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THE APPLICATION OF RIEGELS' RULE AND TIME-LIKE DAMPING

TO TRANSONIC FLOW CALCULATIONS

Donald Lee Herron
Texas A&M University
College Station, Texas

Abstract

Finite difference relaxation solutions of the nonlinear small

perturbation equations have proven reliable and successful in determin-

ing tiie transonic flowfields about thin airfoils. However, application

of the small perturbation approach to thick airfoils usually results in

an accuracy less than desirable. This paper discusses the incorporation

of Rie'els' Rule and time-like damping into the small perturbation ap-

proach ond their application to thick and thin airfoils in transonic flow.

Studies for thick and thin airfoils are presented. It is concluded that

Rie els' Rule and damping should both be included in small perturbation

transonic flow calculations.
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INTRODUCTION

In recent years, considerable research has been performed using trans-

onic small perturbation theory to solve the transonic flow past airfoils.

For example, Murman and Cole used this theory to compute the flowfield

around thin airfoils including cases with imbedded shocks. (1)

They solved the problem of mixed subsonic and supersonic flow regions

using a relaxation technique involving a mixed finite difference system.

A retarded difference technique was used in supersonic regions to incorporate

the mathematical properties of supersonic flow into the difference equation

representing the actual differential equation. This new method calculated

the velocity at each point in the flowfield and tested it to determine if

the flow was subsonic or supersonic at that point. The appropriate hyper-

bolic or elliptic type difference equation was then selected for that point

on the grid. This approach introduced the proper dependence of the differ-

ential equation throughout the flowfield and led to a set of simultaneous

algebraic equations results that could be solved in an iterative fashion

using a line relaxation algorithm. The value of the perturbation potential

was found along each vertical line on the grid and the whole process moved

in the positive x direction. In this procedure, shock waves appeared

naturally. The iteration ended when the process converged to a final

answer. Murman and Cole obtained accurate results for thin airfoils using

this approach.

Steger and Lomax used a successive line over-relaxation process in the

same manner as described by Murman and Cole, because this was more efficient

with regard to computing time. (2 The complete perturbation velocity poten-

tial equation was used along with a transformed coordinate system.
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The small perturbation equations have several advantages over the

total potential equations. The transformed coordinate system can be a

simple one, and the airfoil surface boundary conditions map the axis,

thus coinciding with the grid points, which means that mapping is not.

necessary. Also, the computing time is much shorter, typically by a factor

of two, than that required when the full equations are involved. The dis-

advantage of using the small perturbation equations is that the flowfield

calculations tend to become inaccurate and unstable if the flow is not

closely aligned with the x axis of the coordinate system because the small

perturbation equations are only truly valid for thin, sharp-nosed airfoils.

Krupp and Murman demonstrated this fact in the leading edge region of lift-

ing airfoils with high-nose curvature or at moderate to large angles of

attack.(3) In other words, these methods do not give good results for thick

airfoils.

The purpose of this paper is to deal with these problems by investigating

the stability of the small perturbation equations and developing methods of

controlling it and by investigating the incorporation of Riegels' Rule into

the small perturbation approach so as to permit the study of thick airfoils.

FORMULATION OF THE PROBLEM

The equation which describes the small perturbation potential in trans-

onic 2-dimensional flow is

he[o sd- i sct t o

where ¢ is defined such that

\JI ucVaqS)(
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Here U is the velocity component in the x direction, V is the velocity

component in the Y direction, and Vco is the free stream velocity.

The transformed coordinate system mentioned earlier puts x in terms

of E, and Y in terms of n. This transformation is performed in order

to save computational time by not having to recalculate the far field

boundary conditions periodically throughout the computation. Thus, the

infinite domain around the airfoil is transformed into a finite one, i.e.,

-1 < < 1 and 0 < n < 1, by

L - -'.4l 71 '-oan i(X,

Here, a and a2 are arbitrary constants used to control the stretching.

As a result of the transformation, Eq. (1) becomes

. 6 - z ((- -



The general boundary conditions are that at the surface of a body

the direction of the flow must be tangential to the solid surface, and

-r
the velocity potential must return to a value of 0 or -8 at an infinite

2

distance away from the airfoil, depending on whether or not these are

non-lifting or lifting conditions. Here, r is the circulation.

The finite difference equations are second-order in the elliptic

region a:nd first order in the hyperbolic regions and their form depends

u-on ,h. ±ich:: or not the flow at a given point is subsonic or supersonic.

For subsoni' flow, the equations use central difference schemes. A good

repesenttioi of these can be found in the paper by Murman and Cole

(Xef. 1). In supersonic regions, the central difference for pTI and 0n

are still uu-i but L uses backward differencing in order to currently

repre;at disturbance propogation in supersonic areas.

STSILITY iA.'iYS;IS OF THE TRANSONIC SMALL PERTURBATION EQUATION

In exaTrinin_! the iterative solution technique, the change from one

itera!:ion to another can be likened to that occuring during some ficticious

time step, At, Th'~lu the finite difference equation can be considered as

actually represe ' tinn an equation of the form

f the v;-lues obt;jined in a given iteration (denoted as ¢ ) are considered

to be nae and those from the previous iteration (denoted as ) as old, then

a and 6 depend upon the combination of new and old values actually used in

the difference equat:icns. As time (i.e. number of iterations) becomes large
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4st and 4nt become small and the solution approaches the desired steady

state solution.

Now Jameson has shown that if

s 6 T\ - _ +

Then the time dependent equation, Eq. (4), becomes

In this equation either S or N could be the time-like direction; however,

in the actual time invariant equation

the coordinate, 5, is the desired time-like direction in the supersonic

zone.(Note from Eq. (3) that in supersonic zone the coefficient, V, of

is negative). Hence, in Eq. (5) s is the desired time-like coordinate

and the coefficients of 4NN and 4TT must both be positive. This imposes

the condition that

in order> for the solution to be stable in supersonic regions. Obviously,

in order for the solution to be stable in supersonic regions. Obviously,



if the opposite were true, the equations would become unstable during the

iteration process due to N being the time like coordinate.

Thus, a stability analysis of the present problem, Eq. (3), requires

determination of the a and $ terms introduced via the finite difference

analogs. This can be accomplished by isolating the new and old O's in

the equation. Hence, the finite difference form of Eq. (3) used in the

solution technique can be written as

I I . I

C t ). ' CO.

--- q 2d('i)~C



where i and j represent the x and y coordinates of the point in question

on the grid. The symbol DEQ represents the finite difference equation and

the "+" markings indicate new values calculated in the iteration. Also,

is the form of the basic differential equation when it is written entirely in

terms of values from the previous iteration.

By rearranging the terms in Eq. (8), a form results from which a and 8

can be recognized. This form is3

-. y

Hence, a is represented by the coefficient of t while B is represented by

the coefficients of (Pyt . The subscript, t, stands for the time-like nature

of the relaxation process and At has been introduced to permit the formation

of pst and 4n t.

Divergence can occur if the requirement of Eq. (7) is violated. If
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the slopes are steep, the value of (- nt ) becomes large
fj + 1/2 j - 1/2

and B will most likely increase to a point where - VB2 might become larger

than a Also, if a fine grid is used, (- ) tends to
ti - 1/2 ti- 3/2

approach zero thereby reducing the value of a. It is seen that both of

these cases can and do contribute to the divergence instability problem.

The stability of Eq. (10) can be enhanced by introducing another t

term which essentially increases a and guarantees the satisfaction of Eq. (7).

The term and its differenced form are

where E is a damping constant specified to insure a sufficiently large a.

Adding this time-like damping term also helps to make the equation diagonally

dominant which also encourages convergence. Addition of the Riegels' Rule

will further insure convergence of the problem, and this will be discussed in

the next section.

However, it should be noted at this point that the damping used to

help convergence is time-like and that the t and nt terms go to zero as

the number of iterations become large. In this case the damping is not the

artifical viscosity type, a term which would appear as and which would

affect the final solution near shock waves.

RIEGELS' RULE

It has been shown in the previous section that large slopes on airfoil



surfaces can produce instability when using the small perturbation equations.

To obtain good results on thick airfoils, some technique needs to be used to

handle the slopes that will maintain stability in the problem and yet not

produce inaccuracy in the results. The investigations carried out for this

paper incorporated Riegels' Rule into the calculations. Riegels' Rule can

be stated as

where y' is the actual slope of the airfoil and y' is the slope used in thea c

computation. c is a selected constant. Riegels, a German fluid dynamicist,

determined that this relationship with c = 1 existed between the actual

slopes and the computational slopes when the airfoil was transformed to a

slit in the computational plane (5 ) . While small perturbation theory does

not transform the airfoil, it does represent it as a slit. Also, as can

be seen by Eq. (12), Riegels' Rule has little effect when slopes are small,

but it does make a blunt nosed airfoil appear sharp nosed. Thus, it makes

the computational airfoil more in line with the restrictions of small

perturbation theory.

Mike Hall (NPL, England) through private communication, has reported

that using a c value of 0.2 gave good results in many cases. Thus, this is

the value of c that was used in the cases reported in this paper.

It should be noted that present application of Riegels' Rule is truly

empirical and intuitive and that solutions for blunt airfoils may still be

in error very near the leading edge. However, the inclusion of Riegels' Rule
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might extend the validity of the small perturbation equations used in

transonic flow calculations.

RESULTS

The numerical calculation discussed in this section were designed to

investigate the need for inclusion of time-like damping and the applicability

and features of Riegels' Rule. Two grid sizes were used in these calculations,

a coarse grid with 19 points on each surface of the airfoil and a medium grid

with 39 mesh points on each surface.

The first case tested a six percent Biconvex airfoil at 10 angle of

attack on a coarse grid at Mach 0.9. Results were obtained with and without

Riegels' Rule, and no damping was used in either case. A plot of C at

different points along the chord is shown in Fig 1. Notice there are no

significant differences in the use or absence of Riegels' Rule. This lack

of difference is good because it shows that the incorporation of Riegels'

Rule into the solution scheme does not alter the results obtained for thin

airfoils, which were good without Riegels' Rule.

It is worthy of note that the pressure distribution shown in Figure 1

indicates the presence of shock waves on both the upper and lower surfaces.

Also since the critical C (value at local Mach one) is about -0.20, muchp

of the flow is supersonic. Finally, it should be recognized that the upper

and lower pressures are different and that this is a lifting case.

A nonlifting NACA 0006 airfoil was next investigated in a super critical

flow with Mm of 0.85 on the coarse grid system. Fig. 2 shows that there is

not much difference in the effect of C when Riegels' Rule is added to the

calculations. This trend is probably due to the use of the coarse grid,



and if a finer grid were used it is believed a greater difference could be

noticed. Basically, the problem is that when slopes are small y' is not
c

much different than y'. The course grid system does not place any points
a

near the leading edge where the slopes are large, and thus the lack of

effect due to Riegels' Rule was anticipated. Nevertheless, the results on

Figure 2 appear reasonable.

When a NACA 0012 airfoil is subjected to transonic flow conditions

at a freestream Mach number of 0.8 one observes a distinct effect in the

calculated results of the incorporation of Riegels' Rule into the small

perturbation equations. The resultant C distributions are plotted on
p

Fig. 3. Notice that values of C obtained with and without Riegels' Rule
p

are different near x = -.15. Since the grid used was coarse, these differences

are small; but they do indicate that Riegels' Rule can affect the results

obtained with thick round-nosed airfoils.

Up to this point, time-like damping was not included in any of the

calculations. The need for this damping arose when it was attempted to

use the medium grid size. Calculations using the medium grid produced

a divergent solution in a NACA 0006 airfoil at a freestream Mach number of

0.9. This divergence occurred even when Riegels' Rule was used in the

equations. Consequently, damping was added to the equations and this

resulted in convergence of the solution. A graphic demonstration of the

divergence problem and eventual convergence of C is portrayed in Fig. 4.

The damping constant, E, used in this case was 2.5. Notice the wide

differences not only in the magnitudes of the C values but also in the

shock location. Also the change in 4 from one iteration to the next in the
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divergent case was never less than 10- 2 , while in the damped case the

change in at the end of the calculation was less than 10- 5 . Also,

without adding the damping term, st, the incorporation of Riegels' Rule

would have been fruitless.

The importance of using both Riegels' Rule and time-like damping

is seen in Fig. 5. Here the flow about a NACA 0012 airfoil was computed

at an angle of attack of O0 at a Mach number of 0.8 on a medium grid. On

this particular plot, the solution to the full potential flow equations,

obtained by Dr. L. A. Carlson of Texas A&M University, is also included

and can be compared to the results obtained using the small perturbation

equations. It should be noted that without the addition of time-like

damping to the process, solutions for this case did not converge. This

point is significant because it shows the need for damping in calculations

for thick airfoils with small grid spacing. Figure 5 also shows the

importance of including Riegels' Rule when using small perturbation equations.

Using the equations without Riegels' Rule yields values of C considerably
p

different than those obtained using the full equations. However, by

incorporating Riegels' Rule into the small perturbation equations, a close

approximation of the full potential equation solution is obtained.

It should be noted that the solutions shown on Fig. 5 may not be

totally accurate due to the sensitivity of thick airfoil results to grid

size and grid spacing. Nevertheless, the agreement between the small

perturbation solution with Riegels' Rule and the solution from the full

equation serves to justify the usage of Riegels' Rule since both sets of

results were obtained using the same grid size and spacing. Thus, any

inaccuracies due to grid choice are present in both sets of calculations.
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It is hoped in the near future to further verify these results by

studying thick airfoils at angles of attacking using a fine grid. A

typical example would be an NACA 0012 at a = 2* and M. of 0.75.

CONCLUSIONS

Based upon these initial studies the following conclusions can be

stated:

(1) The inclusion of Riegels' Rule does not change or decrease the

accuracy obtained for small perturbation solutions for thin airfoils.

(2) The addition of time-like damping to equations enhances the stability

of the iterative process.

(3) In small perturbation calculations for the flow about thick blunt-

nosed airfoils, time-like damping is frequently required in order

to maintain stability and achieve a convergent solution.

(4) The inclusion of Riegels' Rule in the small perturbation solution

leads to results for blunt airfoils that are in agreement with

those obtained for the complete equations.

Thus, it is recommended that when using small perturbation methods for

transonic flow calculations about blunt,thick airfoils that Riegels' Rule

and time-like damping both be included.
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