Ba P T (LL } '-EG 3 ( LB ) " ALF *EG-q ( L )
72 CONTINUE

BET=BBPT(101)
[] DO 73 LC=I , I101

BPT(LC)=BBPT(LC)/BET
73 CONTI NUE ..

SM=0*0DO
k o . 6_.. 2, .=

St=SM+(BPT(1 )+BPT( 1 ))/2*((FLOAT I )- 5 ioHH+5 O) HH

. 1 -- _.CONTINUE-
Af.2=5M

218 =-OD - ------.

DO 218 1=2,101
S i!. t( q T ( pY} i P T I ?J.A T (.L ?..Q L 0 _ _H

21 CONTINUE

AM II=SM
i COR=AM2*AM2/A M I

VRITE( 6 ,74) AMI ,A412.Si-OT,COR
_RMA T ' *D 15.6 3As15 1 *6_

1 3 x * '2*2/1 HI= ,1SI6
IF NPRI) 18,181,182 .. .....

S1R2 CONT INUE
.RITE(6 76) (BPT(I ,I l) "2)

GO TO 75
81. _ PU.C _. H 77 , E T.!) _I= .L O I , 2)

35 CONrTINUE
76 .FOfMAT( BPT =  D 12.6 s3X 1 t 13
77 FOfimAT(GlIIS)

STOP
i END

P ATION: NO DIAGNOSTICS*........................It -- .- --.----.--- -

.II -. .. .. ... •.--. . -....- ---..-.. . .......-..--.. ...---.......-- --....--... ....... ------.

1- .--

1 .- -.----- - - - -- . - -..--..- - . --.- - - - . - - . . - - .

- -- .



CASE E

S MU E . ..2.O2.q 5s+.02. .AM iQ0 O .... 002 ~I .. i....10 O.100...On 0 0 3 .J . .
ANFREQ=.31623+001
MI= *?9i8946+000 . 2= 282874-001- M2/MI =  136 2 8+000

BPT =  *88S178"015 I I
BPT =  *110301-001 1= 3

bPT =  ,*3n495- 01 I 5.... bPT . 9" 0 .i M2 *2/MI- 03 21 4 24-002
bPT= *9 2 0902001 1= 7 2 2
BPT= 1542549+000 I= 9

bPT =  *225733+000 1= 11
BPT= *302842+000 I= 13

BPT *382053+00 O . I 15
BPT =  *461035*nO00 I= 17

8PT =  *533701+000 I= 19

BPT =  960n246+000 I=  21

BPT =  *657190+000 I= 23

BPT= *702417+000 I= 25

BPT =  *734203+000 I=  27

BPT =  *751246+000 I= 29

BPT= *752680+000 1= 31
BPT =  *73 089 000 I= 33 .-... ..

BPT =  *707505+00n 1= 3;

bPT =  *661400+000 s1 37

BPT =  *60.672+000 I= 39

BPT =  *52A613+000 1= 41
bPT= *44877+000 1= '~

BPT =  *345438+000 I= I 4

SPT =  *297535+000 1= 47

BPT =  *13q621+000 I= '9
BPT =  *243010"001 I=  51

6PT =  -*857352"001 . . 53
BPT = -*197775+000 I =  55

BPT = -'294150+000 = 57

bPT= -e387303+000 I= 50

BPT = '9469844+000 I 61 .

BPT = -'539613+000 I= 63

BPT = -*59q726+nOn _-. 6 5
BPT= -*633625+000 I =  67

6PT =  -655r103+000 1 69 - -

BPT = -'659338+000 I=  71

BPT = *642905000 1 73

bPT = -,604779+000 I=  7;

BPT = - 55t327+000 I=  77

BPT = -s'48292+00 I= 79

BPT =  -' 399758+000 1 = 81 ...

BPT = -*2 9 11-*+00 0 1=  83

bPT = -*187998+000 1= 85

8PT = -*562353-001 1= 87

BPT =  *802290"00 1=  89

BPT= *224411009 1= 91

BPT =  *374373+000 I= 93

tPT =  *52R312+000 1= 95

BPT =  *6846;5+0(00 I= 97
BPT =  *842156+000 1= 99

.PT= IOnOO0O+001 I= 10
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PROGRAM LISTING

AND

SAMPLE OUTPUT

PARAM
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rEST OF SURO N r AW

INTEGE~R~ PLOY S

kFAL LA'i

QUL PRCII4 MU 0 9 3

Q.~mmi /N1NE/K9J)T

CoAMN/G.RAF /PLA5s- 
.

S.READ(,21 ~ 1) AV LA P -1OT.

CALL S If rSIf. CALDTUnMINJS A A
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C 14t 1 ODE) IS ENTERED Ilt COMMON

S CO"4 ON/0 E/LA ',S I O
C i Mr0 /T )/E:3/ MU

C,0 " MON/F I V-/NAuIX2 , AUX 1
C n i ON/N I ,!E/ O DOF

CO, JON/GRAF /PL F'S

SEAL 'N N LAAM
S1NTEFG9R I, ,'J,Z,Ni T, IT 'TTERPLoTS
DIFNi o.I OIJTP T(23) / MU (3)
DOUtr L E PR.i.C 1 5I I i P i ,k(l ),,iM( '4 ,L (4 ,E3( (101) I E3 Ip (1 i 1 E 32P( 1 )
E M 3 E MO i AL , FA 13 TA, MM X3 101 ) ,r MM ( ) T ( I 1 01) PT(I q )IiE33P i '!) ,E3lP( 31 ) ,E 1,1) ,E IP( 1 ) ,E 2P( l l) ,E 3P( .l)

I Ef3P I( O ) A ., i,C E tAO ( O CO, O ,M l(3 jl I .3 S 1O,s
O u3 0BLFE P FC SION AM 1- (q) AM2( 4 SM

NAiX21S A PLOT CONTFNO0L PARAE-TER
C ND'=0 FOR MERI D IONAL CASF/Ni)S=I FOR EQUATORIAL C.SE

NA x2= 1 '1
I TEL6 , 347) L I S

"- t7 FO RMAT ( H], pAR. PLOT=' ,AA//)3;' 7 0 A T I A L

.J ,S =O

NI T 1=
0

I TER=NINr+ !

N ' 1ODg= = ,

i= 1 / FL O A T I 1 i 7T

SC LEAR ARRAYS

00 31 I= ,'1

I K(I)= *

L( i )=0"
l ( I ) = 0 *

3 P( 1)=
DE 1 = ,I01

- 3p (I)= .
E3: ( 1 =0,

L 31P I

E'4;P I =0.

I L I )=0*
S E3(4 1 =

.T I S SECTI')N co iPUTj S T H F I RST MODE (..H 'APE AND TjD ' THE ,OnE sHAPE
PARA T.-TES : .i . :I I2 FOR CASE .

I F i 'F * ) so r0 . 2

L3o O oi
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IF NOP T GTe )  G0 TO 12

E' P 2 (i ) I=1.
d8E 3 2P( 1)

60 TO 13
12 I3(1) = 1

.O r= 3 (1)

13 Co=l

GO TO 3

2 A0.flAO=O,

{ 0=0'

IF(NPI .GT.7),G TO !4

E93p(I)=1.CO=E 3P (1)

"0 TO I5
l Eq r( I )=l .

AO=ElJP( I)
15 80=0oEO= *

E 0 0

I"= : C

N=
il= (N

L I=1 3
SK( ):H*A

L(I )=i*'41

M I = 1 D C M i. a a. ;. ..i .U C .3 . ..

IF(rOS.E,.1I GO TO '0

MU =MUI-lI
I P I =( ( 1.-SI*s t2*lIi + 2 t,-SI))/2 *' * (SI+S10) *A+MiU I IE) L.M ay

IFpi..PT.GT . ) P( I)=r (-S SI+2o5S.51 ,.+STO))/2, •

I ( i .- S I + ' I ) A 4A + 1 E) I .A :1 .

SI = NN I )*H
I=1+1
IF(IGT 3) O T3 6

Z=I-1

E=Lo +K(Z)/2.
A=Ao*+LZ)/2.
A= + L ( Z )/2

C=C +. P (Z) /2
S51 I +1H/2.

GO TO 5
6 IF(Il GT,-) GO r 7

E = ,' + K C 3 )
A= O+L (3)
b = 0 + (3)

C=Co+P(3)

SI-I+H
Gn TO 5

7 IFI .FQ 4) G TO 9
S I= N eH

L3(Z)=E3(N)+(K I )+2.*k(2)+2., (3)+K(4))/6

L31P(Z)=E31P(I N+ (L(I)+ L(2)+2 L( )+L( ))/.,
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E321'(Z): E32P (N)+( ( 1 ) 2) M(2)+2. M( .) ( ) )/6
E33Pi( Z)=E33P( +)+(P(1)+ 2 p2 +2,op(,)+P L) )/6
E3 P(Z )=L AMo ( S + I O + I ) 2-(SI 1 ) 2) E32P( )/2
l"(S1+SIO) E31 ('.')+Mi 1l 3(z) )

IF(jOrPT To E 3q P(2)=LA ((( IO+ ,, e*2-( IS+510) O 21
I E 32P(Z)I /2.+(I1 -SI+, ) E3 1P( )+ MU 1 E 3(Z )
E=E3(N+ I
A=.3 1 P(N )

b=V 32P(N ) )
C=-33(N+ 1 )
EO=E
AO=

b 0=
CO=C

N = N +1

IF N Li T , INTER) R G Q T q
EMO1 3=E32P(INTER)

IF( ?OPi *GT *2) E O0M3=E3(INTER)
DO 30 I=I,INTER

3 n MMx3(1)=E3( )

GO TO 3
9 S= I t'iN aH

Z= + 1

Eq(Z =E q(N )+ l ( 2 ) .* (2)+ 2 K (3 +K ))/
EqlP Z)=Eqp ( (L(1 )+2 cL(2)+2. L )+L('i )/6,
E92P lZ )=ES2P ,,,! ( I +2*, M(2)+2* NM(3)+ ( ))/6...
E43P Z)=Eq3p 4 +(P( )+2 P(2) +2. P( )+p(q ) /6.
Eq p(Z)=LAM ( S 1 +lo 00 21(5 +5 10) ,2) E"2P(Z /2,
l ( l S10) E IP, ) I uI E4l (Z))
IFi-.jPT*GT. E SP( )=LAMo(((SI0+i . *2( 1.-S + O)51 2)

I E 2P IZ /2.+(1 -SI +s 10) EI ( 7)+ U E ( ))
E=F4(N+1 )

A=E91P(N+1)

C=F13;p N+1)C 3 = r.

AO =A

80=B
CO=C
N=I+ l

IF(N LT.I NTFR) GO To
EMr =1 q 2 P (INTER)

IF ('OPT° GT i
* ) E 10Ml =E ( I NTER)

00 32 l=1,INTER

32 M 'iq( )=E -( I)
AL: A=EMOM3/FMO.)M4

BETA=4-MX3 ( 1 ) ALF A ,I Xq ( 101
IF(NOPT'.GT.0) ETA= M3( 1 )-AL.AA.M IX,( i
DO 102 L =1,101
LI_=LB

IF( 0 P T G T ) LL=102 1..R
2 BPT I LLo! E =(M iX3(LB)-ALFAoM.XLq (LB ) /BETA

00 512 Li=1 , 10
AUxI= PT ( LB , MO D
IF(LOIS~.1 o'YE ) CA.LL PLOT

2 C T INUL
SN =0.
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U0  216 I=2,101

216 SMi=Si + BPT( , Or.E), I;Pr (I -1 , O E ) ) /2.0 ((FLOAT(1)i . S) H+S IO) H
AM7 ( ODE)=S m
SM =L o

DO 218 I=2,101
21 S M + ( =S PT I iOD)l PP i ( I 14 ) +i3PT( -I N1 MODE) * PT( I- 1 , 4 C ) )/2 *H

A 1 (M OUESM
i CON I I N U E

C

3 , END OF I-MODE SHAPE AND MCO:E PARA ~.ETER rALCUL..ATION
C

OUTPUT( 1 )=S10

OUTPUT( 2 )=L,;1
OUTPUi ( 3 ) =Mj( 1)
O 1TPJUT( 4 )= (2)

OUTPUT( 5 )P= U(3)
MU (1) =SQRT(OUTP UT ( 3) i UTPUT(3 -I )
tu(2) =SRT(oUTPuT( 4), UrPUT( ). )

Z s(3)=S RT(OU o UT 5) .)UTPUT (C..)-l )
OUTPUT( 6 ) A.il 1-
UUTPUT( 7)=AMI 2)
OUTPUT( 8)=AMI 3)
OUTPUT( 9)=A'M2( )
OUTPUT 0 )=AM2 2)
OUTPUT( 11 =A.; 2(3)
OUTPUT (12)= AM2 (1) /A. l
OUTPUT (13) =AMi (2)/A, 1(2)
OUTPUT (1 ) =AM2 3) /A-1 (3)
OUTjPUT 1 5 ) =OUTPUT( 12 A 2( 1
Ou rPUT 16UT 1 T =(13 OUIPa 2 (2)
OUTrPUTF U 17 )=OUT PUT I 1 ) M2 (3)
OUTPUT(1 I=OUTUTT( 12
OUTPUT(19)=, OUT PtT i( j )+Ou'TPUT(13)
OiJ fpUT (2 ) = OU PUT( I +nUTPU T( 14)
OUTPUT 21) =UTPIUT I .
O1ITrUT 2(2 ) =UUTPUT (21 +cU IPUT ( JA)

OUTPUT (23) dTPUT( 22 +C. UTPUT (17
v RI TE( 9 1) UUTPUT

CDI FORM AI ( I HI , * K Sl-7 F: R , .F .. , o . ,. .... . , o F 3/1H 9 LAM 11DA., °B80' '"°* *' . oo,°.' F6"0////,IH .'U',i lH','S ARE FOr CASE M'
C/t i NtU i ***,,+*,oo .. , . O.,, .. . * ',F8*9/1! o'-.UM 2**° ,*.* * ° oo .°*
DF.j'''....4','F /IH 1Ui 3 2 ° [.a'°0 e'...'.'0 .. ,. .S, /,1 H 

f,

jE//// H ,/' I MODE . . ... ... M E i R/. ., MO, E 2
F * '12 V*R M F I. lH , 1.. M. D. E 3 *F o*/ * .* M2 ,,V. *,. *,FI 8 MO
('/l" // /1H , 'M 2 MonE I o,,

1 -, ' 2 # O ,E 3o a. , o, ,,, . . 2**1.' l 1 8/ H
JF 1.Z/b 1 p. rF1 ~ ///1 H , :.2 OVE.. t I  OD.E *I oo ,,. *o ' FI I l 8
K/l. ,'M2 OVER M Mnt 2,o**0 * , *° .' FIl*A/!, ,M2 OVER M MODE

+/I " 1 '12 SQtA E OVFR VI MO E I , ° . ,FI I 1 8/IH , M2 SQ iA;E D  0VER M
NI OOE 2* ,.*'sF I M0/18 o M2  QUARE, OVER M I mO)E 3 o a°o ' F I I a /lH

/ // IlH , SUM OVE R  I MODE 0

( ,'SUM OVER 3 MOCES OF M2/HI o, °- ' r. 1.9/1H ,
/// IP *'S:M OVER I ODE OF [2.I 2 / 1.l . ~'-F le6/ H

5 ,9 sUN OVER 2 MODES OF M2 M2/~1. ,OSUN OVER 3 MOFLS or
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Tpi2'/~/N1 I* I . 8/1 ,////)

R I ( 2 ) ( Z ( I I ,3
5n12 FO!,MA( IH I'MIEl * * o *o0 s o f , e* oi F i 4/ H 

t'MUE2* o.o, o.eo.., .. oo ,,.oo.*,F s.J / ,

RET URN
END

idIL AT ION: NO DI AGNOSi I Cs



2-61

19 35:0,,,AN V LEVEl 2206 0026 (EX C8 LE E E1201 11 19:35:0)

3 DONE r O' :, 06 SEP 72 AT 19:35:03

St ENTR Y POF NT 0 03 q 1

ICODEI1 ?347; D,TA(O 000f. 2 5 BLf:NK COMi4N (2) OOCtir n ...........

SI; 0 ......

-ES (LL (K NA ME

I
T BL K IYPE' , RELATIv E LOCATIO.i, IA'lr : )

L OCI 000i013 1210 CCi n00 i02 14iF Onl 00 0 3 20 I l !
164r, C01 .01 31 171G O01 p0013 7  177G f0r l 000022 2r ,

0 0001 100025 2-73 I 00213 230G (0 1 00022 2 :ISG
O!CO0 3OC 3q7 'F OriO0 ,003 70 7F 0000 n00 377 9F iA 0Ci0 R 3'DC323 Ap o00 R 0~ 03 4 A 00 0 R no0033 H.A K

D T CC3 0;(303 GA4A InO 0 0 ) 001l 11r..P 00 0 I FoO : 0 00342 11 0K;! 0 ? RC3 i U 0 0l 0 A 0 L.AM 000 0 ll 0 1 L I E. 00 [0 R r! f O 00 AX
1MODF 0000 I roo3 6 f,!1 OnO. I o-00001 N nO I r003 NI OP Y 0C00 R 000157 SAVE Of3 O .00003 Slo un0O R 0033 510R 0

SU O T i j I NE PL OT
THIS SUjBROUTI E PLOTS MUTAT IO, AhGLr VS N
CO 'f!ON/O ;E/LAN, SIO,GA.AP ,PKX, PKY
CO .rtN/i F I VE/i - r N, CA
C 0 I; ON / i ] E / M : (' D F.
DO!!PLE PREC ISION Sli
R E,, L_ ' X, L A!,!, L I NE F
Ul'ENSIO!. SAVE(0I IO L L E(I 1 l)-I . A -(.5 ) A(-) A. )
DATA BLANK.iSTAR ,IO l /1 i !Ho* I l l.. i

IF(I ,E. 1 GO TO 2

NI= (MK+I50)/10C
N0 I J = , c0

SAVE(J )=0.
Jl =0

11 = 10.

1 nF=S IO 0
IF( ./NI 1.11*WE.N) GO T- 3
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JI=Ji +1
SAVE(Jl)=CA

I Fi(n S(C il G HAX) AX=A S(CA)
3 IF INoNE.*IK) RETURN t

WRITE (6 ,)S FORMAT( PLOT OFT 0F M'DESHAP E FOR' )

V'R I T 1 ( 6, 9C )L A;, I (R , M rt oE
95 FOfB HAT( 1 'L , L.!,j3A= , ,i ,O /iH , '5 -7ERO=' ,F 2, H11 ,'tlcDF= , 2///

3 A 1 = AX/S ,
UO 6 !1=l,5

A N( 11)=-Al( 6 *-10*

6 Ap(6-II)=-AN(f I3 I1=0

SI TE (6,7) A , I I AP
7 F o rAi ( H ,1 X, (F6.2o ,'4X ) ,3x I ,1 2X ,r (5X F ,2))

SO 8 Ji= , 1 10
L I F ( JI ) = LA"NK

8 IF( (Ji+' I )/1i I EQ. ) L.Ii (J I =STAR
S iRI1E(, ?9) LINE

For1AT (I1H I2X 1llOA I)
DLO 10 Jl =1 11 C

10 L ITE(Jl )=STAR

Do 0R I IE6 , LI C
D0 11 J = I ,1li

11 L iN ( J I) =HLANK

0U 13 KI=1, 100
l = SAVE (K 1 )/A1+56 S

IF i K / 1 NIOo NE K 1) GO0 O 12
L IF(55) =STAR

12 LIiFE(JI )=oOT

WR T (6,9) L.IJ C
SF(KI/Ir*IO.NEoKl) GO TO 15
IF(JI.* GE 5 .A4,, ,Jl .E.54) GO 10 15

I k,"R TE(6, . ) M11

1 F WAT( H+ IX I
15 LI E(JI ) = t.. K
13 L I F ( ' ~ A L

R E T IU R

EINTN

iILAT N NIo r C ) DIAGN OSTIC,



2-63

PLOT OF MiOE-SH\Pv FOR

L A M DA ,  
10o

SI-ZL RO= .10 
--

iO 0 = 1

O0 "*20 0 .20 ,O *60 6n I*,
* **~I rr - '- ~~^" -- a a

10* *

*

e9

p

209

I -I . . . . . " . . . ..-.

*5

4.

,i0

ce

9 p

*

0

0 •

* 9

---- -- --.---- - -

9o

**

S

* p

30**
'  

*

e

*' 9

**

Se

4 5

0

FI rlT MODE



2-64
o

0 .

0 0

ee
* 9*

~e

e e

600

oo

0

o0

0 
S

e

e
0 

0

60os

a

* 0

700

** 
a

o

*

6

O

e S

SS

0

ee

e*

**

9 9 9

O 0

T (

0 
5o

0 
5

0 
9

a

8

0 0 ]0

eS

8. 
..

1 IPST UD COTINE

FTS OE(CNIUD



2-65
PLUT O(F IIDAI)ESHAP E  FOfj
LAM ) A =  1 ,
S l - Z E. O = . 1 0 . -. .. .. -.. -. . . . . . . . . . ..

tiO(.E= 2

- D -" 0 "20 0 ,2r , 0 O60 .0O

2, 0 
0

9

3 0

0 * '
9 0

9 *

'0*

*

0

9 *



* 9-

*8

* *9

1; .... ..... . .. - 2- 60

7

* 9

*(3*

*

e@

e4

,) 9

* 8

9e

* *

0 ***

* *

* *

, 70 '*

te

0 *
* *

9 9

* *

o

0*

9 9

9 9

e

0**

S O

@*

9 3

9 0

90* °

8 0

*

8 (1 0

S COTD OE (COTINUET)



2-67

PLor OF r'Ir~ursHAPo FO1-~

SI-ZERO= .10
MC~DE= 3

0 *2ri ,qo .6U o~d1

* 9

4~*~ : ~ 0 0 0 0 0 0* 0 9 9 090 9 ~ 0~ 0* o ~ ft ~ ft 000 ~, 0 0 ~ ft * *0 s ft ft ft o ft ft~ e ~ e * u

0

*

*0

4.

9 0

* 0

* 0

* 0

*

I Ofto 0

ft 0

9 9

* 0

-ft 0

* 0

* 0

ft 0

* 0

*

0

* 0

9 0

ft 0

* 0

*

* 0

* 0

* 0

9 S

3O~~
* 0

* 0

* 0

*
0

9 0

ft 0

9
0

* 0

e 0

* 0

* 0

ft 0

ft - 0

* 0

0 0

9

0 * TJITThD MODE



2-6 8

0

5000
O

* 0

eU
* *

*0

*0

a *

600

700

hDe

80*

ee

aa

*
O

o

e

9* 0
a

ee

* 0

e

7oO

I900
* *

* *

o 0

9 *

*r *

P

r

*r 0

p *

0o TO

4

0

00"

THTID P"O)~~COJTNIJIS



2-69

KSIZER% o o *,*,*, *o ,. o,, °*OG
LAMBDAe. ... . ,.I0, ' . *. ° .°.o o .  IJ .
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CHAPTER 3

Application to Some Problems of Satellite Dynamics

The present chapter considers the use that can be made of the

results of the previous chapter in some problems of interest in

[3-1]
satellite dynamics[ . A first field of application is in studying

the nutational divergence of a satellite equipped with flexible appen-

aages, but this is the topic of Chapter 4 and 5. We shall be con-

sidering here some other problems, such as the simulation of free

oscillations, thermal flutter and variation of the spin rate due to

the booms motion.

3.1 Simulation of free oscillations

3.1.1 Generalities

In a motion of type E (equatorial) or M (meridional), the free

oscillations can be simulated in the following manner. Given N modes,

.(S), l = i,....N, with associated frequencies w., and given an ini-
J J

dim
tial distribution of displacements and velocities (t =diml/ws

the displacement is written as a sum of modes

Then

As an example, Figures 3.1 and 3.2 are meant to illustrate that
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starting with an initial shape identical to the first mode at = 10,

Co = 0.1, with no initial velocities, the stationarywave which exists

in this case cannot be maintained if is changed to 100. Not only

has the frequency changed appreciably (T, is the period of the first

mode oscillation for X = 10, 5o = 0.1), but the second mode is present

to an appreciable extent.

3.1.2 Application to Satellite UK-4

From data received through NASA GSFC on satellite UK-4, we com-

puted the eigenfrequencies and modal shapes for satellite UK-4. This

satellite has the following physical characteristics:

UK-4 Computations

Ws 30 rpm; 15 rpm; 6 rpm.

p 0.00058 lb mass/in

5.8 x 10
= 2.54 x 102 x .45359 kg/m

= 1.036 x10 k-2 /m1.036 xlO kg/in
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El = 103 lbf Ic in 2

= 103 x 4.448 newton in2

= 103 x 4.448 x 2.542 x 10-4 newton m2

= 2.869 newton -m2

x = 11.6 inches

2 = 276.inches = 7.01 m

to =- = .042

Izh = 18.348 slug ft
2

1 slug = 14.5938 kg mass

Izh = 14.348 x 32.1741 x .4539 kg ft2

= 24.876 kgm2

Ixh = 17.41 slug ft
2

Iyh = 16.54 slug ft2

ETKIN'S NUMBER: w2 P=
s El

- 30 x 2r 2 -2 (7.01)4

30 rpm 60 2.869

= (3.141592)2 x 1.036 x 10 - 2 x 7.014 /2.869

= 86.06
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5r30rpm ) 86.06 21.515
15rpm 30rpm 4

=  86.06
6rpm 25

Data for programs:

X -= 1; 3.44; 10; 16.8; 21.515; 50; 86.06; 100

S= .042

I: determined from
P

(h zh 1/2 z
[(-- - 1) (--- - 1)] = ----

xh yh Ip

giving

zh-- = 1.0767
I
p

Results (see graphs)

Graph 1: Resonance on thermal flutter at / = .4 or X = 16., i.e. at spin rate

s = wl,rot 1.35 rad/sec = 12.9 rpm

Graph 2 : Mode shapes

ws=6;15;30 r.p.m.s
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SATELLITE UK4: ATTITUDE STABILITY

Table I: Case M

w(rpm) 6 10.2 13.25 15 22.8 30 32.3

A 3.44 10.0 16.8 21.515 50 86.06 100.0

1.84 3.162 4.1 4.64 7.07 9.28 10.0

Enl 4.08 4.98 5.76 6.24 8.56 10.75 11.48

Wn1 1.38 1.685 1.945 2.11 2.895 3.63 3.88

Table II: Case E

w(rpm) 3.23 6.0' 10.2 13.25 15 22.8 30 32.3

1.0 3.44 10.0 16.8 21.515 50 86.06 100.0

, 1.0 1.84 3.162 4.1 4.64 7.07 9.28 10.0

n/P~ /El I 3.55 3.64 3.85 4.05 4.18 4.82 5.44 5.64

Wnl(Hz) 1.2 1.23 1.30 1.37 1.415 1.63 1.84 1.905.

/p=ikEI /18.715 = 2.96

Resonance on Thermal Flutter at - = 4.00, = 16.0

w = = 4.0/2.96 = 1.35(HIz)

= 12.90 rpm.

K > 1 No posigrade resonance Var. of spin rate for 10% defI.p
No nutational instability .57% 30 RPM

.785% 15 RPM
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Fig. 3.3 represents the first mode of vibration for the three

values of the spin rate being contemplated. Centrifugal effects are

noted as Etkin's number X is increased.

3.2 Resonant thermal flutter

3.2.1 Determination of resonant frequency

It has been shown by Etkins and Hughes 3- 2] that assuming a

relatively simple model for the boom's thermal curvature LTO (inde-

pendent of 4) due to the sun's heat input during the spinning motion,

the steady-state oscillation of the booms would be described by

In order to find for which spin rate ws the motion will diverge (have

an amplitude tending to infinity), these authors solved equation

for boundary conditions,

E(O) = 0 E'(O) = 0 E"(0) = RT E"'(0) 0

and v:ry X until very large values of D(l) are observed. The analysis

was limited to satellites of zero radius.

An alternative approach was proposed[3-1], which is recalled

here. If in Equation (2.2- 8), we let wl tend continuously to As along

the eigenfrequencies curves l(X, co); t'he spatial part of a solution

to Equation (2.2-7 ), normalized to unity at the tip, satisfies b.c.

() = 0 '(o) "( ) = o  ) = 0

In order to also admit boundary conditions 0,0 for the zeroth and first
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derivatives at = 0,tTO, 0 for the second the third derivatives at

= 1, 4(X, Co) should be scaled up by an infinite factor, i.e., the

amplitude at the tip tends to infinity. Thus, resonance on thermal

flutter will correspond to the intersection of the curve, for given

with the bisectrix of the first quadrant (Fig. 3.4)

No thermal flutter resonance can occur for

s) second or higher modes

as is shown on Fig.2 .2.

3.2.2 Application to UK-4

Using the above data for UK-4, the thermal flutter resonance

point was found at (Fig. 3.5)

X 16, (D0 0.042)

and for the physical characteristics of the satellite, this translates

to

0 35/hr: /2. Y0 'r..4

a spin rate to be avoided for steady-state operation.

3.3 Variation of the spin rate due to the free oscillations

3.3.1 Method of calculation

It is often of interest to satellite users to know what amount

of spin rate variation can be expected, due to the vibrations of
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the boom. The equatorial vibrations will cause a very slight varia-

tion of the spin rate described by

where T is a torque due to the moment at the oot of t boom and to

the she .r force acting through the central hub radius. This is de-

scribed in non-dimensional form by (t-w*t)

- L

or, after integration, and with r df Ihub
hub

rw f (3.3-1)

in which T is the value of T maximizing the integral. This value

can be obtained using a program such as SIM, which is listed at the

end of this chapter.

3.3.2 Application to UK-4

Using the above data for satellite UK-4, the maximum variation

of the spin rate for an assumed 10% deflection of the boom was de-

termined to be

0.57% at s = 30 r.p.m.

0.755% at w = 15 r.p.m.
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PROGRAM SIM

LISTING
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SDUP E730MR18, ,PINT,I B C D

F'--- SM--FOR SIM
SUf ROUTINE SIM(NDS) --

ID 1 OJc TBE-PREC- S!ION MUW X NOS YNO ..

REAL NU
INTEGER SAM

C S M.

C THIS PROGRAM COMPU[ES THE DISPLACEMENT OF THE FREELY VIBRATING

.ROTATN-G -BOOM- AT SPECIFIED STATIONS, STARTING F~OM 4 GIVEN

-- C DISPLACEMENT INITIAL CONDITlOON ..... .

C IT COMPUTES THE NONDIMENSIONAL SPIN VARIATION AND INDUCED NUTATION

---- C-A-NGE -FOR EITHER-THE EQUATORIAL OR MERIDIAN BOOM (SEE N)S BELOW)

DOUBLE PRECISION CORME3(2),ME
_-DOUBLE PRECISION EMOM3(2),EMOM4(2),ESHR3(2),ESHR4(2)

DINSE3 ON AA4P(lpl2,)E4(P(Z) ,GAMA(2),CC(2) E43P)

SE4P(IO)AR P , C EPP ABOCEQQQ(O2)

V 4  4SIOSI
, O fE -R2 E..--. ---- .- - . - ...-..-.........

I REAL HNN,LAM .

I INTEGER I,DNI, NINT,INTER

DOUBLE PRECISION ELSM3(2),ELSDA(2 ),EDA3P.
OOUBLE PRECISION EMOM3[2)EMOM4(2)ESHR3IZ'ESHR4(2)'

DIM&NSION AAC2 ,2) ,8BB(2),CCC(2),GAMA(2),CC2(
2 )

-iI -1 r ITEGER PPP(2),QQQ(2)

DOUBLE PRECISIO;~I RTORKI ,DTOKEDA2Ph I EDA 3 P .

REAL DLTT,MOE

I GAMA( I)=RGAM. ............................-

EIGI1)=MU ....................

EIG(2) =0.
EDA( 1) = XNO .

EDA(2)=YNO
IENO=1 ...

STP= 25.
NR=2

i C*~* THIS PROGRAM USES REVERSED 
INTEGRATION ONLY

WRITEI6,300)
300 FORMAT(IOSIMULATION ENTERED')

=D'I'R'ECTION' SWTCH3 NDS = 1 IN PLANE, = 0 OUT OF PLANE

C*'SET IBIG=I TO READ BIGMO0E 1 ONLY

IVAR=.............

IFIRST=
KK=I
N= .............. ..............................................-----

... .. .... 0 N IN T= 0

i' - --------- -..- -- -- . . ........ ..... ......................----- 
--

__ -------------- ~-~--- .--.------ ^-. -.--. - -. ... . . .------.--



_ I INT ER=NI NT +1 3-18
m 74 ANFR=SQRT (LAM)

WRITE(6,60) ANFRQ
60 FORMA1T(1H - NF RQ= SQRT- =' F 10. 5)
99 SI=0.
-tc-~~ -.--- - -- ~----~--- -- ------- .--- --.- ...... ...------

C CLEAR ARRAYS

DO 31 1=1,4
K(I)=0.

- E33P( 1) =0._

M(I )= .

31 P(T)=O.
00 1 1 1, 1 o- -l~-------

E34P( I )=O.
E4 P I )=0'-I *') -=- + --.
E33P(I)=0.i l t 3Ppi - ) , = o . " ............ . ... ...... . .. . .... . .. . .. . ... . . ........ . . ........................

mB_ E32P(I)=0.

in,: E31P( I )=0

E4(1)=0.
1 E3(I) = . ------------- -- -. .--3=_ H=1. /FLOAT NI NT)D= 3 " -...............---.-. -.-------------.-- -----------------. ------------....-. -... . ..

8 IF(D.EQ.4) GO TO 2
n-- 0 = 0 1... 

. ....E3( 1)=I.1-

CO:O.

GO .TO 3
2 CO=0.

i--l E41P(l)=1.
AO=E41P( 1) ...---- --. .- ---------- -------- --
80=0.J- EO=O .--- ----- -- ---- --- ------ -- ------ -- ------ 

-- ----EO=O.
3 A=AO

-I - -'~-"g
____=1 - - --- - -- - ---- ----------------.. ~- __. __ .

B=BO -_
_ __i C:CO

N=1
4 I=1

NN=1
S I= (NN-1. )H5 _ K (I )=Hz*A - --- -

S'M(I)=H*C
MUI=1.+EIG(KK)*EIG(KK)
SF(N)S.EQ.1 ) GO TO 40

5 MUI=MUI- .

40 P(I)( (-SI SI+2.*SI*(I1.+SIO))2. B
14 (1.-SI+SIO) o A+MUE)*LAM*H

- -i _ _ _ _ - -

I - -. .- --- -- - --- -.- -- - - -- ----- ------ ---- ---- - - -
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_ I=( NN- 1 .) H-- - - - - ----- - - .. . --.-- - --- - -.- . .

F(I.GT.3) GO TO 6

S E=EO+K(Z )/2.
*AAO-L( Z)/2.

C-=CO--P (Z) /2.,
S 1=Si+H/2.

I T~. .4) 0 T10 7- . - ---- -

*AAO+L (3) ____. . -

C=CO+P( 3) ___

GO TO 5 --.-.-.. .- .

S I =N,'* H----

iE3(L) E3(N)+(K()+2.*K(2)+2.*(3)+K(4))/6. - -.---.------.. .

Et3V1P-t'Z)E3'1P(N)4+(L(1)+-2 *L(2)+2.*L(3)+L(4))/6. ----.----.-. -

__ ~~~E34P(Z)=LAMU((SO+.)**2-f1.SI+SI)**)..........
jL*E2PVT/21(i. S+ IO) *E31 P(Z) +MU'§*t3 M

_B=E32P(N+1) _

* A O= A __

3 E O=E

N=N+lI
IF (NvL.T_.[_NTER_UG0 'T0_4----.---- -.-- .- .- .-.-- . . .

JEMOM 3( KK) =E3( INTER) ... .-... .....-

ELSM 3( KK ) E32P( 1)
RMOM3(KK)=E32P( NTER) __

4 -SHR 3(KK )=E 33P (1NTERI ------

if .MMX3 ( I vK )=E 3. ........ 1 . . . . .. . - . . . .

GOTO 2 _ _ _ _ __ _ __ _ _

)4Z=E4(4 +(K(1) +2. *K(2) +20*K3) + K(4))/6.
E41P(Z)=E41P(.N)+(L(L)+2.*L(2)+2.-L(3)+L(4))/6.

----- 42P(Z=E42PN+(Mu)+2 .*M(2 )+2.*M( 3)4-M(4) )/6. -..

* E43P(Z)=E43P(N)+(P( 1)+2.*P(2 )+2.*PC3)+P(4) )/S.

1 *E42P(Z)/2.+(.SI+SO)*E41P(Z)+ U1*E4(Z))

_-- -.------..- --..---..-.------.---.- 
-



* A=E41P(N+1) 3-20
8=E42P(N+1)
C=E43P(N+1)

AO= A

I CO=C3 N=N+1
IF(N.LT.INTER) GO TO 4
EMOM4(KK=-E4( INTER)
ELSM4KK)=E42P(1), SRMOM4(KK) =E42P(INTER)

ESHR4(KK)=E43P ()
SR SH)R4 KK) =E43P ( I NTER)

DO 29 I=,0lOl
29 MMX4( I--KK )=E4I

i 94 'CONTINUE
-- ALF A ( KK) =EMDM3( KK) /EMOM4( KK) K .

BETA(KK)=MMX3(1,KK)-ALFA(KK)*MMX4(1,KK)
GAMA(KK)=EIG(KK)*SQRT(LAM)
DO 102 LB=1,O11

SLL 2-LB
102 BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(L8,KK))/BET4(KK)

SUM=0.
DO 216 I=2,101

216 SUM=S JM +( BP T( I L)+BP T (i-, ) )/2. ( FLOA T(I )-1.5 ) H S O) *H
I --- ME2=SUM

DO 218 1=2,101
218 SUM=SUM+(BP(I, 1 )**2+BP r- I, 1)*2)/2.H

ME1=SUM
I- -COR= ME 2*ME2/ME1 -- -

IF(IFRST.NE.1) GO TO 92
i =EDA (1 c i)' -=-BPT-(51 1)...

Iiii.EDA(2)=BPT( 101, )
92 WRIT(6, 98) EDA( 1),EDA(2)
98 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3XFl2.6/)

WRITE(6,105) MEL ,ME2,COR,NDS
105 FORMAT( LH , 'ML=',012.6,3X,'M2= ' ,D012.6,3X,'COR= ',012.6,

13X,'NDS=', 13/)
72 IF181G.NE.L) GO TO 73

GAMA (1)=EIG(1)'ANFRQ
GAMA(2)=O.
CC2(1)=1.

-- CC2(2) =0.
ALFA(2)=O.--------

•I RMOM3(2)=0.
RMOM4(2)=0.
RSHR3(2)=0.
RSHR4( 2)=0.

ESi 3.)ELSM3(2)= 0.
- ELSM4(2)=0.

ESHR3(2)=0.
EIG(2)=O.

. . . . . . . .........................-.-..---.-- - . - - - - ----....- -..

4* C------------. ------- ----.-------.----------- *



73 DO 213 1=1,2
---- 32 -3-WRI TE ( 6,214) ALFA( I ., T
3 214 FORMAT(IH ,'ALFA=',O12.6,t

3 X,' K K = ' ,,(3 )

-IF BF1TIETTG EQ.1f GOT O " .O9

00DO 104 KK=i,2
'CM M- 5__T-_- .

DO 104 LL=1,2

THESE COEFFICIENTS FIT THE BOOM TO INITIAL DISPLACEMENTS

COFOIS(LLKK)=BPT(MM,KK)
AA(LL,KK)=COFDIS(LL,KK)

104 MM=MM+50

C
, -"c "JR----EMTOM------- R-- -TEFCINT M--ATRI

CALL GJR (AA, 2, BBB, CCCPPP,QQQ, $113)

SSUMM=O.

160 SUMM=SUMM+AA([,J)*EDA(J) 
.... ..

CC2(I )= SUMM
161 WRIFE( 6, 162)CC2(1),I"
-6T ---FORMAT (IH , 'CC2=, E L2. 63X, 3 I = '1 3 )

I- OD-A--S-dtiTN FORHERE
"O C 

.. . . ... .... . ... . ..-.. ... .... . . . ...... ... . . . .. .

V-0-1-6-q7F E E = 0 . -S -O-T-FF:0.

R TORK=O.

SDTORK= 0.+ 0 ...

OLTT=1..O/(STP*GAMA(1 ) )Z2. 3.1416

WRITE( 6,50) DLTT

50 FORMAT( LH ,'DLTT=',F O.5/.......................

SFAC=1./EIG(1)
WRITE(6,L31) SFACI- - 1 FORMAT(T -H- --f T H E  O.OF R;- -F R UT CYC PER FUND VIB CYC IS' FLO./)

S0 122 I=1,MAXT
TDLTT F LOAT (1-1)3 DO 129 KK=1,2

I------ -TFAC (KK)=CC2(KK)*COS(GAMA(KK)*T)
EDA2Pl=0.
EDA3PL=0.

. EDAE2= 0.
EDAE3=0.
00D 1L9 KK=1,2
SUM2=(RMOM3(KK)-ALFA(KK) 'RMOM4(KK))*TFAC(KK)

SUM3= (RSHR3(KK)-ALFA KK) R SHR 4 (KK) ) TFAC (KK)

SUM 6 (tELSM3(KK)-ALFA(KK)*ELSM4(K( )) TFAC(KK)

___ SUM7=(ESHR3(KK)-ALFA(KK)*ESHR4(KK))*rFAC(KK)
EDAE2=EDAE2+SUM6

S-- - -. ..-.-. -................----------

I 
.....1 -------._---- ~-~ '~ ~



EDAE3=EDAE3-SUM7
EDAEDA =EDA2PI +SUM2

119 EDA31'P=EDA3PI-SUM3
' RTOR K"-=EDA 2Pi-S IO* E D ~33P L
AVTK=(RTORK+DTORK)/2.
DTORK=RTORK
IF(I.NE.1) GO TO 134

134 TINT=TINT+AVTK*DLTT/ANFRQ
FEE= 36O.SF AC*FL O4 T( -1) / STP

1 _IF(FEE-360.)140,140,117
117 FF=FF+ .-

FEE=FEE-360.

140 IF(I.NE.1 GO-TO 44
WRITE (6,215)T,FEE,FF

215 FORMATIH 'TIMEIN ScF9.3, 3X, F E E=-F9 .43 X,' NROT=' F9.4/ )
.- WRITE(6,130)EDA2PttEDAE2,EDA3PilEDAE3

__ 130 FORMAT(IH ,'ELAS RMOM',012.6,3X,'TIP MOM',E12.6,3X,
1'RSHEAR=',D12.6,3X,'TIP SHEAR',E12.6/)

.. WRITE(6, 41)TINT
i 41 FORMAT(lH ,'t/SQRT(LAM)*INTEG.RAL(M*DLTT) =',E12.6//)

44 DC 111 LL=I,101,50
SUM = 0.
DO 112 KK=1,2t-- MODE=BPT(LL,KK)*TFAC(KK)

112 SUM=-SUM+ MODE
IF(I.EQ.1) GO TO 114

_ F I~FTIVARE.EQ i )-GO .TO 1 11
114 WRITE(6,115) SUM,LL
111 CONTINUE
115 FORMAT(IH ,'ADA',E12.6,3X ,'STATION',I3)

IF([VAR.NE.1) GO TO 122
WRITE(6,121) SUM,TINT,r,I

S122 2CONTI NUE --

121 FORMAT(IH ,'ENDISP',FI2.6,3X,'TIT, T,E12.6,3X ,T ,F9.3 3X, I ,I3)
120 WRITE(6,568)

f 568 FORMAT( IH /)
GO TO 100 --

113 SAM=2
WRI TE(6,116) SAM ...... ----

L [116 FORMAT( 1H ,'GJR DUMPED SAM=',I3)
100 CONTINUE

GO TO 42

3 42 RETURN

END

1 CARDS IN = 316, CARDS OUT = 0, PAGES OUT = 6

:I - -- - ----.- ---------- ----.- '- -- -- -

I- ~ ---------------------- --------------- .------ -------------- --- --

.--.---.-.- --



~.UL)rN U U 1 N \L- LJI% % A P I I L.) f I, V 9 W I .,Ii

01 M~qSI 01 A ,\j .'\) #,j ( ) r (..j)3-23

1u1 EPS= :'PS/ 1o
IF(EPS*LT*jo.*dc-15) 60 TU 102
DO 5-' KZ1,N

PIVuf:zU*
00 5 I=Kriq
DO 5 J=KPN
IF(A6& dA(IJ)).LE.ABS(PIVOf)) 60 TU.6

(4 (K) =J.
5 C0N4T IU

IF(AJS(PlV0T).LE.EPS)G0 TrO 101

6 )0 7 J=le>N

ZMA(LPJ)
ACLtj)=A(K#J)

7 A(Kvj)=Z
10 IF(CQC00-K) 11 v1:5 p11

ZZA( I L)
Ai L)=A(IPK)

12 A(Ipr%)Z

IF (c-A) 20p16,20
1&6 (j)z1./plVoT

C(j)1l.
GO 10 22

20 f3(J)z-A(Ktj)/PIVOT
C (J)=A (J, K)

22 A(KJ)=0.
A(jt;<)-0.

25 CON r 1!uE
DO 3U 1=1'rN
00 30 OJ=1uN

35 COM N1IUE

iF(P(K) -K)40p5f4
'44 100 4,5 i11,N

z=A(i IL)
A(IL)ZA(IFK)
A(11&')=Z

43 CON1JI A'UE
45 IF ( i (10--K) 40" 5Jp z46

Z=.A(LtJ)
M (LJ)=A(K' J)
A (KPJ)=

50, CON~iliuE

RE fr~q4
102 vRI T'-(o v103)
10,3 Fow, rF(2Hu GJk COULO ftor LjQ IT)

RETUW4l 7
F NO
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CHAPTER 4

Simulation of the Motion of The Central Rigid

Body and its Elastic Appendages

4.1 Introduction

In the previous chapters, the problem of determining the modal

shapes and frequencies of the rotating structure was examined, and

applications were studied in which these modes are utilized.

In the present chapter, equations of motion are written for the

generalized coordinates representing the flexible structure and

for the angular rates of the central rigid body. A simulation of

the spacecraft motion is then possible. Various cases of simulation

are examined, and the effect of modal truncation and of nonlinear

terms is discussed.

4.2 Modal Equations of Motion: equatorial vibrations (Case "E'.,

for equatorial)

4.2.1 Constancy of H.

In what follows, it is assumed that the motion of the center of

mass of the spacecraft is negligible (or that only antisymmetric

motions of the booms are considered) and that the "limited approach"

is taken [4- ] , i.e. the motion of the spacecraft's center of mass in

inertial space can be determined independently of the attitude.

If over the time of interest, i.e. a few tens. of spin periods

or so, the torque-impulse due to all environmental attitude per-

turbing torques (gravity-gradient, solar pressure, magnetic, etc.) can



4-2

be considered as negligible, then very sensibly the moment of momentum

H about the center of mass remains constant:

H = H(o) = constant vector (4.2-1)

in which H is the value of H at t = 0.

4.2.2 Representation of the elastic appendages

Consider a particle of a boom,having non-dimensional abscissa 5,

located along axis +x in its undeflected position. Its elastic dis-

placement, n = (x) is represented in terms of the modes 4) ( = x, )

in which the q. are non-dimensional amplitudes, dependent on the non-

2ir
dimensional time t = mst, with s - the angular spin rate of the

satellite in its nominal motion. N is some positive integer, which

specifies the number of terms after which the series is truncated.

We recall that the I.(G) are orthogonal modes, normalized to

unit deflection at the boom's tip, so that

S() = 0 j 0 (4.2-3)

boom

m df j .()d > 0 j = k (4.2-4)

boom

51 = 5 + C0;
both m l,j m2,j are assumed to be known quantities, determined as in

Chapter 2.
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4.2.3 Kinetic energy contained in the elastic structure

The total kinetic energy, T, is made out of two parts: one

is independent of the generalized coordinates qi and the other one, T I,

depends on the q. and appears as the integral of a density T . More

specifically (Fig. 4.1)

4>2
V

T m - (4.2-6)
T all particles 2

m

4- 4. 4
with = m A(rm +) + 1 (4.2-7)

in which w is the instantaneous rotation, rm, is the vector coordinate

to m in its reference position and I is the elastic displacement from

r
m,0

Computing T,

f +(AJA ). 

Now, for small linear displacements of the elastic parts

= w 1

Sx

Thus

0 L 6 _, -,,W (4.2-9)

LL lt S71 2 2

TCT
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If x' yw ,Y r are assumed to be of first order of smallness, (4.2-9)

is rewritten

S 2 ) W 7Z 3 (4.2-10)

S2.

in which w is the (constant) nominal value of the spin rate.

0

w Ar = xm, O 1r x l

-WyX1

Then

1 2m ( WIFL =; L5 - O-1 X -O ) (4. 2-11)
2 ,tl

ELfOTIC

Furthermore,

S m 2 - < 2 (4.2-12)
ALL 2
A. .1.RS

and

S 2 (j * ).- T- ' W (4.2-13)
2 All

L .PIM rs

Finally,

SA , o (4.2-14)

EL .f
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Introducing expressions (4.8-10) through (4.2-14) in Equations

(4.2-8), we obtain

T = To + 2 f ds(w m2 + + 2 w x lW) + O( 3) (4.2-15)

0

Since the element of curvilinear abscissa, ds, is related to dx by

ds2 = dx2 + dy2 = dx2 (l + () 2)

or

ds = dx(l + (f-)2) / 2
ax

= dx(l + +...)

and

1 3w 2
dx = ds(l -~ ) ... )

Therefore, consistent with the order of magnitudes retained explicitly,

(4.2-15)can be rewritten with x instead of s as the integration variable,

T = To + [ p dx(w2s + + 2 x w) + 0( 3 ) (4.2-I)

0

The "flexible body" part of To, however, has to include a correction

term, since for terms involving

I .Iupper Iupper
x2 ds x 2 dx + x2 )2 dx

0 0
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i.e. with an integrand of zero-th order of magnitude, we can write

Neglecting terms of 3rd order of smallness,

x x cL_ - 4, 4-i X _ 0(4. -1)
0 o 2 -0 ,

and using (4. 2-1'7),

JI xQ=r I 'x)(4.2-_4)

Now, if the integrand is

2 2  2 2x I = (xo + x) = x + 2xox + x o

we obtain

o " 2 o "'

or neglecting terms of third order of smallness

' 2

Finally,

O2-
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Therefore, To is rewritten, with D(") the inertia dyadic of the

rigidified, undeflected total reference body as

O 2 2JP ( ()_ c- ) (4.2-20)

Collecting. (4.2 -1.6) and(4. -20)

* C1 X + l 2e - - _ g
2 2

X02 0 X)J(?'E + 0 ~ + (4.2-21).

4.2.4 Potential energy of the elastic structure

For pure flexure in the (x,y) plane, the potential energy is

given by

V = E) dx + O( 3)

where it is legitimate to use x, instead of s, as the integration

variable, to the order of the terms explicitly retained.

4.2.5 Equations of motion for the elastic modes, equatorial vibrations.

4.2.5.1 Equation for the jth coordinate, q

At this Point we introduce the modal representation (4.1-2). For

the sake of simplicity, let the bars on t = [ ], be dropped. Further-

more, let the energies be non-dimensionalized by

p£, 2  and the lengths by k

Although s', non-dimensional value of the nominal satellite spin-rate,
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is 1, we shall for clarity retain it in the equations.

In non-dimensional form, with ' designating derivatives with

respect to t, and C1 = + ° ,

- ) 2 ? (4.2-22)

with = , as in Chapter 2.

Now let, with t the non-dimensional time,

Then

a= k=l k ic

SN

an 2 -7

E2 - N ag

Similarly,

= "
k 2 ~
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Thus, the Lagrangian function is N

2 Z I kz I k
1[(/~ 2) ( iL j4.2-24)

Now, for any i = 1, 2...,

d - . . 0 (4.2-25)
dt

a i i

We recall that, as in (4.2-3), (4.2-4), (4.2-5)

f k d = 0 (j #=k)

boom

2

j d E ml, j

boom

1 df E m2, j
boom

the 4j having been previously normalized to unit deflection at the

boom's tip. Using these relations, and (4.2-25) for i = j, after de-

fining
do. d@

ajk = akj def [(1-2) + 2C.(1-5)] 1 - dE (4.2-26)
jk kj def 2 -Dj dE

boom

bjk bkj d f 2d d 2 k (4.2-27)
=k d d d d (4.2-Z7)

boom d 2 d

we obtain, for the jth modal coordinate

SAkl
-26 + k 4k "'f (4.2-28)

SkLi -
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4.2.5.2 Evaluation of the coefficient of qj

We now evaluate the coefficient of qj in (4.2-28), say cj,

C- k + a k- (4.2- 2)

From Equation (2.2-23), written in terms of ajk, bjk,

Rdk t

Thus (4.2-28) takes the simple form

ml .q. + ml jJq. =--- z

or

2 ml,j  z
_ +_ q W (4.2-30)

A few remarks should be made regarding (4.2-30) First of all,

the modal equations for the jth coordinate reduce, to a harmonic

motion, in the case where z is constant. Second, as has been seen
z

in Chapter 3, the "driving amplitude", measured by the non-dimension-

al ratio

m,j

is strongly a function of Eo, and to a lesser extent of X, Etkin's

number. Thirdly, it should be noted that it is only because, for

the sake of consistency, the difference of an integral in s (curvi-

linear abscissa) and x was carefully considered when the integrand
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was a quantity of zeroth order (as detailed above), that term

_ m 2 q.
ml,j s j

could. finally be cancelled in Equation (4.2-30). Failure to make

this distinction leads to having this extra term still present in

the final equation and in order to "fall back" on (4.2-30), one

has to introduce, rather belatedly, an additional term due to a

"rotational potential" [4 - 2  Finally, if linear distributed

damping is introduced, Equation (4.2-30) takes the form

o -- 21 (4.2-31)

whose derivatives are taken with respect to non-dimensional time.

4.3 Modal Equations of Motion: meridional vibrations (Case "M",

for meridional)

Without repeating in the same detail the explanations of Sec-

tion 4.2, we now derive the modal equations in the case of motions

parallel to axis-z (meridional vibrations). Only the relevant

differences are underlined.

4.3.1 Constancy of H

In the absence of attitude perturbing torques, the torque-free

motion has the integral

H = Ho (4.3-1)

where H. is the value of the moment of momentum at t = 0.

4.3.2 Representation of the elastic appendages

The displacement n(x) = W(X) of an element of boom located at

x 4x i ter q,() P 4.3-J
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Again qj are non-dimensional amplitudes, functiong of the mon-

dimensional time t = . N is positive integer specifying
1/w

the number of terms after which the series is truncated.

The "meridional" modes are orthogonal

Iboom j( k (C)d  = 0 j # k (4.3-3)

and we have defined

mboo m  ()d > 0 (4.3-4)

m2,j E Jboom l(C)d with i =  5 + Co (4.3-5)

These quantities are known as functions of X, Etkin's number, and

= x- , hub non-dimensional radius.

4.3.3 Kinetic energy contained in the elastic structure

With the same notations as in Section 4.2.3,

T = To (rigid part + flexible part) + T1

Now

6 =wl

y

z

0

and L I A 2 0((2 z ( (4.3-6)

/5 16I
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Let x = x + xo. Then

0

wAr = Wx
mO z 1

-W x
y l.

The next terms are

, 4 ,( ̂  ( ' , ) , (- _ < 2 -)+ 0 jc)(4.3-7)
EL. FA7

r Q(. 2 6

41 
z

r. Fi Ru_

A U 2 (r ). = O (4.3-80)

2 ALL

£. /RiT.

Introducin expressions (4.3-6) through (4.3-10) into (4.2-8), and

.since we can substitute dx for ds when the integrand is of first order

of smallness, or smaller,

-p dx(' - 2w Wsx1 w - 2w xlw- [(2-x2)
2 2)y 2

0 (4.3-12)
lw 2

+2xo(Z-x)](-) + ( )
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4.3.4 Potential energy of the elastic structure

For pure flexure in the (x,z) plane, the potential energy is

V = ~2a t 2 2 o(Fv = - -) dx + 0( )

0

Again, it is legitimate to use x, instead of s, as the integration,

to the order of the terms explicitly retained.

4.3.5 Equations of motion: elastic modes, meridional vibrations

5.3.5.1 Equation for the jth coordinate, qj

The kinetic energy, T, and potential energy, V, are non-dimen-

sionalized by the quantity pA3w 2. Note that, although ws, non-

dimensional value of the nominal satellite spin rate, is 1, it 
is

retained as "w " in the equations. Let Trb . ()..
s rb 2

-/ ( ' "2 - 2

With the same substitutions as in (4.2), we obtain the Lagrangian

2 kk- K _I z rg i -2, _ I - , .

- 1-4 2 iCO '-- )J d- 4 - . lo') 4j lk 4 -c Q-2
(4.3-13)

Now define
1 [ 2) + 2( . d p

ajk = akj df 2 boom 2) + 2(1-1 boom
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d2 j. d2 ,
b =b 2 k dk
jk kj def fboom d 2 2  d 2C2

For modal coordinate q., the Lagrangian equation is, with Equations

(4.3-3) through (4.3-5),

N N
q + b + ajk = + m2,j(y - mw ) (4.3-14)

ml,j j jk k=1 jk 2, y

4.3.5.2 Evaluation of the coefficient of qj

From Equations (23-11,12) , Section 2.23, we obtain

Sbjk + ajk = 0 j#k

1 -2
b. + a.. =  . mI  j=k

Thus Equation (4.3-14) can be rewritten in the form

q. -2 jq ( - W ) (4.3-15)
S 3 j m1 , j  y sx

- i .th

in which w. is the th eigenfrequency of meridional vibrations, a
3

function of X and o*

Again, if linear distributed damping is introduced, the equation

of motion becomes

qj + 2vw. q + q m2 ( - ) (4.3-16)
S3 3 j i m, j  y sx

-2 d thus appears as a "driving amplitude". As seen in Chapter 2, it
m

1 ,j

is also strongly dependent on o, and to a lesser extent on Etkin's

number \.
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4.4 Equations for the rates: equatorial vibrations (Case "E")

The equation for the time derivatives of the rates are now de-

rived from the constancy of the moment of momentum for the torque-

free motion, as given in (4.2-1).

Since, about the center of mass,

H = H(o) =J A r dm

H =  rAr dm

Computing, with the same notations as in 4.2 and 4.3,

r + A (r, + 6)

S=6 + 2W A6 + w A r + A6 +m A (W Ar )+ A(w A6)
m, 0  s m,0

Let H be divided between a part "relating to rm,0, H, and a part

relating to 6, HII

* . .

H = HI + HII

and

H = r A{wA r + mA(wAr )} ds (4.4-1)
boom m, 0  m,0 m, 0

H = (44-2)
II Aboom[r { + 2 A6 + w A6 + A(A)} (4.4-2)

+ 6 A (A r ) + 6 (wA(wA r )]ds
m,0 m,0

Note that as has been seen in Section (4.3) and (4.3)

ds = dx(l + (-x) ) + higher order terms (4.4-3)

in which the elastic displacement (along +y) is

6 = w(x)1 (4.4-4)
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Therefore, if tx, ty (normalized to ws, nominal value of the satellite

spin rate) and n(x) = W are considered to be of first order of

smallness (O()), the equations for the rates deduced from (4.4-1)

should be written with

boom[...ds = boom[ ... ]dx ,

for integrands of zeroth order of smallness, or smaller, if only

quantities of first-order of smallness, or larger, are retained

Thus, neglecting terms of order 3 of smallness, or smaller (with

boom [..]ds =boom [..]dx for an integrand of first order of smallness,

or smaller),

( ii 1), 1 x 1 (-2 W- W- W

(H -z 'X' W

Now, neglecting terms of order 2 of smallness, or smaller (with

[ = om [...]dx for an integrand of first order of smallness
boom Jboom

or smaller)

4-t

(H)x = (H )y = 0

in the analysis.

[ .- ]ds = [***][1 + a) ]dx, in a manner similar
boom boom

to the one used in Section 4.2 and 4.3, if the integrand is of zeroth

order of smallness, and if quantities of second order of smallness, or

larger, are to be retained in the analysis.

With this qualification in mind, the various terms in the integrand
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of (4.4-2) are computed without eliminating smaller terms at this

point.

0 "

I ,E

2.JP 6 2. o

(I z j ir +

-. W

o0
( W I( z 4 Z"

L 3OI Az) W

II z

(4Z5
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if it can be assumed that x, y, z are principal axes of inertia of the

total, rigidified spacecraft, of total moments of inertia Ix , Iy I

about the corresponding.axes.

To summarize, we have, to order s, the following equations for

the rates, in case E,

I -I
* z yww
x I ys

x

I -I
* x z

-y I sx
y

S 1 I - I

z+ 1 x1 dx = - x -m c 0, to 0(c) (4.4-6)
z I xyz I

.boom z

- t
Let the time, t, be non-dimensionalized as t = (from now on,

l/s

will designate derivatives with respect to t); the lengths are non-

dimensionalized by k , length of the boom, and E= x , x
w _ Ix

n= k x -- , k - . We obtain
x I y I

z

ky

, m (4.4-7)
f,
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Using the modal expansion in terms of j.(), having eigenfrequencies

W E' with . and j, functions of X and o,
S,E' J j,E

,. - N o ,.Y (4.1-7)

Now, from Equation (4.2-31), with . = Wj,E

Substituting

Thus the normalized moment of inertia is apparently reduced from the

value 1, due to the flexibility of the boom, by an amount equal to

1 (4.4-9)

or writing, with Izh = moment of inertia, about z, of the central hub,

and

= + 9 + (4.4-10)
3

S + [(4.4-11)

the non-dimensional inertia correction becomes, in Equation (4.4-8),

with rdef 3

zh

; 'r." (4.-2)
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and (4.4-8) is rewritten (Rate equations for case E)

S- LO3

(4.4-13)

Jr

The stability of the motion, in the presence of equatorial vi-

brations, as studied in Chapter 5, can be done on the basis of

equations

(4.2-25) for the modal coordinates

(4.4-13) for the angular rates

with N = 1, 2 or 3, depending on the number of modes retained in

the analysis.

4.5 Equations for the rates: meridional vibrations (Case "M")

4.5.1 Equations for the rates, boom along the direction

Without repeating the development of Section 4.1.1, the compo-

nents of HII, in expression (4.4-2) are rederived for an elastic

displacement 6 parallel to axis-z.

z F
L"" Y
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N,42

Neglecting terms of order 3 of smallness,

H I z Ao o
boom

(%fl y Jboom  ' ( -w') (o 4 L/) r

(H ) 4 WTI z boom

Neglecting terms of order 2 of smallness,

(HI) x = = 0II x II) z

I)y= Jboom' Wi ) )

= Z 'Z. +~ ( - (i /.Z.

with the same assumption as in 4.4

To summarize, we have to order E, after non-dimensionalization
I I

of time by l/w s, and with k = -, k = _x I y I

S(4.5-1)

LA1 0
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In the second of equations (4.5-1),

N

Using the modal expression for nM = j q j(t) jm(a), i j() being the

jth modal shape having associated frequency Wj,M

Since, from Equation (4.3-16), with 7- = 1,
" rS

we obtain in (4.5-1)

4 

4-Y
-__ - - I .)

S , 4 4)- -2L a. (4.5-2)

.0

Investigation of the stability of the motion in the presence

of meridional vibrations, as studied in Chapter 5, will be carried
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out on the basis of equations

(4.3-16) for the modal coordinates

(4.5-2) for the angular rates

with N = 1, 2 or 3, depending on the number of modes retained in the

analysis. Since so far we have been considering a single boom lo-

cated along the +x axis, it is of importance to generalize the analysis

to multi-booms configurations. This is done in the following section.

4.6 Generalization to Multiple-Boom Geometry

The equations for therates and modal coordinates were given,

for equatorial vibrations, by Equations (4.4-13) and (4.2-25), respec-

tively, and for meridional vibrations by Equations (4.5-2) and (4.3-16)

respectively, in the case of a single boom located along the +x axis.

In the present section, we proceed to generalize the developments to

the case of multiple-boom arrangements located in plane (x,y) (A

plane containing axes x p, y p, two principal axes of inertia of the

ellipsoid in inertia of the rigidified, total spacecraft) (Fig. 4.1).

In order to allow for various possibilities, the following de-

finitions and notations are used

I I
k x k - are ratios, smaller than one for quasi-
x def I y def Iz z

rigid body stability, which relate to principal moments of

inertia Ix Iy' Iz of the total, rigidified structure.

- given the Etkin's number, Xk, and non-dimensional radius (O,k'

for boom "k", the notation:
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- 'j,k'(k' 0,k) is used for the jth modal shape 
corresponding

to these values of X and Co(there is no necessity to distin-

guish between D. for the equatorial vibrations as opposed to 0.

for meridional vibration, since they are the same)

2,j,k i I, , K

and all jk are normalized to a unit deflection at the tip.

- jk' a function of Xk 0,k for given j, ig the jth eigen-

frequency for equatorial vibrations.whereas Wj,k is the jth

eigenfrequency for meridional vibrations. For the same pair

(Ak, 0,k), we have from Equation

-2 -2
-2 + 1 = wj (all j, k)j,k j,k

- qj,k is the jth modal coordinate (of type E, or M depending on

which equations contain it) for boom k.

- Gk is the angle between the boom's undeflected position (an axis

normal to Z = z, thus contained in plane x , yp ) and axis x

of the ellipsoid of inertia.

(eek 1 2
rk , ' Ak 3 + O,k + ,k

4.6.1 2 pairs of booms at right angle, along two principal axes of

inertia

In this case, we assume that booms (+x, -x) are aligned on x ,

principal axis of inertia, and that booms (+y, -y) are normal to
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(+x, -x), thus aligned on principal axis of inertia yp (Fig. 4-1).

In order to generalize the previously obtained equations for

the modal coordinates and angular rates, we observe that in these

equations,

(x,y,z) are a r.h.s. system, with

+y in case E

BOOM ALONG +x, deflection q along
+z in case M

Now consider the boom along -x. Equations analogous to these derived

for the +x boom will apply, substituting

for the expressioft

axis x axis -x

axis y axis -y

axis z axis -z

qx along z q-x along z

Since (-x, -y, -z) is a direct system. The deflection q-x, along -y

(i.e. in case E), will be measured, for the sake of convenience, along

axis +y, in the same manner as q+x is measured. Therefore, in the

analogous equations, written for case E, substitute

for the expression

q+x along +y -q-x along +y (4.6-1)

Similarly, the substitutions needed are, in the following cases:
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boom along +y axis Substitute

for the expression

axis x axis y

axis y axis -x
(4.6-2)

axis z axis z

q+xalong z q_yalong z

q+xalong +y -q yalong +x

boom along -y axis Substitute

for the expression

axis x axis -y

axis y axis x

axis z axis z (4.6-3)

q+xalong z q_y along z

q+xalong y q_y along +z

Effecting these substitutions in Equations (4.4-13) and (4.2-31), we

obtain

Equatorial vibrations (case E)

It should be recalled that j ,k refers to "E" type, jth eigenfrequency

of boom "k". Although this is not done explicitly, the'v" could be

subscripted to account for different damping ratios in the various

booms.

Rates

Booms -x, +y, -y: the equations for wX, y in (4.4-13) remain

unchanged.

The equations for w , in (4.4-13), readz



4-28

-x boom:

(- 0.i -x PZ

+y boom:. A x

-y boom: (4.6-4)
N

-,, 4_r 0 ' J: "Sr - , kL' , -i)
Modal Coordinates:'

-x boom:

.. - - -_ - ,S + .2 9 A,+ I + 4+
.. 1,d-X (4.6-5)

+y boom:

, , 2z , ,1,-

-y boom:

..- * -. qv -V .-* i,-+ 2 ) , , ,-(/ +  t t' 
.-),,

Meridional vibrations (case M)

Again, wj,k refers to "M" type, jth eigenfrequency of boom "k",

and although this is not explicitly done, the v's could be subscripted

to account for different damping ration in the various booms.

Rates

Booms -x, +y, -y: the equation for wz remains unchanged, in (4.5-2)

. (4.5-2) rk
The equations for w , read, with b + ; k = + -A -Y

-xy bo k )2

-x boom:

- _ Z .. - ( _ . + "I-

± (X I)'y -2pu
- X m

k d . ,., - -
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+y boom.

-y boom.

S (4.c -6)
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Modal Coordinates:

-x boom:

4 boP +-

+y boom

ljy4- 2 Wj, + ''-Qy)
-y boom:

4.6.1.1 The Four Different booms

Let

bk df 3

The equations of motion become

Equatorial vibrations (case E):

Rates = 4'* , 4 -, + ' i~2. =  2... 3

Rates

___ CAL

z4

I =_ 8,-7 -
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2 2 K

+ ' Vr 1 +I L A , - 1 L to

(4. -8)

Modal coordinates:

For j = 1,2, .... N; k = +x, -y

+w -+____

, ,k k (4.6-9)

For j = 1,2,...N; k = -x, +y

Meridional vibrations (case M)

Rates: With k taking the values indicated; j = 1,2,. ..N;

3-" J''1  :jj L (4.6-10)

i- i g - .z *'.- 2 pNN

0 2 -- >)Ik -%4 I 1j

'x j; I,-2
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Modal coordinates

For j = 1, 2,...N; k = +x, -x, +y, -y;

S 2,, (4 ) (4.6-11)

4.6.1.8 Aligned booms identical; different booms along (+x, +y).

Equations (4..6-8) and (4.6-9), or (4.6-10) and (4.6-11) re

simplified, in view of the relations

and similar ones for subscripts y, -y. (4,6-12)

Equatorial case:

Rates: With j = 1, 2,...N;

- , 2
13Z, (-2k, 2 '~24, n 21, . ILr1i)= .2t7 jl4, , )] (4.6-13)

Modal coordinates: L Z . &. ] Z

Same as (4.6-9), with Equations (4.6-12). (4.6-14)
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Meridional case:

Rates: With j = i, 2,....N;

S, I 1 (4.6-15)

Modal coordinates:

Same as (4.6-11), with Equations (4.6-12) (4.6-16)

4.6.1.3 Identical booms along x, -x, y, -y

In this case, we can use in common for all booms, the notations

Thus Equations (4.6-15) and (4.6-16) are simplified as follows:

Equatorial case:

Rates: With j = 1, 2,...N;

r - ,-i "_
A k

. N (4.6-17)

-+2 - -P w dv+2rt1 )W (qR L ~ -I -j 
1c1
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Modal coordinates: With j = 1, 2,....N;

+ 2

1,j - (4.6-18)

Meridional case:

Rates: With j = 1, 2, .... N;

k3 2

, - ()4 6-19)

Modes: With j = 1, 2 ..... N; k = +x, -x, +y, -y

_- J"/ 1('- 'b (4.6-20)

_ 

,X

- _- (/W,- ) /R-)

• ,, ,
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An alternate form of the equations for the rates has been 
used

in the computer programs described in Chapter 5.

Let

Assume furthermore that the motion is antisymmetric, i.e. q = -qx'

q_y, =-q : Then

2  , 4 4 L 3  14 4r

I 1+ 4 r

and the rates, as given in (4.6-17) and (4.6-19), respectively, can

be rewritten:

Case E:

- 2S 2 (4.6-21)

4 =4 ,,,

I+.
1+~ ~ 4.7(A-i
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Case M: 9 2 F - , 2r .

A- i 

N

If furthermore, the transverse moments of inertia of the hub are

equal, i.e.

kv 

S(4.6-2r)

.

1 + 4 F 2 ,

Case M:

° ' di +5

2PL,+ I2

L 2 /, (4.6-23)

Case M: Z N

Fld p #(4.6-24)

k ,1 -- 2r ( - ,, -N. s ' ( -
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4.6.2 "B" booms in x, y plane, necessarily along principal

axes of inertia.

The booms are all contained in plane x, y, with x, y as two

transverse axes of inertia of the rigidified structure, and are

normal to z , satellite spin axis. With the notations introduced

in the beginning of Section 4.6, k is the angle between the axis of

the boom and axis x.

Let qjk be the jth modal coordinate of boom k. The equations

for the modal coordinates and the rates, written in Sections 4.2 to

4.5 for the "+x boom", along a principal axis of inertia, will be

modified as follows:

4.6.2.1 +x boom "k"; angle Tk with x

Equatorial case.

Modal coordinate:

2 V W t ,W_ (4.6-25)

Rates: X

- I

- (4.6-26)

Meridional case '

S, (4.6-27)
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since w in (4.3-16) becomes - +0 o
Y . K y k

wx in (4.3-16) becomes LOX C- ) + L'

Rates:

In the case of a "+x" boom, Equation (4.5-1) shows that the

vibrations parallel to the z-axis generate a torque along the direc-

tion normal to "+x", i.e. "+y" having projections:

The equations for the rates will read, before dividing by Ix , I

respectively,

(4.6-28)

0
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Now define the following coefficients

N I

A2 = ,,J,

2, -

rx
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Let

121 - (i i3  ( c,,) ? ( /2 i - 1 L

22.

System (4.6-28) is rewritten

Let Dk = 2.1 -I O 2.

Then the equations for the rates are

S(4.6-29)

(0 0

4.6.2.2 General case: "B" booms, making angles k (k = 1,...,B)

with x
p

Equations (4.6-28) will, in the general case of B booms, at

angles Ck (k = 1,...,B), have r.h. sides with sums over k, in
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addition to the summation over j. Important note: all modal dis-

placements are referred to the +z axis (case M) or to the normal

"yi' to the boom "Xk" (in case E) such that (x y,_ z) is a direct

system.

Equatorial case:

Modal coordinates:

. 2 V z ld = k I (4.6-30)

in which expression (4.6-31) is substituted.

Rates:
0

(4.6-31)

Meridional case:

Modal coordinates:

(4.6-32)

in which expression (4.6-33) is substituted

Defining
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2-

CI 'Z z

eN 2

t;

S2 22 -a I 2  CO

P, •2 - Q' 2

y (4.6-33)

j05 0
z
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The above formulation is the most general that will be considered

in this work.

4.6.3 System considering meridional and equatorial vibrations

simultaneously. (B booms in X, Y plane, not necessarily

along a principal axis of inertia).

In the Lagrangian formulation, for an elastic displacement

£1-r \( %(w)j , w* C(O)

-,LL 2 ,,,,, L\ )xi( j  % 2

wE w
and the kinetic energy is, if nE =M , etc.,

E k k

2P'4 2

It can readily be seen that when n E' M are expanded in their modes

@(A, Eo), with associated frequencies w j,h j,k' the corresponding

modal equations for 
E M

qj,k qj, h

E M

are uncoupled. For "E", only w z will appear in the r.h. side, and

this quantity is a function of the qj. k only. For "M", only W, W ,

(j x , a will appear in the r.h. sides, and these quantities are

functions of the qj,k . Hence, in the total system,

M

- the two first equations of (4.6-33) are those for w , w
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- the last equation of (4.6-31) is the one for w

- the modal coordinate equations for qjk are given by

(4.6-32) M

- the modal coordinate equations for qj,k are given by

(4.6-30) E

4.7 Conclusion

The equations of motion of the spinning spacecraft having

flexible appendages have been derived in a rather general case,

using the modes of the rotating structure at the nominal spin rate,

and for a central hub of non-zero radius. They were found to be

in agreement with some other published results 
4-3 ] in the limit case

of a central body of zero radius, and can be used with profit in the

numerical simulation of flexible spacecraft motions.
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CHAPTER 5

Simulation of the Satellite Attitude

Motion and Stability Studies

5.1 Motivation

In the present chapter, we present a simulation study of the evolu-

tion with time of the satellite attitude, from which stability charts

can be obtained for use by the satellite designer. Of particular

interest is the "nutational divergence" phenomenon, in which the

satellite, although stable if it were "quasi-rigid", exhibits a stead-

ily increasing nutation angle. Its spin axis thus drifts away from

the invariant angular momentum vector, on which it is assumed to be

aligned initially. This instability is due only to the dissipative

motion of the elastic appendage.

To this effect, a set of computer programs, "FLEXAT", has been

developed which numerically integrates the equations of motion and

prints or graphically outputs the variables of interest. This pro-

gram quite markedly differs from earlier versions we have used in the

work, as will be explained later. The version given here accommodates

three modes of the rotating structure and a dissymetric central body,

and since it permits an easy visualization of the qualitative features

of the attitude motion, it should appeal to the satellite project en-

gineer.

5.2 A Package for the Simulation of the Spacecraft with Flexible

Appendages.

5.2.1 Generalities

FLEXAT is a set of programs, written in FORTRAN V, which were
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.mostly run on the UNIVAC 1108 at Carnegie-Mellon University. It is

composed of the following parts:

a-) A short "MAIN" program calling on the relevant SUBROUTINES.

b) A subroutine CASEM 2 called upon to study the stability

of the meridional vibrations. This subroutine internally

calls on its own subroutine RATES, which computes the angu-

lar rates wx' ,y' , z

c) A subroutine CASEE 2 called upon to simulate the equatorial

vibrations. Again, this subroutine internally calls on its

own subroutine RATES, which computes the angular rates w x, y

In particular, this subroutine can be used to simulate the

nutational divergence occurring when the GMI (greater moment

of inertia) rule is violated, for the rigidified body.

d) A subroutine SEARCH (NDS) called by the MAIN program and

yielding the eigenfrequencies w. (up to j=3, if required) of

the rotating structure, corresponding to the specified values

of X, ~o. This subroutine, for the essential part, is the

same as that described in Section 2.4.

e) A subroutine PLOT, called internally in either CASEM 2 or

CASEE 2, giving a graphical output of the evolution with

time of the satellite nutation angle, over a number of satellite

spin periods (generally taken to be 10 to 20).

Each of these parts is now discussed in more detail.
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5.2.2 P]ogram MAIN

In this program, COMMON, DIMENSION etc. are given. Then the

"unchanging parameters" are specified by cards. The listing given

at the end of this chapter, for example, specifies

NSKP skip the printing of 60% of the results is

desired (NSKP = 1)else NSKP = 1; all results

plotted in both cases

NORU=NSUP=3: include 3 modal coordinates for each boom.

XNO(1)=0.05: the "x-boom" and the "-x-boom" have modal de-

flections (1st mode) equal to + 0.05 times the

length of the boom

XN0(2) ...YN0(3): the±"x-boom" and thet"-c-boom" have zero

modal deflections, for the 2nd and 3rd modes.

NU(1) NU(3)=0.05: same damping ratio on the 3 modes

CASE = 'M' : meridional vibrations

SIO = 0 : value of Co

LAM = 10 : value of

MGIV :a switch. If equal to 1, the eigenfrequencies w.

and ml,J , m 2,j are given as data (they are assumed

to be known from a previous study, or from a table).

If equal to 0, the C. and the other quantities will

be obtained "on line" by calling SEARCH(1) (in

case E) or SEARCH (0) (in case M)

GAM : r in the developments of Chapter 4.

PKX,PKY : ratios K = I ,hub/Ihb ; Kpy = I zhub/ Ihub
These measure dissymmetry of the ellipsoid of

inertia of the central body.

PREC: : the integration interval in time is equal to

sin or 2 (with j = PREC) whichever the smaller.
75 75

It has been found sufficient to take PREC = i.
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MAXP : maximum number of such periods (defined under PREC)

to be considered.

MODES : 3 (should be the same as NORU, NSUP). Three modes

are retained.

5.2.3 Subroutine SEARCH (NDS)

This subroutine has already been described in Chapter 2. It

obtains w. in the relevant case (E or M) for j = 1,2,...NSUP. Note

that

a) NDS is an argument given in MAIN (0 for case M;l for case E)

b) SEARCH is bypassed if M4GIV = 1, i.e. if the eigenfrequencies

in the case of interest are externally given, other than

completed on line.

5.2.4 Subroutines CASEM2, CASEE2

This subroutine, fed with the w., m,j m2, values obtained from

data or computed in SEARCH, proceeds to integrate equations (2.2-8) or

(2.3-5), as the case may be, if MGIV = 0, and bypasses the procedure if

MGIV = 1.

It then.proceeds to compute the quantity

NSUP m 2

j=1 m, j

The equations which are integrated are those for

The system is thus of order 4 NSUP + 3. The rates are computed in an

internal subroutine "RATES". Antisymmetric vibrations are assumed,so

that qxj = -q ; qyj = -q y. The four booms are assumed to have
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the same geometric and structural properties (thus same O, , F, p93),

to be along the principal axes of inertia of the rigidified structure

r 3w
(* k = k0, for the x-booms, k 2'32 for the y-boom, in Chapter 4).

The ellipsoid of inertia need not be of revolution (Kpx kpy). Thus

the relevant equations have been written as equations

(4.6-20) and (4.6-24) for program CASEM2

(4.6-18) and (4.6-23) for program CASEE2

Different assumptions (booms of different length, structural proper-

ties) could easily be considered by the user,for any special applica-

tion, after a rather simple rewrite of the equations, as given in

Chapter 4, or a suitable distinction between "F ", "P ",... etc.
x y

rather than the common "I"... adopted here.

The method of integration is RUNGE-KUTTA with fixed step

the latter being computed in the program as some function of the spin

period or of the vibration period of the jth mode, asprecised in 5.2.2.

under "PREC".

The output consists of a print of the case data, of the-quantities
2

NSUP m initial=
. N .L j A, 91 , V2, V3; mw, m1 , m2  (j=l,...NSUP); H initial= i

3=1 m,3 m2,j Izh

(assuming H. and z are initially aligned); the tables giving

qx,l qy,l qx,2 qy, 2  qx, 3  qy, 3  x S

(angle of nutation,
degrees)
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There exists an option to skip the printing of the first 60% of

the results over the time interval considered, which makes sense if

one is only interested at looking at the long-term behavior.

5.2.5 Subroutine PLOT

The PLOT routine graphically presents the results of the above

computation. PLOT is internal to CASEM2 or CASEE2, as the case may

be.

5.3 Results from simulation study, using FLEXAT

5.3.1 Comparison between the present and some previous results

As compared to the approach previously taken by J. Rakowski

and the present author[5- 1 ,5- 2], the equations used in the present

simulation do not include "extra" non-linear terms such as q2, q2,x1 y

m W ... Including these terms, although they appear in the deriva-
xy

tions of Chapter4,did not seen - fully consistent with writing the con-

tributions to the kinetic and elastic energy with some terms of order

3 of smallness neglected (such would be the case, for instance, if

{...}dx = j{...}ds , with the integrand of first order of smallness).

However, strictly for the sake of comparison, the stability

boundaries, derived as explained in 5.3.2, were compared in a large

number of cases using, on one hand, the equation with the extra non-

linear terms, and on the other hand the equations obtained in Chapter 4.

In no cases were the differences of much significance. All were

well within the sampling interval (Kp + .016).p-



5-7

5.3.2 Parametrization of the stability chart

Following the notation adopted earlier 5-1,5-2 ] , it is proposed

to define a stability chart as follows, in the symmetric case

(K = K = K )(See Fig. 5.1)
px py p

Sabscissa: K = phub a measure of the asymmetry of

z,hub
the ellipsoid of inertia of the central body.

ordinate:v=-_ , a measure of the relative importance
I

of the inertia of a boom (_ pk3, if Co = 0), and the inertia

of the hub. All things being equal, small booms of small

mass will give small values of F.

- parameter. of the plane:

Go = fixed non-dimensional radius of the hub (referred to

the booms length)

- parameters of the curves:

-7rk 2 WS 2
X = + ( ) , a ratio of certrifuoal to elastic

cant

forces, large for high spin rates or very

flexible booms (E, I small; pk4 large)

Thus = constant curves will be drawn on the (K p,) plane,

for 5o = constant, corresponding to the observed limit of stability,

i.e. a point, at given F, o, X, such that any slight increase in

K causes stability of the observed motion,the nutation angle tend-

ing asymptotically to zero; whereas to the left of it (decreasing

K ), the motion is observed to be unstable, the nutation angle

steadily increasing with time.

In the asymmetric case, one more degree of freedom exists, and

the chart will draw X = constant curves, corresponding to the observed
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limit of stability, for given , Kpy in a (F, Kpx) plane of

representation.

5.3.3 The GMI rule

As described in [5-3], a rigid body undergoing a torque-free

motion about its center of mass, but having internal energy dissi-

pation, has a stable spinning motion only about its maximum axis of

inertia, i.e. if

I I
- and - > 1 (5.3-1)

I I
x y

If one of these ratios was one, there would be no preferred axis of rota-

tilOt about which the satellite would spin after an initial nutation

has been removed by energy dissipation. Condition (5.3-1) is commonly

referred to as the GMI rule (or greatest moment of inertia rule).

In the stability chart, planes described above, condition

(5-1) will be represented, in the symmetrical case

I = I = I
x y p

by a locus of equation

2FA > _-- - 1 (5.3-2)
K
p

or

2 I ) ' I zI (5.3-3)

3 K

These curves will, whatever the value of 5o, tend to the common point

r + 0 K + 1
p

which they should not include. This corresponds to the case where

the satellite has no flexible appendages (pZ3 - 0) and a spherical

ellipsoid of inertia. The curves are shifted to the left as C. in-
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creases (Fig. 5.1). Their X parameter is X = 0.

Conclusion

For the stability of the satellite with perfectly rigid appen-

dages, and of the satellite with flexible appendages in the presence of

equatorial vibrations (as explained in 5.3.4 ), the greatest moment

of inertia rule

should be satisfied for the total, rigidified satellite. On the

(r, K p) stability charts, the design point

for given

should be to the right (i.e. in the region not including the origin) of

the Quasi-Rigid (QR) locus given by Equation (5-3).

5.3.4 Stability with equatorial vibrations

Stability in the presence of equatorial vibrations, was found

to be equivalent to quasi-rigid body stability. The stability condi-

tion for case E is thus the same as the Q.R. body condition given in

Equation (5.3-3). This result, is in good agreement with

Hughes and Fung [5 - 4 ] analysis in the case where 50 = 0. Two examples

are given in Fig. 5-2 and 5-3.

5.3.5.1 Stability charts (case M), using three-mode analysis

Using the FLEXAT program with subroutine CASEM2, and retaining the

three modes in the simulation, figures such as 574 to 5.7 can be pro-
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duced. Each of them corresponds to the same value of F= 10 and

Co = 0.1.For = 100, two values of K are considered . corres-
P

ponding to a slightly unstable or a slightly stable condition (Fig. 5.4,

5.6). The same applies to a higher A case (X = 1,000) (Fig. 5.6, 5.7)

The final results of the three-mode stability analysis in the

presence of meridional vibrations are summarized on charts 5-8, 5-9,

5-10 for values of X = 0 (Quasi-rigid body case) to X = 10,000, and

for 5o = 0, 0.1, 0.25.

IMPORTANT NOTE: When using program FLEXAT, with subroutines SEARCH

and CASEM2, for X k 5,000, the values of the relevant frequency and

modal quantities:

2), (5.3 -4)

should be given as input data, using option MGIV = 1, or described

in Section 5.2.2. Quantities (5.3-4) cannot be obtained on line

using program SEARCH DP, for such high values of X. They have been

obtained using a multiple precision version (OS-MP or NP-package) of

SEARCH, which is rather time-consuming and should be run only to set

up tables such as in Section 2.8, for interpolation purposes.

5.3.5.2 Effect of higher modes, and of modal truncation

As the tables in Section 2.8 show,the effect of higher order

modes (j = 2,3 ) on the motion parameters is as follows:

For small values of X, the changes of this sumby increasing NSUP from

1 to 2,3 is at most 2.5% for 5o = 0, and 9% for 5o = 0.25.
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For large values of X ( = 5,000), the corresponding changes

are 0.03% for Eo = 0, and 0.5% for Eo = 0.25.

b) 2- (amplitude in r.h. side of jth modal equation)m
ml,j

It can be seen that this ratio is at most 25% (for j = 2) of the

value corresponding to j = 1, when j is increased to 2,3

c) m2, j (amplitude of some terms in the r.h. side of the rate

equations).

The same comments apply to m. .

To assess the effect of higher modes qualitatively, it should be

remembered that, when non-dimensionalized by wz'

and the forcing frequency (precision frequency in body-fixed axes)

on the terms would be, for Iqx Iq y << i,

I - +( . A2

I-

as opposed to m

+ zrA

for a quasi-rigid body.
m2

Note that -- is always smaller than A . Typically, for

So A o 44.3

1 o
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Therefore, in an approximate sense, it can be said that angular

rates ZF will not appreciably excite modes 2,3,... which are larger

than w~ by a factor of several units at least.

With these observations in mind, we now discuss the conclusions

of a detailed study of the effect of modal truncation on the stability

charts (r, Kp; constant X, o)*

It was indeed observed in the simulation that higher modes never

developed to amplitudes of more than a few % of the amplitudes of

the first mode, assuming i.e. which can be considered as "normal" for

the initial deflection, namely close to the shape of the first mode

Within the accuracy retained in establishing the stability

charts (K + 0.015), no noticeable difference could be reported between

the stability chart determined here on the basis of three modal coor-

dinates for each boom, and that we obtained on the basis of a

single modal coordinate .. Se ing times, however, were larger.

The results of the 3-mode analysis, using program FLEXAT, are

summarized in =  Figures 5.8, 5.9, 5.10.

5.3.5.3 Effect of some higher order terms

As was mentioned in 5.1,. there was a lack of consistency in re-

taining some non-linear terms of order 2 in the equations and neglecting

some others. Equations (4.6-20) and (4.6-24) were used in the present

stability simulation. It should be noted that little difference re-

sulted in the stability charts. The angles of nutation, however, are
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computed here by

H 2 + H 2

e = nutation angle = arcsin ( H tot ) = 0(s)
tot

and since they involve quantities of first order of smallness, should

be accurate, whereas the use of formula

will see 9 critically effected by terms of 0(e
2), none of which should

then have been neglected.

5.3.5.4 Parametric studies for Ix  I (Ellipsoid of inertia not

of revolution)

With the particular geometry considered here,

I < I <x I implies that
y x z

or > KI

A set of parameters is chosen, namely

So, X , F, number of modes.

In the (K , Kpx) plane, the bisectrix of the first quadrant, Kpx = Kpy,

will correspond to the symmetric case,

K = K = K
px py p

and the limit of stability K p,such that Kp > Kp, will. ensure stability

of the motion, was found previously. Furthermore, in order to satisfy

the GMI rule, we must have / lr/
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In order to determine the parameter region to be studied with

program FLEXAT, it is useful to note that

or I / (<

and - )/

Similarly, from

<2 - 1 x&

This is most conveniently represented on a (1/Kpx, 1/K py) plane.

(Fig. 5.11). Thus,if

the admissible domain of study is bounded by

, Xj <, i+2 r%
( (+2 FL

X, o 3 , yo

K I
In particular, for a constant ratio of Px (or -- ), the limits

py xh

are shown by circleSon Fig. 5.11.
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5.4 Conclusions

A program has been developed for stability studies and simulation

of the nutational motion of a spinning satellite with flexible

appendages. The results of this program can be used with profit in

the preliminary attitude design, to ascertain stability, determine

the importance of structural damping and study the rate at which nuta-

tion is generated or removed from the system.
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IF( N LT I NTE~R G t fu
Enri I r 3 3 2 ( I NT ER
ES ?3=E33P( iN l T i-i R
IFI ,NOP T.GT * E M O1M3=E3(INT!EF )
IF N(. PT. ; T. ) i S H 3=E3 P( I NTERI

O TO 3
5 I = L H

EA ( Z)= t + K i i f22 +2+ 2, K t 2)+2,*K 3 )+"I, ) )/6
L P(4 Z = P Z: 1Fi P(N +(L( l + * L (2 +Z *L ( 3)+L( )4 /6.

q 7P( )= 2'(i ) ;( I )+2. M( 2) +2. -1( ) ' (1 ) /16,
L 03PzIT= -r3f( .. p( ol+* .2)+2. P( 'o)+P(q )/,

E'4"P(Z = LAI~' ( S IO*I , %- SI+ 1 I 44,2) E 2zr r 7 )/2.

I!: ( OPT *GT.O) q"CP ( / )=LA * ((s O+ *I * 2- l( I *-3I.1 SI ) * 2)

l * 2P t 2 Z)/2 -. (I ,-5ISI ; 1~ 4 p(- +,u L E (LZ))

L =F 3P ( N )

E0 = i+

Ir n LT. [ITER) 0 Tr , -I
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LI O4. T qEL 2i" 1 ;4 lIT )i
. ! r - 'L 'I 3  i I' T r'l )

F NOI'ToGT ,) .- ';HRi=i f -' IP I TE ,)

FINGi;A KUTTA F INI- K' )

ulnP REG11 LIEr~ I NTEI P I ATION

FE3 q 1S Hf:i VAL.Ui: OF THI UDETEPRMINA I T rS, AND Sq)

FE .3 IF 110 3 * E HSH1 4 L S 3 M . O '4

IF!IR *. 1) GO T 0  5!

IF(U EQ.! 1) GO o SL

IF(FE3 '*1 ECfC I D) , 1 ,!i
) EC I =F 3i

LA S=UL A c3 i- L

S LAI ' =LAS i U

S F o ( 1 H , -' 3" 0 2 .
t X ' N = 6 )I  6 5 x '3 U = ',13

)

i'l I U + ) L T

U=!+ l
r)n TO 99

r 2  UP0U

I y=F F t

TV A L=FE3 '4
I IF ARiS(F #7",j .. L 'EPSF,) 0 TO 53

JF(A;S(Di(i L[., . L,.Isi) GO TO u2

1 F E 3' '41E C I i) , 1, I 56

I IU W1i- 1 1,- UP t P E' D (DEC I)FE )

K K = K K K +KKK=KKI,+1

Ep c=A S L[5 ( f i )-AB5 (L. sA5 5 1 )

F(FPS CL It iUO(,)GU TO In
LASS= "

0O TO Lb
i 1 .i rt= Ml U

LPSC=A (S bC ( i: A BjS ( LASS i )
I F ( PS C. L.TV.U i O -' ) TO i

LA 
LS= U

11 f E =A S ( F PI: - p v A S, 5 ( F E 3 ' )

IF(AtS(F l I )*.I ' l. O ')-l I GOTO ;:2

i IA=IA I

IF I ALT.-E, r f 6i G2

lyRITEf6 3)FE3"

,3 FOf~MAT1 o ,'STUCI. ' Of T-HIS5 FE3I&' ,D12.61

E IPF p V Ui

?'O TO 53
42 I T EP =F 3

In r ITFC E LI3) LDECIf
.L3 FOR AT ( N l b , 00 O(00D DEC1D=' ,t"12 6 )

I b 0 TO .3
-- IP " l tR E (O6 .11) F E,3'IIIU
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II FOPmI.AT( ]ip, ' UrI CONVyrf I(LL F 3L ,L'Z'. I ,3X ,'lMU= ~1 6)
b3 I'T F O=MU S( RT I )

tiPllE -,L') FL3 , ,MU ,Lp h ,IATIRr'Oi E ( LL p I UjA

5' IO H AT I HU IFF.34' D12.X iu= ,D12., s1 ' XDA,-,C = F12.A,
x , 'I1 I'TF R R= , LI2 A, X, 13
RI TE (6 ,'6) DL1 , COR

8A FOriIT ( .I.: r , L.T= D9 3 9 sX N{?l= , 3)
0 i o, P +

) = U + C T

7/i6 0 T I ,l:

LAT I)ON NO U I AGNOSI I CS
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EG .OC2 C(;; DE .f 00n2 D: -,02! DF.1 1 0000n1 r nUO0 0 9l D-'U
0V07 n Pj070 ,oL OOO D '06 37 3E 0 F 1631 0E433

.0 Cl,'O 0 [".L,73 'E3 OrnCO D t000 E3lP 000o D nU 317 E37P
3I Fp 0000 ) r iL ' ;7 EL O OO D 0 76 1 F lf )POO rD 105 2 73 .Fu2P
1Lli 0r03 r r rL AM., 003 <R " nr(irn GAM'A rinr 2 0 0002 06 GAMA2

H00 Or' I rO02O I 0002 I n0O 2 1 n I
P, On I n1 000 J NTE r I 06 73 I

N, J cl I j 0 n 0 0 0 10 S I Nc~ T F P o n P0 1 r0 64 73 1
0 00 G n106(63 Jl O n 0 I n1 5n J 000 I 0 7 077 Jl

Kf , 0G ' I K HAX riO00 I -!7102 KI O 0nP0 D r!l( 6 3 L
0 (0O J r.o6'7 IL 00;.] R : 06537 L tE 00O0  006' 72 LL

AX.; 0007 1 O r; MAn P OrrrO7 I rOOOnn M.AxP o0012 I ri0001 MGIV
K O'i O D ' I ri NX3 00!0 0 r 021 53 MTMX'4 000o 1 6I 6 ,'1 7 Mo E

MU)DI 5 OC 5 00UJCO ril"tS On0 D , 0652'4 :L O 0 0 0 06453 ,Mi-
6 CO 000L,( 1 N0 C: 6 1 nOQO 000 0 ( 1066 6 NrI

0 OCC i C6' i6 NOP T OnOO I 06 1 3 rJP 0n C)0 1 nO6 7q NF PI
NSU' Ori I 3 )OCo00 iSUp 0c03 no000-, Nn 3 R 00 1 7 N UII 0Co0 0 r ;062 1 O .jXY 0002 R n00217 0Mr EGt, 0n2 R nOG217 OEFGA
'l 0CU00 C.R C'.O6'n 7 O(JX(O (O R ,06,0Q 9 OMXO 00n0 R 00 65 0 04yO

OIl000 0 R 6b, 6 0!"7 0000 [) ,0033 P OOn0 R nO 6 977 PER
I 003 f .(,e I PKX 0!003 R 00001 I PKx 0003 R n000002 PKY

EiC 0007 O 1 l i0 PiEC r!on . .OC ,7 P"' 0O " 1 R 106715 SAVE
" Q000 [ 0000 II So (00I I 06 6 I SIO i 0000 D o004o 3 I S

ui'2 0002 ) no0? I UN 2 0002 D 0 ro!O"jnr v 0002 0 00000 V
U 0oU3 . Lj U C 3 XI O UD0O2 "'00200 X1 0002 0I) no02r0 X

-0 000C!3 rD ?00(1 ; n02 0 n00202 Y 0002 D 000202 Y1
ZK I

I
S POuT r: CA E!2

C CA\bE? S!.U'LATES TiiE NUJATI-)ONAL HOTIO OF THE !LrX rTLE SPI t-I STAriLIELD SATELLITE 'Idih I00AS N MEl0I0NVI FkRAT 1i, GrVFN A SET OF
2 1 ,C,'S ,i THE i.'0fIS AND 3 INITIAL A GULAR RAlES

C ANL; THr EIR tIErPIVlITIVESi MOUIFIE; V SI 0H u E; S Tf FIRST T'HPREE 4MODES IN THE SI. ULAT IO
AND SS TIE E uAT IO, t3 I TH FIiRST ORD')VfR T-RM S lTAI NE)
S 1HL. O UTPUT CONSI (TS OF TORA TiA VEKE P.AT F, 00)M TIP oISPLACEI-E NTS,
Vj, IhTIOI S  O!! ,f,;(1IL. / l.R 'i{N( TUr t tl), tErHAHI',ICAL. EtNE!fr'ry
ArlD THE NUI ATION A.: tJLI I N t)EGREFS

LI i y NS Tli (.1 O i U (c3),
Cn'.! 0 0J VpV,CohAt.2,XI ,'1 ,DELTAGAMlr.2,I ,ULN2,OI0EGA

CI (0 i N 0 H / T o I- / " t . 5

C oimrONh/F I VE/NK iH. CA

C o f MOF: / x F/ , ,PR[ C

L n!, o 0 / F: Ni / o MU
C (); - tt 0 / T Hi nD / (4 Sn F
CO ; ONr/F I T / ISK. P , M I V
1 NTE(,F., r-EL:C
i<IEr, L NN,. LA ,N IJ
INrEGEk NA.XP, KMA ), .v D,H, , NT l TER
Sr., EN 1 H NH ,(3 L) C,AMI (3) DA 2(3) , ;MU 3

L'O t Lt PPFC S1Iu V(10,3) , I) (10,3)
, obpLL PRFCI.I.C I G CU ,',CA i A'Z ,El. TA XI .Y1 7ZKl
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UOiU LE P' ECiS]O XN [O (3) ,N f O(3 )

DoI LE I ECISION A(3) ,AM2(3 ),A1i(3) A M N 3) Y3

UouRLL Fp REC IS
I H Un 2(3l ,AtM2 (3 ) 1 0 m A 3 A32

DOU LE PPj C I I I Ar 7, 4 3) ,CC (7 ,3),pV (3) ,ACX (3)

Uo [I LC PF'FCIS I G] ACY(3) , S

[ FOUr;LE Pr .CIS P (' q'll r) ) ,3( I.,)s

It L OM3,E i M , ALF A, o BL TA * uNX3 1 rf) NHMX'4 (lfI ) IPT I01 3)

IL33P( ICl , E3'
t l( 01 ) , . (101 ) ,i Lt4 I P 1 i E 2P

( lO I) 
3 P ( n 1 I

IL.4P( Ol) ,A bCEAO, hJCOEM u l ,N!13) ,UM 3 S ,1

O0 711 J 1 ,S p

7 1 1 " U (JI)=Oru 0 U )

bIOR=SO
Nr10", T E (6,R 3 it 7

:7 F O RtAT( i! I CA-; M P R0 V S PiO R:,M VDN F S ER

c
- SET PARAIHETER S Ti COiTOL S!I1ULATIO I

sET I-roPT=I FOR REVERSED INTEGRAT ION

C ft:S D INECTIOl S'lWITCH

N 5 = 1 IN PLArE, = 0 OIJ OF PI_ANE

N OPT= 1

IN 1 ' T = 100

I N T F R =N I ! T +

R T TE(6,95 )LA 1l 1 , A! 1,0N P K X ,PKY,'R CMAXP IMODES M AXF S

95 FoRMAT() H , 'LAI
IRDA

= ' 
F 6  0 /1 H , ' XI- ERO=' ,F1' 72 ,/ 1 H GI M t, F 7 3

XI r'XPY = i ,F i  / ,PKY= FA /

x I H ,vPiLC=' * t 2/1 ,t H AXP=t, !H -, S'O L .... l2////

I F GIV-E1::ij, I ) CO, TO 34t1

0o 3' CO IE=1 wrU'lpES

99 SI= ..

N=t

S H= I .'/FLOAT( INT~)

C CLFAR ARFAYS

C 0o 31 =1 ,

K(1)-,

L(I )= C

3M( I )=C

31 Pit = O
E3P P(I)=o

Sq 3P (1) =0E31P( ) =0o

Tl s SECT 'i " CUN( l ES THE FIRST MO E CHAPE AI THEN THE ODE SHAPE

C PARAMETEFS MIAIiD p2 FOR CASE .

C I= O
IF L( * ) Q.,0 TO 2
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00=0*
IF(I,1"OPT .G1 ,0) 'Gr TO 12

E32P ' ( 1)
F.O= 32 ( 1)

(0 TO 13

12 L 3 ( 1)=1.

1 LnO C o=,

CO=0'

60 TO 3
2 AO=*

CO=O*

IF(NrPT GTO)c,(' 10O 1 q

CO-E 3P( I )

(-tO TO 15

l LqL4 P(Il)=l .
AO:=F4 IP(I )

, LO=0.tO= o

Au 03 A=AO

.=CO

E=EO

N=
L1=1

.I =l+-lt0f)
i N N *
S = ( Nu I 1 I

5 K )=H1A

L( I )= H b
I ( 1 ) =( 1C
MUt =1 ** ; 0~ , (MO I L I MUJ(,F E)

iF(NDSE. . 1) GO TO O

iU =MI!- 1

Yrl P( I )= ( i*-5 *5I +2 r SI * ( 1. * - S ! ))/2. * - ISI +  10) + ' Ul" E )  L h M
E

1 + (1 -, I + . ) A i -iU I O L. A H

5 = { ' j, )* H

i=1+1

IF(I GT * ) GO T 6

L=i-+K 3 /

A=AO+L (Z) /2

B 1 /Z) 2.

C=Co+F(Z)/2.

51=51+H/2.

E=EO+K .3)

A= AO+L ( 3)

GO TO 5
7 IF(D L.Q. ) GO 9

Sl= + 1N*H
+1r I1 f~
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E3 7I3(Z) 3 4+ ( ) (2. 2)+27 * (3 )+K( ))/o

E3 P(Z)=E31 (i + I L,( ) +?2 L 2) +2 .,L( )+L( )4 )/ .

L37P(Z)=E32 P ~) + M(1 )+ 'M (2)+2. M )+M( ) )/ ,

E3 P(Z _=£3P33PI i P.(P )+2 "QP( 2 +2. P( i F ()+P ' ) )/
E3 p ( Z)=LAH ( 510+ ) *) e2- (SI +S I )* ) rE32P Z) /2

l-(51+S0 ) *E3 I' ( )+ML.1 ,E 3 (Z )

sf S.1 1+ I )L=F3(1- l)

B=E32P N 4 1)

L =E
AO=A

CO -=C

IF(*LT.. I 3 = E 3 T GO To E
EMOUM3=E32P(JNlER)
IF( t( PT GT.0) l 0 M3= E3( N TE i)

DO 30 I 1 ,I I NT RF
3 . PiIMX3 1 )=E3( I)

D=4

GO TU H
9 5 =N I*H

Z= + I

Eq(7)=E (N) +K(I) 2, K(2)+2 * (3) +K 4)) /,o

E 1F;(Z)=Ei P( H)+(L( 1 2 I2)L() +2. aL(3)+L 14 )/6,

i 2P Z)= E 2 P i'N + I l )+2 * (2) +2 I ( t ) M ( ) )/6,
L43PiZi =E 3p ( aI() P( ) +2 "*P(2)+2.P( )+P( ))/6.

Eq 4 P(Z L)=LAI, ((S1IC+ *)* 2-(51SI 510)* 2)Fi2P(Z)/2.
l "(SI+Sl10) E I PI z + m%Il N Z)

IF(INOPT GT O) LLqP()=LAM ( ( sIsO1 ,0+1* 2-( 1,*-5 510) 21

1eEI 2 P(Z)/2.+ -1 S I iO) E' P 1 i7) NUI I IZ ) i

E=,,4 ( '.+ 1 )
A=FqlP(N*I)

b= F, 2P ( ! 1 )
C 3=F PF I+1)
EO-F

CO="

IF(t L T * I T FF ) GO T0 l 1

SE. =L 2P ( i L F A X )
IF(NOP! ,T ,,fGr .0J LMOI1=Lq(IlNTER)

0o 32 l=l1 , 0ITLn

S M 4 ( i ) =F ( I
L F A L F i'iO 3 / .lHO 1

bETA=NLIX3 (IC) )" ALFAe x R .xX4 (10 1)

IF( ,OPToCT.0) ,ETA=iM .3( y i )-ALF'A MMXe( )

0 0  102 LI =1 ,IV

LL=I.3
IF(.OP oC,T.P) -L= 1(UZ-L.

5 M=0r
D0  216 1=2, 01

21 b = +( C r( I , E )+ PT(1- , 1U E) )12. ((FL )AT ( 1 "* )*HH+ i)*H
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M42 (ifLE) = H

SM=0O

12 SM= M +1N PT( 1,iI1 1 ) lEPT(1 , OD E)+PT T- (MODE) I P T( -) , MOLF D ) /2 H

A r ( I ( MO1) E )=S

3 t COI-T 1NUE

ENO OF IMODE SH4APE AND Mo[E PARAIFTFR rAI_CULAT ION

C ALl .  V I A B IA.I --,E AR N E 'loT-DIMEN ;I(illALi Np IS T IE STCF' NUI y

,p IS THE INTERNAL L.Y CALCULATED PRINT INITE RAL,

C KMAX IS TIIE ii3lDEl iF SEGMEr.T IN TIHE SALLFSI PrRIOD

NX EI)ET ER' INES HOVV MUCH OF THE SIt:UL..TIOtN IS r~RI!NED OUT

GCA; A=ii = RiL0 1  1 ' 3/ i -HUb -.Z
L COR=SUM OVER Ni MOE S OF M2 SQIIA R D VE R H I

3q0 CONlIT I NUE

K 1 -i X =7 5
IR=M U PREC)

IF RE C NE. 1) hp N I I I=P

''B= tU(PREC)

PFAC- I /F LOAI T KIIAX)

PER=8" * ATAN(I * ) )

IF (FR Q GTi*) PE =PER/MU(PREC1
H=PERPFAC

14 K= t-! A , P i K MI-A Y,

IF(PREC.C- *i . ) KIIK=MAXPKMAX*IR
N X =, 6 IMK

Np I = K -X X 6

S CO =0 ,
AO 202 J ,,=l1 , l )ES
A I 21( ( .i)=AM2 (Ji! /AM I (J"i
_A)M JW)=2.,*AM ti ) .

A2 ( J )=2 * AM2 t JWV)

202 C 0 =COR + iA i 2 ( J ) A M2 1I 1JW
DL. T A=SIO5O1+S Oo+3333333

i ) D ELT=ELTA

)COR=COR
vvRIE(b,97) DCORDDELI'T,NU

97 FORtMAT i !  1 COR=' F i I Si/lH , OIELTA=, F 9.5/1Hl F , 'NU1='t F * /1

7x 'F2 = ' F" i  L O. I / si !'  i'J 3 =*, F i. r' ////

UO 203 Ji=l, I mOL)ES

U A 2 ( J ) -=At 2 J '
.) A 2 ) .i 2  ( J ; )

U . J .) =2.,e UI ) F J,1

Ii R I TE ( 6,0 )JV.0 lU),. ,4 d I )A 1 1 (J'.J ) ) ,DAM2( t")

n, FO,; r: ATil 'u , I ,, v Ell.x E I I s t ' = D( * r ,v.

'i.2',1s1,g O ,E 1 5 /)

I 203 COipT I IUES)0 'I J := I , 'l o) ES
- . i (JW )=lMt (Ju ) *IijU(J W)

(1A -1 A 2 -2. GA i

'.ZK I =1 2 -*GAA; -' E L T A

36 X =1 /1PKX
Y 1 * /f' 'Y

S DEFiNF liTIAL c)ONDITlnNS
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OMx =0
OMYO= 0

0t.7O= I •

OMF GA= 

Ot4XDO=U *

U MYDO=0 - .
0o i Z D O = U.

THESE le. ALIGN Z-AXIS ON H-vECTOR

"0 O4 J'j=I ,M )FODES

OI X C= XO+ Ar + A 2 O ZO* xNO(J;. ) / XI + 2 o GAMA I)LTA)

qi O my = 0MY + GAMA2 UOM Z o Y ) / Y 1 2. A MA*DELTA
)

Do qC5 .J"=I ,3

ANDO JV )=0

V tJW =X NO( JW

V ( . , J W ) = X N 0 ( J W )
V (3,0Jr)=XN0J

V(S , I )=OM

V ( , 1 )= YO Y 0

V(7, 1)=0 ZO
V( ,1 )=O XDO

V(0,1 )=OYOO

V(I , 1 )=HOMZDO

DO 98 J=1,10

RA i=l
5L CONTINUE

kUNiVGE KUTTA INTE(RATION -

Do ,107 J?=l ,MOD ES

AC (J;) =-Ij 1 J { j ) C . DV ( 3,JW)'J D .1 J )*pt (JW) A 2 1 (J

x (OMEGAeDVA5 , I I-DV ) 1)

AC Y ( =-U 11 N2 ( J0 )' V , I) -)V (2 I W) -Al ? )

x (U1EGA*ODV(A i )+DV(8,1))

AK( I I , ,J) S)=Hal ( 3 'J v;

AK(2, I , 1 4 ) =- D VX ( 3 )

4(17 AK(q, ,JI J: ) =H ACY JW)

AK(5,1 1 )I =H i)b (t Et I

AK (6 1 1 = -H DV (9 1)

AK(7,Is I )=H DV(10,I
)

l=1+1
IF(IoGT.3) GO TO 60

L= l-I

)0 91 J=1,7

UO0 91 JW= I l, l-)1iE

9 DV (J ,Jv ) = V ( J j, A ) +A K (J. Z J , ) /2

CALL RATES
GO tO 5 0

n IFII .;T) GO TO 9 1

00 10 J=1 ,7

0'O 10 J., I I l1Ol)Dl-,



j L) ( ,J' l ) = V ( j J ) +ArK j, 3, Jl) 5-45
LCALL A T Ii
-O TO) .

9n 00 11 J=1,7q O0 j* I J ' 7
I)0 11 JW= I ,HO. S

(C (Jl ) = AK (J I ,JW) +2 , (AK J'2 4 + AK J 3 J ) VV AK (JI . 1V)
11 V ( J ,J=v C j ,J

O 8y J=1 ,7

DO0 R9 JW'=l M01.)[S
09 'V ( j w ) =v (j ,-J )

CALL RATES

UN.IiGE KUTTA F I - I SH'D
flO.V CALCULATE oU'TpT vAyABI.LES

IFI NP NE I ) GO TO L
CO-IPUTE CON PoTJI.'ITS OF H-VECTO0k IN .BoDY-FIXED AXES
AMX=V( , ) *(X I +GAMA2 'r)ELTA A
AMY=Vi, ) ) * ( y +rGAIA2* ELTA )
L)DO 451 KF=1 ,NSIJp

A t =A M +AM2 (KF( I , V ( V( ,FKF)-V(7 * KF ) ) GA 2
4 1 AMY=Ai Y - A 2 (KF (V ( 3 , KF +V F) V (7 KF )I*GAMA2

AMZ7 ZKI*V(7,1)

S S =A A X * A H A4 + AN' Y A M Y + A. 2 A M1
iS =SQRT H S Q

UHX y=A MX ANX + AlY *A I y

H x Y=SQRT ( 0IX Y )
PI =3. 19 1 592
DEG = 1 0 * / P I
CA= D EG I 'I 0 (OHAY/ IS )

IF (NSKP.r P Q. r F G TO 127
IF (N GTI. I IANI. ,LT .NX) Go To 4]

127 CONTI UE
IF( N.. *I 0 G O ro 29

tRITE6,33) !IS;
33 FOR'APT(/ Ii , 1lit 1AL H=',El2,t,)

,TRI TE(6,9 )
1 FORMAT(////1H , ' Qx 1iO[)Ei Q Y otIEl X MODE2 pY M(oE2

XX ,OD)E3 QY 1ODC3 OrG0 X C ANG N,/)
29 COiT INUE 

"

IF I(NP.NE. I I GO TO f

WHI TE OUTPUT VAR I ABLES

RITE (6,22 V(l ) , V(2 1), IV( 2) 2.2) V( I ,3 ,V 2 3) V 1)

I C A N

2F NP*EQ-.T PI I IP=S

C A I. L PLOT

iq=N+ 1
SF 0 T * K ET'J

GO TO 88

S Ur ROIT I NF. RATES
THIS ROUTINE CALCULATES THE {)FRIVA iVES OF THE ANGULAR RATFS
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CO,14O0N V, V ,CO A0 ,A .12,XI,Y DEI.-LTA,GAH 2, 1 I,UN2 ,OMFGA

C O iM () N / Z 0 N/OHU

C o MUN/ T ,4 i~ E . iO I) E .

Coi RON/IllRD/S1
I ;iNtS Oi U OM I(J ) i

D!ir3LE' PR:EC T SION V( 0,3) ,0V(l1 ,i3) CfAR .AM2 (3),

x tUI2 (3 ( )GAiA
2 ,DELTA .X 1  l , 1 3) A xI AIAUX2

DI) 711 J!=l ,IlSIJp

71 I IJ ( J I ) Ul) U (. I

AUcl = "l /( X I +GAMA2 ( -lTA-COR

OV (, 1 ) =AUl Xl, ( 1 ,*"Yi+;GA1A2* (D .TA-C-,R) ) O* MEGA DV( ( )

AUX 2  =-l /(Y +GAMA2* ( DELTA-C
O R )

OV(t9 )= A X2 ( X I -G(AMA o FLTA-C R ) )*OMEG
A * D V (  i l ).

OV(10l)=0
O0 12 J= 1,o,.
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CHAPTER 6

Other Topics

The present chapter contains a short note on the use of the sta-

bility charts in deployment dynamics, and two bibliographical reports

on passive nutation damping devices.

6.1 Stability charts and deployment dynamics

6.11 Dynamic parameters during deployment

A deployment phase such as the one for IMP-I may be summarized as

follows, if H, 9, Co, ws designate the angular momentum, length of

x -or +
booms, non-dimensional radius of the hub (i), and spin rate -or

"k" orbital periods

0-5------*^<
time

k(0) £(t )

STATE £(O) C STATE
STEt(0) (t) "3"

ts(O) Ws(t1) tl<t<tl + e etc...

(for t<O) s+
H (0) H (0 )

SExtension

at t=t

RESPIN AT t=0 RESPIN at t=t 1 +:

9(0) £(t )

STATE STATE

2 (0) w+(tl )  "4"
s () W+(t+)

(for +(0) s

0<t<tl) H +(tl+)

We define a "state" as a set of values £, E , ws, H. If non-dimensional variables

are used, let

Ho d H(=) = Ih So
Sdef zh s.
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H(any state) h(£=0) =I
h(any state)df Hstate) h(=) 1

(H)def

s df so

Thus

IzW s  (1 + 4FA)Izh 2 1 .. s
h = (1 + 4r( C + o + )) w (

HO Izhso o 3
S(o)

with

r -- 3
S z,h

2 1

I = moment of inertia of central hub about "z".

p = linear density of boom

In view of these definitions, an extension maneuver at t corresponds to

h(t + o) = h(t - o)

£(t + 0) = £(t - 0)+ At

Ws(t + 0) (1 + 4rA)t-0

Ws(t - 0) (1 + 4FA)t+0

in which At is specified.

A respin maneuver at t will give

2 ms (t+0)-s (t-0)
h(t + 0) = h(t - 0) + (1 + 4F(E + C + -))t+ ()

s(0)

S1 2 1
(1 + 4r(C + o +  ))t+ = (l + 4r(o + o + ))t-O

in which 6w s(t) = w(t + 0) - ws(t -0) is specified.
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For a .satellite of given hub (xO, Izh specified)

1/3
X 1/3 XoP i -1

Co =- = x z )  - I1/3 113 = S- (2)

1/3

with S a fixed non-dimensional number def 1/3
zh

Now, substituting (2) for Co in Equation (1)

2 -2/3 -1/3
S= [1 + 4r(S + S + )]

s s O

If k is specified in any state,

r- -
Iz,h

can be computed.

To that state there corresponds an Etkin's number

_4_ 2 pt4 2 .1/3 -2/3 + r)- 2 h2

EI= = x[l + 4(S + Sr 3
El s EIxo

The quantity El is specified for a given design. Let R be the non-dimensional

quantity

Then

_ 4 "r 4 f r 2b2

(2) and (3) thus give o , X during the "states"of deployment as functions of

boom's length and angular momentum. In these relations, R so and S are fixed

for any given design.
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6.1.2 Stability during deployment

The determination of the stability during deployment will thus

proceed as follows:

a) R/ms, in computed (a fixed quantity), then R for wso given.

b) S, a fixed quantity, is computed:

given the state w, s, , and H for some t:

c) compute hd

d) compute r ( );

e) compute A(Co)

using the relevant formulae for either respin or

extension maneuver

f) -compute X from (3);

g) determine the stability of the corresponding (K , F) point

on the stability chart corresponding to the computed

values of \ and Eo, using program FLEXAT of Chapter 5.
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6.2 A SURVEY OF PASSIVE

NUTATION DAMPING TECHNIQUES

Prepared by

William 0. Keksz



In this paLper, several mtbos of passive nu-

tat.ion damping arc surveyed. In a review of rigid

body dynamics, conditions of stability are presenteO.

Ball, pendulum, and fluid dampers are surveyed, among

others, along with effects of magnetic and gravita.-

tional. torqucs and strctural hysteresis .onergy. di. s- .

sip ation. Final..y, a few active and semip1ssive

systems are mentioned in the way o.f comparison.



A,B,C Mo I nt s of inertia abd'ut x,y,z axes

DE',F Products of inrtia for xy, xz, yz planes

xyZ 13od.y-fixed axes, z along spin axis

X,Y,Z Inertial ax:es, Z along I1

w Total angular veloci.ty

p q, Co!ponelnt s of ~' along x,y,z axes

(') d( )/dt

II Angul uar. momentum

qi Generalized coordinates

Lq . Moment in direction of qi

,9, , Euler's angles

Precession rate

Spin rate

Nutation angle.

Magnetic or structural hysteresis factor

T (p + r ) component of to in xy plane

(C -)/A

_ Ar = forcing frequency

i (-1)'

1,3,k Unit vectors along x,y,z

M Mass of main body

rm Dam!per Im, s

s Radius of gyration

Other syimbols are defined throughout the
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II. Rcvie:w of Rigid Body Dyn~ar:ics 13

A. Definiti.ons

1. Euler's Angles

If X,Y,Z is fixed in space and x,y,z is the body

fixed system, we define the Euler Angles i, , and o in

Fig. II- . The spin axis is along z, and:

= precession rate

O = nutation angle

= spin rate

The unit vectors 4, j, lie along x,y,z.

We have:S(cosy cos p -sin y cos 0 sin F)
S= (cos F sin +sin 9 cos o cos/)

Z (sin 0 sin )

(-sin 5 cos-' -sin i cos 9 cos 7) (sin 9 sin F)

(-sin j sincs +cos y cos 0 cos 9) (-s:in 0 cos )

(sin o cos F) (cos 9)

2. Angular Velocity

If = + u j,+ A'k is the total angular vel-

ocity of the body, then:

(sil l sin ) (0) ( cos )

W y (sin cos j) (0) (-sin~)1.L ( co - ) (0) (.....(o) ..

Note that r is not the spin rate.

In most cnses, the linear velocity of the center

of nas is ignored for damper analysis.
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3. Anigulav Mo:Cl ntum

:A . -13D -l kE,.L

AA AA-ki.! --kJ ,kk

The above :is the angular mom;incentum in X,y,z. For

• most cases, we can ignore the external torques produc-

ed by electromagnetic fields and gravitationil. gradi-

ents. Thus H is constant i.n inertial space (X,Y,Z),

and thus we can align the Z amis along T. If x,y,z

are aligned along the princ:ip.e axes of the body,

D'E;P'F = 0, and: t = Api . -+ Bqj + Crk

where pq~,r ar e the (ex , z for alignment with the

principle axes,

4. Kine.tic En ergy

The kinetic energy of the boy is:

T= (A2 + B 2 CV 2 Dc, - Eaow c F (J
x y xy x y

and for thec pr inciple axes:

T = (Ap 2Cr 2

5. Euler s Equations

I-Here Euler's Equations are presented only for a

principle aO;is x,y, z:

L2 = T3' + pr(A-C)

L3 Cr + p(P-A)
wheo I ,2, and I.3 are the . tern al moments about the

corr , spo:i.ong) u principle axes; here they w.ill usually

be zero.



6. ]oj nsot Ellipsoid

For a, rigid body, T = constant, and thus:

(0'.H 2T'1
H: - II

This must be the comon. nt of C6 along I and Z, If both

sides of the energy relationshli are divided by T, we

get: 2 2 2
(I r

'2T/A 2r/3 2T/C

This is the Poinsot ellipsoid. If a plane is placed per-

pendicular to Ti a distance Q from the,-center of this

ellipsoid, we see the Poinsot eliipsoid rolls on the plane

(called the invariant planc), without slipping. The con-

tact point is the tip of CO (Fig.TI:-2). The curve traced

out by the contact point on the plane :is the herpolhode,

and that on the ellipsoid is the polhode.

7.. Body and Space Cones (Axisymretric Body)

Froml the above we see that c sweeps out a surface

in both the X,,y,Z and X,Y,Z fraes. If - 0 and we

have an axi.symetric body (A=B) then these arc both

right circular cones. From the relations between pq,r

and ,, , substituted into the Euler moment equations,

we I.avenv :

(A-)cos o

(a) CA: ,' and y al'e opposite in sign, and this is

1.known as rC tr,'oe!grade procession.

(b) CtA: and -have the e sign, AC this is known

as djirect or posirrade prcession.
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Lines of nodes

Fig. 11-.: Euler's angles.

SPoint of contact

~----~.;1----x ,/ --- z- -.I.cpOliho cie

Polihode

Inv2 .riant plae

FiI. T-2: Poinsot e.l lisoid.
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z t \  /Space cone

Body cone

(a) Retrograde precession; C> A.

z -I A

Space cone

Body cone

(b) Direct precession; C< A.

Fig. II-3: Precession of body cone rolling' on

space cone. c is along the line of contact.
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The body cone rol.l.in. on01 the .space cone for each

of these cases is illustrate in Fig. II-3. The angle

between and E- is (:

tan ( = (2 ,2) /r = U./r

vhere 0" hT is the component of l.y:i.n in the X)y Iplane.

The anlgle between j- and II is :

tan = (

By substituting-= [(C-A)/A]r =Ar into the

Euler equations, we have:

p+ .1q = O -- -

pl~ +Ap 0
Thus - +.ap = O

and p = PO cos At + (po/a) sinAl.t

q = PO sin-fIt - (pin).cos-.t

These last imply that V, = (2- .22 rotates about the z

axis at the iatel.

By using a complex analysis, Ames and Murnaghani

shovw, that .[17 :

2 2 it
- 'r i--- e

8. A Note on Unsymmetrical .Bodies

The rel.iations for co are -given by Thomson for the

ca.s-- A.C aid I1'2T3 .a biy s si inil-ng about its axis

of least inertia [33 :

p - c cn f(t -t to )
AD -CL0



q -< sn f(t - )

2TA -- 1T- . ) dn f(t - t )

(D - C)(2TA - U2)
ABC

and .the modul.s of the elli.pt:i. fun-ct:ions is:

S (A - ]) (H2  - 2T'C)! ,.

( - C) (2'iA - 112

This results in spin about the z axis with. a superimposed

wobble, with a 0 and 0 min:

cos2 = C(2TBn - 2)/( - C)H.

cos2 Omin = C(2TA - H12 )/(A- C)TI 2

B. Miscellaneous Concepts

1. Stability of a Rigid Body

For.a rigid body, T is a constant. If we let the

initial condition be:

p . pl +

q,r small

where 6 is small., we can differentiate the Euler equa-

tions and substitute for p,q,r and 1Jqvr. Then:
- 2q'q + ,l1 (A- B)(A - C)/BC 0

r + pr(A - B)(A - C)/]C 0

These are stable only if (A - B) and (A - C) are of the

same sign. Thus they are unstable only if A. is the in-.
termediate rotational inertia.

2. Energy and Stability

In a real spacecraft, there is always an energy loss
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due to flexure of nonrigid parts, magnetic hystersis,

etc. Thus we have '1'40.

For an ax:isymmetric body, we have:
2 2

2T = A + Cr
T

S 2 22 2
Hl =PI a * C rT

Sinee c Cr II cosO :

112 - 2TA = cosE2 112(C - A)/C

or T = 11 - - cos 2 0 (C -)/Cj/2A

Since there are no ex'ternal torques, H is constant, and

S= i-2(C - A)/AC '(sin cosO )

= (I2hA/C)(sin Ocos 6- 0

Thus, for decreasing T, . decreases only if C>A,

and the satell:ite is. spinning about its axis of maximum

inertia. This is the stable condition. For a prolate

body, there must be an energy input for stability, which

implies an active nutation control.

The change in energy required to stabilize a pre-

cessing body can casily be found, The desired'energy

state is:
.2

Tf = I

where the subscript f denotes final condition. Since U2

is constant [36]
2 2 2 22 2 2 2-1 = A' ,F + C = C r = 1 f

Then r 2 = (A/C)T 2 + r 2

Thus iT = (T - 'T.f = )'m(1 -. /C)L,~l



For an oblate body (AlC), this is the precessional en-

ergy, the amount to be removed.; for a prolate body, it

is the amount to be added.

Also = (r -A,) tandj  = (C/A) r tan 6

II. Passive Dampers

Unless stated otherwise, the satellite will be

assumed axisimmetric about the z (spin) axis, A. = 3,

and oblate (AcC) for the below.

A. Ball-type C[4 24, 36]

1. Mounted in -the Meridian Plane

Tlhis type was first used in Telstar and later in

ESRO II. These consist of a ball allowed to roll in-

side a circular cross section curved tube which is

filled with a gas. Two are used, diametrically opposed,

to maintain symmetry, and .mounted in a plane through the

spin axis. Energy dissapation comes about through vis-

cous friction between the ball and gas, roll:i..ng friction.

between the ball and tube wall, and collision of the

ball vi.th the tube end, the latter only at large nuta-

tion angles.

Such a system is shown in Fig. IllI-. According

to Yu, the rotational motion of the ball (of radius a)

is given:

(2/5)ma 2 ( l/r) = ha - N

where Ik is the friction force at the contact point, and

N the rolling friction torque. N is approximately an

order of mnagnitude smaller than the viscous telm, Neg-

lecting N and assumin.g small, the motioni of the ball
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y

2a -

Pig. I If I1: Bal:-typecldrxmpcr wourltc in



is described by:

S+ (5c/7m)oz + (5br 2/7.L)c": (5b/Th))os-olrD.t

where c is the coefficient of viscous friction. The

time av'rage rate of energy dissipation is, for viscous

fr ict :io :

d /dt T 2/2 -=-cR2 2/2"

where dO0 ( -_ 2/r2)[(1 _ 2 2 2 + n22 I-

n = 5c/14m

and P = (5br /71R)/2 is the natural frequcncy, the

square root of the o coefficient.

We end up vith an expotential damping:

0 = o et/r

50(1 2 2 2 2 /and r )
7nr2 2 2

If rolling friction dissiphtion is included:

dTiTr/lt = 2FR fd/t1-

where F is the rolling friction, and:

= ( +1-)e - t / - ' --

9' -- 1o ( . 60.o)/(1 + 6'o/t.)]In o. at

Numerical conmpu-tations show that f/' is substantially less

than one degree. Thus the viscous-only results.can be

used if 0 is somewhat gr'eatcr than one degree.

The damping 'ti.le c n be greatly reduced by designing
a r.esonant systm, malki.ng P =1. Then:

r e 'S
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Thl ti;;,c co..sta, nt is then:

7 2snC/mb2 ( + 1) r(. -Ares

A resonant damper coald not be used in Te.star be-

cause / was close to zcro and room had to be ilmade folr

an electronics package, preventing a small value' of b.

It is possible to conceive of dampers using

straight tubes or tubes concave outward. It is easily

seen, however, that the equilibrium position for the

ball during nutati.on would be at the ends of the tubes,

and the f:i.nal spin axis would not coincide with that

of the satellite without the balls.

The parameters for Telstar were A/C = .95,

20-180 rpm, R 15 ft, m = 0.0021 slug, a = 0.242 in

(tungsten for its large c density), c = 0.00193 lb-sec/ft

(neon for its high viscosity). The theoretical damping;

time was calculated to be a maximum of about three min-

utes.

Note that a gas of low viscosity should be used for

a tuned (resonant) damper, as n, proportional to c, ap-

pears in the numerator of the expression for Yres.

The problelms in this analysis are due to the as-

sured small i9 and linearization of the equations. G.T.

Kossyk dovised a ground test of a model supported at

its center of gravity wh'ich showed that the exper.ien-

tal '? was about four times that calculated using the

mean:: value of the t.ns'v.rse incrtii.Ia moments, and nine

times th.t using the minimum value . Takin these fae-
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tors into account, the ' for Tclstar was calculated to

be no more than thirty minut.

2. MIountcd in a Plane Parallel to the Equatorial

Two of this type were mounted in FR-I, and one in

the IHEOS spacecraft, which also used a liquid damper.

I: h is the distance from the daim-per plane to

the center of gravity, Routh criteria applied to the

Euler equations indicate that b/ll 1 - mli2/A is neces-

sary for stability. Also, optimumj, damping (minim.um r)

is given by a viscous friction coefficient of:

cpt p = R2rl1 2 ( + 1). 3 /5A

This results in:

- opt= (./r)56AV/mh
2  l )37

Experimental results agree well with the theoreti-

cal. For two dampers and = 0.61, h = 0.15, R = 0.2m,

r = 0.2 rad/sec, and 250 gm give a maximum Y of 120 sec

for reasonable 0. The exper.imental result was 130 sec.

With all paraimeters equal, the efficiency ratio of the

equatorial to meridian damper is (1 + )/(l -12

B. TEAM, Da mper [24 , 253

The TEAM damer, used in Tiros, is essentially the

same in. concept as theic meridian-mounted ball dampcr. A

small mass fitted with rollers is a.llowed to run along

a curved monorail (Fig. II-2). The difference lies in

that tlhere is no fluid involved, so only rolling fri.c-

t:ion exists. from the ball damper analysis, it can be
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seen that this would bohave well only at smiall. 6.

For Tiros, the damper mass was about 0.001. of the

total satellite mass, and assured a 0 of less than 0.5

degrees. The time to damp from 2.5 to 0.5 degrees was

about one minute° It was chosen because tests showed

that the tube radius R of the ba1ll damper would be

greater than the track radius of 'TEA. Also, it was

found that the ball da.m2per required. an A/C .not less

than 1,6(/'h 0.375), w.here A/C for Tiros was 1.45

( = 0 31).

C." Pendulumn Damper

1. Spin Axis Pivoted

The motion ,for a satellite with a pendulum pivoted_

on the spin axis, and moving in a. plane perpendicular

to the ax;:is was described by Cartwright, Massingill,

and Trueblood [6]. The driving frequency of the pendu-

lum is the frequency of the acceleration due to IInutation,

S= r r. Without friction the pendulum would oscillate

in synchronism opposite T at- , as ijn Fig.II.I-3a. HIow-

ever, if the pivot exets a frictional torque, the pen.-

dul.!i' l1,gs behind this position by an angle 6 (Fig.III-3b),
Ther resulting torque on the axisymetric main body caus-

es the damping. As this lag angle increases, so does
the damping, producing the convex portion of F:ig.III--3b,
and called the "nutation synchronous" mode.

When I reaches 90 degrees, however, the pendulum
is n.o longer in syne with 4,, but is driven toward syn--

chrolnism: with r. This is a decreas in--ate decaSy with



a s~upe rimpose convergent oc-illation i t would be -de-

sirable to make the transitioU ,.betw, en the two modes at

as small a as poss:i.ble.

I:f the mlass is assume small so that the io, rottes

prec ise.y at the nutation rate ( h .1)r + r in iner-

tial. space, and .0 sImall, we have:

e = (,-.h/A) ( 2 + 1 )r si o

S+ ( ./In)& + (h/!)( p + 1)r2"Osina = -(c /m) ?r

where L .is the angle bctween the x a,:is a.d , assume

ap.proximately.\ equal to . Also, ep is the friiction co-

efficient of the relative velocity between the pendulum

and maiJn 1body.

Computer analysis has shown that the A term can be

neglectcd, To find the time and nutation angle at tran-

sition betwecn modes, wIe set oc = Tr/2 and integrate the

above equations. Thus:

.= -c (I/h-ar)/(1 + )2
[ V -ICal, +

t.o = (90 2 )/ 0, (c/2

Num.erical inte;.-rat-io of- exact- equations show that the

f:i.rst equation overestimates ,. by as much as a factor

of 2, a.ndthe second underestimates t,. by as much as a

fact(r of 2. Also, for these equations to be valid, -L

must -be -inear - -ro -at- tima- --=--0; h s: .U... .--.

n. c 2O (A/C)/(1: - A/C)

is a necessary condition for thel.ir validity.

Because of its nonsymmatry,-there will be a s:all

fij.nal nlutat, ion angle li only only ono damper :i.s used:

, i '- (Ind /C)(A + I.)/
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forces
(a) Conf::igurat ijon. (b) Angle.c definitions.

IC 3 .Fo

ti, , timne , see

(-e-)--E,>.per ,m , -::- nt (" l ~ T o -'. ', ....ei nt3. comp a rsio
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If c is large, t.. decreses but O 9. increases.

IS c is an increasing function of velocity, there

will be strong damping at the beginning. As the rel-

ative velocity decreases, so does cp, and the damper-

main body system is decoupled enough to delay tran-

sition.

Another improvement would be to use two pendulums

of differecnt radii. Experimental results show these

to act independently, the long one dqmping quickly at

large (Fig.III-3d), the short at small 6.

2. Pivoted Ai,'way From the Spin Axis

The problem of a pendulum moving in a plane per-

pendicular to the spin axis and pivoted at a point

away from the axis have been studied by I-aseltine [16,
17] and Ne'l irk, Haseltino, and Pratt 23].

If - is the rotation required to reach a point on

the body, the kinetic energy of the system is [23]:

T= - C2 + A 2. + ii(Or 21
where r + .

m =Mm/(, + m

an- -is the-distance from- . - t-he- cnter--of-f-gravity- to

the damper mass.

Us:ing a set of modified Lagrangian equations;

d("T/A& )/dt L q
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At

fO'O0 rce/

Fig.I]- 4 : Offset.

(a) Off- design equilib:tru

for two offiset pendulum

/ z /

(b) Off'- e:ign. equilibri.ui for foure

pendulums .

Fig. 1113-5: Offset pendulum da ers.
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in wh:ich all the Lqi are zero except:

L ~-c p

The following equationsresult;

-(c /A)( 7 r)

r =Ac ( - r)/(1 C - )lp

+ CD . p/(C -2 D ) .+ pq

= -p-r + cD2p/() - 2

+ DC p(k - r)/(7ie - i 2 )

p.= (] - R)qr/(A + c)
2 2

where A = A + iy 2

C= ih

D = mby

and . y is the y coordinate of the mass. No small angle

assumptions have been ;iade. If however, 0 and m are

small, I constant, and other limiting assumptions are

madc:

S -c (i - /

+(Ci/2A),( o' + UeiS)

- i(C/A)IU = -(D/A)S2e i S

hecre S = ("+ (

r=

U = sin c (cosP. + i sinf)

Thus U( = sin T.
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TrOce d:i.:ffcrcnt solutions were tried for this set of

equations:

(a) The stable solution in which the damper does not

rotate relati:ve to the main body. Then (U ~ -

constant.

(b) "Slow damping" in which the damper has a small

oscillation about a fixed point on the body, resulting

in:

CD2 p

(c) "Fast damping" in hich the damper rotates at

the nutation fre(uency Cr/A0  This solution is good

only when 0 is not small:

-2 2 -[2 (C - A)/CA - 27- 2 c/A 3 ]t

The advantage of offsetting the pivot point froIm

the axis is that it would appear tha that the pendulum

will align itself radially outward from the pivot.

Then a counterma, ss could be mounted from the quiJ.l:ibr i-

um.po si.t ion .to preservTC...!rhe -try-o .thet-- stl ite,

with no residual wobble. An alternate is to cmploy two

diametr:i.cally opposed pendulums (Fig.III-4.).



For a pendulum offset a distance b and of arm

length J, the freruency is:

+  tanO

For resonance:

X [b + ( + 1)h/>2-- b/ 2

assuming w = r, for small 8. If , is only slightly

greater than zero, - can be l.arge. A sol.ution is to

use a pendulum of radius of gyration s. Then:

S-- b + ( + 1)h J/ 2(i + s 2 2 )

Ilaseltine L.6i has shown tha.t, when:

(J/b)[h2/(C - A) - (m/M)] >

The angle between the two dampers will not be 180 de-

grees in the steady state (FigoIII-5a). Then:

co = lessocr of one or b(C -.A)/2: and the

apparent wobble angle is approximately (2mh. sin 0 )/(C - A).

IHaseltino also studied the motion with four identi-

cal pondulums mounted 90 degrees apart. Again, experi-

mental.'results showed possible equilibrium positions

resulting in a residual wobble (Fig.III-b).
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D. Liq u id Dampers

1. Spin Axis ConlconLric

The use of an annulus partially filled with a dense,

high visco,"ysity l:i.qu:id, usually mercury, has proven very

popular; it was first used in Syncom and the Explorer

series [24].. The basic th ory w.as laid out, by Carrier

and Miles [5] for lamilar flow. The equations of notion

for the body are similar to those for the pendulum,, since

both systems are circularly constrained-. The dimensions

of the system are given in Fig.- III-6. For small 0; it

was assumed that the li.quid was in contact with the en--

tire.outer surfac'e of the annulus. The rate at which

energy is dissipated throughout the fluid is, if p is

the density:

T 115(V- ( X v) 2dV

where - is the fluid velocity, Y is the kinematic vis-

cosity, and dV is a differential element volume. As-

suming the irrotational component of velocity cannot

contribute to the integral:

T = "naR7 ( jhO) l n.211j/A 2

where n.. - (1. + ?)2(1 -'a,/R)2

A = (n. -- n)G + (n,. + n)

n 1 + 2 -72

This results in a time constant of decay for of:

S+ -- 2," .• ~32. r( Z + 1')n. 101'
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This isi. at a minimum in the nc:ighborhoo d of n.,. = i.

Then :.

ri n -- A?/S"r( 7 + 1) I 0

and , if a./,/ 1:

a, 2 /(1 + l . 1/2' GI

is the resonant condition. The variation in thickness of

a., has been, assumed small.

For large 0, the fluid completely fills the cross

section of the annulus .over ..ani angle C (Fig.III-7).

The energy dissipation is then:

.= -4 I 2.5 3 , ' (a + d)04/

The time constant for large is:

-r 1/= P o/s, ('/,)A3,( + d) A1

For R = 10 cm, h = 10 crm,.d = 0.25 cm, = 005 cm,

A = 1.3 kg - m2, = 1/3,c = 12 rad/sec, = 13.6 gm/cc,
-3 2and V = o10 cm/sec give a damping time of 14 sec for

small O, If a resonant damper were designed, a7.: would

be 0.637 cm and r = 0.000i44 sec.

T he l.arge 0 result for the above para.meters and

(0 = 1/6, O = 5, and (a + d) = % cm gives ? = 200 sec.

!owever, the Reynolds number is past critical for

those-i---an . t-he i -- oul- reduce-Y--to

about 70 see..

The above w,,ould indicate that it would be desirable

to design the damper for resonance. HT( rveyr , a study

by Fitzibbon and Smith [35] show; that signifticanti en-

cr;y "a!) be) stored in the surfnce waves on the 'fluid



27

Fi[.II-6: Damper parai;metcrs.
Fig.LII-7: Iarge

to

t. .I, e-..

time _ _

2 c

time,, sec

I-8: Woble near Fig.III-9: ]x!periilenta.
reso nnce. compar ison of ball

& fluid dampers of
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near resonance, with the result that energy is trad-

ed back and forth between liq.ui:d and rigi:i.d body. This

can result if the damper mass is as littl.e as 2% of

the main body, resultingf in a history of 0 as shoiw n.

in Fig.IJI-8 [211 .. This can be overcome by damping

the wave .motion by the use of baffles., filling the

void with a light liquid such as alcohol, or using e-

nough damping fluid so that the void is small and the

waves impact the inner-surface of the damper. Also,

damper masses are usually much smaller than 2% of the

main body i,eight.

The advantage of this configuration is that it

assures symmetry in the steady state, with no appar-

ent residual wobble, as is the case with single, and

some multiple, pendulums. A comparison of a fluid

damper and s;i.ngle spin axis pivoted pendulumn damper

of equal mass from experimental results is shown in

Fig. III-9 [6].

The IJEOS used a spin axis concentric mercury

and alcohol damper for small 6 , less than half a

degree, and one equatorial ball damper for fast damp-

ing at larger 0.

2. Unsymmetrically Mounted

Ayache and Lynch analiced toroidal and rectangu-

lar dampers of circular cross section and a U-shaped

resonant dampor mounted in pl.anes panall.el to the spin

axis [2) in terms of a frictional coupling factor fDs

inversely proportional to the time constant. Only the



results a.re pr'esented hcr e This is for small 1 only,

the spacicraft nr.ly (iesp)un -' M0 of tie stailiza-

tion is ue to a flycheel on the spin axis,

For a toroidal da.!;per as described in Fig.III-lOa:

fDs imai/(1 )2 + K2 I 2 + 2K(1 - ).-r r al

vwhere A : 2J l(/0 o%00G( o0 )

/0 = (i.0./) K = (r/O-)2 r ,/rr

JO'J1 = Dessel functions o oordcr zero

and one, respectively.

This is plotted vs. a t(q/)' for vnxiois bubble sizes

in Fig. II--lO1b, where a t is the tube inside radius.

The ro-ctangu.lar daiper has a frictional coupling

factor (1 - W2 ) that of the toroidal, where (Fig. - 10 c):

W = (a - b)/(a + b)

This means a rceater time constant.

For the U-shaped dampor (Fig.III-11):

2fR -- (KA.A./At)(1 -. )

Ds =  2 - 2.( (1 i -L)

A{:.
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S" K= 1

(a) T~oroidal

---- - (c) Toroidal fDs

i~al-- -- " -- --- -

Fig. III-10: Toroidal and rectangular liquid dampers
mounted along transverse axis.
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i-I

Liquid Void--

, A t
t t

\ 2a t

2a

K= 1;
A,,/A =4

fds so
K=1; A,,/At= 2

1I 2

c., K=I; A./At=1

c .. ... . K= 0

/30

I-11: U-shaped liquid dai,!c.r.
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vt = velocity of the tube wall

N = (2c../at2) vr . dr..

r. = radial distance from tube center

E. Disk Type [26]

In this, a disk is mounted on a ball and socket

at the center of gravity. For best results, the fric-

tion should be small. To my knowledge, this type has

only been used in a test model by Perkel,

When the entire body :i.s spinning smoothly and

then disturbed, the disk damps down. more quip.kly than

the main body. For, small friction, the damper plane

is perpendicula-r to the precession cone axis. Up to

a point., ,geater friction causes faster damping. The

limit is hen sti.ction occurs, frieezing the daper.

The damping. is exponential:

-1 1D C) DA'7--,

vwhe-re CD], AD = polar and transverse moments of

inertia of the damper

. =D initial angle between I and disk axis.



If the angle between dth dic s .  d body axes i.s sm1all.,

r" may be approx:i.mated by I/C...

The stiction problemf can be overcome by using a

lubricated boari.ng. The v:i sceus :friction constant

for minimum ii is:

K. = CD(. - CAD/CD.A.) ( A + 1)r/

F. Mass-Spring Systems

1. Perpendicular to Spin Axis

Wadleigh, Galloway, and Mathur have treated a

spring- mass system mounted. on and perpendicul'ar to

the spin axis [35]. If K is the spring constant,

c the damping, and w ~ the natural frequency:

r =0

I' +.Xq = 0

S-_p - 2(c/c )(o1 mh/A)x - (h/A)x 0

2 2 2
x+ (/)(q + r - 1 )x + hrp1 + 1hc =0

S= (K/m) and c 2/(m)

If it is assumed that the sinusoidal character of

the spinning body is not affected:

p = PO ex:(-l,'t/2) cosL t

where F.: is the .yl ei.gh dissipation function:

.F,22
-:-A (V n/r)2 - 1 - 22 2+ 4:(c/c 2 (on/r)2 2
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C/A= 1. 3

initial
nutation . ,,c 1.36,-

angle, =, r=11.3
sec se r=11.3

/00- c/c =0.1
c

c/c =0.5

Co I .l J7 J.' I - , ill 1.2 I, hv

D/r n/r

Time to C/A=1.03
damp to 1.03

i n i t i a
nutation 1.36 1.11
angle,
see Coo 1.36

rad

s sraec
S C/c =0.1e

c c.1 /c =0.5

S It ;-2 1 ii-, 5 I . /I IZ ;- I_~

n/ n /r

Fig. III-12: Performance of mas.-spring dampers
mounted on and perpendicular to
the spin axis.



The maxiimum amplitude of the mass oscillat.ion is:

,: - qh(r + .. )/2 (/c c ).i 0-

Finally, the nu.tation angle i.s expressed:

2 =[/(r +) 2 c[ -F.,t/2 + i(r +A )t X 2

Because this system will be slightly asymmetric, this

converges to an apparent wobble ang].e of'q 0 /(r +.q ).

In a Iboratory test, with cn- 3cps, c/c 0.5,

COn/ 1 1 mh2 /A 0.001 35, and an initial spin of

3 cps, all nutation damped out in 6 sec. See Fig. II-12.

2. Parallel to Spin Axis

Such a damper is inherently unbalanced, The nu-

tation angle is a decreasing exponential with a super-

imposed convergent oscil].ation. Again, however, the

apparent residual wo.bble is small [21j . The damper

is not on the spin axis.

G. Spherical

A pendulum pivoted in a ball and socket and immersed

in a fl.uid vwa.s .l-oun ie.. on th.e despun porti on of OSO [ 9o

Howevecr, it will wvork for a single body satellite for

C/A > 1.



If p.: = (C/AP), and c is the. d'amlping constant' o

the flud:

Y = %Ac/h2m2
2

For resonai nce:

.(C/A)= 1 '745(TId )2/(m 3 + 2,4G67',s 2

where 4? is t.he pendulum length, Id is the diametrAl

moment of inorti.La of the pendulum wire, and s is theo

transverse radius of gyration of the bob.

For OSO, there was no evidence of nutation for

8000 orbital passes,

, Ma.ss--Drum System

This is another systm devised by Perkel L261,
and consi.sts of two i.as. s strung on wires whnich are

vwrappyed aroundt a drum. The drum is connected to the

Emain body concentric with the spin axis by a tortional

spring-damper system. When nutation. occurs, there is

a restoring torque due to the relative deflection of

the wires in addition to energy dissi.pation in the

dampers, Fig.11l-13.

Experimental work on a lab mod.c indicated. this

system was capable of damping the nutation of a pro-

late bodyr Of course, if the cables were l.ong einough,

the actual polar inertia moment could be greater than

that; of the prolate main body alone, possibly greater

than the transverse moment of inertita.
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L Tortio.alI
spring-damper

Fig. III-13: Mass;-dIrum nutation damper and
spin rate control.
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Anotior possibility aloag these lines would be

to d:ispenise with the drum, mornting masses on damped

spri.ngs on the outside of the spacecraft, opposite

each other. In this case there would be no direct

coupling cf the miotion of the two dampers.

I. Maglnet i c Damping

One method.is used to align' the spin axis of a

-spacecraft along the local external magnetic field.

A strong, permanent magnet, is mounted in the space.-

craft along the axis. This method was used in

T_'ANSIT 113 and 2A. The spin- had to be reduced to

below 0.1 rps, Otherwise, the oblate splaccraft

could h.ave overcome the magnetic torque and assumed

an attitude fixed in space [13

Energy dissipation also comes about through ed-

dy currents and magnetic hysterlsis. If a rod is

rotating about a transverse axis perpendicular to the

external, field, the component of the field along the

rod is a function of time, and thus there must be an

induced current. This eddy current causes heat to

be radiated due to the resistance of the members.

For a spacecraft of polar lmoment C, n number of perm'l-

eable r'ods of volume V and diametor 1), and spinning,

0c x ( x l~e BC)t]

k G.51 ( 2 -11e  6k G2 r u ng " (B X ) 0 T] erg- s ec:: , . •
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where o-r separ.tion effecot due to di.ntance between

rods (- = 1 for a "'e

, = resistivity of ra.d (ohm-ecm)

(D )e average of squar-e of maxi.muim flu:

dens:ity over entire length of rod for

one orbit (gauss 2

.HIlysteresis daping is due to the friction between

the magnetic domains in the spacecraft. Thij.s results

in a linear damping.

Note that in all of the above, there are external

torques, and angular momon entum is not conserved. .Since

there are energy losses, however, they can be applied

to nutation damping. The latter ,two methods will gen-

erally cause energy loss no matter what the or:inta-

tion of the satellite is intended to be, fixed in space.

In general, the iimagnetic torques are disturbances

that must be overcome by other nutatio.n ] .dampelrs, and

thus are bencefic ial only for spin removal and align-

me..nt with the local magnetic field.

J. Grav:i ty Gradient

As in the above, this can be used for nutation

damping only when the spin is very lo0w, and the spin

axis (a:ays a prolate body in this case) oriented

toward earth. ]For this type of spacc t, no spin

is usually desired along this axis. In satellites



not meant to be gravity gradient stabilized, it is a

di. sturbane to be overcome by the nutation damper.

[20,321 .

Acording to Thomson, the torque on a satellite

with spin ax:is pe.pendicular to the orbital plane is:

L = 3 .2 -_ C)

where 0 = devintion of spin axis from nhormal to or-

bital plane towards earth (small)

Cu.,= orbital angu.ilar velocity

and L is about the axis tangent to the orbit. -Co.ndi-

tions for stability are defined in terms of:

b/ 22 [-- (1 - )2+ 1)

4:,,,A) + :- !) (fS l ) C 1

}1 := spin relative to the tangent to the orbit

For stability: b2/2w~,. 2  0

c2 A4 0

(b /2 ,.2 2 c/ .2



I. Structural Energy Dissipation

No structurc is perfectly rigid, and the accelera-
tions on a processing Bpacecraft will cause energy lossthrough menchanical hysteresis. Usually, however, part
or p-rts of the spa.ecr-rt can b can be Considered rigid with
energy d:isipation only from the relatively flexible
parts, su.ch as antennae or solar pano ls. Two exa,-mples
have been worked by Thomson 3: ,l 33]

V'e' have already shown that, for no external torques:
2T'= (H /C)(sin 0 cos9 )

for an axisymmnetric body. The energy loss per cycle of
stress per unit volume.is:

ere E is Young's mo dulus, o-' the normal stress, and ;vthe hysteresis factor. .Integrating this over the whole
structure, for period of stress oscillation to:

(f 2/2Et 0 )dV

Considering an arbitrary point on the spacecraftat coordinates (x,x), we can compute the acceleration
at that point,. which is the e>:xcitation. If' 0 is com:--
paratively small:

+- f" fos9 ) -

Q) sin@ (ce sinco
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Note that (x, 7z) does define an arbitrvary point

in the spacecraft, not restrited to one plan c be-

cause of the axisy;imctry. If the relative motion of

tbe points on the spacecraft can be considered small,

thle acceleration at a point is:

a < J-/ X 1?

where xi + zk.

For an example, let us assume that the elastic

part of a spacecraft serves only the function of en--

orgy dissipation, and the deflections caus.e no changes

in the inertia. The satellite in FiglI-14 consists

of two disks, each of inertia C and A, and. mass Mh

connected by a flexible tube of radius x 1 and length

2 -£. The gyroscopic moment required by each disk is:

Lgs C ( + cos sin A sinO cos

and C = 2C

A .2 (A1 + M 2 )

Then Lg = M 2 2 sinO cosO

The moment distribution is linear:

L = L Z/L

and. thus the maximum stress is:

e = Lzxl /

where I is the cross-sectional inoment of inertia of

the tube.' Substituting these into the energy di.ssipa-,

tion cquation:

2 2
0 (7/24 r E) s 2  I)2(V/C)(C/A). 0 3 sin cos

= 1- sin& cos2 6'
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, " '- -~CFCent. force

L

A\ 2x

L Lg

CF <

Lg

Fig. 111-14: Structural cnergy dissipation cxample.

0. c

- qc"  
L.

Fig. 11-5: Variation in rate of tumbling.
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This is shown in Fig,. TII-15 . V is the vollume of the

stressed material. and cW0 the initial angular velocity.

If A >> C, such as for a missile:

a= 20 x(C/A) sin0 cosO sin k a Vk

If we conside'r tOh inertia of the deflected mem-

bers, resonance is observed. FigIII1I6 shows 'a cylin-

drical spacecraft of radius II, with four beams of

length.. If the elastic deformations w(,t) are as -

sumed small and in the z direction only:

EI - ,-M a;

where m and I a.rc the mass and cross-sectional. moments

of inc'rtia for the beams. This gives:

0 K. sin0 cos / ( I o2 cos 0)2 + (/2x)

F = (1 -- c/A) ,o/.

l 1 = first natural frequency of beams

Also, < and 3 are tabulated in [37].. This :is shown

graphically in Fig.I-17 , :whi clearly shows reson-

ance effects. The envelope of this curve is the same

shape. as the curve in Fig, III-15.



Fig. 111I-16: Satelte~ wijtk four clastic beans.

5= =1.

Fig. ITI.-17: eson,,.ncC offects.
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IV. Semipassive T and Active Systems

Such s ystems will be mentioned here only in pass-.

ing. Active systems have energy sources activa ted

either by on--b.oard sensing equipmeint or ground commandL.

Semi passive haive energy sources that either remain

constant or, rea.ct natuTrally to attitude changes.

A. 'Oscillating iass

This was proposed by Kane and Sobala 19 . Two

masses, diametricall.y opposed, are forced to oscillate

back and_ forth". along the spin axis at constant frequen-

cy. The spin axis (axis of symmetry) is normal to the

orbital plane, This is capable of maintaining attitude

at very low spin rates.

B. Dual Spin

The general reasoning behind dual spin spacecraft

with dcspun dampiers was most recently .outl.iied by.:

Tonkin t34] . Fig.ZIV-1 shows the position.of 51 rela-
tive to IT for oblate and proXate odes. e have 0prolate bodie~s. le have
and. cz' as the, co-.. oneYents, of T parall].c and. n6rmal to i,17
res ,'ci , ively ... . No rt-if-.1-tha . (e-o ( .in- .ach.-..- -.. .- oppo-

site in sgn. An internal torque to reduce nulatoion

must be of sCro average value (b CoJf Co.V() i ciove

energy for oblate bodies or inject it for prolate. The
fij.rst req-uiremient m.ans that the requir:ed torque is
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TorI

T orque .-

required.

(a) Oblate spacecraft.

Torque "c
required.

i

(b) Prolate spacecraft.

Fig. 11I-1: Torqyes required for cdamJping.



normal to 11 and sp:irning with / in inertial space

Since po er is the scial-a. prodt"ct, o:f torque and an.-

gular volocity, the torque requi'cd must be cppos itc

eb for oblate bod:ies and of the same sense asc cfor

prolate bodies,

T he torques produced by a damper dissipate ener-

gy, thus the component normal to i is opposite oc .

-There is also a component along the spin axis, thus

chang:ing the spin of the body upon which the da.mper

is mounted, If the damper is despun, the moto.r must

compensate for this speed diff.erentijal.. This is the

source of energy injection for the prolate body. Sev-

er'al references are presented in the bibliography.

C. Magn etico

As-was shown before, eddy currents induced. by the

earth's maghetic fiel.d can ca.use torques on a space

craft. This can be overcome by supplying a torquing

coil whose axis is normal to the spin axis with a cur-

rent. 180 degrees out of 'phase with the externally in-

duced EM[P [14J . The spin axis can be oriented by an-

other coil lwhose axis is parallel to the spin axis.

The current in this is switched on and off, and the

torque being a sinusoid while on, to give zero average

torque on one transverse axis, and a resultant torque

on the other.
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. Jet. Pulse

Another method of supplying torque is to a ctivate

a single attituad motor aligned parallel with the spin

a.xs. e pu,!slng iJs controlled by an on- board nuta-

tion sensor, :iring when the motor is inside the body

cone 15].
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6.3 EFFECTS OF A TOROIDAL

LIQUID NUTATION DAMPER MOUNTED ON A TRANSVERSE

AXIS OF AN AXISYMMETRIC SINGLE-SPIN SATELLITE

Prepared by

William O. Keksz



In this pa.per, an a.l.temptl. is made to discver the

parameters relevant to the performance of a toroiclht]

liquid nutat. ion damper mounted with its axis alon,.. a

transverse axis of a single-spin sale 1.ie. ma.ll in-

itial values of ithe nutalion an ul] (cl.o) w lr ;.-i'ed.

By dlescribing dissipation or eneriieti ' by t e fl i.d, a

time constant for the nut ation ,antle is funllld si a f ..

tion of a Bessel function of complx Nri:i !ienlt.



NOMENCLATURE

a Small radius of torus

a* Radial coordinate within torus

A Function of a, only

C Constant

H Magnitude of angular momentum of satellite

Ix'y Unit vectors along transverse axes of satellite

z Unit vector along spin axis

I t I t 'I Z Moments of inertia with respect to transverse and

spin axes, respectively

j ( 1 )A

J0 Bessel function of order zero

K Kinetic energy of satellite

q Argument of Bessel function a.(jp.//)"

rt Large radius of torus

S Surface area of control volume

t Time

T Function of time only

v Fluid velocity

va Fluid velocity at wall (a. = a)

v 2  Complex fluid velocity for two dampers

V Volume



W Work done on fluid

4) Angular velocity

S Precession angle

. Spin angle

f Fluid density

Absolute viscosity

.1 Kinematic viscosity

7. Shear stress in fluid

( ) Time derivative except for T

( )' Derivative for A and T

I( )I Magnitude of complex ( )

& Angle of nutation



The minimum energy condition for a spinning

axisymmetric body is when the angular velocity is a-

ligned- ith the axis of maximum inertia. When there

are no external torques, the magnitude of the angular

momentum,

? 2 2 2 2 !/2t = ( + vy ) + I za )

is constant. Values for cx and cv exist when the nu-

tation angle is not zero. Here we have assumed the

momentum of the damper to be small. We also have

2K = It(x2 + 2 ) + z2

as twice the kinetic energy, again assumin,. the motion

of the damper small. If the nutation angle decreases

slowly, we have the angular velocity in the satellite

frame given by

Le = Ix(' sin6 sin ) + Iy ( siln cost)

+ 1z(o +y cos9 ),

and the precession speed',

J Izz / t cose = I/It.

Combining these equations gives

H2 - 2K t = (t 2/I )(l z It)cos2S

If there is energy dissipation, as with a damper, 11

remains constant while K decreases. Thus (5),

K = (11 2/l )(I - It)(siI9 cos e



With a liquid damper, ener '"y dissipation occurs

because of viscous 'efects, bein i represented by the

time rate of work done on the fluid by the wall of its

container (2),

W v dS

dt V 2
d v2

= -K

The damper is illustrated in Fig.1. From the

above, it is seen that the velocity distrilbution of the

liquid must be found. Assuming that a< rt, the vel.oc-

ity of the tube wall relative to the liqiji.d is riven by

v a = rtz , or

Va = rt sine sin .

It is assumed that the velocity will be entirely tan::en-

tial to the torus, and pressure variations due to cen-

trifugal body forces are small. Thus the fluid momen-

tum differential vector equation (for a particular e),

Bpcv/at = -p +Mv ,

becomes pbv/ t =,lg v,

or, introducing the kinematic viscusity v/ ,

Cbv/C)t = V2v.



3.

In'cylindrical coordinates, this is

v V a 3 v

Assuming that the solution is a product of a function

A of a, omly, and T of t only, we have

AT' = T(aA') '/a.,

or aAT' = T(A' + aA1").

If transients due to initial conditions are considered

to damp out-quickly, the time function will be in phase

with va .  Thus we let T = sin p . Then,

a,*Acoso = V sinp (A' + a.A") .

Rearranging terms result in

a.A" + A' - ( /V)cotr aA = 0,

which is rather difficult to solve. The coefficient in

the third term is a function of time; it cannot be aver-

aged over one revolution for ? to give a constant, for

cotp ha svalues of infinity.

A simpler model may be had by asstuming we have

another damper, identical to the first, mounted on the

y axis. Then we can represent the rotation of the

transverse component of the angiular velocity vector us-

ing complex variables. Since

c x = sine sin ,

Wy = sin G cosp,



.4.

and e- = cosp - j sin

the velocity component in the xy plane can be descrihed

by a phasor,

j% x y -,ye_3 ,

where EXy = (X 2 + Caoy )

: sine

is the phasor magnitude.

Since we now have the term e- j as the excitation,

we let this be equal to T2 . Then,

T 2 ' = -je = -jT 2 '

and the equation for the fluid velocity position depend-

function A becomes

aA" + A' + (j /V)aA = 0

or a.2A" 4 a.A' + (jr/v)a 2A 0=

This is a complex Bessel equation, the solution of which

is (1)

A = CJO(q)

where q = a,(jp/V)

and C is a constant, which may be found by examinin2 the

velocity at the wall, which is given by

a 2 =-rtye



5.

If we define A at a = a as JO(qa) where

qa = a(j /V)'/

then C = rtvxy/J0 (qa

Thus we have

v2 = AT2 = r y(J 0 (q)/J 0 (q a))e

Using this expression in the integral for work clone

on the fluid will .result in a complex function. This

would represent two energy flows for dissipation, ninety

degrees out of phase with each other. Averaged over one

revolution for /1 , the work done could be represented by

the magnitude of the complex work. Also at this point we

can. say that this is twice the energy dissipation rate

-for a single damper. Thus for the single damper,

W 1/ V 2vdV2d2

4 d-" vrl xy (J()/0 0a))e-jP 2dV2

2 2 . a

rt (x $ YP (q)e-j0( '(4rrt)(2ra*)da*
4 JO a 0

= r 2n xy2;T eJt,/ O )2 2 ada,

At any instant,

e 2 = cOS + sin 2 f 1



Making this substitution, we have

W:=-2?r t 3 xy2A lJ, a 2 l0( 29 ,da .

For a given value of 9 , we have

= IZ(tt z I)cos

and oz = C+ cos .

Thus + ?/( t  iZ)

( +1 Is /t Z ))

= /( - Iz )

Also,again for a particular e with e small,

tane = Iceo /1 w

Rearranging terms gives

xy = °co (I /I ) tan .

Substituting the relation between z and , we have

Wxy a= (I tanG )/(It - I .

If we assume no external torques and the moment im

of the damper relative to the sat.'llite main body small,

the Euler equations for the satellite are

tx + TZ t Iey
0 = I<6 - (I - I )y

ty z t xz'
0 = lt y (I z  - 1WtxO.,

and 0 = I .Z Z



7.

Thus we can take w~ constant during the dlamping action,

and therefore , ', and xy may also be held constant.

Note that this requires that. H and II be small compared
x y

to Hz, thus meaning 9 is small .(-12o); therefore

sinG 2 ,

cos 1 ,

and tan& ~

The equation for WC is then
xy

Wxy = OIz/(It - Iz)'

and substituting this into the expression for W,

2 3 2.3 2 2 a
2?r A y I z 2 a*da
(It - Iz 2 O a )2 O

Also, the equation for K becomes

n - (H.2/ItIz)(Iz - It)e.

But, for small E ,

H I z z = tIz/( t - ]z )

Thus K -It Iz [It
I tIZI I I

tI/(t -

Setting W = -k(, we have

It rt3 2I(q) a da

(It / O5)o( a); 0



or + 2?rt h2z I a2 P q) ada 0O
I -( I zoI z Da l 2

The term in brackets is almost constant for small nuta-

tion angles, and is thus the inverse of the time conslant

for a decreasing exponential solution. Thus

S= ~0 exp(-t/t)

c-1 2r% I
where t- '  t  z O(q)2a*da*

It(I t  I ) IJO(q) 0

and eb is the initial nutation angle. This may also be

expressed using the approximation for angular 
momentum by

-1 =(2 rt3r 2 H/It 2 IJ(q 1 2) 2;2da .
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Fig. 1. Positioning of damper.
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Fig. 2. Coordinates within damper. Not to scale,
as actually rt>a.
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CONCLUS ION

The above is valid for small iniliil nutation an-

gles for an axisymmetric single-spin satellite. Values

for complex Bessel functions may be found in references

3 and 4. However, these are good only f.or Bessel func-

tions in.which the magnitude of the complex argument q

is less than ten. However, the best liquid for use in

the damper is mercury because of its hiah density; its

kinematic viscosity is (0.5)10 - 6 ft/sec at 75°F. Since

q is inversely proportional to the square root of z/, its

magnitude will be on the order of 102 or 103for reason-

able values of . Bessel functions for complex argu-

ments of these magnitudes have not been tabulated, and

must be calculated.
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CHAPTER 7

General Conclusions

As a result of the present study, equations of motion and

computer programs have been developed for analyzing 
the motion of a

spin-stabilized spacecraft having long, flexible 
appendages. Sta-

bility charts were derived, or can be redrawn with the desired accu-

racy for any particular set of design parameters. Simulation graphs

of variables of interest are readily obtainable on line using program

FLEXAT. Finally, applications to actual satellites, such as UK-4 and

IMP-I have been considered.


