FINAL REPORT

547
NASA Grant Number NGR 05-020~457
Principle 1nvestigator Richard C. Atkinson

- Professor of Psychology

Report Date June 1, 1974
B e 14=26704
~ o Hau -
= 0 C2GSISTED T 26710
ey eoReu Al 267
/ig:jgs.&ﬂcii 0] Final Rep? gL ‘41\79.} o

‘1ysIRUCLT . :
lgniv.) ) — T

e ' i

,L‘ foay N
| nstitute for Mathematical STIRESTn the Social Sciences
Stanford University
Stanford, California

| PRICES SUBJECT T0 Giiiiwe.
REPRODUCTION RESTRICTIONS OVERRIDDEN

HASA Scientific and Technical Information Facility

Reproduced by

NATIONAL TECHNICAL
[NFORMATION SERVICE |

US Department of Commerce
Sptlnaficld, YA, 22151



N1 a

FINAL REPORT "
5Y7
NASA Grant Number NGR 05-020-457

Summary

This report describes work conducted under NASA Research Grant
NGR OS-OEOJEBV.

The first pért of the report presents an overview of the areas explored
under the grant; several topics relevant to the practical applications of
computer-assisted instruction are discussed. The remaining sections present
more specific details on the work conducted under the grant.

The goal of the project was research and development on strategies for
opbimizing the instructional process, and dissemination of information about
the applications of such research to the instructional medium of computer-
assisted instruction. Accomplishments included construction of the author
language INSTRUCT, construction of a practical CAT course in the ares of
computer science and a number of investigations into the individualization
of instruction, using the course as a vehicle,

The instructional system and the curriculum were used extensively by
students from NASA installations, unlversities, and junior colleges. The
course and the method of instruction have been received very enthusiagtically.

Thére has also been a substantial amount of spin-off from the project.
INSTRUCT has been used to develop four different curricula in widely varied
fields of study. The first application was the AID course described above,

and the second was a closely related course teaching the fundamentals of



programming in the BASIC language to inner-city high school students with low
reading ability and no background in algebra. The INSTRUCT system was modified
slightly to allow it to be used in a program of grammar instruction designed
for juniof high school deaf students. And finelly, the U. S. Public Health
Service used the INSTRUCT system in developing a set of review-test lessons

in dental health.

Both the instructional system and the variocus curriculums have been the
subject of a number of studies and revisions, aimed ét providing more effective
instruction. In particular, data were gathered on individual student perfor-
mance in order to evaluate some baslc questions related to learmning theory,
among them the issues of student vs. program control over the selectlion and
pacing of curriculum, relative merits of multiple-choice vs. constructed
regponse formats, and differences in student performance on items requiring
different strategies fpr solution, e.g., algebraic formulation of problems as
compafed to translation of algebraic expressions into a programming language.

An abstract of each section of the report follows. -

I. Friend and Atkinson. Computer-assisted instruction in programming:AID.

Research in learning théory and instructional strategies has received a
new impetus in recent yeafs from technological developments in the field of
camputer design. Computer—aséisted instruction, entirely unknoﬁn ten years
ago, is evidence of the rapid growth of computer applications in education
and is already froducing profound effects in the individualization §f instruc=
tion. Since January, 1963, the Institute for Mathematical Studies in the
Social Sciences has been conducting extensive progrems of research and

development in computer-aésisted instructionE



Tn 1968, the Institute received funding from NASA to design and produce
a course in programming using computer-assisted instruction as the instruc-
tional medium. The course was to be tutorial in nature and sufficlently
self-contained so that students could use it without belng supervised by an
experienced teacher of programming, and it was to be suitable for use by NASA
personnel. Developmental work started in the summer of 1968. A préliminary
version was completed by February, 1969, and consisted of a coding language,
a set of 20 one-hour lessons written in the coding language, and & set of
programs to interpret coded lessons and to interact with students using standard
teletypes as student stations.

.A deécription of the course, some preliminary results frem its pilot period
of development, and & discussion of computer programs and coding languages are

presented.

II. Friend, Fletcher, and Atkinson. Studenf performance in computer—éssisted
instruction in programming,

An instructional system for teaching the Algebraic Interpretive Dialogue
(AID) programming language to college-age students, two contrel programs {one
for presenting instructional material and one for interpreting students' AID
productions), and data collectéd by the two control programs are described.
The firstf2l lessons of the course and clagsification of the lesson exercises
are also described. Data based on student dalily reports are presented and
discuséed; Item analyses of data gathered by the instructional program,
including stepwise linear regression models of item difficulty and analyses
of selected data collected by the interpretigg program are presented and

discussed.



The Tollowing were among the results of this investigation: Although
first response errors were often those of ATD syntax, these errors were
easily corrected in subsequent responses, and, in general, the syntax of AID
commands were easily mastered; although students easily learned the mechanics
of the instructional system, they rarely used features that allowed student
control of instructional content and sequence; algebraic formulation of
problems appeared to be more difficult than transforming algebraic expressions
into AID commandé; students had the greatest difficulty understanding hierarchy
of arithmetic operations, use of functions, and the execution sequence of AID

commands.

IIT. Fletcher and Schulz. Providing software support for computer-assisted

instruction.

The burgeoning use of computer-assisted instruction has left many system
managers with the problem of appropriately modifying their software for CAT.
In neintaining syétem support for CAT at Stanford University and in consulting
with managers of commercial time-sharing systems, & set of common issues arises
whenever the question of CAL comes up. These ispues are not necessarily
peculiar to CAI, but they receive greater emphasis in CAL time sharing. The
intent of this paper is to document these issues and to make specific suggés—

tions for adopting extant time-sharing systems for CAI.

IV. PFriend. Computer-assisted instruction in programming: A curriculum
description.

The éourse provides an introduction to éomputer programming for community
college studentg who have taken high school algebra, and it is equivalent to

g three quarter-unit course in computer science. All instruction is presented



by computer, and & supplementéry student manual is provided for reference.

The course includes the toples of stored programs, uée of variable, input

and output control, syntax of algebraic and logical expressions, use of
functions and subroutines, conditional clauses, and branching techniques.

The instructional system impleﬁents under computer control teaching strategies
that might be used by a human tutor such as individualizing the content, pace,
and sequence of instruction, allowing for sufficient student control, tailoring
WIong answer mesgages, and providing both remedial and extra-credit work.
Students are required to interact "on-line" with a commercially prepared editor-
interpreter similar to those found in many timesharing environments. Performance
data from both the instructional program and the editor-interpreter are auto-
matically stored for later retrieval and analysis. The organization of the
course, types of exercises used, and content of each lesson are documented

and an appendix lists the concepts associated with each exercise in the course.

V. Friend. 100 programming problems.,
These 100 problems were prepared for students taking the computer-assisted

course "Introduction to AID Programming,"

an introductory course in algebraic
programming. Also included is a brief reference manual for the programming
language AID.

The problems include applications of elementary programming techniques
to a variety of fields such as elementary arithmetic and algebra, geometry,
linear algebra, probability and statistics, consumer and business problems,
and calculus. Most of the problems require no mathematical background beyond

high school algebra, but some of the problemé in linear algebra, statistics,

and calculus will not be readily solved by students who do not have some



acquaintance with fundamentsl concepts such as the sigma notation, solution
of linear equations by detemminants, limits of sequences and series, statis-
tical correlation, and standard deviation. In all cases the necessary formulas
are given.

These problems are not specific to the programming language AID, but can

also be used in Introductory courses in BASIC, FORTRAN, ALGOL, APL, etec.

VI. Beard, Lorton, Searle, and Atkinson. Comparison of student performance
and attitude under three lesson-selection strategies in computer-assisted
instruction.

Three problem selection strategies (student selection, program selection
weighted by past performance, and forced selection independent of student
history) were compared in a CAT course in computer programming. Various
_measures of aptitude, performance, and attitude were examined. No consistent
difference was observed among the three groups. The results are discussed in
terms of the specific experiment and the general problem of curriculum design
for comparing path selection strategies. Continuing experimentation is

described.



COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID

by

Jamesine Friend and R. C. Atkinson

January 25, 1971-

Reproduction in Whole or in Part is Pemmitted for

any Purpose of the United States Government

@ v 1671 by Jamesine Friend and R. €. Atkinson
' All rights reserved
Printed in the United States of America

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES
STANFORD UNIVERSITY

STANFORD, CALIFORNIA

7



I. Computer-assisted Instruction in Programming .

TAELE OF CONTENTS

.

Page

1

II. Description of the Course, "Introduction to Progremming: AID L

III.

Preliminary Results

IV. Computer Programs and Coding Languege

APPENDICES -
A. Student Manusl . ce e
B. AID Decumentation .. -
c. Excérpts from the Coders' Manual
D. Sample Coded Problem . .

-

»

-

22

27

29
38
L5



py- 27

COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING: AID*
Jamesine Friend and R. C. Atkinscon

Stanfeord University
Stanford, California 9Lk305

I. Computer-assisted Instructicn in Programming

Research in learning thecry and instructional strategies has received
a new impetus in recent years from technological developments in the field
of computer design., Computer-assisted instruction, entirely unknown ten
years ago, is evidence of the rapid growth of computer applicaticns in
education and is already producing profound effects in the individualization
of inetruction. Since January, 1963, the Institute for Mathematical Studies
in the BSocial Sciences has been conducting extensive programs of research
and develcpment in computer-assisted instruction.

In 1968, the Institute received funding from NASA to design and produce
a course in programming using computer-sssisted instruction as the instruc-
tional medium. The course was to be tutorial in nature and sufficiently
self-contained s¢0 that students could use it without being supervised by an
experienced teacher of programming. Supplementary material, such as manusls
and a syllabus of readings in computer sciences, was to be supplied as part
of the package.

The course was to be sultable for use by NASA personnel, and the feasi-
bility of using the course as part of their training program was to be
investigated. It was assumed that students would be at about the junior
college level with no experience in mathematics heyond high school algebra
and with no previous introduction to computer programming.

Work on the development of the course started in the summer of 1968.

A preliminary version of half of the course was completed by February, 1969,

and ceonsisted of a coding language, a set of 20 one-hour lessons written in

*¥This research was supported by NASA Research Grant KGR-05-020-24lL,



the coding language, and a set of programs to interpret coded lessons and to
interact with students using standard teletypes as student stations,

In the spring of 1969, about 15 students took the course. Performance
data were collected (by hand) and summarized, and students were closely
observed and interviewed after each segsion. The curriculum materials and
necessary computer programe were revised and extended on the basis of data
and observations of student reacticns., The revised course is now complete
and in use by NASA personnel. Data are being collected and analyzed.

The first decision made in the development cf an introductory course
in programming was what programming language to teach. Programning languages
designed expressly for teaching purposes were not considered, since we felt
that users of the course would benefit more from learning a language with
Immediate practical applicaticn, even i1f the language was initially more
difficult to learn; for this same reason we felt that the language should
be one that is widely available rather than one that is implemented on only
a few computers, or only on computers produced by one manufacturer. Also,
we anticlpated that most students would eventually be working in an engi-
neering or scientific environment and would have more need for an algebraic
language such as FORTRAN than for a list-processing language such as ;ISP
or a business-oriented language like COR0OL.

The programming languages considered included FORTRAN, ALGOL, BASIC,
and AID. For a first course, BASIC and AID are both excellent choices,
because they are considerably simpler than either FORTRAN and ALGOL; never-
theless, they contain all of the structure needed to illustrate the basic
principles of programming. AIDl (Algebraic Interpretive Dialogue) is a
high-level algebraic progremming language with extensive interactive (or

"conversational") abilities., This language is an adaptation for the PDP-10

1
See POP-10 ATD Programmer's Reference Manual, Digital Equipment Corporation,
Maynard, Massachusetts, 1968,

2 S



computer of JOSS,2 a language developed by RAND Corporation for use by
scientists, engineers, etc., who needed & powerful, easy-to-learn tool
capable of performing complex algebraic tasks. A number of other minor
variants of JOSS, such as CAL and FOCAL, are now implemented on a variety

of computers. A complete description of AID will be found in the appendices.
BASIC,3 which was developed at Dartmouth as an elementary algebraic language
for beginning students, is now widely implemented snd is probably better
known than AID (partly because all implementations use the same name).

BASTC is somewhat more powerful than ATD in its matrix manipulation commands,
but AID has more power in recursively defined arithmetiec functiong. The
greatest advantage of AID over BASIC, FORTRAN, or COBOL is that AID is not

a compiler, but an interpreter with a large number of direct commands, which
the student can begin to use the . first day rather than having to delay hands-
on experience until after he has learned the concept of a stored program and
the necessary formats. These interactive capabilities are a great asset to
a student just learning a programming langusge since they provide a kind of
immediate relnforcement that cannot be supplied by a compiler. AllL in all,
1t was felt that AID had a slight edge as a beginner's langlage, but the
final deciding factor was that AID had already been implemented for the
POP-10 computer we would be using, whereas BASIC would not be available to
us for several months. Since that time, we have obtained a BASIC compller
and have completed a high schocl course in BASIC using the same structure

and programs developed for the AID course.

2See Mark, 5. L. and Armerding, G. W., The JOSS Primer. The RAND Corpora-
tion, Santa Monica, California, August, 1967; Shaw, J. S., JOSS: Experience
with an Experimental Computing Service for Users at Remote Typewriter
Consoles. The RAND Corporatiocn, Santa Monica, California, May, 1965.

3See Kemeny, John G. and Kurtz, Thomas E., BASIC, Dartmouth College Compu-

tation Center, 1968.
; //



IT. Description of the Course "Introduction to Progremming:AID"

The course consists of a set of 50 lessons, about one hour in length,
plus summaries, reviews, tests, and extra-credit problems. A student manual,
which includes instructions for operating the instructional program and a
glossary of temrms used in the course, has been prepared and is included in
the appendices of this report. The course is equivalent to a three-unit
Jjunior college course.

The computer-assisted instruction and supplementary manual constitute
a completely self-contained course. The legssons are tutorial in nature,
that is, no previcus knowledge of computers or programming is necessary.

The only prersguisite for the course is a good background in algebra, as
supplied by three semesters of high school algebra.

Computer-assisted instruction is given to the students by means of
gtandard Mcdel-33 teletypewriters, located in remote training centers,
which will communicate with the PDP-10 computer located at Stanford by means
of ordinary telephone lines. The problems are typed on the student's tele-
type by the computer and the student responds by typing his answers on the
same teletype. After the computer analyzes the student's response, the
student is informed as to whether his response was correct or incorrect,
then he is given additional instruction and asked to respond again, or he
is given a different problem.

The course does not reguire the supervision of a trained teacher of
programming, but s one-day teachers' workshop should be given to acquaint
teachers with operating procedures and to provide them with an overview of
the content of the course.

Although the course is ordinarily used on a regularly scheduled basis
in a college environment or training center, it is also well suited for
individual use as an on-the-job training course for people working in assoc-
iation with a computer facility. Use by individuals can be on a nonschednled
basis or on a flexlibly scheduled basis, since there are few time restrictions
on the use of the computer; some students might prefer to spend several hours
a day on the course, with the possibility that they could complete the course

within a few weeks rather than distributing their lessons over several months.

) /(Q_



The 50 lessons cover the following fundamental concepts of programming
and the use of computers.
(1) An interactive time-sharing executive system.
(2} An interpreter.
(3) Concept of a stored program.
(4) Debugging technigues.
{(5) Labels and variables.
(6) Loops.
(7) Input and ocutput.
(8) Computer storage, including both core and disk.
(9) Subroutines.
(10) Recursive functions.
(11) Iist sorting and table look-up routines.
The student is required to write and debug at least 50 programs, several of
which are major programs for solving difficult algebraic problems. An out-
line of the coursge is found in the appendices.
Fach lesson covers one basice concept, varying in length from 5C to 200
problems and requiring about one hour for an average student to complete.
A lesson containg three sections: a core lesson, a summary, and a review.
Selecfed lessong contain an additional extra-credit section. The core lesson
contains about 20 to 30 problems that present the concept and supplies some
practice problems. At the end ol the core lesson there is an cpticnal summary
of the lesson; the summary is typed in an 8 1/2 x 11" format, which the
student cun save as a permanent reference. Following the summary, there is
gn optionyl review section, which is divided into several parts, cne for
each idea presented in the core lesson, so that the student may review only
that part of the lesson that he did not completely understand. The review
problems, like the problems ir tre core lesson, are tutorial, not merely
additiovnal practice and present *he ideas afreszh from a different point of
view. After the review section, there may be a short section of cptional
extra-creiit problems; these are usually programming problems, which are
much more difficult than the programming problems given in either the review
or the core lesscn. Most of the extra-credit problems require considerable

thought and time, and the student is not expected to complete them during

5 /3



a current session, but may, instead, submit them at any time before the end
of the course. Extra-credit problems are not supplied with each lesson, but
there are at least 50 such problems in the entire course, and the teacher
may wish to require some of these problems as homework assignments, or he
may use them as tests.

After each group of five lessons, there is an optional self-test designed
to help the student evaluate hisz understanding of the concepts presented to
date. Since this test i1s designed for student's use and not for grading pur-
poses, no report on student performance will be available to the teachers.
Following the self-test, there is a general cverview lesson that reminds the
student of what has been taught and informs him which of the topiecs already
covered are esgssential to the subsequent material. During the overview lesson,
the student is given the opportunity te review entire lessons, or any indivi-
duael toplecs from preceding lessons.

The struciure of the course is illustrated in Figure 2 by a block dlagram
of a set of five lessons (with summariés, reviews and extra-credit problems),
followed by a self-test and an overview lesson.

Before discussing details of the instructional strategy, we give a few
examples of student interacticn with the instructional program, starting
with the first problems in Lesson 1. On a student's first day, he is given
a student manual and seated at a teletype connected by telephone lines to
the PDP-10 computer at Stanford. Following the instructions in the student
manual (see the manual in the appendices)}, he signs on and starts the in-
structional program, which autocmatically starts at Lesson 1, Prbblem 1, for
a new student. The program prints each problem in turn, then prints an
asterisk to indicate to the student that he can respond, and aweits his
response before proceeding. In the following typical sequence, the student's

responses are marked by an asterisk at the left.

Ll-1: INTRODUCTION TC PROGRAMMING
BY JAMESINE E. FRIEND

IN THE FIRST LESSON YOU WILL LEARN HOW TO USE THIS PROGRAM.

AFTER YOU TYPE YOUR ANSWERS YOU MUST PRESS THE RETURN KEY,

CAN YOU FIND THE RETURN KEY?
g /%



S/

. e P

Lesson Tesson
1 2
Summary | ;1 Review | | Extra-
Iesson Iesson Credit
1 Problems

Lesson

.

|

Summary
lesson

>

Review
Iesson

b

Extra-.
Credit
Problems

1

Self-
Test

Over--
view

One lesson block is shown, ineluding 5 lessons (with Summaries, Reviews, and Extra-Credit
Problems), Self-Test, and Overview Lesson.

Student decision points are marked '-1*' .

Optional lessons are shown below the main line.

Figure 1.

Structure of Coursé




*YES
GOOD. DON'T FORIET TQ PRESS THE RETURN KEY AFTER YOU TYPE YOUR ANSWERS.

L1l-2: WRONG ANSWERS ARE. NOT COUNTED, YOU ALWAYS GET ANOTHER CHANCE
IF YOUR ANSWER IS WRONG.

WHAT DOES THE COMPUTER PRINT WHEN IT IS READY FOR YOUR ANSWER?
A, AN EXCLAMATION PCINT !
B, A QUESTION MARK *?
C. AN ASTERISK *
TYPE "A", "B", OR "C". (DON'T FORGET THE RETURN KEY,)
*C
CORRECT

L1-3: IF MULTIPIE-CHOICE PROBLEMS HAVE MORE THAN CNE CORRECT ANSWER,
YOU MAY LIST THE CORRECT CHOICES IN ANY ORDER.

SUPPOSE B, C, AND D ARE THE CORRECT CHOLCES FOR A PROELEM. WHICH OF
THESE WOULD BE CCREECT WAYS TC ANSWER?

2 C, A

o

¥

O wHEJd
w
vl @ wilee]
w

"
alpa

*B
YOU HAVEN'T FOUND ALL OF THE ANSWERS YET. START AGAIN.

*BCD
CORRECT

lesson 1, a short introduction to the teaching program, continues by
explaining to the student the varicus problem formats he will encounter in
the course and gives him an opportunity to practice each of these formats,
The second lesscn begins by teaching the student how to start and stocp the
ATD interpreter and how to use a few simple, direct commands to solve

arithmetic problems.

La-1: LESSCON 2
USING AID FOR ARITHMETIC

IN THIS COURSE YOU WILL USE TWO DIFFEERENT PROGRAMS:

1. THE TEACHING PROGRAM, YOU ARE USING THE TEACHING PROGRAM NOW.
THE TEACHING PROGRAM WILL TEACH YOU TO WRITE PROGRAMS USING THE

ATD LANGUAGE.
§ A



2, THE AID INTERPRETER, AFTER YOﬁ LEARN TO WRITE AID PRCGRAMS, YCOU
WILL USE THE AID INTERPRETER 70 TRY OUT YOUR PROGRAMS.

&OU WILL ONLY EE ABLE TO USE ONE OF THE PROGRAMS AT A TIME S0 YOU HAVE
TO KNOW HOW TG STCP A PROGRAM AND START ANOTHER.

WHICH PROGRAM ARE YOU USING NOW?

*THE TEACHING PROGRAM
CORRECT

iz-2;

HOW TC START THE ATD INTERPRETER:
FIRST, STOP THE TEACHING PROGRAM (TYPE CTRI~C).
SECOND, TYPE "L AID" AND THE RETURN KEY.

HOW TO STOP THE AID INTERPRETER:
TYPE CTRL-C.

AFTER THE TEACHING PROGRAM IS STOPFED, WHAT SHOULD YOU TYPE TO START
THE AID INTERPRETER?

¥CTRL-C
WRONG. TYPE A QUESTION MARK FOR A HINT OR CTRL-T FOR THE ANSWER.

*7
READ THE SECOND STEP UNDER "HOW TO START THE AID INTERPRETER,"

*L AID
CORRECT

L2-3: WHICH COMMAND WILL STOP THE AID INTERPRETER?

CTRL-H
CTRL-T
CIRL-C
. CTRL-G

Do

*C
CORRECT

After some praectice in starting and stopping the AID interpreter, the
TYPE command is introduced and the student practices using commands like
TYPE 15 + 2kg
TYPE 76 - 3 + 42

Lesson 2 also introduces the symbols * and / for multiplication and division.

N4



12-10: AID SYMEOLS FOR ARITHMETIC OPERATIONS:

ADDITION
SUBTRACTION
MULTIPLICATTON
DIVISION

Nk o+

WHICH COMMANDS WILL CAUSE AID TO MULTIPLY 3 by 4?

TYPE (3)(4)
TYPE 3 X 4
TYPE 3 * L
TYPE 3/k
TYPE 3%k

Aoy

*A
WRONG

*C
YOU HAVEN'T FOUND ALL OF THEM. START OVER.

*CE
CORRECT

12-11: WHICH COMMAND WILL CAUSE AID TO MULTIPLY 2% EBY 5 AND CIVIDE
BY 37

TYPE 25 X 5/3
TYPE 25 * 5/3
TYPE 25(5/3)

NONE OF THE ABOVE

ZHowe

*B
CORRECT

At the end of each lesson, the student is asked if he wants a summary
of the lesson to save as a permanent reference., The summaries are printed
in 8 1/2 x 11" format, so that they may be punched and put in a loose-leaf
note bock. The following summary of Lesson 2 is typical,

SUMMARY OF LESSON 2
USING AID FOR ARITHMETIC

1. TO START THE ATD INTERPRETER, TYFE
L AID

2. TO STOP THE AID INTERPRETER, TYPE

CTRL-C
10 / f



3. THE "TYPE" COMMAND
. .STARTS WITH THE WORD "TYPE"
...THEN & SPACE
... THEN AN ALGEBRATIC EXPRESSION
...ENDS WITH A RETURN,

YOU TYPE: ATD ANSWERS:
TYPE 2+k4 2+ = 6
TYPE Lo/L . he/k = 10.5
TYPE 6%1.2 E%1.2 = 7.2

L. THE SYMROLS FOR ARITHMETIC OPERATIONS:
+  ADDITION
- SUBIRACTION
*  MULTIPLICATION

/  DIVISION

After the summary is printed (if the student requests it), the student
is asked if he wants to review any of the concepts covered in the lesson,
The review, which 1s about the same length as the lesson, does not cover
toplces sequentially as in the original presentation, but is instead organ-
ized into independent sections, cnce for each concept so that the student
may review only the parts of the lesson that he wishes; also, the student
is told which topics are Important to ensulng lessons, sc tha£ he knows
where to concentrate his effort. Here, for example, are a few problemns
from the review of Lessgon 4 (note that the symbol t is used to denote

; . 2
exponentiation, i.e., 5%2 means 57).

Ri-1: REVIEW OF ILESSON 4
EXPONENTS AND SCIENTIFIC NOTATTCN

WHICH OF THESE TOPICS DO YOU WANT TC RRVIEW KOW?
(EE SURE YOU KNOW THE STARRED TOPICS.)

*A, EXPCHNENTS
B. USING O AND 1 AS EXPONENTS
¥C. CRIER OF ARITHMETIC OPERATICNS
D. USING FRACTIONAL EXPONENTS TO FIND ROOTS
*E., NEGATIVE EXPONENTS
¥F. READING SCLENTIFIC NOTATICN
G. WRITING SCIENTIFIC NOTATION
N. NONE

*C

. /T



Rh-17: IF AN EXPEESSION HAS EXPONENTIATTON AND ALSO SOME OTHER OPERATTON,
SUCH AS MULTIPLICATION, DO THE EXPCNENTIATION FIRST.

TC FIND THE VALUE OF

L5 42
DO 5t2 FIRST, THEN MULTIPLY BY 4.
WHAT IS THE VALUE?

*100
CORRECT

BL-18: DO EXPONENTTATION BEFCEE ADDITION, SUBTRACTION, MULTIPLICATION
OR DIVISION. FIND THE VALUE OF EACH EXPRESSICN.

50 - 712
*1
CORRECT

3t3 - 20
*11
WRONG

*¥-11
WRONG

*7
COREECT

In general, students are expected to have had some previous work withn
algebra, but it is not assumed that the level of skill is high, or that =
student will remember such concepts as the use of zero as an exponent, or
the definition of "positive" as contrasted with "non-negative." All such
topics are reviewed at appropriate times for the student who needs a re-
fresher. For example, Lesson 15, which introduces the IF clause, reviews

relations hetween numbers in the context of introducing new symbcls.

L15-1: LESSON 15
RELATIONS, "IF" CLAUSES

SYMBOLS USED FOR RELATIONS:

FOR "LESS THAN"

FOR "GREATER THAN"

FOR "EQUALS"

FOR "NOT EQUALS"

FOR "LESS THAN OR EQUALS"
FOR "GEEATER THAN OR EQUALS"

. RO

Y ATl VA



TYPE THE SYMBOL FOR
"GFEATER THAN OR EQUALS"
¥, o

CORRECT

"NOT EQUAL"
*

CORRECT
"LESS THAR"

*<
COBRECT

L15-2: FRELATIONS BETWEEN NUMBERS CAN FE SHOWN ON A NUMEER LINE,

et i s e L e M RN WS, e s R em L N Em g W g s ua mm W

ANY NUMEER TC THE RIGHT OF 2 IS GREATER THAN 2.

ANSWER TRUE OR FALSE (T OR F):

X>2 ¥F

¥ >2 ¥F

Z > 2  *T .

X>Y *F ' ’ ’
ANY WUMBER TO THE LEFT OF 2 IS LESS THAN 2.

ANSWER T OR F: ' '

<z ¥

Y <2 *7

4 <2 ¥F

Z <X ¥F

After reviewing the relations between numbers, Lesson 15 proceeds to
teach the use of conditional commands using the algebreic notation Jjust

introduced.

L15-10: WHICH MEANS "Q IS NON-NEGATIVE"?

§ >0

Q>0 -
Q@ <0

Q<=0
NONE

=Y 6w

13 ‘ &,



*B
COREECT

L15-11: NOW THAT YOU KNCW ABOUT THE RELATIONS = # < > <= AND >= I WILL
SHOW YOU HOW TO USE THEM IN AID COMMANDS.

ANY AID COMMAND CAN EE MODIFIED BY AN "TF" CLAUSE.
EXAMPLES :

SET 2 = 2 IF X < 10.

TYPE X IF X < Q.

DO PART &5 IF M = N.

COMPIETE THIS COMMAND SO THAT Y = Xt2 IF X IS POSITIVE.
SET ¥ = Xt2 IF X....0

*>
CORRECT

L15-12: THE NEXT FEW PROBLEMS ARE ABCUT THESE COMMANDS.
22,1 BET ¥Y=X1IF X > 0.
22,15 SET Y = -X IF X < O.
22.2 PBET Y =01IF X =0,
22.25 TYFE Y.
DO PART 22 FOR X = -3.15.

AFTER STEP 22.25 WHAT WILL AID ANSWER?

*-3.15
WRONG

*
LOCK AT STEP 22.15. IF X IS NEGATIVE, WHAT IS THE VALUE OF Y7

*3.15
CORRECT

Although there is considerable variation in the sequence of problem
types within a lesson and in the style of presenting new concepts, the
general scheme is to review any necessary algebraic ldeas, present new
symbols and new commands, give sample programs using the new commands, and
then give pregramming problems that cen be solved by using the ideas Just

intrcduced. The follewing is an example of a programming problem from
Iesson 15.

TS



115-20: WRITE A PROGRAM THAT WILL PEINT "SAME" IF ALL THREE NUMEERS X,
Y AND 7 HAVE THE SAME SICGN., THE PROGRAM SHOUID PRINT “DIFFERENT" IF THE
NUMEERS DO NOT ALL HAVE THE SAME SIGN.

EEFCRE YOU START, TELL ME WHAT YOUR PRCGRAM SHOULD PRINT IF X = -2, ¥ = 3
AND 2 = 1%

*DIFFERENT
COREECT

WHAT SHOULD YCUR PROGRAM PRINT IF X = -2, Y = -3 AND Z2 = -17

*DIFFERENT
WRONG

*SAME
CORRECT

L15-21: CK. 00 AHEAD AWD WRITE THE PROGRAM TO FIND OUT IF THE 3 NUMBERS
ALL HAVE THE SAME SIGN, TEST YCUR PROGRAM FOR THESE VALUES CF X, Y AND Z.

X=2 Y =23 Z =15
X =2 Y =3 Z =0
X = -5 Y = -3 Z = -1
X=-5 Y=-3 2=0

At this peint the student is expected to stop the teaching program
and to use the AID interpreter to write and detug his program. When he
has completed the program to his satisfaction, he starts the teaching

program again.

WHAT ANSWER DID YOU GET FOR THE LAST PART?

*DIFFERENT
EXCELLENT

DID YOU USE ANY "DEMAND" COMMANDS IN YOUR PROGRAM?

*I0
YOU COULD HAVE SAVED YOURSELF SOME TYPING IF YCOU HAD STARTED THE PROGRAM
WITH THESE CCMMANDS:

DEMAND X
DEMAND Y
DEMAND Z

. 23



The student may request additicnal information or suggestions about how
to write the program either before or after he tries to produce the program.
If the student cannot éolve the problem, even using the additional help, he
| is shown a correct solution to the problem and i1s asked to study it carefully,
and to copy and execute 1t.
There are over 50 programming problems in the course. Many lessons also

supply extra-credit programming problems such as the following.

X15-1: EXTRA-CREDIT PROBLEMS FOR LESSCN 15

1. WRITE A PROGRAM THAT WILL TYPE "1" IF THREE NUMEERS, A, B, AND C, ARE
DECREASING IN SIZE (I.E. IF A IS LARGEST, B IS NEXT, AND C IS SMALLEST).
IF A, B, AND C ARE NOT DECREASING, THE PROGRAM SHOULD TYPE "O".

2. WRITE A PROGRAM THAT WILL TYPE "1" IF B IS BETWEEN A AND C; TYPE "O"
OTHERWISE. (NOTICE I DID NOT SAY WHETHER A WAS LARGER OR SMALIER
THAN C).

In the first few programming problems, the program and the values to
be used for variables are gpecified in complete detail, and the student is
thoroughly quizzed abvout the performance cof his program. As the course
develcps, the student is supplied with less and less complete specificaticns,
and he is encouraged to analyze the instructicns and to experiment with dif-
ferent solutions, Also, he is gradually given the responsibility for deter-
mining whether his program is correct, both in the sense of debugging and
in the sense of providing a solution to the stated problem. The aim is not
only to encourage anslytic ability and creative thinking, but also to introduce
the student to the idea that weorking programmers spend most of their creative
effort in defining the problem (and, in many cases, deciding whether there
is a problem). Further, they spend much of their programming time satisfying
themselves that they have produced a correct program.

Little has been said so far about how a student interacts with the
teaching program, and how the teaching program is designed to provide in-
dividualized instruction. In order to explain these things, we give some
details of the teaching atrategy.

One of the basic requirements of a tutorial course is to provide for

individualization of instruction, with the aim of optimizing the learning

16 @2_/4



' which is being developed

process. The course "Introduction to Programming,'
unider NASA Contract NGR-05-020-244, 1s designed as an application of the
results of numerous studies in the techniques of optimizing learning. The
variety of optimization routines used in the course and the consequent rich-
ness of the curriculum materiasl have never before been attempted in a course
of comparsble length or scope.

The logic of branching used within problems permits extremely fine
discriminations between student responses and thus provides a mechanism for
remediation that is appropriate, not only tc the specific problem, but also
to the specific student response; i.e., gross discrimination of "correct" and
"incorrect" are not used as the basis for deciding upon approprieste remedia-
tion, as is ordinarly done in drill-and-practice material cr in linearly
programmed courses. Fine discriminations can also be made between correct
responses so that the "correctness" function ranges over a set of positive
as well as negative numbers, and the program respcnds differentially to
categories of correci as well as ilncorrect responses. The analysis of
student responses is made by means of twelve basic analysis routines; each
of these routines can return from 2 to 4 gifferent values of the correctness
funetion. Furthermore, the analysis routines can be used in any Boolean
combination to increase the number of possible values in the range of the
correctness function. The maximum size of the range of this function, i.e.,
the maximum number of correct-incorrect classifications for a given procblem,
has not yet been fully exploited, since it is Iimited only by the size of
the core buffers in the computer, but we estimate it toc be in the neighborheood
of 100. Since the prebability of receiving a wide variety of distinguishable
incorrect responses to a given problem is extremely low, the current course
is designed to use from three tc ten values for the correctness function,
depending upon the content of the problem., Because the system can respond
differentially to the students, each problem takes on the aspect of a small
"dialogue" between the computer and the student.

The optimization scheme described shbove is not, however, the only one
used in the c¢ourse. A second maejor scheme allows the student to initiste
the dialogue. TIn the microbranching logic, the student is allowed two

different devices for requesting additional information. The first of these

17 ‘025" ”



is the HINT command, which may be given by the student at any time simply
by typing a gquestion mark. The instructiocnal system provides an unlimited
number of hints for each problem; in the current course, two hints are
provided for most problems, and as meny as six are provided for particularly
difficult problems. By allowlng for optional additional instruction, we
keep the pace fast encugh for the more intelligent, better prepared students
without penslizing those students whose mathematical background is less
adequate.

In addition to the HINT command, there is alsc & TELL command that may
be used by students at any time. This command causes the computer to print
the correct answer {or a correct answer) to the problem, providing that such
text was ccded for the problem, and then branches to the next problem in
sequence., In the current course, sample correct answers are provided for
about 80 percent of the problems. There is some evidence that adult students
learn adequately without being required to make overt responses, so students
are in no way penalized, and, in fact, are encouraged to regquest the answer
whenever they wish. In general, the problems that do not ineclude sample
correct answers are those for which there is no correct answer ("Do you
want a summary of this lesson?"). Two or three representative answers may
be provided for problems that have many correct answers.

To illustrate the kind of hints and answers provided in the course,

we ghow a few problems from Lessgon 8, with comments.

1L8-2: WHAT WILL AID ANSWER?
IET M(X) = 3%X

TYPE M{10)
*10 [The student makes an incorrect
WRONG response. |
*®7 [He types a question mark to get

M{X)} = 3%X additional informaticn. ]
T

SUBSTITUTE 10 FCOR X TO FIND M(lO)
*30 [He then gives the correct answer, ]
COLRLCL

18 _Dzé —



SUPPOSE YOU HAD ALREADY GIVEN THE ABOVE COMMANDS, AND
THEN GAVE THIS CNE. WHAT WOULD AID ANSWER?

TYPT M(7)
*#20) [The student gives a wrong answer. ]
WRONG
#E) [...and corrects himgelf without
CORER (! additional instruction. ]

.. AND WHAT WILI, ATD ANSWER TO THIS COMMAND?
TYPE M{1)

*3 [The student makes a ccorrect response

CORRECT on his first try.]

L8-3: WHAT WIII, ATD ANSWER?
IET Q(X) = 2%X + 7
TYFE Q{5 - 3)

9 _ [The student requests a hint.]
QX) = 2%X + 7
T

SUBSTITUTE (5 - 3) FOR X.

*7 [He asks for another hint ]
a5 - 3)
= Q (2)
= 2x(2) + 7
= 777
* [...and finally requests the answer
11 (by typing Ctrl-T, which is an

invisible character). )

The optimlzation routines describved thus far sre used in all problems

' An additional scheme ig also used for

in "Intreduction to Programming.'
problems that reguire the student to write and debug a program. Since such
problems are necegsarily more complex than the kind used in most programmed
instruction, there is also a greater need for more highly differentiated
remedial matérial. For each ﬁrogramming problem, a seguence of problems
was designed to test the student’s understanding of the concepts involved,
Additional hints are also available.

Although the most complex of the cptimization routines are used within

problems, provision is alsoc made for optimization at the lesson level, The

19 - c>2‘7'-



nunber of proublems that constitute a legson for a particular student Ile
dependent upon the responseg of that student; for example, in Lesson 3, a
student may do only 30 problems, or he may do as many &as 7i, including the
problems in the associated remedial lesson. IFurther, after every five -
lessono there is un overview ol the preceding material; these lessons con-
sist of five sections {one for each of the preceding lessons), with opticnal
detailed review. Iach overview lesson 18 preceded by an cptional self-test,
which the student may use to evaluate his progress and which provides him
with a hasis for deciding which of the secticns in the subseguent uverview
lessons are appropriate.

Cne indicator of the richness of the curriculum provided by the pro-
cedures described above is the number of different messages that can be
used in the course of a single lesscn; in Legson 3, for example, one student
may see 60 different messages, while snother student may see as meny as 400.
The number of responses required of a student is alsc an indicator of the
richness of the curriculum; for Lesson 3 (to use lhe same example), only 30
responges are required of the good student, but a student who is giving
some incorrect responses and requesting much of the coptional material may
make as many as 200 responses {there ig actually no upper limit, since a
student may make any number of incorrect responses per problem).

Notice that a recurring theme in the optimization schemes is the
provision for student control. There are strong indications from past re-
gearch, both in computer-assisted instruction and elsewhere, that the
participation of the student in decisions about his course of study signif-
icantly affects the rate of. learning. The étudy of motivation in an environment
of computer-assisted instruction has not yet been approached in any very
rigorous way, but preliminary results do indicate that some factors here may
completely overwhelm others in an experimental design. Since curriculum
design cannot always walt on firm research results, provision was made in thé
instructional system for nine student control commands (including the HINT,
TELL and GO commands as well as single-character and full-line erase commands,
guick sign-off, etc.}. These control commends are defined by the ccder and

may be left undefined if desired. Thus if further testing of the system

o~ (RE-



indicates that there should be less student control, the scheme can be easlly
modified.

Ae an illustration of the use of the optimization schemes, a coded
problem taken from Lesson k& is attached as an appendix, There is a top-level
problem, followed by eight subproblems which are used as remediation for .
students who are having difficulty with the concept of hierarchy of operations.
The top-level problem requires the student fo evaluate the expressicn

5 % 213
(In the AID programming language, en asterisk is used as the symbol for
multiplication, and an up-arrow is used as the symbol for exponentiation,
50 the expressicn 5 X 23 would be written 5 % 213 in ATD.) If the student
does not understand the precedence of exponentiation over multiplicatlon,
he will produce the incorrect response "1000" and will then be given the
message "Wrong, ALD would evaluate 213 first. Try again.” If the student
produces the correct response (40}, he is given the standard correct-answer
message CORRECT and then goes to the next top-level problem (Ilesson L,
Problem 6}, bypassing all of the following subprcblems. For the student who
fails to produce the correct answer, an algebrale derivation of the correct
answer is given, and the student goes toc the first subproblem. The first
four subproblems lead the student through the evaluation of the expression

32/k12
and the fiftih subproblem requires the student to evaluate, without detailed
help, the expression

1013 * 2,
If the student succeeds, he bypésses the remaining subproblems and proceeds
to the next top-level problem. The last three subproblems are written for
students whe are having considerable difficulty with the concept; these last
three problems present the cencept from a different viewpoint and provide
the student with a workable algeritihm for solving problems of this type.

The entire sequence cf subproblems is tutorial; few remedial séquences
in the course consist solely of additicnal practice without amplification
of the ideas. The necessary drill on the concepts presented in the course

is atiained by Introducing the concepts in such a sequence that immediate

W - R7"



practice is provided in the context of presenting the next concept. Thus,
necessary skills are constantly reinforced withcout the need for exiensive
sections of pure gdrill-and-practice.

ITT. Preliminary EResults

The complete teaching system described above is now in use by NASA
personnel, and has been used by a small number of volunteer students from
Stanford University and Wocdrow Wilson High School in San Francisco, but
results are not yet available, The preliminary system, which formed the
basis for the present system, was used by ten students in the spring of 1969
and subsequently by another half-dczen who sought out the curriculum designer
tc reguest use of the course. The results were extremely encouraging;
student motivation was high, performance was good, and in all respects, the
preliminary system proved itself both in overall philosophy andin curriculum
design. An excerpt from the April-June 1969 progress report is given here,

"A small pilot study was designed during the Spring Quarter, 1969, to
supply information for meaningful revisions of the curriculum and the in-
structional system. Since this was the first trial of the system, the most
useful information would be derived from ohservations of students' reactions
to the program. There was no plan tc collect detailed data or to doc any
kind of statistical analysis of data. Ten students were enrolled in the
course on & flexible time scheduling basis; some students were scheduled
three sessions a week, others two, and others came only once a week, depend-
ing upon the wishes of the individual students. The students were allowed
to uge the course in whatever way they felt best; but they were restricted
to taking not more than two lessons per session. Also, immediately after
each session, they were to be interviewed briefly.

"The students completed anywhere from three to twenty lesscns each,
with sbout half of them getting as far as Lesson 20. In general, the students
who did fewer lessons did so because they spent less time on the lesscns
rather than because of any great difficulties with the material. In fact,
the student who had the most difficulty with the course, snd made the slowest
progress in relation to the time spent, finished Lesson 13 by the end of the
quarter and expressed regret that he hadn't been able to spend enough time

to have completed the 20 avallable lesscns.

22 —30 -



"Students were timed on several lessons in order to get a rough idea of
the time which would be necessary for future students to complete the course.
The average time per problem for different students ranged from about one
minute per problem to three minutes per problem; the assignments for each
lesson reguired about as much time as the lesson itself. [In the preliminary
version of the course, programming problems were given as additional assign-
ments rather than being incorporated in the lessons as they are now. ]

"Extensive notes were taken during interviews with the students and
were summarized in an anecdotal ﬁéekly report. Also, the responses to
individual problems were tabulated and the percentages of correct and in-
correct responses were calculated. The most frequent incorrect response to
each problem was alsc tabulated.

"The students were quite enthusiastic about the course and would have
worked for several hours at a time had they not been restricted to taking
no more than two lessons per session. Since most of the students' comments
were abeout specific problems, there was nc indication that a major revisicn
of the curriculum is needed., The following are & few general observations
based on students'® comments and behavior.

"Use of student controls. The student control commands, which were

explained in detail in Lesscon 1, were received with enthusiasm. (A control
command is given by holding down the 'CTRL' key while striking a letter key.)
The commands used were

ctrl-H (used to request a hint}) [This has been changed to & question
mark in the newer version.]

Ctrl-T (used to request the answer)

Ctrl-S (skip to next problem) {This control command is available,
but not stressed in the revision. ]

Ctrl-G ({used to get another problem or lesson. After the student
types Ctrl-G he is asked to specify the lesson and problem
he desires.)

"Both Ctrl-H and Ctrl-T were used frequently, although there was

noticeable tendency for students to uge one or the other but not both.
Ctrl-8 was rarely used; in fact, several students were asked, at the end

of Lesson 3, what control commands were available and were not able to

recall Ctrl-S.



"Ctrl-¢ was used much less than anticipated, At the end of the pilot
study, the students were queried about this; several students replied that
they thought they would not be contributing fully to the experiment (the
pilot study) if they skipped any of the lessons; a few students felt that
they would not know what they had skipped and that it might be important to
them in later lessons (this comment was made even in reference to reviews
and self-tests in which there was an explicit statement that no new material
would be presented and that it was perfectly acceptable to skip the entire
lesson); only one student consistently chose to review previous lessons and
he commented that he felt he simply repeated the same mistakes without
achieving any noticeable gain in understanding.

"Language confusion. Almost all students evidenced some confusion

between the language they were learning (the AID programming language) and
the language (English) used in the exposition. Part of this confusion un-
doubtedly arose because the AID language is a subset of English (AID commands
are syntactically correct English sentences containing a verb, ending with
a period [the newer version of AID does not require a period], etc.);
although this is certainly not a complete eiplanation and it is obvious
that the advantages of teaching an English-based programming language far
outweigh the disadvantages even 1f it could be shown to be & significant
factor in the language confusion.

"Furthermore, a few students were also puzzled about which program they
were using--the teaching program or the AID interpreter (which they used
for doing assignments); one student tried to ask the AID interpreter for
hints about an assighed programming problem. It is felt that some confusicn
between languages and between programs is almost inherent in the situation
and no satisfactory way of dispelling the confusion has been found.

"Constructed responses to multiple-choice problems. The multiple-

choice problems used in the course consist of a problem statement or
question and a list of possible answers, each‘of which is labelied with a
letter. TFor example, |
WHICH CF THESE ARE CORRECT AID COMMANDS?
A. TYPE 2 X 3.
B. PRINT 2 » 3.

2l - \3927’



C. TYPE 2 % 3.
N. NONE OF THE AROVE.

"Students are expected to respond by typing a letter (or list of letters)
corresponding tce the correct answer (or ANSWers ).

"There is & noticeable tendency for students to respond to certain
multiple-choice problems by typing the answer itself rather than typing the
corresponding letter., In the AID course, a respcnse other than a single
letter {or list of letters) is treated ag an error, and the message

PLEASE TYPE IETTERS ONLY
is given. This error message has been found to be remarkably ineffective;
the probability that a student will repeat the same kind of error after
receiving the above error message seems to be greater than one half, possibly
as much as three guarters.

"The tendency to meke the kind of error described above seems to be
influenced by the following factors: [Note: the following remarks were
based on observations and suggest future lines of research. ]

"1. Answer length. If the number of characters in the answer choice
is small (say, two to six characters), there is a strong tendency to type
the answer itself.

"2, Context. If the problem is preceded by several problems requiring
* constructed responses, the tendency to construct 2 response is somewhat
increased. TIf the preceding constructed respeonses are closely related to
the choices in the multiple-choice problem, there is an even stronger
tendency to construct a response; for example, if the six preceding problems
require 3-digit numbers as a response, and the choices in the multiple-cholce
problem are 3-digit numbers, there is a high prcbability of making an error.

"3. Problem-solving strategy required. There seem to be twe distinet
kinds of preoblem-solving stretegies used in producing the znswer to & multiple-
choice problem. One is a 'mental construction' of the correct answer, fol-
lowed by a search of the choices for that answer, and the other kind is a
"feagibility-elimination’ approach in which the student inspects the list
of possible answers and chooses that which is most feasible; or eliminates

those choices which are least feasible. (Generally, students working on a

25 — \“.3.,3 -



syecific.problem will not switch from cne strategy to another unless there

is a compelling reason; for instance, a student will abandon a 'feasibility-
elimination' approach if seversl choices are equally feasible.,) The strategy
a student uses is influenced by the problem statement although there is some
tendency for individual students to prefer one strategy over another. If

the 'mental construction' strategy is used, the student is more likely to
produce an overt construction of the answer, thereby producing an ‘'error.’

"L, Wording used in problem statement. The wording used in instructions
to the student seems to have some effect on the tendency to give a constructed
answer to a multiple-choice problem. In particular, use of the word 'what!

in the problem statement produces more errors than the word 'which.' For
| example, compare 'What command causes AID to give N a value of 127' with
"Which command causes AID to give N a value of 129

"One additional comment: Although the above remarks may imply that :the::
error of constructing & response in answer to a multiple-choice question is
a use-mention error, this may not be the case. There are a number of problems
in the course which require a 'partial construction' and there is an cbserv-
able tendency in students to give a more complete answer than ig required;
for example, students tend to answer 'Do Pgrt 12' rather than Do’ in
regponse to this problem:

COMPLETE THIS COMMAND TO EXECUTE PROGRAM 12,
sacao DPART 12

"The error of constructing a more complete response than required is

clearly not a use-menticn error, and it seems to be closely related to the’

errcr of constructing a response to a multiple-choice problem.

"Answer length, context, required strategy, end wording used in the
problem statement are not the only factors which contribute to the kind of
use-mention error under consideration here; there are also individual factors,
such as age and previous experience. However, the above four factors are
the only curriculum-oriented factors which seem to have an effect.™

Starting in the summer of 1969, extensive revision of the curriculum
and programs was undertaken. The major changes were the provisieon for

multiple hints (in the first version, there was only cne hint per problem)

26 :;{327[“



and the provision of a multiple-strand structure to provide for review les-
sonsg, summaries, and extra-credit problems. The coding language and programs
were extended considerably. As mentioned before, detailed results are not
avellable, but all indications are that the revision is extremely successful;
both students and teachers were enthusiastic,

IV. Computer Programs and Coding Language

One of the major efforts of the AID project has been in the development
of a suitable coding langusge and a mantal explaining the use of that coding
language. The necessity for developing a coding language became apparent
guite éarly in the planning stage of the system, since no available high-
level language suitable for implementing the kind of optimizztion schemes
was envisiconed. The coding language, INSTRUCT, developed for this project,
was designed to be learned and used easily by inexperienced coders and
writers. Further, the manual, which includes a complete description of the
instructicnal system, is written for readers who are unfamiliar with com-
puters and programming. There are step-hy-step instructions on codlng,
processing, and debugging lessons, as well as.instructions for initializing
a ccurse, and for defining additional coding commands. The coding commands
are summarized in a separate section, so that the manual can serve as a
reference source ag well as a primer. One of the major reasons for produc-
ing such a complete ceding manusl was tc provide an adequate basic document
for the instructional system should it be implemented on another computer
for use in other places. The manual, which contains 90 pages, cannot be
included in its entirety in this report, but excerpts containing a summary
of op codes and a BNF definition of the language are included in the appen-
dices. 4&n example of a coded problem sequence (taken from Lesson 4) is also
ineluded.

Briefly, the coding language is a high-level computer language designed
specifically for writing tutorial computer-assisted instruction. The language
contains over 30 different types of commands, such as problem statement com-
mands, response analysis commands, conditional branching commands, that
enable & curriculum coder to specify problem statements, hints, sample
answers, deteiled analyses of student responses and contingent actions to

be taken, sequence of problems, and format of all messages.

.35



In order to provide programmed lessons that are highly individualized,
there must be nontrivial routines for analyzing student responses and per-
forming appropriate actions contingent upon the results of such analyses.
Analysis routines must be highly differential so that specific errors mey
be isclated and appropriate remedial material presented. A simple correct-
incorrect classification of responses is insufficient for an individualized,
tutorial system of teaching. There are twelve basic analysis routines:
EXACT, KW, EQ, MC, TRUE, YES, and their negations NOTEXACT, NOTKW, NOTEQ,
NOTMC, FALSE and NO. The EXACT routine checks the student response for an
exact character-by-character match with a coded text string; KW (key word)
checks for the occurrence of a coded key word; TRUE checks for a response
of TRUE or T; the MC (multiple—choicg) routine can be used for multiple-
choice problems in which several choices are correct (a correct response
may be a list of all correct choices, or a list of a minimum number of
correct choices, depending upon how the MC command is used by the coder);
the EQ routine checks for a number within a range of numbers, as specified
in the coding, or checks for equality with a single number, also as specified
in the coding.

The basic analysis routines not only check on the correctness of a
student response, they also check on the form of the student response. For
example, the EG routine accepts as a response any number in integer fomm,
decimal form, or scientific notaticn; any response not in an acceptable

form, e.g., a response of the word "four,"

elicits an error-in-form message:
ERROR 1IN FORM: PLEASE TYPE A NUMBER. Another routine that differentiates
between correctly formed and incorrectly formed responses, as well as be-
tween correct and incorrect responses is TRUE, which expects eithexr TRUE

or T as a correct answer, and either FALSE or F as an incorrect answer.

Any other response from the student elicits an error-in-form message:
PLEASE ANSWER TRUE OR FALSE. Most other analysis routines (YES, MC, ete.)
also contain error-in-form subroutines.

Complex analyses of student responses can be made by using simple

Boolean combinationg of the basic analysis commands. For example, the

S

28



coder may specify & check for a number hetween 1 and 10, but not egqual to -
either 5 or 5.5, by using eppropriate combinations of EQ and NOTEQ commands.
Since most of the action performed by the analysis routines ig internal,
i.e.,, with no action visible to the student, there are also commands that
cause coded messages to be relayed to the student, appropriate branching to

' are all contin-

take place, etc. These commands, called "action commands,’
gent upon the results of the analyses performed by the analysis commands,
i.e., the actions are contingent upon the correctness of the student response.
In addition to the problem coding described above, the system also
allowg the ccder to specify the number of strands, which of the student con-
trel commands are to be made available, and the characters to be used by the
student for giving such commands. As a labor-saving device, about 15
"standard messages" can be defined by the coder sc that he is not required
to code commonly used messages {such as CORRECT, WRONG, TRY AGAIN) more than
cnee,
Pecause all problems are written in a high-level coding language, any
changes needed in the curriculum for research purposes are easily accomplished.
The teaching system described above is implemented for the PDP-10
computer located st the Computer-based Laboratory, operated by the Ingtitute
for Mathematical Studies in the Sceial Sciences of Stanford University. The
teaching system consigts of a coding language, a lesson processor pregram
that will translate from the coding language into machine-readable code, a
lesson interpreter that will interpret the translated code at the time a
student is using the system, and a set of auxiliary operaticnal programs.
The lesson progessor is essentially a compiler for the lesson coding language
and -is used to translate coded legscns into a form that can he stored ef-
ficiently for later use by the lesson interpreter. The program (the lesson
interpreter) that. will be in operstion at the time a student takes =
lesgscn is the most important and largest program in the teaching system.
It is a time-sharing program that must be extremely efficient both in terms
of' core space reguired and in terms of processing time, since both of these
factors affect the response time for all users of the system, Past experience
has shown the length of response time as the single, most critical item of

concern in the design of a system for computer-assisted instruction. A

29 - §“2555;71"



response time of less than 3 seconds is most desirable, and & response time
of mocre than 10 sgeconds is totally unacceptable. Response time is affected
both by the efficiency of the processing done by the program and by the total
size of the program. Tor these reasons, the lesson interpreter is carefully
designed and written in the most efficient available programming langusage.
The auxiliary operational programs include a student enrollment program and

a daily teachers' report program.

The lesson processor. The lesson processor is a two-stage processcr,

the first stage being one of the PDP-10 assemblers. Since the PIP-10 has a
macreo-assembler, full advantage has been taken of the macro capablilitles;
the processor consiste almost entirely of macro definiticns of the op codes
used in the coding language, plus a very short load routine, which stores
the processed lessons con a disk file (the processor is essentially a zero-
length program). The coder is also allowed the advantages of a macro
assembler; Judiciocus use of macros can reduce coding time significantly.

The lesson interpreter. The interpreter is written as a reentrant

time-~sharing program using 2K words (36 bit) of core plus 1K fcr each of
the students concurrently taking lesscns. The program is written in one of
the assembler languages for the PDP-10. Great care has been taken to ensure
fast response time and economical use of core and disk storage. Routines
for detecting and compensating for coding errors have been incorporated.

In a similar fashion, unexpected responses from students are nct allcocwed to
cauge errors in the program. This program has heen in dally operation for
as long as 10 hours per day since the first of February and is operating
well; response time is excellent arnd no bugs have been found in the program.
During the month cof March, the lesson interpreter handled 1,050 lessons in
BASIC and AID without any failures, a more than adequate demonstration of
the abilities of the program.

As the students interact with the program, their individual history
file is continually updated and written intoc disk storage. The history file
is 100 words long and contains the student's name, the number of the course
in which he is enrolled, his current position on each strand (lesson and
problem number), the date, and various other information needed by the

program. These history files supply information for auxiliary programs

30 mj



such ag the daily report program; a sample daily report is included in the
appendices. The data found in the individual history files, which are con-
tinutally updated as the student progresses through the course, are the cnly
data collection currently deone by the program.

The AID interpreter. The course "Introduction to Programming: AID"

requires the student to learn to operate two pregrams that are completely
independent: the lesson interpreter (instructional program) and the AILD
interpreter. The AID interpreter is a commercial program supplied and
maintained by Ligital Equipment Corporation, the manufacturer of the PDP
computers. No changes have been made to date in the AID interpreter for
data collecticn or any other reason, and there is no interrelation between
AID and the instructicnal system otHer than that it is bveing implemented on

the same computer.

57

31



APPENDIX A

Student Manual

_ 24p-



INTRODUCTION TO PROGRAMMIKG: AID
Student Manual
by

Jamesine E. Friend

Revised March, 1971

Copyright 1969, 1971 by the Board of Trustees of the
Ieland Stanford Junior University
A11 rights reserved,

Institute for Mathematical Studies in the Social Sciences
Stanford University

Stanford, California

e



TARLE OF CONTENTS

Page
How to Start the Teaching Program . . « « « « « « & s o s = =+ & 1
How tO StOD s « « « o & v o o & o s v o & o o & a 5 o+ s s & 3 2
Qutline of the COUTEE « & « v 4 o & « ¢ & o o & s o o o o « & » 3
GLOSSALY + « o 4« s o 4 o o o o o o s o 4 4 o i a0 0. b

Note:

Not all teletypes have the same set of characters.
For shift N, "t" is equivalent to "A ",
For shift ¢, "+ is eguivalent to "-".

In this manual, t and < are used; if appropriate, read A and
- for these characters.



How to Start the Teaching Program

In this course, you will be taking computer-assisted instruction in
programming. The programming language you will learn is called "AID"
and the lessons will be gilven by the PDP-10 computer at Stanferd.

Follow these instructions to start the {eaching program:

1. Turn on the teletype: the switch on the front of the teletype must
be turned to the LINE position.

na

Push the START or BREAK key. (If the teletype dcesn't start to hum,
get help.)

3. Type a space. The computer will then type
HI
PLEASE TYPE YCUR NUMBER AND NAME
{If this doesn't happen, get help. )}

4. Type Q, your pumber, your first name, and a space. After you type
the space following your first name, the computer should print your
last name.

5. If your last name ig printed correetly, type a space., (IT it isn't,
get help.) Then the computer will print the time, the date, and
your teletype number.

H. Type
L INST
and then push the RETURN key. The computer wlll type
WEERE TO?

. Type the RETURN key.

Steps 1, 2 and 3 are used to establish communication with the computer.
Steps 4 and 5 cause you to be "signed on." Steps 6 and 7 start the
teaching program.

If the computer does not respond correctly after each step, get help.

Good luck!

43



How to Stop

When you are through for the day, follow these instructions:

1. Hold down the CTRL key while you type the letter C.
The computer will print a periocd.

2. Type the letter K, then push the RETURN key.
The computer will print the sign-off message.

You do not have to turn the teletype off. It will turn off by itself,



Qutline of the Course

Computer-Assisted Instruction in Programming:. ALD

Lesscn 1. How to answer. How to erase. Contrel commands.

lesson 2. Signing on and off AID. The TYPE command. Arithmetlic
operators: + - ¥ / . Decimal numbers.

Lesson 3. Using ATD for arithmetic. Use of parentheses. Order of
arithmetic operations.

Lessgon k. The operator t for exponentiation. Order of cperations.
Scientific nctation.

Lesson 5. Variables. The SET commend. Re-defining variables. The
TELETE command used to delete variables,

Lesson 6. Self-test.
Lesson 7. Review.
Lesson 8, The LET command (using function notation). Distinction

between LET and SET., Distinction between use of a defined
function and display of the formula fer a function. Re-
defining and deleting functions.

Lesson 9. Some stendard AID functions: IP(x), FP(x), SGN(x), SQRT(x).

lesson 10, Indirect steps.
DO STEF ....
DO STEP ... FOR ....
Re-defining steps and deleting steps,
TYPE STEP ....

Lesson 11. Parts.
DO PART ....
DO PART ,... FOR ....
Deleting parts.
TYPE PART.

Lesson 12. The DEMAND command.
DO PART ..., ... TIMES.
Termination by refusal tc answer a DEMAND command.

Lesson 13. Self-test.

Lesson 1k, Review.

7



Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

ILesson

ILesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesson

Lesszon

lesson

15.

16.

17.
18,
19.
20.
21.

22,

Relations between numbers.

Relational symbols: < > <= >= = #
Number line.

The TF clause.

Branching. The TO command.

TO STEP ...
TO PART ...
Traces.

The indirect use cf IC.

How to write and debug a program.
Self-test.

Review.

The FORM statement.

Loops.

Lecops with variable bounds.

Loops compared with FOR clauses.
Looops with a DEMAND command.
Self-test.

Review.

Abscolute value,

Trigonometric functions: SIN(x), COS{x).
EXP(x)}, LOG{x).

Ligts.

Using loops with lists of numbers.
Self-test.

Review.

Nested loops.

Iterative functions: SUM, PROD, MAX, MIN,

44



Lesson 38.

Legson 39,

Lesson LO.

Lesson L41.
Iesson L2,

Lesson 43.

Tesson 4,

Lesson 45,

Lesson 46.
Lesson 47.
Lesson L8.

Lesson 49.

Arrays.
LET S BE SPARSE.

More about lists and arrays.

Conditional definition of functicns.

Self-test.
Review.
Recursive functions.

AND, CR and NOT.
Truth tables.

T™(x). The function FIRST.

LET used to define propositions.
More standard ATLD functions.
Self-test.

Review.

/



GLOSSARY

Absoclute value

ATD

The absolute value of & number is the size of that number
disregarding the sign of the number. In AID, exclemation
points are used to dencte absolute value:

Examples:
1-2.70 = 2.7
2.7y = 2.7
See Lesson 29. Also see Operaticnal Symbols.

HHR K A

'ATD is the computer programming language being taught in this

course. TAID" stands for Algebraic Interpretive Dialogue.

See ATD Interpreter. FEERKREKR

AID commands

All ATD commands have a similar form.
Each command must be on one line and must end with a
RETURN. The form of the commands is as follows:
1. An optional step number, like 2.1 or 37.54 or 16.165.
2. A verb such es TYPE, SET, DELETE.
3. An argument whose form depends upcn the preceding verb.
The argument for TYPE is an algebraic expression:
TYPE X + 2/¥
The argument for SET is an equaticon with a single variable
on the left of the equal sijzu:
SET ¢ = 72/B + 3.134
Ete.
k. An optional IF clause.
TYPE X + Y IF 2 <0
SETQ =3 IF P = 15
DO PART 3 IF X < 27
In addition to the above four parts, certain commands may
contain FOR clauses, or IN FORM clauses.
The ATD commands taught in this course are

DELETE Lessons 5,11
DEMAND Lessong 12,26
DISCARD lesson 19

Do Leassons 10, 11, 12
FIIE Lesson 19
FORM lesgson 22
LET Lesson 8
EECALL Lesson 19
SET Iesson 5

TO Lesson 16
TYPE lesson 2

USE Lesson 19

See Direct Steps, Indirect. Steps
"R R RRRRR ; 4225;7

6



ATD functions
AID funetions are the functions already defined by ALD.
These functions are
ARG, COS, DP, EXP, FIRST, FP, IP, LOG, MAX, MIN, PROD,
SGN, SIN, SQRT, SUM, TV, XP.
Fach of these functicns 1s separately defined in the glossary.

See Lessons 9, 30, 31, 45 and k7.
R RHRHHNH

ATD Interpreter
The ATID Interpreter is the program used when you want AILD to
gsolve a problem for you. After you start ATD, you can type
any AID commands. The AID Interpreter interprets your commands
and executes them. To start the AID Interpreter (after you are
signed on), type CTRL-C then type "L AID".

To stop the ATD Interpreter, type CTRL-~C.

To stop a runaway ALD program, type CIRL-C twice.
FHHRHHN KK

AND
"AND" is a logical operator used in propositions. All elements
connected by "AND" must be true for the entire expressicn to be
true. If any one element is false, the expression is false.
Examples: Assume A = TRUE, B = TRUE, C = FALSE

X = A AND B X = TRUE
Z=A AND B AND C Z = FALGE
See Lessons 15 and 44. Also see Proposition.
FRRFERHH

Answer, How to

To answer a problem in the teaching program type your ansver,
then type the key labeled "RETURN." For multiple-choice problems,
there may be more than one correct answer; you may type the letters
in any order {with spaces or commes between them, 1f you wish),
for example,

ABC

URA

A, C, B

BECA
For TRUE-FALSE questions, you may type "T" for "TRUE” and "F"
for "FALSE." For YES-NO questions, you may type "Y" for "YES"
end "N" for "NO."
See Lesson 1.

KoKW RN

Answer, How to Get
To get the correct answer to & problem, hold down the "CTRL" key

waile you type the letter "T" (for "Tell me the answer™),
FHRRERHHK



ARG
ARG(x,y) is the argument function. AID finds the angle between
the +x axis of the x,y plane and the line joining 0,0 and x,y. The

result is in radiens.
T

Arithmetic symbols

See Operational symbols
FRHEKRKRHRH

Array
An array is a set of numbers identified by a single letter and from
1 to 10 subscripts (indices). The subscripts may be any integers
from -250 to 250.
Examples:
The fcollowing are all members of the same array A:

A(-10,2,5) = 2.789

A(-10,1,0) = -45

A(1,20,59) = 0
You can set all undefined members of an array {for example X) to
be 0 with this command:

LET X EE SPARSE,

See Lessons 38 and 39. Also see List.
RRHEREHK

Asterisk (*)
Roth the teaching program and the AID Interpreter print an asterisk
when ready for a response from the user. The asterisk is alsoc used

as the multiplication symbol (6 * 7 means 6 times 7).
EHHERHNK

Bacse
(See also Exponent, Exponential function.) In an exponential
function the base is the number multiplied by itself as often
as specified.
Example ;
X iz the basge: Xt2 = X¥X
The base may be either a number or a variable.

See Lessons L4 and 31.
ERHERHHRH

Boolean expression

See Propositicn.
O

Branch
To branch means to go from one part of a pregram to another part
of the program out of sequence. To do this use the DO command
or the TO command.

See DO, TO.
FHHHHAHK (i:)



Command

See Control commands, ATD commands
FRHAHRHH

Control commands
CTRL stands for the key marked "CTRL." Whenever you see a command
with CTRL- and a letter, you are supposed to hold down the CTRL
key while you type the letter. ("CTRL" stands for "control.")
CTRL-A. The "repeat" or "again" command causes the retyping of

a problem.
CTEL-C. This is the call command. It is used to stcp & program

that is running. Use CTRL-C to stop either ihe teaching program

or the ATD Interpreter. If you have written an AID program
thet is endlessly looping, type CTEL-C, then type REENTER to

start AID again without restarting the program which wes looping.

-See Lessons 1, 2 and 16.

CTRL-G. This is the "go" command. You use this commend only in
the teaching program to go to the lesson or problem you choose.
After you type CTRL-G, the computer asks "WHERE TO?" Then you
gpecify the lesson or prchlem you want. See Lesson 1.

CTRL~H. This is the "hop" command. It causes the teaching program

to skip the problem you are working on and go to the next one.

Use this command whenever you want to go on to the next problem

without doing or finishing the current one,
CTRL-0. This is the "Oh, shut up" command. It will stop the

computer from typing. The computer will then wait for a response

from the user.

CTRL~T. This is the "tell" command. IT you are using the teaching

program =nd want the answer to a problem, type CTHL-T and the

computer will print the answer and then go on te the next problem.

See Lesson 1.

CTRL-U. This is the "undo" command. It will cause the computer
to erase the line you have Just typed.

?. This is the hint command. If you are using the teaching
program and want a hint about the problem you are working on,
type a guestion mark, 7. The computer will then give you =a

hint. See Lesson 1.
R R M

Conditional definition of functions

A function is sald to be defined "econditionally" if the value of
the function dépends upon some condition such as "...IF X > Q"
or "...,IF 2 <X AND X < 7." For example, the absolute value
function can hbe defined in this way:

For x > = 0, A(x) = X.

For x <0, A(x) = -x.
In ATD, this conditional function is defined by the command

IET A(X) = (X >=0: x; x <0: -x)
The form of a conditional definition in AID is

(condition: value; condition: value; ...; condition: value)
Generally, the last condition (and last colon) may be omitted,

, -5l



in which case the last value listed is used for "everything else,"
i.e., for all cases not covered by one of the preceding conditions.
The ebsclute value function may be written without the last condition:

IET A(X) = (X > =0: X; -X)
I I K

Counter
A counter is a variable used for counting. The counter 1s usually
set to some initial value, say O, and then increased by some amount,
say 1, at regular intervals. One common use of a counter is to
count the number of times a loop is used. One of the commands inside
the loop should change the value of the counter (usually by adding
or subtracting & given number). Somewhere inside the loop there is
an "exit condition," in which the counter is compared with another
number to decide if AID should repeat the loop or if it should exit
from the loop and go on to some instruction outside the loop. See
Lessons 23, 24, 25, 26 and 36.

HNR IR
Cos
COS(x) is the cosine function. AID will give the cosine of the
number you give. X must be given in radlans and the absolute value
of X must be less than 100.
Example;
COS(O) = 1
FEH R
CTRL
See Control commands
AR
Debug
(See also Trace) To debug a program, you must find and correct all
the errors in it, whether they are logicael errors or simply typing
errors. A trace is an effective method for finding precisely where
an error is. BSee Lesson 19.
FRASHRHHRH
TELETE

Use IELETE to remove a variable, a specific element in an array,
or an entire array, along with the values belonging to them from
computer storage. You may also DELETE a step, a part, a formula,

or a form. One DELETE command may be used to [ELETE several items.
Examples:

DELETE Z
IELETE A(2)
DELETE FORM 71
DEIETE Y, FORMULA B, PART 7
See Iessons 5, 8, 10, and 1l,..Alsc see FILE commsnds.

Hee AN

16



DEMAND
DEMAND X causes the computer to stop and walt for the user to type
a value. DEMAND can only be used as an indlirect commend.

Examples:
ATD commang: output:
1.3 DEMAND B B = *
7.12 DEMAND M(2,4) M(2,4) = *
L,1 DEMAND P AS "POUNDS" PCUNDS = *

See ILeggons 12 and 26.
EIAVEVEETE SN

Direct step
An ATD command not preceded by a step number is called a "direct
step." AID interprets and executes a direct step &s soon as you
type the RETURN key. You must type a direct step each time you
want it executed. DEMAND and TO may not be used as direct steps.

Examples:
ATD command: output:
TYPE 2%7 o%7 = 14
SET X = -3 : no cutput (stores -3 in location X)
FHHR KR
DISCARD
See FILE commands. Also see DELETE.
RREHRERR

Do

The DO command is used to execute an indirect step or part. You
may specify how many times the step or part is executed (if you
don't specify, it will be executed only once). You may also use
a FOR clause and specify a range of values for which the step or
part is to be executed.
Examples:

DO STEP 10.1.

DO PART 6, 2 TIMES.

DO STEP 8.2 FOR X = 12(2)20.

See Lessons 10, 11, 12, and 18. Also see FOR clause.
HHHFHHAK

Dp
DP(x) is the digit part function. This function uses the scientific
notation form of a number and finds the new form of the digit part
of the number ycu specify.
Examples;:
241,37 in scientific notation is 2,4137%10%2, so
DP(241.37) = 2.4137
.24137 in scientific notation is 2,&137*10T(~l), 80
DP(.24137) = 2.4137
The DP function is introduced in Lesson 47.

See Sclentiflic Notation, XP. :

11



Erace
To erase & line, hold down the CTRL key while you type the letter
U. To erase one character at a time, type the RUBOUT key once for

each letter you want erased. Bee IELETE, DISCARD. See Lesson 1.
HRERFHHRH

Errors

In writing AID programs you may make two kinds of errors:

1. Semantic errors. A semantic error is the kind that occurs
when you leave out a necegsary command or use a valid ATD
command when you intended to use ancther. AID will execute
the commands just as you wrote them. This means that the
only way to detect this kind of errocr is to see 1f you are
glven a wrong =nswer. A program may keep running indefinitely
if an infinite lcop is introduced. Type CTRL-C twice to escape,
then type "REENTER."

2. Syntax errors. These are the errors that occur when you type
gomething which is meaningless to AID. Because ALD does not
understand, it will stop and print an error message, then
wait for you to do scmething (such as correcting the mistake
and starting again!).

See lesson 19. Also see Erase,

FHRHARAH R

Execute
Tc execute a program, you make the computer do the commands in
the program. This is done by writing the program and then giving
AID & command to execute the program (for example, DO PART 5).
Indirect steps end parts are stored and you must use a DO command
to cause AID tco execute them. Direct steps are always executed
immediately.

FAFHAHEH

Exit condition

An exit conditicn is a command within a loop whieh tells ATD
whether tc¢ repeat the loop or to gqult looping. Orne kind of exit
condition compares a counter with another number to decide. When
the condition of the comparison 18 not met, AID exits from the
loop and goes to the next step. No exit condition iz needed if
the loop contains a TEMAND command, since you can stop the loop
at any time by typing only a carrisge return when AID waits for
yeu to give a value.
Examples:

1.4 T0 STEP 1.25 IF X > 25.

9.34 TO STEP 9.1 IF SQRT (X) < 10.
See Lessons 23, 24, 25, 26 and 36. See Counter.

FEHHFHRHH

— 54/'__

iz



EXP

EXP(x) is the exponential function, EtX, where E is Euler's number
(2.71828183).
Example:

EXP(3) = 20.0855369

See Lesson 3l.
PRI

Exponent

In an exponentlal function the exponent tells how many tlmes the
base is multiplied by itself. The exponent may be either a number
or & variable.
Exsmples:

3 is the exponent: X13

7 is the exponent: 7.431Z
The AID function EXP(X) is equivalent to 2.71828183%X, so X is
the exponent. A fractional (or decimal) exponent indicates which
root of a number is being calculated. For example, the square
root of X may be written either

Xt(1/2)

or

Xt{.5).
If the exponent is negative you first do whatever is indicated by
the numerical value of the exponent (find the proper root or
multiply the base by itself the correct number of tlmes) Then
take the reciprocal of the result.
Examples:

bt(-3) = 1/413

10t(-6) = 1/10t6
If the expcnent is O, the value of the expression is 1, regardless
of the value of the base.
Examples:

210 =
5e STO

010 =
See Lessons 4-and 31. See Base, Exponential Function.

F XN

l

Exponential function

An expeonential function is a function in which the variable appears
as an exponent.

Examples:
F(X) = 21X
G(X) = 1.2t(3*X)
H(X) = XX

The AID function EXP(X) 1s an exponentisl function which is
equivalent to 2.718281831X. Also see Base, Exponent.

..,55~

13



FILE commends

Programs, formulas, forms, etc., may be filed for later use by
using the AID file commands. The commands

USE FILE 100

FILE PART 3 AS ITEM 5
will cause PART 3 to be permanently stored as item 5 on disk file
100. The PART may be fetched from the file at a later date by
using the commands

USE FILE 100

- RECALL ITEM 5

Ttem numbers can be from 1 to 25.
Examples of file commands:

USE FIIE 100

FIIE F AS ITEM 6

FILE FORM 70 AS ITEM 1C

FILE PART 2 AS ITEM 12
An item is erased from a file by a DISCARD command:

DISCARD ITEM 17
See Storage. See Lesson 19.

FRRRARER

FIRST

FOR

FIRST is an ATD function that finds the first value in an array
which satisfies the specified proposition.
Example s

FIRST(I = 1{1)30: A(I) > 700)
T is the index of the array A so I = 1{1)30 tells which elements
of the array are toc be considered. A(I) > 700 is the preoposition
which must be satisfied. The result of the FIRST function will be
the index of the first element in the array A which is greater
than 700. See lesson 495.

HFHHFARE

A FOR clause can be used afier a DO command. The FOR clause
specifies the wvalues for which the DO command must be executed.
There are two ways to specify the values in a ¥FOR clause:
l. The values can simply be listed:
DO STEP 1.3 FOR X = 1,2,3,10.
Step 1.3 is done one time for each of the four values of x
listed.
2. The values may be specified by giving the range:
DO STEP 1.3 FOR Y = 3(2)13.
Step 1.3 will be done for ¥ = 3, 5, 7, 9, 11, and 13.
3 1s called the initial value, 2 is the step size, and 13 is
the final value. (See Range.)
See Lessons 10, 11, and 25.
REHEXRNHE

- Bl

1



FORM

¥P

FORM is the commend used to tell AID to type an answer in some form
other than the standard form. To specify the form, first type the
word "FCRM," then give it a number, and follow it with a colon. On
the next line type the form you want AID tc print your answer in,
including any words you want. Where ATD is to fill in the number,
uge back arrows to represent digits. Put the decimal in the appro-
priate place, Caution: use only one line.
Example:

FORM 73:

THE ANSWER I5 <<<*, <
Then when you want AID to use your form, use & command like

TYPE X IN FCEM 73.

See Legscon 22.
R R KHR

FP is the fraction part function. AID answers with the fractio
part of the number or variable you specify. ‘
Examples:
FP(132.576) = .576
- FP(-8.543) = -.543
The FP function is introduced in Lesson 9.
R HRTHHR

Function

Go

See AID functions.
KRR RN

See CTRL-G, WHERE TO?
FRHRRHKHH

Hint

In the teaching program, hints are provided for meost problems.
To get a hint, type & question mark, 7. There are usually
several hints with each problem; the first time you type a
question mark you will get the first hint, the second guestion

mark will give you the second hint, etc.
HHRHH A K

IF clause

An IF clause may be added to any AID command so that the command
will be executed only if the propesition in the IF clause is
satisfied. :
Example:

1.1 8ET B = 50 IF A > 100.
ATD will set the wvalue of B equal to 50 only if A is greater

than 100. See Lesson 15.

IR AR KN

5



Index
An index is a reference number for a list or an array. The index
is the number in parentheses. Since all the members of a list or
an array have the same letter, each member has its own index to
distinguish it from the others.
Example:
L(16) = 10 means the 16th number in the 1list L is 10.
L is the label for the list.
16 is the index of a particular element.
10 is the wvalue of that element of the list.
Tne plural of "index" is "indices." An index is also called a

subscript. See lesson 32.
FRFRAHNR

Indirect step

An indirect step is an AID command preceded by a step number.
Indirect steps are stored for later use, rather than executed
immediately. When you use a DO command or a TO command, the
step will be executed.
Example: .

1.3 TYPE 3%2,
ATD will not print anything until you give an indirect DO or TO
command or one of these direct commands:

DO PART 1.

or

DO STEP 1.3.
Step numbers must be decimal numbers containing both an integer
portion and a decimal portion; a step number can contain a maximum
of nine significant digits. Scme commands may only be used in
indirect steps; those commands are DEMAND and TCO. See Lesson 10,

Alsoc see Part, Step number.
Kk e e

Initial value

The term initial wvalue may refer to two different things. It is
the first value given to a counter (see Loops, Exit conditions).
It also refers to the first value of a range of values in a FOR
clause using this form:

initial value (step size) final value
In the command

DO PART 3 FCR X = 6(2)20
the initiasl value is 6.
See Range.

KR HHRHRRHR

Input
Input commands assign values tc the variables in a program. Most
programs must provide for input. The SET and DEMAND commands are
used for input. BSee ILesson 19.
F KN

16 - 527'



INST
See Teaching program.

F RN RN K
1P
TP(X) is the integer part function. AID will give the integer
part of the number or varlable you specify.
Examples
IP(.723) = 0O
IP(72.8) = 72
TP(-6.9) = -6
The TP funetion is introduced in Lesscn 9.
FHHHHH R
L AID
See ATD Interpreter,
Fh R
L INST
See Teaching Program.
HFHRANH N
Lesson
To get a specific lesson using the teaching program, you must
First, sign on (see page 3)
Second, start the teaching program (Type "L INST")
Third, specify the lesson (Type "L5" for lesson 5, "L36"
for Lesson 36, etc.)
Also see CTRL-G.
XXRRWRHN
LET
IET is used to define functions and propositions.
Examples:
IET A(W,L) = W¥L (formula for area of a rectangle)
IET B= X AND Y (B will be true only if X and Y are both true.)
IET T(A) = SIN(A)/CCOS(A) {tangent function)

See Legsons 8 and L6,
KRR HARA

Line number
See Step Number, Indirect Step.
b3

List
You may use one letter to represent & list of rumbers. Each number
in the list must have an index to distinguish it from the other
members of the list,
Examples: L{1) = 10 (The first number in list L is 10.)
L(2) = 6 {The second number in list L is 6.)
L(3) = 29 (The third number in list L is 29.}

See Lessons 32 and 33. Also see Array.
FRRRHHHH —_ 5 7_

17



LOG .
LOG(X) is the natural logarithm function. LOG(X) gives the loga-
rithm to the base E of X. E is Euler's number (2.71828183). X
must be greater than O.
Example:

LoG(650) = 6.47697236
The LOG function is intrcduced in Lesson 31.

FHHEHREH

Logical cperator ‘
The logical operators in AID are AND and OR. Operations involving
AND are done before cperations invelving OR. BSee ILesson 4f. Also

see Propositions.
FEEKRXFR

Loop
A loop is a portion of a program that is repeated. The number of
times a loop is executed depends on the counter and on the exit

condition., -Locps are first discussed in Lesson 23,
R

MAX is the ATD function that finds the largest value in a list,
Example:
MAX(5, -4, 3, ¥, xt2)

You may also specify the list as a part of a sequence, You must

epecify which numbers in the sequence are tc be considered and

what the formula for the seguence is.

Examples: :
MAX(T = 1,2,3,k: I*3) is the same as MAX(3, 6, 9, 12)
MAX(J = 10(-250: 2tJ) is the same as

MAX(2110, 218, 216, 21k, 2t2, 210)

See Lesson 37. .

FRRR AR

MIN

MIN is the ATD function that finds the smallest value in a seguence.
You must tell AID which numbers in the seqguence are to be ceonsidered
and what the formula for the sequence is. For short sequences you
may simply type the list of numbers.
Examples:

MIN(i = 1{1)5: i*3)

MIN(j = 3,0,-2: 2t;)

MIN(MJSJ-T)Z)
See Iesson 37. Alsc see MAX.

HRHKHHFR

Mistakes
See Errors, see Erase.
HHKRHHRHR

18 l 622;2::9



Multiple choice problems

NoT

Tumb

See Angwer.
B S a s a3

See Propositicns.
KK HHN

ers
Numbers may be expressed in either decimal form (2348.25) or in
scientific notation {2.34825%1013). Numbers are limiied to 9
significant digits. See Lesson U,

FRE R W NN

Tumber line

The number line is a line divided irto equal parts. One dividing
point is labeled 0 and all the dividing peints to the right are
labeled consecutively 1,2,3,... . ALl the dividing points to the
left c¢f O are labeled -1,-2,-3,..., consecutively.

Lxample :

2-1 0 1 2 3 4k 5 6
Y W FOE %

Operational symbols

OR

See

The AID symbols for arithmetic operation are these:
! ! absolute valuc
exponentiation
multiplicatiocn
division
addition
- subtracticn
The crder of priority of the operations is this:
[ !

-

R

t
¥ /  evaluated from left to right
+ - evaluated from left to right
See Lessons 2, 3, 4 and 29,

KK WA

OR is a logical operator used in propositions. If any element
cennected by OR is true, then the entire expressicn is true,
otherwise the expression is false,

Examples: assume A = TRUE, B = FALSE, C = FALSE

X=BOR C X = FALSE
Z=AO0ORBCORC Z = TRUE
lesscns 15 and 44, Alsc see Propositions.
HRRHHEHH R

&/



Output
An output command causes AID to print the results of processing.
Most programs should provide for output. The only AID output

command is TYPE. See Lessons 2 and 19.
R et )

PART
A PART consists of all the indirect steps with the same value in
the integer portion. For exemple, these steps all belong to PART 2.

2.001 SET X =1

2,99 SET X=X+ 1

2.4 TYPE X

See Lesson 11,
HHR N A

PROD
PROD multiplies all the specified numbers in a sequence together,
You must tell AID which members of the sequence are to be used
and what the formula for the sequence is. For short sequences
you may simply type the list of numbers.
Examples:
PROD(J = 1,2,3,4: j + 3)
...this is equivalent to (1+3)%(2+3)%(3+3)%(4+3)
PROD(1 = 5(5)30: j/4)
...this is equivalent to {5/4)*%{10/4)%(15/4)*(20/4)%(25/4)%(30/4)
PROD{2,4,Z,.8,-2)
...this is equivalent to 2¥4*Z%.8%{-2)
See Lesson 37. Also see SUM, MAX, MIN,
FREKRHAK

Proposition
A proposition is a mathematical senfence made up of arithmetic or
logical statements that use the relational operators (>,=,etc.),
NOT, and the logical operators (AND, OR)., The value of a proposition
iz either true or false. The order of execution within a proposition

is
1. evaluate expressions
2. relational operations
3. NOT
4, AND
5. OR

Examples: assume X = TRUE, ¥ = FALSE, Z = TRUE
B=XAND Y B is FALSE
A=XAND Y OR 2 A is TRUE
C=(2<3)OR(7>10) Cis TRUE

Propositions are discussed in Lessons L44-46, See TV.
WK R

G-



Range
Tn a number of different AID commands a ligt of nmumbers can be

specified by defining the range of the numbers in this way:
ifs)f
where 1 = the initial value, s = the step size, and ¥ = the final
value.
Examples:
DO PART 7 FOR X = 15(5)40
(The initial velue is 15, the step size is S, and the
final value is 40, so the list of numbers is 15, 20,
25, 30, 35, 40.)
TYPE MAX(N = 1(7)29: ¥/3)
(The initial value is 1, the step silze is 7, and the
final value is 29, so the list of values for N 1ls 1,
8, 15, 22, 29.)
A range specification may elsc be used with MIN, SUM, PROD,

and FIRST.
: RHRRHHHHR
RECALL
See FILE Commands.
FRRXRNRF
Reciptocal
The recipreocal of a number, say 4, is found by dividing 1 by the
nmumber A,
Examples:
numbexr reciprocal
3 1/3
205 1/2-5 = -h
us Uns - 2
1/3 1/(1/3) = 3
KRR HHR
Recursion

Recursion is & way of defining a function on the integers by (1)
specifying the value of the function for the integer 1, and (2)
defining the value of the function for integers greater than 1
in terms of the wvalue of the function for smaller integers. For
example, the factorial function F(X) may be defined by these two
equations:
F(1) = 1
(this specifies the value of the function for the integer 1.)
F(X) = X#*P(X-1) for X > 1
(this defines the value of the function for X in terms of
integers less than X.)
In AID, the above two equations are combined in & single conditiomal
expression, as follows:
F(X) = (X=1: 1; X > 1: x>*F(X-1))

N H R 5



REENTER
To stop a runaway program, type CI¥l-C twice, then type "REENTER."
ATD does the next step and then stops and tells you where it is so

you can decide what to do next. See Ctrl-C.
K HRKAHHH

Relational symbols
These are the relational symbols used in AID:

= equal > greater than
# not equal <= less than or egual to
< less than > = greater than or equal to
The relational symbols are discussed in Lesson 15.
FRH N RN
Repeat
To have a garbled problem retyped, type CTRL-A, for "again."
KR FHRERN

Seientific notation
Scientific notation is used to write very large and very small

mumbers.
scientific notation
30000 = 3.0 ¥ 10tk
4560000 = 4.56 * 1046
0.0025 = 2.5 % 10t(-3)
0.00000071 = 7.1 % 104(-7)
See Lesson Y.
FRW R KRR
Semantic errors
See Errors.
KR
SET
The SET command assigns values o variables.
Examples:
SET X = 5.25
SET 2 = A*B (A and B must already have values.)
The SET command is introduced in Iesson 5.
R WA e o
SGHN

SGN(X) is the sign function. It gives 1 if X is a positive number,
0 if X La 0, and -1 if ¥ is 2 negative number.

Examples:
SgN(25) = 1
SGN(0) =0

SCN(-~762.4) = -1
The SGR functicn i intrecduced in Lesson 9.
KK KWK

22



Sign-on
See Page 1 of this manual.
- W NI

Sign-off ,
To gign off use these commands:
CTRL-C (to stop the progrem}
K {tc sign off)
FHRHR W2

Significant digits
The significant digits of a number are the digits beginning with
the first non-zero digit on the left and ending with the last
non-zerg digit on the right.

Exanmples:
number significant digits
¢.2030 203
100 1
.00976 976
In ATD, numbers are limited to 9 significant diglts.
HHH RN RN
SIN
SIN{X) is the sine function. AID iinds the sine of X. X must
be expressed 1n radians. The absolute value of X must be less
than 100,
Example
SIN(0) = O
The SIN function is introduced in Lesson 30.
HRRHHRNA
SQRT
SQRT(X) is the square root function. AID finds the positive square
root of X. X cannot be negative.
Examples:
SQRT(9) = 3
SQRT(60 + L40) = 10
The SQRT function is introduced in Lesson 9.
e
Start

To start using the computer, you must sign on (see Page 1).
To start the AID Interpreter type:
L ATD
To start the teaching program type:
L INST
See lessons 1 and 2. Also see ATD Interpreter, Teaching Program.

W H R AN

23



STEP

Every AID command is called a "step." There are indirect steps,
which are saved for later execution, and direct steps, which are

executed immediately.

See lesson 10. See AID Commands, Indirect Steps.
FRARRARR

Step number

Any AID command may be preceded by a step number to make the command
into sn indirect step (which is stored, rather than executed immed-
iately). Step numbers must be decimal numbers containing both an
integer portion and a decimal portion; & step number may contain a

maximum of nine significant digits. ¥For example, the following are

all valid step numbers:
1.2
1.3
10.678
10.6781233

See Indirect Step.
KHRRH KR A

Stop
To stop & runaway AID program, type CTRL-C twice, then type
"REENTER." To stop either the ATD Interpreter or the teaching
program, type CTRL-C (see Controcl commands). To stop for the

day, you must sign off: Type "K" after you have typed CTRL-C.
HHHKHAH K

Storage
Storage locations are in the short-term memory (core) of the
computer. AID gives each variable, each member of a list, etc.,
its own storage location. If you change the value of a variable,
ATD finds its storage locaticn, takes out the old wvalue and puts
in the new value. The SET command is used to store numbers and
lists of numbers. The LET command is used to store functicn

definitions and definitions of propositions. Indirect steps (steps

with a preceding step number) are automatically stored. Anything
in short-term memory may be changed simply by redefining it, or

it may be erased by using & DELETE command. For long-term storage,

see FILE Commands.
R T

Subscript

See Index.
R R

7



SUM
SIM is the AYD function that adds the specified members of a sequence.

You must tell AYD which members of the sequence to consider and what
the formula for the sequence is. For short sequences you may simply
list the numbers.

Examples:
s = 1,2,3,%: j*3)
...equivalent to (1%3) + (2%3) + (3%3) + (4*3)
suM{1 = 1(3)25: it2)

...equivelent to 142 + Lf2 + 712 + ... + 2512
SUM(10,X,%,-k2.1)
...equivalent to 10 + X + Z + (-h2.1)

See Lesson 37. Also see PROD, MAX, MIN.
HERERHNRE

Syntax errors

See Errors
FEHHRHAE

Teaching progran
The teaching program is the one that teaches you how to write
programs using the AID language. After you are signed on, you
may start the teaching program by typing:

L INST
For complete instructions, see page 1 of this manual.
R RIS
Tell
See CTRL-T.
ERHRGE RN
TO

TC is a branching command used to tell AID to go to @ step or part
out of seguence. TO must be used indirectly only.
Examples:
2.75 TO SIEP 2.3.
17.4 TO PART 15. .
TO is introduced in Lesson 16.
ST

Trace
A trace is a table used to find errors which are difficult to spot
ctherwise. To make a trace, list the steps in & program in the
order they are done. For each step alsc list the values of the
variables after the step is done. Sometimes output is listed for

each step. Traces are discussed in lesson 17.

A

25



Trigonometric functions

The only trigonometric functions in AID are SIN(X) and COS(X).
You must define your own functions if you want to use any other
trigonometric functions. For example, the tangent function cen
be defined by
LET T(X) = SIN(X)/c0s(X}
See SIN, CCS.
ERRRHRRY

Truth tables

See Lesson 4b.
FRREHSRH

TV({X) is the truth value function, where X is a proposition. If
the proposition is true, TV(X) will be 1. If the proposition is
false, TV(X) will be O.

FExamples: assume A = -5 <3 and B= (2 <0) OR (2 < 1)

TYPE

USE

Tv(A) = 1
TV(B) = 0
The TV function is discussed in Lesson 45.
FHERRHH
The TYPE command causes AID fto print out the specified information.
command : output:
TYPE 2%3 2%3 = 6
TYPE + (a blank line)
TYPE "VALUES" VALUES
TYPE F F(X): 3*Xt2
TYPE X X = 3.47

TYPE STEP 17.2 i7.2 SET X = 2/¥Y
One TYPE command may be used for several things:
TYPE FORMULA F, SQRT(12),3 + 2.7.
See Lesson 2.
KHFRHRHH

See FILE Commands.
HH R KA RN

Variable

In AID, variables are used to designate storage locations for
numbers, formulas, lists of numbers, arrays, etc. AID variebles

are the single letters A, B, C, ..., Z.
Examples:
SET A =2 (A is a number)
LET F(X) = Xt2 + 3 {F 1s a formula)
SET A(2) = 7.05 (A is a list)
SET B(3,7) = 21.76 (B is en array)
= A (M

SET M AND B is a proposition)
RHHRHHHNH

26



WHERE TO?
In the teaching program "WHERE TO?" is typed by the computer to
indicate that the user can specify a lesson or problem to do next.
To continue your lessons, type the RETURN key.
To start Lesson 19, type "L1g"
To do lIesson 45, Problem 6, type "L45-6"
To get Summary of lLesson 21, type "S21"
To get a Review of lLesson 26, type "R26", etc.

See lesson 1.
W R

XP(X) is the exponent part function. This function takes the
number you give and finds the value of the exponent when your
number is expressed in scientific notation.

Examples:
24137 in scientific notation is 2.4137*%10%4 so
XP(24137) = k4

.0024137 in scientific notation is 2.%137%10%(-3) so
XP(.0024137) = -3
See lesson 47.
Hrd A%

67

2‘7



PRPCEDING PAGE BLANK NOT FILMED

STANFORD ARTIFILCIAL INTELLIGENCE LABORATORY October 12, 1967
CPERATING NOTE NO. 32

ATD FOR ON-LINE COMPUTATION

adapted from RAND documentation
by 8. Russell and R. Gruen

1, INTRODUCTION

AID+ is an on-line, time-shared computing service that is designed
to appear to each user as a perscnal "computing aide," interacting with
the user and responding to instructions couched in a simple langusge and
transmitted over communication lines from the user's Teletype.

This memorandum describes the programming language for requesting
computationg of ATD. Pricor experience with other programming languages
{¢.g., FORTRAN) is neither necessary nor applicable; indeed, reliance
upon such experience may be misleading.

The section below is an overview and should be read carefully.
Section 3 is a fairly complete descripiion of the language, designed as
a reference. The examples, however, should be studied; they are positive
rather than negative, showing what is permitted rather than what is not
allowed.

2. CVERVIEW

Users request actions of AID by typing single-line commands called
steps. A numerical label prefixed tc the step is an implied command to
AID to retain the step as part of a stored program. AID files away
labelled steps in sequence according to the numeric value of the label
or step number. The step number, therefore, determines whether an addi-
ticn, insertion, or deletion is required.

Steps are organized into parts according to the integer parts of
the step numbers. ©Sieps and parts are units that may be introduced,
edited, typed out, or filed in long-term storage. In addition, they
are natural stored-program uniis for specifying, in a hierarchial manner,
procedures tc be carried out by AID,

FarD - Algebraic Interpretive Dialog is derived from JOSS, a system
developed by The RAND Corporation. JOSS is & trademark and service
mark of the RAND Corporation for its computer program and services
using that program. We zre indebted tc The RAND Corporaticn for the
use cf the program and its documentation.

0



Decimal and logical values may be assigned to any of the 26 letters
admitted as identifiers. Values may be organized into vectors and arrays
by using indexed letters, and the letters themselves may be used to refer
to arrays for purposes of deletion, typing, filling in long-term storage,
and as actuel parameters of formulas (see below). :

In addition to values, arbitrarily complex expressions for values and
letters may be assigned to a letter, which may then be used as an abbrevi-
ation for the expression; expressions so assigned are called formulas.
Formulas involving formal parameters (identified by letters) may also be
assigned to a letter. The letter and expressions for actual parameters,
in functional notetion, may then be used as an abbreviation for the formula
with the actual parameters substituted for the formal ones. The letter
itself may be used to refer to the formula for purposes of deletion, typing,
filing, and as an actual parameter of & formula.

Programs for evaluating the sum, product, largest, and smallest of a
set of decimal values--and for evaluating the first in & range of decimal
values for which a condition holds--can be expressed succinctly and used
ag expressions for values:

sSM( T = 1{1)N : A(I) )
PROD( X, Y, Z/2 )
MAX( T = 1(1)N : A(T)*B{I) )
MIN( X, ¥/3, Z%2 )
FIRST{ I = X(1)2Z : P(I) )

Either of the two notational styles may be used, except for FIRST which
finds the first T for which P(I) is TRUE. Programs for detemmining the
conjunction or disjunction of a set of logicel values can also be expressed
in either style, and used as expressions for logical values.

Short programs for choosing expressicns differentially on the basls of

a set of conditions can also be expressed succincetly and used as expressions,
The notation chosen abbreviates phrases such as:

if x = y use x + y, if x > y use x, otherwise use y
by (X=Y: X+Y;X>Y¥:X;Y)
Such iterative functions and conditional expressions, together with formulas,

lead to powerful, direct expressions for complex procedures, particularly
recursive cnes.

AID represents decimal numbers in scientific notation: nine digits of
significance and a base-ten scale factor in the range -99 through 499.
Addition, subtraction, multiplication, division, and squere root are car-
ried out to give true results rounded to nine significant digits; zerces
are substituted on underflow while overflow yields an error message, In

o 7l



other elementary functions, care is teken to provide reasonable significance
and continuity of approximation, to factor out error conditions, and to
hit certain "megic" values on the nose.

The six numerical relations together with AND, OR, NOT, and a set of
elementary logical functions may be used to express logical values and
conditions (which may be attached to any step).

A single, general rule governs the formaticn and use of expressions
for values: with the exception of step labels, which must be decimal
numerals, wherever a decimal (logical) numeral is allowed in a commend,
an arbitrarily complex expression for a decimal (logical) value may be
used.

AID types answers one-per-line, identifying answers by the expression
used in the step calling for the output; in the event of conditicnal ex-
presgions, ATD uses only the chosen sub-expression for identification.
Decimal pcints and equal signs are lined up, and fixed-point notation is
used whenever possible. For more formal output, the user can create full-
line FORMS to specify literal information end blank fields to be filled
in with answers. A string of up arrows with an optional decimel point ieg
used for fixed-point fields; a string of periods specifies a tabular form
of a sclentific notation (floating point).

Users can request AID to file, in long-term storage, identifiable
units and collections of units--steps, parts, forms, formulas, and values.
Users may then request AID to recall such filed items, discard them from
the files, or type out & list of items in a file.

Users start ATD off on the task of carrying out a stored precgram by
directing AID to DO a step or part--iteratively (for a range-cf-values)
or a specified number of times, if desired. AID cancels all outstanding
tasks before beginning a direct (i.e., initisted from the console) task,
begins the interpretation of a part at the first step of the part, and
then interprets each step in seguence. Each subsequent indirect (i.e.,
initiated by a step of a stored program) DO causes AID to retain the
status of the current task, pause to carry out the new task, and then
return to continue the suspended one. If the user wishes AID to behave
in the same manner for a directly initiated task, the DO command must be
enclosed in parentheses.

AID modifies this general behavior whenever it encounters: a) an
error; b) a branching command; c¢) a stopping commend; d) a command for
terminating a task or a portion of a task; e) an interrupt-signal from
the user. The deep and involved hlerarchy of tasks and formulas that
can cccur {recursion is allowed) demands that AID's status be perfectly
clear each time control is transferred to the user, for any reason. In
addition to error messages, interrupt messages, and stopping messages,
ATD transmits status messages on completion of parenthetical tasks to
distinguish this state from the state of having finished a direct, non-
parenthetical task. The user is able tc proceed in every situation, in

PO



the event of errors, he can take corrective acticn, and then direct AID
to continue with a GO command.

3. DESCRIPTICHN

EDITING INPUT LLNES

AID indicates that it is ready to receive input by typing out &an
asterisk (*). Characters may be deleted sequentially backward by striking
the RUBOUT key. Typing asterisk (¥) at the beginning or end of an input
line cancels the line.

RULES OF FORM

One command per line, one line per command.
Commands begin with a verb and end with a period.

Words, variables, and numersls may neither abut each other nor contain
embedded spaces; spaces may ncl appear between an identifier (of an array,
a formule or a function)} and its associated grouped argument(s); otherwise,
spaces may be used freely.

Asterisk typed  Step
~ by AID nunber Verb Arguments Modifiers

L_,,__,_%b *1.23 TYPE X, Y, Z+3  IN FORM 3 IF X+Y > 18.
*¥1.h Do PART 6 FOR X = 1(14):81, 1400.

DIRECT COMMAND: Step number omitted; command is executed immediately.

STORED COMMAND: Step number present; command is stored in order of step
number,

STEP: A steored command; step number is limited to 9-digit
numbers > 1.

PART: A group of steps whoge step numbers have the same in-
tegral part.

FORM: A pictorial specification of literal information and
fields to be filled with values, for formal output.
Fields are denoted by strings of left arrows (with
optional point) or strings of dots {for a tabular
form of scientific representation).

*FORM 7T
¥I = = < AMPS. V= vvvoeesae. VOLTS



NUMEERS :

SYMBOLS :

ARRAYS:

Range : +10™%7 to 9.99999999- 107

Precision: 9 significant digits

Single letter identifiers. May ldentify decimal values,
logical values (true, false), formulas, and arrays of
values.

Up to 10 indices having integer values in the range
{“25032501'

DECIMAL OPERATIONS:

EELATICNS:

+ = ¥ / %% ¢

Single ssterisk for multiplicaticn, double asterlsk or
up arrow (t) for exponentiation.

< > <= >= =

Extended relations (e.g., a < b < c¢) permitted. Number
sign for not equal.

LOGICAL OPERATICONS:

JANDP OR  NOT

GROUPERS: () [ ] (used interchangeably in pairs)

3+ 1/2 + /4.5 = 3+ (/2 + (1/k5))

-213%h-5 = (-(2%).4)-5

P¥R¥IXXY = (23)h

AORBANDNOT CORD = a cor (band not ¢) ord

BASIC FUNCTIONS NUMEER DISSECTICN FUNCITION
SQRT(X) square root, x > 0 SGN(X) -0,0,+l for x < 0,x =0, x>0
SIN{X) IP(X) integer part ip(3.2) =3
Ix in radians] < 100

Ccos({X) FP(X) fraction part fp{3.2) = .2
LOG{X) natural log, x > O DP(X) digit part dp{100.2) = 1.002
EXP(X) e* XP(X) exponent part xp{(l00.2) = 2
ARG(X,Y)} angle of point x,y in ix! gbsclute value for decimal values

radians, arg(0,0)=0. |true]= 1, |false]=0

.74



arg{x,y)

SPECTAL FUNCTLONS

SUM[I=A(B)C:F(I)] SUM(X,Y,2+10)
PROD[I=A(B)C:F(I)] PROD( A+B, C+D,E+F)
MIN[I=A{B)C:F(I)] MIN(4,B,C,D)
MAX[I=A(B)C:F(I)] MAX(B,1,%+Y)
FIRST[I=A(B)C:P(I)] gives first I for which P(I) is true
™(P) = 0,1 IF P = FALSE, TRUE

= FALSE, TRUE IFP=0,P4A0
CONJ[I=A(B)C:P(I)] CONJ(X=1, Y > 3,P)
DISJ[I=A(B)C:P{I)] DISJ{ A=B=C,A > Y > 10)

CONDITIONAY, EXPEESSIONS

(Plelz P :E,: E3)
where: Pi are expressions for loglcal valueg,
means: LT Pl is true use El, if P2 is true use E2’ otherwise use E3.
*SET X = (<Y <=5:0; Y <18: 2%2 ; 5 ).
*IET P(X) = [ X =@: 1 ; PROD( 1 = 2(1)X : 1) ].
ATD VERBS
SET Assigns value. SET and final period may be cmitted on direct
' commands.
*5ET X .

- 3
*¥SET A(5,X) = Y+3*X-X*2.

/5

3



LET

IEIETE

TYPE

TEMAND

0

5TOP

GO

DONE

QUIT

CANCEL

Defines a formula of 9 or fewer parameters.

Xx*2+ 1 X-6%Y,

*LET FP(X,Y) =

*IET H = (B-A)/2.

#IET D(F,X) = [ F(X+D)-F(X) 1/D.

*IET Q(R) = [ R=f: 1 ; FP(R)=f: R*Q(R-1) ]

Erases values, parts, steps, forms, formulas.

*DELETE A, PART 3, ALL FORMS.
#*DELETE ALL VALUES, ALL FORMULAS.

Types quoted text or values, blank lines (<+), parts, foms, etc.

*TYPE "THE QUICK BROWN FOX."
*TYPE ¥+3, D{ SIN,B ), <, ALL STEPS.

Requests an input value from user. Executing:
1.4 DEMAND A( 3,I+18 ).

with T = 59 causes ATD to respond with:
A(3,69) =*

The desired value for A(3,69) may then be typed, followed by
a carriage return.

Executes or "does" part or step. FOR clause gives range of
values. Returns to user if direct, to next step if indirect.

*DO PART 6 FOR X = .1, 3(2)18, 100*A+2%B.

Sends AID to indicated part or step.

¥1.3 TO STEP 3.5.

Interrupts program. Ccnscle control returns to uger.

Restarts program after interrupt, error message, or 3TCP
command .

Signals completion of DO for current FOR walue.

Signals completion of DO for all FOR values.

l

Bignals completion of all IXO's.

35



(Do) Executes part or step without disturbing interrupted
' calculation.

*(DO PART 3.)

{ CANCEL) Signals completion of last (DO).
LIiNE Types a blank line.
FORM ' After form number, colon, and carrisge-return pauses for

user tc enter format for output. Fields are strings of
left arrows or dots..

*FTORM 3
*Y = e, e Y o e e 7 = cosnsnoe
USE User file in dictionary.

*USE FILE 145 (DT47).
FILE Stores an ITEM in the files.

*FILE PART 3, A, Z, AS ITEM 7 (CODE).
RECALL.- ) Retrieves an ITEM from files.

¥RECALL ITEM 7 (CODEj.
DISCARD Erases a filed ITEM.

*DISCARD ITEM 3 (F00).

ATD MODIFIERS

IF Precedes a logical expression conditioning any command.

¥IYPE X IF B < = X < 5.
*SET Y = 3 IF X < = 1@ AND X#*Y#14,

FOR Used on DO only. PART or STEP is executed'repeatedly for
specified set of wvalues.

%¥DO PART 3 FOR X = 1(1)14(18) 108, 18¢0.
*¥DO STEP 1.2 FOR X = .81, .83, .1(A)B.

TIMES Used on DO only. Causes repeated execution of PART or STEP,

77

*¥DO PART L4, L3 TIMES.
*DO STEP 7.3, N+l TIMES.

36



IN FORM Modifies TYPE only. Causes values to be typed in fields
of specified FORM.

*TYPE X, Y, Z%¥2 IN FORM 3.

ATD NOUNS

TIME | Gives 2h-hour time.
*TYPE TIME.

SPARSE Declares undefined array elements to have zero valueg; they
require nec storage.
*LET A BE SPARSE.

$ The current line number. Maximum is 5h.

EXAMPIE OF A COMPLETE AILD TYPEOCUT

*TYPE ALL.

3 TYPE FORM 2.
.15 DO PART 2 FOR B = .1{.1}kL.

2.05 SET A = - B.
2.1 LINE IF FP($/5) = 1/5.
2.6 TYPE B, EXP(B), LOG{EXP(B)), C*L(F) IN FORM 1.

X EXP(X) LoC PROB

I(F): H/2%SUM(I=1(1)3@:5uM[J=1{1)2:F(¥(T,I))])
F(X): EXP(-X¥%2/2)
H: {B-A)/38
Y(I,T): A+H/2%%[T(J)4+2%%I-1]

C = .398942281
T(1) = » 577358268
T(2) = - . 5773506268

78

37



INSTRUCT

Coders! Manual

(excerpts)
. by -

Jamesine E. Friend

Copyright 1969 by the Board of Trustees of the
Leland Stanford Jr. University

79

8



K. Summary of Op Codes

WNote: If an op code has more than 1 argument, separate the arguments by

COMmmas .
No, of

Op Code Arguments
LESSON 2

ECL none
PROB 1

QUES 1
SPROB 1l
TELL 1
HINT 1
EXACT 1

MC 1.

Kind of

Argument

1, Strand identi-

fier (1 to 6

letters)

2, Lesson number

text string

text string
text string

text string

text string

text string

text string

containing list

cf letters

Comments

Fseudo op code. Marks
beginning of a lesson.

Pseudo cp code. Marks end
of lesson.

Displays problem number and
problem text. Pauses for
student response,.

Displays problem text. Pauses
for student response.

Displays problem text. Pauses
for student response.

Displays text of ccrrect
answer, when requested by
student.

Branch to next problem.
Default routine causes branch
to pause student response,

Displays text for hint when
requested by student. Pause
for student response.

Analyzes student response for
exact match. Sets SCORE,

Analyzes response to multiple-
choice problems. Sets SCORE
to 1 if completely correct,

-1 1f completely wrong,

-2 1f partially wrong,

-3 if partially correct.
Checks form of response.

5O



EQ

KW

NO

TRUE

FAISE
LIST
SET

NOTEXACT

NOTKW
cA
Cl
ca
C3

WA

text string
containing:
1. number
2. opticnal
number, giving
tolerance

1 text string

0

0

0]

0

*undefined*

*undefined¥*
Similar to op codes
descrived above, with
negation of SCORE.

1 cptional text
string

1 optional text
string

1 cptional text
string

1 optional text
string

1 opticnal text

string

40

Analyzes response for equality
wlth ccded number,-within tol-
erance specified by second
number. Sets SCORE. Checks
form of response.

Analyzes response for existence
of coded text string. Sets
SCORE.

Analyzes response for "no"
or '"'n". Bets SCORE. Checks
form of response.

Similar to NO.

Checks for "true" or "t".
Sets SCORE. Checks form of
response.

Similar to TRUE.

Executes only if SCORE > Q.
Displays message. Branch to
next problem.

Executes only if SCORE = 1.
As for CA.

Executes only if SCORE = 2,
As for CA.

Executes only if SCORE = 3.
As for CA.

Executes conly 1if SCORE < 0.

Branch to pause for student
response.

=/



Wl 1 optiocnal text Executes only if SCCHE = -1.
string As for WA,

w2 1 - optional text Executes only if SCCRE = -2.
string As for WA.

W3 1 cptional text Executes only if SCCRE = -3.
string Az for WA.

BRCA Y 1. strand identi- Executes only if SCORE > O.
fier. Displays message. Branch to
2. lesson number specified problem.
3. prohlem number
L. optional text
string

BRWA L4 1, strand identi- Executes only if SCORE < 0.
fier Displays message. Branch to
2. lesson number specified problem.
3. problem number
L. optional text
string

WS 1 optional text Executes only if SCORE < Q.
string Displays message. Branch to

next problem.

L. BNF Definition of Cocding Language
<strand> ::= <lesson> EOL<CR><strand>|<empty>
<desson> i:= <lesson><prob>|<lesson identifier>cr>

<prob> ::=<PROB command><ucn-PROB commands:>|
<SPROB command><non-PROB commands>|
<QUES command><nivn-PROB commands>

<non-PROB commands> ::= <HINT series><non-PROB commands>|
: <TELL command><non-PROB commands>|
<analysis command>non-PROB commands>f
<action command>non-PROB commands>[
<empty>

<HINT series> ::= <HINT command><HINT series>|<empty>

<analysis command> ;:= <EXACT COmmand>[
<MC command>
<BEQ command>
<KW command>

J—

L1



<NO command>|

<YES command>|
<TRUE command>|
<FALSE command>|
<WOTEXACT command>[

°

<NOTKW command>

<gsction command> ::= <CA command>
<C1l command>
<C2 command>
<C3 command>
<WA command>
<W1l command>
<WZ2 commend>
<W3 command>|
<BRCA command>
<BRWA command>
<WS command>

Problem Statement Commands:

<PRCE command> ::;= PROB <space><text siring>CR>
<SPROB command> ::= SPROB <space>text string>CR>
<QUES command> ::= QUES <space><text string><CR>
<HINT command> ;:= HINT <space><text string>(R>
<TELL command> ::= TELL <space>text string>CR>

Analysis Commands:

<EXACT command> ::= EXACT <space><text string>CR>

<MC command> ::= MC <space>left superquote>Tetter list>
<right superguote>CR>
Jetter list> ;:= <letter><comma>letter lici>
detter>space>Qetter lict™)
letter>

<EQ command> ::= EQ <space>left superquote<idecimal number>
<right superquote><CR>|
EQ <space>left superquote><decimal number>
<decimal number>right superquote>CR>

73



n

<KW command> ::= KW <space><text string>CR>

<O command> ::= NO <CR>

<YES command> ::= YES <CR>
<TTRUE command> ::= TRUE <CRK>
<FALSE commend> ::= FAISE <CR>

<NOTEXACT command>
Similar to EXACT...EQ commands

<¥OTEQ command>

Action Commands:

<CA command> ::= CA <gpace>fext string><CR>|CA <CR>»
<Cl command> ::= Cl <space><text string>CR>[Cl <CR>
<C2 command> ::= C2 <spaceX><text string><CR>[C2 <CR>
<03 command> ::= (3 <space><text string><CR>|C3 <CR>
<WA command> ::= WA <space><text string><CR>|WA <CR>
<Wl commend> ::= W1l <space><text string><CR>[Wl <CR>
<W2 command> ::= W2 <space><text string><CR>|W2 <CR>
<W3 command> ::= W3 <space><text string>CR>|W3 <CR>
<BRCA cammand> ::= BRCA <space>lstrand identifier>,
<lesson number>,<problem numbe r><CR>|
<BRCA command>,<text string>CRE>
<BRWA command> ;:= BRWA <spaceX><strand identifier>,
<lesson rumber>,<problem number><CR>|
<BRWA command>,<text string>CE>
<WS command> :i= WS <space><text string><CR>|WS<CR>
<strand identifier> ::= ¥1 to 6 letters*

<Jesson number™ ::= *natural number 1 to 999%

<problem number> ::= ¥natural number 1 to 128%

Qh3



Miscellaneocus and "Primitives":

<text string> ::= <left superguote><character string>
<right superquote>
<character string> ::= <character>character string>]<empty>
<letter> ::=V*a - Z, upper or lower cage¥
<decimal number> ::= ¥any number in decimal form with not more than

9 significant digits; includes integers¥*

<left superquote> ::= ¥Philco: less-than-or-equal sign
*¥Teletype: Ctrl-Shift-L

<right superguote> ::= ¥Philco: greater-than-or-egual sign
¥Teletype: Ctrl-Shift-M

75

by



SAMPLE CODED PROERLEM
(taken from Lesson k)

PROB
"ATD WILL DO EXPONENTIATION BEFORE IT DOES MULTIPLICATION, DIVISION,
ADDITION OR SUBTRACTION.
WHAT WOULD AID ANSWER?
TYPE 5 % 213"

TELL
"S5 ¥ 213 = 5 * 8 = Lo"

HINT
"ATD WOULD EVALUATE 213 FIRST."

HINT
"DO 213 FIRST, THEN MULTIPLY BY 5."

NOTEQ "1000"

WA
"WRONG., AID WOULD EVALUATE 243 FIRST., TRY AGATN,"

EQ, !1]4.011

WS
"WRONG, 5 ¥ 2193 = 5 ¥ 8 = ho"

BRCA L,k ,6

SPROB

"IET'S GO THROUGH THIS PRORLEM STEP-BY-STEP,

WHICH EXPRESSION IS EVALUATED FIRST IN THIS COMMAND?
TYPE 32/4kt2

A, hx2
B. 32/4
¢. Lt
N. NONE"
TELL

"C (EXPONENTIATION IS DONE EEFORE DIVISION. )"

HINT
"EXPONENTIATION IS DONE FIRST."

EXACT

rn . 7/

45



CA
MC “C“
CA

WA

SPROB
"...AND WHAT IS THE VALUE CF Lkta?"

TELL
"ht2 = Ly = 16"

HLIRKT
Uiz = 4 % b = 799"

EQ "161!
CA

WA

SPROB
SO THE VALUE OF 32/L4t2 TS THE SAME AS THE VALUE OF 32/9%7"

TELL
"6 (htz2 = 160"

HINT
"WHAT ANSWER DID YOU GET FOR Ltoe"

HINT
"32 DIVIDED BY L+2 IS THE SAME AS 32 DIVIDED BY WHAT NUMEER?

EQ "16"
CA

WA

57

L6



SPROR
WITHEN WHAT WOULD AID ANSWER TO THIS COMMAND?
TYPE 32/Lte."

TELL
"30/Utn = 32/16 = 2"

HINT
"WHAT IS THE VALUE OF 32/Lt2"

HINT
"ATD WILL DO EXPONENTIATION EEFORE DIVISION."

EQ 1'211
caA

WA

SPROB
"WHAT WOULD AID ANSWER?
TYPE 10t3 * 2"

TELL
"10t3 * 2 = 1000 * 2 = 2000"

HINT
"AID WOULD DO EXPONENTIATION EEFORE MULTIPLICATION. "

HINT
“Hint: 10t3 = 10 * 10 * 10."

NOTEQ "10000"

WA
"WRONG., AID WOULD DO EXPONENTTATTON FEEFORE MULTIPLICATION, "

EQ “2000 "
WS

"WRONG. 1013 ¥ 2 = 1000 * 2 = 2000"
ERCA L,4,6

4

L7



SPROB

"THERE IS AN EASY WAY TO DC PROBLEMS THAT HAVE EXPONENTIATION AND
ALSO SOME OTHER OPERATION: IMAGINE THAT THERE ARE PARENTHESES AROUND
THE TERM WITH THE EXPONENTIATION.

FOR EXAMPIE,

TO DO 3tk + 2, DO (3t4) + 2.

TO DO 625/5t2, DO 625/(512). :

TO DO ht2 % 2¢4, DO (ht2) * (2t4).

WHAT TS THE VALUE OF 5t2/2%

TELL
"542/2 = (512)/2 = 25/1 = 12.5"

HINT
"REWRITE THE EXPRESSTON WITH PARENTHESES. THEN TRY TC DO IT."

HINT
Y542/2 = (542}/2 = 992"

EQ I112.5|1
CA

WA

SPRCB
"WHAT WOULD AID ANSWER?
TYPE 10t3/10%2"

TELL
"10t3/10t2 = (103)/(1012) = 1000/100 = 10"

HINT
"REWRITE THE EXPRESSTON WITH PARENTHESES (USE TWO PATRS).
THEN FIND THE VALUE,"

HINT
"1013/1012 = (10t3}/(10t2) = 229"

EQ “I?loﬂ’
CA

WA

57

48



SPROB
"WHAT WOULD AID ANSWER?
TYPE 10%3 O 1012"

TELL
"1043 - 10t2 = (1013) - (10t2) = 1000 - 100 = 900"

HINT
"EEWRITE THE EXPRESSICN WITH PARENTHESES FEFORE YOU DO IT,"

HINT
"10t3 - 10%2

1

(1043) - (10%2) = 227"
EQ 1 900 1"
CA

WA

70

kg



N7 - 0

STUDENT PERFORMANCE IN COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING

by

J. E. Friend, J. D. Fletcher, and R. C. Atkinson

May 10, 1972

Reproductioh in Whole or in Part is Permitted for Any
Purpose of the United States Government

INSTITUTE FOR MATHEMATTICAL STUDTES IN THE SOCIAL SCIENCES

STANFORD UNIVERSITY 7/
STANFORD, CALIFORNIA _ //



STUDENT PERFORMANCE IN GQMPUTER—ASSISTED INSTRUCTION IN PROGRAMMING
J. B, Friend, J. D. Filetcher, end R, C. Atkinson
Stanford University

Stanford, California 94305

1. ;ntroduc?ion

In 1967 the Institute for Mathemmtical Studies in the Social Sciences
received a three.year grant* from the National Aeronautics and Space Admin-
istration to do explpratory research in the optimization of instruction
and to develop a practical course of study wsing computer-assisted In-
struction (CAT). The course that was developed was & one-quarter college
course in computer science (Friend & Atkinson, 1971). Developmental
testing of the course was accomplished using NASA personnel and Stanford
students. The course was not the only product of this grant; an entire
computer-assisted instimctional system (Friend, 1971) was developed, with
this course as the first application.

The followlng year, the National Sclence Foundation provided funds*#*
for & second, and very similar, appllcation of the instructional system
developed under the NASA funding. The second course was an introduction
to computey programming for culturally-deprived high school students.

This course taught the progremming language, BASIC, whereas the first
course taught AID. Both AID and BASIC are higher-order algebralc lan-

guages analogous to ALGOL and FORTRAN, The main difference between the

* NASA Grant NGR-05-020-24)4

#*NSF Grant No. GJ-L43X 7 2



two courses is that the ATD course was written for college students with
a good background in algebra, and the BASIC course was written for high
school students with low reading ability and little or no background in
algebra. The BASIC course was adequately tested with & group of over
100 students in an inner-city high school in San Franciscp.

In 1970, the Office of Navel Research awarded a research contract
to the In;titute to continue its program of basic reseach in‘instructional
strategies using the already developed instructional system and courses
as research tocls. The main subject of study was to be the AID cﬁurse,
but data collected in connection with the use of the BASIC course was
also to be used if appropriate.

This report is a preliminary discussion of the research conducted
under the ONR contract and is concerned only with the ATD course.

2. The Instructional System

The course "Computer-assisted Instruction in Progremming: AID" is
an introductory course in computer science for community or junior
college students with some background in high-school algebra. The course
is‘completely self-contained and requires no supervision.from a gualified
instructor of programming. A brief student manual is supplied to supple-
ment the instruction glven by computer.

The ccmputer used is a Digital Eguipment Corporation PDP-10 located
at Stanford University and owned and cperated by the Institute for Math-
matical Studies in the Social Sciences. Ceonnected to this computer by
telephone lines are "Model-33" teletypewriters located in the schools
and used for communicating with students. Instructions are printed on

the teletypewrliter terminal, and the student responds by typing his

: 7S



/ .

replies on the same terminal. Teletypewriter operation is simple and can
be learned from short instructions printed in the student manual,

Once the student has the teletypewriter in operation, all further
instruction is given by computer under the control of a program known as
INST. This program, which is the major component of the INSTRUCT systenm,
interprets coded lessons pfoviding individualized, tutorial instruction
to the student. This instructionsl system and the method of programming
lessons for it are described adequately by Friend (1971), and- a detailed
description will not be repeated here,

The ATD course uses most of the features of the INSTRUCT system.

The course contains 50 lessons organized into seven "lesson blocks.”

Each lesson block contains five tutorisl lessons, followed by & self-test
and a general review., The 50th lesson is a concluding lesson independent
of the lesson blocks. The structure of the main strand is shown in
Figure 1. The lessons vary in length from 10 to 60 exercises depending
upon the content. Lessons of average length require about one hour fo
complete. Lesson length is completely under student contrcl, and a
student may take a few exercises or several lessons in one sitting.

One of the primary teaghing strategies used in the course is the
provision for student control of the seguence of instruction. Students
may skip from any exercise in the course to any other exercise af any
time, retracing their steps i1f they wish, or skipping lessons entirely.
Thiz strategy is intended to encourage the student to take responsibility
for learning the concepts, not simply for progressing through a given
set of exercises, Most college students are capable, and desirous, of

assuming this responsibility, and the provision for student control of

3 7



TUTORIAL LESSONS ‘ : S_ELF' GENERAL
_ o ' B -TEST REVIEW
r ——————————————————— |
l |
{ Les'son ' ‘anson - Ln;on - Ls:on - Lussoh I Lnémn - Lu;on ,
o '
N J

Figure 1. _Structure of mein lesson strand..




instruction 1s assumed to provide motivation. Whether or not all students
are motivated by this treatment and whether or not it 1s an effective
strategy in terms of the amount of 1earniné taking place remains to be
tested.

Because of this allowance for student control, the 50 lessons may be
taken in any sequence. If the student does not éxercise his precogatise
for cheoosing the sequence, the lessons are automaticélly sequenced for
him; and it is assumed that most students will, in fact, do the lessons
in the order indicated.

Besides the main strand of lessons, the course alsc contalns review
lessons, one for each of the tutorial lessons in the seven lesson blocks.
These revliew leszons are also tutorial and cover the same concepts as do
the lessons they are associasted with. However, they present each concept
from a slightly different viewpolnt providing additional practice in the
skills to be learned. In general, each lesson covers five or six related
concepts. In review lessons, the student may review whichever concepts
he wishes, in any order he chooses. In fact, he must choose the order;
there is no sutomatic seguencilng provided by the program. At the end
of each tutcrial lesson, the student is asked if he wante to review any
of the ideas covered in the lesscn he has Just completed. The student
need not wait for these reminders, of course, since he can call for any
review, or any exercise in any review, whenever he wishes.

Also essociated with each tutorial lesson is a summary of the lesson,
and the student is reminded at the end of each lesson that summaeries are
available, Each summary 1s printed in an 8-1/2" x 11" form that can be

torn off and saved by the student as a permanent record.

: %



In addition to the main strand of lessons, the reviews, and the
summaries, there is a strand of "extra-credit" problems containing more
difficult programming problems to be solved by the more capable students.
It is recommended to instructors that the solutions of these problems be
submitted for extra-credit 1if the course is graded. Not every lesson has
associated extra-credit problems because they are not always appropriate
to the subjeét matter. If there are such problems, the student is asked
if he wants to try them at the end of the lesson.

The reletionghip and seguence cof lessons, summaries, reviews and
extra-¢redit problems are illustrated in Figure 2.

As described above, the main strand of lesscns is divided into seven-
lesson blocks, five tutorial lessons followed by a self-test and a general
review. ILessons numbered 6, 13, 20, 27, 34, L1, and 48 are self-tests.
Lessons numbered 7, 14, 21, 28, 35, 42, and 49 are general reviews. The
self-tests are optional and students are told at the beginning of each
teét that the test is for their information only and may be skipped.

The tests cover the concepts taught in the preceding five lessons and
provide a good indication of weaknesses and areas reguiring review. The
general review which follows the self-test is also optional and is recom-
mended for students who do poorly in the self-test. The general review
is programmed to call the reviews for individual lessons as subroutines.
For exemple, the student may review parts of Lessons 1, 3, and 4 and skip
the review of Lessons 2 and 5. If he wishes to review Lesson 2, he will
take the same review he would have taken if he had chosen to review the
lesson immedlately after taking it, and he can decilde which concepts from

that lesson to review and in which order.



N
D

LESSON
22

LESSON

|
1
l
1

e —

o ———— ———

T

—— p——  ——

LESSON
24

Summary
23

Reavisw
23

Extro
Cradit
23

I
S ' . Extra
ummaory Review Credit
22 22 22
Figure 2.

Relationship and sequence of tutoriasl lessons,

summaries, reviews and extra-credit problems.




This review system is a gross method for providing individualized
remediation. A more sensitive means of individualizing remediation is
used within the lessons themselves where remediai sequences of exercises
are glven immediately to students who demonstrate an inadequate under-
standing of the material being taught. The remedial seguences that are
tmbedded within the lessons are not optional and are automatically pro-
vided for students whose responses Indicate a lack of understanding.
Because of this automatic remediation, different students may receive
different numbers of exercises in & given lesson.

A student who makes an incorrect response to an exercise may not
need an entire sequence of remedial exercises. He may profit from a
single specific corrective message, pointing out the error and allowing
him another try at the same problem. This kind of specific correction
is used for most exercises in the course. Messages are provided, not
for all possible incorrect responses, but for those incorrect responses
Judged to be most likely to occur.

In line with the provision for student contrel of the sequence of
instruction, there is also provision for student control of the amount
of instruction. This is done by providing additional instruction for
almost every exercise in the form of "hints" and sample correct answers.
After the problem statement is typed, the student is free to request a
hint by typing a question mark. For many problems, a seguence of three
or four hints is provided. The student may request one hint, meake an
attempt to answer the exercise, then ask for a second hint, and so on.
Also, the student may ask for the correct answer at any time, either

before or after he makes a try at the problem. He does this by typing

8 77



two keys simultaneeusly, the CTRL (control) key and the letter T. The
anawer will be printed, and he will proceed to the next exercise. -

In the tutorial lessons, there is no limit on the number of attempts
that & student may make for an exercise. As soon as he makes a correct
response he will be given the next exercise in seguence, but if he fails
to respond correctly, he is given another chance. If he cannot do the
problem at all, he can judge for himself whether to continue trying or
whether to go on with the lesson; whenever he decides to proceed without
giving & correct response he can do so by typing CTRL-T, thereby getting
the correct answer and the next exeycise.

The CTRL key 1s also used in several other student controls. CTRL-G
is used when the student wants,tp_mep to 2 different exercise; after
he types CTRL-G, the computer will ask "Where to?" and he can type the
lesson and problem number that he desires. CTRL—U.is used to erase entire
lines, and CTRL-Z is used to stbp the instructional program and end the

gession.

3. The AID Interpreter

The AID language was chosen as the subject of the course, not only
 because it is a useful algebraic progremming language, but also because
it ie easily learned by a beginner. AID was developed, under the name
of JOSS (Mark & Amerding, 1967; Shaw, 1965),:by the Rand Corporation for
use by scientists and engineers at Rand who needed an easily learned
programming language that was cspable of perfomming complex algebraic

tesks. JOSS was later implemented for several other computers under a

2,

variety of names.



One of the advantages of AID as & beginner's language is that it is
an interpreted, rather than compiled, language, which will act immedi-
ately on direct commands given by the user. Because of this feature the
syntax and use of many AID commands can be taught to the student before
he is taught about stored programs. In the AID course, the use of AID
is introduced in Lesson 2 and the concept of stored programs is not in-
troduced until Lesson 10.

A second advantage of ATD, as compared to, say, FORTRAN or LISP, is
that the syntax is a subset of English; commands are easily reac as
English imperative sentences. As an example, here is a simple ATD progrem:

1.1 SET X = 1.307k.

1.2 SET Y = X/37.5.

1.3 TYPE Y IF ¥ < .029.
1.4 TYPE Y - .QL IF Y > .029.
1.5 TYPE "EUREKA" IF Y = .029.

As with most programming languages, AID is easier to read than to
write, and considerable practice is needed by most students before they
can produce a complete simple program like the above without error.
However, they can begin to produce simple direct commands like

SET Y = X/37.5
or

TYPE ¥ - .01
on their first day.

Though simple to leern, AID is nevertheless a powerful tool for
algzbraic tasks. Definitions of conditicnal functions and recurséve

functions are relatively simple, and there are a variety of useful

. SO/



standard functions, such as the basic trigoncmetric, exponentlal, and
logarithmic functions. Lists and matrices can be easily defined, although
AID does not provide the standard matrix manipulstion functions found in
some other programming languages.

Basic programming features, common to all progremming languages, are
available in AID, Variables and furnctions can be labeled, as can stored
commands. There are branching commands, subroutine calls, and conditional
clauses, and there are input and output ccmmends for both disk and teletype.

AID commands and programs are interpreted by a program called, aptly,
the AID interpreter. The interpreter used by the sfudents of this course
is & program written by Digital Equipment Corporaticn, the manufacturer
of the Institute's PDP-10 computer.

The use of the ATD interpreter is taught in the course, and the
students are expected to use it frequently to sclve problems given them
in the lessons. Thus, the students taking thls course will use ftwo pro-
grams: INST, the instruetional progrem which talks about the AID languager,,
and AID, the interpreter which uses the AID language, In a previous
version of the course, the two programs were completely independent and
the students were reguired to learn to start and stop both progrems so
that they could switch back and forth to do the programming problems,

This method was feasible but avkward and time consuming. For the present
version of the course, both programs were modified to permit easy access
from the instruecticnal program to the AID interpreter, Students can call
the ATD interpreter at any time simply by typing the word "AID," and can
return to the instructional program by typing "INST." This interface

provides an additional advantage for research in that it supplies an

. 2



easy way to cross-reference data collected by the two programs. It 1s
ﬁ;ﬁ ﬁéssible to pasg Information, invisibly to the student, from one pro-
gram to the other; every time the student calls the ATD interpreter, the
student's identity and current position in the course are passed to. the
ATD interpreter sc that data collected by ATD can be keyed to data col-

lected by INST..

4. Data

Both the ingtructlonal program and the AID Interpreter contain data-
collection subroutines that enable them to store information about student
responses as the student is working. These data are stored temporarily
on the disk and later transferred to permanent tape storage.

The instructional program records the following infommation with each
student response.

1. Student number. (Each student is assigned a unigue number when

he first enrolls for eny computer-assisted instruction offered

by the Inatitute.)

2. Date.
3. Time of day.
4., Lesson identifier.

5. Problem number.

6. Subprcblem number .

7. I'rial number.

8. Student response. (This is an exact character-by-character
record of the respcnse made by the student, excluding erasures
made by the student.)

LS

12



9, Analysis of correctness. {(This is a record of how the instruc-
tional program scored the student's response to this exercise.)

10, Lesson score. (This is a cumulative score of the student's
first responses to exercises within this lesson.)

1l. Number of hints. (This is & record of the number of hints
requested by the student before he made this reponse. )

12. Answer provided by program? (This swiltch records whether or
not the student response was a request for the ccrrect answer.)

It is estimated that about 3,000 such blocks of individual response
data are collected for each student taking the course.

The ATD interpreter also ccllects data but the form is simpler since
it contains no routines to analyze the student input. The AID interpreter
collects the following information:

1. Student number.

2. Date.

3. Lesson idgntifier. (This is information sent to the AID inter-

preter by the instructional program.)

4. Problem number. (This also is sent by the instructional program.)

5, Subproblem number, (Again, this is sent by the instructional

program. )

6. Student input. (This is an exact character-by-character dupli-

cate of everything typed by the student, excluding erasures.)

It is estimated that about 300 such blocks of data are coldected for
egch student taking the course.

A variety of students have been enrclled in the AID course since the

data collection routines were added to the programs. One of the largest

13 //’/;2:>



groups is comprised of students in the "High Potential" program at the
University of California at Los Angeles. These students are entering
freshmen who do not meet the usual entrance reguirements for UCLA but
who, for one reason or another, are suspected to have & higher potential
than revealed by their high school records or by entrance examinations.
These students may be described as "culturally deprived,"” and are products
of inner-city schools where average achievement is quite low,

A second large group of students are from DeAnza College in Cupertino,
California. DeAnza is a community college located & short distance from
Stanford. The DeAnza students who have enrolled in the course were all
unprovisionally admitted tc DeAnza and most of them have a better hign
school background than the UCLA students.

A number of NASA perscnnel, from the Ames Research Center at Meffett
Field, California, and from the Manned Spacecraft Center in Houston, Texas,
have also enrolled for the course.

The Institute is providing CAI for hearing impaired students in
geveral schoolg, and a half-dozen of these handicapped youngsters have

also enrclied for the course during the last year.

5. The Curriculum: Lessons 1 te 2%

The content of the course “Computer-assisted Instruction in Program-
ming: AID" has been described elsewhere (Friend & Atkinson, 1971), so a
complete description of the entire course will not be repeated here. The
research reported in this paper concerns only the main strand Lessons 1
to 21, and these lessons are described below in considerable detail.

Lessons 1 to 21 contain three "blocks" of lessons; each of the blocks

contains five tutorial lessons, one self-test and one general review:

l“ =



Lessons 1 to 5 - Tutordal
Lesson 6 - Self-test of lessons 1 to 5
Lesson 7 - General Review of lessons 1 to 5

Lessons 8 to 12 - Tutorial
lesson 13 - Self-test of Lesgons 8 to 12
Lesson 14 - General Review of Lessons 8 to 12

E

Lessons 15 to 19 - Tutorial
Iesgsson 20 - Self-test of Lessons 15 to 19
General Review of Lessons 15 to 19

Lesson 21

These lessons constitute a briefl introduction to programming, cover-
-ing such concepts as stored programs, use of variables, fundamentals of
input and output, the syntax of algebraic expressions and Boolean state-
ments, definitions of functions, condltional clauses and branching, core
and disk storage, use cof subroutines, and scme debugging technjques.
Some of these concepts {input and output, core and disk storage, sub-
routines) aré discussed very briefly, while others (syntax of algebraic
expression, syntax and meaning of Boolean statements) are covered more
extensively. One major programming essential that is not introduced in
the first 21 lessons ig the loop, which is introduced in Lesson 23. Lists,
arrays, trigonometric and exponential functions, recursive functions and
the truth funetion are also introduced in later lessons. A brief outline
of Legsons 1 to 21 i given in Table 1.

The 15 tutorial lessons in the first 21 lessons vary in length, de-
pending upon the ceoncepts covergd by the lesson. ILesson 12, for example,
govers two veyy simple commands and contains only 14 exercises, whereas
Lesson 15 introduces Boolean statements and conditional clauses and
contains 62 exercises. Also, the kinds of exercises in the lessons vary

VL

15



Table 1

Brief Outline: lessons 1 to 21

Using the Instructicnal Program
Using AID for Arithmetic
Order of Arithmetic Operations

Lesson 1

Lesson 2

lesson 3

lesson 4  Exponents and Scientific Notation

Lesson 5 The SET and DELETE Commands

Lesson 6 Test of Lessous 1 to 5

Lesson 7 General Review of Lessons 1 to &
8 The LET Command

Lesscn 9 Some Standard ALD Functions

Iesson 10 Indirect Stepé;‘the DO Command, the FOR Clause

Lesson

Lesson 11  Parts

Lesson 12  The DEMAND Command

Iesson 13 Test of Iessons 8 to 12

Lesson 14 General Review of Lessons 8 to 12
Legson 15 Relations and the Use of the IF Clause
Lesson 16  The TO Command

Lesson 17 Debtugging Téchniques

Lesson 18 The Indirect Use of the DO Command
Lesson 19  Debugging, Permanent Storzge

Lesson 20 Test of Lesscons 15 to 19

Lesson 21 General BReview of Lesscns 15 to 19

07

16



with the subject matter. Lesson 15 has 2 true-false exercises, reflecw-
ting the content of the lesson (Boolean statements). Lesson 8, in
contrast, has no true-false exercises, instead it has 32 exerclses thet
require the student to predict the resuli of using given AID commands.
fable 2 shows the number and itype of exercises in Lessons 1 to 21, ex-
cluding the general review lLessons T, 1k and 21. |

The exercises are categorized into the 13 different problem types
listed in Table 2. The first rour Ltypes are multiple-cholce exercises.

" In the AID course, multiple-cholce exerclses may have more than one
correct cheoice, and the student rusponse is not correct unless all cor-
rect choices are listed. The multiple-choice exercises in each lesson
are all classified according to the number of correct choices except for
the few that incliude the choice,

N. HNONE OF THE ABOVE,
and are classified separately. Of the 675 exercises in the fimst 21
lessons there zre 80 multiple-choice exercises, 56 of which have a
single correct choice.

There are a number cf exercises that appear to be constructed-
response exercises in that the student is not presented with a list of
possible answers rrom which to choose. However, closer inspection re-
veels that there are actually a limited number of choices of a form
clearly implied in the statement of the problem. The following exercises,
for example, imply enly twec cholces:

Lesson 19, Exercise 8.

SUPPOSE AID FOUND_A SYNTAX ERRCR IN STEP 17.2. DO YOU
HAVE TO DELETE STEP 17.2 EEFCRE YOU RETYPE IT?

; 4



Table 2

Number of Exercises, by Type, in Lessons 1 to 21.

(Exeluding General Reviews: Lessons T, W, 21)

R

Lesson Number 123 %5 6 8 9 10 11 12 13 15 16 17 18 19 20 |Total
Multiple-Choice 3 b7 65 211 2 2 5 ‘5 1 6 1 5 56
1 Correct Choice . ‘
Multiple~Choice 5 1 1 2 1 1 1 1t 212
2 Correct Cholces
Multiple-Cholce 2 2 2 1 1 8
3 or Mofe-Lorrect -
Cholces
Mudtiple=-Choice 111 1 L
Correct Cholce: NONE
Total Multiplé-Cholce 5111 7 6 6 1 1 4 1 o 3 5 5 1 6 I 6| 80
Exercisgs '
" Yes~No Exercises 2 1 7T 1] 11
(exeept opinipn
questions)
True-False 9 2k 11 34
Other Implied-Chotlee 11 2 1 5
Total Implied Choice 21 010900 0 0 0 026 1 0 ©0© "8 21 50
Predictéd AID Response b 1925 512317 1 13 6 1|35
Congtrueted AID Command 2719 5 8 2 6 1 8 1 7 6| 63
Reported Result of AID 3 3 313 2 4 6 4 b 3 1 1 7
Use ;
Other Constructed- 3 11517 4 8 13 5 2 3 10 1o 1B 22 L4k 10{iks
Responge Exercises
Total Construeted 3 9304 k235223 20 15 6 25 17 11 18 22 11 17 | 300
Regponse Lt ‘ . :
"Ugse AID" 3339243 5 6 5 2 6 2 1k 58
Opivion {or preference)| 5 4 5 6 4 3 5 & L4 8 3 3 8 8 4 6 8 2| 9
Unelassifled Exerclses 3 Y 7
Total 18 28 L9 61 63 43 62 31 33.30 14 33 62 27 27 35 32 27| 675

18

o



Lesson 6, Exercise 8,

ANSWER TRUE OR FALSE:

CTRL-Z WILL STCP THE ATD INTERPRETER.
Lesson Y4, Exercise 27.

IF YOU USED THIS COMMAND

TYPE 1/100
WOULD AID GIVE THE ANSWER IN DECIMAL FOEM OR IN
SCIENTIFIC NCTATION? '

Exercises of this type are labeled "implied choice" exercises and are
classified as yes-no exercises, true~false exercises, or "other implied-
choice" exercises. In the first 21 lessons there are 50 such exercises.

Three-hundred ninety-two of the exercises in the Table 2 lessons
fall into the third major group comprising true congtructed-response
exerciges. This group is subdivided into four classes: predicted AID
responges, constructed AID commands, reported result of AID use, and
"other constructed-response' exercises. The predicted AID responses
contain guesticns like "What would ADD answer 1f you gave this command

..?" One-hundred and five of the constructed-response exercises are
of this type.

A smaller class of constructed response exercises includes the 63
exercises that require the student to construct a complete AID command.
This class does not inelude sll, or even most, of the AID commands that
the student must construcet. Tt Includes exergises that pass the con-
structed AID commands to the instructional program: excluded are exercises
that require direct communiceaifion with the AID interpreter., The instruc-
tional program 1ls more capable than the ALD interpreter of analyzing

//O

19



constructed AID commands in detail and of giving meaningful messages to
students who make errors when they first learn a new command. The usual
sequence of instruction in introducing a new AID command is as followsf

First, an example of the command is shown, and its use is
explained. In this step, students are usually required to determine
which of several forms of the command are syntactically correct.

Second, the student is shown several examples and asked to
determine what AID would respond 1f such a command were given to
the AID interpreter.

Third, the student i1s asked to construct commands that would
result in a specifiled action.

Fourth, the student ig asked to start the AID interpreter and
give commands of the new kind directly to AID.

Fifth, after using the AID interpreter as directed, the
student is requested toc report on the results given him by AID,
Exercises in this {ifth step are classified in Table 2 as "reported

result of AID use." In these exercises, the instructional program can
infer the kind cof errcrs a student is making and give him remedilal in-
struction if needed. The device of asking students to switch to the
interpreter for computaticn and to switch back to the teaching program
to report results is one of the weakest features of the course, and it
is used only from nécessity. Clearly, an efficlent means of interfacing
the two programs 1is needed to pass information invisibly, and provide
meaningful instruction for the students who need it. Only 47 of the

390 constructed-response exercises are of the type needed in the fifth

step, because an overail teaching strategy used in the course is to

o //



encourage students to assume responsibility for ferreting out thelr own
errors and for determining if they have a correct program.

The fourth class of constructed-response exercises, called "other
constructed-response exercises," contains 145 exercises of considerable
variéty. This class will be further subdivided in a later analygis.

The miscellaneous exercises contain a class designated in Table 2
as "use AID," These exercises regquire the student to use the AID inter-
preter in sclving a problem. The problems range in complexity from
copying commands in oyder to observe theilr conseguences to sclving
complex problems by writing and debugging complete programs. Many of
these exercises gontain thyee or four problems, and the student 1s asked
to solve gll of the stated problems before he switeches back to the in-
structional program and reports the results.

Also in the miscellaneous group are those exercises that elicit an
opinion or preference, These exercises either ask the student to express
a preference for the seguence of instructioh (Do you want a summary of
this lesscn?) or to give a selfmevaluation of his competence (Do you
remember how to start the AID interpreter?). The exercises are fairly
evenly distributed over lessong and there are 90 of them in the first
2l lessons.

In the following paragraphs, each of the first 21 lessons is de-
scribed and charscteristic exercises from the lesson are given. |

Lesson 1: Using the Tnstructional Program

Lesson 1 is a set of 18 short exercises explaining how to use the
instructional program. The mechanics of typing and erasing responses

are explained, and instructions are given for starting and stopping the

e



program. The student is taught how to use optional contrcl keys to get
additional instruction (HINT and TELL commands) or to alter the sequence
of exercises (the GO command).

" The style of instruction in Lesson 1, as in succeeding lessons, is
informal, and it does rot always give explieit directions, requiring the
student to attend the instructions carefully and learn by induction from
the examples given.

Two of the exercises in Lesson 1 are given here.
Lesson 1, Exercise 3:

IF MULTIPLE CHOICE PROBLEMS HAVE MORE THAN ONE CORRECT
ANSWER, YOU CAN LIST THE CORRECT CHOICES IN ANY ORDER.
SUPPOSE B, C AND D ARE THE CORRECT CHOICES FOR A PROBLEM.
WHICH OF THESE WOULD BE CORRECT WAYS TO ANSWER?

A. D, B, C, A
B. ‘B, D, C
C. B, C, D
D. D, B, C

-
hl

Lesson 1, Exercise 1h:

FRECOM LESSON 1, YOU SHOULD HAVE LEARNED HOW TO SIGN ON
AND OFF, HOW TO START AND STOP THE TEACHING PROGRAM,
HOW TC GET A HINT, AND HOW TO USE CTRL-G. DO YQU WANT
TO REVIEW ANY OF THESE TCPICS?
Exercise 1h illustrates an instructional strategy that is used in
many lessons. At the end of a lesson, its content is briefly summarized,
and the student is given the option of reviewing topics he is unsure of.

If the student responds affinnafively, he is given the review associated

with that lesson. In this way, the student is made responsible for the

- 13



material covered in each lesson and is ferced to judge if he is competent
to proceed with the course or if he needs additional instruction and
practice.

In Lesson 1, five of the 18 exercises ére-multiple cheolce, similar
in form toc Exercise 3 shown above. This proportien of multiple-choice
exercises is fairly typical of the course. The multiple-choice format
is chosen over a constructed response format depending on the cbjective
of the exercise. For example, if the purpose is to teach students to
discriminate between syntactically correct and incorrect ATID commands,

a multiple~choice exercise is used; if the purpcse is to teach the con-
struction of an AID command, & constructed response will be requested.

Of the 13 exercises remaining in Lesson 1, seven could appropriately
be labeled "implied multiple choice" since the statement of the exercise
clearly implies only a small number of posaible responses. In order to
keep the terminology straight, however, exercises that are not in the
conventional multiple-choice format, will be referred to as "implied

" will be reserved for

choice” exercises, and the term, "multiple choice,
exercises that list and label a set of choices and require that thé
student respond by typing the label or labels.

One of the most frequently used implied-choice exercises is the
yes-no exercigse. Many of these are designed to elicit opinion rather
than informaticn and have no "ecorrect" answer. In Lesson 1, five of
the seven implied-cholce exercises are of this type and in Table 2 are

L)

clasgified as "opinion exercises™ rather than “implied-choice exercises.”
This proportion is greater than that of later lessoms, but still, in-

dicates the style of the lessons. / }

23



Lesson 2: Using AID for Arithmetic

The 28 exercises in Lesson 2 teach the student how to start aend
stop the AID interpreter and how to use it for simple arithmetic by
employing the "TYPE" command. The AID symbols for‘the four simple arith-
metic operations (+, -, *, and /) are taught, and the use of parentheses
in arithmetic expressions is introduced. By the end of the lesson, the
student should be able to start the ATID interpreter and give simple,
d¢irect commands such as:

TYPE 5/25
TYPE 3.25 + 17.L - 3.12
TYPE 15 % 17 + 25 % 19

One of the most persistent errors made by students learning any
algebrale programming language is the omlssion of the multiplication
operator in algebraic expressions. The scurce of this difficulty 1s the
convention of using Juxtaposition to indicate multiplication. For example,
we ordinarily write

a{bt+c)
without an expliclt multiplication operstocr, but AID, like other algebraic
programming languages, demands that the multiplication be indicated ex-
plicitly. AID has an asterisk as the symbol for multiplication, as in

A % {B+C)
In Lesson 2, there are a number of eXercises aimed specifically et over-
coming this error, |

The following are exercigses from Lesson 2.

Lesson 2, Exercise 15:

WHAT WOULD ATD ANSWER TO THTS COMMAND?
W,
TYPE 72/12 } ) C

24



Lesscn 2, Exercise 19:
USE AID TO DO THESE PROELEMS:

1. FINT THE AREA OF A RECTANGLE WITH WIDTH 1.72375 AND
LENGTH 12.00L325.
2. SUPPOSE A SQUARE OF WIDTH .637825 IS CUT FROM THE
ABOVE RECTANGLE., FIND THE AREA OF THE SQUARE.
3. FIND THE AREA QF THE REMAINING PART OF THE RECTANGLE.
Of the 28 exercises in Lesson 2, 11 are multiple choice, five are
implied-multiple choice, and 12 are true constructed response exercises.
The constructed response exercises vary in difficulty, from the simple

problem given in Exercise 15, above, to the problem given in Exercise 19.

Lesson 3: Order of Arithmetic Operations

The arithmetic used in Lesson 2 was relatively simple, but in Lesson
3 the complexity increases with the addition of the concept of hierarchy
of operatiohs and the use of parentheses. Because each AID command must
be typed entirely‘on a single line, horizontal division bars for grouping

cannot be used. Thus, an expression like

=
243

using more than one line of type, must be translated into the AID
gxpression

X% Y/ (Z+43)

with parentheées tp show grouping. The AID expression is more difficult
to construct, since it requires a conscious decision about the desired
order of evaluation.

Lesson 3 teaches the student how to forece an order of evaluation by

using parentheses. To do this, the student must recognize the difference

. /)&



between expressions like (16 - 4) - 3 and 16 - (4 - 3). After a few
exercises on parenthezes, rules are given for the hierarchy of the four
basic arithmetic operators (+, -, *, and /), and a number of exercises
are glven in which the task is to determine the order of evaluation if
no parentheses are used.
The following are two examples from Lesson 3.
Lesson 3, Exercise 5:
WHAT WILL AID ANSWER TC THIS COMMAND?
TYPE 1/(100/10)
Lesson 3, Exercise 10:

LOCK AT THESE THREE COMMANDS. ATID WILL GIVE THE SAME
ANSWER TO TWQ OF THEM. WHICH TWO?

A. TYFE 3 + (2x%k)
B. TYPE (3+2) #* &
~C. TYPE 3 + 2 % 4

Since Lesson 3 is primarily a review of aigebraic noticns that may
be better understood by some students than by others, it provides more
opportunity for individualized branching. A good student can complete
Lesson 3 in 27 exercises, but a poor student will be given additional
practice and may do up to 49 exercises.

The exercises in Lesson 3 are of medium difficulty, and most can
be done quickly. Eleven of the exercises are multiple choice, and an
additicnal five are implied-choice exercises. Three of the exercises,
in¢luding one with three parts, require the student to use the AID in-

terpreter. Nineteen of the exercises are similar to Exercise 5 above.

//



Lesson L: Exponents and Scientific Notation

lesson 4 is longer than average and extends the work on arithmetic
expressions to ineclude exponentiation. First, the concept of exponenti-
ation is reviewed, with the introduction of the AID symbol (4). The rules
for the hierarchy of operations are extended to include exponentiation,
and the AID form of scientifle notation is introduced. Negative exponents,
fractional exponents, and zero as an exponent are also covered. Lesson 4,
like Lesson 3, is largely review of algebraic principles and may have
heen forgotten. The exercises also provide practice in reading and con-
structing expressions in the form required by the AID interpreter.

Some examples from Lesscn 4 follow.
lesson 4, Exercise 6:

WHAT IS THE VALUE OF 5t2/27

Lesson 4, Exercise 12:

USE AID TO EVALUATE EACH OF THE FOLLOWING.

1, L SQUARED TIMES 3.1416

2. THE SUM CF 4 CUBED AND 6,

3. THE SUM OF THE SQUARES OF 1, 2, 3, 4, 5, 6, 7 AND 8

Lesson 4 contains 61 exercises, of which 48 reguire constructed

regponges. Most of the constructed responses require arithmetic calcu-
lations to answer guestlons like those 1llustrated in Exercise 6 above.
Three exercises require the student to use the AID interpreter, and he
is encouraged to use AID throughout fhe lesson.

Lesson 5: The SET and TELETE Commands

After the sizeable dose of arithmetlc given in Lessons 3 and L4,

Iesson 5 provides relief by returning to the mainstream of instruction

4



with the introduction of two new AID commands: the SET command and the
DELETE command. SET is used in AID to assign values to real variables;
DEIETE is used to delete a previcus assignment or definition. In AID,
variables are single letters, and the SET and DELETE commands are easily
learned by most students. A number of word problems are given to illus-
trate the use of the new commands. ILesson 5 also introduces the multiple-
argument form of the TYPE command in which several TYPE commands can be
combined intc one by separating the arguments with commas (TYPE X,Y,X+Y).
The following exercises are from Lesson 5.
Lesson 5, Exercise 3:
WHAT WILL AID ANSWER AFTER THESE COMMANDS?

SET B = 1-5

TYPE 3%B
Lesson 5, Exercise 31:

TO FIND THE NEW AMOUNT IN A SAVINGS ACCOUNT, CALCULATE THE
INTEREST AND ADD IT TO THE LAST BALANCE. START AID AND
CALCULATE THE INTEREST AND THE NEW BALANCE AFTER ONE YEAR
FOR AN ACCOUNT WITH AN INTEREST RATE CF 4.5 PERCENT PER
YEAR AND A PREVIOUS BALANCE OF $3274.86. (ASK FOR A HINT
IF YOU KEED ONE, )

WHAT IS THE INTEREST ON THE ABROVE ACCOUNT TO THE NEAREST
PENNY?

WHAT IS THE NEW BALANCE IN THE ACCOUNT?

Lesson 5, with its 63 exercises, is fairly long and has nine exer-
cises that ask the student to use AID to solve problems. The most

difficult of these is shown in Exercise 31 above., The trend toward a

. //7



higher proportion of constructed responses continues here, with Lesson 5
having only six multiple-choice problems. There are four implied-choice
exercises, but all of these are requests for opinions from the student.

Lesson 6: Test of lessons 1 to 5

Lesson 5 congludes the first five-lesson tutorial block and is fol-
lowed by a self-test in Lesson 6 and a general review in Lesson 7. Both
Lessons 6 snd 7 are optional. Lesson 6 contains 40 test questions and
problems covering the material in Lessons 1 to 5. Like other self-tests,
Lesson 6 supplies no hints, and students are allowed only one try on each
exercise. However, the student may request the correct answers at any
time by typing CTRL-T. Whenever a student misses an exercige, he is
given a review reference and advised to review that topic before pro-
ceeding with the c¢ourse.

The exercises in Lesson 6 are classified according to which lesson

they are testing:

Lesson Number Exercises in Lesson 6 Testing Glven Lesson
1 2, 3, 4, 5, 6, 7, 9, 10, 12, 13, 1k, 15, 16
2 8, 11, 17, 18, 19, 20, 38-1, 39-1
3 21, 22, 23
L 2, 25, 26, 27
2 28, 29, 30, 31, 32, 33, 34, 35, 36, 3T

Exercises 1, 1-1 and 40 are "opinion" exercises and are not listed.
Exercises 38 and 39 are "use AID" exercises and are not listed, OFf the

38 exercises in the list, 23 are constructed-response exercises.

X0

29



Lesson 7: CGeneral Review of lessons 1 to 5

The gitudent is allowed to skip Lesson 7, but he is advised to take
i1t if he missed more than five problems in the Lesson 6 self-test. Les-
son 7 uses a more complex branching scheme to allow students to review
only selected portions of the preceding lessons.

The following is an example f£fom Lesson 7.

Lesson 7, Exercise 5:

LESSON 4 WAS ABOUT EXPONENTS AND SCIENTTFIC NOTATION.
FRACTIONAL EXPONENTS AND NEGATIVE EXPONENTS WERE
DISCUSSEDL, AND ALSO THE USE OF O AND 1 AS EXPONENTS,
THE ORDER OF ARITHMETIC OPERATIONS + ~ * / and % WAS
COVERED.

DO YQU WANT TO REVIEW ANY OF THESE THINGS?

If a student answers "yes,"

he ig sent to the review lesson for Lesson k4,
where he may review any of the lesson topics in any order he wants.
This first general review also reminds students that they can con-

trol the seguence of instruction by using the CTRL-G key and that the

student manual provides an cutline of the course,

Lesson 8: The LET Command

Lesson & is the beginning of a new lesson block, and introduces the
powerful LET command, used in AID to define functions. The difference
between IET and SET commands 1s discussed, and a variety of algebra
problems is given. A major emphasis in Iesson 8 is on substituting
arithmetic expressions for variables in algebraiﬁ expressions. Lesson 8
is the Tirst lesson that has optional "extra-credit" problems.

The feollowing are two exercises from Lesson 8,

=

30



lesson 8, Exercise L:
WHAT WILL ATD ANSWER?
LET P{M) = Mt2
TYPE P(6/2)
Lesson 8, Exercise 28:

USE AID TC DO THIS PROELEM, DEFINE A FUNCTION TO CORVERT
DEGREES FAHRENHEIT TC DEGREES CENTIGRADE. THEN CCNVERT
THESE TEMPERATURES TO CENTIGRADE:

0, 10, 32, 72, 212

Of the 62 exercises in Lesson &, over half are similar to Exercise
4 above. There are four multi-part problems that require the use of the
AID intexpreter. There is only one multiple-choice exercise in Lesson 8,

and none of the exercises are more difficult than Exercise 28 above.

Lesson 9: Scme Standard AID Functions

In Lesson 9, the student is introduced to four functions already
defined in AID. These are:

SQRT(X)

IP(X) - the "integer part" function,

FP(X) ~ the "fraction part" function,
SGN{X)

the square rcoot function,

the sign function,
These functions, together with those defined by the student, are
used in several problems requiring the use cf the AID interpreter.
The fellowing are two exercises from Lesson 9.
Lesson 9, Exercise 2:
WHAT WILL ATD ANSWER?
TYPE 3 * SQRT{100)

/R

31



Lesson 9, Exercise 1k:

YOU CAN USE THE ATD FUNCTIOK FP(X) TO FIND OUT IF ONE
NUMBER CAN BE DIVIDED BY ANOTHER WITHOUT A REMAINDER....

IS 2976 EVENLY DIVISIBLE BY 37

Lesson 9 has 31 exercises of which 17 are similar to Exercise 2
above.

Lesscn 10: Indirect Steps, the DO Command, the FOR Cleause

In Lesgon 10, the concept of a stored program is intrcduced. Up to
this point, students have been using AID as a desk calculator, doing all
exercises with direct commands, i.e., commands that are executed immed-
iately. In this lesson, the students are taught that TYPE commands can
be stored for later execution by prefacing the command with a step number,
as in the following examples:

2.1 TYPE F(16)
4,7 TYPE Xt2,Xt3 .

They are also taught how to execute these stored commands by using
a DO command. Two variants of the FOR clause are used to modify DO com-
mands. In the first variant, values for the iteration variable are given
by a simple listing:

DO STEP 17.3 FOR Y = 1,2,7,1k.3.
In the second variant, values for the iteration variable are given in a
range specification that specifies an initial walue for the variable, a
step size, and a final value;:

DO STEP 5 FOR X = 4(2)9.
This command specifies that X will assume the value 3, then be incremented

by 2 after each iteration of step S5 until X > 9. This is equivalent to

s st



the FORTRAN form,

D05 X =14,9,2
5 < statement 5 >,

and the ALGOL form
FOR X =< It STEP 2 UNTIL 9 IC
< statement 5 >.
The following are some examples from Lesson 10.
Iesson 10, Exercise 12:

USING AID, WRITE AN INDIRECT STEP THAT WILL CONVERT MILES
PER HOUR TO FEET PER SECOND., THEN CONVERT ALL OF THESE
TO FEET PER SECOND:
10 MILES PER HOUR
100 MIIES PER HOUR
65 MILES PER HOUR
1023 MILES PER HOUR
Lesson 10, Exercise 17:
WHAT VALUES OF A WILL EE USED IF THIS COMMAND IS GIVEN?
DC STEP 73.7 FOR A = 5(10)35

A. 5, 10, 15, 20, 25, 30, 35
B, 10, 15, 20, 25, 30, 35
C. 5, 15, 25, 35
Of the 33 exercises in Lessocn 10, four are multiple choice and an-
other four are implied choice. Most of the constructed-response exercises
are guite simple, and Exercise 12 above is the only cne that requires any
problem-sclving skills.

Legson 11: Parts

Lesson 11 explains how indirect (stored) steps are grouped into

"parts," Steps 12.1, 12.7, and 12.8, for example, are grouped as
33 /::Q%



"Part 12," and can be executed by a single command:
DO PART 12.

The sequence of execution depends only upcn the numerical order of the
step numbers, and not upon the sequence in which they were written. Thus,
steps 3.79, 3.2 and 3.8 will be executed in the order: 3.2, 3.75, 3.8.
Thig concept is clear to most students. The only difficulty is caused
by step numbers with trailing zerocs; some students fail to order cor-
rectly a segquence like 3.5, 3‘8, 3.10 (the correct order is 3.10, 3.9,
3.8).

Here are two examples from Lesson 1l1.

Lesson 11, Exercise 5:

YOU CAN TYPE THE STEPS IN ANY ORDER, BUT AID WILL ALWAYS
PC THEM IN NUMERICAL ORDER, WHICH STEP WILL BE DCNE FIRST?

17.4 TYPE XtY
17.5 SET N=5
17.2 SET X=10
17.3 SET Y=2

Legson 11, Exercige 11:

A PART (SET OF INDIRECT STEPS) IS ALSO CALLED A PROGRAM.
USE ATD TO WRITE A PROGRAM THAT WILL LIST THE RADIUS,
DIAMETER, CIRCUMFERENCE, AND AREA OF A CIRCLE OF RADIUS
R. THEN USE THE PROGRAM FOR R = 10, 20, 30, 40 AND 50.
Lesson 11 has 30 exercises, with an unusually high proportion of
"opinion" questions (8 out of 30). Only cne of the 30 exercises is

multiple choice, and six of the 30 require the student to use the ALD

interpreter, a slightly higher proportion than was found in earlier

. S xXE

lessons.



Lesson 12: The DEMAND Command

In Lesson 12 the DEMAND command is Introduced. The DEMAND ccmmand
is used in ATD progrems for teletype input. The DEMAND command, unlike
previously introduced commands, can be used only indirectly, as a stored
command. This lesson also introduces & variant of the DO command:

DO PART 7, 5 TIMES

The following are exercises from Lesson 12.
Lesson 12, Exercise b:

START AID AND WRITE A PROGRAM THAT WILL ASK YOU FOR 3
NUMBERS, A, B, AND C, AND THEN GIVE YOU THE AVERAGE OF
THE 3 NUMEERS, AFTER YOU HAVE TESTED YOUR PROGRAM, USE
IT TO FIND THE AVERAGE OF

179.053
23.7
271.0015

1l

]
I

Lesson 12, Exercise 5:
WHAT COMMAND WOULD YOU USE IF YOU WANTED PART 2 DCNE
7 TIMES?
Lesson 12 is very short, containing only 14 exercises. None is
multiple choice, and five require the student to use the AID interpreter.

lesson 13: Test of Lessons 8 to 12

lessons 8 to 12 constitute the second five-~lesson tutorial block of
instruction and are followed by an optional self-test (Lesson 13) and a
review (Lesson 14). Iesson 13 is structured like other self-tests; the
student is given only one try for each exercise, and thefe are no hints

provided. A student who cannot dc an exercise can request the correct

answer by typing CTRL-T. //12:;;l ;

35



The following classifies the exercises in Iesson 13 according to

which legsson is being tested.

Iesson Number Exerciges in Lesson 13 Testing Given lLesson
8 1-1, 2, 3, 4, 5,6, 7,8
g 9, 10, 11, 12, 13, 14, 16
10 17, 18, 19, 20, 21, 22, 23, 24
11 25, 26, 27
12 28, 29-1

Five of the 33 exercises in Lesson 13 are not included in the list. Ex-
ercises 1, 15-1 and 30 are "opinion" questions, and Exercises 15 and 29
are "use AID" exercises., Of the 28 exercises in the list, 25 are con-

structed-response exercises.

lesson 1lh: General Review of Lesscns & to 12

Lesson 14, the general review of Iessons 8 to 12, is optional but
is recommended for students whe missed more than three problems in the
preceding self-test. Here 1s one example from Lesson 1h.
Lesson 14k, Exercise 3:

LESSON 8 WAS AROUT THE "LET" COMMAND AND HOW TO USE IT
TO DEFTNE A FUNCTION., ¥FUNCTIONS CF 2 AND 3 VARTABLES
WERE DISCUSSED. INSTRUCTIONS FOR PRINTING AND DELETING
A FUNCTION WERE GIVEN.

DO YOU WANT TO REVIEW ANY OF LESSON 87

The structure of Lesson 14, like that of other general reviews,
allows a student who answers "yes" to branch to the review for the les-

son and to review any of the lesson toplcs in any order.

/LT

36



Lesson 15; Relations and the Use of the IF (lause

Lesson 15 begins & new lesson block and intrcduces the most powerful
programming tool: the conditional clause. The conditional (IF) clause
may be appended to any of the commands so far introduced. The following

ATD symbols for arithmetic relations are introduced:

< less than,

> greater than,

<= less than or equal,

>= greater than or equal,
# not equal.

no1ir f

The terms "positive," "negative," and 'non~-negative" are reviewed. The
Boolean ccnnectives "and" and "or" are also introduced. Students are
required to write geveral programs using conditional branching.

The following are examples from Lesson 15.
Lesson 15, Exercise 1h:

STUDY THIS PROGRAM.

4ho,5 TYPE X TIF X > Y
o6 TYPEY IF X < = Y
DO PART 49,

IF X = 12.1 AND Y = 6, WHAT WILL AID ANSWER?

Lesson 15, Exercise 20:

WRITE A PROGRAM THAT WILL PRINT "SAME" IF ALL THREE
NUMBERS X, Y, AND Z HAVE THE SAME SIGN. THE PROGRAM
SHOULD PRINT "DIFFERENT" IF THE NUMEERS DC NOT ALL
HAVE THE SAME SIGN.

Of the 62 exercises in Lesson 15, a large number (2h) are true-false

exercises, The students are required to use AID in six exercises similar

to Exercise 20 above. / ZX
37



Lesson. 16: The TO Command

Lesson 16 reviews the use of conditicnals and introduces conditional
branching.

The following are two examples from Iesson 16.
Lesson 16, Exercise 3:

HERE IS A PROGRAM THAT CALCULATES THE AREA OF A RECTANGLE
OF LENGTH I AND WIDTH W. IF EITHER L OR W IS NEGATIVE,
PART 15 IS USED TO GIVE AN "ERROR" MESSAGE,

14.1 DEMAND L

14,2 TO PART 15 IF L <O

14.3 DEMAND W

4.4 TO PART 15 IF W < 0O

4.5 TYPEL % W

15.1 TYPE "DO NOT USE NEGATIVE NUMEERS, "

WHICH STEPS WILL BE DONE IF L = 5 AND W = - 37

Lesson 16, Exercise 4:

WRITE A PROGRAM THAT WILL DEMAND A RADIUS R AND THEN
CALCULATE THE AREA OF A CIRCLE WITH THAT RADIUS. USE
TWO PARTS, ONE FOR THE MAIN PROGRAM AND ONE FOR AN
"ERROR" ROUTINE TC EE USED IF R IS NEGATIVE.
There are 27 exercises in Lesson 16, with five multiple choice and
elght "opinion" questions.

Lesson 17: Debugging Techniques

Lesson 17 concentrates on debugging techniques, showing the student
how to trace a program by making a table listing the steps in order of
execution.

Here is one example from Lesson 17, Exercise 3:

. 2T



FOR PRACTICE, LET'S MAKE A TRACE OF THIS PROGRAM, ASSUMING
A=3.

31.3 DEMAND A

31.2 SET B = At2 - 10

31,3 SET C = AIF A>B

31.4 SET C= BIF A<=3B

31.5 TYPE B

31.6 TYPE ¢

FTLL IN THE VALUES OF ¢ IN THIS TRACE (STARTING AT STEP 31.3).

STEP i B c
31.1 3 - -
31.2 3 -1 -
31.3 3 -1 ?
31k 3 -1 ?
31.5 3 -1 ?
31.6 3 -1 ?

Of the 27 exercises in Lesson 17, 18 are similar to the exercise
above. Four exercises require the student to write a complete trace
with paper and pencil and check his answer by typing CTRL-T.

Lesson 18: The Tndirect Use of the DO Command

In Lesson 18, the indirect use of the DO command is introduced. Up
to this point, the student has been using DO commands directly to execute
programs or single steps. The DO command can also be given indirectly to
execute subroutines., A conditional clause is frequently used with in-
direct DO commands.

The following is an exercise from Lesson 18.

/30

39



Lesson 18, Exercise 2:

WHEN AID COMES TO AN INDIEECT "DO" COMMAND, IT WILL DO
THE STEP OR PART INDICATED AND THEN RETURN TO THE STEP
AFTER THE "DO" COMMAND,

16.1 DO STEP 2.1 IF Q <0
16.2 TYPE @

2,1 SET Q = - Q

DO PART 16

IF Q@ = 3, THE STEPS WILL BE DONE IN WHICH ORDER?

A B ¢ D
6.1 16.1 16.1 16.1
2.1 16.2 2.1 16.2
16.2 2.1

There are 35 exercises in Lesson 18, with only one programming
problem requiring the use of AID.

Lesson 19: Debugging, Permanent Storage

The first half of lesson 19 is an optional section of tips for
writing and debugging programs. This section is primarily for students
who have been heving difficulty with the programming problems in pre-
ceding lessons. The second half of the lesson describes the difference
between core memory and disk storage and teaches the students how to
store programs cn the disk by using the AID file commende: USE, FILE,
RECALL, and DISCARD.

Here are two examples from Lesscn 19.

Lesson 19, Exercise 13:

WHAT COMMAND WOULD YOU USE TO FILE PART 29 AS ITEM 37

/S

4o



Lesson 19, Exercise 17:

IF A NUMEER B WAS FIIED AS ITEM 6, YOU WOULD RECALL IT
BY TYPING
USE FILE 100

AND THEN WHAT?

Of the 32 exercises in Lesson 19, eight are requests for opinions,
and four ask the student to use AID.

Lesson 20: Test of Lessons 15 to 19

Lesson 19 completes the third lesson block. Lesson 20 is a test of
Lessons 15 to 19, and is structured like the tests in Lessons 6 and 13.
Lesson 20 contains 27 exercises, of which two are reguests for opinions.

The other 25 can be grouped according to which lessons they test:

Lesson Exercises in Iesson 20 Testing Given Lesson
15 1-1, 2, 3, 4, 5, 6
16 7, 16
17 8, 9, 10
18 11, 12, 13, 14, 15
19 17, 18, 19, 20, 21, 22, 23, 24, 25

There are six multiple-cholce exercises, two "implied-choice" exer-
cises, and 17 constructed responses.

Lesson 21: General Review of Lessons 15 to 19

Lesson 21 is a general review of the lessons tested by Lesson 20.
Like other general reviews, 1t is optional and is recommended for students
who missed more than three problems in the test.

Here is one example from ILesson R1:

. /S



Lesson 21, Exercise 8:

1ESSON 19 EXPLAINED HOW TO PLAN, WRITE, AND EDIT A PROGRAM;
WHAT KINDS OF ERRORS THERE ARE AND HOW TO CORRECT THEM; AND
HCW TC USE PEBEMANENT STORAGE.

DO YOU WANT TC REVIEW LESSON 197

A student who responds "yes" will be given the review lesson for

Iesson 19.

6. The Daily Report

A daily report program was provided to inform teachers of the pro-
gress of individual students. The report lists the students in given
classes, shows their current position in the curriculum, and indicates
if they used the curriculum on the day of the report. The position of
each student iz indicated by printing the number of the last problem he
completed in the tutorial lessons, in the reviews, in the summaries, and
in the extra-credit problems. By compariéon‘With previous daily reports,
the teacher (or researcher) can judge about how much an individual student
has progressed, and he can compare the positions of different students.

However, the dally report provides only a rough measure of progress
since the students themselves control the seguence of instruction. A
student may be on Lesson 5 one day and on Lesson 12 the next, either by
diligently working through all the intervening lessons or by simply
skipping directly to Lesson 12. Also, a student may decide to go back
to review a previous lesson, and his daily report will show that he was
on Iesson 12 one day and had regressed to Lesson 5 the next. Even if
one assumes that students are working their way straight through the

course, i1t is hard tc get a precise measure of progress from the reports

i /3



because of the varying lengths of lessons and the uneven dispersion of
time-consuming programming problems. Nevertheless, the daily reporte
can provide an adequate indication of average rate of progress through
the course and of variation in the rates of progress among students.

To illustrate use of the dally reports, one class of 39 students
was gselected as a sample. All these students were enrclled in the UCLA
"High Potential" program. The daily report information for the class is
summarized for each student and presented in Table 3. Number of days
worked, number of lessons completed, and rate of progress 1n number of
lessons per day are listed in Taeble 3. This particular class was chosen
because of its large enrollment, but it is atypical because attendance
for AID was voluntary, Of 48 possible workdays, the average number of
days worked by the 39 students is 10.4 with a range from 1 to 36 days.
This average is high for strictly voluntary attendance. Average number
of lessons completed is 14.1 with a renge from 2 to 36 lessons, indicating
that the students completed glightly less than one-third of the course in
the time allotted.

Te Lllustrate the individuality of the students, progressin number
of lessons completed for three students (Nos. 2, 7, and 11) from the
class tabulated in Table 3 1s graphed in Figure 3. Student 2 can be
characterized as slow and steady, Student 7 can be characterized as fast

and steady, and Student 11 can be characterized as persistent but erratic.

7. Item Analysis of INST Data

In this preliminary report, only data from first responses for Les-

sons 1 to 21 are analyzed. The data used were collected by the INST

. /3



Table 3

Daily Report Summary for One Class of 39 Participating Students

—_— ——re e

Kumber of Number of lessons Number of lessons

Student days worked completed completed per day
1 22 23 1.0k
2 17 11 .65
3 X7 27 1.59
Y 2 5 2.50
5 13 18 1.38
6 13 8 62
T 15 2k 1.60
8 17 26 1.53
9 1 9 9.00
10 2 2.00
11 36 36 1.00
12 6 L .67
13: 3 2 N
14 2 b 2,00
15 6 5 .83
16 2 3 1.50
17 8 20 2.50
18 13 13 1.00
19 16 22 1.38
20 9 9 1.00
21 Y 8 2.00
22 19 22 1.16
23 20 31 1.55
oY 18 20 1.22
25 8 20 2.50
26 11 11 1.00
27 5 8 1.60

. S35



Table 3 (cont'd)

Number of Number of lessons Number of le$sons

Student days worked completed -completed per day
28 1 2 2.00
29 6 8 1.33
30 8 11 1.38
31 2 L 2.00
32 , 17 21 1.24
33 210 - 23 2.30
34 18 17 e
35 7 15 2,14
36 6 8 1.33
37 20 20 1.00
38 1 7 7.00
39 5 21 4.20
Mean 10.38 14,10 1.86
S.D. | 7.80 9.02 1.62
N 39 39 39

/3 &

ks



NUMBER OF LESSONS

40

35

30

25

20

1or

15

Student No. il |

St_ud'ent No.7

] |

E ‘ | .
0 5 10 15 20 25 30 3% 40

NUMBER OF DAYS

Figure 3. Student progress in number of lessons completed

after each day of work in AID for three students.

U6 | /57



instructional program. Nc data collected by the AID interprefer are
included in this section.

Because of the unigue branching structure used in the general review,
Lessons ?,rlh and 21 are not included in the analysis. The self-test
Lessons 6, l3land 20 are included for comparison.

To describe the statisties reported, it is necessary to explicate
the definitione of "first response" and of "correct response" used by the
data collection and analysis routines. "First response” is defined to be
the first of a set of contiguous responses made in any one session to a
single exercise, with the following two exceptions. First, a student mey,
through his own volition or by automatic action of the program, repeat an
exercise. In such a céase, the first response made by the student the
second time he encounters the exercise is counted again as a first re-
sponse to that exercise. Thus a total of 35 first responses to a given
exercise may be the work of only 34 students. Second, if a student
terminates a session after responding incorrectly to an exercise, he will
commence the next session with that same exercise; his first response 1in
the subsegquent session will be tallied as another first response to the
exercise. In actual practice, the effect of these "extra™ first responses
is negligible.

Some responses are not consldered at all in the tally of first re-
sponses. These are responses that cannot be c¢lassified as correct or
incorrect. The only responses that fall into this category are guestion
mark (student request for a hint), CTRL-G (student request for a change

of problem sequence), CTRL~A (student request for a repeat of the problem),

/35

LT



and CTRL-Z (student request for sign-off}. If any of these occur as a
first response, they are ignored.

Excluding the lessons and exercises not graded, 6,512 first responses
made by the 68 students who completed one or more AID lessons during the
first semester of the 1972-73 school year were analyzed for this report.
Of the 68 students, 39 were drawn from the UCLA "High Potential” program,
26 from Ames-NASA, and three from the network of schools for the deaf.

The other critical definiticn:used is that of "correct response."

In general, the definition of "correct" is supplied by the programming
and is what one would expect. If the correct answer to an exercise is
"true," the student response may be "true" or "t," and any other response
such as "false" or "help" or "yes" is classified as incorrect.

Some exercises have no clearly defined correct answer, however.
First, reguests for sequencing, "Do you want to try the extra-credit prob-
lems for this lesscon?", cannot be said to have a right or wrong answer.
Second, the programming of a few exercises precluded easy classification;
there were seven such exercises in the 675 exercises considered. Third,
some exercises ask the student to use ATD to solve a stated problem. We
could consider the response to be correct if the student did indeed use
AID, but on a less superficial level we need some enalysis of the student®s
use of the ATD interpreter. This implies & routine that can judge the
correctness of a student-written program. Unfortunately, such a routine
is not available. The general soluticn to the problem of proving the
correctness of a computer program has been shown to be recursively un-
solvable (Davis, 1958). While many particular cases of this problem are
solvable, it remains a deep and non-trivial problem tc construct an

algorithm that will prove correctness for a comprehensive set of student

48 /é?



solutions. Some date collected by the AID interpreter have been hand-
graded and will be described later in this report.

Problem Types

A summary of correct first responses by problem type 1s shown in
Table 4. Number correct, number of first responses, and percent correct
are shown for each problem type.

This summary reveals several interesting results from the ltem
analysis. First, the propertion correct for all exercises is only 65.?%,
a figure at least 10% lower than predicted after developmental testing
of the program. This result is probably explained by the fact that most
of the data for this analysis was cobtained from students in a “High
Potential" program comprising students who do not meet regular college
entrance requirements but who are suspected to have higher ability than
indicated by their achievement records.

In later analyses, the data used will be drawn from community col-
lege students who have been admitied unprovisionally. The criginal gosl
of the AID project was to prepare alcurriculum for community college
students, and these new data will provide a better assessment of the
curriculum.

Second, an unexpected result is the proportion correct for multiple-
cholce exerclses as compared with constructed responses. The proportion
correct is markedly lower, 5&.9%, for multiple-choice exercises compared
with 66.6% for constructed responses. In presenting a lesson-by-lesson
comparison of the proportion correct for multiple-~choice and constructed

responses Table 5 shows this result to be guite stable across the lessons.

S

ko



Table L

Number and Percent of Correct First Responses in Lessons 1 to 21
(BExcluding lLessons 7, 1b, 21)

/S

—— —— ]
Total correct Total Percent
first responses first responses correct
Multiple-~Choice 436 718 60.7
1 Correct Choice
Multiple-Choice 60 160 37.5
2 Correct Choices
Multiple-Choice 59 120 Lkg,2
3 or More Correct
Choices
Multiple-Choice 23 55 1.8
Correct Choice: NONE
Total Multiple-Choice 578 1053 54.9
Exercises
Yes-No Exercises 99 133 yem
{except opinion
questions)
True-Falge 215 254 8h.6
Other Implied-Choice Ly 59 79.7
Total Implied-Choice 361 LLhe 80.9
Predicted ALD Response 1282 1861 68.9
Constructed ATD Command ey 798 62.3
Reported Result of AID 557 878 63.k
Use
Other Constructed- 1003 1476 £8.0
Response Exercises
Total Constructed 3339 5013 66.6
Response
Totals a8 6512 65.7
50



Table 5

Percent of Correct First Responses for All Multiple-choice and ALl
Constructed-response Exercises in Lessons 1 to 21
(Excluding lessens 7, 14, 21)

Percent correéf* Total responses Percent correct . Total responses

lesson multiple-cholce multiple-cholce constructed response constructed response
1 66.7 . 81 8.0 50
2 67.3 153 58.2 146
3 32.7 101 65.1 373
N 57.% 61 71.5 ' 368
5 46.7 75 70.2 601
6 Ly, 7 16 69.5 298
8 30.8 13 67.2 ‘ 862
9 T 26.3 19 ' TO.1 yyo
10 T6.3 76 81.8 357
11 70.6 17 . T3.6 208
12 - . o 77.8 ' 99
13 5h.3 35 58.1 296
15 1.2 - 85 55.3 R37
16 7.6 . BL - 65.2 ' 178
17 66.7 ; 12 00 55
18 48.1 81 50.6 ’ 7
19 | 25.0 .12 67,4 135
20 6Ll 72 51.7 201
Totals 54.9 1053 €6.6 | 5013

/SR

51,



Third, the proportion correct for implied-choice exercises (80.9%)
is higher than either multiple-choice cr constructed-response exercises.
This result might be expected since all of the implied-cholce exercises
imply only two cheices, and about 50% of the answers would be correct if
they were selected by random guessing.

Fourth, the order of percent correct among the different kinds of
mnltiple-choiée exefcises is not what would be predicted from the number
of correct choices available. Exercises in which there are more than
one correct choice are more difficult (119/280 = 42.5%) than are exercises
in which exactly one choice is correct (459/773 = 59.4%). However,
exercises in which none of the listed choices is correct are more dif-
ficult (41.8%) than the other single choice exercises (60.7%), and
exercises in which there are three or more correct choices are eamsier
(49.1%) than those in which there are two correct choices (37.5%).

A more detailed analysis of the data for multiple-choice exercises
will be discussed later in this report.

Student Control of Amount gi Instruction

Two features of the course that allow the student to control the
amount of instruction he receives are "hints'" and "tells." Most of the
exercises have one cor more optional hints which can be regquested by the
student at any time, either before or after making & response. Also, in
all exercises for which there is a correct answer the student may request
the correct answer, i.e., a tell, at any time.

How these two controls are used is as yet undetermined, and will be
the subject of future research. The item analyses of first responses,

on which this report is based, does provide some evidence, however. The

5 /A4S



nunber of hints and the number of telis requested before first responses
were tallied.

In some exercises, the hints provide information vital to the solu-
tion of the probiem. This information was put into hint messages rather
than into the problem text itself whenever it could be assumed that a
fairly large proportiocn of the students would already know it. For
example, 1f the exercise is to use AID in calculating the volume of a
cylinder of given radius and height, it 1s essential to use the formula
that gives volume in terms of radius and height. Many students can be
assumed to know this formula so it was not included in the problem state-
ment but instead was included as the first hint. In other cases, the
hints suggest a strategy to be used in solving the problem. It was
assumed that hints woﬁld be used freely by as many as a gquarter of the
students.

Table €& shows the number of hints requested before the first response
by problem type. Only 89 hints preceding first responses were requested
for Iessons 1 to 21. Since there were over 6,500 first responses for
these lessons, this number of requests for hints is surprisingly low.
Variation between different lessons and different problem types should
be viewed with skepticism becauze of the small number of requests.

It may be that students do not request hints until they have made
at least one try, or they may believe they would be penalized for re-
questing hints, or they may not understand how to ask for them. Because

the low number of hint requests is so unexpected it is worth pursuing

/

in later research on use of control features.

23



Table &

Number and Percent of Hints Requested in Lessons 1 to 21
{Excluding Lessons 7, 1k, 21)

wm
Total hints Total Percent,
Loy reguested Zesponses hints

Multiple-Choice Y 718 0.6
1 Correct Choice

Multiple-~Choice 0 160 0.0
2 Correct Choices

Multiple-Choice 0 120 0.0
3 or More Correct
Choices

Multiple-Choice 0 55 0.0
Correct Choice: NONE

Total Multiple-Choice L 1053 0.4
Exercises

Yes-No Exercises 7 133 5.3
(except opinion
guestions)

True-False 0 254 - 0.0

Other Implied-Choice L 59 1.7

Total Implied-Choice 8 LLG 1.8

Predicted AID Response 30 1861 1.6
Constructed AID Command 19 798 2.4

Reported Result of AID 17 878 1.9
Use

Other Constructed- 11 476 0.7
Response Exercises

Total Constructed 7 ' 5013 L5
Response

Totals 89 6512 1.4

N



Requests for the correct answer were expected to be relatively low
as a first response, ebout 5% as a first response and about 10% as a
second, or later, response. Table 7 shows the number of first responses
reguesting the correct answer by problem type. Two hundred forty-two of
the 6,512 first responses, or 3.7%, were requests for the answer. It is
interesting that there was a greater proportion of such requests for
multiple-cholce exercises (L4.6%) than for constructed-response exercises
(3.8%), indicating that multiple-cholce exercises are more difficult.

In the analysis of structurel variables affecting problem difficulty,
proportion correct is taken as the measure of difficulty. An interesting
comparison could be made by using the number of requests for answers as
a measure of difficulty. This was not done in the current analysis be-
cause the number of subjects was too small to permit meaningful spplication
of the stepwise multiple linear regressions used below.

Lesson to Subtest Relationship

The percentages correct by lesson listed in Table 8 show little
variation, with the exception of Lesson 17, and it can be inferred that
the curriculum is reascnably conslstent in difficulty. ILessonslQ and 12
appear to be the essiest, and Lessons 17 and 18 seem to be the most
difficult.

Two of the more difficult lessons are tests (Lessons 13 and 20),
and the average percent correct for the three tests (Lessons 6, 13, and
20} is 60.?%, whiel 1g slightly lower than the average for tutorial
lessons, 63.3%, To compare tutorisl lessons and tests, each test was
divided into five subtests each consisting of the exercices asscciated

with one of the five preceding tutcrial lesscns, and the percent correct

N



Table 7

Number and Percent of Reguests for the Correct Answer (Tells)
in Lessons 1 to 21 (Excluding Lessons 7, 1k, 21)

o e o e

Total tells Total Percent
requested responses tells

Multiple-Choice ' 39 718 5.4
1 Correct Choice

Multiple-Choice 5 160 3.1
2 Correct Choices

Muitiple-Choice 3 120 2.5
3 or More Correct
Choices

Multiple-Choice 2 55 3.6
Correct Choice: NONE

Total Multiple-Choice s 1053 4.7
Exercises

Yes-No Exerciszes 1 133 0.8
(except opinion
questions)

True-False 0 25k - 0.0

Cther Implied-Choice 0 59 0.0

Total Implied-Choice 1 LhE 0.2

Predicted ATLD Response 82 1861 b4
Constructed AID Command 34 798 4.3

Reported Result of AID 14 878 1.6
Use

Other Constructed- 62 1476 L.2
Response Exercises

Total Constructed 192 5013 3.8
Response

Totals 2h2




Table 8

Comparison of Scores in Lessons with Scores in

Related Exercises in Subtests

Lesson Proportion correct Proportion cdorrect
number in lesson (%) in test (%)
1 67.9 85.0
2 63.3 75.0
3 58.2 T1l.4
m 69.4 6.7
5 67.6 52.7
8 66.7 56.0
9 68.4 56. 2
10 80.8 5,4
11 73.3 80.6
12 77.8 52.4
15 66.6 61.7
16 61.0 59,1
17 11.9 51.5
18 Lo, 52,7
19 - 67 .k 5h.6
Mean 63.3 60.7
3.0, 16.1 11.7
N 15 15
Correlation coefficient (R) = .165
R2 = 027

/4

57



on each subtest was compared with the proportion correct on the lesson
tested by that subtest. . Percentages correct on these subtests are glven
in the second column in Table 8 and are associated with the appropriate
lesson. There is essentially no correlation between percent correct on
lessons and percent correét on the assoclated internal tests (R2 = ,027).
The predictive power cof lesson scores for individual students will be
explored in a later analysis of individual perfommance.

Multiple-choice Exercises

In the first 21 lessons of the AID course there are 80 multiple-
choice exercises. In all of these exercises the cholces are listed and
labeled with letters, end if there is more than one correct choice, the
students are expected to type the labels for all of the correct choices.

Two formats are used:

(Vertical) A, TYPE
DELETE
C. SET
D. DO

N. NONE OF THE AROVE

(Horizontal)
A B
1.2 BET X=1 l.2 DEMAND X
1.3 TYPE Xt2 1.3 TYPE Xt2
1.k TYPE Xt3 1.b TYPE X13

Generally, the vertical form is used if each choice can be printed

on one line, and the vertical form is used 1f several lines are required

.7

to print single cholces.



The data for multiple-choice exercises are divided into four classes,
according to the number of correct cholces (one, two, more than two, none).
The number of correct first responses, total number of first responses,
and percent correct on first responses for each problem type are shown
in Table 4 presented earlier. The class of multiple-choice exercises
with one correct cholce is sufficiently numerous (56 exercises) to warrant
a more detailed inspection of the data. These exercises were subdivided
into the 10 following classes, and proportion correct was calculated for
each of these classzes.

{a) Algebraic Equivalence I. The student is given an algebraic

expression and is asked to choose an eguivalent éxpression.
Example:
TYPE 10/7 - 5§ - 2
COULD EE WRITTEN

TYPE 10/(7-5) - 2
TYPE (10/7) - (5-2}
¢. TYPE (10/7) - 5 - 2
W. NONE

=

(b) Algebraic Equivalence II. The student must choose a described
algebraic expression,
Example:

WHICH COMMAND WILL CAUSE AID TO MULTIPLY 25
BY 5 AND DIVIDE BY 37

TYPE 25 X 5/3
TYPE 25 % 5/3
TYPE 25(5/3)

29

2 o w @



(e) Choice of AID Programs. The student must choose which of two
routines will produce a specified result.
Example:
_WHICH PART TYPES THE SMALLEST OF TWO NUMBERS?

A, 3.1 TYPERIFR>S
3.2 TYPE 8 IF R <= §

B. L,1 TYPERIF R<S
4.2 MYPE S IF R > S

(d) Mechanies. The student is asked about the mechanics of using
the instructional program or the ALD interypreter,
Example:

WHICH COMMAND WILL STOP THE AID INTERPRETER, AND
RETURN YOU TO YOUR LESSON?T

A, CTRL-H
B. FEETURN
C. TINST

D. CTRL-T

(e) Syntax of AID Commands. The student must decide which of a
list of commands is syntactically correct.
Example:

WHICH OF THESE COMMANDS WILL CAUSE AID TO STOP
AND WATIT FOR YOU TO TYPE A VALUE FOR 87

A, 3.7 ASK S = %

B. 3.7 DEMAND S

C. 3.7 REQUEST S =
3,7 DEMAND S

: |3



(f) Semantics of AID Commends. The student must chocse from among
syntacticully currect commands those thet effect a sprecified
action.

Example :

WHICH COMMAND(S) WILL NEVER GIVE A NEGATIVE
NUMBEER NO MATTER WHAT THE VALUE OF X IS?

A, TYPE X/5

B. TYPE SGN(X)*(X/5)

c. TYPE X/(-5)

D, TYPE SGN(X}X/(-5))

N. NONR
(g) 3Boolemen Eguivalence I. A Boolean statement 1s glven, and the
student must choose an equivelent statement.
Example:
X <= M
MEANE THE SAME AS WHICH OF THESE?

A. M#X
B. M<=X
€. M> X
N. NONE

(h) Boolean Equivalence IT. The student must choose a Boolean
stetement, given e deseription of it in English.
Example:
WHICH MEANS "Q IS NOWNWNEGATIVE?"

A, Q>0
B. Q@>=0
C. @<0
D. @ <=0

= )54

61



(i} Bequenge of Execution. The choices are lists of step numbers,
and the student must choose the list that executes the commands
in a specified order.

Example:

16.1 DO STEP 2.1 IF Q <0

16.2 TYPE Q
2.1 SET Q = - Q
DO PART 16

IF Q@ = 3, THE STEPS WILL EE DONE IN WHICH ORDER?

A, B. C., D,
16.1 16.1 16.1 16.1
2.1 16.2 2.1 16,2
16.2 2.1

(J) Miscellaneous

The number of exercises, number of first responses, and percent
correct on first responses for each of the above classes of multiple-
choice exercises are gilven in Table 9.

It is difficult to draw firm ccneclusions from this subdivision of
problems but these data present some clues to student behavior. The two
classes with the highest proportion correct are (d) Mechanics, and (g)
Boolean Equivalence I. The two classes with the lowest proportion cor-
rect are {c) Cholce of AID Programs and (h) Boolean Equivalence TI. The
proportion correct for class (i) Sequence of Execution is only 51.6% over
13 exercises. It may be that the students have difficulty understanding
order of execution of commands end that the curriculum should emphasize
thls area. The data from later lessons on loops will be studied to see

if they also suggest some revision in this aspect of the course.

62 RSIC



135

74

Number of Exercises, Number and Percent of Correct First Responses in the

Table 9

10 Classes of Single Choice Multiple-choice Exercises in

Lessons 1 to 21 (Excluding Lessons 7, 1k, 21)

e

o —

Number of ‘Totéal .correct Total first Percent

Exercise type Exercises - Ffirst responses responses correct
(a) Algebraic Equivalence T 38 62 61.3
(b) Algebraic Equivalence II 2 12 25 L8.0
{(c) Choice of AID Programs 3 13 38 34.2
(d) Mechanics 6 ™" 88 8Lh.1
(e} Syntax of AID Commands 7 61 91 67.0
(f) Semantics of AID Commands 2 16 31 51.6
(g) Boolean Equivalence I 3 38 4y 77.6
(h) Boolean Equivalence IT 2 13 3L 38.2
(1) Sequence of Execution 13 7 188 51.6
(3) Miscellaneous 12 Th 112 66.1
Total 56 L36 718 60.7




In multiple-choice exercises, several variables other than problem
type may contribute to difficulty. One of these variables is the number
of choices glven; presumably the larger the set of possible answers, the
more difficult the choice. The range of choices in these exercises is
from twe to five. To estimate the effect of the number of choices, the
correlation between proportion ccrrect and number of choices was calcu-
lated, using only those exercises (49 of the 56) for which there were 10
or more first responses. This correlation was .000, indicating that the
number of choices bears no linear relationship to problem difficulty.
This result is not conclusive since ﬁumber of choices and whether an
exerclse is in Class (c) or (4) are statistically dependent. Further,
Class {c) is the most difficult class but has an average of only two
cholces per exercises, whereas Class (d) is the least difficult class
but has an average of 4.3 cholces per exercises. |

A further analysis was made by using multiple step-wise linear
regression with observed proportion correct, Xy, @8 the dependent vari-
able, and using the following independent varlables;

X5 number of choices
x 1 if one of the cholces is

3
N. NONE OF THE ABOVE

0 otherwise

X, 1 if the exercise is in Class (a) Algebraic Equivalence I

0 if not

X 1 if the exercise is in Class (b) Algebraic Equivalence IT

0 if not

Xg 1 Af the exercise is in Class (¢) Choice of ALD Programs

0 if not /\55
64 sl



0
X8 1
0
X 1
9
0
xlO 1
0
xll 1
0
X12 1
0
x13 1
0

if
if
if
if
if
if
if
if
if
if
it
if
if

if

Thig regressicn was

10 or meore first responses.

the exercise
net
the exercise
not
the exercise
not
the exercise
not
the exercice
not
the exercilse
not
the exerclse

not.

is

is

is

is

is

is

is

in

in

in

in

in

in

in

Class (4) Mechanics

Class (e) Syntax of AID Commends
Class (f)} Semantics of AID Commands
Class (g) Boolean Eguivalence T
Class (h) Boolean Equivalence II
Class (i) Sequence of Execution

Class (j) Miscellaneous

computed for the 49 exeleises for which there were

the order in which they were "stepped"

the values of R and R2 are given. The

counted for 38% of the variance of the

leaves 62% of the variance unaccounted

In Table 10, the variasbles are listed in

into the regression equation, and
variables in the regression ac-
obgerved prcoportion correct. This

for, indicating that there are

other variables, as yet unidentifled, that affect problem difficulty in

this group of exercises.

The two variables that entered into the regression first, xT and X

are the variables for membership in Classes {d) and (c¢), the same two

classes that are statistically dependent on number of choices, and that

the third varisbles to enter into the regression is xe, the number of

65

/S



Table 10

Order in Which Independent Variables Were Entered into a
Multiple Stepwise Regression with the Associated

Correlation Coefficients (R)

e = ; s S i
Order Variable R 32 Increase in R?
1 %, 0.33 0.11 0.11
2 Xg 0.h4o 0.16 0.05
3 %, 0.52 0.27 0.11
L X 0.5k 0.29 0.02
5 %g 0.55 0.31 0,02
6 %y 0.56 0.32 0.02
7 %10 0.59 0.35 0.03
8 X5 0.60 0.36 0.01
9 X3 0.61 0,37 0.01
10 X1q 0.61 0.38 Q.01
11 X, 0.61 0.38 0.00
12 Xy 0.61  0.38 0.00

. AT



choices. o and X together‘accounted for 16% of the variance in the
observed proportion correct, whereas the addition of Xy increased that
figure by 11%, indieating that the number of choices is of significant
effect even after Classes (¢) and (d) are taken into account. The fact
that X, entered into the regression before any of the other variables
(except % and x6) supports the hypothesis that the number of choiges
contributes to problem difficulty.

Constructed-response ExXercises

The constructed-response exercises form by far the most numerous
class of exercises in the course (390 out of 675), and represent more
diversity than either multiple-choice or implied-choice exercises, One
reasonably homogeneous subelass of the constructed;xesponse exercises,
the "predicted AID response" exercises, was chosen for more detajled
study. This class contains 135 exercises, and the data contains 1,861
responses to be analyzed,

In the "prédieted AID response" exercises, the student 1s asked to
predict the result if a given command were to be executed by the ATD
interpreter, For these exerciges, a simple classifipation scheme is not
possible because of the interaction of variables that contribute to the
relative difflculty of each exXercise. TFor this reason, multiple step-
wise linear regression was used to find which of these variables had the
greatest influence on problem difficulty, Only the 104 exercises with
10 or more responses were used in this study. The dependent varisble,
%15 to be predicted by the regression equation was observed proportion
correct, Eleven independent variables were identified and values agsigned

to each exercise. The independent variables were the following:

: SES



Number of arguments for TY?E commands. The problem may

contain several TYPE commands, each of which can have one
or more arguments. The number of arguments for all TYPE
commands are summed to give the value of Xy
Number of ATD commands. All of the commands displayed in

the problem are counted for x If the exeréise is a con-

3°
tinuation of a preceding exercise or exercises, the commands
displayed in the preceding exercise may alsoc be counted

inte this variable. Variables x3 to'xll are concerned

with this extended set of commands.

Proportien of AID commands to be used. Some commands may

be extraneous. X is obtained by dividing the number of

_ commands needed by the total number of commands displayed.

Number of function calls., x5 is the total number of func-
tion cells in the displayed commands, including both defined
functions and standard AID functions.

Number of clauses. The number of IF, FOR, and TIMES clauses
are counted.

Number of substitutions required. %, is a ccunt of the

substitutions required for the correct solutions, including

-substitution of numbers for redlvariables and substitution

of expressions for real variables. Substitution of function
definitions is not counted. As an example, suppose these
commands were glven:

LET F(X) = X+2
SET A = 5

TYPE F(27/4) [
68 /b'z 7



10.

The substitution of 5 for A is counted, and the substitu-
tion of 27/A for X in the expression X+2 1s counted, so
the value of XT is 2.

Imbeddedness of arithmetic expression. The student may
be asked to evaluate some arithmetic expression, possibly
after perferming one or more substitutions. To measure
imbeddedness, we used a "completed” expression, which is
obtained from the expression displayed by making all re-
quired substitutions and by inserting a1l implieit paren-
theses., This completed expression is the basis for

calculating variables *g and x For Xo, imbeddedness is

9
measured by flnding the meximum number of left parentheses
that can be counted before a right parenthesis is encountered.

As an- example, consider these commands:

SET X = 2
TYPE X + X13

The completed expression derived from this would be

2 4+ (213)
and the imbeddedness variable Xg would have the value 1
sinece there is only one pair of parentheses.
Number of operations. The value of x9 is found by counting
the number of operation symbols in the completed arithmetic
expression,
Mumber of exponentiation-operators. The occurrences of
the symbol t in the extended set of displayed commands

2%

are counted for x



X1 Number of implied parentheses. Here the completed arith-

metic expression is nct used for a basig fTor céleulation.
What is counted is the number of pairs of parentheses that
are used implicitly. For example, in this command,

SET X = 213/4,
there is one pair of implied parentheses, (213)/4, and

the value of Xll is one,

be Number of preceding “"predicted AID response” exercises in

12

the same lesson.

Table 11 shows the order in which the variables were "stepped" into

the regression equation and the values for R and Re. The variables used

accounted for only 21% of the varlance in proportion correct. The vari-

able with the greatest effect was x_, the number of operations. This

91
variable is related to, but not identical with, the operations variable

used by Loftus (1970) and by Jerman (1971) in similar models of problem-
solving difficulty. In both cases, the operations variable was found to

be significantly related to difficulty. The second most effective

variable was g the number of clauses, and the third was x_, the number

54‘
of function calls.

The variables Y x7, x3 and Xg all added essentially nothing
to the value of R°. In fact, the first six variables accounted for 20%

of the variance and the next four together added only 1% more.

8. Analysis of Selected Aid Data

Although this report is concerned primarily with data collected by
INST, a large body of data was also collected by the ATD interpreter,

and & sample of this data was selected and analyzed by hand. These data

2%



Table 11

Order in Which Independent Variables Were Entered into a
Multiple Stepwise Regression with the Associated

Correlation Coefficients (R)

—— —— — —
— = —— -

Variable R R2 Increass in R?
Xg 0.30 0.09 0.09
X 0.41 0.17 0.08
x5 0.43 0.18 0.01
X0 0.L3 0.19 0.01
X5 0.4k O.LQ 0.00
X, 0.44 0.20 0.01
xg 0.45 0.20 0.00
Xy 0.45 0.20 0.00
%, 0.5 0.2l 0.00
%, 0.46 0.21 0.J0
Xqq 0.46 0.21 0.00

A

71



were collected by the AID interpreter as students used it to solve prob-
iems given by the instructicnal program. The data consists simply of the
characters typed by the student together with necessary bookkeeping
information such as student mumber, problem identifiers, and date.

The problem of analyzing these data from the AID interpreter is
basically unsolvable. As was discussed earlier, no effective procedure
exists that can determine if a student-written program is equivalent to
a given, correct program. An approximation of this procedure may be
possible, but for the moment data collected by the AID interpreter must
be enalyzed bty hand. However, no evaluation of the course will be com-
plete without an examination of the programs written by the students.

In & later report, more sophisticated and extensive analyses of the AID
interpreter data will be made.

In the first 21 lessons of the course, there are 58 exercises that
require the student toc use the AID interpreter. These exercises vary
greatly in difficulty. Some simply ask the student to call the AID in-
terpreter and copy & single command; others ask the student to apply
recently learned principles to solve complex problems. Of the 58 exer-
cises requiring the use of AID, 28 are essentially copying tasks. Of
the remaining 30 exercises, there are approximately 20 that can serve as
genuine tests of the students' ability teo use the AID interpreter. Eight
of these exercises were chosen for analysis, the results of which are
summarized in Table 12.

All these exercises follow the same form. The instructional pro-
gram presents a problem and asks the student fo use the AID interpreter-

to solve it (the student may request hints at this point, but he cannot’

A



gL

Table 12

Summary of Student Performence on Selected "Use AID" Exercises

Fo. students No. correect solutions: % correct: first No., correet solutions: % correct
Lesson no. - Problem noe.  who used AID - first wse of AID use cof AID all ATD uses all AID uses

.5 30 13 2 | 15.4 12 92.3
5 31 12 3 25.0 ‘ 1l . 9l.7

8 Q 20 . 11 . .55.0 15 . 75.0

8 27 6 4 | 25.0 6 3.5

8 28 12 W 33.3 12 ~ 100.0
9 3 18 3 16.7 7 38.9
12 i 15 6 Lo.o 9 60.0
15 15 ‘ 11 ' ) 18.2 ‘ 8 . 72.7
Totals 8. 117 '35 | 29.9 8o ' Y

7N



give en answer until he has called the AID interpreter). Next, the
student calls the ATID interpreter and attempts to solve the problem.
This step is called the "first use of AID" in Table 12. The student may
at this time write a program, try it out, replace one or mcre commands,
correct typocgraphical errors, etc. Finally, when he is satisfied with
his solution, the student switches back to the instructional program and
is asked for a report on the results he cobtained. If his reported re-
sults are incorrect, the instructional program gives him additional
instruction and asks him to switch back to AID and try again.

Table 12 shows the number of students who correctly sclved each
problem on the first try and the number of students whe eventuwally ar-
rived at a correct solution. The percent correct for first AID use is
quite low (29.9%). Since these problems are among the most difficult in
the entire course, this percent is expected to be lower than the 66%
average for other exercises. BRecause of the édditional help given by
the instructional progrem after the first use of ATD, the percent correct
is expected to rise when subsequent uses are considered, and, in fact, it
does rise to 68.4%. The difference between proportion correct for first
try and for subsequent tries is most proncunced for Lessecn 5, Exercise 30.
Only two out of 13 students solved the problem on the first try, but 12
of them solved it eventually.

During the hand-grading of these exercises, noteé were made on the
most common errors for each problem. Following are the problem state-
ments (including subproblems) for each of the eight exercises, including

comments on the errors observed while the exercises were being graded.

T / ééi



Protlem 5-30:

1 CENTIMETER = .3937 INCHES. START AID AND CONVERT
THE FOLLOWING LENGTHS TO CENTIMETYERS:

6.9 INCHES
7.445 INCHES
23.9753 INCHES
Problem 5-30.1:
FROM THE ABOVE CALCULATIONS,

6.9 INCHES = ?9? CENTTMETERS

Probliem 5-30.2:

7.445 INCHES = 7?7 CENTIMETERS

Problem 5-30.3:

23.9753 INCHES = 7?7 CENTIMETERS

The students must solve this problem with direct TYPE and SET
commends since indirect (stored) commands have not yet been introduced.
One solution would be

SET X = .3937
TYPE 6.9/X, T.445/X, 23.9753/X

Cn this problem only twe of 13 students were correct on the first
try. Seven of the students made algebraic errors; six used multiplication
instead of division, and one used .3937/6.9 instead of 6.9/.3937. Two
students made algebraic errors on the second try, one repeated the error
cf using multiplication rather than division, and one came up with a
unique use for = {6.9/3.1416).

Although a number of syntax errors were made, they were almost all

typographical errcrs and were corrected by the student without any

" S &g



intervening instruction. Only cne student was unable to correct his
errors in syntaxf It is likely that had the students known the correct
algebraic formulation, all but one would have produced a correct solution
on thé first try.

Problem 5-31:

70 FIND THE NEW AMOUNT IN A SAVINGS ACCOUNT, CALCULATE THE
INTEREST AND ADD IT TO THE LAST BALANCE. START ATD AND
CALCULATE THE INTEREST AND THE NEW BALANCE AFTER ONE YEAR
FOR AN ACCOUNT WITH AN INTEREST RATE OF 4.5 PERCENT PER
YEAR AND A PREVIOUS BALANCE OF $3274.86, (ASK FOR A HINT
IF YOU NEED ONE. ) '

Problem 5~31.1:
WHAT IS THE INTEREST ON THE ABOVE ACCOQUNT TO THE NEAREST
PENNY?

FProblem 5-31.2:

WHAT IS THE NEW BATANCE IN THE ACCCUNT?

This probliem can be done in several ways. One solution, which was

not used by any of the students, would be

SET P = 3274.86
SEM T = .0LS %P
TYPE I, P+I

Only three cut of 12 students were correct on their first try, but
1l eventually succeeded. Two students made syntax errors of the same
kind; they both used the symbols $ and % in an arithmetic expression,
Two students calculated the new balance directly, without caleculating
the interest independently, which left them unable to answer the gquestion

in the first subproblem. Obviouslj, the problem should have been explicit

s s



in its request for two independent calculations. Four students used L.,5
as the interest rate rather than .045, and two students used the wrong
arithmetic operation. Of the 11 students who eventually gave correct
answers, only four used variables. lHere again it would seem that the

major difficulty is with algebra, rather than with the use of AID.

Problem 8-9:

START ATD AND USE A "LET" COMMAND TO IEFINE A FUNCTION
THAT GIVES THE RECIPROCAL OF X. USE YOUR FUNCTION TO
FIND THE RECIPROCAL OF

119.4

67.313.

E+4
Problem 8-9,1:

WHAT IS THE RECIPROCAL OF 119.47

A correct solution of this exercise would be

LET F(X) = /X
TYPE F(119.4), F(67.313), F(6+L)

Over half of the students solved this on the first try, and three-
quarters of them were eventually correct. The LET command was introduced
in Lesson 8, and this was the second exercise in which the students used
AID in this Jesscon. ¥Five out of 20 students made syntax lerrors that
they could not correct, all in the LET command. Three students made
algebraic errors, using as the formula for reciprocal .l x, xe/e, and
/%%,

needlessly beforye each functicn call,

Two students who defined the function correctly redefined it

/o5

(i



In this exercise, the syntax of the newly introduced LET command was
the source of most errcrs.
Problem 8-27:

USE AID TO DO THIS PROELEM, DEFINE A "VOLUME" FUNCTION
THAT WILL GIVE THE VOLUME OF A CYLINDRICAL TANK OF RADIUS
R AND HEIGHT H.

(VOLUME = 3.1416 TIMES THE RADIUS SQUARED TIMES THE HEIGHT, )
FIND THE VOLUMES OF 2 TANKS:

TANK A IS 57.5 FEET HIGH AND HAS A RADIUS OF
18.6 FEET.

TANK B IS 65.4 FEET HICH AND THE RADIUS IS
19.3 FEET,
Problem 8-27.1:

WHAT IS THE VOLUME OF TANK B?

Problem 8-27.2:

WHICH TANK HOLDS MORE, TANK A OR TANK B?

A correct solution for this exercise is

LET V(R,H) = 3.1416 % Rt2 % H
TYPE V(18.6, 57.5), V(19.3, 65.4)

Only four of 16 students succeeded on this exercise on the first
try, and only six eventually succeeded. Seven students did not define a
function at all but solved the problem arithmetieally. Most of the stu-
dents who tried to use a function were confused about the syntax of the
LET command, the use of functions of more than one variable, or the use
of dummy varisbles. Two students used the wrong algebralec formula (xrh

2
instead of nr h) even though the prcblem gave the formula.

. v



Here it seems the course moved too fast in introducing functions of
more than one variable so scon after simple functicns were introduced.
Scme of the preceding exercises which required substitution of expressions
containing real variables for the dummy variables used in function defin-
itions may have exacerbated an exlsting confusion about variébles. The
next exercise which required a function of only one variable proved much
less difficult.

Problem 8-28:

USE AID TO DO THIS PROBLEM, DEFINE A FUNCTION TO CONVERT
DEGREES FAHRENHEIT TO DEGREES CENTIGRADE. THEN CONVERT
THESE TEMPERATURES TO CENTIGRADE:

0, 10, 32, 72, 2iz2

Problem 8-28.1:

T2 DEGREES FAHRENHELIT IS EQUAL TO HOW MANY DEGREES
CENTIGRADE?

A correct sclution is

LET C(F) = (F-32) % 5/9
TYPE C(0), ¢{10), ¢(32), c(72}, c(212)

and one-third of the students gave this soluticn, or an eguivalent one,
on their first try. All of the students arrived at a correct solution
en a later try.

Seven out of 12 students made algebraic errors, five of them iden-
tieal: x - 32 % 5/9 instead of (x-32) ¥ 5/9. Omission of necessary

parentheses 1n an algebraic expression with only two operations indicates

170

a basic confusion about the hierarchy of operations.

79



Prcblem 9-3:

WRITE 4 FUNCTIOF, H(A,B), THAT WILL FIND THE HYPOTENUSE
OF A RIGHT TRIANGLE IF THE LENGTHS OF THE OTHER TWO SIDES
ARE GIVEN BY A AND B, START THE AID INTERPRETER AND TEST
YOUR FUNCTION ON THESE TRIANGLES;

A=3, B=h
A=12, B=l2
A=1/2, B=3/4
. A=9, B=13.2

= w N e

Problem 9-3.1:
WHAT IS THE HYPOTENUSE OF THE FIRST TRIANGLE ABOVE?

(WHERE A=3, B=l)

Problem 9-3.2:
WHAT IS THE HYPOTENUSE OF THE TRIAWGLE WITH SIDES
A=1/2 AND B=3/4?
This is the first exercise using AID after the standard AID function
SQRT is introduced, and the correct sclution is

LET H{A,B} = SQRT(At2 + Bt2)
TYPE H(3,4), H(12,12), H(1/2,3/4), H(9,13.2)

The students did very poorly on this problem. Three of the 18 were
correct on their first try, but only seven eventually achleved a.correct
solution. Most of the errors were syntax errors either in the LET com-~
mand or in the function call. Like Problem 8-27, there were a number of
errors in the use of parentheses:

1/242 + 3/L12 was used for (1/2)12 + (3/4)12
SQRT{At2) + (Bt2) was used for SQRT(At2 + Bt}

SQRT A was used for SQRT(A)

o 7]



SQRT(A) t2 + (B)t2 was used for SQRT(At2 + Bt2)
916.25%1/2 was used for 916.25+(1/2)
Several students did not know the correct formula and used:
(V& + ¥B)°
(854 (5)
Three students dlid not define a function but did produce correct
specific solutions for all four triangles.
Problem 12-h:

START ALD AND WRITE A PROGRAM (PART) THAT WILL ASK YOU
FOR 3 NUMBERS A, B, AND C, AND THEN GIVE YCU THE AVERAGE
OF THE 3 NUMEERS. AFTER YOU HAVE TESTED YOUR PROGRAM,
USE IT TO FIND THE AVERAGE OF

A = 179.053
B = 23.7
C = 271.0015

Problem 12-4.1:
WHAT ANSWER DID YOU GET?
This is the first exercise in the eight hand-graded exercises that
reguires the use of a stored program. One correct solutlon is

4,1 DEMAND A
4.2 DEMAND B
4.3 DEMAND C
L4 TYPE (A+B+C)/3

This program would be executed by giving the command
DO PART &
Six cof 15 students solved this problem.on the first try, and another

three succeeded later. The majority of errors were algebraic; seven stu-

dents used incorrect formulas: (;;7 (
81 ) <;)\



A+ B+ B3 (used by four students)
ARC/3 (used by two students)
/L + B4 C {one student)
Of the nine correct solutions, four were not debugged, and the
others were tested for only one set of poorly chosen values. Here sagain,

as in Problem 9-3, some students produced specific but not general

solutions.
Problem 15-15:

USING AID, WRITE A PROGRAM THAT WILL FIND THE SMALLER
OF TWO NUMEERS X AND Y, TRY SEVERAL DIFFERENT VALUES

OF X AND Y,

Problem 15-15.1:
DID YOUR PROGRAM WORK?
An economical seclution to this problem is

9,1 DEMAND X

G.2 DEMAND Y

9.3 TYPEXIF X <Y
9.k TYPE Y IF Y <= X

For this exercise, two ocut of 11 students were correct on their
first try, and only three did not solve the problem at all.

The greatest difficulty was in inputting values for the two vari-
ables. Eight students had trouble with this. Several of them tried
rather ingenious (but ineorrect) variants of the FOR clause:

DO PART 9 FORX = 6, ¥ = -2.
DO PART 9 FOR (X,Y) = (4,7), (8,4), (4321,6493).

- Four of the eight correct solutions were well debugged, three were

tested for only one set of values, and one was not tested at all,

. 173



The above discussion of the performance of students on eight se-
lected exercises is not intended as a definitive survey or as a final
evaluation of the curriculum but as an indicati&n of the ways students
solve problems and of guidelines for future analyses of student inter-
action with the AID interpreter. It is clear that some analysis of errors
ig desirable and leads to more meaningful interpretation than correct-
incorrect grading alone.
In summary, the most common difficulties of the students involved
algebra moré than programming and centered around the following aspects:
(1) Use of parenthesés. Whether or not students would have cor-
rectly formulated the algebraic expressions if they were using
ordinary algebraic notation rather than AID notation 1s not
known, but one suspects that in many cases they could not have
done soc.

(2) Use of standard slgebraic feormulas. The number of errors made
in standard formulas 1s a strong indication that the course was
delinguent in not providing these formulas wherever néeded.

{3) Use of functiors of more than one variable.

9, Conclusiong

In this preliminary repcrt, we discussed the interaction between
students and a tutorial computer-assisted course in programming. Rates
of progress as measured by the Daily Report program were discussed using
one class of students as an example. A classification scheme for the
exercises was devised, and the first responses to exercises in the first
21 lesscns were examined by problem type and by lesson. Two classes of

exercises, one set of 49 multiple-choice exercises and one set of 104

o) 7Y



constructed-response exercises, were analyzed in detail to detemmine the
struetural variables that affected problem difficulty. Multiple step-
wise linear regression was used to model exercise characteristics as
determiners of exercise difficulty. Eight exercises that reguired the
students to use the AID interpreter were analyzed by hand.

Some of the results of these investigations were unexpected, scme
confirmed predictions, and some were anomalcus. First, the proportion
of correct initial responses (65.7%) was lower than hoped for. There
are no firm guidelines giving the optimal properticn correct for CAI.
Some curriculum designers eim for nearly 100% correct, others have
claimed 85% to be ideal. We assumed that there is little learning if
the success rate is very high. On the other hand, with a very low suc-
cess rate, students are likely to become discouraged. Until further
research suggests an optimum success rate, each curriculum designer is
left tc his own best judgment. In our csse, we believed that the pre-
portion of correct first responses should be about 75%, which i1s nearly
10% higher than the proportion correct attained by the students studled
in this investigation. It should be noted, however, that proportion
correct summed over students is a simplistic measure of effective in-
struction, particularly for computer-assisted instruction where complex
branching strategies are used, and better measures are cbtained by
examining the distributions of correct answers achieved by individual
students over zll exercises and the success with which students meet the
goals of the course. |

Second, proportion correct among all the lessons was guite steble,

with only four lessons in the first 21 deviating from the total 65.7%

VA



correct by more than 10%. The very low 11.9% for Lesson 17 was unexpected
and remains unexplained.

Third, examination of proportion correct for different problem types
indicated that the multiple-choice eXercises were more difficult than the
constructed-response exercises (54.9% correct compared to 66.6%).

Fourth, the multiple-choice exercises that were examined closely
were those with only one correct cholce, excluding the exerclses for which
the correct answer is "none of the above." The total proportion correct
for these exercises was 60.7%, but the variation between different sub-
classes is striking. The easiest multiple-cholce exercises concerned
the mechanics of operating the instructional program and the AID inter-
preter; the most difficult were those in which the student had to choose
which of two given AID programs would produce a spegified result.

Fifth, we found no simple, unambiguous relationship between dif-
ficulty and the number of correct answers in multiple-choice exercises.
The category labeled "multiple-choice, 1 correct choice" was easiest in
terms of proportion of correct first responses (60,7%), but the other

' was the

single choice category, "multiple-cholce, correct choice: none,'
most difficult (41.8%). Purther, the category with three correct choices
was easier (49.2%) than the category with two correct choices (37.5%).
Sixth, & more sophisticated approach was taken in the analysis of
performance on a selected class of constructed-response exercises. The
exercises used were those ih whieh the student predicts the result of
using given AID commands. A dozen structural variables were defined and

a stepwise linear regression performed to determine the parameters that

could estimate the difficulty of these and similar exercises. We

s 170



succeeded in obtaining a model that accounted for 21% of the obtained
variance in problem difficulty, a reasonable but not spectacular fit for
a first model. Three structural variables (the number of cperations,
tﬁe number of clauses, and the number of function calls) accounted for
18% of the variance. All these variables correlated negatively with

_ proportion correct.

The investigation suggested a few general conclusions about student
behavior. The mechanics of uging the 1lnstructional system did not cause
undue difficulty, as shown by the performance of the students fn Lesson 1
and the subsequent test. of that lesson, as well as by their performance
on the Multiple~choice Exercise Cless. It remains unclear vwhether or not
the students learned to use the various contrcl features as effectively
as they could (the number of requests for hints was much lower than ex-
pected), and further investigation 1s needed of this aspect of the
instructional system.

“The use of direect commands, and the concept of stored programs and
their execution were readlly mastered. The syntax of AID commands, except
for the LET command, caused little difficulty. Although many students
made syntactical errors 1n using the AID interpreter, most of these
errors were immediately corrected by the students.

The three areas in which the students seemed least adept were:

{1) Hierarchy of arithmetic operations.

(2) Use of functions, especlally functions of more than one

variable.

(3) Sequence of execution of AID commands.

. 177



This last observation is substantiated by the study of structural vari-
ables in constructed;re5ponse exercises, and also by the examination of
the student performance using the ATD interpreter. Because of the dif-
ficulty students had with the hierarchy of operations and the use of
functions, it is reasonable to assume that they lacked necessary algebrale
experience and that the course did not provide that experience for them.
It is harder to draw conclusions from the difficulty students had with
the sequence of execution. If this result holds true for later lessons
and for other groups of students, it will pinpeint a major wesakness in
the course, since an understanding of the sequence of execution is
essential in programming. We hope that in later reports more conclusive

evidence can be supplied on these and other unanswered questilons.

87



REFERENCES

Davis, M. Computability and unsolvability. New York: McGraw-Hill, 1958.

Friend, J., & Atkinson, R. C. Computer-assisted instruction in program-
ming: AID. Technical Report No. 164, Institute for Mathematical
Studies in the Sceial Sciences, Stanford University, January 25, 1971,

Friend, J. INSTRUCT coders' manual. Technical Report No. 172, Institute
for Mathematiecal Studies in the Soeial Sciences, Stanford University,
May 1, 1971.

Jerman, M, Instructicon in problem solving znd an analysis of structural
variables that contribute to problem-sclving difficulty. Technical
Report No. 180, Institute for Mathematical Studies in the Social
Sciences, Stanford University, November 12, 1971.

Loftus, E. J. F. An analysis of the structural variables that determine
problem-solving difficulty on a computer-based teletype. Technilcal
Report No. 162, Institute for Mathematical Studies in the Social
Sciences, Stanford University, December 18, 1970.

Mark, 5. L., & Armerding, G. W. The JO3S primer. The RAND Corporation,
Santa Monica, California, August, 1967.

Shaw, J. C. JOSS: Experience with an experimental computing service for
users at remote typewriter conscles. The RAND Corporation, Santa
Monica, California, May, 1965.

- 1/9-

88



NW- 26727

PROVIDING SOFTWARE SUPPORT FOR COMPUTER-ASSISTED INSTRUCTTONl

J» D. Fletcher and R, W. Schulz

The burgeoning use of computer-sssisted instruction (CAI) hes left many
system mansgers with the problem of sppropriately modifying thelr software
for CATI. In maintaining system support for CAIL at Stanford University and
in consulting with managers of cbmmercial time-sharing systems, we have
observed a set of common issues that arises whenever the gquestion of CAI
comes up. These issues are not necessarily peculiar to CAIL, but they recelve
greater emphasis in CAI time sharing. Our intent is to document these issues
- and to make specific suggestions for adopting extant time-sharing systems
for CAT. Some controversy may be occasioned by our suggestions. We hope
that this paper will initiste such an interchange; it is time that implicit
assumptions about CAI time sharing were explicated and examined. OQur assump-
tions should benefit from such an interchange as much as anyone's.

SYSTEM DESIGN AND ACCESS

Reentry

Reentry usually receives fairly low priority in commercial time sharing.
The value of reentry is often far outweighed by the programming effort required
to provide for it and by the rarity of occasions when it might be of significant
advantage. Reentry is considerably more important in CAI time sharing in which many
users access the same curriculum program at one time. Tt is doubtful that
many commercial time-sharing systems can be economically modified to support
reentrant code. However, the desirability of reentry for CAL systems is an

issue that alwsys arises, and if reentry is economically available; it should

e . /50




System Access

In CAI time sharing, system access that allows a student to issue monitor
commsnds should be carefully controlled. The simplest assurance of this con-
trol is the provision of two modes of operatlon: student mode and programmer
mode. A user can thgn be assigned to one of these modes when he logs in or
whenever the system establishes his job status.

Programmer mode should allow full access to all normally provided system
privileges. Theée privileges should include execution of curriculum programs
s0 that the system's full debugging power is available to a programmer simula-

~ting a student. ‘

Student mode should allow no access to the system monitor., 1In providing
for student mode, it is usually necessary to write a special logout routine
that simply signs a user off rather than returms him to monitor control. This
routine is then used to halt execution of student curriculum programs either
normally or becauge of'an‘error condition.

This recommendation may sound more autocratic than its intent. There
may be perfectly good reascns for some students to run in programmer mode.

It is important, however, to provide sufficient protection so that, for
instance, a random fourth-gradé student is not inadvertently given the oppor-
tunity to delete all files from a directory.

Numher of Jobs

One issue that frequently arises is whether to assign separate jobs to
separate students or to run many students under one job. Generally, 1t is
easier to write CAI programs assuming separate Jjobs for separate students.
Even if reentry is available, this technique requires far more system overhead

than does the assignment of many students to a single job. Nevertheless,

re



because of the frequency and depth of CAI program changes, simplicity of pro-
gramming may be at a greater premium than minimizing system overhead, and we
recommend, in general, that separate students be asslgned separate Jobs.

I/0- and Compute-bound Jobs

We consider & job to be balanced if the time it spends waiting for I/0
is roughly equal to the amount of central processor time it takes. Most CAL
 programs are I/0-bound in that they spend much more time in waiting for I/0
than in processiﬁg. Many commercial time-sharing systems, however, appear
written for compute-bound jobs, and managers of CAT time sharing often lament
that they must run I/0-bound jobs on & system designed for'compute-bound
operations. Some systems incorporate parameters that can be adjusted to pro-
vide better support for L/O-bound Jobs, and we recommend that these adjustments
be made wherever possible.

This recommendation should not be made without a word of caution. Early
versions of CAi curriculums are almost inevitably heavily I/0-bound. However,
as techniques of CAI develop and become more sophisticated, CAT curriculum
programs become concomitantly larger, more complex, and, eventually, compute-
bound. Adjustments for I/O-bound jobs ere desirable in CAI time sharing, but
they should not be irreversiﬁlé.

Pagsing Information Between Chained Programs

Most time-sharing systems permit prograﬁ chaining, but its efficiency
may depend on the frequency with which the system designers expected it to
occur. In CAL time sharing, chaining is likely to occur frequently, and its
efficlency is at a premium. |

The need to pass information efficiently between chained programs is also

characteristic of CAT. This latter need is seldom met by commercial time-sharing

/S EA



systems which may require such cumbersome procedures as the creatiocn of tem~
porary disk files to pass information between chained programs. For CAL time
sharing, we recommend that user programs be permitted read and write access
. to a small block of information that is included as part of thelr job status
information. This block can then be used to pass information between chailned
programs. Whether this recommendation 1s worth the investment in technieal
effort necessary for its implementation depends on the efficiency of the
system involved.‘

TERMINAL I/0

Data Communication

CAT time sharing must inevitably support a great amount of character
transmission between student terminals and the contrel system. Further, an
educational technique that has emphasized raplid feedback and knowledge or
results as much as has CAT, requires that character transmission be as effi-
cient as possible. This toplic is far too complex to he discussed satis-
factorily in a paper of this scope; but, in general, we note that efficient

rcharacter transmission is & perennial topic in CAT and that as much character
processing as possible should be accomplished outside of the cenéral processor.
Speecial hardware and special dodes for character transmission are particularly

desirable in CAT time sharing.

CharacterlTiming

Character timing and time outs are alwa&s degirable in CAT time sharing.
Knowing when characters are transmitteé and received is important in obtalning
"latency" measures, which indicate how long étudents take to answer problems
and which are especially Important for research and development in CAL. The

maximum error than can be tolerated in these measures is about 250 msec;

e



certainly, errors of 2-3 sec are too large. Character timing, therefore,
should be accomplished by the system rather than by user programs which may
be descheduled for 2-3 sec under heavy usage.

Time-outs send a special "wake-up" character to curriculum programs if
no response 1s sent by the student after & specifiable interval of time. Time-
outs in CAT time sharing do not require the precision of latency measures; but
they should, at least, be avallable in the languages used for CAI curriculum
programming. Fu;ther, they should be available in both charascter mode and
line mode. Character mode is distinguished from line mode in that every
character sent to user programs acts as a "wake-up" characﬁer; in line mode
only certain break characters such as (line feed), (return), or {end of trans-
mission) cause progrems to be scheduled. If time-outs are available only in
line mode, a student may be interrupted in the middle of a correct response
or he may have to wait an inordinately long fime for his time-out to occur.
If time-outs are available only In charscter mode, the system scheduler will

oceasionally be encumbered with much unnecesgary overhead.

Character Editing

Character editing of terminal input buffers at the system level is a
desirable feature of (AL time'sharing. This feature allows a student to
correct typing érrors, for instance, without |requiring the system to schedule
his curriculum program. Ideally, a CAT curriculum Program could enahle line
mode or character mode input as they bécome pedagogically appropriate. System

editing of the terminal input buffer would be, then, an automatic concomitant

74

of enabling line-mode input.



Break Characters

Break characters for terminating line-mode input should be programmable.
The language used for CAI programming should allow bresk characters to be set
and changed.

Direct Texminal OQutput

It should be possible to send any character to a student terminal without
interference from the system. Many commercial systems automatically send a
carriage return éo & teminal before ocutputting characters from a program, and
many systems send & prompt character to terminals when a program is ready to
~accept Iinput. These features are desirable in CAL time shéring as default

cptions, but they should be under the control of CAT curriculum programs.

DISK FILE STRUCTURE

Special Structures

CAT curriculum programs frequently interrogate student history and cur-
riculum files. Therefore, efficient and truly random disk mccess i1s essential
in CAT time sharing.

Further, CAI typically requires a large number of small files. TFor
instance, a system that supports 1,000 students using three curriculums might
require 6,000 small, perhaps single-record, files. Some characteristics of
these files can bé considered in reducing the system overhead necessary for
maintaining them. They are relatively permanent, are of small maximum length,
and are more likely to be read than writfen. Both flexibility and protection
can be sacrificed to minimize system overheaé and maximize speed in accessing

these files. On the other hand, there remains a need for high-level, powerful

disk file structure in CAT time sharing. When it is practicable, therefore,

ey



we recommend that CAL time-sharing systems support two disk file structures:
a low-level structure that is fast and minimizes system overhead used for
student history, curriculum, and performance data files, and a powerful, high-
level structure used for msintaining other, more typical files.

Performance Data Files

CAI time-sharing systems that support curriculum research and develcpment
are typically required to record and organize large amounts of student per-
formance data. ﬁe recommend that performance data recording be accomplished
by the system. The form and content of the data records should be under
contrel of the CAT curriculum programs, because different éurriculums may re-
quire different data and because saving all performance data for every CAT
program inevitahly results in extensive inefficiencies in both recording and

orzanizing the data. The best procedure is to permit curriculum programs to
call a sygte?.xqqtine that will record a fixed length block of information
Qhen_aﬁd_wﬁefe it‘ié aﬁpr&ﬁéiate. Data analysis programs can then access a
common set of orgahizing and retrieving routines that are maintained and up-

dated in the system.

LARGUAGES FOR CAL

Interpretive Compilers versus Code Generatiné Compilers

A system tﬁaf supports CAIL on a dally, full-oPerational basis usually
must defend its cost by providing as many student contact hours as possible.
The tendehcy of CAT curriculum programs to grow larger and more complex as
they evelve 1s likely to overwhelm the capacity of systems to support suf-

ficient number of students executing interpreter-based code.

7



The superiority of interpretive compilers in providing helpful dlag-
nostics during debugging may become an important conéideration if the CAT
curriculum programmers are relatively unsophisticated. This consideration
is perticularly important if teachers are expected to produce their own CATL.
Generally, an explicit administrative cholce must be made between teacher-
written CAT and large-scale CAI usage. A strong caese can be made for inter-

pretive compilers in the former instance but not in the latter.

Reentry (Again)

Some systems support reentry but only for assembler language programs.
This is an obvious, unnecessary hardship, and we strongly fecommend that
reentry be available in higher-order langusges used for programming CAT
curriculums,

Iinkages to System Library Functions

Higher-order languages on some systems ﬁermit access to an unnecessarily
small subset of system funections. CAIL currieculum programs often require
special system funﬁtions and unusual "front-end" equipment such as light pens,
audio tape controllers, and graphics displays. Therefore, linkages to system
library functions should be as simple as possible, Provision for inserting
assembler langugge statements,lor even blinary cdde, directly into the set of
higher—oréer langﬁage statements is desirable and may permit the most facile
access to system routines.

Optimization of Code

Sooner or later, CAT time-sharing systems are pushed to maintain as many

[l

users as possible for as long as possible, and it is appropriate to end these

comments with & strong recommendation ﬁor as optimal and efficient a code as

i

' /A



possible. Code optimization for string and character manipulation is especlally
important. CAT curriculum programs shall, for exampie , be able to avoid re-
peated concatenstion of the same string and be permitted to specify upper

limits on the character'lengths of strings. In a choice between speed of
compilation and code optimization, systems for CAI should generally opt for

the latter. An ideal CAI system would provide an interpreter for debugging
curriculum programs and & compiler for generating optimized code for daily

ope rations,



10

FOOTNOTE

lThis paper was presented at the Computer Sciences Conference held in Columbus,
Chio, February 20-22, 1973. Funding support was provided by NASA Research

Grant NGR-05-020-547.

John D, Fletcher has served Stanford University as Research Associate for
approximately nine years. He received his baccalaureate degree from the Uni-
versity of Arizona, and both his master's degree in Computer Science and his
Ph.D. degree from Stanford University. Dr. Fletcher has authored and co-authored
a large number of articles, reports, books, and other publications around the
country.

Rainer W. Schulz is Chlef System Designer on the ILLIAC IV project at
NASA/Ames. In prior years he has served as system manager for IMM and XDS,
software manager for the Berkeley Computing Corporation, and system manager at
the Institute for Mathematical Studies in the Social Sciences, Stanford Uni-
versity. Mr. Schulz' baccalaureate degree was obtained from California State

University at San Jose.



N7y~ g;,é%?ﬁg/

COMPUTER~-ASSISTED INSTRUCTION IN PROGRAMMING:

A CURRICULUM DESCRIPTION

oy

Jamesine Friend

. July 31, 1973

Reproduction in Whole or in Part is Permitted for Any
Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCTAL SCIENGES
STANFORD UNIVERSITY
STANFORD, CALIFORNIA

/90



COMPUTER-ASSISTED INSTRUCTION IN PROGRAMMING :
A CURRICULUM DESCRIPTIONl

Jamesine Friend
Stanford University

In 1967 the Institute for Mathematiczl Studies in the Social Sciences
began the development of a computer contrclled course in computer program-
ming. This course ils an introduction tc computer programming for community
college students who have had high school algebra, and it is egulvalent to
& three unit, one guarter community college course. All instruction is
presented by computer, so that the course can be used where there are no
qualified instructors of programming; a supplementary student manual used
gz a reference book ils provided. In the first stage of development about
one-third of the course was implemented on the FIP-1 computer and tested
cn & small group of volunteers, mostly Stanford University students. The
course was then revised, completed, and implemented on the larger PIP-10
computer. Since then several hundred students in several scheols and
colleges have been enrolled for the course. In 1970 data collection rou-
tines were added to the instructional system so that the course could he
used for research.

Students taking the course communicate with the PDP-10 computer et
Stanford University using KSR Medel 33 teletypewriters which are con-
nected to the computer by ordinary telephone lines. A teletypewriter
may be located anywhere that electriclty and telephone lines are availahie--
in an cffice, a classroom, or even a private home; in practice, these

student terminals are usually put intc small classrooms in clusters of

: /7/



four to eight machines. Each terminal communicates independently with
the computer, snd each student works independently of other students. A
student may work at any hour (provided the computer is in operation at
that time) and at any terminal. The communication between the computer
and the student takes the form of & "conversation” in which the computer
and student take turns typing on the terminal, the computer presenting
instruction and problems and the student replying by typing his answers;
the computer then analyzes the student's answers, tells the student
whether he is right or wrong, esnd supplies further imstruction.

A standard Model 33 KSR teletypewriter is ordinarily used although
several similar models could alsc be employed. These machines have 1limi-
tations that affect hoth the style and content of the material being
taught. For example, the Model 33 teletypewriter is a slow output device,
delivering only ten characters per second. Since a college student can
read much faster than ten characters per second, large quantities of text
are printed by teletypewriter only at the risk of boring the student.
Partly for this reason, instruction in the course is given in small,
succinet paragraphs, never more than several hundred words, and usually
less than one hundred words. Another limitation of the Model 33 tele-~
typewriter is its inability to produce graphic characters. Depending
upon the subject to be taught this limitation is more or less severe;
elementary geometry, for example, is essentially impossible, but social
studies are less difficult. For & course in computer programming the
limitation is not severe, although flow charting, which ordinarily forms
a8 part of an introductory course in programming, is best omitted. It is

possible, using the limited set of characters available, to produce

2 /T2



fairly acceptable flow charts, but this 1s so time-consuming, both in the
originel programming of the displaey and in the printing itself, that the
inclusicn of flow charts is of questionable value.

Other than the omission of flow charts, the content of the course
is guite similar to other introductory courses in programming. The course
teaches the concept of stored progrems, the use of variables, and intre-
duction to input and output, the syntax of algebralc expressions, defini-
tions of functicns, conditiconal clauses and the syntax of logical
statements, conditional and unconditicnal branching, core and disk storage,
and an introducticn to subroutines. Some of these subJects, such as disk
storage and subroutines, are discussed only briefly, while others, such
as the syntax of algebraic expressions and the use of conditional tranches,
are covered more extensively.

The language that is being taught in this course is ATD (Algebraic
Interpretive Dialogue), an algebraic language in the same class as the
programming languages ALGOL, FORTRAN, and BASIC. AID is in some respects
superiocr tc these other languages as a first programming language. Since
it is interpreted rather than compiled, students can use direct commands
that will be executed immediately, giving them an opportunity for early
hands~on exXperience; in a language that is compiled the usger cannot
execute & command until his program, written in the proper format, is
gtored, and compiled, and the run command is given. Ancother advantage
of AID is that it 1s a subset of English extended by the language of
elementary mathematics, making AID commands and programs easy to read.

For example, these typilcal commands can be read and understood with no

instruction:2 f;;
3 / é



SET X

]
N

= 1/X

CRT V =
il L -~

l_l

TYPE Y IF X + Y < X/2
One disadvantege of AID 1s that it is less well-known and not as avall-
able as BASIC, ALGOL, FORTRAN, and a number of other languages. This
means that a student who learns AID is lesgs likely to be able to put his
knowledge to immediate use. In partial compensation for this, ATD is
sufficiently similar to the more widely used algebraic languages that
a student who knows ATD well can readily learn one of these other lan-
guages with very little instructicn. Also, several variants of AID
hearing different names are implemented on a variety of computers. COne
of these, the original on which AID was modeled, is JOSH8, a language
designed at RAND Corporsetion for use by engineers and scientists. Another
nearly identical language is FCCAL, which is implemented for several
Digital Equipment Corporaticn computers,

When ATD was chosen as the language to teach, the choice had rapidly
narrowed down to AID and BASIC. BASIC, an algebralc language designed
at Dartmouth College as & beginner's language, is widely known and used,
and has several very useful advanced commands for matrix manipulation
thet are lacking in ATD. BASIC is an excellent beginner's language,
and perhaps would have been the choice for this course except for two
factors: (1) AID as an interpreted language was felt to be more respon-
sive, and (2) (a more pragmatic consideration), BASIC was not at that
time implemented on the IMSSS system. Scon after development of the AID
course began, & BASIC compiler became available for the PDP-10, and a

BABIC course was subsequently written at Stanford, The BASIC course

: /T



was patterned after the AID course and uses the same instructional
system.

This instructional system was designed to give tutorial instruction
under computer control and implements several teaching strategies that
might be used by a human tutor. Tutorial instruction, as contrasted
with the lecture methed of teaching, requires an ability to tailor the
segquence and content of the instruetion to the individual student. In
crder to do this the student's desires and abilities must be taken into
account, The analysis of an individual student's ability depends upcn
pricr accumulation and analyses of his responses to exercises and prob-
lems, and the bulk of the instructicnal system consists of routines for
analyzing such responses. Some of thege routines, such as the routine
for analyzing a respcnse to a true-false exercise, are gulte simple;
others are relatively complex, allowinhg for such possibilities as "“correct
but incomplete® and "partially correct," and for a wlde range of equivalent
anavwers. All of the analysis routines used in the system depend upon the
student's response being in an expected form. Thus, a student confronted
with an arithmetic problem like 502 is expected to reply with a numeral
like 2500 or 2500,0 or 2.5 X 103; responses like "twenty-five hundregd®
or "The answer ig 2500" are not receognized as correct answers and the
instructional program will reply "No. Type a number." Because the
student's response must be phrased in a restricted form, each exercise
is written sco that the expected form of the response is clezr to the
student. Desplte the limitation of restricted forms for student re-

sponses, a great variety of problem types can be used, and the correct-

nesg of resgponses determined with precision, permitting considerable

individualization of instruction. ////Eig}f
5 -



Individualization of instruction is also achieved in the course by
varying both the amount of instruction given and the sequence of instruc-
tion. Both of these are largely under student contrel. Students control
the amount of instruction in each exercise by a device called the "hint"
option, A student may request additicnal information for any exercise
by asking for a "hint." For very difficult problems, several hints may
be provided while for simpler exercises, such as true-false exercises,
no hints are provided° If a student requests & hint for one of these
easier exercises, he is simply told that there ere no hints available.
For most exercises students are allowed a&n unlimited number cf cppor-
tunities to respond. A student may attempt to answer, then ask for a
h;nt, try again, ask for another hint, etc. If a student tries one
problem several times and feels that he is making no headway, he may
ask for the answer and continue with the lesson; in this ﬁay each student
is allowed to judge for himself how much time he should preofitably spend
on each problen.

The sequence of instruction is also contrelled by the student.

There is an sutcmatic sequence of exercises that each student takes,
unless he initiates a change of sequence. This sequence may differ for
different students depending upon thelr ability. A student may interrupt
the instructional program at any time to reguest a different exercise.

He will then proceed in the sutomatic sequence from the exercise he
requested until he again interrupts the program. Students use this
feature either to skip over lessons or portions of lessons, or to re-

view some topic they have previocusly studied.

. S



Although the students may override the automatic sequencing of
exercises provided by the progrem, most prefer to follow the prescribed
seguence more or less as given. BEven if students choose to take exer-
cises and lessons exactly &s given, they will not all receive an identical
set of exercises, since the program provides alternative branches based
on current assessments of student ability. Such autcmatic branching is
used in this course primarily to provide shori remedlal seguences of
additional instruction for students whose performance indicates an in-
adeguate grasp of the principles being presented. These remedial
gequences are imbedded at varicus places in the lessong where appropriate
and are frequently used to provide additional practice in algebraic skills
that have been inadequately learned. Because of this automatic remedia-
tion, different students may receive different exerclses in & glven lesgson.

& student who mekes an incorrect response to a single exercise may
not need an entire sequence cof remedisl exercises. He may profit frﬁm
8 single specific corrective messgage, pointing out the errcr in his
response and allowing him another try at the same problem. This kind
of specific correction is used for most exercises in the course. Mes-
sages are provided, not for all possible incorrect responses, but for
those incorrect responses most likely to occur and most indiecative of
a student's misconception.

Besides the immediate remediation provided in the specific correc-
tion messages and in the imbedded sequences of remedial exercises,
opportunity is alsc provided for review and practice of previcusly
covered topies. This review is given in the form of lesson reviews and

block reviews, ag described in the following section,

7 /77



Organization of the Course

The AID course contains a main strand of 50 lessouns vrganized Lnto
“lesson bleocks." Each lesson block contains five teaching lessons, a
test, and a block review. The fiftieth, and last, lesson 1s a set of
programming exercises with no new instruction and is not included in a
lesson block. The structure of the lesson strand ig illustrated in
Figure 1, Lessons numbered 6, 13, 20, .27, 34, 41, and 48 are tests; and
lessons numbered T, 14, 21, 28, 35, L2, and 49 are block reviews. The
teaching lessons present concepts 1n a tutorial style and supply numercus
practice exercises; the exercises in the teaching lesscons provide hints
and allow the student an unlimited number of trials per exercise. The
tests are intended to be cptional self-tests, They provide nc hints and
allow the student only one chance at each exercise, The bloek reviews
are also coptional and recommended only for those students who do pocrly
in the preceding tests. These reviews are essentially no more than
quick reference sources, providing brief summaries of the topics covered
in the lesson block and supplying the student wilth lesscn and exercise
numbers for the toplcs he wants to review. The block reviews for the
first two blocks are somewhat more complicated than later block reviews
in that appropriate review exercises are automatically selected for the
student who wants them, whereas in later blocks students are simply glven
the reference and expected to use the avallable student controls to access
those.exefcises,

Each teaching lesson covers a set of related concepts and the length

of the lessons varies depending upon the complexity of the ideas covered.

/75



TUTORIAL LESSONS

Sl G S SEEE  VE— G TEES I w—

SELF-
TEST

GENERAL

REVIEW

Figure 1.

Lasson

Bl

Structure of main lesson strand..

Lasson
T




The lessons average about 30 exercises in length with a range from 14
to 63 exercises. The lessons take about an hour apiece although there
is considerable varlance because of the differences in length and d4if-
ficulty. Students need not complete a lesson each day; they may work
on the same lesson for several deys, or they may take several lessons
ir one day. Ordinarily, the students take the lessons in numeric order
but they are not required to do so; if they wilsh to skip around in the
course, they may.

In the first two lesson blocks each teeching lesson is followed by
an optional lesson review. These lessons are for students who are having
difficulty getting started in the course and cover the same concepts
that were presented in the lesscns. The instruction in the lesson re-
views is given more glowly and carefully, and additionali practice problems
are provided. A student need not review an entire lesson since the lesson
reviews are structured to allow the student to review only those topics
he choogses. At the beginning of each review the tcpics covered in the
lesson are listed with essential topics starred and the student chooses
which he wants to review and in which order. Sinee students are allowed
to skip about in the course as they please, a student may skip a lesson
review and return to it at a later time,

After a student finishes a lesson, he is asked if he wants a summary.
Each summary is printed on an 8-1/2" by 11" form that can be torn off and
saved by the student as a permanent record. For many lessons there are
also a few optional "extra-credit" problems. These problems are sub-
gtantially more difficult than the exercises given in the lessons and

are intended for more cepable students. Wherever the AID course is used

10 Dz(j) %



as a graded course, we recommend that correct soluticns to these problems
entitle the student to extra credit. Not every lesson has such extra-
credit problems since they are not always appropriate to the subject
matter.

The relétionship and sequence of lessons, lesson reviews, summaries,
and extra-credit problems are illustrated in Figure 2. The number of
exercises in each lesson and review, and the number of extra-credit prob-
lems for each lesson are shown in Table 1.

The teaching lessons comprise the first five lessons in each lesson
block and form the substantive part of the course. As can be seen in
Table 1, there are a total of 1943 exercises in the course; of these
118¢ are in the teaching lessons. All lessons except the teaching les-
sons are optional and may be bypassed by a student who wishes to complete
the ccurse as quickly as possible. A student who could work at the rate
of one preoblem every two minutes, a reasonable expectation for a good
student, could complete the course in 40 hours. Several of the teaching
lessons could also be omitted, namely, those on recursive functicns,
trigonometric functicns, and exponentlizal functions. If a student skipped
these lessons, he might well finish in 30 hours or less. A slower stu-
dent, on the other hand, might take all of the optional lessona and
problems, and put over 100 hours into the course. In colleges where the
AID course is glven for credit, it is the usual practice to assign a
fized number of hours of computer time to students regardless of their
abllity. An assigmment of five hours per week for 10 weeks is enough
to allow the better students to complete the course while slower students

finish only the first 20 or so lessons. The course content is organized

2 KO/



LESSON
22

@),

|
|
I
|
!

|
|
!

HERIAELL

|
L

|
|

'

LESSON
23

e e —

LESSON
24

Sﬁmmury Review g:;g
22 22 22
Figure 2.

Extra
Creadit
23

Relaticonship and sequence of tutcrial lessons,
summaries, reviews and extra-credit problems.

.




Table 1

Number of Exercises in ILessons, Lesson Reviews, Tests,

Block Reviews, and Number of Extra-credit Problems

e e o e

Lesson Lesson Number of exercises Number of exercises umber of extra-credit
block number in lesson in review problems

1 1 18 18 0
a 28 33 0
3 hg Ll 0
L 61 87 0
> 63 37 0
b 6 43 * *
= 7 13 * *
Subtotals 219 219 0
2 8 62 23 L
2 31 28 9
(;\:5 10 33 Lo 0
t 11 30 25 3
N 12 1% 1k 2
13 33 * *
‘ 14 12 * *
Subtotals 170 130 18




Table 1 (cont'd)

Lesson Iesson Number of exercises Number of exercises Number of extra-credit
block number in lesson in review problems
3 15 62 55 2
16 27 0 0
17 27 0 0
18 35 Q 0
19 32 0 0
20 27 * *
o1 9 * *
Subtotals 183 55 2
n 22 29 0 1
23 36 0 1
2l 35 0 L
K 25 20 0 1
26 19 0 3
27 30 * *
28 19 L * *
Subtotals 135 0 10
5 29 33 0 2
30 17 0 2
Sz\) , 31 ok 0 0
32 50 0 2
33 23 0 2
m 34 27 * *
35 13 * *
\\iz;\\ Subtotals 247 0 g




ot

SoC

Table 1 (cont'd)

Lesason Iesson Number of exerclses Tumber of exercises Number of extra-credit
block nunber in lesson in review problems
6 36 58 0 3

37 L3 0 0

38 3h 0 3

39 37 0 2

40 31 0 0

41 31 * *

42 8 * %

Subtotals 203 0 2
7 L3 24 0 0
Ly 28 0 0

45 23 O 2

L6 23 0 1

L7 21 0 1

48 32 * *

49 12 * *

Subtotals 119 0 L
Totals 1489 Loy 50

umber of exercises in teaching lessons {first five lessons in each lesson block): 1180
Number of exercises in tests (sixth lesson in each lesson block): 223

Number of exercises in block reviews (seventh lesson in each lesson block): 86

Total number of exercises: 1943

¥There are no review or extra-credit problems for tests or block reviews {the last
two lessons in each lesson block).



so that the most essential programming concepts are presented in the
first half of the course, leaving more advanced ccneepts such as the
conditional definition of functlions and the use of matrices to the later
lessons. In this way the slower students are given a good introduction
to the basic principles of computer science. 4 brief ocutline of the
lessong ig given in Table 2; notlice that the first 25 lessons cover
algebraic expressions, scme standard functicns, stored programs, con-

diticnal clauses, branching, and loops.

Types of Exercises Used in the ATD Course

Although the aim of the AID course is to teach students how to
program, and in particular how to program using the AID language, not
all of the exercises in the course are programming problems. Most ex-
ercises are simpler, ranging in difficulty from trivial true-false
exercises to exercises that require the student to construct a complete
syntactically and semantically correct ATD command that could be used
as part of an AID program. The exercises used in the AID course fall
into five major groups:

Multiple~choice, and similar, exercises
Short constructed-response exercises
Programming problems

Questions that ask the student to express an opinion or
preference

Ungraded exercises
Each of these problem classes 1s described below, and the first two
classes are further subdivided. The exact number of exercises in each

of these classes is shown in Table 3 for each teaching lesson and test.

15 SRO&



Table 2

Outline of Course

Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Iesson
lesson
Lesson
Lesgon
Iegson
Iesson
Lesson
Lesson
Lesson
Lesson
Lesson
lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson

Lesson

Using the Instructional Program

Using AID for Arithmetic

Order of Arithmetic Operations
Expconents and Scientific Notation

The SET and TEIETE Commands

Test of Lesscns 1 to 5

Block Review

The LET Command

Some Standard AID Functions

Indirect Steps, the DO Command, the FOR Clause
Parts

The DEMAND Command

Test of Lessons 8 to 12

Rlock Review

Relations and the Use of the IF Clause
The TO Command

Debugging Technigques

The Indirect Use of the IX Command
Debugging, Permanent Storage

Test of Lessons 15 to 19

Block Review

The FOEM Statement

Loops

Loops with Variables in the Exit Condition
Loops and the FOR Clause

Loops with a DEMAND Command

Test of Legsons 22 to 26

Block Review

Absolute Value (Q ﬂ

L7



Lesson
lesson
Lesson
lesson
Lesson
Lesson
Lesson
Lesson
Tesgon
Lessen
Lesson
Lesson
Lesson
Lesson
Lesson
Lesson
Iesson
Lesson
Lesson
Lesson

Lesson

30
31
32
33
34
35
36
37
38
39
4o
41
4o
L3
Ly
L5
L6
L7
48
49
50

Table 2 (cont'd)

SIN and COS

Exponential and Logaritimic Functions

Lists

Using Loops with Lists of Numbers

Test of Iessons 29 to 33

Block Review

Nested Loops and Decrementing Counters

SUM, PROD, MAX and MIN
Arrays

More about Arrays and Lists

Conditicnal Definition of Functions

Test of Lessons 36 to 4O
Block Review

Recursive Functions

AND, OR and NOT; Truth Tables
TV(X) and the FIRST Function

LET and Boolean Expressions; Debugging Tools

More Standard ATD Functicons
Test of Lessons L3 to 47
Blcck Review

FProgramming Prcblems

18

Ny



Class 1: Multiple-choice, and similar, exercises. These exercises

pose a set of aiternate possibllities that are listed or clearly implied
by the text of the exercise. Thers are four distinct subclasses within
this class.

(a) Multiple-choice exercises. This subclass includes only those
exercises that are in the traditional multiple-choice format,
with the choices explicitly listed and each choice labeled
with & letter identifier. A number of multiple-choice exer-
cises in the course have more than one correct cholice, and the
student is expected to find all of the correct choices.
Multiple~cholce exercises can be further subdivided according
to how many correct cholces there are. Also, in some exercises
nene of the cholees listed is correct, and the list of cholces
includes the entry

I, NCNE OF THE ABOVE.
Exercises for which there is no correct true choice cculd alsc
be put into a separate subclass., The following, finer, divi-
sion of the class of multiple-choice exercises will not be
found in Table 3, which shows only the broader classification,
(i) Multiple-choice exercises with one correct answer
(other than exercises in which the correct answer
is "None of the above."). OFf the 174 multiple-choice
exercises in the teaching lessons and tests, 107 are
in this class.
(1i) Multiple~choice exercises with two correct choices.

There are 39 exercises of this kind.

19 C;ZO ?



o

Table 3

Mumber of Problems in Each Class of Problems, by Lesscn

Problem Cless

la 1b lc 14 2a 2b 2c . 2d 3 L 5
’ QOther Predicted Reported Other
lesson Multiple True- dimplied result of ATD result of ccnstructed Programming Opinion  Ungraded
‘number  cholce Yes-no false cholce ATD command command AID command responses problems gquestiocns exercises Total
1 5 2 ' 3 pJ 3 ) 18
2 11 1 Y 2 3 3 L 28
3 1 19 7 3 1 3 2 ko
4 T 1 25 1 3 15 3 [ 6L -
5 6 > 9 13 7 9 L 63
6 [ 7 12 5 2 6 2 3 43
8 1 32 B H 8 4 5 62
9 1 17 6 3 b 31
10 b 1 2 b 13 5 b 33
11 1 1 1 6 2 5 6 8 30
12 1 3 2 5 3 ;h
13 3 13 8 b 2 3 33
15 5 24 6 6 1 6 6 8 €2
16 5 1 1 10 2 8 27
17 1 18 L K 297
18 6 22 1 é 35
19 1 7 3 7 2 8 32
20 6 1 1 1 6 10 2 27
22 iz 1 1 1 & b i 29
23 1 1 28 2 . 36
24 L 1 18 1 T & 35
25 1 13 1 L 1 20
26 1 1 1 2 6 2 3 3 19
27 T 2 20 1 30



Table 3 {cont'd)

Problem Class

T

an

ia 1b lc 1d 28 2b 2¢ - 2a 3 b 5
Cther  Predicted Reported " Other
lesson Multiple True- implied result of ATD result of constructed Programming Opinion  Ungraded
number  cholee Yeg=no false cholee AID command command ATD command respeonses problems questions exercises Total
29 6 3 15 2 5 2 33
30 7 1 2 1 2 in 17
3l 5 6 4 3 1 3 2 2k
32 M 9 1 2 25 3 3 3 50
33 2 1 2 6 Y 5 3 23
3k 4 1 8 2 11 1 7.
36 3 2 6 31 5 T L 58
37 1 1 3 b 15 Y 2 43
38 11 1 14 2 3 3 3L
39 > 1 3 15 6 L 3 37
ko 10 13 2 2 L 31
k1 1l 1 2 S 10 : 1 31
L3 2 9 5 in 3 "1 .8y
Lk L 8 1 5 3 2 5 28
Ls 2 2 3 6 b 3 3 23
46 L 3 1 3 2 L 3 3 23
7 1 15 1 3 1 21
48 13 T 10 2 32
Totsl, Teaching Lesscons: )
124 13 32 19 169 5T 86 362 113 155 50 1180
Total, Tests:
50 i 16 1 36 29 2 71 H 13 o] 223
Totals: 174 1% 48 20 205 86 88 433 117 168 50 1403




(b)

(e)
(a)

(11i) Multiple-choice exercises with three or more correct
choices. There are 2] exercises in this class.

(iv) Multiple-choice exercises to which the correct re-
sponse is "None of the above.” There are seven
exercises like this (although there are many exer-
cises that list "None of the above" as a possibility).

Yes~no gquestions. The exercises in this class are those in
which the two possibilities, yes and no, are Iimplied by the
grammatical form of the question rather than being expliecitly
listed as are the choices for multiple-choice exercises. All
of the exercises in this eclass deal with matters of fact,
rather than cpinion. A large number of yes-no questions are
also found in the clags of exercises that ask for students?
opinions (Class L, described below), but those exercises are
also not included here.

True-false exercises.

Other "implied-choice" exercises. There are z number of exer-
cises in the course that appear to be constructed-response
exercises in that the text dces not list the possible answers
from which to choose. These exercises are revealed by closer
inspection to be more related to multiple-choice exercises
than to constructed-response exercises since a limited number
of choldces are clearly implied in the statement of the problem.

As an example, the following questicn gives two alternatives,

o/

one of which is the correct answer:

22



IF YOU USED THTS COMMAND
TYFPE 1/100
WOULD AID GIVE THE ANSWER IN DECIMAL ¥FOERM OR IN

SCIENTIFIC NOTATTON?

Class 2: Short-constructed-response exercises. These exercises

require short-constructed recponses that will be checked for correctness

by the instructional program. Class 3 exercises and Class 5 exercises,

described below, could alsc be consldered constructed-response exercises

and are distinguished from exercises in this class in that they are not

checked for correctiness by the instruetional program, for reasons given

below.

The short-constructed-response exerciseg, like the multiple-

choice exercises, can be further divided into several subclasses, which

are described below and are tallied in Table 3.

(a)

Exercises that ask the student to prediet the result of using
a given set of AID commands. In thege exercises the students
are shown an AID command or sequence of commands and are asked
tc prediet what result would be given if such commends wers
used.

Exercises that regquire the student to construct an AID command.
In these exercises the student's response is analyzed by the
instructional program, as are all exercises in Class 2; students
are algo expected to construct AID commands as they work the
programming problems in Class 3, but those commands are not
analyzed by the instructional program, and are not inecluded

in this clasgs. On occasion students are asked to construet g

/3

23



(d)

part of an AID command or to complete a given partial command;
those exercises are in (lass P4, bhelow.

Exercises that ask the student to report results obtained from
student-constructed AID programs. These exercises always fol-
low an exercise from Class 3. They are used by the ingtructional
program to judge the correctness of the program written by the
students for the preceding Clagss 3 exercise. A more complete
explanation of the sequence of problems will be given below

in the description of the Class 3 exercises.

Other constructediresponse exerclises. This class incorporates
the miscellanecus constructed-response exercises. Exercises
gimilar to those in Class 2b but requiring the student to con-
struct only a part of an ATID command, rather than an entire
command, are included here. Also included are exercises similar
to those in Class 2c but requiring non-numeric responses. The
elass 1s large and heterogencus; the only common characteristics
of the exercises in this class are that they all require con-
structed responses less than one line long that are checked

for correctness by the instructional program.

Class 3: Programming problems. Characterizaticn of the exercises

in this class as "programming problems" is imprecise; many of these exer-
cises require the student to construct only a single AID command that is
not pert of a program and may simply be copied from the text given by
the instructional program. However, the class is well-defined in that

all 1ts exercises require the student to use the computer as a programmer,

L Y



not as & student. To clarify this issue a few remarks about the instruc-
tional system are called for.

The various types of commands that can be written in the AID lan-
guage and used in AID programs are introduced to the student one at a
time, using a sequence of instruction like the cne described below.

First, an example of an AID command or program is shown and its

use explained.

Second, the student i1s shown several examples and asked to predict

the result of using such a command cor program.

Third, the student is required to construct part or all of a

similar command cr progranm.

Fourth, cne or more programming problems illustrating the use of

the new principle are given.

In the first three steps of the seguence described above the in-
struction is given to the students by means of an instructional program
named INST; in the fourth step the students use the AID interpreter which
interprets and executes AID commands. After using the ATD interpreter
to solve the problem, students return to the instructional program for
further instruction. Programming problems are posed by the instructiconal
program, but once a student starts using the AID interpreter he is given
no further instructicn until he branches back teo INST. This branching
is completely under siudent control; the details of accessing both pro-
grams are taught in the course. Thus, while the student is using AID
he is completely on his own, communicating with the computer by means
of the AID interpreter, just as a working programmer would do. These

two programs, INST and ATD, together control all cf the student’s

. 215



interaction with the computer as he takes the AID course, and together
form the interactive part of the instructional system. In essence, the
difference between these two programs is that INST talks about the lan-
guage AID, while the AID interpreter uses the language AID. The ATD
interpreter is a commercial program that was written for the use of
programmers, net students, and contains no routines for comparing a
student's program tec a correct soluticn for the same problem. For in-
structional purposes, however, it is desirable to know 1f a student
solved the given problem, and this is accomplished in the course by the
instructicnal program which keeps track of which progfamming problem the
student is working on and asks him about the results cbtained by his
program after he returns to the instructional program. The prcblems
that the student is working on while he is using the AID interpreter are
exactly the problems in Class 3, and the exercises that ask the students
the results of his work are largely in Class 2¢, although a few are in
Class 24,

As mentioned before, not all of the exercises in Class 3 should be
labeled programming problems since some reguire no more than a single
direct command, Thus, the difficulty of exercises in this class varies
from the easiest to hardest to be found in the course. Some exercises,
in fact, are no more than trivial copylng tasks {with the added compli-
cation of starting and stopping the AID interpreter), while others are
programming problems of & complexity that might challenge experienced
progremmers. The exercises in Class 3 could be further subdivided into
at least three subclasses on the basis of difficulty. The easiest sub-

class, which asks the student to start the AID interpreter, copy a glven

2 =2/ &



set of commands, and cobserve the result, contains 37 of the 117 program-
ming problems in the teaching lessons. Another seven programming problems
are almost as simple, requiring only mincor modificaticns cof programs

given as examples in the lessons. There are 73 problems that are dif-
ficult enough to require some original thinking or problem-solving skills
on the part of the student; these 73 problems themselves vary considerably
in diffieulty. DNote that we are talking here about the 117 programming
problems in the teaching lessons and tests. There are also numerous
programming problems in the review lessons, and all of the extra-credit
problems are programming problems.

Class 4: Opinion gquestions. These exercises ask the students to

express an oplnion or preference. Typical exercises of this class are
"Would you like to review any of the topics from Iesson 87", "Do you
want the summary for this lesson®", and "Did your program give the re-
sults you expected?" The response to these exercises are enalyzed, and
acted upon, by the instructional program, but are not classified as right
or wrohg, Most of these exercises are in the form of yes-no questions.

Class 5: Ungraded exercises. This class of exercises is very small

and contains only those exercises that reguire responses that cannot for
one reason or another be graded by the instructional program. These
exercises are separate from the programming prcblems in Class 3 which
cannot be graded for an entirely different reason. Some of the ungraded
exerclses are ungraded, not because of any theoretical difficulty, but
simply because the requisite mechanism does not exist in the instructional
program at this time. Others are ungraded because they ask for freely

constructed responses that cannot be analyzed because of the complexity

g /7



of the English language; in these cases, students are given a sample
correct answer and asked to judge for themselves whether or not they
responded correctly (no record of the student response is kept by the
system).

The sbove scheme for classifying the exercises in the course is
necessarily a hybrid scheme, using both response format and exercise
content as bases for classification. This scheme was chosen because it
gives a good picture of the curriculum. Cther schemes could also have
been used. One possible scheme of classification would be to divide the
exercises strictly according to the form of the expected response. This
claggificaticn would yield classes such as

multiple-choice exercises
yes-no guestions
true-false exercises
constructed-response exercises: numeric
constructed-response exercises: single letter or character
ccnstructed-response exercises: word or phrase
constructed-response exercises: ALD command
constructed-response exercises: ALD program
Thls classification has certain virtues, one of which is that there is
no ambiguity, but distinctions such as the one between "opinion" ques-
tions and other yes-no questions are lost.

Another method of classification that would yield a different pro-
file of the course would depend strictly upon content and not upon the
Torm of the response. Since the division of the course into lessons is

a division based upon content, a closer lock at the content of each

legson is warranted. 425;7
28 -



Descripticn of Content of lessons

A complete table of contents for the teasching lesscns is given in
the appendix which lists all the toples discussed in each legson to-
gether with a list of the exercises on that topic (and the number of
exercises for each topic). Below is a more informal discussion of the
teaching lessons, tests, and bleock reviews, with numerous examples.

Lesson l: Using the ingtructional program. ILesson 1 is a set of

18 exercises explaining how to use the instructional program. The
mechenics of typing and erasing responses are explained, and instructions
are given for starting and stopping the program. The student is alsc
taught how to get additicnal instruction (hints), how to get the answer
for any exercise from the program, and how tc contrel the sequence of
instruction.
The siyle of ingtruction in Lesson 1, ag in succeeding lessons, is
informal.
Lesson 1, Exercise 3:
IF MULTIPLE CHOLCE PROELEMS HAVE MORE THAN ONE CORRECT
ANSWER YOU CAN LIST THE CORRECT CHOICES IN ANY ORDER.
SUPPQSE B, C, AND D ARE THE CCRRECT CHOICES FOR A PROBLEM.
WHICH OF THESE WOULD EE CORRECT WAYS TO ANSWER?

A, D, B, C, A

B. B, D, C
C. B, C, D
D. D, B, C

2/7

29



Lesson 1, Exercise 1lh:
FROM LESSON 1, YOU SHOULD HAVE LEARNED HOW TO SIGN ON AND
OFF, HCW TC START AND STOP THE TEACHING PROGRAM, .HOW TO
GET A HINT, AND HCW TC USE CTRL-G. DO YOU WANT TO REVIEW
ANY OF THESE TOPICS?

In Lesson 1, five of the 18 exercises are multiple choice, similar
in form to Exerclse 3 shown above. This proportion of multiple-chcice
exerclses 1s fairly typical of the course.

Exercise 14 illustrates en instructiocnal strategy that is used in
the lessons in the first twe lesscon blocks. At the end of each lesson,
its content is briefly summarized and the student is asked if he wants
to take the lesson review. In this way the student is forced to judge
whether he iz competent to proceed with the course or whether he needs
additional instruetion and practice.

A mumber of exercises are deslgned more to elicit cpinicn than
informaticn, and have nc "correct" answer. Exercise 14 above exemplifies
these; other examples are questions like "Do you want to go on to Lesson
2 now?" and "Do you want to practice signing on and off?" In Lesson 1
there are five exercises of this type (Class 4).

The exact number of each type of exercise in Lesson 1 (and other
teaching lessons and tests) is shown in Table 3.

lesson 2: Using AID for arithmetic. In Lesson 2 the student gets

his first experience with the AID interpreter. The 28 exercises in this
lesscon teach the student how to start and stop the AID interpreter and
how to use the AID interpreter for doing simple arithmetic by giving

direct "TYFPE" commands. The AID symbols for the four simple arithmetic

* RO



operations (+, -, ¥, and/) are taught, and the use of optional perentheses
in arithmetic expressions 1s introduced. By the end of the legson the
student is able to start the AID interpreter ang give simple, direct com-
mands like
TYPE 5/25
TYPE 3.25 + 17.h4 + 3.12
TYPE 15%17 + 25%19
One of the most persistent errors made by students learning an
algebraic programming language is the omission of the multiplication
operator in certain kinds of algebraic expressions. The root of this
difficulty is the convention used in cordinary algebra of implying multi-
plication by Jjuxtaposition. For example, we ordinarily write
2hx + 56(y - z)
without explicit multiplication operators., AID, like c¢ther slgebraic
programming languages, requires the use of cperaticn symbols:
2L¥X + 56%(Y - 7)
In Lessons 2 through 5 there are a number of exercises aimed specifically
at preventing the error of omitted cperation symbcls.
Legsen 2, Exercise 11:
WHICH ARE VALID ATD COMMANDS?
A, TYPE (17.01)/32.765
B. TYPE 1/2 + .1785 - (12/16)
C. TYPE 2(10) + 3(10) + &(10)

D. TYPE 1/2 + (7% 3/2)

H. NONE OF THE AROVE ; ; )

31



Lesson 2, Exercise 19:
USE AID TO DO THESE PROBLEMS:
1. TFIND THE AREA OF A RECTANGLE WITH WIDTH 1.72375 AND
LENGTH 12.001325.
2. SUPPOSE A SQUARE OF WIDTH .63725 IS CUT FROM THE ABOVE
RECTANGLE. FIND THE AREA OF THE SQUARE.
3. TFIND THE AREA CF THE REMAINING PART CF THE RECTANGLE.

Of the 28 exercises in Lesson 21_12 are constructed-response exer-
cises. These exercises vary in difficulty with the most difficult belng
Exercise 19, shown above. None of these exercises approaches in dif-
ficulty the programming problems given later in the course.

Lesson 3: Ordexr of arithmetic operaticns. The arithmetic used in

Lesson 2 was relatively simple, but in Iesson 3 the complexity increases
with the addition of the concept of hierarchy of operations and the use
of parentheses. Because of the necessarily linear nature of computer
input, an algebralc formula cannct be writien on more than one line.

The following expregsion, for example, is typically written cn two lines.

X+ y
x -y

In ATD this expression would be transformed into

(X + ¥)/(% - 1)
The horizontal bar is replaced with a siassh and one of the functions of
the bar, that of implied grouping, is lost, sc that parentheses must be
added. The latter expression is not only more difficult to read, but
also more difficult to construct correctly since it requires the student

to meke & conscicus decision about the desired order of evaluation. A

. AR



large part of ILesson 3 is devoted to teaching the student how to force
the order of evaluation by the use of parentheses, and how to determine
the order of evaluation if parentheses are not used, by using an explicit
set of rules for the hierarchy of the four basic arithmetic operations.
Lesson 3, Exercise 10:
LOOK AT THESE THREE COMMANDS, AID WILL GIVE THE SAME
ANSWER TO TWC OF THEM., WHICH TWO?
TYPE 3 + (2%k4)
TYPE (3+2) * L
TYPE 3 + 2 % L
START AID AND TRY THE THREEE COMMANDS.
Lesson 3, Exercise 22:
TYPE 100/10/10/2
COULD EE WRITTEN AS
A. TYPE {100/10)/(10/2)
B. TYPE (100/(10/10))/2
€. TYPE (100/(10/10/2))
D. NONE OF THE ABOVE
Since a large part of Lesson 3 reviews algebralc notions that may
be better understood by some students than by others, several remedial
sequences are imbedded in the lessons., Since these remedial sequences
ere bypassed by students who are responding correctly, a good student
can complete ILesson 3 in 27 exercises whereas a student who performs
poorly may receive up to 49 exercises.

Lesson li: Exponents and scientific notation., ILesson 4 is much

longer than average (61 exercises), and extends the work on arithmetic

. AAD



expressions t0 include expressions with exponentiation. First, the con-
cept of exponentiation is reviewed, and the AID symbol (%) is introduced.
The rules for the hierarchy of operations are extended to include expo-
nentiation, and the AID form of scientifiec notation is introduced.
Negative exponents, fractional exponents, and the zero exponent are also
covered. ILesson 4, like Iesson 3, is largely review of algebraic prin-
ciples that may have been forgotten. The exercises alsc provide practice
in reading and ceonstructing expressions in the linesr form required by
the ATD interpreter.

As noted above the horizental division bar so frequently used in
algebra has two functions, that of signifying division and that of
implying grouping. The usual notation for exponentiation also has two
functions: signifying exponentiation and implying grouping. As an
example, the following expression raises number 5 to the power 1/2
52/2
However, when this expression is translated into an ATD expregsilon with
the symbol t used to denote expcnentiation, the grouping function is
lost and parentheses must be added:

51(1/2)
Since students ere accustomed to this grouping function of ordinary
notation, they may errcneously translate the expressicn above into
5t1/2
which is equivalent to
5%/2

Several exercises in Lesson 4 ere designed to prevent errors of

5 A

this kind.



Lesson 4, Exercise 2:
WHAT WOULD AID ANSWER TC THIS CCOMMAND?
TYPE 213
Lesson 4, Exercise 12:
USE ATD 7O EVALUATE EACH OF THE FOLLCOWING.
1. L4 SQUARED TIMES 3.1416
2. THE SUM OF 4 CUBED AND 6
3. THE SUM COF THE SQUARES OF 1, 2, 3, 4, 5, 6, 7, AND 8
In Lesson 4, 47 of the 61 exercises require constructed responses.
Most of these are mumeric results of arithmetic calculations to answer
guestions like that in Exercise 2. Three exercises, with several parts,
require the student to use the AID interpreter, and he 1s encouraged to
uge AID throughout the lesson whenever he wishes.

Lesson 5: The SET and DELETE commandg. After the sizeable dose cof

arithmetic given in Lessons 3 and &4, Lesson 5 returns to the mainstream
of instruction with the introduction of two new ALD commands: the SET
command and the DELETE command. EET is used in ATD to assign numeric
values to variables, and DELETE is used to delete a previous assignment
or definiticon. In AID, variables are single letters, and the forms of
the SET and DELETE commands are straightforward and easily learned
(SET X = 5 + 2, DELETE X). A few word problems are given to illustrate
the use of the new commands.

Lesson 5 also introduces the multiple-argument form of the TYPE

command, in which several TYPE commands can be combined by separating

AAD

the arguments with commas (TYPE X, Y, X + Y).

35



Lesson 5, Exercise 3
WHAT WILL AID ANSWER AFTER THESE COMMANDS?
SET B = 1.5
TYFE 3*B
Lesson 5, Exercise 1l:
WHAT CCMMAND WILL CAUSE ATD TO SET M EQUAL TO S PLUS 9%

Lesson 63 Test of Lessons 1 to 5. lesson 5 is the last teaching

lesson in the first lesson block, and is followed by a test in Lesson 6.
Like other tests, Lesson 6 supplies no hints, and students are allowed
cnly one try on each exercise. However, correct angwers are programmed
for each exercise, and the student may request these at any time. When-
ever & student misses an exercise, he is given a reviev reference and
advised to review that topic before proceeding with the course.

The exercises in Lesson 6 are classified by type in Table 3. Of
the 43 exercises in Lesson &, three ask for students' opinions and two
are programming problems that require the use of AID and are not directly
checked by the instructional program. The remaining 38 exercises are
test exercises that are checked by the instructional pregram; these 38
exercises are classified in Table 4 according to which of the teaching
lessons in the lesson block are being tested. Many of the exercises
test more then one lesson sinece the material heing taught builds pro-
gressively from one lesson to the next; such exercises are listed only
once in Table L4 however,

Lesson 7: Block review (general review of lessons 1 to 5). At the

beginning of Lesson 7 the student is informed that the block review is

optional, but recommended for students who missed more than five problems

. A



Table 4

List of Exercises that Test Each Teaching Lesson

Test Exercises

Number of teaching

lesson Test number Exercise mumbers
1 6 2, 3, 4, 5, 6, 7, 9, 10, 12,
13, 14, 15, 16
2 6 8, 11, 17, 18, 19, 20, 38.1,
39.1
3 6 21, 22, 23
Y 6 ok, 25, 26, 27
6 28, 29, 30, 3%, 32, 33, 34,
35, 36, 37
13 1.1, 2, 3, 4, 5,6,7,8
13 9, 10, 11, 12, 13, 14, 16
10 13 17, 18, 19, 20, 21, 22, 23,
2k
11 13 25, 26, 27
12 13 28, 29.1
15 20 1.1, 2, 3, 4, 5, 6
16 20 7, 16
17 20 8, 9, 10
18 20 11, 12, 13, 14, 15
19 20 .17, 18, 1g, 20, 21, 22, 23,
2, 25
22 27 1, 2, 2.1, 2.2, 2.3, 3, b
23 27 5, 9.1, 5.2, 5.3, 5.4, 10
e 27 6, 6.1, 6.2, 6.3, 7, 7.1, B
25 27 5.5, 9, 11, 11.1, 12, 13, 1k
26 27 15, 15.1
27 34 1, 2, 3, b, 5, 6, 7
30 3 8, 9, 10, 11

ey



Table 4 (cont'd)

Test Exercises

Number of teaching

lesson Test number Exercise numbers
31 34 12, 13, 14, 15, 15.1, 16, 17
32 34 18, 18.1, 18.2, 19, 20, 21,

22, 23

33 34 None
36 b1 1, 2, 3, 4, 5, 6
37 b1 7, 8, 9, 10
38 L1 11, 12, 13, 1k, 15, 16
39 41 17, 18, 19, 20, 21, 22, 23
Lo 41 24, 25, 26, 27, 28, 29, 30
43 48 1, 2, 3, 4, 5
Lk 48 6, 7, 8, 9, 10, 11, 12
45 48 13, 14, 15, 16, 17, 18
L6 L3 ;g, 20, 21, 22, 23, 2k, 25,
b7 48 27, 28, 29, 30

R

38



in the preceding test (lesson 6). In order to allow students to review
only selected portions of the lessons in the lesson block, the brenching
structure used in Lesson 7 is more complex than that used in the teaching
lessons and tests. The individual lesson reviews for Lessons 1 to 5 are
called as subroutines by Lesson 7, and students may select not only the
lesson they want to review but a particular part of the lesson. The
following exsmple from lLesson 7, Exercise 5 illustrates how this selec-
tion procedure operates.

LESSON 4 WAS ABOUT EXPONENTS AND SCIENTIFIC NCTATION.

FRACTIONAL EXPONENTS AND NEGATIVE EXPONENTS WERE DESCUSSED,

AND ALSO THE USE OF O AND 1 AS EXPONENTS., THE ORIER OF

ARTTHMETIC OPERATIONS + - ¥ / AND t WAS COVERED.

DO YOU WANT TO REVIEW ANY OF THESE THINGS?

If a student answers 'yes" to the above questicn, he is sent o the
review lesson for Iesson 4, where he is allowed to review any of the
topics in Lesson 4 in any order he wants.

This first block review alsc reminds students that they can control
the sequence of instruction by using the CTRL-G key and that they can use
- the student manual as a reference bock for the course.

Lesson 8: The LET command. Lesson 8, the first lesson of the second

lesson block, introduces the LET command, used in AID to define functions.
The syntax of the LET command for functions of one, two, and three vari-
ables i1s taught, as 1s the syntax of function calls. The difference
between LET end SET commands lg explained and the use of the ITEIETE

command for deleting functicn definitions is described. A substantial

s A



part of Lesson 8 is on substltution of arithmetic expressions for vari-
ables in funection calls and other arithmetic expressicns.
Lesson 8, Exercise 1lh:
WHAT WILL AID ANSWER?
LET Q(A, B, C) = C*¥(A + B)/2
TYPE Q(3, 5, 7)
Lesson 8, Exercise 28:
USE AID TO DO THIS PROEIEM, TIEFINE A FUNCTION TO CONVERT
DEGREES FAHRENHEIT TO DEGREES CENTIGRADE. THEN CONVERT
THESE TEMPERATURES TO CENTIGRATE:
0, 10, 32, 72, 212

lesson 9: Scome standard ATD functions. In Lessen 9, the student is

introduced to four of the standard AID functions. These are:

SQRT{X) - the square rooct function;
TP{X) - the "integer part" funection;
FP(X) - the "fraction part" functicn;
SGW(X) - the sign function.

These functions, together with functions defined by the student,
are used in several progremming problems.
Lesson 9, Exercise 1L:
YOU CAN USE THE ATD FUNCTION FP(X) TC FIND COUT IF ONE
NUMEER CAN BEE DIVIDBED BY ANOTHER WITHOUT A REMATNDER...
IS 2976 EVENLY DIVISIELE By 37
Lesson 9, Exercise 16:

THE SIGN FUNCTION

o H30

40



GIVES 1 IF X IS A POSITIVE NUMEER
AND O TF X IS O

AND -1 IF X IS A NEGATIVE NUMEER

WHAT WILL AID ANSWER?
TYPE SGN{25)

Lesson 10: Indirect steps, the DO command, the FOR clause. In

Lesson 10 the concept of a stored program is introduced. Up to this
point, students have been using AID as a desk calculator, doing all ex-
ercises with direct commands, i.e., commands that are executed immediately.
In this lesson students are taught that TYPE commands can be stored for

" ag in the

later execution by prefacing the command with a "step number,
following examples:
2.1 TYPE ¥(16)
4.7 TYPE Xt2, Xt3
They are also taught how to execute these stored commands by using
a DG command.
Two variants of the FOR clause are used to modify DO commands. In
the first variant, values for the iteration variable are given by a
simple listing:
DO STEP 17.3 FORY = 1, 2, 7, 14.3
In the second varlant of the FOR clause the values for the variable sre
glven in a range zpecification, which gives an initial value for the
variable, a step size, and a final value:

DC STEP 5.6 FOR X = 3(2)9

This command specifies that X will assume the value 3, then be incremented

s Q3N



by 2 after each iteration of step 5.6 until X 2 9. This is equivalent
to the FORTRAN form:
Do 56 X =3,9,2
56 < statement >
and the AILGOL form:
FOR X = L4 STEP 2 UNTIL 9 DO < statement >
Lesson 10, Exercise 6:
START AID AND GIVE THESE COMMANDS:
Y¥7.3 TYPE X, Xt2, Xt3, Xth, Xt5
SET X =3
DO STEP L47.3
SET X = 4
DO STEP 47.3
SET X = 5
DC STEP 47.3
WHAT TS THE VALUE OF Xt5 IF X = 47
Lesson 10, Exercise 17:
WHAT VALUES OF A WILL BE USED IF THIS COMMAND IS GIVER?
DO STEP 73.7 FOR A = 5{10)35
A. 5, 10, 15, 20, 25, 30, 35
B. 10, 15, 20, 25, 30, 35

C" 5: 15; 25} 35

Iesson 1l: Parts, ILesson 1l explains how indirect (stored) steps

are grouped into parts. Steps 12.1, 12.7, and 12.8, for example, are

grouped as "Part 12," and can be executed by a single command:

. 232

DO PART 12



The sequence of execution depends cnly upon the numerical order of the
step numbers, and not upen the sequence in which they were written. Thus,
steps 3.7, 3.2, and 3.0 will be executed in the order 3.2, 3.7, 3.8.
Students have little difficulty with this concept except when step num-
bers end in zeros; some students cannot readily sort into numerical
order a sequence like 3.5,.3.8, 3.10 (the correct order is 3.10, 3.5,
3.8).
Iesson 11, Exercise 5:

YOU CAN TYPE THE STEPS IN ANY ORDER, BUT AID WILL ALWAYS

DO THEM IN NUMERICAL ORDER, WHICH STEP WILL BE DONE FIRST?

17.4 TYPE X¥'Y

17.5 SET N = 5
17.2 SET X = 10
17.3 SET Y = 2

Lesson 11, Exercise 1l1:
A PART (SET OF INDIRECT STEPS) IS ALSO CALLED A PROGRAM.
USE AID TO WRITE A PROGRAM THAT WILL LIST THE RADIUS,
DIAMETER, CIRCUMFERENCE, AND AREA OF A CIRCLE OF RADIUS R.

THEN USE THE PROGRAM FOR R = 10, 20, 30, 40, AND 50.

Lesson 12: The DEMAND command. In Lesson 12 the DEMAND command is

intrecduced. The DEMAND command is used in AID programs for keyboard
input. The DEMAND command can be used only indirectly, unlike previously
introduced commands which can be used both directly and indirectly.
DEMAND is used for numerical input only and the form is simple;

DEMAND X

where X is the variable name to which the input number is asssigned.

43 &3(5



Lesson 12 also introduces the TIMES clause which can be used to
modify e DO command, in this way:

DO PART 7, 5 TIMES

Lesson 12, Exercise L:
START ATD AND WRITE A PROGRAM THAT WILL ASK YOU FOR 3
NUMEERS, A, B, AND C, AND THEN GIVE YOU THE AVERAGE OF
THE 3 NUMBERS, AFTER YOU HAVE TESTED YOUR PROGRAM, USE

IT TC FIND THE AVERAGE CF

A = 179.053
B = 2307
C = 271.0015

Lesson 12, Exercise 5:
WHAT COMMAND WOULD YOU USE IF YOU WANTED PART 2 DONE
T TIMES?

Iesson 13; Test of Lesseons 8 to 12. This lesson is the test for

the second lesson bleock and is structured like other tests: the student
is given only one try for each exercise, and no hints are provided al-
though a student who cannot do an exercise can request the correct
answer,

As for the Tirst test (Lesson 6), the exercises are classified by
type in Table 3, and are classified according to which of Lessons 8
through 12 are being tested in Teble 4. An exercise that might be con-
sidered a test of more than one lesson is listed only once in Table 4.

Of the 33 exercises in Lesson 13, only 28 are properly test exer-

cises, since three ask for cpinions (Class 4 exercises) and two ask the

« R3Y



student to use the AID interpreter but do not check the work done by the

student while he is using AID.

Lesson 1b4: Block review. Iesson 14, like other block reviews, is

optional; the review is reccmmended for students who mizsed more than

three problems ir the preceding test.

lesson 1lb, Exercise 3:
LESSON 8 WAS ABOUT THE "LET" COMMAND AND HCOW TO USE IT TO
DEFINE A FUNCTION, FUNCTIONS OF 2 AND 3 VARTAELES WERE
DISCUSSED, INSTRUCTIONS FOR PRINTING AND DELETING A

FUNCTICN WERE GIVEN.

DO YOU WANT TO REVIEW ANY OF LESSON 87
The student whe answers "yes" will be branched to the lesson review
for Lesson § and then given his choice of which topics to review in what

order.

Iegsson 15: Relations and the use of the IF clause. Lesson 15 begins

a new lesson block with the introduction of the mest powerful of program-
ming tools, the conditional clause, The conditional (IF) clause consists
of the word "if" followed by a Boolean statement, and may be appended to¢
any of the commands so far introduced.

BET 2 = 2 IF X < 10

TYFE X IF X > O

DO PART 5 ITF M = W

Most of Lesson 15 concerns the syntax and meaning of logical state-

ments. The following AID symbols for arithmetic relations are introduced:

. DB



<  less than;

ocregtar than:+
greaierx cnan ;

<= less than or egual;
>= greater than or equal;

# not equal

"won 1

The terms "positive," "negative," and "non-negative" are reviewed. The
Roolean connectives "and" and "or" are alsc introduced althcugh their
meanings and the hierarchy for the connectives are not discussed exten-
sively at this point. The students are required to write several programs
using conditional clauses.
Lesson 15, Exercise 1h:
STUDY THTS PROGRAM,

4g.5 TYPE X IF X > Y

Lo.6 TYPE Y IF X <= ¥

DO PART 49

IF X = 12,1 AND Y = 6, WHAT WILL ATD ANSWER?

Lessecn 15, Exercise 15:
USING AID, WRITE A PROGRAM THAT WILL FIND THE SMALLER CF
TWO NUMBERS X AND Y., TRY SEVERAL DIFFERENT VALUES OF S
AND Y.

Lesson 16: The TO command. Lesson 16 introduces the idea of con-

ditional branching and provides additional practice in the use of
conditional clauses, Although Iesson 16 is guite short {27 exercises),
some cf the programming problems are very difficult. Several sample

programs are analyzed in detail with special emphasis on the order of

46 DZié

executiocn,



Lesson 16, Exercise 3:
HERE IS A PROGRAM THAT CALCULATES THE AREA OF A RECTANGLE
OF LENGTH I AND WIDTH W. IF EITHER L OR W IS NEGATIVE,
PART 15 IS USED TO GIVE AN "ERROR" MESSAGE.
14.1 DEMAND L
4.2 TOPART 15 IF L <O
14.3 DEMAKD W
4.4 TO PART 15 IF W< Q
1L.5 TYPE I*W
15.1 TYPE "DO NOT USE NEGATIVE NUMBERS."
WHICH STEPS WILL BEE DONE IF L = 5 AND W = =39
Lesson 16, Exercise 6:
WRITE A PROCGRAM THAT WILL TYPE 3 NUMBERS A, B, AND C IN

NUMERIC ORDER (THAT IS, THE SMALLEST FIRST, ETC. )

lesson 17: Debugging techniques. Lesson 17 concentrates on the

debugging technique of tracing the step-by-step execution of a program
listing the changes in values of the variables used in the progran.
Lesson 17, Exercise 3:

FOR PRACTICE, LET'S MAKE A TRACE OF THIS PROGRAM,

ASSUMING A = 3.

31.3 DEMAND A

31.2 SET B = At2 - 10
3l.3 SET C = AIF A>B
31.4 SET C = BIF A< B
31.5 TYPE B

31.6 TYPE C 2 g 7

uT



FILL IN THE VALUES OF C IN THIS TRACE (STARTING AT STEP 31.3).

STEP A B C

31.1 3 - -
3.2 3 -1 -
3.3 3 -1 ¢
3. 3 -1 %
31.5 3 -1 7
31.6 3 -1 0?

Lesson 18: The indirect use of the DO command. In Iesson 18 the

indirect use of the DO command is introduced. Up to this point the
student has used DO commands directly to execute preograms or single
steps. The DO commend can also be uged indirectly, as part of a stored
program, or to execute subroutines. Frequently, a conditional clause
is appended teo indirect DO ccommands.

Several exerclses in Lesson 18 provide the student with practice
in determining the order of execution of steps in a program with con-
ditional subroutine calls,

Lesson 18, Exercise 2:

WHEN ATD COMES TO AN INDIRECT "DO" COMMAND, IT WILL DO
THE STEP OR PART INDICATED AND THEN RETURN TC THE STEP
AFTER THE "DO" COMMAND,

16.1 DO STEP 2.1 IF Q < 0

16.2 TYPE Q

2.1 SET Q = -Q

DO PART 16

IF @ = 3, THE STEPS WILL EE DOKE IN WHICH ORDER?

48 025 Z



[

B & D
6.1 16.1  16.1 16.1
2,1 16.2 2.1 16.7

16.2 2.1

Lesson 19: Debugging, permanent storage. The first part of Lesson

19 is an optional section of tips for writing and debugging programs.
This section is primarily for students who have difficulty with the
programming problems in the preceding lessons and covers such toplces

as planning and editing a program, distinguishing between and correcting
several kinds of syntactic and semantic errors, and single-stepping
through a program with commands like .

DO STEP 3k.2.

The seccond half of the lesson describes the difference bhetween core
memory and disk storage, and teaches students how to store thelr programs
on disk by using the ATD file commands: USE, FILE, RECALL, and DISCARD,
Legscn 19, Exercise 5:
SUPPOSE YOU FCORGOT TO TYFE CONE OF THE STEPS IN A PROGRAM,
TF THERE IS A STEP MISSING BETWEEN STEPS 2.5 AND 2.6, YOU
CAN INSERT THE STEP BY USING WHAT STEP KUMEER?

Lesson 19, Exercise 13:

WHAT COMMAND WCULD YCU USE TO FILE PART 29 AS ITEM 37

Lesson 20: Test of Lessons 15 to 19. This lesson Is the test for

the third lesson block. Iesson 20 contains 27 exercises of which two
are requests for opinions. The other 25 are grouped in Table 4 according

to which of the preceding lessons they test.

- 23 T



Tesson 21: Block review. ILesson 21 is a review of the lessons

tested by Lesson 20, Like other block reviews it 1s coptional, but is
recommended for students who miss more then three problems in the test,
Unlike preceding block reviews this cne does not call on lesson reviews
as subroutines, since there were no lesson reviews for Lessons 16 to 19;
instead, the students are given references to pertinent exercises in the
lessons themselves.
Lesson 21, Exercise B8:
IFESSON 19 EXPLATNED HOW TO PLAN, WRLTE, AND EDIT A PROGRAM;
WHAT KINDS OF ERRORS THERE ARE AND HOW TO CORRECT THEM; AND

HOW TC USE PERMANENT STORAGE.

DC YOU WANT TO REVIEW ANY OF LE3SON 167
A student whe answers “yes' will be given a list of the topice in

Lesson 19 and the exercises that treat each of those topiles.

Lesson 22: The FORM statement. The FORM statement, used in ATD to

specify the form of teletype output, is introduced in lesson 22. Up to
this point students use the standard ATD form for teletype ocutput, but
in this case they learn how to define new forms for themselves. A FORM
statement allows the programmer to determine the spacing used in the
output, to define positions for more than one number per line, and to
insert text into the output. The number of digits to be printed can be
gpecified in a FORM statement and any numbers printed will be reunded
to fit the space specified. The FORM statement can also be used to type

text, although a TYPE command can egually well be used for this purpose,

. O

as explained in the lesscn.



Lesson 22, Exercise 16:
WRITE A PROGRAM (PART 7) THAT WILL GET A VALUE OF X
FROM THE USER AND THEN TYPE X, X SQUARED, X CUEED, AND
X TO THE ¥CURTH POWER ON ONE LINE, LIKE THLS:

X =3.0 Xt2 = 9,0 Xt3 = 27.0 Xtk = 81.0

SAVE THIS PROGRAM BY TYPING "USE FILE 100" AND “FILE
PART 7 AS ITEM 1" BECAUSE YOU WILL NEED IT ¥0OR ANCTHER
PROBLEM LATER.

Lesson 22, Exercise 19:
START ALD AND CHANGE THE PROGRAM YOU WROTE FOR PROEBLEM
16 50 THAT IT PRINTS THE TITLE "POWERS OF X", ALSO PUT
1l OR 2 BLANK LINES AFTER THE TITLE. TRY THE PROGEAM FCR

X = 1.2, .7, 6.25.

Lesson 23: Loops. Lesson 23 introduces the vital subject of loops.

Several later lesscns will also desl with this topic, and the loops used
in this lesson are of the simplest sort. These loops use an incremented
variable to count the number of times the lcop is used. The students
are taught to set the counter to an initial value before the lcop, to
add a constant to the counter inside the loop, and to end the loop with
a conditional branch in which the value of the counter is compared to
& constant.

The iesson starts with a detailed study of several sample programs
incorporating simple loops. Geveral exercises are intended to illustrate
the most common errors made in writing loops, and how %o detect and cor-

24/

rect these errors.

51



Lesson 23, Exercise k:
54,1 SET A=1
54.2 TYPE "CONVERSION OF FEET TC INCHES"
54.3 TYPE A, 12¥A IN FORM 2
54.L SET &4 = A+ 1
54.5 TO STEP 5L4.3
FORM 2:
=+ < FEET = < < < < INCHES
WHICH STEP IS WRONG?
Lesson 23, Exercise 5:
56.1 LET F(X) = 3%Xt3 + 5
56.2 TYPE X, F(X)
56.3 SET X = X + .5
56.4 TO STEP 56.2 IF X < 3.5
IN PART 56 THERE IS A MISSING STEP. LT SHOULD GO EEFORE

WHAT STEP?

Lesson 24: ILoops with variables in the exit condition. In Lesson

2 the study of lcops is continued and extended to include loops in
which the ccunter is c¢cmpared not to a constant but to ancther variable.
The use of variables for initial values of the counter is also discussed.
Lesson 24, Exercise 12:
IN A LOOP BOTH THE INITIAL VALUE AND THE VALUE USED FOR
COMPARTSON IN THE EXIT CONDITION CAN BE VARTARLES. THE

VALUES OF THE VARTIAEBIES WILL BE GIVEN BY THE USER BEFORE

RYR

THE LOOP IS USED,

52



£.51 DEMAND L
6.52 DEMAND U
6.53 SET X = L
6.5% TYPE X*3/17
6,55 SET X=X+ 1
6.56 TO STEP 6.54 IF X < U

WHAT VARIARLE IS USED FOR THE INITIAL VALUE?

Lesson 24, Exercise 13:
HERE IS A MORE COMPLICATED PROGRAM. TRY TO FIND CUT

WHAT THE PROGRAM DOES.

3.1 SET N =1

3.2 SET 8 =0

3.3 TYPE N

3.4 SET S =85 + N
3.5 SET N =N + 1

3.6 TO STEP 3.3 IP N < L

3.7 TYPE S

Lesson 25: Loops and the FOR clause. 1In Lesson 25 loops are re-

viewed and practiced. The students are taught that many programs with
loops are squivalent to simpler programs that are executed iteratively
by using a DO command with a FOR clause; in several exercises the
students are asked to rewrite looping programs sc as to be able to use
the FOR clause/ and are advised to use this simpler appreoach because of
the greater ease in writing and debugging such programs. Students are

cautioned that not every looping program can be rewrltten in this way,

and examples are shown to illustrate the point. : r ! 55

23



Lesson 25, Exercise 7:
L.1 SET C =1
k.2 TYPE 60/C
L.3 SET C=C+ 1
Y4 TO STEP 4.2 IF C <7
WHAT DOES THIS PROGRAM DO?
lesson 25, Exercise 7.h:
HERE IS THE ABCVE PROGRAM REWRITTEN TC USE A "FOR" CLAUSE:
4,1 TYPE 60/C
DO STEP 4.1 FOR ...

COMPLETE THE "FOR" CLAUSE.

lesson 26: Locps with a DEMAND command. In interactive programming

it is a frequent practice to sllow for input freom the user during the
execution of a loop; in AID this is done with a DEMAND command. When &
DEMAND command is executed and the response from the user is empty, i.e.,
a carriage return only, AID terminates the execution of the program &t
that point. -Because of this feature, loops that incorporate DEMAND
commands need no conditional clause to determine when to cease iteration.
Lesson 26, Exercise 2:

IF THE USER TYPED THE RETURN KEY ONLY, INSTEAD OF TYPING

A VALUE FCR L, AID WOULD STOP THE PROGRAM (THIS IS LIKE

AN EXTT CONDITION).

5.1 DEMAND R

5.2 SET A = 3.14159265%Rt2

" R

5.3 TYPE A



5.k 7O STEP 5.1

WHAT DOES PART 5 DO?
Lesson 26, Exercise 5:

WRITE A PROGRAM TO CONVERT INCHES 70 FEET AND INCHES.
USE A "DEMAND" COMMAND IN A LOOP, START AID AND TEST
THESE VALUES:

159 INCHES

17 INCHES

L4 INCHES

lesson 27: Test of Lessons 22 to 26. This lesson, the block test

for the fourth lesson block, conteins 30 exercises, of which 29 are
test exercises. The test exercises are c¢lassified by type in Table 3,

and are classified in Table 4 by the lesson being tested.

lesson 28: Elock review. ILesson 28 1s the block review for the

fourth lesson block, and 1like the block review in Lesson 21 refers
students to particular parts of the teaching lessons for review of
specific subjects. Tn addition, the contents of the three previous
tesson blecks are summarized and the students are referred to the ap-
propriate block reviews (Lessons 7, 14, and 21) for review and practice

on the topics coverad in preceding blocks.

Lesson 29: Absolute values. Lesson 29 reviews the concept of

absolute value of real numbers and introduces the AID ncotation for
absclute value: !x! . The hierarchy of arithmetic coperations is re-
viewed and the plzece of absolute value in the hierarchy is specified.

The use of absclute values for finding Buclidean distances is discussed.

55 921/5



Lesson 29, Exercise 171
117.1 - 7.9} IS THE DISTANCE BETWEEK 7.1 AND WHAT?
Lesson 29, Exercise 19:
WRITE A PRCGRAM TC FIND WHICH OF THE THREE NUMEERS A, B, AND
¢ IS CLOSEST TO 13/17. HAVE YOUR PROGRAM PRINT ONE OF THESE
MESSAGES:
A IS CLOSEST TC 13/17.
B IS CLOSEST TO 13/17.

¢ IS CLOSEST TC 13/17.

Iesson 30: SIN and COS. Iesson 30 is an optional lesson intro-

gueing the basic trigonometric functions for students who are interested
and have some background in the subject. Some basic trigonometric
notions are reviewed, the two standard AID functions are introduced,
and there are a few practice problems involving the definitions of the
tangent and secant functions. UWone of the problems are of great dif-
ficulty and the lesscn is very short {17 exercises).
Lesson 30, Exercise 9:
DEFINE A TANGENT FUNCTION, T(X), WHICH WILL FIND THE
TANGENT WHEN X IS GIVEN IN RADIANS, START THE AID
INTERPRETER AND USE YOUR FUNCTION TO FIND THE TANGENT

WHEN X = 0, 2.4, 3.1, -6.

lesson 31: Exponential and logarithmic functlons. Iesson 31 is

alsc optional and provides a brief introduction to the exponential and
logarithmic functions that can be used in ATD programming; this lesson
is intended only for students with the appropriate background and in-

terest. The concepts of exponential and logarithmic functions are

7%



reviewed and the AID notation for e and Zn(x) is introduced. There
are a few problems on the conversion of bases, although the treatment
of this topic is adequate only for students who have already studied it.
Lesson 31, Exercise 10:
USING AID, FIND THE VALUES OF EXP(X) FOR X = .5, 1.0,
1.5,00.,10.0
Lesson 31, Exercise 12:
DEFINE A FUNCTION T(X) WHICH WILL COMPUTE THE LOGARITHM
TO THE BASE 2 OF X, TEST THE FUNCTION FOR THESE VALUES
OF X:

-6, 5, 8.7, 100

lesson 32: Lists. The first three lessons In this lesson block

were relatively short and easy, and were deveted more to mathematical

concepts than programming concepts. Lesson 32, in contrast, is quite

dong and very difficult, introducing cne of the most complex topies in
programming: the steorage and use of indexed arrays.

Lesson 32 begins with a discussion of indices and the AID notation
for them. A simple program for inputting a list of numbers is shown
and several difficult programming problems whose solution depends upon
the retrieval of data from stored lists follow.

Lesson 32, Exercise 8:
WRITE A PROGEAM TO FIND THE AVERAGE OF THE NUMEERS IN A
LIST O TEN NUMEERS.

Tesson 32, Bxercise 19:

WRITE A PROGRAM TO FIND AND PRINT ALLI THE NUMEERS LESS

THAN 30 IN A LIST COF 10 NUMBERS. C:;;Z ; { j 7

21



Lesson 33: Using loops with lists of numbers. ILesson 33 continues

the treatment of stored arrays introduced in Lesscon 32. The first topic
covered in Iesson 33 is a method for counting and simultaneously storing
the elements in a list so that later computations, such as finding the
average, can be done more easily. Students are shown several examples
of looping programs that use data siored in lists, and are asked to
write five programs of this kind.
Lesson 33, Bxercise 3:
WHAT IS5 THE PURPOSE OF THIS PRCGRAM?
2.1 BETI=1
2.2 TYPE L(I) IF L(I) # ©
2,3 SET I =TI+ 1
2.4 TO STEP 2.2 IF I <= N
Lesson 33, Exercise 6:
SUPPCSE L IS THE LIST 12, O, -7, 0, 0, 8. (N IS THE

LENGTH OF L) HERE IS A PRCGRAM THAT BUILDS 4 NEW LIST A.

WHAT IS THE VALUE OF A(1) AFTER THIS PROGRAM IS RUN?

7.1 SETI =1

il

7.2 SET A(I) = 1L IF I{I) # 0

7.3 SET A(I)

Ii

0IF L{I) = 0
74 SET I =TI+ 1

7.5 TO STEP 7.2 IF I <= N

Lesson 33 is not very long {23 exercises) but there is a rather

high proportion of programming problems (5) of medium difficulty.

24

58



Iesson 34: Test of Lessons 29 to 33. Lesson 34 is the test for the

fifth lesson block. There afe 26 test exercises and one reguest for
student opinions in the lessons. The 26 test exercises are classified
in Table 4 by the lesson they are testing.

Since Lessons 30 and 31 were optional, the corresponding exercises

in the test (Exercises 8 through 17) are also cptional.

Lesson 35: Block review. ILesson 35 is the block review for the

fifth lesson block. About half of the lesson contains review exercises
and the other half gives students references to exercises that cover

gpecific topies.

Lesson 36: Nested loops and decrementing counters. This lesson

continues work on loops, and starts by showing several examples of pro-
grams in which the conditional clause that determines the number of
iterations is formed by comparing the value of the counter to the value
of an algebraic expression (rather than to a simple variable or constant).
Nested loops are introduced, and decremented counters are used in several
problems.
Lesson 36, Exercise 10:

WRITE A PROGRAM USING NESTED LOOPS WHICH WILL MAKE ONE

TABLE OF INTEREST CORRESPONDING TO A RATE OF 6% AND THE

FOLLOWIKG GROUPS OF PRINCIPLES:

50, 100, 150, 200; 250, 500, 750, 1000; 1250, 2500,

3250, 5000.

LT

29



Lesson 37: SUM, PROD, MAX, and MIN. Four ALD functions that are

very useful for finding the sum, preduect, maximum or minimum of a
sequence of numbers are introduced in this lesson. The sequence of
numbers may be expressed by simply listing them as the argument of the
functiecn:

SUM(4.53, 3.72, 6.29, 7.81)
or by a formula:

SIM(J = 1, 2, 3, 4 : J*3)
or by giving the variable name of a stored list:

SUM(J = 1, 2, 3, 4 : L(J))
When the seguence is defined by feormula or is to be found in a stored
list, the indices to be used must be specified either by a simple list-
ing of the indices or by a "range specification."

The lesson starts with a brief review of numeric sequences and
formulas for sequences before the syntax of the new AID functions is
introduced,
lesson 37, Exercise 18:

USE ATD TO FIND THE PRODUCT COF
1, 4, 9, ..., 100
Lesson 37, Exercise 26:
WHAT WILL ALD ANSWER?
SET X

24
X/3

TYPE MIN(SUM(X,Y), PROD(X,Y})

. K5O

1)

BET Y

i



Lesson 38: Arrays. In Lesson 38 two dimensional arrays are introe-

duced. After scme discussion of ordered indices, the lesson gives &
simple program for storing data in two-dimensiocnal arrays and then gives
the student several programming problems using data stored in this form.
Lesson 38, Exercise 8:
STORE THIS TARIE AS A 5 BY 3 ARRAY A.
1 5 25
2 10 100
3 15 225
L 20 400
p. =5 625
USE "TYPE A" TO GET A LISTING COF YOUR ARRAY.
Lesson 38, Exercise 9:
WRITE A PROGRAM THAT WILL ADD THE CCLUMNS OF A 5 BY 3
ARRAY, THE PROGRAM SHOULD TYPE
THE SUM OF COLUMN 1 IS ...
THE SUM OF COLUMN 2 IS ...

THE SUM OF COLUMN 3 IS ...

Lesson 39: More about arrays and lists. Lesson 39 discusses the

limitations on the dimension of AID arrays and the permissible range of
the indices., The use of algebraic expressions as indices is also men-
tioned. BSeveral quite difficult programming problems are given, ag

illustrated in the example below.

S|

61



Lesson 39, Exercise 8:
STORE THE FOLLOWING ARRAYS:

A: 3 BY 4 WHERE A(I,J) = 3*T - J

1l

B: 3 BY Lk WHERE B(I,J) = -2%I + J
THEN FORM A NEW 3 BY 4 ARRAY, E, WHOSE ELEMENT IN THE
ITH RCW AND JTH COLUMN IS THE MAXIMUM OF THE ELEMENTS

IN THE SAME POSITION IN THE ARRAYS A AND B,

lesson 40: Conditional definition of functions. One important

feature of AID is the simpliecity of its conditicnal definition of func-
ticns. Since the conditional definition of functions depends upon the
use of Boolean expressions, the lesson begins with a brief survey of
these expressions., The syntax of conditional definitions ie then given
and a number of examples are presented.

In mathematics, we often encounter functions that cannot be defined
by & single formula but may, instead, be defined by several formulas
each applying to a particular part of the domain of the function; the
definitions -of such functions ususlly are given in a form such as

If CONDITION 1 then f£(x)

1§

EXPRESSION 1

EXPRESSION 2

1l

If CONDITION 2 then f(x}

etc.
In ATD thig definition is expressed as follows:
LET F(X) = (CONDITION 1: EXPRESSION 1; CONDITION 2:
EXPRESSION 2; «..)
In scome cases a function may be defined like this:
If CONDITION then f{x) = EXPRESSION 1

Otherwise T(x) = EXPRESSION 2.

: A



This kind of definition is written in AID by simply omitting the final
condition and using the final expression as the definition of the func-
tion for all cases where cne of the preceding conditions does not holdf
LET F{X) = (CONDITION: EXPRESSION 1; EXPRESSION 2)
Lesson 40, Exercise 13:
WRITE THE CONDITICNAL DEFINITICN OF A FUNCTICN F{X) SUCH THAT
IF ¥ < 0 THEN P{X) = Xt2
IF % >= O THEN F(X) = X%3
Lesson 40, Exercise 21:
LOCAL FIRST CLASS POSTAL RATES UP TO 32 OUNCES ARE DEFINED
AS FOLLOWS, WHERE W IS IN CUNCES:
IF W <= 13, THE COST IS $.06 PER WHOLE OUNCE, PLUS
$.06 FOR ANY FRACTICN OF AN QUNCE,
IF 13 < W <= 16, THE COST IS $.80
IF 16 < W <= 24, THE COST IS5 $.98
IF 24 < W <= 32, THE COST IS $1.16.

WELTE AND RUN A PROGRAM TO COMPUTE POSTAGE COSTS.

Lesson 41: Test of Lessons 36 to 40. Iesson 41, like other tests,

allows the students only one trial per exercise. If a student cannot
answer a guestien, he can request the correct answer and go to the next
exercise. There are nc hints provided by the program. The number of
exercises of each kind are listed in Table 3, and are also classified
in Table 4 according to which teaching lesson is being tested.

As before, test exercises may test more than cne lesson but each

exercise is listed only cnce in Table 4.

. A



Tesson 42: Block review. Lesson 42 is the block review for the

sixth lessecn block, covering the same lessons as the test in the pre-
ceding lesson 41, Here again students who want to review a particular

toplc are referred to appropriate exercises in the teaching lessons.

lesson 43: Recursive functions. BRecursive functions are defined

in the seme form as other conditional functicons and are presented only
for those students with appropriate background and interests. The most
commonly used examples of recursive functicns, such as the factorial
and the Fibonacci numbers, are used as examples. ©Since this lesson is
intended only for those students who are somewhat more sophisticated
mathematically, the exercises are correspondingly mcre difficult than
other lessons in the course.
Lesson 43, Exercise 6:

WRITE A PROGRAM CONTAINING A RECURSIVE FUNCTION N{A,X,E)

THAT USES NEWTON'S ALGORITHM FCR OBTAINING THE APPROXIMATE

SQUARE RCOT OF THE NUMEER A.

A = POSITIVE NUMEER WHOSE SQUARE ROOT WILL BE APPROXTIMATED
X = FIRST APPROXIMATION TO SQRT(A)
E = ALLOWARLE DIFFERENCE BETWEEN Xt2 AND A

Lesson 4Y4: AND, OR, and NOT; truth tables. The Boclean connectives

AND, OR, and NOT are discussed in detail in this lesson and the hierarchy
is given explicitly. Truth tables are introduced and the truth tables
for various compound statements ere used in the exerclses. This lesson
is primarily an introduction to sentential logle for students who have

not previously studied the subject, and the exercises also serve as

vehicles for further prectice using AID. !ii
6l



Lesson 4h, Exercise 10:
WHICH OF THE FOLLOWING STATEMENTS ARE TRUE?
A, -1 <2CR3>k
B. =1<2 AND 3 >4
C. 6=7T0R9 <1
D. .5#0O0RO0O < .5

E. 9>= 11 0R (6>1AND 1 < 2)

Lesson 45: TV{X) and the FIRST function. TV and FIRST are two

advanced ATD functions that are useful in special circumstances. TV is
used only for Boolean expressions and takes on the values O (false) and
1 {true). The function FIRST is used tc find the first number in a
seguence that satisfies a given condition; for exemple,
FIRST(K = 6(2)14 : (K/2)t2 > 2i) will give the Tirst number X in the
sequence 6, 8, 10, 12, 14 such that (K/2)12 is greater than 2k.
Lesson 45, Exercise 5:
HOW WOULD YCU DEFINE A FUNCTION F SUCH THAT
F(X) = 1 IF X I8 FALSE
P(X) = 0 IF X IS TRUE
Lesson 45, Exercise 16:
GIVEN THE SEQUENCE
0, 2, by o6, vue, Z%.2, ..o
WRITE A PROGRAM THAT WILL FIND TEE FIRST MEMEER CF THIS

SEQUENCE SUCH THAT SIN(Z#*.2) < 0 AND THE FIRST MEMEER

55

AFTER THIS CNE.

65



Lesson L6: LET and Boolean expressions; debugsing tools. The first
topié covered in Iesson L6 is the use of IFT to assign a variable name
to & Boolean expression. For example, to assign to the variable S5 the
sentence "P or not @ or not R", the following command is used:

IET S = P OR NOT @ OR NOT R
P, Q, and R must, of course, be given Boolean values before S is called.

The remzinder of Iesson 46 is devoted to several useful debugging
tools. The first of these is the GO command which reguests AID to con-
tinue executing an interrupted program. The GO command is used when the
execution of a program is interrupted because of an error; after cor-
recting the error, the progremmer may type "GO" to continue. Another
command that helps to debug complex programs is DONE. DONE is used
ingirectly, l.e., as part of the stored program, and its effeet Ls to
cause the executicon of the program to stop at that peint. DONE is most
often used conditionally to stop execution under certain ccnditions,
for example, when a variable assumes a value that is out of bounds:

6,58 DONE IF X > 1018
Lesson 46, Exercilse 3;

WHAT VALUE WILL AID TYPE FOR A?

LET A= BAND C
SET B = TRUE
SET C = FALSE
TYFE A

o

66



Lesson 46, Exercise 1bL:

THE “"DONE" COMMAND HAS A PARTICULAR APPLICATION FOR LOOPS,
SOMETIMES YOU MIGHT WANT TO TEST A LOCP FOR ONLY ONE OR
TWO LOOPINGS. THE CONDITIONAL DONE COMMAND CAN BE USED
FOR THIS.

5,1 SET N =1

5.2 SETK = 1/N

5.3 TYPE N,K

5.4 SET N =T + 1

5.5 TO STEP 5.2 IF N <= 100
WHICH OF THE FOLLOWING COULD BE USED TO STOP THE LOOPING

AFTER TWO LOCPS?

A. 5.42 DONE IF K = 1/4
B. 5.21 DONE IF N =5
Co 5.3 DONE IF W = 2
D. 5.6 DONE IF N = 2

N. NONE OF THE ABOVE

Lesson 47: More standard AID functions. The itwo AID functions that

are covered in this lesson are DP (digit part) and XP (exponent part).
The lesson starts with a review of scientific notation, explaining that
twe parts of a number in scientific notation are the digit part and the
exponent part. The digit part of a number can be found by using the
digit part function, DP{X), and the exponent part by using the exponent
part function, XP(X).

Lesson 47, Exercise k:

WHAT IS THE EXPONENT PART OF 8325.67 ;
| 67 &57



Lesson 47, Exercise 12:
WRITE A PROCGRAM THAT WILL TAKE ANY NUMEER X AND ROUND IT

TO THREE SIGNIFICANT DIGITS.

lesson 48: Test of Lessons L3 to 47. Iesson 48 is the test for the

seventh, and last, lesson block in the course. Of the 32 exercises in
the lesson, two are requests for students® opinions. The other 30 exer-
cises test one of Lessons 43 to 47, as shown in Table L,

Lesson 48 has a rather high proportion of true-false exercises (7)

and no programming problems.

Lesson 49: Block review. Lesson 49 is the review of the seventh

lesson block and covers Lessons 43 to 47. The contents of each of the
teaching lessons in the block are summarized briefly, and students are
asked if they want to review any part of the lessons. If & gtudent wants
to review & particular topic, he is given a reference to pertinent ex-

ercises.

Lesson 50: Programming problems. Lesson 50 is not part of a lesson

block, nor is it a teaching lesson, but rather a collection of lengthy
and difficult programming problems for students who want tc practice

the programming skills they have acquired in the course. OSome of the
exercises require considerable mathematlcal knowledge and sophistication;
these exercises are intended only for the student with an appropriate
background. Other problems, though difficult, are accessible to students

with less mathematical background.

; 255



APPENDIX

Table of Contents: Teaching Lessons

Number of List of
Exercises Exercises
Lesson 1: Using the Instructional Program
How to answer 4 1, 2, 3,4
How to erase 3 5, 6, T
How to get hints and answers 2 8, 9
How to use Ctrl-G Y 10, 11, 11.1, 12
How to slgn on and off 3 13, 13.1, 13.2
Prompted decisions* 2 14, 15
Lesson 2: Using AID for Arithmetic
The AID interpreter L 1, 2, 17, 18
Symbols for arithmetic 9 8, 9, 10, 11, 12, 13,
operations 14, 14,1, 1k.2
The TYPE command 12 3, 4, 5, 6, 7, 15, 16,
16.1, 16.2, 19, 19.1,
19.2
Prompted declsions 3 20, 21, 21.1
Iesson 3: Order of Arithmetic Operations
Use of parentheses 22 1, 2, 2.1, 3, 4, k.1 to
4.6, 5, 5.1, 6, 7, 8,
8.1, 8.2, 9, 20, 20.1,
20.2
Hierarchy of operations 21 10, 10.1, l0.2, 11, 1l1.1,
12, 12.1, 12.2, 13,
13.1, 13.2, 14, 15,
16, 21, 22, 23, 24,
24.1 to 2k.3
Negative numbers 3 17, 18, 19
Prompted declsions 3 25, 26, 27
Lesson L: Exponents and Scientific Notation
Exponents 12 i, 1,1, 2, 2.1, 2.2,
2.3, 5, 5.1, 22,
22.1 to 22.3
Using zero and one as exponents 2 3, b

*Exercises that ask the student to state a preference for the zequence of

instruction.

69

259



Nunmber of List of
Exercises Exerciges

Order of operations 20 65, 6.1 to 6.8, 7, 8,
9, 9.1, 10, 10.1,
11, 12, 12.1 to 12.3

Using fractional exponents 3 13, 14, 15
Negative exponents 9 6, 17, it.1, 17.2,
18, 19, 20, 20.1, 21
Reading scientific notation 7 23, 23.1, 23.2, 25,
25.1, 27, 27.1
Writing scientific notation 5 ey, 24,1, 26, 26.1,
26.2
Prcmpted decisions 3 28, 29, 30
Lesscn 5: The SET and DELETE Commands
The SET command W7 1, 2, 3, 4, 5, 5.1, 6,
T, 7‘1; 7.2, 8) 93 10)
11, 11.1, 1l.2, 12,
2.1, 13, 13.1, 13.2,
1, 1k.1, 15, 15.1,
16, 16.1, i1, 17.1,
18, 18.1, 18.2, 19,
19.1, 19.2, 20, 20.1,
21, 21.1, 21.2, 30,
30.1, 30.2, 30.3, 31,
31.1, 31.2
The DELETE command 6 22, 23, 23.1, 24, 25, 26
The multiple TYPE command T 27, 27.1, 28, 29, 290.1
to 29.3
Prompted decisions 3 32, 33, 3k
Lesson 8: The LET Command
Functicns of one variable 30 1, 1.1 to 1.3, 2, 2.1,
2.2, 3, 4, 5, 6, 7,
8, 8.1, 9, 9.1, 10,
10.1 to 10.3, 22, 23,
23.1, 28, 28.1, 29,
30, 30.1, 30.2, 31
Funetions of twc or more 15 11, 11.1 te 11.5, 12,
variables 13, 14, 15, 16, 17,
27, 27.1, 27.2
Substituting algebraic 11 18, 19, 20, 20.1 to
expressions for variables 20.4, 21, 2k, 24.1,
24,2
Printing and deleting 2 25, 26
definitions of functiocns
Prompted decisions L 32, 33, 34, 35

el

TQ



Tumber of Iist of
Exercises Ixercises

Lesson 9: Some Standard AID Functions

The SQRT function 5 1, 2, 3,:3.2, 3.2
The IP function 7 4, 5,6, 7,8, 8.1
8.2
The FP function 9 9, 10, 11, 12, 13, 1k,
14.1, 14.2, 15
The SGN function 6 16, 17, 18, 19, 20, 21
Prompted decisions i 22, 23, 24, 25
Lesson 10: Indirect Steps, the DO Command,
the FOR Clause
Step numbers and the DO commend 12 1, 1.1, 2, 3, 4, 5,
5.1, 6, 6.1, 7, 12
2.1
Deleting, replacing, and printing 3 8, 9, 10
indirect steps
The FOR clause 2 11, 11.1
Range specifications 13 13, 13.1, 14, 15, 15.1,
15.2, 16, 16.1, 16.2,
17, 18, 19, 19.1
Prompted decisions 3 20, 21, 22
Lesson 1l: Parts
Parts 2 1, 2
DO PART ... 3 3, 4, 4.1
DO PART ... FOR ... 5 8, 9, 10, 11, 11.1
Printing and deleting parts 6 12, 12.1, 13, 13.1, 14,
.1
Sequence of execution 10 5, 5.1, 6, 7, T.1, 15,
15.1 to 15.k
Prompted decisions L 16, 17, 18, 19
Lesson 12:; The IEMAND Command
The DEMAND command T 1, 1.1, 2, 3, 3.1, k,
-l .
Answerling a DEMAND with 2 7, 7.1
a "return"
DO PART .e-, ».. TIMES 2 5, 6
Prompted decisions 3 8, 9,
Iesson 15: Relations and the Use of the IF
Clause
Relation symbole 23 1, 1.1, 1.2, 3, 3.1 to

3.4, 4, 4,1 to L.3,
5, 5.1 to 5.4, 6,
6.1 to 6.5

" R |



Number of IList of
Exercises Exercises

The number line 8 2, 2.1 to 2.7
Positive and negative 6 7, 8, 9, 9.1, 9.2, 10
The IF clause 1k 11, 12, 12.1, 13, 13.1,

1, 1.1, 14.2, 15,
15.1, 16, 17, 17.1,

18
Using AND and COR in IF clauses 7 19, 19.1, 20, 20.1, 21,
21.1, 21.2
Prompted decisions 4 22, 23, 2k, 25
lLesson 16: The TO Command
The TO command 7 4, L.1, 4.2, 5, 6,
6.1, 6.2
Endless loops 7 2, 2.1 to 2.6
Sequence of execution 10 1, 1.2 to 1.4, 3, 3.1
to 3.4
Prompted decisions 3 7, 8, 9
Lesson 17: Debugging Technigues
Tracing values of variables iz i, l.1, 1.2, 2, 2.1 to
2.4, 3, 3.1 to 3.3
Sequence of execution 1 7
Tracing expected output 7 4, 5, 5.1 to 5.5
Writing a complete trace b 6, Tely, 742, T3
Prompted decisions 3 8, 9, 10
Lesson 18: The Indirect Use of the DO Command
The indirect use of DO 25 1.1 to 1.20, 4, 4.1,
5, 6, 7
Sequence of execution 6 2, 2.1, 2.2, 3, 3.1,
3.2
Prompted decisions 3 8, 9, 10
Lesson 19: Debugging, Permanent Storage
Planning a program 6 2, 2.1 to 2.4, 3
Editing the program 5 4, k.1, 5, 5.1, 8
Testing the program 2 6, 11
Syntax and semantic errors 3 Ty Ted, T2
Executing the program 3 9, 9.1, 10
step-by-step
Disk storage 9 12, 13, 1k, 15, 15.1,
16, 17, 18, 19
Prompted decisions L 1, 1.1, 20, 21

SO Fe%

T2



Lesson 22: The FORM Statement
The FORM statement

Rounding
TYPE ﬂ. . .Tl
TYPE +
Using a FORM statement for
meore than one number
Prompted declsions
Lesson 23: Loops

Loops

Prompted decisions

Lesson 24: Locops with Variables in the
Exit Condition
Using a variable in the exit

condition

Using a variable for the
initisgl value
Commeon errors in loops
Other ways to use loops
Prompted decisions
Tesson 25: Loops end the FOR Clause
Replacing a loop with
DO PART ... FOR ...
Prompted decisions

Lesson 26: Loops with a DEMAND Command
Leops with a DEMAND command

Prompted decisions

73

Number of List of
Exercises Exercises
13 l: 2: 33 )'") 5} 6: T3
8, 10, 10.1, 10.2,
11, 12
3 9, 9.1, 12.1
2 17, 17.2
3 18, 19, 19.1
5 13, 1L, 15, 16, 16.1
3 20, 21, 22
33 1, 1.1, 1.2, 2, 2.1 %
2.1, 3, 3.1, 3.2,
4, 4.1, 4.2, 5, 5.1
g, g-i’ 6.2, Ty To1
3 9, 10, 11
16 1, 1.1 to 1.3, 2, 2.1
to 2.4, 3, 4, k.1,
k.2, 5, 10, 11
3 12, 12.1, 12.2
4 6, 7, 8, 9
g 13, 13.1 to 13.8
3 14, 15, 16
17 1, 2, 3, L, 5, 6, 6.1
;Ou6,g, g,lTol to
3 9, 10, 11
16 1, 2, 3, 3.1, 4, 8.1
to 4.3, 5, 5.1, 6,
; ; 6i3’ ?iz, 7, 8, 8.1
3 2

2 S



Iesson 29: Absolute Value

Abzsolute value

Hierarchy of operatlons
Distance
Prompted decisions

Lesgon 30: SIN and COS
SIN and COS
Radians and degrees

Other trigonometric functions
Prompted decisicns

Number of List cf
Exercises Exercises
1k i, 1.1, 2, 2.1 to 2.3,
3} 3'15 ll') 51 6! 15)
15.1, 15.2
8 7, 8, 9, 10, 11, 12,
13, 14
8 16, 17, 18, 18.1 to
18.3, 19, 19.1
3 20, 20.1, 21
10 1, 2, 3, 4, 5, 5.1,
5.2, 6, 6.1, 10
2 7, T.1
3 8,9, 9.1
2 11, 12

Lesson 31: Exponential and Legarithmic Functions

Exponents and bases
Exponential functions
EXP(X)

LoG({X)

Prompted decisions

Lesson 32: Lists

Iists and indices

Programs that use lists

LET 8 BE SPARSE
Printing a list
Prompted decisions

Tesson 33:; Using Loops with Lists of Numbers
Using loops with lists

Using loops tc make new lists
Prompted decisions

7h

o @

N w W

16

25

wy o

1k

w N

1, 1.1, 2, 2.1, 3,
3.1, b, 4.1

5, 6, 6.1 to 6.3, T,
8, 8.1

9, 10, 10.1

11, 12, 12.1

13, 13.1

1, 1.1 to 1.%, 2, 2.1,

2.2, 3, 4, 4.1 to 4.3,
16, 17, 18

5, 5.1, 6, 6.1 to 6.8,
7, 7.1, 7.2, 8, 8.1,

9, 10, 11, 11.1, 11.2,

19, 19.1 to 19.3
12, 13, 13.1, 13.2
1k, 15
20, 21, 22



Lesson 36: Nested Loops and Decrementing
Counters

Using algebraic expressions
in the exit condition
Nested loops

Decrementing counters

Prompted decisions

Lesson 37; SUM, PROD, MAX, and MIN

Seguences and formulas
SUM used with formulas

S5UM used with lists

PROD

MAX

MIN

Using SUM, PROD, MAX and MIN
with listed arguments

Prompted decisions

Lesson 38: Arrays

Arrays

Storing arreys
Using arrays

LET A BE SPARSE
Prompted decisions

Lesson 39: More about Arrays and Lists

Subscripts for arrays

Nested DO commands used to
store arrays

(&

Number of List of
Exercises Exercises
9 1, 1.1, 2, 2.1, 3,
3.1, 3.2, 4, k.1
29 5, 5.1 to 5.4, 6, 6.1
to 6.6, 7, 7.1 to
7.6, 8, 8.1 to 8.5,
9, 9.1, 9.2,°10, 10.1
17 11, 11.1, 11.2, 12,
12.1 to 12.3, 13,
13.1, 13.2, 1k, 14.1
to 14.3, 15.1, 16,
: 16.1
3 17, 18, 19
] 1, 2, 3,4
9 5, 6, 7, 8, 9, 10, 11,
12, 12.1
10 13, 14, 15, 20, 20.1
to 20.4, 27, 27.1
5 16, 17, 18, 18.1, 19
L 21, 23, 25, 25.1
5 22, 24, 25,2, 28, 28,1
L 26, 26.1 to 26.3
2 29, 30
in 1, 1.1, 2, 3
1L ko Lk,1, 5, 6, 6.1 to
6.4, 7, Tel, 7.2,
8, 10, 10.1
T 6'53 6'6) 6'7) 93 9'13
10,2, 10.3
6 11, 11.1, 12, 12.1 tc
12,3
3 13, 14, 15
12 1, 1.1, 2, 2.1, 2.2,
9, 10, 10.1 to 10.3,
11, 11.1
13 3, 3.1, 4, 5, 5.1, 5.2,

o O

s 6.1, 6.2, 7, 7.1,
» 8.1

LS



List of
Exercises

Number cf

Exercises
Using arrays 9
Prompted decisions 3

Lesson LO: Conditional Definition of Functions

Boolean expressions 6

Conditional expressions 6

Conditional definition of 13
functions

Terminating clause in conditiconal 2
definition of functions

Ordering of clauses 2

Prompted decisions 2

Lesson 43: Recursive Functions

Recursive functions a2

Prompted decisions 2

Lesson L4: AND, OR, and NOT; Truth Tables

AND, OR, and NOT

Truth value of Boclean
expressions

Conjunections

Disjunctions

Order of evaluation

Truth tables
AND chains
Prompted decisicns

N w = [Oa W \VIE =y Wi

Lesson 45: TV(X) and the FIRST Function
TV(X) 9

The function FIRST 11

Prompted decisiouns 3

76

12, 12.1 to 12.3, 13,
14, ib.1 to 1k.3
15, 16, 17

l: 23 3) u? 5) 6

7, 8, 9, 10, 11, 11.1

12, 13, 13.1 to 13.3,
16, 17, 18, 18.1,
21, 22, 23, 2k

14, 35

19, 20
25, 26

1, 2, 2.1, 3, 3.1 to

3.4, 4, k.1, 5, 6,
6.1, 6.2, 7, 7.1 to
7.3, 8, 8.1 to 8.3

9, 10

1, 2

3) lI'J 5: 6_) ?

8, 8.1, 8.2, 9

10, 11

12, 13, 14, 15, 15.1,
15.2

16, 17, 18, 19

20, 21, 22

23, 2k

1, .1, 2, 3, 4, 4,1,
5, 6, T

8: 9, 10, 11, 12, 13,
1k, 15, 16, 17, 17.1

18, 19, 20

R0



tesson L6 IET and Boolean Expressions;
Debugging Tools

Using LET with Beolean
expressions

GO

DONE

Prompted decisions

Lesson 47: More Standard AID Functions
DP{ X}

XP(X)

Prompted decisions

7

Numbezr of
Exercises

List of
Exercices

1i

l? 22 3’ u’ 5, 6

Ty 7.1, 8, 9, 9.1
10, 11, 11.1, 12, 13,
14, 15, 16, 16.1

17, 18, 19

13 25 35 h} 5} 5°l)
T, T-2, 10, 11, 12
4.1, 6, 6.1, 7.1, 7.3,
8, 9
13, 14, 15

267



References

Friend, J. BStudent manual, introduction to programming: AID. Institute
for Mathematical Studies in the Soclal Scilences, Stanford University,
1969,

Friend, J., & Atkinson, R. C. Computer-sssisted instruection in program-
ming: AID. Technical Report No. 164, Institute for Mathematical
Studies in the Soclal Sciences, Stanford University, January 25,
1971.

Friend, J. INSTRUCT coders' manual. Technical Report No. 172, Institute
for Mathematical Studles in the Soeial Sciences, Stanford University,
May 1, 1971.

Suppes, P., Goldberg, A., Kanz, G., Searle, B., & Stauffer, C. Teacher's
handbook for CAI courses. Technical Report No. 178, Institute for
Mathematical Studies in the Social Sciences, Stanford University,
September 1, 1971.

Friend,; J. E., Fletcher, J. D., & Atkinson, R. C. Student performance
in computer-assisted instruction in programming. Technical Report
No. 184, Institute for Mathematicael Studies in the Sceial Sciences,

Stanford University, May 10, 1g972.

RS

78



NIY- 267707

100 PROGRAMMING PROELEMS
(With a Description of the Programming Language AID)
by
Jamesine E. Friend

September, 1973

Institute for Mathematical Studies in the Soclal Sclences

Stanford University
Stanford, California C>;22(2;



Introduction . .

Table of Contents

- a & @ .

ALD Commands and Programs .

@

a °

Numbers and Algebralc Expressions

The Form of AID Commands
Basic Commands: SET, TYPE, DEMAND, TO, and IO

The IF Clause -
Auxiliary Commands: FORM,
File Commands: USE, FIILE,

Debugging Commands . .

Summary of AID Commands

ATD Functions .

Formulas « « «

o

'Y

@ a - [

Programming Problems . . .

Appiications
Applicaticns
Data Storage
Business and
Applications
Applicatieons
Applications

Applications

in Algebra
in Geometry

- . a a o

Consumer Applications

in Linear Algebrsa

a

o

a

a

*

a

° ) o -

o 0 a °

IET, and DELETE . .
RECALL, and

@

@

e

.

-

TILSCARD

- P L3
° e @ -

o o a @

in Probabiliity and Statistics .

in Arithmetic

in Calculus

0

Page

A O R © LT WA R AN

16
18
2k
25
o7
32
35
37
37
38
Lo
h3
L6
50
53
54



Introduction

The 100 probleme in this booklet were prepared for students taking the
computer-assisted cocurse "Introduction to AID Programming,” an introductory
course in algebraic programming. Also included is a brief reference manual
for the programming language ATD,*

The problems include applications of elementary programming techniques
to a variety of fields such as elementary arithmetic and algebra, geometry,
linear algebra, probability and statistics, consumer and business problems,
and calculus. Most of the problems require no mathematical background beyond
high school algebra but same of the problems in linear algebra, statistics,
and calculus will not be readily sclved by students who do not have some
acgualintance with fundamental concepts such as the sigma nctation, sclution
of linear equations by determinants, limits of sequences and series, statis-
tical correlation, and standard deviation. In all cases the necessary
formulas are given, either within the problem or in the list of formulas on
page 35.

These problems are not specific to the programming language ATD but can
also be used in introductory courses in RASIC, FORTRAN, ALGOL, APL, ete.

If any reader can suggest additioral, useful problems to be included in

a gecond edition of this booklet, the author would be most grateful.

*The subset of AID that is described herein inecludes that part of the lan-
guage that is taught in the courge "Introduction to ATD Programming.™

: A7l



ATD Commands and Programs

Numbers and Algebraic Expressions

Algebraic expressions in the programming language ALD follow ordinary
algebraic notation quite closely. The letters A, B, Cy..., Z are used as

variables, and the following symbols are used for arithmetic operations and

grouping:

+ addition

- subtraction

* maltiplication
/ division

t exponentiation
LI absolute value
() parentheses

In forming algebralc expressions, Juxtaposition cannot be used to indicate
multiplication; the expressions 2x and xy must be written as 2¥X and X¥*Y in
ATID notation. Algebresic expressions must be given as a linear string of

symbols, which precludes the use of the horizontal bar as indicator of divi-

2
b

Neither can subscripts or superscripts be used; Xy ig written as X{I)} and

sion; = must be written as A/B, and SEE must be written as (A+B)/(A-B).
y2 is written ag Yt2.

Grouping is indicated with parentheses just as in ordinery algebraic
notations, and parentheses may be imbedded as desired. If parentheses are
not used, arithmetic cperations are performed in this order:

t
* and / from left to right

+ and - Trom left to right ! ; !

3



Thus, expcnentiation is always done first (unless parentheses are used to
indicate otherwise), then either * or /, and finally either + or -~. If two
operations with the same order of precedence appear, they are evaluated in
left-to-right order; in the expression X/Y¥Z/W, the first operation to be
performed will be X/Y.

ATD numbers may be written in integer form (275) or in decimal form
(5.87, .01, .72Y. Numbers are limited to nine significant digits and must
be less than lOloo in absolute value. Numbers may also be written in a form
of scientific notation that is a direct translation of ordinary scilentific

notation. TFor example, 2,.3076 X 10”

is written as 2.3076 % 10t5. Since
the slash (/) is used to indicate division, an expression like 2/3 is read
as "two divided by three" rather than "two thirds." Beceuse of this, an

2/3 2/3

expression like Xt2/3 means x2 % 3, not x ; to write x in ATD notation,
use Xt(2/3).

Negative numbers are indicated by a minus sign: -2.7. When negative
numbers are used in certain combinations, such as 2 + (-3), the negative
number must be enclosed in parentheses; to be on the safe side, always use
parentheses around negative numbers.

The variables A, B, C,..., Z may be used for numbers, as indicated above.
They may 2lso be used as indexed (subscripted) variables to identify lists
of numbers or arrays of numbers. The list Xy Fppeees X is written in AID
notation as X(1), X(2),..., X(N), and the entire 1list is then referred to
simply as X. A two-dimensicnal erray (matrix) of numbers may be identified
by a variable using two indices; aij is written in AID as A(I,J). Up to 10

indices may be used (for up to 10-dimensional arrays). Indices may be given

as numbers, or variables, or algebraic expressions: X(12), X{(N,J), and

) A /3



X(2%T+3, J/4). Regardless of how the indices are indicated they must have
integer values and are limited to -250 to 250, including zero. Thus, the
longest list of numbers has 501 members: X(-250), X(-249),..., X(-1), X(0),
X(1),e00, X(249),%(250). A two-dimensicnal array could have 501 X 501
members, etc.

To summarize, here are some examples of algebraic expressiong and their

AID equivalents:

5% + 35" S¥X12 + 3%Yth
12 z4{1/2) or 710.5

| %~y Xy

x) + %, - % x(1) + x(2) - %(3)
Aij A(T,T)

EiEEEiQ (ArBeCHD) /b

In gerneral, spaces may be used whenever desired in algebraic expressions,
The expression 5%X+4 may also be written 5%X + L4 or 5 % X + L or 5% Xk,
The exceptions to this rule are In indexed variables and, as we shall see
later, in function notation. Expreszions like X(5) and A(1,2) must be
written without & space between the identifier and the opening parenthesis;

X (5) or A (1,2) will cause an eITOr messzge.

L7

I



The Form of ATD Commands

ATD commands are quite similar to ¥nglish commands:
TYPE X
SET ¥ =17
STOP
Each command begins with a verb (TYPE, SET, STOP) and the form of the rest
of the command depends upon the verb that is used. The verb TYPE, for
example, may be followed by any algebralc expression (and ths result.will
be that the expression is evaluated and the value typed on the user's tele-
typewriter):
TYPE X - 2
TYPE 3/(4+2/7T)
TYFE Xt2 + Y42
Some commands, like STOP, may consist of only one word, but most commands
have either variables or algebraic expressions or eguations or other kinds
of arguments fcllowing the verb. Some commands also have optional modifiers,
which are phrases that can be added to the command te medify its meaning.
For example, the TYPE command may be modified by an [N FORM phrase:
TYPE X IN FORM 12
where Form 12 specifies the form in which X is to be typed. (This will be
explained more fully below.)
With one exception (FORM), AID commands must be given in one line; a
line is terminated by the user by typing the return key on the teletypewriter.
There are two kinds of AID commands: direct commasnds and indirect com-
mands. Direct commands will be executed as soon as they are given, whereas

indirect commands are stored and will not be executed until the user gives

: 275



an order to do so. Many AID commands may be used as either direct or in-
direct commands. To indicate whether a command is to be a direct command
‘or an indireet command, "step numbers” are used before indirect commands:
12.7 TYPE 15/16 + 1/32
This command will be stored rather than executed immediately, and the step
number may be used in later references to the command. When the user wishes
to have the command executed, he gives a DO command like the following:
DO STEP 12.7

Step numbers are decimal numbers between 1 and 109 , and, like all
numbers, are limited to 9 significant digitis.

When indirect commands are stored, they are grouped into "parts"
according to the integer portion of the step number. Commands numbered
23.2, 23.7, 23.84%, and 23.001 are all grouped together into "Part 23."
Indirect commands may be executed singly:

DO STEP 23.2
or they may be executed in groups:

DC PART 23
Wnen the above command 1ls given, all the steps in Part 23 will be executed,
in mumeric order. When Part 23 is exhausted, the execution will cease; even
if there are steps numbered 24.1, 2L4.2, ste., execution will not avtomatically
proceed to Part 2L. A set of stored commands, to be executed as a group, is
called a "program." A program may consist of a single part or, by the use
of branching commends as explained below, several parts.

Although most AID commands can be used elither as direct commands or in-
direct commands, there are a few that may be used only in one form. Table 1

lists the AID commands and shows which can be used directly and which indirectly.

7 27/



Direct and Indirect AID Commands

May be used May be used
Command directly indirectly
IELETE Yes Yeg*
TEMAND No Yes
DISCARD Yes Yes¥*
o Yes Yes
FILE Yes Yes*
FORM Yes Yes
GO Yes No
LET Yes Yes
RECALL Yes Yes*
SET Yes Yes
SET (short version) Yes No
STOP To Yes
TC No Yes
TYPE Yes Yes
UBE Yes Yes#

*Rarely used in the indirect form.

e



Basic Commands: SET, TYPE, DEMAND, TO, and DO

The five commands SET, TYPE, DEMAND, TO, and DO form the core of a
basic AID vocasbulary. Together with the algebraic expressions described
above, a few standerd AID functions, and the condlticnal clause described
in the next section, these five commends are sufficient to solve any of the
100 problems given in this bocklet.

The SET ccmmeand is used to assign a value to & variable:

SET X = 12.7
SET K = 0.002305
SET M = K¥Xt2

The algebraic expression used on the right of the equal sign may con-
tain one or more other variables, but all of the variables used must have
values so that the expressicn can be immediztely evaluated. When a SET
command is executed, the expression on the right of the equal sign is evalu-
ated and that number is stored in temporary (core) storage with the specified
identifier (the variable used on the left of the equal sign); that stored
number may thereafter be referred to by its identifier. A SET command may
be used tc "define a variable in terms of itself.” The result of the

following sequence of commands would be that the number 7 is stored as N:

SET N = 13 sets N equal t¢ 13.
SET N = N + 1 adds 1 to the current valiue of N.
SET N = N/2 divides the current value of N hy 2.

SET may be used either indirectly (with a step number) or directly.

I vsed as a direct command, the short form which cmits the word SET may

A78

be used:



X ; 7 eguivalent to SET X = 7

-~
n

0.07835 equivalent to SET K = 0.078305

SET may also be used with indexed variables:

SET X(2,3) = 7 sets the element X, 3 from the array X
3
equal to T
L(5) = 72.31 sets L5 equal to 72.31

The TYPE command is used with an algebraic expression:
TYPE {X+K*Y)/3
Here again the algebraic expression must contain only variables that have
values (or will be given values before the TYPE command is executed). When
a TYPE command is executed, the value of the algebraic expression will be
calculated and typed on the user's teletypewriter,
A TYPE command can be given with several arguments, separated by commas:
TYPE X,¥, (X+Y)/2
This command is equivalent to the three commands:
TYPE X
TYPE Y
TYPE (X+Y)/2
Caution: Only two commands, TYPE and DELETE, allow muliiple erguments; other
commands, like SET and DO, use only one argument.
The TYPE command can be used to type text by giving the text enclosed
in quotation marks: |
TYPE "TITLE: COMPOUND INTEREST CALCULATTONS"
Other uses of the TYPE commend will be described later,

The DEMAND command can only be used indirectly (as a stored commend):

20.4 DEMAND X c;7
10 (5;2



The DEMAND command uses a single variable as an argument, and the result
of such & command is to cause the program to halt, type
X=
wait for the user to type & value for X, and then continue the execution of
the program. By using DEMAND commands, a program can be written so as to
ask for the data it needs. A useful variant of the TEMAND command is formed
by appending the modifying phrase AS "text." The command
17.9 DEMAND R AS "INTEREST RATE"
will cause the program to stop at Step 17.9, type
INTEREST RATE=
and wait for the user to type a value which will be assigned the identifier R.
A feature of the DEMAND command that is frequently useful in iterated
programs is that if the user refuses to give a value for the DEMANDed variable,
and responds simply by typing the return key, the execution of the program
will halt at that point; thus, seemingly endless loops can be usged if they
incorporate DEMANDs.
DEMAND is used solely fer input, SET is used Tor both input and for
internal computations, and TYPE is used for both computation and cutput.
Here iz an example of a complete program using all.three of these commands:
4.1 TYPE "COMPUTATION OF INTEREST AT 4.5%"
4.2 SET R = 0.045

4,3 DEMAND P AS "PRINCIPAL"

L.h BET I =R*P

L.5 SET T =P+ T

L.6 TYPE I,T

L0

11



This program would be executed by the commsnd
DO FART &
and it would start by typing
COMPUTATION OF INTEREST AT k.5%
PRINCIPAL =
As soon as the user typed a value for P, say 200, the program would reply
I=29
T = 209
Ag mentioned, the steps within a part are ordinarily executed in numeric
order. This corder can be overridden ly the use of the branching command, TO.
TO, like DEMAND, can be used only as an indirect command. A TO command may
be used to branch tc either ancther step (within the same part or in some

other part) or to ancther part:

6.3 TO STEP 7.29 will cause execution of Part 6 tc cease and
execution of Part 7 to commence at Step T.29.

16.42 TO PART B will cauge execution of Part 16 to cease and
execution of Part 8 to commence at the lowest
numbered step.

Although & TO command may be used unconditionally, as showh above, slmply to
alter the linear sequence of execution, it is more often used conditionally,
that is, with an IF clause, as will be explained in the next section.

Several examples of direct DO commands have been glven above., Used
directly, DC causes the execution of a specified step or part;

DC STEP T7.35

DG PART 84

DO mey also be used indirectly, as part of a program, to cause the execution

wyel

of another part as a subroutine:



7.1 SET P

il

I

7.2 SET R = 15
7.3 DO PART 12

7.4 TYPE D, C,

3.14159

A

In this program Step 7.3 calls for the execution of Part 12. Part 12 is the

"subroutine® and the DO command in Step 7.3 is the "subroutine call." When

Part 7 is executed, the seguence of execution is:

Step 7.1
Step T.2
Step 7.3
All of Part 12

Step 7.h

Thus, DO as well as TO em be used to override the automatic linear sequence

of execution. The primary difference is that DO calls for another step or

‘part to be inserted into the part being executed, whereas TO calls for-a

complete transfer of control to the part specified. Here are four sample

commands, with comments, to summarize the difference between DO and TO.

3.6 DO PART 7

3.6 TO PART 7

3.6 DO STEP 7.5

3.6 TO STEP 7.5

will cause all cf Part 7 to be executed, followed
by the execution of the remainder of Part 3.

will cause all of Part 7 to be executed. Execution
will halt at the end of Part 7. The remainder of
Part 3 will nct be executed zutomatically,

will cause Step 7.5 to be inserted as & one~step
subroutine. After Step 7.5 is done, the remainder
of Part 3 will be executed. No cther steps in
Part 7 will be done.

willl cause execution of Part 7 to start at Step

T+5« Execution will halt at the end of Part 7,
end the remsinder of Part 3 will not be executed

automatically.

13



There are two modifiers that may be used with DO commands: TIMES and

FOR. The TIMES modifier is used

F

[ L I - )
CO BPEeCit

: the numbe
step or part will be executed:
DO STEP 3.5, & TIMES
13.2 DO PART 12, N TIMES
The number of times a step or part is to be iterated may be specified by a
number or a variable, or even an algebralc expression, with the stipulaticn
that the value is a positive integer.
The second modifier, the FOR clause, specifies values for some varisble:
DO PART 4 FOR X = 7
This command is equivalent to the two commands
SET X =17
DO PART 4
A 1ist of values may be given in the FOR clause if desired:
DO PART 4 FOR X = 7, 23.8, 19
This command will cause Part L to be done three times, once for each of the
listed values for X, and is thus equivalent to the six commands
SET X = 7
DO PART 4
SET X = 23.8
DO PART 4
SET X = 19

DO PART 4

The values for the variable may be given in the form of a "range specification,"

. RE3

ag in this example:

DO PART 21 FOR A = 5(2)13



The range specification 5(2)13 indicates that the initial value of 4 is to
be 5 and that A is to be incremented by 2 with each successive iteration
until the value of 13 is reached. That is, A will éake on the values 5, T,
9, 11, and 13. Any or all of the initial value, the size of the increment,
and the final value may be given as algebraic expressions, and they need not
be integral. The command

DO STEP 7.3 FOR Y = 3.2(.2)k

Il

is equivalent to

I

DO STEP 7.3 FOR Y = 3.2, 3.4, 3.6, 3.8, 4
When values of a variable are given in a range specification, the final value
is always used. Hence, the command
DO PART 2 FOR X = 0(2)7
will cause these values of X to be used: 0, 2, 4, 6, 7.

DO commands with either TIMES or FOR modifiers may, of course, be used

as indirect steps to cause iterated execution of & subroutine.

S

15



The IF Clause

Certain modifiers, such as the AS or TIMES phrases, may be uged to
medify specific commands. There is one modifier that may be used with any
ATD command, and that is the IF clause. The addition of an IF clause changes
any command from an "unconditional command" to a "conditicnal command.®
Here are a few examples:

TYPE X/Y IF Y > 0O

3.2 DEMAND R IF T = A + X

7.3 DO PART 8, 3 TIMES IF X <= Y + 3

SET 2 =X/(Q+8) IFQ+8S>X
An TF clause contains the word IF followed by & Boolean expressicn. Boolean
expressions (alsc called logical predicates) express relationships between
numbers. The fcllowing relational symbols are used:

< less than

>  greater than

<= less than or equal

> = greater than or egual

= equal

# not equal
As in ordinary usage, any algebraic expressions may be used in Boolean
expressions:

<0

X+Yte#z

2>=12
The Boclean operators AND, OR, and NOT may also be used:

SE5E

16



NOT X <0

X<7 AND Y >8

X>0 0GR 4£<Y -2

X#0 OR Y#0 OR Z#0

(A+B>0 OR A<TY) AND B>=12
In evaluating Boolean expressions, the Boclean coperators are evaluated in
this order (unless there are parentheses to indicate otherwise):

Nor

AND

OR

When a conditional command is executed, the execution proceeds in two
phases. TFirst, the Boclean expression used in the IF clsuse is ewvaluated
to determine whether it is true or false. Second, if the Beoolean expression
is true, the main clause will be executed.

Any command may be modified by an IF clause. One of the most important
uses of the TF clsuse is in T0 commands; a conditional TO command is called
a “"conditional branch" and is the prinecipal mechanism used in writing non-
linear programs, including those with lcops. As an example, here is a simple
program with a loop (this program‘simply counts from O to 30 by twos):

5.1 SET C =20

5.2 TYPE C

5.3 BET C=C+ 2

5.4 TC STEP 5.2 IF C < = 30

5.5 TYPE "THAT'S ALL."
Z

17



Auxiliary Commands: FOEM, LET, and DELETE

Becides the five commands (SET, TYPE, DEMAND, TO, and DO) that are used
in writing simple programs, there are a number of auxiliary commands that are
ordinarily used .as direct commands. Two of these, FOREM and LET, are to de-
fine forms and functions thet will be used by TYPE and SET commands in
programs, and are thus closely associated with the programs themselves. The
other auxiliary commands are used more for bookkeeping or debugging purposes;
thege are DELETE, the file commands to be discussed in the following section,
and the debugging commands to be discussed in the section after that,

FORM and LET are used in conjunction with stored programs. FORM is
used to speclfy the format tc be used for ocutput. Ordinarily, when a TYPE
command is used, the cutput is printed in a standard form. For example,
when the command

TYPE (X + 2}/Y
is given, the value will be typed in this form:

(X + 2)/Y = 28,7
If =z number is 106 or greater or if it is less than 001, 1t will be typed
in scientific notation rather than decimal form:

(X + 2)/7 = 2.87 % 10t(-4)

(X + 2)/7

2.87 * 1018

If the user prefers another form for output, he may specify it in a FORM
statement. The FORM statement, unlike other AID commands, requires two
lines; the first line specifies the form number (an integer between 1 and

9

107 to be used in later references) and the second line specifies the form

SE 7

itself:

18



FORM 12
THE TINTEREST IS =+ <+ ., =+
The location of digits is indicated by the character = and the position of
the decimal point is shown by a period. When the form specified above is to
be used, the TYPE command is mecdified by an IN FORM phrase:
TYPE P * R IN FORM 12
Numbers will be rounded to fit the specified form (which is the easiest way
of rounding numbers to a fixed number of decimal places) and if no decimal
point is specified, the number will be rounded to the nearest integer. When
specifying a form, care must be taken to allow for as many dlgits before the
decimal point as will be necessary; if an attempt is made to type a number
in & form that is not large enough, an error message will result. If the
number to be typed in a given form is negative, one of the digit locations
will be taken up by the negative =sign.
Any gymbolsg, including punctuation marks, may be used in the text of
& form:
FORM 42
PRINCIPAL + INTEREST = § < <+, =«
No text is necessary if the user wishes merely to print & number in a
given form and locaticn.
More than one number may be provided for, and this is the only way in
which more than one number can be printed on the sams line:
FORM 6:
$ ~ < <~ . <= VILL EARN $ <~ <. < <« INTEREST
To use & form with several numbers, the multiple-argument form of the TYPE

. WY

command is reguired:



TYPE P, P ¥ R IN FORM 6

T o - [y

=d programs, vul

The LET comnand is also used in conj
may be used independently for direct computations. The primary use of LET
is in the definition of functions. The function f(x) = 3x2 + 2x 1s defined
in AID as follows:
LET F(X) = 3%Xt2 + 2%X
When the funetion is used, in a SET or TYPE command, a2 value 1s substituted
for the dummy variable X in the expression F{X):
SET Y = T(3)
TYPE F(5) ~ F(3.7)
The value that is substituted may be in the form of an algebralc expression,
provided such an expression can be immediately evaluated:
SET N = 2
TYPE F(N/6)}
Any of the variables A, B, C,c.., Z may be used as function names.
Take care, however, not to use the same identifier for both a real variable
and a function since the first definition will be replaced by the second.
Functions of up to ften variables mey be defined; here is ar example cf
a Tuncticn of three variables:
LET F(X, ¥, 2) = (X¥Y + Y*2)/X¥Y*%
Caution: Do net use a space betwzen the function name and the opening paren-
theses; an expression like F (3) will cause an evrror message.
A useful variant of the LET command iz the conditional form of LET used
to define functions conditionalily., In ordinary notation, a function may

sometimes be defined in this fashion:

A5 T

o
(]



-2x% 1f x <0
f(x) =
5x if x > 0

In ATD, this definitior is given in & single line:
LET F(X) = (X < 0: «2¥X; X > = 0: 5¥X)

which is read "If x < 0, f(x) = -2x; if x > 0, f(x) = 5x." 1In the AID
definition, the entire expression 1s enclosed in parentheses, the clauses
within the definition are separated by semicolons, and each clause 1s divided
intc a condition ard an algebraic expression separated from one another by
a colon. Aay mumber of clauses may be used; in the above example, there
are two clauses.

If the definition of a function is given in ordinary terms with an
"otherwise" clause,

0 if x <0

P{x) = { 2x if x > = 0 and x < 7
5x otherwise

the AID definition does not reguire a condition in the final clause:

LET F(X) = (X < 0: 0; X > = 0 AND X < T: 2¥X; 5%X)
In this example, the final clauss consists only of the algebraic expression
5%%, which will be used wherever all of the conditions in preceding clauses
fail.

When a function definition is used, it is scanned from left toc right
until a condition that holds is found. Beecause of this, it is frequently
possible to simplify ALD definitions. For example, the condition in the
second clause of the above example could be giwplitied from X > = O AND
X<71toX<Ts

IET P(X) = (X < 0: 03 X <0 7: 2¥X; 5%X)

<90



A function may call itself; hence, a variant of the conditional defini-
tion is definition by recursion. Here, for example, is the AID recursive
definiticn of the factorial function X!

IET F(X) = (X = 1: 1; X¥F(X-1))

Both IET and ¥ORM serve to store information in core storage. 1In the
one case a function definition is stored and in the other the definition of
an ocutput form. SET and DEMAND alsc use core storage; both of these cause
a number end its identifier to be stored. Stored commands (indirect steps)
are also put inte core storage, as clued by the step number preceding the
command. In programming it is often necessary to inspect the informeiion
that is being held in core or to delete some item.The contents of core can
be displayed by using TYPE commands and deleted by means of DELETE commands.
Some example of such TYFE and DELETE commands are given here, with comments:

TYPE X wlll print the value of X if X is a number or

a list or array, or the definition of X if ¥
is a function.

TELETE X will delete either a number X or a function X.

TYPE X{3) will print the value of X3.

DELETE X(3) will delete the single value x3 from the list X

TYPE FORM 3 will type the definition of Form 3.

TELETE FORM 3 will delete the definition of Form 3.

TYPE STEP 7.1 will prini the stored command identified as
Step T.1.

DELETE STEP 7.1 will delete Step 7.l.

TYPE PART 29 will print all of the steps in Part 29 in
numeric order.

DELETE PART 29 will delete &ll of the steps in Part 25.

; A9



TYPE ALL will print the entire centents of core.

DELETE ALL will delete everything in core storage.

TYPE ALL VALUES  will print all numbers, lists, and arrays.

TYFE ALL FCEMULAS will print all function definitions.

TYPE ALL STEPS

TYPE ALL PARTS

TYPE ALL FORMS

DELETE ALL VALUES

DELETE ALL FPORMULAS

DELETE ALL STEPS

CELETE ALL PARTS

DELETE ALL FORMS

Both TYPE and DELETE may be used wlth several arguments, separated by

COmmas ;

TYPE X, STEP 3.7, F

DELETE STEF 3.7, PART 9, K, F

These are the only twe ATD commands that have multiple-argument forms.

KLU

23



File Commands: USE, FILE, RECALL, and DISCARD

Anything that is stored in core will be automatically deleted whenever
the user signs off. Any or all of this information can be copled to more
permanent storage space on the disk. To do this, the file commands USE,
¥ILE, BECALL, and DISCARD are used. AID files are variable length disk
files, identified by integers from 1 to 2750. The files need not be used
in numeric order and the user specifies which file he wants to use by giving
a command like

USE FILE 100
The file number is held in core until another USE command is given (or until
the user signs off) and all subsequent FILE, RECALL, and DISCARD commands
will refer to this file,

Each file i1s divided into "items,"”

nunbered from 1 to 2%, and the ugser
must specify the item when storing or retrieving informaticn. Items need
not be used in numeric order. To file an item, a command like

FILE PART 7 AS ITEM 3
is given. The user may file a form, a step, a part, a value, a function
definition, or all of these, using commands simlilar tc the TYPE and TELETE
command shown Just above. The entire contents of core may be stored as a
single item by giving a command like

FILE ALL AS ITEM 17
When information is filed on the disk, the contents of core are not dis-
turbed; a copy is made for transfer to the disk.

When the user wishes to retrieve information from the file, he uses a

command like

RECALL ITEM 17

and when he wishes to discard an item from the file, he uses a command Like

DISCARD ITEM 17 q
2h Q; 5/



Debugging Commands

The commands STOP and GO are used primarily for debugging purposes.
STOP is inserted as a temporary command, to be removed when debugging is
complete, and may be used either conditicnally or unconditionally to halt
the execution of the program st the point where the STOP command 1g en-
countered:

47.3 sTOP
47.352 STOP IF N > 100

Wnile the program is STOPped, the user may inspect or alter the con-
tents of core, checking current values of variables used by the program;
replacing, inserting, or deleting steps in the program, ete. To resume
execution the user gives the direct command

GO
Turing the time the program is ST0Pped, the user may not execute ancther
step or part (that is, he cannot give ancther direect DO command), at least
not if he wishes to resume the execution of the STOPped program at a later
time.

GC may also be used to restart the exscution of a program that was
halted because of a syntax error. After the program stops, and the error
message 1s printed, the user may correct the error and then resume execution
from that point by giving a direct GO command.

Temporary TYPE commands may alsc be used for devugging purposes. These
are commands like

32,105 TYPE X, ¥, K, N

that are inserted temporarily so that the values of variables will be typed

242



for inspection, When debugging is complete, these commands, and temporary
STCP commands, are removed by giving TELETE commands:

DELETE STEP 47.3, STEP 32.105

275

26



Summary of ATD Commands

The following summery of ATD commands is given in the form of examples,

with comments.

Commands that are ordinarily used directly are shown without

step numbers and those that are ordinarily used indirectly are shown with

step numbers; to find out which commands must be used directly {or indirectly)

refer to Table 1.

Most of the examples are shown as unccnditional commends; however, any

command may
DELETE
DELETE
IELETE
DELETE
DELETE
DELETE

DELETE

be used conditionally (modified by an IF clause) if desired.

X

F

4(2,3)
STEP 7.1
PART 7
FORM 22

K, STEP 4.3, STEP L.k

deletes the identifier X and its value.

deletes the definition of the function TF.

deletes the element A2 from the array A.
3

deletes Step 7.1. -

deletes all steps in Part 7.

deletes the definition of Form 22.

‘

deletes the three gpecified items.

DELETE ALL VALUES deletes all real variables and their
values.
CELRTE ALL STEPS etc.
DELETE ALL PARTS
DELETE ALL FOBRMS
DELETE ALL
7.1l DEMAND M requests a value for the real variable M,
2.05 IEMAKD A(2,3) requests a value for the element A2
of the array A. s3
3.7 DEMAND X(I,J,K) requests a value for the element X 3.k
Ly
of the three-dimensicnal array X,
16.4 DEMAND X AS "RADIUS" requests a value for X by typing

RADTUS =

290



DISCARD ITEM 20

discards Ttem 20 from the previously
designated disk file (see USE).

62.15

DO STEP 6.2

DO PART 9

DO PART 12, 7 TIMES

DO PART L FOR X = 2, T, 4.3

DO PART 6, N TIMES

DO STEP 32.3 FOR A = 5(2)12

executes Step 6.2.

executes the steps in Part 9 in numeric
order.

executes Part 12, 7 times.
executes Part 4, 3 times, once with
X =2, once with X = 7, and once with

X = J+u3¢

executes Part 6 (as a subroutine), N
times.

executes Step 32.3 once for each of
these values of A 5, 7, 9, 11, 12,

FILE X AS ITEM 2

FIIE A(7,3) AS ITEM 6
FILE FORM 3 AS ITEM 12
FILE STEP 6.25 AS ITEM 4
FILE PART ¢ AS ITEM 1
FILE ALL STEPS AS ITEM 5
FILE ALL PARTS AS ITEM 21
FILE ALL FORMS AS ITEM 7
FILE ALL VALUES AS ITEM 1k

FILE ALL AS ITEM 3

files the identifier X and its value
as Item 2 of the previously designated
disk file (see USE).

(Note: The item number must be an integer from 1 to 25.)

. 297



FORM 7:

THE LENGTH IS <« <+ < INCHES MORE

TORM 2:

THE COST OF < = ITEMS IS $ <= =<.

(Note: The form number must be a

THAW THE WIDTH.

defines an output form with allowance
for one value (see TYPE..,.IN FORM...).

defines an output form with allowance
for three wvalues, but nc text.

-

defineg an output form with allowance
for two values. The first value will
be rounded to the nearest integer, and
the second value will be rounded to
two decimal places.

9.

positive integer less tharn 10

GO0 continues the execution of a program
nalted by a STOP command or by a syntax
error.

LET F{X) = 3¥Xt5 ~ 7 defines the function f(x) = 3x5 - 7a

LET V(R,H) = 3.14159205%Rt2¥H  defines the function V(r,h) = aroh
(functions of up to 10 variables may
be defined).

IET P(X) = (X <0: X12 + 5; X >=0: X 4+ 5)
defines the funciion

x2 + 51ifx <0
f(}() =
X +51f x>0
IET F(X) = (X = 21: 1; X + F{X-1))

defineg the recursive function
lifx=1

f(X) =
x + f(x=1) if x> 1

. HAY



RECALL ITEM 7

recalls Ttem 7 from the previous desig-
nated disk file (see USE).

SET P = 3.14159265 assigns the value 3.1L159265 to the
identifier P.
6.35 SET A(5, 7) = 12.31 assigns the value 12.31 to the element
A in the array A.
257
T3 S8ET N=N+1 increases the current value of N by 1.
X = 4.3 short form of the SET command,
egquivalent to
SET X = 4.3
L(7) = 2769 short form of the SET command,
egquivalent to
SET L(7) = 2769
7.3 STOP causes the program tc stop execution
of Step 7.3 (see GO).
26.64 STOP IF N >M + 1 causes the execution of the program
to stop at Step 26.64 if N >M + 1.
31.3 TO STEP 31.1 IF N < 100 causes & branch to Step 31.1 if N < 100

8.25 TO PART 9 causes an unconditional branch to
Part 9.
TYPE X1Y evaluates x° and types the result.
7.3 TYPE X, F(X) types the values of X and F(X).
12.9 TYPE "TAX COMPUTATIONS" types an exact copy of the text
enclosged in guotation marks.
TYPE FORM 2 types the definition of Form 2.
TYPE STEF 3.7 types the command stored as Step 3.7.
TYPE PART 5 types all of the commends in Part 5.

. 299



TYPE ALL STEPS
TYPE ALL PARTS
TYPE ALL FORMS

TYPE ALL VALUES

TYPE ALL
3.8 TYPE 5%X IN FORM 2 evaluates 5x and types the result in
the speeified cutput form (see FORM).
USE FILE 100 ' designates the disk Tile to be used
by subseguent FILE, EECALL, and DISCARD
commands.

(Note: The file number must be & positive integer from 1 to 2750.)

SO0

31



ATD Functions

In additicon to the functions that may be defined by the user by means

of LET commands, there are a number of useful standard AID functions. There

are two trigonometric functions, SIN{X) and COS(X); X is in radians and must

have an absolute value less than 100, The netural logarithm function LOG(X)

yields the logarithm to the base e of x, where x is any positive real number.

The inverse of the LOG function is the exponential function EXP(X), equivalent

X
to e .

Several functions depend upon features of the decimal representation or

gcientific notaticn of the argument:

ITP(X), the "integer part" function, yields the integer portion of the

» decimal representation of the number x. For example, IP(7304.56) =

FP(X),

DR(X),

Xp(X),

7304,

the "fracticn part" function; yilelds the fractional portion of
the decimel representation of the number x. FP{7304.56)= .56.
the "digit part" function, yields the digital part of the
scientific notation of x. For example, DP(3789.54%) = 3.78954
since the scientific notation for x is 3.78954 x 103,
the "exponent part" function, yields the exponent part of the
scientific notation. For example, XP(3789.54) = 3 since 3 is

used as the exponent of 10 in the representaticn 3.78954 X lO3°

Two other real functions that are occasionally used are SGN(X), the

"sign" function, and SQRT(X), the "square root" function, These are defined

as follows:

S0

32



{ 1 if x is positive
SGN(X) = { 0 if x is zero
{1 if x is negative
SQRT(X) = X
There are four functions on lists of real numbers: MAX, MIN, SUM, and
PROD. The forme of these are similar, and the resulting values are, res-
pectively, the maximum of the specified list, the minimum, the sum of the
numbers in the list, and the product. Each of these four functions may be
used by simply listing the members of the argument:
MIN(.69, 2/3, .63) has a value of .63
SuM(2, 15, 0, 4) has a value of 21
The list of numbers to be used as an argument may be given by specifying =
formula and the values of the dummy variable used in the formula:
SUM(I =2, 10, 3: I * 5) is equivalent to
SUM(2 * 5, 10 * 5, 3 % 5).
The values of the variable may be given in a range specification:
SUM(I = 5(1)10: 3/I-7)
This expression is equivalent to

10

S G-

i=5
Similarly, the expression
PROD(J = 0(2)6: J12)

is equivalent to

(5°)
J=OJ29h:6

S0

33



The function FIRST is & function on an indexed list of Boolean expres-
sions. Tor a specified list of Boolean expressions, the FIRST function will
yield the index of the first true expression. That is, it will find the
location of the first true predicate., The form of the FIRST function is
shown in this exawple:

FIRST(L = 1(1)50: I > 6%2 + 3)
The value of this expression will be the first value of i in the set
(1, 2, 3,..4, 50} such that 1 > 6° + 3 {that value is L40).

Another simpler function on Boclean expressiorsis the function TV(X)
which yields either- -1l or O depending upon whether the Boolean expression X
is true or false. Tor example, the value of TV(2 < L OR S5 > L4) is 1.

Fer all of the standard ATD funetiecns, the values are real numbers;
hence, these functicns can be used anywhere in algebraic expressions Just
as in ordinary algebraic nctation. They may alsc be combined and composed
in the usual ways. Here are a few examples of algebraic expressions in

ordinary notation and in AID notation:

ein x S 7
= SIN{X)/ces(x)
. 2 .
sin~x {sIN(X))t2
in x LOG(X)
&= EXP( 2%X)
2 2
X 4y SQRT(X12 + Yi2)

S03

34



Formulas

1 kilometer = 0.621 miles

1 pound = 16 ounces

Diameter of a circle of radius r: 2r
Circumference of a clrele of radius r: Zxr

. , P
Area of a circle of radius 1: x=r

ol

Area of a triangle of height h and base b:
Volume of a cylinder of height h and radius r: ﬁreh
:r[r‘gh

3
Volume of a rectangular pyremid of height h and base w by £: E%i

Volume of a ccone of height h and radius »:

Volume of a rectangular prism of height h and base w by £: hwi

Pythagorean Thecrem: A given triangle is a right triangle if and only if
the square of the length of the hypotenuse is equal to the sum of
the squares of the lengths of the other two sides.

Distance between points in a plane: The dlstance from (xl, xg) to

(yy5 ¥,) is /(xl - yl)g + (%, - 7"

Distance between points in space:; The distance from (xl, x x3) to

25‘

. 5
(715 ¥ps ¥3) 2s »/(X;L -y G - )" (x3 - 73

Compound interest: The amount of money that will accumuilate in n years if

the amount P is invested at an interest rate r, compounded s times

per year is

rflS
A:P(l-l-"g')

30

35



Mean: The mean of & set [xi} of n numbers is

M

x5
1
In

i

M=

Standard deviation: The standard deviation of a set [xi} of n numbers is

/Z(xi - m)°
g - 1=1

where M is the mean of [xi}.

Standard score: For a score %, from a set of scores {xi} the standard score

x, - M
is z = ”EEF““' where M is the mean cf {xi} and SX is the standard
x5 x
deviation.

Correlation coefficient: The correlation coefficient for a set {(xi, yi)} is

Ti

Z 2. 2

iz1 193

Y = ———

Xy n

where Z, is the standard score for X5 Zy is the standsrd score for
i i

y;» and n is the number of points in the set {(Xi’ yi)},

Sample standard error cof estimate for predicting standard scores:
S=y1l - rg where r  is the correlation ccefficient.
Xy Xy

Regression equation for prediction of y from x:

5 .
Predicted value of y = r_ =% (x - M) + M
Xy S X v
x
here M_ is th i
W 1 e nean of {Xi}’ My is the mean of [yi], Sy and 8_

are the corresponding standard deviations, and rXy is the correlation

. 305

coefficient.



PrOgramming Problems

Applications in Algebra

1. Convert miles to kilometers.
2. Convert miles per hour tec feet per second.
3. Convert inches to feet and inches.
h. Compute
(a) +x
{b) 3x2 -2x + 5
{¢) x+xy+y
(@) =+

(&) Jx° +5°
(£) 73, y1/5

5. Compute the average speed of a car that traveled d miles in h hours
and m minutes.

6. Round a number x to the nth decimal place.

Examples: 137.45702 rounded to the 2nd decimel place is 137.L6.
0.0273 rounded to the Znd decimal place is Q.03.

To TFind the number of digits in a number x. Find the number of digits
before the decimal point, and the number cf digits after the decimal
point.

8. Round & number x to the nth significant digit. n may be any integer
between 1 and 9.

Examples: 137.45702 rounded to 2 significant digits is 1L0.

0.0273 rounded to 2 significant digits is 0.027.

. S0k



9.

lo.

'g

Given 3 coins, two of which are equal in weight, determine which coin
is different in weight and whether it is heavier or lighter. (Assume
that when the program is used, it will be given the exact weight for
each of the three coins.)

Find the age in years, months, and days of a person born on any given
date. (If you can't give a precise solution, you may simplify the
problem by assuming that every year has 365 days or that all months
are the same length.)

The equation

3 3790x" - 2200x - 10969 = 0

% - l@8xh + %30x
has a solution somewhere between x = 0 and x = 100. Find one solution
to the third decimal place.

Hint: The value of the polynomizl is negative when x = 0 and
positive when x = 100. Narrow down the interval where the
polynomial changes sign by using a “"binary search" pattern:
First, find out if the polynomial changes sigh between x = 0

and x = 50, or between X = 50 and x = 100. Then cut that interval

in half and find cut in which half the polynomial changes sign, ete.

Applications in Geometry

12.

13.

k.

Given the radius r of a circle, compute the diameter, circumference,

and area.

Compute the surface area of a box.

Write a general "volume caleculating" program that will first ask which
¢f these shapes is desireqd:

1. Cylinder

2. Cone E ki)
38



150

16.

17.

18.

19.

204

21.

22,

3. Rectangular pyramid

4. Rectangular prism
and will then ask for the appropriate dimensions and perform the
calculation.
Suppose x and y are two points on a number line. Compute the distance
between them.
Given two points, x and y, on a number line, determine which point is
closer to the Tixed peint P = 2/3,
Given thrée numbers,; a, b, and ¢, determine which, if any, is between
the other twe.
Find the length of a line segment whose end points are (xl, xg) and
(yy5 v5)-
Suppose two points in space are given: (xl, Xg x3) and {yl, Yoo y3),
Find the distance between the two polnts.
Given two points in space, (xl, Xy XS) and (yl, Yoo y3)3 find cut
which point is closest to the origin.

Given three points in the plane, (xl, x?), N }, and (Zl’ 2,2)j find

17 Yo

out which'two of the three points are closest to one another.

Determine whether or not three given points in a plane are collinear,
Hint: If the distance from A to B plus the distance from

B to C is equal to the distance from A to C, the three

points are on the same line (are collinear).

30¥

39



23. (Civen three numbers, find out if the numbers determine a triangle.
Hint: If there were three line segments of the given lengths,

could they be placed so as to form a triangle? These can't:

24, (iven three numbers, find cut if the three numbers determine & right
triangle.
Hint: Use the Pythagorean Theorem.

Data Storage

25, Write a program that will store & list of numbers, to be typed by the
person using the program. The list may be of any length from 1 to 250.
After the‘list is stored, the program should print it so it can be
proofread.

26. Find the sum of the numbers in a list and put that sum into the list
as an additional member.

Example : 0ld 1list: 2, 7, 3, 0, 1
New list: 2, 7, 3, 0, 1, 13

27. Find the smallest (largest) number in a list of numbers. frint hoth
the number and its location in the list.

28. Given a number x and a list L, determine whether or not the number is
in the list.

29. Find the locations of all numbers between x and y in a list‘L.

30. Find out what percentage of the numbers in a list L are greater than

é@ff

4 given number x.

Lo



31. For a list L, form a new list S of the subtotals of the numbers in L,

that is
By =1y
S2 = Ll + L2

S3 = Ll + L2 + L

3

etec,

32. Given a list L, make up a new list P of all of the positive numbers
in L, in the same order in which they occur in L.

33. Write & program that will store an n X m array A. The elements in A
are to be typed by the perscn using the program. The program should
print the array so it can be proofread {if the array has 7 or fewer
columns, it can be printed in table form for ease of reading).

34, Determine whether or not a number x occurs in the first column of
an array A.

35. QCiven an n X m array A, determine which row and column, if any, contains
the number x.,

36. Given an array A and a number x, determine whether or not x occurs in
the first column of A. If it does, print the entire row in which x
OCCurs.

37. TFind the sum of the numbers in each row of an array, and add those sums

to the array as an additional column.

Example:

01d array New array
2 3 2 3 5
o2 L 2 6

5 1 5 4 9 é//[)

41



38.
39,

ho.

b,

Lo,

43,

Determine which row in an array 4 has the largest (smallest) sum.
For & list L of non-negative numbers, find the smallest number that
is greater than zero. Print both the number and its location.
Suppose L is a list of 10 positive numbers. Form a new list N by
sorting the numbers from L into numeric order.
Hint: Find the smallest number in L (other than zero), put that
number intoc the first place in N, and replace it in L with a. zero.
Then, find the smallest number in L (other than zero), put that
number intc the next availeble place in N, and replace it in L
with a zero. Repeat until L is exhausted.
Suppose L is a list of 10 numbers which may be negative, positive, or
zerc. Form a new list N by sorting the numbers from L into numeric
order.
Hirt: Find the largest number in L and use that to replace each
number that is moved from L to N.
Suppose you are given an ordered list L. (If the list is not already
ordered, use the program for the last problem to sort it into numerie
order,) Write a program that will insert a new element x into the list
in the proper place.
Hint: Start at the last number in the list and move each number
one place farther ocut, working backward until you reach the place
where x belongs.
Given an n X m array A, form a new array S that iz the same as A with

the first column sorted into numeric order.

</

ho



bk,

Given an array, sort the rows into numeric order. Sort first by the
nurmber in the first column; then, if two rows have the same first

element, sort according tc the value in the second column, etc.

Example:
01d array New array
2 3 1 g9 4

.

1 9 & 2 7 1

2 8 5 2 7 3
8

2 7 1 2

Business and Consumer Applications

L5.

Lé.

47,

A store owner buys items at a wholesale price and marks them up a

certain percentage to the retail price. Calculate the total cost of

i items at a wholesale price p, and print the retail price if the

markup is 28%.

Small eggs weigh 18 ounces per dozen, medium weight 21 ocunces, large

2&, and extra large 27. If the price of eggs is s cents per dozen

for =mall eggs, m for medium, # for large, and e for exitra large,

determine which is the best buy and glive the cost per pound of that

gize. Also, make up a table showing what the competitive price should
be for medium, large, and extra large eggs if the price of small eggs
is 20£, 25¢, 304, ..., GOfF.

Laundry detergent of a certain brand comes in three size containers:
Regular 1 1b. b oz,
Giant 3 1lbs. 1 o=z.
King 5 lbs. 4 oz.

Sl

43



48.

49,

50.

51.

If the prices are r, g, and k, respectively, which size is the best buy?
If a family uses 40 pounds of detergent per year, what would be the
saving c¢ver the other two sizes per year? (In testing the program,
reasonable values to use for r, g, and k are: r = 374, g = 854,
k = $1.51.)
A sales tax of 3% is calculated as follows:

For a sale of 1f£ to 14¢, the tax is 0.

For a sale of 15¢ to Lug, the tax is 14.

For a sale of 45¢ to Thé, the tax 1ls 24,

For a sale of 75¢ to $1.00, the tax is 3¢.

For a sale in even dollars, the tax iz 3¢ per dollar.
Write a program that will cszlculate total price, including sales tax.
A wholesale lumber dealer sells lumber by the board foot. A board
foot is a measure of volume, equivalent to a one-foot length of 1" X 12",
Compute the total number of bcard feet in

n, pieces of 2" X 4" of length El
n. pieces of 2" X 4" of length £2

2

Dy pieces of 2" X 6" of length £3

n), pleces of 1" x 8" of length Eh
First Federal Savings Company charges 8% interest on home loans. TFor
a 30-year mortgage of $20,000, the monthly payment is $146.76. How
much must be paid to the Savings Company over the 30-year periocd?
First class postage costs 8¢ per ounce or fraction of an cunce for O
to 12 ounces. From 12 ounces to one pound, there is a flat fee of
$1.00. (For over one pound, the price depends on distance.) Compute

the postage for any piece of mail weighing up to one pound.

Ly Qaiig /céii’



Write a program to balance your bank statement. The program should ask
for the figures it needs (don't forget outstanding checks, bank charges,
and deposits not shown on the statement).

First Federal Savings Company pays 5-1/2% per year interest, calculated

daily, on its customers' savings accounts. If x dollars are deposited

5.

55

and d days later the account is closed,; aow much is withdrawn?

Assume data for a payroll department are given in this form:

Employee number Hourly rate

25 2.43

73 7.15

36 3.50

42 2.43
ete.

Store these data as an array.

Write a program that will enter the

hours worked in a given week ag the third column. The program should

first ask for the employee number and the hourz worked and enter the

number of hours in the third column in the appropriate row. If an

employee did not work during the given week, a zero should be entered

in the third column.

Using the data from the problem above, write a program that will com-

pute the wages earned for the week Tor each emplcoyee and enter the

computed wages as the fourth column of the array. The rate of pay for

each employee ig given in Column 2 and the computation is as follows:

The straight hourly rate is used for up to 40 hours.

For 40 to 48 hours, time-and-a~half is paid.

45

=y



For over 48 hours, double-time is paid.
The program should print the total payroll (the sum of the fourth column).

56. If P dollars are deposited in a savings account paying 5-3/4% interest,
compounded quarterly, what is the amount that accumulates in y years?

Hint: The formula for compound interest éomputations will he found
on page 35.

57. On a $20,000 30-year mortgage with 9% interest, the monthly payments
are $160.93. Scme of this payment is for interest and some of it is
for repayment of the loan. Make a table that shows how much of each
monthly payment is for interest, how much is for repayment of the
principle, and what the balance of the loan is. (This is called an
amortization schedule.) This table would have 30 X 12 = 360 lineg if
printed. Do not print the entire table; meke annual summaries instead.

Hint: The celeculation must be done menth by menth with interest
calculated on the unpaid balance of the lcan. Thus, for the first
month the interest paid would be on $20,000, but after that the
interest would bte decreasing since the uwnpaid balance would be
smaller. Cauiion: Because of rounding, the final payment will be
slightly different from $160.93.

Applicaticns in Linear Algebra

58. The product of a matrix A and a scalar ¢ is the matrix obtained from A
by multiplying each of its members by c.
Example:
b4 x X cXx

11 F12 *i13 13 12 %13

X CX CX

21  Top o3 21 oo o3

Write a program that will find the product of eny matrix by any scalar.

he <::é£;/<§£5;



59.

60‘

61.

62.

63.

6k.

If A and B are both n X m matrices, the sum of A and B is another
n X m matrix C such that

cij = Aij + Bij
Write a program that will add matrices.
TIf X = (xl, Xys vves Xh) and Y = (Yl, Yys eees Yn) are two vectors of
the same length, the dot-product of the two vectors is a number defined
as follows:

XY = XlY + X2Y2 4 eae + XY

1 nn
Write a program to evaluate dot-products.
If &4 is an m X n matrix and B is an n X k matrix, then the product of
Aand Bis anm X k matrix ¢ such that

Cig = AaBiy * iy T ot F AinBhy
(This is the same as the dot-product of the ith row of A and Jjth column

of B.) Write a program that will perform matrix multiplication.

a b
¢ 4

The value of a 2 X 2 determinant is ad - be. Write & program

that evaluates 2 X 2 determinants.

The wvalue of & 3 X 3 determinant all 312 al3 is defined to he
%21 Pop %23
a a a
31 32 33

the number alla22a33 4+ al2a23831 + al3a21a32 - a13a22a31 - a12a21a33 -

. rit ‘ hat i .
alla23a3g Write a program that evaluates 3 X 3 determinants

Two simultanecus linear eguations

It

C

| =y

W7

ax + hy

dx + ¢y



65.

66.

where both ¢ and f are not zero have a unique solution if and only if

a b
d e

the determinant is not zerp. Write a program that determines

whether or not a gilven pair of simultanecus linear eguaticns has a
solution.
Suppose twe simultaneocus linear equations are glven:

ax+by=c

dx + ey = T
If there is a unique scolution it will be
b a ¢
f e a f
X = and y =
b a b
e d €

Write a program that solves two simultaneous linear equations.

The value of a 3 X 3 determinant

47 %1 13

8517 %oz Fp3

a a a
31 32 33

can be given in terms of "minors" (related 2 X 2 determinants):

Bop  %p3 821 U3 So1  Bep

c + al2 + a13

a a a a a a

32 33 31 733 31 32
Write a program that calculates the value of a 3 X 3 determinant by

this method.

S/

48



67. Suppose three simultanecus linear equations are given:

allxl + 312X2 + &a

aglxl + aggxg + a

a3lx1 + a32x2 + a

If there is & unigue

k a

13%3 = ¥
05%3 = ¥
3373 = 3

solution it will be

a,

1 %12 813
Ky 8y #pg
k a 2]
3 32 33
x =
1 A
gy K 85
G Ko 8
a k a
31 3 33
xX =
e A
1 %12 Ky
81 P Ky
g a k
31 32 3
X =
3 A
where
11 %12 %13
A= a8y 8y 35
a a a
31 32 33

49



68.

69.

If not all cf k k2, and k., are zero, the solution exists and is

1’ 3
unique if and only if A is not equal to 0. Write a program that
golves three simultanecus linear equations.

The method of sclution of simultaneous linear equations shown in the
above problem can be extended to any number of equations. Write a

program to solve four simultaneous linear equations.

If the product (see Problem 61) of the matrices (a b) and (x y) is

c d Z W
the identity matrix f1 O\ , thensx y\ is sald to be the inverse of
(0 1} ( Z W)
a by, TFind the inverse of & matrix sa b\ .
(c d) (c d)
Hint: The inverse exists if and only if the determinant |a b
¢ d

ig nct zero. This problem requires the solution of four simul-

tanecus equations; use the program from the problem above.

Applications in Probability and Statistices

T0.

71.

72,

T3«

Find the average of four numbers A, B, C, and D. Then find which of
the four numbers is closest to the average.

For a list of numbers L L

10 Loy eees Ln’ find the average.
Find the average of all the positive {negative, non-zero)} numbers in
a glven list of numbers.

Suppose sccres for a certain test are given in this form:

Number of students Test score
M1 ty
o t,
n t
3 3

ete. fg /
Find the mean score.

50



74,

T5.

76,

TTe

Find the mean and standard deviaticn for a. given list of numbels.
Hint: The formula for standard deviation will be found on page 36.
Suppose Ll’ Lg, es ey Li is a list of test scores for a group cf i people.

Form a new list Nl’ Bhs oees Ni of the standardized test score for each

Persch.

Hint: The formula for standard scores will be found cn page 36.

Suppose IQ sccres and programming aptitude scores for n students are

given in this form:

IQ score Programming aptitude score
Xy ¥y
*2 -
*y In

Estimate the correlation between IQ and programming aptitude by
calculating the correlation coefficient.

Suppose pre- and post-test scores for & course in calculus are given

in this form:

Pre-test sccre Post-test score
*1 Y1
%2 Yo
*n Y

Assume these are given as standard scores. (If not, use the program

from Problem 75 above tc standardize them.) The post-test score for

g SO



78'

19

80.

an individual can be predicted from his pre-test score by an equation
of this form:

¥y = X
where r is the correlation coefficient of {(xi, yi)]. Find the value
of r. Also, find the sample standard error of estimate for predicting
the standard post-test scores.

Suppose data on height and weight for n children are given in this form:

Height Welght
1 Y1
*o Yo
*n In

The weight of an individual can be "predicted" from his height by using
a regression equaticn of the form
y=alx - ¢) +b
Calculate the values of a, ¢, and b for this eguation.
Hint: See the formula for the regression eguation for prediection
of y from x on page 36.
A set of n objects can be arranged into linear order -in n! ways, where
n! = n{n-1)(n-2)-<+3-2-1, Find the value of n!.
If r objects are drawn from & set of n objects, the total number of
possible arrangements (permutations) is
P(n, r) = n{n-1)(n-2)¢++(n-r+1)

Calculate the value of P(n, r).

S

52



81, If r objects are drawn from a set of n objects, the total number of

combinations (wlthout regard to order) is

cln, 1) = B(n, 1)

rl
where P(n, r) is as defined in the above problem. Use this formula to
find the total number of bridge hands (13-card hands) that can be dealt
from a deck of 52 cards. Also compute the probability of being dealt
a bridge hand that contains cards in one suit only. (The probability
is equal to the number of possible one-suit bridge hands divided by
the total number of possible bridge hands.)

Applications in Arithmetic

82. Write a program that will count from n to m. If n is greater than m
the program should count backwards.
83. Convert any decimel number between 0 and 1 to a fraction with a power
of 10 in the denominator.
Examples: 0.67 is converted to 67/100.
0.7 is converted to T/10.
84, For two integers M and N, Tind the integer quotient and the remainder
of M divided by Y.
Exampie: If M = 14 and ¥ = L, the quotient is 3 and the remainder
is 2,
85. List all the common divisors of two integers M and N.
Example: If M = 42 and N = 70, the common divisors sre 1, 2, 7, and 1lk.
86. Convert any decimal integer between 1 and 100 to a binary n;mber.
87. List all of the prime factors of any integer greater than 2.
88. Reduce any fraction to lowest terms.

8 2 E;g ; )
Example: 15 = 3 é;)h

23



89.

90.

91.

Do the following sequence of computations, listing each result as it

is computed:

Result 1l: Compute 1 divided by 3
Result 2: Compute 1 divided by {3 + the previous result)
Result 3: Compute 1 divided by (3 + the previous result)

etc.
Write a program, using a counter C = 1, 2, 3, ..., that computes and
prints values for y where y is defined as

c
(previous value of y)

The initial value of y is l. Continue the computations until the
value of y is greater than L.
The Fibonacci numbers are
1, 2, 3, 5, 8, 13, e«
where each number is found by adding the previous two numbers in the

sequence. List the first 15 Fibonacci numbers.

Applications in Calculus

92.

Type a list of the first n numbers in each of these seguences.

() 1/2,.2/3, 3/4, -

1 1 1
b l"'_' =y bl ity * o8
(0) 5°1"g5 1" 359
2 2
(e) 17, 27, 32,
1L 1 1 1
Q) 5, %, 5,5,
12.722) 32514-2 b
2 2 2 P
1 2 3 4
(e) — — — en0
21) 22}2 J2 3

. B3



93.

9J‘|'a

95‘

97.

a8.

Approximate the sum of the series

i

3 =+

+o— a 0w

+ o7

el s

by adding one term at a time until the additicn of another term will

not change the total.

Approximate the sum of the series

1 1 1
1+ a7 + 3T 1T + eue
The series
3

ar + ar + ar” 4+ sa.

converges (has a sum) for -1 < r < 1,

series for r = 1/10, 1/100, 1/1000 and a =

Approximate the sum of the series

EIE I T I
50 502 503 50"

Approximate the sum of the series

HRERCRIC IS

Approximate the sum of the series

o .3
x-1  (z-1)" (x-1)
5 F s Ty TS

fOI‘ X = 06_’ 07, 08, c9¢

25

Approximate the sum of this

1, 10, 100.



99.

100.

The area under a curve can be approximated by finding the area of a
set of rectangldas as shown below. If the x-axis fram a to b is divided

into n parts, the approximation is the sum of n rectangles, each of

withx:a,:;1+£—br—1—a-l a+2££§22-

a+3—(-.?%a—~l,..,‘,a+(nﬂl)ﬁ'§‘;?a-.’lo By'takingl’lxl,g,B, ses &

which has an area f{x) - E]—;-il.

2 2

sequence of closer and closer approximations can be made. Using this

3

method, approximate the area under the curve of f(x) = /x” - cos(x)

from x = 1 to x = 2.

X=a X=b

Approximate the area under the curve of f(x) =

to x = 1.

SAD

56



N7y 26710

COMPARISON OF STUDENT PERFORMANCE AND ATTITUDE UNDER THREE LESSON-

SELECTION STRATEGIES IN COMPUTER-ASSISTED INSTRUCIION

by
Marian H. Beard, Paul V. Lorton, Barbara W. Searle,

end R. C. Atkinson

December 31, 1973

Reproduction in Whole or in Part is Permitted for Any
Purpose of the United States Government

INSTITUTE FOR MATHEMATICAL STUDIES IN THE SOCIAL SCIENCES,

STANFORD UNIVERSITY

STANFORD, CALIFORNIA



TECHNICAL REPORT SUMMARY

This study investigated the effects on student performance and
attitude of three different strategies for selecting lessons in a
course In computer programming presented by computer. The focus of the
investigation was a comparison of computer selection wvs student
selection of instructional material.

A commonly held belief is that astudents prefer to exercise
control over thelr course of study; this assumes that they are capable
of making such decisions, and that provision for such contrel will be a
motivating factor reflected in an increased rate of learning. Little
experimental data exist to support this belief. In fact, it is not
even known how much control students will exercise when given the
option. This study was designed, in part, to examine the effect of
-student conirol on both performance and attitude.

The study was conducted using eight remcte terminals 1inked by
telephone lines to the PDP-10 computer at the Compurer-assisted
Instruction (CAI) Laboratory of the Institute for Mathematical Srudies
in the Social Sciences (IMSS5) at Stanford University. A aimple and
inexpensive device (Model-33 teletype) was used as the student
terminal. The CAIL program imposed no time constraints; students ware
free to spend as much time as they chose on any lesson,

The course, "Computer Programming in AID," was designed for one
quarter or one semester of instruction in the Algebraic Interpretive

Dialogue (AID), a mathematically oriented programming language. It

1 DA



consists of 36 parallel sets of short and long lessons as well as tests
and extra-credit problems. Long lessons cover the same material as the
corresponding short lessons, but in greater detail. An outline of the
course is shown in Table 1.

Three experimental conditions were established: free choice,
ne choice, and program choice. Students in the "free-choice" condition
were ypermitted to alter their position in the course at any time.
Students 3n the "no choice' condition followed a straight path through
the long lessons, with a test after every fourth lesson, and were not
allowed to alter the sequence of lessons. tudents in the "program-
choice" condition followed a modiffed path through the short lessons
with a tesat after every fourth lesson. The progress of these students
was monitored by the program, and the corresponding long lesson was
presented when a student performed below a set criteriom, either in a
short lesson or on a test.

Sixty students, distributed between both schools and over the
entire 1972-1973 schocel year, were selected as subjects for this study,
Three equal groups were created by random assignment to each selection
condition.

The measures wused in the analysis were: the Computer
Programming Aptitude Battery, two final examinations prepared by the
project staff, the responses to an attitude questionnaire, the number
of times a student signed on to the course, the number of minutes spent

signed on, the number of lessons taken, the number of problems correct,

3R



the number of problems attempted, the percentage correct, and the
highest lesson completed.

Our results dindicated no significant differences among the
three conditions on any of the performance or attitude measures. It
cannot be said, on the basis of these findings, that a curriculum
offering extensive student countrol is eilther superior or inferior to a
program-controlled sequence. In fact, it appears that the "free-
choice" students did not make sufficient use of their choice option to
alter dramatically the sequence of leasons.

The implications of these results deserve some discussion., A
student's use of choice options is related to the curriculum he is
studying, both din its content and in its instructional design., The
subject matter taught in the AID c¢ourse was organized in a
hierarchical, cumulative set of lessons, each to some extent dependent
on concepts and skills developed in earlier lessons. This inherently
linear organization, although quite common iIin computer programming
instruction, does wnot lend itself to student control over the
curriculum, beyond skipping or reviewing items, as evidenced by the
similarity of the seguences followed by the subjects in the three
gTOUPS .

It 1s possible to construct a fundamentally nonlinear
instructional-experimental enviromment in which program and student
strategies can be examined more fully. Building on. the results of the

current study, we are develeping and testing a very different CAI

3 329



curriculum, The course centent will be  the same--introductory
programming—-but one major feature distinguishes the new curriculum
from the AID course. The instructional sequence will be intentionally
nonlinear, i.e., it will be dependent on students' acquisition of
gkills in interrelated conceptual areas instead of their progress
through a defined series of lessons. The curriculum driver will be
capable of making decisions about students' abilities on the basis of
an informaticunal anetweirk of programming concepts, and will be capable
of selecting an instructiconal task appropriate to students at their
particular level. This design implies the possibility of exploring
differences in the performance of those students whose sgelections are
made by the program and those who are forced to choose problems that
canmct, by the nature of the network dssign, be sequenced 1in a
preplanned hierarchy. There will be nc¢ predetermined, recognizable
"default" sequence, and to the students, the curriculum will appear as
an individualized sequence of programming taska.

One planned experiment will again iﬁvnlve program-selection and
student-selection modes: in the program-selection mode all
instruction, hints, and problems will be generated by the program as
determined by iIts decision-making capabilities, In the student-
selection mods, the problems and  instrueticnal hints will be

1

specifically requested by the student.

. 330



INTRODUCTION AND BACKGROUND

Environment and Equipment

This study was initiated as a prelude to a more elaborate
investigation of branching strategies. It was thought that the
branching procedure wusaed There <¢ould answer certain preliminary
questions on the evaluation instruments and on the content of the
course itself,

The study was conducted using four CAI terminals located at the
University of San Francisco (USF)} and four terminals located at De Anza
College in Cupertino, OCsalifornia. The terminals were linked by
telephone lines to the PDP-10 computer at the CAI Laboratory of IMSSS
at Stanford University.

The Stanford CAI communication network supports approximately
200 terminals, ranging from Model-33 teletypez operating at 100 words
per minute to high-speed cathode-ray tube displays operating at 10,000
words per minute. Although they provide no audio, wvisual, or graphic
capabilivies, teletypes are sturdy, low-cost devices that provide the
student with & printed gopy of his interaction with the instructional
program.

Thke CAI terminals at USF were located in a classroom near the
office of the College of Business Administration, under whose auspices
the research program at USF was implemented. On weekdays, students had
free access to the CAI terminals from 12 a.m. to 10:00 p.m., and on

weekends &= opermitted by the scheduling of computer down-time.

5 531



Schedulas were used to apportion terminsl time: three terminals were
available for advance sign-up in one-hour time blocks. The fourth
terminal was available on a first-come, first-serve basis for one-hour
periods. Under ideal operating conditions four terminals would have
provided 200 hours of terminal time per week, enough to comfortably
accommodate the approximately 50 students registered for the course
during the fall semester. Scheduling problems did develop, however,
and thus enrollment for the spring semester was kept under 25 in order
to insure adequate access to the terminals.

The fcur terminals at De Anza College were located in the Data
Processing Laboratory. The course was given by the Business and Data
Processing Division and was open to all students. Eighteen students
ware enrolled for the fall quarter, 14 for the winter quarter, and 16
for the spring quarter. With this number of students no scheduling
problems arase.

The CAY program imposed no time constraints on studenis working
at terminals. Students had unlimited time to respond to each question,
and to complete a lesson. The process of initiating interaction with
the instructional program is called 'signing on," and disconnecting
from it, "signing off." When a student finished a lesson he was free
to sign off, or to continue with another lesson. He was also permitted

to sign off in the middle of a lesson.



Curriculum

The course, Computer Programming in AID, was designed for one
quarter or one semester of instruction in AID. It consists of 36 sets
of lessons plus tests and extra-credit problems. An outline of the
course is presented in Table 1, AID resembles BASIC in its use of line
numbers and in its relatively simple grammatical rules, but it differs
from BASIC in that AID =2allows recursive procedures. The IMSSS
implementation of AID dis interpretive and provides students with
diagnostic messages and flexibility in changing programs, Topics
covered by the curriculum include conditional execution, loops, lists,
two~dimensional arrays, standard functions, user-defined functions, and
recursive functions (see Friend, 1973).

The AID course was extensively revised for use in this
investigation. The revised curriculum is organized into four strands,
containing Short Lessons (SL), Long Lessons (LL), Tests (T), and Extra-
credit Problems (EX). Lessons in the LL strand cover the same material
as those in the SL strand, but in greater detail. The average lesson
from the SL strand has about 20 problems, while that from the Li strand
has about 30 problems. Many of the problems in both types of lesson
have from one to thrée subproblems.

The test strand contains nine tests. A test is designed to
cover the immediately preceding four lessons. It contains 40 items, 10

for each of the four lessons.

333



The EX strand does not contain a lesson at each level; the EX
lessons are listed din Table 1. An EX lesson typically contains from

one to five programming problems, some of considerable complexity.



DESIGN AND EXPERIMENTAL FPROCEDURES
Subjects

Two groups participated in this study. The first consisted of
University of San Francisco students enrolled for academic credit in a
course Iintroducing the use of computers in business administration,
These students are required to take a programming course, but are free
to choose among several options. Thus, enrollment for this course was
voluntary. The fall c¢lass numbered 49, 30 men and 19 women, and the
spring class numbered 23, 16 men and 7 women. Subjects were mostly
first-year students and none had prior pregramming experience,

The second group of students attended De Anza Junior College,
and did not fulffll any requirements by enrslling in the AID course,
The distribution of students enroclled was (2} for fall, 11 men, 7
women; (b) for winter, 9 men, 5 women; and (c¢) for spring, 9 men, 8
women .

Sixty students, distributed betwzen both schools and over the
1972-1973 sgchool vear, were selected as subjecis for the results

reported below.

339



The threa experimental conditions designed for this study are
Student Selection (8S), No Selection (NS), and Program Selection (PS).
The conditions are distinguished as follows:

1. 85. A student in the S5 group was permitted to alter his
positisn 1ia the course at any time. The wuse of three control

characrers was available to him.

Contro. Character Action
CTRL-G choose a different lesson and/or
problem
CTRL-T have the terminal print the answer
to the current problem
CIRL-H skip the current problem

Tha 88 student was permitted o use AID at any time, whether the
current probiem involved writing a pregram or not.

2. NS5. Procedures for the NS group were designed to guide the
student cn a straight path throagh the LL strand, with a test (T
strand) after every fourth lesson. The contrsl characters described
above did not operate for the NS Group. A studeni was not alilowed to
alter the order in which his lessons were presented and he was
permitted to use AID only for programming problems.

3. P5. The student in the PS8 group followed a modified path
through the SL strand with a test after every fourth lessen. The
control characters described for the SS student were not available to
the PS student, and a student was permitted to use AID only for
programming problems. The student's progress through the SL strand was

modified in itwe different situations:

10



1. At the end of each SL the student's score was checked., If
he answered 90 percent or more of the problems in the lesson correctly
on the first try, he was sent to the corresponding EX lesson if one was
available. If his score was below 75 percent, he was sent to the
corresponding LL for further work, In either case, after completing
the branch lesson he returned to the next lesson in the SL sirand.

2, After each test the student's score was checked for the
items related to each of the previous four lessons. He repeated the LL
lessons related to those concepts on which his test performance fell
below 75 percent. After taking the prescribed reviews the student
raturned to the next SL lesson following the test.

The 60 students were roughly matched on the basis of their
performance on the aptitude battery given as a pretest at the beginning
of the course. The three equal groups studied here (S5 = 20, NS = 20,

PS = 20) were created by random assignment.

337

11



Students were tested at the beginning of the semester using the
Computer Programmer Aptitude Battery (CPAB), published by Science
Research Associates. The CPAB is comprised of five separately timed
tests, measuring the following skills and aptitudes: verbal meaning,
reasoning, letter series (a test of abstract reasoning ability), number
ability, and diagramming (using flow charts).

Several instruments were used at the end of the semester to
evaluate performance and attitude. The project staff prepared a two-
part final examination. Part A was an off-line, closed-book test
covering the entire course. It contained 53 questions, some requiring
construcited responses, others, multiple choice, It was designed to
test (a) knowledge of AID syntax, (b) understanding of program flow,
(¢) ability to analyze a program and to predict its output, and (d)
ability to construct or complete programming algorithms to solve a
specific problem, Part B consisted of five programming problems that
were to be written at CAI terminals. Students were permitited to use
notes and the course handbook., For each problem they submitted a
listing of their program and sample output. Parts A and B of the final
examination can be found in Appendix A.

An attitude questionnaire was administered to USF students.
The questionnaire (Appendix B} dis a revision of one developed to
evaluate a CAI project at Tennessee State University (see Searle,
Lorten, Goldberg, Suppes, Ledet, & Jones, 1973). It contains 12

S5

12



statements aboutr the student®s CAI experience. A seven-point scale was
used to indicate the degree of agreement with with each statement.
Various parameters of student performance on the course were
used. These performance characteristics were obtained from data
collected by the instructional program. The program saved all student
responses. Only first responses were used to determine the number of
problems correct.
The full list of measures used in the analysis includes:
1. Performance on the CPAB
2., Performance on final examinations
a. Test A (project off-line, closed-bock examination)
b. Test B (project on-line examination)
3. Responces to the attitude questionnaire

4, Number of times the student signed on to course
(# SIGN ONS)

5. Total number of minutes spent signed on to course
(MINUTES)

6. Total number of lessons taken
(LESSONS)

7. Total aumber of problems worked correctly (# CORRECT)
8. Total number cf problems attempted (# PROBLEMS)
9. Percentage correct (PERCENT)

10. Highest lesson completed {(TOP LESSON)

239

13



J¥ EXPERIMENTAL RESULTS

Aptitude Measures

Scores on the CPAB for students in the three experimental
groups are shown in Table 2. The CPAB test manual dindiecates that
percentile norms for experienced computer programmers and systems
analysts are based ¢n the scores of personnel from a variety of
business and industrial installations, including  computer
manufacticers. Noxms for programmer trainees are based on  the scores
of applicants for jobs with civil zervice agenciles and persons enrolled
in basic-computer-systems raining at universities or computer-
menufscturer training sites. Aprroximately 80 percent of the
experienced programmers znd 50 percent of the programmer trainees were
college graduates.

Table 3 shows a compariscn between the experimentai subjects'
scores and the norms of the aptitude battery for beth programmer
trainees and experienced programmsrs, The average score for the
experimental group, 62.06, lies in the 55th percentile on the scale for
trainees and in the 9th percentile on the scale for experienced
Programmers.

The CPAB manual atates that performance on the Letter Series
Subtest is least affected by educaticn and experience; this may well
account for the experimental group's relatively high percentile rank

(57) compared with rankings on other subtests on the experienced

SY0

programmers’ scale,

1



Performance on the CPAB proves to be a useful predictor of
performance on the AID course. The correlations between scores on CPAR
subtests and two performance measures, percentage correct in the course
and score on Test A, are shown in Table 4,

Total score on the CPAB accounts for 46 percent of the
variability in percentage correct in the course, and 32 percent of the
variability in Test A scores. The claim by the developers of the CPAB
that performance on the Diagramming Subtest is highly related to
subgequent success in programming is supported by the results 1n Table
4, The two subtests with lowest predictive ability are verbal meaning
and number ability. The AID curriculum uses numerical examples
exclusively 1In providing programming problems; nevertheless, the
subtests that depend on reasoning ability serve as better performance

predictors.

15



Curriculum Performance Measures

Descriptive measures of progress in the curriculum for each
experimental group are presented in Table 5. The average percentage
correct over all lessons for all students was 72.48. Students signed
on for sessions at the terminal an average of 59 times and worked, on
the average, a total of 2056 minutes. They attempted, on the average,
1303 problems and covered over 36 lessons (including both short and
long lessons). There were mno significant differences among the three
experimental groups on any of the measures of course usage and
progress. The NS students, who took only the long lessons, spent more
time at the terminals, and attempted more problems than students in the

other tws groups, but the differences were small.

16



Use of Choice Options

The SS students were allowed complete control over the
selection of lessons. A1l students had a 1list of the lessons in the
course and were told how to select lessons. The 5SS students made
little use of this opportunity to contrel the sequence of lessons and,
in effect, to ‘individualize’ their curricwlum. The path through the
course of the 20 58 students was compared with the standard order of
lessons shown in Table 1 (lessona 1-4, test 1; lessons 5-8, test 2;
etc.). Ten students showed ne deviations £from the standard pattern,
three students took one or two lesscns ocut of order, three students
took three or four lessons out of order and the remazining four students
took more than four lessons ouit of order. Thus, approximately three-
fourths of the students made essentislly no use of the freedom to
change the ovder of their lessons.

The paths through {the coursze chosen by the four students who
deviated most from the standard ovdar ave shown in Table 8. Student T
used the choice option to take ftests cat of order: im all but cne case,
he opted to taxe the tesis eariv. Student 2 tock an essentially
straight path though the short and long lessons, cccasionally skipping
an LI lesson to return to it later, and, twicze, to return to an EX
lesson. Student 3 skipped ahead %o werk LL lessens out of order, but
returned to work SL lessons systematically, skipping only SL11 and
S5L16. Student 4 skipped around a bit early inm the course, but later
used the choice option only tc take tests out of order.

B43

L7



In

£
[
3
4]
%]
ot
43

forward in the curriculum. Students were extremely conservative 1n the
use of their freedom to sequence the course; most coften they used this
freedom to take tests out of order or to return to forms of lessons
already taken.

Table 7 summarizes the choice of lesson types for the 88
students. Students 1-4 are those whose paths are shown in Table 6. Of
the remainder, one took LL lessons only, while five combined a mixture
of 8L and L. lessons 1in approximately equal numbers. The rest of the
students (with only minor exceptions) worked only SL lessons. Thus,
approximately half the students chose the fastest straight path through

tha course.

7

18



Final Examinations

A two-part final examination was administered by the project
staff to students in the experiment. - Results of this examination are
shown in Table 8.  Because of scheduling difficulties 13 students were
unable to take Test B of the examination.

Although the mean scores for the three experimental groups do
not differ significantly, the scorea for the NS students were slightly
higher on Test A and slightly lower on Test B than for the other
Eroups.

Test A was an off-line, paper-and-pencil examination. Results
of a linear regression analysis using performance en Test A as the
depandent variable are showm in Table 9. The top lesson taken and the
score on the CPAB together account for more than 50 percent of the

variability in the Test A score.

SB45

19



Attitude Questionnaire

The attitude questionnaire {Appendix B) contains 12 items
ranked by students from strong agreement (1) to strong disagreement
(7). The mean response by condition to each question is given in Table
10,

Ceneralizing over all students, the strongest responses showed
agreement with the statements in questions 1 and 3. These were "I
worked as hard answering questions in.the computer lessons-as I do in
the classroom" and "I like working at my own pace at the terminal,"
respectively., PS students agreed more strongly than the other groups
with question 1 (means are S5 = 2.588, NS = 2.632, PS = 1,824), and S5
students agreed more strongly with question 3 (88 = 1.412, N§ = 2,421,
Ps = 2,588),

Both of these results demonstrate favorable attitudes toward
particular aspects of the CAI experience. The mean responses do not
demonstrate a strong negative feeling toward CAI on any question. .

Two of the attitude questions show relatively high correlations
with some descriptive measures and with test performance; the results
are shown in Table 12. The questions are No. 2, "I learned - from the
computer lessons as well as I would have learned the same.lesson in the
classroom,"” and No. 10, "I would like to participate in another CAI
course." Students who took more lessens and answered more problems
correctly tended to have favorable attitudes. Performance oen Test B
correlated with positive attitude on- questions 2, 3, and 4.
34

20



There were no significant differences between conditions in
respenses te the questions, as shown by the results of an analysis of
variance presemted in Table 11. For all of the attitude questions, the
between-groups degrees of freedom (d.f.) is 2, and the within-groups
d.f. is 50. For significance at the .01 level, an F ratio of 5.06 is
needed; at the .05 1level, an F ratio of 3.18 is needed. None of the

ratios found reach these significant values.

347

21



Ttem Analy=is

A master 1ist matching items on Part A of the final examination
with the lesson each item tested was prepared by the auther of the
course, J.E. Friend. Student responses to items for which they had and
had not taken the apprecpriate lesson are shown in Table 13.

The 1labela 1in the 'Lesson Status" column of Table 13 are
independent of +the three experimental conditions. Each item in the
examination tested wmaterial covered by both an SL and an LL lessoun.
For each item, each student falls into one of the '"Lesson Status"
categories by virtue of those lessons he completed. For example, the
"Not Taken'" category includes students from all three experimental
conditions. The "SL Only" includes only S$ and PS scudents; the "LL
Only" incliudes only SS and NS students; and the "SL & LL" includes only
S§ and PS students.

Tabie 13 shows, for example, that of the 1367 Incorrect
responses tallied cn the examinaticn, 462 were made by studenis who had
not tzken either SL or LL lessons associated with the items, 453 were
made by students who had taken the sssociated SL lesson only, 274 were
by students whe had taken the asscciated LL lesson only, and 176 were
by students who had tzken both the SL. and the LL lessens associated
with the item. There were 98 items skipped by students who had taken
the lesscns on which they were based, compared with 195 items skipped
by students who were unfamiliar with the material cn which the item was

based. There were 349 correct responses made by students who had not

. 375



taken the appropriate lessons for the items. An examination of these
responsges revealed that 215 of them were te six questions that gave the
student a binary choice (true-false, correct-incorrect), and it is
likely that guessing played a large role in producing these correct
answers.

Table 14 shows the percentage correct, incorreet, agnd not tried
for all students, and percentage correct and incorrect based on total
attempts. Apparently students who took only the LIL lesson did
substantially beiter (61.8 to 38.2 percenz) than students who took only
the SL lesson {51.7 to 48.3 percent). Students who teook both the 5L
and LL lesesons fell in between. This is not a. surprising finding since
most of those who took both lessons needed extra review and were thus

not likely to be the best studants.

S77



SUMMARY AND CONCLUSIONS

The focus of this iInvestigation was a comparison of computer-
program-contrclled selection and student-contrelled selection of
instructional marerial during one quarter or one semester of
instruction in AID. The performance and attitude of 60 students were
exsmined: 20 in the "studemt-selection" condition, 20 in the '"no-
selection” condition, and 20 in the "program-selection" condition.

Results indicated no significant differences among the three
conditions on any of the performance or attitude measures, although
there are dinteresting correlations &mong the measures over all
students. On  the basis of these findings, & curriculum offering
extengive student control camnnot be demonstrated to be either superior
or inferior to a program-controlled sejuence.

Tt is clear that the SS studenis did not make sufficient use of
their cheice option to alter dramaticzlly the sequence cf lessons, and:
in this sense;, the original question of student vs program control
cannot really be examined properly from the data collected,

A student's use of choice options is relsted te the curriculum
he is stadying, both in its content and in its Instrucefonal design. A
curriculum wmay dIncorporate warious degrees of Iinearity, branching
facility, remedial contvent, dialogue capability, student performance
analysis, parallel content strands, =2te, and these features may be
developed and cembined so that thay motivate a student either to
. exercise opticms or to accept cobvious choices as they are offered.

S350

2l



The subject matter taught in the AID course was organized “in a
hierarchical, cumulative set of lessons, each to some extent dependent
on concepts and skills developed in earlier lesscns. This inberently
linear organization, although fairly common in conventicnal instruction
in the subject, does not lend itself to the exercise of student control
of the c¢urriculum beyond skipping or reviewing,' as evidenced by the
performance of the subjscts of this study. The mest effective lesson
sequence, 1in their view, lis the straight line of the original
conceptual design. The S35 students were explicitly encouraged to
develop their own alternative strategizs, and during the vyear this
encouragemeni was repeated many times. Thus, it must be concluded that
the linear paths were <¢hosen In conscious preference te any
individually developed glgorithms, which  resulted in some
disappointment to the experimenters.

The experiment, therafore, dces not properly attack the
questien of modes of control. However, it ie possible ts construct a
fundamentally noenlineayr instructional-experimental envirenment in which
program and student strategies csn be examined mere fully. Partly on
the basis of the incoenclusive results of the current study, a very
different CAI curriéulum is being develeped and is new in. the initial
testing stage. The course content will be the same~—introductery
programming—-but one major feature distinguishes the new curriculum
from the AID course. The instructional sequence will be iantenticnally

nonlinear, i.e., it will be dependent on students’ acquisition of

33 |



:al areas  instead of their progress
through a defined series of lessons. The curriculum driver will be
capable of making decisions about students' abilities en the basis of
an informational network of programming concepts, and will be capable
of selecting an instructiomal tagk appropriate to students at their
particular level. This design implies the possibility of exploring
differences in the performance of those students whose selections are
made by the program and those who are forced tc choose problems that
cannot, by the nature of the network design, be sequenced in a
preplanned hierarchy. There will be no predetermined, recognizable
"default" sequence, and to the students, the curriculum will appear as
an individualized sequence of programming tasks. Instruction will be
given only in response tc the students’ difficulties and requests.

The new course, which wiil teach the BASIC programming
language, 1is being designed to test selection strategies in a more
fluid environment. In the PS mode, all ianstruction, hints,; and
problems will be generated by the program as determined by its
decision-making capabilities. Note that this requires considerable
error diagnesis and Interactive capabilities. In the 85 mode; the
problems and instructional hints will not be given automatically by the
program, but must be requested specifically by the student.

It is hoped that this design will facilitate experimentation
with instructional control strategies in a technical field, and at the

same time allow =nough freedom in the curriculum to make a "strategy"

5 25X

meaningful and necessary.



TABLE f

AID Lessons

Lesson identifiers

Short Long Extra

Topic Test Jlesson lesson credit
T How to use the instructional program SsL. 1 1LL 1 -
2 Using AID for arithmetic: The TYPE SL 2 LL 2 -
cemmand
3 Oxder of arithmetic operations SL3 LL 3 -
4 FExponents and scientific notarion SLL 4 LL 4 -
Test 1 T1
5 The SET and DELETE commands SL5 LL5 EXS5
6 Indirect steps, the DO command,
the FOR clause 8L 6 LL 6 -
7 Stored programs: Parts and files SL?7 LL7 -
8 The DEMAND command and the TIMES SL 8 1LL 8 EXB8
mcdifier
Test 2 T2
9 Relations and the use of the "if" SL9 LL9 EX@9
clause
10 The TCO command SL 10 LL 10 EX 10
17 Debugging techniques SL 11 LL 11 -
12 The indirect use of DO SL 12 LL 12 EX 12
Test 3 T3
i3 More on debugging SL 13 1L 13 -
14 The FORM statement SL 14 LL 74 EX 14
15 Absolute value SL 15 LL 15 EX 15
16 Loops SL 16 LL 16 EX 16
Test & T4
17 More on loops SL 17 LL 17 EX 17
18 Loops and the FOR clause SL 18 LL 18 EX 18
19 Debugging tocis: STOP and GO SL 19 1L 19 -
20 TLoops with a DEMAND command SL 20 LL 20 EX 20
Test 5 T5
21 Lists SL 21 LL 21 EX 21
22 More on 1lists SL 22 1LL 22 EX 22
23 Arvays 8L 23 LL 23 -
24 Nested loops and nested DO commands SL 24 LL 24 EX 24
Test & ‘ Th
25 More on arrays SL 25 LL 25 EX 25
26 The LET command ' SL 26 LL 26 -
27 Standard functioms: SQRT, IP, FP, SGN SL 27 LL 27 EX 27
28 SUM, PROD, MAX, and MIN SL 28 1L 28 EX 28

Test 7 o7 T7 55 5 t



TABLE 1 (cont.)

Topic

29 Conditional funetions
30 Standard functions:
31 Boolean expressions:
32 More on Boolean expre
Test §

33 The function FIRST
34 Standard funcitions:
35 Standard functions:
36 Recursive functions
Test 9

DP, XP

AND, OR, and NOT
saions: LET and TV

SIN and COS
EXP and LOG

28

Test

T8

9

Short

SL
SL
5L
5L

SL
SL
SL
SL

29
30
31
32

33
34
35
36

Long Extra
lesson lesson credit

LL
LL
LL
LL

LL
LL
LL
LL

29
30
31
32

33
34
35
36

EX 30

EX 33
EX 34



TABLE 2

Scores on the Computer Programmer Aptitude Battery

Part

Verbal Meaning
Reasoning
Letter Series
Number Ability

Diagramming

Total

Mean

12.90

11.00

11.60

15.80

60,45

55

5. D,

4.15
3.51
4.03
3.58

8.77

16.10

Experimental condition

Mean

13.35

11.05
11,10

17.40

62.05

29

NS

SI Dﬂ

6.36
3.97
5.31
3,22

10,39

23.54

PS

Mean S.

14.35

9.00
12.65
10.40

17.80

63.70

355



TABLE 3
Comparison of Subject and Test Norms

Computer Aptitude Battery

Subtest Mean raw score Percentile ranking
Scale 1% Scale Zb

Verbal Meaning 13.53 46 15
Reasoning 5.10 61 17
Letter Series 11.56 66 57
Number Ability 11.03 54 20
Diagramming 17.00 54 9

Total 62.06 55 9

a
Based on programmer trainee norms.

b
Based on experienced programmer norms.

30



TABLE 4
Correlations Between Performance on CPAB Subtests

and Two Course Performance Measures

Percent

Subtest correct Test A
Verbal Meaning .315 «295
Reasoning .554 .585
Letter Series . 560 -394
Number Ability .280 2312
Diagramming 643 492

Total 666 564

31



TABLE 5

Measures of Progress in the Curriculum

Experimental Condition

55 NS PS Total
No. sign-ons 53.15 63.85 60.50 59.16
Minutes 1995.96 2187.55 1984.18 2055.89
Lessons 35.00 36,90 38,65 36.85
No. correct 876.10 1075.95 891,10 947.71
No. problems 1242,30 1479.00 1188.90 1303.49
Percent 71.20 71,80 74.45 72,48

correct

Top lesson 25.30 29.45 24,30 26.35

3I5¥



TABLE 6

Choice of Path Through the Curriculum for SS Students

STUDENT 1
Lesson sL.2 LL Test EX
1 ]
2 2
3 3
4 4
Ti 5
5 6
6 7
7 8
8 9
T2 10
9 1
10 12
11 13
12 14
T3 15
13 16
14 17
15 18
16 19
T4 21%
i7 20
18 22
19 23
20 24
TS 26%
21 25%
22 27
23 28
24 29
T6 31
25 30
26 32
27 33
28 34
T7 39%
29 35
30 36
31 37
32 38
T3 41%
33 40
34 42
35 43 55
36 44

a .
Numbers show the order in which lessons were taken.
* Starred lessons were taken out of order.

33



TABLE 6 (cont.)

L]
MR 00 N N = P =

H

PN H MM MR PN = o o= b % et ek b =3 e
SO WN 2NV E WL N O

52
55%
54
57

62
65

34

Test

19

38

31%

60*

EX

12

22

27

41
46%
49

59*

63



TABLE 6 (cont.)

STUDENT 3
Lesson SL
1
2 2
3 3
4 6
T1
5 7
6 9
7 13
8 14
T2
9 18
10 19
11
12 26
T3
13 27
14 30
15 31
16
T4
17 32
18 34
19 35
20 36
T5
21 39
22 40
23 41
24 42
T6

LL

10%

4%
17%
11%

12%
20
24
25

28
29
21%
22%

33

37

35

Test EX
8
15
16
23%*
38
43

3o/



TABLE 6 (cont.)

STIUDENT 4
Lesson SL LL Test EX
1 1 3*
2 2 4
3 10%* 6
T1 5%
5 16% 8
6 13 12
7 17 14
8 18 15
T2 o
g 19 20
10 21
11 22
12 23
T3 24
13 25
14 26
15 27
16 28
T4 29
17 30
18 31
19 32
20 33
T5 34
21 35
22 36
23 37
24 38
T6 39
25 40
26 41
27 43
28 b4
T7 Lo%
29 45
30 46
31 &7
32 48
T8 11%
33 49
34 50
35 52
36 53
TY9 51%

St

36



TABLE 7

Types of Lessons Taken by S8 Students

Student

10

11

12

13

14

15

16

17

18

19

20

Number of lessons

37

SL

26

21

24

23

21

21

20

16

11

16

12

10

23

18

26

27

LL

22

26

16

27

17

13

20

13



TABLE 8

Scores on Project-designed Final Examination, Number Correct

Condition
S8 NS
N Mean N Mean
Test A 20 22.70 20 27.85
Test B 15 15.73 16 13.00

38

Ps
N Mean
20 24.50
16 14,37

Be



TABLE 9

Step-wise Regression Summary Table with Test A

as Dependent Variable

Step Variable

1 Top lesson

2 Total problems
3 Sign-ons

4 | Experimental

condition

5 Total lessons
6 Total minutes

Multiple Mult%ple

T r
.5650 .3192
.7296 .5323
7534 .5676
. 7556 .5709
7573 +5735
«7581 53747

Note,~-Last constant used = -5,3006,

39

Last regression
coefficient

.5364
L2277
.0429

.8018

-.0866

.0005



Question

10
1

12

55

2.588

3.294

1,412

5.059

4.471

4,118

4,882

3.17¢

3.647

4,176

3.765

4,294

TABLE 10

Scores on Attitude Questionnaire Items

Condition

NS

2.632
3.105
2.421
4,474
3.579
4.105
4.632
3.263
4.263
3.368
4,526

3.737

PS

1.824
3.941
2,168
4.471
3.529
5.059
5.529
3.824
3.059
4,588
3.706

4.000

40

Total

2,358
3.434
2,151
4.660
3.849
4.415
5,000
3.415
3.679
4,019
4.019

4,000

Positive or
or negative
statement (P,N)

Bol



TABLE 11
Analysis of Variance Among Experimental Conditions

on Attitude Questionnaire

Question F Ratio
1 1,483
2 0.844
3 2.702
A 0,440
5 1.137
6 1.333
7 1,573
8 0.481
9 1.729

10 1.298
11 1.457
12 0.336

367

k1



TABLE 12

Correlations Between Attitude and Performance Measures

Question
Question 2,
"I learned from the computer lessons
as well as I would have learned the
same lessons in the classroom."

Question 10.

"I would like to participate in
ancother CAI course."

Question 3.

"I like working at my own pace

at the terminal."

Question 4.

"I would prefer competing with my

feilow students in the classroom
rather than working at computer lessons."

4o

Measure

Lessons
Ne. correct
Top lesson

Lessons
No. correct
Top lesson

Test B

Test B

Correlation

-.4484
-.5418
-.4929

-.4951
-.5307
-.5451

-.5036

4094

36



TABLE 14
Responses to Final Examination Items: Percentage of

Students Responding Correctly and Incorrectly

Percentage
Lesson Based on total Based on total
status taking test attempting item
Correct Incorrect Not tried Correct Incorrect
Not taken 34.7 49,5 19.4 43.0 57.0
SL only 49.7 46.4 3.9 51.7 48.3
LL only 58.1 35.9 6.0 61,8 38.2
SL and LL 52.0 44 .4 3.5 53.9 46.1
Total 50.4 40,8 8.8 55.2 44,8

43



Number of Students

¥
* ¥

3
*®
*

* *
* & *
* k% *

* R ¥

E -

*

* * ¥

*

& % B

%

*
*
R Rk %

B ¥ F N B N o % B N ¥ F ¥

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Fig. 1.

Highest Lesson Number

Highest lesson completed in AID course,

4k

370



Appendix A

Introduction to AID Progremming 1972-73

Final Examination

Instructions to Examiners

The final examination for the course "Introduction to ALD Program-
ming® consists of two parts: Part A is a 50-minute paper-and-pencil test,
and Part B is & 50-minute cpen-bock programming test. If the two parts
mist be given on the same day, they should be given in two separate
sessions with a 5-10 minute rest period between sessions.

Part A. No books or notes of any kind are to be allowed during Part A
of the final examinaticn. The students are not to be allowed to use a
teletype. All that is needed is a copy of Part A and & pen or pencil,

Hand out the copies of Part A with instructions not tc open the test
uatil told to do so. Ask the students to read the instructions on the
cover page. Allow about 1 minute for this before giving the signal to
gtart the test. Allow 50 minutes for Part A.

There are 50 test itemg in Part A. Each correct answer counts 1 point,
for a total of 50 points. No partizl credit will be given for the items
in Part A. There will be no penalty for incorrect guesses (no points
will be subtracted for wrong answers),

Part B. Students should be told bveforehand that Part B will be an open-
beok test. They should be asked fo bring any books and notes that they
wish, including the Supplementary Handbock for Introduction to ATD

Programming,

At leest two days before the students are to take Part B of the final
examination, but after their last working session, inform your Stanford
representative of which students will take Part B, and when. The computer
record for each student will be set so that the next time he signs on he
will be sutomatically switched to the AID interpreter soc that he will

be able to do the programming problems in Part B.

Before handing cut coples cf Part B, ask the students to sign on. Check
to be sure each student has bheen automatically switched to the AID in-
terpreter. If this does not happen, call Stanford immediately.

After each student is signed on, and is in communication with the ATD
interpreter, hand out the copies of Part B with the instruection not to
open the test until told to do so. Allow the studente time to read the
instructions on the cover pege--about 1 minute--and then glve the signal

to start. Allow 50 minutes for Part B.



There are 5 programming problems in Part B. Each problem counts 10
polnts, for a total of 50 peints. Partial credlit will be zallowed for

partially ccorreet programs.

Here is a brief grading guideline to help you answer questicns that
students may ask during the final examination:

(1) The programs are expected to function correctly only for the
range of values of the input variables specified in the preblem.
Thus, for Problem 2, the program need not cope with negative
values of H, and for Problem 3, the program need function cor-
rectly only for weights beiween O and 16 ounces, inclusive.

(2) The length of the program is immaterial, only the correctness
of the results will be considersd in grading.

(3) There are several methods of solving each of the problems in
Part B, and no cne method is preferred. Any method that provides
a general solution and produces correct results will be con-
sidered correct.

(L) For Problems 1, 2, 3, and 4, specific test values of the input
variables are given. However, a program that produces correct
results for these test values only, and noct for other values
of the input variables, will not be considered a correct solution;
the program must provide a general solution.

TURN IN ALL TEST PAPERS TO STANFORD. These tests will be used for re-
search purpcses and will not be returned. If you wish to use thege tests
for assigning grades to your students, you may grade the tests and record

the grades before you turn them in to Stanford; otherwise, you need not
grade the tests,

VS



Introduction to AID Programming 1972-T73
Final Exsmination
Part A
(50 points)

3 HN N3 IS I HE W N R Ko e MR R e I 30T K K e N R B R I I S K e Ak

DO NOT TURN THE PAGE.

B e S s B g e e e e e

Name

Student number

Ingtructor's name

Name of school or college

Date

Instructions: You may not use bocks, notes, or cther materials during
thig part (Part &) of the final examination. There are 50 test items
in Part A. No partial credit will be given. You will not be penalized
for guessing (no points will be subtracted for wrong answers). You
will have 50 minutes to complete the test.

WK HE AR R R oo T A NN A I TN R I T H e N0 3 e e e e A M S AT S e M N R

DO NOT TURN THE PAGE UNTIL INSTRUCTED TO DO SO,

B o e L L I ke a8 R R n AR TR TR

372



Rewrite each command correctly.

1. TF X < 2 DUE PART 3

2, DO STP 3.6 FOR X = 1 TC 100

3. TYPE X(Y+Z) AND X{Y-Z) AND X(Y — 2}

Select the expression(s) that are eguivalent to the given expression.
L. A/B- C/D+ E (4/B) - (C/D + E)
(&/B) - (¢/D)+ E
‘A/B - ¢/(D + E)

5. U/V/W/X (0/v)/(W/X)
((u/v)/w)/X
(U/V)/W/X

Indicate whether each command is correct or incorrect.
Correct Tncorrect
6z. FILE PART 6, A AS TTEM 3
6b. LET H(X) = X % 10 IF Y < 100
Ta. TYPE F(2) * 1044 IF 6 < 3 IS FALSE
Th. DISCARD PART 3
8a. TYPE FORM 8, X - 98.6, STEP 14.4
8b. RECALL PART 5
9a. SET M = M + 1 IF N(I) < TRUE

9b. SET L(N+1}) = N + 1



Write each of the following expressions in ATD notatiocn,

10. a2 - b2
11, 2+
Xy:

12. im+ n + pj

13. 3x° - 2x + 5

1, (8.9054) x 1078

15, (xl + Xg) -~ (x3 + xh)

16. x <y + 10

18, x o= 4+ 1

Write the formula for each of the following, using AID notation.

19, The average of the numbers w, %, y, and z.

375



20. The total price of an item including sales tax if the base price
is P and the sales tax is 5%.

For each of the following commands, indicate whether a step number is
regquired.

Must have step Must not have May or may not
number step number have step number

21. DEMAND X
22, TO STEP 16.2
23. STOP

24, DO PART 1

Give the truth value of each of the following expressions.

T ¥

25. BTOT 4 <3 OR 3 >L
26. = 12
= 15
<YORXX >VY

o

For each of the following programs, list the step numbers in the order
in which they would he executed.

27. 12.8 DEMAND Q
12,9 SET R = Q + 1
12,10 DEMAND Z
12.95 TYPE R -

DO PART 12

Z

28, Lo, T 2
4o, STE

Lo, T 7
" Lo L TYPE Z

DO PART L2

w
o

Ho B
L vl

0
b2 IF 7 >0
Z

: S7



29,

22,1 SET L = 3

22,9 SET L =L + 1

22,75 SET L = L + 1
22,81 DO PART 33 IF L < 5

N

22,99 TYPE L

33.25 SET L = L + 1
33.35 TYFE L

22.95 SET L = L - 1
DO PART 22

371



" For each of the following sets of commande, what numeric result would
be typed?

30, LET #(X) = X + 10

TYPE F{2/10)
F(2/10} =

31. SET 4 = 16
LET S = A > 10
SET B = TV(S)#A + TV(NOT 5)#Ax2
TYPE B
B =

32. SET X = 43.1
SET ¥ = IP(X)
SET 7z = FP(X)
TYPE Y/Z
Y/7 =

33, TYPE PROD(I = 2, 6, 11: I/2)
PROD{I = 2, 6, 11: I/2) =

34, SET X = 4596.032
SET Y = DP{X)*10
TYPE Y
Y =

35. LET F(X) = (X < 10: X+10; X/2)
TYPE F(12)

36.

37.




38. 5.1 8ET N = 1
5.2 SET K = 0
5.3 8ET F =5
S.4 BET XK =K 4+ N
5.5 8ET N =N+ 1
5.6 T0 STEP 5.4 IFK < F
5.7 TYFE K
DO PART 5
K =
39. 17.1 DO PART 18 FOR I = 1(1)25
7.2 TYPE L{7)
18.1 SET L(I) = T + 2
DO PART 17
{7) =
Lo, 22,1 8BT T = 0O
22,2 DO PART 23 FOR I = 1(1)5
22,3 TYPE T
23.1 DO PART 24 FOR J = 1(1)3

LI SET T =T+ 1
DO PART 22
T =

1. 34%.1 SET X = FIRST(I = 1(1)l0: I/2 - 1 > 2.7)
34.2 §BT ¥ = X/2 - 1
34.3 TYPE Y
DO PART 34
Y =

1

Rewrite each set of cemmands, using the fewesat possible commands,
preserving all indicated actions.

42, DELETE X
DELETE Y

DELETE 7
SET 7 = 2.5

3/



43.

bl

45,

Le.

4.

BET W
SET W

X+ 1
w/e

nn

SET W
TYPE W

5 - W

SET X = 5
DO PART 2

CELETE X

SET X = 6
DO PART 2
DELETE X

SET X = T
DO PART 2

Write the AID commands that would cause Part 8§ to be put into
permanent, storage.

Write the ATD command that would print the value of the natural
logarithm (tc the base e) of L.75.

Complete step 3.1 in program B below so that programs A and B
are equivalent.

Program A Program B
1.1 BET A = 3.1 DO PART k FOR A =
1.2 TYPFE 4/3 L.l TYPE A/3
1.3 8ET A=A+ 1 DO PART 3
4 TO STEP 1.2 IF A < 10

%CU)PARTl 35‘0

10



48.

4g.

50.

Suppose two 9 by 17 arrays A and B are given. The following progrem
produces a new array C such that each element in C is the sum of the
elements in theccorresponding positions in A and B. Complete step

2g.2.

27.1 DO PART 28 FOR T = 1(1)9
28,1 DO PART 29 FOR J = 1(1)17
29.2 SET

DO PART 27

Write the command that will cause Part 12 to be executed 5 times.

The factorial function 4! iz defined to be n-(n-1)<{n-2)-..3.2.1,
For example, 5! = 5S5xhx3x2x1 = 120. Write a definition in AID
notation of a function f such that f{n) = n!.

S5



Introduction to AID Programming 1972-73
Final Examination
Part B
(50 points)

B L i o O A e e e

DO NOT TURN THE PAGE.

B X o a & o a a E

Name

Student number

Instructor's name

Name c¢f school or college

Date

Instructions: Part B is an open-book test; you may use any books, notes,
or other materials that you wish. There are 5 programming prcblems in
thig part of the final examination. Each problem counts 10 points, and
you will be given partial credit for partially correct sclutions.

Before you open the test you should be seated at & terminal and signed
on. As scon as you sign on, the AID interpreter will start automatically
sc that you can do the programming problems. If the AID interpreter does
not start, raise your hand to get help before the instructor gives the
signal to start the test.

For each problem you will be asked to list {print) the completed program
and execute it for given values to demonstrate that your program works
correctly. This listing and cdemonstration must be attached to this test
and turned in to your instructor for grading. You will have 50 minutes
to complete the test.

e R R0 S 3K e e e BN M3 R I K S0 M R

DO NOT TURN THE PAGE UNTIL INSTRUCTED TC DO SC.

O i b S e A s

ey

12



1.

3.

Write a program or a function that will convert degrees Fahrenhelt
to degrees Kelvin, (From degrees Fahrerheit, subtract 32, multiply

by 5/9, and add 273.)

To turn in for greding: When the program is finished,
list it by giving this command:

TYPE ALL
Execute the program for 38°F, 0°F, and -41°F. Tura in
this part of the teletype paper to your instructor for
grading, and then delete the program. (DELETE ALL)

Write & program that will compute the wages due, to the nearest
penny, for H hours of work if the rate of pay is
$4.37 per hour for 4O hours or less,
Time-and-a-half for each hour over 40 hours up to and
ineluding the 48th hour,
Doublé~time for each hour over the 48th hour.

To turn in for grading: When the program is finished,
list it by giving this command:

TYPE ALL
Execute the program for H = 37.25, 42.5, and 52.33 hours.
Turn in this part of the teletype paper to ycur instructor
for grading, and then delete the program. (DELETE ALL)

Write a program that will calculate postage for a piece of air mail
weighing up to and inecluding 16 ounces if the rates are

11¢ per ounce or fraction of an ounce for O to 8 ounces,

$1.00 total for over 8 cunces up to and: including 16 ounces.

To turn in for grading: When the program is finished,
list it by giving this command:

TYFE ALL
Execute the program for these weights: 5.2 ocunces,
8.7 ounces, 3 ounces. Turn in this part of the teletype
paper to your instructor for grading, and then delete the

program. (DELETE ALL)

Write a program that will calculate the mean and standard deviation
of & list Xys Kps x3, ooy Xqg of ten numbers. If M is the mean of

the numbers x caey X the formula for the standard

17 Tpr Xy 10°

deviation is

2

q/(xl - M)2 + (x2 - M)E + (x3 - M)2 + coe + (xlO - M)

10

(continued)
SNV



e

To turn in for grading: When the progrem is finished,
list it by giving this command:
TYPE ALL

Execute the program for this list of numbers:

68

69

72

35

81

23

a7

68

73

98

Turn In this part of the teletype paper to your instructor
for grading, and then delete the program. (DELETE ALL)

Write a program that will approximate the sum of this series:
1 1 1 1
1: 3 7 2 » "
E

To approximate the sum, compute successive partial sums until the
last partial sum computed is equal to the preceding one, that is,

until the n'" partial sum is equal to the (nnl)St partial sum.

Report the (n-l)St partial sum, and the number of members of the
series that were summed to arrive at that approximation.

To turn in for grading: When the program is finished,
list it by giving this command:

TYPE ALL
Execute the program to demonstrate that it works correctly.
Turn in this part of the teletype paper to your instructor
for grading, and then delete the program. (DELETE ALL)

Ak



Appendix B

STUDENT EVALUATION FORM
COMPUTER-ASSISTED INSTRUCTION (CATI)

Please read each statement and cirzle the number on the scale that best
describes your fealings.

SCALE

Strongly agree
Moderately agree
Slightly agree
Uncertain

Slightly disagree
Moderately disagree
Stroengly disagree

e = TR I WL LT

1. I worked as hard answering questions in the 1 2 3 4 5 6 7
computer lessons as I do in the classroom.

2. I learned from the computer lessons as well 1 2 3 4 5 6 7
as I would have learned the same lesson in
the ¢lassroom.

3. I like working at my own pace at the 1 2 3 4 5 6 7
terminal.
4. T would prefer compaiing with my fellow 1 2 3 4 5 6 7

students in the classroom rather than
working at computer lessons.

5. Working with computer lessons is like having 1 2 3 4 5 6 7
my own tutor.

6. Tour hours a week is suificient time to 1 2 3 4 5 6 7
keep up with the course.

7. I found the computer lessons too easy. 1T 2 3 4 5 6 7

8. I think working with computer lessons is 1T 2 3 4 5 6 7
an exciting way to learn.

9. TI found working at the terminal more 1 2 3 4 5 6 7
frustrating than worthwhile.

10. I would iike to participate in another 1 2 3 4 5 6 7

CAI course.

: =54



Appendix B (cont.)
17, I found the computer lessons too hard.
12. The CAI system provides the student with

more feedback than classroom instruction.

13. Use the back of this sheet to make any

comments you wish concerning the CAI program.

1

1

2 3 4 5 6 7

2 3 4 5 6 7

356



References

Friend, J. Computer-assisted instruction in programming: A curriculum

description. Technical Report No. 211, Stanford: Institute for
Mathematical Studies in the Social Sciences, Stanford University,
1973.

Searle, B., Lorton, P., Jr., Goldberg, A,, Suppes, P., Ledet, N., &

Jones, C, Computer-assisted instruction program: Tennessee State

University. Technical Report No. 198. Stanford: Institute for

Mathematical Studies in the Social Sciences, Stanford University,

1973'

S5



¥Footnote

lTh_e authors extend their appreciation to William J. Regan, Dean,
College of Business Administration; Professor John Hoff, Chairman,
Computer Science Department, University of San Francisco; and Professor
Carl Greme, Chairman, Business and Data Processing Division, De Anza

College, Cupertino, California.

285



