
_ _P DEPARTMENT OF MATHEMATICS .. J g /

UNIVERSITY OF HOUSTON HOUSTON, TEXAS

0&/ided \9

ON DIFFERENTIATING
THE PROBABILITY OF ERROR IN
MULTIPOPULAR FEATUR SELECTIONII
BY B. CHARLES PETERS FEB. 1974

REPORT #31

(NASA-C1-134248) ON DIFFERENTIATING THE N74-23153
PROEAEILITY CF ERIOB IN THE
MULTIPOPULAIION FEATURE SELECTION
PROBLEM, 2 (Houston Univ.) 12 p BC Unclas
$4.0G CSCL 12A G3/19 37898

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC

UNDER
CONTRACT NAS-9-12777

3801 CULLEN BLVD.
HOUSTON, TEXAS 77004



Reportt #31

On Vi64eentiating the Pt'bcbiity o6 EAvwo't

In The MuC-tpopwea.tion FeatuAe Setection P/tob~er, 1

B. Chwvtes Pete,

MatkematLis Vepatmnen~t

Texau6 A 9 M UniLveA&&ty

MV,%ch,, 1974

NAS-9-12777 MOD IS



ABSTRACT

In this note we give a necessary and sufficient condition for the

Gateaux differentiability of the probability of misclassification as a function

of a feature selection matrix B, assuming a maximum likelihood classifier

and normally distributed populations. It is also shown that if the probability

of error has a local minimum at B then it is differentiable at B.
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On Differentiating the Probability of Error in

the Multipopulation Feature Selection Problem, II.

1. Introduction.

Let 1 ,' "...' Im be populations in Rn with a priori probabilities

l' "...' am and multivariate normal conditional density functions,

1 1 T -1
Pi(x) = exp[- 1(x- ) Ti (x-P ] .

(2T)n/2iil 1/2

i = 1, ... , m. If B is a kxn matrix of rank k then the transformed

conditional densities arefor y R ,

1 1 T T -1
Pi(y,B) = k/2 exp[- -(y-Bp i) (B B ) (y-Bpi)].

(2 T7)k/ IBBTI 1/2  2

Let g(B) denote the probability of misclassifying an observation

x s Rn  using the Bayes optimal classifier: classify x in 71 if

(i Pi(Bx, B) a. P.(Bx, B) for each j = 1, ... , m. Then g(B) = 1 - h(B),

where

h(B) = max .P.(y,B)dy.

R



is the probability of correct classification.

If the transformed probability of error is to be used as a feature

selection criterion we require a method for obtaining a kxn matrix B
o

of rank k which minimizes g(B). If B minimizes g(B) then the

Gateaux differential, 12 ,p.178],

g(Bo+sC) - g(B )
6g (B.6 C) = lim

s
s+o

vanishes for all kxn matrices C for which it exists. If 6g(B :C)
o

exists for all kxn matrices C, then g is said to be Gateaux differentiable

at B . Thus it is desireable to have necessary and sufficient conditions for

Gateaux differentiability of g as well as a formula for 6g(B;C).

2. Main Results.

For a given kxn matrix B partition the set {ai.P(x)}m= into disjoint

sets

S 1 = l 11 P1 1 (x), a 1 2 P 1 2 (x), ... , n Pn l (x)}

S = a P rl(x), a r 2 Pr 2 (X), ... , rn P (x)}
r r
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where the S are defined by

*qjPqj (y,B) .qiP qi(y,B) 1 - i,j - nq

a qjP qj(y,B) QiP i(y,B) q J 9

For =, ... , r let

R = {y E Rk jIaP~ 1(y,B) > Cklkl(y,B) k # }.

The R k
R are disjoint open sets which cover R except for a set M of

measure zero.

For a given kxn matrix C write Pij. (y,s) for Pij (y,B+sC) and h(s)

for h(B+sC). That is, h(s) = f k max i P (y,s)dy.
R iji

Theorem 1: h is Gateaux differentiable at B if and only if for each k

T BT
such that R. 0 , i = PJj and B = E P for each i,j n .

Proof: By repeating some of the members of the S 's if necessary, we can

assume n, = n2 = ... = n = no. Thus

h(s) = m max ax a.ij.P..(y,s)dy

max f.(y,s)dy,

R



where f.(y,s) = max a.. P. (y,s)
l1isr i ij

The f.(y,s) have the properties:

1) fl(Y,0) f 2 (,0) E ... fn (y,0)
0

and
at

2) --- (y,0) is defined for all y V M, j = 1,... n . By an argument in

[3], it can be shown that for sufficiently small Isi, the difference quotients

f.(y,s) - f.(y,o)

s

are bounded by an integrable function B(y) for y V M. Hence, for s>0,

h(s) - h(o) ~s imax f.(y,s) - max f.(y,o)]dy

ks s n jIno
Rk

1 max f (y,s) - f (y,o)]dy
k s jn o
R o

f.(y,s) - f.(y,o)
max s dy

k jn o

af.
k 3f j (y,o)dy

3sk o

as s + 0+. On the other hand, for s < 0,

h(s) - h() m (y,s) - f (y,o)
= min dys Rkj n s

3f.

min as (y,o)dy.

k Jn0



as s - 0-. Thus the Gateaut differential h'(0) exists if and only if

af. af.
max as- (y,o) = min -s1-(y,o) a.e.

jin jsno o

That is, if and only if

f. Df.
s (y,o) = (y,o) a.e.

for all i,j < n . For y E R it is readily verified that0

1s(yo) = ai- s (y,o

Hence, h'(0) exists if and only if

a pi y,) = (y,o)

for i,j no, almost all y R , = 1, ... , r.

It is shown in [1], that

P j y,o) = zajPQ (y,o){(y-Bp9 )T(BBT) - 1

[Cpzj + CEZjBT.(BjBT ) -l(y-B 9)]

-tr[CE jBT(Btj BT)-l }.



Since B1,j = Bli, BzjB = B iBT, aj = aki'

aP
T T-

j y ,o ) = aiP i(y,o){(y - BPi) (BE BBT) - I

as ki i Pi 9i

[C1i + CjBT (BZi T)-1 (y - BP9i]

- tr[CZj.BT(BZ iBT) )]}.

If RL P 0, then R9 has positive measure. Thus it is easily seen

that if R 0,

at a--s (y,o) = aL s (y,o) a.e. in R
ki as aj Ds T

if and only if C j = Ci, CEjBT = CZRiB for all i, j 5 no. Thus h

T T
is Gateaux differentiable at B if and only if i = j' B = Cj

v, i,j 5 no , V such that RL < 0. This concludes the proof.

It is clear that if h is Gateaux differentiable at B, then

r
6h(B:C) = Eilil 9 P i(y,B:C)dy

R.
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Thus the Gateaux differential of the probability of error is

r
6g(B:C) = -i 1 il SPil(y,B:C)dy.

1

Theorem 2: If h has a local maximum at B, then h is Gateaux differentia-

ble at B.

Proof: It is evident from the proof of Theorem 1 that for any kxn matrix

C,

h(B+sC) - h(B) h(B+sC) - h(B)
lim sup = lim

s s

= max -(y,o)dy
k n °
R o

and

l h(B+sC) - h(B) h(B+sC) - h(B)lim inf = Ifm
s s

s-o S O-

= min s--lD(y,o)dy.

Rk 0

If h has a maximum at B, then since lim h(BisC) - h( exists,
s-*O-

i sup h(B+sC) - h(B) = li h(B+sC) - h(B)
lim sup lim

s+o s-+o-

= lim inf h(B+sC) - h(B)

s-+o



Thus h is Gateaux differentiable at B. Q.E.D.

3. Concluding Remarks.

The meaning of the necessary and sufficient condition for differentiability

of g(B) becomes a little more obvious when it is applied to the two population

problem. Let r1 and 7F2 be normally distributed populations'in Rn with class

statistics ~a' P1' El and a 2 P 2' E2, respectively.

Case 1: al X2. Then g(B) is differentiable for all B.

Casp 2: al a2' ~ 1 p2. Then g is differentiable at B if and only

if Bo B 2 or BE1 B T  B2 B T

Case 3: al = a2' 1 = 2' 1 - E2 is invertible. Then g is differentia-

T T
ble at B if and only if BE B BE2 B

Case 4: ul = a2' P = 32' E1 - E2 is not invertible. Then g is

T T T T
differentiable at B if and only if BE B BE2B T or E1B = E2B .

As a special case of Case 4, we have the degenerate case in which the

class statistics for 7 1 and 7 2 are the same. Then g is diffcrentiable for

all B and has derivative 0. Finally, we remark that it is mistakenly asserted

in [3] that the condition caiPi(y,B) o~jP.j(y,B) is necessary as well as

sufficient for differentiability of g(B). As the analysis above shows, this

is not even true in the two population probelm.
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