
NASA TECHNICAL NASA TM X- 71526
MEMORANDUM

(NASA-T-X-71526) FUNCTION GENERATION N74- 19838'

SUBPROGRAMS FOR USE IN DIGITAL
SIMULATIONS (NASA) 15 p BC $4.00

CSCL 09B Unclas
G3/08 34362

I-

(4

FUNCTION GENERATION SUBPROGR MS FOR

USE IN DIGITAL SIMULATOI

by Clint E. Hart

Lewis Research Center

Cleveland, Ohio 44135

FUNCTION GENERATION SUBPROGRAMS FOR USE IN DIGITAL SIMULATIONS

By Clint E. Hart

ABSTRACT

Convenient and efficient function generation subprograms have

been developed for handling functions of one variable and two types

of functions of two variables. These subprograms can easily be used

in any digital or hybrid simulation requiring function generation.

Use of these programs can often lower overall program execution

time.

FUNCTION GENERATION SUBPROGRAMS FOR USE IN DIGITAL SIMULATIONS

By Clint E. Hart

Lewis Research Center

SUMMARY

Dynamic models of prooulsion systems often contain component

performance data in the form of functions of one and two variables.
Co

S Digital and hybrid simulation of these dynamic models require sub-

programs to handle function generation. Convenient and efficient

function generation subprograms have been developed for handling

functions of one variable and two types of functions of two

variables. Use of these subprograms in digital or hybrid simula-

tions can often lower the overall program execution time.

INTRODUCTION

Simulation of dynamic models of turbojet or tubofan engines

has proved valuable in analyzing their dynamic behavior and in

designing engine control systems. Often the model equations con-

tain several functions of one and two variables. The two variable

functions are difficult to program accurately for analog computer

simulation and require large amounts of analog computer equipment.

For these reasons most engine simulations have been programmed for

digital computers.

The most commonly used programming language for these engine

simulations is FORTRAN. However, some simulations have been

programmed in either CSMP or one of the special languages developed

2

for hybrid computers. When CSMP first became available it had no

provision for handling a function of two variables. Also, at that

time no suitable function generation subprograms were being retained

in our computer system library. Thus, to use CSMP for engine simula-

tions, two variable function generation subprograms had to be

developed.

For FORTRAN engine simulations the programmers usually wrote

their own subprograms to handle functions of one and two variables.

Examination of many of these subprograms showed

that they were much slower in execution time than desirable. Fast

execution times for these subprograms is essential because in some

dynamic engine simulations the function generation subprograms may

be called more than 105 times per second of problem time.

Therefore, a programming effort was made to develop convenient

and efficient one and two variable function generation subprograms.

The following sections will contain discussion of the types of

functions usually encountered and descriptions of the function

generation subprograms. The application of these function genera-

tion subprograms with CSMP or other digital simulation programs will

be explained.

PROGRAM DEVELOPMENT

A typical function frequently encountered in engine simulations

is a function of one variable Z = f(X), as shown in figure 1. For

3

the simulation, a set of discrete points is selected to represent this

function. Usually linear interpolation is used between points, but

higher order interpolation can be used if desired. The X-input values

are often called breakpoints when using linear interpolation.

There are two types of functions of two variables that may occur

in engine simulations. A common type of function is shown in figure

2. For this type the range of the family of curves is over the same

set of values of the X-input variable. Usually, two dimensional linear

interpolation is made in directions parallel to the X-input and Z-output

axes.

A second type of function of two variables is shown in figure 3.

This type, often called a map, differs from the first type in that

the range of each curve is over a different set of values of the

X-inout variable. The two-dimensional linear interpolation mentioned

above cannot be used for this map-type function of two variables.

Significant errors can occur with this interpolation method. A

special method should be used with interpolation in directions not

parallel to either the X-input or Z-output axes. An interpolation

method of this type will be discussed in a later section.

Description of Subprograms

Consider first a subprogram to handle a function of two variables

as shown in figure 2. The data which describes the function consists

of lists or tables of X breakpoints and Y curve values and the

corresponding Z output values. For this type of function the X

breakpoint values are common for all curves. The X and Y values are

listed in order of monotonically increasing value. The Z values are

listed in order corresponding to the X values for the first curve

(lowest Y value), second curve, etc.

Typically, a comparison table search method is used in function

generation subprograms. The X and Y inputs are compared with table

values until the proper pairs of table values are found which bracket

the inputs. Usually the table search starts at either the low or

high end of the table and moves either up or down.

The table search method can be made more efficient, i.e., faster,

by using table-search indices. These search indices are used as start-

ing points in the table searches of the X and Y data tables. First,

the X and Y inputs are tested to see if they are in the same intervals

between pairs of X or Y values that they were in for the preceding

entry. If not, the search indices are incremented either up or (!ow

until the proper intervals are found. The final values of the search

indices are stored for use at the next entry. After the proper table

values are determined a two-dimensional linear interpolation is made

to obtain the output.

The subprogram for a function of one variable is similar to the

one described above. Since there is only one curve, no Y values are

required, and only one set of Z values. A table search index and

one dimensional linear interpolation are also used.

The subprogram for a map-type function of two variables requires

a set of X values for each curve. The special interpolation method,

which will be described later, requires that the same number of break-

points must be used to define each curve. The X values are listed

in order of monotonically increasing value for the first curve (lowest

Y value), second curve, etc. The Z values are listed in order

corresponding to the X values. Additional data required for all of

the function generation programs are the number of points per curve

and in the case of the two-variable subprograms, the number of

curves.

Part of the map-type function of two variables of figure 3 is

also shown in figure 4. Extra lines and points have been added to

explain the interpolation method which is used in the subprogram.

Consider the point A whose location is determined by inputs

XA and YA' First, the input YA is compared with successive

values in the Y table to determine which pair of curves it is

between. In this example, it is between curves having values of

Y(2) and Y(3). Adjacent pairs of similarly located breakpoints on

these curves define quadrilaterals. Through special logic in the sub-

program the quadrilateral containing point A can be determined. In

this example it is defined by points B, C, D, and E. Knowing the Z

and X coordinates of these points, the Z and X coordinates of

points F and G can be found by linear interpolation in Y along

lines BC and ED. Then the Z output ZA can be found by linear

interpolation in X along line FG.

Another problem which must be considered in developing these sub-

programs is: what to do when one of the inputs is beyond the range

of the table data. If an input is out of range of the tabulated

values for the function, the output is calculated by extrapolating

beyond the end values of the tables. An error message is printed,

but only the first time an input goes out of range. The decision

whether or not to extrapolate or print an error message is arbitrary

and the subprograms can easily be modified to fit needs of a partic-

ular simulation.

FORTRAN listings for two subprograms, FUN2 and MAPFUN, to

handle both types of functions of two variables are presented in

Appendix A. Also in Appendix A is a listing of a subprogram FUNI to

handle a function of one variable.

Instructions for Using Subprograms

The function data should be stored in one-dimensional arrays.

Separate arrays should be used for each set of X input, Y input,

and Z output data. For FORTRAN simulations the BLOCK DATA subprogram

is convenient to use for entering the function data. Duplicate

labelled COMMON statements must be used in the main simulation program

and the BLOCK DATA subprogram. For CSMP simulations the TABLF data

input option is used to enter the function data.

In addition to arrays for function data, two arrays are required

for the search indices. One of these arrays is used to store the

X-input search indices and one to store the Y-input search indices

fbr all the functions. Also, an array is needed to store an error

indicator which controls printing an error message when an input

is out of range of the function data. For FORTRAN simulations these

arrays can be initialized by DATA statements. For CSMP simulations

a subprogram FUNSET can be called in the INITIAL section to initialize

these arrays. A listing of this program is presented in Appendix A.

The calling statement for a function of one variable is of the

form:

ZOUT = FUNI(N,NXP,XI,Zl,XIN)

N is an integer used to select the table search index for each

call. NXP is the number of points per curve. XI and Zl are

arrays containing the function data. AlN is the input variable and

ZOUT is the output variable.

For the regular type function of two variables the calling state-

ment is of the form:

ZOUT = FUN2(N,NXP,NYC,XXl,ZZl,XIN,YIN).

ZOUT,N,NXP, and XIN are the same as described in the preceding

paragraph. NYC is the number of curves. XXl,YYI, and ZZl are arrays

containing the function data and YIN is the second input variable.

The calling statement for the map-type function of two variables

is of the form:

ZOUT = MAPFUN(N,NXP,NYC,XM1,YMI,ZMI,XIN,YIN).

XMI, YMI, ZMI are arrays containing the function data. All the

other arguments are the same as described for the regular function of

two variables.

CONCLUDING REMARKS

For digital simulations requiring function generation, considerable

savings in execution time can be made by using the subprograms discussed

in this memorandum. Timing tests indicate these subprograms run at

least 80%' faster than comparable subprograms used in current digital

engine simulations. These subprograms can be easily incorporated in

digital simulation programs.

APPENDIX - FORTRAN SUBPROGRAM LISTINGS

FUNCTION FUN1 (N,NXP,XX,ZZ, X IN)
COMMON /FMIFR/ IX(40),IY(40),IFRR(40)
DIMENSION XX(NXP),ZZ(NXP)
I = IX(N)

C*****TEST FOR X IN PREVIOUS INTFRV^L.*****
IF(XIN-XX(I)) 120,200, 110

110 IF(XIN-XX(I+1)) 200,140,140
C*****COIINT DOWNt*****

120 IF(XIN-XX(1)) 160,160,13n
130 I = I-1

IF(XIN-XX(I)) 130,200,200
C*****COUNT UP*****

140 IF(XIN-XX(NXP)) 150,170,170
150 I = 1+1

IF(XIN-XX(+1)) 200,200,150
160 I = 1

GO TO 180
170 I = NXP-1
180 IF(IFRR(N)) 200,190,100
190 !RITF(6,400) N,XIN

IERR(N) = -1
C*****INTERPOLATE FOR ANSWER*****

200 XFRAC = (XIN-XX(I))/(XX(I+1)-XX(I))
FUN1 = ZZ(I)+XFRA.C*(ZZ(I+1)-77(I))
IX(N) = I
REFTUR N

400 FORMAT(1H0,12HFINCrTION NO.,13,2014 INIJiT 0!'T Or Rw,. o-
12X,6HXIN = ,G12.4)

END

FUNCTION FUN 2(N, X P, NYC,XX,YY,ZZ,X N,Y 1 N)
COMMON /FMEMR/ IX(40),JY(40), IFRR(40)
DIMENSION XX(NXP),YY(NYC),ZZ(NXP,rNYC)
I = IX(N)
J = JY(N)

C*****TEST FOR X IN PREVIOUS INTERVAI*****
IF(XIN-XX(I)) 120,200,110

110 IF(XIN-XX(I+1)) 200,140,140
C*****COUNT DOWN*****

120 IF(XIN-XX(1)) 160,160,130
130 I = I-1

IF(XIN-XX(I)) 130,200,200
C*****COIINT tUP*****

140 IF(XIN-XX(NXP)) 150,170,170
150 I = 1+1

IF(XIN-XX(I+1)) 200,200,150
160 I = 1

GO TO 180
170 I = NXP-1

9

180 IF(IFRR(N)) 200,190,190
190 VWRITE(6,400) N,XIN,YIN

IERR(N) = -1
C*****TEST FOR Y IN PREVIOUS I!TERVAL*****

200 IF(YIN-YY(J)) 220,300,210
210 IF(YIN-YY(J+1)) 300,240,240

C*****COUNT DOWN*****
220 IF(YIN-YY(1)) 260,260,230
230 J = J-1

IF(YIN-YY(J)) 230,300,300
C*****COUNT UP*****

240 IF(YIN-YY(NYC)) 250,270,27n
250 J = J+1

IF(YIN-YY(J+1)) 300,300,250
260 J = 1

GO TO 280
270 J = NYC-i
280 IF(IERR(N)) 300,290,290
290 WRITE(6,400) N,XIN,YIN

IERR(N) = -1
C*****INTERPOLATE FOR ANS!ER*****

300 XFRAC = (XIN-XX(I))/(XX(I+1)-XX(I))
P1ZZ = ZZ(I,J)+XFRAC*(ZZ(I+1,J)-ZZ(I,J))
P2ZZ = ZZ(I,J+1)+XFPAC*(ZZ(I+I,J+1)-ZZ(I,4J+I))
YFRAC = (YIN-YY(J))/(YY(J+1)-YY(J))
FUN2 = PIZZ+YFRAC*(P2ZZ-PlZZ)
IX(N) = I
JY(N) = J
RETURN

400 FORMAT(1HO,12HFUNC .TION NO., 13,20H INPU.TS. OUT OF RAmF,
12X,6HXIN = ,G12.4,2X,6HYIN = ,012.4)
END

REAL FUNCTION MAPFtIN(N .,.NXP,NYC,XVALS,YVAL ,ZVAL-,'l1',YIfl)
COMMON /FMEMR/ IX(40),JY(40),IFRP(40)
DIMENSION XVALS(NXP,NYC),YVAL (NYC), ZVAL (NX", NYC)
I = IX(N)
J = JY('N)

C*****TEST FOR Y IN PRFVIOn'S IK!TERVAI.*****
IF(YIN-YVALS(J)) 120,200,110

110 IF(YIN-YVALS(J+1)) 200,140,140
C*****COUNT DOWN*****

120 IF(YIN-YVALS(1)) 160,160,130
130 J = J-1

IF(YIN-YVALS(J)) 130,200,200
C*****COIJNT (IP*****

140 IF(YIN-YVALS(NYC)) 150,170,170
150 J = J+1

IF(YIN-YVALS(J+1)) 200,150,15n
160 J = 1

GO TO 180
170 J = NYC-1

10

180 IF(IERR(N))200, 190,1.90
190 WRITE(6,400)N,X IN,YIN

IERR(N) = -1
C*****CAI.CULATE XLO AND XHI*****

200 YFRAC = (YIN-YVALS(J))/(YVALS(J+1)-YVALS(JI))
XI.O = XVALS(I,J)+YFRAC*(XVAI.S(I, J+1)-XVAL;S(I,J))
XHI = XVALS(I+1,J)+YFRAC*(XVALS(I+1,J+1)-XVAL(I+I,J))

C*****TEST FOR X BETWEEN XLO AND XHI*****
IF(XIN-XLO) 220,300,210

210 IF(XIN-XHI) 300,240,240
C*****COIINT DOIHN*****

220 XMIN = XVALS(1,J)+YFRAC*(XVAI.S(,,J+1)-XVAILS(1,J))
IF(XIN-XMIN) 260,260,230

230 I = 1-1
XHI = XLO
XLO = XVALS(I,t)+YFRA .*(XVAI.S(1,,+1)-XVA-(1,I))
IF(XI-XLO) 230,300,300

C*****COUNT (iP*****
240 XMAX = XVAILS(NIXP,,I)+YFRAC*(XVAI.S(NX",,I+I)-XVALr(N YP,JI))

IF(XIN-XMAX) 250,270,270
250 I = 1+1

XLO = XHI
XHI = XVALS(I+1,J)+YFRAC*(XVALS(I+1,J+1)-YVAL(I+1,J))
IF(XIN-XHI) 300,250,250

260 I = 1
qO TO 280

270 I = NXP-1
280 IF(IERR(N))300,290,290
290 WRITE(6,400)N,X IN,YI

IERR(N) = -1
C*****INTERPOLATE FOR ANSWER*****

300 XFRAC = (XIN-XLO)/(XHI-XLO)
ZI. = 7VALS(I,,I)+YFRAC*(ZVAI-.(I,J+1)-ZVAL:(I,,I))
ZR = ZVALS(I+1,J)+YFRAC*(ZVAI-S(I+1,J+1)-ZVAI-(I+ ,,))
MAPFUN = ZL+XFRAC*(ZR-ZI.)
IX(N) = I
JY(N) = J
RETURN

400 FORMAT(1HO,8H MAP NO.,13,20H INPUTS OIIT nF RAr!F,
12X,6HXIN = ,G12.4,2X,6HYIN = ,012.4)

END

FUNCTION FUNSET(N)
COMMON /FHEMR/ IX(40),,JY(40),IFRR(40)
DO 10 K=1,N
IX(K) = 1
JY(K) = 1
IERR(K) = 1

10 CONTINUE
FIINSET = 1.0
RFTIRN
FN D

UI

z

Flkure 1 - Function of one variable

Y(1)

Y(2)

Y(3)

Figure 2 - Repular type function of two variables

Y(4)

z -Y(3)

Y(2)

Y(1)

X

Fvlure 3 - Map-type function of two variables

II

F-gIurn 4 - Petails of Interpolation metho- or marn-tvne
function of two variables

/3,

