

PREPARED FOR
EARTH OBSERVATION DIVISION, JSC
UNDER
CONTRACT NAS-9-12777

3801 CULLEN BLVD.
Report \#31
On Differentiating the Probability of Error
In The Multipopulation Feature Selection Problem, II
by
B. Charles Peters Mathematics Department
Texas A \& M University
March, 1974
NAS-9-12777 MOD $1 S$

In this note we give a necessary and sufficient condition for the Gateaux differentiability of the probability of misclassification as a function of a feature selection matrix B, assuming a maximum likelihood classifier and normally distributed populations. It is also shown that if the probability of error has a local minimum at B then it is differentiable at B.

On Differentiating the Probability of Error in the Multipopulation Feature Selection Problem, II.

1. Introduction.

Let π_{1}, \ldots, π_{m} be populations in R^{n} with a priori probabilities $\alpha_{1}, \ldots, \alpha_{m}$ and multivariate normal conditional density functions,

$$
P_{i}(x)=\frac{1}{(2 \pi)^{n / 2}\left|\sum_{i}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(x-\mu_{i}\right)^{T_{\Sigma_{i}}^{-1}}\left(x-\mu_{i}\right)\right]
$$

$i=1, \ldots, m$. If B is a $k \times n$ matrix of rank k then the transformed conditional densities are, for $y \in R^{k}$,

$$
P_{i}(y, B)=\frac{1}{(2 \pi)^{k / 2}\left|B \Sigma_{i} B^{T}\right|^{1 / 2}} \exp \left[-\frac{1}{2}\left(y-B \mu_{i}\right)^{T}\left(B \Sigma_{i} B^{T}\right)^{-1}\left(y-B \mu_{i}\right)\right]
$$

Let $g(B)$ denote the probability of misclassifying an observation $x \in R^{n}$ using the Bayes optimal classifier: classify x in π_{i} if $\alpha_{i} P_{i}(B x, B) \geq \alpha_{j} P_{j}(B x, B)$ for each $j=1, \ldots, m$. Then $g(B)=1-h(B)$, where

$$
h(B)=\int_{R^{k}} \max _{1 \leq i \leq m} \alpha_{i} P_{i}(y, B) d y
$$

is the probability of correct classification.
If the transformed probability of error is to be used as a feature selection criterion we require a method for obtaining a $k \times n$ matrix B_{o} of rank k which minimizes $g(B)$. If B_{o} minimizes $g(B)$ then the Gateaux differential, [2,p.178],

$$
\delta g\left(B_{j} ; C\right)=\lim _{s \rightarrow 0} \frac{g\left(B_{o}+s C\right)-g\left(B_{o}\right)}{s}
$$

vanishes for all $k \times n$ matrices C for which it exists. If $\delta g\left(B_{0}: C\right)$ exists for all $k \times n$ matrices C, then g is sald to be Gateaux differentiable at B_{0}. Thus it is desireable to have necessary and sufficient conditions for Gateaux differentiability of g as well as a formula for $\delta g(B ; C)$.
2. Main Results.

For a given $k \times n$ matrix B partition the set $\left\{\alpha_{i} P_{i}(x)\right\}_{i=1}^{m}$ into disjoint sets

$$
\begin{aligned}
& S_{1}=\left\{\alpha_{11} P_{11}(x), \alpha_{12} p_{12}(x), \ldots, \alpha_{\ln _{1}} P_{1 n_{1}}(x)\right\} \\
& \cdot \\
& \cdot \\
& S_{r}=\left\{\alpha_{r 1} p_{r 1}(x), \alpha_{r 2} P_{r 2}(x), \ldots, \alpha_{r n_{r}} P_{r n}(x)\right\}
\end{aligned}
$$

where the S_{q} are defined by

$$
\begin{array}{ll}
\alpha_{q j} P_{q j}(y, B) \equiv \alpha_{q i} P_{q i}(y, B) & 1 \leq i, j \leq n_{q} \\
\alpha_{q j} P_{q j}(y, B) \not \equiv \alpha_{\ell i} P_{\ell i}(y, B) & q \neq \ell
\end{array}
$$

For $\ell=1, \ldots, r$ let

$$
R_{\ell}=\left\{y \in R^{k} \mid \alpha_{\ell 1} P_{\ell 1}(y, B)>\alpha_{k 1} P_{k 1}(y, B) \quad, \quad k \neq \ell\right\} .
$$

The R_{ℓ} are disjoint open sets which cover R^{k} except for a set M of measure zero.

For a given $k x_{n}$ matrix C write $P_{i j}(y, s)$ for $P_{i j}(y, B+s C)$ and $h(s)$ for $h(B+s C)$. That is, $h(s)=\int_{R} \max _{1, j} \alpha_{i j} P_{i j}(y, s) d y$.

Theorem 1: h is Gateaux differentiable at B if and only if for each ℓ such that $R_{\ell} \neq \emptyset, \quad \mu_{\ell i}=\mu_{\ell j}$ and $\Sigma_{\ell i} B^{T}=\Sigma_{\ell j} B^{T}$ for each $i, j \leq n_{\ell}$.

Proof: By repeating some of the members of the S_{q} 's if necessary, we can assume $n_{1}=n_{2}=\ldots=n_{r}=n_{o}$. Thus

$$
\begin{aligned}
h(s)= & \int_{R} \max _{1 \leq j \leq n_{o}} \max _{1 \leq i \leq r} \alpha_{i j} P_{i j}(y, s) d y \\
& \int_{R^{k}} \max _{1 \leq j \leq n_{o}} f_{j}(y, s) d y
\end{aligned}
$$

where $\tilde{f}_{j}(y, s)=\max _{l \leq i \leq r} \alpha_{i j} P_{i j}(y, s)$

The $f_{j}(y, s)$ have the properties:

1) $f_{1}(y, 0) \equiv f_{2}(y, 0) \equiv \ldots \equiv f_{n}(y, 0)$
and
2) $\frac{\partial f_{j}}{\partial s}(y, 0)$ is defined for all $y \notin M, j=1, \ldots n_{0}$. By an argument in [3], it can be shown that for sufficiently small $|s|$, the difference quotients

$$
\frac{f_{j}(y, s)-f_{j}(y, o)}{s}
$$

are bounded by an integrable function $\beta(y)$ for $y \notin M$. Hence, for $s>0$,

$$
\begin{aligned}
\frac{h(s)-h(o)}{s} & \left.=\int_{R_{k}} \frac{1}{s} \max _{j \leq n_{o}} f_{j}(y, s)-\max _{j \leq n_{o}} f_{j}(y, o)\right] d y \\
& \left.=\int_{R_{k}} \frac{1}{s} \max _{j \leq n_{o}} f_{j}(y, s)-f_{j}(y, o)\right] d y \\
& =\int_{R^{k}} \max _{j \leq n_{o}} \frac{f_{j}(y, s)-f_{j}(y, o)}{s} d y \\
& \rightarrow \int_{R_{k}} \max _{j \leq n_{o}}^{\partial s} \quad
\end{aligned}
$$

as $s \rightarrow 0+$. On the other hand, for $s<0$,

$$
\begin{aligned}
\frac{h(s)-h(o)}{s} & =\int_{R_{k} \min _{j \leq n_{o}} \frac{f_{j}(y, s)-f_{j}(y, o)}{s}} d y \\
& \rightarrow \int_{R_{k}} \min _{j \leq n_{o}} \frac{\partial f_{j}}{\partial s}(y, o) d y .
\end{aligned}
$$

as $s \rightarrow 0-$. Thus the Gateaux differential $h^{\prime}(0)$ exists if and only if

$$
\max _{j \leq n_{0}} \frac{\partial f_{j}}{\partial s}(y, o)=\min _{j \leq n_{0}} \frac{\partial f_{j}}{\partial s}(y, o) \quad \text { a.e. }
$$

That is, if and only if

$$
\frac{\partial f_{j}}{\partial s}(y, o)=\frac{\partial f_{i}}{\partial s}(y, o) \quad \text { a.e. }
$$

for all $i, j \leq n_{0}$. For $y \in R^{\ell}$ it is readily verified that

$$
\frac{\partial f_{i}}{\partial s}(y, 0)=\alpha_{\ell i} \frac{\partial P_{\ell i}}{\partial s}(y, 0) .
$$

Hence, $h^{\prime}(0)$ exists if and only if

$$
\alpha_{\ell i} \frac{\partial P_{\ell i}}{\partial s}(y, o)=\alpha_{\ell j} \frac{\partial P_{\ell j}}{\partial s}(y, o)
$$

for $i, j \leq n_{o}$, almost all $y \varepsilon R^{\ell}, \ell=1, \ldots, r$.
It is shown in [1], that

$$
\begin{aligned}
& \alpha_{\ell j} \frac{\partial P_{\ell j}}{\partial s}(y, o)=\alpha_{\ell j} P_{\ell j}(y, o)\left\{\left(y-B \mu_{\ell j}\right)^{T}\left(B \Sigma_{\ell j} B^{T}\right)^{-1}\right. \\
& {\left[C \mu_{\ell j}+C \Sigma_{\ell j} B^{T}\left(B \Sigma_{\ell j} B^{T}\right)^{-1}\left(y-B \mu_{\ell j}\right)\right]} \\
& \left.\quad-\operatorname{tr}\left[C \Sigma_{\ell j} B^{T}\left(B \Sigma_{\ell j} B^{T}\right)^{-1}\right]\right\} .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Since } \quad B \mu_{\ell j}=B \mu_{\ell i}, \quad B \Sigma_{\ell j} B^{T}=B \Sigma_{\ell i} B^{T}, \quad \alpha_{\ell j}=\alpha_{\ell i}, \\
& \alpha_{\ell j} \frac{\partial P_{\ell j}}{\partial s}(y, o)=\alpha_{\ell i} P_{\ell i}(y, o)\left\{\left(y-B \mu_{\ell i}\right)^{T}\left(B \Sigma_{\ell i} B^{T}\right)^{-1}\right. \\
& {\left[C \mu_{\ell j}+C \Sigma_{\ell j} B^{T}\left(B \Sigma_{\ell i} B^{T}\right)^{-1}\left(y-B \mu_{\ell i}\right)\right]} \\
& \left.\quad-\operatorname{tr}\left[C \Sigma_{\ell j} B^{T}\left(B \Sigma_{\ell i} B^{T}\right)^{-1}\right]\right\} .
\end{aligned}
$$

If $R_{\ell} \neq \emptyset$, then R_{ℓ} has positive measure. Thus it is easily seen that if $R_{\ell} \neq \emptyset$,

$$
\alpha_{\ell i} \frac{\partial P_{\ell i}}{\partial s}(y, 0)=\alpha_{\ell j} \frac{\partial P_{\ell i}}{\partial s}(y, o)
$$

$$
\text { a.e. in } \mathrm{R}_{\ell}
$$

if and only if $C \mu_{\ell j}=C \mu_{\ell i}, C \Sigma_{\ell j} B^{T}=C \Sigma_{\ell i} B^{T}$ for all $i, j \leq n_{o}$. Thus h is Gateaux differentiable at B if and only if $\mu_{\ell 1}=\mu_{\ell j}, \Sigma_{\ell i} B^{T}=\Sigma_{\ell j} B^{T}$ $\forall i, j \leq n_{o}, \forall \ell$ such that $R_{\ell} \neq \emptyset$. This concludes the proof. It is clear that if h is Gateaux differentiable at B, then

$$
\delta h(B: C)=\sum_{i=1}^{\mathrm{E}} \alpha_{i 1} \int_{R_{i}} \delta P_{i 1}(y, B: C) d y
$$

Thus the Gateaux differential of the probability of error is

$$
\delta g(B: C)=-\sum_{i=1}^{r} \alpha_{i 1} \int_{R_{i}} \delta P_{i 1}(y, B: C) d y
$$

Theorem 2: If h has a local maximum at B, then h is Gateaux differentiable at B.

Proof: It is evident from the proof of Theorem 1 that for any $k \times n$ matrix C,

$$
\begin{gathered}
{\lim \sup _{s \rightarrow 0}}^{\frac{h(B+s C)-h(B)}{s}=\lim _{s \rightarrow 0+} \frac{h(B+s C)-h(B)}{s}} \\
=\int_{R} \max _{j \leq n_{o}} \frac{\partial f}{\partial s}(y, o) d y
\end{gathered}
$$

and

$$
\begin{aligned}
& \lim _{s \rightarrow 0} \inf \frac{h(B+s C)-h(B)}{s}=\lim _{s \rightarrow 0-} \frac{h(B+s C)-h(B)}{s} \\
& \quad=\int_{R^{k}} \min _{o} \frac{\partial f}{} \frac{j}{\partial s}(y ; 0) d y
\end{aligned}
$$

If h has a maximum at B, then since $\lim _{s \rightarrow 0-} \frac{h(B+s C)-h(B)}{s}$ exists,
$\lim _{s \rightarrow 0} \frac{h(B+s C)-h(B)}{s}=\lim _{s \rightarrow 0-} \frac{h(B+s C)-h(B)}{s}$

$$
=\lim _{s \rightarrow 0} \frac{h(B+s C)-h(B)}{s}
$$

Thus h is Gateaux differentiable at B. Q.E.D.
3. Concluding Remarks.

The meaning of the necessary and sufficient condition for differentiability of $g(B)$ becomes a little more obvious when it is applied to the two population problem. Let π_{1} aid π_{2} be normally distributed populations'in R^{n} with class statistics $\alpha_{1}, \mu_{1}, \Sigma_{1}$ and $\alpha_{2}, \mu_{2}, \Sigma_{2}$, respectively.

Case 1: $\quad \alpha_{1} \neq \alpha_{2}$. Then $g(B)$ is differentiable for all B.
Case 2: $\alpha_{1}=\alpha_{2}, \mu_{1} \neq \mu_{2}$. Then g is differentiable at B if and only if $B \mu_{1} \neq B \mu_{2}$ or $B \Sigma_{1} B^{T} \neq B \Sigma_{2} B^{T}$.

Case 3: $\alpha_{1}=\alpha_{2}, \mu_{1}=\mu_{2}, \Sigma_{1}-\Sigma_{2}$ is invertible. Then g is differentiable at B if and only if $B \Sigma_{1} B^{T} \neq B \Sigma_{2} B^{T}$.

Case 4: $\alpha_{1}=\alpha_{2}, \mu_{1}=\mu_{2}, \Sigma_{1}-\Sigma_{2}$ is not invertible. Then g is differentiable at B if and only if $B \Sigma_{1} B^{T} \neq B \Sigma_{2} B^{T}$ or $\Sigma_{1} B^{T}=\Sigma_{2} B^{T}$.

As a special case of Case 4 , we have the degenerate case in which the class statistics for π_{1} and π_{2} are the same. Then g is differentiable for all B and has derivative 0 . Finally, we remark that it is mistakenly asserted in [3] that the condition $\alpha_{i} P_{i}(y, B) \not \equiv \alpha_{j} P_{j}(y, B)$ is necessary as well as sufficient for differentiability of $g(B)$. As the analysis above shows, this is not even true in the two population probelm.

REFERENCES

1. L.F. Guseman, Jr. and H.F. Walker, On Minimizing the Probability of Misclassification for Linear Feature Selection, JSC Internal Technical Note. JSC-08412, August, 1973.
2. David G. Luenberger, Optimization by Vector Space Methods, John Wiley and Sons, Inc. New York, 1969.
3. B. C. Peters, Jr., On Differentiating the Probability of Error in the Multipopulation Feature Selection Problem, Report 韭30. NAS-9-12777, University of Houston, Department of Mathematics, February, 1974.
