NASA TM X-3003

NASATECHNICAL MEMORANDUM

STAR ADAPTATION FOR TWO ALGORITHMS USED ON SERIAL COMPUTERS

by Lona M. Howser and Jules J. Lambiotte, Jr.
Langley Research Center
Hampton, Va. 23665

1. Report No. NASA TM X-3003	2. Government Accession No.		3. Recipient's Catalog No.
4. Title and Subtitle STAR ADAPTATION FOR TWO ALGORITHMS USED ON SERIAL COMPUTERS			5. Report Date June 1974
			6. Performing Organization Code
7. Author(s) Lona M. Howser and Jules J. Lambiotte, Jr.			8. Performing Organization Report No. L-9380
9. Performing Organization Name and Address NASA Langley Research Center Hampton, Va. 23665			10. Work Unit No. $023-11-16-05$
			11. Contract or Grant No.
12. Sponsoring Agency Name and Address National Aeronautics and Space Administration Washington, D.C. 20546			13 Type of Report and Period Covered Technical Memorandum
			14. Sponsoring Agency Code
15. Supplementary Notes			
16. Abstract Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. This paper describes how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.			
17. Key Words (Suggested by Author(s)) STAR computer Gaussian elimination Numerical integration		18. Distribution Statement Unclassified - Unlimited STAR Category 19	
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	21. No. of Pages 28 30	$\begin{array}{r} \text { 22. Price** } \\ \$ 3.25 \end{array}$

[^0]
STAR ADAPTATION FOR TWO ALGORITHMS

USED ON SERIAL COMPUTERS

By Lona M. Howser and Jules J. Lambiotte, Jr.

Langley Research Center

SUMMARY

Two representative algorithms used on a serial computer and presently executed on the Control Data Corporation 6000 computer were adapted to execute efficiently on the Control Data STAR-100 computer. Gaussian elimination for the solution of simultaneous linear equations and the Gauss-Legendre quadrature formula for the approximation of an integral are the two algorithms discussed. This paper describes how the programs were adapted for STAR and why these adaptations were necessary to obtain an efficient STAR program. Some points to consider when adapting an algorithm for STAR are discussed. Program listings of the 6000 version coded in 6000 FORTRAN, the adapted STAR version coded in 6000 FORTRAN, and the STAR version coded in STAR FORTRAN are presented in the appendices.

INTRODUCTION

Many algorithms which are presently used on the Control Data Corporation 6000 computer and executed in a serial mode are suitable for the Control Data STAR-100 computer. However, if these algorithms were converted line-by-line to the STAR coding, it is not likely that they would make an efficient STAR program and might actually produce code which would run inefficiently on a vector computer such as STAR. The 6000 code will need to be adapted for STAR to produce an efficient STAR code. This paper discusses two algorithms of this nature. A comparison of the 6000 coding and STAR coding of the identical algorithm is made for two different algorithms: one for the solution of simultaneous linear equations using Gaussian elimination with partial pivoting and the other for numerical evaluation of an integral using the Gauss-Legendre quadrature formula. The paper discusses how the 6000 program was adapted for STAR, the reasons for the adaptations, and some factors which should be considered when adapting a program. FORTRAN codings of the algorithms are presented in the appendices. The STAR codings use the FORTRAN language defined in reference 1.

AIDS FOR ADAPTING AN ALGORITHM

When beginning to adapt an algorithm for STAR, it is not enough to look at just segments in the 6000 coding, but it is necessary to look at the entire algorithm to get the total picture. Some questions to pose are: What is the final result?, What is needed at various steps in the algorithm?, and What is computed independent of other steps and what is repeated?

It will be helpful to review a few definitions and terms which are important to remember when formulating a program for the STAR computer. (For a comprehensive discussion of STAR architecture and hardware instructions, see ref. 2.)
(1) A vector is a set of elements stored in contiguous locations in memory. (Array and vector are used interchangeably in this discussion.)
(2) Vector timing is the time required by the central processing unit to process a vector. It is obtained by the equation $T=S+l / c$, where

T time in clocks (1 clock represents 40 nanoseconds)
S startup time, different for each vector instruction or macro
$l \quad$ length of vector (number of elements in the vector)
c
constant depending on the type of instruction and whether the vector elements are each stored in 32- or 64 -bit words
(3) A page is a block of storage which contains data or instructions. A program is made up of one or more pages. (See ref. 3.)
(4) A program's working set is the smallest set of pages which must be in central memory for the program to operate efficiently.
(5) A page fault occurs when a program references a page which is not contained in central memory; that is, it is not in the program's present working set.
(6) Paging is the process of bringing a page into central memory or releasing a page.

When adapting the 6000 code to the STAR code, the following factors are important:
(1) Use vector instructions. This requirement may mean reordering steps in an algorithm so that elements in contiguous locations can be operated on or it may mean rearranging storage.
(2) Use long vectors. If a choice is available whether to use many short vectors or a few long vectors, use the long vectors unless the overhead to create the long vectors
is too great. This procedure reduces the effect of the startup time associated with each vector instruction.
(3) Avoid or use sparingly coding which will generate costly vector instructions and macros, that is, costly as compared with some of the faster vector instructions. Refer to the most current timings available. Examples of such instructions and macros are divide, transmit indexed list, and dot product.
(4) Avoid unnecessary paging problems by creating a reasonable working set for the program. When working with a particular array, perform all the operations possible with this array before working with another array. This factor will be more critical with long arrays, but it is a good habit to form and should help reduce page faults.
(5) Investigate the feasibility of creating more answers than are really needed. Because of the high result rate of vector instructions, it may be advantageous to use an approach which generates a larger number of results than are needed in order to avoid scalar computation. This idea, however, should be used cautiously. (See the discussion in ref. 4 on parallel algorithms for tri-diagonal equation solvers.)

ADAPTATION OF AN ALGORITHM FOR THE SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS

A Langley Research Center 6000 library subroutine GELIM (see listing in appendix A) uses Gaussian elimination with partial pivoting to obtain the solution of the set of simultaneous linear equations, $A X=B$, where A is the square matrix of coefficients of order n, X is a vector of unknowns of length n, and B is a constant matrix of order $n \times r$ where r is the number of right-hand sides. The matrix A is factored into a lower unit triangular matrix and an upper triangular matrix. (For numerical details of the algorithm, see any numerical analysis text, such as ref.5.) The subroutine also contains an option for the evaluation of the determinant of matrix A.

The version of GELIM on the Langley Research Center 6000 library performs Gaussian elimination as generally defined by operating on one row of A at a time. At the kth step, column k is searched for the largest element; then row k and the row which contained the largest element are interchanged. The pivot element is then used to obtain zeroes in all positions in its column below the diagonal. This procedure requires multiplying, a row of A by the appropriate scalar and subtracting this product from another row of A.

Since these row modifications are the usual way the steps in Gaussian elimination are thought of being performed, it would seem normal that for STAR the matrix would be
stored by rows. This method of storage means that elements in one row of a matrix would be stored in contiguous locations so a row of the matrix could be a vector and the steps would be performed by using vector instructions.

In the present version of STAR FORTRAN, two-dimensional arrays are stored columnwise and an optional storage arrangement by rows is not available. This column storage means that elements in one row of matrix A are not stored in contiguous locations and modifying the matrix a row at a time would mean that few vector instructions could be used. This fact makes it desirable to see whether Gaussian elimination can be performed by modifying matrix A by using columns so that vector instructions can be used. As will be shown below, Gaussian elimination can be performed by operating on columns of the matrix.

An option to store matrices by rows may be available in a later version of STAR FORTRAN, but when the 6000 code was modified to perform Gaussian elimination by columns, many advantages for the column storage over the row storage appeared; therefore, column storage is recommended. The following section will show how Gaussian elimination can be performed by using vector instructions when the matrix is stored by columns and will identify these advantages. The section entitled "Row Storage" shows the sequence of steps performed in the row storage which is identical to the present 6000 algorithm.

Column Storage

Gaussian elimination can be performed by modifying one column of the matrix at a time. This is done by a reordering of the operations from the usual row operations. Accomplishing the triangularization of matrix A by performing the work on columns makes efficient use of STAR and does the identical arithmetic normally done when performing the work on rows.

The kth step of the triangularization can be performed as shown below, where n is the number of equations and r is the number of right-hand sides. All references to the kth column refer to column entries below the diagonal.
(1) Divide the kth column of A by the $a_{k k}$ element and store in the kth column. This is a vector divided by a scalar:

$$
\mathrm{a}_{\mathrm{ik}}=\frac{\mathrm{a}_{\mathrm{ik}}}{\mathrm{a}_{\mathrm{kk}}}
$$

$$
(\mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n})
$$

(2) Multiply the kth column by the a_{kj} element and subtract this result from the j th column. This is a vector multiplied by a scalar and then a vector subtract:

$$
a_{i j}=a_{i j}-a_{i k} a_{k j} \quad(i=k+1, \ldots, n)
$$

(3) Repeat the sequence of vector instructions in step (2) for the columns of A $(\mathrm{j}=\mathrm{k}+1, \ldots, \mathrm{n})$.
(4) Multiply the kth column of A by the $b_{k j}$ element of B and subtract this result from the j th column of B. This is a vector multiplied by a scalar and then a vector subtract:

$$
b_{i j}=b_{i j}-a_{i k} b_{k j}
$$

$$
(\mathrm{i}=\mathrm{k}+1, \ldots, \mathrm{n})
$$

(5) Repeat the vector instructions in step (4) for the remaining right-hand sides of $B(j=1,2, \ldots, r)$.
(6) Repeat steps (1) to (5) until the triangularization of matrix A is complete ($\mathrm{k}=1,2$, . ., $\mathrm{n}-1$).

Often a subroutine for the solution of simultaneous equations requires the user to append the right-hand sides to the original matrix. The column storage arrangement allows the right-hand sides to be done as separate vector instructions without having to append the right-hand sides to the original matrix. This arrangement is less cumbersome for the user since the right-hand side can be a separate array.

GELIM uses partial pivoting which means that rows will need to be interchanged at times. At the kth step, column k is searched for the largest element and the row containing the largest element and the kth row are interchanged. The column search to find the largest element can easily make use of vector instructions, but the row interchange presents a problem. Elements of rows will need to be interchanged and none of them will be stored in contiguous locations. Not only are they not contiguously stored, but for a very large matrix a column could use one or more pages. For a large matrix it is unlikely that a program will be allowed a working set large enough to contain the entire matrix. This situation would mean that the row elements to be interchanged would be on separate pages and would have to be brought into and then out of core only to reference two elements on the page. Then when the column modifications are performed, the same pages will need to be brought back into core again. This procedure would be extremely inefficient.

A form of indexing could be set up to achieve row interchange, but it would need one of the more time-consuming instructions (transmit indexed list) and the referencing across page boundaries would still be present. No vector instruction can help perform the interchange efficiently; thus, a scalar interchange will be just as efficient.

The possible paging problem can be alleviated by not interchanging an entire row at one time as it is performed on the present 6000 version. At the kth step when the largest element in column k is found, interchange the two elements only in column k . When working with the juin column, both column k and column j are needed. Both of the elements which need interchanging are in the jth column which will be in the program's working set at that time. Therefore, before beginning the operations on the jth column, interchange the two elements. In this way, the page or pages containing that column will need to be brought into core only once per step of the algorithm.

The subroutine also computes the value of the determinant of matrix A which is equal to the product of the elements of the diagonal of the triangular matrix. In the 6000 version, the product is computed after the triangularization is completed. For the STAR, this computation presents a similar situation as the rows interchange; the diagonal elements may be on separate pages and are not stored contiguously. Therefore, vector instructions cannot be utilized. The product will be scalar multiplication, but after the kth step has been completed, the partial product can be formed by using the diagonal element of column k while column k is still in the program's working set. This grouping of row interchange, triangularization of the matrix, and evaluation of the determinant should create an efficient working set for the program with a minimum of paging.

The remaining task of the subroutine is to perform the back substitution. Back substitution generally uses the dot product of a row and the solution vector. This method is used on the 6000 version, but presents problems for STAR column storage since it uses the costly dot product macro and references elements of one array by rows and references elements of the other array by columns. This problem can be eliminated by reordering the steps needed to perform back substitution and all the work can be performed on columns.

The steps to find the kth unknown by back substitution by using vector instructions but not using the dot product are as follows:
(1) A scalar divide is always necessary, $b_{k j}=\frac{b_{k j}}{a_{k k}}$. This step obtains the kth unknown for the jth right-hand side and stores the unknown in the right-hand side vector.
(2) Multiply column k of A by the k th unknown obtained in step (1) and subtract this result from the j th column of B. This is a vector multiplied by a scalar and then a vector subtract:

$$
b_{i j}=b_{i j}-a_{i k} b_{k j} \quad(i=1,2, \ldots, k-1)
$$

(3) Steps (1) and (2) are repeated for all the right-hand sides (columns of B) ($\mathrm{j}=1,2, \ldots, r$).
(4) Steps (1), (2), and (3) are repeated for all the unknowns ($k=n, \ldots, 2,1$). When $k=1$, step (2) is omitted.

Row Storage

The way of performing the steps in Gaussian elimination as commonly seen in texts is by operating with rows. The elements in one row would be stored contiguously and the triangularization of matrix A would make efficient use of vector instructions.

To make the triangularization most efficient, the right-hand sides must be appended to the matrix A for row storage. The length of the longest vector used would be $\mathrm{n}+\mathrm{r}-1$ where n is the number of unknowns and r is the number of right-hand sides. If a separate array is used for the right-hand side, two identical vector instructions would be needed for each operation, one of length n and one of length r. This method would be inefficient because the startup times would be multiplied by a factor of 2 and if r is 1 , it would mean using vector instructions of length 1. Appending the right-hand side is a disadvantage in that it is awkward for the user.

Step k of the triangularization when the matrix is stored by rows is as follows:
(1) Perform a scalar divide, $a_{i k} / a_{k k}$ and store in $a_{i k}$.
(2) Multiply row k of A by $a_{i k}$ and subtract from the ith row. This is a vector multiplied by a scalar and then a vector subtract:

$$
a_{i j}=a_{i j}-a_{i k} a_{k j} \quad(j=k+1, \ldots, n+r)
$$

(3) Repeat steps (1) and (2) for all rows ($\mathrm{i}=\mathrm{k}+1$, . . ., n).
(4) Repeat steps (1), (2), and (3) for all columns until the triangularization is complete ($\mathrm{k}=1,2, . ., \mathrm{n}-1$).

The row interchanges necessary for partial pivoting are very easy when the matrix is stored by rows, but the column search will be scalar operations. In addition, there will be no way to avoid possible paging problems for a large matrix during the column search. The elements on each row of the column may be on separate pages, but the search has to be completed before any row operations can begin.

The determinant evaluation could be performed the same way as in the column storage, after a step in the Gaussian elimination is completed. The pages for a large matrix would not have to be brought in only to get one element for the evaluation of the determinant, but the information would be used while the page was still in memory.

When performing the back substitution, if the matrix is stored by rows, there is no way of using the scheme devised to eliminate the need for the dot product macro. The
back substitution references a row of the matrix and a column of the right-hand side. To be able to use vector instructions, a vector would need to be created which would contain the elements in the column. This method would be expensive and inefficient, and it is likely that the vector code would be no better than the scalar code. Either would be inefficient here, because of the reiferencing of a row and a column.

Table I summarizes the comparison of the two storage arrangements at the various steps in the algorithm. The column storage is more advantageous for STAR than the row storage arrangement.

TABLE I.- COMPARISON OF ROWWISE AND COLUMNWISE STORAGE OF MATRIX

Step	Rowwise	Columnwise
Column search	Scalar: no way to avoid possible paging problems	Vector
Row interchange	Vector: easy	Scalar: can avoid possible paging problems
Triangularization	Vector: usual way it is done	Vector: with steps reordered
Back substitution	Dot product macro: costly, referencing row and column, possibly not vectorizable	Vectors: columns only, no dot product, more efficient
Determinant evaluation	Scalar	Scalar
Treatment of right-hand sides	Must be appended to matrix for efficient vector use	Can be separate variable and still use vectors efficiently

Flow Chart

Subroutine GELIM was adapted for use on the STAR computer by using the same numerical method that was used on the 6000 computer. The matrix is stored by columns. By reordering computational steps, vector instructions can be used and a reasonable working set for the program established. Figure 1 shows a flow chart of the 6000 and STAR versions of the algorithm.

Figure 1.- Flow chart of 6000 and STAR version of segments of Gaussian elimination. An asterisk denotes use of vector instructions.

Figure 1.- Concluded.

Appendix A contains coding of the versions of the algorithm. The 6000 version and the STAR version coded in 6000 FORTRAN and in STAR FORTRAN are included. The calling sequence of the subroutine remains the same and no additional storage was necessary.

Additional Comment

An additional interesting fact was noted when the STAR version of subroutine GELIM was executed on the 6000 computer. The STAR version ran faster than the 6000 version; as a result, there was about a 10 -percent decrease in execution time.

ADAPTATION OF A NUMERICAL INTEGRATION ALGORITHM

Subroutine GLEGEN (see listing in appendix B) uses the Gauss-Legendre quadrature formula to evaluate simultaneously an array of integrals

$$
\int_{a}^{b} f_{k}(x) d x \quad(k=1,2, \ldots, N)
$$

where N is the number of functions. This subroutine is an example of the manner in which vectors rather than single variables can be used on STAR. As in the preceding example, the sequence of instructions is not the same as in the 6000 version. The subroutine subdivides the integration interval (a, b) into $N Q$ panels and the Gauss-Legendre quadrature formula is applied to each panel by using a 3 - or 10 -point formula. The resulting integral I_{k} is

$$
I_{k}=\Delta \sum_{j=1}^{N Q} \sum_{i=1}^{N P} r_{i} f_{k}\left(p_{i}\right) \quad(k=1,2, \ldots, N)
$$

where
$f_{k} \quad$ function
$\mathrm{NQ} \quad$ number of quadratures or panels
NP number of points per quadrature
$\mathrm{p}_{\mathrm{i}}=l_{\mathrm{j}}+\Delta \mathrm{x}_{\mathrm{i}}$ (where l_{j} is the lower limit of integration for quadrature j)
$r_{i} \quad$ weights for the point formula used
$\Delta=\frac{b-a}{N Q}$
(For a complete discussion of the Gauss-Legendre quadrature formula, see any numerical analysis text, such as ref. 5.)

The 6000 version of the subroutine obtains the first point in a quadrature, evaluates the function at that point, multiplies the function by the appropriate weight, and adds the product to a sum. It continues in the same manner until all the points have been evaluated and used in that quadrature; then the process is repeated for the remaining quadratures until the integral has been evaluated over the desired range. The sum is then multiplied by the appropriate delta to obtain the value of the integral.

Looking at this sequence of instructions shows that much of this work is actually computed independently. The STAR version takes advantage of this. All the information required to compute the points is known so all the points for all the quadratures can be computed to form a long array. This array can be passed to the subroutine to evaluate the functions and a savings can be obtained by using vector instructions to evaluate the functions. This routine will now return an array of function values. All the weights are known so an array can be formed which contains the weights for all the quadratures. The remaining task is to multiply the weights by the functions and sum the results. This computation can use the dot product macro; even though it is costly compared with most vector instructions, it is less expensive than a vector multiply followed by scalar adds. This formulation requires the use of the dot product only once. A scalar multiply of the sum by the appropriate delta completes the integral evaluation.

The weights and abscissas for each quadrature are identical; therefore, the length of these arrays in the 6000 version is equal to 10 for the 10 -point formula. A version of the subroutine using short vectors could have been formed. The STAR version could have used vector instructions and computed results using one quadrature at a time with the same array of weights and array length as in the 6000 version. Computing the results one quadrature at a time means that the startup time associated with each vector instruction and the startup times used in the function evaluation also would be multiplied by the number of quadratures used. Depending upon the nature of the function, this amount of time could be significant.

Vector transmits could be used to create a long vector of weights which is really a repetition of the short vector. The long vector is

$$
\left(r_{1}, r_{2}, \ldots, r_{m}, r_{1}, r_{2}, \ldots, r_{m}, \ldots, r_{1}, r_{2}, \ldots, r_{m}\right)
$$

where m depends upon the quadrature formula and q is the number of quadratures. The cost of setting up this vector seems to be minimal when compared with the multiplication of the startup times which would have prevailed in the short-vector version.

A problem of this type (excluding the function evaluation) would probably not produce a significant paging problem. All the arrays are one dimensional and will most likely not be extremely long. However, consideration should still be given to the working set which is created. Currently, there is a tendency to initialize variables at the beginning of the program. The vector of weights could be created at the beginning of the program, but they are not used until after the functions are evaluated; therefore, the vector is not created until just before it is used. Forming the vector of weights and then immediately using them results in less paging; therefore, a better working set is created than would have been created by initializing the vector.

Subroutine GLEGEN was adapted for the STAR computer by using the same numerical method as was used on the 6000. An efficient STAR routine was obtained by using long vectors and reordering the sequence of instructions. Figure 2 shows a flow chart of the 6000 and STAR versions.

Appendix B contains the coding of the two versions of the algorithm. The 6000 version and the STAR version in 6000 FORTRAN and STAR FORTRAN are included. Notice that the calling sequence of the STAR version reflects the use of long arrays in that more working space is needed.

CONCLUDING REMARKS

Two algorithms used on the Control Data Corporation 6000 computer were adapted for use on the STAR computer. This adaptation required a rethinking of the flow of the entire problem. Array variables are used where the 6000 code used a single-value variable and the steps in the algorithm are not computed in the same order for the two versions. This reordering of steps and changes in variable assignments allow vector instructions to be used and a reasonable working set can be established for the program; thereby efficient use of the STAR computer and some implied improvements for the Control Data Corporation 6000 computer are made.

Langley Research Center,
National Aeronautics and Space Administration, Hampton, Va., February 20, 1974.

Figure 2.- Flow chart of 6000 and STAR versions of Gauss-Legendre quadrature formula for numerical integration. An asterisk denotes use of vector instructions.

APPENDIX A

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM FOR THE SOLUTION OF A SET OF SIMULTANEOUS EQUATIONS

6000 Version in 6000 FORTRAN

APPENDIX A - Continued

```
32
    A(II,K)=A(II,K)-X3*A(I,K)
    OO 33 K=1,NR4S
33 B(II,K)=R(II,K)-X3*R(I,K)
31 continue
200 cmNTINuE
    IF(IOP.F0.OIGO TO 221
=
******STALE THE DETERMINANT
=
    DO 122 I=1,N
    oIVUTl=A(I,1)
    10J5 IF(ABS(DETERN)-R.1)103U.1010.1010
    1010 OETERM=DETERM/RI
    ICCALE=\SCALE+1
    IF(ABS(DETERM)-R1)IUÓO.llU20,1J20
    1020 DETERM=OETERM/RI
    ISCALE= ISCALt+1
    cu Tn 1060
    1030 IF(ABS(DETERM)-R211040.104U.1U60
    1040 DETERM=DETERM*RI
    ISCAIE= ISTALE-1
    IF(ABS(DETERM)-R<)1050,1650,1060
1050 DETERM=DETEQM*R1
    I SCALE=ISCALE-1
    1060 IF(ABS(PIVOT1)-R1)1090.1070.1070
1070 PTVOTI=PIVOTI/RI
    ISC.ALE=1SC.ALE+1
    IF(ABS(PIVOTI)-R1)320.1080.10a0
    1080 PIVOTI=PIVDTI/RI
    ISCALE=ISCALE+I
    GO TO 320
    109J IF(ABS(PIVOT1)-R 2)2000,2000,320
    7OCO PIVOTI=PIVOTI*R1
    I SCALE=ISCALE-1
    IF(ABS(PIVOTI)-P2)2010,2010,320
20:0 DIVCT1=PIVOTI*R1
    ISCALE=1SCALE-1
    320 DETERM=OETERM*PIVOTI
122 CONTINUE
F
******PPERFORM BACK SUBSTITUTION
221 CONTINUE
    DO 57 IC=1.NRHS
    B{N,IC)=B(N,IC)/A(N,N}
    CONTINUE
    0061 KK=1,NM1
    I =N-KK
    I = I + 1
    DO 61 J=1,NRHS
    SUM=8(I.J)
    OO62 K=I1.N
    62 SUM=SUM-A(I,K)*B(K,J)
61 B(I,J)=SUM/A(I,I)
    DETERM=DETERM*SIGN
    RETURN
1000 IF(A(1,1).EQ.0) GO TO 60
    00 1500 J=1,NRHS
1500 B(1,J)=B(1,J)/A(1,1)
    OETERM=A(1.1)
    RETURN
    END
```

GELIM410
GELIM420
GELIM430
GELIM440
GELIM4.jO
GELIM46O
GELiníid
GELIM450
GELIM4y0
GELIMSUO
GELIM510
GELIMS20
GELDM530
GELIM540
GELIM5'jo
GELIMEOO
GELIMb/0
GELIM530
GELIMS*0
GELIMOJO
GELIMOLO
GELIM620
GELIM630
GELIMo40
GELIMGSO
GELIMO6O
GELIMOTO
GEL IMGOU
GELIMGYU
GELIM7U
GELIM710
GELIM720
GELIM730
GELIM740
GELIM75L
GELIMToo
GELIM710
GELIMTdO
GELIM790
GEL IM800
GELIM810
GEL IMB 20
GEL IM830
GELIM840
GELIH850
GELIM860
GELIM870
GELIM880
GEL IM900
GELIM910
GELIM920
GEL IM930
GELIM940
GELIM950
GELIM960
GELIM970
GEL IM975
GELIM980
GEL IM990
GEL IM995
GELM1000

STAR Version in 6000 FORTRAN


```
    135 A(K,J)=A(K,J)-A(K,I)*A(I, J)
    140 CONTINUE
        IF IIDP.EO.OI GO TO 200
#
C*****SCALE THE DETERMINANT
C
    PIVOTI=A(I.I)
    1005 IF(ABS(DETERM)-R1)1030,1010,1010
    1010 DETERM=DETERM/RI
        I SCALE= ISCALE+1
        IF(ABS(DETERM)-R11,1060,1020,1020
    1020 DETERM=OETERM/R1
        I SCALE=ISCALE+I
        GO TO 1060
    1030 1F(ABS(DETERM)-R2)1040.1040.1060
    1040 DETERM=DETERM*R1
        ISCALE=I SCALE-1
        IF(ABS(DETERM)-R2)1050,1050.1060
    1050 DETERM=DETERM*R1
        I SCALE=ISCALE-1
    1060 IF(ABSIPIVOTI)-R1)1090,1070,1070
    1070 PIVOTI=PIVOTI/RI
        ISCALE=ISCALE+I
        IFIA8S(PIVOTI)-R11320.1080,1080
    1080 PIVOTI=PIVOTI/RI
        I SCALE=ISCALE+1
        go ro 320
    1090 IF(ABS(PIVOT I)-R2)2000,2000,320
    2000 PIVOTI=PIVOTI*RI
        I SCALE= ISCALE-1
        IFIABS(PIVOTII-R2)2010,2010,320
    2010 PIVOTI=PIVOTI*RI
        I SCALE=I SCALE-1
こ*****OBTAIN PARTIAL PRODUCT FOR DETERHINANT
    320 DETERM= DETERM*P I VOTI
        IF (I.NE.NMII GO TO 200
        IF (ID.EO.1) GO TO 200
        PIVOTI=A(N.N)
        1D=1
        GO TO 1005
200 CONTINUE
L
こ*****PERFORM BACK SUBSTITUTION
    340 CONTINUE
        DO 450 KK=1.N
        K=NP1-KK
[*****SCALAR DIVIDE
            DO 430 J=1,NRHS
            B(K,J)=B(K,J)/A(K,K)
            IF (K.EO.1) GO TO 430
            KMl=K-1
こ*****COLUMN K BY UNKNOWN AND SUBTRACT
            DO 420 I=1,KMI
    420 B(I,J)=B(I,J) - AlI.K)& B(K,J)
    430 CONTINUE
    450 CONTINUE
        DETERM=DETERM*SIGN
        RETURN
    600 IF (A(1.,1).EQ.0) GO TO 60
        DO 800 J=L,NRHS
    800 B(1,J)=B(2,J)/A(1,1)
        DETERM=A(1,1)
        RETURN
        END
```

GIL60610
GIL60620
GIL60630
GIL60640
GIL60650
GIL60660
GIL6́0́fo
GIL60680
GIL60690
GIL60700
GIL60710
G1L60720
GIL60730
GIL60740
GIL60750
GIL60760
GIL60770
GIL60780
GIL60790
GIL60800
GIL60810
GIL60820
GIL60830
GIL60840
GIL60850
GIL60860
GIL60870
GIL60880
GIL60890
GIL60900
GIL60910
GIL60920
GIL60930
GIL60940
GIL60950
GIL60960
GIL60970
GIL60980
Gil60990
GIL61000
GIL61010
GIL61020
GIL61030
GIL61040
GIL61050
GIL61000
GIL61070
GIL61080
GIL61090
GIL61100
GIL61110
GIL6 1120
GIL61130
GIL61140
GILOL150
GIL61160
GIL61170
GIL61180
GIL61190
GIL61200
GIL61210

APPENDIX A - Continued

STAR Version in STAR FORTRAN

APPENDIX A－Concluded

```
    134 A(IPI:N,J)=A(IPI:N:J)-A(IPI:N.I)* A(I,J)
    IF IIDP.EQ.O\ GO TO 200
~
O*****SCALE THE DETERMINANT
Z
    PIVOTI=A{I,I}
1005 IFIABS(DETERM)-R1)1030.1010.1010
1010 DETERM=DETERM/R1.
    I SCALE=I SCALE+I
    IF(ABS(DETERM)-R1)1060.1020.1020
1020 DETERM= DETERM/R1
    ISCALE=ISCALE+I
    GO TO 1060
1030 IF(ABS(DETERM)-R211040,1040,1060
1040 DETERM=DETERM*R1
    I SCALE= ISCALE-1
    IF(ABS(DETERM)-R2)1050.1050.1060
1050 DETERM=DETERM*R1
    I SCALE=ISCALE-1
    1060 IF(ABSIPIVOTII-RII1090,1070.1070
1070 PIVOTI=PIVOTI/RI
    I SCALE=I SCALE+I
    IF{ABS{PIVOTI)-R11320.1080.1080
    1080 PIVOTI=PIVOTI/RI
    ISCALE=ISCALE+1
    GO TO 320
    1090 IF(ABSIPIVOTI)-R212000.2000.320
2000 P\VOTI=PIVOTI*RI
    I SC ALE=I SCALE-1
    IF(ABS(PIVOTI)-R2)2010.2010.320
    2010 PIVOTI=PIVOTI*RI
    I SCALE= I SCALE-1
これ****OBTAIN PARTIAL PRODUCT FOR DETERMINANT
    320 DETERM=DETERM*PI VOTI
        IF II.NE,NMLI GO TO 200
        IF (ID.EO.1) GO TO 200
        PIVOTI=A(N,N)
        I D=1
        GO TD 1005
200 CONTINUE
C
こ*****PERFORM BACK SUBSTITUTIDN
    340 CONTINUE
        DO 450 KK=1.N
            K=NP1-KK
C*****京SCALAR DIVIDE
    OO 430 Jx1,NRHS GLIS1040
    B(K,J)=B(K,J)/A(K,K)
    IF (K.EO.I) GO TO 430
    KMl=K-1
弓*****COLUMN K BY UNKNOWN AND SUBTRACT
    B(1:KML,J)= B{1:KM1,J! -A{1:KM1,K)= B(K,J)
    430 CONTINUE
    450 CONTINUE
        DETERM=DETERM*SIGN
        RETURN
    600 IF (A(1,1).EO.0\ GO TO 60
        B(1-1:NRHS)= B(L:1:NRHS)/A(1,1)
        DETERM=A\1.1)
        RETURN
        END
```

GLIS0600
GLISO610
GLIS0620
GLIS0630
GLIS0640
GLIS0650
GLIS0660
GLIS0670
GLIS0680
GLIS0690
GLIS0700
GLISO710
GLIS0720
GLIS0730
GLISO740
GLIS0750
GL1S0760
GLIS0770
GLIS0780
GLIS0790
GLI Siv800
GLISOB10
GLISO820
GLISOB30
GLISO840
GLIS0850
GLIS0800
GLIS0870
GLISO880
GLIS0890
GLIS0900
GLIS0910
GLIS0920
GLIS0930
GLIS0940
GLIS0950
GLIS0960
GLIS0970
GLIS0980
GLIS0990
GLIS10U0
GLIS1010
GLIS1020
GLIS1030
GLIS1040
GLIS1050
GLIS1060
GLIS1070
GLIS1080
GLIS1090
GLIS1100
GLIS1110
GLISL120
GLIS1130
GLIS1140
GLIS1150
GLISI160
GLIS1170

APPENDIX B

FORTRAN CODING OF 6000 AND STAR VERSIONS OF ALGORITHM
FOR NUMERICAL INTEGRATION EVALUATION

6000 Version in 6000 FORTRAN

APPENDIX B - Continued


```
\Xi
DIMENSION U1(3),U2(10),R1(3),R2(10),U(13),R(13),SUM(1),FOFX(1)
E EQUIVALENCE (U1(1).U(1)),(U2(1).U(4)1.(R1(1),R(1)!,(R2(1).R(4))
    DATA UI/=112701665379259..5..887298334620742/,U2/.013046735741414.GLEGN 52
        L.06 1468316655507..160295215850488.. 283302302935376..42556283050918GLEGN 53
            25..574437169490816..716697697064624.0839704784149512..932531683344GLEGN 54
            3493..986953264258586/,R1/. 277777777777778..444444444444444,.277777GLEGN 55
        4777777778/.R2/.033335672154344.0.074725674575291..109543181257991, GLEGN S6
            5.134633359654998*.147762112357377..147762112357377..13463335965499GLEGN 57
            68..109543181257991.0.074725674575291.0.033335672154344/ GLEGN S8
\approx
    ICOOE = O
        IF(NFX.LE.O)ICODE = 1
        IF(NO.LE.OIICODE = 3
        IF(NPQ.EO.3)GO TO 5
            IF(NPU.NE.1OIICODE = 2
        5 IF\ICODE.GT.OIRETURN
            J=3
            IF (NPO .EQ. 3) J=0
            DELT=(B-A)/FLDAT(ND)
            DC 10 I = 1.NFX
        10 SuM(1) = 0.0
OO 80 K=1,NO
            XI = K - 1
            FF = A t XI*OELT
            DO 80 L=1,NPO
            UU=U(J+L)*DELT +FF
            CALL FX(UU,FOFX)
            FACT=R(J+L)
    DO 80 JB=2,NFX
    80 SUM(JB) =FOFX(JB)#FACT+SUM(JB)
        0O 100 II=1,NFX
100 SUM(III = SUM(II)*DELT
    RETURN
END
    GLEGN 59
    GLEGN OO
GLEGN 61
GLEGN }6
                                    GLEGN }6
GLEGN 65
GLEGN 66
GLEGN }6
GLEGN 71
                GLEGN 48
                GLEGN 49
=
GLEGN }6
GLEGN }6
GLEGN }6
GLEGN 70
GLEGN }7
GLEGN }7
GLEGN }7
GLEGN 75
GLEGN 76
GLEGN 78
RETURN SIMIIIOOELT
N}7
GLEGN 80
GLEGN 81
MRN GLEGN 82
```

STAR Version in 6000 FORTRAN
SUBROUTINE GLEGENSISUM, ICODE, A, B, FX, FOFX, NFX,NO,NPO,UU, FF, UD, MAXIIGLENSOOI

APPENDIX B - Continued

APPENDIX B - Continued

```
C*****COMPUTE FIRSI POINT IN EACH QUADRATURE
    OO 30 K=1.NO GLE6S084
    XI =K-1
    30 FF(K) =A + XI*DELT
= [REATE VECTOR OF ALL POINTS FOR ALL QUAORATURES GLEGSO8T
    DO 40 K=1,NO
    DQ +0 K=1,NQ
    DO 35I=1,NPO
    35 UU(K1+I) = FF(K)+ UD(I)
    40 CONTINUE
= evaluate function at all poinNS
= NOTE CHANGE IN CALLING SEQUENCE FOR FUNCTION EVALUATION SUBROUTINE
CALL FXS(UU,FOFX,MAXI,NT)
CREATE VECTOR OF WEIGHTS
        DO 50 K=1,NQ
        K1 = {K-1|*NPQ
0045 I= 1,NPQ
45 UU(Kl+I) = R(J+I)
5 0 ~ C O N T I N U E ~
DO 80 I = 1.NFX
SUM(I)=0.0
DO }70\textrm{K}=1.N
70 SUM(II= SUM(I) +UU(K)* FOFX(K,II
SUM(I) = DELT * SUM(II
8 0 ~ C O N T I N U E
    RETURN
    END
GLE6S085
GLE6S086
GLE6S087
    GLEGSO88
GLE6S089
GLE6SOSO
GLE6S091
GLEOSO92
    GLE6SO93
GLE6SO94
GLE65095
GLE6S096
GLE6S097
GLE6S098
GLE6S099
GLE6S100
GLE6S101
GLEGS102
GLE6S103
GLE6S104
GLESS105
GLE6S100
GLE6S107
    GLE6S108
GLEGS109
```


STAR Version in STAR FORTRAN

APPENDDX B - Continued


```
                                    APPENDIX B - Concluded
: NOTE CHANGE IN CALLING SEOUENCE FOR FUNCTION EVALUATION SUBROUTINE GLENSO95
        CALL FXS(UU,FOFX,MAXI,NT) GLENSOY6
~ CREATE VECTOR OF WEIGHTS GLENSO97
        DO 50 K=1,NO
        K1 =(K-1)*NPQ GLENS099
        NK = K+ NPQ GLENSIOO
        UU{K1+1:NK)=R{JI:NJ) GLENSIO1
    50 CONTINUE GLENS102
    c THESE STATEMENTS CAN bE REPLACED BY DOT PRODUCT fUNCTION IF AVAILABLEGLENSIO3
C SUCHAS GLENS1O4
` SUMII) = DOTP (UUII:NT),FOFX(I:NT, I)
=
**
            DO 80 I=1.NFX
            SUM(II=0.0
            DO 70 K=1,NT
    70 SUM(I)= SUM(I) +UU(K)* FOFX(K,I)
    SUM(II = DELT * SUM(I)
    80 CONTINUE
こ**
            RETURN
    END
        SUMII) = DOTP (UUII:NT),FOFX(I:NT, I) GLENSLO5
        GLENS100
        GLENS107
                GLENS108
                GLENS109
                            GLENS110
GLENS111
                            GLENS112
GLENSII3
!
- NOTE CHANGE IN CALLING SEOUEN
        ATE VECTOR OF WEIGHTS
        GLENSO98
GLENS115
```



```
    GLENS116
```


REFERENCES

1. Anon.: Control Data STAR Computer System FORTRAN Reference Manual. 60384500 A, Control Data Corp., c. 1973.
2. Anon.: Control Data STAR-100 Computer System Hardware Reference Manual. 60256000 06, Control Data Corp., c. 1973.
3. Denning, Peter J.: Virtual Memory. Comput. Surv., vol. 2, no. 3, Sept. 1970, pp. 153-189.
4. Lambiotte, Jules J., Jr.; and Howser, Lona M.: Vectorization on the STAR Computer of Several Numerical Methods for a Fluid Flow Problem. NASA TN D-7545, 1974.
5. Hildebrand, F. B.: Introduction to Numerical Analysis. McGraw-Hill Book Co., Inc., 1956.

[^0]: *For sale by the National Technical Information Service, Springfiald, Virginia 22151

