Ti. Asturkey

2mp

(NASA-CR-134248)ON DIFFERENTIATING THEN74-23153PROPABILITY CF EREOR IN THE
MULTIFOPULATION FEATURE SELECTION
PROBLEM, 2 (Houston Univ.)12 p HCJnclas\$4.00CSCL 12A G3/19 37898

PREPARED FOR EARTH OBSERVATION DIVISION, JSC UNDER CONTRACT NAS-9-12777

> 3801 CULLEN BLVD. HOUSTON, TEXAS 77004

Report #31

On Differentiating the Probability of Error In The Multipopulation Feature Selection Problem, II

Ьу

B. Charles Peters Mathematics Department Texas A & M University March, 1974 NAS-9-12777 MOD 1S

•

-

ABSTRACT

.

In this note we give a necessary and sufficient condition for the Gateaux differentiability of the probability of misclassification as a function of a feature selection matrix B, assuming a maximum likelihood classifier and normally distributed populations. It is also shown that if the probability of error has a local minimum at B then it is differentiable at B. On Differentiating the Probability of Error in the Multipopulation Feature Selection Problem, II.

1. Introduction.

Let π_1, \ldots, π_m be populations in \mathbb{R}^n with a priori probabilities $\alpha_1, \ldots, \alpha_m$ and multivariate normal conditional density functions,

$$P_{i}(x) = \frac{1}{(2\pi)^{n/2} |\Sigma_{i}|^{1/2}} \exp\left[-\frac{1}{2}(x-\mu_{i})^{T} \Sigma_{i}^{-1}(x-\mu_{i})\right].$$

i = 1, ..., m. If B is a $k \times n$ matrix of rank k then the transformed conditional densities are, for $y \in R^k$,

$$P_{i}(y,B) = \frac{1}{(2\pi)^{k/2} |B\Sigma_{i}B^{T}|^{1/2}} \exp\left[-\frac{1}{2}(y-B\mu_{i})^{T}(B\Sigma_{i}B^{T})^{-1}(y-B\mu_{i})\right].$$

Let g(B) denote the probability of misclassifying an observation $x \in R^n$ using the Bayes optimal classifier: classify x in π_i if $\alpha_i P_i(Bx, B) \ge \alpha_j P_j(Bx, B)$ for each j = 1, ..., m. Then g(B) = 1 - h(B), where

$$h(B) = \int_{\substack{R^k \\ R^k}} \max_{1 \le i \le m} \alpha_i P_i(y, B) dy.$$

is the probability of correct classification.

If the transformed probability of error is to be used as a feature selection criterion we require a method for obtaining a $k \times n$ matrix B_0 of rank k which minimizes g(B). If B_0 minimizes g(B) then the Gateaux differential, [2,p.178],

$$\delta g (B_{o}; C) = \lim_{s \to o} \frac{g(B_{o}+sC) - g(B_{o})}{s}$$

vanishes for all $k \times n$ matrices C for which it exists. If $\delta g(B_{0};C)_{O}$ exists for all $k \times n$ matrices C, then g is said to be Gateaux differentiable at B_{O} . Thus it is desireable to have necessary and sufficient conditions for Gateaux differentiability of g as well as a formula for $\delta g(B;C)$.

2. Main Results.

For a given $k \times n$ matrix B partition the set $\left\{ \alpha, P \atop i i (x) \right\}_{i=1}^m$ into disjoint sets

$$S_{1} = \{\alpha_{11}P_{11}(x), \alpha_{12}P_{12}(x), \dots, \alpha_{1n_{1}}P_{1n_{1}}(x)\}$$

$$.$$

$$.$$

$$S_{r} = \{\alpha_{r1}P_{r1}(x), \alpha_{r2}P_{r2}(x), \dots, \alpha_{rn_{r}}P_{rn_{r}}(x)\}$$

where the S are defined by

$$\alpha_{qj}P_{qj}(y,B) \equiv \alpha_{qi}P_{qi}(y,B) \qquad 1 \le i,j \le n_{q}$$

$$\alpha_{qj} P_{qj}(y,B) \neq \alpha_{li} P_{li}(y,B) \qquad q \neq l$$

For $l = 1, \ldots, r$ let

$$R_{\ell} = \{ y \in R^{k} | \alpha_{\ell 1} P_{\ell 1}(y, B) > \alpha_{k 1} P_{k 1}(y, B) , \quad k \neq \ell \}.$$

The R_{ℓ} are disjoint open sets which cover R^k except for a set M of measure zero.

For a given $k \times n$ matrix C write $P_{ij}(y,s)$ for $P_{ij}(y,B+sC)$ and h(s) for h(B+sC). That is, $h(s) = \int \max_{\substack{R \\ i,j}} \alpha_{ij} P_{ij}(y,s) dy$.

<u>Theorem</u> 1: h is Gateaux differentiable at B if and only if for each ℓ such that $\mathbf{R}_{\ell} \neq \emptyset$, $\mu_{\ell \mathbf{i}} = \mu_{\ell \mathbf{j}}$ and $\Sigma_{\ell \mathbf{i}} \mathbf{B}^{\mathbf{T}} = \Sigma_{\ell \mathbf{j}} \mathbf{B}^{\mathbf{T}}$ for each $\mathbf{i}, \mathbf{j} \leq \mathbf{n}_{\ell}$.

<u>Proof</u>: By repeating some of the members of the S_q 's if necessary, we can assume $n_1 = n_2 = \dots = n_r = n_o$. Thus

$$h(s) = \int_{R^{k}} \max_{\substack{1 \le j \le n_{o} \\ 1 \le j \le n_{o}}} \max_{\substack{1 \le i \le r \\ j \le n_{o}}} \sup_{\substack{1 \le j \le n_{o}}} f_{j}(y,s) dy,$$

where
$$f_j(y,s) = \max \alpha P_{ij}(y,s)$$

 $1 \le i \le r$

The $f_j(y,s)$ have the properties:

1)
$$f_1(y,0) \equiv f_2(y,0) \equiv \dots \equiv f_n(y,0)$$

.

2) $\frac{\partial f}{\partial s}(y,0)$ is defined for all $y \notin M$, $j = 1, \dots, n_0$. By an argument in [3], it can be shown that for sufficiently small |s|, the difference quotients

$$\frac{f_j(y,s) - f_j(y,o)}{s}$$

are bounded by an integrable function $\beta(y)$ for $y \notin M$. Hence, for s>0,

$$\frac{h(s) - h(o)}{s} = \int_{R^{k}} \frac{1}{s} \max_{j \le n_{o}} f_{j}(y,s) - \max_{j \le n_{o}} f_{j}(y,o) dy$$

$$= \int_{R^{k}} \frac{1}{s} \max_{j \le n_{o}} [f_{j}(y,s) - f_{j}(y,o)] dy$$

$$= \int_{R^{k}} \max_{j \le n_{o}} \frac{f_{j}(y,s) - f_{j}(y,o)}{s} dy$$

$$\Rightarrow \int_{R^{k}} \max_{j \le n_{o}} \frac{\partial f_{j}(y,o) dy}{\partial s}$$

as $s \rightarrow 0+$. On the other hand, for s < 0,

$$\frac{h(s) - h(o)}{s} = \int_{\mathbb{R}^{k}} \min_{j \le n_{o}} \frac{f_{j}(y,s) - f_{j}(y,o)}{s} dy$$

$$\rightarrow \int_{\mathbb{R}^{k}} \min_{j \le n_{o}} \frac{\partial f_{j}}{\partial s}(y,o) dy.$$

as $s \rightarrow 0-$. Thus the Gateaux differential h'(0) exists if and only if

$$\max_{\substack{j \leq n_{o}}} \frac{\partial f_{j}}{\partial s}(y,o) = \min_{\substack{j \leq n_{o}}} \frac{\partial f_{j}}{\partial s}(y,o) \quad a.e.$$

That is, if and only if

$$\frac{\partial f_{j}}{\partial s}(y,o) = \frac{\partial f_{i}}{\partial s}(y,o)$$
 a.e.

for all i, $j \leq n$. For $y \in \mathbb{R}^{k}$ it is readily verified that

$$\frac{\partial f_{i}}{\partial s}(y,o) = \alpha_{li} \frac{\partial P_{li}}{\partial s}(y,o).$$

Hence, h'(0) exists if and only if

$$\alpha_{li} \frac{\partial P_{li}}{\partial s}(y,o) = \alpha_{lj} \frac{\partial P_{lj}}{\partial s}(y,o)$$

for $i, j \leq n_0$, almost all $y \in R^{\ell}$, $\ell = 1, ..., r$. It is shown in [1], that

$$\alpha_{\ell j} \frac{\partial P_{\ell j}}{\partial s} (y, o) = \alpha_{\ell j} P_{\ell j} (y, o) \{ (y - B \mu_{\ell j})^T (B \Sigma_{\ell j} B^T)^{-1}$$
$$[C \mu_{\ell j} + C \Sigma_{\ell j} B^T (B \Sigma_{\ell j} B^T)^{-1} (y - B \mu_{\ell j})]$$
$$- tr [C \Sigma_{\ell j} B^T (B \Sigma_{\ell j} B^T)^{-1}] \}.$$

.

Since
$$B\mu_{\ell j} = B\mu_{\ell i}$$
, $B\Sigma_{\ell j}B^{T} = B\Sigma_{\ell i}B^{T}$, $\alpha_{\ell j} = \alpha_{\ell i}$,
 $\alpha_{\ell j} \frac{\partial P_{\ell j}}{\partial s}(y,o) = \alpha_{\ell i}P_{\ell i}(y,o)\{(y - B\mu_{\ell i})^{T}(B\Sigma_{\ell i}B^{T})^{-1}$
 $[C\mu_{\ell j} + C\Sigma_{\ell j}B^{T}(B\Sigma_{\ell i}B^{T})^{-1}(y - B\mu_{\ell i})]$
 $- tr[C\Sigma_{\ell j}B^{T}(B\Sigma_{\ell i}B^{T})^{-1}]\}.$

If $R_{\ell} \neq \emptyset$, then R_{ℓ} has positive measure. Thus it is easily seen that if $R_{\ell} \neq \emptyset$,

$$\alpha_{li} \frac{\partial P_{li}}{\partial s}(y,o) = \alpha_{lj} \frac{\partial P_{li}}{\partial s}(y,o) \qquad \text{a.e. in } R_{l}$$

if and only if $C\mu_{lj} = C\mu_{li}$, $C\Sigma_{lj}B^{T} = C\Sigma_{li}B^{T}$ for all i, $j \leq n_{o}$. Thus h is Gateaux differentiable at B if and only if $\mu_{li} = \mu_{lj}$, $\Sigma_{li}B^{T} = \Sigma_{lj}B^{T}$ $\forall i, j \leq n_{o}$, $\forall l$ such that $R_{l} \neq \emptyset$. This concludes the proof.

It is clear that if h is Gateaux differentiable at B, then

$$\delta h(B:C) = \sum_{i=1}^{r} \alpha_{i1} \int_{R_{i}} \delta P_{i1}(y,B:C) dy$$

Thus the Gateaux differential of the probability of error is

$$\delta g(B:C) = - \sum_{i=1}^{r} \alpha_{i1} \int_{R_i} \delta P_{i1}(y,B:C) dy.$$

Théorem 2: If h has a local maximum at B, then h is Gateaux differentiable at B.

<u>Proof</u>: It is evident from the proof of Theorem 1 that for any $k \times n$ matrix C,

$$\limsup_{s \to 0} \frac{h(B+sC) - h(B)}{s} = \lim_{s \to 0+} \frac{h(B+sC) - h(B)}{s}$$
$$= \int_{\mathbb{R}^{k}} \max_{j \le n_{0}} \frac{\partial f_{j}}{\partial s}(y, o) dy$$

and

$$\lim_{s \to 0} \inf \frac{h(B+sC) - h(B)}{s} = \lim_{s \to 0^{-}} \frac{h(B+sC) - h(B)}{s}$$
$$= \int \min_{\substack{j \le n_{0} \\ R}} \frac{\partial f_{j}}{\partial s}(y, o) dy.$$

If h has a maximum at B, then since $\lim_{s \to 0^-} \frac{h(B+sC) - h(B)}{s}$ exists,

$$\limsup_{s \to o} \frac{h(B+sC) - h(B)}{s} = \lim_{s \to o-} \frac{h(B+sC) - h(B)}{s}$$

$$= \liminf_{s \to 0} \frac{h(B+sC) - h(B)}{s}$$

Thus h is Gateaux differentiable at B. Q.E.D.

3. Concluding Remarks.

The meaning of the necessary and sufficient condition for differentiability of g(B) becomes a little more obvious when it is applied to the two population problem. Let π_1 and π_2 be normally distributed populations in \mathbb{R}^n with class statistics α_1 , μ_1 , Σ_1 and α_2 , μ_2 , Σ_2 , respectively.

Case 1: $\alpha_1 \neq \alpha_2$. Then g(B) is differentiable for all B.

Case 2: $\alpha_1 = \alpha_2, \ \mu_1 \neq \mu_2$. Then g is differentiable at B if and only if $B\mu_1 \neq B\mu_2$ or $B\Sigma_1 B^T \neq B\Sigma_2 B^T$.

Case 3: $\alpha_1 = \alpha_2$, $\mu_1 = \mu_2$, $\Sigma_1 - \Sigma_2$ is invertible. Then g is differentiable at B if and only if $B\Sigma_1 B^T \neq B\Sigma_2 B^T$.

Case 4: $\alpha_1 = \alpha_2$, $\mu_1 = \mu_2$, $\Sigma_1 - \Sigma_2$ is not invertible. Then g is differentiable at B if and only if $B\Sigma_1 B^T \neq B\Sigma_2 B^T$ or $\Sigma_1 B^T = \Sigma_2 B^T$.

As a special case of Case 4, we have the degenerate case in which the class statistics for π_1 and π_2 are the same. Then g is differentiable for all B and has derivative 0. Finally, we remark that it is mistakenly asserted in [3] that the condition $\alpha_i P_i(y,B) \neq \alpha_j P_j(y,B)$ is necessary as well as sufficient for differentiability of g(B). As the analysis above shows, this is not even true in the two population probelm.

REFERENCES

- L.F. Guseman, Jr. and H.F. Walker, On Minimizing the Probability of Misclassification for Linear Feature Selection, JSC Internal Technical Note. JSC-08412, August, 1973.
- 2. David G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, Inc. New York, 1969.
- B. C. Peters, Jr., On Differentiating the Probability of Error in the Multipopulation Feature Selection Problem, Report <u>#30</u>, NAS-9-12777, University of Houston, Department of Mathematics, February, 1974.