AIRLINE RETURN-ON-INVESTMENT MODEL FOR TECHNOLOGY EVALUATION

FINAL REPORT

May 1974

Submitted to National Aeronautics and Space Administration

LANGLEY RESEARCH CENTER
Hampton, Virginia
Prepared Under
Contract NAS 1-11343

Prepared by
GENERAL DYNAMICS
CONVAIR AEROSPACE DIVISION
San Diego, California

TABLE OF CONTENTS

Section Page
1 INTRODUCTION 1-1
2 ANALYTICAL DERIVATION 2-1
2.1 AIRPLANE SIZING TECHNIQUE 2-1
2.2 DOC (DIRECT OPERATING COST) 2-25
2.3 ROI Module (Return-On-Investment) 2-28
3 COMPUTER PROGRAM 3-1
3.1 PROGRAM ORGANIZATION 3-1
3.2 DESCRIPTION OF SUBROUTINES 3-1
3.3 DICTIONARY OF VARIABLES 3-6
4 PROGRAM OPERATION AND INSTRUCTIONS 4-1
5 SAMPLE RUN 5-1

LIST OF FIGURES

Figure		Page
1-1	TEKVAL Program Flow	1-2
2-1	Range - Payload Design Point	2-2
2-2	Design Flight Profile	2-3
2-3	Sequence of Operations	2-5
2-4	Fuselage Layout	2-6
2-5	Tail Volume Coefficients	2-9
2-6	Wing Fillet Geometry for Wetted Area Determination	2-11
2-7	Climb and Descent Schedule	2-20
2-8	Compressibility Drag Increments	2-22
2-9	Annual Utilization	2-29
3-1	TEKVAL Program Organization	3-2
3-2	SIZE Subroutine Structure	3-3
3-3	DOC Subroutine Structure	3-4
3-4	ROI Subroutine Structure	3-4
4-1	Deck Setup for Sequential Operation	4-5.
4-2	Deck Setup for Individual Module Operation	4-6
5-1	City-Pair Traffic Data Card Format	5-2
LIST OF TABLES		
Table		
2-1	Weight Estimating Relationships	2-15
2-2	Summary of Terms	2-32
3-1	Dictionary of Variables	3-7
3-2	Dictionary of Variables	3-13
3-3	Dictionary of Variables	3-16
4-1	NAMELIST Input Labels	4-1
4-2	Input Requirements	4-2

SECTION 1

INTRODUCTION

This report presents the derivation, description, and operating instructions for a computer program which measures the economic value of advanced technology features applied to long range commercial passenger aircraft. The program consists of three modules; an airplane sizing routine, a direct operating cost routine, and an airline return-on-investment routine. These modules are linked (as shown in Figure 1-1) such that they may be operated sequentially or individually, with one routine generating the input for the next or with the option of externally specifying the input for either of the economic routines.

The program, labeled TEKVAL, was written by General Dynamics/Convair under NASA/LRC Contract No. NAS1-11343. The concept for TEKVAL grew out of Convair's participation in the Advanced Transport Technology (ATT) studies, also sponsored by NASA/LRC, in 1971-72. That study examined the potential benefits to commercial transports of supercritical aerodynamics, advanced propulsion with reduced noise, composite structure, and active control systems combined with reduced static stability. Configurations were optimized for maximum return-oninvestment to an airline operating a fleet of such airplanes over a selected route structure; an intermediate step required the computation of direct operating cost as a function of distance for each configuration.

During the course of the ATT study, a very simple airplane sizing technique was developed, based on the Brequet range equation. For this contract, that sizing technique has been greatly expanded and combined with the formerly separate DOC and ROI programs to produce TEKVAL. The derivation of TEKVAL draws heavily on ATT study results to derive factors which reflect the impact of the above mentioned advanced technologies as an integral feature of this program.

The computer output of the SIZE routine consists of two pages. The first page lists the principal input specifications followed by derived dimensions and geometry and aerodynamic and performance parameters. The second page is a weight statement.

The DOC module also provides two pages of output. The first is a detailed breakout of labor and material manufacturing costs corresponding to the above weights statement. The second page is a detailed listing of the various elements of the ATA direct operating costs formula computed as a function of distance. In the DOC program, the user has the option of an alternate summary cost equation referenced to AMPR weight; when utilizing this option, the first output page is replaced by a summary cost statement at the head of the DOC output.

Figure 1-1. TEKVAL Program Flow

The first page of output from the ROI section repeats a number of input constants, a few basic airplane design parameters, and a listing of block time, and includes DOC and passenger fares as functions of distance. The next page(s) shows a breakout of passenger traffic, load factor, operating costs, income, profit, and ROI for each city-pair of the input set of operating routes. This breakout is followed by a total system summary of the same parameters. At the option of the user, the individual city pair listings may be suppressed.

It should be noted that program input and output utilize the English system of units. However, for the purposes of this report all dimensions, including those associated with input and output parameters will be shown in terms of the scientific international system of units with the English equivalent in parenthesis.

SECTION 2

ANALYTIC DERIVATION

2.1 AIRPLANE SIZING TECHNIQUE

The airplane sizing technique is based on an inverse solution of the Brequet range equation. Airplane takeoff gross weight is derived as a function of payload weight and cruise conditions. Airplanes are sized for that corner of the range-payload curve (Figure 2-1) where maximum fuel capacity is required to carry the full passenger payload over the design range, constrained by a maximum takeoff weight limit. The assumed flight profile is shown in Figure 2-2. The airplane cruises at constant Mach number, continually increasing altitude to remain at the optimum lift-to-drag (L/D) ratio. Engines are sized to provide the necessary cruise thrust-to-weight ratio (T/W $=\mathrm{D} / \mathrm{L}$) at the initial cruise point. Takeoff performance is not computed; however, static thrust-to-weight provides a useful indication of expected field lengths via reference to existing commercial aircraft performance.

The Brequet range equation is written as

$$
\begin{equation*}
\mathrm{R}=\frac{\mathrm{V}_{\mathrm{t}}(\mathrm{~L} / \mathrm{D})}{\mathrm{c}^{\prime}} \ln \left(\mathrm{W}_{\mathrm{o}} / \mathrm{W}_{1}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{aligned}
& \mathrm{R}=\text { Range } \mathrm{km}(\mathrm{~nm}) \\
& \mathrm{V}_{\mathrm{t}}=\text { True airspeed } \mathrm{km} / \mathrm{hr}(\mathrm{kt}) \\
& \mathrm{L} / \mathrm{D}=\text { Lift-to-drag ratio } \\
& \mathrm{c}^{\prime}=\text { Thrust specific fuel consumption } \mathrm{kg} / \mathrm{N}-\mathrm{hr} \quad(\mathrm{lbm} / \mathrm{lb}-\mathrm{hr}) \\
& \mathrm{W}_{\mathrm{o}}=\text { Initial cruise gross weight } \mathrm{kg}(\mathrm{lb}) \\
& \mathrm{W}_{1}=\text { Final cruise gross weight } \mathrm{kg}(\mathrm{lb}) .
\end{aligned}
$$

This equation, derived in most basic aerodynamics texts, is applicable only to cruise flight, the difference between W_{0} and W_{1} being the weight of fuel used in flying the distance, R. In order to compute gross takeoff weight (GW), equation (1) is solved for the initial cruise weight, W_{0}, to which is added takeoff and climb fuel weights ($\mathrm{W}_{\mathrm{f}_{\text {to }}}$ and $W_{f_{c l}}$, respectively):

$$
\begin{equation*}
\mathrm{GW}=\mathrm{W}_{1} \cdot \exp \left[\frac{\mathrm{Rc}^{\prime}}{\mathrm{V}_{\mathrm{t}}(\mathrm{~L} / \mathrm{D})}\right]+\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{f}} \tag{2}
\end{equation*}
$$

Figure 2-1. Range - Payload Design Point

Figure 2-2. Design Flight Profile

The range, R, is the design range less climb and descent distances. The final cruise weight, W_{1}, is the sum of operating weight empty, payload, and reserve and descent fuel weights.

The program employs an empirical expression to generate an initial estimate of takeoff gross weight. A fuselage layout is derived from payload capacity and seating dimensions specified to the program. An airplane empty weight is computed from a large set of empirical relationships, using engines scaled to a given static thrust/weight ratio. Climb and descent performance are computed to give these distance and fuel increments. Finally, a takeoff gross weight is extracted via equation (2). A single iteration is employed for improved wing and engine sizing, and subsystem weight computations. The computation procedure is illustrated in Figure 2-3, which also constitutes a computer flow chart. The numbered paragraphs which follow correspond to the like numbered boxes in Figure 2-3. In general, simple geometric computations have not been listed in this derivation. Reference to the computer program listing and dictionary will clarify these operations.

1. Fuselage Layout - The sizing process begins by generating a fuselage layout to enclose the required seating arrangement (see Figure 2-4). Floor dimensions of the coach section are determined first to set fuselage diameter; external diameter is made 10 percent greater than floor width to allow for wall thickness and lost space. First class section length is determined and one diameter is added to the length of these two sections to account for galley, wardrobe and lavatory space.

The sum of these three sections make up the straight portion of the fuselage. The cockpit and tailcone areas are referred to as tapered sections; their combined length is estimated as a specified number of fuselage diameters. For area ruled fuselages, the length of the straight section is increased by 25 percent and an extra $1 / 3$ diameter is added to the length of the tapered sections: both of these constants were derived by reference to ATT study configuration layouts. The several equations used in this section are merely arithmetic manipulations of geometric input data concerning seating dimensions and arrangements. They can easily be followed by reference to the program listing and definition of terms. The principal output values of this section are:
$\mathrm{D}_{\text {fus }}=$ Fuselage external diameter $m(\mathrm{ft})$
$\mathrm{L}_{\text {st }}=$ Length of constant diameter section $m(\mathrm{ft})$
$\mathrm{L}_{\mathrm{tpr}}=$ Length of tapered nose and tail sections $m(\mathrm{ft})$.
2. Initial Gross Weight Estimate - Empirical expressions were derived relating gross weight/payload weight ratio to design range (R) and Mach number for several potential technology combinations. The basic equation for gross weight/payload weight ratio is:

Figure 2-3. Sequence of Operations

Figure 2-4. Fuselage Layout

$$
\begin{equation*}
\mathrm{GW} / \mathrm{W}_{\mathrm{pl}}=(3+1.3 \mathrm{R} / 1000) \mathrm{k}_{\text {tech }} \tag{3}
\end{equation*}
$$

For design Mach numbers (M) greater than 0.9, equation (3) is multiplied by the factor $\left[1+20(\mathrm{M}-0.9)^{2}\right]$: Aerodynamic and structural technology is reflected' in the factor $\mathrm{k}_{\text {tech }}$ which has the following set of values:

Aerodynamics Conventional Supercritical
Structure

Light Alloy	1.1	1.0
Composite	1.0	0.9

3. Initial Engine Sizing - Representative baseline engine performance must be provided to the model in the form of tables of net thrust and specific fuel consumption vs. Mach number and altitude. Also required are the engine sea level static thrust rating, basic weight, and nacelle diameter. All of these values pertain to an engine of a particular size. The program computes an engine scale factor by which all engine performance, weight, and dimensions are scaled up or down to match the thrust required at the design condition.

An initial estimate of engine scale (ES) is made so as to give a static thrust-toweight ratio as specified by input. Engine weight and nacelle diameter are scaled via the relations

$$
\begin{equation*}
\mathrm{D} / \mathrm{D}_{\mathrm{o}}=(\mathrm{ES})^{0.5} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
W / W_{o}=(E S)^{1.11} \tag{5}
\end{equation*}
$$

where D_{0} and W_{o} are the diameter and weight values for the 1.0 scale engine. These relationships should hold over an engine scale range of $0.5-2.0$; beyond this range a different bas eline engine should be selected.
4. Wing Sizing - Wing area is computed from gross weight and wing loading. Wing dimensions of span, root and tip chords, and mean aerodynamic chord (m.a.c.) are computed from area and specified aspect ratio and taper ratio (see program listing). Wing sweep angle is given at the $1 / 4 \mathrm{~m} . \mathrm{a} . \mathrm{c}$. and is translated to the leading edge for use in computing wing thickness ratios. For conventional and supercritical airfoils, thickness/chord ratio (t / c) is related to design Mach number and leading edge sweep angle ($\Lambda_{1 \mathrm{e}}$) by the expressions

$$
\begin{equation*}
\text { conventional: } \mathrm{t} / \mathrm{c}=0.802-\mathrm{M}\left(\operatorname{Cos} \Lambda_{l \mathrm{e}}\right)^{0.6775} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { supercritical: } \mathrm{t} / \mathrm{c}=0.896-\mathrm{M}\left(\operatorname{Cos} \Lambda_{\mathrm{le}}\right)^{0.6775} . \tag{7}
\end{equation*}
$$

5. Tail Sizing - The longitudinal locations of wing and tail surface m.a.c.'s are given as fractions of total fuselage length. From these, tail arm lengths are determined. The tail volume coefficients of Figure 2-5 are then employed to compute horizontal and vertical tail exposed areas. In the case of a fin-mounted engine such as on the McDonnell-Douglas $\mathrm{DC}-10$, vertical tail area is reduced by the projected area of the nacelle. Because of its relative length, the diameter of a fin-mounted nacelle is approximately 20 percent greater than a podded wing or fuselage-mounted installation. This factor and a nacelle length/diameter ratio are combined to compute nacelle projected.
6. Initial Cruise Lift/Drag Ratio (L/D) - This parameter is required for subsequent engine sizing; it also represents a good measure of the aerodynamic efficiency of the total airplane and is included in the output listing. Cruise L / D is computed as the mathematically equivalent ratio of lift/drag coefficients $\left(C_{\ell} / C_{d}\right)$.

Lift coefficient $\left(\mathrm{C}_{\ell}\right)$ at initial cruise weight is first estimated by the equation

$$
\begin{equation*}
\mathrm{C}_{\ell}=0.95(\mathrm{~W} / \mathrm{S}) / 1481 \delta \mathrm{M}^{2} \tag{8}
\end{equation*}
$$

where

$$
\mathrm{W} / \mathrm{S}=\text { Design takeoff wing loading } \mathrm{N} / \mathrm{m}^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)
$$

and $\delta=$ Atmospheric pressure ratio at initial cruise altitude.

The factor 0.95 is inserted as an estimate of the ratio of gross weights at initial cruise and takeoff conditions. For the second program iteration, this factor is modified by the results of the first pass. A table of pressure ratio vs. altitude yields the value of δ for the inputted initial cruise altitude.

The drag coefficient $\left(\mathrm{C}_{\mathrm{d}}\right)$ at initial cruise conditions is measured by the expression

$$
\begin{equation*}
C_{d}=C_{f e}\left(A / S_{w}\right) \tag{9}
\end{equation*}
$$

with

$$
C_{f e}=\text { Equivalent skin friction coefficient (input) }
$$

Horizontal:

Without active
control system: $\quad V_{h}=0.75$
With active
control system: $\quad V_{h}=0.60$

Vertical:

Figure 2-5. Tail Volume Coefficients.

$$
\mathrm{A}=\text { Total airplane wetted area } \mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)
$$

and $S_{W}=$ Wing area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$.
Total airplane wetted area is the sum of the surface areas of the fuselage, wing, tail, and nacelles and pylons. Fuselage gross wetted area ($A_{\text {fus }}$) is approximated by

$$
\begin{equation*}
A_{\text {fus }}=\pi D_{\text {fus }}\left(L_{\text {st }}+0.7 L_{\text {tpr }}\right) \tag{10}
\end{equation*}
$$

where fuselage dimensional parameters were specified early. Wing root fairings, or gloves, cover an appreciable portion of the fuselage side surfaces; these masked areas must be subtracted from gross area to prevent an overestimate of airplane drag. The cross-sectional area of an airfoil shape (A_{cs}) can be estimated by

$$
A_{c s}=0.7 c^{2}(t / c)
$$

where c is the airfoil chord and t its thickness. Figure 2-6 illustrates the geometric terms employed in defining wing glove dimensions. The wing root is assumed to intersect the fuselage in a plane canted 20 degrees as shown. The lateral distance from the airplane centerline to this intersection is labelled $y_{g \ell}$ and is expressed as

$$
\begin{aligned}
\mathrm{y}_{\mathrm{g} \ell} & =\left(\mathrm{D}_{\text {fus }} / 2\right) \operatorname{Cos}\left(20^{\circ}\right) \\
& =0.47 \mathrm{D}_{\text {fus }} .
\end{aligned}
$$

The ratio of the root chord of the glove (u in Figure 2-6) to the theoretical wing chord computed at $y_{g \ell}$ (v in Figure 2-6) is termed $\mathrm{c}_{\mathrm{g} \ell}$, and is inputted to the program. With the wing chord, v, computed from available geometric parameters. Net fuselage wetted area can now be obtained as the gross area, from equation (10), less the glove cross sectional areas:

$$
\begin{align*}
\mathrm{A}_{\mathrm{cs}} & =(2)(0.7) \mathrm{v}^{2}(\mathrm{t} / \mathrm{c}) \mathrm{c}_{\mathrm{g} \ell} / \operatorname{Cos}\left(20^{\circ}\right) \\
& =1.49 \mathrm{v}^{2}(\mathrm{t} / \mathrm{c}) \mathrm{c}_{\mathrm{g} \ell} . \tag{11}
\end{align*}
$$

Cross sectional areas of the tail surfaces are neglected.
For wetted area computations, the wing is divided into inboard and outboard sections, with the break coming where the glove intersects the straight leading and trailing edges, as seen in Figure 2-6. The lateral location of the break point is

Figure 2-6. Wing Fillet Geometry for Wetted Area Determination
input as a fraction of the wing semispan. For the outboard section, wetted area (A_{ob}) is figured as

$$
\begin{equation*}
A_{o b}=c_{s w} S_{o b} \tag{12}
\end{equation*}
$$

where
$c_{\text {sw }}=$ Ratio of wing wetted area/planform area (input)
$\mathrm{S}_{\mathrm{ob}}=$ Planform area of outboard wing sections $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$.
A value of 2.02 is recommended for $c_{S w}$. For the inboard section; equation (12) is modified by an expression involving c_{gl};

$$
\begin{equation*}
A_{i b}=c_{S W} S_{i b}\left[1-0.043\left(c_{g l}-1\right)\right] \tag{13}
\end{equation*}
$$

with

$$
\begin{aligned}
A_{i b}= & \text { Wetted area of inboard wing sections including gloves } \mathrm{m}^{2}\left(\mathrm{ft}^{2}\right) \\
S_{\mathrm{ib}}= & \begin{array}{l}
\text { Theoretical planform area of inboard wing sections from } \mathrm{y}_{\mathrm{g} \ell} \text { to } \mathrm{y}_{\mathrm{ab}} \\
\\
\text { in Figure 2-6 } \mathrm{m}^{2}\left(\mathrm{ft}^{2}\right) .
\end{array}
\end{aligned}
$$

Tail surface wetted areas are computed via equation (12), using the same input value of $c_{s w}$.

Nacelle length/diameter ratio, (L / D) nac (input), and previously computed diameter $\mathrm{D}_{\text {nac }}$ are combined to compute a cylindrical nacelle wetted area. A 20 percent increment is added to account for pylons, giving the complete expression

$$
\begin{equation*}
A_{\mathrm{nac}}=1.2 \pi \mathrm{D}_{\mathrm{nac}}{ }^{2}(\mathrm{~L} / \mathrm{D})_{\mathrm{nac}} \tag{14}
\end{equation*}
$$

Equation (14) applies only to podded engine installations. For a fin-mounted engine, with its relatively long nacelle and increased diameter,

$$
\begin{equation*}
\mathrm{A}_{\mathrm{nac}}=1.44 \pi \mathrm{D}_{\mathrm{nac}}^{2}(\mathrm{~L} / \mathrm{D})_{\text {nac-fin }} \tag{15}
\end{equation*}
$$

A separate ($\mathrm{L} / \mathrm{D})_{\text {nac-fin }}$ is input for this configuration.
Total wetted area is the sum of the above components.
7. Engine Resizing - Having computed L/D at initial cruise conditions, engine size is rescaled to give $T / W=D / L$. Required cruise thrust per engine is computed at weight $W_{0} . \quad$ The cruise thrust for the full-scale engine at initial cruise Mach and altitude is extracted from the appropriate table. Engine scale is recomputed as the ratio of these two thrust values. Engine weight and nacelle diameter are adjusted to the new scale factor, as are wetted area and L/D.
8. Fuel Volume - An initial estimate of total fuel quantity is required to determine fuel subsystem weights. In the Brequet formula, equation (1), the difference between W_{o} and W_{1} is the weight of cruise fuel $W_{f c r}$. Range factor (RF) is the label applied to the ratio $V_{t}(\mathrm{~L} / \mathrm{D}) / \mathrm{c}^{\prime}$. Equation (1) can be manipulated to produce the expression

$$
\begin{equation*}
\mathrm{W}_{\mathrm{fcr}} / \mathrm{W}_{\mathrm{o}}=1-\exp (-\mathrm{R} / \mathrm{RF}) \tag{16}
\end{equation*}
$$

An empirically derived increment of 0.1 is added to this expression to account for climb, descent and reserve fuel. Total fuel weight ($\mathrm{W}_{\mathrm{ftot}}$) is then obtained from

$$
\begin{equation*}
\mathrm{W}_{\mathrm{ftot}}=0.95 \mathrm{GW}[1.1-\exp (-\mathrm{R} / \mathrm{RF})] \tag{17}
\end{equation*}
$$

where GW is still the current estimate of takeoff gross weight.

Dividing (17) by fuel density then yields fuel total quantity in gallons.
Total design range is inserted for R in evaluating equation (16). The range factor, RF, is computed at initial cruise conditions; L/D is already available, and c^{\prime} is obtained via a table look-up. True airspeed $\left(V_{t}\right)$ is computed from the relation

$$
\begin{align*}
\mathrm{V}_{\mathrm{t}} & =\mathrm{V}_{\mathrm{e}} / \sqrt{\sigma} \\
& =\mathrm{M}\left(\mathrm{~V}_{\mathrm{e}} / \mathrm{M}\right) / \sqrt{\sigma} \tag{18}
\end{align*}
$$

where

$$
\mathrm{V}_{\mathrm{e}}=\text { Equivalent airspeed } \mathrm{km} / \mathrm{hr} \quad(\mathrm{kt})
$$

and

$$
\sigma=\text { Atmospheric density ratio. }
$$

This form was chosen for convenience for all V_{t} vs. M computations to minimize data storage requirements (it is used repeatedly in the climb and descent segments); the parameters $\mathrm{V}_{\mathrm{e}} / \mathrm{M}$ and $\sqrt{\sigma}$ are both obtained from tables as functions of altitude.

This entire fuel volume estimation step is omitted in the iterative pass.
9. Weight Empty - A series of empirical weight estimating relationships for structure, propulsion, and subsystems and equipment were derived from data on a large number of existing commercial transports. These equations are listed in Table 2-1.

The impact of several advanced technology features (area ruling, composite structure, active control systems, and supercritical aerodynamics) is accounted for by modifying factors applied to the basic equations. A series of three control factors are input to define which advanced technologies are to be employed. At this point, only the body (W_{b}) and wing (W_{w}) structural weights are affected:

$$
\begin{equation*}
\text { Body: } \mathrm{W}_{\mathrm{b}}=\mathrm{W}_{\mathrm{b}}\left(1-0.016 \mathrm{~K}_{\mathrm{AR}}\right)\left(1-0.2 \mathrm{~K}_{\mathrm{MATL}}\right)\left(1-0.01 \mathrm{~K}_{\mathrm{ACS}}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{AR}}=\text { Fuselage area ruling factor }(0=\text { without, } 1=\text { with }) \\
& \mathrm{K}_{\mathrm{MATL}}=\text { Construction material factor }(0=\text { light alloy, } 1=\text { composites }) \\
& \mathrm{K}_{\mathrm{ACS}}=\text { Active control system factor }(0=\text { without, } 1=\text { with }) .
\end{aligned}
$$

The above three factors are input constants.

$$
\begin{aligned}
& \text { Wing: } W_{W}=W_{W} \cdot R_{M A C H} \cdot R_{M A T L} \cdot R_{A C S} \\
& \text { For } M>0.85, R_{M A C H}=1+0.7(M-0.85) \\
& \text { For } K_{M A T L}=1, R_{M A T L}=0.885-0.00255\left(\mathrm{~b} / \operatorname{Cos} \Lambda_{\mathrm{C} / 2}\right) / \mathrm{t}_{\mathrm{M}} \\
& \text { For } \mathrm{K}_{\mathrm{ACS}}=1 \text { and } \mathrm{K}_{\mathrm{MATL}}=0, \mathrm{R}_{\mathrm{ACS}}=0.871 \\
& \text { For } K_{\mathrm{ACS}}=1 \text { and } \mathrm{K}_{\mathrm{MATL}}=1, \mathrm{R}_{\mathrm{ACS}}=0.912
\end{aligned}
$$

The three R-factors are internally computed. If $\mathrm{M}<0.85$ or $\mathrm{K}_{\text {MATL }}$ or $\mathrm{K}_{\mathrm{ACS}}$ are zero, the corresponding R-factors are set equal to 1.0 .

The summation of all items listed in Table 2-1 yields weight empty (WE).
10. Operating Weight Empty - The addition of useful load to WE gives OWE. Useful load weights consists of four items computed from the following equations:

Table 2-1. Weight Estimating Relationships (Output in Pounds)

Structure
Body: $\quad \mathrm{W}_{\mathrm{b}}=\left[(0.2712 \cdot \mathrm{GW} \cdot \mathrm{ULF})^{0.3} \mathrm{~L}_{\mathrm{f}}^{0.9} \mathrm{D}_{\mathrm{f}}^{1.05}\right]$
Wing: $\quad W_{W}=0.306\left[G W \cdot U L F \cdot S_{w} \cdot\left(b / \cos \Lambda_{c / 2}\right)\right]$ $\left.1000(t / c) C_{\text {root }}\right]^{0.62}$
Tail: $\quad W_{h, v}=12.8 \cdot S_{h, v} 0_{\left(S_{h, v}\right.}=$ exposed area)

Nacelle: $W_{\text {nac }}($ ea) $=3846 \cdot E S-977$

Ldg Gear: $W_{l g}=0.046 \cdot G W$

Propulsion

Engine: $\quad W_{\text {eng }}(e a)=W_{\text {eng }_{1}} \cdot E S^{1.11}$
Engine/Nacelle Sound Proofing (if employed):

$$
\mathrm{W}_{\mathrm{sp}}(\mathrm{ea})=0.035 \cdot \operatorname{RATING}-460
$$

Starting: $\mathrm{W}_{\text {st }}=0.35 \cdot \mathrm{~W}_{\text {eng }} 0.65$
Controls: $W_{e c}=120 \cdot\left[\left(L_{f}+b / \operatorname{Cos} \Lambda_{c / 2}\right) N_{e n g} / 100\right]^{0.294}$
Water Injection Provisions (if employed):

$$
\mathrm{W}_{\mathrm{wi}}(\mathrm{ea})=3.41 \times 10^{-3} \cdot \text { RATING }
$$

Fuel System:

$$
\begin{array}{ll}
\text { Pumps: } & \mathrm{W}_{\mathrm{p}}=1.1 \times 10^{-3} \cdot \operatorname{RATING}\left(1.75 \mathrm{~N}_{\mathrm{eng}}+0.266 \mathrm{~N}_{\mathrm{eng}}^{2}\right) \\
\text { Distribution: } & \mathrm{W}_{\mathrm{dist}}=0.24 \cdot \mathrm{~N}_{\mathrm{eng}} \sqrt{\text { RATING}}+0.62 \mathrm{Q}^{0.7}
\end{array}
$$

Table 2-1 (Cont'd)

Venting: $\quad W_{v}=3.48 \times 10^{-3} \cdot N_{\text {eng }} \cdot$ RATING
Control: $\quad W_{f c}=1.116 \cdot Q^{0.5}$
Refueling: $\mathrm{W}_{\mathrm{rf}}=4.9 \cdot \mathrm{Q}^{0.33}$
Dump: $\quad W_{d m p}=0.159 \cdot Q^{0.65}$
Sealant: $\quad W_{S \ell}=0.282 \cdot \mathrm{Q}^{0.75}$
Systems and Equipment
Surface Controls: $\quad W_{\text {Sc }}=340+0.95\left(S_{w}+S_{h}+S_{v}\right)$
Instruments: $\quad \mathrm{W}_{\text {inst }}=2.68 \times 10^{-3} \cdot \mathrm{GW}+165$
Hydraulics: $\quad W_{\text {hyd }}=0.48\left[0.45\left(S_{w}+S_{h}+S_{V}\right)^{1.3125}+\right.$

$$
\left.\left(\mathrm{L}_{\mathrm{f}}+\mathrm{b} / \operatorname{Cos} \Lambda_{\mathrm{c} / 2}\right)^{1.0612}\right]^{0.849}
$$

Avionics: $\quad W_{a v i}=1.3 \cdot \mathrm{WAVI}$
Electrical: $\quad W_{\text {elec }}=62.8\left(\Sigma \mathrm{~W}_{\text {fuel sys }}-\mathrm{W}_{\text {s } \ell}+\mathrm{W}_{\text {avi }}\right)^{0.473}$

$$
+2 \cdot \operatorname{PAX}
$$

Air Conditioning: $\mathrm{W}_{\mathrm{ac}}=300+35\left[\mathrm{D}_{\mathrm{f}} \cdot(\text { No. Seat Rows })\right]^{0.72}$.
Anti-Ice: $\quad W_{a i}=6.25 \cdot\left(b / \cos \Lambda_{c / 2}\right)^{0.95}$
Auxiliary Gear: $\quad \mathrm{W}_{\mathrm{aux}}=0.011\left(\mathrm{GW} \times 10^{-3}\right)^{1.55}$
Furnishings: $\quad \mathrm{W}_{\mathrm{frn}}=40 \cdot$ PAX $^{1.185}+1625$
APU (if present): $\quad W_{a p u}=29.2 \cdot$ PAX $^{0.7}$

$$
\begin{equation*}
\text { Crew: } W_{\text {cr }}=N_{\text {cr }} \cdot W_{\text {crew }}+N_{\text {stew }} \cdot W_{\text {stew }} \tag{2}
\end{equation*}
$$

where

$\mathrm{W}_{\text {cr }}$	$=$ Crew weight $\mathrm{kg}(\mathrm{lb})$
$\mathrm{N}_{\text {cr }}$	$=$ Number in cockpit crew
$\mathrm{W}_{\text {crew }}$	$=$ Weight of crew member $\mathrm{kg}(\mathrm{lb})$
$\mathrm{N}_{\text {stew }}$	$=$ Number of stewardesses
$\mathrm{W}_{\text {stew }}$	$=$ Weight of stewardesses kg (lb).

The weights of crew members and stewardesses are input values, as is the number of flight crew members. The number of stewardesses required is computed as a function of the number of passengers in coach and first class sections. In first class, there is one stewardess for each 20 passengers; in coach, one for each 40 passengers.

Equipment: $\quad W_{\text {eq }}=100+30 \cdot \operatorname{PAX}$
Oil: $\quad W_{\text {oil }}=14.06 \cdot N_{\text {eng }}$
Unusable Fuel: $W_{u f}=0.025 \cdot S_{w}$

In the above three equations

```
\(\mathrm{W}_{\text {eq }}=\) Passenger equipment weight kg (lb)
PAX = Total number of passenger seats (input)
\(\mathrm{W}_{\text {oil }}=\) Weight of engine oil \(\mathrm{kg}(\mathrm{lb})\)
\(\mathrm{N}_{\text {eng }}=\) Number of engines (input)
\(\mathrm{W}_{\text {eng }}=\) Weight of scaled engine \(\mathrm{kg}(\mathrm{lb})\)
\(W_{u f}=\) Weight of unusable fuel \(\mathrm{kg}(\mathrm{lb})\)
\(S_{W}=\) Wing area \(\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)\).
```

11. Reserve Fuel - FAA regulations define reserve fuel requirements sufficient for a holding period at the end of cruise plus diversion to an alternate destination. The holding period and distance to alternate vary for domestic and international service; these two parameters are therefore defined by input to the model.

Reserve fuel for hold at end of cruise is computed by adding the equivalent distance to design range. Diversion to an alternate airfield presumably occurs following a normal descent; reserve fuel requirements thus include climb to and cruise at some intermediate altitude. An altitude of $4573 \mathrm{~m}(15,000 \mathrm{ft})$ is built into the model.

Alternate field reserve fuel requirements are computed in the following manner. Since the total fuel supply would be exhausted at the end of this leg, airplane gross weight at that point is just OWE plus payload. The climb/descent routine described in the following section determines fuel and distance for the descent from $4573 \mathrm{~m}(15,000 \mathrm{ft})$, giving gross weight at the end of the alternate cruise leg. This weight is increased by 5 percent as an estimate of gross weight at the start of the diversion.

Climb fuel and distance to $4573 \mathrm{~m} \quad(15,000 \mathrm{ft})$ are computed from this weight. Climb and descent distances are subtracted from the required alternate field distance to yield the necessary cruise distance.

Range factor is computed at design Mach number at 4573 m ($15,000 \mathrm{ft}$); the method for computing L/D at off-design conditions is described in the following section. An inversion of equation (1) is employed to give the ratio of gross weights at beginning and end of the alternate cruise leg:

$$
W_{0} / W_{1}=\exp \left(D_{c r} / R F\right) \text { with } D_{c r}=\text { cruise distance } k m(n m) .
$$

Cruise fuel for this leg is then simply

$$
\begin{equation*}
W_{\text {falt }}=W\left(W_{o} / W_{1}-1\right) \tag{25}
\end{equation*}
$$

where W is the gross weight upon arrival at 4573 m (15,000 feet). Total reserve fuel requirement for the alternate field diversion is the sum of $W_{\text {falt }}$ plus climb and descent fuel. This total is added to OWE and payload to give the true gross weight at the end of the descent to the primary destination.
12. Climb and Descent - The method selected for computing climb or descent flight path angle, Y, is the simple expression

$$
\begin{equation*}
\operatorname{Tan} \gamma=T / W-D / L \tag{26}
\end{equation*}
$$

which ignores any longitudinal acceleration effects during climb. The same expression is valid for computing level flight acceleration during the climb schedule, which simplifies programming.

The climb/descent schedule employed in the program is shown in Figure 2-7. The climb to 3050 m . ($10,000 \mathrm{ft}$) is flown at a constant $130 \mathrm{~m} / \mathrm{sec}$ (250 knots) equivalent airspeed per current federal regulations. The airplane accelerates to maximum climb speed, $\mathrm{V}_{\mathrm{c} \ell}$ (input in kt EAS), at $3050 \mathrm{~m}(10,000 \mathrm{ft})$ and climbs at constant equivalent airspeed to the altitude at which design Mach number is encountered. The remainder of the climb is at constant Mach.

Gross weight at the start of climb is takeoff weight (GW) less takeoff fuel ($\mathrm{W}_{\mathrm{fto}}$), which is given by the empirical relation

$$
\begin{equation*}
\mathrm{W}_{\mathrm{fto}}=0.0152 \cdot \mathrm{~N}_{\mathrm{eng}} \cdot \text { RATING } \tag{27}
\end{equation*}
$$

where $\mathrm{N}_{\mathrm{eng}}$ is the number of engines and RATING is the sea level static thrust of the scaled engine. For those instances where water injection is used to reduce nitrous oxide omissions during takeoff, the weight of water expended is also subtracted from GW. This weight is also a function of engine thrust:

$$
\begin{equation*}
\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}}=0.012075 \cdot \mathrm{~N}_{\mathrm{eng}} \cdot \text { RATING } \tag{28}
\end{equation*}
$$

Climb distance increments, $\Delta \mathrm{D}$, are derived from the relation

$$
\begin{equation*}
\Delta D=\Delta H / \operatorname{Tan} \gamma \tag{29}
\end{equation*}
$$

where ΔH is the altitude increment for a given leg and Tan Y is an average of the values computed at the end points of the leg. Elapsed time is given by

$$
\begin{equation*}
\Delta T=\Delta D / V_{t} \tag{30}
\end{equation*}
$$

and the weight of fuel consumed by

$$
\begin{equation*}
\Delta W_{f}=\Delta T \cdot F_{n} \cdot c^{\prime} \tag{31}
\end{equation*}
$$

where V_{t} is true airspeed, F_{n} is net engine thrust, and c^{\prime} is specific fuel consumption. All three are average values for the leg.

To compute flight path angle, engine thrust and fuel consumption are interpolated from input tables. To obtain D / L, lift coefficient is given by

$$
\begin{equation*}
\mathbf{C}_{\ell}=\mathrm{w} / \mathrm{q} \mathbf{S}_{\mathrm{w}} \tag{32}
\end{equation*}
$$

where W is the current gross weight and q is dynamic pressure $N / m^{2} \quad\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$.

Figure 2-7. Climb and Descent Schedule

At $130 \mathrm{~m} / \mathrm{sec}(250 \mathrm{kt})$ EAS, $\mathrm{q}=10,150 \mathrm{~N} / \mathrm{m}^{2}\left(212 \mathrm{lb} / \mathrm{ft}^{2}\right)$. At $3050 \mathrm{~m}(10,000 \mathrm{ft})$, $\mathrm{q}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)=3.392 \times 10^{-3} \mathrm{~V}_{\mathrm{C}}{ }^{2}{ }^{2}$. These two values suffice until the constant Mach climb segment is reached; thereafter,

$$
\begin{equation*}
q=1481 \cdot \delta \cdot M^{2} \tag{33}
\end{equation*}
$$

with all parameters previously defined.
Drag coefficient is derived as a function of incremental Mach ($\Delta \mathrm{M}$) below critical Mach. Figure 2-8 shows the curves employed. For supercritical airfoils, critical Mach number is independent of lift coefficient; increments in parasitic and induced drag coefficients ($\Delta \mathrm{C}_{\mathrm{d}_{\mathrm{o}}}$ and $\Delta \mathrm{C}_{\mathrm{d}_{\mathrm{i}}}$) are obtained directly from tables representing these curves. For conventional airfoils, critical Mach number varies inversely with lift coefficient. For reasonable values of C_{ℓ}, incremental induced drag coefficient, $\Delta \mathrm{C}_{\mathrm{d}_{\mathrm{i}}}$ can be considered independent of this effect. To derive the increment in parasitic drag coefficient, $\Delta C_{d_{o}}$, the increase in critical Mach number ($\Delta \mathrm{M}_{\mathrm{c}}$) for the current C_{l} is computed. The $\Delta \mathrm{C}_{\mathrm{d}_{\mathrm{o}}}$ table is then entered at $\left(\Delta M_{c}\right)$ and at $\left(\Delta M_{c}+\Delta M\right)$. The difference in these two values interpolated from the table is the required $\Delta C_{d_{0}}$. Total drag coefficient C_{d} is then:

$$
\begin{equation*}
C_{d}=C_{d_{0}}+\Delta C_{d_{o}}+C_{l}^{2} / \pi A R e+\Delta C_{d_{i}} \tag{34}
\end{equation*}
$$

Wing aspect ratio, AR, and Oswald efficiency factor, e, are input values.
Returning to the main climb/descent routine, the climb from 457.3 to 3050 meters (1500 to 10,000 feet) is computed as a single increment, first at constant weight and again with C_{ℓ} corrected for the computed change in gross weight. A similar technique is employed for the level acceleration leg. The climb at constant $\mathrm{V}_{\mathrm{c} \ell}$ is broken into increments by Mach number since drag coefficient changes rapidly during this leg. The Mach number increment used is an input variable, with a recommended value of 0.05 . Each increment is computed at constant weight with no iteration. The constant Mach climb is likewise broken into incremental altitude steps because of rapidly changing q. The altitude increment is also under external control with a recommended value of 1524 meters (5,000 feet).

Descents are computed as climbs, but using idle thrust rather than climb thrust. Entering weight for the routine is actually the weight at the end of the descent, with fuel being added back in as the descent is computed backwards, starting at 457.3 m . (1500 ft) up to final cruise altitude. Commercial airplanes normally perform cruise step climbs, as fuel is burned off, for reasons of air traffic control. The Breguet equation theoretically presumes a continuous climb to maintain constant L/D during cruise. The model follows this assumption and computes a final cruise altitude which gives the same cruise L / D at the final cruise weight, W_{1}. Constant L / D implies constant C_{ℓ}, and since M is also constant, final cruise
促
altitude can be obtained from the table of altitude vs. $\mathrm{V}_{\mathrm{e}} / \mathrm{M}$. At initial cruise conditions (subscript o)

$$
\dot{V}_{o}^{2}=2 W_{o} / \rho_{o} C_{b} S_{w}
$$

At end of cruise (subscript 1), only the weight has changed, therefore:

$$
\mathrm{V}_{\mathrm{e}_{1}}^{2}=2 \mathrm{~W}_{1} / \rho_{\mathrm{o}} \mathrm{C}_{\ell} \mathrm{S}_{\mathrm{w}}
$$

By looking up the value of $\mathrm{V}_{\mathrm{e}} / \mathrm{M}$ at initial cruise altitude,

$$
\begin{equation*}
\left(V_{e} / M\right)_{1}=\left(V e^{/ M)_{o} \sqrt{W_{1} / W_{0}}}\right. \tag{35}
\end{equation*}
$$

Final cruise altitude is then a function of $\left(V_{e} / M\right)_{1}$, obtained from the table.
13. Gross Weight Solution - All of the prerequisite pieces are now available for a gross weight solution. The weight ratio $\mathrm{W}_{0} / \mathrm{W}_{1}$ is obtained from

$$
\begin{equation*}
\mathrm{W}_{\mathrm{o}} / \mathrm{W}_{1}=\exp \left(\mathrm{D}_{\mathrm{cr}} / \mathrm{RF}\right) \tag{36}
\end{equation*}
$$

where RF is an average range factor for initial and final cruise conditions and D_{cr} is cruise distance, given by

$$
\begin{equation*}
D_{c r}=R-D_{c \ell}-D_{d e s}+D_{r e s} \tag{37}
\end{equation*}
$$

where $\mathrm{D}_{\mathrm{c} \ell}$ is total climb distance and $\mathrm{D}_{\mathrm{des}}$ is total descent distance. All distance computations are in units of nautical miles. The term, $\mathrm{D}_{\text {res }}$, is the distance equivalent of the reserve fuel loiter time requirement plus a 6 minute allowance for air maneuver. The final cruise weight W_{1} is known as the weight at the beginning of the descent. Initial cruise weight is then available from equation (36) and gross weight at start of takeoff, GW, is given by

$$
\begin{equation*}
\mathrm{GW}=\mathrm{W}_{\mathrm{o}}+\mathrm{W}_{\mathrm{fcl}}+\mathrm{W}_{\mathrm{fto}}+\mathrm{W}_{\mathrm{H}_{2} \mathrm{O}} \tag{38}
\end{equation*}
$$

The portion of cruise fuel corresponding to $D_{\text {res }}$ is computed from

$$
\begin{equation*}
\mathrm{W}_{\text {fres }}=\mathrm{W}_{1}\left[\exp \left(\mathrm{D}_{\text {res }} / \mathrm{RF}\right)-1\right] \tag{39}
\end{equation*}
$$

Total fuel capacity is computed by summation of the various increments for climb, descent, cruise, and reserves.

A single program iteration is performed beginning at step 4 , but omitting step 8 .
14. Output - Block fuel and block time computations are performed for output presentation and for use in the DOC and ROI routines which follow. Block time, T_{bl}, is given in hours by

$$
\begin{equation*}
\mathrm{T}_{\mathrm{bl}}=\mathrm{T}_{\mathrm{cl}}+\mathrm{T}_{\mathrm{cr}}+\mathrm{T}_{\mathrm{des}}+0.1 \tag{40}
\end{equation*}
$$

where T_{cl} and $\mathrm{T}_{\text {des }}$ are the computed climb and descent time, the 0.1 hour constant is air maneuver time, and cruise time (T_{cr}) is the quotient of cruise distance and average true airspeed. At design range, block fuel, $\mathrm{W}_{\mathrm{bfl}}$, is just total fuel minus reserves.

The DOC and ROI routines must determine block time and block fuel as functions of distance flown. For this purpose, slope-intercept parameters are computed for each of these functions as shown below.

Block time

$$
\begin{array}{ll}
\text { Slope: } & T_{b s}=T_{c r} / D_{c r} \mathrm{hr} / \mathrm{km} \quad(\mathrm{hr} / \mathrm{hm}) \\
\text { Intercept: } & \mathrm{T}_{\mathrm{bi}}=\mathrm{T}_{\mathrm{bl}}-R \cdot \mathrm{~T}_{\mathrm{bs}} \mathrm{hr} \tag{42}
\end{array}
$$

Block fuel

$$
\begin{array}{ll}
\text { Slope: } & F_{b s}=W_{f c r} / D_{c r} \mathrm{~kg} / \mathrm{km}(\mathrm{lb} / \mathrm{nm}) \\
\text { Intercept: } & \mathrm{F}_{\mathrm{bi}}=\mathrm{W}_{\mathrm{fbl}}-\mathrm{R} \cdot \mathrm{~F}_{\mathrm{bs}} \mathrm{~kg}(\mathrm{lb}) \tag{44}
\end{array}
$$

where

$$
\begin{aligned}
T & =\text { Time }(\mathrm{hr}) \\
\mathrm{D} & =\text { Distance } \mathrm{km}(\mathrm{~nm}) \\
\mathrm{W}_{\mathrm{f}} & =\text { Fuel weight } \mathrm{kg}(\mathrm{lb})
\end{aligned}
$$

and subscripts

$$
\begin{aligned}
& \mathrm{cr}=\text { Cruise } \\
& \mathrm{b} 1=\text { Block }
\end{aligned}
$$

A complete sample output is included in Section 5.

2.2 DOC (DIRECT OPERATING COST)

The basic function of the DOC module is to translate aircraft characteristics into generalized economic dimensions. This is accomplished by a series of equations (cost estimating relationships or CERs) which are responsive to design characteristics, performance, and operating rules. The first major step is calculation of aircraft flyaway cost.

Flyaway Cost

Flyaway cost is computed at either of two levels, dependent on availability of design definition. The first level computes airframe cost according to the formula

$$
\text { Cost Airframe }=\text { WAF }\left(\frac{98}{P Q Q^{0.135}}+\frac{5500}{P Q}\right)\left(\frac{200,000}{W A F}\right)^{0.2}
$$

where
WAF = Airframe weight kg (lb)
$\mathrm{PQ} \quad=$ Production quantity
$98=$ Nominal $\$ 98 /$ pound recurring production cost at unit \#1 ($\$ 44.5 / \mathrm{kg}$)
$0.135=$ Learning curve exponent
$5500=$ Nominal $\$ 5500 / \mathrm{lb}$ development cost $(\$ 2500 / \mathrm{kg})$
$0.2=$ Cost/size scaling exponents
$200,000=$ Nominal airframe reference weight in pounds (90909 kg).

Engine costs are input directly or computed as a function of thrust. Avionics costs are input directly. Total flyaway cost is the sum of airframe, engines, and avionics costs.

When functional weights and cost coefficients are available, airframe costs are computed in 24 functional elements by labor and material as follows:

Cost of Airframe Element $=$ Labor Cost + Material Cost
Labor Cost $=\left(\frac{\mathrm{PQ}}{\mathrm{PR}}\right)^{\mathrm{MLL}} \cdot \mathrm{WSUB} \cdot \mathrm{CMLH} \cdot(\mathrm{CRCS})^{\text {CLSAL }} \cdot$ CLRHW
where
$\mathrm{PQ} \quad=$ Production quantity actual
PR $\quad=$ Production quantity reference
MLL = Labor learning exponent

WSUB $=$ Subsystem weight kg (lb)
CMLH $=$ Cost per labor tiour - manufacturing $\$ / \mathrm{hr}$
CRCS $=$ Reference weight kg (lb)
CLSAL = Labor size scaling exponent
CLRHW = Hours per pound at reference weight $\mathrm{hr} / \mathrm{kg}(\mathrm{hr} / \mathrm{lb})$
Cost of Mat'l $=\left(\frac{\mathrm{PQ}}{\mathrm{PR}}\right)^{\mathrm{MML}} \cdot$ WSUB $\cdot \operatorname{MCF} \cdot(\mathrm{CRCS})^{\text {CMSAL }} \cdot \mathrm{CMRCW}$
where
MML $=$ Material quantity learning factor
MCF $=$ Material unit cost at reference weight $\$ / \mathrm{kg}(\$ / \mathrm{lb})$
CMSAL = Material size scaling exponent
CMRCW $=$ Material unit cost at reference weight $\$ / \mathrm{kg}(\$ / \mathrm{lb})$

MLL - Labor Learning Exponent

In the labor cost equation, the exponent MLL is used to adjust from one production quantity to another along a cost reduction or learning curve. This approximation is intended for use between 100 units and 2000 units, and is not as accurate as rigorous learning curves applied back to the first production unit. Figure 2.2-1 shows exponents approximating various learning curves from unit 100 to unit 500 - the principal region of interest. For the general case, a labor curve of 80% is recommended. This corresponds to a value at MLL $=0.680$.

CLSAL - Labor Sizing Scaling Exponent

For either a given component (e.g., a wing) or for a total airframe, there is significant cost/size scaling. That is, as design size is increased, cost per unit of weight is decreased. Figure 2.2-2 shows transport cost vs. weight. Figure 2.2-3 shows horizontal stabilizer hours as a function of weight. In these two examples, the size scaling exponents are both 0.8 .

For labor only, the following size scaling exponents have been developed on prior programs:

1. Total Airframe 0.82
2. Primary Structure - Wing, Fuselage, Empennage 0.80
3. Electrical, Pneumatic, Hydraulic 0.85
4. Final Assembly and Checkout 0.70

MML - Material Quantity Learning Factor

Provision is made in the model for use of a material quantity cost reduction curve where the analyst has cost/quantity data for material. This "learning" is much less than labor cost/quantity reduction and in the absence of detailed data, a 98% curve (MML $=0.96$) is suggested as being typical.

CMSAL - Material Size Scaling Exponent

This factor is available for use where detailed cost data is available on material as a function of airframe or component size. With typical, light alloy construction, this factor is very close to 1.0 ; however, with composite materials, special skin gages, or specially tailored alloys, scaling may be required. For some applications requiring highly specialized machinery or if a critical fraction of some resource is required, it might take on a value greater than one.
sustaining tooling and engineering are computed as percentages of initial tooling and engineering. Assembly, integration, and profit are computed as percentages. Initial tooling and engineering are pro-rated and added to establish total airframe cost. The sample run and listing contains the equations and a set of input values representative of a conventional large transport aircraft.

Direct Operating Costs

Direct operating costs are computed according to the 1967 ATA formula, with cost factors updated to 1971 rates. Cost factors requiring updating for the effects of inflation are as follows:

$$
\begin{aligned}
& \text { CREW }=\text { Crew cost constant } \$ / \mathrm{hr}-1971 \text { Value } \$ 180 \\
& \text { CDLH }=\text { Maintenance direct labor } \$ / \mathrm{hr}-1971 \text { Value } \$ 5 \\
& \text { CFT }=\text { Fuel cost } \$ / \text { metric ton }-1971 \text { Value } \$ 32.60 / \text { metric ton }(\$ 15 / 1000 \mathrm{lb})
\end{aligned}
$$

Costs are computed for the various distance specified in DNM(I) - up to 20 separate distances. Times are computed from parasitic time (taxi, takeoff, air maneuver) identified as TBI (block time intercept from synthesis) and TBS (block time slope from synthes is). Block fuel is obtained from the synthesis and adjusted for fuel used in air delay (AD) and ground delay (GD), if any. Speeds, times, and block fuel are calculated for each DNM(I).

Aircraft utilization is calculated in an approximation of the ATA formula as follows:

$$
\mathrm{U}=\mathrm{ANHR} \cdot \mathrm{TBTR} /(\mathrm{TURNT}+\mathrm{TBTR})
$$

where
$\mathrm{U}=$ Annual utilization block hours
ANHR $=$ Idealized utilization ($4800 \mathrm{hr} / \mathrm{yr}$)
TBTR = Block time for a given flight hr
TURNT $=$ Ground turnaround time at gate (typically 0.50 hours)
Figure 2-9 shows resulting annual block utilization.
The ATA equations are then used to calculate Direct Operating Costs expressed in dollars per nautical mile for the following elements (see listing for equations).

```
CCT = Crew cost
CFOT = Cost of fuel and oil
CINST = Cost of (hull)insurance
CAFLT = Cost of airframe and misc. labor (maintenance)
CAFMT= Cost of airframe and misc. material (maintenance)
CCELT = Cost of engine labor (maintenance)
CCEMT = Cost of engine material (maintenance)
CDEPT = Cost of depreciation, including depreciation of spare parts
CAMBT= Cost of applied maintenance burden
```

These elements are then printed out for each DNM(I) as shown on the sample format.

2.3 ROI MODULE (RETURN-ON-INVESTMENT)

Direct operating cost is an abstract measure of an airplane's economic efficiency flying an arbitrary distance. ROI attempts to relate economic efficiency to actual city pairs, actual traffic levels, and reasonable fare yields. In addition to the direct costs, the indirect costs of passenger services, aircraft handling, and administration are included in the calculations.

The basic return-on-investment percentage is defined as that interest rate on a fixed dollar investment (e.g., a bank savings account) which will yield equal financial benefit over the investment period to the investment being analyzed.

For an airplane, the investment period is the depreciable lifetime. The formula is

$$
\text { ROIF }=R \cdot(1+R)^{Y R S} /\left((1+R)^{Y R S}-1\right)
$$


```
ROIF = ROI percentage
R = Annual percentage of profit on investment
YRS = Years of investment term.
```

An iterative solution is done by computer yielding an answer within a prespecified error specified by EPSA (typically 0.001). The iteration proceeds by a stepping factor in the iteration specified by DELR, typically 0.05 .

To obtain R, the annual percentage of profit, it is necessary to calculate the following:

1. Flights per day by city pair to handle input traffic
2. DOC by city pair
3. IOC by city pair
4. Income by city pair
5. Net income after taxes
6. Aircraft required and total investment

Flights per day per city pair are computed by establishing a minimum frequency, a maximum permissible average load factor, and dividing traffic (input) by capacity. Number of flights are rounded to next higher integer, giving resulting load factors below maximum specified load factor. Referring to the sample printout, it is seen that low traffic city pairs are constrained by the minimum frequency and have low load factors. City pairs with greater activity, say 10 or 20 flights per day approach the maximum specified load factor - in this case 55%.

DOCs are computed for the specified city pair distances by interpolation from DOCs at arbitrary distances calculated in the previous section. IOCs are calculated as follows, based on the Lockheed IOC methodology.Ramp Service and Landing Fee \$3.02 per metric ton($\$ 1.37$ per 1000 lb) gross weight per landingZ (1)
Passenger Service Cost - \$0.0047 per RPM Z (2)
Reservations, Sales, and Passenger Handling - \$9/passenger hour Z (3)
Stewardess Expense - \$15.03/Stewardess Block Hour Z (4)
(No. of Stewardesses from Synthesis)
Meal Cost $=\$ 0.90+\$ 0.45 /$ Passenger Block Hour Z (5)

$$
\begin{equation*}
\text { Administrative Cost Factor }=0.091 \cdot \sum_{1}^{5} \text { IOC Costs } \tag{6}
\end{equation*}
$$

All of the above are in 1971 dollars and are subject to inflation, except the adminis trative override.

Traffic data for each of up to 200 city pair is entered as:
$\left.\begin{array}{l}\text { City Pair } \\ \text { Distance } \\ \text { Pass./Day }\end{array}\right\} \quad$ See input format

Income by city pair is calculated from a fare formula as follows:

For each passenger $\$ 7$
Plus $\$ 0.0346 / \mathrm{km}(\$ 0.0644 / \mathrm{nm})$
(FARE I)
(FARES)

This was derived empirically for 1971 by taking actual trunk airline income and RPM, and as such,accounts for cargo, mix of first class and coach passengers, and dilutions in the form of special and promotional fares. Fares must be adjusted for inflation, and the user is cautioned to look at actual yields, not published fare schedules, to develop realistic income levels. Typical yields are about 85% of published regular coach fares.

Net income after taxes is computed by taking total income less DOC, less IOC times 52%. This is then defined as net profit. The total aircraft required are summed from fractional requirements by city pair.

This is done on the assumption that schedules can be arranged to utilize airplanes within the constraints of the empirical utilization formula, which was presumably developed from actual data. For each aircraft required, investment is equal to flyaway cost plus engine and airframe spares. Total investment is obtained by multiplying investment base per airplane (XIB) by fleet size. Total investment is compared to system net profit to obtain system Return-on-Investment.

Table 2.2 presents a summary of terms used in the analytic derivation described in Section 2 of this report. Both the scientific international and the English system of units are presented; however, the actual program utilizes the English system of units exclusively.

A Total airplane wetted area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$A_{\text {cs }} \quad$ Airfoil cross sectional area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$A_{\text {fus }} \quad$ Fuselage gress wetted area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$A_{i b} \quad$ Wing inboard portion wetted area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$A_{\text {nac }} \quad$ Nacelle wetted area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
ANHR Idealized utilization $4800 \mathrm{hr} / \mathrm{yr}$
$A_{o b} \quad$ Wing outboard portion wetted area $m^{2}\left(\mathrm{ft}^{2}\right)$
AR Aspect ratio (dimensionless)
b Wing span $m(f t)$
c Wing chord m (ft)
$c^{\prime} \quad$ Specific fuel consumption $\mathrm{kg} / \mathrm{N}-\mathrm{hr}$ ($\mathrm{lbm} / \mathrm{lb}-\mathrm{hr}$)
CAFLT Cost of airframe maintenance labor \$
CAFMT Cost of airframe maintenance material \$

CAMBT Cost of applied maintenance burden \$

CCELT Cost of engine maintenanc e labor \$
CCEMT Cost of engine maintenance material \$
CCT \quad Crew cost $\$$
CDEPT Cost of depreciation including spares \$

CDLH Maintenance direct cost per hour $\$ / \mathrm{hr}$
$\mathrm{C}_{\mathrm{fe}} \quad$ Equivalent skinfriction coefficient (dimensionless)

CFOT Cost of fuel and oil \$
CFT Fuel cost $\$ /$ metric ton (\$/1000 lb.)
cg1 Ratio of glove root chord to theroretical wing chord (dimensionless)
CINST Cost of (hull) insurance \$
$\mathrm{C}_{1} \quad$ Lift coefficient (dimensionless)
CLRHW Hours per pound at reference weight
CLSAL Labor size scaling exponent (dimensionless)
$\mathrm{C}_{\mathrm{d}} \quad$ Total drag coefficient (dimensionless)
$C_{\text {di }} \quad$ Induced drag ccefficient (dimensionless)
$\mathrm{C}_{\text {do }} \quad$ Parasetic drag coefficient (dimensionless)
CMLH Manufacturing cost per labor hour $\$ / \mathrm{hr}$
CMRCW Material unit cost of reference weight $\$ / \mathrm{kg}(\$ / \mathrm{lb}$.)
CMSAL Material size scaling exponent (dimensionless)
CRCS \quad Reference weight kg (lb)
CREW Crew cost per hour $\$ / \mathrm{hr}$
$\mathrm{C}_{\text {root }}$ Wing root chord $\mathrm{m}(\mathrm{ft})$
c sw \quad Ratio wing wetted area to planform area (dimensionless)
D Scaled engine nacelle diameter m (ft)
$D_{0} \quad$ Nacelle diameter of 1.0 engine $m(f t)$
$\mathrm{D}_{\text {cl }} \ldots$ Total climb distance $\ldots \mathrm{km}$ - nm) \ldots
$\mathrm{D}_{\mathrm{cr}} \quad$ Total cruise distance $\mathrm{km}(\mathrm{nm})$
$\mathrm{D}_{\text {des }} \quad$ Total descent distance km (nm)

M_{c}	Critical Mach number (dimensionless)
MCF	Material unit cost at reference weight \$/kg (\$/lb)
MLL	Labor learning exponent (dimensionless)
MML	Material quantity learning factor (dimensionless)
$\mathrm{N}_{\text {cr }}$	Number of cockpit crew (dimensionless)
$\mathrm{N}_{\text {eng }}$	Number of engines (dimensionless)
$\mathrm{N}_{\text {stew }}$	Number of stewardesses (dimensionless)
OWE	Basic operating (empty) weight kg (lb.)
PAX	Total number of passenger seats (dimensionless)
PQ	Actual production quantity (dimensionless)
PR	Reference production quantity (dimensionless)
g	Dynamic pressure $\mathrm{N} / \mathrm{m}^{2}$ (lb. $/ \mathrm{ft}{ }^{2}$)
R	Annual percentage of profit on investment (dimensionless)
R	Range km (nm)
RATING	Sea level static thrust of scaled engine N (lb.)
RF	Range factor km (nm)
ROI	Return on investment (dimensionless)
ROIF	Return on investment percentage (dimensionless)
RPM	Revenue passenger miles km (nm)
S_{h}	Horizontal tail exposed area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$S_{i b}$	Wing inboard portion planform area m ${ }^{2}\left(\mathrm{ft}^{2}\right)$
S_{ob}	Wing outboard portion planform area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
$\mathrm{S}_{\mathbf{v}}$	Vertical tail exposed area $\mathrm{m}^{2}\left(\mathrm{ft}^{2}\right)$
S_{w}	Wing area m ${ }^{2}\left(\mathrm{ft}^{2}\right)$

TBTR Block time for a given flight (hr.)
t/c Airfoil thickness to chord ratio (dimensionless)
$t_{r} \quad$ Wing thickness at the root $m(f t)$
TURNT Ground turnaround time at gate (hr)

T/W Cruise thrust to weight ratio (dimensionless)
$\mathrm{u} \quad$ Glove root chord $\mathrm{m}(\mathrm{ft})$
$\mathrm{U} \quad$ Annual utilization (hr)
$v \quad$ Basic wing root chord m (ft)
$\mathrm{V}_{\mathrm{e}} \quad$ Equivalent airspeed $\mathrm{km} / \mathrm{hr}$ (kt)
$\mathrm{V}_{\mathrm{h}} \quad$ Horizontal tail volume coefficient (dimensionless)
$\mathrm{V}_{\mathrm{t}} \quad$ Time airspeed $\mathrm{km} / \mathrm{hr}$ (kt)
$\mathrm{V}_{\mathrm{v}} \quad$ Vertical tail volume coefficient (dimensionless)

W Current gross weight kg (lb.)
$\mathrm{W}_{\mathrm{o}} \quad$ Initial cruise gross weight kg (lb.)
$\mathrm{W}_{1} \quad$ Final cruise gross weight kg (lb.)
$\mathrm{W}_{\mathrm{ac}} \quad$ Air conditioning system weight $\mathrm{kg}(\mathrm{lb}$.
WAF Airframe weight kg (lb.)
$\mathrm{W}_{\mathrm{ai}} \quad$ Anti-icing system weight $\mathrm{kg}(\mathrm{lb}$.
$\mathrm{W}_{\text {apu }} \quad$ Auxiliary power unit system weight $\mathrm{kg}(\mathrm{lb}$.
$W_{\text {aux }} \quad$ Auxiliary gear weight kg (lb.)
$\mathrm{W}_{\text {avi }} \quad$ Avionics system weight kg (lb.)
WAVI Weight of avionics $\mathrm{kg}(\mathrm{lb}$.

W_{b}	Fuselage structural weight kg (lb.)
$\mathrm{W}_{\text {bfl }}$	Block fuel weight kg (lb.)
$\mathrm{W}_{\text {cr }}$	Crew weight kg (lb.)
$\mathrm{W}_{\text {crew }}$	Weight of a crew member kg (lb.)
$\mathrm{w}_{\text {dist }}$	Fuel system distribution system weight kg (lb.)
$\mathrm{W}_{\mathrm{dmp}}$	Fuel system dumping system weight kg (lb.)
WE	Weight empty kg (lb.)
w_{ec}	Engine controls weight kg (lb.)
$\mathrm{w}_{\text {elec }}$	Electrical system weight kg (lb.)
$\mathrm{w}_{\text {eng }}$	Individual engine weight kg (lb.)
$\mathrm{w}_{\text {eng1 }}$	Individual scaled engine weight kg (lb.$)$
w_{eg}	Passenger equipment weight kg (lb.)
$\mathrm{W}_{\text {falt }}$	Cruise fuel weight for alternate cruise leg kg (lb.$)$
$W_{f c}$	Fuel system controls weight kg (lb.)
$\mathrm{W}_{\mathrm{fcl}}$	Climb fuel weight kg (lb.)
$\mathrm{W}_{\mathrm{fcr}}$	Cruise fuel weight kg (lb.)
$W_{\text {fres }}$	Fuel weight corresponding to reserve distance kg (lb.)
$W_{f r n}$	Furhishings weight kg (lb.)
$\mathrm{W}_{\mathrm{fto}}$	Takeoff fuel weight kg (lb.$)$
$W_{\text {flot }}$	Total fuel weight kg (lb.)
w_{h}	Horizontal tail structural weight kg (lb.)
$\mathrm{W}_{\mathrm{h} 20}$	Water injection system fluid weight kg (lb.)
$W_{\text {hyd }}$	Hydraulic system weight $\begin{array}{r}\mathrm{kg} \\ \text { (lb.) } \\ \mathbf{2 - 3 7}\end{array}$

$\mathrm{w}_{\text {inst }}$	Instrument weight kg (lb.)
$W_{\ell g}$	Landing gear weight kg (lb.)
$W_{\text {oil }}$	Engine oil weight kg (lb.)
$\mathrm{W}_{\mathrm{nac}}$	Nacelle weight kg (lb.)
W_{p}	Fuel system pump weight kg (lb.)
W_{pl}	Payload weight kg (lb.)
w_{rf}	Fuel system refueling system weight kg (lb.)
W/S	Design takeoff wing loading $\mathrm{N} / \mathrm{m}^{2}\left(\mathrm{lb} / \mathrm{ft}^{2}\right)$
$\mathrm{W}_{\text {sc }}$	Surface control system weight kg (lb.)
$\mathrm{W}_{\text {sl }}$	Fuel system sealant weight kg (lb.)
W_{sp}	Engine/nacelle soundproofing weight kg (lb.)
$W_{s t}$	Engine starting system weight kg (lb.)
$W_{\text {stew }}$	Stewardesses weight kg (lb.)
WSUB	Subsystem weight kg (lb.)
$\mathrm{W}_{\text {uf }}$	Unusable fuel weight kg (lb.)
W_{v}	Fuel system vent system weight kg (lb.)
W_{v}	Vertical tail structural weight kg (lb.)
W_{w}	Wing structural weight kg (lb.)
${ }^{\mathbf{w}}{ }_{\text {wi }}$	Engine water injection system weight kg (lb.)
XIB	Investment base per airplane \$
$\mathbf{Y}_{\mathbf{g l}}$	Location of wing root/fuselage intersection m (ft.)
YRS	Years of investment term (yr.)

$\gamma \quad$ Climb or descent flight path angle (degrees)
$\delta \quad$ Atmospheric pressure ratio at initial cruise altitude (dimensionless)
$\Delta \mathrm{D} \quad$ Climb distance increment $\mathrm{km}(\mathrm{nm})$
$\Delta H \quad$ Climb altitutde increment m (ft.)
$\Delta T \quad$ Climb time increment (hr)
$\Lambda_{\mathrm{c} / 2} \quad$ Wing 50% chord sweep (degrees)
$\Lambda_{\text {LE }} \quad$ Wing leading edge sweep (degrees)
Atmospheric density at initial cruise altitude $\mathrm{kg} / \mathrm{m}^{3} \quad\left(\mathrm{lb} / \mathrm{ft}^{3}\right)$
σ
Atmospheric pressure ratio at a given altitude (dimensionless)

SECTION 3

COMPUTER PROGRAM

3.1 PROGRAM ORGANIZATION

The TEKVAL computer program is configured for maximum flexibility of operation. Each of the main program sections (SIZE, DOC, and ROI) may be operated independently with external input, or they may be operated sequentially (SIZE-DOC-ROI or DOC-ROI) with the output of one section providing partial input for subsequent sections.

Program operation is controlled by a 3-digit binary control word labeled KEY. Figure 3-1 illustrates the TEKVAL program organization and the function of the control word. The three digits control the execution of each of the main program modules, the first digit for SIZE, the second for DOC, and the third for ROI. A one calls for module execution while a zero signals omission of that module. To operate all three modules sequentially, a value of $\mathrm{KEY}=111$ is used. A value such as $\mathrm{KEY}=$ 010 calls for execution of the DOC module only.

The value of KEY is read at the beginning of the main program. A branch is then made to the appropriate module within the main program. Following execution of each module, the value of KEY is reduced by an appropriate power of 10 , effectively eliminating the leading digit. If the succeeding digit so indicates, the next module is executed. If the succeeding digit is a zero, the program reverts to the beginning for a new value of KEY.

Each of the main program modules has its own input and output subroutines. The NAMELIST format is utilized for all input, including the control word KEY. A complete input deck is obviously required for execution of the first module of a given run. For sequential operation of subsequent modules, only partial input decks are required but there must be a separate NAMELIST deck for each module to be executed on every run. Complete input requirements and data communication between modules are described below.

3.2 DESCRIPTION OF SUBROUTINES

Figures 3-2 through 3-4 show the subroutines called by each of the main program modules and how they are interlinked. All input and output subroutines are straightforward and need no further clarification. The principle function of each of the remaining subroutines is described herein.

Figure 3-1. TEKVAL Program Organization

Figure 3-2. SIZE Subroutine Structure

Figure 3-3. DOC Subroutine Structure

Figure 3-4. ROI Subroutine Structure

The following subroutines are employed by the SIZE module:
TLUI - A one dimensional linear interpolation table look-up routine. The call sequence lists the input value X and the locations and dimension of the X and Y vectors. The value of Y corresponding to X is returned via a call argument. If the vector dimension is exceeded during the table search, an error message "TLU1 OUT OF RANGE" is printed and the program stops.

TLU2 - A two dimensional linear interpolation table look-up routine. This routine gives $Y=f(X, Z)$. The call sequence lists values of X and Z plus addresses for the X and Z vectors and the Y matrix, and the dimensions of the X and Z vectors. The Z indices are determined first. For each of the two Z indices, the TLU1 subroutine is utilized to determine $Y=f(X)$. Linear interpolation on Z then gives the final value of Y. Should the Z vector dimension be exceeded, the error message "TLU2 OUT OF RANGE" is printed and the program stops.

CLDES - This subroutine computes the time, distance, and fuel required to climb or descend according to a given speed-altitude profile. The mathematical operations were described in Section 2.1. This routine performs the computations and accumulations of distance, time, and fuel increments as well as current gross weight, Mach number, dynamic pressure, true airspeed, and average values for climb gradient, specific fuel consumption, and engine thrust. It directly utilizes TLU1 for altitude related functions and frequently calls TANGAM to compute climb gradients.

TANGAM - This subroutine computes flight path gradient as the difference between T / W and D / L. Subroutine DOVRL is called to produce D / L. Subroutine TLU2 is called to obtain engine thrust and specific fuel consumption, which are then returned to CLDES via TANGAM.

DOVRL - Subroutine DOVRL computes the ratio $\mathrm{C}_{\mathrm{d}} / \mathrm{C}_{\ell}$ as a function of Mach number for a given value of C_{ℓ}. The primary function of this subroutine is to back out compressibility effects from the cruise Mach number drag coefficient for the slower speeds encountered during climb and descent. The mathematical approach was described in Section 2.1.

The DOC and ROI modules each employ only one subroutine in addition to the input and output functions. Subroutine GENEQ makes use of a generalized cost equation, explained in Section 2.2, to compute labor and material costs, and their total, for a particular aircraft component or subsystem. The call arguments transfer the component weight, a reference weight, labor and material scaling exponents, and labor hours/pound and material cost/pound at the reference weight. All of these factors vary by component. A COMMON statement provides constant values for desired and reference production quantities, labor and material learning exponents, manufacturing labor rate, and material cost escalation factor.

In the ROI module, subroutine RET employs an iterative technique to compute the equivalent rate of return-on-investment equaling the profit generated by commercial airplane operations. The call sequence provides all required input: profit, number of airplanes, investment/airplane, and the time period of the operation. The mathematical technique is described in Section 2.3; because of the nature of the equations, an iterative technique is required. A trial value of ROI is used to compute what is in essence an equivalent profit for a fixed investment over a given number of years. The trial ROI is incremented in steps of DFLR (arbitrary stepping increment, dimensionless) until the computed profit matches the target value within an accuracy specified by the parameter EPSA (error fraction, dimensionless). Both DELR and EPSA are input; suggested values are $\operatorname{DELR}=.05, E P S A=.001$. When profit is negative, ROI is computed based on the absolute value of profit, with the negative sign attached to the result.

3.3 DICTIONARY OF VARIABLES

A dictionary of FORTRAN variables found in the program modules associated with the sizing process is presented in Table 3-1. Variables associated with the Direct Operating Cost and Return-On-Investment modules are found in Tables 3-2 and 3-3, respectively. It should be noted that the actual program input and output utilize the English system of units.

SIZE MODULE

ALT
ALTF CDF
CDOMCR
CGLOVE
CHVOL
CL
CLCR
CLOCH
CLOCV
CLOCW
CMDD
CPAXC
CRMACH
CSWET
CSWPYL
CTWR
CVVOL
CWEF
CWFRG
CWT
CWTIC
DAISLE
DBD
DBL
DBLC
DBLST
DBLTPR
DBL 1
DCDCV
DCDICV
DCDISC
DCDSC
DCL
DCR
DCRES
DDES
DDRES
DRES2
DELTAI
DHL
DLCR
DLNAC
DMACH
DNAC
DNAC1
DRES
DRESI
DSTPC
DSTPI
DSTWC
DSTW1
DWB

INITIAL CRUISE ALTITUDE (FT/I000)
FINAL CRUISE ALTITUDE (FT/1000)
EQUIVALENT SKIN FRICTION COEFFICIENT
CRUISE PARASITE DRAG COEFFICIENT
RATIO WING GLOVE CHORD/THEO CHORD AT BODY
VOLUME COEFFICIENT FOR HORIZONTAL TAIL
LIFT COEFFICIENT
CRUISE LIFT COEFFICIENT
HORIZONTAL TAIL MAC LOCATION RATIO TO BODY LENGTH
VERTICAL TAIL MAC LOCATION RATIO TO BODY LENGTH
WING MAC LOCATION RATIO TO BODY LENGTH
INCREMENT IN CRITICAL MACH NUMBER DUE TO CL/CL
FRACTION OF TOTAL SEATS IN COACH
DESIGN CRUISE MACH NUMBER
RATIO WING WETTED AREA/PLANFORM AREA - RECTANGULAR SECTION
RATIO PYLON/NACELLE WETTED AREAS
INITIAL ESTIMATE OF STATIC T/W REQUIRED
VOLUME COEFFICIENT FOR VERTICAL TAIL.
INDUCED DRAG EFFICIENCY FACTOR
LATERAL EXTENT OF WING GLOVE/WING SEMI-SPAN
RATIO WO/WGTO
RATIO WO/WGTO , INITIAL ESTIMATE)
AISLE WIDTH IN COACH (IN)
BODY DIAMETER (FT)
TOTAL BODY LENGTH (FT)
LENGTH OF COACH SECTION (FT)
LENGTH OF STRAIGHT BODY SECTION (FT)
LENGTH OF TAPERED BODY SECTION (FT)
LENGTH OF FIRST CLASS SECTION (FT).
TABLE - DRAG RISE - DELTA CDO - CONVENTIONAL (COUNTS)
TABLE - DRAG RISE - DELTA CDI - CONVENTIONAL (COUNTS)
TABLE - DRAG RISE - DELTA CDI - SUPERCRITICAL (COUNTS)
TABLE - DRAG RISE - DELTA CDO - SUPERCRITICAL (COUNTS)
DISTANCE - CLIMB TO INITIAL CRUISE ALTITUDE (NM)
CRUISE DISTANCE (NM)
CLIMB DISTANCE TO 15000 FT FOR FUEL RESERVES (NM)
DISTANCE - DESCEND FROM FINAL CRUISE ALTITUDE (NMI
DESCENT DISTANCE FROM 15000 FT FOR FUEL RESERVES (NM)
CRUISE DISTANCE TO ALTERNATE DESTINATION (NM)
PRESSURE RATIO AT INITIAL CRUISE ALTITUDE
LENGTH OF HORIZONTAL TAIL ARM (FT).
CRUISE D/L RATIO
LENGTH OF NACELLE (FT)
TABLE - DRAG RISE - MACH NUMBER
NACELLE DIAMETER(FT)
DIAMETER OF FULL SCALE NACELLE (FT)
DISTANCE TO ALTERNATE DESTITNATION (NM)
DISTANCE EQUIVALENT OF TRES (NM)
SEAT PITCH IN COACH (IN)
SEAT PITCH IN FIRST CLASS (IN)
SEAT WIDTH IN COACH (IN)
SEAT WIDTH IN COACH (IN)
WING SPAN (FT)

DWBS WING STRUCTURAL SPAN (FT)
DWCGL LENGTH OF WING GLOVE CHORD (FT)
DWCOB LENGTH OF WING CHORD AT BODY JUNCTION (FT)
DWCR LENGTH OF WING ROOT CHORD (FT)
DWCT LENGTH OF WING TIP CHORD (FT)
DWMAC
DWTGL
DWTR
DVL
ES
FBI
FBS
FGAM
FGAMDD
FLDENS
FNCL
FNCR
FNIDL
FNMCR
FNREQ
FNRTG
FNZL
fTAPER
GNFR
GNFRF
GWAR
GWPL
GWS
GWSWPO
GWSWP2
GWSWP4
GWTC
GWTPR
H
HDEL
H
HSIGSR
KACS
KAF
KAPU
KARULE
KEFIN
KEY
KMATL
KPSP
KRPT
KTEST
KUPDN
KWI
NAISLE
NCREW
NENG
NENGPR
NPAXC
NPAXI

LENGTH OF WING MEAN AERODYNAMIC CHORD (FT)
THICKNESS OF WING GLOVE CHORD (FT)
WING ROOT CHORD THICKNESS AT C/L (FT)
LENGTH OF VERTICAL TAIL ARM (FT)
ENGINE SCALE
BLOCK FUEL EQUATION - INTERCEPT
bLOCK FUEL EQUATION - SLOPE
TABLE - CRITICAL MACH INCREMENT - FACTOR
FACTOR TO DETERMINE CMDD $=F(W I N G$ SWEEP)
FUEL DENSITY (LB/GAL)
TABLE - NET THRUST - CLIMB
TABLE - NET THRUST - CRUISE
TABLE - NET THRUST - IDLE
FULL SCALE ENGINE NET THRUST - INITIAL CRUISE (LBS)
REQUIRED NET THRUST/ENGINE - INITIAL CRUISE (LBS)
SLST OF FULL SCALE ENGINE
LIMIT LOAD FACTOR
TAPERED BODY LENGTH(DIAMETERS)
PODDED NACELLE FINENESS RATIO
Nacelle fineness ratio - fin mounted
WING ASPECT RATIO
RATIO WGTO/WPL
WING LOADING (LB/SQ FT)
WING SWEEP ANGLE AT LE (DEG)
WING'SWEEP ANGLE AT C/2 (DEG)
WING SWEEP ANGLE AT C/4 (DEG)
WING THICKNESS/CHORD RATIO
WING TAPER RATIO
TABLE - STANDARD ATMOSPHERE - ALTITUDE (FT/1000)
TABLE - STANDARD ATMOSPHERE - DELTA
TABLE - ENGINE DATA - ALTITUDE (FT/1000):
TABLE - STANDARD ATMOSPHERE - SQ RT SIGMA
FLAG FOR ACTIVE CONTROL SYSTEM ($1=W I T H, 0=W / 0)$
FLAG FOR SUPERCRITICAL AIRFOIL $(1=W I T H, 0=W / 0)$
FLAG FOR AUXILLIARY POWER UNIT ($1=W I T H, 0=W / 0)$
FLAG FOR BODY AREA RULING ($1=W I T H, 0=W / 0)$
FLAG FOR FIN MOUNTED ENGINE ($1=Y \mathrm{Y} E, 0=\mathrm{NO}$)
PROGRAM CONTROL WORD
FLAG FOR CONSTRUCTION MATERIAL ($1=$ COMP, $0=A L U M)$
FLAG FOR NACELLE SOUND.PROOFING ($1=W I T H, 0=W / O)$
FLAG FOR SIZE ITERATION LOOP
TEST FOR ODD NUMBER OF ENGINES $(+=E V E N,-=000)$
FLAG FOR CLDES SUBROUTINE (1=CLIMB, 0=DESCENDI
FLAG FOR ENGINE WATER INJECTION PROVISIONS (l=WITH, $0=W / 0$)
NO. AISLES
NO. OF FLIGHT CREW MEMBERS
NUMBER OF ENGINES
NO. OF PODDED ENGINES (WING OR BODY MOUNTED)
NO. SEATS IN COACH
NO. SEATS IN FIRST CLASS

NAME
DESCRIPTION
NROWC NO. SEAT ROWS IN COACH
NROW 1 NO. SEAT ROWS IN FIRST CLASS
NSROWC
NSROW 1
NSTEW
OWE
PAX
PIAE
Q
QFUEL
NO. SEATS ABREAST IN COACH
NO. SEATS ABREAST IN FIRST CLASS
NO. OF STEWARDESSES
OPERATING WEIGHT EMPTY (LBS)
TOTAL NO. SEATS
PI X ASPECT RATIO X INDUCED DRAG EFF FACTOR
DYNAMIC PRESSURE (LB/SQ FT)
FUEL QUANTITY - TOTAL (GAL)
RACS
Range
RANGEF
RATING
RF
RFAVG
RMACH
RMATL
SBW
SBWCS
SFC
SFCIDL
SFCCL
SFCCR
SHEXP
SNW
SRSIG
STW
SVEXP
SW
SWET
SWP
SWW
SWWIB
SWWOB
TBI
TBL
TBS
TCL
TCR
TDES
TGAMC2
TRES
TSTO
VCL
VDIVM
VMO
VM1
VOVRM
VT
VTAVG
VTF
VTI
WAF
WCRES

ACS CORRECTION FACTOR FOE WING WEIGHT
DESIGN RANGE (NM)
BREGUET RANGE FACTOR
SEA LEVEL STATIC THRUST OF SCALED ENGINE (LBS)
RANGE FACTOR AT 15000 FT CRUISE OR AT FINAL CRUISE
RANGE FACTOR - AVERAGE INITIAL AND FINAL CRUISE
SPEED CORRECTION FACTOR FOR WING WEIGHT
MATERIAL CORRECTION FACTOR FOR WING WEIGHT
WETTED AREA - BODY (SQ FT)
WING GLOVE CROSS SECTION AREA (SQ FT)
THRUST SPECIFIC FUEL CONSUMPTION (LB/LB/HR)
TABLE - SPECIFIC FUEL CONSUMPTION - IDLE
TABLE - SPECIFIC FUEL CONSUMPTION - CLIMB
TABLE - SPECIFIC FUEL CONSUMPTION - CRUISE
EXPOSED AREA OF HORIZONTAL TAIL (SQ FT)
WETTED AREA - NACELLES (SQ FT)
SQUARE ROOT OF DENSITY RATIO = F (ALTITUDE)
WETTED AREA - HORIZONTAL + VERTICAL TAIL (SQ FT)
EXPOSED AREA OF VERTICAL TAIL (SQ FT)
WING AREA (SQ FT)
WETTED AREA - TOTAL AIRPLANE (SQ FT)
TABLE - CRITICAL MACH INCREMENT - WING SWEEP
WETTED AREA - WING TOTAL (SQ FT)
WETTED AREA - WING 2NBOARD SECTION (SQ FT)
WETTED AREA - WING OUTBOARD SECTION (SQ FT)
BLOCK TIME EQUATION - INTERCEPT
BLOCK TIME (HR)
bLOCK TIME EQUATION - SLOPE
TIME - CLIMB TO INITIAL CRUISE ALTITUDE (HR)
TIME - CRUISE (HR)
TIME - DESCEND FROM FINAL CRUISE ALTITUDE (HR)
TAN(WING SWEEP AT C/2)
RESERVE FUEL LOITER TIME (HR)
ENGINE SLST REQUIRED
MAX CLIMB EQUIVALENT AIRSPEED (KT)
TABLE - STANDARD ATMOSPHERE - VE/M
RATIO VE/M AT START OF CRUISE
RATIO VEIM AT END OF CRUISE
Ratio EQUIVALENT AIRSPEED/MACH NUMBER = F(ALTITUDE)
WORKING VALUE - TRUE AIRSPEED (KT)
TRUE AIRSPEED - AVG INITIAL AND FINAL CRUISE (KT)
TRUE AIRSPEED - FINAL CRUISE (KT)
TRUE AIRSPEED - INITIAL CRUISE (KT)
AIRFRAME WEIGHT FOR DOC PROGRAM (LBS)
RESERVE FUEL WEIGHT - ALTERNATE DESTINATION - CLIMB (LBS)

NAME

DESCRIPTION

WCREW
WDRES
WE
WENG1
WFBL
WFCL
WFCR
WFDES
WFRES
WFRES 1
WFRES2
WFTOT
WGTO
WGULT
WH2O
WPASS
WPDIST
WPDUMP
WPEC
WPENG
WPFS
WPL
WPPUMP
WPREFL
WPROP
WPSEAL
WPSP
WPST
WPSYSC
WPVENT
WPW I
WRESCR
WRTO
WSB
WSEAC
WSEAI
WSEAPU
WSEAUX
WSEAVI
WSEFRN
WSEHYD
WSEINS
WSELEC
WSESC
WSH
WSLG
WSNAC
WSTEW
WSTR
WSV
WSW
WSYSEQ
WT
WTO
WTRTO

WEIGHT OF FLIGHT CREW MEMBER (LBS)
RESERVE FUEL WEIGHT - ALTERNATE DESTINATION - DESCENT (LBS)
WEIGHT EMPTY (LBS)
FULL SCALE ENGINE WEIGHT (LBS)
BLOCK FUEL WEIGHT (LBS)
FUEL WEIGHT - CLIMB TO INITIAL CRUISE ALTITUDE (LBS)
FUEL WEIGHT - CRUISE (LBS)
FUEL WEIGHT - DESCEND FROM FINAL CRUISE ALTITUDE (LBS)
RESERVE FUEL WEIGHT - TOTAL (LBS)
RESERVE FUEL WEIGHT - LOITER + AIR MANEUVER (LBS)
RESERVE FUEL WEIGHT - ALTERNATE DESTINATION - TOTAL (LBS)
FUEL WEIGHT - TOTAL (LBS)
GROSS TAKEOFF WEIGHT (LBS)
WGTO X ULTIMATE LOAD FACTOR (LBS)
TAKEOFF WATER INJECTION FLUID WEIGHT (LBS)
PASSENGER WEIGHT (LBS)
PROPULSION SYS WEIGHT - FUEL SYS DISTRIBUTION (LBS)
PROPULSION SYS WEIGHT - FUEL SYS DUMPING (LBS)
PROPULSION SYS WEIGHT - ENGINE CONTRGLS (LBS)
PROPULSION SYS WEIGHT - ENGINES (LBS)
PROPULSION SYS WEIGHT - FUEL SYS TOTAL (LBS)
PAYLOAD WEIGHT (LBS)
PROPULSION SYS WEIGHT - FUEL SYS PUMPS (LBS)
PROPULSION SYS WEIGHT - FUEL SYS REFUELLING (LBS)
PROPULSION SYS WEIGHT - TOTAL (LBS)
PROPULSION SYS WEIGHT - FUEL SYS SEALING (LBS)
PROPULSION SYS WEIGHT - NACELLE SOUND PROOFING (LBS)
PROPULSION SYS WEIGHT - STARTING SYSTEM (LBS)
PROPULSION SYS WEIGHT - FUEL SYS CONTROLS (LBS)
PROPULSION SYS WEIGHT - FUEL SYS VENTING (LES)
PROPULSION SYS WEIGHT - WATER INJECTION PROVISIONS (LBS)
RESERVE FUEL WEIGHT - ALTERNATE DESTINATION - CRUISE (LBS)
WEIGHT RATIO WO/WI FROM BREGUET EQUATION
STRUCTURAL WEIGHT - BODY (LBS)
SYS + EQUIP WEIGHT - AIR CONDITIONING (LBS)
SYS + EQUIP WEIGHT - ANTI-ICE (LBS.)
SYS + EQUIP WEIGHT - AUX POWER UNIT (LBS)
SYS + EQUIP WEIGHT - AUX GEAR (LBS)
SYS + EQUIP WEIGHT - AVIONICS INSTALLATION (LBS)
SYS + EQUIP WEIGHT - FURNISHINGS (LBS)
SYS + EQUIP WEIGHT - HYDRAULICS + PNEUMATICS (LBS)
SYS + EQUIP WEIGHT - INSTRUMENTS (LBS)
SYS + EQUIP WEIGHT - ELECTRICAL (LBSI
SYS + EQUIP WEIGHT - SURFACE CONTROLS (LBS)
STRUCTURAL WEIGHT - HORIZONTAL TAIL.. (LBSI
STRUCTURAL WEIGHT - GANDING GEAR (LBS)
STRUCTURAL WEIGHT - NACELLES (LBS)
WEIGHT OF STEWARDESS (LBS)
STRUCTURAL WEIGHT - TOTAL LBSI
STRUCTURAL WEIGHT - VERTICAL TAIL (LBS)
STRUCTURAL WEIGHT - WING (LBS)
SYS + EQUIP WEIGHT - TOTAL (LBS)
WORKING VALUE - GROSS WEIGHT (LBS)
GROSS WEIGHT AT START OF CRUISE (LBS)
RATIO TOTAL FUEL WEIGHT/INITIAL CRUISE GROSS WEIGHT

TABLE 3-1. DICTIONARY OF VARIABLES (CONT)
NAME
DESCRIPTION

WTX	WORKING VALUE - GROSS WEIGHT (LBS)
WTI	GROSS WEIGHT AT END OF CRUISE (LBS)
WUL	USEFUL LOAD WEIGHT - TOTAL (LBS)
WULCR	USEFUL LOAD WEIGHT - CREW (LBS)
WULEQ	USEFUL LOAD WEIGHT - EQUIPMENT (LBS)
WULOIL	USEFUL LOAD WEIGHT - ENGINE OIL (LBS)
WULUF	USEFUL LOAD WEIGHT - UNUSABLE FUEL (LBS)
WUTO	FUEL WEIGHT - WARMUP AND TAKEOFF (LBS)
X	LIMIT WING GLOVE THICKNESS (FT)
XM	TABLE - ENGINE DATA - MACH NUMBER
XMACH	WORKING VALUE -MACH NUMBER

SUBROUTINE CLDES
ALT WORKING VALUE - ALTITUDE (FT/l000)
ALTI MAXIMUM CLIMB ALTITUDE (FT/l000)
CL LIFT COEFFICIENT
DDIST INCREMENTAL CLIMB/DESCENT DISTANCE (FT)
DIST CUMULATIVE CLIMB/DESCENT DISTANCE (FT)
DTIME INCREMENTAL CLIMB/DESCENT TIME (HR)
DWFL INCREMENTAL CLIMB/DESCENT FUEL WEIGHT (LBS)
GAMAVG AVERAGE CLIMB GRADIENT (FT)
SFCAVG AVERAGE SPECIFIC FUEL CONSUMPTION (LB/LB/HR)
SFCl, 2 SPECIFIC FUEL CONSUMPTION AT SEGMENT END POINTS (LB/LB/HR)
TGAMI, 2 CLIMB GRADIENT AT SEGMENT END POINTS (FT)
THAVG AVERAGE TOTAL NET THRUST (LBS)
THRI. 2 TOTAL NET THRUST AT SEGMENT END POINTS (LBS)
time Cumulative climb/descent time (hr)
VCL
VTI,2
WFUEL
WT
WTX
$\mathrm{XH}, 2$
MAXIMUM CLIMB AIRSPEED (KEAS)
TRUE AIRSPEED AT SEGMENT END POINTS (KT)
CUMULATIVE CLIMB/DESCENT FUEL WEIGHT (LBS)
CURRENT GROSS WEIGHT (LBS)
CURRENT GROSS WEIGHT ESTIMATE (LBS)
XMACH WORKING VALUE - MACH NUMBER
XM1,2 MACH NUMBER AT SEGMENT END POINTS
SUBROUTINE DOVRL

CD	DRAG COEFFICIENT - TOTAL AT XMACH
CDI	DRAG COEFFICIENT - INDUCED
CDO	DRAG COEFFICIENT - PARASITE
CDOMCR	DRAG COEFFICIENT - TOTAL AT CRUISE MACH
DELCDI	COMPRESSIBILITY INCREMENT AT XMACH - CDI
DELCDO	COMPRESSIBILITY INCREMENT AT XMACH - CDO
DELM	MACH NUMBERINCREMENT BELOW CRUISE MACH NUMBER
DELMDD	CRITICAL MACH NUMBER INCREMENT DUE TO CL -
DL	RATIOCD/CL AT XMACH

SUBROUTINE TANGAM

FN	NET THRUST/ENGINE AT XMACH AND ALT (LBS)
SFC	SPECIFIC FUEL CONSUMPTION AT XMACH AND ALT (LB/LB/HR)
TGAM	CLIMB GRADIENT AT XMACH AND ALT (FT)
THRUST	TOTAL NET THRUST AT XMACH AND ALT (LBS)

SUBROUTINE TLUI

I	INDEX VALUE FOR X-VECTOR SEARCH
N.	DIMENSION OF X AND Y VECTORS
Q	INTERPOLATION FRACTION
YOUT	OUTPUT VALUE OF $Y=F(X)$
YVECT	ADDRESS OF Y-VECTOR
XIN	INPUT VALUE OF PARAMETER X
XVECT	ADORESS OF X-VECTOR

SUBROUTINE TLUZ
$J \quad$ INDEX VALUE FOR Z-VECTOR SEARCH
NX DIMENSION OF X-VECTOR
NY INDEX VALUE FOR X-VECTOR SEARCH
NZ DIMENSION OF Z-VECTOR
Q INTERPOLATION FRACTION FOR Z-VECTOR
XIN INPUT VALUE OF PARAMETER X
XVECT ADDRESS OF X-VECTOR
YMAT ADDRESS OF Y-MATRIX (DIMENSION NX $X N Z$)
YOUT OUTPUT VALUE OF $Y=F(X, Z)$
Y1,Y2 INTERPOLATED VALUES FROM X-VECTORS
Zin INPUT VALUE OF PaRameter Z
ZVECT ADDRESS OF Z-VECTOR

Table 3-2: Dictionary of Variables

DOC Module (DOCIN)

DOC Module ${ }_{\text {! }}$ (DOCEQ)
CEACC MATEFIAL SCALING EXPONENT - AIR-CONOIIIONING
CEACL
LABOR HRS/LB AT REF WT - AIR-CONOITIONING
CEACM
CEACR
MATL COST/LZ AT REF WT - AIR-CONDITIONING
REFERENCE WEIGHT FOR AIR-CONOITIONING
CEACS
LABOR SCALING EXPONENT - AIR-CONDITIONING
CEAIC
CEAIL
GEAIM
CFAIR
CEAIS
CEAFUC
CEAFLK
CEAPUM
CEAPUR

LABOR HRS/LS AT REF WT - ANTI-ICING
MATL COST/LB AT REF WT - ANTI-ICING
REFERENCE WEIGHT FOR ANTI-ICING
LABOR SCALING EXPONENT - ANTI-ICING
MATERIÁ SGALING EXPONENT - AUXILLARY POWER UNIT LABOR HRS/LB AT REF WT - AUXILLARY POWER UNIT MATL COST/LS AT REF HT - AUXILLARY POWER UNIT REFERENCE WEIGHT FOR AUXILLARY PONER UNIT

Table 3-2. Dictionary of Variables (Cont.)

ceapus CEAUXC	LABOR SCALING EXPONENT - AUXILLARY POWER UNIT MATERIAE SCALINE EXPONENT - AUXILLARY GEAR
CEAUXL	LABOR HRS/LS AT REF WT - AUXILLARY GEAR
ceauxh	MATL COST/LB AT REF WT - AUXILLARY GEAR
CEAUXR	REFERENCE WEIGHT FOR AUXILLARY GEAR
ceauxs	LABOR SCALING EXPONENT - AUXILLARY GEAR
CEHYDC	MATERIAL SCALING EXPONENT - HYOKAULICS/PNEUMATICS
CEHYOL	LABOR HRS/LB AT REF WT - HYDRAULICS/PNEUMATICS
CEHYDM	MATL COST/LS AT REF WT - HYDRULICS/PNEUMATICS
CEHYDR	REFFRENCE WEIGHT FOR HYORAULICSIPNEUMATICS
CEHYOS	LABOR SCALING EXPONENT - HYORAULICS/PNUMATICS
CEINC	MATFRIAL SCALING EXPONEMT - INSTRUMENTS
CEINL	LAEOR HRS/LB AT REF WT - INTRUMENTS
CEINM	MATL COST/LB AT REE WT - INSTRUMENTS
CEINR	REFERENCE WEIGHT FOR INSTRUMENTS
CEINS	LABOR SCALING EXPONENT - INSTRUMENTS
CESCC	MATERIAL SCALING EXPONENT - SURFACE CONTROLS
CESCL	LASOR HRS 1 LB AT REF WT - SURFACE CONTROLS
CESCM	MATL COST/LB AT REF WT - SURFACE CONTROLS
CESCR	REFERENCE HEIGHT FOR SURFACE CONTROLS
CESCS	LABOR SCALING EXPONENT - SURFACE CONTROLS
CFURNG	MATERIAL SCALING EXPONENT - FURNISHINGS
CFURNL	LABOR HRS/LB AT REF WT - FURNISHINGS
CFURNM	MATL COST/LB AT REF WT - FURNISHINGS
CFURNR	REFERENCE WEIGHT FOR FURNISHINGS
CFURNS	LABOR SCALING EXPONENT - FURNISHINGS
CLECC	MATERIAL SCALING EXPONENT - ELECTRICAL
CLECL	LABOR HRSILB AT REF WT - ELECTRICAL
CLECM	MATL COST/LB AT REF WT - ELECTRICAL
CLECR	REFERENCE HEIGHI FOR ELECTRICAL
CLECS	LABOR SCALING EXPONENT - ELECTRICAL
CPECC	MATEPIAL SCALING EXPONENT - ENGINE CONTROLS
CPECL	$\angle A B O R$ HRS $12 B$ AT REF HT - ENGINE CONIROLS
CPECM	MATL COST/LB AT REF WT - ENGINE CONTROLS
CPECR	REFERENCE WEIGHT FOR ENGINE CONTROLS
CPECS	LABOR SCALING EXPONENT - ENGINE CONIROLS
CPFSC	MATERIAL SCALING EXPONENT - FUEL SYSTEM
CPFSL	LABOR HRSILB AT REF WT - FUEL SYSTEM
CPFSM	MATL COST/LB AT REE HT - FUEL SYSIEM
CPFSR	REFERENCE WEIGHT FOR FUEL SYSTEM
CPFSS	LABOR SCALING EXPONENT - FUEL SYSTEM
CPSPC	MATERIAL SCALIME EXPONENI - SOUMD PROOFING
CPSPL	LABOR HRSILB AT REF MT - SOUND PROOFING

Table 3-2. Dictionary of Variables (Cont.)

CPSPM CPSPR
CPSFS
CPSTC
COSTL
CPSTM
CPSTR
cests
CPWIC
CPWIL
COWIM.
CPWIR
CPWIS
$\operatorname{cs3} \mathrm{C}$
CSBL
CS 9 M
CSBR
csbs
CSHC
CSHL
CSHM
CSHR
CSHS
CSLGC
CSLGL
CSLGM
CSLGR
CSLGS
CSNAC
CSNAL
CSNAM
CSNAR
CSNAS
CSVC
CSVL
CSVM.
CSVR
CSVS
CSWC
CSWL
CSWM
CSWR
CSWS

MATL COST/LE AT REF WT - SOUND PROOFING REFERENCE HEIGHT FOR SOUND PROOFING LABOR SCALING EXPONENT - SOUND FROOFING MATERIAL SCALING EXPJNENT - STARTING LABOR HRS/LB. AT REF WT - STARTING MATL COST/LB AT REF WT - STARTING REFERENCE WEIGHT FOR STARTING
LABOR SCALING EXPONENT - STARIING.
MATERIAL SCALING EXPONENT - WATER INJECTION
LABOR HRSILB AT REF WT - WAIER INJECTION MATL COST/LB AL REF WT - WATER INJECTION FEFERENCE WEIGHT FOR WATER INJECTION LABOR SCALING EXPONENT - WATER INJECTION MATERIAL SGALING EXPQNENT - FUSELAGE..
LAGOR HRS/LB AT REF WT - FUSELAGE
matl cost/la at ref wt - fuselage
REFERENCE WEIGHI FOR FUSELAGE
LABOP SCALING EXPONENT - FUSELAGE
MATFRIAL SCALING EXPONENT - HORIZONTAL TAIL
LABOR HRS/LB AT REF WT - HORIZONTAL TAIL MATL COST/L3 AT REF WT - HORITONTAL TAIL PEFFRENCE WEIGHT FOR HORIZONTAL TAIL LABOR SCALING EXPONENT - HORIZONTAL TAIL. MATERIAL SCALING EXPONENT - LANOING GEAR LABOR HRSILE AT REF WT - LANOING GEAR MATL GOST/LB AT REE WT - LANOING GEAR REFERENCE WEIGHT FOR LANDING GEAR LABOR SCALING EXPONENT - LANDING GEAR MATERIAL SCALING EXPONENT - NACELLES \qquad LABOR HRSILG AT REF WT - NACELLES MATL COST/LB AT REF WT - NACELLES
REFERENCE NEIGHT FOR NACELLES
LABOR SCALING EXPONENT - NACELLES
MATERIAL SCALING EXPONENT - VERTICAL TAIL LABOR HRS/LS AT REF WT - VERTICAL TAIL MATL COST/L3 AT REF HT - VERTICAL TAIL
REFERENCE WEIGHT FOR VERTIGAL TAIL
LABOR SCALING EXPONENT - VERTICAL TAIL
MATERIAL SCALING EXPONENT - WING
LABOR HRSILS AT REF WT - WING
MATL GOST/LB AT REF WT - WING
REEERENCE HEIGHT FOR WING
LABOR SCALING EXPONENT - WING

Table 3-3. Dictionary of Variables
ROI Module (ROIIN)

AF
ANHR
OELR.
EPSA
FAREI
FARES
FLM
IPTE
IsU日
MINF
T
TAX
2(1)
2(2)
2(3)
Z(4)
2(5)
2(6)

SYSTEM GROWTH FACTOR BY CIIY PAIR ANNUAL HOURS IN SERVICE STEPPING FACTOR IN ROI ITERATION-DEC. FRACTION ERROR FRACTION IN ROI ITERATION-DEC. FRACTION FIXEO CHARGE PER PASS - \$ CHARGE PER PASS NMI - \$ MAX. PERMITTED CITY PAIR LOAD FACTOR-DEC FRACTION FLAG - $1=$ READ ROUTE DATA, $0=00$ NOT READ $1=$ PRINT DATA QY CITIES, $2=$ PRINT SUMMARY ONLY MINIMUM FLIGHTS / DAY DAILY OPERATIONAL PERIOO PHR) INCOME TAX RATE = DEC. FRACTION. SERVICE COST AND LANDING FEE/1000 LB - DOLLARS PASS. SERVICE COST/MILE RESERV T DOLLARS STEWARDESS COST PASSK HOUR GGIPASS - DOLLARS MEAL COST/PASS HOUR - DOLLARS GENERAL AND ADMINISTRATIVE IOC FACTOR- PERCENT

SECTION 4
 PROGRAM OPERATION AND INSTRUCTIONS

This section defines the input requirements and physical deck arrangement for each of the main program modules operated individually or in sequence.

Input is divided into data blocks for each of the main program modules and for the program control word KEY. The FORTRAN NAMELIST routine requires that each input data block be headed by a control card bearing the name assigned to that block. Table 4-1 lists the names assigned to each set of input data. In addition to the NAMELIST input deck, the ROI module requires a set of city-pair distance and traffic data in formatted style (see Section 5).

A list of input parameters required by each program module, when run independently, appears in Table 4-2. Those parameters generated by one model for sequential input to the next are indicated; these variables are then omitted from the succeeding input deck when running sequentially. Any parameter read into the program supersedes the value previously read in or computed. Once a parameter value has been read in, it maintains that value unless modified by subsequent input, therefore, it is unnecessary to repeat unchanged data for consecutive runs through the same module.

Figure 4-1 illustrates the deck setup for a sequential run of all three program modules. To run modules individually, each input deck must be preceeded by an NKEY data set as seen in Figure 4-2. The parameter COM, appear ing in the input list of each module, provides for a 60 character run title to be reproduced at the head of each module output.

Table 4-1. NAMELIST Input Labels

PROGRAM ELEMENT	SUBROUTINE	INPUT LABEL
TEKVAL PROGRAM CONTROL		NKEY
SIZE	RNAM	SIZN
DOC	DOIN	DOCIN, DOCEQ
ROI	ROIN	ROIIN

Table 4-2. Input Requirements

SIZE

ALT	CWEF
CDF	CWTIC
CGLOVE	DAISLE
CHVOL	DHCL
CLOCH	DMCL
CLOCV	DNAC1
CLOCW	DRES
COM	DSTP1
CPAXC	DSTPC
CRMACH	DSTW1
CSWET	DSTWC
CSWPYL	FLDENS
CTWR	FNRTG
CVVOL	FNZL
CWFRG	FTAPER

GNFR	NCREW
GNFRF	NENG
GWAR	NSTRWC
GWS	PAX
GWSWP4	RANGE
GWTPR	TRES
KACS	VCL
KAF	WAVI
KAPU	WCREW
KARULE	WENG1
KEFIN	WPASS
KMATL	WSTEW

Tables:

H	HH	SFCCL	DMACH
HDEL	XM	SFCCR	DCDCV
MSIGSR	FNCL	SFCIDL	DCDSC
VDIVM	FNCR	SWP	DCDICV
	FNIDL	FGAM	DCDISC

DOC (*From SIZE)
DOCIN:

AD	COT	GD	PQ
AFMF	CREW	GDMVR	PR
AFSP	DNM	IEQ	*RANGE
ANHR	ENGSP	IMAX	*RATING
CAVI	EQTYPE	MCF	*TBI
CCENG	*FBI	MLL	*TRS
CDLH	*FBS	MML	TURNT
CFT	FEC	*NENG	*WAVI
CMLH	FRAD	*NSTEW	*WGTO
*COM	FRGD	*PAX	YRS

Table 4-2. Input Requirements (Cont'd)

Optional Weights Input (Computed by SIZE):

For $\mathrm{EQTYPE}=0, \mathrm{WAF}$
For EQTYPE = 1,

WSB	WSLG	WPFS	WSEAC
WSW	WPSP	WSESC	WSEAI
WSH	WPST	WSEINS	WSEAUX
WSV	WPEC	WSEHYD	WSEAPU
WSNAC	WPWI	WSELEC	WSEFRU

DOCEQ (For EQTYPE = 1 Only):

CSBR	CSBS	CSBL	CSBC	CSBM
CSWR	CSWS	CSWL	CSWC	CSWM
CSHR	CSHS	CSHL	CSHC	CSHM
CSVR	CSVS	CSVL	CSVC	CSVM
CSNAR	CSNAS	CSNAL	CSNAC	CSNAM
CSLGR	CSLGS	CSLGL	CSLGC	CSLGM
CPSPR	CPSPS	CPSPL	CPSPC	CPSPM
CPSTR	CPSTS	CPSTL	CPSTC	CPSTM
CPECR	CPECS	CPECL	CPECC	SPECM
CPWIR	CPWIS	CPWIL	CPWIC	CPWIM
CPFSR	CPFSS	CPFSL	CPFSC	CPFSM
CESCR	CESCS	CESCL	CESCC	CESCM
CEINR	CEINS	CEINL	CEINC	CEINM
CEHYDR	CEHYDS	CEHYDL	CEHYDC	CEHYDM
CLECR	CLECS	CLECL	CLECC	CLECM
CEACR	CEACS	CEACL	CEACC	CEACM
CEAIR	CEAIS	CEAIL	CEAIC	CEAIM
CEAUXR	CEAUXS	CEAUXL	CEAUXC	CEAUXM
CEAPUR	CEAPUS	CEAPUL	CEAPUC	CEAPUM
CFURNR	CFURNS		CFURNL	CFURNC

Table 4-2. Input Requirements (Cont' d^{\prime})

ROI (*From SIZE, + from DOC)						
		EPSA		MINF		*+TBI
		FAREI		*+NSTEW		*+TBS
		FARES		*+PAX		+TURNT
		FLM		*+RANGE		*+WGTO
		IRTE		T		+XIB
		IMAX				
+D		ISUB		TAX		+YRS
						Z
Formatted City-Pair Traffic Data:						
ROUTE TITLE						JMAX
NAMEI	NAME 2	D	A		P	PCTM

- Figure 4-1. Deck Setup for Sequential Operation

Figure 4-2. Deck Setup for Individual Module Operation

SECTION 5

SAMPLE RUN

Following is a reproduction of a sample case employing all three program modules sequentially. The airplane is designed to carry 195 passengers over a design range of $5559 \mathrm{~km}(3000 \mathrm{~nm})$. Cruise speed is to be 0.9 Mach with an initial cruise altitude of $11 \mathrm{~km}(36,000$ feet). The design is to employ supercritical aerodynamics, an active control system, and composite construction, but no area ruling. The power plant is the Pratt \& Whitney STF-429 design utilized in the ATT study; sound proofing and water injection are included. The configuration calls for three engines in a DC-10 arrangement. Domestic fuel reserves are indicated.

DOC input consists of factors typical of domestic operation. A set of detailed cost estimation factors are included. Note that the set of distance values DNM are not restricted to constant increments but are chosen to reflect the hyperbolic shape of the DOC curve.

Input to the ROI routine lists a system limit load factor of 55 percent and a 48 percent tax rate on profit, both values being input. City-pair traffic data are not listed in the input, since they are formatted data (not reproduced by the NAMELIST routine); however, the information is reproduced in the detailed output listing when called for. Figure 5-1 defines the required input card format for traffic data.

In the 1972 Convair ATT study, 1985 city pair traffic data were projected for 156 domestic and international routes varying in length from $278 \mathrm{~km}(150 \mathrm{~nm})$ to over $9265 \mathrm{~km}(5000 \mathrm{~nm})$. From the 1968 CAB "Handbook of Airline Statistics," the top 100 city-pairs ranked by number of passengers and number of passenger-kilometers yielded data for a total of 128 domestic routes, including mainland-to-Hawaii. Total traffic for each route was reduced to a representative fraction for an "average" trunk airline by reference to the number of seat-kilometers operated by each trunk authorized to serve that route. Total traffic for an additional 28 U.S. - international routes was estimated from data on total seat-kilometers available, average load factors, and relative market share of the major airlines serving each route. All data were then projected to 1975,1980 , and 1985 by a uniform annual growth rate of 9 percent in revenue passenger-kilometers. A complete summary of traffic data is being provided to NASA with this-model.

A representative set of 20 domestic routes was selected for the sample problem to illustrate the variation in economic return with distance and traffic level. Traffic data are two-way daily passenger totals. Peak hourly rates (see Figure 5-1) are simply daily rates divided by the arbitrary 10 -hour (input) daily operational period. The requirement for peak hourly traffic data is a holdover from previous versions of the ROI module and could be deleted with proper program modification.

All NAMELIST input data are listed in the sample run as single entries per card, followed by a definitive comment. In more common usage, several parameters would be listed per card, omitting the definitions, to reduce the bulk of the input data decks.

|6365|
SINGLE
AIRLINE
TRAFFIC
FRACTION

Figure 5-1. City-Pair Traffic Data Card Format


```
DMACH = 0., .01, .02, .04, .07, . 10, . 15, . 20, . 25, . 30, . 35, .40,
DCOCV = 0., -4.0, -7.0, -12., -16., -18., -20., -18., -17.,-15.5, -14., -12.,
    -11., -9.5, -6.0,
OGOICV = 0., -5.0, -7.0, -7.5, -8.0, -8.0, -9.0, -10.,-10.5,-11.5, -12., -13.,
-14., -14.5, -16.,
DCoSC = 0., -3.0, -5.0, -9.0, -14., -17., -20.,-19.5,-18.5,-17.0,-15.0, -12.,
    9.5, -6.0, 0.,
DCJISC = 0., -1.5,-2.0, -2.0, -2.0, -4.0, -4.5, -4.0, -2.0, 0.0, -3.0, -5.0,
    -7.0, -8.0,-10.0,
SW` = 0., 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0,
FGAM = . 5, .5,.55,.62,.74,.09, 1.1, 1.4, 1.78, 2.26,
SEND
```

```
    COMMERCIAL TKANSPORT SIZING PROGRAM
TEKVAL TEST CASE - .90 MACH 195 PASS 3000 NM
DESIGN SPECLEICATIONS
    PASSENGERS
        1 9 5
RANGE (NY)
    RANGE(NY)
        MACH NUMGER
    ALTITUDE(FT)
        .900
        36000
NUMBER OF ENGINES
MATERIAL
AIRFOIL
ACS
AREA RULED. FUSELAGE
OM oeriveo soectfications
    GEOMETRY
    FUSELAGE
        LENGTH(FT)
        DIAAMETER(FT)
    WING
        AREA(SQ FT)
        T/C
        SPAN (FT)
        ROOT CHORD(FT)
        TIP GHORD(FT)
        M A C (FT)
    TAIL (EXPOSED AREAS, SQ FT),
        HORIZONTAL \}323.1
        VERTICML 178.46
    NACELLES
        DIAYETER(FT)
        DLAMETER(FT) 5, 5.31
161.63
        17.97
1945.23
    -142
    132.31
        21.19
        8.21
        15.56
        5.31
PERFORMANCE
        CDOEFF AT CRUISE MACH . .01917.
        CDOEFF AT CRUISE MACH . .01917.
        CDOEFF AT CRUISE MACH . .01917.
    HING GEOMETRY
        ASPECT RATIO 
        SWEEP AT C/4 (DEG) 
    FUEL RESERVES
        LOITER TIME (HR)
        1.00
        OISTANCE TO ALTERNATE (NM) 200
        COMP
    S/C
    S/C
        YES
            NO
    CRUISE EFFICIENCY AT CRUISE MACH 
    COF AT CRUISE MACH
    00270
MING LOADING (PSF) 125.6
        19'5 PASS 3000 NM195
        3
        CRUISE L/D
        15.637
        ENGINE RATING-LB
        15.637
    21970
    CLIMB
            DIST ANCE (NM) 511.0
        DESCENT
            OISTANCE (NM) 75.8
            TIME (MIN)
        TIME (MIN) 11.01
        BLOCK TIME (HR). 
            SLOPE (HR/NH)(X1000) 1.935
            INTERCEPT (HR) (X1000) 152.6
    BLOCK FUEL
SLOPE(LS/NM) : 17.864
INTERCEPT (LB) :
7007.6
```


COMMERCIAL TRANSPJRT SIZING PROGRAM

```
TEKVAL TEST CASE - .90 MACH 195 PASS 3000 NMS
WEIGHT STATEAENT
WEIGHT EMPYY
                                    117199.6
    STRUCTURE
        FUSELAGE
        WING
        HORIZONTAL
        VERIICAL
        NACELLES
        LDG GEAR
    PROPULSION
        ENGINES
        SOUND SUPPRESSIIN
        STARTING
        ENGINE CONTROLS
        FUE. SYSTEM
            PUMPS
            DISTRIBUTION
            VENTING
            CJNTROLS
            REFUEL
            DJMP
            SEALING
        WATER INJECTION
    SYSTEMS AND EQUIPMENT
        SURFAGE CONTROLS
        INSTRUMENTS
        HYDR AND PNEU
        AVIONICS
        ELECTRICAL
        AIR CONDITIONING
        AUXILIARY GEAR
        ANTI-ICE
        FURNISHINGS
        APU
```

224.8
3330.7
819.8
1224.0
1618.5
3101.7
3463.8
55.3
794.3
22314.5
1170.6 ;

```
*
```

```
.
                                    37893.2
```

117199.6
63372.4
15934.0
12824.2
926.9
163.9
234.5
1559.9
184.7
537.3
229.4
119.5
107.1
69.2
312.6
26636.1 19271.0
1740.9
1088.2
3397.4
11238.8

;

USEFUL LOAD			7528.1
CREW		1365.0	
UNUSABLE FUEL		48.6	
ENGINE OIL		164.5	
PASS SERVICE EQUIP		5950.0	
OPERATING WEIGHT EMPTY			124727.7
payload			39975.0
ZERO FUEL WEIGHT			164899.0
FUEL (TOTAL)			76853.8
BLOCK		60600.2	
WARMUP AND TAKEOFF	1001.8		
CLIMS	16191.7		
CRUISE	43109.9		
DESCENT	296.7		
Reserve		16253.6	
WATER			795.9
GROSS TAKEOFF WEIGHT			242845.4

P\$DOCIN		
$A D=-6$.	, DEF $=55 \mathrm{H}$	AIR DELAY - MINUTES
$A F M F=1$.	, $D E F=55 \mathrm{H}$	AIRFRAME MAINTENANCE COEFFICIENT
AFSP $=.10$, $D E F=55 \mathrm{H}$	AIRFRAME SPARES FACTOR
ANHR $=4500$.	, $D E F=55 \mathrm{H}$	IDEALIZED ANNUAL UTILIZATION HOURS
CAVI $=500000$, $D E F=55 \mathrm{H}$	SHIP SET COST OF AVIONICS - \ddagger
CCENG $=5500$.	, $D E F=55 \mathrm{H}$	ENGINE COST FACTOR
COLH $=5$.	, DEF $=55 \mathrm{H}$	COST OF MAINTENANCE DIRECT LABOR \$/HOUR
CFT $=15$.	, $D E F=55 \mathrm{H}$	COST OF FUEL - \$/1000 LBS
CMLH $=7$.	, DEF $=55 \mathrm{H}$	MANUFACTURING COST PER HOUR \$
COT $=.66$, $D E F=55 \mathrm{H}$	COST OF OIL $=\$ / L B$
CREN $=160$.	, DEF $=55 \mathrm{H}$	CREW COST PER HOUR
DNM = 0 .	, $D E F=55 \mathrm{H}$	DISTANCES (UP 「0 20) NAUTICAL MILES
DNY $=100$	200.9 300	500., $700.91000 ., 1500.92000 .92500 ., 3000 .$,
ENGSP $=.40$, $D E F=55 \mathrm{H}$	ENGINE SPARES FACTOR
EQTYPEF 1	, $D E F=55 \mathrm{H}$	FLAG - $=$ SUMMARY EQUATIONS, $1=$ DETAILED EQUAT.
FEC $=0$.	, $D E F=55 \mathrm{H}$	ENGINE UNIT COST
FRAD $=1$.	, DEF $=55 \mathrm{H}$	FUEL RATE - AIR DELAY - 1000 LBS/MINUTE
FRGD $=1$.	, $D E F=55 \mathrm{H}$	FUEL RATE - GROUND DELAY - 1000 LBS/MINUTE
GD $=0$.	, $D E F=55 \mathrm{H}$	GROUND DELAY - MINUTES
GDMVR $=$: 0.	, $D E F=55 \mathrm{H}$	GROUND MANEUVER TIME/FLIGHT-MINUTES
IEQ $=1$, DEF $=55 \mathrm{H}$	FLAG - $1=$ REAO DOCEQ, $0=00$ NOT READ DOCEQ
IMAX = 10	, $D E F=55 \mathrm{H}$	NUMBER OF DNM ENTRIES - MAX OF 20
MCF $=1$.	, DEF $=55 \mathrm{H}$	MATERIAL ESCALATION COST FACTOR
MLL $=8$, DEF $=55 \mathrm{H}$	MANUFACTURING LABOR LEARNING EXPONENT
MML $=.95$	- $D E F=55 \mathrm{H}$	MANUFACTURING MATERIAL LEARNING EXPONENT
$P Q=250$.	, DEF $=55 \mathrm{H}$	PRODUCTION QUANTITY - UNITS
$P R \quad=250$, DEF $=55 \mathrm{H}$	REFERENCE PRODUCTION QUANTITY
TURNT $=.5$, $D E F=55 \mathrm{H}$	TURNAROUND TIME - HOURS
YRS $=15$.	, $0 E F=55 \mathrm{H}$	OEPRECIATION LIFETIME - YEARS
SEND		

UXS $=1.0$, $D E F=55 \mathrm{H}$
CEAPUS $=1.0$, $\mathrm{DEF}=55 \mathrm{H}$
CFURNS $=1.0$, $D E F=55 \mathrm{H}$
CS3L $=2.3$, $D E F=55 \mathrm{H}$
CSML $=2.2$, $D E F=55 \mathrm{H}$
CSHL $=4.3$, $0 E F=55 \mathrm{H}$
ESVL $=4.3$, $D E F=55 \mathrm{H}$
CSNAL $=5.0$, $D E F=55 \mathrm{H}$
CSLGL $=0.5$, $0 E F=55 \mathrm{H}$
CPSPL $=1.0$, $D E F=55 \mathrm{H}$
CPSTL $=1.0$, $D E F=55 \mathrm{H}$
CPECL $=1.0$, $D E F=55 \mathrm{H}$
CPWIL $=3.3$, $D E F=55 \mathrm{H}$
CPFSL $=1.6$, $D E F=55 \mathrm{H}$
CESCL $=7.5$, $D E F=55 \mathrm{H}$
CEINL $=0.0$, $D E F=55 \mathrm{H}$
CEHYDL $=1.5$, $D E F=55 \mathrm{H}$
CLECL $=3.3$, $D E F=55 \mathrm{H}$
CEACL $=0.7$, $D E F=55 \mathrm{H}$
CEAIL $=0.7$, $\mathrm{DEF}=55 \mathrm{H}$
CEAUXL $=0.0$, $D E F F=554$
CEAPUL $=0.0$, $D E F=55 \mathrm{H}$
CFURNL $=0.7$, $D E F=55 \mathrm{H}$
CSBC $=1.0$, $D E F=55 \mathrm{H}$
CSWC $=.95$, $D E F=55 \mathrm{H}$
$\operatorname{csinc}=1.0$, $\mathrm{DEF}=55 \mathrm{H}$
$\operatorname{csvc}=1.0$, $\mathrm{DEF}=55 \mathrm{H}$
CSNAC $=0.95$, $0 E F=55 \mathrm{H}$
CSLGC $=0.95$, $D E F=55 \mathrm{H}$
CPSPC $=1.0$, $D E F=55 \mathrm{H}$
CPSTC $=1.0$, $\mathrm{DEF}=55 \mathrm{H}$
CPECC $=1.0$, $D E F=55 \mathrm{H}$
CPMIC $=1.0$, $D E F=55 \mathrm{H}$
CPFSC $=0.9$, $D E F=55 \mathrm{H}$
CESCC $=0.9$, $\mathrm{DEF}=55 \mathrm{H}$
CEINC $=1.0$, $D E F=55 \mathrm{H}$
CEHYDC $=0.8$, $D E F=55 \mathrm{H}$
CLECC $=0.8$	DEF=5

LABOR SCALING EXPONENT - AUXILLARY POWER UNIT ,
LABOR SCALING EXPONENT - FURNISHINGS ;
AABOR HRS/LB AT REF WT - FUSELAGE ,
LABOR HRS/LB AT REF WT - WING ,
LABOR HRS/LB AT REF WT - HORIZONTAL TAIL ,
LABOR HRS/LB AT REF WT - VERTICAL TAIL
LABOR HRSILB AT REF WT - NACELLES
AROR HRSLB AT REF WT - LANDING
LABOR HRSILB AT REF WT - STARTING
LABOR HRS/LB AT REF WT - ENGINE CONTROLS
LABOR HRS/LB AT REF WT - WATER INJECTION
LABOR HRS/LB AT REF WT - FUEL SYSTEM
LABOR HRSILB AT REF WT - INTRUMENTS
LABOR HRS/LB AT REF WT - HYDRAULICS/PNEUMATICS
LABOR HRS/LB AT REF HT - ELECTRICAL
ABOR HRS/LB AT REF WT - AIR-CONDITIONING
LABOR HRS/LB AT REF WT - AUXILLARY GEAR
LABOR HRS/LB AT REF WT - AUXILLARY POWER UNIT
ABOR HRS/LB AT REF WT - FURNISHINGS
MATERIAL SCALING EXPONENT - FUSELAGE
MATERIAL SCALING EXPONENT - WING
MATERIAL SCALING EXPONENT - HORIZONTAL TAIL
MATERIAL SCALING EXPONENT - VERTICAL TAIL
MATERIAL SCALING EXPONENT - LANDING GEAR
material scaling exponent - sound proofing
Material scaling Exponent - STARTING
MATERIAL SCALING
MATERIAL SCALING EXPONENT - FUEL SYSTEM
MATERIAL SCALING EXPONENT - SURFACE CONTROLS
MATERIAL SCALING EXPONENT - INSTRUMENTS
MATERIAL SCALING EXPONENT - HYDRAULICS/PNEUMATICS
MATERIAL SCALING EXPONENT - ELECTRICAL

```
MATERIAL SCALING EXPONENT - AIR-CONDITIONING ,
MATERIAL SCALING EXPONENT - ANTI-ICING,
MATERIAL SCALING EXPONENT - AUXILLARY GEAR
MATERIAL SCALING EXPONENT - AUXILLARY POWER UNIT
MATERIAL SCALING EXPONENT - FURNISHINGS
MATL COST/L3 AT REF WT - FUSELAGE
MATL COST/LB AT REF WT - WING
MATL COST/LB AT REF WT - HORIZONTAL TAIL
MATL COST/LB AT REF WT - VERTICAL TAIL
MATL COST/LB AT REF WT - NACELLES
MATL COST/LB AT REF WT - LANDING GEAR
MATL COST/LB AT REF WT - SOUND PROOFING
MATL COST/LB AT REF ẄT - STARTINGG
MATL COST/LG AT REF WT - EVGINE CONTROLS
MATL COST/LB AT REF WT - WATER INJECTION
MATL COST/LB AT REF WT - FUEL SYSTEM
MATL COST/LS AT REF WT - SURFACE CONTROLS
MATL COST/LB AT REF WT - INSTRUMENTS
MATL COST/LB AT REF WT - HYORULICS/PNEUMATICS
MATL COST/LB AT REF WT - ELECTRICAL
MATL COST/LB AT REF WT - AIR-CONDITIONING
MAILL COST/LB AT REF WT - ANTI-ICING
MATL COST/LB AT REF WT - AUXILLARY GEAR
MATL COSTPLB AT REF. WT - AUXILLARY POWER UNIT
MATL COSTALB AT REF WT - FURNISHINGS
```

CEACC $=0.9$, $D E F=55 \mathrm{H}$
CEAIC $=0.9$, $D E F=55 \mathrm{H}$
CEAUXC $=1.0$, $D E F=55 \mathrm{H}$
CEAPUC $=1.0$, $D E F=55 \mathrm{H}$
CFURNC $=1.0$, $D E F=55 \mathrm{H}$
CS3M $=19$.	, $D E F=55 \mathrm{H}$
CSWM = 18.	, $\mathrm{DEF}=55 \mathrm{H}$
CSHM $=20$.	, DEF $=55 \mathrm{H}$
CSVM $=20$.	, $D E F=55 \mathrm{H}$
CSNAM $=13$.	, $D E F=55 \mathrm{H}$
CSLGM $=19$.	, $D E F=5 \mathrm{SH}$
CPSPM $=10$.	, DEF $=55 \mathrm{H}$
CPSTM $=76$.	, $D E F=55 \mathrm{H}$
CPECM $=72$.	, $D E F=55 \mathrm{H}$
CPWIM $=75$.	, $D E F=55 \mathrm{H}$
CPFSM $=54$.	, DEF $=55 \mathrm{H}$
CESCM $=23$.	, $D E F=55 \mathrm{H}$
CEINM $=300$.	, $D E F=55 \mathrm{H}$
CEMYDM $=80$.	, DEF $=55 \mathrm{H}$
CLECM $=67$.	, $D E F=55 \mathrm{H}$
CEACM $=42$.	, $D E F=55 \mathrm{H}$
CEAIM $=42$.	, $D E F=55 \mathrm{H}$
CEAUXM $=47$.	, DEF $=55 \mathrm{H}$
CEAPUM $=84$.	, DEF $=55 \mathrm{H}$
CFURNM $=19$.	, $D E F=55 \mathrm{H}$

OIRECT OPERATING COST PROGRAM

TEKVAL TEST CASE－． 90 MACH 195 PASS 3000 NH TOTAL COST PER A／C＝S 15295462

AVERAGE AIRFRAME MANUFACTURING COST

```
FUSELAGE
FUSEL
HORIZONTAL TAIL
VERTICAL TAIL
vACELLES
LANDING GEAR
```

 STRUCTURE TOTAL
 SOUND PROOFING
STARTING
ミNGINE CONTROLS
WATER INJECTION
FUEL SYSTEM
SOUND PROOFING
STARTING
ミNGINE CONTROLS
WATER INJECTION
FUEL SYSTEM
SOUND PROOFING
STARTING
ミNGINE CONTROLS
WATER INJECTION
FUEL SYSTEM
SOUND PROOFING
STARTING
ミNGINE GONTROLS
WATER INJECTION
FUEL SYSTEM
SOUND PROOFING
STARTING
ミNGINE CONTROLS
WATER INJECTION
FUEL SYSTEM
PROPULSION RELATED TOTAL
SURFACE CONTROLS
INSTRUMENTS
YORAULICS/PNEUMATICS
ELECTRIC.AL
AIR CONOITIONING
ANTI-ICING
AUXILIARY GEAR
AUXILIARY POWER UNIT
FURNISHINGS
SYSTEMS AND EQUIP TOTAL
AIRFRAME HARJWARE TOTAL $1418939 \quad 29109274329866$
ASSEMBLY AND INTEGRATION
LABOR
405939
306577
68874
53300
119306
45500
999496
4900
980
1365
6006
36
13287
177766
0
21327
73772
2688
113528
LABOR
MAT,L
TOTAL
472530360527657104
49000 117874
93300
40000163628
245209 290709
1211587 2211084

 7000

 11900
 7000 1190011620
14040 154051950017225506

208

51352
64639

$$
255805
$$

$$
522000
$$

 78039
 $$
166362
$$

$$
287743
$$

$$
17075 \quad 146470 \quad 163545
$$

 \(21995 \quad 24682\)
 3995
 3995
 76272
 76272
 440211.
 553739
 $406156 \quad 1647988$: 2054143
562883
SUSTAINING TOOLING 721664
SUSTAINING ENGINEERING 3799796PROFIT AND WARRANTY EXPENSE432997
RECURRING AIRFRAME COST 12349779SRUISE ENGINES（EACH）815227AVIONICS


```
P&ROIIN
```

P\&ROIIN
AF =.33 ,DEF=55H SYSTEM GROWTH FACTOR BY CITY PAIR ,
AF =.33 ,DEF=55H SYSTEM GROWTH FACTOR BY CITY PAIR ,
STEPPING FACTOR IN ROI ITERATION-DEC. FRACTION.
STEPPING FACTOR IN ROI ITERATION-DEC. FRACTION.
EPSA, =. 001 ,DEF=55H ERROR FRACTION IN ROI ITERATION-DEC. FRACTION ,
EPSA, =. 001 ,DEF=55H ERROR FRACTION IN ROI ITERATION-DEC. FRACTION ,
FIXEG CHARGE PER PASS - \$
FIXEG CHARGE PER PASS - \$
CHARGE PER PASS N MI - %
CHARGE PER PASS N MI - %
MAX. PERMITTED CITY PAIR LOAD FACTOR-DEC FRACTION
MAX. PERMITTED CITY PAIR LOAD FACTOR-DEC FRACTION
FLAG - 1 = READ ROUTE DATA, 0 = DO NOT READ
FLAG - 1 = READ ROUTE DATA, 0 = DO NOT READ
1 = PRINT OATA BY GITIES , 2 = PRINT SUMMARY ONLY
1 = PRINT OATA BY GITIES , 2 = PRINT SUMMARY ONLY
MINIMUM FLIGHTS / DAY
MINIMUM FLIGHTS / DAY
OAILY OPERATING PERIOD - HOURS
OAILY OPERATING PERIOD - HOURS
TAX =.48 ,DEF=55H INCOME TAX RATE - OEC. FRACTION
TAX =.48 ,DEF=55H INCOME TAX RATE - OEC. FRACTION
Z Z(1) = SERVICE COST AND LANDING FEE/1000 LS - DOLLARS
Z Z(1) = SERVICE COST AND LANDING FEE/1000 LS - DOLLARS
CZ(2) = PASS. SERVICE COST/MILE - DOLLARS
CZ(2) = PASS. SERVICE COST/MILE - DOLLARS
: Z(3) = RESERV, SALES, FASS HANDLING/PASS - DOLLARS
: Z(3) = RESERV, SALES, FASS HANDLING/PASS - DOLLARS
C Z(4) = STEWARDESS COST/BLOCK HOUR - DOLLARS
C Z(4) = STEWARDESS COST/BLOCK HOUR - DOLLARS
C Z(5) = MEAL COST/PASS HOUR - DOLLARS
C Z(5) = MEAL COST/PASS HOUR - DOLLARS
C Z(6) = GENERAL ANO ADMINISTRATIVE IOC FACTOR- PERCENT
C Z(6) = GENERAL ANO ADMINISTRATIVE IOC FACTOR- PERCENT
Z = 1.37,.0047,.09, 15.03. .45, 1.091
Z = 1.37,.0047,.09, 15.03. .45, 1.091
gEND

```
    gEND
```

RETURN ON INVESTMENT PROGRAM
TERVAL TEST CASE -.90 MACH 195 PASS 3000 NMCONSTANTS INOEPENDENT OF AIRCRAFT TYPEIDEALIZED ANNUAL UTILIZATION, HOURS 4500
TURNAROUND TIME / TRIP, HOURS 500
GAILY OPERATIONS TIME, HOURS 10.00
MAX. PASSENGER LOAD FACTOR 55
FEDERAL TAX, PERCENT 48.00
MINIMUM FLIGHTS / DAY / CITY-PAIR 4
CONSTANTS DEPENDING ON AIRCRAFT TYFE
PASSEVGER CAPACITY 195
INVESTMENT BASE PER AIRPLANE, \&M 17.509
DESIGN TOGW, LB 242845
J. S. DOMESTIC CITY PAIRS - $150-2500$ NM 1985 TRAFFIC
IOC FACTOR, $\$ / 1000$ LB TOGW 1.370
IOC FACTOR, $\$ /$ REVENUE PSGF N MI 0047
IOC FACTOR, $\$ /$ PASSENGER 090
IOC FACTOR, $\$$ / STEWARDESS HR 15.03
IOC FACTOR, S/TRIP $/$ FOOD 45
IOC FACTOR, \& SUBTOTAL IOC 1.091
RANGE, NM 3000
DEPRECIATION PERIOO, YEARS 15
PASSENGERS / STEHARDESS RATIO R

CONSTANTS DEPENOING ON DISTANGE

OISTANCE, NMI	100	200	300	500
BLOCK TIME, HR	.3460	.5395	.7330	1.1199
DOC / ACFT-N MI	9.9958	5.8800	4.5081	3.4106
TRIP FARE,	13.44	19.88	26.32	39.20

TEKVAL TEST CASE - . 90 MACH 195 PASS 3000 NM
U. S. DOMESTIG CITY PAIRS -. $150-2500 \mathrm{NM}: 198.5$ TRAFFIC

	CITY	PAIR	OISTANCE	PASSIDAY	HOURLY PEAK	DOC	IOC
NEW	YORK	3ALTIMORE	156	189	19	4799	2317
NEW	YORK	BOSTON	165	1945	194	22950	12087
K C		St LOUIS	200	240	24	4704	2469
N Y		BuFFALO	251	701	70	9102	4924
NEW	YORK	NORFOLK	254	259	26	5221	2625
CHIC	AGO	MINNEAPOL	300	392	39	5410	2957
L A		S F	307	420	42	5489	3026
N Y		Cleveland	356	1063	106	14955	7998
N Y		CINCINNATI	504	376	38	6857	3564
NEW	YORK	CHICAGO	626	1862	186	35091	18297
N Y		ATLANTA	656	513	51	9983	5193
WASH	HINGTON	MIAMI	799	290	29	9025	4118
NEW	YOEK	N ORLEANS	1023	225	23	10536	4366
NEW	YORK	HOUSTON	1235	261	26	12145	50.90
CHIC	ago	SAN DIEGO	1502	132	13	13894	4751
L A		WA SH	1987	235	24	17322	6708
S F		WA SH	2111	2.49	25	18219	7158
NEW	YORK	L A	2129	1076	108	50459	24099
L A		BOSTON	2258	363	36	19269	8843
S F		BOSTON	2347	215	22	19891	7319

INCOME	LOAD FACT	PROFIT	ROI	F ARE	FLT/DAY	ACFT
3218	. 2420	-2027	-. 1875	17.05	4	- 31
34274	. 5248	-397	-. 0103	17.63	19	1.50
4776	. 3080	-1246	-. 1155	19.88	4	. 34
16236	.5135	1150	. 0605	23.16	7	. 65
6051	. 3321	-934	-. 0824	23.36	4	. 37
10314	. 5024	1013	. 0829	26.32	4	. 40
11237	. 5382	1416	. 1103	26.77	4	. 40
31800	. 5449	4601	. 1295	2.9 .93	10	1.09
14844	. 4823	2300	. 1329	39.46	4	. 53
88108	. 5305	18054	. 1896	47.31	18	2.72
25287	. 5266	5258	. 1923	49.25	5	. 78
16976	. 3723	1993	. 0907	58.46	4	.71
16429	- 2890	794	. 0341	72.88	4	. 85
22617	. 3351	2799	-0919	86.53	4	. 99
13692	. 1692	-2575	-. 0739	103.73	4	1.15
31746	. 3016	4013	. 0894	134.96	4	1.46
35663	. 3198	5349	-1098	142.95	4	1.54
155050	. 5016	41856	. 2633	144.11	11	4.26
55327	. 4654	14152	. 2375	152.42	4	1.63
34027	. 2758	3545	. 07.02	158.15	4	1.68

SYSTEM DATA
GROWTH FACTOR 330
PASSENGERS PER DAY 11008
PASSENGER-N MILES/1000 8550.0
DOC ($£ / 1000$) 295.3
10C ($1 / 1000$) 137.9
TOC (\$/1000) 433.2
INCOME (5/1000) 627.7
LOAO FACTOR .4480
PROFIT (2:1000) 101.1
RETURN ON INVESTMENT 1322
NUMBER OF AIRCRAFT 23.4

