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ANALYSIS OF THE THREE-POINT-BEND TEST FOR MATERIALS WITH 

UNEQUAL TENSION AND COMPRESSION PROPERTIES 

by Christos C. Chamis 

Lewis Research Center

SUMMARY 

An analysis capability is described for the three-point-bend test applicable to ma-
terials of linear but unequal tensile and compressive stress-strain relations. The capa-
bility provides numerous equations of simple form and their graphical representation. 
The various equations are derived using linear structural mechanics principles. Pro-
cedures are described for determining the local stress concentration in the vicinity of 
the load point and the failure mode at the critical stress location. 

Examples are given to illustrate the usefulness and ease of applicability. The func-
tional behavior of the equations is described graphically. This is done to expedite the 
analysis and to illustrate the influence of material properties and geometric parameters 
on properties such as: maximum deflection, maximum tensile (compressive) stress, 
maximum shear stress, flexural modulus, shear modulus, and local stress concentra-
tions. 

Comparisons are made with values obtained when the material is considered to have 
equal tensile and compressive mechanical properties. Some typical results from these 
comparisons follow: The maximum bending deflection and stress can be underestimated 
by 25 percent or more. The flexural modulus can be underestimated by 35 percent, and 
the shear modulus by 25 percent. The horizontal shear stress can be underestimated by 
15 percent in the vicinity of local stress concentrations. No corrections are required for 
the maximum bending stresses and deflection when the length-to-depth ratio is 20 or 
greater. Failure initiates on the tensile side when the material's compressive strength 
is equal to or greater than its tensile strength. 

The capability can also be used to reduce test data from three-point-bend tests, ex-
tract material properties useful in design from these test data, select test specimen di-
mensions, and size structural members.



INTRODUCTION 

Structural resins are used extensively as matrices in advanced fiber composites. 
These resins have moduli and strengths that are different in tension and compression. 
Typical ranges of ratios are, for the compression-modulus to tensile-modulus ratio, 
1.0 to 1.5 and, for the compressive-strength to tensile strength ratio, 1. 5 to 2.0. 

Structural resins are generally characterized by means of the three-point-bend test. 
The test data are reduced using simple beam formulas that do not account for different 
tensile and compressive properties. The reduced data can be in considerable error 
depending on the magnitude of the difference between the tensile and compressive prop-
erties. 

There are several good reasons why the three-point-bend test is used extensively in 
material characterization: economy, simplicity of specimen preparation and testing, 
ease of adaptability to enviromental testing, suitability for cyclic loading and fatigue 
testing, convenience for fracture toughness studies, and the availability of well docu-
mented simple formulas for analyzing materials having equal tension and compression 
properties (refs. 1 to 4). Another important reason is that the three-point-bend test is 
a simple way to subject a specimen to tension, compression, and shear simultaneously. 
In this sense, a three-point-bend test provides a direct measure of the structural in-
tegrity of the material. 

Available simple beam formulas are used for analysis because no comparable 
formulas are available which account for different tensile and compressive mechanical 
properties. Therefore, an investigation was performed to derive all the equations 
needed for the analysis and test data reduction of three-point-bend test for materials 
with unequal tensile and compressive mechanical properties. The specific objectives 
were the

(1) Derivation of all the equations needed in the form of simple formulas 
(2) Investigation of the stress concentration effects in the vicinity of the load point 
(3) Examination of failure stress and failure initiation. 
The governing equations were derived using well known linear structural mech-

anics principles. Symbols are defined when they first appear and are also compiled in 
appendix A for your convenience. The equations are described in the main text where 
several examples are givento illustrate their simplicity and usefulness. The detailed 
derivations are presented in appendix B. Although the terms "bending" and "flexural" 
are used interchangeably, herein, I use only flexural for consistency. Analogous equa-
tions can be derived for the four-point-bend test by following the procedure used in 
appendix B.



THEORY AND USEFUL EQUATIONS

Theoretical Background 

Closed form equations for analyzing or reducing data from a three-point-bend test 
(fig. 1) are described herein. The equations are for shift of the neutral plane (zero 
bending stress plane), ma.ximumum bending deflection, flexural (bending) modulus, 
shear modulus, maximum bending stress, and maximum shear stress. Only the final 
equations are given herein. The detailed derivations are given in appendix B. 

The equations are derived following the procedure used in classical beam theory but 
accounting for different moduli in tension and compression. Briefly, classical beam 
theory is based on the elastomechanics concepts of force equilibrium, stress-strain re-
lations, strain displacement relations, and the conservation of elastic strain energy. In 
the present development, it is assumed that both the stress-strain and strain displace-
ment relations are linear. 

The following equations and relations were used to develop the theory presented 
herein (refer to fig. 1). The force equilibrium equation at a point (x, z) in the beam is 
given by

(1) 
dx dz 

where a and r denote normal and shear stress, respectively. The resultant force 
at a section x is given by

f-h 0

	 ht 
a dz + oCdz= 0	 (2) 

 

b T	 0 

where h  is measured from the neutral plane to the bottom of the beam and ht to the 
top (fig. 1(b)). The subscripts T and C denote tension and compression, respectively. 
The resultant moment at a section x is given by 

0 

	

M = b f aTzdz + b	 a zdz	 (3) 
hb 

where b is the beam width. The linear stress strain relations are given by 

= ETOT	 EC = ECaC	 T Gy	 (4) 
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where E and y denote normal and shear strain, respectively, and E and G denote 
normal and shear modulus, respectively. 

The linear strain displacement relation at a point z is given by

(5) 

where w is the bending deflection and (d 2/dx2 ) denotes the second derivative. 
The details on how equations (1) to (5) were used to derive the governing equations 

of interest herein are given in appendix B. The property and governing equations are 
briefly described in subsequent sections. The governing equations are used to illustrate 
the effect of the modular ratio ET/EC on the property under discussion. 

Neutral Plane Location and Bending Stiffness 

The location of the neutral plane (plane of zero bending stress, fig. 1(b)) is given by 

ht/ET\1'2
(6) 

h 	
h

=	 (7) 

E/ET'\1/21 

where h is the beam thickness (fig. 1). 
The shift of neutral plane as a function of modular ratio ET/EC is presented 

graphically in figure 2. As can be seen in this figure, the neutral plane shift exceeds 
10 percent when the modular ratio is less than 0. 8 or greater than 1. 2. It is useful to 
note from equation (7) and figure 2 that the neutral plane shifts towards the higher-
modulus material. 

The bending stiffness, also known as bending rigidity or flexural rigidity, is given by 

D	 (hET + hE )
	

(8) 
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where D denotes the bending stiffness. The effects of the modular ratio on the bending 
stiffness will be illustrated later. 

Equation (8) can also be given as

D= 1 bhh2E b  

or

D = - bhh2E 
3	 t  

or

bh3E 
D=	 T 

3[l + (E )1/i 

It can be readily verified by inspection that equations (8) reduce to the well known ex-
pression Ebh3/12 when the modular ratio equals one. 

Equation (8c) indicates that when the tensile modulus only is used to calculate bend-
ing deflections, the deflection will be underestimated if ET/EC <1. 0 and overestimated 
if ET/EC>l.0.

Maximum Flexural Deflection 

The equation for computing the maximum bending deflection (deflection at midpoint) 
is given by

wmax =	
GD 

[1 + 1.6 bhh E
2 (\2

 1

h 	
(9) 

)] 

where P is the load, 1 is the length, and G is the shear modulus. 
The shear modulus for a material with different tensile and compressive moduli is 

given by (see appendix B)

(8a) 

(8b)

(8c) 
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ET	
(10) 

[l+2vT+()] 

where vT is the Poisson's ratio measured on a tensile test. 
The influence of the modular ratio on the flexural deflection is shown in figure 3 

where the variable w max/wFmax is plotted against i/h for various ET/EC. The 
variable w Fmax is the flexural deflection for the case where ET/EC = 1. 0 and for no 
shear contribution. It is given by

P13 WFm_ 3 
4bh ET 

Two points are worthy of note in figure 3: 
(1)The modular ratio has significant influence on the flexural deflection. The 

simple formula (eq. (11)) underestimates the flexural deflection by 25 percent when 
ET/EC = 1. 5 and overestimates it by 25 percent when ET/EC = 0. 5. These observa-
tions were anticipated from the discussion following equation (8c). 

(2)The length-to-depth ratio i/h has negligible effect on the flexural deflection 
when i/h > 10 in the range of modular ratio 0. 5 s ET/EC s 2. 0. This is an important 
observation because the researcher does not have to be overly concerned about the 
specimen length so long as it has a length-to-depth ratio greater than 10. 

Bending and Shear Moduli 

The apparent flexural modulus from a three-point-bend test is obtained by solving 
equation (11) for E. The result is

E =Pi (12) F
4bh wFm 

where E  is the apparent flexural modulus and w Fmax is the measured deflection 
under the load. Equation (12) assumes that the neutral plane coincides with the mid-
plane of the beam.

(11) 
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The error introduced in equation (12) when ET/EC ' 1. 0 may be calculated by 
using WFm• from equation (9) in equation (12). This is illustrated in figure 4 where 
the nondimensional variable EF/ET is plotted against the modular ratio for 1 /h = 10 
and 40 (flexural modulus from deflection curves). As can be observed from figure 4, 
the influence of the modular ratio on the apparent flexural modulus is considerable. 

The flexural modulus may also be estimated by the approximate relation, which is 
derived by averaging the stiff nesses (see appendix B) 

EF ()ET =
	

^ETEC.	 (13) 

where E  denotes the approximate flexural modulus. The ratio EF/ET is plotted 
against ET/EC in the figure 4 curve labeled "flexural modulus" (approximate). As 
can be seen in figure 4, the approximate flexural modulus is a good approximation (less 
than 5 percent error) when 0. 75 ET/EC 2. 0. 

The effects of the modular ratio on the shear modulus are obtained from equa-
tion (10). The shear modulus from equation (10) nondimensionalized with respect G150 

	

is plotted against ET/EC in figure 5, where G	 is the shear modulus of an isotropic 
material and is given by

GISO 	
E	 (14) 

2(1 + 

As can be seen in figure 5, the modular ratio ET/EC has considerable effect (as high 
as 25 percent) on the shear modulus. 

The conclusions to be made from the previous discussion and the curves in figures 
4 and 5 are 

(1)Modular ratio ET/EC has significant influence on the flexural and shear moduli 
(could be as high as 35 and 25 percent, respectively, for 0. 5 ET/EC 2. 0) 

(2)The length-to-depth ratio i/h has insignificant effects on the flexural modulus 
(3)The flexural modulus may be approximated sufficiently closely using a simple 

equation.

Maximum Flexural and Shear Stresses 

The maximum flexural tensile stress occurs at x = 1/2 and z = _hb (fig. 1(b)). 
The equation to predict this stress is given by

7



E 
aTmax_Pjh b4D _i	 (15) 

or

3P 
0Tmax =	

(15a) 

The maximum bending compressive stress occurs at x = 1/2 and z = ht (fig. 1(b)). 
The equation to predict this stress is given by 

Cmax _Plht EEc.	 (16)
4D 

or

cTCmax =

	

	 (16a)
4bht\h). 

Letting hb = h/2 in equation (15a) and ht = h/2 in equation (16a) result in 

amax=1.5_	 (17)
bh2 

which is the equation given for a material with equal moduli in tension and compression. 
Nondimensionalizing equation (iSa) with respect to equation (17) results in 

aTmax = _ L (18) 
umax 2hb 

The corresponding result for aCmax is given by 

°Cmax = (19) 
amax 2h  

Equations (18) and (19) indicate that the maximum flexural stress (tensile or compres-
sive) occurs on the extreme fibers of the stiffer side. The graphical representation of 
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°Tmax and °Cmax against ET/EC is shown in figure 6, which shows that the cor-
rections to the maximum stresses can be as much as 20 percent. 

Two more useful stress ratios are obtained by dividing equation (15a) by equa-
tion (16a) and then using equation (6). The results are 

cr Tmax ht (ET\'/2 

aCmax hb (E T)

1

 
(20) 

Equation (20) indicates that the ratio of the maximum stresses varies as the square root 
of the ratio of their respective moduli. 

The maximum shear stress is given by the equation 

Txzmax = 0. 75 bh	 (21) 

which is the same as that given for a material with ET/EC = 1. 0. The reason for this 
condition is that the shear stress equals zero at the top and bottom surfaces of the beam. 
These boundary conditions can only be satisfied by a parabolic variation of the shear 
stress through the beam thickness. However, the plane of maximum shear stress is at 
z = 0 and depends on the modular ratio. This dependence is illustrated graphically in 
figure 2. 

The important points to be noted from the previous discussion are 
(1) Simple relations for various stress ratios exist 
(2) The stress ratio UTmax¼YCmax varies as the square root of the modular ratio 

and attains its largest magnitude on the extreme fibers of the stiffer side 
(3) The correction to either a Tmax or aCmax can be as large as 25 percent when 

compared with a material with equal moduli 
(4) The magnitude of the maximum shear stress is independent of the modular ratio. 

However, the plane at which the maximum shear stress occurs depends on the modular 
ratio.

STRESSES AND DISPLACEMENTS IN THE VICINITY OF THE LOAD 

The equations described previously predict the stresses quite accurately at a dis-
tance one-half the thickness away from the load application point. In the vicinity of the 
load these equations need additional corrections. In this vicinity (point A, fig. 1(b) both 
x and z direction stresses have the same sign, and equations with equal moduli are 
applicable.
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In reference 5 approximate equations are presented for a material with equal 
moduli for tension and compression. The equations from reference 5 are presented 
herein and discussed briefly to illustrate the effects of stress concentration. 

The stress in the x-direction in the section under the load is given by (see fig. 
7(d))

cJ= _^P 
2 tj[1bh 7T	 h (h)]()L (h) E)[) ()1ft 	

(22) 

where

(23) 
2	 2 

and for z = -(h/2)

X
= 3P1 

2 1
r1 - o. 177( 	 (24) 

2bh L 

Both equations (22) and (24) indicate that the stress concentration correction to 
is insignificant and becomes negligible as I /h > 10. A graphical representation of the 
local stress concentration contributions to a through the beam thickness is shown in 
figure 7(a). Note that the correction decreases both the tensile and compressive stress 
values predicted by the beam formula. Stated differently, the beam formula slightly 
overpredicts the flexural stresses. 

The stress in the z -dire ction (fig. 7(d)) at the section under the load is given by 

=	 + 2[2(—z -	
-	 4	 (25) 

nbh1	 h/ 2\hJ] 1-2(
h 11 

where

hh -- S Z - 
2	 2

(26) 

10



and

U --	 as z— Z
	 2 

Note that the condition indicated by equation (27) is typical of elastic solutions near 
singularities. However, a z will produce permanent damage locally when a z has ex-
ceeded the compressive strength of the material. 

The graphical representation of equation (25) is shown in figure 7(b), where the 
variation through the thickness is plotted. As can be seen in figure 7(c), a z decays 
very rapidly away from the load point. 

The shear stress variation through the beam thickness at a section in the vicinity of 
the load (fig. 7(d)) is shown in figure 7(c). This figure was generated from data given in 
reference 5 (p. 105). The interrupted portion of this curve indicates the lack of data in 
that region. The maximum shear stress occurs at z = h/4 (fig. 7(c)) with an approxi-
mate value of

T	 0.86	 (28) xz	 bh 

The maximum shear stress from the simple beam formula is given by equation (21). 
The ratio of equation (28) to equation (21) is 

Txz local	 = 0.86 1.15	 (29) 
Txz simple-beam 0.75 

This leads to the conclusion that the maximum shear stress can be about 15 percent 
greater than that obtained by means of the simple beam theory and that it occurs at about 
z = h/4. 

The maximum deflection is also affected by the stress concentration in the vicinity 
of the load. For a material with equal moduli in both tension and compression, the 
equation from reference 5 (p. 107) is 

w=
4bh3E	 ii [4 G	 10 4 j

	

3	
(30) 

()  

(27) 
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For a material with equal moduli, in both tension and compression, equation (9) re-
duces to

P13 [ 12 (h\(El - 

4bh3E[	

(31) 

Assuming v = 0. 4 and using the isotropic relation E = 2(1 + v)G, the middle term in 
equation (30) becomes 3. 00(h/1)2 . The corresponding term in equation (31) is 
3. 36(h/1). The conclusion from this exercise is that equation (31) and, therefore, 
equation (9), overestimates the shear contribution to the maximum deflection. It can be 
verified by direct substitution that both shear and local stress contribute less than 
1 percent to the maximum deflection when (i/h) is 20 or greater. 

The previous discussion leads to the following conclusions: 
(1) The local stress concentration has negligible effect on the bending stresses and 

bending deflections predicted by simple beam formulas when i/h is equal to or greater 
than 20.

(2) The through-the-thickness normal stress u z is very high in the immediate 
vicinity-of the load point. It decreases very rapidly as the distance away from the load 
point increases. 

(3) The local stress concentration contributes about 15 percent to the maximum 
shear stress predicted by the simple beam formula, and it occurs at about the top one-
fourth point. 

EFFECTS OF STRESS CONCENTRATION ON THE SPECIMEN FAILURE STRESS 

The effects of the local stress concentration on the specimen failure stress are con-
sidered in this section. The stress state at point A (fig. 1(a)) is biaxial compression. 
An equation describing the combined-stress-state failure envelope for a material with 
different strength in tension and compression is given by (ref. 6 with K 112 and 
replaced by Kxzap)

2	 2	 2cl)

(—Sxxzz) 
F(cY)a,cY)= 1 °	 (Tz131  

+	 +	
-K	 (32) xza	

___
Sxa	 z/  

where F is the combined stress failure function, a is the stress due to load, S is the 
unaxial failure strength, K depends on the elastic constants of the material and is unity 
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for isotropic materials, the subscripts x and z denote direction, and the subscripts 
a and 13 denote tension or compression. 

The envelope described by equation (32) is shown in figure 8 for a material with 
room-temperature properties representative of epoxy resins and a value of Kxza13 = 1. 0. 
Combined or uniaxial stress states causing failure are represented by points on the 
failure envelope curve in figure 8. 

Applying this information to the failure stress of a three-point-bend test and recall-
ing the local stress concentration effects on the flexural stresses from the previous sec-
tion lead to the following conclusion: Failure will initiate on the tension side of a three-
point-bend test specimen that is made from materials with compressive strength equal 
to or greater than the tensile strength. 

The preceding conclusion is obvious from both intuition and figure 8 for the case 
when the compressive strength is greater than the tensile. The case of equal strengths 
is a little more subtle and can be shown by the following procedure: 

(1) Assume a representative value of i/h. Herein we assume i/h = 20. 
(2) Assume the specimen fails on the tension side (point B, fig. 1(a)) when 

°xB = SXT. 
(3) Calculate the load P required to produce a stress o XB = SXT. 
(4)Knowing this load, calculate the corresponding stresses ax and a in the 

immediate vicinity of point A. 
(5) Plot this point in the tension-tension quadrant in figure 8. The tension quadrant 

is sufficient since we are interested in the case of equal compressive and tensile 
strengths; that is, SXC = SxT. 
The point plotted in step (5) should fall inside the region bounded by the failure envelope 
to verify the conclusion for the case of equal strengths. 

Following the preceding procedure yields: From equation (24) and i/h = 20, 

PSxT	 (33) 

From the simple beam formula ax = (1. 5 Pi/bh2) (from fig. 8(a)) and P (from eq. (33)): 

°xA = 0. 957 SXT 

Equation (25) at 2z/h = 0. 95 yields cibh/p ztl 25.4. Using P from equation (33), we 
obtain

cYZA = 0. 85 SXT
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The combined stress and the single stress are plotted as points A and B in figure 8. 
Point A in figure 8 is inside the failure envelope as was previously postulated. There-
fore, the conclusion is verified for the equal strength case. 

The i/h at which U zA = axA is of interest. This ratio may be obtained readily 
following the previous procedure. The required equations are 

CrxAl.5P 1	 1.30 +	 P 
Mt	 bh h	 bh 

24 
A Z4,.	 bh 

Equating these two equations yields

17 
\h / 

The interpretation of equation (36) is as follows: 

(
L) >17 increases faster than cYZA 
h 

	

17	 xA increases at the same rate as 
hJ•

	

<17	 increases slower than 
\\h)  

It is noted that as i/h approaches one, aZA will increase considerably faster than 
and produce local bearing failure under the load. At i/h = 1, cxzA/crxA 8 from equa-

tions (34) and (35). 
The important conclusions from the previous discussion follow: 
(1) Failure initiates on the tension side of a three-point-bend test specimen. This is 

the case for specimens made from materials with compressive strength equal to or 
greater than the tensile strength and with an i/h greater than 17. 

(2) The apparent flexural strength will be equal to or greater than the smaller of the 
simple strengths. If SXT	 then SXT :5 flexural strength S,.

(34)

(35)

(36) 
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ADDITIONAL APPLICATIONS OF THE EQUATIONS AND GRAPHS 

In addition to analyzing the three-point-bend test, the equations and graphs pre-
sented herein can be used in other ways. Some examples are briefly described. If the 
tensile modulus and the flexural modulus are known, the corresponding compressive 
modulus can be obtained from figure 4. The shear modulus can be obtained from fig-
ure 5. The neutral plane location is obtained from figure 2. If, in addition, the appar-
ent flexural failure stress is known, the actual flexural failure stress may be obtained 
from figure 6. 

The corresponding simple tensile strength and a lower bound on the compressive 
strength may be estimated by the use of equations (15a) and 16(a) and figure 7(a). 

If a specimen fails in compression and the apparent flexural strength is known, the 
actual flexural strength can be obtained from equation 16(a). The corresponding simple 
compressive strength may be estimated using equation (16a), figures 7(a) and (b), and 
equation (32). 

The actual and apparent flexural strengths can be estimated when the simple tensile 
or compressive strengths are known. The estimate may be obtained by following the 
procedures used in the previous section. 

Equations (34) and (35) can be used to specify a loading rate ratio of uxA/azA 
(fig. 1). If the specimen is suspected to have failed by a combined stress state, includ-
ing shear, then this condition can be checked by computing the stresses ax, 

Oz 
at that point and substituting in equation (32). 

It is worth noting at this point that the procedures described herein apply to fiber 
composites as well. However, the data in the figures do not because the shear modulus 
was determined from equation (10) or (14), neither of which is valid for fiber compo-
sites. The procedures described previously are also applicable in sizing structural 
components. 

SOME COMMENTS ON INSTRUMENTING THE THREE-POINT-BEND TEST 

The equations locating the neutral plane may be used in conjunction with figure 7(c) 
to locate strain gages for measuring the shear modulus using a three-point-bend test. 

A direct determination of the location of the neutral plane can be obtained by mea-
surement. This is accomplished by placing strain gages on the top and bottom surfaces 
of the specimen (near points A and B, fig. 1) along the x-direction. The gages should 
be placed at a distance h/2 away from the load to avoid local stress concentration 
effects.

15



Plotting the stresses predicted by equations (15a) and (16a) against the strains of the 
corresponding gages yields the required stress-strain curves which can be used to de-
termine both the tensile and compressive moduli. 

SUMMARY OF RESULTS 

Results obtained from analyses of three-point-bend tests for materials with different 
moduli in tension and compression are summarized in this section. The tensile-
modulus to compressive-modulus ratio is referred to herein as the modular ratio (MR). 

1. An analysis capability was generated. The capability can be used to analyze the 
test data or select test specimen geometry for three-point-bend tests. 

2. The maximum flexural deflection is sensitive to MR. The simple beam formula 
underestimates the maximum deflection by 25 percent when the MR = 1. 5 and over-
estimates it by 25 percent when MR = 0. 5. The maximum bending deflection is insen-
sitive to the length-to-depth ratio i/h when i/h is greater than 10. 

3. The MR has significant influence on the flexural and shear moduli. Corrections 
of 35 and 25 percent, respectively, are needed for the simple beam formula predictions 
when MR= 0. 5. But i/h has negligible influence on the flexural modulus. 

4. The flexural stress ratio (tensile to compressive stress) varies as the square 
root of MR. The maximum stress magnitude in tension (compression) occurs in the ex-
treme fibers of the stiffer side. The correction to maximum tensile (compressive) 
stress can be as large as 25 percent compared to a material with equal moduli. 

5. The local stress concentration in the vicinity of the load has negligible influence 
on the maximum flexural stress and deflection where 1 /h equals 20 or greater. How-
ever, the maximum shear stress is increased by about 15 percent and occurs at about 
the one-fourth depth point from the top of the beam. 

6. Failure will initiate on the tension side of a three-point-bend test specimen made 
from material with compressive strength equal to or greater than the tensile strength. 

7. The equations and graphs can be readily used to extract data which are useful for 
design purposes and as a guide to instrumenting the test specimen. 

Lewis Research Center, 
National Aeronautics and Space Administration,

Cleveland, Ohio, November 8, 1973, 
501-22. 
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APPENDIX A 

SYMBOLS 

b specimen, beam width 

D flexural stiffness 

E normal modulus 

F combined stress failure function 

G shear modulus 

h specimen thickness 

h distance from neutral plane to 
bottom 

ht distance from neutral plane to 
top 

Kxzap coefficient in combined stress 
failure function 

1 specimen length 

M resultant moment 

P applied 'oad 

S simple strength 

w bending deflection 

x coordinate 

z coordinate 

y shear strain

E	 normal strain 

V	 Poisson's ratio 

a	 normal stress 

T	 shear stress 

Sub scripts: 

b	 bottom

C compression 

F property obtained by simple 
beam formulas 

ISO isotropic material property 

max maximum value 

T tension 

t top 

x direction along x-axis 

z direction along z-axis 

a T or C, tension or compres-
sion 

T or C, tension or compres-
sion
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APPENDIX B 

DERIVATIONS 

Basic Relations 

The linear uniaxial stress-strain relations for a material with different moduli in 
tension and compression are given by

(B 1) 

= EcEc	 (B2) 

	

T=yG	 (B3) 

The strain-displacement relations of interest in these derivations are given by (see 
fig. 1(d))

2 

	

€= -z--	 (B4) 
dx 

The force equilibrium equations of interest in these derivations are (figs. 1(a) and (b)) 

auxaJ xz - 	
= 

ax	 az 

where 0 x 1 and h 	 z ht, 

f-h fo
ht 

	

'T +	 dz = 0
b 	

cY

 

where Oxl, and	 -

(B5) 
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Io.	 fo
ht 

	

Mb	
	

+ b	 zcJdz	 (B7) 

where Oxl.

Equation of the Neutral Plane 

Using equation (B4) in equations (B1) and (B2), substituting the result in equa-
tion (B6), and carrying out the integration yield 

L

0	 h	 d 2 w 1	 2 d 
2 w 

b c7Tdz+ fo acdz=.!.ETh_ECht j 0 

From which follows

/h\2 (C.T)E
(B8)= 

\hb)  

and

/h t\ /E/2 T (B9) 
c  

Equation (B9) is the equation of the neutral plane. It can also be expressed in terms 
of h. Using the identity

h=ht+hb	 -	 (BlO) 

in equation (B9) and collecting terms yield 

h1=	 h	 (Bli) 
U	 /, \1/2 

-	 IT 1+i— 
\Ec

19



Equation of Flexural Rigidity (Stiffness) 

Using equation (B4) in equations (BI) and (B2), substituting the result in equa-
tion (B?), and carrying out the integration noting that d 2w/dx2 is independent of z 
yield

10	

Iht2 
M= b(!z3ET
	

+!z3E1___ 
-hb 

From which follows

	

M= Jb(hET +h 3 E C) 
	 (B12) 

dx 

Let the coefficient of d 2w/dx2 be D. Thus, 

	

D=. (hET +hEC)	 (B13) 

Equation (B 13) is the flexural rigidity of a material with different moduli in tension and 
compression. Equation (B13) can be expressed in terms of either h  or ht and h 
through the use of equation (B8) or (B9) and equation (BlO): 

D = !bhhET = !bhhEc	 (B14). 

The resultant moment in terms of D is 

M=Dd_w	 (B15) 
dx2 

Stress Moment Relations 

Multiplying by z both sides of equation (B15) yields 

20



2 
Mz=

dx2 

and using equation (B4) results in

MZ=DE 

Substituting equations (Bi) and (B2) in the last equation and rearranging yield, re-
spectively,

a =Mz -J T	 i	 Oxi	 hbzO	 (B16) 
D 

and

aC

	

	 Ozht	 (B17) 
D 

But in the region 0 x (1/2)

M= _Px 	 (B18) 
2 

Using equation (B18) in equations (B16) and (Bi?) yields, respectively, 

UT	
Pxz	 O.sxL	 -hbz.O	 (B19) 

2 

a -.	 ----Es, Pxz	 OxsL	 Oszht	 (B20) = -  

	

2D	 2 

The maximum tensile and compressive stresses are obtained by the following substi-
tutions:

x=1  and z = -hb in equation (B 19) 

	

x =	 and z = ht in equation (B20) 
2
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The results are, respectively,

P lhb 
°Tmax = 4D

ET 

and

P lht 
aCmax-	 E  

Using the values of D from equation (B14), the last two equations become 

aTmax 3P 
1 (B21) 

4bhb  

0Cmax

	

3P 1	 (B22) 

	

= -	 - 
4bht h 

Letting hb = ht = (h/2) in equations (B21) and/or (B22) results in 

3P1 

	

Cmax = °Tmax =	 (B23)
2h 

which is the well known maximum stress formula. Equations (B21) and (B22) constitute 
the maximum stress formulas of interest in this investigation. 

Shear Stress Applied Load Relation 

From equation (B5) we have

	

10'x ITxz 0	 (B5) 
ax	 az 

In the region 0 x (1/2) and 0 z ht, Cr
x 

is given by equation (B20). Substituting 
equation (B20) in equation (B 5), carrying out the differentiation with respect to x, and 
integrating the result with respect to z yield 

•
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3P 
Txzmax 

4bh
(B25) 

-—E _Txz+F(X)=O 
4D 

Applying the boundary condition at z = ht and T xz = 0 yields 

Ph2 
F(x)=_±E 

4D 

Substituting this value of F(x) in the previous equation and rearranging yield 

Txz= 
PhEC[(Z)2] 	

(B24) 

The maximum shear stress is obtained by letting z = 0 in equation (B24), using the 
value of D from equation (B14), and using equation (BlO). The result is 

Equation (B25) is the same as that of a material with equal moduli. However, the maxi-
mum value is not at the midplane of the specimen. 

Carrying out the same procedure for the region 0 x (1/2) and _hb z ::5 0 
yields	 -

Ph Et 1
	

21 

Txz= 4D f -	 (B26) (^Zb) 

But at z = 0 the shear stress predicted by equation (B26) must equal that of equa-
tion (B24). Carrying out the algebra and reducing the result yields 

'h \ 'E \l/2 
(t\(T 

hb) EC
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The last equation defines the plane of maximum shear stress. Note that this equation 
is the same as equation (B9), which is the equation for the neutral plane. Therefore, 
the neutral plane and plane of maximum shear stress coincide as is the case for ma-
terials with equal moduli.

Maximum Flexural Deflection 

The total energy stored in the beam is given by

ht 
U = 2b

fo

0 (aT€T + )dz 
+

fo 
(aCEC + Ty)dZ) dx 	 (B27) 

 -  

Using the stress-strain relations (eqs. (Bi) to (B3)) and the stress-force relations 
(eqs. (B19), (B20), and (B2.6)). in equation (B27) and carrying out the integrations and 
simplifying yield

U =	 + lb (Eh ^ Eh)]	 (B28) 
2 [48D 30GD2 

The midpoint deflection (maximum deflection) is obtained by differentiating equa-
tion (B28) with respect to P (Castigleano's first theorem). The result after simplifica-
tion is

Pt3	 1.6bhhE2 h 
=—Ii^	 T(b'\l	 (B29) 

	

wm=wl/2 48D[
	 GD	 ii] 

When ET = E , ht = hb = (h/2), .equation (B29) reduces to 

Wmax= 
P3 c + l.2 1!)(

I, ]
	 (B30) 

	

4bh3E[	 G 

Equation (B30) is the simple beam formula when the shear contribution is included. 
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The shear contribution to the maximum deflection may be limited to specified values 
by adjusting the (i/h) ratio in equation (B30). For example, if the shear contribution is 
to be limited to 1 percent or less, then i/h is 

(L> (120E/2 

	

\hJ	 \G) 

For isotropic materials E/G 3 and i/h> 19. However, for advanced fiber com-
posites for which equation (B30) applies, E/G 30 and i/h > 60, which is considerable. 
This procedure can be used to size components from these materials. 

Relations Between Shear, Tensile, and Compressive Moduli 

Relations for G and ET and EC are obtained in the following manner:' Refer to 
figure 9(a). For the stress state shown, the strain energy stored in a unit-volume-
element is

E T a T + L C E CUT + ECC 

Using equations (Bi) and(B2) yields 

U = .J- U 2 + PC 

	

T	 CaT +aC 	 (B31) 

in terms of stresses only. 
For the stress state in figure 9(b) the energy stored in a unit-volume-element in 

terms of stresses only is

LIT	 1	 2 

	

U=_J-_a+_cJTaC+____aT	 (B32) 
2E 	 ET	 2E  

Assuming no energy loss during the stressing-straining process, the energy is the same 
in both cases. Subtracting equation (B31) from equation (B32), we obtain 

U=
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G=
	 ET

/ 
1 + 2v T  + I 

_E 
!i 

(E T)
(B37) 

VT - 1'C	 (B33) 
ET E  

If in figures 9(a) or (b) we let the magnitude of a =T, we have a case of pure shear 
that can be expressed as

T kcl - aT	 (B34) 

The energy stored in a unit-volume-element for the case of pure shear is given by 

U=iyT=!_r2	 (B35) 
2	 2G 

But the energy in equation (B35) is equal to that of equation (B31) or equation (B32) since 
it is produced by the equivalent final stress states. Equating equation (B3 5) to, say, 
equation (B31), we obtain

1 21	 2 "C	 1 2 
-T =—a,,+—cr a +aC 	 (B36) 
2G	 2ET' EC	 2E  

Using equations (B33) and (B34) in equation (B36), we obtain, after simplification, 

Equation (B37) reduces to the well known case for E  = ET as can be verified by in-
spe ction. 

When ET, VT and G are known from independent tests and not from the relation 
E = 2(1 + ii)G, then the compressive modulus EC can be computed from equation (B37). 
The result is

ET 

E
- (1 + 2vm) 

G 
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Equation (B38) indicates that a material with ET = G(l + 	 is incompressible. 
We note here, that analogous derivations leading to relation of equation (B37) are 

presented in reference 7. 

Approximate Equation for the Flexural Modulus 

Assume that the flexural modulus may be approximated by the average extensional 
modulus through the beam thickness. In equation form it is 

E 	 !(hbET + htEc)
= hbET (i +- 

h \\ hbET
(B39) 

Using the relation EC/ET = (hb/ht) 2 (eq. (B8)) in equation (B39) and simplifying yields 

EF () ET fETEC	 (B40) 

as an approximate equation for determining the flexural modulus.
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Figure 1. - Schematic of geometry and stress variations of 
three-point-bending test specimen from material with un-
equal tensile and compressive properties. 
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Figure a - Effect of modular ratio on shift of neutral plane 
for three-point bending.
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0	 1.0	 2.0
Modular ratio, ET/EC 

Figure 6. - Effect of modular ratio on maximum bending 
stress for three-point bending(l/b 40). 
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Figure 7. - Stress variation in vicinity of applied load for modular 
ratio, ET/EC, 1. (For geometry notation part (d) this figure. )
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Figure 9. - Stress application for determining relations between 
shear, tensile, and compressive moduli. 
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