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ESTIMATION OF DEVIATION ANGLE FOR AXIAL-FLOW COMPRESSOR

BLADE SECTIONS USING INVISCID-FLOW SOLUTIONS

by Max J. Miller*

Lewis Research Center

SUMMARY

Estimating the direction of the flow leaving a given annular cascade of blades over

its operating range is an important problem in axial-flow turbomachinery aerodynamics.

Herein, as for many compressor applications, the direction of the flow leaving a blade

cascade has been predicted by estimating the difference between the average direction of

leaving flow and the direction of the blade mean line at the trailing edge. This difference

is defined as deviation angle. No completely satisfactory methods for estimating devia-

tion angle are available.

The study reported herein considers estimating deviation angle for blade sections in

a two-dimensional, subsonic flow by applying a currently available analytical procedure.

Solutions for inviscid, irrotational flow in the blade-to-blade plane were obtained by a

finite-difference calculation method. Deviation angles for a plane cascade with a rounded

trailing edge were estimated by using the inviscid-flow solutions and three trailing-edge

hypotheses. The estimated deviation angles were compared with existing experimental

data over a range of incidence angles at inlet flow angles of 300 and 600. The results in-

dicate that deviation angles can be estimated accurately (within 10) by using one of the

three trailing-edge hypotheses, but only over the operating range where pressure losses

are low. A new trailing-edge hypothesis is presented which is suitable (for the cascade

considered) for both low- and high-loss operating points.

The material presented in this report was included in the thesis submitted by the

author to Iowa State University in partial fulfillment of the requirements for the degree

doctor of philosophy in June 1973.
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INTRODUCTION

Estimating the direction of the flow leaving an annular cascade of blades is an im-

portant problem in axial-flow turbomachinery aerodynamics. In design, blades must be

selected which turn the fluid to the desired direction to achieve the desired energy trans-

fer in rotors. Turning the flow to the desired direction is important in both rotors and

stators because unexpected and unwanted losses can occur when the desired flow direc-

tion into the next blade row is not achieved. In predicting the performance of a turbo-

machine at operating points other than design, it is necessary to estimate the direction

of the flow leaving blades of specified geometry. Incorrect estimation of these flow an-

gles will lead to faulty prediction of energy transfer in rotors and incorrect values of es-

timated loss in subsequent blade rows. Thus, estimating leaving flow angles is a crit-

ical part of both design and analysis calculations.

Historically, for many compressor applications, the direction of the flow leaving a

blade cascade has been predicted by estimating the difference between the average direc-

tion of the leaving flow and the direction of the blade mean line at the trailing edge. This

difference is defined as deviation angle. Measurements indicate that generally the flow

is not turned far enough to leave the blade row in the direction of the blade mean line.

This happens because inertia resists the forces exerted on the fluid to produce turning.

The forces which produce turning in a cascade result from the curvature of the blade pas-

sage. However, blade passages tend to be too short to guide the fluid perfectly.

No completely satisfactory methods for estimating deviation angle are available even

for the simpler case of design-point operation (ref. 1). The last major improvement in

deviation-angle estimation methods was published in 1946 (ref. 2). In the past the search

for better deviation-angle prediction methods was restricted mainly to correlations of ex-

perimental data. Theoretical calculations of both potential flow and boundary-layer flow

were possible but not widely used. Conformal transformation calculations of potential

flow, for example, were too time consuming to be practical. Boundary-layer calcula-

tions were not practical on a large scale either, if for no other reason than because they

required surface pressure distributions from a potential-flow solution as input. However,

recent advances in the size and speed of digital computers have made it practical to ob-

tain large numbers of theoretical solutions for some two-dimensional flows. These ana-

lytical procedures are increasingly being used to supplement, and in some cases to sup-

plant, experimental studies.

The purpose of this report is to begin development of a more satisfactory method of

estimating deviation angle by applying currently available analytical procedures to the

problem. A flow model was chosen for the study which was simple enough to treat theo.

retically while still close enough to real flows to allow useful results to be obtained.

Simplifications to the real flow included the assumptions that flow was steady and two

dimensional. While viscous effects were recognized as important, they were omitted in
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this work, although suggestions for future inclusion are given. Deviation angles esti-
mated for a plane cascade by using an existing inviscid-flow computer program were
compared with experimental data.

MODELING TURBOMACHINERY FLOW

In this section the need for simplifying assumptions in treating turbomachinery flow
is indicated. It is obviously important to use consistent flow models in both experimental
and theoretical work so that valid comparisons of results can be made. A widely used
flow model which was chosen for this study is described. Symbols used throughout are
defined in the appendix.

Experimental Cascade Models

Annular-cascade models. - The real flow in a compressor is three dimensional, un-
steady, turbulent, and compressible, with significant viscous forces in portions of the
flow region. In addition, the flow is bounded by both moving and stationary walls which
are highly complicated in shape. It is-not yet possible to obtain a solution of this difficult
fluid mechanics problem either theoretically or experimentally without introducing sim-
plifying assumptions. The most common flow model used assumes the flow to be repre-
sented by steady, circumferentially averaged* velocities, angles, and fluid properties at
a discrete number of stations, as indicated in figure 1. These stations are often, though
not always, located in r-0 planes which are outside the blade rows. The flow is as-
sumed to be steady relative to each blade row although in a real machine this is impos-
sible except for the first blade row. Viscous effects are neglected locally, but the ac-
cumulated viscous effects in the form of total-pressure losses along a stream surface
are included. Stream surfaces are assumed to be surfaces of revolution, as illustrated
in figure 2. This sketch is an approximation since the real stream surfaces are probably
skewed and warped near the blades and are even more complicated in shape near the an-
nulus walls. Circumferentially averaged velocities, angles, and fluid properties are de-
fined on these surfaces to represent the flow at a given radius and axial location.

t Ideally, mass-weighted circumferential averages are used. However, in practice,
several kinds of averages are substituted for a true mass-weighted circumferential av-
erage. At stations behind rotating blades, time-averaged velocities, angles, pressures,
and temperatures measured with low-frequency-response probes at fixed circumferential
locations are often used. Data from circumferential traverses or from rakes are fre-
quently area weighted to define averages behind stationary blade rows.
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When the stream surface of revolution is assumed to be a right-circular cylinder, it

can be developed to show the intersections of the blades, as illustrated in figure 3. The

circumferentially averaged velocity at the trailing edge of the blades is represented by

the vector W2 . The associated flow angle referenced to the axial direction is O2. De-

viation angle 6 is defined as the angle between the W2 vector and the tangent to the

blade mean line at the trailing edge (see fig. 3). A more general stream surface of

revolution (i. e., other than a cone) cannot be developed into an undistorted plane. In

this case the exit blade angle K2 and the velocity W2 are ordinarily defined on the

plane tangent to the stream surface at the trailing edge. Deviation angle is then defined

in the same plane.

Ultimately, the deviation-angle distribution for an annular cascade, rotating or sta-

tionary, is determined (for a given fluid and given inlet flow conditions and rotational

speed) by the geometric shape and arrangement of the blades and the annulus boundaries.

Thus, to estimate deviation angle for one stream surface in the flow model described, it

is necessary to consider not only the blade geometry of that surface, but also the blade

geometry of all other stream surfaces and the annulus wall shapes. In addition, fluid

properties, inlet flow conditions, and rotational speed must be considered. The number

of geometric variables alone indicates the difficulty of developing a general deviation-

angle prediction method by correlating experimental data.

A further simplification of the flow model is necessary in order to estimate devia-

tion angles for each stream surface. The usual approach is to assume that the local

blade geometry (i. e., blade geometry on the stream surface) has the dominant effect on

deviation angle. The influences of the remaining flow boundaries, the inlet flow condi-

tions, and the rotational speed are accounted for by correction factors based on tests of

similar blade rows or by testing and redesigning.

Plane-cascade models. - The influence of the local blade geometry on deviation an-

gle can be studied by using the untwisted blades of a plane, two-dimensional cascade.

Two-dimensional flow is assured by using the same blade section along the entire blade

span and by removing boundary-layer fluid from the tunnel walls. Plane-cascade flow is

obviously simpler than flow in actual machines. For example, spanwise gradients of

flow parameters are absent, as are annulus boundary layers, tip clearance flows, and

centripetal forces. Although a real, viscous fluid is used, blade surface boundary layers

are two dirmensional rather than three dimensional. These simplifications in the flow

model provide a significant advantage because tests can be made in which the blade-

section geometric parameters are varied systematically one at a time. This is not pos-

sible in annular cascades. Systematic testing has been reported for a few blade profile

families (e.g., refs. 3 to 8), but the number of variables involved makes exhaustive test-

ing impractical. Thus, many combinations of geometric parameters are encountered for

which extrapolation of test data is required. Extrapolation is always undesirable because

of the added uncertainty it introduces. Furthermore, empirical correlations based on
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plane-cascade data tend to lack generality with respect to blade profile shape (thickness
distribution and mean-line shape).

The problems of extrapolation and restriction to particular blade profiles associated
with the use of correlated plane-cascade data can be avoided by calculating the flow in
the blade-to-blade plane analytically. In view of the seemingly advanced state of the art
of calculations of flow about airfoils, it seems that using a theoretical model would be
feasible.

Theoretical Cascade Model

An exact theoretical calculation of plane, two-dimensional cascade flow that ac-
counts for the unsteadiness implicit in real turbulent flow and that is capable of describ-
ing regions of separated flow is currently impossible. Consequently, we must use sim-
plified flow models which retain enough features of real flow to yield useful results. A
well-developed approach is to divide the flow field into two parts, with viscous boundary-
layer flow in a thin region near the blade surface and inviscid irrotational flow in the re-
mainder of the field. For flows with high Reynolds number and little or no separation,
useful results can often be obtained by assuming inviscid flow throughout the cascade
flow field.

A number of methods have been developed and published for calculating flow through
a plane cascade by using an inviscid-flow model. Reviews of typical methods are given
by Roudebush (ref. 9), Scholz (ref. 10), and Schilhansl (ref. 11). The inviscid-flow
models used have many features in common. The flow field typically contains a single
row of blades with uniform flow assumed at some distance upstream and downstream
from the blades. The flow is assumed to be steady, inviscid, and irrotational; but it is
not always assumed to be incompressible. These assumptions can be combined with the
continuity and momentum equations to define a governing partial differential equation for
the stream function or velocity potential throughout the flow field.

Boundary conditions must be given to complete the statement of the mathematical
problem for subsonic flow. One condition required is that the blade profile form a
streamline in the flow. Additional conditions must be given which determine the location
of the stagnation points near the leading and trailing edges. The leading-edge stagnation
point can be readily located by specifying the direction of the upstream uniform flow
since this is usually given or known in advance. The location of the trailing-edge stagna-
tion point, or equivalently the direction of the uniform downstream flow, also must be
given to complete the mathematical statement of the flow problem.

In real flow, viscous forces play a key role in determining the blade circulation or,
equivalently, the leaving flow angle. But the inviscid-flow problem is still indeterminate
unless the leaving flow angle or the trailing-edge stagnation point is specified. There is
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a different mathematically complete inviscid-flow solution for each of the infinite number

of locations which can be specified for the trailing-edge stagnation point. Since the ob-

jective is to obtain a theoretical flow solution which approximates the real flow as closely

as possible, the choice of the rear stagnation point location must be based on some

knowledge of real flow patterns.

In the somewhat academic case of blades with either sharp or cusped trailing edges,

the Kutta condition (ref. 12) is used as the trailing-edge condition. The Kutta condition

requires that the velocities on the pressure and suction surfaces be equal at the trailing-

edge point. Equality of velocity implies a stagnation point if the blade surfaces form a

wedge at the trailing edge, but not if they form a cusp. Imposing the Kutta condition on

the problem avoids the physically implausible condition of an infinite velocity at a sharp

trailing edge. Unfortunately, the Kutta condition does not apply to blades with rounded

trailing edges, which are normally used in turbomachines to lower material stresses.

No generally accepted trailing-edge hypothesis analogous to the Kutta condition exists for

rounded-trailing-edge blades, although several proposals have been advanced. Three of

these proposed trailing-edge hypotheses (refs. 13 to 15) are evaluated in the section

DEVIATION-ANGLE ESTIMATION.

Solutions of the completely specnn f inviscid -cascade-flow problem can be obtained

by a number of mathematical techniques. For incompressible flow the governing equa-

tion is Laplace's equation, which can be solved by conformal transformation, by super-

position of singularities on a uniform flow, or by a numerical finite-difference technique.

Conformal transformation methods remain relatively slow and are not widely used

(ref. 10). Singularity techniques have been published by Schlichting (ref. 16), Martensen

(ref. 17), and Giesing (ref. 18), among others. Katsanis (ref. 19) has published a com-

puter program which uses a numerical finite-difference technique to solve for the incom-

pressible flow in cascades.

For compressible flow, the partial differential equations for stream function and

velocity potential have the form of Poisson's equation. They have been solved for sub-

sonic compressible flow by Imbach (ref. 20), who used a singularity solution, and by

Katsanis (ref. 21) and Smith (ref. 22), who used finite-difference techniques.

The computer program by Katsanis (ref. 21) was cuhosen for use in this study. The

reasons for its choice include its capability of handling both compressible and incom-

pressible flow and the availability of an auxiliary program (ref. 23) which allows finer

definition of flow details near the trailing edge.

INVISCID-FLOW COMPUTER PROGRAMS

Only a brief description of the inviscid-flow computer programs is given here. For

more details, references 21 and 23 should be consulted. The programs TSONIC (ref. 21)
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and MAGNFY (ref. 23) are basically similar; and the description applies to both, with
the few differences noted appropriately. The programs were written in a general form,
which permits calculation of flow on a surface of revolution for an annular cascade,
either rotating or stationary, as well as for the simpler case of a plane cascade. The
surface of revolution is assumed to be a stream surface. The calculation region for the
general case is shown in figure 4. The (r, 0, z) coordinates of the surface were mapped
into a (m, e) plane by functional relations

0=0

m = m(r,z)

The resulting calculation regions in the m-0 plane are shown in figure 5.
The flow on the assumed stream surface in figure 4 is further simplified from the

real flow by the following assumptions:

(1) The flow is steady relative to the blades.
(2) The fluid is an ideal gas with constant c or is incompressible.
(3) The fluid is nonviscous, and there is no heat transfer. (Therefore, the flow is

isentropic. )

(4) The stagnation temperature and the velocity vector are uniform across the inlet
boundary. (Therefore, the flow is irrotational in absolute coordinates as well as
isentropic. )

(5) The velocity is uniform across the downstream boundary.
(6) The only forces are those resulting from the momentum and pressure gradient.
(7) The flow is subsonic, except that TSONIC allows small areas of low supersonic

flow.

In this study the full capabilities of the TSONIC program were not required since only low
subsonic flow in plane cascades was computed. Therefore, the transonic-flow calculation
subroutines were removed from TSONIC, essentially reducing it to the subsonic TURBLE
program reported in reference 24.

The preceding assumptions were incorporated into the continuity equation and the
equation of motion, which were then combined into a second-order partial differential
equation for the stream function. The derivation is presented in reference 25. The
equation for the stream function u used in TSONIC and MAGNFY can be obtained from
equation 12(9) of reference 25 by substituting -uw for the stream function of refer-
ence 25. The resulting equation is

1 a2u a2u 1 2 au+ sin a 1 a(bp) au 2bw sin-- + --- -+ - sain (1)
r 2 ae 2  am 2  r 2 p a 8 0 a r bp am am w
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The stream function u is normalized by the mass flow per blade channel w so that it

has a value of 0 on surface BC of figure 5 and 1 on surface GF. The stream function is

related to velocity by the equations

u_ bp W  (2)
am w

W bI W (3)
ao w

Equation (1) is elliptic, and boundary conditions must be specified for the solution re-

gions of figure 5. Along BC and FG (fig. 5) the stream function is assigned values of 0

and 1 as previously stated. The assumed periodicity of the flow in the 6-direction al-

lows the stream function on HG to be specified as the stream-function value on AB for the

same m-value plus 1. The same kind of periodic boundary condition is applied to lines

CD and EF in figure 5. Along AH and DE, au/am is specified. Evaluation of au/am on

AH is possible since a uniform flow is assumed. Thus, by equation (2)

(au) bw = b m tan 3) = (- u tan )A (4)

m AH w A In r ao H)A

But the flow is uniform and periodic along AH; so

r 8 _ u(H) - u(A) _ 1 (5)

r \oAH r[ eO(H)- 6(A)] s

Substituting equation (5) into equation (4)

(uA _ 1 tan P (6)
m H sAH

Similarly, it can be shown that

() _ 1 tan 2  (7)

/DE sDE

The angles 0' and 0' must be obtained from input information.

Boundary conditions for MAGNFY are set by specifying the value of the stream func-

tion on all segments of the boundary (fig. 5). Stream-function values from TSONIC output
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are specified at discrete points on OPQRST. The stream function is set to zero on the
blade surface ST.

For this study, both TSONIC and MAGNFY were modified to provide blade surface
pressure coefficients at the intersections of the mesh lines and blade surfaces as addi-
tional output. The points of intersection were assigned a fraction of chord value by pro-
jecting each point onto the chord line (fig. 5) and dividing the length x by the length of
the chord line. The coding changes and additions necessary to generate this additional
output are given in reference 26.

The programs were run on an IBM 7094-2/7044 direct-coupled system.

DEVIATION-ANGLE ESTIMATION

Deviation angles and blade surface pressure distributions calculated for a zero-
thickness flat-plate cascade and a thick cambered cascade are presented in this section.
As noted in the section Theoretical Cascade Model, estimating deviation angle by using
an inviscid-flow calculation requires some assumption regarding the flow around the
trailing edge. The Kutta condition was used in the flat-plate calculations, and the results
were compared with the conformal mapping theory of Weinig (ref. 27). Results for the
cambered cascade were calculated with three different trailing-edge hypotheses and are
compared with experimental data.

Flat -Plate Calculation

A numerical solution for the flow through a flat-plate cascade satisfying the Kutta
condition was calculated by using the TSONIC program. Calculations were made for a
cascade with a 200 blade setting angle, a solidity of 1. 0, and a 300 inlet flow angle.
Pressure distributions and stagnation streamlines which correspond to zero circulation
(for reference) and to the circulation fixed by the Kutta condition are shown in figures 6
to 8. The deviation angle for which the dividing streamline leaves the blade at the
trailing-edge point (Kutta condition) was found to be 0.480 (fig. 8). A deviation angle of
0.480 was also calculated for the same cascade by using the conformal mapping results
of Weinig (ref. 27). The excellent agreement between the two methods is a basis for con-
fidence in the numerical techniques used in the TSONIC and MAGNFY programs and in
the stagnation streamline extrapolation procedure used to locate the rear stagnation
point. The dividing streamlines were extrapolated from the vertical mesh line nearest
to the blade by using a computer program (STGPLS) described in reference 26.

9



Selection of Cambered Airfoil Cascade

Several features were required in the cambered airfoil section chosen to evaluate

deviation-angle estimation by using the inviscid-flow computer programs. The first re-

quirement was availability of reliable plane-cascade air data with a systematic variation

of incidence angle and inlet flow angle. Plane-cascade flow was the most logical choice

to compare with the calculated flow because it is the real flow most closely approximated

by the mathematical model used. The section was required to have a well-defined

rounded trailing edge. This requirement eliminated the NACA 65-series profile. Also a

section with a camber angle low enough to avoid extensive regions of flow separation ex-

cept at high incidence angles was desired. All these requirements were satisfied by the

10C4/30C50 blade section. A systematic set of plane-cascade measurements for this

blade are given in reference 28. An additional advantage of these data was that the tests

were carefully conducted to produce two-dimensional flow conditions. Coordinates de-

scribing the 10C4/30C50 section given in reference 28 were used to generate geometric

input for the inviscid-flow solutions presented in the remainder of this section. The flow

and blade angles for which deviation angles were estimated are summarized in table I.

Calculations Using Experimental Deviation Angles

It is of considerable interest to compare the inviscid-flow solutions calculated by us-

ing the experimentally determined deviation angles for a decelerating cascade with meas-

urements of the real flow. The features of most interest in the inviscid solutions are

(1) the blade surface pressure distributions because of their strong influence on boundary-

layer development and the resulting losses and (2) the stagnation streamlines because of
the dependence of deviation angle on the location of the rear stagnation point. Calculated

and measured pressure distributions for the 10C4/30C50 profile in cascade are compared
in figures 9 and 10. These comparisons are generally good, with the largest discrep-
ancies occurring near the leading edge. Pressure measurements over the last 30 per-
cent of chord were not given in reference 28 for most operating points, and thus are not
shown except in figure 9(b).

A typical stagnation streamline calculated by using the experimental deviation angle
is shown in figure 11 for a 10C4/30C50 cascade with inlet flow angle of 300. The stag-
nation streamline for zero circulation is shown for reference.
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Calculations Using Three Trailing-Edge Hypotheses

Wilkinson's hypothesis. - Wilkinson (ref. 14) suggests that the simplest form of
trailing-edge hypothesis is to locate the rear stagnation point at the point of maximum
curvature or at the end of the mean camber line. The circular trailing edge of a 10C4/
30C50 has no single point of maximum curvature, so the stagnation point was located at
the end of the mean camber line for this study. A series of calculations were required
to determine the outlet flow angle (used as a boundary condition in TSONIC) for which the
rear stagnation point coincided with the end of the mean camber line. Pressure distribu-
tions (fig. 12) and stagnation streamlines were obtained for several values of deviation
angle (fig. 13). The resulting relation between deviation angle and stagnation point loca-
tion (fig. 14) was interpolated to obtain the deviation angle for which the stagnation point
fell on the end of the mean camber line. The deviation angles so obtained are compared
with measured values in figure 15(a). The estimated deviation angles shown in fig-
ure 15(a) are from 2.60 to 6.40 lower than the measured angles.

Closure hypothesis. - Another trailing-edge hypothesis commonly used (ref. 15) is
to set the leaving angle so that the curves of pressure or velocity for the two surfaces
cross at the trailing edge (x/c = 1. 0). This necessarily requires an extrapolation of the
calculated curves (fig. 16) since the inviscid-flow velocities on one or both surfaces often
exhibit rapid accelerations near the trailing edge before rapidly decelerating to reach the
stagnation point. The changes in surface pressure at the trailing edge probably do not
occur as rapidly in real flow because of the presence of the surface boundary layers and
the wake. Thus, the local acceleration on the suction surface in figure 16 beginning at an
x/c of 0. 95 was ignored in applying the closure hypothesis. Justification for applying
this trailing-edge hypothesis is the supposition that in real flow the surface pressures
approach a common value which exists in the wake in the immediate vicinity of the
trailing-edge circle. Furthermore, the surface pressure distribution near and on the
trailing edge from the inviscid solution is not likely to bear much resemblance to the real
pressure distribution as previously explained. Thus, extrapolating the surface pressure
curves from a point away from the trailing edge is an effort to obtain a better approxima-
tion to the pressure distribution of real flow than that obtainable from inviscid-flow cal-
culations. The assumption is that a continuation of the inviscid pressure curves toward
the trailing edge is a good approximation of the real pressure distribution. There are
difficulties inherent in the method, including determination of the point where the extrap-
olation should begin and the shapes of the extrapolated curves. In this study, graphical
extrapolations of the suction- and pressure-surface pressure distributions were started
at x/c of 0. 94 and 0. 97, respectively. The shapes of the extrapolated curves were con-
structed by using a drafting curve to be a continuation of the shape of the calculated
curves at those points.

11



Estimating deviation angle by using this hypothesis is a trial-and-error process.

Pressure distributions calculated for several values of deviation angle are extrapolated

until the curves for the two surfaces cross or close. The x/c value where the curves

cross is plotted as a function of 6, and the resulting curve is interpolated at an x/c of

1. 0 to obtain the estimated deviation angle 6 c . The curves of 6 as a function of (x/c)cl
for the C4 cascade at inlet flow angles of 300 and 600 are shown in figures 17 and 18.

For every 1 percent change in (x/c)cl the corresponding deviation-angle change is 0. 50

to 0.70 . The estimated deviation angles 6 c are compared with the measured values in

figure 15. In general, the deviation angles estimated by using this hypothesis are sig-

nificantly lower than the measured angles.

The pressure distributions calculated by using the estimated deviation angles are

shown in figures 19 and 20. Measured pressures are shown for comparison. The dis-

crepancies between measured and calculated pressure coefficients in figures 19 and 20

are approximately the same or generally slightly larger than those which resulted when

experimental deviation angles were used in the calculation (figs. 9 and 10).

Gostelow's hypothesis. - Gostelow, Lewkowicz, and Shaalan (ref. 13) suggest that

an appropriate approach is to linearly extrapolate the surface pressure curves from

x/c = 0. 85 until they cross. The correct deviation angle is assumed to be the value for

which the extrapolated curves cross at x/c = 1. 0. An example pressure distribution

showing how the curves are extrapolated is shown in figure 21. To estimate deviation

angle with this hypothesis, a series of calculations are made for different deviation an-

gles; and plots similar to figure 21 are constructed. Then a plot of 6 against (x/c)int
is extrapolated to obtain the 6 which corresponds to an (x/c)int of 1. 0.

Deviation angles were estimated for the 10C4/30C50 cascade over a range of inci-

dence angles at inlet flow angles of 300 and 600. The curves of 6 against (x/c)G are

shown in figures 22 and 23. The estimated deviation angles G are compared with

measured values in figure 15. The calculated deviation angles are reasonably close to

the measured angles except at high incidence angles, where increased drag coefficients

(ref. 28) indicate thickened and possibly separated suction-surface boundary layers.

Calculated and measured pressure distributions are compared in figures 24 and 25.

Discrpa " 1 L1Iies between the calculations and measurements shown infiigues 24 and 25 are

slightly greater than those in figures 9 and 10.

Variable-closure hypothesis. - A new trailing-edge hypothesis is proposed based on

calculations made in this study. In examining pressure distributions calculated with ex-

perimental deviation angles, it was observed that the pressure curves all crossed at

x/c < 1. 0 (figs. 9 and 10). Furthermore, the percent chord location at which the curves

crossed decreased as incidence angle increased at a given inlet flow angle.

The variable-closure hypothesis was developed on the basis of these observations

and the following reasoning: As incidence angle varies, the change in measured deviation
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angle, and thus the change in the location at which the corresponding inviscid-flow pres-
sure distribution crosses, is probably closely related to the thickness of the boundary
layer on the suction surface. The boundary-layer thickness is, in turn, dependent on the
velocity deceleration which takes place on the suction surface. Thus, the pressure-
distribution crossing location calculated with the experimental deviation angle should be
related to the decrease in pressure coefficient on the suction surface. In figure 26 the
chordwise location where the inviscid pressure distributions calculated with experimental
deviation angles cross is shown as a function of the pressure coefficient change on the
suction surface. The pressure coefficient change used was the difference between the
maximum pressure coefficient at x/c, where 0. 05 5 x/c 5 (x/c)cl, and the pressure
coefficient at (x/c)cl. The calculated curves in figures 9 and 10 were used to obtain the
points plotted in figure 26. No claims can be made for the generality of the relation
shown in figure 26 except that it holds over a fairly wide range of incidence angle and
blade setting angle for the 10C4/30C50 section.

DISCUSSION OF RESULTS

Of the three existing trailing-edge hypotheses used to estimate deviation angle,
Gostelow's was most successful (fig. 15). It resulted in rather close estimation (within
10) of deviation angle over a substantial range of incidence angles at blade setting angles
of 300 and 60 . However, at high incidence angles, where reference 28 indicates that the
coefficient of drag was approximately twice the minimum value, the deviation angles es-
timated by using Gostelow's method are significantly lower than the measurements. This
indicates that the method cannot be expected to work well for highly loaded blades with
significant areas of separated flow.

Wilkinson's hypothesis underestimated deviation angles by a significant fraction of
the total turning. Such an arbitrary location for the rear stagnation point would give good
results only if a small change in deviation angle corresponded to a rather large shift in
stagnation point location. However, as indicated in figures 11 and 13, the opposite is
true, so the stagnation point must be located quite exactly to estimate deviation angle
accurately.

The closure hypothesis resulted in significant underestimation of deviation angles
over the entire operating range (fig. 15). In fact, as previously noted, the pressure dis-
tribution curves calculated with experimental deviation angles all crossed at x/c < 1. 0
(figs. 9 and 10).

13



REMARKS

The general lack of agreement between estimated and measured deviation angles at

high incidence angles (fig. 15) suggests that viscous effects must be included in any gen-

eral deviation-angle estimation procedure. One simplified approach is to use the pro-

posed variable-closure trailing-edge hypothesis based on figure 26 in which the closure

location is a function of the inviscid-flow suction-surface pressure distribution. This

hypothesis should be evaluated for a range of profile shapes, camber angles, solidities,

inlet Mach numbers, and axial velocity ratios.

A better general approach would incorporate viscous flow calculations directly into

the deviation-angle estimation method. This could be done in principle by calculating the

inviscid and boundary-layer flow and applying Preston's theorem (ref. 29) to the com-

bined flow solution. Preston's theorem, for the case of an airfoil with steady, irrota-

tional, approaching flow, asserts that the net voirticity shed from the blade surface

boundary layers into the wake must be zero. This idea has been applied to isolated air-

foils (ref. 29) but so far has not been fully evaluated for cascade flow (ref. 13). Several

difficulties would be encountered in calculating the required boundary layers for cas-

cades. These include accurate prediction of transition, calculation of turbulent boundary

layers in large adverse pressure gradients, prediction and description of the separated

flow, and inclusion of wake properties. However, the fundamental nature of this ap-

proach warrants a careful evaluation to assess whether viscous flow theory is mature

enough to be incorporated into a deviation-angle estimation method.

CONCLUSIONS

Development of a more satisfactory procedure of estimating deviation angles over a

range of incidence angles by using inviscid-flow calculations was begun. Since the outlet

flow angle is required to solve the inviscid-flow equations, a trial-and-error procedure

involving a trailing-edge hypothesis was required to estimate deviation angle. The

trailing -e hypothesis.a s t--e- I-y s'Jal ow w-Ls f 4-- -t -give atfactory resuls3ex

cept at high incidence angles. Locating the rear stagnation point at the end of the mean

camber line was found to be unsatisfactory as a trailing-edge hypothesis. Requiring a

curved extrapolation of the pressure distributions to close at the trailing edge also

proved to be an unsatisfactory procedure. A new trailing-edge hypothesis applicable to

14



the 10C4/30C50 blade section over a wide range of incidence and blade setting angles is

presented.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, November 20, 1973,
501-24.
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APPENDIX - SYMBOLS

b stream tube thickness, m

Cpl pressure coefficient, (Po - p)/ P 1V 2

c blade chord (fig. 3), m

Cp specific heat at constant pressure, J/kg-K

i incidence angle (fig. 3), deg

M Mach number

m meridional coordinate (fig. 4), deg

PO stagnation pressure in absolute coordinate system, N/m 2

p static pressure, N/m 2

r radius from axis of rotation (fig. 4), m

s blade spacing (fig. 3), m

u stream function (eqs. (2) and (3))

V fluid absolute velocity, m/sec

W fluid velocity relative to blade, m/sec

w mass flow in stream tube between two blades, kg/sec

x distance along chord from leading edge, m

x/c fraction of chord

z axial coordinate (fig. 4), m

a angle between tangent to stream surface and axial direction (fig. 1), deg

0 angle between flow direction and axial direction (fig. 3), deg

F blade circulation, s(Ve, 1- V, 2 ), m 2 /sec

y blade setting angle (fig. 3), deg

6 deviation angle, angle between relative velocity and tangent to mean camber

line at trailing edge (fig. 3), deg

0 angular coordinate (fig. 4), rad

K blade angle, angle between tangent to mean camber line and axial direction

(fig. 3), deg

angular distance on trailing-edge circle between axial direction and stagnation

point (fig. 17), deg
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p fluid density, kg/m 2

a blade solidity, defined as c/s

Cw rotational speed, rad/sec

Subscripts:

AH along line AH in fig. 5

c obtained with closure trailing-edge hypothesis

cl where pressure coefficient curves close or cross

DE along line DE in fig. 5

exp experimental value

G obtained with Gostelow's trailing-edge hypothesis

int where linearly extrapolated pressure coefficient curves intersect

1 local value on blade surface

m meridional component

max maximum

W obtained with Wilkinson's trailing-edge hypothesis

0 tangential component

1 blade row entrance

2 blade row exit

Superscript:

relative to blade
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TABLE I. - CASCADE CONDITIONS FOR WHICH DEVIATION

ANGLES WERE ESTIMATED

[10C4/30C50 profile; blade solidity, a, 1.0; Mach number at blade row entrance, M 1,
0. 08.

Inlet flow angle, Incidence angle, Experimental deviation angle, Blade setting angle,
01, i, 6exp, Y,
deg deg deg deg

30 -7.7 8.8 22.7

.3 8.7 14.7
11.3 12.15 3.7

60 -9.0 10.45 54.0
-1.2 11.3 46.2
6.6 14.4 38.4

S - .-- Calculation stations

-Stream surface

Flow

Axis of rotation

Figure 1. - Meridional plane cross section of an axial-flow compressor
stage.
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Figure 2. - Sketch of a general stream surface
of revolution.

/2

W s

Mean camber line-,

W1  / S

'Axial direction
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B F E

- Blade-to-
blade sur-
face

Figure 4. - Blade-to-blade surface of revolution,
showing m-0 coordinates. (From ref. 21.)

F E

9 C D

- LTSONIC solution region

/R Q
A B

S _

O P
L MAGNFY solution region

Figure 5. - Solution regions for TSONIC and MAGNFY.
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1.6

r uction
" \ surface

1.2-

8-
SI Pressure

0 .2 .4 .6 .8 1.0
Fraction of chord, x/c

Figure 6. - Pressure distribution for a zero-
thickness flat-plate cascade with zero turn-
ing calculated by using TSONIC. Inlet flow
angle, P1, 300; incidence angle, i, 100;
deviation angle, 6, 100.

1.6

C 1.2
S- Suction surface

SPressure surface

o ,.4

0 .2 .4 .6 .8 1.0
Fraction of chord, x/c

Figure 7. - Pressure distribution for a zero-
thickness flat-plate cascade with the Kutta
condition satisf ed calculated by using
TSONIC. Inlet flow angle, B1, 300; inci-
dence angle, i, 100; deviation angle, 6,
0.480.
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Dividing lo, rF'
streamlines-, = 10, = 0

6 =o0.480

0. 057 c
Flat plate -

Figure 8. - Dividing streamlines for a zero-thickness flat-plate cascade calculated
by using the TSONIC, MAGNFY, and STGPLS programs. Inlet flow angle, 1I,
300; incidence angle, i, 100; blade solidity, a, 1.0; blade chord, c, 0.127 meter;
Mach number at blade row entrance, M1 , 0.08.
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Experimental data
(ref. 28

0 Suction surface,
2.0- 0 Pressure surface

0 - Calculated results

0 000\o1o o

0 O

0 o 0

.8 -00

.4 I I I I I I I I I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Fraction of chord, xlc
(a) Incidence angle, i, -7.70; deviation angle, (b) Incidence angle, i, 0.30; deviation angle,
6, 8.80. 6, 8.70.

3.2 -

2.8

2.4 -

2.0 -

S1.6 -

S 1.2-

0

0 .2 .4 .6 .8 1.0
Fraction of chord, xlc

(c) Incidence angle, i, 11.30; deviation angle,
6, 12.150.

Figure 9. - Comparison of blade surface pressure distributions calculated for a 10C4/30C50
cascade by using experimental deviation angles with measurements from reference 28,
for an inlet flow angle 01 of 300. Blade solidity, 0, 1.0.
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Experimental data
(ref. 28)

2.0 - Suction surface
0 Pressure surface

1.6 - Calculated results 0
C-.o

1.2

.8 0
00 0 0

'13'--- -- -- ---
0

.4

I I I I I I I I I I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Fraction of chord, xlc

(a) Incidence angle, i, -9.00; deviation angle, (b) Incidence angle, i, -1.20; deviation angle,
6, 10.450. 6, 11.30.

2.4

1.6

S1.2-

0o

.8 o

.4 r-- n u

0 .2 .4 .6 .8 1.0
Fraction of chord, x/c

(c) Incidence angle, i, 6.60; deviation angle,
6, 14.40.

Figure 10. - Comparison of blade surface pressure distributions calculated for a 10C4/30C50
cascade by using experimental deviation angles with measurements from reference 28, for
an inlet flow angle 131 of 600. Blade solidity, a, 1.0.
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03

.048 -2.0
r Suction surface

.046 - 1.6-

.044 -- , 1.2-

6=30. 30
.4 -U .8i r, Pressure surface

.042 -

.040 -
(a) Deviation angle, 6, 3.70.

.038 2.0-

Stagnation -Suction surface- Stagnation 8
S.036 - streamline 1.6

.034- 1.2

' Pressure surface
.032 - 6 8.70 6exp .8

.030 - 4 I I I I
0 .2 .4 .6 .8 1.0

O. 024 Fraction of chord, xlc

.118 .120 .122 .124 .126 .128 .130 .132 (b) Deviation angle, 6,11.20
Meridional coordinate, m, meters Figure 12. - Pressure distributions calcula-

Figure 11. - Stagnation streamlines calculated for a 10C4/30C50 ted for a 10C4/30C50 cascade by using two
cascade by using experimental deviation angles and zero turn- deviation angles. Inlet flow angle, 131, 30;

ing. Inlet flow angle, 1l, 300; incidence angle, i, 0.30; blade incidence angle, i, 0.30; blade solidity, o,

solidity, a, 1.0. 1.0.



Deviation Angular
angle, location of

6, stagnation
deg point,

.051 - deg

13.8 59.9

050 - 11. 3 40. 5

.049 - 8.8 23.6

6.3 8.1

.048 - 3.8 -7.7

.047 -

.046 I I I I I I I I
.113 .114 .115 .116 .117 .118 .119 .120 .121 .122

Meridional coordinate, m, meters

(a) Incidence angle, i, -7.70.
.034 -

E 13.7 51.6
.033- 11.2 32.6

.032 8.7 16.8
S.032 -

0 6.2 0.7

S.031 - 3.7 -14.3

.030 I I I
.118 .119 .120 .121 .122 .123 .124 .125 .126 .127

Meridional coordinate, m, meters

(b) Incidence angle, i, 0.30.

.010

.009- Stagnation streamline 12.15 31.612. 15 31. 6
.008- 9.65 14.7

7.15 -2.6

.007- 
4.5 -19.6

.006 I I I I I I I
.122 .123 .124 .125 .126 .127 .128 .129 .130 .131

Meridional coordinate, m, meters'

(c) Incidence angle, i, 11.30.

Figure 13. - Stagnation streamline locations for inviscid-flow solution at several
incidence angles. Inlet flow angle, 31, 300; blade solidity, o, 1.0.
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60 -

50-

Lj 40-40

30-

S20-

7G 10

- 6, =6. 20
0-

'6,w= 6. P-10 -

-201 i I I
2 4 6 8 10 12 14 2 4 6 8 10 12 14

Deviation angle, 6, deg

(a) Incidence angle, i, -7.70 .  (b) Incidence angle, i, 0.30.

40-

a 20

10-

0

, 6 = 5.80-
-10

-20 I/ I I I I I
2 4 6 8 10 12 14

Deviation angle, 6, deg

(c) Incidence angle, i, 11.30.

Figure 14. - Deviation angle as function of stagnation point location for a 10C4/30C50 cascade. Inlet flow angle,
13, 300; blade solidity, o, 1.0.
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16 - Experimental data (ref. 28)
---- Gostelow's hypothesis

- Closure hypothesis o
12- ---- Wilkinson's hypothesis o

o

8 0 0 0 000 ----

I I I I I I
(a) Inlet flow angle, 01, 30P.

a 20

o

: 16 -
.oo

o 0
12 o

0 0 0 0 " -- . - - ..-

8

S I I I I I I I I
-16 -12 -8 -4 0 4 8 12 16

Incidence angle, i, deg

(b) Inlet flow angle, 31, 600.

Figure 15. - Comparison of measured and calculated deviation angles
for a 10C4/30C50 cascade with a blade solidity o of 1.0.

OSuction surface

rPressure surface

P ' .8- >

- .4 I I l I I I
0 .2 .4 .6 .8 1.0 1.2

Fraction of chord, x/c

Figure 16. - Example of extrapolation required in
applying closure hypothesis. Inlet flow angle, P1,
30P; deviation angle, 6, 6.30; blade solidity, o,
1.0; incidence angle, i, -7.70.
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14 -

12-

10-

8-6 7.40

6c= 6.20,6 -

4-

I I I I I I I I
.8 .9 1.0 1.1 1.2 1.3 .8 .9 1.0 1.1

Fraction of chord at closure, (x!c)ci
(a) Incidence angle, i, -7.70. (b) Incidence angle, i, 0.30.

12-

10 

8-

" /- g6 = 5. 60

W 6-

.8 .9 1.0 1. 1
Fraction of chord at

closure, (x/c)cl

(c) Incidence angle, i, 11.30.

Figure 17. - Relation between closure point of pressure distribution and devia-
tion angle for a 10C4/30C50 cascade, for an inlet flow angle 13l of 300. Blade
solidity, 0, 1.0.
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14 -

12 -

10 - 6c 9. 350
bc 9. 1o

8 I I I I I
.8 .9 1.0 1.1 .8 .9 1.0 1.1

Fraction of chord at closure, (x/c)cl

(a) Incidence angle, i, -9.00. (b) Incidence angle, i, -1.20.

16 -

14 -

12

10 - 6
c = 8. 9

0

8 - ]
.8 .9 1.0 1.1

Fraction of chord at
closure, (x/c)cl

(c) Incidence angle, i, 6.60.

Figure 18. - Relation between closure point of pressure distri-
bution and deviation angle for a 10C4/30C50 cascade, for an
inlet flow angle 1 of 600. Blade solidity, 0, 1.0.
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Experimental data
(ref. 28)

o Suction surface
2.0- o Pressure surface

. - Calculated results

a 1. 6 oo 0 10

II I I I I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Fraction of chord, xlc

(a) Incidence angle, i, -7.70. (b) Incidence angle, i, 0.30.

2.8R

: 2.4 0

2.0

00

1.64

0 .2 .4 .6 .8 1.0
Fraction of chord, xlc

(c) Incidence angle, i, 11.30.

Figure 19. - Comparison of pressure distributions calculated by using the closure hypothesis
with experimental data for a 10C4/30C50 cascade, for an inlet flow angle 61 of 300. Blade
solidity, o, 1.0.

34



Experimental data
2.0 (ref. 28)

o Suction surface
o Pressure surface

1., 6o
o - Calculated results o

1.2

.4 E3

I I I I I I_ _ _ I1 I1 _
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Fraction of chord, x/c
(a) Incidence angle, i, -9.(0.  (b) Incidence angle, i, -1.20.

2.4

2.0--o

1.6

S 1.2-

0o

8 8

0 .2 .4 .6 .8 1.0
Fraction of chord, x/c

(c) Incidence angle, i, 6.60.

Figure 20. - Comparison of pressure distributions calculated by using the closure hypothesis with experi-
mental data for a 10C4/30C50 cascade, for an inlet flow angle 01 of 600. Blade solidity, a, 1.0.
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14 -

12 -

/- G = 9.650
10 /

8

2.0 - 6

(a) Incidence angle, i, -7.70.
1.6 14

1 .2 12 -

-G 9.650
.8 -, 10 -

(x/c)int.

0 .2 .4 .6 .8 1.0 6 -

Fraction of chord, xlc

Figure 21. - Linear extrapolation of a calcula- 4
ted pressure distribution for a 10C4/30C50
cascade. Inlet flow angle, P1, 300; devia-
tion angle, 6, 11.30; blade solidity, a, 1.0. 2

(b) Incidence angle, i, 0.30.

12 -

10 - ,,-6G  9.0

8

I I I I I I
.8 .9 1.0 1.1 1. 2 1.3 1.4

Fraction of chord at interseciion, txic)int

(c) Incidence angle, i, 11.30.

Figure 22. - Relation between deviation angle and
point of intersection of linearly extrapolated pressure
distributions for a 10C4/30C50 cascade, for an inlet
flow angle 131 of 300. Blade solidity, o, 1.0.
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10 - 6
G  11.

s I I I
(a) Incidence angle, i, -9.00 .

14

12- 6G =11.3P

10-

S I I I
(b) Incidence angle, i, -1.20.

14-

12 - 6G = 10.450

10 -

.8 .9 1.0 1.1 1.2
Fraction of chord at intersection,

(xlc)int

(c) Incidence angle, i, 6.60.

Figure 23. - Relation between devia-
tion angle and point of intersection
of linearly extrapolated pressure
distributions for a 10C4/30C50
cascade, for an inlet flow angle
B1 of 600. Blade solidity, a, 1.0.

37



Experimental data
(ref. 28)

o Suction surface
2.0- 0 Pressure surface

-- Calculated results 0o

S 1.6 0 o o  o 0 0 0

o01.2 0

0 0 0 0

.4 I I I I I I I I I
0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0

Fraction of chord, xlc

(a) Incidence angle, i, -7.70; deviation (b) Incidence angle, i, 0.30; deviation angle,
angle, 6, 9.650. 6, 9.650.

3. 2

2.80

2.4 0

2.0-

oo

S1.6-

S 1.2 - 0

.8-

.4

0 I I I I I

0 .2 .4 .6 .8 i.0
Fraction of chord, xlc

(c) Incidence angle, i, 11.30; deviation
angle, 6, 9.00.

Figure 24. - Comparison of pressure distributions calculated by using Gostelow's hypothesis with
experimental data for a 10C4/30C50 cascade, for an inlet flow angle 11 of 300. Blade solidity,
0, 1.0.
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Experimental data
(ref. 28)

2.0 0 Suction surface
0 Pressure surface

- Calculated results
1.6 o

0 .2 .4 .6 .8 1.0 0 .2 .4 .6 .8 1.0
Fraction of chord, xlc

(a) incidence angle, i, -9.00. (b) Incidence angle, i, -1. 20.

2.8

2.4

2.0 -

a
1.6

1.2

0
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Figure 25. - Comparison of pressure distributions calculated by using Gostelow's hypothesis
with experimental data for a 10C4/30C50 cascade, for an inlet flow angle P1 of 600. Blade
solidity, a, 1.0.
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Figure 26. - Relation between closure
point of pressure distribution and
suction-surface diffusion for a
10C4/30C50 cascade calculated by
using experimental deviation angles.
Blade solidity, 0, 1.0.
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