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A GENERAL FORM OF THE CO-MOVING TENSORIAL DERIVATIVE

By Earle K. Huckins III and Richard E. Turner

Langley Research Center

SUMMARY

A general expression for the co-moving derivative of a tensor is derived. A vari-

able describing the coordinate velocity field is introduced. Time dependency of the

metric elements is expressed in terms of this velocity field. The resulting description

of motion is one of which the Eulerian and Lagrangian viewpoints are special cases. This

general description is useful in problems involving moving boundaries or discontinuities.

INTRODUCTION

The field equations (as opposed to the constitutive equations) of any continuum are

simply statements of the conservation of mass, momentum, and energy. These equations

can be written in a tensorial form (ref. 1) which is, by design, valid in any classical coor-

dinate system. The most common practice is to adopt an inertially fixed coordinate sys-

tem (Eulerian formulation) in which to describe the motion. Another classical, but sel-

dom used, approach is to fix coordinate points in identified particles of the continuum

(Lagrangian formulation, ref. 2). In most problems, the Eulerian approach is preferable

and completely satisfactory. However, in problems which contain moving boundaries,

free surfaces, or discontinuities, finite difference algorithms developed from an Eulerian

description become extremely complex at these boundaries. On the other hand, the

Lagrangian approach, which overcomes the problems associated with moving boundaries,

can lead to extremely complex grid networks in the presence of vorticity (ref. 3). Both of

these problems suggest the desirability of a mixed Eulerian-Lagrangian description which

can be obtained by introducing a completely general coordinate system. Time dependence

of the space metric introduces additional terms in the governing differential equations.

The equations of motion for surface flow are derived in reference 1 by considering time

dependent metric elements. By a similar approach, the methods can be extended to three-

dimensional problems.

The purpose of the present paper is to derive an equation for the tensorial co-moving

derivative of a tensor. In order to define the arbitrary coordinate system, a variable

equal to the velocity of coordinate points relative to the primary inertial system and

expressed in the arbitrary coordinate system, is introduced. Differential equations in
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time for the elements of the metric are expressed in terms of this variable. By using
this approach, it is possible to develop the field equations in any arbitrary classical
coordinate system.

SYMBOLS

A tensor quantity

Aj ... m components of a general tensor A of any orderpq.. .n

Ai(y) denotes that tensor A is resolved in yS

D mean divergence of coordinate velocity field

gij i,j element of the metric of ys

I identity matrix

( )I denotes evaluation in inertial coordinate system

ni  surface normal

Q scalar invariant

Si velocity of the nodal points of ys in primary inertial coordinate system

S i j  denotes covariant derivative of Si with respect to yJ

T matrix formed by elements Tij

Tij coefficient of covariant transformation law (see eqs. (7) and (8))

t time

ui  velocity of continuum relative to x s

V control volume for defining mean divergence

vi  velocity of continuum relative to yS
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xs  primary inertial rectangular Cartesian coordinate system

yS arbitrary coordinate system

6-  Kronecker delta

ijk permutation symbol

X inverse of matrix T, X = T - I

tij i,j element of the matrix X

b coordinate velocity potential

2i  angular velocity tensor

Repeated indices denote summation over the range of the index; Roman indices

(for example, i,j) denote a range of three; and Greek indices (for example, a,P) denote

a range of four.

ANALYSIS

In the analysis to follow, the co-moving derivative of a tensor quantity is defined,
and physically described, in an inertial rectangular Cartesian reference frame. Based on

this definition, an expression for the co-moving derivative in a completely arbitrary coor-

dinate system is formulated.

Description of Co-Moving Differentiation

Consider the motion and deformation of a continuum in an inertial rectangular

Cartesian coordinate system xs . Let Aj "' .m be the components of a tensor quantity A

representing a characteristic of the continuum. Assume that the components A1 ...m
pq...n

have a functional form given by

Aij...m = Ai... m(xs,t) (1)pq...n pq...n

The co-moving derivative of a variable is defined (ref. 2) as the total time derivative of

that variable evaluated for an identified particle in the continuum. That is, the co-moving

derivative, as the name implies, is the time derivative seen by an observer moving with
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the particle and is evaluated in an inertial frame. Assuming that AJ " m has continu-pq... n
ous first partial derivatives, the total time derivative can be expanded by using the chain

rule of differentiation and written

dAij...m 8A1J... m 8AiJ... m
pq... pq...n + pq...n dx s  

(2)
dt at axs dt

which is equivalent to

dAiJ....m aAiJ...m
pq ... pq...n + us ... n (3)
dt at axs

where u s are the rectangular Cartesian components of the continuum velocity in the

primary inertial frame. The first and second terms on the right-hand side of equation (3)

are commonly called the local and convective derivatives, respectively. This form of the

co-moving derivative describes the Eulerian viewpoint of change in A and is of funda-

mental importance in physical and mechanical laws.

General Form of the Co-Moving Derivative

In many problems, it may be advantageous (as will be discussed later) to express

physical laws (and hence, the co-moving derivative) in a completely arbitrary coordinate

system. In such instances, the form of the co-moving derivative must be expressed in
tensorial form. In the following development, a general form of the co-moving derivative
is derived for a covariant first-order tensor. These results are then generalized to mixed
tensors of any order.

Consider a completely arbitrary coordinate system yS superimposed on the inertial
space. Typical parametric line segments for such a coordinate system are shown in fig-
ure 1. Consider also an identified particle of the continuum moving about in this space.
Assume that associated with this particle is a first-order covariant tensor A whose
components As have continuous first partial derivatives. Let As(x) and As(y)
denote covariant components of A in the xs and yS coordinate systems, respectively.
Treating time as an invariant, the complete transformation (including time) between the
components can be written

A(y) = A (x) (4)
ay
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ARBITRARY COORDINATE SYSTEM

y Sy (x ,t)

x

PRIMARY INERTIAL SYSTEM

Figure 1i.- Coordinate systems.

where

4 4
y = x =t (5)

This transformation can also be written in the partitioned form

where

T - (7)

I- yI

and Roman indices have a range of three and denote spatial components. Therefore,

Ai(Y) = Wij Aj(x) (8)

That is, the spatial components (covariant) of A transform independently of the fourth

component. Note, however, that the fourth component does not transform by invariance.

(6)
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Now consider the contravariant components of A. These components transform

according to

A~ (y) = ay A(x) (9)
a x

which can be written

Ai(y) Iij 5at A(x)
I- - - - - - - (10)

A0 (y) -A (x)(

where

ayiij =  (11)
8ax

Assuming that the coordinate transformation has a nonvanishing Jacobian, it follows that

ayo axa 0- 6 (12)
axy ay Y

and therefore

X=T

axi 8 xi ayJ (13)

at s 8  at

where ys indicates ys was held constant during the partial differentation. Note also

from equation (10) that the fourth covariant component transforms by invariance. However,
the spatial components transform independently of the fourth component if, and only if,
either the fourth component is identically zero or the coordinate transformation is time
independent. Since time dependence of the transformation is an essential element in the

6



present analysis and a restriction to spatial components is desirable, the analysis will be

limited to those tensor quantities whose fourth component is identically zero. This

restriction eliminates consideration of velocities relative to moving coordinate systems.

However, velocity relative to the primary inertial frame and force vectors are admissable

and of primary importance in formulation of the field equations.

Based on the above discussion, the transformation of the spatial covariant compo-

nents of A can be written

Ai(x) = Xij Aj(y) (14)

Since (for a time invariant coordinate transformation) time differentiation does not alter

tensor character, the co-moving derivative of Ai(x) is a tensor and can be expanded in

the form

dA.(X) A.(y) aA(y[.
i( Xij ( + v yk  + A (y) + vkx (15)

dt : at ayk at ak

where the vk are defined by vk dyk and are the contravariant components of the
dt

continuum velocity relative to the arbitrary coordinate system. The components of this

derivative in the arbitrary coordinate system are given by

d.(y)), dA.(x)
I T- i (16)

dt j dt

where ( ) indicates that the time differentiation was performed in an inertial coordinate

system. Substituting equation (15) into equation (16) gives

dA( Ai v s Ai(y) vs A (17)(dt at s .t s Ak(y)
5I i at
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Equation (17) can be rearranged and written as

(dA.(y) aA(y) aA.(y) ax 1 a
d + Vs + TBA ij JKA( +kj Ak(y) (18)

SaI y s  T i j y s  i j at

t ay k y kqy)

As is shown in appendix A, the bracketed term in equation (18) is the covariant derivative
of the quantity Ai(y). Therefore,

dA (y) Ai(y) ax.
dt I - - t + v s A i(Y)s + Ti j  jk A k (y )  (19)

The last term in equation (19) accounts for time dependence in the metric of the
arbitrary coordinate system. Since, by definition

Wij Xjk =I (20)

then,

ij at at jk (21)

Also, since

ax
Tij ax (22)

ayi

then,

aTa ax
SI (23)

aty Syi at
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Therefore,

T=8 ( 8  (24)
13 at a \\at ) jk

Since the arbitrary coordinate system must be specified in some manner, a new

variable S is introduced and is defined as the velocity of coordinate points of the arbi-

trary coordinate system relative to the primary inertial coordinate system. In the arbi-

trary coordinate system, the contravariant components of S are

Si = - (25)
at xs

Therefore,

ax3 ax ay s  Ss  (26)at yS a = T sj  (26)
at YS ays at xs sj

and substituting equation (26) into equation (24) results in:

ax. k 8 T
T = - S + iSs X (27)

at S a i ay i

Again, as is shown in appendix A, the term on the right-hand side of equation (27) is the

covariant derivative of the coordinate velocity; that is,

ax

ij at ys - li (28)

Therefore, by substituting equation (28) into equation (19), the co-moving derivative

becomes
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d + vS Ai Y)s - Skli Ak(Y) (29)

In order to carry out the covariant differentiation in equation (29), elements of the
metric must be determined. Elements of the metric can be related to the coordinate
velocities through a differential equation as follows. The required metric elements of
the y coordinate system can be written

8xa 8x" a
gij - TikTjk (30)

Differentiating gives

- Tik + k T(31)
at aik  t at jk

From equations (21) and (28),

aT
jk a = skl (32)

which can be written

8T
S = Tkj Skli (33)

Substituting equation (33) into equation (31) and reducing gives

gag i g Splj + gq Sq11  
(34)

which is equivalent to

8g..
S = Sij + Sj1i (35)
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The equivalent form of the co-moving derivative (eq. (29)) for a first-order con-

travariant tensor can be formed as follows. Let Q be a scalar invariant. For a scalar,
which transforms by invariance, the co-moving derivative (eq. (3)) reduces to

dQ 8Q +v QI (36)
dt at

Consider a particular scalar generated by the inner product

Q = Ai(y) Ai(y) (37)

By generating the co-moving derivative of Q by product differentiation and substituting

from equation (29) for the time derivative of the covariant components of A, the co-moving

derivative for the contravariant form is found to be

ay + vs A(y) + S 11  Ak(y) (38)

The expressions for the co-moving derivatives (eqs. (29) and (38)) can be generalized

to any order tensor by a process of inner product formation and product differentiation.

For instance, let

Bi = Aij A' (39)

Then,

dBi  dAj  dAi
A.. + A dA (40)

dt 1J dt dt

The time derivatives of AJ and Bi can be expanded by using equations (29) and (38).

From this result, the co-moving derivative of a second-order covariant tensor is found to

be

8A. . (y)
\ t .t + sJ Aij() s - Si Akj(y) - sk 1 Aik(Y) (41)
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By using a similar procedure, the results can be completely generalized to a mixed
tensor of any order. This result can be written

dA... m(y) 8A1J...m (y) .. ... m(y)

pq...n _ pq... n ...m A ...
dt t pq...n (y )  + pq...n

+ 3 Ai...m(y) + . + Sm Aij... ) (42)
pq....n pq...n (42)

- SPp A3...m(y) - S1 A1i...m)j 
-.

q...n p...n

-SPIn Aj...m(y)

RESULTS AND DISCUSSION

In the discussion to follow, the utility of the generalized co-moving derivative is
demonstrated. Eulerian and Lagrangian descriptions are shown to be specialized cases
of the generalized form. The significance of coordinate velocity derivatives for a rotating
Cartesian coordinate system is discussed. Finally, application of the generalized form is
described.

The Eulerian viewpoint is generated by requiring the arbitrary coordinate system to
be time invariant. That is, let

Si 0 (43)

Under these assumptions the time derivative is evaluated at an inertially fixed point and
the co-moving derivative reduces to

dA l ... m(y) 8A...m(y) ..

dt /I at pq...n is(44)

In the Lagrangian formulation, coordinate points in the arbitrary coordinate system
follow particles of the continuum. This viewpoint can be generated by assuming that the
continuum is stationary in the arbitrary coordinate system
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vs = 0 (45)

and that the coordinate points move at the continuum velocity ui; that is,

Si = ui  (46)

Note that the continuum velocity (and therefore, the coordinate velocity) is resolved in the

arbitrary coordinate system. Under these assumptions, the co-moving derivative

becomes

dAJ...m(y) 8A'...m A
... = pq..n Ar...m, Air...m m A1...r (y)
dt at r pq...n Ir pq...n r pq...n

- us AJ...m() - us AiJ...m( - - u Aj...m(y) (47)
Jp sq...n jq ps...n In pq...s

As an additional example, let the arbitrary coordinate system be a rotating rectan-

gular Cartesian coordinate system. In order to examine the significance of the coordinate

velocity, assume a rigid continuum with body fixed axes such that

vs  0 (48)

Consider the co-moving derivative of the velocity dui/dt at a point (yl, y2 , y3) in the

body axes system. For this situation the co-moving derivative becomes

du au +S i up (49)

dt at

where

Si = 8' + sk (50)

Since the arbitrary coordinate system is Cartesian,

i) 0 
(51)

13



Therefore, the co-moving derivative becomes

i_ u S
du + -- u (52)

dt at ay s

For a right-hand coordinate system and constant angular velocity Qi

Si = Eijk Rj yk (53)

Therefore,

du au + Eijk S2 uk (54)
dt at

which is equivalent to the classical result obtained using vector analysis.

Formulation of the equations of change in a completely arbitrary coordinate system

is particularly useful in problems which involve moving boundaries, discontinuities, or

free surfaces. By locating a parametric line along the moving boundary, boundary con-

ditions become trivial and the computational algorithm is simplified. As an example,
consider the flow of blood through a single chamber of the heart. This system is typified

Moving chamber walls

Flow in Flow out

Figure 2.- Typical open system with moving boundaries.

in figure 2. This flow problem could be formulated in an Eulerian sense by covering

the region of interest by an appropriate time invariant coordinate system. Figure 3

shows a typical approach. However, for fixed grid spacing, numerous problems are

associated with boundary conditions. These problems are particularly complex when

the boundary is moving. The problem of boundary conditions could be eliminated by

adapting a Lagrangian formulation. However, numerous computation problems arise

in the presence of vorticity which tends to twist the parametric lines into complex over-

lapping geometries.
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Rectangular
Cartesian
coordinate system

Figure 3.- Typical Cartesian coordinate frame.

As an alternate approach, consider a time varying coordinate system for which the

boundary is along a parametric line. This condition is generated by requiring that on the

boundary

n is = ni  (55)

where ni is the outward boundary normal and ui is the continuum velocity at the

boundary.

In addition to locating a parametric line along the boundary, the coordinate velocity

field interior to the boundary must also be constructed. One simple method of defining

this geometry is through scaling of the boundary surface. Under this scheme, a typical

representation of the arbitrary coordinate system is shown in figure 4. In this example,

s.

I/ \I
I 1 i ) u I

, --. ,

Figure 4.- Representation of arbitrary coordinate system.

orthogonality between the chamber normal and scaled chamber tangential lines is

assumed.
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An alternate approach for specifying the internal geometry is to generate an
irrotational coordinate velocity field. Let the coordinate velocity be defined as the
gradient of a scalar

Si g ij (56)

where D is the coordinate velocity potential. The divergence of this vector field is
given by

Sii = gij ij (57)

The mean divergence of the vector field over the region is given by

D = ni Si dA (58)

Equation (58) is evaluated in units consistent with the moving coordinate system. Assume
that the divergence is constant throughout the region; therefore

S'ii = D (59)

or

glJ i ij = D (60)

Equation (60) can be solved for the coordinate velocity potential and hence (using eq. (56))
for the coordinate velocity field. The methods described above for generating the coor-
dinate velocity field are illustrated in appendix B.

As an additional example, consider the problem of atmospheric flow over complex
terrain. In order to simplify the boundary conditions, a coordinate system can be defined
for which the terrain is a parametric surface. For problems that are strongly condi-
tioned by the time-dependent height of the inversion layer, it may be convenient to define
this layer as an additional parametric surface of the coordinate system. As a result, the
coordinate system has time-dependent metrical properties. Scaling between the paramet-
ric surfaces is arbitrary. A convenient choice is exponential scaling in order that the
coordinate stretching will approximately parallel the atmospheric density variation. This
coordinate system is illustrated in figure 5.
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Time-dependent inversion height

Terrain

Figure 5.- A representation of scaled parametric surfaces.

CONCLUDING REMARKS

An expression for the co-moving derivative of a tensor has been derived. The

expression derived is valid for coordinate systems having time-dependent metric ele-

ments. Time dependency of the metric elements was related to a variable describing

the coordinate velocity. The resulting theory represents a generalized viewpoint (of

which the Eulerian and Lagrangian viewpoints are limiting cases) of the field equations of

continuum mechanics and is useful in problems containing moving boundaries or

discontinuities.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., January 31, 1974.
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APPENDIX A

A DESCRIPTION OF COVARIANT DIFFERENTIATION

IN TERMS OF TRANSFORMATION LAWS

The purpose of this appendix is to show how the covariant derivative can be
expressed in terms of the elements of the tensor transformation law and their derivatives.
This development is similar to a related discussion in reference 4.

Consider a first-order covariant tensor Ai. Let Ai(x) and Ai(y) be components
of the tensor Ai in an inertial rectangular Cartesian coordinate system xi and an
arbitrary coordinate system yi, respectively. Assuming that Ai(y) has continuous
first partial derivatives, the covariant derivative is defined as

A(Y) a - Ap(y) (Al)

The equivalent definition of the covariant derivative of the associated contravariant first-
order tensor is

A(y) s + AP(y) (A2)

The Christoffel symbol of the second kind can be written as

i = gpr i s r] (A3)

where the Christoffel symbol of the first kind is given by

g 1 i sr gis (A4)
S \ay ry 8yr/

An element of the metric can be expressed in terms of the elements of the covariant
transformation law and written as
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APPENDIX A - Continued

gij = Tik Tjk (A5)

where

Tik a (A6)
ik yi

Assuming continuous first partial derivatives

Tqk) = yq(Tik) 
(A7)

the Christoffel symbol of the first kind becomes

i s, r] = T i q  (A8)
S rqy s

Consider the matrix T formed by the elements Tij. Let Xij be an element of the

inverse of this matrix. Then,

Xkr Trq = I (A9)

Note also that, by definition,

gpr g = 6p  (A10)

By substituting equation (A8) into equation (A3), the Christoffel symbol of the second kind

can be written as

= Tgpr T (All)

which, by substituting equations (A9), (A5), and (A10), reduces to

P p Tiq (A12)
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APPENDIX A - Concluded

As a consequence of equation (A9), the Christoffel symbol of the second kind can also be

written as

= iq p (A13)
i PS)8ys

Therefore, for a covariant first-order tensor, the covariant derivative becomes

8Ai(y) axqp
Ai(Y) Y +Tiq Ap(y) (A14)

s ysays

An equivalent expression for a contravariant tensor can be deduced from equation (A2).

The result can be written

A += +qi B AP(y) (A15)
ay ay
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APPENDIX B

THE CO-MOVING DERIVATIVE OF VELOCITY IN A HARMONICALLY

PULSATING TWO-DIMENSIONAL POLAR COORDINATE SYSTEM

Consider the two-dimensional region bounded by a harmonically pulsating circle.

Over this region, define an orthogonal coordinate system in which the bounding circle is

a parametric line and the family of similar parametric lines are generated by linear

scaling. This geometry is shown in the following sketch:

2

y

Assume that the bounding circle has the following harmonic behavior:

R = Ri1 + f sin(wt - a)] (B 1)

where the mean radius R, the amplitude of the oscillation f, the frequency w, and the

phase angle a are constants.

In this simple example, it is possible to write down a coordinate transformation and

determine the metric elements directly. The coordinate transformations can be written

x 1 = (Y R cos y 2

(B2)

x2 = lR sin y2

where R is a function of time and where ylb is the yl coordinate at the boundary

(a constant). By definition, the metric elements are
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APPENDIX B - Continued

g12 = g2 1 
= 0

2

11

(B3)

-2

g22 R 1
Yb

Note that these elements are time dependent; that is,

2
gl11 2 R R

at 1 at

(B4)

2
ag22 2 R B

at 1 at

For a two-dimensional time-dependent polar coordinate system, components of the

coordinate velocity are

S1 ) OR

- ) (B5)

S2  0

In general, the co-moving derivative of the velocity ui is

22kiui a ui + I u (B6)
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APPENDIX B - Continued

For a two-dimensional polar coordinate system, all Christoffel symbols vanish except the

following:

(B7)

2)= -yl(2}

Therefore, the components of the co-moving derivative become

dul 8u' 18u1 u 2 /8v1 1 2 u R ()l !o_+ v 10-+ v v -  u) + - (B8)
dt 8t y 2 R at

and

_du2) u2  1 u 2 u2 +v2 au2  v2  (B9)

dtI t y 1 y 2  y 2

It is interesting to note that the harmonically pulsating polar system is also gen-

erated from the assumptions of an irrotational coordinate velocity field and constant

divergence over the region. The velocity of the boundary is equal to the time derivative

of the radius transformed to the yS coordinate system. The components are

1 = b aR

R at (B10)

Therefore, the mean divergence for the bounded region is given by

D =2 1 aR (B11)
R at
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APPENDIX B - Continued

As a result,

g '], 21 8R (B12)13 R =

The initial values of the metric elements are defined by the initial coordinate geom-
etry. Assume that, initially, the parametric lines are concentric circles. Therefore, at

t = 0,

912 = g2 1 = 0

R)2
11 1

(B13)
2

Expanding equation (B12) gives

122 = 2 1R (B14)
R Dt

which has the solution

2

S= b + Constant (B15)

The corresponding velocity field is

S 1 = g 1 1 (B16)

which becomes

1 il 1 R
S = yR t (B17)
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APPENDIX B - Concluded

Also,

S2  22 2 (B18)

which becomes

S2 = 0 (B19)

Note that this velocity field is equivalent to the one originally specified.

Time variation of the metric elements is given by

ij = S. (B20)
at 11ij si

which gives

ag 1 1  R aR-2

at 2 at

2

ag22 2 R i R  
(B21)

at 1 at

ag 12  ag 12

at at

Since these derivatives are equivalent to the derivatives obtained in equations (B4), the

coordinate velocity field is identical to the one specified initially.
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