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THE PASSAGE OF AN iNFINITE SWEPT AIRFOIL
THROUGH AN OBLIQUE GUST
A By John J. Adamczyk
United Aircraft Research Iaboratories

SUMMARY

An analysis is presented which yields an approximate solution for the
unsteady aerodynamic response of an infinite swept wing encountering a
vertical oblique gust in a compressible stream. The approximate expressions

are of closed form and do not require excessive computer storage or computation:

time, and further, they are in good agreement with the results of exact theory.
This analysis is used to predict the unsteady aerodynamic response of a
helicopter rotor blade encountering the trailing vortex from a previous
blade. Significant effects of three-dimensionality and compressibility are
evident in the results obtained. In addition, an appfaximate solution for
the unsteady serodynamic forces associated with the pitching or plunging
motion of a two-dimensional airfoil in a subsonic stream is preseﬁted. The
mathematical form of this solution approaches the incompressible solution as
the Mach number vanishes, the linear transonic solution as the Mach number
.approaches one, and the solution predicted by piston theory as the reduced
frequency becomes large.
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INTRODUCTION

The predlctlon of the unsteady gerodynamic response of an a1rf01l to a
vertical gust velocity field has long been of interest to aeroelasticians and
acousticians. For the most part aeroelasticians have used the 1ncompress1b}e
two-dimensional theories of Kussner (Ref. 1) and Sears (Ref. 2) to predict
the unsteady response. In estimating the acoustic field generated by airfoil-
gust interactions the acoustician typically uses the unsteady lift obtained
from one of the previous theories to determine the strength of the acoustic
dipole source which is then assumed to replace the airfoil in the flow field
(e.g., Curle in Ref. 3).

Typical of the many unsteady aerodynamic problems in which these
incompressible theories have been used in the past are: (1) rotor blades
passing through the wakes of stator blades in turbomachinery, (2) an airfoil
. interacting with a turbulent gust, and (3) helicopter rotor blades encounter-
ing the tip vortices from preceding blades. In each of these problems some
uncertainty arises as to the applicability of two-dimensional incompressible
aerodynamics. It is not surprising, therefore, that several analytical
studies have appeared recently which treat the complexities of three-
dimensionality and compressibility in the unsteady problem. For example,

" Filotas (Ref.’h) obtained a closed form solution for an oblique sinusoidal
gust encountering an infinite wing; however, this work is limited to a
two~dimensional airfoil of zero sweep (i.e., the iﬁcoming'flow is normal
to the leading edge line of the wing) in an incompressible stream. Graham-
(Ref. 5) included the effects of compressibility and ‘three-dimensionslity
but neglected the effects of sweep. His analysis is based on a numerical
solution of the governing differential equations. Adamczyk (Refs. 6 and T)
also included the effects of compressibility and three-dimensionality, but
the form of the solution was expressed in terms of an infinite series of
Mathieu functions which are difficult to evaluate analytically. Another
recent analysis by Johnson (Ref. 8) included the effects of compressibility
and three-dimensionality; however, his approach is tailored towards analyzing
the response of an airfoil to a free rectilinear vortex. Hence, the
researcher has had no simple compressible three-dimensional analogue of the
Sears solution available to him and was required to resort to the more
restricted theories of Filotas or Sears for predicting the aerodynamic
response of an airfoil to a vertical gust.

To overcome the aeficiencies described above, an analysis has been
developed which generates simple approximate expressions for the unsteady
compréssible 1ift and moment response functions for an infinite swept airfoil



encountering a three-dimensional oblique gust (see Fig. 1 and Fig. 2). The
approximate expressions are of closed form and do not require excessive
computer storage or computational time. This report describes the development
.of these approximate expressions, and presents a comparison of results with
‘an exact theory and sample computations of the unsteady loading of o
helicopter blade encountering e vortex. :



NOMENCLATURE

speed of sound

(1)

coefficients in the series for &/, defined in Eq. (46)

‘semichord of the airfoil

(2)

¢9efficients in the'series for p
cosine Fresnel Integral
symmetric Mathieu functions

lift and moment coefficients per uﬁit Eﬁan
compiex conjugéte operétor

complex Fresnel Integral, defined by Eq- (85)
function defined by Eq. (96) or Eq. (151)
functions defined by Egqs. (135), (136);(138), and (139)

displacement of the airfoil from the x plane, displacement
of the vortex ‘from the x2 plane

amplitude of plunging motion
Hankel functions, first kind, orders O and 1

complex constant, defined by Eq. (31), modlfied acceleratlon
potertial, defined by Eq. (93) e

integral defined by Eq. (99)
modified Bessel functions, first kind, order O and 1

Bessel functions, first kind; orders 0 and 1

‘Bessel :“unction, first kind, order h

reduced frequency '



~I

M*
(2)

Me'(2)

P(Y38) e
o) (@)

)

sgn

.t'

gust wave number ..
integer

Mach number of the free stream, U/a, functlon defined by
Eg. (97)

Mach number of the- gust relative to the oncoming flow,
deflned by Eq. (17)

Mathieu-Hankel functlon, second kind, assdciated with Cenf”.

d (2) |
= EE‘Men (f)Q)‘.

integer

incompressible pressure distribution, defined by Eq. (70)

' s 2
first and second terms of the solution for p for large Y

perturbation preséure

-+ steady pressure, associated with. the flow U

= YN

radial distance from the midchord line of the airfoil,
distance measured in the plane of X 3, defined by .

.Eq (147)

dimens1onless radlal dlstance
Sears function, or sine’ Fresnel Integré.l.

sign operator

- time

-nondimensional time, defined by Eq. (43)

1lift transfer function, defined in Eq. (22)

moment transfer function, defined in Eq. (23)



u integration variable

U free strean velocity

ui component of perturbatiqn veloc;ty

u2 complex amplitude of ﬁ;

xi Cartesian coordinates, Fig. 1 .

X, | y dimensionless coordinates, defined by Egs. (11), (12), end (13
z varieble

z complex constant, defined by Eq. (25)
.g ' angle of ‘encounter, Fig. (1)

¥ constant, defined by Eq. (43)

a, emplitude of pitching motion

B frequency parameter, defined by Eq. (14)
cutoff parameter, defined by Eq. (17)

T circulation of free vortex

5 ~ constent defined by Eq. (T9)

81, 82 \ functions defined by Egs. (137) and (140)

0 | angle of sweep, Fig. 1

E,M elliptic-hyperbolic coordinates, defined by Egs. (46) and (47)
P density fluctuations

bo mean density

T integration variable

¢ perturbation velocity potential defined in Eq. (6)

) complex amplitude of ¢



¢&NC complex amplitude of & for an incompressible fluid

+1) . |
noncirculatory component of ¢
(2) :
P circulatory component of &
2 .
A% Iaplacian operator
Superscripts,
I incident disturbance
s scattered field
A Fourier transform of a variable
Subseript

l/h ' quarter-chord



FORMULATION OF THE MATHEMATICAL FROBLEM

Governing Equation

Figure 1 shows the geometry of the problem. An infinite swept airfoil
of chord 2b is held rigidly in a compressible fluid which is flowing over
it with uniform velocities Ucos# in the x; direction, and Usin@ in the X3
direction, Superposed on U (see Fig. 2) is an unsteady three-dimensional .
disturbance uj. The pressure and density are py + p, and PO +p, respectlvely,
- where the subscripted part denotes the mean value, while the remaining part
is associated with the disturbance. Far upstream of the airfoil, the
perturbations u;, p, and p are given functions, denoted by uiI, pI, p

‘'The problem is described by the customary fluid dynamic equations for
a compressible flow (see Ref. 9). The equations of conservation of mass
and momentum are linearized by assumlng that the perturbatlons are small
compared to the mean values thereby allowing the squares and products of
the perturbations (and their derivativeS) to be neglected while first-order .
terms are retained. Hence, . . 4' . N

a . - - . a ) v . . .
—-‘D—+Ucos92-&+Usine op LIRS - (2),
ot 9%, dxy dX; I
[ du; 0- au; op
P(at +Ucosea +Usunedx)+ ax; =0 (2)

For small fluctuations, ‘the change in pressure is proportional to the change
in density, .

b p=a‘p | - (3)

where a 1s the speed of sound.



Far from the airfoil the pressﬁre,‘density,'and‘velocity field must
equal the incident disturbance. This condition

{F’;P'”i}.—f‘{pI»PIz‘UiI} - )

1s most conveniently satisfied by taking

pp i} (Rt A} )

and 1mp081ng the condltlon that p , P and uy 5 venish far from the airfbiI;‘

The" quantltles p , " pL and ulI mist satisfy Egs. (1), (2) and (3) because
far’ from the airfoil they constitute the entlre dlsturbance ' Hence, because
the equations are linear, the quantities p°, p®, and u;® must also satisfy

. (1), (2), and (3). Furthermore, since the fluid is inviscid, no change
in vortlclty can take place as the fluid passes over the airfoil. Hence, uis
nmust be an irrotational f1eld and may be represented by the derivative of a
velocity potential

T |
) axi (6)

The momentum equation (2) provides a relation between the pressure and the
potential, namely,’

P'—po (—£+UCOSG—?—+US|n9—?—) (7)

and when this and the equation of state (3) are substituted into the
continuity equation (1), one obtains the governing differential equation



for the problem ( ' 32 , 52¢ ) :
2

5x| aX3

M cos 8 32 Msin8 a2
_202( ¢ P (8)

T ot T 9 axget

2 2

d d

+M2COS Osinb ﬁ;)‘;%—o

Here M = U/a is the Mach number of the mean flow.

Boundary Conditions

A solution of Eq. (8) is sought which describes outgoing waves which
must decay as r~Z for large distance, r, from the airfoil (cf. Ref. 7). On
the surface of the airfoil the velocity normal to this surface must vanish.
Hence,

—ai= uz Xp=0 -b<x <b (9)

uéI being a given function of space and time.

The present analysis assumes that the vertical velocity field “induced
by the incident disturbance on the airfoil is that of an oblique sinusocidal
gust convected at the free stream velocity U. The mathematlcal form for
this velocity field is

ut= Up exp {i[? cos ax, + Ksina x3~KUcos (e-a)t]} (10)

where the sweep angle § and the encounter angle @ are defined in Figs. 1 and
2. Since the gust is assumed to be convected with the mean flow velocity U,
the pressure and density fluctuations associsted with this velocity field

'J'.O.



are zero (1.e., pX =pl = 0). Dimensionless coordinates Xy, and a frequency
parameter B are introduged for convenience in subsequent operatioms. -

X,= x, /b (1)
2 2.3 '
Xa = x3(1-MZc0s28)Z /b (12)
2 L o S
X3=X3(1 - M cos® §)2 /b o (13)
Kbcosa ' ,
A= I- Mec 028 (2k)

The solution for the velocity field uis must have the same frequency and
the same spanwise wave number as the incident gust. In addition i1t i1s found
convenient to include en exponential factor in the X3 direction.of the potentia.
Thus the following form for ¢ is chosen:

$ = ®(x,X,) exp

. : - Kb sin a
i [- B M%cos?8x, - Ku cos (6-a)t + —osna X
( [ ! (1-mZcos?R? 3]

(15)

11



When the substitutions (11) through (15) are made in the governing equation, .
(8), one finds that & must satisfy

2 ’ -
0 + % 2. (16)
axI2 X2

where Y is a compressible cutoff parameter defined as

d
It

ro_ . '
Kb sina (-Mcose )2 - Kbsina/yed| .

Y "mZcos?8 sin a i 1 -M%c0s28 (r)

Note that the sign of‘Y2 is dependent on whether the parameter M¥ <%g§§¥l
is greater than or less than one. This parameter is proportionsl to the phase
velocity of the disturbance along the span of the airfoil relative to the
oncoming flow (see Fig. 3). When M* is greater than one, the relative phase
velocity of the disturbance is supersonic. However, if M* is less than one,
the relative phase velocity is subsonic. The behavior of the solution of
Eq. (16) at large distances from the airfoil is critically dependent on.the
value of M*. This dependence can be shown by examining the asymptotic limit
of the solution of Eq. (16) for an isolated acoustlcal source (cf. Ref. 10).
This solution has the form :

ei)’R \/——— :
d ~ R{: X|2+X22 --(D _ (18)

Equation (18) requires & to decay exponentially with distance for imaginary
Y which, from Eq. (17); is equivalent to M¥< 1. If the cutoff parameter ¥
1s real (i.e., M*¥>1), Eq. (18) is the asymptotic form for & cylindrical
acoustical wave propagating outward from the origin at R = O.

The boundary conditions on ® are

s e PN for —15x,€1,X,20

0% (19}
0 X2 v 1-M%os%

12 .



which Was derived from Eq. (9) and

\ - ' .
® ~R20s. R = ® (20)

.

which is the asymptotic radiation condition of Eq. (18). 1In addition to the
boundary conditions in Eq. (19) and (20) a Kutta-Joukowski condition must be
imposed at the trailing edge of the airfoil. This condition requires that
the pressure Jjump across the airfoil vanish at the trailing edge. This
requirement can be mathematically expressed in terms of ¢ and its derivatives
by substltutlng Eq. (15) into Egq. (7) to y1eld :

s Ucose o
- - - 18%
. P PO b X, be fexp '
R : . . - " ’ . ’ v
....:» h . ’ (2.1)
ool o, ., . ikRbsinaxs - |
LiBM2cos2ex. + -iKU cos(e alt]
|8 *.cos e /m |
which'eduaIS'
PS=0 at X;=1, Xp=0 | (2)

The governing differential equation” (16) and the boundary conditionms,
Eq. (19), (20) and (22),form a boundary value problem for ¢ whose solution
is dependent on only two variables, the cutoff parameter Y, and the frequency
parameter B. The construction of the approximate solutions to this bou.dary .
value problem was dlv1ded into three parts" (l) a solution valld for small
positive values of ¥, (2) a 'solution valid for negative values of Y2 , end (3)
a solution valid for large values of ¥ , each of which will be discussed below.

13



SOLUTION OF THE BOUNDARY PROBLEM /

General Considerations : B L?-x

An important objective of this analysis is to~determine-the.unsteady‘{
1lift and moment coefficients (per unit span) resulting from the. encounter: of -
an infinite swept airfoil with & three-dimensional oblique sinusocidal gust: in.-
e compressible stream. This is accomplished by integrating the zero and first
order moments of the pressure distribution over the chord of the airfoil;
however, the pressure distribution is o highly specialized function of the
" cutoff parameter, and, as shown below, the solution changes its character
for various regimes of 7. In general, the 1lift and moment coefficients can
be written in the form

e s,

. G . - vy
oy . . Lo 1

c 2mwuU,cos b T i[R sin ax3- UK cos(B-a)t} (23)
LE—F—m————— Le
Uv1-M2cos%9
-rrUaoose [Ksnna X3 = UK K cos (-aM]

Cw =1; Me .
20/ |-MZcos?6 : - - (24)

where Ty, and Ty are the lift and moment transfer functions, and the expressions
within the brackets { | represent the quasi-steady 1lift and moment:response.
The functions Ty and Ty will now be derived for. the varioue values of- 72
interest here. . ST

Solution for Small Values of Y=0: .

The approximate solution of Egq. (16) for small positive values of Y was
obtained by expanding the exact solution to this problem, teken from Ref. T,
in a power series of Y. The analysis- presented in Ref. T :was deve%oged by
linearly separating & into two components. The first component, &

‘accounts for the noncirculatory flow field surrounding the airfoil. This
solution for ®'1) satisfies Eq. (16) along with boundary: conditions in

(19) and (20) and has the following properties: (i) the circulation
around the airfoil is zero, and (ii) singularities in pressure and velocity
occur at the leading andttrailln% 3dges of the airfoil.. ?h desired solution
for ¢ is obtained by adding to ¢ second component “pl2 s, which is the

1L



ci;C?lgtory solution. This new term cancels the trailing edge singularity
of ol (i.e., causes the solution for ® to satisfy the Kutta-Joukowski
condition, Eg. (22)), and has its normel gradient vanishing on the airfoil.

_The details of the approximate éolution for small positive values of Y
will be-found in Appendix I in which the final form for the pressure distri-
bution on the surface of the airfoil is shown to be:

- s PoUU,C088 T-X; JolB® =12 4,(B) .
ST eMZes)2 N [ ez P
Kbsina (25)
i [-RAM2easl -K
l[ Bwmécos 6X|+ “—_Mz—c-gs—ZO—)VZ X3 KUOOS(9'Q)']
— 18X,
where the yariable
) , ) | :
i@+ ite ey - wa) (26)

H"(B)

The equation: for the 1ift and moment transfer functions T, and Ty, respectively,
can be obtained by integrating the zero and first order moments of the pressure
distribution over the chord of the airfoil. The resulting expression‘for;the-
lift transfer function Ty, is: L

T, - _Jo(B)I:lZZJl(B) [Jo(B M_zcosze V4 iJl(BMZCOSZG)]eibRCOSQ (27)

while that for the moment transfer function Ty about the quarter-chord is:

PR ELALEC) RS

1+ 2
- (28) .
+ 9,8 mZcos?6) -i2J,(B Mzcosze)] + T |

15



Equations (25), (27), and (28) are used to determine the aerodynamlc loadlng
for small positive values of 7. o . o

‘Limiting Behavior as Y—=0'

The influence of the cutoff parameter ¥ on the lift transfer fﬁhéﬁién -
for small values of this parameter may be shown by examining the limlting %

form of Eq. (27) as Y= O"' This limit is given by the equatlon i A
AR § ST
' ‘ | (29)

,.v

2. 2.1 ikbcosa .
+ iJ,(BM cos G)Je'Kb.c“a. .

where conj { } denotes the complek conjugate}of,the'enclosed quantity, and
where

y? in L bK (Mcose) - sin’ a] «/{h;cose) -sin‘a
B ap (_|-M cos 29) cos a - 4cosa

(30)

can be obtained by manipuleting Eq. (17). Note that s(B) is. the two-dimensional
gust response function derived by Sears (Ref. 2). The influence of ¥ is. shown
by Eq. (30) to be of first order in K and (Mcos 8 )°- - s'inza, and its effect on
the moment transfer function is of secondary importance compared with the.
parameter BM2cos26. ° An expansion of Eq. (28) for small values- of ﬂMecosao
yields the result that the moment transfer function is a linear function of

this parameter. This result implies ‘that the moment transfer function’ ‘about’
the quarter chord vanishes as (1) the gust wave number K approaches its
steady-state limit of zero, or (2) the speed of sound of the fluid medium
approaches infinity.

Solution for Values of ¥°=0
A power series expansion of the result presented in Ref. 7 for the

circulatory pressure distribution on the surface of the airfoil for negative
vealues  of ye was derived. It 1s shown above-that this epproach leads to

16



very simple expre881ons “for the derodynamic response functions (i:e. . Eqs.'ll
(25), (27), and (28)) for small positive values of Y. However, when the
expansion technique was applied to the problem for 72<=0, it yielded solu-
tions which contained definite 1ntegrals whose values had to be determined
numerically. This form of a solution is not satlsfactory because it does
not lead to ) 51mp11f1ed analytlcal procedure Hence, an alternatlve
analysis developed by Fllotas (Ref h) for an oblique sinu801dal gust
encountering an infinite airfoil in an incompressible stream. This
alternative approach led to an approximate expression for the pressure
distribution on the surface of the airfoil whlch can be applied over the
enﬁrermgeof72<0.,~qghAw-g~ .-

The details of the approximate solution for negative values of Y will
be found in Appendix IT in which the: flnal form of the pressure distribution
is shown tp be

s _ PUT,C0s 8 HiyB)  A-x/ exp
i wZcos IoN+LI0 +x/
(31)
ibRsina UK cos(e )i
Mzcosze)'/ zxs I _ .a
KR - .
-IEX <
‘ where T Ty .
H()’ B) T ‘.':.’,*'..'-,,-‘?‘:f-;'f R - : R . (32)'
exp}-in/72+ B2 [coss w(v/z 8)(' S'"s <*2” 7 TR ( S )>]
{, ‘{'{./_y?lpzfp+coszs+1r Y +B 5"‘3]} -
» T

S=tan” y/B - (33)

T



The 1lift transfer function Ty is-computéd by integrating the pressure
distribution, Eq. (31), over the chord of the airfoil, yielding - ey

k2

~f.§ L;:

%b cosh Io(7+i3M2cosze)+1,(7+iBM2co’529_)H( o3
L= € I N +1,(y) Al Lo

X

s

The corresponding expression for the moment transfer function Ty about the
quarter-chord is

iKb cos a
2e 0s

™4 T 71,0

[ 147+ iBM%cos8) |
I (35)
+ T.(7+i BM2cos?d) (i - ! )H(m) + T

|( +iBM cos 8) (l. m L

Equations (31), (34), and (35) can be used.to compute the aerodynamic response
functions over the entire range of negative Y-<.

Solution for large Values of ryel

The results predicted by the analysis of Ref. 7 for the pressure distri-
bution on the surface of an airfoil encountering a two-dimensional sinusoidal
gust indicate that for large values of rYel the pressure distribution appears
t0 be composed of acoustical waves whose points of origin are the leading and
trailing edges of the airfoil. The spatial influence of the acoustical wave
"emitted from the leading edge of the airfoil increases as Y increases, while
the influence of the wave emitted from the trailing edge decreases. This is
indicated by the behavior of the pressure phase angle (both theoretical and
experimental) in Fig. 11 of Ref. 11 gnd is further corroborated by compute-
tions performed during the development of the basic theory (Ref. 6). This
behavior implies that for large values of |72| a good approximation to the
pressure field in the neighborhood of the leading edge (i.e:., far upstream
of the trailing edge) can be obtained by considering the interaction of a
gust wit? 3 semi-infinite plate. For velues of 72 # O the pressure distri~ . .
bution p 1) on the surface of the plate possesses a leading edge singularity, -
and decays with distance aft of the leading edge. Thus the pressure distri=: -
bution is a monotonically decreasing function which vanishes only at an. -
infinite distance downstream of the leading edge, and therefore the pressure
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distribution p(l) does not sati?fx the Kutta-Joukcwsk% Sondition. This error
can be correc?e by adding to p 1) 4 pressure field p which is equal and
opposite to p 1) govmstream of the airfoil (i.e., X1z1, X = 0) and has its
normael gradient vanishing everywhere on the airfoil.

{The details‘of thevapproximate solutién for large values of‘Y2 will be
found in Appendix III in which the final form for the pressure distridbution
on the surface of the airfoil is shown to be

i
P

pS=pil4 pf2) - (36)

where

» pouazcose (1+i)
.\/I-M cos 8 /2 )(1r(B+7

li (Y- BMm2cos?8)x; + iRsin a x3- i UK cos (e-a)t]

U)”

(37)

and
4, ) PoVTcoss 2-e &«/ 2r<a-x',))
: '.g/1fM%o§9 "/ #(B+y)

: [i(yQB Mzcosze)x,'-r iRsina xs~iUKcos (8-a )1]

.

exp

G

Xf'x,+l -|< Xt

The mathematical form of the two-dimensional limit- of Eq. (37) is that of an
outward propagating acoustical wave whose point of origin is the leading
edge, while -the equivalent limit of Eq. (38) yields a form which represents -
an outward propagating wave whose apparent origin.is the trailing edge. Once
agein the 1ift and moment transfer function are obtained by integrating the:
zero and first order moments of the pressure distribution, Eq. (36), over..
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the chord of the airfoil. The result for the lift transfer function T'L" o

o T"‘———'—-——‘(I+i) ———2—2—".. X
L 7 (B+Y) Y-8 Mccosg

e 2i(y-B Mcofh) I x

3 !\/Z(Y-BMECOSZO} + ["*

B9

- el ey

+ LT —
2(r-BMcos0)  (r-BMZcos9) Y-BM3cos?h
o2l (y -Bm%cos?6)

ﬁ+3 M2cos?6

while that for the moment transfer'func‘t'i'on about the quarter-chord is

(=) /7 . .
_ TM|{4 %,—(7' BM2co0) 2 E[\/ -,';— (Y-BmZcosH)

EJ ‘ﬁ()’+ B M%os"’&]}

+

+i {I;ezi(y-ﬁmééoszei] 2k [22‘/-); ])2
' (Y-BMcof8) - -

()"—li'Mzcosze)2
.iZ«/Zy: ~-e‘2i('yi-[.3M2cosze) _ i : 5 ,. S -
2. - —
| (r-8 Mzcosze) \/ny MZCOSZQ - [\/Z(Y+BM cos"8) “ 2()’+BM2C0529) ]

o aiy 2V/2y eZi(erzcosze)
+2 /2y 292 — + » 7_’2 5 E[.,/Z(Y*BM%OSZBJ + T
T YEBMosE  (y-8mPcosH)S /y+,BMzC082§ '

‘ Equations (36), (39), and (40) can be used to determine the aerodynamic
response function for large values of y2. »

(40)

Limiting Behavior as |Y2| — «

The limiting form attained by Eq. (39) for very large values of [v2|
can be derived by expanding Eq. (39) in powers of 1/yZ. The result is

T|_=‘L

T ' > (k1)
J(B+7) (r-Bmecose)
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prov1ded Y- BN@cos20 # 0. . Equation (41) shows that Tr, is proportional to
K ~ since both Y and B are linear functions of K. However , if V- BM2c0s20~
Eq. (39) will approach .

2(1+1)

T =
b /T BY)

(l+2)v

, _ 1 : _
for large values of Y. This result  is proportional to K “and occurs when
the gust phase velocity along the span is sonic relative to the mean span flow
velocity Usin@. This phenomenon will occur when the wave front encounter

angle is equal to

I+M%cos

aza*zcos /T ozms (43)

A comparable expans1on of Eq. (4O) for very large values of |Y2| yields

an expression for TM which is proportional to K-3/2, provided 7 - BN@COSQO # 0.
However if V- BN?QQSae‘ ‘0, ‘the limiting form attained by the expansion of

Eq. (40) is proportional to K“E. This large variation in the asymptotic

limit of.the moment transfer function can, for example, have an effect on the
unsteady aerodynamic response -of a helicopter rotor blade encountering the tip
vortex shed by a previous blade-.
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DISCUSSION OF THE APPROXIMATE SOLUTIONS

The obJective of this section is to demonstrate the velidity of the :
approximate solutions that were developed in the previous sections for the
aerodynamic response functions. First, consider the equations for the. 1lift
transfer function, TL, for both small and large positive values of ¥ (i.e.,
Eqs. (27) end (39), respectively) and compare the two-dimensional limits of
these equations to the exact results of Refs. 5 and 6. Thise comparison is
presented in Figs. 4 and 5 in which the complex function Ty, is plotted in
the phase plane. at specific values of nondimensional wave number,. bK, for . .
Mach numbers of 0.3 and 0.6, respectively. The solid curve appearing in
‘both. figures corresponds to the exact results presented in Refs. 5 and. 6,
while the dashed curves represent values computed from Egs. (27) and. (39)‘
and a linear curve fit procedure to Join the upper limit. of validityuof ,
Eq.'_ (27) (1.e., ¥ = 0.2) to the lower limit of validity of Eq. (39) .(i.8.,

= 0.7). Figures 4 and S5 show - thet the present approximate solutions for
the 11ft transfer functions are in good agreement with the exact result _
over a wide range of bK. The mccuracy of Eqs. (28) and (4O) in predicting
the two-dimensional moment transfer function is shown in Figs. 6 and 7 for
‘Mach numbers of 0.3 and 0.6. The values of the moment transfer function
for the region between the upper limit of Eq. (28) (1.e., ¥ = 0.1) and the
lower limit of Eq. (40) (L.e., ¥ = 0.7) were determined by employing the
same linear curve fitting procedure that was used for the lift transfer
function. The agreement between the approximate solutions and the exact
solutions for the moment transfer functions is seen to be comparable to that
attained for the 1lift transfer functions.

The accuracy of the approximste expression for the lift and moment
transfer functions governing the region‘72<=0 and zero angle of sweep is
first demonstrated at 7 = 0 by comparing the results predicted by Egs.
(34) and (35) at this limit with those predicted by Egs. (27) and (28). Im
Eqs. (27) and (28) the limit as ¥ ~0' yields exact results while the limit
of Eqs. (34) and (35) is approximate. A comparison for Y2 = O is shown in
Figs. 8 through 11 in which the complex functions Ty, and Ty are plotted in
the phase plane for specific values of nondimensional gust wave number, K.
Once again the agreement between the exact solutions and the approximaste
solutions is good. To establish the accuracy of Egs. (34) and (35) for
values of Y2< 0 a comparison was made with the results obtained from an
analysis besed on the theory of Ref. 7. This comparison is presented for
the real part of Ty, and TM in Figs. 12 through 15 for an encounter angle
of 90 deg, zero angle of sweep and for Mach numbers of 0.3 and 0.6. (The
imaginary part of Tp and Ty predicted by Egs. (34) and (35) is zero, which
is the correct solution for this particular encounter.) The solid curves
appearing in these figures correspond to the exact results while the dashed
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curves were predicted by Eqs. (3L4) and (35). In addition, the results
predicted by Egs. (39) and (40) are included as the dot-dash curves. The
agreement between the approximate solutions and the exact solution is very
good for values of Kb>1.0. For values of Kb=1.0 the agreement between
Egs. (34) and (35) and the exact results has deteriorated somewhat but is
moré then adequate for computational purposes.

“The validity of these approximate solutions is clearly demonstrated by

the good agreement with exact theory, and the closed form structure of the -

solutions facilitates their use. The latter is particularly important when
these results are applied to specific problems of unsteady aerodynamic re-
sponse where computer time and core storage may be limiting factors.
Furthermore, the mathematical procedure that was employed to develop the
approximate expressions for the unsteady résponse functions is sufficiently
general to be applied to additional unsteady aerodynamic problems. In
particular the current procedure can be used to predict the unsteady- forces
generated by the pitching or plunging motion of a two-dimensional airfoil
in & subsonic stream. The derivation and discussion of these transfer
functions is presented in Appendix IV. ' :
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APFLICATION OF THE APPROXIMATE SOLUTIONS ...

o

The theory of the preceding sections has been applied to the study of .
the 1lift and moment response of a helicopter rotor blade encountering the
trailing vortex from a previous blade. The model that has been developed o
t0 simulate this aerodynamic interaction problem assumes the rotor blade 106
be an infinite swept airfoil. The trailing vortex is modeled as a recti-
‘linear vortex translating at a velocity equal to'the mean stream velocity.

The lift and moment coefficients per unit span generated by the encounter
are obtained by the Fourier superposition of the 1lift and moment responses to
an infinite series of oblique gusts which. constitute the. Fourier decompositlon
of the rectilinear vortex. -The mathematical details of this procedure are
discussed in Appendix V, while the computer program used to compute the "f_
example cases 1is described in Appendix VI. A series of computations were :
‘performed to determine the effects of. encounter angle, Mach number, and '
_vertical vortex displacement on the lift and moment response and. these,l'
results are presented. in Figs. 16 through 23. In all .cases examined, “the
airfoil sweep angle was fixed at zero. (1.e ’ the 1ncom1ng flow was. normal ‘
to the leading edge line of the wing). The 11ft and moment coeff1c1ents :
per unit span appearing in these figures are normalized w1th respect to the
parsmeter I'/Ub where I' is the circulation of the free vortex, U is. the free
stream velocity; and b is.the semichord of the airfoil. A typical range ofi_
this parameter for a helicopter blade- is O. 2*=F/Ub<<2 nFigure 16, shows thef,“
1ift coefficient per unit span generated«by a- parallel encounter of a. vortex
with a two-dimensional wing as a function of free stream Mach number and
nondimensional time, t' = U/b. At t' = O the position of the vortex is
one semichord below the airfoil leading edge, while at t' = 2 it is located
one semichord below the trailing edge.. The 1ift coefficlent calculated on
the basis of. quasi-steady lifting.line. theory is also shown as 8, dashed line
in-Fig. 16. This result is. presented to 1llustrate the effects of unsteadi-'
ness.. It is seen from:the .figure that lifting line theory overestlmates the
maximum values of the 1lift coefficient when.the vortex is dlrectly beneath .
(0=t'=2) or slightly downstream (t'> 2) of the airfoil. This behaVior can’
be attributed to rapid time variatioms. in downwash that occur during the time
the vortex is beneath .the airfoil. In. Fig lT the moment coeffic1ent about
the quarter-chord produced by a parallel encounter is shown as a function of
Mach number and nondimensional time t'.. A non—zero moment coefficient about
the quarter-chord for s parallel encounter can be directly attributed to '
compressibility, -since the moment is zero for an incompressible fluid. (This
is shown on page 287 of Ref. 9. In addition, it should be noted that lifting
line theory.does not predict pitching moment.) It is seen £rom Fig. 17 that
significant values of CMl/h/(P/Ub) can be obtained, which -increase with’
increasing Mach number . :
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The results appesring in Figs. 18 and 19 illustrate the effects of
three-dimensionality atiajfree_stream approach Mach number of 0.6. These
figures represent the 1lift and moment coefficients , respectively, produced
by a vortex encountering an -airfoil -at an oblique angle' as shown in the-
sketch in Fig. 18." Both results,are presented as & function of nondimen-
sional time t', which is more generally defined as

e UL
=% b

SR

Tn this equation a is the angle between the vortex and the leading edge of
“the w1ng, and x, is the spanwise coordinate. The spanwise position of the
vortex at time =0 is X3 0, while its vertical position is one semichord-
below the wing. The lift response ‘shown in Fig. 18 appears to be a weak
function” of the encounter angle, while the corresponding moment response,
shown in. Fig. 19, appears to be very sensitive to variations in the encounter.
angle.' ThlS effect can be directly related to .the asynptotic behavior of .

the Fourier transform of the moment response. Over most-of the range of
encounter angle,cx from parall7l to normal encounter, this asymptotic limit -
is 1nverse1y proportional to K (details can be found in the section
entitled Ldmiting Behavior as |7 I-'w) However, if the value of the -
encounter angle isAsuch that a = a* (of. Eq. (43)) the asymptotic limit is-
proportional to K2 . This wes the case for a= 30 deg. It appears from

Fig l9 that there is a definite transition in the character of the moment o

response at a = a¥,

’ A’number of computatibns were performed to determine the effect of the -

vertical position of the free vortex beneath the airfoil on the unsteady 1ift:-

and moment response generated by an encounter. The results for the normalized
1lift and moment ‘coefficients per unit span generated by -a parallel encounter.
at a Mach number 0.6 are’ shown in Figs. 20 and 21 as functions of nondimen~ -
sional time t' and nondimensional vertical ‘distance h' = h/b (where h is the . -
vertical height of the free vortex beneath the wing). The geometry of the
encounter at time t = 0 is showh in the sketch of Fig. 20. These results
indicate that the effect of increasing the vertical ‘distance between the

airfoil ‘and the free ‘vortex is to- reduce ‘the 1ift ‘and moment response. Fig- -

ures 22 and 23° show the maximum positive and negative values of the response
curves &8s functions of vertical displacement and encounter angle.  These
results were obtained for an approach Mach number 0.6. Decreasing the
vertical displacement between the free vortex and the wing causes the 1ift
and moment response to.increase for all encounter angles examined to date. -~
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These results also show that the maximum positive values of the 1lift and
moment response curves appear to be relatively insensitive to the encounter
angle. However, the maximum negative values are strongly dependent on the
encounter angle.

The final set of results that are presented is for a UH/lD rotor in -
forward flight at 90 Kts where the advancing blade in the second quadrant.
encounters the tip vortex shed by the preceding blade. Data for an ex-
perimentally measured wake geometry (Ref. 12) has been used to predict. the
spanwise distribution of the aerodynsmic loads when the vortex-rotor blade
intersection point is at 0.85, 0.753, and 0.6T4k of the rotor radius. The
vertical displacement of the vortex beneath the plane of the rotor is 0.87h
semichords while the azimuth position of the intersection at 0.85 of the
rotor radius is 92 deg, at 0.753 of the rotor radius is 104 deg, and
at 0.6T4 of the rotor radius is 115 deg. The resulting normalized 1lift
and pitching moment coefficients are presented in Figs. 24 and 25 for the
three blade radial locations. The results indicdte the 1lift and moment
" coefficients to be relstively insensitive to radial location. This result
can be attributed to the small variation of the geometry of the encounter
with radial position. A variety of blade/vortex intersections can occur in
- a rotor depending upon advance ratio, azimuth position, 1lift and propulsive
forces,.and maneuvering condition; however, an evaluation of such intersec-
tions is beyond the scope of this study.
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RESULTS AND CONCLUSIONS-

A primary objective in developing the present analysis was to sig-
nificantly reduce-the computational time required by the theory of Ref. 7
to prédict the serodynamic response -resulting from the encounter of & two-
dimensionel swebpt airfoil with a three-dimensional oblique sinusoidal gust
in-a- compressible ‘stream. . This general objective was achieved, and the -
following are Bpécific results obtained and conclusions reached in the
development of this enalysis. S - -

'--l.. A simple set of approximate expressions was derived to model the.
girfoil unsteady pressure, 1lift, and moment response.

2. In predicting the airfoll:serodynamic response, use of. these
approximate expressions significently reduced the computation time
;“(by a factor of 10 or more) over that required- by the theory of Ref. T.

23 The validity of these- expressions was demonstrated by the close
.. agreement with. the exact results. (1. e.,. based on the theories of Refs. 5
- ..8nd T).over a:wide range of values of the. governing parameters. -

4, The approximate expressions clearly show the influence of compres-
sibility and three-dimensionelity on the response functions, and they
show that a major effect is to generally increase the asymptotic decay
rate of the response functions relstive to their incompressible two-
dimensional counterparts. '

The approximate expressions were used to predict the aerodynamic
loading on & helicopter rotor blade encountering the tip vortex shed by a
previous blade. The major conclusion reached in this application of the
analysis is that compressibility, unsteadiness, and three-dimensionality are
important terms which must be included to correctly predict the serodynamic
response, particularly if the vortex is located within two chord lengths of
the airfoil. Some of the specific results that were obtained in this
application are: ‘

l. The influence of unstesdiness is to reduce the magnitude of the
1ift response compared with that predicted by lifting line theory.

2. The influence of compressibility and three-dimensionality is to

cause the generation of a moment about the quarter-chord which would
be zero if the flow field were incompressible and two-dimensional.
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3. The lift and moment response amplitudes increase as the Mach number
of the flow increases.

k. The maximm value of the 1ift and moment response decreases.rapidly
as the distance between the center of the vortex and the plane ‘of the
airfoil increases. o
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RECOMMENDATIONS

The tasks described in the following recommendations will provide a
framework for future studies of the vortex encounter problem:

1. An experimental program should be undertaken to measure the
serodynamic forces and moments generated during the encounter of a rotor
blade and a vortex. These measurements should be made over a wide

range of flow conditions and specifically should include the region of
vortex-induced stalled flow on the suction surface of the rotor blade.

2. The present analytical model does not account for the influence

of a tip regioh on the forces and moments generated during an encounter.
Work should be undertaken to introduce this effect into the present
anglysis. '

3. The results predicted by the present énalysis indicate that lifting-
line theory is.inadequate for predicting the serodynsmic forces and
moments generated during an encounter. It is therefore suggested that
rotor blade dynemic response analyses which rely on lifting-line models
to determine the serodynsmic forces be modified to incorporate the
present anélysis to yield a more realistic prediction of the forces and
moments generated during an encounter. )

b, Finally, the present analysis should be combined with.an'acoustic
analysis to predict the acoustic field generated by a vortex encounter.

S
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APPENDIX I
APPROXIMATE EXPRESSIONS FOR THE AERODYNAMIC
RESPONSE FUNCTIONS FOR SMALL POSITIVE VALUES OF ¥

In this Appendii approximate expressions for both the circulatory and
noncirculatory solutions of Eq.'(16) ase derived for small positive values
of Y. Consider first the variable ¢( associatéed with the noncireulatory
flow field which 1s obtained by solving Eq. (16) subject to the boundary
conditions, Egs. (19) and (20). From the results presented in Ref. T it
can be shown thet a solution for the noncirculatory flow field of order Y

(1.e., a series which neglects all terms of order Y™ for n>1) is given by
- an expression which satisfies Iaplace 8 equation.

1) '
Vi 0 (45)

and the boundary condition, Eq. (19) The solution of Eq. (45) is given in
Ref. T as ‘ - o

IR . -n¢
o =E Apsinnme ™ : (46)
n= : -

where the elliptical cylindrical coordinates 7n and ¢ are defined by the
equations ¢

X, = cosh § cos 7 (47)

-and

Xz=sinh & sinn (48)
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The surfaces & = constant and 7 = constant are elliptic and hyperbolic
cylinders, respectively, and the degenerate ellipse & = O corresponds to
the portion of the X,, X3 plane occupied by the airfoil; that is, -1=X,=1.

The constants A, in Eq. (46) are determined by requiring Q(l) to satisfy
the boundary conditions in Eq. (19).

n 0 © .
2| ee L _Z Apnsinnn (19)
X, ot sinm sin? 9
X2=0 £=0 n=1 ~

Egs. (19) and (h9_) may be rearranged to yield

[oe] . .
D Apnsinnm = b sin7 Uy g!Bcos? (50)
nel I - M2cos28

If both 'sides of this equation are multiplied by sin mm and integrated over
the interval O0=7M=m the result is

A

bﬁ " H co
Am= = 2 f sinm sinm'qe'B ST 4
|- M2cos2§ O
b . (51)
PY2 T iBcosm
= ; f [cos(m+|)17+ cos(m—-1)n|e dn
2 2 0 o
- M%cos“@
m2 l
Upon introducing the integral relationship
i " T _iBcosn |
Jp(B) = —;r—f e cosnm d7 (52)
0 ,
and the Bessel Function recurrence formula
Jaur(2) + 9 (2) = B y(2) (53)
nel n-i =z n
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into Eq. (51), one obtains

2bd "9 (B)
A = 2 : = m > (54)
1- M2cos?8 _ R ' :
which when combined with Eq. (46), transforms Eq. (46) to
' T © . -
o 2bu Si" (B sinnne ¢ . (55)

) L
" (1-M2cos28)W2 B 13

. An expression for thé‘noncirculatory pressure field on the surface .of
the airfoil is obtained by combining Egs. (21) and (55) yielding
/

oV Tgcos &
1-M%0s26 )72 5'""7

b
[ Bw cos 26 cos 7+ l—':;z(—i%% X3~ Ru cos (B-a)t]

S(1) .

[JO(B) cos 7 +id (B)]
(56)

€

Since sinn = O at the leading and trailing edges of the airfoil, the pressure
distribution glven by Eq. (56) is 31ngular at these p01nts
3oy v

. The tralllng edge singularity is removed by adding a 01rculatory fleld
The approximate expression for the circulatery flow field pressure distribu-
tion on the surface of the airfoil for small positive values of ¥ is obtained
by expanding the exact solution for the: 01rculatory pressure distribution
presented in Ref. 7 in a power series of Y. This pressure distribution is
equal to

Kb - .
s(2) _ ~(2) n[ BM cos 9cos1;+ ——m snnsa X3-KUcos (G-cm] (57)

>l = p | A -
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where p (2) 5 defined by Eq. (62) of Ref. T ss

Pou cos &

k= 2y .2
5 conj nz:o Bncenin,q) Men<' (0,q) qQ=y7a (58)

5(2) (0m) = -

and the symbol conj denotes the complex conjugate operator. The coefficients
B, which appear in Eq. (58) are defined by 1§q. (54) of Ref. 7. For small
positive values of ¥, an expression for 5(2 , correct to first order in v,
can be obtained by retaining the first two terms of the series in Eq. (58),
namely '

s : a2y
‘Ucos 8 B.Me<" (0,q)
Polcos® conj - { 09

PO sinn 7z )
| JZ 8 Me|(2),(°,q) ‘
J2 ceqn,q) + r ce(n,q)

When ceg Cn,q) and cej (n,q) are expanded in a power éeriés, the following
results are obtained to first order in ¥:

. . | o _ -
ceoln,q) e (60)
ce, (n,q) =cosn , (61)
ﬁ-el Me'(zy ‘

Similarly, if the quantity Bo Mey® 15 expanded (i.e., by employing the
results presented on pages 146 and 147 of Ref. 7 with ¥ and @8 replacing u &and
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" v, respectively) the result will be

(62)
(2) /(2)
i (0,9) €,q) _;
: 2 CiB[,, . ® 2 2 iBcoshé
, Ye l+|,8—-,————+y—,3 ——,————e d¢
/7 B.Mé ‘(2) - [ ] 0(2)( @ ( )fo (2)(0 )
(2 7 (2) 1(2)
BoMe, : 2 (0,9) w0 Me, (€,q) _;
eB v ip(i-Z + (72—32 — RO e
. ) 1(2)(0 q) )'[0‘ Me,(Z)(O,q)
The first order expansions of the remaining Mathieu functionlare:
Meoa(o,q) 7” H (2) ()’/2) | (63)
o} o
- mePoq z :
-
Me,(Z)(o,q)
Me/2(0,q) - (6x)
®© me{® & ,q) -nBcoshE -iBcosh& e |
‘/; m ('3 f d§ = Ho "(8) (65)
© Me/P€.q) -iBcoshé ) ,
f | al . iBcos o gf e-{ e-nBcoshfd§
o Mme21(0,q) (o) .
2) e"iB (e6)
: - -72!' H| ( lB
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Upon substituting Eq. (63) through (66) into Eq. (62) and neglecting terms of
higher order than ¥ which appear in the denominator of Eq. (62) the result is

JEome® _ iy%eB4ig) Ho‘z’ (v/2)-ily% BZ)H 2B ey
- BoMeé(Ef - BZH(Z(B) ' '

Equation (67) is reduced to its final form by interpreting 1 + 18 as the
.leading termg in the expansion of eiB With this ‘replacement, Eq. (67)
becomes L S

JTBMe/@ i B@) +iyYR [Héz)(Y/Z)-Ho(Z)(B)]I
B oMe (2) : . H@g) (68)

The substitution of €18 for (1 + iB) causes Eq. (68) to approach zero as B—ce.
This substitution improves the accuracy of the approximate express1ons for
the 1ift and momerit transfer. functlon for large values of ﬂ

Equation (68) contains an expression of apparent second order in 7. ‘
However, if this term is neglected, a term of first order in K would be lost.
This first order term results from a c b nation of the expressions within
the brackets and the Hankel function Hl (B). Thus if ¥“ is neglected in
Eq. (62) the validity of the approximation is reduced to zero order in K.

When Eqs. (60), é6l), and (68) are introduced into Eq (59) en approximate
expression for P is .obtained. : :

o - paUcCosE
5('2)(0,77)5-,)0 _

bsing C oM (69)

iHQ(Z)(BHi()’/z)Z[ (2’()’/2) H(Z)(B)]
H‘(Z) (B)

COSn
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where the constant C must be assigned a value which will cause ps(2) at the
trailing edge to be equal in magnitude but opposite in sign to ps(l) evaluated
at the trailing edge.

The final form for the pressure distribution on the surface of the airfoil

for small positive values of ¥ is obtained by substituting Eq. (69) into Eq.
(57). and adding the result to Eq. (56) to yield

oS = _ PoUT,cos 8 —x, [Jo(ﬁ)-in,(B)] y
4 (1-m%0s%g)? +X) 1+2 (70)

l‘B micos8 X, +Ksin axy- [R ucosiG-a) t}]

i
e
where the variable

@)+ 7p)% [Hd" (72 -1 (@)

TL
Hl(l)(B) ( )

The equations for the lift and moment transfer functioms Ty and Ty,
respectively, can be obtained by integrating the zero and first order moments
of the pressure distribution over the chord of the airfoil. The resulting
expression for the 1ift transfer function Ty, is:

TL=

ibkcosa [ JglB)-124,(8
¢ +z

] [JO(MZ,Bcosze)'+ ig, (M8 cosze)] (72)
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while that for the moment transfer function Ty about the quarter~chord' is:.

. J{B)-izJ,(B)
TM|/4 - euchosa{ 0 |+z' ]x

(713)

[—JO(MZBCOSZGH 32(M2Bcos?8) - 2i o (MP cos"e)] +T

The factor elPKCOSa ymich appears in Egs. (72) and (73) has Peen added to
shift the phase of the 1lift and moment response relative to the gust field
to the leading edge of the airfoil.
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"~ APPENDIX II

APPROXIMATE EXFRESSIONS FOR THE AERODYNAMIC

RESPONSE FUNCTIONS FOR NEGATIVE VALUES OF 72

The objective of this Appendix is to present the derivation of the
epproximete expressions for the aerodynamic response functions for the
region v2<0. This derivation was accomplished by employing an extended
version of the similarity rules developed by Grahem (Ref. 5), which were
modified to include the effect of eirfoil sweep angle. Graham shows thet -
.the solution’ for the modified velocity potential & (cf. Eq. (15)) for the
region ¥2= 0 and for zero sweep angle is directly related to the solution ™
for ® associated with the problep of an unswept two-dimensionsl airfoil en-
countering a three-dimensional obligue sinusoidel gust in an incompressible
streem. This correspondence &lso exists for swept t.tnf'inite airfoils end is
expressed by the equation._ : - :

® (7; mINC

(7,8) = ——mENC_ 4
°YB N/ 1-MBcos? - S ()

which is deriveble from Eq. (16). Here &(v,8)1yc 18 the solution to the
three-dimensional incompressible problem expressed in terms of ¥ and 8. .
The substitution of Eqs. (T4) and (13) into Eq. (21) ylelds the expression
for the compressible pressure fleld ;

pgucos8  [ow... |
pSe O INC. 'ﬁ¢ N
U by/i=wPcosle | O% o TN (75)

exp [- iB2M2cos?ox | +iKsinaxg iKucos(8-a) t]

The equation for the corresponding incompressible pressure field is o'btained
by letting M=0 in Eq. (75) L L T

pOUCOSB 0®ine )
P Bl = — b ax, f'B‘x’Inc X (76)

exp [iR sinaxz— iKUCos (e-a)t]
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and it is seen that Egs. (75) and (76) are related by the equation

Cpl2 2
s . P Bl e MR, (7m)
«/I—Mzcosze

which is a pressure similarity rule comparable to Eq. (T4) for the modified
potential.

A formula for the pressure field p(v,B8) c can be derived from the
approximate expression developed by Filotas %gef h) for the pressure
distribution on the surface of an unswept airfoil encountering a three-
dimensional gust in an incompressible stream,

(|) . (2)
=KgCOS
e “KrcosBr n |- X

.= {Pouuz} Tof KOs Bg) + I (Kecos Br) I +X
(3) () (18)

{ex'p ( iKFcosB,.-x3)}x {exp(- iUKFsiant}

where

. -ikg)sinBg --n-BF(I + cos %)/[l +21rK:(l +cos Eaf)]

H(Ke, Be) = ‘ (19)
P J|+wKF(|+_sinZBF+ 7 KgCos Bg)

The subséript ¥ which appeai's in these equations refers to the variables
defined in Ref. 4. The transformation of Eq. (78) to PINC is accompllshed
by letting the terms in brackets (1), (3), and (4) become

bracket (1)

(o) = fpoveosen} @
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bracket - (3) _ . :
| {exp[iKFcos B,,x3]} ~{exp [ iR sina xJ} (81)

bracket (4)

{exp[;iKFsin BFf]} - {exp [—- iKucos (G-Q)f]} v | (82)

while the remaining terms which appear in bracket (2) are transformed Yy
replacing the variables Ky and By by the expressions

Kg= /.‘72'*1'32 . . (83)

Be=m/2 -8 ' (84)

where

8=tar™' y/8 - - (85)

Introducing these transformations into Eq. (78) and combining the result with
Eq. (77) yields an expression for p°

PoY Uzcose [ e X ] —_—
| P I~ MPCose I TFX, (86)
» -lBM cos 6x|

exp [—iisinax3—iRucos(6-a)t] e

where

| o [m/2 - 81l +5in 872
J?TE’ {eos 8 Wmﬁf’m}
H(y,B) = o

\ﬂ+7r y24+ 32 [H-cos S+ Vy2ep2 sin8].
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The 1ift and moment transfer functions per unit span are obtained by
integrating the appropriate moments of the pressure distribution, Eq. (86) s
.over the chord of the-égirfoil. The expression for the lift transfer function
T; is ’ ' ‘

L

2 2 .
Io(7+iBM2c0529)+I|()’+iBM cos @) iKbcos a
s I Ly T H{y,B) e (88)

while the corresponding express1on for the moment transfer function about
the quarter-chord is : . .

i‘Rbcos;'c; H(y,B)

- -, 2 29)
Tmisa™ —2€ __—Id)’)+1|()’) Ifr+iBM gos

S (89)
. 2 |
+I,()’+|ﬁM 9)[( W)} + TL

The factor eiKPCOSa hag peen introduced to refer the phase of the 1lift and
moment response functions to the gust downwash at the leading edge.
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APPENDIX IIT

SOLUTION FOR LARGE VALUES OF |Y2|

In the main body of the text it is suggested that for large positive
values of Y2 the pressure distribution on the surface of the airfoil is
composed of two cylindrical acoustical waves whose orlglns are the leadlng
and trailing edges of the airfoil. PFurthermore, it is suggested that the
solution for the pressure field whose origin is the leading edge could be
approximated by the solution for the pressure field resulting from the
encounter of a three-dimensional gust with & semi=~infinite plate. The
solution for the modified velocity potential ¢ associated with this pressure
- field satisfies Eq. (16) and the boundary condition of Eq. (19) on the surface
of the plate. The solution for ¢ can be obtained from an analysis based on
the Weiner-Hopf technique, the details of which can be found on pages 48 to
98 of Ref. 13. This solution is

(90)

Q(XUO) =

E(+) el [_ bT, ] ‘20
B+ ~1-M2cos%6

where

"1

-C[J(B-r)x-u]—‘s[V(B'rjxl] | (91)

and C and S are cosine and sine Fresnel Integrals, respectively. The pressure
distribution is obtained by substituting Eq. (90) into Eq. (21) yielding the
result

pULLOS8  (|4+i)exp

X
JT-WZos9 Y2TX((B+Y)

p(U =

. _ a2 2 /. .= . = _ (92)
[l(}’ M“Bcos“8) x|+ iKsinaxs —iKucos (4 ,a‘)t]
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where x] = x7 + 1 and the superscript (1) denotes that Eq. (92) 1s an
approximate expression for pf® in a region removed from the trailing edge

of the airfoll. The magnitude of the pressure distribution as given by

Eq. (92) monotonically approaches zero as the distance from the leading
edge of the airfoll becomes large without bound. However, the value for
the pressure distribution predicted by the exact theory of Ref. T for the
region downstream of the airfoil (1ie., X1=1, Xp = 0) is zero. Hence,

the pressure distribution, Eq. (92), 1s incorrect in a region ‘surrounding
the trailing e?ge of the airfoil, the magnitude of the error ?esng propbr- ’
tional to ¥~ : This error may be corrected by adding to p 1) e pressure
fleld p(2) which 1is equal and opposite to p 1) gownstream of the airfoil
(1.e., Xl 1, Xp = 0) and has its normal gradient vanishing everywhere on the
airfoil. An approximate ‘eéxpression for this pressure field can be developed
for‘y >0 by considering the problem of en oblique cylindrical acoustical
‘wave impinging on an infinitely compliant, semi-infinite surface (t.e.y &a-
surface on which the pressure venishes) in a uniform compressidble stream.
(For‘Y < 0 the problem of an oblique cylindrical cut=-off wave ‘impinging on
a compliant surf?CS cen be.considered.) The solution for the scattered
pressure field p 2) 1s developed by again employing the Welner-Hopf t? 3nique
(Ref: ‘'13). The comstruction of the solution for the pressure field p
accomplished by intr?dgcing e modified acceleration potential H which is
defined In termsof p 2 by the equation

@ i[-gMacosze X[+ Ksina xs-RUcos(e-a)f] (93)
p = pHe - .

where the variable fransformation Ei = xi - 2 now places the local origin at
the treiling edge. Substitution yields the result that H satisfies Eq (16)
everywhere in the flow field. e S

Dovnstream of the airfoil (i.e., Xl>-0 X5 = 0) p (2) .18 equel in :
megnitude but opposite in sign to p 1), Hence from Egs. (92) and (93) H must
equal

. X/ ') ,
Uu,cosé i 7(q+2) o Am2ene?
H 2 (I+i)e o 2iBmecos%p (k)

4/ - M2cos®6 \/ZvX+2)(B+)’)

Xlzo, XZ:O
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downstream of the trailing edge. Upstream of the trailing edge (i.e.,
Xl—.O Xo = 0) the normal gradient of p(2) must vanish, hence’

M R <0, X:0 (95)

The solution for the pressure field p(2) may be derived from the solution
of the mixed boundary value problem for H‘ which can be found on pg. T9 of
Ref. 13. The value of H on the boundary Xl:;O X, = 0 is given Dby the.
expression :

_3pp 27| @ , | ©_i/2 iy |
H=l ¥ a _[M(u, >‘<,,0)e Ydu —d— K e V¢ Gy de
2 o dudy =
3/2 -3L- -ivu .d.
N I
=57 f me g Hudy (%6)
)‘(] <0, X,:=0
| where
1/2 iw/4 |/2 Y . —_
N 2 “e (u—x,) =% . (U=-X) >0
M(U, X, 0) = (97)
o o (u-Xp <o

and the variable f is equal to H evaluated on the boundary Y{z 0, X,=0

FX) = H(X) (98)
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The evalugtion of the inner integral in Eq. (96) is accomplished by first

introducing Eq. (98) into Eq. (96) and replacing H(U + £) with. Eq. (9h).
These manipulations yield

2i(y-BM3c0s?8))
ui,cos 8 (I+i)e

- | d¢ (99)
—\/I—M cose va2mr(B+Y) fo /u+§+2 ﬁ

eair(u+§)
I(u) =

This result may be reduced to

: S - S .
_ : .. 2ity-BMcos8) 2iYu
Ud,cos8 . je (r-8 e

1) = - _ .
/| - M%cos26 V27 (B+7) Uzt 2

(100)

by employing the method of stationary phase (i.e., Ref. 14) in evaluating the

integral over £. Substituting Eq. (100) into Eq. (96) and performing the
differentiation with respect to U yields

. 2 2
va, cos 8 iez:(r- BMcos“8)
H = X
|- M2cos?8 T2y (B +7) (101)
./ ZIYU e
—-iYXx, r@ : .
e e [2.7— __2(u|+2)] du _
0 V(U-X)(U+2) X <0
The evaluation of the remaining integral in Eq. (101) is accomplished by
employing the variable transformgtion 7 = U - Xl to obtain
. 2 2
201,058 iea:(r-ﬁm cos“6)
H= X (102)
™ /I—Mzcosze V2Y(B+7)
2
iy X! 00 27T

e |
K [r2+ )‘(]+2]'Ta[ 2(T2+X|+2)] -

L5



An approximate value of the integral is obteined by noting that for large
values of Y the major contribution of the integrand to the integral comes’
from the region surrounding the lower limit. Thus, Eq: (102) may be =

approximated as

i 2 2
, Uu2c058 j2i(7 <M Beos®6) 'e'yx' 2|7__]f 2iy 2
T./1-M2cos?8 VY(B+Y) - e
_ =
o P f'j u-(103)

i”““ oM Bcose [ +i   ﬁ -
P -1

Uuzcose

The pressure distribution p(2) on the botndary X]S0, Xp = O is obtained by
combining Eqs. (93) and (103) which yields , o

- 2. 20l ok iy - )
o runms ey e}

P = — —
-~ A/1-Mcose CNVTBEY) L

| + . 4 | ]
[_I-E( 2r(a- x))] 0 X <2

2

( ioly')

An approximste expres? gn for the pressure field p® is obteined by combining
the expressions for p Eq. (92) and p 2), Eq. (104). The result is

pUT,cos8 | (0 ; |+
s | I+ (i
P = . : - +ElvVarz-x) | x (205)
\/I—Mzcosae VT(B+Y) (VeXx 2 [ - I]

exp i{[Y—BMzcosze X, +Kb sin a-x3-U,_R_cqs‘(9-a)'r}
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In Ref. T it is shown that upstream of the airfoil the solution for
P° must vanlsh 'However, the approximate expression given by Egq. (105)
e%u%ls pS = p upstream of the airfoil since the breésure distribution -
vanishes on the boundary Xls 0, Xp = 0. It is seen from Eq. (104)
for p(2) that the magnitude of -this expression for large values of ry2|
is proportional to ¥~ 1, Hence, although the pressure distribution,
(105) is correct near the trailing edge, the result pS = p 23 shows
that it is now incorrect in the region upstream of the airfoil leading
edge, (i.e.) Xl<:—l), the error being proportional to v=1. This error
could be removed by employing an analytical procedure which is identical
to the one used earlier to remove the error associated with the
pressure distribution pll). The result would be an estimate for the pressure
distribution ps which would now be in error in the region surround i the
trailing édge, the magnitude of the error being proportional to‘Y'3 . This
could be further corrected at the expense of the leading edge soiution, and
if desired the analytical procedure could be employed as many times as .
necessary to achieve the desired degree of accuracy. The fingl form for the
pressure distribution p° on the surface of the airfoil would then be an
asymptotic series involving powers of‘V'l/z Is the present snalysis thei
series is terminated after the second term, p 2 , which yields the result
given by Eq. (105). '

The approximafe expressions for the lift and moment transfer functions
are obtained by integrating the appropriate moments of the pressure distribu-
tion, Eq. (105),over the chord of the airfoil. The resulting integration
yields an expression for the 1ift transfer function Ty which is

= —L o+ /T -
JTB+Y) ( l,./ v B M2c0529 [J—a(yﬁmzcosze)]

+ -2 BmZcos 201 2()’_"3;' |2cosze) (106)

evwm] v

\ X
(y-BMZcos?g)  y-BMZcos?d

ezi (7-BMPcof8)

ElV 2co28
vy +BM¢cos?6 [ 2ly+uieosd) ]
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while the corresponding expression for the moment transfer function about the
quarter-chord is :

=iy I+
TM'/4= [ﬁ (r- BM cos 9)]

(r-B Mzcosze) (7-BM?cos 2)2

[u-’ 2i(r-BmZcos e)] T 2e[evy ] izﬂ/zr ' 2"7 BM%cos"6) . -
' 2 2 X
(r-BM%os 9)_ (Y-BM “cos 9) \/Y+BM cos 9
. (2om)

2()’+3M cosze)] v

s[fnﬁm cos e)] [2-

2./3Y ezm’ BM cos 9

_ b — , .
2,24 4 ‘ 2 '
YB M cos @ (7- BMZcos?8) \/ Y+ BMzcosze‘

.'. 44~..
e 104

. [E .-»\'/2(7+B'M?coszl.8)\] + .

The corresponding expressions for the 1lift and moment transfer functions for
72 <0 are obtained by replacing Y by 17 in Eqs (106) and (107).
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APPENDIX IV.
TWO-DIMENSIONAL PITCHING AND PLUNGING MOTION OF

AN ATRFOIL IN A COMPRESSIBLE STREAM

" The mathematical procedure developed in the previous sections was shown
to be capable ‘of generating- 81mple approximate expressions for the aerodynamic
response functions .associated” with the gust encounter problem. This result
might lead one’ to-attempt to apply the same procedure to develop aerodynamic
response functions for arbitrary motion of a finite lifting surface. This
general three-dinmensional:problem cannot be analyzed exactly by the present
theory because tip effects are- not included. However,(the present analysis
can be used to examine the two-dimensional problem, and in particular, the
‘sinusoidal pitching and plunging motion of an airfoil. The objective of this
Appendix is to develop the equations for. the unsteady pressure distribution
associated with these motions. The resulting aerodynamic forces and moments
cen be computed from the zero and first order moments of the pressure
distribution.

.The format for the analysis to be presented in this Appendix will
parallel that of the main text. First a solution valid for small values of
v (ie., v= KM/(1-M2), where K = wb/U = Kb is the reduced frequency and  is
the circular frequency. of :the motion) will be derived by following the proce-
dure developed in Appendix I. This will be followed by an analysis based on
the theory in Appendix III which will be valid for large values of 7.

Solution for Small Positive Values of ¥

The analysis presented in Appendix I showed that a solution for the
noncirculatorx flow field of order ¥ is given in terms of a modified velocity
potential 4> which is a solution of Laplace ] equation. 'This solution is
given by Eq. (h6) as

= $ Apsinny e
n=|

q}” (108)

where the coefficients A, are dependent on the blade motion (i.e., the An's
gre functions of the downwash distribution). The value of these coefficients
must be such that the £luid velocity normal to the surface of the airfoii is
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equal to the velocity induced by the airfoil motion. The mathematical form
of this boundary condition is

0 _ oh u2h -b< X<b, X;=0 (109)

oX, ot oX

where h is the displacement of the airfoil from the Xp plane. The form of h
for pitching motion about mid-chord is

- aOX,e-m (110)

while for plunging motion

h = hee @' (111)

where the parameters a, and ho are the amplitudes of motion.

The value of the oy>'mal derivative of ¢ on the surface of the airfoil
is given in terms of ¢ 1 by : :

| . M|
ad _ S1-mE e—uBMzcosn Jiwt 09 (112)

dXz ) b sin 7 23
€0

where B= K/l—MQ- This result is derived from Eq. (15), by letting =6 =0
and K U= w. Thus from Eqs. (108) and (112)

¢ ﬂ ot e—iﬁmzcos"l {i Annsiﬁ"?} (3)

nzl

90X, bsinm

which from Egs. (109) and (110) must be equal to (fwabX, + U, )e-lwtfor pitch-
ing motion and from Egs. (109) and (111) must be equal to (-iwhy)e~i®t for
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Plunging motion. The coefficients A, are evaluated by employlng the orthogo- -
nality relationship described in Eq. (51) of Appendix I. The result for
pitching motion can be shown to be

A(:)= — QoMb)l/2 i:b i”'z [Jn-z(BMz) _ dn+2(BMZ)
| B
" (' 2:/10?'/2 BUMZ in-I"n(BMZ) a2
and for plunging motion the result is
o ziuhge " BM\ T @)

n ° ( M2)|/2 BMZ

The noncirculatory pressure distiribution on the surface of the airfoil
1s derived by letting =6 = 0 and K U=o in Eg. (21) and combining the
resulting expression with Eq. (108). The result is .

<

BM cosn -nwt ‘ ',v_v‘(ll6)v

Pz = sm77 ZA ncosnm + 'BE,A"smnn

where the coefficients A, are defined by Eq. (114) or (115). This noneircu-
lgtory pressure distribution is unbounded at the eirfoil lesding and trailing
edges. Only the tralling edge singularity must be removed. This is
accomplished by the addition of ‘& ¢irculatory flow field. In Appendix T an
analysis is presented which yilelds an ekpression for the circulatory pressure -
distribution on & swept airfoil encountering an oblique gust. The two-dimen-
slonal circulstory pressure distribution on the surface of the airfoil,.
obtained from the two-dimensional.limit of that analysis, is

s(2) (2 -iBm%cosn -iwt (1a7)
p: = p 4e .- e S ) < ‘
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where

@ pU c | - j
P~ T [1+2zcosm) (118)

and where the parameter Z is defined by Eq. (71). The constant C is assigned
a value which will cause ps(2 at the trailing edge to be equal in magnitude
but opposite in sign to p® 1 evaluated at the trailing edge. For plunging
motion the value of C can be shown to be

iu)h b '
C = T_M_)_W [ugBM2) + iJ,(,QMZ)]/(HZ) (129)

while for pitching motion about mid-chord

- 2 2 2
R ST [05(BM2) = 0 (BM?) + 2,0 (BM?)]
' (120)

a.bu- ' :
+ ISW. [JO(BMZ) + iJ’(BMZ)] (I +2)

The pressure distribution on the surface of the airfoil for small values
of ¥ is obtained by combining Egs. (116) and (117). The result is

u —iwt
P> = fg_ [ smn ZAnncosn’?HB ZA sinn7) BM e
(121)
AU M3X, it
e sir?”’? [1+2cosm] e S

The transfer functions associated with the unsteady motion of the sirfoil
are obtained by integrating the product of the pressure distribution and the
‘appropriate weighting functions over the chord of the airfoil. For example,
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the lift transfer function associated with plunging motion is dependent on
the integral of the pressure distribution over the chord, and is given by
the equation

U /1-m? iwt
TL = CL__—Z‘ITUZ e (122)
where -
(S)
™
C,=| —— sinm d7m
- ,fo 1pu? . : (123)
2 0 '

and 52 = -iwh . Substituting Eq. (121) into Eq. (123) and performlng the
chordwise 1ntegrat10n yields .

%0 n n
‘ZFZ A J,(BM?)

2 pe bt 0 o (124)
P Az AT 0t J”(BM)<_,BM?> |

acf 2
TS WJO(BM Y +

2C

Ty Z7T|J(/3M)

which reduces to

2 (iwhd o) 1-MB & 2 o it
C = nd M7 e
- e L nzq n (AM

(125)
] [4,8v2) + 10 (B3] ot

I+ 2Z

" (-iwh,)
2T S [4BM?) + 29, (BMD)

1= m? v
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when Eqs. (115) and (119) are introduced. Thus the lift trensfer function
for plunging motion is equal to '

21 ——g—ind (BM)

T = -5l
TV

(126)

Jy(BMB) + 120 (BM?) | S aM2)
SLLRILL VR

' The remaining transfer. functions can be derivéd by a Bimilarvproceduref

Solution for Large'Values of ¥

The analyticel procedure ‘presented in Appendix III can be used to: develop
the asymptotic form of. the pressure distribution on & two-dimensional airfoil
undergoing sinusoidal pitching or plunging motion. These expressions will
approach the exact results as ¥ become large.

The asymptotic analysis will begin by considering the pressure field
generated by a semi-infinite plate oscillating sinusoidelly in & pitching or
plunging motion. The solution for the modified velocity potential associated
with this pressure satisfies.the two-dimensional. llmit of Eq. (16) and the
boundary condition o

00 b giewx et | oh U on | (D)
X%, | — M2 ot b 02X, L -

on the surface of the plate. Equatlon (127) which is derived from Eqs (15)
and (109) is a consequence of the boundary condition requiring the fluid-

- velocity normal to the surface of the plate.to be equal to the veloeity
induced by the plate motion. The desired solution to the boundary value
problem for ¢ can be obteined from an analysis based on the Weiner-Hopf
technique, the essence of which can be found on pages 48 to 98 of Ref. 13. .
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The pressure distribution on the surface of the plate is obtained by
substituting the resulting solution for the modified potential @ into the.
two-dimensional limit of Eq. (21). This procedure will yield

VT
ied A/1TM ['K«/Y’—

(- Ui _ I+M
P = pYiwaob )T T (KM)372 I+ M 2 /_Xl ]

T /7 VAT LR
_ etz E[ _mxf]+ T B VA

KM T+M ) 27 (1+ M) L+ M
3im KM ~ (128)
Veed [/ kM M _KE[ KM ” —iwt
KZM 27 (1+M) NEE ! Xy

[ rxw Fovtd

) (1-DE [N/ T X (i) e ML

, '\ + e

tpoU 2, M JEM(I+M) /27X,

. . 1
for pitching motion about the leading edge (i.e., h'= aobxi e~iot X3=0) and

. KM _, kM f
("‘)E[ mx']+ (+)  oTwX o Tt (129)

M= 5 U(=iwh .
P™"= Pl (=iwho) M JKM(+M)  J2mX

for plunging motion (i.e., h = h, e-lmt). As was shown in Appendix III the
unsteady pressure distribution on & semi-infinite plate approximates the
pressure distribution in the neighborhood of the leading edge of an airfoil
at high frequencies. These approximations (i.e., Egs. (128) and (129))may -
be extended to include the trailing edge region of an airfoil by combining

the pressure field p 1) with g field p%2 which is equal in magnltude but
opposite in sign to p 1 downstream of the trailing edge (i.e., Xl 22, Xp = 0)
and has its normal gradient vanishing upstream of the trailing edge (1 e.,
Xé<:2 Xo = O) The solution for such a pressure field can be obtained by
following the procedure used in Appendix IIT. In that analysis an accelera-
tion potential H is defined which is related to p'2/) by the two-dimensional
limit of Eq. (93)

—i'[BMzi,’mt]

p@ =p He (130)
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where ')-CJ'_— X]'_ =2. Downstream OS the trailing. edge .of the airfoil (i.e. .y
Xiz 0, X = .0) the value of p is spec1f1ed to be equal to the negative of
." Thus H must- equal :

; M [ames” . L
, Hz - ¢ [B"i."l".“’*l,: (131)

. on the boundary Xl—O X5 = 0. The value of H on the upstream boundary
Xl—O, X, = O is given by Eq. (96) as '

(132)
. _"_Zi’f.e = "]wwu >-.(,,'0)e‘yduzd x dif' M2 "‘“*f’f(u+£)de
| ;f,"s 0, Xzi-éé 'A
where the function M(u, X{, 0) is defined by Eq. (97) and
ST A(133)

Y em i T
XD =R X220, %52 0%

For large values of ¥ the function f may be approximated by the asymptotic
form of H. This asymptotic expression is obtained by combining Eq. (131)
with the asymptotic form of Egs. (128) or (129). The result will be of the
form ' s

H =g, (R)e!8X +g,(X))e! 22X (13k)
where
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Cu=i-my

‘§Q7O= uiwdob - : 20+HJ2+7(
. (km>3>22./1+M /2w (2+X) M2 KM(1+M)

. +i 21KM
-ag R L _ (] ¢T+w
‘ MV2TKM(I4M) /2 +X; |,

and

for pitching motion about the 1eading edge
through (137) are replaced by -

9,(X]) =
: 2iKM
U(l-ilwhg e W . - |
_ ga(x )-. =
szKM Ve2+X MV +M
C_KM2 kM
.8'-'|—Mz‘ .82 A |-Mz

For plunging motion Egs.

(136)

(137)

,(1355

(138)

(139)

© (140)

Substituting Eq. (134) into Eq. (133) and combining the result with Eq. (132)

ylelds

H _IZ_.'”."-s/z eaig""{fm(-u,x,' ,o)e'm’du X
- e e e

_dl_ OE ~12! |7(U*€)[ (U'_’_t)ei&(u’.ze.).

+ gg(u+€ ) éiazwo f)] de

(141)
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The evaluation of the integrals in Eq. (141) can again be performed by the
method of stationary phase (Ref. 1k4), which yields

H=(1-i) eis'y' (o)[“" E[\[—(7’+8|)Y|’.H+
eiszx' ['“ [/—(7+82)Yl']]

(142)

X[ <0, X2=0

Thus from Eq. (130) the pressure distribution upstream of the trailing edge
(i.e., leéo Xo = 0) is equal to

50 e g 0|5 e | S|
i | i 2—I+w
+ w0

(13)

where the functions g, and go are defined by Egs. (135) and (136) for pitching
motion and by Egs. (138) and (139) for plunging motlon The parameters 8, and
8, are defined by Egs. (137) or (1k0). :

The addition of the pressure field p(2) to p(l) yields the asymptotic
form of the pressure distribution p° on an oscillating two-dimensional airfoil
in a compressible stream. The integral of the zero and the first order moment
of this pressure distribution over the chord of the airfoil will yield the
asymptotic forms of the unsteady 1lift and moment.

Limiting Behavior as K-, M # O
The limiting form attained by the pressure distribution p® as the reduced

frequency approaches infinity can be obtained by ex nding the pressure
distributions p(l and p(2) in a power series of K~ -1/2, The result can be
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shown to be dependent on the 1limiting form of p(l),vwhich is

p*a p' %o[-iwaobx; +'ua°] S 0< X <2 (1k4)

for pitching motion about the leading edge and

pS o P(')=Po°['iwh°]e-i"‘" o 0<X/ <2 (a45)

~ for plunging motion. Equations (144) end (145) are precisely the results
predicted by piston theory (ef. Ref. 9) for pitching and plunging motion.
This result is to be expected, since piston theory may be used to predict
the pressure distribution on an oscilleting airfoil in a subsonic streem if
the product of reduced freQuency and Mach number is large. The agreement
between the: limiting form of Eq. (142) or (143) and the results predicted

by piston theory for pitching or plunging motion appears to be in confliet
with the poor correlation between the two-dimensional limit of Eq. (36) and
the result predicted by piston theory for the gust encounter problem. This
apparent dlscrepancy can easily be resolved‘by recalling that piston theory
is only applicable to problems in which the local acceleration of the downwash
distribution is much greater than the convected acceleration which is the
.case for the airfoil motion described ebove at high reduced frequency. For
the gust encounter problem the‘local.aéceleration and the convected accelera-
tion .of the downwash distribution are equsl. ' '
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APPENDIX V

NONPERIODIC TIME DEPENDENT PROBLEMS

The objective of this analysis is to discuss the mathematical procedure
oy which the analysis presented in the main text can be extended to predict
the unsteady airloads on an infinite swept airfoil encounterlng a nonperiodic
gust ‘The downwash distribution resultlng from the encounter of an infinite
swept girfoil with a one-dimensiongl obllque gust is of the general form

(146)

-U;=f[r-Ucos(6-a)t] o %= 0, —bSX,éb

where

r = X,cosa + Xzsina - (k)

This velocity field is convected at a speed of Ucos(@-a) in the r direction.
The analysis in this Appendix assumes the existence of the Fourier transform
in time of Eq. (146). This transform is defined as

O 1 '
S L T (46)

2 /2T Lo

while its inverse is defined to be

®,1 -
U; N __I‘—f LJI er'{ aw (149)

The explicit form of the Fourier transform of Eq. (146) is obtained by
substituting Eq. (I47) into Eq. (148). The resulting integral may be evalu-
ated by replaclng the integration variable t with 7% where 7% = t - m,
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|
}
|

yielding

iwr

OZ - eUCOS(e-G) ?(w) -b< X.<b X2= 0 (150)

where

*

flw) = d* (151)

! f°°f(r) ¢
./277' _(D )

The spatial dependence of Eq. (150) is identical to that for a one-dimensional
sinusoidal gust (i.e.:, Eq. (10)). The remaining equations to be transformed
are Eq.' (7) for the pressure field and Eq. (8) for velocjty pofential. These
equations are transformed by multiplying each term by r— and inte-
grating the result with respect to time from minus to S{-_.lnfinlty. This
procedure leads to the result -

s [ 0% 09 | ,
- - - — — l 2
p -po[ iweg + Ucosh 3%, + Usin@ 3%, (152)
for the Fourier transform of Eq. (7) and
3’ K:
) o V2¢»,—Mzcos 60— - mZsin? @ .
' oXi %3 (153)
Mcosf . 3¢ _ Msing . a& 2 : ’d w? 5
- . - + M7cos8sin@ ———— C— = 0
a ¢ 9X, @ Y oxg 9sinG dX,0Xz a? ¢

for the Fourier transform of Eq. (8). Equation (153) can be reduced to the
Hemholtz equation (i.e., Eq. (16)) for a modified velocity potential ®. This
transformation is accomplished by introducing dimensionless coordinates ~
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A

(i.e., Egs. (11), (12),and (13)) and the following form for ¢ i

- Kb X
a ' A i['BMZCQSBXI + (1- MS|cnoa529)l/2} (15’-'.)
¢ = d(X,, X5) e )
into Eq. (153) which yields
A 24
%, e L 25 g (155)

2 2 - !
oxZ T axt o
The variables 8 and ¥ which appear in Egs. (15k) and (155) are defined by

Egs. (14) and (1%7) of the main text while the variable K is related to ® by
the equation

K = Ucos(8-a) (156)

The boundary conditions for & can be explicitly expressed in terms of ¢ and
its spatial derivatives. The transformation of the downwash boundary
condition, Eq. (9), is

00 _ 58 - «,=0, -bxs<b (157)

which, when combined with Egs. (149) and (152), yields

.g: L b | ;(w)eiﬁx. SIS X S1, Xp= 0 (158)

]- Hi
./I-Mzcosze '

The transformation of the Kutte-Joukowski condition requires 7 to vanish
" downstream of the trailing edge of the airfoil. The mathematical form of




this condition is obtained by combining Eqs. (152) and (154), yielding

‘ - ) 1 AvReooy 4 iKbsinax,
p° = -p S [6‘1’ - iB¢’] BN oS O T o) ™

o b X, © =0 (159)

Xl "—"|, X2=O

The field equation (155) and the boundary conditions in Egs. (158) and (159)
form s boundary value problem for ¢ which is identical to that for the
sinusoidal gust discussed in the main body of text. Thus, the solution for
the modified velocity potential associated with the sinusoidal gust problem
can be used in conjurnction with Egs. (152) and (154) to predict the Fourier
transform of the pressure distribution ps on the surface of the airfoil.

The integrals of the zero and first order moments of the Fourier transform
of the pressure coefficient induced by the gust are equal to

A 27T¥cose i[Rsmax3] (160)

C, = T, e
L L
2
, U/t - MPcos® @

and

A 7 f cos 6 - ei[Rs""“’%}

C,, =
M M
2U, /1~ mZ%c0s° 8

which are the Fourier transforms of the lift and moment coefficients. The

- functional forms for the variables Ty and Ty are defined in the main text.
Finally the 1ift and moment coefficients resulting from the encounter of the
airfoil with the gust are obtained by inverting the Fourier transforms,

Egs. (160) and (161), yielding the results

(161)

(162)

/—_cosecos(e a)f [x3snna ucos(g - a)t]

| dK
=M cosZB ’03

CL[x3sina - Ucos(é- a)t]
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and

6163)

/2T cosgeos(-a) (s ik[xssina-u.cos(9~a)1] _
Tve dR

C [X sihd— Ucos(8~- a)T] = f
mL3
4 </ 1 -M%cos%8 ‘-[w M

A typical application of the analysis in this Appendix is to the problem
of predicting the unsteady air loads generated by a helicopter rotor blade
encountering a tip vortex from a previous blade. This problem can be analyzed
by considering the interaction between an infinite swept airfoil and a two=-
dimensional rectalinear vortex which has an induced downwash field given by

I F'[F—UCOS(B - a)'r] t(164)
2T {[r - Ucos(e-a)1]2+ ha}

where h is the vertical position of the vortex beneath the X7, Xo plane and
I' is the strength of the vortex. The Fourier transform of Eq. (164) is

r -
|F/2we - Ikth . (165)
i sgn(K)‘V Ucos 8-a) ©
Thus from Eq. (150)
, -1klh
o s F AT =

Introducing Eq. (166) into Egs. (162) and (163) yields

, r . ~0 _ -Iklh ik|xssina - Ucos(B-ayt| 16
¢, - cos g i f wn(Rye | Te % | ]dK (167)
2U, /| - M%os2g @ '

6L



for the 1ift coefficient and

i A -1k iK|X5sina - G—Q)T]
T cosfi o _ -lklh  iK|Xgsina - ucos( o
O Csan(Rle Te o gk (168)
suxﬁ‘ MZcos’e T : _

M

for the moment coefficient. Numerical results for the lift or moment coef-
ficient can be obtained by introducing the appropriate transfer function into
these equations and integrating the resulting expression numerically. This
procedure has been used to obtain the results presented in the main text.
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APPENDIX VI
COMPUTER FLOW DIAGRAM FOR COMPUTING THE AIRLOADS GENERATED
BY THE ENCOUNTER OF A HELICOPTER ROTOR BLADE WITH A TIP VORTEX
The flow diagram for the computer program that was developed to predict

the aerodynamic loads generated by the encounter of & helicopter rotor blade

with a8 tip vortex is presented in this Appendix, along with a list of input

and output variables.

Inputlvaéiables

, 1. Azimuth pbsition at which the encounter occurs.

2. Advance ratio.

3. Rotafional tip Mach nuﬁber.
4. Angle of encounter.
" 5. .Rotor blade semi-chord.
j'6{ Vertical displacement of thg vortex beneath the plane of the rotor.

7. Radial position at which the encounter occurs.

Output Variables
i. Mach-nﬁmber at the position gt which the encounter occurs.
2. Sweep angle.
3. Time history of the normalized 1lift coefficient.

L. Time history of the normalized moment coefficient.
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Input

Geometry of
the encounter

V

Test for Subsonic, Sdnié, or
Supersonic Relative Encounter

v2s 07

ve< 0

Compute Transfer
Functions using

Eqs. (34) and (35)

Y=0

v2>

Compute Transfer
Functions using .
Egs. (27) and (28)

Compute Transfer
Functions using Eqs. (27)
and (28) for v > 0.1

and Egs. (39) and (40)
for v <O0O.7 :

Apply a linear curve
fitting procedure to
compute the magnitude and
phase angles of the
transfer functions for
the region 0.1=¥ =<0.7

Evaluation of Egs.
(167) and (168) vy

Numerical Integration

Output
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FIGURE 24. NORMALIZED LIFT DISTRIBUTION FOR SECOND—QUADRANT VORTEX
' ENCOUNTER'OF A UH-ID ROTOR AT 90 KT
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