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SUMMARY

The derivation of an approximate error characteristic equation

describing the transient system error response is given, along with a

procedure for selecting adaptive gain parameters so as to relate to the

transient error response. A detailed example of the application and

implementation of these methods for a space shuttle type vehicle is

included. An extension of the characteristic equation technique is used

to provide an estimate of the magnitude of the maximum system error

and an estimate of the time of occurrence of this maximum after a plant

parameter disturbance.

Techniques for relaxing certain stability requirements and the

conditions under which this can be done and still guarantee asymptotic

stability of the system error are discussed. Such conditions are

possible because the Lyapunov methods used in the stability derivation

allow for overconstraining a problem in the process of insuring stability.

Practical implementation problems such as system noise and in-

complete state feedback are studied and results given in terms of a

bounding criteria on the system error. Under these conditions,

asymptotic stability discussions are inappropriate and instead one

speaks of bounded stability or stability in the large.
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I. INTRODUCTION

During the last twenty-five years the theoretical developments

making up the classical feedback control theory have been in constant

use in the design of automatic controllers. In most commerical applica-

tions in the past, using the classical tools of Nyguist and Bode plots,

root-locus methods, etc. the designer was able to develop systems

satisfying a set of somewhat arbitrary performance indices, i.e. rise

time, peak overshoot, bandwidth, etc. With the advent of the U. S.

space program, the requirements of guidance and control for space

vehicles demanded more and varied analytical tools than were offered

by classical theory, and hence was born what is now referred to as

modern control theory.

Virtually all of the theory of both the classical and modern

control sciences required as a basic assumption that the plant be time-

invariant or that it vary in a well described manner. Starting with

the ground-breaking work at MIT in 1959 [1], the study of adaptive

control systems began. The major reason for interest in such a control

area was the knowledge that a large number of physical processes were

inherently time-varying and optimal and classical techniques left

much to be desired. As a corollary to this, new techniques for system

identification were desired.

1
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By the mid - 1960's the groundwork for the study of adaptive

control systems was laid. The most promising form of adaptive control

studies appeared to center around those methods based on Lyapunov's

Second Method and model-reference adaptive systems (MRAS) [2,3,4], a

technique which, as part of the design process, can be used to guarantee

stability of the adapted control system without need for an analytical

description of the solution to the dynamic system.

A particularly promising form of adaptive controller that was

based on the idea of on-line, time-varying feedback gains was published

in 1968 [5] and then later extended to more general cases [6,7].

These methods suffered from the need for very slowly time-varying plants,

although no knowledge of plant parameters was needed. This limitation

was later partially removed [8].

Some of the shortcomings of these MRAS design techniques included

(a) all states must be available

(b) no noise present

(c) rate of convergence of the errors was unknown due to

the non-linear, time-varying form the closed-loop

adaptive controller assumed

Analytical studies of incomplete state feedback [9,10] and stochastic

noise [9] were performed to extend the adaptive controller studies to

include real-world problems. An approximate solution to the error

convergence rate is given in 16] and generalized to a number of different

types of MRAS controllers in [11]. At least one study neglected all



3

physical - realizability conditions and used a controller requiring

complete knowledge of the plant in order to adapt the plant [12].

As mentioned earlier, adaptation and identification are similar

problems, and using the Lyapunov approach to MRAS type controllers it

is possible to develop identification algorithms which can be used in

a real-time environment to continuously identify a system without

need of disturbing the system [13,14].

Although research was originally financed through the space

program, there are a number of areas where adaptive control is presently

under active investigation. Some of these areas include (1) anti-skid

braking systems where the human driver represents a time-varying,

statistically indeterminate plant, (2) chemical processing plants

where optimum control of temperature, pressure, humidity, and material

flow is extremely important to insure maximum monetary return,

(3) a re-entering Space-Shuttle-type vehicle where wide variations in

atmospheric conditions cause stability difficulties, (4) high per-

formance aircraft and missiles. Specifically, many of the areas of

study covered in this report stem from problem areas related to Space-

Shuttle-type vehicles. Corrupted measurements of position, velocity,

and acceleration of such a spacecraft, computer and A/D and D/A

round-off, incomplete state feedback, and saturation are some of the

real-world problems which allow, at best, only a prediction of stability

regions.
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The purpose of this study was to extend the theoretical work on

model-reference adaptive control systems outlined in the Second

Technical Report. Specifically, this report is concerned with

practical considerations that must be accounted for in implementing

an MRAS controller within the framework of real-world problems.

These practical considerations include (a) noisy input and state

measurement, (b) extending stability bounds and still guarantee

asymptotic stability, (c) need for a design method for selecting

adaptive gain parameters and relating them to the error dynamic re-

sponse, (d) stability criterion for the case of incomplete state feed-

back. Analytical stability results for these cases could then, together,

reveal something of the overall stability of a plant in a real-world

environment.

There are four chapters subdividing the material into major areas

of investigation to the body of this report, in Chapter II is derived an

approximate solution to the non-linear time-varying, adaptive error

differential equation. This results in a general equation relating

the error response to the values of adaptive gain parameters. Using

an extension of this idea an approximate method for estimating maximum

error magnitude is derived. In Chapter III is outlined procedures for

extending the conditions for asymptotic stability of a MRAS controller.

This is an important consideration as one of the drawbacks of Lyapunov

designed controllers is that sufficient but not necessary conditions

are obtained and this may result in an adversely limited stability

criterion. Chapter IV outlines the theory for the case of stochastic
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systems and incomplete state feedback. Results are available only for

very restrictive cases as would be expected. An example is included

to illustrate the procedures discussed. Chapter V discusses a few of

the practical considerations in physical realizability of adaptive

control laws for a Shuttle-type vehicle. Included are results of a

control phase-over routine from RCJ to MRAS during atmospheric

re-entry. A number of simulation results are included for various

practical controller implementations. In addition, a discussion of

computer computational requirements is included, resulting in a series

of graphs relating computer time to various system parameters.



II.. DERIVATION OF A DESIGN IMPLEMENTATION TECHNIQUE

Most proposed model-reference schemes employ Lyapunov's direct

method in the design procedure so as to guarantee sufficient conditions

for asymptotic tracking of the model by the plant [15]. A number of

model-reference schemes have been proposed in the literature [3,5,6,

7,16] which work rather well in practice. In all cases, however, no

general technique has been put forward for selecting the constants in

the adaptive gain equations so as to cause the plant to track the

model with a pre-determined error dynamic response. In the past the

choice of these constants has been a trial and error procedure at best

because of the inherent non-linear nature of the adaptation dynamics,

even when the plant is linear. Because of these non-linearities an

exact closed-form solution of the error dynamics as a function of the

desired constants has not been possible and an intuitive "feel" for

the relation between choice of the constants and the resulting

response is difficult to obtain. Consequently, simulation studies

have invariably been necessary to obtain an acceptable set of adaptive

gain constants. In this chanter a straightforward method for choosing

these constants is given.

The major result of the derivation which follows is a general

error characteristic equation which relates the error dynamic response

to the adaptive gain coefficients. Through an extension of this

6



7

approach a means of estimating the maximum error and the time after a

perturbation from e = 0 that this maximum error occurs is given.

The results show the error magnitude at time t 2 to be a function of

the plant parameter disturbances at time tl < t 2 .

A number of simulation examples are given throughout the chapter

to illustrate the implementation of the techniques. An example of

the pitch axis of a space shuttle vehicle is given to show the

implementation of the adaptive gain parameter design method. A second

example is included to illustrate the magnitude estimation procedure.

A. Problem Formulation

The basic equations defining the MRAS controller are considered

in this section. The basic plant and model state variable formulations

are

(t) = A p(t)x (t) + Bp(t)u(t) (II-1.A)

= (t) = Am(t) + Bag(t) (II-2.A)

where
x (t) - n x 1 plant state vector
-p

x (t) - n x 1 model state vector

u(t) - r x 1 input vector

A ,A (t) - n x n matrices
mB p

B ,B (t) - n x r matrices
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It is assumed that the elements of Ap(t), Bp(t) include unknown,

slowly time-varying or time-invariant parameters. Adaptive gains

Kija(t) and Kijb(t) are to be implemented in the plant controller in

order to force the plant states to follow the model states. These

gains are defined as

[a ij(t)] = [c ja(t) + Kija(t)], (II-3.A)

[bj P(t)] = [cij (t) + K. ijb(t)], (II-4.A)
ij ij ij

and serve much the same purpose as the fixed optimal control gains

obtained using calculus of variations. The major difference in concept

is that the adaptive gains must be calculated on-line since the

system dynamics are not completely known in advance. The gains are

computed so as to cause the response error

e(t) = X(t) - (t) (II-5.A)

to tend toward zero. The basic plant-model dynamics with adaptation

are shown in Figure 1.A.

Using (II-5.A), the error state equation is derived as follows:

e(t) =  [Ab m(t) + Bmu(t)] - [A(t)(t) + Bp(t)u(t)] (II-6.A)

Adding and subtracting AmS(t) allows (II-6.A) to be written in the form
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e(t) = Am(t) + [Am - A()x (t) + IBm - B (t)]u(t)

e(t) = Am,(t) + A(t)gP(t) + B(t)u(t) (II-7.A)

where
A(t) = A - A (t), (II-8.A)

B(t) = B - B (t). (II-9.A)

The basic purpose in using a Lyapunov function in the design procedure

of a model-reference adaptive control system is to guarantee that the

system error is asymptotically stable. By constructing a Lyapunov

function positive definite in e, such that V evaluated along the state

trajectory is negative definite in e, the system error will asymptotically

approach zero thus assuring that the plant is tracking the model. A

number of appropriate Lyapunov functions have been proposed in the lit-

erature [2,3,4,5,6]. The Lyapunov functions in [3,5,6,16] are special

cases of the one in [7] which is used here and is given in (II-10.A).

n n
V eTQe + - {aij + ij [ ekqkixpj +

i,j=1 ij k=l

Pij t[ k 1 ek xp 1 + i,j1 ijI k-1 e

n r n
" Y Y- 1  {bij + 6ij ekqkiuj

i-l j=1 Yij k-l

+ oi j  d k ek kiu }2 + ij  ekqkiuj 2

k=1 i=l j=1 k=1

(II-10.A)
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In the above equation, Q is a symmetric positive definite matrix, aij

and bij are elements of the A and B matrices, aij and Yij are constants

greater than zero, and Bij, Pij, 6ij, and aij are constants greater

than or equal to zero.

Taking the time derivative of V in (II-10O.A) and evaluating along

the error trajectory given in (II-7.A) results in a sign indefinite

V. If the aij and bij terms are chosen to be of the form

n n

aij ,-aij kZ1 ekqkixpj - 8 ij d ekqkixp

- ij A2 [ k ekkixpj , i,j 1,2,...,n (II-II.A)

ij -Yij k E~kqkiuj - i k l ekqkiuj

2 n

-Oij T1__ ekqkiuj i-1,2,...,n and j-1,2,...,r

(IZ-12.A)

then the resulting V expression reduces to

V * eT(AmQ + QAm)e - 2 aij [ ekkixp] 2
i,j=l k=1

-2 6 ij [ ek qkiju 2 (II-13.A)

i=1 j=l k=1

The complete derivation is given in [7]. The last two terms in

(II-13.A) are at least negative semi-definite since the aij and 6ij are

constants greater than or equal to zero. It is well known [1] that if

the A matrix is stable, there exists a symmetric positive definite



matrix Q which satisfies the equation AmTQ + QA = -C, where C is a

symmetric positive definite matrix. Therefore, if Am is stable, the

first term in (II-13.A) is negative definite in e thereby making V negative

definite in e. With V positive definite in e and V negative definite

in e, the error e = x - 3 is guaranteed to be asymptotically stable.

a bThe adaptive gain rates, Kij, Kij are determined from (II-3.A),

(II-4.A), (II-8.A), and (II-9.A) as follows

aij aij - aPj aj - cij(t) - Kj (t). (II-14.A)

bij = b bj = bi - c ij(t) - Kij (t). (LI-15.A)

Taking the time derivative of (II-14.A) and (II-15.A) and using

a a
the restriction that ci(t) and c (t) are negligible compared to K.j

and bj, the adaptive gain rates become

aij(t) = -Kaj(t) (II-16.A)

bij(t)= -Kb (t) (II-17.A)

Integrating (II-16.A) and (II-17.A), the resulting Ka (t) and

Kij(t) adaptive gain expressions become

Kj aij t k ekqkixpj dt + Oij ekl kix

[nn
+ Pij ekqki + Kij (to) ,  (II-18.A)

Kb = ij t k ekqkiu dt + 6ij k=1 ekqkiuj

+ ij ek + Kb(t (19.A)
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The qki are elements of Q and must satisfy the relation A Q + QA = -C.

Adaptation is implemented by means of these equations so as to cause the

plant to track the model.

In order to implement the adaptive controller, some criteria for

selecting the a, a, p, y, 6, a adaptive gain parameters other than by

trial and error simulation is needed. In addition, some means of

determining the Jqij] elements is desired, inasmuch as the requirements

that

(1) Q be positive definite

(2) AmTQ + QAm = negative definite matrix

will offer, in an indirect way, only bounds for the values of the

individual elements of Q. The following section addresses this problem.

B. Development of the Linearized Error Equation

In this section, a technique for obtaining an approximate solution

to the adaptive error dynamic state equation is given. This method is

based on a linearization of the error dynamics about a set of plant

operating conditions at the instant that a perturbation in plant

parameters occur. The linearization is necessary because, although

the plant and model described by (II-I.A), (II-2.A) are linear, the

resulting adaptive controller is non-linear. This comes about from

the gains given in (II-18.A) and (II-19.A). To show this expand

(II-18.A) for the particular case i - 2, j = i,
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t

K2 1 (t) = a21 f S dt + 821[S]
to

+ p2 1 d [S] (I-1.B)
dt

where
S = (e 1 q2 1 + e2 q2 2 )xlp(t)

Substituting el = xlm - xlp and e2 = x2m - x2p into (II-1.B) yields

2
S = [lxmlp(t) - xlp(t) ]q 2 1 + [Xlp(t)x2m - Xlp(t)x2p(t)]q22

Similar results can be obtained for the general case for both Ka(t)

and Kij(t). It is clear that the gains involve both squares and cross

products of the plant states, resulting in a non-linear feedback law.

Because of the large amount of work involved, the technique is

first presented for a second order system with a scaler input. The

th
results for an n order system with r-inputs are presented at the end

of the section.

Consider a second order plant with the linear, time-invariant

transfer function

xp(s) -P
_, = G(s) = 2 (II-2.B)

u(s) 2 p p
S22 21

The plant equations in phase variable form are
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= + U. (II-3.B)

x2J (ca + K) (c2 + K2a cb + Kb
. 2 21 2 1 22 x2 2 2

The model is described in phase variable form by

Xlm 0 1 Xlm 0

= + U. (II-4.B)

X2m 21 22 2m

Substituting (II-3.B) and (II-4.B) into (II-7.A) yields the error

differential equation

+ + U, (II-5.B)

m me2 a21 a22 e2 a21 a22 2I 2

where

m m m  = m a a
a2 1 = 2 1 - 21  k 2 1 ' a22  a22 - c22  22

and b b
b2 b - c2 - kb .

2 m 2 2

represent the plant parameter errors.

The equations for the three adaptive parameter rates may be

obtained from (II-11.A), (II-12.A), (II-16.A) and (II-17.A)

Ka = a (Y) + B d (Y) + p d2 (Y) i = 1,2 (II-6.B)
2i 2i 21 d 21 2

dt
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where 2
Y = ekqk2xpi

k=l

and b

K= y 2 (Z) + 62 d (Z) + 2  d (Z), (II-7.B)
dt 2

dt

where 2
Z = ek k2u.

k=l

Assume that a constant input Uo has been applied for a long time

and that the plant is tracking the model. The system parameters in

0 0this equilibrium state are given by = , U = U , e = e = 0,

21 = ao a K22, and Kb = K We shall derive the characteristicK21 =K(21, K22 = K22, 2  2

equation for the error el(t) assuming that a small disturbance occurs

in any or all of the adaptive parameters, thereby causing a resulting

disturbance in the plant states. Expanding (II-5.B), (II-6.B), and

(II-7.B) in a Taylor's series about the equilibrium point and truncating

all second and higher order terms yields

A;, = Ae2

(a ao a ao o a 0 a b
An2 = (c 2 1 + K2 1 )Ael+ (c2 2 + K22) Ae2 - xlmAK21 - x2mAK22 - U AK2

K2 1 (a2iql 2Xip + 82ql12X p + P2iql2xip)Ael (II-8.B)

+ (a2iq22x4p + 82iq 22x p + P2iq2 2xip)Ae2

+ (82iq 1 2 xp + 2 P2iq 1 2 xip)el + (8 2 iq 2 2 x p+2p2iq2 2 x p)A

+ P2iql2xipAel + P2iq 2 2 xipAe 2 , i=1,2

AK2 Y2 y 1 2 Uel + Y2 q 2 2
U Ae2 + 6 2 1 Ae + 6 2 q2 2  Ae 2

+ G2 ql 2 UoAel + o2q 22 UoAe 2 (II-9.B)
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Taking the Laplace transform of (II-8.B) and (II-9.B) using the

relationships m x2 = = 2 = = 0 and AE(s) = sAE (s) andrelationships Xm = X2m = Xm =X2m x2m 2 d

substituting the resulting expressions for AKa l(s), AKa (s), and

b
AK2 (s) into (II-8.B) yields

o2 2

{sls-s(c2 2+K 2 ) - (c2l + K2] + I(21lm 2U" )

+ 2CU A + o2) ++ a2 - 2
(21 62° 2 ++ 2a2 2 )Jq 12 2

s[(c 2 1xm + y 2Ub 2 ) + s(021x4  + 62
2 )

+ s2 plxp 2 + A2US 2 )-q 22
} AE 1(S) - -( Ka+Lo I).

(11-10.B)

In (I1-10.B) let

K1 = 2 11m , K2  21 + 2U 2 ,  (II-11.B)

and 2 02
K3  p 2 1xlm + 2 U

The characteristic equation for the error e(t) can be obtained

by setting the coefficient of AE1(s) in (II-10.B) equal to zero and

dividing by the first term in order to place in the standard form for

plotting root loci (i.e., 1 + KG(s) = 0).

q22 Kl(s+q12/q22)(1 + K2 /Kl s + K3/K1 s2)
1+ 2 ( + K)s + )] (II-12.B)

ss2 -(c2 + K)s -(C21 + KP)] (II-12.B)
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This is of the form

1 + K(s + a)(l + bs + s 2 ) 0 (II/13.B)
s[s 2 - ( 2 2 + K2 2)s - (c 2 1 + K21)]

where K = q2 2 Kl , a = q1 2 /q 22, b = K2/K1, and c = K3/K1 . The compensator

thus looks like a proportional plus integral plus derivative (P-I-D)

controller with an added zero at s = -a = -q12/q22 . In the adaptive

scheme proposed by Gilbart, Monopoli and Price [6], K3 is zero since

P21 and a2 do not appear in the adaptive rate equations. Their equa-

tions. Their compensator, therefore, is a proportional plus integral

controller with an added zero at s = -a. In the adaptive control

scheme proposed by Winsor and Roy [5], K2 and K3 are zero since 821'

62' P21 and o 2 do not appear in the adaptive rate equations. Their

compensator behaves as an integral controller with an added zero at

s = -a.

The above procedure is easily extended to include the general

th
case of an n order plant with r inputs. In general there will be

nr transfer functions between the r inputs and n outputs. The transfer

function between the ith input and the jth output is of the form

ij -l ii -2 ij ij
Gij (s) b  + b  s + ... + bZ-l + b for Z<n,

an + al s n-1 + a 2 s n - 2 + ... + an- 1 8 + an

and for i = 1,2, ... , r ; j = 1,2, ... , n. (II-14.B)

If the system can be put in the form
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x Ax + Bu where

0 1 0 0 ... 0 b1 1  b 1 2  ... blr

S0 0 1 0 ... 0 b2 b ... b
21 22 2rA= . . B=

-a n-a ... -a bnl bn2 bnr

(II-15.B)

then the results of (II-12.B) can be extended to the case of multivari-

able systems. The general conditions under which such a transformation

can be made are discussed in Appendix B. Using equations (II-2.B)

through (II-12.B) for the cases of n = 1,2, ' and r = 1,2, ", by

mathematical induction a general expression for the linearized adaptive

error characteristic equation was developed. The general form for

this equation then becomes

n k-1i KP i-

k 1 qkn s Ki si1 + = 0, (II-16.B)

sAm(s)

where p is the type of controller defined by

1, Winsor and Roy, 8 = p = 6 = a = 0
p = 2, Gilbart, Monopoli, and Price, p = a = 0

3, Boland and Sutherlin

2 2
and K =nlXlm + (Yl+ Y21 + ' Ynl)U 2

2
+
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02
(Y1r + Y2r +  +  nr)U (II-17.B)

K2 = Bl 2 + (611+ 21 + ... + 6nl)u02

+ (612+ 22 + .. + 6n2)U 2

+ ... + (6 r + 6 2r+ * + 6nr)U02 (II-18.B)

K3 = PnlXlm + (all + 21 + ... + + + nl)U02

+ (G1 2 + a2 2 + ... + an2)U 2

+ ... (lr + 2r + ... + )U 0 2 .  (II-19.B)

Note that for n = 2, (II-16.B) reduces to

1 + (q22 + q22s) (KI + K2s + K3s
2) (II-20.B)

SAm(s)

which agrees with (II-12.B) if one assumes that the plant and model

dynamics are identical before the small perturbation occurred.

C. Decoupling the Input From The Linearized Error Dynamics

The general expression for the linearized adaptive error equation

in the form of the characteristic equation of a single loop negative

feedback system 1 + GH(s) = 0. The locus of the error roots as a

multiplicative parameter gain in GH(s) is varied can be sketched using

the well known root-locus techniques. These error loci begin at the

zeroes of

sAm(s) = 0 (II-1.C)
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representing the model poles Am(s) and a zero at the origin due to

the integration in the adaptive gain expressions, and end at the zeroes

of the polynomials

i n k-l
S Ki s -l ] I qkn s  (II-2.C)

i=l k=l

The zeroes of the second factor depend on the values of the elements

of the Q matrix which are chosen to satisfy

AmTQ + QAm = -C (II-3.C)

in order to guarantee asymptotic stability. The zeroes of the first

factor depend on the relative values of K1, K2 , and K3, all greater

than zero, as given in (II-17.B), (II-18.B), and (II-19.B). Factoring

K1 out of this polynomial results in

kl(S2 + bs + c), where b = K2 /K3, c = Kl/K3 (II-4.C)

The roots of (II-4.C) are

s = -b b2 -4C 2 (II-5.C)

The dependence of these roots on the various input magnitudes as well

as xlO is evident in (II-17.B), (II-18.B), and (II-19.B). Unless

this dependence is eliminated, the ending points of the root loci,

determined by the zeroes of (II-16.B), will be a function of the inputs

and x1m. This would mean the entire character of the root loci would

change as the inputs and xlm changed.
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Consider the second order system error characteristic equation

1 + q2 2 K3 (s + q1 2 /q 2 2 )(s 2 + K2 /K3 s + Kl/K3) =0

sAm(s)

where KI , K2 , and K3 are as given in (II-11.B). In (II-6.C) the gain

ratios are given by

02 62U02

K2/K= 21 2 and
o2 o2

P21xlm + 52U

a21x2+ y2 U O2

K21xlm 2C)

If the adaptive gain parameters are chosen such that

Y2/a21 = 62/21 = 02/021 = d = constant (II-8.C)

then (II-7.C) reduces to

/ 21(Xm 2+ d U 2 ) 21 b (II-9.C)

2/3 P21(xlm2+ d Uo2 P21

and a (x o2+ d U02 a
K I/K - o U° -2 c (II-10.C)

P2 1 (Xl + d U0
2 p2 121 im

In this manner, the zeroes of (s2 + K2/K 3 s + KI/K 3 ) are made independent

of the magnitudes of the input Uo and xlm and the shape of the root locus

became a function of the a-priori fixed a, 3, p, y, 6, a adaptive gain

parameters, with the actual root location on the loci being a function
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only of the gain factor q22 K1. Comparing (II-8.C) with (II-18.A) and

(II-19.A) indicates that this choice simply places a weighted emphasis on

the three terms in the Kj and Kbj adaptive gain expressions. This is

a logical choice since it would not be uncommon to place more emphasis

on the adaptation of certain parameters than on others. This is done

through the proper choice of the constant d. The constants b and c in

(II-9.C) and (II-10O.C) establish the weighted importance of the pro-

portional and derivative terms to the integral term in the adaptive

gain expressions. These ratios are the same for all adaptive gains.

The above results for the second order case with scalar input can

be extended to the nth order case with r inputs. By doing so, (II-17-

18-19 .B) result. In order to insure that the ratios Kl/K 3 , K21 K3,

Kl/K 2 are independent of variations in inputmagnitude and state values,

if the expressions

(Y11 + Y21 +.Y nl)

(Y12 + Y22 +'''Yn2)

(Ylr +  2r nr

are related to anl and similarly with the 6's and B's in K2 and a's and

p's of K3 in (11-17-18-19 .B), then if the adaptive gain constants are

chosen to satisfy the following relationships, decoupling of zero place-

ment from input magnitudes results:
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Y11+ Y21 + ' + Ynl = 611+ 621+'" + 6 nl = a1 1 + 021 +"' + 0nl = C1
ani anl 0nl

12 +  22 +" +  n2 = 612 + 622 " + 6n2 = 12 + 022 +... + an2 = C2

anl Onl Pnl

Ylr + Y2 + + Ynr 6 + 6 +...+ 6 air + 2r +...+ a
2r 2rnr =I 2r nr= I 2r nr C

anl nl Pn1 r

(II-11.C)

where C1, C2,'... Cr are positive constants. Substituting (II-11.C) into

(II-17.B), (II-18.B), and (II-19.B) one obtains

2 2 2 2

K 1 = a nl(Xlm + C1U 1 + C2U 2 +...+ CrUo )

K2  (x o + CIUo + C2Uo +...+ CUo) (II-12.C)
2 nl 1m 1 1 22 rr

2 2 2 2
K = P (Xo + C Uo + C2Uo +...+ C U ).
3 n m 1M 1 1 2 2 rr

Using (II-12.D)

K2 /K3 = anl/Pnl = b and K1 /K3 = anl/Pnl = c (II-13.C)

and the roots of K3 (s 2 + bs + c) are independent of x ° m Uo, U2, ...,

ro

Such a "decoupling" scheme would have practical implications in

terms of the control of aerospace vehicles, wherein, a well defined error

response would be highly desirable over a wide range of inputs. Such

conditions could occur in a space shuttle vehicle in regards to varying
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RCJ thrust levels and varying roll-pitch-yow commands (given by elevon

motions) required to stabilize the vehicle. The following is an example

which shows pole-zero movement with and without the decoupling procedure

being used.

Example

2nd order, 2 inputs

1
Gml (s) = Gm2 (s) = - (II-14.C)

s +2s+2

) 1  2
G l (S) p Gp 2 (s) = -- a2 p  (II-15.C)

s. +2s+a 21  s +2sfa2

ai, a2 , a2P adapting

With two inputs and p = 3, (II-16.B) becomes

K3q22 (s+q12/q22) (s+K2/K3 s+K/K 3) = 0 (II-16.C)
1+

s(s2+2s+2)

Selecting as suitable parameters

a21 = 40 21 =40 p 2 1 = 10 q12 = 2 q22 = 1

(s2 + K2/K3+ K KI/K 3 ) = s + 4s + 4 = (s + 2)

K1 = 40 x02 Y21 U02 + Y22 U2

2 02 o2

K2 = 40 Xlm + 621 Ul + 622 U2  (II-17.C)

K3 0 2 + 2 02

K3 =10 M+ 021 U1 + 022 U2
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DECOUPLED CASE

In order to "decouple" the error dynamics of al and a2 as compared

with a2P in (II-15.C), it is necessary to employ (II-11.C)

Y21 621 021S21 - C1 = 1.0 (II-18a.C)02 1  B21 P21

Y22 _ 622 _ 022

2 1 21 P2 1  
C 2 = 2.0 (II-18b.C)

Using (II-18a,b.C), the Ki in (II-17.C) became

K1 = 40 (x lm + 1.0 U02 + 2.0 U2 )

2 2 2
K2 = 40 (x 1m + 1.0 Uo + 2.0 U2

2 o2 2 o2

K3 = 10 (Xlm + 1.0 Uo + 2.0 U2 2

and (II-16.C) reduces to

10(x 1 
2+l.0 Uo2+2.0 U2 )(s+2)(s2+4s+4) = 0 (II-19.C)

1 +

s(s2+2s+2)

For the particular cases of

(a) Uo = 3, U2 = 0, x1m = 3/2 (II-19.C) becomes

(112.5) (s+23

1 + (112.5) (s2) = 0 (II-20a.C)
s(s2+2s+2)

(b) U = 3, Uo = 6, xlm = 9/2 (II-19.C) becomes

(1012.5) (s+2)31 + (1012.5)s+2) = 0 (II-20b.C)
s(s2+2s+2)
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The root loci and location of the closed loop poles for (II-20a,b.C)

are shown in Figure II-la.C. Note that the "shape" of the root locus

is input magnitude invariant, although the root locations are a function

of the input magnitude.

COUPLED CASE

Now consider the same example without using (II-11.C). Such a

case would be

Y21 21 21SK 1 = 2 21 21_ 3
21 32 2 1

Y22 622 022= K = 6

21 4 21 5 P21

Using these numbers in (II-17.C) results in the zeroes of (II-16.C) being

a function of x 2, U1 2, U 2  For the same conditions as the "decoupled"

case

o o o
(a) U1 = 3, U2 = 0, xlm = 3/2 (II-16.C) becomes

(29.25) (s+2) (s2+2.778s+l.538)
1 + 2= 0 (II-21a.C)

s(s2+2s+2)

(263.25) (s+2) (s2+3.32s+2.64)
(b) 1 + S 2+2+2) 0 (II-21b.C)

s(s +2sf2)

Figures II-lb.C and II-1c.C show the root loci and position of the

closed loop error roots for (II-21a,b.C). Note that as the inputs change,

the entire shape and character of the root loci changes. From the stand-

point of well-behaved error dynamics, this is a highly undesirable
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s s

-2 -1 -1

S-1 -- 1

(a) (b)

--1

.-1

(c)
Figure II-1.C. Various Root Loci Configurations Comparing "Coupled"

and Decoupled Design Techniques.
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situation. Hence, in order to obtain a good design, with well defined

error dynamics, the decoupling scheme in (II-11.C) should be used, it

requires no additional computational difficulties and the degree of

control that results is well worth it.

D. Application of the Error Equation

The design of an adaptive controller using the class of model-

reference schemes discussed consists of determining the best combination

of values for the adaptive gain parameters a, , p, y, 6, a and the qij

elements. At best this is a trial and error process unless some system-

atic technique is utilized. The basic error equation in (II-16.B) will

now be used to develop a design method based on the location of root

loci as the adaptive gain parameters are adjusted. The location of the

roots of the linearized error characteristic equation in the s-plane

will, to a first order approximation, completely characterize the nature

of the transient response of the system error. By going to a linear

system description of the error, the familiar figures of merit from

classical controls such as rate of convergence, settling time, per cent

overshoot, etc. can be used.

That the design method is based on the small-signal approach is of

no concern, because completely independent of the design technique the

plant has been guaranteed to be asymptotically stable using Lyapunov

theory. In this way, if an error perturbation occurs, even if it is

very large, the adaptive system will force the error towards zero, and

the closer the error gets to zero the better the small signal approximation.



29

By designing for a very fast transient response the error will be forced

to be near zero. This is a noticeable departure from the usual analysis

of systems by small-signal approxmations. At no time is (II-16.B)

implemented as part of a control system. It represents only an analyt-

ical tool to aid in design of an efficient, practical MRAS controller.

Example: Application of the Error Equation to a Space Shuttle Vehicle

This example clarifies the design method applied to the pitch-axis

attitude control system of a space shuttle vehicle using aerodynamic

control surfaces during re-entry. Because of the extreme variations in

altitude and velocity encountered, the plant dynamics are time varying

with order of magnitude changes of as much as 200 occurring.

The basic vehicle configuration is shown in Figure (II-1.D). It is

assumed that the pitch axis is decoupled from the roll and yaw axes.

The linear time-varying plant dynamics are obtained as follows:

M pitch= I pitch = f (a, 0, 6e )  (II-l.D)

where a = angle of attack (radians)

6 = pitch rate (radianlsec)

6e = elevator deflection (radians)

pitch = moment of inertia of the pitch axis of vehicle

Expanding f in a Taylor series about ao , o and 6 eo-yields

fm(a, e = f5, ) fm(a + (a-a) + - o ) +

af
ae(6e- eo) + higher order terms (HOT) (II-2.D)
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x-axis

a angle-of-attack

Relati e Wind

/ Horizon

y axis

z axis

Wing and Elevator Configuration

Figure II-1.D Re-Entering Space-Shuttle Vehicle
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By selection of appropriate axes,

Ipitch f a + f + f 6ee (II-3.D)

where fm., fm9 fm6e represent moment stability derivatives. Through

some involved calculations, these moment derivatives can be related to

the well known aircraft stability derivates Cma , Cme, Cm as follows

m = cpV2Sr /21p = C1 Cma

m = c2pVrSref/41p- Cm; = C2 Cm; (II-4.D)

fme= cpV2Sre /21p  e m = C3g m

where
p = air density (time varying due to altitude changes)

Sre f = vehicle reference cross sectional effective lift area

c = vehicle characteristic length (used to normalize stability

derivatives)

Vr = vehicle relative velocity

Cm = aerodynamic stability partial derivative taken with respect to x.
x

Because p and Vr vary with time in an indeterminate manner (dependent

upon re-entry trajectory which is controlled "on-line" by the pilot) the

vehicle dynamics are time-varying.

Defining
x1 = e x2 = 8 U1 = a U2 = 6e

the unadapted vehicle dynamics can be written as
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x = x + U (11-5.D)

0 C2C m  CICmu CICm

Plots of typical mission profile data for p and Vr are showil in Figure

(II-2.D). Using nominal values for Cm1 , Cm6, Cm6e, the actual time

varying plant coefficients are shown in Figure (II-3.D). With the

dynamics of the form ip = Apa + BpU it is clear that the zero in the

a2 position implies a pure integration; hence the unadapted vehicle is

unstable. The basic attitude controller with the adaptive gains included

is shown in Figure (II-4.D). The equations of the plant with adaptation

are

0 1

XP K2a(t )  (C2Cm6 + K 2 (t)) xp(t)

0 0
+ b I U (II-6.D)

b b(t)
(ClCmu + K2 1 (t)) (CICmu2 + K2 2(t))

where Ki (t) and Ki (t) are the adaptive gains.

A model based on the two assumptions that (1) no complex roots are

desired and (2) a fast, over damped response is desired, was chosen to be

0 (s) =  (s) -. 05 .05 (II-7.D)
U1  U2  s 2 + 3s + 2 s)(s+2)

For the plant chosen, specific parameter values used were U1 = 1.047

(a=60), U2 = 1.13438(6e=65*), and Xlm= -.0545(attitude= -.0545 radians).

The general adaptive gain parameter equations are
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Time 7rom Booster Separation (seconds)

Figure II-2.D Typical Time-Varying Physical Data Causing Time-
Varying Plant Parameters.
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Figure II-3.D Typical Time Variation of Plant Parameters
During Re-Entry (adaptation must compensate
for the changes)



6 e V2 Sr e m6 +K21 b*

21

+ p p

S ls P 1/s+ Is

41
yy U'

.DVS C b K21a
S Cma + K b K21

21yy

* Denotes adaptive gain

01 0 0
a a K2b b -
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Figure II-4.D Simulation Diagram of Adapted Attitude Controller
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K2a=c21 to W dt + 21 P2 1  [W], KY dt +7 222222 ftoY
d [y

B22 Y + P 2 2 t (II-8.D)

KbY Z dt + 6Z Z], K f S dt +
21 t 21 + 21 22 Y22 t o

6 S.+ 2d t[S]
22 22BT

where W=elq12 lp +2q 22xp, Y=elq1 2x2p+e2q22x2p and

Z=elq1 2 Ul+e 2 q2 2 U1 , S=elq1 2 U2+e 2 q2 2 U2

and the c, 8, p, y, 6, a, q1 2 ' q22 values are yet to be determined.

In order to choose appropriate values for the adaptive gains a,

8, p, y, 6, and a the root loci for the three model reference adaptive

control schemes in references [3, 5, 6] are plotted in Figure (II-5.D).

The loci begin in all three cases at the zeroes of the model character-

istic equation plus an additional locus beginning at the origin. The

loci end at the zeroes of (1 + q12/q22 )(1 + K2/K1 s + K3/K1 s2). In all

three cases the zero at -q12/q22 was chosen to be -3 with q12=1.26 and

q22=0.42. It is desired to locate this zero as far in the left half

plane as possible. However, this ratio is limited to three in this

example in order for the Q matrix to be positive definite.

Using the above values the characteristic equation for the Winsor

and Roy method is

1 + k(+3) = 0, where k = q22 K1  (II-10.D)
s(s 2 + 3s + 2)

The root loci for 0 < k < - are shown in Figure (II-5.D(a))

The Gilbart, Monopoli, and Price method has an additional zero at

s = -K1 /K2. It is clear that this zero should be as far to the right

as possible in order to pull the root loci to the left. This zero should
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not be to the right of s = -3, however, since for high gains the root on

the real axis is the dominant root and determines the speed of response.

The additional zero is placed at s = 4.5 and the error characteristic

equation becomes

1 k(s + 3)(s + 4.5) =0, where k = q22K2
s(s 2 + 3s + 2)

The resulting root loci are shown in Figure (II-5.D(b)).

The additional zero in the Boland and Sutherlin method is placed

at s = -4.5 which yields an error characteristic equation of

1 + k(s + 3)(s +,4.5) 21 + ks 3)s 4.52 = 0, where k = q2 2K3  (II-12.D)
s( 2 + 3s + 2)

The resulting root loci are shown in Figure (II-5.D(c)).

In order to verify the results of the linearization procedure the

time response of the error for each of the three model-reference schemes

was computed. A gain of k = 10 was used in each case. The location of

the roots of the linearization error equation for this value of gain

are shown on the root loci in Figure (II-5.D).

In each of the three methods the conditions of (II-11.C) are

satisfied with C1 = C2 = 10. Using these values of CI and C2 , the gain

k = 10, and combination of zero locations given in (II-10.D), (II-11.D),

and (II-12.D), the adaptive gain constants can be computed and are given

in Table 1.
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(b) Gilbart, Monopoli, and Price
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(c) Boland and Sutherlin

-4.2 - j1.4 .-2

Figure II-5.D. Root Loci of the Linearized Error Characteristic Equation.
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Method in
Reference a2 1  a2 2  21 22 p2 1 p2 2 Y21 Y22 21 622 '211 22

[5] 100 100 0 0 0 0 100 100 0 0 0 0
16] 450 450 100 100 0 0 45 45 10 10 0 0
[7] 2025 2025 900 900 100 100 202.5 202.. 90 90 10 10

Table II-i. Adaptive Gain Values

The time response of the error el(t) for the Winsor and Roy method is

shown in Figure (II-6.D(a)), where the model and plant states are identi-

cal at time to = 150 seconds. At tt a step disturbance is given to all

of the adaptable parameters in (II-6.D). The disturbances are such

that at t = to the plant transfer functions are

-(s) = .073 and (s)= - .073 (II-13.D)
Ul(s) (s+O) (s+.009) U2(s )  (s+O)(s-.009)

The model transfer functions are as given in (II-7.D). The response in

Figure (II-6.D(a)) is highly oscillatory as predicted by the root locations

in Figure (II-5.D(a)). The dotted line in Figure (II-6.D(a)) is the

unstable error response for the system with no adaptation.

The time responses of el(t) for the Gilbart, Monopoli, and Price

method and for the Boland and Sutherlin method are shown in Figure

(II-6.D(b)). These two responses plot as one curve since the real root

is the dominant one at this value of gain k. Again the time response

agrees with the response as predicted from the root locations in the

s-plane. In all three of the adaptive control methods the error approached

zero asymptotically although the plant parameters are time varying.
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E. Adaptive Error Determination

As an extension of (II-16.B), representing an approximate char-

acteristic equation of the adaptive error, a technique for approximating

the magnitude of the maximum error and the time interval from application

of a disturbance until maximum error is reached is presented. Advantages

of the proposed error estimation scheme include:

(1) prediction of the maximum error and its time of occurrence

(2) saturation non-linearities can be avoided, or at least

designed around

(3) simple solution of the error dynamics is available

(4) insight into the relationship between adjustable adaptive

gain coefficient selection and the error magnitudes is avail-

able. A simulation example is given demonstrating the

utility of the proposed method.

Referring to the basic second order derivation of the error

equation, it can be seen that (II-10.B) is in the form

AE(s) (1+GH(s)) = - K2 o + UoK2 b (II-1.E)

where (1) 1+GH(s)- represents the error characteristic equation (2)

K2ao , Kbo- represent steady state adaptive gain values at the instant

a perturbation occurs. Following along the lines of the previous error

derivation, (II-1O.B) can be generalized to



p
AE1(s) sAm(s) + K si-1 (j-1i

= [KnaoXim + Ui K bo

where
v<n

(II-3.E)
r

x o G (o)U
X° j=1 j

m
represents a sum of m terms not necessarily in consecutive order

Rearranging (II-3.E) and using the fact that

Ae(t) = e(t) - e(o) = e(t) - o = e(t) (II-4.E)

Ki.c.
AE1 () = E1(s) = i..

sAm(s)+ Ksq i lqjns

where
Ki.c.represents an "initial condition" gain

vij
K a U Ko (II-6.E)i.c. ij

The denominator of (II-5.E) represents the error roots which determine

the error convergence rate; i.e.

sA(s) + K[s(i-j lq.jn s ( (s+Pk) = 0 (II-7.E)
=1 k=l



44

where

Pk = closed loop error roots

y =n -2+ p

e

Time --
Figure II-i.E. Typical Errof Versus Time Trajectory

Shown in Figure (II-1.E) is a typical error versus time trajectory

for an adaptive system with real dominant roots. Dividing the numerator

and denominator of (II-5.E) by the factor sAm(s), E(s) can be modeled as

E(s) = Ki.c. G(s) (II-8.E)
1 + G(s) H(s)

where G(s) 1 represent the open loop poles of the error dynamics
sAm(s)

and

H(s) = K s i l qj s(l
[-1 j=1

which is shown in Figure (II-2.E) as a single-loop feedback control

system with no input and output E(s). With no forcing function present

the error response is due solely to the initial conditions. That this

is so should have been expected since the MRAS error is asymptotically
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xolm f
UO

R=0 1
s Am(s)

i= 1

f(.) is a non-linear operator wich
transforms Xlm and Uo into initial
conditions for the error equation

Figure II-2.E Error Magnitude Simulation Model
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stable and therefore must tend to zero independent of any forcing function.

Consequently, the only "driving function" on E(s) is the initial condition

gain Ki.c.

Because the MRAS scheme is not an identification technique, best

results for magnitude prediction are obtained only if either (1) all the

adaptive terms are numerator coefficients of (II-14.B) or (2) all adapting

terms are denominator coefficients. The actual adaptation process works

equally well with all terms adapting; it is simply that no unique values

for K ao and the K.b o are then available. This is because the adaptive
S13ij

controller identifies output state values (the error goes to zero) but

does not necessarily identify plant parameters. Th-is means

Gm(A) 2
s+2

a, B adapting

G (s) = -

then any = 2 might result, depending on initial conditions. If a is

fixed, then 8 would correctly identify the plant parameter.

It should be noted that the numerical magnitude of

ao v I
IKi.c. Kn im + K (II-9.E)

ij

in no way effects the small perturbation linearization analysis. The

magnitude of xim depends only on the input and model and the Kij only on

the cumulative total plant parameter misalignments. The linearization

analysis presumes only that small changes K i, K occur at any given instantii ii
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Using partial fraction expansion and (II-6.E), the inverse trans-

form of (II-5.E) becomes

e(t) = Ale + A2eP2t +...+Aypty y<(n+l). (II-lO.E)

The time at which maximum error occurs can be found by taking the time

derivative of e(t) and solving for the t at which e(t) = 0.

In most work of practical and significant interest, emax could be

taken to be

e max e(th) (II-11.E)

where there are h solutions obtained from e(t)=o. Two of the most

likely types of responses would be (1) a pure exponential decay or (2)

a damped sinusoid. Either one of these responses would result in

e(t)=o, implying a relative maximum or minimum of e(t).

Under the assumption that E(s) can be approximated by a second-

order plant with real poles

e(t) Ki.. P (II-12.E)
(s+P1)(s+p 2

where
n-l

P= Pk if n=l

1 if n=l

e(t) = Ki.c. [Pt 2t]
P(p2- e P<P2 (II-13.E)
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To obtain an estimate of emax, set

de(t) = 0
dt

or

-ple-Pl t + p 2 e-P2 t = 0 (II-14.E)

from which the time interval tm , representing the elapsed time from

occurrence of a perturbation to the occurrance of maximum error can be

found.

tm = In (pl /P2) (II-15.E)

P1-P2

Substituting (II-15.E) into (II-13.E) results in a simple expression

for estimating the maximum magnitude of the error,

ln(Pl P2 ) In pl/P2
emax - Ki.c. Pl p p -P2P(P 2-Pl) e 2 -e PlP2 (-16.E)

An unusual happening with (II-16.E) is that IKi.c. , the initial

condition gain given in (II-9.E), is a function of the magnitudes of

the plant parameter disturbances occurring at the previous disturbance

time. If at time to adaptation starts and at time tl >t error steady

state has been reached and a set of plant parameter perturbations

occur, and by time t2>t1 error steady state has occurred again
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then

je(T) max = f(je(T) max )  TE(t0,tl] (II-17.E)

TE(tl,t
2

Following along similar lines, an estimate of the error bounds for

the case of a pair of complex poles and a dominant real root can be

developed. The error can now be related to the dominant root locations

as

e(t) Ki.. (II-18.E)
(s+a+jwd) (s+a-jwd) (s+p)

where s = -cdjw, -p represent dominant roots of E(s). Using (II-18.E),

it can be shown that

e(t> =  Ki../ -0 -1 d

e(t) = I e cos dt-90 -tan (II-19.E)

+ Ki../P -pt
(a-p) 2-Wd 2 e

Proceeding as in (II-14.E),

de(t) = -2C 1 e-at [Cos wdt-900-tan- --
dt a p- a

+Wd sin(wdt-900-tan dp- A -C2Pe-t = 0 (II-20.E)
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where

Ki.c./P Ki.c./PC- C2 2

2 22 4 +i )\2 (a-p) 2 +w
Wd

(II-20.E) is of the form

al cos (wdt+e) + a2 sin (wdt+e) + a3e-pt = o (II-21.E)

which is a transcendental equation in t, the variable to be solved for.

Since al, a2 , and a3 are known constants, (II-21.E) may be graphically

solved for those points, ti, which satisfy the equation. Substituting

the ti into (II-19.E) and determining

e = max e(ti) (II-22.E)max i

yields a "best estimate" of the maximum value of the error.

Unfortunately, due to the uncertainty in the plant parameter

perturbations, the "direction" of the error time trajectory above or

below zero when a disturbance occurs cannot be predicted beforehand.

To demonstrate this, consider the following nth order linear plant

(s) = (II-23a.E)
U sn+a sn-+a s +...+a s+aPn-1 n-2 1 o

and the nth order model

Xm 1 (II-23b.E)
-- (s)m n
U sn+,m_1sn-l+am 2sn-2+... +ams+am
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As before eI = xm - Xp it is assumed that at steady state

ek(t) = 0 ak= ak  k= 1, 2, ... n (II-24.E)

The sign of el depends on the "direction" of plant perturbation, i.e.

if a disturbance occurs at t = to

e(t o + ) < 0 if a oP(to+ ) < am (II-25.E)

e(t ) > 0 if a (t +) > am

Since the sign of el depends on future conditions, nothing can be said

about sign definiteness. Since the error is defined as e = xm - Xp,

then if ek(t) < 0, k * 1, 2, ... n the plant state xk (t) lags the model

state, and if ekp(t) > 0, the reverse is true.

The error magnitude estimation procedure can be of particular

value in the case of linear plants with a saturation non-linearity

of the type shown in Figure II-3.E. With a priori knowledge of the

expected range of values of U, a "worst case" design can be anticipated

and the appropriate adaptive gain parameters adjusted so as to allow

xlP to remain within the linear range of operation. Knowing a priori

a range of values of U and the plant parameter variation, an estimate

of Kniao and Kij bo can be performed; these values coupled with (II-9.E),

(II-16.E), and (II-19.E) allow estimates of maximum el by maximizing

IKi.c.l-

Assuming the plant output saturation value is Cs, the maximum

allowable error, ea, is determined to be
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R + Y xlp

Figure II-3.E. Nonlinear Problem.

leal = Cs - Xlm (max) (II-26.E)

where xLm (max) is strictly a function of the input(s), since the model

has been fixed a-priori. If jell > leal, then the model and/or adaptive

gain parameters must be modified and jell recomputed if plant saturation

is to be avoided.

EXAMPLE:

Consider the MRAS system with model

X1p (s) = Gm (s) = 2 n = 2

Us
2 + 2s + 2

and plant

Gp (s)= 2
s 2 + 2s + a P

21

where a2P is an unknown and (possibly) slowly time-varying plant para-

meter. For the case of U = 4p(t), the steady state output of the
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plant becomes

Xlp (S.s.) = = lim 4 . 2 = 4 G(0) = 4
plm s*0 s s 2 + 2S + 2

Using the development in [7], the root locus equation from (II-16.B)

becomes

1 + K1 
+ K2s q12 + q22 =0

s s 2 + 2s + 2

o 2
where K1 = a21 xl m

S2
K2 = 21 Xlm

and it is desired to determine q12 q22 ' q21 ' B21 such that the error

roots are real. An acceptable compensation scheme is

1 + K2q22 (s + 2)2 = 0 (II-27.E)s(s 2 + 2s + 2)

which is in the familiar form

1 + k P(s) = 0

with K = q22(021xim )

A plot of (II-27.E) is shown in Figure (II-4.E). From an investi-

gation of this figure, a desireable set of error roots exists if k is

chosen to be 800. From this information a compatable set of parameters

is

a21 = 10 21 = 5 q12
= 20 q22 = 10
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The closed loop error roots for k = 800 are marked in Figure II-4.E and

are found to be

s1 = -2.075 s 2 = -1.935 s 3 = -798

Using the approximation in (II-12.E)

Ie(t) = K2lao x1mo (.00879) -1.9325t -2.075tm Le -e
(II-28.E)

Initial conditions were placed on K21 in order to force a2 = 2 at

t = 0. At t - o+ a step disturbance was applied to a2 . Figure II-5.E

compares normalized values (with respect to the predicted error response)

a0
of e(t) versus time for various initial conditions on K . Note the

21

excellent correllation between predicted and actual results.

F. Design Implementation

Assuming the plant-model dynamics are expressible in the form of

(II-15.B), the first step in the design procedure is the selection of

appropriate, linear, time-invariant models. To date, little design

criteria, insofar as relating to MRAS controllers is available. Hence,

a-priori knowledge of physical conditions and overall performance

criteria must be used to select the models. At present, this is an

art more than a science.

Secondly, using Am(s) from G(s), determine the error characteristic

equation as given in (II-16.B). It is recommended that (II-11.C) be
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employed also to "decouple" numerator and denominator dynamics of

Gi (s). With these equations values for n of the qij values, plus the

a, 8, p, y, 6, o adaptive gain coefficients can be determined so as to

obtain a desired transient response. Since this portion of the design

involves linear frequency methods, the well-known tools of linear

systems analysis can be utilized to define a "best" response. Since

Q is a positive definite symmetric matrix there are n(n + 1) distinct
2

terms. However, the aforementioned design method only supplies numbers

for n of the entries; hence n(n - 1) terms are left unknown. It is

necessary to insure that for the n elements of Q selected that the

n(n - 1) remaining elements form a compatable set such that
2

(1) Q is positive definite

(2) AT Q + QAm = -C when C is any positive definite matrix

If Am is a stable matrix, a positive definite Q exists which satisfies

(2) [1]. Unfortunately, this method does not take into consideration

the transient error response. The inverse statement, given a Q a p.d.

C exists, is not necessarily true. Consequently, selection of the

remaining Qn(n - elements is an iterative procedure; all that is

necessary is to show that there exists elements satisfying (1) and (2).

It should be pointed out that until now, one of the shortcomings

of using Lyapunov designed controllers was that no clear-cut technique

existed for relating the Q elements and the a, B, p, y, 6, a terms

Consequently, a common procedure was to select the Q matrix by using
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an a-priori fixed C (usually the identity matrix In) and solving for

the qij terms; the adaptive gain coefficients were then chosen by trial

and error methods. As with the error equation linearization, there is

no unique set of qij obtained from (2).

Although the linearized error equation in (II-16.B) is valid only

for small errors, the design method outlined can also be used in the

case of large errors. Since the adaptive error is guaranteed to be

globally asymptatically stable from Lyapunov theory, no matter what

the order of magnitude of the errors they will eventually tend to zero.

Once the errors become "small" the linearized error approximation is

valid. Estimates of transient performance of the system error for

large disturbances may not be valid, although simulation results for

a large number of cases tend to show strong correllation between pre-

dicted response and large error disturbances.

G. Error Transient Response Determination With Lyapunov Functions

Under certain conditions, knowing the form of a Lyapunov function

V and its time derivative V, it is possible to determine the transient

behavior of the MRAS error dynamics. However, to be useful, it is

generally necessary that V be obtained as a function of time without

having to integrate the system equations. This requirement, plus the

need for the resulting V and V expressions to be simple have generally

not made it possible for the following method to be practical.
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Noting that

V= V (II-G.1)

if it can be established that the quantity ( is never greater in

magnitude than some constant -k, k > 0, then

VI -kV (II-G.2)

and by integration

-k(t-to)

V(xpt) < V(xp,to )  
(II-G.3)

-- e

If it is known that

v < -a(l i)

and V < b(IIl I) (II-G.4)

then k is simply

k min a(I pl l)

Xpt b( xp ) (II-G.5)

Such a k value yields a lower bound on the speed of response. Known

results in this direction, however, are rare [17,18].

As an application of this technique, consider the Winsor and Roy

Lyapunov function [5],



59

n n 2 n n 2
V = E E ai + E 1 bij + e Qe

i=1 j=l aij i=1 j=1 Bij

By appropropriate choice of the adaptive gains,

V = e (AmTQ + QAm) e (II-G.6)

from which

-- llcile
V =-- n n n n V

IIQ1le + E E aij2 + E bi 2
i=1 j= aij i=1 j=1 ij

(II-G. 7)

where

-C = Am Q + QAm .

If information on upper and lower bounds of the excursions of the model

and plant parameters is known a priori, then bounds on the last two

terms in the denominator of (II-G.6) can be obtained. In general, such

information will not be available, in which care approximations are

needed. An estimate of the transient behavior of the error using [5]

will now be performed in order to illustrate the difficulty of using

the procedure.

(II-G.7) is in the form



60

3 A, B, C > o (II-G.8)

A+B+ C

where

3 < 1+1+1

A+B+C A B C

or

1 < 1/3 + 1/3 + 1/3 (I 9)
A+B+C A B C

2

Using (II-G.9) on (II-G.7) (Ilell = 1, C defined in (II-3.C))

V < -1/3 Xmin (CQ-1) -1/3 I e
n n

I 1 1 a..
i=l j=l aij 13

2

-1/3 e I V (II-G.10)

n n 2
I I 1b
i=1 j=l ij

Defining

2

k I = maxe IC
n n 2
1 1 aij (II-G.11)i=1 j=l ij
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k 2 = max C
n n 2

ij

The difficulty with using (II-G.10) is that kI and k2 of (II-G.11)

require a knowledge of the error e, and unknown quantity. As an estimate

of the error decay rate, it might be possible to disregard the parameter

misalignments aij, bij and only be concerned with Xmin (CQ-1 ). However,

results would be only approximate and would need to be interpreted with

care. Under certain conditions,

then

V < [-1/3 Xmin (CQ-1) V (II-G.12)

In the cases of [6] and [7], no results thus far are available

using the Lyapunov function decay rate approach. This is because in

both methods, the ratios V are complicated functions of the error and
V

thus far no reasonable approximations have been found to simplify the

resulting ratios as was done in (II-G.6) to (II-G.12).



III. DETERMINATION OF STABILITY CRITERIA
PROVIDED BY LYAPUNOV THEORY

The adaptive gains given in Chapter II were derived using Lyapunov

theory. Using this method sufficient conditions for asymptotic stability

of the error were obtained. Unfortunately, one of the shortcomings

of the Lyapunov design approach is that sufficient but not necessary

conditions result, making it possible to "overdesign" a system. Dis-

cussed in this chapter are various techniques for simple determination

of elements of the Q matrix such that asymptotic stability is assured.

Also a method is proposed to relax the Lyapunov sufficiency conditions

on the Q matrix and still have an asymptotically stable adaptive system

error.

A. Conventional Technique for Selection of the Q matrix

In conventional Lyapunov-designed MRAS control theory, it is

necessary for the designer to select, a priori, a p.d. Q matrix such

that Am Q + QAm is n.d. In practice determination of such a Q matrix

is difficult. In Chapter II, methods for relating the adaptive error

response to the selection of the Q elements were presented, however it

was still necessary to insure independently that AmTQ + QAm was indeed

n.d. It has been shown [15] that if C is a p.d. matrix, for a given

Am matrix there exists a p.d. Q matrix such that

AmTQ + QAm = -C (III-l.A)

62
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However, as will be discussed later in this chapter, the converse is

not necessarily true.

By selecting a C matrix at random it is possible to obtain a Q

matrix satisfying the Lyapunov stability conditions for MRAS controllers.

In most published reports this is the technique used. However, as has

been clearly demonstrated in Chapter II, selection of certain elements

of the Q matrix is desired first. Other sections of this chapter will

investigate the problem of finding acceptable bounds on the elements

of the Q matrix such that easy use of the design processes discussed

is insured.

B. An Extended Stability Bounding Criteria

In Chapter II, the particular V function used for deriving the

adaptive gains is given by (II-10.A) and the resulting V function by

(II-13.A), repeated here for easy reference:

-2n n n
V = eT(AQ + QAm)e -2 ij a ekqkixp

i=l j=l k=1

n r n
-2 kij ekkiu (III-1.B)

i=1 j=l k=

Since it is required that AmTQ + QAm be negative definite, and 6ij,ij > 0,

then it can be seen that V is n.d. This V is the most general one and
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is applicable to the case of the Boland and Sutherlin as well as the

Gilbart, Monopoli, and Price methods. By combining terms Q and (
of V it is possible, under certain conditions, to relax the requirement

that Am Q + QAm is n.d. By relaxing this requirement it is possible

to obtain a wider choice of qij values. In terms of the linearized

error equation design method, this means that a larger "stability region"

for compensating zero placement is possible and still insure asymptotic

stability of the system error.

There are five major restrictions involved in the following

procedure

1. A is in phase variable formm

2. At least one non-zero input is present

3. There is at least one time-varying numerator gain term, ie

Gm(s) = s + a or a a time varying
Am(s) Am(s) or unknown

4. The Gilbart, Monopoli, and Price/or Boland and Sutherlin
type adaptive controller is used

5. Bm contains all zero entries except for the nth row

Under these conditions, term 0 of (III-l.B) may be written as

3 = 2 [6nl (e1 In + e 2 q 2 n +... + en qn)u

+6n2 (elqln + e2q2n + ... + enqnn)u2 +

+6nr [(elqln + e2q2n + ... + enqnn)ur (III-2.B)
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which reduces to

=2 [nlUl + 6n2U2 + ... + 6nrUr][e1ln + e22n

+ ... + enqnn (III-3.B)

The squared factor in (III-3.B.) may be expanded as follows:

(elqln + e2q2n + ... + enqnn)(elqln + e2q2n + ... + enqnn) =

2 2
e l q1n + 2ele2qlnq2n + 2 ele3qlnq3n + ...

2 2
+ 2elenqlnqnn + e2 q2n + 2e2e3q2nq3n + 2e2e4q2nq4n

2 2
+ ... + 2e2enq2nqnn + ... + ... + en qnn

which may be put in matrix form as

2

In qlnq2n qln93n .. 9lnqnn

T 2
=e q2nqln 92n q2nq3n .. 92n qnn e

2 (III-4.B)

qnqln qnnq2n qnnq3n .. qnn

Defining

2 2 2
= 2( 6nlUI + 6 n2U2 + ... 6 nrUr )
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and

qln
q2n

q=

nn

(III -3.B) may be written in the compact form

eT  ) e (III5.B)

Using (III-5.B), (III-l.B) may be rewritten

T T T ^T
S_ (Am Q + QA )e - Re (SL a)e

-- m

nn n 1
-2 I ekqkixpj

i=1 j=l Lk=l

which finally simplifies to

r 2
T n n n

e (W)e -2 i=1 e k q kixpjJ (III-6.B)

where

W = Am TQ + QAm -

is a n.d. matrix. Under the constraint of the five conditions mentioned

earlier, (III-6.B) may be used as a criterion for insuring asymptotic

stability of the adaptation error. Using (III-6.B), the condition

AmTQ + QAm = -C
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is relaxed and replaced with the overall condition

T ^ ^T
Am Q + QAm - QR S = -C (III-7.B)

Using (III-7.B) allows a wider choice of qij values. When compared

with the design procedure in Chapter II, (III-7.B) allows the choice

of qij values to more closely match with values allowed by linear

systems ( i.e. root locus) theory. The reason that the allowable

regions for the zeroes of (II-16.B) may not be as wide as those allowed

by linear methods is as has been mentioned previously, namely that

sufficient but not necessary conditions are obtained from Lyapunov

theory. By using the fixed criteria that Am TQ + QAm = -C, C p.d., the

capability of using other information from the Lyapunov V function is

ignored. (III-6.B) allows for a varying stability criterion which

accounts for additional stability information when inputs are present.

This amounts to a coupling effect between the choice of the Q elements

and knowledge of the range of values of inputs present. Instead of

fixing the zeroes of (II-16.B) using p = 1 and then adding additional

zero compensators due to the type (p = 2, 3) of system, a whole new

set of zeroes all together may be determined.

Some of the benefits of employing this extended stability criterion

include

(1) allows a wider choice of response characteristic
of the adaptive error

(2) the calculations involved are straightfoward and
involve merely an extension of previously stated
Lyapunov design techniques
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(3) asymptotic stability of the error is guaranteed

The shortcoming of this method is that knowledge of the range of values

of those inputs which pass through adapted feedfoward gains (i.e. inputs

corresponding to terms of B in x = Ax + BU which are adapted. However,

in many practical cases, such a range is available.

Example

Gm(s) = 2 ; Am(s) = s2+2s+2

s2+2s+2

Gp(S) = al
s2+2s+2 (III-8.B)

U(t)min = 10

Using (II-16.B) with p = 1 (in order to obtain the stability limits),

the error characteristic equation becomes

1 + K(s+a) = 0 (III-9.B)
s(s2+2s+2)

where

a = q12/q2
2

02 o2

K = q22 (a21xl, + Y21U1

With the center of gravity of the loci of the roots of (II-9.B) at the

origin in the s-plane, the zero compensator denoted by "a" can not be
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any further to the left of the origin on the real axis than two

(this will be shown to be true by two independent methods in the next

section). Since (from a knowledge of linear systems) it is desired

to have the real root as for out in the L.H. s-plane as possible, a = 2

is chosen. Using p = 2 (the Gilbart, Monopoli, and Price method) as the

control scheme, a second zero at s = -4 is selected. This results in

the root locus expression

K2 q 2 2 (s+2) (s+4)
1 + = 0 (III-10.B)

s(s2+2s+2)

where

o2 o2
K2 = ( 2 1x1m +621 )

q12/q 2 2 = 2 Kl/K 2 = 4.

Using the stability extension scheme, it is only necessary for

(III-7.B) to be negative definite. Expanding Q IT -AmT Q -QAm = p.d.

2 m m
function, for the second order case, Am(s) = s - a2 2 s - a2 1 s,

2 1 2  12 0 a2 1  1 1  q12
26U 1

q22 q12 q22 1 a2 2  q12 22

11 q12 0 1

- j > 0 (p.d.)

[q12  q 22J a2 1  a22

which can be rewritten as
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S j> 0 (III-12.B)

where

6 02 2m
A = 261 2U q1 2 - 2q1 2a2 1

m

B = 261 2U q2 2 - a2 1mq2 2 - a2 2 q12  qll

26 2 2
C = 2612U 2 2 - 2ql 2 - 2q2222m

If

(1) A > 0

(2) AC - B2 > 0

then V will be negative definite. In order to use (III-12.B), select

a desired (q12/q22) ratio (preferably larger than that allowed by the

Am Q + QAm = -C requirement). Select q2 2 so as to set the root locus

gain (= K2q2 2 ) and this then fixes q1 2 ; then determine if there exists

a q1 1 > 0 value such that (2) above is met. If such a q1 1 exists, then

the q12/q22 ratio may be used. If none can be found, a smaller ratio

of q12/q 2 2 should be chosen and the procedure repeated.

Selecting q1 2 
= 4, q2 2 = 1

(1) is met

(2) AC - B2 = 156 - (50 - q11 ) 2 > 0
if qll > 37.52
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use qll = 40

40 4
* * Q = and

A TQ+ QA =30 is not n.d., but (III-7.B) is

Interpretation of results for higher order systems is more complex

than for a second order case, but the basic procedure is the same.

C. An Exact Stability Bounding Technique Employing An Algebraic Equation

As has been emphasized previously, one of the shortcomings of

Lyapunov-designed controllers is the "overdesign" capability. This

comes from the sufficiency conditions of the Lyapunov theorems. Using

(III-l.A), where it is desired that C and Q be p.d. n x n matrixes, a

technique will now be given for obtaining numerical bounds on the elements

of the Q matrix. This is important because, for any other than a second-

order system, the relationship between the qij elements is very difficult

to determine analytically because of the complex relationships relating

negative and positive definiteness. As an example, consider the case

of n = 3,

q11 q12 q13

Q = q 1 2  22 23

q13 q23 q33J
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To be positive definite, the conditions on Q are

11 > 0 2

q11q2 2 -q1 2 > 0

11 22 33 23 12 12 33 23 13 13 12 23 22 13) > 0

Simultaneously, the expression (A TQ + QA ) must be n.d., requiring an

equally complex group of relationships. Fortunately, from a Lemma due

to Kalman [15], if C is p.d. then there exists a p.d. Q matrix if A

is a stable matrix. To obtain all combinations of Q, C would have to be

ranged through all possible values.

That the converse to Kalman's Lemma is not necessarily true, and

the reason for the algebraic method to be given, is easily seen by a

counterexample. Using0 1 1 2
Am -2 -3 1 4

and (III-l.A), it is clear that

0 21

which is not p.d.

Returning to Chapter II, the basic error characteristic equation

(II-16.B) involves the qij ratios (p = 1),
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n-i q n-2 q q
K(s + (n-l)n/qnn s + ... + 2n/qnn s + n/qnn )

1 + =0
sA (s)

(III-1.C)

where K = qnn K qij = elements of Q n = system order

By knowing the combination of qij/n n values possible, an adaptive

system design can be effected.

Using

2cll
AmQ+Q = 11

2c

22 (III-2.C)
2c

nn

a technique is developed in Appendix A for computing Q given C by an

algebraic technique. The C matrix in (III-2.C) overconstrains the

problem inasmuch as it is possible for many of the zero terms of (III-2.C)

to be non-zero and still guarantee that the right hand side of (III-2.C)

is n.d., but the particular form given simplifies the analytical deriva-

tion considerably and then allows for a straightforward computational

technique.

As shown in Appendix A, (III-2.C) may be expanded into n(n+l)
2

independent equations in the n(n+l) qij variables of the form
2

n (n-i+l)
a.. q f

" " aij qij = fij
i=1 j=1

where aij, fijare constants qij elements of Q

which can be generalized into the algebraic matrix form

Ax=b
(III-3.C)
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where

A - n(n+l) x n(n+l) constant matrix
2 2

S= 9 12 "' ln22 23 2n nn T

S12 n(n+l) xl vector

b - n(n+l) xl vector of o's and cii's 2
- 2

(III-3.C) defines a set of n(n+l) linearly independent equations so
2

IAI# o and A-1 is guaranteed to exist. Solving

x = A-ib = f(cii) (III-4.C)

by iteratively "sweeping" through the ranges of values of the cii from

+ to _- it is possible to obtain numerical data on the range of values

of qjn/qnn which, through (III-l.C) have been shown to help determine

the zero compensator locations. For the general case, numerical solutions

instead of general analytical results are much easier to find, although

for low-order problems general results may be found.

The "sweeping" of the cii is performed as follows:

Let ci be a small positive number and 
2cii the diagonal elements

of C. Initially let cii = si = E and then iteratively increase cnn to

some arbitrarily large value cmax , then increment c(n-1l)(n-l) and sweep

through all cnn's. This could be performed by a sequence of nested DO

loops of the form
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DO 10 I = 1, MAXCOUNT

DO 10 J = 1, MAXCOUNT

DO 10 4 K = 1, MAXCOUNT

10 CONTINUE.

It is possible, for n=2, to obtain exact analytical results

relating the cii and Am elements to the qij/qnn ratios, as will be

pointed out in a later section of this chapter. However, for the

general case, the analytical computations involved are unwieldly, and

are best by numerical methods.

A computer program, QRANGE, has been written to numerically obtain

allowable root location combinations so that the dynamic error response

can be easily designed. The program is made up of a series of sub-

routines which order the data so that a series of root-locus like curves

are plotted by the computer showing the location of variation of each

of (N-l) roots, where N is the system order. This is accomplished

by using a subroutine titled ARRAYR to order the roots in groups of

(N-1) from largest to smallest (most positive to most negative) and

then plotting all first terms, second terms, etc. of each group together.

To see this, consider that there are a large number of groups of (N-l)

data points, each group of which is arrayed largest to smallest:
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Group of F-.1 -.1 -.1
N-I terms -. 5 retrieve -1.7 order -1.3

-2.3 > -1.7 Plot

-1.3
1. 7 . -12.2

(N-1) -1.9+j6 ,
-1.9-j 6 -12.2

1.3
(N-1) -I76.

82.

-12.2
(N-1) -13.3+j1

-13.3-jl

Figure III-l.C. Root Ordering By Groups.

This operation is performed repeatedly until (N-1) sets of roots have

been plotted. Then a listing of all groups of coefficients, the groups

ordered so the first term of group 1 > first term of group 2 > first

term of group 3 .... , is given.

It is felt that by displaying a representative sample of root

locations that guarantee asymptotic adaptive error stability, the

designer can make a judicious choice of some root combination which is

close to what he desires. Overall error transient response can then

be improved beyond this by using the methods in [7,11].

A brief discussion of the special form of the C matrix used is in

order. For the Q-ratio determination technique presented, it has been

assumed that the C matrix is a diagonal of positive numbers with all
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off diagonal elements zero.' This is a sufficient but not necessary

condition for C to be p.d. However, the alternative is that, to cover

all combinations of the C elements for which C is p.d., all off diagonal

elements must be swept through their ranges of values. This would

require complete knowledge of all the non-linear relationships guaran-

teeing C be p.d. a situation that is difficult for low (i.e. 2nd) order

systems and completely unwieldly for higher (i.e. > 3) order systems.

Therefore, the range of values of the Q ratios obtained with the sweeping

techniques are a subset of a larger, unknown set. This is not of any

real consequence because it simply means the designer is forced to select

his zero compensators from a smaller choice set. Whatever combination

he does choose will insure an asymptotically stable error response.

A second point to consider is that of sensitivity of the delta

increments used in sweeping the cii terms through in a priori fixed

range of values. By using discrete step increments the possibility of

"missing" that particular (unknown) combination of cii values where the

changes in Q-ratio roots is largest may occur. This is where a bit of

insight on the part of the designer is needed. A first "guess-run" can

be performed using estimated limits on the cii and a delta value to give

a reasonable number of data points. After a cursory examination of the

preliminary data a second run with appropriately modified data could

be determined.

Such a computer design program is ideal for use on an on-line,

time-sharing computer terminal system. In a relatively short time the
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designer has a written and graphical record of results which he can later

use in a full design study.

Shown in Figure III-2.C. is a flowchart of the program QRANGE, a

copy of which is available from the Auburn University Electrical Engineer-

ing Department. This main program ties in with a number of subroutines.

QRANGE, the main control program uses MATINV to obtain A-1 from A as in

(III-2.C) and(III-3.C),then obtains feasible qij/qnn ratios using MMUL.

These coefficients are then transferred to PROOT where all of the (N-l)

roots of the numerator expression in (III-l.C) are obtained. These

roots are stored in two large arrays, for real and imaginary root parts.

RTORDR arrays the roots in groups of (N-1) terms, from largest to smallest

(smallest negative real part to largest negative real part). Using ARRAY,

the jth (j=l,2,...N-l) term of each of these groups is retrieved and

plotted, real part vs. imaginary, using SPLIT. When all groupings of

each of the (N-l) roots of the qij/qnn ratios have been plotted, the

entire set of data points is plotted.

D. Kleinman's Iterative Method For Determination of Bounds on Q Matrix
Elements

As discussed in Chapter IV of the Third Technical Report, Kleinman's

Iterative method [19] includes a subroutine that is a numerical technique

for solving the equation

Am Q + QAm = -C

for Q, given Am and C. This is an iterative method whose results compare



79

START

Read System Order, # ci divisions

Invert A
(MATINv)

Form

Increment ii 's
1 - 1, 2,. ... n

x A-lb
(MNMu3Y

Compute Appropriate
xi/xj ratios corresponding

to qij/qn
n

Compute Roots of
n+q9n(n-1) /qnnn-l+.. .+qln/qnn

(PROOT)

No Max#

Yes

Array Data Points
(RTORDR, ARRAY)

Plot and Print All Roots
(SPLIT)

STOP

III-2.C. Flowchart of QRANGE
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with the method discussed in section C. By using this method in a loop

and varying the C matrix a range of values on the Q matrix elements can

be obtained. These results then help the designer define regions in

the s-plane where zero compensators of the error characteristic

equation in Chapter II may be placed.

Whereas the other numerical methods discussed thus far were exact,

the Kleinman iterative method supplies answers which are only accurate

to within some tolerance. Therefore, any zero compensator placement

based on results from this technique would have to be verified to insure

that Q was p.d. and that AmTQ + QAm was n.d. However, this need not

negate the use of this method, for it would be expected that only near

the boundary of a stability region would the approximate iterative results

differ from exact results.

Computationally, it solves

A Q + QA + C = 0
m m

by starting with an a priori input initial guess and then iteratively

homing in on Q to within a tolerance. The tolerance is based on the

requirement that

qij(k+l)-qij(k) < TOL i= j

qij (k+l)

where (k+1) is the (k+1)st iteration. In this way TOL represents a per

cent error (0 < TOL < i1). However, if it is desired to insure that all
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elements meet precisely the TOL requriement, the program in [19] may

be easily altered to check all the elements.

E. Comparison Between Stability Bounds Obtained From Lyapunov Theory
and Linear Methods

In actual design work with model-reference adaptive systems it is

necessary to use only those combinations of qij/n n in (II-16.B) such

that the necessary stability conditions are maintained. However, the

whole purpose of the linearization technique performed in Chapter II

was to reduce all the Lyapunov stability considerations to classical

control techniques, especially root locus methods. It is therefore

instructive to compare stability predictions between linear methods and

the exact Lyapunov methods to see just how well the small-signal technique

works as a design tool. Through some examples, then, it may be possible

to develop some "rules of thumb" for various order systems as to deter-

mining how one can be a bit conservative on the stability bounds for

the roots of

n

1 jn sj-1 = 0 (III-1.E)
j=l

as predicted by linear methods and still meet Lyapunov requirements.

The first example compares the two methods for the special case

n = 2.

Example 1.

Consider the general second-order case of
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2 2

G ( s_ _ =_n (1 1 1 - 2 .E )
s 2+2wns+wn2

Am(s) = s2 + 2n s + wn2

It is desired to find bounds on the zero "-a" using (II-16.B) for the

case p=l, n=2;

1 + k(s+a) = 0 (III-3.E)

s (s2+2 c WnS+wn 2

A ism

-nn -2=Cn -a21 -a22

With

C = ill, c22 > 0

solving AT Q + QA = -C for the qij element,

cll(a22m)2 + clla21m + c2 2 (a21m)
2

q 11
a21ma22m
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C
= 11

12 m
a 2 1

m

SC1 1 + c2 2 a2 1
22 m m

a2 1 a2 2

Defiining a = 12/q22

and substituting (III-4.E) results in

m

a =  c1 1 a2 2  (III-5.E)

C1 1 + c22a21m

Letting cll, c2 2 take on all values between 0+ and m, note that "a"

varies between 0 and a2 2m. For the second order example this is equive-

lant to

0 < a < 2 5 n  (III-6.E)

It should be noted that (III-4.E) was obtained by taking the general

inverse of A in (III-3.C). Since A is of size n(n+l) x n(n+l), results
2 2

become unwieldly for 3rd (A is 6 x 6) and higher order system, and this

is when a numerical optimization is proposed.

Using Routh-Hurwitz methods, (III-3.E) becomes

s3 + s2 (2 ) + s(wn2 + k) + ka = 0 (III-7.E)
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3 2
s 1 (an + k) 0

s 2  2wn ka 0

S2 (III-8.E)
s (2wn) (o n + k) -ka 0 0

O n

s ka 0 0

In order for (III-7.E) to be stable for all k > 0, it is necessary that

a < 2Cw n  (III-9.E)

From a knowledge of linear systems analysis, (III-3.E) requires that

a > 0. Combining these two limits results in

0 < < 2Cwn (III-10.E)

which agrees with (III-6.E) obtained by the AmTQ + QAm = -C method.

In some sense this provides a check on the accuracy of the small signal

error equation with exact Lyapunov methods, for it shows that for n = 2,

results are identically the same.

A general third order problem will now be studied in order to com-

pare linear vs. Lyapunov stability region predictions. As might be

expected, results are much harder to interpret.

Assume the characteristic equation for n = 3 is

A (S) = (s 2 + 2ns + n 2)(s + p) (III-ll.E)
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The linearized error equation from Chapter II is

q 3 3 K1 (s 2 + q2 3 / s + q1 3 /
q33 q331 + = 0 (III-12.E)

s Am(s)

where

K o2
1 = a31Xl

m

Defining

13/q33 = d q23/q33 = (III-13.E)

(III-12.E) may be rewritten as

1 + K(s+a)(s+b) = 0 (III-14.E)
s Am(S)

with

a = c + c 2  d b = c - - 4d (III-15.E)
2 2

and

(a+b) = q23/q 3 3  (ab) = q13q33

433 433
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(III-14.E) represents the linear characteristic equation to be used in

comparing stability prediction..

Using Lyapunov theory,

11 q12 q13 1

Q = q12  q22  q23  Am = 0 0 1

q13  q2 3  q 3 3  31 a32 a33

a m < 0
nj (III-16.E)

T
Am Q + QA = -C

0 0 a3 q1 1 q 1 2  13  11 12  q1 3  1 0.

1 0 a32m q12  q2 2  q 2 3 + q1 2  q 2 2  q 2 3 0 0 1

0 1 a q q q 3 q a a a
a33 J 1 3  q23  q3  1 3  q23  33  a32 33

-C11 0 0

0 -c22  0

0 0 -c33

(III-17.E)

where a special form of C has been selected as discussed previously,

c.. > 0. Using (III-17.E), a set of n(n+l) equations in the n(n+l)
11 2 2

variables qij.. is obtained
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a3 1 q1 3 + q13 a3 1 = -C11

a3 1 q2 3 + q1 1 q1 3 a3 2 = 0

a3 1 q33 + 12 +  13 a33 = 0

q 1 2 
+ a 3 2 q 2 3 

+ q 1 2 
+ q2 3 a32 

= -c 2 2  (III-18.E)

m m

q1 3 
+ a3 2 q3 3 

+ q2 2 
+ q2 3 a3 3 = 0

q23 + a3 3 q3 3 
+ q23 + a3 3 q33 = -c 3 3

Solving for qjn j = 1,2,3

13 = - C1 1

2a3 1  2

-C22 a33 -11 a33 + c33 a23 a33

a3 1
q2 3  - c3 3 + (III-19.E)

2 4( 3 1 + a2 3 a3 3)

c22 + C1 1 a3 3 - c3 3 a2 3

a 3 1

33 2(a3 1 + a2 3 a 3 3 )

Using the ratios q , q and the c.. one can obtain combinations
13 /q 3 3  23/q33

of q1 3/q33' q2 3/q33such that asymptotic stability of the error equation

is maintained. The roots of

s2 + q23/q 3 3 s + q13/q 3 3)

may then be obtained by using (III-15.E), and it is these roots which are

to be compared with the zero placement from linear methods.
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94(1) + s3 ( 2 Cn+p) + s2 (n2+2 n p+K) + s(wn2p+K(a+b) + Kab = 0

s1 (wn2+2Cwnp+K) (Kab)

s3
(2cwn+P) Wn2p+K(a+b) 0

2 (2Cn +p) (n2+2CnP+K) - wn2p+K(a+b) (Kab) 0

S 
(2CWn+P)

( 2 cn+p) (wn2+2 wnp+K) - wn2p+K(a+b)

n 2p+K(a+b) -(Kab) (2Cnw+ p )  0 0

(2Cwn+p)

(2Cn+p)(wn2 +2nP+K) - w 2p+K(a+b)

(2c~n+p)

s 0Kab 0 0

C) Wn, P, a, b > o

Figure III-1.E. Routh Hurwitz Array for Third Order Gm(s).
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Using .(III-12.E), the characteristic equation to be studied by

Routh-Hurwitz array is

s(s+p)(s 2+ 2 s+Wn 2 ) + K(s+a)(s+b) = 0

or

s4 + s3(2Cn+p) + s2 (n2+ 2 Cwnp+K) + s(wn2p+Ka+Kb) + Kab = 0

(III-20.F)

The corresponding Routh-Hurwitz array is given in Figure III-I.E. From

column 1 of this figure it is necessary that all entries be positive in

order to insure stability, so

C,an,P,a,b > 0 (a)

(2cw+p)(wn 2+2Cw p+K) - (wn2p+Ka+Kb) > 0 (b)

K > 0 (c)

2 (Kab)(2Cwn+p) (d)
(w, p+Ka+Kb) - > 0

(2Cwn+p)(wn 2 +2 CnP+K) - (wn 2 p+Ka+Kb) (III-21.E)

Since C, wn, p are known, it is a, b and K which are variables to be

related. Since K must be greater than 0, (b) and (d) of (III-21.E) can

be combined as follows. From (b)

if 2cwn+p > a+b then K > 0

if 2w +p < a+b then K > 2cwn(wn2+2 wnP+P 2

a+b-2C n-p
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(d) is in the form of a quadratic in K, which can be seen by rewriting

it in the form

AK2 + BK + C > 0 (III-22.E)

where

A = 2 ~ na+2 wnb+a p+b -a -2ab-b 2

B = p (wn2 ) (2pcn+p-(a+b))-ab +2 wn 2abp+wn2(a+b)

+ 2? np(a+b)+p (a+b)

C = 2wn pwn2 n2 +2 Cnwp+p )-2rwnab

If either (a) the discriminant B2 - 4AC < 0 or (b) all roots of (III-22.E)

are negative then for K positive (III-22.E) is satisfied. Statement (a)

can be seen by considering f(K) versus K, where (III-22.E) can be written

as

AK2 + BK + C > 0 = f(K) (III-23.E)

If B2 - 4AC < 0 then there are no real roots and (for A > 0 the parabolic

function has a minimum greater than zero. Statement (b) allows for

negative crossings of the K axis, such that for all K > 0, f(K) > 0.

This is illustrated in Figure III-2.E.

'In order to illustrate the types of stability bounds which can be

expected from Lyapunov techniques versus linear methods using (II-16.B),

a third order example will be given.
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f(K)

I

Limiting
Sase (a)

Allowed
\ by (a), (b)

\I

I

-K--

Allowed
by (b) onl

Figure III-2.E- Illustration of f(K) vs. K Requirement
for (III-23.E)
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Example:

6
Gm(s) = (s+1) s+2)(s+3)

Q and A. of the form in (III-16.E)

+ k(s + a)(s + b) 0
s(s + 1)(s + 2)(s+ 3)

is the error characteristic equation of interest. Using Routh Hurwitz

linear stability methods, a region of a, b zero placement can be

determined. Using exact Lyapunov techniques, a stability region for

a, b placement was determined using QRANGE. The results of both the

linear and Lyapunov stability regions are shown in Figure III-3.E.

Some important points to note from Figure III-3.E are (1) as

expected, Lyapunov-obtained results are more conservative than from

the approximate linear methods, (2) the Lyapunov stable-region is

clustered near the origin with respect to linear results, (3) no part

of the Lyapunov predicted region is outside that obtained from linear

methods, suggesting that the Lyapunov results are a subset of linear

results. In addition, it appears from both second and third order

examples that a "rule-of-thumb" might be that some fraction of the

linear stability region would fit Lyapunov conditions. Results would

have to be interpreted carefully, however in order to insure stability,

but as a starting point for compensating design the rule-of-thumb

might be used.



s2 + 923/q 3 3 s+ q q33=

Root 2
-3 -2 -1 0

TFrom A Q + m -C

(Lyapunov Techniques)

-. 5

Root 1

-1.0

From Linear
Techniques

-1.E -Allowable "Zero" Root Locations Guaranteeing Asymptotic Error Stability5

Figure III- 3.E - Allowable "Zero" Root Locations Guaranteeing Asymptotic Error Stability



IV. PRACTICAL DIFFICULTIES IN IMPLEMENTING AN MRAS CONTROLLER

In Chapters II and III design criteria and stability analysis were

discussed and a number of examples given to illustrate implementation.

Up until now, the "ideal" case was assumed, i.e. no plant or input

noise, all plant states measurable and available for feedback. In most

practical situations one or more of these conditions will be violated

to some extent and the purpose of this chapter is to study such effects

on the performance of an MRAS controller. Analytical results will be

presented when possible and examples given to illustrate discussion

topics.

A. MRAS Controllers With Noise

Noise is an imprecise term which is often used in practice to

account for modeling uncertainties, undetermined environmental dis-

turbances, and linearization effects of non-linear system. Noise

will be considered in this section in regard to its effect on stability

of error in a model-reference control system.

In particular, a plant with input noise and state noise will be

studied. The state noise could conceivably represent the effects of

(a) electrical noise

(b) vibration

(c) measurement transducer misalignment

94
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(d) random wind gusts

(e) bending moment effects on measurement transducers

Input noise could be represented by

(a) mechanical play in control guides and surfaces

(b) electrical noise in drive signal due to induction pickup

(c) wind disturbances on control surfaces

Shown in Figure IV-1.A is a diagram of the plant of an MRAS

controller subjected to input noise v(t) and state noise n(t). Using

Lyapunov theory and the Lyapunov functions in [5, 6, 7] an analytical

description of an upper bound on the norm of the error in steady-state

will be found. Asymptotic stability no longer has meaning when noise

is present; instead bounded stability is of concern. The dynamics

given in Figure IV-1.A will now be discussed.

The disturbance inputs are

_ = e(t) + (t) (t) = f(.) (input) (IV-1.A)

S= r(t) n + '(t) A w(t) = f(-) O (state)

where

W_, ) are nth order gaussian-white uncorrelated processes
with zero mean

v(t), n(t) are correlated noises

f(.) is a saturation function which clamps at the ±3a values
of the appropriate gaussian input

The plant dynamics are



3o +

++
r t

e~t) ZT

r(t) + BP p

%0

igCtrl W S a (t

Ka (t)

Figure IV-1.A. Adaptive Controller With Stochastic Input and State Noise Present.
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p = A (t) x + K(t) rS + R(t + Bp(t) + v(t)] (IV-2.A)

where

is an nXl state vector

r is an rXl input vector

K(t) is the adaptive gain matrix

Ap(t), B p(t) are nXn and nXr unadapted state and input matrices

Defining

(t) = xp + _(t) (IV-3.A)

u(t) = r(t) + v(t)

x9,' u(t) represent the available plant information. Substituting

(IV-3.A) into (IV-2.A) results in

Ap = (t) p + K(t) x (t) + Bp(t) u(t) (IV-4.A)

which is similar to (II-l.A) except that now the internal feedback

A(t) x is separated from the external, physically available K(t) x (t)

which is corrupted by noise r_(t). Since a control law must be

implemented with available state information, a new error variable

e - x,(t) (IV-5.A)

is defined. Since the noises cannot be controlled but only identified

by their statistical properties, the effects of them on the MRAS
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controller performance are important considerations. In Appendix C

is developed an analytical expression for determining the error bounds

as a function of the input and state noise statistics, and certain

adaptive gain parameters. Two such independent studies have been

performed in recent times [9, 10].

Using the V function given in Chapter II, V is determined in

Appendix E for the case of additive noise. The results are that V

is p.d. but V is indefinite,

S= T (AT Q + QAm) e - ij ekqkix

-2 6ij ekqkiu 2 + 2 eTQ Ao - Bmi
i=1 j=1 k=1i=l =1 IV-6.A)

If the noises were not present, then V would revert to a function

n.d. in e. For the case of noise assuming that v, n and _are

bounded, the last term of (IV-6.A) can be written as

2 1 A - 6 - B max < F (IV-7.A)

Defining

1, = T (Am Q + QAm e Biji=l j=1 k=l kq p

2
n r 

-2 E ik kiu (IV-8.A)
i=l j=1 k=l
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and using (IV-7.A),

V <Vl + II Qllr (IV-9.A)

since the second term of (IV-9.A) is equal to or more positive than the

last term of (IV-6.A). Using a procedure outlined in [9] an upper

bound on the norm of the error is found to be

' (Q) max
>1H 1 > Qx r = p (IV-10.A)

X(-AT Q - QAm)minm min

where

X(Q)max is the maximum eigenvalue of Q

T T
A(-A Q - QAm)mi n is the minimum eigenvalue of (-Am Q + QAm)

r is defined in (IV-7.A)

p = radius of convergence of n-dimensional hypersphere in
e-space.

(IV-10.A) says that as long as the norm of the noisy error, li ll, is

greater than the analytically derived number p, then V will be n.d. in

e and the MRAS controller will guarantee bounded stability to at least

an error region with norm p. It could be that the norm of the error is

considerably smaller, and in fact may approach zero, but no concrete

statements can be made for ill < p.

Using

e = e (IV-11.A)
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an upper bound on the norm of the error e,

e = - x

can be found,

I IeI < I II I + I lI Imax  (IV-12.A)

lell < P + IIlImax = s (IV-13.A)

(IV-'13.A) gives an upper bound on the "steady-state" error, i.e. what is

the smallest difference between plant and model states in the presence of

noise. This is illustrated graphically in Figure IV-2(a,b,c).A. In (a)

C is a typical phase plane trajectory. As long as C is outside the circle

with radius p, then V is p.d., V is n.d. and the error continues to

decrease. It may be, as shown in (b) that C may enter the circular

region of radius p; it is simply that in general, using (IV-10.A), nothing

more than bounded stability with Ile l < p can be made. (c) shows

how (IV-10.A) provides an error band on the state x (t). This is
-P

similar to the ±la limits used to describe probability accuracy bands

for various states for systems corrupted by Gaussian noises, except

that the error bands shown in dotted lines give the best "steady-state"

tracking results which can be expected between the model and plant

after a plant disturbance has occurred.

The error region given by (IV-13.A) will represent an upper limit

for the worst-case condition. In general, the actual errors involved

would most likely be much less. The form of the error bound in (IV-13.A)
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e 2

el

(a)
e
2

C

(b) Plant trajectory

Disturbance 
lm(t)

xl(t) o

Xlp (0)  -

to Time (c)

Figure IV-2.A (a) Error Trajectory C showing circular region of conver-
gence predicted by (IV-10.A). (b) trajectory C may enter circle of radius
s (c) how p enters the physical problem by providing error bounds on xl(t).
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leaves much room for interpretation of its meaning. This is because the

error bound is on the norm of the total error vector, not an error

bound on any individual error state. Consequently, an inexact procedure

of weighting the errors, based on simulation or other external infor-

mation, might need to be used to obtain an estimate of the. proportion of

the normed error bound due to any one state error.

Example:

Third order system in phase variable form corrupted by noise

From a priori information, it is known that the errors are

apportioned approximately on the basis

1el 3- enorm

2
2 3 norm

e3 -0

2 2 2
norm = el + e2 + e3

From design information it is known that

X(Q)ma x = 1

(A Q - QA) =4
m m min

r = .4
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max 1
Dmax 2max max 5

max

Using (IV-10.A) and (IV-13.A)

_ (1) (.4)ma (4) + (.5) = .6 =ax (4)orm

elmax ± +.2

max

This shows that an indeterminacy band of I±2 could be expected in el and

±.4 in e2 as shown in Figure IV-3.A.

1.0

. X1 nominal

.6

X .4

.2

0.0

-. 2 2nominal

-. .4

Figure IV-3.A. State Indeterminacy Due To Noise
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Because the error bound with noise is given in terms of matrix

related values, i.e. eigenvalues, no general relationship exists at

present between. a particular choice of a Q matrix for a given model

and the resulting upper error bound given by (IV-10.A) and (IV-13.A).

It is of course true that the largest eigenvalue of Q is a function

of the magnitude of the elements of Q, but using small qij values to

minimize X(Q)max in no way insures that X(-A T Q - QAm)mi n is large; it

is the ratio which counts, not an individual term.

Although no general nth order relationship exists for relating the

choice of the Q elements to the resulting X(Q)max and T(-A Q - QAm)mi n

values, exact results for a 2nd order case can be developed and will

now be outlined.

Consider the general 2nd order model

0 1 q11  1
Am  m m with Q =

La21 a22  q21 q2

m m
a 2 1 , a2 2 < 0 for a stable model. It is desired to determine a relation-

ship for expressing the ratio

max (IV-14.A)

A(-A Q - QA)

as a function of model parameters and the adjustable qij elements.

To determine the eigenvalues of Q,

AII-QI = 12 = 0 (IV-15.A)
- 1 2 -q 22
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which reduces to the characteristic equation

+ 2

2 + (-q11- 2 2 ) (1 2 2 - q1 2 ) = 0

which has roots

1' 2 2

(IV-16.A)

Dividing and multiplying by q22, (IV-16.A) can be put in the form

Al X2 = 22 (1 + b) ± (1 - b)2 + 4a2  (IV-17.A)

where

q12a - zero compensator location as given in (II-16.B)
22

b -ql9
q22

For Q to be p.d., both roots of (IV-17.A) must be positive, so the

limiting case is for A = 0, or

(1 + b) = (1 - b)2 + 4a2  (IV-18.A)

which reduces to

b = a2  (IV-19.A)

In general,
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b > a2  (IV-20.A)

Similarly, for (AT Q + QA ),m m
(2q 1 2 a 2  ( 2 2 a21 + qll +  12a22

A Q + QA =1
m m

q 22(q + 222+22a2 1 12a22 )  2(ql2 q2 2a2 m)

(IV-21.A)

with the relation

AT Q + QA = -C
m m

where C-is p.d., the eigenvalues of C are

m m m
(A + 2q1 2a21) (q2 2a21 + q11 + q 1 2 a22)

IXI-cI =
m + m m

(q 2 2 a 2 + 11 q1 2 a 2
2 ) X + 2(q 2 + q22a22

)

(IV-22.A)

from which the characteristic equation is

2 m m 4 2 m m m
+ X(2q 1 2  2q22a22 1221 12a21 12 22a21a22

m m
- (q2 2a2  + 11  q12a2 ) = 0 (IV-23.A)

Solving for the roots of (IV-23.A) and rearranging terms,
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a m m ±m2

l' 2 2 2 -(a + a2m + aa21 ) ( a + a2m + aa2 22m mm m m2

-4a a2m + 4aa21a 2  - (a2 + b + aam 2) (IV-24.A)

Both (IV-17.A) and (IV-24.A) are similar in that the roots are a

function of constants and ratio of qij elements, and the magnitude

of q2 2 . It is the numerical value of q2 2 , then, that determines both

sets of roots, given that an a and b have been picked.

From (IV-17.A),

A(Q)ma x  2 [(1 + b) + (1 - b) 2 + 4a 2  (IV-25.A)

and from (IV-24.A)

(-A Q - QA)min = 22 -(a + a22m + aa2m -m21
a m m 2 m m

a + a22 + aa21 ) - 4a a 2 1m + 4aa21a2

(a2m + b + aa2 ) 2 (IV-26.A)

From (IV-25.A) and (IV-26.A), the desired ratio

'(Q)max

T
A(-Am Q - QAm)mi n

can now be formed,
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0 max [(1 + b) + (1 - b) + 4a2

(-A Q - QAm)mi n  2 -(a + a 2 2 + aa21) +

4 4

(a + a2 2 + aa21)
2 - [4a2a2  + 4aa2ma - (a2 + b + aa2  )

(IV-27.A)

For a given model, the ratio

X(Q)
max

A(-A Q - QAm)

may be plotted as a function of a with b as a parameter. Since for the

case of the model in phase-variable form no information about qll is

available, in practice only a single curve with b = c, c > 0 is needed.

Lacking a general relationship for an nth order system between

the selection of the Q matrix and the error norm bound does not mean

that nothing can be done. Using (IV-10.A) and (IV-13.A) for a particular

choice of Q will supply a bound on the indeterminacy due to noisy states

and inputs. If this bound is sufficiently small with respect to the

range of values of states expected, then the given Q values should be

sufficient. If not, a brief "trial-and-error" study of adjusting

the Q matrix and determining the error bound from (IV-13.A) may provide

an empirical relationship which may be used to home in on an acceptable

Q matrix.
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Example:

Given the 2nd order model

G (s) = 2 (IV-28.A)
m (s + 1) (s + 2)

It is desired to determine the Q matrix in order to implement the

adaptive gains for the plant

G (s) =2 (IV-29.A)

s + a22s + a21

Assuming there are large noises on the input and state measurements, a

trade-off between the error transient response, as discussed in Chapter

II, and the noise-present system, discussed in Chapter IV, is necessary.

Placing the model in phase-variable form

Am (IV-30.A)

it is desired to determine

Q= [q11  q1 2

q12  q22J

Using analysis and design procedures from Chapter II, the noise-free

error transient response is determined by (using [6])

1 + k (s + a)= 0 (IV-31.A)
s(s2 + 3s + 2)
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where

k = q22K2

q1 2

d K1
K1

d -
K2

and

0<a<3

Based on a noise-present design, given that the noise cannot be reduced

it is important to minimize the effects of the noise. From (IV-10.A)

and (IV-13.A), by minimizing the ratio

max 
(IV-32 .A)

X(-A Q - QAm)mm min

the controllable effects of noise on the plant are optimized. Using

(IV-27.A) with b as a parameter, Figure IV-4.A shows the relationship

between (IV-32.A) and the choice of "a". As is evident from Figure

IV-4.A, a trade-off between the desire for a large "a" for good transient

response versus a small multiplier ratio as given in (IV-32.A). As

a compromise, "a" = 1.5 was chosen. This results in the error root

locus given in Figure IV-5.A.
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Figure IV-4.A. Relationship between X(Q) and "a" with "b"
as a parameter.

X (-AmTQ _qm)
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c -5 -4 -3 -2 -1

-9.

-1

-2

1 + 100(s + 3/1)(s + 150/100) = 0

s(s + 1)(s + 2)
-3

Figure IV-5.A Error Root Locus For Example With Stochastic Noise.
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In Figure IV-6.A are shown the results for two runs with different

noise combinations and these in turn are compared with a deterministic

run. Using (IV-13.A) I = .4 assuming the error contributions are

equal between el and e2, the maximum error (el) should be less than

.283, or about 5.6%. The actual results show the steady-state errors

in two cases to be less than .025 with an input of 5u(t). The noises

were correllated by passing Gaussian white signals through magnitude

limited ±3a, low-pass filters with 10 Hz bandwidths, where bandwidth is

defined here to be the frequency range where IGI > -60 db (gain of

1/1000). This stringent requirement on the definition of bandwidth was

chosen so that when some maximum value of the state noise rate, n, was

analytically determined then the resulting analytical bound would be

accurately reflected in the actual error bound. Ii max is determined by

Ii ma x = 2 (Afi) Ini max, i = 1, 2, ... n

where

Af. - bandwidth, Hz1

Iil max - maximum value
max

As would be expected, the actual error bounds were much less than the

predicted ones.

B. Parametric Study of the Error Bound As a Function of the Noise Bounds

In this section, a form of sensitivity analysis will be performed in

order to obtain relationships between changes in peak values in the
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Figure IV-6. A. Adaptive Error Response With Stochastic Noise Present.
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noise states, determined by the ±30 limits, to the normed error bound

given in (IV-13.A),

IX(-a Q - QAm)min

+ Iil max (IV-1.B)

where the various terms are described in section A. The interest in

this study comes from practical considerations wherein the noise

statistics,i.e. mean and standard deviation, are often directly related

to the type of hardware used in the controller. Such hardware would

include type of measurement transducer, transducer mounting integrity,

types of electrical shielding employed, amplifier linearities and drift

(if analog hardware employed), number of bits and D/A, A/D accuracy

(both time and magnitude) if digital implementation is used in the

controller.

For purposes of this study, each noise source, either ni or vi may

be depicted by a bound on its peak value, whether it be plus or minus.

Thus if n2 has a mean of 2 and a of 1, its peak value could be con-

sidered to be 5 or -1, whichever maximizes (IV-I.B).

It is assumed that the Q matrix has been selected and is fixed and

only changes in the noise statistics are to be considered. Consequently

(IV-1.B) becomes

Imax = C yl + Y2 (IV-2.B)
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where

C = constant

Y = 211A o  - - B v ma x

Y2 n=  - xmax

Ia = a2 + a22 +  an

Since Ao is in phase variable form, Ao is in the particular form

Ao= n' 3 "'" n-l' NT (IV-3.B

where

N = (-an 1 - an_-12, ... -aln n )

A in the form of A in (II-15.B)
o

n is determined by the band-limited nature of the noise, i.e.

Smaxl= 2 fmax (IV-4.B)

where

fmax = arbitrary frequency cut-off point

nTax determined by mean 
and 30 limits
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First, the case of no state noise, n = 0 will be investigated.

With this restriction (IV-2.B) becomes

I ma x = 2C l Bm max (IV-5.B)

With Bm in the form of B given in (II-15.B),

I BmvJl = ,(b 1 1 1 + b1 2 2 + ... blrr)
2 + (b2 1 1 + b2 2v2 +

... b2rr ) 2 + ... + (bn1 1 + bn2 2 + bnr r)2

(IV-6.B)

In order to determine the sensitivity of the error norm to any particular

noise state, defining llellmax = enorm, the incremental change in

the error norm is found as follows

I max mlllamax

+ a rmax (IV-7.B)

r

where

n

a l max C bij(bilv1 + bi2 v2 + ... + birVr)max i=l
n = (IV-8.B)

i=1 (bil bi22 + .bir r)
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Av - the incremental change in the peak value of the
max noise state v. (determined by the mean and standard

deviation)

Often the relative change, in %, of the error is important and this is

determined as in (IV-7.B):

Aenorm r l imax . 3Sa (IV-9.B)

enorm j=laV enorm

where enorm is computed at the nominal noise state values.

Example:

An increase in a of 1.0 for all noises is contemplated as it has

been determined that by doing so electrical cable shielding costs can

be reduced by 50%. It is desired to determine the maximum expected

increase in error due to this change.

The existing conditions are as follows

0 0 bl 1 bl2
m 3 b21 b22

v1 : p: mean = 0. a = 1.0

v2: mean = 1.0 a = .5

C = .005
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Using (IV-5.B), enorm before the change.is

enorm = (2) (.005) 0 + 3v2maax] 3 ( + 3a1

(2v 1 + 3v2 max V2max = 2. 5 (P2 + 3a2

enorm = .135

Using (IV-7.B) the change in enorm due to changes in a1 and a2 is

b2 1 (b2lvl + b2 2v2)Av1 + b22 (b21v1 + b2 2v2 )Av2Aenorm = (C)

(b 2 1 v 1 + b22 2 )

(IV-1O.B)

Aenorm = (.005) 2 (2(3) + 3(2.5)) (3) + 3(2(3) + 3(2.5)) (B)

2(3) + 3(2.5)

Aenorm = .075

Using (IV-9.B) the relative error increase is

enorm _ .075
enorm .135 = 55.5% increase

enorm

This means that the new error bounds would be ±.21. Assuming that the

control system were part of an attitude control system of a spacecraft,

this could mean that as an upper bound on the position accuracy, enorm

before the change was such that the error was ±7.70 (57 .3*/rad) and

after the change was 12.10, an intolerable situation. Depending on

how the errors are "weighted" (shown here all the error was assumed
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due to eposition), the contemplated change could possibly result in

extremely sloppy position accuracy.

Now, the case of both state and input noise will be considered, i.e.

r # 0, v / 0. The results will be found to be similar to (IV-2.B) thru

(IV-9.B), although more involved. A sensitivity relationship for the

error is developed similar to (IV-7.B)

ae aenormDimx D2
aenorm aenorm +enorm

enorm max + A2max nax
aI) an2  ann

aenorm aenorm Denorm

+ lmax + Af- 2  +'
1 a Av2 max +. n  n

Benorm aenorm aenorm
+ 1v2a + + v

max av2  max vr max

(IV-1l.B)

The partial derivatives can be determined by expanding (IV-1.B); from

it,

T2 T1

r= IIAo - - BmVImax 3=  
2

- By
m

n

-an n-a n2 n

...-ann
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2  li - (bl1 1 + b12v2 + ... blrv) 2  3 -[ ~ 2

(b21v + b22 2 + ... b2rvr)]2 + ". n n- -

(b(n-l)ll + b(n-1)2P2 + ... b(n-l)rr]2 [(-ann 1 -

an- l2- ... -alnn) nn (bnlv1 + bn2 2 
+ ' bnrr

(IV-12.B)

also

I = In2  2 2 + . n2 (IV-13.B)

aenorm = C - - (bj1v + + br ]

3n =J C n j-1 l 1 bj2v2 ... bjr rani

-an-j+1 -ann 1 - an-1n 2 - ... -aln - n

(b v1 + bn2 2 + ... bnrv)]

nominal

if j=2,3, ... n

C -an] [(-annl - an- 2- ... -aln)-n -

(bnl 1 + bn2v 2 + ... bnrvr

nominal

if j=1

(IV-14.B)
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enor = -C Tj+ j -l (bjlv 1 + bj22 + ... bj r)r ]

nominal
if j=1,2, ... (n-1)

(IV-15.B)

C (-an - an-1 2 - ... -al n ) - n

(bnlv + bn2 2 + ... bnrr]

nominal

if j=n

Denorm - C - - (bi + b 2 + ... b.v) ]
i+1 i i 1 i2 2 irN r

(-bij) + (-annl-an_l 2- -al1n)d ;n
(-bij ) + "' n a -a ) -

-(b vl + bn 2 2 + ... bnvr (-bn )

nominal

if j= 1,2, ... r

where nominal is found by evaluating (IV-12.B) at the nominal

operating condition (before a change occurs). Similarly as in (IV-9.B),

a relative or % change in enorm can be determined by dividing both

sides of (IV-11.B) by enorm evaluated at the nominal value. Inasmuch

as (IV-11.B) thru (IV-16.B) appear so formidable, an example will be

provided to illustrate their implementation in a practical problem.
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Example:

The effect of using a new tracking radar system for altitude

determination is being studied to determine what gross improvement

in positional accuracy can be obtained. The system is to be part of

a satellite launching missile inertial guidance system. From a study

of the overall system, it has been determined that the standard deviation

of position error can be reduced by half, although the new system

costs 50% more than the old unit. The reduction in the overall error

bound is desired to be found.

The basic missile information is as follows:0 1 0
x = +  u Model

(IV-17.B)0 1 0
x x + u "Worst-case"

S4 -5 1 plant

u = 106 (1 - e-005t), where u is to place the missile in a 106 feet

(= 200 mile) high orbit.

C = 1.4 from a priori design of the Q matrix

Noise Statistics

v: 1 = 0, a = 333.0 ft.

: = 0, oal = 1800 ft.

P = 10 ft./sec., a = 100 ft./sec.
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n Bandwidth = 0 hz.
* 1

n2 Bandwidth = 10 hz.

The plant-model dynamics and the additive noises are shown in flow

diagram of Figure IV-1.B. The basic earth-to-orbit configuration for

the missile is shown in Figure IV-12.B.

Using (IV-12.B),

rnomnal = 310 - (=0) - (0) + (-4)(5400) - 5(+10 + 300)

- 2r(10) (310) - 1000 2

43,650

Using (IV-14.B),

enorm (1.4)(-4) [(-4)(5400) - 5(310) - 2w(10)(310)- (1000)]

an1  rnom

- 5.6

Using (IV-15.B)

enorm (1.4) [(-4)(5400) - 5(310) - 2n(10)(310) - (1)(1000)

i2  rnom

- 1.4

Using (IV-16.B)
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Figure IV-1.B. Model-Plant Layout for Example

6
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Figure IV-2.B. Earth to orbit Configuration for
System in Figure IV-1.B.
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Denorm 
_ 1.4

avl

With only rl improved,

enor
m

Aenorm - (Anl)
8n1

Aenorm = (5.6)(-2700) = -15,100

Using (IV-2.B), the new enorm is

norm = (1.4)(43,650) + (5400) 2 + (310) 2 - 15,100

enorm - 51,300

Assuming the error contributions to the error norm are proportional to

the state noise standard deviations, the error in altitude measurement

is improved from 62,800 ft. down to 48,400 ft.

Adding a new radar unit may necessitate a new computer and wiring

system, resulting in a. increasing by 10% and a 2 by 5%, in which case

en De e orme
enormrm (nl) + norm 2) + avnorm( 1) (IV-18.B)

e 9A 2  2 avi

Aenorm = -15,100 + (1.4)(100) + (1.4)(2)(15)(10) = -13,640

which results in very little change in the error distribution from

before.
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C. Incomplete Adaptatation and State Feedback

In many situations it may not be practical or possible to measure

all the states of a system, or the available signals may be too noisy

to use for feedback to the adaptive controller. In such cases incomplete

state feedback, incomplete plant adaptation, replacement of certain plant

states with model states, and state estimation are some of the remedies.

However, the theoretical problems of stability then arise because, in

most cases of the Lyapunov-designed type controllers discussed, the

theory required all plant terms adapting and all plant states available.

Any changes in the requirements of the states requires an analysis of

the Lyapunov V and I functions to ascertain stability. 'It should be

pointed out that when developing adaptive controllers according to

Lyapunov theory, modern stability theory such as the Circle criterion

and Popov Criterion cannot be used directly on the plant but instead

investigation of the V and 4 functions and application of the Lyapunov

stability theorems must be employed. Also, any results obtained will

be a statement of fact or an overstatement of fact. The latter is

because sufficient but not necessary conditions are obtained with

Lyapunov theory.

In the case of incomplete adaptation, some work has been performed

to determine bounds on the norm of the error. Results, however, are

scarce.

For the adaptive rule in [5], an upper bound on the norm of the

error has been developed [10] for a special case. Consider the single-

input single-output system
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x = Ax + Bu + Cr (plant) (IV-1.C)
-p P-p P P

2= Amxm + BmU (model)

e = x - x (error)
- - -p

where

A = B 0 C 0

bn Cn-

are constant unknown parameters

x is an nXl vector

r is a scaler input

u is an adaptive feedback signal

Using (IV-1.C),

e_ = + A4 + 6r - BpU (IV-2.C)

where

A 6n1 :n2. (Am -A

6 0= (Bm - Cp)

L nJ
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When all plant parameters are not adjusted, an upper bound on the norm

of the error is

ofte erro <s (Q)max 2 V qinml ni I 'il (IV-3.C)

S(Q)min 1 - 2 i qn ni

and (1 - 2 -nm qin16nil) > 0 is a sufficient condition for a region Re

guaranteeing boundedness of the tracking error. Where

A(Q)max'm(Q)min are the maximum and minimum eigenvalues of Q
(see Chapter II)

qin = max qin of unadapted parameters,-i

hil = max Ihi(t) I
i,t

m = number of unadapted plant terms ani; m < n

If there is complete adaptation then m = 0 and 6n does not appear in(IV-

3.C). Then Iell = 0 in steady state and the error is asymptotically

stable in e.

In another study [9], a different adaptation rule was used than

the one previously discussed and sufficient conditions developed to

guarantee asymptotic stability when all of the plant states are replaced

by corresponding model states. In general, results are scarce however.

D. An Adjustment Technique For Obtaining Time-Invariant Error Dynamics

In Chapter II a design procedure for selecting the various adaptive

gain parameters for a class of model-reference systems was outlined.
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This technique required that step inputs only be applied to the system,

a severe restriction in terms of practical utility. However, simulation

results have shown that for slowly time-varying inputs the method does

have some design utility. In this section an appropriate modification

is offered to obtain fixed error dynamics despite a wide range of in-

put values. The method still guarantees asymptotic stability of the

system error because all of the original Lyapunov stability conditions

are maintained.

As given in Chapter II, the basic perturbed error characteristic

equation is

n p
jnsj- Kisi -

1 + =  i=p = 0 (II-16.B)
sAM(s)

Similar to (II-11.B) and (II-16.B) it can be shown that, before sub-

stituting model states for plant states and setting xjm = 0, j = 2, 3,

... n, the lumped gains Ki are of the form

n r

K3 = nixip(t) 2I +~' (y)U (t)2
n 2

where
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T, ((') - represent a sum of terms of (-); adaptive gain
constant for jth adapted input

Xjm - represent steady state operating conditions on which the
derivation is predicated

- means a sum of t terms not necessarily in consecutive order
j (only adapted terms of Bp appear here)

U. - jth input

S<_ r, the number of inputs

and it has been assumed that xip(t), U (t) are functions of time. Note

that for constant inputs the Ki in (IV-1.D) reduce to those expressions

given in Chapter II, (IV-1.D) being a more general case. Factoring, the

numerator of (II-16.B) becomds

S j n s j - 1 L Kisi- = k n (s + Zi) (IV-2.D)
It=1 k=1 i=1

where

v < n + 1 (depends on type of adaptation)

Zi - zero compensator location

k - root locus gain

(II-16.B) then becomes

v
k n (s + Z.)

1 + j=l =0 (IV-3.D)
sAm(s)

The Zi are functions of the ratios of qin/qnn i = 1, 2, ... n and of the
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ratios K1 K2, K2/K3, etc. The root locus gain k is a function of qnn and

Kh

k = qnnKh

where Kh is either K1, K2, or K3 depending on the adaptation method. The

o
design theory says that, for a given set of constant inputs Ui, there

will be a set of error poles determined by (II-16.B) which tend to de-

scribe the error dynamics. For different input magnitudes, k will change

and the closed loop roots will move along a fixed locus. Since the Ui's

are used to drive the system and will not be known a priori, the

resulting Kh will vary in an unknown manner, determined by xip and the

Ui . If it were possible to keep the closed loop error roots fixed while

Kh varied, then time-invariant error dynamics would result.

There are two means of obtaining this result, both of which are

illustrated in Figure IV-1.D. In (a) is shown a single set of loci,

determined by the placement of the zeroes of (IV-2.D). Since Kh varies,

if qnn could be adjusted to keep in inverse proportion to Kh, then as

long as the ratios qij/ stayed constant, the closed loop poles would
qnn

remain stationary on a fixed set of loci since k would remain constant.

A second technique would allow for varying qij (and type) ratios and

magnitudes in order to keep the closed loop error roots as a solution

of the root locus of some configuration of the form in (II-16.B). In

order to effect this, some sort of "pseudo-identification" technique

would be required to ascertain where the open-loop zeroes should be
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j~

k 2  kl

k
3

(a) " Re

3 k k

kk

ji

(b), -/ Re

Figure IV-1.D. Two Means of Keeping Fixed Closed-Loop Error Dynamics
(a) Keep the Zeroes and Gain Constant (b) Vary the
Zeroes and Gain to Keep Roots Fixed.
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located in order for the closed-loop error poles to be a valid

solution of the loci.

The first of the two techniques is of interest here, both from

a practical as well as theoretical standpoint. To illustrate why the

second method is not a practical approach, a brief example will be

given illustrating how the solutions of Figure IV-1.D were obtained.

Example:

1 + k(s + a) (s + b) (s + c) = 0 (IV-4.D)
sA (s)

Am(s) = s 2 + 2s + 2

It is desired to force the closed-loop error roots to be at

pl = -4 P2 = -6.449 P3 = -1.551 (IV-5.D)

To do this it is necessary for (IV-4.D) to be the roots of

s 3 + 2 + ka + kb + kc s 2 + 2 + kab + kac + kbc s
(1 + k) (1 + k)

+ abc = 0 (IV-6.D)
1 + k

where for this example two of the three zeroes in (IV-4.D) are due to

ratios of a, , p, y, 6, and a. Either one or more of the zeroes a, b,

c must then be determined in order to keep (IV-4.D) as solutions to

(IV-5.D) as k varies. The a, b, c can be found by iterative solution,
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s 3 + ps 2 + qs + r = 0

all = (3q - p2) a12 = (2p3 - 9pq + 27r)

2 3
12 a11
- +- < 0 for 3 real unequal roots
4 27

3 2 3 3 2 3
-a1 2  12 a11 -a12 12 all

A - + - + B = V 2 -- + - (IV-7.D)

sI=A+B+ 3-
1 3

s2 (A2B) A (3 (IV-8.D)

s3 ( + jA+B3 2 3 2

By computing k, a, b, and c are determined such that (IV-6.D) are equal

to (IV-4.D). It is clear the technique requires an iterative non-linear

technique to obtain a set of possibly non-unique zeroes a, b, c.

Complexity and computation time are severe drawbacks to this technique.

A more straightforward adjustment method is the first one discussed.

It will be shown to involve a straightforward algebraic technique

suitable for on-line computer use.

Using linear design techniques, an appropriate root locus gain

k may be selected to obtain an acceptable transient error response.

This gain in turn fixes the closed-loop error pole locations. Since

Kh(t) varies with the inputs, in order to keep k constant then qnn must

vary inversely to Kh(t)
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(t) = desired (IV-9.D)
nn ( t )  Kh(t)

where Kh is K1 , K2 or K3 depending on the adaptation method. Since

xim(t), Uj(t) must be available to implement the basic adaptive gain

equations, and the Yi are a priori fixed, then there is no difficulty

with physical realizability of (IV-9.D), where Kh is given in (IV-1.D).

The case when Kh is zero, the regulator problem when all Uj are

zero, must be considered. In this case (IV-9.D) would become singular

and qnn = - would result, an impossible situation. A simple means of

skirting this problem is to place a saturation operation so (IV-9.D) is

replaced by

S(t) Khd sat(qs) (IV-1O.D)
n(t) Kh(t)

where qs is an upper limit on qnn, occurring at a value of Kh =

e > 0. The limiting values of e and qs would be determined by the type

of computational hardware employed.

Since the zeroes of (II-16.B) depend on the ratios

sin J = 1, 2, ... , (n-1)

n

then if qnn varies the qjn must be altered also to keep the zeroes (due

to the Q ratios) fixed. From (IV-2.D), the polynomial expansion is

qnn sn-1 +  n(n-1) sn-2 + + (IV-11.D)
qn qn
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Defining the ratios as

q.
n = a j = 1, 2, ... (n-1)

nn

which are a priori chosen, then the necessary adjustment rule for the

qij would be

qjn = ajqnn j = 1, 2, ... (n-1) (IV-12.D)

The original Lyapunov theory on which the adaptive control theory

discussed is based assumes Q is constant, so to insure this a sampled

data adjustment law employing a zero-order hold for (IV-1.D) and (IV-10O.D)

is proposed. In this way, at any given instant the system will "see"

only constant terms for the Q elements. The adjustment rules then

become

n

Kh(kT) =E n1 xim(kT) +  I j(.)U(kT) (IV-13.D)
i=l j

kd

nn(kT) Kh(kT) sat(qs) (IV-14.D)

where

k = 1, 2, ... sample instants

T = sample period,

kd - desired root locus gain value

qs - saturation value for qnn
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Adaptation I'ni xim(kT) 2+ YjUj(kT)
Process i=1 J

Measurement Transducer qnj(kT)=aj qr(kT) j-1,2,...(n-1)

U +
U- C a bUF C An (t)... , i (t)...

+Xm

Figure IV-2.D. Adaptation Process Using Dynamic Error Adjustment Technique.
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The question of transient response difficulties and the possible

instability of the adapted system with the sampled-data adjustment law

arises. The Lyapunov theory used guarantees that as t - e, e - 0, one

of the requirements being that Q be constant. If so, then Ile(t)ll will

continuously decrease after starting at some peak value since V(e,t) < 0.

This is illustrated in Figure IV-3.D (a), (b), (c) wherein different

values of Q are applied at discrete time points. If adaptation is

initiated at t = tl there will be a Q matrix Q = Q(1). If at time

t = t2 > t1 a Q adjustment is performed, then

][e(t 2 - At)ll < 1e(t2)11 < le(t2 + At)ll (IV-15.D)

and t2 merely becomes a starting time for a new adaptive controller

configuration. The sample rate for the Q adjustment is of no consequence

as far as stability is concerned, the higher it being the better the

approximation to time-invariant error dynamics. As an estimate of the

lower bound for the sample rate one might invoke Shannon's Sample Theorem.

A continuous adjustment law using (IV-9.D) and (IV-10.D) cannot

be employed and asymptotic stability be assured because by using the

adaptive laws in [5, 6, 7], the resulting V terms are sign indefinite.

It could be that such a continuous adjustment law would be stable, since

Lyapunov's theory provides only sufficient conditions, it is just that

nothing definite can be said. It should be pointed out, however, that

simulation results have revealed that the continuous adjustment law

works well in practice.

Since the Q elements are adjusted, it is necessary to insure that

the p.d. Q and n.d. ATQ + QAm conditions are met. Since all Q elements
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+ el(t1)
el

At

el(t 2 )

At

el(t
3 )

tl t2  t3

(a)

Ae

*-Q Constant (1)
Q Constant

Adjustment --
Time 6t

tl t 2  t3

e 2 (b)

T

C2

C1 = V, "Energy-Like
Values"

C3 el

T2

C1 > c2 > c3  (c)

Figure IV-3.D. Error Reduction Using Lyapunov Adjustment Technique (a),
(b) Timing and Error Reduction, (c) Typical Error
Trajectory Illustrations.
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are adjusted in the same proportion, if at t = to, qnn =nn

0 0 0
q1 1  q1 2 " " qln

Qt o  q2 1  q2 2 * . q2n

o o 0qnl qn2 qnn

and at t = qnn nn, then

Qt1= C Qto C>O0

ATQItl + QItlAm = C to + QItoA

the p.d. and n.d. conditions are not changed by the adjustment technique

(they are relatively changed, however).

For the case of step inputs of different values at different times,

the necessary adjustment scheme is particularly simplified, as Kh then

is in the form

o2
Kh = ml X2 + 'jU (IV-16.D)

but since

r
mo o

lm = G(0)Uo (IV-17.D)
i=l

then the necessary adjustment equation for qnn can be written as

k
desired

n r desi (IV-18.D)

nl E G(o)Uo 2 + TjU2
i=1 j
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a particularly simple form to implement.

Example 1:

l Gm(s) 2 G (s)= 2

Ss 2 + 2s + 2 s + 2s + a2y

Using the adaptive law in [6], an a priori determined acceptable error

characteristic equation is

10(s + 2)
1 + 0(s= 0 (IV-19.D)

s(s2 + 2s + 2)

The root locus of (IV-19.D) is shown in Figure IV-4.D. Since x 0 =
m

Gm(o)Uo , selecting a21 
= 10, B21 = 5, q12 = 2q22 then

2 2
k = 5q 2 2 Uo  and q2 2 

= 
-U

To account for Uo = 0, a saturation value of q2 2 = qs = 1000 was used.

The resulting qnn versus Kh characteristic is shown in Figure IV-5.D.

Shown in Figure IV-6.D is the result of using the adjustment scheme

in (IV-18.D) for the cases U = .06p(t), U = 5p(t), U = 3p(t). These

results are compared with those obtained without the adjustment rule in

(a), (b), (c) and the three input adjustment cases are compared with the

desired response (based on the magnitude estimation technique). Note

the excellent correllation between the adjustment results and the standard.

A time-varying example using (IV-13.D) and (IV-14.D) was also run.

using



143

3j

El
2j

-j

-2j

-3j

Figure IV-4.D. Root Locus Plot.

1 + K222(s + ql2/q2 2 )(s + K1 /K2)I + 0

s(s2 + 2s + 2)

q12/q22 = 2 K1/K 2 = 2

o2  2
K2 =21 BX1m = 2 1 U

For k = q22K2 = 10, the closed loop error roots are

Pl = -4 P2 = -6.449 P3 = -1.551
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I

nn

Kh
Figure IV-5.D. Saturation Curves for qnn Adjustment.

U = sin 3t

The results for various sample periods T are shown in Figure IV-7.D,

where the initial error, el = .1 The particular adjustment process

used employs state measurements Xpi(t) instead of Ui(t) for the sampled-

data update. Note that, even with need for qs (since Xpl 0 at a
P1

finite number of points), the time-varying adjustment process results

in an error response similar to that predicted by the time-invariant

linearization process.

One point to note, however, is that unless that sample period rate

T is short enough, the error response will tend to exhibit characteristics

of the forcing functions U (t), i.e. e(t) may exhibit a decaying sinusoidal

characteristic if the inputs are sinusoidal.
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1.0U = .o6p(t) U = 5p(t)

.8-

.6

e(t) 4 (t)
emax emax

\ 0

S 2 5 2 3 4
Time \ Time

1.0
e(t)e(t) 1U = 3P(t)emax .8

Unadjusted .6

- Adjustment Scheme

Standard (from
Magnitude
Estimation .2
Scheme)

G (s)l = 0
t=O 2 + 2s + (1.9)

1 2 3 4 5
Time

(c)

Figure IV-6.D Error Response Results From Adjustment Scheme
For Various Step Inputs.
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KEY

Unadjusted q1 2 = 4q2 2 = 2

T =.5

T = .2
e1 x 10

1.~ ~0 --- T = .01

, - Continuous Adjustment

Time Invariant Adjustment u = .06p(t)

.8

.4

.5 1 1.5 2

-.2- Time+

Figure IV-7.D. Error Response Using Adjustment Scheme With Sinusoidal
Input.



V. RELATED TOPICS

The earlier chapters of this report have related various topics

concerning the design of model-reference adaptive systems. Theoretical

results for implementation difficulties such as stability bounds and

noise error bounds have been presented. In this chapter, some simulation

and numerical results for practical implementation difficulties where

no exact mathematical results are presently available will be presented.

These results give a qualitative indication of what the designer could

expect an MRAS control system to look and operate like under real-world

conditions.

A. Simulation Results For A Physically Realizable Space Shuttle Pitch-
Axis Controller

An example was given in Chapter II relating the developed design

theory of MRAS control to a hypothetical pitch axis controller. Neglected

at that time was the problem of physical implementation. A simulation

example will now be given where in practice the theory of adaptive

control does not exactly fit the problem and hence exact analytical

results regarding stability of such cases has as yet not been developed.

However, from a practical approach, as long as the differences between

theory and practice are not great, experience dictates that results

should be expected to be similar.

147
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In Figure V-1.A is shown a typical Shuttle-type aerodynamic control

model-reference configuration. This contrasts with Figure II-4.D which

disregards physical limitations. Note that in Figure V-1.A the summing

junction El is inside the dotted line which means that it is a mathematical

junction and not a physical entity. The gains from the on-board computer

are instead fed through an electrical junction E2 where an error drive

signal is developed to power a servo actuator to move the aerodynamic

control surfaces. The resulting physical placement of the surfaces then

causes forces and moments on the vehicle, and this is shown by a passing

through bP2 and 6e through bP2. The crucial differences of Figure V-1.A

from II-4.D are that

(1) time varying, unknown input gains b and b are not
adapted as in Figure II-4.D 2

a a
(2) the feedback adaptive gains K1 2 and K2 2 are fed back

through bpl and b 2

(3) an external mechanical servo is used to convert electrical
drive signals to mechanical control

These differences alter the theory in the following manner. The

basic attitude controller of Figure II-4.D has a transfer function of

the form

p (s) = (K21 
+ bpl) (V-1.A)

e (2 -aI.
s2 -(K22 + a2 )s -(K21 + a2)

where bpl, ap2, apl are unknown, time-varying parameters. The basic

adaptive control theory outlined in Chapter II relates to (V-1.A), where

the adaptive gains are strictly additive with respect to corresponding



PLANT-inaccessible

Electro-mechanical bp2
Actuator

Attitud + 6
K K e b

servo actuator time-varying
(dynamics neglected) b matrix 

a22

a2 1

a x
21 pl

On board computer

a

K22 Xp 2  (model+adaptive gains) outputs from sensors

Figure V-1.A. Practical Implementation of a Shuttle-type Attitude
Controller During Re-Entry Phase.
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plant parameters. The equivelant transfer function from Figure V-1.A is

e Kfbpl
P (s) = (V-2.A)

6e s2 -(K22Kfbp 1 + aP2)s -(K 2 aKfb 1p + a2

where

Kf - servo gain (dynamics neglected for illustrative purposes
only)

In (V-2.A) the adaptive gains are effectively multiplied by b pKf, an

unknown quantity. This creates two problems

a a
(1) The effects of K2 1 , K2 2 must reach E with an effective

positive sign connected with them anA if Kfbpl is negative,
then an appropriate sign change is called for at E2 .Failure to do this will lead to instability of the MRAS
controller. This implies that only some gross knowledge of
the sign of Kfb need be known.

(2) Kfbp has the effect of "altering" the adaptive gains
whicA were computed according to a theory which did not
account for these terms. In effect this meansthat in -

the implementation problem, adaptive gains K28 and K2a
should be used as feedback gains,

where

a a
K = K
21 K21

(V-3.A)
a a

K2 2 = K22/~

where

a a
K21 K2 2 represent adaptive gains computed according to
(II-18.A) and (II-19.A)
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a a
K21 , K22 - actual electrical feedback adaptive gain signals

K - best estimate of Kfbp with both magnitude and sign taken
into account 1

Another problem related to physical realizability is that of incom-

a

plete adaptation of even the Kij gains. Due to costs and hardware com-

plexity it may not be possible or desirable to construct all gains. In

terms of the simple example in Figure V-1.A this would suggest that K22

might not be adapted.

In Figure V-2.A are shown simulation results for the control system

of Figure V-1.A for the cases of incomplete adaptation and time-varying

feedforward gains (i.e. bplKf of Figure V-1.A). The simulation conditions

are listed in Table V-1. The parameters a,8,y,6,qij are as defined in

Section D of Chapter II.

Gml(s) P(s) = -. 05
1 (s+l)(s+2)

2(s) = -. 05

attitude(s+l)(s+2)

12 = 3. q2 2 
= 1.

tinitial = 150 seconds (see Figure II-3.D)

a2 1 = 4000., B21 = 1000., Y2 1 = 400., 621 = 100.

a22 = 4000., B22 = 1000., Y2 2 
= 400., 622 = 100.

el = em- p  e2 = 6M-6p

a = 600 , attitude = 650

Table V-1. Simulation Data for Results Shown in Figure V-2.A.
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.25

I"N K2 1 only adapting

.2 KEY

e1 ____ _ time-invariant 2
e Ib = -.05

1 P2
.15

-------- time-varying b (see C Cm

SIFigure II-3.D)

.1 b = -. 05
1 \\ P2

.05 K21'K22 adapting

I,

0

151 -- -152 153

Time from booster separation, seconds

Figure V-2.A. Simulation Results for Incomplete Adaptation
and Time-Varying Forward Gain
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Note that, although exact theory is not available yet to describe

the error dynamics for the adaptive controller subject to time-varying

unadapted terms such as bpl , bp 2 of Figure V-1.A and incomplete adaptation

a
(i.e. K22 = o in Figure V-1.A), the simulations reveal results similar

to those expected from exact theory. With time varying bPl the errors

were larger than from the exact methods, but the overall response was

very similar. For the case of incomplete adaptation errors were larger

than expected and there was a slight overshoot not predicted by the

theory, but the overall "shape" of the response was as would be expected

based on the linearization design of Chapter II.

This example illustrates that, from a practical standpoint, the

Lyapunov MRAS adaptive system has merit even when many of the mathema-

tical idealizations are not met in practice. Of course, simulation

results can only provide a qualitative guide to stability, but indica-

tions are that practical implementation need not limit the adaptive

control approach.

B. RCJ to MRAS Attitude Phase-Over Control During Re-Entry.

During the orbital flight phase, the Space Shuttle attitude is to

be controlled by some form of reaction control jets. Such a control

system allows a trade-off between attitude error (on the order of 20-3

usually) and low fuel consumption [23]. The control system for the RCJ

package was designed assuming no aerodynamic forces would be present a

very reasonable assumption at altitudes of 500 thousand feet or more.

However, during re-entry aerodynamic forces begin to build up on the
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vehicle, which, coupled with severe re-entry corridor attitude limits

and unknown time-varying plant parameters, suggests that an MRAS controller

might be used during the re-entry phase.

Unlike the Apollo and Gemini craft, the Shuttle has large wings for

lift and it is exactly this lift capability which tends to nullify the

stabilizing RCJ control torques during re-entry. This is because the

moments due to aerodynamics very quickly become orders-of-magnitude

greater than those available from conventional RCJ systems.

To facilitate the two different control modes, some sort of switch-

over routine is needed. Some of the obvious alternative techniques for

determining when to switch from RCJ to MRAS control during the re-entry

profile include

(1) perform a switchover from total RCJ to total MRAS
control according to a fixed criterion (probably
based on Monte Carlo-type simulation data), i.e.
altitude, Mach number, dynamic pressure, attitude-
hold capability

(2) on-line manual pilot switch-over according to his
"feel" of the controls

(3) employ an automatic on-line technique for propor-
tioning the control between RCJ and MRAS

It is (3) above which is of interest here.

The RCJ controller is of the form shown in Figure V-1.B, where only

the pitch axis is shown, it being assumed decoupled from the roll-yow

axes. The coefficients A1 and A2 are time-varying coefficients due to

aerodynamic parameters, T is the thruster force, Iy the vehicle pitch-

axis inertia. In deep space the A1 , A2 are zero, but during re-entry

these terms change to non-zero values. The actual values are unknown
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because of the indeterminate nature of the particular re-entry profile.

With such a bang-bang controller, a reasonable trade-off between attitude

deviation and fuel consumption is obtained. During re-entry, the aero-

dynamic coefficients alter the RCJ controller effectiveness and the need

for aerodynamic control increases.

A basic adaptive attitude controller for the pitch axis is shown

in Figure II-4.D. Given sufficient aerodynamic lift such a system can

stabilize a re-entering Shuttle-type vehicle regardless of the actual

plant parameters. As was illustrated by an example in Chapter II, the

plant of the re-entering Shuttle can be unstable (without compensation),

and without some form of adaptive control the vehicle could burn up.

Shown in Figure V-2.B is one possible physical implementation of a

'total' attitude control system. The heart of the system is the "con-

troller proportioning device" which determines, on-line, which type of

control, either RCJ or MRAS should be used at any given time.

Defining control effectiveness to be the amount of influence exerted

on a space vehicle by a particular control system, the basic problem

during re-entry is to optimize this "effectiveness" such that minimum

attitude deviations occur. The control torque due to RCJ control is

TRCJ = (L/2) F (V-1.B)

where

TRCJ = torque due to RCJ system

L/2 = effective moment arm for a single axis thruster

F = net thruster force
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and the torque due to aerodynamic surfaces as

T =AS = (c)(pV2 )(Sref)(Cm6e 6e )  (V-2.B)

+ pVS c2C a
ref me

TMRAS = torque due to MRAS control

c = reference length

Sref = wing effective reference area

pV2 = dynamic pressure

Cm = wing pitching moment derivative due to z.

A proportioning signal y representing the fraction of MRAS control as

compared to RCJ is to be determined,

o <y < 1

It is hypothesized that this phase-over control be a function of an on-

line measurable parameter indicative of aerodynamic forces, so it is

assumed that

y = f( pV2) (V-3.B)

since the dynamic pressure (pV 2 ) is related to aerodynamic control and

is available. As a simple approach, y is assumed of the form of a

polynomial in ( pV 2 ),

y = ao + alx + a2x . . + anx n  (V-4.B)

where
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x = pV 2

a , , a a2 , . . . an are coefficients to be determined

This form of control is hypothesized because, in addition to being a

function of an on-line measurable parameter, it is simple to implement,

requires little computation time, and is a continuous function (so there

will be no discontinuity in control). The amount of RCJ or MRAS control

is then determined by the fraction of EDRIVI , and EDRIV2 shown in Figure

V-2.B, available as a control signal

amount RCJ control = (l-y) - (EDRIVl)
(V-5.B)

amount MRAS control = y * (EDRIV2)

The degree of the polynomial, n, is assumed to be at least of order two

(to be explained later), but may be of any size, depending on the number

of data points used.

There are at least three well-defined control points for a re-entering

Shuttle-type vehicle (at least for the purposes of this presentation),

and these three plus any additional points based some a priori selected

criteria, may be used to determine the coefficients ai . These three

control points are

(1) deep space-full RCJ control

(2) atmospheric flight at = 150,000 feet-full
MRAS control

(3) the point in time at which TR = TMRAS -
control is assumed 50% each mode
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Other additional points could be defined on the basis of a given pro-

portion of MRAS control for a given aerodynamic pressure. The control

points then define a phase-over profile as a function of the dynamic

pressure.

The simplest case is for n = 2, when

y = ao + alx + a 2 x2  (V-6.B)

Using this approach a parab6lic function of the form y = x2 is obtained.

Ideally y should be a single-valued function of x, and the simplest form

is then

y = a2x2 (V-7.B)

To further define the three control points, the following assumptions

have been made:

(a) x min is assumed to be zero

(b) if x<Xmin , y = o

(c) Cm6 e is constant during re-entry phase-over (this
is approximately correct for the large (>5) Mach
numbers and large (=600) angle-of-attack encountered
during re-entry)

In order to insure that only positive numbers are used for y, the y

obtained from (V-4.B) is passed through a saturation device so that the

actual y used as a controller signal is scaled to lie between 0 and 1.

This is shown in Figure V-3.B.
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Saturation Device

-opu out

Figure V-3.B. Circuit to Insure That the Phase-Over
Control y Lies Between 0 and 1.

Using (V-7.B) the three control points reduce to a 50% phase-over

point and a 0% phase-over point, where the 50% point is defined as

= .MRAS5 
(V-8.B)

T TRCJ + MRAS

Equating the two torques and solving for p, the dynamic pressure x50 %

can be obtained. This defines control point 2. Using (V-7.B) a

particularly simple relation for point 3 is obtained. Using

2
y = a2x

Y2 =  5 @ x = x2

y 3= 1. @ xx 3 = 2 x2

So if x2 is determined (using (V-8.B)), then x3 is fixed. Computation

of control phase-over is greatly simplified then, requiring only (V-8.B)

and (V-7.B) An example will now be given to illustrate how this y

function is computed for the simplest case, n = 2.
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Example: x = pV2 > 0

Compatable Space Shuttle data

L/2 = 50 ft.

F = 250 lb.

c = 200 ft.

Sref = 10 ft.

SCm, = iCm6el = .002/degree

1enominal lo

a - 600

V = 1.07 x 10 ft./sec

x50 % is found by equaling (V-1.B) and (V-2.B) and solving for p

p = (42 ) F (V-13.B)

VSref c Cma a + VIC m6 e 116e l

(50)(250)

(i.07x0 )(10 )(4200)
(200)(2xlO-3 )(60)+(1.07x104 )(2xl0 -2 )(1)

5.16 x 10-8 slug/ft. 3

x50 % = pV 2  .29 lb./ft. y = a 2x

from which

S5 = a2(.29)2

a,2 = 5.95
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Additional data points could be added by specifying y at a particular

(estimated) aerodynamic force level, or some of the previously suggested

control points could be redefined. The n = 2 case is attractive, however,

as there are not local optima to contend with.

A simulation of the control system shown in Figure V-2.B was run

with the control phaseover scheme discussed in the example and the results

presented in Figure V-4.B. and V-5.B.

C. On-Board Control Computer Computational Requirements

Whenever one speaks of applying modern control theory to a practical

problem, the age old questions of physical realizability and practical

implementation arise. In the case of adaptive control, the concern

generally rests with the complexity of the controller and the difficulty

of real-time operation with limited computational hardware. In this

section the computational requirements for implementing a model-reference

system are discussed and some numerical results for a specific example

presented to illustrate computation time as a function of the system

order and the number of inputs processed.

The basic plant dynamics considered were of the form

0 1 0 ... 0 0 0 ... 0

0 1 ... O 0 0 ... O
= xp + U (V-1.C)

p p P p
-a -a1 -a 2  n- bn1 bn2  bnr2 n-l nin2 r
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where the terms are as defined previously. It is assumed that all terms

are adapting so that "worst case" estimates will be available. The basic

integration routine considered was the fourth-order Runge-Kutta and the

differentiation process (used only with the Boland and Sutherlin method)

was a basic 2nd order Lagrangion interpolation polynomial. Computational

requirements were determined as a function of n(system order), r (number

of inputs), plus computer add, subtract and multiply times.

The equations considered were

(II-18.A) n of these
(II-19.A) r of these
(II-2.A) n of these
(II-1.A) n of these
(II-5.A) n of these

Using these and the numerical analysis methods mentioned, equations

relating add, subtract and multiply times in terms of n and r were

determined for the cases of [5,6,7]. The results are tabulated in Table

V-2.

Type of Adaptation Computation Time Function

1. Boland and Sutherlin [7] TB = (5n2+ 5rn + 48n + 5r2 + 34r) M

+ (5n2+ 5rn + 47n + 5r2 + 28r S

2. Gilbart, Monopoli, and TG = TB - 45n - 45r
Price [6]

3. Winsor and Roy [5] TW = TB - 54n - 54r

S = subtract time (assumed equal to Add) M = multiplication time

n = system order r = number of inputs T = computation time

Table V-2. Computation Cycle-Time Equations
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Using data for a particular class of aerospace computers [2h],

computer time requirements were determined using the data in Table V-2.

and are presented as a series of graphs showing computation time per

cycle versus system order with the number of inputs as a parameter.

Figure V-1.C shows the computation time, in order to perform a

single set of computations for the adaptive gains at a given instant, for

the Boland and Sutherlin adaptation technique. This method [7] repre-

sents the greatest computational load of the three methods discussed,

but as shown in Figure V-2.C, this upper bound on the time is about equal

to that for both [5] and [6]. The small differences between computation

times for the various methods shown in Figure V-2.C means that computation

time need not enter the consideration as to which technique to employ.

Instead, such factors as the number of terms to adapt and model order

might be of greater importance.

It should be pointed out that the cycle times listed are based upon

a digital implementation of continuous systems equations. In actual

practice, most likely a discrete-data set of equations would be imple-

mented. In this way only summers, multipliers and delays would be needed

to implement the adaptive equations. Most likely the indicated computa-

tional cycle time would be much smaller for a discrete-data implementation.

The reason an estimate of the discrete-data implementation was not

given was that the adaptive control theory used in this report is based

on continuous systems and thus far, very little concerning exact results

for the discrete case is available. This is an area which has further

research possibilities.
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The previous results given are for the case when the on-board

computer is all digital. In the case of present spacecraft controls, a

hybrid or all analog approach is sometimes used, due to high reliability

and simplicity. Figure V-3.C is an example of the actual adaptive equation

implementation for an all-analog system, illustrating the difference

between available measurements and actual required computations and

adjustment controls.

D. Use of More Than One Model During Re-Entry

Because of various types of inputs and environment that a plant

might be subjected to, it might be desirable to utilize different models

for different plant operating conditions. The adaptive control theory

discussed is based on time-invariant models, so some sort of switching

routine would be required to change the plant response. During the

transient phase when switching models, the error analysis techniques in

Chapter II can be utilized (assuming constant.inputs) to describe error

transient response. This is because the analysis theory is based on the

supposition of a jump change in a plant parameter. If, at t = t

m
Gm(s) = a

n m n-l m n-2 m
s + an- 1 s + an-2S + ... a

G (s) =
sn+ an sn- + a sn-2 + ... aP

n-1 n-2 o
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and it is assumed

a" (t) = a (tl )  j = 1,2, ... (n-1)

and then at t = t the am jump to new constant values, the plant

transient response would be the same as if

m paj (tl ) = a (tl)

where

am (t 1 ) = am (t) a (tl) aJ (t+)
j 1 j

+ P p + p
and at t = t the a jumped to values a (t) = a (tl).

Under such circumstances the new model at t = t would be used as A(s)

in (II-16.B). This shows then, that a step change in a model value has

the same effect as a step change in a plant parameter. To the plant

system the unchanged plant parameters appear as step changes with

respect to the new model parameter values.



VI. SUMMVARY AND CONCLUSIONS

A. Summary

A large number of generally related topics of stability, analysis,

design, and implementation of a class of MRAS controllers were presented.

In order to employ these techniques in one grand design package, the

following design synopsis is presented.

With a plant and model in the form

x = Ax + Bu

where A, B are given by (II-15.B) a basic error characteristic equation,

given in (II-16.B) was derived for the adaptive gains given in (II-18.A)

and (II-19.A) for the system defined in (II-1.A), (II-2.A), (II-3.A),

(II-4.A), and (II-5.A). Using these, and given a knowledge of the qij

ratios, the fixed adaptive gain parameters a, 0, p, y, 6, a may be

selected. In case B terms as well as A terms of the plant are adapted,

(II-11.C) should be employed. To estimate the maximum error el and the

time increment which passes after a plant disturbance before this

maximum occurs, (II-5.E), (II-6.E), (II-12.E), (II-15.E), and (II-16.E)

are employed.

To determine "zero" placements of sn+q(n- 1 ) n /q n n s n -l+ .. +qln/qnn

the technique outlined in section III.C may be used, along with the

computer program QRANGE. Exact analytical results for a 2n d order

172
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system were given for (III-2.E) in (III-6.E). An extended stability

bounding criteria, subject to the restrictions given in section III.B

is given in (III-6.B). Although restrictive in when it may be applied,

such a technique does allow the designer more freedom in the transient

error selection.

The effects of stochastic noise on both inputs and states simplify

to the need to minimize (IV-10O.A). Error sensitivity under noise

reduces to an evaluation of (IV-7.B) and (IV-8.B).

In section IV.D an adjustment technique to insure time invariant

error dynamics was presented. The major results are presented in

(IV-10.D), (IV-12.D), (IV-13.D), (IV-14.D), and (IV-18.D).

Using the equations outlined in this section, a control engineer

with only a background in classical control design could easily design

an adaptive controller.

B. Conclusions

1. The non-linear time-varying adaptive gains can be analyzed in

a linear fashion such that only classical control knowledge is required.

2. The basic design and analysis of MRAS controllers can be

reduced to a series of simple computer programs suitable for interactive

terminal use, relegating drudgery work to computer aided design (CAD)

studies and allowing for maximum flexibility and design by the design

engineer.

3. Analysis of stochastic noise effects can be easily handled

and an upper bound on the error norm obtained.
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4. Analytical results from Chapter IV and simulation results from

Chapter V indicate that even when many of the necessary conditions (i.e.

model and plant of the same order, all states adapting, etc.) are not

met in practice, overall response characteristics and the resulting plant

stability are at worst only slightly affected, suggesting that adaptation

o;ffers a viable solution to unknown (and possibly time-varying) plant

control.

5. Very little applied research has been performed in regard to

practical implementation difficulties and there is much room for ad-

ditional study in these areas.

Some of the possible areas for additional study include the use of

state estimation for reconstructing missing plant states, CAD of the

design phase, decoupling of multi-variable adaptive systems, and effects

of various classes of nonlinearities (especially saturation) on

Lyapunov stability constraints.
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APPENDIX A

Derivation of Defining Equation for Determining
Bounds on the qij Elements

Using (III-2.C), repeated below, a matrix equation will be

developed for determining bounds on the qij elements.

Am Q + QA m -c 22 (III-2.C)

2Cnn

The c.. entries are all greater than zero and can take on values in the

range of 0+ to m. The case where the ci's are not necessarily equal

will now be used to obtain generalized ratios of qij/qnn and these

ratios compared with those values obtained from a Routh-Hurwity array.

With Am in the phase variable form (III-2.C) is computed as

0 0 0 . . . -a n 1  1 1 q 1 2 . . " qln
m

1 0 0 . . -an2 q2 1  22 ' " " 2n

010 .. . . . +

0 0 0 . . . l-ann m -n qn2 " nn
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q l l  q1 2  . " .' qn 0 1 0 0 .... O

q2 1  q2 2  0 0 ' q2n 0 0 1 0 . . .

. 0001 ... = -C

m m m
nl qn2 ' ' ' -anl -an2 . . -ann (A-l)

Expanding, (A-1) simplifies to (A-2) shown on the following page.

The left hand side forms a symmetric matrix, so when equating the

matrices term by term there are only n(n+l)/2 linearly independent

equations. Using the fact that

AmTQ + QAm = [bij]

where bij = bji

the equations are

-2q 1nan1 m = -2c11

m m
ql-qlnan2 - q2nanl = 0

m m
ql2-qlnan3 - q3nanl = 0 n terms

13-qlnan4
m  - q4nanl = 0

m - am = 0 (A-3)ql(nl)-qlnann - qnanl



-qlan 1
m  

-n2anl m  
-q nnanl m

m m m
qll-qnlan2 1q2-qn2an2  * n nn an2

m m m21-qnlan3 22-qn2an3 q 2n-q nnan3 +

q -q a m  q n)2-q a q a m(n- 1 ) 1  n q (n-1)2 n2 n (n-l)n nn nn

-qlnanlm qll-qlnan2m " ql(n-l)-91nannm 2Cl

-q2nanlm  q21-q 2nan2m  ... 92(n-l)-q2nannm  2c22

-q3nan 1
m  q3l-q 3nan2

m  ... q3 (nl)-q 3nann
m  

n2c3 3

(A-2)
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2 q12 - q2nan2m  = -2c22

22 + q13 - 2nan3m  93nan2 = 0

q23 + q414 - q2nan4m _ q4nan2m = 0 n-1 terms

m m

q2(n-) + q1 n - q2nann - qnan2 =0

n-2 terms

2 terms

2 q(n-l)n - qann = -2cnn 1 term

Defining n(n+1)/2 = m, (A-3) can be placed in the form

Ax = b (A-4)

where
A - mxm constant matrix

ST [11 q1 2 ." qln q2 2  q2 3 "' q2n  q3 3 . . . . . qnn]

ixm vector (A-5)

b - Ixm vector made up of O's and (-cii) terms



where

q1 1  q1 2  q1 3  ln q 2 2  q 2 3  2n ... q3n q 4n q(n-1)n nn

0 0 0 ...- anm 0 0 ... ... ... O0 ... O 0
nl

(1) m m
A 1 0 0 ... -an2 0 0 ... -a ..... 0 ... 0

m m
S 1 0 -an3 0 0 ... ... -anl ... ... O 0

nxm 0 0 1 -an4 0 0 ... ... ... -a ... 0

.. . . m m
S 0 0 ...- a 0 0 ... O .. ... O O -ann q......... nl

q1 1  q1 2  q1 3 "'q n q2 2  q23  q2n 3n 4n qn-1)n nn

0 1 0 ... 0 0 .. -a 0 ... ... 0

= m mn3  n2m -a ... O ... 0 0

0 0 0 0 0 1 -an4 m ... 0 ..- a n2 ... 0
(n-1)xm n4  n2

m m
0 0 0 1 0 0 -a ... 0 ... 0 ... 0 -an2

nn n2
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q1 1  q1 2  q1 3  q2 2  q23  q2 4 ... 0 ... qnn

bT = [ 1 1  0 0 ...- c 2 2  0 0 ... 0 ... -c nn (A-6)

For the general case, the entries in the A and b matrices of (A-4) are

very detailed, hence an explanation is in order.

A may be partitioned into n sub-matrices, the sub matrices de-

creasing in size from nxm to lxm in steps one 1,

A(1)

A=

A
( 2 )

A(m)

(n-2)xm q qn 23 2n "' 3(n-1) 3n "' nn

m
S 0 1 1 -an3 ... 0

(3) m
-an4

1 1

m
-ann -an3

A(n)
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These A(k) sub-matrices may be generated according to 4 basic rules. To

simplify the explanations, elemental locations will be referred to in

terms of the row number of the kth sub matrix and the column location

by the location of the q th element, i.e.
ij-

qll q12  q13 "' qln ' q2n "' q3n "' qnn

A(1)

A
(2 )

A(n)

The qij .th element in x can be determined from
ij-

i-2

xp)= q p (j  i + l) + I (n-£)
£=0

where -1
I (n-£.) 0 by definition

£=0

The four rules for construction of the A(k ) are:

(1) diagonal of l's starting in row 2 of qkk, k = 2,3,**'n

(2) diagonal of l's starting in q(k-l)k' k = 1,2,'''n

where q01 is disregarded

C3) in qkn column, sequence of -anjm j = k, k + l,***n

(4) "diagonal like" array of -ankm from qkn entry to qnn

entry.
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As an example of this technique, for the fourth order plant-

model system, where

0 1 0 0

0 0 1 0
Am 0 0 1 Qx4 Symmetric

0 0 0 1

m m m m

-a 4 1 -a42 -a43 -a 4 4

the resulting "A" matrix of Ax = b is given on the following page.



qll q12 q13 q14 q22 q23 q24 q33 q34 q44

0 0 0 -a 4 1m  0 0 0 0 0 0

A(1) 0 0 -a 4 2  0 0 -a 41  0 0 0

m m0 1 0 -a 4 3  0 0 0 0 -a 4 1  0

O 0 1 -a4 4
m  0 0 0 0 0 -a 4 1 m

0 1 0 0 0 0 -a4 2  0 0 0

A (2) 0 0 1 0 1 0 -a43m -a 4 2  0

0 0 0 1 0 1 -a44 m  0 0 -a42m

m 0 m m
A 0 0 0 0 1 0 0 -a 0

A(3) -a43

0 0 0 0 0 1 1 -a44m -a43

A (4) 0 0 0 0 0 0 0 1 -a 4 4 m



APPENDIX B

Phase Variable Transformation

The derivation of the perturbed error characteristic equation

given in (II-16.B) requires that the plant and model state matrices

be in the phase variable canconical form

0 1 0 ... O0

A = 0 0 1 ... O0 (B-l)
m

m m m m
-anl -a .a -a-an0 -an -an2 "' n(n-l)

where
a m n-l m n-2 mwhere n m n- m n-2 + ... +a s + a 0 (B-2)

n(n-l) an(n-2)s +...+anl + an 0

represents the characteristic equation of the model. The conditions

under which a transformation exists which will result in a coordinate

transformation from one state space into another is given in this

Appendix, along with the transformation.

Consider the time-invariant nth order model

z = Kz + Du (B-3)
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where
u is r x 1 input vector

K is n x n matrix not in the form of (B-l)

D is n x r matrix

z - n x 1 state vector

D can be written in the form

D = dl d2 ... d (B-4)

where the di  i = 1,2,'**r are the column vectors of D. It is

desired to determine the transformation matrix T, such that

z = Tx (B-5)

and the conditions under which T exists. A necessary and sufficient

condition for (B-3) to be transformed to the form

x = Ax + Bu (B-6)

where A is in the form of (B-1), is that the system be controllable.

This is true if at least one of the matrices Qi has rank n,

where

Qi =  di Kdi K2 d *** K(n-1 )  di (B-7)I i i = 1,2,'''r

and Qi is the controllability matrix of the system in (B-3). If one

of the Qi has rank n, then a transformation matrix T will exist such
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that
z = Tx

and T will transform a system in the form of (B-3) into the form of

(B-6), where the matrices K, A and D, B are related by

A = T- 1KT T-1D (B-8)

The B matrix is of the form

b11  b12 .'" b lr

B = b2 1  b2 2 ... b2r = b b2 ... br (B-9)

bnl bn 2 ... bnr

where in general at least one of the column vectors bi is of the form

0

bi = 0 i = 1,2,*"r (B-10)

1

A straightforward technique for computing T is given in 120].

If (B-3) is such that K is in the form of (B-1), then no trans-

formation is required. In this case, D (or B) may consist of any

combination of n x r terms. In general, when the plant model dynamics

are such that the system matrix is in phase-variable form, then the

system flow model will appear as in Figure (B-1).



* 1

U2

l el *

r b2 bn b(n-1)r b(n-1)2 b(n-1) b(n-2) r b (n-2)2 b(n-2)1 b r b11

+* + * *
+ + + +
+I t 

+1 1 1 X***
SS S

a .nn
0 *

an(n-1)

anl

Figure (B-1) Flow Diagram of a phase-variable canonical form.



192

In order to possess physical meaning, the artificial states x

must have a one-to-one relationship with those of the original state

space. Assuming that one particular state of the original system is

the major "output" (e.g., an aerospace vehicle attitude, the flow rate

of a chemical in a refinery, etc.) and

- tlr-

T= - t 2 r- (B-11)

t

nr

is such that

tlr (1 0 0 '" 0) (B-12)

then there will be a one-to-one correspondence between the actual state

z1 and the artificial state xl. In a more practical sense, if the

"0" elements of (B-10) were very small (with respect to 1) non-zero

numbers, the design results using the error characteristic equation

with the artificial states should provide reasonable engineering

results for the actual state zl. Note, however, that there need not

be any simple relation between zi and xi if i > 2.

A positive aspect of using the configuration given in (B-1) and

(B-9) is that a well defined transformation matrix T can, in general, be

determined for a multivariable system such that the system matrix is in

the phase variable Frobenius form. In most application work involving

multivariable systems, a constraint on the "B" matrix as to the
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particular form it may possess severely limits the form the "A" matrix

may take on [21, 22]. The linearization procedure for the error

equation, however, places no restrictions on the form of the B matrix.

The resulting transformation is non-unique, as is to be expected with

multivariable systems, but is straightforward in application.



APPENDIX C

Derivation of an rrror Bound with
State and Input Noises Present

The noisy plant discussed in Chapter IV is the basis for the

derivation of the following gross error bound. The model and plant

equations are

,Am = Amm + Bmr(t) (C-l)

x = AOx + K(t) kp(t) + Bpu(t) (C-2)
-p O-p -P

= x - 1 (t) = e - n(t) (C-3)
S-m -p -

Differentiating (C-3) with respect to time and substituting in (C-2)

and (C-l),

= Amx m + Bmr(t) - [Ag x + K(t)p (t) + Bpu(t) + n(t)]

(C-4)

Defining
= AO + K(t) (C-5)

u(t) = r(t) + v(t) (C-6)

p + (t) +n(t) (C-7)

(C-4) can be written as

_ = Amx m + Bmr(t) - [Ap:p + B r(t) + Bp_(t) - Ao~(t) + n(t)]

+ Am p - A (C-8)
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Combining terms, (C-8) simplifies to

= A + [Am - A + [Bm - Bp](t) - B v(t) + A0 i(t) - rn(t)

S= Am + Alp + Br(t) + (-Bpv(t) + Ao~(t) - n(t)) (C-9)

(C-9) is the noise-presence equivalent to the noise free case of

(II-7.A), where now the external input is r(t) instead of u(t).

The Lyapunov function for the Boland and Sutherlin [7] method is

now modified so as to be p.d. in 6, u(t), and I , the available error,

input and plant states

V = TQ + a i + iJ kiki Pj
i=l j=l aij k=l

n 2 n n 2
+ pij _d Y1kki p + I pij Y Akkidt k=1 i=1 j=1 k= pj

S 1 b ij + ij A- kkij + aij =1 kqkiujJ

n r n n

i=l j=l yij k=l k= q

+ C ij [ k qkiuj (C-10)
i=1 j=1 k=l

where the notation is analogous to that in Chapter II. The time

derivative of V is

n n

i= 1=l alij



196

n r 2 n

+ 2 b d aij kii=l J=l biJ kkiuj
i=1 j=1lyjj dt k=l

n r n 2
+2 6ij oij d u

i=1 J=1 yij dt k

n r n 2 n

+ 2 ij ij k ki Uj d k kiuj
i=l J=l kl dt k=1

n r 2n n

+ 2 1 -I ekkiuj d Y ekkiu
i=1 j-1 Yij k=l k=I

n r 2 n 2n
+2 C qI§kiuj d I i4kiuj

=1 j= iand k=bij chosen todt k=implement physically realizable controls

nn n n

S2ij pij k kij k ki pj
i=1 j=1 k = k=

n n n n
2 ij ekkiu I a kiu (C-11)

i=1 j=1 k=l k=1

With ij and bij chosen to implement physically realizable controls,

n n
aij = -6iJ r kqkilp - ij Ti Xdkqki pjk=1 k=1

(C -12)

-pij I 6kqki pj
2 k=1
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n n n
+ 2 1= 1 - I akqkipj

i=j j=1 k=l

n n n

+ 2 2 P aijd a 2 kki
i=1 j=l ij dt k=

i=1 j=1 dt k=1

n ij pij d n 2
+ 2 2 i qi k ki

i=1 j=1 k=

n n n n
+ 2 i pil I kqkip j d2 kq ki:pi=1 =1 k=l dt k=

n n 2n n
S2 dkqki pj Id dkki

i= 1 j=l ai k=l k=l

n r 2 n 2 n

S2 I k kipj 8k ki pJ
k=l k=1

n r ij bi n r n

* bij bij dijij A
i=1 j=1 i= j=1 k ki

n r n

+ 2 1 kbij kIi ui=1 j=1 = k  i uj

n r n

+ 2 1 'J ij d I k qi
i=l J=l -y - =1 k kiuJ
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n n
bij = -yij Z kuj - dij Ak kiuj

k=l k=l

(C-13)

2 n
-aij - kqkiuj

dt k=l

Substituting aij and bij into V results in

V (AmTQ + QAm) + (Am - Ap) + TQ( m - Ap) k

+ rT(B m - Bp)TQ + TQ(B - Bp)r - TBpT Q

T TT T T T
-eQB+ v+ AoQ + o QAo q - nQ - Q

n n n n n n 2
- 2 aij I kqki pj - 2 1 B ij(y &kqkiJ)

i=l j=1 k=l i=1 j=1 k=l

n r n n r n 2
- 2 1 bij Y dkqkiuj - 2 Y Z 6ij(y Akkiuj)

i=1 j=1 k=1l i=1 j=1 k=l

which reduces to
n n n 2

V = -T(A Q + QA )1 - 2 ij(y A)
i=1 j=1 k=1l

(C-14)
n r n 2

- 2 I I 6ij(l dkqkiuj) + 2 &TQ[Ao - . - Bv]
i=1 j=1 k=l

This function, without further information, is of an indefinite form.

By using a bounding process [ 9 ], (C-14) can be written as
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n n n 2
V < + T(A m + Q + QAm)' - 2 I ij(I Ak qkij)

i=l j=1 k=l

n r n 2
-2 Y 6ij(f Y k kiuj) + I IQC (C-15)

i=1 j=l k=l

where P is defined by (IV-7.A), (A TQ + QA ) forms a symmetric
m m

matrix, so equating

HH = -(AmTQ + QAm)

then - -1
t II0iI = rjQH-1 HI < IIQH - II He (C-16)

IfL > r Q H-1 > rQH-1 (C-17)

then -1 2
rthen IIji <  QH- Il H1 1 < IH8I 2  -- (A TQ + QAM)

(C-18)

and V will consequently be negative definite.

If A is an n x n matrix and x an n x 1 vector, the norm of Ax

will be defined to be

I IAxl ii MI 2SI (c-19)

where M is the smallest positive number for which (C-19) holds, where

I xl is the Euclidean norm. Using (C-18)

A (-A Q - QA ) min <  iHII < (-A Q - QA M)I
m min -20)m m

(C-20)
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where X (A) is an eigenvalue of the matrix A. Defining

IQI I = A (Q)max

IIH-1 = T (C-21)
S(-Am Q - QAm)min

From (C-19) thru (C-21), (C-17) can be used to obtain

I I > (Q)max r = p (C-22)

X(-A Q - QA )m m mi

This represents an upper bound on the norm of the error vector & in

order to quarantee V is negative definite (n.d.). Very possibly

Ilell could be less than indicated by (C-22) and V still be n.d.; it

is simply that nothing can be said then. Similarly, if for some

I I < p V became positive definite then the equilibrium state would

be unstable in the sense of Lyapunov and the plant would be driven

such that the error 6 increased to the point where V was n.d..


