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FOREWORD

This report presents the first volume of a two-volume final

report on a one-year study entitled "Analysis of Apollo Space-

craft Parachutes." (The companion volume is listed as

Reference !. ) This study was performed _y Northrop Ventura for

NASA/._SC under Contract NAS 9-8131. Messrs. M. A. Silveira,

K. Hinson and C. Eldred of NASA/MSC monitored and reviewed the

study.

This study, designated as Project 0111 at Northrop Ventura, was

carried out with direction from the Systems Engineering Group

under Mr. R. G. Lemm. Program direction was provided by Fro. T. W.

Knacke of the Advanced Design Group, and the Project Engineer

was Mr. F. E. Mickey of the Aerospace Landing Systems Project

Office.

The different sections of the report were prepared by the

various authors as follows: Mr. F. E. Mickey, Sections 3.2, 6.1,

6.2, 6.4 and 7.2-7.4; Mr. A. J. McEwan, Sections I.I, 2.2, 3.1

and part of 4.2; Mr. E. G. Ewing, Sections 1.2, 2.3 and part of

4.2; Mr. W. C. Huyler, Jr., Sections 2.1, 4.1 4.3 and 7.1; Mr.

B. Khajeh-Nouri, Sections 5.0 and 6.5. The authors gratefully

acknowledge valuable assistance by Dr. D. F. Wolf, who prepared

Section 6.3, and _r. M. R. Bottorff, who prepared Section 7.5.
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ABSTRACT

The results of a one-year study on the cpening loads of Apollo

type spacecraft parachutes are presented. A review is made of

the flight test data that were obtained in the Apollo parachute

development program to assess existing techniques and to upgrade

the previously used load prediction methods. The results of

this pnrtion of the study are applied to an Apollo design case.

Two new opening load methods are presented. One of these methods,

referred to as the Mass/Time Method, is developed to a useful

level for single Apollo type main parachutes; and a modified ver-

sion of this method is applied to several Apollo cluster cases.

An analysis of the longitudinal oscillations that occur in the

Apollo parachutes indicates that they are caused by strong inter-

actions with the wake of the forebody. _ method for analyzing

the flow about an inflating parachute is developed, and an

algorithm for computing the complete inflation process is pre-

sented. The study establishes that the added mass of a para-

chute canopy cannot be directly inferred from typical flight

test data; however, it may be measured by special techniques

either in a wind tunnel or in free flight tests.
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SECTION i. 0

INTRODUCTION

The Apollo parachute landing system was designed, developed and

qualified by Northrop Ventura during the period 1962-1968. In

the normal course of this development, many flight tests were

made, and extensive data on the performance of the Apollo space-

craft p_rachutes were collected. These data were used as the

basis for developing the methods that were used during the course

of the flight test program for estimating loads and in making

structural analyses for the principal Apollo parachute assemblies:

the drogue chutes, the pilot chutes and the main parachutes.

\

It was recognized that there would be substantial value in an

analysis effort that would review all the flight test data at

one time. In particular, it was seen that such an analysis effort

would be free of the day-to-day pressures associated with a de-

velopment program, and consequently that it could upgrade the loads

and stress analysis methods used for the Apollo spacecraft para-

chutes in ways that had not been considered previously. The pre-

sent study was therefore authorized with the objective of up-

grading and improving loads, stress and performance prediction

methods for Apollo spacecraft parachutes. Also included in this

study were the tasks of developing (a) methods for a new theo-

retical approach to the parachute opening process, (b) new

experlmental-analytical techniques to improve the measurement of

pressures, stresses and strains in inflight parachutes, and

(c) a numerical method for analyzing the dynamical behavior of

rapidly loaded pilot chute risers. In performing these tasks,

emphasis was placed on analytical (as opposed to empirical)

methods of analysis.
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The results of the study are published in two volumes as follows:

INVESTIGATION OF PREDICTION METHODS FOR THE IOADS

AND STRESSES OF APOLLO TYPE SPACECRAFT PARACHLTTES

VOLUME I - LOADS

and

INVESTIGATION 0F PREDICTION METHODS FOR THE LOADS

AND STRESSES OF APOLLO TYPE SPACECRAFT PARACHUTES

VOLUME Ii - STRESSES

The present volume is VOLUME I - LOADS.

is listed as Reference I.

The companion volume

Volume I presents the results of a study conducted for the pur-

pose of analyzing Apollo parachute loads* data, upgrading loads

prediction methods, and investigating advanced prediction methods.

This includes a thorough analysis of an extensive amount of

flight test data on the Apollo drogue and main parachutes. These

data were used to upgrade the pertinent load prediction methods

for both the drogue and main parachutes and to develop improved

semiempirical methods directly applicable to Apollo type space-

craft parachutes. In addition, there is presented an investi-

gation of vehicle-parachute interactions, a new parachute in-

flation theory, and concepts for new parachute test techniques.

Volume II presents the results of a study on parachute structural

analysis methods which make extensive use of the test data ac-

cumulated during the Apollo development and qualification test

programs. These study results include a literature review,

refinement and extension of the Apollo structural analysis

Unless otherwise indicated, the word "loads" in this report

refers to the longitudinal loads transmitted through the

parachute riser.

2 r_v-R-6a31
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methods, corroboration of the methods by comparing analytical

and test results, and application of the improved structural

analysis methods to the Apollo parachutes. In addition, there

is presented a study on dynamic loading effects in pilot para-

chute risers and an investigation of techniques for measuring

loads, strains and differential pressures in parachutes.

3 NVR-643!
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SECTION 2.0

REVIEW OF APOLLO LOADS DATA AND

REFINEMENT OF LOADS METHODS

This section contains the results of analyses that were under-

taken to upgrade and improve the load prediction methods used

in the Apollo development and qualification test programs. The

scope of the material presented in this section is, in general,

limited to Apollo parachute loads data and loads prediction

methods. This portion of the report was completed prior to the

evaluation and development of new loads methods presented in

subsequent sections of the report.

Figure I illustrates the operational sequence of the Apollo

Earth Landing System (ELS) for the normal entry mode. This

system includes nine parachutes: an apex cover parachute, two

drogue chutes, three pilot chutes and three main parachutes.

A precise specification of this system including design and

reliability criteria employed during its development is given

in Reference 2.

Three test vehicles were used in the Apollo parachute develop-

ment program. These vehicles, an Instrumented Cylindrical Test

Vehicle (ICTV), a Parachute Test Vehicle (PTV) and a Boiler

Plate vehicle (BP), are illustrated in Figure 2.

The data and loads analyses undertaken in this study were limited

to the drogue, pilot and main parachutes. These analyses are

documented in the three subsections that follow.
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2. I DROGUE CHUTE LOADS

Each of the two drogue chute assemblies consists of a 16.5-foot

diameter, conical ribbon parachute with a textile riser, a de-

ployment bag, a steel cable riser, and a mortar tube assembly.

The purpose of the drogue chutes is to provide drag, both to

decelerate the Command Module (CM) and to stabilize it in the

aft heat shield forward attitude. Each drogue chute features a

reefing line with a nominal 10-second reefing interval to re-

strict the deployment loads to values that do not exceed the

limits given in Reference 3 -- single drogue, 20,000 ib; two

drogues, 20,000 Ib each. Each 3!.7-foot riser includes 15 ft

of steel cable to provide protection against abrasion damage by

the CM. The physical characteristics of a drogue chute including

its riser and deployment bag are illustrated in Figure 3.

2.1.I Loads Methods Used in Apollo Parachute Development Program

The loads methods used in the Apollo parachute development program

are described in detail in Reference 3. Briefly, these methods

were as follows.

The flight conditions at drogue mortar fire were the starting

point for the parachute loads calculations. These conditions

were determined by the Apollo prime contractor (the North American-

Rockwell Corporation) by analyzing the dynamics of the CM for

the normal entry mode and all possible abort modes. With these

initial conditions, the flight conditions of the CM at drogue

line stretch were calculated by using a three-degree-of-freedom

(3-DOF) computer program. This computer program was used to

compute the velocity difference between the drogue chute and

the CM at the instant of line stretch. The snatch force, which

occurs at this time, was then calculated with a snatch force

computer program. Next, the opening load factor method was used

7 _q_-643!
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DEPLOYMENT BAD
%

.76 LBS X 10. I

1i. 9D-f_"'i L----T

 o,.o

2A
z68 LBs-_ \ p / ' / I

PACK / \ / .__/_ I

J,th -No
I_ DISTANCE

4.9 LBS 200.0 _6 D

i
9.2 LBS

METAL RISER

i
180.0

[
TO CM ATTACHMENT / TO COMMAND MODULE'S

MAIOR DIAMETER

NOTE: The lengths shown above are fabrication

dimensions (without strains)

General Data:

Type - Conical ribbon wltn one-stage reefing

Nomlnal diameter, D = 16.5 ft (198 In. I
o

Nominal canopy area, $o = 2_h ft _

Numter of Eores = 20

Canopy porosity _ 22%

Reefing llne length = 266 in.

Overlnflatlon llne lengt_ = 396 Iz.

Single Coute Caaracterlstlcs:

Reefed open drag area, (CDS_r• _ = 65 ft _

Fu21 open drag area, (CDS) ° = il_ ft 2

?ack weight = 26.6 ib (less metal riser _

Pack volume - 100_ in. 3

Double Chute Characteristics:

Multiply the above slngle chute caracteristlcs

by 2.0

Deployment Conditions:

Mortar muzzie veioclty = 05.85 ft/sec Imin;

At ilne stretch, Minimum Maxlmam

Altltude, ft 3,000 40,00G

Dyn. pres., ib/ft 2 lu 20_

!dach number 0.lO 0.67

Limit Loads (single chute_:

Reefed open, (Fr)il m = 17,200 Ib

Full open, (Fo)ll m = 15,000 Ib

Terminal Conditions:

For 13,DOJ-pouud CM, One-Chute Two-Chute

Altitude, ft lO,750 10,750

Dyn. pres., lb/ft 2 70 a6

Mac_ number 0.265 C.214

Fig. 3. Configuration Drawing and Data for an Apollo

Drogue Chute (Reference 2)
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to calculate the reefed inflation load,

lowing relation was used.

F
r"

That is, the fol-

Fr = (CK)r (CDS)r qDCLS

where (CK) r denotes reefed opening load factor, (CDS) r de-

notes reefed drag area, and qDCLS _enotes dynamic pressure at

drogue chute line stretch. The value of (CK) r used in this

computation was estimated by giving careful consideration to the

empirically derived values of (CK) r associated with earlier

reefed opening tests of the same parachute.

The next step in the computational sequence was to use the 3-DOF

computer program to compute the flight conditions at the end of

the 10-second interval of reefed drogue chute operation. Having

thus established the conditions at the time of disreef, the

opening load factor method was used to compute the disreef opening

load, Fo. Namely, the following relation was evaluated.

Fo = (Ci)o (CDS)oqd

where (CK) o denotes dlsreefed opening load factor, (CDS)o

denotes full open drag area, and qd denotes dynamic pressure

at dlsreef. The value of (CD) o used in this computation was

estimated by giving careful consideration to the empirically

derived values of (CK) o associated with earlier disreefed

opening tests of the same parachute.

Reefing line load was evaluated as 4 percent of Fr, and over-

inflation control line load was taken as 4 percent of F
O"

9 NVR-6_31
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Table i is a summary of the drogue chute loads and methods used

in the Apollo development program.

Table I. Summary of Load Prediction I<ethods Used in

Computing A)ollo Drogue Chute Loads

T,_eLoad ,: thod Used 'see £ef. 3,!

F r

F
C

Snatch

Reefing Line

0verinflation Line

0pening Load Factor

Opening Load Factor

Snatch Force Program

0.0L x

0.04 x
" O

2.1.2 Review and Refinement of Opening Load Factor [/.ethod

The drogue chute loads data from the Apollo parachute develop-

ment and qualification tests were reviewed, and an analysis was

made to upgrade the previously used opening load factor method.

It was found that several improvements could be made in the

opening load factor method described above. One improvement

consists of using the dynamic pressure at drogue _hute canopy

stretch, qDCCS' in the Fr calculation in place of qDCLS" This

is because the dynamic pressure at canopy stretch is more inti-

mately connected with the opening process than the dynamic pressure

at line stretch. (The dynamic pressure at the time of maximum

load could also be used; however, this would be somewhat more

difficult because of vehicle decelerations immediately prior to

the time of maximum load.) The dynamic pressure at disreef, qd'

is still the best dynamic pressure for use in the Fo calcu-

lation. It was also found that an improvement could be made in

the determination of values for the opening load factors. The

following subsections discuss these results.

lO _'_-6L31
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2.1.2.1 Conditions at Drogue Canopy Stretch. The time of

drogue canopy stretch is defined as the instant when the para-

chute canopy starts to fill. It is measured on the telemetry

force-time record as the point at the base of the opening load

rise. At this time, the canopy is deployed and snatched, but

it has not yet begun to open and there is no drag area except

for the small amount due to the streaming canopy and lines.

For a test that has already been conducted, the vehicle flight

conditions at drogue canopy stretch are determined through the

use of combined observed and calculated data. It is felt that

this approach, because it makes the best use of the available

data, is an improvement over the previous approach of relying

solely on observed data.

The reason for developing a new approach is that the cine-

theodolite (Askania) data, which were used previously, are not

accurate at the time of canopy stretch. Apollo _skania is de-

signed to measure near-equilibrium flight condit_ions. In order

to perform this function, the cine-theodolite cameras are run

at 5 fr/sec, and 7-point data smoothing is used in data re-

duction. In a typical test, the drogue programmer parachute

(referred to as the programmer) is disconnected, the vehicle

accelerates in free fall until drogue canopy stretch (usually

less than a second after programmer disconnect), and then the

drogue chute inflates and decelerates the vehicle toward

equilibrium. Thus, in a period of less than two seconds, the

vehicle goes through a rapid acceleration and then begins a

rapid deceleration. At the same time, the data are sampled

at less than l0 points and these points are subsequently sub-

jected to 7-point smoothing. The net ,esult is that the peak

velocity and dynamic pressure, which occur during parachute in-

flation, are reported in error and are furthermore reported as

ll m.,_-6431
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lower than the actual values. This error leads to the determina-

tion of values of CK that are too large. This dynamic pressure

error is somewhat random and therefore leads to random errors in

C K as well as bias errors.

The new approach uses Askania to determine flight conditions at

programmer disconnect and then calls for calculating conditions

at drogue canopy stretch with the equations of motion of the ve-

hicle. Askania data are the only source of flight conditions at

programmer disconnect. In some instances, the flight conditions

data at disconnect are in error because of the _ffect of the post-

disconnect acceleration through smoothirg. In such cases, it

becomes necessary to extrapolate data from several seconds prior

to disconnect to the time of disconnect. The time of disconnect

is accurately known from the electronic events recorder. Thus,

vehicle flight path angle, velocity and altitude are known from

Askania at disconnect. Rawin data provide air density as a

function of altitude. Vehicle weight and mass are accurately

known and vehicle drag area is also known. The time of canopy

stretch is accurately known from the drogue chute load traces.

Therefore, all pertinent parameters in the calculation of flight

conditions at canopy stretch are known. With an iCT_ T or a PTV,

the ballistic coefficient, W/CDS, is so high _hat vehicle drag

area is usually not a critical parameter. Thus, best available

information is being used to calculate flight conditions at canopy

stretch.

Several calculation methods are possible. The 3-DOF computer

program could be used to provide a very accurate result for the

flight conditions at canopy stretch. While less accurate a

method, the solution of the vehicle acceleration under the

assumptions of constant flight path angle and air density could

be used. The trajectory equation,

dv ._ W sin @ - ½ O v CDS

dt m
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then has the solution (see Symbols Section for notation de-

finitions):

i 2W sin
v(t) V

CDS 0 [_ exp (2 _g sin@ CDS o/2m)t-lllexp (2 6'g sin@ CDS 0/2m)t +

At the next level of approximation, constant acceleration

could be assumed. The change in velocity could then be shown

to be equal to W sin _ - CDS q times the free fall interval,
m

where q is the dynamic pressure at programmer disconnect.

A sample calculation was performed using actual test conditions,

and it was found that even with a BP having a drag area esti-

mated at 90 ft 2, the three methods give almost identical re-

sults. Because the constant acceleration method is the simplest,

it was chosen for the analysis.

The new method was applied to every Block II (H)* test for

which (CK) r could be analyzed. The calculated qDCCS at drogue

canopy stretch is presented in Table 2 along with the Askania.

provided qDCCS for comparison. Almost without exception, the

calculated qDCCS is higher.

2.1.2.3 Discussion of Parameters Affecting CK at Reefed Openin_

Some of the parameters affecting (CK) r of an Apollo drogue

chute are the type of test vehicle (a wake effect), the Mach

number, the deployment system, the vehicle attitude, the

* The Apollo parachute development and qualification tests were

conducted in three blocks: Block I, Block II and Block II (H).

The specific tests that were associated with each of these blocks

are given in Appendix A of Volume II.
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canopy fill rate, the ballistic coefficient, the flight path

angle, and the magnitude of the loads developed. Knowing the

relative effect of each parameter enables more precise opening

load factor prediction, a definite improvement over the previous

technique which used an ensemble average from past tests to-

gether with a scatter factor.

Table 2. Comparison of Calculated and Observed Dynamic

Pressures at Drogue Chute Canopy Stretch

Test Calculated qDCCS Askania .qDCCS Difference (2)

83-6 154 ib/ft 2 153 ib/ft 2 +1%

84-i 199 193 +3

84-IR 238 239 -0.4

84-3 366 354 +3

84-4 175 172 +2

85-1 9A (i) 90 +4

85-2 68 (1) 62 +lO

85-3 124 (1) 123 +I

85-4 105 (I) 97 +8

99-2 317 306 +4

99-3 203 192 +6

99-4 288 282 +2

NO TES : (I) Calculated values of qDCCS for 85 Series tests

are felt to be inaccurate due to drag area un-

certainties (caused by vehicle oscillations).

(2) The following equation is used to compute the

values given in the last column:

Difference =
I Calculated q_CCS - Askania q,DCCS I (IO0%)

Askania qDCCS

14 NVR-6431
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The re-evaluation began with reviewing the testl data from all

Apollo test programs. An opening load factor for each drogue

chute in each test was calculated and the associated telemetry

and film coverage were studied. Each test's history was re-

viewed to identify the reasons for opening load factor dif-

ferences. _ trend was observed. Where no riser dynamics had

occurred, it was focnd that the reefed opening load factor

could be evaluated as follows:

(CK) r : 1.00 plus the following factors as they apply:

+ 0.00 if an ICTV is used

+ 0.21 if a BP is used

+ 0.18 if a PTV is used I)

+ 0.07 if loads are _ig_ _ "_ limit'

+ 0.05 :f mortar deployed

+ 0.05 if only one drogue chute inflates

+ 0.02 if test F1acr. number is high _ _ 0.75

For example, Equation i predicts a valae of _C ' for" Kr

Test 99-4 equal to 1.00 + 0.05 (because the drogues were mortar

deployed) + 0.07 (because of the high loads) : 1.12. Likewise,

(CK) r for Test 6_-4 is I.C0 + 0.18 (because it was a PTV test)

+ 0.05 (because only one drogue deployed) : 1.23, and (CK) r

for Test 50-12 is 1.00 + 0.21 (because it was a BP test) + 0.05

(because the drogue_ were mortar deployed) : 1.26.

In the specific case of Apollo drogue chutes, the ballistic coef-

ficient is high enough to produce reefed opening load factors

greater than one. In the general case, however, the ballistic

coefficient, W/CDS, may be considerably lower, allowing an ap-

preciable velocity decay during opening and therefore opening

load factors less than one.

15 N_.q_-643i
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It may be observed that the largest component in Equation (i)

is due to the type of vehicle. This could be because the wake

of each vehicle has different energy and frequency characteristics.

The second largest component is associated with the magnitude of

the loads developed. The higher the loads, the higher the elong-

ation of the canopy fabric. Elongations produce larger drag

areas which in turn cause higher loads and, therefore, l_igher

openi_ load factors. This is a ncnlinear effect.

The deployment system used also influences the opening load factor.

Mortar deployed drogue chutes may partially fill outside the

vehicle wake, and they may have an increased velocity due to

the observed transverse waves in the riser which travel to the

vehicle and back just after canopy snatch.

The number of drogue chutes being inflated has an effect. This

could be because of aerodynamic blanketing or because of dif-

ferences in dynamic pressure decay durir_ filling due to a

lower ballistic coefficient, W/CDS.

The Mach number seems to have a very small effect on (CK) r

at those conditions for which Apollo data are available.

A comparison of the measared reefed opening load factors and the

predicted factors using Equation (i) appears in Table 3. This

table shows all applicable Block II (H) data.

2.1.2._ Presentation of Reefed Drogue Chute Test Data. All

the applicable test data from the Apollo parachute development

program are presented in Table 4. In this table, several peak

loads and associated (CK) r values are sometimes listed for

the same test. The reasons for this are as follows. There

may have been two drogue chutes, each experiencing a different

riser load; there may have been duplicate riser load instru-

mentation, each indicating a slightly different riser load;

16 NVR-6431
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and there may have been successive peak loads. For example, in

Test 84-IR, there are six peak loads indicated. This is because

there were two drogue chutes in this test, each of which had

duplicate riser load instrumentation, and because one of the

drogue chutes experienced two successive load peaks. In parti-

cular, the peak load for drogue chute No. i was 16,_70 and

16,A60 lb, as indicated by its two load sensors. The peak load

for drogue chute No. 2 was 16,800 (first peak) and 17,750 (second

peak), as indicated by one load sensor, and 17,900 (first peak)

and 18,150 lb (second peak), as indicated by the other load

sensor.

The data from the Apollo Block II (H) test program were studied

first. Sufficient data were available from this program to per-

mit a trend to be observed in effects due to vehicle type, Mach

number, type of deployment3 ballistic coefficient, and magnitude

of loads developed. However, there were insufficient data to

observe effects due to flight path angle, reefing ratio, and

suspension line changes. All tests were conducted with a flight

path angle about 60-70 degrees during drogue chute deployment;

all drogue chutes were reefed to either 36.5% Do or 40% Do; also,

all tests except one used drogue chutes having 2500-pound nylon

suspension lines.

The Block I! (H) drogue chute was a 16.5-ft Do conical ribbon

parachute with active radial reefing. Drogue chute loads were

measured in Test 83-6 and Test Series 8A, 85 and 99. One data

point was used from each of Tests 84-1, 8A-1R, 8A-3, 8A-4, 99-2

and 99-4 in the derivation of the components of (CK) r. These

tests and their (CK) r data are briefly reviewed on the fol-

lowing two pages.
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Test

83-6: Both drogue chutes had load link dynamics.* The load

link and riser motions were so extreme that one riser

tied itself into a knot at the clevis fitting. Load

link dynamics were identified visually in the onboard

film coverage and by the presence of secondary and

tertiary peaks in the telemetry load trace. The measured

(CK) r values for the two drogue chutes were 1.31 and

1.26 for this test.

84-1 :
The datum from one chute ((CK) r : 1.19) could be used.

The other chute came out of its bag during deployment and

partially filled prior to line stretch. This chute pro-

duced a (CK) r of 1.14 in this abnormal opening.

8L-IR: One chute had a usable (CK) r of 1.18. The other had

load link dynamics, which were identified on both the film

and the telemetry, and produced a (CK) r of 1.19.

8A-3: A (CK) r

analysis.

of 1.28 for one drogue chute was used in the

The other chute failed during reefed inflation.

8a-a: This was a single drogue chute test which provided a

usable (CK) r of 1.22.

* Load link dynamics consists of high amplitude, high frequency,
lateral oscillations of the load links and the riser that contains

these links. The effect of load link dynamics is to introduce

load oscillations which distort the true opening loads. The re-

sult is usually values of (CK) r higher than normal, but oc-

casionally a (C_)rL value is reduced by load link dynamics. At
any rate, the efgec_ of load link dynamics cannot be predicted

prior to a test. (Load links are not part of the final configu-
ration of the Apollo ELS).

22 NVR-643!
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85

Series : The 85 Series tests were qualification tests conducted

with a BP vehicle. An attempt in this series of tests

to measure riser loads without modifying the final ELS

configuration, was unfortunately, not successful. (This

conclusion was reached late in the series.)

Test

99-2: One drogue chute developed a (CK) r of 1.07 and the

other failed at reefed inflation. The (CK) r of 1.07

was used in the analysis.

99-3: This test involved a configuration which proved to be

prone to load link dynamics. The dynamics were severe

and the (CK) r values measured were in the range of 1.5

to 1.7. They were not used in the analysis.

99-4:

99-5 :

This test involved a configuration change from Test 99-3

which was intended to reduce, if not eliminate, load

llnk dynamics. One chute opened well with a (CK) r

of 1.13. The other chute exhibited load link dynamics,

observed in both the film and telemetry, and produced

a ..(CK)r of !.08.

Both drogue chutes failed.

99-5R: Both drogue chutes failed.

The usable (CK) r values from the above tests were used to

formulate Equation (I). This relation was then used to predict

opening load factors for other tests of the Apollo parachute

development program. This is discussed in the remaining portion

of this subsection.
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The 48 Series tests were conducted in late 1964 and early 1965.

This series of tests was designed to assess the feasibility of

reefing the Block I drogue chute, which was a 13.7-ft Do conical

ribbon parachute. The L8 Series was a development series, and

several parameters were varied from test to test in an e_f_rt

to optimize the configuration. Both midgore and radial reefing

were used. The data strongly indicated that canopies with mid-

gore reefing opened much more slowly in the reefed condition

than did canopies with radial reefing. Whereas radially reefed

drogue chute fill times were on the order of 0.i to 0.2 sec,

drogue chutes with midgore r_efipg required significantly longer

fill times (0.5 - !.2 sec).

The Block ! drogue chute canopies with midgore reefing were dy-

namically dissimilar to those with radial reefing and are there-

fore not included in this analysis of reefed opening load factors.

Only data points for radially reefed chutes are considered here.

For all tests in which drogue chute loads had been measured since

the start of the Apollo program in 1962, film sequences were

studied, actual telemetry load traces were analyzed, and test

reports were consulted. The results of this study are summarized

below.

Test

48-1: One drogue chute had radial reefing, but its instrumentation

failed. The other drogue chute had midgore reefing and

opened very slowly.

48-2: Both drogue chutes had radial reefing. The (CK) r values

for the two chutes were 1.13 and 1.22. However, the tele-

metry trace from which the 1.13 was derived is illegible

during the reefed opening (the trace from which the 1.22

was read is quite clear at this time). Because the value

of 1.13 cannot be substantiated, a low level of confidence

is attached to it.

24 NVR-6a31
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48-3: Both drogue chutes had midgore reefing and opened quite

slowly.

48- :

48-5 :

Both drogue chutes were radial reefed. The film sequences

and the force traces both indicated load link dynamics.

The (CK) r values were 1.22 and 1.23.

Both drogue chutes were radial reefed. The film sequences

and telemetry indicated load link dynamics. The (CK) r

values were 1.12 and 1.35.

The measured values of the opening load factors for the above

tests are compared in Table 5 with predicted (CK) r values

obtained by using Equation (I). All of the tests listed in this

table are 2-chute tests; hence, two opening load factors are

listed for each test. Only one of the data pcints in Table 5

justifies high confidence. This is the CK of 1,22 in Test 48-2.

However, it may be noted that the opening load factors in Test

_8-4, which had load link dynamics, are very close to the pre-

dicted values. It is also interesting that this test is the

only one listed in Table 5 for which the values of measured

(CK) r are approximately the same for both drogue chutes.

Table 5. Comparison of Predicted and Actual Reefed Drogue Chute

(CK) r Values for the 48 Series Tests
i

Test Number

a8-4

48-5

::OTES : (1) Predicted

Predicted (CK) r

_K'r

(i)

1.23

1.23

1.30

i. 3o

is baseg on Equation /l_

Meas_red t_Kr_)r

z.13

1.22

I .22

I .23
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Additional predicted and actual (CK) r data are compared in

Table 6. In all of the tests shown in this table, the vehicle

was a BP, the drogue chutes were mortar deployed, and the opening

loads and deployment Mach numbers were low. In fact, the only

parameter that was varied and that affected the prediction of

(CK) r was the number of chutes deployed (Test 86-2 was a single

drogue chute test). Thus, all (CK) r values are predicted on

the basis of Equation (i) to be 1.26 (!.00 + 0.21 (BP) + 0.05

(morter deployment)), except that 1.31 is predicted for Test

86-2 (one drogue chute). It can be seen that the measured values

compare poorly with the predictions. That is, the measured

values are scattered from 1.16 to 1.31, including wide variations

between the (CK) r values for chutes in the same tests. This

is because the drogue chute load fluctuations are greater in

magnitude than the transient reefed opening loads when the BP

was used. That is, the reefed opening loads seemed to be ob-

scured by the load fluctuations. These fluctuations were

probably due to the character of the BP wake. An indication

of the extent of these load fluctuations is presented in Table

7. In this table, the maximum load during the first second

after reefed inflation, Fm, is shown, and an associated load

factor Cm is presented. Here, Cm is Fm divided by the

average drag area and the observed dynamic pressure qm at

the time of occurrence of F m. In each case, Cm is greater

than CK indicating that the magnitude of load fluctuations

is greater than the magnitude of opening load overshoot. A

third factor, Cm' is also presented in Table 7. This factor

is F m divided by the product of drag area and the dynamic

pressure at canopy stretch qDCCS (upon which (CK) r is also
P

based). A comparison of (CK) r and C m shows that, in general,

the highest load during the reefed interval is not the opening

load, and also that the (CK) r factors presently used to pre-

dict design case drogue chute loads -- 1.35, nominal; 1.41,

worst case -- are conservative. Because the deployment

26 N\S-643!
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Table 6. Comparison of Predicted and Actual Reefed Drogue Chute

(CK) r Values for Tests Employing a BP Vehicle

Test Number I

50-12

86-2

86-3

Predicted (CK) r (1)

1.26

l.s6

1.31

i.26

i.26

1.26

1.26

is based on Equation (I)

86-4

Measured (CK) r
l

i.25

1.27

1.19

1.16

1.23

1.22

1.31

NOTES: (I) Predicted (CK) r

Table 7. (CK) r, Cm and Cm' for Boilerplate Tests

Test

NO.

50-12

86-2

86-3

86-4

NOTES : (1)

(2)

(3)

CDS qDCCS

ft 2 ib/ft 2

43 118

45 I18

60 125

67.5 186

67 5_ 186__

66.5 25.4

60 25.4

(OK) r =

Cm --

0 I
m

qm Fr
Ib Ift2 ib

110 6350

llO 6750

123 8900

162 14525

162 15500

- i 2050

- _ 2000

Fr/(CDS)r qDCCS

Fro/(CDS )r qm

F
m

Ib

6827

6864

I0000

15375

15350

(CK) r Cm

(I) (2)

1.25 1.45

1.27 I. 39

Cml '_

(3)

1.36

1.30

i. 19 I. 35 I. 32

-i.16 " 1."o 1.22
1.23 I._0 1.22

I .22 - -

1.31 - ! -

F /(CDS) rm - qDCCS
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was at a very low dynamic pressure (25 Ib/ft 2) in Test 86-4,

and because the dynamic pressure and load both increased con-

tinually throughout the reefed interval_ a determinaticn of F
m

was not attempted for this test.

2.1.2.5 Discussion of Parameters Affecting Disreef Opening

The test data from the two applicable Apollo test programs,

Block I and Block II (H), were studied. In each test, a dis-

reef opening load factor for each drogue chute was calculated.

To explain scatter in these factors, telemetry and film coverage

were analyzed. Trends were noted. As with the reefed opening

load factors, it was found that the vehicle had the largest

effect on the dynamic load factor. However, the larger factors

were associated with the ICTV and the smaller factors with the

PTV. This is opposite to the effect observed in the reefed

opening load factor analysis. In the reefed case, it seems

likely that the frequencies associated with the eddies in the

PTV wake caused resonance of the canopy-air mass system. It

is reasonable that the ICTV wake could not excite the disreefed

chutes. The velocity defect in the wake apparently caused the

lower factors to be associated with the PTV. The significant

point here may be that the same wake could have a different

effect on reefed and disreefed canopies because of their dif-

ferences in size and added mass.

The other parameters affecting the dtsreef opening load factor,

(CK) o were less apparent than those affecting (CK) r. How-

ever, an intuitive mathematical model was made and used to

yield some insight into this matter. This is discussed below.

28 N\,_-6L31



NORTHROP

Consider the forces on a drogue chute just before and following

disreef as illustrated in Figures _(a) and (b). The effective

mass of the parachute is equal to the sum of the canopy, sus-

pension line and the entrained air masses. The latter mass is

referred to as the added mass. The drag is due to the shape of

the canopy. Just before disreef, the riser load is equal to

the canopy drag. (The parachute weight is relatively small and

is neglected in this analysis. ) Follcwing disreef, the canopy

shape changes, and the added mass and canopy drag increase.

The riser force is now equal to the sum of the canopy drag and

a reaction force due to the rate of change of the parachute

momentum including its added mass. Equating the riser force

with the force due to drag and the rate of change of momentum

force gives the equation

D(t) +  (mv) = F(t)
dt

This may be integrated from disreef to the peak load point

(At later) as follows:

At .at

(mv)a t - (mV)o = _ F(t)dt - i D(t) dt
O O

The first integral represents the impulse of the riser force,

as seen on the load traces. This force may be approximated as

linearly increasing from disreef to maximum load (see Figure he)

at

I
0

: (CDS)r qd at + ½ [(CK)o(CDS)o - (CDS)r q_ at

.. _J
29 _i'7R-o_31



NORTHROP

(CDS)r qd -_

m

-- F
d

(a) Forces on drogue chute just before disreef.

D(t) _.

d(mv)

dt

F(t)

(b) Forces on drogue chute during disreef filling.

F(t)
F d

At ,rob-.----

Area = impulse

(c) Riser force versus time immediately before,

during and immediately after disreef filling.

Fig. 4. Schematics of Drogue Chute Forces Associated with Disreef Filling
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If it is assumed that the velocity decay is negligible during

disreef opening, the velocity term may be factored from the two

(my) terms. For the Apollo drogue chutes, where the fill times

are not long, this is a valid assumption. The force equation

now be solved for (CK) ° to give the following expression:may

at

4B 2_0 D(t)dt CDS

(CK)° = vat(CDS)o + qdAt(CDS)o -ICD SIro

where B - Am/p.

Consider the remaining integral. Because the vehicle velocity

is essentially constant, the term containing this integral may

be approximated as
At

2
CDS(t ) dtat(cDS)o o

Next, assume that CDS(t ) increases linearly from (CDS)r to

(CDS)o in time trill (not necessarily equal to At). Then

and

[(CDS)o- (CDS)r]CDS(t): (CDS)r + t,
tfi!l

0 _- t _- tfill

2 <at (CD S)r (CDS)r) t*
at(cDs) 0 _o CDS(t)dt = 2 (CDS)o + (I - CCDS)o

where t* = at/tfil!.

The disreef opening load factor may now be approximated as

(CK) ° = ]4Bs) ° (i/v At) + (i-- <T_TD o](C-_S)r_ t* + {CDS)olCDS)r
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Because the quantities 4B/(CDS) ° and (CDS) i,. •r' _CDS)o did not

change during the Block II (H) drogue chute tests, it follows

that (CK) o was a linear function of (I/v At) and t*, at least

for these tests.

The distance traveled by a parachute during the filling process
L

is referred to as the fill distance. French _ and others have

indicated that the inflation of a parachute under incompressible

flow conditions should take place over the same fill distance,

irrespective of the vehicle, velocity, flight path angle or

altitude. The reciprocal of the fill distance is the quantity

(i/v At), referred to as the inverted fill distance. Data that

shows the dependence of disreef opening load factor on this

quantity are shown in Figures 5 and 6. These da!a are also

presented in Table 8.

Figure 5 indicates that a greater distance is required for a

drogue chute to fill when it is deployed behind a P_7 than when

it is deployed behind an ICTV. This can apparently be explained

as a wake effect. Namely, the velocity defect in a PTV wake is

larger in magnitude than that in an ICTV wake. Because of this

difference, the parachute behind a PTV would see less air velo-

city and, therefore travel less "air distance" than the venicie

in the same amount of time. If one were able to use air velo-

city at the canopy in calculating fill distance, the data points

for the PTV's and ICTV's in Figures 5 and 6 might have the same

fill distance. This explanation is compatible with that offered

for the lower (CK) o values associated with PTV's.

The ICTV data fell within 16 percent of their arithmetic mean

fill distance. This is understandable since the fill times are

accurate only to l0 or 20 percent.
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NOTES: (oif)Lines connect data _olnts
lead and lag chutes from

same test.

(2) Two data points for one

chute shown if test featured

series redundant loads Instru-

menta tion.

I
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Inverted Fill Distance, 1/vAt, (1/ft)

•O7

Fig. 6. Inverted Fill Distance Versus Drogue Chute Disreef

Opening Load Factor fcr Lead, Lag and Single Parachutes
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Table 8. Disreef Time and Load Data for Drogue Parachutes

Test Chute Initial Time to Fill

No. Velocityl PeakNo. Lead Load Time

/Lag

99-2 ;i

#2

v d At tfill

ft/sec sec sec

Fill Fill Peak ilnverted Drag
Load Fil I Area

_azio Dl_tance DlstancE Dlstance Ratio

I CDS r
t* (vo_fill) (v At) (v At)

CDSo

ft ft I/ft

(2)

-{ , ,
I

560' I .0_ .05 .8 28.0 22.2 .045

Dro_]Le chute ."ailed d_rlr._ reelec inflation --.

.62

Opening
Load

Factor

j

_K O

(3) (L)

i II

.3o i 1.30

8L-IR #I L

#2 f

8_-_ #I _..

_gg-3 #1 _ 582,

L 59T.

83-6 #I L 4a7.

#2 _ _o,

a12. .o7 .o8 .87

408, , _o7 .09 ,78

.o_ .o7 .72

.... o_ ..! .o7 ._7

,o5 .o8 .63

.095 .ll .87

.o7 .o9 .78

33.0 28.8 ,035 .3a2 ,57 L20

.3a3 .57 1,2Q

36.6 28.6 .035 .515 .39 1.13

37.2 26.7 _O38 .a8_ .37 1.2_

.aga .36 1.2o
aO.7 23.3 .oa3 .53 .27 1.36

.55 .96 1.37

a7.6 99,9 .033 .49 .32 1.33

_48 ._q l__a

_Q.O _2.5 -023 .412 .51 i.i0

aO.O 3Q.8 .032 ._85 ._O 1.18

99-¼ #l ( a68, ,0_ .09 ,72 a2,0 23._ .Oa3 .ag5

.... _2 L a75, ,065 ,07 .72 33._ 30.q .o_2 .a8

85-1

85-2

85 -3

85,_

.85-5

NOTES :

+Y _ _12. ,O7 NA NA NA 21,8 _ .Oa6 j NA

-¥ L 313. .O7 NA NA NA ... 21.q | .O_6 NA
;

+y _ ! 25a. .07 NA NA NA .. 17.8 .o_6 L NA

_y _ 1 252. .og NA NA NA 29.7 .0_4 i NA

#_ _1o.

._6 1.25

._7 ! i.27

NA 1,16

NA l._O

NA ]._2

.O6 NA NA NA 24.6 .041 NA . NA

#I _o_. .04 NA NA NA 16.2 i .o62 NA NA

#l 388. .08 ,.NA .NA NA RI.O I .0_2 NA f, NA

i) L and _ denote lead canopy and lag canopy, respectively, during dlsreef opening

2) t* = _t/tfill

3) J = t*(l - CDSr/CDSc)

g) CKo values taken from fable 9

,,__qn

[ 1.28
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The PTV data fell within 25 percent of their arithmetic mean.

This increase in deviation must be expected because of the pre-

ponderance of the PTV wake which is random in nature. Also_

because of the greater load oscillation, the fill times are even

less accurate, perhaps + 30 percent.

The BP data are perplexing. Their mean fill distance is least

and the deviation is greatest, beirg sometimes as much as • 33

percent. There are two suggested explanations for this. First,

because the loads fluctuate wildly, the times may be inaccurate.

Second, the wake may not be homogeneous and centered behind the

attach point. Th±s could be due to the vehicle hang angle which

could make the flow unsymmetrical.

Figure 6 compares the disreef opening load factors and inverted

fill distances of lead, lag and single drogue chutes. Lead

parachutes have greater fill distances than lag parachutes. Be-

cause of this, the lag parachutes tend to have higher load factors

(as the equation indicates for parachutes with shorter fill

distances ).

Parachutes tend to align themselves parallel to the velocity

vector, directly behind their attach points. When two parachutes

are attached to the same point, both cannot occupy the same

central position, and they stand off at an angle of attack,

developing restoring side loads. An equilibrium is reached be-

tween the two. When one disreefs, its side load increases,

pushing the reefed parachute farther out into the free stream.

This change in equilibrium positions may take as much as 0.5

see to accomplish. The greater the time difference in a non-

synchronous disreefing, the greater the position shift

36 L%_-6a31
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and the amount of free stream air that the lag chute sees when

it disreefs. This decreases the lag chute's fill distance and

increases its load factor. There is a definite correlation in

the test data between the difference in fill distance and time

lag. In only one case did the lag chute have a greater fill

distance (Test 85-2). (This may be a bad data point due to the

poor load traces or due to inaccurate fill times.)

The effect of the time ratio t* ( = At/tfill) was also studied.

Values of At were obtained from telemetry traces and values of

tfill were estimated from films of the disreefing drogue chutes.

Some correlation was found to exist between the higher values of

t* and higher opening load factors. The difficulty in seeir_
CDSr

good correlation is that t* (I _DSo ), the product of two

fractions, is smaller than either 4B/V_CDSo, or CDSr/CDS ° and,

therefore, has less effect. This effect mey, in fact, be of the

same order of magnitude as the parameters that are ignored by

the model (elasticity, etc. ), thus making it difficult to detect.

2.1.2.6 Presentation of Disreefed Drosue Chute Test Data. All

applicable test data are presented in Tables 8 and 9 and are

discussed below.

Test

84-1 : Both drogue chutes failed in a premature disreef, pro-

vidlng no applicable data.

99-2: This was a two-drogue, ICTV test. One drogue chute

failed before disreef; the other disreefed but split a

gore. This decreased the drag area and increased the

measured opening load factor.
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85-IR: This was a two-drogue, PTV test and was the last test

to have drogue chutes reefed to 40 percent. Due to

nonsynchronous disreefing, the lead drogue chute com-

pletely filled before the lag chute gisreefed. Because

the loads were high, the decelerations were also high,

significantly decreasing the dynamic pressure between

the lead and lag parachutes' disreef times.

(Due to inaccuracies in the Askania data during periods of

high deceleration, it was necessary to compute the dynamic

pressure of the lag parachute at the time of its disreef for

Test 84-IR. This was accomplished by integrating the equation

of motion of the vehicle-parachute system. The equation used

was

dv

dt - g sin @ - FL/m" - CDSpV2/2 m

where CDS is the drag area of the vehicle and lag drogue chute

and FL is the force applied by the lead drogue chute. The

force FL was computed as the impulse of the lead drogue chute

force between disreef times, divided by the elapsed time. This

procedure permitted an easy solution of the differential equation

and subsequent calculation of dynamic pressure at lag drogue

chute disreef.)

84-4: This was a one-drogue chute test using a PTV. It was

the first test in which a drogue chute was reefed to

36.5 percent.

84-3 : Both drogue chutes failed, providing no applicable test

data.

99-3: This was a two-drogue chute test using an iCTV.
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83-6: This was a two-drogue chute test using a PTV.

99-L: This was a two-drogue chute test using an ICTV. It was

the last test in which a drogue chute was reefed to

36.5 percent.

2.1.3 Dra_ Area Study

Because of fabric elasticity and hysteresis, parachute drag

area is a function of both load and time. The higher the load,

the more a canopy stretches. This, in turn, affects the load,

the opening load factor and the trajectory. It is essential to

understand these effects and to be able to predict them.

Usually, the opening load is the highest load experienced by a

parachute canopy during a particular opening stage. The canopy

typically deforms under this load, giving a large initial drag

area. After the opening load, the canopy loading typically de-

creases and the canopy tends to relax. This relaxation may not

be instantaneous due to viscoelastic characteristics inherent

in the canopy fabric. A measure of this effect is indicated

by a canopy growth factor, n. This factor is the ratio, minus

1.0, of the drag area at the beginning of a stage, (CDS) i, to

the average drag area over the stage, (CDS)av.

n = (CDS)i/(CDS)av- I

A positive value of n indicates that the drag area decreases,

and a negative value indicates that the drag area increases.

This is illustrated in Figure 7.

After the opening load, the loads typically decrease with time,

allowing the materials to relax and the drag area to decrease.

In some cases, however, the loads remain very high, preventing

relaxation. In fact, the material may even creep under a sustained

high loading, increasing the drag area with time. This is the

trend: n decreases with increased loads (increasing q).
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n>O
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" '-' D" " a v

!

L.......................

Time, t

(a) Positive Growth (b) Negative Growth

Fig. 7. Schematics of Typical Drag Area Growth Curves

All applicable data are presented in Tables i0 and ii. Much of

the reefed drogue chute data was unusable because of load link

dynamics. This phenomenon made _t impossible to measure the

initial forces and prevented calculation of the canopy growth

factor. (Because this phenomenon existed only during the reefed

stage, it had no effect on the full open data.) The canopy growth

factor was approximated by first dividing the opening load factor

by the ratio of the maximum force to the initial force and then

subtracting one.

The reefing lines pass through twenty rings and assume the shape

of a twenty-sided polygon. The relationship between each chord

of the polygon and the radius of the circumscribed circle is

linear. Hence, the area of the circle is a constant times the

reefing line length (the sum of the chords) squared. The reefing

line length increases with the reefing line load, which is about

4 percent of the riser load. Because there are two reefing lines,

each line carries about 2 percent of the riser load. In the

Block II (H) ICTV and PTV tests, the reefing lines were 2500-1b
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nylon cord. Because the riser loads were always less than

28,000 ib, the reefing llne loads were always less than 560 lb.

With these low loads, the slope of the load versus percent

elongation curve of the material is nearly constant. The elon-

gation is a constant times the reefip4_ line load which, in turn,

is a constant times the riser load. The length of the stretched

reefing llne is the original length plus the elongation. It

Table i0. Drag Area Data for Reefed Drogue Chutes

Test Chute Drag Flight Peak

No. No. Area Con_Itlons Yor_e Force

(CDS)r qDCCS MDCCS Fr FI

ft2 Ib/ft 2 !b Ib

|

84-i # IL 73.1 199. .57 17300

# 2& 69.0 199. .57 15600

Initial Opening Force Canopy Vehicle Reefing

Loa_ Ratio Growth Type Diameter
Factor

(CK) r Fr/F I nr Dr

% D o

Ii) (2)

i. 19 PTV 40.0

1.12" 40.0

99-2 # 1 80.o

# 2 Failure

8_-IR # IL 60.0

59.0

# 2_ 62.0

65.0

317 . .72 27200 26000

238. .62 16870 15000

238. .62 16460 IL500

238. .62 L68y_#50

23B. .62 LT_y_i'>O

1.O7 1.05 .02 ICTV 40.0

4O.0

1.18 1.12 .05 PTV aO.O

1.17 i.13 .o3

1"I_.2C* _0.0

±'16{.1_*

e4-a # 1 57.o 175. I .55 12030

_7,o 17_. .55 12130

io60c 1.21

I0800 ! 1.22

1.14 .c6 PT_" 36.5

1.13 .o8

8_-3 # IL _0.0 _66. .93 23390 19000 1.28

_0.0 366. .9_ 23660 190C0 1.29

# 2 Failure

1.25 .04 I PlY" 36.5

1.2_ .C&

36.5

99-3 # li 64.o 203. .83 22160 1.70"

68.o 203. .83 21730 1.57"

#2 L 64.0 203. .83 20700 1.59"

64.0 203. .83 19950 1.5_*

£3-6 # IL 55.0 15q. . _2 9_UU{ llOI " 17{ . 3i _ _' 36.5

NA
i. o' ,,,i.Z_ /

_ W_ "_-iii_ U/ 1.2_* 36.5# 2_, 59.0 i5,;. ! ,52 ,i.,0o

NA

[ _400/ .01/' *

99-4 # l_ 6_.o 288. I .71 1_i0 . i.08 ZOTV 36.5

# 2L 68. O 288. I .71 221aO 19000 1.13 1.165 ,, 7.03 ,, 36.5

(CK) r = Fr/qDCCS(tDo)r , where (TDS)r is measured reei c_J drag area (the _htrd data 2olumnNOTES:

(2) nr = {(CK)r/ (Fr/F i) 1}
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follows that the geometric projected area

be written in the form:

A of the canopy may

A : Co [C I + C2P]2 = C3 + C4 P + C5P2

where the C's are constants and P is the riser load. If both

sides of this equation are multiplied by a drag coefficient, it

becomes drag area as a function of riser load. This relation

Table II. Drag Area Data for Disreefed Drogue Chutes

Test Chute Drag Initla! Initial 0penlng Force Canopy Vehic]c Reefing

No. No. Area Conditions Force Load
Factor I Ratio Growth Type Diameter

(CDS)o qd Kd F1 (CK] o 7o/F i nc D%

ft 2 Ib/ft 2 Do

i

84-i # ! L Falled

# 2 _ Failed

Peak

Force

=O

ib Ib

, (1)

1
35920." 26ooc.

(_) (3)

99-2 # ! 13o 212 .53 -o.06

2 Failed

8A-iR # IL 117

122

# 2_ 126

i15

124

12_

120i

118 •39

18i .5]

16810. i_c3,9.

lTbO0. I_50C'.

Ir'7gC. ILScC.

16600. 13605.

t
27410. 232C$.

27100. 2a_O0.

_8_-_ # I L Failed

# 2 Failed

I

i. 30 I " .35

1

i. 20 _ I,20

1.20 i ! .20
4

i 13 i.i_

1.22 i i .22

1.22 " 18

1.20 ; i.Ii

0.0

C.C

C.C

C.C

0.03

0.08

ICTV 40. o

aC.O

PT%7 I _C. 9

_O.O

p_7 36._

PTV %6.5

36.5

_ 99-3 # i_

# 2L

135 .5°

I

128 I " 6i

i._ 1.21 0.I PTV 36,5

i.2_ 1.2C 0,0_

1.36 1.26 0.08 36.5

I.37 l _26 O. 09

o, o PT"¢ 36..5

C, 0 36.5
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has the form of a parabola. No definite correlation of this

relation with test data could be found because of a lack of data.

In a further study, the coefficients of the equation could be de-

termined theoretically. Good correlation with new test data

would provide a means of drag area prediction.

Reefed canopy growth is plotted against dynamic pressure in

Figure 8. Because of load link dynamics, there are insufficient

data to detect a correlation.
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Fig. 8. Drogue Chute Reefed Canopy Growth Factor Versus

Dynamic Pressure at Canopy Stretch
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The full open drag area and canopy growth factor are plotted

versus the dynamic pressure at disreef in Figures 9 and i0,

respectively. Because the dynamic pressure variations shown in

these figures are relatively small, nothing conclusive regarding

the effect of this variable may be discerned.

cc

q_

o9

o
v

b0

@

O

!ao

120

I00

8O

0
I
0

0

¢" 0

co@ o

O

| • I i i i

i00 200 300 400

Dynamic Pressure at Disreef, ib/ft 2

Fig. 9. Drogue Chute Full Open Drag Area Versus

Dynamic Pressure aC Disreef
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0
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i

0

.

t

0

..... I-

Q ._

i||i ii J ,[
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Dynamic Pressure at Disreef, ib/ft 2

0 5OO

Fig. I0. Drogue Chute Full Open Canopy Growth Factor

Versus Dynamic Pressure at Disreef

2.1.4 Wake Study

The mechanism by which a wake may cause riser load fluctuations

was studied. It was hypothesized that the frequencies associated

with the turbulent wake could cause oscillations of the system

with the added air mass providing an intermediate transfer function.

It was further suspected that the strong fluctuations observed

behind the PTV and BP were indicative of resonant conditions in

the system. An order of magnitude check on the hypothesis was

sought through data analysis and is presented in Section 5.0.

47 NVR-6431



NORTHROP

2.2 PILOT CHUTE LOADS

Each of the three pilot chute assemblies consists of a ringslot

parachute with textile riser, a deployment bag, a steel cable and

a mortar tube assembly. The function of a pilot chute is to pull

a main parachute pack away from its stowed position on the CM, to

quickly stretch this parachute's riser, suspension lines and canopy

into a lineal configuration behind the CM, to stabilize the apex

of the main canopy during reefed inflation, and to control the

canopy shape during the reefed interval.

The pilot chute canopy is a twelve-gore, 7.2-foot diameter ring-

slot parachute. For the normal entry mode of operation, the pilot

chutes are mortar deployed at the same instant that the drogue

chutes are disconnected from the CM. A sabot weight is permanently

attached to the deployment bag to increase its inertia and assist

in "strip-off" of the bag from the canopy. After deploying the

main parachutes from their stowed positions, each pilot chute re-

mains attached, through a main parachute bag, to the apex of a

main parachute. The physical characteristics of a pilot chute in-

cluding its riser and deployment bag are illustrated in Figure ll.

2.2.1 Loads Methods Used in Apollo Parachute Development Program

The loads methods used in the Apollo parachute development program

are described in detail in Reference 3. Briefly, these methods

were as follows.

A pilot chute snatch load was calculated for the pilot chute line

stretch event with a snatch force computer program. A pilot chute

opening load, F ° was calculated using the opening load factor method,

Fo = CK (CDS)oqpcLs

where CK, (CDS) o and qPCLS denote opening load factor, full open

drag area (24.4 ft 2) and dynamic pressure at oilot chute line
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DEPLOYMENT BAG

+

o.,,+,\//o/
t 1r____.._/ 71"/

1.53 LBS 346. 1

I. 47 LBS

METAL RISER

t

MAIN PARACHUTE PACK ..'#

4
III.0

t
TO COMMAND MODULE'S

MAJOR DIAMETER

NOTE: The lengths shown above are fabrication

dimensions without strain)

General Data:

Type - Rlngslo_

Nomlnal diameter, D o = 7.2 ft

_cmlnal canopy area, S o = 40.7 ft 2

Number of gores = 12

CanoFy porsslty = 2a_

3in_ie Cnute Cnaracterlstlcs:

'_ S _ = 2a._ ft 2
F_i open drag area, _D o

Pack weIEK% = !.7 ib '_ess _etai riser!

['_'-'v. vt_arrle = Ib_ in. j

De21_ment Cc:,dltions :

Mortar muzzle velocity = 9J ft/sec [mln"

;,= ilne stretct:, Ninimum [,ia>imu;::

Altitude, ft 2, p,_ 18,OJC

Dy).. pz'es., _b/i'_ i 3_ 7c

:,:ass e_tracted '[m_In parachute pack) = 136 It m

Fig. li. Configuration Drawing and Data for an Apollo

Pilot Chute (Reference 2)

/$9 NVR-6431



mmop

stretch, respectively. The value of CK used in this computation
was established by giving careful consideration to the values

of CK associated with earlier tests of the same parachute.

Each pilot chute deploys one main parachute; and, being permanently

attached, each pilot chute is snatched to the vehicle velocity when

its respective main parachute canopy becomes fully stretched. This

event, occurring at main chute canopy stretch (MCCS), subjects the

pilot chute to higher loads than those occurring at either pilot

chute llne stretch or at pilot chute opening. The pilot chute loads

associated with MCCS were calculated using the equation,

FMCCS = 1.75 (CDS)oqMccS

where qMCCS denotes the dynamic pressure of the vehicle at MCCS.

The coefficient 1.75 is a value that was determined to be appropri-

ate for permanently attached pilot chutes based on a wide range of

previous experience with deployable nonrigid aerodynamic decelerators.

The pilot chute overinflation line load was taken as 4 percent of

FMCCS. Table 12 is a summary of different types of pilot chute

loads and methods that were computed in the Apollo development

program.

Table 12. Summary of Load Prediction Methods

Used in Computing Pilot Chute Loads

Load

FMCCS

F
0

Snatch

Overinflation Line

|i

Method Used (Ref. 3)
i

1.75 (CDS)oqMccs

Opening Load Factor

Snatch Force Program

0.0_ x FMCCS
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Test

2.2.2 Review and Refinement of Opening Load Factor Method

The pilot chute loads data from the Apollo parachute development

and qualification tests were reviewed, and an analysis was made

to upgrade the opening load factor method. The results of this

work are presented below.

2.2.2.1 Explanation of the Calculation of Fli_ht Conditions Durin_

Vehicle Free Fall. There were only four tests in the Apollo para-

chute development program for which both Askania and loads informa-

tion were obtained for the pilot chutes. Each of these tests used

static line deployment immediately after a horizontal launch. Start-

ing from a horizontal trajectory caused the initial rate of change

of the flight path angle to be significant. Therefore, the analysis

procedure included consideration of f _ _l_oh_ path angle at launch

The velocity was then separated into horizontal and vertical com-

ponents. Knowing the time to canopy stretch after launch, the

change in vertical velocity due to gravity, and the change in hori-

zontal velocity due to drag were calculated. A drag area of 2.0 ft 2

was used for the ICTV. The total velocity and the flight path angle

at canopy stretch were then calculated, as well as a dynamic pres-

sure based on Rawin data. The calculated dynamic pressures are

presented in Table 13 along with the Askania values for comparison.

The calculated flight path angles at canopy stretch were between

six and eight degrees below horizontal in all four tests.

Table 13. Comparison of Calculated and Askania

Dynamic Pressure at Pilot Chute Line Stretch

Dynamic Pressure (Ib/ft 2) i

80-3RI

80-3R2

81-2

81-4

Calculated

114

95

93

12@

Askania

114

97

9o

119

% Difference

0

-2

+3

+i
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2.2.2.2 Determination of Pilot Chute Opening Load Factor. All

data for the tests in which pilot chute loa_s were measured are

presented in Table 14.

The opening load factor method was used to analyze the pilot chute

opening loads data in order to determine values of _ Of the six
_K"

factors measured, five fell witin 0.02 of 0.85 and one fell at 0.72.

All of the factors are significantly less than 1.00. It is believed

that this is because the main packs, in weighing only about 140 lb,

produced relatively light loadings for the pilot chutes. An attempt

was made at using the force traces to compute acceleration-time

histories for the main parachute packs and integrating these to

obtain calculated dynamic pressures for the pack (and therefore

the pilot chute) and opening load factors at the time of peak load.

The results are shown in Table 12 as "calculated pack q" and "resul-

! IT T

ting CK There are four CK within 0.02 of 1.06 and two lower ones

at 0.9_ and 0.91. It may be noted that the main parachute packs

are initially tied to the ICTV, and that there is not a good means

of estimating the time history of the forces on each pack opposing

the pilot chute forces. It is interesting that four of the six

factors calculated in this manner come out very close to the value

1.05 recommended in Reference 5 for ringslot canopies under infinite

mass conditions.

An explanation was sought for the low (0.72) CK measured on the

No. 2 pilot chute in Test 81-4. One observation made was that chute

No. 2 opened about 30 percent slower than No. i, and about 100

percent slower than the single _ilot chute in Test 80-3RI, which
2

was the other test at a q over ii0 lb/ft It was also observed

that both pilot chutes in Test 81-4 were above the ICTV at pilot

canopy stretch and swung into the wake during inflation, causing

the velocity vector to be skewed to the canopy centerline. While

it is possible that these observations, based on telemetry and

film analysis, may be connected to the low factor, no quantitative

explanation was found.
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A third opening load factor, CK" , is presented in Table 14. The

values of q at pilot canopy stretch, read from Askania and shown in

Table 14, were used to define this factor. The reason for showing

CK" is to illustrate the reduction in data scatter resulting from

using calculcated values of dynamic pressure, as opposed to using

values read directly from Askania. The advantage in doing this

is evident. (It is believed that this approach is even more bene-

ficial when applied to drogue and main parachute reefed opening loads.

This belief rests on the knowledge that the decelerations due to

drogue and main parachute opening cause Askania errors, whereas there

is no vehicle deceleration due to pilot chute loads.) The Table

la data are also _resented in Figures 12 (a) and (b) in the form

of measured load versus the load computed by using the factor 0.85,

a drag area of 24.4 ft 2 and dynamic pressure values (a) read from

Askania and (b) calculated.

No evaluation of e_ects of parameters such as drag area ratio,

vehicle shape, vehicle attitude, flight path angle and Mach number

on opening loads was possible in the data analysis because these

parameters did not vary significantly in the tests for which pilot

chute data are available.
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2.3 MAIN PARACHUTE LOADS

Each of the three main parachute assemblies consists of an 83.5-foot

diameter, modified ringsail parachute with a riser assembly and a

deployment bag. The purpose of the main parachutes is to safely

recover the CM with any two of the three parachutes at a maximum

water impact velocity of 38 ft/sec.

Each main canopy is constructed of 68 fabric gores and has 68 sus-

pension lines, 120 ft in length. The riser is a two-part assembly

of plied textile webbing at the upper end and multiple steel cables

at the lower end tc provide protection against abrasion damage by

the CM. The physical characteristics of a main parachute including

its riser and deployment bag are illustrated in Figure 13.

The ringsail modification consists of a wide slot added to the crown

of the canopy through removal of 75 percent of the cloth width from

the top of the 5th ring, counting downward from the central vent.

This slot increases the geometric porosity of the canopy from 7.2

to 12.0 percent of So . Also, the conical apex makes an angle of

19 deg below the horizontal, instead of 15 deg, because it was

developed by removal of 4 gores from the original 72 in a spherical

surface. Although the cloth removed from the 5th ring was replaced

by heavy bands on the upper and lower edges of the slot, this area

was subtracted from the total in determining t_e nominal diameter

of 83.5 ft.

The governing design limit loads were derived from operational

conditions in which one of the drogue chutes and one of the main

parachute canopies were assumed to be inoperative. Nonsynchronous

stretc_ou_, disreefing and filling of the clustered canopies aug-

mented the opening loads in the first canopy to open at each stage

in the opening process. Therefore, the method of load prediction

used in the Apollo parachute development program allowed for the

effects of probable variations in the pertinent time differentials.

These effects were found to be most important in the final opening

phase after disreefing.
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DEPLOYMENT BAG

J
11.5 LBS

}
85.4 LBS

_ PILOT CHUTE7.2-FT D RINGSLOT
O

DIA

510.0

720-

P

29.2 LBS 1485.9

i ;1.48 D O
1656. 1

I

2.5 LBS 0 I

TEXTILE RISER

I
9° 2 LBS

METAL RISER 79.5

_! 1

TO CM ATTACHMEN' TO COMMAND MODULE'S

MAJOR DIAMETER

NOTE: The lengths shown above are fabrication

dimensions (without strains)

_enerai Data:

Type - Szctte_ rlngsal; wltL %_u-s_age rcefi:_

No_,Ina_ diameter, D = _3-_ ft
o

No_ninal canopy area, S O = 5,47c ft _

Number _f gcres = ,J_

Canopy, pcrosltv = ±k_

Stade . reefln_ line .e:Lg_n = 2_.. ft

Stage 2 reefing llne lei:gtr, = cS.U ft

SinF.le Faracn_te Char_cterlstlcs:

Stage i reefed open drag area, 'CDS' - a_"' ft'

Sta_-e 2 reefed open drag area, _CDS =

F_ii open drag area, ,'CDS' ° = _24.0 ft:

Pack wel_Lt = 12C,6 _t 'less rn_ta, riser _

POcK v_._me = bb_ in. 3

Mu.t!ple Parachute Characteristics:

T!,£ characteristics c_f k-parac[Jute cluster5 aiiO

f-paracr_ute c.uztens _lr'e .Ji:zussed in Sectlor _ ._;

see _=:u _efere:,ce

Dep±oyment Conditions:

Deployment is initiated by pilot chJtes {one

for each main paracnute_

At iine stretch, Minimum Maxlmum

Altitude, ft 2,500 15,09_
Q

Dyn. pres., ib/ft- 30 90

Limit Loads (per paracnutel:

Stage i reefed open, [Frl)li m = 21,830 it

Stage 2 reefed open, (Frf)li m = 22,925 ib

Full open, ire)t1 m = 20,910 Ib

Termlnal Conditions:

For 13,000-pound CM, Two-Chute Three-Chute

Altitude Sea Level Sea Level

Max. vel., ft/sec 38.0 3l.&

Fig. 13. Configuration Drawing and Data for an Apollo

Main Parachute (Reference 2)
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The main parachutes are reefed in two stages as follows:

Reefing Line

Reefing Line Working Cutter Delay Time

Stage Diameter Interval (Initiated at MCCS)

i 8.L_ Do 6 sec 6 sea

2 2_.8 4 10

Midgore skirt reefing is used; i.e., the reefing rings are attached

to the skirt band on the centerline of each gore, instead of at the

radial intersection. Average drag areas for the different reefing

ratios tested are given in Figure la. Since reefing ratio is given

in terms of D : 83.5 ft, a fully inflated canopy has a nominal
o

reefing ratio of roughly 0.68.

2.3.1 Loads Methods Used in Apollo Parachute Development Prosram

The loads methods used in the Apollo parachute development program

are described in detail in Reference 3. These methods are very

briefly summarized below.

The first stage opening loads were calculated with a 2-DOF computer

program which computed the trajectory of the CM during the approxi-

mately 6-second interval of this opening stage. Basic inputs to

the program were empirically derived schedules of drag area versus

time for each main parachute in the cluster. Dissimilar schedules

were used to simulate unequal loading situations due to nonsyn-

chronous deployment of the main parachutes by their respective

pilot chutes. Effects due to vehicle dynamics were accounted for

by multiplying the 2-DOF computer program loads by a "vehicle

dynamic factor" of 1.05. In addition, the loads were multiplied

by a "dispersion factor" of i.i0 to account for basic uncertainties

in this loads _rediction technique.

Second stage opening loads were calculated by the same method used

to calculate first stage opening loads. In particular, the 2-DOF

computer program was used to compute the trajectory data and associ-

ated loads during the approximately 4-second interval of the second

opening stage.
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The third stage (disreef) opening loads were calculated by an open-

ing load factor method modified for c!usterefl parachutes. Due to

the presence of reefed "aerodynamic blanketing" (aerodynamic inter-

ference between parachutes) and nonsynchronous disreefing, the dis-

reef loads experienced by different parachutes, even within the

same cluster, were not the same. In order to use the opening load

factor method, the unit canopy loading had to be determined for

each parachute separately. This was accomplished by an iterative

technique which was generally as follows: Values for the unit

canopy loadings were assumed, calculations were made using these

unit loadings and test data, and unit canopy loadings were deter-

mined. The cycle was repeated until the assumed and determined

values matched. Knowing the unit canopy loadings, opening load

factors could then be found from previous test data.

Snatch loads of the main parachute, being relatively low, were

not calculated. Table 15 is a summary of the main parachute loads

and methods that were computed in the Apollo parachute development

program.

Table 15. Summary of Load Prediction Methods

Used in Computing Main Parachute Loads
J m l

Load

F

r I

Method Used (see Ref. 3)

• ,w,

2-DOF Computer Program

F
r2

F
O

Snatch

2-DOF Computer Program

Opening Load Factor (Modified)

Not Calculated (<F )
r I

6O "r '_ 6 _ _i• _fl- _.D
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2.3.1.1 Review of Reefed 0penin[ Loads Prediction Method Used

Durin_ Block II (H) Testing. Flight conditions were determined

with a three-degree-of-freedom computer grogram, along with average

parachute reefed drag areas and filling times, and supplied to a

2-DOF computer program. With this program, parachute forces were

computed as the product (CDS) q. Peak loads so determined were

further augmented by special factors to cover vehicle dynamic

effects in the prediction technique. Thus, the basic input param-

eters for Stage 1 were:

i) Initial flight conditions after main oarachute stretchout

when filling first begins

2) Deployment time differential between parachutes

3) Reefed filling time

4) Average reefed drag area (Stage I)

5) Vehicle dynamic load factor (1.05 used)

6) Scatter factor (I.IC used)

The basic input parameters for Stage 2 were:

i) Initial flight conditions at firsZ stage disreef

2) Disreef time differential between parachutes

(0.34 to 0.85 see used)

3) Reefed filling time

4) Average reefed drag area (Stage 2)

5) A combined vehicle dynamics and scatter factor

(1.05 used)

All of the foregoing parameters are explained in greater detail

in Reference 3. Of particular interest here are the methods of

evaluating reefed drag areas and filling times.
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2.3.1.2 Reefed Dra$ Areas. The appraisal of test data made for

the load analysis of Reference 3 justified the use of the following

reefed drag areas:

Canopy (_ S)rl (CDS)_D ' r2

Lead canopy in 2-chute

cluster or first two

canopies in 3-chute cluster

Lag canopy in 2- or 3-
chute cluster

295 ft 2 !080 ft 2

257 ft 2 972 ft 2

inconsistencies in the measurements obtained during the Block II (H)

tests were large at the selected reefing ratios, necessitating re-

liance on the results of the Block ! tests to establish the Stage

i values and the drag area ratio of lag/lead canopies of 0.9. It

!nay be noted that the Stage I drag areas selected fall below the

average curve of Figure 14, but are in good agreement with test

values obtained with single and clustered canopies. The Stage 2

values straddle the average data curve, but are far below measured

values. The high measured values, if correct, are believed to

have resulted from unusual canopy expansion due to heavy overloads.

It is difficult to find anything in the measured drag areas and

opening forces of the two reefed stages that would justify the use

of a smaller drag area for the lag canopy than for the lead canopy.

This is because in many cluster _ests, a reverse correlation existed

between drag area and peak load. It was noted that the longest At

measured was only 0.2 sec, compared to 0.8 sec and longer in the

Block I tests, and it therefore appeared desirable to use a cor-

rection factor for the lag canopy. In seeking to improve the method,

the following assumptions and evaluations were made:

1 Assume the reefed drag area is the same for all canopies

in the cluster.

2 Evaluate the drag area at the time of reefed ooening

(rather than as the average value between reefed ooeninK

and disreef).
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3) Evaluate the drag area growth rate during the reefed

intervals.

4) Evaluate the reefed drag area at disreef as an initial

condition for the following stage.

2.3.1.3 Reefed Filling Time and Dra$ Area Growth. The reefed

filling time is calculated from the drag area and average area

growth rate as

_CDS

_f _-a.__"

r CDS

Where: ACDS : (CDS) r - (_DO)i

(CDS)r : reefed drag area

(CDS)i = initial drag area (= C for Stage i)

: average rate of growth for a given set of
conditions

The area growth raze is related to the initial velocity, v_, through

the air inflow parameter

A = (CDS r v_

Use of the reefed drag area, rather than the canopy inlet area,

is justified because the latter is usually irregular in shape and

poorly defined. (CDS) r accurately reflects the effectiveness cf

the actual air inflow in filling out the canopy volume.

The relationship between the drag area growth rate and the air

inflow parameter for each Block II (H) test is shown in Figure

15 for ooth reefing stages. Pertinent data derived from the test

results are summarized in Tables 16 and 17. The values of CDS

were determined by parametric computer analysis. A plot was then
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500 iO0 _ _,'-

A I, i000 ft3/sec

(a) Reefing Stage i

Fig. i5. Drag Area Growth Rate Versus Air inflow Parameter.

Data Points Are from Block iI 'HI_ Tests; See Table i6
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Fig. 15 Concluded. Drag Area Growth Versus Air Inflow Parameter.

_H _ Tests; See Table 17Data Points Are from Block II , ,;
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Table 16. First Reefing Stage Opening Data for Single and

Clustered Main Parachutes

Q

Tes t

N_.

_O-IR

8_-_

8U o 3Ri

8U- 3R2

8i-i ',

B1-- (b

81-] (5

BZ-li_

8_-IR (5)

84-L (51

® @

inltlal

C oh(]l tlohs

VMCCS _MCCS

rt/sec des

3d8.8 -if

3o5._ -iu

367,5 -i_

BZi.5 -i3

) 3Lo.Y -i_

) 33b.: -io

) 37z.0 -!O

] 371.7 -11

38_. _ -7c

_07. _ -75

J_5 -_ -63

d9o.7 -63

28B.2 -8_

5,_5.3 -83

@ ©

Stage i FI±I Ing

Peak Force Time

Fr I tfr l

it sec

15,7u_ i.86

i_,885 i .uS

io,19 r. Z.I'.

io, L'OJ I .5_

l_.7_o d.bt

18,438 i.84

iY ,ii{ 1.85

_7,8_u =.It,

3U,4.U _.ii

_,375 z._

dd,'juO -*.Jl

12,alO 2.64

• _" ,83_ _.14

NOTES: 'i tfr I = (?DS :rl/(CDS' rl

I G i

I l'nfi cwAverage

Drag Area Parameterl

',CDS "rl A 1

fta ft "/seu

{ 2 '_ : b'

278 i._i , t,,.O

_8c 1'_3, uc,0

288 92,6c, u

Z[ [ 6_, i .*d

_} _ • _ , :

i i..0,dUO

3Or !it),7uO

j{ iE l , 00_

_5 i Jr, ju_

!
32 2 92,800

, _d5 _7, uuu

1
(9 ®

Area

Growth

( CDS 'rl

i r_/_e_

_L3

167

1 37

J3

Reefing

Diameter

D,
"I

_ o

8._

8._

8.z

8.4

• i_ 8.4

i5_ 9.5

122 8,a

133 8.4

3

L

(CDS r Is average value of F/q 0arinc latter purtlur: of
I

first reefed !nterval in which reef[n_ line Is taunt

A 1 = CDg'ri VNCCS

'_-_D rl iS the dra_ area _gr_,wtr_r_Le li,,Jt , wHeh ased ii a

d-DOF pmlnt-mass trajectory coiHputati_i,, produces the same

is shunt, in Culumr, ':<4)Fr that

Tt_ese were cJuster tests. Prese:_ted dagd are l'or canopy that

uecame tile lead canuVy after Stage a ci4rcef 'it,= curres-

puI:dir,g rJ_ta f_[' the la[s ca_]oples are rl_,tavdl±atlc
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Table 17. Second Reefing Stage Opening Data for Single and

Clustered Yaln Parachutes

Tes t

No.

i

r?3 '3 ! 4
J

Initlal i Stage 2

Conditions! Peaa Force

Vdl Ydl i Fr2

ft/sec deg Ib

r
i

80-1R &5i.6 -49

80-2 173.4 -52

80-3RI 176._ -46

80- 3R2 166.3 -64

8i-i (7) i8_.i -48

81-2 (7) i64,4 -51

81-4 (7) 169.6 -54

82-2 223.5 -84

82-4 i77.7 -88

84-iR (7) i25.5 -85

NOTES:

i2,9o6

i8,2o5

19,491

18,68_

1 9,407

i8,597

16,420

32,8oo

24,300

li,140

Time

i if r2

I So3

(i)
T

0.632

I I "- [

1 _ I @ ' ,_ @ @ I @ @t ,5 r

-- [ 1 i!Flli'ing i Stage 1 Stage 2 i Delta ! Inflow Area Reefing

IDrag Area iDrag Area _Drag Area JParameter! Growth ,Diameter

i ',%S)r_ I (CDS'r_ i ,,',%S) ^2 !(%S!r2 Dr2

0.767

i

I 0.824

!
0.996

0.657

j '

i 1.3i0

I, 187

1o.83o i

I
O. 936

(_:, (3)

i .675

275

278

28O

288

25"7

247

245

285

355

322

875

985

Ii25

1222 I

!

920 i

[

i25C 1

I

i135

1180

113o

I 1330
I

j 600

! 707

d

i 845

934

663

1oo3

89i

895

775

ioo8

(5)

I 132,600

ITO,COC

198,500

i 203,300

i

169,5o0

205,800

I

192,700

264,000

201,000

i 167,oo0

(6) l
* i

949 i 21.8

I

922 ! 24.0

1025 26.7

938, 26.7

ioo9 !24.o

767 ! 26.7

750 26.7

I
i078 24.8

828 I 24.8

i
E

602 I 24.8
i i

(1) tfr 2 = (CDS)/ (CDS)r2

(2) (CDS}rl taken from Column @ of Table 16

(3) (CDS)r2 is average value of F/q during latter portion of second reefed interval

in wnien reefing llne _s taunt

(4) _CDS) = (CDS)r2 - (CDS)rl

(5) A2 = (CDS)r2 vdl

(6) _CDS)r2 is drag area growth rate that, when used in a 2-DOF point-mass trajectory

computation, produces the same Fr2 that Is shown In Column @

z?) These were cluster tests. Presented data are for canopy that became the lead

canopy after Stage 2 dlsreef (the corresponding data for tne lag canopies are not

available.
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made of (CDS)q as a function of CDS based on the initial velocity

and altitude observed in each test. The valJe of CDS selected was

that corresponding to the measured opening force. In cluster tests,

it was possible to do this only for the lead or most highly loaded

parachute.

Stage I Data

For Stage i, the data, though few in number and scattered, were

consistent with those obtained from the Block I tests with a

single stage of reefing. Therefore, the Block I data curve was

superimposed and Jsed as shown in Figure 15 (a). This curve falls

reasonably well among the data points which are separated into

two groups depending on the flight path angle. Presumably, the

near-vertical data would be most applicable to the design cases,

but confidence in the accuracy of the few measurements shown is

low.

Stage 2 Data

The Stage 2 data points plotted in Figure 15 (b) appeared at

first to afford no meaningful correlation, so a constant area

growth rate of lO00 ft2/sec was adopted as the orle yielding the

best load prediction for most cases. Subsequently, the corre-

lation shown for near-vertical tests results was detected, but,

as yet, had not been checked out in the computer.

A typical linear drag area growth schedule for one of the two-

canopy design cases is illustrated in Figure 16. The curves

after Stage 2 disreef were estimated.

Plots of measured CDS versus time for reefing Stage i were re-

examined, and the slopes of the growth curves were carefully

measured. These average growth rates are plotted with the air

inflow parameter, based on the drag area at reefed opening, in

Figure 17. Fair correlation of the data results, and the seoara-

tion relative to flight path angle disappears. This is an improve-

ment for the near-vertical trajectory data, because if the constant

_So _ NVR- 643 !
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filling distance theory discussed on page 73 is valid, one would

expect vertical growth rates to be higher than those in near-

horizontal flight.

The velocities at main canopy stretch used in constructing Figure

17 were determined and corrected by a method similar to that em-

ployed for the drogue and pilot chutes. The corrected velocities

and other pertinent test data are summarized in Table 18. The

average growth rates are substantially higher than those the com-

puter requires to reproduce the measured opening forces. The re-

sultant shorter filling times generate higher than measured opening

forces when linear growth rates are employed in the computer pro-

gram. Examination of the plotted CD _ versus time data derived

from Askania and telemetry records shows a roughly linear growth

rate in about half the tests; but, in most cases, the upper part

of the curve shifts gradually to a lower rate as reefed inflation

is approached. Since the peak opening force occurs at about the

same time, this has an attenuating effect. However, the magnitude

of the load reduction between computed values, based on reported

filling times and the measured values, appears to be dispropor-

tionately large for the small time differential represented by •

the transition from one growth rate to another. The computer

results indicate that a filling time 18 percent longer than the

actual is required, on the average, when a linear growth rate is

assumed for the first reefing stage.

Nonlinear Drag Area Growth

The data indicate that the drag area growth rate is nonlinear

and not accurately represented by the ratio F/q derived from

the Askania and telemetry data. Therefore, an investigation

was made to find a suitable growth function to accurately re-

present the process. This was particularly needed for Stage 2

where it is known that at the instant of disreef the canopy mouth
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Table 18. Corrected Data for First Reefing Stage of Single and

_lus_ered ?iain Parachutes

® ® @ @

Test Chute

No. No.

Inltlal Stage I

Conditions Peak Force

VMCCS FMCCS Fr 1

ft/sec deg Ib

8o-IR L 335

80-2 1 374

80-3R1 1 374

80-3R2 1 339

81-I 1 350

2

81-2 1 339

2

81-4 I 380

2

82-I 1 385

82-IR 1 409

82-2 1 306

82-4 I i 295

83-6 1 1 312

8a-lR 1 287

2

3

84-a 1 310

2
;

-17 13,554

-lO 18,700

-1o 19,885

-13 16,195

-14 16,200

12,860

-16 I 13,720

13,480
I

-II , 15,780
I

17,157

-76 27,830
r

-75 I 3o,410

-8_ 20,375

-87 22,900
i

-88 12,360

-85 i 12,100

12,41o

1 12,OOO

-83 17,830

NA

@

Filling

Time

tfr 1

sec

(1)

1.785

1.633

i. 555

1.655

1.37_

1.355

1.830

1.560

1.885

l.565

1.464

1.480

1.823

2.537
I

i .922

i 2. 520

2.50o

2.5O0

I. 587

NA

Average

Drag Area

(CDS)r 1

ft 2

(2)

r ]

® , @

inflow Area iReeftng

Parameter Growth !Diameter

A 1 (CDS )rI Dr 1

ft 3/sec ft2/sec % Do

I

(3) (4)

83.7 I_0 8.2

97.2 159 8.2

97.4 167 8./4

93.2 166 8.a
I

I

82.2 171 : 8.2

69.7 149 8.2

79.7 128 8.4

67.8 128 8.a
t

87.4 I 122 8.a
P

89.3 ! 150 8.a

I11.7 198 8.a

112.1 i 185 8.a
|

82.6 ! 148 8.4

1Ol.9 136 9.5

85.8 I_3 8.4

83.2

25o

26O

246

275

235

199

235
200

23O

235

290

274

27O345

275

29O

294 1 8k.4

294 ! 8k.4270 83.7

NA NA

115 , 8.4

118 8.a

ll8 8.4

170 8.4

NA I NA
I

NOTES:
1) tfr I = (CDS)rl / (CDS)rl

2) (CDS)r I is average value of F/q during latter portion of first

reefed interval in which reeeflng line it taunt

3) A 1 = (CDS)r I VMCCS

_) (_DDS)rl Is the drag area growth rate that, when used in a 2-DOF

point-mass trajectory computation, produces the same Frl that is
shown in Column
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snaps open to a larger diameter and the air inflow rate in-

creases suddenly, it the same time, the riser load drops due

to momentary relaxation of the suspension lines. Therefore,

the measured force is not simply .,'_DS)q during this critical

part of the opening, when the velocity is a maximum, but the

result of aeroelastic dynamics. Because the fillirg time is

relatively short, added air mass effects are also present so

that the riser load does not correspond to (CDS)q until after

full inflation is reached. It was found that an exponential

growth rate function based on measured drag areas and filling

times would produce results similar to the opening load factor

method of relating (CDS)q to the measured peak load. Because

an exponential growth rate was suited to computer programming,

it was investigated in some detail.

Dimensionless Filling Time Parameter

French L and others have shown that the distance traveled durirg

the filling of a given parachute tends to be a constant. This

led to the definition of a dimensionless filling parameter, Kf.

This parameter is defined as,

v.t
f

Kf - D

where v i i.'_the initial velocity (VHccs for Stage i), tf is the

filling time, and D is a characteristic dimension of the canopy

such as the nominal diameter, Do , or the reefing line diameter,

Dr . Dimensionless filling times, based on Drl, were computed

from the Stage i test data. These are summarized in Table 19

and plotted against the initial velocity, VMCCS in Figure 16.

These data suggest a mean value for the dimensionless filling

time parameter, Kf = _3.9. This number could be used in the
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Table

®

Test

No.

80-1R

80-2

80-3RI

80-3R2

81-1

81-2

81-a

82-1

82-1R

82-2

82-4

83-6

84-ZR

84-4

19. Dimensionless Filling Time Parameter Data

for First Reefing Stage of Main Parachutes

®

Chute

No.

® © ® ®

I

I

7

i

I

2

I

2

!
2

i

i

I

I

I

I
2

3

I

2

Reefing

Diameter

Initial

Conditions

VMCCS MCCS

ft/sec deg

335 -17

374 -io

374 -IO

339 -]3

35o -14

339 -16

38o -iz

Dr 1

% Do ft

8.2 6.85

8.2 6.85

8." 7.Ol

8.2 7.01

8.2 6.85
8.2 6.85

8.4 7.01

8.4 7.o!

8.L 7.oi
6.4 7.Ol

8.2 7.01

8.4 7.01

8.a 7.01

9.5 7.93

8._ 7.o!

8.a 7.01
8.a 7.Ol

8.L 7.01

8.4 7.Ol
8.4 7.Ol

385 -76

409 -75

306 -8_

295 -87

312 -88

287 -85

31o -83

®

Filling

Time

tfr 1

sec

(1)

I .785

I .633

1.555

! .655

I. 37L

1.335

l .830
1.56o

i .885
I. 565

i.46L

l.<8o

1.823

2. 537

1.922

2. 520

2.5o0
2.5oo

l. 587
NA

Filling

Parameter

Kf

(2)

87.2

89.2

83.0

8o.o

70.2
68.2

88.5
75.5

IO2.1

8a.8

80.4

86.5

79.6

94.3

85.5

lO3.0

Z02.3
I02.3

70.2
NA

NOTES: (1)

(2)
tfr ! values taken from

Kf = VMccst frl/Dr!

Tab Ie _8
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calculation of reefed filling times for any reefing ratio within

the range tested for Stage 1 in place of the more complicated pro-

cedure associated with using Figure 15 {a).

In re-evaluating the test data for both reefing stages, it was

found that several good measurements obtained with clustered

canopies had been omitted from Figures 13 and 14. This resulted

from overemphasis on the importance of the lead canopy in the

final opening phase, which in several instances was actually the

!ag canopy during one or both reefed stages. In consequence,

the growth rates of the other canopies were not evaluated. This

oversight was corrected in the calculated results presented in

Figures 17 and !8. Also, after careful examination, all the data

of Test 81-3 were rejected as unreliable.

2.3.1.4 Opening Loads Followin_ Stage 2 Disreefin_

Background

in parachute tests performed prior to 1960, two important

quantities, the dynamic pressures at canopy stretch and at

disreef, were seldom reported, because, in most cases, the

corresponding velocities had not been measured. Therefore,

only a fraction of the available data was usable: that in which

the delay from launch to canopy stretch was very short, and

that from which the velocity or dynamic presscre at canopy

stretch and disreef could be deduced. In addition, it was

necessary to have some means cf calculating the reefed and

full open drag areas of each canopy, and only approximate

drag coefficients were available in many cases. For example,

reefed drag areas were derived from an old empirical relation-

ship that proved to be wrong most of the time, but consistent

application of the resultant curve minimized this source of

error.

7 F
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The following quantities were generally calculated using standard

atmospheric density (for want of aerological data at the time of

each test).

F (measured)
Opening Shock Factor, X - o

(CDS)q i

Ballistic Coefficient,
W

CDS

_ System Weight

Drag area _reefed or full open)

Initial Dynamic Pressure, qi : ½ °oV__

A plot was made of X versus W/C_S with in_al-_- _"ight velocity

and altitude at launch noted. A large fraction of the data was

for various ringsail parachutes tested at altitudes of i0,000-

15,000 ft. These showed some correlation with launch velocity

and a family of curves were drawn in by visual inspection of the

trends for different equivalent airsoeeds.

Whenever the deployment conditions cf a new parachute design fell

within the scope of the empirical data curves, it was possible to

predict the probable opening force with fair accuracy as

: X(CDS)qFo i

However, it was not always certain that the conditions were indeed

comparable because of the large variations in vehicle ballistic

coefficients and in the time intervals from launch to canopy

stretch. Also, the variation of X with altitude was often obscured

by insufficient and scattered data.

This background is given to bring out the considerable refinement

of method represented by the Apollo load prediction technique and

to clarify the reason it is unnecessary to use EAS as the controlling

variable at a given altitude when the appropriate dynamic pressure

is known with reasonable accuracy. The "opening shock fac:or" is

7 7 _'_'\_-6431



NORTHROP

now called the "opening load factor" and denoted as CK. The

complexity of the cluster parachute filling problem made it more

expedient to employ this approach to load prediction for the

£pollo main parachute disreef opening stage than to undertake

development of an adequate computer program similar to that

employed for the reefed opening stages.

Physical Basis

The filling of clustered canopies is an unstable process that

leads to nonuniform opening and disparate load sharing more

often than not. This effect is most pronounced in the final

opening phase and starts with nonsynchronous disreefing of the

canopies at the end of the second stage. Because the normal

filling time of the ringsail canopy from Stage 2 disreef to

full open is relatively short, the disreef time differential

4- _ IT IT II I,between lead and lag canopies has a strong effect on sub-

sequent inflation. If the disreef ,At is favorable to the

lagging canopy of Stage 2, this lage canopy may recover and

take the lead in the final opening phase. Here, the lead

canopy is defined as the one receiving the highest peak load,

the lag canopy (or lag canopy No. I) second highest, and the

lag-lag canopy (or lag canopy No. 2) the lowest. The disreef

At is not the only factor that causes the canopies to fill at

different rates, so good correlation of results with this para-

meter cannot be expected.

Summary of Method

The load prediction method of Reference 3 for the opening loads

following Stage 2 disreefing is summarized as follows:
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0penin_ Force

The empirical opening force relationship, as applied to the Apollo

main parachute cluster, is used in the form

"o_ = CKo(CD S)o qd^ (2)

where:

F
0 = peak ooening force of ful open stage

CK o

(%S)o

= ooening load factor of full open stage

= drag area of full open canopy (£000 ft =)

qd 2
= dynamic pressure at Stage 2 disreef

When values of CKo were calculated for the tests performed with

two-stage reefing, iS was found that the single canopies provided

more drag area than the cluster canopies at the same effective

unit loading. Therefore, only the clusSer data presented in

Table 20 were available to support development of the curves

given in Figure 19.

Effective Unit Canopy Loading

The method of evaluating the effective unit canopy loading for

each parachuZe in the cluster is one of apportioning the total

* (W) in accordance with the ratio of the instantaneoussystem weloh_

dynamic drag area (F/q) of each canopy to the combined dynamic

drag area of all canopies in the cluster measured at the time of

maximum force in the lead canopy.

(s)
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Table 20. Disreef Opening Load Factor Data for Single

and Clustered Main Parachutes

@ @ @

Test Chute Lead

No. No. /La_

(1)

80-1R " -

80-2 i -

80-3Ei ! -

80-3R2 1 -

81-1 "
2 L

81-2 ! L

2 L

8_-3 -
2 L

81-4 I L

2 L
82-2 1 -

82 -4 l -

8_-IR 1
2 L

I

8_-_ i 1 L

(D :5)

System Eff. Unit

Weight Loading

W (W*/CDS o )

lb Ib/ft 2

(2)

5,L22 1.36

7,5Ol 1.88
7,5_8 1.88

7,a97 1.88

12,989 1.56
1.68

12,989 2.58
0.674

13,o5_ z.51
1.7 L

12,989 1.91
1.3 L

9,6871 2.42

: 10,a86 2.62

13,O26! 0.41
1.37
1.47

iI 12,961 _!.6
I :m1

@

Initial

Dyn. Pres

qd 2

lb/ft _

7.05

! 9.7o
! 7.30

6.43

7.95
8.35

5.41
3.81

7.70

7.37

6.2_

5.82

_ _8

: 9.15

I 1.78
! 3.86

3.75

i 6.17
NA

i

Dynamic

. Drag Area

CDS m

2
ft

(3)

4660

55!3

5880

6635

2870
3090

5650
laBC

293c

3_70

a3ac

3060

i 7500

: 6920

I 112o
i

3720

! 4010

[ h120

NA

®

Total :_n.

Drag Area

_,:_s_)

f_2

a66o

55:3

588o

6635

5960

7130

630o

7L00

7500

6980

8850

:JA

@

Opening

Load

F o

lb

13,737

21,790

I 21,185

2C,5A6

I lL,O20

: 15,120

I 17,518
6,568

lh,170

16,O60

17,161

12,2OO

28,135

32,200

I 5'110
. 9,300
i IC,OLO
I

I "5,320
NA

I

9penir_

Load Factcr

CK c

(4)

0.487

0.562

o.718

0.799

C.h_l

0.453

0.810

o.a3:

0.460

0. 515

0.687

0.524

=.88

c.88o

0.722
0.602
0.569

0.620
NA

Reefing

Diameter

Dr 2

% DO

21.8

22.0

26.7

26.7

24.0
24.0

i 26.7
26.7

26.7

26.7

26.7
26.7

i 2_.8

24.8

i 2_.8
2_.8

2t_.8
2_.8

2_.8

'I) L, _ and _ denote lead canopy, lag canopy number one and lag canopy number two,NOTES:

respectively, of Stage 3

(2) (W*/CDSo) defined by Equation (3)

(3) (CDS m) = Fo/qm, where qm is dynamic pressure at time of occurrence of FOL

(_) CK ° = Fo/qd2 (CDSo), where (CDSo) is 4000 ft 2
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Data points are the lead

i i parachutes from Table 20
..... (numbers next to points

_, ! i are data values of qd2)

W*/CDS,

2.0

 b/ft
2

Fig. 19. Disreef Opening Load Factor Versus Effective Unit

Canopy Loading for Main Parachutes
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where :

j = one of n canopies in the cluster, j : i, ..., n

W* : portion of weight carried by j canopy

(CDSm) j = dynamic drag area of j canopy = Fj/qm

F. = instantaneous force of j canopy
J

qm = dynamic pressure at time of lead canopy maximum
force

2(CDS m) = (CDSm) 1 + .... + (CDSm) n

The term "dynamic drag area" is employed to distinguish the

instanteous ratio of force to dynamic pressure from the steady-

state value because mass inertia and aeroelastic effects may be

present and contribute to data variations. The assumption is made

in Equation (3) that the steady state values are directly propor-

tional to the dynamic values measured for each canopy. The cal-

culated results are summarized in Table 20 and plotted in Figure

20. The curve indicated for clustered canopies is used in the

load calculation.

Lead/La_ Canopy Inflation Characteristics

Canopy growth is characterized by a nondimensional ratio CDSm/

CDSr2 in which the numerator is the dynamic drag area of a given

canopy in the cluster at the time the lead canopy load reaches

its maximum value, and CDSr2 is the average reefed drag area of a

given canopy during Stage 2 after inflation.

A dimensionless time parameter is defined as &td2/tfo, the ratio

of the time differential between lead and lag canopy disreefin_

to the time required after disreefing for the lead canopy load to

reach its maximum value. The signs of Atd2 are opposite for lead

and lag canopies. A positive Atdo for either canopy means that

the other disreefed first and inh_bited the growth of the second-

to-disreef, irrespective of its later development as a leading or

lagging canopy. A negative &td2 for a given cahopy indicates that
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Fig. 20. Drag Area at Time of Lead Canopy Peak Load Versus

Effective Unit Canopy Lcading for Nain Parachutes
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it disreefed first, and consequently, its initial growth was less

inhibited by the presence of the other still reefed canopy.

Calculated values of these parameters, derived from the test data

summarized in Table 21, are plotted in Figure 21(a). The scatter

around Atd2/t_ v = 0 shows that the dynamic drag area at the time

of the lead canopy maximum load is not much affected bF small dis-

reefing time differentials between lead and lag canopy. Although

the distribution of the data is not necessarily symmetrical about

zero, it tends to fit this pattern better than any other; however,

d2/t are used in calculating thesince only positive values of At fo

drag area ratio of the lag canopy, the principal value of the nega-

tive data is in helping to establish the slope of the right hand

portion of the curve in Figure 21(a).

The canopy continues to fill, but at a greatly reduced rate, during

the latter portion of the reefed interval and causes the effective

drag area at disreef to be greater than the average value in most

cases. Because the initial phase of reefed opening is subject to

wide variations due to dynamic effects, it appears that the end

value of the reefed drag area determined at near-equilibrium condi-

tions, being the starting point of subsequent growth, should show

better correlation of the inflation parameters developed. This

approach is tested with the data plot of Figure 21(b). At _t d /
2

tfo 1.0, the lag canopy drag area equals its end value, and

consequently the area ratio is unity. This is not necessarily

the case when the average reefed drag area is used, for the reason

given. At Atd2/tfo = -1.0, the drag area ratio approaches that of

the single canopy, but Figure 20 shows that the presence of the

lag canopy reefed for the entire interval will change the filling

characteristic significantly, so that the peak load occurs at a

smaller level of growth, if not earlier in the filling process.

8L_ :4w_6L3i
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Table 21.

@

Test

No.

80-1R I

80-2

80-3R1

80-3R2

81-i

81-2

81-3

81-4 i

82-2

82-4 I
I

84-IR i

i
!

8a-4

NOTES:

Canopy Growth and Disreef Time Lag Data for Single

and Clustered _,_ain Parachutes

® ®

Chute Lead

No. /Lag

(1)

®

Stage 2

Drag Area

(CDS )r2

ft 2

®

Drag Area

Ratio

(CDS)m

2

875 5.32

985 5.60

1125 5.2_

1222 5.43

920 3.12

860 3.60

1250 4.52

1210 1.2_

945 3.09

1050 3.21

1075 _.03

1135 I 2.69

1180 6.36

113o 6.18

_55o ! NA
i .46: 1145 3

1

1

1

1

2 L

1 L

2 l

1 L
2 L

1 L

2 l

1 -

1 -

1 . LL
2 L

3 Z !
I

1 L

2 !

I

1330 _ 3.21

1075 3.83

NA NA

I

@ @ ®

Filling Time Time Lag

Time

tf o

sec

(2)

1.41

I.i0

1.02

1.o5

1.02

! .26

1.2_

2.64

o.91

0.94

1.12

0.84

i 1.03

0.95

NA

Lag i Ratio
i

Atd 2

Atd2 tfo L

sec

(3) ,

i

i

" I -

0.29 J +0.23

-.29 -0.23

-l.lOi -0.89

I.I0! +0.89

-.07 i -0.o75

0.071 +0.075

-,35:-O.313

o.35 +o.313

t

NA I NA

I
I

®

Reefing

Diameter

Dr 2

% Do

21.8

24.0

26.7

I
26.7

24.0

24.O
I

I 26.7

i 26.7

26.7

] 26.7

26.7

1 26.7

2,b .8

24.8

24.8

I .20

I.II

1 .O3

NA

-.25 -0.208 i 24.8

0.25; +0.208 24,8

NA ; NA 24.8

NA i NA I 24.8
/

I

(I) L, L, and LL denote lead canopy, lag canopy number one

and lag canopy number two, respectively, of Stage 3

(2) tfo denotes the time interval between second stage

disreef and the time of occurance of Fo

(3) Aid 2 denotes second stage disreef lag time
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Canopy Filling Time from Stage 2 Disreef to F
O

The canopy filling time after Stage 2 disreef, tfo _ is treated as

a function of a mass flow functicn, m, and the effective unit

canopy loading. The mass flow function _s considered to be pro-

portional to the initial value and is defined by the relation

p vd 2 (CDS)r 2 '_

where:

p = air density, sl/ft 3

Vd2 = velocity at Stage 2 disreef, ft/sec

(CDS)r2 = average drag area of one canopy during latter portion
of Stage 2 opening, ft 2

The use of (CDS)r2 rather than the reefed inlet area in Equation

(4) is justified _ecause _he latter is usually poorly defined and

the former is proportional to the vclume at the time of disreefing.

The calculated results derived from pertinent test data are pre-

sented in Table 22 and Figure 22. Because of data scatter, con-

siderable judgment was required to establish the unit canopy load-

ing curves. This was aided by extrapolation of a similar set of

curves developed from the Block I test data in Reference 6.

At disreefing, the canopy mouth quickly snaps open to a larger

inlet area (due tc tension in the reefing line) and then continues

to expand at an exponential rate until inflation is completed.

Although the disreef drag area accurately reflects the bulbous

development of the canopy, which produces the reefing line tension,

and causes the mouth to snap open, the subsequent filling charac-

teristic is not determined solely by the initial inflow rate. Apart

from canopy shape and porosity factors, there is a lead/lag canopy

dynamic interplay called "blanketing" that causes unequal filling

rates even though disreefing may be synchronous. The existence

of this interplay is emphasized by the occurrence of lag canopies

with negative disreef time differentials.
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Table 22. Disreef Filling Time Data Obtained During Single

Clustered Main parachute Tests

O

Test

No,

Chute Lead

No. /b_g:

t

.... (i) I80-1R 1

P

80-2 ! I
8o-3Ri 1

8o-3B2 I i

81-i 1 z L
2 L I

81-2 i _ L I

81-3 i ]- I
P 2 L
i

81-L

i
I

82-2 I

!
82-_,

84-IR

I

i

1 L

2 1

1

1

1 11
2 L

3 1

I

Altitude Air

Denslt

h p

ft ;sl/ft 3

9635

9713

9760

9007

9610

9345

9620

931o

8276

75_8

81oo

6732

!® ®

i Initial

rI Condlt [ons

vd 2 (cos)r_

ift/sec ft 2

Ioo1698i915

!oo168OilO65
i.oo1698 93.0 11251

1.0017_8 86.0 1222

I
.oo17oa 96.5 92oi

I 99.0 863

].001736[ 79.0 1250:

66.3 12101I ,
.001701 _ 95.1 9_5 i

i 93.1 zo50!
I

l•001752 8a.a 1o75

: i 81.6 1135

.0o18oai 94.2 118o I

,001826 i00.i 1130
I

J

,:.oo1913 NA :550

' 63.6 1145

i 62.9 1330 II

.00197o; 79.1 lo75

i NA NA !

Time Function

tf o

sec sl/sec

(2) (_)

@ ® @
1 !

Filling M_ss Flow;Reeflng

Diameter

Dr 2 ,

i ._l

i. I0

1.02

1.o5

1.02

1.26

1.24

2.6_

o.91

o.9_

( 136

i

21.8

! 176 : 24.0

i 176 26.7

i

i 183 i26.7
I

151 24.O

I 1#5 2_.0
I

i

171 26.7

i 139 , 26.7

: i53 ] 26.7
I

166 : 26.7

1.12 159 ; 26.7

C.8a i 162 26.7

1.o3

0.95

NA

1.20

I.Ii

i. 03

NA

2OO

I 207

NA

139

16o

I

167

NA

24.8

2U.8

2_.8

24.8

2_.8

2_ .8

NA

NOTES : (I) L, _, _nd _ denote le_d c_nopy, l_g c_nopy number one md

l_g _,nopy number two, respectively, of Stage 3

(2) tf denotes the time Interv_l between second stage dlsreef

mn_ the time of occu_ance of F o

(3) A = ,Vd2 (CDS)r 2

and
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Procedure for Calculatin$ the Disreef Opening Loads

The peak opening loads of the individual parachutes in two- and

three-canopy clusters of 83.5-ft D o ringsails is determined as

follows:

l)

2)

3)

4)

5)

Establish the conditions at Stage 2 disreef for

each parachute in the cluster (lead, lag and lag-

lag). These are q, v, y, h, p and At (with sub-

script d2).

Using (CDS)r2 = I080 ft 2, calculate the value of

the mass flow function for the lead canopy (mL).

Estimate the value of W*/CDS ° for the lead canopy.

De_erm=ne the value of C S for the lead canopy in
Dm

Figure 20 corresponding to the estimated value of

W _CDS ° .

Determine the value of the lead canopy filling time

(tfo) in Figure 22 corresponding to W*/CDS ° and mL"

6)

7)

Calculate gtd2/tfo for the lag parachute(s).

Determine the corresponding value of (CDSm)/(CDS)r2

for the lag parachute(s) from Figure 21(a).

8)
Calculate CDS m for the lag parachute(s) using a

value of (CDS)r2 from page 62 and (CDSm)/(CDS)r 2

from Figure 21(a)

9)
Calculate W*/CDS ° for the lead parachute. Compare

this value with the estimated value in Step (3)

above. Using the calculated value of W*/CDSo,

repeat Steps (3) through (9) until initial and

final values are equal.
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i0) Calculate the unit canopy loading(s) of the lag

parachute(s).

ii) Determine the opening load factor CKo in Figure

19 for each parachute for the corresponding values

of W*/CDS ° and qd_"

12) Using _DSo _000 ft 2 calculate the opening force

of each parachute.

2.3.2 Example Opening Loads Calculations

The main parachute loads for one Apollo design case are pre-

sented, on an example basis, in Appendix C. This case, re-

ferred to as Case LI0, is a normal entry case for which one

drogue chute and two main parachutes operate. Conditions at

the time of lead oarachute line stretch for this case are as

follows: vehicle weight, 12,960 ib; flight dynamic pres-

sure, 85.0 !b/ft2; flight path ar@le, -90 deg; altitude,

10,750 ft; time from drogue chute disconnect to lead MCLS

1.6 sec; time from drogue chute disconnect to lag MCLS, 1.8 sec.

The area growth method is used to predict the Stage I and

Stage 2 lead parachute maximum loads, Yr I = 18,650 ib and

Fr2 = 18,350 ib; and the opening load factor method is used to

predict the Stage 3 lead parachute maximum load, Fro = 18,680 lb.

These values are compared with those from the final Apollo ELS

loads report3 for the same case. It is noted that whereas the

new values for Stages I and 3 are approximately 0.8 percent

higher, the new value for Stage 2 is approximately 14.8 percent

lower than the corresponding load from Reference 3.
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SECTION 3.0

BACKGROUND S_JDIES ON IMPROVED LOAD PREDICTION METHODS

3 1 GENERAL LITERA_JRE SUR:_EY

A review of available literature pertinent to the prediction of

opening loads for the Apollo spacecraft parachutes is presented

in this section.

The analysis and data review reported on in Section 2.0 brought

about an awareness of the details of the methods used to make

these load predictions. Also, it improved the accuracy of these

specific methods to close to their limits. In order to furtker

increase the accuracy with which Apollo parachute loads could be

predicted, it was felt bhat new methods must be developed. Rather

than start such a development from basic principles and derive

these new methods, it was decided to review the parachute libera-

ture on load prediction methods. Such an approach allows the

present study to benefit from the many thousands of hours that have

been spent, around the world, on the problem at hand. The specific

benefit was expected to be in the form of either complete methods

which could be adapted to the Aoollo parachutes, or consideratJ;ons

which would aid in any methods formulated within] tile present sbudy.

Both benefits have been derived from the literature review, and a

summary of that review follows.

3.1.1 Early Analyses (19a2 through 1949)

The analyses published between 19a2 and 1949 present a rapiJ

evolution of the understanding of the parac[:ute opening process.

During World War !I there was much developmen_ _,:ork in rear,carrying

parachutes for use at altitudes up to kO, O00 ft. SucT_ application,s

of parachutes at altitudes far above sea level were apparently rare

enough, prior to this period, that altitude effects on paraci_ute

opening loads were unknown. It was the development work at kigher

altitudes conducted during this period that brought aboub the

discovery of altitude effects and fostered the analytical work o_

parachute opening loads which advanced so far b},, i9L9.
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Prior to 1942, it was apparently believed that velocity was the

parameter that determined the opening shock of a particular para-

chute/payload system. Wildhack 7 presented a report that dealt

with the minimization of opening loads following ejection from an

airplane in horizontal flight. His recommendation was that the

parachutist deploy the parachute at the minimum velocity point

in his trajectory. The basis was that trajectories are controlled

by weight and drag and that initially drag would predominate and

decelerate the free-falling man, but that soon the man's flight

path would have curved enough towards vertical that the weight

would predominate and accelerate the man. Wil.]hack's recom-

mendation that the parachutist deploy his parachute at the mini-

mum velocity point, occurring at the time weight first predominates

over drag, indicates an awareness of the effect of velocity on

parachute opening loads and, at the same time, a lack of aware-

ness of the effect of altitude. Wildhack's only mention of

altitude effects was the (presumably tongue in cheek) recom-

mendation that the parachute deployment not be so delayed during

ejections close to the ground.

8
During the same year (1942) Pflanz published an analysis dealing

with the calculation of parachute loads during the opening process.

Representing the instantaneous parachute load as CDSq, he calcu-

lated system velocity as a function of time by the equation*

dv _ CDSq _- _½ _vYCD S.m dt

This equation was solved numerically for several forms of the

drag area growth (linear, exponential, sinusoidal, etc), as well

as for several velocities. The resulting time histories of para-

chute force (CDS_), which were presented, illustrated the effects
9

of these parameters on these force histories. In 1943 Pflanz

published another report in which the approach was the same as

* The symbols used herein are chosen to be compatible with those
in the symbols section of this report and are therefore not

generally those used by the original authors.
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in his first report, except that the gravity term was added to

the velocity equation prior to the re-evaluaticn cf the results.

That is

dv : _½ v2m d--_ P CDS + W sin _.

As emergency ejections at high altitudes became frequent during

World War !I, parachutists reported unusually high opening

shocks at high altitudes. Because the resulting forces and ac-

celerations approached and even exceeded the limits of human

tolerance, the Army Air Force conducted a test program to in-

vestigate the phenomenon. The results were published by Hallenbeck

in Referencel0 which showed that, for altitudes up to 40,000 ft,

opening force did indeed increase with increasing altitude when

the true airspeed at dummy drop was held constant !parachute de-

ployment was almost immediately after dummy drop). Hallenbeck

also showed that the time from "initial shock" (line stretch) to

peak force decreased with increasing altitude.

The problem came to the attention of yon Karman-lwho, in 19A5,

published a paper dealing with the observed altitude effect. He

concluded that the observations would be explained if the ap-

parent mass of the parachute were considered in analysis. With-

out actually analyzing the opening process, he described how the

density variation with altitude would cause a similar variation

in the apparent mass. He qualitatively described the mechanism

of the effect of apparent mass variation on opening force.

In 1946 a report written by Scheubell2was published. In it,

Scheubel presented a very comprehensive treatment of the parachute

opening process. A description of some of the ccntents of this

report will bear witness to both the insight of the author and the
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advance in technical understanding represented by this report.

Scheubel credited Mueller with being the first to recognize that

the opening of a parachute is really an inflation process. Scheubel

reported that Mueller, in 1927, equated the parachute volume change

rate to the product cf the mouth area and parachute airspeed.

Scheubel pointed out that while he believed Mueller's approach to

be correct, ].e disagreed with Hueller's formulation. The reason

for disagreement was that Mueller would have had to conclude that

at full open, when the parachute volume change rate is zero (and

mouthareahas a nonzero value) parachute velocity would be zerc.

To correct this problem, Scheubel introduced a velocity ratio

for the inflowing air such that

dV _ vi Aids
dt v a-_"

Based on transformation of this equation, Scheubel observed that

the distance 'necessary for the complete inflation of a given

canopy, is a constant and is proportional to the linear dimen-

sions of the parachute." He then noted that the ratio v__ishould
V

be nearly one at the beginning of inflation and decrease towards

zero at the end of inflation. He also commented that the solution

of his equation would depend on a knowledge of the basic principles

governing the ratio vi , and that this knowledge was not available
V

in 1946.

To obtain a rough estimate of the opening process, Scheubel sug-

gested as a model of the inflating canopy a right circular cylinder

open at one end (Figure 23a)whose radius increases (and height

decreases) as it inflates. Scheubel went on tc discuss apparent

mass which, together with the included mass, constitutes the

parachute added mass. He wrote Newton's law of momentum

d2 mv
- F

dt
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(a) Scheubel's Model

, Do_ r

p

T
r

(b) O'Hara's Model

(c) Heinrich's Model

Fig. 23. Various Canopy Models Used in Parachute Analyses
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and noted that the mass term should include both the system mass

and the added mass. He specified that the force F should be the

drag force. _In dealing with man-carrying parachutes in near

horizontal trajectories, as Scheubel was, it is permissable to

neglect the gravity term. ) He pointed cut that his calculations

indicated opening shock force should increase as the square of

velocity. He then commented that the effect of altitude on force

and inflation time was related to the added mass, and mentioned

the dependence of shock factor {opening load factor) cn the

weight of the payload.

While the foregoing material does not fully describe the im-

portant technical content of Reference 12 it is believed that

it is sufficient to both display the knowledge of its author

and to emphasize the importance of the work in the evolution

of parachute opening load technology. Also, it is probably

correct tc say that the material presented in Referencel2 repre-

sents the composite German technology of opening load analysis

and therefore includes contributions of others, in addition to

the contributions of Scheubel himself. And credit is certainly

due to Scheubel for the lucidity and comprehensiveness of the

presentation.

O'Haral_resented a paper in 1949 which described a very com-

prehensive, aggressive analys_s of the parachute opening process.

His model is shown in Figure 23b The apprcach he chose was to

select a simple enough shape rcr a model of the inflating para-

chute that many canopy characteristics (volume, areas, etc.,)

could be mathematically described by simple gecmetrical con-

siderations, and then use an extensicn cf Scheubel's flow equation

to account for the rate of change of volume. That is, for in-

ccmpressible flow, the rate of change of the canopy geometric

volume equals the rate of net increase cf air enclosed within
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the canopy.

by O'Hara as

The rate of increase in air volume was represented

dV 2 2
d-_ = vi _ rm - vo _ r

where v i and vo were defined by O'Hara as the mean inflow and

outflow velocities through the canopy mcuth and crown, re-

spectively. It can be seen that the extension of Scheubel's

flow equation is the addition cf the cutflcw term, due to psro-

slty. it shculd be noted that both r and rm are functions cf

canopy geometry, and are related by the similar triangles they

define.

Having established his basic model for the parachute, O'l:ara

wrote the equation of motion for the system

)} :v2 2dt m + Ksr 3 v = -:P C D _ r .

(O'Hara noted the neglect of gravity and of system elasticity. )

Values for K, CD and the mean inflow and outflow velocities were

still required. By making some reascnable, though unproven,

estimates of inflow and outflow velocities, O'Hara was able to

dr o_ _n_r_ the _1_t_n into the
solve the flcw e_uation for d-_ _ .............. '

equation of mctlon.

He also estimated K and C D tc c©mplete the solution. He thus

had an equation whicn could be evaluated by numerical techniques

and through which values of the parachute force and opening time

could be calculated. In his paper he presented the results cf

some calculations showing the effect of altitude on opening force

and time and commented on such effects as porosity, variation cf

CD with porosity, effect of the number cf suspension lines and

the constraining effect of the suspensicn lines cn opening rate.

Like Scheubel's paper, O'Hara's paper represented a sign:ficant

advance in published parachute technology; and together they define

ar _nderstanding of the basic principles of the parachute opening

process almost as complete as that understanding at our dispcsa!

today.
aa _,::.M-6_31
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3.1.2 Further Development of 0'Hara's Model

The analyses published subsequent to the publishing of O'Hara's

paper in 19_9 generally advanced the understanding of parachute

opening, either by suggesting improvements in O'Hara's analysis,

or by developing a new model. Several papers in the former

category will be commented on here, followed by a discussion of

the latter category. It is noted that all of the analyses from

the former category that are mentioned here were either authored

by Dr. H. G. Heinrich of the University of Minnesota or by other

individuals from that institution.

The first of these analyses was presented by Heinrich I_ in 1961.

This analysis appeared in a report on the status of research

on parachute operation. Heinrich used the model shown in Figure 23c.

He credits this model to O'Hara, although O'Hara used the flat-

ended model shown in Figure 23b. Heinrich used O'Hara's equation

for the rate of increase in air volume during opening. He also

used the relation

vl = i - T (T m t/tf)
V

which, as Scheubel suggested, goes from a value of one to zero as

the parachute opens. Heinrich then suggested that projected

diameter should increase parabolically with respect to time as

D : 2Do T½

This assumption on projected diameter is the major difference

between this analysis and O'Hara's. With this, and other

simplifying assumptions, the inflation time was solved

through numerical integration. Then the maximum opening force

was expressed in terms of the fill time. Heinrich presented

some comparisons between calculated values of fill time and

opening force and corresponding experimental data for a 28-foot

flat circular parachute. The comparisons show very good agreement

in fill time and reasonable accuracy in opening force.
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This analysis was republished in 1961 under the co-authorship
15

of Heinrich and Bhateleyo It was subsequently republished

in a somewhat more complete form in Reference 16 in 1963.

Bhatele? 7presented a thesis on the fill time and opening force

of reefed canopies. The treatment is fairly similar to that of

Reference lh, except that outflow through the canopy vent is in-

cluded in the mass flow equation. As in Reference 14, the simpli-

fying assumption was made here that the suspension l_ne length

is equal to the canopy nominal diameter DO . This assumption

reduces the generality of the solution, for, as we know, many

parachutes do not fit this assumption. As an example, the

Apollo Block II (H) drogue has a suspension line length of 2 DO .

In this particular case, the error might not be significant; but

the point is made here because References 14-17 all contain many

simplifying assumptions which reduce the generality of these

analyses. Of course, the value of these assumptions is that they

permit fairly simple solutions in cases where they are valid.

Buchana_ 8 presented a report in 1965 in which the approach was

very similar to that of Reference 14 This analysis extended the

mass balance equation. In Reference l_, Heinrich expressed the

mass balance as

__ =d
dYviP 2 DYv°o (OV),

which is essentially the same as O'Hara's formulation.

used the relation

Buc hanan

d 2 ('wD 2 dv 2 ,_dv 2 d /

= (5)

which separates outflow through the vent from that due to geo-

metric porosity Xg. Buchanan then presented the results of

wind tunnel testing in the form of vv and vi as functions of T.
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These data were obtained through the use of pressure surveys

at the vent and mouth. These data were then curve-fit, and the

resulting function was substituted into the mass balance equation.

It is interesting to note that where previous investigators had

often used the assumption that

V! = 1 - T,
V

Buchanan found the relation

vl = 0.91 - 0.31T
V

to be more exact for the particular wind tunnel model he used.

He also found that a good approximation for the ratio Vv/V was i.

However, because of its dependence on the unknown pressure

distribution, Buchanan was unable to present values for Vg/V

and calculate fill times for different flight velocities.

Heinyich and Noreenlt in 1968, presented an excellent paper

dealing with the sepa;;'ate terms in the filling equations.

Having selected the model from Reference 14. and writing the

equation for the parachute force as a function of time (for

finite mass operation),

2
F = ½ PCDSv

dv

dma (rap + ma) _-_- v d--C--
(6)

the authors set about determining values for the various terms

through wind tunnel tests. Velocity and acceleration were

measured directly during the tests and time histories of canopy

area and volume were estimated from film pictures of the in-

flating canopy. Added mass ma was estimated f_om the canopy

volume and the results presented in ReferencePO. The values

of these parameters were then substituted into the force

equation, and time histories of force were calculated. The

results compared quite favorably with the measured values,

indicating both the soundness of the approach and the accurate

work of the investigators.
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Heinrich 21, in 1968, presented a paper on parachute opening

time for infinite mass conditions using an extention of O'Hara's

model. The content is essentially the same as that of Reference 18.

3.1.3 Other Models

While 0'Hara's model was being developed at Minnesota, several

investigators proposed different models of the parachute infla-

tion process.

Weinig 22 derived the equations for the unsteady motion of an

expanding, decelerating sphere by using potential flow. In his

report, published in 195!, he proposed this expanding sphere as

an analog of the inflating parachute. He pointed out that

through the use of such an analog, the radial component of the

air acceleration in the canopy would be treated, as well as the

axial component. Weinig set up the equations of motion of this

model and obtained a solution. However, he did not attempt to

estimate the various parameters and so could not compare his

model with any test data. Foote and Scherberg 23 published an

analysis in 1952 in which they used Weinig's drag coefficient for

the expanding, decelerating sphere. As described above, Weinig's

drag coefficient included added mass terms. Foote and Scherberg

used a mass balance equation which included a term for outflow

due to canopy porosity and a choking factor to limit inflow through

the canopy mouth. They obtained solutions for system motion and
2L, 25

parachute force that appeared reasonable. Foote and Giever

presented two reports, in 1956 and 1958, in which they attempted

to reduce the analysis of Reference 23 to a simple engineering

method for predicting opening loads. In the first of these two

reports, the authors reported on their sensitivity studies of

various parameters. They concluded that the mouth inflow choking

factor, which determines the efficiency of the mouth and therefore

the fill rate, was of critical importance. They then established

a test program (Reference 25) to determine values of the
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choking factor and attempted to conduct this program. Unfortunately,

the test program was plagued by failures and errors, and the de-

sired information was not obtained. While the effort was generally

unsuccessful, it contained some good analysis and especially

established the strong dependence of the opening process on mouth

inflow in models of this sort.

ScheubellPwas apparently the first to point out that a oarachute

should inflate in a constant distance in 19L6. French _ derived

the same result for incompressible flow in a paper presented in

1963. He ale o demonstrated that test data supported this con-

clusion. French 26presented another paper in 1968, in which he

separated the inflation process into two phases, as Berndt had

proposed in Reference 27 (1964). French showed that the first

of these two phases should take place in a constant distance,

and that this fact provided a scaling law for (first phase)

fill time. He used Berndt's data to show the hypothesis to be

valid. Although French did not apply the concept of a constant
28

filling distance to the calculation of loads, Schilling had

made such an application in 1957. He chose the distance traveled

as the independent variable, noting that opening would occur in

the constant filling distance. He then assumed that the projected

radius would be directly proportional to the distance the canopy

had traveled since the beginning of inflation. These assumptions

allowed Schilling to solve the equation of motion for the system

and calculate opening force. He compared some calculations with

experimental data and found fair agreement.

29
Rust _ presented an excellent analysis of the dynamics of the

opening parachute in 1965. His analysis is more complete and

general than most other models, and yet he showed how opening

loads may be calculated through the use of the model. Rust

represented the opening of a parachute with reefing as a succes-

sion of five stages. With projected radius as the independent
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variable, two equations of motion were derived (for flight path

angle and velocity). The canopy was not modeled with a specific

geometric shape, but related terms such as the rate of change of

volume with projected radius were left in mathematical form.

The author then suggested several shapes for the investigator to

choose from. Having chosen the shape which most closely matches

the actual shape of the inflating canopy, the investigators could

then evaluate.the unspecified parameters, such as rate of change

of canopy volume with projected radius. Recalling that Foote

and Giever established effective mouth inflow area as a critical

parameter, the benefit is apparent. The investigator who applies

Rust's method can choose the canopy shape that most accurately

matches the particular type of parachute he is analyzing, and

therefore is not forced to use a geometrical model which opens

unlike the actual canopy being studied. Naturally, Rust's

analysis necessitates a numerical solution, but this is not a

significant disadvantage in the present era of the computer.

Rust's model includes consideration of added mass, vehicle

drag, canopy porosl.ty and vent size. While these terms were

represented mathematically, Rust presented procedures for the

evaluation of all terms in his equations through wind tunnel

testing. While the comprehensiveness and generality of the

method make it more cumbersome than many of the other models,

they also make it potentially more accurate. With the esti-

mation of some parameters, the method can be applied to the

Apollo parachutes now_ but a fair evaluation of the method will

probably not be possible until the wind tunnel testing Rust

proposed is performed. Rust, in Reference 29, does present a

numerical calculation of the inflation of the Mercury Ringsail

(with reefing). Although he had to estimate several parameters,

the results compare well with test data.
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Bloetscher 30 used a model in 1967 like that in Reference 16 to

calculate opening loads. He obtained accurate results for peak

force, but poor results (compared to test data) for filling time,

by letting inflow and outflow velocity equal free stream velocity.

Reference 16 specifies mean values of inflow and outflow velocities

in the solution.

Asfour 31 in 1967 proposed a model which, like Weinig's, 22 included

both axial and radial components of air velocity. However, where

Weinig's model was derived from theory, Asfour's model was largely

intuitive. Asfour assumed that the canopy contained a volume of

air that was stagnated with respect to the canopy, and that the

lower surface of this volume moved toward the canopy skirt as the

parachute inflated. He reasoned that air entering the canopy would

reach this lower surface, turn, and flow from the axis toward the

canopy walls. He then reasoned that this radial flow would force

the canopy material out until that material became taut and

arrested the radial airflow. Asfour then derived a "snap stress"

involved in absorbing the kinetic energy of the radially flowing

air and showed it to be significant.

Roberts 32 in 1968 presented a paper treating the opening process

as'_ complex, intimate connection between a stress analysis and

pressure distribution via the application of Newton's second law

of motion." Roberts derived equations for canopy stress-strain-

shape equ_rium as functions of pressure distribution for

vertically descending, opening parachute. He showed how the

equations could be solved, in principle, but made no attempt to

obtain numerical results with this complicated model.

3.1.3 Added Mass

In addition to the direct analysis of the parachute opening

process, there have been results developed in the study of

added mass which promise to help complete the understanding of

this process in the future. These results will be described
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briefly. The results of studies on parachute scaling which will

help complete the understanding of the process in a similar

manner will be discussed in Section 3.2.

As described above, yon Karman II and Scheube112 both identified

the parachute added mass as an important parameter in the analysis

of parachute opening force. In 19_5 yon Karman discussed the

apparent mass of parachutes in relation to simple bodies, such

as spheres and disks, for which its value can be derived.

Scheubel suggested the representation of added mass by

ma = K0_r 3,
where K is a shape factor, in 1946. As mentioned above,
Weinig 22 proposed a decelerating, expanding sphere as an analog

of the inflating parachute. In his report, dated 1951, he

derived the drag terms of the shape which included added mass
terms.

An experimental technique for determining the added mass was
II 20

proposed by yon Karman and subsequently used by _einrich.

The technique consisted of dropping parachutes with two separate

payload weights, attached such that one weight would come to rest

on the ground before the other. When the lower weight hit the
ground (while the system was in equilibrium descent) the gravity

force was reduced and then the unbalanced drag force decelerated
the remaining mass. This remaining mass included both the actual

system mass and the added air mass. The decelerations and forces
were measured, and the added mass was then calculated through the

application of Newton's law. The tests were conducted with
variations in canopy porosity and type, and Heinrich made the

surprising observation that apparent mass decreased very rapidly
33

as effective porosity increased. Rust, published

an analysis in 1965 on the determination of apparent mass from
infinite mass wind tunnel data. Ibrahim, 34 who has done

much recent work on added mass, presented a paper in 1966

on the added mass of an idealized parachute. In
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this paper, he treated the theoretical flow about imporous spherical

cups of varying concavity. The flow was idealized to a potential

flow. In a report 35 presented in 1965, the same investigator gave

the results of an experimental study of the apparent moment of

inertia of parachute canopies. The method Ibrahim used was to

study the oscillations of canopy-shaped, metal models in both air

and water. The change in frequency of the particular mode of

oscillation being studied, in going from air to water, determined

the apparent moment of inertia for that mode. Among his results

was an indication that apparent moment of inertia decreases rapidly

as canopy porosity increases. This trend is in agreement with

Heinrich's observations in Reference 20. !brahim suggested the

usage of the term "added mass" to describe the included air and

apparent air masses (of the canopy) together. By this definition,

added mass comprises both fluid that is inside and outside the canopy

3.1.4 Summary

This general literature review has traced the evolution of

parachute opening load prediction methods during the past quarter

century. It has shown that the present concept of parachute in-

flation was developed in the period 1946 to 1949, although several

papers published during the past five years represent some advances

in the understanding. However, it is concluded that most investi-

gators have either oversimplified their analytical models, or left

more complex models unsolved.

The survey has resulted in several specific benefits to the

present study. The importance of added mass in the calculation

of opening loads has been reinforced. All of the work studied

has contributed to the understanding of the process and its

analysis in a general way_ and some of the work has contributed

in specific ways. Rust's analysis has offered the most specific

contribution in that it is now held to be the analytical technique

worthiest of development for Apollo parachutes.
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3.2 PARACHUTE PARAMETERS STUDY

It can be observed that most of the data plots used to correlate

Apollo parachute flight test data are expressed in terms of vari-

ables which possess dimensions. For example, force is plotted

versus time, opening force shock factor is plotted versus W/CDS

(unit canopy loading) for constant values of dynamic pressure,

and filling time is plotted versus mass inflow rate for constant

values of unit canopy loading. Thus, most of the variables used

in these plots have units; e.g., force is in pounds, time is in

seconds, unit canopy loading is in pounds per square foot, etc.

The question quite naturally arises: Wouldn't these plots be more

meaningful if they were expressed in terms of nondimensional

variables? Also, what might these nondimensional variables be?

These questions are the subject of this section.

3.2.1 Introductory Discussion

The question of how to make free flight tests with scale models

such that data from the models would be directly applicable in

predicting the flight characteristics of full scale flight

vehicles was studied by Scherberg and Rhode 36 in 1927. They

concluded that "the maneuvers of a full scale airplane under

the action of gravity alone may be completely simulated by a

model ..." They gave both scaling laws for constructing models

and scaling laws for predicting full scale flight characteristics

from the observed flight characteristics of scale models.

Kaplun 37 analyzed the special case of a parachute opening in a

wind tunnel, the so-called infinite mass case. He used dimen-

sional analysis to deduce that there are six basic parameters

which should have the same values on reduced scale model tests

as on full scale tests in order for the tests to be dynamically

similar. He identified these parameters as a canopy Reynolds
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number, a fabric Reynolds number, a Mach number, a shroud line

elasticity parameter, a canopy rigidity parameter, and a canopy

inertia parameter. Kaplun indicated that a nondimensional quan-

tity such as the maximum opening force coefficient, (Fr/qoSo)ma x

will have the same value provided that the set of these six

parameters is the same. Kaplun then pointed out that there are

many practical limitations which preclude perfect similitude

in reduced scale model tests.

French 38 analyzed the case of a parachute opening in free

flight. He indicated that the parachute opening process is

governed by two nondimensional parameters: gD o sin 9/v_ and

0D3/m. He stated that a nondimensional quantity such as

(Fr/qoSo)max will have the same value when the set of these

two parameters is the same. French presented data which sup-

ported this similarity law but concluded that more and better

data would be required to verify the law.

Rust 29 developed a theory for free-falling, opening para-

chutes by developing a set of three differential equations to

define the process. These equations featured nondimensional

variables and a set of nondimensional parameters. The non-

dimensional parameters given by Rust were an added mass ratio,

a ratio of parachute drag area to vehicle drag area, a quantity

rgg/V_, and a quantity rgg/V_. These nondimensional parameters,

together with a volume rate of change with respect to distance

quantity, were specified as correlation parameters for the

equations governing the process. Also, Rust showed that an

additional correlation parameter, mv/m is required for cor-

relating opening force data with a maximum opening force

coefficient (Fr/qiS o)max.

Barton 39 analyzed the free-falling opening parachute and

showed how the model scale and the air density ratio can be

used to predict full scale test results from properly scaled

ii0 NV'R-6_31



NORTHROP

model tests. Bartonrs results extended those of Scherberg and

Rhode by making air density an additional test variable.

It is interesting that the ideas developed in the investigations

described above were apparently arrived at independently• Also,

it is interesting to note that two apparently different approaches

are in evidence• On the one hand, Scherberg and Rhode 36 and

Barton 39 devised scaling laws to specify both how models should

be built and tested, and how the results from the model tests

should be used to make predictions on the characteristics of the

full scale flight vehicles On the other hand, Kaplun _7
• J

French 38 and Rust 29 identified dimensionless parameters which

must have the same values on model tests as on full scale tests;

this being the case, the test results, when expressed in terms

of appropriate nondimenslonal variables, should be directly

applicable to the full scale flight vehicle. It therefore seems

reasonable to ask: Are the different approaches equivalent?

Another interesting observation is the complete disparity between

the correlation parameters identified by Kaplun, French and Rust.

A total of twelve were identified; and no two were the same_

Therefore, another interesting question might be: Is there a

correct set of correlation parameters?

In order to resolve the questions Just posed, a simple mathe-

matical model for an opening parachute is formulated. This

model is represented by three ordinary differential equations--

one equation for each of three dependent variables -- and a state-

ment of the initial conditions associated with these questions•

The first two equations are force balance equations along and

normal to the flight path; and, the third equation is a canopy

volume rate of change equation• The three dependent variables

are the total flight velocity v, the flight path angle @, and

the parachute radius r. Next, the governing equations and the

initial conditions are transformed by replacing the variables
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v, _, r and t by a set of nondimensional variables U, _, R

and T. The functional form of the solution then obtained is

used as a basis for showing how more meanirgful data plots can

be made. Also, answers are developed for the other questions

raised in the foregoing paragraphs.

3.2.2 Analysis

Figure 24. presents a schematic of a vehicle-parachute system

at a point on the flight path where the parachute is in the

process of opening. A simple mathematical model for the opening

process is developed in Appendix A. This model is based on the

assumption that the state of the process can be defined at any

instant of time by a state vector x_ = x(t) where t denotes

time. This state vector, for the mathematical model analyzed,

is
T

x : (v, _, r) (7)

It is shown in Appendix A that corresponding to the three

components of x are three governing equations for the opening

process which can be represented as

x = f(x, c, g, m, p_.... (8)

where the dot denotes differentiation with respect to t.

The quantity c is a vehicle-parachute characteristics vector.

This vector c is actually a function of r but is treated as

a function of x. Specifying a particular vehlcle-parachute

system is equivalent to specifying c_ = c(x). Vehicle parachute

systems that are different in any respect (type, diameter, number

of gores, suspension llne length, etc.,)will, in general, have

different vehicle-parachute characteristics vectors. The quantities

g, m, _ are taken to be constants during the opening process•

The initial conditions associated with Equation (8) are

x_(o) = { 9 )
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where xi : (vi' gi' ri)T denotes the flight velocity, the flight

path angle, and the radius of the parachute at t : 0 when the

opening process is assumed to start.

40
It is known by the Cauchy-Lipschitz theorem that Equation

( 8 ), together with the initial conditions given in Equation

'9), has a _Lnique solution _-,fthe form

x_ = x_(t)

in general, x(t) is different for every different combination of

cj g, m, p and x(O).

Once x(t) is known, it is a simple matter to compute the other

quantities associated with the opening process. For example,

the force in the parachute riser, Fr is given by

F r = mv(g sin % -v) - Dv

The opening time, to is given simply as the time at which r(t)

first becomes equal to the parachute full-open radius, rfo.

The foregoing results can be made more general by introducing

the nondimensional state vector

× : (u, z)¢

where U = v/v o and R :- r/r o. The quantities vo and ro are

defined as the full-open, equilibrium velocity associated with

g, m and p, and one-half the parschute nominal diameter, Do,

respectively. In addition, the in,_ependent variable t is

replaced by the nondimensional v_riable T defined as

T = v t/r
C; 0
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It is shown in Appendix A that substituting these nondlmensional

variables into Equation ( 8 ) results in a new set of three gov-

erning equations which can be represented as

X --F(X, C, FN, v) (i0)

where the dot now denotes differentiation with respect to

and where

T,

FN = Vo/g _"og

: (c p 3/m) o

The quantities FN and v (nu) are referred to as Froude

number and added mass ratio respectively. They represent natural

groupings of dimensional quantities; however, both quantities

are themse]ves dimensionless. The vector C is actually a

function of R but is treated as a function of X. Specifying

a class of vehicle-parachute systems is equivalent to specifying

C = C(X). Vehicle-parachute systems that are different with

respect to type, number of gores, suspension line length-to-

diameter ratio, etc., (but not size per se) will, ingeneral, have

different C vectors. The quantities FN and v are constant

by definition during the opening process.

The transformed initial conditions are

x_(o) = x_i

where X i = (Ui, @i' Ri)T denotes conditions at T : 0 when the

opening process is assumed to start. When in addition to C and

Xi, the parameters FN and v are also specified, then it is

known by the Cauchy-Lipschitz theorem 40 that Equation (i0)

has a unique solution of the form

x_. = X_(T)

In general, X(T) is different for every different set of C, X:,

FN, v.
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Having once obtained X(T), other quantities havirg significance

may be computed. For example, a force coefficient for the para-

chute riser, defined as

F
r

CF =
qoSo

is readily computed from the equation
2

PV

CF = (2Camv/_m)o(Sin _ /R_2 _ 0) - CDvr-_
(ii)

Likewise, the nondimensional opening time, TO is given as the

value of T at which R(T) first becomes equal to Rfo = rfo/ro.

It is notationally convenient to define an individual parachute

opening process as the solution

x = x(t; x i, c, g, m, p) (:].2)

This denotes that x varies with t, but is dependent in this

variation on xi, c, g, m, O. It has been shown that the governing

equation for an individual process can be transformed into a more

general form. It is now apparent that each solution of this

transformed equation represents a group of individual processes.

Let a process group be denoted as solution

x_ = x__.,i, FN, (z3)

In other words, each group solution (set having the form of

Equation (13) has corresponding to it many individual solutions

_ )(elements,_ having the form of Equation (_
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Are the variables associated with the elements of any one set

related in specific ways? To answer this question, consider

a specific set as defined in Equation (13'. Fixing the Froude

number and the added mass ratio, say as FN ° and v isO j

equi_ralent to specifying two equations in four unknowns (g is

assumed fixed); viz., the equations

FN ° = vo / _ rog

= C Po r3/mo0 a o

provide two relations between the four variables: vo, ro, mo,

0o. It is shown in Appendix A that there are four ways in which

an element of the set may be specified. The most interesting

of these is the one which specifies ro, O° and solves for

v , m with the relations
o O

vo = FN o _/rog

Oor3/vmo = Ca' o

Now let the variables of another element of the same set be

distinguished by the subscript I. Being an element of the same

set is equivalent to saying

X!i = X_oi

C_I = C-O

FN I = FN °
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The latter two equations expand as

Vl/ @rlg = Vo/ _rog

3 0 r3/m
Ca01rl/ml = Ca o o o

and it then follows that

i

Vl/V ° : (rl/ro)2 (i_ }

m,/m = (7 / )(rl/ro)3 (15)± o 1 y DO

Also useful is the knowledge that similar events of the two

elements must occur in time according to the relation

That is,

T = T
i o

v I tl/r I = v° to/r o

This relation, when combined with Equation (13) gives the result

i

tl/t ° = (rl/ro)5 (i6)

Equation (i0) provides a means for relating the forces in the

two elements; in particular, it is readily shown that

'^ )(rl/ro )3 (17)FI/F ° = (01/_ °

Equations (141 - (17) give the scaling laws for the velocities,

masses, times and forces in terms of the density ratio and the

radius ratio. Scaling laws for other variables such as angular

velocity, pressure, moment of inertia, etc., are readily deter-

mined by combining the above derived relations.
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3.2.3 Discussion of Correlation Concepts

In the Section 3.2.1 it was noted that two quite different ap-

proaches have been proposed by previous investigators to aid

in the correlation of free-flight data, and it was asked: Are

the different approaches equivalent? Also, it was noted that

some twelve different dimensionless parameters have previously

been proposed, and it was asked: What are the correct dimension-

less parameters? Attention will now be given to these questions.

The approach used by Scherberg and Rhode 36 and Bar_on 39 was

to define scaling laws for constructing models, for conducting

tests with models, and for predicting full scale vehicle charac-

teristics from the observed flight characteristics of models.

The scaling laws proposed by these investigators for the four

basic dimensions of length, time, force and mass are compared

in Table 23.

It may be noted that the scaling laws proposed by Scherberg

and Rhode are the same as those of Barton for the special case

of constant density. Also, it may be noted that Barton's

Table 23. The Basic Scaling Laws Prooosed by

Several Investigators

Quantity Scherberg and Rhode 36 Barton 39

Length rl/r ° -- rl/r ° rl/r ° = rl/r °

1 I

Time tl/t ° = (rl/ro)_ tl/t ° = (rl/ro)2

Force FI/F ° = (rl/ro)3 FI/F ° = ( pl/ po ) (rl/ro)3

Mass _i/mo = (rl/ro)3 ml/m 0 : (pl/Po)(rl/ro) 3
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scaling laws are identical with those derived in the previous

section. Thus, it is now seen that Barton's scaling laws of

dynamic similitude are precisely those relations which correctly

relate the variables associated with individual parachute

opening processes which have the same nondimensional initial

conditions X i, the same nondimensional vehicle-parachute charac-

teristics vector C, the same Froude number FN, and the same

added mass ratio v.

The second approach was that used by Kaplu_ 7, French 38

and Rust 29. They identified dimensionless parameters which

they required to be the same on model tests as on full scale

tests. The model data, when expressed in nondimensional form,

were then said to be directly applicable to the full scale flight

vehicle. The dimensionless parameters proposed by these investi-

gators are compared in Table 24 This table uses the notation

used in this discussion with several additions. The quantities

d and r are, respectively: the thread diameter (or ribbon
o g

width), and the parachute radius measured along the gore. The

quantities ao, k and E1 are the speed of sound (in air), the

spring constant for the suspension lines, and a characteristic

canopy rigidity respectively. It is interesting to note that

every one of the twelve parameters presented in Table 2L are

different.

Several observations may be made regardin_ _be dimensionless

parameters listed under Kaplun in Table 24 Kaplun's llst

does not include Froude number, one of the most important para-

meters which govern the operation of parachutes. The first two

parameters listed are Reynolds number and the third is Mach

number; these are important only in so far as they affect the

vehicle-parachute aerodynamic characteristics. For large sub-

sonic parachutes such as those in the Apollo system, Reynolds

number and Mach number are believed to be of secondary importance

to Froude number and added mass ratio. The fourth and fifth
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Table 24.

I

Kaplun 37

OoDoV 0

_o

OodoV o

_ao

Correlation Parameters Proposed by

Several investigators

French 38 Rust29

gD ° sin @

3m

CDvS v

V o

a o

k

2
Po VoDo

mo ,

3
0oD o

2
v i

parameters in Kaplun's list govern flexing and stretching type

displacements of the parachute structure. Whereas the flexing

parameter has little importance in relation _o the Apollo para-

chutes, the stretching parameter is known to be important. It

may be shown, using the scaling laws derived earlier, that the

strain ratio scales as follows (assuming the same materials

are used to construct both parachutes):

Cl/_ o = (pl/po) (rl/r o)
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This shows that variations in the test altitude and/or size of

the parachute will, in general, lead to mismatching of this

stretching parameter. The last parameter in Kaplun's list may

be recognized as Ca/BY.

The two parameters listed under French in Table 24 suggest

several comments. First, the two parameters are recognized

to be (sin_/FN2)/Ui 2 and 8 v/C a . For an__y one stage of parachute

opening, the flight path angle, _ typically varies by only a

small amount and may therefore be considered a constant. Thus,

as regards a single stage of opening, two equations in the two

variables v and r are sufficient to define the process. In

this case, it may be shown that individual parachute opening

processes belonging to the same set must have the same initial

conditions Ui, Ri; the same characteristics vector C; the same

added mass ratio v (or PoD3/m__); and the same value of the para-

meter FN/ _sin _ (or sin _/FN2). Thus, it is apparent that

French had the right idea but did not go quite far enough in

specifying similarity requirements. It is also interesting that

whereas French suggested only the two parameters given in the

table to correlate the parachute opening force coefficient CFr ,

Equation (ii) clearly shows that this coefficient is also a

function of (my/m).

The following observations may be made regarding the four para-

meters listed under Rust in Table 2L. The first and last para-

meters are equivalent to v and FN , respectively. The second
O O

parameter is a vehlcle-parachute characteristic, and the third

parameter is equivalent to I/FN2UI.

It is now apparent that the analysis results given by Kaplun,

French and Rust are quite different. However, it may be ob-

served that the analysis presented by Rust is compatible with

the relations given by Barton.
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The most difficult question of all is: What are the correct

correlation parameters? This is difficult to answer because it

depends on the process and what one is interested in correlating.

Therefore, let the scope of the question be restricted to the

Apollo parachute and flight conditions, and let it be the state

vector X = (U, @, R) that one is interested in correlating. Under

these restrictions, the results of the present investigation are

believed to be directly applicable. These results are shown in

Table 25 for two cases: (a) @ equals a constant, and (b) @ equals

a variable. It is acknowledged that correlations based on

Table 25 may not be adequate in all cases. In particular, it

is suspected that both compressibility and riser stretching may

sometimes be important enough to cause anomolous second order

effects.

Table 25. Correlation Parameters Proposed

in the Present Investigation

(a) 9 = Constant (b) @ : Variable

U i U i

Ri @i

c R i

FNo/ _sin @ C

Vo FNo

v
0
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SECTION 4.0

NEW LOAD PREDICTION METHODS

The most important imnact of the gene2al literature survey

(Section 3.1) on parachute opening loads was probably the rein-

forcement of the importance of including the consideration of

parachute added mass in the opening load calculations. Of the

prior Apollo load prediction methods, the only one that accounted

for the add$d mass was the opening load factor method, and the

consideration was indirect there. It was decided that it would

therefore be appropriate to undertake <he development of a simple

engineering metaod that included added mass, for the prediction

of opening loads and trajectories, and to develop it for the

particular case of t_e Apollo main parachute. This method came

to be called the Mass/Time Method and is the subject of Section

Another result of the general literature survey was the convic-
25

tion that Rust's theory, of all known work, represented the

most promising approach for developing a good, general model of

the parachute opening process. The assets of the method are

i) generality, 2) completeness, 3) freedom from restricting

assumptions, L) simplicity, 5) applicability So an Apollo type

recovery system and 6) that it requires only the appropriate

wind tunnel data to be applied to a new parachute system. Be-

cause of its promise, and because it was derived from basic prin-

ciples, it was decided taat it would be appropriate to develop

the theory as an effort parallel to the Mass/Time Method. It

was recognized however, that the complete development of Rust's

theory would not be possible during the present study, and so

the pursuit of this theory alone was not feasible. The me%hod

developed from Rust's theory is called the Shape/Distance MeZaod,

and its state of development is discussed in Section 4.3.
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Because some important questions remained at the end of the

development of the Mass/Time and Shape/Distance Methods, a

short study was conducted to help answer these questions. This

study is reported in Section 4.4. Its objectives were I) the

assessment of the applicability of the Mass/Time Method to

clustered parachutes, 2) the verification of the basic assumptions

of the Shape/Distance Method and 3) the inclusion of the forms

of the trajectory equations containing the added mass terms

(Section 6.3).

In addition to the work on the opening load prediction methods,

a new method was developed for predicting the deployment times

for Apollo parachutes, and the fill times of Apollo drogue chutes.

This new method is described in Section 4.1.

4.1 IMPROVED TECHNIQUE FOR DETERMINATION OF PARACHUTE

DEPLOYMENT AND FILL TIMES

Because of vehicle acceleration during parachute deployment, the

dynamic pressure at canopy stretch depends upon the deployment

time. In this way, accurate opening load prediction depends

upon accurate deployment time prediction. A discussion of tech-

niques for the determination of parachute deployment times is •

presented below. The inadequacies of the present method are

identified and a new technique, using extant computer programs,

is proposed.

During the Apollo Block II (H) program, the predicted deployment

times (from mortar fire or disconnect to line stretch) were ob-

tained from averages ofempirical data from the Block I and Block Ii

programs and the fill times (from line stretch to the peak load

point) were considered constant (except for the main parachutes).
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This method is inaccurate for the following reasons:

a) The tecnnique ignores the effects of the type of

depioyment system used, the type of vehicle, the

altitude, the flight path angle, the changes_in

mortar muzzle velocities with temperature (if

mortar deployed), the changes in mortar muzzle

velocities with altitude (if mortar deployed),

the changes in the deployment parachute (if static

llne deployedl, and the test-to-test differences

in the parachute configuration.

b) Using a constant filling time is not accurate,

for the times will change with the test condition.

A better technique, which accounts for all the important para-

meters ignored by the old method, is available using extant

computer programs (GT03, WG305 and SNAT).

Computer program WG305 is similar to SNAT except that it allows

for flight path angle variations.

The new technique is as follows:

a) The flight conditions at parachute initiation

(mortar fire or disconnectl are determined by

oTos.

b) The time to canopy stretch is determined by SNAT

(if static line deployment) or by WG305 (if

mortar deployment).

cl The fill times are taken from empirical data

CUrVeS .

d) Finally, these deployment and fill times are used

as imputs to the final trajectory computer run

using @T03.
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For example, Tests 83-6, 99-4 and 85-5 had mortar-deployed drogue

chutes. Computer program WG305 was used to determine the deploy-

ment times from mortar fire to canopy stretch. Then, the times

from canopy stretch to the peak load point were obtained from

Figure 25. A comparison of the predicted and actual times appears

in Table 26.

Test 84-4 had mortar-deployed pilot chutes which static line-de-

ployed the main parachutes. Computer programs WG305 and SNAT

were used to predict the pilot chute and main parachute deployment

times, respectively. A comparison of the predicted and actual

times appears in Table 26.

Figure 25 is a plot of the time from canopy stretch to the peak

load point versus the vehicle velocity at drogue chute canopy

stretch. The parameters are the type of deployment system used

and the reefing ratio. Two things can immediately be seen:

l) the greater the reeflng ratio, the longer the fill times;

and 2) mortar-deployed drogue chutes had shorter,fill times than

static line-deployed drogue chutes. This latter observation iS

attributed to the mortar-deployed drogues starting to fill in

the free stream; whereas, static line-deployed drogue chutes

fill in the vehicle wake.

Two tests in the Block II (H) program had static line-deployed

drogue chutes which were reefed to 40% Do . One of them exhibited

load link dynamics. This phenomenon alters the fill time in a

random way and makes discerning the fill time very difficult.

This left only one good test point.

In order to obtain a curve for static line, 40% Do drogue chutes,
4

a parachute inflation theory was used. French's paper states

"Theoretical considerations of the inflation of a parachute in

incompressible flow indicate that a given parachute should open
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in a fixed distance ..... " Knowing this, fill distance isollnes

were superimposed on the data in Figure 25. There were two

tests using static line deployed drogue chutes reefed to 36.5_ Do •

The data fell on one isollne.

' mo._a_ deploye x drogue chutesThere were eight tests us_ng ....

reefed to 42.$_ Do . These data also followed an isoline. There

was some scatter, however, which can be expected because, as

mentioned before, a fill time depends upon the parachute's

location relative to the vehicle wake. The eight data were

from BP tests and a Boi!erplate can be in any orientation at

drogue mortar fire, placing the drogue chutes in or out of the

vehicle wake. In this way, the scatter can be understood.

There were four tests using mortar-deployed drogue chutes reefed

to 36.5_. All of them, however, had load link dynamics. It

is anticipated that an isoline for this series of tests should

fall below that of the Boilerplate data by virtue of its

smaller reefing ratio.

As can be seen in Table 26, this new technique is very accurate

and should be incorporated into future load prediction methods.

Because the same computer programs are used for snatch load

calculation, one computer run will produce the deployment time

prediction and the _v's needed for the snatch load calculation.

_.2 MASS/TIME OPENING LOAD METHOD

stu_5 the simplified analytical approach to para-During this _,

chute opening load prediction, referred to as the Mass/Time

Opening Load Method, was developed in a digital com_uter

program to a useful level for the single Apollo ringsaii test

cases. With the input of initial conditions and empirically

derived parachute drag area and growth parameters, the computer

solves the _""equa_l_ns of motion and generates, along with vehicle

trajectory elements, the parachute force applied to the vehicle

through the riser connection as a function of time.
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4.2.1 Approach

Before describing the development of the Mass/Time Method, it

will be useful to discuss some preliminary considerations.

In the computer method for the Stage I and 2 opening loads, it

had previously been necessary to employ false filling times and

growth rates in order to obtain good agreement with measured

opening loads. It appears that one of the reasons for this was

the use of an "average" reefed drag area which in most cases

was much larger than the effective value at reefed opening. It

is recognized that the most dependable determination of reefed

drag area is made at the end of the reefed interval where near-

equilibrium conditions prevail. Therefore the following proce-

dure was implemented in order to improve the model of the first

two stages of opening, and the associated deceleration of the

system. The time to the peak load was used in place of the

reported filling time. The former could be determined accurately

from telemetered force traces, while the latter was subject to

observational errors. Also, the assumed linear growth rates in

conjunction with unit canopy loads of 5 psf and greater caused

computed peak loads to be coincident with full opening in each

stage. (This was not true of the final opening stage following

disreefing where the unit canopy loading was small.) Using the

time to peak load in first stage, and a linear drag area growth,

the peak drag area which gave a duplication of peak measured force

was found. The drag area growth was then changed to a value which

gave the drag area that had been observed at the end of the first

reefed interval. The procedure was repeated from this point for

the second stage of reefing. The resulting drag area history

has a rapid linear increase during first stage opening, a slower

increase during the first reefed stage, and another rapid increase

followed by a slower increase during second stage. The slower

increases reflect the continued filling during a reefed stage

after the reefing line becomes taunt but before the canopy fi_ling

has been completed.
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The same approach was not applicable to the calculation of third

stage opening loads• In this case, it was necessary to include

consideration of the canopy added mass in the equations of motion.

From the work of Heinrich and Noreen 22, the following equations

for vehicle motion and cluster parachute fo__ce may be derived:

Wv _ + W sin Y + ½ CDA0V2 + (Fpl + _
g'- v _p2 pn

= 0 (18)

CDSV 2 + _m +Fp - 2 0 + ' a (19)

where n is the number of parachutes in the cluster and ma is

the added air mass defined as the sum of the two quantities

identified by Heinrich as the apparent and the included air

masses.

The practical problem presented by the added mass terms is how

to derive values for the characteristic parameters and time

functions from the test data that have accuracies commensurate

with the other empirically derived parameters (drag areas,

filling times, etc.,) and still maintain the simplicity required

of a useful engineering tool. The decision was made to develop

a new 2-DOF computer program, rather than attempt to modify the

existing program (which embodied many special features not re-

quired for solution of the present problem). The equations of

motion used in this program were as follows:

: V OOS "{

y = v sin Y
+ Dv + Wv sin Y

m
v

g cos ¥
= V

where the parachute force F :

Equations (18) and (i9).

Fpl + Fp2
Q- , • • Fpn as in
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Letting _ = CDS and q = ½ 0v 2, Equation (19) takes the form

ama
Fp = _ q + v a-'_--+ (ma + m ) a v

p at

Data analysis indicated the feasibility of representing the

drag area growth function by the following relationship

¢ = _ ÷(_i 2 -4 )i I-{ -tll]n2 - [

Scheubel 8 and others have shown that the added air mass is a

function of the shape and radius of the canopy. He was among

the first to use the general relationship

(2o)

(2l)

ma = K0 r3

where K is a shape factor and r is the radius of the inflated

canopy. Both can be taken into account without knowing either

precisely by determining an empirical expression for the added

air mass as a function of the drag area _ .

Since _ = CDS p, Sp = _r 2, and none of the components of $ are

known as accurately as their product, it is convenient to re-

write Scheubel's relationship in the form

ma = 0 Ka _ 3/2 (22)

The new shape factor K a is treated as a constant for the present

because the inflated portion of the canopy, together with its

boundary layer and wake, does not appear to vary in shape through-

out the later stages of filling. This premise derives from the

observationthat the elongated portion of the canopy upstream

of the pressurized crown appears to be functioning mainly as

a flow duct with small momentum losses.
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Differentiating Equation (22) with Ka constant,

3 _-" (23)i = - oK '_' _"
a _ a _

and from Equation., ....

,# n I'_2 - i,' t - tI n-i:
t2 - tl 2 - t

Trial calculations showed that, using Eq_:aticn (21) alone, the

position of the peak load could be shifted in time by varying

the exponent n, when the unit canopy loading is held constant.

For the two 2eefed stages n = i gave good results, and it

ap__ed that %he added air mass had a small effect and could

be neglected•

In order to aid evaluation of the added air mass-time function

over the entire filling process, the computer p_ogram was made

double-ended so that measured force-time data could be used as

inputs. With _his approach to Equation (20),only ma and ama/at

remain as unknowns. And since

t_ t t_

f_ am a t' /_ ama(t)ma(t 2) : dt : dt + m (t_
O At tl At a -

it is pos:;ible %o _erform an iterative solution in the computer

for ma( t _/ •

_h_ nature of the empirical filling time parameter poses another

problem when dealing with reefing Stage 2 and the final opening

stage• A dimensior_less filling parameter is

vItf (25)
Kf - D

• "h ioniesswhere D is a characteristic diameter _ e dimens para-

meter, KF thus defined is applicable only to reefing _.tage i
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or to a nonreefed canopy; the other filling stages start from a

partially inflated condition which has a strong effect on the

stage filling time. Also, it will be noted that the reefing

line diameter is not a good characteristic length to use because

it has no well-defined relationship to the volume of the inflated

portion of the canopy, i.e., the pressurized crown region. The

projected diameter Dp could be used, but this is seldom known or

derivable with good accuracy (even from wind tune,el data) and

traditionally has been one of the intangible parameters that

have been avoided in engineering practice. Therefore, a more

general definition of the filling time parameter was considered

as follows:

vlt f
- L (26)Kf

2 1

Since vI is the initial velocity, i.e., at the start of the

filling process, this is unknown for the second reefed and

final opening stages until trial calculations have been made for

the preceding stage(s). Both initial and final drag areas are

known from the averaged test data for all stages based on the

given reefing parameters (Dr/D ° and _ r/_d). The square root

of the drag area provides a characteristic length which has a

logical relationship to the volume of the added air mass as

justified in the development of Equation (22).

_.2.2 Preliminary Work

Several avenues of approach were taken during the evolution of

the Mass/Time Method. These avenues are discussed below.

An attempt was made to develop a new approach for predicting

the loads of the opening main parachute on the computer by using

measured filling times and adjusting initial drag area and drag

area growth rate inputs (added mass was neglected) in a way that
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would yield peak loads equal to the measured values. It was

reasoned that if the results of each test could be duplicated

by this means, a basis for calculating mean values of the per-

formance parameters would be established. These mean parameters

would define the coefficients for tae equations of motion used

in the two-degree-of-freedom compute_ program wherewith the

opening loads for any given set of initial conditions eou!d be

predicted. Probable variations of actual opening loads about

the predicted value could be evaluated 0y utilizing the initial

conditions of the source tests as inputs to predict loads for

comparison with the measured values. A determination of the

standard deviation fcr all usable test results could then be

made.

The approach described above was found to be feasible for reefing

Stages i and 2, but the same success was not achieved in the

final opening stage. Here, although the peak load could be

predicted on the basis of the reported filling time (with an

adjusted dynamic drag area and a linear growth rate) the time

of occurrence could not be duplicated.

Two factors could be identified in the final opening phase that

would cause the actual force peak to occur later in the filling

cycle than the computer results indicated; viz.,

i) A nonlinear growth rate accelerating exponentially

near the end of the process, and

2) A large inertial component of the force due to

the rapidly changing acceleration imposed on the

inflowing air mass.

Approximation of an exponential growth rate with a two-step

linear program gave improved results wita an adjusted dynamic

drag area that was relatively large, indicating that a substantial

inertial force component, beyond the increment due to aeroelastic

expansion, could exist.
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Although the effective drag area of the full open canopy was

known to be close to 4300 ft 2, it was necessary to employ a

value of 9500 ft 2 and a three-step linear growth schedule to

obtain reasonably good prediction of the force-time history of

the final opening stage as the product of CDSq only. This indi-

cated that the added air mass effect was large and must be ac-

counted for.

The effort described above was quite useful in that it both

proved the feasibility of using dynamic drag areas (and neglecting

direct consideration of added mass) in Stages i and 2, and proved

the unfeasibility of not considering added mass directly in

Stage 3. To meet this requirement, a computer program was

developed around the set of equations described in the fore-

going discussion and summarized here for convenience. NDte

that the parachute weight component has been added to Equation (31)

in the £nterest of completeness•

x : v cos Y (27)

y = v sin ¥ (28)

• F + Dv + Wv sin y (29)
v = - m

v

g cos y (3o)
= _

V

where the parachute force, including the effects of the addeo

air mass, is expressed in this form:

Fp : _ q + vm a + (m a + mp) v + Wp sin¥ (31)

Both the effective drag area of the canopy 4' and the added air

mass m are expressed as functions of time in equations having
a

empirically based coefficients and exponents as follows:

CDS{t] = $ : _'1 + (*2 -$ 1' - t (32)
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ma = 0K a 4' 3/2

i .

• _ 3 0 Ka¢ :Vm a - _-

• '_2 -¢ i

t2 - tt

(33)

(35

41
The new computer program for the >]as_/Time Metnod was

developed to its present status during this study. It uses

Equations (31) through (35) to determine the values of the veri-

_30'_ as functions of time forables in Equations (27) througf. < j

each parachute in a cluster, it then numerically integrates

Equations (27) through (30) during the -ime interval of interest

to produce a time history of riser load (for each parachute.)

and a _tra_e_tory of the vehicle. The program us_s_ air cen_itj"_" ,_

values from a standard day density-altitude function. The

approach used in the program is to sum the individual parachute

loads and pwl} them _a _ _ _ _.e vehicle mass. In addition to this

pretest version of the predic _'__i_n program, there is a posttest

version of the program taat uses Equations (27) through (32) to

determine the time rate of change of added masses and then inte-

grates these derivatives to yield added masses as functions of

time• To obtain the masses as outputs, it is necessary to

input the canopy drag area-time histories and measured riser

loads for each parachute, as wel- as initial conditions. This

posttest version is an integral part of the prediction program,

thereby making the program doubl_ _nd_d; .... , it features both

a pretest and a posttest version. The posttest version may

be used to aid in the determination of the parameters in Equa-

tions (32)and (33). However, these parameters may be optimized

by trial and adjustment using the pretest version as well.

Incorporation of the 'terative .orocedu_-_ _q_ired.....___-_ _omole__. _._

data reduc _'_ _"_i_n in the computer was deferred in the nterest of

testing the basic orogram.
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In preparation for development of the single parachute charac-

teristic parameters to be employed in the Mass/Time Method, the

new 2-DOF computer program, being double-ended, was employe_ to

determine the approximate magnitude of the added air mass terms

by inputting the force-time history and estimated drag area

growth schedule of Test No. 80-1R. The results indicated a mass

value for the full open parachute of approximately 400 slugs.

In addition, a careful film analysis of the opening canopy showed

that a good fit of projected area growth was obtained with area

as a function of time to the 1.5 power. Also, since it was

known from previous ringsail experience that '_Dp increased from

approximately CDp = i.i at disreef to CDp : 1.79 at full open,

the value of n in Equation (32) might be expected to fall in the

range of 2.5 to 3.0, provided the time function of CDp had an

exponent of 1.0 or greater.

A fairly detailed film analysis of the opening Apollo main para-

chute (in Test 80-!R) was conducted to support the load prediction

methods being developed. This film analysis sought to study the

sequence of events during all three opening stages, and to define

the parachute area growth with time. The analysis has satisfied

these objectives and led to several important new observations

about the opening of an Apollo main parachute.

The method of analysis was to trace the parachute shape from

frames of the test films spaced at suitable intervals of time,

and then to derive the desired information from t_ese tracings.

Canopy mouth area and projected area were obtained from onbcard

film for all three stages. For third stage, these parameters

were also measured from a ground-to-air sequence.

The results of the analysis are presented in Figures 26 through

29. These figures show canopy projected area versus _ime after

launch and, where important and available, canopy m....h area
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versus time. The areas have been normalized to the equilibrium

projected area for a stage, as no attempt was made to evaluate

the areas in square feet. Also, in order to provide an indica-

tion of the data scatter, every point _ead from the film is

presented.

As can be seen, the filling is markedly different in first and

second stages from the inflation Zo fuLL open. In the two

reefing stages (see Figures 26 and 27) the canopy grows rapidly

at first, until the reefing lines become taut, and then grows

at a slower rate until the reefing lines are cut. in third

stage, the canopy begins to gmow rather slowly, but this growth

rate increases until the canopy reaches full open, as shown in

Figures 28 and 29. The area growth that occurs in the two

reefed stages after the reefing lines become taut constitutes a

significant portion of the final drag areas in both stages.

As previously pointed out, and verified by Figures 26 and 27,

this continued filling_ and the resulting bulging over the

reefing line, is significant for a ringsail, and therefore

ought to be considered in anai$_sis.

The delay between the time the mouth area begins to grow after

the reefing lines are cut and the time the canopy projected area

begins to grow seems to be about 0.2 sec in both second and third

stages. (See Figures 27 and 28.) This amount of time, while not

excessive, is significant when compared to the time to peak load

in both stages. It is probable that during this interval the

canopy added mass is changing percentage-wise more rapidly than

the canopy drag area. Rust, in Reference 29, identified this in-

terval as Phase IV in the inflation of a parachute with reefing.

His assumption that this phase occurs instantaneously appears

to be a good simplification from a practical point of view, and

may no% require modification. At the same time, the knowledge

of an actual value f_r the duration cf Phase iV could be beneficial

in the interpretation o_ result_ obtained t_rough th_ _b_n_/_s_ance

.._thod _ction_ _.31',.
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Figures 28 and 29, which depict the same events measured from

different sources, show the same general characteristics. How-

ever, an unresolved problem exists with respect to the difference

An the times at which maximum projected area was observed. The

problem probably indicates inherent difficulties in the analysis

method due to such things as timing errors, camera speed varia-

tions and the fact that the line of observation is skewed from

the canopy centerline in the ground-to-air film. It is felt

that the general observa%ions and curve shapes are valid.

In addition to the analysis of Test 80-!R, the third stage of

test 82-4 was studied to verify the variation in n with filling

time that will be discussed below. Uhis film analysis, which

is presented in Figure 30, substantiates the trend observed in

the calculations] the value of n decreases with the filling time.

Estimates of Ka, using Equation (33), ranged from approximately

0.3 to 0.75. Accordingly, a series of four computer runs was

made with n = 2.5 and K a : 0.2, O.a, 0.6 and 0.8. Single para-

chute Test 80-!R was employed as a model. Since the film analysis

showed the filling time to be close to 1.81 sec, instead of

1.94 sec, this new value was substituted. Good results were

obtained with K a = 0.65.

It is interesting to note that the added air mass associated

with the fully inflated canopy with CDS = L300 ft 2 and K a = 0.65

is 320 slugs or approximately 10,300 Ibs at the test altitude.

This is equivalent to a sphere of air somewhat greater in dia-

meter than the inflated canopy.

Since the peak load can be shifted in time by varying n, two

additional computer runs were made with Ka = 0.65 and n = 2.5

and 3.0. The result for n = 3.0 was a nearly perfect fit of

the measured force-time history with Fo = 13,754 ibs (measured

Fo = 13,737 ibs) and tfo= 9.56 sec.
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At the same time, an experiment was performed in the computation

of the force-time history of the two reefed stages. Instead of

removing the added mass terms with K a = 0 as had been done pre-

viously, the entire program was run with K a = 0.65, letting

n = 1.0 for the reefed opening stages only. This produced a

nea__ly perfect fit for the first stage with Frl : 13,524 Ibs

(measured Fr7 = 13,554 Ibs _ at t = 1.6 sec, but trouble developed

in the second stage; namely, large discontinuities appeared in

the force-time plot due to abrupt changes in ma. It will be

noted that Stage " opening was attended by a sharp drop in load

after the peak was reached, due to a drop in ma attending the

transition from rapid to slow filling. This happens to match

the measured data with high fi n.e_ity,; and is found repeated in

other test runs. But at Stage " disreef, ma, being tied to _{

through Equation (3%), suddenly increased from 0.61 to 25.27

sl/sec and again at the load peak suddenly decreased from %1.58

to 1.48 sl/sec. The resultant distortion of the force-time plot

made it clear that the use of a linear growth rate for'3 in

Stage 2 was a poor approximation because it lacked the smooth

transitions that could be detected in the film records. Two

courses of action were open: (i_ for the sake of simpi'city,

return to the original treatment of the first two stages

without the added mass terms in the force equation, and (2) de-

velop a ._(t) function for the second stage that would accurately

represent the actual process. After testing of the second

approach led _o undesirable complications in reefing Stage 2,

the first course of action was chosen, and pursued to completion

for the single par_c_ute case, because its feasibility had

already been demonstrated.

Effort was then focused on establishing the best values of the

input parameters for each of the Block i!(H) single parachute

tests, so that the average values could be determined for the

single parachute case.
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The program with inputs changed to the conditions of Test 80-2

produced reasonably good results. The predicted load-time

history of Stages I and 2 was in good agreement with measured

data; the peak load of Stage 3 was high by i0 percent and

occurred 0.06 sec laze. Correction of the Stage 3 peak load

calculation for Test 80-2 posed a problem because the initial

dym.amic pressure was only 3 percent a_ove the measured value

and the load onset agreed exactly with the measured data. The

fact that the peak was higher and occurred later than the actual

indicated that the exponent n should be less than 3. Because

this might compromise the load calculation for _est 80-1R,

further confirmation was sought by inputting the conditions of

tme third single canopy Test 80-3RI and rerunning Test 80-2,

both with n = 2.5 and n = 3. The results of these computer runs

showed that n = 2.5 gave the best force-time match for both

tests. Similar results were found for the other single canopy

tests, with the result that n varied from test to test between

2.0 and 3.0 approximately. It was found <hat the variation in

n correlated well with the filling time of the third stage.

The six single parachute tests (Tests 80-!R, 80-2, 80-3RI,

80-3R2, 82-2 and 82-4) provided information on the input para-

meters, and it was possible to tentatively formulate a method

for predicting the loads for all three opening stages

for single main parachutes. This method is described In Section

_.2.3, and its accuracy is demonstrated in Section _.2.4

k.2.3 Mass/Time Method for Single Chutes

In order to use the Mass/Time Method for single parachute tests,

the following procedure is carried out:

a) Initial conditions must be provided to the prcgram.

These are vehicle weight and drag area, altitude,

velocity and flight path angle.
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b) A parachute drag area-time history must be provided.

Drag areas at the end of each stage are determined

from Figure 31as functions of reefing ratio. Drag

area at the completion of reefed inflation in

Stage i is evaluated as 80 percent of the drag

area at the end of Stage i. Drag area at the

completion of reefed inflation in Stage 2 is eval-

uated as 90 percent of the drag area at the end

of Stage 2. Drag area at the completion of fil-

ling in Stage 3 is 4300 sq ft. Filling times are

calculated for each stage from _h_ relation

tf = Kf ('_i2 - l

where V I is the parachute drag area at the end of

the previous stage, 4'2 is the drag area at the end

of inf!azion in the stage under consideration, v_
±

is the vehicle velocity at the end of the previous

stage, and values of K_ are 34.1, 8.64 and 8.06

for Stages I, 2 and 3 reso_ctively._ . Reefing cutter

times must be specified for the method to be used.

The exponent n is determined from Figure 32 as a

function of tfo , the filling time in third stage.

c,," The added mass factor Ka is 0.66 for Stage 3

In this rudimentary form the Mass/Time program must be computed

stage-by-stage to determine the velocity vI at the end of each

stage. Its application would be simplified by including the

filling time calculations in the program for the second and

third stages, inputting Kf along with the drag areas. By fur-

ther augmentation of the computer program with a table of n versus

tfo (Figure 32) the complete opening process may be computed

in a single run. However, implementation of these refinements

was deferred in tr.e interest of completing the evaluation of

the single parachute test cases.
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4.2.L Accuracy

The method described in Section _.2.3 was applied to single

parachute tests 80-1R, 80-2, 80-3R!, 80-3R2, 82-2 and 82-a.

These tests present a range of vehicle weights from 5300 ib

to 10,300 Ib, variations in first and second stage reefing

ratios, opening loads of from 14,000 !b to 23,000 ib in Stage i,

13,000 ib to 33,000 !b in Stage 2 and iL,000 It to 32,000 ib in

Stage 3, initial flight path angles ranging from nearly hori-

zontal to nearly vertical, and initial flight velocities ranging

from 295 to 375 ft/sec. In spite of the many, wide variations

in test parameters, the accuracy of the method is excellent as

demonstrated in Figures 33through 36. When errors are measured

from the nearest of the load measurements established by the

two load links used in each Zest, Zhey are within + _ percent

for 17 of the 18 data points [6 tests x 3 opening loads/test)

and 12 percent in the eighteenth case. These ranges in measure-

ments are indicated bj pairs of short horizontal lines for each

stage in Figures 33 through 38.

It should be noted that this work represents the first successful

attempt at calculating a time hisZory of force for third stage,

rather than only predicting peak load.

After the results of the six single parachute tests had been

studied, it was decided to apply some of the assumptions of the

Mass/Time Method to a two-parachute cluster test and find out

how well the model could accommodate the cluster situation.

An !CTV test (81-2] was chosen. Dmag areas were determined by

the procedure for single parachutes. Because applicable values

of Kf remained to be determined by cluster data analysis,

actual filling times were used. The resui%s presented in Figure

39 illustrate in a general way Zhe effects of cluster operation

on the parameters of interest:
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a)

b)

Nearly synchronous reefed opening of the two

canopies during Stage i is attended by measured

peak loads about 20 percent less than _redicted

on the basis of single canopy drag areas. With

allowance for small inertial effects, the inter-

ference between canopies can be accounted for by

a reduction in effective drag area of about 18

percent in this case. This is consistent with

both film observations and the geometry of two

circles of equal area expanding side by side, with

progressive flattening of the interface, approaching

as a limit two half circles with rounded corners.

With a smaller than predicted total drag area

at Stage ! disreef the _ynamic pressure would have

been higher than predicted. This would account

for part of the difference between measured and

predicted peak loads for Stage 2 of canopy No. i,

but the effective drag area is Jncertain and added

mass effects undoubtedly are present, if the

predicted drag area was close to actual, as indi-

cated by the measured F/q at Stage 2 disreef, the

added mass effect on canopy _o. _ was substantial.

This view is supported by the near equality of

Stage 2 peak loads indicated for canopy No. 2

which disreefed one half second later, and being

the lag canopy most probably would have a smaller

drag area than canopy No. i. This would offset the

higher than predicted dynamic cressure at disreef.

Verification of these surmises requi_es a second

computer run with revised reefed drag area in

both stages.
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c) During final opening the lag canopy disreefed

i.i seconds after the lead canopy (No. i), and

good agreement between measured and predicted

loads is shown. The lead canopy predicted peak

load is 50 percent greater than measured and is

anomalous in that it is still rising at the cutoff

point where the canopy reaches full inflation;

the measured peak occurred prior to full inflation.

No explanation for this anomaly has been found

because it was necessary to conclude the investi-

gation with this single computer run.

4.3 SHAPE/DISTANCE METHOD

The Shape/Distan_ Opening Load Prediction Method is a potential

tooi for both loads and trajectory prediction. Adapted to a

computer, the method provides continuous loads and trajectory

prediction %hroughout a test. The method was chosen for develop-

ment because it adapts easily to the Apollo ELS parachutes; the

method accommodates reefing, load drag, and canopy added mass.

The development is not complete, however, for specific parachute

parameters required by the method are not, at this time, available.

In their absence approximations have been used, and encouraging

results have been obtained.

A brief review of the theory and, in more detail, the progress

made to date in its implementation to single Apollo main para-

chutes is presented in this subsection.

4.3.1 Review of Rust's Theory

The method was developed from Rust's "Theoretical Investigation

of the Parachute Inflation Process. ''29 The opening load theory

presented in this report is summarized on the following next

few pages.

161 NVR-6431



NORTHROP

Rust derived the governing differential equations by considering

the free body diagram of the vehicle-parachute system in Figure 40.

By equating the force sum to the system's rate of change of

momentum, Rust obtained two trajectory equations: one normal

and one parallel to the flight path

d [( _ v] = (W _ W ) sin @ - D_ - D_
d--t m4 + mc + ma; _ c

d@
v d-_ : g cos @.

The variables were then nondlmensiona!ized and the in-

dependent variable was changed from time _ _ "_ _ p_ojected radius

using the relationship

d / ., fl (...) d_ d_ -- d_ d _ )

dt d_ d_ dt d_ d_

where s, v, and R are dimensionless trajectory distance, velocity,

and projected canopy radius, respectively. The change of inde-

pendent variable was to obviate the need for an assumed diameter-

time relationship.

Upon expansion and rearrangement, the two equations are of the

fo rm

dY 2 2
+ fl (_) "_ = f2 [7) sin @

dR

_.2 d.__@
-- : f3 (_) cos @

dR

These trajectory equations, which must be solved simultaneously,

y__d velocity and flight path angle as functions of R.
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To get a relationship for time, Rust used the chain rule.

dt dt ds ! ds

dR ds dR v dR

Ol _

dR

Rust redefined the free body diagram to get a relationship for

riser force• Equating the forces acting on the vehicle in

Figure AO to the vehicle mass times acceleration and rearranging

results in

F
P

O_

F
D

QV

= W % sin _ - D% -mg d--£

: _g sin _ - D% - m R) .

dT j

This is an auxiliary equation which, when used with the tra-

jectory equations, provides riser force, velocity, flight path

angle, and time as functions of R.

One other relationship is needed to determine the coefficients,

fn (_)" In each of these terms, ds/dR appears (it results from

the independent variable change using the chain rule _I. Rust

showed how to obtain this by considering

ds _ dV / dV
dR dR dS

where V is canopy volume. The numerator can be obtained by

considering the canopy as a truncated cone topped by an ellipsoid.

A relation between volume and radius is determined geometrically

and differentiated to obtain d_/d_.
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The denominator can be obtained as follows:

p m

dV _ dV dt I dV

d_ dt d_ V dt

Where d_/dt is gotten by mass balance. The __ate of change of

enclosed mass must equal the flow rate in, less the flow rate

out. Or

d-T _v : (0 Av):n - (0AV)out

dV
: (Av)in - (AV)out

By assumption or wind tunnel test, the veloc'ties can be found.

The areas are known.

Collecting the equations for inspection, it can be seen that

there are three differential equations and one auxiliary:

2
-- 2

d--iv+ fl (%) _ = f2 (T) sin @

-V2 d@ = f
dR 3 _R}cos

d__t = f5 (-_) / _
d_

Fp = f6 (Z)"

The three differential equations have to be solved simultaneously,

an appropriate task for a computer. Besides containing dS/d_,

%he coefficients fn (R) have terms like canopy drag, vehicle

weight, and canopy added mass.

When integrated, the equations provide velocity, flight paZh

angle, time, and riser load.
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4.3.2 The Computer Program

41
The computer program was designed to provide continuous loads

pr_d±_tion, using _ust's inflation theory, throJgh-and trajectory _ "_ ..

out a test. All phases of inflation nave been programmed and

checked against Rust's hand-calculated example, given in Appendix C

of Reference 29.

The computer program is composed of a main program with six sub-

routines. For a given set of initial conditions, canopy parameters,

and v_h±cle weight and drag; the program yields velocity, al _'_ ,

dynamic pressure,.... riser load, canopy _._-ag area, =_iight path angle,

projected radius, and time. The main orogram provides the coef-

ficients of Rust's differential equations, as well as input and

output. The first subroutine computes continuous density change

with altitude by means of a curve fit to the 1959 Standard Day

Atmosphere. The second subroutine calculates a potential flow

added mass of the canopy at each integration step. The third

and fourth subroutines control the integration. The fifth sub-

routine presents the proper differential equations, as they apply

to each phase of inflation, to the sixth subroutine, w_ich does the

nume._cal integration (fourth order RJnge-Kutta techniquej.

4.3.3 Application o_ the ,_e_hod to an Apollo Main Parachute Test

The Shape/Distance Opening Load Hethod has been applied to Apollo

main parachute Test 80-iR. A discussion of the approach to pro-

viding the necessary input to the computer program and of the

results is presented here.

4.3.3.1 Computer Program Input. Consider the inputs which

are needed by the computer program. First, relationships peculiar

to the parachute being modeled; drag coefficient, added mass,

and canopy shape information must be supplied. Then, those con-

ditions peculiar to the test being simulated; initial density

altitude and velocity, vehicle weight and drag, percent reefing,

and cutter times must be provided.
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The !aZter are obtained from test plans. The former are more

difficult; some of the parachute parameters should be obtained

from wind tunnel testlng (one of Zhe advantages of the Shape/

Distance Method is that they can be obtained in such a way). in

lieu of accurate knowledge of some of the parachute parameters,

approximations have been made, using the best available informa-

tion.

4.3.3.1.1 Canopy Dra_ Coefficient. As a parachute inflates, its

drag area changes, not only because of an increasing projec__d

area, but also because the canopy shape is changing, it is not

enough to assume a constant drag coefficient. The drag coef-

ficient as a function of projected radius and eccentricity is

needed, but is not available. However, the equilibrium drag area as

a function of reefing ratio is available (Figure 41), and was

obtained from the end point dynamic drag areas (instantaneous

riser force/dynamic pressure at end of a reefing stage) of

numerous main parachute tests.

Unfortunately, the use of this function produced unrealistically

high first stage loads. This is understandable because of the

shape differences between two ca_opies having the same inlet

radius, one inflating and the other not inflating (at equilibrium).

This shape difference can be seen in Figure 42.

especially pronounced at small reefing ratios.

the shapes are almost identical.

Thiseffect is

Near full open,

Because of this problem, a new approach was tried. Different

curves of CDS versus R/R o were generated, it is known that

added mass manifests itself as drag. During the first sZage

of inflation the added mass is small, so the resultant first

stage loads can be attributed to canopy drag alone. This is

an aid to determining the true CDS curve, that curve which
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(a) Before Equilibrium (b) At Equilibrium

Fig. 42. Comparison of Canopy Shapes at Same Mouth Diameter

Before and At Equilibrium

generates first stage loads best. During the seccnd reefing stage

the effect of added mass is more significant. As a boundary con-

dition, it was reasoned that the true inflation curve must approach

the equilibrium curve as full open is approached. These two aids

provided points at low reefing ratios and one point at full open

through which the true curve must pass.

Because canopy drag is associated with added mass effects, further

discussion will be postponed until after the added mass's pre-

sented.

4.3.3.1.2 Canopy Added Mass. The added mass analysis began with

a literature review. While yon Karman II provided insight into the

physics of the phenomenon and Heinrich 20 performed yon Karman's

proposed experiment and studied the effect of porosity on the
42

coefficient, Neustadt provided the most immediately practical,

• _u_d bequantitative approach Neustadt assumed the canopy _ '_
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represented by an ellipsoid having the same volume and projected

diameter and used the well-established relations for the added

mass of ellipsoids of revolution from potential flow theory.

Both Heinrich and Neustadt assume the mass is a function of volume.

With this assumption, the relative amounts of added mass in each

reefing stage can be estimated. Because the mass is quite small

during the first reefing stage, it was decided to attribute the

entire parachute load to the drag coefficient. The air mass is

more significant in the second and third reefing stages because

the volume is greater.

The computer program was made to calculate the canopy's "Neustadt

ellipsoi£" at each integration step. Usin_ potential flow theory,

the program ca!curates the added mass of each ellipsoid. Because

of Neustadt's assumptions (potential flow, imporous cloth, equiva-

lent shape), the resultant mass coefficients had to be modified

by some factor. This factor was determined by iteration, using

the riser load unaccounted for by the drag coefficient.

Figure _3 shows several canopy shapes assumed by the main para-

chute in Test 80-1R and their equivalent ellipsoids as calculated

by the program and drawn to scale.

4.3.3.1.3 Determining d_/d_. Rust's theory requires knowledge

of the rate of change of distance with radius, d_/d_. This can

be obtained through the radius-time relationshi_ {d_/d_ = v

• " " dRp./d_
Rust stated that if the canopy inflow and outflow velocities

are known, ds/dR can be calculated. He showed how it can be

done using mass balance to get dV/ds and combining it wiZh d_/d_

by chain rule. Unfortunately, these velocities are not now known,

leaving two alternatives: (I) assume the velocities and adjust

to get the correct output (iterative approach), or (2 _• determine

the radius-time relationship from film analysis.

) •
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/Q
I

(a) During Phase I (b) During Phase V

Fig. 43. Comparison of Canopy Shapes with Their

Equivalent Ellipsoids

The latter is chosen because an iterative approach is already

being used for the drag and added mass coefficients. The diameter-

time data are determined from the film analysis and used by the

computer program to calculate instantaneous values of dRp/dt

and then d_/d_.

_.3.3.1.4 Film Analysis. Films from Test 80-1R were analysed

to determine the canopy shape parameters. Measurements of the

eccentricity of the elliptical portion of the canopy, the charac-

teristic radii defining the phases of inflation, and the inflated

length of the canopy in the first phase were obtained from the

flight test films. This analysis required more detail than the

film analysis described in Section S.2.

_centricity versus time for the first three phases of inflation

was taken from air-to-air and ground-to-air film coverage (See

Figure 44). Because of the obliqueness of the parachute axis

f_
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to the camera line of sight, the eccentricities could not be

precisely measured. This obliqueness is not excessive during

the first two phases but becomes considerable after that.

During the first two phases, the canopy crown shape is similar

to a prolate hemispneroid. Z'he transition tc an oblate hemispheroid

occurs during the third phase. During this phase, the inlet

radius is restricted by the reefing llne, yet the canopy continues

to inflate by bulging out, causing the crown ts pull in and be-

come oblate. After _he transition from pro!ate to oblate, the

canopy remains oblate.

Rapid breathing of tho canooy was observed in _h_ mi_d.e o Phase

iii at a time when severe fluctuations of eccentricity and dynamic

drag area occurred. The cause is not known. Perhaps the increasing

projected radius makes the parachute more responsive to the vehicle

wake. This breathing was not observed at anj other time. Figure

_4 presents faired data.

The parachute projected radius was measured as a function of time

from onboard films. These values appear in Figures a5, 46, and

a7 . Because of a lack of any accurate reference lengths in the

films, the radii may not be exact. The dimensions were based

on known unloaded reefing line lengths. The characteristic

radii defining each phase of inflation are tabulated in Table 27.

The distance the airball has progressed as a function of dimen-

sionless projected radius during Phase ! is used to calculate

inflated volume during that phase, it can be seen in Figure 48

that the relation is linear. No change in the rate of progress

of the airball can be detected near the vent.

a.3.3.2 Results. Those parachute parameters which were deter-

mined by iteration and the final loads and trajectory prediction

of Test 80-1R are presented here.

1Y3 :<v_-6a3i
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Two canopy Crag area functions were used:

al for the first stage

\

CDS c = 5363. (R/RoJI'3 _ I0. and

b for all other reefing stages

\ 1.385
CDS c = 7980. (R/R oj

These functions are compared with the equilibrium dynamic drag

area, discussed in Section a.3.3.1.I , in Figure a9.

The first function gave good dynamic drag area results, with no

added mass, during the first stage of inflation (see Figure 50).

The second function gave reasonable dynamic drag area results,

with added mass, during the second stage of inflation.

(see Figure 51.

Some difficulty arose because drag area was based uDon canopy

inlet size (reefing ratio). Rust's idealized canopy geometry

does not allow for skirt bunching, whicn alters the crown

eccentricity observed in flight test films. Use of the observed

eccentricity with Rust's relations results in large inlet sizes

and larger CDS than actual.

This problem would not exist if drag as a function of projected

radius were known (as would be the case with wind tunnel experi-

ments}.

The added mass of the parachute canopy as predicted by the method

of equivalent ellipsoids is presented in Figure 52. Predictions

are made only during the inflation phases; no prediction is needed

during the reefed phases, which accounts for <he gads in Figure 52.

in an attempt to compensate for Neustadt's assumptions, computer

runs were made with Zhe added mass from the theory modified by a

factor to determine what factor gave the best results (multlpiying

factors of 0.0, 0.5, 1.0, 1.5 and 2.0 were used_.
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As mentioned above, first stage loads were obtained ,.'sing no

added mass. The first two phases used CDS c = 5363 (R/'Ro)l'3-1C,

and the third phase used an empirical CDS-time re!ationshic.

The first stage loads and trajectcry information appear in

Figures 53, 54 and 55.

Lxcellent first stage loads and trajectory predictions have been

made. The peak opening load Yas close to the measured peak and

the predicted and actual dynamic pressures correlated well.

However, predicted flight path angles lagged the actual. This

problem has been attributed to imprecise d_/dR, a result of

inaccurate film analysis of projected radius. The second stage

loads and trajectory information appear in Figures 56, 57 and 58.

For clarity, only those curves for which the added mass factor

is 0.0, 1.0, and 2.0 are shown.

It can be seen that the larger the added mass, the greater the

peak load and the earlier the peak load time. The predicted

loads are low because the dynamic pressures are low. The

lower than actual dynamic pressure has been caused by the

fol lowir_ :

a) At disreef, the dynamic pressure was abo'Jt I psf

lower than actual. The continuing ds/dR inaccuracy

caused greater dynamic pressure discrepancies during

the second stage.

b) Because an instantaneous Phase IV was assumed (by

Rust, and therefore, here), the predicted loads

rise at disreef unlike the actual (the assumption

means that the inlet diameter instantaneously in-

creases t_ the condition of tangency). It can be

seen t'_,at the impulse of the predicted riser load

is abo.'t twice the actual, causing an excess dynamic

_ress,_re loss of 1.0 - 1.5 psf, a significant amount

!8a N_- 6431
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considering the large drag areas. Subsequent

development of the Shape/Distance Method should

include removal of the assumption that Phase IV

is instantaneous.

When using the projected radius- time method of determining

ds/dR outlined in Section 4.3.3.1.3, it is important to curve

fit the input radius-time data. At first, actual radius-time

points were provide_ to the computer, which calculated dRp/dt

from the points. Because the added mass effects are very

sensitive to the slope dRp/dt, results were as in Figure 59.

That is to say, the use of a discontinuous dRp/dt resulted in

discontinuous loads. The smooth curve in Figure 59 resulted

from using a continuous dRp/dt function obtained from a curve

fit of the data.

The third stage loads reflect this phenomenon, for there was

not time to curve fit the data. Again, loads are presented

for added mass factors of 0.0, 1.0, and 2.0. It can be seen

in Figure 60 that the load peak times become earlier as the

added mass factor increases. Once again loads are low because

dynamic pressure (Figure 61) is low. As in the second stage,

a distinct Phase IV is needed.

4.3.4 Summary

To fulfill the need for a satisfactory analytical model of the

parachute inflation process, and in order to better understand

and predict the loads observed durirg the process, a start was

made at developing the Shape/Distance Opening Load Prediction

Method during the Apollo analysis study.

The method which has been developed for the prediction cf

opening loads for a single Apollo main parachute was adapted

from the work of Rust.29 Rust's theory was chosen because, of

all the approaches studied, it provided the best combination of

completeness, lack of restrictive assumptions, simplicity, and

applicability to the Apollo p_rachutes.
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Good progress has been made in that (i) the method has been

programmed for the computer in a form that accommodates many

of the special features of the Apollo system, including reefingj

and (2) all input data have been estimated for the Apollo main

parachute. While initial results are encouraging, difficulties

in estimating the input data arose because of the inadequacy of

information on certain of the basic parachute parameters.

4.4 SUPPLEMENTARY STUDY

When the Mass/Time Method had been established for single para-

chute tests, and the Shape/Distance Method had been brought to

its present state of development, there were still some questions

of interest which had not been answered.

These questions were:

a)

b)

c)

How can the Mass/Time Method be applied to cluster cases?

What is the effect of including the added mass terms

in the flight path angle equation derived in Section

6.3?

Are Rust's basic assumptions valid?

While there were other questions remaining, it was realized that

these three important ones could be answered by a short supple-

mentary study. This study was carried out and is described here.

_. 4. I Approach

The technical approach was to answer all three questions Jointly.

It was realized that this could be done with several modifications

of the computer program for the Mass/Time Method.

The first modification was the incorporation of the added mass

term in the flight path angle equation, in a manner similar to

its incorporation in the velocity equation. Thus, the flight

path angle equation was changed from:
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m'_ = - m_ cos Y
V

to: (m +m ) -- - mg cos x
a V

The second modification was the incorporation of Rust's basic

assumptions. The assumptions included were:

a) That parachute added mass and drag area are

unique functions of the state of parachute

opening (for a specific parachute at a specific

altitude ).

b) That the state of parachute opening is a unique

function of the distance the parachute has traveled

since the beginning of inflation (in any particular

stage ).

While it was believed that these assumptions were valid from

an engineering point of view, their validity had not been

demonstrated during the present study. It was reasoned that

a good way to prove their validity would be to incorporate

them in the computer program for the Mass/Time Method and

see how they worked. To include the two assumptions noted,

it sufficed to express drag area as a function of the distance

traveled since the beginning of the stage for which the loads

were being calculated. Because added mass was already expressed

as a function of drag area in the Mass/Time Method, added mass

automatically became a function of the distance traveled since

the beginning of the stage. Another consequence of this modi-

fication was that a given parachute would open in a fixed distance.

This is the same assumption that was made in the Mass/Time Method

to determine filling time. But here, as in the Shape/Distance

Method, filling time does not need to be predetermined; rather,

the filling t_me is determined by the method as a side result
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of the opening load and trajectory calculations. It was this

fact that allowed the modified method to be used in cluster

cases. The two difficulties posed to the Mass/Time Method

by the cluster case that could not be readily accommodated were

the determination of drag areas and filling times. The aero-

dynamic interference in the cluster case affects the drag area.

And the effect of nonsynchronous disreefing is to make the

filling time harder to determine than in the single parachute

case. Of course, these same difficulties were successfully

solved during the development of the Mass/Time Method for single

parachutes; and the approach to solving them in the cluster case

would be the same as it was in the single parachute case. Unfor-

tunately, there was not sufficient time at end of the Mass/Time

Method study to pursue the iterative procedure required to de-

termine drag areas and filling times(or the filling distance

constant Kf) for the cluster case. So, as stated above, the

modified Mass/Time Method, because it would not require pre-

determined filling times, was regarded as a fairly quick means of

looking at the cluster case. The problem of determining drag

area could n_t be avoided as in the case of filling time. There-

fore the scheme established in the Mass/Time Method for single.

parachutes for determining drag area was used in the cluster

case. As expected, use of the single chute parameters caused

the accuracy of the calculated loads to be poor.

Using the approach outlined above, the modified Mass/Time Method

was formulated and applied to several of the tests for which

data were available. These tests included the six single chute

tests on which the Mass/Time Method had been used, three two-

chute cluster, ICTV tests, and one three-chute cluster, PTV

test. The modified method was applied to the single chute tests,

both with and without the changed flight path angle equation.

The set of calculations without the changed equation showed that

the method was working properly, and therefore that Rust's basic

assumptions would provide a good engineering approach. The set
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with the changed equation showed that, within the context of

Apollo main parachutes, the change did not affect the opening

loads significantly. The modified method was then applied to

the cluster cases. The method worked reasonably well on the

cluster cases, considering that no correction was attempted for

the aerodynamic interference. The method was able to handle

the clustered parachutes in that it predicted fairly accurate

filling times. However, the opening loads were generalIy too

high, ind'icating the necessity of a reduction in drag area due

to aerodynamic interference. It should be pointed out that one

set of general parameters was determined, with the aid of results

developed in the Mass/Time Method study, and these general para-

meters were then applied to all tests studied, single and cluster

cases. Furthermore, there was nc time remaining to modify these

parameters. Therefore the results to be presented in Section

4.4.3 represent the very first attempt at predicting loads with

the modified Mass/Time Method. It is expected, therefore, that

these results could be significantly improved upon thorough

development of the general parameters for application to the

cluster cases.

4.4.2 Modified Mass/Time Method

.-he technical approach of the modified Mass/Time Method is out-

lined above. The modifications of the computer program have

been indicated in a most general formj though they are presented

in detail in Reference 41. What remains is to describe the

general parameters used by the program. These parameters were

determined on the basis of results of the Mass/Time Method study,

and represent the first attempt at their determination.

a) Fil!i_ Distance. The distance required for a

parachute to open in one of its stages was ex-

pressed as a function of the drag area growth.

This is quite similar to the approach taken in
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b)

the Mass/Time Method. Figures 62, 63 and 64

show the graphs used to determine opening distance

in the first, second and third stages, respectively.

_nese figures show filling distance as a function of

area growth. To use them, the area growth for each

stage must be known. For example, in Test 80-3RI, the

drag area grew from 320 sq ft at the end of Stage !

to 1067.sq ft at the end of inflation in Stage 2

(1067 = (1186)(0.80), where 1186 sq ft was the drag

area at the end of Stage 2, based on the reefing

ratio. ) Therefore, using Figure 63 and an area

growth of 747 sq ft (= 1067-320) in second stage,

a filling distance of 132 ft is determined in second

stage of Test 80-3RI. The equations of the lines in

Figures 62, 63 and 64 are in the computer program so

it can make these calculations. It has also been

given the capability of calculating how far the ve-

hicle has traveled since the beginning of openirg,

by integrating the velocity (and "remembering" where

it started. ) It is noted that this representation

of the filling distance would appear to contradict

the work in Section 4.2. However, use of the linear

filling distance function merely represents a less

sophisticated approximation than the approach used

in Section 4.2. This linear approximation was chosem

for expediency.

Drag Area. Drag area was determined as a linear

function of the distance traveled in Stages I and

2. In Stage 3, drag area was expressed by the

equation

CDS (s) : II00 + 3200 I( s - 22)/103} 3 ,

65 _< s <_ 103
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where s is the distance traveled since passing

a reference point 103 ft before the completion of

filling. The cause of this fairly complicated means

of expressing CDS as a function of distance was

that, while it was assumed that all parachutes in-

flated to a full ocen drag area of 4300 sq ft, there

were variations in the area growth to full open,

because the final drag area in Stage 2 was varied

from test to test. Further complication was met

in expressing the drag area for values of s less

than 65 ft. The approximation used here was to make

the drag area growth proportional to the distance

traveled since the beginning of inflation, the con-

stant of proportionality being a quotient; the nume-

rator was 1260 sq ft minus the final drag area in

Stage 2 (CDS(65)=1260 sq ft) and the diameter

was the distance required to travel from the beginning

of inflation to the point at which s is 65 ft. This

complicated expression was unfortunate in that it

caused numerical difficulties of the sort described

in Section 4.2.2, because it resulted in a discontinuity

in m a. However, it was felt that the problem did not

significantly affect the peak loads calculated. Never-

theless, this is probably one area where improvement

in the modified Mass/Time Method is possible. Also,

for s greater than 103 ftj CDS was set equal to

4300 sq ft. This caused another discontinuity in

ma and invalidated all calculations after the lead

chute reached full open. This is not a serious

problem though, since the full open load on the lead

chute is always greater than those on the lag chutes,

and is therefore the full open load of interest to

the designer.
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The drag area values at times outside the in-

flatiofi interval were determined in the manner

specified for the Mass/Time Method.

c) Added Mass. As in the Mass/Time Method, a value

of 0.66 was used for K a. This neglected aero-

dynamic interference between canopies in a cluster.

While the general parameters for the modified Mass/Time Method

were more complicated than those for the unmodified Mass/Time

Method, the use of the former was simplified by the incorporation

of these parameters into the computer program. Therefore, all

that must be specified are initial conditions, drag area values

at the end of inflation in each stage and at the end of each

stage, and reefing cutter times.

4.4.3 Results

It was stated in Section 4.4.1 that once the general parameters

described in Section 4.4.2 had been determined, one calculation

for each of ten tests was made. These calculations are pre-

sented here and represent the first attempt to calculate loads

with the modified Mass/Time Method for each of these ten tests.

The calculations are presented in Figures 65 through 7A in the

form of time histories of calculated riser force versus time

histories of measured force.

4.4.4 Discussion of Results

As stated above, using the added mass term in the flight path

angle equation only affects the calculated loads insignificantly.

There is no effect in Sta_es 1 and 2 because the added mass

terms are neglected there. The effect in Stage 3 is

to reduce the loads by a small amount, typically 0.2 percent.

This effect is so small because, by the time the system has

reached third stage, it is in almost vertical descent and the

flight path angle change rate itself is very small.
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Figures 65 through 7a demonstrate that the basic assumptions

from Rust's analysis are valid from an engineering point of

view. Surprisingly, the results obtained with the modified

Mass/Time Method are slightly more accurate than those from

the unmodified Mass/Time Method, for Stages I and 2. The

same fact is not true for third stage, but Figures 65 through

70 show that the modified Mass/Time Method is acceptably ac-

curate there too, especially for a first attempt. Figures 71

through 74 show quite encouraging results for the cluster cases.

These results are very good for the first and second stages_

calculated filling times are very close to measured filling

times and most loads are within i0 percent of the measured

values. The results in third stage are poor in that, while

the filling times are accurate, the calculated loads are in-

accurate. The nature of the inaccuracy seems to be that the

calculated peak load for the lead chute is high, while the

peak load for the lag chute is low in third stage. The former

is probably due to the neglecting of aerodynamic interference

in the determination of drag area and filling distance; the

latter is probably because, when added mass terms are con-
!

sidered, each parachute has a strong effect cn the loads of

the others in the cluster through the mechanism of vehicle ac-

celeratiom.

While the application of the modified Mass/Time Method to

cluster cases is not presently justified by its accuracy, the

results show it to be quite promising as an approach. And, it_

is felt that the necessary adjustments in the parachute para-

meters would be sufficient to make it an acceptably accurate

method. The data in Section 2.3 indicate the types of adjust-

ments that are required.
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Main parachute loads for an Apollo design case, as predicted

by the modified Mass/Time Method, are presented in Appendix C.

This case, referred to as Case 410, is a normal entry case for

which one drogue chute and two main parachutes operate. For

this case, the predicted maximum opening loads for the first

two stages are Frl : 19,240 ib and Fr2 -- 19,410 lb.

These loads are approximately 3.9 percent higher and 9.9 percent

lower, respectively, than the corresponding loads from the final

Apollo ELS loads report. 3
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SECTION 5.0

PARACHUTE OSCILLATIONS STUDY

In the large number of development tests for the Apollo parachute

system conducted by Northrop Ventura, it has been observed that

narachutes may oscillate during descent. These oscillations

may be described as follows:

a) Longitudinal - This type of oscillation occurs along

the longitudinal axis of the module- parachute system.

Thus, it is a reclprocative movement in one dimension

between the Apollo module and the canopy system. This

is shown in Figure 75 (a).

b) R.otative - In this case the longitudinal axis of the

parachute system rotates about the path of descent in

two or three dimensions _precession). It is not

necessary to assume rigid body behavior for the module-

parachute system. The rotative oscillation is shown

in Figure 75 (b).

It is also possible to have combinations of both. in some cases

of severe longitudinal oscillations, repeated overinfiation

occurs. In Test 99-5R this phenomenon occurred in the drogue

programmer chute with subsequent failure.

These longitudinal oscillations were discussed by Knacke 43 in

a recent paper. Knacke pointed out that Acollo drop tests have

shown the amplitude of the oscillations depends upon the ratio

of the forebody, canopy mouth characteristic lengths.

The danger in the presence of roZative oscillations rests in

two facts. The first is that the descent speed of the system

is a function of "'=bnv _ngle of _ttack of the module to the air
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flow. If the rotative oscillations increased enough in ampli-
tude to expose a smaller cross sectional area of the module to

the free stream for a long enough time, the dynamic pressure

forces on the parachute canopy could become large enough to

cause failure. The second fact is that high rotation rates

could cause line foul up of the deployed parachutes, which
could also result in system failure.

In view of the oossible consequences due to oscillations,

more information concerning their cause is desired. However,

the scope of the problem must be reduced to one type of

oscillation. Because of their mathematical trac_ahility, the
longitudinal oscillations will be the ones to be considered.

However, as the problem is developed for the longitudinal case,

many of the concepts will be seen to apply to the rotative case.

In the stochastic field solution presented in outline the

concepts are identical for the longitudinal and rotative cases.

In the work that is to follow, the word oscillations will always
mean longitudinal oscillations unless otherwise specified.

5. I OBJECTIVE

The objective of this study is to explain the cause of the

longitudinal canopy oscillations observed in the Apollo para-

chute test program. This explanation will consist of proposing
a physical model that is analyzed mathematically, then comparing

the results of these calculations to experimental data. The

mathematical analysis will start from first principles in order

to point out assumptions that have been implicit in previous

analytical work.

In addition to this simple straightforward mathematical analysis,
it is desired to formulate a much more fundamental mathematical

approach to the problem of the turbulent wake, the turbulent
canopy flow and their interactions with one another. This

219 NVR-6a31



NORTHROP

fundamental mathematical approach should consider the basic

characteristics of turbulence, i.e., its randomness, its eddy

energy distribution with respect to frequency, its decay times,

etc. It must be emphasized that only by considering this most

fundamental and general of mathematical treatments of the

turbulent wake can any advances in understanding be made. Thus,

the basic objective of this study is to show how a simple mass°

spring-dashpot " _ csystem an predict canopy oscillations within an

order of magnitude, but that a much more realistic physical and

mathematical model is needed to predict and explain the details

of the turbulent wake, the canopy oscillations and the inter-

dependence of the Zwo.

5.2 METHOD OF PROCEDURE

It is desired to make the mathematical solutions as general as

possible. This will ensure the wide applicability of the solu-

tions and provide the greatest physical insight into the

oscillation phenomenom. Therefore, two methods of solution will

be presented. The first is based on the very simple mass-spring-

dashpot analysis and the second is based on random field theory.

(Random field theory, when applied to continuous fluids, is

called turbulence, or stochastic, three dimensional, vector

field physics.) The first method will be used to determine

the forebody wake frequency, fw' The observed experimental

frequency, fe' obtained from drop tests will be used to compare

against the calculated values of the canopy response frequency,

fk' and fw' Numerical results will be presented for the

calculations based upon the mass- spring -dashpot (msd) analysis.

The random field model will be presented in functional form

because of the unavailability of an experimentally determinable

function. A general discussion will follow the presentation

of the mathematical models and their comparison to the experi-

mental data. Recommendations for future investigations, both

zheoretical and experimental, will be given at the very end

of the study.
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At this point, some general characteristics of the two mathe-

matical methods to be used should be pointed out. Msd analysis

has one very desirable characteristic. This is that order of

magnitude results can be quickly provided from the drop test

data alreaJy available. However, by the same token, order of

magnitude often is not a close enough estimate. Another

disadvantage is that msd uses the concept of dimensional analysis

in this study. However, dimensicnal analysis does not apply to

systems with many characteristic parameters, all of which are

influencing the phenomenon tc be analyzed. For example, the

wake behind an aircraft is caused by a variety of parts, each

with a different characteristic length. To find the energy

distribution of the eddies in the wake using dimensional

analysis and one characteristic length would be impossible.

Therefore, dimensionsl analysis must be used in systems where

there is clearly only one characteristic parameter.

The random field approach has two good characteristics. The

first is that the solutions are much better than order of

magnitude in exactness. The second is that the method does

not break down when the system becomes complicated. However,

extensive additional data in the form of a correlation function

must be obtained before it can be used. These data are obtained

in air with hot wire anemometers which are not very easy to use.

in addition, after the data are obtained they must go through

an extensive reduction process to be able to yield the desired

function, the correlation function. It is because of the

unavailability of the correlation function that quantitative

answers have not been presented in the random field models.

Nevertheless, the method is felt to be so powerful that its

mathematical formulation is outlined and strongly recommended

as the next step in any parachute experimental or analytical

techniques.
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5.3 DETERMINATION OF THE CANOPY RESPONSE FREQUENCY, -k

It is important to point out that the existence of the canopy

oscillation frequency, fk' that is to be calculated does not in

general depend upon the presence of a turbulent wake generated

by some forebody. In fact, wind tunnel experiments have shown

that a canopy will oscillate at the same frequency with or without

a forebody. The forebody provides a turbulent wake that either

can cause an increase in the oscillation amplitude of the canopy

or act as a trigger for the oscillations. These conditions exist

only if the wake can give the canopy energy at the frequencies

that the canopy is responsive to. These responsive frequencies

of the canopy are at its fundamental frequency and higher harmonics.

In effect, imagine the oarachute system as a band pass filter. A

narrow frequency band exists as an output. However, the magnitude

of the output is increased if the inout is increased at the band

pass frequency.

The preceding discussion on the response of the parachute system

by the turbulent wake forcing function contains an implicit

assumption. This assumption is that the energy of the turbulent

wake forcing function, E(f.f), is the same order as the energy

of the canopy response, E(c.r.). (The forcing function is

assumed to contain some energy at the band oass frequency of the

parachute system.) The canopy response frequency, fk' can be a

true function of the canopy material and geometry constraints

only in this case. One only needs to consider the other possibil-

ities to be convinced of this. Assume that E(f.f)>> E(c.r.).

In this case, the high energies of the forcing function would

drive the canopy at the characteristic frequency of the forcing

funct ion.

This means that the characteristic parameters of the response

system are so overpowered as to become negligible constraints

to the forcing function. In the band pass filter analog, the

222 NVR-6431



NORTHROP

forcing function would not detect the filter. Now assume

E(f.f.) <_ E(c.r.). This case becomes zrlvial except if E(f.f.)

is large enough to _ecome a "trip" for the onset of the oscilla-

tions. This trip can only occur if some of the energy of the

forcing funcZion is at the response frequency of the parachute

system.

Summarily, the drop test conditions must be checked to ensure

E(f.f.) = order of E(c.r.) before any conclusions are drawn from

oscillation test data. This is simply a comparison of the loads

to which the parachute system was designe6 versus the test loa_s

it will experience in the drop test. In Zhe drop tests analyzed

in this study, the zest dynamic pressures were always of the

same order as the design q of the parachute system. This means

that the analysis presente_ herein is valid insofar as the

parachute system is characterized by its constraints of mass,

spring constant, viscosity, etc. It is important that in any

mathematical oscillation analysis to be conducted, this implicit

assumption be realized as a necessary mathematical condition.

5.3.1 Classical Mass-Spring-DashpoZ Mo_el

5.3.1.1 Physical Model Formulation• One may represent the

parachuze system as a member of the classical family of all

mechanical dynamic systems. This means that one can ascribe to

the parachute system the elements; mass, M, a spring constant, k,

and a viscous damping coefficient, v . This system is then

brought under the influence of some external force that would

be a function of time, F(t). The physical model that could be

constructed from these four elements could behave as a linear,

quasi-llnear (where the constant terms become a functlcn of the

independent parameter, e g., v _ becomes v (t) dx• d--Y , or non-

linear system. For the purpose of this first model formulation,

a iinear system will _e assumed. If it is found that this model
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is unsatisfactory in adequately representing the parachute

system behavior, then quasi-llnear or nonlinear effects will

have to be considered.

The breakup of the elements of the parachute system is as follows.

The mass of the canopy material and the geometrically enclosed

air mass will be used as a first estimate for the system mass, M.

The viscous damping coefficient, v , will be represented by the

damping effects of the air surrounding the canopy system.

Material interactions such as cloth bending moments will be ignored.

The spring constant, k, will be represented by the spring character-

istics of the nylon suspension lines. The spring constant

associated with the compressibility of the air will be neglected.

It should be noted that the strongest test of the linearity assump-

tion will be in assuming the nylon spring constant to be linear.

It is known that the stress-straln curve for the suspension lines

is not a straight line. This difficul_y will be circumvented for

the linear system approximation by taking the tangent to the load

elongation curve at the load in question. The validi%y of this

procedure will be checked based on the _uantltative results of

Section 5.3.1.3 and their correlation to experiment.

The forcing function, F(t) used in this section will be considered

to be from the turbulent air inside and behind the canopy. For

the sake of generality, F(t) will be assumed to be a periodic

function of time. A more specific dimensional analysis expression

will be described in the latter _art of Section 5.3.1.2.

The preceding physical model is pictorially presented in

Figure 76 in mechanical analog form.

224 NVR-6q3I



NORTHROP

Free Stream

D V

Fig. 76. Mechanical Analog to Apollo Parachute System

5.3.1.2 Mathematical Model Formulation. The differential

equation of motion for the visccusly damped spring-mass system

driven by F(t) can be written as

M _d2Y + v d___Y + kY = F(t) (38)
dt 2 dt

where Y is the linear displacement as shown in Figure 76. The

steady state solution of Equation (38) is the particular

solution. This is Just a steady state harmonic oscillation at

She frequency of the driving force with the displacement vector

lagging the force vector by some angle e. If F(t) is assumed to be

F(t) = B sin _ t (39)
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the particular solution can be assumed to be

Y = A sin ( _ t - e) (Lo)

where • is the frequency of the harmonic oscillations. The

steady state, nondimensional solution of EQuation (38) is

A

_0 =

1

tan@= 2_(_)

i <42)

where

fk = '4 k/M

=

vc = 2Mf k

A -- B/k
0

= natural frequency of undamped oscillations

= damping factor

= critical damping coefficient

= zero frequency deflection of spring-mass

system by a steady force, B.

It is obvious that the importance of damping is mainly in the

attenuation effects upon A/A ° near • = fk" Furthermore, since

it is desired to reduce or eliminate the longitudinal oscillations,

it is necessary to have either

<< fk 43)

or

Inequality ( A3 ) represents the case of very small inertia and

damping terms, thus a small phase angle e. The magnitude of the

force of the forcing function is then nearly equal to the spring

force.
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inequality (44) represents the case of 0 nearing 180 ° and the

force magnitude of F(t) is spent in trying to overcome the

large inertia force.

The condition of _ _ fk reoresents that the forcing function

frequency is almost that of the system's fundamental frequency

and unwanted resonance is occurring.

To determine whether or not this resonant condition is responsible

for the Apollo parachute oscillations, some calculations must be

made for m and fk" The expression for is known from the

definition but the expression for _ is as yet unknown.

To this end, it is necessary to consider the physical origin of

F(t). Using dimensional reasoning, the characteristic velocity

v , (the free stream velocity) and a characteristic length, L,

can be combined to give an angluar frequency,

v (45)
L

Henc e,

VF(t) : B sin T t/

It is leI't to determine what physical part of the system L

represents. In the case of a forebody-generated turbulent wake, L

would represent the characteristic length of the forebody that was

in the plane of the projected normal to the direction of movement.

The presence of a forebody wake that generates the forcing function

will be discussed in detail in Section 5.4. In this section, the

assump%ion will be made that there is no forebody. Since it has

been shcwn that parachutes oscillate regardless of the presence

of the forebody, the forcing function must originate in or behind

canopy. Hence, a likely choice for L would be the canopy mouth

diameter, D , for the fully open canopies. Some mean characteristic
c

length, taken between the maximum diameter and the mouth diameter

227 NVR-6A31



NORTHROP

could be used for the reefed canopies. (It is obvious that the

radius of the canopy mouth also could be used for the calculation

of the forcing function. In that case the numerical answers would

be off by a factor of two from the case of using D as the
c

characteristic length. In this case the correlation of calculated

values to experiment would depend upon the trend of the variation

of calculated values for different canopies. This trend would then

be compared to the trend of the experimental frequency observed

for the different canopies. For a correlation to result the

calculated values of frequency for the different canopies would

have to vary in the same way as the experimental values.) The

forcing function could be due tc the trapped circulating air within

zhe canopy, or the shed vortices behind the canopy, or a combina-

tion of both. In this study the forcing function characteristic

length for shed eddies and the flow inside the canopy are of the

same order of magnitude. Therefore, the characteristic length

D can be used.
C

V

F(t) : B sin t,

To verify the hypothesis that the forcing function is due to the

turbulent eddies that are of the characteristic length of the

canopy a calculation must be made to show that the forcing function

frequency is of the same order of magnitude as the response

frequency fe" Again it is only necessary to show order of

magnitude correlations because the eddy energy is not concentrated

at one frequency but spread over a range of frequencies. This

range of high energy eddy frequencies is typically one order of

magnitude around the characteristic frequency. This spread

effect is shown in Section 5.h.l.

Calculations for the forcing function frequency _ are shown in

Table 28 for the different tests. It should be noted that

correlates in all cases within an order of magnitude to the

observed experimental frequency fe"
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Table 28. Comparison of Frequencies

DROP TEST 84-4

Drogue 1

v (ft/sec)

fw(hz)

fe(hZ)

w (hz)

fk(hz)

ist Reefed Stage

PTV - DROGUE CHUTE

56o 56O 56o 555 555 55o 545 54o

13.7 13.7 13.7 13.6 13.6 13.5 13.3 13.1

19 16 16 18 18 17 17 18

13.6

= i0 @ mean load

= 10.4 @ max load

DROP TEST 85-2

Drogue I Full Open

v (ft/sec) 271 267 262 260

fw(hZ) 3.4 3.3 3.3 3.3

fe(hZ) 7 6 A

w (hz) 3.8

fk(hZ) = 7.A @ max load

BP - DROGUE CHUTE

256 253

3.3 3.1

4 4

DROP TEST 85-5

Drogue 1

v (ft/sec)

fw(hZ)

fe (hz)

w (hz)

1st Reefed Stage

512 493 470

6.4 6.4 6.4

i0 9 9

11.4

9.7 @ max load

BP - DROGUE CHUTE

455 438 429

5.8 5.4 5.4

8 8 8
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Table 28 Continued. Comparison of Frequencies

DROP TEST 85-5

Drogue i

v (ft/sec)

fw(hz)

fe(hz)

w (h_.)

f_(hz) --

Full Open Stage

382 366 354 344 334

4.8 4.6 4.5 4.4 4.2

7 7 8 8 7

5.1

5.1 @ max load

BP - DROGUE CHUTE

DROP TEST 84-IR

Drogue i

v (ft/sec)

_(ha)

fe (hz)

w (hz)

fk(h_.)

Drogue 2

v (ft/sec)

fw (hz)

fe(hz)

w (hz)

fk(hz)

Ist Reefed Stage

63o 6oo 55o

15.4 14.7 13.5

14 14 14

= same as Drogue 2

Ist Reefed Stage

630 600 550

!5.A 14.7 13.5

17 17 17

= 11.7 @ mean load

= 13.k @ max load

PTV - DROGUE CHUTES

500 480 460 440 430 420

12.! !1.7 !1.3 lO.8 lO.5 io.3

14 14 14 13 13 13

i1.2

5oo 480 460 44o 43o _2o

!2.1 11.7 ii.3 10.8 10.5 i0.]

!6 15 14 14 13 13

ll.2
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Table 28 Continued. Comparison of Frequencies

DROP TEST 83-6

Drogue i

v (ft/sec)

fw(hz)

fe(h z )

w (hz)

f (hz)

Drogue 2 -

v (ft/sec)

fw (hz)

fe (hz)

fk (hz )

ist Reefed Stage

PTV - DROGUE CHUTES

51o 5oo 485 a75 a65 a55

12.5 12.1 ii.9 1!.6 11.4 -l.l

16 16 15 15 15 15

11.2

= same as Drogue 2

ist Reefed Stage

same as Drogue !

same as Drogue I

18 18 18

= 10.O @ mean load

lO.l @ max load

19 18 18

DROP TEST 99-_

Drogue i

v (ft/sec) 806

fw (hz ) 43

fe (hz) 20

w (hz) 20

fk(hz)

ist Reefed Stage

798 750 737

42 40 39

19 20 20

= 18.6 @ max load

ICTV - DROGUE CHUTE
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Table 28 Continued. Comparison of Frequencies

DROP TEST 84-IR

Drogue !

v (ft/sec) 377

fw(hZ) 9.0

_e(hZ) i0

_J (hz) 5.4

fk(hz)

Full Open

2O7

7.3

9

= 7.1 @ max load

PTV - DROGUE CHUTE

DROP TEST 84-4

Drogue 1 Full Open

V (ft/sec) 534

fw(hz) lS

fe(hZ) IL

w (hz)

fk (hz) = 9.2 @ max load

DROP TEST 83-6

Drogue i Full Open

v (ft/sec) 441 388

fw(hZ) ll.O

fe(hZ) 12 ii 12

w (hz) 5.5

fk(hZ) = 7.2 @ max load

5O7

13

7.4

PTV - DROGUE CHUTE

483 462 445 431

10.6

13 ii ll 12

362

PTV - DROGUE CHUTE

347

8.5

Ii
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Table 28 Concluded. Comparison of Frequencies

DROP TEST 84-IR

v (ft/sec) 232 181

fw(hZ) 5.7 a.l

fe (hz) a

w (hz) 4.3

fk(hz)

PTV - MJ%IN PARACHUTE

ist Reefed Stage

156 140

3 3.4

5 3 3

= 3 to 6 @ max load and for different assumed air

PTV - MAIN PARACHUTE

masses.

DROP TEST 8_-4

is_ Reefed Stage

v (ft/sec) 239 205 180 169

fw (hz) 5.9 5 4.4 4.1

fe (hz) 5 5 3 4

w (hz)

fk(hz)

_4.7

_fe. ent assumed2.5 to &.6 @ max load ant for di _

air masses.

233 NV-R-6431



NORTHROP

5.3.1.3 Calculation of Values of fk" The calculated values of

fk' k and M must first be determined. To determine k, the spring

constant, one must use the curve of load versus elongation for

the combined parachute riser and suspension lines. An example

of this type of curve is shown in Figure 77 for the drogue

parachutes. The k dependence upon compressibility effects of

the air will be discussed in Section 5.3.2.1. As was mentioned

before, since the curve is nonlinear, k is the slope of the tangent

to the curve at some loading point. This loading is the tensile

force in the cable riser at a particular time during the descent.

Thus in a typical calculation, a mean load on the Apoilc drogue

parachute of 13,300 ib gives a k . 5000 Ib/ft. The mean load

value is obtained by taking the mean cf the fluctuating forces from

the force versus time trace over the increment of time being

considered. An example of the force versus time traces is shown

in Figure 78. (The mean load at any time is the midpoint

between the maximum and minimum load fluctuation.)

To find M, the total mass of the system, Zhe mass of the canopy,

Mc, must be added to the total mass of the included air, ka.

Hence, M = M c + I< The value of M is known from availablea' c

manufacturing data, but M must be estimated. This estimation
a

in its most accurate form must consider all the air mass that

can oscillate with the canopy. Therefore, M. would include

some of the air mass in front of, behind, and around the sides

of the canopy. To account for this peripheral air, one must

consider that the domain of influence of _he canopy diminishes

noniinearly through the surrounding turbulent flow field. For

an order of magnitude analysis, however, the geometrical estimation

of the air only within the inflated canopy will be determined

and used as the value for Ma.

The results of these straightforward calculations for -k are

listed in Table 28. The calculations for fk were performed in

some of the tests for both mean loads and maximum loadr. This
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was done to observe how sensitive fk is to the load. In addition_

in the table for the Parachute Test Vehicle (PTV) using the first

reefed stage of the Apollo main parachutes, there is a range

presented for fk" This range is calculated to show the sensitivity

of fk to the canopy air _mass used in the calculations. The

higher value represents the air mass contained in the reefed

di_,.eoe _ whichcanopy approximated by a sphere, the _- _ _ of

was the canopy mouth diameter. The lower value is the canopy

approximated by a sphere with a diameter equal -c the maximum canopy

diameter.

It is now desired to compare the calcula%ed frequency, fk' with

rl ....n_al frequency, -e"the observed expe "_= _ -_ The section that

_- -_ from the
follows describes the method used for obtaining -e

experimental data.

60-

c_

0
0
0

0

50

40

30

ZO

I0

0 1 2 3 4 5 6 7

| ! I

8 9 I0

Fig. 77.

Elongation, ft

Typical Nylon Load - Elon_ation Curve
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5.3.1.4 Determination of _e from Data. The telemetry data of

force versus _ime was surveyed to fin@ the drop tests in which

canopy oscillations occurred. The onboard and offboard films

for the tests that ccnZained oscillations were analyzed to selec_

only those cases in which the oscillations were !ongiZudinal.

For this set of telemetry data, the zero crossings of the force

versus time da_a were counted to yield frequency of oscillation

versus time. The mean frequency for one-second intervals was

then recorded. It was a simple ma_ter tc relate time from

opening to descent velocity through the computer output of the

Askania data. Thus, the mean frequency cf oscii-ations, -e' was

obtained versus the mean descent veloc '_i_y v, for one-second

intervals. For _he particular example of _-_k= i.7 cps, calcu-

lated from Test $zl-iR drogue chute 2, the corresponding values

of f are as follows:
e

Drogue 2 Test 84-IR

v (ft/sec) 630 600 550 500 480 460 440 430 420

f (hz) 17 Z7 Z7 16 15 Zq la 13 Z3
e

Tables of the calculated values cf fk and the experimental "e

are given in Table 28 for Tests 83-6, 84-IR, 8_-_, 85-2, 85-5

and 99-3.

5.3.1.5 Discussion of Results. It is seen from the comparison

of the fk to -e that the cumulative assumptions for fk have

yielded answers that are much better than order of magnitude

accuracy. Since each assumption is a potential source of error,

it is left up to further Investigaticns to show what _nd how
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much of an effect each assumption has on the comparison of

dimensional theory to experiment in canopy oscillations. This

theory can provide a valuable tool for she designer who has to

know beforehand at what frequencies his parachute systems will

oscillate. In addition, this analysis was carried out for a

variety of canopies, giving in each case very good correlation

to the observed experimental values.

It should be pointed out that the analytical results are to be

taken as correlating very well in order of magnitude only, even

though in all of the cases, :k and fe are wzthin a few tens of

percent of each other. It is best to be conservative in the

claims made about an analytical method until the detailed

effects of the assumptions ,can be found experimentally to

substantiate the mebhod. IZ is felt, however, that the general

assumptions made are valid and true representations of the

problem.

5.3.2 Random Field i,lodel for the Forcing Function

It was stated previously that the dimensional analysis method

does not include consideration of the micrc-structure of the

physical phenomena for F(t). In simcle cases where there is one

characteristic length, the dimensional analysis could give answers

for F(t) thaC were as close to reality as those given by the

random field model. However, a demonstrative example is found

in thermodynamics where the pressure of a perfect gas on a

piston can be calculated from perfect gas laws or by considering

the changes in momentum of all of the gas molecules hitting the

piston surface. Either method gives the same answer; however,

the second method gives a more fundamental understanding of

the process involved. The worth of the much more complicated

second method is not evident in the simple, what's-the-pressure-

on-the-plston problem. However, if the gas in the system be-
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came so dilute as to stop being a continuum, or the gas molecules

were really vapor metal, or again if there were pinholes through

the surface of the piston, it would become solvable only by the

fundamental method. An analogous fundamental system will now

be described as an aid to solving more sophisticated oscillation

problems that depend on more complicated versions of M, k, v,

and F(t) and more complicated interactions of these.

5.3.2.1 Physical Model The problem at hand is tO ccnsider what

is happening to the parachute canopy while it is oscillating.

The answer to this question was partially developed in the basic

functional form and is written here again as

(M, k, F(t)) --0 (38)

However, in this model the mass and spring constants are func-

tions of the fluid viscosity and the forcing function, while

the forcing function is a function of the viscosity and so-on.

The physical model that would yield such functional interde-

9endencies is as follows: The fluid flows in front, within,

and behind the canopy are in turbulent motion. All of the

eddies associated with these flows are of a size that, in a

very general way, depend upon the dimensions of the canopy.

(This is again for the case of no forebody. ) In this way, the

four variables M, k, v, F(t) depend upon the nature of the

turbulence.

The mass, M, that must now be considered for the calculation

of fk' depends upon how much mass is swept into and out of

the domain of influence of the parachute by the turbulent field.

Thus, at any particular time, there will be eddies breaking

away from the stagnated air flow behind the canopy or pumping

high energy air into the wake, thereby reducing the added mass

of the canopy. Therefore, the added mass depends upon the

domain of influence of the canopy, and this domain of influence
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depends in turn upon the turbulent field. For example, a

slotting system that pumps high energy free stream air into

the turbulent wake would reduce the domain of influence of

the parachute.

The spring constant, k, is a function of the canopy material

and the compressibility of the air, the latter dependence being

influenced by the nature of the flow field. However, unless the

turbulent eddy velocities approach the speed of a pressure wave

through the fluid, the change in k because of the turbulent

field can be considered to be of second or higher order.

It is well known that the turbulent air mass within the influence

of the canopy has an artificial viscosity. Thus, the damping

that is experienced because of the artificial fluid viscosity

is dependent upon the nature of the turbulent flow field. In

fact, the artificial viscosity can be directional in an in-

homogeneous turbulent flow. This means that oscillations in

one direction would be damped more than oscillations in another

direction. This phenomenon is based upon an eddy having a

dynamic "memory" This "memory" tends to resist the motion

that would disturb it. Another turbulent flow characteristic is

that there are time scales associated with the eddies. This

means that a given homogenous eddy field will tend to damp

some frequencies and reinforce or transmit other frequencies.

The forcing function F(t) has already been assumed to be

solely dependent upon the turbulent field under the canopy's

influence. The dependence of M, k, v, and F(t) upon the

flow field has now been shown and must be considered mathe'

matically in the following subsection.

5.3.2.2 Mathematical Model Formulation. The mathematical

model must make a basic assumption in order to become tractable.
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This assumption is that the known functional form of the auto-

correlation function exists. In fact, such information con-

cerning the auto-correlation function, if known, would have

represented a sophisticated experimental project. Since the

auto-correlation function is not known, the worth of this

Section 5.3.2.2 lles not in the quantitative results, but as

a technique to be outlined now and used in the future. In

the future, it would be sufficient to determine the form of

the velocity auto-correlation function through experiment in

the turbulent flow areas in and about the canopy. In the

case where a forebody is generating a wake, the best obtainable

data would result from the determination of the correlation

function in the wake, and in and around the canopy, while the

flow in the canopy is under the influence of the wake. Section

5.4.2 will discuss the wake correlation measurements in more

detail.

Summarily then, the functional form of the auto-correlation func-

tion is a necessary step in the determination of the kinetic

energy distribution through the frequency range of the eddies.

The energy distribution then shows one what the forcing function

looks like. The forcing function, in turn, shows how the tur-

bulent air mass interacts with the parachute system during canopy

oscillation.

The outline of the formal mathematical development follows.

The Fourier decomposition of the fluctuating velocity field

v (x) is

V (X I, X2,

where k = wave number

x 3) = _ e i-kx-dZ (k_)

in kl, ky, k 3 and v = Vl, v2, _3"

(a6)
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Since the de'rivative of the function Z (k) is not finite,

Equation (_6) is a stochastic Fourier-Stieltjes integral of

a generalized kind. This representation is necessary to take

account of the fact that when the energy spectrum is continuous,

the function Z (k) is not in general of bounded total variation.

The increment dZ (k) is a random variable since its value at

k depends on the particular realization of the velocity distri-

bution v (x) and one is interested in average properties.

Taking the inverse transform of Equation (46)gives

dZ (k) = i _ e -ik_x v (x) dZ

and taking * to mean complex conjugate,

Lim

dk- 0
dZj (k)} 1 ! (_r) e-ik'rE _dZi (k) dk3< dkldk 2 = (2w-_-_) Rij -- -- dr

Where E {} represents the expected value and Rij

correlation function in tensor form.

is the

Also, r = separation vector between two points x and x'.

The Fourier transform of the correlation tensor Rij (r) is

the energy spectrum function ¢ij (k) which represents the

distribution of kinetic energy over wave space for the tur-

bulent field. Mathematically, this is

l S¢ij (k_)- (2_) 3 Rij (r) e ik-E-r dr (47)
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and this is related to the fluctuating velocity field by

(k_) d& = E i (x)vj
(48)

and

E {vi(x) vj (x') : I eix " (_.k-k') E "[dZi(x' ) dZj(x)] (_9)

The solution of Equation (47) represents the distribution of

turbulent energy with respect to wave number. Therefore,

Equation (47) would be used to find the frequency at which

most of the energy of the turbulent flow was concentrated.

The maximum energy can be considered as the prominent forcing

function f(t) on the canopy at that frequency. It is noted

that to obtain the energy spectrum function, _iJ (k), it is

to know the correlation function, Rij(r). Thenecessary

correlation function is determinable from experiment. In

summation, to find the forcing function on the canopy for a

turbulent flow, it is necessary to determine the energy spec-

trum function which in turn depends upon the correlation func-

tion. The fundamental requirement to carry this mathematical

treatment to a quantitative answer is therefore the deter-

mination of the auto-correlatlon function, Rij (_r) by

experiment.

This completes the outlines of the mathematical method. (The

reader is referred to an excellent paper on this topic by the

mathematician S. Chandrasekhar, "The Invarient Theory of Iso-

tropic Turbulence in Magneto-Hydrodynamics ''4A and the section

"Some Linear Problems" in the book, The Theory of Homogeneous

Turbulence, by G. K. Batchelor. 45)
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5.4 THE FOREBODYTURBULENTWAKEFREQUENCY,fw

It was previously mentioned that having a forebody is not a

necessary condition to have the canopy oscillate, since the
forcing function, F(t), is due to the t_rbulent air flows

in and about the canopy. It was also mentioned that the para-

chute system acts like a band pass filter in that, of all the

forcing function frequencies it comes across, it is responsive

to only a few. From this point onward, "parachute system" is

taken to mean the complete response function, f' k" This imp!ies
that M, k, v and F(t) combined are the new system with a re-

I

sponse frequency fk and an external forcing function, the

forebody wake, fw" It is physically obvious why this re-

definition is necessary, since the forebody wake will now also

interact with the turbulent flows that are under the canopy

influence. In addition it can readily be seen from a dimen-

sional analysis point of view that the maximum forebody wake-

canopy flow interactions take place when the time scales of

the forebody wake and the canopy turbulent flows match. Section

5.4, therefore, asks the question, is the energy in the tur-

!

bulent forebody wake at the responsive frequency, fk' of

the parachute system? The following sections deal with this

question in detail.

5._.I Dimensional Analysis Model

5._.I.I Physical Model Formulation. As the forebody moves

through the fluid medium, a turbulent wake is generated behind

it, and a part or all of the parachute system moves through

this wake. This turbulent wake has an energy distribution

through the frequencies of its eddies that depends directly upon

the forebody shape. Therefore, if the body is geometrically

clean, i.e., it has only one characteristic length, then the

energy distribution of the eddies will be in the shape of a

concentrated peak at the frequency that is proportional to
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the inverse of the forebody's characteristic length. As the

forebody becomes more unclean geometrically; e.g., as the geo-

metry of an aircraft, then the energy distribution of eddies in

the wake is spread over many frequencies. A graphical represen-

tation of these statements is shown in Figure 79 •

Clean Geometrically

Unclean Geometrically

I

0 1
_- Frequency

L = Characteristic Length of Body Producing Turbulence

Fig. 79. Typical Turbulent Energy Distribution

for Clean and Unclean Geometrical Shapes
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In the case of the "more-than-one-characteristic-length" forebody

with its more-than-one associated wake frequencies, beat fre-

quencies are produced as upper and lower sidebands. (There is

an upper limit to the frequency possible in a particular fluid.

This upper limit is set by viscous dissipation and is called the

Ko!mogoroff microscale. The lower limit is, of course, the plane

wave.) Therefore, even though a wake analysis would show the

frequencies, fw, to be much greater than the response frequency,

f'
k or fk' the lower sideband must be investigated before a cone!u-

' (or fk) could be reached.sion about the influence of fw on fk

In the case of a clean forebody with one characteristic length,

this beat frequency phenomenon becomes of secondary importance as

a possible source of energy for the response system. This is

because the upper sidebands become too high and the lower side-

bands become too low. The effect of viscosity and unequal pres-

sure distributions in the wake is to never allow a single shape

peak at only one frequency to occur, such as the Dirac delta

function. This means that there will always be beat frequencies

prod uc ed.

In addition to viscosity, a turbulent characteristic known as

"vortex stretching" tends to transfer energy from low frequency

eddies to higher frequency eddies. Vortex stretching is the

inertial smearing of frequencies while viscosity is a molecular

smearing. While this frequency band broadening is going on, the

peak intensities also are being reduced, so that a typical tur-

bulent flow field would decay with time as shown in Figure 80.
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Thus, if the parachute system were far enough behind the forebody,

it would see a changed turbulent wake from the one originally

generated. However, this decay process does not begin to occur

until somewhere around 150 to 200 forebody characteristic lengths

behind the forebody.

For the later mathematical analysis the assumption of homogeneity

must be made for the wake. Typically, a wake will become homo-

geneous beyond fifteen characteristic lengths of the forebody.

Homogeneity is therefore a valid assumption to use to calculate

the energy spectrum behind the module, in summation for Section

5.4.1.1, the physical flow system can be described as a homogeneous,

nondecaying, turbulent wake that is generated by a forebody. This

wake interacts with the turbulent fluid contained by the canopy,

which in turn interacts with the parachute canopy.

5.4.1.2 Dimensional Analysis Mathematical Model. A clean fore-

body shape is assumed for this section, otherwise, the dimensional

analysis would have difficulty handling the nonlinearity of the

inertial and viscous interactions between different size eddies.

Hence, for a single characteristic length, the form for the wake

frequency is

f = l v (5o)
w 2,,

This form of fw will be used as the dimensional estimate of

the shed vortices in the forebody wake.

5.L.!.3 Experimental Results. The experimental values of v

and Dv to be substituted into Equation ( 50 ) were obtained

from previous sections. For the example of 84-IR, a comparison

of fw to fk is shown in Table 28. Dv = 70 in. is the

diameter of PTV. The rest of the data are shown in Table 28.
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it is evident that the shed vortices from the forebody supply

energy to the parachute system. Thus, the turbulent wake only

aggravates the oscillation problem. It should also be noted

that the ratio of Dc/D v is order (I) for the first reefed

stage, the exact condition that would cause maximum interference

between the wake and the parachute system.

5.4.2 Random Field Model

5.4.2.1 Physical Model. This model has been described generally

in the introduction to Section 5.4 so that its description here

will be brief. _ne fundamental idea is that the forebody wake

does not directly influence the canopy, but rather, that the

wake directly influences the trapped turbulent flow in and be-

hind the canopy. Generally then, if the turbulence characteristics

in the influence region of the canopy were much different from

the turbulence characteristics of the wake, the wake turbulence

influence on the canopy would be modified greatly or its In-

fluence might not even be detectable. (It is implicitly assumed

that the intensity of both flow fields is of the same magnitude.)

With this physical picture in mind, the general mathematical

formulation can now be presented.

5.4.2.2 General Mathematical Model Formulation. Only a brief

outline of the mathematical analysis will be presented here.

This section, as Section 5.3.2.2, suffers because of the absence

of a specific functional form for the correlation function

measured in the forebody wake (so that quantitative results are

not available). The mathematical outline is as follows:

a. Homogeneity must be assumed.

b. A Fourier decomposition and formation of

the expression for the correlation function

must be accomplished.
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C • The energy spectrum function must be
obtained• (These three parts are

exactly the same as the analysis pre-
sented in Section 5.3•2.2).

d • This energy function is then the forcing

function for the stagnated canopy air

which can be represented as a nonlinear

differential equation fcr a mass-spring-

dashpot system.

e., Once the response of the mass-spring-dash-

pot system has been found, this response

in turn becomes the forcing function for

the canopy•

f• The canopy is represented as a linear

mass-spring-dashpot system and its response

to the forcing function of the stagnated
air is found.

5.5 CONCLUDING REMARKS

The cause of parachute oscillations has been analyzed without

a forebody and with a forebody by the classical mass spring

dashpot system and by the description of a stochastic system

analysis. The msd model gives a very good method by which

a designer can find the oscillation frequency of the parachute.

The testing of the validity of the msd mcdel shows it to hold

for a variety of cases• These range from PTV drogue chutes

reefed and unreefed to the simulated Apollo modules reefed main

parachutes. This model shows that the parachutes being designed

at the present time have very strong interactions with the wake

of the forebody.

Just in the light shed by the quantitative answers of the msd

analysis, it is suggested that the method developed in this

report be used in the design of parachutes to avoid the wake-

canopy interaction. This can be done by designing the canopy

system away from frequency resonance with the forebody wake

or the canopy's turbulent field.
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The development of a quantitative answer for the stochastic

model was impossible because of the nonexistence of the wake

and canopy flow data needed to form the auto-correlation function.

if the needed velocity correlation measurements were taken and

the stochastic model developed, it would give a powerful analytical

tool for predicting the physics of the turbulent flows, and the

dynamics of all the canopy oscillations, not just the lorgitudinal

ones. Used in conjunction with the msd shortcut method, the

stochastic method would give a complete understanding of the

system in both the micro and macro levels.
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SECTION 6.0

INVESTIGATION OF PARACHUTE INFLATION PROCESS

The study documented in this section took as its objective the

development of concrete ideas on how the parachute inflation

process could be analyzed by analytical and/or numerical analysis

techniques (as opposed to empirical techniques). To develop

these ideas, the equations governing the fluid motions and canopy

deformations were studied. Only by working with these equations

was it believed that analysis methods would be developed that

could predict detailed information on the shape, pressure, stress

and strain distributions throughout the entire parachute during

the complete inflation process. This approach was taken because

this information, if it could be predicted, would be of great

value to parachute designers during the development of new para-

chute designs.

6.1 REVIEW OF PERTINENT LITERATURE

The first attempt to study the oarachute inflation process by

examining transient fluid motions appears to have been an

investigation by Weinig 22 _ 1951. Weinig studied the case of

a decelerating, expanding sphere traveling in an incompressible

fluid. For this case, Weinig was able to derive relatively

simple expressions for the velocity potential in the fluid

surrounding the sphere. He then derived expressions for the

components of the velocity throughout the fluid flow field and

the cressure acting on the surface of the sphere. By integra-

ting the pressure over the surface cf the sphere, Weinlg showed

that there are fluid forces which resist bosh lineal deceleration

anJ dilatation type motions. Weinig @eveloped the following

expressions for the ideal fluid forces along the flight cath and
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normal to the surface of the sphere, respectively:

R2 dv
Fv : 3 _ (Ryy + 3v u)

: a_ R2 _ 2p + 6 u + 4 R_ )Fu Poo _ R (v 2 2 du

where

Fv

F u

p

PCO =

R =

u = dR/dt :

V =

d/dr =

fluid force on sphere in direction

of flight path,

fluid __or_e normal to surface of sphere,

fluid density,

fluid pressure at infinity,

radius of sphere,

dilatation velociZy of sphere,

lineal velocity of sphere, and

time rate of cnange.

(51)

(52)

Weinig then modified these equations by dropping the first term

on the rlght-hand side of Equation (52)and by incorporating

several additional terms in both equations to account for drag

type (nonideal fluid) forces. Finally, he proposed a scheme for

solving the parachute inflation process using two momentum

equations which featured fluid forces of the types given by his

modified fluid force equations. These equations featured eleven

aerodynamic constants which ne proposed could be experimentally

determined. Althcugh Weinig's final equations may never find a

practical application, the instructive value of his analysis is

considered noteworthy.

An analysis of the dynamic stress in an inflating parachute was

presented by Asfour31 in 1966. He proposed that the maximum stress

in a canopy is related in a particular way to the radial component

of the velocity in concentric slices of air contained within the
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canopy at a "stagnation plane" that moves from the apex of the

canopy to the skirt during the inflation process. Asfour

postulated that at the instant a concentric slice reaches its

maximum diameter, the radial ccmponent of she air inflow is

decelerated by a transient hoop stress occurring in the ring cf

canopy cloth that bounds the slice. He developed an expression

for evaluating this stress, designated as "snap stress," and

related it to both diameter and -"illing time. A review of the

method in.dicates tha< it has limited usefulness. In particular,

it is now known that Apollo ringsail parachutes do not inflate in

the same manner that Aslou_ postulated; see for example, the

stress-time study presented in Section 4.0 of Volume II.

A theoretical model of the parachute inflation process was

presented by Roberts32in 1968. He developed a set of six

governing equations for the deformation dynamics of a parachute

structure under arbitrary pressure loading conditions. Associated

with these 6 equations, which were s_mul_aneous second otter

partial differential equations, were 6 auxiliary equations,

12 boundary conditions, and 13 initial conditions. Roberts

indicated that it would be required to couple these equations

with the equations of fluid dynamics, but he failed to indicate

how this might be done for a case having oractlcal interest.

However, he did recognize that this would be required, an_ he did

give an expression for the pressure distribution on one side of

a two-dimensional parabolic shell.

A technique for obtaining the internal loads, stresses and strains

of an inflating parachute, based on a limited amount of test data,

is presented in Section 4.0 of Volume II. This technique does

require rather good data on the profile shape and riser force

as a function of time throughout the inflation process. Knowing

these two items of data, it is shown tI<at the parachute canopy

distribution of differential pressure can be estimated over the

entire canopy at any instant during the inflation. T_e technique
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is applied to the Apollo main parachute by analyzing the state

of the canopy at 12 discrete instants of time during an inflation

for which the required shape and riser force data were available.

This analysis produces a stress-time history for essentially

every structural element in the parachute. The disadvantage of

this new stress-time technique is that good flight test data

must exist tefore it can be acclied.

6.2 BACKGROUND DISCUSSION

Spacecraft parachutes function fcr periods of time thaC range

from seconds zo minutes. For example, the periods of operation

for the Apollo drogue, pilot an@ main parachutes for a normal

entry are one minute, two seconds, and five minutes, respectively.

The manner in which a parachute performs throughout its period

of operation is of great interest to a parachute designer. How-

ever, the brief moments during the opening cf the parachute hold

the greatest inZeres_ to the parachute designer. This is because

the largest loads are usually experienced by the parachute during

its opening. If a parachute is going to burst, that would be

the time.

What is the nature of the opening process? From the standpoint

of an aerodynamicist, the following observations may be made.

First, the process is completely transient: the flight velocity,

the flight path angle, the added mass, the parachute shade, and

the parachute dimensions all change during _he process. Second,

the canopy is porous, both due to its geometrical (built-in)

porosity and due to the inherent porosity of the cloth out of

which the canopy is constructed. Furthermore, this porosity is

nonuniform in its distribution over the surface of the cancpy;

also, it changes as a function of the loading during the process.

Third, the shape of the canopy is such as to induce flow separation

both at the "sharp leading edge" of the skirt and at the "blunt"

rearward, or apex portion of the canopy. Fourth, She process is,
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at least to a_certain extent, stochastic in nature; _t does not

always work the same way every time. Some of the fluid, parachute,

vehicle an_ planetary properties that are, or may be, important

in a parachute opening process are listed in Table 29.

Table 29. Properties That Are, or May Be, Important

in a Parachute Opening Process

A. FLUID PROPERTIES

Bi

Co

DD

i. Density
2. Temperature

3. Compressibility
4. Viscous Dissipation

PARACh_CTE PROPERTIES

l •

2.

3.
4.

5.
6.

7.

Aerodynamics

Parachute Type and Dimensions

Material Density

Material Porosity

Material Elongation Characteristics

Material Bending Characteristics

Reefing Time Intervals

VEHICLE PROPERTIES

I. Mass and Inertia

2. Aerodynamics

3. Riser Attachment (arrangement and location)
4. Wake

PLANETARY PROPERTIES

I. Gravitational Constant

2. Fluid Density Gradient

It may be observed that powerful mathematical techniques are

available for analyzing processes; in particular, modern control

theory. However, modern control theory is not suited to thetask

of analyzing the parachute opening process. This is because the

governing equations for the parachute opening process are partial
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differential equations. Modern control theory is based on a

rationale which uses ordinary differential equations and is,

unfortunately, not suited to this task.

The partial differential equations of the parachute opening

crocess are (1) the equations tha_ govern the motions of the

fluid, and (2) the equations that govern the motions of the

parachute structure. These equations must be treated as a

simultaneous set. Depending on the complexity of the mathematical

model, these equations may include terms that account for some

or all of the properties listeJ in Table 29. Also, initial condi-

tions must be specified with the governing set of partial

differential equations in order to completely specify a specific

process.

The problem posed in the foregoing paragraphs is indeed formidable.

It is therefore appropriate to give consideration to what might

be an acceptable model, both from the standpoint of being

physically relevant and from the standpoint of being mathematically

solvable. Many of the properties listed in Table 29 often have

little importance and can sometimes be disregarded without undue

loss of generality. On the other hand, certain properties must

be included in any worthwhile model. Therefore, a good question

Zo ask might be: is there a simple model that would be both

physically relevant and mathematically tractable?

A simple model for the process could be made by assuming that the

parachute consists simply of a canopy and many suspension lines,

and that it is axisy_metrical. The canopy properties could be

idealized by assuming zero material density, constant canopy

porosity, infinite elongation stiffness, and zero bending stiff"

ness. A simple model for the fluid could be obtained by assuming

that me fluid is everywhere incompressible and irrotational.

The latter assumptions, the assumptions of potential flow, permit
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the fluid motions to be expressed in terms of Laplace's equation.

A number of techniques are available for finding solutions to

this equation, and it is therefore apparent that this would be

an attractive approach.

There is little doubt that an approach based on Laplace's equation

can be used to obtain meaningful solutions to the parachute opening

process. It is also quite certain that these solutions can

include effects due to material density, variable canopy porosity,

material stiffness, etc. Such solutions can provide predictions

for the motions of the fluid around the parachute as well as the

motions of the parachute itself.

The approach described above is distinctly limited by the fluid

model; i.e., the assumptions of incompressibility and irrota-

tlonality. Fortunately, there may be a way :o circumvent this

limitation. In particular, another approach for the fluid model

is suggested by the success of recent studies in which the

equations for time dependent fluid motions have been solved by

numerical techniques. In this approach, the partial differential

equations for the fluid motions are rewritten as finite difference

equations. The space occupied by the fluid is divided into cells

and the equations are solved by "stepping" forward in time. Even

effects due to compressibility and viscous dissipation (including

shock waves) may be numerically evaluated using finite difference

techniques.

The following subsections continue this discussion. Section 6._

presents the results of a study on the added mass terms that

appear in the momentum equations along and normal to the flight

path of an inflating parachute. Section 6._ presents the results

of a rather detailed study of the inflation process based on

potential flow analysis. Finally, Section 6.5 briefly discusses

the applicability of finite difference mezhods to the task of

obtaining numerical solutions of the parachute inflation process.
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6.3 MOTION EQUATIONSSTUDY

The importance of added mass in the momentum equation taken

tangent to the flight path was apparently first pointed out in

1946 by Scheubel. 12 Added mass has been used in oractically all"

analyses of the parachute opening process since that time--but

primarily in the momentum equation taken tangent to the flight

path. How added mass should be included in :he momentum equation

taken normal to the flight path is not altogether otvious. Almost

without exception, statements of this equation, when written for

application to the parachute opening process, have not featured

an added mass term. Two questions were therefore formulated.

First, how should added mass be included in the momentum equation

taken normal to the flight path? And second, how is _he added

mass that appears in this equation related to the added mass that

aopears in the momentum equation taken tangent to the flight path?

The concept of added mass (apparent mass, hydrodynamic mass, etc.)

comes originally from the classical hydrodynamics literature.

It is discussed as a part of the general topic of the unsteady

motion of a body through a fluid in the hydrodynamics texts of

46 Basset 47 Milne_Thompson_8 and others These texts showLamb, , .

that if an incompressible, acyclic potential flow* is assumed,

the effects of the surrounding fluid on a moving body can te

represented by a fluid inertia tensor. It is only within the

restrictions of this simplified fluid model that the concept of

_ _added mass has a precise meaning. The added mass terms discussed

here are the only element of the inertia tensor required to

describe fluid effects for simple ballistic motion.

Acyclic ootential flow is defined as potential flow in which

the region occupied by the fluid is simply connected.
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An undesirable feature of acycllc potential flow is that it

predicts no steady state forces. As an approximation, steady

state drag is therefore normally added to _he unsteady forces

predicted by potential flow theory.

The motion of a parachute system center of gravity during

inflation is usually described by conservation of momentum

equations taken _ange._ and normal to the flight path.

dv
m - = m g sin e - D + F

dt v

de
m v dt - m g cos _ + Fw

(53)

where

m = system mass

g = gravitational acceleration

D =sZeady state drag

Fv = unsteady fluid force tangent to flight path

Fw = unsteady fluid force normal to flight path

v = flight path velocity

@ = flight path angle (positive downward)

In order to obtain solutions to these equations, an inflation

equation is also needed to describe the rate of change of some

characteristic parachute dimension, R. The inflation equation

is not considered here.

The problem is thus one of finding the unsteady fluid force

components Fv and Fw. It is assumed that the position of all

points on the parachute can be described in terms of the center

of gravity oosition and the parachute dimension, R. This

essentially means that the parachute passes through the same

family of axisymmezric shaces during every inflation.
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Hydrodynamicists have long used the Lagrange equations to derive

expressions for forces and moments imposed on a hcdy as it moves

through an Incompressible, invlscid fluid. The application of

these equations to a body of changing shape like an inflating

parachute is somewhat unusual, but the basic principles are the

same as for a fixed shape body. Consider an inflating parachute

in ballistic motion as illustrated in the adjoining sketch.

X

inflating

parachute

W

m

v

flight path

Assume the flow about the parachute to be incompressible, acyclic,

potential flow, and let the parachute geometry be entirely

specified by the characteristic dimension R. For this case, i_

may be shown that the kinetic energy of the surrounding fluid

can be expressed in the form

T : ½A 1 v 2 + A2 v d'-_ + ½A 3 _ + ½A 4 (5%)

AI, A2, A 3 and A4 are different

R, "'

where the coefficients

functions of the characteristic dimension
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Forces in the X and

Lagrange equations as

Z directions are calculated from the

Fx = _

d AI- dt v cos e _ A2 _ cos e

F Z did(1)
= - AI v sin e + A2 sin e

where v dX
dt

dZ
cos e - _-_ sin @

Taking the derivatives and resolving the forces into components

tangent and normal to the flight path gives the following

relations for F and F :
V W

A dAl dR d2R IdRl2]Fv = - i d-_ + d-R d--£ v + A2 _ + 2
dR _dt/ J

[ AI de + A2 dR d_]Fw = - v d--_ _t d

The coefficients A_± = AI(R) and A2 = A2(R) are different_. , but

related, added masses of the parachute canopy.

(55)

By inspection of the expression for Yv' it is seen that AI is the

familiar added mass associated with acceleration of fluid by the

canopy due to the acceleration of the system center of gravity

along the flight path. It could in fact be defined as the force

induced by the fluid per unit acceleration along the flight path.

It is also seen that A 2 is a similar mass term but is apparently

associated with acceleration of the fluid by the parachute canopy

relative to the system center of gravity due to the change in the

canopy shape. It could be defined as the force induced by the

fluid along the flight path per unit acceleration of the parachute

dimension, R. The other terms in the F expression are
V
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momentum type terms familiar to propulsion engineers. They

occur because the parachute shape, and hence added mass, is

variable during inflation.

It is seen from the F expression that added mass terms also
w

appear in the trajectory angle equation. This fact has apparently

been missed in much of the parachute literature.

Denoting s as the distance along the flight path and recognizing

_hat R = R (s), the ballistic equations can be written,

d [ (m + m )] = m g sin e - DV
dt a

de
(m + .T.a) v d"-@ : m g cos e

(56

dR
where m a = AI + A 2 _ This is not an especially convenient

form for obtaining numerical solutions, but it shows that the

total added mass effect can be written as m = m (s). For all
a a

dynamically similar inflations of a given parachute, ma is equal

to the fluid density times the same function of s.

The above discussion is not intended as a rigorous description

of all forces on a parachute during inflation, it is intended

merely to clarify the concept of added mass and its use in

ballistic equations. Including real fluid effects such as

compressibility and viscosity obviously makes the problem much

more difficult. Hopefully, first order effects can be included

in added mass coefficients, as they are in the steady state drag

coefficient.
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6.4 APPLICATION OF POTENTIAL FLOW ANALYSIS

The results of a study, on applying potential flow analysis to

predict the flow about an inflating parachute canopy, are pre-

sented in this section. A solution algorithm is developed for

solving the inflation process based on both aero and structural

dynamics equations. This algorithm sequentially solves for the

instantanteous velocity potential, internal loads, canopy ac-

celeration, pressure distribution, added mass, drag, lineal ac-

celeration, and flight path angle rate. Knowing these quantities,

a new canopy shape, canopy deformation rate, lineal velocity

and flight path angle of the parachute system are computed. The

process is repeated over and over, each computation cycle being

advanced in time by a small amount until the inflation process

is complete. In this manner, a detailed history is obtained

for essentially every parameter of the inflation process.

The fluid equations for potential flow are presented and briefly

discussed in Section 6.4.1. A method of solving for the velocity

potential of a deforming canopy is described in Section 6.4.2.

An equation for the pressure difference acting across a canopy

surface in terms of aerodynamic parameters is derived in Section

6.4.3. A sLmilar equation for the pressure difference across a

canopy surface in terms of structural parameters is derived in

Section 6.a.4. The two pressure difference equations are solved

in Section 6._.5 to give the pressure distribution over the canopy

surface and a canopy acceleration vector. Also presented in

Section 6.4.5 are equations for computing the transport velocity

of the flow through the canopy surface, the added mass, and a

drag force. Finally, an algorithm for computing the complete

inflation process is presented in Section 6._.6.
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6.4.1 Fluid Equations

The equations of motion for an incompressible, irrotational fluid

are presented, without being derived, in the following discussion.

The reader interested in a thorough development of these equations

is referred to References 46-48.

The continuity equation of an incompressible fluid is

6qx/SX + 6qy/6y + _qz/_Z = 0

or simply

v.q = o (57)

where x, y, z are fixed cartesian coordinates and qx' qy'

qz are the components of the fluid velocity vector q. Equation

(57) applies for both steady and unsteady fluid motions. If

the fluid motion is everywhere irrotational, then it may be

shown to possess a velocity potential, _. Equation (57) can

then be written in the form of Laplace's equation,

_2_/_x2 + b2_/6y 2 + _2_/_z2 = 0

or simply

V2_ = 0 (58

Tne meaning of _ is given by the relations

or simply

qx = b_/_x, qy = _/_y, qz = 6_/Oz

: v (59)
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The velocity potential _ is a scalar quantity; in general,

= _(x, y, z; t). Equation (58) is referred to as the potential

equation, and the analysis of flows that satisfy this equation

is referred to as potentia! flow analysis.

Potential flow analysis consists very largely of finding solu-

tions to Equation (56)that satisfy specified boundary conditions.

For an opening parachute, two types of boundary conditions are

required. One specifies a compatibility condition at the sur-

face of the canopy and the other specifies conditions far away

from the parachute. The compatibility condition at the surface

of the canopy is

(V,¢ c - • a = wc

where

u is the velocity of the canopy surface, and w
--C

sport velocity of the fluid through the surface.

denotes the outward unit normal to the surface.

boundary condition is

V_ c is the velocity of the fluid at the canopy surface,

is the tran-
c

The symool n

The second

= 0 (60)

This states that the fluid velocity at limitingly large distances

from the parachute (in any direction) is zero. The subscript

denotes infinity.

It is convenient to define a coordinate system that moves with

the parachute. Let this be a cartesian system O'x'y'z' with

origin O' at the apex of the parachute. Also, let the parachute

be symmetrical and let the axis of symmetry lie along the z' axis.

At time t, let the moving coordinate system O'x'y'z' coincide

with the fixed coordinate system Oxyz. The situation is illu-

strated in Figure 8!.
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X_ X !
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Fig. 81.

System

qco = 0
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Schematic of Parachute Showing %he F_x_d uoordinate

Oxyz and Moving Coordinate System O'x'y'z' at Time t ,
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A Point P on the canopy surface may be specified as

P = P(°, ×; t)

where a is the curvilinear distance along the surface of the

canopy from the apex (or meridional distance), X is the azimuth

angle of the point with respect to the principal meridian, and

t is time. The principal meridian is shown in Figure 81; it is

a curve on the canopy surface that lies in the x'z' plane.

The position of Point P may be denoted by a position vector

rp = r (_, X_ t)p

Likewise, the velocity of Point P relative to

be denoted by a velocity vector

_p = £ (_, X; t)p

O'x'y'z' may

where the overdot denotes differentiation with respect to time;

i.e., r = dr/dt. Finally, the acceleration of Point P re-

lative to O'x'y'z' may be denoted by an acceleration vector,

_p = "_r"(c, X; t)p

where the double overdot denotes double differentiation with

respect to time; i.e., _ = d2r/dt 2.

Let the velocity of the moving origin, O' , with respect to the

fixed origin, O, be the vector v that lles along the z and

z' axes. The velocity of the canopy with respect to the fixed

coordinate system Oxyz is then

The compatibility condition at the surface of the canopy may now

be written as

c - v- '_r)• n_: (6!)
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In summary, the motions of an incompressible, irrotational fluid

are governed by one equation, the so-called potential equation,

Equation (58). Associated with this equation are two boundary

conditions: a compatibility condition at the surface of the

canopy, Equation (61); and a condition at infinity, Equation (60).

6.L.2. Solving for the Velocity Potential

Reference 47 presents a solution for the flow of an incompressible,

irrotational fluid about a spherical bowl. This solution is ob-

tained by distributing doublets over the surface of an indefinitely

thin, bowl shaped shell. It is also shown in this reference that

the velocity potential for the flow around an arbitrarily shaped,

indefinitely thin sheet can be expressed by the equation

_ (p,)= _ h cos _ dA (62)

where _ is the velocity potential at any field Point P', h

is the doublet strength per unit area, and A is the surface

area of the sheet. The quantities a, _, and dA are defined in

in the adjoining sketch. (Point P is at dA and n is the

outward unit normal of dA. ) Equation (62) is valid for Point P'

anywhere except in the sheet that contains the doublets.

_n

P

dA

ef
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It is shown in Reference L7 that Equation (62) has the equivalent

form

where d _ = cos a dA/{ 2 is the solid angle subtended by dA

as "seen" by Point P' With this equation, it may be shown

that the velocity potential on the inside surface of the sheet

(subscript i) is greater than the velocity potential cn the

outside surface of the sheet (subscript o ) by 4 ,_h . That is,

Hi - Go : 4:h (6a)

The velocity potential given by Equation (62) is a well behaved

function except at the sheet. For the case at hand, this is the

canopy. Equation (61) requires evaluation of V_ at the canopy,

and because _ is discontinuous at the canopy, care must be

taken in performing this evaluation.

A velocity potential of the form given by Equation (62) auto-

matically satisfies Equations (58) and (60). Hence, the problem

reduces to that of solving for the doublet distribution h that

satisfies Equation (61). It is shown in Appendix B that Equation

(61) may be expanded and rewritten as

_/6n = R sin _ - (Z + v) cos _ + w c (65)

where 6_/_n is the gradient of _ normal to the surface, and

and Z are the time rates of change of the canopy coordinates.

A schematic of the canopy illustrating the angle _ and other

pertinent quantities is illustrated in the sketch on the next

page.
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It is shown in Appendix B how Equation (62) can be used to

solve for a doublet distribution vector, h. This vector has

n components and is written as

h = (h(Cl) , h(°2), ..-, h(an))T (66)

The first component h(_l) is the doublet strength in the

region of the canopy apex] the second component h(a2) is the

doublet strength in an annular region surrounding the apex_ and

so forth until the last component h($ ) which is the doublet
n

strength in an annular region adjacent to the canopy skirt.

* In Equation (66) and subsequent equations, time dependence is

ignored in the interest of keeping the notation simple.

271 NVR-6S31



NORTHROP

A plot of doublet strength h versus meridional distance a

might look like the curve labeled "numerical sclution" in the

adjoining sketch.

Doublet

Strength,

h
soTT

Numerical Solution lj

• • v v I

_'2

• I I

0 lr
S

(apex) (skirt)

Meridionai Distance,

Once the doublet distribution is known, the velocity potential

at any Point P', on or off the canopy surface, can be solved

for by using Equation (62). Likewise, once the velocity po-

tential is known, it is a relatively simple task to compute the

velocity of the fluid at Point P' by usirg Equation (59).
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6.4.3 Aerodynamic Pressure Equation

Of even greater interest than the velocity of the fluid is the

differential pressure _p that acts across the canopy. In

order to evaluate 4o, the transient pressure equation must

be used. This equation is

P = p== + 0 (6_/bt) - __o (q_ - v) 2 + ½ pv 2 (67)

The differential pressure at the meridional distance c

&p(o) = Pi (_) - Po(°)

is

where pi(O) and po(_) are the inside and outside pressures

acting on the canopy at the meridional distance a, respectively.

It follows that

Ap= p_/_t(_i - no) - ½p {(q-i - v)2 - (% - v)2 }

By utilizing Equation (64) and by carrying out the operations

indicated in the last term, this equation may be simplified to

the form

_p = 4up (bh/_t) - ½0 {(qi 2 - qo 2) - 2 (qi - q-o )' v}

This may be further simplified by noting that

q-i - q-o = 2(0_i/_) (rn)

2 2
qi - qo = 0 (66)

to give the following form

aP = 4,_0 (_h/_t) + 2 pv (6_I/_) sin

!

(69)
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The pressure distribution over the canopy may be conveniently

represented by a pressure distribution vector a__pp

a__p = (ap (Ol) , ap (_2) , ..., ap (Cn))T (70)

where the notation already used in Equation (66) is again

employed. In the discussion that follows, this notation will

be commonly used. it will even be used to denote canopy shape,

velocity and acceleration vectors. In particular, the canopy

shape, velocity and acceleration vectors are defined, respec-

.
tively, as

__ : (_r (°l)' r_ (°2)' ""' r_ (:n)) ¢

_r : (k (Ol), __ (o2), ..., __ (on)) _ (T1)

"f, = (_ (ol) _ (02) _: (o))¢

Equation (69), when expressed in this notation, becomes

(72)

An approximate expression for _h/_t

(B23) of Appendix B as follows:

is provided by Equation

Sh/_t = _ (_)-i (_n - _ cos 4) (73)
-- D

The quantity (_)-l is a known n x n matrix and _n is the

component of the canopy acceleration normal to the surface.

Substituting the right hand side of Equation (73) into Equation

(72) gives the following relation for the pressure difference

It should be realized that these vectors are defined with

respect to the moving coordinate system O'x'y'z' The
actual velocity and acceleration are ('_r+ v) and ('_ + '_v).
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vector

A_ = _ 4 _p (A)-1 (_n- _ cos_) + 2 pv(_/_°l sin _ (_L)

Equation (74) provides an expression for the pressure @ifference

across the canopy surface in terms of aerodynamic parameters.

The next subsection provides a similar expression for the pres-

sure difference in terms of structural parameters.

6._._ Structural Dynamic Pressure Equation

A numerical method for determining the shape and internal load

distribution of a parachute for a given construction, canopy

pressure distribution and riser load is developed in

Section 3.0 of Vclume II. Finite elements are used in the

mathematical model tc represent the parachute structure, and

an iterative process is used to find the unique shape and in-

ternal load and strain distribution that satisfies the equili-

brium and boundary conditions. The parachute structure con-

sists o2 horizontal elements (sails or horizontal ribbons)

which carry the circumferential loads and meridional members

(radial tapes and suspension lines) which carry the meridional

loads. The geometry of the radial tapes is governed by the

following equation:

PR + i - sin 2 _/b sin2_ (75)
apse = 2 RR_ sin w/b R cos w/b

where APse is the static equilibrium pressure difference

acting across the canopy surface and other symbols are defined

as follows. PR is the longitudinal load in the radial tape,

and R_ is the radius of curvature of the radial tape. N@

is the transverse load in the radial tape per unit length along

the tape, and the number of radial tapes in the parachute is

denoted by b.
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Equation (75):is for static equilibrium.

equation for dynamic equilibrium is

The corresponding

aP : APse + _ [(_ + V)n (76

+ g (sin @ cos _ - cos _ sin _ cos X)]

where (r + V)n is the magnitude of the canopy acceleration

normal to the surface, g (sin @ cos _ - cos _ sin _ cos X)

is the component of the acceleration due to gravity in the

direction normal to the canopy surface, and _ is the mass

per unit area of canopy surface. The latter equation may be

simplified somewhat by dropping the asymetrical gravity term

and by replacing Vn with v cos _ to give

6[_ + _ cos _ + g sin _ cos _]_P = APse = _ n
77

Finally, this equation, when written in the vector notation

described in the previous subsection, becomes

_p = ['"gp + M r n + v cos _ + g sin _ cos
_se

78

where M is the n x n diagonal matrix,
.m

M : dlag ..., 79)

Equation (78) provides an expression for the structural dynamic

pressure difference across the canopy surface in terms of struc-

tural, inertial and gravitational parameters. Its counterpart

in terms of aerodynamic parameters is Equation (7S).
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6.L.5 Pressure Distribution and Other Quantities

Equations (74) and (78) provide two equations in two unknowns:

Ap and r n . These equations may be solved by first eliminating

either unknown and solving for the other. The most easily eli-

minated unknown is Ap. Setting the right hand sides of the

two equations equal to each other and collecting terms gives

..]3"_z':n = -C_ (_"0)

where

: _ ,-,o (_)-I +

and

C

- 2 pv (b_/_c)sin

It follows from Equation (80) that the canopy normal accele-

ration vector can be solved for directly with the equation

'' / --i

r_n = - _) C_ (81)

where (B)-I is the inverse of B.

oo

Alter solving for_r n with Equation (81), either Equation (74)

or Equation (7_) may be used to solve for the differential

pressure distribution vector Ap.

Once the differential pressure distribution is known, it is a

relatively simple matter to compute the transport velocity, w
C'

This computation is made by using the following equation taken

from Reference 5:

wc = c ._/ 2 _p/_ (_2)
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where C is defined as the effective pcrosity of the canopy

material. Reference 5 gives plots of C for various canopy

materials as a function of altitude and pressure difference.

By evaluating Equation (62) at _I' c2' ..., Cn, a transport

velocity vector, w e is evaluated

w : ( w (s!) w_(_2) Wc(Cn))T (hi)
--C C ' _ J "" ''

The added mass can also be evaluated once the pressure distri-

bution is known. To do this, note that Equation (Ta) shows the

pressure difference, aP to be the sum of two terms: a "tran-

sient" term, and a "steady state" term. That is, Equation (74)

may be rewritten as

a__P : (aP)tr_ _ (aPJss
(84)

where the transient pressure difference is

_-_)tr : - 4_0 (A) -I (i n - v cos _)

and the steady state pressure difference is

= 2 pv (_/_s) sin

The added mass is due only to the transient term and is related

to (aP)tr through the relation

d___ (maV) = iI (£P)tr cos 6 dA (95)
dt

m may be approximately solved for usingAnalysis shows that a

the following equation which is essentially equivalent to

Equation ($5)

t m

ma(t ) : iv _0 [j_-IZ(_P)trj cos 6jAj ] dt + m a (0) (96)

The notation used in this equation is explained in Appendix B.
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If t = 0 is when the canopy first starts to inflate, then

the term ma(O ) may be dropped_ i.e., ma(O ) = 0 for this case.

The steady state term in Equation (8_) provides no net force

according to a momentum conservation principle known as

d'Alembert's paradox. This would appear to be unreasonable

because the integral of (aP)ss cos _ over the cancpy area

quite obviously produces a net force in the direction of

ViZ.,

J AJ ss

-_k;

(87)

This dilemma is resolved by noting that d'Alembert's paradox

applies only if the force known in wing theory as "leading edge

thrust" develops at the skirt edge of the canopy. It is con-

sidered a certainty that this so-called leading edge thrust

does not occur on a parachute canopy. Therefore the steady

state force computed in Equation (87) may be interpreted as

a drag force. Denoting this force by D, it follows that

an approximate relation for computing this quantity is

m

D : Z (AP)ssj cos _j Aj (86)
J=l

Equation (88) probably gives a lower bound for the drag

actually experienced by the canopy.

6.4.6 Solution Algorithm

A solution algorithm, which employs the analytical concepts

developed in the foregoing subsections as a basis for pre-

dicting the parachute inflation process, may now be discussed

in a preliminary way. The main elements of the computation

are reasonably clear, and a description of the computational

steps involved may be outlined. A flow diagram for a solution
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algorithm that predicts the process by stepping forward in time

is illustrated in Figure 82. The computational steps indicated

in this figure are briefly discussed below.

i) The parachute structure is specified in detail.

This specification includes all dimensional,

mass and elastic properties of all components

of the parachute. In addition, the distribution

of the canopy geometric porosity is specified.

Also, the mass and drag coefficient of the ve-

hicle are given.

2) The starting conditions at the initial time,

say t = 0, are specified. These consist of

the flight velocity v, the flight path angle

Q, the canopy shape vector r, and the canopy

velocity vector r. In addition, estimates

of the initial riser force Fr, the initial

transport velocity vector w , and the initial
--C

acceleration of the system _ are specified.

(These estimates are for use in the first

computation cycle only.)

3) The velocity potential _ is computed using

Equation (62) with doublet distribution as de-

scribed in Appendix B.

4)

5)

The static equilibrium pressure difference vector

_--Pse is computed by using the procedure described

in Section 3.0 of Volume II.

io

The canopy normal acceleration vector r and
-n

the pressure difference vector A_pp are computed

using Equations (81) and (76).
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Start

(i) Specify

Structure

(2) .Specify

Initial Conditions

(3 ) Compute

_(x,y,z;t)

(4) Compute

Z_P(G;t)se

( 5 ) Compute

"_n(G;t ), Ap((r;t )

(6 ) C omput e

] _Wc(O;t),ma(t),B(t)

Stop I

(9) Reset

t = t +_t

t
(8 ) Comput e

_r(e;t+at),__(_;t+at

t
(7) Compute

v(t+_t), o(t+at)

Fig. 82. Flow Diagram of Solution A!gorin_
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7)

The transport velocity vector _c' the added

mass ma, and the drag D are computed using,

respectively, Equations (@3), (66) and ($_).

The flight velocity v and the flight path angle

are computed at time t + At using the equations

v (t)+ (t)At

(t) + $ (t) At

where the system acceleration v and the flight

path angle rate _ are computed with Equations (56).

_lso, the riser force F is computed with the
r

equation

F r : my( g sin O - v) - Dv

8) The canopy shape and velocity vectors are computed

at time t + At. These computations use the fol-

lowing equations:

Io

r (t + At) = r (t) + "_r(t) At + ½ rn(t ) At 2

• it

r (t + at) : r (t) + r n (t) at

9) The time t + At is reset to t and the compu-

tations are continued by returning to Step (3).

Steps (3) through (9) are repeated until a test indicates that

the canopy shape vector r is no longer changing with time.

When this is found to be the case, the inflation process is

complete, and the computations are stopped•
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The solution algorithm described above is somewhat involved,

and it is quite evident that a high speed digital computer

will be required to implement the computations required by

the method. This means that a computer program will have to

be prepared. With a functioning computer program, the com-

plete inflation process may be predicted. Included among the

parameters that may be predicted would be the stress-time

history for every structural element in the parachute system

during its entire opening. That such information will be of

great interest to a parachute designer is quite apparent. How-

ever, the accuracy and ultimate usefulness of these predictions,

which will be based on potential flow theory, can not be assessed

at this time.

6.5 FINITE DIFFERENCE METHODS

To solve for the pressure distribution over a parachute canopy

during the opening process is a very difficult problem in fluid

mechanics. The shape of the canopy influences the fluid flow

and vice versa, so that there are mutually interacting non-

linear systems. However, since the advent of high speed, large

memory electronic computers, it has become pcssible _o solve

complicated problems in fluid mechanics using numerical techniques.

The greatest amount of work in fluid mechanics has been in the

field of compressible flows with shocks, large distortions and

time dependent processes in several dimensions. Recently,

incompressible flows have been investigate6 and the most recent

of these are incompressible flows with a free surface. The

numerical methods used to solve fluid mechanics prcblems are

almost as many in number as the investigators using the numerical

methods. The nr!ncipal methods based cn the variety of problems

treated and acceptability by researchers, are the Particle in

Cell !PiC), the Fluid in Cell (FLIC], Marker and Cell (I_AC),

AFTON, Landshcff, Lax, Rusanov, and the Lax-Wendroff metkods.
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To demonstrate how the numerical methods may be applied to

solving the parachute opening process, a trief description of

the P!C method is presented because of its generality.

in the numerical methods now used, all of the systems subdivide

the fluid into small cells. The cartial _ifferenZlal equations

for the fluid model are then approximated in finite difference

form. There are two general ways of representing the coordinate

systems that are used in formulating these finite difference

equations. The first is Lagrangian in which the coordinate

system moves w!th particles of the fluid. The second is Eulerian

in which the coordinate system is fixed with respecb _o ground.

The former method ?_ _ ___o_u_es equations that remain valid only so

long as there are no large fluid distortions, and the latter

method produces equations that cannot resolve the fine structure

of the flow. The P!C method combines the two coordinate systems

to eliminate these disadvantages. Thus there are two computing

meshes, an Eulerian and a Lagrangian. As stated by F. H. Harlow: 49

"The domain through which the fluid is zo move is divided

into a finite numEer of computational ceils which are

fixed relative to the observer. This is the Eu!erian

mesh. In addition, the fluid itself is represented by

particles or mass points which move through the Eulerian

remesh, presenting the motion of the fluid. This is the

Lagrangian mesh. Associated with the mesh points of each

system are cerzaln variables whose history the calculation

develops. Thus, for each Eulerian cell there is kept the

velocity, the internal energy, and the total mass of each

kind of material. For the Lagrangian mesh of particles,

individual masses and positions are kept."

In applying the PIC method, it would be required that a ccmputer

program te written to solve the finite difference equations,

together with _he boundary conditions. This computer program
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would generate the solution by computing the fluid velocities,

pressures, internal energies, etc., throughout the fluid at

sequential instants of time. Preliminary ideas on the applica-

tion of the PiC method to the earachute opening process follow.

The initial conditions for the fluid (velocity, pressure, inter-

nal energy, etc.,) would be specified at the mesh points in the

fluid, and the parachute in its initial geometry would be given

as a starting boundary condition to the computer. The charac-

teristics of the canopy -- including its typej configuration,

dimensions, material properties and porosity distribution -- would

also be modeled and given to the computer.

The solution would be generated by first stepping forward in time

by a very small time increment and then computing new values for

the fluid properties, and the canopy position and velocity. This

process is identically repeated many times, and in this way, the

solution is generated. Initially, it would be desirable to use

relatively few mesh points and a fixed geometry canopy. Next, it

would be desirable to increase the number of the mesh soints and

use a slowly deforming canopy. After experience is gained with

these computational problems, the full problem featuring a

deforming canopy whose shape is determined by its interaction

wlth the fluid could be undertaken.

Many finite difference meZhods have been successfully used to

solve a wide variety of nonsteady fluid flow croblems. The

Particle in Cell method is a method that is suited to solving

the parachute opening process. A solution based on the P!C

method could include the effects of compressibility, viscosity

and rotationality. Such a solution would be free of certain

basic limitations inherent in potential flow analysis, and it

would therefore be expeczed that it could crovide a more accurate

analysis of the parachute opening process.
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SECTION 7.O

MEASUREMENTS REQUIRED IN SUPPORT OF THE LOAD

PREDICTION METHODS

The types of measurements that are required to support the

further development of the load prediction methods beirg de-

veloped for Apollo type parachutes are discussed in this section.

7.1 SHAPE/DISTANCE 0PEN-NG LOAD NETHOD

Two different types of data are needed in order to use the

Shape/Distance Opening Load Hethod. The first type of data

consists of the initial flight conditions (velocity, altitude

and flight path angle), the vehicle weight, the vehicle drag,

and the gravitational constant. The second type of data are

certain canopy shape characteristics, the canopy added mass,

and the canopy drag area. This discussion is concerned with

the measurement of the latter type of data only.

The canopy shape characteristics consist of the eccentricity

of the ellipsoidal crown, the radii defining the phases, the

airball length versus projected radi_s (for Phase I), and the

inflation parameter, ds/dR . Some of these characteristics

have been estimated from Apollo flight test films. However,

because of the obliqueness of the camera line of sight to

the canopy axis, the canopy profile shapes could not always

be ascertained. Furthermore, the lack of an accurate reference

length made the results obtained from film analysis somewhat

uncertain.

The canopy added mass versus radius is needed. With an Apollo

main parachute this mass is significant. At present, this is

obtained by assuming an equivalent, impcrous ellipsoid and

ueing a potential flow theory relationship.

The canopy drag area as a function of projected radius is

also needed. At present, steady state values at different
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reefing ratios are used. However, because the shape of an

inflating canopy at a given mouth radius is very different from

the shape of a canopy in steady state with the same mouth radius,

this approach is considered inadequate.

In brief, the input data for the Shape/Distance Load Prediction

Method are now being estimated on the basis of rather limited

information; i.e., the existing Apollo flight test data. This

has not proved to be entirely satisfactory because these test

data do not permit the canopy characteristics to be accurately

determined. Even more important, the available flight test

data do not permit the added mass effects to be separated from

the drag effects. Therefore, it is considered essential that

special tests be conducted for the explicit purpose of obtaining

the specific items of data needed by the Shape/Distance Opening

Load Method. The needed data are:

i) Canopy Shape Characteristics

a) Crown eccentricity versus projected radius _,

b) Projected radii at the start and end of each

phase of inflation,

c) Airball length versus R (for Phase I), and

d) Inflation parameter ds/dR versus _.

2) Canopy added mass versus

3) Canopy drag area versus

7.2 PARACHUTE INFLATION POTENTIAL FLOW THEORY

When developed, the inflation theory presented in Section 6.0

will provide detailed predictions of the parachute opening pro-

cess. These predictions will include extensive information on
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the canopy shape, the canopy differential pressure distribution,

the canopy internal loading and the fluid flow field during the

complete process. These items of information, which will be

given by the theory, should be compared with measured quantities

to the extent that such comparisons can be made.

The parachute inflation theory given in Section 6.0 is based on

a potential flow analysis which rests on several assumptions. In

particular, this potential flo_ analysis assumes that the fl_id

is both incompressible and irrotational. The assumption that the

fluid is incompressible is entirely reasonable where the applica-

tion of the theory is to parachutes operati!_ S at low _lach n_mbers.

However, the assumption that the flow is everywhere irrotational

is questionable. Namely, there may be both a vehicle wake and a

canopy wake] and both of these regions, which would impinge on

the canopy, may be cuite rotational. How much error will be

introduced by the irrotationality assumption of the potential

flow analysis in unknown at this time.

There are few measurements _ha_ can be easily obtained during a

parachute inflation process. Those presenting the least difficJlty

are shape-time, flight velocity-time and riser force-time data.

These are valuable items of data and should be given first priority.

The canopy differential pressure distribution, the canopy internal

loading and the fluid flow field (each a f_nction cl both space and

time) would be even more valuable as items of data to compare

with the predictions that will be made by potential flow theory.

However, these latter quantities are qui_e difficult _o measure.

Apparently less difficult _o measure than these quaniti_ies are

the added mass and drag of the parachute canopy at different points

during the inflation process. For this reason, added mass-time

and drag-time data Should be given second priority. !_ follows

_hat third priority wo_id be canopy differential pressure distri-

bution, canopy internal loading and fluid flow field data.

28_ N_m-6431



NOAIHIIOP

7 "3 ADDED MASS CONCEPT AND MOTION EQUATIONS

A body moving through a fluid induces motions in the fluid which

are of the nature of parting motions for the fluid particles in

front of the body and closing-in-behind motions for the fluid

particles in back of the body. If the body is moving at constant

velocity, these motions in the fluid dissipate energy and produce

a force on the body, referred to as drag, which opposes the body's

motion. If in addition to having velocity, the body is also ac-

celerating, the parting and closing-in-behind motions of the fluid

are accelerated and the body experiences another fluid force

directly associated with these fluid accelerations. That is, in

addition to the drag force and the D'Alembert force required to

accelerate the mass of the body, there is an additional force

associated with accelerating the parting and closing-in-behind

motions in the fluid. The effect of these fluid accelerations

is to make the body appear *_ have a mass larger than its actual

mass. The difference between the apparent mass of the body and

the actual mass of the body is referred to as the apparent added

mass, or simply, the added mass. The added mass of a body is, in

general, dependent on the size and shape of the body, the direction

of the body's acceleration (with respect to body axes), and the

fluid density.

A typical body moving in a fluid-filled space has fluid forces

and moments acting upon it which may be thought of as being of

two types: (I) those due to the translational and rotational

velocities of the body, ar_ (2) those due to the translational

and rotational accelerations of the body. These different forces

and moments can be identified with respect to the six components

of velocity and the six components of acceleration for the
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L6
typical (constant shape) body. Texts on hydrodynamics by Lamb,

Basset _7' and F_ilne-Thomson 48give complete derivations of the

six equations that govern the trajectories of typical bodies.

For a nontypical (varying shape) body such as an openir_ parachute,

it is required to add one or more equations to the basic six

trajectory equations in order to form a complete governing set.

For such a case, added mass type terms due to the shape variation(s)

are required in both the additional equation(s) and the basic

six trajectory equations. A complete analytical statement for

the motions of a body such as an opening carachute is quite com-

plex, and the task of measuring the many added mass terms that

appear in such a statement would be unreasonably difficult if" not

impossible. Fortunately, at least for the case of Apollo type

parachutes, it is oossible to make a number of simplifying as-

sumptions and in this way materially reduce the complexity of an

analytical statement that describes the process.

The Apollo parachutes are essentially symmetrical about their

longitudinal axes during opening. It is observed that they

produce negligible lift or sideforce. They stay aligned with

the flight path_ i.e., the angle of attack and angle of sideslip

are small enough to be neglected. Also, their roll motions about

their axes of symmetry are negligible. And finally, they are

observed to open in nearly the same general manner every time--

independent of altitude, flight speed, flight path angle, etc.

The net result of these and other simplifyirg circumstances is

that only two of the six basic trajectory equations are required:

the momentum equation taken tangent to the flight sath and one

momentum equation taken normal to the flight path. Also, because

the shape changes during opening are always essentially the same

for any given parachute, only one additional equation is required

in order to analytically define the opening process. This

equation may be a drag area-time relationshio such as the one used

in the Mass/Time Opening Load Method (given as Equation _2!) in
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Section 4.2) or a radius-distance relationship such as the one

used in the Shape/Distance Opening Load Method (see discussion

cn page 164 o_ Section 4.3). Other _e_ationships are also

possible.

The two trajectory equations for an opening parachute are shown

in Section 6.3 to be the following momentum equations taken

tangent and normal to the flight path, respectively:

d "I

d--_.j(m + ma}V]_ = m g sin @ - D (89)

dO

(m + ma) v d< - m g cos _ (90)

where

m = system mass,

ma added mass,

V

D

system velocity,

flight path angle (positive downward),

drag force, and

t = time.
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The added mass, ma appears in both Equation (89) and Equation

_90)I. At first glance, it would appear that either equation

could be used as a basis for estimating m a from ordinary

flight test data. C n further inspection, this proves not to

be true. The reasons for this are explained as follows.

Ordinary flight test data include many items of data. For the

Apollo flight tests, for example, these data items ty_ically

include 'v, dv/dt, Q and the dynamic drag area, (CDS)dy n. For

an opening parachute, the latter quantity is related to the added

mass by the relation

d/m v)

(CDS)dy n [D + ' a ]: dt /q (91 )

where q is the flight dynamic pressure. In order to evaluate

m a from either Equation (89) or Eq:_aOion (91), the aerodynamic

drag force, D must be known. Without data on how D varies

during the opening process, neither Equation (89) nor (91) may

be used as a basis for estimating the added mass quantity, ma.

The typical flight test also provides data on the riser force,

Yr, and it might be asked if it could be used to aid in evaluating

ma. It may be shown that F r is related to m a by the eqdation

dVc @] +Fr = [mc dt g mc sin [ d(maVc)- Dc ] (92)
dt

where m c is the canopy mass, vc is the canopy velocity and

D c is the canopy drag. Ordinary flight test data allow the

first bracket in Equation (92) to be evaluated. However, data

on how D c varies during the opening process are required in

order to evaluate ma. Thus, it is seen that Equation (92) is

also inappropriate for providing a basis for evaluating the

added mass, ma, from ordinary flight test data.
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The objections associated with using Equations (89), (91) and (92)

do not apply in the case of Equation (90'j. This equation does

not have a drag term, and therefore ma may be solved for

directly in terms of known quantities] viz.,

ma = (mg cos @) / v d@ m (93"
dt J

It may be noted that this equation is quite inappropriate when

@ is large; say @ " 90 deg. For such a case, small errors in

either @ or d@/dt produce large errors in mr. Therefore,

consider the equation for the most favorable case when @ is

small and d@/dt is large. This is the case when the carachute

system is deployed along a flight path that is nearly horizontal.

For this case, Equation (.93) may provide a basis for evaluating

ma provided d@/dt can be determined with sufficient accuracy.

However, this is not likely because of the second difference

nature of the d@/dt values that are obtained from ordinary

flight test data. In particular, the flight path angle, @,

which is listed in the flight test data tabulations every 0.2 sec,

is a first difference type quantity. Hence, d@/dt, which must

be computed by taking first differences of the listed values for

@, is in reality a second difference type quant-_ty. It is well

known that numerically-evaluated second difference quantities

have poor accuracy. Therefore, it is reasonable to expect that

any estimates of m a based on Equation (93) would be quite in-

accurate, even for the most favorable case. This expectation

was checked by using Apollo flight test data to make numerical

evaluations of d@/dt. The result was as expected] the computed

values of d@/dt were quite inconsistent, and any hope of using

Equation (93) to estimate m had to be abandoned.
a

Ordinary flight test data such as the data obtained in the Apollo

flight tests apparently do not permit the added mass of an opening

parachute to be directly evaluated. Therefore, attention is given

to testing techniques that are suited to measuring ma directly.
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7.4 TECHNIQUES FOR MEASURING ADDED MASS

Section 6.3 derives the following relation for the added mass

of an opening parachute

dR

ma = AI _ A2 d--s (94)

Here, AI denotes the added mass associated with acceleration

of the fluid by the canopy due to the acceleration of the system

center of gravity along the flight path. A2 denotes a similar

mass term, but this term is associated with acceleration of the

fluid by the canopy relative to the system center of gravity due

to canopy shape changes. R denotes a variable characteristic

parachute dimension, such as the projected radius of the canopy,

and s denotes distance along the flight path.

Equation(94) indicates that m a is composed of two components.

Both components vary throughout the opening process. The first

component, AI is dependent only on the shape; i.e., AI = f(R).

(In this discussion, dependence on density is disregarded. ) The
dR

second component, A2 d--_ is dependent on both the shape and
dR

the rate of change of the shape; i e., A2 -- = f(R, dR/ds)." ds

Thus, is may be observed that the added mass of a parachute

canopy of fixed shape is simply AI. This quantity may be

measured by conducting special tests which employ a fixed shape

canopy, either in a wind tunnel or in free flight. A technique

for measuring A I is discussed in the following two subsections.

7.4.1 Measuring A1 in the Wind Tunnel

Consider a parachute supported in a wind tunnel as shown in

Figure 83. The canopy construction includes special internal

reefing lines such that the shape is made to represent an

instant of a normal opening. The riser goes upstream to a

pulley and oasses out of the tunnel to an eccentric arm on a

motor-driven flywheel. The tunnel velocity is maintained con-

stant during the test. Instrumentation includes a riser force

2 _ NVR-
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gage and an accelerometer located just below (upstream) the

confluence point and a motion picture camera. Common timing

marks are provided to the riser force-aecelerometer recorder

and the motion picture camera.

To conduct a test with the arrangement illustrated in Figure 63,

the motor speed is adjusted until the canopy oscillates fore-

and-aft at a high enough velocity to make the riser force vary

significantly from its mean value, say + i0 percent. The velo-

city of the oscillation is measured by integrating the accelero-

meter output and checked by differentiating the position data

provided by the camera coverage. Let the velocity of the canopy

with respect to the free stream air be denote_d by

i_t
v = v + u e (95)

o

where v o is the free _stream velocity, u is the amplitude of

the oscillation velocity, i = _, _ is the angular frequency

of the oscillation, and t is Zime.

The force at the force gage is, according to theory,

F
r

dv + D {96]
AI + me) d-_ c " •

where m c is the mass of the canopy and suspension lines, and

D c is the drag of these same two components. The drag Dc

be expressed as

D
C

CDS )c ½ _ v2 (9r'_)

From Equation (95) it may be noted that velocity squared is

2 2 i_t 2 i2_t
v : v + 2v u e + u e _98)

O O

Likewise,

dv i_uei_t (99)
yy :

Substituting quantities from Equations (97)- (99) into

may

S 96 N\_-6_31
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Equation (96), it may be shown that the riser force may be

written as

- 2] -Fr = L(CDS)c ½ P vo +I(CDS)c_ p VoU+ i ¢ (A1 + mc) u ] e

+ • (ZOO)

ia_t

This equation shows that the riser force,

in some manner about the average value.

F will oscillate
r

The precise manner in which Fr varies with time during a test

will oe recorded. A Fourier analysis can oe performed on this

riser force-time data and in this way the observed relationship

can be expressed as

r" ] i_ tFr : FC + LFI + i F2 e + ... (i01)

where F 0 is the average value,

cos _t component of Fr, and F2 is the amplitude of the

sin wt component of F r. Next, the measured quantities

FI, F2 can be equated to the corresponding quantities in

Equation(!O0) to give the three equations

is the amplitude of the

F
O'

o = (CDS)c ½ _ Vo2 (L0a)

F 1 : (CDS)c p v° u (103)

_2 = ®(AI + mc) u (io_)

The canopy drag area, (CDS)c may be computed using Equations

(102) and (103), and the added mass term_ AI may be computed

using Equation (IOL]. The latter computation would employ the

relation

Al = F2/Wu - mc IiC5 _
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It may be observed from this equation that the mass of the canopy

and suspension lines should be kept as small as possible in re-

lation to the added mass in order to improve the accuracy of the

computation. Also, it may be observed that both _ and u should

be varied from test to test, and that in this way A I may be

obtained under somewhat different conditions. Such tests should

show that A! is independent of _ and u.

The important test variables for this type of testing are canopy

shape (corresponding to different instants of the opening), canopy

type (ringsail, ribbon, etc., ) forebody shape, and free stream

velocity. The latter variable is important when its variation

produces changes in the streamline field in and around the canopy.

7.4.2 Measurir_ AI in Free Plight

There are two good reasons for wanting to measure parachute added

mass with free flight tests. First, there is apparently no other

way of measuring the added mass of large parachutes such as the

Apollo main parachutes. (Wind tunnels large enough to test full

open, Apollo main parachutes do not exist.) There are definite

indications that large ringsail parachutes oehave different __y

than medium sized or small ringsail parachutes, 51 and therefore

it is believed that information on added mass scale effects would

be desirable. Second, there is apparently no other way of measuring

the added mass of even medium sized parachutes such as the Apollo

drogue chutes at high dynamic pressures. (Wind tunnels large enough

to test Apollo drogue chutes can not operate at high enough dynamic

pressures to correctly simulate the Apollo deployment conditions.)

The dependency of added mass on porosity, which is strcngly de-

pendent on dynamic pressure, is well known. 35 It is therefore

believed that information on how parachute added mass varies at

high dynamic pressure would be desirable.
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Measuring AI in free flight tests may be accomplished using a

procedure similar to the wind tunnel technique described above.

Now however, the mechanism for producing the harmonic variations

in the riser force must be packaged within the vehicle. A

specific arrangement is illustrated in Figure 84. Shown in

this figure are a fixed shape canopy, a fin-stabilized bomb, and

a falling weight mechanism contained within the vehicle. This

falling weight mechanism is a weighted device that descends

through the body of the bomb at variable velocity, in this way,

the D'Alembert force of the body is made to oscillate about its

average value. The instrumentation consists of a riser force

gage and an accelerometer, both located just below the ccnfluence

point of the suspension lines, and a pitot tube for measuring

the static and stagnation pressure of flight. With this arrange-

ment, data can only be taken for a short period of time, say for

six to twelve oscillations, but this should be adequate. (The

alternative of providing a oower supply and motor to drive a

flywheel and eccentric similar to the arrangement described fcr

the added mass wind tunnel tests is probably not feaslble.)

The important test variables for this type of testing are canopy

shape, canopy type, forebody shape, free stream dynamic pressure

and Mach number. The latter variable is probably important for

flight Mach numbers greater than 0.7.

7.4.3 Measuring A2 in the Wind Tunnel

The quantity A2 is the added mass associated with accelerations

of the fluid by the canopy relative to the system center of gravity

due to canopy shape changes. It is estimated that A2 is equal

to approximately one-half of AI. The added mass is m a = AI+A 2 dR/dS.

Because the average value of dR/dS during a typical opening is

generally between 0. i and 0.01, it is evident that the contribution

of the A2 term is relatively unimportant. Furthermore, it
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appears that

accuracy.

measuring

measuring

A2 can be estimated in terms of AI with fair

This being the case, there is little reason for

A2. However, a possible experimental technique for

A2 is instructive regardless of its practicality.

Figure 85 shows an arrangement for measuring A2 in a wind tunnel.

Along each radial of the parachute is a flexible rib. In the

center of the canopy is an umbrella mechanism which includes

spokes to each of the ribs and an air cylinder to alternately

push and pull on the spokes and in this way make the parachute

radius oscillate about an average value. The rids, spokes and

air cylinder are so arranged that the shape changes are realistic

in relation to the actual opening process. Instrumentation in-

cludes a riser force gage and a motion picture camera. Obtaining

A2 from the data is quite similar to the procedure described

earlier for computing AI and is not presented. Suffice it to

observe that analysis indicates it is feasible to measure A2

with the test arrangement shown in Figure 85. This leads to an

interesting final comment on the problem of measuring added mass.

Whereas, at least for the case of an opening parachute, it is

apparently impossible to measure m directly, it is possible
a

to measure AI, A2 and dR/ds separately, and then evaluate ma

by means of the relation

m a = AI + A2dR/ds

7.5 PROGRAM PLAN FOR MEASURING ADDED MASS

This section describes a program for measurement of the parachute

canopy parameters required for use in the loads prediction methods

described in Sections L.O and 6.0. It encompasses a two-part

plan designed to follow a logical sequence of i) wind tunnel testing

to obtain the required canopy measurements and confirm the adequacy

of the instrumentation, and 2) limited flight tests to obtain

further canopy measurements and to correlate wind tunnel results.
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The experimental program strongly interacts with and depends on

the theoretical methods for predicting canopy loads, and one of

its most important results would be to confirm the accuracy of

the theoretical methods.

7.5.1 Wind Tunnel Phase

Prel_minary Considerations A wind tunnel program will be worth-

while for obtainirg useful measurements of canopy parameters

during the opening process.

(Consideration was given to the E1 Centro Whirl Tower as an

alternative to the wind tunnel for making the canopy measurements

discussed above. The primary advantages of the Whirl Tower are

(1) the facility of observation which it affords for tests that

may be conducted under finite mass conditions and (2) the re-

latively low cost and simplicity of testing. However, the Whirl

Tower is not appropriate for testing large parachutes having

reefed stages because the time available for opening is not suf-

ficient to allow disreefing. It would be necessary to open the

parachute directly to the stage being tested. This procedure is

unattractive in that it does not represent the true opening process,

and no further consideration was given to the use of the Whirl Tower

in the program. )

Modeling Considerations Because cf the practical limitations as-

sociated with scaling the parachute opening process, it is im-

portant in wind tunnel testing to use the largest possible

model. For the Apollo main parachute, the largest wind tunnels

available should be utilized. The Ames 40 x 80-foot Tunnel and

the Langley 30 x 60-foot Tunnel both can accon_r_odate large para-

chute models. The Ames Tunnel is capable of operating at dynamic

pressures up to i00 psf, while the Langley Tunnel is limited to
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about 60 psf. Because of its larger size and dynamic pressure

range, the Ames LO x 80-foot Tunnel is the most suitable for

Apollo parachute testing.

Prior experience has shown that to avoid undesirable tunnel

blockage effects, the drag area of the parachute model should

be limited to 15 percent of the test section area. For a test

section area of 3200 ft 2 and a CDo cf about 0.8, the maximum

allowable Do is about 28 ft. This means that one-third scale

models of the main parachute and full scale drogue chutes can

be tested. Tests of a one-third scale model and a reefed full

scale model of an early main parachute design were successfully

carried out in the Ames Tunnel in 1963. 52

Parachute model canopies should be scaled geometrically to pre-

serve porosity and strain effects. Unfortunately, at least for

the case of many components in the Apollo main oarachute, this

is not possible. For example, the i.I oz sail cloth used in the

Apollo main parachutes is the lightest cloth obtainable and

therefore cannot be scaled. Because of this limitation, the

sails of a one-third scale model of an Anollo main parachute

will be too stiff. It is believed that this will affect the

canopy porosity and hence the pressure distribution. However,

the effect of this stiffness mismatch on the pressure distri-

bution is believed @o be small. In particular, the wind tunnel

tests of Reference 52 showed that there were close similarities

between the shapes of a full scale ringsail parachute and a one-

third scale model constructed from the came canopy materials.

Since the shapes were similar, it follows that the pressure

distributions on the canopies were similar, and hence that the

flows about the canopies were similar.
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Program Outline A wind tunnel test program is recomJnended to

provide drag, opening shape and added mass data for the Shape/

Distance Opening Load Method and to aid the development of the

parachute opening theory described in Section 6.0. This program

is outlined in Table 30 and discussed briefly below.

Table 30. Outline of Recommended Wind Tunnc! Tests

Test Type

im .

I. Restrained Shape

Oscillating

2. Infinite Mass

Opening

Wind Tunnel Model

I/3-scale main

parachute

(D o = 28 ft)

I/3-scale main

parachute

(DO : 28 ft)

_S Shape Restraint

45 ....

6S ....

8_ ....

No

Stage i Opening

Stage 2 ,,

Stage 3 ,,

Comments

Model oscillated

during test

(see Fig. 84)

Model opens

normally

Two types of tests are recommended. These will be restrained

shape, oscillating tests and infinite mass, opening tests. For

both types of tests, a one-third scale main parachute model

(DO = 28 ft) will be employed. The oscillating tests will

utilize internal reefing lines to control the canopy shape during

the testing to correspond to 20, _0, 60, 80 and 100 percent of

full-open. The opening tests will employ reefing lines and

reefing line cutters in order to simulate the Stage l, 2 and 3

opening processes. The same test setup may be used for both

types of tests.
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7.5.2 Flight Test Phase

Preliminary Considerations It is recommended that the flight

tests be primarily low altitude (2500 ft_, single parachute

drops of one-third scale main parachute models and secondarily

sirg!e parachute drops of full scalehigh altitude (10,750 ft,,

Apollo ringsail parachutes. This is felt to be reasonable in

view of the complexity of the test instrumentation and techniques

that will be involved and the likelihood that interpretation of

the data may be difficult. Good profile data are needed for the

development of the Shape/Distance Opening Load Method, and the

low altitude tests will be well-sulted to obtaining this type

of data. Because some doubts may exist regarding the validity

of the reduced scale parachute tests, the full scale tests are

recommended to provide corroborative data.

Instrumentation The instrumentation for the flight tests will

be as follows:

I) Riser forcej

2) Ground-based motion picture cameras of

focal length such that good resolution is

obtained,

3) Onboard camera to record axial views of the

parachute during inflation, an_

4) Airborne motion picture camera coverage

for the full scale flight tests

All transducer outputs will be recorded by an oscillograph

carried onboard the drop test vehicle, and dynamic pressure

will be measured by an onboard pitot tube.
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Test Conditions The scaling laws derived in Section 3.2 for

velocities and masses are,

Vl/V ° : (rl/r °

!
2

duplicates Frcude number)

: _'pI/_ml/mo ' o 'rl/r o
,,3 duplicates added mass ratio':

where subscript l denotes the model and subscript o denotes

the full scale parachute. These expressions may be _sed to

compute test conditions fcr the model parachute. The required

velocity and vehicle mass for a one-third scale parachute model

at an altitude cf 2500 ft that simulates a main parachute at an

altitude of 10,750 ft and a velocity cf 330 ft/sec (a critical,

high altitude abort condition), are as follows:

Parachute Altitude Velocity :/chicle

Full scale main

i/3-scale main

We ig h t

10,750 ft 330 ft/sec 6500 !b

2,500 190 313

In regard to model stiffness, a similar problem occurs in flight

testing as in wind tunnel testing. Namely, the model is too

stiff. Testing the model parachute at the lower altitude tends

to offset this effect. This is because the density at 2500 ft

is approximately %0 percent higher than at i0_7_0 ft. in other

words, by testing the one-third scale model at 2500 ft, the

state of strain in this model will more closely simulate the

state of strain in the full scale parachute than if it were

also tested at 10,750 ft.

An outline of the recommended flight tests is presented in

Table 31.
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Table 31. Outline of Recommended Aerial F!ighb Tests

i,

Test ?ype

Restrained Shape,

Oscillating

Finite Mass,

Normal Openlr_

.... i

3. Finite Mass,

Normal Opening

Flight Test Model

1/S-scale main

parachute

(S o = 2_ ft)

i/3-scale main

parachute

(D O = 28 ft)

FI_!I scale

parachute

(D o = 28 ft)

20% Shape Restraint

40% ,,

80_ ,,

_IO " "

Stage I Opening

Stage 2

Stage 3

Stage ! Opening

Stage 2

Stage 3 ,,

Comments

Model oscillated

d_rlng test

(see Fig. 85)

Model opens

normally

Parachute opens

normally
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SECTION 8.0

SU_RY

This report presents the results of a one-year study conducted

for the purpose of analyzing Apollo parachute leads* data, up-

grading loads prediction methods, and investigating advanced

prediction methods. This includes a thorough analysis of an

extensive amount ef flight test data on the Apollo drogue and

main parachutes tested between 1962 and 1969. These data were

used to upgrade the pertinent load prediction methods for both

the drogue and main parachutes and to develop improved semi-

empirical methods directly applicable to Apollo type spacecraft

parachutes. In addition, there is presented an investigation of

vehicle-parachute interactions, a new parachute inflation theory,

and concepts for new parachute test techniques. Also included

are brief statements of analytical voids that represent barriers

to the further advancement in the technology of loads predictions

as well as identification of means for removing these barriers.

Introduction (Section i..0 i

The background and scope of the investigation herein reported

are briefly indicated. Associated with this report is a companion

report, Volume !I, which :sresents the results of a concurrent study

on parachute structural analysis methods.

Upsrading the Apollo Loads Prediction ['.:ethsds (Section 2.0)

The loads prediction methods used in the Apollo parachute develop-

ment program are briefly summarized. Except for the ca!culatien

of snatch loads, these methods are empirically based. The ap-

proach us=d in calculating Apollo parachute loads was to calcL;late

* Unless otherwise indicated, the word "loads" in this report

refers to the longitudinal loads transmitted through the
parachute riser.
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the flight conditions at the time each stage of inflation was pro-

grammed to occur and to predict loads on the basis of these flight

conditions. Two approaches were _:sed. ?ne employed CDS-time

data in a two-degree-of-freedom trajectory computation. The

other employed the opening load factor method. In addition to

longitudinal opening loads, the snatch forces, circumferential

inflation control line and reefing line loads were computed.

A study of the loads prediction methods used in the !polls para-

chute development program incladed a detailed analysis of the

Block i, Block !i and Block ii {H: flight test data and the

methods _sed at _:orthrop Uent'_ra between I_2 and 1969 ts make

loads predictions. Specific improvements made as a result cf

this study are indicated below.

Drogue Chute - _t reefed opening, varia¢ions in the opening lead

factor, (CK';r, are accounted for by variati:ns in the following

five parameters: type of vehicle ',a wake effect '_, whether or

not the load is in excess cf limit load, type of deployment,

number of drogL_e chutes inflating, and r.lach number. Other para-
\

meters expected to contribute to variations in (CK;r, such as

flight path angle, could not be analyzed _ecause they were not

varied by significant amounts in the tests. When the influence

of the five parameters is treated as additive, it is found that

the values of (CK"_r measured in the Block i! (H) tests can be

represented by an expression of the following form:

(CK 'jr = 1.00

_0. O0

+0.21

+0, 18

+0.07

+0.05

_0.05

_0.02

(plus the following as they applyi:

,'if ICTV is used".

_if BP is used)

(If PTV is used;

(for loads in excess of limit load)

(for mortar deployment _

iif only one drogue chute inflates

(for Yach number in excess of 0.75"
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Thus, the baseline is an ICTV test with two static line-deployed

drogue chutes at operational loads and operational >lach numbers.

At disreef opening, the type of vehicle used has the largest

effect on the disreef opening load factor, CK_ c. Larger factors

T_occur when an _vTV is used than when a PTV is used -- a trend

that is opposite that observed for reefed ooening. Three para-

meters affecting the disreef opening load factors of the Apollo

drogue chutes are l! the inverted fill distance parameter

_vAt',-i_, 21_ the drag area ratio _CDSLrJ_' _(CDS],o and 3 the fill

time ratio at/tfi!l. Good corre!aticn with test data is shown

for the first parameter. Correlation for the second parameter

cannot be shown directly, because, in the Apollo development

\ was held fairly constant. Correlationprogram, (CDS)r/(CDS10

for the third parameter is made difficult by the unavailability

of accurate times. Also, its effect may be of the same magni-

tude as the parameters ignored in the analytical model; viz.,

losses due to friction and the effects of material elasticity.

The data obtained with the BP vehicle follow the same trends

obtained with the ICTV but exhibit greater scatter.

Pilot Chute - By using calculated flight conditions at pilot

chute canopy stretch in pcsttest analysis (rather than Askania-

\
measured flight conditions_, the scatter in the empirically

determined opening load factors is reduced. The reduction

in CK scatter is from 0.86 _+ 0.04 to 0.85 _- 0.02 for five of

the six tests in which pilot chute loads were measured in the

Apollo development program. Also, calculating the main parachute

pack deceleration during pilot chute opening, and then basing a

pilot chute opening load factor on the calculated dynamic pres-

sure of the pack at the instant of peak pilot chute load, results

in factors of 1.06 _+ 0.02 in four of the six tests. This range

of CK agrees with the value given in Reference 5 which slnows

an ooening load factor of 1.05 for rings]o_ _arachutee in

infinite mass applications.
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Main Parachute - The method used for predicting the loads of the

main parachutes in the Apollo development program employs a point-

mass computer program for the two reefed stages and a special

adaptation of the opening load factor method for the third stage.

The reefed opening load computations are made with inputs de-

rived empirically from prior Apollo tests including drag area

and filling time. Aerodynamic interference between canopies

in a cluster is taken into account by Introducing deployment and

disreef time differentials obta__ned from tests, and by applying

a loss factor to the lag canopy drag area calculation. Also, the

computer output is modified by factors to account for effects due

to vehicle dynamics and data scatter.

The opening load calculation for the third stage is performed

with the aid of five empirical data graphs from wh!ch drag areas,

filling times and effective unit canopy ioadings are obtained in

a series of trial solutions for t_e opening load factors of the

lead, lag and lag-lag canopies of the cluster. Nonuniform opening

effects are accounted for by introducing a disreef time d_ff_ren_a.

for the second stage and relating it to the filling time of the

lead canopy at the peak load instant.

A comparison of loads predicted by the method with test results

indicates that its accuracy is approximately + i0 percent.

Analysis of its empirical basis reveals the possibility of ob-

taining only a slight improvement in accuracy through bet_: and

more complete data utilization.

Background Studies on Improved Load Prediction Methods (Section 3.0)

A review of the technical literature is presented on both the

analysis of the parachute opening process and the loads developed

during the process. The rapid, early development of the under-

standing and mathematical theories for the process are traced,
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and various prediction methods are discussed briefly. Several

related topics that support the understanding of the load pre-

diction problem are reviewed briefly. The contributions of

Scheubel, O'Hara, Heinrich, Rust and Noreen are identified as

outstanding. In addition to providing improved understanding of

the parachute inflation process, the literature review emphasizes

the importance of added mass in load prediction methods. Another

result of the literature review is recognition that the load pre-

diction method developed by Rust in 1965 is the most complete

method so far proposed, especially for parachutes with reefing.

The parachute opening process is investigated by studying rela-

tionships among the variables as they appear in the differential

equations which govern the process. It is shown that the so-called

scaling laws given by Barton are equivalent to a correlation para- ,

meters approach. In this approach, certain nondimensional quanti-

ties must be the same on different tests in order for the data

from the tests to be equivalent. Two different sets of correla-

tion parameters are identified for the two cases: i) the con-

stant flight path angle case, and 2) the variable flight path

angle case.

New Load Prediction Methods (Section 4.0)

A new method for predicting the deployment and fill times for the

Apollo parachutes is given. The new method calls for calculating

the trajectories of both the vehicle and the parachute from the

time deployment is initiated to the time of line stretch. For-

merly, this time interval could only be estimated on the basis

of previous tests. The new method also calls for calculating

fill time by using the constant fill distance principle. Values

of fill distance for the first stage of the Apollo drogue chutes

are presented for several reefing ratios. It is shown that the

new method gives significantly more accurate predictions of fill

time than the old method which employed a constant value.
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Two new methods for making main parachute load predictions are

presented. These are denoted as the Hass/Time Method and the

Shape/Distance Hethod (also referred to as the Rust Hethod).

The Mass/Time Method was chosen for development because it

offered a way of obtaining a simple engineering method of making

parachute load and trajectory predictions. The Shape/Distance

Method was chosen for development for several reasons: i) it

featured an analytical approach that would make its extension

to the case of clustered parachutes reasonably straightforward,

2) it was developed by Dr. Rust specifically for application to

reefed parachutes such as those in the Apollo system, and

3) the details of the method were already worked out.

The Mass/Time Hett.od is developed to a useful level for all three

stages of an individually operating Apollo main parachute, im-

provements in accuracy in Stages i and 2 result from using actual

filling times and drag areas rather than synthetic values (as

had previously been used). Also, improvements are derived by

employing a two-part drag area growth curve; viz., one part for

the initial inflation interval and one part for the continued

growth during the reefed interval. Accuracy improvements in

Stage 3 are realized when the canopy added mass terms are in-

cluded in the parachute force equation. The added mass and drag

area parameters are empirically determined, as are the filling

distance constants for each stage. The inclusion of added mass

during Stage 3 is accomplished with a computer program which

was developed during the study. It is noted that this represents

the first successful attempt at calculating a time history of

opening load for Stage 3 (as opposed to calculating only the peak

load for this stage]. The characteristic accuracy of the Mass/

Time Method for single parachute tests is + 5 percent (the

characteristic accuracy of the previous method is approximately

+ 1O percent). The initial results of an investigation of
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clustered parachutes, in which the Mass/Time Method was used to

predict the loads observed in a two-parachute cluster test, are

encouraging.

The Shape/Distance r_ethod development was implemented by preparing

a computer program to predict the opening loads for a single

Apollo main parachute. The equations used in this method feature

several functions that must be determined experimentally. These

functions are added mass and drag area as a function of projected

radius. Because these functions are not known and cannot be

determined from the available flight test data, they had to be

estimated. The loads predictions that resulted when these esti-

mates were incorporated into the computer program did not compare

favorably with test data. Modifications were made to the added

mass and drag area estimates, and the calculated load histories

improved substantially. However, the accuracy of the load pre-

dictions provided by the Shape/Distance Method has not yet ac-

hieved a satisfactory level. Added mass and drag area data must

be obtained experimentally before the method can be reduced to a

useful engineering tool.

A modification was made to the Mass/Time Method by incorporating

into it the basic assumptions of the Shape/Dlstance Method. The

resulting modified Mass/Time Method was tested by makkng several

computer runs, and it was found to be as accurate as the unmodified

Mass/Time Method. Included as test cases were all six of the single

parachute tests previously computed with the unmodified Mass/Time

Method. It was concluded on the basis of these test cases that

the basic assumptions of the Shape/Distance Method are valid.

An important advantage of the modified Mass/Time Method is that

it is directly applicable to cluster cases because it does not

require predetermined filling time estimates. To show taat this

is true, it was applied to several cluster cases (three two-para-

chute tests and one three-parachute test) with drag area and added
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mass data from the single parachute tests. The results obtained

showed that reasonably accurate cluster loads could be predicted

for Stages i and 2, but that the Stage 3 load predictions were

not acceptably accurate. This was taken to indicate that the

aerodynamic interference effects are important and must be ac-

counted for when Stage 3 cluster loads are being predicted.

Parachute Oscillations Study (Section 5.01

The cause of longitudinal parachute oscillations is analyzed

without a forebody and with a forebody by Zne classical mass-

spring-dashpot system and by the description of a stochastic

system analysis. The msd Nodel gives a good method by which a

designer can find the oscillation frequency of the parachute.

The testing of the validity of the msd model shows it to hold

for a variety of cases. These cases range from a PTV wi_h

drogue chutes reefed and unreefed to a B/P with reefed main

parachutes. Uhis model shows that the parachutes being designed

at the present time have strong interactions with the wake of

the forebody.

Study on Parachute Inflation Process (Section 6.0)

The results of a study undertaken to develop concrete ideas on

how the parachute inflation process can be analyzed by analytical

and/or numerical techniques (as opposed to empirical techniques)

is presented. An analysis of the added _ss type fluid forces

acting on an inflating parachute canopy indicates that the same

added mass term should appear in both the momentum equation

taken tangent to the flight path and the momentum equation taken

normal to the flight path. A potential flow study shows how the

velocity potential can be determined for an inflating parachute

canopy, and that to solve for the distribution of the differential

pressure acting across an accelerating canopy surface, two simul-

taneous vector equations must be solved. Equations for evaluating
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other quantities such as the transport velocity of the fluid

through the canopy surface, the canopy added mass, and the canopy

drag are given. A solution algorithm for computing the complete

parachute inflation process is given, and it is observed that a

high speed digital computer will be required to implement it. An

alternative apDroach to potential flow theory would be to use

finite difference methocs to solve the partial differential equa-

tions governing the motions of a compressible, viscous fluid under

the transient c'onditions of an inflating parachute.

_Section 7.01Measurement of Added Mass and Dra$ Area

The types of measurements needed to aid further development of

load prediction methods for Apollo type spacecraft parachutes

are described. Primarily, these are added mass and drag area

measurements because the nonexistence of added mass and drag

area data stands as a barrier to the development of accurate

load prediction methods. The concept of added mass is discussed,

and it is explained why this quantity cannot be determined from

_a_ flight test data. A measurement technique that employstypi _ 7

a longitudinally oscillating parachute canopy is described, and

a test plan which utilizes this technique is presented. Thls

plan describes tests that may be made in the NASA/Ames 40 x 80-foot

wind tunnel an_ at the DOD/EI Centro Parachute Test Facility to

acquire the needed data.
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SECTION 9.0

CO NCLUS IONS

The conclusions of the one-year study on prediction methods for

the loads of Apollo type spacecraft parachu_,es presented in this

report are as follows:

l) A rigorous review of test data going back through six

years of ELS aerial drop test information, and the ap-

plication of several different longitudinal loads

prediction methods, confirms that the traditional

opening load factor method used on Apollo is reasonably

accurate and ccnservative. (Small changes in CK values

and area growth curves are warranted and would have the

effect of minor change only in certain Apollo parachute

loads predictions.) This affirmative data audit gives

increased confidence to the margins of safety for

the Apollo ELS parachutes that existed at the start

of the study.

2) The drogue chute opening load factor at reefed

opening is a function of five parameters: vehicle

wake, load level as related to design load, type of

deployment, number of drogue chutes, and Mach number

when greater than 0.75. (Other parameters such as

flight path argle could not be analyzed because they

were not varied by significant amounts in the Apollo

development program. )

3) At drogue disreef, the parameter having the largest

effect on the drogue chute opening load factor is the

forebody shape (wake effect).
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5)

6)

Drogue chute load link oscillations (dynamics) can

cause large unpredictable variations in the riser

load. A careful review of the data indicates that

load link dynamics occurred on seven different

ICTV tests: Tests 48-1, 48-4, 48-5, 48-IR, 99-3,

99-a and 99-5.

An extensive analysis of the main parachute test

data, and the associated load prediction methods

used in the Apollo development program, leads to the

conclusion that only a negligible improvement in ac-

curacy can be obtained by refining these methods

further.

An improved correlation of main parachute opening

load data is obtained when measured area growth and

calculated flight conditions are used (instead of

synthetic area growth and Askania flight conditions).

7) A careful analysis of the opening load factor for

the Apollo pilot chutes indicates that, within the

measured range, this factor is 0.85 + 0.02 (instead

of 0.86 + 0.04 as formerly believed).

8) A review of the technical literature on parachute

opening loads indicates that the contributions of

Scheube!, O'Hara, Rust and Noreen are outstanding.

9) The Mass/Time Opening Load Method developed in the

present study is an improved method for calculating

single Apollo main parachute loads and trajectories.

Its accuracy for single parachute cases is esti-

mated to be + 5 percent (compared to approximately
J
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Io)

ll)

12)

+ I0 percent for the previous method). This method

utilizes the types of data that are obtained in

typical flight tests, and it is amenable to further

refinement. In particular, a modification of the

Mass/Time Method appears to have the potential of

being able to predict parachute cluster loads.

The Shape/Distance Method shows promise of becoming

a useful engineering t0ol for predicting opening

loads. Its development could not be completed be-

cause certain added mass and drag area data for

Apollo type parachutes were not available.

An analysis of the longitudinal oscillations that

are observed to occur in Apollo parachutes indicates

that they are caused by strong interactions with the

wake of the forebody. The oscillation frequencies

of the Apollo parachutes, as predicted on the basis

of a simple mass-spring-dashpot model, appear to

match the test data.

The flow about an inflating parachute may be analyzed

with the aid of potential flow analysis by using a

mathematical model that features doublets distributed

over an idealized canopy shaped surface. A solution

algorithm for computing the complete inflation process

is apparently feasible, although quite involved, and

a high speed digital computer will be needed in order

to carry out the required computations.
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13}

14)

An alternative to using potential flow analysis for

computing the flow about an inflating parachute is

to use finite difference methods. These methods

are suited to solving the partial differential equations

governing the motions of a compressible, viscous

fluid under transient conditions such as those of an

inflating parachute.

The added mass of a parachute canopy cannot be in-

ferred from typical flight test data. However, it

may be measured either in a wind tunnel or in free

flight by making special measurements. (Added mass

and drag area measurements should be made with

large sized models; the NASA/Ames L0 x 80-foot wind

tunnel and the DOD/EI Centro Parachute Test Facility

are suited to making the needed tests. )
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SECTION i0.0

RECOMMEND ATI0 NS

Based on the analysis results of a one-year study of loads pre-

diction methods for Apollo type spacecraft parachutes, it is

recommended that:

i) Future load predictions for the reefed Apollo drogue

chutes be based on an opening load factor evaluated

by using the five-component formula presented in this

report.

2)

3)

4)

Further basic analytical work in depth or refinements

of the existing Apollo main parachute loads prediction

methods not be undertaken. (Any immediate need for

new loads predictions on the Apollo program should be

fulfilled by the existing method as an adequate and

conservative technique. The modified Mass/Time Method

should be phased in when verification exists as to its

accuracy and reliability. )

The system velocity test data (Askania), when analyzed in

the future, be refined by using a computer to calculate

the precise system velocity at canopy stretch in post-

test review of predicted versus actual loads. (By this

means, the apparent scatter in loads data points can

be reduced with the result that the accuracy of sub-

sequent loads predictions can be improved. )

The new method of predicting deployment and fill times

that was developed in this study be adopted in place

of the data method previously used in the event that

there is a requirement for further Apollo loads pre-

diction work.
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io)

ll)

12)

5) The load links used in the future to measure riser

loads should be mounted in such a way that they can-

not oscillate and thus induce large errors in the load

measurement.

6) The coupling between the parachute and the vehicle-canopy

wakes, which can cause large amplitude longitudinal oscil-

lations in the parachute structure, be included as a design

consideration at the time any new parachute configuration

is being conceived.

7) The added mass term denoted in this s_udy as m a be in-

cluded in both momentum equations when parachute tra-

jectory and opening load computations are made in the future.

8) The work being done at the close of the study to adapt

the Mass/Time Method to the case of clustered parachutes

be continued by further utilizing the existing Apollo

test data.

9) A test program be undertaken to measure the added mass

and drag area of Apollo type parachute canopies as a

function of inflation state; also, that the development

of the Shape/Distance Method, which was constrained during

the study by not having th_se types of data, be continued

when the data from this test program becomes available.

The potential flow algorithm for the parachute inflation

process, which is described in this report, be implemented

by having a suitable computer program prepared.

The use of finite difference methods be further investi-

gated as a practical means of solving the parachute in-

flation process.

A test program be undertaken to obtain the velocity cor-

relation measurements needed to develop a stochastic

model of the forebody-parachute wake interaction process.
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APPENDIX A

EQUATIONS FOR THE PARACHUTE PARAMETERS STUDY

Development of Basic Equations

The force equations tangent and normal to the flight path for

the opening parachute shown in Figure 2A (page 113) are

d/dt [(Ca0r3 + m)v ] : Wsln@ - D

(CaPr_ _ m)v(d@/dt) = Wcos@

(A1)

(A2)

where ca = Ca(r) is a dimensionless parachute added mass

coefficient defltied as ca ma/P"_

The canopy volume rate of change dV/dt can be approximated by

an equation of the form

cfr2v (A3 )dV/dt

where cf = cf(r) is a dimensionless net inflow coefficient.

The canopy volume V can be eliminated from this equation by

differentiating the volume relation,

V = c r 3 (A4)
V

where cv = Cv(r) is a dimensionless volume coefficient.

forming this elimination gives the result

dr/dt = c v (A5)
C

where c = c (r) is a dimensionless coefficient defined as
C C

= , )
Cc cf/(rCv + 3Cv "

respect to r; i.e., c

Per-

The prime denotes differentiation with
t

= dc /dr.
V V
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Equations (AI), (A2) and (A5) are three equations in the three

dependent variables: v, @ and r. These equations may be

simplified. To do this, it is first required to carry out

the differentiation indicated on the left hand side of

Equation (AI); viz.,

(r3c_ -i-3Ca r2) ¢ v(dr/dt) + (CaO r 3 + m)(dv/dt ) =

W sin @ - D (A6)

Next, the dr/dt term in Equation (A6) is eliminated with the

aid of Equation (A5). This gives the equation

' 0 r 3 + m)(dv/dt) = W sin @ - D - c. P r2v 2 (A7]
<Ca o

where cb = cb(r) is a dimensionless coefficient defined as

cb = (rc_ + 3Ca)Cf/(rc _ + 3Cv). Next, the drag term D in

Equation (A7) is expanded as

2
:rvCDv) (½2 v2D = (_ r_CDp_ * 0 )

CDpwhere cDp(r ) is the parachute drag coefficient based

2 is the vehicle drag
on the parachute nominal area ro, and CTv

coefficient based on the vehicle area ._r_. Noting also that

W = gm, Equation (A7) may be written as

(CaP r3 + m)(dv/dt) = gmsin @ - (½

z 2 ) pv 22 _ rvCDv + r2cb

2

r° cDp

(AS)

Equations (A8), (A2) and (AS) can now be rewritten as

v = (gm sin Q - (_ _ro2CDp + ½ _r2cV Dv

(CaPr3 + m)

+ r2cb) pv 2)/

Ag)

@ = g cos @/v (i ÷ ma/m ) AIO)

= c v All)
C

where the dots denote differentiation with respect to _.
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Using the vector notation, x = (v, @, r) T_ , these equations

can be simply represented as

....x= f(x, c(x), g, m, O) (AI2)

where c(x) is a vehicle-parachute characteristics vector

defined as c(x) = (c a , Cb, Cc, CDp , CDv , to, rv). The

vector c (x) is, in general, a function only of r, but it is

shown here as a function of x for the sake of notational

simplicity. The quantities g, m, 0 are constants in this

analysis.

The initial conditions associated with Equation (A12) are

x(O) = (vi' @i' ri)T (AI3)

where vi, @i' ri are the flight velocity, the flight path

angle and the radius of the parachute at t = 0 when the

opening process is assumed to start.

The Transformed Equations

The results developed in the foregoing paragraphs may be ex-

tended by nondimensionalizing the variables. To do this,

the dependent variables in Equations (A9) - (All) are re-

placed by the nondimensional variables U, @, R which are

defined as

U = v/v
o

@ = @

R = r/r 0

Here, v is taken to be the full-open, equilibrium velocity
O

associated with g, m and _. Also, the independent variable

t is replaced by the nondimensional variable T defined as

T = Vot/r °
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Associated with the new dependent variables is a new state vector

X = (U, @, R) T

Substituting the nondimensional variables just introduced into

Equations (A9) - (All) gives the following transformed set of

equations:

sin (½ Cop + ½ R2v CDv + CbR2)U2
U : (i + V)/FN 2 - Ca(l + v)/v (AI4

@ : cos @/FN2U (AI}

: C U (A16
C

where the dots now denote differentiation with respect to T,

and where

FN = Vo/ r_7_og

v = CaPoro3/mo

The quantities Ca = Ca(R), Cb = Cb(R), C c = Cc(R), CDp = CDp(R)

are identical to ca = Ca(r), cb : cb(r), cc = Cc(r), cDp = CDp(r)

except that their arguments are changed to R in place of r;

and, Cdv = CDv. The quantities FN and v (nu) are referred

to as Froude number and added mass ratio, respectively. The

transformed initial conditions are

X_(O) = (Ui' @i' Ri )T (._17)

Equations (AI4) - (AI6) can be represented by a transformed

vector eq_atlon

X = F(X, C(X), FN, _) (A!8)
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where C (X) is a nondlmensional vehicle-parachute charac-

teristics vector defined as C(X _ = ' Cb Cc_ _,' _C a, , , CDp, CDv' RV)-

This vector is, in general, a function of R only, but it is

shown here as a function of X for notational simplicity. The

quantities FN and v are constant by definition throughout

any one opening process.

Fixing the Froude number and the added mass ratio, say as

FN and v is equivalent to specifying two equations in four
O O

unknowns (g is assumed fixed); viz., the equations

FNo = Vo/

v : CaP r3/m
0 0 0 O

provide two relations between the four variables: Vo, ro,

Mo, 0o. Inspection of these equations shows that there are

four ways in which a ur.ique set of variables may be specified.

i) Specify ro, oo

2) Specify ro, m o

3) Specify vo' Po

a) Specif_, vo, m °

(and solve for Vc, mo) ,

(and solve for Vo, Do _,

(and solve for ro, m ° , and

(and solve for ro, 0o).
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APPENDIX B

THE DOUBLET DISTRIBUTION

Additional Notation

Let a Point P on the canopy surface be defined by a position

vector

rp = (R cos£,R sin_,Z)(A, _',k): (BI)

where R and Z are the relations

1

R : (_2 + y_2)_
!

Z = Zp

At time t, let the quantities R and Z be specified as a

function of c, the curvilinear distance along the meridian

of the canopy from the apex to Point P. That is, let

R = fl (_;t)

z = f2 (_;t)

o<__ <_a (B2)
S

where subscript

the velocity of

s denotes the skirt. Also, at time t,

Point P be defined by a velocity vector

let

and let

at time

_rp= (_ cos ×, _ sin ×, z)(i,i, _k)T

and Z be similarly specified as a function of c

t; i.e., let

= gl (o;t)

z = g2 (a;t)

0 < C <
m _ S
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Consider the set of unit vectors (I, m, n) at Point P on

the canopy surface as shown in Figure B!. Vectors I, m, and n

are defined as beir_ tangent to the parallel, tangent to the

meridian, and normal to the surface at Point P resDectively.

It is evident that

= (1/_) _r/_x

m : _r/_)a

n = 1 x m

(B3)

Analysis that utilizes Equation (BI) can be performed to show

that these vectors can be expressed in terms of other quantities

as follows:

!

m

n

- sin X cos { 0

R 'cos X R 'sin_ Z r

Z'COS k Z'sin_ -R'

A

J

k

(BL)

where the primes dencte differentiation with respect to

i.e.,

R' = dR/do = COS

Z ' = dZ/d_ = s in

where @ is the angle between n and -k
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Canopy Apex

\
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/
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Parallel

_hru P

Canopy Skir_

R

m

Principal
Meridian

<Meridian

nhru P

Fig. BI. Sketch iilustra<ing Additional Nocation
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In addition to the Point P, which may be anywhere on the

canopy surface, let there be identified a Point Q on the

principal meridan of the surface defined by the vector

rQ = (RQ, O, ZQ) (i, j, k) T (B5)

where

Rq : fl

zQ = f2 (s;t)

Functions fl

Equations (B2).

and are of course, the same as those in
±2 J

In order to solve for the strength of the doublet distribution

over the surface of the cancpy, it is required that an inte-

gration be performed over the entire canopy surface. This

is accomplished numerically by subdividing the canopy surface

area into a large number of subareas AI, A2, ..., Am . Let

the centroids of these subareas be identified as _ P2

Pm' and let the meridional distances of these points be de-

noted as _j, j = 1, 2, ..., m. Also, let these subareas be

arranged in the manner shown in Figure B2. This figure shows

how the smoothly contoured surface is replaced by a pattern of

approximately equal sized, trapezoidal subareas. The edges of

adjacent subareas are contiguous, being straight line segments

that approximate a portion of either a meridian or a parallel.

In addition, let the principal meridian pass through a centroid

in each annular group of subareas, and let these centroids be

identified as the Points QI' Q2' '''' Qn' and denote the

meridional distances to these points as ak, k = i, 2, ..., n.

332 NVR-6a31



NORTHROP

/

Fig. B2. Schematic illustrating How Idealized _anoo] Surface

(on Right) Is Approximated by Configuration of Trapezoidal

Subareas (on Left).
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The Compatibility Equation

The compatibility condition at the surface of the canopy, given

by Equation (61) in Section 6.4.-, is

(v_ - v - _) . n : w (_)

Noting that the left hand side may be expanded as

(V_ c - v- "_r) : [(b_/6R - R) cos X, (_/$R - R)sin X,

(5_/_Z - _, - v)] (i, j, k) T (S7)

and that

_n = (Z'cos X, Z'sin X, -R')(i, j, k) T

it may be shown that Equation (B6) can be alternatively ex-

pressed as

qn = R sin _ - (Z + v) cos _ + w c (Bg)

where qn = q " n is the component of the fluid velocity

normal to (and at) the canopy surface. Equation (Bg) may

also be written as

_/_n = R sin _ - (z * v) cos _ + wc (too)

where _/6n denotes the gradient normal to (and at) the

canopy surface.

Substituting the right hand side of Equation (62) into

Equation (BI0) gives the following equation:

___ _ h cos_
_n A =2

dA = R sin 6 - (Z + v) cos _{ + w
C

(mz)
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At any given instant of time, the quantities on the right hand

side of Equation (Bll) are known functions of c . Likewise,

for any given _, the quantities _ and _ (associated with

dA) are known. Hence, Equation (BII) contains only one unknown,

the doublet strength h which is a function of a. This equation

provides a basis for determining h(C), and the description of

a numerical method for accomplishing this follows.

Equation (All) may be rewritten as

I
_nQ Ak IQP 12

dAp + _ _ _h(Cp)cos _p

(Ak)c tQpt2 dAp

= [ R sin _ - (Z + v) cos 6 * Wc] Q
(m2)

where Ak is the subarea associated with Point Qk (and hence

the meridional distance _k) , and (Ak)C is the complement of

Ak, defined as all the canopy area except Ak. in other words,

the first integral is taken over only the subarea identified

with Point Qk' and the second integral is taken over all the

other subareas.

At this point, another simplifying assumption is made. It is

assumed that the doublet strength is constant over each subarea.

Also, because of symmetry, the doublet strength of each subarea

in the same annular group is, of course, the same. This as-

sumption will permit the left hand side of Equation (_12) to be

replaced by a simple summation.
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It has been shown by Latham 50 that the first quantity on the left

hand side of Equation (BI2) can be evaluated explicitly; viz.,

(°P)oos

Ak

CLp
d_,p : - Kk_.(° k) (m3)

where the quantity Kk is evaluated with the equation

K k = 2 r[sin
YI

dl
+ sin Y2-+ sin _2 + sin Y3 ]+ (m_)

d2 d2 d3

The adjoining sketch defines the

that appear in this equation.

y and d type quantities

d34

Y

Plan view of subarea Ak
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The second quantity on the left hand side of Equation (BI2) can

be simplified by differentiating under the integral sign. Per-

forming this operation gives

_p _ h(aP)cos (_P cos aQ
dAp = -2 dAp

(Ak)o_J IQPl3
(B15)

where aQ is the angle between PQ and _Q

It follows that Equation (BII) can now be approximated as

m

-[ h (_j)G (Aj, ak) Aj = H (_k)

J=l

(B16)

where

and

o (Aj, _k) = Kk/AJ' j = k

2 cos _P cos CLQ ,
j _k

(B17)

Equation (BI6) is an algebraic statement of the compatibility

condition at meridional distance ak, k : I, 2, ..., n.
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Solving for the Doublet Strength

Equation (BI6) is actually n equations; i.e., one equation

exists for each value of Ck, k : !, 2, ..., n. These n

equations may be written as one vector equation in the form

all a12 • . aln

a21 a22 • a2n

• J

anl an2 . ann

h (_l

h (G2

h (_n

H (_l)

X. (02)

(B18)

where the typical term in the matrix is

ajk : G (Aj, _k ) Aj

By adopting the following notation

A = (ajk)

h = (h (o I) h(o2) h (c))T
-- J J ..... J n

it follows that Equation (BI8) may be rewritten as

- Ah : H (Bz9)

Thus it is seen that a doublet distribution vector,

solved for directly with the equation

h - (£)-I_x

where (A)-I is the inverse of (A).

h may be

(B2o)
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The Time Rate of Change of the Doublet Strength

The equation for the differential pressure across the canopy

surface includes a term which is the time rate of change of

the doublet strength; i.e._ _h_/_t. This term is evaluated

by differentiating Equation (B20).

_h/_t = - _ (A)-1 H
- 6t -- -

: - _ (±)-i/_t_- (A)-I _H/_t
(B21)

The first term on the right hand side of the latter equation is

assumed small in relation to the second term, and Equation (B21)

is approximated as

_h/_t - (A)-I _H/_t

(A)-I
I"

(½,
I

Ih sin_-+ v)cos_ + w J=- _-t c

(_)-_['A_- (_+{)co_]

- (A_)-i [ (_ cos_ + (Z + V) sin_) d_/dt + Wc]

The last bracket in the latter equation is assumed small in relation

to the first bracket, and the expression for 6h/6t is further

approximated as

[ • ]_h_/_t =- (A_)-I R sin6- (_ + v)cos_

=_
(B22)
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where rn is the magnitude of the component of the canopy ac-

celeration that is normal to the canopy surface. The latter

equation may be alternatively written as

Sh/6t = - (-A-)-I (Sn - _ cos_) (B23)

where "r is the component of the canopy acceleration normal
--n

to the surface.

Equation (B23) is an approximate expression that was obtained by

dropping several terms. The complete expression is Equation (BYl).

solution based on the complete expression would be a worthwhile

refinement of the present analysis.
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APPENDIX C

STUDY RESULTS RELATED TO APOLLO ELS PROGRAM

The opening loads methods analyzed in this report are related to

those used in the Apollo ELS development program as illustrated

in Figure CI. This figure shows that the primary loads method

used during the development of the Apollo ELS was the opening

load factor method. Also, the area growth method was used to

predict Stage 1 and 2 opening loads for the main parachutes.

During the study reported herein, the specific Apollo parachute

load calculation methods developed and continuously improved

during the Apollo program were reviewed and, in most cases,

improved. This appendix presents, on an example basis, the

opening loads now predicted for the main parachute to illustrate

these improvements in the prediction methods. These loads are

then compared with those given in the final loads report for the

Apollo Block II (H) ELS, Reference 3. In addition, the main

parachute loads predicted for the first two stages by the modi-

fied Mass/Time Method are given.

It is emphasized that the loads presented in this appendix are

the product of three essential factors:

I) Specific parachute load prediction methods de-

veloped and continuously improved during the

Apollo ELS program,

2) The profoundly important NASA/F$C, NAR and

Northrop analysis ground rules which defined

design cases and various empirical and analytically

determined factors and constants used in the

analysis, e.g., data scatter factors, command

module dynamics factors, and

3) The refinement of empirical data during the

study reported herein.
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Study Results Used in the Final Apollo ELS Loads Report

Program overlap between the Block II (H) program and the study

reported herein allowed several results to be integrated into

the final Apollo ELS loads report, Reference 3. These results,

which were of the nature of data analysis refinements, were pre-

sented as Figures 6-5 and 6-7 of Reference 3. Figure 6-5,

which presented main parachute opening load factor versus effective

unit canopy loading for Stage 3, was prepared during the study

reported herein, subsequently modified, and is now presented in

its modified form as Figure 19. Figure 6-7 presented, in effect,

the dynamic drag area of lag parachutes at the time of lead para-

chute maximum load versus the dimensionless time parameter,

&tdy/tfoL. This figure, which was a modification of a previous

figure, is now presented as Figure 21.

Stud7 Results _llustrated with Example Calculations

Results of the study reported herein are illustrated, on an

example basis, for the main parachute loads of one Apollo design

case. This case, identified as Case 410, is a normal entry case

for which one drogue chute and two main parachutes operate.

(This is the critical case for entry and limiting with respect

to extending the present ELS system to higher velocities and/or

payloads. ) For this case, the following conditions, taken from

Reference 3, apply: vehicle weight, 12,960 ib; flight dynamic

pressure at canopy line stretch, 85.0 ib/ftY; flight path

angle, -90 deg_ altitude, 10,750 ft; time from drogue chute dis-

connect to lead MCLS, 1.6 sec; time from drogue chute disconnect

to lag MCLS, 1.8 sec.

Stage i Maximum Load - Using Figure 31 and the 80 percent re-

duction factor discussed on page 149, the drag area at the com-

pletion of the rapid initial filling may be shown to be 257 ft 2

for the lead parachute. The fill time, found with the aid of

Figure 17, is 1.89 sec. The lag parachute, which achieves
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MCLS 0.2 sec after the lead parachute, ia analyzed by the method

given in Reference 3 (a vehicle dynamics factor of 1.05 and a

scatter factor of l.lO are used). These data, when used as

input values to the 2-DOF trajectory program GT03, produce a

maximum Stage I opening load (lead parachute), Fr! : 18,650 lb.

Stage 2 Maximum Load - Using Figure 31 and the 90 percent re-

duction factor discussed on page IA9, the drag area at the com-

pletion of the rapid filling is determined to be 1026 ft 2 for

the lead parachute. Stage 2 fill time is found with the aid

of Figure 15 (b) to be 1.108 sec. All other parameters are

determined by the methods given in Reference 3 (a combined

vehicle dynamics-scatter factor of 1.05 is used). These data,

when used as input values to the 2-DOF trajectory program GT03,

produce a maximum Stage 2 opening load (lead parachute),

Fr2 : 18,350 lb.

Sta_e 3 Maximum Load - The method used to predict Stage 3 loads

is explained in detail in Section 2.3. This method, when applied

to the conditions of this example, produces a maximum Stage 3

opening load (lead parachute), Fo : 18,680 lb.

The three opening loads given above are shown in Table CI, to-

gether with the corresponding values taken from the final Apollo

ELS loads report, Reference 3. Whereas the new values for Stages

I and 3 are approximately 0.8 percent higher, the new value for

Stage 2 is approximately i_.8 percent lower than the corresponding

load from Reference 3.

Stage I and 2 Loads Predicted by the Modified Mass/Time Method

The maximum opening loads for Stages I and 2 were calculated with

the modified Mass/Time Method for the same example case to provide

another comparison. This method, although not yet developed for

application to Stage 3 cluster loads, has shown good agreement

(_+ 5 percent acc aracy) for single main parachutes and fair

agreement (+ i0 percent accuracy) for the parachutes in
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Stages 1 and 2 of 2- and 3-chute clusters of maln parachutes.

This method predicts Frl = 19,240 Ib and Fr2 = 19,410 lb.

These loads are approximately 3.9 percent higher and 9.9 percent

lower, respectively, than the corresponding loads from Reference 3.

Table CI.

(Normal Entry, One Drogue Chute and Two Main Parachutes)

Source Frl Fr 2 F o

Main Parachute Load Calculations for Example Case 410

18,250 ib 21,5A0 Ib 18,540 Ib

20,250 23,400 22,000

18,65o (I) 18,35o (1)

Baseline loads from final

Apollo ELS loads report 3

Loads used in final Apollo

ELS stress report 53

Loads predicted on basis

of results reported herein

Loads calculated by modi-

fied Mass/Time Method

19,240 19,410

18,680 (!)

NOTES: (1 ) These loads, multiplied by a 1.35 safety factor,

are referred to in Appendix B of Volume II as

"New Load" in an example margin of safety cal-

culation for the Apollo ELS main parachutes,

3A5 NVR-6431



NORTHROP

REFERENCES

•

•

.

.

•

•

•

.

i0.

ii.

12.

Mullins, W. M , Reynolds, D. T Lindh K. O. and Bot-
torff, M. R.,'rlnvestigation of' Prediction Methods _or the

Loads and Stresses of Apollo Type Spacecraft Parachutes,

Volume II - Stresses," _VR-6_32, June 1970, Northrop Venturaj
Newbury Park, Calif.

Torgerson, R. E., "Contract End Item Detail Specification

Performance/Design Requirements - Apollo Block II Parachute

Subsystem, Earth Landing System," Spec No SS-00003, Rev

! October 1969, Northrop Ventura, Newbury Park, Calif.

Finck, R. D. and Gran, W. M., Loads and Stability Analysis

for Critical Operational Cases - Apollo Block II Heavy-
weight ELS," N]q_-6278, Sept. 1968, Northroo Ventura, New-

bury Park, Calif.

,I

French, K., "Inflation of a Parachute, AIAA Journal,
Vol. i, No. ii, Nov. 1963, pp. 2615-2617.-----

Chernowitz, G., ed., "Performance of and Design Criteria

for Deployable Aerodynamic Dec el era %ors , " ASD-TR-61-579,

Dec. 1963, AFFDL, Wright-Patterson Air Force Base, Ohio
(AD <29 971).

Moeller, J. H., "Opening Shock Factor Analysis for Pre-

dicting Peak Disreef Loads for Clustered Parachutes and

" NVR-39_9Evaluation of Apollo Main Parachute Design Loads,
Sept. 1965, Northrop Ventura, }[ewbury Park, Calif.

Wildhack_. W. A., "Optimum Time of Delay for Parachute
Openir4_, Journal of Aeronautical Sciences, Vol. 9, No. 69
June 1942.

Pflanz, Erwin, "Determination of the Decelerating Forces

during the Opening of Cargo Parachutes," AT!-26111, July
1942, USAF Translation of German Report No. ZWB-489_.

Pflanz, Erwin, "Retarding Forces During Unfolding of Cargo
,I

Parachutes, ATI 20126, Sept• 19L3, USAF Translation of

German Report No. ZWB-1706.

_'The Magnitude and Duration ofHallenbeck, Capt. G. _..,

Parachute Opening Shocks at Various Altitudes and Air

Speeds," Army Air Force Memorandum EN_-Lg-o_6-66 , July 19_4

von Karman, T., "Notes on Analysis of the Opening Shock of

" ATI 200-814, 19_5Parachutes at Various Altitudes,

I• T1

Scheubel, Franz N., Notes on Opening Shock of a Parachute,

Progress Report No. IRE-65, April 1946, Foreign Exploitation

Section, Intelligence (T-2).

346 N_-6L31



NORTHROP

13.

15.

15.

17.

18.

19.

20.

21.

22.

23.

2a.

25.

O'Hara, F., "Notes on the Opening Behavior and the 0nening

Forces of Parachutes," Royal Aeronautical Society Journal,
Vol. 53, Nov. 1949, pP. IC53-I062.

Heinrich, H. G., "Some Research Efforts Related to Problems

of Aerodynamic Deceleration," WADD TN-60-276, Nov. 1961,

Wright-Patterson Air Force Base, Ohio.

Heinrich, H. G and Bhateley, I _ , "• . _. A Simplified Analytical

Method to Calculate Parachute Opening Time and Opening Shock,"

paper presented to Symposium on Aerodynamic Deceleration,
July 1961, Univ. of Minn., Minn.

"Performance o _ and Design CriteriaChernowitz, C., ed.,

for Deployable Aerodynamic Decelerators, ASD-TR-61-579,

Dec. 1963, AFFDL, Wright-Patterson Air Force Base, Ohio,

pp. 149-164.

Bhateley, I. C., "Dynamics of Opening of Reefed Parachutes,"

M. S. Thesis, Sept. 1961, Department of Aeronautical Engi-

neering, University of Minn., Minn.

Buchanan, K. B., "The Physical Process of Parachute In-

flation," paper presented to Symposium on Aerodynamic De-

celeration, July 1965, Univ. of Minn., Minn.

Heinrich, H. G. and Noreen, R. A., "Analysis of Parachute

Opening Dynamics with Supporting Wind Tunnel Experiments,"

Paper No. 68-924 presented to AIAA 2nd Aerodynamic Decele-

ration Systems Conference, Sept. 1968, E1 Centro, Calif.

Heinrich, H. G., "Experimental Parameters in Parachute

Opening Theory," Shock and Vibration Bulletin No. 19, Feb

1953, Research and Development Board, Department of Defense,

pp. I14-121.

Heinrich, H. G., "The Opening Time of Parachutes Under in-
11

finite Mass Conditions, paper presented to the 6th Aero-

space Sciences Meeting, Jan. 1968, New York, N. Y.

Weinig, F. S., "On the Dynamics of the Opening Shock of a
Parachute," TR-6, Feb. 1951, USAF Office of Aeronautical

Research, Wright Air Development Center, Ohio (AD 8_ 500).

Foote, J. R. and Scherberg, M. G., "Dynamics of the Opening
,I

Parachute, paper presented to Second Midwest Conference

on Fluid Mechanics, May 1952, Ohio State Univ., Ohio.

Foote, J. R. and Giever, J. B., "Study of Parachute Opening -
,!

Phase I, TR 56-253, Sept. 1956, Wright Air Development

Center, Ohio.

Foote, J. R. and Giever, J. B., "Study of Parachute Opening -

Phase II," TR 56-253, June 1958, Wright Air Development

Center, Ohio.

347 NVR -6431



NORTHROP

26.

27.

28.

29.

30.

3].

32.

33.

34.

35.

38.

French, K. E., "The Initial Phase of Parachute Inflation,"

Paper No. 68-927 presented to AIAA 2nd Aerodynamic Decele-

ration Systems Conference, Sept. 1968, E1 Centro, Calif.

Berndt, Rudi J., "Experimental Determination of Parameters
I,

for the Calculation of Parachute Filling Times, paper

presented to WGLR-DGRR Annual Meeting, Sept. 1964, Berlin,

Germany.

Schilling, D. L., A Method for Determining Parachute

Opening Shock Forces," Report No. 12543, Aug. 1957,

Lockheed Aircraft Corporation, Burbank, Calif.

Rust, _. W., Jr., Theoretical Investigation of the Para-

chute Inflation Process," NVR-3887, July 1965, Northrop

Ventura, Newbury Park, Calif.

Bloetscher, F., "Aerodynamic Deployable Decelerator Per-
T.

formance Evaluation Program - Phase II, AFFDL-TR-67-25,
June 1967, Wright-Patterson Air Force Base, Ohio.

Asfour, K. J., "Analysis of Dynamic Stress in an Inflating

Parachute," Journal of Aircraft, Vol. 4, No. 5, Sept. -

Oct. 1967, pp. 429-43-7[.

Roberts, Bryan W., A Contribution to Parachute Inflation

Dynamics, Paper r_o. 68-29S presented to AIAA Second Aero-

dynamic Decelerator Systems Conference., Sept. 1968, E1

Centro, Calif.

11

Rust_, L. W., Jr., Determination of the Apparent Mass Factor
(K), I0C 2230/65-IL, 3 Feb. 1965, Northrop Ventura, Newbury
Park, Calif.

ibrahim, S. K., "The Potential Flowfield and the Added

Mass of the Idealized Hemispherical Parachute, AIAA Aero-

dynamic Deceleration Systems Conference, Sept. 19-_, New

York, N. Y., pp. 10-!6.

Ibrahim, S. K., "Experimental Determination of the A_parent

Moment of Inertia of Parachutes," FDL-TDR-6_-153, Dec. !96L,

Wright-Patterson Air Force Base, Ohio.

Scherberg, M. and Rhode, R. V., "Mass Distribution and Per-

formance of Free Flight Models," NACA TN 268, Oct. 1927.

Kaplun, S., Dimensional Analysis of the Inflation Process
of Parachute Canopies," AE Thesis, California Institute

of Technology 1951, (AD 90633).

French, K. E., "Model Law for Parachute Opening Shock,"

AIAA Journal, Vol. 2, No. 12, Dec. 1964, pp. 2226-2228.

"Scale Factors for Parachute Opening,Barton, R. L.,
?_ASA TH D-4123, Sept. 1967.

LaSalle, J. and Lefschetzj S., Stability by Liapunov's
Direct Method, ist ed., Academic Press, New York, 1961,

pp. 21-_.

348 NVR-6a31



NORTIIROP

41.

42.

a4.

45.

46.

47.

48.

49.

50.

51.

52.

53.

McEwan, A. J. Huyler, W. C. Jr., Mullins, W. M., and
Reynolds, D. T., "Descriptions of Computer Programs

for the Analysis of Apollo Spacecraft Parachutes,"

NVR-6428, June 1969, Northrop Ventura, Newbury Park,
Calif.

Neustadt, M., Eriksen, R. E., and Guiteras, J. J.,

"Apollo Recovery System Dynamic Analysis," NVR-3528,
April 1964, Northrop Ventura, Newbury Park, Calif.

(Note: This report is proprietary to the Space and

Information Division of the North American Rockwell Corp.)

Knacke, T. W., "The Apollo Parachute Landing System,"

TP-131, Paper presented at AIAA Second Aerodynamic Decele-

rator Systems Conference, Sept 1968, E1 Centro, Calif.

Chandrasekhar, S., "The Invariant Theory of Isotropic

Turbulence in Magneto-Hydrodynamics, Proc. Roy. So__c. A.,
1951.

Batcheior, G. K., The Theory of Homogeneous Turbulence,
Cambridge University Press, 1960.

Lamb, H., Hydrodynamics, 6th Ed., Dover Publications, 1945.

Basset, A. B., A Treatise on Hydrodynamics, Vol. I, Dover

Publications, 1961. m

Milne-Thompson, L. M., Theoretical Hydrodynamics, 5th Ed.,
MacMillian Co., New York, 196_.

Harlow, F. H., "The Particle-in-Cell Method for Numerical

Solution of Problems in Fluid Dynamics," Proceedinss of

Symposia in Applied Mathematics, Vol. 15, L.A.D.C. 52_,
1963, Los Alamos, New Mexico.

Private Communication from Dr. R. W. Latham of the Northrop

Corporate Laboratories, 7 April 1969.

Ewing, E. G., "Recent Ringsail Parachute Developments and

Some Advanced Landing System Concepts," Unpublished paper

presented at the NASA Manned Spacecraft Center, 27 Sept.

1965, Houston, Texas.

Groat, J. F. Jr., and Nash-Boulden, S. S., "Analysis of

Apollo Main Parachute Wind Tunnel Test Using Full, Half

and Third Scale Models," NVR-2928, Jan. 1964, Northrop

Ventura, Newbury Park, Calif.

Utzman, C., Mul!ins, W., Reynolds, D., Farnsworth, R. and

Labbe, J., "Strength Analysis - Apollo Block II Earth

Landing System, Weight Accommodation Program," _Yv-R-6112A.
Sept. 1968, Northrop Ventura, Newbury Park, Cslif. (p 131.

349 _-6a31


