

CARNEGIE-MELLON UNIVERSITY

Applied Space Sciences Program

FINAL REPORT

NASA Grant NGR-39-087-026

"ATTITUDE DYNAMICS OF SPIN-STABILIZED

SATELLITES WITH FLEXIBLE

APPENDAGES"

Marc L. Renard

(Principal Investigator)

Pittsburgh, September 1973

Pare L. Renard

Dr. Marc L. Renard Associate Professor of Applied Space Sciences and Electrical Engineering

ACKNOWLEDGEMENTS

The author of this report wishes to gratefully acknowledge the support of this work by the NATIONAL AERONAUTICS and SPACE ADMINISTRATION.

Of particular value to him were discussions held with Drs. J.V. Fedor, T. Flatley, R. Montgomery and S.J. Paddack of GSFC, on the subject of satellite IMP-I, and with Dr. D.L. Blanchard on UK-4.

Contributing to this project as Research Engineers were, in chronological order and for various lengths of time: J.E. Rakowski, P. Stakem, W. Keksz, R. Sridharan, J. Russial and N. Winowich. We are also indebted to Miss Cheryll Conaway, formerly of the Applied Space Sciences Program, for her help in typing and editing the present report.

TABLE OF CONTENTS

Cover Page

Page No.

Acknowledgements				
Table of Contents				
Chapter 1	Object of the Study	1-1	to	1-2
Chapter 2	A Study of Modal Shapes and Eigen- frequencies of Flexible Appendages on a Spin-Stabilized Satellite	- 2-1	to	2-69
Chapter 3	Applicaton to Some Problems of Satellite Dynamics	3-1	to	3-23
Chapter 4	Simulation of the Motion of the Central Rigid Body and its Elas- tic Appendages	4-1	to	4-46
Chapter 5	Simulation of the Satellite Attitude Motion and Stability Studies	5-1	to	5-4 7
Chapter 6	Other Topics	6-1	to	6-6
Chapter 7	General Conclusions	7-1		

CHAPTER 1

Object of the Study

In recent years, the study of the attitude dynamics of a spacecraft considered as a partly rigid, partly elastic or articulated body has become of increasing importance^[1-1]. At first, such work did not present such a degree of urgency, as many investigations concentrated on rotational and librational dynamics of essentially rigid spacecraft, as is apparent from the reviews of D.B. De $Bra^{[1-2]}$ and R.E. Roberson^[1-3,1-4]. Any elastic body effects are conspicuously absent of V.V. Beletskii's classic book on the "Motion of an artificial satellite about its center of mass" who writes at the outset that "the discussion is confined to problems which fall within the scope of the dynamics of rigid bodies".

Satellites became increasingly "elastic", as booms were extended tens and hundreds of meters from the central body [1-5, 1-6, 1-7] or as large solar panels or manned toroidal space stations are considered [1-8]. Three methods are most commonly used in the study of the dynamics of the elastic spacecraft: discretization by modeling the continuous system by finite elements; modal representation; and the Likin's [1-9] method of hybrid coordinates.

The present work uses the modal approach. It is a study of the relevant equations and parameters in the dynamical analysis of the attitudes motion of a spin-stabilized spacecraft having flexible appendages. It is principally aimed at developing working tools, such as stability diagrams, tables or simulation analyses by means of computer programs. These programs are of low time-consumption, and their use is quite easy to learn. As such, it is hoped that they will prove valuable to the engineer engaged in the design of spin-stabilized elastic spacecraft.

CHAPTER 2

A Study of Modal Shapes and Eigenfrequencies of Flexible Appendages on a Spin-Stabilized Satellite

2.1 Introduction

In order to study the dynamics of the spin-stabilized satellite with flexible appendages, by the methods of generalized dynamics, the continuum of the elastic parts should be represented by generalized coordinates q_i (i = 1,2,...). The q_i are functions of time describing the amplitude of the non-dimensional displacements, $\frac{w_k}{l}$, of boom k at abscissa $\xi \equiv \frac{x}{l}$, in terms of modes $\Phi_i(\xi)$

$$w_{k}(\xi) \frac{1}{\ell} = \sum_{i} q_{i}(t) \Phi_{i}(\xi) \qquad (2.1-1)$$

 w_k will be (in the assumption of small displacements) along y for <u>equatorial</u> displacements (E) and along z for <u>meridional</u> displacements (M) (See Fig. 2.1).

 ξ , η , ζ are the geometric coordinates x,y,z non-dimensionalized by l, undeflected length of the boom. $\xi_o = \frac{x_o}{l}$ is the non-dimensional radius of the central hub.

The system of mode shapes, Φ_i , adopted here are the modes of the <u>rotating</u> structure corresponding to the boom's Etkin number^[2-1] $\overline{\lambda} = \frac{\rho \ell^4}{ET} \omega_s^2$ and non-dimensional radius $\xi_\circ = \frac{\mathbf{x}_\circ}{\ell} : \rho$ is the (uniform) lineal density of the boom, in units of mass/length. E is the boom's Young modulus, in units of force/unit area, I is the geometric moment of inertia of the boom's cross section, in units of length⁴, and ω_s is the spin rate, in rad./sec. Thus $\overline{\lambda}$ is non-dimensional. Finally, x_o is the radius of the central hub, at which distance the elastic boom is assumed to be cantilevered. As will be seen, these significantly depart in shape and frequency from those of the non-rotating structure corresponding to $\overline{\lambda} = 0$ and $\xi_o = 0$.

In the following, it is assumed that only antisymmetric motions are considered, or that the motion of the CM away from the origin is negligible. The latter amounts, as has been shown by F. Vigneron^[2-2], to assuming that the central mass M_c is sufficiently large for terms of order

$$p\ell\left(\frac{p\ell}{M_c}\right)^2 \left[\int_{boom} w dx\right]^2$$

to be neglected in comparison with terms like

$$\left(\rho \right)_{boom} w^2 dx$$

Typically, for the ALOUETTE and ISIS satellites, Ref. [2-2] gives the values: $\frac{\rho \ell}{M_{\odot}} = 0.005$ to 0.01 (copper-beryllium booms)

2.2 Equations of Motion: equatorial vibrations

2.2.1 Basic equation

We shall first consider motions in the "equatorial" plane of the satellite, i.e. (x,γ) or (ξ,η) . These were the first type of vibrations considered by this author and J.E. Rakowski^[2-3].

2-2

Any section of boom located at ρ , of abscissa x, is in rotational equilibrium under the action of (Fig. 2.1).

$$dM_{e1} = -EI \frac{\partial^2 w(x)}{\partial x^2} \frac{1}{z}$$
(2.2-1)

in which w(x) is the assumed small displacement of the boom element in the y-direction, and $\overrightarrow{1}_z$ is the unit vector along the z-direction. - the moment about ρ of inertia forces

$$d\vec{F}_{in} = -\rho \ dx_1 \ \ddot{\vec{r}}_Q$$
 (2.2-2)

imparted by the particles of the boom to the right of ρ , i.e. having abscissa between x and ℓ .

Therefore,

$$EI\frac{\partial^{2}w(x)}{\partial^{2}x^{2}} = -\int_{x}^{\ell} e dx_{1} \left\{ \left[\vec{\pi}_{q} - \vec{\pi}_{r} \right] \wedge \vec{\pi}_{q} \right\}_{z}$$

In terms of their components, we have

$$\vec{\pi}_{e_{\alpha}} = \vec{\pi}_{e_{\alpha}} - \vec{\pi}_{e_{\alpha}} = (x_{i} - x)\vec{I}_{x} + (w(x_{i}) - w(x))\vec{I}_{y} = \begin{bmatrix} x_{i} - x \\ w(x_{i}) - w(x) \end{bmatrix}$$
$$\vec{\pi}_{q} = (x_{o} + x_{i})\vec{I}_{x} + w(x_{i})\vec{I}_{y} = \begin{bmatrix} x_{o} + x_{i} \\ w(x_{i}) \end{bmatrix}$$

Thus

b

$$\hat{\vec{x}}_{Q} = \hat{W}(X_{i}) + \vec{\omega} \wedge \vec{\pi}_{Q}$$
$$= \begin{bmatrix} -W(X_{i}) \omega_{z} \\ \hat{W}(X_{i}) + \omega_{z} (X_{0} + X_{i}) \\ \omega_{x} W(X_{i}) - \omega_{y} (X_{0} + X_{i}) \end{bmatrix}$$

Also

$$\begin{aligned} \ddot{\vec{k}}_{Q} &= \left. \frac{\partial}{\partial t} \left(\dot{\vec{k}}_{Q} \right) + \vec{\omega} \wedge \vec{\vec{k}}_{Q} = \left| \begin{array}{c} -\dot{\omega}_{Z} w(x_{1}) - \omega_{Z} \dot{w}(x_{1}) \\ \dot{\omega}_{Z} (x_{0} + x_{1}) + \dot{w}(x_{1}) \\ \dot{\omega}_{Z} (x_{0} + x_{1}) + \dot{w}(x_{1}) \\ \dot{\omega}_{X} w(x_{1}) + \omega_{X} \dot{w}(x_{1}) - \dot{\omega}_{Y} (x_{0} + x_{1}) \right| \end{aligned} \\ + \left| \begin{array}{c} \omega_{X} & \omega_{Y} & \omega_{Z} \\ -w(x_{1}) \omega_{Z} & \dot{w}(x_{1}) + \omega_{Z} (x_{0} + x_{1}) & \omega_{X} w(x_{1}) - \omega_{Y} (x_{0} + x_{1}) \right| \end{aligned} \\ = \left(\begin{array}{c} (\omega_{X} \omega_{Y} - \dot{\omega}_{Z}) w(x_{1}) - (\omega_{Y}^{2} + \omega_{Z}^{2}) (x_{0} + x_{1}) & - 2\omega_{Z} \dot{w}(x_{1}) \\ (\ddot{w}(x_{1}) - \omega_{Z}^{2} w(x_{1})) - (\omega_{X}^{2} w(x_{1}) + (\dot{\omega}_{Z} + \omega_{X} \omega_{Y}) (x_{0} + x_{1}) \right| \end{aligned} \right. \end{aligned}$$

2-4

Under the assumption of small displacements and transverse angular rates, terms of order w^2 , $\omega_x \omega_y$, ω_x^2 , ω_y^2 ... are neglected, and $\ddot{\vec{r}}_Q$ reduces to

$$\overset{\sim}{\mathcal{K}}_{\mathbf{Q}} = \begin{bmatrix}
-\dot{\omega}_{\mathbf{z}} W(\mathbf{x}_{1}) - \omega_{\mathbf{z}}^{2} (\mathbf{x}_{0} + \mathbf{x}_{1}) - 2 \omega_{\mathbf{z}} \dot{W}(\mathbf{x}_{1}) \\
(\tilde{W}(\mathbf{x}_{1}) - \omega_{\mathbf{z}}^{2} W(\mathbf{x}_{1})) + \dot{\omega}_{\mathbf{z}} (\mathbf{x}_{0} + \mathbf{x}_{1}) \\
(\omega_{\mathbf{x}} \omega_{\mathbf{z}} - \dot{\omega}_{\mathbf{y}}) (\mathbf{x}_{0} + \mathbf{x}_{1})
\end{bmatrix}$$
(2.2-3)

Finally, along
$$\vec{1}_{z}$$

$$\begin{bmatrix} (\vec{x}_{Q} - \vec{x}_{P}) \wedge \vec{x}_{Q} \end{bmatrix}_{z} = \begin{vmatrix} x_{1} - X & W(x_{1}) - W(X) \\ - \dot{\omega}_{z} W(x_{1}) - \omega_{z}^{2} (x_{0} + x_{1}) & \tilde{W}(x_{1}) - \omega_{z}^{2} W(x_{1}) + \\ - 2 \omega_{z} \tilde{W}(x_{1}) & \omega_{z} (x_{0} + x_{1}) \end{vmatrix}$$

and neglecting quantities of smaller order

$$\left[\left(\vec{n}_{Q}-\vec{n}_{P}\right)\wedge\vec{n}_{Q}\right]_{z}=\left(\mathbf{X}_{1}-\mathbf{X}\right)\left[\overset{\circ\circ}{\mathbf{W}}\left(\mathbf{X}_{1}\right)-\boldsymbol{\omega}_{z}^{2}\mathbf{W}\left(\mathbf{X}_{1}\right)+\overset{\circ}{\mathbf{\omega}}_{z}\left(\mathbf{X}_{0}+\mathbf{X}_{1}\right)\right]+\left(\mathbf{W}\left(\mathbf{X}_{1}\right)-\mathbf{W}\left(\mathbf{X}\right)\right)\boldsymbol{\omega}_{z}^{2}\left(\mathbf{X}_{0}+\mathbf{X}_{1}\right)$$

With the same notation as above, let $\xi_1 = \frac{x_1}{\ell}$, $\eta_1 = \frac{w(x_1)}{\ell}$, $\alpha = \frac{\rho \ell^4}{EI}$; this becomes

$$\frac{\mathcal{E}_{i}I}{\ell} \frac{\partial^{2}\eta}{\partial\xi^{2}} = -\ell^{2} \int_{\xi}^{\ell} \left\{ (\xi_{i} - \xi) \left[(\dot{\eta}_{i} - \omega_{z}^{2}\eta_{i}) + \dot{\omega}_{z} \left(\xi_{0} + \xi_{i} \right) + \omega_{z}^{2} (\eta_{i} - \eta) \right] \right\}$$

$$\left(\xi_{0} + \xi_{i} \right) d\xi$$

With the abbreviated notation

$$\eta_{\xi\xi} = -\alpha \int_{\xi}^{\prime} \left[(\eta_{1} - \eta) \omega_{z}^{2} (\xi_{0} + \xi_{1}) + (\xi_{1} - \xi) (\omega(\xi + \xi_{1}) + \eta_{1} - \omega_{z} \eta_{1}) d\xi_{1} \right]^{(2.2-4)}$$

Taking the derivative of (2.2-4) with respect to ξ , and using Leibniz's formula, $f(\xi_1, \xi)$ being the integrand,

$$\eta_{\xi\xi\xi\xi} = \alpha \int (\xi_{i} = \xi, \xi) - \alpha \int_{\xi} [-\eta_{\xi} \omega_{z}^{2} (\xi_{o} + \xi_{i}) - (\eta_{i}^{*} - \omega_{z}^{2} \eta_{i}) - \omega_{z} (\xi_{o} + \xi_{i})] d\xi_{i}$$
$$-\alpha \int_{\xi} [-\eta_{\xi} \omega_{z}^{2} (\xi_{o} + \xi_{i}) - (\eta_{i}^{*} - \omega_{z}^{2} \eta_{i}) - \omega_{z} (\xi_{o} + \xi_{i})] d\xi_{i}$$

 $\eta_{\xi \dots \xi} = \frac{\partial^{\kappa} \eta}{\partial \xi k}$, we obtain

Finally

$$\begin{split} \eta_{\xi\xi\xi\xi} &= -\alpha \eta_{\xi} \, \omega_{z}^{2} \, (\xi_{o} + \xi) - \alpha \, \omega_{z} \, (\xi_{o} + \xi) - \alpha (\eta - \omega_{z}^{2} \eta) + \alpha \\ \int_{\xi}^{l} \eta_{\xi\xi} \, \omega_{z}^{2} \, (\xi_{o} + \xi) \, d\xi, \qquad (2.2-5) \\ &= -\alpha \eta_{\xi} \, \omega_{z}^{2} \, (\xi_{o} + \xi) - \alpha \, \omega_{z} \, (\xi_{o} + \xi) - \alpha (\eta - \omega_{z}^{2} \eta) + \alpha \, \omega_{z}^{2} \, \eta_{\xi\xi} \Big[\frac{l}{2} \, (l - \xi^{2}) + \xi_{z} \, (l - \xi) \Big] \end{split}$$

The non-dimensionalization is completed by introducing the non-dimensional Etkin's number $\begin{bmatrix} 2-1 \end{bmatrix}$ $\overline{\lambda} = \propto \omega_z^2 = \frac{\ell \ell^4}{EI} \omega_z^2 \stackrel{\bullet}{\to} \left(\frac{\omega_z}{\omega_{CRNT,NR}}\right)^2$

where ω_{cant} is the first cantilever frequency of the non-rotating boom. It is to be stressed that $\overline{\lambda}$ is a constant only if ω_{z} , the satellite spinrate, may be considered such. Equation (2.2-5) is rewritten in the form

$$\eta_{\xi\xi\xi\xi} - \overline{\lambda} \eta_{\xi\xi} \left[\frac{1}{2} \left(1 - \xi^2 \right) + \xi_0 \left(1 - \xi \right) \right] + \overline{\lambda} \eta_{\xi} \left(\xi + \xi_0 \right) + \alpha \eta - \overline{\lambda} \eta = - \alpha \omega_z \left(\xi + \xi_0 \right)$$
(2.2-6)

So far, quantities which have been neglected were of order ε^2 of smallness, or smaller. Now $\alpha \dot{\omega}_z$ itself is of order ε^2 , i.e. with $d\phi = \omega_z dt$

$$\frac{\overline{\lambda}}{\omega_z^2} \dot{\omega}_z \div \overline{\lambda} \frac{d\omega_z / \omega_z}{d\phi}$$

if the product $\overline{\lambda}$ X the percentage change of ω_z per unit angle of rotation is very much smaller than quantities assumed to be of order ε . Assuming that such is the case, we are then left with the homogeneous Equation (2.2-6) with a r.h. side equal to zero.

$$\begin{split} \eta_{\underline{\xi}\underline{\xi}\underline{\xi}\underline{\xi}\underline{\xi}} & -\overline{\lambda} \eta_{\underline{\xi}\underline{\xi}} \Big[\frac{1}{2} (1 - \underline{\xi}^2) + \underline{\xi}_0 (1 - \underline{\xi}) \Big] + \overline{\lambda} \eta_{\underline{\xi}} (\underline{\xi} + \underline{\xi}_0) \\ & -\overline{\lambda} \eta + \alpha \dot{\eta} = 0 \end{split}$$
(2.2-7)

2.2.2 Solution of the basic equation

Using separation of variables, with ' =
$$\frac{d}{d\tau} = \frac{d}{d(\omega_z t)}$$
;

$$n_{j} = \Phi_{j}(\xi) T_{j}(\tau)$$
 (2.2-8)

 $\tau = \omega_z t$

Hence

$$\bar{\Phi}_{j}^{(iv)} - \bar{\lambda} \, \bar{\Phi}_{j}^{(2)} \left[\frac{1}{2} \left(1 - \xi^{2} \right) + \xi_{o} \left(1 - \xi \right) \right] + \bar{\lambda} \, \bar{\Phi}_{j}^{(1)} \left(\xi + \xi_{o} \right) - \bar{\lambda} \left(1 + \bar{\omega}_{j}^{2} \right) \bar{\Phi}_{j} = 0$$

yielding

 $T_{j} = \frac{\sin(\omega_{j}\tau)}{\cos(\omega_{j}\tau)} = \frac{\sin(\omega_{j}\tau)}{\cos(\omega_{j}\tau)}$

where ω_j is the jth eigenfrequency of the equatorial vibrations associated with $(\xi_{\circ}, \overline{\lambda})$. This equation is in agreement with that obtained by Etkins and Hughes^[2-1], in the special case $\xi_{\circ} = 0$.

Determination of ω_j (or $\overline{\omega}_j$) from Equation (2) proceeds as follows. Equation (2) is linear, with ξ varying coefficients. Thus any linear combination of solutions of (2) is a solution of (2).

Let $\hat{S}_{3,j}$ be the solution satisfying the b.c. $\hat{\xi}_{=0}: 0 0 / 0$ (2.2-9) $\phi_{,} \phi_{,}^{(1)} \phi_{,}^{(2)} \phi_{,}^{(3)}$ and $\hat{S}_{4,j}$ be the solution satisfying

$$\xi = 0; \qquad 0 \qquad 0 \qquad 0 \qquad 1 \qquad (2.2-10)$$

$$\phi_{f} \qquad \phi_{f}^{(i)} \qquad \phi_{f}^{(2)} \qquad \phi_{f}^{(3)} \qquad (2.2-10)$$

Therefore, the desired solution, which satisfies the "built-in, free"

$$\xi = 0$$
 0 0 $(2.2-11)$

$$\xi = /$$
 0 0 (2.2-12)

is of the form

$$(3 \ 3_{3,j} + (4 \ 3_{4,j}))$$
 (2.2-13)

with C_3 , C_4 unknown. (2.2-11) is automatically satisfied by (2.2-13). Expressing (2.2-12)

$$\begin{pmatrix} c_{3} & s_{3,j}^{(3)} \\ \xi_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} \\ \xi_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} \\ \xi_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} & f_{\pm} \\ \xi_{\pm} & f_{\pm} \\ \xi_{\pm} & f_{\pm} & f_$$

In order to be satisfied for non-zero values of C_3 , C_4 , $\overline{\omega}_j$ should be such that the determinant

$$\mathcal{D}(\overline{\omega}_{j}) = \left[\begin{array}{c} \int_{3,j}^{(2)} & \int_{4,j}^{(3)} & - \int_{3,j}^{(3)} & \int_{4,j}^{(2)} \\ & 4,j \end{array} \right]_{\overline{\omega}_{j},\xi=1}^{=0}$$
(2.2-16)

The successive <u>eigenfrequencies</u>, $\tilde{\omega}_{j}$, are determined to any prescribed accuracy by iteration $\delta_{1,j}$, $\delta_{2,j}$ are determined by numerical integration of differential equation (2), subject to b.c. (9) and (10.) respectively.

The modal <u>shapes</u>, $\Phi_j(\xi)$, which as expected are defined only to an arbitrary multiplicative constant, are determined, once \overline{w}_j is known, as

$$\bar{\Psi}_{j}(\xi) = \zeta_{3} \begin{bmatrix} J_{3,j} - \frac{J_{3,j}}{J_{4,j}} & J_{4,j} \end{bmatrix}_{\overline{\omega}}, \qquad (2.2-17)$$

2.23 Orthogonality of the mode shapes

It is now proven, that given $\overline{\lambda},\ \xi_{\circ}\geq 0,$ the modes $\phi_{j},\ \phi_{k}$ are orthogonal, i.e.

$$\langle \Phi_j, \Phi_k \rangle = \int_0^t \Phi_j(\xi) \Phi_k(\xi) d\xi = 0 \qquad j \neq k$$

Note that $\langle \bar{\Psi}_{j}, \bar{\Psi}_{j} \rangle = \int_{0}^{t} \bar{\Psi}_{j}^{2} d\xi = m_{i,j} > 0$ Let d be the operator $\frac{\partial^{4}}{\partial \xi^{4}} - \bar{\lambda} \left[\frac{1}{2} (i - \xi^{2}) + \xi_{0} (i - \xi) \right] \frac{\partial^{2}}{\partial \xi^{2}} + \bar{\lambda} (\xi + \xi_{0}) \frac{\partial}{\partial \xi} - \bar{\lambda}$ Now $d(\bar{\Psi}_{j}) = \bar{\lambda} \bar{\omega}_{j}^{2} \bar{\Psi}_{j}$ and $d(\bar{\Psi}_{k}) = \bar{\lambda} \bar{\omega}_{k}^{2} \bar{\Psi}_{k}$ (2.2-18) Then, from multiplying by ϕ_k and ϕ_j respectively, and substracting $\overline{\Phi}_j^{(4)} \ \overline{\Psi}_k - \overline{\Phi}_k^{(4)} \ \overline{\Phi}_j - \overline{\lambda} \left[\frac{1}{2} \left(1 - \xi^2 \right) + \xi_0 \left(1 - \xi \right) \right] \left[\overline{\Phi}_j^{(2)} \ \overline{\Phi}_k - \overline{\Phi}_k^{(2)} \ \overline{\Phi}_j \right]$ $+\overline{\lambda}\left(\xi+\xi_{o}\right)\left(\underbrace{I}_{i}^{(l)}\overline{I}_{k}-\underbrace{I}_{k}^{(l)}\right)\overline{\Phi}_{i}=\overline{\lambda}\left(\underbrace{\overline{\omega}}_{i}^{2}-\overline{\omega}_{k}^{2}\right)\underbrace{\overline{\Phi}}_{i}\underbrace{\overline{P}}_{k}$ (2.2-19)

Integrate with respect to ξ , from $\xi = 0$ (root) to $\xi = 1$ (tip),

$$\int_{boom} \underline{\Phi}_{j}^{(4)} \underline{\Psi}_{k} d\xi = \underbrace{\Phi_{j}^{(3)}}_{j} \underbrace{\overline{\Phi}}_{k} \Big]_{nort}^{tip} - \int_{boom} \underbrace{\Phi_{j}^{(3)}}_{j} \underbrace{\overline{\Phi}}_{k}^{(1)} d\xi$$
$$= -\underbrace{\overline{\Phi}_{j}^{(2)}}_{j} \underbrace{\overline{\Phi}}_{k}^{(1)} \Big]_{nort}^{tip} + \int_{boom} \underbrace{\overline{\Phi}_{j}^{(2)}}_{j} \underbrace{\overline{\Phi}}_{k}^{(2)} d\xi$$
$$= \int_{poom} \underbrace{\overline{\Phi}}_{k}^{(4)} \underbrace{\overline{\Phi}_{j}}_{j} d\xi$$

Thus

$$\int_{\text{boom}} \left\{ \begin{array}{c} \bar{\Psi}_{i}^{(4)} \\ \bar{\Psi}_{j} \\ \end{array} \right\} = \frac{\bar{\Psi}_{i}^{(4)}}{\bar{\mu}_{j}} = \frac{\bar{\Psi}_{i}^{(4)}}{\bar{\mu}_{j}} = 0$$

Next compute

Next compute

$$\int_{krom} \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{d} \frac{d\xi}{k} d\xi = \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{d} \frac{f^{(1)}}{k} \frac{1}{2} \int_{krom}^{t_{ij}} \left[-\frac{1}{2} \frac{\varphi}{k} \frac{f^{(1)}}{k} \left(1 - \xi^{2} \right) + \xi \frac{\varphi}{k} \right] d\xi$$

$$\int_{krom} \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{k} \frac{d\xi}{d} \frac{\xi}{\xi} = \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{k} \frac{f^{(1)}}{d} \frac{\varphi}{\xi} \frac{1}{k} \int_{krom}^{t_{ij}} \left[-\frac{1}{2} \frac{\varphi}{k} \frac{f^{(1)}}{k} \left(1 - \xi^{2} \right) + \xi \frac{\varphi}{k} \right] d\xi$$

$$\int_{krom} \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{k} \frac{d\xi}{d} \frac{\xi}{\xi} = \frac{1}{2} \left(1 - \xi^{2} \right) \frac{\varphi}{k} \frac{f^{(1)}}{d} \frac{\varphi}{\xi} \frac{1}{k} \int_{krom}^{t_{ij}} \frac{\varphi}{k} \frac{f^{(1)}}{k} \left[-\frac{1}{2} \frac{\varphi}{k} \frac{f^{(1)}}{k} \left(1 - \xi^{2} \right) + \xi \frac{\varphi}{d} \frac{\varphi}{\xi} \frac{1}{k} \frac{\varphi}{\xi} \frac{1}{k} \frac{1}{k} \frac{\varphi}{\xi} \frac{1}{k} \frac{1}{k} \frac{\varphi}{k} \frac{1}{k} \frac{1}{k} \frac{\varphi}{\xi} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{\varphi}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{\varphi}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{1}{k} \frac{\varphi}{k} \frac{1}{k} \frac{$$

Terms corresponding to (1) and (3) will cancel in the difference. Terms (2) and (4) will cancel the terms resulting from the last term in ξ , in (2.2-19).

in the 1.h. side of (2.2-19). Finally

$$\int_{kom} \underbrace{\xi_{0}(1-\xi)}_{kom} \underbrace{\Phi}_{j}^{(2)} \underbrace{\Phi}_{k} d\xi = \underbrace{\xi}_{0} \underbrace{\Phi}_{j}^{(1)} (1-\xi)}_{k} \underbrace{\Phi}_{k} \Big]_{kok}^{t_{0}} - \underbrace{\xi}_{0} \int_{kom} \underbrace{\Phi}_{j}^{(1)} \left[-\underbrace{\Phi}_{k} + (1-\xi) \underbrace{\Phi}_{k}^{(1)} \right] d\xi}_{kom} \int_{kom} \underbrace{\xi}_{0} (1-\xi) \underbrace{\Phi}_{k}^{(2)} \underbrace{\Phi}_{0} d\xi = \underbrace{\xi}_{0} \underbrace{\Phi}_{k}^{(1)} (1-\xi)}_{k} \underbrace{\Phi}_{k} \Big]_{Root}^{t_{0}} - \underbrace{\xi}_{0} \int_{koom} \underbrace{\Phi}_{k}^{(1)} \left[-\underbrace{\Phi}_{j} + (1-\xi) \underbrace{\Phi}_{j}^{(1)} \right] d\xi}_{0} \underbrace{\xi}_{0} \underbrace{\xi}_{0} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(2)} \underbrace{\Phi}_{k} d\xi = \underbrace{\xi}_{0} \underbrace{\Phi}_{k}^{(1)} (1-\xi)}_{k} \underbrace{\Phi}_{k} \Big]_{Root}^{t_{0}} - \underbrace{\xi}_{0} \int_{koom} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \left[-\underbrace{\Phi}_{j} + (1-\xi) \underbrace{\Phi}_{j} \underbrace{\Phi}_{0}^{(1)} \right] d\xi}_{0} \underbrace{\xi}_{0} \underbrace{\xi}_{0} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \underbrace{\Phi}_{k} \underbrace{\Phi}_{0}^{(1)} \underbrace{\Phi}_{0$$

Again, terms (7) and (8) will cancel in the difference. Terms (5) and (6) will cancel the terms resulting from the last term in ξ_{\circ} , in the l.h. side of (2.2-19). We are left with

$$\overline{\lambda} \left(\overline{\omega}_{j}^{2} - \overline{\omega}_{k}^{2} \right) \int_{\text{boom}}^{\overline{\Phi}_{j}} (\xi) \overline{\Psi}_{k} (\xi) d\xi = 0$$

$$\int_{\text{boom}}^{\overline{\Phi}_{j}} \overline{\Psi}_{k} d\xi = 0 \qquad (j \neq k) \qquad (2.2-20)$$

The modal mass, m_j ($\overline{\lambda}$, ξ_{\circ}), is defined, for j=k, as

$$m_{ij} \equiv \int_{\text{born}} \Phi_j^2 d\xi \qquad (2.2-21)$$

in which $\Phi_j(\xi)$ is normalized to correspond to a unit deflection at the boom's tip, $\xi = 1$. The following quantity, to appear later, is also of interest

$$m_{2,j} = \int_{\text{hom}} \xi_{j} \left(\xi\right) d\xi \qquad (2.2-22)$$

with $\xi_1 = \xi_0 + \xi$, varying between ξ_0 (root) and $\xi_0 + 1$ (tip). It is readily determined when the modal shape, $\Phi_i(\xi)$, is known.

Also, for later use, two identities are given here, which are obtained by multiplying Eq. (2.2-19) written for ϕ_j , by ϕ_k , and integrating over the boom,

$$\frac{1}{\bar{\lambda}} \int_{\text{loom}} \frac{\bar{\Phi}_{j}^{(4)}}{\bar{k}} \bar{\Phi}_{k} d\xi = \frac{1}{\bar{\lambda}} \int_{\text{boom}} \frac{\bar{\Phi}_{j}^{(2)}}{\bar{\mu}_{k}} \frac{\bar{\Phi}_{j}^{(1)}}{\bar{\mu}_{k}} \frac{\bar{\Phi}_{j}^{(1)}}{\bar{\mu}_{k}}$$

Thus, for
$$j \neq k$$

$$\frac{1}{\lambda} \int_{k \text{ locm}} \overline{f}^{(2)}_{k} \overline{f}^{(2)}_{k} + \int_{k \text{ locm}} \overline{f}^{(1)}_{k} \overline{f}^{(1)}_{k} - \frac{1}{2} \left[\left(1 - \xi^{2} \right) + 2\xi_{0} \left(1 - \xi \right) \right] d\xi = 0.(2.2-23)$$
and for $d = k$

$$\frac{1}{\overline{\lambda}} \int_{koom} \frac{\overline{\psi}^{(2)}}{\sqrt{\psi}^{(2)}} \frac{1}{2\xi} + \int_{koom} \overline{\Psi}^{(1)}_{j} \frac{1}{2} \left[\left(1 - \xi^2 \right) + 2\xi \left(1 - \xi \right) \right] d\xi = \left(\overline{\omega}_s^2 + \overline{\omega}_j^2 \right) m. (2.2-24)$$

2.3 Equations of motion: meridional vibrations

The developments in the case of motions in the (x,z) plane, of a boom located along axis +x in its undeflected position, or "meridional" vibrations, closely parallels those for equatorial vibrations, given in Section 2.2. In the following, only those terms which depart from the ones in Section 2.2 will be given in detail.

2.3.1 Basic equation

The equation expressing the equilibrium, at any section "x" of the boom, at point P, between the flexure moment from the left and the moment , about P, of inertia forces imparted by the particles Q of the boom to the right of P (i.e. those having an abscissa x, between x and l, reads

$$EI \frac{\partial^2 w(x)}{\partial x^2} = \int_{x}^{\ell} \rho \, dx_i \left[\left(\vec{r}_{Q} - \vec{r}_{p} \right) \wedge \vec{r}_{Q} \right]_{y}$$
(2.3-1)

Now w(x) is an elastic displacement parallel to z. Computing the relevant quantities,

$$\vec{\pi}_{PQ} = (x_i - x) \vec{I}_x + (w(x_i) - w(x)) \vec{I}_z$$

$$\vec{\pi}_Q = (x_0 + x_1) \vec{I}_x + w(x_1) \vec{I}_z$$

Thus

$$\vec{z}_{a} = \begin{bmatrix} \omega_{y} w(x_{1}) \\ \omega_{z} (x_{0} + x_{1}) - \omega_{x} w(x_{1}) \\ \vdots \\ w(x_{1}) - \omega_{y} (x_{0} + x_{1}) \end{bmatrix}$$

Also

$$\vec{\tilde{\pi}}_{Q} = \frac{\partial}{\partial t} (\vec{\tilde{\pi}}_{Q}) + \vec{\omega} \wedge \vec{\tilde{\pi}}_{Q}$$

$$\vec{\tilde{\pi}}_{Q} = \begin{pmatrix} \tilde{\omega}_{y} W(x_{1}) + 2\omega_{y} \tilde{w}(x_{1}) - (x_{0} + x_{1})(\omega_{y}^{2} + \omega_{z}^{2}) + \omega_{x} \omega_{z} W(x_{1}) \\ -\tilde{\omega}_{x} W(x_{1}) - 2\omega_{x} \tilde{w}(x_{1}) + (x_{0} + x_{1})(\omega_{x} \omega_{y} + \tilde{\omega}_{z}) + \omega_{y} \omega_{z} W(x_{1}) \\ \vec{\tilde{w}}(x_{1}) - W(x_{1})(\omega_{x}^{2} + \omega_{y}^{2}) + (x_{0} + x_{1})(\omega_{x} \omega_{z} - \tilde{\omega}_{y}) \end{pmatrix}$$

Again, under the assumption of small displacements and transverse angular rates, terms of order w^2 , $\omega_x \omega_y$, ω_x^2, ω_y^2 ... are neglected. \ddot{r}_Q reduces to

$$\tilde{\mathcal{R}}_{Q} = \begin{bmatrix} -(x_{0}+x_{1}) \omega_{Z}^{2} \\ (x_{0}+x_{1}) \tilde{\omega}_{Z} \\ \tilde{\mathcal{W}}(x_{1}) + (x_{0}+x_{1}) (\omega_{x} \omega_{z} - \tilde{\omega}_{y}) \end{bmatrix}$$

Along
$$\mathbf{1}_{\mathbf{y}}$$
,

$$\begin{bmatrix} (\overline{n}_{a} - \overline{n}_{p}) \wedge \overline{n}_{a} \end{bmatrix}_{\mathbf{y}} = \begin{bmatrix} W(\mathbf{x}_{i}) - W(\mathbf{x}) & \mathbf{x}_{1} - \mathbf{x} \\ W(\mathbf{x}_{i}) - W(\mathbf{x}) & \mathbf{x}_{1} - \mathbf{x} \\ W(\mathbf{x}_{i}) + (\mathbf{x}_{0} + \mathbf{x}_{1}) (\omega_{x} \omega_{z} - \hat{\omega}_{y}) & - (\mathbf{x}_{0} + \mathbf{x}_{1}) \omega_{z}^{2} \end{bmatrix}$$

Substituting into (2.3-1), and non-dimensionalizing

$$\frac{EI}{l} \frac{\partial^2 \eta}{\partial \xi^2} = -\rho l^3 \int_{\xi}^{l} \{(\xi_i - \xi) (\eta_i^2 + (\xi_0 + \xi_i) (\omega_x \omega_2 - \omega_y)) + \omega_z^2 (\eta_i - \eta) \\ (\xi_0 + \xi_i) \} d\xi$$
or
$$\eta_{\xi\xi} = -\alpha \int_{\xi}^{l} \{(\eta_i - \eta) \omega_z^2 (\xi_0 + \xi_i) + (\xi_i - \xi) (\xi_0 + \xi_i) (\omega_x \omega_z - \omega_y) \\ + (\xi_i - \xi) \eta_i^2 \} d\xi$$
(2.3-2)

Comparing (2.3-2) to (2.2-4), it is seen that terms (b) and (c) in (2.3-2) differ in the following way from the corresponding ones in (2.2-4)

(b) here has a factor $(\omega_x \omega_z - \dot{\omega}_y)$ instead of $\dot{\omega}_z$ (c) here has a factor $\ddot{\eta}_1$ instead of $\ddot{\eta}_1 - \omega_z^2 \eta_1$

Therefore, with these changes, the equation analogous to (2.2-6) which describes the meridional vibrations should be

$$\eta_{\xi\xi\xi\xi} - \overline{\lambda} \eta_{\xi\xi} \left[\frac{1}{2} \left(1 - \xi^2 \right) + \xi_0 \left(1 - \xi \right) \right] + \overline{\lambda} \eta_{\xi} \left(\xi + \xi_0 \right) + \alpha \eta = -\alpha \left(\omega_x \omega_2 - \omega_y \right) \left(\xi + \xi_0 \right)$$

$$(2.3-3)$$

So far, quantities neglected have been of order ε^2 of smallness, or smaller. Now, in order for the r.h. side of (2.3-3) to be of order ε^2 , we should have

$$\alpha \omega_z^2 \frac{\omega_x}{\omega_z} = \overline{\lambda} \frac{\omega_x}{\omega_z}$$
$$\alpha \frac{d\omega_y}{dt} = \overline{\lambda} \frac{d\omega_y}{d\phi}$$

very small compared to quantities assumed to be of order E. If such is the case, we are left with homogeneous equation

$$\eta_{\xi\xi\xi\xi} = \overline{\lambda} \eta_{\xi\xi} \left[\frac{1}{2} \left(1 - \xi^2 \right) + \xi_o \left(1 - \xi \right) \right] + \overline{\lambda} \eta_{\xi} \left(\xi + \xi_o \right) + \overline{\lambda} \eta_{\xi} \left(\xi + \xi_o \right)$$

$$+ \alpha \eta^{\circ} = 0$$
(2.3-4)

(2.3-4) differs from (2.2.7) only in that term - $\overline{\lambda}\eta$ of (2.2-7) is not present.

2.3.2 Solution of the basic equation

After separation of variables and non-dimensionalizing time by $\tau = \omega_z t$, the solution to (2.3-4) will be

$$n_{j} = \Phi_{j}(\xi)T_{j}(\xi)$$
sin sin sin
in which $T_{j} = \overline{\omega}_{j}\tau = \overline{\omega}_{j}t$, and Φ_{j} satisfies the differential
cos cos

equation

$$\begin{split} \underline{\Phi}_{j}^{(iv)} &= \overline{\lambda} \; \underline{\Phi}_{j}^{(2)} \left[\frac{1}{2} \left(i - \xi^{2} \right) + \underline{\xi}_{0} \left(i - \xi \right) \right] + \overline{\lambda} \; \underline{\Phi}_{j}^{(i)} \left(\underline{\xi} + \underline{\xi}_{0} \right) \\ &= \overline{\lambda} \; \overline{\omega}_{j}^{2} \; \underline{\Phi}_{j} = 0 \end{split}$$

$$(2.3-5)$$

As expected, this equation is the same as that obtained in (2.2-8) for equatorial vibrations provided the substitution of

$$\overline{\omega_j}^2$$
 in (2.3-5) is made for $\left[\left(1+\overline{\omega_j}^2\right)\right]$ in [2.2-8] (2.3-6)

Therefore, the method outlined in Section (2.2.2) to solve for $\overline{\omega}_j$ can be adopted and followed without any other modification than that specified by (2.3-6). In fact, program SEARCH DP, which obtains the first three eigenvalues

$$\omega_1, \omega_2, \omega_3$$

given a pair ($\overline{\lambda}$, ξ_{\circ}), iteratively solves an equation such as (2.3-5),

$$\overline{\Psi}_{j}^{(N)} = \overline{\lambda} \quad \overline{\Psi}_{j}^{(2)} \left[\frac{1}{2} \left(1 - \overline{\xi}^{2} \right) + \overline{\xi}_{0} \left(1 - \overline{\xi} \right) \right] + \overline{\lambda} \quad \overline{\Phi}_{j}^{(I)} \left(\overline{\xi} + \overline{\xi}_{0} \right) \\
+ \operatorname{COEF} * \quad \overline{\Psi}_{j} = 0$$
(2.3-7)

in which the coefficient "COEF" is determined as follows:

2.3.3 Orthogonality of the mode shapes

Modes $\phi_j(\xi)$ (j = 1,2...) for meridional vibrations can be proven to be orthogonal, as in Section (2.2-3), since Equation (2.2-19) holds equally well in the present case. Thus

$$\int_{\text{boom}} \phi_j \phi_k d\xi = 0 \quad j \neq k \quad (2.3-8)$$

and we define, for case M,

^ml,j d[±]ef
$$\int_{\text{boom}} \phi_j^2 d\xi > 0$$
 (2.3-9)

^m2,j def
$$\int_{\text{boom}} \phi_j \xi_1 d\xi$$
 (2.3-10)

with $\xi_1 = \xi_0 + \xi_1$.

With the substitution $\overline{\omega}_{s}^{2} + \overline{\omega}_{j}^{2}$ in (2.2-8) $\Rightarrow \overline{\omega}_{j}^{2}$ in (2.3-5), the following relations, valid for meridional vibrations, are deduced straightforwardly from Equations (2.2-23) and (2.2-24)

<u>for j≠k</u>

$$\frac{1}{\lambda} \int_{k_{om}} \frac{f^{(2)}}{k} d\xi \int_{k_{om}} \frac{f^{(1)}}{f} \frac{f^{(1)}}{k} \frac{f}{2} \left[\left(1 - \xi^2 \right) + 2\xi_0 \left(1 - \xi \right) \right] d\xi = 0. \quad (2.3-11)$$

and
$$\frac{\text{for } 1=k}{\frac{1}{n}} \int_{\text{boom}} \frac{\Phi_{j}^{(2)}}{\Phi_{j}} \frac{\Phi_{j}^{(2)}}{\Phi_{j}} d\xi + \int_{0}^{\Phi_{j}^{(1)}} \frac{\Phi_{j}^{(1)}}{\Phi_{j}^{(1)}} \frac{1}{2} \left[\left(1-\xi^{2} \right) + 2\xi_{0} \left(1-\xi \right) \right] d\xi = \frac{m}{1,j} \frac{\omega}{\omega}^{2}.$$
 (2.3-12)

It should be noted here that for the <u>same</u> pair of values $(\bar{\lambda}, \xi_{\circ})$, if (COEF)_j is the value to be given to COEF in (2.3-7), in order for the determinant (2.2-16) to vanish, then

$$(COEF)_{j,E} = (COEF)_{j,M} = COEF$$

or

$$\widetilde{\omega}_{j,E}^{2}(\overline{\lambda},\xi_{\circ}) + 1 = \widetilde{\omega}_{j,M}^{2}(\overline{\lambda},\xi_{\circ})$$
(2.3-13)

whereas the modal shapes determined from (2.3-7) with the value $(COEF)_{i}$ of COEF have to be the same in cases E and M

In (2.3-13), if it is found more convenient to non-dimensionalize

 $\bar{\mathcal{I}}_{J,E}\left(\bar{\lambda},\xi_{0},\bar{\omega}_{J,E}\right)=\bar{\mathcal{I}}_{J,M}\left(\bar{\lambda},\xi_{0},\bar{\omega}_{J,M}\right)$

by a quantity proportional to the 1st eigenfrequency of the non-rotating cantilever boom, namely

ω_NR[±](EI/ρl⁴)^{1/2}

then (2.3-13) becomes

$$\left(\frac{\omega_{J,E}}{\omega_{NR}^{*}}\right)^{2} + \left(\frac{\omega_{z}}{\omega_{NR}^{*}}\right)^{2} = \left(\frac{\omega_{J,E}}{\omega_{NR}^{*}}\right)^{2} + \overline{\lambda} = \left(\frac{\omega_{J,H}}{\omega_{NR}^{*}}\right)^{2} \qquad (2.3-14)$$

as illustrated in some examples of Section (2.8)

2.4 Program determining the modal frequencies for equatorial or meridional vibrations: SEARCH DP.

Program SEARCH DP, listed at the end of the present chapter, is written in FORTRAN V and implements the developments of Section 2.2 and 2.3.

The calculations are carried out in double precision, which suffices for values of $\overline{\lambda}$ up to about 5,000. For higher values of λ , an arbitrary N-precision, scheme had to be used: this is described in Section 2.7.

2.4.1 Description of the program

Number of statements (including comment cards): about 270

Input: - 1 card giving Q = E or M?; $\overline{\lambda}$; ξ_{\circ} in format (A1, F6.5, G5.4)

Output: 1) - A heading, specifying "Equatorial case" or "Meridional case"

2) - The values of a "frequency" number" defined as $\sqrt{\overline{\lambda}}$

- Lines giving the value of determinant of Equation (2.2-16), called here FE34 ; the value of $\sqrt{\text{COEF}}$, the value of index U, number of trials in μ before converging to the root of $\mathcal{O}(\bar{\omega}_{j}) = 0$
- Lines labeled KKK number of iterations, giving the successive values of the determinant as μ is changed to obtain convergence of the determinant to zero. The iteration stops when μ_{k+1} differs from μ_{k} by less than 10^{-4} .
- A statement that "MU converged" giving the value of FE34 and μ .
- A print-out of FE34, μ , $\overline{\lambda}$, and NATFRQ, defined as $\frac{\omega_1}{\star}$
- The value of the step in μ , DLT, and the value of the order of the eigenvalue, j or NOR

3) same for j = 2, 3, in that order.

2.4.2 Schematic flow chart:

The following flow chart schematically describes the main control flow in SEARCH DP.

2.4.3 Comments

- a) It has been numerically determined [2-4] that 100 steps across the boom's length would suffice, over the range of $\overline{\lambda}$ and ξ_{\circ} investigated, to obtain eigenvalues agreeing up to the 5th digit with those obtained with 200 steps across the boom's length. The "100-steps" are therefore incorporated as a "fixed" feature in program SEARCH DP.
- b) A method of linear interpolation is used for finding the roots of $(\overline{\omega}_j) = 0$. The iteration on μ (or equivalently the eigenvalue to be \cdot) stops when two successive values of μ , in the iteration process, agree to at least 0.1%.
- c) The integration method is a simple Runge-Kutta with fixed step, having a per step error of the order of Δx^5 .
- d) Using double-precision arithmetic, the number of significant
 digits retained in the two terms in 𝔅, in Equation 2.2-16,
 does not suffice for values of λ̄ larger than about 5,000, and
 an arbitrary precision package ("NP" package, N > 0 integer)
 had to be developed and is described in Section 2.7.

2.4.4 Listing and sample output

A listing and a sample output of program SEARCH DP are given at the end of this chapter.

2.5 Program Determining the Modal Shaptes ϕ_j and "Masses" $m_{1,j}$, $m_{2,j}$: MODE

MODE is a Fortran-V, double precision program determining the modal shapes, normalized to unit deflection at the boom's tip,

$$\phi_{i}(\xi) \quad j = 1, 2, 3$$

which are solutions of Equation 2.3-7, in which

 $\overline{\omega}_{1}$ is the jth eigenvalue determined by SEARCH DP

$$COEF = (COEF)_{j,E} = (COEF)_{j,M}$$
$$(COEF)_{j,E} = 1 + \overline{\omega}_{j,E}^{2}$$
$$(COEF)_{j,M} = \overline{\omega}_{j,M}^{2}$$

2.5.1 Description of program MODE

Number of statements (including comment cards): 158

Input: - 1 card giving IE - E or M?; j; $\overline{\lambda}$; ξ_{\circ} : μ = COEF (to be used in Equation 2.3-7) in (A1, I1, 3G12.6 format)

Output: 1) - A heading, specifying "Equatorial Case" or "Meridional Case"

> 2) - The values of $\mu_j = \text{COEF}_j$ (as obtained from SEARCH DP), $\overline{\lambda}$, ξ_{\circ} , j (1, 2 or 3)

- The values of $m_{1,j} = \int_{boom} \Phi_j^2 d\xi; m_{2,j} = \int_{boom} (\xi_0 + \xi) \Phi_j d\xi;$ $\frac{m_{2,j}}{m_{1,j}}; \frac{m_{2,j}^2}{m_{1,j}}$ which are of interest in the dynamical simulation of the evolution in time of the spacecraft angular rates (ω_x , ω_y , ω_z) and modal coordinates (q_i)

The deflection Φ_j(ξ) as a function of ξ; I, the station index, varying from I = 1 (at the root)
I = 101 (at the tip), in steps of 2.

2.5.2 Schematic flow diagram. The main control flow in MODE is

as follows:

EXIT

2.5.3 Comments

a) The number of steps of integration, experimentally determined to give values of μ agreeing up to the 5th digit when solving the step size, was found to be 100. As in 2.4.3 and SEARCH DP, the the 100 steps are a fixed feature incorporated in the program.

b) The method of integration is Runge-Kutta with fixed step.

c) The calculations are carried out in double-precision, which should suffice for values of $\overline{\lambda}$ of up to 10,000. The data μ_j , however, might have had to be determined with the use of "NP" arbitrary precision package.

2.5.4 Listing and sample output.

A listing and a sample output of program MODE are given at the end of this chapter.

2.6 Parametric Study of Eigenfrequencies and Modal Shapes as a Function of $\overline{\lambda}$ (Etkin's Number) and ξ_{\circ} (Non-Dimensional Radius of the Hub)

Given the design parameters $\bar{\lambda}$ and ξ_{\circ} , the study of the eigenfrequencies ω_{j} , (which normalized to ω_{s} , are noted $\bar{\omega}_{j}$, and to $\omega_{NR}^{*} = \left(\frac{EI}{\rho \ell^{4}}\right)^{1/2}$, are noted $\frac{\omega_{j}}{\omega_{NR}^{*}}$) will be made easier by using several programs described hereunder.

2.6.1 Preliminary Comment

First of all, it should be emphasized here that there is no point in comparing mode shapes ϕ_j for "E" and "M", since they are the <u>same</u> solutions to Equation (2.3-7), for COEF_j = COEF_{j,E} = COEF_{j,M}, once j has been chosen and $\overline{\lambda}$ and ξ_o have been given. Any slight numerical departure, such as described in Ref. [2-4], 2-5] could only result from the inaccuracy is determining the eigenfrequency (0.1% relative accuracy on μ , in program SEARCH DP). Only the eigenfrequencies $\overline{\omega}_{j,E}$, $\overline{\omega}_{j,M}$ corresponding to these modal shapes will be different.

2.6.2 Program computing dynamical parameters, given $\overline{\lambda}$, ξ_0 : PARAM.

Program PARAM, written in FORTRAN-V, will permit to get a quick look at various relevant dynamical parameters, given Q = E or M, $\bar{\lambda}$ and ξ_{\circ} , namely

and also the sum over one, two, three modes

$$\frac{\sum \frac{m_{2,j}^2}{m_{1,j}}}{m_{1,j}}$$

a quantity to be used later in this work. It will also plot the mode shapes (up to j = 3) in the computer printout.

The data entered are

$$\tilde{\omega}_{j,M}$$
 (j = 1,2,3) obtained from SEARCH DP,
case M (NDS = 0)

The program basically computes $\Phi_{i}(\xi)$ and

the relevant integrals, m1,j, m2,j etc... as defined before.

A listing and a sample output of program PARAM is given at the end of this chapter.

2.7 Arbitrary Precision Package: MP (for use on OS) and P (N-Precision Package), in Fortran.

2.7.1 Motivation

An earlier version of SEARCH DP had been written^[2-4] to alleviate a problem of numerical stability at large values of $\overline{\lambda}$ (higher than about 5,000). This version used on IEM-library multiple precision (MP package). It was found, however, that this package was unavailable in a TSS environment. Therefore, an arbitrary precision package (NP) was written in Fortran V, and used for finding the eigenvalues $\overline{\omega}_{j}$ at values of $\overline{\lambda}$, and the accuracy of determinant \mathcal{D} in Equation (2.2-16) will be critically affected when taking differences of very large numbers.

MPAP (Multiple Precision Arithmetic Package) is present in the Internal Library of the IBM-360. The routine calls on specialized subroutines to perform floating point calculations with precision to be specified by the programmer (typically, here, quadruple precision was required).

MP-SEARCH, as used in Ref. [2-4], and MP-MODE, are thus basically MPAP versions of SEARCH and MODE. Their one disadvantage, as expected, is

2-26

an increased running time, of the order of 1.5 minutes for eigenvalue (1EM/360). For this reason, it is important that the eigenvalues or modal quantities of MP-MODE obtained for high $\overline{\lambda}$ be stored for later use in the simulation (Option MG1V = 1 in program FLEXAT, see Chapter 5), and that interpolation be used whenever possible.

2.7.3 Multiple precision in TSS: MP-package

Written in FORTRAN for case of conversion to any machine, N-PRES is a multiple-precision arithmetic system for scientific calculation It may be used on any machine which stores one integer per work, where a word is \geq 31 bits long.

2.7.3.1 Short description of the program

2.7.3.1.1 Representable numbers.

Let N, M be integers

 $2 \leq N \leq 16$

All numbers in the program are considered <u>floating</u> point constants of + N precision, expressed in scientific notation. Thus, for N = 3, or precision 4N = 12, we could have

.371246875003*10**8371

The exponent must <u>always</u> be an integer, positive, negative or zero and less than or equal to 4 decimal digits long. Thus a number such as $\pm d_1 d_2 \cdots d_{60} \approx 10^{\pm D} 1^{D} 2^{D} 3^{D} 4$

2.7.3.1.2 Internal Storage (Multiple-point, floating)

The mantissa is stored 4 digits to a word, in "N" digits. The exponent takes up the N+1 tion (Any $1 \le N \le 16$)

Examp10	<u>e:</u>	for	М	= 3,	N	=	2	
8.4326	x	10 ⁴	=	.843	260	000	x	10 ⁵
6.0	x	10 ⁴	=	.6			x	10 ²

represented as

All operations are designed to handle such units, called N-CONS (for N constant).

2.7.3.1.3 Quick guide to operations and subroutines

Name	Subroutine Function (all operating with N cons)
INIT	Initialize the N-precision system
INPUT	Input
OUTPUT	Output
CIN	Convert integer to N-CON
CNI	Convert N-CON to integer
CFN	Convert floating point to N-CON
CNF	Convert N-CON to floating point
NABS	Mem(Add) ← ABS[Mem(Add)]
NPWR	Mem(Add) ← [Mem(Add)]**P
	with P a parameter to NPWR
NSCL	$Mem(Add) \leftarrow [Mem(Add)]*10**S$
	with S a parameter to NSCL

Name	Subroutine function (all operating with N cons)
NCMPR	if Mem(Add 1) = Mem(Add 2), $A = B$
	if Mem(Add 1) > Mem(Add 2), A > B
	if Mem(Add 1) < Mem(add 2), $A < B$
	with A, B, parameters to NCMPR
COPY	$Mem(Add 2) \leftarrow Mem(Add 1)$
RENORM } SHIFT }	Internal use only
PUNCH	Output to punch
IMUL	Mem(Add) + Mem(Add)*I
	I = integer < limit
FDIV	Mem(Add) ← Mem(Add)/F
	F = floating point
MADD	Mem(Add 3) ← Mem(Add 1) + Mem(Add 2)
MSUB	Mem(Add 3) ← Mem(Add 1) - Mem(Add 2)
MMUL	$Mem(Add 3) \leftarrow Mem(Add 1) + Mem(Add 2)$
MDIV	Mem(Add 3) + Mem(Add 1) / Mem(Add 2)
2.7.3.2 Some	examples of N-precision programming

2.7.3.2 Square root

A. Algorithm: Newton-Raphson

Let $B = \sqrt{A}$, with old B = 1the $B = \frac{1}{2}$ ($\frac{A}{\text{Old } B}$ + Old B)

If Abs(Old B - B) > B*10** limit

01d B = B

Else done

B. Fortran Progarm:

Limit = -12

Read (5,1)A

1 Format (F10.2) Old B = 1.

2
$$B = (A/01d B + 01d B)/2$$

X = ABS(Old B-B)

Y = B*10**Limit

If (X, LE, Y) GØ TØ 3

Old B = B

GO TO 2

- 3 WRITE (6,4)B,A
- 4 FORMAT ('→', F10.2, '→ IS SQUARE ROOT OF, F10.2)
 STOP
 END

C. <u>N-Precision Program</u> IMPLICIT INTEGER (A-Z) CALL INIT(1,4) CON V = -12 A = 1 B = 2 Old = 3 TWO = 4 X = 5 Y = 6 HALF = 7 CALL Input(A)

Call NSCL(A,1)

CALL CIN(TWO,2)

.

Comments

(all N-cons.)
(16 digits of precision, N=4) .
 (limit)

(Allocation of variable names to N-con addresses)

(N-con at address TWO contains the value 2)
Call CIN(Old B,1) Call CFN(HALF,.5) Call Output (HALF) Call Output(A) Q = 1Call MDIV(A, OldB,B) Call MADD(B,Old B,B) Call MMUL(B, HALF, B) Call Output(B) Call HM Call MSUB(B,Old B,X) Call NABS(X) Call COPY (B,Y) Call NSCL (Y,CONV.) Call NCMPR(X,Y,I,J) If(I. LE. J) GO TO 2x Call COPY(B, Old B) GO TO 1 CONTINUE Call HM (Write out results)

(N-con. at address 'Old B' contains the value 1) (Half contains 0.5) (Conversion OK; print and check) (Print input number) (Iteration Counter) (B = A/Old B)(B = B+01d B)(B = B*.5)(write partial answer) (How many subroutines called so far. Print it out.) (X = B-01d B)(X = Abs X)(Y - (B))(Y - (Y) * 10 * * CONV)(Result: If X > Y, I > JX < Y, I < JX = Y, I = J) (IF(ABS(B-Old B).LE. B*10**CONV) GO TO 2 (01d B = (B))(Done!) (How many calls)

2.7.3.2.2 Conversion of a statement from SEARCH DP Consider the FORTRAN statement of SEARCH DP:

IF(FE34*DECID) 52, 51, 50

The N-PREC. translation would be CALL MMUL(DECID, FE34, TEMP) CALL NCMPR(TEMP,ZERO,I,J) If(I.LT. J) GO TO 52 If(J.EQ. J) GO TO 51

50 CONTINUE

2.8 Results from programs SEARCH DP, MP and NP

The frequencies $\overline{\omega}_j$ (normalized to $\omega_s = 1$) for j = 2, are given for case M. Those for case E are immediately obtained from

 $\overline{\omega}_{E,j}^2 = \overline{\omega}_{M,j}^2 - 1$

Also given below is the quantity $\int_{j=1}^{3} \frac{m_{2,j}^2}{m_{1,j}}$, which will be of special importance in Chapters 4 and 5. The first non-dimensional frequency x $\omega_i \sqrt{\rho \ell^4/EI}$ is also represented, for cases E and M, and various values of ξ_o , on Fig. 2.2.

.

	0.00	0.10	0.25	0.50
<u></u>				0.000
0	3.681	3.703	3.734	3.787
5	1.913	1.953	2.013	2.107
10	1.555	1.605	1.675	1.788
20	1.339	1.395	1.476	1.601
30	1.256	1.316	1.401	1.531
50	1.183	1.246	1.335	1.469
100	1.120	1.186	1.278	1.417
200	1.081	1.148	1.242	1.385
. 500	1.050	1.118	1.214	1.358
1000	1.034	1.104	1.201	1,346
3000	1.021	1.091	- 1,188	1.339
7000	1.016	1.087	1.184	1.329
10000	1.013	1.083	1,181	1.327

NOTE:
$$\widetilde{\omega}_{E} = \left(\widetilde{\omega}_{M}^{2} - 1\right)^{1/2}$$

 $\left(\omega_{1}\right)_{\tilde{\lambda}=0} = 3.518 \left(\frac{EI}{\ell^{\ell^{4}}}\right)^{1/2}$

.

CASE M - SECOND NONDIMENSIONAL NATURAL FREQUENCY $\tilde{\omega}_2 = \omega_2 / \omega_s$

	0.00	0.10	0.25	0.50
1	22.18	22.20	22,23	22.78
5	10,236	10.276	10.339	10.447
10	7.419	7.476	7.561	7.703
20	5,546	5.624	5.736	5.921
30	4.760	4.849	4,981	5.191
50	4.023	4.128	4,281	4.523
100	3.364	3.488	3.665	3.941
200	2.976	3.113	3.308	3.606
500	2.707	2.855	3,060	3.373
1000	2.603	2.754	2,964	3.282
3000	2.520	2.673	2,886	3,195
7000	2,490	2.644	2.857	3.178
10000	2.482	2.635	2.849	3.171

NOTE: $\widetilde{\omega}_{E} = \left(\widetilde{\omega}_{M}^{2} - I\right)^{1/2}$ $\left(\omega_{2}\right)_{\widetilde{\lambda} = 0} = 2I.9I \left(\frac{\mathcal{L}I}{\mathcal{L}^{4}}\right)^{1/2}$ ^m2,1^{/m}1,1

(ONE NODE)

E.	. 0.00	0.10	0.25	0.50
^ 10 20 30 50	0.3233 0.3249 0.3260 0.3268 0.3280	0.4190 0.4212 0.4231 0.4246 0.4268	0.5810 0.5893 0.5929 0.5957 0.5997 0.6056	0.9250 0.9325 0.9400 0.9457 0.9538 0.9652
100 200 500 1000 3000	0.3297 0.3311 0.3323 0.3328 . 0.3331 0.3332	0.4301 0.4330 0.4357 0.4371 0.4385 0.4392	0.6111 0.6165 0.6194 0.6224 0.6241	0.9757 0.9861 0.9916 0.9950 1.001
	Δ = 0.3333	Δ = 0.4433	Δ = 0.6458	Δ = 1.0833

NONDIMENSIONAL DYNAMICAL PARAMETERS

SUM OVER 3 MODES

λ too	. 0.0	0.10	0.2	5
10	0.3328	0.4401	0.6	336
100	0.3329	0.4404	0.6	343
1.000	0.3332	0.4413	0.6	366
	Δ = 0.3333	∆ = 0.4433	$\Delta = 0.6458$	
	^m 2,1 ^{2/m} 1,	1 (ONE MODE)		
	х. ¹			
$\frac{1}{\lambda}$	0,00	0.10	0.25	0.50
	0.3233	0.4190	0.5810	0.9250
10	0.3249	0.4212	0.5893	0.9325
20	0.3260	0.4231	0.5929	0.9400
30	0.3268	0.4246	0.5957	0.9457
50	0.3280	0.4268	0.5997	0.9538
10	0.3297	0.4301	0.6056	0.9652
20	0.3311	0.4330	0.6111	0.9757
50	0 0.3323	0.4357	0.6165	0.9861
100	0.3328	0.4371	0.6194	0.9916
300	0 0.3331	0.4385	0.6224	0.9950
1000	0 0.3332	0.4392	0.6241	1.001
. ,			· · ·	
	Δ =	Δ =	Δ =	Δ =
•	0.3333	0.4433	0.6458	1.0833

REFERENCES - Chapter 2

- [2-1] ETKIN, B. and HUGHES, P.C.: "Explanation of the anomolous spin behavior of satellites with long flexible antennae, Jour. of Spacecraft and Rockets, 4, 9, 1139-1145.
- [2-2] VIGNERON, F.R.: "Stability of a Freely Spinning Satellite of Crossed-Dipole Configuration." CASI Trans., <u>3</u>, 1, 8-9, March 1970.
- [2-3] RENARD, M.L. and RAKOWSKI, J.E.: "Equatorial Vibrations of a Long Flexible Boom on a Spin-Stabilized Satellite of Non-Zero Radius," Proc. of the Astronautical Congress, October 1969. Vol. 1, pp. 35-53, E. Lunc (Editor), Pergamon Press, 1971.
- [2-4] RAKOWSKI, J.E.: "A Study of the Attitude Dynamics of a Spin-Stabilized Satellite Having Flexible Appendages," Ph.D. Thesis, Mech. Engrg., Carnegie-Mellon University, December 1970.

[2-5] RAKOWSKI, J.E. and RENARD, M.L.: "A Study of the Nutational Behavior of a Flexible Spinning Satellite Using Natural Frequencies and Modes of the Rotating Structure," Paper 70-1046, presented at the AAS/AIAA Astrodynamics Conference, Santa Barbara, August, 1970.

FIG. 2-1. GEOMETRY OF SPINNING SATELLITE WITH FLEXIBLE APPENDAGE.

2-38

Meridional vibrations.

FIG. 2-2. FREQUENCY OF FUNDAMENTAL MODE VS $\overline{\lambda}$.

2-39

PROGRAM LISTING

AND

SAMPLE OUTPUT

.

SEARCH DP

L A	· · · · · · · · · · · · · · · · · · ·		SEARCHEDE		2-41
<u> </u>	THIS PROGRAM FILIDS TH	E FIRST T	HREE ELGENVA	LUES (MU) FOR	THE ROTATING
	BOOM THE ETTHER FOUL	RIAL OR I	MERILION FLEX	CHRF.	
Č					· · · · · · · · · · · · · · · · · · ·
C	IT WILL COMPUTE THESE	LACCURATE	ELY FOR VALUE	S.OE LAMDA UP	TO
C	APPROXIMATELY 5000				
· ····· • • • • • • •	DOUGLE PRECISION P	4) + K (4) + 1	4(4), L(4), E3	(101),E31P(101),E32P(101)+
• • • • • • • • • • •	IFE34, UECID, TVAL, HY,	EMONS/EM)M4+ESHRJ+ESH	RAIFEPRVI	
	1E33P(101),E34P(101)	*E4(101)	E415(TUT)*E1	12P(101),E43P(101),
	3E44P(101)+A+B+C+E+A	OFPOFCOF	EO+MULAMU/EPS	SB/ERSC/LAS/LA	SS+
	4 ULIIUPIUWHISIUISI	li di			
· ··· ···	INTEGER I.D.N.Z.	INT INTER	RIWIRIUINORI	(KK+Q	
· ···.	UATA/LM/1HM				
C					
	INPUT_DATA_IS_E_OR_M	LAMBUAJ	SI-ZERO		
L 1	8 READ (5+24++ ND=22)0	H AMISTO			• •
. S	0 FORMAT(A1+F6.5+G5.	4)	<u> </u>		
· • •	NDS=1		-	······ /	· · · · · · · · · · · · · · · · · · ·
	IF(Q.EQ.LM)NDS=D	1 - 1 - 1			
	TE(NUC.FO.D)WRITE(01151	مىمىلىلۇمىيۇمى ئەرمىيا مەربىيۇلىلىلىغا يۈرملىرىيونىيە - « مۇمۇمىيە يەر يەرمىيە يەر		
1	6 FORMAT (' EQUATORIA	CASE!//	()		
1	7 : FORMAT (MERIDIONA	L CASE!//	()		
	WRITE(6,21) LAM, SIO	·		·	
	21 FORMAT(1H + LAM=++F	12+6+3X+	S10='+09+3/		
*****	8=0				
	U=1				-
	FE34=0.				,
	MU=1.0U=5				
	M=0 CE20=I4(D-I4				
1	FEPRV=0.				
·	EP5d=10.**-14				
C C	EET NODI - 1 EOD HEVE	WSED TOT	CONTION (TT	TO POOT)	
¢ C					
	NOPT=1	• •		• `	
C					
<u>C</u> .	NDS = DIRECTION SWITCH	EOR FAUNT	LONTAL ROOTS		
c	WHEN NDS = 17 SEARCH	FOR MERTI	JIAN RUOTS	,	
- C			· · · · · · · · · · · · · · · · · · ·		
	NOR= 1				
	N=1 01 T=1				
•- ·					
	NINF=100				<u>.</u>
	INTER=NINT+1				
	ANFRO=SORI (LAM)			• • • • • • • • • • • • • • • • • • • •	
	ARTIELSIGUI AMERQ 60 FORMATCIH · NEPO-CO	RT LAM-+	F10.5)	•	
.	99 SI=0+			· · · · · · · · · · · · · · · · · · ·	
	TVAL=FE34				
~ ~	U=U 0 = U	•			
<u> </u>	ULEAR ARRAYS				- من <u>من من مار</u> ه مرجع ب ماهورانها از این القاط می مرجود از مرجع الم
	DO DI I-IIH				,
	•		,		

I

			2-42
** ****			
		K(1)=0.	
		L(I)=0.	
- •			
	31	P(I)=0.	
· ····		$00 \ 1 \ 1^{-1} \ 101$	
		E34P(1)=0.	•
•• • ••••	. .	$E_4 + F_{1} = 0$	
		E33F(1)=0.	
		E40((\1)=0.	
		$E_{42}P(1)=0$	
		$E_{31P}(1)=0$,	
		$E_{41}P(1)=0$.	
	• •	E4(1)=0.	
	1	E3(1)=0.	
		H=1./FLOAT(NINT)	
<u>C</u>			
C.	SE	T INITIAL CONDITIONS ON THE S3 AND S4 SOLUTIONS	
<u> </u>			
	_	D=3	
	8	IF(U.E.Q.4) GO TO 2	
			
		£32P(1)=1.	
	10	50 10 10 F X / 3) ~ 1.	
	17	EO(1)	
	13	Co=0.	
	10	A0=0 •	· · · · · · · · · · · · · · · · · · ·
· · ····		G0 T0 3	
	2	A0=0.	
		CO=0.	
		IF (NOPT.GT.U) GO TO 14	
		E43P(1)=1.	-
		CO=E43P(1)	
		GO TO 15	
	14		
		$A_0 = E_4 P(1)$	
	15		
	7		
	<u>э</u>	R-AV B-RO	
nan mar ni bi mar a			
r			
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	 גע	GIN RUNGA KUTTA INTEGRATION	
し で	Ð	To The Expression and the Thermony and a	
<b>.</b>	•••••	N⊒1	
	4	I=1	
		NN = N	
		S1=(NN-1.)*H	
	5	K(I)=H*A	
	-	L(I)=H*B	
	<b>.</b>	M(I)=H*C	
		MU1=1.+MU*MU	
		IF (NDS.EQ.1) GO TO 40	
		· · · · · · · · · · · · · · · · · · ·	

*د		1+(1SI+S10)*A+MUL*E)*LAM+H
		. S1=(NN-1.)*rt
5*		I=I+1
5¥		_ IF(I,6T,3)_60T06
/ ++ -{ *		
<u>.</u>		A=A0+L(7)/2.
)*		B=B0+M(Z)/2.
1*		C=CO+P(Z)/2.
<u>**.</u>		S1=SI+H/2.
]. 	٤	
ז.י יז.¥		F = F + K (3)
∍≭		A=A0+L(3)
7*		B=B0+M(3)
∃ <b>#</b>		_C=C0+P(3)
;# 		SI=SI+H
<u>)*</u>	······	
	(	→F (ひ・F, 3・4) ひつ(ひ ター・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
, <b>*</b>		Z=N+1
		$E_3(Z) = E_3(N) + (K(1) + 2 \cdot * K(2) + 2 \cdot * K(3) + K(4)) / 6$
<b>5</b> *		$E_{31P}(2) = E_{31P}(N) + (L(1) + 2 + *L(2) + 2 + *L(3) + L(4))/6$ .
יז <b>א</b> . 		$E32P(Z) = E32P(N) + (A(1) + 2 \cdot * (2) + 2 \cdot * (3) + (4))/6.$
/* -*	·	E33P(Z)=E33P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6.
ייי ייייייייייייייייייייייייייייייייי		
4 年.		1 (31)310/#201#(2//M01#20(2// 1F(M0PT・GT・U) E34P(Z)=EAM*(((STU+1・)**2-(1・-ST+STO)**2)
L <b>*</b>		1*E32P(Z)/2.+(1S1+5I0)*E31P(Z)+MU1*E3(Z))
2 <b>3</b> 47		E=E3(N+1)
3 <b>*</b>		
ቆም <u></u> ዓፄ	· · · · · · · · · · · · · · · · · · ·	D = E O Z P (N+1)
.) म ज क		C=200F(A)17 Fo=F
7*		
. <b>*</b>	allari Banda ^{ra} ita in Brayeriyai (panaye) a	Bo≑s
、 ;/不		Co=C
) <b>*</b>	· - <b>,</b> - · · - <b>,</b> - · · · ·	
Las. Jan		IF (N+L++IN+CR) GU TU H Emom3=E390(INTER)
÷.‴:		ESHR3=F33P(INTER)
.*		IF (NOPT.GT.U) EMOM3=E3(INTER)
, <b>*</b>		IF (NOPT.GT.U) ESHR3=E31P(INTER)
<b>*</b>		D=4
/ <i>4</i>	0	
5 <del>.</del> 		21-(γ)ΝφΠ 2-NI+1
27 14		$E_{-N+1}$ $E_{4}(2) = E_{4}(N) + (x(1) + 2 \cdot x_{1}(2) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{1}(2) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 \cdot x_{2}(3) + K(4)) / 6 \cdot (x(1) + 2 \cdot x_{2}(3) + 2 $
1		E41P(2)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6.
*		E42P(2)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6.
5 <b>#</b>		E43P(Z)=E43P(i)+(P(1)+2+*P(2)+2+*P(3)+P(4))/6+
. 4		E44P(Z)=LAM*(((SIO+1.)**2-(SI+S10)**2)*E42P(Z)/2.
<b>,</b> *		1=(51+510)*E41P(2)+MU1*E4(Z))
, <b>*</b>		IF(NOPT.GT.U) E44P(2)=LAM*(((STU+1.)**2-(1SI+SIO)**2)

,

	E=F4(N+1)
79*	A=E41P(N+1)'
司术	B = E + 2P(N + 1)
1 *	C=E43P(N+1)
š <u>2 *</u>	EO=E
5*	
4*	Во=в
5*	CO=C
(j <b>*</b>	N=N+1
7.*	IF(N.IT.INTER) GO TO 4
*17	$E_{MOM4}=E_{4}2P(INTER)$
9*	ESHR4=E43P(INTFR)
kj <b>≭</b>	IF(NOPT.GT.U) = FMOM4=F4(INTER)
1*	IF(NOPT.GT.U) ESHR4=E41P(INTER)
2*	C
÷د.	C RUNGA KUTTA FINISHED
44 <b>*</b>	C NOW BEGIN LINEAR INTERPULATION
'5*	C FE34 IS THE VALUE OF THE DETERMINANT (S3 AND S4)
o*	C
7*	FE34=EMOM3*ESHR4-ESHR3*EMOM4
<b>∩</b> *	IF(K.E0.1) 60 TO 51
jÿ.#	IF(U.E0.1) 60 TO 50
Çi. <b>≭</b>	IF(FE34*DEC1D)52+51+50
1 *	50 DECID=FE34
12*	LAS=MU
ٽ <b>*</b> ت	LASS=LAS
y <b>∔</b> ≭	WRITE(6+85)FE34+MU+U
5*	85 FORMAT(1H + 'FE34', D12.6, 5x + MU= + U12.6, 5X + 'U= + 13)
o *	MU=MU+DLT
7*	U=U+1
°0.*	GU TO 99
'9 <b>+</b>	52 UP=MU
j. <b>≭</b>	DWN=LAS
ļ.*	HY=FE04
2.*	TVAL=FE34
p≭	51 IF (ABS (FE34) . LE. EPS6) GU TO 53
÷ *	IF (ABS (DECID).LE.EPSB) GO TO 42
5*	WRITE(6,88)KKK,FE34,MU
P*	BB FORMAT(1H , 'KKK', 13, 3x, 'FE34', D12, 6, 3X, 'MU', D12, 6)
{×	
8¥	IF(FE34*DEC1D)55,51,56
¥*	55 UP=MU
}≭	MU=DWM-(DWN-UP)*DECID/(DECID-FE34)
*	KKK=KKX+1
2*	EPSC=ABS(ABS(MU)-ABS(LASS))
₿¥	IF(EPSC.LT.MU*10.**-4)G0 TO 10
÷*	LASS=mU
<b>5</b> *	GO TO 58
₽*	56 DWN=MU
Ż*	DECID=FE34
i,¥	MU=DWA-(DWN-UP)*DECID/(DECID-HY)
¥و	ККК=ККК+1
J.*	EPSC=ABS(ABS(MU)-ABS(LASS))
i *	IF (EPSC.LT.MU*10.**-4)GO TO 10
2*	LASS=MU
p.≉ ́	58 FE1=ABS(FEPRV)-ABS(FE34)
. *	1F(ABS(FE1).GT.1.0U-14)GOTU 82
5+	IA=IA+1

5≭ 7*		
1*		IF(IA+L]+5) GO TO B2
	· · · · · ·	WRITE(6+85)FE34
h#		FORMAT(1H .ISTUCK_ON_THIS_FE341,D12.6)
9*		IA=0
ປ່*		FEPRV=0.
i *		GO TO 53
2*		FEPRV=FE34
* ئ		Gu TO 99
₩ <b>.</b>		WRITE(6+45)UECID
5. <b>*</b>	43	FORMAT(1H , 'NO GOOD DECIDE', D12.6)
o*		60 10 53
7*	10	WRITE(6/11) FE34/MU
5*	_ 11.	FORMAT(1H0, MU CONVERGED FE34=, 1024+18+3X/ MU-11012+97
9*	53	NATERQEMU*SURT(LAM)
0. <b>*</b>		
1*	54	FORMAT(1H)+++E34++D12+6+5X++MU-++D12+6+5X++LAM-++F12+6+
<u> </u>	۹ ۴-۰۰۰ میلید و میلید	15X / INATERO - 1/E12.010X//W-1/10/
3*		
µ≉	86	FORMAI(1H0)/DL1=//09-5/5A//NOR-//15/
5*		1F(NOR+EQ-37 GO TO 57
₽ <u>₹</u>		NOR-NORT 1
1*		
©¶		
·		
U <b>▼</b>		
17 0*	57	
⊊ * ≼ ∎	<u> </u>	a D (TF (6 + 1) B)
ರ್. ೧೫	100	FORMAT(11)
•		
,⊷.* .⊭. <b>*</b>		ΧκκΞ1
·2		DI T=1.
		REO
∫`` ≼,≭		
?u≭		GOTO 18
		CALL EXTY
1*	- 22	
1* 2*	22	
1* 2*	22	
1* 2* OF	22 INTIVAC	END 1108 FORTRAN V COMPILATION: 0 *DIAGNOSTIC* MESSAGE(S)
1* 2* OF	22	END 1108 FORTRAN V COMPILATION. O *DIAGNOSTIC* MESSAGE(S)
1* 2* 0F	22 1911VAC	END 1108 FORTRAN V COMPILATION. 0 *DIAGNOSTIC* MESSAGE(S)
1* 2* OF	22 INIVAC	END 1108 FORTRAN V COMPILATION. O *DIAGNOSTIC* MESSAGE(S)
1* 2* OF	22 1811VAC	END 1108 FORTRAN V COMPILATION. O *DIAGNOSTIC* MESSAGE(S)
1 * 2.* OF	22 1911VAC	END 1108 FORTRAN V COMPILATION: 0 *DIAGNOSTIC* MESSAGE(S)
1* 2*	22 11)11VAC	END 1108 FORTRAN V COMPILATION. 0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 1911VAC	END 1108 FORTRAN V COMPILATION: 0 *DIAGNOSTIC* MESSAGE(S)
1* 2*	22 1811VAC	END 1108 FORTRAN V COMPILATION: 0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22        VÁC	END       1108 FORTRAN V COMPILATION•       0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 * 	22 11)11VAC	ILOB FORTRAN V COMPILATION. D *DIAGNOSTIC* MESSAGE(S)
1 * 2 * 	22 11)11VAC	END       1108 FORTRAN V COMPILATION.       0 *DIAGNOSTIC* MESSAGE(S)
1 * 2*	22 	END       1108 FORTRAN V COMPILATION:       0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 1611VAC	CALL EXIT END 1108 FORTRAN V COMPILATION. 0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22       VÁC	CALL EXIT END 1108 FORTRAN V COMPILATION: 0 *ÜIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 	CALL EXIT       END       110b FORTRAN V COMPILATION:       0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 11) J VÁC	CALL EXIT       END       1108 FORTRAN V COMPILATION:       0 *DIAGNOSTIC* MESSAGE(S)
1 * 0F	22 11) 1 V A C	CALL EXIT END 1108 FORTRAN V COMPILATION: 0 *DIAGNOSTIC* MESSAGE(S)
1 * OF	22 1111 VAC	LALL EXTT END 1108 FORTRAN V COMPILATION. 0 *DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 1611VAC	TALL EXTT END 1108 FORTRAN V COMPILATION, 0 #DIAGNOSTIC* MESSAGE(S)
1 * 2 *	22 11) J VÁC	CALL EXIT END 1108 FORTHAN V COMPILATION. 0 #DIAGNOSTIC* MESSAGE(S)
1 * 2 *		CALL EXIT END 1108 FORTRAN V COMPILATION: 0 *UIAGNOSTIC* MESSAGE(S)

2 - 46QUATORIAL CASE 10.000n00 SIO= .100+000 FSORT LAME 3.16228 <u>見 +170180+001</u> MU= .100000-005 ____0≓__1_ E34 +607250+n00 · MU= .100000+001 U= 2 1____FE34-.239548+001___MU_.200000+001 ĸ FE34 .134973+000 MU +120223+001 EE34 .258975-001_ 3 MU +124479+001 KΚ Кĸ а. FE34 .482325-002 MU +125286+001 FE34 .893275-003 MU +125436+001 FE34 .165264-003 MU +125464+001 \$ONVERGED FE34= .165264106829071666-003 MU= .125469+001 10.000000 MU= .125469+001 E.34 -165264-003 LAM= NATE:0= +396769+01.100+001 NOR= 1 E 34 -.337822+n01 MU= +225469+001  $\upsilon$ = 1 -.756-32+001 MU= .325469+001 U= 2 MU= .425469+001 111908+n02 υ≖ _3_ υ= MU= •525469+001 126038+002 L ∪≃ 2344.100439+n02 MU= •625469+001 5 **-.165669+001** MU= .725469+001 U≓. FE34 .132765+002 MU .825469+001 MU .737738+001 FE34-.395210+000 Кr. F£34-.798063-001 MU •740274+001 FE34-.159426-001 MU .740783+001 FE34-.317792-002 MU .740685+001 0~VERGED FE34=-.317791832175018385-002 MU= .740905+001 -.317792-n02 MU= •740905+001 LAME 10.000000 £.54 NATER0= +234295+02 .100+001 NOR≞ 2 162858+002 MU= .840905+001 ບ= £ು4 1 .403199+002 MU= •940905+001 U≡ 2 сI .718955+002 ບ≂ MU= •104091+002 3 Ē υ≕ 5.54 .109/33+003 MU= 114091+002 4 .151555+003 MU= 124091+002 ບ≕ 5 U≕ .193483+003 MU≕ 134091+002 6 '∪*=*" E .230505+n03 MU= .144091+002 7 .256265+003 บ≃ E34 MU≓ +154091+002 A υ= 263250+103 •164091+002 9 MUE .243054+003 MU= .174091+002 U = 10Ü≕ 11 **.**186657+003 MU= -184091+002 Ë34 .849254+002 MU= .194091+002 v = 12Εł FE34-.708675+0U2 MU +204091+002 1 FE34 .722558+001 MJ +199542+002 <u>KK 2</u> FE34 .519382+000 NJ +199963+002 5 FE34 .368619-001 MU +199993+002 CONVERSED FE34= .368618862357834587-001 MU= .199995+002 U 368-19-001 MU= +199995+002 ∟АМЩ 10.000000 NATERQE +632439+02

UTUTUNAL CASE					
τ—. ΤΟ•ΛΟΛΟΟΟΠΟ		Maria		•	
UFSORT LAME 13	5.16228				
4 .284392+001	MU= .100000-005	U= 1	•		
1 6F34-100	MU- • 100000+001	<u>U= 2</u>	مىلىقى بودى - <del>يەر</del> ۇرۇغارىلەردۇرىغۇ بىرىمىز مەرىمىيە مەرەپ بۇرۇ تۇرۇر مۇرۇ بىرىنى ئەرەپ چىن بىلىمەر <del>تە</del>		
. 2 FE34 .207	7673+001 Mir +200000 7673+000 Mir +154150	+001			-
3 FE34 .173	932-001 MU +159926	+001 -			
<u>4</u> FE34 140	389-002 MU •160404	+ú01			
5 FE34 .112	160442 MU •160442	+001		-	
ONVERGED FE34=	•112970857023636517	-003 MU	-100446+001	L	annan manan anna 1911 – Min Sydy paglaphin ^a e an 18
4 112971=003	MIT 1600/164001	····			
• •**C>+#~000	MO- •100440+001	LAM-	TO*000000	NATEPOZ	•507373+0
.100+001	NOR= 1	and a state in some of the state of the stat		•	
398435+n01	MU= •260446+001	<u> </u>			
F=.841747+001	MU= •360446+001	0= S			** ***********************************
HT+11/9/0+002 H+.123912+002	MUF .460446+001	<u> </u>			· · · · · · · · · · · · · · · · · · ·
842668+001	MU= •580448+001 MU≡ •660446+001	U= 4 U= 6			
1 FE34 .168	603+001 MU •7604464	+001 	a na an		
5 623h. 60X					
	714+000 MU •743773	+001			
3 FE34175	714+000 <u>MU</u> •743773+ 355-001 MU •747490+	+U01 +001	advad i saman 1997. alkanski alkansk mer ve stadiovalada i bi a anamar ve		
3 FE34175 4 FE34623	714+000 MU •743773 355-001 MU •747490 739-003 MU •747623	+U01 +U01 +U01			
3 FE34175 4 FE34623	714+000 <u>MU</u> •743773+ 355-001 MU •747490+ 739-003 MU •747623+ -•623739425547498172-	+001 +001 +001 -003 MU	= .74 ⁷ 623+001		
3 FE34175 4 FE34623	714+000 MU •743773 355-001 MU •747490 739-003 MU •747623 -•623739425547498172-	+001 +001 +001	= .747623+001	······	
623739-n03	714+000 MU •743773- 355-001 MU •747490- 739-003 MU •747623- -•623739425547498172- MU= •747628+001	+001 +001 +001 -003 MU: LAM=	= .747628+001 10.000000	NATEPO=	•236421+0
623739-n03	714+000 MU •743773- 355-001 MU •747490+ 739-003 MU •747623+ -•623739425547498172- MU= •747628+001 NOR= 2	+001 +001 +001 -003 MU:	= .747623+001 10.000000	NATERO	•236421+0
623739-003	714+000 MU •743773 355-001 MU •7474904 739-003 MU •7476234 -•623739425547498172- MU= •747628+001 NOR= 2 MU= •847628+001	+001 +001 +001 -003 MU: LAM=	= .747623+001 10.000000	NATEPOE	•236421+0
	714+000 MU •743773- 355-001 MU •747490- 739-003 MU •747623- -•623739425547498172- MU= •747628+001 NOR= 2 MU= •847628+001 MU= •947628+001	+001 +001 +001 -003 MU: LAM= U= 1 U= 2	= .747628+001 10.000000	NATFPO=	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02	714+000 MU •743773 355-001 MU •7474904 739-003 MU •7476234 -•623739425547498172- MU= •747628+001 MU= •847628+001 MU= •947628+001 MU= •104763+002	+001 +001 +001 LAM= U= 1 U= 2 U= 3	= .747623+001 10.000000	NATEPOT	•236421+0
<pre>&gt; FL34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03</pre>	714+000 MU •743773- 355-001 MU •747490+ 739-003 MU •747623+ -•623739425547498172- MU= •747628+001 NOR= 2 MU= •847628+001 MU= •947628+001 MU= •104763+002 MU= •114763+002	+001 +001 +001 -003 MU: LAM= U= 1 U= 2 U= 3 U= 4	= .747628+001 10.000nu0	NATFPO=	•236421+0
623739-n03 .100+001 .164506+n02 .407204+n02 .152709+n03 .152709+n03	714+000 MU •743773 355-001 MU •747490 739-003 MU •747623 -•623739425547498172 MU= •747628+001 MU= •847628+001 MU= •947628+001 MU= •104763+002 MU= •124763+002 MU= •124763+002	+001 +001 +001 LAM= U= 1 U= 2 U= 3 U= 4 U= 5	= .747623+001 10.000000	NATFPO=	•236421+0
2 FL34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03 .152709+n03 .194697+n03 .231551+003	714+000 MU .743773- 355-001 MU .747490+ 739-003 MU .747623+ 623739425547498172- MU= .747628+001 MU= .747628+001 MU= .947628+001 MU= .104763+002 MU= .124763+002 MU= .134763+002 MU= .134763+002	+001 +001 +001 LAM= U = 1 U = 2 U = 3 U = 4 U = 5 U = 6	= .747623+001 10.000000	NATEPOT	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03 .152709+n03 .152709+n03 .231551+n03 .255571+003	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747490$ 623739425547498172- MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.144763+002$ MU= $.144763+002$ MU= $.144763+002$	+001 +001 +001 -003 MU LAM= U = 1 U = 2 U = 3 U = 3 U = 4 U = 5 U = 6 U = 7	= .747623+001 10.000000	NATFPO=	•236421+0
2 FE34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03 .152709+n03 .152709+n03 .231551+n03 .256571+n03 .255048+n03	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.947628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.144763+002$ MU= $.144763+002$ MU= $.144763+002$ MU= $.154763+002$ MU= $.154763+002$	+001 +001 +001 -003 MU LAM= U = 1 U = 2 U = 3 U = 4 U = 5 U = 6 U = 7 U = 8 U = 8	= .747623+001 10.000000	NATFPO=	•236421+0
2 FL34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .125760+n02 .110735+n03 .152709+n03 .251551+n03 .256871+n03 .263048+n03 .241508+n03	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.947628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.144763+002$ MU= $.154763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.174763+002$	$ \begin{array}{c} +001 \\ +001 \\ +001 \\ -003  \text{MU} \\ \text{LAM} = \\ \begin{array}{c} 0 = 1 \\ 0 = 2 \\ 0 = 3 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 7 \\ 0 = 8 \\ 0 = 9 \\ 0 = 10 \end{array} $	= .747623+001 10.000000	NATFPOT	•236421+0
2 FE34175 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .125760+n02 .110735+n03 .152709+n03 .256871+n03 .256871+n03 .256871+n03 .241608+n03 .183506+n03	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.154763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.184763+002$	+001 +001 +001 -003 MU LAM= U = 1 U = 2 U = 3 U = 3 U = 4 U = 5 U = 6 U = 7 U = 8 U = 9 U = 10 U = 11	= .747623+001 10.000000	NATEPOT	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03 .152709+n03 .231551+n03 .255871+n03 .255871+n03 .255848+n03 .241508+n03 .795876+n02	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.184763+002$ MU= $.194763+002$	+001 +001 +001 -003 MU LAM= U = 1 U = 2 U = 3 U = 4 U = 5 U = 6 U = 7 U = 8 U = 9 U = 10 U = 12	= .747023+001 10.000000	NATFPO=	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .725760+n02 .110735+n03 .152709+n03 .152709+n03 .231551+n03 .255871+n03 .255848+n03 .241508+n03 .183506+n03 .795876+n02 1 FE347880	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.194763+002$	$\begin{array}{c} +001 \\ +001 \\ +001 \\ +001 \\ -003  \text{MU} \\ \\ LAM = \\ 0 = 1 \\ 0 = 2 \\ 0 = 3 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 2 \\ 0 = 1 \\ 0 = 11 \\ 0 = 12 \\ -002 \end{array}$	= .747623+001 10.000000	NATFPOT	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-003 .100+001 .164506+002 .407204+002 .110735+003 .152709+003 .152709+003 .256871+003 .256871+003 .256871+003 .263048+003 .263048+003 .183506+003 .795876+002 1 FE347880 2 FC34 .732	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172- MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.154763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.194763+002$	+001 +001 +001 -003 MU LAM= U = 1 U = 2 U = 3 U = 3 U = 4 U = 5 U = 6 U = 7 U = 8 U = 9 U = 10 U = 12 -002 -002	= .747623+001 10.000000	NATEPOT	•236421+0
2 FC34403 3 FE34175 4 FE34623 ONVERGED FE34= 623739-n03 .100+001 .164506+n02 .407204+n02 .10735+n03 .152709+n03 .152709+n03 .231551+n03 .255871+n03 .255871+n03 .255948+n03 .241508+n03 .241508+n03 .241508+n03 .255948+n03 .241508+n03 .255948+n03 .241508+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .241508+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .255948+n03 .2559	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.194763+002$ MU= $.024763+002$ MU= $.024763+002$ MU= $.024763+002$ MU= $.024763+002$ MU= $.024763+002$ MU= $.020209+000$	+001 +001 +001 +001 +001 +001 +001 +001	= .747623+001 10.000000	NATFPQ=	•236421+0
$\begin{array}{r} 2 \\ FE34175 \\ 4 \\ FE34623 \\ \hline \\ FE34623 \\ \hline \\ \hline \\ FE34623 \\ \hline \\ $	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.154763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.200209+270$	$\begin{array}{c} +001 \\ +001 \\ +001 \\ +001 \\ -003  \text{MU} \\ \\ LAM = \\ \\ 0 = 1 \\ 0 = 2 \\ 0 = 3 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 5 \\ 0 = 4 \\ 0 = 1 \\ 0 = 11 \\ 0 = 12 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -002 \\ -0$	= .747623+001 10.000000	NATFPOT	•236421+0
3       FE34175         4       FE34623         20NVERGED       FE34788         20NVERGED       FE34788         20NVERGED       FE34450	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172 MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.184763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.194763+002$	+001 +001 +001 +001 +001 +001 +001 +001	= .747623+001 10.000000 = .200245+002	NATFPOT	•236421+0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172- MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.174763+002$ MU= $.184763+002$ MU= $.194763+002$ MU= $.200209+579-001$ MU $.200209+579-001$ MU $.200242+$ .450578704412691877- MU= $.200245+002$	+001 +001 +001 -003 MU LAM= 0= 1 0= 2 0= 3 0= 4 0= 5 0= 4 0= 7 0= 6 0= 7 0= 6 0= 7 0= 8 0= 9 0= 10 0= 11 0= 12 -002 -002 -002 -002 -002 -002 -002 -0	= .747623+001 10.000000 = .200245+002 10.00000		.633220+0
$\begin{array}{c} 2 \\ FE34=.403 \\ 3 \\ FE34=.623 \\ 4 \\ FE34=.623 \\ \hline \\ 100+001 \\ .100+001 \\ .100+001 \\ .100+001 \\ .100+001 \\ .407204+002 \\ .407204+002 \\ .725760+002 \\ .110735+003 \\ .152709+003 \\ .152709+003 \\ .231551+003 \\ .231551+003 \\ .231551+003 \\ .231551+003 \\ .255871+003 \\ .255871+003 \\ .255871+003 \\ .255874+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .241508+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2538+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .2588+003 \\ .25$	714+000 MU $.743773$ 355-001 MU $.747490$ 739-003 MU $.747623$ 623739425547498172- MU= $.747628+001$ MU= $.747628+001$ MU= $.947628+001$ MU= $.104763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.124763+002$ MU= $.134763+002$ MU= $.154763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.164763+002$ MU= $.194763+002$ MU= $.200209+$ 579-001 MU $.200209+$ 579-001 MU $.200242+$ .450578704412691877- MU= $.200245+002$	+001 +001 +001 -003 MU LAM= 0= 1 0= 2 0= 3 0= 4 0= 5 0= 6 0= 7 0= 6 0= 7 0= 6 0= 7 0= 8 0= 9 0= 10 0= 11 0= 12 -002 -002 -002 -002 -002 -002 -002	= .747623+001 10.000000 = .200245+002 10.00000		•633229+02

### PROGRAM LISTING

## AND

N

## SAMPLE OUTPUT

## MØDE

i

<b></b> ),	MODE
-	THIS PROGRAM CALCULATES THE MODE SHAPES
	GIVEN THE EIGENVALUES, LAMBDA, AND PSI-ZERO
d <b>i</b>	REVERSED INTEGRATION METHOD ONLY. CASE E OR CASE M - SPECIFY ON INPUT
C	
	IMPLICIT DOUBLE PRECISION(A=H,O=Z)
	INTEGER D.ZI
3 <b></b>	DOUBLE PRECISION MUILAM, MUI
	DOUBLE PRECISION K(4), L(4), M(4), P(4)
	DIMENSION EG3(101), EG4(1014, HBPT(101), BPT(101)
	DATA/LE/1HE .
	NPRI=1 FOR PRINTED OUTPUT/NPRI=D FOR PUNCHED OUTPUT
	READ(5,180) NPRI
<b>B</b> 1 8	RO FORMAT(11)
C	MAKE SURE MU IS THE CORRECT ONE FOR EITHER THE E OR H CASE.
	READ(5,93) IE, JZ, LAM, SIO, MU
( <del></del>	

· 2-49 ~

÷

FORMATIAL IN SCIPT	
FORMATIAL,[],301206) Woite(6.101) IE '	•
FORMATILUL (CASE 1.28 - 21 - 21	
$W_{RTTE}(\delta_{\bullet}95) = MU_{PL}AM_{\bullet}STO_{\bullet}J7$	
FORMAT( + MU= +, D12.6. + LAM= +, D12.6. + STU= +, D	12=6 + J=1.+2)
NDS=0	
IF(LE+EQ.IE)NDS=1	
NINT=100	·
HH=1+/FLOAT(NINT)	· · · · · · · · · · · · · · · · · · ·
INTER#NINT+1	
ANERWEUSOKILLAMI WAITELA JIJINERA	
$w_{R} = (c_{1} \circ f) A w_{R} = (c_{1} \circ f) $	
FURNERLY ANTREWETUTU 57	· · · · · · · · · · · · · · · · · · ·
n=3 i.c.	
	······································
Fn=l.	
A0=0.	
<u>co=0.</u>	
B0=0+	ne de l <del>es mandeuls de la constance de la constance parte de la constance de la constance de la constance de la const L</del>
E#1•	
A=D +	
₿≖О.•	
E43117-14	
D=3 INTEGRATION	
	. 4y
D=3	
1/1)=H+A	
1F(ND5+EQ+1)60TO 40	
MU1=MU1=1.	
P1==(SI+SI)/2+	
P1=8 *(P1+S1*(S10+1+1))	· · · · · · · · · · · · · · · · · · ·
P3=A+((510-S1)+1+)	
P4=E*MU1	
P(1)=H*LAM*(P4+P1+p3)	-
S-1=(NN=1.) • HH	
1F(1+GT+3)GOTU 61	
ATAUTE(////////////////////////////////////	
n=nv····(21//2* r=r0+P(7+)/2*	
C1=S1+H/2.	
GnT0 5	
1F(1.GT.4)GOTO 7	

1

	2-51
A=A0+L(3)	
B=80+M(3)	· · ·
C=CO+P(3)	
51=SI+H	
5010 5	
SI=NN*HH	
<u>=v=EV+[K(1)+K(4)+2.0+(K(2)+K(3))}/L+</u>	
EV1=EV1+(L(1)+L(4)+2.0*(L(2)+L(3))1/6.	
EV2=EV2+(M(1)+M(4)+2.+(M(2)+M(3)))/6.	
EV3=EV3+(P(1)+P(4)+2.+(P(2)+P(3)))/6.	
>1==SIoSI/2.	
<pre>&gt;1=((SIO+1.)*SI+P1)*rv2</pre>	
3=15I0-SI+1+1+FV1	
24=MU1*EV 2012-25-2512	
14=141+P3+P410LAM	
<u>= E V</u>	
I=EV1	
J=EVZ	
= E V 3	
:0=E	
\ 0 <b>≂ A</b>	
10 = B	
0=6	
DUMGA WITTA DINI-U-D	
RUNDA KUTTA FINISHED	
а с на се правод разлица на проволна на праводна последатела с на таке се с ток на правод с со на роконска напос Ста 1 ( ф. 1	anna ann parair is annas, sus sa stàitean a sannaistean ann ann sannaistean sa sannaistean a
FID+EW+476019 /U	·····
COTO 71	
////~//. ·∕//////////////////////////////////	
F(N+LT+INTER)GOTO 4	
F(D+E0.4)GUTO 9	anna a sanaanaa sabaanaan salaa a sara sabaa ana maraha sanaanaanaa sanaa a sana a sanay
MOM3≄EV	
RESET FOR D=4 INTEGRATION	
a 4	
CASE D=4 I.C.	a and a second secon
.0 = 1 •	
;0=0•`	
,∩≈ <b>0</b> •	
.0=0.	
. <b>* 1</b> •	
= 0 •	an a
;=() +	
τ∞Ω •	
;=C + ;v=C •	
;=C • ∨=O • ∨2=° •	
<pre>&gt;= 0 • y = 0 • y 2 = 0 • y 3 = C •</pre>	
= C • y = O • y 2 = O • y 3 = C • y 4 = O •	
= 0 • V = 0 • V 2 = 0 • V 3 = C • V 4 = 0 • V 1 = A0	
= C • V = O • V 2 = O • V 3 = C • V 4 = O • V 1 = AO  = 1	
Image: Second state sta	
T=0 • V=0 • V2=0 • V3=C • V4=0 • V1=A0 I=1 OTO 4 MOM4=EV	
=0 • y=0 • y2=0 • y3=C • y4=0 • y1=A0 =1 0Y0 4 MOM4=EV + F=EMOM3/FMOM4	
= C • y = C • y 2 = C • y 3 = C • y 4 = C • y 4 = C • y 1 = A O = 1 O T O 4 MOM4 = E V LF = EMOM3 / EMOM4 O 72 L B = 1.10L	

-		2-52
	BAPT(LL)=EG3(LB)=ALF.EG4(LB)	. <u> </u>
72	CONTINUE	a na ang ang ang ang ang ang ang ang ang
1	BET=BBPT(101)	
	Do 73 LC=1,101	• 
73	BPT(LC)=BBPT(LC)/BET	
	CONTINUE	
5	SMEU+UDU DO 216 I-2 101	
	$\frac{1002101=2101}{5M=SM+(BPT(1)+BPT(1-1))/2**((FIOAT(1)-1-5)*HH+510)*HH}$	
216	CONTINUE	
	An2=SM	
	SM=0.0DQ	
	$D_0 218 = 2,101$	
-	$S_{M} = S_{M} + (B_{P}T(1) + B_{P}T(1-1) +$	
<b>~1</b> 8	CONTINUE	
		page of temperature of
	WRITE(6,74) AMI, AM2, SNOT, COR	
74	FORMAT( 11= 1)015.6.3X. M2# 1.015.6.3X. M2/M1= 1.015.6.	
1	3x, + M2++2/H1= +,D15+6)	
	IF(NPR1) 181,181,182	
182	CONTINUE	
• 🚛 👘 🖓 👘	$W_{R1TE(6,76)}$ (BPT(1),1,1=1,101.2)	
	FUNCH // (UPI(1)) = 1 + 10 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +	<u></u>
	- CONTINUE Format(† 1987= †.012.6 3X.11= +.13)	
77	FORMAT(G)1+5)	· · · · · · · · · · · · · · · · · · ·
	STOP	
	END	
P LATIC	NO DIAGNOSTICS.	
<b>1999</b> , 1997 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1977 - 1		
ا <b>البرسي</b> ) محمد مصري (يندرو البريدون)		
 <b>#</b> 1		المحمد عليه السابقة عالم المار المانية في المناسبات المستسومين. الحقية
		· · · · · · · · · · · · · · · · · · ·
······		
<b>100</b> 0		· · · · · · · · · · · · · · · · · · ·
· · ·		
ы. Гаранан сананын тараалын тара		
<b>Mar</b> 2		1999 - The an annual and an annual a second an an annual a sub-
<b>.</b>		
	•	
<b>.</b>		
<b>,</b> .		

	CASE	с:£:		a analasi mangangan pangkan pangkan pangkan pangkan manan kana mangkan pangkan pangkan pangkan pangkan pangkan P	
				a a a ana ana ana ana ana ana ana ana a	
	MU=	200245+002 LAM=	•140	200≁005 2I0≡ *1900	0N+000 J= 3
	ANFRE	Q=•31623+001			
	m1≓`	•248946+000	M2	= • 282874+001	M2/M1= +113628+000
	8PT=	*888178 ^{**} 015	9 <b>=</b>	1	
	BPT=	+110301-001	I =	3	
	BPT=	•43n495±001	ំ ពៃន	F	· · · · · · · · · · · · · · · · · · ·
	 6PT=	•92-1902-001		7	
		+15u254+000		, ,	
		•134254·000	1		
	BPI-	-225/33-000	1 = 1	1	
	841=	•307842+000	r =1	3	مما فالترمينية الما مستراؤها والبلية ووالان المتعققة ومرتقب المراجد المارية المراجع والارار الربع المرا
	6PT=	•382053+000	l= 1	5	
	BPT=	•460035T000	[ <b>#</b> ]	7	
	6PT=	+533701+000	[= ]	9	
	BPT=	•60h246+n0n	1= 2	1	• •
	6PT=	+657190+000	1 = 2	3	
	6 P T =	+702417+000	1 = 2	5	
	8PT=	•734203*000	1= 2	7	
	8P1=	•751246+n0n	t≞ 2	9	
		•752680+000		1	ی در می میکند. بین می بین می بین می بین می بین می بین در می بین در می واقع میکند. می میکند می بین می بین می بین می بین می بین در می بین می
	GPT=	•73a0a9+000	. J 1= 7	1	
		•7075051000	<u>,</u>	- <u>&gt;</u>	
	Dri-	*/0/565/000	1- 3 - 3	า า	· ,
	071-	• 66   400 • 000	1 =		
	851=	•605672*005	1= 3	9	
	BPT=	•526613*000	,I = <u>4</u>		مىيىسى بىيىمى بېرىيى بىرىيى بىيىنىڭ بىرىيىتىن بىرىيىتىن بىرىيىنىڭ ئۆلىرىنىڭ ئۆلىكى تىرىيىتىن بىرىيى بىرىيىتى بى يېرىيىتى
	ыРт≓	•44r877+000	1 = 4	3	
	BPT=	•345438+000	1= 4	5	
	BPT=	+242535+000	1 = 4	7	
	8PT=	•134621+000	1 = 4	9	
	BPT=	+243010-001	1= 5	]	
	₿Рт≓	-+857352=001	1= 5	3	
	, RPT⊒	=+192775+000	19 5	Man any analysis and a constant of the second strength of the second sec	ranana. Nadatisinah dan kala dari taka kali tuka kara kara kara kara kara kara disebah bahar kara kara kara kara kara m
			r = 5	7	
			1 = C	<b>n n</b>	
	07   03 1 2		1 - 7	17 1	
	000			<u>}</u>	
	BF [ -	-+539813+000	1= 0	-	1
	BPT=	=+594726-000	Į <u>=</u> 6	-	n hang dar di han ma kanakan nakanangan pada merunakan sama 15 an di hanakanang berarang manang pani sa man
	BPT=	-•633625*000	1= 6	7	
	BPT=	-+65 <u>5103+000</u>	1= 6	9	· · · · · · · · · · · · · · · · · · ·
	6PT=	-•658338*000	1= 7	1	
	8PT=	-•642905+00C	1 =7	3	
•	ырт≖	-+60A779+000	1= 7	5	
	врт≠	-•556327+000	I = 7	7	
Las	GPT=	-+486292+000	1 = 7	9	
	Нрт=	-•39e758+000	1 = A	<u> </u>	
	01 ( = 0 7 =	-+29c1t4+000	1= 0	· · · · · · · · · · · · · · · · · · ·	
	0017		1		
	821-		1 8	7	
	BLLA		1- 8		
	8PT=	•8022907001	1 - 8	5 7 	
	BPT=	+224411*000	1= 9	71	
_	BPT≖	•374373 <b>+</b> 000	I= 9	<u>1</u> 3	
	ыРт≞	•528312+000	1= 9	5	
	врт≖	•684655+000	1= 9	7	
	BPT=	·842156+000	1= 9	9	
	врт=	•10n000+001	T= 10	) 1	
		• '			1
					· · · · · · · · · · · · · · · · · · ·
<b>.</b>		· · · · · · · · · · · · · · · · · · ·			

. . . . . . . . . . . . . . . . . . .

2-53

PROGRAM LISTING

AND

SAMPLE OUTPUT

PARAM

. . . . . . . . . .

والمرتبع بالمتحال المتحال المتحص

a succession a

. . . . . . .

. . . . .

. .

August a state of the

. . . . . . . .

...

. . .

----

TEST OF SUBROUFINE PARAM INTEGER PLOYS REAL LAM DOUBLE PRECISION MU(3),SIO COMMON/OME/LAM,SIO COMMON/FIVE/NAUX2,LA,AUX1 COMMON/FIVE/NAUX2,LA,AUX1 COMMON/GRAF/PLOTS READ(5,231) MODE,LAM,SIO,PLOTS 201 FORMAT(15,F12.5,G12.6,A3)

READ(5:202) (HJ(K):K=1.MODE) 202 FORMAT(30:2.6)

CALL PARAM Stop END

SUBROUTINE PARAM

SUCROUTINE PARAI IS DEGIGNED 10 COMPUTE AND OUTPUT PARAMETERS MI, M2, M7/MI, AND M2SQUARED/MI AND THEIR SUMS THROUGHOUT THE THE FIRST THREE MUDES. ALSO THE PLOT OUT THE FIRST THREE MODES IF DESTRED. CALLED THRE MAIN JUST AS CASEM.

•

### MILLMODEL IS ENTERED IN COMMON

C

C

COMMON/ONE/LANISIO COMMONITION CONMON/FIVE/NAHX2. B. AUX1 COMMONIATINEZMODE COMMON/GRAF/PLOTS REAL NN.LAM INTEGER I, D, N, Z, NINT, INTER, PLOTS DIMENSION OUTPUT(23) /MU(3) DOUBLE PRECISION P(4), 8(4), 8(4), L(4), E3(101), E31P(101), E32P(101). LEMON3, EMON4, ALFA, BETA. MHX3(101),MMX4(10)),BPT(101,4), 1E33P(101),E34P(101),E4(101),E41P(107),E42P(101),E43P(101), 1644P(101),A.3,C.E.A0,K0.C0,E0,NUL.M.(3),S10,S1 DOUBLE PRECISION ANT (4) . AM2(4). SM NABXZIS A PLOT CONTROL PARAMETER. NDS=9 FOR MERIDIONAL CASE/NDS=1 FOR EQUATORIAL CASE  $N_{A} = 2 = 101$ WRITE(6,347) PLOTS 47 FORMAT(IH1, *PARAM PLOT= , A4//) NOPT = 1105=8 M00FS=3 Ntor=100 INTER=NINT+1 Do 34 MODE=1, MODES ..... SI=O. N=1 H=1./FLOAT(HINT) CLEAR ARRAYS 00 31 I=1.4 K(1)=0. L(1)=0+ M(T)=Q+ P(])≓3+ Do 1 1=1,101 E34p(1)=0. E44p(1)=0. E33P(I)=0.  $E_{43p}(t) = 0$ . EapP(1)=0.  $E_{42P}(1) = 0$ . E310(1)=0. E41P(1)=3. E4(1)=0. £3(1)=0. THIS SECTION COMPUTES THE FIRST MODE CHAPE AND THEN THE HODE SHAPE PARAMETERS MIAND M2 FOR CASE N Der IF(D.FQ.4) 30 FO 2 E()=0. 80=0.

2-56

Т

IF(NOPT.GT.g) GO TO 12 E32P(1)=1. Bn=E32P(1) 6n TO 13 E3(1)=1. 12  $L_{0=F3(1)}$ ¢0≃0+ 13  $A_0 = 0 +$ . . . . . . . . . . 6n TO 3 2  $A_0 = 0$ - --Co=0• IF(NOPT.GT.D)GD TO 14 E430(1)=1. Co=E43P(1) 50 TO 15 Eq1P(1)=1. 14  $A_{0} = E_{41}P(1)$ 15 80=0• E0=0. 3 A=An B = P OC=CO E=E0. ivla≘t 4 1 = 1NN=N St=(NN=1+)*4 5 K(1)=H*A . .... -----L(1)=H*B M(1)=n*C MUI=1.+MU(MODE).MU(NOBE) 1F(NOS+EQ.1) G0 T0 40 . . . . . . . . . . .. . Muj=NU1-1. P(1)=((1.-SI*SI+2.*SIO*(1.-SI))/2.*=(SI+SIO)*A*MU1*E)*LAM*H 4Ω IF(&OPT+GT+G) P(I)=((-51*51+2.*51*(1*+510))/2**B 1+(1.-SI+S10)*A+401*E)*LAM*H -- --STH(NN-1.) *H I = 1 + IIF(1.6T.3) 60 TO 6  $Z = \{-1\}$ E=10+K(Z)/2. A=40+L(Z)/2. d=80+M(Z)/2. C=co+P(2)/2* Stas1+8/2. GO TO 5 1F(1.6T.4) GO TO 7 6  $E = p_0 + K(3)$ . . . . • • • A = AO + L(3)B=80+4(3) A Marcal and Area C = CO + P(3)StesI+H . . . . . . Gn TO 5 7 1F(D.EQ.4) GOTO 9 STENNAH. Z = 35 + 1E3(Z)=E3(N)+(K(1)+2.*x(2)+2.*x(3)+K(4))/6* E31P(Z)=E31P(W)+(L(1)+200L(2)+2+#L(1)+L(4))/60

```
E_{32P}(Z) = E_{32P}(N) + (N(1) + 2 \cdot \circ M(2) + 2 \cdot * M(3) \cdot M(4)) / 6
      E_{33P}(2) = E_{33P}(n) + (P(1) + 2 \cdot P(2) + 2 \cdot P(3) + P(4)) / 6 \cdot
      E34P(2)=LAM*(((S10+1*)**2-(SI+510)**2)*E32P(2)/2*
     1 = (S1+510) • E31P(Z) + MU1+E3(Z))
      1°E32P(2)/2++(1+-SI+SIU)*E31P(7)+MU12E3(2))
      E = E 3 \left\{ N + 1 \right\}
      A=E31P(N+1)
      8=832P(N+1)
      C = E 33P(N+1)
      £o≖E
      A_0 = \Delta
      8=06
      C0=C
     N = N + 1
     IF (NoLTOINTER) GO TO 4
     EMOM3=E32P(INTER)
     IF(NOPI.GT.C) EMOM3=E3(INTER)
     Do 30 I=1.INTER
 3n
     M_{MX3}(I) = E_{3}(I)
     D = 4
     60 TO 8
9
     SI=NN+H
     Z = i_1 + 1
     E_4(2) = E_4(N) + (K(1) + 2 \cdot *_K(2) + 2 \cdot *_K(3) + K(4)) / 6 +
                                                                                     ......
     E41p(Z)=E41p(N)+(L(1)+2•∞L(2)+2•∞L(3)+L(4))/6•
     E_{42P}(Z) = E_{42P}(N) + (M(1) + 2 \cdot M(2) + 2 \cdot M(3) + M(4)) / 6 \cdot
     E43P(Z)≈E43P(N)+(P(1)+2**P(2)+2**P(3)+P(4))/6*
     E_{44P}(Z) = L_{AM} * (((510+1)) * 2 * (51+510) * 2) * E_{42P}(Z) / 2
    1=(SI+S10)+E41P(2)+MU1+E4(Z))
     1F(NOPT.GT.0) E44P(7)=LAM*(((S10+1.)**2-(1.-S1+S10)**2)
    1*E42P(Z)/2·+(1·+SI+5I0)*E41H(7)+HUI*E4(Z))
     E=E4(N+1)
                                                                       A = E 4 I P \left[ N + 1 \right]
     B = E 4 2 P (N+1)
     C=[43P(N+1)
     Ë0≠£
     A`0≈A
     b_0 = 8
     C_{0} = C
    N=N+1
     IF (N+LT+INTER) GO TO 4
    EMOMH=E42P(INTER)
    IFUNOPT.GT.O) EMOM4=E4(INTER)
    00 32 1=1, INTER
32
    M_{MX4}(1) = E4(1)
    ALFA=EMOM3/EMOM4
    BETA=MMX3(101)=ALFA+MmX4(101)
    IF (NOPT . GT . D) BETA=HMX3(1) - ALFA+MMX4(1)
    Do 102 LB=1,101
    L_{L} = L_{B}
    1F(NOPT.GT.D) LL=102-LB
192 BPIILL, NOBE) = (MMX3(LB) - ALFAOMMX4(LB))/BETA
    00 512 L8=1,101
    AUX1=BPT(LB,MODE)
    IFIPLOIS.EQ. "YES") CALL PLOT
    CONTINUE
 2
    SM=0+
```

2-58

```
2 - 59
   Do 216 1=2,101
216
   SM=SM+(BPT([,MODE)+HPT(I-1,MODE))/2,*((FLOAT(])-1+S)*H+S10)*H
    AN2(MODE)=SM
    SMalle
   00 218 I=Z+101
210
   5M=SM+(8PT(1,MODE)*PPT(1,MODE)+8PT(1-1,MODE)*6PT(1-1,MODE))/2**H
   AMI (MODE) = SM
 34
   CONTINUE
C
  END OF MODE SHAPE AND MODE PARAMETER CALCULATION
   Ουτρύτ( )
           ) = 510
   OHTPUT ( 2
           ) = L ∧ M
   OUTPUT( 3
           )=图9(1)
   OUTPUT( 4
          )=MJ(2)
   0<sub>01</sub>701( 5
           1=49(3)
   Z_{MU}(1) = SQRT(OUTPUT(3) \circ OUTPUT(3) - 1 \circ )
   Z_{MU}(2) = S_{QR}T(OUTPUT(4) \circ OUTPUT(4) - 1 \circ)
   Z_{MU}(3) = Sart(OUT \otimes UT(5) \otimes OUTPUT(5) - 1 \circ)
   OUTPUT(6) = AMI(1)
   OUTPUT( 7)=AM1(2)
   OHTPUT(B) = AH1(3)
   OUTPUT( 9)=AM2())
   OUTPUT(10) = AM2(2)
   OUTPUT(11) = AM2(3)
   OUTPUT(12)=AM2(1)/AM1(1)
   OUTPUT(13)=AM2(2)/AM1(2)
   OUTPUT(14) = AM2(3) / AM1(3)
   OUTPUT(15) = OUTPUT(12) \bullet AM2(1)
   OUTPUT(16) = OUTPUT(13) = AH2(2)
   OUTPUT(17) = OUTPUT(14) * M2(3)
   OUTPUT(18) = OUTPUT(12)
   UUTPUT(19)=CUTPUT(12)+OUTPUT(13)
   OUTPUT(20) = OUTPUT(19) + nUTPUT(14)
   OUTPUT(21)=OUTPUT(15)
   UUTPUT(22)=0UTPUT(21)+CUTPUT(16)
   OUTPUT(23) = OUTPUT(22) + OUTPUT(17)
   WRITE(6,501) UUTPUT
   10 F
  6/11/ 1
                               ////14 + M 2 MODE 10.0
   J
                111
  NI HODE 2..... **F11.3/1H .*M2 GOUARED OVER MI MODE 3.....**F11.8/1H
  0.
                             ////IH . SUM DVER 1 MODE 0
  R
  5 . SUM OVER 2 MODES OF M29M2/11. . . . . . . . . SUN OVER 3 MODES OF
```

I		2-60
	TM2 + M2/M1 + . * , F11 . 8/1H ./	/ <b>)</b>
	WRITE(6,502) (ZNU(1),)=	3)
	502 FORMATIIN , MUETOOD.	**************************************
	"MUE2	e.e. + + + FB . 4/1H .
	X MUE3	• • • • • • • • • • • • • • • • • • •
	RETURN	
!	END	· · ·
_	<u>.</u> .	المناطقة والمنطقة والمنطقة والمنطقة والمنطقة والمناطقة والمناطقة والمنطقة

ATION:

NO DIAGNOSTICS.

.. . . . . . . . .

2~61 19:35:0.40 AN V LEVE: 2206 0026 (EXEC8 LEVE: 61201+0011) DONE ON 06 SEP 73 AT 19:35:03 ENTRY POINT 060341 CODE(1) 000347; DATA(0) 000425; BLANK COMMON(2) 000000 00006 -Dens 000001 ES (BLOCK, NAME) MENT IBLOCK, TYPE, RELATIVE LOCATION, NAME) 1000 000013 121G 0000 000402 14F 00n1 000320 156 1646 0001 000131 1716 0001 000137 1776 00e1 000022 ZL D 5 g 0001 000245 2236 Onat n00213 230G 000220 2356 1000 0 0000 666347 4F 0000 n00370 7F 0060 n00377 9F 6 AN 0000 R 000323 AP 0000 R 200344 A1 0060 R 000335 HLANK Û 6663 GOLDOJ GAMA HOOHIA INJPS 0n00 0000 1 000342 11 0 DOG3 R ODCODO LAM 0000 R -00001 LINE 0000 R 000000 MAX ŧ٢ 0000 I C00346 M1 MODE 0n04 I -00001 N 0040 I 000340 NI 0 P.K.Y 0000 R 000157 SAVE 0003 0 000001 510 00n0 R n00343 S10R U. SUBROUTINE PLOT THIS SUBROUTINE PLOTS NUTATION ANGLE VS N COMMON/GHE/LAM.SIO,GAMA.PKX,PKY CONTON/FIVE/MKIN, CA CONMON/NINE/MODE DOUBLE PRECISION SIG REAL MAX, LAM, LINE DIMENSION SAVELLODI, LINE(110), AP(S), AN(S) DATA BLANK, STAR, DOT/IN , THO. 14.7 IF (N+NE+1) 60 TO 2 N1=(MK+50)/100 DO 1 J1=1.100 SAVE(J1)=0. 91=0 MAX=0. 11=C STOR=\$10 IF(L/NIANI.ME.N) GO TO 3

2-62 J1= J1+1 SAVE(J1)=CA IF (ABS(CA) . GT. MAX) MAX=ABS(CA) IF(NONEOUK) RETURN WRITE (6,4) FORMAT(1H1, *PLOT OF MODESHAPE FOR*) WRITE(6,95)LAN:SIDR,MODE 95 FORMAT(IN , 'LAMBDA= + + 6 . 0 . / 1H , 'SI-7ERO= + + FH . 2 . / 1H , MODF= . , 12///) A1=MAX/50. Do 6 11=1,5 AN(11)=-A1*(60*+10**11)  $A_{P(6-1)} = -A_{N(1)}$  $I_{1=0}$ WRITE(6,7) AH.II, AP FORMAT(14 +14X+5(F6.2.4X),3X+11,2X+6(5X+F5+2)) Po 8 J1=1.110 LINF(JI)=BLANK 1F((J1+4)/10+10.EQ.(J1+4)) LINE(J1)=STAR WRITE(6,9) LINE FORMAT(1H ,12X,110A1) Do 10 J1=1,110 10  $L_{INE}(J1) = STAR$ WRITE (6,9)LINE Do 11 J1=1,116 LINE(JI)=BLANK 00 13 Kt=1,100 J1=SAVE(K1)/A1+56.5 . . . . . . . . . . . . LINF (56) = STAR IFIK1/10*10.NE.K1) GO 10 12  $L_{1,1F}(55) = STAR$ LINE(J1)=DOT WRITE(6.9) LINE IF(K1/10+10.NE+K1) GO TO 15 IF(J1.GE.50.AND, J1.LE.54) GO 10 15 M1=N1+K1 WRITE(6,14) MI FORMAT(18+,61X,15) LINE(JI) = BLANK LIGE (55) = BLANK RETURN END

TION:

٨

7

B

Ģ

11

1 4 15

13

Ne DIAGNOSTICS.

2-63 PLOT OF MODESHAPE FOR LAMBDA= 10. SI-ZERO= .10 NODE= 1 0 * -.40 • 20 20 40 6 () Ö -0 ۰. • ø ġ ¢ø - ----10* 4 俸 4 -0 20* * ġ, , .. ¢ ÷ . ¢ * ¢ 30* ٠ ----* ø ø 4 [] * ⇒ ø . . . .  $F_{IRST}$  MODE

2**-6**4

rè.

ø ¢ 6000

. ŧ ¢

۵

70**

æ

80* ¢

۵

90# ð 拍

100**

FIPST MODE (CONTINUED)

ø 50,* •

2-65 PLOT OF MODESHAPE FOR LAMBDA= 10. \$1-ZERO= .10 MODE= 2 **-**•60 -.40 •20 0 40 <u>2 n</u> ٠ •60 с D Ð ð л z. ŧ ø ۵ à Ċ. ٠ æ 20** 30** 40.... ð £ ¢ ¢ SECOND MODE


						2-67
PLOT	OF MODESH	NPE FOR			•••••	-
LAHBD S1-ZE	A= 10. KO=-,10			و موجود مرد مسلم ومرضو و مع مود م	in maana in waa it waan to bad waan kuunik adoraa	••••••••••••••••••••••••••••••••••••••
M 0 D E =	3			· · · · · · · · · · · · · · · · · · ·	····	•
-•60 •	40 *	■ • ⁊ () ≪	0	•2n •40	•60 *	•R0 i-
* * * * * * * *	: <b>⊾\$\$\$\$</b> \$\$\$\$\$\$	\$\$\$\$ <b>`\$</b>	6 4 4 4 4 4 0	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	***************	0 # 8 ¢ & # * ¢ \$ 0 0 5 5 - 
			•	•	a mage man mark of mark of a second	
			. + a	n Maria (Construction of State	gent antibles antible the consections of the consection of the con	namen a sur sur e e
			•	•		
				•		<b>.</b>
	-		10¢¢ . *	a a t <mark>ha an anna an ann an anna ann an anna anna</mark>	ne (1977) a salahan permanan periodi di disarah di di	28
			*	· • · · · · · · ·		•
			÷ ÷	· · · · · · · · · · · · · · · · · · ·	. <b>6.6</b>	
			•	D An an	near-summer as a composition of	n an sa
			\$ \$		• • • • • • • • • • • • • • • • • • •	
			2() * * *		• ·	
			¢۰ د	وروار والمراجع والمراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع	n An an	•• • • <u>·</u> •
			÷	· · · · · · · · · · · · · · · · · · ·	····· · · · · · · · · · · · · · · · ·	
			9 10	······································	•	
			<b>#</b>	· · · · · · · · · · · · · · · · · · ·	•	• • • •
	•		30**		· ·····	• . •
			¢	··· · · · · · · · · · · · · · · · · ·	•	
			<del>ه</del> ت	a the transformation of		•••••
			ن ب		•	
·			*	· · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· ·
			40**	e a carra a deservar e	e Second contractions of the second contractions of the second contraction of the second contraction of the second	
				· · · · · · · · · · · ·	- - · · · · · · · · · · ·	
			0	•	· ···· · · · ·	· · · ·
			¢.	· · · • · · · · · · · ·	na komo foto sa mala kaj magino de Lango o La	there is a set of
			4	¢ .	THIRD MODE	

and the second second



THIRD MODE (CONTINUED)

. . .

	6 I • A ra E	- 2 3 C	E A	R •	С •	. <b>.</b>	•	6 9	•	•	9	•			•				•		0	•				•	•			•	•     (	) ( )	) ( •	ì			
MU MU MU	1 • 5 1 M   1 M 2 1 M 2		Д • •	• • •	E • •	9 9 9	F • •	0	R • •	4 0 8	•	Г.			•	ې • •	; • • • •	' • ' •	9 ; 0 0	6 6	•	4 7 8	9 6	р а	. e e 0	• • •	•	2	ו 7 2 כ	<u>j</u> ,   ,	• č • C	5 C 1 7 2 2	) ~ 7		<b>b</b>		
M M M	1 1 1		н м М	0 0	0 D D	E E		123	4 c	* • •	•	4	•	0 0 8	•	•	e 0 0	•	6 8 9	0	9 4 9	8 • ¢	9 . •	4 6 9	• •	e Q	•		•	2 2 2 2		5 Å   1   9	- C - Ģ - 1	6 9 0	14 17 15	30	4 5 8
M M	2 2 2		1  1  1	0 0 0	D D D	ĒĔ		1 2 3	•	•	• •	•	•	•	9 0 *	0 • •	•	•	4 7	4 9 0	•	a # \$	•	•	•	* 0	•	-	•	3 0 0	2 6 2 2	8	4 6 2	1 1 3	7 9 3	511	897
H 2 M 2 M 2	0 0 0	V V V	E É É	R		М М	1 1 1			医内内	0 0 0	ח ח ח	EEE		1 2 3	• •	•	•	₽ 0 0	•	•	9 9 12	•	•	•	9 9	•	1	•	2 2 1	8 5 1	2 4 3	5 6 3	5 2 3	8 7 8	8 8 3	0 7 3
112 112 112 12	5 5 5	ୟ ଭ ଜ	U U	A A A	R	E	0 0	ŀ	ה ס	V V V	E E E	R R R		M M M	1 1 1		M M M	0 0 0	0 0 0	EEE		1 2 3		•	æ a e	ê •	9 0 *	-	* \$	4 0 0	2 1 0	153	2 6 1	1 6 9	4 9 7	8 ዓ ዓ	6 6 0
້ 50 50 50	) 11 11	0 0 0	V V V	E E	к К		1 2 3		M M	0 0 0	D 0	EEE	555	0	F 0 0	F	М	2  1  4	/ 2 2	11	1 M	• 1 1	* * *	•	•	•	¢	1 1 1	4 6 9	2 0 1	8 2 4	2 7 1	5 9 2	5 3 6	8 0 9	872	0 3 5
SU SU SU	, М М	0 0	V I V I	E I E I			1		4 4	0 0 0	0 0 0	E	55	n	F O O	F	শ	2 M	¢ 2 2	M *	2 11 11	22		1 17 14	• 1 1	* *	e 4 0		•	4 4 4	2 3 4	1 5 ປ	291	1 0 0	4 4 4	ខ្ម ខ 7	6 2 2
т П _р ці ми	E1 E2	•	<b>₽</b>	D D	Q R	e •	•	6	•	•	•	0 4	•	•	•	а ₽	•	•	•	9 \$	•	*		•	0	•	e 0		17	•	2 4	5 0	49	71			

• •

2-69

. . . . .

. ..

.

.

#### CHAPTER 3

# Application to Some Problems of Satellite Dynamics

The present chapter considers the use that can be made of the results of the previous chapter in some problems of interest in satellite dynamics [3-1]. A first field of application is in studying the nutational divergence of a satellite equipped with flexible appenaages, but this is the topic of Chapter 4 and 5. We shall be considering here some other problems, such as the simulation of free oscillations, thermal flutter and variation of the spin rate due to the booms motion.

### 3.1 Simulation of free oscillations

### 3.1.1 Generalities

In a motion of type E (equatorial) or M (meridional), the free oscillations can be simulated in the following manner. Given N modes,  $\Phi_j(\xi)$ ,  $\xi = 1,...N$ , with associated frequencies  $\overline{\omega}_j$ , and given an initial distribution of displacements and velocities (t =  $\frac{t_{dim}}{1/\omega_s}$ )

$$\eta(\xi, \circ) = \eta_{o}(\xi) \quad ; \quad \eta_{t}(\xi, \circ) = \left(\frac{\partial \eta}{\partial t}\right)_{t=0} = \eta_{t, \circ}(\xi)$$

the displacement is written as a sum of modes

$$\eta = \sum_{\substack{j=1\\ j \neq j}}^{N} \phi_j(\xi) \left( c_j \cos \overline{\omega_j} t + s_j t m \, \overline{\omega_j} t \right)$$
  
$$\eta_t = \sum_{\substack{j=1\\ j \neq j}}^{N} \phi_j(\xi) \, \overline{\omega_j} \left( - c_j t m \, \overline{\omega_j} t + s_j \, \cos \overline{\omega_j} t \right)$$

Then

$$c_{j} = \frac{1}{m_{ij}} \int_{kum}^{\eta_{0}} \phi_{j}(\xi) d\xi$$
  
$$s_{j} = \frac{1}{m_{ij}} \int_{\psi_{j}}^{\eta_{0}} \eta_{t,0} \phi_{j}(\xi) d\xi$$

As an example, Figures 3.1 and 3.2 are meant to illustrate that

starting with an initial shape identical to the first mode at  $\overline{\lambda} = 10$ ,  $\underline{\zeta_o} = 0.1$ , with no initial velocities, the stationary wave which exists in this case cannot be maintained if  $\overline{\lambda}$  is changed to 100. Not only has the frequency changed appreciably ( $\tau_{\underline{\lambda}}$  is the period of the first mode oscillation for  $\overline{\lambda} = 10$ ,  $\xi_o = 0.1$ ), but the second mode is present to an appreciable extent.

3.1.2 Application to Satellite UK-4

From data received through NASA GSFC on satellite UK-4, we computed the eigenfrequencies and modal shapes for satellite UK-4. This satellite has the following physical characteristics:

UK-4 Computations

 $ω_{g}$  = 30 rpm; 15 rpm; 6 rpm. ρ = 0.00058 lb mass/in  $= \frac{5.8 \times 10^{-4}}{2.54} \times 10^{2} \times .45359 \text{ kg/m}$ 

=  $1.036 \times 10^{-2} \text{ kg/m}$ 

EI	2	$10^3$ lbf x in ²
		$10^3 \times 4.448$ newton $in^2$
	13	$10^3 \times 4.448 \times 2.54^2 \times 10^{-4}$ newton m ²
	#	2.869 newton $-m^2$
x,	<b>=</b>	11.6 inches
L	Ħ	276 inches = 7.01 m
ξ,	=	$\frac{x_{e}}{l} = .042$
I _{zh}	B	18.348 slug ft ²
l slug	5	14.5938 kg mass .
I _{zh}		18.348 x 32.1741 x .4539 kg ft ² .
	£70	24.876 kgm ²
I _{xh}	Ħ	17.41 slug $ft^2$
^I yh	2	16.54 slug ft ²
ETKIN'S N	UMB	$ER: \ \overline{\lambda} = \omega_{s}^{2} \frac{\rho \ell^{4}}{EI}$
λ ₃₀ rpm	12	$\left(\frac{30 \times 2r}{60}\right)^2 \times 1.036 \times 10^{-2} \times \frac{(7.01)^4}{2.869}$
	¥	$(3.141592)^2 \times 1.036 \times 10^{-2} \times 7.01^4/2.869$
	*	86.06

•

,

3-3

.

ī

$$\bar{\lambda}_{15rpm} = \frac{1}{4} (\bar{\lambda})_{30rpm} = \frac{86.06}{4} = 21.515$$

$$\bar{\lambda}_{6rpm} = \frac{86.06}{25} = 3.44$$
Data for programs:
$$\bar{\lambda} = 1; 3.44; 10; 16.8; 21.515; 50; 86.06; 100$$

$$\xi_{\bullet} = .042$$

$$\bar{I}_{p} = determined from
$$\left[ (\frac{I_{zh}}{I_{xh}} - 1) (\frac{I_{zh}}{I_{yh}} - 1) \right]^{1/2} = \frac{I_{z}}{\bar{I}_{p}} - 1$$
giving
$$\frac{I_{zh}}{\bar{I}_{p}} = 1.0767$$$$

Results (see graphs)

Graph 1: Resonance on thermal flutter at  $\sqrt{\lambda} = .4$  or  $\overline{\lambda} = 16.$ , i.e. at spin rate  $\omega_s = \omega_{1,rot} = 1.35$  rad/sec = 12.9 rpm

Graph 2 : Mode shapes  $\omega_s = 6;15;30 \text{ r.p.m.}$ 

SATELLITE UK4: ATTITUDE STABILITY

								•
Table I:	Case M							
ω(rpm)	6	10.2	13.25	1	5	22.8	30	32.3
$\overline{\lambda}$	3.44	10.0	16.8	2	1,51.5	50	86.06	100.0
$\sqrt{\lambda}$	1.84	3.162	4.1		4.64	7.07	9.28	10.0
$\omega_{n_1} \sqrt{\frac{5\ell^4}{EI}}$	4.08	4.98	5.76		6.24	8.56	10.75	11.48
ω _{n1}	1.38	1.685	1.945		2.11	2.895	3.63	3.88
Table II: (	Case E 3.23	6.0 1	0.2 1	3.25	15	22.8	30	32.3
$\overline{\lambda}$	1.0	3.44 1	0.0 1	6.8	21,515	50	86.06	100.0
٧X	1.0	1.84	3.162	4.1	4.64	7.07	9.28	10.0
wn1 /p24/EI	3.55	3.64	3.85	4.05	4.18	4.82	5.44	5.64
$\omega_{n_1}(H_z)$	1.2	1.23	1.30	1.37	1.415	1,63	1.84	1.905
$\sqrt{\rho \ell^4/EI} = \sqrt{8}.$	71.5 = 2.9	6			•			
Resonance on Th	ermal Flut	ter at 🗸	ξ = 4.0	ο, <del>λ</del>	= 16.0			

^{ει} ω n ■ 4.0/2.96 = 1.35(Hz) ω = 12.90 rpm.

K_p > 1

No posigrade resonance No nutational instability

Var. of	spin	rate	for	10%	de€l.
.57%	30 RI	PM			
.785%	15 RI	PM			

Fig. 3.3 represents the first mode of vibration for the three values of the spin rate being contemplated. Centrifugal effects are noted as Etkin's number  $\overline{\lambda}$  is increased.

### 3.2 Resonant thermal flutter

3.2.1 Determination of resonant frequency

It has been shown by Etkins and Hughes [3-2] that assuming a relatively simple model for the boom's thermal curvature  $\bar{\pi}_{T0}$  (independent of  $\xi$ ) due to the sun's heat input during the spinning motion, the steady-state oscillation of the booms would be described by

 $\eta = \overline{\lambda}_{T_0} \cos \omega_s (t - t_0)$ 

In order to find for which spin rate  $\omega_s$  the motion will diverge (have an amplitude tending to infinity), these authors solved equation for boundary conditions,

 $E(0) = 0 \quad E'(0) = 0 \quad E''(0) = \tilde{\lambda}_{TO} \quad E'''(0) = 0$ 

and vory  $\overline{\lambda}$  until very large values of  $\Phi(1)$  are observed. The analysis was limited to satellites of zero radius.

An alternative approach was proposed [3-1], which is recalled here. If in Equation (2.2-8), we let  $\omega_1$  tend continuously to  $\tilde{\omega}_s$  along the eigenfrequencies curves  $\overline{\omega}_1(\bar{\lambda}, \xi_{\circ})$ ; the spatial part of a solution to Equation (2.2-7), normalized to unity at the tip, satisfies b.c.

 $\phi(0) = 0 \quad \phi'(0) = 0 \quad \phi''(0) = 0 \quad \phi'''(0) = 0$ 

In order to also admit boundary conditions 0,0 for the zeroth and first

derivatives at  $\xi = 0$ ,  $\hat{k}_{TO}$ , 0 for the second the third derivatives at  $\xi = 1$ ,  $\bar{\phi}(\bar{\lambda}, \xi_{\circ})$  should be scaled up by an infinite factor, i.e., the amplitude at the tip tends to infinity. Thus, resonance on thermal flutter will correspond to the intersection of the curve, for given

 $\omega_{i}\left(\frac{\ell^{\ell}}{EI}\right)^{\prime \prime 2} = \frac{1}{2}\left(\sqrt{\overline{\lambda}}\right)$ 

with the bisectrix of the first quadrant (Fig. 3.4)

 $\frac{\omega_i}{\omega_s} = I$ No thermal flutter resonance can occur for

> a)  $\xi_0 \geq 0.7$ b) second or higher modes

as is shown on Fig. 2 . 2.

ξ٥

3.2.2 Application to UK-4

Using the above data for UK-4, the thermal flutter resonance point was found at (Fig. 3.5)

$$\bar{\lambda} = 16.0$$
 ( $\xi_0 = 0.042$ )

and for the physical characteristics of the satellite, this translates

a spin rate to be avoided for steady-state operation.

3.3 Variation of the spin rate due to the free oscillations

3.3.1 Method of calculation

It is often of interest to satellite users to know what amount of spin rate variation can be expected, due to the vibrations of the boom. The equatorial vibrations will cause a very slight variation of the spin rate described by

$$I_{hub} \quad \frac{d\,\omega s}{dk} = T$$

where T is a torque due to the moment at the oot of t boom and to the she r force acting through the central hub radius. This is described in non-dimensional form by  $(\bar{\tau} \equiv \omega_{\star} t)$ 

$$\frac{d\overline{\omega}}{d\overline{z}} = \frac{1}{I_{hul}} \frac{\overline{zI}}{\eta_{K}} \frac{\eta_{max}}{l} \left[ \eta_{\xi\xi} - \xi_0 \eta_{\xi\xi\xi} \right]_{\xi=0}$$
$$= \frac{\rho^{0}}{I_{hul}} \frac{1}{\sqrt{\overline{x}}} \eta_{max} \overline{T}$$
$$\overline{T} = \left[ \eta_{\xi\xi} - \xi_0 \eta_{\xi\xi\xi} \right]_{\xi=0}$$

or, after integration, and with  $\Gamma \stackrel{\Xi}{\operatorname{def}} \stackrel{\underline{\mu}_{\mathcal{N}}}{I_{\operatorname{hub}}}$ 

$$\left[\frac{\Delta w_{s}}{\omega_{s}}\right]_{max} \frac{1}{\Gamma' \eta_{max}} = \frac{1}{\sqrt{\overline{\lambda}}} \int_{0}^{\overline{c}_{s}} \overline{T} d\overline{\tau}$$
(3.3-1)

in which  $\overline{\tau}^*$  is the value of  $\overline{\tau}$  maximizing the integral. This value can be obtained using a program such as SIM, which is listed at the end of this chapter.

### 3.3.2 Application to UK-4

Using the above data for satellite UK-4, the maximum variation of the spin rate for an assumed 10% deflection of the boom was determined to be

> 0.57% at  $\omega_{s} = 30$  r.p.m. 0.755% at  $\omega_{s} = 15$  r.p.m.

REFERENCES - Chapter 3

[3-1]

RENARD, M.L. and RAKOWSKI, J.E.: "Equatorial Vibrations of a Long Flexible Boom on a Spin-Stabilized Satellite of Non-Zero Radius," Proc. of the Astronautical Congress, October 1969. Vol. 1, pp. 35-53, E. Lunc (Editor), Pergamon Press, 1971.

[3-2]

ETKIN, B. and HUGHES, P.C.: "Explanation of the anomolous spin behavior of satellites with long flexible antennae," Jour. of Spacecraft and Rockets, <u>4</u>, 9, 1139-1145.





3-1]



FIG. 3-3. FIPST MODE SHAPE FOR UK-4.



FIG.3-4 ... RESONANT VALUES OF THE FUNDAMENTAL FREQUENCY



FIG. 3-5. RESONANCE ON THERMAL FLUTTER: UK-4.



FIG.3-6 SPIN VARIATION versus  $\overline{\lambda}$ 

# PROGRAM SIM

## LISTING

.

*DHE	3-17
ຈບບະ ີລີ F ເ	DR SIM
	SUBROUTINE'SIM(NDS)
	DOUBLE PRECISION MU, XNU, YNU
	REAL NU
	INTEGER SAM SIM
<u>C</u>	
ե r	THIS PROGRAM COMPUTES THE DISPLACEMENT OF THE FREELY VIBRATING
<u>ر</u>	THIS TRUSTATING BOOM AT SPECIFIED STATIONS, STARTING FRUM A SIVEN
ċ	DISPLACEMENT INITIAL CONDITION
<u> </u>	OLO, ENDINGED NUTATION
Ċ	IT COMPUTES THE NONDIMENSIONAL SPIN VARIATION AND THEORY BELOW
С	ANGLE FOR EITHER THE EQUATORIAL OR VERIDIAL OCON COL
0	TO T
	COMMON/DNE/MU,LAM, SIU, RGAMA, FRI AVE
	DOUBLE PRECISION CONFICTION $E(4)$ , $E(4)$ , $E(101)$ ,
	DUUBLE PRECISION (101), E4(101), E41P(101), E42P(101), E43P(101),
	$\frac{1}{2} \frac{1}{2} \frac{1}$
	4510.51
	DOUBLE PRECISION EDA(2), EIG(2)
	REAL H.NN.LAM
	INTEGER I, D, N, Z, NINT, INTER
	DOUBLE PRECISION ELSM3(2), ELSM4(2), ESHB3(2), ESHB4(2),
	DOUBLE PRECISION EMUM3(2), EMUM4(2), BPT(101,2), TFAC(2),
	1RMOM 3(2), RMOM 4(2), RSHR 3(27, ASHR 4(27, 0), MMX4(101, 2), BETA(2), MU1
	2COFDIS(2,2), ALFA(2), ALFA(2), CCC(2), GAMA(2), CC2(2)
	DOUBLE PRECISION RIORK, DIORK, EDA2P1, EDA3P1
	REAL DLTT.MODE
	GAMA(1)=RGAMA
	GAMA(2)=0.0
	EIG(1) = MU
	EIG(2) = 0.
	EDA(1) = XND
	EDA (2) = YNU
	$I \in ND = 1$
	[MAX] = 21
٢×	** THIS PROGRAM USES REVERSED INTEGRATION ONLY
	WRITE(6,300)
3	FORMAT ( 'OSIMULATION ENTERED ']
-C	NDS = DIRECTION SWITCH
2	NDS = 1 IN PLANE, = 0 UUE UF PLANE
C	*** SET IBIG=1 TU READ DIGNUUE I ONLY
	NN = 4 N = 1
	NINT=100
a	

		- termina manufa ta ny farina any any any ananana data a ta ya ka sangkan kamata sa atabian kanata a mana	3-18
	WRITE(6,60) ANFRO		· · · · · · · · · · · · · · · · · · ·
60	FORMAT(1H , 'NFRQ=SQRT	LAM=',F10.5)	
<u> </u>	<u>SI=0.</u>		
Č CI	FAR ARRAYS		
C	CLAN AARATS		
	DO 31 I=1+4		
	K(I)=0.	and a second	
	L(I)=0.		
21	M(1)=U. 9(1)=0		
	$\frac{1}{20} = 1.101$		-
_	E34P(1)=0.		
	E44P(I)=0.		
	E33P(I)=0.		,
	E43P(I)=0.		
	E32P(I)=0.		
	E31P(1)=0.		
	E41P(I)=0.	antan a suman an an antan an a	
	E4(I)=0.		
1	E3(I)=0.		
	H=1./FLOAT(NINT)	•	·
0	D=3		
8	IF(D.EQ.4) GO TO 2		
	BU=V. 53/11-1		ан на бара силана на бара и канда и барабарана на теритер де теритер и бал на такар на такар на такар на терит Такар
	CO=0.		
	A0=0.		
	GO TO 3		
2	CO=0.	and an an and a set of the set of	n an
	E41P(1)=1.	· · · · · · · · · · · · · · · · · · ·	•
	AU=E41P(1) 80-0		
· · · · · · · · · · · · · · · · · · ·	<u>ΕΠ=0</u>		
3	Δ=ΔΩ	ţ.	
	B=B0		
	C=C0		
	E=EO		
	<u>N=1</u>		
4			
		-	1
5	51-(NN-1.)#H K(T)=H&A		
	L(I)=H*8		
	'M(I)=H+C		
	MU1=1.+EIG(KK)*EIG(KK)	<u>بر</u> رامیندها اور اروینم <u>دار م</u> رایید در <del>مدیند</del> واروینمده	
<u></u>	IF(NDS.EQ.1) GD TO 40		
	MU1=MU1-1.		
40	P(I) = (I - SI)	*SI+2.*SI*(1.+SIO))	/2.#B
<b>۱</b> .	* (151+510)*A+MU1*E)*LA	ıM≄H	
		• .	
		1.	

T-1+1 TF(11-GT-3) GD TD 6 Z=1-1 E=E0*K(2)/2. A=A0*L(Z)/2. B=B0+M(Z)/2. C=C0+P(Z)/2. S1=S1+H(Z). C=C0+P(Z)/2. S1=S1+H(Z). C=C0+P(Z) S1=S1*H C=C0+P(Z) S1=S1*H C=C0+P(Z) S1=S1*H C=C0+P(Z) S1=S1*H(Z)=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=Z=	SI=(NN-1.)*H	3-19
$ \begin{array}{l} 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\$		
$\begin{split} \bar{E} = \bar{E} - \bar{E} $		والمحمول والمراجع والم
$ \begin{array}{l} A = AO + (12)/2 \\ B = BO + H(2)/2 \\ C = CO + P(2)/2 \\ C = CO + P(2)/2 \\ C = CO + P(2)/2 \\ C = CO + P(3) \\ C = CO + P(3$	E=E0+K(Z)/2.	·
B = BO+M(2)/2. $C = O + P(2)/2.$ $S = S + 4 + 1/2.$ $C = O + P(3)$ $S = S + 4 + 1/2.$ $S = S + 1/2.$ $S = 1/2.$ $S = S + 1/2.$ $S = 1$	A=A0+L(Z)/2.	
C = Co + P(2) / 2. $SI = 51 + 4 / 2.$ $C0 T C 5$ $I = 51 + 4 / 2.$ $C0 T C 5$ $I = 51 + 4 / 2.$ $C = C0 + P(3)$ $SI = 51 + 4 / (3)$ $B = B0 + M(3)$ $C = C0 + P(3)$ $SI = 51 + 4 / (3)$ $I = S1 (2) = E3 P(N) + (X(1) + 2. * X(2) + 2. * X(3) + X(4)) / 6.$ $E = S1 P(2) = E3 P(N) + (X(1) + 2. * X(2) + 2. * X(3) + X(4)) / 6.$ $E = S2 P(2) = E3 P(N) + (N(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) = E3 P(N) + (P(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) = E3 P(N) + (P(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) = E3 P(N) + (P(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) = E = S2 P(N) + (P(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) = E = S2 P(N) + (D(1) + 2. * N(2) + 2. * N(3) + N(4)) / 6.$ $E = S2 P(2) + 1)$ $C = E = S2 P(N + 1)$ $C = S2 P(N + 1)$ $C = E = S2 P(N + 1)$ $C = S2 P(N + 1)$ $C = S2 P(N +$	B=BC+M(Z)/2.	
SI=SI+H/2. $COTCO S GOTC 7$ $IF(I).GT.4) GOTC 7$ $IF(I).GT.4) GOTC 7$ $SI=GI+M+M3)$ $C=CO+P(3)$ $SI=SI+M+H$ $GOTO 5$ $SI=SI+H$ $GOTO 7$ $SI=SI+H (I)+K(I)+2.*K(2)+2.*K(3)+K(4))/6.$ $E3P(2)=E3P(N)+K(I)+2.*K(2)+2.*K(3)+K(4))/6.$ $E3P(2)=E3P(N)+IK(I)+2.*P(2)+2.*K(3)+K(4))/6.$ $E3P(2)=E3P(N)+IK(I)+2.*P(2)+2.*K(3)+K(4))/6.$ $E3P(2)=E3P(N+I)$ $AC=A$ $BO=6$ $EO=6$ $CO=C$ $CO=$	C = CO + P(Z)/2.	
CUTUS FF(1,6T,4) SO TO 7 E=E04K(3) B=B04M(3) C=C0+P(3) SI=SI+H CO TO 5 FF(0,E0,4) GOTO 9 SI=NN4H Z=N+1 E31P(2)=E31P(N)+(U(1)+2,*U(2)+2,*U(3)+U(4))/6. E32P(2)=E32P(N)+(P(1)+2,*P(2)+2,*U(3)+P(4))/6. E32P(2)=E32P(N)+(P(1)+2,*P(2)+2,*U(3)+P(4))/6. E32P(2)=E32P(N)+(P(1)+2,*P(2)+2,*U(3)+P(4))/6. E32P(2)=E32P(N)+(P(1)+2,*P(2)+2,*U(3)+P(4))/6. E32P(2)=E32P(N)+(P(1)+2,*P(2)+2,*U(3)+P(4))/6. E32P(2)/2,*(1,-S1+S10)*E31P(2)+MU1*E3(2)) E=E3(N+1) A=E31P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32	SI=SI+H/2.	ىرى خەر بەت بەت بىلىن بىلىن بىلىن بەت بەت بەت بەت بىلەر بى
Treflor (3) A=A0+L(3) B=B0+M(3) C=C0+P(3) ST=ST+H G0 T0 5 ST=ST+H C0 T0 5 ST=ST+H C0 T0 5 ST=ST+(2)=E3P(N)+(K(1)+2,*K(2)+2,*K(3)+K(4))/6. E3P(2)=E3P(N)+(M(1)+2,*K(2)+2,*M(3)+M(4))/6. E3P(2)=E3P(N)+(M(1)+2,*M(2)+2,*M(3)+M(4))/6. E3P(2)=E3P(N)+(M(1)+2,*M(2)+2,*M(3)+M(4))/6. E3P(2)=E3P(N)+(N(1)+2,*P(2)+2,*M(3)+M(4))/6. E3P(2)=E3P(N)+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E3P(N+1) A=E	GU 10 5 1611 AT AL CO TO 7	
$ \begin{array}{l} A = A0 + 1(3) \\ B = B0+M(3) \\ C = C0 + P(3) \\ S = S1 = N3 + H \\ C = T0 & 5 \\ T = F(0, = 0, 4) \\ C = T0 & 5 \\ T = S1 = N3 + H \\ Z = N4 \\ Z =$	F=FO+K(3)	· · · · · · · · · · · · · · · · · · ·
$ \begin{array}{l} B = D0 + W(3) \\ C = C0 + P(3) \\ S1 = S1 + H \\ C0 T U 5 \\ T = (0, -4)^{-1} COT 0^{-9} \\ S1 = - N14^{H} \\ \hline \\ Z = N + 1 \\ E = 2^{-1} P(3)^{-1} E = 3 P(N) + (X(1) + 2, + X(2) + 2, + X(3) + K(4)) / 6. \\ E = 3 P(2)^{-1} E = 3 P(N) + (X(1) + 2, + W(2) + 2, + W(3) + M(4)) / 6. \\ E = 3 P(2)^{-1} E = 3 P(N) + (M(1) + 2, + W(2) + 2, + W(3) + M(4)) / 6. \\ E = 3 P(2)^{-1} Z + (1, -51 + 51 D) + E = 1 P(2) + 2 + 2 P(3) + P(4) / 6. \\ E = 3 P(1)^{-1} Z + (1, -51 + 51 D) + E = 1 P(2) + MU1 + E = 3 (2) ) \\ E = E = 3 (W + 1) \\ \hline A = E = 3 2 P(N + 1) \\ A = E = 3 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = 2 P(N + 1) \\ A = E = 2 P(N + 1) \\ A = 2 P(N + 1) $	$\Delta = \Delta \Omega + 1 (3)$	
$C = CO + P(3)$ $SI = S1 + H$ $GO TO 5$ $IF (Go EQ 4) = GOTO 9$ $SI = N1^{4}H$ $Z = N+1$ $E 3 (2) = E 32P (N) + (K (1) + 2 \cdot *K (2) + 2 \cdot *K (3) + K (4)) / 6.$ $E 32P (2) = E 32P (N) + (M (1) + 2 \cdot *M (2) + 2 \cdot *M (3) + (K (4)) / 6.$ $E 33P (2) = E 32P (N) + (M (1) + 2 \cdot *M (2) + 2 \cdot *M (3) + (K (4)) / 6.$ $E 33P (2) = E 32P (N) + (M (1) + 2 \cdot *P (2) + 2 \cdot *P (3) + P (4)) / 6.$ $E 33P (2) = E 32P (N + 1) + (1 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (1 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + M (1) * E 3 (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (2) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 P (1) + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 31 + (2 - S1 + S I O) * E 3 + (2 - S - (2 - S - S - S - S - S - S + S - S + S - S + S - S + S - S + S +$	B=BO+M(3)	
SI=SI+H GO TO 5 $IF(63,E0,4) GOTO '9$ $SI=NI444$ $Z=N+I$ E3(Z)=E3(N)+(K(1)+2,*K(2)+2,*K(3)+K(4))/6. E3(Z)=E3(P)(N)+(U(1)+2,*M(2)+2,*M(3)+M(4))/6. E3(Z)=E3(P)(N)+(M(1)+2,*M(2)+2,*P(3)+P(4))/6. E3(P)(Z)=E3(P)(N)+(M(1)+2,*M(2)+2,*P(3)+P(4))/6. E3(P)(Z)/Z=(11-SI+SID)+E3(P)(Z)+MUL+E3(Z)) E=E3(V+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)(N+1) A=E3(P)	C=CO+P(3)	an be an
$ \begin{array}{l} GO TO 5 \\ GO TO 5 \\ TF (10, EQ.4) \ GOTO 9 \\ SI = NIAPH \\ Z=N+1 \\ Z=N+$	SI=SI+H	
IFID_EQ.41 GOLD 9 SI=NN4H Z=N+1 E31Z1=E33(N)+(K(1)+2,*K(2)+2,*K(3)+K(4))/6. E31P(Z)=E33P(N)+(M(1)+2,*M(2)+2,*M(3)+M(4))/6. E33P(Z)=E33P(N)+(M(1)+2,*P(2)+2,*P(3)+P(4))/6. E34P(Z)=LAM*(((SIO+L))*E3(Z)) E=E3(V+1) A=E31P(N+1) B=E32P(N+1) A=E31P(N+1) A=E31P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N+1) A=E32P(N	GO TO 5	
$S_{1} = W_{4} + H_{1}$ $E_{2} = W_{4} + H_{2} = W_{2} + W_{2} + W_{2} + W_{2} + W_{3} + W_{4} + W_{4$	IFLD_EQ.41 GULU 9	
$E_{3}(z) = E_{3}(x) + (k(1)+2, *k(2)+2, *k(3)+k(4))/6.$ $E_{3}(z) = E_{3}(z) + (k(1)+2, *k(2)+2, *k(3)+k(4))/6.$ $E_{4}(z) = E_{4}(x) + (k(1)+2, *k(2)+2, *k(3)+k(4))/6.$ $E_{4}(x) = E_{4}(x) + (k(1)+2, *k(2)+2, *k(3)+k(4))/6.$ $E_{4}(x) = E_{4}(x) + (k(1)+2, *k(2)+2, *k(3)+k(2))$	∂1 −1¥;4+⊓ 7 =N + 1	
E31P(Z) = E31P(N) + (L(1) + 2 * L(2) + 2 * L(3) + L(4)) / 6. E32P(Z) = E32P(N) + (N(1) + 2 * P(2) + 2 * P(3) + M(3) + M(4)) / 6. E33P(Z) = E33P(N) + (N(1) + 2 * P(2) + 2 * P(3) + P(4)) / 6. E34P(Z) = LAM*((SIO+1.)**2 - (1SI+SIO)**2). 1*E32P(Z) / 2 * (ISI + SIO) * E31P(Z) + MU1 * E3 (Z)) E = E3(V+1) A = E31P(N+1) B = E32P(N+1) A = E32P(N+1) E = SHR3(KK) = E32P(1) RMM3(IK) = E32P(1)TER) D = 2 (I = 1 + 10) B = MM3(I + KK) = E3(I) D = 4 G = C0 S I = N + N + M Z = N + M Z = N + M E = E42P(Z) = E42P(N) + (K(1) + 2 * K(2) + 2 * K(3) + K(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + P(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + P(4)) / 6. E = E42P(Z) = E42P(N) + (M(1) + 2 * M(2) + 2 * M(3) + P(4)) / 6. E = E42P(Z) / 2 * (I - SI + SI O) * E41P(Z) + MU1 * E4(Z)) E = E = E4(N+1) E = E = E = E4(N+1) E = E = E = E = E = E = E = E = E = E =	$E_{3(7)} = E_{3(N)} + (K(1) + 2 * K(2) + 2 * K(3) + K(4)) / 6$	
E 32P (2) = E 32P (N) + (M(1) + 2. *M(2) + 2. *M(3) + M(4) ) / 6. E 33P (2) = E 33P (N) + (P (1) + 2. *P (2) + 2. *P (3) + P (4) ) / 6. E 34P (2) + 2. + M*4 ((2) (10 + 1.) * + 2.) + (2) + * 2) 1 #E 32P (2) / 2. * (1 SI + SI 0) * E 31 P (2) + MUL * E 3 (2) ) E = E 3(P (N + 1) A = E 31P (N + 1) A = E 31P (N + 1) A = E 32P (N + 1) C = E 3P (N + 1) A = E 3 P (N + 1) A = E 4 B = E C = E	E31P(Z)=E31P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6.	an a
$E \exists 3p (Z) = E 3 \exists p (N) + (p (1) + 2 \cdot *p (2) + 2 \cdot *p (3) + p (4)) / 6.$ $E \exists 4p (Z) = L AM * (( (S ID + 1 .) * *2 - (1 - S I + S ID) * *2).$ $I \neq E \exists 2p (Z) / 2 \cdot * (1 - S I + S ID) * E \exists 1p (Z) + MUI \neq E \exists (Z))$ $E = E \exists (N + 1)$ $A \equiv E \exists 2p (N + 1)$ $E \equiv E \equiv E \exists 2p (N + 1)$ $E \equiv E \equiv$	E32P(Z)=E32P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6.	
$E34P(Z) = LAM*((1510+1.)**2-(151+510)**2)$ $I \neq E32P(Z)/2.+(151+510)*E31P(Z)+MU1*E3(Z))$ $E=E3(N+1)$ $A=E3TP(N+1)$ $A=E3TP(N+1)$ $A=E3P(N+1)$ $A=E3P(N) + (K(1)+2.*K(2)+2.*K(3)+K(4))/6.$ $E41P(Z) = E4P(N) + (K(1)+2.*K(2)+2.*M(3)+M(4))/6.$ $E42P(Z) = E42P(N) + (M(1)+2.*M(2)+2.*M(3)+M(4))/6.$ $E43P(Z) = E43P(Z) = LAM*((S10+1S1+S10)**2)$ $A=E3P(Z) + (1S1+S10)*E41P(Z) + MU1*E4(Z))$ $A=E3P(Z) + (1S1+S10)*E41P(Z) + MU1*E4(Z))$	E33P(Z)=E33P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6.	
$I \neq E 32P(2)/2.+(1SI+SIO) \neq E 31P(Z) + MO1 \neq E 3(Z))$ $E = 63(Y+1)$ $A = E 32P(N+1)$ $C = E 32P(N+1)$ $A = A$ $B = 6$ $E = C = C$ $C = C$	E34P(2)=LAM*(((SID+1.)**2-(1SI+SID)*	**2}
E = E 3 (V + 1) $A = E 32P (N+1)$ $C = E 33P (N+1)$ $A 0 = A$ $B 0 = 6$ $E 0 = E$ $C 0 = C$ $N = N + 1$ $I = F (N, LT - INTER) G 0 T 0 4$ $E M 0 M 3 (KK) = E 3 (INTER)$ $E LSM 3 (KK) = E 32P (1)$ $R M 0 M 3 (KK) = E 32P (1) (INTER)$ $E SHR 3 (KK) = E 33P (1)$ $R SHR 3 (KK) = E 33P (1)$ $R SHR 3 (KK) = E 3 (I)$ $D 0 26 I = 1, 101$ $M M X 3 (I, KK) = E 3 (I)$ $D = 4$ $G 0 T 0 2$ $S I = NNKH$ $Z = N + I$ $E 4 4 P (Z) = E 4 (N) + (K(1) + 2, *K(2) + 2, *K(3) + K(4)) / 6.$ $E 4 4 P (Z) = E 4 (N) + (M (1) + 2, *N(2) + 2, *M (3) + M (4)) / 6.$ $E 4 4 P (Z) = E 4 (N) + (M (1) + 2, *N (2) + 2, *M (3) + M (4)) / 6.$ $E 4 4 P (Z) = E 4 (N) + (M (1) + 2, *N (2) + 2, *M (3) + M (4)) / 6.$ $E 4 4 P (Z) = E 4 (N) + (M (1) + 2, *N (2) + 2, *M (3) + M (4)) / 6.$ $E 4 4 P (Z) = E 4 (N + 1) + 2 + P (Z) + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	$1 \neq E 32P(Z)/2 + (1 - SI + SIO) \neq E 31P(Z) + MU1 \neq E 3(Z))$	
A = E S IP (N+1) $B = E S 2P (N+1)$ $C = E 3 3P (N+1)$ $A = A$ $B = C = E$ $C = C$ $C = C$ $C = C$ $C = C$ $N = N+1$ $I = (N, LT - INTER) = C = T = 0$ $R = M = S (K N = E S P (1) = R)$ $E = S = R S (K K) = E S P (1) = R$ $R = S = S P (1 = 1, 10)$ $S = M = S = S = (1 = 1, 10)$ $M = X = S = P (1 = 1, 10)$ $M = X = S = (1 = 1, 10)$ $S = N = K$ $C = T = S = S = (1 = 1, 10)$ $S = N = K$ $C = C = C$ $C = C = C = C = C = C = C = C = C = C =$	E=E3(N+1)	an an a traight a an a tha ann an Allahan am an sa shaga mar an an an Anna a shahan ta shahan at shahan a shaha
$D = 2 \leq 2 \leq 1 \leq 1 \leq 1 \leq 2 \leq 2 \leq 2 \leq 2 \leq 2 \leq$	A=E31P(N+1)	
A0=A B0=8 E0=E C0=C N=N+1 IF(N_LT.INTER) G0 T0 4 EMMM3(KK)=E3(INTER) ELSM3(KK)=E32P(1NTER) ESHR3(KK)=E32P(INTER) D0 26 1=1,101 MMX3(I,KK)=E3(I) D0 26 1=1,101 MMX3(I,KK)=E3(I) D0 26 1=1,101 SI=NN*H Z=N+1 E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6. E4(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z)=E42P(N)+(M(1)+2.*P(2)+2.*P(3)+P(4))/6. E43P(Z)=E42P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E43P(Z)=E44P(X)+(1SI+SI0)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) E=E4(N+1)	B=E 32P ( N+1 )	
B0=B E0=E CD=C CD=C N=N+1 IF(N.LT.INTER) G0 T0 4 EMOM3(KK) = E3(INTER) ELSM3(KK) = E32P(INTER) ESHR3(KK) = E32P(INTER) D0 26 I=1,101 MMX3(I,KK) = E3(I) D=4 GDTU 2 SI=NN*H Z=N+1 E4(Z) = E4(N)+(K(I)+2.*K(2)+2.*K(3)+K(4))/6. E41P(Z) = E41P(N)+(L(1)+2.*L(2)+2.*K(3)+L(4))/6. E42P(Z) = E42P(N)+(M(I)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z) = E42P(N)+(P(I)+2.*P(2)+2.*P(3)+P(4))/5. E44P(Z) = E42P(N)+(P(I)+2.*P(2)+2.*P(3)+P(4))/5. E44P(Z) = E42P(N)+(I-SI+SIO)*E41P(Z)+MUI*E4(Z)) E=E4(N+1) E=E4(N+1)		
E 0 = E $C 0 = C$ $N = N + 1$ $I = (N, LT - INTER) G 0 T 0 4$ $E MOM 3(KK) = E 3(INTER)$ $E LSM 3(KK) = E 32P (INTER)$ $R M 0 M 3(KK) = E 32P (INTER)$ $D 0 28 I = 1, 101$ $B MX 3 (I, KK) = E 3 (INTER)$ $D = 4$ $G 0 T 0 2$ $S I = NN*H$ $Z = N + 1$ $E 4(Z) = E 4(N) + (K(1) + 2 * K(2) + 2 * K(3) + K(4)) / 6 .$ $E 42P (Z) = E 42P (N) + (M(1) + 2 * M(2) + 2 * M(3) + M(4)) / 6 .$ $E 43P (Z) = E 42P (N) + (M(1) + 2 * M(2) + 2 * M(3) + P(4)) / 6 .$ $E 43P (Z) = E 42P (N) + (P 1 + 1) + 2 * P(2) + 2 * P(3) + P(4) / 6 .$ $E 43P (Z) = E 42P (N) + (P 1 + 1) + 2 * P(2) + 2 * P(3) + P(4) / 6 .$ $E 43P (Z) = E 42P (X) + (I - S I + S I 0) * E 41P (Z) + M01 * E 4(Z))$ $E = E 4 (N + 1)$	B0=6	
CO=C N=N+1 IF (N.LT.INTER) GO TO 4 EMM 3(KK) =E 3(INTER) ELSM 3(KK) =E 32P(1) RSHR 3(KK) =E 32P(1NTER) DO 28 I=1,101 8 MMX3(I,KK) =E33P(1) D=4 GOTU 2 SI=NN*H Z=N+1 E4(Z) =E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6. E41P(Z) =E4(P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z) =E42P(N)+(M(1)+2.*P(2)+2.*P(3)+P(4))/6. E43P(Z) =E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E43P(Z) =E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E44P(Z) =LAM*(((SIC)+1.)*Z-(1SI+SIO)**Z)) I*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1)	EO=E	الماني - الماني - المانية والمانية ( المانية ) - الماني - المانية ( المانية ) - الماني - الماني - الماني - الم
N=N+1 IF (N.LT.INTER) GO TO 4 EMOM3(KK) =E 31 (NTER) ELSM3(KK) =E 32P (INTER) ESHR3(KK) =E 32P (INTER) DO 28 I=1,101 8 MMX3(I,KK) =E 31P (INTER) DO 28 I=1,101 8 MMX3(I,KK) =E 31P (INTER) D=4 GOTU 2 SI = NN*H Z=N+1 E4(Z) = E4(N) + (K(1)+2.*K(2)+2.*K(3)+K(4))/6. E41P (Z) = E4(N) + (L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P (Z) = E42P (N) + (M(1)+2.*M(2)+2.*M(3)+M(4))/6. E42P (Z) = E42P (N) + (M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P (Z) = E43P (N) + (P11)+2.*P(2)+2.*P(3)+P(4))/5. E44P (Z) = L4P (X) + (L(SIO+L), *2-(1)-SI+SIO)**2) I*E42P (Z)/2.+(1SI+SIO)*E41P (Z)+MU1*E4(Z)) E=E4(N+1)	C.0=C	
IF(N, LT, INTER) GU TU 4 EMOM3(KK) = E3(INTER) ELSM3(KK) = E32P(INTER) ESHR3(KK) = E33P(INTER) DD 26 I = 1, 101 B MMX3(I, KK) = E3(I) D=4 GGTU 2 SI = NN*H Z = N+1 E4(Z) = E4(N) + (K(1) + 2. *K(2) + 2. *K(3) + K(4)) / 6. E41P(Z) = E41P(N) + (L(1) + 2. *L(2) + 2. *L(3) + L(4)) / 6. E42P(Z) = E42P(N) + (M(1) + 2. *M(2) + 2. *M(3) + M(4)) / 6. E43P(Z) = E43P(N) + (PI1) + 2. *P(2) + 2. *P(3) + P(4)) / 5. E44P(Z) = LAM * ((SID+1.) * + 2 - (1 SI + SID) * + 2) 1 * E42P(Z) / 2. + (1 SI + SID) * E41P(Z) + MU1 * E4(Z)) E = E4(N+1)	N=N+1	
$E_{NUM 31(KK)} = E_{31(N1EK)}$ $E_{LSM 31(KK)} = E_{32P(1)}$ $RM0M3(KK) = E_{32P(1)}$ $RSHR 31(KK) = E_{33P(1)}$ $D = 28 I = 1, 101$ $B MMX3(I,KK) = E_{3}(I)$ $D = 4$ $GOTU 2$ $SI = NN*H$ $Z = N+1$ $E_{4}(Z) = E_{4}(N) + (K(1) + 2. *K(2) + 2. *K(3) + K(4)) / 6.$ $E_{4}(P(Z) = E_{4}P(N) + (L(1) + 2. *L(2) + 2. *M(3) + M(4)) / 6.$ $E_{4}2P(Z) = E_{4}2P(N) + (M(1) + 2. *M(2) + 2. *M(3) + M(4)) / 6.$ $E_{4}3P(Z) = E_{4}3P(N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4)) / 5.$ $E_{4}4P(Z) = LAM*(((SIO+1.) * 2 - (1 SI + SIO) * 2))$ $I = E_{4}(N+1)$	IF(N.LI.INIER) GU IU 4 EMONDIAKA - FRIINTER)	
RIOM 3(KK) = E32P(INTER) $ESHR 3(KK) = E33P(INTER)$ $D0 28 I=1,101$ $MMX3(I,KK) = E3(I)$ $D=4$ $GOTU 2$ $SI = NN*H$ $Z = N+1$ $E4(Z) = E41P(N) + (K(1) + 2. *K(2) + 2. *K(3) + K(4)) / 6.$ $E41P(Z) = E41P(N) + (L(1) + 2. *L(2) + 2. *M(3) + M(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4)) / 6.$ $E44P(Z) = LAM*(((SIO+1.) * 2 - (1 SI + SIO) * 2))$ $I * E42P(Z) / 2. + (1 SI + SIO) * E41P(Z) + MU1 * E4(Z))$ $E = E4(N+1)$	$EMUM 3(KK) \neq E 3(LN)ER$	
ESHR3(KK) = E33P(1) $RSHR3(KK) = E33P(1)TER)$ $DO 28 I = 1, 101$ $MMX3(I, KK) = E3(I)$ $D=4$ $GDTU 2$ $SI = NN*H$ $Z = N+1$ $E4(Z) = E4(N) + (K(1) + 2. *K(2) + 2. *K(3) + K(4))/6.$ $E41P(Z) = E41P(N) + (L(1) + 2. *L(2) + 2. *L(3) + L(4))/6.$ $E42P(Z) = E42P(N) + (M(1) + 2. *M(2) + 2. *M(3) + M(4))/6.$ $E43P(Z) = E43P(N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4))/6.$ $E43P(Z) = E43P(N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4))/6.$ $E44P(Z) = E44P(Z) = LAM*(((SI0+1.) * 2 - (1SI + SI0) * 2))$ $I = E4(N+1)$	ELSASINK/-ES2F(1) EMGM3(KK)=E32P(INTER)	
RSHR 3(KK) = E 33P (INTER) $DO 28 I=1,101$ $MMX 3(I,KK) = E3(I)$ $D=4$ $GDTU 2$ $SI = NN*H$ $Z = N+1$ $E4(Z) = E4(N) + (K(1) + 2. *K(2) + 2. *K(3) + K(4)) / 6.$ $E41P (Z) = E41P (N) + (L(1) + 2. *L(2) + 2. *L(3) + L(4)) / 6.$ $E42P (Z) = E42P (N) + (M(1) + 2. *M(2) + 2. *M(3) + M(4)) / 6.$ $E43P (Z) = E43P (N) + (P(1) + 2. *P(2) + 2. *P(3) + P(4)) / 6.$ $E44P (Z) = E43P (X) + (P(1) + 2. *P(2) + 2. *P(3) + P(4)) / 6.$ $E44P (Z) = LAM*(((SIO+1.) * 2 - (1 SI + SIO) * + 2))$ $I = E4(N+1)$	FSHR3(KK) = E33P(1)	
D0 28 I=1,101 MMX3(I,KK)=E3(I) D=4 GDTU 2 SI=NN*H Z=N+L E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6. E41P(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/5. E44P(Z)=LAM*(((SIO+1.)**2-(1SI+SIO)**2)) 1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) E=E4(N+1)	RSHR3(KK)=E33P(INTER)	
<pre>8 MMX3(I,KK)=E3(I) D=4 GDTU 2 SI=NN*H Z=N+1 E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6. E41P(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E44P(Z)=LAM*(((SIO+1.)**2-(1SI+SIO)**2) I*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) E=E4(N+1)</pre>	DO 28 I=1,101	
D=4 GDTU 2 SI=NN*H Z=N+1 E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6. E41P(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E44P(Z)=LAM*(((SIO+1.)**2-(1SI+SIO)**2)) I*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) E=E4(N+1)	8 MMX3(1,KK)=E3(1)	
GDTU 2 $SI=NN*H$ $Z=N+1$ $E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6.$ $E41P(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6.$ $E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6.$ $E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6.$ $E44P(Z)=LAM*(((SIO+1.)*2-(1SI+SIO)**2))$ $1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z))$ $E=E4(N+1)$	D=4 .	
SI = N N + M $Z = N + 1$ $E4(Z) = E4(N) + (K(1) + 2 + K(2) + 2 + K(3) + K(4)) / 6.$ $E41P(Z) = E41P(N) + (L(1) + 2 + L(2) + 2 + K(3) + L(4)) / 6.$ $E42P(Z) = E42P(N) + (M(1) + 2 + M(2) + 2 + M(3) + M(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2 + P(2) + 2 + P(3) + P(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2 + P(2) + 2 + P(3) + P(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2 + P(2) + 2 + P(3) + P(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2 + P(2) + 2 + P(3) + P(4)) / 6.$ $E43P(Z) = E43P(N) + (P(1) + 2 + P(2) + 2 + P(3) + P(4)) / 6.$ $E43P(Z) = LAM + ((SIO + 1 + ) + 2 + (1 - SI + SIO) + 2)$ $1 + E42P(Z) / 2 + (1 - SI + SIO) + E41P(Z) + MU1 + E4(Z))$ $E = E4(N + 1)$	GDTU 2	·
$E_{4}(z) = E_{4}(N) + (K(1) + 2 \cdot K(2) + 2 \cdot K(3) + K(4)) / 6.$ $E_{4}(z) = E_{4}(P(X)) + (K(1) + 2 \cdot K(2) + 2 \cdot K(3) + K(4)) / 6.$ $E_{4}(z) = E_{4}(N) + (M(1) + 2 \cdot K(2) + 2 \cdot K(3) + M(4)) / 6.$ $E_{4}(z) = E_{4}(N) + (P(1) + 2 \cdot K(2) + 2 \cdot K(3) + P(4)) / 6.$ $E_{4}(z) = E_{4}(N + 1) + 2 \cdot K(2) + 2 \cdot K(3) + P(4) / 6.$ $E_{4}(z) = E_{4}(N + 1)$ $E_{4}(z) = E_{4}(N + 1)$	SI≕NN&H 7 - MII	
E41P(Z)=E41P(N)+(L(1)+2.*L(2)+2.*L(3)+L(4))/6. E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E44P(Z)=LAM*(((SIO+1.)*2-(1SI+SIO)**2) 1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) 	E = K + L E = F + L + L + L + L + L + 2 + K + 2 + 2 + K + 3 + K + 4 + 1 + 6 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2	······································
E42P(Z)=E42P(N)+(M(1)+2.*M(2)+2.*M(3)+M(4))/6. E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/6. E44P(Z)=LAM*(((SIO+1.)**2-(1SI+SIO)**2)) 1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1) 	E41P(Z) = E41P(N) + (L(L) + 2.*L(Z) + 2.*L(3) + L(4)) / 6.	
E43P(Z) = E43P(N) + (P(1) + 2.*P(2) + 2.*P(3) + P(4))/5. E44P(Z) = LAM*(((SIO+1.)**2-(1SI+SIO)**2)) 1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1)	E42P(Z)=E42P(N)+(M(L)+2.*M(2)+2.*M(3)+M(4))/6.	······································
E44P(Z)=LAM*(((SIO+1.)**2-(1SI+SIO)**2) 1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1)	E43P(Z)=E43P(N)+(P(1)+2.*P(2)+2.*P(3)+P(4))/5.	·
1*E42P(Z)/2.+(1SI+SIO)*E41P(Z)+MU1*E4(Z)) E=E4(N+1)	E44P(Z)=LAM*(((SID+1.)**2-(1SI+SID)))	**2)
E=E4(N+L)	1 #E42P(Z)/2.+(1SI+SI0) #E41P(Z)+MU1#E4(Z))	
	E=E4(N+1)	
		ann an Sana ann an Sanaich an Sanaich an Sanair, an Sanair, an Sanair an Sanair ann an Sanair an Sanair an Sana

A=E41P(H+1)       3-20         A=E42P(H+1)       C=E43P(H+1)         LOFE       AD=A         BO=0       CD=C         N=N+1       IF(N_LT.INTER) GO TD 4         IF(N_LT.INTER) GO TD 4       ELSM41KX)=E42P(11         RMMM(KK)=E42P(11KER)       ESHR4(KX)=E42P(11KER)         ESHR4(KX)=E42P(11KER)       ESHR4(KX)=E42P(11KER)         DD 29 I=1,101       BETA(XX)=EMX31(1,KX)=MMX4(1,KX)         ALFALKX)=EMD31(KX)/EMOM4(KK)       BETA(XX)=EMX31(1,KK)=ALFA(KK)=MMX4(1,KK)         OD 29 I=1,101       BETA(XX)=EMX31(1,KK)=ALFA(KK)=MMX4(1,KK)         OD 102 LB=1,101       BETA(XX)=EMM31(KK)=ALFA(KX)=MMX4(1B,KK))/BETA(KK)         OD 102 LB=1,101       DO         D0 102 LB=1,101       DO         D0 102 LB=1,101       DO         D0 102 LB=1,101       DO         D0 02 LB =2,101       DO         SUM=0,       DO			
F=E42P(N+1)         L0=E         AD=A         B0=0         CD=C         N=N+1         IF(N+LT_INTER) GD TD 4         ENDM4(KK)=E42P(1)         RMDM4(KK)=E42P(1)         RMDM4(KK)=E42P(1)         RMDM4(KK)=E42P(1)         RMDM4(KK)=E42P(1)         RSNR4(KK)=E43P(1)         RSNR4(KK)=E43P(1)         GD       29 I=1,101         20       9 I=1,101         21       MKX4(TrKK)=E43P(1)         GAMA(KK)=E1G(KK)>SQRT(LAN)         D0       2 L8=1,01         D0       2 L8=1,01         D0       2 L8=1,01         SUM=0,       D0         D0       2 L8=1,2,101         SUM=0,       D0         SUM=0,       D0         SUM=0,       SUM=0,		A=E41P(N+1)	3-20
C = E 4 3 P ( M + 1 ) L O = E A 0 = A B 0 = D C 0 = C N = M + 1 I F (N + LT , INTER ) GD TD 4 E L 5 M 4 (KX) = E 4 2 P ( I ) R 5 M 4 (KX) = E 4 2 P ( I ) R 5 M 4 (KX) = E 4 2 P ( I ) C 0 = 1 + 1 0 2 9 M KX (X ) = E 4 2 P ( I ) A L F A ( KX) = E 0 M 3 ( KX ) / E M M 4 ( LX ) D 2 9 1 - 1 + 1 0 C 0 = 1 + 1 0 L 1 = 0 - 1 0 D 1 0 2 (L = 1 + 1 0 L 1 = 0 - 2 - 0 10 2 16 1 = 2 + 1 0 C 0 = 1 + 1 0 L 1 = 0 - 2 - 0 10 2 16 1 = 2 + 1 0 D 2 16 1 = 2 + 1 0 D 2 18 1 = 2 + 1 0 D 2 18 1 = 2 + 1 0 2 10 2 L M 4 = 2 M 4 (L + 1 ) * 2 + 8 P T (I - 1 + 1 ) / 2 * * ((F L 0 A T (I ) - 1 + 5) * H + 5 T 0) * H KE = 5 U M C 0 R = K 2 M E 2 / M 2 / M 1 + 1 ) * 2 + 8 P T (I - 1 + 1) / 2 * * ((F L 0 A T (I ) - 1 + 5) * H + 5 T 0) * H KE = 5 U M C 0 R = 2 M 4 (D T ( + 1 ) * 2 + 8 P T (I - 1 + 1) * 2 ) / 2 * * H M E 1 = 5 U M C 0 R = K 2 / M E 1 I F (I F R 5 T M E - 1) G0 TO 72 E D A (1 ) = D P T (D 1 + 1) * D A (2 ) 9 K R T = 0 A (2 ) = 5 P T (L D 1 + 1) = 0 A (2 ) = 0 D 2 (2 ) = 1 - 0 A (2 ) = 0 A (1 ) = 0 A (2 ) = 0 C C 2 (2 ) = 0 A (2 A (2 ) = 0 A (1 ) + 0 A (2 ) = 0 C C (2 (2 ) = 0 - C (2 ) (1 ) = 0 - C (2 ) = 0 R M M 3 (2 ) = 0 E (2 ) = 0		B=E42P(N+1)	
LOPE ADD-A BOD-A BOD-B CD-C N=A+1 IF(N,LT,INTER) GO ID 4 EHOMA(KK)=E4(INTER) ELSMA(KK)=E42P(I) RMMM4(KK)=E42P(I) RMMM4(KK)=E42P(I) RSMR4(KK)=E42P(I) RSMR4(KK)=E42P(I) ALPA(KK)=E43P(I) 9 CONTINUE ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KK)/EMDM4(KK) ALPA(KK)=EMDM3(KL)/EMDM4(KK) ALPA(KK)=EMDM3(KL)/EMDM4(KK) ALPA(KK)=EMDM3(KL)/EMDM3(LB,KK)-ALPA(KK) EMMX4(LB,KK))/BETA(KK) SUM=G, DO 216 [=2,101 216 SUM=SUM+(SPT(I,I)+BPT(I-1,I))/2.*((FLOAT(I)-1.5)*H+SID)*H MED=3UM COR*E2=ME2/ME2/ME1(I)+(I)+2+BPT(I-1,I)**2)/2.*H MEI=SUM COR*E2=ME2/ME2/ME1(I) CO TO 92 EDA(1)=BPT(IO1,I) DO 218 [I=2,101 216 SUM=SUM+(SPT(I)-1) CO TO 92 EDA(1)=BPT(IO1,I) BOA(2)=BPT(IO1,I) DO 218 [I=2,0] EDA(1)=BPT(IO1,I) 22 WATE(6,905) PI(1,FL) EDA(2)=BPT(IO1,I) 23 SUM=G, ISA(1)=EIG(I)=AATC 73 GAMA(1)=EIG(I)=AATC 73 GAMA(2)=0, CC2(1)=1, CC2(2)=0, ALFA(2)=0, RS(KA(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0, ESK(2)=0,		C = E + 3P(N+1)	
A0=A B0=0 CO=C N=N+1 IF(N+LT.INTER) GO TD 4 ENGW4(KK)=E4(INTER) ELSM4(KK)=E42P(I) RM04(KK)=E42P(I) RSM4(KK)=E42P(I) RSM4(KK)=E42P(I) P0 29 I=1,101 20 MMK4(T)KR)=E4(I) 94 CONTINUE ALFA(KK)=MMM3(KK)/PMOM4(KK) BETA(KK)=MMM3(L, MMM3(I, KK)-ALFA(KK), MMM4(I, KK) 0 102 L0=1,101 LU=102-C0 102 BPT(LL,KK)=(MMM3(L, KK)-ALFA(KK), MMM4(L, KK)) D0 216 I=2,101 216 SUM=5UM+(BPT(I-1, I)+BPT(I-I, I)/2.*((FLOAT(I)-L, 5)+H+SIO)+H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=6UM+(I, I)+*2+BPT(I-I, I)**2)/2.+H ME1=SUM COA=ME2*ME2/MEI IF(IFRST,NE.1) GO TO 92 EDA(1)=BPT(L01,1) EDA(2)=BPT(L01,1) EDA(2)=BPT(L01,1) EDA(2)=BPT(L01,1) EDA(2)=BPT(L01,1) 2 KRITE(6,9105) ME1,ME2,CON,NDS 105 FDRMAT[I H, *(M=1,D12,6,3X,*M2= *,D12,6,3X,*F12.6/) WRITE(6,105) ME1,ME2,CON,NDS 105 FDRMAT[I H, *(M=1,D12,6,3X,*M2= *,D12,6,3X,*CDR= *,D12,5, I3X,*MDS=*,J3/) 2 GAMA(1)=ED(1)+AMFRQ GAMA(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0M3(2)=0. RM0		£0=E	
<pre>N0=# CO=C N=N+1 IF(N+1T,INTER) CO TO 4 EHOW4(KK)=E4(INTER) FLSM4(KK)=E4(INTER) SHOW4(KK)=E42P(I) RMOM4(KK)=E42P(I) RMOM4(KK)=E42P(I) ASTR4(KK)=E42P(I) ASTR4(KK)=E42P(I) P0 CO2 I=1.101 D0 CO2 I=1.101 D0 LC=C=C=C(KK)*SQRT(LAR) D0 LC=C=C(KK)*SQRT(LAR) D0 LC=C=C=C=CC*C**ACS CCCC(LC=C) CCCC(L)=C CCCCCCCCCCCC*CC*CCC*ACS CCCCCCCCCCCCCC</pre>		A0= A	
CD-C N=N+1 IF(N+LT_INTER) GO TD 4 E(MOVEKK) = 6 42P(1) RMOVEKK) = 6 42P(1) RMOVEKK) = 6 42P(1) RSNR4(KK) = 6 43P(1NTER) ESM46(KK) = 6 43P(1NTER) ESM46(KK) = 6 43P(1NTER) BETA(KK) = 6 43P(1NTER) D0 29 1 = 1, 101 29 MMX4(T,K) = E4(1) 94 CONTINUE ALFA(KK) = EMDM3(KK)/EMDM4(KK) BETA(KK) = MMX31(L,KK) - ALFA(KK) + MMX4(1,KK) CGAMA(KK) = EG(KK) + SQQRT(LAR) D0 102 LB 1 = 1, 101 LL= 102-LB 102 BPT(L,KK) = (MMX31(L,KK) - ALFA(KK) + MMX4(LB,KK))/BETA(KK) SUM=0 D0 216 1 = 2, 101 216 SUM=SUM+(BPT(1,1)+BPT(1-1,1))/2.*((FLOAT(1)-1.5)*H+SIO)*H MEZ=SUM SUM=0 D0 218 1 = 2, 101 218 SUM=SUM+(BPT(1,1)+BPT(1-1,1))/2.*((FLOAT(1)-1.5)*H+SIO)*H MEZ=SUM CGA=ME2/ME1(L,KK) = (D 0 92 EDA(1) = DPT(S1,1) P20 WRITE(6,98) EDA(1),EDA(2) 98 FCRMAT(1H, + INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CC3,NDS 105 FOMAT(1H, + INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CC3,NDS 105 FOMAT(1H, + INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6, 124,*NDSS*,13/) 72 IF(LHG,NEL) GO TO 73 CAMA(1)==16(1)*ANFRQ CAMA(1)==0 RMOM4(12)=0 RMM4(12)=0 RMM4(12)=0 RMM4(12)=0 RMM4(12)=0 RMM4(12)=0 RMM4(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 ELSM3(2)=0 EL		B0=B	
N=4+1 IF(4,LT,INTER) GO TO 4 ENGNG(KK)=E4(INTER) ELSM4(KK)=E4(2)(INTER) ELSM4(KK)=E4(2)(INTER) ESNR4(KK)=E4(2)(INTER) ESNR4(KK)=E4(2)(INTER) DO 29 1=1,101 02 MMK4(T;KK)=E4(1) 94 CONTINUE ALFA(KK)=E4MM3(KK)/EMOM4(KK) DO 102 L0=1,101 UL=102-UD 102 BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BETA(KK) SUM-0. DO 216 I=2,101 216 SUM-SUM+(BPT(I,I)+BPT(I=1,I))/2.*((FLOAT(I)-1.5)*N+SIO)*H ME2=SUM SUM-0. DO 216 I=2,101 218 SUM-SUM+(BPT(I,I)*2+BPT(I=1,I)*2)/2.*H ME2=SUM SUM-0. DO 218 I=2,101 218 SUM-SUM+(BPT(I,I)*2+BPT(I=1,I)*2)/2.*H ME1=SUM COM=WE2ME2/ME1 IF(HTERST.NE.1) GO TO 92 EDA(I)=2PT(S1,I) PO ARAT(IH, "H=7,DI2,0,3X,"M2=',DI2.6,3X,"COR= ',OI2.6, I3X, "HOS=',I3/) 21 F(INST.NE.1) GO TO 73 GAMA(1)=CIG(I)*ANFRQ GAMA(1)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. RM(MA12)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0. ESNR3(2)=0.		CO=C	
<pre>IF(M_LT_INTER) GO TO 4 ENGA(KK) = E42(INTER) ELSM4(KK) = E420(INTER) ELSM4(KK) = E420(INTER) ESM4(KK) = E420(INTER) ESM4(KK) = E420(INTER) DO 20 1=1,101 29 MMA(T;K) = E41(1) 94 CONTINUE ALFA(KK) = E400(KK) = MMX311,KK) - ALFA(KK) * MMX4(1,KK) GAMA(KK) = E1G(KK) = SQRT(LAK) DO 102 L61=1,101 LL=102=L02 DO 216 1=2,101 216 SUM=5UM+(BPT(1,1)+BPT(1=1,1))/2.*((FLOAT(I)-1.5)*M+SIO)*H ME2=SUM SUM=0. DD 218 1=2,101 218 SUM=5UM+(BPT(1,1)*2+BPT(1=1,1))/2.*((FLOAT(I)-1.5)*M+SIO)*H ME2=SUM CGR=ME2/ME2/ME1 IF(IFRST_NE.1), CO TO 92 EDA(I)= BPT(51,1) EDA(2) = BPT(101,1) 92 KRITE(6,98) EDA(1), EDA(2) 93 FCRAT(IH, *(IMTEA) CO TO 92 EDA(I)= BPT(51,1) EDA(2) = BPT(101,1) 72 IF(IFRST_NE.1), CO TO 73 GAMA(1)=E1G(1)+ANFRQ GAMA(1)=E1G(1)+ANFRQ GAMA(1)=E1G(1)+ANFRQ GAMA(1)=E1G(1)+ANFRQ GAMA(2)=0. RSMR3(2)=0. RSMR3(2)=0. RSMR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0.</pre>		N=N + 1	···· · · · · · · · · · · · · · · · · ·
ENDMATIKA) = EG (INTER) ELSMA(KK) = E42P(I) BHOMA(KK) = E42P(I) BANA(KK) = E42P(I) CSHA4(KK) = E42P(I) BANA(KK) = E43P(I) CONTINUE ALFA(KK) = EMD3(KK)/ZEMOM4(KK) BETA(KK) = MD3(KK)/ZEMOM4(KK) CAMA(KK) = EIG(KK) + SQRT(LAM) DO 102 LB=1,101 LL=102-LB 102 EPT(LL,KK) = (MM3(LB,KK) - ALFA(KK) + MMX4(LB,KK))/BETA(KK) SUM-0- DO 216 L=2,101 C16 SUM-0- DO 216 L=2,101 C16 SUM-05 M+(BPT(I,1)+BPT(I-I,1))/2.*((FLOAT(I)-L.5)*N+SIO)*H ME2=SUM SUM-0- DO 216 I=2,101 C18 SUM-(BPT(I,1)*2+BPT(I-L,1)*2)/2.*H ME2=SUM C0R=ME2ME2/MEI IF(IFAST.AE-1) C0 TO 92 EDA(I)=BPT(SI,1) 20 KITE(6,98) EDA(I),EDA(2) 98 FORMAT(IH, /NITT(AL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) MRITE(6,105) MEI,ME2,C0X,NDS 105 FORMAT(IH, /NIT(AL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) MRITE(6,105) MEI,ME2,C0X,NDS 105 FORMAT(IH, /NIT,012.6,3X,M2=*,D12.6,3X,*COR=*,D12.6. 13X,*NDS=*,(3/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(I)*ANFRO GAMA(2)=0- RMM0%(12)=0- RMM0%(12)=0- RMM0%(12)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0- ELSM4(2)=0-		TE(N)T INTERS CO TO 4	
LLOWING CONTINUE CALL ELIMINATE CAPTINER ELIMINATION (KK) = ECAPTINER D0 29 [=1,10] 29 MMX4(T,KK) = ECAT(KK) = MMX3(1,KK) = ALFA(KK) = MMX4(1,KK) CAMA(KK) = ECAT(KK) = MMX3(1,KK) = ALFA(KK) = MMX4(1,KK) D0 102 LB = 1,101 LL = 102=LB 102 BPT(L, KK) = (MMX3(LB,KK) = ALFA(KK) = MMX4(LB,KK)) / BETA(KK) SUM=0. D0 216 [=2,101 216 SUM=SUM + (BPT(1,1) + BPT(1=1,1)) / 2.*((FLOAT(1)=1.5) * H+SIO) * H ME2=SUM SUM=0. D0 218 [=2,101 218 SUM=SUM + (BPT(1,1) * * 2 + BPT(1=1,1) * * 2) / 2.*H ME1=SUM COR=ME2*ME2/ME1 IF(1FRST.NE.1) CO TO 92 EDA(1) = BPT(101,1) EDA(2) = BPT(101,1) P2 WR(TE(6,9B) EDA(1), EDA(2) 93 FORMAT(1H, *INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WR(TE(6,9B) ME1, ME2,COR,MOS 105 FORMAT(1H, *M1=*,D12.6,3X,*M2=*,D12.6,3X,*COR=*,D12.6, 13X,*M32*,13J) 72 IF(1B16.NE.1) GD TO 73 CAMA(1)=E[G(1) = AMRQ CAMA(2)=0. RM(MX12)=0. RM(MX12)=0. RM(MX12)=0. RM(MX12)=0. RM(MX12)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0. ELSM(42)=0		$\frac{17}{1000} \frac{1}{100} $	
LLSHMIN / EYZPIIN RMUM4(KK) = EZPIINTER) ESHA4(KK) = EZPIINTER) D0 29 [=1,10] 29 MKX4(T;KK) = EXIST BETA(KK) = MMX3(LK) / EMOM4(KK) ALFA(KK) = EMOM3(KK) / EMOM4(KK) ALFA(KK) = EMOM3(KK) / EMOM4(KK) ALFA(KK) = EMOM3(KK) / EMOM4(KK) ALFA(KK) = EMOM3(KK) / EMOM4(KK) D0 102 LB = 1,101 LL = 102-LB 102 BDT(LL = KK) = (MMX3(LB,KK) - ALFA(KK) + MMX4(LB,KK)) / BETA(KK) SUM=0. D0 216 1=2,101 216 SUM=5UM + (BPT(1,1)+BPT(1=1,1))/2. + ((FL0AT(1)-L.5) + M+SIO) + H ME2=SUM SUM=0. D0 218 1=2,101 218 SUM=SUM+(BPT(1,1)+BPT(1=1,1))/2. + ((FL0AT(1)-L.5) + M+SIO) + H ME2=SUM SUM=0. D0 218 1=2,101 218 SUM=SUM+(BPT(1,1) + SPT(1=1,1) + 2)/2. + H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=SUM+(BPT(1,1)) + SPT(1=1,1) + 2)/2. + H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=SUM+(BPT(1,1) + SPT(1=1,1) + 2)/2. + H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=SUM+(BPT(1,1)) + SPT(1=1,1) + 2)/2. + H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=SUM+(BPT(1,1)) + SPT(1=1,1) + 2)/2. + H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=2,200 SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. SUM=0. S		EISMA(KK)-E4(IN)EK/	
LANDATINA JE 424 [INTER] ESHA4(KK) = 424 PI [1] RSHA4(KK) = 424 PI [1] RSHA4(KK) = 424 PI [1] Q = 12,1 (01 29 MX4(T,KK) = E4(1) ALFA(KK) = EMJM3(KK) / EMDM4(KK) BETA(KK) = EMJM3(KK) / EMDM4(KK) DETA(KK) = EG(KK) + SQRT(LAM) U0 102 LB = 1, 101 LL = 102 E-10 102 ED = 1, 101 LL = 102 E-10 216 SUM = SUM + (BPT(I - 1, 1)) / 2. + ((FLOAT(I) - 1.5) + M + SIO) + M ME2 = SUM SUM=0. DD 216 I = 2, 101 216 SUM = SUM + (BPT(I - 1, 1)) + 2B TT(I - 1, 1) / 2. + ((FLOAT(I) - 1.5) + M + SIO) + M ME2 = SUM SUM=0. DD 216 I = 2, 101 218 SUM = SUM + (BPT(I - 1, 1)) + 22 + 6B TT(I - 1, 1) + +21 / 2. + M ME1 = SUM COR = ME2 / ME2 / ME1 IF(1FRST.ME.1) CO TO 92 EDA(2) = BPT(101, 1) EDA(2) = BPT(101, 1) 92 WR IFE(6, 9B) FOA(1) + EDA(2) 93 FORMAT(1H , 'INITIAL DISPLACEMENTS', 6X, F12.6, 3X, F12.6/) WR IFE (6, 105) ME1, ME2 : CON, NOS 105 FORMAT(1H , 'M = 'D 12.6, 3X, 'M2 = ', D12.6, 3X, 'COR = ', 012.6, 13X, 'MDS = ', 13/) 72 (F11B1G.NEL) D 0 TC 73 GAMA(2) = 0. RMOM4(2) = 0. ELSM(4) = 0. ELSM(			
L STRAIN JERSPEID R STRAIKN JERSPEID R STRAIKN JERSPEID D 29 HILL STAIKN JERSE A LFAIKN JERSEN A LFAIKN JERSEN G GAMAIKN JERSEN G GAMAIKN JERSEN D 102 LB=1.101 D 102 LB=1.101 D 102 LB=1.101 D 216 I=2.101 216 SUM=5.0M+10PT (I L] +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM SUM=0. D 218 I=2.101 218 SUM=5.0M+10PT (I L] +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM SUM=0. D 218 I=2.101 218 SUM=5.0M+10PT (I L] +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM SUM=0. D 218 I=2.101 218 SUM=SUM+10PT (I L] +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM SUM=0. D 218 I=2.101 218 SUM=SUM+2. COR=ME2/ME1 (I L] +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM COR=ME2/ME1 (I L] ) +2 +BPT (I = I L] ) / 2. +(IFL0AT(I J) -I.5) +H+ SIO) +H HEZ=SUM COR=ME2/ME1 (I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME2/ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME1 (I = I L] ) +2 +BPT (I = I L] ) +2 / 2. +H COR=ME1 (I = I L] ) +2 / 2. +A / 2 + 0. +A / 2 + 0			
Nonatikhi-Fisrinien) 29 MMX4(I;KK)=E4(I) 94 GONTINUE ALFA(KK)=EMDM3(KK)/EMOM4(KK) BETA(KK)=MMX3(1,KK)-ALFA(KK)*MMX4(1,KK) GAMA(KK)=EIG(KK)*SQRT(LAM) D0 102 L6=1.01 LL=102-CB 102 BFT(L,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BETA(KK) SUM=0. D0 216 I=2,101 216 SUM=SUM+IBPT(I,I)*BFT(I-I,I)/2.*((FLOAT(I)-I.5)*H+SID)*H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=HBPT(I,I)*EPT(I-I,I)*2.*((FLOAT(I)-I.5)*H+SID)*H ME2=SUM COR=ME2ME2/ME1 IF(IFRST.NEL) COR=ME2ME2/ME1 IF(IFRST.NEL) 60 TO 92 EDA(I)=BPT(SI,I] EDA(I)=BPT(SI,I] 92 WRITE(6,98) EDA(I),EDA(2) 93 FORMAT(IH, 'MI=',DI22,COR,NOS 105 FORMAT(I		$\frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{i=1}^{2} \sum_{j=1}^$	····
DD 29 MX4(1;K):E4(1) 94 CONTINUE ALFA(KK):EMDM3(KK)7EMOM4(KK) BETA(KK):=MMX3[1,KK)-ALFA(KK)*MMX4(1,KK) GAMA(KK):EC(KK)*SQRT(LAK) DD 102 LB=1,101 LL:102-LB DD 102 LB=1,101 D12 BFT(LL;KK):=(MMX3(LB;KK)-ALFA(KK)*MMX4(LB;KK))7BETA(KK) SUM=0, DD 216 I=2,101 216 SUM=SUM+(BPT(I,1)+BPT(I-1,1))72.*((FLOAT(I)-1.5)*H+SIO)*H ME2=SUM SUM=0, DD 218 I=2,101 218 SUM=SUM+(BPT(I,1)+*2+BPT(I-1,1)**2)72.*H MEI=SUM COR=ME2*ME2/ME1 IF(1FRST.NE.1) GO TO 92 EDA(2)=DPT(101,1) 92 WRITE(6,98) FDA(1);EDA(2) 95 FORMAT(IH,*INITIAL DISPLACEMENTS*,6X;F12.6,3X;F12.6/) WRITE(6,105) ME1.ME2;C0R;NDS 105 FORMAT(IH,*(IMI-1,0):2.6,3X;M2=*,012.6,3X;COR=*,012.6, 13X;MOS=*,13/) 72 If(1BIG,NE.1) GO TO 73 GAMA(1)=EDS(1)*ANFRQ GAMA(2)=0. RMOM3(2)=0. RMOM3(2)=0. RMOM3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EL		$\frac{1}{10} \frac{1}{10} \frac$	
<pre>29 MRA+(1, KK) =E4(1) 94 CONTINUE ALFA(KK) =EMOM3(KK) /EMOM4(KK) BETA(KK) =MMX3(1, KK) -ALFA(KK) *MMX4(1, KK) GAMA(KK) =E[G(KK) *SQRT(LAM) D0 102 L6=1,101 LL=102-0 102 BDT(LL,KK) = (MMX3(LB,KK) -ALFA(KK) *MMX4(LB,KK)) /BET4(KK) SUM=0. D0 216 [=2,101 216 SUM+SUM+(BPT(1-1,1))/2.*((FLOAT(1)-1.5)*H+SIO)*H ME2=SUM SUM=0. D0 218 [=2,101 218 SUM+BOH(1,1)*2+BPT(I-1,1)*2)/2.*H ME1=SUM COR=ME2#E2/ME1 IF(FRST.NE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 93 FORMAT(1H, *MI=*,DI2A,6,3X,*H2=*,DI2.6,3X,*L2.6,7) WRITE(6,105) ME1.WE2.COR.NDS 105 FORMAT(1H, *MI=*,DI2A,6,3X,*M2=*,DI2.6,3X,*COR=*,DI2.6, 13X,*MDS=*,137) 72 IF(IBIG.NE.1) GO TO 73 CAMA(1)=E1(1)*AAFRQ CAMA(2)=0. RMM3(2)=0. RMM3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EIG(2)=0. EI</pre>			مواب البرطنانات الجارة لوتور وبا توطا بوسوراويوارت
94 CUNTINUE ALFA(KK) = EMDM3(KK) / EMDM4(KK) BETA(KK) = MMX311, KK) - ALFA(KK) * MMX4(1, KK) OD 102 LB=1,101 LL = 102-CB 102 BPT(LL,KK) = (MMX31LB,KK) - ALFA(KK) * MMX4(LB,KK)) / BET4(KK) SUM=0. DD 216 I=2,101 216 SUM=SUM * (BPT(I,1)*BPT(I=1,1)) / 2.*((FLOAT(I)=1.5)*H+SIO)*H ME2=SUM SUM=0. DD 218 I=2,101 218 SUM=SUM+(BPT(I,1)*2+BPT(I=1,1)*2)/2.*H ME1=SUM COR*E2=ME2/ME1 IF(IFRST.NE.1) CO TO 92 EDA(2)=0PT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 93 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1.ME2.COR,NDS 105 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,*COR= *,012.6, 13X,*NDS=*,13/) 72 IF(1HGIS,NE.1) GO TO T 73 GAMA(1)=ED(1)*ANFRO GAMA(2)=0. RMOM3(2)=0. RMOM3(2)=0. RMOM3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0	29	MMX4(1,KK)=E4(1)	
ALFAKK  == MJM3(KK) /= MM4(KK) BETALKK  == MJM3(KK) /= MM3(1, KK) -ALFA(KK) *MMX4(1, KK) GAMA(KK) == LG(KK) *SQRT(LAM) D0 102 L6=1, 101 LL=102-L8 102 BPT(LL, KK) = (MMX3(L8, KK) -ALFA(KK) *MMX4(L8, KK)) /BETA(KK) SUM=0. D0 216 1=2, 101 216 SUM=SUM+(BPT(1, 1)+BPT(1-1, 1))/2.*((FL0AT(1)-1, 5)*H+SI0)*H ME2=SUM SUM=0. D0 218 1=2, 101 218 SUM=SUM+(BPT(1, 1)**2+BPT(1-1, 1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 1F(1FRST.NE+1) CO TO 92 EDA(1)=BPT(101,1) 92 WRTH(16, 9) EDA(1), EDA(2) 93 FCRMAT(1H, 'INITIAL DISPLACEMENTS', 6X, F12.6, 3X, F12.6/) WRITE(6, 105) ME1, ME2, COR, NDS 105 FORMAT(1H, 'IMITAL DISPLACEMENTS', 6X, F12.6, 3X, *F12.6/) WRITE(6, 105) ME1, ME2, COR, NDS 105 FORMAT(1H, 'M1=', D12.6, 3X, 'M2= ', D12.6, 3X, 'COR= ', D12.6, 13X, 'NDS=', I3/) 72 IF(1816, ME.1) GO TO 73 GAMA(1)=EIG(1)**NFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM3(2)=0. RMOM3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM	94	CUNTINUE	
BETA(KK)=MMX33(1,KK)-ALFA(KK)*MMX4(1,KK)           D0 102 LB=1,101           LL=102-LB           D0 2 LB=1,101           LL=102-LB           BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BETA(KK)           SUM=0.           D0 216 1=2,101           216 SUM=SUM+(BPT(1,1)+BPT(T-1,1))/2.*({FL0AT(1)-1.5)*H+SI0)*H           ME2=SUM           SUM=0.           D0 218 1=2,101           218 SUM+(BPT(1,1)**2+BPT(T-1,1)*/2.*({FL0AT(1)-1.5)*H+SI0)*H           ME2=SUM           SUM=0.           D0 218 1=2,101           218 SUM=SUM           COR=ME2#ME2/ME1           IF(IFRST.NE.1) GO TO 92           EDA(1)=BPT(51,1)           EDA(2)=BPT(10,1)           92 WRITE(6,93) EDA(1),EDA(2)           98 WRITE(6,93) EDA(1),EDA(2)           98 WRITE(6,93) EDA(1),EDA(2)           98 WRITE(6,105) ME1,ME2,CDR,NDS           105 FORMAT(1H +, 'NITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/)           WRITE(6,105) ME1,ME2,CDR,NDS           105 FORMAT(1H +, 'NITIAL DISPLACEMENTS',6X,F12.6,3X,*COR= +,012.6,           13X, 'NDS=+',13/)           72 IF(181G.NE.1) GO TC 73           GAMA(1)=E(1)(1)*ANFRQ           GAMA(1)=E(1)           CC2(2)=0.           ALFA(2)=0.		ALFA(KK)=EMOM3(KK)/EMOM4(KK)	
GAMA(KK)=EIG(KK)+SQRT(LAM) DU 102 LB=1,101 LL=102-CB 102 BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BETA(KK) SUM=0. DD 216 L=2,101 216 SUM=SUM+(BPT(I,1)+BPT(I-1,1))/2.*((FL0AT(I)-1.5)*H+SI0)*H ME2=SUM SUM=0. DD 218 L=2,101 218 SUM=SUM+(BPT(I,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(1)=BPT(51,1) 92 WAITE(6,08) EDA(1);EDA(2) 93 FORMAT(1H, *INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,KDS 105 FORMAT(1H, *IMIE*,D12.6,3X,*M2=*,D12.6,3X,*COR=*,D12.6, 13X,*NDS=*,13/) 72 IF(1B1G.NE.1) GO TC 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. RMDM4(2)=0. RMDM4(2)=0. RMDM4(2)=0. RMDM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EL		BETA(KK)=MMX3(1,KK)-ALFA(KK)*MMX4(1,KK)	
D0 102 L6=1,101 LL102=L6 102 8PT(LL,KK)=(MMX3(LB,KK)-ALFA(XK)*MMX4(LB,KK))/6ET4(KK) SUM=0. D0 216 1=2,101 216 SUM=SUM+(BPT(I,1)+8PT(I-1,1))/2.*((FLOAT(I)-1.5)*H+SIO)*H ME2=SUM SUM=0. D0 218 1=2,101 218 SUM=SUM+(BPT(I,1)**2+8PT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=BPT(S1,1) D2 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,*CDR= ',012.6, 13X,*NDS=',13/) 72 IF(1816.NE.1) GO TO 73 GAMA(1)=E16(1)*ANFRO GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMGM4(2)=0. RSHR3(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=		GAMA(KK)=EIG(KK) + SQRT(LAM)	
LL=102-LB 102 BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BETA(KK) SUM=0. DD 216 [=2,101 216 SUM=SUM+(BPT(1,1)*BPT(I-1,1))/2.*((FLOAT(I)-1.5)*M+SIO)*H ME2=SUM SUM=0. DD 218 [=2,101 218 SUM=SUM+(BPT(1,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(1FRST.NE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H,*INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H,*MI=*,D12.6,3X,*M2=*,D12.6,3X,*COR=*,O12.6, I3X,*M05=*,I3/) 72 IF(1BIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RSMR3(2)=0. RSMR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. EIG(2)=0.		DO 102 LB=1,101	
<pre>102 BPT(LL, KK) = (MX3(LB, KK) - ALFA(KK) * MMX4(LB, KK)) / BETA(KK) SUM=0. D0 216 I=2,101 216 SUM=SUM+(BPT(I, 1)*BPT(I-1, 1))/2.*((FLOAT(I)-1.5)*H+SIO)*H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=(BPT(I, 1)**2+BPT(I-1, 1)**2)/2.*H MEI=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=0PT(51,1) 92 WRITE(6,98) EDA(1).EDA(2) 98 FORMAT(IH, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1.ME2.COR,NDS 105 FDRMAT(IH, 'MI=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X, 'NDS=',13/) 72 IF(1816.NE.1) GO TO 73 GAMA(1)=E1G(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RSMR3(2)=0. RSMR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0.</pre>	· · ·	LL=102-LB	
SUM=0. DO 216 I=2,101 216 SUM=SUM+(BPT(I,1)+BPT(I-1,1))/2.*((FLOAT(I)-1.5)*H+SIO)*H ME2=SUM SUM=0. DO 218 I=2,101 218 SUM=SUM+(BPT(I,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) FOA(1),EDA(2) 98 FORMAT(1H,*INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(IH,*INITIAL DISPLACEMENTS*,6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(IH,*INITIAL DISPLACEMENTS*,6X,F12.6,3X,*COR= *,D12.6, I3X*NDS=*,I3/) 72 IF(101G,NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRO GAMA(2)=0. RC2(2)=0. ALFA(2)=0. RSHR4(2)=0. RSHR4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EIG(2)=0.	102	BPT(LL,KK)=(MMX3(LB,KK)-ALFA(KK)*MMX4(LB,KK))/BET4(KK)	
D0 216 1=2,101 216 SUM=SUM+(BPT(1,1)+BPT(1-1,1))/2.*((FLOAT(1)-1.5)*H+SIO)*H ME2=SUM SUM=0, D0 218 1=2,101 218 SUM=SUM+(BPT(1,1)**2+BPT(1-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(1FRST.NE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1.ME2.COR.NDS 105 FDRMAT(1H, 'MI=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, I3X',NDS=',I3/) 72 IF(181G.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRO GAMA(2)=0. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RSHR3(2)=0. ELSM6(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0.		SUM=0.	
<pre>216 SUM + (BPT(1,1)+BPT(1-1,1))/2.*((FLOAT(I)-1.5)*H+SIO)*H ME2=SUM SUM=0. D0 218 I=2,101 218 SUM=SUM+(BPT(1,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) G0 TO 92 EDA(1)=0PT(51,1) EDA(2)=0PT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(1H ,'M1=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X, 'NDS=',13/) 72 IF(181G.NE.1) GO TC 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMDM3(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0.</pre>		DD 216 I=2,101	
ME2=SUM SUM=0. DO 218 1=2,101 218 SUM=SUM+(BPT(I,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.NE.1) CO TO 92 ED0(1)=BPT(51,1) ED4(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),ED4(2) 98 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,*COR= ',012.6, 13X,*NDS=',13/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMDM3(2)=0. RMMM4(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. EIG(2)=0.	216	SUM=SUM+(BPT(I,1)+BPT(I-1,1))/2.*((FLOAT(I)-1,5)*H+SIO)*H	
SUM=0. DD 218 I=2,101 218 SUM=SUM+(BPI(I,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2*ME2/ME1 IF(IFRST.WE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,981 EDA(1),EDA(2) 98 FORMAT(IH ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(IH ,'M1=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X,'NDS=',13/) 72 JF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. EIG(2)=0.		ME2=SUM	•
DD 218 I=2,101 218 SUM=SUM+(BPT(I,1)**2+BPT(I-1,1)**2)/2.*H MEL=SUM COR=ME 2*ME2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=DPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(IH ,*INTIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(IH ,*INTIAL D12.6,3X,'M2= ',D12.6,3X,*COR= ',D12.6, I3X,*ND5=',I3/) 72 JF(IBIG.NE.1) GO TC 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMDM3(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EIG(2)=0.		SUM=0.	الميول كور بديرة الينظري والإستان اليامينين
218 SUM=SUM + (BPT(1,1)**2+BPT(I-1,1)**2)/2.*H ME1=SUM COR=ME2×ME2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INIT(AL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NOS 105 FORMAT(1H, 'M1=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X,'NDS=',I3/) 72 JF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. RMOM3(2)=0. RMOM3(2)=0. RSHR4(2)=0. RSHR4(2)=0. ELSM3(2)=0. ELSM3(2)=0. EIG(2)=0. EIG(2)=0.		D0 218 1=2.101	
ME1=SUM CGR=ME2zME2/ME1 IF(IFRST.NE.1) CO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H , 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(1H , 'M1=',D12.6,3X,'M2= ',D12.6,3X,'CDR= ',D12.6, 13X,'NDS=',13/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. RMOM3(2)=0. RMOM3(2)=0. RMOM3(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. EISM3(2)=0. EISM3(2)=0. EIG(2)=0.	218	$SIIM = SIIM + (BPI(I_1)) \pm 2 + BPI(I_1, 1) \pm 2)/2 \pm 4$	
CDR=ME 2*ME 2/ME1 IF(IFRST.NE.1) GO TO 92 EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1.ME2,COR,NDS 105 FORMAT(1H, 'M1=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X,'NDS=',I3/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. EISM4(2)=0. EIG(2)=0.	EIG	WE1=SIIM	
EGNTH2 2012 21 MC1 IF(IFRST.NE.1) CO TO 92 EDA(1) = BPT(51,1) EDA(2) = BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H ,'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(1H ,'MITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 000 GAMA(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ELS			
EDA(1)=BPT(51,1) EDA(2)=BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(1H, 'M1=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X,'NDS=',13/) 72 IF(181G,NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM4(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. EISM4(2)=0. EIG(2)=0.		$\mathbf{T} \mathbf{F} \mathbf{I} \mathbf{F} \mathbf{P} \mathbf{C} \mathbf{I} \mathbf{N} \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{C} \mathbf{O} \mathbf{I} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} \mathbf{O} O$	
EDA(2) = BPT(101,1) 92 WRITE(6,98) EDA(1),EDA(2) 98 FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,COR,NDS 105 FORMAT(1H, 'MIT',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X, 'NDS=',I3/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ELSM3(2)=0. EIG(2)=0.		ENA(1) = OBT(51, 1)	
P2       WRITE(6,98) EDA(1),EDA(2)         98       FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/)         WRITE(6,105)       ME1,ME2,CCR,NDS         105       FORMAT(1H, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,'COR= ',D12.6,         13X, 'NDS=',I3/)       T2         72       IF(IBIG.NE.1) GO TO 73         GAMA(1)=EIG(1)*ANFRQ         GAMA(2)=0.         CC2(1)=1.         CC2(2)=0.         ALFA(2)=0.         RMOM3(2)=0.         RMMM4(2)=0.         RSHR3(2)=0.         ELSM4(2)=0.         ELSM4(2)=0.         ELSM4(2)=0.         EIG(2)=0.         EIG(2)=0.		EDA(1) - DF(1) + 1	
<pre>92 WRITELS;90 EDAT[];EDAT[]; 98 FORMAT(IH, 'INITIAL DISPLACEMENTS',6X,F12.6,3X,F12.6/) WRITE(6,105) ME1,ME2,CCR,NDS 105 FORMAT(IH, 'MI=',D12.6,3X,'M2= ',D12.6,3X,'COR= ',D12.6, 13X,'NDS=',I3/) 72 IF(IBIG.NE.I) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM3(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. EISM3(2)=0. EIG(2)=0.</pre>	0.2	$\frac{CUALZI - DFILIULII}{ULIII - DALAI}$	
Y3       FURMAT(IH, 'TINITAL DISPLACEMENTS', 6X, F12.6, 3X, F12.67)         MRITE(6,105)       MEI, ME2, CCR, NDS         105       FORMAT(IH, 'MI=', D12.6, 3X, 'M2= ', D12.6, 3X, 'COR= ', D12.6,         13X, 'NDS=', 13/)       72         72       IF(IBIG.NE.1)         GAMA(1)=EIG(1)*ANFRQ         GAMA(2)=0.         CC2(1)=1.         CC2(2)=0.         ALFA(2)=0.         RMOM3(2)=0.         RMMM4(2)=0.         RSHR3(2)=0.         ELSM3(2)=0.         ELSM4(2)=0.         ELSM4(2)=0.         ELSM3(2)=0.         EIG(2)=0.	74	NRILELOFYOF EUALLIFEUALZF FORMATARE IINTTIN DICOLACENENTOR (N. ERD. (. D.) (.).	
<pre>With (16,105) Mit, M2, CUR, NDS 105 FDRMAT(1 H, 'M1=', D12.6, 3X, 'M2= ', D12.6, 3X, 'COR= ', D12.6, 13%, 'NDS=', I3/) 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMDM4(2)=0. RSHR3(2)=0. RSHR3(2)=0. ELSM4(2)=0. ELSM4(2)=0. EIG(2)=0.</pre>	70	FURMALITH , INTIAL DISPLACEMENTS', 6X, F12.6, 3X, F12.6/)	
105 FURMAINTH, MT=", D12.6, 3X, M2= ', D12.6, 3X, COR= ', D12.6, 13X, 'NDS=', I3/) 72 IF(IBIG.NE.I) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. ELSM3(2)=0. EIG(2)=0.	105	WRITE(6,10) MEI, MEZ, LUR, NUS	
13X, *NDS=', 137') 72 IF(IBIG.NE.1) GO TO 73 GAMA(1)=EIG(1)*ANFRQ GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. ELSM4(2)=0. EIG(2)=0.		FURMAILIH, MI=, D12.6, 3X, M2= , D12.6, 3X, COR= , D12.6,	
72       IF(IBIG.NE.1) GO TO 73         GAMA(1)=EIG(1)*ANFRQ         GAMA(2)=0.         CC2(1)=1.         CC2(2)=0.         ALFA(2)=0.         RMDM3(2)=0.         RSHR3(2)=0.         ELSM3(2)=0.         ELSM4(2)=0.         ELSM4(2)=0.         ELSM3(2)=0.         EIG(2)=0.	1	3X, 'NDS=', [3/)	
GAMA(1) = E [G(1) * ANFRQ GAMA(2) = 0. CC2(1) = 1. CC2(2) = 0. ALFA(2) = 0. RMOM3(2) = 0. RMOM4(2) = 0. RSHR3(2) = 0. ELSM3(2) = 0. ELSM4(2) = 0. ESHR3(2) = 0. EIG(2) = 0.		IF(IBIG.NE.1) GO TO 73	
GAMA(2)=0. CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM3(2)=0. ESHR3(2)=0. EIG(2)=0.		GAMA(1)=EIG(1)*ANFRQ	······································
CC2(1)=1. CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RSHR3(2)=0. RSHR4(2)=0. ELSM4(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.		GAMA(2)=0.	
CC2(2)=0. ALFA(2)=0. RMOM3(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.		CC2(1)=1.	erselle le este de la compa
AL FA(2)=0. RMOM3(2)=0. RMOM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.	·	CC2(2)=0.	
RMOM3(2)=0. RMDM4(2)=0. RSHR3(2)=0. ELSM3(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.		ALFA(2)=0.	-
RMOM4 (2) = 0. R SHR 3(2) = 0. ELSM3 (2) = 0. ELSM4 (2) = 0. ESHR 3(2) = 0. EIG(2) = 0.		RMOM3(2)=0.	
R SHR 3(2) =0. R SHR 4(2) =0. ELSM3(2) =0. ELSM4(2) =0. ESHR 3(2) =0. EIG(2)=0.		RMOM4(2)=0.	·····
RSHR4(2)=0. ELSM3(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.		RSHR3(2) = 0.	
ELSM3(2)=0. ELSM4(2)=0. ESHR3(2)=0. EIG(2)=0.		RSHR4(2)=0.	
ELSM4(2)=0. ESHR 3(2)=0. EIG(2)=0.		EISM3(2)=0.	
ELSHR 3(2)=0. EIG(2)=0.		FI SMG{2}=0	
EIG(2)=0.		ESH23/21=0	
		EJANJY2/-V.	
			•
	··		

ų

3-21
73 00 213 [=].2
713 WRITE(6,214)ALFA(1),[
214 FORMAT(1H + 'ALFA=', 012.6, 3X, 'KK=', I3)
TEITRIG FO.1) GO TO 109
DO = 104  KK = 1.2
MM=51
00.104.11 = 1.2
THESE COFFFICIENTS FIT THE BOOM TO INITIAL DISPLACEMENTS
COEDIS(LL+KK)=BPT(MM+KK)
AAILL.KKJ=COFDIS(LL,KK)
104 MM=MM+50
C. GIR IS USED TO INVERT THE COEFFICIENT MATRIX
<u> </u>
CALL GJR (AA, 2, BBB, CCC, PPP, QQQ, \$113)
D0 161 [=1,NR
SUMM=0.
DB = 160 J = 1 NR
160 SUMM=SUMM+AA(I,J)*EDA(J)
CC2(I) = SUMM
161 WRIFF(6,162)CC2(1),I
162 FORMAT (1H , 'CC2=', E12.6, 3X, 'I=', I3)
C MODAL SOLUTION FORM HERE
109 FF=0.
FEE=0.
RTORK=0.
DTORK=0.
TINT=0.
DLTT=1.0/(STP*GAMA(1))*2.*3.1416
WRITE(6,50)DLTT
50 FORMAT(1H , 'DLTT=', F10.5/)
SFAC=1./EIG(1)
WRITE(6,131) SFAC
131 FORMAT(1H , THE NO. OF RUT CYC PER FUND VIB CYC IS , FLU. 47)
DO 122 I=1, MAXT
T=DLTT*FLOAT(I-1)
DO 129 KK=1,2
$\frac{129}{129} TFAC(KK) = CC2(KK) + COS(GAMA(KK) + T)$
EDA2P1=0.
EDA3P1=0.
EDAE2=0.
EDAE3=0.
DD 119 KK=1,2
SUM2=(RMOM3(KK)-ALFA(KK)*RMOM4(KK))*TFAC(KK)
SUM $3 = (RSHR3(KK) - ALFA(KK) \neq RSHR4(KK)) \neq TFAC(KK)$
SUM6 = (ELSM3(KK) - ALFA(KK) * ELSM4(K()) * TFAC(KK)
SUM7=(ESHR3(KK)-ALFA(KK)*ESHR4(KK))*TFAL(KK)
EDAE2=EDAE2+SUM6

EDA	3=EDAE3-SUM7
EDA2	P1 = EDA2P1 + SUM2
119 EDA	
RIUF	$K = EDA2PI - SIU \neq EDA3PI$
AVT*	= IRTORK+DTORK)/2.
DTOR	K=RTORK
	-NE-1) GO TO 134
ΔΥΤΚ	
124 111	
134 1101	-IINITAVIK+DLII/ANFRQ
	360.*SFAC*FE0AT(I-1)/STP
IF(F	EE-360.)140,140,117
	F+1.
- FEF=	FFF-360-
140 TE(1	
215 FURM	AILLH ,'TIME IN SEC',F9.3,3X,FEE=",F9.4,3X, NROT=",F9.4/)
WRIT	E(6+130)EDA2P1+EDAE2+EDA3P1+EDAE3
130 FORM	AT(1H , 'ELAS RMOM', D12.6, 3X, 'TIP MDM'.E12.6.3X.
	FAR=1.012.6.3X.1TTP SHEAR1.E12.6/1
WRIT	
41 FURM	A(11H), 1/SURT(LAM) # INTEGRAL(M#DL11) = (, E12.677)
44 DU L	11 LL=1,101,50
SUM	= 0.
DO 1	12 KK=1,2
MODE	$=$ BPT(11,KK) $\neq$ T FAC(KK)
112 SIIM=	SUM+ MODE
IFUI	• EQ • 17 50 10 114
₩ 1F(1	VAR.EQ.11 GO TO III
<u> </u>	E(6,115) SUM,LL
💼 III CONT	INUE
115 FORM	AT ( ) H • * ADA * • E 3 2 • 6 • 3 X • * STATION * • [ 3 )
122 CUNT	INUE
121 FORM	AT(1H + 'ENDISP', F12.6, 3X, 'TINT', E12.6, 3X, 'T', F9.3, 3X, 'I', I3)
120 WRIT	E(6,568)
568 FORM	AT(1H /)
ĜO T	
WRII	E(0,116) SAM
116 FURM	AT(IH, GJR_DUMPED_SAM=1,I3)
100 CONT	INUE
🕳 GO T	0 42
42 RFT	URN
END	
LARUS IN =	316, CARDS UUT = 0, PAGES UUT = 6
-	
	·
-	
-	
	a a a a a a a a a a a a a a a a a a a

つわりいろん しんしんじん しんしょう しんしょう しんしょう INTEGER N/P(N)/Q(N) 3-23 DIMENSION A(N+N)+B(N)+C(A) EPS=1.*(10.)**-7 101 EPS=EPS/10. IF(2PS+LT+10+**-15) GO TU 102 00 35 K=1+N PIVO1=0. 00 5 I=K.N 00 5 J=KIN IF(ASS(A(I,J)).LE.ABS(PIVOT)) GO TU 5 PIV01=A(I+J) P(K)=1 0(K)=J 5 CONTINUE IF (ABS(PIVOT).LE.EPS)G0 TO 101 IF(P(K)-K)6+10+6 6 00 7 J=1,N £=9(K) Z=A(L+J)  $A(L_{IJ}) = A(K_{IJ})$ 7 A(K+J)=Z 10 IF(Q(K)~K)11+15+11 11 00 12 I=1,N 1 -L=0(K) - - -2=A(1)L) A(I+L)=A(I+K)A(IIK)=Z 12 00 25 J=1/N 15 1F(U-X)20+16+20 B(J)=1./PIVOT 16 C(J)=1+ 60 10 22 20 B(J)=-A(K+J)/PIVOT  $C(J) = \lambda(J,K)$ 22 A(K+J)=0. A(J)K)=0. 25 CONTINUE 00 30 1=1+N 00 30 J=1+N 30  $A(I \cdot J) = A(I \cdot J) + C(I) * B(J)$ 35 CONTINUE 00 50 M=1 / N K=N=3+1 IF(P(K)-K)40,45,40 40 00.43 1=1+N F=5(K) Z=A(1+L)  $A(I_{I}L) = A(I_{I}K)$ A(I+K)=Z 43 CONTINUE 45 IF(U(K)-K)46,50,46 46 00 48 JEINN L=4(K) Z=A(L+J)  $A(L_{J}) = A(K_{J})$ A(K+J)=Z 48 CONTINUE 50 CONTINUE RETURN 102 WRITE(6+103) 103 FORMATIZIAO GUR COULU NOT DO IT) RETURN 7 ENI)

### CHAPTER 4

## Simulation of the Motion of The Central Rigid

### Body and its Elastic Appendages

#### 4.1 Introduction

In the previous chapters, the problem of determining the modal shapes and frequencies of the rotating structure was examined, and applications were studied in which these modes are utilized.

In the present chapter, equations of motion are written for the generalized coordinates representing the flexible structure and for the angular rates of the central rigid body. A simulation of the spacecraft motion is then possible. Various cases of simulation are examined, and the effect of modal truncation and of nonlinear terms is discussed.

4.2 Modal Equations of Motion: equatorial vibrations (Case "E", for equatorial)

4.2.1 Constancy of  $\vec{H}$ .

In what follows, it is assumed that the motion of the center of mass of the spacecraft is negligible (or that only antisymmetric motions of the booms are considered) and that the "limited approach" is taken^[4-1], i.e. the motion of the spacecraft's center of mass in inertial space can be determined independently of the attitude.

If over the time of interest, i.e. a few tens of spin periods or so, the torque-impulse due to all environmental attitude perturbing torques (gravity-gradient, solar pressure, magnetic, etc.) can be considered as negligible, then very sensibly the moment of momentum  $\dot{\vec{H}}$  about the center of mass remains constant:

 $\vec{H} = \vec{H}(o) = \text{constant vector}$  (4.2-1) in which  $\vec{H}$  is the value of  $\vec{H}$  at t = 0.

4.2.2 Representation of the elastic appendages

Consider a particle of a boom, having non-dimensional abscissa  $\xi$ , located along axis +x in its undeflected position. Its elastic displacement,  $\eta = \frac{w(x)}{l}$ , is represented in terms of the modes  $\Phi_j(\xi = \frac{x}{l})$ 

$$\eta_{\pm x} = \sum_{j=1}^{n} q_j(\overline{k}) \Phi_j(\xi) \qquad (4.2-2)$$

in which the q_j are non-dimensional amplitudes, dependent on the nondimensional time  $\bar{t} = \omega_s t$ , with  $\omega_s = \frac{2\pi}{\tau_s}$  the angular spin rate of the satellite in its nominal motion. N is some positive integer, which specifies the number of terms after which the series is truncated.

We recall that the  $\Phi_j(\xi)$  are orthogonal modes, normalized to unit deflection at the boom's tip, so that

$$\int \Phi_{j}(\xi) \Phi_{k}(\xi) = 0 \qquad j \neq k \qquad (4.2-3)$$
boom

$$\underset{\text{boom}}{\text{m}} = \int_{j} \Phi_{j}^{2}(\xi) d\xi > 0 \qquad j = k \qquad (4.2-4)$$

$$\xi_1 = \xi + \xi_0;$$

both m_{1,j}, m_{2,j} are assumed to be known quantities, determined as in Chapter 2.

### 4.2.3 Kinetic energy contained in the elastic structure

 $\vec{v}_{m} = \vec{\omega} \Lambda(\vec{r}_{m,0} + \vec{\delta}) + \vec{\delta}$ 

The total kinetic energy, T, is made out of two parts: one is independent of the generalized coordinates  $q_j$  and the other one,  $T_1$ , depends on the  $q_j$  and appears as the integral of a density  $\hat{\mathcal{P}}_{T_1}$ . More specifically (Fig. 4.1)

$$T = \sum_{\substack{n \\ m}} \sum_{m} \frac{\vec{v}^2}{2}$$
 (4.2-6)

with

in which  $\vec{\omega}$  is the instantaneous rotation,  $\vec{r}_{m,0}$  is the vector coordinate to m in its reference position and  $\vec{\delta}$  is the elastic displacement from  $\vec{r}_{m,0}$ .

Computing T,  

$$T = \sum_{\substack{Ri(12) + Flexible \\ f \rho R rs}} \frac{m}{2} \left( \vec{\omega} \wedge \vec{\pi}_{m,o} \right)^{2} + \sum_{\substack{Flexible \\ m \rho \rangle}} \frac{1}{2} m \left[ \left( \vec{\omega} \wedge \vec{\delta} \right)^{2} + 2 \left( \vec{\omega} \wedge \vec{\pi}_{m,o} \right) \cdot \left( \vec{\omega} \wedge \vec{\delta} \right) \right]$$

$$F_{\rho R rs} = \frac{1}{2} \left( \vec{\omega} \wedge \vec{\pi}_{m,o} \right) \cdot \vec{\delta} + 2 \left( \vec{\omega} \wedge \vec{\delta} \right) \cdot \vec{\delta} + \vec{\delta}^{2} \right]$$

Now, for small linear displacements of the elastic parts

$$\vec{\delta} = \vec{w} \vec{1}_{y}$$

$$\vec{\omega} \Lambda \vec{\delta} = \begin{pmatrix} -w\omega_{z} \\ 0 \\ w\omega_{x} \end{pmatrix}$$

Thus

$$\frac{\sum}{ALL ELASTIC} \frac{1}{2} m \left( \vec{\omega} \wedge \vec{\delta} \right)^2 = \sum \frac{1}{2} m \left( \omega_2^2 + \omega_x^2 \right) W^2$$
(4.2-9)
PRPTS

(4.2-7)

If  $\omega_x$ ,  $\omega_y$ , w are assumed to be of first order of smallness, (4.2-9) is rewritten

$$\sum \frac{1}{2} w^{2} (\omega_{z}^{2}) + 0 (\epsilon^{4}) = \sum \frac{1}{2} w^{2} \omega_{5}^{2} + 0 (\epsilon^{3})$$
(4.2-10)

in which  $\omega_s$  is the (constant) nominal value of the spin rate.

$$\overrightarrow{\omega} \land \overrightarrow{r}_{m,0} = \begin{pmatrix} 0 \\ \omega_z x_1 \\ -\omega_y x_1 \end{pmatrix}$$

Then

$$\frac{1}{2} \sum_{A \downarrow i} 2m \left(\vec{\omega} \wedge \vec{\pi}_{M,0}\right) \cdot \left(\vec{\omega} \wedge \vec{\delta}\right) = 2m \left[0 \quad \omega_z \times -\omega_y \times\right] \begin{bmatrix} -w_{\omega_z} \\ 0 \\ W \omega_z \end{bmatrix} = 0(\vec{\epsilon})(4\cdot 2-11)$$

Furthermore,

$$\sum_{\substack{A \mid L \\ z \in L, \ fARTS}} \frac{1}{2} m \tilde{\delta}^2 = \sum_{\substack{z \in L \\ z \in L}} m \tilde{W}^2 \qquad (4.2-12)$$

and

$$\frac{1}{2} \sum_{\substack{A \downarrow \downarrow \\ EL, FARTS}} 2m \left( \vec{\omega} \wedge \vec{\pi}_{m,o} \right) \cdot \vec{\delta} = \sum_{\substack{w \in \mathcal{X}_{T}}} m \omega_{x} \cdot \vec{x}_{1} \cdot \vec{W}$$
(4.2-13)

Finally,

$$\frac{1}{2} \sum_{ALL} 2m(\vec{\omega} \wedge \vec{\delta}), \vec{\delta} = 0 \qquad (4.2-14)$$

$$EL, PRRIS$$

Introducing expressions (4.8-10) through (4.2-14) in Equations (4.2-8), we obtain

$$T = T_{o} + \frac{1}{2} \int_{0}^{2} e^{ds} (w^{2} \omega_{s}^{2} + \dot{\omega}^{2} + 2 \omega_{z} x_{1} \dot{w}) + 0(\varepsilon^{3}) \qquad (4.2-15)$$

Since the element of curvilinear abscissa, ds, is related to dx by

$$ds^{2} = dx^{2} + dy^{2} = dx^{2} \left(1 + \left(\frac{\partial \dot{w}}{\partial x}\right)^{2}\right)$$

 $\operatorname{or}$ 

$$ds = dx (1 + (\frac{\partial W}{\partial x})^2)^{1/2}$$

$$= dx (1 + \frac{1}{2} (\frac{\partial w}{\partial x})^2 + \dots)$$

and

$$dx = ds(1 - \frac{1}{2}(\frac{\partial w}{\partial x})^2...)$$

Therefore, consistent with the order of magnitudes retained explicitly, (42-15)can be rewritten with x instead of s as the integration variable,

$$T = T_{o} + \frac{1}{2} \int_{0}^{\ell} \rho \, dx (w^{2} \omega_{s} + \dot{\omega}^{2} + 2 \omega_{z} x_{1} \dot{w}) + 0(\varepsilon^{3}) \quad (4.2-16)$$

The "flexible body" part of T., however, has to include a correction term, since for terms involving

$$\int_{0}^{\ell} x^{2} ds = \int_{0}^{\ell} \sup_{x^{2} dx} + \frac{1}{2} \int_{0}^{\ell} \sup_{x^{2} (\frac{\partial w}{\partial x})^{2}} dx$$

i.e. with an integrand of zero-th order of magnitude, we can write

$$\int_{0}^{l} \pi^{2} ds = \int_{0}^{l} \frac{u_{\text{Her}}}{\pi^{2}} \pi^{2} dx + \frac{1}{2} \int_{0}^{l} \frac{u_{\text{Her}}}{\pi^{2}} \left(\frac{\partial W}{\partial x}\right)^{2} dx \quad (4.2-17)$$

Neglecting terms of 3rd order of smallness,

$$\int_{0}^{l} x^{2} ds = \int_{0}^{l} x^{2} dx - l^{2} \left(l - l_{upper}\right) + \frac{1}{2} \int_{0}^{l} x^{2} \left(\frac{\partial w}{\partial x}\right)^{2} dx^{(4-2-18)}$$

and using (4.2-17),

$$\int_{0}^{l} x^{2} ds = \int_{0}^{l} x^{2} dx - \frac{1}{2} \int_{0}^{l} (l^{2} - x^{2}) \left(\frac{\partial w}{\partial x}\right)^{2} dx \qquad (4.2-19)$$

Now, if the integrand is

$$x_1^2 = (x_o + x)^2 = x^2 + 2x_o x + x_o^2$$

we obtain

$$\int_{0}^{l} x_{o}^{2} ds = x_{o}^{2} l = x_{o}^{2} \int_{0}^{l} dx$$
$$\int_{0}^{l} x ds = \int_{0}^{l} u dx + \frac{1}{2} \int_{0}^{l} u dx = \left(\frac{\partial w}{\partial x}\right)^{2} dx$$

or neglecting terms of third order of smallness

$$\int_{0}^{\ell} x \, ds = \int_{0}^{\ell} x \, dx - l(l - lupper) + \frac{1}{2} \int_{0}^{\ell} x \left(\frac{\partial W}{\partial x}\right)^{2} \, dx$$
$$= \int_{0}^{\ell} x \, dx - \frac{1}{2} \int_{0}^{\ell} (l - x) \left(\frac{\partial W}{\partial x}\right)^{2} \, dx$$

Finally,

$$\int_{0}^{l} x_{i}^{2} ds = \int_{0}^{l} x_{i}^{2} dx - \frac{1}{2} \int_{0}^{l} \left[ \left( l^{2} - x^{2} \right) + 2 x_{0} \left( l - x \right) \right] \left( \frac{\partial w}{\partial x} \right)^{2} dx$$

Therefore, T_o is rewritten, with  $\Phi(\stackrel{\rightarrow}{\omega})$  the inertia dyodic of the rigidified, undeflected total reference body as

$$I_{0} = \frac{1}{2} \vec{\omega} \cdot \vec{F}(\vec{\omega}) - \frac{1}{2} \int_{0}^{l} e dx \frac{1}{2} \left[ (l^{2} - z^{2}) + 2x_{0}(l-x) \right] \left[ \frac{\partial w}{\partial x} \right]^{2} dx \quad (4.2-20)$$

Collecting (4.2-16) and (4.2-20)

$$T = \frac{1}{2} \vec{w} \cdot \vec{P}(\vec{w}) + \frac{1}{2} \int_{0}^{l} \rho \, dx \, \left( w^{2} \omega_{3} + \dot{w}^{2} + 2 \omega_{z} x_{i} \, \dot{w} - \frac{1}{2} \left[ \left( l^{2} - x^{2} \right) + 2 x_{o} \left( l - x \right) \right] \left( \frac{\partial w}{\partial x} \right)^{2} \right) \, dx + O(\epsilon^{3})$$

$$(4.2-21).$$

# 4.2.4 Potential energy of the elastic structure

For pure flexure in the (x,y) plane, the potential energy is given by

$$V = \frac{EI}{2} \int_{0}^{\lambda} \left(\frac{\partial w}{\partial x^{2}}\right)^{2} dx + O(\varepsilon^{3})$$

where it is legitimate to use x, instead of s, as the integration variable, to the order of the terms explicitly retained.

4.2.5 Equations of motion for the elastic modes, equatorial vibrations. 4.2.5.1 Equation for the jth coordinate,  $q_4$ 

At this point we introduce the modal representation (4.1-2). For the sake of simplicity, let the bars on  $\overline{t} = [\frac{t}{1/\omega_s}]$ , be dropped. Furthermore, let the energies be non-dimensionalized by

 $\rho \ell^3 \omega_s^2$  and the lengths by  $\ell$ Although  $\overline{\omega}_s$ , non-dimensional value of the nominal satellite spin-rate,

where it is legitimate to use x, instead of s, as the integration

is 1, we shall for clarity retain it in the equations.

In non-dimensional form, with 'designating derivatives with respect to  $\bar{t}$ , and  $\xi_1 = \xi + \xi_0$ ,

$$\overline{T}_{i} = \frac{1}{\ell^{1} \omega_{s}^{2}} \left(\overline{T}_{i} - \frac{1}{2} \overline{\omega}_{s} \overline{\Psi}(\overline{\omega})\right) = \frac{1}{2} \int_{\theta \text{ from}} (\eta^{2} + \eta^{2} \overline{\omega}_{s}^{2} + 2\overline{\omega}_{z} \eta \overline{\xi}_{i}) \qquad (4.2-22)$$

$$- \frac{1}{2} \left[ (1 - \xi^{2}) + 2\overline{\xi}_{o} (1 - \xi) \right] \left(\frac{\partial \eta}{\partial \xi}\right)^{2} d\xi$$

$$\overline{V} = \frac{1}{2 \overline{\lambda}} \int_{\theta \text{ from}} \left[ \frac{\partial^{2} \eta}{\partial \xi^{2}} \right]^{2} d\xi \qquad (4.2-23)$$

with  $\overline{\lambda} = \frac{\rho \ell^4}{EI} \omega_s^2$ , as in Chapter 2.

Now let, with t the non-dimensional time, N

$$\eta = \sum_{j=1}^{\infty} q_j(t) \, \bar{\Phi}_j(\xi)$$

Then

$$\dot{n} = \sum_{\substack{j=1 \ k=1}^{N}}^{N} \hat{q}_{j} \hat{\Psi}_{j}$$

$$n^{2} = \sum_{\substack{j=1 \ k=1}^{N}}^{N} \sum_{\substack{k=1 \ k=1}}^{N} q_{j} q_{k} \hat{\Psi}_{j} \hat{\Psi}_{k}$$

$$\dot{n}^{2} = \sum_{\substack{j=1 \ k=1}}^{N} \sum_{\substack{k=1 \ k=1}}^{N} q_{j} q_{k} \hat{\Psi}_{j} \hat{\Psi}_{k}$$

$$\frac{\partial n}{\partial \xi} = \sum_{\substack{j=1 \ k=1}}^{N} q_{j} \frac{d \hat{\Psi}_{j}}{d \xi}$$

$$(\frac{\partial n}{\partial \xi})^{2} = \sum_{\substack{j=1 \ k=1}}^{N} \frac{N}{\beta_{j}} q_{j} q_{k} \frac{d \hat{\Psi}_{j}}{d \xi} \frac{d \hat{\Psi}_{k}}{d \xi} \frac{d \hat{\Psi}_{k}}{d \xi}$$
Similarly,
$$(\frac{\partial^{2} n}{\partial \xi^{2}})^{2} = \sum_{\substack{j=1 \ k=1}}^{N} \frac{N}{\beta_{j}} q_{k} \frac{d^{2} \hat{\Psi}_{j}}{d \xi^{2}} \frac{d^{2} \hat{\Psi}_{k}}{d \xi^{2}}$$

4-9

Thus, the Lagrangian function is  $\overline{\mathcal{L}} = \frac{1}{2} \, \overline{\omega} \cdot \overline{\mathcal{P}}(\overline{\omega}) + \overline{T}_{i} - \overline{V} = \frac{1}{2} \int_{k \text{ com}}^{N} \sum_{k=1}^{N} \left[ \dot{q}_{j} \dot{q}_{k} \overline{\mathcal{P}}_{k} + \overline{\omega}_{s}^{2} \dot{q}_{j} \dot{q}_{k} \overline{\mathcal{P}}_{k} + 2 \omega_{z} \dot{q}_{j} \xi_{i} \overline{\mathcal{P}}_{i} \right]$   $- \frac{1}{2} \left[ (1 - \xi^{2}) + 2 \xi_{o} (1 - \xi) \right] q_{j} q_{k} \frac{d\phi_{j}}{d\xi} \frac{d\phi_{k}}{d\xi} - \frac{1}{\overline{\lambda}} q_{j} q_{k} \frac{d^{2}\phi_{i}}{d\xi^{2}} \frac{d^{2}\phi_{i}}{d\xi^{2}} \frac{d\xi}{d\xi^{2}} d\xi^{2} (4 \cdot 2 - 24)$ 

Now, for any i = 1, 2...,

$$\frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} \right) - \frac{\partial \mathcal{L}}{\partial \dot{q}_{i}} = 0 \qquad (4.2-25)$$

We recall that, as in (4.2-3), (4.2-4), (4.2-5)

$$\int \phi_{j} \phi_{k} d\xi = 0 \quad (j \neq =k)$$
  
boom  
$$\int \phi_{j}^{2} d\xi \equiv m_{1,j}$$
  
boom  
$$\int \phi_{j} \xi_{1} d\xi \equiv m_{2,j}$$

the  $\phi_{j}$  having been previously normalized to unit deflection at the boom's tip. Using these relations, and (4.2-25) for i = j, after defining

$$a_{jk} = a_{kj} \det_{ef} \frac{1}{2} \int_{boom} [(1-\xi^2) + 2\xi_0(1-\xi)] \frac{d\Phi_j}{\partial \xi} \frac{d\Phi_k}{d\xi} d\xi \quad (4.2-26)$$

$$b_{jk} = b_{kj} d\bar{e} \int_{boom} \frac{d^2 \phi_i}{d\xi^2} \frac{d^2 \phi_k}{d\xi^2} d\xi \qquad (4.2-27)$$

we obtain, for the jth modal coordinate

$$m_{1,j}q_{j} - m_{1,j}\overline{\omega_{5}}^{2}q_{j} + \sum_{k=1}^{N}a_{jk}q_{k} + \frac{1}{\lambda}\sum_{k=1}^{N}b_{jk}q_{k} = -m_{2,j}\frac{1}{\omega_{z}}$$
 (4.2-28)

We now evaluate the coefficient of  $q_i$  in (4.2-28), say  $c_j$ ,

$$c_{j} = \frac{1}{2} \sum_{k=1}^{N} b_{jk} + \sum_{k=1}^{N} a_{jk} - m_{jj} \sum_{s}^{2} (4.2-29)$$

From Equation (2.2-23), written in terms of a jk, b jk,

$$\frac{1}{\overline{\lambda}} \begin{array}{l} b_{jk} + a_{jk} = 0 \\ \frac{1}{\overline{\lambda}} \begin{array}{l} b_{jk} + a_{jk} = m_{i,j} \quad (\overline{\omega_j}^2 + \overline{\omega_s}^2) \\ \frac{1}{\overline{\lambda}} \begin{array}{l} b_{jk} + a_{jk} = m_{i,j} \quad (\overline{\omega_j}^2 + \overline{\omega_s}^2) \\ \frac{1}{\overline{\lambda}} \begin{array}{l} b_{jk} + a_{jk} = m_{i,j} \end{array}$$

Thus (4.2-28) takes the simple form

$$m_{1,j}q_{j} + m_{1,j}\omega_{j}^{-2}q_{j} = \frac{m_{2,j}}{m_{l,j}}\omega_{z}$$

or

$$\ddot{q}_{j} + \bar{\omega}_{j}^{2} q_{j} = -\frac{m_{2,j}}{m_{1,j}} \dot{\omega}_{z}$$
 (4.2-30)

A few remarks should be made regarding (4.2-30) First of all, the modal equations for the jth coordinate reduce to a harmonic motion, in the case where  $\overline{w}_z$  is constant. Second, as has been seen in Chapter 3, the "driving amplitude", measured by the non-dimensional ratio

is strongly a function of  $\xi_0$ , and to a lesser extent of  $\overline{\lambda}$ , Etkin's number. Thirdly, it should be noted that it is only because, for the sake of consistency, the difference of an integral in s (curvilinear abscissa) and x was carefully considered when the integrand
was a quantity of zeroth order (as detailed above), that term

could finally be cancelled in Equation (4.2-30). Failure to make this distinction leads to having this extra term still present in the final equation and in order to "fall back" on (4.2-30), one has to introduce, rather belatedly, an additional term due to a "rotational potential" [4-2]. Finally, if linear distributed damping is introduced, Equation (4.2-30) takes the form

$$\vec{q}_{j} + 2 \nu \vec{\omega}_{j} \vec{q}_{j} + \vec{\omega}_{j}^{2} \vec{q}_{j} = -\frac{m_{2,j}}{m_{1,j}} \vec{\omega}_{z}$$
 (4.2-31)

whose derivatives are taken with respect to non-dimensional time.

# 4.3 Modal Equations of Motion: meridional vibrations (Case "M", for meridional)

Without repeating in the same detail the explanations of Section 4.2, we now derive the modal equations in the case of motions parallel to axis-z (meridional vibrations). Only the relevant differences are underlined.

4.3.1 Constancy of H

In the absence of attitude perturbing torques, the torque-free motion has the integral.

$$\vec{H} = \vec{H}_{o}$$
(4.3-1)

where  $\vec{H}_{o}$  is the value of the moment of momentum at t = 0.

### 4.3.2 Representation of the elastic appendages

The displacement  $\eta(\mathbf{x}) = \frac{w(\mathbf{x})}{l}$  of an element of boom located at  $\xi = \frac{\mathbf{x}}{l}$  of axis +x in terms of the modes  $\Phi_j(\xi)$  for <u>meridional</u> motions is

$$\eta_{\pm \mathbf{x}} = \sum_{j=1}^{N} q_{j}(\bar{k}) \Phi_{j}(\bar{k}) \qquad (4.3-2)$$

Again q are non-dimensional amplitudes, functions of the mondimensional time  $\overline{t} = \frac{t}{1/\omega_s}$ . N is positive integer specifying the number of terms after which the series is truncated.

The "meridional" modes are orthogonal

$$\int_{\text{boom}} \phi_j(\xi) \phi_k(\xi) d\xi = 0 \quad j \neq k$$
(4.3-3)

and we have defined

$$m_{1,j} \equiv \int_{\text{boom}} \phi_j^2(\xi) d\xi > 0 \qquad (4.3-4)$$

$$m_{2,j} \equiv \int_{\text{boom}} \xi_1 \phi_j(\xi) d\xi \text{ with } \xi_1 = \xi + \xi_0 \quad (4.3-5)$$

These quantities are known as functions of  $\overline{\lambda}$ , Etkin's number, and  $\xi_{\circ} = \frac{\mathbf{x}_{\circ}}{\ell}$ , hub non-dimensional radius.

4.3.3 Kinetic energy contained in the elastic structure

With the same notations as in Section 4.2.3,

 $T = T_{\circ}$  (rigid part + flexible part) +  $T_{1}$ 

Now

$$\vec{\delta} = w \vec{1}_z$$

$$\vec{\omega} \wedge \vec{\delta} = \begin{pmatrix} \omega_{y} \vec{w} \\ -\omega_{z} \vec{w} \\ 0 \end{pmatrix}$$

and

$$\sum_{\substack{q \perp E I, \frac{1}{2} \\ PRR15}} \frac{1}{2} m \left( \vec{\omega} \wedge \vec{\delta} \right)^2 = \sum_{\substack{q \perp E I, \frac{1}{2} \\ PRR15}} m W^2 \left( \omega_x^2 + \omega_y^2 \right) = O(e^4) (4.3-6)$$

Let 
$$x_1 = x + x_0$$
. Then  
 $\vec{\omega} \wedge \vec{r}_{m,0} = \begin{bmatrix} 0 \\ \omega_z x_1 \\ -\omega_y x_1 \end{bmatrix}$ 

The next terms are

$$\frac{1}{2} \sum_{\substack{A \perp l \\ EL, PARTS}} 2m(\vec{\omega} \wedge \vec{\pi}_{m,0}) \cdot (\vec{\omega} \wedge \vec{\delta}) = \frac{1}{2} \sum_{\substack{a \perp l \\ EL, PARTS}} \sum_{\substack{a \perp l \\ A \perp EL}} \frac{1}{2} m \vec{\delta}^{2} = \sum_{\substack{a \perp l \\ a \end{pmatrix}} \frac{1}{2} m \vec{W}^{2}$$

$$(4.3-8)$$

$$\frac{1}{2} \sum_{ALL} 2m(\vec{\omega} \wedge \vec{n}_{m,0}) \cdot \vec{\delta} = -\frac{1}{2} \sum_{m} 2m \omega_{y} \mathcal{R}_{1} \vec{w} \qquad (4.3-9)$$

$$\frac{1}{2} \sum_{\substack{ALL\\EL, PBRTS}} 2m \left( \vec{\omega} \wedge \vec{\delta} \right) \cdot \vec{\delta} = 0$$
(4.3-10)

Introducing expressions (4.3-6) through (4.3-10) into (4.2-8), and since we can substitute dx for ds when the integrand is of first order of smallness, or smaller,

$$T = \frac{1}{2} \frac{\partial \omega}{\partial t} \frac{1}{2} \int_{0}^{\ell} \rho \, d\mathbf{x} (\dot{\mathbf{w}}^{2} - 2\omega_{s}\omega_{x}x_{1}w - 2\omega_{y}x_{1}\dot{w} - \frac{1}{2}[(\ell^{2} - \mathbf{x}^{2}) + 2\mathbf{x}_{s}(\ell - \mathbf{x})] \frac{\partial w}{\partial \mathbf{x}}^{2} + 0(\epsilon^{3})$$

$$(4.3-12)$$

# 4.3.4 Potential energy of the elastic structure

For pure flexure in the (x,z) plane, the potential energy is

$$V = \frac{EI}{2} \int_{0}^{\ell} \left(\frac{\partial^2 w}{\partial x^2}\right)^2 dx + O(\varepsilon^3)$$

Again, it is legitimate to use x, instead of s, as the integration, to the order of the terms explicitly retained.

4.3.5 Equations of motion: elastic modes, meridional vibrations 5.3.5.1 Equation for the jth coordinate, q

The kinetic energy, T, and potential energy, V, are non-dimensionalized by the quantity  $\rho \ell^3 \omega_s^2$ . Note that, although  $\overline{\omega}_s$ , nondimensional value of the nominal satellite spin rate, is 1, it is retained as " $\overline{\omega}_s$ " in the equations. Let  $T_{rb} = \frac{1}{2} \vec{\omega} \cdot \phi(\vec{\omega})$ .

$$\begin{split} \overline{T} &\equiv \frac{T}{\ell^{1} \omega_{s}^{2}} = \frac{T_{rb}}{\ell^{1} \omega_{s}^{2}} + \frac{i}{2} \int_{loom} \left( \frac{\eta^{2}}{2} z \overline{\omega_{s}} \overline{\omega_{x}} \xi, \eta - 2 \omega_{y} \xi, \eta - \frac{i}{2} \left[ \left( 1 - \xi^{2} \right) \right. \\ &+ 2 \xi_{o} \left( 1 - \xi \right) \left[ \left( \frac{\partial \eta}{\partial \xi} \right)^{2} \right) d\xi \\ \overline{V} &\equiv \frac{V}{\ell^{1} \omega_{s}^{2}} = \frac{1}{2 \overline{\lambda}} \int_{loom} \left( \frac{\partial^{2} \eta}{\partial \xi^{2}} \right)^{2} d\xi \end{split}$$

With the same substitutions as in (4.2), we obtain the Lagrangian

$$\begin{split} \overline{\mathcal{L}} &= \frac{7_{rh}}{\rho^{13}\omega_{5}^{2}} + \frac{1}{2}\int_{0}^{t}\frac{\Sigma}{J^{=1}} \sum_{k=1}^{n} \left[ \dot{q}_{j} \dot{q}_{k} \frac{\Phi}{J} \frac{\Phi}{k} - 2\overline{\omega_{5}} \overline{\omega_{x}} \frac{\xi}{\xi}_{i} q_{j} \frac{\Phi}{J} - 2\overline{\omega_{y}} \frac{\xi}{\xi}_{i} \dot{q}_{j} \frac{\Phi}{J} \right] \\ &- \frac{1}{2}\left[ (1-\xi^{2}) + 2 \frac{\xi}{5}_{0} \left( 1-\xi \right) \right] \frac{\eta}{J} \frac{\eta}{k} \frac{d}{d\xi} \frac{\Phi_{i}}{d\xi} \frac{d}{\xi} \frac{d}{\xi} - \frac{1}{n} \frac{\eta}{J} \frac{\eta}{k} \frac{d^{2} \frac{\Phi}{J}}{\frac{d\xi^{2}}{\xi^{2}}} \frac{d^{2} \frac{\Phi}{J}}{\frac{d\xi^{2}}{\xi^{2}}} \right] d\xi \end{split}$$

 $No_W$  define

$$a_{jk} = a_{kj} \quad def \quad \frac{1}{2} \int_{boom} [(1-\xi^2) + 2\xi_0(1-\xi)] \frac{d\phi_j}{d\xi} \frac{d\phi_k}{d\xi} d\xi$$

$$b_{jk} = b_{kj} d\bar{\bar{e}}f \int_{boom} \frac{d^2\phi_j}{d\xi^2} \frac{d^2\phi_k}{d\xi^2} d\xi$$

For modal coordinate  $q_j$ , the Lagrangian equation is, with Equations (4.3-3) through (4.3-5),

$$\mathbf{m}_{1,j} \ddot{\mathbf{q}}_{j} + \frac{1}{\lambda} \sum_{k=1}^{N} \mathbf{b}_{jk} + \sum_{k=1}^{N} \mathbf{a}_{jk} = + \mathbf{m}_{2,j} (\dot{\bar{\omega}}_{y} - \bar{\omega}_{s} \bar{\omega}_{x}) \quad (4.3-14)$$

4.3.5.2 Evaluation of the coefficient of  $q_i$ 

From Equations (2.3-11,12) , Section 2.23, we obtain

$$\frac{1}{\lambda} b_{jk} + a_{jk} = 0 \qquad j \neq k$$

$$\frac{1}{\lambda} b_{jj} + a_{jj} = \bar{\omega}_{j}^{2} m_{1,j} \qquad j = k$$

Thus Equation (4.3-14) can be rewritten in the form

$$\ddot{q}_{j} + \bar{\omega}_{j}^{2} q_{j} = \frac{m_{2,j}}{m_{1,j}} (\dot{\bar{\omega}}_{y} - \bar{\omega}_{s} \tilde{\bar{\omega}}_{x})$$
(4.3-15)

in which  $\bar{\omega}_j$  is the jth eigenfrequency of meridional vibrations, a function of  $\bar{\lambda}$  and  $\xi_{\circ}.$ 

Again, if linear distributed damping is introduced, the equation of motion becomes

$$\ddot{q}_{j} + 2\nu \bar{\omega}_{j} \dot{q}_{j} + \bar{\omega}_{j}^{2} q_{j} = \frac{m_{2,j}}{m_{1,j}} (\bar{\omega}_{y} - \bar{\omega}_{s} \bar{\omega}_{x})$$
 (4.3-16)

 $\frac{m_2,j}{m_1,j}$  thus appears as a "driving amplitude". As seen in Chapter 2, it  $m_1,j$  is also strongly dependent on  $\xi_0$ , and to a lesser extent on Etkin's number  $\overline{\lambda}$ .

4.4 Equations for the rates: equatorial vibrations (Case "E") `

The equation for the time derivatives of the rates are now derived from the constancy of the moment of momentum for the torquefree motion, as given in (4.2-1).

Since, about the center of mass,  $\vec{H} = \vec{H}(0) = \int \vec{r} \wedge \vec{r} dm$   $\vec{H} = \int \vec{r} \wedge \vec{r} dm$ Computing, with the same notations as in 4.2 and 4.3,  $\vec{r} = \vec{\delta} + \vec{\omega} \wedge (\vec{r}_{m,0} + \vec{\delta})$  $\vec{r} = \vec{\delta} + 2\vec{\omega} \wedge \vec{\delta} + \vec{\omega} \wedge \vec{r}_{m,0} + \vec{\omega} \wedge \vec{\delta} + \vec{\omega} \wedge (\vec{\omega}_{s} \wedge \vec{r}_{m,0}) + \vec{\omega} \wedge (\vec{\omega} \wedge \vec{\delta})$ 

Let  $\hat{\vec{H}}$  be divided between a part "relating to  $\vec{r}_{m,0}$ ",  $\vec{H}_{I}$ , and a part relating to  $\vec{\delta}$ ,  $\dot{\vec{H}}_{II}$ 

$$\dot{H} = \dot{H}_{I} + \dot{H}_{II}$$

and

$$\dot{\vec{H}}_{I} = \int_{\text{boom}} \vec{\vec{r}}_{m,0} \Lambda(\vec{\omega} \wedge \vec{\vec{r}}_{m,0} + \vec{\omega} \Lambda(\vec{\omega} \wedge \vec{\vec{r}}_{m,0})) ds \qquad (4.4-1)$$

$$\dot{\vec{H}}_{II} = \int_{\text{boom}} [\vec{\vec{r}} \wedge \{\vec{\delta} + 2\vec{\omega} \wedge \vec{\delta} + \vec{\omega} \wedge \vec{\delta} + \vec{\omega} \wedge (\vec{\omega} \wedge \vec{\delta})\} \qquad (4.4-2)$$

$$+\vec{\delta} \wedge (\vec{\omega} \wedge \vec{r}_{m,0}) + \vec{\delta} (\vec{\omega} \wedge (\vec{\omega} \wedge \vec{r}_{m,0}))]ds$$

Note that as has been seen in Section (4.3) and (4.3)

ds =  $dx(1 + \frac{1}{2}(\frac{\partial w}{\partial x})^2)$  + higher order terms (4.4-3)

in which the elastic displacement (along +y) is

$$\vec{\delta} = w(x)\vec{1}_{y} \tag{4.4-4}$$

Therefore, if  $\overline{\omega}_{x}$ ,  $\overline{\omega}_{y}$  (normalized to  $\omega_{s}$ , nominal value of the satellite spin rate) and  $\eta(x) = \frac{w(x)}{\ell}$  are considered to be of first order of smallness (O( $\varepsilon$ )), the equations for the rates deduced from (4.4-1) should be written with

$$-\int_{\text{boom}} [\cdots] ds = \int_{\text{boom}} [\cdots] dx ,$$

for integrands of zeroth order of smallness, or smaller, <u>if only</u> <u>quantities of first-order of smallness</u>, or larger, are retained . Thus, neglecting terms of order 3 of smallness, or smaller (with  $\int_{\text{boom}} [\cdots] ds = \int_{\text{boom}} [\cdots] dx \text{ for an integrand of first order of smallness,}$ or smaller),

$$(\dot{\vec{H}}_{II})_{x} = \int_{loom} -x_{i} \dot{\vec{w}}_{y} \forall dx$$
  

$$(\dot{\vec{H}}_{II})_{y} = \int_{loom} x_{i} (-2 \omega_{x} \dot{\vec{w}} - \dot{\vec{\omega}}_{x} \forall - \omega_{y} \omega_{x} \forall) dx$$
  

$$(\dot{\vec{H}}_{II})_{z} = -\int_{loom} x_{i} \ddot{\vec{w}} dx$$

Now, neglecting terms of order 2 of smallness, or smaller (with  $\int_{boom} [\cdots] ds = \int_{boom} [\cdots] dx \text{ for an integrand of first order of smallness}$  or smaller)

$$(\dot{H}_{II})_{x} = (\dot{H}_{II})_{y} = 0$$

in the analysis.

$$\int_{\text{boom}} [\cdots] ds = \int_{\text{boom}} [\cdots] [1 + \frac{1}{2} (\frac{\partial w}{\partial x})^2] dx, \text{ in a manner similar}$$

to the one used in Section 4.2 and 4.3, if the integrand is of zeroth order of smallness, and <u>if quantities of second order of smallness</u>, or larger, are to be retained in the analysis.

With this qualification in mind, the various terms in the integrand

of (4.4-2) are computed without eliminating smaller terms at this point.

.

.

,

$$\begin{split} \vec{\delta} &= W \vec{I}_{y} \\ \vec{\pi} \wedge \vec{\delta} &= \begin{pmatrix} 0 \\ \alpha_{1}, \vec{W} \end{pmatrix} \\ 2 \vec{w} \wedge \vec{\delta} &= 2 \begin{pmatrix} -\omega_{\infty}, \vec{W} \\ 0 \\ \omega_{\infty}, \vec{W} \end{pmatrix} \\ 2 \vec{\pi} \wedge (\vec{w} \wedge \vec{\delta}) &= 2 \begin{pmatrix} \omega_{\infty}, \vec{W}, \vec{W} \\ -\alpha_{1}, \omega_{\infty}, \vec{W} \\ \omega_{\infty}, \vec{W} \end{pmatrix} \\ \vec{\pi} \wedge (\vec{w} \wedge \vec{\delta}) &= \begin{pmatrix} \vec{w}_{x}, W^{2} \\ -\alpha_{1}, \omega_{\infty}, \vec{W} \\ \omega_{z}, W^{2} \end{pmatrix} \\ \vec{\delta} \wedge (\vec{w} \wedge \vec{\pi}_{m,0}) &= \begin{pmatrix} -\alpha_{1}, \vec{\omega}_{y}, \vec{W} \\ -\alpha_{1}, \vec{\omega}_{y}, \vec{W} \\ \vec{\omega}_{z}, W^{2} \end{pmatrix} \\ \vec{\delta} \wedge (\vec{w} \wedge \vec{\omega}_{m,0}) &= \begin{pmatrix} \tau_{1}, \omega_{x}, \omega_{x}, \vec{W} \\ \alpha_{1}, (\omega_{1}^{2} + \omega_{z}), \omega_{z} \end{pmatrix} \\ \vec{\pi} \wedge (\vec{w} \wedge (\vec{w} \wedge \vec{\delta})) &= \begin{pmatrix} \omega_{z}, \omega_{y}, \vec{W} \\ -\alpha_{1}, (\omega_{x}^{2} + \omega_{z}^{2}), \vec{W} \\ -\alpha_{1}, (\omega_{x}^{2} + \omega_{z}^{2}), \vec{W} \end{pmatrix} \\ \vec{H}_{II} &= \int_{\theta_{Dom}} \alpha_{1}, \vec{W} dx + 0 (\epsilon^{2}) \\ (\vec{H}_{I}) &= \begin{bmatrix} I_{2}, \hat{\omega}_{2} + (I_{2} - I_{y}) \omega_{y}, \omega_{z} \end{bmatrix} \vec{I}_{x}^{T} + \begin{bmatrix} I_{y}, \hat{\omega}_{y} + (I_{2} - I_{2}) \omega_{z}, \omega_{z} \end{bmatrix} \vec{I}_{y} \\ &+ \begin{bmatrix} I_{z}, \hat{\omega}_{z} + (I_{y} - I_{z}), \omega_{x}, \omega_{y} \end{bmatrix} \vec{I}_{z} \qquad (4.4-5) \end{split}$$

if it can be assumed that x, y, z are principal axes of inertia of the total, rigidified spacecraft, of total moments of inertia  $I_x$ ,  $I_y$ ,  $I_z$  about the corresponding axes.

To summarize, we have, to order  $\varepsilon$ , the following equations for the rates, in case E,

$$\begin{split} \dot{\omega}_{\mathbf{x}} &= -\frac{\mathbf{I}_{\mathbf{z}} - \mathbf{I}_{\mathbf{y}}}{\mathbf{I}_{\mathbf{x}}} \omega_{\mathbf{y}} \omega_{\mathbf{y}} \\ \dot{\omega}_{\mathbf{y}} &= -\frac{\mathbf{I}_{\mathbf{x}} - \mathbf{I}_{\mathbf{z}}}{\mathbf{I}_{\mathbf{y}}} \omega_{\mathbf{s}} \omega_{\mathbf{x}} \\ \dot{\omega}_{\mathbf{z}} + \frac{1}{\mathbf{I}_{\mathbf{z}}} \int_{\text{boom}} \overset{*}{\mathbf{w}}_{\mathbf{x}} d\mathbf{x} = -\frac{\mathbf{I}_{\mathbf{y}} - \mathbf{I}_{\mathbf{x}}}{\mathbf{I}_{\mathbf{z}}} \omega_{\mathbf{x}} \omega_{\mathbf{y}} \sim 0, \text{ to } 0(\varepsilon) \end{split}$$
(4.4-6)

Let the time, t, be non-dimensionalized as  $\overline{t} = \frac{t}{1/\omega_s}$  (from now on, • will designate derivatives with respect to  $\overline{t}$ ); the lengths are nondimensionalized by  $\ell$ , length of the boom, and  $\xi = \frac{x}{\ell}$ ,  $\xi_o = \frac{x_o}{\ell}$ ,  $n = \frac{W}{\chi}$ ;  $k_{\chi} \equiv \frac{I_{\chi}}{I_z}$ ,  $k_{y} \equiv \frac{I_{y}}{I_z}$ . We obtain  $\dot{\overline{w}}_{\chi} = -\frac{1-k_y}{k_{\chi}} - \frac{\overline{w}_y}{w_y}$   $\dot{\overline{w}}_{\chi} = -\frac{k_{\chi}-1}{k_{\chi}} - \frac{\overline{w}_{\chi}}{w_{\chi}}$  $\dot{\overline{w}}_{\chi} = -\frac{\ell \ell^3}{I_z} \int_{loom} \tilde{\gamma} \xi_i d\xi$  (4.4-7)

4-19

Using the modal expansion in terms of  $\phi_j(\xi)$ , having eigenfrequencies  $\vec{\omega}_{j,E}$ , with  $\vec{\Phi}_j$  and  $\vec{\omega}_{j,E}$  functions of  $\vec{\lambda}$  and  $\xi_o$ ,  $\vec{\omega}_z = -\frac{\ell^2}{I_z} \int_{\mathcal{C}_{\text{form}}} \sum_{d=1}^{N} \hat{\phi}_j(\xi) \xi_j d\xi$  (4.4-7)

Now, from Equation (4.2-31), with  $\overline{\omega}_{j} = \overline{\omega}_{j,E}$ 

$$\vec{q}_{j} = -\frac{m_{2,j}}{m_{1,j}} \vec{\omega}_{z} - 2\nu \vec{\omega}_{z} \vec{q}_{j} - \vec{\omega}_{z}^{2} \vec{q}_{j}$$

Substituting

$$\frac{\hat{\omega}}{\tilde{\omega}_{z}}\left(1-\frac{\ell^{23}}{I_{z}}\sum_{j=1}^{N}\frac{m_{2,j}^{2}}{m_{1,j}}\right)=\frac{\ell^{23}}{I_{z}}\sum_{j=1}^{N}\left[2\nu\tilde{\omega}_{j}\hat{q}_{j}+\tilde{\omega}_{j}^{2}\hat{q}_{j}\right]m_{2,j}(4.4-8)$$

Thus the normalized moment of inertia is apparently reduced from the value 1, due to the flexibility of the boom, by an amount equal to

$$\frac{\ell^{l^3}}{I_z} \stackrel{J^T}{\stackrel{J^{=1}}{\stackrel{m_{2,l}}{\xrightarrow{m_{1,l}}}}} (4.4-9)$$

or writing, with  $I_{zh} = moment$  of inertia, about z, of the central hub, and

$$\Delta = \xi_{0}^{2} + \xi_{0} + \frac{1}{3}$$
 (4.4-10)

$$I_{z} = I_{zk} + \ell^{2} \Delta \qquad (4.4-11)$$

the non-dimensional inertia correction becomes, in Equation (4.4-8),

with 
$$\Gamma_{def} \stackrel{pl}{=} \frac{f}{I_{zh}}^{2}$$
,  
 $-\frac{f}{f+f'\Delta} \stackrel{N}{=} \frac{m_{2,j}^{2}}{m_{1,j}}$ 

$$(4.4-12)$$

and (4.4-8) is rewritten (Rate equations for case E)

$$\dot{\overline{\omega}}_{x} = -\frac{1-k_{y}}{k_{x}} \quad \overline{\overline{\omega}}_{y}$$

$$\dot{\overline{\omega}}_{y} = -\frac{k_{x}-1}{k_{y}} \quad \overline{\overline{\omega}}_{x}$$

$$(4.4-13)$$

$$\dot{\overline{\omega}}_{z} \left(1-\frac{I'}{1+I'A} \quad \sum_{j=1}^{N} \quad \frac{m_{z,j}^{2}}{m_{i,j}}\right) = \frac{I'}{1+I'A} \quad \sum_{j=1}^{N} \left[2\nu \, \overline{\omega}_{j} \, q_{j} + \overline{\omega}_{j}^{2} \, q_{j}\right] m_{z,j}$$

The stability of the motion, in the presence of equatorial vibrations, as studied in Chapter 5, can be done on the basis of equations

(4.2-25) for the modal coordinates

(4.4-13) for the angular rates

with N = 1, 2 or 3, depending on the number of modes retained in the analysis.

4.5 Equations for the rates: meridional vibrations (Case "M")4.5.1 Equations for the rates, boom along the direction

Without repeating the development of Section 4.1.1, the components of  $\dot{H}_{II}$ , in expression (4.4-2) are rederived for an elastic displacement  $\delta$  parallel to axis-z.

$$\vec{\delta} = W(x)\vec{T}_{z}$$

$$\vec{\pi} \wedge \vec{\delta} = \begin{bmatrix} 0 \\ -\alpha_{i} \vec{w} \end{bmatrix}$$

$$2\vec{\pi} \wedge (\vec{\omega} \wedge \vec{\delta}) = 2 \begin{bmatrix} \omega_{x} & w & w \\ \omega_{y} & w & w \\ \omega_{y} & w & w \\ -\alpha_{i} & \omega_{x} & w \end{bmatrix}$$

$$\vec{\pi} \wedge \left(\vec{\omega} \wedge \vec{\delta}\right) = \begin{bmatrix} \vec{\omega}_{x} & \vec{w}^{2} \\ \vec{\omega}_{y} & \vec{w}^{2} \\ -\pi_{1} & \vec{\omega}_{x} & \vec{w} \end{bmatrix}$$

$$\vec{\pi} \wedge \left(\vec{\omega} \wedge \left(\vec{\omega} \wedge \vec{\delta}\right)\right) = \begin{bmatrix} -\omega_{z} & \omega_{y} & W^{2} \\ -\omega_{x} & \omega_{z} & w^{2} + x_{1} & (\omega_{x}^{2} + \omega_{y}^{2}) & W \end{bmatrix}$$

$$\vec{\delta} \wedge \left(\vec{\omega} \wedge \vec{\pi}_{m,0}\right) = \begin{bmatrix} x_{1} & w & \tilde{w}_{z} \\ 0 \\ 0 \end{bmatrix}$$

$$\vec{\delta} \wedge \left(\vec{\omega} \wedge \left(\vec{\omega} \wedge \vec{\pi}_{m,0}\right)\right) = \begin{bmatrix} -\pi_{1} & \omega_{x} & \omega_{y} & W \\ -\pi_{1} & (\omega_{y}^{2} + \omega_{z}^{2}) & W \end{bmatrix}$$

Neglecting terms of order 3 of smallness,

$$(\dot{\vec{H}}_{II})_{z} = \int_{boom} x_{i} \, w \, \dot{\omega}_{z} \, \rho \, dx$$

$$(\dot{\vec{H}}_{II})_{y} = \int_{boom} x_{i} \, (\ddot{w} - w) \, (\omega_{z}^{2} + \omega_{\gamma}^{2}) \, \rho \, dx$$

$$(\dot{\vec{H}}_{II})_{z} = \int_{boom} x_{i} \, (\omega_{z} \, \omega_{y} \, w - \omega_{x} \, \ddot{w} - \dot{\omega}_{x} \, w) \, \rho \, dx$$

Neglecting terms of order 2 of smallness,

$$(\dot{\vec{H}}_{II})_{x} = (\dot{\vec{H}}_{II})_{z} = 0$$

$$(\dot{\vec{H}}_{II})_{y} = -\int_{\text{boom}} x_{i} ( \dot{\vec{w}} + w \omega_{5}^{z} ) \rho dx$$

$$(\dot{\vec{H}}_{I}) = [I_{x} \dot{\omega}_{x} + (I_{z} - I_{y}) \omega_{y} \omega_{z}] \vec{I}_{x} + [I_{y} \dot{\omega}_{y} + (I_{x} - I_{z}) \omega_{z} \omega_{x}] \vec{I}_{y}$$

$$+ [I_{z} \dot{\omega}_{z} + (I_{y} - I_{x}) \omega_{x} \omega_{y}] \vec{I}_{z}$$

with the same assumption as in 4.4

To summarize, we have to order  $\varepsilon$ , after non-dimensionalization of time by  $1/\omega_s$ , and with  $k_x = \frac{I_x}{I_z}$ ,  $k_y = \frac{I_y}{I_z}$ ,  $\frac{\ddot{\omega}}{\omega_s} = -\frac{1-k_y}{k_x} - \frac{\ddot{\omega}}{k_y} + \frac{\ell^2}{I_y} \int_{\ell_{nom}} (\ddot{\gamma} + \eta) \xi$ ,  $d\xi$  (4.5-1)  $\ddot{\omega}_z = 0$  . In the second of equations (4.5-1),

$$\frac{\ell^{l^3}}{I_y} = \frac{\ell^{l^3}}{I_z k_y} = \frac{l}{k_y} \frac{l'}{l+l'\Delta}$$

Using the modal expression for  $\eta_{M} = \sum_{j=1}^{\Sigma} q_{j}(t) \Phi_{jm}(\xi)$ ,  $\phi_{j}(\xi)$  being the jth modal shape having associated frequency  $\bar{\omega}_{j,M}$ ,

$$\int_{\text{buom,}} \sum_{j=1}^{N} \left( \hat{q}_{j} + q_{j} \right) \hat{\Psi}_{j} \xi_{j} d\xi = \sum_{j=1}^{N} q_{j} m_{2,j} + \sum_{j=1}^{N} q_{j} m_{2,j}$$

Since, from Equation (4.3-16), with  $\overline{\omega}_s$  = 1,

$$\ddot{q}_{j} = -\overline{\omega}_{j}^{z} q_{j} + \frac{m_{2ij}}{m_{1jj}} \left(\overline{\omega}_{y} - \overline{\omega}_{x}\right) - 2\nu\overline{\omega}_{j} q_{j}^{z}$$

we obtain in (4.5-1)

$$\begin{split} \ddot{\tilde{\omega}}_{\chi} &= -\frac{1-ky}{k_{\chi}} \quad \overline{\tilde{\omega}}_{y} \\ \dot{\tilde{\omega}}_{y} \left(1-\frac{I'}{I+I'\Delta} \frac{I}{k_{y}} \frac{\sum\limits_{j=1}^{N} \frac{m_{2,j}^{2}}{m_{i,j}}}{\sum\limits_{j=1}^{N} \frac{m_{2,j}}{m_{i,j}}}\right) &= -\widetilde{\omega}_{\infty} \left(\frac{k_{\chi}-I}{k_{y}} + \frac{I}{k_{y}} \frac{I'}{I+I'\Delta} \frac{\sum\limits_{j=1}^{N} \frac{m_{2,j}^{2}}{m_{i,j}}}{\sum\limits_{j=1}^{N} \frac{m_{2,j}}{m_{i,j}}}\right) \\ &+ \frac{I'}{I+I'\Delta} \frac{I}{k_{y}} \frac{\sum\limits_{j=1}^{N} m_{2,j}}{k_{y}} \int_{j=1}^{N} m_{2,j} \int_{j}^{N} (1-\widetilde{\omega}_{j}^{2}) q_{j}^{2} - 2V\widetilde{\omega}_{j} q_{j}^{2} \int_{j}^{N} (4.5-2) \\ \dot{\tilde{\omega}}_{\chi}^{2} &= 0 \end{split}$$

Investigation of the stability of the motion in the presence of meridional vibrations, as studied in Chapter 5, will be carried out on the basis of equations

(4.3-16) for the modal coordinates

(4.5-2) for the angular rates

with N = 1, 2 or 3, depending on the number of modes retained in the analysis. Since so far we have been considering a single boom located along the +x axis, it is of importance to generalize the analysis to multi-booms configurations. This is done in the following section.

#### 4.6 Generalization to Multiple-Boom Geometry

The equations for therates and modal coordinates were given, for equatorial vibrations, by Equations (4.4-13) and (4.2-25), respectively, and for meridional vibrations by Equations (4.5-2) and (4.3-16) respectively, in the case of a single boom located along the +x axis. In the present section, we proceed to generalize the developments to the case of multiple-boom arrangements located in plane (x,y) (A plane containing axes  $x_p$ ,  $y_p$ , two principal axes of inertia of the ellipsoid in inertia of the rigidified, total spacecraft) (Fig. 4.1).

In order to allow for various possibilities, the following definitions and notations are used

 $-k_x \stackrel{\Xi}{\det} \frac{I}{I_z}, k_y \stackrel{\Xi}{\det} \frac{I}{I_z}$  are ratios, smaller than one for quasi-

rigid body stability, which relate to principal moments of inertia  $I_x$ ,  $I_y$ ,  $I_z$  of the total, rigidified structure.

- given the Etkin's number,  $\overline{\lambda}_k$ , and non-dimensional radius  $\xi_{0,k}$ , for boom "k", the notation :

Φ_{j,k}(λ_k, ξ_{0,k}) is used for the jth modal shape corresponding to these values of λ and ξ_o (there is no necessity to distinguish between Φ_j for the equatorial vibrations as opposed to Φ_j for meridional vibration, since they are the same)

- 
$$\overline{\omega}_{j,k}$$
, a function of  $\overline{\lambda}_k$ ,  $\xi_{0,k}$ , for given j, is the jth eigen-  
frequency for equatorial vibrations.whereas  $\overline{\omega}_{j,k}$  is the jth  
eigenfrequency for meridional vibrations. For the same pair  
 $(\lambda_k, \xi_{0,k})$ , we have from Equation

$$\overline{\hat{\omega}}_{j,k}^2$$
 + 1 =  $\overline{\hat{\omega}}_{j,k}^2$  (all j, k)

-  $q_{j,k}$  is the jth modal coordinate (of type E, or M depending on which equations contain it) for boom k.

-  $\zeta_k$  is the angle between the boom's undeflected position (an axis normal to  $Z_p \equiv z$ , thus contained in plane x, y, p) and axis x of the ellipsoid of inertia.

$$-\Gamma_{k} \equiv \frac{(\ell^{\ell^{3}})_{k}}{(I_{2,k})_{k}}; \Delta_{k} \equiv \frac{1}{3} + \xi_{0,k} + \xi_{0,k}^{2}$$

In this case, we assume that booms (+x, -x) are aligned on  $x_p$ , principal axis of inertia, and that booms (+y, -y) are normal to

(+x, -x), thus aligned on principal axis of inertia  $y_p$  (Fig. 4-1).

In order to generalize the previously obtained equations for the modal coordinates and angular rates, we observe that in these equations,

(x,y,z) are a r.h.s. system, with

+y in case E BOOM ALONG +x, deflection q along +z in case M

Now consider the boom along -x. Equations analogous to these derived for the +x boom will apply, substituting

	for	the expression
axis	x	axis -x
axis	У	axis -y
axis	z	axis -z
	q,	along z q_along z

since (-x, -y, -z) is a direct system. The deflection  $q_{-x}$ , along -y (i.e. in case E), will be measured, for the sake of convenience, along axis +y, in the same manner as  $q_{+x}$  is measured. Therefore, in the analogous equations, written for case E, substitute

for the expression

 $q_{+x}$  along +y  $-q_{-x}$  along +y (4.6-1) Similarly, the substitutions needed are, in the following cases:

for	the expression	
axis x	axis y	
axis y	axis -x	(4.6-2)
axis z	axis z	•
q _{+x} along z	q_y ^{along z}	,
q _{+x} along +y	-q _y along +x	

boom along -y axis Substitute

for	the expression	
axis x	axis -y	
axis y	axis x	
axis z	axis z	(4.6-3)
q_along z	q_along z	
q _{+x} along y	q_along +z	

Effecting these substitutions in Equations (4.4-13) and (4.2-31), we obtain

# Equatorial vibrations (case E)

It should be recalled that  $\overline{\omega}_{j,k}$  refers to "E" type, jth eigenfrequency of boom "k". Although this is not done explicitly, the 'v' could be subscripted to account for different damping ratios in the various booms.

Rates

Booms -x, +y, -y: the equations for  $\dot{\omega}_x$ ,  $\ddot{\omega}_y$  in (4.4-13) remain unchanged.

The equations for  $\omega_z$  , in (4.4-13), read

-x boom:

$$\frac{\tilde{\omega}_{z}}{\tilde{\omega}_{z}}\left(1-\frac{\Gamma-\omega}{1+\Gamma_{z}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\frac{m_{z,\tilde{d}_{z}-x}}{m_{b\tilde{d}_{z}-x}}\right)=-\frac{\Gamma_{x}}{1+\Gamma_{x}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\left(2\nu\tilde{\omega}_{\tilde{d}_{z}-x}\tilde{q}_{\tilde{d}_{z}-x}+\tilde{\omega}_{\tilde{d}_{z}-x}^{2}q_{\tilde{d}_{z}-x}\right)$$

$$\frac{\tilde{\omega}_{z}}{\tilde{\omega}_{z}}\left(1-\frac{\Gamma_{y}}{1+\Gamma_{y}}\frac{\tilde{\lambda}_{y}}{\tilde{\lambda}_{y}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\frac{m_{z,\tilde{d}_{z}}^{2}}{m_{b\tilde{d}_{z}}^{2}}\right)=-\frac{\Gamma_{y}}{1+\Gamma_{y}}\frac{\tilde{\lambda}_{y}}{\tilde{\lambda}_{z}}\left(2\nu\tilde{\omega}_{\tilde{d}_{z}}q_{\tilde{d}_{z}}+\tilde{\omega}_{\tilde{d}_{z}}^{2}q_{\tilde{d}_{z}}\right)$$

$$\frac{-y\ boom:}{\tilde{\omega}_{z}}\left(1-\frac{\Gamma-y}{1+\Gamma_{-y}}\frac{\tilde{\lambda}_{-y}}{\tilde{\lambda}_{-y}}\frac{\tilde{\lambda}_{z}}{m_{b\tilde{d}_{z}}^{2}}-\tilde{\lambda}\right)=\frac{\Gamma-y}{1+\Gamma_{y}}\frac{\tilde{\lambda}_{z}}{\tilde{\lambda}_{z}}\left(2\nu\tilde{\omega}_{z}q_{\tilde{d}_{z}}+\tilde{\omega}_{z}^{2}q_{\tilde{d}_{z}}\right)$$

$$\frac{Modal\ Coordinates:}{-x\ boom:}$$

Again,  $\overline{\omega}_{j,k}$  refers to "M" type, jth eigenfrequency of boom "k", and although this is not explicitly done, the v's could be subscripted to account for different damping ration in the various booms.

#### Rates

Booms -x, +y, -y: the equation for  $\dot{\overline{w}}_z$  remains unchanged, in (4.5-2) The equations for  $\dot{\overline{w}}_x$ ,  $\dot{\overline{w}}_y$  read, with  $b_k \equiv \frac{\Gamma_k}{1+\Gamma_k \Delta_k}$ ;  $k = +\infty, -\infty, +y, -y$ 

-x boom:

$$\begin{split} \ddot{\overline{w}}_{x} &= -\frac{1-k_{y}}{k_{x}} \quad \overline{\overline{w}}_{y} \\ \dot{\overline{w}}_{y} \left( 1 - \frac{b_{-x}}{k_{y}} \quad \frac{5}{2} \quad \frac{m_{z,j,-x}^{2}}{m_{i,j,-x}} \right) &= -\overline{w}_{x} \left( \frac{k_{x}-1}{k_{y}} + \frac{b_{-x}}{k_{y}} \frac{j}{l_{-1}} \quad \frac{5}{m_{i,j,-x}} \right) \\ &- \frac{b_{-x}}{k_{y}} \quad \frac{5}{l_{-1}} \quad \frac{m_{z,j,-x}}{m_{i,j,-x}} \left\{ (1 - \overline{w}_{j,-x}^{2}) q_{j,-x} - \frac{2p \, \overline{w}}{l_{i,-x}} q_{j,-x}^{2} \right\} \end{split}$$

+y boom.

$$\dot{\tilde{\omega}}_{\chi} \left( 1 - b_{y} \frac{i}{k_{\chi}} \sum_{d=1}^{N} \frac{m_{2idy}^{2}}{m_{ijdy}^{2}} \right) = -\tilde{\omega}_{y} \left( \frac{i - k_{y}}{k_{\chi}} - \frac{i}{k_{\chi}} b_{y} \frac{z}{d^{-1}} \frac{m_{2idy}^{2}}{m_{ijdy}^{2}} \right)$$
$$- b_{y} \frac{i}{k_{\chi}} \sum_{d=1}^{N} m_{2idy}^{2} \left( 1 - \overline{\omega}_{dy}^{2} \right) q_{jy} - 2y \overline{\omega}_{jy} q_{dy}^{2} \right]$$
$$\dot{\tilde{\omega}}_{y} = -\frac{k_{\chi} - i}{k_{y}} \overline{\omega}_{\chi}$$

. •

. -

;

...

(4.6-6)

## Modal Coordinates:

$$\frac{-x \text{ boom}}{q_{j,-x}} + 2y \,\overline{\omega}_{j,x} q_{j,-x} + \overline{\omega}_{j,x}^2 q_{j,-x} = -\frac{m_{2,j,-x}}{m_{1,j,-x}} \left( \overline{\omega}_y - \overline{\omega}_x \right)$$

$$\frac{+y \text{ boom}}{q_{j,y}} + 2y \,\overline{\omega}_{j,y} \, \overline{q}_{j,y} + \overline{\omega}_{j,y}^2 \, q_{j,y} = -\frac{m_{2,j,y}}{m_{1,j,y}} \left( \overline{\omega}_x + \overline{\omega}_y \right)$$

$$\frac{-y \text{ boom}}{m_{1,j,y}} + 2y \,\overline{\omega}_{j,-y} \, \overline{q}_{j,-y} + \overline{\omega}_{j,y}^2 \, q_{j,-y} = -\frac{m_{2,j,y}}{m_{1,j,y}} \left( \overline{\omega}_x + \overline{\omega}_y \right) \quad (4.6-7)$$

$$4.6.1.1 \text{ The Four Different booms} \quad (4.6-7)$$

Let

$$b_{k} \stackrel{=}{\det} \frac{(\ell^{l^{3}})_{k}}{I_{z}} \qquad \Gamma_{k} = \frac{(\ell^{l^{3}})_{k}}{(I_{z}k)_{k}} \qquad \Delta_{k} = \frac{1}{3} + \xi_{o,k} + \xi_{o,k}^{2}$$

The equations of motion become

Equatorial vibrations (case E):

$$\frac{\text{Rates}}{\tilde{w}} = -\frac{1-\tilde{k}y}{\tilde{k}_{x}} = -\frac{1-\tilde{k}y}{\tilde{k}} = -\frac{1-\tilde{k$$

$$\dot{\overline{w}}_{y} = - \frac{R_{x-1}}{R_{y}} \quad \overline{w}_{x}$$

$$\begin{split} \dot{\overline{w}}_{z} \left(1 - \sum_{k} l_{k} \sum_{j=1}^{N} \frac{m_{2,j}^{2}}{m_{1,j}^{2},k}\right) &= \sum_{j=1}^{N} \left[ l_{z} \left[ 2\gamma \overline{\omega}_{j,z} \dot{q}_{j,z} + \overline{\omega}_{j,z}^{2} q_{j,z} \right] - l_{-z} \left[ 2\gamma \overline{\omega}_{j,z} \dot{q}_{j,z} + \overline{\omega}_{j,z}^{2} q_{j,z} \right] \\ &+ \overline{\omega}_{j,-z}^{2} q_{j,-z} \left[ - \sum_{j=1}^{N} \left[ l_{y} \left[ 2\gamma \overline{\omega}_{j,y} \dot{q}_{j,y} + \overline{\omega}_{j,y}^{2} q_{j,y} \right] - l_{y} \left[ 2\nu \overline{\omega}_{j,y} \dot{q}_{j,y} + \overline{\omega}_{j,-y}^{2} q_{j,-y} \right] \right] \\ &+ (4.6-8) \end{split}$$

#### Modal coordinates:

### Meridional vibrations (case M)

<u>Rates</u>: With k taking the values indicated; j = 1,2,...N;

$$\begin{split} \hat{\overline{w}}_{\infty} \left( 1 - \frac{1}{k_{\infty}} \sum_{k=+y,-y}^{N} b_{k} \sum_{d=1}^{N} \frac{m_{2,l_{1}}^{2} k}{m_{1,l_{1},k}} \right) = -\overline{w}_{y} \left( \frac{1 - k_{y}}{k_{x}} - \frac{1}{k_{x}} \sum_{k=+y,-y}^{N} b_{k} \sum_{d=1}^{N} \frac{m_{2,l_{1},k}}{m_{1,l_{1},k}} \right) \\ - \frac{1}{k_{x}} \left[ b_{y} \sum_{d=1}^{N} m_{2,l_{1},y} \right] \left( 1 - \overline{w}_{d,y}^{2} \right) q_{d,y} - 2v \overline{w}_{d,y} q_{d,y} \right] \quad (4.6-10) \\ - b_{-y} \sum_{d=1}^{N} m_{2,l_{1},-y} \left\{ (1 - \overline{w}_{d,-y}^{2}) q_{d,-y} - 2v \overline{w}_{d,-y} q_{d,-y} \right\} \right] \\ \hat{\overline{w}}_{y} \left( 1 - \frac{1}{k_{y}} \sum_{k=+x,-x}^{N} b_{k} \sum_{d=1}^{N} \frac{m_{2,l_{1},k}^{2} k}{m_{1,l_{1},k}} \right) = -\overline{w}_{x} \left( \frac{k_{x} - 1}{k_{y}} + \frac{1}{k_{y}} \sum_{k=+x,-x}^{N} b_{x} \sum_{d=1}^{N} \frac{m_{2,l_{1},k}^{2} k}{m_{1,l_{1},k}} \right) \\ + \frac{1}{k_{y}} \left[ b_{x} \sum_{d=1}^{N} m_{2,l_{1},x} \right] \left( 1 - \overline{w}_{1,x}^{2} \right) q_{d,x} - 2v \overline{w}_{d,x} q_{d,x} \right] \\ - b_{-x} \sum_{d=1}^{N} m_{2,l_{1},y} \left\{ (1 - \overline{w}_{1,x}^{2}) q_{d,-x} - 2v \overline{w}_{d,x} q_{d,x} \right\} \right] \\ \hat{\overline{w}}_{z} = 0 \quad (4.6-10) \end{split}$$

(4.6 - 9)

For 
$$j = 1, 2, ..., N$$
;  $k = +x, -x, +y, -y$ ;  
 $\vec{q}_{j,k} + 2y\vec{\omega} + \vec{q}_{j,k} + \vec{\omega}^2 q_{j,k} = \frac{m_{2,j,k}}{m_{1,j,k}} \left( \frac{\ddot{\omega}}{\omega_y} - \vec{\omega}_x \right) \qquad k = x$   
 $= -\frac{m_{2,j,k}}{m_{1,j,k}} \left( \frac{\ddot{\omega}}{\omega_y} - \vec{\omega}_x \right) \qquad k = -x$   
 $= -\frac{m_{2,j,k}}{m_{1,j,k}} \left( \frac{\ddot{\omega}}{\omega_x} + \vec{\omega}_y \right) \qquad k = -y$   
 $= -\frac{m_{2,j,k}}{m_{1,j,k}} \left( \frac{\ddot{\omega}}{\omega_x} + \vec{\omega}_y \right) \qquad k = -y$ 

4.6.1.8 Aligned booms identical; different booms along (+x, +y). Equations (4.6-8) and (4.6-9), or (4.6-10) and (4.6-11) re simplified, in view of the relations

 $\Gamma_{\mathbf{x}} = \Gamma_{-\mathbf{x}}; \xi_{0,\mathbf{x}} = \xi_{0,-\mathbf{x}}; \Delta_{\mathbf{x}} = \Delta_{-\mathbf{x}}; \lambda_{\mathbf{x}} = \lambda_{-\mathbf{x}}; \widetilde{\psi}_{\mathbf{y},\mathbf{x}} = \widetilde{\psi}_{\mathbf{y},-\mathbf{x}}; M_{2,\mathbf{y},\mathbf{x}} = M_{2,\mathbf{y},-\mathbf{x}}; M_{2,$ 

Equatorial case:

<u>Rates</u>: With j = 1, 2, ... N;

$$\begin{split} & \stackrel{\circ}{\omega}_{\chi} = -\frac{1-k_{y}}{k_{\chi}} \quad \stackrel{\circ}{\omega}_{y} \\ & \stackrel{\circ}{\omega}_{y} = -\frac{k_{\chi}-1}{k_{y}} \quad \stackrel{\circ}{\omega}_{\chi} \\ & \stackrel{\circ}{\omega}_{z} \left(1-2k_{\chi}\sum_{d=1}^{N}\frac{m_{2,d,\chi}^{2}}{m_{1,d,\chi}}-2k_{y}\sum_{d=1}^{N}\frac{m_{2,d,\chi}^{2}}{m_{1,d,\chi}}\right) = k_{\chi}\sum_{d=1}^{N}m_{2,d,\chi}\left[\left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) + \widetilde{\omega}_{d,\chi}^{2}\hat{q}_{d,\chi}\right) - \left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) - k_{y}\sum_{d=1}^{N}m_{2,d,\chi}\left[\left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) + \widetilde{\omega}_{d,\chi}^{2}\hat{q}_{d,\chi}\right) - \left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) - k_{y}\sum_{d=1}^{N}m_{2,d,\chi}\left[\left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) + \left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}(4.6-13)\right) + \left(2\nu\widetilde{\omega}_{d,\chi}\hat{q}_{d,\chi}$$

Same as (4.6-9), with Equations (4.6-12). (4.6-14)

#### Meridional case:

$$\frac{\text{Rates}:}{\tilde{\omega}} \quad \text{With } j = 1, 2, \dots, N;$$

$$\frac{\tilde{\omega}}{\tilde{\omega}} \left( 1 - \frac{2}{k_x} \int_{y}^{N} \int_{z^{-1}}^{z} \frac{m_{1,j,\gamma}^{2}}{m_{1,j,\gamma}} \right) = -\tilde{\omega}_y \left( \frac{1 - k_y}{k_y} - \frac{2}{k_x} \int_{z^{-1}}^{N} \frac{m_{2,j,\gamma}^{2}}{m_{1,j,\gamma}} \right)$$

$$-\frac{1}{k_y} \int_{y}^{N} \int_{z^{-1}}^{m_{2,j,\gamma}} \frac{m_{2,j,\gamma}^{2}}{m_{2,j,\gamma}^{2}} \left[ \left( 1 - \tilde{\omega}_{j,\gamma}^{-2} \right) q_{j,\gamma} - 2y \tilde{\omega}_{j,\gamma} q_{j,\gamma}^{2} \right] - \left[ \left( 1 - \tilde{\omega}_{j,\gamma}^{-2} \right) q_{j,\gamma} - 2y \tilde{\omega}_{j,\gamma} q_{j,\gamma}^{2} \right] \right]$$

$$\tilde{\omega}_y \left( 1 - \frac{2}{k_y} \int_{z^{-1}}^{N} \frac{m_{2,j,\gamma}}{m_{1,j,\gamma}} \right) = -\tilde{\omega}_x \left( \frac{k_{x^{-1}}}{k_y} + \frac{2}{k_y} \int_{z^{-1}}^{k_x} \frac{k_{x^{-1}}}{m_{1,j,x}} \right)$$

$$+ \frac{1}{k_y} \int_{z^{-1}}^{N} \frac{m_{2,j,\gamma}}{m_{2,j,\gamma}} \left\{ \left[ \left( 1 - \tilde{\omega}_{j,x}^{-2} \right) q_{j,\gamma} - 2y \tilde{\omega}_{j,x} q_{j,\gamma} \right] \right\}$$

$$(4.6-15)$$

$$- \left[ \left( 1 - \tilde{\omega}_{j,x}^{-2} \right) q_{j,\gamma} - 2y \tilde{\omega}_{j,x} q_{j,\gamma} \right] \right\}$$

#### Modal coordinates:

Same as (4.6-11), with Equations (4.6-12) (4.6-16)

4.6.1.3 Identical booms along x, -x, y, -y

In this case, we can use in common for <u>all</u> booms, the notations

 $\overline{\omega}_{j}$ ,  $m_{i,j}$ ,  $m_{2,j}$ ,  $\Gamma$ ,  $\Delta$ ,  $\xi_{o}$ , kThus Equations (4.6-15) and (4.6-16) are simplified as follows:

Equatorial case:

Rates: With j = 1, 2, ... N;

$$\begin{split} \vec{\overline{w}}_{\chi} &= -\frac{1-k_{y}}{k_{\chi}} \quad \vec{\overline{w}}_{y} \\ \vec{\overline{w}}_{y} &= -\frac{k_{\chi}-1}{k_{y}} \quad \vec{\overline{w}}_{\chi} \\ \vec{\overline{w}}_{z} &= -\frac{k_{\chi}-1}{k_{y}} \quad \vec{\overline{w}}_{\chi} \\ \vec{\overline{w}}_{z} &= -\frac{k_{\chi}-1}{k_{y}} \quad \vec{\overline{w}}_{z} \\ j &= 1 \quad \vec{\overline{w}}_{z,j} \\ j &= 1 \quad \vec{\overline{w}}_$$

Modal coordinates: With j = 1, 2,....N;

$$\begin{split} \hat{q}_{j,x} + 2 \, \nu \, \bar{\omega}_{j} \, \hat{q}_{j,x} + \bar{\omega}_{j}^{2} \, \hat{q}_{j,x} &= - \frac{m_{2,j}}{m_{1,j}} \frac{\bar{\omega}_{z}}{\bar{\omega}_{z}} \\ \hat{q}_{j,-x} + 2 \, \nu \, \bar{\omega}_{j} \, \hat{q}_{j,-x} + \bar{\omega}_{j}^{2} \, \hat{q}_{j,-x} &= - \frac{m_{2,j}}{m_{1,j}} \frac{\bar{\omega}_{z}}{\bar{\omega}_{z}} \\ \bar{q}_{j,y} + 2 \, \nu \, \bar{\omega}_{j} \, \hat{q}_{j,y} + \bar{\omega}_{j}^{2} \, \hat{q}_{j,y} &= \frac{m_{2,j}}{m_{1,j}} \frac{\bar{\omega}_{z}}{\bar{\omega}_{z}} \\ \hat{q}_{j,y} + 2 \, \nu \, \bar{\omega}_{j} \, \hat{q}_{j,-y} + \bar{\omega}_{j}^{2} \, \hat{q}_{j,-y} &= - \frac{m_{2,j}}{m_{1,j}} \frac{\bar{\omega}_{z}}{\bar{\omega}_{z}} \end{split}$$

$$(4.6-18)$$

Meridional case:

$$\frac{\text{Rates}: \text{ With } j = 1, 2, \dots N;}{\bar{w}_{x}} \left( 1 - \frac{2}{k_{x}} l \frac{\sum_{d=1}^{N} \frac{m_{2,d}^{2}}{m_{1,d}}}{\int_{x}^{N} \frac{1}{k_{x}}} - \frac{\overline{w}_{y}}{k_{x}} \left( \frac{1 - k_{y}}{k_{x}} - \frac{2}{k_{x}} l \frac{\sum_{d=1}^{N} \frac{m_{2,j}^{2}}{m_{1,d}}}{\int_{x}^{N} \frac{1}{k_{x}}} \right) - \frac{1}{k_{x}} l \frac{\sum_{d=1}^{N} \frac{m_{2,j}}{m_{1,d}}}{\int_{x}^{N} \frac{1}{d^{2}} \frac{1}{k_{x}} \left( 1 - \overline{\omega}_{j}^{-2} \right) \left( q_{j,y} - q_{j,-y} \right) - 2\gamma \overline{\omega}_{j} \left( \frac{q}{d,y} - \frac{q}{d_{j,y}} \right) \left( \frac{1}{k_{x}} - \frac{1}{k_{y}} \right) \left( \frac{1 - k_{y}}{k_{y}} - \frac{1}{k_{y}} \frac{1}{k_{y}} \left( \frac{1 - k_{y}}{k_{y}} - \frac{1}{k_{y}} \frac{1}{k_{y}} \left( \frac{1 - k_{y}}{k_{y}} - \frac{1}{k_{y}} \frac{1}{k_{y}} \right) \right) = - \overline{\omega}_{x} \left( \frac{k_{x} - 1}{k_{y}} + \frac{2}{k_{y}} l \frac{1}{k_{y}} \frac{1}{k_{z}} \frac{m_{2,j}}{m_{1,j}} \right) + \frac{1}{k_{y}} l \frac{1}{k_{z}} \frac{1}{k_{y}} \frac{1}{k_{z}} \left( 1 - \frac{1}{\omega}_{j}^{-2} \right) \left( q_{j,x} - q_{j,-x} \right) - 2\gamma \overline{\omega}_{j} \left( q_{j,x}^{2} - q_{j,-x}^{2} \right) \right) \right)$$

<u>Modes</u>: With j = 1, 2, ..., N; k = +x, -x, +y, -y

$$\begin{array}{rcl}
\overset{\circ}{\eta}_{j,k} + 2 & \overset{\circ}{\omega}_{j} & \overset{\circ}{\eta}_{j,k} + \overset{\circ}{\omega}_{j}^{2} q_{j,k} = & \frac{m_{2,j}}{m_{1,j}} & (\overset{\circ}{\omega}_{y} - \widetilde{\omega}_{x}) & k = x \\ & & \overset{\circ}{\pi}_{2,j} & (\overset{\circ}{\omega}_{y} - \widetilde{\omega}_{x}) & k = -x \\ & & \overset{\circ}{\pi}_{1,j} & \overset{\circ}{\eta}_{1,j} & (\overset{\circ}{\omega}_{x} + \widetilde{\omega}_{y}) & k = y \\ & & & \overset{\circ}{\pi}_{1,j} & (\overset{\circ}{\omega}_{x} + \widetilde{\omega}_{y}) & k = -y \\ & & & & \overset{\circ}{\pi}_{1,j} & (\overset{\circ}{\omega}_{x} + \widetilde{\omega}_{y}) & k = -y \\ \end{array}$$

4-34

An alternate form of the equations for the rates has been used in the computer programs described in Chapter 5.

$$K_{\mu x} = \frac{I_{z, hub}}{I_{x, hub}}$$

$$K_{\mu y} = \frac{I_{z, hub}}{I_{y, hub}}$$

Let

•

Assume furthermore that the motion is antisymmetric, i.e.  $q = -q_x$ ,

$$q_{-y}, = -q_{y}: \text{ Then}$$

$$k_{x} = \frac{I_{x}}{I_{z}} = \frac{I_{x}, \text{hulr} + 2\Delta \ell^{3}}{I_{z}, \text{hulr} + 4\Delta \rho^{3}} = \frac{\frac{1}{K_{hx}} + 2\Gamma\Delta}{1 + 4\Gamma\Delta}$$

$$k_{y} = \frac{I_{y}}{I_{z}} = \frac{\frac{1}{K_{hy}} + 2\Gamma\Delta}{1 + 4\Gamma\Delta}$$

and the rates, as given in (4.6-17) and (4.6-19), respectively, can be rewritten:

Case E:

$$\frac{\text{Case M:}}{\tilde{\omega}_{\chi}} = - \frac{\left[1 - \frac{1}{K_{FY}} + 2\Gamma\left(\Delta - \frac{\sum_{d=1}^{N} \frac{m_{2_{id}}^{2}}{m_{i,d}}\right) + 2\Gamma\sum_{d=1}^{N} \left[\left(1 - \overline{\omega}_{d}^{2}\right)q_{d,j} - 2\gamma\overline{\omega}_{d}q_{d,j}\right]\right]}{\frac{1}{k_{FY}}}$$

$$\frac{\tilde{\omega}_{\chi}}{\tilde{\omega}_{\chi}} = - \frac{\frac{1}{K_{FY}} - 1 - 2\Gamma\left(\Delta - \frac{\sum_{d=1}^{N} \frac{m_{2_{id}}^{2}}{m_{i,j}}\right) - 2\Gamma\sum_{d=1}^{N} m_{2_{id}}^{2} \left[\left(1 - \overline{\omega}_{d}^{2}\right)q_{d,x} - 2\gamma\overline{\omega}_{d}q_{d,x}\right]}{\frac{1}{K_{FY}}} + 2\Gamma\left(\Delta - \frac{\sum_{d=1}^{N} \frac{m_{2_{id}}^{2}}{m_{i,j}}\right)$$

$$\tilde{\omega}_{\chi} = 0 \qquad (4.6-22)$$

If furthermore, the transverse moments of inertia of the <u>hub</u> are equal, i.e.

$$I_{2}, hub = I_{y}, hub$$
$$K_{\mu} = K_{\mu}x = K_{\mu}y$$

the above equations for the rates simplify to

Case E:

$$\begin{split} \tilde{\omega}_{x} &= -\frac{1-\frac{1}{K_{p}}+2\Gamma\Delta}{\frac{1}{K_{p}}+2\Gamma\Delta} \quad \tilde{\omega}_{y} \\ \tilde{\omega}_{y} &= -\frac{1}{\frac{1}{K_{p}}-2\Gamma\Delta-1} \quad \tilde{\omega}_{x} \\ \tilde{\omega}_{z} &= -\frac{1}{\frac{1}{K_{p}}+2\Gamma\Delta} \quad \tilde{\omega}_{x} \\ \frac{1}{K_{p}}+2\Gamma\Delta}{\frac{1}{2}\Gamma\left[\sum_{d=1}^{2}, m_{2,j}\left[\overline{\omega}_{d}^{2}\left(q_{j}-q_{x}\right)+2\nu\overline{\omega}_{j}\left(q_{j}^{2}-q_{x}^{2}\right)\right]\right]} \quad (4.6-23) \\ \tilde{\omega}_{z} &= -\frac{2\Gamma\left[\sum_{d=1}^{2}, m_{2,j}\left[\overline{\omega}_{d}^{2}\left(q_{j}-q_{x}\right)+2\nu\overline{\omega}_{j}\left(q_{j}^{2}-q_{x}^{2}\right)\right]\right]}{1+4\Gamma\left(\Delta-\sum_{d=1}^{N}, \frac{m_{2,j}^{2}}{m_{i,j}}\right)} \end{split}$$

Case M:

$$\frac{ie M}{\tilde{w}_{x}} = - \frac{1 - \frac{1}{K_{\mu}} + 2\Gamma\left(\Delta - \frac{\Sigma}{J^{z_{1}}} - \frac{m_{2,i}^{2}}{m_{i,j}}\right) + 2\Gamma\sum_{J^{z_{1}}}^{N} m_{2,j}\left[\left(1 - \overline{w}_{J}^{2}\right)q_{j,j} - 2\nu\overline{w}_{J}q_{j,j}^{2}}{q_{j,j}}\right]}{\frac{1}{K_{\mu}} + 2\Gamma\left(\Delta - \frac{\Sigma}{J^{z_{1}}} - \frac{m_{2,j}^{2}}{m_{i,j}}\right)}{\frac{1}{K_{\mu}} - 1 - 2\Gamma\left(\Delta - \frac{\Sigma}{J^{z_{1}}} - \frac{m_{2,j}^{2}}{m_{i,j}}\right) - 2\Gamma\sum_{J^{z_{1}}}^{N} m_{2,j}\left[\left(1 - \overline{w}_{J}^{2}\right)q_{j,x} - 2\nu\overline{w}_{J}q_{j,x}^{2}}\right]}{\frac{1}{K_{\mu}} + 2\Gamma\left(\Delta - \frac{\Sigma}{J^{z_{1}}} - \frac{m_{2,j}^{2}}{m_{i,j}}\right)}{\frac{1}{M_{i}} - 1 - 2\Gamma\left(\Delta - \frac{\Sigma}{M} - \frac{m_{2,j}^{2}}{m_{i,j}}\right)}$$

# 4.6.2 "B" booms in x, y plane, necessarily along principal axes of inertia.

The booms are all contained in plane x, y, with x, y as two transverse axes of inertia of the rigidified structure, and are normal to  $z_p$ , satellite spin axis. With the notations introduced in the beginning of Section 4.6,  $\zeta_k$  is the angle between the axis of the boom and axis x.

Let  $q_{j,k}$  be the jth modal coordinate of boom k. The equations for the modal coordinates and the rates, written in Sections 4.2 to 4.5 for the "+x boom", along a principal axis of inertia, will be modified as follows:

4.6.2.1 +x boom "k"; angle  $\zeta_k$  with x

#### Equatorial case.

Modal coordinate:

$$\begin{split} \hat{\vec{y}}_{j,k} + 2\nu \,\overline{\omega}_{j,k} \,\hat{\vec{y}}_{j,k} + \overline{\omega}_{J}^{2} \,q_{j,k} &= -\frac{m_{2,j,k}}{m_{i,j,k}} \stackrel{\circ}{\omega}_{Z} \qquad (4.6-25) \\ \underline{Rates}: \quad X = 2\mu, \quad J = y_{\mu}, \quad Z = 2\mu \\ \hat{\vec{\omega}}_{X} &= -\frac{I - ky}{k_{X}} \quad \overline{\omega}_{Y} \\ \hat{\vec{\omega}}_{Y} &= -\frac{k_{X} - I}{k_{Y}} \quad \overline{\omega}_{X} \qquad (4.6-26) \\ \hat{\vec{\omega}}_{i_{Z}} \left(I - \frac{(\ell^{2})}{I_{Z}} k \stackrel{N}{=} \frac{m_{2,j,k}}{m_{i,j,k}}\right) = \frac{(\ell^{2})}{I_{Z}} \stackrel{N}{=} \frac{m_{2,j,k}}{I_{Z}} \left[ \frac{2\nu \widetilde{\omega}}{j,k} \hat{q}_{j,k} + \widetilde{\omega}_{J,k}^{2} \hat{q}_{j,k} \right] \end{split}$$

<u>Meridional case</u>

$$\begin{array}{c} \overset{u}{\partial}_{j,k} + 2p\overline{\omega} & \overset{d}{\partial}_{j,k} + \overline{\omega}^{2} & \overset{d}{\partial}_{j,k} = - \frac{m_{2,d,k}}{m_{1,j,k}} \left( -\overline{\omega} + \overline{\omega} + \overline$$

since 
$$\overline{w}_{y}$$
 in (4.3-16) becomes  $-\overline{w}_{X}$  for  $\xi_{k} + \overline{w}_{y} + \overline{w}_{k}$   
 $\overline{w}_{x}$  in (4.3-16) becomes  $\overline{w}_{X} + \overline{w}_{y} + \overline{w}_{y}$  for  $\xi_{k}$ 

## <u>Rates</u>:

In the case of a "+x" boom, Equation (4.5-1) shows that the vibrations parallel to the z-axis generate a torque along the direction normal to "+x", i.e. "+y" having projections:

$$(pl^{3})_{k} \int_{\text{from } k} (\tilde{\eta} + \eta) \xi_{1} d\xi \times (-\delta \omega \xi_{k})$$

$$(pl^{3})_{k} \int_{\text{from } k} (\tilde{\eta} + \eta) \xi_{1} d\xi \times (\cos \xi_{k})$$

$$A LONG Y_{from} \xi$$

The equations for the rates will read, before dividing by  $I_x$ ,  $I_y$  respectively,

$$\begin{split} \mathbf{I}_{\mathbf{X}} \stackrel{i}{\mathbf{\omega}}_{\mathbf{X}} + (\mathbf{I}_{\mathbf{Z}} - \mathbf{I}_{\mathbf{y}}) \stackrel{i}{\mathbf{\omega}}_{\mathbf{y}} &= (\rho \rho^{3})_{\mathbf{k}} \left( - \operatorname{Jm} \xi_{\mathbf{k}} \right)_{\mathbf{j}=1}^{N} m_{2,\mathbf{j},\mathbf{k}} \left[ \left( I - \widetilde{\omega}_{\mathbf{j},\mathbf{k}}^{2} \right) q_{\mathbf{j},\mathbf{k}} - 2y \widetilde{\omega}_{\mathbf{j},\mathbf{k}} q_{\mathbf{j},\mathbf{k}} \right] \\ &+ (\rho l^{3})_{\mathbf{k}} \left( - \operatorname{Jm} \xi_{\mathbf{k}} \right)_{\mathbf{j}=1}^{N} \frac{m_{2,\mathbf{j},\mathbf{k}}^{2}}{m_{i,\mathbf{j},\mathbf{k}}} \left( - \widetilde{\omega}_{\mathbf{x}} + \frac{1}{2} \right) \cos \xi_{\mathbf{k}} - \widetilde{\omega}_{\mathbf{x}} \cos \xi_{\mathbf{k}} - \widetilde{\omega}_{\mathbf{x}} \cos \xi_{\mathbf{k}} - \widetilde{\omega}_{\mathbf{y}} \sin \xi_{\mathbf{k}} \right) \\ \mathbf{I}_{\mathbf{y}} \stackrel{i}{\omega}_{\mathbf{y}} + \left( \mathbf{I}_{\mathbf{x}} - \mathbf{I}_{\mathbf{z}} \right) \widetilde{\omega}_{\mathbf{x}} = \left( \rho l^{3} \right)_{\mathbf{k}} \left( \cos \xi_{\mathbf{k}} \right)_{\mathbf{j}=1}^{N} m_{2,\mathbf{j},\mathbf{k}} \left[ \left( I - \widetilde{\omega}_{\mathbf{j},\mathbf{k}}^{2} \right) q_{\mathbf{j},\mathbf{k}} \left( 4.6-28 \right) \right] \\ &- 2y \widetilde{\omega}_{\mathbf{j},\mathbf{k}} q_{\mathbf{j},\mathbf{k}}^{2} \right] + \left( \rho l^{3} \right)_{\mathbf{k}} \left( \cos \xi_{\mathbf{k}} \right)_{\mathbf{j}=1}^{N} \frac{m_{2,\mathbf{j},\mathbf{k}}^{2}}{m_{i,\mathbf{j},\mathbf{k}}} \left( - \frac{1}{\omega_{\mathbf{x}}} \sin \xi_{\mathbf{k}} + \frac{1}{\omega_{\mathbf{y}}} \cos \xi_{\mathbf{k}} - \widetilde{\omega}_{\mathbf{x}} \cos \xi_{\mathbf{k}} \right) \\ &- \overline{\omega}_{\mathbf{y}} \sin \xi_{\mathbf{k}} + \left( \rho l^{3} \right)_{\mathbf{k}} \left( \cos \xi_{\mathbf{k}} \right)_{\mathbf{j}=1}^{N} \frac{m_{2,\mathbf{j},\mathbf{k}}^{2}}{m_{i,\mathbf{j},\mathbf{k}}} \left( - \frac{1}{\omega_{\mathbf{x}}} \sin \xi_{\mathbf{k}} + \frac{1}{\omega_{\mathbf{y}}} \cos \xi_{\mathbf{k}} - \widetilde{\omega}_{\mathbf{x}} \cos \xi_{\mathbf{k}} \right) \\ &- \overline{\omega}_{\mathbf{y}} \sin \xi_{\mathbf{k}} \right) \\ & \widetilde{\omega}_{\mathbf{z}} = 0 \end{split}$$

Now define the following coefficients

$$A_{II} \stackrel{e}{=} I_{\chi} - (\rho \rho^{3})_{R} Jm^{2} J_{\chi} \stackrel{\chi}{=} \frac{m_{2,j,k}^{2}}{m_{1,j,k}^{2}}$$

$$A_{12} \stackrel{e}{=} (\rho \rho^{3})_{R} Jm J_{R} \cos J_{R} \int_{J=1}^{N} \frac{m_{2,j,k}^{2}}{m_{1,j,k}^{2}}$$

$$A_{21} \stackrel{e}{=} (\rho \rho^{3})_{R} Jm J_{R} \cos J_{R} \int_{J=1}^{N} \frac{m_{2,j,k}^{2}}{m_{1,j,k}^{2}}$$

$$A_{21} \stackrel{e}{=} (\rho \rho^{3})_{R} Jm J_{R} \cos J_{R} \int_{J=1}^{N} \frac{m_{2,j,k}^{2}}{m_{1,j,k}^{2}}$$

$$A_{22} \stackrel{e}{=} I_{\chi} - (\rho \rho^{3})_{R} \int_{J}^{2} \cos J_{R} \int_{J=1}^{N} \frac{m_{2,j,k}^{2}}{m_{1,j,k}^{2}}$$

$$a_{11} \stackrel{e}{=} \frac{A_{12}}{I_{\chi}}$$

$$a_{21} \stackrel{e}{=} \frac{A_{12}}{I_{\chi}}$$

$$a_{22} \stackrel{e}{=} \frac{A_{22}}{I_{\chi}}$$

$$a_{22} \stackrel{e}{=} \frac{A_{22}}{I_{\chi}}$$

Let

$$\begin{split} \hat{A}_{i,k} &= \frac{(\gamma^{l^3})_k}{I_X} \left(-\sin \xi_k\right) \sum_{d=1}^N \left\{m_{2,d,k} \left[\left(i - \overline{\omega}_{j,k}^2\right) q_{j,k} - 2\gamma \overline{\omega}_{j,k} q_{j,k}\right] \right. \\ &+ \frac{m_{2,d,k}}{m_{i,j,k}} \left(-\overline{\omega}_X \cos \xi_k - \overline{\omega}_y \sin \xi_k\right) \\ \hat{A}_{2,k} &= \frac{(\gamma^{l^3})_k}{I_Y} \left(\cos \xi_k\right) \sum_{d=1}^M \left[m_{2,d,k} \left[\left(i - \overline{\omega}_{j,k}^2\right) q_{j,k} - 2\gamma \overline{\omega}_{j,k} q_{j,k}\right] \right. \\ &+ \frac{m_{2,d,k}}{m_{i,j,k}} \left(-\overline{\omega}_X \cos \xi_k - \overline{\omega}_y \sin \xi_k\right) q_{j,k} \right] \\ \end{split}$$

System (4.6-28) is rewritten

$$a_{11} \frac{\ddot{w}_{x}}{\ddot{w}_{x}} + a_{12} \frac{\ddot{w}_{y}}{\ddot{w}_{y}} = \hat{f}_{1,2} \hat{k}$$

$$a_{21} \frac{\ddot{w}_{x}}{\ddot{w}_{x}} + a_{22} \frac{\ddot{w}_{y}}{\ddot{w}_{y}} = \hat{f}_{2,2} \hat{k}$$
Let  $D_{k} = a_{11} a_{22} - a_{21} a_{12} = I - (\rho \ell^{3})_{k} \left(\frac{4m^{2} f k}{I_{x}} + \frac{cos^{2} f k}{I_{y}}\right)_{J=1}^{N} \frac{m_{2,J}^{2} h k}{m_{1,J,k}}$ 

Then the equations for the rates are

$$\hat{\vec{w}}_{\chi} = \frac{A_{22} \hat{h}_{1, \hat{k}} - A_{1, 2} \hat{I}_{2, \hat{k}}}{D_{k}}$$

$$\hat{\vec{w}}_{\chi} = \frac{a_{11} \hat{I}_{2, \hat{k}} - A_{21} \hat{I}_{1, \hat{k}}}{D_{k}}$$

$$(4.6-29)$$

$$\hat{\vec{w}}_{\chi} = 0$$

4.6.2.2 General case: "B" booms, making angles  $\zeta_k (k = 1, ..., B)$ 

with  $x_p$ .

Equations (4.6-28) will, in the general case of B booms, at angles  $\zeta_k$  (k = 1,...,B), have r.h. sides with sums over k, in

addition to the summation over j. Important note: all modal displacements are referred to the +z axis (case M) or to the normal " $y_k$ " to the boom " $x_k$ " (in case E) such that ( $x_k$ ,  $y_k$ , z) is a direct system.

## Equatorial case:

Modal coordinates:

$$\tilde{q}_{j,k} + 2 \nu \overline{\omega}_{j,k} + \tilde{\omega}_{j,k}^2 + \tilde{\omega}_{j,k} = -\frac{m_{2,j,k}}{m_{1,j,k}} \tilde{\omega}_Z$$
 (4.6-30)  
in which expression (4.6-31) is substituted

Rates:

$$\begin{split} \ddot{\overline{w}}_{\chi} &= -\frac{1-k_{y}}{k_{\chi}} \quad \overline{w}_{\chi} \\ \dot{\overline{w}}_{\chi} &= -\frac{k_{\chi}-1}{k_{y}} \quad \overline{w}_{\chi} \\ \dot{\overline{w}}_{\chi} &= -\frac{k_{\chi}-1}{k_{y}} \quad \overline{w}_{\chi} \\ \dot{\overline{w}}_{\chi} &= -\frac{k_{\chi}-1}{I_{\chi}} \quad \overline{\overline{w}}_{\chi} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{I_{\chi}} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{I_{\chi}} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{I_{\chi}} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{I_{\chi}} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad (\rho l^{3})_{k} \quad \frac{5}{2} \quad \frac{5}{2} \quad \frac{m^{2}}{2}_{(j,k)} \\ \dot{\overline{w}}_{\chi} &= (1-\frac{1}{k} \quad \frac{5}{2} \quad \frac$$

Meridional case:

$$\frac{\text{Modal coordinates}}{\tilde{q}_{j,k} + 2\nu\bar{\omega}_{j,k}} \hat{q}_{j,k} + \bar{\omega}_{j}^{2} q_{j,k} = \frac{m_{2,j,k}}{m_{1,j,k}} \left( -\bar{\omega}_{\chi} + \bar{\omega}_{\chi} + \bar{\omega}$$

in which expression (4.6-33) is substituted

Defining

$$\begin{split} c_{11} &= 1 - \sum_{k=1}^{n} \frac{(j l^{3})_{k}}{I_{X}} - \sin^{2} j_{k} \sum_{j=1}^{n} \frac{m_{2,j,k}^{2}}{m_{1,j,k}} \\ c_{12} &= \sum_{k=1}^{n} \frac{j_{k}}{k_{x_{1}}} - \frac{(j l^{3})_{k}}{I_{X}} - \sin j_{k} \cos j_{k} \sum_{j=1}^{n} \frac{m_{2,j,k}^{2}}{m_{1,j,k}} \\ c_{21} &= \sum_{k=1}^{n} \frac{j_{k}}{k_{x_{1}}} - \frac{(j l^{3})_{k}}{I_{Y}} - \sin j_{k} \cos j_{k} \sum_{j=1}^{n} \frac{m_{2,j,k}^{2}}{m_{1,j,k}} \\ c_{21} &= \sum_{k=1}^{n} \frac{j_{k}}{I_{Y}} - \frac{(j l^{3})_{k}}{I_{Y}} - \sin j_{k} \cos j_{k} \sum_{j=1}^{n} \frac{m_{2,j,k}^{2}}{m_{1,j,k}} \\ c_{22} &= 1 - \sum_{k=1}^{n} \frac{(j l^{3})_{k}}{I_{Y}} - \cos^{2} j_{k} \sum_{j=1}^{n} \frac{m_{2,j,k}^{2}}{m_{1,j,k}} \\ D &= c_{1} c_{22} - c_{21} c_{12} \\ &= 1 - \sum_{k=1}^{n} (j l^{3})_{k} - (j l^{3})_{k} - (j l^{3})_{k} + \frac{c_{0}^{2} j_{k}}{I_{Y}} + \frac{c_{0}^{2} j_{k}}{I_{Y}} - (j l^{3})_{k} - 2 y \widetilde{\omega}_{j,k} \dot{q}_{j,k} ] \\ \frac{j_{1}}{m_{0,j,k}} &= \frac{j_{1}}{m_{0,j,k}} \left( - \frac{j_{1}}{m_{2}} \cos j_{k} - \frac{\omega_{1}}{y} \sin j_{k} \right) \left[ \frac{j_{1}}{m_{2}} + \frac{m_{2,j,k}^{2}}{m_{0,j,k}} - \frac{m_{2,j,k}}{m_{1,j,k}} \right] \\ &+ \frac{m_{2,j,k}^{2}}{m_{0,j,k}} - (-\widetilde{\omega}_{X}\cos j_{k} - \widetilde{\omega}_{Y} \sin j_{k}) \left[ (1 - \widetilde{\omega}_{j}^{2}) q_{j,k} - 2 y \widetilde{\omega}_{j,k} \dot{q}_{j,k} \right] \\ &+ \frac{m_{2,j,k}^{2}}{m_{0,j,k}} \left( -\widetilde{\omega}_{X}\cos j_{k} - \widetilde{\omega}_{Y} \sin j_{k} \right) \left[ 1 - \frac{\omega_{2}}{m_{2}} - 2 y \widetilde{\omega}_{j,k} \dot{q}_{j,k} \right] \\ &+ \frac{m_{2,j,k}^{2}}{m_{0,j,k}} \left( -\widetilde{\omega}_{X}\cos j_{k} - \widetilde{\omega}_{Y} \sin j_{k} \right) \right] \end{split}$$

we obtain the equations

.

$$\dot{\bar{w}}_{z} = \frac{c_{22} \dot{\lambda}_{1} - c_{12} \dot{\lambda}_{2}}{c_{11} \dot{\lambda}_{2} - c_{21} \dot{\lambda}_{1}}$$

$$\dot{\bar{w}}_{z} = \frac{c_{11} \dot{\lambda}_{2} - c_{21} \dot{\lambda}_{1}}{D}$$
(4.6-33)

4-42

The above formulation is the most general that will be considered in this work.

- 4.6.3 System considering meridional and equatorial vibrations simultaneously. (B booms in X, Y plane, not necessarily along a principal axis of inertia).
  - In the Lagrangian formulation, for an elastic displacement  $\vec{W}_{total} = W_{E}(\mathbf{x})\vec{I}_{g} + W_{M}(\mathbf{x})\vec{I}_{z}$  $V = \sum_{ALL} \frac{EI}{2} \int_{krom} \left[ \left( \frac{\partial^{2}W_{E}}{\partial x^{2}} \right)^{2} + \left( \frac{\partial^{2}W_{A}}{\partial x^{2}} \right)^{2} \right] ds + O(\epsilon^{3})$

and the kinetic energy is, if  $n_{\rm E} = \frac{w_{\rm E}}{\ell_{\rm k}}$ ,  $n_{\rm M} = \frac{w_{\rm M}}{\ell_{\rm k}}$ , etc.,  $T = T_{\substack{R_{\rm H}, \omega \\ R_{\rm DD}, j}} + \frac{1}{2} \sum_{\substack{R_{\rm LL} \\ B_{\rm DOM}, s}} \left( \int \ell^3 \right)_{\it R}^{\it R} \omega_{\rm S}^2 \int_{\ell_{\rm DD}, m} \left( \int \eta_{\rm E, k}^2 + \eta_{\rm H, k}^2 + \eta_{\rm E, k}^2 \right)_{\it H, k} + \eta_{\rm E, k}^2 + \eta_{\rm E, k}^2$ 

It can readily be seen that when  $n_E$ ,  $n_M$  are expanded in their modes  $\Phi(\bar{\lambda}, \xi_o)$ , with associated frequencies  $\bar{\omega}_{j,h}$ ,  $\bar{\omega}_{j,k}$ , the corresponding modal equations for E M

are uncoupled. For "E", only  $\overline{\omega}_z$  will appear in the r.h. side, and this quantity is a function of the  $q_{j,k}$  only. For "M", only  $\overline{\omega}_x$ ,  $\overline{\omega}_y$ ,  $\dot{\overline{\omega}}_x$ ,  $\dot{\overline{\omega}}_y$  will appear in the r.h. sides, and these quantities are functions of the  $q_{j,k}$ . Hence, in the total system,

- the two first equations of (4.6-33) are those for  $\overline{u}_{y}$ ,  $\overline{u}_{y}$ 

- the modal coordinate equations for q are given by (4.6-32)
- the modal coordinate equations for  $q_{j,k}$  are given by (4.6-30)
- 4.7 Conclusion

The equations of motion of the spinning spacecraft having flexible appendages have been derived in a rather general case, using the modes of the rotating structure at the nominal spin rate, and for a central hub of non-zero radius. They were found to be in agreement with some other published results^[4-3] in the limit case of a central body of zero radius, and can be used with profit in the numerical simulation of flexible spacecraft motions.

#### REFERENCES - Chapter 4

- [4-1] BELETSKII, V.: Motion of an Artificial Satellite About Its Center of Mass. (Translated from Russian). Published for NASA and NSF, Israel Program for Scientific Translations, Jerusalem, 1966 (NASA TT F-429).
- [4-2] RAKOWSKI, J.E.: "A Study of the Attitude Dynamics of a Spin-Stabilized Satellite Having Flexible Appendages," Ph.D. Thesis, Mech. Engrg., Carnegie-Mellon University, December 1970.
- [4-3] HUGHES, P.C. and FUNG, J.C.: "Liapunov Stability of Splining Satellites with Long Flexible Appendages." Celestial Mechanics, <u>4</u>, 295-308, 1971.



# FIG. 4- 1 MULTI-BOOM GEOMETRY
#### CHAPTER 5

# Simulation of the Satellite Attitude

Motion and Stability Studies

5.1 Motivation

In the present chapter, we present a simulation study of the evolution with time of the satellite attitude, from which stability charts can be obtained for use by the satellite designer. Of particular interest is the "nutational divergence" phenomenon, in which the satellite, although stable if it were "quasi-rigid", exhibits a steadily increasing nutation angle. Its spin axis thus drifts away from the invariant angular momentum vector, on which it is assumed to be aligned initially. This instability is due only to the dissipative motion of the elastic appendage.

To this effect, a set of computer programs, "FLEXAT", has been developed which numerically integrates the equations of motion and prints or graphically outputs the variables of interest. This program quite markedly differs from earlier versions we have used in the work, as will be explained later. The version given here accommodates three modes of the rotating structure and a dissymetric central body, and since it permits an easy visualization of the qualitative features of the attitude motion, it should appeal to the satellite project engineer.

5.2 A Package for the Simulation of the Spacecraft with Flexible Appendages.

5.2.1 Generalities

FLEXAT is a set of programs, written in FORTRAN V, which were

. mostly run on the UNIVAC 1108 at Carnegie-Mellon University. It is composed of the following parts:

- a) A short "MAIN" program calling on the relevant SUBROUTINES.
- b) A subroutine <u>CASEM</u> 2 called upon to study the stability of the meridional vibrations. This subroutine internally calls on its own subroutine <u>RATES</u>, which computes the angular rates  $\dot{\tilde{\omega}}_{x}, \dot{\tilde{\omega}}_{y}, \dot{\tilde{\omega}}_{z}$ .
- c) A subroutine <u>CASEE</u> 2 called upon to simulate the equatorial vibrations. Again, this subroutine internally calls on its own subroutine <u>RATES</u>, which computes the angular rates  $\dot{\bar{w}}_x$ ,  $\dot{\bar{w}}_y$ . In particular, this subroutine can be used to simulate the nutational divergence occurring when the GMI (greater moment of inertia) rule is violated, for the rigidified body.
- d) A subroutine <u>SEARCH (NDS)</u> called by the MAIN program and yielding the eigenfrequencies  $\overline{\omega}_j$  (up to j=3, if required) of the rotating structure, corresponding to the specified values of  $\overline{\lambda}$ ,  $\xi_o$ . This subroutine, for the essential part, is the same as that described in Section 2.4.
- e) A subroutine PLOT, called internally in either CASEM 2 or CASEE 2, giving a graphical output of the evolution with time of the satellite nutation angle, over a number of satellite spin periods (generally taken to be 10 to 20).

Each of these parts is now discussed in more detail.

#### 5.2.2 Program MAIN

In this program, COMMON, DIMENSION etc. are given. Then the "unchanging parameters" are specified by cards. The listing given at the end of this chapter, for example, specifies

NSKP : skip the printing of 60% of the results is desired (NSKP = 1) else NSKP = 1; all results plotted in both cases

NØRU=NSUP=3: include 3 modal coordinates for each boom.

- XNØ(1)=0.05: the "x-boom" and the "-x-boom" have modal deflections (lst mode) equal to  $\pm$  0.05 times the length of the boom
- XNØ(2)...YNØ(3): the±"x-boom" and the±" y-boom" have zero
  modal deflections, for the 2nd and 3rd modes.

NU(1) NU(3)=0.05: same damping ratio on the 3 modes

CASE = 'M' : meridional vibrations

SIO = 0 : value of  $\xi_{\circ}$ 

LAM = 10 : value of  $\overline{\lambda}$ 

MGIV : a switch. If equal to 1, the eigenfrequencies  $\overline{\omega}_j$ and  $m_{1,j}$ ,  $m_{2,j}$  are given as data (they are assumed to be known from a previous study, or from a table). If equal to 0, the  $\overline{\omega}_j$  and the other quantities will be obtained "on line" by calling SEARCH(1) (in case E) or SEARCH (0) (in case M)

GAM : I in the developments of Chapter 4.

PKX,PKY : ratios K = I z,hub / I x,hub; K = I z,hub / I y,hub These measure dissymmetry of the ellipsoid of inertia of the central body.

PREC: : the integration interval in time is equal to  $\frac{\tau_{spin}}{75}$  or  $\frac{2\pi/\omega_j}{75}$  (with j = PREC) whichever the smaller. It has been found sufficient to take PREC = 1. MAXP : maximum number of such periods (defined under PREC) to be considered.

MODES : 3 (should be the same as NØRU, NSUP). Three modes are retained.

5.2.3 Subroutine SEARCH (NDS)

This subroutine has already been described in Chapter 2. It obtains  $\overline{\omega}_j$  in the relevant case (E or M) for  $j = 1, 2, \dots$  Note that

- a) NDS is an argument given in MAIN (O for case M;1 for case E)
- b) SEARCH is bypassed if MGIV = 1, i.e. if the eigenfrequencies in the case of interest are externally given, other than completed on line.

#### 5.2.4 Subroutines CASEM2, CASEE2

This subroutine, fed with the  $\overline{\omega}_{j}$ ,  $m_{1,j}$ ,  $m_{2,j}$  values obtained from data or computed in SEARCH, proceeds to integrate equations (2.2-8) or (2.3-5), as the case may be, if <u>MGIV = 0</u>, and bypasses the procedure if MGIV = 1.

It then proceeds to compute the quantity

NSUP 
$$\frac{m^2}{j^{\sum_{j=1}^{m}}}$$
  $\frac{m^2}{m_{1,j}}$ 

The equations which are integrated are those for

 $q_{x,j}$ ,  $q_{y,j}$ ,  $\omega_x$ ,  $\omega_y$ ,  $\omega_z$ The system is thus of order 4 NSUP + 3. The rates are computed in an internal subroutine "RATES". Antisymmetric vibrations are assumed, so that  $q_{x,j} = -q_{-x,j}$ ;  $q_{y,j} = -q_{-y,j}$ . The four booms are assumed to have

the same geometric and structural properties (thus same  $\xi_o$ ,  $\bar{\lambda}$ ,  $\Gamma$ ,  $\rho \ell^3$ ), to be along the principal axes of inertia of the rigidified structure  $(\zeta_k = 0, \pi \text{ for the x-booms}, \zeta_k = \frac{\pi}{2}, \frac{3\pi}{2}$  for the y-boom, in Chapter 4). The ellipsoid of inertia need not be of revolution  $(\aleph_{px} \neq \aleph_{py})$ . Thus the relevant equations have been written as equations

(4.6-20) and (4.6-24) for program CASEM2

(4.6-18) and (4.6-23) for program CASEE2

Different assumptions (booms of different length, structural properties) could easily be considered by the user, for any special application, after a rather simple rewrite of the equations, as given in Chapter 4, or a suitable distinction between " $\Gamma_x$ ", " $\Gamma_y$ ",... etc. rather than the common " $\Gamma$ "... adopted here.

The method of integration is RUNGE-KUTTA with fixed step , the latter being computed in the program as some function of the spin period or of the vibration period of the jth mode, as precised in 5.2.2. under "PREC".

The output consists of a print of the case data, of the quantities  $\begin{array}{c} \text{NSUP} & \frac{m_{2,j}^{2}}{m_{1,j}^{2}} \\ j \stackrel{\Sigma}{=} 1 & \frac{m_{2,j}^{2}}{m_{1,j}} \end{array}; \Delta, \nu_{1}, \nu_{2}, \nu_{3}; \tilde{\omega}_{j}, m_{1,j}, m_{2,j} (j=1,\ldots\text{NSUP}); \text{H initial} = \frac{|\tilde{H}_{o}|}{I_{zh}} \\ \text{(assuming } \tilde{H}_{o} \text{ and } z \text{ are initially aligned}); \text{ then tables giving} \\ q_{x,1} & q_{y,1} & q_{x,2} & q_{y,2} & q_{x,3} & q_{y,3} & \tilde{\omega}_{x} \\ & & \text{(angle of nutation, degrees)} \end{array}$  There exists an option to skip the <u>printing</u> of the first 60% of the results over the time interval considered, which makes sense if one is only interested at looking at the long-term behavior.

5.2.5 Subroutine PLØT

The PLOT routine graphically presents the results of the above computation. PLOT is internal to CASEM2 or CASEE2, as the case may be.

5.3 Results from simulation study, using FLEXAT

5.3.1 Comparison between the present and some previous results

As compared to the approach previously taken by J. Rakowski and the present author [5-1,5-2], the equations used in the present simulation do <u>not</u> include "extra" non-linear terms such as  $q_x^2$ ,  $q_y^2$ ,  $\omega_x \omega_y \dots$  Including these terms, although they appear in the derivations of Chapter4, did not seem fully consistent with writing the contributions to the kinetic and elastic energy with some terms of order 3 of smallness neglected (such would be the case, for instance, if  $\{\dots\}dx = \int \{\dots\}ds$ , with the integrand of first order of smallness).

However, strictly for the sake of comparison, the stability boundaries, derived as explained in 5.3.2, were compared in a large number of cases using, on one hand, the equation with the extra nonlinear terms, and on the other hand the equations obtained in Chapter 4.

In no cases were the differences of much significance. All were well within the sampling interval ( $K_p \pm .016$ ).

### 5.3.2 Parametrization of the stability chart

Following the notation adopted earlier [5-1,5-2], it is proposed to define a stability chart as follows, in the symmetric case  $(K_{px} = K_{py} = K_p)$  (See Fig. 5.1)

- abscissa:  $K_p = \frac{I_p, hub}{I_z, hub}$ , a measure of the asymmetry of the ellipsoid of inertia of the central body.

-ordinate:  $\Gamma = \frac{\ell}{I_{z,h}}^{2}$ , a measure of the relative importance of the inertia of a boom  $(\frac{1}{3} \rho \ell^3, \text{ if } \xi_{\circ} = 0)$ , and the inertia of the hub. All things being equal, small booms of small mass will give small values of  $\Gamma$ .

- parameter. of the plane:

 $\xi_{\circ}$  = fixed non-dimensional radius of the hub (referred to the booms length)

- parameters of the curves:

 $\overline{\lambda} = \frac{\pi \ell^4}{EI} \omega_s^2 \div \left(\frac{\omega_s}{\omega}\right)^2, \text{ a ratio of certrifugal to elastic cant}$ forces, large for high spin rates or very flexible booms (E, I small;  $\rho \ell^4$  large)

Thus  $\overline{\lambda}$  = constant curves will be drawn on the  $(K_p, \Gamma)$  plane, for  $\xi_o$  = constant, corresponding to the observed limit of stability, i.e. a point, at given  $\Gamma$ ,  $\xi_o$ ,  $\overline{\lambda}$ , such that any slight increase in  $K_p$  causes stability of the observed motion, the nutation angle tending asymptotically to zero; whereas to the left of it (decreasing  $K_p$ ), the motion is observed to be unstable, the nutation angle steadily increasing with time.

In the asymmetric case, one more degree of freedom exists, and the chart will draw  $\overline{\lambda}$  = constant curves, corresponding to the observed 5.3.3 The GMI rule

As described in [5-3], a rigid body undergoing a torque-free motion about its center of mass, but having internal energy dissipation, has a stable spinning motion only about its maximum axis of inertia, i.e. if

$$\frac{I}{I_x} \text{ and } \frac{I}{I_y} > 1$$
 (5.3-1)

If one of these ratios was one, there would be no preferred axis of rolation about which the satellite would spin after an initial nutation has been removed by energy dissipation. Condition (5.3-1) is commonly referred to as the GMI rule (or greatest moment of inertia rule).

In the stability chart, planes described above, condition (5-1) will be represented, in the symmetrical case

$$I_x = I_y = I_p$$

 $\Gamma \rightarrow 0 \qquad K_{\rm D} \rightarrow 1$ 

by a locus of equation

$$2\Gamma\Delta > \frac{1}{K_p} - 1$$
 (5.3-2)

or

$$2\Gamma\left(\frac{1}{3}+\xi_{o}+\xi_{o}^{2}\right) > \frac{1}{k_{\mu}}-1$$
 (5.3-3)

These curves will, whatever the value of  $\xi_{\circ}$ , tend to the common point

which they should not include. This corresponds to the case where the satellite has no flexible appendages ( $\rho l^3 \rightarrow 0$ ) and a spherical ellipsoid of inertia. The curves are shifted to the left as  $\xi_0$  increases (Fig. 5.1). Their  $\overline{\lambda}$  parameter is  $\overline{\lambda} = 0$ .

Conclusion

For the stability of the satellite with perfectly rigid appendages, and of the satellite with flexible appendages in the presence of equatorial vibrations (as explained in 5.3.4 ), the greatest moment of inertia rule

$$I_x > I_x$$
,  $I_y$ 

should be satisfied for the <u>total</u>, rigidified satellite. On the  $(\Gamma, K_{n})$  stability charts, the design point

 $(\Gamma, K_{\mu})$ 

for given

ξ, , λ

should be to the right (i.e. in the region not including the origin) of the Quasi-Rigid (QR) locus given by Equation (5-3).

5.3.4 Stability with equatorial vibrations

Stability in the presence of equatorial vibrations, was found to be equivalent to quasi-rigid body stability. The stability condition for case E is thus the same as the Q.R. body condition given in Equation (5.3-3). This result is in good agreement with Hughes and Fung^[5-4] analysis in the case where  $\xi_{\circ} = 0$ . Two examples are given in Fig. 5-2 and 5-3.

5.3.5.1 Stability charts (case M), using three-mode analysis

Using the FLEXAT program with subroutine CASEM2, and retaining the three modes in the simulation, figures such as 5-4 to 5.7 can be pro-

duced. Each of them corresponds to the same value of  $\Gamma = 10$  and  $\xi_{\circ} = 0.1$ . For  $\overline{\lambda} = 100$ , two values of K are considered corresponding to a slightly unstable or a slightly stable condition (Fig. 5.4, 5.6). The same applies to a higher  $\overline{\lambda}$  case ( $\overline{\lambda} = 1,000$ ) (Fig. 5.6, 5.7)

The final results of the three-mode stability analysis in the presence of meridional vibrations are summarized on charts 5-8, 5-9, 5-10 for values of  $\overline{\lambda} = 0$  (Quasi-rigid body case) to  $\overline{\lambda} = 10,000$ , and for  $\xi_{\circ} = 0$ , 0.1, 0.25.

<u>IMPORTANT</u> NOTE: When using program FLEXAT, with subroutines SEARCH and CASEM2, for  $\overline{\lambda} \gtrsim 5,000$ , the values of the relevant frequency and modal quantities:

$$\tilde{\omega}_{j,M}$$
,  $m_{2,j}$  (5.3-4)

should be given as <u>input</u> data, using option MGIV = 1, or described in Section 5.2.2. Quantities (5.3-4) cannot be obtained on line using program SEARCH DP, for such high values of  $\overline{\lambda}$ . They have been obtained using a multiple precision version (OS-MP or NP-package) of SEARCH, which is rather time-consuming and should be run only to set up tables such as in Section 2.8, for interpolation purposes.

5.3.5.2 Effect of higher modes, and of modal truncation

As the tables in Section 2.8 show, the effect of higher order modes (j = 2, 3) on the motion parameters is as follows:

a)  $\sum_{d=1}^{NSUP} \frac{m_{2,j}^{2}}{2j} / m_{1,j}^{2}$ 

For small values of  $\overline{\lambda}$ , the changes of this sum by increasing NSUP from 1 to 2,3 is at most 2.5% for  $\xi_{\circ} = 0$ , and 9% for  $\xi_{\circ} = 0.25$ .

For large values of  $\overline{\lambda}$  ( $\overline{\lambda}$  = 5,000), the corresponding changes are 0.03% for  $\xi_{o}$  = 0, and 0.5% for  $\xi_{o}$  = 0.25.

b) 
$$\frac{m^2 \cdot j}{m^1 \cdot j}$$
 (amplitude in r.h. side of jth modal equation)

It can be seen that this ratio is at most 25% (for j = 2) of the value corresponding to j = 1, when j is increased to 2,3 .

c) m_{2,j} (amplitude of some terms in the r.h. side of the rate equations).

To assess the effect of higher modes qualitatively, it should be remembered that, when non-dimensionalized by  $\omega_z$ ,

$$\overline{\omega}_{j,M} > 1$$
  $j=1, \dots$  *NSUP*

and the forcing frequency (precision frequency in body-fixed axes) on the terms would be, for  $|q_{rr}|$ ,  $|q_{rr}| << 1$ ,

$$\overline{\omega}_{F,el.} \approx \frac{1 - \frac{1}{K_{P}} + 2 \left(\Delta - \frac{m_{2}^{2}}{m_{1}}\right)}{\frac{1}{K_{P}} + 2 \left(\Delta - \frac{m_{2}^{2}}{m_{1}}\right)} < 1$$

as opposed to

$$\overline{\omega}_{F, \text{migned}} = \frac{1 - \frac{1}{K_{h}} + 2\Gamma\Delta}{\frac{1}{K_{h}} + 2\Gamma\Delta} \leq 1$$

for a quasi-rigid body.

Note that  $\frac{m_2^2}{m_1}$  is always smaller than  $\Delta$ . Typically, for

$$\xi_0 = 0.1$$
 ,  $\Delta = 0.443$   
 $\frac{m_1^2}{m_1} = 0.419$  for  $\bar{\lambda} = 0$ ; 0.430 for  $\bar{\lambda} = 100$ ; 0.437 for  $\bar{\lambda} = 1,000$ .

Therefore, in an approximate sense, it can be said that angular rates  $\overline{\omega}_{\rm F}$  will not appreciably excite modes 2,3,... which are larger than  $\overline{\omega}$ , by a factor of several units at least.

With these observations in mind, we now discuss the conclusions of a detailed study of the effect of modal truncation on the stability charts ( $\Gamma$ ,  $K_p$ ; constant  $\overline{\lambda}$ ,  $\xi_o$ ).

It was indeed observed in the simulation that higher modes never developed to amplitudes of more than a few % of the amplitudes of the first mode, assuming i.e. which can be considered as "normal" for the initial deflection, namely close to the shape of the first mode  $\phi$  (§).

Within the accuracy retained in establishing the stability charts ( $K_p \pm 0.015$ ), no noticeable difference could be reported between the stability chart determined here on the basis of <u>three</u> modal coordinates for each boom, and that we obtained on the basis of a single modal coordinate . Se ing times, however, were larger.

The results of the 3-mode analysis, using program FLEXAT, are summarized in Figures 5.8, 5.9, 5.10.

5.3.5.3 Effect of some higher order terms

As was mentioned in 5.1, there was a lack of consistency in retaining some non-linear terms of order 2 in the equations and neglecting some others. Equations (4.6-20) and (4.6-24) were used in the present stability simulation. It should be noted that little difference resulted in the stability charts. The angles of nutation, however, are

computed here by

$$y'H^2 + H^2$$
  
 $H^2 = nutation angle = \arcsin\left(\frac{X - Y}{H_{tot}}\right) = 0(\varepsilon)$ 

and since they involve quantities of first order of smallness, should be accurate, whereas the use of formula

$$\cos \theta = \frac{H_z}{H_{\text{Eff}}} = 1 - O(\epsilon^2)$$

will see  $\theta$  critically effected by terms of  $O(\epsilon^2)$ , none of which should then have been neglected.

5.3.5.4 Parametric studies for  $I_x \neq I_y$  (Ellipsoid of inertia not

of revolution)

With the particular geometry considered here,

 $I_y < I_x < I_z$  implies that

Iy, hub < I z, hub

or

•

Kipy > Kipe

A set of parameters is chosen, namely

 $\xi_{\circ}, \overline{\lambda}$ ,  $\Gamma$ , number of modes.

$$K_{px} = K_{py} = K_{p}$$

and the limit of stability K , such that K > K will ensure stability of the motion, was found previously. Furthermore, in order to satisfy the GMI rule, we must have

In order to determine the parameter region to be studied with

program FLEXAT, it is useful to note that

$$-1 < \frac{1 \ge k - 1 y k}{1 \times k} < \frac{1}{k_{\mu y}} - \frac{1}{k_{\mu x}} < 1$$

 $\frac{1}{K_{\mu\gamma}} + \frac{1}{K_{\mu\chi}} > 1$ 

and

or

Similarly, from

$$-1 < \frac{I_{zk} - I \times h}{I_{yk}} < 1$$

$$\frac{I}{K_{px}} - \frac{I}{K_{py}} < 1$$

This is most conveniently represented on a  $(1/K_{px}, 1/K_{py})$  plane. (Fig. 5.11). Thus, if

the admissible domain of study is bounded by

In particular, for a constant ratio of  $\frac{K_{px}}{K_{py}}$  (or  $\frac{I_{yh}}{I_{xh}}$ ), the limits are shown by circles on Fig. 5.11.

## 5.4 Conclusions

A program has been developed for stability studies and simulation of the nutational motion of a spinning satellite with flexible appendages. The results of this program can be used with profit in the preliminary attitude design, to ascertain stability, determine the importance of structural damping and study the rate at which nutation is generated or removed from the system.

- [5-1] Rakowski, J.E. and Renard, M.L.: "A Study of the Nutational Behavior of a Flexible Spinning Satellite Using Natural Frequencies and Modes of the Rotating Structure," Paper 70-1046, AAS/AIAA Astrodynamics Conference. Santa Barbara, August 1970.
- [5-2] Rakowski, J.E.: "A Study of the Attitude Dynamics of a Spin-Stabilized Satellite having Flexible Appendages," Ph.D. Thesis, Mechanical Engineering, Carnegie-Mellon University, December 1970.
- [5-3] Thomson, W.T.: Space Dynamics, John Wiley Ed., 1963.
- [5-4] Hughes, P.C. and Fung, J.C.: "Liapunov Stability of Spinning Satellites with Long Flexible Appendages." Celestial Mechanics, <u>4</u>, 295-308, 1971.



FIG.5-1. QUASI-RIGID BODY STABILITY



FIG. 5-2.Stability chart.Case E.



FIG. 5 -3. Stability chart. Case E.

.

PLOT OF NHTATI LAMBDA= 100+	ON ANGLE	IN DEGRET	ES VS N F	0 R		5-20	
51-ZERU= .10 GAMA= 10.000		···· · /	•				•
PKY= +2200 PKY= +2200 PREC= 1							·
MODES= 3				·			
		0		е <i>п</i>	<b>3</b> - <b>w</b> B	4.17	
-•93 D		+93 .*	+ + +	2 • ° U *	.3 • 7 ** *	•	
******************	********	*********	, 4888888 , 48888 , 4888 , 48888, 48888 , 488888, 48888 , 48888 , 48888 , 48888 , 488888, 48888 , 488888 , 488888 , 488888 , 4888888 , 4888888 , 4888888888 , 48888888888	\$ \$ <b>\$ \$</b> \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ # <b>6 8 8 8 8 9 9 9</b> 9 9 9 9 9 9 9 9 9 9 9 9	1 * \$ * \$ U	
*			•	•	•		
• • • •			,	- ,.	<u>.</u>	. <b>.</b> .	
* *				•			
110**				•			
· · · · · · · · · · · · · · · · · · ·	· · · · ·			•			
• • • • • • • • • • • • • • • • • • •	•			•			
*				•		·	
•	T	~ ·		•			
* 220**	•			•			
 •	• •			•		·	
	F 		•	•			
4	•			•			
	•			•			
330*	1		,	• •			
	•		- •	•			
4	•			•		<b>.</b> .	
•	8 5			e			
	æ				•		
440*	₩ 4 	. •		. •	•		
1	<b>7</b>				•		

8

٠

FIG. 5-4

	5-21
•	
•	

¢.			•	
•			•	
÷			•	
、 登			•	
550**				
• •			•	
. <b>*</b>			•	
÷			•	
*			•	
, <del>5</del>			•	
•			•	
66U** *			•	
•			•	
◆ • •				•
*	. ••			•
\$ \$				•
¢				•
* 	· · · ·			•
*				•
¢				•
• • • • • • • • • • • • • • • • • • •		··· · · · · ·		•
		~		• • •
*			、	•
\$				•
	· · ·			•
•	· ···			•
*				•
*	· • • •			*
	· ·			•
. •				•
*				•
990**				•
¢				•
•	•			٠
· •				
÷				
÷				

1100**

¢ \$

> FIG.5-4 (Continued)

ę

and the second						5-22
PLOT OF NUTATION LAMBDA# 100.	ANGLE I	N DEGREES	A2 M FAK			
SI-ZER9= ,10 GAMA= 10+000	· · ·		••• · · ·	٠	. , .	
PKY= •2800 PKY= •2800 PREC= 1						
MAXP= 15 MODES= 3	<b>.</b> .		, *			
33 <b>~</b> •×6	0	• <b>6</b> 6	1 • 3 3 *	* * 99	2 • K 6 *	3 + ¹ ₂ 2
* \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	, , , , , , , , , , , , , , , , , , ,	********	¢\$* <b>\$\$</b> \$\$\$			******
	# ¢		•			•
	•	• ·	•	,	•	•
	* •				•	
	*				•	
	*				•	
110	) e #				•	
· · · · · · · · · · ·	40 . 14	<i></i>	y ta		• • •	
. •••	*	. ·			•	
··· · · · ·	<b>₽</b>				• ,	
	*	•	a san t		•	
	¢ 4				•	
220	) * * *		•	•	•	
· ·	*	- 1			•	
an a	• <b>*</b> , . 		· •		•	
	•		· ·		•	
					•	
	€		ing the gradient of	–	•	٠.
330	] <del>*</del> •				•	
	*			·	•	
·	6 A				• . •	
· . · · · ·	بة ج			<b>.</b>	. e , o	
	•	·				
	<b>କ</b> ବ				0 0	
441	() \$ ¢ *				•	

#### 550. ÷

* -. ¢ *

# 660*

770**

÷

880**

.

990**

1100.00

FIG. 5-5 (Continued)

PLOF OF NUTATION	ATIGLE	IN DEGRE	ES VS 4 F	Оĸ		5-24	
LAMBDA= 1000+ S1-ZER0= .10 GAMA= 10+000 PKX= .3500 PKY= .3500 PREC= 1 MAXP= 15	, 					· · · ·	
HODES = 3							
<u>-</u> .							
-•×5 0		•85 •	1 + 7 1	- 5 • 56	3+42	4•≍7 *	
***************************************	* a 4 + 4 4 6	*******		********	) 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0	**84****	
¢			•		•		
*				. · · · · · · · · · · · · · · · · · · ·	•		
*				•			
4. •	-			•	- '		
¢				•			
64 4. 1. 4. 10 m m		·		•			
11()*** 11()***				•			
•				•			
- 0				. •			
<del>ب</del> - سبب ، یک ، •			<u> </u>	•	•		•
•	-				• .		
*			-				
220**				•			
					•		
\$					•		
*		• •			٠		
* *					•		
			·		•		
330**					•		
e t					•		
*					•		
tă CP					•		•
¢		•.	, <b>.</b>		•		
۵ ۵	,				•		
#L. ▲ ▲ △ 出 Ц					•		
유비난부역	i				٠		
e	ł				٠		

7

. FIG.5-6

~ /

			5-25
<b>\$</b>		•	
٠		•	
₩ • • • • • • • • • • •		•	
4		•	
<del>4</del>	· · · ·	•	
*		•	
. *		٠	
550**		•	
<b>4</b>		• • • • •	
-		•	
*		•	
4		•	
4		B	
•		•	
•	· · · ·		
•			
*		•	
660**		•	
4		•	
•			
¥		· · · · · · · · · · · · · · · · · · ·	
•		•	
*		•	
•		•	
•		•	
*		•	
₩	· · · · · · · · · · · · · · · · · · ·	. <u>.</u>	
770##		•	
12		•	,
*		•	
*		•	
•		•	,
<b>#</b>	i i i i i i i i i i i i i i i i i i i	· · · • •	
+		•	
*		•	
•		•	
*		*	
880**		•	
•	· · · ·		
+	```	•	
•		•	
<b>*</b>		•	
		•	
٠		•	
<b>4</b>	a second seco	٠	
*		•	
*		•	
99D**		•	
*	• • • • • • • • • • • • • • • • • • •	•	•
4		•	•
مربقه المراجع الم			•
•			•
*			e
•			•
*			6
*			•
•			•
1100**	•	•	•

4.

FIG.5-6 (Continued)

,

PLOT OF NUTATION ANGLE IN DEGREES VS N FOR LAMBDA= 1000+ SI-ZERO= .10 GAMA= 10.000 PKx= .4000 PKy= .4000 PREC= 1 MAXP= 15 MODES= 3

110**

* 330**

> • •

•

▲

*

440°*

¢ •

.

and the second sec	 1		
			5-27
			5-27

٠

.

*	•
¢	
• • • • • • • • • • • • • • • • • • •	•
*	è.
*	•
× +	•
50**	•
•	e de la companya de l
• • • • • • • • • • • • • • • • • • •	
*	9
4	•
*	•
•	•
\$	•
· · · · · · ·	
•	•
66D**	•
<b>u</b> – U *	•
+	
•	
ار. این میشند، میشن بیشی ور اور ور اور اور ا	
•	•
	• · ·
	•
-	•
	n general de la service de la construcción de la construcción de la construcción de la construcción de la const Internet de la construcción de la co
//0+*	•
· · ·	
~ 4	•
	•
*	•
· · · · · · · · · · · · · · · · · · ·	
*	
*	e e
	•
800**	•
a se	ina a a a a a a a a a a a a a a a a a a
- · ·	• •
5	•
	s
-	▲ · · · · · · · · · · · · · · · · · · ·
~	· · · · · · · · · · · · · · · · · · ·
	in an
770	· •
-	
· · · · · · · · · · · · · · · · · · ·	n en
-	
	* · · · · · · · · · · · · · · · · · · ·
	• • •
	• • • • • • • • • • • • • • • • • • •

.

1100**

¢

FIG.5-7 (Continued)



FIG. 5.8 Stability Diagram. Case M. 3 Modes.







۰.

FIG. 5-10. Stability Diagram. Case M. 3 Modes.

۰ ۰

•

. . J

.



# FIG. 5-11. X^{*},Y^{*} DIAGRAM.

# FLEXAT

(Casem2)

THIS IS THE MAIN PROGRAM WHICH INPUTS DATA AND CALLS THE SUBPROGRAMS. DOUBLE PRECISION XNA(3), YND(3), OHU(4), STO REAL LAN, NU, PKA, PKY, GAMA INTEGER PREC CASE PIMENSION NU(3) COMMON/ONE/GANA, PKX, PKY, XNO, YNO, NU COMMON/LEN/LAMISIO COMMON/ZEN/ONU COMMON/THREE/MUDES CORMON/THIRD/HSUP CONMUNIFOUR/IG+LM;NORU COHMON/SIX/MAXP, PREC COMMON/EDIT/NSKP,MGTV EQUIVALENCE (CASE, IQ) DATA/LH/1HM NSKP=D SKIP NO PRINTING PLOT ALL NSKP=1 SKIP 60 PERCENT OF PRINT, INITTALLY, PLOT ALL NSKP=0 UNCHANGING PARAMETERS Nosu=3 NSHP=3 . . Mob£S≈3 Nu(1)=0+05 NU(2)=0.05  $N_{11}(x) = 0.05$  $X_{N,n+1} = .02$ XN1(2)=0. XNA(3)=0.  $Y_{NO}(1) = -.02$ YND(2)=0. YN⊖(3)=0. Parcel  $M_{A,X,P} = 1.5$ 

```
MSIVEL MEANS MODAL QUANTITIES ARE INPUT DATA
   MGTY=0
   1F(MG(V+E0+0) 60 TO 10
  INSERT VALUES OF OMERA-J:AMI-J.AM2-J HERE IF HGIV=1
  AS MANY CARDS NEEDED AS THREE TIMES NUMBER OF MODES.
10 CONTINUE
   CASFETME
   L_A = 1000.
   510=0.1
   17=1
   1F(10.E0.LM) 1Z=0
   CALL SEARCH(12)
   GAMA=10.
   P_{KX} = 0.4
   PKY=0.4
   CALL CASEM2
   PKy=0+35
   P_{KY} = 0.35
   CALL CASEM2
   LAM=190+
   S10=0+1
   1_{7} = 1
                                               . . .
   IF(1Q+EQ+[M) 1Z±0
   CALL SEARCH(1Z)
   P_{K,X} = 0 \cdot 22
   PKY=0.22
   CALL CASEM2
   PKX=0.28
   PKY=0+28
   CALL CASEN2
   STOP
   Eng
```

C C

Ĺ

°, C

```
5-33
```

```
5-34
     SUPROUTINE SEARCH(NDS)
  THIS PROGRAM FINDS THE FIRST THREE EIGENVALUES (MU) FOR THE ROTATING
    BOOM IN EITHER EQUATORIAL OR MERIDION FLEXURE
  IT WILL COMPUTE THESE ACCURATELY FOR VALUES OF LAMDA UP TO
  APPROXIMATELY 5000
    POUBLE PRECISION P(4),K(4),M(4),L(4),E3(101),E31P(101),E32P(101),
   1FE34 DECID+TVAL, HY, FHOM3, ENOM4 + ESHRA + ESHR4 + FEPRV.
   1E33P(101),E34P(101),E4(101),E41P(101),E42P(101),E43P(101),
   3Eq4P(101), A, B, C, E, AO, HO, CO, EO, NUL, MH, EPSB, EPSC, LAS, LAS,
   4 DIT, UP, DWN, SID, SI
    DINENSION ONU(3)
    REAL HINNILAM, BATERQ
    INTEGER I, D, N, Z, NINT, INTER, W, R, U, HOR, KKK
     COMMOR/ZEN/OMU
     CO MON/THIRD/NSUP
     COMMON/LEN/LAM.SID
  SET HOPT = I FOR REVERSED INTEGRATION (TIP TO ROOT)
 NDS = DIRECTION SAITCH
   WHEN NOS = 1, SEARCH FOR EQUATORIAL RHOTS,
     WHEN HDS = O, SEARCH FOR MERIDIUM ROOTS
     IF (NDS+EQ+1) WRIFE(6+16)
      TE(NDS+E9+D)WRITE(6+17)
      FORMAT( ! LEQUATORIAL CASE ! //)
16
      FORMAT( "IMERIDIONAL CASE "//)
  17
     WRITE(6,21) LAM, SIU, NSUP
     FORMAT(1H , "LA"=", F12.6.3X. "510=", D9.3.3X, "NSUP=", I5,/)
 21
     K_{KK} = 1
     Ran
     U = 1
     FE34=0+
     Nu=1.00-6
      EPS8=1.00-14
     \dot{W} = \Omega
     FEPRV=0.
      Epsn=10 + * += 14
      NOP1=1
      NOR = 1
      N=1
      D1.7=1+
      14=0
      NUNT=FUR
      INTER#NINT+1
      ANERQ#SQRT(LAN)
      WRITE(6:50) AUFRQ
      FORMAT(18 , *NFRQ=SWRT LAM=* .F10.5)
  61
      Do 786 JL=1,NSUP
                                               . . . . . .
  99
      51=0.
      TVAL=FE34
      ປງ≖ດ
      Do 31 I=1.4
       к(])=0•
      L(1)=0+
      (1(1)=1).
      P(1)=0+
  31
       Do 1 1=1,101
       Eg4p(()=0+
       Equp(1)=0.
       E33P(1)=0+
       E43P([)=0+
       Enpp(1)=0.
```

C

С

C

```
5-35
    £42p(1)=9.
    £310(1)=0.
    E41p(1)=0.
    E4(1)=0.
    E3(j)=0.
    H=1./FLOAT(GINF)
  SET INITIAL CONDITIONS ON THE 43 AND 54 SOLUTIONS
                                                  . . . .
    D = 3
    1 E (D+EQ.4) GO TO 2
                                                           . . . . ...
    £0=() · ·
    80=0.
    F(NOPT.GT.) GO TO 12
    E32P(1)=1.
                                                       . ..
    30=F325(1)
    60 TO 13
                                                           ...
                                                                 . . . . . . . . . .
    上3(1)=1。
    E_{0=[3(1)]}
    C0=0•
    A_0 = Q_{\bullet}
    VO TO 3
    A0=0+
    Co=0.
    1F(NOP1+G1+0)60 TO 14
    Eq3p(1)=1.
    Cn=£43P(1)
                                                                           . .
    Go 19 15
    £41p(1)=1.
14
                                                                 . . .
    Ao=E41P(1)
    80=0+
                                                  £0=0.
    A = A O
    ¤≈80
    C = C O
    E=E0
```

BEGIS RUNGA KUTTA INTEGRATION

· · · . . . 11=1 I = i N = N51=(NN=1+)*H К(])=Ч*А レ(1)=注*13 . . (1) (1) = H ● C パロキェキ・サイリッグは 1F(NDS.E0.1) GU TU 40 201=2001**=1**。 r(1)=((1+-ST*S1+2**SID*(L++ST))/2+* -=(5L+SID)*A+MUL*E)*LAN+H  $F(nOPT \bullet GT \bullet n) = f(1) = f(-SI \bullet SI + 2, -SI \bullet (1) = f(2, -SI \bullet SI + 2, -SI \bullet (1)) / 2 + 0$ 1*(1. #SI+SIO)#A*MUI#E)#LAM#H ST=(NN-1+)*H 1=1+1 1F(1.GT.3) GD TO 6 4 = 1 - 1E=E0+K(Z)/2. A= a n+L(Z)/2.

b=30+11(2)/2. C=Cn+P(Z)/Z. 51=51+H/2. · • • 0 TO 5 IF+1.GT.4) GO TO 7  $E = [n+\kappa(3)]$ A = 40 + 1 + 38=30+4(3)  $C = c_0 + P(3)$ S1=S1+H 60 TO 5 1F(0+E4+4) GOTO 9 51=NN#H 2=++1 E3(2)=E3(N)+(K(1)+2.*K(2)+2.*K(3)+K14))/6. Ë31₽(Z)=E31₽(N)+(L(1)+2•¤L(2)+2•¤L(2)+6•(4))/6• E32P(7)=E32P(N)+(#(1)+2**#(2)+2**M(3)+M(4))/6* E33P(Z)=E33P(W)+(P(1)+2+*P(2)+2+*P(3)+P(4))/6+  $E_{3} + P(Z) = L_{A} + ((S_{1} + (s_{1}) * * 2 - (S_{1} + S_{1})) * * 2) * E_{3} + P(Z) / 2.$ 1"(51+510)*E31P(2)+M(1+F3(2)) F(NOPT-GT-0) E34P())=LAN+(((S10+1-)**2-(1-S1+S10)**2) 1*E32P(Z)/2++(1+-SI+510)*E31P())+MU1aE3(Z)) £=p3(N+1) A = F 3 1 P (N+1)B = E32P(N+1)C=E33P(N+1) 20=F  $A_0 = A$ ឋិត=8  $C_0 \simeq C$ 14=11+1 IF (NOLTOINTER) GO TO 4 EMON3=E32P(INTER) ESHR3=E33P(INTER) IF(NOPT.GT.) EMOM3=E3(INTER) IF (NOPT+GT+O) ESHR3=E3)P(INTER) D=4 So T013 SI=NNAH Z=++1 ビタモスシュビチ(ロシャイド(トシナ2。*ドエン)+2。*ドエスシ+ドリオシンク。 E41P(Z)=E41P(N)+(E(1)+2**E(2)+2**E(3)+E(4))/6* E40P(Z)=E42P(4)+(3(1)+2**M(2)+2**M(4)*M(4))/6* 143P(Z)#E43P(11+(P(1)+2**P(2)+2**P(3)+P(4))/6* E44P(Z)=LAM#((iSIO+1+)**2*(S1+S10)*#2)*E42P(Z)/2. 1-(SI+SID)*E41P(Z)+(())*E4(Z)) IF(NOPT+GT+O) E44P(2)=LAN*(((\$10+1++2=(1++51+510)**2) 1*E42P(Z)/2++(1+=51+s10)*E41p(y)+301=E4(Z)) ビニヒル(ロ+1) A=世412(N+1) 3≂E42P(((+)) 4 = 643P(N+1)E O = E $A_0 = A$ 00**≈**8  $C_0 = C$ N=;;+1

IFIN+LT+INTER) GO TO 4
						5-37
	ENOMARE42P(THTER)					
	ESHR4=E43P(INTER)					
	IF (NOPT.GT.O) EMON4_E4(INTE	(R)			ويتعامل والم	
	JE(NOPT.GT.C) ESHRHEEAIP()	ITERI				
				-	. •	
[ R∖	JNGA KUTTA FINISHED					
140	IN REGIN LINEAR INTERPOLATIO	]형 Telefonte and telefonte and				
ΓFE	34 IS THE VALUE OF THE OFT	SKMENANI (S	13 AND 27			
É	The commutation and a second dimensional Distance (Commutation and Commutation and		* -	• • • • • •		
	TERMERNUMBERSHARTCSHARSENUM	1				
	1 - (1.40.1) 60 10 51 1 - (1.40.1) 60 10 50	• • • • • • •				
ř	1r(rF39*0FC10)57.51.50					
àn	Decid=FF34			-		
P 14				\- • • • <b>·</b> •		
	LASS=LAS	• •	*4			
	WRITE(6,85)FC34,MU.U					
85	FORMATCIN .*FE34*,012.6,5X	,*Mµ#*,D12,	•6•5X•"U≂	1°, [3]		
	MU=MU+DLT					
	U = 0 + 1					
	60 TO 99			•		
52	UP = HU					
į.	DWDELAS	· ·			-	
	· 제상품임법 2 개 					`
с.	- LVALEFESHILFFPSGA SO T	0 5 3			· · ·	
P 1	$r_{\rm r}$	4 -0 16 92				
<b>.</b> .	Ret				·• • • • •	
	1 m ( m E 3 4 * DECID ) 55 • 51 • 56					
։ Բ. պ						
	HU=DWH-(DUH-UP/*DECID/(DEC	ID"FE34) .	·			
• •	KKK=KKK+j					
ł	EPSC=ABS(LBS(MU)=ABS(LASS)	)			• · · · · · ·	
	IF(FPSCoLT+HU#10+*+=4)GU T	0 16				
	LASS = HU					
	40 TU 58					
5.6	DWD=MU			• • •		
	- UEC1U#FL34 - Mail - Sub-Accinete2+65(156,156,155)	The mark Mark				
ł	- UNEDAMA (DAMADE) ADECTDA CERC	10 01				
	- EDUCEARSTARS(MU)=ABS(LASS)	)				
-	$1 r r r PSC \cdot (T \cdot h U \cdot ) D \cdot * * - 4) G 0 7$	0 10				
<b>)</b> `						
S B	FrimABS(FEPRV) MABS(FE34)	-				
	IF (AES(FE1)+67-1+00-14) GC	)TO 82				
	IA=IA+1					
	IF(1A+LT+5) GO TO 82					
5	WRITE(6+03)FE30					
83	FORMATIIN , STUCK ON THIS	FE34 .D12.	6)			
ľ.	I A = O					
l I	LEBKA=0.					•
• .	50 TO 23					
82	r£p8v≓r€34 / - ≠0 99		-			
	00 10 77 2017566,43155615					
42	FORMAT(16	#* (B12.6)				
73	60 TU 53					•.
<b>,</b> , ,	WRITE(6.1)) FE34,MU	· • •		· • •		
- # 11	The second se					

•

- - -

1 1			5-38			
6.0	MARTINE, THE COMPERCED FEBRE, DZ4.18,3X, MUE	* + () 1 2 + 6 )				
53	NATERO=MU*SORT(LAM)					
	WRITELG, SA) FEBA, MU, LAN, NATERO, N					
	$O_{M(J)}(JL) = M(J)$					
54	FORMATCIHU, *FE34*, D12.6,5%, *HU=+, D12.6,59, *LAN	-t E12-6				
	15x, * MATERO= *, E12, 6, 5X, +8=*, 13,					
	WRITE 6 .861 DIT. NOR					
84	FORMATILED THE REPORT SY THEORET IS $($					
	POR=NOR+1					
	R=n					
	- Constant All Anno A					
146	6 CONTINUE					
2	RETURN					
	h faith and the second s					

# NO DIAGNOSTICS.

•

,

<b>.</b>											5-	•39
C. G	0002	0	006204	DELTA	0002	D	000204	DELTA	0000	R	00014	りやり
TT V	0002	Q	000074	θV	0000	D	-06437	E	0000	Ð	nü1631	EMOM3
<u>F</u> 0	0500	D	000473	Έ3	0000	Ð	-01005	E31P	0000	D	n01317	E32P
34p	0000	D	109447	Еч	0n00	D	604761	F 4 1 P	იიღმ	D	n05273	.Eu21
44 _₽	0003	R	100000	GAMA	0003	R	~00000	GAMA	0fin2	D	n00206	G & M A Z
н	0000	F.	006520	HSQ	0102	J	r00210	I	0002	Ţ	000210	I
開始自己的	0000		007385	INJES	0000	1	n00805	INTER	anna	I	006473	I ;ę
<b>,</b> '	0000	ł	00647.3	JI	0 n 0 0	I	h065n1	۰ <u>۴</u> ل	0000	Ĩ	087877	Jj
КF	0000	ł	n66(())	киАх	0600	Ţ	507102	κl	0000	D	006463	L
	06.00	1	r.66471	L B	0000	В	206537	LINE	0000	Ţ	nu6472	LL
АХ	0007	1	000000	MAXP	0n0 <b>7</b>	1	00000n	MAXP	0012	ĭ	n()0001	MGIV
<del>TT</del> K	i 2050	D	001041	мыхз	0000	Þ	A02153	MMX4	0000	ł	006467	морЕ
NUDES	0005	J	0.0000000	110DF2	0n60	D	006524	ŀυ	00n0	D	006453	МIJ
1	0006	1	0000061	(4	មិព្រខ័ត	1	00001	ł4	0000	ï	006466	NpS
EN -	0068	í	006465	NOPT	0n0ò	I	006513	NP	0000	Ţ	n06474	NPI
NSOP	0011 -	1	0000000	HSUP	0003		n00005	NU	<u>00n</u> 3	R	000017	NU
	0000	R	006521	ОнХү	បក្ចZ	R	n00217	OMEGA	00n2	R	006217	OMEGA
MU	0000 1	R	006507	OMXLO	0000	R	106504	<b>ОМХ</b> О	00n0	R	n0651n	Омуро
OMZDO	0000 1	k	p(165n6	0 m 7 0	0600	Ð	A00433	Р	00n00	R	n06477	PER
р I ————————————————————————————————————	0003 i	F*	000001	РКХ	0003	R	400001	РКХ	0003	R	000002	ΡκΥ
REC	0007 1	R	0606n1	PREC	0000	D	<u>200407</u>	<b>P</b> 37	00 ₀ 0	R	ŋ06715	SAVE
510	0004 (	()	000001	S10	Q000	R	06464	SIOR	0000	D	n00431	5 M
UN 2	0005 (	()	000211	UN2	0_002	D	0000000	Ŷ	0002	Ð	000000	V
U V	0003 (	ρ	0000003	ХыО	0n02	Ð	n00200	XI	0002	Ð	000200	X )
<b>1</b> 40	0003 (	D	000011	YNO	0602	D	00202	Y J	0002	D	006202	Y 1
761												

Ç

C

SUAROUTINE CASENZ

CASEM2 SIMULATES THE NUTATIONAL MOTION OF THE FLEXIBLE SPIN-STABILIZED SATELLITE WITH BUOMS IN NERIDION-VIERATION, GIVEN A SET OF 2 I.C.'S ON THE BOOMS AND 3 INITIAL APOULAR RAIES AND THEIR DEREIVITIVES MODIFIED VERSION USES THE FIRST THREE MODES IN THE SIMULATION AND USES THE EQUATIONS WITH FIRST ORDER TERMS RETAINED THE OUTPUT CONSISTS OF TRANSVERSE RATES, BOOM TIP DISPLACEMENTS, VARIATIONS ON ANGULAR MOMENTUM AND, MECHANICAL ENERGY AND THE NUTATION ANGLE IN DEGREES

UTHENSION ONU(3) COMMON V, DV, CON, AM2, X1, Y1, DELTA, GAMA2, I, UN2, ONEGA COMMONZONEZGAMA, PKX, PKY, XNO, YHO, NU COMMON/LEn/LAMISIO COMMON/THREE/NODES COMMON/FIVE/NK+H+CA COMMOR/SIX/HAXE, PRCC COMMON/ZEN/OMU COLMON/THIRD/NSUP COMMON/EDIT/USKP,MGIV INTEGER PREC REAL NN.LAM.NU INTEGER HAXP, KMAA, HK, 1, D, H, Z, HINT, I TER DIMENSION NU(3), DAN1(3), DAM2(3), DNU(3) POUBLE PRECISION V(10,3), DV(10,3) DOUPLE PRECISION CURIGAMAZ, DELTAIXI, Y1.ZKI

5-40

```
DOUBLE PRECISION XND0(3), YND0(3)
        DOUBLE PRECISION AMI(3) + AMZ(3) + AIM(3) + AZM(3)
                                                                            XNO(3)+YHO(3)
        DOUBLE PRECISION UN2(3); AM21(3);
        DOUBLE PPECISION AN(7,4+3), CC(7,3), PW(3), ACX(3)
        VOUBLE PRECISION ACY(3) SM
        DOUBLE PHECISION PL4), K(4), M(4), L(4), E3(10)), E31P(101), E32P(101),
       1-MOH3, EMOM4, ALFA, BETA, MMX3(101), MMX4(101), 0PT(101,3),
       1433P(101),E34P(101),E4(101),E4(P(101),E4(P(101),E42P(101),E43P(101))
       1E44P(101), A, B, C, E, AO, HO, CO, EO, MU1, MH(3), STO, ST
         Do 711 JI=1,NSUP
   711 HU(JI)=0HU(JI)
                                                        a second s
         510R=S10
         WRITE(6,347)
                                             PROGRAM VERSION FIRST ORDER *+/)
 347
        FORMATCHEL, CASE M
C
    SET PARAMETERS TO CONTROL SIMULATION
    SET NOPTEL FOR REVERSED INTEGRATION
    NDS = DIRECTION SWITCH
     NDS = 1 IN PLANE, = 0 OUT OF PLANE
         HOPT=1
         Nps≡G
         NTNT=100
          INTER=WINT+1
         WRITE(6,95)LAM, SIOR, GAMA, PKX, PKY, PREC, MAXP, MODES
         FORMAT(1)H ,*LAMBDA=*,F6+0,/1H ,*X1-7ER0=*,F4,2,/1H ,*GAM&=+,F7+3,/
  95
        X18 ,*PKX=*,F6.4,/18 ,*PKY=*,F4.4/
        X IN ,*PREC=*,12/1H ,*MAXP=*,13/1H ,*MODES=*,12////)
          1F(MGIV+E0+1) GO TO 340
          Do 34 HODE=1.MUDES
          SI=0•
    99
          N⇒†
          H=1.7FLOAT(NINT)
      CLEAR ARFAYS
          00 31 1=1,4
          K(1) = 0 +
          • 0 = () = 0 •
          村(丁)=∁・
           P(1)=0+
     31
           D<sub>0</sub> 1 1=1,101
           E34P(1)=0.
           Eq4P(I)=0.
           E33p([)=0+
           Eq3P(1)=0.
           E32P(1)=0.
           E42P(1)=N.
           E31P())=0.
           E41P(1)=0.
           €4(1)=0+
           £.3(I)=U∘
       ł
        THIS SECTION CUNFULES THE FIRST MODE SHAPE AND THEN THE MODE SHAPE
```

PARAMETERS MIAND P2 FOR CASE M

U = Z1F(D+LQ+4) 60 TO 2 8

С C

L0=0+ d0=0+ 1F(NOPT.GT.0) GO TO 12 E32P(1)=1. 6<u>0</u>≡E32P(1) GO TU 13 12 63(1)=1+ EngE3(1) 13 Co=r. 80=0+ 60 TÚ 3 2  $A_0 = 0$ <o≈0• 1F(NOPT+GT+G)G0 10 14 E43p(1)=1. . . . .  $C_{0} = E 43 P(1)$ 60 TO 15 14 E41P(1)=1. A0=F41P(1) . . . . . . . 15 ₿0=0+ £o=0∙ كمتعالج المراجع المتحدين والالالا كالكالي 3 A=A0 P=80 C≈C0 E=E0 N = 14 1 = 1 and the second NN≡N SI=(NH-1-)+H KII)=H*A 5 L(1)=H#b 们(1)=H*C Mili=1.+MU(MODE)+MU(MODE) and the second IFINDS .EG. 1) GO TO 40 Mais=MU1=1. P(1)=((1+-51+51+2+*510*(1+-51))/2+*R=(51+510)*A+BU1*E)*LAM*H 4n IF(NOPT+GT+D) F(I)=((-SI+SI+2.+SI*(1++510))/2+*B 1+(1.-SI+SI0)*A*NU1*E)*LAM*H ST=(NN-1.)*H المراجعة المستريح المراجع 1 = 1 + 11F()+6T+3) 60 TO 6 L = 1 - 1E=E0+K(Z)/2. A=A0+L(Z)/2+ B=90+0(2)/2. . . . . . . . . ... C=CO+F(Z)/2+-St=51+H/2. . Go 10 5 IF(1.6T.4) GU TO 7 6 E = F O + K (3) $A = A \cap + [(3)]$ . . . b=c0+14(3) C=CO+P(3)51=51+H 6n TO 5 1F(D+EQ+4) GOTO 9 7 ST=NN*H L = (i + 1)

5 - 41

ī.

```
5-42
     E_3(Z) = E_3(W) + (K(1) + 2.*K(2) + 2.*K(3) + K(4)) / 0.
     E31P(Z)=E31P(N)+(L(1)+2**L(2)+2**L(3)+L(4))/6*
     E_{32P}(Z) = E_{32P}(N) + (M(1) + 2 \cdot \circ M(2) + 2 \cdot \circ M(3) + M(4)) / 6 \cdot
     E33P(Z)=E33P(N)+(P())+2**P(2)+2**P(1)+P(4))/6*
     E34P(Z)=LAN*(((SI0+)*)**2+(SI+SI0)*+2)*E32P(Z)/2*
    1 = (51 + 510) + E31P(7) + MU1 + E3(2))
     IF(MOPT.GT.+C) E34P(2)=LAM*(((SI0+1.)**2-(1.-SI+510)**2)
    1*F32P(Z)/2++(1+-SI+SI0)*E31P(7)+HU1+E3(Z))
     七=F3(2+1)
     A = E31P(N+)
     B = [32P(N+1)]
     C=E33F(N+1)
     E0=E
     A ⇔ C A
     b0=8.
     C0=C
     14=14+1
                                        ......
                                                                 ·· ·
     IF(N+LT+INTER) GO TO 4
     EMON3=E32P(INTER)
                                                          • • • • • •
                                          - - - - - - -
     IF (NOPT+GT+G) ENOM3=E3(INTER)
     DO 30 I=1.INTER
                                                                 (A_{i},A_{i}) \in \{1,\dots,N_{i}\} \in \{1,\dots,N_{i}\}
                                  . . . . . .
                                                  . - - --
 30
     利MX3(1)=E3(1)
     D = 4
     GO TO 8
 9
     SI=ND*H
                                  ••••
     Z = [n + 1]
     E4(Z)=E4(N)+(K(1)+2.*K(2)+2.*K(3)+K(4))/6.
     E41P(Z)=E41P(H)+(E(1)+2*#E(2)+2**E(3)+E(4))/6*
     E_{42P}(Z) = E_{42P}(N) + (B(1) + 2 \cdot M(2) + 2 \cdot M(3) \cdot M(4)) / 6 \cdot
     £43P(Z)=E43P(4)+(P(1)+2**P(2)+2**P(3)+P(4))/6*
     E44P(Z)=LAM*(((S10+1*)**2+(S1+S10)**2)*E42P(Z)/2.
                                                                       .. . ..
    1=(51+S10)*E41P(Z)*MG1*E4(Z))
     IF(NOPT+GT+0) E44P(Z)=LAM*(((S10+1+)**2=(1+=S1+S10)**2)
    1*E42P(Z)/2*+(1*-SI+SI0)*E41P(7)+NU1+E4(Z))
     E=E4(N+1)
     A=E41P(N+1)
     원=린42원(N+1))
                                           * *
     C=F43P(N+1)
     É0=F
                                                    - · ·
     A = O A
     80=B
     C0=C
     N=1;+1
                                             • • • •
     IF(N+LT+INTER) GD TO 4
     EM084=E42P(10TER)
                                         IF (NOPT.GT.C) EMOM4=E4(INTER)
     DO 32 I=1, INTER
                                        · · ·
1 32
     M_{M} \times 4(1) = F + (1)
     ALFA=EHON3/EHON4
      betA=00X3(101)=ALFA*MAX4(101)
     IF (NOPT-GT-O) BETA=NMX3(1)-ALFA+MMX4(1)
      00 102 LE=1,101
      LL=L3
                                                • ·
      IF(HOPT.GT.O) LL=IUZ=LE
 102 BPTILL, MCDE) = (MAX3(LB) - ALFA • MAX4(LB))/BETA
      5M=0∙
      Vo 216 1=2+101
      5H=SM+(RFT(1,HODE)+HPT(1=),MODE))/2.*((FLOAT(1)-)*5)*H+StO)*H
216
```

.

```
5-43
         AM2(HODE)=5M
         ់ក្រុះ 🖓
         Do 218 I=2,101
         SM=SM+(BFT(I, NODE)*BFT(I, MODE)+BFT(I=1, MODE)*BFT(I=1, MODE))/2**H
 21<sub>R</sub>
         AMI(MODE)≃SM
   34
         CONTINUE
      END OF MODE SHAPE AND MODE PARAMETER CALCULATION.
C
         ALL VARIABLES ARE NOP-DIMENSIONAL
         NP IS THE STEP DUNMY
         NPT IS THE INTERNALLY CALCULATED PRINT INTERVAL
         KNAX IS THE NUMBER OF SEGNENTS IN THE SMALLEST PERIOD
C
         NX DETERMINES HOW MUCH OF THE SINULATION IS PRINTED OUT
         GAMA=RHO*L**3/1-HUB=2
         COR=SUM OVER N MODES OF M2 SQUAERD OVER H1 .....
   340 CONTINUE
         KHAX = 75
         IR=HU(PREC)
         IF(PREC+NE+1) HPI=NPI+1R
         BFRQ=NU(PREC)
                                                                   المراجع المنجا المتحا والمنتقد المتحا والمتحا
         PEACH1+ZELOAT(KHAX)
         PER=8 • * (ATAN(1 • ))
         IF(BFRQ+GT+1+) PEK=PER/MU(PREC)
         H=PER#PEAC
                                                      ..
         ИКжмахракмах
         IF(PREC+HE+1) MK=MAXP+KMAX+IR
                                                                      المراجعة والمراجع المراجع
         NX=+6*HK
         NP1=(MK-NX)/60
         COR=0+
         00 202 JU=1,100ES
         AM21(JW)=AM2(JW)/AM1(JW)
         A; M(JE)=2.*AM1(JE)
                                                         ••••
                                                                   . . . . . .
         A2时(J約)=2+#A村2(J段)
  202
         CoR=COR+AA2(JU)#AM21(JU)
         DELTA=SI0*SI0*SI0*.3333333
         DDELT=DELTA
         DCOR=COR
         WRITE(6,97) DCOR, DDELY, NU
         FORMAT(18 + COR= + F11.5/18 . DELTA= + F 9.5/18 . NU1= + F10.4/18 .
                    *pu2=**Fi0+4*/1H_**NV3=**Fin+4////>
        Х
         DO 203 JUEL. NOUES
         DAM1(JW)=AM1(JW)
         D_{A(12)}(JW) = Ah_2(JW)
         DMU(JV)=MU(JV)
                                                 والمراجع والمتعام والمتعام والمتعام والمتعام والمتعار والمتعار والمتعام والمتعام والمتعار والمتعام و
         ON5(16)=S•★MA(975)★M9(90)
         WRITE(6,400)J%+ONU(JW),J4+DAM1(JW),J%,DAM2(JM)
         FORMAT(1H ,*MUT,11,*=*,E11+5;GX,*M1+,11,*=*,E11+5;SX,
  4 <u>0 0</u>
                      *H2*+11,****.E11+5/)
        X
         CONTINUE
  203
          DO 406 JW=1,MODES
  406
          PW(9M)=MU(JM)*HU(JM)
          GAH42#2 + * GANA
          ZK1=1++2++GAMA2+DELTA
          Ki=i•ZPKX
   37
          Al=1•\EKA
          DEFINE PHITIAL CONDITIONS.
```

```
0MX0=0•
             0 M Y O = 0 +
             0雨20=1。
             OMFGA=1.
             OHXD0=0.
              UMYD0#0.
              0MZD0=0.
              THESE I.C. ALIGN Z-AXIS ON H-VECTOR
              DO 404 JW=1,MODES
             0_{MX} 0=0MX 0+GAMA2+0MZ 0*XMO(JW)/(X1+2**GAMA*DELTA)
 HAH DMYD=ONYG+GAMA2*OMZG*YNO(JW)/(Y1+2**GAMA*DELTA)
              Dn 405 J₩=1,3
              KND0(JW)=0.
              YNDO(J₩)≈D+
              V(1,JW)=XNO(JW)
               A(5'1A)=AVO(1M)
               V(3,JW) = XNDQ(JW)
               A(4*1A)=ANDO(1A)
105
               V(5,1)=0HX0
               V(6, 1) = 0 M Y 0
               V(7,1)=0HZO
               V(A,1)=OMXDO
                                                                                                                                                        . .
               V(9,1) = OnYDO
               V(10,1)=0HZDO
               νο 98 J=1,10
               00 98 JN#1,00ES
                                                                                                             . . . .
                                                                                                                                          .....
      48 DV(J+JW)=V(J+JW)
               N=1
                HP=1
   68
                \mathbf{i} = \mathbf{1}
50
                CONTINUE
          RUNGE KUTTA INTEGRATION
                Do 407 J#=1, HOPES
                A_{C,X}(J_{W}) = -U_{H,2}(J_{W}) * D_{V}(3, J_{W}) + D_{V}(J_{V}, J_{W}) * p_{W}(J_{W}) + A_{H,2}(J_{W}) * A_{H,2}(J_{W}) * A_{H,2}(J_{W}) + A_{H,2}(J_{W}) +
                                (OMEGA+DV. 5, 11-DV (9, 1))
              X
                ACY(J型)=-UN2(J型) @DV(4、J型) -DV(2、J型) @py(J型) -AM21(J型) *
                                (UMEGA*DV(6,1)+DV(8+11))
              X
                 AK(1,],J%)=H®DV(3,J%)
                AK(2,1)JW = H = DV(H,JW)
                 AK(3,I,J@)=H#ACX(JW)
                 AK(4, J, Jw) = H*ACY(JW)
 407
                 AK(5+1+1 )=H*DV(8+1)
                 AK(6+1+1)=H*DV(9+1)
                 AK(7,1,1)=H*DV(10,1)
                 1 = 1 + 1
                 IF(1.61.3) GO TO 60
                  L = I - I
                 00 91 J=1.7
                 UO 91 JW=1,HODES
                 DV(J,JW) = V(J,JV) + AK(J,Z,JW) / 2
  91
                  CALL RATES
                  Gn 70 50
                  1F(I.GT.4) GO TO 90
     60
                  00 10 J=1,7
                  Do 10 JW=1, HODES
```

10 5-45 UV(J,JW)=V(J,JW)+AK (J,3,JW) CALL RATES 50 TO 50 90 PO 11 J=1.7 Do 11 JW=1, HODES  $\mathbb{C}\mathbb{C}((J_*,JW) = \mathsf{A}\mathbb{K}(J_*J_*,JW) + 2 \circ \circ (\mathsf{A}\mathbb{K}(J_*2_*,JW) + \mathsf{A}\mathbb{K}(J_*3_*,JW)) + \mathsf{A}\mathbb{K}(J_*,4_*,JW)$ 11 Y(J,JW)=V(J,JW)+CC(J,JW)/6. 00 84 J=1,7 DO 89 JW=1.MODES · · · 89 DV(J+JW)=V(J+JH) CALL RATES RUNGE KUTTA FINISHED NON CALCULATE OUTPUT VARIABLES and the second FINP+NE (1) GO TO 41 COMPUTE COMPONENTS OF H-VECTOR IN BODY-FIXED AXES AMX=V(5,1)*(X1+GAMA2*DELTA) AMY=V(6,1)*(Y1+GAHA2*DELTA) ···· · · · · · · · · · 00 451 KF=1,450P AMX=AMX+AM2(KF1*(V(4,KF)-V(7,KF)*V(1,KF))*GAMA2 451 AMY=ANY=AN2(KF)+(V(3+KF)+V(7+KF)+V(2+KF))*GANA2 AM7=ZKI*V(7+1) 料S自主AMX参太师X+太MX+AMY+AMZ参太MZ HSQ=SQRT(HSQ) . . ΟΗχΥΞΑ^ΜΧ * Δ^ΜΧ + Δ^ΠΥ * Α^ΜΥ -OHXY=SQRT (OHXY) HI=3+141592 DEG=180./P1 CA≑DEG®ASIN(OHXYZHS©) ↓F(NSKP≬FQ+9) GO TO 427 . . IF (N.GT. J. AND. U.LT. NX) GD TO 41 427 CONTINUE ··· · · ··· · ·· **-** · IF(N+NE+1) GD TO 29 WRITE(6,33) HSW 33 FORMAT(/1H , "INIFIAL H=", E12+6) ₩RITE(6,94) FORMAT(7/7/1H + QX MODEL QY MODEL QX MODE2 QY MODE2 94 XXX MODES OMEGA X CANG N. // 27 CONTINUE IF (HP +NE +1) GO TO 41 WRITE OUTPUT VARIABLES #RITE(6,22)V(1,1),V(2,1),V(1,2),V(2,2),V(1,3),V(2,3),V(5,1), ICA N FORMAT(1H .6(D)1.5, (X), 012.6, (X, 11.6, 1X, 15) 22 44 MP = NP + 1IF(NP+EQ+NP1) NP=1 CALL PLOT N=N+1 FER*GT*NK1 RETURN GO TD 88 SUBROUTINE RATES

THIS ROUTINE CALCULATES THE DERIVATIVES OF THE ANGULAR RATES

```
COMMON V, DV, CON, AN2, X1, Y1, DELTA, GAMA2, I, UN2, OMEGA
    COMMON/ZEN/0HU
    COMMON/THREE/NUDES
    COMMON/THIRD/MSUP
    DIGENSION OMU(3)
    DougLE PRECISION VIID.3), DV(10.3), CAR. AM2(3),
     UH2(3), GAHA2, DELTA, X1, Y1, HH(3), AHX1, AUX2
     Do 711 JI=1, NSUP
711 du(JI)=0HU(JI)
     Aux1 = -1 \cdot / (XI + GAM_A 2 \cdot (DELTA - COR))
     DV(B,1) = AUX1 * (1 + Y1 + GAUA2 * (DEETA - COR)) * OMEGA * DV(6 + 1)
     AUX2 ==+1./(Y1+GANA2*(DELTA=COR))
     DV(9+1)=AUX2* (X1-1.-GAMA2*(DELTA-COR))*OMEGA*DV(5+1)
     Vy()0+1)=0+
     Un 12 J=1,MODES
     DV(8,1)=DV(8,1)+AUX1*6AMA2*AM2(J)*(FV(2,J)*(OMEGA*OMEGA*
               HU(J)*HU(J))=UN2(J)*DV(4+.1))
    Х
     DV(9,1)=DV(9,1)-AUX2*GAMA2*AM2(J)*(DV(1,J)*(OMEGA*OMEGA*
                HU(J)*HU(J)-UN2(J)*DV(3,J))
    X
12
     CONTINUE
     LF(I.LE.4) RETURN
     V(a,1)=bV(8,1)
     V(9,1)=DV(9,1)
      v(10,1) = DV(10,1)
     RETURN
     SUBROUTINE PLOT
     THIS SUBROUTINE PLOTS NUTATION ANGLE VS N
     CONMONITORICIGANA, PKX, PRY, XNO, YHO, NU
     COMMON/LEN/LAM.S10
     COMMON/THREE/MODES
     COMMON/FIVE/MK, H, CA
     CONMON/SIX/MAXP, PREC
     POUBLE PRECISION STO
     REAL HAX, LAH, LINU
     UIMENSION SAVE(100), LINE(110), AP(5), AN(6)
     DATA BLANK, STAR, DOT/1H >1H*, 1H+/
      1F(H+NE+1) GD TO 2
     N1=(HK+50)/100
     001,1=1,100
     SAVE(J1)#0+
1
     J_1 = 0
     HAY=0.
      11=0
      STOR=SIO
      IF (N/NI#HI+HE+H) GU TO 3
2
      J_{1=J} + 1
      SAVE (J1) = CA
      IF (ABS(CA) + GT + HAX) HAX=ABS(CA)
      IF(N.NE.NK) RETURN
3
      9RITE (6,4)
      FORMAT(1H), PLOT OF NUTATION ANGLE IN DEGREES VS N FOR ')
4
      WRITE(0,95)LAM, SIOR, GADA, PKX, PKY, PREC, MAXP, MODES
      FORMAT(14 ,*LAUSDA=*,F6+0,/14 ,*S1-2ER0=*,F4+2,/14 ,*GAMA=+,F7+3,/
95
     X1H .* PRKX=*, F6.4,/1H .* PKY=*, FA.44/
             1H , +PREC=*, 12/1H , +HAXP=*, 11/1H , 'HODES=+, 12////)
     X
```

5 - 46

		5-47
	A}=HAX/50.	
	DO 6 II=1.5	
	AN([])=+A)*(60++10++1)	
á	AP(S=11) = -AN(11)	
	1 I = 0	
	WRITE(6,7) AN, LI, AP	
7	FORMAT(18 +14X+5(F6+2+4X)+3X+11+2X+5(5X+F5+2))	
	00 8 JI=1,110	
	LINE(JI)=BLANK	
8	1F((J1+4)/10+10.EQ.(J1+4)) LINE(J1) STAR	
•	WRITE(6,9) LINE	
9	FORMAT(1H +12X+)10A1)	
	U0 10 JI=1,110	
ln -	LINE(JI)=STAR	
	WRITE(6,91LINE	
	$P_0 = 11 = J_1 = 1$	
11	LIME(JI)=BLANK	
	00 13 K1=1,100	
	J1=SAVE(K1)/A1+56+5	
	$L_{INE}(56) = STAR$	
	IF(K1/10*10.NE+K1) GO TO 12	
	$L_{INE}(55) = STAR$	
12	LINE(J1)=00T	
	WRITE(6,9) LINE	
	1F(K)/10010.NE0K1) GO TO 15	
	1F(J1+GE+50+AND+J1+LE+54) GO TO 15	
	$n_1 = N_1 * K_1$	
	與RITE[6+14] 約1	
14	FORMAT(LH++61X+IS)	
15	<b>ビ「村E(ゴナ) 当日「ソ利火</b>	
13	LINE(55)=BLANK	
	RETURN	
	E _{ND} .	
		•

## NU DIAGNOSTICS.

н н н н 

· · ·

and the second second

· · · · · · · · · · · · · · · ·

.

#### CHAPTER 6

#### Other Topics

The present chapter contains a short note on the use of the stability charts in deployment dynamics, and two bibliographical reports on passive nutation damping devices.

6.1 Stability charts and deployment dynamics

6.11 Dynamic parameters during deployment

A deployment phase such as the one for IMP-I may be summarized as follows, if H,  $\ell$ ,  $\xi_{o}$ ,  $\omega_{s}$  designate the angular momentum, length of booms, non-dimensional radius of the hub  $(\frac{X_{o}}{\ell})$ , and spin rate  $\omega_{s}$  - or +



We define a "state" as a set of values  $\ell$ ,  $\xi_o$ ,  $\omega_s$ , H. If non-dimensional variables are used, let

$$H_{\circ} \stackrel{\equiv}{\operatorname{def}} H(\ell=0) = I_{\operatorname{zh}} \omega_{s_{\circ}}$$

h(any state) 
$$\operatorname{def}_{H_0} \frac{H(any state)}{H_0}$$

Thus

$$h = \frac{I_{z}\omega_{s}}{H_{0}} = \frac{(1 + 4\Gamma\Delta)I_{zh}}{I_{zh}\omega_{s_{0}}} = (1 + 4\Gamma(\xi_{o}^{2} + \xi_{o} + \frac{1}{3}))\frac{\omega_{s}}{\omega_{s_{0}}}$$
(1)

 $h(\ell=0) = 1$ 

with

$$\Gamma = \frac{\rho \ell^3}{I_{z,h}}$$
$$\Delta = \xi_o^2 + \xi_o + \frac{1}{3}$$

 $I_{z,h}$  = moment of inertia of central hub about "z".

 $\rho$  = linear density of boom

In view of these definitions, an <u>extension</u> maneuver at t corresponds to

$$h(t + 0) = h(t - 0)$$
  

$$\ell(t + 0) = \ell(t - 0) + \Delta \ell$$
  

$$\frac{\omega_{s}(t + 0)}{\omega_{s}(t - 0)} = \frac{(1 + 4\Gamma\Delta)t - 0}{(1 + 4\Gamma\Delta)t + 0}$$

in which  $\Delta \ell$  is <u>specified</u>.

A <u>respin</u> maneuver at  $\underline{t}$  will give

$$h(t + 0) = h(t - 0) + (1 + 4\Gamma(\xi_0^2 + \xi_0 + \frac{1}{3}))_{t+0} \frac{\omega_s(t+0) - \omega_s(t-0)}{\omega_s^-(0)}$$

$$(1 + 4\Gamma(\xi_{\circ}^{2} + \xi_{\circ} + \frac{1}{3}))_{t=0} = (1 + 4\Gamma(\xi_{\circ}^{2} + \xi_{\circ} + \frac{1}{3}))_{t=0}$$

in which  $\delta \omega_s(t) = \omega_s(t+0) - \omega_s(t-0)$  is specified.

For a satellite of given hub  $(x_0, I_{zh} specified)$ 

$$\xi_{\circ} = \frac{x_{\circ}}{\ell} = x_{\circ} \cdot \left(\frac{\rho}{\Gamma I_{zh}}\right)^{1/3} = \frac{x_{\circ}\rho^{1/3}}{I_{zh}} \frac{1}{\Gamma^{1/3}} = \frac{1}{S} \frac{1}{\Gamma^{1/3}}$$
with  $\overline{S}$  a fixed non-dimensional number  $\det^{\overline{E}} = \frac{x_{\circ}\rho^{1/3}}{I_{zh}}$ 

$$(2)$$

Now, substituting (2) for  $\xi_o$  in Equation (1)

$$\omega_{\rm s} = \omega_{\rm s_0} [1 + 4\Gamma(\bar{\rm s}^2 \Gamma^{2/3} + \bar{\rm s} \Gamma^{-1/3} + \frac{1}{3})]^{-1} h$$

If <u></u>*l* is specified in any state,

$$\Gamma = \frac{\rho \ell^3}{I_{z,h}}$$

can be computed.

To that state there corresponds an Etkin's number

$$\bar{\lambda} = \frac{\rho \ell^4}{EI} \omega_s^2 = \frac{\rho \ell^4 \omega_{s_o}^2}{EIx_o} x_o^4 [1 + 4(\bar{s}\Gamma^{1/3} + \bar{s}\Gamma^{2/3} + \frac{1}{3}\Gamma)]^{-2} h^2$$

The quantity  $\frac{\rho x_{o}^{4}}{EI}$  is specified for a given design. Let  $\overline{R}$  be the non-dimensional quantity

$$\overline{R} = \left(\frac{\omega_{s_o}}{\omega_{\star}}\right)^2$$

$$\omega_{\star} = \frac{EI}{\ell \times c}$$

Then

$$\overline{\lambda} = \overline{R} \xi_{0}^{-1} \left[ 1 + 4 \left( \overline{5}^{2} \Gamma^{1/3} + \overline{5} \Gamma^{2/3} + \frac{1}{3} \Gamma \right) \right]^{-2} h^{2}$$

$$= \frac{\overline{R}}{\overline{5}^{4}} \Gamma^{1/3} \left[ 1 + 4 \left( \overline{5}^{2} \Gamma^{1/3} + \overline{5} \Gamma^{2/3} + \frac{1}{3} \Gamma \right) \right]^{-2} h^{2} \qquad (3)$$

(2) and (3) thus give  $\xi_0$ ,  $\overline{\lambda}$  during the "states" of deployment as functions of boom's length and angular momentum. In these relations,  $\overline{R}/\omega_{s0}$  and  $\overline{S}$  are fixed for any given design.

6.1.2 Stability during deployment

The determination of the stability during deployment will thus proceed as follows:

- a)  $\bar{R}/\omega_{s_{o}}$  in computed (a fixed quantity), then  $\bar{R}$  for  $\omega_{s_{o}}$  given.
- b)  $\overline{S}$ , a fixed quantity, is computed;

given the state  $\omega_s$ ,  $\ell$ ,  $\xi_o$  and H for some t:

- c) compute h;
- d) compute  $\Gamma$  ();
- e) compute  $\Delta(\xi_{\circ})$ ;

using the relevant formulae for either respin or extension maneuver

f) compute  $\overline{\lambda}$  from (3);

g) determine the stability of the corresponding  $(K_p, \Gamma)$  point on the stability chart corresponding to the computed values of  $\overline{\lambda}$  and  $\xi_o$ , using program FLEXAT of Chapter 5.

### 6.2 A SURVEY OF PASSIVE NUTATION DAMPING TECHNIQUES

.

•

. .

•

.

Prepared by

#### William O. Keksz

· · ·

. .

#### I. Introduction

In this paper, several methods of passive nutation damping are surveyed. In a review of rigid body dynamics, conditions of stability are presented. Ball, pendulum, and fluid dampers are surveyed, among others, along with effects of magnetic and gravitational torques and structural hysteresis energy dissipation. Finally, a few active and semipassive systems are mentioned in the way of comparison.

A,B,C	Moments of inertia about x,y,z axes
D,E,F	Products of incrtia for xy, xz, yz planes
х,у,х	Body-fixed axes, z along spin axis
X,Y,Z	Inertial axes, Z along $\overline{\Pi}$
<i>w</i>	Total angular velocity
<b>p</b> ,q,r	Components of ൽ along x,y,z axes
(*)	d( )/dt
H	Angular momentum
$\mathbf{q}_{i}$	Generalized coordinates
r.	Moment in direction of q _i
9,0,9	Euler's angles
ý	Precession rate
ý	Spin rate
0	Nutation angle
8	Magnetic or structural hysteresis factor
$\omega_{ m p}$	$(p^2 + r^2) = component of \vec{\omega}$ in xy plane
ົ	(C - A)/A
S	$\lambda r = $ forcing frequency
j.	(-1) ^{1/2}
î, ĵ, ƙ	Unit vectors along x,y,z
Μ	Mass of main body
m	Damper mass
S	Radius of gyration

ŗ.

Other symbols are defined throughout the text as needed.

:

2

ì

II. Review of Rigid Body Dynamics [33]

#### A. Definitions

1. Euler's Angles

If X,Y,Z is fixed in space and x,y,z is the body fixed system, we define the Euler Angles  $\mathscr{V}, \theta$ , and  $\mathscr{S}$  in Fig. H-1. The spin axis is along z, and:

 $\dot{\psi}$  = precession rate

 $\theta$  = nutation angle

 $\dot{\varphi}$  = spin rate

The unit vectors 1, j, k lie along x, y, z. We have:

 $\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = \begin{cases} (\cos \varphi \ \cos \psi - \sin \varphi \ \cos \theta \ \sin \psi) \\ (\cos \varphi \ \sin \psi + \sin \varphi \ \cos \theta \ \cos \psi) \\ (\sin \theta \ \sin \varphi) \end{cases}$ 

 $\begin{array}{c|c} (-\sin\varphi \ \cos\psi - \sin\psi \ \cos\theta \ \cos\varphi) & (\sin\theta \ \sin\psi) \\ (-\sin\varphi \ \sin\varphi + \cos\varphi \ \cos\theta \ \cos\psi) & (-\sin\theta \ \cos\psi) \\ & (\sin\theta \ \cos\psi) \\ \end{array} \begin{array}{c|c} x \\ y \\ (\cos\theta) \end{array}$ 

2. Angular Velocity

If  $\vec{\omega} = \omega_x \hat{i} + \omega_y \hat{j} + \omega_z \hat{k}$  is the total angular velocity of the body, then:

 $\frac{\begin{bmatrix} \omega \\ x \\ \omega \\ y \end{bmatrix}}{\begin{bmatrix} (\sin \theta \sin \varphi) & (0) & (\cos \varphi) \\ (\sin \theta \cos \varphi) & (0) & (-\sin \varphi) \\ \hline & (\cos \theta) & (1) & (0) \end{bmatrix}} \begin{bmatrix} \dot{\psi} \\ \dot{\psi} \\ \dot{\psi} \\ \dot{\theta} \end{bmatrix}$ Note that r is not the spin rate,

In most cases, the linear velocity of the center of mass is ignored for damper analysis.

#### 3. Angular Momentum

$$\vec{H} = \begin{bmatrix} \hat{1}\hat{1}A & -\hat{1}\hat{j}D' & -\hat{1}\hat{k}E' \\ -\hat{j}\hat{1}D' & \hat{j}\hat{j}B & -\hat{j}\hat{k}F' \\ -\hat{k}\hat{1}E' & -\hat{k}\hat{j}F' & \hat{k}\hat{k}C \end{bmatrix} \cdot \vec{\omega}$$

The above is the angular momentum in x,y,z. For most cases, we can ignore the external torques produced by electromagnetic fields and gravitational gradients. Thus  $\hat{H}$  is constant in inertial space (X,Y,Z), and thus we can align the Z azis along  $\hat{H}$ . If x,y,z are aligned along the principle axes of the body,  $D'_{,E',F'} = 0$ , and:  $\hat{H} = Ap\hat{i} + Bq\hat{j} + Cr\hat{k}$ where p,q,r are the  $\omega_{\chi}, \omega_{\chi}, \omega_{\chi}$  for alignment with the principle axes.

. Kinetic Energy

The kinetic energy of the body is:  $T = \frac{1}{2} \left(A \omega_{x}^{2} + B \omega_{y}^{2} + C \omega_{z}^{2}\right) - D \omega_{x} \omega_{y} - E \omega_{x} \omega_{y} - F \omega_{y} \omega_{z}$ and for the principle axes:  $T = \frac{1}{2} \left(A p^{2} + B q^{2} + C r^{2}\right)$ 

5. Euler's Equations

Here Euler's Equations are presented only for a principle axis x,y,z:

 $L_1 = A\dot{p} + qr(C-B)$   $L_2 = B\dot{q} + pr(A-C)$  $L_3 = C\dot{r} + pq(B-A)$ 

where  $L_1, L_2$ , and  $L_3$  are the external moments about the corresponding principle axes; here they will usually be zero.

#### 6. Poinsot Ellipsoid

For a rigid body, T = constant, and thus:  $\frac{\widetilde{\omega} \cdot \widetilde{H}}{H} = \frac{2T}{H} = 0$ 

This must be the component of  $\vec{\omega}$  along  $\vec{E}$  and Z. If both sides of the energy relationship are divided by T, we get:

 $1 = \frac{p^2}{2T/A} + \frac{q^2}{2T/B} + \frac{r^2}{2T/C}$ 

This is the Poinsot ellipsoid. If a plane is placed perpendicular to  $\widehat{H}$  a distance Q from the center of this ellipsoid, we see the Poinsot ellipsoid rolls on the plane (called the invariant planc), without slipping. The contact point is the tip of  $\widehat{\phi}$  (Fig.II-2). The curve traced out by the contact point on the plane is the herpolhode, and that on the ellipsoid is the polhode.

7. Body and Space Cones (Axisymmetric Body)

From the above we see that  $\widehat{\omega}$  sweeps out a surface in both the x,y,z and X,Y,Z frames. If  $\theta = 0$  and we have an axisymmetric body (A=B) then these are both right circular cones. From the relations between p,q,r and  $\dot{\psi}$ ,  $\dot{\phi}$ ,  $\dot{\phi}$  substituted into the Euler moment equations, we have:

 $\ddot{\psi} = \frac{C \, \dot{\psi}}{(\Lambda - C) \cos \theta}$ 

(a) C>A:  $\psi$  and  $\dot{\psi}$  are opposite in sign, and this is known as retrograde precession.

(b) C<A:  $\dot{\psi}$  and  $\dot{\varphi}$  have the same sign, and this is known as direct or posigrade precession.



Fig. II-1: Euler's angles.





6

: , . ,



(a) Retrograde precession; C > A.



(b) Direct procession; C < A.

Fig. II-3: Precession of body cone rolling on space cone. The along the line of contact.

•

The body cone rolling on the space cone for each of these cases is illustrated in Fig. II-3. The angle between  $\overleftarrow{\phi}$  and  $\overrightarrow{\phi}$  is  $\overleftarrow{k}$ :

 $\tan \chi = (p^2 + q^2)^{\frac{1}{2}}/r = \omega_{T}/r$ where  $\omega_{T}$  is the component of  $\vec{\omega}$  lying in the x,y plane. The angle between  $\vec{\psi}$  and  $\vec{H}$  is  $\theta$ :

 $\tan \theta = (\Lambda/C)/(\omega_{\rm p}/r)$ 

By substituting  $\Delta = [(C-A)/A]r = \lambda r$  into the Euler equations, we have:

 $\dot{\mathbf{p}} + \boldsymbol{\Omega} \mathbf{q} = 0 \implies \ddot{\mathbf{p}} = -\boldsymbol{\Omega} \dot{\mathbf{q}}$  $\dot{\mathbf{q}} - \boldsymbol{\Omega} \mathbf{p} = 0$ Thus  $\ddot{\mathbf{p}} + \boldsymbol{\Omega}^2 \mathbf{p} = 0$ 

and  $\mathbf{p} = \mathbf{p}_0 \cos \Omega t + (\dot{\mathbf{p}}_0/\Omega) \sin \Omega t$ 

 $q = p_0 \sin \Omega t - (\dot{p}_0/\Omega) \cos \Omega t$ These last imply that  $\omega_T = (p^2 + q^2)^{\frac{1}{2}}$  rotates about the zaxis at the rate  $\Omega$ .

By using a complex analysis, Ames and Murnaghan show that [1]:

 $\omega_{\mathbf{T}} = \left[\frac{\mathbf{H}^2 - 2\mathbf{CT}}{\mathbf{A}(\mathbf{A} - \mathbf{C})}\right]^{\frac{1}{2}} \mathbf{e}^{\mathrm{iAt}}$ 

8. A Note on Unsymmetrical Bodies

The relations for  $\vec{\omega}$  are given by Thomson for the case A>B>C and H²<2TB, a body spinning about its axis of least inertia [33a]:

 $\mathbf{p} = \left[\frac{\Pi^2 - 2TC}{A(A - C)}\right]^{\frac{1}{2}} cn f(t - t_0)$ 

8

$$q = \left[\frac{H^2 - 2TC}{H(H - t_0)}\right]^{\frac{1}{2}} \operatorname{sn} f(t - t_0)$$
  
$$r = -\left[\frac{2TA - H^2}{C(A - C)}\right]^{\frac{1}{2}} \operatorname{dn} f(t - t_0)$$

where  $f = \left[\frac{(B - C)(2TA - H^2)}{ABC}\right]^{\frac{1}{2}}$ and the modulus of the elliptic functions is:

$$k = \left[ \frac{(A - B)}{(B - C)} \frac{(B - 2FC)}{(2FA - H^2)} \right] \frac{1}{2}$$

This results in spin about the z axis with a superimposed wobble, with a  $\Theta_{\max}$  and  $\Theta_{\min}$ :

9

$$\cos^2 \Theta_{\text{max}} = C(2TB - H^2)/(B - C)H^2$$
  
 $\cos^2 \Theta_{\text{min}} = C(2TA - H^2)/(A - C)H^2$ 

B. Miscellaneous Concepts

1. Stability of a Rigid Body

For a rigid body, T is a constant. If we let the initial condition be:

 $\mathbf{p} = \mathbf{p}_1 + \boldsymbol{\epsilon}$ 

g,r small

where  $\leq$  is small, we can differentiate the Euler equations and substitute for p,q,r and p,q,r. Then:

 $\ddot{q} + p_1^2 q(A - B)(A - C)/BC = 0$ 

 $\dot{r} + p_1^2 r (\Lambda - B) (\Lambda - C) / BC = 0$ 

These are stable only if (A - B) and (A - C) are of the same sign. Thus they are unstable only if A is the in-termediate rotational inertia.

2. Energy and Stability

In a real spacecraft, there is always an energy loss

due to flexure of nonrigid parts, magnetic hysteresis, etc. Thus we have  $\dot{T} < 0$ .

For an axisymmetric body, we have:  $2T = A\omega_{\rm p}^2 + Cr^2$  $B^2 = A^2\omega_{\rm p}^2 + C^2r^2$ 

Since  $Cr = H \cos \theta$ :

 $H^{2} - 2TA = \cos^{2} \Theta H^{2}(C - A)/C$ or  $T = H^{2} [1 - \cos^{2} \Theta (C - A)/C]/2A$ Since there are no external torques, H is constant, and  $\tilde{T} = [H^{2}(C - A)/AC](\sin \theta \cos \theta)\tilde{\Theta}$  $= (H^{2}\lambda/C)(\sin \theta \cos \theta)\tilde{\Theta}$ 

Thus, for decreasing T,  $\theta$  decreases only if C>A, and the satellite is spinning about its axis of maximum inertia. This is the stable condition. For a prolate body, there must be an energy input for stability, which implies an active nutation control.

The change in energy required to stabilize a precessing body can casily be found. The desired energy state is:

 $T_f = \frac{1}{2} Cr_f^2$ 

where the subscript f denotes final condition. Since  $p^2$  is constant [36]:

 $H^{2} = \Lambda^{2} \omega_{T}^{2} + C^{2} r^{2} = C^{2} r_{f}^{2} = H_{f}^{2}$ Then  $r_{f}^{2} = (\Lambda/C) \omega_{T}^{2} + r^{2}$ Thus  $\Delta T = |T - T_{f}| = |\frac{1}{2}\Lambda(1 - \Lambda/C)\omega_{T}^{2}|$  For an oblate body (A<C), this is the precessional energy, the amount to be removed; for a prolate body, it is the amount to be added.

Also  $\mathcal{O}_m = (\mathbf{r} - \boldsymbol{\Omega}) \tan \boldsymbol{\Theta} = (\mathbf{C}/\mathbf{A}) \mathbf{r} \tan \boldsymbol{\Theta}$ 

#### III. Passive Dampers

Unless stated otherwise, the satellite will be assumed axisymmetric about the z (spin) axis, A = B, and oblate (A<C) for the below.

A. Ball-type [4, 24, 36]

1. Mounted in the Meridian Plane

This type was first used in Telstar and later in ESRO II. These consist of a ball allowed to roll inside a circular cross section curved tube which is filled with a gas. Two are used, diametrically opposed, to maintain symmetry, and mounted in a plane through the spin axis. Energy dissapation comes about through viscous friction between the ball and gas, rolling friction between the ball and tube wall, and collision of the ball with the tube end, the latter only at large nutation angles.

Such a system is shown in Fig. III-1. According to Yu, the rotational motion of the ball (of radius a) is given:

(2/5) ma² ( $\Xi$  N/r) = ka - N where k is the friction force at the contact point, and N the rolling friction torque. N is approximately an order of magnitude smaller than the viscous term. Neglecting N and assuming  $\theta$  small, the motion of the ball

11

È









is described by:

 $\ddot{a}$  + (5c/7m) $\dot{a}$  + (5br²/7R) $\dot{a}$  = (5b/7R)cos A t where c is the coefficient of viscous friction. The time average rate of energy dissipation is, for viscous friction:

$$d\bar{T}_{v}/dt = T_{v}^{\Omega/2\pi} = -cR^{2}\Omega^{2}\alpha_{0}^{2}/2$$

where  $\alpha_0 = \Theta(1 - \Omega^2/r^2) \left[ (1 - \Omega^2/P^2)^2 + 4n^2 \Omega^2/P^4 \right]^{-1/2}$ 

n = 5c/14m

and  $P = (5br^2/7R)^{\frac{1}{2}}$  is the natural frequency, the square root of the  $\propto$  coefficient.

We end up with an expotential damping:  $\theta = \theta_0 e^{-t/\gamma}$ 

and  $\mathcal{T} = \frac{5c[(1 - n^2/p^2)^2 + 4n^2n^2/p^4]}{7maR^2\lambda (\lambda + 1)^2(1 - \lambda)^2}$ 

If rolling friction dissipation is included;

 $\overline{dT}_{r}/dt = 2FR\alpha_{0}|\Omega|/\pi$ 

where F is the rolling friction, and:

$$\begin{split} \theta &= \left(\theta_0 + \mu\right) e^{-t/\gamma'} - \mu \\ \gamma' &= \gamma \ln\left[ (1 + \theta_0/\mu) / (1 + \theta_0/\mu) \right] \end{split}$$

The damping time can be greatly reduced by designing a resonant system, making  $P = \Omega$ . Then:

 $R_{res} = 5b/7\lambda^2$ 

The time constant is then:

 $\gamma_{\rm res} = 28 {\rm mc} \, \lambda \, 5 {\rm mb}^2 (\lambda + 1)^2 r^2 (1 - \lambda)^2$ 

A resonant damper could not be used in Telstar because  $\lambda$  was close to zero and room had to be made for an electronics package, preventing a small value of b.

It is possible to conceive of dampers using straight tubes or tubes concave outward. It is easily seen, however, that the equilibrium position for the ball during nutation would be at the ends of the tubes, and the final spin axis would not coincide with that of the satellite without the balls.

The parameters for Telstar were A/C = .95,  $\varphi = 20-180$  rpm, R = 15 ft, m = 0.0021 slug, a = 0.242 in (tungsten for its large density), c = 0.00193 lb-sec/ft (neon for its high viscosity). The theoretical damping time was calculated to be a maximum of about three minutes.

Note that a gas of low viscosity should be used for a tuned (resonant) damper, as n, proportional to c, appears in the numerator of the expression for  $\gamma_{res}$ .

The problems in this analysis are due to the assumed small  $\theta$  and linearization of the equations. G.T. Kossyk devised a ground test of a model supported at its center of gravity which showed that the experimental  $\gamma$  was about four times that calculated using the mean value of the transverse inertia moments, and nine times that using the minimum value. Taking these fac-

tors into account, the  $\gamma$  for Telstar was calculated to be no more than thirty minutes.

2. Mounted in a Plane Parallel to the Equatorial

Two of this type were mounted in FR-1, and one in the HEOS spacecraft, which also used a liquid damper.

If h is the distance from the damper plane to the center of gravity, Routh criteria applied to the Euler equations indicate that  $b/R < 1 - mh^2/A$  is necessary for stability. Also, optimum damping (minimum  $\gamma$ ) is given by a viscous friction coefficient of:

 $\mathbf{c}_{\text{opt}} = \mathrm{mR}^2 r \left[ 14 \mathrm{mh}^2 (\lambda + 1)^3 / 5 \Lambda \lambda \right]^{\frac{1}{2}}$ 

This results in:

 $\mathcal{T}_{\text{opt}} = (1/r) \left[ 56 \Lambda \lambda / \min^2 (\lambda + 1)^3 \right]^{\frac{1}{2}}$ 

Experimental results agree well with the theoretical. For two dampers and  $\lambda = 0.61$ , h = 0.15m, R = 0.2m, r = 0.2 rad/sec, and 250 gm give a maximum  $\gamma$  of 120 sec for reasonable  $\Theta$ . The experimental result was 130 sec. With all parameters equal, the efficiency ratio of the equatorial to meridian damper is  $[(1 + \lambda)/(1 - \lambda)]^2$ .

B. TEAM Damper [24,25]

The TEAM damper, used in Tiros, is essentially the same in concept as the meridian-mounted ball damper. A small mass fitted with rollers is allowed to run along a curved monorail (Fig. III-2). The difference lies in that there is no fluid involved, so only rolling friction exists. From the ball damper analysis, it can be



Fig. III-3: Tiros TEAM damper.

. ,

.

seen that this would behave well only at small  $\Theta$ .

For Tiros, the damper mass was about 0.001 of the total satellite mass, and assured a  $\theta$  of less than 0.5 degrees. The time to damp from 2.5 to 0.5 degrees was about one minute. It was chosen because tests showed that the tube radius R of the ball damper would be greater than the track radius of TEAM. Also, it was found that the ball damper required an A/C not less than 1.6( $\lambda \neq 0.375$ ), where A/C for Tiros was 1.45 ( $\lambda = 0.31$ ).

C. Pendulum Damper

1. Spin Axis Pivoted

The motion for a satellite with a pendulum pivoted on the spin axis, and moving in a plane perpendicular to the axis was described by Cartwright, Massingill, and Trueblood [6]. The driving frequency of the pendulum is the frequency of the acceleration due to nutation,  $\Omega = \lambda r$ . Without friction the pendulum would oscillate in synchronism opposite  $\widetilde{w}_{\mu}$  at  $\Omega$ , as in Fig.III-3a. However, if the pivot exerts a frictional torque, the pendulum lags behind this position by an angle  $\delta$  (Fig.III-3b). The resulting torque on the axisymmetric main body causes the damping. As this lag angle increases, so does the damping, producing the convex portion of Fig.III-3b, and called the "nutation synchronous" mode.

When  $\delta$  reaches 90 degrees, however, the pendulum is no longer in sync with  $\overline{\omega}_{\rm p}$ , but is driven toward synchronism with r. This is a decreasing-rate decay with a superimposed convergent escillation. It would be desirable to make the transition, between the two modes at as small a  $\theta$  as possible.

If the mass is assumed small so that the  $\varpi_{\rm T}$  rotates precisely at the nutation rate  $(\lambda + 1)r = \Omega + r$  in inertial space, and  $\Omega$  small, we have:

 $\dot{\Theta} = (\mathrm{meh}/\mathrm{A})(\lambda + 1)r \sin \alpha$ 

 $\ddot{\alpha} + (c_{\rm p}/m)\dot{\alpha} + (h/\ell)(\lambda + 1)r^2\theta\sin\alpha = -(c_{\rm p}/m)\lambda r$ 

where  $\ll$  is the angle between the x axis and  $\vec{\omega}_{\rm T}$ , assumed approximately equal to §. Also,  $c_{\rm p}$  is the friction coefficient of the relative velocity between the pendulum and main body.

Computer analysis has shown that the  $\propto$  term can be neglected. To find the time and nutation angle at transition between modes, we set  $\propto = Tr/2$  and integrate the above equations. Thus:

 $\theta_{*} = -c_{p}(\ell/\text{im}r)\lambda/(1+\lambda)^{2}$  $t_{*} = \left[(\theta_{0}^{2} - \theta_{*}^{2})/c_{p}\ell^{2}\right](c/2\lambda)$ 

Numerical integration of exact equations show that the first equation overestimates  $\theta_{*}$  by as much as a factor of 2, and the second underestimates  $t_{*}$  by as much as a factor of 2. Also, for these equations to be valid,  $\ll$  must-be near zero at time-t-= 0; thus:

 $m\ell^2 \ll c \phi_0^2 (\Lambda/c) / (1 - \Lambda/c)$ 

is a necessary condition for their validity.

Because of its nonsymmetry, there will be a small final nutation angle when only one damper is used:  $\mathcal{O}_{t} \equiv (\mathfrak{m}\ell\mathfrak{h}/\mathfrak{C})(\lambda+1)/\lambda$ 





If  $c_p$  is large,  $t_*$  decreases but  $\Theta_*$  increases. If  $c_p$  is an increasing function of velocity, there will be strong damping at the beginning. As the relative velocity decreases, so does  $c_p$ , and the dampermain body system is decoupled enough to delay transition.

Another improvement would be to use two pendulums of different radii. Experimental results show these to act independently, the long one damping quickly at large  $\theta$  (Fig.III-3d), the short at small  $\theta$ .

2. Pivoted Away From the Spin Axis

The problem of a pendulum moving in a plane perpendicular to the spin axis and pivoted at a point away from the axis have been studied by Haseltine [16, 17] and Newkirk, Haseltine, and Pratt [23].

If  $\gamma$  is the rotation required to reach a point on the body, the kinetic energy of the system is [23]:

 $\mathbf{T} = \frac{1}{2} \left[ C \boldsymbol{\Phi}^2 + A \boldsymbol{\omega}_{\mathrm{T}}^2 + \widetilde{\mathbf{m}} (\boldsymbol{\Phi} \mathbf{X} \mathbf{r}_{\mathrm{m}})^2 \right]$ 

where  $\hat{g} = r + \hat{\gamma}$ 

 $\overline{m} = Mm/(M + m)$ 

and  $r_{m}$  is the distance from the center of gravity to the damper mass.

Using a set of modified Lagrangian equations:  $a(\partial T/\partial q_i)/dt = L_{qi}$ 

<u>}`</u>


force

Fig.111-4: Offset.



(a) Off-design equilibrium
 for two offset pendulums.



(b) Off-design equilibrium for four pendulums.

# Fig. III-5: Offset pendulum dampers.

.

 $\mathbf{21}$ 

in which all the  $L_{qi}$  are zero except:

L_q =  $-c_p \hat{\gamma}$ The following equations result:  $\hat{x} = -(c_p/\Lambda)(\hat{x} - r)$   $\hat{r} = \bar{\Lambda}c_p(\hat{x} - r)/(\bar{\Lambda}\bar{C} - \bar{D}^2)$   $+ C\bar{D} \cdot \Omega \cdot p/(\bar{\Lambda}\bar{C} - \bar{D}^2) + pq$   $\hat{q} = -pr + C\bar{C}\hat{z}p/(\bar{\Lambda}\bar{C} - \bar{D}^2)$   $+ \bar{D}c_p(\bar{\Phi} - r)/(\bar{\Lambda}\bar{C} - \bar{D}^2)$   $\hat{p} = (\bar{\Lambda} - \bar{C})qr/(\bar{\Lambda} + \bar{C})$   $+ C\hat{z}q/(\bar{\Lambda} + \bar{C}) - \bar{D}(r^2 - q^2)/(\bar{\Lambda} + \bar{C})$ where  $\bar{\Lambda} = \Lambda + \bar{m}y^2$   $\bar{C} = \bar{m}h^2$  $\bar{D} = \bar{m}hy$ 

and y is the y coordinate of the mass. No small angle assumptions have been made. If however,  $\theta$  and m are small,  $\overline{x}$  constant, and other limiting assumptions are made:

$$\ddot{S} = -c_{p}(\ddot{S} - \tilde{\chi})/\tilde{C} + (C\bar{D}/2\Lambda\bar{C})\tilde{\chi}(\dot{U}c^{-iS} + \dot{U}c^{iS})$$
$$\ddot{U} = i(C/\Lambda)\tilde{\delta}U = -(D/\Lambda)\tilde{S}^{2}c^{iS}$$

where  $S = \varphi + \varphi$ 

ś≅r

 $U = \sin \Theta (\cos \rho + i \sin \rho)$ 

Thus  $|v| = \sin \Theta \cong \Theta$ .

Three different solutions were tried for this set of equations:

(a) The stable solution in which the damper does not rotate relative to the main body. Then  $|U| \cong \Theta_0 = \text{constant}$ .

(b) "Slow damping" in which the damper has a small oscillation about a fixed point on the body, resulting in:

 $\theta = \theta_0 e^{-t/\gamma}$  $\gamma = \begin{cases} 2(C - A)A\overline{C}^{2} \left[ (c_{p}/\overline{C})^{2} + (C - A)^{2} \overline{\varphi}^{2}/\overline{C}^{2} \right] \\ \hline C\overline{D}^{2} \overline{\varphi} c_{p} \end{cases}$ 

(c) "Fast damping" in which the damper rotates at the nutation frequency Cr/A. This solution is good only when  $\theta$  is not small:

 $\Theta^{2} = \Theta_{0}^{2} - \left[2e_{p}(C - \Lambda)/C\Lambda - 2\pi \tilde{D}^{2}C\tilde{P}/\Lambda^{3}\right]t$ 

The advantage of offsetting the pivot point from the axis is that it would appear that the pendulum will align itself radially outward from the pivot. Then a countermass could be mounted from the equilibrium position to preserve the symmetry of the satellite, with no residual wobble. An alternate is to employ two diametrically opposed pendulums (Fig.III-4).

£

For a pendulum offset a distance b and of arm length  $\mathcal{L}$ , the frequency is:

$$\frac{\omega}{2\pi}\sqrt{\frac{b}{\ell}+\frac{hC}{\ell A}}\tan\theta$$

For resonance:

 $\ell \cong \left[ b + (\lambda + 1) b \theta \right] / \lambda^2 \rightarrow b / \lambda^2$ 

assuming  $\omega = r$ , for small  $\theta$ . If  $\lambda$  is only slightly greater than zero,  $\mathcal{L}$  can be large. A solution is to use a pendulum of radius of gyration s. Then:

 $\boldsymbol{\ell} = \left[ \boldsymbol{b} + (\boldsymbol{\lambda} + 1) \boldsymbol{h} \boldsymbol{\Theta} \right] / \boldsymbol{\lambda}^2 (1 + \boldsymbol{s}^2 / \boldsymbol{\ell}^2)$ 

Haseltine [16] has shown that, when:

 $(l/b) [mh^2/(C - A) - (m/M)] > \frac{1}{2}$ 

The angle between the two dampers will not be 180 degrees in the steady state (Fig.111-5a). Then:

 $\cos\phi$  = lesser of one or  $b(C - A)/2mh^2 \ell$  and the apparent webble angle is approximately  $(2mh \ell \sin \phi)/(C - A)$ .

Haseltine also studied the motion with four identical pendulums mounted 90 degrees apart. Again, experimental results showed possible equilibrium positions resulting in a residual wobble (Fig.III-5b).

#### D. Liquid Dampers

#### 1. Spin Axis Concentric

The use of an annulus partially filled with a dense, high viscosity liquid, usually mercury, has proven very popular; it was first used in Syncom and the Explorer series [24]. The basic theory was laid out by Carrier and Miles [5] for lamilar flow. The equations of motion for the body are similar to those for the pendulum, since both systems are circularly constrained. The dimensions of the system are given in Fig. III-6. For small  $\theta$ , it was assumed that the liquid was in contact with the entire outer surface of the annulus. The rate at which energy is dissipated throughout the fluid is, if  $\rho$  is the density:

$$\dot{\mathbf{T}} = -\rho \mathcal{V} \iiint (\vec{\nabla} \times \vec{\mathbf{v}})^2 d\mathbf{V}$$

where  $\hat{v}$  is the fluid velocity,  $\nu$  is the kinematic viscosity, and dV is a differential element volume. Assuming the irrotational component of velocity cannot contribute to the integral:

$$\dot{T} = -8^{\frac{1}{2}} \pi dR^{2} \varphi (\dot{\varphi} h \theta)^{2} |\dot{\varphi}| n_{*}^{2} |G| / |\Delta|^{2}$$
where  $n_{*} = (1 + \lambda)^{2} (1 - a_{*}/R)^{2}$ 

$$G = (i\dot{\varphi} R^{2}/r)^{\frac{1}{2}}$$

$$\Delta = (n_{*} - n)G + (n_{*} + n)$$

$$n = 1 + 2\lambda - \lambda^{2}$$

This results in a time constant of decay for  $\theta$  of:

$$\mathcal{T} = \Gamma \Lambda / dR^2 h^2 \rho |\dot{\varphi}|$$
  
and 
$$\Gamma = \frac{\lambda \left[ (n_* - n)^2 |G|^2 + 2^{\frac{1}{2}} (n_*^2 - n^2) |G| + (n_* + n)^2 \right]}{32^{\frac{1}{2}} \pi (\lambda + 1) n_*^2 |G|}$$

This is at a minimum in the neighborhood of  $n_{x} = n$ . Then:

$$T_{\min} = \lambda/8^{\frac{1}{2}}\pi(\lambda + 1) |G|$$

and , if  $a_*/R \ll 1$ :

 $a_{x} \cong n[\lambda^{2}/(1 + \lambda)^{2} + 1/2^{\frac{1}{2}}|G|]$ 

is the resonant condition. The variation in thickness of  $a_x$  has been assumed small.

For large  $\theta$ , the fluid completely fills the cross section of the annulus over an angle (Fig.III-7). The energy dissipation is then:

 $\dot{\mathbf{T}} = -4 |\dot{\varphi}|^{2.5} \mathrm{R}^{3} \rho \nu^{1/2} (a + d) \Theta^{1/2}$ 

The time constant for large is:

 $\boldsymbol{\gamma} = \Lambda | \dot{\boldsymbol{\psi}} | \boldsymbol{\theta}^2 / 8 | \dot{\boldsymbol{\varphi}} | (| \dot{\boldsymbol{\varphi}} | \boldsymbol{\nu})^{\frac{1}{2}} \mathbb{R}^3 \boldsymbol{\varphi} (\mathbf{a} + \mathbf{d}) \boldsymbol{\theta}^{\frac{1}{2}}$ 

For R = 10 cm, h = 10 cm, d = 0.25 cm,  $a_{s} = 0.05$  cm, A = 1.3 kg - m²,  $\lambda = 1/3, \omega = 12$  rad/sec,  $\gamma = 13.6$  gm/cc, and  $\nu = 10^{-3}$  cm²/sec give a damping time of 14 sec for small  $\Theta$ . If a resonant damper were designed,  $a_{s}$  would be 0.637 cm and  $\gamma = 0.00044$  sec.

The large  $\theta$  result for the above parameters and  $\Theta_0 = 1/6$ ,  $\theta = 5$ , and  $(a + d) = \frac{4}{2}$  cm gives  $\gamma = 200$  sec. However, the Reynolds number is past critical for these, and the increased-friction-would reduce  $\gamma$ -to about 70 sec.

The above would indicate that it would be desirable to design the damper for resonance. However, a study by Fitzgibbon and Smith [35] show that significant energy can be stored in the surface waves on the fluid





Fig.III-6: Damper parameters.











near resonance, with the result that energy is traded back and forth between liquid and rigid body. This can result if the damper mass is as little as 2% of the main body, resulting in a history of  $\Theta$  as shown. in Fig.III-8 [21]. This can be overcome by damping the wave motion by the use of baffles, filling the void with a light liquid such as alcohol, or using enough damping fluid so that the void is small and the waves impact the inner surface of the damper. Also, damper masses are usually much smaller than 2% of the main body, weight.

The advantage of this configuration is that it assures symmetry in the steady state, with no apparent residual wobble, as is the case with single, and some multiple, pendulums. A comparison of a fluid damper and single spin axis pivoted pendulum damper of equal mass from experimental results is shown in Fig.III-9[6].

The HEOS used a spin axis concentric mercury and alcohol damper for small  $\Theta$ , less than half a degree, and one equatorial ball damper for fast damping at larger  $\Theta$ .

2. Unsymmetrically Mounted

Ayache and Lynch analized toroidal and rectangular dampers of circular cross section and a U-shaped resonant damper mounted in planes parallel to the spin axis [2] in terms of a frictional coupling factor  $f_{DS}$ inversely proportional to the time constant. Only the

28

.

results are presented here. This is for small A only, the spacecraft nearly despun. Most of the stabilization is due to a flywheel on the spin axis.

For a toroidal dasper as described in Fig.III-10a:  $f_{DS} = \frac{\sqrt{4}}{imag} i / \left[ (1 - K)^{2} + K^{2} |A|^{2} + 2K(1 - K)A_{real} \right]$ where  $A = 2J_{1}(\beta_{0})/\beta_{0}J_{0}(\beta_{0})$  $\beta_{0} = a_{1}(i\Omega/t)^{\frac{1}{2}}$   $K = (r/\Omega)^{2}(\pi - \frac{1}{2}\Omega)/\pi$ 

J₀, J₁ = Bessel functions of order zero and one, respectively.

This is plotted vs.  $a_t (\Omega/\nu)^{\frac{1}{2}}$  for various bubble sizes in Fig. III-10b, where  $a_t$  is the tube inside radius.

The rectangular damper has a frictional coupling factor  $(1 - W^2)$  that of the toroidal, where (Fig.III-10a):

W = (a - b)/(a + b)

This means a greater time constant.

For the U-shaped dampor (Fig.III-11):

$$f_{DS} = \frac{1}{2} \operatorname{imag}\left[\frac{2R - (K_*A_*/A_t)(1 - R)}{2 - 2K_*(1 - R)}\right]$$
where  $K_* = 2(A_t/A_*)(r/\alpha)^2 \ell_s/\ell$ 

$$A_* = (v_t + \frac{1}{2})/J_0(\beta_0)$$



Fig. III-10: Toroidal and rectangular liquid dampers mounted along transverse axis.





.1

 $\mathbf{v}_{t}$  = velocity of the tube wall

$$\Psi = (N - v_t c_*)/(-i\Omega^2) g$$

$$c_* = g r^2 \ell / \ell_s$$

$$N = (2c_*/a_t^2) \int_0^0 t v r_* dr$$

 $\mathbf{r}_{\mathbf{x}}$  = radial distance from tube center

# E. Disk Type [26]

In this, a disk is mounted on a ball and socket at the center of gravity. For best results, the friction should be small. To my knowledge, this type has only been used in a test model by Perkel.

When the entire body is spinning smoothly and then disturbed, the disk damps down more quickly than the main body. For small friction, the damper plane is perpendicular to the precession cone axis. Up to a point, greater friction causes faster damping. The limit is when stiction occurs, freezing the damper.

The damping is exponential:

 $\theta = \theta_0 e^{-t/\gamma}$  $\gamma^{-1} = \frac{\Theta_{1D}}{\Theta_0} \frac{C_D}{\Lambda} \left[ 1 - \frac{C\Lambda_D}{C_D\Lambda} \right] r \left[ 1 - \left( \frac{\Theta_{1D}}{\Theta_0} \right)^2 \right]^{\frac{1}{2}}$ 

where  $C_D$ ,  $\Lambda_D$  = polar and transverse moments of inertia of the damper

 $\theta_{1D}$  = initial angle between  $\hat{\Pi}$  and disk axis.

If the angle between the disk and body axes is small, r may be approximated by  $\Pi/C$ .

The stiction problem can be overcome by using a lubricated bearing. The viscous friction constant for minimum  $\gamma$  is:

$$K_0 = C_0 (1 - CA_0/C_0A) (\lambda + 1)r/\lambda.$$

F. Mass-Spring Systems

1. Perpendicular to Spin Axis

Wadleigh, Galloway, and Mathur have treated a spring-mass system mounted on and perpendicular to the spin axis [35]. If K is the spring constant, c the damping, and  $\omega_n$  the natural frequency:

$$\mathbf{r} = 0$$

$$\dot{\mathbf{p}} + \Omega \mathbf{q} = 0$$

$$\dot{\mathbf{q}} - \Omega \mathbf{p} - 2(\mathbf{c/c}_{e})(\omega_{n} \mathrm{mh/A})\dot{\mathbf{x}} - (\mathrm{Kh/A})\mathbf{x} = 0$$

$$\dot{\mathbf{x}} + 2(\mathbf{c/c}_{e})\omega_{n}\dot{\mathbf{x}} - (\mathbf{q}^{2} + \mathbf{r}^{2} - \omega_{n}^{2})\mathbf{x} + \mathrm{hrp} + \mathrm{h\dot{q}} = 0$$

$$\omega_{n} = (\mathrm{K/m})^{\frac{1}{2}} \text{ and } \mathbf{c}_{e} = 2/(\mathrm{Km})^{\frac{1}{2}}$$

If it is assumed that the sinusoidal character of the spinning body is not affected:

 $p = p_0 \exp(-F_*t/2) \cos \Omega t$ 

where  $F_{\alpha}$  is the Rayleigh dissipation function:

$$F_{*}/2 = \frac{mh^{2}(c/c_{c})\omega_{n}\lambda(\lambda+1)(1+\lambda^{2})}{A\left\{\left[(\omega_{n}/r)^{2}-1-\lambda^{2}\right]^{2}+4(c/c_{c})^{2}(\omega_{n}/r)^{2}\lambda^{2}\right\}}$$





34

Ň

The maximum amplitude of the mass oscillation is:  $x_{max} = q_0 h(r + \Omega) / 2(c/c_c) \omega_0 \Omega$ 

Finally, the nutation angle is expressed:

 $\theta^{2} = \left[q_{0}/(r + \Omega)\right]^{2} \left| \exp\left[-F_{*}t/2 + i(r + \Omega)t\right] - 1 \right|^{2}$ Because this system will be slightly asymmetric, this converges to an apparent wobble angle of  $q_{0}/(r + \Omega)$ .

In a laboratory test, with  $\omega_n \cong 3 \text{cps}$ ,  $c/c_c \cong 0.5$ ,  $\omega_n/r \cong 1.1$ ,  $\text{mh}^2/\text{A} = 0.00135$ , and an initial spin of 3 cps, all nutation damped out in 6 sec. See Fig.III-12.

2. Parallel to Spin Axis

Such a damper is inherently unbalanced. The nutation angle is a decreasing exponential with a superimposed convergent oscillation. Again, however, the apparent residual wobble is small [21]. The damper is not on the spin axis.

G. Spherical

A pendulum pivoted in a ball and socket and immersed in a fluid was mounted on the despun portion of OSO [9]. However, it will work for a single body satellite for C/A > 1. If  $p_{ii} = (C/A)\dot{\phi}$  and c is the damping constant of the fluid:

 $\gamma = \frac{1}{2} Ac/h^2 m^2 p_{\odot}^{+2}$ 

For resonance:

 $(C/A)\dot{\varphi} = 1.745 (TI_d)^{\frac{1}{2}} (m\ell^3 + 2.467 m\ell s^2)^{\frac{1}{2}}$ 

where  $\ell$  is the pendulum length, I_d is the diametral moment of inertia of the pendulum wire, and s is the transverse radius of gyration of the bob.

For OSO, there was no evidence of nutation for 8000 orbital passes.

H. Mass-Drum System

This is another system devised by Perkel [26], and consists of two masses strung on wires which are wrapped around a drum. The drum is connected to the main body concentric with the spin axis by a tortional spring-damper system. When nutation occurs, there is a restoring torque due to the relative deflection of the wires in addition to energy dissipation in the dampers. Fig.III-13.

Experimental work on a lab model indicated this system was capable of damping the nutation of a prolate body. Of course, if the cables were long enough, the actual polar inertia moment could be greater than that of the prolate main body alone, possibly greater than the transverse moment of inertia.

C)



# Fig. III-13: Mass-drum nutation damper and spin rate control.

Another possibility along these lines would be to dispense with the drum, mounting masses on damped springs on the outside of the spacecraft, opposite each other. In this case there would be no direct coupling of the motion of the two dampers.

#### I. Magnetic Damping

One method is used to align the spin axis of a spacecraft along the local external magnetic field. A strong, permanent magnet is mounted in the spacecraft along the axis. This method was used in TRANSIT 1B and 2A. The spin had to be reduced to below 0.1 rps. Otherwise, the oblate spacecraft could have overcome the magnetic torque and assumed an attitude fixed in space [13].

Energy dissipation also comes about through eddy currents and magnetic hysteresis. If a rod is rotating about a transverse axis perpendicular to the external field, the component of the field along the rod is a function of time, and thus there must be an induced current. This eddy current causes heat to be radiated due to the resistance of the members. For a spacecraft of pelar moment C, n number of permeable rods of volume V and diameter D, and spinning perpendicular to the local field initially at  $\omega_0$ :--

 $\omega = \omega_0 \exp\left[\left(-k_e/4n^2c\right)t\right]$  $k_e = 6.25n^2\sigma_e n \rho_*^{-1} (B_m^2)_e VD^2 \times 10^{-11} \text{ erg-sec}$ 

where  $\sigma_e$  = separation effect due to distance between rods ( $\sigma_e = 1$  for  $\infty$ )*

 $\rho_{\rm W}$  = resistivity of rad (ohm-cm)

 $(B_m^2)_e$  = average of square of maximum flux density over entire length of rod for one orbit (gauss²).

Hysteresis damping is due to the friction between the magnetic domains in the spacecraft. This results in a linear damping.

Note that in all of the above, there are external torques, and angular momentum is not conserved. Since there are energy losses, however, they can be applied to nutation damping. The latter two methods will generally cause energy loss no matter what the orientation of the satellite is intended to be, fixed in space.

In general, the magnetic torques are disturbances that must be overcome by other nutation dampers, and thus are beneficial only for spin removal and alignment with the local magnetic field.

J. Gravity Gradient

As in the above, this can be used for nutation damping only when the spin is very low, and the spin axis (always a prolate body in this case) oriented toward earth. For this type of spacecraft, no spin is usually desired along this axis. In satellites not meant to be gravity gradient stabilized, it is a disturbance to be overcome by the nutation damper [20,32].

According to Thomson, the torque on a satellite with spin axis perpendicular to the orbital plane is:

$$L = 3\omega_{*}^{2}(A - C)\theta_{e}$$

where  $\theta_e$  = deviation of spin axis from normal to orbital plane towards earth (small)

 $\omega_{*}$  = orbital angular velocity

and L is about the axis tangent to the orbit. Conditions for stability are defined in terms of:

$$b/2\omega_{*}^{2} = \frac{1}{2} \left[ -5\lambda - (1 - \lambda)^{2} \right] + \left( \frac{\dot{\varphi}_{1}}{\omega_{*}} \right) (\lambda + 1)\lambda$$
$$-\frac{1}{2} \left( \frac{\dot{\varphi}_{1}}{\omega_{*}} \right)^{2} (\lambda + 1)^{2}$$
$$c/\omega_{*}^{4} = 4\lambda^{2} + 5\left( \frac{\dot{\varphi}_{1}}{\omega_{*}} \right)\lambda(\lambda + 1) + \left( \frac{\dot{\varphi}_{1}}{\omega_{*}} \right)^{2} (\lambda + 1)^{2}$$
$$\dot{\varphi}_{1} = \text{spin relative to the tangent to the orbit}$$

For stability:  $b^2/2\omega_{\chi}^2 < 0$ 

 $c^{2}/\omega_{*}^{4} > 0$  $(b/2\omega_{*}^{2})^{2} > c/\omega_{*}^{2}$ 

K. Structural Energy Dissipation

No structure is perfectly rigid, and the accelerations on a precessing spacecraft will cause energy loss through mechanical hysteresis. Usually, however, part or parts of the spacecraft can be considered rigid with energy dissipation only from the relatively flexible parts, such as antennae or solar panels. Two examples have been worked by Thomson [31, 33].

We have already shown that, for no external torques:  $\tilde{T} = (H^2 \lambda/C)(\sin \Theta \cos \Theta)\dot{\Theta}$ for an axisymmetric body. The energy loss per cycle of stress per unit volume is:

 $\mathcal{T} \sigma^2/2E$ where E is Young's modulus,  $\sigma$  the normal stress, and  $\mathcal{T}$ the hysteresis factor. Integrating this over the whole structure, for period of stress oscillation  $t_0$ :

 $\int (\gamma \sigma^2 / 2Et_0) dV = \dot{T}$ 

Considering an arbitrary point on the spacecraft at coordinates (x,x), we can compute the acceleration at that point, which is the excitation. If  $\dot{\Theta}$  is comparatively small:

Ċ	=	$(\dot{\psi}\sin\theta\sin\varphi)\hat{1} + (\dot{\psi}\sin\theta\cos\varphi)\hat{j}$ + $(\dot{\psi}+\dot{\psi}\cos\theta)\hat{k}$	$\psi \sin \theta \cos \varphi$	<u>,</u>
छै	=	$\dot{\varphi}\dot{\varphi}\sin\Theta(\cos\varphi$ î - $\sin\varphi$ ĵ)	inęj)	

Note that (x, z) does define an arbitrary point in the spacecraft, not restricted to one plane, because of the axisymmetry. If the relative motion of the points on the spacecraft can be considered small, the acceleration at a point is:

 $\vec{a} = \vec{\omega} \times (\vec{\omega} \times \vec{\ell}) + \vec{\omega} \times \vec{\ell}$ where  $\vec{\ell} = x\hat{i} + z\hat{k}$ .

For an example, let us assume that the elastic part of a spacecraft serves only the function of energy dissipation, and the deflections cause no changes in the inertia. The satellite in Fig.III-14 consists of two disks, each of inertia  $C_1$  and  $A_1$ , and mass  $M_1$ , connected by a flexible tube of radius  $x_1$  and length 2.2. The gyroscopic moment required by each disk is:

 $L_{g} = C_{1}(\dot{\varphi} + \dot{\psi}\cos\theta)\dot{\psi}\sin\theta - A_{1}\dot{\psi}^{2}\sin\theta\cos\theta$   $C = 2C_{1}(\dot{\varphi} + \dot{\psi}\cos\theta)\dot{\psi}\sin\theta - A_{1}\dot{\psi}^{2}\sin\theta\cos\theta$ 

and  $C = 2C_1$ 

$$A \cong 2(A_1 + M_1 \ell^2)$$

Then  $L_g = M_1 \ell^2 \dot{\varphi}^2 \sin\theta \cos\theta$ The moment distribution is linear:

$$L_{z} = L_{g} z / \ell$$

and thus the maximum stress is:

$$\mathcal{O} = L_z x_1 / I$$

where I is the cross-sectional moment of inertia of the tube. Substituting these into the energy dissipation equation:

 $\dot{\theta} = (\eta/24 \pi E)(M_1 \ell^2 x_1/1)^2 (V/C) (C/A)^4 \omega_0^3 \sin\theta \cos^2\theta$  $= K \sin \theta \cos^2 \theta$ 









This is shown in Fig.TII-15. V is the volume of the stressed material and  $\omega_0$  the initial angular velocity.

If  $\Lambda >> C$ , such as for a missile:

 $\hat{a} = 2\omega_0^2 x(C/A) \sin \theta \cos \theta \sin \varphi \hat{k} = a_v \hat{k}$ 

If we consider the inertia of the deflected members, resonance is observed. Fig.III-16 shows a cylindrical spacecraft of radius R, with four beams of length  $\ell$ . If the elastic deformations  $w(\xi, t)$  are assumed small and in the z direction only:

 $EI \frac{\partial^4 w}{\partial \xi^4} + \frac{m}{\ell} \frac{\partial^2 w}{\partial t^2} = a_w \frac{m}{\ell}$ 

where m and I are the mass and cross-sectional moments of incrtia for the beams. This gives:

 $\dot{\theta} = K_{\pi} \sin\theta \cos^{2}\theta / \left[ (1 - \gamma^{2} \cos^{2}\theta)^{2} + (\gamma/2\pi)^{2} \right]$   $K_{\pi} = 16 \operatorname{Cm} \gamma (\ll_{1}\beta_{1}R + 1)^{2} \omega_{0}^{-3} / \pi \Lambda^{2} \beta_{1}^{-4} \mathcal{L}^{2} \Omega_{1}^{-2}$   $\gamma = (1 - C/\Lambda) \omega_{0} / \Omega$ 

 $\Omega_1$  = first natural frequency of beams

Also,  $\propto_1$  and  $\beta_1$  are tabulated in [37]. This is shown graphically in Fig.III-17, which clearly shows resonance effects. The envelope of this curve is the same shape as the curve in Fig.III-15.







Fig. III-17: Resonance effects.

45

<u>)</u>

#### IV. Semipassive and Active Systems

Such systems will be mentioned here only in passing. Active systems have energy sources activated either by on-board sensing equipment or ground command. Semipassive have energy sources that either remain constant or react naturally to attitude changes.

A. Oscillating Mass

This was proposed by Kane and Sobala [19]. Two masses, diametrically opposed, are forced to oscillate back and forth along the spin axis at constant frequency. The spin axis (axis of symmetry) is normal to the orbital plane. This is capable of maintaining attitude at very low spin rates.

B. Dual Spin

The general reasoning behind dual spin spacecraft with despun dampers was most recently outlined by Tonkin [34]. Fig.IV-1 shows the position of  $\overline{\omega}$  relative to  $\overline{\Pi}$  for oblate and prolate bodies. We have  $\omega_{\rm h}$ and  $\omega_{\rm c}$  as the components of  $\overline{\omega}$  parallel and normal to  $\overline{\Pi}$ , respectively. Note that the  $\omega_{\rm c}$  in each case is opposite in sign. An internal torque to reduce nutation must be of zero average value ( $\overline{\Pi}$  concerved) and remove energy for oblate bodies or inject it for prolate. The first requirement means that the required torque is

þ



 $\sum_{i=1}^{N}$ 

Fig. III-1: Torques required for damping.

normal to  $\overline{\mathbb{H}}$  and spinning with  $\dot{\varphi}$  in inertial space. Since power is the scalar product of torque and angular velocity, the torque required must be epposite  $\varphi_{c}$  for oblate bodies and of the same sense as  $\omega_{c}$  for prolate bodies.

The torques produced by a damper dissipate energy, thus the component normal to H is opposite  $\omega_c$ . There is also a component along the spin axis, thus changing the spin of the body upon which the damper is mounted. If the damper is despun, the motor must compensate for this speed differential. This is the source of energy injection for the prolate body. Several references are presented in the bibliography.

C. Magnetic

As was shown before, eddy currents induced by the earth's magnetic field can cause torques on a spacecraft. This can be overcome by supplying a torquing coil whose axis is normal to the spin axis with a current 180 degrees out of phase with the externally induced EMF [14]. The spin axis can be oriented by another coil whose axis is parallel to the spin axis. The current in this is switched on and off, and the torque being a sinusoid while on, to give zero average torque on one transverse axis, and a resultant torque on the other.

# D. Jet Pulse

Another method of supplying torque is to activate a single attitude motor aligned parallel with the spin axis. The pulsing is controlled by an on-board nutation sensor, firing when the motor is inside the body cone [15].

#### V. Bibliography

- 1. Ames, J., and Murnaghan, F., <u>Theoretical Mechanics</u>, Dover Publications, Inc., N.Y., N.Y., 1929, p.217.
- Aysche, K., and Lynch, R., "Analyses of the Performance of Liquid Dampers for Nutation in Spacecraft," <u>Journal</u> <u>of Spacecraft and Rockets</u>, 6; 12, Dec. 1969, p.1385.
- Bainum, P., Fueschel, P., and Mackison, D., "Motion and Stability of a Dual-Spin Satellite with Nutation Damping," <u>Journal of Spacecraft and Rockets</u>, 7;6, June 1970, p. 690.
- Barbier, Y., Reynaud, P., and De Samiville, B., "Development of a Family of Ball-Type Nutation Dampers," <u>Bendix Technical Journal</u>, vl, Spring 1968, p.99.
- Carrier, G., and Miles, J., "On the Annular Damper for for a Freely Precessing Gyroscope," <u>Journal of Applied</u> Mechanics, v27, June 1960, p.237.
- Cartyright, W., Massingill, E., Trueblood, R., "Circular Constraint Nutation Dampers," <u>ATAA Journal</u>, 1;6, June 1963, p.1375.
- Cloutier, G., "Nutation Damper Instability on Spin-Stabilized Spacecraft," <u>ATAA Journal</u>, 7;11, Nov. 1969, p. 2110.

- Cole, R., Ekstrand, M., and O'Neill, M., "Attitude Control of Rotating Satellites," <u>ANS Journal</u>, Oct. 1961, p.1447.
- 9. Craig, B., "Nutation Damper for 050," <u>Astronautics</u> and <u>Aerospace Engineering</u>, Dec. 1963, p.50.
- De Bra, D., "Principles and Developments in Passive Attitude Control," <u>Recent Developments in Space</u> <u>Flight Mechanics</u>," American Astronautical Society, Washington, D.C., 1966, p.159.
- 11. Diemel, R., <u>Mechanics of the Gyroscope</u>, The Macmillan Co., N.Y., N.Y., 1929, p.68.
- 12. De Lisle, J., Ogletree, E., and Hildebrant, B., "The Application of Gyrostabilizers to Orbiting Vehicles," <u>Torques and Attitude Sensing in Earth Satellites</u>, Academic Press Inc., N.Y., N.Y., 1964, p.31.
- 13. Fischell, R., "Magnetic Damping of the Angular Motions of Earth Satellites," <u>ARS Journal</u>, Sept. 1961, p.1210.
- 14. Grasshoff, L., "A Method for Controlling the Attitude of a Spin-Stabilized Satellite," <u>ARS Journal</u>, May 1961, p. 646.
- Grasshoff, L., "An Onboard, Closed-Loop, Nutation Control System for a Spin-Stabilized Spacecraft," <u>Journal</u> of Spacecraft and <u>Rockets</u>, May 1968, p.530.

- 16. Haseltine, W., "Passive Damping of Wobbling Satellites: General Stability Theory and Example," <u>Journal of the</u> <u>Aerospace Sciences</u>, v29, May 1962, p.543.
- 17. Haseltine, W., "Nutation Damping Rates for a Spinning Satellite," <u>Aerospace Engineering</u>, 21;3, March 1962, p.10.
- Hughes, W., "Nutational Stability of Multi-Body Spin-Stabilized Satellites," <u>Royal Aircraft Establishment</u> <u>Technical Report</u> 67009, Jan., 1967.
- 19. Kane, T., and Sobala, D., "A New Method for Attitude Stabilization, "ATAA Journal, 1;6, June 1963, p.1365.
- 20. Kane, R., Marsh, E., and Wilson, W., "Letter to the Editor," <u>The Journal of the Astronautical Sciences</u>, Sept. 1962, p.108.
- Kuebler, M., "Gyroscopic Motion of an Unsymmetrical Satellite Under No External Forces," NASA-TN-D-596, July 1960.
- 22. Landon, V., and Stewart, B., "Nutational Stability of an axisymmetric Body Containing a Rotor," <u>Journal</u> of <u>Spacecraft and Rockets</u>, Nov.-Dec. 1964, p.682.
- Newkirk, H., Haseltine, W., and Pratt, "Stability of Rotating Space Vehicles," <u>Proceedings of the IRE</u>, April 1960, p.743.

- 24. Nord-Aviation, "Etude sur la Comparison d' Amortisseurs de Nutation," AE-940-030, Dec. 1965.
- 25. Perkel, H., "Tiros I Spin Stabilization," <u>Astronautics</u>, June 1960, p.38.
- 26. Perkel, H., "Space Vehicle Attitude Problems," <u>Advances</u> <u>in Astronautical Science, Vol. 4</u>, Plenum Press, Inc., N.Y., N.Y., 1958, p.173.
- 27. Reiter, G., and Thomson, W., "Rotational Motion of Passive Space Vehicles," <u>Torques and Attitude Sensing in</u> <u>Earth Satellites</u>, Academic Press Inc., N.Y., N.Y., 1964, p.1.
- Roberson, R., "Torques on a Satellite Vehicle From Internal Moving Parts," <u>Journal of Applied Mechanics</u>, June 1958, p.196.
- 29. Schnapf, A., "Tiros I, II, and III Design and Performance," <u>Aerospece Engineering</u>, 21; 6, June 1962, p.34.
- 30. Sen, A., "Stability of a Dual-Spin Satellite with a Four-Mass Nutation Damper," <u>ATAA Journal</u>, 8; 4, Apr. 1970, p.822.
- 31. Thomson, W., and Neiter, G., "Attitude Drift of Space Vehicles," 7; 2, <u>The Journal of the Astronautical</u> <u>Sciences</u>, 7; 2, Feb. 1960, p.29.

- 32. Thomson, W., "Spin Stabilization of Attitude Against Gravity Torque," <u>The Journal of the Astronautical</u> <u>Sciences</u>, 9; 1, 1962, p.31.
- 33. Thomson, W., <u>Introduction to Space Dynamics</u>, John Wiley & Sons, Inc., 1963.
- 33a. Thomson, W., and Reiter, G., "Motion of an Asymmetric Spinning Body with Internal Dissapation," <u>ATAA Journal</u>, 1; 6, June 1963, p.1429.
- 34. Tonkin, S., "Despun Nutation Dampers on Spinning Sat-.. ellites," JBIS, v.23, Oct. 1970, p.661.
- 35. Fitzgibbon, D., and Smith, W., "Final Report on Study of Viscous Liquid Passive Wobble Dampers for Spinning Satellites," <u>Space Technology Laboratories Report</u> EM-11-14, June 1961.
- 36. Colombo, G., "On the Motion of Explorer XI Around its Center of Mass," <u>Torques and Attitude Sensing in Earth</u> <u>Satellites</u>, Academic Press Inc., N.Y., N.Y., 1964, p.175.
- 37. Leon, H., "Spin Dynamics of Rockets and Space Vehicles in Vacuum," <u>Technical Report</u> TR-59-0000-0078, Space Technology Laboratories, Inc., Sept. 1959.

54

 $\sum_{i=1}^{n}$ 

## 6.3 EFFECTS OF A TOROIDAL

# LIQUID NUTATION DAMPER MOUNTED ON A TRANSVERSE AXIS OF AN AXISYMMETRIC SINGLE-SPIN SATELLITE

Prepared by

### William O. Keksz

. .

6-6

#### ABSTRACT

In this paper, an attempt is made to discover the parameters relevant to the performance of a toroidal liquid nutation damper mounted with its axis along a transverse axis of a single-spin satellite. Small initial values of the nutation angle ( $<12^{\circ}$ ) were assumed. By describing dissipation of energy by the fluid, a time constant for the nutation angle is found as a function of a Bessel function of complex argument.
# NOMENCLATURE

a	Small radius of torus
a _*	Radial coordinate within torus
Α	Function of a _g only
C	Constant
Н	Magnitude of angular momentum of satellite
î _x ,1 _y	Unit vectors along transverse axes of satellite
Îz	Unit vector along spin axis
$\mathbf{I}_{t}, \mathbf{I}_{t}, \mathbf{I}_{z}$	Moments of inertia with respect to transverse and
	spin axes, respectively
j	$(-1)^{\frac{1}{2}}$
$\mathbf{J}_{0}$	Bessel function of order zero
K	Kinetic energy of satellite
q	Argument of Bessel function = $a_*(j\dot{\varphi}/\nu)^{\frac{1}{2}}$
$\mathbf{r}_{\mathbf{t}}$	Large radius of torus
S	Surface area of control volume
t	Time
T	Function of time only
v	Fluid velocity
va	Fluid velocity at wall $(a_* = a)$
• v ₂	Complex fluid velocity for two dampers
v	Volume

W	Work done on fluid
Ś	Angular velocity
Ψ	Precession angle
Ŷ	Spin angle
p	Fluid density
. pl	Absolute viscosity
. 1	Kinematic viscosity
$\gamma$ .	Shear stress in fluid
(*)	Time derivative except for T
())	Derivative for A and T
()	Magnitude of complex ( )
θ	Angle of nutation

The minimum energy condition for a spinning axisymmetric body is when the angular velocity is aligned with the axis of maximum inertia. When there are no external torques, the magnitude of the angular momentum.

$$H = (I_{t}^{2}(\omega_{x}^{2} + \omega_{y}^{2}) + I_{z}^{2}\omega_{z}^{2})^{\frac{1}{2}}$$

is constant. Values for  $\omega_x$  and  $\omega_y$  exist when the nutation angle is not zero. Here we have assumed the momentum of the damper to be small. We also have

$$2K = I_t (\omega_x^2 + \omega_y^2) + I_z \omega_z^2$$

as twice the kinetic energy, again assuming the motion of the damper small. If the nutation angle decreases slowly, we have the angular velocity in the satellite frame given by

$$\vec{\omega} = \hat{i}_{x}(\dot{\psi}\sin\theta \sin\phi) + \hat{i}_{y}(\dot{\psi}\sin\theta \cos\phi) + \hat{i}_{z}(\dot{\phi} + \dot{\psi}\cos\theta) ,$$

and the precession speed,

 $\dot{\psi} = \mathbf{I}_{\mathbf{z}} \boldsymbol{\omega}_{\mathbf{z}} / \mathbf{I}_{\mathbf{t}} \cos \boldsymbol{\Theta} = \mathbf{H} / \mathbf{I}_{\mathbf{t}}.$ 

Combining these equations gives

 $H^2 - 2KI_t = (H^2/I_z)(I_z - I_t)\cos^2\theta$ .

If there is energy dissipation, as with a damper, H remains constant while K decreases. Thus (5),

$$K = (H^2/I_t I_z)(I_z - I_t)(\sin\theta \cos\theta)\dot{\theta}.$$

With a liquid damper, energy dissipation occurs because of viscous effects, being represented by the time rate of work done on the fluid by the wall of its container (2),

$$\vec{v} = \int_{S} \vec{\tau} \cdot \vec{v} \, dS$$
$$= \frac{d}{dt} \int_{V} \frac{v^{2}}{2} \rho \, dV$$
$$= -\vec{K}$$

The damper is illustrated in Fig.1. From the above, it is seen that the velocity distribution of the liquid must be found. Assuming that  $a < r_t$ , the velocity of the tube wall relative to the liquid is given by  $v_a = r_t \omega_x$ , or

 $v_a = r_t \dot{\psi} \sin \theta \sin \phi$ .

It is assumed that the velocity will be entirely tangential to the torus, and pressure variations due to centrifugal body forces are small. Thus the fluid momentum differential vector equation (for a particular  $\theta$ ),

 $\rho \partial v/\partial t = -\vec{\nabla}P + \mu \nabla^2 \vec{v},$ becomes  $\rho \partial v/\partial t = \mu \nabla^2 \vec{v},$ or, introducing the kinematic viscosity  $\nu = \mu/\rho,$  $\partial v/\partial t = \nu \nabla^2 v.$ 

In cylindrical coordinates, this is

 $\frac{\partial v}{\partial t} = \frac{\vartheta}{a_*} \frac{\partial}{\partial a_*} (a_* \frac{\partial v}{\partial a_*}).$ 

Assuming that the solution is a product of a function A of  $a_{ip}$  only, and T of t only, we have

 $AT' = T(a_*A')'/a_*,$ 

or  $a_*AT' = T(A' + a_*A'')$ .

If transients due to initial conditions are considered to damp out quickly, the time function will be in phase with  $v_{a}$ . Thus we let  $T = \sin \varphi$ . Then,

 $a_*A \dot{\varphi} \cos \varphi = \nu \sin \varphi (A' + a_*A'')$ . Rearranging terms result in

 $a_*A'' + A' - (\dot{\varphi}/\nu) \cot \varphi a_*A = 0,$ 

which is rather difficult to solve. The coefficient in the third term is a function of time; it cannot be averaged over one revolution for  $\varphi$  to give a constant, for cot  $\varphi$  has values of infinity.

A simpler model may be had by assuming we have another damper, identical to the first, mounted on the y axis. Then we can represent the rotation of the transverse component of the angular velocity vector using complex variables. Since

 $\omega_{\rm x} = \dot{\psi} \sin \theta \sin \varphi,$  $\omega_{\rm y} = \dot{\psi} \sin \theta \cos \varphi,$  З.

and  $e^{-j\varphi} = \cos \varphi - j \sin \varphi$ , the velocity component in the xy plane can be described by a phasor,

$$j\omega_{x} - \omega_{y} = -\omega_{xy}e^{-j\varphi},$$
  
where  $\omega_{xy} = (\omega_{x}^{2} + \omega_{y}^{2})^{\frac{1}{2}}$   
=  $\dot{\psi}\sin\Theta$ 

is the phasor magnitude.

Since we now have the term  $e^{-j\varphi}$  as the excitation, we let this be equal to  $T_2$  . Then,

 $T_2' = -j\dot{\varphi}e^{-j\varphi} = -j\dot{\varphi}T_2 ,$ 

and the equation for the fluid velocity position dependfunction A becomes

 $a_*A'' + A' + (j\varphi'/\nu)a_*A = 0$ ,

$$a_{*}^{2}A'' + a_{*}A' + (j\varphi'/\nu)a_{*}^{2}A = 0$$
.

This is a complex Bessel equation, the solution of which is (1)

 $A = CJ_0(q)$ , where  $q = a_*(j\dot{\varphi}/\nu)^{\frac{1}{2}}$ 

or

and C is a constant, which may be found by examining the velocity at the wall, which is given by

$$v_{a2} = -r_t \omega_{xy} e^{-j\varphi}$$
.

.4.

If we define A at  $a_* = a$  as  $J_0(q_a)$  where

$$q_a = a(j\dot{\phi}/z)^{t}$$

then  $C = r_t \omega_{xy} / J_0(q_a)$ Thus we have

$$\mathbf{v}_2 = AT_2 = \mathbf{r}_t \boldsymbol{\omega}_x (J_0(q)/J_0(q_a)) e^{-j\varphi}$$

Using this expression in the integral for work done on the fluid will result in a complex function. This would represent two energy flows for dissipation, ninety degrees out of phase with each other. Averaged over one revolution for  $\varphi$ , the work done could be represented by the magnitude of the complex work. Also at this point we can say that this is twice the energy dissipation rate for a single damper. Thus for the single damper,

$$\begin{split} \dot{W} &= \frac{4}{2} \left| \dot{W}_{2} \right| \\ &= \frac{4}{2} \left| \frac{d}{dt} \int_{V} \frac{4}{2} \right| \left| \frac{v_{2}}{2} \right|^{2} dV_{2} \\ &= \frac{2}{4} \left| \frac{d}{dt} \int_{V} \frac{|r_{t} \omega_{xy} (J_{0}(q)/J_{0}(q_{a})) e^{-jp}|^{2} dV_{2} \\ &= \frac{2}{4} \left| \frac{2}{3} \left| \frac{2}{3} \left| \frac{2}{9} \right|^{2} \right|^{2} \int_{0}^{a} \left| J_{0}(q) e^{-jp} \right|^{2} (4\pi r_{t}) (2\pi a_{*}) da_{*} \\ &= 2 \left| 2 \left| \frac{2}{3} \left| \frac{2}{3} \left| \frac{2}{9} \right|^{2} \left| \frac{e^{-jp}}{3} \right| \left| \frac{2}{3} \left| \frac{2}{9} \right|^{2} \right|^{2} \left| \frac{2}{3} \left| \frac{2}{3} \right|^{2} da_{*} \right|^{2} \\ &= \frac{2}{3} \left| \frac{2}{3} \left| \frac{2}{3} \right|^{2} \left| \frac{e^{-jp}}{3} \right| \left| \frac{2}{3} \left| \frac{2}{3} \right|^{2} \left| \frac{2}{3} \right|^{2} da_{*} \right|^{2} da_{*} \end{split}$$

At any instant,

$$\left|e^{-j\varphi}\right|^2 = \cos^2\varphi + \sin^2\varphi \neq 1$$

Making this substitution, we have

$$\dot{W} = 2 \rho r_{t}^{3} \omega_{xy}^{2} \pi^{2} \dot{\varphi} \left| J_{0}(q_{a}) \right|^{-2} \int_{0}^{a} \left| J_{0}(q) \right|^{2} a_{*} da_{*}$$

For a given value of  $\theta$ , we have  $\dot{\psi} = I_z \dot{\phi} / (I_t - I_z) \cos \theta$ and  $\omega_z = \dot{\phi} + \dot{\psi} \cos \theta$ . Thus  $\omega_z = \dot{\phi} + I_z \dot{\phi} / (I_t - I_z)$   $= \dot{\phi} (1 + I_z / (I_t - I_z))$  $= \dot{\phi} I_t / (I_t - I_z)$ .

Also, again for a particular  $\Theta$  with  $\dot{\Theta}$  small,

$$\tan \Theta = I_t \omega_{xy} / I_z \omega_z$$

Rearranging terms gives

$$\omega_{xy} = \omega_{z} (I_{z}/I_{t}) \tan \theta$$

Substituting the relation between  $\omega_z$  and  $\dot{\varphi}$ , we have

$$\omega_{xy} = \dot{\varphi}(I_z \tan \Theta) / (I_t - I_z)$$

If we assume no external torques and the momentum of the damper relative to the satellite main body small, the Euler equations for the satellite are

$$0 = \mathbf{I}_{t} \dot{\boldsymbol{\omega}}_{x} + (\mathbf{I}_{z} - \mathbf{I}_{t}) \boldsymbol{\omega}_{y} \boldsymbol{\omega}_{z} ,$$
  
$$0 = \mathbf{I}_{t} \dot{\boldsymbol{\omega}}_{y} - (\mathbf{I}_{z} - \mathbf{I}_{t}) \boldsymbol{\omega}_{x} \boldsymbol{\omega}_{z} ,$$

and  $0 = I_z \dot{\omega}_z$ .

Thus we can take  $\omega_z$  constant during the damping action, and therefore  $\dot{\varphi}, \, \varphi$ , and  $\omega_{xy}$  may also be held constant. Note that this requires that  $H_x$  and  $H_y$  be small compared to  $H_z$ , thus meaning  $\Theta$  is small (<12⁰); therefore

 $\sin \Theta \cong \Theta$ ,

 $\cos\Theta \cong 1$  ,

and  $\tan \Theta \cong \Theta$ .

The equation for  $\omega_{xy}$  is then

$$\omega_{xy} = \dot{\varphi} \Theta I_z / (I_t - I_z),$$

and substituting this into the expression for  $\dot{W}$ ,

$$\dot{W} \cong \frac{2 \rho r_{y}^{3} \pi^{2} \dot{\rho}^{3} I_{z}^{2} \theta^{2}}{(I_{t} - I_{z})^{2} |J_{0}(q_{a})|^{2}} \int_{0}^{a} |J_{0}(q)|^{2} a_{*} da_{*} .$$

Also, the equation for K becomes

$$\dot{\mathbf{K}} \cong (\mathbf{H}^2/\mathbf{I}_t\mathbf{I}_z)(\mathbf{I}_z - \mathbf{I}_t)\boldsymbol{\Theta}\boldsymbol{\Theta}$$
.

But, for small  $\Theta$  ,

$$H \cong I_{z}\omega_{z} = \dot{\varphi}I_{t}I_{z}/(I_{t} - I_{z}) .$$
Thus  $\dot{K} \equiv \left(\frac{I_{t}I_{z}}{I_{t} - I_{z}}\right)^{2} \left(\frac{I_{z} - I_{t}}{I_{t}I_{z}}\right) \theta \dot{\theta}$ 

$$= \varphi^2 \Theta \Theta I_t I_z / (I_t - I_z)$$

Setting 
$$W = -K$$
, we have

$$\dot{\Theta}I_{t} = \frac{2\rho r_{t}^{3}\pi^{2}I_{z}\Theta\dot{\varphi}}{(I_{t} - I_{z})|J_{0}(q_{a})|^{2}} \int_{0}^{a} |J_{0}(q)|^{2}a_{*}da_{*}$$

or 
$$\dot{\Theta} + \left[ \frac{2\rho r_t^{3} \pi^2 I_z \dot{\varphi}}{I_t (I_t - I_z) |J_0(q_a)|^2} \int_0^a |J_0(q)|^2 a_* da_* \right] \Theta = 0$$
.

The term in brackets is almost constant for small nutation angles, and is thus the inverse of the time constant for a decreasing exponential solution. Thus

$$\Theta = \Theta_0 \exp(-t/t_c) ,$$
  
where  $t_c^{-1} = \frac{2 r_t^3 \pi^2 I_z \tilde{\varphi}}{I_t (I_t - I_z) |J_0(q_a)|^2} \int_0^a |J_0(q)|^2 a_* da_*$ 

and  $\Theta_0$  is the initial nutation angle. This may also be expressed using the approximation for angular momentum by

$$t_{c}^{-1} = (2 r_{t}^{3} \pi^{2} H/I_{t}^{2} |J_{0}(q_{a})|^{2}) \int_{0}^{a} |J_{0}(q)|^{2} a_{*} da_{*}$$

s de



Fig. 1. Positioning of damper.



Fig. 2. Coordinates within damper. Not to scale, as actually  $r_t >> a$ .

### CONCLUSION

The above is valid for small initial nutation angles for an axisymmetric single-spin satellite. Values for complex Bessel functions may be found in references 3 and 4. However, these are good only for Bessel functions in which the magnitude of the complex argument q is less than ten. However, the best liquid for use in the damper is mercury because of its high density; its kinematic viscosity is  $(0.5)10^{-6}$  ft²/sec at 75°F. Since q is inversely proportional to the square root of  $\nu$ , its magnitude will be on the order of  $10^2$  or  $10^3$  for reasonable values of  $\dot{\varphi}$ . Bessel functions for complex arguments of these magnitudes have not been tabulated, and must be calculated.

#### BIBLIOGRAPHY

- Ayache, K., and R. Lynch, "Analyses of the Performance of Liquid Dampers for Nutation in Spacecraft," <u>Journal</u> <u>of Spacecraft and Rockets</u>, v.6, n.9, Dec. 1969, pp.1385-1389.
- Hansen, A.G., <u>Fluid Mechanics</u>, Wiley, New York, 1967, p.124.
- 3. Jahnke, E., and F. Emide, <u>Tables of Functions</u>, 4th. ed., Dover, New York, 1945, p.266.
- 4. Mathematical Tables Project, National Bureau of Standards, <u>Table of the Bessel Functions</u> J₀(z) and J₁(z) for <u>Complex Arguments</u>, Columbia University Press, New York, 1943, pp.182-201.
- 5. Thomson, W.T., <u>Introduction to Space Dynamics</u>, Wiley, New York, 1961.

#### CHAPTER 7

## General Conclusions

As a result of the present study, equations of motion and computer programs have been developed for analyzing the motion of a spin-stabilized spacecraft having long, flexible appendages. Stability charts were derived, or can be redrawn with the desired accuracy for any particular set of design parameters. Simulation graphs of variables of interest are readily obtainable on line using program FLEXAT. Finally, applications to actual satellites, such as UK-4 and IMP-I have been considered.