MLC E0891

٠,

EVALUATION OF SHUTTLE SOLID ROCKET BOOSTER CASE MATERIALS

NASA-CF-120160) EVALUATION OF LHULILE \$74-20400 SOLID EGEKET ECUSIEF CASE MATERIALS. CORFESSION AND SIDESS CUPPORIEN (MCDennell-Deuglas Astronautics Co.) Unclus 100 p HC \$8.00 UN COCL 21H G3/28 16800

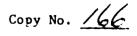
> L.J. Pionke K.C. Garland

28 December 1973

Prepared under Contract NAS8-27270

"Corrosion and Stress Corrosion Susceptibility of Several High Temperature Materials"

> for the period 19 May 1972 to 19 October 1973


by

McDonnell Douglas Astronautics Company

St. Louis, Missouri

for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION George C. Marshall Space Flight Center Alabama 35812

FOREW(2D

This report was prepared by McDonnell Douglas Astronautics Company - East (MDAC-E) under NASA-MSFC Contract NAS-8-27270, Corrosion and Stress Corrosion Susceptibility of Several High Temperature Alloys.

The work reported herein describes the results of the second study year, which was concerned with the evaluation of two candidate Shuttle Solid Rocket Booster case materials. The work conducted during the first study year was concerned with the evaluation of candidate materials for a metallic Shuttle Thermul Protection System and is reported in McDonnell Douglas Report No. MDC E0609. Both programs were conducted under the direction of Mr. J. G. Williamson of the Metallic Materials Branch, Materials Division of the George C. Marshall Space Flight Center, National Aeronautics and Space Administration. Mr. L. J. Pionke was the Program Study Manager for MDAC-E; Mr. K. C. Garland conducted the laboratory testing and assisted in data analysis and preparation of the final report. The authors wish to gratefully acknowledge the assistance of J. W. Davis and J. J. Slavic, who contributed in many ways throughout the program.

ABSTRACT

Two candidate alloys for the Shuttle Solid Rocket Booster (SRB) case were tested under simulated service conditions to define subcritical flaw growth behavior under both sustained and cyclic loading conditions. The materials evaluated were D6AC and 18 Ni maraging steel, both heat treated to a nominal yield strength of 1380 MN/m^2 (200 ksi).

The sustained load tests were conducted by exposing precracked, stressed specimens of both alloys to alternate immersion in synthetic sea water. It was found that the corrosion and stress corrosion resistance of the 18 Ni maraging steel were superior to that of the D6AC steel under these test conditions. It was also found that austenitizing temperature had little influence on the threshold stress intensity (K_{TH}) of the D6AC.

The cyclic tests were conducted by subjecting precracked surface-flawed specimens of both alloys to repeated load/thermal/environmental profiles which were selected to simulate the SRB missions. It was found that liner removal operations that involve heating to 589°K (600°F) caused a decrease in cyclic life of D6AC steel relative to those tests conducted with no thermal cycling (i.e., load cycling at room temperature). It was also found that a decrease in the cyclic life of 18 Ni maraging steel occurred upon intermittent exposure to synthetic sea water during load/temperature cycling, relative to those tests conducted in the absence of sea water.

ii

NOMENCLATURE

.

· •

. . .

3

Carlo manager of the state

Ĵ.

والمعادر المعطوم

a	=	Crack depth of a semielliptical surface flaw
α	-	Proof test factor (proof \div maximum operating pressure)
Bn	=	Net thickness for MWOL specimens
с	-	Crack length in a MWOL specimen
2c	-	Crack length of a semielliptical surface flaw
°1	-	Distance between centerline of load application and point at which
		displacement measurements were taken (MWOL specimens)
DCL	-	Deflection of MWOL specimen, measured at centerline of load application
D End	*	Deflection of MWOL specimen, measured at knife edges attached to end of
		specimen
d	=	Diameter of a cylindrical pressure vessel
E	-	Elastic modulus
G	=	Crack extension force (also, the strain energy release rate)
к	=	Stress intensity factor
К _f	=	Stress intensity at termination of fatigue precracking
к _і	=	Stress intensity at test initiation
К _{Іс}	=	Plane strain fracture toughness or critical stress intensity
ĸ _{ie}	=	Apparent fracture toughness
к _{тн}	=	Threshold stress intensity in a particular environment
MEOP	=	Maximum expected operating pressure
Р	=	Applied load
P _i	78	Internal pressure for a pressure vessel
PQ	=	Secant intercept load as specified in ASTM 399-70T, Section 9.1.1
Q	=	Flaw shape parameter for a surface crack = $\phi^2 - 0.212 (\sigma/\sigma_{ys})^2$

iii

- * Complete elliptic integral of the second kind having modulus k defined as $k = (1 - a^2/c^2)^{1/2}$
- R * Ratio of minimum to maximum applied stress in a fatigue cycle.

···· •

S = Compliance (reciprocal of stiffness)

t = Wail thickness of a pressure vessel

⁷G = Gross section fracture stress

^oMEOP = Stress associated with the maximum expected operating pressure of a pressure vessel

 σ_{ys} = Yield stress

*

• ..

TABLE OF CONTENTS

ŧ

Ą

SECTION	TITLE	PAGE
	Foreword	i
	Abstract	11
	Nomenclature	iii
1.0	Introduction	1
2.0	Background	2
	2.1 Estimated Booster Service Conditions	2 4
	2.2 Candidate Case Materials	4 6
	2.3 Materials Selected for Evaluation	0 7
	2.4 Alloy Procurement	,
3.0	Test Specimens	10
	3.1 Selection of Test Specimen Geometry	10
	3.2 Fabrication and Heat Treatment of	14
	Test Specimens	
4.0	Alternate Immersion Testing	21
	4.1 Precracking of Test Specimens	21
	4.2 Calibration of MWOL Specimens	21
	4.3 Fracture Toughness Testing of MWOL Specimens	28
	4.4 Iest Procedure	31
	4.5 Results of Exposure of Corrosion Coupons	33
	4.6 Results of Exposure of MWOL Specimens	33
5.0	Crack Propagation Testing	41
	c 1 December of Toot Specimens	41
	5.1 Precracking of Test Specimens 5.2 Fracture Toughness Testing of Surface Flaw Specimens	43
	5.3 Test Procedure	43
	5.4 Results of Crack Propagation Testing	49
()	Conclusions	58
6.0	COUCTOBIONS	
7.0	Recommendations	59
8.0	References	60

ć

TABLE OF CONTENTS (CONT'D)

_

-

•

A

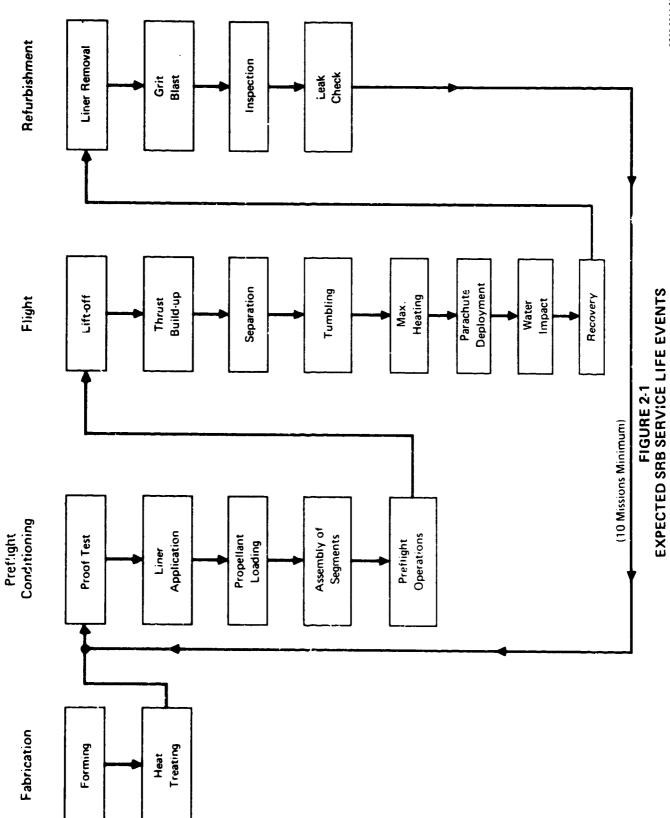
	Page
Appendix A	
Stress Intensity/Time Data for MWOL Specimens	61
<u>Appendix B</u> Crack Propagation Data for Surface Flaw Specimens	65
Appendix C Fractographs of Surface Flaw Specimens	72
<u>Appendix D</u> Conversion Factors	89
<u>Appendix E</u> Distribution List	90
LIST OF PAGES	
Title Page	
i thru vi	
1 - 94	

1.0 INTRODUCTION

Current plans for the Space Shuttle require the use of twin solid propellant rockets to boost the Orbiter to an altitude near 45.72 km (150,000 ft). After separation, these boosters will be recovered at sea and refurbished for subsequent reuse. The employment of such Solid Rocket Boosters (SRB's) on the Space Shuttle has imposed two important demands on current solid propellant rocket technology -reliability and reuse capability. In this instance, emphasis is being placed on obtaining maximum reliability, since the SRB will be used as a booster for a manned vehicle. At the same time, a maximum reuse capability is being demanded of the solid rocket motor case, a requirement that is unusual in the history of solid rocket technology. This demand for reusability is based on economic considerations because substantial cost savings accrue over the lifetime of the Shuttle if the SRB cases can be recovered, cleaned and reused. Since the SRB's will be recovered from the ocean after each mission, both of these requirements are complicated by the fact that the Shuttle SRB's will be exposed to sea water environments for extended periods of time prior to recovery and cleaning.

The primary objective of this program was to assess the adequacy of candidate SRB case materials by predicting service life based on tests conducted under simulated service conditions. Such a prediction requires a knowledge of the specific sizes of defects present in the structure prior to its being placed into service. This program determined the size of the defects which would cause failure (i.e. the critical size) and the manner in which subcritical flaws would grow to critical size. Such subcritical flaw growth characteristics were defined by alternate immersion exposure to synthetic sea water under a sustained load and fatigue testing under cyclic stress/temperature conditions that approximate those expected during service. The latter tests also included an investigation of corrosion-fatigue interaction resulting from exposure to synthetic sea water.

2.0 BACKGROUND


2.1 Estimated Booster Service Conditions

Although the final design configuration of the Shuttle SRB and the details of its mission have not as yet been finalized, preliminary design information is available (References 1 and 2).

This information, summarized in Figure 2-1, indicates that each case will be required to complete a minimum of 10 missions. Significant loads are applied to the case only during proof testing and actual operation. The loads imposed on the case during splashdown and recovery are as yet undetermined.

Most preliminary design studies have been conducted using D6AC steel as the baseline material. For such an SRB case, it is projected that the initial proof test following fabrication will be carried out at pressures 1.15 times a maximum expected operating pressure (MEOP) of 6900 N/m^2 (1000 psi). Subsequent proof tests, conducted prior to each flight, are to be carried out at pressures of 1.05 MEOP (Reference 2).

Five distinct temperature cycles will also be associated with each mission, as indicated in Table 2-1. The maximum temperature experienced by the case is expected to occur during refurbishment, when the case is heated to 589°K (600°F) for a maximum period of up to 12 hours. Heating of the case to this temperature represents one method proposed for removal of the elastomeric liner that bonds the propellant to the case and protects the case from the burning solid propellant. The temperature reached by the case during the pressurized portion of the SRB flight cycle is not expected to exceed 339°K (150°F).

2

Constant South State

65 1166 6149

and a subscription of the subscription of the

-

THERMAL HISTOR	TABLE 2-3 Y ASSOCIATED V		MISSION	
EVENT	TEMPER. °K	ature °F	DURATION	
Liner Application	477	400	4 hours	
Coating	339	150	4 hours	
Propellant Cure	333	140	7 days	
In-flight Heating *	455	360	5 minutes	
Liner Removal	589	600	12 hours	

* Maximum value, after thrust termination

2.2 Candidate Case Materials

Many different types of steels have been used for solid rocket motor cases. Those of particular interest for the Shuttle SRB are the maraging steels and the quenched and tempered low alloy medium carbon steels.

Maraging steels are of interest for rocket motor case applications for a number of reasons. These steels combine a high strength-to-weight ratio with good fracture toughness and weldability. Also attractive is the simple heat treatment required for these steels. The ductile martensite obtained after annealing at 1116°K (1550°F) allows these alloys to be readily formed and welded, after which a simple aging treatment produces full strength. Such a simple aging operation on large diameter rocket motor cases is more attractive than the quench and temper operations required for low alloy steels, particularly because distortion and processing problems are minimized. Maraging steels are, however, much more expensive than the low alloy steels.

The term "maraging steel" encompasses alloys with a range of compositions, as shown in Table 2-2. The maraging steels contemplated for use in rocket motor case applications have focused largely on the various grades of the 18 percent nickel alloys containing cobalt, molybdenum, and titanium. An 18 percent nickel 200 grade maraging steel was selected for use on a joint Air Force - NASA Program in 1962 to fabricate a 660 cm (260 inch) diameter booster (Reference 3). The goal of the program was achieved by the successful static test firing of two short length motors in late 1965 and early 1966.

The low alloy medium carbon steels that have been used in the missile industry include AISI 4130, 4340, D6AC, and AMS 6435, all of which have had a history of successful use at high strength levels; their compositions are listed in Table 2-3. These alloys have been used extensively in such missiles as Spartan, Pershing, Polaris, Minuteman, and Titan IIIC strap-ons. These steels generally are quenched to a fully martensitic structure which is tempered to improve ductility and toughness as well as to adjust the strength to the required level.

			T	ABLE 2-2	COMPOS	ITIONS	OF MARAG	GING STEE	EL	
	с	Mn	31	N1	Co	Mo	Ti	A1	Cr	Other
18 Ni, 200 Grade	.03	. 10	.10	17.0-19.0	7.0-8.5	4.0-4.5	0.10-0.25	0.05-0.15		
18 N1, 250 Grade	.03	. 10	. 10	17.6-19.0	7.0-8.5	4.6-5.2	0.3-0.5	0.05-0.15		
18 Ni, 300 Grade	.03	. 10	. 10	18.0-19.0	8.5-9.5	4.7-5.2	0.6-0.8	0.05-0.15		
Almar 362	.03	. 30	. 20	6.5	-	-	0.80	-	14.5	
Unimer Cr-2	.03	. 30	. 40	10.25	-	-	0.30	0.70	11.5	
IN-736	.02	.08	.08	10.0	-	2.0	0.20	0.30	10.0	
Custom 450	.05	. 50	. 50	6.25	-	0.75	-	-	15.5	.40 CE, 1.50 Cu
Custom 455	.03	. 25	.25	8.50	-	-	1.20	-	11.75	. 30 Cb, 2.25 Cu

Cl	OMPOSITIONS OF VA	TABLE 2-3 ARIOUS HIGH CTRENG	TH LOW ALLOY	STEELS
Alloy Content	AISI 4130	AISI 4340	D6AC	AMS 6434 (V-modified AISI) 4335)
С	. 30	. 40	. 45	. 34
Mn	.50	.70	.75	.70
Si	.28	. 28	. 30	. 27
Ni	-	1.82	. 50	1.80
Cr	.95	. 80	1.00	. 8
Мо	.20	. 25	1.00	. 35
v	_	-	. 08	.20
Cu	-	-	-	. 35
Total:	2.23	4.25	4.08	4.81

2.3 Materials Selected for Evaluation

One maraging steel and one low alloy steel were selected for evaluation under this program. A 200 grade 18 Ni maraging steel was selected for evaluation because of the success achieved on the 660 cm (260 inch) diameter booster program. The low alloy D6AC steel was selected because of its low cost, good performance in past applications, and the availability of information from recent design studies which used this alloy for baseline analysis.

For evaluation of sustained load flaw growth behavior, two distinct heat treatments of D6AC steel were selected, in addition to the standard heat treatment of 18 Ni maraging steel. These heat treatments were selected because recent data (Reference 4) on the fracture toughness of D6AC steel indicate that improved toughness values are obtained for a given strength level if the austenitizing temperature

is increased from 1158°K (1625°F) to 1200°K (1700°F). Both heat treatments used the same 872°C (1110°F) tempering temperature to produce an ultimate strength of 1350-1550 MN/m² (195 - 225 ksi).

For evaluation of the cyclic flaw growth behavior, one heat treatment of each alloy was selected. Besides the standard heat treatment of 18 Ni maraging steel, the D6AC sceel austenitized at 1200°K (1700°F) was selected because slightly better resistance to sustained load flaw growth was observed for such material during the first three weeks of testing.

2.4 Alloy Procurement

Because this study involved the evaluation of materials for a solid rocket motor case, the D6AC steel was obtained from Ladish as $9.53 \times 305 \times 914$ mm (.375 x 12 x 36 inch) segments sectioned from a ring-rolled Titan IIIC rocket motor case. The starting material for this case was vacuum arc remelted; its forming history is summarized in Figure 2-2.

- Size Case As Cast (VAR) Ingot Flame Cut Case to Obtain Test Segments Extrude, 1510^oK Flatten Segments (922⁰K, 1 Hour) Using Hammer Ring Roll, 1510^oK Deliver Segments to MDAC-E Normalize, 1276^oK Machine Specimens Temper, 989^oK Austenitize 1158 or 1200°K Machine Case Temper, 872⁰K Roll Form Case (Cold) Test Specimens 1етре^т, 950⁰К —

erine 2

FIGURE 2-2 THERMAL/MECHANICAL PROCESSING HISTORY FOR D6AC STEEL

The 18 Ni grade 200 maraging steel was obtained from Allegheny-Ludlum as hot rolled and annealed plates having the dimensions $15.9 \times 1520 \times 762$ mm (.625 x 60 x 30 inches). The starting material for this plate was vacuum induction melted and vacuum arc remelted.

· .

T

-

To insure that the material used would be representative of current manufacturing technology, all of the material was procured to applicable specifications and the material suppliers were required to submit certified test reports covering chemistry and mechanical properties. A summary of the suppliers' certification

is presented in Table 2-4.

٩

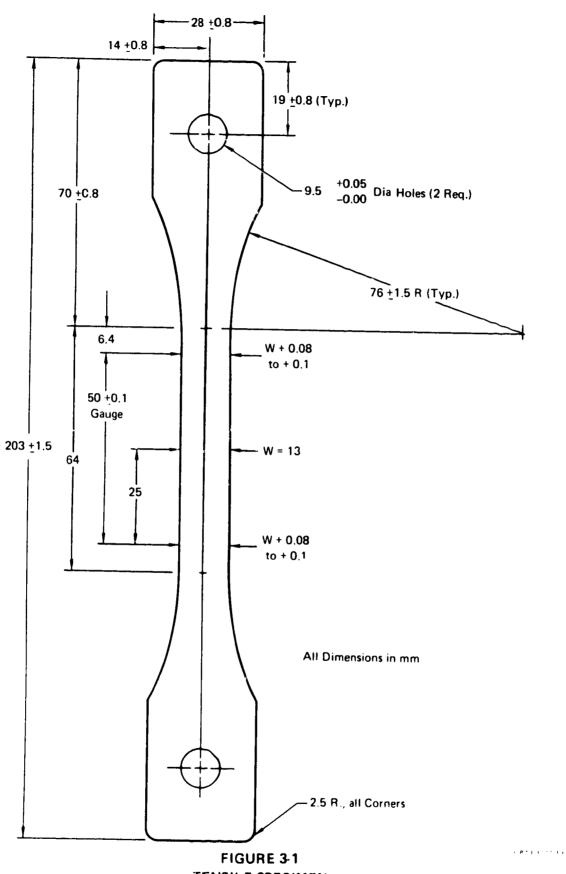
TABLE 2-4. SUMMARY OF SUPPLIERS CERTIFICATION						
	D6AC	18 Ni Maraging				
SUPPLIER:	Ladish	Allegheny-Ludlum				
ORIGIN:	Latrobe Heat No. C15000 6-1 Ladish Cylinder No. 334	Heat No. W28047				
Melting Practice:	VAR	V IM/VAR				
As-Received Condition	Normalized and Tempered	Mill Annealed				
Applicable Specification:	UTC-4MDS-20701	ASTM-A538-72A				
Analysis, % by Weight:						
С	. 46	.019				
0	*	.0013				
N	*	.0040				
Mn	. 82	.022				
Р	.008	.009				
S	.003	.002				
Si	.18	.03				
Ni	• 56	18.00				
Cr	1.03	-				
Мо	.94	4.00				
v	•08	-				
Co	-	7.80				
Ti	-	0.20				
Λ1	-	0.08				
Zr	*	0.01				
В	*	0.003				
Fe	Balance	Balance				

· -

.. .

÷

*Not analyzed


3.0 TEST SPECIMEN PREPARATION

3.1 Selection of Test Specimen Geometry

The smooth tensile specimen shown in Figure 3-1 was used for determining baseline mechanical properties. Different types of specimens were selected for the evaluation of stress corrosion and fatigue properties; both contained fatigue precracks, primarily because such cracks are representative of the defects that are introduced in structural components during normal manufacturing processes such as forming and welding. Such defects can escape detection during routine inspection procedures and subsequently lead to failure when the component is subject to proof-test or service loads (Reference 5). The use of precracked specimens, then, will provide the basis for an efficient design of the SRB vehicle combined with a high degree of reliability and confidence.

The specimen configuration selected for the evaluation of stress corrosion Susceptibility under the present program is shown in Figure 3-2. The modified wedge opening loading (MWOL) specimen configuration was selected for alternate immersion testing because of its testing economy and because there is a considerable amount of past experience available, as summarized in Reference 6. The MWOL specimen is self-stressed which eliminates the need for a tensile machine during environmental testing. A bolt maintains the crack-opening-displacement (COD) at a constant value throughout the test; as the crack propagates, the force decreases, leading to eventual crack arrest. This arrested crack length and the known COD value define the threshold stess intensity (K_{TH}) below which slow crack growth will not occur. This behavior is contrasted with that observed for a constant load test in Figure 3-3.

The MWOL specimen configuration used in the present study was side-grooved in an attempt to prevent the formation of shear lipe and to confine all crack

. · · ·

. . .

. And the second second

.

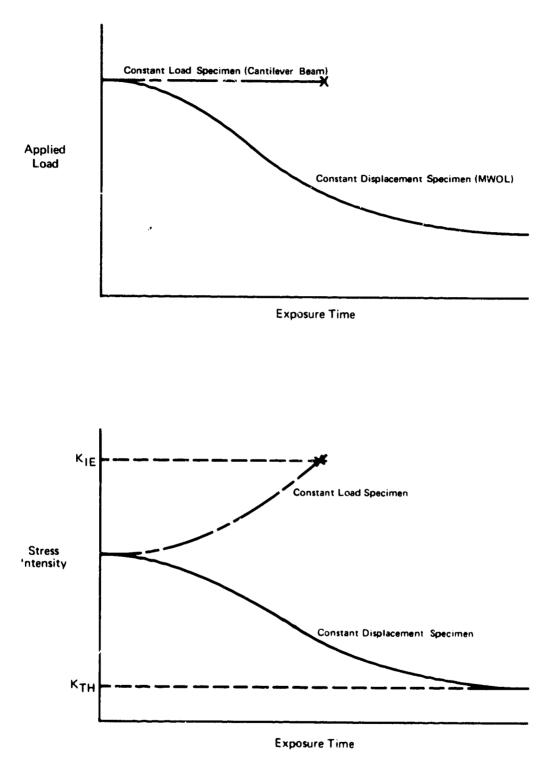
-.

TENSILE SPECIMEN

.

.

(a) Modified Wedge Opening Loading (MWOL) Specimen Configuration



(b)MWOL Specimen Ready for Alternate Immersion Exposure

GP73 1377 9

-

FIGURE 3-2

··· .

ι.

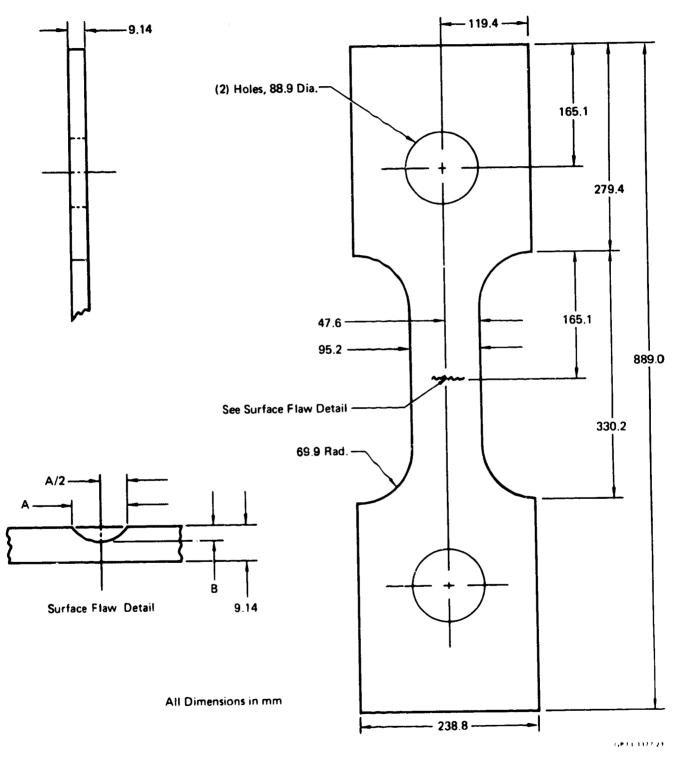
An Article States and Balline

GP71-137122

FIGURE 3-3 DIFFERENCE IN BEHAVIOR FOR MWOL AND CANTILEVER BEAM SPECIMENS

growth to a single plane. These side grooves were semicircular to aid in the monitoring of the crack tip; they reduced the nominal specimen thickness of 9.53 mm (.375 inch) by 50 percent. Such deep grooves are not usually recommended (Reference 7), but it was felt at the time of specimen manufacture that such grooving was necessary to achieve the degree of confinement required.

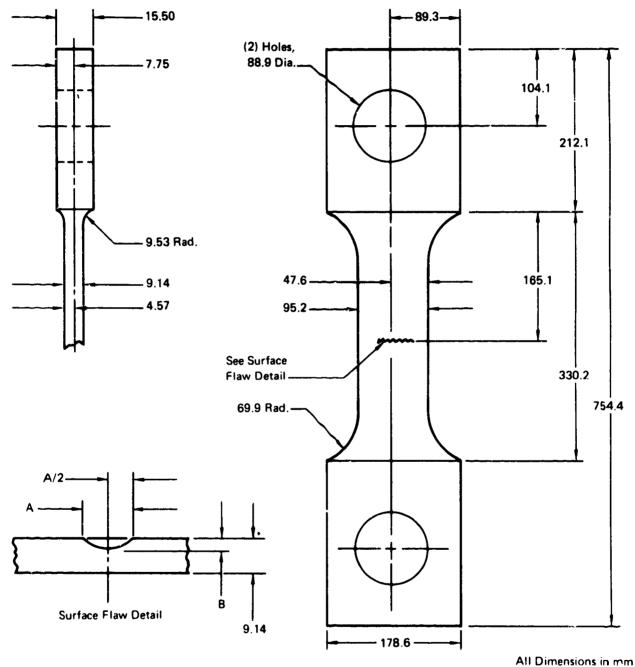
The specimen configurations selected for the investigation of the fatigue crack propagation behavior of D6AC and 18 Ni maraging steel are shown in Figures 3-4 and 3-5, respectively. Surface flaws were selected in order to simulate the type of flaws expected to occur during fabrication and service.


3.2 Fabrication and Heat Treatment of Test Specimens

The orientation of the loading axis for each specimen relative to the rolling direction of the original plate is summarized in the sectioning diagram of Figure 3-6.

Ŷ,

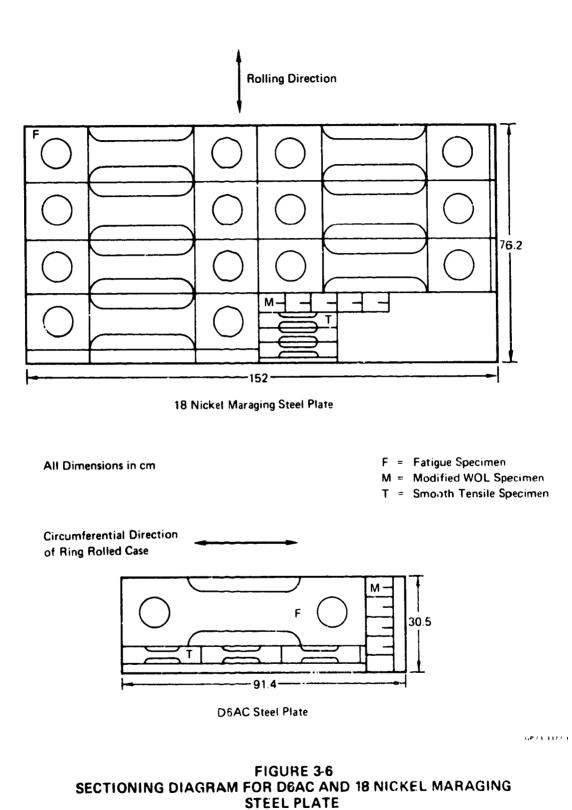
The test specimens were heat treated in accordance with the schedules listed in Table 3-1. These heat treating schedules are designed to produce an ultimate tensile strength in the range of 1350-1550 MN/m^2 (195 - 225 ksi) for all the D6AC material and a nominal yield strength of 1380 MN/m^2 (200 ksi) for the 18 Ni maraging steel material.


In order to facilitate testing, the alternate immersion specimens were machined and heat treated before the fatigue crack propagation specimens. Smooth tensile coupons were heat treated with each group of test specimens to insure that the appropriate strength requirements were attained. Because of their large size, the fatigue crack propagation specimens were instrumented with thermocouples to insure that the required temperature/time parameters were achieved. The 18 Ni maraging steel specimens spent 4 hours and 20 minutes in the furnace, while the D6AC specimens spent 4 hours and 25 minutes.

· - ..

....

FIGURE 3-4 D6AC STEEL SURFACE FLAW SPECIMEN


· • •

. . **...**

GP713377 20

FIGURE 3-5 18 NICKEL MARAGING STEEL SURFACE FLAW SPECIMEN

۰.

÷ • ...

•

SIEELFLA

TABLE 3-1 HEAT TREATING SCHEDULES FOR CANDIDATE CASE MATERIALS							
MATERIAL	PROCESS	HEAT TREATMENT					
D6AC-1625	Austenitize Quench Temper Cooling	1158°K (1625°F), 1 hour* 477°K (400°F) salt 872°K (1110°F), 4 hours Air Cool					
D6AC-1700	Austenitize Quench Temper Cooling	1200°K (1700°F), 1 hour** 811°K (1000°F) salt 322°K (120°F) oi1 872°K (1110°F), 4 hours Air Ccol					
18 Ni Maraging	Age Cooling	755°K (900°F), 4 hours Air Cool					

* Protective atmosphere (endothermic gas), dew point = $281 + 1^{\circ}$ K ** Protective atmosphere (endothermic gas), dew point = $276 + 1^{\circ}$ K

The results of the preliminary tensile testing, shown in Table 3-2, indicate that the strength requirements for this study were met for all groups of specimens. The microstructures of the heat treated alloys are shown in Figure 3-7.

	TAI	BLE 3-2.	TENS	SILE PRO	PERTIES	OF HIGH STRI	ENGTH STEEL	S
ALLOY		F MN/m ²	ty ksi	F MN/m ²	tu ksi	E, r 10 ³ MN/m ²	nodulus 10 ³ ksi	ELONGATION, % (5.08 cm gage length)
D6AC-1625	Avg:	1360 1360 <u>1360</u> 1360	197 197 <u>197</u> 197	1430 1420 <u>1430</u> 1430	207 206 <u>207</u> 207	202 199 <u>200</u> 200	29.3 28.9 <u>29.0</u> 29.1	13 14 <u>13</u> 13
D6AC-1700	Avg:	1350 1350 1360 1303 1340	196 196 197 <u>189</u> 195	1490 1500 1500 <u>1420</u> 1480	216 217 217 <u>206</u> 214	208 205 208 <u>201</u> 206	30. 2 29. 8 30. 2 <u>29. 2</u> 29. 9	14 15 15 <u>11</u> 14
18 Ni Maraging	Avg:	1430 1420 1450 <u>1440</u> 1430	208 206 210 209 208	1500 1490 1500 <u>1490</u> 1500	217 216 218 <u>217</u> 217	181 177 179 <u>179</u> 179	26.3 25.6 25.9 <u>26.0</u> 26.0	$ \begin{array}{r} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \end{array} $

_

D6AC Steel Austenitized at 1158⁰K Tempered at 872⁰K

Mag. 500X

D6AC Steel Austenitized at 1200⁰K Tempered at 872⁰K Mag: 500X

18 NF Maraging Steel Aged at 758⁰K Mag: 500X

> FIGURE 3-7 MICROSTRUCTURES OF HEAT TREATED HIGH STRENGTH STEELS (ETCHANT: HCI & PICRAL)

4.0 ALTERNATE IMMERSION TESTING

4.1 Precracking of Test Specimens

The modified wedge opening loading (MWOL) specimens used in this program were machined with an initial slot length of 36.07 mm (1.420 inches). The slot width measured 2.29 mm (.090 inch), and had a terminating radius of approximately .20 mm (.008 inch). This slot was fatigue sharpened using a stress ratio of 0.10, a frequency of 30 Hz, and loads low enough to insure valid test results for each phase of testing. For all specimens, this extended crack length measured approximately 27.9 mm (1.1 inch). The apparatus used to precrack these specimens is shown in Figure 4-1.

4.2 Calibration of MWOL Specimens

Prior to alternate immersion testing, it was necessary to calibrate the particular MWOL specimen geometry used in this study in order to establish the relationship between stress intensity, crack length, applied load, and specimen deflection. The method used was similar to that described in Reference 8, in which measurements were made of the compliance (reciprocal of the stiffness) of specimens at successively longer crack lengths. Two specimens were calibrated, a D6AC specimen austenitized at 1158°K (1625°F) and an 18 Ni maraging steel specimen. The calibration was accomplished by incrementally extending a fatigue crack in the specimens. At each crack length, the specimens were incrementally loaded to some maximum static load. At each load level the displacement across the notched end of the specimen was measured with an instrumented clip-in displacement gage similar to that described in Reference 9. The fatigue loads and subsequent maximum static loads were chosen to form marker bands on the fracture surface, enabling exact measurements of the crack lengths where the calibrations were made. As the fatigue crack lengths

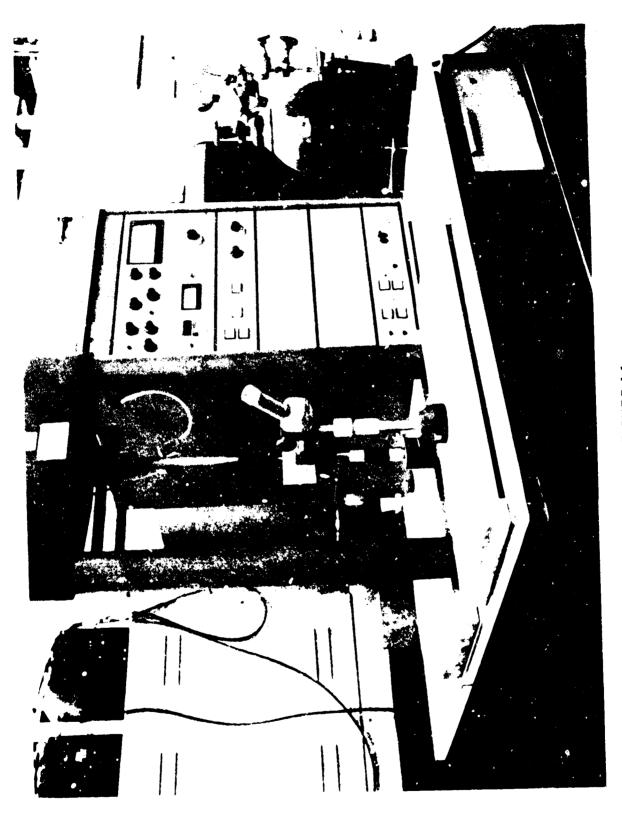


FIGURE 4-1 FATIGUE APPARATUS USED TO PRECRACK MWOL SPECIMENS increased in the specimens, the fatigue loads and maximum static loads were reduced to prevent fracture of the specimens. In no instance did the fatigue precracking load exceed 50 percent of the maximum static load.

The compliance calibration data for the two specimens is presented in Table 4-1. The load deflection data for each crack length-to-specimen width ratio, a/W, was subjected to a least squares analysis to determine the compliance. To compare the data obtained from the specimens of the two different alloy steels, the compliance values were normalized by multiplying them by the modulus of elasticity (E). The relationship obtained between normalized compliance, expressed in units of mm⁻¹, and crack length for both specimens is shown in Figure 4-2. Excellent agreement was obtained between the two sets of data over the entire range of crack lengths studied.

Because compliance measurements ideally involved only that region of the specimen which includes the nonuniform stress field associated with the crack, load-displacement data should be obtained at the centerline of load application. However, for the MWOL specimen, such data is most conveniently and economically obtained at the end of the specimen. In order to compensate for the errors introduced by this technique, the displacement D_{END} obtained at the end of the specimen was converted to a displacement D_{CL} at the centerline of the load application by applying the linear correction factor described in Reference 6. The correction factor used can be expressed as:

$$D_{CL} = \frac{c}{c + c_1} D_{END}$$

where c is the crack length and c₁ the distance between the centerline of load application and the point at which displacement measurements are takes. The corrected values of normalized compliance are presented in Table 4-? and Figure 4-3.

IABLE 4-1 LUAD - DISPLACEMENT DAIA FUR MGOL SPIELMENS

۰,

•

					Displacme	ent at Ea	Displacment at Each Applied Load	d Load				Compli	Compliance, S
U ler	. e . F	Max. Apriled Load, P					60		. 8P				
			 3				10-5 1-	Ę	10 ⁻³ in	9	10 ⁻³ in	N/ mm	10 ⁻⁶ in/1b
		1 lo .	an 10 in	Ħ					T				
					4 4 0	017-0	c r	0.276	10.36	0.342	13.48	19.07	3. 341
	; ;; ;	ULL - UDS	1. J. J. U.				5	0.533	13.09	0.412	16.20	23.36	4.093
	(01.1			001.7			3 11	5.7	14.73	0.473	18.05	26.68	6/9 t
	7		U. Jas J. 45	0.134	(j.)	00110			102 11	x 3	19.61	12.08	5.620
				0.196		167.C		1. 540				46. BB	6.461
				0.130	61 .	0.135	11.54	0.548	67.01			10.00	7 1 7
	•			1	1.33		15.72	1.467	15.37	0.000	23.UL	1.1.00	201 0
						685.0	1). 34	(<u>(</u> , ,)	17.93	0.574	22.61	60.26	C 7 1
							12.80	777.0	17.39	0.55	21.96	63.47	11.12
	· • • · · · ·	1.4.1 LUL					9 0 9 9 1		91.15	0.683	26.09	77.44	15.27
				().25J	1					() h 5 5	25.78	99.22	17.38
	, ,				1.60	156.6	10.00	011.0		0.600	27 1A	125.5	21.99
	, , '			f((1.1.1. 	1.4.1	15.00	1.045	00.12		20.00	7 6-1	10 01
	;	6. 5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	17.44	0.601	19.67	0./61	CK . K7	1	10.1
	;	'						0.109	27.91	0.396	82.46	7.042	
	:	2,100 3-1					. 1 	- 9.0	26.15	6.851	33.51	386.9	11.10
_	• • • • • •			(· í · í				127 1	54.75	1.206	47.46	679.4	119.02
	;	, , , , , , , , , , , , , , , , , , ,			12.01	, ,	•						
_					•			4. · ·	14 41	0.454	18.47	20.94	3.668
		1	1.121 - 121 -		0	J. 130	1	.	41.1	0.571	22.48	25.53	4.473
2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.				1.1.1		105.0	15.32	101.0			35 75	07 06	5.16ú
				101.0	19.14	7.159	15.01	170.0				2/ 66	6.073
	•				11.53	U.455	17.93	0.611	50.09	0./09			2.2.2
	::;				1.5	1. 36.0	22.05	0.751	29.59	0.945	37.21	42.25	
	n n n					212	91	0.690	27.50	0.881	34.72	48.87	8. / 20
		U.U.F	-				1	0.01	12.50	1.055	41.55	59.50	10.42
	•				10.61			30.0	24.76	0.920	36.25	69.75	12.22
	1		-	7. 345				00000	07 ()	1.200	47.24	90.33	15.82
				0.159	60.51		100 · · · ·		05.57	0.964	17.97	109.88	19.25
				010	1.				12 23	517 1	51.92	148.7	26.05
			21.6 202.C	1.445	۲. ۲	1.10	50.03	1001	47.0t	1 350	53.13	204.0	35.75
	;;;		n	692.0	14.52	0.11	PC-05	1.00	0 f f				

• •

Heat incataent: Autenitized at 1155% (it.v'F), i hour; quenched in 477% (400%) sait; tempered at 872%K (1110%F), 4 hours.

-

~

** deal (readment), Arrist at 1000 Moulds, 4 mouts.

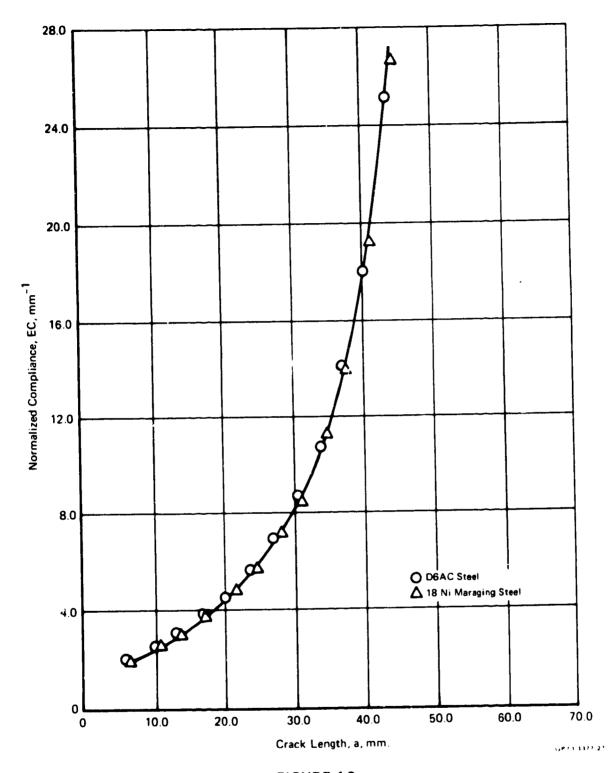
- -

.....

÷.

FIGURE 4-2 NORMALIZED COMPLIANCE (AT END OF SPECIMEN) vs CRACK LENGTH

	TABLE	E 4-2. CORRECT ATA FOR MWOL	TED COMPLIAN SPECIMENS	CE	
Alloy	a/w	End of	iance @ Specimen	Compl Centerline	iance @ of Loading*
D6AC	0.307 0.365 0.390 0.435 0.471 0.517 0.551	mm ⁻¹ 3.8277 4.6892 5.3560 6.4386 7.4021 8.8640 10.4543	in ⁻¹ 97.223 119.10 136.04 163.54 188.01 225.14 265.53	mm ⁻¹ 2.0019 2.6541 3.1172 3.9147 4.6411 5.7527 6.9311	in ⁻¹ 50.848 67.414 79.177 99.434 117.88 146.12 176.05
	0.593 0.630 0.670 0.707 0.746 0.786 0.824 0.862	$12.7398 \\ 15.5445 \\ 19.9140 \\ 25.1956 \\ 34.6118 \\ 52.2184 \\ 77.6374 \\ 136.3587 $	323.59 394.82 505.81 639.96 879.14 1326.3 1971.9 3463.5	8.6503 10.756 14.039 18.040 25.162 38.485 57.917 102.95	176.05 219.71 273.22 356.60 458.21 639.13 977.51 1471.10 2614.9
18 Ni Maraging	0.312 0.355 400 0.439 0.488 0.522 0.565 0.596 0.643 0.678 0.718 0.758	3.7547 4.5786 5.2880 6.2164 7.6311 8.9341 10.6713 12.5097 16.1998 19.7058 26.6674 36.5955	95.368 116.29 134.31 157.89 193.83 226.92 271.05 317.74 411.47 500.52 677.35 929.52	1.9787 2.5595 3.1094 3.7921 4.8457 5.8161 7.1283 8.5065 11.275 13.932 19.173 26.714	50.259 65.011 78.978 96.318 123.08 147.73 181.06 216.06 286.38 353.87 487.01 678.55


· •

.....

* Values obtained using a linear correction factor,

•

$$D_{CL} = \begin{bmatrix} c \\ c+c \end{bmatrix} D_{END}$$

-

ł

FIGURE 4-3 NORMALIZED COMPLIANCE (AT CENTERLINE OF LOADING) vs CRACK LENGTH

This correction factor has been found to be conservative in predicting centerline compliance values, particularly at the shorter crack lengths. However, for the shortest crack length used in the present study, the value of stress intensity calculated using this curve is overestimated by no more than 10 percent.

The stress intensity factor at each combination of applied load and crack length is related to specimen compliance in the following manner:

$$K = \sqrt{GE}$$
 (2)

122

$$G = \frac{P^2}{2EB_n} \frac{d(ES)}{da}$$
(3)

In order to obtain an equation for (d(ES)/da), a least-squares-best-fit digital computer program was used to fit the data of Table 4-2 (expressed in English units) to a fifth degree polynominal in (a). This polynominal was found to be:

 $ES = 717.10 + 3550.8(a) - 6776(a^2) + 6503.9(a^3) - 3062.8(a^4) + 579.8(a^5)$ (4) where (a), E, and C are expressed in English units. Therefore,

$$\frac{d(ES)}{da} = 3550.8 - 13553(a) + 19511(a^2) - 12251(a^3) + 2899.1(a^4)$$

The coefficients in equations (4) and (5) are for use with English units.

4.3 Fracture Toughness Testing of MUOL Specimens

In order to establish critical stress intensity values for use as baseline data in the subsequent investigation of stress corrosion susceptibility, tests were conducted on MWOL specimens to obtain apparent fracture toughness (K_{IE}) values. Two MWOL specimens from each test material were precracked using a stress ratio $({}^{*}_{min}/{}^{*}_{max})$ of 0.10, a cyclic rate of 30 cps, and a load which insured both the maximum stress intensity during terminal precrack extension, K_f (max), would be less than 50% of the K_{IE} value and that K_f (max)/E would not be greater than 0.0012. After precracking, the specimens were fractured in a Baldwin universal testing machine. An autographic plot of the output of the load sensing transducer of the testing machine versus the output of the displacement gage attached to the specimen was obtained for each specimen.

After fracture, the depth of the fatigue crack in each specimen was measured at five locations across the thickness of each specimen in accordance with ASTM recommended practice. The secant intercept load, P_Q , used to calculate a conditional fracture toughness value, K_{IE} , was determined from the load displacement plots in accordance with the procedure specified in ASTM 399-72, Section 9.1.1. Equations (2), (3) and (5) were used to calculate an apparent fracture toughness, K_{IE} , for each specimen. The results of this testing are reported in Table 4-3.

The results of these fracture toughness tests follow the trends expected from other tests of these alloys, as shown in Table 4-4. Nowever, because the thickness of the MWOL specimens used in the present study did not satisfy ASTM requirements for plane strain conditions*, the critical stress intensity values obtained in all cases are greater than the K_{IC} values reported for the same alloys at similar strength levels. Such results can be attributed to a mixed-mode state of stress at the crack tip, involving both plane strain and plane stress conditions. The appearance of the fracture surfaces of these specimens, shown in Figure 4-4, supports this conclusion since shear lip formation is appreciable, even with the deep side grooves used on these specimens. According to Reference 10, plane strain conditions tend to be associated with fractures having shear lips that occupy less than 20 percent of the total fracture surface area.

* $B_n \ge 2.5 (K_{1c}/F_{ty})^2$

	TABLE 4-3. CRITICAL STRESS INTENSITY DATA FOR HIGH STRENGTH STEELS (MWOL SPECIMENS)									
ALLOY	Initial Flaw Size, c _o	Net Section Thickness, B _n mm in	Secant In Load, P N	tercept s 1b		Strain E Release Ra N/mm	nergy te, G** <u>lb/in</u>	Critical Intensity (MN/m ² √m	, K _{TE} ***	
d6ac+	mm in 28.73 1.131 28.27 1.113	4.37 0.172	19,500 17,900	4370 4010	Avg:	66.8 <u>56.2</u> 61.5	381 <u>321</u> 351	115 <u>107</u> 111	105 <u>97</u> 101	
D6AC++	28.02 1.103 28.58 1.125		19,500 20,400	4350 4590	Avg:	59.4 <u>65.9</u> 62.7	339 <u>376</u> 358	111 <u>116</u> 114	101 <u>106</u> 104 	
18 Ni Maraging	27.89 1.098 28.25 1.11		21,900 22,800	4910 5 1 30	Avg:	84.3 <u>95.8</u> 90.1	481 <u>547</u> 514	123 <u>131</u> 127	<u>119</u> 116	

.

+ Austenitized at 1158°K (1625°F)

.

- ++ Austenitized at 1200°K (1700°F)
- * Defined in ASTM E 399-72, Section 9.1.1
- ** Calculated in English units using equations (3) and (5).
- *** Calculated in English units using equation (2).

					Heat T	reatment	Tempera	ature	Reference
	Critical Stress	Intensity	F		Austeni	tizing	Temp	ering °F	Kelerence
Alloy	(MN/m ²) /m	ksi vin	MN/m ^{2Cy}	ksi	•K	°F	°K	F	
			1330	193	1158	1625	872	1110	This study
D6AC Steel	111	101 *	1	210	1172	1650	825	1025	8
	86.2	78.4 **	1450		1172	1650	825	1025	9
	70 . 9	64.5 **	1503	218	1	1700	872	1110	This study
	114	104 *	1350	196	1200		}		8
	107	97.8 **	1410	204	1200	1700	866	1100	
		94.8 **	1450	211	1200	1700	825	1025	9
	104			207			755	900	This study
18 Ni	127	116 *	1430	201		1650	755	900	10
18 Ni Maraging Steel		100 **	1450	210	1172	1650	755	900	10

- * K values, MWOL specimens
- * K values, compact tension specimens

D6AC Steel Austenitized at 1158⁰K Tempered at 872⁰K

D6AC Steel Austenitized at 1200^oK Tempered at 872^oK

18 Nickel Maraging Steel Aged at 758^oK

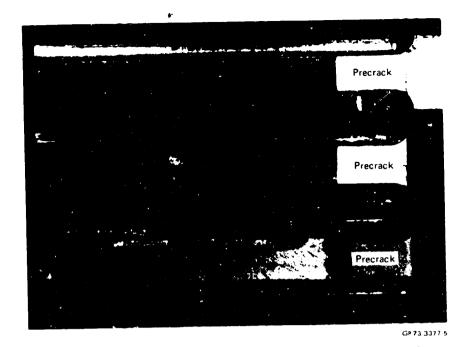


FIGURE 4-4 FRACTURE SURFACES OF HIGH STRENGTH STEEL MWOL SPECIMENS AFTER FRACTURE TOUGHNESS TESTING

4.4 Test Procedure

Both stressed and unstressed specimens for each alloy were subjected to alternate immersion testing. The unstressed coupons, $6.4 \ge 25 \ge 51 \mod (.25 \ge 1 \ge 2)$ inches), were ground using 600 grit paper and cleaned by rinsing in distilled water followed by rinsing in acetone. The coupons were then weighed to within ± 0.001 gram.

For the self-stressed MWOL specimens, a high strength steel bolt and a 17-7 PH stainless steel loading pin were used to apply an initial load to each specimen that corresponded to approximately 85% of the average $K_{\rm HE}$ value reported in Table 4-3. The displacement of each specimen required to give the desired stress intensity at the crack tip was determined from the calibration curve of Figure 4-3 and is tabulated in Table 4-5.

TABLE 4-5. INITIAL LOADS AND DEFLECTIONS FOR MWOL SPECIMENS SUBJECTED TO ALTERNATE IMMERSION EXPOSURE													
Alloy			:	В	'n	с		Dc	L	ם	End	Loa P	ıd
	Speci- men	mm	in	mm	in	mm/N	in/1b x 10 ⁻⁶	mm	in	mn	in	N	lbs
D6AC Austenitized at 1625°F	MD104 MD106	28.30 28.12	1 114 1.107		0.175 0.180	19.22 18.94		0.312 0.315	0.0123 0.0124	0.513 0.518	0.0202 0.0204	16,256 16,634	3653 3738
D6AC Austenitized at 1700°F	LB104 LB105		1.114 1.110		0.186 0.185		3.251 3.229	0.320 0.318	0.0126 0.0125	0.526 0.523	0.0207 0.0206	17,244 17,244	3875 3875
18 Ni Maraging	M114 M115	27.92 28.27	1.099 1.113	-	0.180 0.180	20.86 21.46	3.654 3.759	n. 399 0. 404	0.0157 0.0159	0.658 0.663	0.0259 0.0261	19,046 18,757	4280 4215

(1) D_{CL} = Specimen deflection at centerline of loading

(2) D_{End} = Specimen deflection as measured at knife edges attached to specimens

(3) D_{End} is related to D_{CL} by the expression $D_{End} = \left[\frac{c + c_1}{c}\right] D_{CL}$

Prior to loading each specimen, a small amount of grease was applied to the bolt threads and bearing surface to facilitate load application. Each specimen was then held in a vise and a clip-in displacement gage attached to the end of the specimen. The bolt was torqued until the desired displacement was obtained. After loading, the bolt end of each specimen was masked with Unichrome 320 Stop-Off Compound to prevent possible galvanic corrosion around the bolt, specimen and loading pin.

Two bolt-loaded MWOL specimens and four unstressed coupons of each allow were then subjected to alternate immersion in a 3.5% salt solution of simulated sea water, as specified in ASTM-D-114-52, Formula A. The sodium chloride content was checked daily with a salimeter, and regular adjustments were made to maintain the weight percentage of the sea salt in the solution of 3.5%. The specimens were subjected to repeated test cycles consisting of 10 minutes saline immersion followed by 50 minutes of air exposure for a total of 62 days (1488 hours).

4.5 Results of Exposure of Corrosion Coupons

Weight change measurements were made on all corrosion coupons after 15, 30, 44, and 62 days of exposure. Prior to weighing, the coupons were rinsed in distilled water and acetone. At each measurement interval, one specimen was retained for metallographic examination.

The results of the weight change measurements, listed in Table 4-6 and plotted in Figure 4-5, indicate that both heat treatments of D6AC steel are more susceptible to corrosion in synthetic sea water than the 18 Ni maraging steel. The heat treatment that includes austenitizing at 1158°K (1625°F) appears to produce a slightly more corrosion resistant material than does the 1200°K (1700°F) heat treatment. However, such results may be due to subtle differences in microstructure, such as the amount of retained austenite, the carbide distribution, or the prior austenite grain size. The D6AC steel austenitized at 1200°K (1700°F) was found to have a larger prior austenite grain size (i.e., ASTM 6), than the alloy austenitized at 1158°K (1625°F), which was determined to have a prior austenite grain size of ASTM 8.

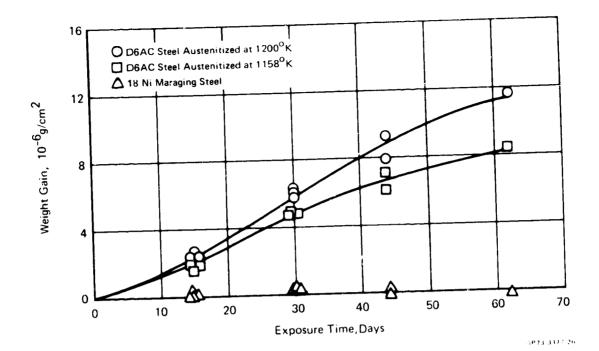
The condition of the coupon surface of each alloy after 15 and 62 days exposure are shown in Figures 4-6 through 4-8. These photographs indicate that the D6AC steel is highly susceptible to general overall corrosion; little original surface was visible after 15 days' exposure. In contrast, the 18 Ni maraging steel exhibits excellent immunity to corrosive attack; there was very little evidence of general corrosion or pitting.

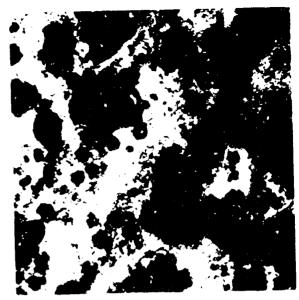
4.6 Results of Exposure of MWOL Specimens

The bolt-loaded MWOL specimens were temporarily removed from testing at various intervals for measurement of surface crack length. These measurements were obtained on both sides of the specimen using a Unitron measuring microscope.

	TABLE 4-6. CORROS	ION DATA FOR HIGH STRENGT	TH STEELS	
ALLOY	SPECIMEN	EXPOSURE TIME (DAYS)	WEIGHT C	CHANGE [*] mg/cm ²
	MD-201	15	61.8	1.67
D6AC*	MD-202	15 30	65.2 177.9	1.76 4.80
	MD-203	15 30 44	69.8 176.9 227.0	1.88 4.77 6.10
	MD-204	15 30 44 62	73.1 182.1 254.1 308.0	1.97 4.92 6.86 8.32
DC+C++	LB-201	15	77.1	2.06
D6AC**	LB-202	15 30	75.7 229.7	2.02 6.13
	LB-203	15 30 44	86.9 221.3 296.5	2.32 5.90 7.91
	LB-204	15 30 44 62	98.6 215.7 349.0 440.6	2.63 5.75 9.31 11.70
	M-201	15	2.1	.06
18 Ni Maraging	M-202	15 30	3.1 7.5	.08 .20
	M-203	15 30 44	6.7 11.7 6.3	. 18 . 31 . 17
	M- 204	15 30 44 62	2.0 7.4 -8.0 -5.7	.05 .20 21 15

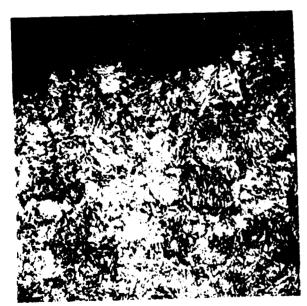
* Negative values indicate weight loss
** Austenitized at 1200°K (1700°F)
*** Austenitized at 1158°K (1625°F)



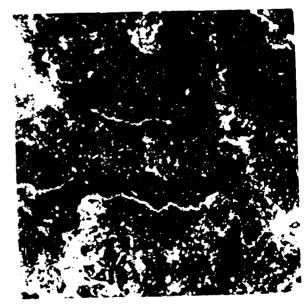

FIGURE 4-5 WEIGHT GAIN vs EXPOSURE TIME FOR HIGH STRENGTH STEELS SUBJECTED TO ALTERNATE IMMERSION IN SYNTHETIC SEA WATER

Equations (2), (3), and (5) were used in conjunction with the average surface crack length measurement to determine the variation of stress intensity with exposure time. Final crack length measurements at the end of the 62 day exposure period were obtained after the specimens were pulled to failure to measure the extent of stress corrosion crack growth. All crack length measurements and the calculated values of applied load and stress intensity are reported in Appendix A.

Throughout the 62 day exposure period, repeated measurements of surface crack length indicated that no stress corrosion crack growth had occurred in the 18 Ni maraging steel specimens. However, upon pulling these specimens to failure after exposure it was found that the stress corrosion cracks had tunnelled an appreciable distance below the surfaces of each specimen. For this reason, only the initial and final values of crack length are reported for these specimens in Appendix A.



Cross-Section, X400

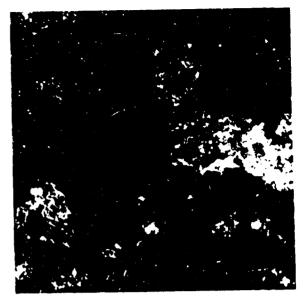


Surface, X13.5

(a) After 15 Days Alternate Immersion Exposure

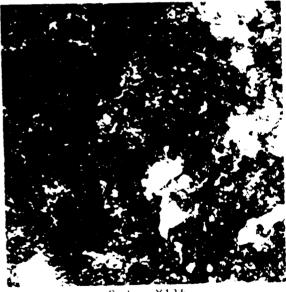
Cross Section, X400

Surface, X13 5


(b) After 62 Days Alternate Immersion Exposure

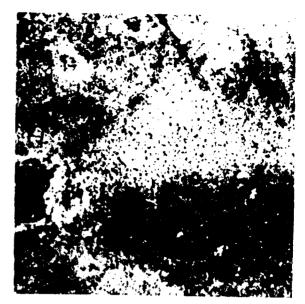
La atta

FIGURE 4-6 EXTENT OF CORROSION ON D6AC STEEL SPECIMENS AUSTENITIZED AT 1158°K AFTER 15 AND 62 DAYS ALTERNATE IMMERSION EXPOSURE

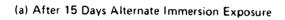

Cross-Section, X400

Surface, X13.5

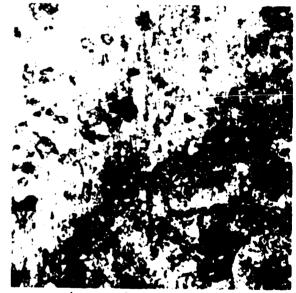
(a) After 15 Days Alternate Immersion Exposure


Surface, X13.5

(b) After 62 Days Alternate Immersion Exposure


FIGURE 4-7 EXTENT OF CORROSION ON D6AC STEEL SPECIMENS AUSTENITIZED AT 1200°K AFTER 15 AND 62 DAYS EXPOSURE

Cross-Section, X400



Surface, X13.5

Cross-Section, X400

Surface, X13.5

GP73-1171-15

(b) After 62 Days Alternate Immersion Exposure

FIGURE 4-8 EXTENT OF CORROSION ON 18 NI MARAGING STEEL SPECIMENS AFTER 15 AND 62 DAYS EXPOSURE

Photographs of the fracture surfaces of typical specimens of each alloy/heat treatment combination are shown in Figure 4-9; the nonlinear crack front observed in the 18 Ni maraging steel specimen is not present in any of the DbAC specimens.

The variation of stress intensity with exposure time for all specimens is illustrated in Figure 4-10. This figure shows that 18 Ni maraging steel has a much higher threshold stress intensity for stress corresion cracking in synthetic sea water than either heat treatment of D6AC. Furthermore, this data indicates that the threshold stress intensity for D6AC steel at this strength level is independent of austenitizing temperature, since the data for both heat treatment conditions converges to the same value of stress intensity.

D6AC Steel Austenitized at 1158°K Tempered at 872°K

D6AC Steel Austenitized at 1200°K Tempered at 872°K

18 Nickel Maraging Stiel Aged at 758⁰ K

All states of the second seco second sec

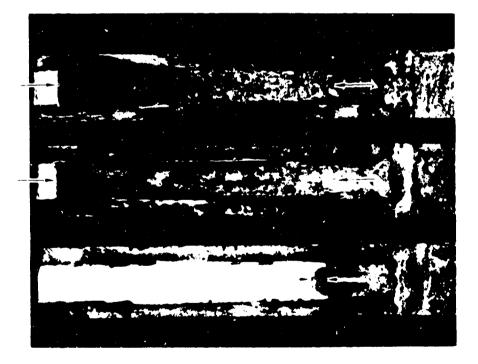
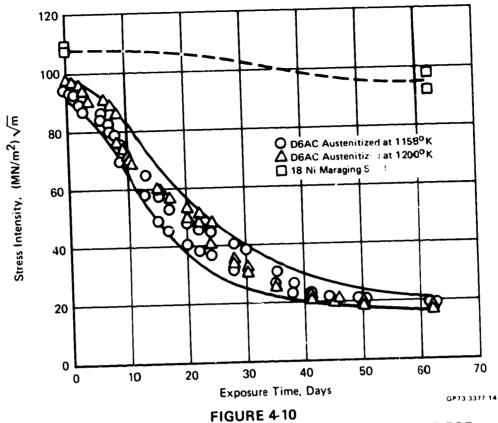
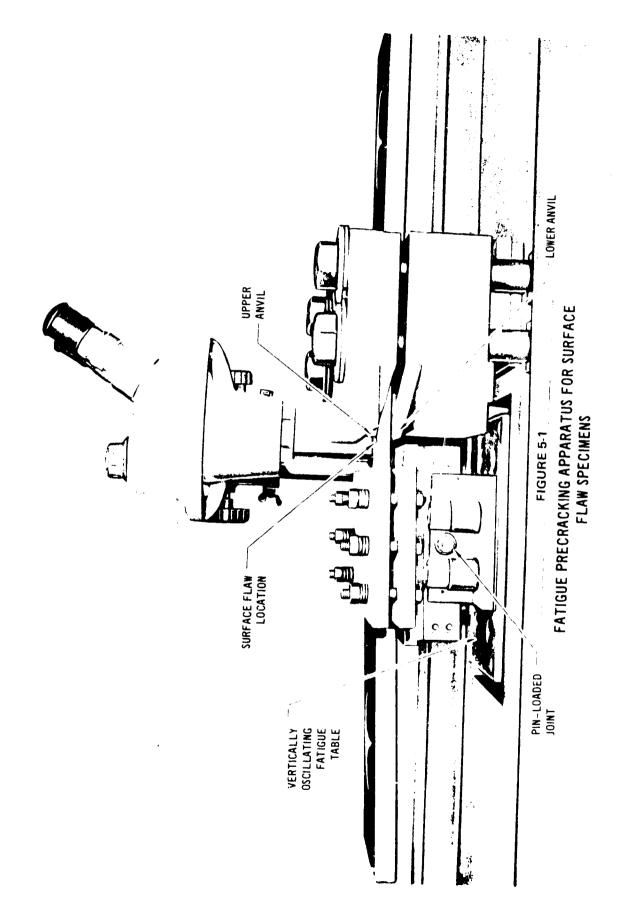



FIGURE 4 9 FRACTURE SURFACES OF HIGH STRENGTH STEEL MWOL SPECIMENS AFTER 62 DAYS ALTERNATE IMMERSION EXPOSURE


VARIATION OF STRESS INTENSITY WITH EXPOSURE TIME FOR HIGH STRENGTH STEEL MWOL SPECIMENS.

5.0 CRACK PROPAGATION TESTING

5.1 Precracking of Test Specimens

All flaws in the surface flawed specimens were prepared by using electrical discharge machining (EDM) to introduce the starter flaw. Tungsten sheet, 0.18 mm (.007 inch) thick, was used as an electrode material. The EDM starter flaw was then extended using the flexural fatigue apparatus shown in Figure 5-1. This technique involves cantilever loading the specimen over an anvil in such a way that the side containing the flaw is in tension. The specimens were fatigue precracked using this apparatus on a 44,500N (10,000 lb) capacity Sonntag fatigue machine at a frequency of 30 Hz. A cyclic stress ratio ($\sigma_{min}/\sigma_{max}$) of 0.8 was found to be necessary for this precracking technique. When lower stress ratios were used, excessive clatter developed and the specimen-fixture combination was observed to be under zero load. This behavior was determined to be a result of the stiffness of the specimen and fixture combination, which was such that its resonant frequency was at or near that of the Sonntag fatigue machine. Because of the invariance of the Sonntag's cyclic frequency, a single crack propagation rate was used, corresponding to .05 mm (.002 inch) per 1000 cycles. Maximum surface stress levels varied from 276 to 345 MN/m^2 (40 to 50 ksi). These stress levels were calculated using elastic beam theory, a procedure that has been experimentally confirmed in the calibration of similar specimens (References 11 and 12).

The number of cycles required to extend the starter flaws varied from specimen to specimen, depending on the EDM starter flaw size and the precracked flaw size required for subsequent testing. For D6AC, the number of cycles varied from 39,000 to 114,000; for 18 Ni maraging steel, the range varied from 76,000 to 444,000 cycles.

5.2 Fracture Toughness Testing of Surface Flaw Specimens

In order to establish the initial flaw size for crack propagation testing, it was necessary to perform fracture toughness tests of each alloy to determine the relationship between room temperature gross section failure stress and normalized flaw size (a/Q). A loading rate of 266,880N (60,000 lbs) per minute was used. The results of this testing are shown in Table 5-1. The values of critical stress intensity, $K_{\rm IE}$, were calculated using the relation,

$$K_{\rm IE} = 1.1\sigma \sqrt{\pi} (a/Q)$$

The fracture surfaces of these specimens are shown in Figure 5-2.

5.3 Test Procedure

5.3.1 Determination of Initial Flaw Sizes

The crack propagation behavior of D6AC and 18 Ni maraging steel was investigated using multiple stress levels and a single flaw size. The cyclic stress levels were selected to provide a safety factor of approximately 1.4 on ultimate strength at the projected MEOP of 6900 MN/m^2 (1000 psi). Using the data of Table 3-2, this corresponds to a stress level of approximately 1080 MN/m^2 (156 ksi) for both alloys.

The single flaw size used for the cyclic tests of each alloy was defined by the proof test schedules to be used for the Shuttle SRB. The flaw size $(a/Q)_{max}$ required to cause failure in a motor case during an initial proof test of 1.15 MEOP can be determined from a curve of gross fracture stress vs. flaw size. For the alloys tested, such a curve is shown in Figure 5-3, which was plotted from the data of Table 5-1. For the D6AC steel, the flaw size $(a/Q)_{max}$ associated with the initial proof stress level is 2.64 mm (.104 inch). For the 18 Ni maraging steel, which has a higher fracture toughness, this flaw size is 4.80 mm (0.189 in),

	ī	ABLE 5-1 CRI	TICAL S	TRESS I	NTENSI	TY DATA,	SURFAC	E FLAWED	SPECIME	NS	
ALLOY	SURFACE DEPTH, a man in	FLAW DIMENSIC LENGTH, 2c mm in		a/ mm	Q in	Failin, MN	g Load kips	Gross S Failure MN/m ²	ection Stress ksi	Critical Stress (MN/m ²) /m	s Intensity, K _{IE} ksi √in
18 NI	4.11.162	17.60 .693	. 232	3.43	. 135	1.203	270.5	1430	208	164	149
10 14	1	17.53 .690	. 267	3.56	. 140	1.257	282.5	1430	208	167	152
		22.43 .883	. 228	4.17	. 164	1.148	258.C	1320	191	166	151
		26.21 1.032	. 204	4.57	. 180	1.108	°49.0	1270	184	168	153
		30.35 1.195	. 183	4.93	. 194	1.083	243.5	1230	178	<u>168</u>	<u>153</u>
]				ł				Į		AVG: 166	151
DEAC	3.35.132	11.2 .442	. 299	2.36	. 093	1.160	261.6	1280	186	121	110
	3.81 .150		. 267	2.85	. 112	1.080	243.5	1200	174	125	114
	4.67 .184		. 226	3.76	. 148	.993	223.2	1110	160	132	120
	1	32.6 1.285	.189	5.16	. 203	0.805	181.0	887	129	<u>124</u>	<u>113</u>
										AVG: 126	114
						1				L	

indicative of the higher tolerance this material has for flaws. These (a/Q) values were transformed into actual flaw dimensions by linear interpolation of the data in Table 5-1. The flaw dimensions that correspond to the particular value of $(a/Q)_{max}$ for each alloy are listed in Table 5-2 for the precracking conditions employed.

Flaws less than this value of $(a/Q)_{max}$ would still be present in the structure and could, through subcritical flaw growth, cause failure during subsequent loading. Information as to the rate at which such subcritical flaw growth occurs was obtained by subjecting a series of specimens containing this particular flaw size to various cyclic stress profiles that simulate the expected service history of the SRB. The cyclic stress level was selected as the variable in the present study because the initial proof stress level of 1.15 MEOP is already quite near the guaranteed minimum yield strength for both allows $(1.1)_{MEOP}/F_{TV} = 0.970$ for D6AC steel and 0.897 for 18 Si maraging steel). For this reason, it was considered unrealistic to vary the initial proof stress level, and hence the value of $(a/0)_{max}$, for crack propagation testing. Instead, the subsequent proof stress level was varied to measure its effect on cyclic life.

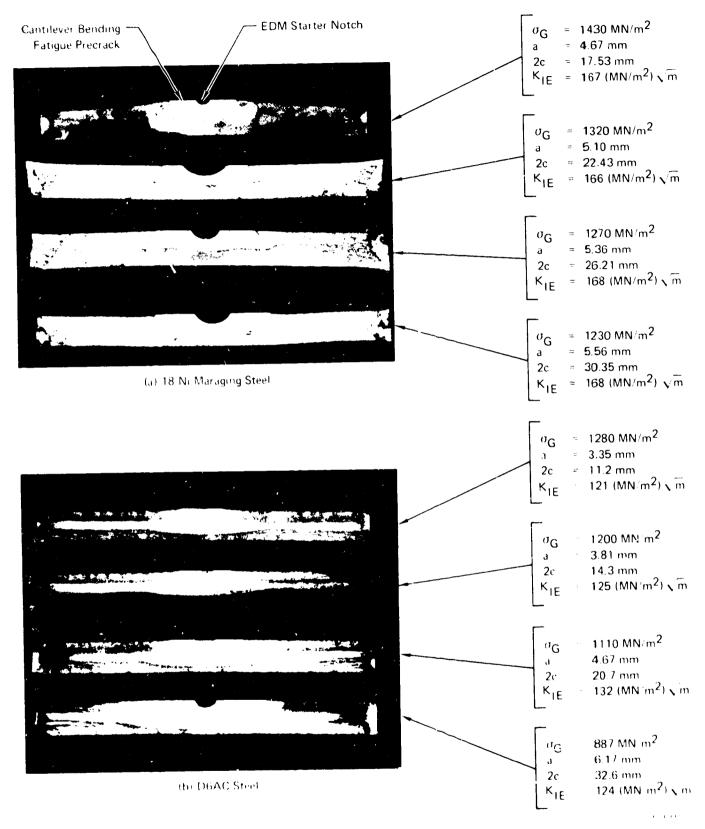
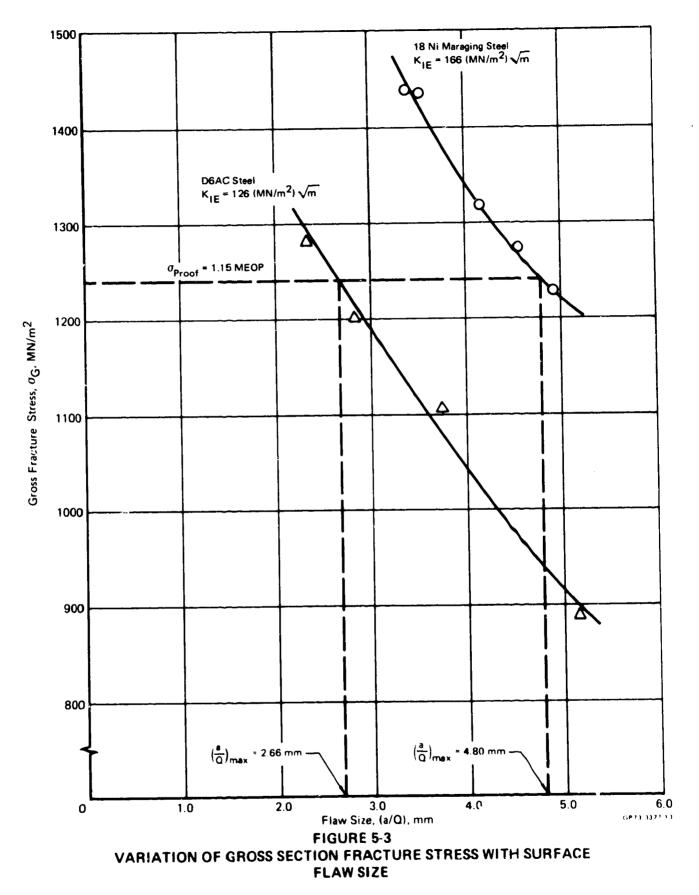



FIGURE 5-2 FRACTURE SURFACES OF HIGH STRENGTH STEEL SURFACE FLAW SPECIMENS AFTER FRACTURE TOUGHNESS TESTING

Production of the second s

46

	TABLE 5-2 FLAW SIZES USED FOR CYCLIC TESTING										
ALLOY	(a/Q) _{max}	FLAW LEN	FLAW LENGTH, 2c							
	mm	in	mm	in	mm	in					
D6AC	2.66	.104	12.8	. 500	3.50	.138					
18 Ni Maraging	4.80	.189	28.70	1.130	5.46	.215					

5.3.2 Cyclic Testing

The axial fatigue crack propagation testing was done in a 1.8 MN (400,000 lb) capacity Baldwin tensile machine on which the load was cycled manually. A calibrated strain link connected to a strip chart recorder was incorporated in the loading train during testing to supply a load-time history. The rate of loading was accomplished at the maximum capacity of the machine -- 0.89 MN/min (200,000 lbs/min). A sawtooth loading profile was used with a stress ratio of 0.1. Only the proof stress was varied; the operating stress was held constant at 1076 MN/m² (156 ksi) for all tests. The proof and operating stresses were applied alternately in order to simulate the loading history of the SRB.

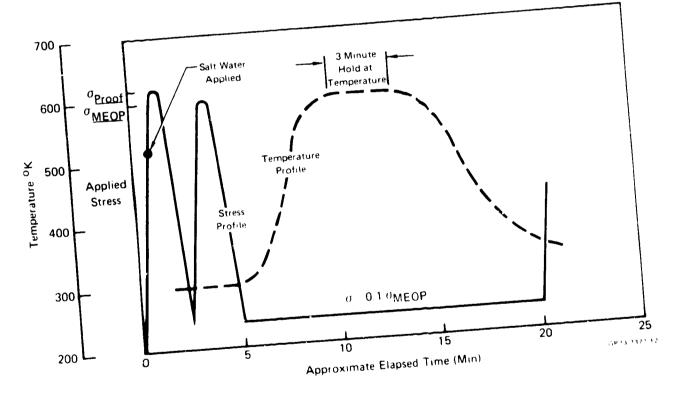
Four specimens of each alloy were tested to failure using cyclic loading conditions only. Eight additional specimens of each alloy were tested using the combined load/temperature history shown in Figure 5-4. The 589°K (600°F) temperature cycle was introduced in order to simulate a liner removal method proposed for the refurbishment of the Shuttle SRB. Quartz heating lamps, located on each side of the specimen, served as the heat source for the tests. Temperature was monitored by thermocouples spot welded to the front and back surfaces of each specimen. These thermocouples were mounted 2.54 cm (1.0 in.) above and below the

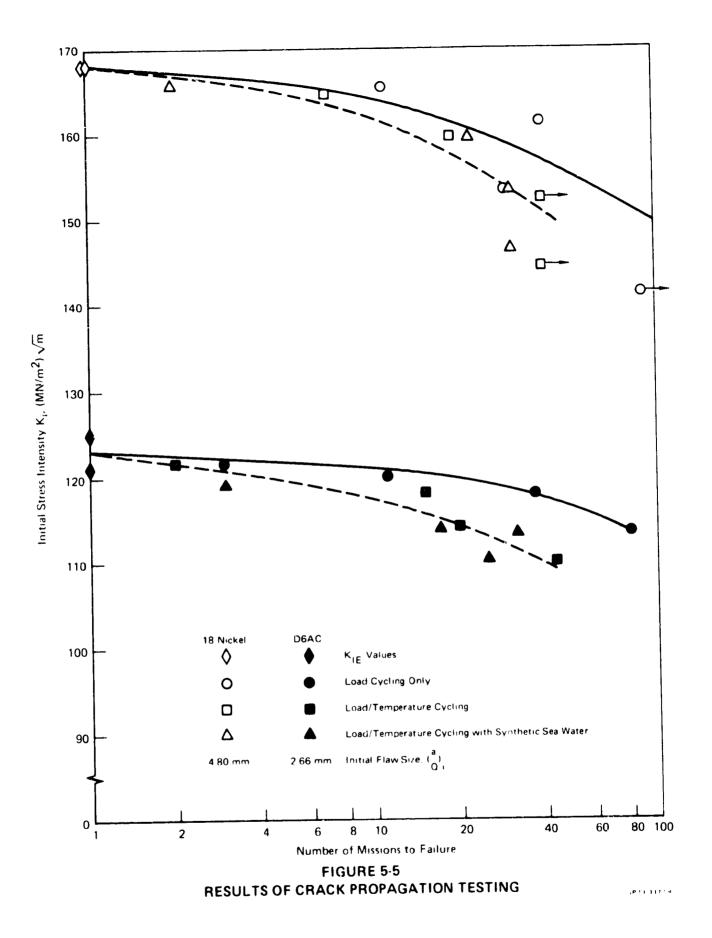
crack and indicated that good temperature uniformity was achieved throughout the test cycle; at no time did the temperature differ by more than 17°K (30°F). During the temperature cycle, the applied stress was held constant at 108 MN/m²

- Contract

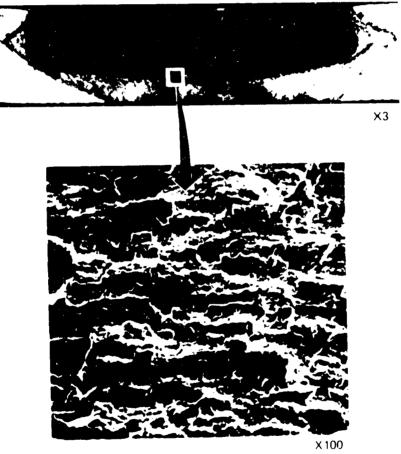
ì

During the temperature equations, (15.6 ksi), corresponding to a stress ratio of 0.1. In order to maintain this stress level, the load was adjusted during the heating and cooling portion of the temperature cycle to offset the effects of thermal expansion. To minimize the time required to test each specimen, the fastest possible heating and cooling rates were used. No more than four minutes was required to heat the specimen to 589°K (600°F), and approximately eight minutes was required to achieve a temperature of 150°F using forced air cooling. Loading for the next test cycle was initiated once this temperature was achieved by all four thermocouples.




FIGURE 5-4 STRESS/TEMPERATURE CYCLE FOR CRACK PROPAGATION TESTING

Of the eight specimens of each alloy tested under cyclic load and temperature conditions, four were cycled in air and four were cycled with intermittant exposure to synthetic sea water. For these latter tests, five cubic centimeters of synthetic sea water was blown into the crack front using 1.38 MN/m^2 (200 psi) compressed air. The salt water was applied on each primary load cycle (i.e., the cycle corresponding to proof st ess) when the load reached 75% of the maximum value. All specimens subjected to cyclic load and temperature conditions were tested either to failure or until the specimen sustained 40 test cycles.


5.4 Results of Crack Propagation Testing

All pertinent data regarding the crack propagation tests of both alloys are reported in Appendix B. One of the 18 Ni maraging steel specimens, number Ml, was tested under uniform cyclic stress conditons $(1080 \text{ MN/m}^2 \text{ or 156 ksi})$, in order to ascertain the effect of proof testing at the stress level associated with the maximum expected operating pressure of the SRB. After the specimen sustained the full 40 pairs of stress cycles, 200 cycles were applied to this specimen at a maximum stress of 690 MN/m² (100 ksi) and a stress ratio of 0.1 in order to mark the flaw front at this location. The test was then continued at a stress level corresponding to MEOP until fracture occurred. The multiple flaw depths reported in Table B-1 for this specimen reflect this loading history.

The cyclic test data of Appendix B, plotted in Figure 5-5 as initial stress intensity vs the number of cycles to failure, indicates that the cyclic flaw growth behavior of 18 Ni maraging steel is unaffected by expected liner removal temperatures. However, at longer exposure times, accelerated flaw growth appears to have occurred in the specimens exposed to synthetic sea water. In contrast, the cyclic test data for D6AC steel indicates that flaw growth is accelerated by temperature cycling to 589°K (600°F); subsequent exposure to synthetic sea water under similar cyclic 1 ad and temperature conditions produces no further decrease in cyclic life.

An attempt was made to determine the mechanisms responsible for this accelerated flaw growth by examining selected specimens of both alloys with the scanning electron microscope (SEM). Two-stage plastic/carbon replicas of the fracture surfaces of selected D6AC specimens were also examined with the transmission electron microscope. The results of this examination, presented in Appendix B, revealed that the morphologies of the fatigue zones were so similar that it was impossible to determine which mechanisms were responsible for the observed decreases in cyclic life. Figures 5-6 and 5-7 show the salient features of the fracture surfaces of a D6AC and an 18 Ni maraging steel specimen, respectively; Figure 5-8 contains stereo photographs of these same specimens.

.e.1.1171.24

FIGURE 5-6 TYPICAL FRACTURE SURFACE OF MISSION CYCLED 18 NICKEL MARAGING STEEL SURFACE FLAWED SPECIMEN

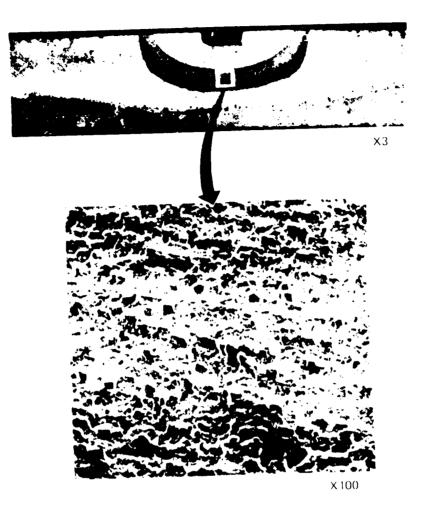
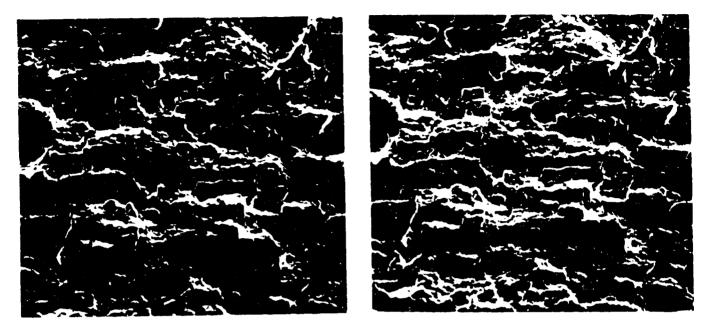
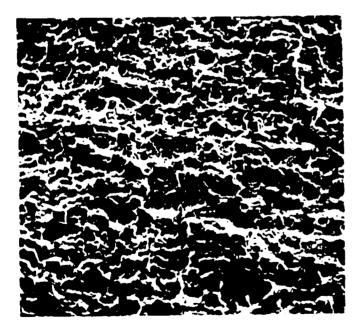
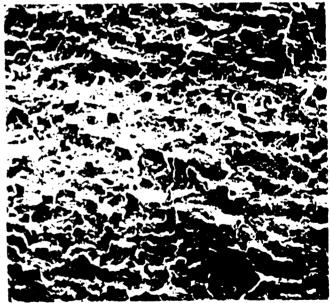





FIGURE 5-7 TYPICAL FRACTURE SURFACE OF MISSION CYCLED D6AC STEEL SURFACE FLAWED SPECIMEN

(a) 18 Nickel Maraging Steel

(b) D6AC Steel

FIGURE 5.8 STEREO PHOTOGRAPHS OF THE FRACTURE SURFACES OF SPECIMENS SUBJECTED TO LOAD AND TEMPERATURE CYCLING AT 1.05 MEOP (X100)

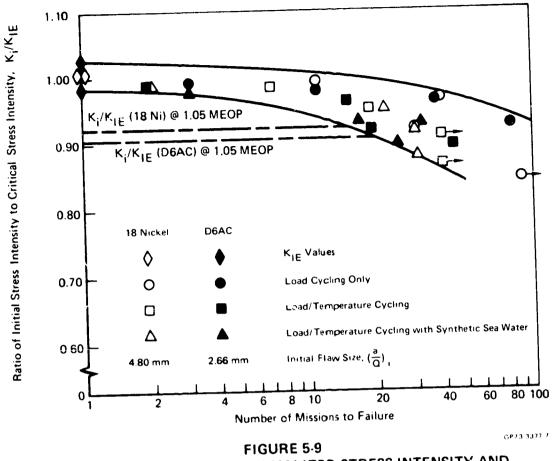
(THIS PAGE INTENTIONALLY LEFT BLANK)

. .

.

-

5.4.1 Discussion of Test Results -- 18 Ni Maraging Steel


The accelerated flaw growth observed when 18 Ni maraging steel is exposed to mission cycling with synthetic sea water is probably a result of combined stress corrosion and fatigue crack growth. Such flaw growth would occur on each load cycle whenever the stress intensity exceeded the threshold value, and would be more pronounced in those specimens that were cycled at the lower stress levels (i.e., greater number of cycles to failure), where the total amount of sustained load crack growth was higher.

5.4.2 Discussion of Test Results -- D6AC Steel

For the cyclic tests of D6AC, accelerated crack growth was observed for all tests involving temperature cycling to 589°K (600°F). Periodic exposure to synthetic sea water under cyclic load and temperature conditions produced no further decrease in cyclic life, even though this alloy was found to be susceptible to stress corrosion cracking (Section 4.6). It appears that the mechanism is related to subtle microstructural changes that occurred as a result of load and temperature cycling. One such mechanism might be related to the strain tempering phenomenon observed in an earlier study of D6AC steel at a different strength level (Reference 13). In this study, the initial tempering and the retempering temperatures employed differed significantly from those used in the present study and no cyclic tests were performed. It was found, however, that the yield strength could be increased and, in some cases, fracture toughness decreased by prestraining and retempering specimens prior to test. It has been proposed (Reference 14) that this phenomenon may be associated with a martensite decomposition reaction. Although it is likely that strain tempering of martensite did occur in the D6AC specimens subjected to load and temperature cycling, such a hypothesis could only be confirmed by further testing.

5.4.3 Comparison of Test Results

The cyclic flaw growth data for D6AC and 18 Ni maraging steel obtained in the present study can be compared by normalizing the initial stress intensity to account for differences in fracture toughness (K_{IE}). This is done in Figure 5-9 by plotting the ratio of initial-to-critical stress intensity, $K_i^{/K}$ IE, vs the number of missions to failure. This figure shows that the cyclic flaw growth behavior of these two alloys are remarkably similar when normalized to account for differences in fracture toughness. Furthermore, this data appears to indicate that an SRB fabricated from D6AC might survive more missions that one of 18 Ni maraging steel, since the K_i/K_{IE} ratio for the latter alloy is slightly higher. If such small differences are ignored and lower bound data is used, then an SRB fabricated from either alloy would survive approximately 15 missions before failure would occur. This estimation of cyclic life is based upon the preliminary design parameters quoted in Section 2.1 and can be increased by either decreasing the operating stress level of the case, keeping the initial proof stress constant, or by increasing the initial proof stress in order to decrease the initial flaw size present after fabrication.

A Real of the second second

RELATIONSHIP BETWEEN NORMALIZED STRESS INTENSITY AND MISSIONS TO FAILURE FOR D6AC AND 18 NICKEL MARAGING STEEL

6.0 CONCLUSIONS

The results of this study indicate that the corrosion and stress corrosion resistance of 18 Ni maraging steel is superior to that of D6AC steel when exposed to synthetic sea water. No benefit as regards resistance to corrosion or stress corrosion is obtained by austenitizing D6AC steel at 1200° K (1700° F) rather than the conventional temperature of 1158° K (1625° F).

Under fatigue conditions that simulate expected SRB service conditions, both D6AC and 18 Ni maraging steel will survive approximately 15 missions prior to failure, five more than current designs require. However, if a scatter factor of four is applied to the 10 mission minimum requirement, then neither alloy will satisfy current demands. This low cyclic life is primarily a result of the temperature and salt water environments imposed during testing, since tests conducted under cyclic loading conditions alone indicate that an actual lifetime of 40 missions is nearly obtained. For D6AC steel, liner removal operations that involve heating to 589°K (600°F) cause a decrease in cyclic life. For 18 Ni maraging steel, a decrease in cyclic life occurs upon intermittent exposure to synthetic sea water.

7.0 RECOMMENDATIONS FOR FURTHER STUDY

As a result of this study, several areas have been observed that require further investigation. These studies should be conducted in order to select a material for the SRB case that is both economical and reliable enough to satisfy the demand for reusability.

The present study has indicated that the cyclic life of D6AC steel is decreased by exposure to temperatures of 589°K (600°F) following the application of cyclic loads. Such thermal exposure, simulating a proposed liner removal method, is not mandatory, since alternative removal methods are available. Since the mechanism responsible for the accelerated crack growth in D6AC steel as a result of such exposure is not completely understood, the effect of the other thermal cycles experienced by the SRB cannot be predicted. Consequently, further studies should be undertaken to determine if other, lower temperature thermal cycles produce similar decreases in cyclic life.

The present study has provided data on the crack growth behavior of D6AC and 18Ni maraging steel under sustained and cyclic loading conditions. No such data, however, has been generated on these alloys in the welded condition, and it is certain that a large, complex vehicle like the SRB will contain welds. Such data should be obtained because accurate predictions of the performance of welded allows cannot be made from data on parent metal. Any studies of the crack growth behavior of welds signal include an evaluation of gas-tungsten arc (GTA) and gas-metal arc (GMA) welding processes. With respect to D6AC steel, such studies should include an evaluation of the effects of various postwelding heat treatments.

As a result of this study, crack growth data under simulated SRB service conditions is now available on two candidate case materials. It is possible that both alloys will not economically meet the requirements for reliability and reusability. Consequently, additional crack growth studies on such steels as 10Ni-Cr-No-V (HY-180) or HP-9-4-.20 would be required to determine if a more viable material exists for the SRB motor case.

8.0 REFERENCES

- Aerojet Solid Propulsion Company, "Study of Solid Rocket Motor for a Space Shuttle Booster," Final Report 1917-FR1, 15 March 1972.
- 2. Conversations with C. Crockett, Astronautics Laboratory, and R. Eilerman, SRB Program Office, NASA, Marshall Space Flight Center, 13 October 1972.
- 3. Aerojet-General Corporation, "260 Inch Diameter Motor Feasibility Demonstration Program" Final Program Summary Report, NASA CR-72127, April 1966.
- C. E. Fedderson, D. P. Moon, W. S. Hyler, "Crack Behavior in D6AC Steel," Metals and Ceramics Information Center Report No. MCIC-72-04, January 1972.
- 5. J. A. Klies, in <u>Weld Imperfections</u>, ed. by A. R. Fluges and R. E. Lewis, Addison-Wesley Publishing Company, Menlo Park, California, 1968, p. 333.
- S. R. Novak, S. T. Rolfe, "Modified WOL Specimen for K_{Iscc} Environmental Testing" <u>Journal of Materials</u>, Vol. 4, No 3, September 1969, p. 701-728.
- W. F. Brown, Jr., J. E. Srawley, "Review of Developments in Plane Strain Fracture Toughness Testing", ASTM STP 463, American Society for Testing and Materials, 1970, pp 216-247.
- 8. W. F. Brown, Jr., J. E. Srawley, "Plane Strain Crack Toughness Testing of High Strength Metallic Materials," ASTM STP 410, American Society for Testing and Materials, 1966, pp. 9-16.
- 9. D. M. Fisher, R. T. Bubsev, and J. E. Srawley, "Design and Use of a Displacement Gage for Crack Extension Measurements," National Aeronautics and Space Administration Technical Note D-3724, November 1966.
- J. E. Srawley, W. F. Brown, Jr., "Fracture Toughness Testing and Its Applications," ASTM STP 381, American Society for Testing and Materials, 1965, p. 190.
- 11. Conversation with D. L. Corn of Aeroneutronics, Division of Philco-Ford, Newport Beach, California, 7 March 1973.
- D. H. Killpatrick, D. L. Corn, G. R. Stoeckinger, "Crvogenic Fracture Toughness of 18 Nickel 200-Grade Maraging Steel Plate and Welds," presented at the 1973 Wester Conference, Los Angeles, California, 12 March 1973.
- 13. R. E. Yount, "Determination of Engineering Properties of Mar-Strained Steels," ASD-TDR-62-230, August 1962.
- D. Kalish, M. Cohen, "Structural Changes and Strengthening in the Strain Tempering of Martensite," Material Science and Engineering, September 1970, Vol. 6 (3), pp. 156-166.

APPENDIX A

STRESS INTENSITY/TIME DATA FOR MNOL SPECIMENS

The following data tables incorporate the crack length, applied load, and stress intensity values obtained on MWOL specimens during alternate immersion testing. The applied load and stress intensity values were calculated using equations (2), (3), (4), and (5) and the following relationship between applied load (P), specimen compliance (S), and initial specimen deflection (D):

$$P = \frac{D}{S}$$

Because of the great number of calculations involved, a short computer program was written to transform the crack length measurements into the required load and stress intensity data. This program has been disclosed as a New Technology Report.

	TABLE A-1 ST FO	RESS INTENSI R D6AC STEEI	TY AS A AUSTENI	FUNCTION TIZED AT	OF EXPOSU 1158°K (1	RE TIME 625°F)* STRESS IN	TENGITY
SPECIMEN	EXPOSURE	CRACK LE		APPLIED N		$(MN/m^2)/m$	ksivin
	TIME (DAYS)			16283	3661	94.7	86.2
MD-104	0	201-	114	15963	3589	93.7	85.2
MD-104	1		124	14784	3324	89.7	81.6
MD-104	2		163	13862	3116	86.5	78.7
MD-104	3		196		2992	84.6	77.0
	6		217	13309	2992	80.1	72.9
MD-104	7	32.3 1.	270	12017		76.7	69.8
MD-104	8		317	10979	2468	69.8	63.5
MD-104	o 9		442	8582	1929	68.4	62.3
MD-104			473	8050	1810	58.3	53.0
MD-104	10		724	4389	987		44.5
MD-104	13		886	2698	607	48.9	41.8
MD-104	15		932	2325	523	45.9	36.5
:D-104	17		.022	1725	388	40.1	
MD-104	20	51.1		166?	374	39.4	35.9
MD-104	22	2	.033	1498	337	37.5	34.1
MD-104	24		.064	1120	252	32.4	29.5
MD-104	28		.150	986	222	30.3	27.6
	30		.188		173	26.5	24.2
MD-104	35	57.5 2	.263	768	129	22.6	20.6
MD-104	38	59.8	.353	572		21.2	19.3
MD-104	41	60.7	2.390	509	114	21.2	19.3
MD-104		60.7	2.390	509	114	21.0	19.1
\D−104	45		2.396	499	112		17.8
10-104	50	0	2.435	441	99	19.6	
:D-104	62	01.0		1442	3742	94.9	86,3
106	0		1.107	16643	3640	93.4	85.0
ND-106	1	28.5	1.121	16189	3625	93.2	84.8
MD-106	2	28.5	1.123	16125		90.0	81.9
MD-106	3		1.154	15169	3410	86.0	75.3
MD-106		30.4	1.196	13975	3142	82.7	75.2
MD-106	6	31.3	1.233	13010	2925		71.8
MD-106	7	32.5	1,280	11.884	2672	78.9	69.2
MD-106	8	33.5	1.320	11004	2474	76.0	
MD-106	9	35.0	1.378	9832	2210	72.5	66.0
MD-106	10		1.560	6708	1508	64.8	58.9
MD-106	13	39.6	1.712	4575	1028	58.5	53.3
MD-106	15	43.5		3488	784	53.5	48.7
MD-106	17	45.9	1.806	2703	600	48.5	44.1
MD-106	20	48.0	1.888	2486		46.8	42.6
MD-106	22	48.6	1.914				40.8
MD-106	24	49.4	1.944	2254			
		51.0	2.006	1835			
MD-106	20	51.7	2.034	1670			
1D-106	25	55.3	2.176	1035			
MD-106		57.6	2.266	766			
MD-106	/ 1	59.4	2.338	606		0 - /	
MD-106		60.8	2. 395	50			
MD-106	45	60.8	2.395	50			
MD-106	50		2.445	43		7 19.	1 17.
ND-106		62.1	2.445				

*Exposure Conditions: 1 hour cycles, consisting of 10 minutes immersion in synthetic sea water, ASTM-D-114-52, Formula λ, followed by 50 minutes of air exposure.

TABLE A-2 STRESS INTENSITY AS A FUNCTION OF EXPOSURE TIME FOR D6AC STEEL AUSTENITIZED AT 1200°K (1700°F)* STRESS INTENSITY									
			LENGTH	APPLIED		SIKESS INT			
SPECIMEN NO.	EXPOSURE TIME (DAYS)	MM.	in.	N	LBS	$(MN/m^2)\sqrt{m}$	ksi/in		
			1.114	17253	3879	97.3	88.6		
LB-104	0	28.3	1.114	17184	3863	97.1	88.4		
LB-104	1	28.3	1.126	16847	3788	96.0	87.4		
LB-104	2	28.6	1.120	15006	3374	90.0	81.9		
LB-104	3	30.1	1.180	14268	3208	87.5	79.6		
LB-104	6	30.8	1.254	13131	2952	83.7	76.1		
LB-104	7	31.9	1.344	11042	2482	77.0	70.1		
LB-104	8	34.1		9720	2185	73.3	66.7		
LB-104	9	35.8	1.409	8818	1982	71.0	64.6		
LB-104	10	37.0	1.457	5814	1307	63.8	58.1		
LB-104	13	41.7	1.640	4690	1054	60.1	54.7		
LB-104	15	43.7	1.721		849	55.9	50.9		
LB-104	17	45.6	1.796	3777	750	53.4	48.6		
LB-104	20	46.7	1.837	3335		50.7	46.1		
LB-104	22	47.8	1.880	2914	655	48.5	44.2		
LB-104	24	48.6	1.912	2629	591	35.5	32.3		
LB-104	28	53.7	2.113	1345	302		29.6		
LB-104	30	55.0	2.164	1132	255	32.5	29.0		
LB-104	35	57.8	2.274	785	176	26.8			
LB-104 LB-104	38	57.9	2.281	767	172	26.4	24.0		
	41	59.9	2.358	597	134	23.0	21.0		
LB-104	45	60.9	2.398	525	118	21.5	19.5		
LB-104	50	62.3	2.452	443	100	19.5	17.8		
LB-104 LB-104	62	63.0	2.482	404	91	18.5	16.9		
LB-105	0	28.2	1.110	17252	3879	97.2	88.5		
LB-105	1	28.2	1.112	17184	3863	97.0	88.3		
	2	28.9	1.136	16387	3684	94.5	86.0		
LB-105	3	29.1	1.147	16036	3605	93.3	84.9		
LB-105	6	29.8	1.172	15270	3433	90.8	82.6		
LB-105	7	30.2	1.190	14743	3314	89.0	81.0		
LB-105		31.2	1.228	13696	3079	85.5	77.8		
LB-105	8 9	34.1	1. 344	10954	2463	76.6	69.7		
LB-105		37.9	1. 494	8094	1820	69.1	62.9		
LB-105	10	39.6	1.560	6994	1572	66.6	60.6		
LB-105	13		1.715	4731	1064	60.0	54.6		
LB-105	15	43.6	1,780	3930	883	56.6	51.5		
LB-105	17	45.2		2845	640	50.1	45.6		
LB-105	20	47.9	1.885	2525	568	47.6	43.3		
LB-105	22	48.8	1.922	1826	410	41.1	37.4		
LB-105	24	51.3	2.020		289	33.4	30.4		
LB-105	28	54.5	2.145	1197	209	30.1	27.4		
LB-105	30	56.0	2.204	982	153	24.7	22.5		
LB-105	35	58.8	2.315	681		22.2	20.2		
LB-105	38	60.4	2.377	557	125	22.2	18.9		
LB-105	41	60.3	2.413	497	112		18.5		
LB-105	45	61.6	2.427	476	107	20.3			
LB-105	50	61.9	2.436	462	104	20.0	18.2		
LB-105	62	62.5	2.462	427	96	19.1	17.4		

_

*Exposure Conditions: 1 hour cycles, consisting of 10 minutes immersion in synthetic sea water, ASTM-D 114-52, Formula A, followed by 50 minutes of air exposure.

	TABLE A-3. STRESS INTENSITY AS A FUNCTION OF EXPOSURE TIME FOR 18 NI MARAGING STEEL *									
SPECIMEN	EXPOSURE	CRACK LENGTH	APPLIED LOAD	STRESS INTENSITY						
NO.	TIME (DAYS)	mm. in.	N LBS							
M-114 M-114	n 62	27.91.09931.51.239	191314301145473270	108.3 98.5 92.9 84.6						
M-115	0	28.3 1.113 30.7 1.208	18842 4236	108.0 98.3						
M-115	62		15642 3517	97.2 88.5						

T

-

Course and the second

* Exposure Conditions: 1 hour cycles, consisting of 10 minutes immersion in synthetic sea water, ASTM-D-114-52, Formula A, followed by 50 minutes of air exposure.

APPENDIX B

CRACK PROPAGATION DATA FOR SURFACE FLAW SPECIMENS

The following tables incorporate the crack propagation data obtained from tests of surface flawed specimens of D6AC and 18 Ni maraging steel under simulated SRB service conditions. The data has been separated into three tables for each alloy. One table lists the data for the baseline test condition, where specimens were subjected to pairs of stress cycles. These stress cycles included a primary stress that simulated a proof test prior to each mission and a secondary stress that simulated the pressurized portion of the SRB flight cycle. Another table lists the data obtained on those specimens that were tested under similar cyclic loading conditions but were also exposed to elevated temperature cycles. For these tests, a single temperature cycle that included a three minute hold at 589°K (600°F) was applied after each pair of stress cycles. The third table lists the data obtained on those specimens that were tested under similar cyclic load and temperature conditions but were also exposed to a synthetic sea water environment. For these tests, five cubic centimeters of sea water was blown into the crack front using compressed air; the solution was applied on each primary stress cycle when the load reached 75% of the maximum value.

		M1*		M2		м3		M4	
SPECIMEN NO.		1.0		1.0	5	1.10)	1.13	
PROOF FACTOR, a LABORATORY ENVIRONMENT o Temperature o Relative Humidity (%)	°K °F	29: 71-	5-299 -79 -41	300 80 44	,	297 75 30		299 78 30	
 NAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary 	MN/m ² ksi MN/m ² ksi	15 10	980 96 980 56	11 16 10 15	4 80	119 172 108 150	2 80	1210 176 1080 156	
FAILURE STRESS o Gross Section o Net Section (Approximate)	NN/m ² ksi NN/m ² ksi	11	070 55 340 95	10	20 52 330 93	17	80	1200 174 1435 208	
PRIMARY INITIAL STRESS INTENSITY	()fi¦/m ²)∕ ksi√in		42 29 >90		54 40 00		52 47 9	166 151 11	
NUMBER OF MISSIONS TO FAILURE INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c) _i o Maximum Initial (a/Q)	mm in mm in mm in	+	28.09 1.106 5.89 .212 .192 4.55 .179		28.47 1.121 5.92 .233 .208 4.88 .192	15	9.49 .161 5.72 .225 .194 4.90 .193	28. 1.1 5.7 .22 .20 4.8 .19	.28 74 26 01 88
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Maximum Flaw Length o Flaw Depth, a	mum in mum in mum		31.22 1.229 34.98 1.377 6.22 6.50 7.21 .245		22.67 1.168 30.71 1.209 6.50		31.90 1.256 33.05 1.301 6.88	1. 30 1. 6.	15
° (a/2c)f			. 250 . 284 . 20	4	. 21		. 21	6	. 2

TABLE B-1. CRACK PROPAGATION DATA FOR 18 NICKEL MARAGING STEEL--LOAD CYCLING ONLY

* An additional 200 cycles were applied to this specimen at a stress level of 689.5 MN/m² (100ksi) to mark the location of the crack front after 40 pairs of stress cycles (i.e., 80 cycles at MEOP). The reported values of crack depth represent the position of the crack after this cyclic history.

TABLE B-2 CRACK PROF STEEL - LOAD CY	AGATION DAT	TEMPERAT	NICKEL MA	ARAGING NG TO 589	°K
SPECIMEN NO.		TM1.	TM2	тмз	TM4
PROOF FACTOR, a		1.00	1.05	1.10	1.13
LABORATORY ENVIRONMENT o Temperature o Relative Humidity (%)	°K °F	299 78 63	297 76 34	298 77 45	300 80 50
MAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary	MN/m ² ksi MN/m ² ksi	1080 156 1080 156	1130 164 1080 156	1190 172 1080 156	1210 176 1080 156
FAILURE STRESS o Gross Section o Net Section (Approximate)	lîN/m ² ksi MN/m ² ksi	1120 163 1480 215	1170 169 1510 219	1180 171 1421 206	1210 176 1450 210
PRIMARY INITIAL STRESS INTENSITY	$(MN/m^2)\sqrt{m}$ ksi $\sqrt{1n}$	145 132	153 139	160 145	165 150
NUMBER OF MISSIONS TO FAILURE		>40	>40	19	7
INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c) ₁ o Maximum Initial (a/Q)	mm in mm in in	28.65 5.74 .225 .200 4.75 .187	28.25 5.84 .230 .207 4.83 .190	28.02 5.69 .224 .203 4.78 .188	28.45 5.61 .221 .197 4.83 .190
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Maximum Flaw Length o Flaw Depth, a o (a/2c) _f	mm in mm in mm in	30.35 1.195 31.57 1.243 7.19 .283 .237	30.15 1.187 31.42 1.237 7.24 .285 .240	29.11 1.146 31.39 1.236 6.63 .261 .228	28.75 1.132 31.01 1.221 6.43 .253 .224

.

Ξ

.- 1

_

TABLE B-3CRACK PROPAGATION DATA FOR 18 NICKEL MARAGINGSTEEL - LOAD CYCLING WITH TEMPERATURE CYCLING TO 589°KAND WITH 3.5% SYNTHETIC SEA WATER					
SPECIMEN NO.	1	STM1	STM2	STM3	STM4
PROOF FACTOR, a		1.00	1.05	1.10	1.13
LABORATORY ENVIRCNMENT o Temperature o Relative Humidity (%)	°K °F	300 80 2 3	NA NA NA	300 80 51	297 76 34
MAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary	MN/m ² ksi NN/m ² ksi	1080 156 1080 156	11 30 164 10 80 156	1190 172 1080 156	1210 176 1080 156
FAILURE STRESS o Gross Section o Net Section (Approximate)	NEI/m ² ksi NN/m ² ksi	1060 154 1303 189	1120 162 1350 196	1180 171 1460 211	1210 176 1440 209
	N/m [?])√m (si√in	147 134	154 140	160 145	166 151
NUMBER OF MISSIONS TO FAILURE		31	30	22	2
INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c)i o Maximum Initial (a/Q)	mm in mm in nm in	28.88 1.137 6.02 .237 .208 4.90 .193	28.63 1.127 5.87 .231 .205 4.88 .192	28.65 1.128 5.59 .220 .195 4.78 .188	28.63 1.127 5.77 .227 .201 4.90 .193
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Maximum Flaw Length o Flaw Depth, a o (a/2c)f	mum in mum in Lum in	30.53 1.202 31.75 1.250 7.09 .279 .232	30.00 1.181 31.32 1.233 6.96 •.274 .232	29.62 1.166 34.32 1.351 6.73 .265 .227	28.63 1.127 32.54 1.281 5.99 .236 .209

••••

TABLE B-4CRACK PROPAGATION DATA FOR D6ACSTEEL - LOAD CYCLING ONLY					
SPECIMEN NO.		D1	D2	D3	D4
PROOF FACTOR, a		1.05	1.10	1.115	1.13
LABORATORY ENVIRONMENT o Temperature o Relative Humidity	°K °F	301-304 83-87 51-59	303 86 53	302 85 53	304 87 51
MAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary	MN/m ² ksi MN/m ² ksi	1130 164 1080 156	1190 172 1080 156	1200 174 1080 156	1210 176 1080 156
FAILURE STRESS o Gross Section o Net Section (Approximate)	NN/m ² ksi NN/m ² ksi	1130 164 1170 169	1181 171 1210 175	1194 173 1220 177	1213 176 1230 179
PRIMARY INITIAL STRESS INTENSITY	(MN/m ²)√m ksi√in	113 103	118 107	120 109	122 111
NUMBER OF MISSIONS TO FAILURE		80	37	11	3
INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c) ₁ o Maximum Initial (a/Q)	mm in mm in mn in	13.17 0.519 3.76 0.148 0.285 2.65 0.104	12.84 0.506 3.71 0.146 0.289 2.62 0.10	0.513 3.61 0.142 0.27 2.63	3 0.507 3.66 2 0.144 7 0.284 2.63
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Flaw Depth, a o (a/2c)f	mm in mm in	17.87 0.704 6.25 0.240 0.350	0.61 5.57 6 0.21	7 0.58 5.12 9 0.20	610.54034.55020.179

. .

「「「「「「「」」」」

TABLE B-5CRACK PROPAGATION DATA FOR D6AC STEEL - LOAD CYCLING WITH TEMPERATURE CYCLING TO 589°K					
SPECIMEN NO.		TD1	TD2	TD3	TD4
PROOF FACTOR, a		1.03	1.05	1.10	1.113
LABORATORY ENVIRONMENT o Temperature o Relative Humidity (%)	°K °F	304-305 87-89 49-57	304 88 48	301 82 45	299 79 47
MAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary	MN/m ² ksi MN/m ² ksi	1110 161 1080 156	11 30 164 1080 156	1190 172 1080 156	1200 174 1080 156
FAILURE STRESS o Gross Section o Net Section (Approximate)	MN/m ² ksi MN/m ² ksi	1107 160 1140 165	1121 162 1150 167	1183 171 1210 175	1182 171 1200 175
PRIMARY INITIAL STRESS INTENSITY	(MN/m ²)√m ksi√in	110 99.9	114 104	118 107	122 111
NUMBER OF MISSIONS TO FAILURE		44	20	15	2
INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c) _i o Maximum Initial (a/Q)	mm in mm in in in	12.96 0.510 3.58 0.141 0.276 2.57 0.101	13.51 0.532 3.70 0.146 0.274 2.68 0.105	12.98 0.511 3.62 0.143 0.279 2.62 0.103	13.39 0.527 3.73 0.147 0.279 2.71 0.101
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Flaw Depth, a o (a/2c) _f	mm in nm in	16.88 0.665 6.62 0.261 0.392	16.51 0.650 5.52 0.217 0.334	15.07 0.593 5.01 0.197 0.332	14.09 0.555 4.70 0.185 0.333

....

TABLE B-6CRACK PROPAGATION DATA FOR D6AC STEEL - LOAD CYCLING WITH TEMPERATURE CYCLING TO 589°K AND WITH 3.57 SYNTHETIC SEA WATER					
SPECIMEN NO.		STD1	STD2	STD3	STD4
PROOF FACTOR, a		1.03	1.05	1.075	1.10
LABORATORY ENVIRONMENT o Temperature o Relative Humidity (%)	°K °F	302 85 41	302-304 84-88 48-66	300 80 47	299 78 63
MAXIMUM APPLIED CYCLIC STRESS o Primary o Secondary	MN/m ² ksi MN/m ² ksi	1110 161 1080 156	1130 164 1080 156	1160 168 1080 156	1190 172 1080 156
FAILURE STRESS o Gross Section o Net Section (Approximate)	MN/m ² ksi MN/m ² ksi	1103 160 1140 165	1129 164 1160 168	1143 166 1170 170	1177 171 1200 174
PRIMARY INITIAL STRESS INTENSITY	$(MN/m^2)\sqrt{m}$ ksi $\sqrt{1n}$	110 100	114 103	114 104	119 108
NUMBER OF MISSIONS TO FAILURE		25	32	17	3
<pre>INITIAL FLAW DIMENSIONS o Flaw Length, 2c o Flaw Depth, a o (a/2c); o Maximum Initial (a/Q)</pre>	mm in mm in in in	13.12 0.516 3.66 0.144 0.279 2.60 0.103	13.12 0.517 3.66 0.151 0.292 2.65 0.105	12.80 0.504 3.56 0.140 0.278 2.56 0.101	13.32 0.524 3.64 0.143 0.273 2.67 0.105
FINAL FLAW DIMENSIONS o Flaw Length at Surface o Flaw Depth, a o (a/2c) _f	mmn in mmn in	17.35 0.683 5.87 0.231 0.338	17.34 0.683 6.00 0.236 0.346	15.22 0.599 5.39 0.212 0.354	14.00 0.551 4.34 0.171 0.310

• •

APPENDIX C

FRACTOGRAPHS OF SURFACE FLAW SPECIMENS

The fracture surfaces of surfaced flawed specimens subjected to cyclic loading are shown in the following photographs. All specimens were photographed using a conventional macrocamera, and three specimens of each alloy were selected for examination with the SEM. The specimens selected are listed in Table C-1. These three specimens represented each of the following test conditions: load cycling; load plus temperature cycling; and load plus temperature cycling plus salt water. All three specimens were cycled at the same primary applied stress level - - i.e.,

1.05 MEOP.

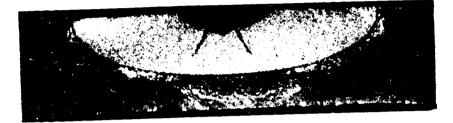
। किंटी किंद की देखी के बिद्य

The predominant feature of all the axial fatigue zones was dimpled fracture, regardless of alloy type or test condition. The low magnification photographs do suggest that classical fatigue striations are present on all fracture surfaces; this type of morphology is typical of materials subjected to high strain amplitudes.

Of the two alloys examined with the SEM, the specimens of 18 Ni maraging steel exhibited a more dimpled and smaller fatigue zone than those of the lower toughness DGAC steel. The morphologies of the fatigue zones of all specimens of each alloy are strikingly similar.

TABLE C-1. SPECIMENS SELECTED FOR SEM EXAMINATION						
ALLOY	SPECIMEN NO.	MISSION CYCLES TO FAILURE	EXPOSURE CONDITION			
18 Ni Maraging	M2	30	Load cycling*			
	TM2	40	Load and temperature cycling			
	STM2	30	Load and temperature cycling and salt water			
D6AC	D1	80	Load cycling			
	TD2	20	Load and temperature cycling			
	STD2	32	Load and temperature cycling and salt water			

* The maximum cyclic load was identical for all specimens examined - i.e., 1.05 MEOP (1130 MN/m² or 164 ksi)


Specimen M1

- Cycled @ MEOP
 >90 Missions to
- Failure

- Cycled @ 1.05 MEOP
- 30 Missions to Failure

Specimen M3

- Cycled @1.10 MEOP
- 39 Missions to Failure

Specimen M4

- Cycled @ 1.13 MEOP
- 11 Missions to Failure

ana ana,

FIGURE C-1 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER LOAD CYCLING (X3)

Specimen TM1

- Load Cycling @ MEOP
- Temperature Cycling to 589^oK
- >40 Missions to Failure

Specimen TM2

- Load Cycling @ 1.05
 MEOP
- Temperature Cycling to 589^oK
- >40 Missions to Failure

Specimen TM3

- Load Cycling @ 1.10
 MEOP
- Temperature Cycling to 589^oK
- 19 Missions to Failure

Specimen TM4

- Load Cycling @ 1.13 MEOP
- Temperatue Cycling to 589⁰K
- 7 Missions to Failure

FIGURE C-2 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER LOAD AND TEMPERATURE CYCLING (X3)

Specimen STM1

- Load Cycling @ MEOP
- Temperature Cycling to 589⁰K
- Exposed to Synthetic Sea Water
- 31 Missions to Failure

Specimen STM2

- Load Cycling @ 1.05
 MEOP
- Temperature Cycling to 589⁰K
- Exposed to Synthetic Sea Water
- 30¹¹ sions to Failure

Specimen STM3

- Load Cycling @ 1.10 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic Sea Water
- 22 Missions to Failure

Specimen STM4

- Load Cycling @ 1.13
 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic Sea Water
- 2 Missions to Failure

FIGURE C-3 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL AFTER LOAD AND TEMPERATURE CYCLING WITH SALT WATER (X3)

Specimen D1

- Cycled @ 1.05 MEOP
- 80 Missions to Failure

Specimen D2

- Cycled @ 1.10 MEOP
- 37 Missi insito -Failure

Specimen D3

- Cycled © 1.115 MEOP
- 11 Missions to
 Eailure

Specimen D4

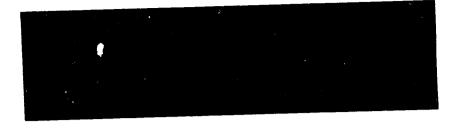
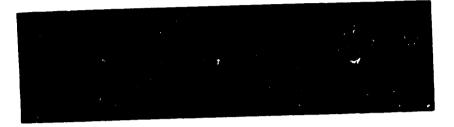

- Cycled (# 1.13 MEOP)
 3 Missions to
 - Eadure

FIGURE C 4 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER LOAD CYCLING (X3)


Specimen TD1

- Load Cycling @ 1.03 MEOP
- Temperature Cycling to 589^oK
- 44 Missions to Failure


Specimen TD2

- Load Cycling @ 1.05
 MEOP
- Temperature Cycling to 589^oK
- 20 Missions to Failure

Specimen TD3

- Load Cycling @ 1.10
 MEOP
- Temperature Cycling to 589^oK
- 15 Missions to Failure

Specimen TD4

- Load Cycling @ 1.115
 MEOP
- Temperature Cycling to 589^oK
- 2 Missions to Failure

FIGURE C-5 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER LOAD AND TEMPERATURE CYCLING (X3)

1.1.1.1.1.1.1.1

Specimen STD1

- Load Cycling @ 1.03
 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic Sea Water
- 25 Missions to Failure

Specimen STD 2

- Load Cycling @ 1.05
 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic Sea Water
- 32 Missions to Failure

Specimen STD3

- Load Cycling @ 1.075
 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic
 Sea Water
- 17 Missions to Failure

Specimeri STD4

- Load Circling @ 1.10
 MEOP
- Temperature Cycling to 589^oK
- Exposed to Synthetic Sea Water
- 3 Missions to Failure

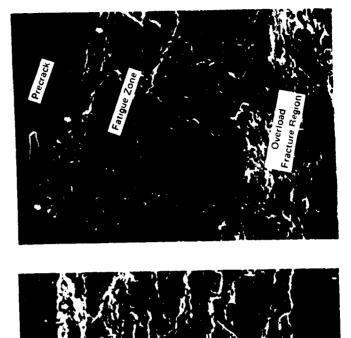


FIGURE C-6 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER LOAD AND TEMPERATURE CYCLING WITH SALT WATER (X3)

Specimen M2 Load Cycling Only

 30 Missions to Failure

- Specimen TM2 • Load and Temper-
- Load and Tempe ature Cycling
- >40 Missions to Failure

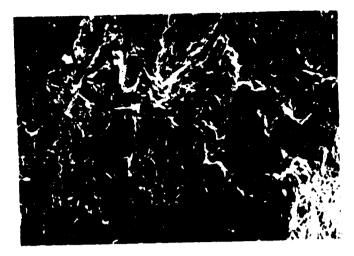
Specimen STM2

Water

 30 Missions to
 Failure

• Load and Temperature Cycling with Salt

Note. The arrows indicate the


direction of crack propagation

Precrac

FIGURE C-7 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOF (X60)

1.FT3 4377 1H

Specimen M2 • Load Cycling Only • 30 Missions to

Failure

Specimen TM2

- Load and Temperature
- Cycling • >40 Missions to Failure

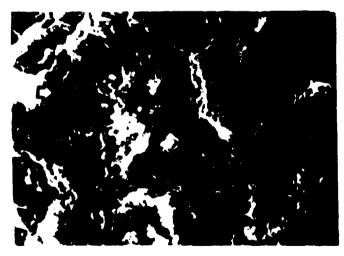
FIGURE C 8 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X100)

Specimen STM2

- Load and Temperature Cycling with Salt Water
- 30 Missions to Failure

Specimen M2

 Load Cycling Only
 30 Missions to Failure


- Load and Temperature Cycling
- 40 Missions to Failure

Specimen STM2

Water

 30 Missions to
 Failure


• Load and Temperature Cycling with Salt

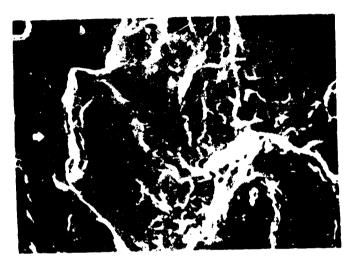
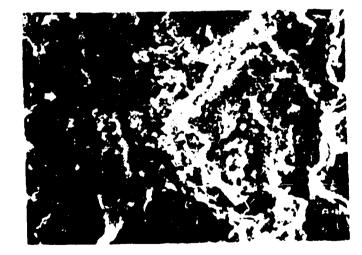
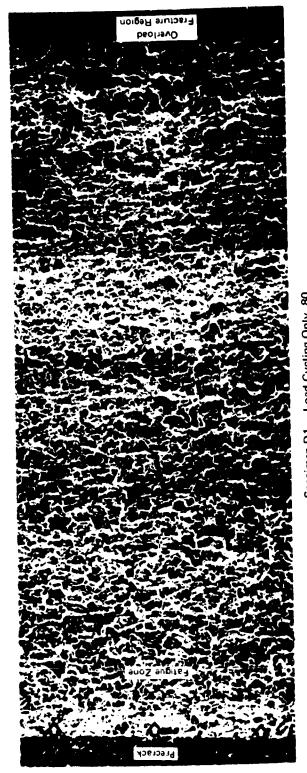
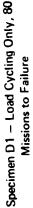
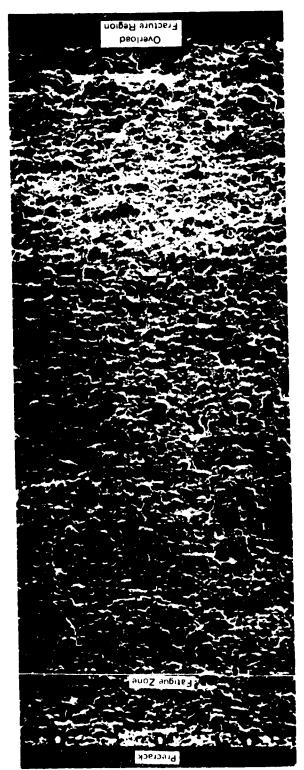



FIGURE C-10 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X3000)


• 30 Missions to Failure


 >40 Missions to Failure


· ·


Specimen STM2
Load and Temperature Cycling with Salt Water
30 Missions to Failure

> FIGURE C 9 FRACTURE SURFACES OF 18 NICKEL MARAGING STEEL SPECIMENS AFTER MISSION CYCLING AT 1 05 MEOP (X1000)

FOLDOWN COMMENT

Specimen TD2 – Load and Temperature Cycling, 20 Missions to Failure

FULLA P. LEWIS - C

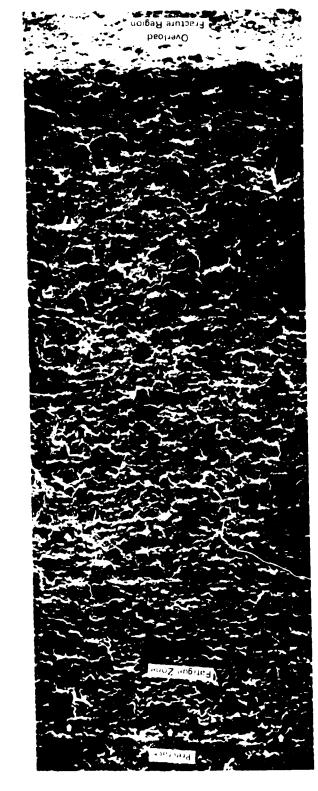


FIGURE C-11 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X60)

CN 1166 6140

Specimen STD2 – Load and Temperature Cycling, 32 Missions to Failure

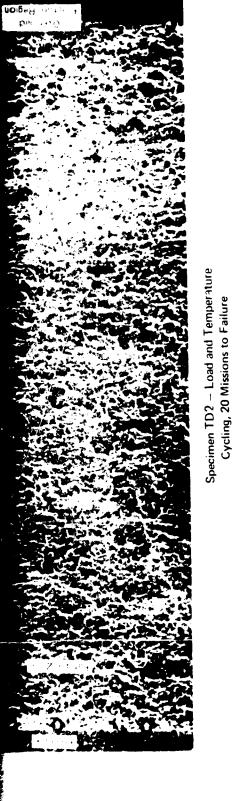
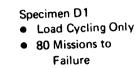
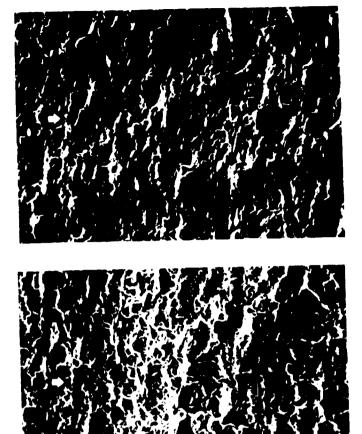
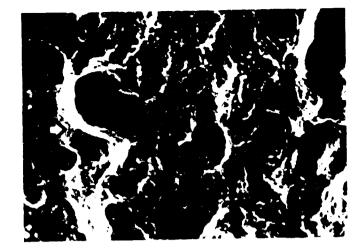




FIGURE B-11

.

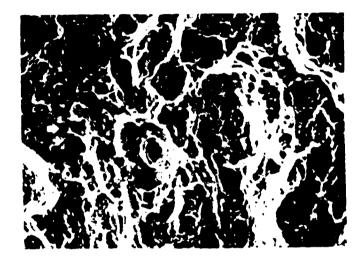


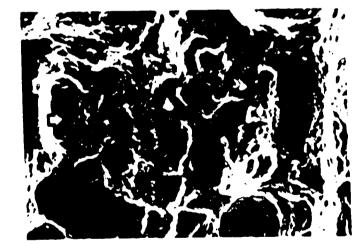
Specimen TD2
Load and Temperature Cycling
20 Missions to Failure



- Load and Temperature Cycling with Salt Water
- 32 Missions to Failure

4.16.611.46

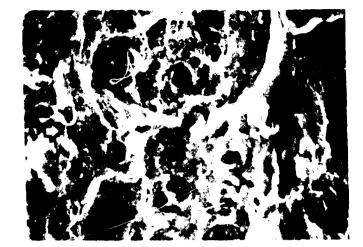

FIGURE C-12 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X100)


• 20 Missions to Failure

Specimen D1
Load Cycling Only
80 Missions to Failure

Specimen STD2 • Load and Temperature Cycling with Salt Water

• 32 Missions to Failure



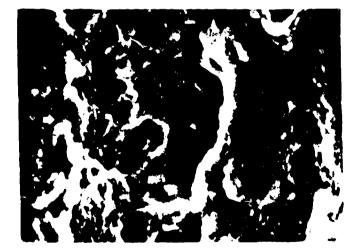
0.11.11.1.**44**

.

FIGURE C-13 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X1000)

Specimen D1 Load Cycling Only 80 Missions to Failure

- Specimen TD2


 Load and Temperature
- Cycling

 20 Missions to
- 20 Missions to Failure

Specimen STD2

- Load and Temperature Cycling with Salt Water
- 32 Missions to Failure

.

FIGURE C-14 FRACTURE SURFACES OF D6AC STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X3000)

Specimen D1

- Load Cycling Only
- 80 Missions to Failure

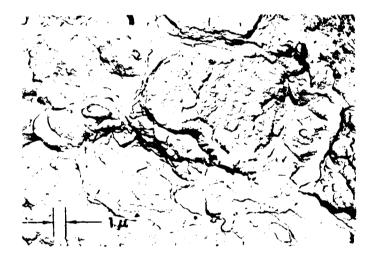


FIGURE C-15 TWO STAGE PLASTIC-CARBON REPLICAS OF D6AC STEEL SPECIMENS AFTER MISSION CYCLING AT 1.05 MEOP (X3300)

Specimen TD2

Cycling

• Load and Temperature

• 20 Missions to Failure

- Specimen STD2
 - Load and Temeprature Cycling with Salt Water
 - 32 Missions to Failure

APPENDIX D CONVERSION FACTORS

TO CONVERT FROM	TO	MULTIPLY BY
Fahrenheit	kelvin	$t_{K} = (5/9)(t_{F} + 459.67)$
foot	meter	3.048×10^{-1}
foot	kilometers	3.048×10^{-4}
inch	millimeter	$2.54 \times 10^{+1}$
lbf	newton	4.448
lbf/inch ² (psi)	newton/meter ²	6.895×10^3
psi \sqrt{in}	$(MN/m^2) \sqrt{m}$	1.099