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FOREWORD

The pulsed laser holographic technique discussed in this report was applied
to a high-tip~-speed, low-loading transonic fan stage designed and tested for NASA
Lewis Research Center by the AiResearch Manufacturing Company of California,

a division of The Garrett Corporation. The holographic work was conducted by
the Optical Elements Group of TRW Systems, El Segundo, California, under
subcontract to AiResearch.

Messrs. R. J. Kobayashi and T. C. Ware are affiliated with the AiReseach
Manufacturing Company. Dr. R. F. Wuerker and Dr. L. 0. Heflinger are affiliated
with TRW systems. Mr. E. E. Bailey of NASA Lewis Research Center Fluid Systems
Components Division was project manager.
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SUMMARY .

Two holographic interblade row flow visualization systems were designed to
determine the three-dimensional shock patterns and velocity distributions within
the rotating blade row of a transonic fan .rotor operating at a tip speed of
1600 ft/sec (488.6 m/sec). The systems utilized the techniques of pulsed laser
transmission holography. Both single- and double-exposure bright-field holograms
and dark-field scattered-light holograms were successfully recorded. Double-
exposure holograms were of both short pulse modes for which laser pulse separa-
tion varied from 2 to 5 usec, and long pulse modes, for which separation varied
from§5 to 7 min.

The rotor utilized for this study was that of a transonic fan stage designed
and tested under NASA contract NAS 3-13498. The stage is a low-loading, high-tip-
speed fan designed with weak oblique shocks at the rotor tip to minimize losses.
The only modification to the rig structure was the installation of two Plexiglas
windows, one over the rotor tip casing and the other in the outer casing forward
of the rotor. The view of the rotor blade passage included the area from the
blade leading edge to trailing edge, forward and around the midspan damper, and
across the blade tip. The viewing angle allowed detailed investigation of the
leading-edge shocks and shocks in the midspan damper area; limited details of
the trailing-edge shocks also were visible.

A technique for interpreting the reconstructed holograms was devised, and
models were constructed of the major shock systems identified. The models com-
pared favorably with theoretical predictions and results of the overall and detail
blade element data. Most of the holograms were made using the rapid double-pulse
technique. During rapid double pulsing, the shock fringes moved slightly, thereby
enhancing display of the shock patterns. For speeds greater than 90 percent of
dasign, the holograms showed the passage shock emanating from the blade leading
edge and a conical shock originating at the intersection of the midspan damper
leading edge and the blade suction surface and extending across the passage. A
second shock was observed in some of the holograms that appeared to emanate from
the iatersection of the midspan damper and the pressure surface of the blade.

This shock appearad to be almost normal to the blade surface. The shocks assoc-
iated with the midspan damper were not considered in the rotor design. Due to
the limitad viewing angle, only faint indications of trailing-edge shocks were
observed on some of the holograms. The aerodynami: measurements made in con-
junction with the holographic tests indicate that this shock system is weak.
Apparent tip leakage vortices were detected emanating from the suction surface
leading edge and extending approximately to midchannel. The vortices obscured
shock definition in the blade tip region.

Double-exposure scattered-light holography techniques were found to provide
meaningful qualitative velocity measurements. Because of the 50-nsec pulse
limitation of the laser used, the recordings were limited to very low rotor
speeds on the order of 8 percent.

The transition of the rotor mode from transonic to supersonic (unstart to
started) was clearly evident from the holograms. Acceleration along a constant



throttle line showed a strong detached bow shock at 80 percent design speed,

a strong normal shock at 90 percent design speed, and finally, the transition
to an oblique shock at approximately 92 percent design speed when fully super-
sonic. The strong normal shock is consistent with the decay in peak eff|0|ency
observed at 90 percent design speed.

The static pressure contours obtained from high-response tip pressure-
transducers did not explicitly define shock locations; however, the region of
the tip leakage vortices, maximum static pressure, and trailing-edge shock are-
in accord with shock patterns defined by the hologram. The tip -leakage vortices,
wall boundary layers, and designed shock weakness at the rotor tip section made
the isolation of shock fronts difficult,




INTRODUCTION

Flow visualization of gases has provided a valuable tool in the advancement
of aerodynamic understanding. Interferometry, Schlieren, and shadowgraph are
classical techniques that have been used to study two dimensional flow through
cascades and isolated airfoils. Later developments led to three-dimensional
visualization studies in which smoke was injected in low-velocity cascade flow
to make visible secondary flow in single- and double-flow cascades. With the
advent of holography in recent years a new dimension in flow visualization tech-
niques was introduced. Holograms are a product of coherent optics that yield
three-dimensional optical images with continuously changing parallax. in addi-
tion, one can make ‘interferometric comparisons. Holographic interferometry does
not require the optical precision of classical interferometry such as Mach Zehnder.

The use of holography and coherent optical techniques to record the
aerodynamic phenomena in and around a rotating blade row was undertaken, The
development of holographic equipment- that permits recording of high-quality
holograms with pulsed ruby lasers of low temporal coherence was a TRW Systems
contribution. Holograms made in these optical devices are as bright as holo-
grams made with coherent gas lasers. This device is referred to as a holocamera.
The three different types of optical techniques- undertaken were: (1) pulsed
laser transmission holography (single- and double-exposure), (2) pulsed laser
transmission holographic interferometry, and (3) pulsed laser scattered-light
holography. Holograms  can be recorded in the presence of vibration, turbulent
flow, etc, with a Q-switched ruby-laser. These-lasers are.unique in that they
emit on the order of a calorie of 'light in time ‘intervals of 50 nsec. This
short time interval enables stopping motion at any instant of time.

The holographic configuration developed for this application is referred to
as a path-and-transversing match holocamera (Ref. 1). Although somewhat more
complicated, this type of holographic arrangement is essentially insensitive to
temporal and spatial coherence of the laser illuminator. A Q-switched ruby laser
could be operated well above threshold at high output energies (one Joule). This
type of holocamera has been successfully demonstrated in holograms of liquid-fuel
combustion in rocket engines and holographic interferograms of ballistics. (Refs.
1, 2, 3, and 4,)

The program reported herein was conducted under NASA Contract NAS 3-15336.
The program objectives were. to demonstrate that three-dimensional shock waves
could be detected and velocity measurements made within a transonic fan rotor
blade row using holographic techniques. The development of the holocamera
design, the technique utilized to record the holograms, and the results of the
holograms are discussed. The analytical procedure for reconstruction and
interpretation of the holograms and the development of the models showing the
shock system follows. These results are then compared with the blade element
performance and rotor tip static pressure contour plots.



TEST FACILITY AND TEST STAGE

General Description

The installation of the holographic apparatus on the fan test stage is shown
in fig. 1. The laser power source and control panel were located |mmed|ately
outside of the test cell and, therefore, do not- appear in this figure. As seen,
the holocamera assembly is mounted beneath the test stage. The entire holocamera
assembly is supported by a steel structure that bridges the test stage and bed-
plate and is mounted on vibration isolation pads fastened to three piers anchored
to the floor. The holocamera assembly is thus |ndependently supported and frée
from vibration. -

The holographic layout originally conceived transmitted the laser beam into
the centerbody through a forward strut, directed it axially along the fixed ctenter-
body, reflected it outboard through a window in the centerbody, through the blade
tip region, and onto’ the holographic plate. This approach had several inherent
disadvantages. One disadvantage was that the optics would have to be packaged.
within the fixed centerbody and supported independently of the test stage via the

struts. More importantly, however, the field of view was limited primarily to .
the blade ‘leading edge area, whereas the area of greatest |nterest is wnthln the
blade ‘passage. . . ‘ . . :

This scheme was therefore abandoned in favor of ‘a system whereby the scene
beam was directed diagonally across the fan inlet as shown schematically in
fig. 2. - In the final configuration, the scene beam enters through a.large Plexi-
glas ''scene'' window in the outer casing forward of the rotor. The scene beam
transmits diffused light diagonally across the inlet, beneath the fixed center-
body, through the blade tip region, and through a Plexnglas '"viewing'' window onto
the holographic plate. By reorienting the scene .beam from the centerbody to the
outer wall, the unobstructed viewing area was greatly improved. ‘The |nstallat|on
and relatlve locatlon of the two wnndows are shown in fig. 3,

Transonic Fan Stage Description

The test stage utilized for this program was a high-tip-speed, low-loading,
transonic fan stage designed and tested by the AiResearch Manufacturing Company,
a Division of The Garrett Corporation, under NASA Contract NAS 3- 13498. The fan
stage. (described in detail in ref. 5) was designed with weak oblique shocks in
the rotor tip reguon to minimize losses. The inlet and outlet relative velocntles
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Figure 1.--Holocamera and Transonic Fan Stage
Test Installation.
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were supersonic in the outboard section, transonic in the central section, and
conventionally subsonic in the inboard section. Design parameters are as follows:

Overall pressure ratio 1.5

Adiabatic efficiency 0.86

Equivalent total flow 148 1b/sec (67.1 kgm/sec)

Flow per unit annulus area L2.0 lb/sec-ft2 (205.1 kgm/sec-mz)
Equivalent tip speed 1600 ft/sec (488.6 m/sec)

Inlet hub-to-tip radius ratio 0.46

Tip diameter 28.74 in. (0.73 m)

Number of rotor blades Lo

The test stage is a single-stage axial-flow design with no inlet guide
vanes. The rotor blades consist of 40 arbitrary airfoil sections with an aspect
ratio of 2.64 and midspan dampers located at 30 percent span from the rotor tip.
The rotor inlet hub-to-tip ratio is 0.46. Nominal running tip clearance was
0.045 in. (1.14 mm) at design speed and 0.035 in. (0.89 mm) at 110 percent
design speed.

The stator consists of 45 vanes with an aspect ratio of 3.10. Airfoil sec-
tions are double circular arc. The stator vane leading edge is located 1.420 in.
(3.61 cm) downstream of the rotor hub trailing edge. During the aerodynamic
performance test, it was determined that the best stage operating characteristics
were obtained at a 3-deg-closed stator setting. This setting was maintained
throughout the holographic testing. The details of the rotor design technique
and the flowpath and stator design are given in ref. 5. The final rotor design
is discussed in ref. 6 along with a description of the facility and
instrumentation.

Test Stage Modifications Required for Holography

A3x5in. (7.6 x 12.7 ecm), 0.75 in. (1.91 cm) thick Plexiglas viewing
window was provided in the rotor outer case. The window was sized to sufficiently
view one complete rotor blade passage from blade leading to trailing edge.

Because of the midspan dampers, however, only approximately 3/4 of the blade
passage was clearly visible. A large Plexiglas scene window formed as a 53-deg
cylinder approximately 15.5 in. (39.4 cm) in radius, 9.75 in. (24.8 cm) wide, and
0.5 in. (1.27 cm) thick was installed in the outer casing forward of the rotor.
The scene window provided a port through which the scene beam was transmitted
into the flow annulus.




Electromagnetic pickups were installed on the fan main drive shaft and
outer shroud adjacent to the rotating blade tips. The pickups generated the
signals for activating the oscilloscope in the laser synchronization circuit
to arm and fire the laser.

The stator vane actuating lever and unison ring were removed in the area
of the viewing window, and the stators were locked in position. This allowed
the holographic plates to be positioned close to the viewing window and as far
aft of the blade passage as possible.

An actuator drive was installed on the test stage to reposition the
holocamera platform by approximately 0.040 in. (1.02 mm) during the long
double-exposure holography tests. To minimize vibration effects, the actuator
was driven against rubber isolation pads mounted on the support structure.
Position sensors were attached to the test stage to monitor relative positions
of the holocamera and stage.




HOLOCAMERA DESIGN

The holocamera developed under this program is unique in that it is
actually two separate holographic arrangements mounted in a single rigid tubu-
lar framework. One arrangement is used to record single- and double-exposure
bright-field holograms, the other to record dark-field scattered-light holo-
grams. Both arrangements share the same focusing lenses and reference beam
optics. Transition from one recording arrangement to the other is accomplished
rapidly and easily by exchanging a few key optical elements (beam splitters,

prism p]étes, and reflecting prisms). These were mounted on a single sliding
plate driven by a pneumatic actuator.

Optics Configurations

The two holographic configurations are shown schematically in figs. 4 and
5. Fig. 4 shows the arrangement of optics for recording the bright-field holo-
grams and fig. 5 shows the dark-field arrangement. The large l4-in.-diameter
(36-cm-diameter) intermediate focusing lenses have sufficient focal length to
span the lower portion of the fan test stage and give a viewing angle of about
27 degrees to the holograms.

The holocamera is constructed on a tubular steel framework welded water-
tight, making it possible to fill the frame with either water or dry sand to
increase the mass of the holocamera and thereby reduce the amplitude of vibra-
tion induced by the fan stage. The optical components are rigidly mounted to the
frame.

An aluminum enclosure is provided on one end of the holocamera to support
the sliding plate and one front surface mirror (for the bright-field configura-
tion). It also anchored the shield between the diffuser and the focusing lens
set. The reference beam prisms and the lens for spreading the reference beams
are mounted below the enclosure on a steel plate welded to the tubular frame-
work. Panels across the exposed top and bottom portions of the tubular frame
minimize air turbulence through the reference beam path.

The illuminating laser beam is deflected into the holocamera by a right-
angle reflecting prism beneath the framework. Depending on the position of the
sliding plate, the beam illuminates either the bright-field holographic
arrangement or the dark-field scattered-light holographic arrangement.

Bright-field configuration.--In the bright-field configuration (fig. 4),
the reflected beam first encounters the flat surface of a plano-concave diverg-
ing lens (combined beam splitter and diverging lens). The portion of the beam
that is reflected from the flat surface becomes the reference beam, while the
portion passing through the lens becomes the scene beam.

The reference beam is diverted downward into a wedge prism and a reference
reflector prism. The wedge refracts the light at an angle such that it is
totally reflected by the reflector prism. This element directs light through
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a positive converging lens and a pinhole aperture onto the reference mirror,
The mirror directs light to the hologram photographic plate at an angle of
45 degrees. The pinhole aperture at the focal point of the positive lens
eliminates stray light from the optics behind the focal point.

The scene beam in the bright-field arrangement is incident on a 6-in.-
diameter (15-cm-diameter) front surface mirror mounted to the top of the
enclosure. This mirror reflects the scene beam onto a prism plate, which
directs the beam toward the focusing lens set. A glass plate, rough-ground
on both surfaces, diffuses the light. Light scattered by this ground-glass
diffuser is refocused by the intermediate focusing lenses onto the
hologram photographic plate. The photographic plate and ground-glass
diffuser are actually at 1:1 conjugate image points. The lenses serve to
spatially match the scene beam to the reference beam at the hologram photo-
graphic plate. |In other words, a ray or cross sectional element of the
original input laser beam recombines with itself at the photographic plate,
thus creating the bright-field hologram. This holocamera arrangement is
basically a '"path-matched focused ground-glass holocamera,'' similar to
those first built to record holograms of liquid rocket fuel combustion
(refs. 1 and 2).

Dark-field, scattered-light configuration.--In the dark-field, scattered-

light holocamera configuration (fig. 5), the illuminating laser beam from
the prism reflector mounted below the tubular framework, encounters a glass

wedge beam splitter, which divides it into scene and reference beam components.

The reference beam path is the same as that of the bright-field holocamera
configuration. The scene beam, the principal amount of light transmitted
through the wedge (92 percent), enters a second right-angle prism reflector,
which directs it into a third, larger reflecting prism. This prism reflects

the beam toward the astigmatic focusing lenses. The prism mount is adjustable

for path matching. The astigmatic focusing lenses focus the second beam
through a pinhole aperture, which blocks all light scattered by and from
the surfaces of the optics preceding it, creating a point source of light
in front of intermediate focusing lenses.

The intermediate focusing lenses refocus the light to a point in front

of the photographic plate where a beam stop blocks the focused light from
reaching the hologram. Particles are introduced at a point between the inter-

mediate focusing lenses and the beam stop to scatter light past the beam stop
toward the photographic plate. The holocamera is actually arranged for the

most efficient scattering of light. The scattered light rays that reach the
photographic plate recombine with the reference beam to create the scattered

light hologram.

Q-Switched Ruby Laser I|1luminator

A schematic of the Q-switched ruby laser used to illuminate the
holocamera is shown in fig. 6. The system consists of an oscillator and
an amplifier; the oscillator incorporates two nitrobenzene Kerr cells, which
can generate two separate Q-switched pulses with separations of a few psec.
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Figure 6.--Schematic of Ruby Laser |lluminator used to Record Holograms.

The double-pulse capability developed for this program differs from the
more conventional practice of using a single Pockel cell with sophisticated
electronics to double-pulse the single electro-optical element. The unique
feature of the double-pulse circuit arrangement shown in fig. 6 is that the
two electronically isolated circuits can be pulsed independently with
essentially no limitation on minimum separation time. The arrangement can be
used to generate two pulses with approximately 2 usec separation to record
the rapid double-exposure holograms.

Using only one Kerr cell, the laser shown in fig. 6 functions as a
convectional Q-switched ruby laser, generating a single 50- to 80-nsec giant
pulse (refs. 1 and 7).

The ruby rod, the surrounding helical xenon flash lamp, and the external
silver lamp reflector are mounted in a single sealed housing. Coolant at
a temperature of about 59°F (15°C) (just above the dew point) flows through the
housing, cooling both the lamp and the ruby rod.

The flash lamp is fired by discharging a 375-microfarad (uF) capacitor
through the lamp terminals. The bank is usually charged to 4300 V, repre-
senting an energy of 3500 Joules (J). Green and blue portions of the light
emitted by the flash lamp are absorbed by the chromium ions inside the ruby
rod. This excitation is held by the ruby rod for times on the order of several
msec. The excitation represents the storage of energy in the rod. The excita-
tion also gives the rod gain for light at the wavelength of the flourescent
transition, (i.e., the R] transition, which has a wavelength of 0.6843 microns

at 68°F (20°C) (ref. 1)
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The combination of a pumped ruby rod (or optical amplifying region) with
a pair of mirrors (i.e., the 99 percent dielectric mirror and the sapphire
resonant reflector) is the optical analog of an electronic feedback amplifier.
Such a combination oscillates as long as the gain exceeds the losses.

Either Kerr cell in fig. 6 can be used in concert with the polarizing
prism (a calcite Glan polarizer) to stop oscillation. Biasing either Kerr
cell to its quarter-wave bias prevents return of all light that leaks out of
the end of the ruby rod. Feedback is stopped, and the combination can no
longer oscillate. As a result, a larger fraction of the chromium ions in the
rod can be excited. The greater the excitation of the atoms, the greater the
storage of energy, and the greater the gain.

If the quarter-wave bias is instantaneously removed from the Kerr cell,
the energy stored in the excited atoms is converted into light of the wave-
length of the laser transition. The conversion takes place in approximately
20 complete cycles from one end mirror to the other and back again. The
pulse duration is typically 0.05 to 0.08 psec for a laser with mirrors
separated by 1 m. A 1-cm-diameter, 10-cm-long rod can emit 1 J of light. The
peak power of such an emission is on the order of 20 milliwatts (mW).

If the Kerr cell is not opened, the excitation will decay away in 3 msec.

The ruby rod is thus an energy storage device that converts, on command,
the optically stored energy into light. The stored energy can be converted
into either a single light pulse or a number of individual light pulses.

The second Kerr cell in the laser cavity generates the second pulse.
To double-pulse a ruby laser, one half of the energy stored in the laser rod
is converted into light. This is done by partially opening one of the Kerr
cells. The other Kerr cell is then opened and the remaining energy is
converted into light. The proper operating voltages are determined by
experimentation.

The second ruby rod functions purely as an amplifier. The rod is
identical in size to the rod in the oscillator. Its flash lamp is connected
to an identical 375-KF capacitor bank. The bank is charged typically to
4500 V representing an energy of 3800 J.

Initially, the oscillator lamp is fired. For single-pulse operation,
the quarter-wave-biased Kerr cell is short-circuited by a hydrogen thyratron,
approximately 800 usec after the start of current through the first flash
lamp. The 800-usec time was found to be near optimum; however, a giant pulse
can be generated ranging from 0.5 to 1.2 msec. The 800-usec delay produced
the highest amplitude, shortest duration laser pulse.

The amplifier normally was initiated 0.15 msec after the start of current

through the first flash lamp. This small delay optimized the gain relative to
the emission of the pulse from the oscillator.
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The double-pulse operation of this double Kerr cell laser is shown
schematically in fig. 7.

RG 58/U, 20 ft (6.096 m)
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Glan

; crotervreliN
A DI Beed -

reflector cell No. 2 cell No. 1 Sapphire
refiector 5-81224

Figure 7.--Schematic of Double~Pulsed, Q-switched Ruby Laser.

Two large hydrogen thyratron apply and remove high voltage from the two
Kerr cells. The first Kerr cell is connected to the plate of the first thy ra-
tron through a 10-megohm (Mn) resistor and approximately 20 ft (6.1 m)
RG/58 U (52-a characteristic impedance) coaxial cable. A second 10-Ma
resistor connects the plate of the thyratron with a variable high-power
supply (0 to 30 kV). The high-voltage supply is adjusted until the Kerr cell
is biased to its quarter-wave bias. The plate of the thyratron also is
connected to ground through a 0.002-uF blocking capacitor and a 9000-~
resistor (at Kerr cell end of cable). A second 0.002-uF capacitor is con-
nected between the 9000-n resistor and the Kerr cell. A 50-a resistor
terminates the cable at the Kerr cell.

Firing the first thyratron (by application of a 300-V pulse to its grid)
discharges the first 0.002-uF capacitor through the 9000-n resistor. The flow
of current produces negative voltage which dies away with the 18-psec resistor-
capacitor (RC) time constant. The second 0.002-pF capacitor couples this volt-
age step to the plates of the Kerr cell. The Kerr cell voltage thus instanta-
neously changes from quarter voltage (typically 20 000 V) to zero volts when the
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thyratron is fired. |t returns to the 20 000-V quarter wave condition with a
time constant of 18 usec. A time span short enough so that the cell is closed
before the gain of the rod (due to continued pumping by the lamp) starts the
system oscillating again (after lasing.)

The second Kerr cell is identical to the first, with the exception that
no resistor is connected from the plate of the Kerr cell to the plate of the
thyratron. Firing the second Kerr cell discharges a second 9000-~, 0.002-pF RC
circuit. The negative RC pulse is coupled to the plates of this Kerr cell.
The pulse amplitude, determined by the voltage applied to the plate thyratron,
is less than quarter-wave voltage and it can be applied to the plates of the
other Kerr cell.

During double-pulse operation, the second Kerr cell is fired before the
first. The thyratron voltage is adjusted until the two pulses are of equal
amplitude. Results of an early test are shown in fig. 8 (these are oscil-
lograms of the output of a vacuum biplaner photodiode). In this test, the two
pulses were separated in time by approximately 80 pusec. The first Kerr cell was
biased to within 23.5 kV of its normal quarter-wave bias. The right column shows
the laser output power. Each oscillogram shows traces corresponding to the
two pulses. The left column shows the integral of power or emitted energy.

The two steps in the oscillogram verify that the laser emitted two pulses.

The fine structure seen in the oscillograms of laser output power shows
that the laser was emitting a multiple of cavity modes. This type of emis-
sion is referred to as multimode emission, which results in a laser with low
coherence.

As the program progressed, it became important to have a laser in which
the two pulses were separated by as little as 2 to 5 psec. This was accom-
plished by using the circuit shown in fig. 7. It was possible even though
the first Kerr cell was still recovering at the time that the second Kerr
cell was fired. Voltages had to be adjusted to compensate for the
interaction.

Laser Pulse Synchronization

Synchronization of the laser to the blade position is complicated by the
need to start pumping the ruby rod before the Q-switch pulse occurs. Approxi-
mately 3/4 msec is needed to charge the ruby with an electronic flash lamp.
Q-switching can be accomplished from 1/2 msec to | msec after the start of
pumping. As discussed previously, this is achieved by short-circuiting the
quarter-wave voltage (23 kV) on the Kerr cell with a hydrogen thyratron. The
laser pulse is prompt, occurring within 0.1 usec of removal of the voltage from
the Kerr cell.

During the early part of the program, the fan test stage was provided with
two capacitance-type sensors, one located opposite the drive shaft, and the
second opposite the rotating blades. Fluctuation in the capacitance of the
circuit due to the proximity of a boss on the drive shaft or the individual
blade edges generated charging and discharging voltages, which were amplified.
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One capacitive probe generated a pulse for each rotation of the shaft; the
second probe generated a pulse for each blade passage. These signals are
referred to as the ''one-per-rev'' and '"'40-per-rev' signals, respectively.
Sample oscillograms are shown in fig. 9. |Inspection shows that the one-per-
rev signal is a 30-usec pulse of 8-V amplitude. At a speed of 14 000 rpm
(1466 rad/sec), the pulse separations are 4.3 msec and 108 psec, respectively.

1 msec/div ~

2 V/div 1-per-rev

signal

10 V/div 40-per-rev

signal

| msec/div =

50 usec/div

1-per-rey
signal

2 \V/div

10 V/div 40-per-rev

signal

50 usec/div

F-17748

Figure 9.-=Sample Oscillograms Showing Signals used to Time
Firing of Ruby Laser (100 percent Design Speed).



A pair of commercial dual-beam oscilloscopes (Textronix Types 555 and
565) and a commercial Kerr cell delay generator were used to delay pumping
and firing of the laser relative to the one-per-rev signal. The oscillo-
scopes selected are particularly adaptable to this type of function. A
schematic showing the interconnections of the oscilloscopes is shown in
fig. 10. The one-per-rev signal is connected to the first vertical amplifier
of the first oscilloscope. The first time base is set to trigger from this
signal. When firing the laser, it is further set to the single sweep mode.
The '+ gate'' from this time base is connected to the input of the delay gener-
ator. This circuit produces a delayed pulse relative to the + gate or one-
per-rev signal. Maximum delay is one msec in 50-usec steps.

The second time base on the oscilloscope, Time Base B, is set to trigger
after a predetermined delay set by the delay generator circuit of the
oscilloscope. The function on the scope is entitled, '""Trigger once for
each '"a'' delay'. This delay is called Tp. After a wait or delay of Ty, the
time base will trigger on the next signal fed to the lower beam amplifier.
The 40-per-rev signals are connected to this amplifier. In this way, any
blade can be selected to initiate the + gate.

The + gate from the second time base is used to trigger the first time
base of the second oscilloscope (the 565). The LO-per-rev signal is dis-
played on the vertical amplifier. The scope thus shows the blade passage
signal which triggers it, as well as the next blade signal.

The 565 oscilloscope is similar to the 555 in that it has a second time
base that can be delayed relative to the first, determined by a precision
potentiometer. This oscilloscope is set to start the second time base after
the delay set on the potentiometer (unlike the 555, which was set to trigger
after the specified delay). The delay is called T3.

The + gate from the second time base triggers the hydrogen thyratron
in the laser. The second oscilloscope thus enables precision firing of the
laser relative to the selected LO-per-rev pulse, and properly orients the
position of the blade in the viewing window.

In addition, both scopes display a signal proportional to the energy
emitted by the laser. This signal is generated by a photo diode inside the
laser. A step voltage indicates proper laser emission, namely, a single
pulse of 50 nsec duration. The output of the delay generator also is displayed
on the upper sweep of the first oscilloscope.

Figure 11 schematically shows the relative positions of the one-per-rev,
LO-per-rev, delay generator pulse, and oscilloscope + gate signals.
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Figure 10.--Double Oscilloscope Scheme for Precisely Firing
Ruby Laser Between Blade Rows of Fan.

As the program progressed, the capacitance sensors originally installed on
the fan test stage were found to be intermittent, causing the laser to misfire.
The probes were replaced with conventional electromagnetic pickups, which
generated voltages proportional to the rate of change of magnetic field
through a coil. These signals could not drive the speed-measuring electronics
because of the complex voltage wave generated. The signals were, however,
adequate for activating the oscilloscopes as shown in fig. 9. Photographs
of the signals generated by these sensors are shown in fig. 12. The upper
trace depicts the one-per-rev signal. The leading pulse shown in the upper
trace was generated from a magnetic pickup on the hub. The following pulses
on the same trace were generated from the passage of balancing holes drilled
in the hub. The lower trace depicts the 40-per-rev signals. The two signals
were interconnected into the circuit in the same manner as the signals from the
original probes. The sensitivity and triggering functions of the scopes were
changed to accommodate the new signals.

The original timing circuit was modified to include an additional delay
unit to fire the second Kerr cell in the laser. A second Tektronix 555
oscilloscope was coupled to the original 555 and 565 oscilloscopes as shown
in fig. 13. The one-per-rev and 40-per-rev signals are inputs for the left
and right vertical amplifiers of the first 555 oscilloscope. Both are
swept by time base a, triggered from the one-per-rev signal. The 40~per-rev
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Figure 12.--Signals from Magnetic Pickup.
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Figure 13.--Final Triple Oscilloscope Scheme Used to Precisely
Double-Pulse Ruby Laser Between Blade Rows.

signal also is connected to the lower beam of the 565 oscilloscope and to

the input trigger of the second time base of this oscilloscope (time base b).
The 'delay-trigger-output'' of the first 555 provides a variable delay pulse
relative to the starting of the first oscilloscope. This function eventually
selects which blade the laser illuminates. The delayed trigger output is
connected to the 565, triggering the first time base a of this oscilloscope.
The + gate of this oscilloscope is connected via a coaxial cable to the laser
supply to fire the flash lamps. This delay trigger output sets the pump period
and the exact blade the laser illuminates. The 565 logic is set such that the
second time base starts after a predetermined setting of the delayed dial func-
tion, called ''sweeps once,' or is triggerable after the same specific delay
period. This latter arrangement lets the Lo-per-rev signal trigger the second
time base. The triggerable mode is used when accurate blade position is
required. The + gates from the second time base are used to fire the first
Kerr cell in the laser power supply, as well as to provide a timing identifica-
tion mark on the data recording equipment and to trigger the third oscilloscope
(the second 555). In addition, this signal is displayed on the lower beam

of the 565, the lower beam of the 555 (via a dual trace amplifier), and the
lower beam of the second 555. As a result, the two scope traces show the
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intended firing of the laser relative to the LO-per-rev signals. The ''delayed-
trigger output'' of the second Kerr cell provides the signal to trigger the
second Kerr cell in the laser power supply. The unused time base in the first
555 oscilloscope is employed as a power amplifier to send the pulse over a

long piece of coaxial cable to reliably fire the thyratron in the laser power

supply.

The photodiode inside the laser is connected to the vertical amplifier
of the second 555. This shows the pulsing of the laser.

A more simplified representation of this firing arrangement is shown in
fig. 14. The tabulation in this figure shows the different scope displays. A
sample is shown in fig. 14. The thyratron in the laser power supply feeds a
noise signal into the coaxial cable so its firing also is seen on the sweep.
The thyratron spike can be seen on the lower trace, added to the pulse gate
command.

Other System Components

Windows .--Standard Plexiglas was selected as the window material because
of its optical homogeneity, transparency to laser light, suitable tensile
strength, amenability to fabrication into complex shapes and compound curvatures,
and moderate cost.

The windows were shaped by thermally forming standard Plexiglas sheet.
Thermal forming minimizes the refractive distortion of transmitted light because
the inner and outer surfaces are basically parallel after formation. The larger
window, referred to as the scene window, was formed as a 53-deg cylinder
approximately 15.5 in. (39.4 cm) in radius, 9.75 in. (24.8 cm) wide, and 0.5 in.
{1.27 cm) thick. The smaller window, or viewing window, is 3 in. (7.6 cm) high,
5 in. (12.7 cm) wide, and 0.75 in. (1.96 cm) thick. It fits into the fan outer
shroud adjacent to the rotating blade tips. Fabrication of the viewing window
was complicated by the fact that its inner surface forms a part of the aero-
dynamic flow path and thus requires a compound curvature. A photograph of a
finished window and the mold used to form it is shown in fig. 15. An unmachined
flange is also shown on the concave mold surface.

As the program progressed, the reconstructed holograms indicated that the
windows were not sufficiently smooth, particularly the smaller viewing window,
which has the compound curve surface. Double-exposure holograms taken with the
rotor at rest and the holocamera repositioned between the two exposures showed
"fringe islands' of several fringes approximately 1 cm wide across the area of
the window. In an effort to minimize the window distortion effects, both sur-
faces of the window were polished. A moderate improvement in window quality was
achieved. :

In an attempt to better understand the source of these fringes, thinner
windows, 0.25 in. (6.35 mm) thick, were fabricated and tested. It was found
that the larger scene window distorted under pressure; the smaller viewing
window, however, showed a substantial reduction in fringes.




2L

1/rev signal

Chooses blade

Prompt + gate to laser power supply (lamps)

Delay unit
555 No.

Time base a

De layed Triggerable mode u§e<.j ft?r
. accurate blade positioning
trigger
Sweeps_’ Prompt pulse
= 57 p
" Delayed EE;BY unit generator To tape recorder
——o0———{ ¢ >
. . 5
trigger Time base a Triggerable 15'ime —
after delay

Sets pump period

v To first
kerr cell
LOo/rev signal
Displayed Time
signal Scope Beam base
1/rev 555, No. 1 Upper a i Prompt pulse
555’ _ ' gg;a:‘ “”Z't Delayed | generator
, No. ower a o. . 555 No. 1
Lo/ rev 555, No. 2 Lower b Time base a trigser Time base b Ta secon]d]
565 Lower a Kerr ce
555, No. 1 Lower a Sets
565 555, No. 2 Lower b interpulse
+gate 565 Lower a period
Laser 555, No. 2 Upper a
output 565 Upper a $-81231
Laser output
Kkk\&kk&kl‘\kk’\kkk 40/ rev witlh
; firing commands
200 usec/div
F-18542

Figure 14.--Simplified Block Diagram of Three-Oscilloscope Scheme

for Double-Pulsing Ruby Laser and Sample Oscillogram.
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Figure 15.--Plexiglas Viewing Window and Mold.

Automatic plate changer.--An automatic plate changer capable of storing up
to 24 photographic plates was developed. The plate changer is essentially an
ejector type of mechanism that will automatically feed ahd position the plates,
holding them rigidly in position by suction during exposure; then eject and
store the plates in a container. The plate changer was remotely operated by
a flexible cable from the control panel.




HOLOGRAPHY TECHNIQUE

General Description

Holograms are a record of the microscopic interference between two coherent
beams of light. One beam, called the reference beam, appears to come from a
distant point source of light. The other beam, called the scene beam, is trans-
mitted through the flow field. The scene beam is quite complex, particularly
in the bright-field arrangement, since it is generated by the passage of laser
light through a piece of ground glass. The scene beam is less complex in the
dark-field arrangement because its source is light scattered from flow-entrained
particles.

A microscopic interference pattern exists wherever the scene and reference
beams pass through one another. The interference pattern is three dimensional
and can be extremely complicated. When and where the scene and reference beams
are coherent, the interference pattern is stationary in space. It can be recor-"
ded by a special photographic emulsion on a photographic plate. The photographic
plate can be placed anywhere in the region where the scene and reference beams
pass through one another; its location is not critical except in cases where
the laser coherence is limited (as it was in this program). For such cases,
the plate is located at the ''‘path match position'.

Whenever the plate containing the interference pattern (chemically fixed
in the photographic emulsion) is illuminated by a beam that duplicates the
original reference beam, the plate (hereafter referred to as a hologram) dif-
fracts a beam that is identical to or a close facsmile of the original scene
beam. Three-dimensional images are thus recreated from a hologram.

Double~exposing the photographic recording plate offers the simplest

method of holographic interferometric comparison. The initial exposure records
a stationary microscopic interference pattern on the plate. Changes in the
optical paths throughout the scene that take place between the two exposures
result in a slightly different pattern for the second exposure. Such a hologram
displays two wave fronts whenever it is reconstructed or illuminated by a beam
that approximately duplicates the reference beam. Changes in optical path
length that occur between the two exposures and are multiples of a wavelength
of laser light lead to constructive interference between the two reconstructed
wave fronts. These regions of the image are seen as bright bands or fringes.
Changes in optical path length that occur between the two exposures and are
multiples of one-half wavelength lead to destructive interference or cancella-
tion between the two wave fronts reconstructed from the holograms. These por-
tions of the reconstructed image are seen as dark fringes that run through the

scene. Neighboring fringes correspond to changes of optical path equal to one
wavelength.

Double-exposed holograms are sensitive to changes in optical path as small
as 1/20 of the wavelength of the laser beam. Changes in path that are a small
fraction of a wavelength produce quasi-fringes or shadows in the reconstructed
image.
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The bright-field pulsed laser holographic apparatus (fig. 4) developed for
this program recorded what are commonly known as transmission holograms. Optical
path changes are produced by changes in the refractive index, not by a physical
change in surface position. |In such a situation, the optical path is defined
as the integral of the refractive index over the physical path; namely,

Optical path =fn dz (1)

where n is the refractive index locally, and dz is the differential of physical
path. For gases, the change in refractive index is directly proportional to the
change in mass density (i.e., the change in the number of atoms per unit
volume). Because the index of refraction of free or empty space is unity, the
index can be related to the density as follows:

n-1=Kp (2)

where p is the mass density in 1b/ft3 (g/cm3) and K is the constant of propor-
tionality (the Gladstone-Dale constant). Its value can be computed from values
of the refractive index and density given in published tables. For example,

the refractive index of dry air at 599F (150C) and 29.92 in. Hg abs (76 cm Hg)
pressure, and at 0.6943 microns (the wavelength of the ruby laser) is 1.0002753.
Air at this temperature and pressure has a density of 0.0765 Ib/ft3 (0.001226
g/cm3). At the wavelength of the ruby laser, the Gladstone-Dale constant for
dry air, therefore, has a value of 0.225 cm3/g.

Double-exposure transmission holograms measure the change in optical path
that occurs between the two exposures of the holograms. Division of this
change (eq. (1)) by the wavelength of the laser beam expresses the change in
terms of wavelength, a value or representation that is more helpful in inter-
pretation; namely,

_ change in optical path _ l_j _
S 3 =~ J(ne - n.) dz (3)

where ng is the final index of refraction and nj is the initial index of refrac-
tion. Eq. (3) can be written in terms of density change via eq. (2)

s = %_[(Pf - Pi) dz (4)

Change in density can be determined from an interferogram by solving eg. (4).

Because the holographic interferograms were recorded with a ruby laser, a
relevant number is the number of fringes produced in air over a centimeter of
path from a change in pressure of one atmosphere. This quantity is simply the
change in the index of refraction divided by the wavelength of the ruby laser,
which is 3.97 waves/cm/atm, or approximately 4 waves/cm/atm. For example, a
1-fringe shift over a span of 2 cm is an average change of 1/2 fringe per cm.
Based on the value of 4 waves/cm/atm, such a change represents a 1/8 change in
density (between the two exposures). The sensitivity of double-exposure holo-
grams to changes as small as 1/20 of a wavelength over a path 2-cm long repre-
sents a miximum change of 1/40 fringe per cm and means that 1/160 atm is the
minimum practical detectable change in density (4.7 mm Hg).
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In summary, holographic interferograms are sensitive to optical path changes
on the order of small fractions of the laser wavelength. A double-exposed holo-
gram allows visualization of normally indiscernible aerodynamic changes in terms
of clearly observable interference fringes.

Single-Exposure Holograms

A single exposure hologram may be defined as a hologram in which the
microscopic interference pattern (i.e., the interference between the scene and
reference beams, recorded by the photographic plate) is stationary throughout
the exposure of the plate. Such a hologram reconstructs an identical three-
dimensional image of the scene. It can be shown experimentally that an individ-
ual cannot distinguish between a holographic reconstruction of a scene and the
scene itself under the same conditions of laser illumination (ref. 9).

The microscopic interference pattern at the photographic plate (at the
time of recording) is stationary in space if all parts and paths through the
holocamera are stationary to less than 1/20 of the wavelength of laser light.
In terms of exposure time, this condition establishes a velocity below which
objects will be recorded satisfactorily, and above which they will be recorded
with diminishing intensity (if at all). |In this program, the holograms were
recorded with a Q-switched ruby laser of typically 50-nsec pulse duration.
Dividing this duration into the 1/20-wavelength stability condition gives a
limiting velocity of 70 cm/sec. Elements or parts of the scene that move at
speeds of greater than 70 cm/sec will not be recorded by a hologram exposed
with a 50-nsec laser.

Two types of holograms were recorded: (1) bright-field holograms and (2)
dark-field scattered-light holograms. In the bright-field holographic arrange-
ment (fig. 5), the rotating blades were not a part of the holographic optical
arrangement. The blades only passed through the scene volume of the holocamera.
The blades were seen only in silhouette against the bright background produced
by the ground-glass diffuser. Single-exposure holograms taken with the blades
rotating were essentially identical in appearance to holograms taken with the
blades at rest, except for some minor differences. With the blades stationary,
light that was reflected from the blade surfaces could be seen in the recon-
structions. When the blades were rotating, this reflected light was not repro-
duced in the reconstruction, since the optical path for light scattered from
the blades surfaces during exposure of the hologram was in excess of the 1/20-
wavelength limit. Except for the lack of highlights with the blades rotating,
the two holograms appeared identical.

Recons truction of single-exposure holograms recorded with the stage operat-
ing at design speed showed that components of the holographic apparatus were not
vibrating with amplitudes in excess of 1/20 of the wavelength of the laser light.
Satisfactory single-exposure bright-field holograms substantiated that induced
vibration levels of the holocamera were significantly lower than originally
anticipated, and that holocamera vibration would not impose any serious problems.
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The recording further showed that the aerodynamic phenomenon was weak, and that
throughout the flow field, there were no regions where the optical path changed
more than 1/20 of a wavelength during the 50-nsec duration.

The dark-field scattered-light holograms were quite different from the
bright-field holograms. In the scattered-light holograms, particles were
recorded by their scattering of laser light. This made the particles a part
of the holographic apparatus and subject to the 1/20-wavelength path restriction.
At the stage design speed, particles entrained in the flow field moved too
rapidly to be recorded with a ruby laser with a 50-nsec pulse duration. Tests
were therefore limited to an operating speed of approximately 10 percent design
speed in lieu of shortening the laser pulse duration.

Examples of the hologram reconstructions taken with the blades at rest are
shown in fig. 16. The figure on the left was taken with the holocamera in the
bright-field or '"focused-ground-glass'' configuration and shows highlights due
to the scattering of light from blade surfaces. As indicated previously, these
highlights were not present in holograms recorded when the blades were rotating.
The figure on the right was made with the holocamera in the scattered-1light
arrangement. For this photograph, the copy camera was focused on the blade
nearest the viewing window. The background in the right photograph was due to
dirt on both the scene window and the surfaces of the intermediate focusing
lenses. The "impact'' of the focused laser beam on the viewing window is seen
in the foreground of the photograph of the scattered-1ight hologram.

Flow direction —p Direction of rotation ‘

(a) Bright Field. (b) Dark Field.
) F-17738
Figure 16.--Single-Exposure Holograms of Rotor Blade
Passage at Rest (Zero Speed).
29
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Two exposures of the scattered-1ight holograms were made to show the
relative positions of particles at two different points in time; however, no
interferometric or phase information was obtained. Special single-exposure
bright-field holograms also were attempted. The laser pulse duration was
increased from the nominal 50-nsec duration to 1 to 2 psec. This was achieved
by increasing the optical cavity length to 19.7 ft (6 m). Increasing the laser
pulse duration made the hologram even more sensitive to optical path length
changes produced by the flow field. The results were moderately successful,
but not as successful as for the holograms in which the laser emitted two dis-
tinct pulses in rapid succession. This type of hologram is discussed in the
following paragraphs.

Double-Exposure Holograms

The double exposing of a hologram provides a method for visualizing the
shock-induced density changes in the air flowing through the blade passage.
The holocamera is in the bright-field arrangement for this type of recording.
Density changes are visualized in the fringe pattern seen in the hologram.
These are caused by optical path changes that occur between the two exposures
of a hologram. In double-exposure holography, the first exposure provides a
reference to which the second exposure is compared. The reconstruction of the
hologram recreates the two wave fronts at the same time; these then interfere
with one another, showing the changes in optical path in terms of the optical
interference pattern. The steps in recording a transmission holographic inter-
ferogram are diagrammed in fig. 17. |In this figure, the scene beam is shown as

Three steps for using a common path double-exposure holographic
interferometer to record a transmission subject:

Plate

Plate shows microscopic

’H interference pattern

® Step 1 //
Record comparison beam. 7
Pl
.4

Test subject

Plate shows second
microscopic interference
Pe 4 pattern

e Step 2
Record test beam. Pl
P
//
Observer
Hologram with records of
two microscopic interference
® Step 3 patterns
Simultaneously reconstruct //
comparison and test beams. s —» Scene beam
Observe interference. P
- — — — —» Reference beam

s-82119

Figure 17.--Diagram of the Procedure for Recording and Reconstructing a
Double-Exposure Holographic Interferogram.
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a solid line, and one ray of the reference beam is shown as a dotted line. As
discussed earlier, the photographic plate records the microscopic interference
pattern due to the passage of the scene beam through the reference beam. After
the first exposure, a change is introduced into the scene path. In the example,
it is shown as a transparent object that shifts the phase of the scene beam
relative to its original value. During the second exposure, a second micro-
scopic interference pattern is recorded by the plate. The plate is developed,
then illuminated with a beam that duplicates the original reference beam. The
two microscopic interference patterns, developed in the plate, create (by dif-
fraction) the original wavefronts, shown simultaneously. Because the wavefronts
interfere with one another, the phase change that occurred between the two
exposures is seen in terms of gross optical interference fringes.

In recording aerodynamic phenomena, the first exposure generally is made
under quiescent conditions, the second exposure is made in the presence of the
event, and the holographic interferogram then shows the difference. In theory,
the absolute change in aerodynamic density can be calculated from such a holo-
gram by diligent application and interpretation of eq. (4).

An example of a double-exposure hologram is shown in fig. 18. This example
represents one of the early recordings obtained during initial installation and
checkout of the holocamera assembly. The first exposure was recorded with the
rig at rest, and the second exposure was made with the rig rotating at 60 per-
cent design speed. The hologram reconstructs the two images simultaneously and
these interfere to give the finite fringe pattern seen in the figure. The
photographs differ only by the viewing angle. The ghost image of the blades
when the rig was at rest is seen in the two right-hand figures. The fringes
seen are due to changes in optical path length, resulting from the combination
of aerodynamics and mechanical movement of the rig relative to the holocamera.
Flow direction as viewed is from left to right. A circuit around the blade
shows a discontinuity in the number of fringes. Knowing the path length,
this difference gives the density difference directly. Thus, near the top
of the right-hand figure, a three-fringe difference in the number of fringes
from the pressure to the suction surface of the blade can be seen. Because
the view is skewed along the blade, the path length is estimated to be 1.97
in. (5 cm). Thus, at this point, a 0.6 A/cm fringe change is measured
across the blade. Based on the 4 A/cm/atm constant derived earlier, a density
change of ~0.15 atm is estimated from the suction to the pressure side of the
blade at the point in consideration.

The S-shaped nature of the fringes is due primarily to mechanical movement
of the test rig relative to the holocamera. Hooking of fringes at the edge of
the window is due to warpage of the window.

Rapid Double-Exposure Holograms
Double-exposure holograms are not restricted to the separation in time of
the two holographic exposures. The hologram only visualizes, in terms of

optical interference phenomena, the change in optical path that occurs between
the two exposures. Shock waves in any supersonic section are characterized
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by a sharp density gradient. The change in density in the flow field constitutes
a change in light path and will change the interference pattern at the hologram.
In a rapid double-pulsing of the laser, the shocks move slightly between pulses,
which greatly enhances the image recorded on the hologram. This technique offers
a unique method for visualizing and identifying shock fronts three-dimensionally.

The proper pulse separation was determined experimentally. Fig. 19 shows
three examples. Example (a) is an abnormally long single-exposure hologram
for which the pulse duration was approximately 1 usec. Examples (b) and (c)
are double-exposure holograms with separation times of 5 wsec and 30 psec,
respectively. For example (c) blade movement during this time interval was
nearly 25 percent of the blade passage width. The double-exposure holograms
recorded with 2- and 5-usec time separation (example (b) of fig. 19) appeared
to provide the best rendering of the shock structure. Therefore, most of the
double-exposure holograms taken during the program were recorded with a 2- to
C-Usec time separation. Double pulsing of the laser within these pulse inter-
vals required special development of the laser illuminator. Holograms of the
type shown in (b) and (c) of fig. 19 are referred to as ''rapid double-exposure
holograms'' to distinguish them from double-exposure holograms recorded at dif-
ferent operating speeds or flow conditions. (The latter were referred to
throughout the program as ''long double-exposure holographic interferograms.'')

Double-Exposure Scattered-Light Holograms

The new experimental aspect of the program was the determination of flow
velocity from double-exposure scattered-light holograms of particles entrained
in the flow stream. |In scattered-light holography, light is scattered off the
moving particles. As a result, the particles become part of the holographic
apparatus. The particles are then subject to holographic motion 1limitations;
to be recorded, the optical path of the scattered rays should not change more
than 1/10 of a wavelength of laser light during the exposure of the hologram.
A particle that moves a little more than 1/10 of a wavelength reconstructs
only dimly, and one that moves many wavelengths during the exposure time does
not reconstruct at all (ref 10).

The flow velocity at the design speed for this application is high for a
conventional 50-nsec Q-switched ruby laser. |In scattered-light holography,
motion of the microscopic interference pattern is a function of the relative
direction between the illuminating beam, the direction of scattered light, and
the motion of the scattering particle. The forward scattering condition is
least sensitive to particle motion. For this reason, the holocamera was
designed to use forward-scattered light. Motion of particles entrained in the
flow field is essentially perpendicular to the direction of the converging scene
beam. A simplified view in fig. 20 shows the direct beam focused on a beam stop
in front of the hologram and fig. 21 shows an enlarged simplified portion of
the laser particle scattering region. Only light scattered by the particles
reaches the hologram. A ray is shown being scattered at an angle relative to
a ray of the direct illuminating light.

33




ya 1m sweabo|oy

(Lot wedsbo|OR)
uoijesedsg
as|ngd 29st1 of
‘as|nd-2|qnoq ‘pidey (2)
HoSg1 -4

as|nd

‘uojjesedas @s|ngd d9sd Q¢ 01 |~

a|qnog pidey pue @s|nd-2(buis 30 UOIIINIISUOIY-- 6l aunb 14

*(901 weubo|oH)

uojiesedag

as|nd dosrl g
‘as|nd-a|gnog ‘pildey (q)

»:EEBSb:EEEE.AI:ESEEBEu

*(06 weabo|oH)
ainsodx3-a|bulsg

(®)

34



Fan axis

Ho logram

/ —
28 deg 72‘ deg J_,-r/' = e S Beam stop
. A ”W\ [N §
S 58 de Scattered
?\ rays
= Dust
/ particle
Flow velocity,
800 ft/sec
(244 m/sec)
Center Outer shroud
body

s-82111

Figure 20.--Schematic of Skewed Holographic Arrangement for Scattered-
Light Analysis (Flow Varies in Angle Relative to Laser
Beam Direction from 58 to 94 deg).
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Figure 21.--Enlarged Portion of Particle Interaction Showing Optical
Path Increase due to Particle Motion.
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The direct radiation converges onto the beam stop with an angle of
convergence of 28 deg. This was determined by the diameter of the intermediate
focusing lenses. |In the actual setup, the axes of the converging scene beam
and the flow field are skewed at an angle of 72 deg, which is the alignment
of the holocamera to the axis of the fan rotor.

The two particle positions shown in fig. 21 correspond to the positions
of a scattering particle at the beginning and end of a single laser pulse.
The incident laser beam direction is shown along with the direction of scattered
light. The scattered light, as in fig. 20, is shown as being scattered at an
angle of @. Only the component of velocity perpendicular to the direction of the
incident or unscattered light is effective in changing the optical path for
the arrangement shawn in fig. 20. The component of velocity parallel to the
incident beam does not change the optical path and thus can be ignored. Con-
sidering only the perpendicular component V, it can then be shown that the
change in optical path A over a pulse duration T for rays scattered at an angle
@ with respect to the incident light is

A=V Tsing (5)

For the scene-reference beam interference pattern to be stationary at the
hologram,

A < A10

where )\ is the wavelength of the laser light. Substitution into eq. (5) derives
the range of angles over which the hologram brightly reconstructs:

85 sin” g (6)

Eq. (6) establishes limits on either or both flow velocity and scattering
angle for a given laser wavelength and pulse duration. Solving eq. (6) for
the scattering angle ¢ and given:

V = 800 ft/sec (244 m/sec)
A = 0.6943 microns
T = 50 nsec (pulse duration of a conventional Q-switched ruby laser)

yields the scattering angle
¢ = 1/3 deg

Light scattered at less than 1/3 deg will result in a stationary interference
pattern at the hologram. The reconstruction of such a hologram will show each
scattering point or particle as a bright object against a dark background for
scattering angles less than 1/3 deg. For angles greater than 1/3 deg, the
reconstructed image becomes dim, becoming invisible at angles in excess

of a few degrees. |In this condition, the inability to reconstruct an image of
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the scattering particles was the result of motion of the interference pattern

at the hologram due to change in optical path during the exposure period. For
the condition described, the particle appears as a bright scattering object over
a very restricted angle above the incident or unscattered position (i.e.,
angular cone of 2/3 deg).

An obvious method of increasing the range of angles over which the parti-
cles brightly reconstruct is to decrease the laser pulse duration. Using eq.
(5), the pulse duration required for all particles in the field to brightly
reconstruct within the angular limitation of the viewing window (#pax = *18 deg)
can be computed. For an inlet flow velocity of 800 ft/sec (244 m/sec),

A <
TS TOV sin 18 ~ 0.9 nsec

Such pulses are abnormal to conventional Q-switched ruby laser performance.
Short pulses have been achieved with electro-optical techniques. Pulses as
short as 2 nsec have been produced with spark gaps fired by a laser pulse

that short-circuits a Kerr cell while light is passing through it. Implementa-
tion of such techniques was beyond the scope of the program. Instead of reduc-
ing the laser pulse duration, the flow velocity field was decreased to accommo-
date the 50-nsec laser pulse duration. Feasibility tests were run with the rig
rotating at only 1000 rpm (&8 percent design speed). The resulting holograms
verified the technique of determining velocity from a double-exposure scattered-
light hologram. At this speed, flow velocities were 33 ft/sec (10 m/sec).
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HOLOGRAPHIC TESTS

Bench Test

Both the bright-field and dark-field holographic installations were
breadboarded and bench tested prior to final construction of the holocamera.
Bench testing was particularly important in the case of the scattered-light
arrangement, where feasibility had to be established by actual test. The
breadboard setup of the bright-field and scattered-light arrangement showing
the fan rotor blade mockup, holocamera, and nebulizer for injecting the
particles is presented in fig. 22.

The scattered-light arrangement was tested by recording holograms of
particulate matter that was either blown or convected into the scene volume
(i.e., into the area between the focusing lens set and beam stop). The nebu-
lizer (plastic bottle forward of the rotor blade) used to blow 40- to 50-micron
particles into the scene also is shown in fig. 22. The nebulizer was filled
with either phenolic particles or glass microballoons. Both samples con-
sisted of particles principally in the 30- to 50-micron size range. Photo-
micrographs of the particles are shown in fig. 23.

To test the sensitivity of the scheme for particles of even smaller size,
incense smoke was used as the scattering source. (Incense had been used in
other applications of scattered-light holography and produced particles in the
1- to 3-micron size range.)

Photographs of reconstructed holograms for the three different particles
are shown in fig. 24, The incense is shown in view (a) and appears cloud-1ike
in character. The glass microballoons shown in view (b) are clearly more
granular in appearance and can be seen as bright points of light. The phenolic
particles, view (c), which range in size from 30- to 50-microns, tend to form
in clusters, resulting in agglomerates several hundred microns in diameter.

The phenolic particles also are granular in appearance. These tests established
the feasibility of holographically recording particles of this size range.

All scattered-light holograms were recorded with a conventional Q-switched
ruby laser illuminator, a laser without any coherence-improving elements (such
as a chlorophyll dye cell) within the laser cavity. As a result, many of the
holograms showed the effects of the limited coherence of the Kerr cell
Q-switched ruby oscillator. Holograms for quantitative analysis should be
recorded with a more coherent oscillator.

Shakedown Test

The holocamera, laser, and optics were aligned to achieve the precise path
matching of the reference and scene beams required to produce high=-quality,
brightly reconstructing holograms. Path matching appears to be a relatively
simple adjustment, to match the physical distance of the reference beam to
that of the scene beam path with mirrors. This adjustment is complicated,
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(a) Mockup of Breadboard Setup

F-18498

‘(b) Optical Elements.

Figure 22.--Breadboard Setup of Scattered-Light Holographic Arrangement
showing Transonic Fan Blade Mockup, Hologram, Nebulizer for
Injecting Particles, and Beam Forming Elements.
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Figure 23.--High-Magnification Photomicrographs of
Sample Microballoons.
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however, by the windows, which increase the optical path length by an amount
equal to the physical path, T, multiplied by the difference between the refrac-
tive index of the window and that of vacuum where:

ARath = (n - 1)T

In essence, path match is best determined by recording holograms with a laser
operating incoherently. Coherence is reduced by removing the resonant reflector
on the laser cavity and replacing it with a single dielectric output mirror.
This permits the laser to oscillate over a wide band of frequencies. The coher-
ence actually reduces to approximately 0.10 in. (0.25 cm). A hologram recorded
with such a laser reconstructs only to a band in which the reference and scene
beam paths differ by this amount; however, once the proper alignment of the
holocamera, laser, and optics was achieved, further adjustments to the holocamera
installation were not necessary.

Both single- and double-exposure holograms were successfully recorded
during the shakedown test. Single-exposure holograms were made with both the
bright-field focused ground glass and the dark-field scattered-light holographic
arrangements. A double-exposure hologram of the rotor blade passage with the
stage initially at rest and operating at a speed of 60 percent of design speed
was shown earlier (see fig. 18). At this time, no attempt was made to synchronize
laser firing with the exact blade position.

Double-exposure holograms were of two types, long-interval double exposures
where both speed and operating conditions were changed, with exposures separated
by time intervals as much as 5 to 7 min, and rapid double exposures where the
blade moved some finite distance (limited to less than one blade passage)
with a pulse separation of 2 to 5 psec. The quality of holograms recorded was
very encouraging and clearly showed the three-dimensional shock structure within
the rotating blade passage. The most interesting holograms recorded during
this test period were achieved when the laser emitted either an abnormally
long pulse (estimated at 0.10 to 0.4 psec) or rapid pulses separated by approxi-
mately 2 to 5 pwsec. These holograms accurately portrayed aerodynamic phenomena
(shock waves characterized by abrupt density changes) within the blade rows.

(An example is fig. 19(a), shown earlier.)

Based on the results of these tests, improvements in the test technique
and modifications to the laser, holocamera, and test stage were implemented.

Final Test

More than 600 single- and double-exposure holograms were taken during the
initial checkout, shakedown, and final test phases of the holography program.
Of these, approximately 350 were recorded during the final test period after
modifications to the laser, holocamera, and test stage had been implemented.
The holograms covered the complete operating speed range from 60 to 110 percent
design speed and from choked flow to near stall conditions.

42



The holograms recorded during the final tests were greatly improved over
the earlier recordings, particularly from the standpoint of image quality,
larger effective viewing image area (achieved by recording a series of holograms
at incremental blade positions), and a substantial reduction in interference
fringes due to combinations of window deficiences and vehicle vibration. A
tabular summary of the data points and corresponding holograms that were
selected for reconstruction and analysis is presented in table 1. The operat-
ing conditions at which the series of holograms were taken are superimposed
on the overall stage performance map shown in fig. 25.

Four basic types of holograms were recorded: (1) long-pulse, single-
exposure, (2) rapid double-exposure, (3) long double-exposure, and (4) scattered-
light.

Long-pulse, single-exposure holograms were attempted by modifying the laser
to emit 2-psec pulses. The long pulse duration was achieved by repositioning
the mirrors (99 percent mirror) approximately 20 ft (6.1 m) apart to lengthen
the resonator. The 2-psec pulses were consistently achieved; however, the
results of these holograms were disappointing. The long pulses accentuated the
fringes associated with the major shock waves, but these holograms lacked detail,
making them difficult to interpret during reconstruction.

Rapid double-exposure holograms were made with a laser emitting two
pulses within a very short time span. A 2- to 5-psec pulse separation was
found to produce the best results. By double pulsing, the shock fringes moved
slightly between pulses. This greatly enhanced the patterns recorded in the
hologram, thus making the shock fronts easily identifiable. Most of the holo-
grams were made using this technique. These holograms were made at speeds of
80, 90, 95, 100, and 110 percent design speed. Thirty six holograms were
selected for 8 different operating speed and flow conditions. Six additional
holographs were made where the speed was varied from 80 to 100 percent design
speed along a constant operating line.

Long double-exposure holograms were made with the first exposure at
60 percent design speed and the second exposure at 90, 95, or 100 percent design
speed. These holograms were made with the thinner, 0.25-in.-thick (0.64-cm)
windows. The first double-exposure holograms indicated the larger window
deflected under pressure. The final holograms were, therefore, made with the
original scene window and the thinner viewing window. Six holograms were
selected for a range of operating speed and flow conditions.

A limited number of dark-field scattered-1light double-exposure holograms
were made. Effort was concentrated on recording scattered-light holograms that
would demonstrate feasibility of the technique for determining flow velocity.
Most holograms were recorded with the stage operating at a 1000 rpm (-8 percent
design speed). Microballons ranging in size from 30 to 50 microns were injected
into the flow stream. Successful holograms were made showing clouds of parti-
cles in the blade passage. Pulse separation was typically 4O to 50 usec, giving
a displacement of particles sufficiently large to identify individual particles.
One representive scattered-light hologram was selected as a typical example.
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TABLE 1

FLOW VISUALIZATION TEST
DATA SUMMARY

Data
Point

Reading
*

N/VE.

wb/s

(N/» e) des

W /e7E) 4

Rotor

Stage

Pro /Prs

PT]Z

/

PTS

'ad

Hologram

o

10

12
13
14

103

106 % *

104

118 %%

107

128 %%

126

113 %%

103
104
107
128
126

0.90

0.90

[=N=NoNo Nl
@ WO\ W O
ocooconNO

0.90
0.95
1.0
1.0
1.0

0.079

0.980

0.942

1.019

0.995

1.040

1.041

1.031

1.082

o

.980
<018
.040

.031

Rapid Double Pulse

1. 352

1.545

1.352
1.396
1.429
1.545
1.724

Scattered-Light Hologram

Double-Exposure Hologram

0.885
0.879
0.851
0.867
0.897

1

321

.524

348

604

-369

.505

.669

-597

320
. 348
.369
. 505
.669

0.808

0.834

0.784

0.855

0.743

0,812

0.837

0.770

0.811
0.784
0.743
0.812
0.837

311
312
313

318
319
320

286
287
289
323
324
325
326

278
279
280
332
333
334

164
290
292
293
335
337
338

294
339
340
341
342
343
344

345
346

167

347
349
351
352
356
358

512

Ly

# Corresponds to reading numbers for performance data for uniform inlet flow test of ref. (

*% Blade element performance data presented in Appendix A.

5-82151




,. H ,_ Q,ll‘wl 1
! H 1 1
: i i |
N B ™= P ey Mt S
bop AT 4 _ . |
| N T i
(S — et N S S S,
i ., ® I i
@ b . -
. ! NN | i S
I i A N :
; Ayt~ ==ty
i i A\ Lli!» i sowead
: M.... I i = S
\.T N | |
T T T
+ e , l‘" A i W t +

| b \ 3 i
° | 41U‘ ! i d
i b Lt
=0 . 1\ [

E W —1
235 N i ; !
anE = + ﬂ et N —}- _ ik e - !
i e, ! | /A/m , : !
52 111N R ,
=8 —pgrtetie T =T
e \ LN N T O ;
e fa } A ! H i ! 7]
= a8 ‘/ S I I, S :f\J I . T A S !
W W ! ! N * _, | H

Fc oo ' : T N , -
S IR N U 0 A B
[ | i t

| © 1 | | | | | .
n - “ T # “,

- I A A
- N _,

Ir o .JT..W 3= e T T T :
7 R A I 5

5 T ! AN N T S
¥ !

33 I , |
b | i | !
. - e e T B
_ T 1 i | i
i ! i
| N PN BRI .
.nnlw & 3 R S R

g P8 “4ousyo1gye 213eqerpy

Percent design
equivalent speed

Symbol

90
95

A
N

4eb

25

71

|
. |
t P
-;lelz!klr-
|
S e R (i
_ _ !
T
L _LE _1
S T N W
| i _ !
i e \ 1 T
i o b
||||ﬁ,|.,'b>r||“.i4|.
R o i
- M ; i |
N
;|
o '
e 3H
= € .1 :
a «
ge & 711
€2 ¢ Bt
o [e] 1 |
Ty s Byt
0 c©
a s
| === —
oo e | 4§
_. ===
i
S IR S N ;
=) © 0 =
~ = — -

m_.m\w:a

‘olled aunssaud |elo)

70 90 100 110

Percent design equivalent flow

50

Lo

5-82131

Figure 25.--Flow Visualization Data Points Superimposed
on Overall Stage Performance Map.
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Window clouding from oil centrifuged from the front bearing seal was a
major problem during the test. The windows were cleaned repeatedly during the
test to maintain a clear field of vision and to minimize light scattering from
particles adhering to the window.
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ANALYTICAL PROCEDURES FOR RECONSTRUCTING AND INTERPRETING HOLOGRAMS

Ideally, holograms that are recorded with a ruby laser should be recon-
structed with a ruby laser to produce the most accurate reconstruction. Such
an approach is not practical, however, because ruby lasers are pulsed devices
that are inefficient when operated continuously or at high repetition rates.
Therefore, ruby laser holograms are reconstructed with continuous-wave helium-
neon lasers. The difference in wavelength between the helium-neon and ruby
lasers of approximately 10 percent introduces slight astigmatism, but this can
be seen only at microscopic levels. Helium-neon lasers provide an efficient
source of light for reconstruction and photography of any ruby laser hologram.

A 15-mW helium-neon laser (Spectra-Physics Model 124) was installed in the
test cell adjacent to the fan control room. The laser beam was diverged to
duplicate the divergence of the original reference beam in the holocamera. The
beam was reflected from a mirror at an angle of 45 deg relative to the hori-
zontal, duplicating the original angle of the reference beam in the holocamera.
The holograms were placed in a holder and positioned for maximum brightness in

reconstruction. In viewing the holograms, the blades are observed through the
viewing window. In long double-exposure holograms, one can observe three-
dimensional images showing fringe patterns. |In rapid double-exposure holograms

(see fig. 19), fringes were confined to shock fronts. The scattered-light holo-
grams (see fig. 16) showed the scattering of light from dust on the two windows,
from the blades and from entrained particles.

The methods used to photograph and interpret the images seen in the holo-
grams are discussed in the paragraphs that follow.

Hologram Reconstruction Method

The ideal method of interpreting a hologram is to examine it directly using
the proper optical aids such as telescopes, microscopes, and cathetometers.
For reporting purposes, however, the results must be presented photographically.

Photographing a holographic image is accomplished with a conventional copy
camera. Use of a4 by 5 in. (10.2 by 12.7 cm) bellows camera with a focusing
screen is the best way to compose the picture. The camera is placed in front
of the reconstructed hologram and focused on the region or point of interest.
Photographs can be recorded on Polaroid Type 52 film. Polaroid Type 55 positive-
negative film is ideal for making negatives from which enlargements can be made.
The ''f-stop' or aperture ratio on the camera is used to control the depth of
field of the image.

Holograms also can cast a real image. Real images are projected when it is
necessary to see or photograph fine detail with a microscope or short focal length
lenses. In this method of reconstruction, the reference beam is projected
through the hologram in the reverse direction from which it was originally
projected. The hologram (which has no sense of the original direction of the
reference beam) projects a real image into space. The rays that form the image
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flow in the opposite direction, making the image pseudoscopic. These real
images can be focused on screens, and also can be recorded directly on
photographic film without the aid of any camera lens. They also can be examined
with short working distance microscopes. Aperture ratio (f-stop) and viewing
angle can be controlled by masking the hologram.

A variation of the real image approach to reconstructing a hologram is to
pass the raw beam from a helium-neon laser through the hologram in the reverse
direction of the reference beam, and at the same convergence as the original
reference beam divergence. The result is a real-image ''pinhole' camera recon-
struction of a hologram. Such a reconstruction has almost infinite depth-of-
focus. The image is projected directly on film.

Hologram reconstructions were photographed using direct photography of the
virtual image, projected real images (particularly of scattered-light holograms),
and direct reference beam projections. Reconstructed holograms of rapid double-
pulse, long double-exposure, and scattered-1ight holograms are presented in
figs. 26 throrough 32. Figs. 26 through 29 show a series of photographs taken
from reconstructed rapid double-pulse holograms recorded at 90, 95, 100, and
110 percent design speeds, respectively. A photograph of a reconstructed
double-exposure hologram is shown in fig. 30. A scattered-light reconstruction
is shown in fig. 31. The holograms from which these photographs were taken are
identified by number in the figures.

Stereo Photography Method

Stereo photography is an accepted method for presenting three-dimensional
data photographically. Stereo-photographs are made by combining photographs
of two views of the same scene made from two different angular positions. The
angular separation is usually 7 deg (based on the eye pupil separation and the
distance of accommodation for most people). The stereo pair is mounted and
then viewed with a binocular viewer to fuse the two images. Ancient stereo-
scope viewers are one example.

The stereo photographs shown were made by rotating the copy camera about a
focal point through an angle of approximately 7 deg. The two photographs were
then mounted on a board, which can be placed in a stereoscope or seen with a
viewer. Viewing these images gives an appreciation of the three-dimensional
character of the scene. The value of a pair of stereo pictures lies between
a single picture and a montage of pictures which cannot be stereo-optically
fused. Stereo pictures are not as good as holograms because both parallax and
depth of focus are lost. A typical example of a hologram stereo-optically
photographed is shown in fig. 32. This was taken from a reconstructed rapid
double-exposure hologram (hologram 167) recorded at 110 percent design speed.
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Figure 26.--Photographs of Reconstructed Rapid Double-Exposure
Hologram 311 at 90 percent Design Speed - 5 usec
Pulse Separation.
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Figure 27.--Photographs of Reconstructed Rapid Double-Exposure
Hologram 324 at 95 percent Design Speed - 5 usec
Pulse Separation,
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Figure 28.--Photographs of Reconstructed Rapid Double-Exposure
Holograms 339 and 343 at 100 percent Design Speed -
5 psec Pulse Separation.

F-18522

51



52

Flow direction —» Direction of rotation ‘

Figure 29.--Photographs of Reconstructed Rapid Double-Exposure
Hologram 167 at 110 percent Design Speed - 5 usec
Pulse Separation.
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Figure 30.~-Photographs of Reconstructed Double-Exposure
Hologram 469 at 60 and 100 percent Design
Speed.
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Figure 31.--Reconstruction of Double-Exposure, Scattered-Light

Hologram 530 at 1000 rpm (104.7 rad/sec) - 40-psec
Pulse Separation,
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Figure 32.--Reconstruction of Rapid Double-Exposure Hologram 167
Arranged as Stereo Pair for 110 percent Design Speed -
5 psec Pulse Separation.

Interpretive Models of Reconstructed Holograms

Unless a viewer is perceiving a common object, a holographic image can be
as perplexing as an X-ray of the human body. The granular appearance of the
three-dimensional image, the difficulty of some viewers to see in the red
portion of the spectrum, and the complex viewing angle all add to the confusion.

To better understand and present the data seen in the holograms, a unique
method was developed for interpreting and transferring the shock patterns
observed in the reconstructed holograms to an actual blade model. The method
consists of superimposing the three-dimensional shadow image of the blades
seen in the hologram reconstruction on a set of actual blades. This, in
essence, creates a three-dimensional superimposition; once the blade images are
superimposed on the blade set, the shock patterns are located in space by
parallax. The shock lines are then transferred to the blade set by stretching
a filament of glue between the point of intersection of the visualized waves
and the surface of the actual blades. The glue filaments are then replaced by

55




wire. The technique used to transfer the shock waves to an actual blade is
illustrated in fig. 33.

As shown in the figure, the blades were mounted in a fixture to permit the
actual blades to rotate about an axis coincident with the axis of rotation of
the holographic blade image, using a universal vise attached to a tripod. The
tripod and vise were then adjusted until the blades could be rotated about
their axis of rotation in agreement with the oulines seen in the hologram
reconstruction.

F-18508

Figure 33.--Transferring Three-Dimensional Shock Waves Seen in
Hologram Reconstruction to a Set of Blades.

56



With this mounting arrangement, the pair of added blades could be moved
from one reconstructed passage to another. This flexibility greatly improved
the interpretation of the shock phenomena seen in the hologram reconstructions.
For example, the phenomena at one passage (and one specific viewing direction)
could be compared with phenomena in the adjacent blade passages at a different
viewing angle. The lines or surfaces located in one blade passage could thus
be correlated with lines in the neighboring blade passage, even though they
appeared to be different in the two passages. The blade fixture also permitted
comparison of holograms recorded under the same aerodynamic conditions, but at
different blade positions.

Fig. 34 shows two views of the blade mounting fixture and setup. Also seen
in the two views is a hologram. One view shows the reconstructing laser in the
background; the other is a rear view of the blade positioner.

The blade positioning apparatus also provided an excellent means for pre-
senting the information seen in the hologram. A series of photographs of both
the reconstructed hologram and the blade set was recorded with a camera. The
two images were overlaid on each other. Each photograph in the series differed
from the others by the viewing angle. Neighboring pairs of pictures formed
stereo pairs that could be viewed stereo-optically with the aid of a viewer.

An example of such a photograph is shown in fig. 35 (hologram 339). This
was taken from a reconstructed rapid double-exposure hologram recorded at
design speed and design pressure ratio. The figure contains three sets of
photographs taken at different viewing angles. Neighboring photographs cor-
respond to a change in viewing angle of 6-1/2 deg. The upper row of each
figure shows the photograph of the hologram reconstruction superimposed on the
photograph of the added pair of blades. The lower row in each figure presents
only the hologram reconstruction; these are included because the superimposed
pictures mask some of the fine detail of the fringes. Neighboring pairs of
pictures are mounted stereo-optically.

In the hologram reconstructions, the blade surfaces are only defined by
their shadow images. This, coupled with the limited angular field of view,
makes it difficult to determine the spatial location of the fringes when view-
ing the stereo pair of the hologram with a stereoviewer. The added blades,
however, were not restricted in angle, and the pictures of these blades show
surface detail. As a result, when viewed stereo-optically, the blades appear
to be quite three-dimensional. Consequently, the viewer can begin to visualize
the three-dimensional character of the interference fringes. The stereo-pictures,
however, have no focusing depth as in the case of the hologram. To achieve a
moderately large depth-of-focus, the pictures were taken at a large f-number
(usually f/11 or f/16).

Actual models of shock patterns visualized from the reconstructed holograms
were constructed with glue filaments and wires. The individual holograms and
blade passages were correlated with a series of holograms taken at the same
operating conditions with the aid of the blade positioning apparatus. Fig. 36
presents an example of interblade passage shocks developed using wires to define
the shock fronts. This model was developed from holograms 164, 290, 292, 293,
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F-18509

Figure 34,--Setup for Reconstructing Holograms and
Comparing the Holographic Images with
a Pair of Actual Blades.,



Flow direction — Direction of rotation *

Ge981-4

*auo|y weabo|oy 9y} 40 smaip Bulpuodsaiuo) pue sope|g 410310y
ue4 uo pasodw}iadng GEEC wWedBO|OH pa3dNIISUODIDY JO SMII\ dD4Yl--'GE N6

‘welbo| oy paioniisuodasy (q)

59



(a) Photograph of Model.

(b) Stereo Photograph of Model.

F-18530

(c) Model as Seen Through Hologram.

Figure 36.--Model of Interblade Passage Shock System using
Wires to Represent Shock Fronts.
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335, 337, and 338, which were recorded at design speed. The lower figure in

the set shows the view of the blades as seen from the hologram. The center fig-
ures are mounted as stereo pairs that can be viewed three~dimensionally with

the aid of a viewer. After the shock planes were defined by the network of
wires, a model was constructed using transparent plastic sheets to define the
various shock planes as shown in fig. 37.

n. 73326

Figure 37.--Model of Interblade Passage Shock System
Using Transparent Plastic Sheets to Define
Various Shock Fronts.
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AERODYNAMIC ANALYSIS AND INTERPRETATION OF HOLOGRAMS

This section presents the results of the successful hclograms recorded
during the test and the aerodynamic interpretation of the information obtained
from the reconstructed holograms. O0f the four basic types of holograms
recorded, i.e., long-pulse, single-exposure; rapid double-exposure; long
double-exposure; and scattered-light holograms, the rapid double-exposure
holograms provided the best recordings insofar as location and identification
of shock fringes. Although these recordings were mainly qualitative in nature,
some quantitative information such as shock angle and relative shock strength
could be determined from the holograms. Because of the angular view and 1imited
viewing image, however, details upstream of the rotor and in the trailing edge
section of the rotor passage were limited. Some quantitative information with
respect to density and velocity distribution were also obtained from the
double-exposure and scattered-light holograms.

The holography tests, as indicated earlier, were conducted in concert with
the aerodynamic performance testing of the transonic fan stage (refs. 5 and 6).
Combining the two test programs enabled testing to be accomplished with a mini-
mum of setup and installation changes. The first phase of the holography tests
was initiated after completion of the shakedown and performance testing and
prior to distortion testing of the transonic fan. The test conditions (corrected
speed and flow) were duplicated and the aerodynamic data obtained for both tests
were identical. The same aerodynamic performance data (overall, blade element,
and high response pressure data at the rotor tip) were therefore used for the
aerodynamic analysis and interpretation of the reconstructed holograms.

Rapid Double-Exposure Holograms

Most of the more than 600 holograms recorded during the test were
recorded using the rapid double-exposure technique. As stated earlier, this
technique produced by far the most consistent and clearly definable recordings
because of its relative insensitivity to interference effects (i.e., window
distortion, rig vibration, oil deposits, etc.). These holograms also showed
remarkable consistency of the interblade shock patterns observed for holograms
taken at the same operating conditions.

Typical examples of the rapid double-exposure holograms recorded at 90, 95
100, and 110 percent design speed are presented in figs. 38 through 41. These
holograms were recorded with a pulse separation time of 2 to 5 wsec. The blade
movement during this time interval was approximately 5 percent of blade passage.
Fig. 38 presents composite stereo photographs of a reconstructed rapid double-
exposure hologram (352). In the upper figure (a), a stereo photograph, the
hologram image is superimposed on the actual blade set. By this method of
super-positioning, a three dimensionality is provided in the reconstructed image
to help identify the location of the shock patterns. The neighboring photographs
are stereo pairs that can be sterographically seen with a viewer. The lower
figure (b) shows a stereo photograph of a hologram reconstruction. Each neigh-
boring photograph corresponds to a change in viewing angle of 6-1/2 deg. This
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hologram was taken at 90 percent design speed. For this condition, the rotor
is operating with a strong normal shock at the blade leading edge. As the
stage pressure ratio was increased, however, a strong detached bow shock was
evident at the blade leading edge. Similar stereo photographs of hologram 332
taken at 95 percent design speed are presented in fig. 39. The image area
shown is focused mainly about the leading-edge section of the blade passage
because this is the region of greatest interest. |t can be seen that at this
condition the rotor is started and the leading-edge shock is nearly oblique
and swept slightly into the passage. Details of the trailing-edge area are
obscured by the midspan dampers in this figure. Fig. 40 presents a similar
reconstruction of hologram 343 taken at design speed and design pressure ratio.
For this design speed and pressure ratio condition, the leading-edge shock is
slightly more oblique and curves to become almost perpendicular to the blade
suction surface. Bright fringes nearly normal to the blade passage also are
evident in the adjacent passage. Fig. 41 presents photographs of hologram 167
recorded at 110 percent design speed. The shock fringes at this condition
appear to be fewer and more clearly defined.

Long Double-Exposure Holograms

Holograms 456 and 472 were selected as the most representative of long
double-exposure type recordings. These recordings were taken with the 1/L-in.-
thick (0.64 cm) viewing window. These holograms were photographically recorded
using the real image projection technique in which the holograms were illuminated
by a converging pencil of light from a helium-neon gas laser (Spectra Physics
Model 125). The portion passing through the hologram was slightly more than
1 mm in diameter. When illuminated in this manner, the holograms project a
pinhole-camera type of image, which has large depth-of-focus. This method of
projection was important because the fringes in these holograms were at
different focal depths. Illumination of the hologram at different points gave
interferograms as viewed from the illuminated point. Fig. 42 (hologram 456)
shows a typical example of an interferogram obtained from a single double-
exposure hologram. The initial exposure was recorded at 60 percent design
speed, and the second at 100 percent design speed. Inspection of the individual
photographs shows inflection in the fringes due to a shock on the suction
surface of the blade as well as a larger perturbation due to a shock on the
pressure side of the blade. The general interference pattern, however, passes
through the blade almost continuously. The lack of change from the suction
to the pressure side strongly suggests that path changes are due more to window
translation or warpage than to purely aerodynamic effects.

Figure 43 presents a similar series of interferograms taken from hologram
L472. Again, initial exposure was recorded at 60 percent design speed followed
by the final exposure at 95 percent design speed. The example includes more
views of the same hologram taken by scanning the reconstructing beam over the
hologram. The two top photographs were taken with wide-aperture projections
(2- to 3-mm spot size). This destroyed the pinhole camera effect and caused the
fringes to focus in space. Fringes beyond the film plane in the copy camera
were out of focus. Reducing the size of the reconstructing beam (~1 mm) brings
all the fringes into focus, as seen in the other four photographs.
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F-18539

Figure 43.--Reconstruction of Double-Exposure Hologram 472 using
Wide Aperture and Narrow Aperture Projection at
60 and 95 percent Design Speed.
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The long double-exposure holograms were confusing because the aerodynamic
effects could not be completely isolated from the extraneous fringes. The
principle effort was spent in attempting to isolate these fringes and deter-
mine their effect on the overall interference pattern.

Scattered-Light Holograms

0f the nearly 50 scattered-light holograms that were attempted at a speed
of 1000 rpm (104.7 rad/sec), one in particular (hologram 512) was found that
demonstrated the feasibility of velocity measurements using a rapid double-
exposure scattered-light hologram. A photograph of a magnified portion of this
hologram is shown in fig. 44. Inspection of this picture shows an array of
pairs of bright dots. Each pair corresponds to a particle (a microballoon of
~30-micron size) photographed at two different times. The two laser pulses in
this instance were separated by 60 psec. An enlarged scale appears at each
side of the picture. Each division of the scale is 1 mm. Measuring each
particle separation and dividing by 60 psec (the laser pulse separation) gives
the in-plane velocity of each particle. Values of 32.7 ft/sec (10 m/sec) are
typical in this case. Assuming the particle velocity and flow are identical
(i.e., particle viscous force to be greater than inertial force), the local
flow velocity can be obtained from such a measurement.

The background granularity pattern seen in this picture is not particulate,
but instead is laser noise due to light being scattered from particles on the
two windows. This example indicates that more scattering from the windows would
make detection of the flow-entrained particles even more difficult. As the back-
ground scattering increases, the particles become hidden in the granularity of
noise. Spatial filters can be used to reduce the noise; however, the simplest
approach is to maintain clean windows to minimize such extraneous scattered light
at the time of recording.

Fig. 45 shows reduced size photographs of the same hologram (512) that were
made by direct image projection. The four photographs differ from one another
in the location of the copying photographic film (i.e., by the focus of the
hologram). The pictures show the location of predominant scattering of the
direct laser beam by oil and particles adhering to the inner surface of the view-
ing window. The upper left figure was taken with the film plane focused at the
inner surface of the viewing window. The window was at a distance of 6.7 in.
(17 cm) from the hologram. This picture clearly shows the oil streaks and
particles occluded on the surface. The upper right-hand picture was made with
the film plane at a distance of 11.8 in. (30 cm) from the hologram. |t cor-
responds to a focal position deep within the interblade flow field. Scattering
from the window surface is completely out of focus. In this picture, a few
flow-entrained particles are in sharp focus; the remaining particles are out of
focus. The lower left and right figures differ from one another by only a few
centimeters in the location of the recording film plane. The difference is
sufficient to bring different flow-entrained particles into sharp focus. Again,
the out-of-focus scattering of light from the oil and dust on the viewing window
_clearly dominates these two pictures. Any particles behind this region are
obscured. Each flow-entrained particle is seen as a double dot, which identifies
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Figure bh.--Enlarged Portion of Reconstruction of Double-Exposure,
Scattered-Light Hologram 512 - 60 usec Pulse Separa-
tion, =10 m/sec Flow Velocity.
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Figure 45.-—Real Image Projection Photographs from Double-Exposure,
Scattered-Light Hologram 512 - Each View Differs in
Hologram Focal Distance - Fan Rotating at 1000 rpm
(104.7 rad/sec), Laser Pulses Separated by 60 psec.



the position of a single microballon at the time of the first and second laser
pulses. Fig. L4 was made by magnifying the area seen in the lower pair of
pictures and sharply focusing on a pair of double images.

Ideally, such a hologram would be set up relative to a predetermined coordi-
nate system. A measuring microscope would then be used to determine the position
of each pair of dots--the X, Y, and Z coordinates of the particles at two
instances of time would be found. Vector subtraction of coordinates of each
particle would give the displacement. This quantity, when divided by the laser
pulse separation, would give the average velocity at the average coordinates of
each point. Such an analysis would obviously be time-consuming. Fig. 44 showed
the flow to be heavily entrained with particles. Systematic analysis would
therefore require measurement of each particle's position at two instances of
time.

The significance of this new technique is that the measurement of velocity
and direction at various operating conditions can be done in the laboratory with
the fan stage at rest. Other methods of determining flow velocity, such as the
laser doppler velocimeter, are point measurements that require continuous opera-
tion of the rig to record velocity at a wide variety of points.

Fig. 31 (hologram 530) is an example in which the two laser pulses were
separated by 40 usec. As before, the fan stage was rotating at 1000 rpm (104.7
rad/sec). The microballoon density was an order of magnitude greater than in
figs. 4k and 45 (hologram 512). Even under high magnification, it is extremely
difficult to separate pairs of particles.

In summary, scattered-light holograms clearly show that flow-entrained
particles can be used to measure flow velocity. However, to use the technique
at speeds of 12 000 to 13 000 rpm (1256 to 1360 rad/sec), the laser pulse
duration must be decreased proportionally to approximately 5 nsec. This can be
done by using the technique of pulse chopping (ref. 11). Such a modification
was not within the scope of this program.

Aerodynamic Discussion

Aerodynamic analysis of holograms at 100 percent design speed.--The rotor
blade model showing the shock system developed for the 100 percent design speed
and design pressure ratio condition is presented in fig. 46. For this condi-
tion, the stage was operating with a flow approximately 4 percent higher than
design. The rotor inlet relative Mach number as determined from the blade
element performance was very close to the design value (1.62 at the tip);
however, the exit relative Mach number was significantly lower (subsonic) in
the midspan damper region. The rotor adiabatic efficiency at this condition
is 86.7 percent and the overall stage efficiency is 81.0 percent. The shock
models were developed from rapid, double-exposure holograms 294, 339, 340, 341,
342, and 343.
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Referring to fig. 46, the shock system for the 100 percent design speed
condition shows four major shock waves: a leading edge shock, a midspan damper
shock, a second damper shock, and a trailing edge shock. Because of the angular
view, the trailing edge shock details are limited to the outer wall near the
blade trailing edge. Tip leakage vortices are seen along the suction surface
of the blade making it difficult to identify shock patterns near the suction
surface in the tip region. A weak oblique shock, slightly more oblique than
design, extends from the blade leading edge to the suction surface near the
trailing edge at the outer wall. The leading edge shock is oblique in accord-
ance with design intent but does not appear to be completely canceled. The
shock bends sharply to become nearly perpendicular at the intersection of the
suction surface. A segment of this shock (very weak fringe) appears to continue
obliquely, and intersects the blade further along the chord away from the tip
region. Details of this shock near the suction surface are obscured, however,
by the coalescence of the midspan damper and trailing edge shock fringes as well
as the tip vortices. The leading edge shock becomes visible outboard of the
midspan damper shock where it intersects with the shock from the midspan damper.
The midspan damper shock appears to be a conical shaped shock emanating from
the intersection of the leading edge of the midspan damper on the suction sur-
face. The shock extends across the passage and the forward portion intersects
at the pressure surface of the opposite blade well forward of the midspan damper
leading edge. The shock extends radially outward and intersects the pressure
surface immediately behind the blade leading edge. The shock extends across the
passage and intersects the suction surface of the trailing edge near the outer
wall. Further back in the passage, a second damper shock is observed that
emanates from the intersection of the midspan damper and pressure side of the
blade. This shock appears to originate at the midspan damper essentially along
a plane perpendicular to the midspan damper. This shock is a highly warped
surface which very nearly coincides with the midspan damper and trailing edge
shock at the blade trailing edge.

The trailing edge shock appears as a single bright fringe at the blade
trailing edge. This shock is similar to the design trailing edge shock but is
displaced slightly forward of the trailing edge. The shock intersects the
suction surface of the blade slightly downstream of the leading edge shock.
The four shock fronts appear to coalesce near the blade trailing edge. The
convergence of all the shock fringes makes it difficult to accurately define
the shock pattern. Also, because of the limited view, the formulation of
the trailing edge shock is not as well defined as the other major shock waves.

The shock system developed is superimposed on the conical development of
the rotor sections in fig. 47. The position of the leading edge and trailing
edge shocks is shown for comparison. As seen in fig. L7(a), the leading edge
shock is slightly more oblique than design. The shock, however, bends sharply
near the intersection at the suction surface. This deviation may be due to the
blade boundary layer effect or tip leakage vortex or a combination thereof. The
trailing edge shock is seen considerably forward of the anticipated shock loca-
tion. Fig. 47(b) shows the shock development at the 13.8 percent span. Neither
of the midspan damper shocks seen were considered in the design. The existence
of these shocks undoubtedly affects the flow in the blade passage. The second
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Figure 46.--Rotor Blade Model showing Passage Shock System at
Design Speed and Design Pressure Ratio.
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damper shock is nearly normal to the flow direction, and extends from the midspan
to a point slightly inboard of the tip section. Fig. 47(c) shows the shock
development at the 28.2 percent span, just outboard of the midspan damper.

The rotor relative Mach number as determined from the blade element per-
formance is shown as a function of percent span in Fig. 48. The inlet relative
Mach number is essentially in accordance with design for the outboard section.
The exit relative Mach number is supersonic over 22 percent of the span but
slightly lower than design.

The rotor tip pressure countour plots at design speed and pressure ratio
are shown in fig. k9. The shock waves developed from the blade model at the
rotor tip are superimposed on the plot. It may be surmised from this plot
that a weak oblique shock would exist at the leading edge if the pressure con-
tours were shifted slightly forward. The pressure contour islands are also
consistent with the sharp bend in the leading edge shock near the suction sur-
face. Additional shifting and recontouring of the pressure contours would be
required to be consistent with the trailing edge shock. The static pressure
levels are generally consistent with the shock patterns observed.
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Figure L48.--Rotor Relative Mach Number at Design Speed
and Design Pressure Ratio.
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A similar model of a rotor blade shock system was developed for the 100
percent design speed and maximum flow condition. For this condition, the stage
pressure ratio was 1.369:1 at the same 4 percent overflow condition. The shock
system was developed from holograms 164, 290, 292, 335, 337, and 338.

The shock patterns developed are shown superimposed on the rotor blade section
conical plots in fig. 50. Referring to fig. 50(a), the leading edge shock appears
as a weak oblique shock. This shock is essentially in accordance with design
and remains completely oblique to the intersection of the blade suction sur-
face. The sharp bend in this shock near the suction surface that was seen at
the design pressure ratio condition (fig. 46 and 47) was not present. The
trailing edge shock is located slightly forward of the trailing edge, and
intersects the leading edge shock at the same point on the blade suction sur-
face. This shock is, however, consistent with the anticipated trailing edge
shock angle. As stated earlier, locating the trailing edge shock accurately
is extremely difficult. The tip vortex at this condition appears to be con-
fined to the extreme outer wall. The shock waves at the 13.8 percent and
28.2 percent span were very similar to the shocks developed at the design speed
and design pressure ratio condition (see fig. 47).

The rotor tip pressure contour plots at this condition are shown in

fig. 51. As seen, many of the contours are again normal rather than parallel
to the anticipated shock direction. It is evident from these plots that the
rotor tip pressure contours do not explicitly define the shock pattern. The
contour plots are obscured by factors such as tip clearance, wall boundary
layer, effect of transducer size and sensitivity on signal wave forms, tip
leakage vortices, and accuracy in defining the exact blade position relative
to the signal.

Aerodynamic analysis of holograms at 90 percent speed.--Rapid double-
exposure holograms recorded at 90 percent design speed for maximum and mid-flow
range conditions are shown in fig. 52 (holograms 311, 312, 313, 318, 319, and
320). The hologram taken at the mid-flow range condition shows a strong
and apparently normal shock in the leading edge region indicating that the rotor
passage is unstarted in the tip region. The presence of a strong normal shock
is consistent with the low level of stage efficiency at this speed. Both overall
and blade element data show that the level of efficiency decreases rather uni-
formly up to 90 percent design speed. The efficiency then abruptly increases
by approximately 3 points when speed is increased to 95 percent design speed,
indicating transition from the unstarted to the started condition. The holo-
gram obtained at wide-open-throttle (maximum flow) condition, however, shows
that the leading edge shock is nearly oblique, and is indicative of the tip
passage being started. This transition between the started and unstarted modes
occurring at constant speed by reducing flow was further substantiated by the
following from ref. 6.

(1) The level of rotor only adiabatic efficiency decayed from 88.5 percent
at maximum flow to 85.8 percent with just a 1.3 percent reduction in
flow (stage data did not reflect this efficiency characteristic step
because of large stator losses).
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(a) Maximum Flow Condition showing Oblique Shock
(Holograms 311, 312, and 313),

F-15084

(b) Midflow Condition showing Normal Shock
(Holograms 318, 319, and 320).

Figure 52.--Reconstructed, Rapid Double-Exposure Holograms
showing Rotor Started and Unstarted Condition

at 90 percent Design Speed at Maximum and
Mid-Flow Range.
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(2) Rotor tip high-frequency-response pressure traces obtained in the
region between wide-open-throttle and the immediately adjacent data
point show large instabilities in pressure levels (passage-to-passage)
in the area of the leading edge.

To further investigate the rotor passage starting development that occurred
at 90 percent speed with only small closure of the discharge throttle, a series
of holograms (358, 356, 352, 351, 349, and 347) was taken at 80 to 100 percent
design speed along a constant-throttle line at approximately mid-flow range.
Referring to fig. 53, the upper left-hand view shows a reconstruction of holo-
gram 358 taken at 80 percent design speed. At this speed, a strong detached
bow shock is evident. As the speed is increased to 86 percent (hologram 356),
the bow shock is still detached, but begins to approach the blade leading edge.
At 90 percent design speed (hologram 352) a strong normal shock, attached to
the blade leading edge, is developed in the forward passage section (essentially
a duplication of what is seen in holograms 318, 319, and 320). Referring to the
lower series of views, at 92 percent design speed (hologram 351), a weak, nearly
oblique shock is seen, indicating that the passage is started. As the speed is
increased through 96 percent (hologram 347) to 100 percent design speed (holo-
gram 307), the oblique shock continues to sweep further into the passage.

The rotor tip contour plots obtained at 90 percent design speed for the
two flow conditions are presented in figs. 54 and 55. Fig. 54 shows the con-
tour plots for the maximum flow condition, and fig. 55 shows a similar plot
for the mid-flow range condition. The leading edge shock and tip leakage
vortex that was observed from the holograms are superimposed on the plots.

A comparison of the two resulting contour plots shows a noticeably different
pressure contour formation. For the condition in which a near oblique shock

is observed (see figs. 52(a) and 54), the pressure-contours are contained
within the passage and appear to be somewhat in alignment with the oblique
shock. On the other hand, in the contour plots for the mid-flow range condi-
tions in which a strong normal shock is observed (see figs. 52(b) and 55), the
pressure contours extend considerably forward of the leading edge with an
attendant increase in static pressure level. The high static pressure level is
an indication of a strong normal shock.

Aerodynamic analysis of hologram at 95 percent design speed.--A rotor
blade model showing the interblade shock system at 95 percent design speed
and mid-flow range is shown in fig. 56. These shock waves were developed from
a series of rapid double-exposure holograms taken at the same condition using
the superpositioning technique described earlier (holograms 278, 279, 280, 332,
333, and 334). A reconstruction of one of the holograms (332) used for the
analysis was shown earlier in fig. 39.
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Figure 56.--Rotor Blade Model showing Passage Shock System
at 95 percent Design Speed.
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Referring to fig. 56, the shock system comprises three distinct shock
waves identified as a leading edge shock, a midspan damper shock, and a second
damper shock. In addition, a tip leakage vortex is seen along the suction
surface of the blade. This tip vortex appears to emanate from the leading edge
suction surface and extends approximately to mid-channel. The tip vortex tends
to obscure shock definition near the suction surface in the tip region. A
rather weak oblique shock is attached to the blade leading edge and terminates
at the suction surface of the blade near the trailing edge. The shock bends to
become nearly perpendicular at the intersection of the suction surface. The
design intent of the leading edge shock was to be always oblique. This devia-
tion may be due to either blade boundary layer effects at the suction surface,
tip leakage vortices, or a combination of these effects. The tip vortex was
quite evident in the majority of the holograms and appeared to have a dominant
effect on the shock waves at the outer wall. The leading edge shock extends
spanwise to just outboard of the midspan damper and intersects the shock from
the midspan damper leading edge. This shock starts at the leading edge of the
midspan damper (suction surface) and extends from blade to blade. The shock
is swept in the direction of flow at an angle that is slightly less than the
sweep back angle of the midspan damper. It extends across the passage and
intersects the outer wall near the blade trailing edge. Because of the limited
viewing angle, the exact leading edge of the shock front across the passage could
not be determined. The shock front appears as bright fringes when viewed at an
angle normal to the interference fringe. Based on the location and characteris-
tic of the shock wave, it appears to be somewhat conical in shape, starting at
the midspan damper leading edge of the blade suction surface. This shock inter-
sects the pressure surface of the adjacent blade slightly behind the leading
edge. A second damper shock in the forward section of the passage and slightly
behind the midspan damper shock is observed. This shock, which appears to be a
rather strong oblique shock, emanates from the midspan damper region and extends
to the outer surface almost coincident with the midspan damper shock. The
trailing edge shock was not evident at this speed.

The shock system developed is shown in fig.57 by heavy lines superimposed
on the conical development of the rotor blade section. The two-shock system
at the design point is shown by the lighter lines. Rotor sections are shown
for three streamlines corresponding to (a) tip, (b) 13.8 percent span, and
(c) 28.2 percent span. The dotted lines represent the effective blade surface,
and the solid lines represent actual blade surface obtained by considering
boundary layer displacement thickness corrections. The measured shock angles,
locations, and intersections of shock and blade surfaces are shown. At this
condition, the rotor inlet relative number determined from the blade element
data is supersonic in the outer 30 percent span. Exit relative Mach number
is subsonic throughout the span.

The rotor tip pressure contour plots at 95 percent speed and mid-flow
range are shown in fig. 58. The shock patterns at the rotor tip section are
shown superimposed on the plots. The resulting contour plots show no well-
defined shock patterns. Interpretation of these contours is extremely difficult
since many contours are normal rather than parallel to the anticipated shock
direction and to the shock direction indicated by the hologram. Tip leakage
vortex is again evident but appears to be confined mostly to the outermost tip
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section at this condition. This tip vorticity may have an effect on the static
pressure contours and thus complicate the interpretation of pressure contours.
The leading edge shock bends sharply in the vicinity of the tip vortex and
becomes nearly perpendicular at the suction surface. The midspan damper and
second damper shocks intersect the outer wall at essentially the same location.
As seen, these two shocks at the outer wall are almost normal to the mean flow
direction. The contour islands in the area of the tip vorticity are consistent
with the region of turbulence indicated in the holograms. In summary, the static
pressure contours did not explicitly define shock locations, however, the region
of static pressure levels appear to be consistent with the shock patterns defined
in the hologram.

Aerodynamic analysis of holograms at 110 percent design speed.--The inter-
blade shock system for 110 percent design speed and mid-flow range is shown
in fig. 59. At this condition, the rotor inlet relative velocity is considera-
bly higher than design (approximately 1.85 at the tip). The exit relative
Mach numbers were essentially at design. At this overspeed condition, the
overall stage pressure ratio was 1.597 at a flow rate of 108.2 percent of
design flow. Hologram 167 was used for development of the shock system.

Referring to fig. 59, the three major shock waves identified are the
leading edge shock, midspan damper shock and the second damper shock. The
tip leakage vortex is evident at this condition but appears largely confined
to the extreme outer tip. Effect of tip vortex on shock disturbance at the
tip is minimal. A weak oblique passage shock, considerably more oblique than
design, extends from the blade leading edge to the suction surface of the trail-
ing edge. The leading edge shock intersects the suction surface at precisely
the blade trailing edge. The leading edge shock starts spanwise outboard of
the midspan damper and intersects the shock from the midspan damper. At this
overspeed condition, the midspan damper shock is swept into the direction of
flow but at a considerably greater angle than previously seen at 95 and 100
percent speed. The intersection of this shock on the pressure surface occurs
well within the passage. This shock extends across the passage and intersects
the blade suction surface below the outer tip. The midspan damper shock is
also surmised to be conical in shape. Another strong oblique shock appears to
start in the midspan damper region slightly behind the midspan damper shock,
and extends toward the outer wall. This shock appears to be essentially paral-
lel to the midspan damper shock. :

The shock system developed for this overspeed condition is shown superim-
posed on the conical plots for the three rotor sections in fig. 60. Fig. 60(a)
shows the leading edge shock extending from the blade leading edge to the blade
trailing edge. This shock becomes progressively more oblique as speed is
increased. This can be seen by comparing the leading edge shocks for a 90, 95,
100, and 110 percent speed condition. Both midspan damper and secondary passage
shocks normally seen at the outer wall are not evident. Fig. 60(b) and 60(c)
show the shock development of the midspan damper and second damper shocks at
13.8 and 28.2 percent span. As indicated earlier, the midspan damper shock
angle is considerably larger, resulting in the shock being swept further into
the passage. At this overspeed condition, rotor tip pressure data were not
recorded. Rotor tip pressure contour plots are therefore not available for
the 110 percent design speed condition.
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Figure 59.--Rotor Blade Model showing Passage Shock System at
110 percent Design Speed.
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CONCLUDING REMARKS

The application of pulsed laser transmission holography for flow visualiza-

tion within the rotating blade passages of a transonic fan stage was successfully
demonstrated. A holocamera was developed for recording both single- and double-
exposure, bright-field holograms and dark-field, scattered-light holograms. A
summary of the major accomplishments follows.
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(1)

(2)

The rapid, double-exposure holograms provided excellent recordings
with respect to the location and identification of shock fronts in
the forward passage section. However, details in the trailing

edge region were not well defined. Enlargement of the viewing window
and holographic plate would increase the image area and improve the
quality of the hologram. Standard 8 by 10 in. (20.3 by 25.4 cm)
holographic plates are commercially available.

Rapid, double-exposure holograms provided the most consistency and
clarity because of their insensitivity to extraneous interference
fringes. These holograms were made using a laser that emitted two
pulses within a very short interval. Double-pulsing moved the shocks
slightly and enhanced the shock fringes recorded. A double (inter-
cavity) Kerr cell arrangement capable of producing 5-psec pulses was
developed. Use of a second power supply would provide even shorter
pulse separation on the order of 2 psec. Shorter pulse separation
would be highly desirable and would produce even sharper shock fringes
and possibly more clearly define shock intensity.

A technique for interpreting the reconstructed hologram and trans-
ferring the shock system to a model blade was developed. This tech-
nique consisted of superimposing the three-dimensional shadow image
from the hologram onto the model blades. The shock fringes were then
located by parallax. Models of the shock system were developed for
95, 100, and 110 percent design speed. These models compared favorably
with theoretical predictions and the overall and blade element per-
formance data. At 100 percent design speed, the hologram showed four
distinct shocks: an oblique leading edge shock, a conical shock
associated with the midspan damper, a second damper shock, and a
trailing edge shock. The midspan damper and second damper shocks
were not considered in the design but undoubtedly affect flow condi-
tion in the tip region. At the maximum flow condition, the leading
edge shock is considerably more oblique than design. As the stage

is throttled (increased back pressure), the leading edge shock
approaches design.

Transition of the rotor passages from the started to the unstarted mode
was successfully demonstrated. Holograms taken at 90 percent design
speed (maximum flow condition) showed the leading edge shock to be
nearly oblique, indicating that rotor passage was started. As the
stage was back-pressured to mid-flow range, a strong normal shock
developed at the leading edge, indicating an unstarted condition. This




(7)

condition was consistent with a corresponding decay in rotor
efficiency and large fluctuations in pressure levels (passage-to-
passage) in the area of the leading edge.

The angular view and midspan damper restricted the image area of the
rotor passage. Enlarging the windows would greatly improve the field
of view. Modification or removal of the midspan dampers in one or
more passages would be ideal from the standpoint of rotor passage
visibility as well as for aerodynamic considerations. This can be
coupled with the aerodynamic evaluation to study the influence of
midspan damper design (i.e. thickness, sweepback angle, and location).

A limited number of scattered-light holograms in which 30-micron-
diameter particles were injected in the flow stream were successfully
recorded. By tracing the particle path, and knowing the exposure
time, flow velocity was determined. Because of the 50-nsec pulse
duration limitation, scattered-light holograms were restricted to
rotor speeds on the order of 1000 rpm (104.7 rad/sec). A pulse
duration of =5 nsec is required at the higher speed. Shorter laser
pulse duration can be obtained by the use of a pulse chopper.

0il leakage past the front carbon face seal centrifuged out along the
blades onto the viewing window and caused additional interference
fringes. Simple design modification could be made to eliminate this
problem.

Further work on long-pulse, single-exposure holograms could lead to
improved holograms with better shock fringe definition.
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APPENDIX A
BLADE ELEMENT PERFORMANCE DATA FOR UNIFORM INLET FLOW
This appendix presents representative blade element performance data for

the transonic fan stage tested (ref. 6). Data are included for the following
test points.

FD’E'i:it N/R/(NAB) 4 Sﬁ?dmg
2 0.90 106
4 0.95 118
6 1.00 128
8 1.10 113
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APPENDIX B

NOMENC LATURE
g Gravitational acceleration, ft/sec2 (m/secz)
K Gladstone-Dale constant, cm3/g
M Mach number
msec Millisecond
N Rotational speed, rpm (rad/sec)
nsec Nanosecond
n Refractive index
P Total pressure, psia (N/cmz)
P Static pressure, psia (N/cmz)
S Sensitivity of an interferometer in waves
T Temperature, e (°K)
v Air velocity, ft/sec (m/sec)
W Airflow, 1b/sec (kg/sec)
7 Axial distance, in. (cm)
& Ratio of total pressure to NASA standard sea level pressure

of 1L4.696 psia (10.133 N/cm?)

M Adiabatic efficiency
y-1/v
rotor = (PT9/PT5 ) =
(T9/T5) -1
y-1/y
T (PTIZ/PTS) -1
(T]2/T5) 1
A Wavelength of light
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wF

usec

n

Micron

Capacitance, microfarads
Microsecond

Fluid density, lb/ft3 (Kg/m3)
Angle of scattered light, deg
Time, nsec

Electrical resistance, ohms

Subscripts/superscripts

5
9

12

des

Rotor inlet plane

Rotor exit plane

Stage exit instrumentation plane
Initial

Final

Relative to rotating part

Design



10.

11.

REFERENCES

Wuerker, R. F.; and Heflinger, L.0.: Pulsed Laser Holography, published
in Robertson, E. R.;and Harvey, J. M.: The Engineering Uses of Holography,
Cambridge University Press, 1970, pp. 104-110.

Wuerker, R. F.; Matthews, B. J.; and Briones, R. A.: Producing Holograms
of Reacting Sprays in Liquid Propellant Rocket Engines, Final Report,
JPL Contract No. 952023 (NAS 7-100), July 31, 1968.

Wuerker, R. F.; and Matthews, B. J.: Laser Holocamera Droplet Measuring
Device, Final Technical Report, AFRPL-TR-69-204, Nov. 1969, pp. 1-12.

Heflinger, L. 0.; and Brooks, R. E.: Holographic Instrumentation Studies,
Final Report, NAS2-4992, Dec. 1970.

Wright, L. C.; Vitale, N. G.; Ware, T. C.; and Erwin, J. R.: High Tip
Speed, Low-Loading Transonic Fan Stage - Part | Aerodynamic and Mechanical
Design, NASA CR-121095, AiResearch 72-8421, April 1973.

Ware, T. C.; Kobayashi, R. J.; and Jackson, R. J.: High-Tip-Speed Low-
Loading Transonic Fan Stage, Part Il - Final Report, NASA CR-121263,
AiResearch 73-9488, Feb. 1974

Wuerker, R. F.: Instruction Manual for Ruby Laser Holographic I1luminator,
Report prepared under Contract FOL611-69-C-0015, Feb. 1970.

Heflinger, L. 0.; Wuerker, R. F.; and Brooks, R. E.: Holographic Inter-
ferometry, J. Appl. Phys., 37, 642-649, Feb. 1966.

Wuerker, R. F.: Holographic Interferometry, Proceedings of SPIE, Develop-
ments in Holography, Seminar-in-Depth, SPIE Seminar Proceedings, Vol. 25,
Society of Photo-optical Instrumentation Engineers, Redondo Beach, CA.,

1971.

0'Keefe, J. D.; Aprahamian, R.; Tierney, W. S.; and Wright, J. E.: Holo-
graphic Study of Electron Beam Induced Front Surface Effects, AT-72-3, Air
Force Weapons Laboratory Contract F29601-71-C-0108, June 6, 1972.

McDowell, C. N.; et al.: Use of Laser-Triggered Spark Gap to Narrow a
Q-Switched Laser Pulse, Rev. Sci. Instru., 42, 163-164, Jan. 1971.

115




116

DISTRIBUTION LIST

NASA-Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

Attention: Report Control Office MS 5-5
Technical Utilization Office MS 3-19
Library MS 60-3
Fluid System Components Div. MS 5-3
Compressor Branch MS 5-9
Dr. S. C. Himmel MS 3-5
R. S. Ruggeri MS 5-9
M. J. Hartmann MS 5-9
W. A. Benser MS 5-9
D. M. Sandercock MS 5-9
L. J. Herrig MS 501-4
T. F. Gelder MS 5-9
C. L. Ball MS 5-9
L. Reid MS 5-9
L. W. Schopen MS 500-206
S. Lieblein MS 501-5
C. L. Meyer MS 60-4
J. H. Povolny MS 60-4
W. L. Beede MS 5-3
C. H. Voit MS 5-3
E. E. Bailey MS 5-9
D. R. Buchele MS 77-1
N. C. Wenger MS 77-1
N. T. Musial MS 500-311

NASA Scientific and Technical Information Facility
P. 0. Box 33

College Park, Maryland 20740

Attention: Acquisitions Branch

NASA Headquarters
Washington, D. C. 20546
Attention: N. F. Rekos (RLC)

U. S. Army Aviation Material Laboratory
Fort Eustes, Virginia 23604
Attention: John Whi te

Headquarters
Wright-Patterson AFB, Ohio 45433
Attention: J. L. Wilkins, SESOS

S. Kobelak, APTP

R. P. Carmichael, SESSP

Copies
1
]
2
1
5
1
1
1
1
]
1
1
1
1
1
1
1
1
1
1
3
1
1
1

10




10.

11,

Department of the Navy

Naval Air Systems Command
Propulsion Division, AIR 536
Washington, D. C. 20360

Department of Navy
Bureau of Ships
Washington, D. C. 20360
Attention: G. L. Graves

NASA-Langley Research Center

Technical Library

Hampton, Virginia 23365

Attention: Mark R. Nichols
John V. Becker

The Boeing Company

Commercial Airplane Group
Attention: G. J. Schott
Organization: G-8410, M. S. 7314
P. 0. Box 3707

Seattle, Washington 98124

Douglas Aircraft Company
3855 Lakewood Boulevard
Long Beach, California 90801
Attention: J. E. Merriman
Technical Information Center C1-250

Pratt & Whitney Aircraft

Florida Research & Development Center
P. 0. Box 2691

West Palm Beach, Florida 33402

Attention: J. Brent
H. D. Stetson
W. R. Alley
R. E. Davis
R. W. Rockenbach
B. A. Jones
J. A. Fligg

Copies

—t el el emd Al e b

117




118

15.

Pratt & Whitney Aircraft
LOO Main Street

East Hartford, Connecticut 06108
. Palatine
. Slaiby

. Marman

. Keenan

. Smyth

Attention:

XTI XDEEZrPOWIITAD

ib

OO CLOIXIA P oM

ar

Mikolajczak
y (UARL)
Foley (UARL)
Alwang

. Burr

Hantman

. Williams

Allison Division, GMC
Department 8894, Plant 8

P. 0. Box 894
Indianapolis,

Indiana 46206

Attention: J. N. Barney U-26
G. E. Holbrook T-22
J. A. Korn T-26
R. F. Alverson U-28
Library S-5
A. Medlock U-28
P. Tramm J-23

Northern Research and Engineering

219 Vassar Street
Cambridge, Massachusetts 02139

Attention:

K. Ginwala

General Electric Company
Flight Propulsion Division
Cincinnati, Ohio 45215

Attention:

W. G. Cornell K-49

D. Prince H-79
J.
J.
L. H. Smith H-50

Technical

F. Klapproth H-42
W. McBride H-4k4

Marlen Miller H-50

C.,

C. Koch H-79

Information Ctr.

Copies

— et et et ) ) ol ) = b — b

— — — i — ot —

— e i — o — —



16.

17.

18.

19.

20.

21.

General Electric Company
1000 Western Avenue
West Lynn, Massachusetts 01905
Attention: D. P. Edkins - Bldg. 2-40
F. F. Ehrich - Bldg. 2-40
L. H. King - Bldg. 2-40
R. E. Neitzel - Bldg. 2-40
Dr. C. W. Smith -- Library
Bl1dg. 2-LOM

Curtiss-Wright Corporation
Wright Aeronautical
Wood-Ridge, New Jersey 07075
Attention: S. Lombardo

G. Provenzale

AiResearch Manufacturing Company
L02 South 36th Street
Phoenix, Arizona 85034
Attention: Robert 0. Bullock

W. F. Waterman

Jack Erwin

Don Seyler

Jack Switzer

G. L. Perrone

AiResearch Manufacturing Company
2525 West 190th Street
Torrance, California 90509
Attention: R. J. Kobayashi

Bob Carmody

Library

R. Jackson

Union Carbide Corporation
Nuclear Division
O0ak Ridge Gaseous Diffusion Plant
P. 0. Box:''P"
Oak Ridge, Tennessee 37830
Attention: R. G. Jordan
D. W. Burton, K-1001, K-25

Avco Corporation

Lycoming Division

550 South Main Street
Stratford, Connecticut 06497
Attention: Clause W. Bolton

Copies

I P s | — y

119




120

22,

23,

24,

25,

26

27.

28.

29.

Teledyne CAE

1330 Laskey Road

Toledo, Ohio 43601

Attention: Eli H. Benstein
Howard C. Walch

Solar
San Diego, California 92112
Attention: P. A. Pitt

J. Watkins

Goodyear Atomic Corporation
Box 628

Piketon, Ohio 45661
Attention: C. 0. Langebrake

lowa State University of Science and Technology

Ames, lowa 50010
Attention: Professor George K. Serovy
Dept. of Mechanical Engineering

Hamilton Standard Division of
United Aircraft Corporation
Windsor Locks, Connecticut 06906
Attention: Mr. Carl Rohrbach
Head of Aerodynamics and
Hydrodynamics

Westinghouse Electric Corporation

Small Steam and Gas Turbine Engineering B-4
Lester Branch

P. 0. Box 9175

Philadelphia, Pennsylvania 19113

Attention: Mr. S. M. DeCorso

Williams Research Corporation
P. 0. Box 95
Walled Lake, Michigan 48088
Attention: J. Richard Joy
Supervisor, Analytical Section

Lockheed Missile and Space Company
P.0. Box 879

Mountain View, California 94040
Attention: Technical Library

Copies



30.

31.

32.

33.

34.

35.

36.

37.

38.

The Boeing Company

224 N. Wilkinson

Dayton, Ohio 45402

Attention: James D. Raisbeck

Chrysler Corporation

Research Office

Dept. 9000

P. 0. Box 1118

Detroit, Michigan 48231

Attention: James Furlong (418-19-40)
Ronald Paripreen (418-38-31)

Elliott Company

Jeannette, Pennsylvania 15644

Attention: J. Rodger Shields
Director-Engineering

Dresser Industries Inc.
Clark Gas Turbine Division
16530 Peninsula Boulevard
P. 0. Box 9989

Houston, Texas 77015
Attention: R. V. Reddy

California Institute of Technology
Pasadena, California 91109
Attention: Professor Duncan Rannie

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Attention: Dr. J. L. Kerrebrock

Caterpillar Tractor Company
Peoria, |1linois 61601
Attention: J. Wiggins

Penn State University

Department of Aerospace Engineering

233 Hammond Building

University Park, Pennsylvania 16802
Attention: Professor B. Lakshminarayana

Texas AeM University

Department of Mechanical Engineering
College Station, Texas 77843
Attention: Dr. Meherwan P. Boyce P.E.

Copies

121




122

39.

Lo.

L.

General Electric Co.
Building 37, Room 304

P. 0. Box 43

Schenectady, New York 12301
Attention: Misuru Kurosaki

Naval Postgraduate School
Department of Aeronautics
Monterey, California 93940
Attention: Dr. Allen E. Fuhs

Calspan Corporation

P. 0. Box 235

Buffalo, New York 14221
Attention: Dr. A. L. Russo

Copies




