

NASA TN D-7618

NASA TN D-7618

INP

(NASA-TN-D-7618) AN ADVERSE EFFECT OF N74-20593 FILM COOLING ON THE SUCTION SURFACE OF A TURBINE VANE (NASA) 27 p HC \$3.00 26 CSCL 20M Unclas H1/33 34334



AN ADVERSE EFFECT OF FILM COOLING ON THE SUCTION SURFACE OF A TURBINE VANE

NASA TECHNICAL NOTE

by Herbert J. Gladden and James W. Gauntner Lewis Research Center Cleveland, Obio 44135



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • APRIL 1974

| 1. Report No.                                  | 2. Government Accessi                 | ion No.                           | 3. Recipient's Catalog | No.                                    |  |  |
|------------------------------------------------|---------------------------------------|-----------------------------------|------------------------|----------------------------------------|--|--|
| <u>NASA TN D-7618</u><br>4. Title and Subtitle | · · · · · · · · · · · · · · · · · · · |                                   | 5. Report Date         |                                        |  |  |
|                                                |                                       |                                   | APRIL 1974             |                                        |  |  |
| AN ADVERSE EFFECT OF FIL                       |                                       |                                   | ation Code             |                                        |  |  |
| SUCTION SURFACE OF A TUR                       | BINE VANE                             |                                   |                        |                                        |  |  |
| 7. Author(s)                                   |                                       |                                   | 8. Performing Organiz  | ation Report No.                       |  |  |
| Herbert J. Gladden and James                   | W. Gauntner                           |                                   | E-7744                 |                                        |  |  |
|                                                |                                       | · · · · · · · · · · · · · · · · · | 10. Work Unit No.      | ······································ |  |  |
| 9. Performing Organization Name and Address    |                                       | ł                                 | 501-24                 |                                        |  |  |
| Lewis Research Center                          |                                       | E E                               | 11. Contract or Grant  | No.                                    |  |  |
| National Aeronautics and Space                 | Administration                        |                                   |                        |                                        |  |  |
| Cleveland, Ohio 44135                          |                                       |                                   | 13. Type of Report ar  | nd Period Covered                      |  |  |
| 12. Sponsoring Agency Name and Address         |                                       |                                   | Technical No           |                                        |  |  |
| National Aeronautics and Space                 | Administration                        | -                                 | 14. Sponsoring Agency  |                                        |  |  |
| Washington, D.C. 20546                         |                                       |                                   | 14. Obvisoring Adding  |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
| 15. Supplementary Notes                        |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
| 16. Abstract                                   |                                       |                                   |                        |                                        |  |  |
| Film-cooling-air ejection from                 | the suction surfa                     | ice of a turbine van              | e was investigat       | ed. This                               |  |  |
| investigation was conducted in a               | a four-vane casca                     | ade on a J75 size tu:             | rbine vane which       | h had a                                |  |  |
| row of holes near the leading e                | dge. The experiment                   | nental data are pres              | sented herein.         | It was                                 |  |  |
| found that a small amount of fil               |                                       |                                   |                        |                                        |  |  |
| vane wall cooling effectiveness.               |                                       |                                   |                        |                                        |  |  |
| holes, without blowing, also ca                |                                       |                                   |                        |                                        |  |  |
| came from an increase in the g                 |                                       |                                   |                        |                                        |  |  |
| by a laminar or transitional bo                |                                       |                                   |                        |                                        |  |  |
| by a faminar or transitional bo                | indary layer beco                     | oning transitionati o             | n turburent.           |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        |                                        |  |  |
| · · · · · · · · · · · · · · · · · · ·          |                                       | ſ                                 |                        |                                        |  |  |
| 17. Key Words (Suggested by Author(s))         |                                       | 18. Distribution Statement        |                        |                                        |  |  |
| Film cooling                                   |                                       | Unclassified - u                  | Inlimited              |                                        |  |  |
| Heat transfer                                  |                                       | Category 33                       |                        |                                        |  |  |
| Turbine vane                                   |                                       |                                   |                        |                                        |  |  |
|                                                |                                       |                                   |                        | Cat.33                                 |  |  |
| 19. Security Classif. (of this report)         | 20. Security Classif. (c              | of this page)                     | 21. No. of Pages       | 22. Price*                             |  |  |
| Unclassified                                   |                                       | lassified $-25$ 26 $33.00$        |                        |                                        |  |  |

\* For sale by the National Technical Information Service, Springfield, Virginia 22151

# AN ADVERSE EFFECT OF FILM COOLING ON THE SUCTION SURFACE OF A TURBINE VANE by Herbert J. Gladden and James W. Gauntner Lewis Research Center

#### SUMMARY

The effects of film-cooling-air ejection from the suction surface of a turbine vane were investigated. This investigation was conducted in a four-vane cascade on a J75 size turbine vane which had a single row of holes on the suction surface. The experimental data are presented herein.

The film-cooling-air ejection and, also, the film-cooling holes alone had a detrimental effect on the downstream cooling effectiveness. There was some indication that these results were accumulative. Under certain conditions, the heat transfer coefficients increased, apparently because a laminar or transitional boundary layer became transitional or turbulent.

The test conditions investigated were gas temperature and pressures of 1260 K  $(1800^{\circ} \text{ F})$  and 22.7 to 45.5 N/cm<sup>2</sup> (33 to 66 psia), a coolant temperature of 280 K (50° F), midchord-convection coolant- to gas-flow ratios of 0.0 to 0.056, and film-cooling- to gas-flow ratios from 0.0 to 0.028. The film-cooling flow range corresponds to film-coolant- to main-stream-blowing ratios of 0.0 to 2.07.

#### INTRODUCTION

The effects of film-cooling-air ejection from a single row of holes in the suction surface of a turbine vane were investigated. Particular attention was given to the effects on the downstream wall temperatures of the ejected air and of the film-cooling holes.

For certain combinations of turbine inlet temperature and pressure, laminar or transitional flow may exist over all, or a portion of, the suction surface of turbine vanes. The injection of film-cooling air into the boundary layer may result in an increased gasside heat transfer coefficient at downstream locations on the vane surface. Therefore, in certain instances, the benefits derived from film cooling are not sufficient to counterbalance the effect of increased gas-side heat transfer coefficients. Experimental results presented in references 1 to 3 indicate that, under certain conditions, film-cooling-air ejection resulted in decreased cooling effectiveness. Reference 4 discusses the effect of holes, without blowing, on the gas-side heat transfer coefficient.

In order to investigate these adverse effects in more detail, a control experiment to demonstrate film cooling effects on the suction surface was performed. Preliminary results of this investigation are presented in reference 5. The film-cooled test vane used in this investigation had a row of film-cooling holes near the leading edge. Vane metal temperatures were measured both with and without blowing to determine the effects of the ejected air. Vane metal temperatures were also measured with and without film-cooling holes to determine the effect of the holes alone. A comparison of these wall temperatures was made by means of a temperature difference ratio. This investigation was conducted in a four-vane cascade.

The following test conditions were used:

| Gas inlet total temperature, K $\binom{0}{9}$ F)                                                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gas inlet total pressure, $N/cm^2$ (psia)                                                                                                                                                           |
| (33.0, 37.0, 45.0, 66.0)                                                                                                                                                                            |
| Fuel-air ratio                                                                                                                                                                                      |
| Coolant inlet temperature, $K(^{O}F)$                                                                                                                                                               |
| Midchord-convection-coolant- to gas-flow ratios                                                                                                                                                     |
| Film-coolant- to gas-flow ratios                                                                                                                                                                    |
| Film-coolant- to main-stream-blowing ratios 0.0 to 2.07                                                                                                                                             |
| $-1 \text{ and } 000 \text{ and } -500 \text{ cm} -500 \text{ mg} \text{ ratios} \dots \dots$ |

Although both the International System of Units (SI) and the U.S. customary system of units are used in this report, the work was actually done in U.S. customary units. Conversion to the SI system was for reporting purposes only.

# APPARATUS

#### Cascade Description

A detailed description of the cascade facility is given in reference 6. The test section was a  $23^{\circ}$  annular sector of a stator row and contained four vanes and five flow channels. A plan view of the test section is shown in figure 1. The central flow channel was formed by the suction surface of vane 2 and the pressure surface of vane 3. The two outer vanes in the cascade completed the flow channels for the two central vanes and also served as radiation shields between these vanes and the water-cooled cascade walls.

The test vane (vane 2) had two separate cooling-air systems, one for the film-

2.

cooling flow, and the second for the midchord convection flow. The cooling-air flow rates were metered by turbine-type flowmeters. The lower 10 percent of the film-cooling-airflow range was metered by a hot-wire anemometry system.

### Vane Description

A J75 size vane which had a span of 9.78 centimeters (3.85 in.) and a chord of 6.28 centimeters (2.47 in.) was used in this investigation. The vane material was MAR M 302. The internal cooling configuration, shown in figures 2(a) and (b), consisted of an impingement-cooled midchord region and a pin-fin-augmented convection-cooled trailing-edge region. This vane was designed to have an impingement-cooled leading edge. However, for this investigation, the leading-edge impingement tube was removed, and the chamber was blocked at the tip end. Therefore, the cooling air entering the vane from the tip plenum (fig. 2(b)) was restricted to cooling the midchord and trailing-edge regions only. The leading-edge chamber served as a plenum for the film-cooling holes which were added to the vane after the initial series of tests. The film-cooling air entered the plenum at the vane hub.

The film-cooled version of the test vane had 57 film-cooling holes located on the suction surface 2.11 centimeters (0.83 in.) downstream of the leading-edge stagnation point. These film-cooling holes had centers equally spaced 0.157 centimeter (0.062 in.) apart and had a diameter of 0.064 centimeter (0.025 in.). They were angled at  $28^{\circ}$  with respect to a line tangent to the suction surface at the location of the holes.

The midchord supply tube contained a staggered array of 0.038-centimeter (0.015-in.) diameter holes. There were 481 and 334 holes, respectively, on the suction and pressure surface. The midspan chordwise center-to-center hole spacing was 0.24 and 0.28 centimeter (0.095 and 0.110 in.), and the spanwise center-to-center hole spacing was 0.20 and 0.23 centimeter (0.080 and 0.092 in.), respectively, on the suction and pressure surfaces. The hole-to-impingement-surface spacing was 0.076 centimeter (0.030 in.) (two hole diameters).

The split trailing edge contained four rows of oblong pin fins and a single row of round pin fins. The oblong pin fins were 0.38 centimeter (0.15 in.) by 0.25 centimeter (0.10 in.) and varied in height from 0.18 to 0.094 centimeter (0.070 to 0.037 in.). The round pin fins had a diameter of 0.20 centimeter (0.080 in.) and a height of 0.064 centimeter (0.025 in.).

#### INSTRUMENTATION

Eight Chromel-Alumel thermocouples were located at the midspan (fig. 2(a)) on the

suction surface of the test vane and adjacent to the central flow channel of the cascade. The location of the thermocouples and the thickness of the vane wall are given in table I. All symbols are defined in the appendix. The construction and installation of the thermocouples is discussed in reference 7. The cooling-air temperature and pressure were measured at the inlet to the vanes. The combustion gas inlet conditions were measured by spanwise traversing probes. These and other operational instrumentation are dis cussed in reference 6.

#### ANALYSIS METHODS

The local cooling effectiveness  $\varphi$  (also called temperature difference ratio) is defined by equation (1).

$$\varphi = \frac{\mathbf{T}_{g,e} - \mathbf{T}_{w}}{\mathbf{T}_{g,e} - \mathbf{T}_{c}}$$
(1)

Reference 5 shows that  $\varphi$  can be correlated as a function of the film-coolant- to gas-flow ratio  $w_{fc}/w_g$  for a constant midchord-coolant- to gas-flow ratio  $w_{mc}/w_g$ . This method was used herein to examine the effect of the film-cooling-air ejection on the overall cooling effectiveness  $\varphi$ .

Reference 8 shows that  $\varphi$  can also be correlated as a function of the midchordcoolant- to gas-flow ratio. This method was used herein to compare the experimental data with film-cooling holes (without blowing) and the data without film-cooling holes.

A two-dimensional heat balance was made on an element of the vane wall. The assumptions were (1) the temperature drop through the wall was negligible, (2) the spanwise conduction was negligible, and (3) there was no heat transfer between the pressure and suction surfaces. With these assumptions, the following equation was developed to compare the relative magnitude of the gas-side heat transfer coefficient with and without film-cooling holes:

$$h_g(T_{g,e} - T_w) = h_c(T_w - T_c) - k_w t \frac{d^2 T_w}{dx^2}$$
 (2)

This equation was solved for the effective coolant-side heat transfer coefficient without holes  $h_{c,00}$  and then equated to that with holes but without blowing  $h_{c,0}$ . These heat transfer coefficients were equal because the midchord convection flow rates were equal

and the temperature effects on properties were negligible. The resulting equation was solved for  $h_{g,0}/h_{g,00}$ .

$$\frac{h_{g,o}}{h_{g,oo}} = \frac{\left(\frac{T_{w} - T_{c}}{T_{g,e} - T_{w}}\right)_{o}}{\left(\frac{T_{w} - T_{c}}{T_{g,e} - T_{w}}\right)_{oo}} + \frac{k_{w}t}{h_{g,oo}(T_{g,e} - T_{w})_{o}} \left[\frac{d^{2}T_{w,oo}}{dx^{2}} \frac{\left(T_{w} - T_{c}\right)_{o}}{\left(T_{w} - T_{c}\right)_{oo}} - \frac{d^{2}T_{w,o}}{dx^{2}}\right]$$
(3)

For simplification of the calculation procedure, it was further assumed that the gas and coolant temperatures could be replaced by their respective inlet values. The second derivative of the wall temperature with respect to vane chordwise surface distance was obtained by numerically differentiating the experimental data at the point of interest. The value of thermal conductivity  $k_w$  of MAR M 302 was taken from reference 9.

The gas-side heat transfer coefficients for both turbulent and transitional boundary layers were calculated by the formulation of Ambrok (eq. (9) of ref. 10). This formulation was modified by a ratio of the static gas temperature to the wall temperature raised to the 1/4 power to account for the property variation across the boundary layer as suggested by Kays (ref. 11). For laminar boundary layers, the gas-side heat transfer coefficient was based on the work of Brown and Donoughe (ref. 12) and corrected for variable wall temperature by the results of reference 13. Transition from laminar flow was assumed to occur at the location which had a momentum-thickness Reynolds number of 200 (ref. 14). Transition to turbulent flow was assumed to occur at the location which had a momentum-thickness Reynolds number of 360 (ref. 11). The gas-side heat transfer coefficients required in equation (3) and calculated by these methods are shown in figure 3 for three gas inlet pressures. The laminar, transition, and turbulent regions are noted in the figure. Based on the Reynolds number range of 200 to 360, laminar flow persisted downstream of the film-cooling holes for only the low-gas-pressure (22.7  $N/cm^2$  (33 psia)) case. These heat transfer coefficients were calculated for the vane without film-cooling flow and without film-cooling holes.

Used in the calculation of the gas-side heat transfer coefficient was the vane midspan experimental surface-static-pressure distribution for the test vane, shown in figure 4. These data, taken from reference 15, were for the design exit Mach number of 0.85. The data are presented as a surface-static-pressure to inlet-total-pressure ratio and are plotted as a function of the dimensionless surface distance x/L. The figure shows that a favorable pressure gradient existed in the region between the film-cooling holes and an x/L of 0.63. An adverse pressure gradient existed between this point and the trailing edge.

#### TEST PROCEDURE

The average gas inlet total temperature and the midspan exit Mach number were maintained at 1260 K ( $1800^{\circ}$  F) (fuel-air ratio of 0.022) and 0.085, respectively. The effects of gas-side Reynolds number were examined by taking data at four gas inlet-total-pressure levels: 22.7, 25.5, 31.0, and 45.5 N/cm<sup>2</sup> (33, 37, 45, and 66 psia). Ambient-temperature cooling air was used for both the midchord convection-side air-flow and the film-cooling airflow.

The first series of tests were made at 31 N/cm<sup>2</sup> (45 psia) and without film-cooling holes on the vane. The midchord-coolant- to gas-flow ratio  $w_{mc}/w_{g}$  for these tests was varied in a stepwise fashion from 0.0 to about 0.056.

A single row of film-cooling holes near the leading-edge suction surface of the test vane were provided for the second series of tests. Film-cooling data were taken at each of the preceding pressures and at selected midchord-coolant-flow ratios. The film-cooling flow ratio  $w_{fc}/w_g$  was varied from 0.0 to about 0.028, which corresponded to a film-coolant- to mainstream-blowing ratio of 0.0 to 2.07.

#### **RESULTS AND DISCUSSION**

The effects of film-cooling airflow from a single row of holes in the suction surface of a turbine vane were investigated. The data from this investigation are presented in table II. An adverse effect on the cooling effectiveness, caused by cooling-air injection into the boundary layer, was noted on the aft 60 percent of the suction surface (thermocouples 1 to 6, fig. 2(a)). That is, the vane wall temperatures increased with the introduction of the film coolant. This effect was not noticed in the midchord region near the film-cooling holes at thermocouple 7. An adverse effect was also noted which was attributed to just the presence of the film-cooling holes. Two thermocouple locations were selected as typical to demonstrate these adverse effects (thermocouples 2 and 4, fig. 2(a)).

# Adverse Effect of Blowing

The effects of film-cooling-air ejection near the leading edge are graphically shown by a plot of the local cooling effectiveness  $\varphi$  as a function of the film-coolant- to gasflow ratio  $w_{fc}/w_g$ . These data are presented in figures 5(a) and (b) for thermocouples 2 and 4, respectively. The film-coolant flow ratio varied from 0 to 0.028. Representative values of the blowing ratio, defined as  $(\rho V)_{fc}/(\rho V)_g$ , are also included in the figures. The midchord-convection-coolant- to gas-flow ratio  $w_{mc}/w_{g}$  is shown parametrically. The data shown were taken at a gas inlet total pressure of 22.7 N/cm<sup>2</sup> (33 psia).

The cooling effectiveness  $\varphi_0$  (with holes but no blowing) is shown by those data points on the ordinate. For data points near the ordinate, the cooling effectiveness  $\varphi$ near the trailing edge rapidly decreased. A minimum value of  $\varphi$  was reached at an  $w_{fc}/w_g$  of about 0.002. For film-coolant flows between zero and the point where  $\varphi$ reached a minimum, the increase in gas-side heat transfer coefficient was greater than the increased benefits of film cooling. As a result the local cooling effectiveness decreased. Apparently, a small amount of film-cooling airflow caused a laminar or transitional boundary layer to become transitional or turbulent with the accompanying increase in the gas-side heat transfer coefficient. As  $w_{fc}/w_g$  increased beyond 0.002, the cooling effectiveness also increased.

The maximum change in wall temperature caused by the film-cooling-air ejection was found by using the initial and minimum temperature difference ratios and the gas and coolant temperatures investigated. The increases in the trailing-edge temperature from figures 5(a) and (b) for  $w_{mc}/w_{g}$  of 0.035 were 93 and 84 kelvins (168 and 151 deg F), respectively. For  $w_{mc}/w_{g}$  of 0.007, the increases in temperature were 87 and 66 kelvins (157 and 119 deg F), respectively.

As shown in figure 5, as the midchord-coolant-flow ratio  $w_{mc}/w_{g}$  increased (0.007 to 0.018 to 0.035), the film-coolant-flow ratio  $w_{fc}/w_{g}$  at which  $\varphi$  equals its original value  $\varphi_{0}$  (where  $w_{fc}/w_{g}$  is zero) also increased. The dot-dashed line in figure 5 connects the points where  $\varphi$  equals  $\varphi_{0}$ . Combinations of midchord-convectioncoolant-flow ratios and film-coolant-flow ratios which occur to the right of the dotdashed line represent beneficial film cooling relative to the vane with holes but without blowing. Combinations which occur to the left represent detrimental film cooling. Each thermocouple location, of course, has its own beneficial and detrimental regions.

Figure 5 has shown the effect of film cooling for a gas pressure of 22.7 N/cm<sup>2</sup> (33 psia). Calculations indicate that this pressure and temperature correspond to a laminar and transitional gas-side boundary layer at the midspan. The effect of film cooling on higher gas-side pressures (higher Reynolds numbers) was also of interest. This effect is shown in figure 6, where the local cooling effectiveness  $\varphi$  is plotted as a function of the film-coolant-flow ratio  $w_{fc}/w_g$  with the gas inlet total pressure as a parameter. Again, data on the ordinate represent the case of holes without blowing. The midchord-coolant-flow ratio  $w_{mc}/w_g$  for the data shown was about 0.035.

Inspection of the left sides of figures 6(a) and (b) indicates that as the gas pressure (Reynolds numer) increased, the adverse effect of the film-cooling-air ejection was reduced until there appeared to be no adverse effect at a gas pressure of 45.5 N/cm<sup>2</sup> (66 psia). At film-coolant-flow ratios  $w_{fc}/w_g$  higher than about 0.002, the local cooling effectiveness  $\varphi$  for all pressure levels was similar. These phenomena suggest

that above a film-coolant-flow ratio  $w_{fc}/w_g$  of 0.002 and at thermocouples 2 and 4, the boundary layer had become fully turbulent for all pressure levels studied. As mentioned previously, small amounts of film-cooling air ejected near the leading edge have apparently tripped a laminar or transitional boundary layer to a transitional or turbulent boundary layer.

#### Adverse Effect of Holes

The effect on the boundary layer of the presence of film-cooling holes without blowing was also of interest. This effect was noted by comparing the vane cooling effectiveness with and without film-cooling holes present. Figure 7 shows a plot of the local cooling effectiveness as a function of the midchord-coolant- to gas-flow ratio  $w_{mc}/w_{g}$ for both cases. The gas inlet pressure was 31 N/cm<sup>2</sup> (45 psia). As noted in the figures, the cooling effectiveness was considerably higher without the film-cooling holes. This result demonstrates that the presence of film-cooling holes in the vane near the leading edge significantly altered the heat transfer characteristics near the vane trailing edge apparently by tripping the boundary layer.

Equation (3) has been used to show the effect of the holes on gas-side heat transfer coefficient. This effect is shown in figure 8 as a function of the distance from the leading-edge stagnation point. The results indicate that the increase in the heat transfer coefficient was also a function of the midchord-coolant-flow ratio  $w_{mc}/w_{g}$ , probably as a result of the assumptions used in the analysis.

The change in wall temperature due to the film-cooling holes was found by using the two local cooling effectiveness values from figure 7 at a given midchord-coolant-flow ratio and the measured gas and coolant temperatures. The increases in the trailing-edge temperature at thermocouples 2 and 4 due to the presence of holes were 117 and 88 kelvins (210 and 158 deg F), respectively, for  $w_{mc}/w_{g}$  of 0.035 and for a gas pressure of 31 N/cm<sup>2</sup> (45 psia). Data are not available for similar calculations at other pressures.

# Adverse Effect of Holes and Blowing

The adverse effect on the cooling effectiveness has been discussed first with blowing at low and moderate pressures and then with holes alone at moderate pressure. A combination of these effects is shown in figure 9(a), where the local cooling effectiveness is plotted as a function of x/L for four cases at 31 N/cm<sup>2</sup> (45 psia). Curve A represents the cooling effectiveness  $\varphi_{00}$  for convection cooling only. With just the addition of film-cooling holes near the leading edge, the cooling effectiveness  $\varphi_0$ dropped substantially in the midchord and trailing-edge regions (curve B). When a small amount of blowing was introduced,  $w_{fc}/w_g$  equal to 0.0014, the cooling effectiveness was reduced even further (curve C). The lower two curves apparently represent a tripped boundary layer, in which the point of transition moves forward on the vane surface with increased disturbance near the leading edge. For substantial blowing the cooling effectiveness (curve D) never achieved those values which were obtained without film-cooling holes. Thus, at these conditions, the addition of film cooling had a detrimental effect on the trailing-edge region of the suction surface of this vane.

Experimental data without film-cooling holes are available for only the 31 N/cm<sup>2</sup> (45 psia) case. However, it is of interest to speculate what effect the presence of the film-cooling holes would have at the other pressures investigated. For example, at 45.5 N/cm<sup>2</sup> (66 psia), the boundary layer was determined to be turbulent in the trailing-edge region (fig. 3). Therefore, the presence of the holes would probably have little or no effect on the cooling effectiveness in the trailing-edge region. Inspection of the data indicates that there was no adverse effect between the case with holes only (no blowing) and the case with small amounts of blowing.

Figure 9(b) shows the local cooling effectiveness as a function of x/L for the two cases of film-cooling holes with blowing and without blowing at 22.7 N/cm<sup>2</sup> (33 psia). As discussed previously, a substantial reduction in the cooling effectiveness occurred in the midchord and trailing-edge regions. The boundary layer was apparently tripped at this pressure by a small amount of blowing. The effect of the film-cooling holes was not studied at this pressure.

SUMMARY OF RESULTS

Ì.

An experimental investigation of the effects of film cooling on the suction surface of a turbine vane was made in a four-vane cascade. The film-cooling air was ejected near the leading edge. The results were as follows:

1. Ejection of film-cooling air, under certain conditions, resulted in increased vane wall temperatures at positions downstream from the point of ejection. For example, a small amount of film-cooling air (0.2 percent of the gas flow) resulted in downstream wall temperature increases as high as 93 kelvins (168 deg F). This effect was not observed in an apparently turbulent boundary layer. Evidently, a laminar or transitional boundary layer was tripped into a transitional or turbulent regime at the lower pressure levels investigated.

2. The presence of film-cooling holes without blowing near the leading edge also resulted in increased wall temperatures. These wall temperature increases were as high as 117 kelvins (210 deg F). As before, the boundary layer apparently underwent a transition.

3. At a gas pressure of  $31 \text{ N/cm}^2$  (45 psia), the vane wall temperatures increased with the addition of film-cooling holes (no blowing) and increased further with small amounts of blowing. The adverse effects on the gas-side heat transfer coefficient were apparently accumulative.

4. Also at a gas pressure of  $31 \text{ N/cm}^2$  (45 psia), the minimum vane wall temperatures in the trailing-edge region achieved with any amount of blowing were still higher than those measured without film-cooling holes near the leading edge.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, November 29, 1973,

501-24.

# APPENDIX - SYMBOLS

| h                                 | heat transfer coefficient, $W/m^2$ -K (Btu/hr-ft <sup>2</sup> - <sup>0</sup> F)                                      |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------|
| k                                 | thermal conductivity, $W/m-K$ (Btu/hr-ft- <sup>O</sup> F)                                                            |
| L                                 | total surface distance from stagnation point, cm (in.)                                                               |
| р                                 | pressure, N/cm <sup>2</sup> (psia)                                                                                   |
| Т                                 | temperature, K ( <sup>O</sup> F)                                                                                     |
| t                                 | vane wall thickness, cm (in.)                                                                                        |
| V                                 | velocity, cm/sec (ft/sec)                                                                                            |
| w                                 | flow rate, kg/hr (lbm/hr)                                                                                            |
| x                                 | surface distance from stagnation point, cm (in.)                                                                     |
| ρ                                 | density, $kg/m^3$ ( $lbm/ft^3$ )                                                                                     |
| arphi                             | local cooling effectiveness, or temperature difference ratio                                                         |
|                                   |                                                                                                                      |
| Subscripts:                       |                                                                                                                      |
| Subscripts:<br>c                  | coolant, or coolant-side surface                                                                                     |
| _                                 | coolant, or coolant-side surface<br>effective                                                                        |
| с                                 |                                                                                                                      |
| c<br>e                            | effective                                                                                                            |
| c<br>e<br>fc                      | effective<br>film coolant                                                                                            |
| c<br>e<br>fc<br>g                 | effective<br>film coolant<br>gas, or gas-side surface                                                                |
| c<br>e<br>fc<br>g<br>i            | effective<br>film coolant<br>gas, or gas-side surface<br>inlet                                                       |
| c<br>e<br>fc<br>g<br>i<br>mc      | effective<br>film coolant<br>gas, or gas-side surface<br>inlet<br>midchord coolant                                   |
| c<br>e<br>fc<br>g<br>i<br>mc<br>o | effective<br>film coolant<br>gas, or gas-side surface<br>inlet<br>midchord coolant<br>with holes but without blowing |

- Yeh, Frederick C.; Gladden, Herbert J.; Gauntner, James W.; and Gauntner, Daniel J.: Comparison of Cooling Effectiveness of Turbine Vanes with and Without Film Cooling. TM X-3022, 1974.
- Gauntner, Daniel J.: Comparison of Temperature Data from an Engine Investigation for Film-Cooled and Non-Film-Cooled, Spanwise-Finned Vanes Incorporating Impingement Cooling. TM X-2819, 1973.
- Yeh, Frederick C.; Gladden, Herbert J.; and Gauntner, James W.: Comparison of Heat Transfer Characteristics of Three Cooling Configuraations for Air-Cooled Turbine Vanes Tested in a Turbojet Engine. NASA TM X-2580, 1972.
- 4. Lander, R. D.; Fish, R. W.; and Suo, M.: The External Heat Transfer Distributtion on Film Cooled Turbine Vanes. Paper 72-9, AIAA, Jan. 1972.
- Gladden, Herbert J.; Gauntner, James W.; Yeh, Frederick C.; and Gauntner, Daniel J.: An Adverse Effect of Film Cooling on the Suction Surface of a Turbine Vane. NASA TM X-68210, 1973.
- Calvert, Howard F.; Cochran, Reeves P.; Dengler, Robert P.; Hickel, Robert O.; and Norris, James W.: Turbine Cooling Research Facility. NASA TM X-1927, 1970.
- Crowl, Robert J.; and Gladden, Herbert J.: Methods and Procedures for Evaluating, Forming, and Installing Small-Diameter Sheathed Thermocouple Wire and Sheathed Thermocouples. NASA TM X-2377, 1971.
- Gladden, Herbert J.; Gauntner, Daniel J.; and Livingood, John N. B.: Analysis of Heat-Transfer Tests of an Impingement-Convection-and Film-Cooled Vane in a Cascade. NASA TM X-2376, 1971.
- 9. Anon.: High Temperature High Strength Nickel Base Alloys. The International Nickel Company, Inc. 2nd Edition, June 1968.
- Ambrok, G. S.: Approximate Solution of Equations for the Thermal Boundary Layer with Variations in Boundary Layer Structure. Soviet Phys-Tech Phys, vol. 2, no. 9, Sept. 1957, p. 1979-1986.
- 11. Kays, William M.: Convective Heat and Mass Transfer. McGraw Hill Book, Inc., 1966.
- 12. Brown, W. Byron; and Donoughe, Patrick L.: Extension of Boundary-Layer Heat-Transfer Theory to Cooled Turbine Blades. NACA RM E50F02, 1950.

- Brown, W. Byron; Slone, Henry O.; and Richards, Hadley T.: Procedure for Calculating Turbine Blade Temperatures and Comparison of Calculated with Observed Values for Two Stationary Air-Cooled Blades. NACA RM E52H07, 1952.
- Dunham J.: Predictions of Boundary Layer Transition on Turbomachiner Blades. Boundary Layer Effects in Turbomachines. J. Surugue, ed., AGARD-AG-164, 1972, pp. 55-71.
- Gladden, Herbert J.; Dengler, Robert P.; Evans, David G.; and Hippensteele, Steven A.: Aerodynamic Investigation of Four-Vane Cascade Designed for Turbine Cooling Studies. NASA TM X-1954, 1970.

| TABLE I | LOCATION OF | THERMOCOUPLES |
|---------|-------------|---------------|
|---------|-------------|---------------|

| Thermocouple | from st | distance<br>agnation | Location,<br>x/L | Vane wall thickness<br>t |       |  |  |  |
|--------------|---------|----------------------|------------------|--------------------------|-------|--|--|--|
|              | -       | int,<br>«            |                  | cm                       | in.   |  |  |  |
|              | сm      | in.                  |                  |                          |       |  |  |  |
| 1            | 6.45    | 2.54                 | 0.888            | 0.15                     | 0.06  |  |  |  |
| 2            | 5.83    | 2.295                | 802              | . 216                    | . 085 |  |  |  |
| 3            | 5,35    | 2.105                | . 736            | . 25                     | . 10  |  |  |  |
| 4            | 4,67    | 1.84                 | . 643            | . 29                     | . 15  |  |  |  |
| 5            | 3.83    | 1.51                 | . 528            | . 25                     | . 10  |  |  |  |
| 6            | 3.00    | 1.18                 | . 412            | . 25                     | . 10  |  |  |  |
| 7            | 2.31    | . 91                 | . 318            | . 25                     | . 10  |  |  |  |
| 8            | 1,05    | . 415                | . 145            | . 15                     | , 06  |  |  |  |

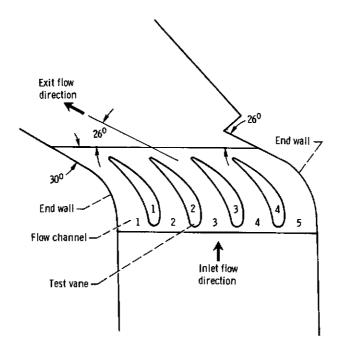
[Suction surface; total surface distance from stagnation point, L, 7.27 cm (2.861 in.).]

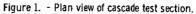
TABLE II. - EXPERIMENTAL DATA

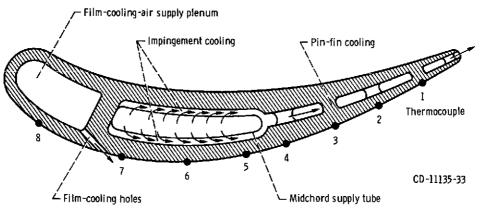
| Data<br>set | Gas<br>inlet            | Gas<br>inlet       | Gas<br>flow  | Coolant<br>inlet    | Midchord-<br>coolant- to        | Film-<br>coolant- to            | T <sub>w,1</sub> | <sup>T</sup> w, 2 | т <sub>w, 3</sub> | T <sub>w,4</sub> | T <sub>w,5</sub> | T <sub>w,6</sub> | <sup>T</sup> w, 7 | T <sub>w,8</sub> |
|-------------|-------------------------|--------------------|--------------|---------------------|---------------------------------|---------------------------------|------------------|-------------------|-------------------|------------------|------------------|------------------|-------------------|------------------|
|             | total                   | total              | per          | tempera-            | gas-flow                        | gas-flow                        |                  |                   | Va                | ne wall ter      | nperature        | , К              |                   |                  |
|             | tempera-                | pressure,          | channel,     | ture,               | ratio,                          | ratio,                          |                  |                   |                   |                  |                  |                  |                   |                  |
| 1           | ture,                   | P <sub>g,i</sub> , | w_,          |                     | w <sub>mc</sub> /w <sub>g</sub> | w <sub>fc</sub> /w <sub>g</sub> |                  |                   |                   |                  |                  |                  |                   |                  |
|             | Т.,                     | $\frac{g}{N/cm^2}$ | wgʻ<br>kg/hr | T <sub>c, i</sub> , | i me g                          | IC g                            |                  |                   |                   |                  |                  |                  |                   |                  |
|             | T <sub>g,i</sub> ,<br>K | N/ CIII            |              |                     |                                 |                                 |                  | ,                 | <b>.</b>          |                  |                  |                  |                   |                  |
| 1           | 1286                    | ~22.7              | ~1230        | 283                 | 0.0461                          |                                 | 689              | 711               | 701               | 686              | 715              | 815              | 927               | 1168             |
| 2           | 1283                    |                    |              |                     | . 0296                          |                                 | 772              | 784               | 772               | 759              | 791              | 882              | 978               | 1177             |
| 3           | 1283                    |                    |              |                     | . 0162                          |                                 | 867              | 872               | 861               | 851              | 881              | 961              | 1038              | 1192             |
| 4           | 1284                    |                    |              | i *                 | . 0110                          |                                 | 930              | 928               | 918               | 910              | 937              | 1008             | 1074              | 1201             |
| 5           | 1284                    |                    |              | 284                 | .00718                          |                                 | 984              | 979               | 969               | 963              | 987              | 1051             | 1106              | 1210             |
| 6           | 1283                    |                    |              |                     | . 00732                         | 0,00543                         | 1014             | 1013              | 992               | 969              | 968              | 967              | 934               | 1093             |
| 7           | 1284                    |                    |              |                     | . 00740                         | . 0102                          | 983              | 980               | 959               | 924              | 907              | 893              | 858               | 1024             |
| 8           | 1283                    |                    |              |                     | . 00730                         | . 0208                          | 952              | 947               | 926               | 889              | 876              | 878              | 836               | 924              |
| 9           | 1284                    |                    |              | •                   | . 00729                         | . 0276                          | 943              | 939               | 918               | 884              | 878              | 887              | 829               | 876              |
| 10          | 1267                    |                    |              | 289                 | . 00699                         | . 00056                         | 998              | 996               | 983               | 971              | 986              | 1039             | 1083              | 1192             |
| 11          | 1268                    |                    |              | 289                 | . 00691                         | . 00188                         | 1044             | 1043              | 1023              | 1008             | 1011             | 1026             | 1032              | 1158             |
| 12          | 1267                    |                    |              | 289                 | . 00690                         | .00255                          | 1042             | 1039              | 1021              | 1005             | 1006             | 1013             | 1009              | 1143             |
| 13          | 1268                    |                    |              | 288                 | . 00685                         | . 00361                         | 1036             | 1036              | 1015              | 997              | 994              | 991              | 978               | 1124             |
| 14          | 1267                    |                    |              | 288                 | . 00687                         | . 00466                         | 1031             | 1030              | 1011              | 991              | 984              | 976              | 955               | 1108             |
| 15          | 1268                    |                    |              | 288                 | . 00687                         | . <b>0</b> 0086                 | 1022             | 1013              | 993               | 976              | 983              | 1024             | 1060              | 1176             |
| 16          | 1269                    |                    |              | 289                 | . 00705                         | . 00564                         | 1003             | 1004              | 983               | 963              | 958              | 957              | 924               | 1082             |
| 17          | 1275                    |                    |              | 288                 | . 00706                         | . 00556                         | 1008             | 1009              | 988               | 967              | 963              | 961              | 928               | 1087             |
| 18          | 1276                    |                    |              |                     | . 00675                         | . 00866                         | 992              | 990               | 969               | 938              | 920              | 906              | 869               | 1036             |
| 19          | 1276                    |                    |              |                     | , 00695                         | . 0126                          | 970              | 967               | 946               | 908              | 884              | 871              | 840               | 984              |
| 20          | 1274                    |                    |              | +                   | . 00668                         | .0176                           | 958              | 955               | 933               | 896              | 876              | 870              | 836               | 946              |
| 21          | 1271                    |                    |              | 291                 | . 0190                          | , 0199                          | 851              | 857               | 840               | 806              | 798              | 814              | 793               | 919              |
| 22          | 1266                    |                    |              | 290                 | .0190                           | . 0152                          | 859              | 863               | 849               | 813              | 799              | 806              | 789               | 957              |
| 23          | 1267                    |                    |              |                     | . 0190                          | . 01 <b>05</b>                  | 876              | 882               | 868               | 836              | 823              | 824              | 805               | 1005             |
| 24          | 1262                    |                    |              |                     | . 0179                          | .00725                          | 878              | 887               | 872               | 847              | 843              | 851              | 829               | 1028             |
| 25          | 1269                    |                    |              | *                   | . 0180                          | , 00497                         | 903              | 912               | 897               | 877              | 883              | 900              | 883               | 1079             |
| 26          | 1262                    |                    |              | 290                 | . 0181                          | .00381                          | 902              | 910               | 898               | 882              | 891              | 906              | 907               | 1100             |
| 27          | 1272                    |                    |              | 289                 | . 0182                          | . 00251                         | 917              | 925               | 909               | 896              | 909              | 932              | 946               | 1134             |
| 28          | 1283                    |                    |              | 283                 | . 0350                          | . 0277                          | 755              | 768               | 759               | 726              | 734              | 778              | 758               | 868              |
| 29          | 1286                    |                    |              | 283                 | . 0354                          | . 0207                          | 762              | 774               | 765               | 729              | 732              | 769              | 762               | 916              |
| 30          | 1287                    | •                  | *            | 284 i               | . 0353                          | . 0114                          | 779              | 793               | 783               | 747              | 741              | 763              | 762               | 983              |
|             |                         |                    |              |                     |                                 |                                 |                  |                   |                   |                  |                  |                  |                   |                  |

| 31 | 1287 | ~22.7 | ~1230       | 283 | 0.0350 | 0.00595  | 803  | 819     | 809        | 780        | 788        | 817  | 809         | 1051 |
|----|------|-------|-------------|-----|--------|----------|------|---------|------------|------------|------------|------|-------------|------|
| 32 | 1268 | 1     |             | 291 | . 0351 | . 00056  | 777  | 784     | 771        | 751        | 772        | 851  | 941         | 1160 |
| 33 | 1267 |       |             | 292 | . 0348 | . 00009  | 746  | 763     | -757       | 741        | 767        | 854  | 952         | 1165 |
| 34 | 1263 |       |             | ł   | ,0351  | . 00102  | 822  | 833     | 819        | 794        | 804        | 859  | 922         | 1143 |
| 35 | 1264 |       |             |     | , 0350 | . 00152  | 822  | 838     | 827        | 808        | 820        | 863  | 904         | 1123 |
|    |      |       |             | 1   |        | 2224.0   | 005  | 0.49    | 831        | 813        | 827        | 864  | 89 <b>2</b> | 1116 |
| 36 | 1264 |       |             | Y   | . 0348 | .00213   | 825  | 842     |            | 813        | 824        | 854  | 869         | 1110 |
| 37 | 1268 |       |             | 293 | . 0347 | .00324   | 824  | 842     | 831        | 812        | 824<br>820 | 847  | 855         | 104  |
| 38 | 1270 |       |             |     | . 0345 | ,00405   | 822  | 840     | 830<br>824 | 803        | 812        | 844  | 842         | 1080 |
| 39 | 1271 |       |             |     | . 0354 | .00511   | 816  | 832     |            | 803<br>787 | 012<br>792 | 822  | 812         | 1030 |
| 40 | 1267 |       |             |     | . 0351 | . 00612  | 804  | B22     | 812        | 101        | (94        | 044  | 612         | 1045 |
| 41 | 1268 |       |             |     | , 0353 | .00919   | 791  | 808     | 799        | 769        | 763        | 783  | 744         | 1013 |
| 42 | 1200 |       |             |     | . 0354 | .0139    | 777  | 791     | 782        | 748        | 738        | 757  | 755         | 966  |
| 42 | 1271 |       |             |     | . 0354 | . 0200   | 765  | 778     | 770        | 737        | 733        | 765  | 759         | 918  |
| 43 | 1266 |       |             | 290 |        | . 027    | 1079 | 1078    | 1061       | 1036       | 1011       | 972  | 885         | 886  |
| 45 | 1265 |       |             | 289 |        | . 0205   | 1086 | 1083    | 1067       | 1040       | 1009       | 961  | 892         | 934  |
| 15 | 1000 |       |             |     |        |          |      |         |            |            |            |      |             | 0.50 |
| 46 | 1266 |       |             | 288 |        | .0156    | 1099 | 1097    | 1079       | 1251       | 1015       | 958  | 895         | 976  |
| 47 | 1268 |       |             |     |        | .0114    | 1119 | 1119    | 1102       | 1078       | 1044       | 980  | 917         | 1023 |
| 48 | 1267 |       |             |     |        | .00697   | 1149 | 1151    | 1139       | 1126       | 1107       | 1052 | 986         | 1088 |
| 49 | 1267 |       |             |     |        | . 00474  | 1164 | 1168    | 1154       | 1148       | 1133       | 1079 | 1032        | 1125 |
| 50 | 1268 | 1 1   | *           |     |        | . 00396  | 1170 | 1175    | 1162       | 1158       | 1146       | 1099 | 1060        | 1144 |
|    | 10-0 | 05 5  | ~1380       | 290 | . 0332 | . 0229   | 768  | 782     | 774        | 742        | 741        | 776  | 759         | 888  |
| 51 | 1273 | ~25.5 | ~1360       | 290 | , 0352 | . 0199   | 760  | 776     | 768        | 734        | 729        | 763  | 752         | 908  |
| 52 | 1271 |       |             | 291 | , 0355 | .0139    | 770  | 786     | 778        | 743        | 732        | 752  | 744         | 952  |
| 53 | 1273 |       |             |     | . 0351 | .0101    | 781  | 799     | 789        | 756        | 746        | 761  | 749         | 985  |
| 54 | 1268 |       |             |     | . 0349 | ,00701   | 801  | 820     | 813        | 784        | 784        | 810  | 795         | 1039 |
| 55 | 1267 |       |             |     | .0343  |          |      |         |            | 1          |            |      |             |      |
| 56 | 1261 |       |             | 1   | . 0350 | , 00508  | 809  | 830     | 823        | 799        | 807        | 842  | 832         | 1069 |
| 57 | 1269 |       |             |     | . 0348 | . 00418  | 815  | 837     | 828        | 807        | 817        | 852  | 851         | 1092 |
| 58 | 1268 |       |             |     | . 0351 | . 00237  | 822  | 843     | 832        | 814        | 830        | 871  | 889         | 1118 |
| 59 | 1267 |       |             | ļ . | , 0349 | . 00113  | 826  | 845     | 836        | 817        | 831        | 879  | 924         | 1143 |
| 60 | 1266 | 1 1   | •           | 290 | .0351  | , 00056  | 816  | 826     | 805        | 781        | 793        | 862  | 938         | 1156 |
| Ĩ  |      |       |             |     |        |          |      | <b></b> |            |            | 769        | 854  | 948         | 1163 |
| 61 | 1267 | ~31.0 | $\sim 1670$ | 290 | . 0350 | No holes |      | 782     | 766        | 747<br>609 | 643        | 854  | 948<br>883  | 1103 |
| 62 | 1261 |       |             | 293 | . 0646 |          | 597  | 629     | 619        |            | 666        | 740  | 902         | 1130 |
| 63 | 1274 |       |             | 293 | . 0551 |          | 617  | 761     | 642        | 631        |            | 832  | 902         | 1142 |
| 64 | 1274 |       |             | 292 | . 0356 |          | 692  | 719     | 709        | 698        | 737        | 858  | 952         | 1162 |
| 65 | 1277 | 1     | 1           | 292 | , 0303 | 1 1      | 726  | 746     | 737        | 726        | 100        | 650  | 912         | 1102 |

15


•


.


TABLE II. - Concluded. EXPERIMENTAL DATA

| Data<br>set | Gas<br>inlet.            | Gas<br>inlet        | Gas<br>flow               | Coolant<br>inlet         | Midchord-<br>coolant- to | Film -<br>coolant - to          | T <sub>w,1</sub> | T <sub>w,2</sub> | Т <sub>w, 3</sub> | T <sub>w,4</sub> | T <sub>w, 5</sub> | Tw,6 | T <sub>w, 7</sub> | T <sub>w,8</sub> |
|-------------|--------------------------|---------------------|---------------------------|--------------------------|--------------------------|---------------------------------|------------------|------------------|-------------------|------------------|-------------------|------|-------------------|------------------|
|             | total                    | total               | per                       | tempera-                 | gas-flow                 | gas-flow                        | ·                | - I              | Va                | ne wall ter      | nperature         |      | 1                 |                  |
|             | tempera-                 | pressure,           | channel,                  | ture,                    | ratio,                   | ratio,                          |                  |                  |                   |                  |                   |      |                   |                  |
|             | ture,                    | P <sub>g, i</sub> , | w ",                      | T,                       | wmc/wg                   | w <sub>fc</sub> /w <sub>g</sub> |                  |                  |                   |                  |                   |      |                   |                  |
|             | T <sub>g, i</sub> ,<br>K | $N/cm^2$            | w <sub>g</sub> ,<br>kg/hr | T <sub>c, i</sub> ,<br>K | me g                     | ic' g                           |                  |                  |                   |                  |                   |      |                   |                  |
| 66          | 1275                     | ~31.0               | ~1670                     | 291                      | 0.0227                   | No holes                        | 773              | 790              | 782               | 773              | 812               | 899  | 1001              | 1169             |
| 67          | 1281                     |                     |                           | 290                      | . 0175                   | 1 1                             | 821              | 836              | 826               | 818              | 856               | 934  | 1028              | 1178             |
| 68          | 1281                     |                     |                           | 289                      | . 0128                   |                                 | 871              | 881              | 874               | 868              | 903               | 979  | 1020              | 1110             |
| 69          | 1282                     |                     |                           | 289                      | . 0104                   | ļ ļ                             | 909              | 917              | 908               | 903              | 937               | 1008 | 1078              | 1192             |
| 70          | 1286                     |                     |                           | 288                      | , 00677                  |                                 | 971              | 976              | 968               | 962              | 991               | 1054 | 1112              | 1203             |
| 71          | 1283                     |                     |                           |                          | . 00493                  |                                 | 1013             | 1014             | 1006              | 1000             | 1025              | 1083 | 1131              | 1205             |
| 72          | 1283                     |                     |                           |                          | . 00130                  |                                 | 1116             | 1118             | 1112              | 1109             | 1127              | 1159 | 1181              | 1230             |
| 73          | 1283                     |                     |                           | *                        | . 00047                  |                                 | 1158             | 1166             | 1164              | 1172             | 1188              | 1203 | 1209              | 1227             |
| 74          | 1287                     | 1                   |                           | 292                      | . 0558                   |                                 | 627              | 662              | 648               | 637              | 672               | 771  | 911               | 1154             |
| 75          | 1280                     |                     |                           | 292                      | . 0447                   |                                 | 658              | 691              | 677               | 666              | 703               | 801  | 933               | 1156             |
| 76          | 1278                     |                     |                           | 291                      | . 0357                   |                                 | 697              | 724              | 711               | 700              | 738               | 834  | 957               | 1160             |
| 77          | 1276                     |                     |                           | 290                      | . 0279                   |                                 | 747              | 769              | 755               | 744              | 781               | 873  | 984               | 1166             |
| 78          | 1279                     |                     |                           | 290                      | . 0204                   |                                 | 803              | 819              | 807               | 798              | 836               | 921  | 1019              | 1177             |
| 79          | 1279                     | ļ                   |                           | 289                      | <b>.</b> 0118            |                                 | 889              | 901              | 891               | 885              | 919               | 992  | 1068              | 1189             |
| 80          | 1283                     |                     |                           | 289                      | . 00746                  | +                               | 954              | 962              | 952               | 948              | 977               | 1043 | 1104              | 1201             |
| 81          | 1268                     |                     |                           | 292                      | . 0509                   |                                 | 762              | 788              | 778               | 742              | 746               | 813  | 908               | 1162             |
| 82          | 1264                     |                     |                           | 291                      | . 0316                   |                                 | 837              | 849              | 828               | 797              | 807               | 877  | 964               | 1173             |
| 83          | 1262                     |                     |                           | 290                      | . 0173                   |                                 | 927              | 925              | 897               | 872              | 889               | 954  | 1025              | 1185             |
| 84          | 1264                     |                     |                           | 289                      | . 00869                  |                                 | 1014             | 1006             | 977               | 961              | 978               | 1036 | 1088              | 1202             |
| 85          | 1263                     |                     |                           | 289                      | . 00326                  |                                 | 1106             | 1094             | 1071              | 1057             | 1070              | 1112 | 1143              | 1211             |
| 86          | 1286                     |                     |                           | 287                      | . 00372                  | 0.0353                          | 1004             | 998              | 982               | 948              | 939               | 946  | 836               | 816              |
| 87          | 1286                     |                     |                           |                          | . 00377                  | . 0290                          | 1013             | 1008             | 989               | 954              | 942               | 939  | 847               | 860              |
| 88          | 1287                     |                     |                           |                          | . 00379                  | . 0166                          | 1031             | 1023             | 1002              | 957              | 924               | 901  | 838               | 955              |
| 89          | 1284                     |                     |                           | +                        | . 00376                  | . 00835                         | 1074             | 1068             | 1053              | 1017             | 992               | 963  | 896               | 1059             |
| 90          | 1283                     |                     |                           | 286                      | . 00374                  | . 00359                         | 1107             | 1103             | 1089              | 1063             | 1057              | 1048 | 999               | 1135             |
| 91          | 1283                     |                     |                           |                          | . 00816                  | . 00359                         | 1021             | 1025             | 1013              | 987              | 98 <del>9</del>   | 997  | 960               | 1126             |
| 92          | 1286                     |                     |                           |                          | . 00847                  | . 00644                         | 1000             | 1002             | 990               | 957              | 946               | 938  | 884               | 1069             |
| 93          | 1288                     |                     |                           |                          | . 00840                  | . 0128                          | 964              | 962              | 946               | 903              | 877               | 860  | 808               | 983              |
| 94          | 1287                     |                     |                           | <b>∀</b> ]               | . 00828                  | . 0233                          | 940              | 939              | 924               | 886              | 876               | 882  | 819               | 891              |
| 95          | 1286                     | ₹ I                 | 4                         | 285                      | . 0186                   | 0235                            | 852              | 858              | 849               | 813              | 810               | 833  | 789               | 887              |

|     |      |        |             |          |         |         |      |      | <u>.</u> |       | · · · · · · · · · · · · · · · · · · · |      |          |      |
|-----|------|--------|-------------|----------|---------|---------|------|------|----------|-------|---------------------------------------|------|----------|------|
| 96  | 1288 | ~31.0  | $\sim 1670$ | 285      | 0,0185  | 0.0123  | 875  | 882  | 872      | 831   | 812                                   | 812  | 774      | 982  |
| 97  | 1287 |        |             |          | . 0186  | . 0171  | 862  | 867  | 857      | 817   | 802                                   | 813  | 779      | 937  |
| 98  | 1273 |        |             |          | . 0185  | . 00641 | 898  | 908  | 901      | 869   | 864                                   | 874  | 836      | 1052 |
| 99  | 1274 |        |             | +        | . 0185  | . 00433 | 913  | 923  | 919      | 891   | 896                                   | 918  | 889      | 1093 |
| 100 | 1272 |        |             | 289      | .0185   | . 00171 | 924  | 939  | 932      | 908   | 924                                   | 959  | 961      | 1143 |
|     |      |        |             | ł        |         |         |      |      |          |       |                                       |      |          |      |
| 101 | 1261 | 1      |             |          | . 0182  | . 00249 | 914  | 927  | 922      | 897   | 908                                   | 936  | 923      | 1114 |
| 102 | 1260 |        |             |          | . 0182  | 00301   | 911  | 924  | 920      | 894   | 902                                   | 926  | 908      | 1105 |
| 103 | 1259 |        |             |          | . 0183  | . 00374 | 905  | 918  | 912      | 886   | 890                                   | 912  | 884      | 1083 |
| 104 | 1259 |        |             | <u>,</u> | , 0183  | . 00526 | 893  | 903  | 898      | 868   | 863                                   | 875  | 836      | 1046 |
| 105 | 1272 |        |             | 284      | . 0375  | . 00433 | 795  | 820  | 823      | 795   | 800                                   | 843  | 829      | 1082 |
|     |      |        |             |          |         |         |      |      | 000      | -00   |                                       | 801  |          | 1091 |
| 106 | 1274 |        |             |          | . 0376  | 00782   | 778  | 799  | 800      | 766   | 757                                   | 781  | 757      | 1021 |
| 107 | 1273 |        |             |          | . 0376  | . 0138  | 753  | 772  | 771      | 734   | 719                                   | 741  | 722      | 950  |
| 108 | 1278 |        |             | *        | , 0374  | . 0164  | 748  | 768  | 765      | 728   | 717                                   | 745  | 728      | 930  |
| 109 | 1278 |        |             | 294      | . 0374  | . 0263  | 736  | 757  | 757      | 726   | 729                                   | 774  | 742      | 855  |
| 110 | 1266 | !      |             | 293      | , 0376  | . 00867 | 768  | 790  | 790      | 756   | 743                                   | 763  | 738      | 997  |
| 1   | 1007 |        |             | 293      | . 0377  | . 00590 | 786  | 811  | 812      | 782   | 731                                   | 815  | 793      | 1047 |
| 111 | 1267 | ,      |             | 293      | . 0378  | . 00394 | 796  | 821  | 823      | 796   | 801                                   | 844  | 831      | 1079 |
| 112 | 1266 |        |             | 293      | . 0376  | . 00307 | 799  | 827  | 828      | 800   | 800                                   | 852  | 847      | 1097 |
| 113 | 1270 |        |             |          | . 0374  | . 00199 | 805  | 832  | 834      | 807   | 320                                   | 871  | 881      | 1119 |
| 114 | 1270 |        |             | 292      | 1       |         |      | 834  | 836      | 809   | 824                                   | 879  | 901      | 1113 |
| 115 | 1268 |        | 1           | 292      | . 0376  | . 00138 | 808  | 834  | 830      | 809   | 044                                   | 013  | 901      | 1134 |
| 116 | 1263 |        |             | 285      |         | . 0206  | 1080 | 1076 | 1059     | 1027  | 992                                   | 942  | 858      | 906  |
| 117 | 1263 |        |             | 284      |         | .0150   | 1094 | 1091 | 1073     | 1041  | 998                                   | 833  | 851      | 954  |
| 118 | 1261 |        |             |          |         | , 0115  | 1111 | 1108 | 1093     | 1063  | 1023                                  | 953  | 867      | 994  |
| 119 | 1261 |        |             |          |         | , 00825 | 1135 | 1136 | 1124     | 1103  | 1073                                  | 1009 | 923      | 1046 |
| 120 | 1262 | •      | 1 +         | +        |         | . 00533 | 1159 | 1163 | 1153     | 1141  | 1125                                  | 1076 | 1001     | 1099 |
|     |      |        |             |          | 1       |         |      |      | 1        |       | 1                                     |      |          |      |
| 121 | 1273 | ~45, 5 | ~2450       | 293      | . 0364  |         | 817  | 852  | 861      | 851   | 855                                   | 922  | 969      | 1169 |
| 122 | 1274 |        |             | 293      | . 0349  | . 00078 | 819  | 853  | 860      | 849   | 851                                   | 914  | 941      | 1152 |
| 123 | 1276 |        | i l         | 294      | . 0355  | 00172   | 813  | 845  | 853      | 841   | 839                                   | 895  | 901      | 1128 |
| 124 | 1278 | 1      | 1           |          | . 0355  | . 00235 | 808  | 842  | 849      | 836   | 833                                   | 883  | 875      | 1112 |
| 125 | 1277 |        |             |          | . 0357  | . 00517 | 792  | 824  | 827      | 809   | 795                                   | 824  | 792      | 1047 |
| 126 | 1282 |        |             |          | . 0354  | . 00957 | 767  | 794  | 792      | 768   | 742                                   | 753  | 712      | 963  |
| 120 | 1202 |        |             |          | , 0355  | . 0152  | 752  | 778  | 775      | 749   | 724                                   | 740  | 706      | 911  |
| 127 | 1276 |        |             | 295      | . 0356  | . 0259  | 739  | 764  | 766      | 747   | 739                                   | 779  | 734      | 829  |
| 128 | 1270 | T      | 1 1         | 200      | . 00 00 |         | L    |      |          | 1 ''' | l                                     |      | <u> </u> |      |







(a) Cross-sectional midspan view showing internal cooling scheme and thermocouple locations.

Figure 2. - Schematic view of J-75 size test vane.

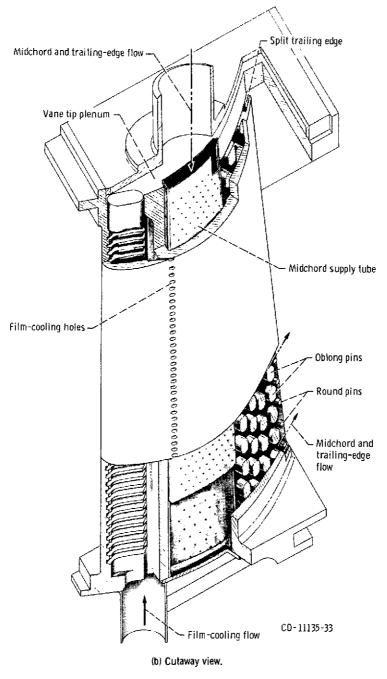
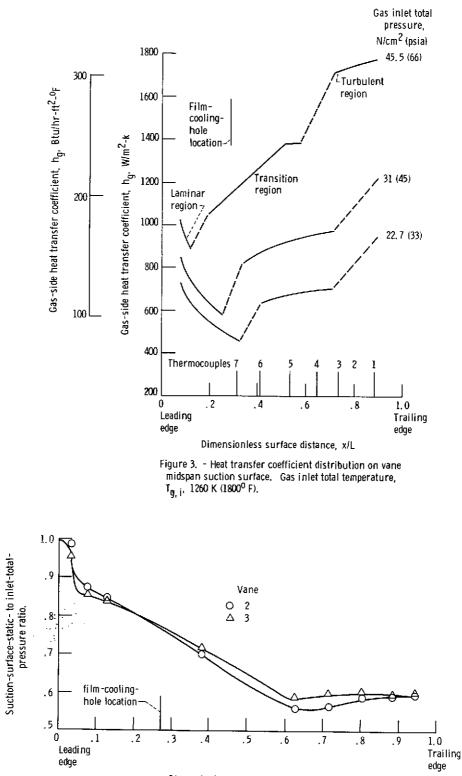
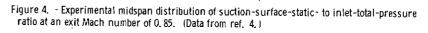





Figure 2. ~ Concluded.



Dimensionless surface distance, x/L



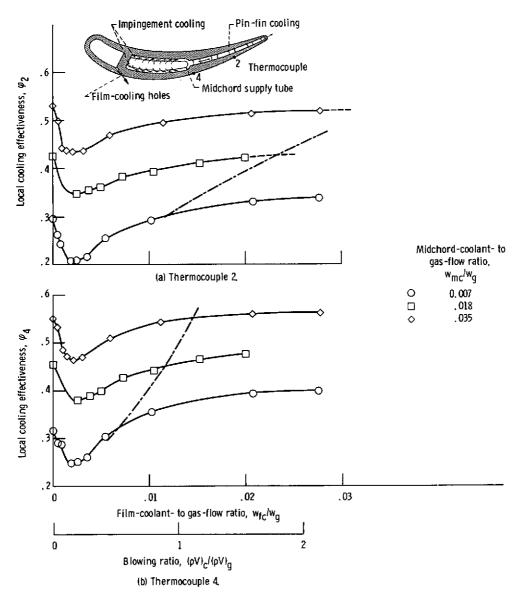
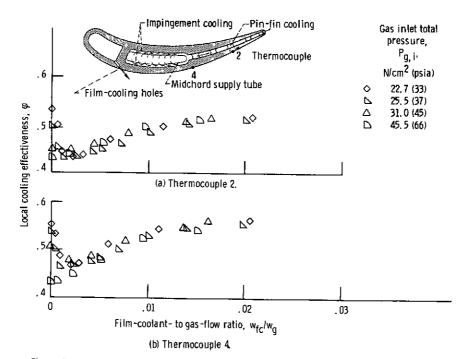
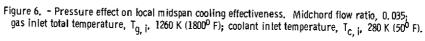
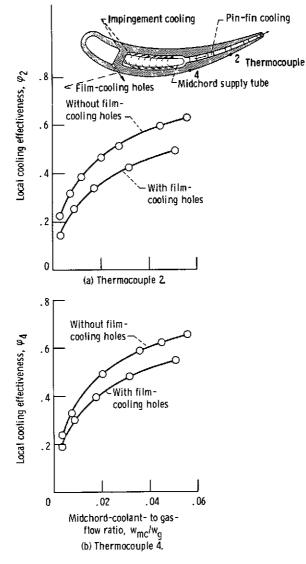
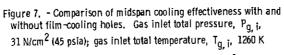







Figure 5. - Local midspan cooling effectiveness as function of film-cooling flow ratio. Gas inlet total pressure,  $P_{g,i'}$  22.7 N/cm<sup>2</sup> (33 psia); gas inlet total temperature,  $T_{g,i'}$  1260 K (1800<sup>9</sup> F); coolant inlet temperature,  $T_{c,i'}$  280 K (50<sup>9</sup> F).









(1800° F); coolant inlet temperature,  $T_{\text{C},\ \text{j}},\ 280$  K (50° F).

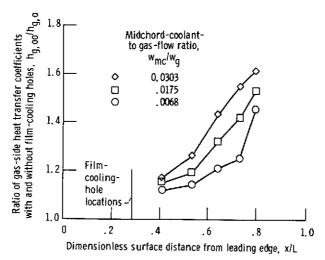
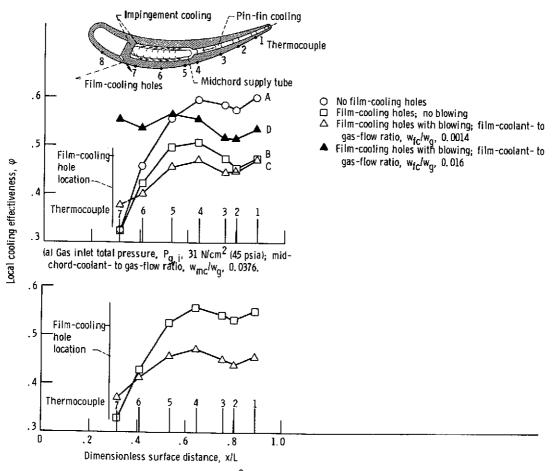




Figure 8. - Increase in gas-side heat transfer coefficients due to presence of film-cooling holes but without film-cooling flow.



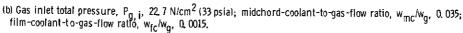



Figure 9. - Effect of film-cooling holes and blowing on vane cooling effectiveness.