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WALL BOUNDARY EQUATIONS WITH SLIP AND CATALYSIS
FOR MULTICOMPONENT, NONEQUILIBRIUM GAS FLOWS

By Carl D. Scott
Lyndon B. Johnson Space Center

SUMMARY

Boundary equations are obtained for a low Reynolds number, high
enthalpy gas flow where velocity slip and temperature jump are impor-
tant. The formulation treats a multicomponent gas mixturs that m-y be
in nonequilibrium with finite-rate catalytic reactions ocrurring on the
wall. A first-order distribution function is used to include multicom-
ponent diffusion. A simplified gas/wall interaction is assumed where
individual atoms or molecules eithar reflect specularly off the wall or
stick and are fully accommodated. The houndary equations are obtained
for use in flow-field calculations such as finite-difference time-
dependent methods or other methods that are app. .cable to low-density

flow regimes.

INTRODUCTION

The interaction between a high enthalpy, low Reynolds number gas
flow and a relatively cold surface can be significantly influenced by
the characteristics of the surface. This interaction establishes bound-
ary properties for the gas flow and can influence the overall flow field.
Surface characteristics are important, for example, in the high altitude,
low Reynolds number flight regime for prediction of Space Shuttle orbiter
entry heating and for interpreting data obtained in ground tests of space-
craft entry thermal protection systems.

In low Reynolds number hypersonic flows sucn as at high altitudes
or in low-density arc-heated wind tunnels, the boundary condition assump-
tions that are adequate for the higher Reynolds number regimes may no
longer be adequate for describing the flow parameters at a wall (solid
boundary). Specifically, the density at the wall is sufficiently low
that the velcrcity and temperature of the wall are no longer the same as
those of the gas immediately adjacent to the wall., These phenomena are
referred t¢ z2c velocity slip and temperature Jjump.



Figure 1 is a plot of stagnation pressure as a function of total
enthalpy showing typical entry trajectories for the Space Shuttle and
Apollo vehicles. Regions where arc-heated wind tunneis typically oper-
ate for simulating entry heating and the epproximate region in which
slip effects become important are also shown. It can be seen that there
1s a region of the shuttle trajectory in which slip may have some sig-
nificant effect on the boundary conditions. Moreover, there is a large
region of a typical arc-tunanel operating map for which slip is significant.

For a real, chemrically reacting gas, it is necessary to formulate
a boundary description in which the pressure and species concentration
also "jump" at the wall because of rarefaction effects and chemical re-
actions on the surface. This report is concerned specifically with cata-
lytic recombination reactions on the surface.

As the density decreases, the continuum flow equations that ade~
quately describe higher density flow are no longer adequate close to the
wall because the mean fiee path becomes long compared tc characteristic
lergths associated with significant changes in macroscopic flow proper-
ties. The flow in a region next to the wall having a thickness on the
order of a mean free path (the Knudsen layer) cannot be described by the
Navier-Stokes description (ref. 1). Gradients near the wall cause the
velocity distribution function to deviate significantly from equilibrium.
Rigorously, one should calculate the flow using the Boltzmann equation
because there are not sufficient collisions between the gas molecules
for the Navier-Stokes approximation to be valid. The solution to the
Boltzmann equstion in the Knudcen layer with suitable kinetic boundary
conditions at the wall must then be matched to the solution of the
Navier-Stokes equations in the bulk flow. The laws governing the inter-
action of the gas with the surface influence the boundary conditions and
must be taken into account. This procedure can be done simply through
the use of accommodation coefficients.

Without actually solving the Boltzmann equation in the Knudsen layer,
it is possible tc find an approximate Navier-Stokes solution to the flow
in the Knudsen layer using suitable slip conditions (refs. 2 and 3).
Patterson (ref. 2) obtained a Navier-Stokes type solution to the Boltzmann
equation that was of the form of the equilibrium velocity distribution
function times a power series in the three-dimensional velocity space.

a 2 1 1 \
£f(v) = f°(v)(l eV, +3 aidvivj +Z aijkvivjvk) (l).

where f£(¥V) is the velocity distribution function; f£°(¥) is the equi-

librium velocity distribution function; ai, aij’ and ai*k are



3 and Vk are
velocity vector components. (Summation convention is used here.)
Patterson obtained the coefficients in terms of gradients of the macro-
scopic variables. To obtain the slip relations, he assumed a fully ac-
commodating surface (diffuse reflections) and equated the net fluxes of
mass, momentum, and energy to the difference between the incident and
reflected fluxes, respectively. Shidlovskiy (ref. 3) performed essen-
tially the same type of calculation except that he allowed for a non-
fully accommodating surface (specular and diffuse reflection). In both
of these treatments, & single-species gas was assumed.

coefficients of the distribution function; and vi, v

Flow-field and boundary-layer calculations have been made that in-
corporate limited combinations of the boundary conditions considered in
this report. Treatments of slip effects can be found in references 1
to 3. Davis (ref. L) included first-order slip effects in temperature
and velocity for his reacting binary mixture flow past a blunt body.

This included calculations for catalycity limits of zero and infinity.
Inger (ref. 5) included a variable catalytic wall-boundary condition

for stagnation point, nonequilibrium flow of a binary gas past a sphere.
He assumed the following: (1) a constant Prandtl number, Schmidt number,
density viscosity product, and specific heat across the shock layer;

(2) negligible thermal diffusion; (3) a thin shock layer model; and

(4) no slip at the wall, but slip at the shock wave. Blottner {(ref. 6)
used a finite-difference method to investigate the viscous shock layer

at the stagnation point of a blunt body. An air gas model was used with
finite reaction rates and transport properties based on Yun and Mason
(ref. 7) and Yos (ref. 8). Blottner did not consider slip, and he assumed
a fully catalytic body. Blottner reviewed the literature relative to
blunt-body flow problems (ref. 6).

No one has included the effects of slip, multicomponent diffusion,
and wall catalycity in a single-flow-field problem. In this report,
boundary relations that incorporate all of these effects for application
to flow-field calculations are derived. Boundary conditions for the
temperature, velocity, pressure, and species concentrations are obtained
for s multicomponent mixture at a wall of arbitrary catalycity. To be
general enough for low-density centinuum flows, slip is also considered
herein.

SYMBOLS
- & D
Ai’B" i(J) coefficients of the distribution function for itu
N species
8, coefficients of the distribution furction

ai ,a'-

i3’ iJk



8..58..,b. _,cC, (J) distribution function coefficients defined in
10°711?7i0°71i0 . .
reference 9 for ith species
b impact parameter
ci mass fraction of species i
Dij diffusion coefficient
D iT thermal diffusion coefficient
-
dJ diffusion vector of Jth species
E net energy flux from translational energy
t energy flux from translational energy
F net general flux
F general flux
fi distribution function of ith species
f; equilibrium distribution function of ith species
g initial relative speed during a collision
I, 1 component terms in integration over distribution
function
k Boltzmann constarnt
kw wall catalytic rate constant
£ order of surface recombination reaction
M net mass flux
M mass flux
m, mass of ith species
i

n number density
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net momentum flux
momentum flux

pressure
collision cross section

factors in the Sonine polynomial expansion per-
taining to mass fluxes or species defined in
appendix A

factors in the Sonine polynomial expansion per-
taining to temperature gradient defined in
appendix A

factors in the Sonine polynomial expansion per-
taining to velocity gradient defined in
appendix A

separation distance of atoms during ccllision

distance of closest approach
temperature

time

unit tensor

thermal velocity

diffusion velocity

velocity

. bulk velocity

dimensionless velocity = KT 7
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¢(r)
o(V)
X(S :b)

(s,2)
nij

Affixes:
h,i,§
s

v

rate of mass production in volume elemer of ith
species

energy accommodation coefficient

dimensionless relative velocity in collision, used
in appendix A

recombination coefficient

Kronecker delta

viscosity

fraction of incident atoms that are diffusely
reflected

fraction of incident atoms that stick
reduced mass

density

perturbation part of distribution function

interaction potential

a8 general property

collision deflection angle

collision integrals

species inderes
property at edge of Knudsen layer

wall property



Subscripts:

a atomic species

i,J.k vector componer’. indexes

X,Y 22 component directions

y normal component

II,X,Z tangential components

Superscripts:

q,Z,m,n exponents used in flux integrals defined in
equation (C1)

s, £ indexes appearing in collision integral

¥ incident flux

+ specularly reflected flux

ANALYSIS

The apprvach to the slip woundary condition probiem follows closely
that of Shidlovskiy (ref. 3), although additional factors are included
herein to account for wall reactions. The slip conditions are taken
across the Knudsen layer, which is on the order of one mean free path in
thickness. In figure 2, the Knudsen layer and the jump in temperature
T are shown. The jump 1s treated as discontinuous across an arbitrerily
thin Knudsen layer, and no account is taken of variaticns of the velocity
distribution through the Knudsen layer as would be required by the more
rigorous approach of Kogan (ref. 1). It is assumed here that the dis-
tribution function near the wall can be described to first-order accu-
racy by the so-called Navier-Stokes approximation as used by Shidlovskiy.
The use in this report of a Chapman-Enskog type distribution function
for a multicomponent mixture obtained by the variational method of
Hirschfelder, Curiiss, and Bird (ref. 9), however, is a deviation from
the procedures of Shidlovskiy. The advantage of this usage lies in the
fact that the Chapman-Enskog distribution function accounts for diffusion.

The interaction model does not distinguish between energy accommo-
dation o and momentum accommodation 6. For many materials, « and 6



are nearly equal ard have values close to unity; ther.fore, only a number
accommodation is considered. By this, it is assumed that the gas atoms
(molecules) interact with the wall as follows: each atow either reflects
specularly (is not accommodated at all) or s.icks to the wall (is fully
accommodated). The fraction +'.at sticks is ca.led 6'. Of those atoms
that stick, a certain number . .act with other gac atoms on the wall (usu-
ally by recombination). The fraction of incident atoms that reacts (recom-
bines) is called y. Those that do not react leave the wall fully
accormodated to the wall temperature. This process will be called diffuse
reflection in this report. The fraction of incident atoms that is dif-
fusely reflected is 6. This interaction model is considered to be ade-
quete because the data required for a more detailed model are very
limited. The change in internal energy of the reflecting molecules,

such as vibrational and electronic excitation, is neglected.

The Distribution Functions

As stated previously, the velocity distribution functions used here
are those for multicomponent mixtures

fi(V) = fg(v)[_l + oi(v)] (2)
Wwhere
Qi(-\;) = -K{ln T -‘ﬁi:v}'o + nZJEi('j)°EJ (3)

-
The Maxwellian velocity distribution for the ith species is f;(V). The

- > -» (J)
coefficients Ai’ Bi’ and Ci are functions of the dimensionless
- -
velocity wi = \’mi/(akT)Vi and may be defined as
A = {a. + 8, [z. we).l'ﬁ (%)
i i/i

= - -
B, = bio(w Wo- oW U) (s5)



- 1 -
C.( ) - c, (J)W. (6)
i io i
vhere a a b and c¢ (3) are constants determined from the
i0o? il* i0’ io

Hirschfelder, Curtiss, aand Bird (ref. 9) variation problem in the first

23
approximation for a mixture and U is the unit tensor. These constarnrs
are functions of the collision integrals and are related to the transport
propexties. See appendix A for the explicit fo—m of these constants.

-
The vector 4, is related to the diffusion velocity of tke jth

species in the mix%ure and is defined as

n n nm
Zi'J =v(;1) +(;;1-—g—-1)v 1n p (1)

where n, and m, are, respectively, the number density and mass of the

J J
Jth species, n is the total number density n = E:nj, p is the total
J

mess density p =) n

By and P is the total presswre p = 2P
J

5t
J
- -
The total mess averaged ve.ocity Vo = 1/p Z:njmJ 3 where
> - J
v V, of the jth species averaged over

J

is the therme . velocity.

-
v =

is the total wvelocity j 0
the distribution function and

y +

<3

J

The Balance Equations

To obtain the slip relations at a wall, it is necessary to consider
the balance of normal fluxes of mass, momentum, cia energy at the wall
for each species. The net flux equals the difference between the inci-
dent flux and the outgoing flux at the wall. In tle following equations,
the net flux will be denoted by an uppercase block tettei and the inci-
dent and cutgoing fluxes by uppercase script letters. Aun upward arrcy
denotes flux caused by specularly reflected particles, and a downward
arvow denotes incident fluxes. A superscript w denotes outward fluxes
of wall-accommodated particles.
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Consider a property ¢('\7) such as mass, momentum, and energy, and
the normal flux of that property across the surface

8

y

F sz v ¢('\7)fs('\7) &y (8)

b

is the net flux of ¢(V). A Cartesian coordinate system is used, and
the Jirection normal to the surface is y. The Zistribution funetion

fs(v) is that just outside the wall on the outer surface of the Knudsen
layer.

o

0 =
F*szfvyw)f;ﬁr‘) adv (9)

-l w0 =00

is the incident flux.

y

f v oMl (V) av (10)

r‘f

is proportional to the specularly reflected flux.

¥ f ! [ vy¢(?r‘)fw('\'?) 4y (11)

is proportional to the diffusely reflected flux. These fluxes are shown
schematically iu figure 2. The distribution function fwﬁl‘) is that
of a gas at equilibrium with the wall temperature. The Jdistribution
function f£1(V_,V

O 8

+
y,vz) = fs(vx,-vy,vz) because the sign of vy
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changes upon reflection. If ¢(V) is the mass, then the normal mass-
flux balance at the wall is: net mass flux equals incident mass flux,
leaving mass fiux. Tor atamic species

M, = Mi+ s (1- BQM; + (o) - MY (12)

1 i

Because it is assumed atoms are being consumed at the wall by catalytic
recombination, the net mass flux Mi # 0. The first term on the right

is the mass flux of incident particles, the second term is the flux of
particles specularly reflected, and the last term is the mass flux of
particles diffusely reflected (those that stick minus thoue that
recombine).

Relations similar to equation (12) for the fluxes normal to the

surface of the normal component of momentum, the tangential component
of momentum, and trLe energy, respectively, are obtained as follows.

Zpiy N ZP;Y * Z(l - 0{)?;{ ¥ Z(ei - Y)?ftyw (23)
i i

i i

Zpill B ZPIH * Z(l - 9{)”;;; + Z.(G; - Y)Pi”“ (1k)
ZEi - ZE: > (L-opef* D (- E = (5)
i i i 1

By evaluating the integrals represented by equations (9), (10),

+ 4 4 + 4 +
= - = - E' = _E
and (11), it can be shown that Mi Mi’ Pill Pill’ i i

Pillw = 0, and P;y = P;y‘ Equations {12) to (15) then can be reduced to

- ari¥ ' v
Mg o= oMy 4 (91 - Y)Mi (16)



= - ¥ - w= S
PO IDD BEOLAD MR LAEE ()
i i

i

Z il = E:e'P+ (18)
ZEi = ZeiE; + Z(ei - y)Ei" = E (19)
i i

The flux balance equations caun * expressed in terms of the flux
integrals to obtain the following, in which k is the Boltzmann constant.

Mass of species 1i:

31 (21‘2)] fwé' [1+<p(w)] aw
2 mi y s
“2 —0 200 w00
1
2w0 [
. 2kT
=9§L__( )ffwae“21+o(‘)]dw

(20)



13

Normal momentum:

oG [ [ [ e o] o
- zl: (? - ei)mi“is(%)I i-f: 1 + 0 (w)] a*w
W Lot

DINIRENG

Tangential momentums:

o) [ [ [t oo @]
‘eizminis(mjs) W(H+w0”) w2[1+«1>("')] aw

i

o

5‘ 8
‘s"‘»s

8

(22)



1b

Energy:

Zm_i_(m) f-f:fw“ C ][(w rug )Pt
(2 )Jifzf we 1 e o0, @)

. [(wx+w0x)2+wy2+(wz A ]a%uz (3 -Y (M )2
U w2 o

(23)

r\>|w

* (¥, * sz)z] aw = Zei i

lw

The wall number density niw is defined following the convention of

Shidlovskiy (ref. 3) such that the factor (' - y) appears in the last
terms of the preceding equations.

The Slip Equations

When the integrals in equations (20) to (23) are evaluated and
after the terms have been rearranged, the following relations for the
slip quantities are obtained. All accommodation coefficients 6! are
equal to 8'. .



Concentration slip (single species):

1

2
. 8! . 9 v
n1 w) == i |} + blO(BVOX + v07. -2 01)]

lnis'r 1= 6 \ 3x 3z Ay

S S

Vit~ \a T (3)
-3 C; — $ 3y 8. - nz:ci djy (24)
S

Pressure slip:

v ov
6'n[>Vox 0z Oy) AT 2 - 8 v w
+ - 2 + k == t -
p =3 0x ' 5 y Y W_Z(aio *en)n; + e Z*Pi

s CL )
Ak DRID I
3

(25)

. o -1
The viscoeity n =3 szi:nibiO'

Velocity slip:

. 1 2-e'na"0x+avox
Vox 1 26" 3y 3x |
o A2
—\2x1_ | P1
P s (
i 131n T _ - 3)
"E 2 [ % (%10 ~ %11) “Zcio de]
i J s

(26)
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=
heaaa——

v v
-
v = ‘VW 2 -6 n( 0. Oy)

20" y ax
m
i
() o

p.°
ifsinT (J)
* Z > ax (Bio ~ %11) " nz :cic dsz

i J 5

(27)

Temperature slip:

9' -y
3 -2\5(223,9 )E A+ (T )2 Z( )
<2kTS)2 (28)
e i e ——a"“-za—"m)
I i 10 3z oy

-
The net snergy flux E is defined in appendix B. See appendix C for
the intcgrals necessary for determining fluxes.

The Relation Between Catalytic Recombination
Coefficient vy and Rate Constant kw

Using the results obtained for concentration slip, an unresolved
conflict in the literature may be resolved. The relation between the
recombination coefficient y and the rate constant Kw will be ob-

tained. Two expressions have frequently appeared in the literatuvre for
first-order recambination. One is

kT
K = vqlz— (29)
W ‘~2nmi
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(e.g., refs. 10 and 11), and the other is

2y kTw
kw = 2 - yvzmni (30)

(e.g., ref. 12). The purported difference (ref. 10) between these two
expressions stems from inclusion of the diffusion velocity in the deri-
vation of equation (30).

These relations can be obtained by using the flux and slip equa-
tions given previously in this report. The net mass flux of atoms to
the surface is given by

I
Mi = Miy (31)

This is equated to the expression defining the catalytic rate constant
kw' The rate of consumption of atoms at the wall from surface recombi-

nation is

- wut — v \¢
Mi = YMi = kw(ni mi) (32)

where £ 1is the order of the surface recombination reaction. For a
first-order reaction £ = 1, therefore

M, = -k n'm (33)
1 w

The minus sign indicates that the flux is in the disection opposite to
the outward surface normal. Substituting the expression for the mass
fluxes (eqs. (Bl) and (B2)) into equation (31) obtains the relation

; . v v av
_;Ea +an ‘J)d =_'—l—2 )[-:L?_‘;.ﬁ( 0x+ Z -2 Oy)
T 3y 10 10 Iy 2 - v\ 6\ 3x 3z dy
J

(34)
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Substituting the expression for the net mass flux (eq. (Bl)) into equa-
tion (32), then

1
s 2
m.n kT
iTi s 1 97 (J) w
S A Sy L2 2L + = -
2 (mi) T 3y %0 nz :ciO dyy kpym (35)

J

Substituting equations (3L4) and (35) and solving for k_, then

1
s 2
K = ni Ts 2y 1, . biO/EVOX + avOz -2 avOy (36)
woo v\, J 2 - y[© 6 \ ox 3z W/l
i

If slip and shear are neglected, then this expression reduces to equa-
tion (30). However, if the species density slip equation (eq. (24)) is
substituted in equation (36), the expression

Tv
k= y|— (37)

is obtained with no simplifying assumptions. It can be seen that by
neglecting slip but including diffusion, one obtains the usual form for
the relation between k  and v (eq. (3C)) when diffusion is included.

However, when both diffusion and slip are considered, then the simple
form (eq. (29)) is obtained. Therefore, the latter form (eq. (29)) is
to be preferred because it is more general. These expressions imply
that kw never gpproaches infinity; that is, there is an upper bound

.1 the rate constant which is controlled by the thermal velocity at the
wall. However, it is sometimes convenient to assume kw + o to sim-

plify the boundary equations for fully catalytic cases.
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The Species Boundary Equations

To obtain the boundary condition for species concentrations at the
wall, one may begin with the species continuity equation.

dpc, o -
i - = I .
4+ V- =
™ v pci(vo + Vi) vy (38)

where ci is the mass fraction of the ith species, t is time, and

*i is the ith species volume production term. Although the problems to

which the boundary conditions will be applied may be time dependent, it
is assumed that the solutions to be reached are steady state. Then, the
time-dependent terms of equation (38) go to zero. In addition, on the

wall, the species volume production term W, <vanishes. Therefore, the
term in brackets is a constant vector.

The normal (y) component is then the net species flux to the surface,
which has been defined previously.

pc. V. =p c, k (39)

The aormal bulk velocity vOy is zero at the wall. The preceding is the

same as the expression obtained in equation (35) for the net species flux
to the wall.

- L% 4 w
-M; =0, mV =pck =n m.k (Lo)

By expressiug ciO(J) in terms of the diffusion coefficient DiJ

and in terms of the thermal diffusion coefficient DiT (ref. 9. p. 479),
then

I-E@ n n.m
o +(_.1-_.u)3_ln.z .

2
alnTDT_Z“’“J”’iD
Iy 1 3 1) 13| oy n o Ay Wi

(b1)
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If all gradients except the concentration gradient are negiected and if
a birary gas is assumed, then equation (41) reduces to

n
n2"“2"‘1 8 _g) W
—— D, 3y = kwnl m, (Lk2)

In terms of the mass fraction of species 1 and neglecting slip, then

3,
Dis 3y = KGP (43)

where ¢, = (n.m_)/p. The relation

). ) o

was used here. Equation (43) is the form of the atom boundary condition
usually employed in flow-field calculations for binary mixtures. Equa-
tion (41) is the more general boundary condition to be used with slip,
gradients in T and p, and multicomponent mixtures.

It may be more convenient to express equation (41) in terms of nis

end Yy rather than niw and k_. Equation (31) is solved to obtain

i
2
_2- "mi) My
s _ 2y kTs mi

n, = v (4s)
i bio Yox QVOZ 3v0;>
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DISCUSSION

From the resmlts obtained in the previous section, the wall boundary
conditions can be calculated for a multicompouent gas reacting catalyti-
cally on the surface, with slip and temperature: jump. Equations (2k)
to (28) and (45) form a coupled set of bouniary conditions to be used

with flow~field calculations. However, 3 v not be necessary to use
the pressure slip equation. A constant rature bovndary condition
is & natural stipuletion for these equat. nowever, for an adiabatic
wall boundery equatior, the equation for transfer at the wall must

be set equael to zero, thus adding an additional simultaneous =rmation .o
the set. The wall temperature is then not given as a boundary condition.
Because the accommodation coefficient 6' 1is based on the rather crude
model that either a molecule is not accommodated or is fully accommodated,
and because for many gas/surface interactions the coefficients are nearly
equsl to unity, it is convenient to assign the accommodation coefficient
~he value unity. If the gas/solid interaction law is known with suffi-
cient accuracy, it would be more appropriate to reformulate the balance
equations taking these known accommodation coefficients into &sccount.

Tt sy be necessary to define individual momentum accormodation coeffi-
cients for both tangential and normal momenium accommodation. Rigorously,
the accommodation coefficients may be functions of velocity and should

be included in the integrals over the distribution functions.

To assess the importance of various terms in the general boundary
equations will require a systematic study in which the flow properties
and boundary conditions are varied. In meny cases, the equations may
be simplified by choosing appropriate transport property apprcsimations
or by neglecting various terms in the equations. Ccupling of these
equations with a time-dependent technique such as that of C. P. Li
(ref. 13) would yield a good calculational procedure to investigate the
influence of the boundary conditions on the heat transfer and flow.
Such & procedure should also provide a set of more realistic boundary
conditions for low Reynolds number hypersonic flows.
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CONCLUSIOSS AND RECOMMENDATLONS

The equations describing the boundary conditions for a multicompo-
nent, nonequilibrium gas reacting catalytically on a surface with tem-
perature jump and slip are derived on the basis of a simplified
gas/surface interaction model. These equations form a simultaneous
set which must be coupled wich a Jlow-field calculation. The equations
may be used with various calculational techniques in an iterative fashion.
They are convenient for a time-dependent numerical flow-field calcula-
tion technique where the time dependence of the boundary properties is
not of interest. As the flow-field solution spproaches steady state,
the boundary properties approach those given by the boundary constraints
determined by the flow and the boundary conditions

To assess the importance of various terms in those general boundary
equations, a systematic study should be conducted in which the flow
properties and boundary conditions are varied. Coupling of these equa-
tions with a time-dependent technique would yield a gooa calculational
procedure to investigate the influence of the bounlary conditions on the
heat transfer and flow; it should also provide a set of more realistic
boundary conditions for low Reynolds number hypersonic flows.

Lyndon B. Johnson Space Center
National Aeronautics and Space Administration
Houston, Texas, December 18, 1973
986-15-31-07~T2



Stagnat‘on point pressure, N/m2

23

.001 x 10°
| S~
Shuttle trajectory—\ n
\ Apollo
Slip regime trajectory ———, |
oL \\\\\\ ot~
by M
\\\\
\\\\\\\
Y |
70km\\\\\\\\ 1Y X
A Slip regime
0.05-m
/ sphere
Arc-tunnel 60 km
simulation
region
50 km
1 ] | 1 1 ] J
0 ‘10 20 30 40 50 60
Enthalpy, MJ/kg
1 1 ] ] ] i L J
4 5 6 7 8 9 10 11

Velocity, km/sec

Figure 1.~ Plot of stagnati~m preczsure as a function of enthalpy

showing Space Shutt”
jex operat! - me-
0.3-meter-rs "
denoted. The

2. % rrajectories with typical arc-
auere 8iip flow begins for a
a8 0.05-meter-radius sphere are

. is typical of arc-jet test models.



ft = incident flux
f! = specularly reflected flux

= diffusely reflected flux

— Ty

Continuum region

Ts
s
Knudser layer /
(order of one // y

mean free path)

— T(y)

-X,2

Figure 2.~ Diagram of the Knudsen layer showing general fluxes and
coordinate axes. The temperature as a function of normal distance
is schematically cverlayed.
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AFPENDIX A

CONSTANTS APPEARING IN THE DISTRIBUTION FUNCTION

The general velocity distribution function for one species cf a
multicomponent gas is given in Hirschfelder, Curtiss, and Bird (ref. 9)
as

-, = o - + -
£, (v) fi(v)[l ¢i(v)] (A1)
In the section entitled "Analysis,™ it was shown th-t

7 )= 5_w2a\lz. :E: (3= >
Qi(vi)- -[aio + ail(Z - Wi )]Wi ViInT+4+n ciO Wi dj

J
(A2)

-
where Wi = Jmi/(2k'1‘) Vi. This distribution function is a first-order

epproximation sometimes called the Navier-Stokes approximation. The

coefficients 800 8471% biO’ and Cio B&re found by a variational

technique in which they are solutions to sets of simultaneous equations
(ref. 9). This appendix expresses the coefficients in terms of solutions
to these sets of equations. These solutions are expressed in terms of

the collision integrals QiJ(S’L).
(s,2) _ ";kl f —v2 2s+3_(£)
“1_1 *Yam Je ¥ @ (g) ay (A3)
0

wvhere u 1is the reduced mass of the colliding paréicles i and J,

Y 1is <he dimensionless relative velocity in collision (72 = ugzlkT),
and g is the initiasl relative speed.
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Q(‘o') =2n {(l - cos2 x)b db (AY)

is the collision cross section at collision deflection angle

1
2 -2
x(g,b) = 7 - 2bf(1 -2 —21%—)> r ar (A5)
r r Ve
m

where ¢(r) is the interaction potentiami, b is the impact parameter,
and T, is the distance of closest approach. The collision integrals

have been evaluated for a number of interacting -pecies as a function of
temperature and are available from several sources (e.g., refs. 8 and 1k).

The solutions to the variational problem are from reference 9 where
sinultaneous equations are to be solved. The coefficients of the diffu-
sion terms ia the distribution function are

ZQ = -R.(h) (A6)

i) jO 3

where

B by ) - s

(AT)

(n) _ 3
R, = (1 - Gih)'iz 2kT (a8)
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The set of simultaneous equations for the coefficients of the temperature
gradient terms in the distribution function is

1
~ m, _ , )
EY;%J Sym' © Rom m', me {0,1y (A9)
J m'=0
where
° X (1,1)
‘50 SZ n, ( 6)'“111(1—6){2 3=
N ARt mk)[l 2(%i0 7 Sk ) T Rt 7 Ga) | Vi
(A10)
3
Pres e
% i i (1,2) 5 . (1,1
; a('.”_) e W )[‘ 2) 5o 1, ]
i) m 211y kJJ) ik 2 ik
I 7y (mi * “‘k)
(A11)
P-4 (x22)
QiJ - m, 1)

and

B - 1 gl—‘l N
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The set of simultaneous equations for the coefficients of the ve-
locity gradient terms in the distribution function is

qu 30 = Bio (A15)

where
- >;(m N [ 2 (3 = 3ae) ™
+ 3 m (‘Si; * 6;11:) “iz(z’e)] (A16)
and
Kk, ., = -5n, (A1T)
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APPENDIX B
FLUXES IN TERMS OF EVALUATED INTEGRALS OVER

THE DISTRIBUTION FUNCTION

The fluxes of a property ¢(V) &nd the form of the distribution

-l
function f£(V) are defined and described in the section entitled
"Analysis." This appendix is a compilation of the forms of these fluxes
that have been integrated over the distribution functions.

MASS FLUXES OF SPECIES

Net
1
m.n s T 2
_ii s 31n T Z (3)
Mi = > mi - —By aiO +n cio djy (B1)
J
S
Incident
'AA* _ 1 b10 ava . avOz -2 avO;V
"1 6 | ox 9z oy
VY7 3 1n T \m (1)
YTy %02 p 0 iy (B2)

Specularly Reflected

M; = - Mi* (B3)
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Diffusely Reflected

|-

L miniw 2kTw Bl
Mi—ew-;i— (BY4)

NORMAL MOMENTUM FLUX

Net
s biO/BVOx avOz ngx
iy "R T3 ax T e -2 (B5)

Incident and Specularly Reflected

. b. [av v v
P+ - pTy = pis[%'+ 10( Ox + Oz 0;)

iy = i 2 6 \ 3 9z ~ 3y
1 31nT 1 __n_z (3
TN oy (aio‘z“n>‘w 710 dyy
S
(B6)
Diffusely Reflected
w_1 w

Piy =594 (B7)
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TANGENTIAL MOMENTUM FLUX

Net

s bio(av()x . 3vox>
s

Pix =1 3 \ 3y ax (88)
- p.® bio(bVOZ . oy (B)
iz i 2 \dy 3z
Incident
[, ,JEbio A . avoy
Py |7Vox I oy ax
31n T 1 n (3)
-= -z B
2% (”io > ail) 245%i0 djx] (B10)
S
o, ‘[;bio v, afgx
Py 0z | 3y 9z

13lnT 1 ny . @
2x (aio -2 ail) = 3ty djz] (B11)
S

Diffusely Reflected

Pix" = Pizw =0 (B12)
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ENERGY FLUX
Net
3
n
2kT \~
_ 2 s 8 dInT (3)
EE=gmm\m ) |I- 5y (aio - ail) + aniO dyy
i 3 .
(B13)
Incident
3
mn,Sfoxr V| v, fav.  av v
E+____ii cH I S 10( 0x+ 0.._2 Oy)
i 2\,7 m, N X Y oy
1
5 2|3 1n T (3
T8 oy (aio - a11/ - ncio dyy (B1k)
J
S
Specularly Reflected
4 ¥
Ei = -Ei (B15)
Diffusely Reflected
3
W 1niw akTw :
E SR . A (B16)
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APPENDIX C

INTEGRALS NECESSARY FOR DETERMINING FLUXES

The normal fluxes of masc, momentum, and energy are defined in
terms of integrals over the velocity distribution function. These inte-
grals consist of terms that are various velocity moments of the distri-
bution function for the nonuniform, multicomponent gas and that are
expressed in terms of the general expressions

8

aw aw aw vl v P ne-W2 (c1)
X Yy 2z X ¥y 2

N
b——s
's“—-\ 8

[
8

for the net fluxes, where q, £, m, and n are exponents hav.ng

hol
values O, 1, or 2 and W = Wx2 + Wyz + Wz2’

© 0

I

fdw aw dWWqW wmwn W (c2)

's“—\

for the incident fluxes, and

1.

aW, AW o wqw Ly ‘"wz“e'w2 (c3)

B
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for the specularly reflected fluxes. Specifically, these integrals are
the following.

INTEGRALS OF THE ENTIRE VELOCITY SPACE
(NET QUANTITIES)

[[fone e oo

*
(=]

’le

77 e oves
fff“vwiwd ¥ Ao

=

J’J’f H2w23-0 ity
bty (ch)

f”me P aheld ey
fffuyzu,J Neo 1y
jjfu;.-“zm.g}
[ ] Fonic® s
J: J’ I w3 e w o
[ J. f w2’ o /

»
Ok

(T
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INTEGRALS OVER THE LOWER HALF SPACE (INCIDENT QUANTITIES)

.
ofr-

"
ha

-M.‘

b

)
R
-

\

14y
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1=3¢y

ity

idj, forydy
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INTEGRALS OVER THE UPPER HALF SPACE (SPECULAR REFLECTION)

Integrals over the upper half space (specular reflection) are the
same as those over the lower half space except for the following.

I{fyfg

I

[

[[ [t aee o
_f.[ f gt e

2 ? 2
f[f,y‘"’)uzze-\? a5l Lty (
I{fww\re"’zd3u-— idy > (06)
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