
IMAGE DISPLAY AND MANIPULATION SYSTEM

(IDAMS)

PROGRAM DOCUMENTATION

APPENDIXES A-D

(NASA-CR-132916) IMAGE DISPLAY AND N74-17915
MANIPULATION SYSTEM (IDAMS) PROGRAM
DOCUMENTATION, APPENDIXES A-D tComputer
Sciences Corp.) p HC $22.25 CSCL 09B Unclas

G3/08 31544

SEPTEMBER 1972

C\j

csc
COMPUTER SCIENCES CORPORATION

~c ~/

5006-04000-02TR

IMAGE DISPLAY AND MANIPULATION SYSTEM

(IDAMS)

PROGRAM DOCUMENTATION

Prepared by

COMPUTER SCIENCES CORPORATION

For

GODDARD SPACE FLIGHT CENTER

Prepared for

Lottie E. Brown
Code 563

Under

Contract No. NAS 5-11723
Task Assignment No. 040

Prepared by: Approved by:

R. W. Cecil Date M. D. Vogel Da

R. A. White Date

M. R. Sz6zui I Date

I

Record of Revisions

Revision Number Date Revisions

Original September 1972

Revision 1 January 1973 ii,iii, v, vi, 2-2, 4-1, 4-4, 4-7, 4-9

4-14, 4-19, 4-20, 4-26, 4-31, 4-35,

4-45, 4-49, 4-52, 4-60, 4-86, 4-96,

4-97, 4-98, 4-104, 4-144; 4-147,

4-148, 4-149, 4-151, 4-152, 4-153, 4-158,

4-159, 4-160, 4-172, 4-174, 4-176,

4-177, 4-178, 4-179, C-79, and C-80.

Revision 2 December 1973 iii, vi, 2-2, 4-65, 4-65. 1 through 4-65.18,

4-180 through 4-209, B-20, C-41, C-41.1

through C-41.7, C-81 through C-95

TABLE OF CONTENTS

Page

Section 1 - I)DAMS Sv'stem

1.1 Scope and Purpose.................... 1-1

.1.2 Problem Definition 1-1

1.3 Problcm Analysis 1-3

1.4 Program Summary 1-4

1.5 Program Logic and Flow 1-4

Section 2 - Executive Program Description

2.1 Introduction 2-1

2.2 DRIVER-IDAMS Processor Executive Program 2-1

Section 3 - General Purpose Subroutine Descriptions

3.1 LBLRD - Tape Label Reading Subroutine 3-1

3.2 LBLWRT - Tape Label Writing Subroutine 3-3

3.3 IDAMSDSK - Disk Input/Output Subroutine 3-5
3.4 READRITE - Tape Input/Output Subroutine 3-9

3.5 UTMCON - UTM/Geographic Coordinate Interconversion
Subroutine 3-11

3.6 TWOFIT - Two-Dimensional Least-Squares Fit Subroutine . . 3-16

3.7 MATINV - Matrix Inversion Subroutine 3-20
3. 8 PERGEN - Inverted Bit-Order Permutation Generating

Subroutine 3-23
3.9 TRIGGN - Sine Table Generating Subroutine 3-25
3.10 FFTONE - One-Dimensional Fast Fourier Transform

Subroutine 3-26

3. 11 CODE - Character Translation Subroutine 3-28
3.12 MOVE - Character Moving Subroutine 3-30

3.13 CODE8TO6 - Byte to Character Conversions Subroutine 3-32

3.14 ADDLINE - Message Array Update Subroutine 3-34
3.15 TTWLVE - 212 Display Station Interface Subroutine 3-36

Section 4 - Task Program Descriptions

4.1 BATCH - Task Entry Program 4-1
S4.2 TESTGN - Test Pattern Generation Program.. 4-4

4.3 LIST - Tape to Printer Utility Program 4-7
4.4 CONTRAST - Radiometric Correction Program 4-9
4.5 CONVOLVE - Convolution Program 4-14
4.6 EXPAND - Image Expansion Program 4-20

4.7 SHADE - Photometric Correction Program 4-26

TABLE OF CONTENTS (Cont'd)

Page

4.8 FFT - Fast Fourier Transform Program 4-31

4.9 FPCON - Floating-Point Conversion Program 4-35

4.10 SMOOTH - Floating-Point Smoothing Program 4-45

4.11 CXPACK - Complex Packing and Unpacking Program 4-49

4.12 ERROR - Message Processing Program 4-52

4.13 REDUCE - Image Reduction Program 4-54

4.14 HISTO - Histogram and Statistics Program 4-56

4.15 CHAROUT - Pixel Character Output Program 4-58

4. 16 TEXTGN - Text Generator Program 4-60

4.17 NEIGHBOR - Nearest Neighbor Printer Listing Program .. 4-63

4.18 DISPLAY - Interactive Display Program 4-65

4.19 MODIFY - Image Editing program 4-66

4.20 INSERT - Window Insertion and Mosaicking Program 4-70

4.21 GRID - Grid Overlay Program 4-73

4.22 GEOMTRAN - Geometric Transformation Program 4-75

4.23 CHIPGN - Reference Chip Generation and Update

Program 4-87

4.24 RZOMAP - Reseau Mapping Program 4-94

4.25 CORREL - Image Correlation Program 4-99

4.26 RESECT - Spatial Resection Program 4-104

4.27 UTMGEO - UTM/Geographic Coordinate Conversion

Program 4-125

4.28 FPMULT - Floating-Point Array Multiplication Program. 4-128

4. 29 FPSUM - Floating-Point Summation Program 4-131

4. 30 FILTGN - Digital Filter Generating Program 4-134

4.31 RANDGRAY - Random Gray Level Generation Program . 4-142

4.32 IMERGE - Bulk ERTS Tape Merging Program 4-144

4.33 PMERGE - Precision ERTS Tape Merging Program . . . 4-150

4.34 PPUPDATE - Precision Processing Disk File Update

Program ** 4-155

4.35 VPICIN - VICAR Image Reformatting Program 4-164

4.36 INCREASE - Image Enlarging Program 4-166

4.37 COLOR - False Color Coding Program 4-168

4.38 FPLIST - Floating-Point Listing Utility Program 4-172

4.39 DMDOUT - Digital Muirhead Reformatting Program . . . 4-174

4.40 ADDPIX - Picture Addition Program 4-176

4.41 FORMAT - IDAMS Format Conversion Program 4-178

4.42 HISTCONT - Histogram-Contrast Correction Program . . . 4-180

4.43 JOYSTICK - Interactive Display Program 4-183

4.44 MSSCON - Special-Purpose Convolution Routine. 4-205

iii

TABLE OF CONTENTS (Cont'd)

Appendix A - Executive Program Flowcharts

Appendix B - General Purpose Subroutine Flowcharts

Appendix C - Task Program Flowcharts

Appendix D - Floating-Point Data Representation

iv

LIST OF ILLUSTRATIONS

Figure

1-1 IDAMS Processor General Flow 1-5

4-1 Resolution Test Target 4-5

4-2 Contrast Conversions 4-12

4-3 TEXTGN Characters 4-61

LIST OF TABLES

Table

2-1 Task Program Overlay Assignments 2-2

4-1 FPCON Conversion and Transfers 4-37

4-2 FPCON Input Data 4-41

4-3 FPCON Output Data 4-42

v

LIST OF ILLUSTRATIONS (Cont'd)

Figure Page

C-22 GEOMTRAN Program Flowchart C-45

C-23 CHIPGN Program Flowchart C-52

C-24 RZOMAP Program Flowchart C-53

C-25 CORREL Program Flowchart C-56

C-26 RESECT Program Flowchart C-58

C-27 UTMGEO Program Flowchart C-60

C-28 FPMULT Program Flowchart C-61

C-29 FPSUM Program Flowchart C-62

C-30 FILTGN Program Flowchart C-63

C-31 RANDGRAY Program Flowchart C-65

C-32 IMERGE Program Flowchart C-67

C-33 PMERGE Program Flowchart C-68

C-34 PPUPDATE Program Flowchart C-72

C-35 VPICIN Program Flowchart C-73

C-36 INCREASE Program Flowchart C-74

C-37 COLOR Program Flowchart C-76

C-38 FPLIST Program Flowchart C-77

C-39 DMDOUT Program Flowchart C-78

C-40 ADDPIX Program Flowchart C-79

C-41 FORMATProgram Flowchart C-80

C-42 HISCONT Program Flowchart C-81

C-43 JOYSTICK Program Flowchart C-83

C-44 MSSCON Program Flowchart C-94

LIST OF TABLES

Table Page

2-1 Task Program Overlay Assignments 2-2

4-1 FPCON Conversion and Transfers4-37

4-2 FPCON Input Data 4-41

4-3 FPCON Output Data 4-42

vi

LIST OF ILLUSllTATIONS

1-1 IDAMhS Processor Genera. Flow 1-5

4-1 ecsolution Test Target ... *......................... 4-5

4-2 Contrast Conversions 4-12

4-3 TEXTGN Characters 4-61

A-1 DRIVER P:oieraim Flowchart A-1

B-1 Subroutine LBLRI)D Flowchart B-1

B-2 Subroutine LB.,IAWRT Flowchart B-2

B-3 Subroutinc I lM) \ISDS1, llowchart B-3

B-4 Subroutine IPAADRITE Flowclhart B-6

B-5 Subroutine UTMCON Flowchart . B-7

B-6 Subroutine T\\OFIT Flowchart B-8

B-7 Subroutine 71A TINV Flowchart -. . . B-9

B-8 Subroutine PERGEN Flowchart B-10

B-9 Subroutine TRIGGN Flowchart B-11

B-10 Subroutine FFTONE Flowchart B-12

B-11 Subroutine CODE Flowchart B-15

B-12 Subroutine MOVE Flowchart * B-16

B-13 Subroutine CODESTOG6 Flowchart B-17

B-14 Subroutine ADDLINE Flowchart B-18

B-15 Subroutine TT\WLVE Flowchart * * * * * . B-19

C-1 BATCH Program Flowchart C-1

C-2 TESTGN Program Flowchart C-2

C-3 LIST Program Flowchart C-3

C-4 CONTRAST Program Flowchart C-4

0-5 CONVOLVE Program Flowchart C-6

C-6 EXPAND Program Flowchart C-11

C-7 SHADE Program Flowchart C-15

C-8 FFT Program Flowchart -17

C-9 FPCON Program Flowchart * * C-21

C-10 SMOOTH Program Flowchart C-28

C-11 CXPACK Program Flowchart * C-32

C-12 ERROR Program Flowchart ' C-33

C-13 REDUCE Program Flowchart C0-35

C-14 HISTO Program Flowchart o o . . C-37

C-15 CI-LAROUT Program Flowchart C-3S

C-16 TEXTGN Program Flowchart C-39

C0-17 NEIGCIBOR Program Flowchart C-40

C-18S DISPIA\ Y Program lovchart. C-41

C-19 MODIFY Program Flowchart C-42

C-20 INSERT Program Flowchart C-43

C-21 GRID Program Flowchart C-44

V

LIST OF ILLUSTRATIONS (Cont'd)

Figure e

C-22 GEOMITIIN Program Flowchart C-45

C-23 CIIIPGN Program lowchart . C-52
C-24 RZOMAP Program Flowchart C-53

C-25 CORREL Program Flowchart C-56

C-26 RESECT Pr'o'ramni Flowchart C-56
C-27 UTMGIEO Irogram Flowchart C-GO

C-29 FPSUM Program Flowchart C-62

C-30 FILTGN Program Flowchart C-63

C-31 RANDGIA Y Program Flowchart C-65C-32 IMER GE Program Flowchart C-67
C-32 IERGE Program Flowchart C-67
C-33 PMERGE Program Flowchart C-63
C-34 PPUPDTE Program Flo,-chart.. C ... 72..............0-72
C-35 VPICIN Program Flowchart C-73

C-36 iNCREASE Program Flowchart C-74

C-37 COLOR Program Flowchart. C-76

C-38 FPLIST Program Flowchart C-77

C-39 DMDOUT Program Flowchart C-78
C-40 ADDPIX Program Flowchart C-79
C-41 FORMAT Program Flowchart C-80

LIST OF TABLES

Table Page

2-1 Task Program Overlay Assignments 2-2

4-1 FPCON Conversion and Transfers 4-37
4-2 FPCON Input Data 4-41
4-3 FPCON Output Data 4-42

vi

SECTION 1 - IDAMS SYSTEM DESCRIPTION

1.1 SCOPE AND PURPOSE

The Image Display and Manipulation System (IDAMS) Processor provides the

user with an open-ended capability for performing a variety of operations on

a large-scale digitized pictorial image (up to 5000 lines of 5000 picture ele-

ments per line). It consists of a modular package of analytical tools (task

programs) that can be used to enhance, manipulate, and analyze pictorial

information from a satellite or other photographic source. Specifically the

IDAMS Processor provides support for the Earth Resources and Technology

Satellite (ERTS) program.

1.2 PROBLEM DEFINITION

The IDAMS Processor was developed to satisfy a requirement for the following

types of picture processing:

1. Image degradation removal and simulation

a. Convolution filter, including weighted sampling

b. Position-indepenaent radiometric correction

c. Complex array multiplication and addition

d. Filter weight table generation

e. Gray level noise generation

2. Discrete Fourier transform and its inverse

3. Data conversion and scaling

4. Autocorrelation to power spectral density and its inverse

5. Smoothing, including Hamming and Hanning, of frequency space

image representations

6. Position-dependent photometric correction

1-1

7. Image display and description

a. Image reduction and expansion (linear and nonlinear)

b. Histogram and statistics generation

c. Bit masking

d. Printed output

e. Text generation

f. False color conversion

8. Compositing and editing

a. Image point and line editing

b. Window insertion and mosaicking

c. Grid overlay

d. Intensity stretching

9. Geometric correction

10. Precision processing

a. ERTS bulk and precision image reformatting

b. Reference chip generation and update

c. Reseau mapping

d. Cross correlation

e. Spatial resection

f. UTM/lat-long coordinate transformation

g. Disk file editing

1-2

1.3 PROBLEM ANALYSIS

The IDAMS Processor is meant to be a flexible picture processing package

with a capability for the addition of new features, as needs arise. For this

reason, the overall design must adhere to the following considerations:

1. Organization of a modular task structure

2. Overall job control by an executive, with user's choice of sequence

and types of image processing to be performed

3. Standard task and parameter cards for each task, with identical

formats for all tasks to minimize effort in structuring a run

4. Design of functions that are identical for more than one task, such

as tape label processing and moving data within core, as general-

purpose subroutines that can be called by any task program

5. Provision of a general system support capability, such as tape list-

ing and test pattern generation programs, to assist in test and eval-

uation of image processing tasks.

1-3

1.4 PROGRAM SUMMARY

The IDAMS Processor is a package of task routines and support software that

performs convolution filtering, image expansion, Fast Fourier transformation,

and other operations on a digital image tape. A unique task control card for

that program, together with any necessary parameter cards, selects each proc-

essing technique to be applied to the input image. A variable number of tasks

can be selected for execution by including the proper task and parameter cards

in the input deck. An executive maintains control of the run; it initiates ex-

ecution of each task in turn and handles any necessary error processing.

1.5 PROGRAM LOGIC AND FLOW

A small core resident program, DRIVER, directs the execution of all tasks

within the system. It initially passes control to the batch processor, BATCH,

which reads one task card and any parameter cards for that task. The program

performs a preliminary edit on the data and places the information in COMMON.

Control then returns to DRIVER, which calls the task selected for execution.

To save core, BATCH, all task programs, and the error processing routine

reside on an overlay tape. As the execution of each task terminates, control,

returns to the main driver prograrp for initiation of the next task. Execution

continues until all control cards have been processed or a fatal error occurs.

Figure 1-1 is a general flow diagram for the system. It shows the maximum

cpnfiguration of input and output peripherals operating with a task routine, but

one or more of these devices may not be used by an individual task.

1-4

CDC 212 ATCH
INTERACTIVE PROCESSOR TASKDISPLAY STATION CONTROL

CARDS

CORE PROGRAM
RESIDENT OVERLAY/

DRIVER DATA TAPE

RTS
OPERATING
SYSTEM/

DATA
TAPE

TEMPORARY
STORAGE TASK DATA
CDC 854 ROUTINE TAPE

DISK DRIVE

DATA
TAPE

PRINTER CONSOLE
LISTINGS MESSAGES

DATA
TAPE

Figure 1-1. IDAMS Processor General Flow

1-5

SECTION 2 - EXECUTIVE PROGRAM DESCRIPTION

2.1 INTRODUCTION

The IDAMS executive consists of a core-resident routine (DRIVER), a task

entry module (BATCH), and an error processor (ERROR). Since BATCH and

ERROR reside on the overlay tape with task routines, they have been included

in Section 4, Task Program Descriptions. Table 2-1 lists these routines to-

gether with their overlay assignments.

2.2 DRIVER - IDAMS PROCESSOR EXECUTIVE PROGRAM

2. 2. 1 Program Description

DRIVER is the main core resident program used to control execution of all

IDAMS task and special-purpose routines. DRIVER first calls the batch

processing overlay to read and edit the first/next set of task control cards.

If the return is normal, it calls the overlay for the indicated task. This

sequence--first calling BATCH followed by a call to the proper overlay task--

continues until an END card is encountered or a fatal error occurs. If the

ERROR overlay determines that recovery is to be attempted from a fatal

error condition, DRIVER continueg with the next task.

2.2.2 Parameters

No parameters are necessary.

2.2.3 Input

There is no input to DRIVER.

2.2.4 Output

There is no output from DRIVER.

2.2.5 Examples

None.

2-1

Table 2-1. Task Program Overlay Assignments

)verlay Name Function Overlay Name Function

01 BATCH TASK ENTRY MODULE 25 CORREL IMAGE CORRELATION

02 TESTGN TEST IMAGE GENERATION 26 RESECT SPATIAL RESECTION

03 LIST TAPE TO PRINT (INTEGER) 27 UTMGEO COORDINATE CONVERSION

04 CONTRAST RADIOMETRIC CORRECTION 28 FPMULT FLOATING POINT MULTIPLICATION

05 CONVOLVE CONVOLUTION FILTERING 29 FPSUM FLOATING POINT ADDITION

06 EXPAND INVERSE CONVOLUTION FILTERING 30 FILTGN FILTER GENERATION

07 SHADE PHOTOMETRIC CORRECTION 31 RANDGRAY RANDOM NOISE GENERATOR

08 FFT DISCRETE FOURIER TRANSFORMATION 32 IMERGE BULK IMAGE MERGING

09 FPCON DATA SCALING AND CONVERSION 33 PMERGE PRECISION IMAGE MERGING

10 SMOOTIH HAMMING AND HANNING SMOOTHING 34 PPUPDATE DISK FILE EDITING

11 CXPACK COMPLEX DATA PACKING 35 VPICIN VICAR TO IDAMS CONVERSION

12 ERROR ERROR PROCESSING 36 INCREASE LINEAR IMAGE EXPANSION

13 REDUCE IMAGE REDUCTION 37 COLOR FALSE COLOR CODING

14 HISTO HISTOGRAM AND STATISTICS 38 FPLIST FLOATING POINT LISTING

15 CHAROUT TAPE TO PRINT (CHARACTER) 39 DMDOUT IDAMS TO NOAA CONVERSION

16 TEXTGN TEXT GENERATION 40 ADDPIX PICTURE ADDITION

17 NEIGHBOR POINT NEIGHBORHOOD LISTING 41 FORMAT IDAMS FORMAT CONVERSION

18 DISPLAY INTERACTIVE DISPLAY PACKAGE 42 HISTCONT HISTOGRAM-CONTRAST CORRECTION PROGRAM

19 MODIFY IMAGE TAPE EDITING 43 JOYSTICK DISPLAY SYSTEM WITH JOYSTICK CONTROL

20 INSERT WINDOW INSERTION 44 MSSCON SPECIAL-PURPOSE CONVOLUTION PROGRAM

21 GRID GRID OVERLAY 45-64 TEST 45-64 TEST OVERLAYS

22 GEOMTRAN GEOMETRIC TRANSFORMATION 65-99 UNUSED

23 CHIPGN CHIP GENERATION

24 RZOMAP RESEAU DETECTION

2.2.6 Messages

None.

2.2.7 Flowchart

See Appendix A, Figure A-1.

2-3

SECTION 3 - GENERAL PURPOSE SUBROUTINE DESCRIPTIONS

3.1 LBLRD - TAPE LABEL READING SUBROUTINE

3. 1. 1 Program Description

This general-purpose subroutine uses a tape name, logical unit number, and

file number to locate the label record of an input tape file for further pro-

cessing. It makes an initial search to locate the proper file number. If it

cannot be found, LBLRD sets the system error code and terminates abnormally.

When a match is found on the file number, LBLRD checks the name and, if no

match is found, again takes an abnormal error exit. When file number and

name both match, LBLRD returns the contents of the label record to the

calling program and writes them on the line printer.

3.1.2 Parameters

The calling sequence for LBLRD is

CALL LBLRD (LABEL)

where the parameter is

LABEL - array into which lalbel contents are to be read. The calling
program passes tape file name, logical unit number, and file
number to LBLRD.

3.1.3 Input

LBLRD requires an input tape in standard IDAMS format.

3.1.4 Output

LBLRD prints the label on the line printer.

3.1.5 Examples

A typical label record listing produced by LBLRD is

INPUT LABEL DATA - NAME = JAMESBLU, 4096 PIXELS, 3218 LINES,
LUN 49, FILE 1

3-1

3.1.6 Messages

Message Explanation

LBLRD - WARNING, NO MATCH The logical unit number found on
ON LUN nn, LUN CHANGED TO nn tape did not match the one supplied;

the one supplied is being used.

BAD FILE NO nnn The file number requested could not
be located on the input tape; execu-
tion terminates.

aaaaaaaa ON LUN nn NE aaaaaaaa The tape file name passed to LBLRD
did not match the one found in the
label record; execution terminates.

3.1.7 Flowchart

See Appendix B, Figure B-1.

3-2

3.2 LBLWRT - TAPE LABEL WRITING SUBROUTINE

3. 2. 1 Program Description

This general-purpose subroutine uses a logical unit number and file number to

position an output IDAMS tape to the first available record and then writes the

label record into that location.

Upon entry, LBLWRT prints the contents of the label record and rewinds the

tape. It makes a search based on the input file number until the tape is at the

point where the label is to be written. A bad file number will cause abnormal

program termination. Once the proper position is found, LBLWRT writes the

label and returns to the caller.

3.2.2 Parameters

The calling sequence for LBLWRT is

CALL LBLWRT (LABEL)

where the parameter is

LABEL - array containing the contents of the label to be written. Infor-
mation in the array includes the tape file name, number of
characters per record, number of records, logical unit number,
and file number.

3.2.3 Input

There is no input other than the label array.

3.2.4 Output

LBLWRT writes the contents of the label record on the output tape and prints

them on the line printer.

3.2.5 Examples

A typical label record listing produced by LBLWRT is

OUTPUT LABEL DATA - NAME = JAMESBLU, 4096 PIXELS, 3218 LINES,
LUN 47, FILE 1

3-3

3.2.6 Messages

Message Explanation

BAD FILE NO OR BAD LUN The file number or logical unit
number passed to LBLWRT did not
correspond to data found on tape;
execution terminates.

3.2.7 Flowchart

See Appendix B, Figure B-2.

3-4

3.3 IDAMSDSK - DISK INPUT/OUTPUT SUBROUTINE

3. 3. 1 Program Description

This routine provides disk I/O capabilities for the IDAMS task routines using

the CDC Model 3234 Mass Storage Controller and Model 854 disk drive. The

Model 854 has 32, 320 sectors of 64 24-bit words each, organized into 202

cylinders, each of which has 10 tracks of 16 sectors apiece. IDAMSDSK enables

the user to reference these sectors, or cells, in blocks of arbitrary length

using sequential location numbers from 0 to 32319.

Entry DPSEEK converts the specified cell location number into cylinder, track,

and sector address, issues a seek instruction to the Control Data Model 3234

Peripheral Controller, and returns to the caller without waiting for the record-

ing heads to reach the specified position.

Entry DPPUT waits until the heads are positioned as specified by the last

seek, and then writes a specified number of complete 64-word cells from a

specified full-word buffer. Upon completion, a seek is issued for the cell

immediately following the last one written onto, and control is returned to

the caller. Entry DPPUTF issues the write command and then returns

control to the caller immediately..'

Entry DPFETCH waits until the heads are positioned as specified by the last

previous seek and then reads a specified number of complete 64-word cells

into the specified buffer. Upon completion, a seek is issued for the cell

immediately following the last one read, and control is returned to the caller.

Entry DPFETCHF issues the read command and then returns control to the

caller immediately.

Entry DPCHECK checks the status of the last command and waits for comple-

tion before returning to the caller.

3-5

3.3.2 Parameters

The calling sequences for IDAMSDSK are

CALL DPSEEK (IDLOC)

CALL DPPUT (BUFF, NCELL)

CALL DPFETCH (BUFF, NCELL)

CALL DPPUTF(BUFF, NCELL)

CALL DPFETCHF (BUFF, NCELL)

CALL DPCHECK

where the parameters are

1. IDLOC -Location number (0 to 32319) of cell to be read or written

2. BUFF - First core memory location of integer or real buffer for

disk data transfer

3. NCELL-Number of 64-word cells to be read or written

3.3.3 Input

For DPFETCH only, disk cells are specified by the call parameters.

3.3.4 Output

For DPPUT only, disk cells as specified by the call parameters.

3.3.5 Example

Copy ten consecutive blocks of 500 core words each, located in BUFF (1) through

BUFF (5000), onto the disk, starting at cell number 4000. The necessary se-

quence of FORTRAN instructions is

DIMENSION IBUFF (5000)

COMMON IDUMMY (5), IEROR

CALL DPSEEK (4000)

3-6

IPOINT = 1

DO 320 I = 1, 10

CALL DPPUT (IBUFF (IPOINT), 8)

IF (IEROR-4) 320, 320, 11111

320 IPOINT = IPOINT + 500

11111 (error processing routine)

Note that for this example the eighth cell in each block is not entirely filled by

the 500 words, since 8 X 64 = 512; the extra 12 words in the cell are skipped

over before starting to write the next block of data.

3.3.6 Messages

IDAMSDSK generates the following non-fatal messages:

Message Explanation

DISK NOT READY - WHEN READY, Disk power not turned on, not up to
PRESS FINISH speed or Control A on front panel of

controller may not be set to 2.

DISK CHECKWORD ERROR CYL nnnn During disk read a checkword error
TRK nnn was encountered; processing will

continue using the doubtful data
unless cancelled by operator.

The following fatal error messages may also be generated:

Message Explanation

SEL, OUTW, OR INPW REJECTED After accepting CON instruction,
REPEATEDLY disk failed to accept subsequent

instructions.

DISK OVERFLOW The number of cells specified by
DPPUT or DPFETCH would have
required reading or writing beyond
cell 32319.

3-7

Message Explanation

DISK ADDRESS ERROR Disk cell location specified by
DPSEEK was not between 0 to 32319
(program error) or was refused by
Disk Controller (hardware error).

LOST DATA Channel transferred data faster
than disk read or write rate (hard-
ware error).

WRITE LOCKOUT Unable to write on disk.

BAD DISK TRACK NO nn ON Specified track has been tagged as
CYLINDER nnn bad using Disk Controller switches.

RESERVED TRACK NO nn ON Specified track has been reserved
CYLINDER nnn using Disk Controller switches.

TOO MANY CHECKWORD ERRORS Repeated checkword errors have
occurred causing execution to
terminate.

UNKNOWN DISK ERROR, STATUS The specified status code does not
CODE = nnnn indicate any of the errors above.

3.3.7 Flowchart

See Appendix B, Figure B-3.

3-8

3.4 READRITE - TAPE INPUT/OUTPUT SUBROUTINE

3. 4. 1 Program Description

This subroutine performs tape input/output processing for the IDAMS task

routines. Entry points are provided to read or write a magnetic tape record

with or without unit status checking. If necessary, recovery from parity

errors is attempted.

Entry READ causes one logical record to be read, followed by a unit status

check.

Entry READF causes one logical record to be read, followed by an immediate

return to the calling program.

Entry WRITE will write one logical record and check the unit status.

Entry WRITEF will write one logical record and return immediately to the

calling program.

Entry CHECK tests the status of the last tape I/O operation on the unit specified.

If a parity error is detected on one of the tape units READRITE checks to see

whether or not a warning message is to be printed based on a preset counter.

A second check is then made to terminate the run if a preset limit on the

number of acceptable errors is passed. The program then takes the appro-

priate action and returns to the caller.

3.4.2 Parameters

The calling sequences for READRITE are

CALL READ (LUN, IOBUFF, LENGTH)

CALL READF (LUN, IOBUFF, LENGTH)

CALL WRITE (LUN, IOBUFF, LENGTH)

CALL WRITEF (LUN, IOBUFF, LENGTH)

CALL CHECK (LUN, IOBUFF, IOPT)

3-9

where the parameters are

LUN - Tape logical unit number

IOBUFF - Input/Output buffer starting location

LENGTH - Number of words to read or write

IOPT - Not currently used

3.4.3 Input

For READ and READF only, one tape record is read.

3.4.4 Output

For WRITE and WRITEF only, one tape record is written.

3.4.5 Example

None.

3.4.6 Messages

READRITE may generate the following messages:

Message Explanation

PAR ERR, LINE nnnn, LUN nn A parity error has been detected on
the indicated tape unit or on disk,
execution continues.

nn PARITY ERRORS ON LUN nn, More than an arbitrary number of
RUN WILL ABORT AT nn tape parity errors has been detected,

execution will terminate if a
threshold number is exceeded.

3.4.7 Flowchart

See Appendix B, Figure B-4.

3-10

3.5 UTMCON - UTM/GEOGRAPHIC COORDINATE INTERCONVERSION
SUBROUTINE

3.5.1 Program Description

UTMCON converts Universal Transverse Mercator (UTM) grid coordinates to

geographic latitude-longitude coordinates or, as specified by the calling pro-

gram, carries out the inverse transformation.

UTMCON begins by examining the zone designator, IZONE. If it is non-zero,

latitude and longitude values are converted to UTM northing and easting using

as central meridian longitude

L =-1830 + 60 x IIZONEJ
c.m.

where negative values of L are west of Greenwich, and positive values
c.m.

are east. The difference X between the input longitude and L is computed;c. m.

if this value exceeds 4-1/20, the value of IEROR in COMMON is set and control

is returned to the calling program without carrying out the conversion. Similar

action is taken if the latitude is not between -900 and +900, where a negative

value is interpreted as south latitude.

The conversion is then carried out using the formulae

-1
E = r sin- 1 (sinXcoso)

N=s+r [sin1 i -0

r

s = a (c1 0 - c2 sin 20 + c3 sin 40)

2 2 -1/2
r =a (1 -e sin2 0)-1/2

where

a = . 9996 x semi-major axis of spheroid

e = eccentricity squared

3-11

E = grid meters east of central meridian

N = grid meters north of equator

0 = latitude (negative for southern hemisphere)

A = longitude relative to central meridian of zone (negative for
west of c. m.)

and the expansion for meridian distances s, accurate to < 0.2 meters, has co-

efficients

1 2 3 4c =1--e -- e
1 4 64

3 2 3 4
c =-e +-e2 8 32

15 4
c3 256 e

In order to produce a positive easting value and record the UTM zone,

500000 + IZONE x 106 is added to the easting value. The easting and northing

values are then returned to the calling routine.

If IZONE = 0, a conversion from UTM to latitude-longitude is carried out. The

value of easting passed by the calling routine is divided by 106; the quotient rep-

resents the zone number, and the remainder the UTM easting. The false easting

of 500,000 is subtracted from the easting to obtain the value of E.

Because the equation relating N and 0 cannot be solved explicitly for 0, an

iterative technique is used. An initial estimate of 0 is computed as

s2 2

Successive approximations for 0 are then computed by first computing the value

N (0i) obtained using the i-th estimate, and then using

3-12

N -N(i)

i+1 a + 2 + e sin i

2 cos 2i a

When N-N(i) < 1 meter, the estimate oi+1 is taken as the value of 0; normally

only two iterations are required to obtain an accuracy of better than 0. 5 meters.

If adequate convergence is not obtained within five iterations, IEROR is set and

control is returned to the calling program without performing the conversion.

Otherwise, the longitude relative to the central meridian is computed using

X = sin-l (sin E/cos)
r 0)

and added to the central meridian longitude for the specified zone. The latitude

and longitude values are then returned to the calling program.

3. 5.2 Parameters

The calling sequence for UTMCON is

CALL UTMCON (XLAT, XLONG, UTME, UTMN, IZONE)

where the parameters are

XLAT - Latitude in degrees and decimal fraction; south

latitude is denoted by a minus sign

XLONG - Longitude in degrees and decimal fraction; longitude

west of Greenwich is denoted by a minus sign

UTME - UTM easting, with central meridian assigned a false

easting of 500, 000 meters. The value is preceded

by 106 x zone number.

3-13

UTMN - UTM northing, with negative values representing

southern hemisphere northing less false northing

of 107 meters; i. e., negative values are distances

from equator

IZONE - UTM zone if conversion from lat/long to UTM is

desired; 0 if conversion from UTM to lat/long is

required

For either type of conversion, one pair of coordinate parameters are dummy

locations into which UTMCON will store the results of converting the values

passed in the other pair of coordinate locations.

3.5.3 Input

The only input to UTMCON is through the parameters.

3.5.4 Output

The output from UTMCON is stored into the locations specified in the calling

sequence parameters.

3.5.5 Examples

Find the latitude and longitude corresponding to UTM easting of 648320 and

UTM northing of 6423880, in UTM zone 19. The call is

CALL UTMCON (XLAT, XLONG, 19648320., 6423880., 0)

Find the UTM easting and northing for 38.447203 degrees north latitude and

96.266667 deg. west longitude. The result is to be referred to UTM zone 15

(central meridian 930 W). The call is

CALL UTMCON (38.447203, -96. 266667, UTME, UTMN, 15)

3-14

3.5.6 Messages

UTMCON sets the value of IEROR in COMMON to indicate three error condi-

tions, as follows:

Message Explanation

LONGITUDE MORE THAN 4.5 DEG Input longitude too far from central

FROM C. M. meridian of specified zone.

LATITUDE GREATER THAN 90 DEG Error in input parameter.

NO CONVERGENCE FOR LATITUDE Input northing too large; correspond-
ing latitude cannot be found.

In each case, control is returned to the calling program without carrying out

the requested conversion.

3.5.7 Flowchart

See Appendix B, Figure B-5.

3-15

3.6 TWOFIT - TWO-DIMENSIONAL LEAST-SQUARES FIT SUBROUTINE

3. 6. 1 Program Description

This general-purpose subroutine determines the coefficients of the two-

dimensional polynomial(s) which yield(s) the least-squares best fit(s) to one

or more sets of values determined at an arbitrary set of points. The variance

between the values obtained from the least-squares polynomial coefficients and

the input data is also computed.

TWOFIT begins by checking that the degree Ideg of the required polynomial is

between 1 and 5, and that the number of points Npt for which values are speci-

fied satisfies

Npt (Ideg + 1) (Ideg 2)

If either condition is not satisfied, an error code is set and control is re-

turned immediately to the calling program.

Otherwise, TWOFIT computes the coefficients bkl of the approximating poly-

nomial

deg deg-k k 1
z (x, y) = 2; bkl x y

k=0 1=0

by finding the values of b for which the variance between actual values z.

at the points (xi , yi) and the computed values z(xi, Yi) is a minimum; this

variance is given by
N

V 1 pt y 2
- X [zi - z(xi i) 2
pt i= 1

The computation is carried out by calculating the coefficient matrix and

right-hand side column vector(s) of the system of linear equations

N I I Npt deg deg-k m+k n+l pt m n
z 2 x. y b L z. x y.i=1 k=0 1=0 1 i= 1

0 - m Ideg, 05 n< Ideg-m

3-16

The general-purpose subroutine MATINV is then called to obtain the solutions

for the coefficients bkl by matrix inversion.

In the event that the matrix is found to be singular, an error code is set and

no solutions are returned; otherwise, TWOFIT returns one set of coefficients

b for each set of values z. passed in the call.

3. 6. 2 Parameters

The calling sequence for TWOFIT is

CALL TWOFIT (IDEG, NPT, NSET, X, Y, Z, A, B)

where the parameters are

IDEG - Degree of polynomial desired
(1 < IDEG 5)

NPT - Number of points for which values are
supplied

NSET - Number of sets of values to be fit

X - NPT floating point values of x-coordinates
of data points

Y - NPT floating-point values of y-coordinates

Z - NPT * NSET floating-point observed
values at points (x, y). The first set of
NPT values are given in the first NPT
locations; the second set in the next NPT
locations, and so on

A - A dummy array containing at least
1 (IDEG + 1)2 (IDEG + 2)2 floating

point locations for intermediate computa-
tion, contains values of variance on re-
turn

3-17

B Contains floating-point polynomial coeffi-
cients on return; must provide at least

- NSET*(IDEG + 1) (IDEG + 2)2
locations. First set of coefficients occupy

first - (IDEG +1)(IDEG + 2) locations,

and so on.

NOTE: The points'at which values are specified should include at least IDEG + 1
different x-values and IDEG + 1 different y-values.

3.6.3 Input

Input to TWOFIT is entirely through the calling sequence, as specified above.

3.6.4 Output

The results of TWOFIT are returned via the calling sequence and the error

code IEROR in COMMON.

3.6.5 Example

Two sets of displacements, DELTAX and DELTAY, have been determined for

69 points whose coordinates are located in arrays X and Y. It is desired to

obtain the coefficients for the least-squares third-degree polynomials and

place them in arrays COEFFX and COEFFY. Suitable FORTRAN statements

are

DIMENSION COEFFX (10), COEFFY (10), A (100), DELTAX (69),

1 DELTAY (69), DELTA (138), X (69), Y (69), COEFF (20)

EQUIVALENCE (DELTA (1), DELTAX (1)), (DELTA (70),

1 DELTAY (1), (COEFF (1), COEFFX (1)),

2 COEFF (11), COEFFY (1))

CALL TWOFIT (3, 69, 2, X, Y, DELTA, A, COEFF)

3-18

On return, the variance between the actual values and those computed from

the polynomials will be located in A(1) for DELTAX and A(2) for DELTAY.

3.6.6 Messages

TWOFIT sets error codes for three abnormal conditions, as follows:

Message Explanation

POLYNOMIAL DEGREE LT 1 OR Requested polynomial degree not
GT 5 between 1 and 5

TOO FEW KNOWN POINTS Number of points with known values
less than 1 + 2)

2 deg+ " (Ideg+ 2

MATINV GAVE SINGULAR SOLUTION MATINV gave singular solution:
known points did not occupy at
least (Ideg + 1) different x positions

(Ideg + 1I different y positions

3.6.7 Flowchart

See Appendix B, Figure B-6.

3-19

3.7 MATINV - MATRIX INVERSION SUBROUTINE

3.7.1 Program Description

This general-purpose subroutine inverts a square matrix of up to 21 x 21 and/or

finds the solutions to one or more sets of simultaneous linear equations whose

coefficient array is represented by the matrix. The determinant of the matrix

is also computed.

MATINV uses the Gauss-Jordon method of pivotal condensation, with total pivot

searching and row interchange. It is a modification of a routine developed by

D. C. Knight of the Commonwealth Scientific and Industrial Research

Organization, Adelaide, Australia.

Execution begins by searching the matrix for the element having the largest

absolute value. This element is moved onto the principal diagonal and the

other elements in the pivot column reduced to zero by subtracting multiples of

the pivot row from the other rows. The search and reduction continues until

all columns have been reduced, giving the solution vectors, if requested. The

inverse of the matrix is then computed, if requested, by interchanging columns

of the matrix so as to reverse the effects of the row interchange. The deter-

minant is computed as the product of the pivotal elements. If at any time the

pivot value falls below 1.0 x 10 - 90 , the matrix is treated as being singular,

and the determinant value is set to zero.

3.7.2 Parameters

The calling sequence is

CALL MATINV (A, B, N, L, DET)

where the parameters are

A - Array to be inverted; contains inverse
matrix on return

3-20

B - Array of right-hand side vectors for
sets of simultaneous linear equations of
the form AX = B; on return, contains
solution vectors X

N - Order of A

L - ILl is number of vectors in B. The sign
of L is used to specify the desired com-
bination of solutions and/or inverse, as
follows:

L > 0, only solutions are given

L = 0, only matrix inverse is given

L < 0, both solutions and inverse are
given

DET - Contains determinant of A on return,
DET = 0 for singular matrix

3.7.3 Input

The only input to MATINV is via the calling sequence.

3.7.4 Output

The only output from MATINV is returned through the subroutine arguments.

3.7.5 Example

It is desired to obtain solutions to the two sets of simultaneous linear equa-

tions

8
Z a..x. =y, i=1, 8
j-= 1

8
Z a.. x. =z, i= 1,8
j= 13 3 1

These equations can be represented in matrix notation as

AX = B

3-21

where B is a two-column matrix whose first column contains the vector

{Yi and whose second column is { zi } , and X is a column vector composed

of the unknowns { x. } . The solutions can be obtained by calling MATINV as follows:

CALL MATINV (A, B, 8, 2, DET)

On return, the two sets of solutions will be in the two columns of B. Since

L > 0, the inverse of A is not computed. The results should be checked for

the possibility of a singular matrix by testing whether DET = 0.

3.7.6 Messages

MATINV generates no messages.

3.7.7 Flowchart

See Appendix B, Figure B-7.

3-22

3.8 PERGEN - INVERTED BIT-ORDER PERMUTATION GENERATING
SUBROUTINE

3. 8. 1 Program Description

This general-purpose subroutine generates a table of integer index values

which may then be used to place a complex data array in permuted order for

use by FFTONE (one-dimensional Fast Fourier transform subroutine).

PERGEN computes the table values by reversing the bit-order of each binary

number between 0 and the table size minus one. It modifies the results to

take into account FORTRAN indexing methods, including the use of two

floating-point numbers to represent each complex value in the array. All

odd-numbered entries are calculated and then copied into even-numbered

entries before exiting.

3.8.2 Parameters

The calling sequence for PERGEN is

CALL PERGEN (MX, PERTBL)

where the parameters are

MX - Number of binary digits in index

PERTBL - Buffer for storing final results

3.8.3 Input

PERGEN needs only the parameter, MX, and a table area of sufficient size.

3.8.4 Output

PERGEN produces the table, PERTBL.

3.8.5 Examples

None.

3-23

3.8.6 Messages

None.

3.8.7 Flowchart

See Appendix B, Figure B-8.

3-24

3.9 TRIGGN - SINE TABLE GENERATING SUBROUTINE

3. 9. 1 Program Description

This general purpose subroutine generates a table of sines of angles between

0 and ir/2 in steps of 2 7r/NX, where NX is the number of columns in the array.

3.9.2 Parameters

The calling sequence for TRIGGN is

CALL TRIGGN (MX, TRGTBL)

where the parameters are

MX - Size of table, 2**(MX - 1) values are generated.

TRGTBL - Storage location for sine values.

3.9.3 Input

TRIGGN requires the parameter, MX, and a table area of sufficient size.

3.9.4 Output

TRIGGN produces the sine table, TRGTBL.

3.9.5 Examples

None.

3.9.6 Messages

None.

3.9.7 Flowchart

See Appendix B, Figure B-9.

3-25

3.10 FFTONE - ONE-DIMENSIONAL FAST FOURIER TRANSFORM
SUBROUTINE

3. 10. 1 Program Description

FFTONE carries out a one-dimensional fast Fourier transform on a line of

data. It begins by computing the appropriate normalization factor. FFTONE

then permutes the complex values to reverse the bit-order of their binary

indices. Before they are stored into their new locations, each value is

multiplied by the normalizing factor. The line is then transformed using the

one-dimensional fast Fourier transform algorithm, and control returns to the

calling program.

3.10.2 Parameters

The calling sequence for FFTONE is as follows:

CALL FFTONE (MX, DATA, TRGTBL, PERTBL)

where the parameters are

MX - Number of passes for FFT, log base 2 of N

DATA - Location of complex array to be transformed

TRGTBL - Table of sines for first quadrant

PERTBL - Bit-order reversed table created by PERGEN.

3.10.3 Input

FFTONE needs only the input parameters.

3.10.4 Output

FFTONE creates one transformed line of data in the output buffer.

3.10.5 Examples

None.

3-26

3.10.6 Messages

None.

3.10.7 Flowchart

See Appendix B, Figure B-10.

3-27

3.11 CODE - CHARACTER TRANSLATION SUBROUTINE

3. 11. 1 Program Description

The general-purpose COMPASS subroutine CODE provides high-speed character

translation by table lookup. CODE loads each character of the input array in

turn, beginning with the last one, and uses it to index one of 64 entries in the

translation table. It stores this entry into the output array.

CODE requires about 11 microseconds for each character translated.

3.11.2 Parameters

The calling sequence for CODE is

CALL CODE (N, DATAIN, DATOT, TABLE)

where the parameters are

N - Number of consecutive characters to be translated

DATAIN - Location of first character of input array

DATOT - Location of first character of output array. DATOT

might coincide with DATAIN; overlapping is permitted

only if DATOT DATAIN.

TABLE - Full-word array of translation values. Only low-order

six bits of each word are used; first word contains trans-

lation for input character 008, next word for input 018,
and so on to input 778

3.11.3 Input

CODE passes the number of characters to be translated, an array containing

the data to be translated by the calling sequence and a translation table.

3.11.4 Output

CODE returns an array containing the translated data through the calling sequence.

3-28

3.11.5 Example

Not applicable.

3.11.6 Messages

CODE generates no messages.

3.11.7 Flowchart

See Appendix B, Figure B-11.

3-29

3.12 MOVE - CHARACTER MOVING SUBROUTINE

3. 12. 1 Program Description

The general-purpose COMPASS subroutine MOVE moves data within core. It

moves the data in blocks of 128 characters, with the exception of a smaller

first block, using the CDC 3200 Block Control MOVE instruction.

MOVE requires about 4 1/2 microseconds for each character moved; if the

source and destination addresses are full-word boundaries and the count is a

multiple of 4, however, this time is reduced by a factor of 4.

3.12.2 Parameters

The calling sequence for MOVE is

CALL MOVE (N, S, D)

where the parameters are

N - Number of characters to be moved

S - Character address of start of source array

D - Character address of start of destination array

If D = S + 1, MOVE will propagate the first character of S through all of D;

this may be used for zeroing out an array.

3.12.3 Input

MOVE passes the number of characters to be moved and the character

addresses of the origin and destination of the data being moved through the

calling sequence.

3.12.4 Output

MOVE moves data into the user-specified location.

3.12.5 Examples

Not applicable.

3-30

3.12.6 Messages

MOVE generates no messages.

3.12.7 Flowchart

See Appendix B, Figure B-12.

3-31

3.13 CODE8TO6 - BYTE TO CHARACTER CONVERSIONS SUBROUTINE

3.13.1 Program Description

This general-purpose subroutine uses table look-up to translate 8-bit bytes,

packed three per word, into 6-bit characters, packed four per word.

CODE8TO6 begins by accessing the character count, input and output buffer

addresses, and table location and storing them into the main loop. Then one

input word is loaded at a time. The bytes are accessed one at a time by shifting

them, transferring one byte to an index register, and using it to load a value

from the translation table; the resulting character is then stored into the output

buffer. When the required number of characters have been translated in this

manner, control is returned to the caller.

3.13.2 Parameters

The calling sequence is

CALL CODE8TO6 (N, IBUFFIN, CBUFFOUT, ITABLE)

where the parameters are

N - Number of characters to translate

IBUFFIN - Integer array containing input

CBUFFOUT - Character array for output

ITABLE - Integer translation table containing 256 entries

3.13.3 Input

The only input is via the calling sequence.

3.13.4 Output

The translated output is in the array specified by the calling sequence.

3-32

3.13.5 Example

It is desired to translate 24 words (72 bytes) in a buffer INBUFF and place

them into a character array CBUFF starting with character position 15. The

translation is to be as specified by a table ITAB. The required calling

sequence is

CALL CODE8TO6 (72, INBUFF, CBUFF(15), ITAB)

3.13.6 Messages

CODE8TO6 generates no messages.

3.13.7 Flowchart

See Appendix B, Figure B-13.

3-33

3.14 ADDLINE - MESSAGE ARRAY UPDATE PROGRAM

3. 14. 1 Program Description

This is a general-purpose subroutine which adds one or more lines of BCD

data to the permanent 212 message array in COMMON. If the array is

already full, enough lines are made available for the new data by rolling the

array from bottom to top, truncating the oldest data.

Upon entry, ADDLINE calculates the number of lines needed for the new

message and makes the necessary room. Old data is blanked out and new

data is moved in. The program then returns to the caller.

3.14.2 Parameters

The calling sequence is

CALL ADDLINE (ICHARS, CLINE)

where the parameters are

ICHARS - Character count for the message to be added.

CLINE - Beginning location of the new message (character address).i

3.14.3 Input

The only input is via the calling parameters.

3.14.4 Output

Output is to the message array in COMMON.

3.14.5 Examples

None.

3.14.6 Messages

None.

3-34

3.14.7 Flowchart

See Appendix B, Figure B-14.

3-35

3.15 TTWLVE - CDC 212 INPUT/OUTPUT SUBROUTINE

3.15.1 Program Description

TTWLVE is the input/output driver for the CDC 212 Display Station. It has

four entry points; TTWCON, CDCON, STORE, and INTER.

TTWCON is the CDC 212 initialization routine which sets up an address in the

CIT table in core, and clears and connects channel 4. It must be called

before any attempt is made to read or write on the 212. Upon entry to

TTWCON, interrupt control is disabled, channel 4 is cleared, and the connect

instruction is issued. If rejected repeatedly, a message is written to the

operator and the program waits for a ready condition. When successful, the

address of the interrupt processor is stored in the CIT table, interrupt

control is enabled, and the program returns to the caller.

CDCON is the 212 display output routine. When this routine is called, up to

250 words are presented on the 212 screen. Upon entry to CDCON, the input

buffer address and word count parameters are picked up and stored into

instructions later in the program. A loop is then entered which converts the

input data from internal BCD to 212 external code. The screen is blanked and

data is output a line at a time until done. If output fails because of a channel

busy condition, a message is written to the operator. Before returning, the

converted data is restored to its original code.

STORE is the 212 input routine. This routine transfers up to 250 data words

from the display screen into core. Upon entry to STORE, the return data

buffer address and word count parameters are stored where needed in the

program. A loop is then entered to wait for an interrupt from the 212. After

the interrupt is made and serviced by INTER, STORE returns to the caller.

INTER is the 212 interrupt processor which reads data from the 212 into the

area defined by the buffer passed when a call to STORE is executed. This routine

is entered when the SEND switch is depressed on the 212 keyboard. Upon

3-36

entry to INTER, initialization is performed and the input area is filled by ex-

ecuting an INPW instruction. A channel busy message is generated if necessary.

After a successful data transfer, an interrupt switch is set to 1 in COMMON

location IPARIT(10). The data is then converted to internal BCD code and the

entire array is shifted left two characters. The program then returns control

to the central Interrupt Processor.

3.15.2 Parameters

The calling sequences for TTWLVE are as follows:

CALL TTWCON

CALL CDCON (IWRDBUFF, COUNT)

CALL STORE (IWRDBUFF, COUNT + 1)

where the parameters are

IWRDBUFF - Array address of first data word

COUNT - Integer word count for amount of data to be transferred

3.15.3 Input

TTWLVE reads an array from the 212 when a call to STORE is executed

followed by an external interrupt generated at the 212 keyboard.

3.15.4 Output

TTWLVE writes an array to the 212 when a call to CDCON is executed.

3.15.5 Example

None

3.15.6 Messages

TTWLVE may generate the following advisory messages:

3-37

Message Explanation

212 CONNECT FAILURE, NOW Could not connect channel 4, hard-
LOOPING UNTIL READY ware not ready.

CHANNEL 4 BUSY OVER 3 A channel 4 input/output operation has
SECONDS failed continuously for three seconds,

hardware not ready.

3.15.7 Flowchart

See Appendix B, Figure B-15.

3-38

SECTION 4 - TASK P1OGI'A\M DE'SCITIONS

4.1 BATCH - TASK ENTRY PROGRAMI

4.1.1 Pro'ram Dcsci'ition

This is a task entry module which receives task and parameter data either

from cards or the 212 display station. BATCH decodes and uses this informa-

tion to set up conditions for executing the various user tasks within the IDAMS
processor. DRIVER calls BATCH before execution of each task to bring in

from cards or the 212 display the parameter information necessary for the ex-
ecution of one task progrant. BATCH interprets the free format input data,
edit-checks tape name, logical unit and file numbers, and input picture
coordinates, then stores these values in COMMON. In addition, special
parameters required for an individual task are transferred to COMMON.

Upon entry, BATCHT performs initialization of constants and arrays. Messages
are written out indicating card or interactive mode. For interactive mode,

the message "READY. FOR INPUT" is written to the 212 followed by a read
from that device. A call to CDCON performs the 212 write function while a
call to STORE does the read. For card mode, data is read directly from
cards.

After the data has been initially read into the program, BATCH decodes
fields and subfields on the task card. An undefined task name will cause a
fatal error, as will improper use of field delimiters.

BATCH next performs a limits check on logical unit and file numbers, then
calls PARAMS to decode the parameter data. This is followed by further limits
checks on starting line and pixel and number of lines and pixels. The primary
input label is read and both the number of pixels and number of line6 are reduced
if necessary.

BATCI then returns control to DRIVER to execute the next task.

4-1

4.1.2 Parameters

BATCH functions with DRIVER as part of the executive, and requires no

parameters.

4.1.3 Input

BATCH reads the user-supplied task and data from cards or the 212 display,

and transmits the information to the indicated task program through COMMON.

4.1.4 Output

BATCH lists each input card on the printer and 212 display station as it is

processed.

4.1.5 Examples

Not applicable.

4.1.6 Messages

BATCH can generate the following non-fatal messages:

IDAMS PROCESSOR - CARD MODE
THIS IS taskname (console only)

or

variable task and parameter data Each user-supplied set of task and
(printer and 212 display only) parameter information is written

to the printer and 212 display.

When a SWITCH task card is encountered, these additional messages will be

written

NOW SWITCHING MODES
IDAMS PROCESSOR - INTERACTIVE MODE
READY FOR INPUT (printer and 212 display only)

4-2

If the number of pixels or lines must be reduced, BATCH will write one of the

following messages:

NUMBER OF PIXELS REDUCED TO nnnn

or

NUMBER OF LINES REDUCED TO nnnn

BATCH may also generate a number of fatal error messages, as follows:

Message Explanation

ILLEGAL CARD TYPE The task name read did not match
any name kept in an internal table.

MISSING DELIMITER ON TASK Parentheses, commas, or fields
CARD were incorrect on the task card.

2NDARY INPUT LUN LT 1 OR The secondary input tape logical
GT 55 unit number specified was outside

the limits defined for programmer
units.

2NDARY INPUT FILE NO LT 1 The secondary input file number
OR GT 999 did not fit within the arbitrary

limits of 1 to 999.

OUTPUT LUN LT 1 OR GT 55 The output logical unit number
specified was outside the system
limits defined for programmer
units.

4.1.7 Flowchart

See Appendix C, Figure C-1.

4-3

4.2 TESTGN - TEST 'PATTERN GENER-TION PROGR AM1

4. 2. 1 Program Description

This task subroutine gc:nerafes a test image (Figure 4-1) having 270 lines of.

340 pixels each, as follows:

1. Standard resolution bars in left half

2. Single blip at line 45, pixel 240

3. 8-x-8 array of 20-x-20 uniform gray squares in lower right.

Upon entry, TESTGN initializes pointers necessary to define boundaries for

the resolution bars. It writes a label in IDAMS format on the first record of

the output tape. The bars are in an internal array of 230 lines, each con-

taining 120 pixels. After 20 lines of zeros are written, TESTGN moves the

resolution bar data into the left half of lines 21 through 250. The right half

of these lines is all zero except line 45, pixel 240, which conzains the single

point image. Lines 91 through 250 have bars in the left half and uniformly

increasing 20-x-20 blocks of gray levels in the right half. The last 20 lines

and the first and last 20 pixels in every line are all zero, forming a border

around the test image.

4. 2. 2 Parameters

No special parameters are required.

4.2.3 Input

There is no input other than the TESTGN task control card.

4.2.4 Output

TESTGN creates a test image of 270 lines and 340 pixcls containing resolution

bars, a single point image, and uniform gray blocks in standard IDAMS

format on an output tape.

4-4

(16 (171 (18 (19) (0 (21 (22) (23)

PONTT
IMA4GE

00

1W i,(91 10) (i (i (11 1 1 1(2) (13) (14) (15)

160

511111i n IIt (24) 125) (26i (7) 128) (29) (301 (31)

(32I (33) (341 (35 (361 (37) (3) (39)
i0m

200 (40) (41) (42) (43) (44) (45) 146) (47)

S(48) (49) (50) (51) (52) (53) (54) (55-

240 (56) (57) (58) 159) (60) (61) . (62) 163)

260

270

S 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340

Figure 4-1. Resolution Test Target

4.2.5 Examples

To create the standard test image of 270 lines and 340 pixels each, the follow-

ing task control card is necessary:

TESTGN, ., ,(TEST1, 49, 1)

This will create the previously described pattern on the tape mounted on

logical unit 49. The IDAMS label record will contain the name "TEST1" for

future reference.

NOTE: Card format specifications are defined in the IDAMS User's Guide.

4.2.6 Messages

There are no messages.

4.2.7 Flowchart

See Appendix C, Figure C-2.

4-6

4.3 LIST - TAPE TO PRIINTER UTILITY PROGRAM

4.3.1 Progrm Description

LIST is a task routine used .to generate a printed listing of selected sections

of selected lines of images. It is used primarily for checkout and evaluation

of other tasks.

Based on input data, LIST accesses the proper tape unit and reads and prints
the tape label for the specified file. It compares the number of lines and

pixels requested with the actual values found on tape, and reduces one or

both of the requested values, if necessary. It then prints a line at a'time in
integer format, preceded by the line number, until it has listed all requested
data. The user has the option of specifying packed or spaced output via an
input parameter.

4. 3. 2 Parameters

LIST requires the following special parameters:
-J

1. SKIP "- interval between successive input lines. SKIP = 1 or

default if all input is to be printed

2. IBLOCK - block list option. If IBLOCK = 1, horizontal and

vertical spaces are suppressed. If this field is defaulted,
normal spacing is used.

4.3.3 Input

A tape containing integer data in standard IDAMS format is necessary.

.4.3.4 Output

This routine lists the portion of the input tape specified through input
parameters on the printer.

4-7

4.3.5 Examples

A previous program has created a tape, which is now mounted on LUN 47. Its

overall data dimensions are 4096 pixels and 3218 lines. Its label name is

JAMESBLU and the file number is 1. To list every 100th line beginning at

pixel 20 and line 50, the following control cards are necessary:

LIST, (JAMESBLU, 47, 1), (20, 50, 4077, 3169), ,1

00

NOTE: Card format specifications are defined in the IDAMS User's Guide.
Parameters must be supplied in the order shown in paragraph 4.3.2.

4.3.6 Messages

None.

4.3.7 Flowchart

See Appendix C, Figure C-3.

4-8

4.4 CONTRAST - HADIOMETHIC COIRRECTION PROGR ,AM

4.4.1 Program Descrintion

The task program CONTAST provicdes for converting the gray level values

of an image using table look-up. The table can be obtained from any of three

sources: a standard table of radiometric corrections stored in the program;

a complete conversion table supplied by the user; or a table generated by

linear interpolation between user-supplied pairs of old and new gray-level

values, which define a piecewise linear relation between old and new values.

CONTRAST can also perform a bit masking operation on an IDAMS formatted

data tape where the number of bits to be set to zero is determined by the first

parameter.

Upon entry, CONTRAST examines the first input parameter, N. If 2< N< 11,

N pairs of coordinate points must follow which define the piecewise linear

graph to be used for computing the translation table. If N = 1, the translation

table is input as parameters 2 - 65. If N = 0, an internal translation table is

used. If - 55 N:5 -1, N I bits are masked by computing an appropriate
translation table. The lowest order (rightmost) bit will be set to zero in each

pixel if N = -1. In any case, after generating or storing the required table,

CONTRAST reads in one line of input data at a time. Unwanted lines are not

processed. General purpose subroutine CODE translates one character at a

time to new gray-level values specified by the table. The finished line is

written on output, and successive lines are produced in the same manner
until the specified region of the image has been processed.

4.4. 2 Parameters

The contrast conversion table can be specified in one of four ways. If the

conversion is to follow a linear or piecewise linear 3relation, the parameters

are shown in the following page.

4-9

1. N = number of pairs of coordinate points that follow (2 :5 N 5 11)

2,3, Old and new values, respectively, for point at left-hand end of left-

most line segment

4, 5, Old and new values, respectively, for point at left-hand end of next

line segment

2N, 2N + 1. Old and new values, respectively, for point at right-hand

end of last (right-most) line segment

The first pair of values should include at least one zero; the last pair at least

one 63. If the first old value is nonzero, all values less than it will be assigned

a new value of zero. If the last old value is not 63, all values greater than it

will be assigned the last new value. At most, 11 pairs of coordinates can be

specified, corresponding to 10 contiguous line segments. In addition, the old

values must be strictly increasing.

If a nonlinear conversion is required, the parameters are:

1. N = 1 Use table of new values entered as parameters 2 to 65 for

old values 0 to 63, respectively

2-65. New values to which the old values 0 to 63, in that order, are to be

converted; 64 values must be supplied

or,

1. N = 0 Use standard table, stored internally

If bit masking is desired, -5 _ N 5 -1 Mask INI low order bits to zero in each

pixel.

4.4.3 Input

CONTRAST requires a single input image tape in standard IDAMS format.

4-10

4.4.4 Ou

CONTRAST generates a single output image tape in standard IDAMS format.

4.4.5 Examples

It is desired to: increase the contrast in the low-density regions of a picture,

TEST1; decrease the contrast in the medium-density region; and not change

contrast at higher densities, in accord with the function depicted in Figure

4-2. The entire picture of 3000 lines of 3600 pixels each is to be processed.

Appropriate IDAMS source statements are:

CONTRAST, (TEST1, 49, 1), (1, 1, 3600, 3000), (CONTRAST, 47, 1),

4, 0, 0, 20, 40, 55, 55, 63,63

NOTE: Card format specifications are defined in the User's Guide.

Parameters must be supplied in the order shown in paragraph 4.4.2.

4.4.6 Messages

CONTRAST generates the following fatal error messages:

Message Explanation

N NOT LE 11 AND GE -5 The first special parameter con-
tained a value out of range.

COORDINATE VALUE GT 63 OR An old or new gray level value was

LT 0 beyond the range 0-63.

OLD COORD NOT STRICTLY A specified value of the old inten-

INCREASING sity was less than or equal to the
preceding value.

OLD COORD NOT STRICTLY A specified value of the old inten-

INCREASING sity was less than or equal to the
preceding value; execution
terminates.

4-11

(63, 63)

(55,55)

S(20,40)

z

(0,) OLD VALUES

Figure 4-2. Contrast Conversions

4-12

4.4.7 Flowchart

See Appendix C, Figure C-4.

4-13

4.5 CONVOLVE - CONVOLUTION PIIOGRAM

4.5.1 Program Description

The task program CONVOLVE provides c',pnbilities for convolving an image

data set with a user-supplied weight matrix. Applications include simulation

of sampling and blurring processes and digital filtering for edge enhancement

and blur reduction. The program can generate output values for each-input.

pixel, or at larger, user-specified increments between pixels and/or lines.

The weight table can have either odd or even dimensions, it can either be

symmetric about the x and y axes, in which case only one quadrant needs to

be specified by the input parameters, or it can be nonsymmetric.

CONVOLVE begins by accessing the input parameters and computing the

amount of COMMON required for storing the weights. The remainder of

COMMON is dynamically allocated for picture data, to m.nximize processing

efficiency. The program computes the sums of the positive weights and the

negative weights separately, and checks that neither sum, after normalization,

exceeds 32.5 in magnitude; a larger value could produce an uncorrectable over-

flow during computation. The program then normalizes the weights, with 12-

bit fractional part, to make their sum equal unity; optionally, the user can

specify alternative normalization.

The program then compares the dimensions of the specified region of the input

image with the size of the entire input image. If the specified region exceeds

the available input data, CONVOLVE reduces the specified numbers of lines

and pixels to. fit the available data, and writes an advisory message on the

printer. If the specified region extends to or near the edge of the available data,
the program makes provision for copying the boundary pixels outward to min-

imize edge effects by ensuring that each element of the weight matrix will always

have a corresponding pixel value.

4-14

The program then compares the dimensions of the specified region with the

available COMMON size. If the entire input region will not fit into core at one

time, the program makes provision for breaking the image into horizontal strips.

If each such strip contains fewer lines of data than the number of lines of weights,

the program also segments the image into vertical strips. Next, it computes

the remaining constants required for reading, writing, shifting, and convolving

the data. It passes the constants required by the COMPASS subroutine ADDWTS

by calling ADDPRM, which stores the parameters and modifies ADDWTS logic

,to provide maximum efficiency for the particular set of parameters.

The program reads input data into core until the available space is filled, and

copies data on the edges of the input image outwards, if required. If segmen-

tation into vertical strips is required, the program first transfers data from

tape to disk, and then reads back into core from there.

The program calls subroutine ADDWTS to carry out the convolution to generate

one line of output. To compute each output pixel, ADDWTS first resets the

variable SUM to zero. For each weight, from one to four input pixels, depend-

ing on the symmetry of the weight array, are loaded and added together, and

the sum is multiplied by the weight. This product is added to SUM. When all

weights have been used, SUM is divided, with rounding, by 4096 to eliminate the

12-bit fractional part. If the result is negative, it is replaced by 0, the minimum

gray-level value; if the result is greater than the maximum allowed value of 63,

it is reduced to 63. The result is stored into the output buffer, and the input

pixel addresses incremented as specified by the user-supplied parameter, and

the next output pixel is computed.

The program writes each output line onto the output tape as soon as it is com-

puted. When vertical segmentation is required, the program stores the segments

of each line temporarily on disk until a complete output line has been assembled.

When all output lines have been computed for one block of input data, the program

reads an additional block of data into core, after first moving to the top of core

4-15

any lines from the bottom of the previous input block that are needed for com-

puting additional output. Processing continues one block at a time until the en-

tire output image is complete.

When segmentation into vertical strips is required, the program processes the

first segments of all lines on the disk first, then the second, and so on. If the

input data does not exceed about 4 million characters, the program will process

the entire image from one loading of the disk. For larger images, the disk is

reloaded as many times as necessary.

Execution time has three components: tape I/O, computation time, and disk I/O

(if any). Tape I/O is normally a small fraction of the total, because the input

and output tapes are read or written once without intermediate rewinds. Com-

putation time is about 20 microseconds per output pixel and per weight for sym-

metric weight arrays, and about four times as long for nonsymmetric arrays;

for increments other than one, the numbers of output lines and pixels per line

will equal the input numbers divided by the increments.

When segmentation into vertical strips is required, disk I/O will require an ad-

ditional 1 to 6 minutes for each 1 million input pixels, depending on how many

strips are required. Example: Processing a 3200-x-4100 input image with a

20-x-20 symmetric weight array and output increments of 11 and 16 requires

approximately 1 hour and 20 minutes.

4.5.2 Parameters

CONVOLVE requires six special parameters and a table of weights, in addition

to the standard parameters that define the input image. These special param-

eters are:

1. NX - number of columns in full weight matrix

2. NY - number of rows in full weight matrix

3. INCRX - increment between output pixels

4-16

4. INCRY - increment between output lines

5. IDIV - quantity by which input weights are to be divided for

normalization. If IDIV = 0, weights are divided by their

sum.

6. ISYM - symmetry of weights

0 = Nonsymmetric

1 = Symmetric

7. Weights, beginning with top line of array and left-hand end of line.

For ISYM = 0, NX times NY values must be supplied. For ISYM =1,

only the upper (NY + 1)/2 rows and left-hand (NX + 1)/2 values in

each row are entered.

NX can have a maximum value of 256. The product of NX and NY may not exceed

about 2000 for a nonsymmetric matrix or 3500 for a symmetric matrix; these

values correspond to square arrays approximately 45 x 45 and 60 x 60, respec-

tively.

4.5.3 Input

CONVOLVE requires a single input image tape in standard IDAMS format.

4.5.4 Output

CONVOLVE generates a single output image in standard IDAMS format. For

large images and weight arrays, the program requires disk storage for tempo-

rary output.

4.5.5 Examples

1. Simulation is desired of the averaging characteristics of a detector

that weights the central 36 points of an 8-x-8 array equally, and

weights the 28 boundary points only half as much. The distance be-

tween successive sampling centers along the line is five elements,

4-17

and that between lines is eight elements. The corresponding weight

matrix can be represented as:

1 1 1 1 1 1 1 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 1

1 2 2 2 2 2 2 1

An entire input image named LARGEPIC, having 4000 lines of 4000 pixels each,

is to be processed. Appropriate IDAMS task and parameter cards are:

CONVOLVE, (LARGEPIC, 49, 1), (1, 1, 4000, 4000), (SMALLPIC, 47, 1), 2

S8 5 8 0 1 1 1 1 1 1 2 2 2 1 2

2 1 222

2. It is desired to sharpen edges and enhance high-frequency details of

the upper right quarter of a 3000-x-3000 image named CHEBAY

using a symmetric 11-x-11 filter described by the matrix whose up-

per left quadrant is:

2 0 -1 -4 -6 -6

0 -3 -6 4 15 19

-1 -6 12 20 13 5

-4 4 20 -10 -76 -60

-6 15 13 -76 -20 10

-6 19 5 -60 10 844

4-18

Appropriatc IDAI\IS t and paramctcr cards are:

CONVOLVE, (CHEGAY, 49, 1), (1501, 1, 1500: 1500), (SHARPi3AY, 47, 1), 3

11 11 1 1 0 1 2 0 -1 .4 -6 -6 0 -3 -6 4

15 .19 -1 -6 12 20 13 5 -4 4 20 -10 -76 -60 -6 15

13' -76 -20 10 -6 19 5 -60 10 ,844

NOTE: Card format specifications are defined in the User's.Guide. Parameters
must be supplied in the order shown in paragraph 4. 5. 2.

4.5.6 Messages

Message Explanation

SUM OF WEIGHTS = 0 User has specified weight normali-
zation by dividing by sum of weights
(IDIV parameter = 0) and this sum

0, fatal error.

NY TOO LARGE FOR AVAILABLE Insufficient core to hold both
CORE weight table and NY data segments

of minimum possible length, fatal
error.

WEIGHT VALUES TOO LARGE Sum of either positive or negative
weights, after normalization,
exceeded 32. 5, making possible
uncorrectable overflow, fatal error.

4.5.7 Flowchart

See Appendix C, Figure C-5.

4-19

4.6 EXPAND - IMAGE EXPANSION PROGILAM

4.6.1 Program Description

The task program EXPAND converts an input imag into an expanded output

image using. a user-supplied table of weights. These weights can be chosen to

simulate the sprcieding associated with a raster-type scanning or recording

device, or to proviide interpoltion betwoon input points.

The weight table represents the fraction of the value of an input pixel located

at a position corresponding to the center of the table that will be contributed to

output values having relative positions equivalent to the relative positions of the

weights. In other words, an input image array containing all zeros, except for

a single element equal to unity, would (ignoring round-off effects) give an out-
put image containing a single copy of the weight table surrounded by zeros. If

the dimensions NX, NY of the table exceed magnification factors MX, MY,

there will be overlapping between the weight distributions centered on adjacent

input points, so the value of an output pixel can be a sum of the weighted con-

tributions of several input pixels.

When NX or NY is even, the center of the weight table is taken to be on column

NX/2 or row NY/2, respectively; i.e., for an even-even weight table, the

center is taken to be the upper left one of the four values that surround the

geometric center. Similarly, the first pixel of the input array is taken to be at

column (MX + 1)/2 or MX/2 and row (MY + 1)/2 or MY/2, according to whether

MIX and MY are odd or even, respectively.

EXPIAND begins by dividing each user-supplied integer weight value by the

specified divisor using 12-bit fractional precision. If a symmetric array is

specified, the program generates the complete weight array by copying from

the upper left quadrant supplied by the user. Because different output points

will use different subsets of the weights, the program compares the sum of the
positive members and negative members of each possible subset with 32.5 to

4-20

ensure that no uncorrectable overflow can occur during computation of the

output values.

The program then examines magnification factors MX and MY and the table

dimensions NX and NY to determine whether the points on the edges of the out-

put image will need to reference input data beyond the edges of the input image.

If so, the program computes parameters to permit extending the input image

by copying the edge points outwards; if the center of the weight array falls on a

point outside the input image, however, the program reduces user-supplied

dimensions NL and NP, and writes an advisory message.

The program then computes the remaining parameters required for reading in

and processing the data. In particular, if the required input image is too large

to fit into core, the program computes parameters to permit dividing the input

into horizontal strips to be processed one at a time. A call to PXLPRM passes

constants required by the COMPASS subroutine PXLBLD: PXLPRM also modi-
fies PXLBLD logic, as required, by the relative values of MX and NY.

The program then reads data from the input tape until core storage is filled.

It then calls PXLBLD to compute one line of output data at a time. To compute

one output pixel, PXLBLD loads each input pixel that will contribute to the out-
put value, multiplies it by the appropriate weight, and adds the results together.

This sum is divided, with rounding, by 4096 to eliminate the 12-bit fractional

part. If the result is negative, it is replaced by the minimum gray-level value,
zero. If the result exceeds the maximum value of 63, it is replaced by 63. The
result is stored into the output buffer, and the index register is initialized for
computing the next output pixel.

After each output line is generated, the program writes it on the output tape.
After all data in core have been used, the program reads additional strips of the
image, if any, into core and processes them in the same manner.

4-21

Execution time is roughly proportional to the number of output pixels generated

and the average number of input pixels that contribute to each output value;

this number is roughly equal to (NX*NY)/(MX*MY). For 3000 output lines of

4000 pixels each, using about three input pixels for each output value, EXPAND

requires about 30 minutes.

4.6.2 Parameters

EXPAND requires the following special parameters:

1. NX - number of columns of weight matrix

2 NY - number of rows of weight matrix

3. - MX - factor by which image is to be expanded along the line, in

x direction

4. MY - magnification factor in direction perpendicular to lines

(y direction)

5. IDIV - integer by which each integer weight parameter is to be

divided for normalization

6. ISYM - symmetry of weight table
0 = nonsymmetric
1 = symmetric about x and y axes

7. Weight parameters, beginning with top row and left-most value on

row. For ISYM = 1, only (NX + 1)/2 or NX/2 values per row and

(NY + 1)/2 or NY/2 rows need be supplied for NX and NY, respec-

tively, odd or even.

The parameters are restricted by the requirements that: the length of the out-

put line, MX*NP, cannot exceed 5000; and there must be room for at least

1 + (NY - 1)/MY lines of input in core at one time. Hence,

MX : 5000/NP

NY < (20000/NP - 1)*MY + 1

where NP is the number of pixels per line of input to be processed.

4-22

4.6.3 Input

EXPAND requires one input tape in standard IDAMS format.

4.6.4 Output

EXPAND generates one output tape file in standard IDAMS format.

4.6.5 Examples

1. Simulation is desired of the output of a moving-spot recorder that

produces an intensity distribution, on 5-x-5 centers, described by

the weight matrix.

1 3 5 7 9 10 9 7 5 3 1

2 5 10 15 18 20 18 15 10 5 2

3 7 12 18 23 25 23 18 12 7 3

2 5 10 15 18 20 18 15 10 5 2

1 3 5 7 9 10 9 7 5 3 1

Because this table is symmetric about the X and Y axes, appropriate task and

parameter cards for processing a 500-x-500 image SMALLPIC would be:

XPAND, (SMALLPIC, 49, 1), (1, 1,500, 500), (XPND1, 48, 1), 2

1 5 5 5 31 1 1 3 5 7 9 10 2 5 10 15

18 20 3 7 12 18 23 25

4-23

2. Magnification is desired of a 1000-x-1000 region of an image

PINERUST, by three in each direction, using bilinear interpolation.

The required weight matrix is:

1/9 2/9 1/3 2/9 1/9

2/9 4/9 2/3 4/9 2/9

1/3 2/3 1 2/3 1/3

2/9 4/9 2/3 4/9 2/9

1/9 2/9 1/3 2/9 1/9

If the upper left corner of the desired region is at line 501 and pixel 351,

appropriate task and parameter cards would be:

EXPAND, (PINERUST, 47, 1), (351,501, 1000, 1000), (PRX, 49, 1), 1

5 3 3 9 1 1 2 3 2 4 6 3 6 9

NOTE: Card format specifications are defined in the User's Guide. Param-

eters must be supplied in the order shown in paragraph 4.6.2.

4.6.6 Message

Message Explanation

WEIGHT DIVISOR IDIV EQUALS Weight divisor parameter of zero
ZERO cannot be processed, fatal error.

WGHT SUBSET NORMALIZED SUM An uncorrectable overflow (output
TOO BIG value more than 32.5 times input

value) could occur with weights
normalized as specified by the
weight divisor parameter, fatal
error.

4-24

Message Explanation

NY AND NP ARE TOO LARGE FOR Insufficient core available to hold
CORE enough input lines for the size of

weight table defined, fatal error.

4.6.7 Flowchart

See Appendix C, Figure C-6.

4-25

4.7 SHIADE .- PHOTOMETRIC CORRECTION PROGRILM

4.7.1 Program Description

The task program SIIADE makes position-dependent gray-level corrections

on an image using user-supplied calibration data. Assuming the relationship

between the true (',ray level T and measured value M to be linear, at any point

the true value can be computed from the observed value using the relation-

ship

T Slope * M + Intercept (1)

Measuring the values M and M2 for two known gray levels T and T2 deter-

mines the slope and intercept. In terms of these data, the slope and inter-
cept are given by

Slope (T 2 - T) / (M 2 - MI) (2a)

Intercept = (M2 T1 - M1 T2) /(M 2 - M1) (2b)

In practice, the measurements of M 1 and M2 are made conveniently at each
point of a rectangular calibration grid using the same values of T and T at

1 2
each point.

SHADE begins by checking that the user-specified region of the input image to
be corrected is entirely enclosed by the calibration grid. It then uses the values
of T 1 and T2, and of Al1 and 3 2 for each point on the calibration grid; they are
entered as parameters to compute the slope and intercept at each grid point.
It then computes the constants used to control the input and output of data and
the processing loops; a call to the entry point SHAPRM sets constants required
by the COMPASS subroutine SHADIT.

SIHADE then processes the input data lying between the first two rows of the
calibration grid. To compute the values of slope and intercept for points not
coinciding with a calibration grid point, SHADE uses bilinear interpolation,
by computing, for each set of four neighboring calibration points, the coeffi-
cients a, b, c, d, e, f, g, and h in the formulae.

4-26

Slope = a + bx + cy + dxy (3a)

Intercept = e + fx + gy + hxy (3b)

where x and y denote distances from the upper-left corner of the rectangle

defined by the four neighboring grid points.

SHADE reads in input data one line at a time. It then computes the values of

the combinations (a + cy), (b + dy), (e + gy), and (f + hy) for that line for each

calibration rectangle and converts them to fixed-point representation with 16-bit

fractional precision. SHADIT then processes the line of input data using equa-

tion (1); the values of slope and intercept for successive points are obtained by

incrementing the initial values of (a + cy) and (e + gy) in steps of (b + dy) and

(f + hy), respectively; the initial values are reset for a new rectangle each time

a vertical column of the calibration grid is reached. The ittensity-corrected

line of data is then written on the output tape.

When all input data within one row of calibration rectangles have been corrected,

SHADE computes the interpolation coefficients for the next row and processes

data as described above. Processing continues until all input data have been

corrected, after which control returns to the monitor program.

4.7.2 Parameters

SHADE requires the following special parameters:

1. INITX - x-coordinate (pixel number) of upper left point in calibra-

tion grid

2. INITY - y-coordinate (line number) of upper left point in calibra-

tion grid

3. INCRX - spacing (in pixels) between columns of calibration grid

4. INCRY - spacing (in lines) between rows of calibration grid

5. NX - number of columns in calibration grid (not greater than

21)

4-27

6. NY - number of rows in calibration grid (not greater than

441/NX)

7. LEVEL1 - lower (lighter) true value of gray level used for calibra-

tion

8. LEVEL2 - upper (darker) true value of gray level used for calibra-

tion: LEVEL2 > LEVEL1

9. LMEAS - NX times NY pairs of measured calibration values, be-

ginning with top line of grid and left-most calibration

point on line. First value in each pair corresponds to

LEVEL1. Data are four-digit integers (0000 to 6300)

representing 100 times measured values; i.e., with two

implied decimal places.

The calibration grid must entirely enclose region of the input image to be proc-

essed; this means that the relations

SP > INITX

SL > INITY

NP < INITX + NX*INCRX - (SP - 1)

NL _ INITY + NY*INCRY - (SL - 1)

must be satisfied; execution will be aborted otherwise. However, SHADE will

simply ignore additional rows or columns of calibration data not required for

processing the specified input image, and will carry out processing normally.

The 16-bit fractional precision used by SHADIT will keep round-off errors to

less than one-half gray level as long as INCRX is less than 512; because incre-

menting between lines is done with 36-bit floating-point precision, there is no

restriction on the value of INCRY.

The computed values of slope and intercept for all calibration points must be

between -127 and +127; execution will be terminated otherwise.

4-28

4.7.3 Input

SHADE requires one input tape in standard IDAMS format.

4.7.4 Output

SHADE generates one output tape in standard IDAMS format.

4.7.5 Example

Calibration measurements have been made at pixels 50, 300, 550, and 800,

and lines 100, 400, 700 and 1000 using true gray levels of 16 and 48. The re-

sulting measured values were:

(10,42) (13,44) (15,46) (17,47)

(11,42) (14,45) (16,48) (17,49)

(12,43) (15,46) (16,49) (17,51)

(11,43) (15,47) (15,50) (16,52)

Appropriate task and parameter cards for processing the region of an input

image, CB207, between pixels 100 and 800 and lines 100 and 900 are

SHADE, (CB207, 49, 1), (100, 100,701,801), (CB207CR, 47, 1), 3

50 100 250 300 4 4 16 48 1000 4200 1300 4400 1500 4600 1700 4700

1100 4200 1400 4500 1600 4800 1700 4900 1200 4300 1500 4600 1600 4900 1700 5100

1100 4300 1500 4700 1500 5000 1600 5200

NOTE: Card format specifications are defined in the User's Guide. Parameters
must be supplied in the order shown in paragraph 4.7.2.

4-29

4.7.6 Messages

SHADE generates the following diagnostic messages:

Message Explanation

NX EXCEEDS 21 More than 21 columns of calibration

points were specified; execution
terminates.

Message Explanation

NX*NY EXCEEDS 441 More than 441 calibration points were

specified; execution terminates.

SOME DATA LIES OUTSIDE CALIB Specified region of input image

GRID was not entirely enclosed by cali-
bration grid; execution terminates.

INVALID CALIBRATION DATA INCRX or INCRY was not positive,
LEVEL2 was not greater than
LEVEL1, or second number of a
pair of measured values was not
greater than first number; execu-
tion terminates.

SLOPE/INTERCEPT OVFL INPT Value of slope or intercept com-

VALUE NNNN puted from pair NNNN of calibra-
tion data was outside the range
-127 to +127; execution terminates.

COEFF OVFL, CAL GRID ROW An interpolation coefficient

MMMM COL NNNN associated with row MMMM and
column NNNN of the calibration
rectangles was less than -127 or
greater than +127; execution
terminates.

4.7.7 Flowchart

See Appendix C, Figure C-7.

4-30

4.8 FFT - FAST FOURIER TRANSFORM PROGRIAM

4. 8. 1 Progrnm Descrinfion

This task routine performs a one- or two-dimensional Fourier transform on
a complex array of not more than 512 rows and 512 columnns, which is stored

on disk.

FFT uses four subroutines. Subroutine TRIGGN generates a sine-cosine table.

Subroutine PERGEN generates a table of integers to place the complex data
array in permuted order, such that the transformed values will be in normal
sequence. Subroutine FFTONE performs a one-dimensional Fast Fourier

-transform on the permuted complex data array. Subroutine FLIP transposes
the transformed values of a one-dimensional FFT to prepare the complex
data.for a two-dimensional transform. It flips the final result of the second
transform again to place the transformed values in the original array order.

FFT begins by calling subroutine TRIGGN to generate a table of sines of
angles between 0 and r/2 in steps of 27/NX, where NX is the number of columns
in the array. If the user has specified a negative sign for the complex expo-
nential, negatives replace the resulting values.

A table of index permutations is then generated by calling PERGEN. This
routine basically computes the numbers obtained by reversing the bit-order of
each binary number between 0 and N-1; it modified the results to take -into
account FORTRAN indexing methods, including the use of two floating-point
numbers to represent each complex value in the array.

The data are then read into core one line at a time. FFT calls the subroutine
FFTONE to carry out the one-dimensional fast Fourier transform on the line.
FFTONE begins by computing the appropriate normalization factor. It then
permutecs the complex values to reverse the bit-order of their binary indices.
Before they are stored into their new locations, they are each multiplied by
the normalizing factor. The line is then transformed using the one-dimensional

4-31

Fast Fourier transform algorithm, and control returns to the main routine,

which writes the line back onto the disk.

After all lines have been processed, the routine examines the user-supplied

parameter IDIM to determine whether a two-dimensional transform is re-

quested. If so, the routine interchanges the rows and columns of the array

on the disk by calling FLIP. If the number of rows and columns are not the

same, FLIP interchanges these parameters and computes new tables of sines

and permutations. FFTONE then processes the rotated array in the same way

as before. When the entire array has been transformed, another call to FLIP

interchanges the rows and columns again. When processing is complete, con-

trol returns to the monitor.

FFT execution time for an N*M complex array is approximately N*M log2 N*M

milliseconds for a two-dimensional transform. For example, a 64*64 array

requires about one minute for transformation.

4.8.2 Parameters

1. MX - log2 NX, where NX is the number of columns in the data

array (NX must be a power of 2)

2. MY - log2 NY, where NY is the number of rows in the data array

(NY must be a power of 2)

3. IDIM - dimension of FFT required

1 = perform FFT along rows only

2 = perform FFT along rows and columns

4. ISIGN - sign of exponential function in transform

-1 = use negative sign (normally used for transform from

image space to frequency space)

+1 = use positive sign (normally used for the inverse

transform)

4-32

4.8.3 Input

FFT requires a complex data array on disk, 16 complex words/cell, beginning

in cell 1.

4.8.4 Output

FFT places the transformed values on disk.

4.8.5 Examples

An array of 32-x-32 complex data words has been stored on disk. A two-

dimensional inverse Fourier transform is to be performed on this data. The

parameters required are MX = log2 NX = 5, MY = log2 NY = 5, IDIM = 2,

ISIGN = -1 as shown in the following card layout:

FFT 1

5 5 2 -1

NOTE: Card format specifications are defined in the User's Guide. Parameter
must be supplied in the order shown in paragraph 4. 8. 2.

4.8.6 Messages

FFT may generate the following message:

Message Explanation

ARRAY SIZE TOO LARGE The complex data array is larger
than 512 x 512, execution terminates.

NOTES: 1. FFT assumes that the origin of coordinates is in the upper left
corner of the input array (the y axis is positive downwards),
and leaves the origin of coordinates in the same place in the
input. The user must specify the necessary conversions when
transferring data between disk and tape if the image on tape is
to have the origin at the center of the array.

4-33

2. A symmetric normalization has been assumed, whereby the

Fourier transform is

NX-1 NY-1
1 k f e-27ri(km/NX+ n/NY)

VNX*NY m=O n=O

and the inverse transform is

NX-1 NY-1

fmn 1 E E ak e + 2 r i(km/NX+ n/NY)

N X*NY k=O 1=0

4.8.7 Flowchart

See Appendix C, Figure C-8.

4-34

4.9 FPCON - FLOATING-POINT CONVERSION P1ROGRAM

4.9. 1 Program Description

The task program FPCON carries out conversions between the various floating-

point and scaled (six-bit character) representations of image data, the Fourier

components of an image, and associated power spectra and autocorrelation

arrays.

The following floating-point representations can occur:

1. Full array of real image

2. Full array of real values representing modulus or squared modulus

(power spectrum) for the Fourier transform of an image or an

associated autocorrelation function; two arrangements are possible:

a. Origin (zero frequency) at corner of array; this is the nor-

mal format for output from or input to the Fast Fourier

transform

b. Origin at center of array

3. One-half array of complex Fourier components for an image (or

other real array) in real-plus-imaginary form; the remaining

half of the array can be reconstructed using symmetry properties,

as described in Appendix D

4. One-half array of complex Fourier components in modulus-plus-

phase form

5. Packed complex representation of Fourier components, as de-

scribed in Appendix D

The routines generating them normally place these representations on disk,

but they can be transferred to and from tape. The program uses the first

four floating-point words on the disk cell immediately following the last data

4-35

record to store the maxima (words 1 and 3) and minima (words 2 and 4) of the

real and imaginary parts, respectively (or modulus and phase), of the complex

arrays. For real arrays the program sets words 3 and 4 to zero. FPCON

does not provide conversions from packed representation (5.); instead, the

routine CXPACK must be used to convert between (3.) and (5.).

The scaled (six-bit) representations handled by FPCON are:

6. Real image array

7. Full array with origin (zero frequency) at center representing first

part (modulus or real part) of complex values for the Fourier

transform; two types of scaling are possible

a. Linear

b. Logarithmic

8. Full array with origin at center representing second part (phase

or imaginary part) of complex values for Fourier components;

the same two types of scaling are possible

The scaled representations do not reside on disk; hence, conversions to or

from floating point are required for transferring scaled data from or to tape.

Table 4-1 lists the possible conversion and transfers provided by FPCON.

Main routine FPCON accesses the size parameters, reads a requested

transfer/conversion code ranging from 1 to 22, and passes control to a multiple-

entry subroutine to carry out the required processing. When control returns

to FPCON, it reads the next code. If a valid code is found, it again passes

control to the appropriate subroutine. If the code is a zero, or if it is invalid,

FPCON terminates and returns control to the monitor.

Entries F01CN to FO6CN set parameters to identify the entry point and then

enter a subroutine that handles all data transfers from tape to disk. For the

first five entries, the program creates a conversion table from the 64 different

4-36

Table 4-1. FPCON Conversion and Transfers

CODE CONVERSION OR TRANSFER

1 6-BIT IMAGE DATA ON TAPE TO FLOATING POINT
ON DISK

2 6-BIT LINEAR SCALED DATA ON TAPE TO FIRST
PART OF COMPLEX FLOATING-POINT VALUES FOR
SYMMETRIC HALF ARRAY ON DISK

3 6-BIT LINEAR SCALED TO SECOND PART OF COMPLEX
VALUES

4 6-BIT LOGARITHMIC SCALED DATA ON TAPE TO
FIRST PART OF COMPLEX VALUES FOR SYMMETRIC
HALF ARRAY ON DISK

5 6-BIT LOGARITHMICALLY SCALED TO SECOND PART
OF COMPLEX VALUES

6 FLOATING POINT ARRAY TRANSFERRED FROM TAPE
TO DISK

7 COMPLEX MODULUS-PLUS-PHASE SYMMETRIC HALF
ARRAY ON DISK TO REAL-PLUS-IMAGINARY SYMME-
TRIC HALF ARRAY ON DISK

8 FULL ARRAY OF MODULUS VALUES ON DISK TO
SQUARED MODULUS VALUES ON DISK

9 FULL ARRAY ON DISK WITH ORIGIN AT CENTER TO
FULL ARRAY ON DISK WITHIN ORIGIN AT CORNER

10 SYMMETRIC COMPLEX HALF ARRAY ON DISK IN
MODULUS-PLUS-PHASE REPRESENTATION TO FULL
ARRAY ON DISK OF MODULUS VALUES WITH CORNER
ORIGIN

11-19 INVERSE OF 1-9, RESPECTIVELY

20 SYMMETRIC COMPLEX HALF ARRAY ON DISK IN
MODULUS-PLUS-PHASE REPRESENTATION TO FULL
ARRAY ON DISK OF SQUARED MODULUS VALUES WITH
CORNER ORIGIN

21 DISK TO PRINTER FLOATING POINT LISTING

22 TAPE TO PRINTER FLOATING POINT LISTING

4-37

six-bit values to floating point, using constants stored in the label records for

codes 2 through 5. The program then computes constants controlling the

number of characters to be read from each tape and the manner of storage into

the floating point line to be stored on disk. Then the program reads in data,

one line at a time, and converts them to floating points for codes 1 through 5.

For codes 2 through 5, the program reads in the existing line on disk before

conversion begins, so both the first and second parts of the complex word can

be filled in by two successive calls to FPCON, using different input data files.

For these codes the program shifts the origin (zero frequency point) of the

array from the center to the corner, and stores the data as one-half a symme-

tric array. The program then writes the floating-point line onto disk before

processing the next input line.

Entires F07CN, F08CN, F17CN, and F18CN set parameters to identify the

entry point, and then enter a subroutine that converts one line of disk data at

a time between real-plus-imaginary and modulus-plus-phase complex floating-

point format or between modulus and squared-modulus real floating-point values.

The complex data are in the format of one-half a symmetric array; the conver-

sion takes into account the special packing of the values along the symmetry

axes, as described in Appendix D.

FO9CN and F19CN enter a subroutine that reads pairs of lines from disk, one

each in the upper and lower half of the array, interchanges the right-hand and

left-hand ends of each line, and then stores the lines back on disk in inter-

changed positions. After all lines have been so processed, the program has

transferred the origin of the array from corner to center, or vice-versa.

Entries F10OCN and F20CN set parameters to identify the entry point and then

enter a subroutine for converting a complex modulus-plus-phase array to a

full real array, with corner origin, of modulus or squared modulus values.

The program reads one pair of symmetrically located lines from disk at a

time, and constructs two lines of the full real array from them using the

4-38

symmetry of the complex array. The program processes additional pairs of

lines until the entire array has been converted.

Entries F11CN to F16CN set parameters to identify the entry point and then

enter a subroutine for transferring data from disk to tape. For entry code 16,

the program checks to see whether maxima and minima of the array on disk

have been previously determined; if not, it sets.parameters for examining

each floating-point value as it is transferred to find maxima and minima. For

entry codes 11 through 15, the program computes a table of threshold values

for converting from floating-point to six-bit scaled values. It then computes

parameters for accessing the required words on disk and storing them in out-

put lines for tape. The program reads data from disk one line at a time. For

codes 11 through 15, the program carries out a set of six comparisons of

each floating-point value against threshold values to determine the six bits of

its character representation. For codes 11 and 16 the program writes the

output line directly onto tape; for codes 12 through 15 it stores the output line

on a scratch region of disk. After all floating-point data have been processed,

the program reads back the scratch data for codes 12 through 15 into core in

pairs of symmetrically located lines. The program generates a full array

with center origin one line at a time, and writes it onto disk. For codes 11

to 15, it writes the floating-point value for gray level 0 and the floating-point

increment between levels on the tape level record; for code 16, it records

maximum and minimum values instead.

FPDUMP is entered for codes 21 and 22. If code 21 is specified, NY lines of

NX floating-point values each is read from disk cell 1 and listed on the line

printer. For entry code 22, NY records of NX floating-point values are read

from tape, after reading the label, and dumped to the line printer.

4-39

4.9.2 Parameters

In addition to the parameters (SP, SL, NP, NL) specifying the region of the

input image, if any, to be used, the program requires the following special

parameters:

1. NX - number of complex values per line of packed array on

disk. NX is one-half the number of pixels per line of a

real image, scaled (six-bit) array, and power-spectrum

or autocorrelation array. NX must be a power of 2,

2 9
2 2 NX ! 2.

2. NY - number of lines in array. NY must be a power of 2;
0 9

2 < NY < 2.

3. ICODE - one to five integers, each specifying a transfer/con-

version step.

4.9.3 Input

Table 4-2 lists the input data required for the various transfer/conversion

options.

4.9.4 Output

Table 4-3 lists the output data created by the various transfer/conversion

options.

4.9.5 Examples

A section of input tape, TESTI, consisting of the first 256 lines and 512 pixels

per line is to be converted to floating-point representation on disk, then back

to six-bit image data on an output tape. The task and parameter cards required

are:- SFPCON, (TEST1, 49, 1), (1, 1, 512, 256), (FPCON1, 47, 1), 1

56 256 1 11

4-40

Table 4-2. FPCON Input Data

CODE INPUT

1 IMAGE TAPE IN STANDARD IDAMS FORMAT

2-5 IMAGE TAPE, REPRESENTING SCALED FLOATING-POINT DATA,
IN STANDARD IDAMS FORMAT

6 TAPE FILE CONTAINING A FLOATING-POINT ARRAY, LABELLED
IN STANDARD IDAMS FORMAT

7,10,20 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX
ARRAY IN MODULUS-PLUS-PHASE REPRESENTATION

8 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY REPRESENTING MODULUS

9 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY WITH ORIGIN AT CENTER

11 DISK FILE CONTAINING FULL ARRAY OF REAL IMAGE VALUES

12-15 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX
ARRAY IN EITHER MODULUS-PLUS-PHASE OR REAL-PLUS-IMAGINARY
REPRESENTATION

16 DISK FILE CONTAINING A FLOATING-POINT ARRAY

17 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX
ARRAY IN REAL-PLUS-IMAGINARY REPRESENTATION

18 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY REPRESENTING SQUARED MODULUS

19 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY WITH ORIGIN AT UPPER LEFT CORNER

21 DISK FILE CONTAINING A FLOATING-POINT ARRAY

22 TAPE FILE CONTAINING A FLOATING-POINT ARRAY,
LABELLED IN STANDARD IDAMS FORMAT

4-41

Table 4-3., FPCON Output Data

CODE OUTPUT

1 DISK FILE CONTAINING FULL ARRAY OF REAL IMAGE VALUES

2-5 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
IN EITHER MODULUS-PLUS-PHASE OR REAL-PLUS-IMAGINARY
REPRESENTATION

6 DISK FILE CONTAINING A FLOATING-POINT ARRAY

7 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
IN REAL-PLUS-IMAGINARY REPRESENTATION

8 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
REPRESENTING SQUARED MODULUS

9 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
WITH ORIGIN AT UPPER LEFT CORNER

10 DISK FILE CONTAINING FULL ARRAY OF REAL MODULUS VALUES
WITH ORIGIN AT UPPER LEFT CORNER

11 IMAGE TAPE IN STANDARD IDAMS FORMAT

12-15 IMAGE TAPE, REPRESENTING SCALED FLOATING-POINT DATA, IN
STANDARD IDAMS FORMAT

16 TAPE FILE CONTAINING A FLOATING-POINT ARRAY, LABELLED IN
STANDARD IDAMS FORMAT

17 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
IN MODULUS-PLUS-PHASE REPRESENTATION

18 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
REPRESENTING MODULUS

19 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
WITH ORIGIN AT CENTER

20 DISK FILE CONTAINING FULL ARRAY OF SQUARED MODULUS VALUES
WITH ORIGIN AT UPPER LEFT CORNER

21 DISK FILE TO PRINTER LISTING, FLOATING POINT

22 TAPE FILE TO PRINTER LISTING, FLOATING POINT

4-42

Convert an array of complex real-plus-imaginary values on disk to complex

modulus-plus-phase representation on disk. Control cards are:

FPCoN.... 1

64 16 17

Convert six-bit image data to floating point on disk. Treat it as a full real

array with center origin and shift to corner origin. Control cards are:

FPCON, (TEST1, 49, 1), (1, 1, 128, 16),, 1

64 16 1 9

Assume six-bit log scaled data is stored on tape and is to be converted to the

second half-word of a complex array on disk. This step is then to be followed

by another conversion to six-bit linear scaled data on tape. The following

control cards are necessary:

FPCON, (LOGDATA, 49, 1), (1, 1, 128, 16), (LINDATA, 47, 1), 1

4 16 5 13

NOTE: Card format specifications are defined in the User's Guide. Param-
eters must be supplied in the order shown in paragraph 4. 9. 2.

4.9.6 Messages

FPCON generates the following diagnostic messages:

Message Explanation

TRANSFER/CONVERSION CODE An invalid option was specified on
LT 1 OR GT 22 input; execution terminates.

4-43

Message Explanation

NL OR NP NOT AVAILABLE ON The number of lines or number of

INPUT pixels to be processed is not available
on the input tape; execution termi-
nates.

4.9.7 Flowchart

See Appendix C, Figure C-9.

4-44

4. 10 SMOOTH - FLOATING-POINT SATOOTIING PROGRAM

4. 10.1 ir o - Description

This task routine convolves an array of real floating-point values stored on

disk %with a user-supplicd, sn mctric 3-x-3 or 5-x-5 set of smoothing weights,

and leaves the smoothed array in the same place on disk.

SMOOTH begins by converting the input weights from integer to floating-point

format. It then computes a series of constants required for processing. In

particular, it checks whether a sufficient number of full lines can be held in

core at one time to permit efficient processing; if not, it arranges to divide

the lines into segments of 128 values each.

SMOOTH then reads data into core until it is filled. For data at the edge of

the, input array, it obtains an extension of one or two values all around by copy-

ing the boundary values outwards. It then convolves the data with the smoothing

weights, using the extension values as necessary to provide an output array

of the same size as the input. It writes the smoothed data back on disk.

Some of the data already in core will contribute to the next set of output; for

this reason, SMOOTH moves these data to the top of the core -region before

it reads in more data. If segmentation is required, it stores some lines

temporarily on a scratch area of the disk, and reads lines stored previously

back into core. Then it reads additional data from the input array.to again

fill core, or until the last input line has been used. It again convolves the

data in core with the smoothing weights, and writes the results back onto

disk. This process continues until the entire image has been processed.

Execution time is about 5 milliseconds for each floating-point value convolved

using a 3-x-3 weight array and about 10 milliseconds for 5-x-5 weights; for

example, convolving 32 lines of 512 values each with a 5-x-5 weight array

requires about three minutes.

4-45

4.10.2 Parameters

1. NX - a positive integer, the number of real values per line

of data on disk

2. NY - a positive integer, the number of lines of data on disk

3. IDIM - dimension of square weight array, where

3 = 3-x-3 weights

3 = 5-x-5 weights

4. IDIV - number by which IWGHTS values will be divided to

create floating-point weighted array. This value can

never be zero.

4. IWGHTS - Four (IDIM = 3) or nine (IDIM = 5) values representing

weights in upper-left quadrant of array. These are

integers that will be divided by IDIV and converted to

floating-point numbers.

NOTE: The value of NX for SMOOTH is the number of floating-point values
per line, that is, twice the value defined for FFT and FPCON, which
refers to the number of complex values per line.

4.10.3 Input

Input for SMOOTH is a floating-point array stored on disk beginning in cell

number 1. If NX is not an exact multiple of 32, the remainder of the last cell

for each line is not used; i. e., each line begins in a new cell.

4.10.4 Output

SMOOTH returns the smoothed values to the same location on disk from which

they were input.

4-46

4.10.5 Example

It is desired to smooth a floating-point array containing 32 lines of 512 points

each using a symmetric 5-x-5 weight matrix. The matrix will be weighted as

follows:

1 2 3 2 1

2 4 6 4 2

3 6 9 6 3

2 4 6 4 2

1 2 3 2 1

Appropriate IDAMS task and parameter cards are:

12 32 5 81 1 2 3 2 4 6 3 6 9

NOTE: Card format specifications are defined in the User's Guide. Param-
eters must be supplied in the order shown in paragraph 4.10.2.

4.10.6 Messages

SMOOTH generates the following diagnostic messages:

Message Explanation

TABLE DIMENSION NOT 3 OR 5 The parameter defining the dimension
of the matrix in the smoothing process

was not a 3 or 5; execution terminates.

NX OR NY ZERO OR NEGATIVE The parameter NX or NY, defining
the number of points per line or num-
ber of lines, was input as zero or a
negative value; execution terminates.

4-47
4-47

Message Explanation

WEIGHT TABLE DIVISOR LE ZERO The parameter IDIV by which the

weight matrix will be divided was

input as zero; execution terminates.

4.10.7 Flowchart

See Appendix C, Figure C-10.

4-48

4.11 CXPACK - COMPLEX PACKNG AND UNPACKING PROGRAM

4.11.1 Pro:r-a::: Description

This task routine provides packing and unpacking of complex data arrays

using the formulae given in Appendix D.

After accessing the input parameters, CXPACK calls subroutine TRIGGN

(described as part of the FFT package) to generate a table of sines of argu-

ments 27r I/N for 0 I < N/4, where N = 2 * NX is the number of columns

in the complete unpacked array. The routine then computes constants re-

quired for accessing the disk file and processing the lines of data; if unpacking

is requested, it initializes values of minimum and maximum for both the real

and imaginary parts.

The routine reads in the first line of data, corresponding to k = 0 (see

Appendix D). Because the arrays are periodic in k with period M, the line

for M - k is identical, and need not be read. CXPACK calls a special routine

to fill the first complex word and also word NX/2 + 1. It then initializes,

indexes, and computes the remaining words in the output line, using the sym-

metry relationships. For each word, the routine obtains the corresponding

sine and cosine values by table lookup in the table previously generated by

TRIGGN; if unpacking has been requested, the routine reverses the sign of

the cosine. It then completes the computation of each symmetric pair of

complex values using the same coding for either packing or unpacking. It

then writes the line back onto disk.

CXPACK reads successive lines of data in symmetric pairs. After a special

step to compute the first complex word of each output line, it initializes

indexes so the remaining values can be computed using the same coding used

for the first line.

4-49

When all symmetric pairs of lines have been processed, CXPACK reads in

and processes the last line in the same manner as the first line; control

returns to the monitor.

If data are being unpacked, CXPACK searches each output line for new maxima

and minima before writing it onto the disk. After all lines have been processed,

it writes the two maxima and minima for the entire array onto the disk cell,

immediately following the last data line, before it returns control to the

monitor.

4.11.2 Parameters

1. MX - log 2 of number of complex words per line of packed

array

2. MY - log2 of number of lines in array

3. IUNPCK - specifies conversion required:

0 = pack

1 = unpack

4.11.3 Input

Input for CXPACK is a floating-point complex array on disk, beginning in

cell number 1.

4.11.4 Output

CXPACK puts the packed or unpacked result back onto the disk in the same

location as the original data.

4.11.5 Examples

An array of floating-point data packed into the real and imaginary parts of

complex words is now stored on disk. The complex array size is 512 lines of

256 complex words per line. The following control cards will unpack this

4-50

data, leaving one-half the resultant array in the location of the original input

(the second half of the array is symmetric with the first and, therefore,

discarded):

CXPACK.... 1

99 0
NOTE: Card format specifications are defined in the User's Guide. Param-

eters must be supplied in the order shown in paragraph 4. 11. 2.

4.11.6 Messages

CXPACK generates no special diagnostic messages.

4.11.7 Flowchart

See Appendix C, Figure C-11.

4-51

4.12 iERI'IIOR - MESSAGE PROCESSING PROGII.\AM

4. 12. 1 P)ro:ram c)csriptioin

ERROR is always called at the end of a run for normal terminations, or when a
fatal crror occurs iklring execuiion of a sequence of IDAMS tasks. Its primary
function is to interpret the system error code and use the result to build a mes-
sage array for display on an appropriate output device.

When entered, ERROR initializes constant and task names needed for creating
the message. Because all messages are stored in subroutine GETISG, this
program is called to pick up the first line: "FATAL ERROR IN AAAAAAAA."
ERROR inserts the proper task name in place of AAAAAAAA. If the job has
ended normally, the program replaces this line with NORMAL END OF JOB,
and ERROR then writes out the message and returns.

If a subroutine had been called from the task program, the program puts the
message "AAAAAAAA WAS IN EXECUTION WHEN ERROR OCCURRED"
into the message array, and replaces AAAAAAAA with the actual subroutine
name. It then generates the next two lines, containing the messages "ERROR
CODE AND MEANING FOLLOW" and "IEROR = nnn." The last line is an
interpretation of what the error code means. Breaking the error code down
into a task pointer and a displacement generates this line. ERROR then calls
GETMSG to pick up the proper message, writes out the message ar'-ay, and

returns to DRIVER.

4.12.2 Parameters

ERROR requires no parameters.

4.12.3 Ip

There is no external input to ERROR.

4-52

4.12.4 Output

ERROR writes a message block on the console typewriter and line printer.

4.12.5 Examples

A typical fatal error message produced by ERROR is:

FATAL ERROR IN EXPAND
ERROR CODE AND MEANING FOLLOW
IEROR = 6003
END OF FILE ON TAPE

4.12.6 Messages

Error produces no messages other than the error message array.

4.12.7 Flowchart

See Appendix C, Figure C-12.

4-53

4.13 REDUCE - IMAGE REDUCTION PROGRAM

4. 13. 1 Program Description

The task program REDUCE, will reduce a standard IDAMS image by an

integral factor computed from input parameters. Blank fill characters are

provided on both sides and/or top and bottom, if needed to complete the

requested output image. The results are then written on the specified output

tape.

Upon entry, the program computes the largest integral reduction factor. An

output line buffer is set up with edge fill characters, if any, and the output

label record is written. If any fill lines are required at the top of the output

picture, they are written out at this time. The program then enters a main

processing loop to read an input line, reduce its length by the reduction

factor, and store it in an internal array. This process continues until enough

input lines are collected to form one output line. Averaging is then performed

between lines, the completed line is moved to the output buffer, and the results

are written at the bottom of the output picture, if needed. The program then

returns to the monitor.

4. 13. 2 Parameters

1. NPO = Number of pixels to be output

2. NLO = Number of lines to be output

3. IFILL = Gray level for edge fill (default = 0)

4.13.3 Input

REDUCE requires a single input image tape in standard IDAMS format.

4.13.4 Output

REDUCE generates a single output image tape in standard IDAMS format.

4-54

4.13.5 Example

A 400 line by 1000 sample portion of input image BIGPIC is to be reduced to

fit a 500 by 500 output requirement. This implies a reduction factor of 2 in

both the number of data lines and pixels. Therefore, the resultant output

image will contain a 200 line by 500 pixel image data area preceded and

followed by 150 lines of fill characters. No fill is necessary along the left

and right edges. The following IDAMS source statements would be appro-

priate:

REDUCE, (BIGPIC, 49, 1), (1, 1, 1000, 400), (OUTPIC, 47, 1), 1

00 500

4.13.6 Messages

None.

4.13.7 Flowchart

See Appendix C, Figure C-13.

4-55

4.14 HISTO - HISTOGRAM AND STATISTICS PROGRAM

4.14. 1 Program Description

This task program reads an IDAMS format image tape and produces a printed

listing of both a numeric table of intensity frequencies and a histogram in

graphic form. The mean, median, and standard deviation are also provided.

The program first examines standard input parameters to determine the

portion of the input picture for which statistics are to be gathered. A set of

64 counters, one for each possible gray-level value, is initialized with zero

counts. A line of data is then read, each value is examined, and the corre-

sponding counter incremented by 1. Additional lines are similarly processed

until the specified input data have been exhausted. The array of counters is

then examined to determine the maximum value, and a graphing interval is

determined such that the tallest bar in the histogram will just fit on the

printer page.

After the data has been normalized, a header line is printed. Next, the bin

values are printed as columns of X' s where each X represents a percentage of

the total. The value assigned to each X is given in the header line.

Following the histogram, a table of the exact frequency counts for each of the

64 bins will be printed. In addition, the mean, median, and standard deviation

about the mean will be provided.

4.14.2 Parameters

There are no special parameters. Required standard system parameters are

task name, input file name, input file number, starting line, starting pixel,

number of lines, and number of pixels.

4.14.3 Input

HISTO requires a single input image tape in standard IDAMS format.

4-56

4.14.4 Output

HISTO prints out a histogram of gray levels contained in an input image,

followed by a table of actual frequency counter values for the same data. The

mean, median, and standard deviation are also printed.

4.14.5 Examples

None.

4.14.6 Messages

HISTO generates no special messages.

4.14.7 Flowchart

See Appendix C, Figure C-14.

4-57

4.15 CHAROUT - PIXEL CHARACTER OUTPUT PROGRAM

4.15.1 Program Description

The task program CHAROUT converts a selected portion of an IDAMS input

image to alphanumeric format. Pixel data is translated into characters

using a table look-up technique. The 64-position conversion table to be

used is stored internally or, optionally, input as parameters. The standard

internal table contains 32 unique characters, providing a different output

character for every two gray levels. There are no restrictions on the user-

supplied table values. For printed output, data is listed in block format.

If the length of the requested output line exceeds the maximum printer line

length, the program will print the data as a sequence of vertical strips of

the specified picture. If an output tape is named on the task card, data will

go to tape instead of the printer.

When entered, the program generates the necessary conversion table from

either input parameters or the stored data. A line of input picture data is

then read into core and CODE is called to translate the line into the output

character representation. The converted line is then written either on

tape or the line printer. Lines are read, translated, and written until the

requested portion of the input picture has been processed.

4.15.2 Parameters

The alphanumeric conversion table can be specified in one of two ways. If

only a task card is supplied, use of the internally stored table is assumed.

If a parameter card is provided, the first 64 columns are used to fill the

table of translation values.

4.15.3 Input

CHAROUT expects a single input image tape in standard IDAMS format.

4-58

4.15.4 Output

CHAROUT either prints a character representation of the input data on the

line printer or writes an output IDAMS format tape.

4.15.5 Messages

None.

4.15.6 Example

Test tape TEST1 is to be printed on the line printer in a character format.

The following control cards are typical:

[CHAROUT. (TEST1, 49, 1), (1. 1, 340, 270), ,1

SABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789ABCDEFGHIJKLMNOPORSTUVWXYZ01

4.15.7 Flowchart

See Appendix C, Figure C-15.

4-59

4.16 TEXTGN - TEXT GENERATOR PROGRAM

4.16.1 Pro-ram Description

The task program TENTGN is used to generate an alphanumeric text for output

directly onto a blankl tape or to be combined with an input image tape for output.

The character set of the text consists of the letters A through Z, numerals

0 through 9, and special characters =+ - / * : () , . and blank. The text is in-

put from cards. Each card represents a line of the text. Each character in the

card is decoded into a 5-character by 7-line (8 x 11 counting spacing) matrix of

gray and zero levels. (See Figure 4-3.)

Seven image lines are written one at a time to output after one text card is proc-

essed. Where a text is to be combined with an image tape, the original image is

preserved as much as possible.

The program terminates after all cards are processed.

4.16.2 Parameters

The task card parameters for starting line, starting pixel, number of lines, and

number of pixels are used to select a portion of the input picture for output. If

no input picture is specified, the number of lines and number of pixels fields are

used to define the size of the output image.

In addition, the following special parameters are necessary:

1. Starting pixel for left edge of test line(s)

2. Starting line for top edge of first line of text

3. Multiplication factor for text data (default = 1)

4. , ... Variable number of text lines

4.16.3 Input

Text cards and an IDAMS image tape if text is to be combined for output.

4-60

$. 55. s5$ £55$. SSSSS $$$5 53 $ $ $S55 5 5 5 S $ $ 5 $
5 $ $ 5 s 5 $ $ $ $ 5 5 $ 5 SS SS 5S S

-$-- 6-- i- . 5 5 5. . S 5 .. 5 5 . s S S. 5 S.
$ S £$$ 5S$ $555 $ $ $$$$$ s $ $5 s S s $5 S
5555S 6 £ 5 5 5 5 . $ $ 5 5 $ S $. S $S 5 5
s S S $ $ $ $. $5 $ s 5 $ $ S s $ $ S
S $ a$$ $ 55 $5$55 5553s 5 5 SSS 5$s 5 S 5$$S5$ S s S

s5 :5 o 5 5 5 5 $ 3 S S S S S S S 555
$ $ 5 s $ $ $ 5.3 5 5 $
S a .d 5 Ab 3 5 $ $ $ $ 5 5 5£ 5
S S S 55$ 3 5 5 . .5 555 S. S.

$$ $355 '$ si $ $ $ 5 $5 5:

S$ $ $ 5 5 $ s 5

55$ b i i' 653 $ $55 5 5 5 5 3 5 55555

55 ' E B r 5 5 £ 5 5 5 $ 5 $

5S S , ,$5u $ %i 5 5 S 3. 3 5
S -. -, S S 5 $ $ 5 3 5

s555 i55%5 1)5 55$ $SS 5 55 555 5is

s$S% b5s 5 5 3

5 $ S $ i 5 5 $S

sssss 5 5 S s

$ $ $ s $S

Figure 4-3. TEXTGON Characters

4.16.4 Output

An IDAMS image tape with imbedded text with just the generated text as data.

4.16.5 Example

A 1000 by 1000 input image, DATAPIC, is to be marked for identification with

the header "JAMES RIVER - BLUE SEPARATION" starting at line 1, pixel

250. The following control cards could be used:

TEXTGN, (DATAPIC, 49, 1), (1, 1, 1000, 1000), (OUTPIC, 47, 1), 2

250 1

.AMES RIVER - BLUE SEPARATION

4.16.6 Messages

TEXTGN generates no special messages.

4.16.7 Flowchart

See Appendix C, Figure C-16.

4-62

4.17 NEIGHBOR - NEAREST NEIGHBOR PRINTER LISTING PROGRAM

4.17.1 Program Description

The task program NEIGHBOR accepts as input an IDAMS image tape, a point

location, and an output array size. A printer listing of intensity values of neigh-

bors surrounding the input point is produced as a square array with the input

point at the center.

When entered, NEIGHBOR checks the input parameters to ensure the printed

array will fit on one page. Next the input label is read and unwanted records

are skipped. After a header line is printed, the program prints an array of pixel

values with the input point location at the center. When the requested array is

completely printed, the program returns control to the monitor.

4.17.2 Parameters

The following three special parameters are necessary:

1. Number of central pixel

2. Number of central line

3. Array size

4.17.3 Input

NEIGHBOR requires a single input image tape in standard IDAMS format.

4.17.4 Output

NEIGHBOR produces a printed array of points with a selected pixel at the center.

4.17.5 Messages

Message Explanation

ARRAY SIZE REDUCED TO 40 X 40 The requested array will not fit on
one page, processing continues with
a 40 by 40 output array.

4-63

4.17.6 Example

It is desired to print a 5 x 5 portion of an image called TEST1 surrounding a

point located at line 190, pixel 240. Appropriate IDAMS control cards would

be:
EIGHBOR, (TEST1, 49, 1), ,1

240 190 5

4.17.7 Flowchart

See Appendix C, Figure C-17.

4-64

4.18 DISPLAY - INTERACTIVE DISPLAY PROGRAM

4. 18. 1 Program Description

The task program DISPLAY provides the user with numerous image display and

manipulation functions. The program displays the available capabilities on the

CDC 212 and the user interactively inputs the desired function codes via the 212

keyboard. The task is subdivided into a main driver routine and two segments.

The first segment handles all of the functions except the reduce/increase phase

of the ZOOM capability, which resides in the second segment.

Once control is passed to the program DISPLAY1 in the first segment, the in-

itial reseau coordinates and box coordinates are set. The subroutines TVCON

and TTWCON are called, which connect the TV, and CDC 212 hardware, re-

spectively. A call to the subroutine CDCON enables the following function code

table to be displayed on the 212.

IDAMS
FUNCTION CODES

BOXGEN 01 ENLARGE 04 LEFT 06

RESEAU 02 SHRINK 05 RIGHT 07

ERASE 03 UP 08

LOCATE 10 DOWN 09

DATA 11 ZOOM 17

DATAl 12 EXIT 18 REWIND 13

SELECT 16 FORWARD 14

REVERSE 15

The program calls the subroutine STORE, which waits until a function code has

been input to the 212. The program converts the code from a BCD number to

an integer value and returns the integer as an argument. DISPLAY branches to

the appropriate subsection depending upon the value of the function code.

4-65

4.18. 1. 1 BOXGEN Function

If the BOXGEN function code (01) was requested, the program checks to see if

a reseau mark is already displayed on the TV. When no reseau mark is on the

TV, the program computes the box coordinates such that the box will be centered

on the TV and will be 138 pixels by 100 lines in size. However, if a reseau mark

is displayed on the TV, the box coordinates are computed such that the 138 by 100

box will appear centered around the reseau mark location. The reseau mark is

then erased by calling the subroutine KILLIN. Once the box coordinates have

been set, the program branches to a subsection of the program which converts

the computer image coordinates to a TV format and sends them to the TV hard-

ware. To convert the Y coordinates to TV format, the values are divided by 2

and if the original coordinates were even, then 255 is added to the halved values.

This is done to accommodate the TV feature of having a main level and an in-

terlace level. The lines alternate between the main and interlace levels, and

therefore, line 1 is equal to the TV line 0, line 2 equals TV line 256, ... ,

line 511 equals TV line 255, and line 512 equals TV line 511.

The x coordinates must also be converted to a TV format. The TV hardware

counts pixels across the line in increments of 11 and therefore, the hardware

must know in which group of 11 the pixel resides (x/11) and the pixel position

within the group (MOD(x, 11)). The x coordinates are converted and the group

number is placed in bits 23-12 of the TV coordinate word and the remainder value

resides in bits 11-0 of the word. The conversion subsection then calls the pro-

gram, DISP, which sends the TV coordinates to the TV hardware. DISP is a

COMPASS routine which sends a function code for a box or reseau mark, and

then transfers the coordinates to the TV hardware. Control is then returned to

the conversion subsection, which returns to the originating function subsection.

In the case of the box generator function, control is returned to the point where

the function code table is displayed on the 212 and the program is waiting for

another function code.

4-65.1

4.18.1.2 RESEAU Function

When the RESEAU function code (02) is specified, the program checks to see

if a box is already displayed on the TV. If no box exists on the screen, the

program sets the reseau coordinates such that it will be centered on the TV.

However, if a box is already displayed, the program computes the reseau co-

ordinates such that it will be centered within the box area. The box is then

erased with a call to KILLIN and the program branches to the previously de-

scribed TV conversion subsection. After the reseau mark has been placed on

the TV, the program redisplays the function code table and waits for the next

code to be input.

4.18.1.3 ERASE, ENLARGE, and SHRINK Functions

The third function ERASE (03), clears any box or reseau marks from the TV by

calling the subroutine, KILLIN. This subprogram sets the TV function register

to 0, which removes all marks from the TV screen. The program returns from

the erase subsection, to display the function code table again, and wait for the

next input function.

The fourth and fifth functions, ENLARGE (04) and SHRINK (05), are processed

in the same subsection. A check is made to see if a box is displayed. If not,

then control returns to the program area which displays the function code table.

If a box is displayed, the box coordinates are checked to see if the box can be

enlarged or reduced, depending on which function was requested. If the box is

the maximum (minimum) size, then control returns to the program area from

which the function code table is displayed. Otherwise, the coordinates are ap-

propriately reduced or increased by one in order to enlarge or reduce the box.

A call is made to the delay routine, ICLOCK, which stalls processing a speci-

fied number of milliseconds. This is necessary in order to slow down the box

enlarging (reducing) action so that the user has control over the box movement.

Control is transferred to the subsection which converts the coordinates to TV

4-65.2

format and sends the values to the TV hardware. The program continues to en-

large or reduce the box until either the SEND key on the 212 is depressed or the

box reaches maximum (minimum) size. Control then returns to the program

area which displays the function code table.

4.18.1.4 LEFT, RIGHT, UP, and DOWN Functions

One subsection handles the functions which manipulate the movement of the box

or reseau: LEFT (06), RIGHT (07), UP (08), and DOWN (09). Depending upon

the direction of the requested movement, the program checks if the coordinates

have reached an edge of the image and, therefore, cannot be moved in the re-

quested direction. If this test is positive, then, control returns to the program

area which displays the function code table. Otherwise, the appropriate co-

ordinates are reduced or increased by one and control transfers to ICLOCK

and the TV conversion subsection, where the TV formatted coordinates are

sent to the TV hardware. The program continues to move the box or reseau in

the requested direction until either the SEND key is depressed or the box (or

reseau) reaches an edge of the image. Control, then, returns to the code

which displays the function code table.

4.18.1.5 LOCATE Function

When the function, LOCATE (10), is requested, the corresponding subsection

writes the location of the box or reseau, which is presently displayed on the

TV, onto the printer and the 212. The program checks to verify that a box or

reseau is displayed on the TV. If no marks are on the TV, control returns to

the program area which displays the function table. Otherwise, the program

prints out the coordinates of the box or reseau on the printer. Before the val-

ues can be output to the 212, the integers must be converted to left justified

BCD format. This process is done in the subroutine BINBCD, and the re-

formatted coordinates are output to the 212. Control returns to the program

area which displays the function code table only after the user has depressed

the SEND key on the 212 keyboard.

4-65.3

4.18.1.6 DATA and DATA1 Functions

The functions DATA (11) and DATA1 (12) are handled in the same subsection.

This subsection transfers image data from tape files to the TV. The program

first requests the tape unit number from the user by calling the subroutine

CDCON, which prints out the request on the 212. The subroutine STORE is then

called, which will return with the user's reply in BCD format. The program

converts the value to an integer format. The program requests that the user

input the color gun numbers. The color gun number, which is returned from a

call to STORE, is converted to binary and checked to ensure that it is valid.

If the number is not valid (0 <N < 7) the program will again request that the

user input the color gun numbers. The program reads the label record and

prints out the length of the record.

Next the program enters a loop which reads 32 lines of data and properly posi-

tions the data in a format necessary for the TV hardware. Because of the main

and interlace structure of the TV, even lines are separated from the odd lines.

Consequently, as the data lines are read in, pointers are set which direct the

data into the appropriate buffer location. For instance, in buffer 1 the lines

1, 3, 5,... ,31 are sequentially packed, and lines 2,4, 6... ,32 are sequentially

packed in buffer 2. The tape reads are double buffered, and while the next line

is being read, the last line's data is sent to the subroutine, FLIP. This sub-

routine reverses the pixel order of each word in the line (i. e., if the charac-

ters ABCD are input as a word, they would be returned as DCBA in the same

word). This procedure is necessary in order to make the data compatible with

the TV hardware's counting method. After a set of 32 lines have been read in

and processed by FLIP, the 16 even lines and 16 odd lines are ready to be

transferred to the TV.

The subroutine LINDIS is called for each set of 16 lines. This routine prepares

the data for the transfer and then outputs it to the TV. LINDIS is a COMPASS

subroutine which computes the function code depending upon whether the lines

4-65.4

are main or interlace and sends the function code to channel 2 (TV hardware).

The subroutine then checks to see if the requested function was DATA (11) or

DATA1 (12). If the request was for DATA, then each word of the 16 line data

block has the least significant bit shifted off. This is required because the

TV hardware, which counts from left to right, can only handle five of the six

bits per pixel value. Without shifting, the most significant bit would be lost,

which is an undesirable result. Consequently, by shifting each word to the

right one bit, the TV hardware will be picking up the most significant bit and

only losing the least significant bit. However, the DATA1 (12) function does

not shift the data words and sends the data words as they are input. This feature

is available in case a user wishes to view the data without the shifting procedure.

Once the data words have been prepared for transfer, LINDIS sends two blocks

of 16 lines to the TV, channel 2, and waits for the I/O to be completed before

returning to DISPLAY1. This procedure of processing data in sets of 32 lines

continues until the program senses an end-of-file mark on the input tape. If

the program determines that the total number of lines read is not an even multiple

of 32, it prints a message indicating that some data lines must have been lost.

The program concludes this fact because the number of lines in a TV size image

is 512, which is an even multiple of 32. Control then returns to the program

area which displays the function code table.

4.18.1.7 REWIND, FORWARD, and REVERSE Functions

The functions REWIND (13), FORWARD (14), and REVERSE (15) are all handled

in the same subsection. The program calls CDCON, which requests that the

user input the appropriate magnetic tape logical unit number. The subroutine

STORE returns the tape unit number in a BCD format and the program converts

it into a binary integer value. If the request function was REWIND (13), the

program rewinds the tape and returns to the program area which displays the

function code table. If the FORWARD (14) or REVERSE (15) functions were

specified, the program sends a request, for the number of files to be skipped,

4-65.5

to the user via the subroutine CDCON. The reply is returned from STORE and

is converted from BCD format to an integer value. The program then forward

spaces or backspaces the appropriate number of files, and, if the backspace

function is being executed, the end-of-file mark is skipped over before control

returns to the program area which displays the function code table.

4.18.1.8 SELECT Function

The subsection which processes the SELECT (16) function enables the user to

select the coordinates of a box which will be displayed on the TV screen. By

referencing the subroutine CDCON and STORE, the program requests that the

user input the coordinates of the desired box. The coordinates must be input

in the following order; leftmost pixel value, rightmost pixel value, top line

number, and bottom line number. Because the box figure appears in either

the main level or the interlace level, the input line values must both be even or

odd. If the line numbers are mixed, the program outputs a message to the 212

indicating the error, and then corrects the line numbers by forcing them to both

be even or odd values.

The program receives the parameters from the subroutine STORE and scans

the parameter list from the last word of the input array to the first word. The

program ignores blanks and expects commas to be the separator between co-

ordinates. The coordinates are converted to integer format and sent to the TV

conversion subsection, which converts the values to TV format and sends them

to the TV hardware. If the parameter list has not been correctly input, the

program requests that the coordinates be input again. Once the box has ap-

peared on the TV, control returns to the program section which displays the

function code table.

4.18.1.9 ZOOM Function

The last display function is the ZOOM (17) function which takes the area bound

within a box or the TV image and increases or reduces it into a TV size image.

The phase of the function which requests the required parameters and determines

4-65.6

if an increase or reduction of the master image is needed makes up a subsection

of the DISPLAY1 program. The code which actually performs the reduction or

enlargement of the image resides in a separate segment. By referencing

CDCON and STORE, the DISPLAY1 subsection initially requests the name of the

image which is displayed on the TV, the tape unit on which the TV image tape

resides, and the file number of the image. These parameters are stored in the

label array, LBLIN.

The label processing routine, LBLRD, is then called to read the TV image

file label, and the information stored in LBLIN is used to verify that the tape

is positioned at the requested image. The requested file label contains the

name of the master tape (the image tape from which the TV image originated)

which is used to send a message to the user, via the 212, reminding him that the

specific master tape must be mounted. The reduction or enlargement factor

that was used when creating the TV image from the master image is stored in

word 11 of the TV file label. Using this factor, the box coordinates, and the

dimensions of the master image, the program determines whether the master

image must be increased or reduced to create the desired TV image. If the

box enclosed area would not result in an optimum TV size image, the program

sends a message to the user asking if the user still wants to create the requested

TV image. If the user replies negatively, then the program branches back to

the program area which displays the function code table. If the user replies

positively, the program continues processing.

A request is made for the master tape logical unit number and file number and

then the program reads in the master image file label. The program then re-

quests, via the 212, that the user supply the output TV image name, tape unit

number, and file number. The output label is written onto the specified tape.

Before going to the segment which carries out the actual reduction or enlarge-

ment, the program requests that the user verify that all of the parameters are

correct. If the response is negative, the program branches to the beginning of

4-65.7

the ZOOM subsection and begins the requests for input parameters again. If

the user replies positively, the program returns to the main driver which calls

segment 2, REDINC, the program that reduces or increases the master image

data.

Upon entry, REDINC computes the largest integral reduction or multiplication

factor which will just permit the input to fit within a TV size image. An output

line buffer is set up with edge fill characters, and the output label record is

written. If any fill lines are required at the top of the TV picture, they are

written out at this time, A main increase or reduce processing loop is entered.

If no increase or reduction is necessary, the master image is just transferred

to the output image. If a reduction is required, the program reads an input line,

reduces its length by the reduction factor, and stores it in an internal array.

This continues until enough input lines are collected to form one output line.

Averaging is then performed between lines and the completed line is output. If

an enlargement is involved, the program reads an input line, enlarges its length

by the multiplication factor, and outputs the enlarged line the requested number

of times. After all lines have been processed for either enlargements and re-

ductions, the program writes out any remaining lines of bottom fill. Control

then returns to the main driver which recalls segment 1, DISPLAY1, and the

IDAMS function code table is again displayed.

4. 18. 1. 10 EXIT Function

The user exits from the DISPLAY package by selecting the EXIT (18) function

code. When the program receives this code it returns to the main driver,

which then returns to the IDAMS system.

4-65.8

4.18.2 Parameters

DISPLAY calls the IDAMS display package whose parameters are provided

interactively through the 212 Display Station. By specifying the name DISPLAY

on the task card, the following function code table is displayed on the 212 screen.

IDAMS
FUNCTION CODES

BOXGEN 01 ENLARGE 04 LEFT 06

RESEAU 02 SHRINK 05 RIGHT 07

ERASE 03 UP 08

LOCATE 10 DOWN 09

DATA 11 ZOOM 17

DATA1 12 EXIT 18 REWIND 13

SELECT 16 FORWARD 14

REVERSE 15

In order to execute any one of the functions, the user must type in the corre-

sponding numeric code and depress the SEND key. A description of each func-

tion is given below.

Code Function Description

01 BOXGEN: Generates a box which, if no reseau mark

displayed on the TV, is centered on the

TV screen and has the following (pixel,

line) coordinates: upper left corner

(283, 206), upper right corner (421,206),

lower left corner (283, 306), and lower

right corner (421,306). If a reseau mark

is already displayed on the TV, a box

(138 pixels by 100 lines) which will be lo-

cated around the reseau coordinates, will

4-65.9

Code Function Description

01 replace the reseau mark. To alter the

(Cont'd) location and size of the box, refer to the

functions LEFT, RIGHT, UP, DOWN,

SHRINK, and ENLARGE.

02 RESEAU Places a reseau mark on the TV screen

which, if a box is not presently displayed

on the TV, has the following (pixel, line)

coordinates at its center: (357, 256). If a

box is already displayed on the TV, a

reseau mark which is located at the center

coordinates of the box replaces the box.

To manipulate the reseau's location, refer

to the functions LEFT, RIGHT, UP, and

DOWN.

03 ERASE Removes a box or reseau mark from the

TV.

04 ENLARGE Increases the size of the box which is dis-

played on the TV. To stop the enlarging

action, the user must depress the SEND

key.

05 SHRINK Reduces the size of the box which is dis-

played on the TV. To halt the shrinking

action, the user must depress the SEND

key.

06 LEFT Moves the box or reseau mark to the left.

The left action is halted by depressing

the SEND key.

4-65.10

Code Function Description

07 RIGHT Moves the box or reseau mark to the right.

The right action is halted by depressing

the SEND key.

08 UP Moves the box or reseau mark upward.

The upward action is halted by depressing

the SEND key.

09 DOWN Moves the box or reseau mark downward.

The downward action is halted by depress-

ing the SEND key.

10 LOCATE Returns the coordinates of the box or

reseau which is presently displayed on

the TV screen. When the user wants to

clear the coordinates from the 212 and

have the function code table reappear, the

SEND key must be depressed.

11 DATA Drops an image tape file, which contains

64 gray level data, onto the TV. The pro-

gram requests two input parameters. The

tape unit on which the image tape is

mounted must be keyed in after the re-

quest appears on the 212. After the SEND

key is depressed, a request for the color

gun number will appear. The TV has three

TV refresher disk files available for image

data storage, and each disk can be assigned

to one of the three available color guns (red,

green, or blue). The color gun parameter

4-65.11

Code Function Description

11 is a value which determines which disk

(Cont'd) file(s) the user wants for storing an image.

The parameter is an octal representation

of a three-digit binary number, in which

each digit corresponds to one of the disk

files and the "on-off" conditions are rep-

sented by ones and zeros, respectively.

The following table shows the correspond-

ence between the color gun number, the

disk assignments and the binary number

from which the parameter value was de-

rived.

Binary
Color Representation

Gun Disk Disk Disk Disk

Number File(s) 3 2 1

1 1 0 0 1

2 2 0 1 0

3 1 and 2 0 1 1

4 3 1 0 0

5 1 and 3 1 0 1

6 2 and 3 1 1 0

7 1, 2, and 3 1 1 1

Once the user has specified the disk file(s)

into which the image data are to be stored

and the SEND key has been depressed, the

image will be dropped to the disk, and dis-

played on the TV. The user can define

which color is to be associated with each

4-65.12

Code Function Description

11 disk by manually setting the three color

(Cont'd) wheels switches on the IDAMS Control Panel.

The three wheels, from left to right, rep-

resent the color guns of red, green, blue,

respectively. By setting the wheels to the

appropriate disk number, the user has com-

plete control over the color assignment of

any image stored in the TV disk files.

12 DATA1 Drops an image tape file onto the TV. The

required parameters are described above

under function code 11. DATA1 differs

from DATA in that the data contains 32

gray level values and, therefore, the data

words do not have the least significant bit

shifted off. However, the most significant

lot will be truncated since only five bits of

data can be displayed at one time.

13 REWIND Rewinds a requested tape. The program

requests the logical unit number on which

the required tape is mounted. After key-

ing in the tape unit number and depressing

the SEND key, the tape is rewound to

loadpoint.

14 FORWARD Forward spaces a tape a specified number

of files. The program requests the logical

unit number on which the required tape is

mounted. After keying in the tape unit

number, the program requests the number

4-65. 13

Code Function Description

14 of files over which the tape is to space for-
(Cont 'd) ward. Once the SEND key is depressed,

the tape is forward spaced the specified

number of files.

15 REVERSE Backspaces a tape a specified number of

files. The program requests the logical

unit number on which the required tape is

mounted. After keying in the tape unit

number, the program requests the number

of files over which the tape is to be back-

spaced. Once the SEND key is depressed,

the tape is backspaced the specified num-

ber of files.

16 SELECT Enables the user to select the coordinates

of a box which is to be displayed on the

TV. The program requests that the coor-

dinates be input in the following order:

leftmost pixel, rightmost pixel, top line,

lower line. The line number should be

paired even, or odd, but not mixed. This

is a display hardware requirement. The

parameters must be separated by commas

and the final parameter must be followed

by a blank. Any blanks placed between

parameters are ignored.

17 ZOOM Takes the area bound within a box on the

TV image and increases or reduces it into

a TV size image. The program requests

4-65.14

Code Function Description

17 the name of the image which is presently
(Cont'd) displayed on the TV. After entering in the

name and depressing the SEND key, the

TV image's tape unit is requested, and is

followed by a request for the file number

(be sure to specify the file number with

two digits). A message reminding the

user that the master tape must be mounted

is .displayed on the 212, and is followed by

a request for the master tape's unit num-

ber and file number. Before the program

begins the ZOOM procedure, information

about the new output tape is requested.

The user is asked to supply the output tape

name, the unit number and the file number.

The program requests that the user specify

if the input parameters are believed to be

correct. If a "Y" is returned, the program

continues with the ZOOM process. How-

ever, if an "N" is returned, the program

begins the input parameter requests again.

This gives the user, who is aware of an

input parameter error, another chance to

supply the correct input. (Note: After key-

ing in the proper response to all requests,

remember to press the SEND key.) The

program will display on the TV whether an

increase or reduction of the master image

was necessary and the multiplication factor

4-65.15

Code Function Description

17 involved. The "ZOOM" image will reside
(Cont'd) on the output tape when the program is com-

pleted, and the user must reference DATA

when he wishes to drop the image onto the

TV screen.

18 EXIT Returns control to the IDAMS main DRIVER

program.

4.18.3 Input

DISPLAY has variable inputs depending upon which functions are requested. If

the functions DATA, DATA1, REWIND, FORWARD, or REVERSE are requested,

DISPLAY requires a single input image tape in standard IDAMS format. If the

ZOOM function is requested, two input image tapes in standard IDAMS format

are required (a TV size image tape and the master image tape).

4.18.4 Output

Display drops image data onto the TV and displays a box and reseau mark on

the TV screen. If ZOOM is referenced, a single output image tape in standard

IDAMS format is produced.

4.18.5 Examples

The fourth file on the image tape which is mounted on tape unit 49 is to be

dropped onto all three TV disks. A reseau mark is to be placed on the image

and moved to a desired point, where a box replaces the reseau mark. The box

is increased slightly and the coordinates are printed out. The enclosed area is

increased to a TV size image and the new image is dropped onto the first TV

4-65.16

disk. The following communication would be required to achieve the above

operations.

1. The following single control card would be submitted.

SDISPLAY

2. The code 14 (FORWARD) would be entered on the 212 and the SEND

key depressed. The user would specify the number 49 to the mag-

netic tape unit request and then would specify the number 03 to the

request of number of files to be skipped.

3. The code 11 (DATA) would drop the fourth file on the TV after the

user has specified the logical unit number 49 and color gun number 7

(binary representation indicating all three disk files).

4. The code 02 (RESEAU) would be entered on the 212 and a reseau

mark would appear on the TV, once the SEND key has been de-

pressed.

5. By using codes 06-09 (LEFT, RIGHT, UP, DOWN) the user would

locate the area of interest.

6. The code 01 (BOX) would replace the reseau mark with a box.

7. The box would be increased by using code 04 (ENLARGE).

8. The code 10 (LOCATE) would display the box coordinates on the 212.

9. The code 17 (ZOOM) would increase the enclosed area using the

master tape image data and outputting the area as a TV size image.

10. The new image is dropped onto the color gun 1 disk by referencing

code 11 (DATA) again. The output tape unit from the ZOOM phase

is entered as the input tape unit and the color gun number is 1.

4-65.17

4.18.6 Messages

DISPLAY generates no special messages.

4.18.7 Flowchart

See Appendix C, Figure C-18.

4-65.18

4.19 MODIFY - IMAGE EDITING PROGRAM

4.19. 1 Program Description

The task program, MODIFY, will recreate a missing or destroyed data line

on an IDAMS tape by performing a pixel by pixel linear interpolation between

the two existing data lines which bracket the one to be replaced. Alternatively,

one or more consecutive lines may be deleted from a tape image. It also

permits the user to modify individual pixels on an IDAMS tape where necessary.

Modifications performed are based on sets of keywords followed by parameters

needed for the function indicated. For efficiency, these input parameter sets

are first sorted on line number to permit the updating process to be accom-

plished in one pass through the input tape.

When entered, MODIFY checks the input parameters for keywords, grouping

them by sets and supplying default values where necessary. The parameter

sets are then sorted by line number. After writing an IDAMS label on the

output tape, a major processing loop is entered which reads a line, modifies

it where necessary, and writes the resulting line on the output tape.

For function code DEL, the requested number of input lines is skipped.

For function code ADD or MODL, data values for the new line are calculated

by averaging between bracketing input lines.

For function code MODP, the specified number of pixels is replaced by the

supplied value.

When all parameter sets have been processed, MODIFY returns to the monitor.

4. 19. 2 Parameters

MODIFY requires the following special parameters in sets, the first of which

must be a keyword.

4-66

1. Function code - ADD, DEL, MOD, or MODP only.

a. ADD will insert one or more new lines starting at the

specified line number.

b. DEL will delete one or more lines starting at the specified

line number.

c. MODL will modify all or part of a line by averaging between

the preceding and following lines.

d. MODP will replace one or more pixels in a line with an input

value.

2. Starting line number - This indicates the first line to be added,

deleted, or modified.

3. Number of lines/value - For ADD and DEL, this field indicates

the number of lines affected (default = 1). For MODL, this field

is always set to 1. For MODP, this field contains an input value

for the pixels being replaced (default = 0).

4. Starting pixel - For MODL and MODP only, this field may be used

to specify a starting pixel other than the beginning of the input line

(default = SP). Not used for ADD or DEL.

5. Number of pixels - For MODL and MODP only, this field is used

to specify a number of pixels less than or equal to the number in

the input line (MODP default = 1, MODL default = NP). Not used

for ADD or DEL.

4.19.3 Input

MODIFY requires an input tape in standard IDAMS format.

4.19.4 Output

MODIFY produces an output tape in standard IDAMS format.

4-67

4.19.5 Example

1. An image tape, TEST1, is to be modified as follows:

a. Delete lines 21 - 40

b. Add four lines after line 230

c. Change line 150

The following control cards would carry out the desired modifica-

tions and create a new tape, MODTEST:

MODIFY, (TEST1, 49, 1), (1, 1,340, 270), (MODTEST, 47, 1), 1

DEL, 21,20, ADD, 231, 4, MODL, 150

2. Assume that points in an image tape, TEST1, are to be altered

as follows:

Pixel Line Value

240 45 63

30 125 0

200 245 10

Control cards which would cause the results to be written onto a

tape called TEST2 are shown below:

MODIFY, (TEST1, 49, 1), (1, 1,270, 340), (TEST2, 47, 1), 1

MODP, 45, 240, 63, MODP, 125, 30, 0, MODP, 245, 200, 10

4.19.6 Messages

Bad data values, if any, are printed on the line printer. In addition, the

following messages may be generated:

4-68

Message Explanation

BAD LINE NUMBER A conflicting or illegal line number

was defined as an input parameter.

BAD FUNCTION CODE An illegal function code was defined
on input.

4. 19. 7 Flowchart

See Appendix C, Figure C-19.

4-69

4.20 INSERT - WINDOW INSERTION AND MOSAICKING PROGRAM

4.20.1 Program Description

Task program INSERT provides a capability for superimposing a portion of one

image upon another. Two IDAMS image tapes are accepted as input with the

primary input tape (as defined on the task control card) considered as base and

the secondary input tape the "window. " A single composite IDAMS image is

output. A mosaicked output tape can be created by repeating the INSERT function

as many times as needed.

INSERT initially picks up the input parameters and calculates the size of the out-

put image, the number of lines to be copied directly to output before and after

the window, and the pixel position of the window relative to the primary input

line. Unaffected lines are then copied directly to output. A loop is entered next

to process the window portion of the image. A line of the primary input and one

of the windows' is read, the lines are merged, and the composite is written to out-

put. Looping continues until the entire window area has been processed. Any

remaining base image lines are then copied to the output tape after which INSERT

returns to the system.

NOTE: Fill characters are supplied for cases where the window extends beyond
the boundaries of the base image.

4.20.2 Parameters

INSERT requires the following parameters:

1. INSPW - Starting pixel of window position in secondary input

2. INSLW - Starting line of window position in secondary input

3. NPWNDW - Number of pixels in window

4. NLWNDW - Number of lines in window

4-70

5. IOTSPW - Pixel position in output of upper left corner of window

(default = 1)

6. IOTSLW - Line position in output of upper left corner of window

(default = 1)

7. IFILL - Fill character gray level value (default = 0)

A negative value for parameter 5 or 6 indicates that the upper left corner of

the window is the specified number of pixels or lines to the left or above,

respectively, the upper left corner of the base image.

In addition, the task name, primary and secondary input, size, output, and

cards fields must be defined on the task control card.

4.20.3 Input

INSERT requires a primary (base) input tape and may have an optional

secondary (window) input tape, both in standard IDAMS format.

4.20.4 Output

INSERT produces an output tape in standard IDAMS format.

4.20.5 Example

A 100*100 window from tape, WINDOW, starting at pixel 50, line 75 is to be

inserted into a base image called TEST1 beginning at pixel 125, line 150. The

result will be called COMPOSIT. The following control cards would accom-

plish the desired result:

SERT. (TEST1, 49, 1, WINDOW, 47, 1), (1,1, 340, 270), (COMPOSIT, 48, 1), 1

f0, 75, 100, 100, 125, 150

4-71

4.20.6 Messages

INSERT may generate the following messages:

Message Explanation

2NDARY INPUT STARTING PIXEL The starting pixel value specified

TOO BIG was greater than the highest pixel
number in the image, execution

terminates.

ONLY nnnn WINDOW INPUT PIXELS The line length defined for the

AVAILABLE secondary input exceeded the

available length, execution con-

tinues with pixels reduced.

2NDARY INPUT STARTING LINE TOO The starting line number specified

BIG was greater than the last line in

the image, execution terminates.

ONLY nnnn WINDOW INPUT LINES The number of lines defined for the

AVAILABLE secondary input exceeded the

available line count, execution

continues with number of lines

reduced.

4.20.7 Flowchart

See Appendix C, Figure C-20.

4-72

4.21 GRID - GRID OVERLAY PROGRAM

4.21.1 Program Description

The task program, GRID, superimposes a reference grid on an IDAMS image

tape. The grid block size and intersection points are controlled by input pa-

rameters. In addition, width and gray level value assigned to the grid line

may be input as parameters or defaulted to 1 and 63, respectively.

GRID begins execution by accessing the input parameters and calculating which

pixels and lines are to be replaced by grid values. After writing an output

label, the program enters a major processing loop. Within this loop, a data

line is read and characters are either inserted for vertical grid lines or the

entire line is replaced by the grid line value. The completed line is then written

on the output tape. Looping continues until all lines are processed and GRID

then returns to the system.

4.21.2 Parameters

GRID requires the following special parameters:

1. JUNCP - Pixel number of first junction (default = grid block

width/2)

2. JUNCL - Line number of first grid junction (default = grid block

length/2)

3. NPGRID - Grid block width in pixels

4. NLGRID - Grid block length in lines

5. LINSIZ - Grid line size (defaults to 1 pixel width)

6. LINLVL - Grid line gray level (default = 0 or 63 if IFILL = 0)

7. IFILL - Fill character to use if an output grid only is desired

(default = 0)

4-73

4.21.3 Input

GRID requires an input tape in standard IDAMS format, unless an output grid

with fill data for background is desired.

4.21.4 Output

GRID generates an output tape in standard IDAMS format.

4.21.5 Example

A grid is to be superimposed on an image, TEST1. There are to be 30 pixels

and 20 lines per grid block, and the first intersection is to be at pixel 5, line

10. Each grid line is to be two pixels wide with an assigned value of 32. If

the output is called GRIDTEST, the following control cards would be appro-

priate:

GRID, (TEST1, 49, 1), (1, 1,340, 270), (GRIDTEST, 47, 1), 1

5, 10,30,20,2, 32

4.21.6 Messages

The following fatal error message may be generated:

Message Explanation

BAD GRID SIZE PARAMETER The number of pixels or lines
defined on input for grid block size
was 0 or negative, execution
terminates.

4.21.7 Flowchart

See Appendix C, Figure C-21.

4-74

4.22 GEOMTRAN - GEOMETRIC TRANSFORMATION PROGRAM

4.22.1 Program Description

GEOMTRAN is a general purpose geometric transformation program that will

allow the user to approximate a wide range of non-linear geometric transforma-

tions with a piecewise linear transformation. This program will not only allow

for simple scaling and rotation operations, but will allow the user to map specific

control points onto corrected control points in such a way as to map other points

of the image linearly with respect to near control points.

This program, because of its generality and complexity, is divided into three

phases:

1. The first phase reads the input and constructs pieces of output lines

(merge strings) which are written to disk.

2. The second phase merges the line pieces constructed by the first

phase and writes longer "merge strings" to tape.

3. The final phase merges the strings on to tape strings until the final

image has been constructed.

Each of these phases will now be explained in detail.

4.22.1.1 Phase I

The first phase of the geometric transformation routine begins by reading the

input parameters which consist of the following:

1. A sequence of points (Xi , Yi) i = 1, .. , n contained in the input

image. For example these points would generally be points of

I interest or of known geographic location (see Diagram 1).

4-75

Ix(Y1 (x
2

'
2
) IX3, V

3
)

S(Xs v
5
1

'x, V4)

a ,I..Y, Diagram 1
X V7Y

7)1%. 6 IxV,)

IX, Vx
)

X0 10'1 X .(Y11)

2. A corresponding sequence of points (Xi , Y!) i = 1, , n in the

the output image. These points would generally be the "corrected"

points of those points specified in the input image (see Diagram 2).

exyXv,, ex2-9' eX;

x4. v' Diagram 2

<xlo .yi)
x.Y;)

3. A list of segment pairs (Pi, qi) i = 1, * o, m that indicate line seg-

ments between pairs of points. These line segments serve to divide

the image into topologically distinct regions (see diagrams 3 and 4)

so that the applicable linear transformation can be applied to inter-

mediate points.

xI. YI) I X
2
.V

2
1 i 3 VY

3
1 Ix, .,I. YpX's.V

Diagram 3 Diagram 4

lv x,, o 5
N.

6 .
Yi6

jX
9,
Y,)

XIo, YIO
)

4-76

These segments are input to the program as index pairs. In Dia-

grams 3 and 4 these pairs would be:

(1,2), (2,3), (1,4), (2,5), (3,5), (4,5), (4,6), (5, 7), (5, 8), (3, 8), 11),

(6,7), (7,8), (8,11), (8,10), (6,9), (9,10), (10,11), (7,10).

4. The portion of the input image to be transformed is specified (see

Diagram 5).

Diagram 5

5. The portion of the output image to be displayed will be specified

(see Diagram 6).

Diagram 6

6. The tape units for both input and output will be specified.

The next portion of Phase I of the Geometric Transformation Program performs

the actual transformation requested. It accomplishes this in the following way:

1. Memory allocation parameters are computed for output buffers, in-

put buffers, and image storage.

2. The input image is read and the portion of the input image to be trans-

formed is stored in memory until available memory is filled.

4-77

3. The line segments that make up the rectangular boundary of the

portion of the image held in memory are intersected with the line

segments of the input segment list. These intersections will define a

new segment list and a new point list in the input image (see Dia-

gram 7). (Parametric functions are generated to create the new line

segment list.)

Diagram 7

4. The corresponding point list to the updated point list will be calcu-

lated for the output image.

5. Each of the segments in the updated list in the output image will be

intersected with the segments that make up the rectangular bound-

ary of the portion of the output image to be displayed (see Dia-

gram 8).

Diagram 8

These points of intersection will define a new segment and point list

in the output image (see Diagram 9).

Diagram 9

4-78

6. The corresponding point list to the new point list will be calculated

for the input image (see Diagram 10).

Diagram 10

7. The updated segment list in the output image is now ordered in the

following way. The two end-points of each segment are ordered so

that the top left point index is first in the pair. The entire list of

segments is now ordered by the first point so that the list is in left

to right within top-to-bottom order. This sorting of the segments

will allow a great deal of time to be saved as the raster segments

are generated later in the program.

8. The first output line will start at the first point of the first segment

in the ordered list. This line will intersect a specific number of

segments that will be put into a "current segment list".

The current segment list will contain the following for each segment:

a. The index pairs (Pi, qi) indicating the segment

b. The X' coordinate of the intersection of the current output line

with the segment

c. The X and Y coordinates of the corresponding point in the

input segment

d. The change in the output intersection AX' for a change by

one of the output line

4-79

e. The change (A y, AYy) in the input intersection for each

change, by one, of the output line

f. The change (AXX, AYX) along the input segment for each

change, by one, of the pixel along the output line

g. The change (AAXXY AY) of (AXX AYX) for each change,

by one, of the output line

9. The points of intersection (Xi) of the segments in the current line

list with the current output line are in ascending order with respect

to X . This is because of the order of the output line segments.

The first intersection p of the output line m corresponds to the

intersection (X, Y) in the corresponding input segment. This point

in the input segment lies within the area defined by four adjacent

pixels in the input image. The four pixel values, and the position

(X, Y) are used to interpolate an output pixel that will correspond

to output point (p, m).

NOTE: If a given raster point (X , Y n) on the output image maps into (X', Y')

under T- 1 in the input image; i.e., (Xm , Yn)T = (X, Y'), and if

(X', Y') is in the area bounded by the pixels (X, Y.), (Xi+1 Yj), (X , +1

and (X' , Y') where the pixel values are Z'., Zj+1 and ZI
i+1 j+1 j' +" ij+ i+lj+1,

respectively, then the output pixel value associated wit (X m n) is:

Z =(X' - X!) (Y' - Y) (Zj.+ Z + - Z - Z+l)
mn 1 1+j+1 ij+1 i+j

-(Y' -Y!) (Z! -Zj!l) -(X' -X;) (Z -ZIlj)
1 ii 1+1 Ii i+1j

+ Z!.

10. Two types of output buffers are maintained by the Phase I part of

the Geometric Transformation Program. The first buffer type

contains the following:

a. The line number and pixel number of each section of output

line

4-80

b. The number of pixels in the section of output line

c. The sector of disk on which this section is found

d. The word within the sector where section starts

e. The character within the word where section starts

This buffer is of fixed length and is written to disk when full. The

second buffer contains raw pixel values, is of fixed length, and is

emptied to disk whenever it becomes full.

The point (X, Y) is stored in buffer 1, and the value of the point

(p, m) is stored into buffer 2. The location of this store is stored

in buffer 1.

11. One is added to the X value of the current pixel position and this

value is checked against the next X intersection value in the current

line list. If the pixel position is less than the intersection value,

then AXX and AYX are added to (X, Y), an interpolation is done and

the resulting pixel value is stored in buffer 2 and step 11 repeated.

If the pixel is equal to the next intersection, then a pointer to the

segment in the current line list is advanced and step 11 is repeated.

12. When the pixel position in the current line is equal to the last X

value in the current line list, then the current line number is in-

cremented by 1.

13. When the line number is equal to one or more segment ends in the

current line list, then these segments are deleted from the list and

replaced by segments from the segment list whose start values

match the deleted end value. (List process is employed here.)

14. If new segments are added then X', (X, Y), AXX, AYX' ,Xy' ,Yy,
AAXx, AAYxy, and AX' are computed for those segments. The

segments that were not deleted from the list are processed in the

4-81

following way. AAX and AAY are added to AXX and AYxI

respectively, ANy and AY are added to X and Y, respectively, and

AX' is added to X.

15. Step 9 is entered and this entire process continues until no more

segments can be entered into the current line list. At this point

Step 2 is entered and memory loads are processed until the input

data is exhausted or until one of the disk files is full, at which time

Phase II is entered.

4.22.1.2 Phase II

The second phase of the Geometric Transformation program has as its input

the three files and one reference word generated by Phase I of the program.

These files are stored on the disk.

The reference word, which is always located in word one of cell number 32170,

contains the total number of core loads from disk.

The first file, which will be called the "core load table" will contain the following

information for each core load:

word 1: cell number of start of "index file" (2nd file)

word 2: start word number within cell number

word 3: number of index entries for core load

The second file, which is the "index file", contains the following data for each

string:

word 1: The line number of the beginning of the string

word 2: The pixel number of the beginning of the string

word 3: The number of pixels in the string

word 4: The cell number of start of string

word 5: The word *100 + character number of start of string

4-82

The third file contains the strings of pixel values to which the index entries

refer.

The output from Phase II consists of three tapes that contain merge strings

distributed among the three tapes in a Fibonacci series, so that Phase III can

achieve a polyphase merge. When the number of actual merge strings on a tape

is less than the number specified in a Fibonacci series, the differences are

stored in common, where they will be passed to Phase III.

Phase II sorts from disk to tape in the following way:

1. It uses the core load table to read in index buffers from the disk,

which refer to the first strings of each core load.

2. The indexes are sorted by pixel number within line number.

3. After the indexes are ordered, strings are read from disk in the

order of the indexes and stored in an output buffer along with their

associated start line, start pixel, and number of pixels. When

required, strings are merged together, and redundant pixel values

are omitted.

4. When output buffers are full they are emptied to specified output

units in accordance with the Fibonacci algorithm.

4.22.1.3 Phase III

This phase has as its input the three merge tapes that were the output from

Phase II. Phase III assumes that the merge strings are arranged on the three

tape drives in a Fibonacci series so that the image string can be merged by the

poly-phase sort-merge method. In the case where the number of required strings

specified for each tape exceeds the actual number of strings residing on a tape,

a set of numbers is supplied from Phase II which represents the number of

strings lacking on each tape.

4-83

Two of the tapes are defined as input and have been rewound, while the third

tape is used as output and is positioned at the record following the last image

merge string output from Phase II.

Phase III processes tapes in the following way:

1. Merge strings are read from the two input tapes and merged onto a

single string on the output file. In the case where the dummy string

counter is greater than one, no tape processing is done, but the

counter is decremented and processing is continued.

2. This process continues until one of the input tapes is exhausted.

3. The exhausted tape is rewound and becomes the new output tape.

4. The old output tape is rewound and becomes one of the input tapes.

5. This process continues until all of the merge strings have been

merged into one complete image string. At this time, the tape is

rewound and copied into IDAMS format. Any gaps in the image are

filled with zeros.

4.22.2 Parameters

1. SPO - Starting pixel of output window

2. SLO - Starting line of output window

3. NPO - Number of pixels of output window

4. NLO - Number of lines of output window

5. NOSEG - Number of line segments

6. NOPOT - Number of points

7. ICODE = 0, if parameters on card

= 1, if parameters on disk

8. Starting point number of a line segment

4-84

9. Ending point number of the same line segment

(8 + NOSEG * 2). Starting pixel number of the first input image point

(9 + NOSEG * 2). Starting line number of the first input image point

(8 + NOSEG * 2 + NOPOT * 2). Starting pixel number of the first corrected

(output) image point

(9 + NOSEG * 2 + NOPOT * 2). Stating line number of the first corrected

(output) image point

4.22.3 Input

An input tape in standard IDAMS format is necessary.

4.22.4 Output

An output tape in standard IDAMS format is generated.

4.22.5 Example

A selected portion of the test image, TEST1, is to be rotated through an angle

of 45 degrees after it has been increased to TV size. The resulting output will

be another TV size image (700*512). Four control points will be defined in the

4-85

input and output images in a manner which will achieve the desired 45-degree

rotation. These points are:

Point Input (pixel, line) Output (pixel, line)

1 134,40 350,1

2 565,40 700,256

3 55,471 350, 512

4 134,471 1,256

Connecting line segments will be defined to define a mapping rectangle. Points

1-4, 1-2, 2-3, and 3- will be connected. The necessary parameters are:

NCR EASE, (TEST1. 49. 1), (1, 1, 340, 270). (TVTEST, 48, 1). 1

00,512

GEOMTRAN, (TVTEST, 48, 1), (134, 40, 432, 432). (ROTATE, 45, 1). 3

1, 1, 700, 512, 4, 4, 0. 1, 4, 1, 2, 2, 3, 4, 3

134, 40, 565, 40, 565, 471, 134, 471

350 1, 700, 256. 350, 512, 1, 256

4.22.6 Messages

The geometric transformation program produces no messages.

4.22.7 Flowchart

See Appendix C, Figure C-22.

4-86

4.23 CHIPGN - REFERENCE CHIP TAPE GENERATION AND UPDATE PRO-
GRAM

4.23.1 Program Description

The task program CHIPGN extracts one or more reference chips from an image

tape and writes them onto a new reference tape or adds them to an existing ref-

erence tape. If no new chips are requested, CHIPGN simply prints out the

directory of an existing reference chip tape.

If a new tape is to be generated (specified by an entry in the output field of the

task card) a blank directory block is generated, the directory label record is

set to specify zero chips, and the directory file is written onto the output tape.

When an existing reference chip tape is specified as an input (secondary input

for update mode and primary input for directory listing mode), CHIPGN begins

by reading the existing directory into core. For update mode, the label data

are transferred to the output label block and the tape is advanced to the end of

the last chip file. For directory listing mode, control is transferred directly

to the directory listing procedure.

Otherwise, CHIPGN accesses the parameters specifying new chips one at a

time. The keywords are scanned, parameters are converted to suitable formats,

and a check is made to see that the specified reference chip lies within the

boundaries of the input image. If not, an advisory message is printed, and the

next set of parameters is scanned. For each valid chip specification, the chip

count in the directory label is incremented by one and the chip name is generated.

The general purpose subroutine UTMCON is called to convert UTM to Lat-Long

or vice versa, depending on which set of coordinates were input as parameters.

Then the chip label is generated and written out. The label data, together with

the source image location and any memorandum, are also entered in the appro-

priate line of the directory block. The input tape is then advanced to the starting

line for the chip, and image data are transferred to the output tape one line at

a time. When the chip file is complete, an end of file is written.

4-87

After the last chip file has been written, the output (reference) tape is rewound,

the directory is printed out, and the new or updated directory file is written

onto the output tape.

NOTE: CHIPGN can write a maximum of 98 reference chips onto a single refer-

ence chip tape.

4.23.2 Parameters

A separate set of parameters is used to specify each chip to be generated. Be-

cause the user may enter either Lat/Long or UTM coordinates, CHIPGN requires

that parameters be identified by keywords, successive parameters must be sep-

arated by commas. The parameters are:

1. CPP = nnnn - Pixel location on input image of chip

center

2. CPL = nnnn - Line location of chip center. Note:

processing time will be minimized if

successive chips are specified in

order of increasing CPL.

3. LAT = dd, mm, ss. s - Latitude of chip center. If N/S desig-

nation is omitted, north latitude is

assumed unless latitude is preceded

by a minus sign, in which case south

latitude is assumed.

4. LONG = ddd, mm, ss. s - Longitude of chip center. If E/W
W

designator is omitted, north is as-

sumed unless value is negative, in

which case west longitude is assumed.

5. ZONE nnN - UTM Zone. If N/S designator is5. ZONE nn

omitted, north is assumed unless

number is preceded by a minus sign.

4-88

6. UTME = nnnnnn UTM easting in meters (=500,000 at

zone central meridian)

7. UTMN = nnnnnnn - UTM northing in meters

8. ELEV = nnnn - Elevation above sea level in meters

9. MEMO = 'cc...cc' - Up to 24 alphanumeric characters of

identifying memorandum enclosed in

quotes (optional parameter)

NOTE: Either, but not both, Lat/Long or UTM coordinates must be supplied.

The use of the input and output specifications on the task card determines

whether a new tape, update, or only the directory listing is to be generated, as

follows:

Mode Input/Output Specifications

List Directory Only Primary Input = Reference Chip Tape
No secondary input or output

New Reference Tape Primary input = Source Image
Output = Reference chip tape

Update existing tape Primary input = Source Image
Secondary input = Reference chip tape

No output specified

In all cases the input size specification is ignored, and may be defaulted.

NOTE: All reference tapes are identified by the name of the directory file,
which consists of five alphanumeric characters followed by 01D; for a

new tape, only the first five characters of the specified output name

are used. Reference chip files have the same initial five characters as

the directory file, followed by a two-digit file number and the letter R

as shown below:

Specified output name: EASTBAY
Directory file name: EASTB01D
First chip file name: EASTBO2R
Sixth chip file name: EASTB07R

4-89

4.23.3 Input

CHIPGN requires one or two input tapes in standard IDAMS format, depending

on the mode selected. They have the following significance:

Mode Input(s)

List Directory only Single input = reference chip tape

New Reference tape Single input = source image

Update existing tape Primary input = source image
Secondary input = reference chip tape

4.23.4 Output

Output frem CHIPGN comprises a printer listing of the reference chip direc-

tory and a tape containing a directory file and one or more reference chip

files in standard IDAMS format; the number of chips is specified by word 7 of

the directory file label. Output specification depends on the mode selected,

as follows:

Mode Output

List directofy only No output tape specified

New reference tape Output - tape specified on task card
Secondary input tape specified

Update existing tape No output specified on task card;
output = secondary input tape

Each reference chip file has an extended label, as follows:

Word(s) Contents

1-2 Name of chip: XXXXXnnR where nn is
file number and R is always present as
an identifier

5 LUN: Logical unit number when
generated (value does not affect sub-
sequent use)

6 File Number (between 2 and 99)

4-90

Words Contents

7-8 Latitude: Floating point, degrees and

decimal fraction, with sign indicating
north (+) and south (-)

9-10 Longitude: Floating point, degrees and
decimal fraction, sign indicates east (+)
and west (-)

11-12 UTM easting: Floating point, preceded by
106 times zone number and sign indicating
north (+) or south (-)

13-14 UTM northing: Actual value in northern
hemisphere; value -10 7 (giving negative
result) in southern hemisphere.

15-16 Elevation

The directory file has a standard label, except that word 7 specifies the number

of chip files on the tape. The directory comprises a single 2156-word (98 by 22)

record containing for each chip its name, latitude, longitude, UTM easting and

northing, elevation above sea level, source name, position of chip center in

source, and 24-character identifying memorandum.

The printer listing gives the directory data for each chip: latitude and longitude

are converted to degree, minute, and second form and UTM coordinates are

expressed in standard format.

4.23.5 Example

1. A reference tape is to be created using two areas from an image

tape named FLGHTQ16. Task and parameter cards would be as

follows:

CHIPGN, (FLIGHTQ16, 48, 1),, (WILDOWEST, 47, 1), 2

CP = 369, CL=426, LAT=33, 18, 56.0, LONG=105, 16, 24.2W, ELEV=987, MEMO='DRY GULCH JUNCTION',

CP = 861, CL=3248,LAi=32, 09, 16.4, LONG=105, 01, 48.8W,'ELEV=1126, MEMO='TEXACO TANK FARM'

4-91

Note that only the first five characters of the output name will be

kept, to make the directory file name WILDW01D and the chip names

WILDWO2R and WILDW03R.

2. An additional chip is to be added to tape WILDW01D, generated

above, from image tape FLGHTQ18. Task and parameter cards

are:

HIPGN, (FLIGHTO18, 48, 1, WILDW01D, 47, 1),,, 1

CP = 3241, CL=1892, LAT=33, 06, 10.0, LONG=-105, 17, 18.6, ELEV=874, MEMO='THOMPSON POND'

3. At a subsequent time it is desired to check the contents of this tape

by examining the directory. The required task card is:

CHIPGN, (WILDWO1D, 47, 1)

4.23.6 Messages

Message Explanation

aaaa IS NOT A KEYWORD An illegal keyword was detected,
execution continues.

CHIP AT CPP = nnnn, CPL = nnnn The chip coordinates will not per-
NOT WITHIN RANGE mit a full chip to be extracted

from the input image, parameters
are discarded and execution con-
tinues.

ATTEMPT TO ADD nnTH CHIP HAS The chip tape is full, no more
EXCEEDED CAPA CITY chips may be added unless others

are removed.

4-92

4.23.7 Flowchart

See Appendix C, Figure C-23.

4-93

4.24 RZOMAP - RESEAU MAPPING PROGRAM

4.24. 1 Program Description

This task routine locates reseaus on RBV imagery using a digital filter which

is highly selective for vertical and horizontal bars, fits a least-squares poly-

nomial to the corresponding displacements from the nominal positions, and gen-

erates a table containing nominal and actual locations, using the polynomial to

fill in any missing reseaus by interpolation.

RZOMAP begins by calling the subprogram GETRZO to find as many of the

reseaus as possible. GETRZO begins by setting up the output table. If the user

has entered a table of nominal locations as parameters, these are transferred to

the output table. Otherwise, an internally stored table is used. The remaining

parameters are then checked for defaulted values, which are replaced by values

appropriate to the table of nominal reseau locations.

The reseau search is carried out one row of reseaus at a time. For each row,

the estimated position of the leftmost reseau is determined, and the approximate

positions of the remaining eight reseaus on the row is computed using the esti-

mated increment. The tape is advanced to the 64th line before the estimated

line position of the leftmost reseau, and two lines of image data are read in.

Two sets of 128 accumulators for image column and row sums are initialized

for each one of the nine search regions.

Then additional data are read in one at a time, using a total of three buffers.

As a new line is being read, the COMPASS subroutine XYGRAD is called for

each search region in turn.

It uses the 129 pixels centered on the estimated pixel position of the reseau in

each of the two lines already in core to compute the quantities

Gx (x, y) = f(x, y) - f(x-1, y) If(x, y) - f(x-1, y)

Gy (x, y) = [f(x,y) - f(x,y-1)] If(x,y) - f(x,y-1)I

4-94

for each pixel location, and adds the gradient terms to the appropriate accumu-

lator for that row or column of the search area. In these formulae, f(x, y) rep-

resents the gray level at pixel position x of line y of the input image, and the

gradients G and G have been weighted by the absolute values of the differencesx y
in order to give extra emphasis to the large gradients associated with the edges

of the reseau marks.

Lines are processed in this manner until 128 row sums (requiring 129 input

lines) have been computed for each of the nine reseau search regions. For each

reseau, the means and standard deviations about the means are computed sep-

arately for the set of row sums and the set of column sums. Each set is scanned

for local minima at least 1.5 standard deviations below the mean, and local

maxima at least 1.5 standard deviations above the mean. A bar of the reseau

mark will be identified by a minimum which is followed by a maximum within

two to eight locations; the mean bar position will be computed as the average of

maximum and minimum positions plus 0. 5 (since the nth gradient value is derived

from pixels or lines n-1 and n). If one and only one pair of pixel and line posi-

tions is found, these will be stored in the reseau location table as "actual" lo-

cations; if no pair is found (or, very occasionally, more than one possible pair),

zeros will be stored in the location table to show that the search for that partic-

ular reseau was unsuccessful.

GETRZO searches for the remaining eight rows of reseau marks in the same

way as for the first row. However, the estimated pixel positions for reseaus

in succeeding rows are taken equal to the actual position of the reseaus in the

previous row, except for the reseaus which were not located. Similarly, after

the second row, the leftmost reseau's line position is estimated using the actual

separation between the two previous rows of reseaus in place of the original

estimate. When all 81 reseaus have been searched for, GETRZO returns con-

trol to RZOMAP.

4-95

The sublprograim 1I01A2 is thun called to prpIarc a condensed loction 1,,ble

containing only those rcseaus whose actual locations were obtained by GETRZO.

This tible is passed to the subroutine TWOFIT, which fits third or fifth degree

polynomials, as specified by the user, to the x displacements and y displace-

ments of the actual reseaus relative to the nominal rescau positions. The coef-

ficients for the two polynomials are then stored in COMMON by POLY2, and

control is returned to RiZOMAP.

The final step is performed by the subprogram NTRP2 wvhich uses the polynomial

coefficients to compute the locations of the missing reseaus and store them in

the table. The table is copied onto the reseau location file on disk, and also

written on the printer. Control is then returned to RZOMAP, which terminates

the program and returns control to the IDAMS monitor.

4.24.2 Parameters

RZOMAP requires the following parameters:

1. IDEGR - 3 or 5 - desired degree of polynomial fit used for inter-

polation. Default = 3

2. MP - Estimated pixel location of midpoint of upper left reseau

3. ML - Estimated line location of upper left reseau

4. IP - Estimated spacing between reseaus along lines (pixel

increment)

5. IL - Estimated spacing between reseaus perpendicular to

scan lines (line increment)

6. NCOL - Number of columns of reseaus. Default = 9; maximum

=9

7. NROW - Number of rows of reseaus. Default = 9, maximum = 9

8. ICODE - Nominal rescau table indicator. Format is n + 10*m where im is

the spectral band number (1, 2, or 3) and n = 0 if using stored

4-96

table, n = 1 if table is to be computed, n -2 if user is

supplying table.

9. LP(i), LL(i) - Pixel andi line coordinates of nominal reseau loca-

tions, beginning with i = 1 for upper left, and pro-

ceeding from left to right along row and then to

successively lower rows. Default: use stored table.

NOTE: A zero for any of the first eight parameters or for LP(1) is interpreted
as a cefat;led value. For :\IP, ML, IP, and IL,default values are ob-
tained from upper left corner of table of nominal values.

4.24.3 Input

lZOMAP requires one input image, representing RBV sensor output, in stand-

ard IDAMS format.

4.24.4 Output

RZOMAP generates a. table containing nominal and actual reseau locations which

is stored in the reseau location file on disk and also listed on the printer. The

disk file occupies disk cells (sectors) 5 to 10 and comprises one header record

and 81 data records of four integer words each.

The header record format is

Word Contents

1-2 Image name

3 Number of reseaus from GETRZO

4 Number of reseaus from NTRP2

Each data record corresponds to one reseau mark, starting with the top row and

going from left to right within each row. The record format is

Word Symbol Contents

1 NOMP Nominal pixel position

2 . NOML Nominal line position

3 IMP Actual pixel position in image

4 IML Actual line position in image

4-97

4.24.5 Example

An image .TAMESr LU is to be scanned for rescu marks. The nominal loea:ions

are those of the standard stored table, and represent a 9 by 9 grid. Missing

rescaus are to be filled in using a fifth degree polynomial fit. The upper left

reseau is estimated to be at pixel 290 and line 3,40, and the spacing between

reseau columns is aijpro:-iC - atcly 405 pixels, and between rows, about 330 lines.

Suitable IDAMS task and parameter cards are:

ZOMAP, (JAMESBLU, 49, 1),,, 1

s.290, 340, 405, ,, 9

4.24.6 Messa6es

In addition to messages generated by the general-purpose subroutines, RZOMAP

generates the following fatal-error messages:

fessage Explanation

ESTIMATED RESEAU LOCA- Specified line or pLxel increment
TION OUTSIDE IMAGE between reseaus too large, so

that some reseaus lie outside
input image

TOO FEW RESEAUS FOUND Not enough reseaus were identi-
BY GETRZO fied by GETRZO to permit

finding least-squares fit poly-

nomial of specified degree.

4.24.7 Flowchart

See Appendix C, Figure C-24.

4-98

4.25 CORREL - IMAGE CORRELATION PROGRAM

4.25.1 Program Description

This program determines the relative positioning of a reference chip and an

image segment for which the variance between the gray-level values, norma-

lized to equal average gray level and standard deviation about the mean, is a

minimum.

For each relative position of the reference image within a search area specified

by the user, the variance is computed using the formula

xr 2 Txr
V=2+2 a a N a 9

xr x r

where x and r represent gray-level values for the input image and reference

image, respectively; K and Y are the averages over N points defined by the

dimensions of the reference image, and the standard deviations are computed by

2 1 2 -2S=_-x -x
x N

2 1 2 -2r =-Zr -r
r N

In all three equations, the summation extends over the area of the reference

image.

CORREL begins by reading in the reference image and computing Y and U , if
r

ar = 0, an error exit is taken, since no correlation is possible. Lines of the

specified segment of the input image are then read in until there are as many

input lines in core as there are reference lines. The values of x and x2 are

added up for each column. To generate one line of the variance array, the

COMPASS subroutine CROSS is called to add up the cross products (r x) for

4-99

each horizontal position of the reference image relative to the input image. The
column sums for x and x2 are then added together for those columns overlaid by
the first position of the reference image, and the first variance in the line com-

puted. The x and x2 sums are then modified to correspond to each successive
position of the reference image and the corresponding variance values computed.

If ox = 0 (perfectly uniform image), the variance is assigned the value 2. 0. Each
variance value is tested to see whether it is the smallest one so far; if so, its
position in the matrix is recorded. The variance line is then saved on disk.
The next line of the input image is then read in, and the column sums of x and
x modified to include the new line and exclude the former top line. The next
line of the variance is then computed in the same way as before.

When the entire variance array has been computed, the 15 x 15 submatrix with
the minimum value at its center is read into core. (The submatrix size is re-
duced if minimum is less than eight locations from edge of variance matrix.)
If the minimum is within two locations of the edge, an advisory message is
written. A test is also made for sharpness of the minimum by computing the
average of the eight variance values adjacent to the minimum. This average is
compared with the values of the 16 next-adjacent elements; if any is smaller
than the average, a warning message is written.

The position of the center of the reference image relative to the input image
for minimum variance is printed out, together with the variance value. The
variance submatrix is also printed. If the user specified that the data should
be stored, the image coordinates of the reference chip control point and the
geographic and UTM coordinates read from the reference chip label are stored
in the specified position on disk.

4-100

4.25.2 Parameters

CORREL requires the following parameters:

1. MCP - Central pixel location in reference (mask) image

2. MCL - Central line in mask

3. NPM - Number of pixels in mask - preferably odd

4. NLM - Number of lines in mask - preferably odd

5. ISAVE - 0 - correlation results are not saved on disk

1 - the control point file on disk is cleared and correla-
tion results written into record 1

2 - correlation results are written into next available
record (maximum 11)

-n - results of this correlation replace record n of con-
trol point file

Note that the search area (variance matrix) size is defined by:

1. NCOL = NP - NPM + 1

2. NROW = NL - NLM + 1

4.25.3 Input

CORREL requires two input images. The secondary image is used as a refer-

ence image (mask) for correlation against the primary input image.

4.25.4 Output

CORREL prints out the minimum variance value, the corresponding position

of the mask center point relative to the input image, and 15 x 15 submatrix of

variance values around the minimum.

If ISAVE > 0, the position of the center point of the mask and its corresponding

geographic and UTM coordinates (taken from the reference chip label record)

are written onto record ISAVE of the control point file on disk.

4-101

4.25.5 Example

It is desired to correlate an 81 x 81 segment of reference chip WILDW23R,

centered at pixel 51 and line 51, against an image FLGHTQ49. The control

point is located at approximately pixel 2480 and line 210, and the search is to

be carried out over an area up to 25 pixels and lines on all sides of this point.

Then the total image segment to be searched has dimensions of 131 x 131

(81 + 2 x 25), with its upper left corner at pixel 2415 and line 145 (2480 - 131/2,

etc.). Hence the task and parameter cards are:

CORREL, (FLIGHTO49. 47, 1, WILDW23R, 48,23). (2415, 145.131,131),, 1

51, 51, 81, 81, -4

The value ISAVE = - 4 will cause the result to be saved in record 4 of the control

point file on disk.

4.25.6 Messages

CORREL may generate fatal error messages, as follows:

Message Explanation

CORREL MASK OR SEARCH The specified mask and search
AREA TOO LARGE areas are too large for available

core

CORREL SEARCH AREA NOI NCOL and/or NROW computed
POSITIVE from parameters are negative

MASK EXTENDS OUTSIDE Mask parameters not entered
REFERENCE IMAGE correctly

MASK IS ENTIRELY UNIFORM Mask has no features at all; corre-
lation not possible.

4-102

In addition, the following advisory messages may also be generated:

Message Explanation

WARNING - VARIANCE MINI- The correlation may not be reliable
MUM IS AT OR VERY NEAR due to edge effects.
EDGE OF SEARCH AREA

WARNING - VARIANCE MINI- A well-defined minimum could not
MUM IS NOT SHARP be found, results are questionable.

WARNING - THIS IS NOT A The mask used was not in refer-
REFERENCE CHIP. RESULTS ence chip format, disk file data is
CANNOT BE STORED ON DISK incomplete.
SINCE CENTRAL POINT
COORDINATES ARE NOT
AVAILABLE.

WARNING - NAME OF CONTROL Conflicting file names, data is
POINT FILE ON DISK, NOT ignored.
NAME OF INPUT IMAGE.
RESULTS HAVE NOT BEEN
STORED.

WARNING - SPECIFIED RECORD Only ten control point files are
NUMBER GREATER THAN 1. permitted.
NEW DATA HAVE NOT BEEN
STORED.

WARNING - CONTROL POINT Disk file is already full and space
FILE ON DISK ALREADY FULL. must be made available before
DATA HAVE NOT BEEN STORED. more chips can be added.

4.25.7 Flowcharts

See Appendix C, Figure C-25.

4-103

4.26 RESECT - SPAr'IAL RESECTION PROGRAM

4.26.1 Program Description

This routine uses an iterative differential correction procedure to obtain cor-

rections to the nominal spacecraft attitude and altitude. These minimize the

variance between the observed image locations of selected control points, the

locations co'mpted uts'ing the corrected attitude and altitude parameters, and

the known geographic coordinates of the control points. The corrected param-

eters are used to compute a grid of displacement values by means of which

GEOMTRAN can transform the image to a UTM projection. When the resection

has already been carried out for one spectral band of an RBV image, the pre-

cision parameters for that band may be used to go directly to computation of

GEOMTRAN coordinates for additional bands. RESECT begins by accessing

the parameters to determine the type of sensor being used, the scale of the

final projection, and whether the UTM projection is to be aligned north-south

or in the direction of the satellite heading. Tables of ephemecis and attitude

data, control point data, and, for RBV images, reseau locations are then

copied from the files stored on disk by IMERGE, RZOMAP, and CORREL (in-

cluding modifications made by PPUPDATE or previous execution of RESECT),

after first checking that the image name on disk agrees with the image- specified
as input. Since normal label checking cannot be carried out by BATCH, the

window parameters (sp, sl, np, nl) are then checked for default, and if so, the
full image is specified. A check is also made that enough control points are

supplied to permit solving for all the resection parameters. Beyond this point,
after certain constants have been computed, the procedure is sensor-dependent.

For RBV images, RESECT continues as described below.

The latitude 4, longitude L, and elevation I-I for each control point are then

converted to coordinates (x, y e, ze) relative to the satellite nadir point (In'
Ln, 0), where x is positive in the direction of satellite heading and z isn e10

4-104

positive upwards normal to the plane tangent to the earth ellipsoid at the nadir

point (the nadir plane). The transformation equations are

(x U -Uy = b.)
e 3 n)

z W-W
e n

where

U = (r + H) cos $cos (L-Ln)

V = (r + H) cos T sin (L-L n)

W= [r (1-e 2) + H] sin

and (Un , Vn , Wn) are the values of the nadir point. The constants describing

the earth ellipsoid are

e2 = eccentricity squared
2 2)-1/2

r = a (1-e2 sin -1/2

a = semimajor axis of ellipsoid

The elements of the rotation matrix are given by

cos ' sin $ -sino' -cos a' cos 4$(n n
(bij) = sinor' sin$ cos' -sin&' cos$

cos - 0 sin $
n n

where a' = satellite heading from south (compass bearing -1800).

4-105

If a secondary RBV image has been specified, only the transformation coeffi-

cients are computed, and control then jumps to the procedures for generating

the parameter grid for GEOMTRAN. Otherwise, RESECT proceeds to compute

corrected attitude. For RBV images from the ERTS satellites, for which the

small uncertainties in 0n and Ln can be adequately taken into account by lumping

them with the roll and pitch errors, the corrections are computed in the follow-

ing manner.

The observed image coordinates (xi , yi) of each control point (normally obtained

by CORRELating against a reference chip) are converted to face-place coordi-

nates (Xf, yf) using the table of actual and observed reseau positions, where the

actual positions are assumed to include corrections for lens distortions. This

is accomplished by determining the image coordinates (xi, Yi) of the nearest
2 2

reseau mark by finding the reseau mark for which (xi - xi) + (yi - Yi) is a

minimum. The next nearest reseaus (xi , yi') on the same row as (Wi' ,) and

(x,', y') on the same column are then found (using next reseau to right if
I 1I

x - x is positive, and so on). Defining the vectors
i 1

D'A. = (x - x., y -y
1 1 i 1

D = (x - xi, y! - y)

D" = (x!'-x., y!' -y.)
1 1 1 1

and, similarly, Af, D', and D" for the corresponding points in faceplace co-

cordinates, the location of the control point in faceplate coordinates is computed

by linear interpolation, using the components of A. normal to D' and Di', as

xf A. x D" A. x D'
S1 iI

1 i D i D"
D' D + D'.x D f

f x D'
1

where the symbol x denotes the vector cross-product.

4-106

The transformation of the true locations of the control points from the earth

nadir-point coordinates (Xe , y e ze) to faceplate coordinates is then carried

out in two steps using the nominal attitude and altitude parameter values. The

first step obtains the coordinates (Xs, , zs) of the control point relative to

the sensor, where the sensor axes, initially parallel to the x e , y e, Ze axes,

have been rotated through yaw angle K, roll angle w, and pitch angle q'. Apply-

ing the rotations givesx xe
YS = RP R RK Ye
z z -h

s e

where the product of the three rotation matrices is

cos(cosK - sin9'sinwsinK cospsinK + sinVsinWcosK -sin0cosw

R9 R ,RK= -cossinK cosWcosK sin5

sinqpcosK + cosysinsinin sinqsinK - coso sin5WcosK coscqcoso

and

h = altitude of spacecraft above nadir plane.

The faceplate coordinates are then

f f
x = + -Y = -- yf f z S f z s

f f
Yf = f + x =Y f-- x

f f z s s

where

f = focal length of RBV camera

(xf, yf) = faceplate coordinates of point on camera axis

4-107

in image and faceplate coordinates, the xi or xf axis is transverse to the satel-

lite heading, rather than coincident with it, and the xf and yf axes are positive

in the +yx and +xs directions, respectively.

RESECT then computes differential corrections to the values of K, w, ~p, and
0 0

h by requiring that the variance V between the faceplate coordinates (Xf , yf)

computed from the observed image locations of the control points and the

coordinates (Xf, yf) computed using the nominal attitude and altitude parameters

be a minimum; V is defined as

1 o 2 o
V - N T [(x - x + (- y]

where the summation extends over the entire set of N control points.

The conditions for V to be a minimum are

aV av aV a8V
8K - aw ap ah

To simplify the computation of these derivatives, xf and yf are expanded

around their values for the nominal parameter values i, r, , and h, giving

axf ax
f f

ax 8x
+ - (-) + (h -h)

Yf +Yf

3yf Yf
+ a (q + h9 -') + - (h-h)

4-108

For further simplifications, the derivatives of xf and yf are approximated at

the average values of attitude and altitude rather than the nominal values for

the instant at which the image was recorded, i.e., K = w = (= 0, h = h . Then
0

using

dx f dy + (dz sf z d s 2
s z

s

x R dz
dy dx + 2f z s z

s s

and the infinitesimal rotation from (x , ye, z) to (x , , Zs) in the form

dxs =e dK + ho dp

dy s = -x dK -hodws e 0

dz = -y dw+x dV - dhs e e

we obtain

f f 2 f f
dxf x dK (f+ ye) dw+ x y dp y dh

f ho e 2 e 2 ee 2 e
h o h o h o

f f f 2 f
dy =+-y dK x Y dw+(f +- x) d(P- x dhf ho 2 ee 2 e2 e

o h h h

from which the required (approximate) derivatives may be extracted. By intro-

ducing the notation

a1 = K, a2 = , a3 = 9, 4 =h

Aa= . - . , j= 1,4

4-109

we can write the conditions for minimum variance as

ax 0yaV o f o fS0 2 [(x-f Xf + - ,j= 1,4

which, with the aid of the expansions around the nominal values of the{ . } ,

becomes

4 ax ax xf Yf Y

fk=1 control alj a k Lj 8ak k

points

controlj ajf

* points

+ yo -yf(~ , ,, a j= 1,4

After all the terms have been evaluated, the set of four simultaneous linear

equations for the four corrections AC. are solved by a call to the general

purpose subroutine MATINV. The corrected values of I ja are used to com-

pute new values of (xf, Yf) for each control point. The variance is computed;

if its square root has decreased by less than 0. 1 resolution elements compared

to the previous variance, and fewer than 5 iterations have been performed, a

further set of corrections to the new values of lajI is computed.

Otherwise, the final values of K, c, , and h are printed out, together with a

measure of goodness of fit defined by

m = [V/2N - 4)]1/2

4-110

and the contributions to the variance by each control point. The corrected

parameters are also enterd in the ephemeris file on disk.

Finally, RESECT generates a grid of image points and their corresponding

UTM coordinates to be used as input parameters for the geometric transforma-

tion routine, GEOMTRAN.

This procedure begins by computing the image coordinates of a 10 by 10 grid

of calibration points, in the form of 81 identical rectangles which are just large

enough to completely cover the image subset specified by the window parameters.

The UTM coordinates of the corresponding point on the ground are then com-

puted for each calibration point in turn. This procedure begins by computing

the faceplate coordinates of the calibration point using the same procedure as

before.

Because the values of zs for these points are not known a priori, the corre-

sponding values of (xs , ys) are then computed from

z
x s = - (Yf - f)

zs

s = -T (xf-f)

using z = - h as a first approximation. The corresponding values of (xe, Ye'

ze) are then computed using the inverse of the rotation Rp Rw RK; this inverse

is given simply as the transpose of the matrix.

From this approximate set of (xe , y e ze), the corresponding values of U, V,

and W are obtained by an inverse rotation through angles 4n and a' . Latitude

and longitude are then computed using

tan (L - Ln) = V/U

W
tan = +2 2 21/2

(1-e 2) (U2 +)

H=O

4-111

Because of the apprixomate computation of (xe , ye , ze), the values of L and
0 are not exact. Instead, an iterative procedure is used in which this trial set
of (L, 0, H) is transformed back to (f , yf). The working values of (Xf, yf)
are incremented by the residual error between the true value and the value
obtained from (0, L, H), and the transformation from faceplate coordinates
to approximate geographic and back to faceplate is repeated. This process
continues until the residual errors are less than 0. 1 resolution element.

Finally, the resulting geographic coordinates are converted to the UTM grid
zone containing the nadir point by a call to UTMCON.

If the user has specified north-south alignment of the output grid, the value of
a' is checked to see whether it is between 900 and 2700, in which case the
grid will be oriented with line number increasing from south to north, or be-
tween 900 and -900, in which case normal map orientation will be used. A
warning message will be written if this requires rotation through more than
8.1 degrees, in which case GEOMTRAN execution time may be excessive.

The UTM value for points along the top and left-hand edge of the grid are
scanned to find the largest northing and smallest easting value for any point
(for normal map orientation) or smallest northing and largest easting (for in-
verted orientation). These values are rounded to the nearest multiples of 1000
meters which lie outside the entire grid. The rounded values are taken as the
origin of output coordinates, corresponding to pixel 1 of line 1.

The UTM coordinates for each grid point are then converted to output image
coordinates by determining x and y displacements from the origin in meters,
dividing by the user-supplied scale factor, and rounding to the nearest integer.

If the user has instead specified alignment along the spacecraft line of flight,
rotated easting and northing values are obtained by

E' = -(E-E) cos o' -(N-N)sin e'

N' = (E - E) since' - (N - N) cos a'

4-112

where (E n, Nn) are the coordinates of the nadir point (obtained, if necessary,

by a call to UTMCON). The topmost and leftmost values in rotated coordinates

are rotated back to standard UTM, rounded to a multiple of 1000 meters, and

rotated back to the coordinates aligned along the track. Output image coordi-

nates are then computed from the rotated grid coordinates. The output and

input image coordinates of each grid point are then entered in the table. A

table of linkages, specifying all pairs of grid points which are adjacent along

either rows or columns, is also generated. These tables are printed out, and

also stored on disk cells 13 to 24 for access by GEOMTRAN. The alignment

angle of the output grid, the UTM coordinates of its origin of coordinates, the

scaling factor, and the UTM coordinates of the nadir point are also printed out.

For MSS images, the procedures are quite similar to those for RBV. However,

account must be taken of the motion of the satellite, and hence of the nadir

point, during the time required to scan one frame. In addition, the rotation

of the earth and the non-linear relation between the scanner mirror angle and

pixel number (i.e., elapsed time from the start of the scanning of the line) must

be allowed for.

For each control point, the time difference between control point acquisition

and format center time

t= Tscan cp - fc

is computed, where the average interval between line scans is T scan (73. 42/6)

millisec, Icp is the line number, and Ife is the line number of the format cen-

ter. The geographic coordinates (4s , Ls ' Hs) for the subsatellite point at

4-113

the time at which the control point was scanned are computed from the format-

center nadir point coordinates (Tn , Ln , 0) by

1+ (1 - e2) tan2 n

Scos e' V At
s n 2 2 track

1
L L sinc ' V bt -O At

s n r cos Q track e
n

H =0
S

2
where r, e , and a' have the same meanings as for the RBV resection,

Vtrack is the velocity of the subsatellite point, and e = 27 /86164 rad/sec is

the earth's rotational angular velocity.

Using these values of (s' , L) in place of (n , L), transformations to geo-
s s n n

centric coordinates (U, V, W) and subsatellite-point coordinates, (xe , y , Ze)

are carried out in the same manner as for RBV control points; however, a

new set of (bij) must be computed for each control point.

The measured image position for each control point is then converted to

apparent coordinates (x0 , y) of the point when projected into the plane z = h
P p s o

in the coordinate system (x , y , z) which rotates with the satellite (the -zs

axis is the line of sight of the scanner at mid scan, and the x axis lies in

the plane of the zs axis and the spacecraft velocity, roughly coinciding with the

latter). The conversion equations are

0
x =0

p

yo= h tan 8
p o

4-114

where the non-linear relationship between time (pixel position p p) and scan-

mirror angle e (measured from mid-scan) is expressed as

cI

= - sin (c2 p + e3) + c4

The coordinates computed from the actual position relative to the subsatellite

point are then computed by

s eys = RR R R K e

s e

in the same way as for the RBV sensor, with the exception that now the attitude

and altitude parameters are time varying. The approximate values of each of

these 4 parameters at 9 different times, representing time intervals of 3.45

sec from 13. 8 sec before until 13. 8 sec past the format-center time, are input

via the ephemeris file on disk as the parameters A, i = 1.4, j = 1,9. In

addition, after the first iteration of the resection procedure each of the four

attitude/altitude parameters has a constant correction a. and an additional time-1
dependent correction b.At associated with it. Thus the nominal values of the1

attitude/altitude parameters at time At relative to format center are given,

using linear interpolation between Aij and A. + by
ij 1, j+1

At - 3.45(j - 5) 3.45(j - 4) - Ati = Aij 3.45 + Ai,+l 3.45 + ai + bi A t

where the value of j is computed as

= t + 17. 25 (integer part only)
3.45

4-115

The projected coordinates are then computed by

x = -h x /z
p os s

y = -h o / z

where the minus signs are required because zs is negative.

The actual resection will be carried out by finding those corrections to the

attitude and altitude parameters which will minimize the variance between the

values (xp, y) derived from the control-point image coordinates and the

values (xo, yp) derived from the geographic coordinates by means of the 'i , i.e.,
p p

controlIP P p

points

is to be minimized by requiring

BV aVB - - 0, 1 = 1, 4
B a. ab.

1 1

The required derivatives of V are obtained by expanding x and y as

4 bx 4 bx
x x + P Aai+ _ Ab i
P i=1 1 1 i=l 1

4 By 4 by
y py +L -a+L -bp p Sa . Ai + ab. i

=1 1 i=1 1

4-116

where

x x p A (Aij t; b)

S= y (Aij, At; a bt)

Aa. = a.- .
1 1 1

Ab. b. -
1 1 1

and ai, bi represent the nominal values of the corrections.

The derivatives of the projected coordinates are related to the satellite coordi-

nates by

dx = -(h z dx + (h x /z) dzp -(ho s 0s

dy = -(h /z)dy +(hx /z2) dz

For small deviations of the attitude/altitude variables from their average values

(K= v= p = 0, h = h), the derivatives of (xs s , z s) are the same as for the

RBV; allowing for the time dependence for the MSS case, this gives

dxs e Ye(dal + Atdbl) + ho(da3 + Atdb3)

dys -Xe(da1 + Atdb) - ho(da + Atdb 2)

dzs e -e(da 2 + Atdb2) + xe(da3 + Atdb3) - (da4
+ Atdb4)

Hence, for the average values of the a , the variations of (xp, yp) with the

(a., b.) are given by

XeY e

dxp = Ye(dal + Atdbl) e (da2 + Atdb2

2
x Ye e

+ (h + (da3 + Atdb3) - (da4 + Atdb4)
O O

4-117

dyp = -Xe(da + Atdbl) - (ho +-e) (da + Atdb2)p e 1 1 oh 2 2
O

xy Y
xee e

+ (da 3 + Atdb3 - (da4 + Atdb4
0 e

Accordingly, these relations are used to compute the derivatives for each

control point, which are then used to compute the coefficients of the system

of eight linear equations in the eight variables (A a, Abi, i = 1, 4), obtained

from the conditions for minimum variance, in the form

4 xp bx y by

k-1 control a
points

4 x bx ay ay
+ p a. p + a p

k-1 control ai b k ai bk k

points

S o xP + yp- yp , i 1, 4
control (P a. Yp ,
points

and

4 x x by y ak

k-1 control \ i k i akJ
points

+ 1 xp + ayp yp) Ab

k-1 control ab bk bbi bk
points

Xax by
bbp o ap

n x -xp ab. + (YP-YP i i=1, 4
control 1

points

The solutions are obtained by a call to MATINV.

4-118

For the first iteration, initial values of ai = b. = 0 are assumed. Before each
1 1

subsequent iteration, these estimates are updated by the relations

a. + a -a .

b.i + bi - bi

where Aa. , Ab. , i = 1 , 4 are the solutions obtained during the previous
1 1

iteration. After each repetition, the variance, expressed in terms of resolu-

tion elements, is compared with the variance from the previous iteration.

When the difference is less than 0. 01 squared resolution elements, or after

five iterations, the results are written out, together with the quality measure

defined for the RBV case. The values of a, and b i are also used to correct the

sets of nine values for each parameter, Aii , before they are written back onto

the disk.

A 10 by 10 grid of image points is then created in the same manner as for the

RBV resection to initiate the computation of GEOMTRAN coefficients. For

each image point, the corresponding values of (x° , yO) are computed. These

are used as test values (x , yp) to compute approximate values of (Xs, y , Zs)

using

x =x
s p

Ys =Yp

z = -h
s o

The inverse rotations to (xe , Ye, ze) and then to (4, L, H) are carried out

using matrix values appropriate to the At computed from the image line

number. H is set equal to zero, and the approximate geographic coordinates

are transformed back to the satellite coordinate system, giving values

(Xs' Ys' Zs) from which projected coordinate values (x, p) are computed;

4-119

at each step, the same formulae are used that were specified for the control

point transformation.

The squared distance between approximate and true projections,

2 - o2 o2
d = (xp - p) + (y - y

is computed. If it exceeds 0. 01 squared resolution elements, the estimated

values of (Xp, y) are updated by

x -(x - xo) -- x
p p p p

y - -o
p p p p

and the approximate transformation to geographic coordinates and exact

transformation back to projected satellite coordinates is repeated.

When the distance is less than the test value, the values (D, L, 0) are trans-

formed to UTM coordinates by calling UTMCON. After all 100 grid points

have been mapped into UTM coordinates, the actual generation of the output

grid is carried out in exactly the same way as for the RBV case.

4.26.2 Parameters

RESECT requires 4 parameters, followed by a table of boresight offsets, if

required. The parameters are

1. ISENSOR - RBV, MSS, or other allowed sensor type of up to four
characters, beginning with alphabetic

2. ISCALE - Number of meters per resolution element (pixel and
line separation) in output grid; integer format

3. IALIGN - Alignment of output grid
0 or default - along spacecraft track
1 - along north-south axis

4-120

4. IBAND - For RBV only
Flag to indicate whether first band for this image or
an additional band
0 or default - first band, do full resection
1-9 - Use results, on disk, 'of previous resection and

stored table 1 to 9, respectively, for boresight
offsets

10 - Use offsets entered via parameters

When boresight offsets are to be entered as parameters, three integer values

are required, giving the corrections which must be added to the attitude param-

eters obtained by spatial resection on the initial band. The corrections are

given in this order:

1. IYAW - Correction (micro radians) to be added to yaw

2. IROLL - Correction (micro radians) to be added to roll

3. IPITCH - Correction (micro radians) to be added to pitch

4.26.3 Input

Although RESECT does not access image data, it requires specification of the

image name and the rectangle for which a geometric transformation grid is

to be generated; the values of LUNIN and FILEIN may be arbitrary, since they

are not used.

In addition, disk files of ephemeris data, control point data, and reseau data

(RBV only) are read as input. Corrections and additions to these tables may

be entered by means of PPUPDATE.

Note that these disk files may sometimes be saved temporarily on a tape; in

this case, they must be reloaded onto disk by a preliminary execution of

FPCON, using the following task and parameter cards:

FPCON, (tapename, LUNIN, FILEIN),,, 1

6, 24, 6

4-121

4.26.4 Output

The principal output from RESECT is a table stored on disk cells 13 to 24

which describes the image coordinates and corrected UTM grid coordinates

of a 10 by 10 grid of calibration points. This file consists of a four-word

header record, 100 four-word location data records, and 180 two-word linkage

records, as follows:

Header record

Word Contents

1-2 Image name

3 Number of grid points (always 100 for
RESECT output)

4 Number of linkages (always 180 for
RESECT output)

Location records

Word Contents

1 Grid pixel position

2 Grid line position

3 Image pixel position

4 Image line position

Linkage records

Word Contents

1 Grid point (numbered in order of
appearance in location table) at start of
linkage line

2 Grid point at end of linkage line

4-122

For RESECT, the linkages are always the same: first, all pairs of adjacent

points in the top grid line, going from left to right, are linked, and then all

linkages from points in the top line to the points in the same column on the

second line. Then the same linkages for the second line, and so on for succes-

sive grid lines. Hence the table will be:

1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10

1,11 2,12 3,13 4,14 5,15 6,16 7,17 8,18 9,19 10, 20

11,12 12,13

81,91 82,92 83,93 84,94 85,95 86,96 87,97 88,98 89,99 90,100

91,92 92,93 93,94 94,95 95,96 96,97 97,98 98,99 99,100

The location records are also written out on the printer.

When the full resection is performed, the altitude and attitude values and an

indication of their accuracy are listed on the printer. The precision attitude

and altitude values are also entered on the ephemeris file on disk, in place of

the approximate values.

4.26.5 Example

An RBV image WALLOPSI is to be processed by RESECT using the ephemeris

data stored on disk by IMERGE, the control point data stored by CORREL, and

the reseau data stored by RZOMAP. The task and parameter cards are:

i ESECT, (WALLOPSI, 49, 1), (1, 1, 4500, 3600),, 1

VB, 75, 1

where the last parameter has been defaulted.

4-123

Note that the scale distance for separation between picture elements (resolution

elements) is given in meters; for ERTS images the following values, with

their equivalents in feet, are likely to be appropriate:

Meters Feet

75 246

80 262

85 279

4.26.6 Messages

RESECT generates the following warning message:

WARNING - OUTPUT MAY REQUIRE EXCESSIVE ROTATION TO
ACHIEVE NORTH-SOUTH ALIGNMENT

RESECT generates the following fatal messages:

Message Explanation

DISK TABLE FOR The image name in the header of one
WRONG IMAGE of the tables on disk is not the same

as the specified input image.

INVALID SENSOR Specified sensor not RBV.
TYPE

TOO FEW CONTROL Not enough control points were used to
POINTS permit solving for the resection variables

SP, SL, SPECIFY Value of SP or SL less than 1 or greater
POINT OUTSIDE than maximum image size.
IMAGE

COEFF MATRIX SIN- Most probable cause: control points too
GULAR ON FIRST close together or three or more on same
PASS straight line.

4.26.7 Flowchart

See Appendix C, Figure C-26.

4-124

4.27 UTMGEO - UTM GEOGRAPHIC COORDINATE CONVERSION
PROGRAM

4.27. 1 Program Description

This routine provides a capability for transforming UTM grid coordinates

into geographic latitude and longitude, and vice versa. The two types of con-

versions may be intermixed during a single execution of the program.

UTMGEO begins by scanning the parameter data for keywords, which indicate

which type of coordinates are being input. The keywords are identified, and

the coordinate values are converted to internal format. The general purpose

subroutine UTMCON is then called to carry out the conversion. The results

are then converted back to standard format, and both the latitude and longitude

and the UTM grid coordinates are printed out. Additional pairs of coordinates

are processed in the same manner until the specified number of coordinate pairs

have been converted.

4.27.2 Parameters

In order to identify the type of coordinates, keyword identifiers must precede

each numerical value; successive parameters must be separated by commas.

The parameters are as follows:

N
1. LAT = dd, mm, ss. s S - Geographic latitude. If the N/S desig-

nator is omitted, north latitude is as-

sumed unless the value is preceded by

a minus sign.

E
2. LONG = ddd, mm, ss. s -Geographic longitude. If the E/W des-

ignator is omitted, east longitude is

assumed unless the value is preceded

by a minus sign.

4-125

3. ZONE = nnS - UTM zone number. If the N/S designator is

omitted, north is assumed unless the number

is preceded by a minus sign.

4. UTME = nnnnnn - UTM easting, with zone central meridian =

500, 000 meters

5. UTMN = nnnnnnn - UTM northing, with equator = 0 meters in

northern hemisphere. In souther hemisphere,

a false northing of 10 000 000 is added, so

that grid distance from equator = UTMN -107

meters.

4.27.3 Input

UTMGEO requires no input other than parameters.

4.27.4 Output

UTMGEO produces a printed listing of the geographic latitude and longitude and

UTM zone, easting, and northing for each coordinate pair entered as param-

eters.

4.27.5 Example

It is desired to convert three sets of coordinates from Lat/Long to UTM and

two sets from UTM to Lat/Long. Appropriate IDAMS batch processor task and

parameters cards are:

TMGEO.... 5

AT = 26, 16. 24.5N, LONG=127, 48, 12.4E,

ONE = 33S, UTME=764329, UTMN-9784625,

ZONE = -33, UTME=765228, UTMN=9784007,

LAT = -00, 18, 11.4, LONG=33, 18, 12.0,

AT = 56, 46, 58.8S, LONG=726, 12, 04.0W

4-126

4.27.6 Messages

UTMGEO generates one message:

AAAA IS NOT A KEYWORD Keyword is not valid, processing

skips to next parameter set.

4.27.7 Flowchart

See Appendix C, Figure C-27.

4-127

4.28 FPMULT - FLOATING-POINT ARRAY MULTIPLICATION PROGRAM

4.28.1 Program Description

This task routine forms the products of corresponding elements of two floating

point arrays, one of them stored on tape and one on disk. The two arrays may

be both real, both complex, or one (on tape) real and the other (on disk) complex.

The complex arrays must be in IDAMS symmetric half-array format, and may

be in real-plus-imaginary or modulus-plus-phase format. When both arrays

are complex, they must be in the same format (a preliminary execution of

FPCON option 7 or 17 may be used to convert one array). When a complex

array is multiplied by a real array, the latter is assumed to have its origin

at the corner (FPCON option 9 may be used for conversion from center-origin

form) and to be symmetric, so that only the left-hand half array need be used.

The product array is left on disk in place of the input array.

FPMULT begins by determining the types of arrays to be multiplied, and

checking the label of the array on tape to ensure that it is the specified size.

Minimum and maximum test values are initialized.

Data are read double-buffered from tape and single buffered from disk one

line at a time. Corresponding elements are multiplied together using logic

appropriate to the type of data, all result values are tested against the current

maximum and minimum values, and the line of products written back onto disk

in place of the last input line.

When all lines of the product array have been computed, the maximum and

minimum values are written into the disk cell following the end of the last

array line, and control is returned to the IDAMS monitor.

4-128

4.28.2 Parameters

FPMULT requires the following parameters:

1. NX - Number of complex values or one-half number of real

values per line of both input arrays

2. NY - Number of lines in both input arrays

3. ITYP Types of arrays (integer value with following meanings)

1 - Both Real, both corner origin or both center origin

2 - Both complex, real-plus-imaginary format

3 - Both complex, modulus-plus-phase format

4 - One real array, corner origin and one complex,
real-plus-imaginary format

5 - One real array, corner origin and one complex,
modulus-plus-phase format

4.28.3 Input

FPMULT requires two floating-point input arrays, one on tape (primary input)

in standard IDAMS format and one on disk. If the two arrays are not of the

same type, the primary input (tape) array must be real. The SP, SL, NP, NL

field on the task card is ignored, since the entire array is always used and its

size is specified by the parameters NX, NY.

4.28.4 Output

FPMULT generates one floating-point output array on disk; it is in the same

form as, and replaces, the secondary input array.

4.28.5 Example

A complex real-plus-imaginary symmetric half-array on disk, having 64 lines

of 32 complex values each, is to be multiplied by a real array on tape named

FLTR16B. Suitable IDAMS task and parameter cards would be:

PMULT, (FLTR16B, 49, 1),,, 1

32 64 4

4-129

4.28.6 Messages

FPMULT generates the following fatal-error message:

Message Explanation

PRIMARY INPUT ARRAY The size parameters on the input
WRONG SIZE tape label do not satisfy NP=16*NX,

NL=NY

4.28.7 Flowchart

See Appendix C, Figure C-28.

4-130

4.29 FPSUM - FLOATING-POINT SUMMATION PROGRAM

4.29.1 Program Description

This task routine computes the sum or difference of two floating-point arrays.

Either or both arrays may be multiplied by constant weighting factors. The

floating point arrays may be real or complex real-plus-imaginary; the latter

may be in packed or unpacked IDAMS complex format.

FPSUM begins by setting flags to indicate whether either array is to be multi-

plied by a weight other than unity, and whether either is to be taken with a neg-

ative sign. The label of the primary (tape) input is checked to see that it is the
correct size, and establish whether one pair or two pairs of maximum and min-

imum values, corresponding to real and complex arrays, respectively, were

required. Then a seek is issued for the first line of the secondary data set,

located on disk, and the first data line is read from tape.

The summation is carried out one line at a time, as follows. The line of data
is fetched from disk, a seek is issued to return the disk heads to the start of

that line, the last read from tape is checked for completion, and a new read,
into an alternate buffer, is issued. Then the line of tape data already in core
is added to the line from disk, changing signs and multiplying by constants as

specified by the flags, and each new value is tested as a possible minimum or
maximum. The tape input buffer assignments are then interchanged and the

completed line of data is written back onto disk. At the completion of this write,
the disk head is in position to read the next line of input from the disk.

When all lines have been processed, the result array has replaced the second-
ary input on disk. The maximum and minimum values are then written into the
cell following the last line of array data, and control is returned to the IDAMS
monitor.

4-131

4.29.2 Parameters

FPSUM requires four parameters, as follows:

1. NX - Number of complex words per line or one-half number of real

words per line

2. NY - Number of lines of data

3. X1 - Floating-point multiplier for all elements of primary input

array (from tape)

4. X2 - Floating-point multiplier for secondary input (from disk)

4.29.3 Input

FPSUM requires two input data sets. The primary data set is a floating point

array which has been previously copied to tape from disk by FPCON option 16.

The values of SP, SL, NP, and NL on the task card are ignored. The values

of NPI and NLI on the input tape label must equal 16 * NX and NY, respectively,

for the summation to be carried out.

The secondary input resides on disk, beginning in cell 1, and is not referenced

by the task card. It is the responsibility of the user to ensure that the values of

NX and NY specified in the parameters are correct for the data set on disk.

4.29.4 Output

FPSUM produces a floating point array on disk, starting in cell 1, in the same

mode as the two input arrays.

4.29.5 Example

The difference of a floating point array A206FT on tape and an array on disk

is to be computed. The array contains 64 lines of 128 complex words each.

Appropriate task and parameter cards are:

FPSUM, (A206FT. 49. 1).,. 1

128 64 1.0 -1,0

4-132

4.29.6 Messages

FPSUM generates the following fatal error message:

Message Explanation

TAPE INPUT ARRAY NOT The size specified in the label
SPECIFIED SIZE (NP=16*NX, NL=NY) does not

agree with values of NX and NY
specified by parameters.

4.29.7 Flowchart

See Appendix C, Figure C-29.

4-133

4. 30 FILTGN - DIGITAL FILTER GENERATING PROGRAM

4.30.1 Program Description

This task routine generates filters corresponding to a two-dimensional modu-

lation transfer function (MTF). Output may be either a symmetric set of weights

for convolution image-space filtering or an array of real values in corner-origin

format for frequency-domain filtering by array multiplication. The input MTF

may be specified as the product of two functions, each of which may be a linear,

radially symmetric, or elliptically symmetric function, with principal axes

oriented along the x or y axes. The actual MTF values along the principal axis

may be entered as a complete point-by-point table, pairs of coordinates of the

end points of segments for a piecewise linear function, or by specifying the

3 db point and ratio of high-to-low frequency point for a high or low emphasis

filter. To avoid overenhancement of noise by a filter represented as the prod-

uct of two MTF's, a maximum gain for the product filter may be specified. The

logic can easily be extended to include additional options for generating MTF

values internally.

FILTGN begins by calling the subprogram TABLEGN which accesses the param-

eters to determine the type of output filter requested, whether one or two input

functions have been specified and the type for each, and the source of MTF val-

ues for each filter. If a complete table has been entered by the user, it is trans-

ferred directly to the appropriate specification, and the first gain value is copied

into the table for all frequencies up to the first frequency value. Successive

values are then generated by linear interpolation between adjacent pairs of co-

ordinate values. For either of the preceding cases, the table is completed by

copying the final gain value into any locations remaining.

If a high or low pass filter is specified, the parameter specifying the ratio of

high-to-low frequency modulation is converted to a real number Ghf and tested

4-134

to see whether high emphasis (Ghf > 1) or low emphasis (Ghf < 1) is required.

For high emphasis, the MTF table is compiled by computing the gain

G(k) = 1 + (Ghf - 1)/(1 + k /k2)

for integral values of k, where ko is the user-specified 3 db frequency. For

low emphasis, the formula used is

G(k) = Ghf + (1- Ghf)/(1 + k2/k2)

If an elliptically symmetric MTF is being used, it will be necessary to evaluate

points off the coordinate axes by interpolation. If the minor axis of the ellipse

is f times the major axis, then the effective distance of a point (k, 1) from the

origin is

f1
k +4 =i+r

where i is the integral number of units from the origin, r is the remainder, and

k is the distance along the major axis. In order to use efficiently the cubic in-

terpolation formula for the Fourier amplitude a(k, 1),

a(k, 1) = G(i) + B(i)r + C(i)r 2 + D(i)r 3

TABLEGN computes tables of the coefficients using the formulae

B(i) = - 1/3 G(i - 1) - 1/2 G(i) + G(i + 1) - 1/6 G(i + 2)

C(i) = 1/2 G(i - 1) - G(i) + 1/2 G(i + 1)

D(i) = - 1/6 G(i - 1) + 1/2 G(i) - 1/2 G(i + 1) + 1/6 G(i +2)

These tables will be computed for

2 NCOL +1 + NRoW

4-135

values of i for an ellipse whose principal axes lie along the x-axis; for y-axis

alignment, the number of rows Nrow and columns Ncol are interchanged in the

above formula. However, due to core storage limitations, any required entries

in the table beyond 600 will be supplied by duplicating the 600th value; this need

could arise, for example, for Ncol = Nrow = 572 and f < .47 .

When all required tables have been generated, FILTGN calls the subprogram

MTFGN to generate the full two-dimensional MTF. When the final output is to

be a set of convolution weights, a 32 by 32 MTF is generated, regardless of the

specified size of the final filter (which may not exceed 33 by 33). MTFGN ini-

tializes test values for maximum and minimum and then generates one pair of

symmetrically located lines at a time by computing the left-hand half of the line

from the tables generated previously and then copying these values into the other,

symmetrical, half of the line. When two functions have been entered, the values

obtained from the first function are computed for the half-line, and then multi-

plied by the corresponding values for the second line. Each value is compared

with the previous maximum and minimum values of the array and also checked

to ensure it does not exceed the maximum gain specified by the user; if so, it

is reduced to this maximum. The completed line is then written into two sym-

metrically located records on disk, and the computation continued until the MTF

is complete. The final values of maximum and minimum are then copied onto

the next disk cell following the last array line. If the final output is to be a

frequency--space filter, FILTGN terminates processing and returns control to

the monitor. To generate a set of convolution weights, FILTGN instead calls

the subprogram INVERT. This program reads the top 17 rows of the 32 by 32

MTF back into core, inserts zero words after each MTF value to form a com-

plex array, and calls PERGEN, TRIGGN, and FFTONE (which are described

as General Purpose Subroutines) to carry out one-dimensional Fourier trans-

forms on these 17 rows. The left-hand.17 columns are then interchanged with

the first 17 complex words of each row, and the new (flipped) rows extended

using the symmetry of the array. FFTONE is again used to Fourier transform

4-136

the 17 flipped rows and the results are flipped back again to complete the two-

dimensional Fourier transform.

The sum of the values which will be included in the final set of convolution

weights is computed, and then the output array is generated in integer format,

normalizing the values to produce a sum of 4096 and shifting the origin of co-

ordinates from the corner to the center of the array. The filter array is then

listed on the printer and copied onto the output tape for future reference.

4.30.2 Parameters

FILTGN requires the following parameters, all of which are in integer format

except the identifiers X and Y:

1. ITY PE - Type of filter to be generated

1 - Frequency domain (MTF)

2 - Image domain (convolution weights)

2. NCOL - Number of columns in filter

For frequency domain, must be power of

2:21 5 N 29
col

For image domain, must be odd and _ 33

3. NROW - Number of rows in filter. Same restrictions as for

NCOL

4. MAXGAIN - Maximum gain in final MTF, as integer multiple of

zero-frequency gain; this permits avoiding over-

enhancement of high-frequency noise when filter is

product of two high-emphasis filters

Default or 0: No tests are made

5. AXIS1 - X or Y (single letter) - axis along which first MTF

component is aligned

4-137

6. ISYM1 Symmetry of first MTF component:

1 - Linear - MTF value depends only on coordinate
along AXIS1, and is constant in direction perpen-
dicular to it

2 - 1000 - Elliptical (1000 = circular) with major axis
along AXIS1 and minor axis = (ISYM1/1000) times
major axis for each elliptical contour

7. INPUT1 Mode of input for first set of MTF values

1 - Full table of MTF values

2 - Piecewise-linear representation by coordinate
pairs

3 - High/Low emphasis filter

8. (Data) Specification of MTF values along AXIS1. Format

depends on mode of input, as follows:

INPUT1 = 1

N - Number of values in table

K1 , K2 , ••,Kn - MTF values times 1000

(i.e., 333 represents .333) beginning with

zero frequency

INPUT1 = 2

N - Number of pairs of coordinates

M1 , K 1 t M2 , K2 , ,MN, KN - pairs of values,

with Mi = integer frequency value followed

by Ki = 1000 times MTF value. Values of

M. must be strictly increasing.

INPUT1 = 3

IHF - Ratio of high-frequency MTF to low fre-

quency (D.C.) MTF, times 1000 (i.e.,

IHF = 200 means high frequency MTF is

.200 times dc MTF).

4-138

I3DB - Frequency at which frequency-dependent

part of filter is 50% of maximum (3 db

point).

9. AXIS2 - X or Y - Alignment axis for second input MTF. If

default or zero, only one MTF supplied

10. ISYM2 - Symmetry for second MTF, if any. Same codes as

for ISYM1.

11. INPUT2 - Mode of input for second MTF, if any. Same codes

as for INPUT2.

12. (Data) - Specifications of MTF values along AXIS2, if any.

Same formats as for first MTF.

4.30.3 Input

Input to FILTGN is entirely via parameters, as described above.

4.30.4 Output

FILTGN has two alternative types of output. If the user specifies a convolution

(image-space) filter, the result is printed as a table of integer values normal-

ized to a sum of 4096. Since the table is always symmetric, only the upper left

quadrant, including the symmetry axes, is printed. The table is also stored,

with standard IDAMS label, on the output tape, if any, specified by the user.

If the user specifies a real floating point array, it is output onto disk in standard

IDAMS floating point format, beginning in cell 1. The symmetric array is in

corner-origin format. Conversion to other formats or copying onto tape may

be achieved using FPCON, specifying NX = NCOL/2, NY = NROW.

4.30.5 Example

It is desired to enhance the high-frequency detail of an image using a radially

symmetric filter whose 3 db point is at 50% of maximum frequency and with

4-139

a limiting gain of 3 times the dc gain. In addition, instrumental noise at

approximately 25% of maximum frequency in the horizontal direction is to

be suppressed. Output is to be a 21 by 21 convolution filter. Since a 32 by

32 MTF array is generated whenever a convolution filter is to be created,

one-half the symmetric MTF will contain 16 points, so that 50% of maximum

frequency is 8 and 25% is 4. Hence suitable IDAMS task and parameter

specifications are:

ILTGN.... 4

,21, 21,0

1000, 3, 3000, 8,

, 17, 000, 100, 1000, 0,1000, 1000, 1000, 1000, 1000, 1000

o00, 1000, 1000, 1000, 1000 1000,

Notice that for the MTF table frequency 4 is the 5th MTF value given, since

the table begins with the zero-frequency value; in this table, all frequencies

are given unit modulation except the noise frequency, which is given modu-

lation zero in order to suppress it completely. (The actual filter generated

will involve approximations and roundings, so that the suppression will not

be complete.) Since no output tape is specified, the convolution weights will

be printed but not saved on tape.

4.30.6 Messages

FILTGN may generate the following fatal error messages:

Message Explanation

INVALID OUTPUT TYPE Parameter ITYPE not 1 or 2

INVALID AXIS SPECIFICATION Alignment axis not specified as
X or Y

4-140

Message Explanation

ILLEGAL SYMMETRY CODE Symmetry code ISYM not between
1 and 1000

ILLEGAL INPUT MODE Input mode not 1, 2, or 3

ILLEGAL FREQUENCY VALUE Frequency value not between 0 and

599 (piecewise-linear case) or not

positive (high/low emphasis case)

FREQ VALUES NOT STRICTLY For piecewise-linear input mode,

INCREASING frequency coordinates not strictly
increasing

SPECIFIED FILTER GAIN IS For high/low emphasis, high-

NEGATIVE frequency gain has illegal negative
value

CONVOLUTION FILTER TOO Dimensions specified for convolu-

LARGE tion filter exceed 33 by 33

CONVOLUTION FILTER Dimensions specified are not both

DIMENSION NOT ODD odd

SUM OF WEIGHTS NOT POSITIVE Sum of unnormalized convolution
weights is zero or negative; normal-
ized filter cannot be generated

4.30.7 Flowchart

See Appendix C, Figure C-30.

4-141

4.31 RANDGRAY - RANDOM GRAY LEVEL GENERATION PROGRAM

4.31.1 Program Description

The Random Gray Level Generation Routine enables the user to either generate

an image of random gray valued pixels with a given mean value and standard

deviation, or to add random gray values with a mean of zero and a given stand-

ard deviation to each of the pixels of an input image. In each of the cases the

distribution of the gray values is normal over the image.

Upon entry the program reads the parameters which initializes the random

number generation routine. The IDAMS tape is then read (if one is given) and

the random values are either added or stored into successive pixel positions

in the lines of the image. The image is then written to an output tape.

4.31.2 Parameters

The random number generation routine requires the following parameters:

1. The standard deviation of the random numbers to be generated

2. The "seed" of the generator

3. The mean value of the random numbers if no input image is given

4.31.3 Input

RANDGRAY requires an input tape in standard IDAMS format (if applicable).

4.31.4 Output

RANDGRAY requires an output tape in standard IDAMS format.

4.31.5 Example

Assume that a random noise pattern is to be superimposed on an existing image

and that the noise is to have a standard deviation of five gray levels. A "seed"

value of 1875 is to be used. The following control cards would be required,

1 ANDGRAY, (TEST, 49, 1), (1, 1,270, 340), (TEST2, 47, 1), 1

, 1875

4-142

4.31.6 Messages

Illegal values of parameters are printed, if any occur.

4.31.7 Flowchart

See Appendix C, Figure C-31.

4-143

4.32 IMERGE - BULK ERTS TAPE MERGING PROGRAM

4.32.1 Program Description

This task routine unpacks the data from four 7-track ERTS computer compatible

tapes (CCT's) representing the four strips of one spectral band of an RBV or

MSS image and builds a single out p u t image tape in standard IDAMS format.

The annotation data from the CCTs are converted to CDC 3200 formats, stored

in the annotation file on disk, and also printed out for reference.

IMERGE begins by determining whether data to be merged is RBV or MSS. If the data

is MSS, control goes to a subroutine that builds a look-up table used for compressing

the 8-bit characters from the Bulk CCT's to 6-bit characters for the IDAMS image tape.

After the table is built, it is saved in core for use by the MSS merge program. Control

then returns to the main driver program.

IMERGE sets up a message instructing the operator to dismount the SCOPE and

IDAMS overlay tapes, and mount the four input tapes and the output tape on speci-

fied units; the program then pauses until the operator confirms that the mounting

is complete. If RBV data are being processed, the spectral band numbers and

associated output data set names are rearranged in reverse band sequence.

The header data on each CCT are then read. The date and time identifiers are

compared to ensure that they are the same for all four tapes; if not,. an error

flag is set and execution aborts. The strip numbers are read, and a table

created of the logical unit numbers for strips 1 through 4; if four different strips

are not present, an error exit is taken. The data record length is read; for

RBV it is checked to see whether it is less than 3456 bytes, and an error exit

taken if not. For MSS, the adjusted line length and correction code are also

decoded; if the correction code does not specify an acceptable data mode, an

error exit is taken. The output label is then written, specifying 4608 pixels

per line for RBV or the adjusted line length for MSS, and 4125 or 2340 lines
for RBV or MSS, respectively (780 lines for MSS Band 5).

The annotation record from strip 1 is read next, while the corresponding rec-

ords on the other three tapes are spaced over. The annotation data are decoded,
converted to floating point format, and stored on the annotation file on disk.

Cell 25 is filled with dummy maximum and minimum values of 1. 0 to facilitate

the use of FPCON for saving the disk tables on tape. The annotation data are

also written out on the printer.

For RBV, the input tapes are advanced to the first data records for spectral

band 2 or 1 if band 3 is not to be processed.

Then image data are read in one record from each tape at a time, and an appro-

priate entry point to the COMPASS subroutine REPACK called to generate full

output lines one at a time. For RBV data, for which one input record contains

three consecutive line segments, three output lines will be generated before the

next input read. For ERTS-B MSS data, every fourth record, containing band 5

data, will be skipped, except when band 5 is being output, in which case only

every fourth input record will be read.

When all lines have been processed, the input parameters will be checked to

see whether any further bands are to be processed. If so, the MSS tapes will

be rewound and RBV tapes will be advanced to the appropriate band.

The header and annotation records are skipped, and instructions issued to the

operator to mount a new output tape. When the operator returns control, the

new output label is written, and the image data processed in the same manner

as for the first tape. When all output tapes have been generated, or a fatal

error has been encountered, the operator is instructed to remount the SCOPE

and IDAMS overlay tapes. When the operator returns control, IMERGE exits,

and returns to the IDAMS monitor for error processing or initiation of the next

task.

4.32.2 Parameters

IMERGE requires the following parameters:

1. ITYPE - Image Type: 1 = RBV

2 = MSS Type IIa (4 bands)

3 = MSS Type IIb (5 bands)

4-145

2. NBAND - Integer number of spectral bands to be processed

3. IBAND1 - Integer band number for first spectral band

4. OUTNAME2 - Five to eight alphanumeric characters specifying

name to be given to second output tape (if any)

5. IBAND2 - Integer band number for second band

6. OUTNAME3 - Name and band number for additional band, if

requested

7. IBAND3 -

NOTE: The name specified for the output is applied only to the first spectral
band requested. Additional spectral bands are named in the param-
eters. The input size field on the task card is ignored; the output
image always represents the entire input image.

4.32.3 Input

Four input computer-compatible tapes are required, representing the four strips

of the same ERTS frame.

NOTE: Do not specify any input on the task card, since the CCTs do not have
IDAMS-compatible labels.

4.32.4 Output

IMERGE generates one or more image tapes in standard IDAMS format; each

tape represents one spectral band for a single ERTS frame.

4-146

In addition to the standard data in words 1 to G, the output label contains a sum-

mary of annotation and ID data from the computer compatible (input) tapes, as

follows:

Word Contents

7-9 Scene/Frame ID, BCD, in Form
EDDDIIIIIISBNC where

E = ERTi'S mission code

DDDIIIIMMS = day and time of exposure

B = Spectral band identifier

N = Sequential subframe identifier

(if needed)
C = MISS data mode/correction code:

Is bit = 1 for decompression
2s bit = 1 for Hi gain on band 2

3s bit = 1 for Hi gain on band 3

10 Format center latitude, degrees with 12-
bit fraction (..., to nearest 1/4096
degree)

11 Format center longituaes, degrees with

12-bit fraction

12 Nadir latitude, degrees with 12-bit
fraction

13 Nadir longitude, degrees with 12-bit
fraction

14 Sun elevation, degrees (no fraction)

15 Sun azimuth, degrees

16 Orbital heading (from North), degrees

A table of annotation data is written onto disk in cells 1 to 4, and also listed on

the printer. The header record consists of ten words, as follows:

Word Symbol Meaning

1-2 OUTNAME1 Name of first IDAMS output data set
generated for this E1R'TS frame

4-147

W'ord Svmlbol

3-. OUTN.\2 Names of dditio~l output tapes, if an,;5-6 OUTNAM-3 unused locations are filled with zeros7-S OLTN:\ .
9-10, OUTNAIE5

The second rcord cO n'in L1n words or data. The first nine worcd are idcntical
to words 7 through 15 of the oulltut labl1. Word 10 contains the numbo r of pixels
per line, NPO.

The third record contains 12 words representing six floating-point entries forattitude and orbital data at mid-scan time, as follows:
Word

1-2 Yaw, in radians
3-4 Roll, in radians
5-6

Pitch, in radians
7-8 Altitude, in meters
9-1011-12 Velocity along track, meters/second

Orbital heading from north, degrees.

4.32.5 Example

Merge the four CCT tapes for an RBV image to create output tapes named
TETONRED and TETONI-R from spectral bands 2 and 3, respectively. Suitable
IDAMS task and parameter cards ,are:

ERGE,,, (TETONRED, 47, 1), 1

4-148

4.32.6 Mecssagcs

The ERTS bulk image copversion routine prints out a table of annotation data

associated with the image being converted to IDAMS format. The following

operator messages are also typed out:

Message Explanation

DEMOUNT OVERLAY AND SYSTEM All tape drives are required to handle

TAPES four input tapes and one output tape.

MOUNT OUTPUT ON LUN nn AND SET

AT 800 BPI
MOUNT INPUT TAPES ON REMAINING

DRIVES (IN ANY ORDER)

WHEN READY, PRESS CLEAR

'MOUNT OUTPUT TAPE ON LUN nn A new output tape is needed for each

WHEN READY, PRESS CLEAR spectral band.

REMOUNT RTS AND OVERLAY TAPES System and program tapes must be

WHEN READY, PRESS CLEAR restored when processing is com-

plete.

In addition, one of these fatal errors may be produced:

Message
Explanation

STRIP NUMBER NOT BETWEEN 1 Invalid strip number, tape cannot be

AND 4 identified.

INPUTS NOT ALL SAME ERTS FRAME Frame ID (Date and Time) not same

for all input tapes.

INPUTS NOT 4 DIFFERENT STRIPS One or more strips has been dupli-

cated on input.

ILLEGAL SPECTRAL BAND Specified spectral band not allowed

for specified sensor type.

WRONG LINE LENGTH FOR GIVEN Line length specified by annotation

SENSOR
record not appropriate to sensor

type.

4.32.7 Flowchart

See Appendix C, Figure C-32.

4-149

4.33 PMERGE - PRECISION ERTS TAPE MERGING PROGRAM

4. 33. 1 Program Description

This task routine unpacks the data from precision 7-track ERTS computer com-

patible tapes (CCTs) and builds a single output image tape in standard IDAMS

format. The annotation data from the CCTs are converted to CDC 3200 formats,

stored in the annotation file on disk, and also printed out for reference.

PMERGE begins by determining the type of precision tape being input. If the

precision tapes are sixteenth frame tapes (two input tapes) or quarter frame

tapes (four input tapes) the program PARMER is called to process the tapes.

When the tapes are full frame tapes (four input tapes) the program FULMER

is called to process the tapes.

PARMER and FULMER both read the header data on each CCT. The annotation

records are read, the data decoded, converted to floating point format, and

stored on the annotation file on disk.

PARMER determines if the input tapes are quarter frame or sixteenth frame.

If sixteenth frame tapes the output label is written, specifying 1024 pixels per

line and 1024 lines. In the case of quarter frame tapes, the specifications

are 2048 pixels per line and 2048 lines. Image data are read in one record at

a time from each tape at a time and the COMPASS subroutine REPACK called

to generate 4096 6-bit characters. A record contains a portion of eight con-

secutive lines. Each line portion from one tape's record is merged with the

corresponding line portion of the other input tape(s). The eight completed out-

put lines are generated before the next set of input records are read.

FULMER's logic becomes more complicated because of the larger amount of

input image data. FULMER begins by writing the output label, specifying 4096

pixels per line and 4096 lines. The image data is arranged on the four input

tapes in eight strips in which the 1st and 5th strips reside on tape 1, the 2nd

and 6th strips reside on tape 2, etc. Each strip contains 512 records and each

4-150

record contains 8 pixel values for 512 consecutive lines. The scan line begins with

the right-most pixel of the first line in a strip and scans down 512 lines Lzefore pre-

ceding to the next pixl value. Consequently, in the case of the first strip, the

image data from the first record would be ordered as follows: pixel 4096 from

line 1, pixel 4096 from line 2, pixel 4096 from line 512, pixel 4095 from

line 1, pixel 4095 from line 2, pixel 4095 from line 512, pixel

4088 from line 1, pixel -1088 from line 2, p..... pixel 40S8 from line 512.

Due to the nature of the input data, it is not possible to output even the first line of

imagery in IDAMS format wtil 512 records, which constitutes a strip, have been

read. Because the core restrictions prevent 512,completo lines from being stored

in core, PMERGE is forced to store portions of the 512 lines onto disk storage.

The program reads in four consecutive lines, sorts and' orders the pixels such that

8 words of pixel values from each line are linked together. These blocks of eight

words are then stored on disk before the next set of four records is read in. This pro-

cess continues until 512 records have been processed and stored onto disk. At this

point, the program fetches the data back from disk until it can output onto tape four

complete consecutive lines. The data is fetched from disk until 512 lines have been

output. PMERGE then proceeds to carry out the same series of operations on the

remaining strips of data until a full image has been processed.

When all lines have been processed, both PARMER and FULMER check the

input parameters to see whether any further bands are to be processed. If so,

instructions are issued to the operator to mount a new output tape, and the

image data is processed in the same manner as for the first tape. When all

output tapes have been generated, or a fatal error has been encountered, the

operator is instructed to remount the SCOPE and IDAMS overlay tapes. When

the operator returns control, PIMERGE exits, and returns to the IDAMS

monitor. for error processing or initiation of the next task.

4-151

4.33.2 Parameters

PMERGE requires the following parameters:

1. ITYPE - Input type: 1 = full frame tapes
2 = 16th frame tapes
3 = quarter frame tapes

2. NBAND Integer number of spectral bands to be processed

3. IBAND1 - Integer band number for first spectral band

4. OUTNAME2 - Five to eight alphanumeric characters specifying

name to be given to second output tape (if any)

IBAND2 - Integer band number for second band

OUTNAME3 - Name and band number for additional band, if

requested.

IBAND3

NOTE: The name specified for the output is applied only to the first spectral

band requested. Additional spectral bands are named in the param-

eters. The input size field on the task card is ignored; the output

image always represents the entire input image.

4.33.3 Input

Four (two) input computer compatible tapes are required, representing the

four strips of the same ERTS frame.

NOTE: Do not specify any input on the task card, since the CCTs-do not have
IDAMS - compatible labels.

4.33.4 Output

IMERGE generates one or more image tapes in standard IDAMS format; each

tape represents one spectral band for a single ERTS frame.

4-152

A table of annotation data is written onto disk in cells 1 to 4, and also listed

on the printer. The header record consists of five double wvords, as follows:

Word Symbol Meaning

1-2 OUTNAME1 Name of first IDAMS output data set
generated for this ERTS frame.

3-4 OUTNAME2 Names of additional output tapes, if any;

5-6 OUTNAME3 unused locations are filled with zeros.

7-8 OUTNAME-4
9-10 OUTNAME5

The first data record contains seven floating point words, as follows:

Floating Point
SWord Contents

1 Nadir latitude, degrees

2 Nadir longitude, degrees

3 Spacecraft heading at format center, radians

4 Spacecraft altitude at format center, meters

5 Yaw at format center, radians

6 Roll at format center, radians

7 Pitch at format center, radians

For MSS images, an additional record containing 38 floating-point words is also

generated, as follows:

Floating Point
Word(s) Contents

1 .Spacecraft velocity (component tangential to

each) at frame center, meter/second

2 Average rate of change of tangential com-

ponent of velocity during scanning of frame,

meter/(second) 2

3-11 Spacecraft altitude at times -13. 8, -10.3,

-6.9, -3.4, 0.0, +3.4, +6.9, +10.3, and

+13. 8 seconds from format center time

-- 1 q

Floating Point
Word(s) Contents

12-20 Yaw angles at corresponding times

21-29 Roll angles at corresponding times

30-38 Pitch angles at corresponding times

4.33.5 Example

Merge four CCT full frame tapes to create output tapes named PREC1, PREC2,
and PREC3 from spectral bands 1. 2, and 3, respectively. Suitable IDAMS task
and parameter cards are:

fPMERGE,,, (PREC1, 47, 1), 1

1, 3, 1, PREC2, 2, PREC3, 3

4.33.6 Messages

PMERGE generates no messages.

4.33.7 Flowchart

See Appendix C, Figure C-33.

4-154

4.34 PPUPDATE - PRECISION PROCESSING DISK FILE UPDATE PROGRAM

4.34.1 Program Description

This task routine provides a capability for adding, deleting, changing, or listing
records in the data files on disk containing ephemeris, reseau location, control
point location, and geometric transformations information for use by the routines
in the precision processing and geometric manipulation packages. It provides a
means for entering test data and editing data stored on disk by IMERGE, RZOMAP,
CORREL, and RESECT.

PPUPDATE is designed to carry out a sequence of updating and listing steps on
a single loading of the overlay. It begins processing by reading disk cells 1
through 24 into core. The keywords designating successive task steps are then
processed one at a time.

The first keyword for each step is scanned to determine whether ephemeris, re-
seau, control point, geometric grid, or geometric linkage data are to be proc-
essed. The second key word is then accessed to determine whether the required
function is adding, deleting, or changing a data record or also listing the entire
table. Control is then passed to the required module.

Each module begins by accessing the remaining parameters for that step, ex-
cept that no additional parameters are needed for a listing step. For delete
and change, the next parameter specifies the number of the data record to be
deleted or changed; record zero is interpreted as the header record, which
may be changed but not deleted. When a deletion is made, the record count
in the header record is reduced by one, and the remaining data records are
moved up to fill the gap. When a record is to be added, the number of the next
available record is obtained from the count in the header record, which is in-
cremented after first checking that the file is not already full.

The data for the new or changed record are then interpreted and converted to
the required internal formats. The user is required to supply all entries in the

4-155

record, and not merely those to be changed, with the exception that for control

point records either latitude-longitude or UTM easting and northing may be

entered.

When each update or listing step is completed, control is returned to the

keyword-scanning module. When the keyword DONE is encountered, the updated

files are written back onto disk, and control is returned to the IDAMS monitor.

4.34.2 Parameters

For each step to be executed, the following parameters are required:

1. File ID - keyword with following meanings:

EPHM - Ephemeris and annotation file

RZO - Reseau location file

CP - Control-point location file

GRID - Grid-point location file

LINK - Linkage file for grid points

DONE - Last step finished; always required as last

parameter

2. Mode - keyword with following meanings:

INIT - Initialize the designated file

LIST - List designated file, including header record

(except for LINK, whose header is printed

with GRID)

ADD - Add a data record, and update record count

in header

DEL - Delete a data record, close up gap, and update

count in header

CHNG - Change a record

4-156

3. Record Number (DEL or CHNG)

0 - change header record; with DEL, 0 causes an error

> 0 - change or delete specified data record

New Data Entry (ADD)

4. New Data Entry (CHNG only)

For EPHM, RZO, GRID, and LINK, the entire new record must be entered in

the same format as specified for that table in the paragraphs under Input. A

reference to LINK record 0 will be interpreted as the header file for GRID.

For CP, the header file has only three of eight words currently in use; only

these three words should be entered.

For CP data files, the parameters should be entered in the same manner as

for CHIPGN. This requires that either UTM or Lat/Long values be entered,

that every parameter be preceded by a keyword, and that successive param-

eters be separated by commas. The parameters are:

1. CPP = nnnn - Image pixel position of control point

2. CPL = nnnn - Image line position of control point
N

3. LAT = dd, mm, ss. s S - Latitude of control point. If N/S des-

ignation is omitted, north latitude is

assumed unless latitude is preceded

by a minus sign, in which case south

latitude is assumed.

E
4. LONG = ddd, mm, ss. s - Longitude of control point. If E/W

designator is omitted, north is as-

sumed unless value is negative, in

which case west longitude is assumed.

4-157

N
5. ZONE N= - UTM Zone. If N/S designator is

omitted, north is assumed unless

number is preceded by a minus sign

6. UTME = nnnnnn - UTM easting in meters (=-500, 000 at

zone central meridian)

7. UTMN = llmmnn - UTM northing in meters

8. ELEV = nn Elevation above sea level in meters

4.34.3 Inuut

No input image is used. In addition to the parameters, input data for PPUPDATE

are taken from the precision processing files contained in cells 1 to 24 on the disk.

(Note that if these files have been copied temporarily onto tape, they may be

reloaded onto disk usii)g FPCON option 6 with NX = 16, NY = 24.)

The formats of these files are as follows:

1. Ephemeris and Annotaiion Data (Disk Cells I to 4)

Header Record (10 words)

Word Contents

1-2 Name (8 BCD characters maximum) of first IDAMS

output data set generated for this ERTS frame

3-4 Name of second data set, representing a different

spectral band, for this ERTS frame

5-6 Name of third data set

7-8 Name of fourth data set (MSS only)

9-10 Name of fifth data set (ERTS-B MSS only)

Unused locations are filled with zeros.

Identification Record (10 words)

Word Contents

1-3 Scene/Frame ID, BCD, in form:

4-158

EDDDIIIH.,IMSBNC, where

E = ERTS mission code

DDDHIMlS = day and time of exposure

B = Spectral band identifier

N = Sequential subframe identifier

(if needed)

C - AMSS data mode/correction code

l's bit = 1 for decompression

2's bit = 1 for iii gain on band 2

4's bit = 1 for IIi gain on band 3

4 Format center latitude, degrees with 12-

bit fraction (i.e., to nearest 1/409G00 degree)

5 Format center longitude, degrees with

12-bit fraction

6 Nadir latitude, degrees with 12-bit fraction

7 Nadir longitude, degrees with 12-bit fraction

8 Sun elevation, degrees (no fraction)

9 Sun azimuth, degrees

10 Length of scan line, pixels

Mid-Scan attitude and orbital data record (12 words)

Word Contents

1-2 Yaw, in radians, floating point

3-4 Roll, in radians, floating point

5-6 Pitch, in radians, floating point

7-8 Altitude, in meters, floating point

9-10 Velocity along track, meters/second, floating point

11-12 Orbital heading from north, degrees, floating point

MSS attitude/altitude record (72 words)

Word Contents

1-18 9 values of Yaw (radians, floating point) at -13. 8,

-10.35, -6.9, -3. 45, 0.0, 3. 45, 6.9, 10.35, ard

1.3. S seconds from mid-scan time

,4-159

19-36 9 \values of I0oll, at same tines

37-54 9 values of Pitch, at same times

55-72 9 v-alues of altitude (meters, floating point), at same times

2. Reseau Location Table (Disk cells 5 to 10)

One header record and 81 data records of four integer words each.

The header record format is:

Word Contents

1-2 Image Name

3 Number of rescaus from GETRZO

4 Number of reseaus from NTRP2

The data records correspond to reseau marks starting with the top

line and going from left to right within each line of reseaus. The

record format is:

Word S0mbol Contents

1 NOMP Nominal pixel. pcsition

2 NOM L Nominal line position

3 IMP Pixel position in image

4 IML Line position in image

4-160

3. Control Point Location (Disk cells 11 and 12)

One 8-word header record and up to 10-12 word data records.

The header record format is:

Word Contents

1-2 Image name

3 Number of data records

4-8 Unused

The data record format is:

Word Symbol Contents

1 ICPP Image pixel position of control point

2 ICPL Image line position of control point

3-4 XLAT Latitude, degrees and decimal fraction

5-6 XLONG Longitude, degrees and decimal fraction

7-8 UTME UTM easting, proceeded by 106 times
zone number

9-10 UTMN UTM northing, negative for southern
hemisphere

11-12 ELEV Elevation above sea-level, in meters

4. Geometric Transformation Coordinates (Disk cells 13 to 24)

One four-word header record, 100 four-word location data records,

and 180 two-word linkage data records; unused data records are

ignored. The header record format is:

Word Contents

1-2 Image name

3 Number of grid points

4 Number of linkages

4-161

The grid point location record format is:

Word Contents

1 Grid pixel position

2 Grid line position

3 Image pixel position

4 Image line position

The linkage record format is:

Word Contents

1 Grid point (numbered in order of appearance
in location table) at start of linkage line

2 Grid point at end of linkage

4.34.4 Output

Output from PPUPDATE is an updated set of precision processing data files on

disk and printer listings of those files which the user specifies.

4.34.5 Example

After examining the results of processing performed by RZOMAP and CORREL,

the user has decided to modify the position data for the 19th reseau, delete the

correlation results for the third and seventh control points, and add one new con-

trol point value. Suitable IDAMS control statements are:
fPUPDATE,,,, 7

rRZO, CHNG, 19, 3148, 582, 3117, 585,

zo, LIST,

P, CHNG, 3, CPP=2402, CPL=1681,

rONE = 33, UTME=604280, UTMN=26400, ELEV=1180,

P, DEL, 7,

P, LIST,

4-16NE

4-162

Note that the user has obtained a listing of the updated reseau and control

point location files. Instead of deleting CP record 3 and subsequently adding

the new control point, he has saved one step by using CHNG to replace record

3 by the new data.

4.34.6 Messages

PPUPDATE may print one or more of the following warning messages:

Message Explanation

aaaa MODE IS AN ILLEGAL OPERA- An illegal attempt was made to

TION ON FILE aaaa alter a portion of one of the files,
probably a header record. Data

is ignored and processing continues.

nnnn IS AN ILLEGAL RECORD The supplied record number is

NUMBER inconsistent with currently defined
file limits. Data is ignored and
processing continues.

aaaa FILE FULL, NEW RECORD No more available space exists in

CANNOT BE ADDED file aaaa, DEL or INIT must be
performed before another record
can be added. Data is ignored and

processing continues.

4.34.7 Flowchart

See Appendix C, Figure C-34.

4-163

4.35 VPICIN - VICAR IMAGE REFORMATTING PROGRAM

4.35.1 Program Description

This task routine converts an image which has been generated in standard

VICAR format on a 7-track tape using the IBM-360 tape conversion mode into

an image in standard IDAMS format.

VPICIN begins by generating a table for converting the 8-bit grey-level values

to 6-bit values by truncating the two low-order bits. The VICAR label records

are then read in, and the EBCDIC data translated to BCD using the general-

purpose subroutine CODE8TO6 and an internally stored conversion table. The

size of the image is obtained from the labels, and the labels are written on the

printer.

After the last label record has been read and identified as such, VPICIN writes

the IDAMS label onto the output tape. The image data records are then read,

using double buffering, and translated to 6-bit values one line at a time, again

using CODE8TO6, with the translation table generated at the start of the routine.

When all lines have been processed, control is returned to the IDAMS monitor.

4.35.2 Parameter

VPICIN requires a single parameter in integer format:

1. LUNV - logical unit number of tape drive on which VICAR tape is

mounted

4.35.3 Input

Input to VPICIN is a single 7-track tape containing a VICAR image with standard

VICAR labels generated using the IBM 360 conversion mode for tape output.

Since this image does not have an IDAMS label, it cannot be specified by the

standard input field of the IDAMS task card. Instead, this field must be

defaulted, and the logical unit number specified by the parameter LUNV, de-

scribed above.

4-164

4.35.4 Output

VPICIN creates one output image in standard IDAMS format and a printer
listing of the VICAR labels on the input image.

4.35.5 Example

It is desired to convert a VICAR image mounted on LUN 49 into an IDAMS out-
put tape on LUN 47; the output image is to be name VICAR037. Appropriate
IDAMS task and parameter cards are:

PICIN,,, (VICAR037, 47, 1), 1

4.35.6 Messages

VPICIN generates one fatal error message, as follows:

Message Explanation

END OF VICAR LABEL NOT FOUND VICAR tape apparently not in standard
format; start of image data could not
be identified.

Warning messages are also written to inform the user when parity errors have
been detected, these messages are:

PARITY ERROR ON VICAR LABEL

nmnn PARITY ERROR(S)IN DATA

No other action is taken by the program for parity errors.

4.35.7 Flowchart

See Appendix C, Figure C-35.

4-165

4.36 INCREASE - IMAGE ENLARGING PROGRAM

4.36.1 Program Description

The task program, INCREASE, will enlarge a standard IDAMS image by an

integral factor computed from input parameters. Blank fill characters are pro-

vided on both sides and/or top and bottom, if needed to complete the requested

output image. The results are then written on the specified output tape.

The program computes the largest integral multiplication factor which will just

permit the input to fit within a specified output image. An output line buffer is

set up with edge fill characters, if any, and the output label record is written.

If any fill lines are required at the top of the output picture, they are written out

at this time. The program then enters a main processing loop to read an input

line, enlarge its length by the multiplication factor and output the enlarged line

the requested number of times. This process continues until all of the input

lines have been read and processed. Any remaining lines of bottom fill are

written out, if necessary, and the program returns to the monitor.

4.36.2 Parameters

1. NPOUT = number of pixels to be output

2. NLOUT = number of lines to be output

3. IFILL = gray level for edge fill. default = 0

4.36.3 Input

INCREASE requires a single input image tape in standard IDAMS format.

4.36.4 Output

INCREASE generates a single output image tape in standard IDAMS format.

4.36.5 Example

A 200 line by 500 pixel sample portion of input image LITPIC is to be reduced
to fit a 500 by 1000 output requirement. This implies a multiplication factor

4-166

of 2 in both the number of data lines and pixels. Therefore, the resultant

output image will contain a 400 line by 1000 pixel image data area preceded

and followed by 50 lines of fill characters. No fill is necessary along the left

and right edges.

The following IDAMS source statements would be appropriate:

NCREASE, (LITPIC, 49, 1), (1, 1,500, 200), (OUTPIC, 47, 1), 1

000 4000

4.36.6 Messages

None.

4.36. 7 Flowcharts

See Appendix C, Figure C-36.

4-167

4.37 COLOR - FALSE COLOR CODING PROGRAM

4.37.1 Program Description

The task program COLOR provides for a "false-color" presentation of an
image using table lookup. The program has the capability of generating several
IDAMS - format image files from a single input image, using a different con-
version code for each output. The translation tables can be obtained from any
of three sources: several standard tables of color corrections stored in the
program, a complete conversion table supplied by the user, or a table generated
by linear interpolation between user-supplied pairs of old and new gray-level
values, which define a piecewise linear relation between old and new values.

After interpreting the first keyword, which designates which spectral band is
being represented, the required table is retrieved or generated and stored into
the program area. COLOR reads in one line of input data at a time and stores
the input line in a disk file for future reference. The COMPASS subroutine
CODE translates one character at a time to the new gray level values specified
by the table. The finished line is written on output, and successive lines are
produced in the same manner until the specified region of the image has been
processed. Then the next keyword is interpreted, the required table set up and
the next output file, representing a different spectral band for a "false-color"
presentation of the input image, is produced. Successive color keywords are
processed until all the parameters have been digested and the output tape has
been completed.

4.37.2 Parameters

Three color translation tables are required, one for each spectral band. Each
table must be preceded by a keyword, which designates the color spectral band.

1. Keyword (RED, BLUE, GREEN)

The color translation tables can be specified in one of three ways.

4-168

If the translation is to follow a non-linear relation, then the remaining param-

eters are

2. N = 2 Use table of new tables entered as parameters

3 - 66 for old values 0 to 63, respectively.

3.-66. New values to which the old values 0 to 63, in that

order, are to be converted; 64 values must be

supplied

OR

2. N = 1 Use standard table, stored internally

3. M = 1 Use primary table for specified color

= 2 Use secondary table for specified color

If the translation is to follow a linear or piecewise linear relation, the remain-

ing parameters are:

2. N = 3 Use pairs of coordinate points

3. M Number of pairs of coordinate points that follow

(2 M < 11)

4. -5. Old and new values, respectively, for point at

left-hand end of leftmost line segment

6. -7. Old and new values, respectively, for point at

left-hand end of next line segment

2N., 2N + 1. Old and new values, respectively, for point at

right-hand end of last (rightmost) line segment

The first pair of values should include at least one zero; the last pair at least

one 63. If the first old value is nonzero, all values less than it will be assigned

a new value of zero. If the last old value is not 63, all values greater than it

will be assigned the last new value. At most, 11 pairs of coordinates can be

4-169

specified, corresponding to ten contiguous line segments. In addition, the old

values must be strictly increasing.

4.37.3 Input

COLOR requires a single input image in standard IDAMS format. The size

of the image to be processed EN = ((NPI - 1)/4 + 2)/65 + 1 * NLI must be

less than 32300, so that the input image can be stored onto disk.

4.37.4 Output

COLOR generates a single output tape with multiple files in standard IDAMS

format. For each spectral band requested, a file of a false color image is

generated.

4.37.5 Examples

It is desired to generate three bands of a false-color image, (RED, GREEN,

and BLUE). The input image has previously been reduced to TV size and it is

desired to use the standard tables for each band. Appropriate IDAMS source

statements are:

COLOR, (TVJAMES, 49, 1), (1, 1,700,512), (COLOR, 48, 1), 1

ED, 1, 1, GREEN, 1, 1, BLUE, 1, 1

The output tape will consist of three files, whose names are COLORR, which

contains a "red" image, COLORG, which contains a "green" image, and

COLORB, which contains a "blue" image.

4.37.6 Messages

COLOR generates the following diagnostic messages:

Message Explanation

N NOT LE 11 AND GE 0 Either N was found to be negative or
more than 11 pairs of coordinates
were specified; execution terminates.

4-170

Message Explanation

COORDINATE VALUE GT 63 OR LT 0 A parameter greater than 63 or less
than 0 was specified; execution
terminates.

OLD COORD NOT STRICTLY A specified value of the old intensityINCREASING was less than or equal to the preceding
value; execution terminates.

IMAGE SIZE TOO LARGE FOR DISK The input image specified is too large
for COLOR to process since the image
will not fit on disk.

4.37.7 Flowchart

See Appendix C. Figure C-37.

4-171

4.38 FPLIST - FLOATING-POINT LISTING UTIITY PROGRAM

4.38.1 Program Description

IThe task program FPLIST provides a floating point formatted print for a user-

supplied number of pixel values and number of lines.

FPLIST begins by ddtcrmining if the input image resides on magnetic tape or

on disk. Each'line segment is fetched and the specified number of pixel values

is output onto the printer. This process continues, ultil all the requested lines

have been printed.

4.38.2 Parameters

FPLIST requires the following twvo parameters:

1. NX - number of floating point values to be printed per line

2. NY - number of lines to be printed

4.38.3 Input

FPLIST requires one of the two following inputs:

1. an image tape in standard IDAMS format'

2. a disk file containing image data

4.38.4 Output

FPLIST provides a formatted floating point print of the user-supplied input

area.

4.38.5 Examples

An array of 32 x 16 floating point words has been stored on disk. FPLIST is to

print out the array. The appropriate task and parameter cards are:

FPLIST.., 1

32,16

4-172

4.38.6 Messages

None.

4.38.7 Flowchart

See Appendix C, Figure C-38.

4-173

4.89 DMDOUT - DIGITAL MUIRIIEAD REFORMATTING PIJOGI1AM1

4. ., . 1 .Program Descrintion

This task program reformats IDA-MS images into the format required by the

Digital Muirhcad Di;play (DMD) at the National Oceanic and Atmospheric

Agency.

DM3DOUT bcgins by determining whether the output image can fit within the 2500

by 2500 raster size or requires the 5000 by 5000 raster, and sets the mode in

the header record accordingly. The operator is also instructed to mark the

tape with the appropriate mode. If the image has more than 4860 lines, a

bit is also set in the.header record to suppress the gray-step wedge, which

is otherwise generated automatically by the DMLD system. The header record

is then written onto the output tape.

For the 5000 by 5000 mode, the length of the output tape required is also

estimated; if only one reel is required, the operator is instructed to mark it

accordingly.

The requested segment of the image is then read in one line at a time, aligned

for output, and written onto the output tape. On completion, the operator

is reminded to mark both reels of a double-reel image. Control then returns

to the IDAMS driver.

4. 39.2 Parameters

DMDOUT requires no parameters.

4. 39. 3 Input

DMDOUT requires a single input image in standard IDAMS format.

4. 39. 4 Outout

DMDOUT generates an output image in the format required by tl-e Digital

Muirhead Display.

4-174

4.39.5 Example

A 3000 by 3000 segment of an image called IMAGE6, starting at pixel 501 of

line 101, is to be converted for DMD recording. The required IDAMS control

statement is

SDMDOUT,(IMAGE6,49.1),501,101,3000,3000),(,47,1)
4.39.6 Messages

DMDOUT generates one fatal error message:

Message Explanation

IMAGE TOO LARGE The specified output image dimensions
exceeded 5000 pixels by 4980 lines

A number of advisory messages are also generated to instruct the operator

how to mark the output tape, as follows:

USE 556 BPI, MARK TAPE 'xxxx - BYTE MODE'

... AND 'REEL 1 OF 1'

IF SECOND OUTPUT REEL WAS REQUIRED, MARK TAPES '1 OF 2'

AND '2 OF 2' - IF ONLY ONE REEL, MARK '1 OF 1'

4.39.7 Flowchart

See Appendix C, Figure C-39.

4-175

4.40 A D)PIX - 1)ICTU'I'RE ADDITION PROGl\.M.

4.40.1 Program Description

This task routine meres two images in IDAMS format. This is achieved by adding

the values of corresponding pixels and storifg the sumn into the corresponding

pixel location of the output image.

Upon entry, the routine reads the label. from the secondary inlsut tape and verifies ,

that the image size specified for the primary input image is the same or less, than

the size of the secondiry tape. If the image sizes are compatible, then the pro-

gram generates and writes the output label.

The two input tapes are positioned to their respective starting lines and the pro-

gram begins the merging process. The routine reads in one record from each

input tape at a time, computes the sum of each corresponding pixel value and

outputs the merged line onto the output tape. This procedure continues until the

specified number of records have been processed.

ADDPIX then returns control to DRIVER.

4.40.2 Parameters

ADDPIX requires the following parameters:

1. ISSP - secondary input tape start pixel

2. 1SSL - secondary input tape start line

4. 40.3 Input

ADDPIX requires two input tapes in standard IDAMS format.

4.40.4 Output

ADDPIX generates a single output tape in standard IDAMS format which contains

the averaged sum of the two input tapcs.

4.40.5 Example

It is desired to merge a portion of an image from two different input sources. The

4-176

size of the portion is 64 pixels by 100 lines and, on the primary input tape, the area

to be merged is located in the upper left-ihnd corner of the entire image, while on

the.secondary input tape, the area starts after line 100. Appropriate IDAMS source

statements are:

DPIX, (IN1, 40, 1, IN2, 4S, 1), (1, 1, 64, 100), (OUT, 47, 1), 1

1, 100

4.40.6 Messages

ADDPIX may generate the following message:

Message
Explanation

IMAGE SIZE EXCEEDS SECONDARY The user specified an image size which

INPUT SIZE is larger than the secondary input tape's

image size.

4.40.7 Flowchart

See Appendix C, Figure C-40.

4-177

41.41 FORMAT - ID.\MS :FORMAT CON\VESION PRxOGRlAMil

4.41.1 ProgTam Description

The taslk program, FOIR.MAT, converts a rccltnguglar image to an IDAMS-formatted

tape and vice-versa. The record length and number of records on a rectangular image

are unknown, while this information is supplied in the label record of an IDAMAS image.

Format begins execution by determining the direction of the conversion. In the case

where an ID\MS to rectangular conversion is requested, the program ignores the

IDAMS label record and after deleting the line number from an IDAMS record writes

the image lihe onto the output tape. This process continues until all of the requested

lines have been output.

When a rectangular image is to be converted to IDA IMS format, it becomes neces-

sary to determine the record length. The program reads the first record from the

rectangular image, determines the length of the record and sets the necessary

variables. A dummy IDAMS label is written and as each record is read from the

rectangular image it is nutput onto the IDAMS - formatted tape, after the line

number has been placed into the first word of each record. This process continues

until an end-of-file mark is sensed on the input tape. After writing an end-of-file

.mark on the output tape, the IDAMS tape is then rewound and the completed IDAMS

tape label is written onto the tape. FORMAT then returns control to the system.

4.41.2 Parameters

FORMAT requires the following special parameter:

LUN = unit number of rectangular image tape

4.41.3 Input

FORMAT requires an input tape in either IDAMS format or in rectangular image

format.

4.41.4 Output

FORMAT generates an output tape in either a rectangular image format or in

IDAMS format.

4-178

4.11.5 Ex iamle

A rcctanguilar image is to be converted to an IDAMS formatcd image. Appropriate

IDAhlS batch processor.task and lxtrameter cards are:

O6IRAT,,, (IDAISTAP, 47, 1), 1

48

4.41. 6 Messages

FORMAT does not generate any messages.

4.41.7 Flowchart

See Appendix C, Figure C-41.

4-179

4.42 HISTCONT - HISTOGRAM-CONTRAST PROGRAM

4. 42. 1 Program Description

HISTCONT is a program which attempts to make an image's gray level appear

more uniform between the six different ERTS/MSS scan lines. This is achieved

by creating comprehensive histograms and performing a contrast conversion on

a scan line basis.

The program has two modes of operation: (1) the entire process of histograms

and contrasting is executed as a single task, or (2) the initial histograms and

creation of the contrast look-up tables is run as a separate step from the con-

trast portion of the program. Initially the program determines which mode the

user specified. If no contrast tables have been input, the program transfers

control to the histogram program. This program checks to see if the number

of specified input lines is an even multiple of 6 and if it is not, the number of

lines is altered to force it to an even multiple of 6. The input tape is forward

spaced to the first specified input line, if necessary. Each record is read and

the subroutine TALLY stores each line's gray level values into the appropriate

scan line bins.

Once all the required lines have been processed, the program computes and

outputs six histograms in which each graph represents the intensity frequencies

of a unique set of scan lines. Six numeric tables of the intensity frequencies

are also printed out. The program then computes a cumulative histogram and

tables using one of the scan line sets as the base detection line. A look-up

table for each set of scan lines is computed by finding midpoints of input bins

relative to the base detector line bins. The five look-up tables are punched out

as parameter cards, in case the user wishes to run the contrast phase at a later

time. If an output tape has not been specified, control returns to the IDAMS

driver. If an output tape has been specified, and the contrast look-up tables

have either been input by parameter cards or from the histogram phase, control

4-180

is transferred to the contrast program. The contrast program calls the sub-

routine CODE, which applies the appropriate contrast conversion on each line.

As a final program verification, the program generates new histograms for

each of the six scan line sets. Control is then returned to the IDAMS driver.

4.42.2 Parameters

1. IBASE = The base detector line number (1 through 6)

2. ITAB = (a) If not specified, implies the histogram and contrast

phases are to be executed

(b) A table of 320 values (5 sets of 64 new values to be

used in the contrast phase). When these values are

present, only the contrast portion of the program is

executed.

4.42.3 Input

HISTCONT requires one input tape in standard IDAMS format.

4.42.4 Output

HISTCONT generates numerous histograms, punched parameter cards, and

either one or no output tapes in standard IDAMS format, depending on the mode

selected. They have the following significance:

Mode Output

Histogram only Six scan line histograms, one cumulative

histogram of base detector line, punched

parameter cards of look-up tables

Contrast only Single output tape, six scan line histograms

Histogram and contrast All of the above mentioned outputs

4-181

4.42.5 Example

It is desired to make the image CONT1 gray levels appear more uniform be-

tween the six different ERTS/MSS scan lines. The entire 3000 by 3000 picture

is to be processed. The base detector line is line 4 and the user specifies that

the output image name be OUT1. Appropriate IDAMS source statements are:

(CONTHIST, (CONT1, 49, 1), (1, 1, 3000,3000), (OUT1, 48, 1), 1

(4

4.42.6 Messages

None

4.42.7 Flowchart

See Appendix C, Figure C-42.

4-182

4.43 JOYSTICK - INTERACTIVE DISPLAY PROGRAM

4.43.1 Program Description

The task program JOYSTICK supplements the numerous user image display

and manipulation functions provided by the 212 display package. The user con-

trols the functions by depressing buttons on the joystick box, which have been

predefined to perform specific functions. Also, several available capabilities

are displayed on the CDC 212 and the user interactively inputs the desired

function codes via the 212 keyboard. The task is subdivided into a main driver

routine and two segments. The first segment handles all of the functions ex-

cept the ZOOM capability, which resides in the second segment.

Once control is passed to the program JOYSTICK in the first segment, the

initial reseau coordinates and box coordinates are set. The subroutines TVCON,

TTWCON, and JOYCON are called which connect with the TV hardware, the

CDC 212 hardware, and the DDI (analog-to-digital converter), respectively. A

call to the subroutine CDCON enables the following function code table to be

displayed on the 212.

IDAMS

FUNCTION CODES

(CODES 01 - 09 ARE FUNCTIONAL IN TASK DISPLAY)

LOCATE 10

DATA 11 ZOOM 17 REWIND 13

DATA1 12 EXIT 18 FORWARD 14

SELECT 16 REVERSE 15

The program calls the subroutine STORE, which waits until a function code

has been input to the 212 or a joystick button has been activated. The joystick

4-183

box contains six buttons and the joystick control. The buttons and stick have

been assigned the following functions:

Button Function

1 Generates a box on the TV; if a box is al-

ready displayed on the TV, by activating

button 1 the box is erased.

2 Generates a reseau on the TV; if a reseau

is already displayed on the TV, by activat-

ing button 2 the reseau is erased.

3 Returns the coordinates of the box or

reseau which is presently displayed on

TV screen.

4 Enables the user to move the box or reseau

left, right, up, or down, by moving the

joystick left, right, up, or down.

5 Enables the user to enlarge and shrink the

box by moving the joystick up and down,

respectively.

6 Enables the user to vertically enlarge and

shrink a box by moving the joystick up and

down; and enables the user to horizontally

enlarge and shrink a box by moving the

joystick right and left, respectively.

If a function code has been input via the 212, the program converts the code

from a BCD number to an integer value and branches to the appropriate subsec-

tion, depending upon the value of the function code. If one of the joystick but-

tons has been activated, STORE returns the button number, and JOYSTICK

branches to the appropriate subsection.

4-184

4.43. 1. 1 Description of Joystick Function Buttons

4.43.1.1.1 Button 1

If the joystick function button 1 was depressed, the program checks to see if a

box or a reseau is already displayed on the TV. If a box is on the TV, the

program erases it by calling the subroutine KILLIN, and control returns to

where the program is waiting for another function code to be input or for the

joystick controls to be activated. When no reseau mark is on the TV, the pro-

gram computes the box coordinates such that the box will be centered on the

TV and will be 138 pixels by 100 lines in size. However, if a reseau mark is

displayed on the TV, the box coordinates are computed such that the 138 by 100

box will appear centered around the reseau mark location. The reseau mark

is then erased by calling the subroutine KILLIN.

Once the box coordinates have been set, the program branches to a subsection

of the program which converts the image coordinates to a TV format and sends

them to the TV hardware. To convert the Y coordinates to TV format, the

values are divided by 2; if the original coordinates were even, then 255 is

added to the halved value. This is done to accommodate the TV feature of

having a main level and an interlace level. The lines alternate between the

main and interlace levels. Therefore, line 1 is equal to the TV line 0, line 2

equals TV line 256,..., line 511 equals TV line 255, and line 512 equals TV

line. 511.

The x coordinates must also be converted to a TV format. Because the TV

hardware counts pixels across the line in increments of 11, the hardware must

know in which group of 11 the pixel resides (x/11) and the pixel position within

the group (MOD(x, 11)). The x coordinates are converted, the group number is

placed in bits 23-12 of the TV coordinate word, and the remainder value re-

sides in the bits 11-0 of the word. The conversion subsection then calls the

program DISP, which sends the TV coordinates to the TV hardware. DISP is

4-185

a COMPASS routine which connects with the TV (channel 2), sends a function

code for a box or reseau mark, and transfers the coordinates to the TV hard-

ware. Control is then returned to the conversion subsection, which returns to

the originating function subsection. In the case of the box generator function,

control is returned to where the function code table is displayed on the 212 and

the program is waiting for another function or joystick interrupt.

4. 43. 1. 1. 2 Button 2

When the joystick button 2 is depressed, the program checks to see if a reseau

or a box is already displayed on the TV. If a reseau is on the TV, the program

erases it by calling the subroutine KILLIN, and control is transferred to where

the program is waiting for another function code to be input or for the joystick

buttons to be activated. If no box appears on the screen, the program sets the

reseau coordinates such that it will be centered on the TV. However, if a box

is already displayed, the program computes the reseau coordinates such that it

will be centered within the box area. The box is then erased with a call to

KILLIN and the program branches to the previously described conversion sub-

section. After the reseau mark has been placed on the TV, the program redis-

plays the function code table and waits for the next code to be input or the next

button to be activated.

4.43.. 1.3 Button 3

When the third button is depressed, the corresponding subsection writes the lo-

cation of the box or reseau which is presently displayed on the TV onto the printer

and the 212. The program checks to verify that a box or reseau is displayed on

the TV. If no marks are on the TV, the control returns to the program area

which displays the function table. Otherwise, the program prints out the co-

ordinates of the box or reseau onto the printer. Before the values can be output

to the 212, the integers must be converted to left-justified BCD format. This

process is done in the subroutine BINBCD, and the reformatted coordinates

4-186

are printed onto the 212. Control returns to the program area which displays

the function code table only after the user has depressed the SEND key on the

212 keyboard.

4.43.1.1.4 Button 4

The fourth button is functional only when used in conjunction with the joystick.

When the program senses that the fourth button has been depressed, it trans-

fers control to the CHKJOY subroutine. CHKJOY returns control to JOYSTICK

only if the joystick has been activated while the fourth button is depressed or if

the fourth button is no longer depressed. When the joystick has been moved,

the program attempts to move the box or the reseau on the TV in the same di-

rection that the joystick was moved (up, down, left, or right). Depending upon

the direction of the requested movement, the program checks whether the co-

ordinates have reached an edge of the image and, therefore, cannot be moved in

the requested direction. If this test is positive, then control returns to the

program area which displays the function code table. Otherwise, the appropri-

ate coordinates are reduced or increased by one, and control transfers to the

TV conversion subsection where the TV formatted coordinates are sent to the

TV hardware.

The subroutine ICLOCK is used to control the speed at which the box or reseau

is moved. The argument which is sent to ICLOCK and indicates the number of

milliseconds to delay processing, is a function of the pressure applied to the

joystick. If the joystick is lightly pushed in the desired direction, the ICLOCK

variable is large and the box or reseau movement is slow. The speed of the

box (reseau) movement increases as more pressure is applied to the joystick.

The program continues to move the box or reseau until either the fourth button

is no longer depressed, the joystick is no longer activated, or the box (reseau)

reaches an edge of the image. Control is then returned to the code which dis-

plays the function code.

4-187

4. 43. 1. 1. 5 Button 5

The fifth button is also only functional when used in conjunction with the joy-

stick. When the program senses that the fifth button has been depressed, it

checks by calling the subroutine CHKJOY, to see if the joystick has been moved

up or down. If the joystick has been moved up, the box is increased; and if the

joystick has been moved down, the box is reduced. The box coordinates are

checked to see if the box can be enlarged or reduced, depending on which func-

tion was requested. If the box is the maximum (minimum) size, then control

returns to the program area from which the function code table is displayed.

Otherwise, the coordinates are appropriately reduced or increased by one in

order to enlarge or reduce the box.

A call to the delay routine, ICLOCK, which stalls processing a specified num-

ber of milliseconds, is used in order to make the movement of the enlarge/

reduce process increase as the pressure on the joystick increases. Control is

transferred to the subsection which converts the coordinates to TV format and

sends the values to the TV hardware. The program continues to enlarge or re-

duce the box until either the fifth button is no longer depressed, the joystick is

no longer activated, or the box reaches an edge of the image. Control is then

returned to the program area, where the function codes are displayed and the

program is waiting for the next command.

4.43.1.1.6 Button 6

The sixth and last button is used in conjunction with the joystick. When button

6 is depressed and the joystick is moved up and down, the box is vertically in-

creased and reduced, respectively. When the joystick is moved right and left,

the box is horizontally enlarged and reduced, respectively. The box coordinates

are checked to see if the box can be enlarged (or reduced). If the box is the

maximum (minimum) size, then control returns to the program area from

which the function code table is displayed. Otherwise, the coordinates are

4-188

appropriately increased or reduced by one in order to enlarge or reduce the

box. The speed of the enlarging or reducing process, which is changed by ap-

plying more or less pressure to the joystick, is controlled by calls to the delay

routine, ICLOCK. The program then transfers control to the subsection which

converts the coordinates to TV format and sends the values to the TV hardware.

The program continues to enlarge or reduce the box until either the sixth button

is no longer depressed, the joystick is no longer activated, or the box reaches

an edge of the image. Control is then returned to the program area where the

program waits for the next command.

4.43. 1. 2 212 Functions

4.43.1.2.1 LOCATE Function

When the function LOCATE is requested from the 212, the corresponding sub-

section writes the location of the box or reseau which is presently displayed on

the TV onto the printer and the 212. The program checks to verify that a box

or reseau is displayed on the TV. If no marks are on the TV, the control re-

turns to the program area which displays the function table. Otherwise, the

program prints out the coordinates of the box or reseau onto the printer. Be-

fore the values can be output to the 212, the integers must be converted to left-

justified BCD format. This process is done in the subroutine BINBCD, and the

reformatted coordinates are printed onto the 212. Control returns to the pro-

gram area which displays the function code table only after the user has de-

pressed the SEND key on the 212 keyboard.

4.43.1.2.2 DATA Functions

The functions DATA (11) and DATA1 (12) are handled in the same subsection.

This subsection transfers image data from tape files to the TV. The program

first requests the tape unit number from the user by calling the subroutine

CDCON, which prints out the request on the 212. The subroutine STORE is

then called, which will return with the user's reply in BCD format. The

4-189

program converts the value to an integer format. The program requests that

the user input the color gun numbers, which will specify the TV disk(s) onto

which the image is to be dropped.

The TV has three TV refresher disk files available for image data storage, and

and each disk can be assigned to one of the three available color guns (red,

green, or blue). The color gun parameter is a value which determines which

disk file (s) the user wants to use for storing an image. The parameter is an

octal representation of a three-digit binary number, in which each digit cor-

responds to one of the disk files and the "on-off" conditions are represented by

ones and zeros, respectively. The following table shows the correspondence

between the color gun number, the disk assignments, and the binary number

from which the parameter value was derived.

Binary Representation
Color Gun Disk Disk Disk Disk
Number File(s) 3 2 1

1 1 0 0 1

2 2 0 1 0

3 1 and 2 0 1 1

4 3 1 0 0

5 1 and3 1 0 1

6 2 and 3 1 1 0

7 1, 2, and 3 1 1 1

Once the user has specified the disk file(s) into which the image data are to be

stored and the SEND key has been depressed, the image will be dropped to the

disk and displayed on the TV. The user can define which color is to be assoc-

iated with each disk by manually setting the three color wheels switches on the

IDAMS Control Panel. The three wheels, from left to right, represent the color

guns of red, green, blue, respectively. By setting the wheels to the appropriate

disk number, the user has complete control over the color assignment of any

image stored in the TV disk files.

4-190

The color gun number, which is returned from a call to STORE, is converted to

binary and checked to be sure it is valid. If the number is not valid (0 <N < 7)

the program will again request that the user input the color gun numbers. The

program reads the label record and prints out the length of the record. Next

the program enters a loop to read 32 lines of data and properly position the

data in a format necessary for the TV hardware. Because of the main and in-

terlace structure of the TV, even lines are separated from the odd lines. Con-

sequently, as the data lines are read in, pointers are set which direct the data

into the appropriate buffer location. For instance, in buffer 1 the lines 2,3,4,

... ,31 are sequentially packed, and lines 2,4, 6,..., 32 are sequentially packed

in buffer 2. The tape reads are double buffered, and while the next line is

being read, the last line's data is sent to the subroutine, FLIP. This subrou-

tine reverses the pixel order of each word in the line (i.e., if the characters

ABCD are input as a word, they would be returned as DCBA in the same word).

This procedure is necessary in order to make the data compatible with the TV

hardware's counting method.

After a set of 32 lines have been read in and processed by FLIP, the 16 even

lines and 16 odd lines are ready to be transferred to the TV. The subroutine

LINDIS is called for each set of 16 lines; this routine prepares the data for the

transfer, and then outputs it to the TV. LINDIS is a COMPASS subroutine

which computes the function code depending upon whether the lines are main or

interlace and sends the function code to channel 2 (TV hardware). The subrou-

tine then checks to see if the requested function was DATA (11) or DATA1 (12).

If the request was for DATA, then each word of the 16 line data block has the

least significant bit shifted off. This is required because the TV hardware,

which counts from left to right, can only handle five of the six bits per pixel

value. Without shifting, the most significant bit would be lost, which is an un-

desirable result. Consequently, by shifting each word to the right one bit, the

TV hardware will be picking up the most significant bit and only losing the least

4-191

significant bit. The DATAl (12) function however, does not shift the data

words but sends them as they are input. This feature is available in case a

user wishes to view the data without the shifting procedure.

Once the data words have been prepared for transfer, LINDIS sends two blocks

of 16 lines to the TV, channel 2, and waits for the I/O to be completed before

returning to DISPLAY1. This procedure of processing data in sets of 32 lines

continues until the program senses an end-of-file mark on the input tape. If

the program determines that the total number of lines read is not an even

multiple of 32, it prints a message indicating that some data lines must have

been lost. The program concludes this fact because the number of lines in a

TV size image is 512, which is an even multiple of 32. Control then returns

to the program area which displays the function code table.

4.43.1.2.3 Tape Functions

The functions REWIND (13), FORWARD (14), and REVERSE (15) are all

handled in the same subsection. The program calls CDCON, which requests

that the user input the appropriate magnetic tape logical unit number. The sub-

routine STORE returns the tape unit number in a BCD format and the program

converts it into a binary integer value. If the request function was REWIND (13),

the program rewinds the tape and returns to the program area which displays

the function code table. If the FORWARD (14) or REVERSE (15) functions were

specified, the program sends a request for the number of files to be skipped to

the user via the subroutine CDCON. The reply is returned from STORE and is

converted from BCD format to an integer value. The program then forward

spaces or backspaces the appropriate number of files. If the backspace func-

tion is being executed, the end-of-file mark is skipped over before control re-

turns to the program area which displays the function code table.

4-192

4.43.1.2.4 SELECT Function

The subsection which processes the SELECT (16) function enables the user to

select the coordinates of the box to be displayed on the TV screen. By refer-

encing the subroutine CDCON and STORE, the program requests that the user

input the coordinates of the desired box. The coordinates must be input in the

following order; leftmost pixel value, rightmost pixel value, top line number,

and bottom line number. Because the box figure appears in either the main

level or the interlace level, the input line values must both be even or odd. If

the line numbers are mixed, the program outputs a message to the 212 indicat-

ing the error, and then corrects the line numbers by forcing them to both be

even or odd values.

The program receives the parameters from the subroutine STORE and scans

the parameter list from the last word of the input array to the first word. The

program ignores blanks and expects commas to be the separator between co-

ordinates. The coordinates are converted to integer format and sent to the

TV conversion subsection, which converts the values to TV format and sends

them to the TV hardware. If the parameter list has not been correctly input,

the program requests that the coordinates be input again. Once the box has ap-

peared on the TV, control returns to the program section to display the function

code table.

4.43.1.2.5 ZOOM Function

The last display function is the ZOOM (17) function which takes the area bounded

within a box on the TV image and increases or reduces it into a TV size image.

This function is accomplished by the program ZOOM, which is in the second

overlay segment. The ZOOM routine initially requests by referencing CDCON

and STORE, the name of the image which is displayed on the TV, the tape unit

on which the TV image tape resides, and the file number of the image. These

parameters are stored in the label array, LBLIN.

4-193

The label processing routine, LBLRD, is then called to read the TV image

file label and, the information stored in LBLIN is used to verify that the tape

is positioned at the requested image. The requested file label contains the

name of the master tape (the image tape from which the TV image originated)

and, using this information, the program sends a message to the user via the

212 reminding him that a specific master tape must be mounted. The reduction

or enlargement factor that was used when creating the TV image from the

master image is stored in word 11 of the TV file label. Using this factor, the

box coordinates, and the dimensions of the master image, the program deter-

mines whether the master image must be increased or reduced to create the

desired TV image. If the box enclosed area would not result in an optimum

TV size image, the program sends a message to the user asking if the user

still wants to create the requested TV image. If the user replies negatively,

the program branches back to the program area which displays the function

code table. If the user replies positively, the program continues processing.

A request is made for the master tape logical unit number and file number,

and then the program reads in the master image file label. The program then

requests via the 212 that the user supply the output TV image name, tape unit

number, and file number. The output label is written onto the specified tape.

Before going to the segment which carries out the actual reduction or enlarge-

ment, the program requests that the user verify that all of the parameters are

correct. If the response is negative, the program branches to the beginning of

the ZOOM routine and begins the request for input parameters again. If the

user replies positively, the program continues and reduces or increases the

master image data.

ZOOM computes the largest integral redtiction or multiplication factor which

will just permit the input to fit within a TV size image. An output line buffer

is set up with edge fill characters, and the output label record is written. If

any fill lines are required at the top of the TV picture, they are written out at

4-194

this time. A main increase or reduce processing loop is entered. If no in-

crease or reduction is necessary, the master image is just transferred to the

output image. If a reduction is required, the program reads an input line, re-

duces its length by the reduction factor, and stores it in an internal array.

This continues until enough input lines are collected to form one output line.

Averaging is then performed between lines, and the completed line is output.

If an enlargement is involved, the program reads an input line, enlarges its

length by the multiplication factor, and outputs the enlarged line the requested

number of times. After all lines have been processed for both enlargements

and reductions, the program writes out any remaining lines of bottom fill.

Control then returns to the main driver which calls segment 1, JOYSTICK.

The IDAMS function code table is again displayed.

4.43.1.2.6 EXIT Function

The user exits from the JOYSTICK package by selecting the EXIT (18) function

code. When the program receives this code it returns to the main driver,

which then returns to the IDAMS system.

4.43.2 Parameters

JOYSTICK calls the IDAMS joystick package whose parameters are provided

interactively through the 212 Display Station or through the joystick control

box. By specifying the name JOYSTICK on the task card, the following func-

tions code table is displayed on the 212 screen:

IDAMS

FUNCTION CODES

(CODES 01 - 09 ARE FUNCTIONAL IN TASK DISPLAY)

LOCATE 10

DATA 11 ZOOM 17 REWIND 13

DATA1 12 EXIT 18 FORWARD 14

SELECT 16 REVERSE 15

4-195

In order to execute any one of the functions, the user must type in the cor-

responding numeric code and depress the SEND key. A description of each

function is given below:

Code Function Description

10 LOCATE Returns the coordinates of the box or

reseau which is presently displayed on

TV screen. When the user wants to clear

the coordinates from the 212 and have the

function code table reappear, the SEND

key must be depressed.

11 DATA Drops an image tape file which contains

64 gray level data onto the TV. The pro-

gram requests two input parameters.

The tape unit on which the image tape is

mounted must be keyed in after the re-

quest appears on the 212. After the SEND

key is depressed, a request for the color

gun number will appear.

The TV has three TV refresher disk files

available for image data storage and each

disk can be assigned to one of the three

available color guns (red, green, or blue).

The color gun parameter is a value which

determines which disk file(s) the user

wants to use for storing an image. The

parameter is an octal representation of

a three-digit binary number, in which

each digit corresponds to one of the disk

4-196

Code Function Description

11 files and the "on-off" conditions are rep-

(Cont'd) resented by ones and zeros, respectively.

The following table shows the correspond-

ence between the color gun number, the

disk assignments and the binary number

from which the parameter value was

derived.

Binary

Color Representation

Gun Disk Disk Disk Disk

Number File (s) 3 2 1

1 1 0 0 1

2 2 0 1 0

3 1 and 2 0 1 1

4 3 1 0 0

5 1 and 3 1 0 1

6 2 and 3 1 1 0

7 1,2, and 3 1 1 1

Once the user has specified the disk file(s)

into which the image data are to be stored

and the SEND key has been depressed, the

image will be dropped to the disk, and dis-

played on the TV. The user can define

which color is to be associated with each

disk by manually setting the three color

wheels switches on the IDAMS Control

Panel. The three wheels, from left to

right, represent the color guns of red,

4-197

Code Function Description

11 green, blue, respectively. By setting the

(Cont'd) wheels to the appropriate disk number, the

user has complete control over the color

assignment of any image stored in the TV

disk files. Once the color gun number has

been entered and the SEND key depressed,

the image will be dropped on the TV.

12 DATA1 Drops an image tape file onto the TV. The

required parameters are described above

under function code 11. DATA1 differs

from DATA in that the data contains 32

gray level values and, therefore, does not

have the least significant bit shifted off.

However, the most significant bit will be

truncated since only five bits of data can

be displayed at one time.

13 REWIND Rewinds a requested tape. The program

requests on which tape unit the required

tape is mounted. After keying in the tape

unit number and depressing the SEND key,

the tape is rewound to loadpoint.

14 FORWARD Forward spaces a tape a specified number

of files. The program requests the logical

unit number on which the required tape is

mounted. After keying in the tape unit

number, the program requests the number

of files over which the tape is to be spaced

4-198

Code Function Description

14 forward. Once the SEND key is depressed,

(Cont t d) tape is forward spaced the specified num-

ber of files.

15 REVERSE Backspaces a tape a specified number of

files. The program requests the logical

unit number on which the required tape is

mounted. After keying in the tape unit

number, the program requests the number

of files over which the tape is to be back-

spaced. Once the SEND key is depressed,

the tape is backspaced the specified num-

ber of files.

16 SELECT Enables the user to select the coordinates

of a box which is to be displayed on the

TV. The program requests that the co-

ordinates be input in the following order -

leftmost pixel, rightmost pixel, top line,

lower line. The line numbers should be

paired even, or odd, but not mixed. This

is a display hardware requirement. The

parameters must be separated by commas

and the final parameter must be followed

by a blank. Any blanks placed between

parameters are ignored.

17 ZOOM Takes the area bounded within a box on the

TV image and increases or reduces it into

a TV size image. The program requests

4-199

Code Function Description

17 the name of the image which is presently
(Cont'd) displayed on the TV. After entering in

the name and depressing the SEND key,

the image's tape unit is requested, fol-

lowed by a request for the file number (be

sure to specify the file number with two

digits). A message reminding the user

that the master tape must be mounted is

displayed on the 212, and is followed by a

request for the master tape's unit number

and file number. Before the program be-

gins the ZOOM procedure, information

about the new output tape is requested.

The user is asked to supply the output tape

name, the unit number, and the file num-

ber. The program requests that the user

specify if the input parameters are believed

to be correct. If a "Y" is returned, the

program continues with the ZOOM process.

However, if an "N" has been returned, the

program begins the input parameter re-

quests again. This gives the user, who

is aware of an input parameter error,

another chance to supply the correct input.

(Note: After keying in the proper response

to all requests, remember to press the

SEND key.) The program will display on

the TV whether an increase or reduction

4-200

Code Function Description

17 of the master image was necessary and

(Cont'd) the multiplication factor involved. The

"ZOOM" image will reside on the output

tape when the program is completed, and

the user must reference DATA when he

wishes to drop the image onto the TV

screen.

18 EXIT Returns control to the IDAMS main driver

program.

For special instructions pertaining to the operational procedures involved when

using JOYSTICK and the TV, refer to Section 3.4.3 (Special Instructions for

the DISPLAY User) in the IDAMS User's Guide.

The other means of supplying parameters is by activating one of the six buttons

on the joystick control box. The buttons and stick have been assigned the fol-

lowing functions:

Button Function

1 Generates a box on the TV; if a box is already

displayed on the TV, by activating button 1 the

box is erased.

2 Generates a reseau on the TV; if a reseau is al-

ready displayed on the TV, by activating button 2

the reseau is erased.

3 Returns the coordinates of the box or reseau

which is presently displayed on the TV screen.

4-201

Button Function

4 Enables the user to move the box or reseau left,

right, up, or down by moving the joystick left,

right, up, or down.

5 Enables the user to enlarge and shrink the box

by moving the joystick up and down, respectively.

6 Enables the user to vertically enlarge and shrink

a box by moving the joystick up and down; en-

ables the user to horizontally enlarge and shrink

a box by moving the joystick right and left.

4.43.3 Input

JOYSTICK has variable inputs depending upon which functions are requested.

If the functions DATA, DATA1, REWIND, FORWARD, or REVERSE are re-

quested, JOYSTICK requires a single input image tape in standard IDAMS format.

If the ZOOM function is requested, two input image tapes in standard IDAMS

format are required (a TV size image tape and the master image tape).

4.43.4 Output

JOYSTICK drops image data onto the TV and displays a box and reseau mark

on the TV screen. If ZOOM is referenced, a single output image tape in stand-

ard IDAMS format is produced.

4.43.5 Examples

The fourth file on the image tape which is mounted on tape unit 49 is to be

dropped onto all three TV disks. A reseau mark is to be placed on the image

and moved to a desired point, where a box replaces the reseau mark. The box

is increased slightly and the coordinates are printed out. The enclosed area

is increased to a TV size image and the new image is dropped onto the first TV

4-202

disk. The following communication would be required to achieve the above

operations:

1. The following single control card would be submitted.

JOYSTICK

2. The code 14 (FORWARD) would be entered on the 212 and the SEND

key depressed. The user would specify the number 49 to the mag-

netic tape unit request and then would specify the number 03 to the

request of number of files to be skipped.

3. The code 11 (DATA) would drop the fourth file on the TV after the

user has specified the logical unit number 49 and color gun number 7

(binary representation indicating all three disk files).

4. The second button on the joystick control box would be depressed

and a reseau mark would appear on the TV.

5. By depressing the fourth button and moving the joystick to the left,

right, up, and down, the reseau would be moved left, right, up,

and down, respectively.

6. Once the user has located the area of interest, the first button

would be depressed which would replace the reseau mark with a

box.

7. The box would be enlarged by depressing the fifth button and moving

the joystick upward.

8. The box coordinates would be displayed on the 212 by either de-

pressing the third button on the joystick control box or by referenc-

ing code 10 on the 212.

9. The code 17 (ZOOM) would increase the enclosed area using the

master tape image data and output the area as a TV size image.

4-203

10. The new image would be dropped onto the color gun 1 disk by

referencing code 11 (DATA) again. The output tape unit from the

ZOOM phase would be entered as the input tape unit and the color

gun number would be 1.

4.43.6 Messages

JOYSTICK generates no special messages.

4.43.7 Flowchart

See Appendix C, Figure -C-43.

4-204

4.44 MSSCON - SPECIAL PURPOSE CONVOLUTION ROUTINE

4.44.1 Program Description

The task program MSSCON provides the capability for convolving an image

data set with a special-purpose, user-supplied weight matrix consisting of six

individual row matrices used cyclically in processing the image. In essence,

the program is a modification of program CONVOLVE which allows the use of

a particular type of weight matrix. Applications include all standard CONVOLVE

applications: simulation of sampling and blurring processes; digital filtering

for edge enhancement; and blur reduction. Output values can be generated for

each input pixel, or can be specified at larger increments at the user's dis-

cretion. The weight table is a sequence of six row matrices and must be spec-

ified in its entirety.

Initially, the input parameters are accessed and the amount of COMMON re-

quired for storage of the weight tables is computed. In order to maximize

processing efficiency, COMMON which is required for picture data is allocated

dynamically. For each of the six row weight matrices, separate sums of posi-

tive and negative weights are made, and testing of each sum is done to ensure

that none, after normalization, exceeds 32. 5 in magnitude, since a larger value

could cause an uncorrectable overflow. Each weight is then normalized so as

to make the sum of the weights in each row equal to zero.

The program next compares the dimensions of the specified region of the input

image with the size of the entire input image. If the specified region exceeds

the available input data, CONVOLVE reduces the specified numbers of lines

and pixels to fit the available data and writes an advisory message on the

printer. If the specified region extends to or near the edge of the available

data, the program makes provision for copying the boundary pixels outward to

minimize edge effects by ensuring that each element of the weight matrix will

always have a corresponding pixel value.

4-205

The program then compares the dimensions of the specified region with the

available COMMON size. If the entire input region will not fit into core at one

time, the program makes provision for breaking the image into horizontal

strips. Next, it computes the remaining constants required for reading, writ-

ing, shifting, and convolving the data. It passes the constants required by the

COMPASS subroutine ADDWTS by calling ADDPRM, which stores the param-

eters and modifies ADDWTS logic to provide maximum efficiency for the par-

ticular set of parameters.

The program reads input data into core until the available space is filled, and

copies data on the edges of the input image outwards, if required. In order to

generate one line of output, a call to subroutine ADDMSS is first required in

order to set pointers to the appropriate row matrix in the weight table.

The program calls subroutine ADDWTS to carry out the convolution to generate

one line of output. To compute each output pixel, ADDWTS first resets the

variable SUM to zero. For each weight, from one to four input pixels, depend-

ing on the symmetry of the weight array, are loaded and added together, and

the sum is multiplied by the weight. 'This product is added to SUM. When all

weights have been used, SUM is divided, with rounding, by 4096 to eliminate

the 12-bit fractional part. If the result is negative, it is replaced by 0, the

minimum gray level value; if the result is greater than the maximum allowed

value of 63, it is reduced to 63. The result is stored into the output buffer,

and the input pixel addresses incremented as specified by the user-supplied

parameter, and the next output pixel is computed.

The program writes each output line onto the output tape as soon as it is com-

puted. When all output lines have been computed for one block of input data,

the program reads an additional block of data into core, after first moving to

the top of core any lines from the bottom of the previous input block that are

needed for computing additional output. Processing continues one block at a

time until the entire output image is complete.

4-206

Execution time has three components: tape I/O, computation time, and disk

I/O (if any). Tape I/O is normally a small fraction of the total, because the

input and output tapes are read or written once without intermediate rewinds.

Computation time is about 20 microseconds per output pixel and per weight for

symmetric weight arrays, and about four.times as long for nonsymmetric ar-

rays; for increments other than one, the numbers of output lines and pixels

per line will equal the input numbers divided by the increments.

4.44.2 Parameters

MSSCON requires six special parameters and a table of weights, in addition

to the standard parameters that define the input image. These special param-

eters are:

1. NX = Number of columns in full weight matrix.

2. NY = Number of rows in full weight matrix.

3. INCRX = Increment between output pixels.

4. INCRY = Increment between output lines.

5. INDIV = Quantity by which input weights are to be divided for

normalization. If IDIV = 0, weights are divided by their

sum.

6. ISYM = Symmetry of weights: 0 = nonsymmetric; 1 = symmetric.

7. Weights, beginning with top line of array and left-hand end of line.

For ISYM = 0, NX times NY values must be supplied. For ISYM = 1,

only the upper (NY + 1)/2 rows and left-hand (NX + 1)/2 values in

each row are entered.

NX can have a maximum value of 256. The product of NX and NY may not ex-

ceed about 2000 for a nonsymmetric matrix or 3500 for a symmetric matrix;

these values correspond to square arrays approximately 45 x 45 and 60 x 60,

respectively.

4-207

4.44.3 Input

MSSCON requires a single input image tape in standard IDAMS format.

4.44.4 Output

MSSCON generates a single output image in standard IDAMS format. For large

images and weight arrays, the program requires disk storage for temporary

output.

4.44.5 Examples

A 100 x 100 section of a standard test pattern is convolved with a set of cyclical

weights designed to incrementally shift each successive line to the right by one

pixel further than the previous line, with the pattern repeating every six lines.

The appropriate weight matrix is:

0, 5, 10, 15, 20, 15, 10, 5

1, 6, 11, 16, 19, 14, 9, 4

2, 7, 12, 17, 18, 13, 8, 3

3, 8, 13, 18, 17, 12, 7, 2

4, 9, 14, 19, 16, 11, 6, 1

5, 10, 15, 20, 15, 10, 5, 0

Since only a 100 x 100 section is being used, the appropriate IDAMS task and

parameter cards are:

jMSSCON, (TEST1, 48, 1) (1, 1, 100, 100), (TEST2,47, 1), 7

8, i, ,1, 0, 0,

0r, 5, 10, 15, 20, 15, 10,
5

4-208

r1, 6, 11, 16, 19, 14, 9, 4

r2, 7, 12, 17, 18, 13, 8, 3,

r3, 8, 13, 18, 17, 12, 7, 2

4, 9, 14, 19, 16, 11, 6, 1,

5, 10, 15, 20, 15, 10, 5, 0

NOTE: Card format specifications are defined in the User's Guide. Param-

eters must be supplied in the order shown in Section 4. 5. 2.

4.44.6 Messages

Message Explanation

SUM OF WEIGHTS = 0 User has specified weight normalization

by dividing by sum of weights (IDIV param-

eter = 0) and this sum = 0; fatal error.

NY TOO LARGE FOR Insufficient core to hold both weight table
AVAILABLE CORE and NY data segments of minimum pos-

sible length; fatal error.

WEIGHT VALUES Sum of either positive or negative weights,
TOO LARGE after normalization, exceeded 32. 5, mak-

ing possible uncorrectable overflow; fatal

error.

4.44.7 Flowchart

See Appendix C, Figure C-44.

4-209

OVERLAY

CALL
BATCH

PROCESSOR
OVERLAY

ANY YES

Figure A-1. DRIVER Program Flowchart

A-1

ANY NO
MORE tTASKS

YES

CALL
NEXT TASK
OVERLAY

NC ANY
ERRORS

YES YES YES

ERROR/MSG
PROCESSOR RECOVERY
OVERLAY II\ MADE

-NO

EXIT

Figure A-1. DRIVER Program Flowchart

A-1

ENTRY
LBLRD

OBTAIN
LABEL DATA

FROM COMMON

REWIND
TAPE

READ FIRST/
NEXT LABEL
RECORD INTO

COMMON

DOES NO PRINT
LOGICAL UNIT WARNING

MATCH NO MATCH
? 1ON LUN NN

YES

COMPAREFATAL A
INPUT FILE NO. FATAL ABEN

TO NO. ON BAD FILE NO.
TAPEB

DOES
FILE NAME NO /FATAL ERROR

MATCH INPUT NAME FOUND ABEND
? NE INPUT NAM

Y E S

PRINT
LABEL
DATA

RETURN

Figure B-1. Subroutine LBLRD Flowchart

B-1

ENTRY
LBLWRT

OBTAIN LABEL
DATA FROM

COMMON

PRINT THE
OUTPUT
LABEL

CONTENTS

REWIND
TAPE

= COM e FATAL ERR
FILE NO. TO BAD LABE

FILE

NO CAN
NEXT FILE

BE USED

YES

WRITE NEW
LABEL ON
TAPE

Figure B-2. Subroutine LBLWRT Flowchart

B-2

ENTRY ENTRY ENTRY~SEEK K DPPUT DPFETCH

COMPUTE GETPARM GETPARM

CYLINDER ACCESS ACCESS

AND SECTOR PARAMETERS PARAMETERS

ADRESSES AND TEST AND TEST
ADRESSES FOR OVERFLOW FOR OVERFLOW

F SET UP
NO VALID SETUPSTART STARTAND

4 CYLINDER AND STOP BUFFER STOPBUFFER
I ADDRESSES ADDRESSES

YES I j
GETCELL GETCELL GETCELL

PASS ADDRESS REISSUE REISSUE SEEK
TO DISK SEEK TO TO DISK

CONTROLLER DISK SECTOR SECTOR

WRITE READ

I

SREJECTED ERRORS NEX CEL
REPEATEDL OCCURRED ADD

DATA DATAS

ti I

Figure B-3. Subroutine IDAMSDSK Flowchart (1 of 3)

B-3

GFTCEL TSTREADY

)N*NEC T SET 50CHANNEL7 MILLISECOND
EQUIP 2 MIWALISECOND
UNIT 0

< . --H.N I SEC AND SECTOR POSITIOER RETURN

NONO

WRITE 7 OMMAND NO NO 50 MSMESSAGE ACCEPTED

YES YES

WAIT NO ERROR YES
FOR REPLY RETURN CONDITION 3

GETNEXT GET PARM

COMPUTE
CYLINDER AND LOAD NUMBER

SECTOR ADDRESS OF CELLS TO
OF NEXT READ OR WRITE

AVAILABLE CELL

KN. -DCOUTE WIO L

IS BEYOND O .. E ISSUE ADEESS FES
E N D O F D IS K , S E E K T O AV E R F L

NEXTCELL LSTCELLTO
" - NETCL READOR WRITE

YES' NO

RETURN LOAD BUFFER
ADDRESS.

STORE RETURN
ADDRESS

RETURN

Figure B-3. Subroutine IDAMSDSK Flowchart (2 of 3)

B-4

ENTER
ERROR CODE
FOR REPEATED

REJECT

YES ENTER ERROR
LOST DATA CODE FOR R

RETURN

RT N
LOST DATA

NO

YEST FATAL /

ENTER ERROR CHEC RD EE EER

CODE FOR ERROE YES ECED ER CO

DISK OVERFLOW ??

NO

ADVISORY NO
RETURN METGE R*

DISK ERROR YES
PROCESSING

ROUTINE

S STATUS MESSA
CODE ONI CONSOLE

AND PRINTER

ADDRESS RITE Y ENTER ERROR
ERROR LOCKOUT CODE FOR

7 ? WRITE LOCKOUT

ENTER ERROR SAVE ENTER ERROR
CODE FOR BAD OR YES CYLINDER CODE FO

ADDRESS ERROR RESERVED AND TRACK AD O
TRACK NUMBER SERVEDTRACK

NO

ENTER RET RN
SAVE ERROR CODE
STATUS FOR UNKNOWN

CODE DISK ERROR

RETURN

Figure B-3. Subroutine IDAMSDSK Flowchart (3 of 3)

B-5

(ENTRY ENTRY ENTRY
CHECK READ WRITE

UNITST RI EAD ONE WRITE ONE /
CHECK THE LOGICAL TAPE LOGICAL TAPE

UNIT STATUS I RECORD RECORD

' DONE - -N ENTrRY
. READF

NREAD ON

NO

PARITY NO ES READ ONORMALE

ERROR RETURN

ENTRY

COUNTER FOR
THIS LUN

WRITE ONE
r- - LOGICAL

I E S TAPE RECORD

PRINT 'ES I PRINT PARITY
MESSAGE ERROR /

MESSAGMESSAGE

NO

TOO YES
SMANY PARITY ABNORMAL

ERRORS RETURN

RETURN

Figure B-4. Subroutine READRITE Flowchart

B-6

ENTRY
UTMCON 2 3

COMPUTE
YES COMPUTE ZONE LONGITUDE

IZONE = 0 NUMBER AND RELATIVE TO
? E FROM UTME CENTRAL

MERIDIAN

COMPUTE
CENTRAL COMPUTE COMPUTE
MERIDIAN GEOGRAPHIC

LONGITUDE LONGITUDE

COMPUTE
LONGITUDE INITIALIZE
RELATIVE ITERATION SET

TO CENTRAL COUNTER: IEROR = 0
MERIDIAN 1 i

COMPUTE RETURN
LONGITUDE YES SET N()

DIFFERENCE>45 IEROR = 507 - ND

A DF L

NO

LATITUDE YES SET IN-N() <1 YES
>90 DEG IERROR = 508

n ioG NO

RETURN LESS
COMPUTE THAN NO SET
E AND N 5 ITERATIONS IEROR = 509

YES

ADD FALSE INCREMENT RETURN
EASTING AND ITERATION

ZONE TO E COUNTER:
TO GET UTME i+1 -t i

Figure B-5. Subroutine UTMCON Flowchart

B-7

ENTRY
TWOFIT

NO SET IEROR = 607 MATINV
1<IDEG<5 POLYNOMIAL COMPUTE

DEGREE<1 POLYNOMIAL
OR TOO LARGE COEFFICIENTS

YES

NPT>1 NO SET IEROR = 608 SET

TOO FEW SINGULAR YES IEROR = 609
%IDEG+1)(IDEG+2) VALUES RESULT SINGULAR

GIVEN ? SOLUTION

YESNO

CLEAR
COEFFICIENT COMPUTE
MATRIX AND VARIANCE

VECTOR ARRAYS FOR EACH
SELECT POLYNOMIAL

1ST POINT

COMPUTE ALL RETURN
REQUIRED POWERS

OF X AND Y
SEPARATELY

COMPUTE X, Y,
AND Z CROSS

PRODUCTS; ADD
TO MATRIX
AND ARRAY

POINTS 1
USED

NO

SELECT NEXT
POINT

Figure B-6. Subroutine TWOFIT Flowchart

B-8

ENTRY 2
MATINV

COMPUTE MULTIPLY
ARRAY SIZE DETERMINANT
PARAMETERS VALUE BY

PIVOT

INITIALIZE REDUCE OFF- ALL TERMS IN ROW
DETERMINANT DIAGONAL VALUES OF COEFFICIENTS

IN PIVOT COLUMN AND RIGHT-HAND

PIVOT RECORD TO ZERO SID REDUCEDAT SAME TIME

FIND LARGEST
ELEMENT NOT ALL NO

IN ROW OR COLUMN COLUMNS 1
ALREADY USED REDUCED

AS PIVOT ?

iNV'ES NO

YES SET INVERSE NO
VALUE < 0 DETERMINANT MATRIX

=0 REQUESTED

NO YES

RECORD COLUMN RETURN INTERCHANGE
USED AS MATRIX COLUMNS

ISNEW YES STORE
PIVOT ON MAIN DETERMINANT

DIAGONAL VALUE

NO

INTERCHANGE RETURN
ROWS TO PUT

PIVOT ON 2
MAIN DIAGONAL

Figure B-7. Subroutine MATINV Flowchart

B-9

ENTRY 2
PERGEN

1=2

ISTOP = 2 PERTBL()
JSTOP= 2**MX PERT8L(I-1)

K = JSTOP+1 I = 1+2

JSTOP, I = 1+2

INDEX = 1 INDEX = INDEX+2 NO
J=2 I>K

NO YES
I >ISTOP

S INITIALIZE 7
PERTBL(INDEX) ODD-NUMBER

= -- ENTRIES IN RETURN
PERTBL(INDEX+2) PERTBL (PERMU- YES

=K TATION TABLE)

INDEX = INDEX
+ISTOP
J = J+2

INDEX =
INDEX+4

J = J+2

J >JSTOP NO

J >JSTOP
?YES

YES NO
JSTOP = 2

ISTOP= 2*ISTOP ADD ADDI- COPY ODD-
JSTOP = JSTOP/2 TIONAL BIT TO NUMBERED ELE-
INDEX= ISTOP+1 ODD-NUMBERED YES MENTS INTO

ENTRIES EVEN-NUMBERED
ELEMENTS

1=2

J= 2

Figure B-8. Subroutine PERGEN Flowchart

B-10

ENTRY
TRIGGN 1

N= 2xx(MX-2) TRGTBL KSTART
TRGTBL(N+1) = 1 -- IS SINE 1+KSTEP/2

TRGTBL(1)= 0 TABLE K - KSTART

NO TRGTBL(K) =
RETURN MX >2 SORT(1-TRGTBL(N2-2xK) 12.0)

YES

TRGTBL(N/2+1) TRGTBL(N2-K)
=SORT(.5) = SORT(1-

TRGTBL(K)xx2)

NO
ETURN MX >3 K - K+KSTEP

YES

N2=N+2 NO
N3 = N+3 K>KSTOP

I=I = 1+1

NO
IM3 = M>M3-3

YES

RETURN

Figure B-9. Subroutine TRIGGN Flowchart

B-11

ENTRY
FFTONE

INTERCHANGE
DATA VALUES
TO REVERSE

BIT-ORDER AND
NORMALIZE

M=MX
M2

= M/2
I = 2xxM2

COMPUTE J = PERTBL(I)

SNORMALIZING
FACTOR

YES

YES
J<I

NO

FNORM= FNORM
0.7071068/1 = 1.0/I

N = 2*1"1 N = I A = DATA(J)
B = DATA(J+1)

DATA(J) = FNORM*
DATA(I)

N1 = N/2 1
N2= N/4 DATA(J+1)

= FNORM*DATA(I+1)
DATA(I) = A*FNORM

DATA(I+1)
= B*FNORM

ISTOP = 2*N
I=1

I = 1+2

Figure B-10. Subroutine FFTONE Flowchart (1 of 3)

B-12

2 4

NO
I>ISTOP 1 JANGLE = J

YES

LSTEP= 2
LSTOP= 2*N YES JANGLE

KSTOP= 1 JANGLE >N2 = N1JAGLE
JSTEP=N

NO +

SINE =
1 =TRGTBL(JANGLE+1)

COSINE = TRGTBL
(N2-JANGLE+1)

PREPARE TO
CARRY THROUGH

ONE STEP
SOF FFT

COSINE<O0 YESCOSINE
? =-COSINE

STEP = 2*LSTEP
KSTOP= 2*KSTOP NO

STEP= JSTEP/2 "-COS' E
JANGLE = J COSIN

?E -COSINE

J=0
K = 1YES

5

4

K=I

Figure B-10. Subroutine FFTONE Flowchart (2 of 3)

B-13

7
5

L L+LSTEP
L=O

COMPUTE A
NEW PAIR

6 OF VALUES

NO
L 2 LSTOP_0

A = DATA(L+K)
B = DATA(L+K+1)

C = DATA(L+K YES
+KSTOP)

D = DATA(L+K
+KSTOP+1)

J = J+JSTEP
K

=
K+2

E = C*COSINE
-D*SINE

F = C*SINE
+D*COSINE

K > KSTOP 4

DATA(L+K)
= A++ YES

DATA(L+K+I)
= B+F

I = 1+1

DATA(L+K+KSTOP)
= A-E

DATA(L+K+KSTOP
+1) = B-F

I>M NO

7
YES

RETURN

Figure B-10. Subroutine FFTONE Flowchart (3 of 3)

B-14

ENTRY
CODE

PICK UP
COUNT; ADDR

OF INPUT, OUT-
PUT, TRANSLA-

TION TABLE

LOAD NTH
CHAR OF
INPUT

LOAD TABLE
VALUE FOR
NTH CHAR

STORE TABLE
ENTRY IN
OUTPUT

N = N-1

Figure B-A Subroutine CODE Flowchart

ALLCHARSB-
PROCESSED

N=0

YES

RETURN

Figure B-11. Subroutine CODE Flowchart

B-15

ENTRY
MOVE

PICK UP NO.
OF CHARS,
INPUT AND

OUTPUT ADDR.

COMPUTE NO.
OF 128 CHAR

BLOCKS TO
MOVE

MORE YES
BLOCKS TO MOVE1

MOVE BLOCK

NO

ANY YES MOVE
CHARSLEFT PARTIAL

TO MOVE BLOCK

NO

RETURN

Figure B-12. Subroutine MOVE Flowchart

B-16

ENTRY 2
CODE8TO6

STORE PARAM- INCREMENT
ETERS INTO OUTPU
MAIN LOOP COUNTER

INSTRUCTIONS

SET UP FULL YES
COUNT FOR COUNT RETURN

THREE BYTES DONE

NO

LOAD ONE BYTES IES NCREMENT

INPUT WORD DONE FOR INPUT BUFFER
THIS I ADDRESSWORD

NO

SHIFT AND
MASK TO

GET ONE BYTE

LOAD VALUE
FROM TABLE
USING BYTE

AS INDEX

STORE OUTPUT
CHARACTER

2

Figure B-13. Subroutine CODE8TO6 Flowchart

B-17

ENTRY
ADDLINE

CALCULATE
LINES

REQUIRED
FOR MESSAGE

ROOM >NO
NEEDED

YES

MOVE-
MOVE

ENTIRE
ARRAY UP

MOVE-
BLANK OUT
OLD DATA

MOVE-
MOVE NEW
DATA INTO
ARRAY

BUMP LINE
POINTER

IN COMMON

RETURN

Figure B-14. Subroutine ADDLINE Flowchart

B-18

ENTRY ENTRY ENTRY ENTRY
TTWCON CDCON STORE INTER

DISABLE PICK UP PICK UP PICK UP
INTERRUPT AND STORE AND STORE AND STORE
CONTROL PARAMETER PARAMETER PARAMETER

DATA DATA DATA

CLEAR CONVERT WAIT FORCLEAROUTPUT INTERRUPT READ FROM
AND CONNECT OUTPUT READ FROMCHAND CONNECT4 DATA TO THE 212CHANNEL 4 212 CODE

RETURN

BLANK OUT
REJECTED SCREEN AND NO BUSY

? OUTPUT
DATA

YES YES

WRITE NO WRITE
OPERATOR REJECTED NO OPERATOR
MESSAGE ? MESSAGE

YES

STORE SET
INTER WRITE

ADDRESS OPERATOR INTERRUPT
INCIT MESSAGE SWITCH IN

IN C COMMON

ENABLE CONVERT
INTERRUPT RECONVERT DATA TO
CONTROL DATA INTERNAL

BCD

RETURN RETURN RETURN

Figure B-15. Subroutine TTWLVE Flowchart

B-19

ENTRY JSTORE

PICK UP AND
STORE PARAM-

ETER DATA

IF 212 INTER-
UPT OCCURS

-DURING LOOP,
CONTROL GOES

TO INTER

CLEAR CHANNEL
0 AND SEND

FUNCTION CODE
TO DDI

(CHANNEL 0)

READ
JOYSTICK
VOLTAGE

VALUES

TW A BUTTON
DEPRESSED

YES

SSTORE BUTTON

2NDFigure B-15. Subroutine TTWLVE Flowchart (2 of 2)

PASSTHROUGH BUTTON"ON" NUMBER IN RETURN

NO NO

SAVE
BUTTON
NUMBER

Note: JSTORE is present only in the
TTWLVE program version

which resides in the JOYSTICK
overlay. It replaces the entry
STORE.

Figure B-15. Subroutine TTWLVE Flowchart (2 of 2)

B-20

ENTRY
BATCH

WRITE DECODE
HEADER FIELDS AND

MESSAGES SUBFIELDS

READ TASK DELTER YE
DATA FROM DIRETURNIR Y

CARDS OR 212 R
E 2

2
NO

NO

TASK

VALID FATAL ERROR, FIELD YES
NAME WRITE MESSAGE ERROR 2

AND EXIT

YES NO

YES RESET CARD/ PARAMS-
SWITCH INTERACTIVE DECODE

?/ MODE SWITCH PARAMETERS

NO

WRITE NOTE
NOTE AND CHECK

? CONTINUE LIMITS

NO

WAIT FOR ANY YESWAIT MANUAL ERRORS 2
? INTERRUPT <

NO NO

EN LBCRD-
END RETURN READLABEL

(OPTIONAL)

NO

1 RETURN)

Figure C-1. BATCH Program Flowchart

C-1

ENTRY
TESTGN

INITIALIZE
CONSTANTS

FOR COMPUTING LINE<21 YES YES ZERO
RESOLUTION OR>230 LINE = 231 OUTPUT

BARS ? BUFFER

NO NO

LBLWRT- MOVE LINE 2 2
WRITE OF BARS

OUTPUT INTO OUTPUT
LABEL BUFFER

GENERATE NO NO READY NO
RESOLUTION LINE<91 LINE = 91 FOR NEXT ROW 2

BARS ? ? OF BLOCKS

YES YES YES

INITIALIZE SET UP
ZERO VALUESFOR NEXT ROW

OUTPUT FIRST ROW OF GRAY
BUFFER OF BLOCKS BLOCKS

2

WRITE LINE
ON TAPE

LINE - YES YES

NO RETURN

INCREMENT
LINE INSERT ZERO OUTPOINTER POINT IMAGE POINT

AT PIXEL 240 IMAGE

Figure C-2. TESTGN Program Flowchart

C-2

ENTRY
LIST

INITIALIZATION

LAST YES REWIND
LINE TAPE

NO

READ RETURN

INPUT
LINE

PRINT NO
THIS
LINE

YES

SUPPRESS
SPACING

(OPTIONAL)

PRINT
THE
LINE

Figure C-3. LIST Program Flowchart

C-3

ENTRY 1
CONTRAST

IS
USE YES s NOFIRST NEW

NO YES

IS TRANSFER TABLE(1) =
TABLE USER-SUPPLIED PAIR (2,1)

SUPPLIED TABLE TO
7 TABLE ARRAY

NO 2

NO TRUNCATE NO Is NO
COORDINATES TRUCAT NONEXT PAIR NO

YES YES YES

COMPUTE
APPROPRIATE 5 XCOORD

TABLE -PAIR(1,J)

Is YES
FIRST NEW
VALUE>O

OLD COORD
NO COMPUTE TABLE XCOORD YES NOT STRICTLY

FROM COORD. <0 INCREASING

PAIRS ERROR CODE
=9

NO

IS COORDINATE SCOPE --= ERROR

FIRST OLD NO VALUE GE63 [PAIR(2,J+1) RETURN

VALUE2 0 OR LTO -PAIR(2,J))/
AND<63 ERROR CODE XCOORD

-/ 1 =8

YES

INDX=
FILL TABLE ERROR PAIR(1,J) +

WITH ZEROES RETURN 2 YCOORD=
UP TO PAIR PAIR(2,J) +

(1,1) SCOPE

S4

Figure C-4. CONTRAST Program Flowchart (1 of 2)

C-4

4 6I

READ
TABLEIINDX) ONE INPUT

= YCOORD+0.5 RECORD

CODE TRANS-
INDX NO INDX= INOX+L END NO LATE DATA

= PAIR(1,J+) YCOORD
= OF FILE FROM INPUT

? YCOORD+SLOPE ? LINE INTO
OUTPUT LINE

YES YES

COMPUTE
NO ACTUAL WRITE

J= N-1 J= J+1 2 NUMBER OF ONE LINE
? LINES PRO- ON OUTPUT

CESSED

YES

O FILL REMAIN- WERE S MORE YES
PAIR(1,J+1) N DER OF TABLE LL REQUESTE RECORDS TO

=63 WITH PAIR LINES PRO- TRANSLATE
(2J+1) CESSED 7

YES v 5 7 NO NO

LBLWRT STORE RETURN
WRITE LABEL CORRECTEDNUMBER IN

ON OUTPUT OUTPUT LABEL

7

SKIP WRITE MSG-SKIP ONLY NNNN

N ~LINES?UNWANTED ONLY NNNN
INPUT PROCESSED

RECORDS N RNOT LE11
AND GEO

ERROR CODE
=7

LBLWRT
REWRITE

6 OUTPUT
LABEL RECORD

TERROR RETURN

RETURN

Figure C-4. CONTRAST Program Flowchart (2 of 2)

C-5

ENTRY
CONVOLVE

MAKE DYNAMIC
ALLOCATION OF
COMMON FOR

DATA AND
WEIGHTS

STORE
WEIGHTS AND
NORMALIZE

THEM

FIND SUMS
OF POSITIVE,
NEGATIVE,
AND ALL
WEIGHTS

LBLWRT
YES YES WRITE OUT-

TO SUM = 1 SPE-? RETURN LABEL
CIFIED

NO NO

USE USER- USE SUM DETERMINE
SUPPLIED AS WEIGHT LINE EXTEN-
WEIGHT DIVISOR SIONS REQUIRED

DIVISOR IDIV

DETERMINE
CAN UPWARD AND

NORMALIZED

AUSEUNCORRECT-
/

RETURN REQUIRED

FLOW

NO

COMPUTE
PARAMETERS

NORMALIZE FOR READING
WEIGHTS USING FROM INPUT
12-BIT FRAC- TAPE
TIONAL PART

2

Figure C-5. CONVOLVE Program Flowchart (1 of 5)

C-6

2 3

DETERMINE
METHOD FOR

LOADING DATA
INTO CORE

ADDPRM
WILL CORE LOAD SET READ LINE

ENTIRE INPUT YES EQUALS PARAMETERS OF DATA
FIT INTOCORE ENTIRE AND LOGIC FROM TAPE

7 IMAGE FOR ADDWTS INTO CORE

NO

COMPUTE COMPUTE PARAM-
NUMBER OF ETERS FOR EXTEND LINE
FULL INPUT CONVOLVING AS REQUIRED

LINES WHICH DATA ONE LINE BY PARAMETERS
FIT IN CORE AT A TIME

AS LARGE AS YES CORE LOADEQUALS BLOCK LINE NO LINE YES
NUMBER OF LINES OF FULL SEGMENTATION SEGMENTATION 6

OF WEIGHTLINES REQUIRED REQUIREDINPUT LINES

NO YES NO

COMPUTE DPSEEK
LONGEST SEG- FIND FIRST LAST YES
MENT OF LINE CELL ON LINE OF INPUT

WHICH WILL FIT DISK READ

NO

IS IT FIND STARTING YES
AT LEAST ONE ERROR LINE OF DATA CORE FILLEDDISK CELL RETURN ON INPUT TAPE?

YES NO

COMPUTE PARAM-
ETERS FOR

TEMPORARY COPY LINES
STORAGE OF UP OR DOWN

IMAGE ON DISK AS REQUIRED

CORE LOAD
EQUALSBLOCK 5

OF LINE 3
SEGMENTS

Figure C-5. CONVOLVE Program Flowchart (2 of 5)

C-7

5 6 7

ADD WTS °PPUT
GENERATE ONE TRANSFER POINT TO

LINE OF CON- EXTENDED FIRSTSEGMENT
VOLVED OUTPUT LINE TO DISK OF EACH LINE

ON DISK

DPSEEK/DPFETCH
WRITE LINE NO IS IT FILL CORE WITH

INTO OUTPUT FIRST LINE SEGMENTS OF
TAPE ? CONSECUTIVE

INPUT LINES

YES

DPSEEKIDPPUT I DPSEEK/DPFETCH
ALL NO WRITE LINE'ON FIRST YES RETRIEVE

DATA IN CORE DISK ADDITIONAL SEGMENT OF PARTLY COM-
PROCESSED TIMES TO ACHIEVE LIES PLETED OUTPUT

/ UPWARDS EXTENSION ? LINE

YES NO

ADDWTS
ENTIRE YES NO ENTIRE GENERATEONEINPUTIMAGE INPUT IMAGE LINE SEGMENTPROCESSED ON DISK OF CONVOLVED

? OUTPUT

NO NO 10
YES

SHIFT TO TOP 'WRITEFO TOWRITE LINE ON LAST YES COMPLETEOF DATA NEEDEDANY DISK ADDITIONAL SEGMENT OF OUTPUT LINEDATA NEEDED TIMES TO ACHIEVE LINE ON TAPEFOR ADDITIONAL DOWNWARDS OT

4 IDPSEEK/DPPUT

DISK FILLED COMPLED
OUTPUTOUTPUT LINE

NO

NO ALL YES
DATA IN CORE 9

PROCESSED

Figure C-5. CONVOLVE Program Flowchart (3 of 5)

C-8

9
SHIFT TO TOP

ALL NO OFCOREANYLINES ON DISK DATA NEEDED FOR 8PROCESSED NEXT BLOCK
? OF OUTPUT

YES

ADDNPO
REDUCE

ALL NO IS ENEXT YES NUMBER OFSEGMENTS PRO- SEGMoNT THE
CESSED LAST OUTPUT PIXELSCSLSGENERATED

BY ADDWTS

YES NO
1020

ENTIRE INITIALIZE POINT TO
INPUT IMAGE NO CONSTANTS NEXT SEGMENT
PROCESSED FOR REFILLING OF EACH? DISK LINE ON DISK

YES

ADDNPO
RESET NUMBER a

RETURN OF OUTPUT
PIXELS TO
ORIGINAL
VALUE

4

Figure C-5. CONVOLVE Program Flowchart (4 of 5)

C-9

ENTRY ENTRY
ADDWTS ADDPRM

INPUTIAL COMPUTECON- STORE CONSTANTSINPUT COMPUTE CON- ROUN DOFF AND SET BRANCHES
ADDRESS, TRIBUTIONS FRACTIONAL IN ADDWTS AS
OUTPUT OF REMAINING PART OF RESULT REQUIRED BY

COUNTER WEIGHTS PARAMETERS

SET LOAD
FROM ADDRESSES REPLACE YES RESULT ENTRY

FOR FIRST RESULT NEGATIVE ADDNPO
NEXT OUTPUT BYZERO ?

PIXEL

NO

NO REPLACE S T SET NUMBER
RESULT BY RESULT OF OUTPUT

WEIGHTS 63 (MAXIMUM >63 PIXELS IN? GRAYVALUE) ADDWTS

YES 2 NO

NUMBEROF YES COMPUTECON- MORE NO
AN COLUMNS TRIBUTI ON OUTPUT PI XELS RETURN
BOTH ODD FROM CENTRAL TO COMPUTE

WEIGHT

NO YES

ONLY YES YES MORE NO
SINGLE COLUMN WEIGHTS

OF WEIGHTS TOUSE

NO 3

WG OED - FROM CENTRAL MORE WEIGHTS

SINGLE COLUMN

NO YES

Figure C-5. CONVOLVE Program Flowchart (5 of 5)

C-10

ENTRY 1
EXPAND

DETERMINE
ACCESS LINE EXTEN-

PARAMETERS SIONS
REQUIRED

DETERMINE

WEIGHT YES ERROR DOWNWARDS IMAGE
DIVISOR =0 RETURN EXTENSION

? IREQUIRED

NO

DYNAMICALLY LBLWRT
ALLOCATE CORE /WRITE LABEL

STORAGE FOR ON OUTPUT
WEIGHTS, DATA IMAGE TAPE

TRANSFER
WEIGHTS FROM

PARAMETERS TO
WEIGHT TABLES

NORMALIZE
WEIGHTS USING

12-BIT FRPAC-
T!ONAL

PRECISION
CHECK WHETHER
UNCORRECTABLE

OVERFLOW
COULD OCCUR

DETERMINE SUM
OF EACH SUBSET
WHICH MAY BE

ASSOCIATED WITH
ONE OUTPUT PIXEL

NO

Figure C-6. EXPAND Program Flowchart (1 of 4)

C-11

2 3

DETERMINE READ
CORE LOAD ONE LINE

PARAMETERS PROCESS OF INPUT
IMAGE IN

BLOCKS OF CON-
SECUTIVE LINES

ENTIRE LINE
IMAGE FITS No EXTENSIONS YES EXTE

INCORE REUIRED LINE AS

SYES NO

SPECIFY FULL COMPUTE NUM-
NUMBER OF BER OF LINES LAST YES COPY INTO

LINES FOR FOR EACH INPUT LINE LINES BELOW AS

FIRST LOAD CORE LOAD READ REQUIRED AND

T _ NO

COMPUTE
PARAMETERS NO CORE SET FLAGS
FOR CARRYING FILLED FOR LAST

OUT EXTENSION LINE READ

YES

SET BRANCHES IS THIS YES COPY FIRST
E CONSTANTS FIRST BLOCK LINE UPWARDS
IN PXLBLD IN CORE AS REQUIRED

NO

LOCATE
FIRST 4

INPUT LINE

Figure C-6. EXPAND Program Flowchart (2 of 4)

C-12

4

INITIALIZE
POINTERS FOR

PROCESSING
DATA IN CORE

PXLBLD
CREATE ONE

LINE OF
INPUT

WRITE LINE
ON OUTPUT

TAPE

ALL NO
DATA IN CORE

PROCESSED

YES

SAVE ANY LINES
ALL NO IN CORE NEEDEDINPUT TO BE FOR NEXT OUTPUT

PROCESSED BY MOVING TO
? TIP OF CORE

YES

RETURN 3

Figure C-6. EXPAND Program Flowchart (3 of 4)

C-13

ENTRY 2 ENTRY
PXLBLD PXLPRM

INITIALIZE ROUND OFF SET BRANCHES
ADDRESSES FRACTIONAL AND CONSTANTS

AND COUNTERS PART OF AS REQUIRED
FOR LINE RESULT BY CONSTANTS

INITIALIZE RESULT YES REPLACE RETURN
FOR ONE NEGATIVE RESULT BY

OUTPUT PIXEL ? ZERO

NO

LOAD ONE YES REPLACE
INPUT RESULT> 63 RESULT BY 63

CHARACTER 7 (MAXIMUM
GRAY VALUE)

MULTIPLY BYMULTIPLY BY STORE RESULT
APPROPRIATE IN OUTPUT
WEIGHT AND BUFFER
ADD TO SUM

MORE NO LAST NO
WEIGHTS TO USE 2 OUTPUT PIXEL 1

? DONE

YES YES

POINT TO
NEXT WEIGHT RETURN

AND INPUT
CHARACTER

Figure C-6. EXPAND Program Flowchart (4 of 4)

C-14

SHAPRM
PASS LOOP
CONTROL
VALUES

LBLWRT-
WRITE

ENTRY LABEL ON
SHADE OUTPUT

ANY YES COMPUTE
PARAMETER ABEND COEFFICIENTS

ERRORS FOR BILINEAR
? INTERPOLATION

NO

NO REAQA
CALIBRATION ABEND LINE OF

GRID OK INPUT DATA

YES

DISCARD SHADIT -
UNNEEDED CORRECT

CALIBRATION INTENSITY
POINTS VALUES

EVALUATE
SLOPE AND WRITE

INTERCEPT AT LINE OF

EACH GRID OUTPUT

POINT

YES

SET UP END OF
ANY NO CONSTANTS THIS CALIBRA- YES MORE

OVERFLOW TO CONTROL TION RECTANGLE LINES

YES NO NO

ABEND 1 MODIFY RETURN

COEFFICIENTS
FOR NEXT LINE

Figure C-7. SHADE Program Flowchart (1 of 2)

C-15

ENTRY ENTRY
SHAPRM SHADIT

STORE
PARAMETERS SAVESLOPE
INTO SHADIT AND INTERCEPT

INSTRUCTIONS VALUES

RETURN
PICK UP

FIRST/NEXT
PIXEL

COMPUTE NEW
VALUE USING

SLOPE AND
INTERCEPT

STORE PIXEL
BACK

INTO LINE

NEED NO INCREMENT
NEW CALIB. SLOPE AND

COLUMN INTERCEPT

YES

MORE
COLS. TO NO
PROCESS RETURN

YES

PICK UP
NEW SLOPE

AND INTERCEPT

Figure C-7. SHADE Program Flowchart (2 of 2)

C-16

ENTRY
:FT

ERROR MSG PERGENM>9 YES SPECIFIED CREATE PERMU-
ORMY> 9ARRAY SIZE TATION TABLE

TOO LARGE IN PERTBL

NCELL =
NO.OF

CELLS/ROW

ABEND
NX 2**MX NCELL=
NY,**MY 1+(NX-1)/16

ISTOP = NY

SNX = NO. OF COLS
NY = NO.OFROWS

TERAT = 1 IDLOC = 1
I=1

OF FIRST I FIND
QUADRANT SINES RECORD

IN TRGTBL I IDLOC

DPFETCH
YES READ NCELL

ISIGN >O 2 RECORDS (1
SLINE) INTO

DATA

CHANGE SIGN DPSEEK
OF ALL POSITION

VALES IN DISK AT
TRGTBL CELL DISK

) FFTONE
TRANSFORM

LINE IN
DATA

Figure C-8. FFT Program Flowchart (1 of 4)

C-17

DPPUT
WRITE A YES DPSEEK
LINE ONTO ITERAT = 2 FIND CELL

DISK ? IDLOC

IDLOC= STORE 0
IDLOC+NCELL ITERAT = 2 INTO DATA(1)

I = 1+1 TO DATA(4)

I> NO YES DPPUTISTOP Y 3 MX=MY 3 CELL FROM
? F YESDATA

YES NO

IDIM NO 1 END
>1 5

YES

FLIP

INTERCHANGE
ROWS AND COLS.
OF DISK ARRAY

YES
MX=MY 6

NO

INTERCHANGE
VALUES OF MX
AND MY; ALSO

NX AND NY

Figure C-8. FFT Program Flowchart (2 of 4)

C-18

PLACE BLOCK INTO
POSITION IN

FLIPPED ARRAY;
ER IF ARRAY NOT

ENTRY 4/ SOUARE, USE
FLIP I TEMP SPACE

MX = (NX-1)1/16+1
MY = (NY-1)/16+1 YES YES

N = MX*MY J>16 MX MY 6
N16= N*16 1 ?

READ 16 CELLS
FROM DISK, - - NO NOEXCHANGE ROWS

AND COLUMNS

INITPT= DPFETCH
1=0 READ ONE IDLOC=

DISK CELL IDNEW+N16
INTO BUFF

IY = (I-1)/MX IDLOC
IX = I-IY*MX IDLOC+MX IPT = INITPT

J=1

MX=MY YES DPSEEK
AND IXY 2 NFIND DISK

? CELL FOR DPSEEK
NEW IDLOC FIND DISK

NO CELL IDLOC

IDOLD=IX
+16*MX*IY K-1
IDNEW= IY DPPUT

+16*MY*(IX-1) FILL ONE
CELL FROM
DATA(IPT)

DATA(IPT) = BUFF(K]
DATA(IPT+I) =

IDLOC=IDOLD BUFF(KH) IPT=
IPT+32 K = K+2 IPT = IPT+32

IDLOC
IDLOC+MY

3 J = J+1

DPSEEK NO K>32
FIND DISK ?
CELL IDLOC J>16 NO

YES

IPT = IPT-510 YES
IPT= INITPT J= J+1

J=1

Figure C-8. FFT Program Flowchart (3 of 4)

C-19

5 8 8

YES

INITPT =1 NO IITPT = I t ETR

? IDLOC=IDNEW

NO
JESYS L- MOVE FLIPPED

ARRAY INTO

DPSEEK"/

FINAL LOCATIONCELL I

DPPUT
WRITE 32

CELLSFROM TEMP SPACE

7/

INITPTP = 53NO

NO IDLOC= IDNEWIDLOC

> NO P16+1

8 = +3DPSEEK

FIND IDLOC

ES

DPETCH

Figure C-8. F FT Program Flowchart (4 of 4)

REC-AD20CELLS

DPSEEK
6 1 FINDCELL I

DPPUT
WRITE 32
CELLS

INITPT > 1 NO
OR INITPT 513

x IY+ 1IDLOC= IDNEW

? I 11+32

YES

IDLOC= IDOLD

I > N 16 N

YES

RETURN

Figure C-8. FFT Program Flowchart (4 of 4)

C-20

ENTRY
FPCON

.OR. ICODE(I) END0=

NO

/ PRINT
NO 'ILLEGAL

1 CODE(-) TRANSFER/i22 CONVERSION
? CODE'

YES

PRINT ABEND
'STEPI-

TRANSFER/CON-
VERSION CODE =

ICODE(I)'II I
FiiCN-

CARRY OUT
PROCESS

ii= ICODE(I)

I = 1+1

Figure C-9. FPCON Program Flowchart (1 of 7)

C-21

ENTRY
FO1CN 1

TO FO6CN

SET LOG, < LOC READ ILINE

INPUT LABEL RESULTSINTO LBLIN TO DISK

CREATE TABLEFOR CONVERTINGAND CONVERT
CHARACTERS TO TOFLOATNG

FLOATING POINT

ENTER VALUES RETURN

MIN ON LAST
DISK CELL

COMPUTE CON-STANTS FOR BN
ACCESSING TAPE,

CONVERTING DATA,O
AND TRANSFER-S

RING TO DISK CELL

1

Figure C-9. FPCON Program Flowchart (2 of 7)

C-22

ENTRY F07CN,
FO0CN. F17CN,. 4

F18CN

SET IENTRY TO CONVERT DATA
1,2,3 AND 4 FOR YES IN BUFFIN FROM

FO7CN,F17CN,F08CN, IENTRY =2 MODULUS-PLUS-
AND F18CN ? PHASE TO REAL-

RESPECTIVELY PLUS-IMAGINARY

NO

READ A YES CONVERT DATA
LINE FROM IENTRY =3 IN BUFFIN FROM
DISK TO ? MODULUS TO
BUFFIN MODULUS-SQUARED

NO

CONVERT DATA
1= 1 IN BUFFIN FROM

MODULUS-SQUARED
TO MODULUS

3 5

WRITE
X = BUFFIN(I) RESULTS

Y = BUFFIN(I+1) BACK INTO
DISK

IS YES ANY YES

NO TI LINE
IENTRY =1 4 THIS LINE MORE LINES 2? FINISHED ON DISK

YES NO NO

CONVERT DATA RETURN
REAL-PLUS-

IMAGINARY TO I = I+ISTEP
MODULUS-

PLUS PHASE

5 3

Figure C-9. FPCON Program Flowchart (3 of 7)

C-23

ENTRY
FO9CN, F19CN

HOUSEKEEPING

READ A
LINE FROM
FIRST HALF

OF DISK FILE

SHIFT ORIGIN
OF DATA IN

LINE FROM CENTER
TO CORNER OR

VICE VERSA

COMPLETE READ A
SHIFTING OF 2 LINE FROM
LINES OF DATA/ - SECOND HALF

/ OF DISK FILE

YES

WRI TE
RESULTS

BACK IN RE-
VERSE ORDER

AFETCH MORE
ANY YES LINES DATA

MORE LINES FROM 1ST AND
2ND HALVES

NO

RETURN

Figure C-9. FPCON Program Flowchart (4 of 7)

C-24

ENTRY
F1OCN, F20CN

SET IENTRY TO
1 IF F10CN,
2 IF F20CN

HOUSEKEEPING

READ A
LINE FROM
DISK INTO

BUFF

YES CREATE A FULL
IENTRY=2 ARRAY OF

USQUARED-MODULUS
VALUES

NO

CREATE A FULL
ARRAY OF
MODULUS
VALUES

WRITE
RESULTS
BACK

ONTO DISK

YES
THERE MORE

DATA

NO

RETURN

Figure C-9. FPCON Program Flowchart (5 of 7)

C-25

ENTRY
F11CN-F16CN 6

DIFFERENT
VALUES ARE SET
FOR LOG AND LOC CREATE DATA

DEPENDING ON FOR OUTPUT
THE ENTRY POINT LABEL

HOUSEKEEPING WRITE
LABEL ON

OUTPUT TAPE

FIND MAXIMUM DETERMINE
AND MINIMUM PARAMETERS FOR

VALUES OF READING, CON-
COMPLEX ARRAY VERTING, AND

WRITING DATA

IF NO MAXIMUM
HAS BEEN FOUND,
ASSUME INVERSE READ
TRANSFORM WITH DISK INTO

NORMALIZED DATA BUFFIN

GENERATE TABLE
OF UPPER LIMITS YES

FOR LINEAR LOC>0
SCALING

VALUES LESS FIND MAXIMUM
THAN XSTART AND MINIMUM

WILL BE SCALED IF NOT DONE
TO ZERO PREVIOUSLY

6 8

Figure C-9. FPCON Program Flowchart (6 of 7)

C-26

8 9

WRITE DATA
TO TEMPO-

SCALE THE RARY DISK
LINE OF DATA STORAGE

IN BUFFIN

FIND SCALED IDTEMP=
VALUE BY IDTEMP+NCTEMP
PLACING X

RELATIVE TO
VALUES IN TABLE

NO IS IDTEMP NO DATA IN ILINE IDT2
COMPLETELY CON-

VERTED

YES
YES

READ CON-

YES VERTED DATA
LOC>0 INTO BUFFIN

NO

MOVE SCALED
DATA FROM

YES TRANSFER DATA BUFFIN
LOC<O FROM BUFFIN TO OTBUFF

TO OTBUFF

NO I

AVERAGE
WRITE SCALED DATA

RESULTS IN OTBUFF 10
OUT ON

TAPE

WRITE ARE YES
RESULTS THERE ANY

YES OUT ON MORE LINES
ILINE!NY RETURN TAPE

NO

10 RETURN

Figure C-9. PPCON Program Flowchart (7 of 7)

C-27

ENTRY
SMOOTH

NX NO FATALERROR 1
AND NY NX OR NY

.GT. O ZERO OR
NEGATIVE

YES DPSEEK
LOCATE 1ST

CELL ON DISK
NO FATAL ERROR FOR INPUT

IDIM TABLE
= 3 OR 5 DIMENSION

? NOT 3 OR 5

YES

I=1'

NO FATAL ERROR
IDIV WEIGHT
NE.0 DIVISOR ZERO

OR NEGATIVE

YES
DPFETCH

READ NCELL
SET MATRIX ERROR CELLS INTO
CONSTANTS RETURN CORE (1 LINE)
BASED ON

PARAMETERS

DPSEEK

LINE YES SET CONSTANTS OCATELL ON DIESKXT
SEGMENTA- FOR SEGMENTED
TION NEC- LINES FLAGSINPUT

ESSARY TO SAVE REST

NO

EXTEND YES EXTEND LEFT

SET CONSTANTS LINES LEFT EDGE POINTS

TO FIT WHOLE ? LEFT ONCE

LINES INTO
CORE NO

NO

COMPUTE EXTEND YES EXTEND RIGHT

NUMBER OF LINES RIGHT EDGE POINTS
LINES THAT ? RIGHT ONCE

CAN FIT
INTO CORE NO

Figure C-10. SMOOTH Program Flowchart (1 of 4)

C-28

34

ALL NO DPSEEK
LINES IN 1= |4 DPSEEK

CORE LOCATE CELL
?/FOR OUTPUT

YES

CORE NO
FILLED 2 J=1

WERE YES
THEY SEG- YES

MENTED

NO COMPUTECOUNTERSFOR COMPUTENEW
SAVED OR POINT USING

STORED DATA WEIGHT MATRIX
EXTEND ANDSURROUND-

BOTTOM LINE ING VALUES
DOWNWARD

ONCE

Is YES
THIS LARGEST XMAX X

~XMAX =
X

VALUE SO

YYES

EXTEND FAR
DOWN AGAIN ?

SNO

NO

IS
Is YES

THIS SMALLEST XMIN = X

EXTEND YES EXTEND TOP VALUE SO

LINE UP EDGE POINTS
? UP ONCE

NO

NO

STORE NEW
VALUE INTO

SET POINTERS CONVOLVE BUFFER BUMP
INTO BUFFER ONE LINE AT COUNTERS

I=1 A TIME AND J
=
J+1

WRITE IT OUT

ALL
NO POINTS IN

4 LINE SMOOTHED

YES

5

Figure C-10. SMOOTH Program Flowchart (2 of 4)

C-29

5 6 7 (

YES NODPPUT LAST LAST
WRITE LINE STRIP 9 STRIP 8

T O D IS K?

NO YES

DECREASE RESET
BUMP ALL NUMBER OF COUNTERS

COUNTERS LINES TO TO HANDLE
I = 1+1 BE READ IN LAST STRIP

8 FLAG YES SET FLAG TO
LAST NO SET TO EEND 0, SET COU

LINEINCORE TERS TO INISH
DONE SMOOTHING LIES

YES NO

LINES YES SET NEW
IN BUT NOT COUNTERS
EXTENDED FOR NEXT SET DPFETCH

DOWN OF LINES READSAVED
POINTS INTO

STOP OF CORE
NO

LINES YES
EXTENDED AND 6 DPPUT

DONEDON LOCATE NEXT
CELL FOR

NO INPUT

DPSEEK
FIRST NO LOCATE
STRIP TEMPORARY

? DISK AREA RECOMPUTE
RECOMPUTE-

YES POINTERS

DPSEEK DPPUT
LOCATE STORE POINTS

NEXT CELL FROM CORE
FOR INPUT

MOVE BOTTOM 2
LINE(S) TO

TOP OF CORE

Figure C-10. SMOOTH Program Flowchart (3 of 4)

C-30

BUMP
TEMPORARY DPSEEK
COUNTERS /LOCATE ONE

CELL PAST
LAST OUTPUT

CELL

ONLY SET FLAG
ONE STRIP YES NOT TO MOVE
HASBEEN ANY POINTS DPPUT

SMOOTHEDLEFT STORE XMAX
AND XMIN
ONTO DISK

LAST N
STRIP TO BE
PROCESSED END

YES

RESET FLAG
TO EXTEND
LINE RIGHT

EXTEND NO I=0
LINES UP

YESDPSEEK /DPSEEK
LOCATE LOCATE
STORED DISK CELL

LINES FOR OUTPUT

READ STORED EDGE VALUES
TLIN INOTOE /FROM STORAGE

POINT TO RECOMPUTE
START OF POINTERS

LINE

Figure C-10. SMOOTH Program Flowchart (4 of 4)

C-31

ENTRY
CXPACK 2

CALCULATE
HOUSEKEEPING SUMR, SUMI,

DIFFR, DIFFI

PACK OR
CREATE SINE UNPACK EACH

TABLE IN COMPLEX VALUE
SINE USING M IN BUFF

INITIALIZE WRITE
COUNTERS RESULTS
AND FLAGS BACK ONTO

DISK

1 ANY YES
MORE LINES

ON DISK
1

IS YES INITIALIZE NO

SET MIN VALUES
? L O WRITE MIN

AND MAX
NO VALUES ONTO

DISK

REA 2 LINES
FROM DISK FOR

1ST AND LAST
ONLY ONE IS RETURN

READ

SEPARATE
COMPUTATION

FOR 1ST COMPLEX
VALUE ON EACH

OUTPUT LINE

Figure C-11. CXPACK Program Flowchart

C-32

ENTRY 1
ERROR

FATAL NO GETMSG- USE ERROR CODE
ERROR "NORMAL TO FIND

END OF JOB" MESSAGE

YES

PRINT GETMSG-
INITIALIZE MESSAGE PICK UP
CONSTANTS ARRAY SPECIFIC

MESSAGE

GETMSG- RETURN PRINT
"FATAL ERROR MESSAGE
IN AAAAAAAA" ARRAY

ERROR YES GETMSG- SSWTCH-
IN SU YES "AAAAAAAA CHECK

ROUTINE WAS IN SENSE
N EXECUTION" SWITCHES

NO

GETMSG- ERROR NO
"ERROR CODE RECOVERY
AND MEANING WANTED
FOLLOW" 7

YES

GETMSG- RESET
"IEROR = ERROR

NNNN" FLAG

1 RETURN

Figure C-12. ERROR Program Flowchart (1 of 2)

C-33

ENTRY
GETMSG

PICK UP
ARRAY ADDR,
MSG POINTERS

I IC.M S

Is YES PICK UP
TASK CODE MISC. MES-

0 SAGES ARRAY7J
NO

IS YES PICK UP
SUBROUTINE TASK

CODE 0 NUMBER

NO

LOAD LOAD TASK
SUBROUTINE MESSAGE

MESSAGE BLOCK
BLOCK ADDR ADDRESS

ADD IN THE

DISPLACEMENT

MOVE
MESSAGE

INTO OUTPUT
ARRAY

RETURN

Figure C-12. ERROR Program Flowchart (2 of 2)

C-34

ENTRY
REDUCE 1

COMPUTE
REDUCTION READ

FACTORS AND LINE OF
EDGE FILL INPUT

CONSTANTS

LBLWRT- REDPXL-
WRITE COMPUTE
OUTPUT REDUCED
LABEL OUTPUT

LOAD FILL NO READY
CHARACTERS TO

IN OUTPUT AVERAGE
BUFFER ?

YES

WRITE REDAVE-
FILL AVERAGE

LINES BETWEEN
AT TOP LINES

REDPRM-
SET WRITE

SUBROUTINE OUTPUT
CONSTANTS LINE

SKIP
UNWANTED YES MORE

INPUT INPUT
LINES 7

NO

1 WRITE
FILL LINES
AT BOTTOM

RETURN

Figure C-13. REDUCE Program Flowchart (1 of 2)

C-35

ENTRY ENTRY ENTRY
REDPRM REDPXL REDAVE

COMPUTE ADD PIXELS PICK UP
CONSTANTS FOR GIVEN A WORD
FOR REDPXL REDUCTION FROM
AND REDAVE FACTOR BUFFER

STORE DIVIDE BY
RESULTS SAVE

INREDPXL RESULT REDUCTION

AND REDAVE IN BUFFER FACTOR
SQUARED

RETURN YES MORE STORE
PIXELS IN RESULT

LINE IN OUTPUT
LINE

NO

RETURN YES
MORE
DATA

NO

RETURN

Figure C-13. REDUCE Program Flowchart (2 of 2)

C-36

ENTRY ENTRY
HISTO 1 TLYPRM

TLYPRM- COMPUTE
SET STORE X'S CONSTANTS

PARAMETERS IN OUTPUT FOR USE
FOR TALLY LINE BY TALLY

READ PRINT STORE
A LINE ONE LINE RESULTS
OF DATA OF IN TALLY

HISTOGRAM

TALLY- RETURN
TABULATE

GRAYLEVEL MORE X'S TO YES
VALUES FOR PRINT

THIS LINE ?

NO ENTRY
TALLY

MORE S PRINT
INPUT LINE OF
LINES BIN LABELS

PICK UP
PIXEL

NO VALUE

PRINT
COMPUTE NUMERIC

NORMALIZED FREQUENCY
FREQUENCIES TABLE

INCREMENT
PROPER BIN
COUNTER

PRINT PRINT MEAN,
HEADER MEDIAN, AND

LINE STANDARD
DEVIATION

YES
MORE PIXELS IN

THIS
LINE

1 RETURN NO

RETURN

Figure C-14. HISTO Program Flowchart

C-37

ENTRY
CHAROUT I

WRITE
INITIALIZE PRINTED NO ONE

CONVERSION OUTPUT OUTPUT
TABLE ? LINE

YES.

WILL
TAPE O LINE FIT YES MORE YES

OUTPUT ON ONE DATA 2
LEPAGE

WRITE TO PRINT RETURN
OUTPUT PARTOF
LABEL EACH LINE

-NO

MORE
STRIPS TO

SKIP SAVE PRINT
UNWANTED REMAINDER

INPUT ON DISK

YES

READ LINE
PRINT SEGMENT

READ C-15. CHARACTER ProgramFROM DISK
INPUT DATA

LINE

PRINT
END CHARACTER

CODE- NO OF YES DATA
TRANSLATE INPUT

THE LINE ?

MORE
1 IYES SEGMENTS

NO

Figure C-15. CHAROUT Program Flowchart

C-38

ENTRY
TEXTGN

IS
PICK/UP TEXT LINE NO

PARAMETERS COMPLETELY
DECODED

YES

MERGE
TEXT WITH RNOITEONE

INPUT OUTPUT
TAPE LINE

YES

COPY HAS
BEGINNING ENTIR

TOOUTPUTI BEEN
IF ANY WR

YES

1ST/NEXT YES TEXT
TEXT CARD INPUT

IMAGE LINES

NO

DECODE EACH COPY
TEXT CHARACTER FREMAINDER

INTO MATRIX OF IMAGE
REPRESENTATION TO OUTPUT

1 IRETURN

Figure C-16. TEXTGN Program Flowchart

C-39

PRINTRY

HEADER

INEIGHBOR

WILL
ARRAY NO

IT ABNORMAL

LINE OF

PIXELS

ERETURN

YES YES

CHECK

PARAMETURN

SKIP
UNWANTED
RECORDS

PRINT
HEADER

LINE

PRINT A

Figure C-17. NEIGHBOR Program FlowchartOF

PIXELC-40

MORE Y

PIXELS TO
PRINT

? NO

RETURN

Figure C-17. NEIGHBOR Program Flowchart

C-40

ENTRY DISPLAY 1BOXGEN 2

2

RESEAU

INITIALIZE =3
POINT COORD ERASE IS
INATESAND 4 RESEAU YES
VARIABLES DISPLAYED ON

TV

=4
ENLARGE NO

TVCON

CONNECT WITH
TV HARDWARE =5 SET FOUR

AND CLEAR SHRINK COORDINATES
FUNCTION 5 FOR BOX
REGISTERS GENERATION

=6
LEFT

TTWCON 6

CONNECT 15
WITH =7
212 RIGHT

=8

DISPLAY FUNC- 6
TION SELECT

CODES AND
CONVERT USER'S
CODE TO BINARY DOWN

IS
BOX YES

DISPLAYED ON

LOCATE TV

WHAT
DOES FUNCTION, NO

CODEN
=11
DATA

SET FOUR
COORDINATES
FOR RESEAU

=12 GENERATION
DATA1

=13
REWIND

FORWARD

=15
REVERSE

SELECT

ZOOM

=18
EXIT

Figure C-18. DISPLAY Program Flowchart (1 of 8)

C-41

4 6

ISSET FLAG N(SET FLAG BOX OR RESEAU N
EQUAL TO DISPLAYED ON

0 TV

YES

KILLIN
ARE

SET TV II COORDINATES
Y E

HARDWARE FUNC- OUTOF
TION REGISTER RANGE

TO 0 ?

NO

DEPENDING ON
1 DIRECTION

(LEFT, RIGHT,
UP, DOWN) ADD
OR SUBTRACT 1

FROM RESPECTIVE
COORDINATES

5

ICLOCK

SLOW DOWN
BOX/RESEAUIs ACTION

BOX NO ACTION
DISPLAYED ON 1

TV

YES
15

B/IS Is CAN
BOX/RESEAU NO BOX/RESEAU NOBEING 1 O" N

NBEINGE BE REDUCED 1
ENLARGEDINSZ I S

YES YES

CAN COMPUTENEW
BOX/RESEAU YES COORDINATES

BE INCREASED AND SLOW DOWN
IN*SIZE ACTION (ICLOCK)

NO

1 15

Figure C-18. DISPLAY Program Flowchart (2 of 8)

C-41. 1

78

SREQUEST TAPE
BX NO PRINT UNIT FOR IMAGE

DISPLAYED COORDIESENAU TO BE DROPPED
DISPLAYED COORDINATES ON T.V. (CON-

VERT TO BINARY)

BOX FOR212 OUTPUT REQUEST COLOR

212 CONVERT TO
BINARY

SET UP BOX
COORDINATES CREAD 32 DATA
FOR 212 OUTPUT OLINES AND PRINT
AND OUTPUT OUT LENGTH OF

TO212 LABEL RECORD

LINE (EVEN AND

FLIP

1
NO REVERSE CHAR-

ACTER ORDER IN
EACH DATA WORD

KILLIN

CLEAR TV SETOF
HARDWARE FUNC- 32 LINES BEEN

TION REGISTER READ IN

YES

Figure C-18. DISPLAY Program Flowchart (3 of 8)

C-41. 2

10

LINDIS LINDIS REQUEST
SEND 16EVEN INPUT BOX

NUMBERED LINES COORDINATES
TO TV

LINDIS
PLACE COORD-

SEND 16 ODD INATES IN
NUMBERED LINES ICOOR ARRAY

TO TV

9 WERE NO PRINT
4PARAMETERS ERROR

INPUT MESSAGE

YES

WERE
BOTH LINE NO PRINT MESSAGE

NUMBERSEVEN AND CORREC
OR ODD LINE NUMBERS

11

YES

15
REQUEST TAPE

UNIT AND
CONVERT TO
INTEGER

REQUEST NUMBER DOES NO BACKSPACE
DOES NO NO SPCIFED

FUNCFigure C-8 DISPLAY PrograTO FlowNChaONrt (4 of 8)
13 VERT TO INTEGER ? FILES

?YES YES

FORWARD WRITE
REWIND SPACE REQUESTED EOF
TAPE NUMBER OF MARK

FILES

Figure C-18. DISPLAY Program Flowchart (4 of 8)

C-41. 3

13 14

REQUEST MASTERREQUEST TAPE UNIT
TV IMAGE TAN UNITV IMAGE AND FILE

NAME NUMBER

REQUEST TAPE
UNIT AND READ MASTER

FILE NUMBER; IMAGE TAPE
CONVERT TO LABEL

INTEGER

REQUEST OUTPUT
READTV TVIMAGE

IMAGE TAPE NAME, TAPE
LABEL UNIT, AND

FILE NUMBER

VERIFY THAT SET
MASTER TAPE TV
IS MOUNTED COORDINATES

DETERMINE IF 16
AN INCREASE

OR REDUCTION
IS NEEDED

COMPUTE
VARIABLES AND

FLAGS FOR
BOTH CASES

14

Figure C-18. DISPLAY Program Flowchart (5 of 8)

C-41.4

15

16

COMPUTE
Y TV

COORDINATES

RETURN

COMPUTE
X TV

COORDINATES

DISP

SEND TV
COORDINATES

TO THE TV
HARDWARE

IS
FUNCTION NO

CODE?4 AND

YES

SEND KEY YES CODE= NO
BEEN TO40R5

DEPRESSED 7

NO YES

Figure C-18. DISPLAY Program Flowchart (6 of 8)

C-41. 5

ENTRY DISP ENTRY FLIP

STORE ADDRESS LOAD
OF TV COORD- INPUT
INATES INTO WORD

INSTRUCTION

CONNECT REVERSE

WITH TV ORDER OF

HARDWARE CHARACTERS

BOX YES - SEND STORE

FUNCTION BOX REVERSED

HAVE
SEND ALLINPUT NO

RESEAU WORDS BEEN

FUNCTION C-18. DISPLAY Program FlowchaPROCESSED

YES

TRANSFER RETURN

COORDINATES
TO TV

HARDWARE

RETURN

Figure C-18. DISPLAY Program Flowchart (7 of 8)

C-41. 6

ENTRY TVCON ENTRY LINDIS

PICK UP DATA
CLEAR I/O ARRAY ADDRESS

CHANNEL 2 (TV) AND STORE INTO
INSTRUCTIONS

CREATE 12-BIT
CONNECT FUNCTION CODE

TO FROMICODE
CHANNEL2 ANDIADD

KILLIN
IS SHIFTOFF

FUNCTION YES LEAST SIGNIF-
SET TV CODE = TO ICANT BIT OF

FUNCTION 1 EACH DATA WORD
REGISTER TOO 0

NO

RETURN SET

ENTRY KILLIN TRANSFER 2
BLOCKS OF 16
LINES TO TV
CHANNEL2

SET TV
FUNCTION CODE

TOO IS NO GET STATUS
OPERATION FROMCHANNEL
COMPLETED 2

RETURN

RETURN

Figure C-18. DISPLAY Program Flowchart (8 of 8)

C-41. 7

ENTRY
MODIFY

MOVE YES SKIP
PARAMETERS UNWANTED

INTO KEYWORD DELETELIES
SETS

NO

SUPPLY YES COMPUTE
DEFAULTS ADD AVERAGE
IF NEEDED ? LINE

NO

SORT WRITE
ENTRIES NEW
ON LINE LINE(S)
NUMBER

LBLWRT-YES REPLACE
WRITE MODP PIXELS
OUTPUT WITH NEW
LABEL VALUE

NO

SKIP MODL, AVERAGE
UNWANTED PRIOR AND

INPUT NEXT LINES

YES MORE NO COPY OUT

PICK UP LINESTO REMAINING
1ST/NEXT PROCESS LINES

SET

RETURN

COPY
UNAFFECTED

LINES
TO OUTPUT

Figure C-19. MODIFY Program Flowchart

C-42

ENTRY
INSERT

LBLRD-
READ READ LINE

SECONDARY OF BASE
INPUT IMAGE
LABEL

CHECK READ LINE
PARAMETERS OF WINDOW

SUPPLY FILL
COMPUTE CHARACTERS

CONSTANTS AS NEEDED

WRITE COPY
OUTPUT MERGED
LABEL LINE TO

OUTPUT

SKIP YES MORE
UNWANTED WINDOW

LINES LEFT

NO

COPY COPY
UNCHANGED REMAINING

LINES TO LINES TO
OUTPUT OUTPUT

1 RETURN

Figure C-20. INSERT Program Flowchart

C-43

ENTRY
GRID

PICK UP
PARAMETERS,

CALCULATE
GRID POINTS

LBLWRT-
WRITE

OUTPUT
LABEL

READ
A LINE

OF INPUT

SFILL ENTIRE
THIS YES LINE

A GRID WITH GRID
LINE CHARACTERS

NO

INSERT
CHARACTERS

FOR VERTICAL
GRID LINES

WRITE
THE

COMPLETED
LINE

LINES

NO

RETURN

Figure C-21. GRID Program Flowchart

C-44

ENTRY 1
GEOMTRAN

ALLOCATE CREATE NEW
MEMORY FOR LINE SEGMENT
I/O BUFFERS, AND POINT LISTS

DATA STORAGE FOR THIS INPUT

LOCATE CALCULATE
STARTING OUTPUT POINT

LINE OF LIST, DEFINE
INPUT TAPE LINE SEGMENTS

FIND LIST SEG-
READ MENTBOUNDARY
LINE INTERSECTIONS

OF DATA FOR PART OF
OUTPUT TO BE

DISPLAYED

ALL CREATE NEW LINE
LINES YES SET SEGMENT AND

? FOR OUTPUT

NO

YES MORE CALCULATE
YES ROOM CORRESPONDING

IN CORE POINT LIST FOR
INPUT IMAGE

NO i
SORT NEW LINE

FIND LINE SEGMENT SEGMENT LIST
RECTANGULAR FOR OUTPUT

BOUNDARY INTER- IMAGE
SECTIONS FOR DATA

NOW IN CORE

2

Figure C-22. GEOMTRAN Program Flowchart (1 of 7)

C-45

2
3

a. FIND
STARTING LINE STORE a. THRU g.

SEGMENT INE INTO A "CURRENT

OUTPUT IMAGE LINE SEGMENT"

b. CALCULATE X'
OF INTERSECTION SET INITIAL

OF CURRENT OUTPUT OUTPUT LINE
LINE WISEGMENT AT SLO

c. CALCULATE X, Y CALCULATE
FOR CORRESPONDING X' IN OUTPUT

POINT IN INPUT FOR Y'

d. CALCULATE
CHANGE IN OUTPUT INTERPOLATE
INTERSECTION AX' TO FIND

FOR CHANGE BY ONE PIXEL VALUE
OF OUTPUT LINE AT (X', Y')

e. CALCULATE IS
(X ,AY) IN INPUT PIXEL
INTRSCTION FOR VALUE PIXEL VALUE

EACH CHANGE BY ONE BUFFER STORAG
OF OUTPUT LINE FULL ON DISK

NO

f. CALCULATE
(xlx X) ALONG

INPUT SEGMENT FOR STORE PIXEL
EACH CHANGE BY ONE VALUE INTO

OF PIXEL ALONG THE BUFFER
OUTPUT LINE

g. CALCULATE

OF (AXxZNx) FOR EACH ADVANCE

CHANGE BY ONE ONE PIXEL
OF OUTPUT LINE ALONG Y

3 4

Figure C-22. GEOMTRAN Program Flowchart (2 of 7)

C-46

4

NO
INTERSECTION 5

REACHED

YES

EINCREMENT
END LINE SEGMENT

OF CURRENT COUNTER
LINE BY ONE

YES

INCREMENT
LINE NO.
BY ONE

MORE
OUTPUT YES
LINES TO 6
PROCESS

NO

Is NO
END FLAG 7

SET

YES

PHASE 2

Figure C-22. GEOMTRAN Program Flowchart (3 of 7)

C-47

INI PHASE2MEN

ON 1ST CALL. DECREMENT
INITIALIZE THE CORE-LOAD-
TAPE DISTRI- NRY-O

BUTION VARIABLES ENTRY-COUNT

DETERMINE ONTO ANY NO INSERT END
WHICH TAPE UNIT MORE OF MERGE
THE MERGE STRING ENTRIES STRING

IS TO BE WRITTEN MARK

YES

FETCH OUTPUT

NUMBER-OF-CORE- INDEX ONTO
LOADS
LOAS ENTRY TAPE

8 WRITE END
FETCH 1ST OF TAPE RECORD
ENTRY FROM IDENTIFIER ON

EACH CORE LOAD'S UNIT A AND B
INDEX TABLE

COM-
COMPARE INDEX YES PLETED N0

TABLE ENTRIES PHASE 3 PROCESSING GEOMTRA

TO DETERMINE
IMAGE

LOWEST ENTRY

IS

CONTIGUOUS OR NO INSERT 3 HEADER PREVIOUS YES FULL
REDUNDANT WITH WORDS INTO OUTPUT BUFFER

PREVIOUS OUTPUT BUFFER ONTO
OUTPUT BUFFER FULL TAPE

? NO
YES

UPDATE INSERT
PREVIOUS _ PIXEL STRING

HEADER'S PIXEL INTO OUTPUT
COUNT BUFFER

Figure C-22. GEOMTRAN Program Flowchart (4 of 7)

C-48

ENTRY
PHASE3

Is

DUMMY NO DECREMENT

STRING DUMMY STRING
10 COUNTER FOR - COUNTER

UNIT A 0 BY ONE

YES

READ BUFFER

FROM
UNIT B

END YES SET FLAG ON

OF TAPE FOR EOT

7
E? ON

NO

BEGIN- NO REMAINDER OF
NING OF A STRING INTO OUT-

MRFigure C-22. GEOMTRAN Program Flowchart (5 of 7)SET

C-49

CYCLE NECESSARY
?I POINTERS

YES

IsM \ N DECREMENT
DUMMY NOIN

STRING COUNTER DMYSRN
FOR UNIT BCONE

.0 BY ONE

YES

READ BUFFER
FROM

UNIT B

END YES SET FLAG ON
OF TAPE FOR EDT

I / ION B

NO

EDT NO EDT NO EDT NO
DNA ONB DNA+ B 13
ONLY ONLY

YES YES YES

15 15 16

Figure C-22. GEOMT]RAN Program Flowchart (5 of 7)

C-49

13

SPECIFY START IN
AND OUT

SYES PUCHARACTERS FLAGEND
IF STRING WILL

FILL OTNE BUFFER

UPDATE PIXEL
COUNT

M OVESTRING

NO

END END
OF MERGE YES OF MERGE YES WRITE

STRING STRING OUTPUT BUFFER

ON A ON 8m ONTO UNIT C

\7;

NO NO

END POINTETON
OF MERGE YES REST OF MERGE

STRING STRING ON

ON B OTHER TAPE

NO

DETERMINE
WHICH STRING

IS NEXT

SPECIFY START IN
DOES AND OUT

STRING NEED > NO CHARACTERS;TIF
TO BE MERGED ONE OF OU
W/LAST OUTPU/ BUFFERS FULL,

STRING WRITE OUT
SONTO UNIT C

YES

ANDOUT

ARCESFLAGI F STRING WILL
FIL ONE BUFFER
UPDATE PIXEL

COUNT

MOVE STRING
INTO

OUTPUT BUFFER

NO END
NOOF BUFFER

17 ON EITHER
TAPE

YES

Y YESE
OF BUFFER 1

ON A

~NO

12

Figure C-22. GEOMTRAN Program Flowchart (6 of 7)

C-50

15 16

REWIND COMPLETED REWIND OUTPUT
INPUT TAPE AND TAPE. ASSIGN

ASSIGN AS OUTPUT AS INPUT
TAPE (UNIT C)

REWIND AN
REWIND C INPUT TAPE AND

AND ASSIGN ASSIGN AS
ASINPUT OUTPUT

10 COPY STRINGS
INTO IDAMS

FORMAT AND FILL IN
GAPS WITH ZEROS

RETURN

Figure C-22. GEOMTRAN Program Flowchart (7 of 7)

C-51

ENT2 3
CHIPGN

NEWCREATE LABEL WRITE WRITE
TAPDIRECTORY FOR CHIP LABEL END-OF-FILE

DIRECTORY FILE RECORD

NO 4

READ TAPE WRITE MAKE DIRECTORY LAST NO
DIRECTORY FILE DIRECTORY ENTRY AND CHIP
INTO DIRECTORY FILE INCREMENT DONE
BLOCK IN CORE ONTO TAPE CHIP COUNT ?

ONLY POSITION INPUT REWIND
LIST YES IMAGE TAPE CHIP

DIRECTORY 5 TO FIRST TAPE
? LINE OF CHIP

NO

DECODE READ LINE PRINTFROM PRINTPARAMETERS INPUT DIRECTORY
FOR ONE IMAGEIMAGECHIP

CHIP PRINT TRANSFER ONLY YES
WITHIN AD Y REQUIRED SEGMENT LISTINPUT MEADVISOR TO OUTPUT DIRECTORY
IMAGE BUFFER

NOLAST NO

LATWRITTEN

Figure C-23. CHIPGN Program Flowchart

C-52
C-52

RZOMAP 2 3

SET UP ZERO OUTRESEAU BEGINACCUMULATORS INTERCHANGE
LOCATION R FOR SEARCH BUFFER
TABLE SUBPROGRAM ROWS, COLUMNS ASSIGNMENTS

REPLACE STORED

SPECIFIED YES NOMINAL ISSUE READ LAST
LOCATIONS FOR NEXT READ

LOCATIONS BY USER-SPECIFIED LINE COMPLETE
?N LOCATIONS

NLIN
SN YES

OBTAIN VALUES
FOR DEFAULTED POINT TO NO ALL
PARAMETERS FROM FIRST RESEAU LINES
ESEAU LOCATION SEARCH AREA PROCESSED

TABLE I ON LINE ?

YES

POINT TO FIRST XYGRAD FIND AND
RESEAU ROW COMPUTE

ET UP LOCATION GRADIENT TERMS, STORE ACTUAL
ESTIMATES ADD TO RESEAU

ACCUMULATORS LOCATIONS

ADVANCE TAPE YES LAST LAST
TO START 3 AREA ON ROW OF YES

OF SEARCH LINE RESEAUS 4

AREA DONE

NO NO

READIN POINT TO UPDATE

ON LINE POINT TO
NEXT ROW

2 1

Figure C-24. RZOMAP Program Flowchart (1 of 3)

C-53

4 5

TABULATE COMPUTE
THOSE RESEAUS BEGIN LOCATIONS OF BEGIN

WHICH WERE POLY2 MISSING RESEAUS - NTRP2

ACTUALLY SUBPROGRAM USING SUBPROGRAM
LOCATED POLYNOMIALS

TWOFIT WRITE
FIT COMPLETED

POLYNOMIAL TABLE
TO X-DIS- ONTO DISK

PLACEMENTS

TWOFIT WRITE

POLYNOMIAL TABLE
TO Y-DIS- ON LINE

PLACEMENTS PRINTER

STORE RETURN

POLYNOMIAL
COEFFICIENTS

5

Figure C-24. RZOMAP Program Flowchart (2 of 3)

C-54

ENTRY
XYGRAD 2

STORE ADDRESSES ADD PRODUCT
OF UPPER AND ADD PRODUCT

LOWER LINE TO ROW
SEGMENTS ACCUMULATOR

STORE ADDRESSES
OF ROW ACCUMULA-TOR AND COLUMN COMPUTE

TOR AND COLUMN F(X,Y)-F(X,Y-1)
ACCUMULATORS

INITIALIZE
PIXEL COUNT STORE AS

FOR LINE MULTIPLIER
SEGMENT

COMPUTE DIFFERENCE YES COMPLEMENT
F(X,Y) - F(X-1Y) NEGATIVE DIFFERENCE

? IN REGISTER

NO

STORE MULTIPLY
AS DIFFERENCE

MULTIPLIER BY MULTIPLIER

ADD PRODUCT
COMPLEMENT TO COLUMN

DIFFERENCE YES DIFFERENCE ACCUMU-
NEGATIVE IN REGISTER LATOR INCREMENT

PIXEL INDEX

NO

MULTIPLY NO ALL
DIFFERENCE 1 NO PIXELS

BY MULTIPLIER DONE

2 RETURN

Figure C-24. RZOMAP Program Flowchart (3 of 3)

C-55

3 4
ENTRY 2

CORREL

READ

ADD UP COLUMN STORE LINE 15 X 15 SUB-
READ SUMS FOR FIRST ON ARRAY ABOUT

REFERENCE VARIANCE VALUE DISK MINIMUM FROM
CHIP ON LINEDISK

PRINT

COMPUTE POINT TO YES VARIANCE VAMINIMUM

SUM OF GRAY- FIRST VARIANCE 4 LINE LOCATION.
LEVEL VALUES VALUE ? SUBARRAY
AND SQUARES ON LINE SUBARRAY

NO

LI OFIMAGE COMPUTE ONE READ NO MIM
IN ES cOIAG VARIANCE NEXTIMAGE TOO NEAR

TO NUMBER OF VALUE LINE7
LINES OF CHIP

YES

COMPUTE MODIFY WRITE
S UMS OF VALUES NEW NO COLUMN SUMS ADVISORY

AND SQUARES VALUE<VMIN 1 POINT TO NEXT MESSAGE

FOR EACH ? VARIANCE LINE

COLUMN

YES

POINTTO UMIN
=

NEW WRITE NO SHARP
POINT TO VALUE ADVISORY MINIMUM

VFIRST LINE MATOFIX SAVE POSITION MESSAGE
VARIOUS MATRIX POINTERS

SET VMIN = 1 YES

SAVE LOCATION
CROSS OF MINIMUM

COMPUTE CROSS LAST YES GEOG YES STORE

TERMS FOR VALUE 3 COORDINATES RESULTTERMSFOR I

ONE LINE IN LINE FOR CHIP,

OF VARIANCE ON DISK
NO

NO

POINT TO NEXT
2 COMPUTESUMS RETURN

FOR NEXT
VARIANCE
VALUE

Figure C-25. CORREL Program Flowchart (1 of 2)

C-56

ENTRY 1
CROSS

COMPUTE PRODUCT
STORE OF IMAGE PIXEL
CALL AND CHIP VALUE;

ARGUMENTS ADD TO ADDER

ZERO OUT INCREMENT
DOUBLE IMAGE PIXEL

PRECISION AND ADDER
ADDERS POINTERS

POINT TO LAST
FIRST LINE NO ADDER

OF REFERENCE
CHIP MENTED

YES

ZERO OUT END
SINGLE OF CH YES

PRECISION LINE
ADDERS ?

NO

FIRST ELEMENT NEXT CHIP
OF CHIP PIXEL

LINE

CONVERT CHIP ADD SINGLE
GRAY LEVEL PRECISION ADDERS

VALUE TO TO DOUBLE PRE-
FULL WORD CISION ADDERS

POINT TO
CORRESPONDING LAST NO POINT TO

IMAGE PIXEL CHIP NO NEXT LINE
ND FIRST SINGLE LINE OF REFERENCE

ADDRESS / CHIP

YES

1)CONVERT
DOUBLE PRECISIONETURN

ADDERSTO
FLOATING POINT

Figure C-25. CORREL Program Flowchart (2 of 2)

C,57

MATH MODEL(S)
ENTRYFOR OTHER
RESECT 1 SENSOR(S)

NOT YET DEFINED

ACCESS SET
PARAMETERS RV ERROR

CODE

YES
READ COMPUTE NADIR

EPHEMERIS AND COORDINATOR RETURN
DATAIN ATTITUDE FOR EACH
PARAMS FROM DISK CONTROL POINT

CONTROL READ CONVERT IMAGE
POINTS NO CONTROL POINT COORDS OF _ USES TABLE

IN PARAM- DATA CONTROL POINTS TO- OF RESEAUS
ETERS FROM DISK FACE PLATE COORDS

YES t

CONVERT
ENOUGH NO SET NADIR COORDS USES NOMINAL
CONTROL ERROR DF CONTROL POINTS - ATTITUDE

POINTS CODE TOFACEPLATE VALUES
? COORDS.

YES t

(RETURN COMPUTE
NO RBV PARTIAL

? DERIVATIVES

YES

READ COMPUTETERMS
RESEAUS NO RESEAU I COEFFICIENT ARRAY

IN PARAMETERS LOCATIONS FOR CORRECTION
? YFROM DISK EQUATIONS

YES

ALL
DISK MATINV

iNO SET COMPUTE
FILES FOR ERROR INVERSE

THIS CODE ARRAYIMAGE

YES

1 RETURN

Figure C-26. RESECT Program Flowchart (1 of 2)

C-58

2 3 4

(VARIANCE) YES AL YES CONVERT UTMIALIGN OF IMAGE
OMPUTE VARIANCE DECREASED =0 CORNERSTO
USING NOMINAL P <0.1 ROTATED UTM
ATTITUDE AND

ALTITUDE NO NO

5 YES
ITERATIONS GENERATE
ALREADY 10 X 10 GRID

SET ITERATION ENCLOSING IMAGE

COUNTER TO 1NO

INCREMENT
ITERATION CONVERT GRID
COUNTER IALIGN YES COORDINATES

COMPUTE RIGHT- ? 0 BSTANDARD UTM
HAND SIDES

OF EQUATIONS
FOR CORRECTIONS NOC

CONVERT IMAGE
COORDINATES OF UTMCON

IMAGE CORNERS CONVERT GRID
MULTIPLY BY TO FACEPLATE POINTS TO

MULTIPLY BY LACDTONO
INVERSE COEFFI- COORDINATES

CIENT MATRIX TO
GET CORRECTIONS

CONVERT CONVERT
FACEPLATE TO NADIR

TO NADIR TO FACEPLATE
COMPUTE COORDINATES TOIMAGE

CORRECTED COORDINATOR
ATTITUDE

AND ALTITUDE

CONVERT NADIR CREATE
CONVERT NADIR COORDINATES TO OUTPUT

POINT LAT/LONG TABLE
COORDINATES

TO FACEPLATE
USING NEW

VALUES

UTMCON
CONVERT WRITE
LAT/LONG TABLE

TO UTM ON DISK
COMPUTE

NEW
VARIANCE PRINT

CORRECTED
PARAMETERS

4 CGOODNESS,COMPUTE
MEASURE

OF GOODNESS

RETURN

Figure C-26. RESECT Program Flowchart (2 of 2)

C-59

ENTRY
UTMGEO

ACCESS COUNT
OF PARAMETER

PAIRS

DECODE
ONE PAIR

PRINT
DECODING NO MESSAGE: 2

SUCCESSFUL INVALID
? FORMAT

YES

UTMCON

UTMG NO COMPUTE
GIVEN CORRE-

? SPONDING
UTM

YESUTMCON
COMPUTE
CORRE-

SPONDING
LAT/LONG

PRINT
LAT/LONG
AND UTM

COORDINATES

ALL NO

YES
END

Figure C-27. UTMGEO Program Flowchart

C-60

ENTRY
FPMULT

READ
NO SET INITIATE TAPE

CORRECT ERROR READINTO
SIZE CODE ALTERNATE

? / BUFFER

YES

FORM PRODUCTS
BOTH NO FOR FIRST AND

INITIALIZE RETURN ABRRS NO ST EAN
MINIMUM LAST ELEMENTS

AND MAXIMUM READ IN LINE

TEST VALUES ? (SPECIAL PACKING)

YES

MULTIPLY FORM
DPSEEK CORRESPONDING REMAINING

POSITION ELEMENTS PRODUCTS
DISK HEAD

TO FIRST LINE
ICI

DPPUT
WRITE LINE

READ OFPRODUCTS
FIRST LINE BACK ON DISK
FROM TAPE

INTERCHANGE
DPFETCH TAPEINPUT

READ ONE BUFFERS

LINE
FROM DISK

DPSEEK ALL NO
REPOSITION LINES 2

HEAD TO
DONE

START OF

YES
SAME L IN EjE

FORM RECORDCHECK CONTAINING
AWAIT MAXIMUM AND

COMPLETION MINIMUM VALUES
OF LAST

TAPE READ t

DPPUT
WRITE INTO

1 NEXT CELL RETURN

ON DISK

Figure C-28. FPMULT Program Flowchart

C-61

ENTRY FPSUM) I

SET FLAGS CHECK
INDICATING LAST READ
MULTIPLIER FROM TAPE 2
TYPES, SIGNS

READ DPPUT
NO SET ERROR REQUEST NEXT WRITE THIS

SPECIFIED CODE FOR LINE, INTO RECORD ONTO
CORRECTLY SIZE ALTERNATE DISKWRONG SIZE BUFFER

? BUFFER

YES

FOR SUMS OF

WHETHER READ RETURN CORRESPONDING RETURN
WORDS, USING

IS C O M P L E X F R O M M U L T IP LI E R S ,

MAXIMUM, MINI- SIGNS
MUM VALUES

DPSEEK TEST RESULTS
SEEK FIRST FOR NEW

LINE OF MINIMA,
SECONDARY MAXIMA

INPUT

INTERCHANGE
READ BUFFER ASSIGN-

FIRST LINE /MENTS FOR
OF PRIMARY TAPE INPUT

INPUT

DPPUT
DPFETCH /WRITE RESULTS

READ ONE LINE BACK
LINE FROM ONTO DISK

DISK

DPSEEK YES MORE
REPOSITION LINES
DISK HEAD /TODO
TO START ?

OF SAME LINE

SET UP RECORD
FOR MAXIMA, 2

MINIMA

Figure C-29. FPSUM Program Flowchart

C-62

ENTRY ENTRY
FILTGN TABLEGN

TABLEGN
ACCESS

PARAMETERS ACCESS
GENERATE PARAMETERS

MTF TABLES

MTFGN
GENERATE SET POINTERS

TWO- FOR FIRST
DIMENSIONAL MTF TABLE

MTF

SAVE
CONVERT NO SYMMETRY
TOIMAGECODER

SPACE CODER

YES

INVERT COMPUTE

COMPUTE LENGTH OF
CONVOLUTION REQUIRED

FILTER TABLE

RETURN
INPUT MODE

1 2 3 OTHER

GENERATE SET ERROR
COPY TABLE G(k) FROM COMPUTE G(k) FLAG FOR

INTO G(k) COORDINATE FROM HIGH/LOW INVALID
PAIRS FILTER FORMULA MODE CODE

RETURN

(OR CIRCULAR)
SYMMETRY

YES NO

ARE

COMPUTE NO THERE DATA YES SET POINTERS
16), COi), Di FOR ADDITIONAL FOR SECOND

AXIS MTF TABLE

Figure C-30. FILTGN Program Flowchart (1 of 2)

C-63

ENTRY ENTRY 4
MTFGN INVERT

FILL OTHER HALF
INITIALIZE OF BUFFER USING DPFETCH INTERCHANGE

LINE COUNT, SYMMETRY, READIN ROWSAND
Y-COORD TESTING LINE OF COLUMNS, AND

TEST VALUES FOR MAX/MIN

VALUES

FFTONE
DPPUT EXPAND LINE FOURIER

INIOADE WRITE OUT TO COMPLEX TRANSFORM
X-COORD LINE FORMAT ONE ROW

FIRST YES NO HALF ALL
ELIPTICAL NO OR LAST ARRAY NO ROWS

INTERPOLATION LINE IN CORE TRANSFORMED
NEEDED

YES NO YES YES

OBTAIN PPUWRITESAME PERGEN INTERCHANGE

INTEGRAL PART LINE INTO GENERATE ROWS AND

AND REMAINDER SYMMETRIC PERMUTATION COLUMNS
FOR LOCATION TABLE AGAIN

INTERPOLATION

COMPUTE MTF NO NORMALIZE TO
VALUE FROM LAST LINE SUM = 4096

FIRST AXIS; DONE AND CONVERT
STORE IN BUFFER TOINTEGERSTO INTEGERS

YES

TRIGGN
GENERATE

RETURN TABLE PRINT

NO HALF-LINE OF SINES QUADRANT
DONE OF FILTER;DONE OPY TO OUTPU

? Y TAPE, IF ANY

YES
FFTONE

FOURIER

SECOND TRANSFORM RETURN
AXIS NO ONE LINE

REQUIRED

YES
NO ALL

LINES
GENERATE MTF TRANSFORMED
VALUES FROM ?
SECOND AXIS;

MULTIPLY BUFFER
VALUES BY THEM YES

4

Figure C-30. FILTGN Program Flowchart (2 of 2)

C-64

ENTRY .1
RANDGRAY

SET UP INPUT
CONSTANTS TAPE

YES

WRITE POSITION
OUTPUT TAPE AT

TAPE LABEL FIRST LINE

COMPUTE
TABLE OF AREAS READ

UNDER NEXT
GAUSSIAN LINE

DEVELOPSQUARES MOVE
OF INTEGERS AS POSITION

SUMS OF ADD DATA IN
INTEGERS OUTPUT

BUFFER

INCREASE COUNT NOISE
FOR VALUES

WITH LARGEST ADD NOISE
FRACTIONAL PARTS PIXEL VALUES

FIND LAST WRITE
NON-ZERO VALUE OUTPUT

OF INTEGRAL LINE
PART

NOISEPRM
ANY

FIND TABLE YES MORE
OF NOISE LINES TO
VALUES PROCESS

NO

1)RETURN

Figure C-31. RANDGRAY Program Flowchart (1 of 2)

C-65

ENTRY
2 1NOISEPRM

FILL INPUT LOCATE
BUFFER WITH TABLE OF

THE MEAN NOISE VALUES
VALUE

MOVE
RETURN

POSITION
DATA IN
OUTPUT

NOISE
ADD NOISE
FACTOR TO

MEAN VALUES

ENTRY
NOISE

WRITE
OUTPUT

LINE

ADD NOISE
VALUE FROM

TABLE TO PIXEL
GRAY-LEVEL

ANY VALUE
YES MORE

LINES TO
PROCESS

RETURN
NO

STOP

Figure C-31. RANDGRAY Program Flowchart (2 of 2)

C-66

ENTRY 1
IMERGE

INSTRUCT
OPERATOR TO SET NO MSS

REPLACE SYSTEM ERROR DATA MODE

TAPES BY INPUT FLAG O.K.

YES 2

PAUSE READ
6 ANNOTATION

RECORD FOR
TAPE1

READ
INPUT

HEADERS
SPACE OTHER

TAPES/
RECORD

ALL NO SET
SAME ERROR 6

FRAME FLAG CONVERT
? ANNOTATIONND

A T A T O
YES FLOATING

POINT

4 NO SET
DIFFERENT ERROR W

SFANNOTATION

YES FILE
YES . ON DISK

COMPILE TABLE
OF LOGICAL UNIT

NUMBER FOR
EACH STRIP PRINT

ANNOTATIONDATA
ARRANGE

YES SPECTRAL
RBV BAND REQUESTS

? IN DECREASING 3
ORDER

NO

DATA
RECORD NO SET

RIGHT ERROR 6

LENGTH FLAG

YES

Figure C-32. IMERGE Program Flowchart (1 of 3)

C-67

ENTRY
ENTRY REPACKR 1 REPACKM

S STORE INPUT AND

STORE INPUT AND INCREMENT 3UTPUT ADDRESSES
ADDROUTPUT BUERSSES INPUT POINTER WORD COUNT,ADDRESSES,
WORD COUNT BY 3, SHIFT COUNT BAND, CONVERSION

BY 1 BYTE TABLE ADDRESSES

INITIALIZE INITIALIZE
INPUT AND INPUT, OUTPUT

OUTPUT NO POINTERS,
POINTERS LINE DONE SHIFTCOUNT

YES

LOAD DOUBLE SHIFT NO LOAD SINGLE

WORD = 6 RETURN COUNT WORD
8-BIT VALUES = 2 BYTES INTO A

YES

STORE SHIFT DOUBLE D E SHIFT
LOW ORDER REGISTER DECREMENT INPUT CONT

6 BITS 8 BITS RIGHT POINTER 11TE

YES

HAVE LOAD DOUBLE
6 VALUES NO INCREMENT WORD INTO A-O SHIFTA

BEEN OUTPUT SHIFT LAST 8 RIGHT 8
DONE POINTER -1 -+ SHIFT COUNT

YES

STORE 6-BIT
INCREMENT NO CHARACTERINTO
OUTPUT CONVERSION OUTPUT
POINTER REQUIRED INCREMENT OUTPT

NPOINTER

YES

SHIFT A RIGHT 8

USE LOW-ORDER REPEAT
NO LIE OF BITS OF A CONVERSION.

ALLDONE TOINDEX LOAD CHARACTER

? FROM TABLE STORAGE,POINTE
INCREMENT

YES

RETURN 1

Figure C-32. IMERGE Program Flowchart (2 of 3)

C-68

WRITE
OUTPUT
LABEL

RBV NO

YES

IS READ ONE
THIS BAND YES RECORD FROM
REQUESTED EACHINPUT

NO

ER/
ADVANCE INPUT EWIND OUTPUT

TAPESTAPESTO YES FULLTAPES

RNEQTED OF LINES CORRECTED

TNO ?YES

REPACKM
GENERATE ONE NO MORE NOLINE OF G-BIT RBV BANDS TO DO 6

GRAY-VALUE 7
DATA

YES YES

REPACKR

WRITE GENERATEONE Program Flowchart (3 of 3REWIND
OUTPUT LINE OF 6-BIT RBV TAPES
LINE(S) GRAY-VALUE ?

DATA

NO

3 INSTRUCT
4 YES OUTPUT NO REWIND OPERATOR

LINES INPUT TO REMOUNT
DONE TAPES SYSTEM TAPES

INSTRUCT
OPERATOR PAUSE
TO MOUNT

NEW OUTPUT

RETURN

Figure C-32. IMERGE Program Flowchart (3 of 3)

C-69

FUL PARMER-
RES NO PROCESS

POSITION
INPUT TAPES

AT REQUESTED

RETURN

CHARACTE

BAND

READ ONE
RECORD FROM
EACH TAPE

ENTRY REPACK-
PARMER CONVERTTO

6-BIT
CHARACTER
AND MERGE

DATA

QUARTER NO ONLY HAVE
FRAME 2INPUT
TAPES TAPES

OUTPUT
YES THE 8 LINES

OF DATA

OPERATOR TO
MOUNT 4

INPUT TAPES

END NO
OFBAND

DATA

READ AND
PROCESS INPUT

TAPE LABEL YES

AND ANNOTATION
RECORD INSTRUCT YES MORE

OPERATOR BANDSTO
TO MOUNT NEW PROCESS
OUTPUT TAPE

WRITE
OUTPUT 1 NO
LABEL

RETURN

Figure C-33. PMERGE Program Flowchart (1 of 2)

C-70

ENTRY FULMER 2

INSTRUCT READID REWIND OUTPUT

OPERATOR RECORD AND TAPE. READ LABEL

TO MOUNT POSITION AT AND a6 RECORDS.

INPUT TAPES STRIPS 5-8 NEXT WRITED FOR
NEXT WRITE

READ AND REWIND PROCESS DATA
PROCESS INPUT OUTPUT TAPE FROM 4 TO 5

TAPE LABELS AND AND READ UNTIL END
ANNOTATION LABEL OFBAND

RECORD

WRITE OUTPUT READ STRIPS 5 - 8 ANY
LABEL AND FROM TAPE AND MORE NO
100 DUMMY STORE 8 HALF BANDS TO
RECORDS LINES INTO ARRAY PROCESS

WIEOF MARK/

YES

FETCH CORRE-
REWIND SPONDING HALF INSTRUCT

OUTPUT TAPE LINE FROM DISK OPERATOR TO

AND READ AND PUT INTO MOUNT NEW

LABEL ARRAY BEHIND OUTPUT TAPE
1ST HALF OF LINE

POSITION INPUT
TAPES AT STRIPS INSERT LINE NO. 4

1 -4 OF NEXT BAND, AND WRITE LINE
SKIP FILES, IF TO TAPE

NECESSARY

READ, CONVERT
(REPACK), AND 96 NO RETURN
STORE ON DISK RECORDS

ONE RECORD AT A OUTPUT
TIME GOING FROM

TAPE TO TAPE

YES

READ OUTPUT TAPE
WHEN DISK IS UNTIL EOF MARK
FULL, WRITE FOUND. THEN READ

EXCESS ONTO RECORDS AND SAVE
OUTPUT TAPE IN AVAILABLE DISK

SPACE

2 3

Figure C-33. PMERGE Program Flowchart (2 of 2)

C-71

PPUPDATE 1

READ WRITE
CELLS 1 - 24 CELLS 1 - 24 RETURN
FROM DISK ON DISK

YES

FIND FILE
KEYWORD 2 NO LISTING
AND MODE COMPLETE

PRINT
EPHM YES HEADER

OR RZO LIST ANDDATA
?ILE 1 RECORDS

NO NO

CP,
LINK, OR NO ADD YES ILLEGAL

GRID OR DEL OPERATIONFILE

YES NO

YES YES MODIFY
LIST 2 CHNG INDICATED

? ? RECORD

NO NO

INIT MODE-
ADD NO CLEAR THE

OR DEL FILE

YES

ADD OR
DELETE
RECORD

INDICATED

Figure C-34. PPUPDATE Program Flowchart

C-72

ENTRY 2 3
VPICIN

INITIALIZE WRITEF
GENERATE POINTERS FOR INITIATE
TABLE FOR DOUBLE OUTPUT OF
CONVERTING BUFFERED CONVERTED
GREY LEVELS INPUT LINE

BUFFER IN BUFFERIN ENTIRE YES
READ ONE READ FIRST IMAGE
VICAR INPUT DATA TDONE

LABEL RECORD
LINE

FigureCK5 P CEPR Fo CR E

PARITY YES PRINT ERROR ES PARITY

ADVISORY ONAND LAST OUTPUTERROR
ERROR MLINES IN IMAGE LINE WRITTENAD

?? 7

NO , NO YES

CODE8TO6 BUFFER IN INCREMENT

LABEL CONVERT INITIATE PARITY

TO BCD NEXT LINE COUNTBITS

NO

LAST EL YES CODECODE FOR SET FLAG

LABEL 2 CONVERT LINERER
RE NOT FOUND OF DATA 4

S4 RETURN

Figure C-35. VPICIN Program Flowchart

C-73

ENTRY 1 2
INCREASE

COMPUTE ANY YES MORE
INCREASE FILL LINES LINES OF

FACTORS AND ? INPUT
FIND LARGEST

YES NO

WRITE ANY
COMPUTE WRITE REMAININ
EDGE FILL FILL LINES OF

CONSTANTS LINES BOTTOM FIL

LBLWRT- READ RETUR
WRITE DATA LINE

OUTPUT INTO CORE
LABEL

SETUP INCR-
OUTPUT LINE INCREASE
BUFFER WITH THE LINE

EDGE FILL CHARS LENGTH

1 WRITE THE
OUTPUT

LINE

SHOULD
YES THIS LINE

BE RE-
PEATED

NO

2

Figure C-36. INCREASE Program Flowchart (1 of 2)

C-74

ENTRY
INCR

SAVE INDEX
REGISTERS

INCREMENT
INPUT

CHARACTER
ADDRESS

BY ONE
LOAD CHARACTER

ADDRESS OF
INPUT

AND OUTPUT

NO END

LOAD INPUT YES
CHARACTER

RESTORE
INDEX

REGISTERS

STORE CHARACTER
INTO OUTPUT

ARRAY

RETURN

INCREMENT OUT-
PUT CHARACTER
ADDRESS BY ONE

CHAR. BEEN NO
OUTPUT THE SPECI-

FIED NUMBER

YES

Figure C-36. INCREASE Program Flowchart (2 of 2)

C-75

DETERMINE 1ST NO FETCH ONE
KEY WORD 1 TIME THRU RECORD

(GREEN, BLUE, LOOP FROM DISK
RED) ? YE

YES

USE DETERMINE TABLE UNWANTED END NO
YESNUMBER, TRANS- UNWANTED

STANDARD INPUT OF ENTRIES
FER TABLE TO

MODE TABLE ARRAY

NO 5 YES

IS TRANSFER USER READ 6
TABLE Y E S SUPPLIED TABLE- ONE INPUT

SUPPLIED TO-TABLE RECORD
? MODE ARRAY

=2

NO

COORDI- END NO STORE

CRNDRI- NO OF RECORD
NASUPPLITE FILE ON DISK

6 ES, YES
YES

IS CODE TRANSLATE
FuYES THERE DATA FROM

VALID INPUT LINE
NUMBER OF ERROR RETUR OF PARAM- INTO OUTPUT

PAIRS ETERS LINE

NO

COMPUTE TABLE RETURN WRITE ONE
VALUES, LOGIC LINE ON

SAMEAS OUTPUT

CONTRAST TAPE

NO READING
LBLWRT 4 FROM TAPE

WRITE LABEL
ON OUTPUT

YES

Figure C-37. COLOR Program Flowchart

C-76

ENTRY
FPLIST

COMPUTE
NUMBER OF
WORDS

TO PRINT

INPUT NO FETCH DATA
FROM TAPE FROM DISK

? FILE

YES

INPUT LINE WIRITE OUT
OF DATA PIXEL VALUES

FROM IIN FLOATING
TAPE POINT FORMAT

WRITE OUT ANY
PIXEL VALUES MORE YE

IN FLOATING LINES TO

POINT FORMAT PROCESS

NO

ANY

RETURN N

YES MORE
LINES TO
PROCESS

NO

RETURN

Figure C-38. FPLIST Program Flowchart

C-77

ENTRY 1
DMDOUT

SET HEADER
SET MODE NL>.4860 Y FLAG TO

TO 2500 ? SUPPRESS GRAY
WEDGE

YES RESET MODE HEADER
.OR.NL22421 TO 5000 ON OUTPUT

NO

SETERROR READ
FLAG, INPUT

.OR.NL24981 "IMAGE TOO LINE
? LARGE"

NO

MOVE
INSTRUCT REQUIRED
OPERATOR PIXELS TO

TO WRITE MODE OUTPUT
ONTAPE BUFFER

COMPUTE NUMBER WRITE
OF DOUBLE OUTPUT
WORDS PER LINE

OUTPUT LINE

COMPUTE MOVE YES
LENGTH OF LINES

OUTPUT TAPE
TO DO

NO

INSTRUCT
LENGTH YES JOPERATOR RETURN
>2300 FT TO PREPARE

? FOR 2 REELS

NO

d Figure C-39. DMDOUT Program Flowchart

C-78

ENTRY
ADDPIX

READ ONE
LBLRD- RECORD
READ FROM

SECONDARY PRIMARY AND
INPUT SECONDARY
LABEL INPUT

i SADD CORRES-
PONDING PIXEL

INPUT LARGE RETURN VALUES AND
STORE INTO

OUTPUT ARRAY

LBLWRT- WRITE
WRITE OUTPUT
OUTPUT RECORD
LABEL

POSITION NO FINISHED
NUTTS A WITH IMAGES

STARTING
LINE

YES

1 RETURN

Figure C-40. ADDPIX Program Flowchart

C-79

ENTRY
FORMAT

READ FIRST REWIND
YES INPUT RECORD OUTPUT

CONVERSION AND DETER- TAPE AND
TO IDAMS MINE RECORD/ READ DUMMY

LENGTH LABEL

NO

LBLWRT-
WR i, F BACKSPACE

READ DUMMY ONE RECORD
INPUT IDAMS AND WRITE

RECORD LABEL IDAMS LABEL

WRITE READ RETURN
OUTPUT INPUT
RECORD RECORD

LESS THE
LINE NUMBER

WRITE

END OUTPUT
OFINPUT RECORD

DATA AFTER ADDING
? LINE NUMBER

YES

RETURN NO ENDOF
FILE ON
INPUT

YES

Figure C-41. FORMAT Program Flowchart

C-80

ENTRY HISTCONT

ANY E
CONTRAST YES COMPUTE 6

TABLESINPUT 2 HISTOGRAMS
?

IC

NO

ARE
LINES AN NO PRINT WARNING WAS NO SETEVEN INTEGRAL AND RESET LINE A BASE LINE DEFAULT

OF6 PARAMETERS SPECIFIED LINE

YES YES

SKIP COMPUTE BASE
UNWANTED LINE CUMULATIVE

LINES HISTOGRAM

READ OUTPUT BASEREAD / LN

NEXT LINE
RNEORD CUMULATIVE

HISTOGRAM

TALLY
COMPUTE 5

STORE GRAY CONTRAST
LEVELSINTO LOOKUP TABLES

APPROPRIATE AND PUNCH OUT
SET OF BINS

HAVE
NO ALL RECORDS WAS YES

EEN PROCESSE OUTPUT TAPE 2
7 SPECIFIED

YES NO

1 IRETURN

Figure C-42. HISTCONT Program Flowchart (1 of 2)

C-81

2

SKIP
UNWANTED

LINES

READ
NEXT

RECORD

CODE

CONVERT GRAY
LEVELS USING
APPROPRIATE

LOOK-UP TABLE

HAVE
NO ALL RECORDS

BEEN PROCESSED

YES

COMPUTE 5
HISTOGRAMS

RETURN

Figure C-42. HISTCONT Program Flowchart (2 of 2)

C-82

LOCATE

DATA

=12

INITIALIZE 212 YES DATA
POINT COORDI- INTERRUPT

NATES AND
VARIABLES

,NO REWIND

TVCON
JOY STICK NO =14

CONNECT BUTTON 2 16
W/TV DEPRESSED FORWARD

(CHANNEL 2)

iYES 16
TTWCON YSREVERSEU

CONNECT
W/212 =16

(CHANNEL 4)
SELECT

JOYCON =1 =2 =3 =4 =5 =6 =17 18
ZOOM

CONNECT
W/DDI BOX RESEAU LOCATE MOVE SIZE SHAPE

(CHANNELO)

4 5 9 11 EXIT

DISPLAY
FUNCTION

CODES

STORE
SENSE 212

INTERRUPT OR
JOYSTICK
BUTTONS
DEPRESSED

Figure C-43. JOYSTICK Program Flowchart (1 of 11)

C-83

4
3

BOXGEN

KILLIN IS KILLIN

IS YES REMOVEBOX RESEAU Y ES REMOVE RESEAU
BOX ALREADY FROM TV-RESET ALREADY FROM TV-

DISPLAYED FLAG DISPLAYED RESET FLAG

NO NO

i COMPUTE RESEAU
IS COMPUTE BOX COORDINATES

RESEAU ES COORDINATES BOX YES WHICH ARE
ALREADY AROUND DISPLAYED CENTERED WIN
DISPLAYED RESEAU MARK ?BOX

COMPUTE BOX KILLIN COMPUTE RESEAU KILLIN

COORDINATES REMOVE RESEAU THCOORDINATESEAU ISCH REMOVE BOX

SUCH THAT BOX FROM TV-RESET CENTERED FROM TV-RESET

IS CENTERED FLAG EREDOFLAG

ON TV SCREEN TV SCREEN

CONVERT COOR- CONVERT COOR-
DINATES TO DINATES TO TV
TVFORMAT FORMATAND
AND SEND SEND TO TV
TO TV

Figure C-43. JOYSTICK Program Flowchart (2 of 11)

C-84

LOCATE MOVE 6

IS
IS BOX ORBOX NO PRINT RESEAU DIS- NO

DISPLAYED RESEAU PLAYED ON
? COORDINATES TV

Y ES YES

SET UP RESEAU HAS
PRINT COORDINATES JOY STICK NO
BOX FOR 212 OUTPUT BEEN MOVED8

COORDINATES AND OUTPUT ?
TO 212

YES

SET UP BOX COMPUTE WAIT
COORDINATES TIME AS FACTOR

FOR 212 OUTPUT OF JOYSTICK
AND OUTPUT VOLTAGE

TO 212

IS YES SUBTRACT 1
MOVEMENT FROM Y1 AN

HAS UP Y2
SEND KEY NO ?

BEEN DEPRESSED
? NO

YES
Is YES ADD 1

MOVEMENT TO Y1 AND
DOWN Y2

NO

IS YES ADD 1
MOVEMENT TO X1
TO RIGHT AND X2

NO

SUBTRACT1
FROM X1 AND

X2

Figure C-43. JOYSTICK Program Flowchart (3 of 11)

C-85

7 SIZE g

ARE NO is NO
COORDINATES 1BO ON 1

WITHIN TV
RANGE ?

YES YES

ICLOCK HAS INCREASEX2,

WAIT JOYSTICK YES Y2 BY 1

SPEWAITED BEEN MOVED DECREASE X1,

TIME PERIOD UP YBY

NO

CONVERT HAS YES DECREASE X2,

COORDINATES TO JOYSTICK Y2
TV FORMAT EENMOVED INCREASE X1,
AND SEND DOWN Y1BY1

TOTV?

10
NO

Is Is COMPUTE WAIT
'MOVE' NO YES SIZE TIME AS FACTOR

YES NO

ARE

1 COORDINATES
6 WITHIN

RANGE

YES

ICLOCK

WAIT
SPECIFIED

TIME PERIOD

CONVERTCOOR-
DINATESTO
TVFORMAT

ANDSEND
TOTV

Figure C-43. JOYSTICK Program Flowchart (4 of 11)

C-86

SHAPE 11 12

IsDECREASE Y1ARE

BO 04 NO COORDINATES _NO

TV WITHIN
? RANGE

YES BY 1YES

SINCREASE Y2ICLOCK

JOYSTICK NO 'SHAPE' WI

BEEN BUTTON STILL1

CREASEMOVED ON SPECIFIEDY
BY 1TIME

BY 1

RIGHTINCREASE X2

7 BY 1

YES NONO

COMPUTE WAIT CONVERT

TIME AS FACTOR COORDINATES

OF JOYSTICK TO TV FORMAT

STATIC AND SEND TO TV

EsO DECREASE Y1X2

Is YES BY 1
MOVEMENT -- INCREASE Y2

UP I BY1

NO

Is INCREASEY1

Figure C-43. JOYSTICK Program Flowchart (5 of 11)

C-87

MOVEMENT Y

DOWN DECREASE Y2
? BY1

NO 121

Is YES DECREASE X1
MOVEMENT BY1

RIGHT INCREASE X2
? BY 1

NO

INCREASE X1MOVEMENT Y
IS TO DECREASE X2

LEFT BY1

Figure C-43. JOYSTICK Program Flowchart (5 of 11)

C-87

DATA
13 DATA1 15

REQUEST TAPE LINDIS

UNIT FOR IMAGE SEND 16 EVEN
TO BE DROPPED NUMBERED LINES

ON T.V. (CON- NUT E
VERT TO BINARY)

LINDIS
REQUEST COLOR
GUNCODEAND SEND 16 ODD
CONVERT TO NUMBERED LINES

BINARY TO TV

READ 32 DATA 14

PRINTOUT
LENGTH OF

LINE (EVEN
AND ODD LINES

GO INTO
DIFFERENT
BUFFERS)

FLIP

NO REVERSE CHAR-
EOF ACTER ORDER

? 1IN EACH DATA
WORD

YES

KILLIN
HAS

CLEAR TV SET OF 32 NO
HARDWAREFUNC LINES BEEN

TION REGISTER READ IN

YES

1 15

Figure C-43. JOYSTICK Program Flowchart (6 of 11)

C-88

FORWARD

16 REVERSE 17 SELECT
REWIND

REQUEST TAPE REQUEST
UNIT AND INPUT BOX

CONVERT TO COORDINATES
INTEGER

REQUEST NUMBER PLACE COOR-
DOES NO OF FILES TO DINATES IN

FUNCTION CODE SKIP AND CON- ICOOR
=13 VERTTO ARRAY

INTEGER

YES

DOES BACKSPACE WERE PRINT
REWIND FUNCTION NO SPECIFIED 4 PARAM- NO ERROR

TAPE CODE =14 NUMBER OF ETERS MESSAGE
? FILES INPUT

YES YES

FORWARD WERESPACE WRITE BOTH NO PRINT MESSAGE1 REQUESTED EOF LINE NUMBERS AND CORRECT
NUMBER OF MARK EVEN OR LINE NUMBERS

FILES ODD

CONVERT
COORDINATES TO

1 t TVFORMATAND
SEND TO TV

Figure C-43. JOYSTICK Program Flowchart (7 of 11)

C-89

18 ZOOM 19 20

REQUEST REQUEST MASTER RETURN
TV IMAGE TAPE UNIT AND RETURN

NAME FILE NUMBER

REQUEST TAPE READ MASTER
UNIT AND FILEREAD MAGE TAPE

NUMBER; CONVERT LABEL
TO INTEGER

REQUEST OUT-
READTV PUTTV IMAGE

IMAGE TAPE NAME, TAPE
LABEL UNIT, AND

FILE NUMBER

VERIFY THAT SET
MASTER TAPE TV
IS MOUNTED COORDINATES

DETERMINE IF
AN INCREASE OR

REDUCTION IS
NEEDED

COMPUTE VARI-
ABLES AND
FLAGS FOR
BOTH CASES

19

Figure C-43. JOYSTICK Program Flowchart (8 of 11)

C-90

ENTRY DISP ENTRY FLIP

STORE ADDRESS LOAD
OF TV COOR- INPUT
DINATES INTO WORD
INSTRUCTION

REVERSE
CONNECT ORDER OF
WITH TV CHARACTERS

HARDWARE

SEND STORE
BOX YES BOX REVERSED

FUNCTION FUNCTION WORD

NO

HAVE

SEND ALLINPUT N

RESEAU WORDSBEEN

FUNCTION OCESSE

YES

TRANSFER
COORDINATESTO RETURN

TV HARDWARE

RETURN

Figure C-43. JOYSTICK Program Flowchart (9 of 11)

C-91

ENTRY TVCON ENTRY LINDIS

PICK UP DATA
CLEAR I/O ARRAY ADDRESS
CHANNEL 2 AND STORE INTO

(TV) INSTRUCTIONS

CREATE 12-BIT
CONNECT FUNCTION CODE

TO CHANNEL FROM ICODE
2 AND IADD

KILLIN IS SHIFT OFF
SET TV FUNCTION YES LEAST SIGNIF-

FUNCTION CODE =TO ICANT BIT OF

REGISTER TO 0 11 EACH DATA WORD

NO

SET
RETURN FUNCTION

CODE

TRANSFER 2
BLOCKS OF 16

ENTRY KILLIN LINES TO TV
CHANNEL2

SET TV OPERATION NO GET STATUS

FUNCTION CODE COMPLETED FROM CHANNEL
TOO 2

YES

RETURN RETURN

Figure C-43. JOYSTICK Program Flowchart (10 of 11)

.C-92

ENTRYJOYCON ENTRY CHKJOY

CLEAR I/O CLEAR CHANNEL
CHANNEL- OANDSEND

(DDI) FUNCTION CODE

READ VOLTAGE
CONNECT VALUESFROM

TOCHANNEL DDI
0

IS
SAME NO

RETRN BUTTON RESET FLA
RETURN DEPRESSED

YES

HAS
NO JOYSTICK

BEEN RETUR
MOVED

YES

SET
DIRECTION

FLAG

COMPUTE AND
SET SPEED
FACTOR

RETURN

Figure C-43. JOYSTICK Program Flowchart (11 of 11)

C-93

ENTRY 1
MSSCON

COMPUTE
ALLOCATE PARAMETERS
COMMONFOR FOR CONVOLV-

DATA AND ING DATA ONE
WEIGHTS LINE AT A

TIME

STORE WEIGHTS
AND NOR-
MALIZE THEM

READ LINE
NORMALIZE OF DATA
EACH ROW FROM TAPE

OF WEIGHTS INTO CORE

LBLWRT
EXTEND LINE

WRITE AS REQUIRED
OUTPUT BY PARAMETERS

IMAGE LABEL

LAST
DETERMINE LINEOF YES
LINE EXTEN- INPUT READ

SION REQUIRED ?

NO

DETERMINE
UPWARD AND NO CORE YES
DOWNWARD FILLED
EXTENSION
REQUIRED

COMPUTE COPY LINESPARAMETERS UP OR DOWN
FOR READING AS REQUIRE
FROM INPUT

TAPE

DETERMINE
METHOD FOR
LOADING DATA
INTO CORE 3

WILL
ENTIRE >YES

INPUT FIT
IN CORE

NO

CORELOAD CORELOAD
EQUALSBLOCK EQUALS

OF FULL IN- ENTIRE
PUT LINES IMAGE

Figure C-44. MSSCON Program Flowchart (1 of 2)

C-94

3 ENTRY
ADDMSS

STORE
CONSTANTS AND

ADMSS WEIGHTTABLE

SET POINTER ADDRESS FOR
TO BEGINNING APPROPRIATE

OF APPROPRIATE ROW WEIGHT
ROW WEIGHT MATRIX

MATRIX

RETURN
ADDWTS

GENERATE
ONE LINE

OF CONVOLVED
OUTPUT

WRITE LINE
ONTO OUTPUT

TAPE

ALL
DATAIN NO

CORE PROCESSED

YES

ENTIRE YES
INPUT IMAGE RETURN

PROCESSED

NO

SHIFT TO TOP
OF CORE ANY

DATA NEEDED
FOR ADDITIONAL

OUTPUT LINES

Figure C-44. MSSCON Program Flowchart (2 of 2)

C-95

APPENDIX D - FLOATING-POINT DATA REPRESENTATION

D. 1 FLOATING-POINT ARITHMETIC

The complex quantities on which the fast Fourier transform (FFT) operates are

processed using standard FORTRAN double-word floating-point arithmetic; this

ensures straightforward adaptation of the programs to other computers. Sub-

stantial savings in computation time and storage space, without significant loss

of accuracy, might have been achieved by using a nonstandard, single-word,

floating-point representation rather than the standard CDC 3200 double-word

software floating-point routines; however, extensive use of assembly-language

coding would have been required. Therefore, this alternative was rejected.

D.2 MAXIMUM ARRAY SIZE

The FFT program uses an algorithm that requires array dimensions to be

powers of 2, to simplify program logic. Because each complex quantity re-

quires a total of four 24-bit computer words to represent both real and imaginary

parts, approximately 6000 words available for storing arrays in core will accom-

modate a maximum of 1024 complex numbers, occupying 4096 computer words.

Due to symmetries resulting from the absence of imaginary components in the

original image data, these 1024 values normally will be packed into a 512-value

line before performing the FFT or its inverse. The 32,300 cells (64 words/cell)

available on disk storage are not quite sufficient to hold 1024 lines of 512

complex values each; therefore, the effective capacity of the disk is 512 lines.

For these reasons, an array of 512 lines of 512 values each is the largest that

can be processed by FFT without requiring the addition of complicated and time-

consuming provisions for frequent data transfer between disk and scratch tape.

Because this size of array already requires more than an hour to transform on

the CDC 3200, it was decided that there was little point in trying to provide for

a larger array size.

D-1

Because image data is packed two pixels per complex word, an image with a

maximum of 512 lines and 1024 pixels per line can be transformed.

D.3 THREE-STEP PROCESSING

Since the maximum-sized complex array can be accommodated on the disk, the

FFT and smoothing routines store all intermediate results on the disk. To

give the various Fourier transform and smoothing tasks maximum flexibility in

input and output formats, any task involving complex data is subdivided into

three steps:

1. Transfer input data from tape to disk, performing required packing

and conversion during transmission so it is stored in standard

format.

2. Carry out the FFT or smoothing and leave results on disk.

3. Transfer output data from disk to tape, performing any required

unpacking, conversion, or scaling.

The FPCON routine transfers input data from tape to disk, carries out most

format conversions of data already on disk, and transfers output data from disk

to tape. However, a separate routine, CXPACK, packs and unpacks data on

disk.

D.4 COMPLEX SYMMETRIC ARRAY PACKING AND UNPACKING: CXPACK

To halve FFT execution time, placement of alternate real values in the real

and imaginary parts of the complex values converts a real input array to a

pseudo-complex array. After Fourier transformation, the pseudo-complex

array must be unpacked to obtain the actual Fourier components of the input ar-

ray. The unpacked array of Fourier components is twice as large as the packed

array. Because the input is real, however, only one-half the unpacked values

need to be stored; the remainder can be obtained by using the symmetry proper-

ties of the Fourier components of a real array. The following paragraphs de-

scribe the mathematical details of this procedure.

D-2

Alternate elements of a real M by N array gmn are packed into an M by

N/2 complex array f according to the relation

N
f = g +igm, n+ m= 0,1,...,M-1; n= 0,1,..., 1
mn m, 2n m, 2n+1 2

After carrying out the fast Fourier transform on f , the Fourier coefficients

bke associated with gmn can be computed from the Fourier coefficients ak

associated with f by using the equation
mn

* INb = b * ' (+ a *)bki bM-k, N-1 22 (ak M-k+ N

-27ril/N * N
(ak- aM-k' 2- -)

N
k= 0,1,...,M-i; = 0,1,. .,-- 1

Due to the symmetry relation between b and b* , only the first
V M-k, N-A

N/2 + 1 columns of b need to be stored; the remaining N/2 - 1 can be

computed using the symmetry equation. The packed array ak , however,

requires only N/2 columns of storage. It would be very inconvenient to have

to use a slightly larger disk array to accommodate the b k. However, the

need for the extra column (£ = N/2) can be eliminated as follows:

For £ = 0 , the symmetry principle simplifies to

* *

bk, 0 = bM-k, N = bM-k, 0

because bke is periodic in A with period N; for I = N/2 , this symmetry gives

bk, N/2 = bM-k, N/2

D-3

Hence, by using the first column of the array to hold values of bk, 0 for

k < M/2 and bk, N/2 for k > M/2., all values of b may be reconstructed

from an M x N/2 array except for b0, N/2 and bm/2, 0

For these values, however, the symmetry principle gives

b0, N/2 = bM, N/2 = b0, N/2

and,

bM/2, 0 = bM/2, N = bM/2, 0

where the periodicity of b has again been utilized. Hence, b0, N/2 and

bM/2, 0 are both real. A similar computation shows that b0, 0 and bM/2, N/2
are also real. The four real values can, therefore, be stored into two complex

words. The storage arrangement that has been employed is to store b0, 0 and

b0, N/2 into the real and imaginary parts, respectively, of the first complex

value of the first line in the array; and bM/2, 0 and bM/2, N/2 ' respectively,

into the real and imaginary parts of the first complex value of line M/2 + 1 of

the array. (This line corresponds to k - M/2, since k = 0 for the first line.)

When an inverse Fourier transformation is desired, the half array of bk values

described above must be packed back into the ake . This is achieved using the

formula:

1 27ril/N 27ril/N) N- (1 + ie) bk + (1 - ie)bM-k'1

k= 0,1..., M-1; = 0,1,...,-- 1
2

D-4

After the inverse Fourier transformation has been carried out, the values of

gm can be recovered simply by using

g m, = Re (fmn) N 1
m= 0,1,..., M-1; n= 0,1,..., 2 1

m, 2n+l = Im (fm)

where Re and Im denote real and imaginary parts, respectively.

D-5

