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INTKODUCTION

Inductor-ener y-storage dc-to-dc converters combined with closed-loop
regulators frequently are encountered in a wide variety of power conditicning
systems for aerospace, computer and instrumentation applications. The power-
channel networks in these converters usually maybe simplified to one of four
basic circuit forms: voltage step-up, current step-up, one-winding or two-
winding voltage step-up/current sicp-up. Analyses of these circuits under
steady-state conditions and design procedures based on equilibrium conditions
have ippearzd in the literature and will not be discussed here.]'8 The ab’lity
to predict transient current and voltage waveshapes in these circuits is impor-
tant since periodic switching of currents tlirough the semiconductor elements is
an integral part of the operation of these circuits. Transients which occur as
2 result of Lransictor and diode switching with each cycle as well as transients
of longer duration occuriing at converter start-up and shut-down times and when
the input-voltage or output-load levels are disturbed are particularly important
since it is at such times that overstressing of circuit compoients is most likely
to take place. Analytical methods for cbtaining the transient response of con-
verter systems, including the power-channel and controller networks, which have

been ruported in the literature gererally have approached the problem by
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replacing the nonlinear p  (on of the system with some form of equivalent
Tinear transfer characteristic. Examples of l1inearizing techniques for ob-
taining the system transient response are found in References 3 and 6. These
methods lead to valuable insight into the overall transient behavior and
stabjlity characterisitics, but usually are unable to provide information
about many of the converter internal currents and voltages of jmportance to
the designer. A need exists, therefore, for a method of investigating rela-
tively complex converter designs which include circuit elements and topology
of both the converter power channel and the controller.

In this paper, simulation of converter-controller combinations by
means of a “exible digital computer program which produces output to a
graphic display device is presented as an attractive alternative to mathe-
matical analysis of converter systems which might require severe model simpli-
fication and possible loss of vital information in order to obtain a tractable
problem statement. A number of software systems are available for simulating
nonlinear system behavior. These software systems can be divided into two
broad categories, The first type of programming involves the transformation
of user data which describe the elements and the topology of the network into
a set of simultaneous equations which is then solved for the appropriate re-
sponse. The user of this type of program enters data for each circuit ele-
ment in terms of its model description and its interconnections. Examples of
this type of program are ECAP, SCEPTRE and ASTAP.

The second type of programming system for simulating nonlinear systems
requires that ‘the user describe the network in block diagram form. The data
entered by the user consist of a description of each block and its input and
output connections. The block diagram prepared by the user to represent a

nonlinear system must accurately portray the flow of information represented
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by the differential and algebraic equations which have been written to de-

scribe the network under study. The Llocks consist of linear elements such
as weighted summers, sign inverters, unit delays and integrators, nonlinear
elements such as comparators, clippers, 1imiters, relays and transcendental
functions, and logic elements such as AND's, OR's and flip-flops. Examples
of this type of program are CSMP and MARSYAS.

Both the circuit-topoliogy and the block-diagram approaches will yield
the transient current and voltage waveforms in the simulated systems. How-
ever, where computer run time is limited by computation center poiicy or user
economics, it usually is prohibitively expensive to obtain sufficient simula-
tion data on the effects of long-term transients, such as those which occur as
a result of the initial application of power even in a relatively simple regu-
lated converter, The use of small computers on which several hours of run
time may be scheduled combined with the use of graphic output devices and inter-
active control of the program make it economically and computationally feasible
to investigate transients of long duration, including those due to start-up,
shut-down, and severe input --d output changes. Programs which work directly
from the description of circuit-element interconnections are availabie for small
computers, but present versions with large overhead requirements due to pro-
cedures requiring ¥frequent program overlays are too sTow to make them attractive
at this time. The simulation program used in studying closed-loop-regulated
dc-to-dc converters in this paper is a modified version of the block-diagram
software originally written for the’IBM 1130 Computing System known by the name
Continuous System Modeling Program (CSMP}, A number of new features have been
added to the 1130 CSMP which has been modified to run on a Digital Equipment
Corporation PDP-11/45 computer equipped with a Tektronix 4013 storage-tube
graphics console. The simplicity of the input Tanguage and consolie procedures

enables the user to simulate a complex converter system with relative ease.




Once prepared, a user's block-diagram configuration and parameter assignments
may be stored on the computer-system magnetic disk and later recalled for
modification and use.

Four sets of configuration and parameter data corresponding to the
four basic circuit forms for inductor-energy-storage dc-to-dc converter
power-channel networks have been stored permanently on magnetic disk. These
preprogrammed configurations contain all of the logic needed to switch the
various differential and algebraic equations according to the requirements
of the ¢ircuit variables. The user need only assign numerical values to the
parameters and add the additional blocks required to simulate the controiier.
The interactive nature of the prcgramming system permits the user to halt a
simulation run at any point, to change parameters, and either to continue on
with the computation or to start over with time reinitialized to zero. Using
the display software and graphics console the user may observe and record up
to five svstem variables (block outputs) plotted versus time or versus any
other system variable, In addition, the user may obtain a numerical print-out
of up to five variables plus the independent variable time on a print-time
interval of his choosing. Because all computation is performed in the time

. domain, CSMP as used here is not adapted to provide frequency response infor-

mation such as Bode or Nyquist plots or si¢gnal spectra.

: CONVERTER ANALYSIS AND STATE REPRESENTATION

Since the computer simulation program deals directly with time-domain
equations, the first step toward preparing data for a system simulation is to
derive the state and algebraic equations for the converter-controller network.
From these equations, the block diagram of the system-simulation program is

; prepared. Parameters of the linear and nonlinear blocks in the diagram are
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determined by the parameters of the system under study. If no additional
state-equation switching is needed beyond that already programmed into the
stored configuration bging used, the output-voltage and power-transistor
blocks of the power channel are connected to the input and output blocks of
the controller. If additional state variables are required to describe the
Convertei* because of the presence of additional energy-storage elements from,
for example, an added input filter, it will be necessary to rewrite the net-
work equations and may be necessary to modify the switching logic.

In the simulation research discussed here, the four basic forms of in-
ductor-energy-storage converter power channels shown at the top of Table 1
are used as the starting point in the analysis leading to the four stored
converter power-channel models available to the CSMP user. These same c¢ir-
cuit forms have been used as the basis for compnuter-aided design procedures
in References 7 and 8 and are modified here to include the r~esistance of the
source, parasitic resistances in the circuit elements, and the saturation and
forward resistances of the transistors and diodes. " The transistors and
diodes are represented as open circuits when reverse biased.

There are two possible modes of operation for an inductor-energy-
storage converter.7 A converter operating in Mode 1 has current flowing in
the energy-storage inductor at all times. When the power-channel transistor Q
is turned on, the inductor current rises from a nonzero value to a larger value
over the time interval ton' When the transistor is turned off during the
succeeding interval téff, a portion of the energy stored in the inductor is
transferred into the load circuit through diode N. In Mode 1 operation, the
inductor current never dwells at zero. When a converter operates in Mode 2,
the inductor current initially is zero when the transistor is turned on.

The inductor current builds up in the interval ton’ starting from zero. HWhen

the transistor is turned. off, during interval téff all of the energy stored in



the inductor is transferred to the load., There then follows a finite time
interval tgff after the inductor current reaches zero before the transistor
is turned on again. In setting up the state equations for the vonverter, all
three time intervals are accounted for by providing separate expressions

corresponding to each of the conditions below:

Time Interval Assocjated Subscript Circuit Conditions
ton o Transistor Q on, diode D off
téff B Transistor Q off, diode D on
tgff ¥ Transistor Q off, diode D off

Two state variables are chosen for each of the four basic configurations.
They are the magnetic-cure flux ¢ and the voltage Vi across the pure capacitance

C. The linear model for the magnetic core allows for a residual flux o when

7

the current through the inductor winding is zero. ' The effective series re-

sistance (ESR} internal to the capacitor is represented by re State equatio.s
1 1]

on? toff and toff

are listed in Table 1. Expressions for the inductor current ix and the output

for the four configurations during the three time intervals t
voltage vy also are given in the table.

SWITCHING LOGIC FOR SELECTING THE APPROPRIATE STATE-VARIABLE EQUATIONS

As explained above, for each converter configuration, state equations
must be written for the thiee possible network conditions which depend on
whether transistor Q is turned on, and if not turned on, whether the magnetic-
core Tlux 4 has fallen to the residual level *p (inductor current has fallen
to zero) or not. The simulation block-diagram connections for computing the
state variables for these three time intervals from their respective deriva-
tives are shown in Figure 1. The signal from the controller and the output of

the comparator block may assume one of two levels, high or Tow. A high-level



signal applied to the control input of a relay causes the two-pole switch

of the relay to move £o the upper position. A Tow-level signal causes the
switch of the relay to move to the Tower position on the diagram, The sub-
scripts, a,8 and y identify the values of $ and GC from Table 1 corre-

sponding to conditions during the three time intervals ton’ téff and tgff
defined above. It is the function of the logic circuitry always to assign

the proper values to the state-variable derivatives & and QC‘ When the con-
troller demands that transistor Q lLe turned on, the signal from the controller
to the pair of relays in the center of the figure is high. These two relay
blocks then transmit derivatives $a and &Ca to the inputs of their respective
integrators. These two derivatives as well as all others in the figure are
generated continuously by combinations of terms from other blocks not shown

on this diagram., Since flux ¢ must always increase while transistor Q is on,
the output of the comparator sensin: the djfference between ¢ and %R is at the
high level, holding the pair of relays on the left side of the figure in their
upper positions., When the controller indicates that transistor Q is to be turned
of f, the sig.2l to the control inputs of the central pair of relays goes to the
low Tevel and these relays switch to their Tower positions. The derivatives ;B
and &Cs thus are the ones transmitted to the integrators immediately following
receipt of the turn-off signal from the controller. As Tong as the flux ¢ ex-
ceeds or is equal to the residual flux level #p, the comparator output will
remain high., When ¢ falls ever so slightly below op» the comparator output goes
to the low Tevel and both relays on the left are driven to their lower positions.
From then until transistor Q turns on again, 47 and QCYare transmitted to the
two integrators. The value of ¢Y, see Table 1, is zero, corresponding to ¢
held at ¢, minus a small error, until the controlier demands that Q turn on

again. When this happens, the center pair of relays returns to their initial



upper positions. The core flux ¢ increases so that it becomes equal to or
greater than *r and the comparator output goes to the high level, returning the
relay pair at the left side of the figure to their upper positions. A new

cycle of operation, thus, commences.

SIMULATION OF TWO EXAMPLE ELECTRONIC POWER CONDITIONING SYSTEMS

To illustrate the power and versatility of the block-diagram program-
ming technique in simulating switching-type electronic power conditioning sys-
tems, results of computer simulation investigations of two types of inductor-
energy-storage dc-to-dc converters from aerospace applications are presented.
The first example is a preregulator which will provide a regulated bus for the
electronics i the Cosmic X-ray Experiment, denoted as A2, one of six experi-
ments on the High Energy Astronomy Observatory Satellite (HEAO) scheduled for
launch in early 1977. The saecond illustrative example is a battery~charger
circuit used on the Atmosphere Explorer-8 Spacecraft (AE-B) launched in May,
1966. These two examples represent two different types of converter power-
channel networks with two different types of controlilers. The HEAD-A2 preregu-
lator produces a constant output voltage over a considerable range of output
power and for a wide range of input voltage. It can be classified as a current
step-up converter with a constant-frequency variable-on-time controller. The
AE-B battery charger was designed to charge,one battery pack at a time, the
various batteries on board the spacecraft which ranged in voltage from 3 to 25
volts. Closed-Toop regulation of the array voltage, rather than conventional
regulation of the output voltage, was obtained by using a constant-on-time,
variable~frequency controller to control a single-winding voltage step-up/

current step-up converter,



HEAQ-A2 Prerequlator Block Diagiam

A block diagram illustrating the major subcircuits in the HEAQ-A2
preregulator is shown in Figure 2. In the development of procedures for
translating the complete circuit diagram into a model adequate to provide
sufficient detail for & given investigation, the programmer searches for
those parts of the circuit that may be isolated from the system and modeled
with minimum coupling to the rest of the system. The partitioning of sub-~
circuits in Figure 2 resulted from such a study of this example system.

The subcircuits correspond to:

T. INPUT FILTER WITH START~UP RELAYING for “imiting an initial

high surge of current.
2. Inductor-energy-storage CURRENT STEP-UP CONVERTER and the
output LOAD,

3. REGULATOR FOR VOLTAGE SUPPLY TO CONTROLLER subsystems.

4, JENSEN SQUARE-WAVE OSCILLATOR AND RECTIFIER/FILTER FOR OP-
ERATIONAL-AMPLIFIER SUPPLY voltage and base-drive bias supply.

5., Square-wave INTEGRATOR AND VOLTAGE-REFERENCE CIRCUIT.

6. OUTPUT-VOLTAGE TO SAWTOOTH-PLUS-REFERENCE COMPARATOR AND
CURRENT-L.IMIT LOGIC plus the BASE DRIVE CIRCUIT.

7. OPERATIONAL AMPLIFIER AND CURRENT REFERENCE.

Because of the importance of the effect of supply voltage VCC1 at
converter start-up, the regulator for the controller voltage supply is in-
cluded in the simulation. This regulator also suppliies power for the Jensen
square-wave oscilliator, the output of which is rectified to provide the
dual-supply voltages, +VCCE and 'VCCZ’ for the operational ampiifier. Since
the operational amplifier may be overdriven during transients, the saturation

levels at its output must take into account the supply voltages available.




The Jensen circuit not only provides supply voltages to the operational
amplifier and power transistor base-drive bias circuit, but also provides

the square wave to the integrator circuit, The square wave is integrated

to become the sawtooth waveform #or modulating the on-time of the power-
channel transistor Q. The output voltage Vo is compared with the sum of

the sawtooth waveform and the voltage reference in the comparator circuit.
When the algebraic sum of these three signals exceeds the comparator threshold
level, the power transistor is turned on through the base-drive circuit, The
comparator alse includes current-limit lTogic circuitry which allows the op-
erational amplifier and its current-reference offset to hold the output of
the comparator in the power-transistor-off condition as long as the load

current exceeds a preset value.

HEAD-A2 Preregqulator Circuit Diagram

Although the operation of the preregulator circuit will not be explained
in full detail, it is necessary to explain certain activities in the c¢ircuit in
order to discuss the waveforms presented laiver in the paper. A simplified
schematic diagram is shown in Figure 3 in which the subcirguits appearing in
the block diagram are identified with captions., The input voltage is permitted
to vary from 23 to 33 volts while the ovtput voltage is held at 20 volts over
a load power range of 2 to 40 watts, The start-up surge-limit relaying sub-
circuit consists of a resistor-diode series combination which is switched out of
the input path 6.5 milliseconds after initial application of power to the system.
The surge-Timit subcircuit is followed by a single jnductor-capacitor filter
section., Resistor Ry Timits the initial rush of current into the L1C1 input
filter and provides damping to prevent ringing of that circuit during the start-
up transient. The input filter provides jsolation between the switching cur-

rents in the converter power channel and the input power source feeding it., The



current step-up circuit, sometimes identified as 2 buck or voltage step-down
regulator, alternately stores energy in inductor L2 when transistor QI eon-
ducts and releases energy to the load circuit when Q] is turned off and
diode D, conducts. Capacitor C, carries most of the ripple current passing
through L,. The output voltage is sensed across the connected load and the
output current is sensed as the voltage drop across resistor R2. These two
feedback voltages are used as input signals to the controller.

The regulator for the voltage supply to the controller, consisting of
constant-current diode DG’ zener diode D5, transistor Q6 and capacitor Cg,
provides the supply voltage VCC] to all of the controller subcircuits except
the operational amplifier. The current through 06 charges C6 and other filter
capacitors with an essentiaily constant current until Dy reaches 1te break-
down voltage. The variation in supply voltage VCCI before the constant value
of 20 volts is reached affects a number of the subcircuits in the controller.
For example, both the frequency and amplitude of the waveform developed by the
Jensen oscillator depend on the supply voltage. During the start-up transient
both the frequency and the amplitude of the Jensen-circuit square-wave output
increase with the frequency ultimately stabilizing at 25 KHz when VCC] is 20
volts. In addition, supply voltages +VCC2 and 'VCCZ from the bridge rectifier,
which are superimposed on output voltage VO through the center-tap of a
secondary winding on transformer T1, vary during the start-up period.

A passive integrator consisting of capacitors C5 and Cy and resistors
R14 and Ryg serves to shape the square wave from the Jensen circuit into a
sawtooth wave. This waveform is superimposed on a reference voltage obtained
through a network made up of Rig» Cs and zener djode D, and is coupled to the
comparator circuit. Transistors Q2 and Q3 and associated rasistors make up the

comparator. All of these subcircuits are affected by the build-up in supply



voltage VCC] or by the waveform transient from the Jensen circuit,
The comparater circuit, which menitors the algebraic sum of the saw-
tooth wave, reference voltage and output voltage, turns the power transistor
Qy on and off as it is driven back and forth through its threshold. However,
if the load current,as sensed by the operational amplifier, exceeds a preset
valug the current-Timit Togic circuit will hold the power transistor in the off-
condition, The operational amplifier is biased by an offset through resistor
R4 and +Vccz to correspond to a two-ampere current limit which causes diode 03
to be forward-bijased when that limit is exceeded. The input terminal to the
comparator from the divider network for the output voltage Vg is held high enough
to cause the comparator to signal the power transistor that turn-off is required,
With this brief description of the converter-controller subcircuits as

background, the simulation block diagram for a CSMP program is now discussed.

HEAD-A2 Prerequlator Block Diagram for CSMP Simulation

The block diagram shown in Figure 4 depicts the model of the HEAD-AZ pre-
regulator in terms of simulation functions avajlable in the CSMP programming
system. To compare the simulation model with the simplified schematic diagram
in Figure 3, the block diagram has been partitioned into sections which can be
identified with the subcircuits discussed in the previous sections of the paper.
The input filter with two energy storage elements requires two integrators to
obtain state variables $1 and Vel for the flux in the core of Ly and the voltage
across the pure capacitance C]. The derivatives to these two integrators are
switched by control signals from a time delay function and from the controller
for the power transistor on-state. The converter and load section contains two
intecrators which compute the state variabies ¢, and ve,. The derivatives fed
to these two fntegrators are switched according to the conditions required by the

controller demand for the on or off state of the power transistor 4 and the flux



level ¢ compared with the residual flux level ?p as explained earlier for
Figure 1. The output-voltage to sawtooth-plus-reference comparator estab-
lishes the state of one pair of relays while the output of a comparator
block in the converter section sensing %5 - ¢p controls the state of the
other relay pair. Unit delay blocks to obtain a delay of six microseconds
simulate power-transistor Q1 storage delay when the comparator control signal
goes low.

The output of the regulator for supply voltage VCCI is simulated with
a limiter block driven by the independent variable, time. The Jensen circuit
uses a relay to alternate between +V..q and -VCC1 as an integrator input.
Integration of this supply of one sign continues until the output of a positive
or a negative clipper driven by the integrator is different from zero. The
clipper ovtnuts serve to set and reset a flip-flop biock whick in turn drives
a comraiur block to reverse the relay and the sign of the supply voltage to
the integrator. This simulation corresponds to the integration of a portion
of the supply voltage coupled through windings to the square-loop magnetic core
in the Jensen-circuit transistor base-drive civrcuit.

The square-wave integrator which produces the sawtooth waveform and
the voltage-reference circuit require three integrators for the voltages
across C3, C4 and Cg. A Timiter block simulates the voltage-limiting behavior
of zener diode Dg. To simulate the offset in the comparator circuit due to
two base-emitter junction voltage drops, the output of the integrator and
voltage-refarence circuit is passed through a positive clipper.

The operational amplifier in this simulation model is modeled as a
single-pole RC network using a single integrator. In addition, the amplifier
mode1 includes the effect of saturation at a supply voltage level, positive or

negative, depending on the sign of the input signal, and includes the effect



of variable supply voltages at converter start-up time. The relay, com-
parator, constant, and summer blocks simulate the amplifier gain, current-
reference offset, which is dependent on the value of Vops s and saturation
effect. Weighted summers used as coefficient blocks convert (¢2 - ¢R) to
current 1X2 and to current-sense voltage across Ry Output vultege vy, is
obtained as the sum of Veo and the voltage drop across the effective series
resistance re,. Although in the actual circuit vy is coupied to one input
terminal of the comparator circuit through a resistive divider network, in
the simulation model it is mixed with ether appropriate signals in the
simulation model of the operaticil amplifier,

The outputs of the sawtooth-waveform and voltage-reference circuit
and the cperational amplifier and current reference, including the feedback
connection for the output voltage v,, are used to drive a comparator block
which determines the on-time of the power-channel transistor., As i1eng as
the load current does not exceed the currenc-limit set point of two amperes,
the sum r¥ the sawtooth waveform and reference volitage is compared with the
output voltage, and the controller operates in the normal voltage-limit manner.
When the load-current-limit set point is exceeded, the comparator section is
disabled and power channel transistor Q; can not be commanded to the on-condi-
tion until the load current falls below that level,

These brief descriptions of the subcircuit operations and the inter-
connections of the CSMP programming system blocks to simulate the complete
HEAO-A2 preregulator provide the background for discussing some of the results
of a number of computer simulation runs and comparing them with results ob-

tained from the actual circuit under development,
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Comparison of Simulation and Experimental Results for HEAO-A2 Preregulator

To more easily compare plots of time functions obtained from CSMP
computer simulation runs with oscillograms of actual circuit voltages and
currents, reproductions of display plots obtained from the graphics con-
sote have been photographically reduced so that the lengths of the horizon-
tal (time) axes are the same as those of the experimental oscillograms.

The corresponding computer simulation waveforms are placed directly below

the c¢ircuit oscillograms; and in each pair of computed and actual waveforms,
the vertical calibrations are identical. While the scales in volts or
amperes per major division are the same between a pair of waveforms, in some
of the oscillograms some of the waveforms are offset slightly from their zero
positions. These s\ight offsets do not hinder comparison of computed and
actual waveforms, however,.

The waveforms shown in Figure 5 illustrate the transients cceurring
following the connection of the converter system to its power source. The
jnput voltage for these waveforms and all others to follow has been set to
28 volts. The 1nad resistance connected at converter start-up is 13.33 ohms,
corresponding to an equilibrium output power of 30 watts when the load volt-
age reaches 20 volts, the regulated value. At zero time, all zurrents and
voltages displayed are zero. Afier being connected to the 28-volt source,
voltage vi at the output of the input filter begins to rise. This causes
the output of the voltage supply to the controller network (not shown) to
begin to rise and causes tha output of the reference voltage circuit vp to
increase. At 6.5 milliseconds, the time-delay relay in the input filter
circuit closes, shorting out R1 and D1. The effect of the redistribution
of voltage drops across LT’ its winding resistance " and the effective

series resistance rel of Cy may be observed by noting the small discontinuity



in vi at that time. Because of the transient rise in supply voltages through-
out the controller network power channel, transistor Q1 is not commanded to
the on-state until approximately 9.7 milliseconds after initial application

of power. When this first turn-on command occurs, the current 1x2 in L2

rises rapidly and exceeds the current-limit set point. This causes trans-
istor QI to be turned off and the inductor current to decrease until it is
less than the 71imit value. Because the output voltage feedback signal is

Tow relative to the reference voltage at this tine, the comparator signals for
the power-channel transistor to be turned on again. This current-limit self-
oscillation mode continues for approximately 2.5 miliiseconds until the output
voltage Vo has risen sufficiently high to permit the comparator circuit to
begin to function normally. From this point on to approximately 40 milliseconds
after start-up, the output voitage Vo tracks the slowly rising reference
voltage vp. When zener diode D4 reaches its breakdown potential, vp stabi-
Tizes at 9 volts and the output voltage levels off at 20 volts. The trans-
ient period to reach normal operating voltage and power levels in all portions
of the converter-controller system after initial application of power is seen
to last approximately 40 miTlliseconds.

The same HEAQ-A2 preregulator with the current-limit feature disabled
was tested in the CSMP simulation run shown in Figure 6. In this figure the
scale factor for the inductor current ixz has been changed from 1 ampere/
major division to 5 amperes/major division in order to contain the current
waveform on the plot. Note that without the current-limit circuit, the peak
current exceeds 10 amperes. Considering that the slowly rising reference
voltage is intended to produce a "soft" start-up transient, a casual study of
the converter circuit with the current-Timit feature removed would not Tead

one to expect this potentially dangerous high-current peak. The use of the



CSMP programming system to explore circuit variations is one of the most
useful features of this approach to computer-aided analysis of power con-
ditioning systems, Using data from simulation runs, system components can
be evaluated for voltage and current stresses under normal and failure modes.

In Figure 7 waveforms are shown for a connected load of 13,33 ohms,
corresponding to an output power of 30 watts at 20 volts, switched in a step-
wise manner to 40 ohms, corresponding to a 10 watt load power., The duration
of the sweep time on the horizontal axis has been reduced to 2 milliseconds
from 50 milliseconds for the start-up transiznt plots. The ripple due to the
constant-frequency variable-on-time current pulses through the power channel
transistor car be seen c¢learly in the inductor current 1x2 and output voltage
Vg waveforms, In the simulation plot two additional waveforms have been in-
cluded. Waveform 3 represents the step change in load resistance and is pre-
sented to show clearly the time of the load transition. The fourth waveform
represents the state of the current-limit circuit. When the level of wave-
form 4 1ies at position B, the circuit is out of the current-1imit mode; at
position A, the circuit is in current-limit mode, As the simulation run
plot demonstrates, at no time during the 30 watt-to-10 watt transient does
the circuit enter the current-1imit mode,

The waveforms in Figure 8 are similar to tho=e of the preceeding figure
but with the transient due to a decrease in load resistance from 40 ohms to
13.33 ohms, Waveform 4, indicating when the current-1imit mode has been
entered, shows that near the peak of the transient current in inductor L,,
1X2’ current limiting takes place. In both Figures 7 and 8, the simulation
plotted waveforis follow the experimental-circuit oscillogram waveforms
rather fajthfully.

The final set of waveforms comparing circuit performance and CSMP

simuTation runs for the HEAO-AZ preregulator are shown in Figures 9 and 10.



The plots of inductor .urrent iyo and output voltage Vo illustrate the
output characteristic of the converter system first when a three-ohm fault
is connected in parallel with the 13.33 ohm load into which 30 watts of
power is being dissipated and then when the fault is later removed. The
oscillogram traces and the simulation plots of Figure 9 show that the in-
ductor current rises rapidly to the current-1imit set-point value while the
output voltage Vo finally reaches an equilibrium value of approximately 5
volts as predicted by the product of the current-limit value of two amperes
and the parallel resistance of the load and fault resistance. Additional
infornation plotted in the simulation results is the display of the transition
in the connected resistance and an indication of when the system is in the
current-1imit mode.

The current and voltage transients which occur when the three-ohm
fault is removed are shown in Figure 10. The current-limit feature of the
converter-controller system is an important part of its operation during this
period of recovery from the fault removal since it prevents overshoot of cur-
rent and voitage in the power channel. It should be noted that recovery time
frow this Tow-output-voitage condition is considerably shorter than that of
the comparable transjent at converter start-up time due to the fact that all
supply voltages and the reference voltage are up to their rated values,

The comparison of results of experimental and simulation investigations
of the response of the HEAO-A2 preregulator at start-up time and under a
variety of transient load conditions have been presented in this section.

The results obtained from the simulation studies illustrate how the long-term
rasponses of a complex converter-controller power conditioning system may be
investigated for a variety of conditions, including load faults and sub~

circuit failures. In the following section, another type of power conditioning



syster wili be examined, this time from a steady-state cyciic point of view.

AE-B Battery-Charger Block Diagram

The second example of computer simulation of an electronic power con-
ditioning system is the battery-charger converter for the Atmosphere Ex-

plorer-B Spacecraft.g

The block diagram in Figure 11 presents the essential
features of the battery charging system, The power source is a solar array
connected through an input filter comprised of two capacitors and an inductor.
The requirements of the solar array and of the experiments on the spacecraft
nevussitated a reversal of polarity between the input and output voltages of
the converter. This polarity reversal was obtained by using a single-winding
voltage step-up/current step-up converter. The converter-controller require-
ments were also unusual in that the converter was to regulate its input volt-
age to a nominal 15 volts while charging batteries connected to its output
with terminal voltages ranging from 3 to 25 volts. This design constraint
required that the feedback signal to the controller network come from the input
voltage to the power-channel network, rather than from the output voltage
across the connected battery load., The controller network provides a base-

drive pulse of constant on-time which varies in frequency to regulate the

solar array voltage connected to the input terminals of the converter.

FE-B Battery Charger Circuit Diagram

A simpiified schematic circuit diagram of the battery charger is shown
in Figure 12. The solar array is represented by the Thevenin equivalent
voltage Vi and source resistance ' and is isolated from the cyclic switching
currents in the power channel by input filter C]L1CZ. Transistor Q1, diode
D, and energy-storage-inductor L, comprise the main elements of the power-
chanriel network which is connected to the battery load through output filter

CSLB' When a voltage pulse from the controller network is applied across the



base-emitter junction of Q], the power transistor is driven into conduction.
Current feedback holds Q1 saturated through the coupling of current trans-
former T]. Winding 1-2 © .ctions as the primary with winding 3~4 serving as
the secondary which provides base current. The flux in the square~loop
magnctic core of T1, which initially was saturated at one end of the core
characteristic when the trigger puise from the controller network occurred,
moves to the opposite saturation level over a time interval determined by the
essentially-constant forward base-emitter voltage drop of QI' This voltage
drop of approximately 0.7 volt determines the constant 01 on-time of 33 micro-
seconds, When the flux in T1 reaches the opposite saturation-flux level, the
increased magnetizing-current requirements reduce the feedback through T1 and
Q, ceases to conduct., Following this circuit action, the core of T] is reset
by the voltage applied across winding 6-5 and the power-channel network awaits
the next pulse from the controller network.

The controller network consists of a variable-frequency oscillator made
up of unijunction transistor Q4 and capacitor 03 charging network consisting
of resistors, transistors and a diode. The voltage across zener diode 02 pro-
vides the base-1 to base-2 bias potential for Q4. When the voltage across C3
exceeds the hold-off voltage between the emitter and base 1 of Q4, the latter
conducts and provides a discharge path for €y through the base of Q]. This
pulse initiates the action described in the previous paragraph, turning QT on
in the power channel.

The DER1 network is used to provide a feedback signal to the base of
Q2 proportional to the input voltage to the power transistor, thereby adjusting
the charging current into C3 and consequently controlling the unijunction
transistor oscillator frequency. Since the on-time of the power transistor is

constant at 33 microseconds, when the input voltage attempts to increase, the



controller pulse-frequency also increases in turn increasing the average cur-
rent through the power channel and maintaining an essentially constant input
voltage.

State equations for the simulation model are obtained from the volt-
age step-up/current step-up basic circuit in Table 1, and are modified to in-
corporate the state equations due to the five energy storage elements in the
input and output filters. The variable-frequency oscillator is modeled to
incorporate the input-voltage feedback path. It also drives a pulse-generator
block producing a pulse of fixed duration. This command signal from the con-
troller network is used to control the state-equation switching as in the
HEAO-AZ preregulator example. The flux in the magnetic core on which L2 is
wound is compared with the residual flux Tevel to control additional switching

of the equations for Mode 2 operation,

Comparison of Silulation and Experimental Results for AE-B Battery Charger

The waveforms in Figure 13 obtained from the battery-charger circuit are
for steady-state conditions in contrast with the transient runs for the HEAQ-A2
preregulator and show greater detail during a switching cycle. In the first
i1lustrative example, the comparisons were made to show how long-term trans-
ients due to start-up and severe load changes can be obtained by use of com-
puter simulation techniques. The battery-charger waveforms which are presented
were taken after the start-up transient had died out. Steady-state waveforms
of voltage across inductor L2 and capacitor 04 are presented. The four sets of
waveforms correspond to a constant input pow:r of 9.1 wat®s, and battery load
voltages of 3, 4, 20 and 25 volts. The four oscillograms showing the experi-
mentally determined waveforms are reproduced from Figure 6 of Reference 9.

The inductor voltage waveforms show when the converis~ is operating in Modes 1

and 2. When the battery load voltage is 3 and 4 volts, inductor voltage



Nzéz passes through zero rapidly as transistor Q, conducts or diode by con-
ducts. For battery load voltages of 20 and 25 volts, N2$2 is zero for a
significant portion of a complete c¢ycle, indicating that neither Qy nor Dy
are conducting. The voltage Vé across 05 shows the effect of the effective
serfes resistance reg in producing a step when the diode is abruptly con-
nected and disconnected by the actions of the power-channel network., In the
actual circuit, the converter power-channel network is isolated from the
battery load by an output filter consisting of two capacitors and two in-
ductors. The model which was programmed for simulation contains only the
single L3C5 output filter section. The ripple voltage across 05 is therefore
somewhat larger than it would be with a two-section LC filter.

Results obtained from simulation studies of a spacecraft battery-charger
power conditioning system have been presented in this section. Comparison of
the waveforms from the actual circuit with those from the simulation model show
close agreement over the entire cycle of steady-state operation of the circuit.
This example illustrates how detaiied observation of waveforms of current and
voltage may be made by altering the time scale used for plotting the circuit

variables,

CONCLUSIONS

The complexity of power conditioning systems with the attendant mixture
of nonlinear and energy-storage components in both the power-channel and con~
trolleyr networks offers a very real challenge to the designer when he attempts
to predict detailed behavior of such a system. Analytical techniques presently
available generally make use of some form of linearized transfer characteristic
to replace the nonlinear sections of the converter-controller network. Obtaining

the response of converters to severe disturbances in input-voltage and output-



load levels from a Tinearized model may not be valid because of major
changes in the behavior of the nonlinear portions of the network. Digital
computer simulation techniques in which the nonlinear characteristics of a
converter-controller network are preserved offer a means of investigating a
wider range of system characteristics than possible with 1inearized models.

Perhaps the most attractive application of computer simulation may
be found while the designer is developing the converter-controller network
and wishes to test a number of different concepts in the controliler portion
of the system. The convenience of a "quick look" at the system behavior while
the designer is still in the concept formulation stage of circuit development
can be seen to be an important advantage. As the circuit design evolves in
the mind of the designer, and as he refines his simulation model, he can ob-
tain information on the soundness of the controller concept on which he is
working at each step along the way by means of the design-simulation procedure.
If the modeling is done with sufficient care and detail, the designer is able
to confirm his design, including optimization of components, before constructing
a prototype circuit. After having seen the resuits of simulation and having
obtained a better understanding of how the circuit functions, the designer may
even find he is able to simplify or delete some portions of his original cir-
cuit design. Other important uses of simulation studies in assisting the de-
sign process include determining the effects of component-value tolerances and
dri ft.

A second important area of application of simulation studies in power
conditioning systems Ties in the analysis of system performance under a variety
of operating conditions. The earlier portions of this paper have shown how the
response of a complete converter-contrcller system may be obtained for load-
Tevel changes, including changes within the normal regulating range and those

corresponding to load fault conditions. These studies also show in considerable



detail how the converter behaves when it first is connected to the power
source. Another example of an important measurement which is readily mode

but is difficult to carry out experimentally is the response to a step change
in input voltage source. Since it is relatively simple to disable individual
subcircuit models in the simulation program, it is possible to simulate the
effect of circuit failure, as in the example of the elimination of the cur-
rent-1imit feature in the HEAO-AZ2 preregulator., Although frequency response
data yielding gain and phase margins from which to judge the stability of the
regulating system are not available from the simulation studies, it is possible
to arrive at some useful stability information by simulation testing. For ex-
ample, starting from a particular set of design parameters such as those of

the energy-storage inductor and filter capacitor in the power channel, the de-
signer could vary these values from run to run until the system became unstable,
The information thus gained would be useful in establishing bounds on component
tolerances and drift for maintaining stable operation of the converter.

In this paper, the application of simulation techniques using a small
computer equipped with a graphic display console has been shown to yield trans-
jent and steady-state response information with sufficient detail and accuracy
to make this approach to analysis and design useful to the desiyner of power
conditioning systems. Interactive control of the program which permits the
user to branch to chosen program segments for modification of the program block
diagram, block parameters, integration time step, or variables to be displayed
provide him with many options for experimentation.

The results presented herein were obtained through an ongoing cooperative
research effort between a government aerospace laboratory and an electrical
engineering laboratory in a university. The particular aspect of the effort re-

ported here relates to specific circuits already developed or currently under



development and to detailed investigations of these circuits using digital
computer simulation techniques. Using these circuits as examples, computer-
aided analysis employing simulation techniques has been demonstrated to be a
viable aiternative to other approaches for obtaining detailed transient and
steady-state response of inductor-energy-storage dc-to-dc converters-with

clused-1oop regulators.
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Oscillogram of Experimental Waveforms
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Figure 5. Start-up transients in HEAO-A2 preregulator.
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Computer Simulation Waveforms

Waveform Variable Scale Range
1 Vi 10 V/division -30 to +30 V
2 Tyo 5 A/division -15 to +15 A
3 Vr 5 V/division -5 to +25 V
4 Vo 10 V/division 0 to +60V
Time 5 ms/division 0 to 50 ms

Figure 6. Start-up Transients in HEAO-A2 preregulator with current-limit feature
disabled.



Oscillogram of Experimental Waveforms
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Computer Simulation Waveforms

Waveform Variable Scale Range
1 1x2 1 A/division -3 to+3A
2 Yo .2 V/division +19.6 to +20.8 V
3 RL 50 @/division 0 to 300 @
4 Current-1imit mode Position: A - in; B - out
Time 200 ys/division

Figure 7. Transients in HEAQ-AZ preregulator due to 30-watt to 10-watt load change.
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Oscillogram of Experimental Waveforms
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Computer Simulation Waveforms
Waveform Variable Scale Range
1 1x2 1 A/division -3 to +3A
Z v0 .2 V/division +19.6 to +20.8 V
3 RL 50 q/division 0 to 300 f
4 Current-1imit mode Position: A - in; B - out
Time 200 us/division

Figure 8. Transients in HEAO-A2 preregulator due to 10-watt to 30-watt change.
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Oscillogram of Experimental Waveforms
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Computer Simulation Waveforms
Waveform Variable Scale Range
1 1x2 .5 A/division -.5 to +2.5 A
2 VO 5 V/division +5 to +35 V
3 RL 20 Q/division 0 tol20 %
4 Current-Timit mode Position: A - in: B - out
Time 2 pys/division

Figure 9. Transients in HEAO-AZ preregulator due to application of 3-ohm fault

in parallel with 13.33 ohm load resistance.
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Computer Simulation Waveforms

Variable Scale
1x2 .5 A/division
VO 5 V/division
RL 20 2/division

Current-1imit mode Position:

Time 2 us,/division

Range
-.5 to +2.5 A

+5 to +35V
0 tol20@

A - in; B - out

Transients in HEAO-A2 preregulator due to removal of 3-ohm fault in

parallel with 13.33 ohm load resistance.
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Figure 13.

(D)

Battery Load
(A) 3v(B) a4V

(C) 20 v (D) 25V

(c)

Scale
10 V/division
1 V/divisior

Variable

%

Yo

Time 50 us/division Input power 9.1 W

AE-B Battery-charger Oscillographic and Simulation waveforms for

input power of 9.1 watts and four different batterv loads.
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