VOLUMES $1 \sim$

NASA
 DIRECTORY OF OBSERVATION STATION LOCATIONS

THIRD EDITION
NOVEMBER 1973

GODDARD SPACE FLIGHT CENTER GREENBELT, MARYLAND

NASA DIAECTORY DF OBSERVATION STATION
 LDCATIONS

VOLUME 1

Third Edition

November 1973

Prepared by
Computer Sciences Corporation
6565 Arlington Boulevard
Falls Church, Virginia 22046
for
Operational Orbit Support Branch
Operations Support Computing Division
Goddard Space Flight Center
Greenbelt, Maryland 20771

ERRATA
This printing includes corrections through July 1974.

ABSTRACT

This directory contains geodetic information for NASA tracking stations and for observation stations cooperating in NASA geodetic satellite programs.

A Geodetic Data Sheet is provided for each station, giving the position of the station and describing briefly how it was established. Geodetic positions and geocentric coordinates of these stations are tabulated on local or major geodetic datums and on selected world geodetic systems.

The directory is in two volumes. Volume I covers the principal tracking facilities used by NASA, including the Spaceflight Tracking and Data Network, the Deep Space Network, and several large radio telescopes. Positions of these facilities are tabulated on their local or national datums, the Mercury Spheroid 1960, the Modified Mercury Datum 1968, and the Spaceflight Tracking and Data Network System. Volume II contains observation stations in the NASA Geodetic Satellites Program and includes stations participating in the National Geodetic Satellite Program. Positions of these facilities are given on local or preferred major datums, and on the Modified Mercury Datum 1968.

Background and reference material for the directory is in Volume I. It includes discussions of geodetic surveys; a review of geodetic concepts, survey methods, and accuracies; descriptions of the major geodetic datums and the status of the developing world geodetic systems; and formulas and constants.

NOTE

Comments on or requests for this directory should be addressed to:

NASA Directory
Attn: J. Dunn
Operational Orbit Support Branch
Code 572
Goddard Space Flight Center
Greenbelt, Maryland 20771

> CONTENTS

VOLUME 1

Page
Abstract iii
Table of. Contents. v
List of Illustrations viii
List of Tables ix
Preface xi
IN.TRODUCTION 3
PART A - BACKGROUND AND REFERENCE MATERIAL
SECTION 1 - SOME ELEMENTS OF GEODESY 9
1.1 Introduction 9
1.2 Reference Surfaces 9
1.3 Geodetic Surveys 11
1.4 Geodetic Datums 15
1.5 Datum Establishment 17

1. 6 Datum Connections 19
SECTION 2 - GEODETIC ACCURACIES 21
2.1 Introduction 21
2.2 Horizontal Surveys 21
2.3 Vertical Surveys 24
2.4 Astronomic Observations 26
2.5 World Systems 27
SECTION 3 - DEVELOPMENT OF THE MAJOR GEODETIC DATUMS 29
3.1 Introduction 29
3.2 North American Datum of 1927 30
3.3 European Datum (Europe 50) 33
3.4 Indian Datum. 35
3.5 Tokyo Datum. 37
3.6 Australian Geodetic Datum 38
3.7 South American Datum 39
2. 8 Arc Datum (Cape) 41
3.9 Pulkovo Datum 1942 42
3.10 British Datum 43
3. 11 Adindān Datum 44
3.12 World Geodetic Systems 45
SECTION 4 - GEODETIC FORMULAS AND CONSTANTS. 49
4.1 Formulas 49
4. 2 Datum Constants. 52
CONTENTS
Page
4.3 Mercury Spheroid 1960 54
4.4 Transformation Constants for Modified Mẹrcury Datum 1968 54
SECTION 5 - CRITERIA FOR STATION POSITIONING 55
5.1 Introduction 55
5.2 Survey Procedures 55
5.3 Documentation of Surveys 58
REFERENCES 60
PART B - NASA SATELLITE TRACKING STATIONS
SECTION 6 - DESCRIPTION OF NASA TRACKING FACILITIES. 65
6.1 Introduction 65
6.2 Unified S-Band System 65
6.3 C-Band Radars 70
6.4 Goddard Range and Range-Rate System 71
5. 5 26-Meter Data Acquisition Antennas 73
6.6 12-Meter Data Acquisition Antennas 74
6.7 Minitrack Network. 75
6. 8 SATAN Antennas 76
6.9 Deep Space Network. 76
7. 10 Radio Telescopes 78
STATION INDEX - NASA SATELLITE TRACKING STATIONS 83
TABULATIONS OF STATION COORDINATES
Positions on Local or Major Datums 89
Positions on Modified Mercury Datum 1968 99
Positions on Mercury Spheroid 1960 109
Positions on Spaceflight Tracking and Data Network System 119
NOTES FOR THE GEODE TIC DATA SHEETS 129
GLOSSARY OF GEODETIC TERMS 137
GEODETIC DATA SHEETS 141
Unified S-Band AntennasC-Band RadarsGoddard Range and Range-Rate Stations26-Meter Data Acquisition Antennas12-Meter Data Acquisition AntennasMinitrack StationsSATAN Antennas
Deep Space Network
Radio Telescopes
Launch Sites

C O N T E NTS

VOLUME 2

Page
PART C - GEODETIC SATELLITES OBSERVATION STATIONS
SECTION 7 - THE GEODETIC SATELLITES PROGRAMS. 3
7.1 General. 3
7.2 Description of Observation Networks 5
7.3 Instrumentation 16
STATION INDEX. 27
TABULATIONS OF STATION COORDINATES
Positions on Local or Major Datums 39
Positions on Modified Mercury Datum 1968 63
NOTES FOR THE GEODETIC DATA SHEETS. 87
GLOSSARY OF GEODETIC TERMS 95
GEODETIC DATA SHEETS FOR OBSERVATION STATIONS 99
MOTS 40 Cameras - 1000(See Edge Index)Goddard Range and Range-Rate Stations - 1100Doppler Tracking Stations - 2000PC-1000 Camera Stations - 3000C-Band Radar and Optical Calibration Stations - 4000SECOR Stations - 5000
BC-4 Camera Stations - 6000
NASA Special Optical Network - 7000
International Stations - 8000
SAO Optical and Laser Stations - 9000

ILLUSTRATIONS

Page

VOLUME I

Figure 1 Major Geodetic Datum Blocks 31
Figure 2A NASA Satellite Tracking Sites 66
Figure 2B NASA Satellite Tracking Sites 67
Figure 3 Deep Space Network 68
Figure 4 Unified S-Band 26-Meter Antenna 69
Figure $5 \quad$ Unified S-Band 9-Meter Antenna 70
Figure 6 FPQ-6 and FPS-16 C-Band Radars 71
Figure 7 Goddard Range and Range-Rate Facility (GRARR-1) 72
Figure 8 Goddard Range and Range-Rate Facility (GRARR-2) 73
Figure 9 26-Meter Data Acquisition Antenna 74
Figure 10 12-Meter Data Acquisition Antenna 75
Figure 11 Minitrack Antenna 75
Figure 12 DSN 26-Meter HA-Dec Antenna 77
Figure 13 DSN 64-Meter Antenna. 78
VOLUME II
Figure 1 Doppler Tracking Stations 7
Figure 2 PC-1000 Camera Stations 8
Figure 3 SECOR Stations 9
Figure 4 BC-4 Camera Stations 10
Figure 5 NASA Special Optical Network. 12
Figure 6 International Stations 13
Figure 7 SAO Optical \& Laser Stations 14
Figure 8 Doppler Mobile Van 16
Figure 9 Doppler Geoceiver 16
Figure 10 SECOR Station 17
Figure 11 Baker-Nunn Camera 18
Figure 12 BC-4 Camera 19
Figure 13 MOTS 40 Camera 21
Figure 14 PC-1000 Camera. 22
Figure 15 SAO Laser 23
Figure 16 Goddard Mobile Laser 24

TABLES

Page
VOLUME I

Table 1	Spheroid Constants .	52
Table 2	Reference Datums .	53
Table 3	Antenna Characteristics .	81

VOLUME II

Table 1 Description and Mission of Geodetic Satellites. 4
Table 2 Camera Characteristics 26

Page Intentionally Left Blank

PREFACE

This directory summarizes the geodetic data available for NASA tracking facilities and for observing stations participating in NASA programs in satellite geodesy. The information has been furnished by many agencies in the United States and other countries, sometimes in detail, but other times with unsatisfying brevity. The user of satellite information must know the quality of the positional data he uses. Precise tracking operations, datum ties, and determination of a unified world geodetic system require unambiguous definition of each station from which observations are made, the coordinate system in which it is computed, and the spheroid to which it is referred. It is unsatisfactory to provide this information in tabular form, and inconvenient to use if all the data in the extended reports are included. The data sheets in this directory are intended to make the essential information easily available in uniform format, and to show when it is lacking.

The third edition of the directory incorporates information received up to September 1973. Changes from the second edition may be identified by the date in the lower right corner of the data sheets. A few stations have been dropped for which useful tracking data are not and will not be on record. Many stations have been added. Indexes, maps, and tabulations have been revised to include the new data. The text has been reviewed to incorporate improved information.

Additions and changes to the directory will be issued as observation stations are added and improved survey information is received.

Page Intentionally Left Blank

VOLUME I

PART A - BACKGROUND AND REFERENCE MATERIAL PART B - NASA SATELLITE TRACKING FACILITIES

NASA DIRECTORY OF OBSERVATION STATION LOCATIONS

INTRODUCTION

The NASA Directory of Observation Station Locations provides geodetic locations and related information for observing stations of primary interest to satellite tracking operations and other NASA programs, and for observation stations participating in the National Geodetic Satellite Program (NGSP) and the NASA Geodetic Satellites Program (NGP). The directory contains nearly 400 stations. with many different types of electronic and optical systems. Among them are range and range-rate trackers, Doppler trackers, radio and laser ranging systems, and stellar cameras.

The directory is in two volumes. Volume I covers the NASA Network Facilities, the Cape Kennedy launch pads, the Deep Space Network, and radio telescopes cooperating in NASA programs. Volume II contains the observation stations participating in the NGSP, the NGP, and other programs. These include the Minitrack Optical Tracking Network, U.S. Navy Doppler stations, U.S. Air Force PC-1000 cameras, C-Band radars, U.S. Army Secor stations, National Ocean Survey BC-4 cameras, the Goddard Special Optical Network, international participants, and the Smithsonian Astrophysical Observatory optical network.

The directory is in three parts: Part A, section 1 through 5, contains background and reference material to aid in using the Geodetic Data Sheets and coordinate tables. It includes a summary of basic geodetic concepts, and descriptions of the principal geodetic datums referred to in satellite tracking and geodetic programs. Part B contains a description of NASA tracking facilities, and the coordinate tables and Geodetic Data Sheets for them. Part C is separated in Volume II; it contains equipment descriptions, the coordinate tables, and Geodetic Data Sheets for observing stations participating in the satellite geodesy programs.

Positions of NASA tracking stations in Volume I are tabulated on their local datums, on the Mercury Spheroid 1960, on the Modified Mercury Datum 1968, and on the Spaceflight Tracking and Data Network System. In Volume II positions are listed on local or preferred datums, and on the Modified Mercury Datum 1968. A brief explanation of the coordinate systems follows:

Local datums. In the local (or major) datum tabulation the coordinates are based on the spheroid of the datum on which the geodetic position is furnished. Geodetic latitude, longitude, and height, and geocentric rectangular coordinates are listed. Mercury Datum 1960. This world geodetic system was derived in 1959 by the U. S. Army Map Service from available astro-geodetic, gravimetric and satellite data. Its principal elements are a semi-major axis of 6378166 meters, a flattening of $1 / 298.3$, and a set of transformation constants by which it was related to the major geodetic datums (North American, European, Arc, and Tokyo). The Mercury Datum was adopted by NASA in 1960 for Manned Space Flight Operations. The shift constants are now outdated for worldwide tracking operations, but since the spheroid is still used for certain analytic programs within NASA, coordinate tabulations are given for it in this directory, but utilizing the shifts developed for the Modified Mercury Datum of 1968.

Modified Mercury 1968. This world geodetic system is based on a combined analysis of terrestrial and satellite data available in 1967. The system incorporates astro-geodetic and surface gravity data with results from Baker-Nunn camera and Doppler observations. This system retains the $1 / 298.3$ flattening of Mercury 1960, but has a sixteen meter shorter semi-major axis (6378150 m). Transformation constants to relate all the major geodetic datums and many minor datums to the system are provided. Modified Mercury 1968 Datum has not been adopted by NASA but is accepted for use in this directory as an interim system, pending establishment of a unified world geodetic system from the geodetic satellite programs.

Spaceflight Tracking and Data Network System (STDN). These are the official positions used by NASA for spaceflight operations. This is a worldwide geodetic system with transformations available to most major local geodetic datums. It is an outgrowth of the Mercury 1960 Datum, and is referenced to its spheroid ($a=6378166$ meters, $f=1 / 298.3$). Results from Apollo, Mariner-Mars, ERTS, GEOS, and other missions have contributed to the definition of the geodetic locations within the system. Continuing analysis of tracking and geodetic data may cause revisions to be made to this system as new tracking data are obtained and additional geodetic refinements are made.

Other coordinate reference systems are used by various tracking networks for specific spaceflight missions. The set of station locations current for a particular network may be obtained from the appropriate network management.

The Geodetic Data Sheets are the principal contents of the directory. The text is intended to make them more useful, and the tabulations are based on them. An effort has been made to include the most recent and accurate information available. Thiṣ is a continuing process, and as new or better data are received, additions and revisions to the sheets will be distributed.

Page Intentionally Left Blank

PART A - BACKGROUND AND REFERENCE MATERIAL

Page Intentionally Left Blank

SECTION 1

SOME ELEMENTS OF GEODESY

1.1 INTRODUCTION

To establish a world network for satellite tracking, and to minimize the position error of each tracking facility with respect to others, each station in the system should be accurately located on the earth's surface and precisely referenced to a geodetic datum.

Positioning as it applies to a tracking station may be considered as involving two separate tasks: the precise positioning of each station relative to its local or national triangulation network; and the determination of datum relationships to permit referencing all stations to a common worldwide system. The Geodetic Data Sheets in this directory contain data to define the position and orientation of each facility. In this section certain basic geodetic concepts are briefly described to permit a fuller understanding of the data, their limitations, and the problems of obtaining the accuracy required for satellite tracking operations. More detailed information can be obtained from the references listed.

1.2 REFERENCE SURFACES

Three different reference surfaces are involved in determining positions on the earth: the actual topographic surface of the earth, the geoid, and the reference ellipsoid. All are important in the development of geodetic control, although there are limitations imposed on the use of each by practical considerations or requirements for precision.

The first, the earth's topographic surface, is irregular with its variety of land forms, mountains, valleys, and ocean deeps; however it is the surface on which field geodetic measurements are usually made.

The field geodesist reduces his measurements and refers his observations to the geoid. The geoid is an equipotential surface resulting only from the earth's gravitation and rotation. It is everywhere normal to the gravity vector and coincides with the smooth
but undulated surface to which mean sea level of the earth would adjust if free of all external disturbing forces, and which may be imagined to extend through the continents. Due to the complex distribution of earth crustal materials and the irregular masses of varied densities below the surface, the gravitational force varies in an anomalous and unpredictable manner from place to place, not only in amount but in direction. Unlike the topographic surface, which departs from the ellipsoid by several kilometers at slopes of almost any amount, the geoid scarcely deviates from the ellipsoid by as much as a hundred meters, at slopes rarely exceeding one minute of arc. The geoidal slopes, though relatively small, are quite troublesome, since the gravity vector is always perpendicular to the geoidal surface, and surveying instruments when leveled will be oriented to it and not to the ellipsoid.

The forces that deflect the gravity vector act on sea level as well, causing it to display a warped surface. To avoid the problems of position determination on this nonmathematical figure, computations are normally made on a spheroid deduced as the geometrical figure which best fits the geoid or at least some portion of it. The ellipsoid (or spheroid) is defined by two numbers, the length of the semi-major axis and the flattening, which assign both size and mathematical shape to the surface. Since the ellipsoid is a regular surface it does not coincide with the geoid, and the areas of separation are known as geoid heights or geoid separations. There is no way to measure the geoid separation directly, though sufficient geodetic data may permit a good estimate of it. This circumstance complicates the establishment of completely accurate survey datums.

Several increasingly precise determinations of the dimensions of the best-fitting spheroid have been made; in fact one of the primary functions of geodesy has been the determination of the size and shape of the earth. The uncertainties in the various dimensions as evidenced by the several spheroids in use around the world illustrate the difficulty over the years in determining accurate relative positions of tracking stations. Sea level itself, the best physical reference surface, is only an approximation since there are many dynamic effects, both long and short term, that modify it. It was not
until the Sputnik and Vanguard satellites were launched and observations made of their orbits that it was possible to narrow the estimates of the flattening and the dependent radius.

1.3 GEODETIC SURVEYS

Geodetic surveys are those which take into consideration the curvature of the earth. Within the limits that a given spheroid is used to define the shape of the earth, we can measure distances and directions over the earth's surface and compute latitudes, longitudes and azimuths which will be accurate relative to each other. Thus positions from geodetic surveys are known as geodetic positions and must be used whenever accurate relative distances and directions are desired. It should be made clear that insofar as relative distance within the coverage of the geodetic net is concerned, no errors other than the mechanical errors of measurement are involved. Geodetic positions are the result of measurements made on the surface of the earth, and if a different spheroid were used all the positions and azimuths would be redefined, but the relative distances would remain virtually unchanged.

1.3.1 Horizontal Positioning

Four surveying techniques have been in general use for determining positions on the earth's surface: 1) astronomic positioning, 2) triangulation, 3) trilateration, and 4) traverse. During the past decade new methods have been added utilizing satellite geodesy.

1) Astronomic observations are made with optical instruments containing leveling devices, and when in use the vertical axis of the instrument is made to coincide with the gravity vector. At a point on the topographic surface observations are made on celestial bodies which, with precise knowledge of the time of observation, can be used to derive a position or azimuth referred to the gravity vector and thus to the geoid. A high degree of repeatability can be expected, but since the geoid to which the positions are referenced is an irregular, non-mathematical surface, and distances are not measured, positions observed some distance apart are wholly independent of each other.

The calculated distance and azimuth between them cannot be expected to agree with actual horizontal survey results.
2) Triangulation is also carried out with optical instruments in which the vertical axis coincides with the local gravity vector. In this system, the length of one line (the base line) is measured directly; all other distances are derived by measuring the angles of triangles and calculating the sides by trigonometry. Directions are controlled by observations of the stars at selected stations. The ground between stations does not have to be traversed; thus the accuracy with which a distant station may be located is nearly independent of the character of the intervening country.
3) Trilateration is the procedure employed in extending control when only the triangle sides are measured directly. The angles are calculated trigonometrically and geodetic positions determined relative to an origin, as in conventional triangulation. This method may be used in trigonometric figures of any convenient size, but in practice it is most frequently used over long distances with airborne electronic distance measuring equipment.
4) Traverse, the simplest means of extending control, requires measurement of angles and distances between a number of intervisible survey points. Generally the angles are measured optically and the distances by tape or electronic distance measuring equipment. The position of each control point relative to the origin can be computed from the direction and distance data derived.

All methods yield varying degrees of accuracy depending on the instruments used and the methods and techniques of observation and data reduction. The internal consistency of a trigonometric figure as computed is an indication of accuracy, as is the ability of a chain of figures to close upon itself. Since the survey instruments are leveled to the geoid and the computations are made on the ellipsoid, a small correction
should be made to the measured horizontal angles. The differences are not serious unless the elevation angles to the distant targets are large. Corrections can be applied when the geoidal slopes are known, but this has seldom been possible until recently. Of greater significance is the fact that for most of the geodetic work in the past the measured baselines or traverse lengths have been reduced to mean sea level, or the geoid, whereas they should be reduced to the reference ellipsoid on which the work is computed. Any future readjustment of the continental networks will correct this deficiency, since the geoidal heights are now much better known.

1.3.2 Vertical Positioning

Vertical control is normally extended by one of three techniques: 1) spirit leveling, 2) trigonometric elevations, and 3) barometric readings.

1) Topographic elevations are determined with the greatest accuracy by spirit leveling, a method in which short and balanced horizontal sights are taken with a level instrument of high precision. Elevations thus obtained are related to the geoid, which is appropriate for mapping and engineering projects. The accuracy of this method is such that the error in the middle of the North American continent is probably no more than one or two feet.
2) Trigonometric elevations are obtained by measuring the vertical angle between the horizon (or the zenith) and a distant station. This method is often used in connection with triangulation and topographic mapping. These elevations are subject to much larger errors than spirit leveling. The lines sighted are long, and since the resulting elevation difference over a line depends only on the gravity vectors at each end of the line, the averaging process of spirit leveling is almost completely lacking. The uncertainty of refraction of the line of sight in a vertical plane also contributes substantially to the errors. Where errors of millimeters and centimeters may be expected in spirit leveling over moderate distances, decimeters and meters occur in uncontrolled trigonometric leveling.
3) Barometric readings are the least precise of leveling methods. This method employs instruments calibrated to measure the difference in barometric pressure between two sites, which can be converted to difference in elevation. Although the accuracy is not high it provides a means of obtaining a large number of elevations in a short time, and is often used in reconnaissance.

1.3.3 Satellite Geodesy

The use of geodetic satellites in recent years has made possible tremendous strides in the extension of geodetic control and in the positioning of widely separated stations. Satellite geodesy can be divided into two categories, geometric and dynamic.

Geometric satellite geodesy has as its ultimate purpose the establishment of all points on the physical surface of the earth in a worldwide three-dimensional Cartesian or polar coordinate system with its origin at the center of mass, and with one axis coincident with the mean position of the rotation axis of the earth. In this process, geometric geodesy utilizes space intersection, in which the satellite is considered a triangulation or trilateration target in space which is observed simultaneously from stations of known positions and also stations of unknown positions. Observations from the known stations yield the position of the satellite at the instant of observation, from which positions of the unknown station can be calculated. The method can be used in triangulation to passive satellites or flashing lights carried by a satellite, and in trilateration to an active satellite equipped with an electronic ranging transponder or a laser retroreflector. Best results are likely to accrue from a combination of both.

In dynamic geodesy, the satellite is observed from widely separated ground stations at various times, and the forces acting on it are deduced from analysis of its motion. Observations must be sufficiently precise to develop a theory which will predict future positions at least as accurately as they can be observed. For this an extensive mathematical theory of the motion is required, as well as precise knowledge of such physical parameters as gravitational constants and air density, and the accurate geodetic position of the observing stations. Actually the observed position of the satellite will
differ from the predicted one, and through analysis of the differences improved values of the physical parameters can be deduced. As the artificial satellite is much closer to the earth than any other planet it is quite sensitive to differences in the earth's gravitational field, and its, path can be used to determine the parameters which define the gravitational field. These in turn can be used to develop information on the shape and mass distribution of the earth. There are, of course, other elements which affect the motion . of the satellite, such as radiation pressure, magnetic effects, and attraction of other celestial bodies. If the satellite is at a high altitude and has large weight-to-surface ratio, atmospheric drag becomes insignificant compared to gravitational perturbations.

Both geometric and dynamical observations are used in the NASA Geodetic Satellites Program (see Part C) for determination of an earth-centered world geodetic system. The synthesis will include data of several types from many sources: directions from the camera systems, range-rate from the Doppler network, and range from the radars and lasers.

Unlike classical geodetic operations, dependence upon the direction of gravity for leveling instruments is unnecessary in satellite observations. Computations are almost never made on the surface of a reference ellipsoid, but are based on a geocentric coordinate system. In geometric work confined to a single continent the origin may be a selected triangulation station, but in general the origin is at the center of the earth, supposedly the center of mass. These coordinates can readily be converted to conventional latitude, longitude, and height.

1.4 GEODETIC DATUMS

Geodetic field operations of the classical type are horizontal for the determination of latitude and longitude, or vertical for the determination of elevation. These two kinds of survey are conducted almost completely independently of one another, and each is based on a datum of its own.

1.4.1 Horizontal Geodetic Datums

There are differences of opinion, rather unimportant, among geodesists as to what should be included in defining a geodetic datum. Such a definition should include
enough data to define uniquely the location of the origin, and permit computation of the extended control network. In an earth-centered system a geodetic datum may be defined by the position of a control point, designated as the origin, with respect to the earth's center of mass, usually expressed in rectangular space coordinates, X, Y, and Z. By convention the Z axis coincides with the earth's spin axis, positive north; the direction of the X and Y axes are respectively positive toward latitude and longitude $0^{\circ}, 0^{\circ}$, and 0°, 90° East.

The geodetic coordinates, latitude, longitude, and height are analogous to the X, Y, and Z coordinates. They are based on an earth spheroid with specified equatorial radius and flattening, a and \underline{f}. The classical geodetic datum may be defined by the coordinates ϕ_{0}, λ_{o}, and h_{o} for the origin, and the spheroidal constants. Here h_{o} is the height above the surface of the ellipsoid, and is equal to the elevation above the geoid plus the geoid height; it is absolute in an earth centered system but otherwise is of an arbitrary value.

Some definitions include the deflection components, ξ_{0} and η_{0}, and a geodetic azimuth from the origin to a nearby control point. However these quantities are all observable and not really basic. The deflection components at Meades Ranch, the origin of NAD 1927, were not known for a half century, and the geodetic azimuth from it to Waldo (not the Laplace azimuth) was reduced by nearly five seconds from Old NAD to NAD 1927. The only thing that set Meades Ranch apart from the other points in the network was that its coordinates remained unchanged in the 1927 adjustment. The azimuth is of little importance, since in most cases the orientation of a datum is obtained by many Laplace azimuths (astronomic azimuths corrected to geodetic for the deflection of the vertical) scattered through the triangulation.

A change in any of these established quantities or in the assumptions regarding deflection will result in a change in the computed coordinates of any point based on the datum defined. Thus there will be lack of conformity in position, distance, and azimuth derived from geodetic surveys having points in common but based on different datums.

1.4.2 Vertical Geodetic Datums

The full definition of position includes the third dimension, height. [t has long been recognized that the use of geocentric distances would be desirable to avoid the uncertain factor of geoid separation. For several reasons this is not convenient: the origin is unaccessible and instruments cannot be oriented to it; its position must be deduced from multiple observations. Thus in practice elevations are generally referred to mean sea level, or the geoid. For practical engineering purposes this is better anyway. As in the interconnection of horizontal datums, ties between vertical datums reveal many discrepancies, since sea level is an approximation affected by tides, winds, and currents. Development of the datum over a survey area is further complicated by continental instability and the fact that observed mean sea level varies with time. If a continental vertical datum is set up by a series of tide stations in which the mean sea level of each is held as zero, the precise leveling network must undergo a little warping when adjusted to these points.

1.5. DATUM ESTABLISHMENT

1.5.1 Establishment of Horizontal Datums

It was the practice in some countries to base the horizontal datum on observations at a single astronomic station. The geodetic and astronomic coordinates of this origin are then identical, the deflection is zero, and the geoidal and spheroidal surfaces are implicitly parallel. If the adopted spheroid is poorly chosen, or the origin is in a geophysically disturbed area, differences between astronomic and geodetic latitudes and longitudes will become excessive and unbalanced numerically at greater distances from the origin.

A definite improvement can be obtained by adjusting the geodetic latitude and longitude of the origin so as to minimize the deflections at a number of well distributed stations over the network. Another influence on the values of the deflection components is in the choice of spheroid. If the deflections increase continuously and systematically with the distance from the origin, the curvature of the adopted ellipsoid is a bad fit for the area of the network. Such a condition was noted in the United States and resulted in a change in 1880 from the Bessel to the Clarke 1866 Spheroid.

Rather than computing geodetic positions on an assumed ellipsoid from the triangulation, it is possible to derive a best-fitting ellipsoid from the same triangulation data. Hayford employed this method in the United States in 1909, but while the spheroid he developed (the International) was widely adopted, it has never been used in North America.

These astro-geodetic methods do not refer the geodetic datum directly to the earth's center of mass. The center of mass is a function of mass distribution within the earth and therefore of its gravitational field. Observations on satellites affected by the gravitational field are required to refer positions to the center of the mass in a true world geodetic system. Dynamic studies of near-earth satellites are directed toward solution of this problem.

1.5.2 Establishment of Vertical Datums

The geoid, represented by mean sea level as observed in coastal areas, is commonly the datum to which elevations are related in geodetic control. The level of this surface relative to fixed bench marks ashore is usually established by a period of hourly tide observations designed to balance out the influence of the sun, moon, winds, atmospheric pressure, and other anomalies. The length of the period of observations is important in evaluating vertical datum accuracy, particularly where there are large diurnal inequalities, great differences in the height at springs and neaps, or seasonal variations in water surface height. At primary tide stations this period is usually 19 years, which constitutes a full solar-lunar cycle. In practice considerably shorter periods are sometimes used without serious loss of accuracy. Mean sea level usually can be recovered along most of the world's coasts within two meters by one day's observation of the rise and fall of the tide, and within one half meter by a month's observation.

An example of a large precise leveling net is the Sea Level Datum of 1929 in the United States. Originally based on twenty-one tidal stations in the U.S. and Canada, it now includes about thirty stations, and it is expected that in time ten or twenty more tidal gauges will be added. First-order spirit leveling has extended this datum over most of the continent. A readjustment of this network should improve its accuracy, and could result in elevation changes of decimeters.

Similar precise datums cover Europe and much of Africa, some based on single observation stations, some on several. Among them are the Newlyn datum in the United Kingdom, the Nivellement General de France, NAP in the Netherlands (based on a single gauge in Amsterdam), the'related Normal Null of Germany, and the Pierre du Niton of Berne.

In Australia the sea level datums, which had been regional, were supplanted in 1971 by the new Australian Height Datum (AHD). Holding 30 tide gauges fixed at their mean sea level values, 757 sections of two-way leveling between 497 junction points entered the simultaneous adjustment.

1.6
 DATUM CONNECTIONS

On most continents the horizontal geodetic control was started in separate regions using different origins and often different reference ellipsoids. As a result multiple geodetic datums existed simultaneously on the same land masses. These control networks were expanded until they came together and incorporated common stations. In Europe, for example, although connections between datums had long been available, little was done to compute and adjust the continent onto a common datum. Even after a common datum has been established it is usual for countries to continue to use their old datums domestically.

To relate datums on different continents directly was a practical impossibility until the development of new geodetic tools in the past quarter century. Airborne radar was developed into the geodetic measuring operation Shoran, and refined as Hiran. Measurements of 500 kilometers or more became possible, permitting island-hopping across the North Atlantic from Canada to Northern Europe. The real breakthrough in intercontinental datum connections and worldwide geodesy came with the advent of the artificial earth satellite.

Page intentionally left blank

SECTION 2

GEODETIC ACCURACIES

2.1 INTRODUCTION

Geodetic accuracies may be considered in two categories: those relating points within a single geodetic datum; and those referring to a world system and the earth's center of mass. Proportionately the ultimate accuracy of each is roughly the same, one part in 10^{6}; this may approach one part in 10^{7} in the future. But at present the relative errors within single datums are generally much smaller than those between datums in world-wide systems.

The listing of accuracy figures for a wide range of geodetic operations in this section is based in part on theoretical considerations, but is modified by practical considerations and the results of experience. Accuracy is emphasized as a better measure of the validity of results than precision as measured by the repeatability of an operation in attaining the results. Unless otherwise stated accuracy figures in this directory are given as standard error.

2.2 HORIZON TAL SURVEYS

For basic triangulation, traverse, and trilateration, quoted accuracy figures usually apply to a single continental geodetic datum, and refer to the relative position of points as a function of the distance between them measured along the survey scheme. It is assumed that the chosen spheroid fits the area of the datum reasonably well. Positional errors developed by attempting to over-extend a datum, such as the North American Datum to South America, or the European Datum to South Africa, become excessive as the separation of the spheroid from the geoid increases. Reducing the measured base lines to the spheroid where the geoid heights are known reduces the error, but introduces undesirable distortions.

2.2.1 Triangulation

Random error may be expected to propagate with the one-half power of the distance or the number of figures in a triangulation arc. But this applies to a single
spur arc, unsupported by loops with other arcs and the adjustment process. It is reasonable to expect that the simultaneous adjustment of many loops will eliminate much of the error propagation through the arcs and leave, perhaps, a small scale error which would be proportional to the first power of the distance. It is then reasonable to expect the power of the distance in the formula to lie somewhere between one-half and unity; e.g., two-thirds. From a study of the loop and section closures developed during the 1927 adjustment of the North American Datum, L. G. Simmons derived the formula: $E=0.029 \mathrm{~K}^{\frac{2}{3}}$, in which E is the standard error in meters in the relative positioning of two points, and K is the distance between them in kilometers. (This is the equivalent of the more familiar form of the expression, one part in $20,000 \mathrm{M}^{\frac{1}{3}}$, for a two-sigma error when M is in miles.)

Analysis of the triangulation nets of other countries indicates that this formula is a reasonable estimate of most primary triangulation which has been adjusted as a continental network. Since the rule was derived from triangulation in the form of many loops rigidly adjusted it should be used with caution or modification when applied in other situations, such as the extension of NAD to Alaska or South America. For future field work and adjustment most national geodetic agencies hope to meet the standard accepted by the International Association of Geodesy of $E=0.055 \mathrm{~K}^{\frac{1}{2}}$, or perhaps more realistically, $\mathrm{E}=0.020 \mathrm{~K}^{\frac{2}{2}}$.

2.2.2 Traverse

The accuracy of traverse surveys has varied considerably over the years and in different parts of the world. Specifications for first-order traverse in the United States state that the lengths shall be accurate within $1: 35,000$, and that the closure in position shall not exceed $1: 25,000$. Assigning three sigma values to these, the standard error is about $1: 100,000$ in length measurements, and $1: 75,000$ in position closure. There is not enough evidence in the way of large networks of inter-connecting loops of basic traverse surveys in the United States on which to base an accuracy estimate analagous to that for triangulation.

Since electronic distance measuring equipment has become available the accuracy of traverse surveys has increased significantly. The Australians, employing micro-wave
equipment (Tellurometer), have completed a comprehensive traverse network covering the entire continent. The average loop closure of this work is 2.2 parts per million, and the maximum is 4.3 ppm . This would place the accuracy of the overall network at least on a par with that of the triangulation network in the United States.

Extreme accuracy is being achieved in the transcontinental traverse in the United States now in progress. Electro-optical equipment (Geodimeter) is used for distance observations. Astronomic observations for latitude, lọngitude, and azimuth are made at every second station for orientation and the determination of geoid heights. These measurements approach the known accuracy of the speed of light, now estimated at one part in 10^{6}. Tests of the traverse indicate that 10^{-6} is the maximum error, whether for a single line of ten to twenty kilometers or a loop of several hundred to a few thousand kilometers. With improvement in the determination of the speed of light, the only serious limitations to the accuracy of the Geodimeter traverse will be in the determination of air density over the lines at the time of measurement, and possible accumulation of azimuth error.

2.2.3 Trilateration

Use of this method in geodesy is largely confined to the use of airborne electronic ranging systems. Shoran, the first version, was developed by the U.S. Air Force, and used extensively by the Geodetic Survey of Canada. Hiran replaced Shoran in Air Force operations, and recently Shiran was developed as the most accurate of the air-to-ground distance measurement systems. From theory, modified by practical application from adjustment data, the following accuracies have been estimated: Shiran, $\mathrm{E}=0.23 \mathrm{~K}^{\frac{1}{2}}$; Hiran, $E=0.36 \mathrm{~K}^{\frac{1}{2}}$; Shoran, $\mathrm{E}=0.56 \mathrm{~K}^{\frac{1}{2}}$; where E is the standard error in meters, and K is the distance measured in kilometers. These represent the accumulation of error of relative position between two points as measured along the trilateration scheme. Since trilateration must have outside control for azimuth, the estimated error is actually in distance. Recent evidence indicates these error estimates may be overly optimistic in some cases.

VEṘTICAL SURVEYS

2.3.1 Precise Leveling

There have been many specifications and estimates of accuracy for fịst-order leveling, leveling of high precision, precise leveling, spirit leveling, etc. Some of these are complicated and difficult to interpret. But what is known as first-order leveling in the United States is roughly equivalent to the basic leveling in most other countries. While leveling in Europe is probably of higher accuracy than that in the United States, the difference is not enough to affect error estimates over great distances substantially.

The basic specification for first-order leveling in the United States is that the check between forward and backward runnings over a section between bench marks, or the closure of a loop, shall not exceed, in millimeters, $4 \mathrm{~K}^{\frac{1}{2}}$, where K is the length of the section or loop in kilometers. Considering this as the maximum error, the standard error of loop closure would be about $1.5 \mathrm{~K}^{\frac{1}{2}}$. This is reasonable up to about 100 kilometers, where sigma would be 15 mm , but as the distance increases the allowable standard error becomes unreasonably small, until for a continental distance of 500 kilometers it would be only 106 mm . Because of the presence of other than random errors, the power of K in the error formula should probably be between one-half and unity as in the accumulation of triangulation error. A reasonable standard error in a basic level net after it has been adjusted would then be: $E=1.8 \mathrm{~K}^{\frac{2}{3}} \mathrm{~mm}$. This results in errors which are perhaps a little high for the shorter distances (less than 50 to 100 km) but should be adequate for evaluating errors between points in a large continental network.

2.3.2 Elevations by Vertical Angle

In areas many miles removed from the basic leveling network, the only elevations available may be those established by vertical angles in connection with triangulation or traverse. Such elevations are subject to much larger errors than those in the basic network. A conventional rule for primary work is that the elevation difference, determined trigonometrically, should not be in error by more than 0.1 meter a mile of line length.

Assuming this to be a two-sigma level (95 percent error), the rule reduced to kilometers is: $E=0.03 K^{\frac{1}{2}}$, with E in meters. For a series of lines the individual errors are combined by the root-sum-square process. Thus E for three lines, 5, 10, and 15 kilometers long, would be $0.03 \sqrt{25+100+225}=0.56$ meter. The theoretical basis of this method of estimating the errors of elevations by vertical angles is tenuous, but it is supported by experience.

2.3.3 Geoid Heights

Earlier in this discussion elevations determined by vertical surveys have referred to the geoid, or mean sea level. But to express the true relationship of points on the earth's surface to each other or to the earth's center of mass, the elevation of the geoid above or below the adopted ellipsoid must be known. Determining geoid heights in an absolute sense is very difficult, chiefly because of a lack of world-wide gravity coverage of sufficient density, particularly in the ocean areas.

Astro-geodetic leveling has been employed to develop geoidal sections with or without the aid of surface gravity for interpolation. Astro-geodetic deflections of the vertical define the slope of the geoid with reference to some arbitrarily chosen ellipsoid and geodetic datum. Such slopes can be determined within $0!2$ by first-order methods, and better than one second by second-order astronomic observations. Most geoidal sections are based on existing triangulation arcs with their astronomic Laplace stations, which may be 100 or more kilometers apart. In the United States several thousand miles of surveys have been run specifically for geoidal section determination. The average spacing of these astro-geodetic deflections is twenty to twenty-five kilometers. The average correction to an observed geoid height difference is about $1.0 \mathrm{~mm} / \mathrm{km}$, and the maximum is $3 \mathrm{~mm} / \mathrm{km}$.

Relative geoid heights are now well determined on some major geodetic datums such as the North American, European, and Australian. These datums are well supplied with astro-geodetic deflections and have fair gravity coverage. The standard error of relative geoid heights in these areas is probably about two or three meters. In large unsurveyed areas and over the oceans, geoid height determinations depend primarily on
dynamic satellite observations for the gravitational field, and may have a standard error of ten to fifteen meters or more.

2.4 ASTRONOMIC OBSERVATIONS

The errors in astronomic coordinates noted on the Geodetic Data Sheets are given by the observing agency and reflect the internal consistency of the observations. They do not include any systematic error that may be present, nor do they reflect differences in the procedures used by different agencies, or by the same agency at different times.

In general a first-order observation of latitude may be expected to have a maximum error not exceeding $0!3$. The accuracy of longitude would be the same were it not for personal equation, which enters even impersonal micrometer observations. While this may be negligible for an observer whose personal equation is frequently checked, this procedure is not universal, and errors of $0!5$ of arc may result from this source even in first-order observations. This may be reduced by averaging the determinations of more than one observer, as practiced by some agencies.

Second-order observations may be expected to have twice the error of first-order observations. In latitude this may be estimated at $0!5$, in longitude from 0.5 to one second (of arc), depending on the care with which the personal equation of the observer has been measured.

The accuracy of astronomic azimuth is also reflected only partially in the quoted residuals. A first-order observation should have a standard error of less than 0.45 based on internal evidence. But Australian geodesists, having compared a hundred reciprocal Laplace azimuths, calculated that the real standard error of such an observation is about one second.

Apart from the probable errors in observation is the fact that observational data may be published with or without corrections for sea level, for variation of the pole, or for the occasional adjustments of the nominal longitude of the time source. The reduction of latitude to sea level, known to be approximate, reaches 0.3 at 1700 meters elevation and 45° latitude. Polar motion has a secular component of 0.002 and a periodic component of $0: 3$ a year. Changes in the longitude of the U.S. Naval Observatory have not exceeded
0.05 seconds of time (0.45 arc) since 1900. Without access to the particular procedures followed in each case an ambiguity of some half second must be presumed in a given astronomic position. The reductions are not precise, and errors of some hundredths of a second are inescapable. Timing biases, errors in star positions, and problems in refraction will contribute to the total error in an absolute sense. The effect of these errors is not cumulative, but lack of awareness of them may give false confidence in the precision of the published values.

2.5 WORLD SYSTEMS

Relative accuracies within an established geodetic datum are quite high and can be significantly increased by the addition of new Laplace azimuths, baselines, and satellite observations. These will be included in the general readjustments contemplated in America and Europe. Of greater interest in connection with world-wide networks of satellite tracking stations is the accuracy of station positions on a global basis. If left uncorrected to a common world system, any distances or relative positions inferred from published geographic positions on different datums could be in error by several hundred meters, and for remote islands by as much as one or two kilometers.

Datum shifts and new ellipsoid dimensions have been determined through satellite observations by several organizations, such as the DMA Topographic Command, Ohio State University, Goddard Space Flight Center, the National Ocean Survey, the Smithsonian Astrophysical Observatory, and the Naval Weapons Laboratory. Comparison of the transformation constants for the world geodetic systems indicates general agreement in the three components of the datum shifts and the spheroidal constants. It is reasonable to expect that a combined solution of the observational data from all the networks will soon yield determinations for these shifts within a standard error of ten meters. When all the data are in from the geodetic satellites observing programs, and a combined, properly weighted adjustment is made, maximum position errors in relation to the earth's center of mass of five to ten meters may be expected, with errors of no more than ten to fifteen meters between widely separated stations.

Page intentionally left blank

SECTION 3

DEVELOPMENT OF THE MAJOR GEODETIC DATUMS

3.1 IN TRODUCTION

Much of the inhabited area of the world is covered with geodetic networks consisting mostly of triangulation, although some are in the form of traverse surveys such as those established by Australia in the 1960s, or Shoran trilateration as established by Canada in the 1950s. The most notable voids of great extent are the interior of Brazil, portions of west, central, and northern Africa, much of China, and northern Siberia.

These geodetic operations date back to the last part of the 18th century, and it was common practice from that time to the early 20 th century to employ separate origins or datums in each country, and even more than one origin in some countries, e.g., the United States. Even in the early days astronomically determined latitudes were rather easily established as one coordinate of the origin. But longitudes were another matter for two reasons: 1) there is no natural common plane of reference like the equator for latitude, and 2) even if a common plane, such as that of the Greenwich Meridian, were agreed upon, there was no accurate method of observing longitude before the electric telegraph and the associated lines of transmission, including submarine cables, were developed.

The longitude problem taxed the ingenuity of the astronomers in the first half of the 18th century. Lunar culminations, occultations, and distances were observed along with solar eclipses in an attempt to determine differences of longitude of widely separated points. These methods depended on "fixing" the moon as it moves among the stars, but because of the relatively slow movement of the moon among the stars and the irregularity of the moon's limb this approach was inherently inaccurate. It gave way to the transportation of chronometers to time observations of the stars. This method, which reached its peak about the middle of the 19th century, was replaced by telegraph and, later, radio time signals. With the recent development of crystal and atomic clocks, transportation of time is again in use.

In the early days longitudes of a geodetic system were often based on the position of an astronomic observatory usually situated in or near the capital city of a country. A
reference ellipsoid was chosen for the datum, and the latitudes and longitudes of all other geodetic points were derived by computation through the triangulation. This meant that the many datums, computed on different ellipsoids and based on astronomic observations at separate origins, were not accurately related to each other in a geodetic sense, although the astronomic latitudes were of high caliber.

There was a slow trend toward accepting the Greenwich Meridian as the basis for longitude, and by 1940 practically all important geodetic networks were based on it. But there still remained the separate geodetic datums employing a variety of ellipsoids and methods for determining the coordinates of the origins. The only computations of extensive geodetic work of an international nature, based on a single datum, were those for long arcs done in an effort to improve the knowledge of the size and shape of the earth.

Since World War II much has been accomplished in combining separate datums on the continents and in relating datums between the continents. The advent of artificial satellites has made possible the tremendous task of correlating all datums and, ultimately, of placing all geodetic points on a single worldwide geodetic system. The first step in this process, taken after World War II, was the selection of several so-called "preferred datums," into which many local geodetic systems were reduced. The more important datums appear on the accompanying map, Figure 1.

3.2 THE NORTH AMERICAN DATUM OF 1927

Most extensive of the preferred datums, the North American Datum of 1927 is the basis of all geodetic surveys on the North American Continent. This datum is based ultimately on the New England Datum, adopted in 1879 for triangulation in the northeastern and eastern areas of the United States. The position of the origin of this datum, station PRINCIPIO in Maryland, was based on 58 astronomic latitude and seven astronomic longitude stations between Maine and Georgia.

At the turn of the century, when the computations for the transcontinental triangulation were complete, it was feasible to adopt a single datum for the entire country. Preliminary investigation indicated that the New England Datum might well serve as a continental datum. Accordingly, in 1901 the New England Datum was officially adopted,

and became known as the United States Standard Datum. A subsequent examination of the a stro-geodetic deflections available at that time at 204 latitude, 68 longitude, and 126 azimuth stations scattered across the entire country indicated that the adopted datum approached closely the ideal under which the algebraic sum of the deflection components is zero [1].

A later test was applied to the U.S. Standard Datum. Using Hayford's observation equations based on astronomic observations for 381 latitude, 131 longitude, and 253 azimuth stations available in 1909, a solution was made for the shift at MEADES RANCH, the chosen datum point, to best satisfy the observed data. Observed deflections uncorrecte for topography were used, and the parameters of the Clarke Spheroid of 1866 were held fixed. The computed corrections to the latitude and longitude were, respectively, only 0.41 and 0:11. In 1913, after Canada and Mexico had adopted the U.S. Standard Datum as the basis for their triangulation, the designation was changed to "North American Datum" with no difference in definition.

Beginning in 1927 a readjustment was made of the triangulation in the United States, and the resulting positions were listed on the North American Datum of 1927 [2]. In this readjustment the position of only MEADES RANCH was held fixed. As a matter of fact this is really all that sets MEADES RANCH apart from all other triangulation stations. Its choice as the datum origin was purely arbitrary, and was made because it was near the center of the United States and at the intersection of the Transcontinental and 98th Meridian Arcs of the triangulation. The deflection at MEADES RANCH is not zero as is sometimes assumed; in fact it was not determined until the late 1940s. Its deflection components in the meridian and prime vertical are, respectively, approximately $-1!3$ and $+1!9$, in the sense astronomic minus geodetic, with latitude and longitude measured positively north and east.

Loop closures and corrections to sections in the 1927 readjustment of the triangulation in the United States indicate that distances between points separated by at least 2000 kilometers are determined to an accuracy of five parts per million, and transcontinental distances are known to four parts per million. Gravimetric and other studies suggest that the position of the datum origin is within one arc-second in an absolute sense, and recent
satellite triangulation points to an accuracy of better than one second in the overall orientation of the 1927 adjustment. (These statements do not necessarily apply to the extension of the North American Datum of 1927 into Mexico, Canada, and Alaska.) .But revision of NAD 1927 is long overdue. Distortions of ten seconds in azimuth a re known to exist, and closures within limited areas may be as poor as $1 / 20,000$. An entirely new adjustment, which will include geodimeter and satellite observations, is needed. When completed it is expected to have an overall accuracy of $1 / 10^{6}$, with errors between adjacent stations no greater than $1 / 10^{5}$, an improvement in accuracy by a factor of three or four.

In summary the North American Datum of 1927 is defined by the following position and azimuth at Meades Ranch: latitude $39^{\circ} 13^{\prime} 26^{\prime} .686 \mathrm{~N}$, longitude $98^{\circ} 32^{\prime} 30.506 \mathrm{~W}$, azimuth to Waldo (from South) $75^{\circ} 28^{\prime} 09.64$.

Although a geodetic azimuth is included in the fundamental data of MEADES RANCH, this is of only minor importance, since the orientation of the triangulation is controlled by many Laplace azimuths scattered throughout the network. The latitude is based on 58 astronomical latitude stations, the longitude is based on seven astronomical longitude stations, and the azimuth is based on nearby Laplace azimuth control. The basis for computations is the Clarke Spheroid of 1866. All measured lengths are reduced to the geoid (mean sea level), not to the spheroid.

3.3 EUROPEAN DATUM (EUROPE 50)

Until 1947 each country in Europe had established its own triangulation, computed on its own datum, which usually consisted of a single astronomic latitude and longitude of a selected origin. Moreover at least three different spheroids were used. This situation, coupled with the inevitable accumulation of errors in the networks, led to differences at international boundaries of nearly 500 meters in extreme cases.

Although considerable thought over a period of many years was given to unification of the European triangulation, no results became available until after World War II. For several years before the war extensive surveys were conducted to connect many separate national triangulations; thus the ground-work was laid for a general adjustment of the major European networks. Under the general supervision of the U.S. Army Map Service and with
the assistance of the U.S. Coast and Geodetic Survey, the Land Survey Office at Bamberg, Germany, commenced the adjustment of the Central European Network in June 1945 and completed it two years later. This triangulation network roughly covers the region that lies from 47° to 56° North latitude and between 6° and 27° East longitude, and is generally in the form of area, rather than arc, coverage. The basis for the computation is the International Ellipsoid.

In order to expedite the work in a practical manner, triangles were selected to form a few strong arcs of the parallel and meridian to build a network susceptible of the Bowie junction method of adjustment. A scheme was selected which included 23 junction figures, each of which contained at least one base line and one Laplace azimuth. A total of 52 base lines and 106 Laplace azimuths scaled and oriented the Central European Network.

The datum of this network depends on the study of 173 astonomic latitudes, 126 astronomic longitudes, and 152 azimuths of which 106 are of the Laplace type. No one station can be logically designated as the datum point. The Central European Datum has been referred to as a "condition of the whole," not to any single point. However, as a matter of convenience, Helmert Tower near Potsdam, being rather centrally located, is often referred to as the origin for comparison of the Central European Datum with other datums.

The Central European Network was extended by the addition of two separate adjustments of large networks of triangulation known as the Southwestern Bloc and the Northern Bloc [3]. The Central Network was substantially held fixed and, with the addition of the two blocs, forms the European Triangulation based on what is now designated as the European Datum.

The Southwestern Bloc is comprised of 1230 triangulation stations in Belgium, France, Spain, Portugal, Switzerland, Austria, Italy, and North Africa, whereas the Northern Bloc includes 822 stations in Finland, Estonia, Latvia, Denmark, Norway, and Siveden. As in the Central European Adjustment, arcs were selected and adjusted in loops, not by the Bowie junction method but by a modified simultaneous approach. Triangle and loop closures indicate, on the average, that the accuracy of the Central Network and the Northern Bloc of triangulation is somewhat greater than that in the United States, possibly
three parts per million for determination of distances of several hundred kilometers. On the average the accuracy of the Southwestern Bloc is not as high, probably nearer five or six parts per million. These are average estimates: the accuracies vary considerably within the blocs. There is no evidence that any of the base lines were reduced to a common spheroid, certainly not to the International Ellipsoid.

Although the European Datum is based on a relatively large number of astronomic observations scattered through the Central European Net, later studies of the geoid in Europe indicate that to approach an ideal or absolute datum the geodetic coordinates of Helmert Tower perhaps should be changed by roughly three seconds in latitude and one and one-half seconds in longitude.

Since the completion of the original adjustment of the European triangulation networks, the European Datum has been connected to work in Africa and, upon completion of the 30 th Meridian Arc, as far as South Africa, as well as to the Indian Datum through ties made in the Middle East. It is also possible by computation to carry the European Datum to the North American Datum of 1927 by way of the North Atlantic Hiran connection.

3.4 INDIAN DATUM

A brief history of the Great Trigonometric Survey of India and of the Indian Datum is of particular interest, if for no other reason than that the geodetic operations were commenced at such an early date and in an area so remote from any similar activity and from the country responsible for conducting them. Operations were begun in about 1802, and the Madras Observatory was first selected as the origin of the trigonometric coordinates as it was the only institution equipped with precision instruments.

It was, however, many years before any real progress was made on what is now known as the primary triangulation. Col. George Everest, who was appointed Surveyor General of India in 1830, decided in 1840 to adopt as the origin the triangulation station at Kalianpur H. S. [4]. This station was selected because it was centrally located at the intersection of two great arcs of triangulation, and because it is on a broad plateau at what was thought to be a safe distance from the Himalayan mass and its adverse effect on the plumb line.

In 1847 a value of $77^{\circ} 41^{\prime} 44: 75 \mathrm{E}$ was accepted as the astronomic and geodetic longitude at Kalianpur. It was based on a preliminary value of the position of Madras Observatory. But in 1894-95 a reliable determination of the longitude of Karachi was made possible by telegraphic observations, and it was learned that the Indian longitudes should be corrected by $-2^{\prime} 27!18$. Thus the corrected longitude at the origin is $77^{\circ} 39^{\prime} 17!57 \mathrm{E}$. But since this was considered as the astronomic longitude, and a deflection of $+2!89$ in the prime vertical had been adopted, a further correction to the geodetic longitude was needed to maintain this deflection. These modern longitudes were introduced in India in 1905; prior to this, the mapping longitudes of India were off by about two and a half miles.

The first comprehensive adjustment of the Indian triangulation was undertaken about 1880. There were no Laplace stations in the strict sense of the word at this time, but expedients were adopted to approximate the Laplace correction from telegraphic longitudes available at certain cities. There appear to have been only about eleven base lines at the time.

After the recommendation of the International Spheroid by the I.U.G.G. in 1927, it was decided to use this spheroid in India for scientific purposes. The Everest Spheroid which was used had long been known to be unsuitable. A least squares solution was accomplished to best fit the geoid in India to the International Spheroid. In this adjustment the deflections at Kalianpur were $+2!42$ and $+3!17$ in the meridian and prime vertical respectively, and the geoid height was 31 feet. In 1938 a detailed adjustment of the Indian triangulation was made on the Everest Spheroid, but it lacked the rigor of least squares; it employed detailed diagrams of misclosures in scale, azimuth and circuit closures, and personal judgment in the distribution of these errors of closure.

The Indian work comprises about 9400 miles of primary arcs of triangulation and nearly as many more miles of secondary arcs. In the primary work, the mean square error of an observed angle ranges among the various sections from $0!15$ to $1: 00$, and averages about $0 \% 5$. Thus the angle observations are of very high caliber, but the number of base lines and Laplace azimuths is deficient. There are now about 127 Laplace stations available in India, which will greatly strengthen any future readjustment of the work. Befor
this is done, however, the plan is to raise the accuracy of the secondary work to primary standards by reobservation, and to provide additional work in many of the existing gaps.

To summarize the datum information for the 1938 adjustment the following table is given. As has been the custom for India, the deflections rather than the position coordinates are given at the origin; a plus sign indicates the plumb line is south or west of the spheroid normal.

Spheroid, Everest: $a=6377276$ meters, $f=1 / 300.8017$
Origin, Kalianpur.
Deflection in meridian -0.29 , in prime vertical +2.89
Geoid height at the origin is zero by definition.

3.5 TOKYO DATUM

The origin of the Tokyo Datum is the astronomic position of the meridian circle of the old Tokyo Observatory. The adopted coordinates were: latitude $35^{\circ} 19^{\prime} 17: 5148 \mathrm{~N}$, longitude $139^{\circ} 44^{\prime} 40!9000 \mathrm{E}$, reference surface: Bessel Spheroid, 1841. The latitude was determined from observations by the Tokyo Observatory, and the longitude by the Hydrographic Department of the Imperial Navy by telegraphic submarine cable between Tokyo and the United States longitude station at Guam. This datum is known to be in considerable error as related to an ideal world datum because of large deflections of the plumb line in the region of Tokyo.

The primary triangulation of Japan proper consists of 426 stations and 15 baselines established between 1883 and 1916 [5]. The mean error of an observed angle is 0.66 , which is roughly equivalent to a probable error of $0 .!3$ as applied to an observed direction. This puts the accuracy of the work about on a par with that of the United States in this respect.

After completion of the primary work in Japan proper, the Tokyo Datum was extended in the mid-1920s into the Karahuto portion of Sakhalin. The Manchurian triangulation, established by the Japanese Army after 1935, has been connected through Korea to the Tokyo Datum. The quality of the primary triangulation in Korea and Manchuria is believed to be about, though not quite, equal to that of Japan proper.

AUSTRALIAN GEODETIC DATUM

Until 1961 the spheroid generally used in Australia was the Clarke of 1858. Since the triangulation in Australia was initiated in several separate areas there was no single national datum but several distinct origins. The most important were Sydney Observatory, Perth Observatory - 1899, and Darwin Origin Pillar.

During the early 1960s an ambitious geodetic survey was started to establish complete coverage of the continent and connect all important existing geodetic surveys. For a short period in 1962 computations were performed on the so-called "NASA" Spheroid ($\mathrm{a}=6378148 \mathrm{~m} ; \mathrm{f}=1 / 298.3$) with the origin at Maurice, but these have been completely superseded. The first comprehensive computation of the new geodetic survey was made on the " 165 " Spheroid ($a=6378165 ; f=1 / 298.3$). This was based on the "Central Origin," in use since 1963, and depended on 155 astro-geodetic stations distributec over most of Australia except Cape York and Tasmania.

It appeared at this time that there might be international agreement on one spheroid, which Australia might adopt officially. Many modern determinations had been made for which the ranges in \underline{a} and \underline{f} were so narrow as to have no practical significance. On the strength of the acceptance of a spheroid by the International Astronomical Union it was adopted in April 1965 as the Australian National Spheroid, with the only difference that the flattening of the spheroid used for astronomy was rounded to $1 / 298.25$ exactly. The semimajor radius is 6378160 meters.

Holding the Central origin, which was defined by the coordinates of station GRUNDY, a complete readjustment of the geodetic network was made in 1966, using the Australian National Spheroid [6]. The mean deflection, uncorrected for topography, at 275 welldistributed stations was: +0.12 in meridian and -0.33 in prime vertical. Although the Central origin has in effect been retained, instead of being defined as originally in terms of station GRUNDY, it is now defined by equivalent coordinates for the Johnston Geodetic Station. These are: latitude $25^{\circ} 56^{\prime} 54!5515 \mathrm{~S}$, longitude $133^{\circ} 12^{\prime} 30^{\prime}, 0771 \mathrm{E}$. The geoid separation at this point is -6 meters, as of 1 November 1971.

A study of the observations of satellite orbits indicates there is a rather uniform and relatively heavy tilt of the geoidal surface over Australia, which would introduce a bias to
the astro-geodetic deflections determined on the Australian Geodetic Datum of 4.7 and 4. 4 in the meridian and prime vertical respectively. This tilt is in such a direction that the astronomic zenith is pulled approximately $6!5$, on the average, southwest of where an ideal or absolute geodetic zenith would be.

The survey net of Australia consists of 161 sections which connect 101 junction points and form 58 loops. Virtually all the surveys are of the traverse type in which distances were determined by electronic measuring equipment, specifically the Tellurometer. There are 2506 stations, of which 533 are Laplace points, and the total length of the traverses is 33,100 miles.

Measured lengths were reduced to the geoid, not the spheroid, because of lack of knowledge of the separation of these surfaces at the time of the general adjustment. Development of the geoid for the continent by 1971 showed its effect on the adjustment to be insignificant. The method of adjustment may briefly be described as follows: each section was given a free adjustment by which the length and azimuth between the end points were determined; these lengths and azimuths were then put into a single adjustment to determine the final coordinates of the junction points connected by the sections; each section was then adjusted to the final coordinates of the pertinent junctions. The average loop length is about 900 miles; the average closure is 2.2 parts per million, with a maximum closure of 4.3 ppm . The closures appear to place the accuracy of the Australian geodetic network on about a par with the Northern and Central European networks, and perhaps a little above that of the United States triangulation.

Tasmania has been connected by two new sections across Bass Strait via King and Flinders Islands. A connection to New Guinea and the Bismarck Archipelago has been effected by a Tellurometer traverse up Cape York and the USAF Hiran network of 1965, placing an additional 135 points on the Australian Geodetic Datum.

3.7 SOUTH AMERICAN DATUM

By 1953 the Inter-American Geodetic Survey of the U.S. Corps of Engineers had completed the triangulation from Mexico through Central America and down the west coast of South America to southern Chile. This was done in cooperation with the various countries through which the work extended, and marked the completion of the longest north-south arc
of triangulation ever accomplished. It had an amplitude of over one hundred arc degrees through North and South America.

In 1956 the Provisional South American Datum was adopted as an interim referenc datum for the adjustment of the triangulation in Venezuela, Columbia, and the meridional arc along the West Coast [7]. Instead of depending on one astronomic station as the origi and assuming its deflection components to be zero, or attempting to average out the deflections at many astronomic stations by the astrogeodetic method, one astronomic station was chosen as the datum origin, but its deflection components were determined gravimetrically. The gravity survey covered an area about 75 kilometers in radius centered on the origin, station LA CANOA in Venezuela. The reference figure was the International Ellipsoid, and the geoid height at LA CANOA was zero by definition. A majc portion of the South American work was adjusted on the Provisional South American Datun including the extensive Hiran trilateration along the northeast coast of the continent. The principal exceptions were the networks in Argentina, Uruguay, and Paraguay.

Considering the geographic location of LA CANOA, with all of the continent on one side and the Puerto Rican ocean trench on the other, the gravity coverage was insufficient to produce a deflection for a continentally well-fitting datum. From the astro-geodetic deflections based on this datum it can be inferred that the geoid drops about 280 meters below the spheroid in Chile at latitude 41° south. This drop is more or less uniform in a southerly direction for a distance of roughly 5500 km . In $5500 \mathrm{~km}, 280$ meters is very nearly ten seconds of arc; such a correction to the meridian deflection component at LA CANOA would produce a better fit of the International Ellipsoid to the area of the South American adjustment. But the LA CANOA Datum has not been corrected for this large an increasing geoidal separation, and thus contains large distortions. For example, crosscontinental distances may be several tens of meters too short. In addition the Hiran net has also been shown to be tens of meters too short.

An investigation of the astro-geodetic data from the long meridional arc in the Americas and the 30th Meridian Arc from Finland to South Africa led to the conclusion the the equatorial radius of the International Ellipsoid should be reduced by at least 100 mete (a subsequent change in the flattening inferred from satellite observations suggested anoth

100 meter reduction), and that the North American and European Datums were not at all well suited for the continents to the south. Thus it became apparent that consideration must be given to the selection of another datum for South America.

A Working Group for the Study of the South American Datum was asked in 1965 by the Committee for Geodesy of the Cartographic Commission of the Pan American Institute of Geography and History to select a suitable geodetic datum for South America, and to establish a coherent geodetic system for the entire continent. This was achieved, and the "South American Datum 1969" was accepted by the Cartographic Commission in June 1969 at the IX General Assembly of PAIGH in Washington, D. C. [8]. This new datum is computed on the Reference Ellipsoid 1967, accepted by the International Union of Geodesy and Geophysics in Lucerne in 1967, with the minor difference that the flattening is rounded ($a=6378160$ meters, $f=1 / 298.25$ exactly). Both CHUA and CAMPO INCHAUSPE, the National datum points of Brazil and Argentina, respectively, were assigned minimal geoid heights (zero and two meters). CHUA is taken to be the nominal origin. A vast amount of recent triangulation, Hiran, astronomic, and satellite data were incorporated in the solution, and SAD 1969 now provides the basis for a homogeneous geodetic control system for the continent.

3.8 ARC DATUM (CAPE)

The origin of the old South African, or Cape, Datum is at Buffelsfontein. The latitude at this origin was adopted after a preliminary comparison of the astronomic and geodetic results, rejecting those stations at which the astronomic observations were quite likely affected by abnormal deflections of the plumb line. The longitude of this origin depends upon the telegraphic determination of longitude of the Cape Transit Circle, to which was added the difference of geodetic longitude computed through the triangulation. Computations were based on the modified Clarke Spheroid of 1880. The geodetic coordinates of Buffelsfontein are latitude $33^{\circ} 59^{\prime} 32!^{\prime} 000 \mathrm{~S}$, longitude $25^{\circ} 30^{\prime} 44!622 \mathrm{E}$.

Over the years this datum has been extended over much of South, East, and Central Africa. Through the 30th Meridian Arc, completed in the 1950s, it has been connected to the European Datum. Because the 30th Meridian Arc is the backbone of this
work, which also includes triangulation in the Congo and Portuguese Africa, the published geodetic coordinates are now referred to the Arc Datum [9]. The whole comprises a uniform system from the Cape to the Equator.

The accuracy of the South African work and of the 30th Meridian Arc compares favorably with that of the other major systems of the world, but some of the related triangulation requires additional length control and Laplace azimuths.

3.9 PULKOVO DATUM 1942

The development of the triangulation network in the USSR parallels to some extent the development of the network in the United States. The Russian work began in 1816 in the Baltic states, and was gradually extended by the Corps, of Military Topographers (KTV) as well as by provincial organizations [10]. An important early accomplishment was the establishment of the Struve-Tenner arc of the meridian from Finland to the mouth of the Danube, the results of which were used for figure-of-the-earth studies.

These early surveys were established independently, and were based on different ellipsoids and datum points. By the turn of the century over twenty independent sets of coordinates were in use. About this time the first effort was made to unify the many systems and place them on the Bessel Ellipsoid, with the Tartu Observatory as the initial point. Not much was done until a new plan was formulated by the KTV in which arcs of triangulation were to be observed along. parallels and meridians, spaced from 200 to 300 miles, with Laplace azimuths and base lines at theị intersections. The Bessel Ellipsoid was chosen again, but the initial point was changed to the Pulkovo Observatory. The coordinates assigned to Pulkovo are now referred to as the Old Pulkovo Datum.

This plan was implemented in 1910 and, after interruption by World War I and the Revolution, was pursued vigorously until 1944, at which time 47,000 miles of arc and associated astronomic observations and base lines were completed. In 1928 Prof. Krassovski was commissioned to augment the original plan. He called for closer spacing of arcs, Laplace stations, and base lines, and a breakdown between primary arcs by lower order work. The standards of accuracy were comparable to those in North America.

During this period triangulation had begun in the Far East, and by 1932 two basic datums were in use, both on the Bessel Ellipsoid but with different initial points -Pulkovo; and an astronomic position in the Amur Valley of Siberia. The coordinates of Pulkovo were changed slightly (less than one second) from those of the Old Pulkovo Datum. When the two systems were finally joined, a discrepancy of about 900 meters in coordinates of the common points naturally developed. This was due principally to the use of the Bessel Ellipsoid, now known to be seriously in error.

In 1946 a new unified datum was established, designated the "1942 Pulkovo System of Survey Coordinates." This datum employs the ellipsoid determined by Krassovski and Izotov, and new values for the coordinates of Pulkovo. The ellipsoid is defined by an equatorial radius of 6378245 meters, and a flattening of $1 / 298.3$. The coordinates of
 Deflections at the origin are +0.16 and -1.78 in the meridian and prime vertical respectively.

3.10 BRITISH DATUM

The original primary network of Great Britain was the result of a selection of observations from a large amount of accumulated triangulation done in a piecemeal fashion. The selected network covered the whole of the British Isles, was scaled by two base lines, and was positioned and oriented by observation at the Royal Observatory, Greenwich. The adjustment was accomplished in 21 blocks, computed on the Airy Spheroid.

In the Retriangulation of 1936 only the original work in England, Scotland, and Wales was included. Original stations were used when practicable, and many stations were added, including secondary and tertiary points. The adjustment was carried out in seven main blocks. The scale, orientation and position were an average derived from comparisonwith 11 stations in Block 2 (central England), common to the two triangulations. Other blocks were adjusted sequentially, holding fixed previously adjusted blocks. The result, known as OSGB 1936 Datum, has not proved to be entirely satisfactory. No new base lines were included, and subsequent checks with Geodimeter and Tellurometer indicated that the scale of the Retriangulation was not only too large, but varied alarmingly.

To correct this situation a new: adjustment has been made, described as the Ordnance Survey of Great Britain Scientific Network 1970 (OSGB 1970 (SN)). This is a
variable quantity and consists, at any moment, of the best selection of observations available. It consists now of 292 primary stations connected by 1900 observed directions, 180 measured distances, and 15 Laplace azimuths. Published positions of all orders on ,the OSGB 1936 Datum (given as rectangular coordinates on the National Grid) are not altered, nor is the grid on Ordnance Survey maps to be changed, under present policy [11]. Initially only the values of the first-order stations will be available on OSGB 1970 (SN). More accurate conversions to the European Datum will become available when Block 6 of the European readjustment is completed.

The Airy Spheroid was used for all three British datums. The origin is the Royal Observatory at Herstmonceux.

3.11 ADINDÂN DATUM

Between 1967 and 1970 a precise traverse was run across Africa roughly following the Twelfth Parallel North. Starting at the Chad-Sudan border, it extended 4654 kilometers of traverse length to Dakar, Senegal, passing through Nigeria, Niger, Upper Volta, and Mali. The portion in Nigeria was done by USDMATC in cooperation with the Nigerian Survey Department; the remainder was done by the French IGN under contract to DMATC, with the cooperation of the countries through which it passed.

All distances were measured with a Geodimeter and checked with a Tellurometer. First-order angles were used. Trig elevations carried between stations were referred frequently to first-order bench marks. Since first-order astronomic observations with a Wild T-4 were made at every other station (about $40-\mathrm{km}$ spacing), a geoid profile across the continent made it possible to adjust the traverse to the spheroid. The final adjustment by DMATC [12] of April 1.971 indicates an accuracy better than one part in 10^{5}, or nearly that of the U.S. precise transcontinental traverse.

All triangulation, trilateration, and traverse work in Sudan and Ethiopia has subsequently been computed in this datum. The Adindân base terminal $Z_{\bar{y}}$ was chosen as the origin: latitude $22^{\circ} 10^{\prime} 07!1098 \mathrm{~N}$, longitude $31^{\circ} 29^{\prime} 21!6079 \mathrm{E}$, with azimuth (from North) to $\mathrm{Y}_{\mathbf{z}} 58^{\circ} 14^{\prime} 28^{\prime \prime} 45$. The Clarke 1880 Spheroid is used (a 6378249.145 , f $1 / 293.465$). $\mathrm{Z}_{\mathbf{y}}$ is now about ten meters below the surface of Lake Nasser.

3.12
 WORLD GEODETIC SYSTEMS

A World Geodetic System may be defined as that in which all points of the system are located with respect to the earth's center of mass. A practical addendum to this definition is usually the inclusion of the parameters of an earth ellipsoid which best fits the geoid as a whole. In such a system the locations of all datum origins with respect to the center of mass are expressedrby their rectangular space coordinates, X, Y, and Z . This implies three more designations to specify the directions of the axes unambiguously. Conventionally, in reference to the earth-centered ellipsoid, X and Y are in the equatorial plane, X positive toward zero longitude, Y toward 90° East, and Z is positive toward North. The relationship between the X, Y, and Z coordinates and the conventional ellipsoidal coordinates of latitude, longitude, and height is expressed by relatively simple transformations.

As indicated, there are a number of preferred datums which provide satisfactory solutions to large areas, even continental in extent. The points within each datum are interrelated with a high order of accuracy. There are some connections between these datums, made by terrestrial surveys, but these are usually tenuous at best. Part of the trouble in extending datum connections is that the chosen spheroid is usually not suitable for areas remote from the datum proper, which results in excessive deflections and geoid heights. These in turn can seriously distort the triangulation if the geoid heights are not taken into account in base line reduction. Even when the heights are taken into account the result is not satisfactory.

Realizing that the development of a world geodetic system is desirable for scientific purposes, some of which are of a practical nature, the geodesists began attacking the problem of developing such a system. For example, the program of observing satellite orbits from points around the world required better approximations of the coordinates of the observation stations on a world basis. Worldwide oceanographic programs demand accurate positioning at sea, and such approaches as Loran C and Doppler satellite navigation need a coherent worldwide geodetic framework.

A brief assessment of the uncertainties in positioning geodetic datums by classical methods may be made by considering the North American Datum of 1927, the European

Datum, and the Tokyo Datum. The figures expressing uncertainties are given in the two sigma sense, or twice the standard error. Such a figure approaches the outside error and might be considered a practical limit of uncertainty. The relative positions of the datum points of North America and Europe, as presently defined, were probably known within 300 meters, whereas the figure for North America and Tokyo was considerably larger, possibly 600 or 700 meters. On the other hand, the positions of islands determined astronomically at a single point may be in error, in an absolute geodetic sense, by as much as one or two kilometers.

In recent years the satellite development of world geodetic reference systems, which include translation shifts of the major datums, has reduced the uncertainties of the relative positioning of the major datums by a factor of about ten. The goal of the National Geodetic Satellite Program is positioning accuracy of primary geodetic points of ten meters (standard deviation) in an absolute sense.

3.12.1 Mercury Datum (1960)

Before the advent of specifically geodetic satellites, geodesists from the Army Map Service developed an astro-geodetic world system, using all available data, including an early determination of the earth's ellipticity ($1 / 298.3$) from observations on Sputnik I and Vanguard. This system was selected by NASA to position the original Project Mercury tracking stations, and came to be known as the Mercury Datum [13].

AMS made three solutions in fitting the major geodetic datums into a single world geodetic system, using various combinations of data [14]. The differences in the solutions were small, and one was adopted as the basis of the Mercury Datum. The adopted solution was based on the proposition that minimizing the differences between astrogeodetically and gravimetrically derived geoidal heights on the major datums would place the datums in proper relative position. The size and shape of the adopted ellipsoid are expressed by an equatorial radius of 6378166 meters and ellipticity of $1 / 298$. 3. The solution also provided the X, Y, and Z components of the translation vectors to shift the centers of the reference ellipsoids of the major datums to the center of the Mercury Datum, which supposedly is at the earth's center of mass. Conversion formulas were also
available to transform positions of certain other datums - i.e., South American, Cape, and Indian - to the major datums, and through them to the Mercury Datum.

3.12.2 Modified Mercury Datum, 1968

In 1968 a modification of the Mercury Datum was proposed by I. Fischer of the Army Map Service to reflect the accumulation of new data, particularly dynamic satellite results, in the form of geoid charts and observing-station coordinates, which provide improved connections between isolated astro-geodetic datum blocks [15]. Moreover, the dynamic observations provide a superior method for determining relationships to the earth's center of mass. The adopted constants of the earth ellipsoid for the modification are: $a=6378150$ and $1 / \mathrm{f}=298.3$. Translation components for shifts of eighteen datums to the Modified Mercury Datum 1968 were published. Since then six other datum shifts have been added, and some of the original shifts modified.

3.12.3 Standard Earth, SAO

The Smithsonian Astrophysical Observatory has long been engaged in satellite observations. Their original twelve Baker-Nunn cameras are now. supported with lasers at several stations. The several solutions published in the last few years have been based on increasing amounts and types of data. Orbital elements derived from single photographic observations were strengthened with paired observations for geometric support. Later lasers were installed at several of their stations, and data from them, as well as from Goddard and Centre National d'Etudes Spatiales laser stations, contributed to the results. In addition, data from the $\mathrm{BC}-4$ camera network, from individual observatories, and from the Jet Propulsion Laboratory deep-space observations have been incorporated in the later solutions. Surface gravity data were utilized for the determinations of the geopotential.

These solutions, C5, C6, C7 [16, 17], and 1969 Standard Earth II, were followed in 1973 with Smithsonian Institution Standard Earth III [18]. The analysis of satellite data combined with surface measurements has resulted in a reference gravity field complete to 18 th degree and order, and the coordinates of 90 satellite tracking sites.

The values adopted as the basis for scale and the reference ollipsoid are: $a=6378155$ $\mathrm{f}=1 / 298.257, \mathrm{GM}=3.986013 \times 10^{20} \mathrm{~cm}^{3} / \mathrm{sec}^{2} ; \mathrm{c}=2.997925 \times 10^{10} \mathrm{~cm} / \mathrm{sec}$.

3.12.4 NWL-8 Geodetic Parameters

The U.S. Naval Weapons Laboratory has conducted research in satellite geodesy since 1959 in the development of the Navy Navigation Satellite System. Objectives have included connecting the major datums and isolated sites into a unified world system, relating this system to a best-fitting earth-centered ellipsoid, refining the gravity field, and determining the motion of the pole. The system is now used routinely by other domestic and foreign agencies to position remote sites and for other geodetic projects.

Several types of solutions have been published. The latest (1973), NWL-9D [19], includes the positions of 40 stations with worldwide distribution, and the shifts of 26 datums to the system. The spheroid of the earlier NWL-8D was retained in this solution, in which $\mathrm{a}=6378145$ meters, and $\mathrm{f}=1 / 298.25$. GM is $398601 \mathrm{Km}^{3} / \mathrm{sec}^{2}$.

3.12.5 Summary of World Datum Relationships

Publication in 1974 of "The National Geodetic Satellite Program" (Government Printing Office, Washington, D. C.) will provide the results of the observations and analyses of the NGSP. Remarkable agreement among the principal participants has been achieved despite the different techniques employed. The shifts required to bring the major datums into a world system seldom differ by more than twenty meters, and a spheroid commanding general acceptance will probably be presented to the next assembly of the International Union of Geodesy and Geophysics in Grenoble in 1975. Continuing satellite observation programs indicate a shift of emphasis from geodesy to geophysics. The launch of the GEOS C satellite, now planned for June 1974, will make new data available, especially that from the laser altimeter. Within a few years it may reasonably be expected that the relative positions of points in the world network and the earth's center of mass will be known within one part in a million (standard error), or roughly between five and ten meters.

SECTION 4

GEODETIC FORMULAS AND CONSTANTS

4.1 FORMULAS

4.1.1 Computation on Rectangular and Polar Geocentric System

The following equations are used to compute rectangular and polar geocentric coordinates:

$$
\begin{aligned}
& \mathrm{X}=(\nu+\mathrm{h}) \cos \phi \cos \lambda=\mathrm{R} \cos \psi \cos \lambda \\
& \mathrm{Y}=(\nu+\mathrm{h}) \cos \phi \sin \lambda=\mathrm{R} \cos \psi \sin \lambda \\
& \mathrm{Z}=\left(\nu \overline{\mathrm{e}}^{2}+\mathrm{h}\right) \sin \phi=\mathrm{R} \sin \psi \\
& \mathrm{R}=\left(\mathrm{X}^{2}+\mathrm{Y}^{2}+\mathrm{Z}^{2}\right)^{\frac{1}{2}} \\
& \psi=\tan ^{-1}[\mathrm{Z} /(\nu+\mathrm{h}) \cos \phi]
\end{aligned}
$$

$\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are a righthanded coordinate system fixed in the spheroid. X and Y are in plane parallel to the equator, X positive toward the Prime Meridian, Y toward 90° East longitude. Z is positive toward North.
R, the geocentric radius, is the distance from the center of the spheroid to the station.
ψ, the geocentric latitude, is the angle between the plane of the equator of the spheroid and the radius vector to the station.
ϕ is geodetic north latitude.
λ is geodetic (and geocentric) East longitude.
h is geodetic height (the sum of the elevation above mean sea level and the geoid height at the station).
ν is the radius of curvature in the prime vertical.
e is the eccentricity of the spheroid.

4.1.2 Coordinate Transformations

The following equations are used to transform geodetic coordinates from one coordinate system to another. Derivation of these equations can be found in Hotine [21]; some of the equations can be found in Molodenskiy [22] and Veis [23].

$$
\begin{aligned}
\Delta \phi= & \frac{1}{(\rho+\mathrm{h})}[-\sin \phi \cos \lambda \Delta \mathrm{X}-\sin \phi \sin \lambda \Delta \mathrm{Y}+\cos \phi \Delta \mathrm{Z} \\
& \left.+\left(\nu \mathrm{e}^{2} \sin \phi \cos \phi / \mathrm{a}\right) \Delta \mathrm{a}+(\nu \overline{\mathrm{e}}+\rho / \overline{\mathrm{e}}) \sin \phi \cos \phi \Delta \mathrm{f}\right] \\
\Delta \lambda= & \frac{\cos \lambda \Delta \mathrm{Y}-\sin \lambda \Delta \mathrm{X}}{(\nu+\mathrm{h}) \cos \phi} \\
\Delta \mathrm{h}= & \cos \phi \cos \lambda \Delta \mathrm{X}+\cos \phi \sin \lambda \Delta \mathrm{Y}+\sin \phi \Delta \mathrm{Z} \\
& -(\mathrm{a} / \nu) \Delta \mathrm{a}+\left(\nu \overline{\mathrm{e}} \sin ^{2} \phi\right) \Delta \mathrm{f}
\end{aligned}
$$

$\Delta \mathrm{X}, \Delta \mathrm{Y}, \Delta \mathrm{Z}$ are the shifts applied to the rectangular coordinates of the station on one system to give its coordinates on another.
$\Delta \phi, \Delta \lambda$ are changes in the latitude and longitude of the stations.
$\Delta h \quad$ is the change in the geodetic height, and hence in the geoid height.
a is the length of the semi-major axis of the spheroid (old).
b is the length of the semi-minor axis of the spheroid (old).
f is the flattening of the spheroid (old).
$\Delta \mathrm{a}$ is the difference in equatorial radius of the two spheroids.
Δf is the difference in flattening of the two spheroids.
$\rho \quad$ is the radius of curvature in the meridian (old).
(All Δ s are in the sense new minus old.)

$$
\begin{array}{ll}
\nu=\frac{\mathrm{a}}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}} & \mathrm{e}^{2}=\frac{\mathrm{a}^{2}-\mathrm{b}^{2}}{\mathrm{a}^{2}}=2 \mathrm{f}-\mathrm{f}^{2} \\
\rho=\frac{\mathrm{a}\left(1-\mathrm{e}^{2}\right)}{\left(1-\mathrm{e}^{2} \sin ^{2} \phi\right)^{3} / 2} & \mathrm{f}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}} \quad . \quad \mathrm{e}^{-2}=1-\mathrm{e}^{2}
\end{array}
$$

As a result of the above changes in geodetic coordinates, geodetic azimuths (α) and geodetic elevation angles (E) to reference marks will change as follows:

```
\Delta\alpha=\operatorname{sin}\phi\Delta\lambda+\operatorname{tan}E(\operatorname{sin}\alpha\Delta\phi-\operatorname{cos}\alpha\operatorname{cos}\phi\Delta\lambda)
\DeltaE= cos }\varnothing\mathrm{ sin 人 }\Delta\lambda+\operatorname{cos}\alpha\Delta\emptyset
```

$\alpha \quad$ is the geodetic azimuth measured clockwise from the North.
$\Delta \alpha$ is the difference in geodetic azimuth.
E is the elevation angle measured from the horizontal plane passing through the station. The elevation angle is positive in the direction of the local zenith and negative toward the local nadir. In the geodetic system the horizontal plane is by definition parallel to the tangent plane to the spheroid at the station. In the astronomical system, the horizontal plane is perpendicular to the local gravity vector. The tilt angle of the astronomical and geodetic horizontal planes is given by the deflection of the vertical.
$\Delta \mathrm{E}$ is the difference in elevation angle.

4.1.3 Datum Shifts in Different Coordinate Systems

Datum shifts in this directory are given in the form $\Delta X, \Delta Y$, and ΔZ. Elsewhere they may be given as $\Delta \phi, \Delta \lambda \cdot \cos \phi$, and ΔH, that is, north, east, and up. Since the shifts are seldom as much as a few hundred meters, and the spheroids in common use do not vary greatly from each other or from a sphere, comparison between the two forms of shifts can be made with simplified formulas; the errors of the approximation will be much smaller than the uncertainties of the given shifts.

From geodetic to rectangular coordinates (same spheroid):

$$
\begin{aligned}
& \Delta \mathrm{X}=-\sin \phi \cos \lambda \Delta \phi-\sin \lambda \Delta \lambda \cos \phi+\cos \phi \cos \lambda \Delta \mathrm{H} \\
& \Delta \mathrm{Y}=-\sin \phi \sin \lambda \Delta \phi+\cos \lambda \Delta \lambda \cos \phi+\cos \phi \sin \lambda \Delta \mathrm{H} \\
& \Delta \mathrm{Z}=\cos \phi \Delta \phi+\sin \phi \Delta \mathrm{H}
\end{aligned}
$$

From rectangular to geodetic coordinates ($\Delta \varnothing$ and $\Delta \lambda$ are in meters):

$$
\begin{aligned}
& \Delta \phi=-\sin \phi \cos \lambda \Delta \mathrm{X}-\sin \phi \sin \lambda \Delta \mathrm{Y}+\cos \phi \Delta \mathrm{Z}+6.38 \cdot 10^{6} \sin 2 \phi \Delta \mathrm{f} \\
& \Delta \lambda=(-\sin \lambda \Delta \mathrm{X}+\cos \lambda \Delta \mathrm{Y}) / \cos \phi \\
& \Delta \mathrm{H}=\cos \phi \cos \lambda \Delta \mathrm{X}+\cos \phi \sin \lambda \Delta \mathrm{Y}+\sin \phi \Delta \mathrm{Z}-\Delta \mathrm{a}+6.38 \cdot 10^{6} \sin ^{2} \phi \Delta \mathrm{f}
\end{aligned}
$$

For accuracy better than one percent, three-place function tables may be used, latitude and longitude may be rounded to a minute, and 30.9 m may be used for a second of arc for $\Delta \phi$ and $\Delta \lambda$.

4.2 DATUM CONSTANTS

Table 1 lists the spheroidal constants, semi-major axis and flattening, of the spheroids now in common use. Table 2 lists the datums referred to in this directory, with the spheroid on which each is computed, and the name and location of the origin point.

TABLE 1
SPHEROID CONSTANTS

Spheroid	Semi-major axis (meters)	Reciprocal of flattening $(1 / f)$
Airy	6377563.4	299.3250
Bessel	6377397.2	299.1528
Clarke 1866	6378206.4	294.9787
Clarke 1880	6378249.145	293.465
Everest	6377276.3	300.8017
International	6378388	297.0
Krassovski	6378245	298.3
Mercury 1960	6378166	298.3
Modified Mercury 1968	6378150	298.3
Australian National*	6378160	298.25
South American 1969*	6378160	298.25

*For the Reference Ellipsoid 1967, $a=6378160$,
$1 / f=298.2471674273$.

TABLE 2
REFERENCE DATUMS

DATUM .	SPHEROID \therefore	ORIGIN	LATITUDE	LONGITUDE (E)
Adindân	Clarke 1880	STATION $Z_{\text {z }}$	$22^{\circ} 10^{\prime} 07.110$	$31^{\circ} 29^{\prime 2} 2.608$
American Samoa 1962	Clarke 1866	BETTY 13. ECC	-14 2008.341	1891707.750
Arc-Cape (South Africa)	Clarke 1880	Buffelsfontein	-33 5932.000	253044.622
Argentine	International	Campo Inchauspe	-35 5817	2974948
Ascension Island 1958	International	Mean of three stations	-07 57	34537
Australian Geodetic	Australian National	Johnston Geodetic Station	-25 5654.55	1331230.08
Bermuda 1957	Clarke 1866	FT. GEORGE B 1937	322244.360	2951901.890
Berne 1898	Bessel	Berne Observatory	465708.660	072622.335
Betio Island, 1966	International	1966 . SECOR ASTRO	012142.03	1725547.90
Camp Area Astro 1961-62 USGS	International	CAMP AREA ASTRO	-77 5052.521	1664013.753
Canton Astro 1966	International	1966 CANTON SECOR ASTRO	-02 4628.99	1881643.47
Cape Canaveral*	Clarke 1866	CENTRAL	282932.364	2792521.230
Christmas Island Astro 1967	International	SAT.TRI.STA. 059 RM3	020035.91	2023521.82
Chua Astro (Brazil-Geodetic)	International	CHUA	-19 4541.16	3115352.44
Corrego Alegre (Brazil-Mapping)	International	CORREGO ALEGRE	-19 5015.140	$31102 \cdot 17.250$
Easter Island 1967 Astro	International	SATRIG RM No. 1	-27 10.39:95	$25030^{+1} 16.81$
Efate (New Hebrides)	International	BELLE VUE IGN	-1744 17.400	1682033.250
European (Europe 50)	International.	Helmertturm	522251.45	130358.74
Graciosa Island (Azores)	International	SW BASE	390354.934	3315736.118
Gizo, Provisional DOS	International	GUX 1	-09 2705.272	1595831.752
Guam	Clarke 1866	TOGCHA LEE NO. 7	132238.49	1444551.56
Heard Astro 1969	International	INTSATRIG 0044 ASTR0	-53 0111.68	732322.64
Iben Astro, Navy 1947 (Truk)	Clarke 1866	IBEN ASTRO	072913.05.	1514944.42
Indian	Everest	Kalianpur	240711.26	$77 \quad 3917.57$
Isla Socorro Astro	Clarke 1866	Station 038	184344.93	2490239.28
Johnston Island 1961	International	JOHNSTON ISLAND 1961	164449.729	1902904.781
Kourou (French Guiana)	International	POINT FONDAMENTAL	-05 1553.699	-52.48 09.149
Kusaie, Astro 1962, 1965	International	ALLEN SODANO LIGHT	052148.80	1625803.28
Luzon 1911 (Philippines)	Clarke 1866	BALANCAN	133341.000	1215203.000
Midway Astro 1961	International	MIDWAY ASTRO 1961	281134.50	1823624.28
New Zealand 1949	International	PAPATAHI	-411908.900	1750251.000
North American 1927	Clarke 1866	MEADES RANCH	391326.686	2612729.494
0ld Bavarian	Bessel	Munich	480820.000	113426.483
01d Hawaiian	Clarke 1866	OAHU WEST BASE	211813.89	2020904.21
Ordnance Survey G.B. 1936	Airy	Hers tmonceux	50.5155 .271	002045.882
OSGB 1970 (SN)	Airy	Hers tmonceux	505155.271	002045.882
Palmer Astro 1969 (Antarctica)	International	ISTS 050	-64 4635.71	2955639.53
Pico de las Nieves (Canaries)	International	PICO DE LAS NIEVES	275741.273	3442549.476
Pitcairn. Island Astro	International	PITCAIRN ASTRO 1967	-25 0406.97	2295312.17
Potsdam	Bessel	Helmertturm	522253.954	130401.153
Provisional S. American 1956	International.	LA CANOA	083417.17	2960825.12
Provisional S. Chile 1963	International	HITO XVIII	-53 5707.76	2912328.76
Pulkovo 1942	Krassovski	Pulkovo Observatory	594618.55	301942.09
Qornoq. (Greenland)	International	No. 7008		
South American 1969	South American 1969	CHUA	-19 4541.653	3115355.936
Southeast Island (Mahe)	Clarke 1880		. 0440439.460	553200.166
South Georgia Astro	International	ISTS 061 ASTRO POINT 1968	-54 1638.93	3233043.97
Swallow Islands (Solomons)	International	1966 SECOR ASTRO	$\begin{array}{lllll}-10 & 18 & 21.42\end{array}$	1661756.79
Tananarive	International	Tananarive Observatory	-18 5502.10	473306.75
Tokyo	Bessel	Tokyo Observatory (old)	353917.51	1394440.50
Tristan Astro 1968	International	INTSATRIG 069 RM No. 2	-37.03 26.79	3474053.21
Viti Levu 1.916 (Fiji)	Clarke 1880	MÖNAVATU (latitude only) SUVA (longitude only)	-17 5328.285	1782535.835
Wake Island, Astronomic 1952	International	ASTRO 1952	1.91719 .991	1663846.294
White Sands*	Clarke 1866	KENT 1909	323027.079	2533101.306
Yof Astro 1967 (Dakar)	Clarke 1880	YOF ASTRO 1967	144441.62	3423052.98

* Local datums of special purpose, based on ŃAD 1927 values for the origin stations.

4.3 MERCURY SPHEROID 1960

In 1973 there is general agreement among satellite geodesists that the flattening of the spheroid is $1 / 298.25$ with an error no greater than 0.05 in the denominator. But current estimates of the semi-major axiṣ vary from about 6378128 meters to 6378145 . To avoid repeated changes in their programs until a consensus is reached, some agencies continue to use older earth models with little loss of tracking effectiveness.

But the range of estimates of datum shifts has narrowed since 1960 although some large disagreements remain. To take advantage of this improvement, and to include such datums as the Australian and South American 1969. for which no shifts were available in 1960, the tabulation of positions on the Mercury Spheroid 1960 uses the shifts associated with the Modified Mercury Datum 1968, but retains the older spheroidal constants, 6378166 and $1 / 298.3$.

4.4 TRANSFORMATION CONSTANTS FOR MODIFIED ME RCURY DATUM 1968

The datum shifts listed below are from Army Map Service Technical Report No. 67, "A Modification of the Mercury Datum, Fischer 1968," June 1968, with additions and changes from DMATC up to 1 October $1973(a=6378150, \mathrm{f}=1 / 298.3)$.

Datum Shifts to Modified Mercury 1968

From	$\Delta \mathrm{X}$	$\Delta \mathrm{Y}$	
AZindân	-151 m	-28 m	+220 m
Australian	-107	-42	+92
Arc	-128	-133	-274
American Samoa 62	-93	+137	+375
Ascension 58	-208	+84	+52
Bermuda 57	-65	+206	+308
Canton I. 63	+235	+244	-467
European	-81	-104	-121
Guam	-77	-238	+202
Johnston I. 61	+197	-66	-211
NAD 1927	-18	+145	+183
Old Hawaiian	+68	-278	-193
Pico de las Nieves			
(Canaries)	-308	-111	+149
SAD 1969	-74	-9	-39
Tananarive	-180	-257	-98
Tokyo	-162	+482	+671

CRITERIA FOR STATION POSITIONING

5.1 INTRODUCTION

If satellite tracking facilities and geodetic satellite observing systems are to provide useful scientific data, it is essential that the stations be positioned accurately on their local or national datums. This requires that just as much care be given to site surveys and documentation of survey information as is exercised in obtaining and reducing satellite observations.

Accuracy requirements for tracking station locations have increased proportionately with the needs for improved trajectory analysis and orbit determination. It is planned that eventually all tracking facilities and geodetic satellite observing stations will be positioned within an absolute accuracy of ten meters with respect to a reference system based on the earth's center of mass. To achieve this each station should be connected to its local horizontal and vertical datum within one meter. Developments in laser ranging, very long baseline interferometry, and improved radio tracking may demand more stringent requirements in the decimeter or even centimeter range. A one-meter requirement should not be difficult to meet in most instances if the availability of existing control and access to it are considered when the sites for observation stations are selected. It should be emphasized that experienced geodetic engineers should be engaged for these surveys, and that each survey is unique and requires its own method of solution.

5.2 SURVEY PROCEDURES

Basic survey data required for all observation stations are the horizontal position on the local geodetic datum and an elevation related to the local sea level datum. In both horizontal position and elevation determination the minimum requirement is establishment of the coordinates of the station to an accuracy of one meter relative to the control points.

With the establishment of the requirements, a competent geodetic engineer is in a position to plan the necessary surveys to connect the observation station to the nearest existing points on the local geodetic datum. The procedures adopted must meet the
accuracy required and should be suited to the local terrain, weather conditions, or any factor peculiar to the situation. The following suggestions are offered:
a. Existing control stations should be clearly identified, and means of recovering their positions from nearby references within one decimeter should be given.
b. The observation station should be given permanent marking so that it can be recovered without doubt in the future.
c. At least two existing control stations should be used in positioning a new station.
d. The least complicated method for making the connection is advisable a single closed triangle consisting of two existing stations and the new station, for example, or a simple traverse survey between existing and new stations.
e. Taping is adequate for short traverse distance measurements of 200 or 300 meters.
f. Triangulation or electronic traversing is recommended for extended connections; the latter is now often more economical.
g. Azimuth control should be based on existing stations when they are available; astronomic observations of azimuth should be made in other cases.
h. The care necessary in azimuth and length control depends on the extent of the survey; however, modern distance measuring instruments and theodolites yield greater accuracies than are usually required.
i. Vertical control is best established by spirit leveling over short distances and fairly level terrain; otherwise reciprocal vertical angles may be used in connection with traverse or triangulation. One-meter accuracy at the observation station is seldom a problem, except when vertical angles must be carried over extensive surveys. Barometric elevations are seldom adequate.
j. An accurate geodetic azimuth is sometimes needed at an observation station. This may require both high-order astronomic azimuth and longitude observations. There may be a nearby deflection station from which a Laplace correction may be estimated. It is well in these cases to ascertain positively the accuracy requirements and whether an astronomic or geodetic azimuth is needed. A geodetic azimuth is applicable only to the datum in which it is used, and may not be what is really needed for the orientation of satellite observing equipment.
k. If satellite observations at a station are to depend in any way on reference to the local gravity vector, then astronomic latitude, longitude, and azimuth should be provided. The suggested standard error in each case is one second of arc, or less.

1. Astronomic latitude and longitude observations will also be needed to estimate the geoidal separation from the primary control if it is more than a few kilometers from the station.
m. A new station monument should have permanent marks set nearby as references, but must be clearly distinguishable from them. Two references about 90° apart are recommended.
n. The relation in distance and azimuth between the new survey monument and a fixed point on the antenna, camera, etc., should be made in such a way that a mathematical check can expose blunders. For instance, an angle right and its explement left can be measured separately; a distance can be measured in both feet and meters.
o. All measurements should be made with sufficient redundancy of observations to provide a check.
p. Notes and sketches should be provided to preclude all doubt as to the application of the measurements.

Monumentation at the site should be permanent; it should be sufficient to permit recovery and use in future surveys. This will eliminate the need for another survey from distant control when instruments are collocated at different times, and will ensure a precise determination of relative position between the collocated instruments, both horizontally and vertically.

Caution should be used in assigning names to monuments. Terms such as "Instrument Center" or "BST" should be reserved for the actual instrument center or the actual boresight tower; if these terms must be used for the monumentation they should be clarified by the use of such qualifying terms as "Vertical Ecc." or "Horiz. Ecc."

5.3 DOCUMENTATION OF SURVEYS

It is important that geodetic surveys be completely documented. Only then can the user have confidence in the reliability of data and make an accuracy evaluation in relation to other observation stations. The following is a list of items that should be included in the documentation of satellite tracking or observing sites:
a. Geodetic latitude and longitude of the observing equipment on its national datum or a preferred major datum, specifying the horizontal datum referred to.
b. Elevation above mean sea level, specifying the vertical datum.
c. Geodetic azimuths to adjacent geodetic control stations.
d. Definition of the precise points on the equipment to which the geodetic position, azimuth, and elevation apply. This should be the exact point of reference for the observations, if possible. If this point moves, the maximum displacement should be noted, e.g., "the instantaneous center of the camera is within four centimeters of the point referred to."
e. Astronomic latitude, longitude, and azimuth, or other information useful in determining deflection of the vertical.
f. Geoid heights, based on astro-geodetic data if available, listing source from which obtained.
g. A brief description of survey procedures used in connecting the position of the observing equipment to existing horizontal and vertical control networks, including instruments used and observation methods, with survey sketches showing geodetic control stations established at the site and the geodetic control stations to which the local survey was connected.
h. Discussion of the results of these surveys, together with estimates of the accuracy obtained.
i. Name of organization which made the surveys, with date of surveys and location of the survey records.

Agencies responsible for positioning NASA tracking facilities and the geodetic satellite observing stations have been requested to furnish the above information for inclusion and dissemination in this directory. On the basis of the data provided a Geodetic Data Sheet has been compiled for each station. An explanation of the format and contents of the data sheet is provided just before the data sheets in Parts B and C of this directory.

REFERENCES

1. Lambert, W. D. and Duerksen, J.A. Unpublished papers. Coast and Geodetic Survey, November 1944.
2. Special Publication No. 227, "Horizontal Control Data." U.S. Coast and Geodetic Survey, revised 1957.
3. Whitten, C.A. "Adjustment of European Triangulation." Coast and Geodetic Survey Report to International Association of Geodesy, IUGG General Assembly, Brussels, 1951.
4. Gulatee, B. L. "Deviation of the Vertical in India." Survey of India, Technical Paper No. 9, 1955.
5. Annual Report of the Japanese Military Survey Department, 1882-1921, and Annual Report of Land Survey Department Imperial Japanese Army, 1922-1928.
6. Bomford, A.G. "The Geodetic Adjustment of Australia." Survey Review, April 1967.
7. Fischer, I. and Slutsky, M. "A Study of the Geoid in South America." Presentation to Xth Consultation on Cartography, PAIGH, Guatemala City, 1965.
8. Fischer, I. "The Geoid in South America Referred to Various Reference Systems." Presented to XI Pan American Consultation on Cartography, Pan American Institute of Geography and History, Washington, D. C. 1969.
9. Rainsford, H.S. "The Geodetic Datum for Primary Triangulation in East and Central Africa." Letter to AMS, September 28, 1961, file no. 590.0045.
10. Mussetter, W. "Geodetic Datums and an Estimate of their Accuracy." ACIC Technical Report No. 24, April 1953.
11. Davies, et al. "The Readjustment of the Retriangulation of Great Britain, and its Relationship to the European Terrestrial and Satellite Networks." Commonwealth Survey Officers Conference Paper No. A1, August 1971.
12. Geonautics, Inc. "Project Mercury, Application of Geodesy to a Worldwide Satellite Tracking System." April 1961.
13. DMA Topographic Command. "Report of the Twelth Parallel Survey." 1973.
14. Fischer, I. and Slutsky, M. "Conversion Graphs for an Astro-Geodetic World Datum." Army Map Service Technical Report No. 51, February 1964.
15. Fischer, I., et al. "New Pieces in the Picture Puzzle of the Astro-Geodetic Geoid Map of the World." Presentation to XIV General Assembly, International Union of Geodesy and Geophysics, Lucerne, September 1967.
16. Lundquist, C. and Veis G. "Geodetic Parameters for a 1966 Smithsonian Institution Standard Earth." SAO Special Report 200, 1966.
17. Veis, G. "The Determination of the Radius of the Earth and Other Geodetic Parameters as Derived from Optical Satellite Data." Presentation to XIV General Assembly International Union of Geodesy and Geophysics, Lucerne, September 1967.
18. Gaposchkin, E.M. "Smithsonian Institution Standard Earth III." Presentation at American Geophysical Union, Washington, D. C., April 1973.
19. Anderle, R.J. "Transformation of Terrestrial Survey Data to Doppler Satellite Datum." Presentation to IAG Symposium on Computational Methods in Geometrical Geodesy, Oxford, September 1973.
20. Lambeck, K. "The Relation of Some Geodetic Datums to a Global Geocentric Reference System." Bulletin Géodésique No. 99, 1 March 1971.
21. Hotine, Martin. "A Primer of Non-classical Geodesy." Paper presented at meeting International Geodetic Association, Toronto, 1957.
22. Molodenskiy, M. S., et al. "Methods for Study of the External Gravitational Field and Figure of the Earth." Translation for National Science Foundation and Department of Commerce by Israel Program for Scientific Translations, 1962.
23. Veis, George. "Geodetic Uses of Artificial Satellites." Smithsonian Contributions to Astrophysics vol. 3, no. 9, Washington,' D. C., 1960.

Page intentionally left blank

PART B - NASA SATE LLITE

 TRACKING STATIONS
Page intentionally left blank

SECTION 6
 DESCRIPTION OF NASA TRACKING FACILITIES

6. 1 INTRODUCTION

The antennas directly employed for spacecraft tracking by the National Aeronautics and Space Administration are in Volume 1 of this directory. Brief descriptions of the equipment at these stations are given in this section, with emphasis on the physical characteristics and orientation of the antennas. These have been summarized in Table 3 at the end of the section. Locations of the facilities are shown in Figures 2A, 2B, and 3.

6. 2 UNIFIED S-BAND SYSTEM

The Unified S-Band Network was designed for the Apollo lunar program and will be used for subsequent space programs. It derives its name from the fact that it operates within the S-Band - approximately 2100 MHz uplink to the spacecraft and 2300 MHz downlink from the spacecraft - and the fact that all tracking functions are carried out by one unified system. Using a single carrier, the system performs the uplink functions of transmitting commands, data, and voice; the downlink functions of receiving telemetry data, voice, and television; and the functions of providing metric tracking data. Tracking is by a coherent Doppler and pseudo-random noise range system. Angle, range, and Doppler measurements are made, but the angle data, from antenna shaft encoders, is not precise enough for use as an independent data type. Two types of Cassegrain-feed antennas are used in the USB Network: three 26 -meter antennas provide continous coverage of of lunar and deep space missions; twelve 9 -meter antennas cover the earth-orbit portion of lunar missions, and back up the 26-meter antennas. Electronic equipment is similar for both types.

6.2.1 USB 26-Meter Antenna

The Apollo 26-meter Cassegrain antenna (Figure 4) consists of the main reflector, with 11-meter focal length, a tetrapod which supports the subreflector and acquisition antenna, a feed cone assembly, and the $X-Y$ pedestal. The main reflector is a solid aluminum surface consisting of dpuble-curved individual panels which are adjustable to form a best-fit paraboloid. The hyperbolic subreflector is at the focal plane of the main reflector, and 6 meters from the top of the feed cone.

Figure 2A.

Figure 2B.

Figure 3.

Figure 4. Unified S-Band 26-Meter Antenna

The axes of the $\mathrm{X}-\mathrm{Y}$ mount are noncoplanar, with the upper Y axis separated 6.7 meters from the X axis. The X axis is horizontal and oriented in the prime vertical (eastwest direction). The X angle is measured in the meridian plane, positive from the zenith toward the south, negative toward the north. The Y axis lies in the meridian plane, perpendicular to the X axis, and is horizontal when the X angle is zero. Y angles measured toward the east are positive; those toward the west are negative. The antenna is able to cover all parts of the sky higher than 2° above the horizon except for semi-conical keyholes of 10° radius at the horizon in the east and west. 6.2.2 USB 9-Meter Antenna

The 9-meter antenna structure (Figure 5) consists of the main reflector, a Cassegrain feed subsystem, an $\mathrm{X}-\mathrm{Y}$ pedestal mount, and supporting equipment. The main reflector is a solid-surface aluminum paraboloid with a 9 -meter circular aperture and a 3.7-m focal length. The surface is made of 26 double-curved individually adjustable panels. The Cassegrain feed subsystem consists of the monopulse feed assembly and a hyperbolic subreflector on a tetrapod.

The pedestal is a non-coplanar, two-axis mount with the lower X axis horizontal and (except for the two ERTS antennas) oriented in the meridian (north-south direction). The X angle is measured in the prime vertical plane, positive from the zenith toward the east, negative toward the west. The Y axis lies in the prime vertical plane, 2.4 meters from the X axis (except USB 19, Santiago, which has the one-meter separation of axes of the GRARR mount) and perpendicular to it. It is horizontal and above the X axis when the X angle is zero. Y angles measured toward the north are positive; those toward the south are negative. The X axis is capable of rotating $\pm 95^{\circ}$ (dead limit) from the zenith; the Y axis is limited to 82° (dead limit) from the zenith. The pedestal with pre-limits allows the
antenna to cover all parts of the sky 2° above the horizon except for semi-conical keyholes north and south. The keyholes have 20° maximum width and 10° height above the horizon. Two of these antennas (USB 16, USB 17), used in the ERTS program, have the orientation of the USB 26-meter antennas.

Figure 5. Unified S-Band 9-Meter Antenna

6.3 C-BAND RADARS

The C-Band radars are precision mon pulse tracking antennas operating in the 54005900 MHz band. These radars were designed specifically for missile test range instrumentation and trajectory analysis, and are in use at all major spacecraft ranges. During the early 1960s they were the main tracking syste for Project Mercury and Project Gemini missions.

The radars are of two basic types: thi FPS-16 radar, and the FPQ-6 radar (and its mobile version, the TPQ-18). They provide tracking data in the form of range measurements, and azimuth and elevation angles.

6.3.1 FPS-16 Radar

The FPS-16 has a 3.7-meter diameter paraboloid reflector on an azimuth-elevatic pedestal (Figure 7). The reflector surface consists of wire mesh panels support by radia trusses. The pedestal is mounted on a reinforced concrete tower which is surrounded by building containing the electronic equipment. The antenna has a four-horn monopulse fee supported on a tetrapod located at the focal point of the reflector.

6.3.2 FPQ-6 and TPQ-18 Radars

The FPQ-6 is a second generation system to the FPS-16 and offers several major improvements: tracking capability to greater distances; greater angle tracking precision rapid target detection and lock-on; and capability of real-time corrections. It has a $9-\mathrm{mi}$
diameter Cassegrain antenna with a five-horn monopulse feed (Figure 6). The main reflector is a solid-surface aluminum paraboloid. The feed assembly and 0.8 m hyperbolic subreflector are supported by a tripod. The antenna is mounted on a hydraulically driven azimuth-elevation pedestal.

The TPQ-18 radar is identical to the FPQ-6 except that the electronic system is housed in ten 8×16-foot modular shelters.

6.3.3 S-Band Radar (SPANDAR)

This facility, located at the NASA Wallops Island Station, is a high-power conical scan tracking radar. The 18 -meter paraboloid reflector is supported by an azimuthelevation mounting on top of a 29 -meter tower.

Figure 6. FPQ-6 and FPS-16 C-Band Radars

6.4 GODDARD RANGE AND RANGE-RATE SYSTEM

The Goddard Range and Range-Rate system is used for determining range and radial velocity of spacecraft at near-earth or lunar distances. Two antennas, 76 to 122 meters apart, one operating at S-band frequency and the other at VHF, are used at most stations. Each antenna is X-Y mounted, hydraulically positioned, and can be used for
simultaneous transmission and reception. The VHF antenna is normally used as an acqu sition aid for the narrow beamwidth S-band antenna, but it can also be used independently for ranging and Doppler measurements. The S-band receiver system operates at 22002300 MHz , and the VHF receiver system at $136-138 \mathrm{MHz}$. The S-band transmits at 1750 1850 MHz and the VHF transmits at $148-150 \mathrm{MHz}$. Two types of tracking facilities are in use; the original Goddard Range and Range-Rate system (GRARR-1) at Rosman, Carnarvon, Santiago, and Tananarive, and a later system (GRARR-2) at Fairbanks. The S-banc systems at Rosman and Tananarive are.compatible with USB frequencies.

6.4.1 GRARR-1 Facilities

The S-band system (Figure 7) consists of two identical Cassegrain-feed 4.3-mete: diameter paraboloids with focal length of 2 meters. The parabolas are spaced 4.6 meter apart on the Y axis, with $30-\mathrm{cm}$ clearance between reflector edges. The X and Y mounti: of the VHF and S-band antennas are identical, with the X axis lower than the Y axis and aligned north-south. The X axis is 10.08 meters above the base of the tower leg; the Y axis is one meter above it. The original VHF antennas at these stations, monopulsetracking phased arrays of 72 cavity-backed slots, have been replaced with 16 -element sh backfire element arrays on $9 \times 9 \mathrm{~m}$ expanded aluminum screens.

6.4.2 GRARR-2 Facilities

The S-band system consists of a single 9-meter Cassegrain antenna with a circula aperture solid surface parabolic reflector, a 1.14-meter solid hyperbolic subreflector,

Figure 7. Goddard Range and Range-Rate Facility (GRARR-1)
and a monopulse feed mounted on an $\mathrm{X}-\mathrm{Y}$ pedestal (Figure 8). The main reflector has a 3.7 meter focal length, and the subreflector has a 2 -meter focal length. The VHF antenna has a 8.5×8.5-meter planar array of 32 crossed dipoles arranged in a 6×6 pattern with the corner elements missing. The X-Y mounts of both antennas are like those of the 9-meter Unified S-band (paragraph 6.2.2) in alignment and sky visibility. Both Fairbanks antennas are additionally restricted by keyholes up to 6° above the horizon at the east and west points.

6. 5 26-METER DATA ACQUISITION ANTENNAS

The 26-meter antennas provide tracking, data acquisition, and communications support for various satellite programs. They are instrumented for monopulse tracking in the 136,400 , and 1700 MHz bands. These antennas (Figure 9) have solid-surface aluminum paraboloid reflectors with circular apertures 26 meters in diameter. The focal length is 11 meters. Each section of the reflector surface is individually adjustable, with a surface tolerance of one mm . All these antennas have a focal-point feed system except the Rosman II antenna, which is also equipped with a removable 3.4-meter dichroic Cassegrain subreflector.

The $\mathrm{X}-\mathrm{Y}$ antenna mount has the X -axis (the lower axis) aligned in the north-south direction, 13.1 meters above the foundation. The Y axis is perpendicular to the X axis and 7.01 meters from it. Sky coverage is from two degrees above the horizon to zenith except when pointing due north or south, where gimbal lock limits viewing below twelve

Figure 8. Goddard Range and Range-Rate Facility (GRARR-2)

Figure 9. 26-Meter Data Acquisition Antenna
degrees above the horizon for ten degrees east and west of the 0° and 180° azimuth points. (Rosman II has somewhat greater, although similar, mechanical constraints on its field of view.) The entire antenna weighs about 270 metric tons and is about 37 meters high in the stow position.

- The Japanese-owned 26-meter antenna at Kashima is used primarily for communication experiments for the Applications Technology Satellites (ATS) program. The 26 -meter solid-surface paraboloid is supported on an azimuth-elevation mount. The system has a Cassegrain feed, and operates in the $3700-4200 \mathrm{MHz}$ and $5925-6425 \mathrm{MHz}$ bands. The azimuth-elevation mount can rotate $\pm 365^{\circ}$ in azimuth, and from -1° to 95° in elevation, with a tracking accuracy of about 0.01°. The intersection of the axes is 21.70 meters above the ground level.

6.6 12-METER DATA ACQUISITION ANTENNAS

The function and operation of these antennas are very similar to those of the 26meter antennas. The 12 -meter parabolic reflector is mounted on a coplanar X-Y pedestal (Figure 10). The reflector consists of adjustable double-curved solid-surface aluminum panels. The monopulse feed package is supported by a tetrapod at the focus of the reflector (focal length 5 meters). The system receives and transmits in the 136 and 400 MHz bands; the Alaska antenna has also a 1700 MHz capability.

The $\mathrm{X}-\mathrm{Y}$ mount is oriented with the X axis horizontally aligned in a north-south line, 7 meters above the foundation. The mount design permits pointing of the antenna in all directions above the horizon except for four 4° keyholes centered 12° each side of north and south. The antenna is 17 meters high in the stow position, and its overall weight is 49 metric tons.

The 12-meter antenna at Goldstone was modified from a prime focus feed to a Cassegrain configuration. Transmitting in the 6000 MHz band and receiving in the 4000 MHz band, its major function is in support of the ATS program.

6. 7 MINITRACK NETWORK

Minitrack is an interferometer system for measuring the angular position of a transmitting satellite. Measurements are obtained by phase comparisons between multiple pairs of antennas at fixed distances apart. The system consists of thirteen antennas which are precisely leveled and oriented to two crossed baselines approximately 125 meters long, one north-south, the other east-west. Eight of the antennas are on the baselines, 57 wavelengths apart on the $\mathrm{N}-\mathrm{S}$ baseline and 46 wavelengths apart in the $E-W$ direction, and are used for fine measurements; five are clustered near the center to resolve ambiguities in the fine measurements. Each antenna is a large fixed multi-element slot array with lattice ground screens mounted $1 \frac{1}{2}$ meters above the ground on pedestals (Figure 11). The system operates in the $136-138 \mathrm{MHz}$ band.

Figure 11. Minitrack Antenna

An equatorially mounted astrographic camera (MOTS 40) at the center of the array is used for periodic calibration of the interferometer system. This camera is also used independently for optical tracking of satellites, and is described under camera systems in Section 7.

6. 8 SATAN ANTENNAS

The Satellite Automatic Tracking Antenna (SATAN) is a wideband yagi designed to complement the data acquisition and command functions of the 12- and 26-meter antennas. It operates in the $136-$ to $138-\mathrm{MHz}$ frequency range. The SATAN telemetry and command (T\&C) antennas listed in the directory are either 9- or 16-element arrays. The 9-element array, at Toowoomba, Australia, is mounted on an azimuth-over-elevation pedestal. The antenna can be positioned $\pm 270^{\circ}$ in azimuth and $\pm 80^{\circ}$ from zenith in elevation. The 16-element array, at Rosman and Goldstone, is mounted on an $\mathrm{X}-\mathrm{Y}$ pedestal. The Y-axis supports the antenna platform and is aligned in the East-West direction. Each axis of the pedestal can be rotated $\pm 83^{\circ}$ from zenith.

6.9 DEEP SPACE NETWORK

This network was established by NASA under the management and technical direction of the Jet Propulsion Laboratory, California Institute of Technology, by whom it was designed and implemented. It is designed primarily for the support of planetary and interplanetary exploration, but has supported, in collaboration with the Spaceflight Tracking and Data Network, the Apollo 8 through 17 flights. It is continually improved to reflect developments in telecommunications, and is much used for radio science investigations. Seven $26-m$ antennas are involved in tracking spacecraft and acquiring data. These station: are connected through the NASA Communication (NASCOM) system and the local Ground Communication Facilities (GCF) to the Network Control Center at JPL, Pasadena. The first of three $64-\mathrm{m}$ diameter antennas has been in operation at Goldstone fór several years; the other two are (1973) in final stages of construction at Madrid, Spain and Canberra, Australia. Two additional antennas at Goldstone are a $26-\mathrm{m}$ azimuth-elevation mounted antenna used for research and development of new capabilities before their entry into the operating network, and a $9-\mathrm{m}$ diameter antenna for radio science development. In recent
years the latter has also operated as part of a network time synchronization system at X-band, which uses the moon as the reflecting surface for signals to the overseas deep space stations.

6.9.1 $26-\mathrm{m}$ Diameter Hour Angle-Declination Mount

The antenna in most common use at the deep space stations is the $26-\mathrm{m}$ diameter paraboloid with polar mount (Figure 12). The seven stations mentioned above are of this

Figure 12. DSN 26-Meter Antenna
type and are essentially identical except in the number of legs (three for the earlier models). These stations operate in the S-band range with transmitters at $2110 / 2120 \mathrm{MHz}$ and receivers at $2290 / 2300 \mathrm{MHz}$. The stations generate angle, doppler, and ranging metric data. They are equipped with electronics to receive, record, demodulate, decode, and format spacecraft telemetry data for retransmission to the control centers. They have command modulators and associated digital equipment to transmit commands to the spacecraft.

6.9.2 26-m Diameter Antenna (Venus Station) AZ-EL Mounted

This station, as noted above, is the research and development facility for introducing new capability into the operating network. It has the appropriate transmitting and receiving electronics.
6.9.3 64-Meter Antenna

The 64-meter Advanced Antenna System (Figure 13) was placed in operation at the Goldstone Mars station in 1966. Two antennas almost identical to it are under construction at the Tidbinbilla, Australia, and Madrid sites, to complete (in 1973) the network for contin-
uous communications with deep-space vehicles between 28.5° declination north and south. The fully steerable 64 -meter diameter paraboloid has a focal length of 27.109 meters. The reflector is constructed of 1200 aluminum sheeted panels 2 mm thick. The surface is solid out to half the radius; the surface for the outer half of the radius is perforated with

Figure 13. DSN 64-Meter Antenna $6-\mathrm{mm}$ holes for 50% porosity. The Cassegrain feed cone, at the vertex of the primary reflector, is divided into four 3 -meter modules. The 6meter solid subreflector is supported by a tetrapod above the focal point of the primary reflector The system operates at the S-band frequencies of $2100-2300 \mathrm{MHz}$. It has nearly seven times the transmitting and receiving capacity, or 2.5 times the range, of the 26 -meter antenna.

The azimuth-elevation mount is designed to track at 0.5° a second with a dead-load RMS error of 6 mm . It can rotate 570° in azimuth and 85° in elevation. Tracking is automatic, or may be programmed for very faint signals. The antenna is about 73 meters high in the zenithpointing position, and weighs about 7000 metric tons, 2300 of these being in the moving part

6. 10 RADIO TELESCOPES

The following facilities, primarily devoted to studies in radio astronomy, are not NASA facilities, but are listed for their past or potential cooperation with NASA satellite programs.

6.10.1 Jodrell Bank 76-Meter Telescope

The large telescope at Jodrell Bank, England, is famous for its use in tracking the early Russian and American satellites. The 76-meter telescope is a fully steerable paraboloid (alt-azimuth mounted) with a focal length of 19 meters. The reflector surface
originally consisted of 7100 one-meter square sections of sheet steel which were welded together. The surface lining was modified in 1971 with adjustable solid panels which allow the surface to be maintained as a paraboloid to within 2.5 mm . The central support for the paraboloid was also modified for the added weight of the new panels. These improvements permit full operating efficiency in the 21 cm wavelength region of the radio spectrum. Since modification the telescope is designated the Mark IA.

6.10.2 Parkes 64-Meter Telescope

This telescope has been in operation since 1961 at the Australian National Radio Astronomy Observatory, Parkes, N.S.W. It was designed for research at S-band frequencies. The 64 -meter diameter paraboloid has a focal length of 26.2 meters. The supporting structure for the reflector surface consists of a series of radial ribs, cantilevered from a central hub and joined together by a ring girder system. The reflector surface is solid at the center portion over a 9 meter diameter; the remainder of the surface consists of wire mesh panels supported on a series of radial purlins. The mesh surface was selected for optimum power efficiency at a wavelength of 10 cm , and was designed to be accurate in shape to within 9 mm for any orientation of the paraboloid. (In 1964 a special photographic system was designed and installed to monitor the surface configuration automatically. This is capable of measuring surface deformations to within a tolerance of 1 mm at zenith angles up to 60°.) The paraboloid is supported by an azimuth-elevation turret structure on top of a reinforced concrete tower. The elevation drive system permits the telescope to rotate from zenith down to 30° above the horizon. In azimuth, the operating range is $\pm 225^{\circ}$. The supporting tower structure, 12 meters in diameter and about 12 meters high, houses the control system and radio frequency equipment.

6.10.3 Bonn 100-Meter Telescope

This telescope is located at the Max Planck Institute for Radio Astronomy at Effelsberg, near Bonn, West Germany. The telescope is a fully steerable paraboloid, alt-azimuth mounted, with an aperture of 200 meters for wavelengths as short as 4 cm , and of 80 meters for work down to 1.5 cm . The reflector has a focal length of 30 meters (f/0.3). A tetrapod supports a feed assembly at the vertex of the reflector for primefocus observing, or a secondary reflector (Gregorian mirror) when working in the 11 to

3 cm wavelength range. The reflector surface has solid aluminum panels over an 80meter diameter. The outer zone of the disk, from 85 to 100 meters diameter is covered with wire netting of 6 mm mesh. Between these zones is a 5 -meter wide belt with 38 percent perforation. For the netting the shortest usable wavelength is 4 cm , and this is the limit when the full 100 -meter aperture is employed. It is expected that the surface configuration over an a rea up to 80 -meter diameter will provide acceptable efficiency for use down to 1.5 cm wavelength. Astronomical observations with this telescope began in 1971.

REFERENCES

"NASA Space-Directed Antennas," Lantz, Paul, and Thibodeau, G. R., Report No. X-525-67-430, NASA Goddard Space Flight Center. September 1967.
"Space Tracking and Data Acquisition Network Manual." Report No. X-530-70-454, NASA Goddard Space Flight Center, December 1970.
"AMR Instrumentation Handbook Volume I - Operational Systems," McKune, W. J., Tech. Report MTC-TDR-63-1, Pan American World Airways Guided Missile Range Division, Patrick Air Force Base. February 1963.
"Unified S-Band 30-Foot Antenna System." Technical Manual MH-1058, Collins Radio Company. 1966.
"Present Status of Kashima Earth Station." Radio Research Laboratories, Ministry of Posts and Telecommunications, Japan. 1968.
"DSN Capabilities and Plans." Report No. 801-2, Jet Propulsion Laboratory. January 1970

TABLE 3
ANTENNA CHARACTERISTICS

Directory Group	Equipment	Antenna Type	Main Reflector		Approx. Overall Height m	Axes Orientation	Reference Axis Height m	Axes Separation m	Angle Readings	Sky Coverage ${ }^{3}$
			$\begin{gathered} \text { Diameter } \\ \mathrm{m} \end{gathered}$	Focal Length m						
$\begin{aligned} & \text { Unified } \\ & \text { S-Band } \end{aligned}$	USB 9 m	Cassegrain	9	3.6	15	$\mathrm{X}: \mathrm{N}-\mathrm{S}^{1}$	6^{2}	2.4	$\begin{aligned} & x:+90^{\circ}(E) \text { to }-90^{\circ}(W) \\ & y:+90^{\circ}(N) \text { to }-90^{\circ}(S) \end{aligned}$	Zenith to 2° above horizon except $N-S$ keyhole of 20° width and 10° height
	USB 26 m	Cassegrain	26	11	37	X: E-W	14^{2}	7	X: $+90^{\circ}(\bar{S})$ to $-90^{\circ}(\bar{N})$ y: $+90^{\circ}(\mathrm{E})$ to $-90^{\circ}(\mathrm{W})$	Zenith to 2° above horizon except $E-W$ keyhole of 20° width and 10° height
C-Band Radars	$\begin{aligned} & \hline F P Q-68 \\ & \text { TPN- } 18 \\ & \hline \end{aligned}$	Cassegrain	9	2.7	12	Az-E1	63	0	Az: 0° at North El: 0° at horizon	Zenith to 2° below horizon except zenith keyhole of 5° radius
	FPS-16	Prime focus	3.7	1.3	6		2.43	0		Zenith to 10° below horizon except zenith keyhole of 5° radius
Goddard Range And Range Rate	VHF-slotted	Planar Array	9×9	-	15	X: N-S				
	$\begin{aligned} & \text { S-band } \\ & \text { Paired } 4 \mathrm{~m} \end{aligned}$	Cassegrain	4.3	2			10.7^{2}	1.0	$X:+90^{\circ}(\mathrm{E})$ to $-90^{\circ}(\mathrm{W})$	keyhole of 10° width and 5° height
	VHF-Dipole	Planar Array	8.5×8.5	-	15				$\mathrm{Y}:+90^{\circ}(\mathrm{N})$ to $-90^{\circ}(\mathrm{S})$	Zenith to horizon except $\mathrm{N}-\mathrm{S}$ keyhole
	S-band 9 m	Cassegrain	9	3.7			62	2.4		of 10° width and 5° height
Data Acquisition	26 mX X-Y	Prime Focus ${ }^{5}$	26	11	37	X: N-S	13^{2}	7	$\begin{aligned} & X:+90^{\circ}(\mathrm{E}) \text { to }-90^{\circ}(\mathrm{W}) \\ & Y:+90^{\circ}(N) \text { to }-90^{\circ}(\mathrm{S}) \end{aligned}$	Zenith to horizon except N -S keyhole of 20° width, 12° height
	$26 \mathrm{~m} \mathrm{Az-El}$	Cassegrain	26	. 11	36	Az-E1	22^{3}	0	$\begin{aligned} & \text { Az: } 0^{\circ} \text { at North } \\ & \text { El: } 0^{\circ} \text { at horizon } \end{aligned}$	5° beyond zenith to 1° below horizon
	$12 \mathrm{~m} \mathrm{X}-\mathrm{Y}$	Prime Focus ${ }^{6}$	12	5	17	X: N-S	72	0	$\begin{aligned} & X:+90^{\circ}(\mathrm{E}) \text { to }-90^{\circ}(\mathrm{W}) \\ & Y:+90^{\circ}(\mathrm{N}) \text { to }-90^{\circ}(\mathrm{S}) \end{aligned}$	Zenith to horizon except N-S keyhole of 45° width and 5° height
Deep Space	26 mHA -Dec	Cassegrain	26			HA-Dec	12-15			
	$26 \mathrm{~m} \mathrm{Az-El}$	Cassegrain	26		27	Az-El	11	3		
	$64 \mathrm{~m} \mathrm{Az-E1}$	Cassegrain	64	27	72		34	0		

NOTES:
Dimensions shown may vary somewhat with individual antennas, because of

1. local conditions and/or hardware modifications.

2- Height of two ERTS antennas, which are oriented like the USB $26-\mathrm{m}$.
3. Height of elevation axis above foundation.

- Limitation of keyhole (gimbal lock) shown as maximum width and height of a

5. Except for Rosman 11 , which is equipped for either prime focus or Cassegrain feed

- Except for Goldstone, which is Cassegrain.

Page intentionally left blank

Station Index

Page intentionally left blank

STATION INDEX

NASA SATELLITE TRACKING STATIONS

Station
Location
Antenna

Unified S-Band

USB	Merritt Island, Florida	9-meter
USB 2^{*}	Grand Bahama Island	9-meter
USB 3	Bermuda	9 -meter
USB 4^{*}	Antigua, West Indies Assoc. States	9-meter
USB 5	Canary Islands	9 -meter
USB 6	Ascension Island	9-meter
USB 7	Madrid, Spain	26-meter
USB 8	Carnarvon, Australia	9-meter
USB 9	Guam	9-meter
USB 10	Canberra, Australia	26-meter
USB 11	Kauai, Hawaii	9-meter
USB 12	Goldstone, California	26-meter
USB 13*	Guaymas, Mexico	9-meter
USB 14	Corpus Christi, Texas	9-meter
USB 15	Greenbelt, Maryland	9-meter
USB 16	Greenbelt, Maryland	9 -meter
USB 17	Goldstone, California	9-meter
USB 18	Merritt Island, Florida	9-meter
USB 19	Santiago, Chile	9-meter

Radars

RAD 1	Merritt Island, Florida	TPQ-18
RAD 2	Patrick AFB, Florida	FPQ-6
RAD 3	Cape Kennedy, Florida	FPS-16
RAD 4	Grand Bahama Island	TPQ-18
RAD 5	Wallops Island, Virginia	FPQ-6
RAD 6	Wallops Island, Virginia	FPS-16
RAD 7	Grand Turk Island	TPQ-18
RAD 8	Bermuda	FPS-16
RAD 9	Bermuda	FPQ-6
RAD 10	Antigua, West Indies Assoc. States	FPQ-6
RAD 11*	Ascension Island	TPQ-18
RAD 12	Ascension Island	FPS-16
RAD 13	Tananarive, Madagascar	FPS-16
RAD 14	Carnarvon, Australia	FPQ-6
RAD 15*	Woomera, Australia	FPS-16

[^0]| Station | Location | Antenna |
| :---: | :---: | :---: |
| RAD 16 | Kauai, Hawaii | FPS-16 |
| RAD 17 | Vandenberg AFB, California | TPQ-18 |
| RAD 18 | Point Arguello, California | FPS-16 |
| RAD 19* | White Sands, New Mexico | FPS-16 |
| RAD 20 | Eglin AFB, Florida | FPS-16 |
| RAD 21 | Wallops Island, Virginia | SPANDAR |
| Goddard Range and Range-Rate | | |
| GRR 1S | Fairbanks, Alaska | S-Band 9-meter |
| GRR 1V | Fairbanks, Alaska | VHF |
| GRR 2S | Rosman, North Carolina | S-Band Paired 4.3-meter |
| GRR 2V | Rosman, North Carolina | VHF |
| GRR 3S* | Santiago, Chile | S-Band 9-meter |
| GRR 3V | Santiago, Chile | VHF |
| GRR 4S | Tananarive, Madagascar | S-Band Paired 4.3-meter |
| GRR 4V | Tananarive, Madagascar | VHF |
| GRR 5S | Carnarvon, Australia | S-Band Paired 4.3-meter |
| GRR 5V | Carnarvon, Australia | VHF |

26-meter Antennas

S85	1	Rosman, North Carolina
S85	2	
S85	3	
Rosman, North Carolina		
S85	4	
Sairbanks, Alaska		
S85	6	

12-meter Antennas

S40	1	
S40	2	Gilmore Creek, Alaska
S40	3	Johannesburg, South Africa
S40	4	Quito, Ecuador
S40	5	Santiago, Chile
S40	6	Goldstone, California
S40	7	Tananarive, Madagascar
	Greenbelt, Maryland	

Station Location $\underline{\text { Antenna }}$

Minitrack

MIN 1 *	Fairbanks, Alaska
MIN 2	Fairbanks, Alaska
MIN 3*	Goldstone, California
MIN 4^{*}	East Grand Forks, Minnesota
MIN 5 *	Fort Myers, Florida
MIN 6	Quito, Ecuador
MIN $7 *$	Lima, Peru
MIN 8 *	Blossom Point, Maryland
MIN 9	Greenbelt, Maryland
MIN 10	Santiago, Chile
MIN $11{ }^{*}$	St. John's, Newfoundland, Canada
MIN 12	Winkfield, England
MIN 13	Johannesburg, South Africa
MIN 14	Tananarive, Madagascar
MIN 15 *	Woomera, Australia
MIN 16	Orroral, Australia

SATAN Antennas

SAT 1 Rosman, North Carolina
SAT 2 Goldstone, California
SAT 3 * Cooby Creek, Australia

Deep Space Network

DSN	1	Goldstone, California	26 -meter HA-Dec
DSN	2	Goldstone, California	26 -meter HA-Dec
DSN	3	Goldstone, California	26 -meter Az-El
DSN	4	Goldstone, California	64 -meter Az-El
DSN	5	Woomera, Australia	26 -meter HA-Dec
DSN	6	Tidbinbilla, Australia	26 -meter HA-Dec
DSN	7	Johannesburg, South Africa	$26-$ meter HA-Dec
DSN	8	Madrid, Spain	$26-$ meter HA-Dec
DSN	9	Madrid, Spain	26 -meter HA-Dec
DSN 10	Tidbinbilla, Australia	64 -meter HA-Dec	
DSN 11	Madrid, Spain	64 -meter HA-Dec	

Radio Telescopes

RTE 1	Jodrell Bank, England	76 -meter
RTE 2	Parkes, Australia	64 -meter
RTE 3	Bonn, West Germany	$100-$ meter
RTE 4	Green Bank, West Virginia	$43-$ meter

Launch Sites

LPD 1 Cape Kennedy, Florida Stand 12
LPD 2 Cape Kennedy, Florida Stand 13
LPD 3 Cape Kennedy, Florida Stand 14
LPD 4 Cape Kennedy, Florida Stand 19
LPD 5 Cape Kennedy, Florida Stand 34
LPD 6 Cape Kennedy, Florida Stand 37A
LPD 7 Cape Kennedy, Florida Stand 37B
LPD 8 Cape Kennedy, Florida Stand 39A

Page intentionally left blank

POSITIONS ON LOCAL OK MAJOR DATUMS

NOVEMAER 1973

Page intentionally left blank

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{STATION} \& \multicolumn{4}{|c|}{geodetic COORDINATES} \& ELEV \& \multicolumn{3}{|c|}{GEOCENTRIC COORDINATES}

\hline NO. \& LOCATION \& DATUM \& LATITUDE \& LUNGITUDE (E) \& H(M) \& MSL (M) \& $x(m)$ \& $Y(M)$ \& Z (M)

\hline \multicolumn{10}{|l|}{RADARS}

\hline RADI4 \& CARNARVON \& AUSTR \& -240 $53^{\prime} 50.176$ \& $113^{\circ} 42^{\prime} 57.76$ \& 55.1 \& 49.0 \& -2 328310.7 \& 5300006.6 \& -2 668805.3

\hline HAD15 \& WOOMERA \& AUSTR \& -30 4911.00 \& 1365013.12 \& 123.2 \& 124.7 \& -3 9998907.1 \& 3750369.9 \& -3 2488819.4

\hline RADIE \& KaUAI \& OLDHW \& $\begin{array}{lll}22 & 7 & 35.83\end{array}$ \& 2001953.96 \& 1155.0 \& 1155.0 \& -5 5444025.4 \& -2 054 280.2 \& 2387 701.8

\hline RAD17 \& VANDENBERG AFB \& NAD27 \& $\begin{array}{llll}34 & 39 & 57.14\end{array}$ \& $\begin{array}{llll}239 & 25 \quad 10.43\end{array}$ \& 89.0 \& 123.0. \& -2 6711836.2 \& -4 521351.1 \& 3607304.8

\hline RAD18 \& PT. ARGUELLO \& NAD27 \& $\begin{array}{llll}34 & 34 & 57.95\end{array}$ \& 2342621.97 \& 627.5 \& 661.5 \& -2 673156.8 \& -4 527170.1 \& 3600023.9

\hline RAO19 \& white sanos \& NAD27 \& 322128.62 \& 2533750.66 \& 1232.8 \& 1234.0 \& -1 5250195.1 \& $\begin{array}{lllll}-5 & 175 & 429.1\end{array}$ \& 3394506.3

\hline RAD20 \& EGLIN AFB \& NADET 7 \& $\begin{array}{llll}30 & 2517.06\end{array}$ \& 273126.44 \& 36.8 \& 27.8 \& 307.463 .1 \& -5 4968301.3 \& 3210588.3

\hline RAD2l \& WALLOPS ISLAND \& NAD27 \& 375116.74 \& 2842911.61 \& 28.t \& 30.8 \& 1261394.2 \& $\begin{array}{lllll}-4 & 882 & 174.6\end{array}$ \& 3892541.8

\hline \multicolumn{10}{|l|}{GUDDARD R/RR STATIONS}

\hline GRR1S \& FAIHBANKS \& NAD27 \& $64 \quad 58 \quad 20.89$ \& 2122922.41 \& 348.6 \& 346.6 \& -2 282482.4 \& -1 453517.0 \& $5756 \quad 536.4$

\hline GRRIV \& FAIRBANKS \& NAD27 \& $\begin{array}{llll}64 & 58 & 19.19\end{array}$ \& 2122928.12 \& 348.6 \& 346.6 \& -2 2824882.3 \& -1 453605.7 \& 5756514.1

\hline GRR2S \& ROSMAN \& NAD27 \& 3511145.05 \& 271726.23 \& 880.3 \& 873.9 \& 647213.2 \& $\begin{array}{lllll}-5 & 178 & 486.4\end{array}$ \& 3655962.8

\hline GRR2V \& ROSMAN \& NAD27 \& 351141.10 \& 277726.23 \& 87\%.9 \& 873.9 \& 647 221.H. \& -5.178 555.8 \& 3655863.0

\hline GRR3S \& SANTIAGO \& SA069 \& $\begin{array}{lll}-33 & 9 & 2.73\end{array}$ \& $28920 \quad 3.25$ \& 731.9 \& 705.7 \& 1769938.7 \& -5 044486.2 \& -3 368381.4

\hline GRR3V \& SANTIAGO \& SAD69 \& $\begin{array}{lll}-33 & 9 & 5.21\end{array}$ \& $28920 \quad 3.25$ \& 732.2 \& 706.0 \& 1769925.0 \& $\begin{array}{lllll}-5 & 044 & 447.1\end{array}$ \& -3 468445.4

\hline GRR4S \& TANANARIVE \& TANAN \& -19 19,33 \& 47181812.56 \& 1399.0 \& 1399.0 \& 4091516.4 \& 4434475.6 \& -2 0651846.4

\hline GRR4V \& TANANAKIVE \& TANAN \& -19 1 11.80 \& 471812.56 \& 1399.0 \& 1399.0 \& 4091499.6 \& 4434457.4 \& -2 065918.2

\hline GRRSS \& CARNARVON \& AUSTH \& $\begin{array}{llll}-24 & 54 & 14.96\end{array}$ \& 1134254.94 \& 44.0 \& 37.9 \& $\begin{array}{llll}-2 & 328 & 107.9\end{array}$ \& 5299742.1 \& -2 669476.3

\hline GRRSV \& CARNARVON \& AUSTA \& $\begin{array}{llll}-24 & 54 & 18.92\end{array}$ \& 1134254.94 \& 44.0 \& 37.4 \& $\begin{array}{lllll}-2 & 328 & 087.3\end{array}$ \& 5299695.1 \& -2 669 586.4

\hline \multicolumn{10}{|l|}{85-FOOT ANTENNAS}

\hline \& ROSMAN \& NAD27 \& $\begin{array}{lll}35 & 12 & .05\end{array}$ \& $\begin{array}{lll}277 & 7 & 40.57\end{array}$ \& 898.0 \& 892.0 \& 647542.0 \& $\begin{array}{llll}-5 & 178 & 191.4\end{array}$ \& 3656350.8

\hline 5852 \& ROSMAN \& NAO27 \& $\begin{array}{llll}35 & 11 & 55.68\end{array}$ \& 277727.45 \& 894.0 \& 888.0 \& 647221.8 \& -5 178306.4 \& 3656238.3

\hline 585

585 \& FAIKBANKS \& NAD27 \& | 64 |
| :--- | 5837.71 \& $\begin{array}{lll}212 & 29 & 5.58\end{array}$ \& 309.0 \& 307.0 \& -2 282188.6 \& -1 4530068.1 \& 5756720.9

\hline S85 4 \& ORRORAL \& AUSTR \& -35 $37 \begin{array}{rrr}32.85 \\ 35 & 57 & 3.80\end{array}$ \& $148.57 \quad 20.91$ \& 945.9 \& 937.6 \& $\begin{array}{lllllllll}-4 & 447 & 254.2\end{array}$ \& $\begin{array}{lllll}2 & 676 & 850.7\end{array}$ \& -3 695586.2

\hline S85 6 \& KASHIMA \& TOKYO \& $\begin{array}{lll}35 & 57 & 3.20\end{array}$ \& 140×3957.83 \& 48.1 \& 45.1 \& -3 997 747.3 \& 3276074.2 \& 3723440.1

\hline \multicolumn{10}{|l|}{40-FOOT ANTENNAS}

\hline \& GILMORE CREEK \& NAD27 \& $64 \quad 5836.93$ \& 2122854.00 \& 299.0 \& 297.0 \& -2 2882285.2 \& - 18452949.5 \& 5756701.0

\hline 5402 \& JOHANNESBURG \& ARC \& $\begin{array}{lll}-25 & 53 & 9.16\end{array}$ \& 274227.93 \& 1545.0 \& 1537.0 \& 5084811.9 \& 2670464.3 \& -2 768140.6

\hline S40:3 \& Quito \& SAD69 \& -0 3722.11 \& $\begin{array}{llll}281 & 2511.28\end{array}$ \& 3594.3 \& 3570.0 \& 1. 263 488.1 \& -6 255046.3 \& -68 904.5

\hline 5404 \& SANTIAGO \& SAD69 \& $\begin{array}{lll}-33 & 9 & 4.07\end{array}$ \& 2891956.40 \& 728.5 \& 702.3 \& $1 \begin{array}{llll}1 & 769 & 762.7\end{array}$ \& $\begin{array}{llll}-5 & 044 & 521.1\end{array}$ \& -3 468414.0

\hline S4.0. 5 \& GOLDSTONE \& NAD27 \& 351953.97 \& 243647.76 \& 918.0 \& 940.0 \& -2 356156.4 \& -4 646904.5 \& 3668288.8

\hline
\end{tabular}

STATION		geodetic coohdinates				ELEV	geocentric coordinates		
NO.	LOCATION	DATUM	LATITUDE	LONGITUDE (E)	H(M)	MSL (M)	$x(M)$	$Y(M)$	2(M)
40-FOOT ANTENNAS									
$\left\|\begin{array}{ll} 540 & 6 \\ 540 & 7 \end{array}\right\|$	TANANARIVE GREENBELT	TANAN NAD27	$\begin{array}{rrr} -19^{\circ} & 0^{\prime} & 34.40 \\ 38 & 59 & 59.64 \end{array}$	$\begin{array}{rrr} 47^{\circ} 18^{\prime} & 5.66 \\ 283 & 9 & 29.96 \end{array}$	$\begin{array}{r} 1385.2 \\ 55.7 \end{array}$	$\begin{array}{r} 1385.2 \\ 54.7 \end{array}$	$\begin{array}{lll} 4 & 091 & 893.2 \\ 1 & 129 & 905.1 \end{array}$	$\begin{array}{rrr} 4 & 434 & 586.3 \\ -4 & 833 & 186.6 \end{array}$	$\begin{array}{rll} -2 & 064 & 826.2 \\ 3 & 992 & 147.3 \end{array}$
MINITRACK STATIONS									
MIN 1	Fairbanks	NAD27	645219.72	$212 \quad 947.17$	164.7	162.7	-2 299237.8	-1 445840.3	5751628.7
MIN 2	FAIRBANKS	NAD27	$64 \quad 58 \quad 38.60$	2122840.90	291.6	289.6	-2 282335.2	-1 452777.6	5756716.8
MIN 3	GOLDSTONE	NAD27	$\begin{array}{llll}35 & 19 & 48.09\end{array}$	$\begin{array}{llr}243 & 6 & 2.73\end{array}$	907.1	929.1	-2 357214.3	-4 646475.6	3668134.6
MIN 4	EAST GRAND FORKS	NAD27	$\begin{array}{lll}48 & 1 & 21.40\end{array}$	2625921.56	255.4	252.6	-521 679.0	$\begin{array}{llllll}-4 & 242 & 198.1\end{array}$	4718543.9
MIN 5	FORT MYERS	NAD27	263251.89	$\begin{array}{lll}278 & 8 & 3.93\end{array}$	20.5	4.8	807883.1	-5 652136.6	2833327.5
MIN 6	QUITO	SAD69	$\begin{array}{llll}-0 & 37 & 20.52\end{array}$	2812517.94	3592.9	3568.6	1263689.9	-6 2555004.7	-68 858.8
MIN 7	LIMA	SAD69	-114634.98	$\begin{array}{llll}282 & 51 & 1.63\end{array}$	59.2	49.9	1388896.3	$\begin{array}{llll}-6 & 088 & 429.6\end{array}$	-1 293212.9
MIN ${ }^{\text {MIN }}$	BLOSSOM POINT	NAD27	$\begin{array}{lll}38 & 25 & 49.63 \\ \end{array}$	2825448.22	6.8	5.8	1118061.2	-4 876472.0	3942793.4
MIN 9	GREENBELT	NAD27	$\begin{array}{llll}38 & 59 & 56.73\end{array}$	$\begin{array}{lll}283 & 9 & 37.31\end{array}$	51.8	50.8	1130089.5	$\begin{array}{lllll}-4 & 833 & 198.4\end{array}$. 3992074.8
MINIO	SANTIAGO	SAD69	$\begin{array}{llll}-33 & 8 & 57.24\end{array}$	2891956.40	719.6	693.4	1769798.3	-5. 044622.6	-3 -368 232.9
MIN11	ST. JOHN'S	NAD27	$\begin{array}{llll}47 & 44 & 29.74\end{array}$	3071643.37	106.0	69.0	2602802.4	-3 419 301.2	4697477.3
MINI2	WINKFIELD	EUROP	51. 2649.11	$\begin{array}{llll}359 & 18 & 14.10\end{array}$	61.0	67.4	39883199.1	-48 394.1	4964832.6
MIN13	JOHANNESBURG	ARC	-25 52 58.86	274227.93	1530.3	1522.3	5084922.6	2670522.4	-2 767849.0
MIN14	TANANARIVE	TANAN	$\begin{array}{lll}-19 & 0 & 27.10\end{array}$	4718.46	1377.9	1377.9	4092050.0	4434531.9	-2 064611.5
MIN15	WOOMERA	AUSTR	$\begin{array}{llll}-31 & 23 & 30.07\end{array}$	1365211.02	128.5	129.5	-3 977-143.9	3725688.8	-3
M1N16	orroral	AUSTR	$\begin{array}{llll}-35 & 37 & 37.50\end{array}$	$148 \quad 57 \quad 10.71$	939.5	931.2	-4 447 353.6	2677210.2	-3 695197.9
SATAN	ANTENNAS							,	
$\left\|\begin{array}{ll} S A T & 1 \\ S A T & 2 \end{array}\right\|$	ROSMAN GOLDSTONE	NAD27 NAD27	$\begin{array}{rrr}35 & 12 & 6.12 \\ 35 & 19 & 53.97\end{array}$		940.2 914.7	934.2 936.7	$\begin{array}{r}647176.1 \\ -2 \quad 356 \\ \hline\end{array}$	$\begin{array}{llll}-5 & 178 & 163.1 \\ -4 & 646 & 840.7\end{array}$	$\begin{array}{llll}3 & 656 & 528.1 \\ 3 & 668 & 286.9\end{array}$
SAT ${ }^{\text {SAT }}$ 2	GOLDS COOBY CRE CRE	NAD27 AUSTR	$\begin{array}{rrr}35 & 19 & 53.97 \\ -27 & 23 & 50.69\end{array}$	$\begin{array}{rrr}243 & 6 & 42.39 \\ 151 & 56 & 17.15\end{array}$	914.7 551.6	936.7 550.0	$\begin{array}{llll}-2 & 356 & 276.3 \\ -5 & 001 & 023.6\end{array}$		3668 2
DEEP SPACE NETWORK									
OSN 1	GOLDSTONE	NAD27	352322.35	$243 \quad 9 \quad 5.26$	1014.3	1036.3	-2 351415.0	-4 645 227.9	3673582.3
DSN 2	GOLDSTONE	NAD27	$\begin{array}{lll}35 & 17 & 59.85\end{array}$	2431143.41	966.9	988.9	-2 350428.2	-4 652127.3	3665447.0
DSN 3	GOLDSTONE	NAD27	$\begin{array}{llll}35 & 14 & 51.79\end{array}$	2431221.57	1071.5	1093.5	-2 351115.0 .	-4 655626.4	3660775.0
DSN 4	GOLDSTONE	NAD27	$\begin{array}{llll}35 & 25 & 33.34\end{array}$	243.640 .85	1009.8	1031.8	-2 353607.0	-4 641 490.8	3676870.6
OSN 5	WOOMERA	AUSTK	-31 2259.43	$136 \quad 53 \quad 10.12$	14.7 .3	148.3	-3 978581.8	3724895.9	-3 302323.7

Page intentionally left blank

POSITIONSON ONOALOHMAJOROMTMS

Positions on Modified Mercury Datum 1968

Page intentionally left blank

POSITIONS UN MODIFIED MERCURY DATUM 1968

Page intentionally left blank

POSITIONS ON MODIFIEDMERCURY DATUM 1968

Page intentionally left blank

- INSUFFICIENT DATA

Page intentionally left blank

Page intentionally left blank

POSITIONS ON MERCURY SPHEROID 1960

STATION		GEOUETIC COOROINATES			GEOCENTRIC COORDINATES				
No.	LOCATION	LATITUDE	LONGITUDE (E)	H(M)	$x(M)$	$Y(M)$	2 (M)	H(M)	LATITUDE
UNIFIED S-BAND ANTENNAS									
	MERRITT ISLAND	$28^{\circ} 30^{\prime} 29.16$	$279^{\circ} 18^{\prime} 23.14$	-36.1	907066.1	$\begin{array}{llll}-5 & 535 & 228.4\end{array}$	$3 \begin{array}{lll}3 & 026104.7\end{array}$	6373290.4	$28^{\circ} 20^{\prime} 49.22$
USB 2	GRAND BAhama	263757.63	2814543.90	-36.6	1163013.9	-5 585441.8	2.841891 .6	6373861.3	$26 \quad 28 \quad 43.65$
USB 3	BERMUDA	32214.60	2952031.68	-21.8	2308462.7	$\begin{array}{llll}-4 & 874 & 310.5\end{array}$	3393408.6	6372058.1	$32 \quad 1039.29$
USB 4	ANT I GUA	$\begin{array}{lll}17 & 0 & 59.75\end{array}$	2981450.29	-16.5	2887310.8	$\begin{array}{lllll}-5 & 374 & 153.3\end{array}$	1854595.1	6376331.9	$\begin{array}{llll}16 & 54 & 33.17\end{array}$
USB 5	GRAND CANARY	274551.98	344:21 57.58	195.4	5439160.7	-1 522121.4	2953538.3	6373751.6	273622.06
USB 6	ASCENSION	$\begin{array}{llll}-7 & 57 & 17.53\end{array}$	$\begin{array}{llll}345 & 40 & 21.69\end{array}$	537.0	6121233.4	-1 563390.2	-876 916.1	6378296.6	-7 5488.29
USB 7	MADRID	$\begin{array}{llll}40 & 27 & 19.39\end{array}$	3554953.58	411.2	4847831.1	-353 318.8	41117139.5	6370018.6	$40 \quad 15 \quad 55.90$
USB 8	CARNARVON	-24 $54 \begin{array}{ll}\text { 24.57 }\end{array}$	1134331.26	9.4	-2 328980.5	52999193.8	-2 669735.1	6374408.9	-24 $45 \begin{array}{lll}46 & 36.58\end{array}$
USB 9	GUAM	$\begin{array}{r}13 \\ -35 \\ \hline\end{array} 8536.73$	$\begin{array}{llll}144 & 44 & 11.82 \\ 144 & 58 & 39.30\end{array}$	93.7 1134	-5 00688896.1	$\begin{array}{llll}3 & 584 & 117.2\end{array}$	1458852.5	$\begin{array}{llll}6 & 377 & 135.1\end{array}$	
USB10	CANBERRA	$\begin{array}{llll}-35 & 35 & 1.19\end{array}$	1485839.30	1134.9	-4 451046.6	2676829.4	-3 691401.2	6372101.1	$\begin{array}{llll}-35 & 24 & 6.47\end{array}$
USB 11	KAUAI	$\begin{array}{rrr}22 & 7 & 34.26\end{array}$	$20020 \quad 5.30$	1114.9	-5 5438830.0	-2 054554.3	2387795.1	6376269.2	215932.18
USB12	GOLDSTONE	$\begin{array}{lll}35 & 20 & 29.38\end{array}$	243734.81	918.0	-2 354766.4	-4 646790.8	3669387.5	6371969.3	$\begin{array}{llll}35 & 9 & 36.57\end{array}$
USB13	GUAYMAS	$\begin{array}{llll}27 & 57 & 46.71\end{array}$	24916.43 .78	-25.9	-1994 715.0	-5 272966.6	2972885.7	$\begin{array}{lllll}6 & 373 & 469.5\end{array}$	$\begin{array}{llll}27 & 48 & 14.07\end{array}$
USE14	CORPUS CHRISTI	27 37	2623716.59	-34.4	-726 081.6	-5 6068617.9	2942551.8	6373555.7	272944.35
USB15	GREENBELT	$\begin{array}{llll}38 & 59 & 54.24\end{array}$	$283 \quad 925.49$	2.2	1129790.8	$\begin{array}{llll}-4 & 833 & 169.8\end{array}$	3992201.5	6369743.3	$38 \quad 48 \quad 37.23$
USB16	GREENBELT	385953.52	283 92828.47	8.7	1129865.0	$\begin{array}{llll}-4 & 833 & 171.9\end{array}$	3992188.3	6369749.8	364836.51
USB17	GOLDSTONE	352029.38	243.737 .23	912.6	-2 354710.0	-4 64468814.4	3669384.3	6371963.9	$\begin{array}{lll}35 & 9 & 36.56\end{array}$
USB18	MERRITT ISLAND	$\begin{array}{llll}28 & 30 & 27.28\end{array}$	$\begin{array}{llll}279 & 18 & 23.14\end{array}$	-36.2	907070.5	-5 5335255.6	$3 \begin{array}{llll}3 & 026 & 053.8\end{array}$	6373290.5	$\begin{array}{llll}28 & 20 & 47.35\end{array}$
USB19	SANTIAGO	$\begin{array}{lll}-33 & 9 & 3.97\end{array}$	28920.45	732.8	1769864.7	$\begin{array}{lllll}-5 & 044 & 495.2\end{array}$	-3 468420.4	6372542.0	-32 58 30.67
RADARS									
RAD 1	MERRITT ISLAND	$\begin{array}{lll}28 & 25 & 28.87 \\ 28 & 13\end{array}$	279:20 7.59	-34.1	910583.9	$\begin{array}{llll}-5 & 539 & 117.9 \\ -5.548 & 370.9\end{array}$	$\begin{array}{lll}3 & 017 \\ 2 & 979.0\end{array}$	$\begin{array}{lll}6 & 373 & 318.4 \\ 6 & 373 & 383.4\end{array}$	$\begin{array}{lll}28 & 15 & 50.04 \\ 28 & 3 & 58.77\end{array}$
RAD 2 RAD 3	PATRICK AFB CAPE KENNEDY	$\begin{array}{lll}28 & 13 & 34.96 \\ 28 & 28 & 53.73\end{array}$	$\begin{array}{rrr}279 & 24 & 1.99 \\ 279 & 25 & 23.99\end{array}$	-30.5 -31.7	918 918588.8 987.9	-5.548 -5 534	$\begin{array}{lll}2 & 998 & 634.5 \\ 3 & 023 & 525.0\end{array}$	$\begin{array}{llll}6 & 373 & 383.4 \\ 6 & 373 & 303.1\end{array}$	$\begin{array}{rrr}28 & 3 & 58.77 \\ 28 & 19 & 14.15\end{array}$
RAD 4	GRAND BAHAMA	$\begin{array}{llll}26 & 38 & 10.20\end{array}$	$\begin{array}{llll}281 & 43 & 55.74\end{array}$	-36.1	1160049.7	-5 5858881.5	2842.237 .7	6 6 3738360.9	$\begin{array}{llll}28 & 19 & 14.15 \\ 26 & 28 & 56.17\end{array}$
RAD 5	WALLOPS ISLAND	$\begin{array}{lllll}37 & 51 & 36.51\end{array}$	$284 \quad 29 \quad 26.01$	-39.2	1261602.1	-4 881 572.1	3893196.3	6370114.8	374025.84
RAD 6	WALLOPS ISLAND	$3750 \quad 28.40$	$\begin{array}{llll}284 & 30 & 53.15\end{array}$	-41.8	1263986.8	-4 8828284.1	3891536.4	6370118.9	373917.84
RAD 7	GRAND TURK	212745.41	288524.09	-15.9	1920435.1	-5 619434.7	2319145.7	6375308.1	211954.85
RAD 8	BERMUDA	$\begin{array}{llll}32 & 20 & 53.14\end{array}$	2952047.44	-24.5	2308915.3		3393104.9	6372056.5	321027.86
RAD 9	BERMUDA	$32 \quad 2052.63$	2952047.66	-23.3	2308924.3	$\begin{array}{lllll}-4 & 874 & 308.7\end{array}$	33993096.5	$\begin{array}{lllll}6 & 372 & 057.7\end{array}$	$\begin{array}{llll}32 & 10 & 27.36\end{array}$
RADIO	ANTIGUA	$\begin{array}{llll}17 & 8 & 37.37\end{array}$	2981226.25	-8.5	2881607.8	$\begin{array}{lllll}-5 & 372 & 533.7\end{array}$	1868045.1	6376313.5	1728.26
RAD 11	ASCENSION	-7 58121.27	345'35 54.86	118.2	6118541.2	-1 5771136.8	-878 797.3	$\begin{array}{ll}6 & 377875.9\end{array}$	-7 5511.60
RAD12	ASCENSION	$\begin{array}{ccc}-7 & 57 & 4.78\end{array}$	$\begin{array}{llll}345 & 35 & 15.59\end{array}$	85.1	61118525.5	-1 572374.6	-876 465.5	6377845.0	$-753 \quad 55.61$
RAD13	TANANARIVE	$\begin{array}{lll}-19 & 0 & 5.41\end{array}$	$47 \quad 1852.76$	1288.2	4090866.6	4435505.4	-2 063937.5	6377204.2	-18 $53 \quad .17$

Page intentionally left blank

POSITIONS ON MEHCURY SPHEKOID 1960

STATION		GEODETIC COORDINATES			GEOCENTRIC COOKOINATES				
No.	LOCATION	LATITUDE	LONG I TUDE (E)	H(M)	$x(M)$	$Y(M)$	Z (M)	R(M)	LATITUDE
RADARS									
RAD14	[CARNARVON	-24053'47.49	$113^{\circ} 43^{\circ} 11.85$	13.9	-2 328417.7	5299964.6	-2 6688713.3	6374416.3	-240 $45^{\prime} \quad: 06$
RAD 15	WOOMERA	$\begin{array}{llll}-30 & 49 & 7.51\end{array}$	1365017.03	111.5	-3 9999014.1	3750327.9	-3 2488727.4	6372699.8	-30 3859.01
RADIG.	KAUAI	$22 \quad 724.16$	$20020 \quad 3.88$	1119.0	-5 543957.4	-2 054558.2	2387508.8	6376274.0	215922.13
RAD17 ${ }^{\prime}$	VANDENBERG AFB	$\begin{array}{llll}34 & 39 & 56.85\end{array}$	239256.92	60.6	-2 671854.3	-4 521 206.1	3607487.8	6371348.1	$34 \quad 29 \quad 9.58$
RADIB	PT. ARGUELLO	$\begin{array}{llll}34 & 34 & 57.67\end{array}$	2392618.47	599.1	-2 673174.8	-4 527025.1	3600206.9	6371915.6	$\begin{array}{llll}34 & 24 & 11.17\end{array}$
RAD 19	White Sands	322128.91	2533748.44	1189.1	-1 520213.1	-5 175 284.1	3394689.3	6373266.7	321130.65
RAD20	EGLIN AFB	$\begin{array}{lll}30 & 25 & 17.77\end{array}$	$27312 \quad 6.07$	-17.5	307445.1	$\begin{array}{llll}-5 & 496 & 156.3\end{array}$	3210771.3	6372700.2	$\begin{array}{lll}30 & 15 & 13.89\end{array}$
RAD21	\|wallops ISLANO	$\begin{array}{llll}37 & 51 & 16.75\end{array}$	2842912.38	-23.4	1261376.2	-4 8882029.6	3892724.8	$6 \quad 370132.5$	$3740 \quad 6.11$
GUDOARD R/FR STATIONS									
GRFIS	FAIRBANKS	$\begin{array}{llll}64 & 58 & 19.25\end{array}$	2122912.35	330.7	-2 282500.4	-1 4533372.0	5.756 7179.4	6300968.1	$\begin{array}{llll}64 & 49 & 27.10\end{array}$
GRRIV	FAIMBANKS	$64 \quad 5817.55$	2122918.06	330.7	-2 282500.3	-1 4533460.7	5756697.1	6360968.2	644925.40
GRR2S	ROSMAN	3511145.28	277726.23	826.9	647195.2	-5 1178	3656145.8	6371929.3	350533.64
GRR2V	ROSMAN	$\begin{array}{llllll}35 & 11 & 41.33\end{array}$	$277 \quad 726.23$	826.5	647203.8	$\begin{array}{llllll}-5 & 178 & 410.8\end{array}$	3656046.0	6371929.3	$35 \quad 0 \quad 49.69$
GRR3S	SANTIAGO	$\begin{array}{llll}-33 & 9 & 3.97\end{array}$	28920.45	732.8	1769864.7	-5 044495.2	-3 468420.4	6372542.0	-32 $58 \quad 30.67$
GRR3V	SANTIAGO	$\begin{array}{lll}-33 & 9 & 6.44\end{array}$	$28420 \quad .45$	733.1	1769851.0	-5 $0444 \begin{array}{lll}456.1\end{array}$	-3 4688484.4	6372542.1	-32 58833.14
GRR4S	tananarive	$\begin{array}{lll}-19 & 1 & 13.75\end{array}$	471811.13	1349.0	4091336.4	4434218.6	-2 065944.4	6377260.7	$\begin{array}{llll}-18 & 54 & 8.16\end{array}$
GRR4V	TANANARIVE	$\begin{array}{llll}-19 & 1 & 10.22\end{array}$	471811.13	1349.0	4091319.6	4434200.4	-2 066016.2	6377 260.5	$\begin{array}{llll}-18 & 54 & 10.61\end{array}$
GHR5S	CARNAHVON	$\begin{array}{llll}-24 & 54 & 12.10\end{array}$	1134259.03	2.8	-2 3288214.9	5 299.700.1	-2 669384.3	6374403.3	$\begin{array}{llll}-24 & 45 & 24.17\end{array}$
GRR5V	carnarvon	$\begin{array}{llll}-24 & 54 & 16.06\end{array}$	1134259.03	2.8	-2 328194.3	5299653.1	-2 669494.8	6374403.0	$\begin{array}{lllll}-24 & 45 & 28.11\end{array}$
85-FOOT ANTENNAS									
5851	ROSMAN	$\begin{array}{lll}35 & 12 & .28\end{array}$	$\begin{array}{lll}277 & 7 & 40.58\end{array}$	844.6	647524.0	$\begin{array}{llll}-5 & 178 & 046.4\end{array}$	3656533.7	6371945.5	3518.60
5852	hosman	3511155.91	277727.46	840.6	647203.8	$\begin{array}{lllll}-5 & 178 & 161.4\end{array}$	3656421.3	6371942.0	$35 \quad 1 \quad 4.24$
S45 3	FAIRBANKS	6458836.07	2122855.52	291.1	-2 282206.6	-1 452923.1	5756903.9	6360927.2	644944.00
S85 4	ORRORAL	$\begin{array}{llll}-35 & 37 & 48.99\end{array}$	1485724.53	942.0	-4 447361.2	2676808.7	-3 695494.2	6371891.6	$\begin{array}{llll}-35 & 26 & 53.88\end{array}$
5856	IKashima	$\begin{array}{llll}35 & 57 & 14.57\end{array}$	1403947.05	43.8	-3 997909.3	3276556.2	3724111.1	6370879.1	354616.88
40-FOOT ANTENNAS									
S40 1	GILMORE CREEK	$\begin{array}{llll}64 & 58 & 35.29\end{array}$	2122843.93	281.1	-2 282303.2	-1 452804.5	5756884.6	6360917.3	644943.21
S40 2	JOHANNESBURG	$\begin{array}{llll}-25 & 53 & 10.68\end{array}$	274225.84	1523.1	5084683.9	2670331.2	-2 768414.6	$6 \quad 375640.9$	-25 $44 \begin{array}{lll} & 7.83\end{array}$
S40 3	QUITO	-0 3723.38	2812588.87	3582.9	1263414.1	-6 255055.3	-68 943.5	6381746.2	$\begin{array}{lll}-0 & 37 & 8.37\end{array}$
5404	SANT I AGO	$\begin{array}{lll}-33 & 9 & 5.30\end{array}$	2891953.54	729.4	1769688.7	-5 0444530.1	-3 468453.0	6372538.5	-32 5832.00
S40.5	GOLDSTONE	351953.72	243644.53	885.0	-2 356174.4	-4 646759.5	3668471.8	6371939.7	$35 \quad 9 \quad .99$

Page intentionally left blank

POSITIONS ON MERCURY SPHEROID 1960

STATION		GEODETIC COORDINATES				GEOCENTRIC COORDINATES									
NO.	LOCATION	Latitude	LONGITUDE (E)		H(M)	$X(M)$	$Y(M)$		$Z(M)$			R(M)			LATITUDE
40-FOOT ANTENNAS															
S40 6	Tananarive	-190 $0^{\prime} 38.8 .82$	$47^{\circ} 18^{\prime}$	4.022	1335.2	4091713.2		434329.3		064	924.2		377	249.0	-180 53' 33.41
5407	GREENBELT	385959.59	2839	30.60	3.2	1129887.1		833041.6		992	330.3		369	743.8	$38 \quad 4842.57$
MINITRACK STATIONS															
MIN 1	FAIRBANKS	$\begin{array}{llll}64 & 52 & 18.05\end{array}$	$212 \quad 9$	37.12	147.2	-2 2999255.8		445695.3	5	751	811.7		360	813.6	644324.34
MIN 2	FAIKBANKS	$\begin{array}{llll}64 & 58 & 36.96\end{array}$	21228	30.83	273.7	-2 2823 353.2	-1	452632.6	5	756	899.8		360.	909.7	644944.89
MIN 3	GOLDSTONE	351947.84	2435	59.50	874.1	-2 357232.3		646330.6	3	668	317.6		371	929.4	35.8 55.11
MIN 4	EAST GRAND FORKS	$48 \quad 1 \begin{array}{lll}48 & 21.02\end{array}$	26259	19.85	204.2	-521 697.0		242053.1	4	718	726.9		366	597.6	474952.02
MIN 5	FORT MYERS	$26 \quad 3253.09$	278 B	4.02	-36.0	807.865 .1		651991.6	2	833	510.5		373	887.1	$26 \quad 2340.34$
MIN 6	OUITO	-0 03721.89	28125	15.54	3581.5	1263615.9		$\begin{array}{lll}255 & 013.7\end{array}$		-68	897.8		381	744.9	-0 37 6.89
MIN 7	LIMA	-11 4636.23	28250	59.18	53.5	1388822.3		088438.6		293	251.9		377	335.7	-11
MIN 8	PLOSSOM POINT	$\begin{array}{lllll}38 & 25 & 49.61\end{array}$	28254	48.84	-45.8	1.118043 .2	-4	876327.0	3	942	976.4		369	901.7	$\begin{array}{llll}38 & 14 & 35.62\end{array}$
MIN 9	GREENBELT	$38 \quad 5956.67$	2839	37.95	-. 7	1130071.5	-4	833053.4	3	942	257.8		369	740.1	384839.65
MIN10	SANTIAGO	-33 8 58.48	28919	53.59	720.5	1769724.3	-5	$044 \quad 631.6$		468	271.9		372	530.2	-32 $58 \quad 25.19$
MINII	ST. JOHN'S	474428.99	30716	46.89	65.2	2602784.4		419156.2	4		800.3		366	563.1	473259.31
MINI2	WINKFIELD	$\begin{array}{lllll}51 & 26 & 45.71\end{array}$	35918	8.66	81.1	3983118.1		-48 498.1	4	964	711.6		365	213.5	511530.05
MINI3	JOHANNESBURG	$\begin{array}{lll}-25 & 53 & .38\end{array}$	2742	25.84	1508.4	5084794.6	2	670389.4	-2	768	123.0		'375	627.0	-25 4357.58
MIN14	TANANARIVE	-19 031.52	4717	59.03	1327.9	4091870.0	4	434 274.9.	-2	064	709.5		377	242.3	-18 5326.14
MIN15	WOOMERA	-31 23326.58	13652	14.95	115.8	-3 977250.9	3	725.646 .8	-3	303	027.5		372	515.9	-31 11311.60
MIN16	orroral	-35 $37 \begin{array}{lll}37.64\end{array}$	14857	14.33	935.7	-4 447460.6	2	677168.2	-3	695	105.9		371	886.8	$\begin{array}{llll}-35 & 26 & 38.57\end{array}$
SATAN ANTENNAS															
SAT 1	ROSMAN	$\begin{array}{lll}35 & 12 & 6.35\end{array}$	277	26.37	886.8	647158.1		178018.1	3	656	711.1		371	987.2	$\begin{array}{lll}35 & 1 & 14.67\end{array}$
SAI 2	GOLDSTONE	$\begin{array}{llll}35 & 19 & 53.72\end{array}$	2436	39.16	881.7	-2 356294.3	-4	646695.7	3	668	469.9		371	936.4	$\begin{array}{llr}35 & 9 & .99\end{array}$
SAT 3	COOBY CREEK	-27 2346.83	15156	20.33	568.8	$\begin{array}{lllll}-5 & 001 & 130.6\end{array}$		665984.1		917	554.3		374	237.2	-27 1422.05
DEEP SPACE NETWORK															
DSN 1	GOLDSTONE	$\begin{array}{lll}35 & 23 & 22.09\end{array}$		2.03	981.2	-2 351433.0	-4	645082.9	3	673	765.3		372	015.7	$\begin{array}{lll}35 & 12 & 28.90\end{array}$
DSN 2	GOLDSTONE	$\begin{array}{llll}35 & 17 & 59.61\end{array}$	24311	40.19	933.H	-2 350446.2		651982.3	3		630.0		371	999.6	$\begin{array}{lll}35 & 7 & 7.13\end{array}$
OSN 3	GOLDSTONE	$\begin{array}{llll}35 & 14 & 51.55\end{array}$	24312	18.35	1034.4	-2 3511133.0		655481.4	3	660	958.0		372	122.6	$35 \quad 3.59 .51$
DSN 4	golostone	$35 \quad 25 \quad 33.08$	2436	37.61	976.8	-2 353625.0	-4	641345.7	3	677	053.6		371	998.3	3514×39.60
OSN 5	wOOMERA	-31 2255.94	13653	14.05	134.6	-3 978688.8		724853.9		302	231.8		372	537.6	-31 12 41.06

NOVEMBER 1973

Page intentionally left blank

POSITIONS ON MERCURY SPHEKOID 1960

INSUFFICIENT DATA
NOVEMBER 1973

Page intentionally left blank

Positions on Spaceflight Tracking and Data Network System

Page intentionally left blank

NOVEMBER 1973

STATION		GEODETIC COORDINATES			geocentric Courdinates				
NO.	LOCATION	Latitude	LONGI TUDE (E)	H(M)	$X(M)$	$Y(M)$	$Z(M)$	R(M)	LATITUDE
RADARS									
RAD16	kauai	220 7' 24.36	200 ${ }^{\circ} 20^{\prime} 4002$	1143.8	-5 543975.4	-2 054569.2	2387523.8	6376298.8	$21^{\circ} 59 \times 22633$
RAD17	VANDENBERG AFB	$\begin{array}{lllll}34 & 39 & 57.12\end{array}$	$23925 \quad 7.14$	60.9	-2 671847.3	-4 521205.1	3607494.8	6371348.4	$34 \quad 29 \quad 9.85$
RAD18	PT. ARGUELLO	$\begin{array}{llll}34 & 34 & 57.94\end{array}$	2392618.69	599.4	-2 673167.8	-4 527 024.1	3600213.9	6371915.9	342411.44
RAD19	WHITE SANDS	$\begin{array}{llll}32 & 21 & 29.24\end{array}$	2533748.74	1176.8	-1 520201.1		3394691.3	6373254.3	$\begin{array}{llll}32 & 11 & 3.98\end{array}$
RAD21	WALLOPS ISLAND	$\begin{array}{llll}37 & 51 & 17.30\end{array}$	$284 \quad 2913.11$	-27.7	1261390.2	$\begin{array}{lllllllllll}-4 & 882 & 011.6\end{array}$	3892735.8	$6 \quad 370 \quad 128.2$	$3740 \quad 6.66$
GODDARD R/HR STATIUNS									
GRR1S	FAIRBANKS	64.5819 .20	$\begin{array}{llll}212 & 2913.38\end{array}$	339.1	-2 282497.4	-1 4533866.0	5756720.4	6360976.6	644927.05
GHRIV	FAIKBANKS	6458817.50	2122919.08	339.1	-2 282497.3	-1 4553474.7	5756704.1	$6 \quad 360976.7$	$\begin{array}{llll}64 & 49 & 25.35\end{array}$
GHR2S	ROSMAN	$\begin{array}{lllllllllll}35 & 11 & 45.98\end{array}$	277726.96	810.4	647210.2	$\begin{array}{lllll}-5 & 178 & 313.4\end{array}$	3656153.8	6371912.6	$35 \quad 0 \quad 54.33$
GHR2V	ROSMAN	351142.02	277726.96	810.0	647 218.8	-5 1778 382.8	3656054.0	6371912.6	$\begin{array}{lll}35 & 0 & 50.38\end{array}$
GRR3S	SANTIAGO	$\begin{array}{lll}-33 & 9 & 3.59\end{array}$	$289 \quad 20 \quad 1.06$	706.6	1769874.7	$\begin{array}{llllllllll}-5 & 044 & 475.2\end{array}$	-3 468396.4	6372515.9	-32 58 30.29
GRR3V	SANTIAGO	$\begin{array}{lll}-33 & 9 & 6.07\end{array}$	289201.06	706.9	1769861.0	-5 0444436.1	-3 468400.4	6372515.9	-32 58-32.76
GRR4S	TANANARIVE	$\begin{array}{lll}-19 & 1 & 13.88\end{array}$	4718111.85	1368.4	$44^{4} 091332.4$	4434245.6	-2 065954.4	6377280.1	$\begin{array}{lll}-18 & 54 & 8.28\end{array}$
GRR4V	TANANARIVE	$\begin{array}{llll}-19 & 1 & 16.35\end{array}$	471811.85	1368.4	4091315.6	4434227.4	-2 066026.2	6377279.9	$\begin{array}{lll}-18 & 54 & 10.74\end{array}$
GRRSS	CARNARVON	$\begin{array}{llll}-24 & 54 & 11.05 \\ -24 & 54 & 15.01\end{array}$	1134259.84	-3.6	$\begin{array}{llll}-2 & 328 & 238.9\end{array}$	5299698.1	-2 669352.3	6374397.0	-24 $45 \quad 23.12$
GRR5V	CARNARVON	$\begin{array}{llll}-24 & 54 & 15.01\end{array}$	1134259.84	-3.6	-2 328 218.2	5299651.1	-2 669462.8	6374396.7	-24 $45 \quad 27.06$
85-FOOT ANTENNAS									
$\begin{array}{lll}585 & 1 \\ \text { S85 }\end{array}$	ROSMAN	$\begin{array}{lll}35 & 12 \\ 35 & 11 & 567\end{array}$	277741.30	828.1	647539.0	$\begin{array}{llll}-5 & 178 & 018.4\end{array}$	3656541.8	6371928.9	$35 \quad 1 \quad 9.29$
S85 2	ROSMAN	$\begin{array}{llll}35 & 11 & 56.60\end{array}$	$\begin{array}{llll}277 & 7 & 28.18\end{array}$	824.1	647218.8	$\begin{array}{llll}-5 & 178 & 133.4\end{array}$	3656429.3	6371925.4	$35 \quad 1 \quad 4.93$
5853	FAIRBANKS	64 54 36.02	2122856.54	299.5	-2 282203.6	-1 4552937.1	5756910.9	$\begin{array}{lllll}6 & 360 & 935.6\end{array}$	644943.95
5854	ORRORAL	-35 3747.54	14857525.34	932.3	$\begin{array}{lllllllll}-4 & 447 & 387.2\end{array}$	2676800.7	-3 695452.2	6371882.1	$-35 \quad 2652.43$
S85 6	KASHIMA	355714.49	$140 \quad 3946.93$	62.7	-3 9979 920.2	3276569.2	3724120.1	6370848.0	354616.80
40-FOOT ANTENNAS									
S40 1	GILMORE CREEK	$\begin{array}{rrrr}64 & 58 & 35.23 \\ -25 & 53 & 11.03\end{array}$	2122844.96	289.5	-2 2822300.2	-1 41552818.5	$\begin{array}{r}5 \\ \hline\end{array} 566891.6$	$\begin{array}{llll}6 & 360 & 425.7\end{array}$	$\begin{array}{llll}64 & 49 & 43.16\end{array}$
S40 2	JOHANNE SBURG QUITO	$\begin{array}{rrrr}-25 & 53 & 11.03 \\ -0 & 37 & 23.52\end{array}$	$\begin{array}{r}27 \\ 2812 \\ 281 \\ 26.98 \\ \hline 8.44\end{array}$	1542.0 3546.7	$\begin{array}{llll}5 & 084 & 679.9 \\ 1 & 263 & 424.1\end{array}$	$\begin{array}{r}2 \\ \hline 670 \\ -6 \\ 255 \\ \hline\end{array}$	$\begin{array}{r}-2768 \\ \hline\end{array}$	$\begin{array}{lllll}6 & 375 & 659.9 \\ 6 & 381 & 710.0\end{array}$	-25 -0 -0 $\mathbf{3 7} 78.18$
S40 4	SANTIAGO	-33	2891954.21	703.2	$1 \begin{array}{lll}1 & 769 & 698.7\end{array}$	$\begin{array}{llll}-6 & 255 & 016.3 \\ -5 & 044 & 510.1\end{array}$	-68947.5 -3468429.0	$\begin{array}{llll}6 & 381 & 710.0 \\ 6 & 372 & 512.4\end{array}$	-0 37 -32 588.51
5405	GOLOSTONE	351953.98	$243 \quad 644.76$	885.7	-2 356167.4	-4 646758.5	3668478.8	6371940.5	$\begin{array}{rrr}35 & 9 & 1.25\end{array}$
5406	TANANARIVE	$\begin{array}{rrr}-19 & 0 & 38.95\end{array}$	$\begin{array}{rrrr}47 & 18 & 4.95\end{array}$	1354.6	4091709.2	$4 \begin{array}{llll}4 & 434 & 356.3\end{array}$	-2 064934.2	6377268.4	$\begin{array}{llll}-18 & 53 & 33.54\end{array}$
S40 7	GREENBELT	$39 \quad 0 \quad .15$	$283 \quad 931.34$	-1.1	1129901.1	$\begin{array}{llll}-4 & 833 & 023.6\end{array}$	3992341.3	6369739.5	38 48 13.14
MINITRACK STATIONS									
MIN 2	FAIRBANKS	$64 \quad 58 \quad 36.91$	$212 \quad 28 \quad 31.46$	282.2	-2 282350.2	-1 452646.6	5756906.8	6360918.2	644944.84

NOVEMBER 1973

POSITIONSONSPACEFLIGHTYRACKING AND DATAMNETWOKK SYSTEM

STATION		geovetic cooruinates			GEOCENTRIC COORDINATES				
NO.	LOCATION	LATITUDE	LONGITUDE (E)	H(M)	$x(M)$	$Y(M)$	$Z(M)$	$R(M)$	LATITUDE
SPECIAL OPTICAL NETWORK									
7051	ROSMAN	$35^{\circ} 11^{\prime} 47.52$	2770 7126.96	815.8	647207.3	$\begin{array}{llll}-5 & 178 & 290.6\end{array}$	$3.656 \quad 195.7$	$\begin{array}{lll}6 & 371 & 917.8\end{array}$	$35^{\circ} 00050.87$
7052	WALLOPS ISLAND	375136.00	2842924.84	-49.9	1201575.0	-4 881580.6	3893177.1	6370104.2	$3740 \quad 25.32$
7054	CARNARVON	$\begin{array}{llll}-24 & 54 & 15.99\end{array}$	1134258.79	-10.0	-2 328183.9	. 5299646.0	-2 669487.6	6374390.2	$\begin{array}{llll}-24 & 45 & 28.04\end{array}$
7055	MOUNT HOPKINS	3141780	244719.00	2314.0	-1 936730.8	-5 077630.9	$\begin{array}{llll}3 & 332 & 037.5\end{array}$	$\begin{array}{llll}6 & 374.616 .4\end{array}$	313049.70
7056	MOUNT HOPKINS	31417.61	249718.60	2313.9	-1936741.2	-5 077628.4	3.332035 .0	$\begin{array}{lllll}6 & 374 & 616.4\end{array}$	313049.61
7058	ROMULUS	42425.18	$28310 \begin{array}{lll}28.23\end{array}$	182.2	1069775.3	$\begin{array}{lllll}-4 & 571 & 154.1\end{array}$	4303332.4	$\begin{array}{llll}6 & 368 & 558.5\end{array}$	$42 \quad 3034.99$
7059	GREENBELT	$\begin{array}{lll}39 & 1 & 15.85\end{array}$	2831018.70	-2.5	1130675.8	$\begin{array}{lllllllllllll}-4 & 831 & 332.1\end{array}$	3994154.2	6369730.3	384958.73
7060	guam	131833.00	1444414.01	109.8	-5 0608 964.9	3584085.2	1458762.6	6377151.4	131324.21
SAO OPTICAL NETWORK									
9001	ORGAN PASS	$32 \quad 2524.92$	$\begin{array}{lll}253 & 26 & 49.59\end{array}$	1006.0	-1 51535126.6	$\begin{array}{llll}-5 & 167 & 005.3\end{array}$	3401053.0	$\begin{array}{llll}6 & 373 & 661.5\end{array}$	321459.03
9002	OLIFANTSFONTEIN	-25 5735.70	281453.02	1549.0	5056128.0	2716535.1	-2 775763.1	6375645.3	-25 48181.76
9004	SAN FERNANDO	$\begin{array}{llll}36 & 27 & 46.88\end{array}$	3534737.54	47.9	$5 \begin{array}{llllll}5 & 1.05 & 593.3\end{array}$	-555 206.2	3769684.0	6370702.8	$\begin{array}{llll}36 & 16 & 45.44\end{array}$
9005	TOKYO	$\begin{array}{llll}35 & 40 & 22.38\end{array}$	1393217.71	76.9	-3 946727.8	3366269.6	3698831.8	6371011.5	$35 \quad 2926.85$
9006	NAINI TAL	292133.73	792728.19	1844.0	1018176.7	5471114.6	3109549.1	$6 \quad 374902.6$	291142.99
9007	AREQUIPA	-16 $27 \begin{array}{lll}56.38\end{array}$	28830025.15	2468.4	1942805.2	$\begin{array}{lllll}-5 & 804 & 080.7\end{array}$	-1 796913.7	6378929.6	$\begin{array}{llll}-16 & 21 & 41.05\end{array}$
9008	SHIRAZ	$2938 \quad 13.93$	$\begin{array}{llll}52 & 31 & 12.14\end{array}$	1549.2	3376857.5	4403994.9	3136265.4		292619.70
9009	CURACAO	$\begin{array}{lll}12 & 5 & 25.19\end{array}$	291945.34	-30.3	2251863.5	-5 8166911.4	1327175.9	6377204.9	$12 \quad 0 \quad 42.34$
9010	JUPITER	$\begin{array}{lll}27 & 1 & 14.61\end{array}$	2795313.98	-48.2	976309.1	-5 601377.7	2880255.2	$\begin{array}{lllll}6 & 373 & 733.6\end{array}$	$\begin{array}{llll}26 & 51 & 55.07\end{array}$
9011	VILLA DOLORES	$\begin{array}{llll}-31 & 56 & 34.36\end{array}$	2945337.18	609.8	2280608.8	-4 $914 \begin{array}{lll}\text { 574.4 }\end{array}$	-3 355348.6	6372826.4	-31 4613.41
9012	MAUI	204226.11	2034433.91	3047.5	-5 466068.6	-2 404302.6	2242196.5	$\begin{array}{llll}6 & 378 & 559.5\end{array}$	$\begin{array}{llll}20 & 34 & 49.30\end{array}$
9023	WOOMERA	$\begin{array}{llll}-31 & 23 & 25.78\end{array}$	1365243.92	111.9	-3 977781.0	3725094.7	-3 303004.5	$\begin{array}{llll}6 & 372512.1\end{array}$	-31 $\begin{array}{rlll}-31 & 13 & 10.81\end{array}$
9028	ADOIS ABABA	84451.35	$\begin{array}{llll}38 & 57 & 33.93\end{array}$	1895.5	4903752.6	39651234.1	963874.0	$\begin{array}{lllll}6 & 379 & 570.8\end{array}$	$\begin{array}{llll}8 & 41 & 23.85\end{array}$
9427	JOHNSTON ISLAND	$\begin{array}{llll}16 & 44 & 39.09\end{array}$	1902910.26	-7.0	-6 007391.4	-1.111905.8	1825750.1	$\begin{array}{llll}6 & 376 & 397.8\end{array}$	16 38
9901	ORGAN PASS	322524.92	2532649.59	1605.9	-1 535726.6	$\begin{array}{lllll}-5 & 167 & 005.3\end{array}$	3401053.0	6373661.4.	321459.03
9902	OLIFANTSFONTEIN	$\begin{array}{llll}-25 & 57 & 35.70\end{array}$	28.1453 .02	1548.8	5056127.8	2716535.0	-2 775763.0	$\begin{array}{lllll}6 & 375 & 645.1\end{array}$	$\begin{array}{llll}-25 & 48 & 31.76\end{array}$
9907	AREGUIPA	$\begin{array}{llll}-16 & 27 & 56.38\end{array}$	$28830 \quad 25.15$	2468.8	1942805.3	-5 804081.1	-1 796913.6	6378929.9	-16 2141.05
9921	MOUNT HOPKINS	31413.40	249718.99	2333.3	-1 936761.7	-5 077711.1	3331934.8		313045.41
9929	NATAL	$\begin{array}{llll}-5 & 55 & 40.29\end{array}$	32450	18.8	5186.481 .3	-3 6553850.1	-654 328.9	$\begin{array}{lllll}6 & 377 & 958.4\end{array}$	$\begin{array}{llll}-5 & 53 & 18.46\end{array}$
9930	DIONYSOS	$38 \quad 4 \quad 42.42$	23, 55 5\%.84	498.2	4595226.7	2039465.8	3.912630 .2	6370573.2	3753 30.51
9991	DIONYSOS	38444.30	235559.23	493.3	4595176.7	2039480.7	3912672.8	$6370 \quad 568.1$	$37 \quad 53 \quad 32.38$

NOTES FOR THE GEODETIC DATA SHEETS

The Geodetic Data Sheets give a summary description of surveys performed and data gathered in positioning and orienting equipment at each site. This information is for site personnel in checking geodetic references, for operations and planning personnel in preparing, changing, or adding observation instruments at existing sites, and for analysis personnel in assessing positional accuracies and future geodetic needs.

The sheet describes the procedures and results of the local tie of the equipment to the geodetic datum. It is intended to answer questions to date and reliability, to provide direction for further inquiry, and to simplify efforts to improve the position. It should provide documentation for assessment of the accuracy of the connection to the datum. It may enable a facility to be moved with minimum re-survey effort by identifying fixed survey monuments at or near the site. It should aid in establishing the latest or most accurate information, reducing the common problem of having contradictory positions without date or source.

Station Number and Name - The station numbers in Volume 1 are arbitrary, and for crossreference in this directory only. Official designations for these stations are given, when available, under "Other Codes". Station numbers and code names in Volume 2 are those adopted by the Geodetic Satellite Data Service at the National Space Science Data Center. "Station" refers to a fixed point of reference for a particular piece of equipment. If equipment is moved to a new position, a new code name and number must be assigned. Different types of equipment occupying the same point have different numbers and names.

Other Codes - COSPAR, DoD, or other designations to identify the same station in other descriptive systems.

Location - Geographic name of station. When different names are used for a site they are given under General Notes.

Equipment - Type of equipment used at this station.

Agency - Participating organization responsible for the operation of the station.
Point Referred to - Description of the exact point of reference for the geodetic data. Usually this is a fixed point as near the optical or electronic center of the equipment as convenient. For rotating systems this may be the center of rotation, intersection of axes, center of lower axis (offset $\mathrm{X}-\mathrm{Y}$ mounts), center of gimbal ring, etc.

Geodetic Coordinates - The position is usually given on the datum of survey. If the posi-- tion has been computed on a preferred datum these coordinates are listed. South latitudes are designated by a minus sign. All longitudes in the directory are . positive east of Greenwich, unless west is specified.

Astronomic Coordinates - Generally given only when the astronomic observation was made within a few hundred meters of the station. When an estimate of the deflection of the vertical is made from more distant astronomic observations, it is defined by the components in the meridian and the prime vertical, ξ and η. The line, "Based on" indicates the source of astro-data, designating the agency, date, and quality of the observation, and its approximate distance from the tracking station.

Elevation Above Mean Sea Level - Height of reference point above geoid.
Geoid Height - Height of geoid above spheroid, usually from astronomic-geodetic studies. The source for this information is given in the General Notes; a list of sources appears at the end of these explanatory notes.

Height Above Ellipsoid - The algebraic sum of the two preceding numbers.
Azimuth Data - This provides space for listing astronomic and geodetic azimuths. Distanc is the geodetic distance between points unless the slant range is specified. Azimuth here is the clockwise angle measured from North.

Description of Surveys and General Notes - These notes include a brief description of the survey by which the position was established, including by whom and when. The relationship to the national geodetic net is described. A sketch showing the tie is usually included. The method by which the elevation was determined is indicated.

More detailed survey information will usually be retained by the agency which performed the survey.

Accuracy Assessment - The accuracy assessments to local control attempt to indicate whether a one-meter criterion has been met. More precise estimates are often given when furnished by the reporting agency. The precision of the surveys usually ranges from a few millimeters to nearly a meter, as reflected in the survey descriptions. The accuracy to datum origin is estimated by Simmons' Rule (Section 2) as an approximation of the standard error that may be expected within a well-constructed datum. The assessment of the error to the vertical datum is the maximum error that should be expected between the elevation given and the geoid at that station, again with a one meter minimum standard. Inspection of the survey description will often show the error to be much smaller.

References - Principal sources for the information on the sheet.
Date - Date of compilation or last review of the data sheet.
The agency responsible for the operation of each station was requested to furnish the information for the Geodetic Data Sheets. Information was also obtained from other sources as noted on the data sheets. These have included United States and foreign government agencies, international organizations, national surveying and space-communication groups, engineering contractors, surveying firms, and private individuals. In the United States the principal sources for information for the directory are:

DoD GEOSAT Records Center, DMATC
National Geodetic Survey, NOS, NOAA
(formerly U.S. Coast and Geodetic Survey, ESSA)
Physical Plant Engineering Branch, GSFC-NASA (formerly Field Facilities Branch, GSFC-NASA)

Eastern Test Range, Patrick AF Base
USAF Space and Missile Test Center, Vandenberg AF Base
Defense Mapping Agency Hydrographic Center
First Geodetic Survey Squadron, DMAAC
Inter-American Géodétic Survey, DMATC'
Jet Propulsion Laboratory

Foreign Sources have included:

Australia:	Division of National Mapping, Department of Minerals and Energy
Canada:	Dominion Geodesist, Ottawa
Denmark:	Geodetic Institute
Finland:	Finnish Geodetic Institute
France:	National Center of Space Studies
Germany:	German Geodetic Research Institute
	German Research Institute for Air and Space Travel
Great Britain:	Directorate of Overseas Surveys
	Royal Radar Establishment
Greece:	Ordnance Survey of Great Britain
Japan:	National Technical University
Madagascar:	Radio Research Laboratories
Netherlands:	Geodetic Institute of the Technological University
Norway:	Geographic Survey
S. Africa:	National Institute for Telecommunications Research
Sweden:	Institute of Geodesy
Switzerland:	Astronomical Institute of the University of Berne
Observatories of Bochum (Germany), Meudon (France), Edinburgh (Great Britain),	

Geoid heights given on the data sheets and used in the tabulations are taken from the following sources unless otherwise specified:

Geoid Charts of North and Central America, Irene Fischer et al, Army Map Service Technical Report No. 62, October 1967.

National Mapping Technical Report 13: . The Geoid in Australia 1971.
Geoid Chart of Area Conventionally Referred to Tokyo Datum, I. Fischer, Army Map Service Technical Report No. 67, p. 21, June 1968.

The Astro-Geodetic Geoid in Europe and Connected Areas, G. Bomford, XV General Assembly IUGG, Moscow, August 1971.

Geoid heights for stations on the South American Datum 1969 are given by DMATC in their Geodetic Summary for each station. Heights are referred to a zero geoid separation at station CHUA.

Abbreviations and symbols used in the directory are:
Organizations etc.
ACIC* Aeronautical Chart and Information Center (U.S. Air Force)
AFB Air Force Base
AFETR
AFWTR
AGU
AIG
AMS*
ATS
C\&GS**
CE
U.S. Air Force Eastern Test Range
U.S. Air Force Western Test Range (now SAMTEC)

American Geophysical Union (National Committee of the U.S. for the IUGG)
Association Internationale de Geodesie (IAG)
U.S. Army Map Service (now DMATC)

Applications Technology Satellite
U.S. Coast and Geodetic Survey (now National Geodetic Survey)
U.S. Corps of Engineers

CERG Centre d'Etudes et de Recherches en Geodynamique et Astronomie
CNES Centre National d'Etudes Spatiales (France)
COSPAR Committee for Space Research (International Council of Scientific Unions)
CSC Computer Sciences Corporation
CSIRO
DMA*
DMAAC*
Commonwealth Scientific and Industrial Organization (Australia)
Defense Mapping Agency
DMAHC* DMA Hydrographic Center (formerly USNOO)
DMATC* DMA Topographic Center (formerly TOPOCOM)
DOS . Directorate of Overseas Surveys (Great Britain)
DSIF . Deep Space Instrumentation Facility, JPL (now DSN)
DSN Deep Space Network (JPL)
EPSOC
ERTS
ESLD
European Physics Satellite Observation Campaign
Earth Resources Technology Satellite
: Engineering Survey Liaison Detachment (1381st)
FFB Field Facilities Branch (now Physical Plant Engineering Branch), GSFC
GRGS . Groupe de Recherches de Geodesie Spatiale
GSC
GSFC
Geodetic Survey of Canada
Goddard Space Flight Center (Greenbelt, Maryland)
IAG
IAGS*
International Association of Geodesy (AIG)
Inter-American Geodetic Survey

IGM	Instituto Geografica Militar
IGN	Institut Geographique National (France)
IUGG	International Union of Geodesy and Geophysics
JPL	Jet Propulsion Laboratory (California Institute of Technology)
NAVOCEANO*	U.S. Naval Oceanographic Office
NGO	Norwegian Geographic Office
NGP	NASA Geodetic Satellites Program
NGS**	National Geodetic Survey (formerly USC\&GS)
NGSP	National Geodetic Satellite Program
NITR	National Institute for Telecommunication Research. (S. Africa)
NOAA**	National Oceanic and Atmospheric Administration
NOS**	National Ocean Survey (formerly USC\&GS)
NTTF	Network Training and Test Facility (GSFC)
OSGB	Ordnance Survey of Great Britain
PMR	U.S. Navy Pacific Missile Range
RASC	Royal Australian Survey Corps
RE	Royal Engineers
SAMTEC	USAF Space and Missile Test Center, Vandenberg AFB
	Calif (formerly AFWTR)
SAO	Smithsonian Astrophysical Observatory
STDN	Spaceflight Tracking and Data Network (GSFC)
USAF	U.S. Air Force
USATOPOCOM*	U.S. Army Topographic Command (formerly AMS)
USED	U.S. Engineer Department (Corps of Engineers)
USGS	U.S. Geological Survey
USNHO*	U.S. Navy Hydrographic Office
USNOO*	U.S. Naval Oceanographic Office
VLBI	Very Long Baseline Interferometry
WEST	West European Satellite Triangulation Program
WSMR	U.S. Army White Sands Missile Range (New Mexico)

*Names and abbreviations of U.S. Government survieying and mapping agencies in this directory do not always reflect current use by these organizations. The Army Map Service (AMS) was integrated January 15, 1969, into the newly formed U. S. Army Topographic Command (TOPOCOM). On January 1, 1972, the Defense Mapping Agency (DMA) was established to include the Air Force Aeronautical Chart and Information Center (ACIC), part of the Naval Oceanographic Office (NOO - the Navy Hydrographic Office, NHO, before 1962), and TOPOCOM. The last is now designated the DMA Topographic Center (DMATC), and includes the Inter-American Geodetic Survey.
**In July 1965 the Coast and Geodetic Survey, the Weather Bureau, and a small portion of the Bureau of Standards were joined to form the Environmental Science Services Administration (ESSA), Department of Commerce. On October 3, 1970, ESSA joined with other organizations, such as the Bureau of Commercial Fisheries and the Lake Survey, to form the National Oceanic and Atmospheric Administration (NOAA), still under

Commerce. Under NOAA, the Coast and Geodetic Survey was redesignated the National Ocean Survey (NOS). In June 1971, what had been the Geodesy Division C\&GS (since 1915) was designated the National Geodetic Survey (NGS) under NOS.

Equipment

B-N	Baker-Nunn camera
MOTS	Minitrack Optical Tracking System
R/RR	Range and Range-Rate
SECOR	Sequential Collation of Range
STADAN	Satellite Tracking and Data Acquisition Network (now in
	Spaceflight Tracking and Data Network - GSFC)
VHF	Very High Frequency

Sea Level Datums

SLD 1929	Sea Level Datum of 1929 (USA)
NAP	Nederlands Algemeen Peil (Amsterdam)
NN	Normal Null (Germany)
P. du N.	Pierre du Niton (Switzerland)
N. g. d. F.	Nivellement general de France
N. g. d. M.	Nivellement general de Madagascar
Newlyn	British Ordnance vertical survey datum
AHD	Australian Height Datum (1971)

Geodetic Terms

A-G	astronomic minus geodetic
Az Mk	azimuth mark
BM	bench mark (an elevation station)
GM	gravitational constant times earth mass
IGY	International Geophysical Year
MSL	mean sea level
obs	observation, observatory
PE	probable error
PV	prime vertical
RM	reference mark
S/R	slant range
TBM	temporary bench mark

Symbols

¢, ${ }^{(}{ }_{\mathrm{G}}$	geodetic latitude
$\phi_{\text {A }}$	astronomic latitude
λ, λ_{G}	geodetic longitude (east)
${ }^{\lambda}$ A	astronomic longitude (east)
\triangle	triangulation station
ξ	deflection in the meridian, plus if astronomic zenith is north of geodetic
η	deflection in the prime vertical, plus if astronomic zenith is east of geodetic
$<$	less than

GLOSSARY OF GEODETIC TERMS

The terms defined here are selected as having special relevance to this directory. More extended discussion and definitions of geodetic terms may be found in the references. A sketch at the end of this section is intended to aid in the definition of some of the terms.

Astronomic Azimuth - The angle measured in the plane of the horizon from the vertical plane through the celestial pole to the vertical plane through the station observed.

Astronomic Latitude - The angle between the celestial equator and the vertical.
Astronomic Meridian - The plane which contains the celestial poles and the vertical. Also a line on the earth's surface having the same astronomic longitude at every point.

Deflection of the Vertical - The angle between the normal to the spheroid and the vertical. It is sometimes called "station error." Since this angle has both a magnitude and a direction it is usually resolved into two components, one in the meridian and the other perpendicular to it in the prime vertical. These components are referred to by the symbols ξ and η. The deflection for any point is arbitrary to the extent that the geodetic datum is arbitrary, depending on the spheroid chosen and the method of datum positioning.

Earth Fixed Rectangular Coordinates - A system of space rectangular coordinates with axes X, Y, and Z having their origin at the center of a spheroid. Subject to limitations outlined below the system can be defined as follows: the center of the spheroid coincides with the center of mass of the earth; the Z axis is parallel to the mean axis of rotation of the earth and is positive to the north; the X axis is parallel to both the mean equatorial and prime meridian planes of the earth and is positive toward the meridian of Greenwich; the Y axis is parallel to the mean equatorial plane, perpendicular to the plane of the prime meridian, and is positive ${ }^{-}$ toward 90° east longitude.

The uncertainty of the relationship between the center of the reference spheroid and the center of mass of the earth may amount to as much as a hundred meters
standard error. But the parallelism between the Z axis and the mean axis of rotation can generally be insured within a fraction of a second of arc by astronomical observations (Laplace azimuths) incorporated into a geodetic network or, as is usually the case, simply by definition. Transformation equations used in this directory assume that the axis of the spheroid is parallel to the mean axis of rotation of the earth; if the center of mass were better known, the term "parallel" would be replaced by "coincident."

Elevation - The distance of a point above the geoid measured along the vertical through the point.

Ellipsoid - (See Spheroid)

Geocentric Latitude - The angle at the center of the spheroid between the equator and the geocentric radius of a point in space. Geocentric longitude is the same as geodetic longitude. With geocentric radius these terms become the polar coordinate equivalents of earth fixed rectangular coordinates.

Geocentric Radius - The distance from the geometric center of the spheroid to any point. It is also known as the radius vector.

Geodetic Azimuth - The angle between two planes intersecting along the normal to the spheroid at the point of observation: one plane is the geodetic meridian and the other passes through the point sighted on. In this directory azimuths are measurec clockwise from North.

Geodetic azimuths are generally carried through the triangulation, but are initially established and subsequently controlled by a pattern of Laplace azimuths.

Geodetic Datum - A survey network of points whose positions are fixed with respect to each other and to the earth. It is defined by a spheroid and the relationship between the spheroid and a point (or points) on the topographic surface established as the origin of datum. This relationship is defined generally (but not necessarily) by the geodetic latitude, longitude, and the geodetic height of the origin, the components of the deflection of the vertical at the origin, and the geodetic azimuth of a line from the origin to some other point.

Geodetic Height (Height Above Spheroid) - The algebraic sum of the geoid height and the elevation above the geoid.

Geodetic Latitude - The angle between the plane of the equator and the normal to the spheroid. North latitude is positive.

Geodetic Longitude - The angle measured in the plane of the equator between the meridian of some arbitrary origin (usually Greenwich) and the meridian of a point. In this directory longitude is measured east from Greenwich.

Geodetic Meridian - The plane which contains the normal to the spheroid and is parallel to the axis of rotation of the earth.

Geoid - The particular equipotential surface which coincides with mean sea level and which may be imagined to extend through the continents. This surface is everywhere perpendicular to the force of gravity.

Geoid Height - The distance from the surface to the reference spheroid to the geoid measured outward along the normal to the spheroid. (The phrase is used by some to designate the height of a point above the geoid, which is here called elevation.)

Laplace Azimuth - A geodetic azimuth derived from observations of the astronomic longitude and azimuth. The formula for the determination of this azimuth is

$$
\left.\alpha_{G}=\alpha_{A}-\lambda_{A}-\lambda_{G}\right) \sin \phi_{G}
$$

where α_{A} and α_{G} are the astronomic and geodetic azimuths, λ_{A} and λ_{G} are the astronomic and geodetic east longitudes, and ϕ_{G} is the geodetic latitude.

Molodenskiy Correction - A computational correction applied to reduce measurements from the geoid to the spheroid.

Normal - The line perpendicular to the spheroid at any point. The normal seldom coincides with the vertical at the point.

Spheroid - The mathematical figure formed by revolving an ellipse about its minor axis. It is often used interchangeably with ellipsoid. Two quantities define a spheroid;
these are usually gj ${ }^{-}$ flattening, $f={ }^{-}$
l as the length of the semi-major axis, a, and the where b is the length of the semi-minor axis.

Vertical - The . 」endicular to the geoid at any point. It is the direction of the force of at that point.

Ver atum - An arbitrarily assumed value for a particular bench mark, or a measured value of sea level at a tide station, or a fixed adjustment of many such measurements in a common adjustment, such as the Sea Level Datum of 1929 to which most elevations in the U.S. are referred.

Page intentionally left blank

Unified S-Band Antennas

Station No. USB 1

GEODETIC DATA SHEET
Code Name \qquad

Othe	AFETR	193301
Code	STDN	MIL 3

Location \qquad Equipment Unified S-Band 9-meter (30-foot)

Agency _ NASA-Goddard Space Flight Center

Point referred to ___ center of X-axis					
GEODETIC COORDINATES		ASTRONOMIC COORDINATES			
Latitude $\quad 28^{\circ} 30^{\prime} \quad 28.219$		Latitude $\quad \xi=+9.8^{\prime \prime} \pm 1!0$			
Longitude (E) $\quad 279 \quad 18 \quad 22.933$		Longitude (E) $\quad \mathrm{n}=+1.2 \pm 1.0$			
Datum \qquad NAD 1927 (CC)*	B	Based on interpolation by C\&GS, 1966 from			
Elevation $\begin{aligned} & \text { above mean } \\ & \text { sea level }\end{aligned} \quad 9.17$	$\begin{aligned} & \text { Geoid } \\ & \text { height }+10 \\ & \hline \end{aligned}$	meters	Height above ellipsoid	19	meters

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by USC\&GS in 1965 before construction of the antenna. First-order triangulation and traverse were used.

Station S-BAND ANTENNA 1965 was set (elev. $2.618 \mathrm{~m}) 6.55 \mathrm{~m}$ directly below the proposed center of the X-axis. Nine alignment markers were set on NS and EW lines (most at 15 to 122 m from the center) to control construction.
*Cape Canaveral Datum is within a few centimeters of NAD 1927 in this area.

Geoid height from TOPOCOM geoid charts 1967.

DATE July 1970

ACCURACY ASSESSMENT

To Local Control
Horizontal \qquad
Vertical \qquad
0.1 meters meters \qquad meters meters

REFERENCES

USC\&GS Report; AFETR Geodetic Coordinates Manual, August 1969.

GEODETIC DATA SHEET SATELLITE TRACKING STATION

Other Codes \qquad

Code Name \qquad

Location \qquad Grand Bahama Island, British West Indies \qquad Equipment Unified S-Band 9-meter (30-foot)

Agency ___ NASA-Goddard Space Flight Center

DESCRIPTION OF SURVEYS AND GENERAL, NOTES

This antenna has been removed

Surveyed by Facility Construction Branch, GSFC, in. October 1966. Station APOLLO ANTENNA CENTER is marked by a tablet at the center of the concrete foundation of the antenna (elev. 4.83 m).

The position was fixed by a Geodimeter and Wild T-3 traverse between USC\&GS first-order stations HIGH ROCK and PELICAN. Three intermediate stations were established: NAIL, BRASS, and ROD. The traverse closure was 1:337 000.

Elevation was by third-order levels from C\&GS first-order BM M-1 1959.
*1969 adjustment to Cape Canaveral Datum from AFETR Geodetic Coordinates Manual August 1969.

Geoid height from TOPOCOM geoid charts 1967.

Station No. ULSB 3

GEODETIC DATA SHEET
 SATELLITE TRACKING STATION

Other
Codes \qquad
STDN BDA 3
Code Name \qquad Equipment Unified S-Band 9-meter (30-foot)

Agency NASA-Goddard Space Flight Center

Point referred to center of X-axis	
GEODETIC COORDINATES ASTRONOMIC COORDINATE	
Latitude 32° 20' 59.. 496	Latitude $\quad \xi=-10 \% 5$
$\text { Longitude (E) } \quad \begin{array}{ccc} 295 & 20 & 30.552 \\ \hline \end{array}$	Longitude (E) $\quad \eta= \pm 19.2$
Datum \qquad Bermuda 1957 (USC\&GS	Based on C\&GS first-order obs. at \triangle SOLD,
Elevation $\begin{aligned} & \text { above mean } \\ & \text { sea level }\end{aligned} \quad 22.594$	$\begin{array}{cc} \\ \text { meters } & \left.\begin{array}{l}\text { Height } \\ \text { above } \\ \text { ellipsoid _________ meters }\end{array}\right]\end{array}$
AZIMUTH DATA	
ASTRONOMIC OR GEOOETIC \quad FROM	$0 \begin{gathered}\text { distance } \\ \text { meters }\end{gathered}$
DESCRIPTION OF SURVEYS AND GENERAL NOTES Surveyed by Field Facilities Branch, GSFC, Sept. 1965. Horizontal control was based on USC\&GS first-order stations FORT GEORGE and PAYNTERS HILL. A first-order quadrilateral was formed with GEOS CAMERA and ANTENNA CENTER as shown. Eight alignment marks were set N, E, W, and (offset) S from center. Elevation was determined by third-order methods from a USC\&GS bench mark. X-axis is 6.525 meters above station mark in base of antenna. Sea level datum is based on local sea-level datum at Customhouse. GSFC survey was prior to construction; Geonautics' survey in May 1966 verified results of the GSFC survey. HILL	
	REFERENCES Geodetic Survey Report of USB Antenna and GEOS Camera at Coopers Is., Bermuda, Facilities Construction Branch, GSFC, 14 March 1966.

ASTRONOMIC
Geodetic Geodetic \triangle ANTENNA CENTER

\triangle ANTENNA CENTER $\frac{\triangle \text { PAYNTERS HILL }}{\triangle \text { COL. TOWER }}$ $\frac{4432.43}{732.10}$ NORTH | 250° | 04^{\prime} | 19.1 |
| :--- | :--- | :--- |
| $316 \quad 20 \quad 07.8$ | | |

DATE July 1973

REFERENCES

Geodetic Survey Report of USB Antenna and GEOS Camera at Coopers Is., Bermuda, Branch, GSFC, 14 March 1966.

Station No. \qquad USB 4

Code Name \qquad Location \qquad Antigua, , West Indies Associated States \qquad Equipment Unified S-Band 9-meter (30-foot) Agency \qquad NASA-Goddard Space Flight Center

Station No. USB 5
Other
Codes STDN CYI 3

Code Name \qquad

Location \qquad Gran Canaria, Canary Islands Equipment Unified S-Band 9-meter (30-foot)

Agency _ NASA-Goddard Space Flight Center

Point referred to __center of X-axis	
GEODETIC COORDINATES	ASTRONOMIC COORDINATES
Latitude _ $27^{\circ} 45^{\prime} 46^{\prime \prime} 180$	Latitude
Longitude (E) $\quad \begin{array}{lll}344 & 22 \quad 04.516 & \text { Longitude (E) }\end{array}$	Longitude (E)
Datum_ Pico de las Nieves	Based on
Elevation above mean sea level \qquad 160.36	Height above ellipsoid \qquad meters
AZIMUTH DATA	
ASTRONOMIC OR GEODETIC FROM	0DISTANCE meters\quadAZIMUTH FROM NORTH
Geodetic \triangle USB ANTENNA \triangle WEST	$\frac{2}{1099.00} \left\lvert\, \frac{269^{\circ} 59^{\prime} 54: 8}{302} 550\right.$
Geodetic \triangle USB ANTENNA -USB co	tower - 934.602*
Surveyed by Facilities Construction Branch, GSFC in 1967. Antenna position (\triangle USB ANTENNA) fixed by second-order triangulation based on three Instituto Geografico y Catastral stations. Nearest astro obs. is at \triangle PLAYA 3 miles distant; deflection gradient is too great for transfer. Spirit levels were run from \triangle PLAYA to site. Center of X-axis is 6.55 m above \triangle USB ANTENNA (153.81 m) in foundation. Elevation datum based on 60 -day tide series by Geonautics, Inc. at Maspalomas Lighthouse in 1960. *The slope distance from the centerline of the Y-axis of the USB antenna (when pointed to the col. tower) to the vertex of the subreflectors on the col. tower is 931.806 m .	
ACCURACY ASSESSMENT To Local Control To Datum Origin 	REFERENCES Geodetic Survey Report of USB Antenna at Grand Canary Island, Facilities Construction Branch, GSFC, May 1967.

Station No.
Code Name USB 6
Location Ascension Island
Equipment Unified S-Band 9-meter (30-foo

Agency NASA-Goddard Space Flight Center

Point referred to center of X-axi's	
GEODETIC COORDINATES	ASTRONOMIC COORDINATES
Latitude $\quad-07^{\circ} 57$	Latitude $\quad \xi=-0.1 \pm 3^{\prime \prime}$
Longitude (E) _($\underline{n}+$
Datum_Ascension_Island 195	Based on C\&GS grav./topo analysis 1966
Elevation above mean sea level \qquad 544.2 meters	Height above ellipso
AZIMUTH DATA	
DESCRIPTION OF SURVEYS AND GENERAL NOTES* Surveyed by Facilities Construction Branch, GSFC, in 1965, prior to antenna construction. The survey included work for. JPL 30-foot az-el antenna. Point of reference is 6.55 m above location of original concrete mark probably destroyed at time of antenna construction (elevation 537.67 m). Horizontal control consisted of first-order triangle based on two USC\&GS stations. Terrain permitted only five alignment marks to be established at the antenna site: E1, E2, S1, S2, and W1. Station COLL. TOWER is located in the apron of the Mech. Eqpt. Bldg. about 5 m SSE of the center of the tower which is an unmarked point in a concrete block 2 feet square. The elevation given above was obtained from USN Y\&D Drawing 1025712 (Corrected to AS:-BUILT-Aug. 16, 1966). Island MSL datum is based on an 11-month tide series at Georgetown.	
ACCURACY ASSESSMENT To Local Control To Datum Origin Horizontal \qquad 0.1 meters \qquad 0.3 meters Vertical \qquad meters \qquad meters	REFERENCES Geodetic Survey Report for USB Antenna and JPL DSN Antenna at Ascension Isiand, Facil. Constr. Br., GSFC; and C\&GS Ltr. dated 16 Sept. 1966 to GSFC.

Station No. \qquad

Code Name \qquad
geodetic data sheet SATELIITE TRACKING STATION

Other Codes STDN MAD 8

Location \qquad Equipment Unified S-Band 26-meter (85-foot)

Agency NASA-Goddard Space Flight Center

GEODETIC COORDINATES			ASTRONOMIC COORDINATES					
Latitude ___ 40° 27' 23.185			atitude					
Longitude (E) $\quad 355 \quad 49 \quad 58.23$			ongitude (E)					
Datum ___ European			Based on					
Elevation above mean sea level \qquad 785.1 meters		$\begin{aligned} & \text { Geoid } \\ & \text { height }-22 \end{aligned}$	meters	Height above ellipsoid	763		meters	
AZIMUTH DATA								
ASTRONOMIC OR GEODETIC	from	T0		DISTANCE meters	AZIMUTH FROM NORTH			
Geodetic	- A ANTENNA CTR	WEST THRE	-	817.719	269°	59^{\prime}	59"	
Geodetic	\triangle ANTENNA CTR	\triangle COL. TOWE		6421.295	316	36	28.0	

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The geodetic survey was performed by the Field Facilities Branch, GSFC, NASA, in 1964 prior to construction of the antenna. The location of the center of the antenna is marked by a disk, stamped ANTENNA CENTER, set in the top of a COLLIMATION concrete post. Stations COLLIMATION TOWER, CASA, and nine alignment marks were also set.

The survey consisted of first-order triangulation and traverse based on two Instituto WEST 3 Geografico y Cadastral stations, ALMENARA and VALDIHUELO. Astro-azimuth of the line ANTENNA CENTER to CASA was observed as a check. Elevation (based on MSL at Alicante) was determined by leveling from third-order IGyC bench marks about 3 km distant. The elevation of \triangle ANTENNA CENTER is 774.07 m .

Geoid height from G. Bomford's geoid chart of Europe, N. Africa and S.W. Asia, February, 1971.

DATE __August 1971

ACCURACY ASSESSMENT

To Local Control	To Datum Origin
Horizontal 0.1	5 meters
Vertical _0.2	0.5 . meters

RĖFERENCES

"Geodetic Survey Report of Apollo Antenna Site of Madrid, Spain," GSFC, January 1965.

Station No. USB 8
Code Name \qquad
GEODETIC DATA SHEET
SATELLITE TRACKING STATION
STDN CRO 3

Location \qquad Equipment Unified S-Band 9-meter (30-fod Agency _ NASA-Goddard Space Flight Center

DESCRIPTION OF SURVEYS AND GENERAL NOTES

Surveyed by Survey Section, Department of Interior, Perth, WA, 1962-1966. Astro-observations were made by the Dept. of Lands and Surveys, WA, in April 1964.

The connection between the antenna and the Australian Geodetic Survey at Brown Range GC 18A was by a closed Tellurometer traverse.

The elevation is referred to AHD.
Geoid height from National Mapping Technical Report 13, 1971.

DATE April 1972

ACCURACY ASSESSMENT

REFERENCES

Geodetic .Information for Space Tracking Stations in Australia - Carnarvon, Div. of National Mapping, Canberra, March 1972.

Station No. USB 9

Code Name \qquad
Location \qquad GUAM

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Other
Codes \qquad

Agency \qquad
Equipment Unified S-Band 9-meter (30-foot)

AZIMUTH DATA

ASTRONOMIC OR GEODETIC	FROM	T0	DISTANCE meters	AZIMUTH FROM NORTH
Geodetic	\triangle NASA DISH	\triangle ASUPIAN	1192.224	$85^{\circ} 12^{\prime} 55^{\prime \prime}$
Geodetic	\triangle NASA DISH	col. tower mk	1155.2	813916
	\triangle NASA DISH	subreflectors	1152.399	t range

DESCRIPTION OF SURVEYS AND GENERAL NOTES

Surveyed by Bureau of Yards \& Docks Contracts, Marianas (C. W. O'Mallan) in August 1965. The station mark, stamped NASA DISH, set in the center of the antenna foundation, was located by first-order taping and direction observations from \triangle ASUPIAN (C\&GS first-order, 1963). Eleven alignment monuments were set on grid $N-S$ and $E-W$ lines through the central station. Mark at base of collimation tower was established by a similar method.

Precise levels were run from \triangle ASALONSA GG and bench mark $N 1$, which were included in C\&GS first-order leveling of 1963. The elevation N
4 of \triangle NASA DISH is 85.525 m .

DATE July 1970

ACCURACY ASSESSMENT

To Local Control To Datum Origin
Horizontal $\ll 1$
Vertical $\ll 1$

REFERENCES

Ltr. Bur. Y\&D Contracts, Marianas, to Facilities Construction Branch, GSFC; 21 August 1965; Report FCB-GSFC 26 September 1966.

Code Name \qquad

geodetic data sheet SATELLITE TRACKING STATION

\qquad STDN HSK 8

Location \qquad Canberra, Australia Equipment Unified S-Band 26-meter (85-

Agency _NASA-Goddard Space Flight Center

DESCRIPTION OF SURVEYS AND GENERAL NOTES

Geodetic survey by Survey Branch, Dep. of Interior, Canberra, February 1966.
The station mark, HONEYSUCKLE APOLLO, is located at the center of the four concrete piers which support the antenna. It was connected to the National
Geodetic Survey at Mount Stromlo by a closed Tellurometer traverse. Two align-
ment marks were set in each cardinal direction.
The X-axis is about 13 meters above ground level. Elevation is referred to AHD.

Laplace and geodetic azimuths corresponding to the astronomic azimuth above are:

$$
\begin{aligned}
& \text { Laplace azimuth } \\
& \text { Geodetic azimuth (after adjustment) } 246^{\circ} 30^{\prime} 59.57 \\
& 246^{\circ} 30^{\prime} .59 .21
\end{aligned}
$$

Geoid height from National Mapping Technical Report 13, 1971.

DATE April 1972

ACCURACY ASSESSMENT

REFERENCES

Geodetic Information for Space Tracking Stations in Australia, Div. of Nat. Mapping, March 1972.

Station No._USB 11

Code Name \qquad

0ther	
Codes	
SAMTEC	337601

SATELLITE TRACKING STATIÓN

GEODETIC DATA SHEET Equipment
Location \qquad Kauai, Hawaii Unified S-Band 9-meter (30-foot)

Agency _-_NASA-Goddard Space Flight Center

Point referred to __ center of X-axis	
GEODETIC COORDINATES	ASTRONOMIC COORDINATES
Latitude ___ 22° 07' $45^{\prime \prime} .928$	Latitude $\quad \xi_{3}=+7^{\prime \prime}$
Longitude (E) $\quad 200 \quad 19 \quad 55.379$	
Datum \qquad 0ld Hawaiian	Based on second-order obs C\&GS 1961 at
Elevation above mean sea level 1150.9_meters $\quad \begin{gathered}\text { Geoid } \\ \text { height }\end{gathered}$	_ mèters$\left.\begin{array}{l}\text { Height } \\ \text { above } \\ \text { ellipsoid _____meters }\end{array}\right]$
AZIMUTH DATA	
ASTRONOMIC OR GEOOETIC	DISTANCE meters $\quad \begin{gathered}\text { AZIMUTH } \\ \text { FROM NORTH }\end{gathered}$
Geodetic antenna center \triangle KOKEE	- 18.798
center X-axis subrefl	ctors 777.068 slant range
Surveyed by Facilities Construction Branch, GSFC, in 1965 after construction. Since the antenna was in place the antenna center could not be occupied and no mark was set. The position was determined by a closed traverse from USC\&GS \triangle MANU (second-order) through \triangle HILL (FCB) using the theodolite mounts on the X-axis as eccentric M stations. The position was checked by another traverse from \triangle MANU via the eccentric stations and \triangle HILL to \triangle PELE (USC\&GS), as well as by distance and azimuth from \triangle KOKEE (USC\&GS). Stations MANU, MAKAHA 2, and HILL were used for azimuth alignment of the antenna. Elevation was determined by levels for \triangle KOKEE. It is based on MSL at Port Allen (1950).	
ACCURACY ASSESSMENT	REFERENCES Geodetic. Survey Report for USB Antenna at Kokee, Kauai, Hawaii, April 1966, rev. 1 June 1966, FFB, GSFC.

Station No. USB 12
Code Name \qquad

geodetic data sheet SATELLITE TRACKING STATION

Location \qquad Equipment Unified S-Band 26-meter (85-fo Agency ___ NASA-Goddard Space Flight Center

Surveyed by Field Facilities Branch, GSFC in 1965, before antenna construction. The station, probably destroyed later, was marked by a bronze disk at ground level stamped FFB-APOLLO.

The survey consisted of a quadrilateral with two C\&GS first-order stations, FOOT and JPL TOWER, and two new stations, APPLE and CLIFF, with an additional azimuth check to \triangle MARS (C\&GS). Position of the antenna was determined by a geodimeter traverse from \triangle CLIFF to \triangle APPLE.

Eight alignment marks were set, two each on the N, E, S, and W radials from the antenna center. Elevation was by fourth-order methods.
Geoid height from TOPOCOM geoid charts 1967.

$$
\text { DATE _ July } 1970
$$

ACCURACY ASSESSMENT

	To Local Control	To Datum Origin
Horizonta	0.3	4 . meters
	0.5	1 meters

REFERENCES

Trip Report, Mojave Test Facility, Barstow, Calif., FFB-GSFC, 23 April 1965, by Charles R. Myers.
\qquad

GEODETIC DATA SHEET SATELLITE TRACKING STATION

0ther Cedes STDN GYM 3
\qquad Equipment Unified S-Band 9-meter (30-foot) Agency NASA-Goddard Space Flight Center

Point referred to center of X-axis

GEODETIC COORDINATES
ASTRONOMIC COORDINATES
Latitude_._27² 27^{\prime} 45'.9581
Latitude $\quad \xi=-0.1$

Longitude (E) $\quad \begin{array}{lll}249 \quad 16 \quad 46.2771\end{array}$
Longitude (E) $\quad n=-11.1$
Based on second-order obs Geonautics 1960 at Verlort antenna, 0.5 km south of USB
Datum
NAD 1927

Elevation
above mean
sea level \qquad meters

Height
above
ellipsoid \qquad meters

AZIMUTH DATA					
ASTRONOMIC OR GEODETIC	FROM	T0	$\begin{gathered} \text { DISTANCE } \\ \text { meters } \end{gathered}$	AZIMUTHFROM NORTH	
Geodetic	\triangle ANTENNA CENTER \triangle SOUTH TWO		304.5	$180^{\circ} 00$	00.'85
Geodetic	- \triangle ANTENNA CENTER	\triangle COL. TOWER	1153.23	195.54	40
	center X-axis	subreflector	1151.259	range	

DESCRIPTION OF SURVEYS AND GENERAL NOTES

This antenna has been moved to Goldstone, Calif.
Surveyed by the Facilities Construction Branch, GSFC, in December 1965 before antenna construction.
The station is marked by an unstamped NASA-GSFC survey disk set in the center of the concrete antenna foundation.

The positions of the antenna center and collimation tower sites were determined by geodimeter traverse from VIGIA and BABI, two IAGS first-order triangulation stations. Eight antenna alignment marks were set: two each on the east, west, and south radials and on a north offset line. Third-order leveling was carried into the site from first-order DCM-IAGS bench marks. The X-axis is 6.55 m above the disk in the foundation.

Geoid height extrapolated from TOPOCOM geoid charts 1967.

DATE September 1971

ACCURACY ASSESSMENT

REFERENCES

"Geodetic Survey Report of USB Antenna at Guaymas, Sonora, Mexico," FCB-GSFC March 10, 1966.

Station No. USB 14

Code Name \qquad

GEODETIC DATA SHEET SATELLITE TRACKING STATION

Other
Codes STDN TEX 3

Location \qquad Corpus Christi, Texas Equipment

Agency \qquad NASA-Goddard Space Flight Center

DATE July 1970

ACCURACY ASSESSMENT

To Local Control

Horizontal \qquad meters

To Datum Origin

Vertical \qquad meters \qquad meters meters

REFERENCES

Geodetic Survey Report of USB Antenna at Corpus Christi, Texas, FCB-GSFC, March 1966.

Station No \qquad USB 15

Code Name \qquad Location \qquad Greenbelt, Maryland

GEODETIC DATA SHEET

SATELLITE TRACKING STATION

Other
Codes \qquad
STDN ETC 3
\qquad Equipment Unified S-Band 9-meter (30-foot)

Agency \quad NASA-Goddard Space Flight Center

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by USNAVOCEANO in November 1966 prior to construction. Supplementary surveys were made by Field Facilities Branch, GSFC; in 1968 and by Geonautics, Inc. in 1968 and 1969. An unstamped disk ($\Delta M-1$) in the foundation marks the center of the antenna. The survey consisted of third-order triangulation and traverse from \triangle PRINCE (USC\&GS) and \triangle ROOF (USNOO), both secondorder stations. The center of the foundation of the collimation tower is marked by \triangle COLT.

The X-axis is 6.54 meters above $\Delta \mathrm{M}-1$ (elev. $47.13 \mathrm{~m})$.
*Slant range from centerline of Y -axis to transmitting reflector with antenna boresighted to collimation tower $=720.96 \mathrm{~m}$.

Geoid height from TOPOCOM geoid charts 1967.

> are

September 1971	
ACCURACY ASSESSMENT To Local Control To Datum Origin	references USNAVOCEANO GP Sheet 18 Nov 1966 (Archive No. 306295), "Survey Report
Horizontal 0.5 meters $\quad .5$ meters	of USB Antenna-Col. Tower Relationship,
Vertical_1 meters 1 meters	Surveys Geonautics, 1968-1969.

Station No. USB 16

Code Name \qquad Greenbelt, Maryland
\qquad NASA-Goddard Space Flight Center

Point referred to

center of X-axis

GEODETIC COORDINATES

Latitude	38°	59^{\prime}	$53 .!58$
Longitude (E)	283	09	27.83

Latitude
ASTRONOMIC COORDINATES
\qquad
Longitude (E) \qquad
Based on \qquad

Elevation above mean sea level \qquad meters $\underset{\text { height }}{\text { Geoid }}+1$ meters

Height above ellipsoid \qquad meters

AZIMUTH DATA

DESCRIPTION OF SURVEYS AND GENERAL NOTES

This ERTS antenna at NTTF-GSFC was formerly at Antigua.
The position is preliminary. It is based on station MICRO (see Station MIN 9).

The X-axis is 6.53 m above the foundation (elev. 53.668 m). Elevation is on the Washington Suburban Sanitary Datum, which is within a few centimeters of SLD 1929.
(The orientation of the two ERTS antennas USB 16 and USB 17 is like that of the USB 85 -foot antennas, rotated 90°, that is, from other USB 30-foot antennas.)

Geoid height from TOPCOCOM geoid charts 1967.

DATE _June 1973

ACCURACY ASSESSMENT

REFERENCES

Preliminary report of Physical Plant Engineering Branch, GSFC, 16 September 1971.

Station No. \qquad USB 17

GEODETIC DATA SHEET SATELLITE TRACKING SṪATION

Code Name \qquad .

Other Codes \qquad
Location
\qquad Goldstone, California Equipment Unified S-Band 9 -meter (30-foot)
Agency \quad NASA-Goddard Space Flight Center

Station No. \qquad USB 18

Code Name \qquad

Location \qquad Merritt Island, Florida SATELLITE TRACKING, STATION

Other Codes
STDN MIX 3

Agency NASA-Goddard Space Flight Center Equipment

DESCRIPTION OF SURVEYS AND GENERAL NOTES

This is a preliminary position for the antenna, which is not yet. installed.

The X-axis is 6.53 m above the foundation (elev. $2: 6 \mathrm{~m}$).

Geoid height from TOPOCOM geoid charts 1967.

DATE \qquad June 1973

ACCURACY ASSESSMENT To Local Control Horizontal \qquad meters \qquad 6 meters Vertical \qquad meters \qquad meters

REFERENCES

Preliminary report of Physical Plant Engineering Branch, GSFC, 16 September 1971.

Station No. USB 19

Code Name \qquad
Location \qquad Santiago, Chile

GEODETIC DATA SHEET

SATELLITE TRACKING STATION Equipment
STDN SAN3

```
Unified S-Band 9-meter (30-foot)
``` Agency NASA-Goddard Space Flight Center

Point referred to center of \(X\)-ax is

GEODETIC COORDINATES
ASTRONOMIC COORDINATES

Elevation
above mean sea level
\begin{tabular}{ll}
Geoid \\
height +26.2 meters & \begin{tabular}{l}
Height \\
above \\
ellipsoid \(\quad 732\)
\end{tabular}\(\quad\) meters
\end{tabular}

\section*{AZIMUTH DATA}

AStronomic OR GEODETIC 705.7 meters

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Position from scaled distances to Minitrack monument PELDEHUE, which was surveyed by IAGS, June 1966. (See No. MIN 10.)

X-axis of the antenna is 6.6 m above foundation (elev. 699.1 m).
A precise survey is expected to revise this preliminary position slightily.
This GR\&RR antenna (GRR 3S) was converted for use in the USB network.

Geoid height from CHUA base, TOPOCOM 1971.

\[
\text { DATE August } 1973
\]

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(\frac{1}{2}\) meters \(\frac{7}{2}\) meters
Vertical meters \(\quad\) meters

\section*{REFERENCES}

Memo: Networks Operations Div., GSFC, to Geonautics, 24 June 1966;-Geodetic Summary USATOPOCOM August 1971; telecon NOD 12 July 1973.

Page Intentionally Left Blank

Station No.
Code Name RAD 1
\(\qquad\)

Other AFETR 191801
Codes \(\qquad\)

Location Merritt Island, Florida
Equipment TPQ-18 radar
Agency USAF-Eastern Test Range

Station No. RAD 2
Code Name \(\qquad\)
GEODETIC DATA SHEET
SATELLITE TRACKING STATION
\begin{tabular}{llr}
0ther & AFETR & 001801 \\
\cline { 3 - 3 } Codes & APOLLO & PATO \\
\cline { 2 - 3 } & NGSP & 4060 \\
\hline
\end{tabular} Equipment FPQ-6 radar

Agency USAF-Eastern Test Range

Station No. RAD 3
Code Name CKYF

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Location \(\qquad\) Cape Kennedy, Florida Equipment \(\qquad\) FPS-16 radar

Agency \(\qquad\) USAF-Eastern Test Range

Point referred to intersection of horizontal and vertical rotation axes

GEODETIC COORDINATES
\begin{tabular}{llll}
Latitude & \(28^{\circ}\) & \(28^{\prime}\) & \(52!7925\) \\
Langitude (E) & 279 & 25 & 23.7692 \\
Datum & NAD & 1927 & (CC)
\end{tabular}

ASTRONOMIC COORDINATES
Latitude \(\xi=+1!0\)
Longitude (E) _ \(n=+1.4\)
Based on first-order obs C\&GS 1960 at
\(\triangle\) LAB 500 m from antenna
Geoid
height +10
meters \begin{tabular}{l}
Height \\
above \\
ellipsoid
\end{tabular}

\section*{AZIMUTH DATA}

ASTRONOMIC OR GEODETIC
fROM
Geodetic
Geodetic Geodetic 1 intersection axes intersection axes
\begin{tabular}{|c|c|c|c|c|}
\hline & DISTANCE meters & \multicolumn{3}{|c|}{AZIMUTH FROM NORTH} \\
\hline tion horn & 457.550* & \(306^{\circ}\) & \(33^{\prime}\) & 47" \\
\hline Luneberg lens & 4268.05** & 260 & 36 & 49 \\
\hline SKID 1963 & 11.2804 & 246 & 10 & 24 \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by Range Geodetic Office, MTDRG, Patrick Air Force Base 1963; re-surveys to Apri1 1968.

Position was fixed by first-order class I horizontal surveys (not adjusted).

Elevation was determined by firstorder levels (not adjusted). All work was by USC\&GS personnel.

The position of this station is the same on both Cape Canaveral Datum and NAD 1927 (C\&GS).

Geoid height from TOPOCOM geoid charts 1967.

*Slant range \(=458.024\) meters.
**Slant range \(=4268.06\) meters.
\[
\text { DATE ___July } 1970
\]

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control}

Horizontal \(\qquad\) .03 .03 meters ro Datum Origin
\(\qquad\) meters
Vertical \(\qquad\) meters \(\qquad\) \(<1\) meters

\section*{REFERENCES}

Data from USAF 1381st Geodetic Survey Squadron, ETR, to Geonautics May 1968.

Station No. RAD 4 \(\qquad\) GEODETIC DATA SHEET
SATELLITE TRACKING STATION
Code Name \(\qquad\)

0ther Codes \(\qquad\) TPQ-18 radar
Agency _USAF-Eastern Test Range
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Point referred to intersection of axes} \\
\hline \multicolumn{2}{|l|}{GEODETIC COORDINATES ASTRONOMIC COORDINATES} \\
\hline Latitude __ \(26^{\circ} 38^{\prime}\) 09..022 & Latitude _ \(26^{\circ} 38^{\prime} 02.56\) \\
\hline \multicolumn{2}{|l|}{Longitude (E) \(\quad 281 \quad 43 \quad 55.314 \quad . \quad 10\)} \\
\hline \multicolumn{2}{|l|}{Datum_ NAD 1927 Based on first-order obs C\&GS 1964 at} \\
\hline & \(\triangle\) ROUGH, 20 m from antenn \\
\hline \begin{tabular}{l}
Elevation \\
above mean \\
sea level
\end{tabular}\(\quad 11.905 \quad\) meters \begin{tabular}{l}
Geoid \\
height
\end{tabular} & meters \(\quad \begin{aligned} & \text { Height } \\ & \text { above } \\ & \text { ellipsoid _ }\end{aligned}\) \\
\hline AZI & H DATA \\
\hline ASTRONOMIC
OR GEOOETIC & DISTANCE
meters FROMMUTH \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
DESCRIPTION OF SURVEYS AND GENERAL NÓTES \\
Surveyed by USC\&GS June 1964; resurveyed February 1966. \\
The position was fixed by triangulation and traverse from \(\triangle\) ROUGH 1964. \\
Elevation was by C\&GS first-order levels to a first-order line (320 m). \\
The tie to NAD is by the AFETR solution of 1969. \\
The Luneberg lens is at a slant range of 3005.374 m from the intersection of axes. Slant range from the axes' intersections to the feeder horn is 625.794 m . The boresight tower was not stable at the time of the survey (\(\pm 5 \mathrm{sec}\)). \\
Geoid height from TOPOCOM geoid charts 1967. (The geoid height by the AFETR satellite solution is the same, +8 m).
\(\qquad\)
\end{tabular}} \\
\hline \begin{tabular}{l}
ACCURACY ASSESSMENT \\
To Local Control To Datum Origin \\
\(\begin{array}{ll}\text { Horizontal } \frac{0.01}{0.01} \text { meters } \quad 6 \\ \text { Vertical } \quad \text { meters } \quad 1 & \text { meters } \\ \text { meters }\end{array}\)
\end{tabular} & \begin{tabular}{l}
REFERENCES \\
USC\&GS Geod: Pos. Sheét 2 February 1966; AFETR Geodetic Coordinates Manual August 1969.
\end{tabular} \\
\hline
\end{tabular}

Station No. RAD 5

Code Name \(\qquad\)
GEODETIC DATA SHEET SATELLITE TRACKING SṪATION
 Equipment \(\qquad\) FPQ-6 radar
Location \(\qquad\) Wallops Island, Virginia \(\qquad\)

\author{
\(\qquad\)
}
\(\qquad\)
Agency \(\qquad\) NASA-Wallops Island Station

Point referred to center of rotation of antenna axes
GEODETIC COORDINATES
ASTRONOMIC COORDINATES Latitude \(37^{\circ} 51^{\prime} 36!509 \quad\) Latitude \(\qquad\)
Longitude (E) \(\quad\)\begin{tabular}{lll}
\(284 \quad 29 \quad 25.236\) \\
\hline
\end{tabular}
Longitude (E) \(\qquad\)
Datum \(\qquad\) NAD 1927 Based on

Elevation above mean sea level \(\qquad\) 14.953 14.953 meters
\(\qquad\)

\section*{AZIMUTH DATA}

\section*{AStronomic OR GEODETIC}

Geodetic Geodetic \(\qquad\) center of rotation center of rotation \(\triangle\) ARBUCKLE.
distance meters

ALIMUTH FROM NORTH

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveyed by Field Facilities Branch, GSFC, March 1968, with first-order accuracy, using a Wild T-3 theodolite and an AGA Model 6 Geodimeter. Control was extended from USC\&GS stations EASY and TESTCELL, with \(\triangle\) ASSATEAGUE LIGHTHOUSE as an azimuth check.

Elevation is third-order in reference to USC\&GS first-order benchmarks G 421 1963, A. 299 1949, and K 4211963.

Geoid height from TOPOCOM geoid charts 1967.

DATE _July 1970

\section*{ACCURACY ASSESSMENT}

To Local Control To Datum Origin
Horizontal \(\qquad\) meters \(\qquad\) meters
Vertical \(\qquad\) meters \(\qquad\) meters

\section*{REFERENCES}

Geodetic survey report, Field Facilities Branch, GSFC April 1968.

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control To Datum Origin}

Horizontal 0.3
Vertical 0.3
\(\qquad\) meters \(\qquad\) meters meters < 1 meters

\section*{REFERENCES}

Geodetic survey report, Field Facilities Branch, GSFC April 1968.
\[
\begin{aligned}
& \text { Station No. RAD } 7 \ldots \text { GEODETIC DATA SHEET } \\
& \text { Code Name } \\
& \text { SATELLITE TRACKING STATION }
\end{aligned}
\]
0ther
Codes \begin{tabular}{ll}
AFETR & 071801 \\
\cline { 2 - 3 } & APOLLO \\
\hline
\end{tabular} Grand Turk, Bahama Islands Equipment \(\qquad\) TPQ-18 radar

\section*{Agency USAF-Eastern Test Range}

Point referred to intersection of horizontal and vertical_axes

\section*{GEODETIC COORDINATES}

Latitude \(\qquad\) \(21^{\circ} \quad 27^{\prime} 43.487\)
Longitude (E) \(\quad\)\begin{tabular}{lll}
\(288 \quad 52 \quad 03.051\) \\
\hline
\end{tabular}

Datum \(\qquad\) NAD 1927

Elevation above mean sea level \(\qquad\) 36.00 meters

\section*{ASTRONOMIC COORDINATES}
\(\qquad\)
Longitude (E)
\(\quad \begin{array}{llll}288 & 52 & 12.18\end{array}\)
Based on first-order obs C\&GS 1963 at SKI AZIMUTH (USNHO), 20 m from antenna Height above ellipsoid 42 meters

\section*{AZIMUTH DATA}

ASTRONOMIC OR GEODETIC

FROM
T0

\section*{dISTANCE} meters

AZIMUTH FROM NORTH

Geodetic
Geodetic Geodetic \(\left|\begin{array}{l}\text { intersection axes } \\ \text { intersection axes } \\ \text { intersection axes }\end{array}\right|\)

\section*{DESCRIPTION OF. SURVEYS AND GENERAL NOTES}

Surveys performed by USC\&GS 1963, and USAF ETR 1968.

Position was fixed by first-order class I horizontal surveys (adjusted). Two Laplace azimuths, 3 taped bases and 5 Geodimeter measurements furnished azimuth and length control for the adjustment. \(\triangle\) SALT is a Laplace azimuth station (1963). The tie. to NAD is by the USAF 1969 satellite solution.

Elevation was determined by first-order levels.

Geoid height from TOPOCOM geoid charts 1967. (Geoid height from the USAF 1969 satellite solution is 1.5 m .)
\[
\begin{aligned}
* \text { Slant range } & =622.039 \text { meters } . \\
\text { **Slant range } & =4140.737 \text { meters } .
\end{aligned}
\]

\begin{tabular}{|c|c|}
\hline & - DATE July 1970 \\
\hline \begin{tabular}{l}
ACCURACY ASSESSMENT \\
To Local Control To Datum Origin
\end{tabular} & \multirow[t]{3}{*}{\begin{tabular}{l}
REFERENCES \\
Data from USAF 1381st Geodetic Survey Squadron, ETR, to Geonautics May 1968; AFETR Geodetic Coordinates Manual August 1969.
\end{tabular}} \\
\hline Horizontal 0.3 meters 7 meters & \\
\hline Vertical _ 0.3 meters _ < meters & \\
\hline
\end{tabular}

Station No. - RAD 8
Code Name \(\qquad\)
GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Other AFETR 671601
Codes APOLLO BDAF

Location \(\qquad\) Equipment \(\qquad\) FPS-16 radar

Agency __ NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by USC\&GS Survey 1963; Geónautics, Inc: 1965, 1966.
The FPS -16 was positioned by angle and taped distance (base line procedures) from \(\triangle\) SOLD (USNHO 1959), a station in a survey which held fixed the position of FT. GEORGE (B-1937) on the Bermuda 1957 Datum (\(\phi 32^{\circ} 22^{\prime} 44!3600\), \(\lambda(W) 64^{\circ} .40^{\prime}\). 58.'1100). Three Laplace azimuths and eight Geodimeter lengths were used for azimuth and distance control of this survey.

The geodetic azimuth from the optical axis (direct) to the boresight antenna over \(\triangle\) PAYNTERS BORE is \(255^{\circ} 43^{\prime} 30^{\prime \prime}\).

DATE \(\qquad\)

\section*{ACCURACY ASSESSMENT}

To Local Control
Horizontal \(\qquad\) 0.3 meters

To Datum Origin
\(\qquad\) meters

\section*{REFERENCES}

Report on Results of Survey Bermuda Is.1963, USC\&GS; AFETR Geodetic Coordinates Manual,'August 1969.

Station No. RAD 9
Code Name \(\qquad\)
GEODETIC DATA SHEET SATELLITE TRACKING STATION

Equipment FPQ-6 radar
\(\qquad\)
-
Agency NASA-Goddard Space Flight Center
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Point referred to _ intersection of axes of rotation} \\
\hline GEODETIC COORDINATES & & ASTRONOMIC COORDINATES \\
\hline Latitude \(\quad 32^{\circ}\) 20' 47 ! 530 & & Latitude \(\quad \xi=-10.5\) \\
\hline Longitude (E) \(\quad 295 \quad 20 \quad 46.532\) & & Longitude (E) \(\quad \eta=+19.2\) \\
\hline Datum \(\qquad\) Bermuda 1957 (C\&GS) & & Based on \(\qquad\) \(\triangle\) SOLD, 111 meters from antenna \\
\hline Elevation
above mean
sea level & Geoid height & _ meters
\(\left.\begin{array}{l}\text { Height } \\ \text { above } \\ \text { ellipsoid _____ meters }\end{array}\right]\) \\
\hline
\end{tabular}
\begin{tabular}{c}
ASTRONOMIC \\
OR GEODETIC
\end{tabular}
Geodetic

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by Geonautics, Inc. 1966.
Position of FPQ-6 antenna was established by triangulation using the triangle TOWNHILL, SOLD and FPQ-6 as the primary figure. The triangle, WELL, SOLD and the FPQ-6, was used as a check.

Elevation was determined by third-order leveling.

The geodetic azimuth from the optical axis, direct, with the telescope on left of radar facing target, to the lighthouse at Gibbs Hill is \(238^{\circ} 20^{\prime} 02^{\prime \prime}\), distance 20,070 meters.
*Slant range \(=1287.47\) meters.

DATE July 1973

\section*{ACCURACY ASSESSMENT}
\begin{tabular}{|c|c|c|}
\hline & Local Contr & To Datum Origin \\
\hline orizon & al 0.3 & \(<1\) meters \\
\hline cal & 0.3 & \(<1\). meters \\
\hline
\end{tabular}

\section*{REFERENCES}

Bermuda Station Survey Report, Geonautics Sept 1966.
\(\qquad\)

\section*{GEODETIC DATA SHEET SATELLITE TRACKING STATION}

Code Name \(\qquad\)
Other
Cedes
Cer \begin{tabular}{l}
AFETR \\
\\
\\
\hline
\end{tabular}

Location \(\qquad\) Antigua, West Indies Associated States \(\qquad\) Equipment FPQ-6 radar Agency USAF-Eastern Test Range

Surveys by USC\&GS 1963, and 1381st AF GSS January 1968.
Position was fixed by first-order class I horizontal surveys. The tie to NAD 1927 is the USAF satellite solution of 1969. (The position on the 1953 IV Hiran tie to NAD is \(\left.\phi 17^{\circ} 08^{\prime} 34!15, \lambda 298^{\circ} 12^{\prime} 24!.48.\right)\)

Elevation is by first-order levels C\&GS (adjusted).

Geoid height from TOPOCOM geoid charts 1967. (The geoid height from the USAF 1969 tie is + 13.4 m.)

\({ }^{1}\) Slant range \(=608.059\) meters.
\({ }^{2}\) Slant range \(=2062.649\) meters .
\[
\text { DATE July } 1970
\]

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(\frac{0.3}{}\) meters \(\frac{10}{0.3}\) meters
Vertical -.0 .3

\section*{REFERENCES}

Data from USAF 1381 st Geodetic Survey Squadron, ETR, to Geonautics May 1968; AFETR Geodetic Coordinates Manual August 1969.

Station No. RAD 11
Code Name \(\qquad\) _ Ascension Island \(\qquad\) Equipment \(\qquad\) TPQ-18 radar \(\qquad\) Location \(\qquad\) USAF Eastern

\section*{GEODETIC DATA SHEET SATELLITE TRACKING STATION}

Agency USAF-Eastern Test Range

Point referred to intersection of axes of rotation

GEODETIC COORDINATES
Latitude \(\qquad\) \(-07^{\circ} 58^{\prime} 22: 7786\)

Longitude (E) \(\begin{array}{llll} & 345 \quad 35 \quad 53.8981\end{array}\)
Datum \(\qquad\) Ascension Is land 1958

Elevation
above mean
sea level \(\qquad\) 125.378 meters

Geoid height

\section*{ASTRONOMIC COORDINATES}

Latitude \(\qquad\)
Longitude \((\mathrm{E}) \quad n=-4.2 \pm 0.2\)
Based on C\&GS gravimetric/topographic determination at \(\triangle C O N, 121 \mathrm{~m}\) from antenna

Height above ellipsoid \(\qquad\) meters

\section*{AZIMUTH DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AZIMUTH DATA} \\
\hline ASTRONOMIC OR GEODETIC & FROM & то & DISTANCE meters & \multicolumn{3}{|c|}{AZIMUTH
FROM NORTH} \\
\hline Geodetic & intersection axes & boresight feedhorn & 990.483* & \(109^{\circ}\) & & 50" \\
\hline Geodetic & intersection axes & Luneberg lens & 2288.001** & 358 & & 15 \\
\hline Geodetic & \(\triangle\) CON 1958 & \(\triangle\) COS 1958 & 84.854 & 178 & 19 & 12 \\
\hline
\end{tabular}

DESCRIPTION OF SURVEYS AND GENERAL NOTES
This station is no longer in operation.
Surveys performed by USC\&GS 1963; resurveyed Jan 1965. Resurveyed by 1381st
AF Geodetic Survey Squadron Nov 1967.
The position was fixed by first-order class II horizontal surveys, adjusted March 1965.

Elevation was determined by firstorder levels (not adjusted). Sea-level datum was established by 1]-month observations (to May 1959) at Georgetown.

The probable error of the deflection components is based on the consistency of the gravimetric deflection residuals at the three primary astro stations (first-order) on which the 1958 Datum is based. The absolute error is estimated to be \(\pm .3\) seconds.

\[
\begin{aligned}
* \text { Slant range } & =990.857 \text { meters. } \\
\text { **Slant range } & =2290.42 \text { meters. }
\end{aligned}
\]

DATE - September 1971

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(<1\)
Vertical \(\quad \leq 1\)

\section*{REFERENCES}

Ltr. Patrick AFB to NASA-GSFC, 3 April 1964.
Code Name \(\qquad\)

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Other Codes
\begin{tabular}{lr}
AFETR & 121601 \\
\hline APOLLO & ASCF \\
\hline NGSP & 4042 \\
\hline
\end{tabular}

Location \(\qquad\) Equipment FPS-16 radar

Agency USAF-Eastern Test Range

Station No._RAD13

Code Name \(\qquad\)
Location Tananarive, Madagascar SATELLITE TRACKING STATION

Other
Codes \begin{tabular}{ll}
\hline APOLLO & TANF \\
\hline NGSP & 4741 \\
\hline
\end{tabular}

Agency ___NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Survey performed by H. Monge, Tananarive Annexe, Institut Geographique National, Paris.

No description of the survey is available.
The local datum is based on a single astronomic observation at the Tananarive Observatory.

DATE _Uuly 1970

ACCURACY ASSESSMENT
To Local Control To Datum Origin
Horizontal \(<1<1\)
Vertical meters \(\quad<1\)

\section*{REFERENCES}

Memo Facility Construction Branch to Data Operation Branch; GSFC, 6/7/67.

Station No. RAD 14

Code Name \(\qquad\)
GEODETIC DATA SHEET
SATELLITE TRACKING STATION Codes \(\qquad\)
Location \(\qquad\) Carnarvon, Australia Equipment \(\qquad\)
FPQ-6 radar
Agency ___ NASA-Goddard Space Flight Center

Station No RAD 15 \(\qquad\) Code Name \(\qquad\) -

Other Codes \(\qquad\) \begin{tabular}{l}
APOLLO WOMF \\
\hline NGSP 4946 \\
\hline
\end{tabular} FPS-16 radar. Equipment \(\qquad\)

\(\qquad\)
Agency Australian National Weapons Research Establishment

Station No. \(\qquad\) 16

Code Name \(\qquad\) Location Kauai, Hawaii

GEODETIC DATA SHEET

\section*{S̈ATELLITE TRACKING STATION}
\begin{tabular}{|c|c|c|}
\hline Other & SAMTEC & 333001 \\
\hline \multirow[t]{2}{*}{Codes} & APOLLO & HAWF \\
\hline & NGSP & 4742 \\
\hline
\end{tabular}

Agency _ NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SÚRVEYS AND GENERAL NOTES}

Surveys performed by Geonautics, Inc., 1960. Leveling by R. S. Yokoyoma, Reg. Prof. Surveyor, Lihue, Kauai.

Positioned by triangulation, intersection and traverse from USC\&GS 3rd-order stations. \(\triangle\) HALE had been destroyed and repositioned, so position was checked by observations at stations HALE, CORAL, and PELE, as shown in sketch. All angles in triangle GACC - PELE - HALE were observed and position of GACC computed. "C" was observed from GACC, PELE, and HALE, and position computed. Position of antenna was computed from taped distance and measured direction from "C". All angles measured with Wild T-3, using 3rd-order methods.

Elevation of horizontal axis was determined by precision spirit level from USGS 3rd-order bench mark "3545."

The station is also called Kokee Park.

DATE
June 1971

\section*{ACCURACY ASSESSMENT}
\begin{tabular}{|c|c|}
\hline To Local Control & To Datum Origin \\
\hline Horizontal __ 2 & 2 meters \\
\hline Vertical _1 & m \\
\hline
\end{tabular}

\section*{REFERENCES}

Project Mercury survey files, Geonautics, Inc.

Station No._RAD 17

Code Name \(\qquad\)
GEODETIC DATA SHEET
SATELLITE TRACKING STATION
\begin{tabular}{lrr}
Other \\
Codes \\
& \multicolumn{1}{|c}{ SAMTEC } & 023003 \\
\cline { 2 - 3 } & APOLLO & CALT \\
\cline { 2 - 3 } & NGSP & 4280 \\
\hline
\end{tabular}
TPQ-18 radar \(\qquad\)

Location \(\qquad\) Equipment Agency \(\qquad\)
USAF-Western Test Range

Point referred to intèrsection of axes of motion

GEODETIC COORDINATES ASTRONOMIC COORDINATES

\section*{AZIMUTH'DATA}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by U.S.A.F. 1968.
Position by first-order triangulation and traverse from station ARGUELLO II, 1959.

Geoid height from TOPOCOM geoid charts 1967.

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control}

Horizontal \(\qquad\)
0.3 meters meters
ro Datum Origin
 meters meters

\section*{REFERENCES}

SAMTEC Geodetic Coordinates Manual, Part I, USAF Space and Missile Test Center, Vandenburg AFB California, February 1972.

Station No. RAD 18

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Code Name \(\qquad\) Equipment FPS-16 radar (No. 1)
Location \(\qquad\) Point Arguello, California \(\qquad\)
Agency \(\qquad\) USAF-Western Test Range

AZIMUTH DATA

\section*{DESCRIPTION OF SURVEYS AND GENERAL. NOTES}

Surveyed by USC\&GS; resurvey by USAF, 1968.
The local surveys are second-order or better.
Elevations by first- and second-order leveling from
C\&GS bench marks by C\&GS personne7.
Astronomic observations by USAF First Geodetic Survey
Squadron.
Geoid height from TOPOCOM geoid charts 1967.

\section*{ACCURACY ASSESSMENT}

To Local Control
Horizontal \(\qquad\) 0.1 meters meters

To Datum Origin
\(\qquad\) meters
Vertical \(\qquad\) meters

\section*{REFERENCES}

FPS-16 Instrumentation Radar Constants, rev. 29 July 1960; SAMTEC Geodetic Coordinates Manual, February 1972.
GEODETIC DATA SHEET
SAD 19 \(\quad\)\begin{tabular}{l}
Other \\
SATELLITE TRACKING STATION \\
Same
\end{tabular}
cation_ White Sands, New Mexico

Point referred to _intersection of axes

\section*{GEODETIC COORDINATES}

\begin{tabular}{cccc}
\(\substack{\text { ASTRONOMIC } \\
\text { OR GEODETIC } \\
\text { Geodetic } \\
\hline}\) & AZIMUTH DATA \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by USC\&GS April-July 1964 and March 1965.
Distance and direction were from C\&GS first-order triangulation station "C", about 2500 ft away.

Elevation was determined by
second-order levels of WSMR from C\&GS elevation at station C (New Mexico line 101).

Geoid height from TOPOCOM geoid charts 1967.

DATE July 1970

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(\frac{0.3}{}\) meters \(\frac{4}{2}\) meters
Vertical \(<1\)

\section*{REFERENCES}

Ltr. Director Nat'1 Range Operations, WSMR to Geonautics, 3/29/67.

Station No. RAD 20 \(\qquad\)

Code Name \(\qquad\) \(-\)

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Other APOLLO EGLF
CodesEglin AFB Radar 20 AFETR 321.16

Location \(\qquad\) Eglin Air Force Base, Florida

\author{
Equipment
}
\(\qquad\) FPS-16

Agency USAF-Air Proving Ground Center

Point referred to intersection of axes

\section*{GEODETIC COORDINATES}

\section*{ASTRONOMIC COORDINATES}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{ASTRONOMIC OR GEODETIC} & \multicolumn{4}{|r|}{AZIMUTH DATA} & \multicolumn{4}{|l|}{SLANT} \\
\hline & & FROM & \multicolumn{2}{|l|}{T0} & DISTANCE meters & \multicolumn{3}{|c|}{AZIMUTH FROM NORTH} \\
\hline Geodetic & axes & intersection & C-Band & top & 445.43 & \(355^{\circ}\) & 31 & 52:0 \\
\hline Geodetic & axes & intersection & feed horn & bottom & 445.47 & 355 & 31 & 37.5 \\
\hline Geodetic & axes & intersection & range calib & target & 7074.41 & 115 & 53 & 05.84 \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveyed by Vitro Corp. Range Engineering Group.
Position of antenna is based on third-order traverse from station DUCK 1958 (Vitro), about 300 m distant. \(\triangle\) DUCK 1958 was fixed by triangulation from five C\&GS stations, BAKER, PEEL, TANK 9, MARY (all first-order) and BEACH 3 (secondorder). Eight positions were observed at night from Bilby towers with a Wild T-3. Laplace-azimuth checks the geodetic azimuth carried through triangulation within 1 second of arc. The astroazimuth is based on 59 positions of Polaris on three nights (p.e. \(\pm 0.23\)).

Elevation was by precision leveling from C\&GS line No. 46. Elev. of DUCK 1958 is 9.937 m.

Geoid height from TOPOCOM geoid charts 1967.

DATE
July 1970

\section*{REFERENCES}

Letter, Eglin AFB to Geonautics, 30 January 1964.

\section*{GEODETIC DATA SHEET \\ SATELLITE TRACKING STATION}

Other Codes \(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Survey by Thomas Savage, Sr., Wallops Station, October 1966.
The position of this SPANDAR antenna is based on C\&GS first-order stations CHINCO SW BASE and CHINCO NE BASE.

Geoid height from TOPOCOM geoid charts 1967.

DATE September 1971

\section*{REFERENCES}

Geodetic Data Sheet, T.J. Savage, Wallops Station, Wallops Island, Virginia, 25 October 1966.

Page Intentionally Left Blank
Station No. \(\frac{\text { GRR } 1 \mathrm{~S}}{\text { Code Name ULASKR }}\)

\section*{GEODETIC DATA SHEET SATELLITE TRACKING STATION}

Other NGSP 1128
\(\qquad\) Codes \(\qquad\)
Location Fairbanks, Alaska
Agency NASA-Goddard Space Flight Center

Point referred to center of \(X\)-axis of S-Band antenna

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AZIMUTH DATA} \\
\hline ASTRONOMIC OR GEODETIC & from & T0 & \[
\begin{aligned}
& \text { DISTANCE } \\
& \text { meters }
\end{aligned}
\] & & Azim & ITH ORTH \\
\hline Geodetic & iron peg & \(\triangle\) HILLSIDE & 687.6 & \(254{ }^{\circ}\) & & 41!.23 \\
\hline Geodetic & iron peg & col. tower & 739.4 & 252 & 19 & 04.55 \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

The surveyed point is an iron peg at the proposed center of the S-Band antenna.
Field surveys by Field Facilities Branch, GSFC, 1965. This third-order field position is based on a Geodimeter traverse from \(\triangle\) HILLSIDE (Philleo Engineering Company. using a Model 4D Geodimeter and a Wild T-3 theodolite.

Elevations near antenna:
West monument 337.3 m
North monument 339.4 m
East monument 339.2 m
The X-axis of the antenna will be 6.55 meters above the foundation slab (poured after this survey).

Geoid height from TOPOCOM geoid charts 1967.

DATE June 1971

ACCURACY ASSESSMENT

\section*{REFERENCES}

Geodetic Survey Report for Alaska STADAN, Field Facilities Branch, GSFC 1966.

GEODETIC DATA SHEET
Other
Code Name \(\qquad\) SATELITE TRACKING STATION Codes
\(\qquad\)

Location \(\qquad\) Fairbanks, Alaska Equipment
\[
\begin{aligned}
& \text { Goddard Range and Range Rate } \\
& \text { VHF antenna }
\end{aligned}
\]

Agency NASA-Goddard Space Flight Center

Station No. GRR \(2 V\)

Code Name \(\qquad\)

Location \(\qquad\) Rosman, North Carolina GEODETIC DATA SHEET
SATEILITETRACKING STATION

Other Codes \(\qquad\)
\(\qquad\)

Agency__ NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by AMS 1962; Field Facilities Branch.GSFC, 1963.
Antenna monuments were set by Goddard.FFB on a N-S line previously established by AMS (CE). Precise taping was used for distances.

The AMS survey was based on USC\&GS first-order station. BLACK MOUNTAIN, about 8 miles from the site. A Tellurometer traverse connects the site monuments to the C\&GS network. Points on AMS Stations (1962). "RANGE \& RANGE-RATE NORTH" and "RANGE \& RANGE-RATE SOUTH". define the north-south line of the R\&RR antennas. The X-axis of the antenna is 33 feet (10.1 m) above the tower leg base.

Elevation of concrete pad is 863.8 m .
Geoid height from TOPOCOM geoid charts 1967.
See Station No. GRR 2 S.

DATE
June 1971

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control To Datum Origin}
Horizontal \(\qquad\)
meters meters \(\qquad\) meters meters

\section*{REFERENCES}

Letter Field Facilities Branch, GSFC to Data Operations Branch, GSFC May 12, 1965.

\section*{GEODETIC DATA SHEET SATELIITE TRACKING STATION}

0ther Codes \(\qquad\) Location Santiago, Chile Equipment \(\frac{\text { Goddard Range and Range Rate }}{\text { S-Band } 9-\text { meter }(30-\text { foot })}\) Agency __ NASA-Goddard Space Flight Center

Point referred to _center of \(X\)-axis of S-Band antenina

GEODETIC COORDINATES
Latitude \(\qquad\)
Longitude (E) \(\begin{array}{llll} & 289 & 20 & 03.255\end{array}\)

Datum \(\qquad\) South American 1969 \(\qquad\)

\section*{ASTRONOMIC COORDINATES}

Latitude \(\qquad\) \(-33^{\circ} 09^{\prime} 131.4\)

Longitude (E) \(\ldots \quad 289 \quad 19 \quad 38.8\)
Based on first-order obs by IAGS 1956 at \(\triangle\) PELDEHUE 300 m NW of S-Band

Elevation
above mean sea level 705.7 meters
azimutí data

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Position from scaled distances to Minitrack monument PELDEHUE, which was surveyed by IAGS, June 1966. (See No. MIN 10.)

X-axis of the antenna is 6.6 m above foundation (elev. \(699.1 \% \mathrm{~m}\)).
A precise survey is expected soon to revise this preliminary position slightly.

This antenna has been converted for use in the USB network.

Geoid height from CHUA base, TOPOCOM 1971.
\[
\text { DATE September } 1973
\]
ACCURACY ASSESSMENT
To Local Control
To Datum Origin
Herizontal \(\frac{1}{2}\) meters \(\frac{7}{3}\) meters
Vertical meters _ meters

\section*{REFERENCES}

Memo: Field Facilities Branch, GSFC, to Geonautics, 24 June 1966; Geodetic Summary USATOPOCOM August 1971.

Station No. \(\qquad\) GRR \(3 V\)

GEODETIC DATA SHEET Other

\section*{SATELLITE TRACKING STATION}
\(\qquad\)
\(\qquad\) Equipment \(\frac{\text { Goddard Range and Range Rat }}{\text { VHF antenna }}\) Equipment Goddard Range and Range Rat \begin{tabular}{l}
Location \\
Agen \\
\hline
\end{tabular} \(\qquad\) Agency \(\quad\) NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Position from scaled distances to Minitrack monument PELDEHUE, which was surveyed by IAGS, June 1966.

X -axis of the antenna is 6.6 m above foundation (elev. 699.1 m).
A precise survey is expected soon to revise this preliminary position slightly.

Geoid height from CHUA base, TOPOCOM 1971.
See Station No. GRR 3S.

DATE September 1971

Station No. GRR 4S

Code Name \(\qquad\) Location \(\qquad\) Tananarive, Madagascar

\section*{GEODETIC DATA SHEET} SATELLITE TRACKING STATION
\(\square\) NASA-Goddard Space Flight Center Equipment \(\qquad\) Goddard Range and Range Rate S-Band paired 4.3 meter (14-foot) Agency \(\qquad\) -
\(\qquad\)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{Point referred to center of X -axis of S -band antenna} \\
\hline \multicolumn{2}{|l|}{GEODETIC COORDINATES} & \multicolumn{2}{|l|}{ASTRONOMIC COORDINATES} \\
\hline Latitude \(\quad-19^{\circ} 01^{\prime} 09.33\) & \multicolumn{3}{|l|}{Latitude} \\
\hline Longitude (E) __ \(47 \quad 18 \quad 12.56\) & \multicolumn{3}{|l|}{Longitude (E)} \\
\hline Datum_ Tananarive & \multicolumn{3}{|l|}{Based on} \\
\hline Elevation.
\(\begin{aligned} & \text { above mean } \\ & \text { sea level }\end{aligned} 1399\) & \begin{tabular}{l}
Geoid \\
height ___ meters
\end{tabular} & & meters \\
\hline \multicolumn{4}{|c|}{AZIMUTH DATA} \\
\hline \begin{tabular}{l}
ASTRONOMIC \\
or geodetic \\
from
\end{tabular} & то & \begin{tabular}{c}
distance \\
meters \\
\hline
\end{tabular} & FROM NORTH \\
\hline Geodetic S-band & VHF & 76.2 & \(179^{\circ} 56^{\prime} 10^{\prime \prime}\) \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

The local survey was by H . Monge of the Tananarive
Annexe of the Institut Geographique National of Paris, in August 1967. The work is not described but was presumably a traverse from the earlier site 130 m away (a third-order position) to a base plate in the antenna foundation.

The elevation is based on the Nivellment general
de Madagascar (MSL).
Before May 1968 this equipment was at:
ф - \(19^{\circ} 01^{\prime} 13.32, \lambda 47^{\circ} 18^{\prime} 09.45\), elevation 1402.7 m .
When at this location it had NGSP No. 1122 (MADGAR).

DATE _June 1971

\section*{ACCURACY ASSESSMENT}

\section*{REFERENCES}

Note with sketch from H. Monge to GSFC August 1967.

Station No. GRR 4V \(\qquad\) GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Codes \(\qquad\)

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

The local survey was by \(H\). Monge of the Tananarive Annexe of the Institut Geographique National of Paris, in August 1967. The work is not described but was presumably a traverse from the earlier site 130 m away (a third-order position) to a base plate in the antenna foundation.

The elevation is based on the Nivellment general
de Madagascar (MSL).
See Station No. GRR 4S.

DATE
June 1971

ACCURACY ASSESSMENT
\begin{tabular}{|c|c|c|}
\hline To Local Control & & To Datum Origin \\
\hline Horizontal & meters & 1 meters \\
\hline Vertical __ 2 & meters & 2 meters \\
\hline
\end{tabular}

\section*{REFERENCES}

Note with sketch from H. Monge to GSFC August 1967.
\(\qquad\) GRR 5 S

GEODETIC DATA SHEET \(\qquad\)
1152
Code Name \(\qquad\) CARVON

\section*{SATELLITE TRACKING STATION}
\(\qquad\)

Location \(\qquad\) Carnarvon, Australia \(\qquad\) Equipment \(\frac{\text { Goddard Range and Range Rate }}{\text { S-Band paired } 4.3 \text { meter (14-foot) }}\)
Agency \(\qquad\) NASA-Goddard Space Flight Center

Station No. \(\qquad\) GRR 5V

Code Name \(\qquad\)
GEODETIC DATA SHEET SATELLITE TRACKING STATION
\(\qquad\)
\(\qquad\)

Location
Carnarvon, Australia \(\qquad\) Equipment Goddard Range and Range Rate
Agency NASA-Goddard Space Flight Center VHF antenna

\section*{description of surveys and general notes}

Surveys performed by Survey Section, Dept. of Interior, Perth, 1962-1966. The tie to the Nat. Geodetic Survey at Brown Range GC 18A was by a closed Tellurometer traverse.

Elevation, range and bearing change with antenna position. The \(X\)-axis of the antenna is
10 m above the base of the tower 1 eg .
Elevation is referred to AHD.
Geoid height from National Mapping Technical
Report 13, 1971.

DATE
- April 1972

\section*{ACCURACY ASSESSMENT}
\begin{tabular}{|c|c|c|}
\hline & To Local Cont & To Datum Origin \\
\hline Horizont & <1 & 6 meters \\
\hline ertical & \(<1\) & 2 \\
\hline
\end{tabular}

\section*{REFERENCES}

Geodetic Information for Space Tracking Stations in Australia, Div. of National Mapping, March 1972

Station No. 5852

Code Name \(\qquad\) \(\therefore\)

GEODETIC DATA SHEET SATELLITE TRACKING STATION

Other Codes

ROSMAN II

Location Rosman, North Carolina Equipment 26-meter \(X-Y\) antenna (85-foo Agency ___ NASA-Goddard Space Flight Center

DATE July 1970

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(\frac{0.2}{1}\) meters \(\frac{4}{4}\) meters
Vertical \(\quad\) meters \(\quad 1\)

\section*{REFERENCES}

FFB-GSFC description card.

\section*{GEODETIC DATA SHEET \\ SATELLITE TRACKING STATION}

Other Codes \(\qquad\)

Code Name \(\qquad\)
\(\qquad\) Equipment
```

26-meter X-Y antenna (85-foot)

```
Agency NASA-Goddard Space Flight Center

Point referred to center of X -axis

\section*{GEODETIC COORDINATES}
astronomic coordinates

\section*{AZIMUTH DATA}
\begin{tabular}{|c|c|c|c|c|c|}
\hline ASTRONOMIC OR GEODETIC & FROM & T0 & DISTANCE meters & & AZIMUTH FROM NORTH \\
\hline Geodetic & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\triangle\) ULASKA}} & \multirow[t]{2}{*}{\[
\begin{gathered}
638.737 \\
\hline-5688.3
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(39^{\circ} 59^{\prime} 28^{\prime \prime}\)} \\
\hline Geodetic & & & & 77 & 2156 \\
\hline Geodetic & \(\triangle\) ULASKA & \(\triangle\) N. NIMBUS & 66.566 & 180 & \(00 \quad 00\) \\
\hline
\end{tabular}

DESCRIPTION OF SURVEYS AND GENERAL NOTES
Surveyed by Philleo Engrg. and Arch. Service in 1960. The station is also called Gilmore Center or Ulaska.

The position was fixed by traverse from survey station NORTH NIMBUS (66 meters) which was positioned by triangulation from USC\&GS stations PEDRO (firstorder) and CHATHAM (second-order), about five miles north of the site. Several figures and six auxiliary control monuments were used to bring control into the valley of the site.

Azimuth checks were within the specified 5 seconds. Solar observations were within two seconds of triangulation azimuth.

Elevation is referred to bench marks of unknown accuracy. The probable error of the elevation given in the report for station PEDRO is high, according to USC\&GS. Station NORTH NIMBUS (elev. 294.4 m) is 13 m lower than the X -axis.

Geoid height from TOPOCOM geoid charts 1967.

\section*{ACCURACY ASSESSMENT}
\begin{tabular}{|c|c|}
\hline To Local Control & To Datum Origin \\
\hline Horizontal __ 1 & 11 meters \\
\hline rtical & 5 meters \\
\hline
\end{tabular}

\section*{REFERENCES}

Site Survey Report - \(\triangle\) ULASKA, Philleo E\&A, 31 July 1963.

Station No 5854 \(\qquad\)
GEODETIC DATA SHEET SATELLITE TRACKING STATION
Code Name \(\qquad\)

Location \(\qquad\)
\(\qquad\) Orroral, Australian Capital Territory Equipment \(\qquad\) 26-meter \(X-Y\) antenna (\(85-\) fo Agency NASA-Goddard Space Flight Center

\section*{dESCRIPTION OF SURVEYS AND GENERAL NOTES}

The site was surveyed by the Survey Branch, Department of Interior, Canberra, April-July 1965. The geodetic position of the center of the 6 supporting piers was determined by closed loops of second-order Tellurometer traverse from \(\triangle\) MT STROMLO of the National Geodetic Survey.

The elevation is based on AHD. The X-axis is about 13 m above the base.

Geoid height from National Mapping Technical Report 13, 1971.

LAPLACE RO

DATE \(\qquad\) April 1972

\section*{accuracy assessment}
To Local Control To Datum Origin
Horizontal_1_m meters \(\quad\) meters \(\quad 1\)
Vertical \(\quad\) meters

\section*{REFERENCES}

Geodetic Information for Space Tracking Stations in Australia, Div. of National Mapping, March 1972.
\(\qquad\)
\(\qquad\)
\(\qquad\)

\section*{satellite tracking station \\ GEODETIC DATA SHEET}
ocation__Kashima, Japan
Equipment 26-meter Az-E1 antenna (85-foot)
gency Radio Research Laboratories, Ministry of Posts and Telecommunications

Point referred to _intersection of rotation axes

\section*{GEODETIC COORDINATES}

\section*{ASTRONOMIC COORDINATES}

\section*{AZIMUTH DATA}
\begin{tabular}{lccc}
ASTRONOMIC & DISTANCE & ARIMUTH \\
OR GEODETIC & TO & meters & FROM NORTH
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

This Applications Technology Satellite antenna is 90 km ENE of Tokyo. (Address: Hirai, Kashima-machi, Ibaraki Prefecture.) Near this \(26-\mathrm{m}\) parabaloid antenna are a \(30-\mathrm{m}\) parabaloid and a Yagi antenna, not used for precise tracking. The \(26-\mathrm{m}\) antenna has an Az-El mount with a common point of rotation of the axes.

The local survey, by Hasshu Surveying. Co. Ltd. in dune 1968, was by triangulation from stations TAKAMAGAHARA (first'order) and 'IGIRI'(third-order). Elevation was from \(\triangle\) OHFUNATSU.

Geoid height from TOPOCOM geoid map of Tokyo Datum 1968.

DATE _July 1970

\section*{ACCURACY ASSESSMENT}
\begin{tabular}{|c|c|}
\hline To Local Control & To Datum Origin \\
\hline Horizontal 0.01 & 1. meters \\
\hline ical & 1 meters \\
\hline
\end{tabular}

\section*{REFERENCES}
"Present Status of Kashima Earth Station" 1968, Rad. Res. Lab., Japan; letter Nat'l Space Dev. Agency, 16 March 1970.
\(\qquad\)

\section*{GEODETIC DATA SHEET \\ SATELLITE TRACKING STATION} Other Codes \(\qquad\)

Location \(\qquad\) Gilmore Creek, Alaska Equipment 12-meter antenna (40-foot)

Agency _ NASA-Goddard Space Flight Center

Point referred to center of \(X\)-axis

GEODETIC COORDINATES
ASTRONOMIC COORDINATES
\begin{tabular}{|c|c|c|}
\hline 640 58' \(36!.926\) & \multicolumn{2}{|l|}{Latitude} \\
\hline Longitude (E) \(\quad 212 \quad 28 \quad 53.999\) & Longitude (E) & \\
\hline Datum __. NAD 1927 & Based on & \\
\hline Elevation
above mean
sea level & Geoid
height
+2 & Height
above
ellipsoid ___ 299 \\
\hline
\end{tabular}

\section*{AZIMUTH DATA}

\section*{(DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveyed by Facilities Construction Branch, GSFC, in 1966.
Gilmore and Rose Creek area, near Fairbanks.
The station is marked by a punch hole at the center of an etched cross on a NASA-GSFC brass tablet stamped "FATS 1966," in the concrete floor at the center of the foundation of the antenna.

The position was established by a high precision closed geodimeter traverse from NASA stations REFLECT and FACT, with closures better than 1:60,000. These were in turn set by triangulation from C\&GS first-order stations INITIAL and MOOSE with a maximum closure error of 1.65 . The survey is part of that
 for the Minitrack and related to that for the R\&RR in 1965.

Elevations on \(\triangle\) KOLD and \(\triangle\) FATS (290.057 m) were by levels from \(\triangle\) ULASKA, previously tied to C\&GS bench marks. The \(X\)-axis of this type of antenna is 7 m : above the foundation.

Monuments in this area are subject to frost movement.
Geoid height from TOPOCOM geoid charts 1967.
DATE July 1970
\(\qquad\) GEODETIC DATA SHEET
\(\qquad\)
\(\qquad\)

Location \(\qquad\) Equipment

Agency \(\qquad\) NASA-Goddard Space Flight Center

\section*{DESCRIPTION OF SURVEYS AND GENERAL NÓTES}

The site was surveyed by I. B. Watt, L.S., for National Institute of Telecom. Research in 1961.

Position is based on preconstruction survey. Position of \(\triangle\) CENTER MONUMENT (40-ft. ant.) was fixed by precise chaining from \(\triangle\) CENTER MONUMENT (Minitrack) and \(\triangle\) S372. Results were checked by triangulation as shown in diagram. This survey is directly connected with surveys for nearby Minitrack and Deep Space stations.

Elevation of the monument is given as \(1530 \pm 3 \mathrm{~m}\). The height to \(X\)-axis from foundation for this type of antenna is 7 m .

Elevations near the antenna are:
S372 4998.68 ft . (1523.60 m)
N100 \(5016.26 \mathrm{ft} .(1528.96 \mathrm{~m})\)
BT \(5050.49 \mathrm{ft} .(1539.39 \mathrm{~m})\)
Elevations were determined by vertical angles from trig elevations of the five control stations.

Geoid height from DMATC.

DATE
July 1973

\section*{ACCURACY ASSESSMENT}

\section*{REFERENCES}

Ltr. Halberstadt, Dent, \& Course, Johannesburg, to National Institute for Telecom. Research, 15 January 1964.

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveyed by Facilities Construction Branch, GSFC.
The tablet in the foundation of the \(40-\mathrm{ft}\) tower was
located with third-order accuracy in reference to
\(\triangle\) MINITRACK at the center of the Minitrack array.
(See Station No. MIN 6.) Elevation was by levels from
\(\triangle\) MINITRACK CENTER. The survey mark (elev. 3563.0 m)
is about 7 m below the X-axis.
Geoid height from CHUA base, TOPOCOM 1971.

\section*{REFERENCES}

GSFC position sheet; Geodetic Summary, USATOPOCOM May 1971.

Station No. S40 5

GEODETIC DATA SHEET
Other Codes \(\qquad\)
Code Name \(\qquad\) SATELLITE TRACKING STATION

Location \(\qquad\) Equipment 12-meter antenna (40-foot)

Agency NASA-Goddard Space Flight Center

\section*{ACCURACY ASSESSMENT}

To Local Control
Horizontal 0.3
Vertical \(\qquad\) 2 meters Datum Origin
\(\qquad\) meters meters \(\qquad\) meters

\section*{REFERENCES}

Facilities Construction Branch, GSFC, Position Sheet, May 1964.

Station No. S40 6

\section*{GEODETIC DATA SHEET}

Other
SATELLITE TRACKING STATION Codes
Code Name \(\qquad\)
```

Equipment 12-meter antenna (40-foot)

```
\(\qquad\)

Location Tananarive, Madagascar

Agency NASA-Goddard Space Flight Center

Station No. \(\qquad\) S40 7

GEODETIC DATA SHEET Other Codes \(\qquad\)
SATELITE TRACKING STATION
Code Name \(\qquad\)
\(\qquad\) 12 meter antenna (40-foot)
Location \(\qquad\) Greenbelt, Maryland Equipment
\(\qquad\)
Agency NASA-Goddard Space Flight Center

GEODETIC COORDINATES
Latitude \(\quad \xi=-1!5\)
Longitude (E) \(\quad \eta=+6.2\)
Based on first-order obs. by NOS 1962 at
Height above mean sea level 54.69都

This antenna is at the GSFC Network Test and Training facilities (NTTF).

The position is marked by a punch hole in an etched cross in a brass tablet 3.240 m directly below the intersection of the \(X-Y\) axis.

The local survey by Field Facilities Branch, GSFC, in September 1966, was based on thirdorder control established by USNOO. The local survey was done to first-order standards in expectation that the area control will soon be upgraded.

Elevation was taken from \(\triangle\) MICRO (USNOO), which

DATE September 1971

\section*{ACCURACY ASSESSMENT}

\section*{REFERENCES}

Geodetic Survey Report, Field Facilities Branch, GSFC, September 1968.

Minitrack Stations
\begin{tabular}{lll}
Other \\
Codes \\
\\
& COSPAR & 13 \\
\hline
\end{tabular}
\(\qquad\)
ocation Fairbanks, Alaska Equipmèn Minitrack
gency . NASA-Goddard Space Flight Center

Point referred to center of array at elevation of ground screen \(\qquad\)
(coincident with center of camera axes - NGSP 1033)
geodetic coordinates
ASTRONOMIC COORDINATES
Latitude \(\qquad\) \(64^{\circ} \quad 52^{\prime} \quad 19: 721\)

Latitude \(\qquad\)
Longitude (E) \(\quad 212 \quad 09 \quad 47.168\)
Longitude (E) \(\qquad\)
Datum \(\qquad\) Based on \(\qquad\)

Elevation above mean 1627 Geoid sea level 162.7 meters \(\qquad\) . .. Height
.
\(\qquad\) \(\square\)

\section*{AZIMUTH DATA}

ASTRONOMIC OR GEODETIC
from

meters

AZIMUTH FROM NORTH

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by Philleo Engr'g.\& Architectural Service, 1959.
Position of survey mon. COLLEGE CENTER, directly under camera center, was established by taped traverse from CHENA WEST BASE (C\&GS first-order:1941) to FOWLER (C\&GS second-order 1944), a distance of 4400 meters. Closure: 39 sec: in azimuth, 0.4 m in length; ratio \(1: 10,700\).

Station is marked by. 2 inch brass disk in top of 1.5 inch pipe.

The camera axis is 2.18 meters above the center monument.

Geoid height from TOPOCOM geoid charts 1967.

This station was moved in 1966. See No. MIN 2.

DATE \(\qquad\)

ACCURACY ASSESSMENT

\section*{REFERENCES}

Geodetic and Astronomic Positions for NASA Satellite Tracking Stations, AMS 9/63.
\(\qquad\) MIN 2

Code Name \(\qquad\)
GEODETIC DATA SHEET
satellite tracking station

Other
SAD
4041
Codes \(\qquad\) Equipment Minitrack
Location \(\qquad\) Fairbanks, Alaska

Agency ___ NASA-Goddard Space Flight Center

\begin{tabular}{|c|c|c|}
\hline & COSPAR & 17 \\
\hline \multirow[t]{2}{*}{Codes} & & \\
\hline & NGSP & 1017 \\
\hline
\end{tabular}
\(\qquad\) satellite tracking station Equipment Minitrack
ocation Goldstone, California
Agency ___NASA-Goddard Space Flight Center

Point referred to center of array at elevation of ground screen

GEODETIC COORDINATES
ASTRONOMIC COORDINATES
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Latitude __ \(35^{\circ}\) 19' 48.088} \\
\hline Longitude (E) \(\quad \begin{array}{r}243 \\ \hline\end{array}\) & \multicolumn{2}{|l|}{Longitude (E)} \\
\hline Datum_NAD 1927 & Based on_ & \\
\hline Elevation
above mean
sea level \(\quad 929.1\) & Geoid height -21.9 meters & Height
above
ellipsoid _, 907 _ meters \\
\hline
\end{tabular}

\section*{AZIMUTH DATA}

ASTRONOMIC
OR GEODETIC

FROM \(\triangle\) LAKE \(\qquad\)

Geodetic
——_I

DISTANCE meters 35305

AZIMUTH FROM NORTH \(197^{\circ} 27^{\prime} 21.02\)

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by AMS for NASA in 1960.
Station LAKE, directly under the camera, was established from LEACH (C\&GS first-order 1926) with azimuth from TIEFORT and PILOT (both C\&GS first-order 1926). Three sides of triangle to LAKE and LAKE Azimuth Mark were measured by Tellurometer (28 fine readings). Sixteen direc-: tions were observed for each angle with a Wild T-3. Eighteen additional alignment markers wereset.

All azimuths are within two seconds of accuracy, and positions within 1:75,000 (AMS).

Elevation of LAKE was determined by vertical. angles from trig. elevation of LEACH with p.e. less than one meter.

Station is marked by C of E disc stamped "LAKE," set in 8 -inch diameter concrete post flush with ground.

The camera center is 1.71 meters above the cen-ter monument.

Geoid height from TOPOCOM geoid charts 1967.
This station is not operating but is in caretaker status. Station is also known as Mojave.

\section*{ACCURACY ASSESSMENT}
\(\quad\) To Local Control \(\because\) To Datum Origin
Horizontal \(<1 \because\) meters \(\frac{5}{2}\) meters.
Vertical \(\quad\) meters:

\section*{REFERENCES}

Geodetic and Astronomic Positions for NASA Satellite Tracking Stations, AMS 9/63:

Station No. MIN 5
\(\qquad\)
GEODETIC DATA SHEET

\section*{SATELLITE TRACKING STATION}
\(\qquad\)
Location
Equipment Minitrack
Agency NASA-Goddard Space Flight Center

Point referred to _center of array at elevation of ground screen \(\qquad\)

GEODETIC COORDINATES
\(26^{\circ} 32^{\prime} 51: 891\)
\(\qquad\)
Longitude (E) \(\quad \begin{aligned} & 278 \quad 08 \quad 03.926\end{aligned}\)
Datum \(\qquad\) NAD 1927

\section*{ASTRONOMIC COORDINATES}
Latitude \(\quad 26^{\circ} \quad 32^{\prime} 54^{\prime \prime}: 21 \pm 0!37\)

Longitude (E) \(\begin{array}{lll}278 \quad 08 \quad 05.63 \pm 0.63\end{array}\)
Based on_second-order_obs AMS 1959 at station

Elevation above mean sea level
\(\qquad\) 4.81 meters meters

Height
\begin{tabular}{ll}
Geoid \\
height +15.7 meters & \begin{tabular}{l}
Height \\
above \\
ellipsoid \(\quad 20.5 ~ m e t e r s ~\)
\end{tabular}
\end{tabular}

AZIMUTH DATA

ASIRONOMIC
or geodetic

FROM
\(\triangle\) MYERS CENTER \(\triangle\) MYERS CENTER
\(\qquad\) -azimuth mark distance

AZIMuTh FROM NORTH :

Astronomic
Laplace \(\qquad\) 1 _azimuth mark 1 \(\qquad\) \(\begin{array}{lll}314^{\circ} & 17^{\prime} \quad 29: 12 \\ 374 & 17 & 28.36\end{array}\)

\section*{description of surveys and general notes}

Surveys performed by Army Map Service, September, 1959.
Position of station MYERS CENTER, directly under the camera center, was established by third-order traverse from \(\triangle\) TROWBRIDGE (C\&GS first-order 1934) to \(\triangle\) BEAM (C\&GS second-order 1955), a distance of 8200 m . Azimuth closure from Polaris observation at \(\triangle\) TROWBRIDGE to C\&GS azimuth at \(\triangle\) BEAM was 20 seconds; linear error 0.1 m , closure ratio 1:103,000.

Elevation of survey station was established by AMS (fourth-order).

The center monument is a CE disk stamped \(\triangle\) MYERS CENTER AMS 1959. It is flush with the concrete platform. The camera axis is 1.23 m above the center monument. Azimuth mark is CE disk in concrete five inches above ground.

Sixteen additional orientation monuments were set by AMS at this time.

Geoid height from TOPOCOM geoid charts 1967.

This station was closed in February 1972.

DATE July 1973

\section*{ACCURACY ASSESSMENT}

\section*{REFERENCES}

Geodetic and Astronomic Positions for NASA Satellite Tracking Stations, AMS 9/63.

Station No. MIN 6
GEODETIC DATA SHEET SATELIITE TRACKING STATION
\begin{tabular}{cr}
Other & COSPAR \\
\cline { 2 - 3 } Codes & 5 \\
\cline { 2 - 3 } & SAO \\
& NGSP \\
\hline
\end{tabular}

Code Name \(\qquad\)

Location \(\qquad\) Equipment Minitrack

\section*{Agency \\ \(\qquad\)}

Point referred to center of array at elevation of ground screen
(coincident with center of camera axes - NGSP 1025)
geodetic coordinates
- \(00^{\circ} 37^{\prime} 20.621\)

Latitude \(\qquad\)
\begin{tabular}{lll}
Longitude (E) & \(281 \quad 25 \quad 17.939\) \\
Datum & South American 1969 \\
\hline
\end{tabular}

Datum
South American 1969
\(\qquad\) Based on first-order obs IAGS 1956 at Latitude \(\qquad\) \(-00^{\prime \prime} 37^{\prime} \quad 20.41 \pm 0.10\)

Longitude (E) \(\quad \begin{array}{lll}281 \quad 25 \quad 10.06 \pm 0.16\end{array}\) station
Elevation above mean sea level 3568.6 meters Geoid
height
+24.3 meters

Height above ellipsoid 3593 meters

AZIMUTH DATA

\section*{DESCRIPTION OF SURVĖYS AND GENERAL NOTES}

Surveys performed by IAGS and IGM Ecuador in 1957.
Position of mon. MINITRACK was fixed by first-order triangulation from firstorder stations of the IGM-IAGS triangulation network of Ecuador. A center-point. figure was formed from stations CORAZON, RUMINAHUI, QUINDANDA, and AMI GRANDE; 16 directions were observed for each station with a Wild T-3.

Elevation, determined by vertical angles. from trig elevations of the four base stations, is within one meter with respect to local control, and within two meters referred to mean sea level.

Station and azimuth mark are marked by IAGS bronze disks in concrete blocks flush with ground, stamped "MINITRACK ECUADOR 1956" and "MINITRACK AZIMUTH 1956 ECUADOR" respectively. Camera center is 1.21 m . above center monument MINITRACK.

Geoid height from CHUA base, TOPOCOM 1971.

\section*{ACCURACY ASSESSMENT}

\section*{REFERENCES}

Geodetic Information Report and Summary, USATOPOCOM May 1971.
\(\qquad\) GEODETIC DATA SHEET
\(\qquad\)
\(\qquad\)
ocation \(\qquad\) Lima, Peru Equipment Minitrack \(\qquad\) Agency NASA-Goddard Space Flight Center

Point referred to _ center of array at elevation of ground screen
(coincident with center of camera axes - NGSP 1026)
GEODETIC COORDINATES

\section*{ASTRONOMIC COORDINATES}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{AZIMUTH DATA} \\
\hline ASTRONOMIC OR GEODETIC & FROM & T0 & DISTANCE meters & & & мUTH
NORTH \\
\hline Geodetic & \(\triangle\) VANGUARD & \(\triangle\) PAREDES & 893.930 & \(115^{\circ}\) & \(04^{\prime}\) & 51.67 \\
\hline Astronomic & \(\triangle\) VANGUARD & \(\triangle\) PAREDES & & 115 & 04 & 58.52 \\
\hline
\end{tabular}

\section*{DESCRIPIION OF SURVEYS AND GENERAL NOTES}

Surveys performed by IAGS and IGM Peru 1956.
Position of center monument VANGUARD was fixed by first-order triangulation from first-order stations of IGM-IAGS triangulation network of Peru. From base stations CO. CANARIO and PIEDRAS GORDAS 16 directions were observed with a Wild T-3 at each station for two quadrilaterals.

Mark for station was cross in nail-head in wooden stake, to be replaced by permanent mark after construction. Four reference marks (IAGS bronze discs) were set 5 to 12 m from VANGUARD.

Elevation was determined by vertical angles from trigonometric elevations of the base stations. The camera axis is 1.21 m above the center monument.

Geoid height from CHUA base, TOPOCOM 1971.

DATE
September 1971

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control To Datum Origin}

Horizontal \(\qquad\) meters \(\qquad\) meters
Vertical meters \(\qquad\) meters

\section*{REFERENCES}

Geodetic Information Report and Summary, USATOPOCOM May 1971.

Station No. MIN 8 8 1BPOIN \(\qquad\) N

Location \(\qquad\) Equipment

Minitrack
Agency ___ NASA-Goddard Space Flight Center

Point referred to center of array at elevation of ground screen
GEODEIIC COORDINATES
ASTRONOMIC COORDINATES
Latitude \(\qquad\) \(38^{\circ} \quad 25^{\prime} \quad 49: 628\) \(\qquad\) Latitude \(\qquad\)
Longitude (E) \(\begin{array}{rrr}282 \quad 54 \quad 48.225\end{array}\)
Longitude (E) \(\qquad\)
Datum \(\qquad\) NAD 1927

Based on \(\qquad\)

Elevation above mean sea level
\(\qquad\)
\(\qquad\) 5.76 76 _ meters
Geoid
height
+1
Height
above ellipsoid \(\qquad\) meters

\section*{AZIMUTH DATA}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Survey by C\&GS 1956. Monument NRL CENTER POINT 1956 (1.23 m directly below camera axis) was set from first-order. C\&GS station BLOSSOM (500 feet away). \(\triangle\) BLOSSOM was set by first-order triangulation from C\&GS stations HILLTOP, HICKEY and DIGGS.

Elevation by AMS third-order levels: to USED BM 1460, about two miles south of the Minitrack center.

Geoid height from TOPOCOM geoid charts 1967.

This station has been removed.

\[
\text { DATE __July } 1973
\]

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control}

Horizontal \(\qquad\)
Vertical meters meters \(\qquad\) meters meters

\section*{REFERENCES}

Vanguard Positions, AMS report (undated).

Station No. MIN 9
GEODETIC DATA SHEET
Other
Codes \(\qquad\)
Code Name \(\qquad\) SATELLITE TRACKING STATION

Location \(\qquad\) Equipment Minitrack

Agency NASA-Goddard Space Flight Center

Point referred to _ center of array at elevation of ground screen \(\qquad\)
(coincident with center of camera axes - NGSP 7077)
GEODETIC COORDINATES
ASTRONOMIC COORDINATES
Latitude \(38^{\circ} 59^{\prime} 56.173\)

Latitude \(\quad \xi=-1.5\)

AZIMUTH DATA

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveyed by Naval Oceanographic Office, November 1966. The position of survey monument MICRO (1.11 meters below the center of the ground screen) was determined by third-order triangulation and traverse based on stations ROOF (NOO), CEDAR 2, ORDNANCE, RENO, and the Washington Monument. The elevation of \(\triangle\) MICRO is 163.19 feet on the Washington Suburban Sanitary Datum, which is within a few cm of SLD 1929.

Geoid height from TOPOCOM geoid charts 1967.
This station is not operating but is in caretaker status.

DATE July 1973

\section*{ACCURACY ASSESSMENT}

\section*{To Local Control \\ To Datum Origin}

meters
5
Vertical _ \(<1 \quad\) meters \(\quad 1 \quad\) meters
\(\qquad\) meters

\section*{REFERENCES}

Naval Oceanographic Office survey sta. card No. 306295.

Station No. \(\qquad\) MIN 10 \(\qquad\) GEODETIC DATA SHEET
Code Name \(\qquad\) SATELLITE TRACKING STATION

Location \(\qquad\) Equipment _ Minitrack

Agency \(\qquad\) NASA-Goddard Space Flight Center
Point referred to
geodetic coordinates
Latitude__ \(33^{\circ} 08^{\prime} 57!242\)
Longitude (E) \(\begin{array}{lll}289 & 19 \quad 56.402\end{array}\)
Datum \(\qquad\)
center of array at elevation of ground screen
(coincident with center of camera axes - NGSP 1028)

\section*{ASTRONOMIC COORDINATES}

Latitude \(\qquad\)
Longitude (E) \(\begin{array}{lll}289 \quad 19 \quad 31.99 \pm 0.10\end{array}\)
Based on \(\frac{\text { first-order obs IAGS } 1956 \text { at }}{\text { station }}\) Height above ellipsoid \(\qquad\) 720 meters

Elevation above mean sea level 693.4 meters

Geoid height +26.2 meters

\section*{AZIMUTH DATA}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by IAGS and IGM Chile, 1956.
The position of the center monument PELDEHUE, directly below the center of the camera axis, was fixed by firstorder triangulation from three first-order IGM-IAGS triangulation stations, ROBLE ALTO, LOS ROBLES and COBRE DE CHACABUCO. Sixteen directions were observed at each station with a Wild T-3.

Elevation was determined by vertical angles from three horizontal control stations. The camera axis is 1.23 m above the center mon. (elev. 692.2 m).

Station is marked by IGM bronze disk in top of concrete block, and is stamped "PELDEHUE 1956." IGM bronze plugs in concrete blocks were set about 28 m distant at the cardinal points, and as a subsurface mark.

Geoid height from CHUA base, USATOPOCOM 1971.
DATE September 1971

\section*{ACCURACY ASSESSMENT}

To Local Control To Datum Origin
Horizontal \(\quad 0.43\) meters \(\qquad\) meters
Vertical \(\qquad\) meters \(\qquad\) meters

\section*{REFERENCES}

Geodetic Information Report and Summary, USATOPOCOM August 1971.

0ther COSPAR 12
\(\qquad\)
\(\qquad\)

Location \(\qquad\) Equipment Minitrack

Agency \(\qquad\) NASA-Goddard Space Flight Center

Point referred to center of array at elevation of ground screen
(coincident with center of camera axes - NGSP 1032)
geodetic COORDINATES
ASTRONOMIC COORDINATES

Latitude \(\qquad\)
Longitude (E) \(\qquad\)
Based on \(\qquad\)

Height

Geoid height \(+37\) meters
above
above
ellipsoid 106 _ meters
\(\qquad\)

Elevation
above mean sea level 69

\section*{AZIMUTH DATA}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ASTRONOMIC OR GEODETIC & FROM & T0 & DISTANCE meters & \multicolumn{3}{|r|}{AZIMUTH FROM NORTH} \\
\hline Geodetic & \(\triangle\) HIATT & \(\triangle\) STILES & 6500 & \(344^{\circ}\) & \(54^{\prime}\) & 25.40 \\
\hline Astronomic & \(\triangle\) HIATT & \(\triangle\) STILES & 6500 & 344 & 54 & \(32.57 \pm 0.49\) \\
\hline
\end{tabular}

\section*{DESCRIPTION OF SURVEYS AND GENERAL NOTES}

Surveys performed by Geodetic Survey of Canada, 1959.
Triangulation for MINI, a survey mon. 1.95 m below the camera center, was based on two secondary occupied positions, SNELGROVE (GSC) and HIATT (USC\&GS 1942) in a local network which included three.additional observation stations, TABLE, STILES and MOON. All lines shown on the diagram were read from both ends; twelve pointings were made for each direction. The maximum correction required in the reduction of the directions was 1.4 seconds. A supporting astronomic azimuth was observed on the line HIATT-STILES, with a seven-second discrepancy which is ascribed to deflection of the vertical. MINI is marked by a bronze tablet set in a 12inch diameter metal-sheathed concrete monument at ground level.

Elevation was by trigonometric leveling.
This station closed 31 March 1970.
Geoid height from. TOPOCOM geoid charts 1967.

DATE Apríl 1972

\section*{ACCURACY ASSESSMENT}
To Local Control To Datum Origin
Horizontal \(<\frac{1}{2}\) meters \(\frac{8}{3}\) meters
Vertical \(-\frac{1}{2}\) meters meters

\section*{REFERENCES}

Ltr. Defense Construction (1951)
Limited, Ottawa to NASA, 10/1/59; Ltr. Dominion Geodesist to GSFC 5/28/64.

Station No. MIN 12

\section*{GEODETIC DATA SHEET SATELLITE TRACKING STATION}
\begin{tabular}{crr}
Other & \multicolumn{1}{c}{ COSPAR } & 15 \\
\cline { 2 - 3 } Codes & SAO & 4652 \\
\cline { 2 - 3 } & NGSP & 1015 \\
\hline
\end{tabular}

Code Name \(\qquad\) Equipment Minitrack
Location Winkfield, England
Agency ___ NASA-Goddard Space Flight Center

\(\qquad\)
\(\qquad\)
```

Minitrack
Location

```
\(\qquad\)
``` Johannesburg, Republic of South Africa Equipment
Agency NASA-Goddard Space Flight Center
```


DESCRIPTION OF SURVEYS AND GENERAL NOTES

Surveys performed by I. B. Watt, LS., 1961 for Nat. Inst. for Telecom. Research.
Position was fixed by precise chaining from monuments N 372 and S 372.
These were fixed by intersection from one secondary (KAFFIRSKRAAL) and four tertiary stations of the basic Trig Survey net, and an additional point, E STATION. This survey is directly connected with surveys for adjacent Deep Space stations of NASA-JPL.

Elevation was determined by vertical angles from trigonometric elevations of the five stations.

The camera center is 1.73 m above the center monument.

Geoid height from DMATC.

$$
\text { DATE July } 1973
$$

ACCURACY ASSESSMENT
To Local Control To Datum Origin
Horizontal $\frac{<1}{3}$ meters $\frac{3}{4}$ meters
Vertical _meters meters

REFERENCES

Ltr. Halberstadt, Dent \& Course, J'bg. to Nat'l Ins't. for Telecommunications Res., J'bg. RSA 1/15/64.

GEODETIC DATA SHEET
SATELLITE TRACKING STATION

Other		
Codes		
	NGSP	1023

Code Name \qquad
Location \qquad Equipment Minitrack.

Agency \qquad NASA-Goddard Space Flight Center

Point referred to center of array at elevation of ground screen (coincident with center of camera axes - NGSP 1043) GEODETIC COORDINÄTES

ASTRONOMIC COORDINATES

| Latitude__190 | $-10^{\circ} \quad 27.097$ |
| :--- | :--- | :--- |
| Longitude (E) | $47 \quad 18 \quad 00.461$ |
| Datum_Tananarive | |

Latitude \qquad
Longitude (E) \qquad
Based on \qquad
Elevation
above mean sea level 1377.94 meters Geoid
height $\begin{array}{ll} & \begin{array}{l}\text { Height } \\ \text { above } \\ \text { ellipsoid }\end{array}\end{array}$ ellipsoid \qquad

AZIMUTH DATA

Surveys performed by H. Monge, Institut Geographique National, Paris, Annexe de Tananarive.

Location details are not available; survey sketch is given. H. Monge's notes mention use of a Tellurometer and a Wild T-3 theodolite.

Madagascar is not connected geodetically to a major datum. The local datum is based on a single astronomic observation at Tananarive Observatory.

The camera axis is about one meter above a brass tablet, MINITRACK CENTER.

$\triangle 213$
Δ^{214}

DATE \qquad July 1970

ACCURACY ASSESSMENT

To Local Control.

Horizontal \qquad <1 < 1 meters \qquad meters
Vertical \qquad meters \qquad meters

REFERENCES

Memo Plant Engineering Section to Facilities Construction Branch, GSFC 9/26/66. Rept. IGN, Paris, Annexe de Tan., July 1966.

Station No. MIN 15
Code Name \qquad
GEODETIC DATA SHEET
SATELLITE TRACKING STATION
 Minitrack

Location \qquad Woomera, Australia Equipment \qquad
Agency NASA-Goddard Space Flight Center

Station No. \qquad MIN 16

Code Name \qquad
Location \qquad Orroral, Australia

GEODETIC DATA SHEET SATELLITE TRACKING STATION

\qquad Minitrack

Agency \quad NASA-Goddard Space Flight Center

GEODETIC DATA SHEET

SATELLITE TRACKING STATION

Other
Codes \qquad
\qquad Equipment \qquad SATAN Antenna
ocation \qquad gency \quad NASA-Goddard Space Flight Center

Point referred to center of X-axis

GEODETIC COORDINATES

Latitude
ASTRONOMIC COORDINATES
\qquad
Longitude (E) $\quad \eta=+9.1$
Based on $\frac{\text { first-order obs AMS } 1962 \text { at }}{\text { ROSMAN I, } 400 \mathrm{~m} \text { SE of the SATAN }}$
Elevation above mean sea level

- 934.2 meters | Geoid |
| :--- |
| height +6 | Height

above | above |
| :--- |
| ellipsoid $\quad 940$ | meters

AZIMUTH DATA

description of surveys and general notes

The survey is not described. The position and elevation are given as third-order.

Elevation of the slab is 925.07 m . The X-axis is
9.17 m above the slab, the Y-axis is 9.72 m above
the slab.
The data were compiled by Field Facilities Branch, GSFC. (See Station No. S85 1.)

Geoid height from TOPOCOM geoid charts, 1967.

DATE
September 1971

aCCURACY ASSESSMENT

REFERENCES

Position and description sheet, Field Facilities Branch, GSFC, September 1966.

Station No. SAT 2
Code Name \qquad

Other Codes
\qquad
L

Point referred to center of X-axis

AZIMUTH DATA

ASTRONOMIC OR GEODETIC		FROM		T0			DISTANCE meters	AZIMUTH FROM NORTH		
Geodetic	\triangle	FFB	ATS	Δ	N372	(Minitrack)	1003.852	266°	$07{ }^{\prime}$	34"
Geodetic	\triangle	FFB	ATS	\triangle	W-2		114.417	277	00	00

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The position is given as third-order. The survey is not described.
Station FFB ATS was set at the center of the antenna before construction, and was destroyed. Reference marks $W-1, W-2$, and $E-1$ are aluminum tablets set in concrete.

Elevation of the center monument (fourth order) was 927.49 m . The X-axis is approximately 9.2 m above it .

Geoid height from TOPOCOM geoid charts, 1967.
DATE September 1971

ACCURACY ASSESSMENT

REFERENCES

Position and description sheet for USB 12, Field Facilities Branch, GSFC, April 1965.
\qquad
SATELLITE TRACKING STATION \qquad
ode Name \qquad
\qquad
ocation \qquad Cooby Creek, Australia
Equipment \qquad
gency ___ NASA-Goddard Space Flight Center

Point referred to center of rotation

GEODETIC COORDINATES

ASTRONOMIC COORDINATES

AZIMUTH DATA

ASTRONOMIC
OR GEODETIC
from

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The SATAN T\&C antenna was the ATS VHF antenna at the facility at Toowoomba, Queensland (now closed).

The position was taken from the site plan, which shows the antenna to be 20 feet south and 90 feet east of the TGS 40 -foot mobile antenna. The elevation given is the design elevation of an unidentified point.

Geoid height from National Mapping Technical Report 13, 1971.

DATE April 1972

ACCURACY ASSESSMENT
To Local Control
Horizontal
Vertical \qquad meters

To Datum Origin
\qquad meters meters

REFERENCES

Position and description sheet, Physical Plant Engineering Branch, GSFC June 1971.
0ther
Codes
$\frac{\text { JPL }}{\text { APOLLO }} 11$
COSPSR GOLDSTONE II I I

Location_Goldstone, California Equipment 26-meter HA-Dec: Pioneer. (85-foot)

Agency Jet Propulsion Laboratory, California Institute of Technology

AZIMUTH DATA

ASTRONOMIC OR GEODETIC

Geodetic
(third-order) \square
\triangle PIONEER Δ $=$ PIONEER AZ MK $=$ BM B965)

DISTANCE meters

AZIMUTH FROM NORTH

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The basic first-order triangulation net at Goldstone Test Station, which includes stations PIONEER, BM B965, and MONUMENT, was done by the USC\&GS in 1963. C\&GS also ran precise leveling over most of the stations. Traverse and level ties from \triangle PIONEER to the antenna were made by the Jet Propulsion Laboratory in 1964. The antenna coordinate point is 11.8 meters above \triangle PIONEER.

Geoid height from TOPOCOM geoid charts 1967.

DATE \qquad July 1970

ACCURACY ASSESSMENT

\qquad

Vertical meters \qquad meters
\qquad meters \qquad meters

REFERENCES

USC\&GS records, and JPL Report dated 22 April 1964.

Station No. DSN 2.

Code Name \qquad

Other
JPL
DSS 12
SATELLITE TRACKING STATION

Agency Jet Propulsion Laboratory, California Institute of Technology

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The basic first-order triangulation net at the Goldstone Test Station, which included stations ECHO (with its azimuth mark) and IRWIN, was done by USC\&GS in 1963. C\&GS also. ran precise leveling over most of the stations. The traverse and level ties from $\triangle E C H O$ to the coordinate point of the antenna were made by the Jet Propulsion Laboratory in 1964.

The antenna coordinate point is 11.7 m above \triangle ECHO.

Geoid height from TOPOCOM geoid charts 1967.

DATE _ July 1970

ACCURACY ASSESSMENT

To Local Control
Horizontal \qquad
0.3
0.5
meters \qquad meters
Vertical \qquad meters \qquad meters

REFERENCES

USC\&GS records and JPL Report dated 22 April 1964.
GEODETIC DATA SHEET
SATELITE TRACKING STATION No. DSN 3
\qquad
ocation__Goldstone, California Equipment 26-meter Az-E1: Venus (85-foot)
gency
\qquad Jet Propulsion Laboratory, California Institute of Technology

Point referred to _ center of azimuth axis at height of elevation axis \qquad

GEODETIC COORDINATES

Latitude \qquad $35^{\circ} 14^{\prime} 51: 788$

Longitude (E) \quad| $243 \quad 12 \quad 21.573$ |
| :--- | :--- | :--- |

Datum \qquad NAD 1927

Elevation above mean sea level $-\quad 1093.5$ 5 _meters

ASTRONOMIC COORDINATES

Latitude \qquad $35^{\circ} 14^{\prime} 49: 04 \pm 0: 14$

Longitude (E) $\quad 243 \quad 12 \quad 21.24 \pm 0.12$
Based on first-order obs C\&GS 1964 at \triangle VENUS

Height above ellipsoid \qquad 1072 meters

AZIMUTH DATA

ASTRONOMIC
AR GEODETIC
Geodetic
Geodetic

DESCRIPTION OF SURVEYS AND GENERAL NOTES

This Station is used for research and development.
The basic first-order triangulation net
at the Goldstone. Test Station, which included stations VENUS (with its azimuth mark) and HONDO, was done by the USC\&GS in 1963. C\&GS also ran precise leveling over most of the stations. The traverse and level ties from \triangle VENUS to the antenna were made by Jet Propulsion Laboratory in 1964.

The elevation axis is 9.44 m above \triangle VENUS.

Geoid height from TOPOCOM geoid charts 1967.

DATE July 1970

ACCURACY ASSESSMENT

To Datum Origin
Horizontal
Vertical \qquad meters \qquad meters

REFERENCES

USC\&GS records and JPL Report dated 22 April 1964.

Station No. DSN 4

Code Name \qquad
GEODETIC DATA SHEET
SATELIITE TRACKING STATION

Other JPL DSS 14 Codes \qquad Location Goldstone, California Equipment 64-meter Az-El: Mars (210-fo Agency \qquad Jet Propulsion Laboratory, California Institute of Technology

Point referred to intersection of azimuth and elevation axes

GEODETIC COORDINATES

Latitude \qquad $35^{\circ} \quad 25^{\prime \prime} \quad 33.340$
Longitude (E) \qquad $243 \quad 06 \quad 40.850$
Datum \qquad
NAD 1927

Elevation above mean sea level \qquad 1031.8 meters
height

ASTRONOMIC COORDINATES
Latitude \qquad $\xi=-4.8$

Longitude $(\mathrm{E}) \quad \eta=-5.3$
Based on first-order obs C\&GS 1964 at \triangle MARS

Height above ellipsoid \qquad 1010 meters

AZIMUTH DATA

ASTRONOMIC OR GEODETIC
Geodetic
Geodetic

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The basic first-order triangulation net at the Goldstone Test Station, which included stations MARS (with its azimuth mark), FOOT, and MONUMENT (USGS), was done by the USC\&GS in 1963. C\&GS also ran precise leveling over most of the stations. The traverse ties from \triangle MARS to the antenna and the two auxiliary marks E and W were made by Teledyne Inc., Geotronics Division, in 1966. The latter organization also determined the elevation of the antenna by vertical-angle observations.

The elevation axis of the antenna is 15.5 m above \triangle MARS.

Geoid height from TOPOCOM geoid charts 1967.

$$
\text { DATE __ July } 1970
$$

ACCURACY ASSESSMENT

	To Local Control	To Datum Origin
Horizonta	al 0.3	4 meters
Vertical	0.5	_ meters

REFERENCES

USC\&GS records and report of Teledyne Inc. entitled, "Position of the DSS-14 Antenna," Apri1 11, 1968.

Point referred to _._._intersection of polar axis with hour angle gear

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The station is referred to as Island Lagoon.
The site was surveyed by the Survey Section, Dept. of Interior, Woomera in September 1960. The geodetic control consists of the firstorder scheme shown in sketch. It is based on first-order stations BERNARD and LUCAS of the Australian Army Survey.

The elevation is referred to AHD.
This survey was to a point in space 15 m above the center of the dish footings. The correction of 1.23 m in elev. and 0.0711 in latitude to the reference point was by JPL.

Geoid height from National Mapping Technical Report 13, 1971.

The position of the center of the dish footings is lat. - $31^{\circ} 22^{\prime} 59.3594$, long. $136^{\circ} 53^{\prime} 10.1244$.

DATE April 1972

ACCURACY ASSESSMENT

To Local Control	To Datum Origin
Horizontal 0.5	3 meters
Vertical	2 meters

REFERENCES

Geodetic Information for Space Tracking Stations in Australia, Director Nat. Mapping, March 1972 and JPL Memo 14 March 1969.

Station No. DSN 6

Code Name \qquad

GEODETIC DATA SHEET
 geodefic satellite observation station

 Other Codes JPL DSS 42Location \qquad Equipment 26-meter HA-Dec (85-foot)

Agency - Jet Propulsion Laboratory, California Institute of Technology

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by the Survey Branch, now in the Dep. of Services and Property, Canberra,

Geoid height from National Mapping Technical Report 13, 1971.

DATE March 1973

ACCURACY ASSESSMENT

To Local Control To Datum Origin

\qquad
Vertical \qquad meters meters \qquad meters

Verica meters

REFERENCES

Geodetic Information for Space Tracking Stations in Australia, Division of National Mapping, Canberra, March 1973.

GEODETIC DATA SHEET SATELLITE TRACKING STATION
\qquad Codes 26-meter HA-Dec (85-foot) Equipment \qquad Agency _Jet Propulsion Laboratory, California Institute of Technology

Point referred to ___ center of the antenna

GEODETIC COORDINATES

Latitude \qquad - $25^{\circ} 53^{\prime} 21!15$

Longitude (E) _ $\quad 27 \quad 41 \quad 08.53$
Datum \qquad Cape (Arc)

ASTRONOMIC COORDINATES
Latitude $\quad-25^{\circ} 53^{\prime} 14^{\prime \prime}$
Longitude (E) _ـ_ $27 \quad 41 \quad 05$
Based on low order obs 1960 at site

Elevation above mean Sea level 1391 _ meters
\qquad

Geoid
height
$+8$

Height above ellipsoid \qquad 1399 meters

AZIMUTH DATA

ASTRONOMIC OR GEODETIC

Geodetic

 GeodeticfROM $\frac{\text { antenna center }}{\text { antenna center }}$

description of surveys and general notes

The site was surveyed by I. B. Watt, L. S., for National Institute for Telècom Research, October 1960-June 1961.

Stations N and S were positioned by triangulation based on two TrigSurvey third-order stations BRIT 22 and BRIT 44, and an auxiliary point, W STATION. All rays were fully observed on four arcs with a Wild T-2, with third-order closures. Control for antenna and collimation tower were carefully set from ΔN and ΔS, which are 3600 feet apart. Antenna foundations, collimation tower and its dish were located after construction in the same survey. Height of center of main dish was not verified; the center of the antenna is reported to be 13 m above the survey point.

Geoid height from DMATC.

DATE
July 1973 center col. tower
(survey mark)
col. tower (dish) 1561.37 1559.51

ACCURACY ASSESSMENT

To Local Control

Horizontal \qquad meters

To Datum Origin

Vertical \qquad meters \qquad meters

$$
\begin{aligned}
& \text { DISTANCE } \\
& \text { meters. }
\end{aligned}
$$

AZIMUTH

Station No. DSN 8	GEODETIC DATA SHEET SATELLITE TRACKING STATION	Other Codes	JPL DSS 61	
			APOLLO	MADW
Code Name				
Location Madrid, Spain	Equipmen	26-meter	A-Dec	-foot)
Agency Jet Propulsion	ry, California Institute .of	nology		

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The geodetic survey at Robledo de Chavela was made by the Instituto Geografico y Catastral in 1965. The survey station in the base of the antenna is not described.

Horizontal observations were based on IGyC
first-order stations ALMENARA and VALDIHUELO.
Direction observations were made with a Wild T-3
(24 circle positions) at $\triangle \triangle$ ALMENARA: Distances were measured to the two antenna sites with Electrotapes DM20, 6 times in each direction. The instruments were later calibrated at the Geophysical Laboratory at Toledo.

Elevations were extended about 2.5 km from the railroad leveling between Madrid and Avila (believed to be third order) by double-run spirit leveling. Elevations are based on MSL at Alicante. The intersection of the axes is 14.6 m above the survey mark (elev. 773.8 m).

Geoid height from G. Bomford's geoid chart of Europe, N. Africa and S.W. Asia, February,1971.

Station No. DSN 9
GEODETIC DATA SHEET
Other JPL DSS 62
SATELLITE TRACKING STATION
Codes \qquad
Code Name \qquad
\qquad
Location Madrid, Spain_ Equipment 26-meter HA-Dec (85-foot)

Agency Jet Propulsion Laboratory, California Institute of Technology

Station No. DSN 10 .

GEODETIC DATA SHEET
 satellite tracking station

JPL
DSS 43
Other Codes \qquad
 Location Tidbinbilla, Australia Equipment 64-meter HA-Dec (210-foot)
Agency __ Jet Propulsion Laboratory, California Institute of Technology

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The local surveys were made in August 1964 and extended in July 1972 by the Survey Branch, now in the Dep. of Service and Property, and by the Div. of Nat. Mapping. The position was by closed Tellurometer survey to \triangle MOUNT STROMLO of the Nat. Geodetic Survey.

The elevation is referred to AHD.
Geoid height from Nat. Mapping Technical Report 13, 1971.

DATE March 1973

ACCURACY ASSESSMENT

REFERENCES

Geodetic Information:for. Space Tracking Stations in Australia, Div. of Nat. Mapping, Canberra, March 1973.

\qquad RTE 1

GEODETIC DATA. SHEET

\qquad
SATELLITE TRACKING STATION
Code Name \qquad
Location \qquad Equipment $\frac{76 \text {-meter radio telescope }}{(\text { Mark 1A) }}$ Agency Nuffield Radio Astronomy Laboratories
\qquad

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The position was surveyed by Ordnance Survey in 1969 to an accuracy of about 10 cm on OSGB 1936 Datum. The point coordinated was at ground level in the center of the inner rail track of the telescope. The position above was derived from the engineering drawings. The position on European Datum was by Bomford's graphical conversion. Modification of the telescope in 1971 from its Mark 1 to Mark 1A designation did not change the position of the reference point.

The elevation of the ground point is 78.267 m above Ordnance Datum at Newlyn. The intersection of axes is 50.29 m above this point.

Geoid height from G. Bomford's geoid chart of Europe, N. Africa and SW Asia, February 1971.

ACCURACY ASSESSMENT

\qquad
To Datum Origin
meters $\frac{3}{2}-1$
meters -1 meters meters

REFERENCES

Letter J. Kelsey, Ordnance Survey, to CSC, 1 July 1971.

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The local surveys were by the Div. of National Mapping in March 1966.
The connection between the antenna and the Australian Geodetic Survey at stations BOOR and KADINA was by a closed Tellurometer traverse.

The elevation is referred to AHD.
Geoid height from National Mapping Tehnnical Report 13, 1971

	DATE Apri] 1972
ACCURACY ASSESSMENT To Local Control To Datum Origin	REFERENCES Geodetic Information for Space Tracking Stations in Australia, Div. of National Mapping, March 1972.
Horizontal <1 \qquad meters \qquad 5 meters	
Vertical \qquad 0.5 meters 1 \qquad meters	

\qquad SATELLITE TRACKING STATION
\qquad Codes \qquad

Location Bonn, West Germany
Equipment 100-meter radio telescope
Agency \qquad

Point referred to center of elevation axis				
GEODETIC COORDINATES			TRON	OORDINATES
Latitude $50^{\circ} 31^{\prime} 33.18$			50	$2 \% 3$
Longitude (E) $\quad \begin{array}{lll}06 & 53 & 03.7\end{array}$			06	9.2
Datum_not specified \quad no			Based on (estimated accuracy $3^{\prime \prime}$)	
Elevation above mean sea level	369 meters	$\begin{aligned} & \text { Geoid } \\ & \text { height }+0.6 \\ & \hline \end{aligned}$		370
AZIMUTH DATA				
astronomic OR GEODETIC	FROM	T0	$\underset{\text { distan }}{\text { meters }}$	AZIMUTH FROM NORTH

DESCRIPTION OF SURVEYS AND GENERAL NOTES

This radio telescope is at Effelsberg, 40 km west of Bonn. The datum is probably Potsdam. The information now available is preliminary.

The rail of the telescope is 319.0 m above NN (msl). The center of the elevation axis is 50 m higher.

Geoid height from G. Bomford's geoid chart of Europe, N. Africa and S.W. Asia, February 1971.

Insufficient data for accuracy assessment.

DATE September 1971

ACCURACY ASSESSMENT

To Local Control To Datum Origin
Horizontal \qquad meters \qquad meters
Vertical \qquad meters \qquad meters

REFERENCES

Letter Max-Planck-Institut für Radioastronomie to CSC, 30 July 1971.

Station No. RTE 4
GEODETIC DATA SHEET
Other
Codes
Code Name \qquad geodetic satellite observation station

Location \qquad Equipment 43-meter radio telescope

Agency - National Radio Astronomy Observatory
Point referred to $\frac{\text { center of top of } 6.35 \mathrm{~cm} \text { diameter pipe protruding from feedhorn in zenith }}{\text { position }}$

GEODETIC COORDINATES

Latitude	$38^{\circ} 26^{\prime} 15.409$		
Longitude (E)	280	09	50.387
Datum	NAD	1927	

ASTRONOMIC COORDINATES

Latitude $38^{\circ} \quad 26^{\prime} \quad 12!.45 \pm 0!.35$

Longitude (E) $\begin{array}{llll}280 & 09 & 53.64 \quad 0.08\end{array}$
Based on mod. first-order obs. 1970 by 1 GSSq

Height above

 ellipsoid 883.9 meters
description of surveys and general notes

The position was determined by a first-order electronic loop traverse by the First Geodetic Survey Squadron in 1970 from C\&GS first-order station PADDYS KNOB 1878, 1957, 19 Km SSE of the site. Two ref. marks provided initial azimuth, and two astro-longitudes were used to convert the observed first-order astro-azimuths to geodetic. Second-order C\&GS \triangle BANK 1957 was used as a check. All distances were measured at least twice with a Mod 8 Laser Geodimeter. Directions were observed with a Wild T3, using 16 positions. Permanent station SITE 1970 was set about 100 m east of the telescope building and used for local control. The antenna feed-horn pipe was intersected from four stations while in zenith position for each of the four horizontal quadrants.

First-order spirit levels were run to the site (11 Km) from three C\&GS first-order benchmarks. Vertical angles were observed to the tip of the feed-horn from four stations in three positions each.

Geoid height from AMS geoid charts 1967.
DATE
August 1973

ACCURACY ASSESSMENT

To Local Control To Datum Origin		
Horizontal 00.2		
Vertical -0.3		

REFERENCES

Final Survey Data, AF Project 71-1, 1st Geodetic Survey Squadron USAF, 30 November 1970.
\qquad
\qquad
ocation Cape Kennedy, Florida
Equipment Stand 12 (Atlas-Agena)
gency NASA-John E. Kennedy Space Center

GEODETIC COORDINATES	ASTRONOMIC COORDINATES	
Latitude __ 28° 28' 49.1255	Latitude __ $\quad \xi_{\text {¢ }}=+0.91$	
Longitude (E)	Longitude (E) $\quad n=+2.16$	
Datum__ NAD 1927 (CC)*	Based on first-order obs C\&GS 1956_a	
$\begin{aligned} & \text { Elevation } \\ & \text { above mean } \\ & \text { sea level }\end{aligned} 14.973 \quad$ meters	$\underset{\substack{\text { Geoid } \\ \text { height }}}{ }+\underline{10}$ meters	

AZIMUTH DATA

ASTRONOMIC OR GEODETIC	FROM	Io	DISTANCE meters	AZIMUTH FROM NORTH		
Geodetic	\triangle STAND 12	WEST PIN	1.4850	285°	01^{1}	40"
Geodetic	\triangle TWELVE 2	\triangle CENTRAL SE BASE		170	47	59.78

DESCRIPTION OF:SURVEYS AND GENERAL NOTES

The position is based on a resurvey by USC\&GS, 1963. The survey consisted of precise triangulation and traverse from C\&GS stations TWELVE 2 (1960) and 12 NW (1956).

The elevation was determined by first-order leveling by C\&GS from nearby first-order bench marks.
*Cape Canaveral Datum and NAD 1927 are interchangeable in this area.

Geoid height from TOPOCOM geoid charts 1967. (The value given by
 AFETR is 8 m .)

$$
\text { OATE July } 1970
$$

accuracy assessment

To Local Control
Horizontal \qquad
0.01 meters meters

To Datum Origin
\qquad meters meters

REFERENCES

AFETR Geodetic Coordinates Manual, August 1969.

tation No._LPD 3 GEODETIC DATA SHEET
ode Name__ SATELLITE TRACKING STATION
Other AFETR 015014 Codes \qquad
\qquad SATELIITE TRACKING STATION
ocation \qquad hgency NASA-Jotin_F. Kennedy Space_Center

AZIMUTH DATA

ASTRONOMIC OR GEODETIC

FROM
ro DISTANCE
10
meters

AZIMUTH
FROM NORTH

Geodetic
\triangle FOURTEEN
 $213^{\circ} \quad 20^{\prime} \quad 31.144$

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by USC\&GS in 1963.
Precise triangulation and traverse were extended from \triangle FOURTEEN (1956). The elevation was determined by first-order leveling from nearby first-order bench marks.
*Cape Canaveral Datum and NAD 1927 are interchangeable in this area.

Geoid height from TOPOCOM çeoid charts 1967. (The value given by AFETR is 8 m .)

This stand has been deactivated.

DATE September 1971

ACCURACY ASSESSMENT

REFERENCES

AFETR Geodetic Coordinates Mariual, August 1969.

Station No. \qquad LPD 5

GEODETIC DATA SHEET
SATELLITE TRACKING STATION
Code Name \qquad

Other AFETR 015034
Codes \qquad

Equipment
Stand 34
\qquad 34

Location \qquad Cape Kennedy, Florida \qquad
Agency ___NASA-John F. Kennedy Space Center

Point referred to center of launch arm pins	
GEODETIC COORDINATES	ASTRONOMIC COORDINATES
Latitude _ $28^{\circ} 31^{\prime} 17!5063$	Latitude $\quad \xi=+113$
$\text { Longitude (E) } \quad \begin{array}{lll} & 279 & 26 \end{array} 19.1131$	Longitude (E) \quad _ $n=+2.2$
Datum \qquad NAD 1927 (CC)*	Based on first-order obs C\&GS 1956 at
Elevation above mean sea level \qquad 15.00 meters	10 metersHeight above ellipsoid $\quad 25 \quad$ meters
AZIMUTH DATA	
astronomic OR GEODETIC FROM	DISTANCE meters $\quad \begin{gathered}\text { AZIMUTH } \\ \text { FROM } \\ \text { NORTH }\end{gathered}$
Geodetic \triangle STAND 34	FOUR 113.606
DESCRIPTION OF SURVEYS AND GENERAL NOTES The site was surveyed by USC\&GS in November 1961. The survey consisted of precise triangulation and traverse from stations THIRTY FOUR (1961), KIMBALL ECC (1934), and CANAVE 2 (1934). \triangle THIRTY FOUR is an astroazimuth station. The elevation of \triangle STAND 34 , the brass bolt at pad level beneath the launch arms, is 13.095 m . It was determined by firstorder leveling by C\&GS in 1965. *Cape Canaveral Datum and NAD 1927 are interchangeable in this area. Geoid height from TOPOCOM geoid charts 1967. (The value given by AFETR is 8 m.) DATE \qquad July 1970	
ACCURACY ASSESSMENT	REFERENCES AFETR Geodetic Coordinates Manual, March 1970.

\qquad GEODETIC DATA SHEET Other \qquad AFETR 015037.

Code Name \qquad SATELLITE TRACKING STATION Codes \qquad
\qquad

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by USC\&GS in 1965. The position was determined by precise traverse from \triangle THIRTY SEVEN B and STAND 37A, stations included in a dense firstorder net.

The elevation of \triangle STAND 37A, the mark under the center of the launch arms, was determined by first-order leveling to be 15.557 m . The center of the launch arms is 2.01 meters above the mark.
*Cape Canaveral Datum and NAD 1927 are interchangeable in this area.

Geoid height from TOPOCOM geoid charts 1967. (The value given by AFETR is 8 m.)

REFERENCES

AFETR Geodetic Coordinates Manual, August 1969.

Station No. LPD . 7
GEODETIC DATA SHEET: \qquad
SATELLITE TRACKING STATION
Code Name \qquad
\qquad
Stand 37B
Agency - NASA-John F. Kennedy Space Center
Equipment \qquad

DESCRIPTION OF SURVEYS AND GENERAL NOTES

The site was surveyed by USC\&GS in 1963. The position was determined by precise triangulation and traverse from \triangle THIRTY SEVEN B (1963). This station was a point in a dense first-order network.

The elevations were determined by firstorder leveling by C\&GS in 1964. The launch arms are 2.01 m above bench mark P 192.
*Cape Canaveral Datum and NAD 1927 are interchangeable in this area.

Geoid height from TOPOCOM geoid charts 1967. (The value given by AFETR is 8 m .)

Station No. LPD 8

Code Name \qquad
Location __ Cape Kennedy, Florida \qquad Equipment \qquad Pad 39A

Agency ___ NASA-John F. Kennedy Space Center

DESCRIPTION OF SURVEYS AND GENERAL NOTES

There is no mark under the launch arms.
The site was surveyed by USC\&GS in 1966. The survey consisted of firstorder (Class I) triangulation and traverse.

The launch arms are 2.62 m above the base.
*Cape Canaveral Datum and NAD 1927 are interchangeable in this area.
Geoid height from TOPOCOM geoid charts 1967. (The value given by AFETR is 8 m.)

DATE June 1971

ACCURACY ASSESSMENT

To Local Control
Horizontal 0.01
Vertical \qquad 0.01 meters

To Datum Origin
\qquad meters meters <1 meters

REFERENCES

AFETR Geodetic Coordinates Manual, August 1969.
EDGE INDEX Volume 1
Station Index
TABULATIONS OF STATION COORDINATES
Positions on Local or Major Datums
Positions on Modified Mercury Datum 1968
Positions on Mercury Spheroid 1960
Positions on Spaceflight Tracking and Data Network System
GEODETIC DATA SHEETS
Unified S-Band Antennas
C-Band Radars
Goddard Range and Range-Rate Stations
26-Meter Data Acquisition Antennas
12-Meter Data Acquisition Antennas
Minitrack Stations
SATAN Antennas
Deep Space Network
Radio Telescopes
Launch Sites

[^0]: *Removed or not operational

