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ABSTRACT

This thesis discusses a generalized problem of stochastic control,

in which multiple controllers with different data bases are present.

The vehicle for the investigation is the finite-state, finite-memory

(FSFM) stochastic control problem. For this problem, the usual

technique of stochastic dynamic programming does not apply. Instead,

optimality conditions are obtained by deriving an equivalent

deterministic optimal control problem.

A FSFM minimum principle is obtained via the equivalent deterministic

problem. The minimum principle suggests the development of a

numerical optimization algorithm, the min-H algorithm. The relation-

ship between the sufficiency of the minimum principle (which is in

general only a necessary condition) and the informational properties

of the problem is investigated.

Dynamic programming functional equations for the FSFM problem are

also obtained from the equivalent deterministic problem. Both the

finite and infinite horizon cases are considered. Numerical

solution of the functional equations is discussed.

To illustrate the general theory, a problem of hypothesis testing

with 1-bit memory is investigated. The discussion illustrates the

application of control theoretic techniques to information processing

problems.
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CHAPTER I

INTRODUCTION

1.1 Stochastic Control and Large Scale Systems 

The fundamental problem of control engineering is illustrated

in Figure 1.1.1. A fixed plant is given with certain variables

(inputs) available for manipulation and other variables (outputs)

available for observation. A controller must be designed to

choose the plant inputs based on the observations so that the plant

behaves in a desired fashion.

In deriving a mathematical model for the plant, phenomena

which cannot be adequately explained by simple deterministic models

are commonly treated as stochastic disturbances. Stodhastic

optimal control theory has been developed for problems of this type.

While it is true that the theory at present has been unsuccessful

in producing explicit solutions to practical non-linear problems,

nevertheless the theory provides a useful perspective and a con-

venient framework for deriving suboptimal, but practical and

feasible policies.

Consider for example the Safeguard ballistic missile defense

system, which can be considered a large stochastic control problem.

Of course, the problem is too complicated to be solved in this



input variables
plant

output variables

controller

Figure 1.1.1 Control System



formulation, but parts of the problem are tractable. Just to

cite one example, the Kalman filtering theory is used for the

tracking function. But of more fundamental importance is the

perspective available from adopting the stochastic control viewpoint:

the state space formalism, the explicit treatment of uncertainty,

the identification of the computer with the controller and the

radar and missile sites as the sensors and actuators, and the

explicit statement of system goals with their relative importance.

While stochastic control has doubtless been useful for certain

problems, there has recently been an increase in interest in the

more difficult problems of large scale engineering systems.

These systems (Figure 1.1.2) are characterized by the presence of

multiple controllers acting on different data bases and affecting

different aspects of total system performance. Since classical

stochastic control theory is restricted to systems with a single

controller possessing perfect memory of all past sensor outputs

and actuator inputs (the so called classical information pattern),

the need for a generalized theory is apparent. Such a theory must

subsume classical stochastic control, so that explicit optimal

solutions to realistic design problems cannot be expected. But

what can be accomplished is the establishment of a framework in which

the information interface problems that arise in multiple controller

systems can be viewed.
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1.2 Background 

Tentative steps in the direction of a generalized theory of

stochastic control have been taken by a number of workers. Inspira-

tion has come from a number of fields other than classical stochastic

control theory. These include the theories of games, statistical

decisions, multilevel hierarchical systems, teams, and communications.

The crucial issue in generalized stochastic control is the

interaction between information and decision. This issue arises

unavoidably in the Von Neuman game theory [V1,L1,01) due to the

presence of more than one player. Unfortunately, attention in game

theory has focused on the so called normal form of the game. In

this form the dynamical and informational aspects of the game are

suppressed by introduction of the notion of strategy. A generalized

stochastic control problem can be considered a non zero-sum game,

and so it has a normal form. Of course, no insight is gained from

this reduction. More useful for non-classical stochastic control

is the work that game theorists have performed on the extensive form 

of the game (K1,K2,D1,T11. It is here, for example, that the

important notion of the information pattern arises.

Another area in which the issue of the interaction between

information and decision naturally arises is statistical decision

theory. Statistical decision theory is a mathematical discipline that

resulted from the infusion of ideas of game theory into the more
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traditional statistical theory of Fisher, Neyman and Pearson, and their

followers. The synthesis was largely performed by Abraham Wald, and

culminated in his book Statistical Decision Functions [Wal]. Wald's

formulation is still important, but an alternative formulation by the

Bayesian statisticians has grown in popularity [Sal, Refl.

Statistical decision theory contains several ideas important in

stochastic control. One example is the notion of a sufficient 

statistic. Another example is contained in Wald's treatment of the

sequential problem. This treatment contains ideas of dual control

and of dynamic programming.

The theory of multilevel hierarchical systems is due to

Mesarovic [Mel], who drew inspiration from the study of decentralized

structures in economics and management [Arl,Soll] and from large

scale mathematical programminq [Lal, Wisl]. However, Mesarovic's

model is deterministic and problems of information flow appear only

implicitly. More recently Chong [C1] has investigated a stochastic

version of a two level, hierarchical svstem in which the interaction

between information and control appears explicitly.

Team theory [M1,M2,R1] is closely related to statistical

decision theory. According to Radner [R1], team theory arose from

... attempts by several workers to analyze some of the many-person

aspects of organizations that are present even in the absence of

many-person game complications...". Team theory is actually a

special static case of non-classical stochastic control. It is
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important since an explicit solution to the quadratic-Gaussian

team problem is known, so that the relative efficacy of different

information structures can be compared (R2).

Communications theory is another area that is a special case of

non-classical stochastic control. There are two controllers in a

communication problem, the encoder and the decoder. By the very

nature of the problem, the decoder does not know either the

observation (source outputs) or controls (channel inputs) of the

encoder. Information theory was invented by Shannon (Shl,Gal) to

deal with problems of this nature.

Although non-classical stochastic control theory has drawn

inspiration from a number of cognate disciplines, it is undeniably

a direct outgrowth of a critical look at the foundations of classical

stochastic control performed by several authors. The fundamental

theoretical tool in stochastic control is the dynamic programming

algorithm [R1,R1,Aol,H1]. Although the algorithm can only be

explicitly carried out in certain special cases, it nevertheless

provides a convenient conceptual framework in which theoretical

questions of existence, uniqueness, randomization, etc. can be posed

and answered. The critical underlying assumption for the validity

of dynamic programming is the classical information pattern: one

controller with access to all past observations and controls

[Chl,St1]. Thus an examination of the foundations of dynamic
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programming suggests the non-classical stochastic control problem

as an extension.

Explicit consideration of non-classical stochastic control

theory began with the work of Witsenhausen [41,W2,W3,W4].

Witsenhausen gave an example of a linear-quadratic-Gaussian

(LQG) stochastic control problem for which the optimal control laws

are nonlinear in [W1]. In [W2], he examined the fundamental issue

of when a general stochastic control problem (or game) is well-

posed. In [W3], the status of the new theory was surveyed, with

the introduction of a useful system of notation and the listing

of a number of "assertions" which might be turned into theorems

by appropriate technical assumptions. In [W4], a maximum

principle (for control laws) was derived.

Non-classical stochastic control has drawn the attention of

other workers. Athans and a number of his students have

investigated suboptimal solutions to certain non-classical

problems [C2,Kwl,Cal]. Y.C. Ho and his student K.C. Chu have

classified information patterns and identified some for which the

optimal control laws for the LQG case are linear [ilol,Chul]. Aoki

has found a suboptimal solution for the control sharing information

pattern [Ao2]. Bismut has given an example in which the

interaction between information and control is clearly exhibited

[Bil], and Sandell and Athans [S1] have used Bismut's idea to
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explicitly characterize the optimal nonlinear solution of the

control-sharing LQG stochastic control problem.
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1.3 Summary of Thesis 

Research in non-classical stochastic control to date has been

handicapped by the absence of a rich class of tractable examples.

In classical stochastic control, the LQG (linear-quadratic-Gaussian)

problems are a readily solvable class useful for motivation and

for practical applications, Unfortunately, the solution of the

non-classical LQG problem is difficult and unknown [q1,S1].

The present work is aimed at easing this difficulty. Attention

is restricted to the case of finite-state, finite-memory (FSFM)

stochastic systems. For these problems, an elegant and elementary

theory can be developed. The optimality conditions for these

problems have a special structure that can be exploited to develop

numerical optimization techniques. Evidence of the importance of

the problem is given by the interest in a special case of the

problem in the operations research literature [Howl,How2].

The FSFM model is introduced in Chapter II. It is demon-

strated that a number of apparently more general problems can be

reduced to FSFM stochastic control problems An example of a FSFM

problem is given that illustrates the important notion of a

signaling strategy. The chapter concludes with the derivation

of a deterministic optimal control problem equivalent to the FSFM

stochastic control problem.
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A FSFM minimum principle is derived in Chapter III. The

minimum principle is a necessary condition for optimality,

but is not sufficient in general as is shown by a simple

example. However, in the absence of signaling strategies,

the minimum principle can be strengthened to give a sufficient

condition. A numerical optimization algorithm, the Min-H

algorithm, is developed based on the minimum principle.

The dual dynamic programming functional equations for forward

and backward induction are stated in Chapter IV. Several

approaches to the numerical solution of these equations are

suggested, and their implementation is illustrated by an example.

Chapter V considers the infinite horizon version of the

FSFM problem. The Value and Policy Iteration methods are derived

for a version of the problem with discounted cost, and their

numerical implementation discussed. Policy Iteration is illustra-

ted by an example. This example has the interesting property that

the optimal control law sequence is non-stationary.

In Chapter VI, the problem of hypothesis testing of Bernoulli

trials with a 1-bit memory is considered. Application of the

minimum principle suggests a class of non-obvious, but intuitively

desirable strategies. This result provides considerable

justification for the use of control-theoretic methods in

information theoretic problems.
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Chapter VII consists of conclusions and suggestions for future

research.
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1.4 Contributions of Thesis 

The major contributions of this research are:

(1) The formulation of the FSFM problem.

(2) The minimum principle and the person-by-person

min-H algorithm for the FSFM problem.

(3) The relation of the information properties of the

FSFM problem to the optimality conditions.

(4) The extension of the Sondik algorithm to the FSFM

problem.

(5) Formulation of the infinite horizon FSFM problem with

discounting.

(6) Extension of Value and Policy Iteration methods to

the FSFM problem.

(7) Extension of Sondik's implementation of Policy Iteration

to FSFM problems.

(8) Demonstration of the potential value of control-theoretic

methods in information handling systems via the hypothesis

testing problem.



CHAPTER II

THE FSFM STOCHASTIC CONTROL PROBLEM

In this chapter, the finite-state, finite-memory stochastic

control problem is introduced. It is shown that FSFM problems are

a fairly general class of non-classical stochastic control problems.

An example is given illustrating the interesting signaling strategies

that occur in FSFM problems. The chapter concludes with the development

of a determistic optimal

2.1 Formulation 

control problem equivalent to the FSFM problem.

The systers studied are described by the state equation 

x(t) = ft(x(t-1) ,u(t) ,q(t)) (2.1.1)

where x(t) C Xt for t = 0,1,2 ..... T and u(t) E Ut, q(t) C Qt for

t = 1,2 ..... T. The finite sets Xt, Ut, and Qt are referred to as the

state set, the input set, and the uncertainty set, respectively.

Associated with the state equation is a cost function

T
J = ST(x(T)) + h

t
(x(t-1),u(t))

t=1
(2.1.2)

x Ut 4 R and (1)1, : XT R (R = real numbers).where h
t xt-1 

The interpretation of the equations is as follows. The state

equation (2.1.1) models some controlled, uncertain physical process.

The variables x(t) represent the possible states of the process, the

variables u(t) are the inputs of the controller, and the variables q(t)

- 20-
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represent the stochastic effects present. The system's performance is

measured by its cost of operation as expressed by (2.1.2).

The designer's problem is to specify the system controller.

The controller is specified by a sequence of control laws 

:
t -1 

U
t

t = 1,2 ..... T. (2.1.3)

The interpretation of the control law is that when the process is in

state x(t-1), the controller applies input u(t) = yt(x(t-1)). The fact

that all control laws are not feasible (due to various physical

constraints) is recognized by specifying the set of admissible control

laws

rt c ut
xt -1

(2.1.4)

at time t, t = 1,2 ..... T. The designer is constrained to choosing

Y = (Yi ..... Y ) E r, where

r= rl x r2 x...x rT. (2.1.5)

An admissible control law sequence yEr will be called a desiqn, and the

set r will be referred to as the set of admissible designs.

The design y should be chosen so that the system operates with

minimum cost. Notice, however, that the cost (2.1.2) of operation of

the system is not determined solely by y, but depends on the (uncertain)

values of x(0), q(1), q(T). The difficulty is resolved by adopting

a Bayesian viewpoint: all the uncertain variables are assumed to be

random variables with a known joint probability distribution.
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In the FSFM model, it is assumed that probability functions

Tro : X0 [0,1] and pt : Q
t 

-4- [0,1] are given. The probability space

(Q, F, P) is then defined as follows. The sample space Q and field of

events F are

= X
0 
x Q

l 
x Q

2 
x x Q

T

F = p(0)

(2.1.6)

(2.1.7)

where P(S) is the power set of S2 (set of all subsets of a). The probab-

ility of a point w = (xo, 
q1,

 q2, qT) E 2 is

P(10) = 7(x0) pl(q1) p2(q2) PT(qT)
(2.1.8)

and the probability of an arbitrary event of F is the sum of the

probabilities of its points.

Given ya, the corresponding expected value of J can be computed

in several ways. Define

X = X
o 
x X

1 
x...x X

T
, (2.1.9)

U = U1 x U2 x x UT. (2.1.10)

The system of feedback equations 

x(t) = f
t
(x(t-1),

t
(x(t-1)), q(t)), t = 1,2 ..... T (2.1.11)

has a unique solution (x(0), x(1), ..., x(T)) E X for each (x(0), q(1),

q(T)) E Q. This is a trivial consequence of the casual nature of



- 23-

the setup.
1 

Thus, there exists an unique solution map

(2.1.12)

that gives the sequence of states resulting from a given design and a

given sequence of stochastic inputs. Defining

X = P(X), (2.1.13)

a probability space (X, X, PSy 1) is defined, where the probability

PS 
1 
is defined by

- 1
PS (x) = P({LO :x = S (16)})•

Similarly, define the map Ety:51 -4- XxO by

(2.1.14)

Ry = Sy X (YoSy. (2.1.15)

The corresponding probability space is (X x U, X x U, PR 
1 
), where

PRy 
-1 

is defined in a similar fashion to PS 
1
.

Recall that the cost functionJisamapJ:XxU± R. Let i
X 
:

X X be the identity map, then maps J : R and j : X 4- R can be

defined by

JY 
=

=

J o gy,

j (i
x 
x y).

(2.1.16)

(2.1.17)

1
The crucial importance of the concept of casuality in assuring the
existance of solutions to feedback equations has been demonstrated
(for quite different models) by Witsenhausen [W2] and Willems [Wil].
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Finally, the expected value of J can be computed in the following

three ways
1
:

EJy f
n 
j
Y 
(w) d P((4),

EyJ = I
x x u 

J(x,u) dPRy 
1

E
y 
J
y 
= I

x y
(x) dPS 1 (x).

But by theorem 39.0 of Halmos [Hal],

A 7IEJ
Y =EYJ=EY

J
Y 
= JtY). (2.1.21)

Thus the FSFM stochastic control problem is to find min J(y), and the
yer

minimizing control law sequence y*.

Since X and U are finite, it is clear that r is finite. Therefore,

the cost functional J(y) can in principle be evaluated for each yEF,

and the result tabulated. Since a finite set of real numbers always

has a minimum, an optimal control law sequence exists, although it may

not be unique. Moreover, since the minimum of a convex combination of

a finite set of real numbers cannot be less than the smallest such

number, it is clear that randomized designs offer no advantage.
2

1

2

For the finite spaces considered here,

f
x 
f(x) d P(x) = E f(x) P(x).

X
Notice the notation EJy, EyJ, EyJy indicating the dependence of the

function and/or probability measure on y.

A randomized design is a sequence X lyer, of numbers satisfying X -> 0,

E A,„ = 1. If n is the set of such numbers, J is extended to 52 by the
yer 1
definition J(X)= yEr y(y). The use of randomized strategies is crucial

in game theory [V1].
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2.2 Generality of the Model 

The FSFM model is motivated by the control system described in

section 1.1. Besides the obvious limitation of the finiteness assump-

tions, there are several features of the general engineering control

system of section 1.1 which are apparently not reflected in the FSFM

model. The purpose of this section is to establish the generality

of the FSFM model. It will be shown that the features of the general

engineering control system can be incorporated in the FSFM model. This

will be accomplished by reducing a set of apparently more general

problems to the finite-state, finite-memory problem.

First consider the case in which the control laws are allowed to

depend on the state only through a noisy observation

y(t) = gt(x(t), e(t)) (2.2.1)

where e(t) E et, y(t) e Yt, and at, Yt are finite sets. The random

variables O(t) are such that fx(0), NO), q(1), ...,9(T-1),q(T)1

from a sequence of independent random variables. The problem is reduced

to the preceeding by letting Xt x Yt be the new state set, Qt x at

be the new uncertainty set and

7/ lif
t
(x(t-1), u(t), q(t))

y(t) gt(ft
(x(t-1), u(t), cl(t))re(t))

(2.2.2)

be the new state equation. The set rt consists of maps yt : xt_i x

Y
t-1 

U
t 

satisfying yt(xl,y) = yt(x2,5) for all y E Yt-1 and
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x
1
,x
2 

e X
t -1
.

As a second example, suppose there are m observation equations

Yj(t) = gti (x(t), ei(t)) (2.2.3)

where for i = 1, me Mr Y
i 
(t) e Y

t
i 
, 8

i 
(t) E 0

t
i
, and Y

t
i 
, e

t
i 

are

finite sets. The random variables ei(t) satisfy independence conditions

similar to those of the variables of the first example. Moreover,

suppose that

U
t 
= U

t
1
 
x U

t

2 
x x U

t

m
(2.2.4)

and that u
i
(t) is to be chosen on the basis of observation of y

i
(t -1)

alone. This is a case of the dynamic team [M2]. The reduction to

the FSFM problem is accomplished by a state augmentation similar to

that of (2.2.4). In this case,

F
t 
= F

t
' x rt

2 
x x F

t
m

(2.2.5)

where r
t+1 

consists of maps from X
t 

x Y
t
1
 

x x Y
t
m 
to U

t+1 
that

depend only on the variable yi(t) e Yti.

For a third example, consider the case in which the control laws

are restricted to dependence on a finite memory set Mt. The state

space for this problem is Xt x mt, the control space is Ut x Mt, and

the state equation is

[7] f
t
(x(t-1) u(t) , q(t) )

m(t) v(t)

(2.2.6)
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where v(t) E 
Mt 
. The control laws Se

t 
: X

t -1 
x M

t -1 
U
t 

x M
t 

are of the

form
t 
= (Yt, nt), where yt : xt_l x mt_i tit, and nt xt_i x mt-1

Mt is the memory update function.

For a fourth example, suppose that there are two control stations.

Control station 1 can communicate with control station 2 through a

channel described by the equation

r
2
(t) = w

2 _1
(EL(t),

12
(t)) (2.2.7)

where gi(t) E S
t
1 
is the signal sent by control station 1, r

2
(t) E R

t

2

is the signal received by control station 2, and
12
(t) E E

t
12 

is a

noise process. It is assumed that Rt
2 

St
1
, and E

t

12 
are finite sets,

12(to tTI
and that the random variables of the sequence 

{e 
are in-

dependent of each other and all other random variables of the system.

This situation is handled by adding (2.2.7) to the state equations,

letting the control space of control station 1 be U
t
1
 
x S

t
l
, and by

letting the observation space of control station 2 be Yt
2 
x Rt

2
. The

control laws of control station I are the form yt
1
 : Xt_i x Mti

U
t
l 
x M

t
1 x 5

t
1 
where yt

1 
= (yt

1
, mt

1
, 6t

1
). Here Ct

1 
: Xt_l x Mt_

1
i÷

S
t
1
 
is the encoder of control station 1.

As a final example, suppose that the cost function is of the form

J = ck,(x(0), x(T)). (2.2.8)

(This formulation is important when communication or statistical decision

problems are considered as FSFM problems.) This situation is handled

by redefining the state space to be Xt x Xt, and adding an equation of



the form

- 28 -

z(t) = z(t-1), t = 1,2 ..... T, (2.2.9)

to the state equations, where z(0) = x(0).

It should be clear at this point that most of the important features

of the general engineering control system of section 1.1 have been

captured by the FSFM model. It is worth emphasizing that the memory

management and communication handling tasks of the control stations can

be incorporated into the FSFM problem. Thus the crucial data processing 

problems of systems with multiple controllers can be examined on an 

equal footing with the choice of actuator inputs.
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of the FSFM stochastic control problem is

the case of complete state information and has been extensively studied,

principally in the operations research literature [B1, Howl, How2, H1,

Kul]. The problem is usually referred to as a Markovian decision 

process, and the formulation is slightly different. The state is not

defined by a state equation of the form (2.1.1), but is instead defined

as a controlled Mankov chain with transition probability .11(t) •PI3

This is the probability of a transition from state i to state j at

time t when input u is applied to the system. Of course, (2.2.1) defines

a Markov chain with transition probabilities

Pi7
.u(t) = p

t
({q : j = f

t
(i,u,q)}). (2.3.1)

Since it is not difficult (in the finite state case) to realize a

given controlled Markov chain by a state equation, the two formulations

are in fact equivalent.
1

An extension of the preceeding problem is the case of incomplete 

state information treated extensively in both the control and operations

research literature [Asl, H1, Dyl, Stl, Aol, Sol, Sml].
2 

This problem

is also (for the finite-state, finite-horizon case) equivalent to a FSFM

stochastic control problem
3
. The incomplete state information is

1
Establishing the equivalence of the two formulations for the case of
continuous state space is more difficult and (to the author's knowledge)
an unresolved problem.
2
Control theorists have concentrated on the continuous state space case.
The treatment is usually quite formal; certain conditional probability
densities which may or may not be well defined are used extensively.
3
The infinite-horizon version of the problem cannot be conveniently
handled by the FSFM techniques.
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described by observations of the form (2.2.1) that can be adjoined to

the state equation as in (2.2.2). Moreover, all previous observations

and controls are remembered. Therefore, the memory set is

M
t 
= Y

0  
x U1xY1

 
x x

t-1 
x Y

t-1
, and the memory update functions

are constrained to sequentially storing the observations and controls

as they occur. Although the incomplete state information problem is

a special case of the general FSFM problem, the powerful perfect

memory assumption allows special techniques to be used that do not

apply to more general FSFM problems. These special techniques will be

discussed in more detail later.

The case T=1 of the FSFM problem includes both the non-sequential

Bayesian statistical decision problem [Sal, Ral] and the team decision

problem [M1, M2, R1, R2] (for finite sets). The sequential Bayesian

problem (with perfect memory) is actually a special case of the

Markovian decision problem with incomplete state information and is

therefore a FSFM model. A sequential problem (hypothesis testing)

with a 1-bit (hence imperfect) memory is treated in Chapter 6.

Witsenhausen has given several stochastic control models that are

slightly less general than the FSFM model when restricted to finite sets

[43, W4]. Witsenhausen shows that any sequential stochastic control

problem can be reduced to a certain standard form. The FSFM model is

a sequential stochastic control problem if the sets r
t 

satisfy the
X

condition r . fy t-1 : - 0 1t t c u t it t ) C Vt-11 for t=1,2 ..... T, where

U = P(u ) d Dt t an 
t is a subfield of Xt-1 = P(Xt-1). In this case, the FSFM

model is said to have a simple information constraint. Thus the FSFM
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problem is more general than the sequential stochastic control problem

since the most general constraint on the control laws is assumed.

Even if a stochastic control problem has a simple information

constraint, it may be preferable to reduce the problem to a FSFM model

rather than to Witsenhausen standard form. As Witenhausen says,

"... alternative reductions leading to standard models with simpler

state spaces may be possible in specific cases" [W4]. For problems

with stochastic inputs which are independent from one time to the next,

reduction to the FSFM model rather than to the standard model results

in a simpler state space, but a more complicated state equation. It

may be possible to formulate a FSFM problem with a fixed finite state

set while the corresponding standard model requires a growing state set.

This is an important computational advantage in general, and a crucial 

advantage when the infinite horizon problem is considered. In fact,

the motivation for the development of the FSFM model was the development

of a special class of Witsenhausen-type models for which an infinite

horizon problem could be formulated.

Games in extensive form are a class of problems more general than

FSFM problems. The original formulation due to Von Neuman and Morgenstern

[V1] was improved upon by Kuhn [1(1, K2] and subsequently by Aumann [Aul]

and Witsenhausen [W2]. The theory of extensive games is more general

than stochastic control theory in two significant ways. First, there

are in general N players, each with a different cost function. Second,

the theory of extensive games (in the Kuhn and Witsenhausen formulations)

does not require that the time order in which the various decision
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variables are selected is fixed in advance. The fact that there is

more than one cost function is the essential complication of game

theory as opposed to control theory. However, as Witsenhausen [42]

has pointed out, the non-sequential ordering of decision variables in

extensive game theory is also perfectly appropriate in the context of

control theory. However, aside from Witsenhausen's causality

condition for well-posedness [W2], esentially nothing is known about

non-sequential stochastic control problems.

The FSFM model is related particularly closely to the Kuhn model

of an extensive game. According to Kuhn,
1

an extensive game is game 

tree with

(i) a partition of the vertices with alternatives into the

chance moves Po and player moves P1, P
n

(ii)apartitionofthemovesofP.into information sets 

(iii) a probability distribution on the alternatives of the

information sets of P
0

(iv) an n-tuple of real numbers for each terminal vertex.

An example of Kuhn-type extensive game is shown in Figure 2.3.1.

There is one chance move in P
0 

with four alternatives. Each alternative

consists of the choice of an outcome of tossing two pennies. Thus

1each outcome occurs with probability There are four moves in P1,

and player one's information set is equal to Pl. Thus player one does

not know the outcome of the first chance move. He has to guess if the

pennies match or don't match. If he guesses correctly, he gets to keep

1
See [K2] for a complete exposition.
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Figure 2.3.1 Matching Pennies
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his own penny and player two's penny (the payoff is (+1, -1)). If

he guesses incorrectly, he loses his penny to player two (the payoff is

(-1, +1)).

Every FSFM problem can be reduced to a Kuhn extensive game. It might 

be thought that the reduction is accomplished by identifying the player's 

alternatives with the controller's inputs, but this is not always 

possible. Suppose, for example, that X0 = 11,21, U1 = {0,1}, and

r1 - {y1, y, where y1(1) - 1, y1(2) = 0 and ;71 = 1-y1.1 Clearly,

the game tree for this problem must have its first seven nodes as

in Figure 2.3.2, with vertices 1 and 2 in the set of moves of

player one (the only player). However, it is not possible to partition

P
1 
into information sets so that the restriction that the same alternative

must be chosen for each vertex in a given information set is equivalent

to the restriction that the control law must lie in r1. The point is

that restricting the control laws to lie in an arbitrary subset of
X
t-1 .

U
t 

is a more general restriction than one based on information.

Thus, it is in general necessary to identify the player's alternatives

with the set of control laws. This is undesirable since the game does

not exhibit the information properties of the FSFM problem. However,

it will be shown in Chapter 3 that the first reduction (identifying

alternatives with controller inputs) is possible for FSFM problems with

simple information constraint.

1
The choice of r1 seems unnatural, but has appeared in the literature
[Stal]. The control laws in r1 are the closed-loop control laws; those
in U

1

X0 
- r

I 
are the open-loop control laws.
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Figure 2.3.2 Game Tree for FSFM Problem
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2.4 Example 

In this section, an example of FSFM stochastic control problem is

given. The problem is sufficiently simple that a solution can be

written down by inspection. However it does illustrate the signaling 

strategy, a key phenomenon that occurs only in non-classical (as opposed

to classical) stochastic control problems.

Figure 2.4.1 illustrates the problem considered. The initial state

1
x(0) is random, with P(x(0)=1) = P(x(0)=2) = T. The objective is to

choose the controls u(1), u(2) so that x(0) = x(2). If x(0) # x(2), there

is a penalty of 1 unit, and there is an additional penalty of k 0

units if x(1) = 3. The control u(1) at time 1 is allowed to depend

on x(0).

If the problem is to be a classical stochastic control problem, the

control at t=2 must be allowed to depend on x(0) and u(1). In this case

the solution is trivial. For t=1, always choose u=1. For t=2, choose

u=1 if x=1 and u=0 if x=2. The resulting expected cost is EJ=0.

Suppose on the other hand that the control u(2) is allowed to depend

on the event x(2)=3 only. Then, if k < 1, an optimal strategy at t=1

is to choose u(1)=1 if x(0)=1 and u(1)=0 if x(0)=2. The corresponding

optimal strategy for t=2 is to choose u(2)=0 if x(2)=3 and u(2)=1 if

1
x(2)=1 or x(2)=2. The expected cost is EJ=-k.

2

The strategy employed in the choice of the first control for the

second case is referred to as a signaling strategy. The interpretation of

this statement is the following. If x(0)=2, the first controller moves

the state to x(1)=3, which is undesirable for control purposes (there is a
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t=1

Figure 2.4.1 Example Illustrating Signaling Strategy

t=2
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penalty k < 1). However, the second controller is able to see that x(1)=3,

and so he unfailingly knows that the first state was x(0)=2. He can then

avoid the penalty for being in the wrong terminal state.

The terminology signaling strategy arises in the theory of extensive

games [T1]. If the present example is viewed as a (1-player) extensive

game, it has a Kuhn game tree [K1,K2] as shown in Figure 2.4.2. Notice

that the states have been eliminated, and only the sequence of decisions

exhibited (the choice x
0 
=1 or x

0 
=2 is a decision due to nature). Note

that the vertices of the game tree are partitioned into information sets.

Thus in Figure 2.4.2b, the second decision must be made on the basis

only of the knowledge that the event x(0) = 2 and u(1)=0 did or did not

occur. Thus the control law must pick out the same alternative for

each vertex within a given information set.

In terms of the game tree, the notion of a signaling strategy can be

given a precise definition. Consider the information set U
2 
in

Figure 2.4.2b. The set of all vertices following the choice u=0 does

not contain the set V2, so according to Thompson's definition [r1], U2 is

a signaling information set, and any strategy (control law) defined on U2

is a signaling strategy.

the choice u=0 for U
2 
in

statement holds for V
4
.

In constrast, the set of all vertices following

Figure 2.4.2a contains V3, and a similar

Thus U
2 
in Figure 2.4.2a is not a signaling

information set. This situation may be summed up succinctly as follows.

In V
4 

and V3, the player (controller) remembers everything he knew in

U
2 
(Figure 2.4.2a). In V2, the player has forgotten nature's choice and

his own previous decision.



t=o t=1 t=2

(b)

Figure 2.4.2 (a) Perfect State Observation (b) /mperfect State Observation
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In the next chapter, a minimum principle is established for the FSFM

stochastic control problem, and it is verified that the optimal strategies

satisfy the minimum principle. The importance of the concept of the

signaling strategy is that when there are no signaling strategies present,

the minimum principle can be strengthened to give a sufficient condition.
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2.5 The Equivalent Deterministic Problem 

In this section, a deterministic optimal control problem equivalent

to the FSFM problem is derived. The equivalent problem can be used to

obtain necessary and sufficient conditions for the optimality of sequence

y* of control laws for the FSFM problem.

Since the FSFM stochastic control problem with simple information

constraint is a special case of the general sequential stochastic

control problem, it could be transformed to Witsenhausen's standard form

and the general optimality conditions applied [44]. However, the FSFM

problem has a special structure that can be usefully exploited in the

development of optimality conditions. These conditions are expressed in

terms of the equivalent deterministic problem derived in this section.

The deterministic problem for certain important special cases of the FSFM

problem has a state space of fixed, finite dimension in contrast to the

growing state space required in general. Moreover, the assumption of a

simple information constraint is unnecessary.

It should not be inferred from the preceding remarks that the

equivalent deterministic problem derived in this section has the most

efficient state space for all stochastic control problems that can be

cast in the FSFM format. In fact, for perfect memory problems, and for

certain sequential hypothesis testing problems, more efficient equivalent

deterministic problems can be derived utilizing the special structure of

these problems.

The state space of the deterministic problem equivalent to the FSFM

Sinceis the set of probability vectors on the original state set Xt.
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x
t 
is finite, there is no loss in generality in assuming that xt={1,2,...,nt}.

n nt

Let E
t 
be the set of probability (row) vectors in R t, ie., E = 1

i=1

and M. 7% 0, i = 1,2 ....
. 
n
t
.

Yt 
n
t

For yt e Ç. let h (t) be the(column) vector in R with components

ht(i, yt(i)), i = 1,2 nt. Similarly, let (41, be the column vector
n 
t

in R with components tr(i), i=1,2 n .

Yt
Finally, for each yt E rt, define matrices P (t) with components

Pij 
t(t) = Pt(lq : j = ft(i. Yt(i). ci)/) (2.5.1)

where i e X
t-1 

and j E X
t
. Clearly, P 

t 
(t) is a stochastic matrix

(its rows sum to one, and its elements are non-negative). Notice that the

matrices P
Yt 
(t), yt E rt' can be determined by the matrices P

ut 
(t),

ut E Ut, where P 
t
(t) is the stochastic matrix with components

u
t

Pij = Pt({t1 : j = ft(i' ut, q)}) 
(2.5.2)

itfor i E Xt_i, j E Xt. If yt(i) = ut, then row i of P (t) is equal to

row i of P (t).

Let m(0) = 7
0 
, and define M(t) by the equations

y
m(t) = m(t-1) P t(t) (2.5.3)

for t = 1,2 T Clearly, m(t) corresponds to the marginal probability

measure of PS 
1 
on X. That is, M.(t) is the unconditional probability

that x(t) = i when the control law sequence y = (y1, ..., yT) is used.

It follows immediately that
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T Yt
J(7) = E = (T) ~(T) + E 7 (t-1) h (t).T Y 

t=1
(2.5.4)

Therefore, the FSFM stochastic control problem is equivalent to the

deterministic problem of minimizing (2.5.4) subject to (2.5.3).

Further insight into the nature of the equivalent deterministic

problem (2.5.3), (2.5.4) can be obtained by considering randomized

strategies. Attention is restricted to the class of behavioral strategies

[K2]. This is a subclass of the general class of randomized strategies

defined in Section 2.1.

A behavioral randomization is a set of non-negative numbers CX (t)1
Yt

satisfying

E a (t) = 1 (2.5.5)

YtErt Yt

for t = 1,2 T In this case, the control law yt g rt is chosen with

probability (t) independently of the choice of yT, t # T. Notice
Yt

that it is not possible to coordinate the choice of strategies over time

(unless the strategy at every stage is pure
1
) so that behavioral

randomization is not the most general randomization.

In terms of the behavioral strategy, the state equation (2.5.3) becomes

Yw(t) = w(t-1) ( E a (t)P
t
(t)), t = 1,2 ..... T, (2.5.6)

yte rt lt

where w(0) =
0
. The cost function is

1
The behavioral strategy is pure if (t) = 1 for some y

t 
rt,It

t = 1, 2, ..., T.
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T Yt
J(y) = 7(T) (PT + E 7(t-1) E X (t) h -(t) . (2.5.7)

t=1 (y
t
sr
t 

Yt

Equations (2.5.6) - (2.5.7) show that the FSFM problem is equivalent to a

deterministic optimal control problem with bilinear state dynamics and

bilinear cost functional. Moreover, since the optimal strategy is known

to be pure (as pointed out in Section 2.1), the problem is known

a priori to be "bang-bang". The fact that the FSFM problem is equivalent

to a bilinear problem is intriguing since there has been a considerable

amount of research devoted to these systems recently [Brl, Mol, Wil].

However, this equivalence will not be exploited in the sequel.

In general, the FSFM model is an efficient representation of a given

stochastic control problem when the state set of the FSFM problem is a

fixed, finite set not too much larger than the original state set. This

will generally be the case when the controller has a fixed, finite memory,

the noise is independent from stage-to-stage, and the cost has a stage-

wise additive structure. For problems of this type, the equivalent

deterministic problem has a state space of fixed, finite dimension, in

contrast to the growing state space required by the Witsenhausen

standard form. This simplification is achieved by admitting slight

complications into the structure of the deterministic problem. Thus the

Yt
matrices corresponding to the P (t) are stochastic matrices with all

elements either zero or one and only a terminal cost is required for the

deterministic problem equivalent to the Witsenhausen standard form.

When the controller has perfect memory, its memory set expands and

so must its state set. Thus the deterministic version of the corresponding
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FSFM problem requires a growing state space. A more efficient equivalent

deterministic problem is obtained by taking the conditional probability

vector of the original state set given past observations as the

deterministic state. This approach has been followed, implicitly or

explicitly, by a number of authors [Aol, Asl, Sol, Sml, Sawl].



CHAPTER III

THE FSFM MINIMUM PRINCIPLE

In this chapter, a minimum principle is stated and derived. The

minimum principle is a necessary condition for optimality, but is not

sufficient in general. However, in the absence of signaling control laws,

the minimum principle can be strengthened to obtain a sufficient condition.

A numerical optiinization algorithm based on the minimum principle

is developed. It is shown that the algorithm always converges to a

person-by-person extremal.

3.1 Derivation of the FSFM Minimum Principle 

In the previous section, it was shown that the FSFM stochastic control

problem is equivalent to a deterministic optimal control problem with

cost functional

T y
J(y) = 7(T) (I) + E w(t-1) h t(t)

T t=1

and state equations

(3.1.1)

Y
7(t) = 7(t-1) P

t
(t) , t = 1, 2, ..., T (3.1.2)

where 7(0) = 7
0 

is given. Notice that each rt is a discrete set, so that

the convexity assumption required for application of the discrete

minimum principle [Hall, Hon] is not satisfied. Therefore, the proof

presented in this section proceeds from first principles.

- 46-
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Since the state dynamics of the equivalent deterministic problem are

linear in the state, it is useful to consider the adjoint system of

(3.1.2). Let (1) be the set of (column) vectors e R. Then the product

" = 
E 1Tx 4x 

(3.1.3)

xCE

is defined in accord with the usual matrix-vector notation. Holding 0

fixed, a linear functional on H is defined, and conversely.

Define the forced adjoint or costate equation

4(t-1) =
t
(t) 0(t) + h

Yt
(t) (3.1.4)

for t = 1, 2, ..., T, where Q(T) = OT is the termina.1 cost vector.

Lemma 3.1.1

Let y (y1, y2, ..., yT) be fixed control law sequence. Let the

corresponding state and costate sequences be defined by (3.1.2) and

(3.1.4) where n(0) = n
0 

and O(T) = chT. Then,

T 
Y

n(t) 0(t) = E n(T-1) hT
T
(I) + n(T) 0(T). (3.1.5)

Tst+1

Proof 

The proof is by backward induction. Equation (3.1.5) is clearly

valid for t = T. If it is valid for general t, then

n(t-1) 0(t-1) = n(t-1) (P
Yt 
(t) .(t) + h

Yt
(0)

= n(t) 0(t) + n(t-1) h
let
(t)

T YT
= E n(T-1) h (T) + n(T) 0(T)
T=t

(3.1.6)
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so that (3.1.5) is valid for t-1. Therefore, the equation is valid for

t = T, T-1, ..., 1.

Theorem 3.1.2 (FSFM Minimum Principle)

If the sequence /
o 
= (/

1

0 
, y20, y

0 
) is optimal for the FSFM

stochastic control problem and 7
o
(t), (I) (t) are the associated state and

costate sequences satisfying

then

Yt
~(t) 

= 70(t -1) p (t), 710(0) 
no

0

0 
O

11) (t -1) = P
yt 

(t) (t) + 111(
t 
(t), QO(T) 4T

Yt

0 
Yt 

0

To(t -1) P (t) 
0 
(t) +

o
(t -1) h (t)

cm-o(t -1) Pyt(t) (t) + (t -1) h 
t
(t)

for all yt E re for all t = 1, 2, ..., T.

Proof

From Lemma 3.1.1 and equation (3.1.1),

J(y o
1
, Yt-1 t' t+1' T

t -1

E 70(r-1) h T (T) + 119(t-1) (I) (t-1)
T=1

0

(3.1.7)

(3.1.8)

(3.1.9)

(3.1.10)

t -1
0

y
0

yt

0

E nCi(T-1) h T (T) + 70(t -1) P 
t 

(t)
o
(t) + 7

0 
(t -1) h (t).

T=1



- 49 -

Similarly,

0 0 0
jni • —1 Yt -1 ' Yt+1 ' Yar ) (3.1.11)

0
t-1 1e0 0 0

= £ (T-1) h 
T 
(T) + IP(t-1) P 

t 
(t) cl) (t) + (t-1) h (t) .

T=1

Notice that X(T) is independent of yt, T < t, and 0(T) is independent of

T > t.

Since 
y
1
0, y

2
0, ..., y

T
o
is optimal,

-1(Y 
o 

t -1(3. Yt

0
t+1

o
T
o
)1

(3.1.12)

7Iv
1 

,

t-1 
0 0%
. 
,
1. 
„
1....., YT

and (3.1.9) follows immediately.

Although the minimum principle is a necessary condition for optimality,

it is not a general sufficient. This hardly is surprising, since only the

condition (3.1.12) of the optimal control law sequence has been utilized.

Other control law sequencesthan the optimal can satisfy (3.1.12). Such

sequences are called extremal. Thus Theorem 3.1.2 has the key ingredients

of a minimum principle. The Hamiltonian minimization is global since

every yt E rt must be tested. However the overall minimization of the

cost functional is local, since the test is performed for a single,

isolated time instant. This is completely analogous to the continuous

time situation in which large variations in the control for infinitesimal

time intervals (the "strong variations" of the calculus of variations) are

used to derive the minimum principle [Pol, A1].
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3.2 Examples 

In this section, two examples illustrating the application of the

minimum principle are given.

Example 1 

This example shows that the minimum principle is not in general a

sufficient condition for optimality. The example has two stages (T=2)

and is defined as follows:

X
0 
= X

1 
sim X

2 
= {1,2}

U
1 
= U

2 
= {0,1}

Qi = fil, Q2 = {1,2,3}

7 = 0]

h
Yt
(t) E 0

The sets of admissible controllaws r
1 

r
2 
have just two elements

the control law whose value is always 1 and the control law whose value

is always 2. The probabilities of the elements of Q2 are

1
p2(1) = 

1 
p2(2) = T, p2(3) = 

1

The state transition functions fl : X0 x U1 x Q1 t X1 and

f2 : X1 x U2 x Q2 > X2 are defined by
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f
1
(1,0,1) = 1, f

1
(2,0,1) = 2, f

1
(1,1,1) = 2, f

1
(2,1,1) = 1

f
2
(1,0,1) = 1, f

2
(1,0,2) = 2, f

2
(1,0,3) = 2

f
2
(2,0,1) = 1, f

2
(2,0,2) = 1, f

2
(2,0,3) = 2

f2(1,1,1) = 1, f2(1,1,2) = 1, f2(1,1,3) = 2

f2(2,1,1) = 2, f2(2,1,2) = 2, f2(2,1,3) = 2

It is not hard to verify that the corresponding transition matrices

at t=1 are

1 0] 0 1

p (1) =
[ 

0
p
1
(1) =
[ 

1 0

]

and at t=2 are

2
1
2

1

3
4

1
p0(2)

[1

p (2)

[

3 1 o 1
4 4

Suppose that yi* E 0, and that y2* E 0. It is necessary to compute

ff*(1) and 0*(1) in order to apply the minimum principle. These are easily

found:

n*(1) [1 0]

{12

3

1

4

The cost is 
J(y1*,

 y
2
*) =

1
— 
2.

Note that

o 1 3
n*(e) p (1) 0*(1) = — < 70,(0) P1(1) e(1) = 

2 4

ff*(1) p
o
(2) 0*(2) =

1
— <
2

7 *(1) P1(2) 0*(2) = —
4
3
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so that the necessary conditions of the minimum principle are satisfied.

However, if
1

is not optimal.

E 1 and S2 7 1, then -7( c1' 2) = 0 so that (yi*, y2*)

Example 2 

This example shows that the optimal control laws determined in

section 2.4 for the example considered there satisfy the minimum principle.

The problem as formulated in section 2.4 has state sets X
0 
= 11,21,

X
1 
= {1,2,3}, and X

2 
= 11,21. The control sets are U

1 
= U

2 
= 10,11, and

the uncertainty sets are Q1 = Q2 = {O. The transition functions are

illustrated in Figure 2.4.1. The cost function is

where

J = h
2
(x(1)) + g(x(0), x(2))

lk x(1)=3
h
2 
(x(1) ) =

0 x(1)$3

0 x(0) = x(2)
g (x(0), x(2)) =

1 x(0) # x(2)

(3.2.1)

Since the cost function does not have the stagewise additive form

(2.1.2), it is necessary to augment the state to put the problem into

the FSFM formulation. The idea is to carry along x(0) in the state

equations so that the term g(x(0), x(2)) can be written in terms of the

terminal value of the augmented state.

When new state sets X
0 
= {1,2} X1 = {1,2,3,4}' X2 = 11,2,3,41 are

defined, the state transition diagram of Figure 3.2.1 results. Clearly,



u=0

new state 2--•••
x(0)=2

u=1

x(1)
=3

u=0

u=1
new state 3

x(0)= 2
x(2)=2

new state 4

new state 1 --••• 
u=0

x(0)=1

x(0)=2
x(1)=2 x(2)=1

u=1 x(0)=1 u=1

x(1) =2

u=0

1

• 

x(1)=1 x(0)=1 
new statel

x(2)=I

_ •rt new state 2
x(0)=1
x(2)=2

Figure 3.2.1 State Transition Diagram
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the cost is

J = h
2(x(1)) + $2(x(2))

where
k x(1) = 4

h
2(x(1)) =

0 x(1) 76 4

1 x(2) = 2,3
S2(x(2)) = •

0 x(2) = 1,4

(3.2.2)

The equivalent deterministic problem can be written down by inspection

of Figure 3.2.1:

7T
0

0
h(1) = 

[0

1 

, h(2) =

1 1
2 2

1
31
(0)

p
o
(0)

=
[1 0 0 0]

O 010

p
1
(1) =

][0 1 0 0

O 00 1

1 0 0 0

1 0 0 0

O 0 1 0

0 0 1 0
— —

0

0

0

k

r S(2) =

0

1

1

0
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'0100

0100

P 
o
(1) =

0001

0001

(As pointed out in section 2.5, the matrices p t(t) can be found if the

u
matrices P 

t
(t) are known.)

For the case rt = ut
X
t-1, 

the optimal control laws found in section 2.4

are yi*(1) = 1, y1*(2) = 1, and y2*(1) = 1, y2*(2) = 0,

y
2
*(4) = 0. The corresponding w*(1) and 0(1) are

7*(1) = [12 12
[1 0 0 0

0 0 1 0]

= — o] ,
1

2 2
1

1 0 0 0 0 0 0

0 1

0(1) =
0001 1

+
00

=

0 0 0 1 0 k k

Therefore,

Y1*
Tr*(0) P (1) 4)*(1) = 0

Y2*
7*(1) P (2) 0(2) = 0

,

.

V(3) = 0,

Since all numbers in the problem are non-negative, 14 = (y1*, y2*)

clearly satisfies the conditions of the minimum principle.
X
o 

X 
1

For the case r1 = u1 , r2 fy2 e U2 : y2(1) = y2(2) - y2(3)}, the

optimal controi laws are y1*(1) = 1, y1*(2) = 0, and y2*(1) = y2*(2)

Y2*(3)
= 1,y2*(4) = 0. The corresponding T4(1) and 0(1) are



]7*(1) 1=

- 56 -

[1 0 0 0] 
- [10 0 21]
- 2 2

M."

0 0 0 1

0  

1 + 0 = 1

0 0 1 

1 0 0 0

1 0 0 0 1
~(1)  o 1 o

Therefore,

*
7*(0) P 

1 
(1) 47*(1) = Z k

Y
27*(1) P (2) 0*(2) = 0

There are three other possible control laws at t=1, and at t=2. These

1 1give7*(0) p
Y1 
(1) (1.1*(1) = 

1 1 
k, 7 and 7*(1) Ple

'2
(2) cr(2) = 0, T, 

1

Therefore, the minimum principle is satisfied for k 1.

- _
Note, however, that the control law sequence y = y2), where yi E 1,

_
y
2 
= 1 also satisfies the minimum principle. Since the control law

- - -sequence y has i(y
1 
, y

2 
1 

) = > J0(1*, Y2*)
1 

 = — k (for k < 1), y is not2 2

optimal. This is a good illustration of the fact that satisfaction of the

minimum principle assures only that the control law sequence can not be

improved by changing the control law at a single stage. The optimal

strategy y* is a signaling strategy so that coordination is required:

it is no use to employ the signaling control law y
1
* unless the second

stage control law utilizes the information. Conversely, a second stage

control law that attempts to utilize signaling information that is not

forthcoming is worthless. The need to consider signaling strategies is

the fundamental reason why the study of non-classical stochastic control

is much more difficult than the study of classical stochastic control.
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3.3 Signaling and Sufficiency 

The novelty of non-classical stochastic control is the presence of

signaling strategies. To explore the implications of this fact, it is

necessary to restrict attention to a certain subclass of FSFM problems.

Definition 3.3.1 

The FSFM problem (2.1.1)-(2.1.2) is said to have a simple information 

constraint if

r
t I i 

= rv
t 

E u 
t 

x
t-1 

t t 
v 101) C Ft-11

(3.3.1)

for t = 1,2 ..... T, where U = P(;t) and Ft-1 
is a subfield of Xt-1 = P(xt-1

).
- 

The reason for restricting attention to FSFM problems

information constraints is that these

with a corresponding Kuhn model of an

and reference [K2]).

Suppose that a FSFM problem with

given. Let the sets X0, Q1, U1, Q2,

elements, respectively. The rank 0

with simple

problems can be readily identified

extensive game (see section 2.3

simple information constraint is

mT

move
1 
of the corresponding game

..., UT have n0, nl, ml, n2, ..

tree has n
0 

alternatives. For 1 C t< T, the rank 2t-1 move has n
t

alternatives and the rank 2t move has m
t 

alternatives. Thus every play

has rank 2T + 1 (Figure 3.3.1).

1
A move is a vertex of the game tree with alternatives; a play is a

(terminal) vertex without alternatives. The rank of a move or play is
the number of moves that preceed it. See Kuhn [K2] for details.
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choice choice choice choice
of x(0) of q(1) of u(1) of q(2)

nO
alternatives

move

n
I

alternotives

m

alternatives

choice
of u(T)

mT
alternatives

Figure 3.3.1 Game Tree for FSFM Problem With
Simple Information Constraint

play
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The chance moves P
0 

are the moves with rank 0, 1, 3, ...,

2T-1, and the moves P
1 
of player 1 (the only player) are the moves

with rank 2, 4, ..., 2T. Each alternative of the initial (rank 0)

move of the game tree corresponds to an element of Xo. Similarly, the

alternatives of moves with rank 2t-1 correspond to elements of Qt, and

moves with rank 2t correspond to elements of Ut.

Each information subset of P
0 

contains a single point of Po. The

information sets of P
1 
are defined by the atoms

1 
of F

t 
as follows. Notice

that the system equations (2.1.1) define a map

St : X0 x Q1 x U1 x x Qt x Ut Xt (3.3.2)

which takes an initial state and a sequence of inputs and gives

corresponding state. Each atom F of F
t 

defines a set

{(x(0), q(1), u(1), q(t), u(t)): St (x(0), q(1), u(1),

q(t), u(t)) E F} C X
0 

x Q1 x U1 x x Q
t 
x U

t
. (3.3.3)

Since there is a one-to-one correspondence between the set X
0 

x Q
1 
x U1 x

x Q
t 

x U
t 

and the moves of order 2t + 1 of the game, the partition

induced on X0
 
xQ

1 
xU

1
x...xQ

t
xU

t 
by the atoms of F

t 
induces a

partition on the corresponding set of moves. Thus each atom F E Ft gives

rise to a single information set for player one containing moves of player

1. As a consequence, all the moves of given information set are of the

lAn atom of a field F is a set F EF such that if E E F and E C F, then
either E = 0 or E = F. The atons of a finite field always exist and form
a partition [Hal].
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same rank. This is not surprising, since the problem is sequential [W2].

To finish the specification of the game, the probabilities of the

chance moves must be defined and the terminal cost specified. If an

information set of P
0 

contains a move of rank 2t-1, its alternative

corresponding to q E Qt is chosen with probability pt(q). The terminal

cost is determined by the fact that the plays are in one-to-one

correspondence with X0 x Q1 x U1 x x QT x UT. Thus each play determines

a complete state-control trajectory for which J can be evaluated. This

value of J is the cost associated with the play.

In game theory, a strategy for player 1 is the assignment of a single

alternative to each information set. For FSFM problems with simple

information constraint, a control law is the assignment of a point in

U
t 
to each atom of Ft-1 (since yt is constrained to be Ft-1 measurable).

Because of the manner in which the information sets have been constructed

above, there is clearly a one-to-one correspondence between the control

laws of a FSFM problem with simple information constraint and its

corresponding extensive game form. Thus the same notation y will be

used to describe either a control law sequence or a strategy for the

equivalent extensive game.

The equivalence between the extensive game and FSFM forms of a problem

is best understood by example. Figure 3.3.2 illustrates the extensive

game form of the FSFM problem considered in the previous section when

Fl = {(1), {1}, {2}, x.}
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1+k

u(2)al

u(2)20

1

0

u(2)al

u(2).0

1

Figure 3.3.2 Extensive Game Form of FSFM Problem
With Full State Information
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and F
2
 = {CP, {1}, {2}, 131, {4}, {1,2}, {1,3}, {1,4}, {2,3} ,

{2,4}, {3,4}, {1,2,3}, {2,3,4}, {1,3,4}, {1,2,4} , xl}

(full state information). Figure 3.3.3 illustrates the extensive

game form when

Fi = {(1), {1}, {2}, x0}, F2 = {S, {4}, {1,2,3}, x1}.

The equivalence between FSFM problems and extensive games can be

extended to FSFM models with information constraint.

Definition 3.3.2 

The FSFM problem (2.1.1)-(2.1.2) is said to have an information 

constraint if

1
U
t 
= U

t 
x U

t
2 m
x x U

t

rt = r
t
l 
x r

t

2 
x x r

t
m

for t = 1,2 T where

xrti = 
T t 
i u t-1 i -1

( 
i
)t 

.
(Y *t ) Lit C Ft-1

(3.3.4)

(3.3.5)

(3.3.6)

where
t 

= P(Uti) and Ft_ii is a subfield of = P(Xt_1).

Since the equivalence will not be used in the sequel, the construction

of a Kuhn extensive game model equivalent to the FSFM model with information

constraint will be omitted.

Since an equivalence has been established between FSFM models with

simple information constraint and Kuhn extensive game models, the notions
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Figure 3.3.3 Extensive Game Form of FSFM Problem

With Partial State Information
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of signaling strategy and perfect recall can now be precisely defined.

The following definitions and propositions are stated for 1-player games,

but can be easily extended to n-person games.

Definition 3.3.3 [K2] 

A move Z of player 1 (n=1) is called possible when playing y if it has

non-zero probability of occurring when the strategy y is used. An

information set I for player 1 is called relevant when playing y if

some Z c I is possible when playing y.

Proposition 3.3.1 

A move Z for player 1 is possible when playing y if and only if y

chooses all alternatives on the path Wz from the origin to Z which are

incident at moves of player 1.
1

Proof 

See reference [K2], page 201.

Definition 3.3.4 [K2] 

A game G is said to have perfect recall if I is relevant when playing

y and Z C I implies that Z is possible when playing y for all I, Z

and y.

Definition 3.3.5 [T1] 

Let I be an information set for player 1, and let Iu = {moves following

some move in I by alternative u}. Then I is a signaling information set

1
A11 chance moves are assumed to occur with non-zero probability.
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for player 1 if, for some u and some information set J of player 1,

I (1,7 # q5 and J Iu•

Proposition 3.3.2 [rl] 

A game G has perfect recall if and only if player 1 has no signaling

information sets.

Proof

See reference (TM page 268.

The following proposition is not valid for general games, but is a

special property of 1-person (stochastic control) problems.

Proposition 3.3.3 

Let G be a 1-person game with perfect recall, and let-I be an

arbitrary information set of the player. If I is not relevant when

playing y, then the probability of any move in I is zero under y. If

I is relevant when playing y, then the probability of any move in I is

positive under Y. Moreover, if I is relevant under any other strategy

jr, then the probabilities of any move of I under y and 7), are the same.

Proof

If I is not relevant when playing y, then by definition no move of

I is possible when playing y. Thus the probability of any such move is

zero when y is used.

If I is relevant when playing y, then every move of I is possible

when playing y since G has perfect recall. Thus the probability of any

such move is positive when y is used.
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If Z E I is possible when playing y, by Proposition 3.3.1 y must

choose all alternatives on the path Wz from the origin to Z which are

incident at moves of player 1. A11 other alternatives on W are incident

at chance moves, and the probability of Z under y is simply the product

of the probabilities of these alternatives. But this probability is the

same for y, since y likewise chooses all alternatives on the path W

incident at moves of player 1.

At this point, the preceeding definitions and propositions are applied

to the FSFM problem.

Definition 3.3.6 

A FSFM stochastic control problem is said to have perfect recall if

it has a simple information constraint and the corresponding extensive

game has perfect recall.

Definition 3.3.7 

A control law yt for a FSFM problem with simple information constraint

is said to be a signaling control law if an atom of Ft-1 gives rise to

a signaling information set in the corresponding extensive game.

Corollary 3.3.4 

A FSFM stochastic control problem with simple information constraint

has perfect recall if and only if it has no signaling control laws.

Proof 

This is a direct consequence of the definitions, the construction of

the equivalent extensive game, and Proposition 3.3.2.
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Theorem 3.3.5 

Suppose that a FSFM stochastic control problem with perfect recall

is given. Let A be an atom of Ft_1. Then, for any control sequence,

either the probability of all states in A is zero, or the probability of

each state is a positive constant independent of y.

Proof

By construction, the probability of a state x(t-1) e A under y is

equal to the probability of the corresponding set of moves in the

information set I generated by A. Therefore, the theorem follows

immediately from Proposition 3.3.3.

The property of FSFM problems with perfect recall expressed by Theorem

3.3.5 makes it possible to strengthen the minimum principle to achieve a

sufficient condition for optimality.

Definition 3.3.8 

Let the set of state probability vectors reachable at time t,

15 t< T, when the initial state probability vector is 70 be denoted

r
t

) {Tr
0 
P
Y1 
(1) P

Y2
(2) p (t) : y

1 
E r

1, 
y
2 
c r

2'

Yt 6 Ft/. 
(3.3.7)

r
t
(7t
0
) is called the reachable set (r

0 
(x
0 
) = {x

0 
}).

Definition 3.3.9 

Suppose that the control law sequence y* = (y1*, y2*,..., yT*)

satisfies the condition
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* *
t

7(t-1) P (t) (P*(t) + 7(t-1) h t (t)

Cr(t-l) P
't 
(t) el)*(t) + 7(t-1) h 

t
(t)

for all yt E rt, for all 7(t -1) e rt..1 (76) where

Yt* Yt*
0(t -1) = P (t) oiti*(t) + h (t)

for t = 1,2 ..... T (4)*(T) = (PT).

extremal.

Lemma 3.3.6 

(3.3.8)

(3.3.9)

Then y* is said to be universally 

Any universally extremal control law sequence is optimal.

Proof

The proof proceeds by induction on the nuMber of stages T.

Suppose T = 1. Then

Y1
l(y

1
) = 7(o) h (1) + 7(1) (p(1)

= 7(o) h
Y1 
(1) + 7(0) P

Y1 
(1) (PM

(3.3.10)

so that any extremal is optimal.

Suppose the lemma is valid for problems with T-1 stages. It must be

established that the lemma is valid for problems with T stages.

Assume that (y
1
*, y

2
*, y

T
*) is universally extremal. It

follows immediately that (y2*, Y3*,

the problem with cost

y
T
*) is universally extremal for

T Yt
i(Y2, y ; 7 

t
(1)) = E

2 
7(t-l) h (t) + w(T) ~(T) (3.3.11)

= 
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for any 7(1) E r1(70). Therefore, by the induction hypothesis,

j(12*, YT*; 7(1) < 1(12. YT: 7(1)) (3.3.12)

for all 7(1) E r
1
(7) and for all Y2 r

2' 
..., y

T 
C r

T* 
Moreover, since

J(yi, Y2, yi) = 7(0) h
1 
(1) + J(y2, tr; 7(0) P

Y1 
(1))

it follows that

Y1' Y2*' YT*) < j(Y1' Y2 ' YT)

for all yi E rl, y2 E r2, T E rT.

But the assumption that (Y1*. 12*. YT*)

implies that

(3.3.13)

(3.3.14)

is universally extremal

Y *i 11*
J(y1*, 12*, ..., YT*) = 7(0) h (1) + 7(0) P (1) .*(1)

<7(0) h 
1 
(1) + 7(0) P

11 
(1) O*(1) = J(y1, Y2*, ..., yT*)

(3.3.15)

for all Y1 r1. The lemma follows from (3.3.15) and (3.3.14).

Notice from the proof of Lemma 3.3.6 that the existence of a universally

extremal control law sequence y* implies the unusual fact that the

problems

min
j(Y1' '"' Yt_li Ye y (3.3.16)

Yt E re YT rt

for yl e rl, yt-1 rt_l have a common solution (y
t
*, yT*).

Thus the existence of a universal extremal would seem to be rather unlikely.
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From this viewpoint, the following property of FSFM problems with perfect

recall seems rather remarkable.

Theorem 3.3.7 

Every FSFM problem with perfect recall has a universally extremal

control law sequence.

Proof 

The proof is constructive. The control laws yt are defined by

choosing their values on the atoms of Ft_i.

Consider the case for t=T. Let A
T-1 

be an atom of F
T-11 

i = 1,2 .....

For simplicity of notation, suppose that AT_1
1 

contains the first tiP.

states of X7,1, AT_l
2

Notice that

7r(T-1) P
tr 
(T)

contains states t1 + 1 through R2 of XT_1, etc.

~(T)T) + R(T-1) h
YI, 
(T) (3.3.17)

R.
P 1 n u (T) up(T)

= E E 7.(T-1) E P (T) ~(T) + h. (T1
i=1

j=ki-1+1
2 k*1 Pik 2

where n is the number of states in Xt_i, R0=0, and up(T) is the value of

yT on the pth atom of FT_l.

The decomposition (3.3.17) makes the construction of y
T 
* clear. By

Proposition 3.3.5, every vector R(T-1) e rp_1(70) either has Ri(T-1)=0,

i = Z. + 1, ..., tic, or has Ri(T-1) = Ri(T-1), i = ti + 1,

R
i+1, 

where each R
i
(T-1) is a fixed number. Therefore, y

T 
* takes the

value up*(T) on the pth atom of FT_l, where
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[ n

min E u. (T-1) E 
Pjk 

u(T) ~(T) + h.u(T)

u U 
Li-1 

3 j= +1 k=1

u *(T) u *(T) 1

= E ;.(T-1) E P
jk 

P (T) otic(T) + h. p (T)

k=1

(3.3.18)

The construction of the remaining yt* is completed by applying an

analogous procedure to

Tr(t-1) P
Yt
(t) (I)*(t) + n(t-l) h

Yt 
(t). (3.3.19)

Theorem 3.3.7 is primarily of theoretical and conceptual importance.

Problems with perfect recall are more efficiently handled by deriving an

equivalent deterministic problem that has a conditional probability vector

for the deterministic state. (The conditioning is with respect to the

Special cases of this procedure are implicit in the usualfield F
t-1.

stochastic dynamic programming algorithm [Aol, Stl, Asl] and the

algorithm of Sandell and Athans for the 1-step delay problem [S1].
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3.4 Finite-Set Team Problem 

A minimum principle was derived in section 3.1, and its properties

considered in the following sections. It is interesting to see if

feasible numerical algorithms based on the minimum principle can be

developed. A start in this direction in contained in the present section,

where the numerical solution of the finite set team problem is considered.

In the sequel, the convenient notation

f f(x) d7(x) = E f(x) 7(x)
X x E X

will be used.

Let X, U1, U2, Up be finite sets with n, ml, m2, m

elements, respectively.

Let 7 be a probability measure on x, and h : X x U1 x U
2 
x x U R

a given real-valued function.

The finite set team problem
1
is:

min min ... min f h(x, Y1 (x), /2(x), Yn(x)) &n(x)
y
l 

c rl y
2 

r2 Y c r
P P

wherercu x rc1 2 U2x , r c u X.

Note that for given Y1, Y 2, yp, the

(3.4.1)

integral above can be computed

1When ri {yi E UiX c yi-l(U) c Fi}, where U= P(u), and Pi is a subfield
of X = F(X), for i = 1, n, then the finite set team problem is a
special case of the more general formulation of Marshak and Radner (MTh
Of course, in this case the finite set team problem is a FSFM problem
with information constraint.
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with n-1 multiplications and n-1 additions. Therefore the finite set

team problem can be solved with at most

(n-1) • m
l
n
• m

2
n

m multiplications,

(n-1)

and m
1
n 
•

• m
l
n

m2
n

• m
2
n

m

m additions,

comparisons,

since r. has at most m.n elements. Of course, there is additional over-

head required to compute h(x, y1(x), y2(x), y (x)) for given

x, yl, y2, y . However, this is ignored in the following discussion.

For certain special cases, one can do better.

Case 1 Perfect state observation.

In this case,

r = u1 1 , r 2 U2 ..., rP = up 
x.

It is easy to see that the problem is solved by computing

min min ... min h(x, ul, u2, ..., up) (3.4.2)
u
l 

U
l 

u
2 

U
2 

u C U
P P

for each x E X. Therefore, the problem is solved with

No multiplications,

No additions,

m sets of mi • m2 m comparisons.

This is a considerable saving. However, the problem is of limited

interest since the stochastic aspect of the problem is trivial. Notice
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that the probability measure x does not affect the solution at all.

Case 2 Common measurement.

In this case, the admissible control laws are measurable with respect

to the field F determined by a given finite partition {A1, A2, ... Ak}

of X. This means that each control law is constant on each atom A. C X

of the field F.

Notice that

f h(x, y1(x), y
2
(x), y (x)) dli(x)

X

k
= E f h(x, Y1(x), Y2(x), yp(x) &Aix).

i=1 A.
3.

(3.4.3)

Since each yi is constant on Pi the problem can be solved by k

minimizations of the form

min min min f h(x, u1, u2, u ) dx(x) (3.4.4)

up A.u1 u2 

Each such problem requires

(gi-1) • mi • m2 m multiplications,

(ti-1) • ml • m2 m additions,

ml • m2 mp comparisons,

wherek.=number of elements of X in atom A. of F; note that

k
E Ri = n. Therefore a total of
i=1



- 75 -

(n -k)' ml • m2 ... mp multiplications

(n -k). mi • m2 ... mp additions

k sets of mi' m2 mp comparisons

are required.

This problem corresponds to the usual Bayesian statistical decision

problem. Such problems are usually treated by a-posteriori analysis

[Ral]. That is, the quantity

E 111(x, yi(x), yp(x)) I Ai}

(3.4.5)

= E {h(x, u
1
, u ) A.}

where yl(x) = ui, y2(x) = u2, yp(x) = up, for all x e Ai, is

minimized for each Ai E F. Note that

E ea(x, u
p
) I A.}

f h(x, ul, u
p
) dM(x)

A.

dm(x)
A.

• 
(3.4.6)

The probability M is normalized to give the conditional probability on Ai

in the Bayesian formulation, but this is unnecessary. Therefore, a

posteriori analysis is equivalent to the preceeding analysis.

Case 3 Team decision problem.

In this case, ri consists of control laws measurable with respect to

the field Fi generated by the partition
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f
1A1 , A2 , Au I.

ni

Clearly, there are

k
1 

k
2 

k
pm

1 m 
mp 

2

possible control laws. Evidently, then,

k
1 

m2 
k
2 

m
P 

p 
k

(n-1) 
1 

multiplications

k
1 

k
2 

k
(n-1) • m

1 
' m

2
 mp P additions

k
1 

k
2 

k
P comparisons

ml 
. 

m2 m mp

are required to solve the problem.

This figure can be improved upon, but only slightly. For simplicity,
k
i

k
assume max m. = are given, then

mp • If Y1' Y2' Yp -1
1,5; i p

min f h(x, y
1
(x), yp-1(x), yp(x)) dx(x) 

(3.4.7)

p

can be computed as in case 2. This gives yp*(.; yi, Y2, Yp_1).

Then

min min min f h(x, y (x),
P-1

Y1 Y1 p-1

yp*(x; yi, yp_1))dx(x)

can be computed. However this procedure cannot be iterated further, since

y * depends on the entire functions yl, y2

attempting to solve

(3.4.8)

In other words,
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min f p_
1 
h(x,

1
(x), u y , y ) &ITO()

p-1' p
*(x;y 

1 p-1
u
p -1 

A.

(3.4.9)

willnotwork,sincechangingthevalueofYrI
ontheatomA.9-1

changes y *. But y * affects the value of the preceeding integral

ov
erx-A.10-1

. Therefore y
p-1 

* cannot be obtained by independent

P-1
optimizations of integrals over atons of F - these optimizations are

coupled through y *.

Therefore, the best that can be done is

k
1 

k
2 

k
p -1

(n-k 
P
) • m

p 
• m

1 
• m

2 
m
p -1

k
1 

k
2 

k
p -1

(n-k
p
) • m

p 
' m

1 
' m

2 
m
p -1 

additions

P-1
kp-1 

. 
ml 

k
1 

k
2 

• m2 ... mp-1 
k 

sets of m comparisons.
P

This gets formidable very fast. Suppose:

p = 3 (3 controllers)

m1 = m2 = m3 = 10 (10 controls)

n = 100 (100 states)

k
1 
= k

2 
= k

1 
= 2 (2 observations)

multiplications

Assuming that a floating point multiplication requires 10
-5 

seconds to

perform, and that a floating point addition requires 10
-6 

seconds
1
, about

110 seconds of central processing unit time of a modern high-speed

computer are required just to perform the additions and multiplications.

If there are three observations, this increases to 1.1 x 10
5 
seconds

300 hrsl Thus even problems of a rather modest size tax the capabilities

1
These numbers are approximately correct for the IBM 370/165.
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of modern computers.

Clearly, some approach other than exhaustive elimination must be

employed. One such approach is the following algorithm.

Algorithm

1. Guess control laws y1
0 
, y2

0 
, yp

o 
Compute

J° = f h(x, y1 
o
(x), Y2

o
(x), y 

0 
(x)) dw(x)

Set i = 1, j = O.

2. Solve the problem

5 min f h(x, yx), yx), ip(x»
yi e ri

where ik = yij k > i

and ik = 
Yk
j+1

k < i.

Let some minimizing yi above be denoted

a minimizing control law) •

If i < p, set i = i+1 and return to 2.

If i = p, check 3 < jj .

If a < J3, set j = j+1, i = 1 and return to 2.
If J = J3, stop.

Definition [M2] 

A set of control laws yi, y2, ..., yp is

for the team decision problem if

dli(x)

j+1
yi .(Keep

i 
if it is

person-by-person optimal 
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h(x1 ii(x), Si_1(x), i1.1.1(x), t(x)) dX(x)

min f h(x, yx), ii_1(x). /1(x).

(x)) dX(x) (3.4.10)

The interpretation of person-by-person optimality is that no team

member can unilaterally decrease the cost. Thus person-by-person

optimality is a necessary, but not sufficient, condition for optimality.

Theorem 3.4.1

After a finite number of steps, the preceeding algorithm converges

to a person-by-person optimal solution.

Proof

Let the set of numbers J such that

J = f h(x, y
1 
(x), y (x)) d7(x) (3.4.11)

6 r be denoted S.for some y E r Since S is finite (it
1 1, 

..., 
7P P

m
1 
kl m

2 
k2

has< m P elements) its elements can be arranged in

descending order,

S = (j11 j2' JQ), ji ji+1'

Consider the set of positive numbers

T = (J1 - J2, ..., Jt_ j_ - Jt)

and let E = inf T. Note that C > 0.

jConsider the difference J - J defined in the previous algorithm.
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-
Clearly, either J

j - J = 0, or J
j - J -- C. By induction,

j 0
J < J - 3E. (3.4.12)

Therefore eventually Jj = 3, since inf S is finite. But Jj = 34

j+1 j+1
(11 "(13 ) is person-by person optimal.

The algorithm requires

p
E (n-k.) m. multiplications

i=1

p
E (n-k.) m. additions
i=1

k
1 
sets of m

1 
comparisons, ..., k sets of m comparisons per iteration.

Thus the previous example requires .033 seconds per iteration for

2 observations, and slightly less time for 3 observations.

The algorithm will always improve a suboptimal strategy, unless that

strategy is already person-by-person optimal. It will not produce a

globally optimal strategy in general, however. Thus the algorithm is

a reasonable approach to the problem. The approach is similar in

philosophy to using a gradient algorithm to solve a nonlinear

optimization problem.
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3.5 The Min-H Algorithm

A substantial number of numerical algorithms have been suggested

for the solution of deterministic optimal control problems. The most

natural of these for the FSFM problem is the min-H algorithm, which is

intimately related to the minimum principle. The min-H algorithm was

initially suggested by Kelley [Kel]. Platzman [P11] has shown that the

algorithm is equivalent to Howard's policy iteration method for Markovian

decision processes, and has suggested its application to the imperfect

state information case of that problem.

To simplify the notation, the sets xt and Ut are assumed to have

a constant cardinality for 0 S t -C. T.

Algorithm 3.5.1 (Min-H)

1. Guess y1
0 
, y2

0 
, yT

0 
. Set j= 0.

2. Compute (1)(T), (0(T-1), (OW using yTj, yij in the

adjoint equation (ti(T) = (PT). Set t = 1.

3. Choose y
t

3+1 
to minimize 7

j+1
(t-1) P

Yt
(t) Si(t) +

j+1
(t-1) h

Yt 
(t).

1

j+1
(0) = )

0
Yt

4. If t < T, compute ir
j+1

(t) =
j+1

(t-1) P (t).

Set t = t+1, and go to 3.

5. If t = T, test J
j+1 

< J
j
, where

T .

J = E 0(t-1) h (t) + Trj(T) (1)
T*

t=1

j+1

I
If 

yt
j+1

is not unique, choose arbitrarily but with preference for y
t
j

if it is in the minimizing set.
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If Jj+1 < Jj, set j = j+1, t = 0, and go to 2.

If Jj+1 = Jj, stop.

Theorem 3.5.1 

The preceeding algorithm converges in a finite number of steps

to an extremal solution.

Proof

The proof is completely analogous to the proof of Theorem 3.4.1.

The reason for the strong analogy between the algorithms of

section 3.4 and this section is that both are embodiments of the method

of orthogonal search. The method of orthogonal search applies to the

problem

min ... min h(x
1 .
.... x

n
).

x
1 

x
n

(3.5.1)

The procedure is to fix all of the variables but one and to minimize

over that variable. This is done repeatedly, so that the cost decreases

monotonically. Convergence is (essentially) assured, but the

convergence will not in general be to the optimal solution without

further assumptions (e.g., convexity of h).

It is important to note that, as applied to this problem, the min H

algorithm is exactly equivalent to orthogonal search. This is a

consequence of the fact that the dynamics and cost are linear in Tit. The

more general case in optimal control theory is that the Hamiltonian

gives only a linear approximation to the optimal cost-to-go. To quote

Kelly [Kel]
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"In adopting the control y = y*(t) generated by min H* as our next

approximation, we must risk the violation of our linearizing assumptions,

for this may represent a large step process."

This difficulty will not occur in the preceeding algorithm.

Notice that at each iteration, the quantity

Tr(t-1)(P
Yt
(t) + h

Yt
(t))

(3.5.2)

must be computed for all y e rt. Evidently each such computation

requires

n
2 
+ n-1 multiplications

n
2 
+ n-1 additions

for each y c rt Since the number of y is on the order of m
n 
(m = # controls,

n = # states), this computation appears to be hopeless for even

moderately sized problems.

However, a deeper look at the structure of the problem shows that the

situation can be improved considerably. Define

P..
I]
u(t) = Pt

({q : j = t
(i, u, q)}) 1 -C._ i,j < n (3.5.3)

It follows that

Pij = PijY(t) u(t) j = 1, n (3.5.4)

when u = y(i) . Therefore, for all y c re each row of Pi(t) is a row of

p
u
(t) for some u e Ut. There are 

precisely nm such rows. Therefore the

column vectors

Pu(t) (Mt) + hu(t)
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can be computed with mn
2 

multiplications and then the column vectors

P (t) .(t) + h (t)

can be formed by selecting the appropriate elements from the set

{Pn(t) O(t) + hn(t)}.

Thus the quantities

7(t-1) (P (t) 0(t) + hY(t))

can be computed with

2 mn
2

multiplications

mn (n-1) + n + n  
2 m

n-1
-1

m-1
additions

(assuming r has c mn elements). This is a considerable improvement,

especially since multiplications take approximately 10 times longer to

perform than additions. However, the number of additions is still too

large. Further improvement can only be made in the light of assumptions

on the nature of r.

X
Case 1 rt 

t 
ut (perfect state measurement)

This is the simplest case. Simply choose Y
t
*(i) = u*, where

EPiin*()0.(tt) + h.
1
u*
(t) = min E P..n(t)4).

3
(t) + h.

1
n(t) (3.5.5)j 13

This requires mn multiplications, mn additions, and n sets of m comparisons.
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Case 2 (imperfect state observations)

r
t 

consists of control laws that are measurable with respect 
to

the field generated by a finite partition , A{At_11 t_i
2 
..., At_i

k
} of

Choose yt*(i) = u* for all i E At-1

R
, where

Tr. D (t-1)
ij

u*
(t) ..(t) + h.

u*
(t)

I

c A
t-1 Il

(3.5.6)

min 7
ri
(t-1) 

1)I]
, .11W (t) +O(t) .

u E U
t 

EA
t-1 

,

This requires about m(n
2
+n) multiplications, mn

2 
+ m(n-k) additions, and

k sets of m comparisons.

By now the close connection between cases 1 and 2 of section 4

and the above should be apparent. This is a consequence of the fact

that the problem

min Tr(t-1) (1:( (t) gt) + h
Yt
(t))

yte rt
is precisely a team problem as defined in section 4. Clearly, the

analysis of Case 3 of the first section can also be extended.

Case 3 (dynamic team problem)

r
t 
=r

t
1
 x r 

2 
x... rt

k

rtl consists of control faws measurable with respect the field

generated by the partition

{i
A
t-1

1
' 

iA
t-1

2

'
i = 1, k
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of
t-1 

(k controllers).

As in section 4, the combinatorics of the problem are overwhelming,

so that resort must be made to the notion of person-by-person optimality.

Make the following notational convention:

Then

Yt : Xt-1 
U
t
l 

x U
t
2 

x x U
t

n

Yt = (l't
1

't
2
.

k
).

J(Yi. Y2, YT)

1 1 1
= j(Y1 '''' Y1

n 
' Y2 ' "" Y2 ' YT ' "'' YTI1).

Definition 

A sequence

Y* = (Y1*, YT*) = (Y1
1* 
, 

n* 
YT
1* 

YT 
*
)

is said to be a person-by:person extremal if

1* i* k*
J(Y

1 ' Yt ' '"' YT )

1*
"c- J(y

1 
, y

t ' 
y
T

) for all y cr 
i
,

i = 1, k, t = 1, ..., T. (3.5.7)

Every optimal control law sequence is a person-by-person extremal,

but the converse need not be true. Algorithms 3.4.1 and 3.5.1 can be

combined to given an algorithm that always converges to a person-by-

person extremal. The order of minimization is
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1 1 1 2 „, 2 , 2 k k k
1
1 

T
2 
, • ••• TT 1 

1 2 • • •
•e 1,r e •••• • r •••I TTT .

Thus K forward and backward sweeps of the state and costate 
equations

are required per iteration. The number of multiplications required is

(exclusive of the state and costate computation) is

k
T E m.(n2 + n)

i=1

and

T (k
E m.(n

2 
+ n - k.)

i=1

additions are required with

k
T E k.
i=1

sets of m. comparisons.

Notice that person-by-person approach is consistent with the minimum

principle approach:

1. both approaches given necessary conditions for optimality

2. both approaches are sufficient only under convexity assumptions

that do not hold in general

3. An initial guess is improved, but the improvement may stop

short of optimal.

These facts are consequences of the fact that the person-by-person and

min H algorithms are actually both concrete realizations of orthogonal

search.



- 88-

CHAPTER IV

DYNAMIC PROGRAMMING FOR THE FSFM PROBLEM

In this chapter, the dual dynamic programming equations for forward

and backward induction are presented. These equations follow

immediately from classical dynamic programming theory [81] as applied

to the equivalent deterministic problem of Chapter II.

Numerical solution of the dynamic programming equations is a dif-

ficult task. Three approaches are suggested. The first is the usual

technique of replacing the continuous state space with a discrete grid.

The second exploits the fact that the reachable and coreachable sets

of the problem are finite. The third approach applies an algorithm of

Sondik [Sol,Sml] developed for the Markovian decision problem with

incomplete state information to the FSFM problem.

The chapter closes with an example.

4.1 The Equations for Forward and Backward Induction

Recall from Chapter 2 that the deterministic optimal control problem

equivalent to the FSFM problem is to minimize

T
lt

J(Y) w(T)S(T) + w(t-1) h (t)

t=1

for yer subject to

Y
7(t) =IT(t-1) P

t
(t), t = 1,2,...,T

(4.1.1)

(4.1.2)
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IT(0) = n
o

where r= r1 x r2 x...x rT is a finite set.

(4.1.3)

Define the functions

V
T
(n) = nS

T 
, (4.1.4)

V
t
(w) = min

y ert+1 t+1

wom = no ,

nh
Y
t+1

(t+1) + V
t+1

(nP
Yt+1 

(t+1)) , (4.1.5)

(4.1.6)

Wt+1(4) = 
min

y
t+1

er
t+1

wt(p 
t+1

(t+1)

[

(1) + h
Yt+1 

(t+1)) . (4.1.7)

The following theorems describe the dynamic programming algor-

ithms for backward and forward induction. The proofs are a simple

application of dynamic programming theory [31].

Theorem 4.1.1 (Backward Induction)

Let the map 6
-t+i: Ht ~ rt+1 be defined for t= 0,1 ..... T-1 by

by ó
t+1

Mt)) = Y
t+1 

if Y
t+1 

is a minimizing control law in (4.1.5)

for IT = n(t). Define the quantities n*(t), Yt* by

n*(0) = n0 ,

Yt = 6t 
(7*(t-1)), t = 1,2 ..... T,

n*(t) = n*(t-1)P V(t), t = 1,2 ..... T.

Then Y* = (y1*,y2*,...,y,,,) is an optimal control law sequence with

corresponding sequence n*(0),*(1) ..... n*(T) of optimal states.
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Theorem 4.1.2 (Forward Induction)

Let the map 
cst+1: (1)t+1 ÷ rt+1 

be defined for t = 0,1 ..... T-1 by

6 
t+1 

(0(t+1)) = Yt+1 
if y

t+1 
is the minimizing control law in (4.1.7)

for . = 0(t+1). Define the quantities 0*(t),yt* by

0*(T) = OT ,

Y
t
* = (S

t
(0*(t)), t = 1,2 ..... T,

e
S*(t-1) = P

Y
 (t)e(t) + h

Yt
(t), t = 1,2 ..... T.

Then y* (y
1
*,y2*,...,yT*) is an optimal control law sequence with

corresponding sequence 0*(0)4*(1),...4*(T) of optimal costates.

There are a number of comments to be made about Theorems 4.1.1

and 4.1.2. First notice that although the original state space

X
t 
is finite, the dynamic programming algorithm must be carried out

in the uncountable state space Et of the equivalent deterministic

problem. This is due to the following requirement of dynamic program-

ming as expressed by Bellman [B2].

"After any number of decisions, say k, we wish the effect of

the remaining N-k stages of the decision process on the total return

to depend only upon the state of the system at the end of the k-th

decision and the subsequent decisions."

This statement may be regarded as a definition of what constitutes

a state for purposes of dynamic programming. It is well-known in

classical stochastic control that the state for dynamic programming
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purposes is not the physical state, but is instead the probability

distribution of the physical state conditioned on past measurements

and inputs. The approach of this chapter, in which the unconditional 

distribution of the physical state is the dynamic programming state

is due to Witsenhausen fW4].

Second, notice that both the forward and backward algorithms

require two passes. If backward induction is applied, the first

(backward) pass determines St 
from equations (4.1.4) and (4.1.5), and

then the second (forward) pass eliminates the dependence of the

control laws on the state 7(t). Similarly, for forward induction,

the first (forward) pass determines 6t from equations (4.1.6) and

(4.1.7), and then the second (backward) pass eliminates the dependence

of the control laws on the costate OM. Thus although only the

control laws corresponding to the sequence 7*(0),7*(1),...,7*(T) or

(1)*(0),,*(1) ..... e(T) are of interest, the optimal control laws

for all such sequences must be computed. The original problem

has effectively been embedded into an entire class of similar

problems.

Third, Theorems 4.1.1 and 4.1.2 exhibit a particularly striking

duality. The function V
t
(-) gives the optimal cost-to-go at time t

for a given state probability vector W. The function W
t
(-) gives

the optimal cost-to-go at time t for a given cost-to-go vector (1).

The vector Tr(t) summarizes the effect of past control laws, the

vector cp(t) summarizes the effect of future control laws, and their

scalar product n(t)S(t) is the expected cost-to-go.
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Finally, although Theorems 4.1.1 and 4.1.2 provide an elegant

dual set of sufficient conditions for the FSFM problem, development

of feasible numerical algorithms based on these theorems is difficult.

Some possible approaches are discussed in the next section.
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4.2 Numerical Solution 

Since the dynamic programming algorithms for forward and back-

ward induction formulated in the previous section have a continuous

state space, some type of discretization is necessary for digital

computer solution. The straightforward approach is to define a

partition over the space nt or (De Note, however, that if nt and

(kt 
are n

t 
-dimensional and each dimension is partitioned into 100

nt

elements (for a 1% partition), the grid has 100 elements! This

is the well-known curse of dimensionality. Although numerous

heuristic schemes have been suggested to minimize this difficulty

(see Marl) for example), none has been widely accepted.

An alternative procedure utilizes the special structure of

the state and costate equations. Recall that the reachable sets

r
t 0

) are defined by equation (3.3.7).

sets pt(,T) are defined by

Similarly, the coreachable 

PTOT) = T}. 
(4.2.1)

Pt_1(cPT) =
Yt
MO(t) + h

Yt
(t):y

t
Er
t
,t(t)E10t

(.T) 
, (4.2.2)

for t = 1,2 ,  T. The interesting fact is that although nt and

t 
are continuous, the sets rt(X0) and pt(ST) are discrete. Since

the minimizations in (4.1.5) and (4.1.7) need only be carried out for

TIE r
t 0

) and Sp
t+1

(0
T
), respectively, it is really unnecessary to

consider lit and cipt. The difficulty with this approach is that the

sets rt and pt, although finite, will in general be quite large.
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Upper bounds to the number of elements of rt(70) and pt
(4)
T
) are

card(r
t 
(x 
0 
)) <

t
X card(r )
T=1

T
card(Pt(ST)) < X card(r )

T=t+1

(4.2.3)

(4.2.4)

where card (A), the cardinality of a finite set A, is the number of

elements of A. Although these bounds will in general not be achieved

(since two distinct control law sequences can lead to the same state

or costate), the sets r
t
(X
0
) and p.(4) 

T
) will still be too large to

be conveniently computed except in particularly simple cases.

A third approach to the numerical solution of the dynamic

programming equations uses the special structure of the problem in

a different way. The key observation is that the functions

Wt, Vt are piecewise linear and concave.

Proposition 4.2.1

Consider the functions V
t
(.) defined by (4.1.4), (4.1.5). For

t = 0,1 ..... T, there is a finite set of (column) vectors At such that

V
t
(W) = min xa(t)

a(t)EA
t

Proof

(4.2.5)

The proof proceeds by a backward induction argument. Note that

at t = T,

V
T
(x) =

T
(4.2.6)



so that (4.2.5) holds with

AT = /4.1TI .

If it is assumed that

then
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t+1
Or) = min r a(t+1)

a(t+1)eA
t+1

(4.2.7)

(4.2.8)

[

Vt 1111
t+1 

= min (t+1) + V
t+1 

(TID
Y
t+1 

(t+1))

Yt+1Ert+1

[

= min 711 
t+1 

(t+1) + min Irp
Yt+1 

(t+1) a(t+1)

Yt+1Ert+1 
a(t+1)EA

t+1

= min min 
[

Trh
Yt+1

(t+1) + 71-1,
Yt+1 

(t+l)a(t+1)
a(t+1)EA

t+1Yt+lErt+1

min 1Ta(t)
a(t)EA

t

where

(4.2.9)

Y
A
t 
= h

Yt+1 
(t+1) + P

t+1 
(t+l)a(t+1) :y

t+1
Er
t+1'

a(t+1)cii
t+11 (4.2.10)

Therefore, the proposition is true for all t, 0 < t < T.

A similar result holds for the function W
t
(*).
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Proposition 4.2.2 

Consider the functions W
t
(') defined by (4.1.6), (4.1.7). For

t = 0,1 ..... T, there is a finite set of (row) vectors Bt 
such that

w
t
(4)) = min b(t). . (4.2.11)

b(t)EB
t

Proof

The proof proceeds by a forward induction argument completely

analogous to the proof of Proposition 4.2.1, and is therefore omitted.

A representation similar to (4.2.5) has appeared in the

literature on Markovian decision processes with incomplete state

information. Evidently, Astrom [Asl] was the first to use the

representation for a specific example. However, Sondik [Sol,Sml]

has systematically exploited the representation to derive an

algorithm for the backward equation. It is shown below that the

Sondik algorithm can be directly applied to the backward equations

arising in the FSFM problem. Moreover, the algorithm can be dualized

to apply to the forward equations.

Note that the set A
t 
defined in the proof of Proposition 4.2.1

is, in general, larger than necessary. For a given a*(t)eAt, there

may not exista 7E11
t 
such that

min na(t) = wa*(t). (4.2.12)

a(t)EA
t

To find a smaller set K
t
= A

t 
satisfying the above condition, it is

necessary to look at the problem more closely.
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Suppose that a set t is g
iven that contains a minimizing element

of A
t 
in (4.2.12) for every ifent. Suppose that it has jt elements,

t = al(t) ..... a ."(t) . (4.2.13)

Since Kt is a subset of 
the set A

t 
defined by (4.2.10), it follows that

card(A) < X (card r )
T=t+1

for t = 0,1 T-1,ancicarcl(AT)=1.1.etthesetsR.(t) be defined

for j = 1,2,...,jt by

R.(t) = nen
t 
: min xa(t) = Xai(t)

a(t)EAt 1
ASsumethatKt ischosensothatR](t) # (1)-

it

lit = U Rj
(t).

j=1

Clearly,

(4.2.14)

(4.2.15)

Lemma 4.2.3 

The sets R.(t), j = 1,2,...,jt 
and t = 0,1,...,T, are convex

sets with linear boundaries.

Proof

Note that

Rj (t) n Rk(t) = t ifeRj (t) U Ric(t) : w(ai (t) — ak(t)) = 0 1,(4.2.16)

sothatifthereisabouudarybetweezR.(t) and Rk(t), it is linear.

To prove convexity, suppose 7
1
a
2
EL(t). Then

1
a
j
(t) < IT

1
a(t) (4.2.17)



for all a(t)ckt.
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X
2
a
j
(t) < 7r

2
a(t)

Therefore, all Xe[0,1].

kff
1
a
j
(t) + (1-X)x

2
a
j
(t) < XIT

1
a(t) + (1-X)x

2
a(t)

(4.2.18)

(4.2.19)

for all a(t)cAt„ Equation (4.2.19) implies that AW
1 

I- (1-X)x
2 
ER. (t) .

By assumption, for each a(t)cAtC At, there exist X
t
er
t 

and

a(t+l)eA
t+1 

such that

Yt+1 Yt+1
a(t) = h (t+1) + P (t+l)a(t+1).

Lemma 4.2.4

(4.2.20)

For all ire R. (b) id
t+1 

Or) 
Yt+1 • 

I.e., 6 is constant over the

sets R.(t).

Proof

From (4.2.14), min xa(t) = naj(t) (4.2.21)
a(t)cA

t
forall'ffeR.(b) . Let

J J J

aj(t) = h
Yt+1 

(t+1) + P 
t+1
 (t+1)a(t+1) (4.2.22)

for some 
Yt+1icrt+1' 

a(t+l) e At+1. Then the lemma follows from

(4.2.9), (4.2.21), and (4.2.22).

At this point, it is clear that applying the backward algorithm

is equivalent to computing

{m(t-1),ytj ai(t-1),j=1,2 .....
t}

for t = 1,2 ..... T. These quantities are computed as follows.

Suppose that {R.(t) 1 and {aj(t)} have been computed.

jT = 1, R1(T) = nT, and AT = {(PT}).

t-1" 
Compute

(4.2.23)

(At t=T,

Consider some fixed, arbitrary



where wP
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min min 7(h
Yt 
(t) + P

Yt 
(t)a(t))

ytErt a(t)CAt

Ytl

Yt1 yt= Tr(h (t) + P (t)aj(t)),

(t)Cit.
3 
(t), and let

(4.2.24)

1 
y.„1 Ytl

a(t-1) = h (t) + P (t)a-(t). (4.2.25)

At this stage, one point 7CR
1 
(t-1) has been found, the first

point a
1 
(t-1) of "A

t-1 
has been obtained, and y

t
lðetermined. Next. the

boundary of R1(t-1) is determined. Notice that 7CRI(t.-1) if and only if

val(t-1) < igh
Yt
(t) + P (t)a(t)) (4.2.26)

for all itert, a(t)al
t
. A point 7ER

1 
(t-1) is on the boundary of

R1(t-1) if and only if there exist yt' 
a(t) such that

Yt Y
7a1(t-1) = 7(h 

t
(t) + P (t)a(t)). (4.2.27)

This condition can be tested by solving the following linear

program. The problem is to minimize
A

Yt t
7(h (t) + P (t)a(t) - a1(t-1))

over 7 C
t -1' 

subject to

(4.2.28)

7(h
Yt
(t) + P 

t
(t)a(t) -a

1
(t-1)) > 0 (4.2.29)

for all yt E rt,a(t) C At. The first yt c rt and i(t) C t 
for which

the minimum of (4.2.28) is zero define y
t 

2 
= y

t' 
and

a
2
(t-1) = h

Yt
(t) + P

Yt
Wa(t). (4.2.30)

By repeatedly solving the linear program, in a similar manner all

the vectors aj(t-1) and control laws ytj corresponding to 
regions
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bordering R1(t-1) are determined. The procedure is then repeated

untilalltheregionsR(t-1) with the corresponding vectors

aj(t-1) and control laws y
t
j are determined. Repetition of the

algorithm permits the computation of all the quantities in (4.2.23).

The resulting algorithm is summarized in Figure 2.4.1. The

corresponding dual algorithm is illustrated by Figure 2.4.2.

Of course, after one of the algorithms is carried out, a sweep

of the state or costate equations is required to eliminate the

dependence of the control laws.

Sondik's algorithm is an attempt to circumvent the curse of

dimensionality that arises when the state space H
t 
is partitioned

by a grid. The algorithm has the desirable properties that

(i) it is exact

(ii) the partition1 may be considerably coarser than a

naive grid partition.

However, the number of elements of the partition is not known a priori,

and can be expected to increase rapidly with increasing T. Moreover,

the irregular nature of the partition sets makes computer storage

awkward.

Three alternative approaches to the solution of the dynamic

programming functional equations have been given in this section. A11

of the approaches are extremely limited with respect to the size of

1
The term partition is used in an informal sense here, since distinct
elements of the partition can share a common boundary and therefore
have a nonempty intersection.
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Select n E nt

•
Find V

t
(w) = Wa (t)

Store y
t+1

1

Put a
1
(t) in search table

Is search table empty?

no

Select a (t) from search table

Compute Rk(t)

Determine vectors aj(t)

in regions bordering Rk(t)

Add vectors aj(t) not previously

selected to search table

delete a
k
(t)

yes
• Stop

Figure 4.2.1 Sondik's Algorithm Applied to FSFM Problem



- 102 -

Select cl) E Ot+

Find W
t 

= b (t) (1)

Store y 
1

t

Put b
1 
(t) in search table

 lilts search table empty?
yes

Select b
k
(t) from search table

Compute Rk(t)

Determine vectors b (t)

in regions bordering Rk(t)

Add vectors b (t) not previously

selected to search table

delete b
k
(t)

Stop

Figure 4.2.2 Dual Version of Sondik's Algorithm
Applied to the FSFM Problem.
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problems they can handle for reasons that have been discussed. This

situation is not surprising since it is well known that dynamic program-

ming for problems with continuous state space is an exceedingly

difficult computation problem.

Thus, the situation for the FSFM problem is quite similar to

that encountered in deterministic optimal control theory. Due to the

computational difficulties associated with its use, dynamic programming

is seldom applied to numerical solution of optimal control problems.

Instead algorithms based on the minimum principle are used, even

though these algorithms may converge to extremal, rather than optimal,

solutions. Nevertheless, these algorithms, when combined with appro-

priate engineering judgement, have been found to produce solutions

that are often highly superior to those developed on the basis of

intuition alone. An indication that the min-H algorithm developed in

Chapter 3 can play a similar role for the FSFM problem is provided by

the analysis in Chapter 6.
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4.3 Example 

In this section, the two approaches to the numerical application

of the dynamic programming algorithm developed in the previous

section are applied to the second example of section 3.2. Only the

backward equations are illustrated.

Recall that the example has state sets

X
0 
= {1
" 

2} X
1 ' 
= {1,2,3,4,} X

2 
= {1,2,3,4} and

control sets U1 = {0,1} , U2 = {0,1} . The parameters of the

equivalent deterministic problem are (0 < k < 1):

h(1) =

=
0

[ 1-]
2 2

P
1
(0) rl 0 0

IIL 0 0 1

0
P (0) = r0 1 0

IIL 0 0 0

P1(1) = I 1 0 0

1 0 0

0 0 1

0 0 1

0

0

0

0

h(2) 0(2) {0-

[0°1

1

k 0
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P0(1) = 0 1 0 0

0100

0001

[

0001

Attention is restricted to the case in which

r
1 
= u

1 
but P2 = {y

2 
c U

2
x0 : y

1
(1) = y2(2) = y2(3)).

The reachable set r
1
(7
0
) has four elements:

r
1
(w
0
)

The function

V (7)
1

0 0
[12

0
1
2

min 7h 
2 
(2) + 71a 

2 
(2)V2

y
2
a
2

1 1 1
2 

0 324 [0 T T

must be evaluated for each w e r
1
(7
0
), and a corresponding minimizing

control law tabulated.

The result is

6
2
(7) E Y

2
*

where y2*(x) = 1 for x = 1,2,3, y2*(4) = 0, and

vl([2
o

([
1

v
2 2

0

o

1
2

T

2
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1
2

V3 ({0 0 
§D

k

1 1 1
V4 ([0

2
0 )

2

Next the function

Y1
v (7) min V (*FP (1))

o
Y1Er1 

1

must be computed for 1T E r
0 
(X 
0 
) = 17

0 
1 and the corresponding control

law tabulated. The result is

V1 (nt I Dr- 2 k

with
1
(7) =

where yi*(1) = 1, 
Yi*(2) = 

This is in agreement with the results

obtained earlier.

The solution is now recomputed using the Sondik algorithm. The

algorithm starts with

R (2) = E1 2

and

A
2 
= A

2 
=

For t = 1,

A
1 
= h

Y 
(2) +P

Y
2 (2)q) : y c r =

2 2 2 [1] [0 1 [ i 0l
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It is obvious that the first and third vectors of A

1 
are not required

for Al. Let the arbitrary point 7 = [1 0 0 O) e Hi be selected.

Performing the minimization

gives

min w(h
Y2

(2) + P
Y2 

(2)4)
2
)

y
2
Er
2

1
Y2 (4) = 0, y2

1 (1) = y
2
1 
(2) = y

2
1 
(3) = 1, and

111

a
1
(1) = 

1 •

Checking the inequalities that define RI(1),

Y2 Y2
Tra
1
(1) < (h (2) + P (2)4,

2
)

for all y2 e r2 , it is verified that

R
1 
(1) = {7r : 1-1

3 
< 7

1 
+ 7

2 
}

and that

where y
2 
E O. The region R

2
(1) is defined by the inequalities

Y2 Y2
va
2
(1) < w(h (2) + P (2)02)
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for all y
2 
E r

2" 
Since checking the inequalities shows that

R2(1) = : > 7 4- 7213 — 1

so that E
1 
=

1(1) UR2(1), the algorithm gives

A = 0
1 0

For t = 0, choose 7 = [1 0]. A control law minimizing

Y
1

min 7P (1) a(1)
a(1)0i.1

1is y
1 
(1) = 1, y

1 
(2) = 0 with

Y1 
1

a
1
(0) = P (1) al(1) =

The region R
1
(0) is defined by the inequalities

7 1
a1(0) < P (1)a(1)

for all Y1 r1, a(1) E A 1.

with

A computation gives

R
1
(0) = {7 : k7 < 7 }

2 1

3.

a2 (0) =

[°1



- 109 -

2 
= 
_

and y 
1 

O. Since it is easily verified that

R
2
(0) = 17 : kit > }

2 1

so that R = R1(0) U R2(0), the algorithm terminates with
0

=
0

The situation at t 0 is illustrated by Figure 4.3.1.

1 1
Since u =

0

control. Therefore,

E R1(0) for k < 1, yo is an optimal

7T (1) =
El 41 1000

0 0 0 1

[12
0 0

12

Since n(1) e R1 2 
(1), y

 
is the optimal control for t = 2. This is,

of course, in agreement with the earlier computations.
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Figure 4.3.1 The Subsets R
1
(0),R

2
(0) of n0.



CHAPTER V

THE INFINITE HORIZON FSFM PROBLEM

In this chapter, time-invariant FSFM models operating over

the infinite time horizon are studied. The infinite horizon model

provides a useful approximation to problems with a finite, but

distant and possibly unknown planning horizon.

The cost criterion studied is the expected discounted cost.

For this criterion, the Value and Policy Iteration methods of

Howard [Howl] and Blackwell [B11] can be extended to the FSFM

problem. Moreover, the algorithms of Sondik [Sol] implementing

these methods can also be extended to the FSFM problem.

The chapter concludes with an example illustrating the solution

of a simple FSFM problem by the Policy Iteration method. An

important conclusion that can be drawn from the example is

that the optimal control law sequence for an infinite horizon

FSFM problem will be non-stationary in general.



- 112 -

5.1 Formulation 

In this chapter, attention is restricted to time invariant

FSFM models of the form

x(t) = f(x(t-1),u(t),q(t)) (5.1.1)

defined for t = 1, 2,... where the state sets X
t 
E X00, the control

sets U
t 

E U
w 
, and the uncertainty sets Qt Pm are all independent

of time. Moreover, the probability function pt = p. on Qt E Pm is

assumed time invariant, and the sets rt E r of admissible control

functions are assumed constant.

Let the sets X and P be defined as follows

X =X
0
 x X1 xX

2
x... (5.1.2)

r rl . F2 x r3 x (5.1.3)

YFor each y = (y1,y2,y3,...) 6 r, a sequence of matrices P t 
is

defined by

YtP P.(fq j = f(i'Yt(1)7q)1)-ij
(5.1.4)

Y
The matrix P

t 
can be interpreted as a transition probability. That

is, for each i E X
t-1

, a probability measure on X
t 
is defined with.

Y t
P..
ij 

equal to the probability of j E X
t
. Since 7

0 
defines a probabil-

ity measure on X
0 
, the theorem of Tulcea [Lol] can be invoked to

establish the existence of a unique probability measure V

on (X,X) (X = P(X)) satisfying
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V (A
0 xA1x...xAt 

xX
t+1 

xX
t+2 

x...)

(0)
10

i
0 
CA
0
 i1EA1

1
P. T.
1
0
1
1

i
2
CA
2

In particular, from (5.1.5) it follows that

Y2

i1i2

v(x
o 
x X

1 
x...x X

t-1 
x A

1 
x X

t+1 
x X

t+2 
x...)

i
t
eA
t

7r (t) ,

t

where the sequence 7 (t) is defined inductively by

1-Y(0) = 0 ,

YtY Y7 (t) = 7 (t-1) P t = 1,2,...,

where y = (yl,y2,...).

i
t
CA
t

Yt
P.
I
t -1

I
t

(5.1.5)

(5.1.6)

(5.1.7)

(5.1.8)

Defining the cost J of operating the system is a delicate problem.

One approach might be to define

J =

oo

t=1

h(x(t-1),u(t)). (5.1.9)

This approach suffers from several defects. If h(x(t-1),u(t)) > 0

for all x(t-1) E X
t-1 

, u(t) E
t 

then J = -Poo for every control, and
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the cost criterion is useless. If h(x(t-1),u(t)) > 0 and

h(x(t-1),u(t)) = 0 for some x(t-1) e xt_1, u(t) e Ut, then the

cost criterion is still infinite useless the non-zero cost states

occur only finitely often. This case might be of interest in some

situations, but is clearly rather special. Similar comments apply

if the direction of the preceeding inequalities is reversed. If

the function h is allowed to assume both positive and negative values,

then there is no assurance that the summation in (5.1.9) is well

defined ( I (-1)t = ? .

\t=1

A second approach is the definition

J = lim
T -*co

T
1

t=1
h(x(t-1),u(t)) (5.1.10)

of the average cost per unit time. This cost is never

infinite; if

then

k = sup sup lh (x,u) I (5.1.11)
xeXce unto

IJI < k. (5.1.12)

However, J need not be defined for all sequences x(t-1), u(t). Suppose

that )100 = {0,1} , h(0) = 0 and h(1) = 1 (independent of u).

Then J is not defined for the sequence
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x(0) = 0

x(t) =

1 s
2n-1 < 

t < s
2n

< t < s
2n+1

0 s
2n

(5.1.13)

(5.1.14)

where n = 1,2,3,... and the sequence sn is defined by

s
1 
= 1 (5.1.15)

sr0-1=(111-1)15.'11 
= 1,2,...

i=1

(5.1.16)

For this sequence,

1
T

lim sup 7
r 

h(x(t-1),u(t)) = 1

T-sco t=1

(5.1.17)

but

lim inf

T

1
/ h(x(t-1),u(t)) = O.

t=1

A third approach is the definition

(5,1.18)

co

J = / St-lh(x(t-1),u(t)) (5.1.19)
t=1

where 0 < 6 < 1 is the discount rate. Discount factors occur naturally

in an economic context when the present value of a stream of future

earnings must be determined [An1]. In other contexts,6 can be regarded

simply as a convergence factor used to achieve an approximation of the

average cost (5.1.10).
1 

Existence of J is assured. Let k be defined

as in (5.1.11), then

1
Ross [Rol,Ro2] and Mine and Osaki [Mil] consider the limit as
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co

I at lhout-1),.(-01 < k L r t-1
k 

1

t=1 t=1 
T.7

(5.1.20)

so that the series defining J converges for any sequence of states and

controls.

The definition (5.1.19) will be adopted in this chapter, although

some further remarks concerning (5.1.10) will be made.

It is necessary to define the expected value of J to state the

infinite horizon version of the FSFM problem. By (5.1.20), the

summation

JY = 
r t -L a m(x(t-1),),t(x(t-1)))

t=1

exists for all

and sequences

Y = (Y1,Y2
p...) e r

(x(0),x(1),x(2),...) E X.

Therefore (5.1.21) defines a map

(5.1.21)

J : X -4. R (5.1.22)

that is automatically measurable with respect to X = P(X). Moreover,

E
y 
IS
y 

I = f
x 

IJ
y (x)IdVY(x)

< f (x) =
— X 1-

k 
0 

y 
10

so that JY is integrable. Therefore, the functional

(5.1.23)
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J(Y) =E
yy 
J= 1

x
J
y
(x)dVY(x) (5.1.24)

can be defined. The infinite horizon FSFM problem with discounted

cost criterion is then to minimize l(y), for all yer.

Since the sum (5.1.21) is defined for all

(x(0),x(1),x(2),...) C X,

and since the bound (5.1.22) holds, application of Lebesque's dominated

convergence theorem (see, e.g., [Rul) or (Seth

shows that

E St-1 E
Y )
(t=1 }h (x (t-1) ,Yt (x (t-1) ) )

co
r t-1

= L Ey h(x(t-1),Yt
(x(t-1)))

t=1

Ytr t-1
= L 1-(t-l)h

t=1

(5.1.25)

for all control law sequences y = (y
1
,y
2
,...) (possibly non-stationary)

where

7(0) = 70 ,

Yt
7(t) = P , t = 1,2,...

(5.1.26)

(5.1.27)

Therefore the infinite horizon FSFM problem with discounting is

equivalent to the deterministic problem of minimizing (5.1.25) subject

to (5.1.26), (5.1.27).
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To apply the method of dynamic programming, the problem defined

by equations (5.1.25) - (5.1.27) is imbedded in a series of similar

problems. Define functions

t
(7) = inf 

BT-t 
7V
Y
(T-1)h T4-1

yEr T=t

for t > 1, where y = (y
1
,y
2
,...) and

(t -1) = 7,

Y Y(T) = 7 (T-1)P T , T > t.

(5.1.28)

(5.1.29)

(5.1.30)

(Notice that the summation in (5.1.28) is independent of the first

t -1 components of y.)

Lemma 5.1.1 

For all s, t > 0, for all Tr E nt E II

Proof

and

v(7 
A 

) -
s
(7r) =

t

Suppose that t > s. Then the control law sequences

= (Y11."'Yt-1'Ys'Ys+11—)

= (Y1 ----- Ys'Ys+11—)

(5.1.31)
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00 00
st-t Y(T-1)h

YT = ST 
-S

7FY(T-1)h T. (5.1.32)

T=t T=S

Therefore, the infimum of the above sums must be equal.

Lemma 5.1.2

The functions
t
(.) satisfy the sequence of optimality equations

vt  = min 
Yt+1 

+
t+1

(7tP
Yt+1

t+1
Er
t+

Proof 

V
t
(n) = inf

yer

On

ST-t7fY(T-1)h

T= t

inf 
nyt+1 

+ S
T-t-1 Try

( t-1) h
YT

yet'

(5.1.33)

min

I

t+1
+ S inf 

st-t-17),(Thr1)hYT

y
t+1
a
t+1 

y
t+2 t+2,

y
t+3

er T=t+1

min Trh
t+1

+ Sy
t+1 

(7P
Yt+1

) 
1

Yt+1Ert+1

(5.1.34)
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Lemma 5.1.3 

The function V(-) is the unique bounded solution of the equation

I
rh
Y. 

+ SVCFP
Yo,
)V(7) = min (5.1.35)

y.srw

for t arbitrary.

Proof

By Lemmas 5.1.1 and 5.1.2, NTH is a solution of (5.1.35). Since

Y1-41
I ST-t nY(T-1)h 1
T=t

co 

L 
YT+1BT-t. ,1 7.y(T-1)h

T=t

r T-t
< k = 

1S 'T=t
(5.1.36)

it follows that V(-) is bounded. Therefore, it is enough to show that

(5.1.35) has a unique bounded solution.

Let B(L) be the set of bounded real-valued functions on 11.. With

the norm

11111 - V211 = sup 111
1 
(70 - V

2(W)1Tra

B(IIm) is a Banach space [Rul]. Define the operation

A B (IL) + (um)

V + Av

(5.1.37)

(5.1.38)
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I Ye° 

Yoc, )
Av(7) = min 7h + SV(7P ) (5.1.39)

ywerm

Then the problem is to show that the equation

Av = v (5.1.40)

has a unique solution.

To show that (5.1.40) has a unique bounded solution it is suf-

ficient by the Contraction Mapping Theorem for Banach spaces [Sil] to

show that A is a contraction. But A is a contraction by the following

argument due to Blackwell [B11]. Notice that

A(v + c) = Av + Sc (5.1.41)

for any constant c, and that V
1 

< V
2 
1 implies

Let c = Ilv
1 2 - v 11 , then

implies that

Av < Av
1 2

V
1 
LIT

2 
+ 11 V

1 
- V

2
11

(5.1.42)

(5.1.43)

Avl < A(v2 + 11 vl - v211) = Av2 4- a 11v1 - 17211-

By a symmetrical argument,

AV
2 

AV
I 
+ s 11171 - 17211

V
1 
(7) < V

2 
(7) for all 7Tell .

(5.1.44)
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11Av1 - Av211 $ 11v1 - v211. (5.1.45)

Theorem 5.1.4 

Let the map 6* : n. P. be defined for t = 0,1,2,... by 6*(ff) = ym

if yw is a minimizing control law in (5.1.35). Define the quantities

7*(t), yt* by

7t*(0) = (5.1.46)

yt* = 6*(7*(t-1)) t > 1, 
(5.1.47)

Y
7*(t) = r*(t-1)P

t 
, t > 1. (5.1.48)

Then y* (y1*,y2*,...) is an optimal control law sequence with

corresponding sequence of optimal states.

Proof

By (5.1.33) and the definition 
of Yt+1*

t
(7*(t)) = min r* (t)h

Yt+1
+ SV

t+1
(r*(t)P

Ift+1 
)

Yt+lat+1

Yt+1*
= 7*(t)h +

t+1
(7*(t+1)) (5.1.49)

for t = 1,2,... Therefore, a simple induction argument establishes that

t+1
Y

1 8
T-1

7*(T-1)h
T*

V ( ) = + (3
t+1

V
t+1

(7*(t+1)) (5.1.50)
0

T*1
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for all t. Recall from (5.1.36) that V
t+1 

(Tr*(t+1)) is bounded,

Therefore,

vo (7r ) =
lim

-t- +- to

V
t+1

(u*(t+1) <
— 1- •

k

*[t+1
(3T-171.*

(T-1)h 
T „ 

0+ 
t+1 

V
t+1 

(u*(t+1))

T=1

cc *
r T-1

x*(T-1)h T

T=1

which was to be shown.

(5.1.51)

(5.1.52)

To employ Theorem 5.1.4, it is necessary to compute the function

V. Since A is a contraction, V can be computed iteratively by a

successive approximation approach. Define the sequence V
n 

E B(7),

n = 0,1,2,..., by

v
n+1 

= Av
n

(5.1.53)

where V
0 

is an arbitrary element of B(7). Notice that the notation

is ambiguous since it does not distinguish between the forward sequence

V
t 
and the backward sequence V

n
. V

n 
is often referred to as the

"cost with n periods remaining" in the literature on Markovian decision

procedures [Sol], but this is not meaningful strictly, because there

is never a finite number of periods remaining in an infinite horizon

problem. Similarly, the statement that the sequence of control laws

with n periods remaining is to be determined is not logical. What

control law will be used at the first stage?
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Lemma 5.1.5 

The sequence V
n 
defined above converges to V. Moreover,

(i) IlAn170 \di < Sn 11170 - VII (5.1.54)

(ii) IlAnVo - VII < lss  111"70 voll (5.1.55)

Proof

Since A is a contraction (Lemma 5.1.3), Lemma 5.1.5 is an immediate

consequence of Theorem 1.XVI of Kantorovich and Akilov [Kal].

Notice that (5.1.55) gives a bound on the error at iteration

number n that is independent of V and can therefore be precomputed.

The method of determining the optimal control law by the iteration

(5.1.53) is referred to as Value Iteration [Howl] in the literature on

Markovian decision processes. This is in distinction to the method of

Policy Iteration introduced by Howard [Howl] and extended by Blackwell

[B11]. The policy iteration method can also be extended to the FSFM

problem, as will be demonstrated next.

For any policy : R. r. , define the sequence of functions

V
n 
: E. i R by

V
n+1 

d(7) 
= wh6(7) + V

n 
(71,sor))

(5.1.56)

(5.1.57)



- 125 -

for n = 0,1,2,... Let the operator

(1
6 
: B (IL) B (lc)

be defined by

(A
6V)(w) = 711601) + V(7P.5(7)) .

Lemma 5.1.6. 

For any policy 6, the operator A
6 

is monotone; i.e., if

V < V then A6 v < Adv
1 2' 1 2

Proof 

The property follows immediately from (5.1.58).

Theorem 5.1.7 (Howard Policy Iteration)

Let the policy 8 be defined by 8(7) =

7h? + SV6(71;)

y ,

(5.1.58)

where y satisfies

Yt 6 y
min 7h + SV (7P )
ytert

for some arbitrary policy S. Then

V (7) < V6(70

(5.1.59)

(5.1.60)

6 A 6  6
for all 7E11 . (V = lim V exists since A is a contraction.)

n÷m
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The method of proof is due to Blackwell (1311).

By (5.1.57)

A
& 
v
d 

< A
(5
v = v .

Since A is monotone,

A
s
A
g 
v
s 
< A

& 
v
s 
<
 
v
s

and so by induction

(Ag)11 Vg < Vg

g
Since A is a contraction (with modulus 8),

lim (Ag)ri Vg = Vg < Vd .
n-sco

(5.1.61)

(5.1.62)

(5.1.63)

(5.1.64)

Before turning to the important question of using Value or Policy

Iteration as a numerical technique, it is appropriate to comment on the

alternative definition (5.1.10) of J.

As mentioned earlier, J may not be well defined by (5.1.10), so

that the formal computation

T
r

E /lim 
1 

L h(x(t-1).Yt(x(t-1)))
Y 

4-03T - t=1

t=1

E /h(x(t-1),y0x(t-1)))1 (5.1.65)
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is not valid in general. Moreover, the limit on the right hand side

of (5.1.65) need not exist. This has led many authors [Kul,Del ,

Mil] to adapt the definition

J(y) = lim sup

T

1
I E

y 
{h(x(t-1),y

t
(x(t-1))) 1 .

t=1 (5.1.66)

The limit in (5.1.66) always exists since

T

± / E h(x(t-1) Yt
(x(t-))) I < k

T tr..1 y
(5.1.67)

for all T.

The disadvantage of the definition (5.1.66) is that it is dif-

ficult to give a meaningful interpretation to the functional J(y).

However, if attention is restricted to the class of stationary control

laws (y.t. = Y. for all t), then a natural interpretation of l(y) is

available.

For stationary control laws,

Yt T A y
P = P = P (5.1.68)

h = h h
Yt YT A y

for all 1 < t, T < m. Moreover, by (5.1.6)

E {h(x(t-1),Y
t
(x(t-1)))1 = 0(t-1) hY

0
(p

y
)
t-1

h
y

(5.1.69)

(5.1.70)
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But Theorem 2.1 of Doob [Dol.] (Chapter 5) states that there exists a

stochastic matrix Pco

Therefore,

where

lim
T+

1

T

such that

TC

(PY)t = Pcc
t=1

T
lim 

1 y E (h(x(t-1),),t(t -1)0 = TAYT÷co t=1

.tr = P
0 w

(5.1.71)

(5.1.72)

(5.1.73)

defines the long-run distribution of the Markov chain. Thus,

mYhY is the expected cost per transition under the long-run distribution

induced by the stationary control law sequence Y.

Although the average cost criteria has been studied extensively for

problems with finite state space (Howl, Kul, Del, Mil), there are few

results available that apply to continuous state spaces such as R..

Therefore attention is restricted in the sequel to the expected dis-

counted cost.
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5.2 Numerical Solution of the Functional Equation 

In the previous section, it was demonstrated that solving the

infinite horizon FSFM problem with discounted cost criterion was

equivalent to solving the functional equation

Av = v . (5.2.1)

Two theoretical methods, Value Iteration and Policy Iteration, were

described for the solution of (5.2.1).

The solution of functional equations similar to (5.2.1) is a

classical problem of dynamic programming. Although numerous suggestions

have been advanced (See [B1], [B2], [B3], for example), no satisfactory

general algorithm has ever been found. However, Sondik (Sol] has

recently developed an algorithm utilizing policy improvement for

solution of Markovian decision processes with incomplete state inform-

ation. Since the functional equation that arises in the solution of

these processes is similar to (5.2.1), Sondik's algorithm can be

applied to the FSFM problem, as will be demonstrated in this section.

The most straightforward approach to the solution of (5.2.1) is

to use Value Iteration. Starting the algorithm with Vo E 0, then

V
n+1 

= Av
n

(5.2.2)

can be obtained using the backward Sondik algorithm as in Figure 4.2.1.

The difficulty with this approach is that the algorithm must be
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iterated until the factor

7:7" 
is small enough to insure that V

n

approximates V to the desired accuracy. For discount rates S close to

one, this requires a large number of iterations. But the Sondik

algorithm is practical for only a small number of iterations, in

general.

A second approach to the solution of (5.2.1) is to use Policy

Iteration. Policy Iteration consists of two steps: value determin-

ation and policy improvement [Howl]. These steps are illustrated in

Figure 5.2.1. One might conjecture that the Sondik algorithm could

be utilized to carry out both steps. However, neither V
6 

nor V
n

is in general piecewise linear and concave, as is required for the

Sondik algorithm. These same difficulties arise in the partially

observable Markovian decision problem, and Sondik has developed an

alternative approach [Sol]. As will be demonstrated next, this

approach can be applied to the FSFM problem also.

The value determination step of the policy iteration algorithm

requires that the functional equation

A
6
v = V (5.2.3)

be solved to determine V . For a special class of policies , this

equation can be readily solved.

Lemma 5.2.1 

Suppose that Xeci has n elements so that the (row) vectors in

11.3 are n -dimensional. Then for every policy 6 : n. P. , there

exists a map
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Value-Determination Operation

find V
g 

(A )
w v

0

Policy Improvement Routine

Compute g

g(7)
7h + SV (7E,

g(7)
) = min [Trh

yt
4-13V (im

Yt
)]

y
t 

E rt

Convergence

Figure 5.2.1 Policy Iteration (After [Howl], Figure 7.1)
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a : Hm A ,

where F. is the set of n-dimensional column vectors, such that

17 (w) = Ira
6co

for all 7 c Hm .

Proof

(5.2.4)

(5.2.5)

Recall that V is the unique solution of the functional equation.

v =
6
v

=
SOO 

+ 13V (wPSo)) (5.2.6)

Therefore, the representation (5.2.5) is valid if the functional

equation

a (n) = hdor) + SPso°ais
(7)

has a solution. Recall that the space of bounded maps from

Um to A, B(100;A) is a Banach space with the norm

where

Moreover,

= sup
well

11a0011.

Ha l co = mai( a

1<i<n

110(e) SP6(e)a
1 
(*) - h (.) •- SP

s

(e)a
2(HI

(5.2.7)

(5.2.9)
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- a
2("))II

ila 1 (") - a2(') II
(5.2.10)

so that a unique solution to 5.2.7 exists by the contraction mappin
g

theorem.

The solution to (5.2.7) will not necessarily be piecewise-linear

and concave. Suppose, however, that there are sets R1,R2 ..... Rj

that partition 11., , and satisfy the following two conditions:

(a) for each 71' E R ,6(7) = y
Yl

(b) each 7 E R. satisfies Tri, Rv(i)

Then (5.2.7) reduces to the system of equation

a. =h + (3P a
V(i)

(5.2.11)

for i = 1,2,...,j. The existence and uniqueness of a solution to

(5.2.11) can be established by a contraction mapping argument similar

to those used previously.

Of course, the reduction of the infinite dimensional equation

(5.2.7) to the finite dimensional system of equations (5.2.11) is pre-

dicated on the assumption of an appropriate partition of R.. Sondik

has found a class of policies for which this assumption is valid (Sol).

To define this class, it is necessaxy to define some notion. Let

T (A) = 71)
600

: 7 C A , (5.2.12)
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s
d
n 
= T

g
(S

n-1
) , n > 1 ,

s = H
o

D = closure {Tr : 6 is discontinuous at 71}.

(5.2.13)

(5.2.14)

(5.2.15)

A policy 6 is finitely transient if and only if there is an integer

m such that

(0 = null set).

D s m
6 6 0 (5.2.16)

In his thesis [Sol], Sondik establishes two important properties

of finitely transient policies:

(a) A partition 
1, 

with the desired properties

exists if 6 is finitely transient, and

(b) The function V
g 
may be approximated arbitrarily closely

by V
a 
, for some finitely transient policy g.

Since Sondik's arguments are readily applied to the FSFM problem, they

are not repeated here. However, an example (Figure 5.2.2) is given

to illustrate the basic idea.

For the example,
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i 
Is r 

.

IT I
I

Do 1 I 
i

I
I

DI I

I
1
1

I 1
i

RI  R2 
i
 R3

I

I

7ri

Figure 5.2.2 Construction of the Partition R R R
1' 2' 3

.
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8 8
pY <

1
1 2

3 5
8 8

P
6(w)

=

2 5
8 8

PY w1
1

7 1
8

Notice that P6(7) is completely characterized by its effect on n
1
,

since
2 
= 1 - ni. The sets D

n 
are defined by

D = D6

n+1  6(70 n,D = iR : ffP E D I, n > D.

Since 7P
d(n) 

C R
2 
for w C R1 , 7fP

6(R) 
C. R3 for 7 E R2,

and ITP
6(7) c R3 for n E R3, it follows that V(1) = 2, V(2) = 3,

(5.2.17)

(5.2.18)

and v(3) = 3.

The procedure of constructing the regions Ri from the sets Dn

applies to any finitely transient policy. Moreover, an approximate

partition can be constructed for an arbitrary policy. The reader

is referred to Sondik [Sol] for details.

Although the value determination operation of Policy Iteration

can be (approximately) carried out with the use of finitely transient

policies, there remains the problem of implementing the policy improve-

ment routine. The difficulty here is that the function V
6 
is not
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piecewise linear or concave as is required for the Sondik algorithm.

But V
6 

will be piecewise linear if f5 is finitely transient, and

Sondik has shown that the concave hull of V
6 

can be used in the

policy improvement routine [Sol]. Again, Sondik's thesis [Sol] should

be consulted for details.

In this section, the numerical solution of the functional

equation (5.2.1) has been considered. The emphasis has been on

showing that an algorithm recently develoPed by Sondik for partially

observable Markovian decision processes can be adapted for the FSFM

problem. It should be pointed out that a FSFM problem will be con-

siderably more difficult to solve than a corresponding partially

observed Markovian process. This is due to the fact that the FSFM

problem requires that the observation and memory sets be included in

the state set, and since the policies in the FSFM problem assign a

control law to each state. Thus, a given FSFM problem will be

much larger than an analagous partially observed Markovian decision

process. Although this advantage is offset somewhat by the simple

form of (5.2.1) (relative to the partially observed problem), it is

nevertheless true that the technique outlined in this section is 

feasible only for simple special cases of the FSFM problem.
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5.3 Example 

In this section, a simple infinite horizon FSFM problem with

discounted cost criterion is solved using the policy iteration

algorithm outlined in the previous section. The solution illustrates

that in contradistinction to the usual discounted infinite horizon 

Markovian decision process, the optimal control law sequence can be 

non-stationary.

The problem has X., = Um = {1,2} and Pm contains only the con-

trol law whose value is always 1, and the control law whose value is

always 2. The parameters of the problem are

P
1 
= P

2 
=

3 1
[21

1 1 1 1
2 2 2 2

1 
= 
[0

1 
h2 

= 
3

2 
1 35

[321

32

Take the starting guess 6(w) E 1. Since 6 has no discontin-

uities, it is certainly finitely transient. The algorithm is carried

out below.

Policy Evaluation 

Since 6 has no discontinuities,
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where

a
1 
= h

1 
+ OP

1
a
1

0
1 1

-11
1

2

[a. I

1 1

1

2 2
a2

4a
1 
= a

1 
+ a2

4a
2 
= 4 + a

1 
+ a

2

Therefore,

Policy Improvement 

Let 8(7) = Y, if

WhY (3\7
6(1TPy) min + (W6(TTY).

Since V6(7) = Tra
1
, this is equivalent to

101 + f3TTPY a
1
 = min 1ThY + STIPya1

Y
Since r. has only two elements, it is only necessary to check
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_
71-11
1 
+ rsTrP

1 
a
1 
s 7Th

n
h
2 
+ OP

2 
a
2
 =

2

[3321

„
+ la67TP

2 
a
2

1

2

t.1 4

1 1

2

3
32 2 T T

[13521

1-1 a
2

51
32

Tra
1 

< 7ra
2

1 [353_21

LW
1 

(1-7r ) -< [71 (1-W1) l
51

2 32

Therefore,

13 (70 =

4 
< 3

32 Tr1 — 32

3
7T <
1 — 4

E 
3

<  R 11 Tr
1 — 4 

Tr 

2 7T > 3 7T E R
21 4
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Test for Convergence

To test for convergence, it is necessary to check

V (7) = min 7h + 0176('rtTY)
yer

for all 7EE.
1

Case 1 

But

E R
1

v (7) = 7a
1

7fal
2 1

< 711
2 
+ DWP a

for 7 e R
1 

by the computation above.

Case 2 7 e R
2

V (7) = Tra
2

But 7a
2 
< 7h

1 
+ 137P1a1 as above.

Therefore the policy iteration algorithm has converged in a single

step.

Notice if 7(0) = (1 0), then 6(7(0)) = 2. However, 7(1) = 3 1

so that 6(7(1)) = 1. Moreover, 7(2) = 21 = 7(0 for all t > 2, so

that g(7(t)) = 1 for all t > 2. Thus, the optimal control law 

sequence is non-stationary!

1
in general, a criterion such as sup I V

g 
(7) - min 7111 + SV8(7PY)l< e

Tren. yer
would be checked.



CHAPTER VI

EXAMPLE: HYPOTHESIS TESTING WITH 1-BIT MEMORY

In this chapter, a problem of sdguential hypothesis testing with a

1-bit memory is considered. The problem is not of enormous intrinsic

interest, although substantial work has appeared in literature [Col,Hel,

F11, Chal, Co2, Hil]. However, the problem illustrates the use and

liinitations of control-theoretic methods in the design of information-

handling systems.

6.1 Introduction 

In the first five chapters of this thesis, some of the most important

theoretical and algorithmic results of modern optimal control theory

have been applied to the FSFM problem. It has been pointed out that some

of the crucial memory management and communication tasks of information

handling systems can be examined within this format. It is felt that

the establishment of this framework is a contribution of this research.

In the previous chapters, simple examples have been given to illustrate

the use and properties of the theorems and algorithms derived. In this

chapter, a more substantial example is studied.

Of course, the FSFM framework is not the only way that information

handling problems can be treated. In particular, both information 

theory [Shl] and the theory of forma/ languages [Hopl] deal with this

important issue.

The relationship between information theory and non-classical

- 142-
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stochastic control theory (which includes the FSFM problem) is clarified

by the following statement of Witsenhausen [O]:

"The latter [information theory] deals with an essentially simpler

problem, because the transmission of information is considered independently

of its use, long periods of use of a transmission channel are assumed,

and delays are ignored".
1

Thus in information theory,one does not usually pose the question: "What 
is

the best code of block length n for a given source and channel?". 
Instead,

one asks "For a given source and information channel, what is the best

that a code of block length n can do?". Of course, the bounds obtained

as the answer to the latter question throw considerable light on the

former, and thus information theory has had considerable practical

impact. Moreover, obtaining an answer to the first question seems

computationally impossible. But the first question is still of

importance, and it is of interest to examine a framework in which the

question can be raised, even if it can't be answered. The hypothesis-

testing problem considered in this section is of the same nature as the

first question, but is considerably simpler. Thus the problem of this

chapter is studied for paradigmatic rather than pragmatic purposes.

The theory of formal languages deals with more qualitative questions

then the quantitative optimization considered in the FSFM problem. Thus

a typical question in formal language theory is "What class of languages

is accepted by a particular class of finite state machines?". This

1
An exception to the last point is the recent paper of Krich and Berger

[Krl].
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question turns out to be intimately associated with the problem considered

in this chapter.
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6.2 Formulation

Suppose that {xj} is a sequence of independent, 
identically

distributed random variables with

p(xi=1) = p, p(xi=0) = q.

The hypotheses

(6.2.1)

Ho : p = po (6.2.2)

H1 : p = pl (6.2.3)

are to be tested against one another. A Bayesian viewpoint is adopted,

so that there are a priori probabilities )(0 for Ho and for H
1

(/0 + = 1), and the cost criterion is the probability of error.

If xi, i = 0, 1, ..., T-1, is observed, and the decision is based on

these observations, it is well known that the optimal decision is a

likelihood ratio test [Val]. Moreover, a sufficient statistic is the

number of ones (on zero's) observed [Lil]. Storing this number requires

a memory with no more than log2 T bits.

An alternative formulation is to assume that only a given memory with

less than log2 T bits is available. For example, suppose that only one

bit is available. Define the sets

X
t 
= {0
'
1}

with corresponding fields

x
t 
= {(1) {o} {i), xt 

1

(6.2.4)

(6.2.5)
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for t = 0, 1, 2, ..., T-1. The memory sets are

M
t 
= fo,il

with corresponding fields

M = {4), fol, {0, t}

(6.2.6)

(6.2.7)

for t = 1, 2, ..., T. A set

U = {0,1} (6.2.8)

of terminal decisions is also given.

Let ne t= 1, 2, ..., T, and yT denote functions

: X0 + M1

nt : mt_i x xt_l me t = 2, 3, ..., T

yT : MT -> U.

(6.2.9)

(6.2.10)

(6.2.11)

The functions nt are the memory update functions, and the function yT is

the terminal decision function.

Given Ul, n2, flt, let

pt : X0 x X1 x x Xt_i Mt

be defined as follows,

fil M1

x -)- n tx )o 1 o

(6.2.12)
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and

fit X0 x X1 
x x xt -1 +Mt 

(6.2.13)

(X0 X1, ..., xt_i) nt (fit_1(x0, xl, xt_2), xt_i)

for t = 2, 3, ..., T. 97 is the memory structure induced by the memory

update functions
1 2 "r.

Define the product space X and product field X by

X = X
o x X x x X 4,

1 T-1 (6.2.14)

(6.2.15)X = Ak x x x XT

Then 9T is a map from X to MT. Define

yT : x0 x xl x x u
T-1 

(6.2.16)

as the composition
mf YT

YT m 9T'

and 1-1..2,

(6.2.17)

Each hypothesis induces a probability denoted by p(. I H
0
) or

p(* I H1) on X. (This probability is completely specified by the

condition that the probability of a point with m ones and n zeros

is pm(1-p)n where p = p0 or p = pl according to H = Ho or H = H
1 
).

Define the subsets S
o 

and S
1 
of X by the equations

s0 = yT
-1 
(Oh

SI = yT 
1 
(1)

(6.2.18)

(6.2.19)
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The probability of error corresponding to );
T 
is

p
e 
("7
T 
) = p(S

0 
I H

1
)

1 
+ p(S

1
 H0) Ao (6.2.20)

where X0 + = 1. (A 0 is the a priori probability that Ho is true.)

The problem of hypothesis testing with 1-bit memory considered in

this chapter is to find

min p
e T 

)
;

IT

and the functions

(6.2.21)

X2, YT defining the minimizing

Several problems closely related to (6.2.21) have been considered

in the literature. Cover [Col] has considered the preceding problem for

the limiting case T ÷°°. Hellman and Cover [Hel] have considered the

infinite time problem when attention is limited to time invariant, but

possibly randomized, memory updates. Flower [F11] has considered the

finite time problem but with attention again restricted to time

invariant, although possibly randomized, memory updates.



- 149 -

6.3 Preliminary Analysis 

For fixed fir, the problem is easily solved. Let

where

Fr.r ( ?IQ nt-1(P11.)

= {p, E, E, X}

(6.3.1)

E = Op (1) (6.3.2)

(6.3.3)

is the information field induced by the memory structure. Then the

Bayes optimal decision is determined by the condition that the a

posteriori probability be maximized [Val]. Therefore, if mr = 1, choose

H
0 
(y
T
(1) = 0) if

p(E I Ho) Xo > p(E I H1) Ai

and choose H
1 
(YT(1) = 0) if

P(E 1 H1
)

1 
> p(E I H )

0 O.

Similarly, if mT = 0, choose H (y
T
(0) = 0) if

p (i I H0) xci

and choose H
1 T

(0) = 1) if

R1

(6.3.4)

(6.3.5)

(6.3.6)

p(i I H1 Xi > I H0) X0. (6.3.7)
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Thus the problem reduces to finding the optimal memory structure, or

equivalently, the optimal information field that can be obtained from

some memory structure.

It is usefull at this point to define the notion of a rectangle. A

rectangleECX0 T
xX

1
x...xX_

-1 
isaset of the form

E = E
o 
x E

1 
x x E

T-1
(6.3.8)

where E0 E Ab, El E XI, ET_1 E The sets Et are the sides

of E.

Lemma 6.3.1 

If E E X is a rectangle, then there is a memory structure 1.-&

such that

E = 1(1).

(The memory structure is said to realize E.)

Proof

Let E = E0 x El x x ET_l. Define

11 x
0 

E E
n1 = o x 4o E0

n = 1 t -1 
E E

t-1 
and m

t -1 
= 1

t
0 otherwise

(6.3.9)

(6.3.10)

(6.3.11)
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for t - 2, 3, ..., T. Obviously,

(x0, xi, ..., xT_1) C nT-1(1)

if and only if x0 E E0, xl E El, ..., and C ET-1. 
But the latter

condition is equivalent to (xo, xi, ..., )(ILI) E ED x Elx ... X ET_i E.

There are eight possible relationships between pi, po, 41, q0

(Figure 6.3.1). Because of the obvious symmetries involved, only

and

Case 1 pi > qo p0 >
ql

Case 2 pi > po 
q0 

> (41

need be considered. For case 1, the following result is available.

Proposition 6.3.2 

For case 1, there is an event for which the probability of

error is minimum within the class of rectangles either of the form

or

{0}m x f0,11T-m

{1}
n x 

{0,1}
T-n

(6.3.12)

(6.3.13)

for some integer m, 0< m c T, or some integer n, 0 C n< T.

Proof

Let F be an arbitrary rectangle. If F has n sides that are

sides that are {0}, and T-n-m 0 sides that are {0,1}, then

{ } ,
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(11P1 ' Po ' go ' g1*--"'Po 1 > p > q

PI ' go Po ' ql PI (10

1 
> go

ql 40 " PO P141-11430 ql > PI ) PO

q1 ' p0 > go ' P1"-"P40 > P1 > ql ' PO

Figure 6.3.1 The Possible Relationships Between
150, go, 441. (Excluding P1 = po)
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P(F I H) = Pm gm

where p = p
0 

or p = p
1 

according to H = H
o 
or H = H

1.

subcases to be examined.

Case la 

Suppose that the optimal terminal decision function is YT E 1 or

E O. In this case, the event F is useless, and can be replaced by an
YT

(6.3.14)

There are three

arbitrary event E without increasing the probability of error.

Case lb 

n m n m
k P1 ql > AO PO q0

Al(l Pln qlm) 
‹.
)6(1 - PO

n 
q0
m 
)

(6.3.15)

(6.3.16)

In this case, the optimum decision for observation of E is E +Hi,

E 4-11
0 
. The corresponding probability of error is

p
e 
= X

1
(1 - p

l
n
 41m) + X p

0 0
n 
q0
m 
•

Since

-1D-1 > 1,
ql

q0

it follows that

n+1 m-1 n+1 m-1
Al P1 ql > AO PO q0 •

(6.3.17)

(6.3.18)

(6.3.19)

(6.3. 20)
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Moreover, since

m P
X
1

1
(1 - 

pl
n+1 

ql
m-1
) = 

AI
(1 - 

pl
n 
ql
m
) - 

A_ 
p
1
n 
q
1 
( - 1)
q
1

X (1 - 
PO

n+1 
q0
m-1 
) = A0(1 - Pon 40n)

(6.3.21)

n m Po
AO PO q0 (-(74: - 1)

(6.3.22)

and by (6.3.15),(6.3.16), (6.3.18), (6.3.19) it follows that

n+1 m-1 n+1 m-1
Al(1 - P1 ql ) A0(1 - PO q0 ).

(6.3.23)

The probability of error for an event E with one side 101 of F changed

to 111 is therefore

p = (1 „ q 
A 

n+l mn+1 m-11 .
e 1 P1 ' 

+ o 
p0 

qo (6.3.24)

which is less than the corresponding probability of error for the event F.

Case lc 

n m n m
AO PO 40 Al P1 q0

(1 n < (1 
-
„ n

0 e0 1̀0 1 el 41m
)

(6.3.25)

(6.3.26)

By an argument completely analogous to that for case lb, it can

be shown that an event E with a side {1} of F changed to a 101 has a

lower probability of error.

The proposition is established as follows. If F satisfies case la,

F may be replaced by an arbitrary event that satisfies case lb or
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case lc. If no such event exists, than any event, and in particular an

event of the form (6.3.12) or (6.3.13) is optimal. If F satisfies case lb,

then (by an induction argument) all the sides {0} of F can be changed

to sides {1} without increasing the probability of error. If F

satisfies case lc, then all the sides {1} of F can be changed to {0}.

Since a rectangular event corresponds to occurance of a particular

substring of (x0, xl, it might seem that only rectangular

events could be realized by a 1-bit memory. If this were true, then the

problem would be solved (for case 1) since a complete class
1 
of memory

update functions would those determining whether an event of the form

(6.3.12) or (6.3.13) did or did not occur. However, certain non -

rectangular events can be realized by a 1-bit memory.

There are 2
4 
= 16 possible functions nt : t -1 x xt -1 M

t 
for any

t > 1, since there are four elements of M
t -1 

x X
t -1 

and two elements of

Mt. However, symmetry considerations reduce the number of nt that need

to be considered to the eight listed in Table 6.3.2.

Proposition 6.3.3 

Given n
T' 

either n or 1 - n
T 

can be constructed from the eight

memory update functions in Table 6.3.2, T> 2.

Proof

The proof proceeds by induction. Notice that any map n : Xt_1 x

M
t-1 

M
t 
is either in Table 6.3.2 or 1 - n is in Table 6.3.2.

1
A complete class of memory update functions satisfies the condition: for
any choice of X

0 
, n

0 
, p

1 
, T, the optimum memory update function is in the

class.
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nt

(m
t-1.

x )
t-1

interpretation

0 0 0 1 1 0 1 1

nt
1 1 1 1 1 no information

nt
2

1 1 1 0

picks out one

point of

M
t-1 

x X
t-1

nt
3

1 1 0 1

nt
4

1 0 1 1

nt
5

o 1 1 1

nt
6

1 1 0 0 gives m
t

n
t
7

1 0 1 0 gives x
t

nt
8 0 1 1 0 gives (m

t 
+ x

t
) mod 2

Table 6.3.2 Eight Possible Memory Update Functions
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There is a one-to-one correspondence between functions n2 : M1 x X1

M
2 
and functions fi

2 
: X

0 
x

T=2 by the remark above.

X1 + M2, so that the proposition is true for

Suppose Proposition 6.3.3 is true for arbitrary T. Note that fiTti =

n
T 
o

T 
x i

T
), where i

T 
: X

T 
.÷ X

T 
is the identity map on X . By

assumption, either fiT or 1 -
T 

can be constructed from the table.

If
T 

can be so constructed, then fiT*
1 
or 1 -fiTi.

1
can, since

ii =n 6 0 x i ) and since 1 -
T+1 T+1 T T Fl T+1 = (1 - rIT+1) ° (fi T 3c iT) •

If 1 - fi
T 

can be so constructed, modify n T.1.1 
1 

so that fiT+_ = n
7+1 °

[(1 - fir) x iT]. Then 
TIT+1 

or 1 - fiT+1 can be so constructed, since

1 - nT+1 = (1 - nT4-1) ° 1(1 - fiT) x iT] and either n
T+1

or 1 - n
T+1

is in the table. The proposition is therefore valid by the principle

of mathematical induction.

Suppose n1 = i0 (the identity on Xo) and n2 - n2
8
. Then

fi2-1(1) = { (0,1) , (1,0)} (6.3.27)

which is a non-rectangular event. The interpretation is that it is 

possible to determine the parity of the string (x0, xl, xT_1)

with a 1-bit memory. This does not seem to be a very interesting thing

to know, but complicates the analysis greatly.

An efficient specification of

IT = U fi
T 
1(M

T 
)

nT

(6.3.28)

would be useful. IT is not in general a field, but does contain O, X, and



- 158 -

is closed under complementation. The problem of specifying IT is

precisely the problem of determining the languages that can be

accepted by a two state time-varying automaton in T steps. Unfortunately,

there appears to be little work on this problem available in the

literature [Hopl, Arbl, Bol].

The analysis of this section, while not conclusive, suggests the

following conjecture.

Conjecture 

The event for which the probability of error is minimum is a

rectangular event either of the form

or

{0}m x 10,11T-m

{1}n x 10,11T-n.

(6.3.29)

(6.3.30)

In the next section, the problem will be reformulated as a FSFM

stochastic control problem. The minimum principle will be used to find

events superior to those of the form (6.3.29), (6.3.30). Thus, the

above conjecture is false.
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6.4 Application of the Minimum Principle 

The development in the previous section proceeded independently

from the remainder of the thesis. In this section, the problem of

hypothesis testing with 1-bit memory is recast to fit within the FSFM

format. The utility of the FSFM minimum principle will be illustrated by

the derivation of a memory update scheme to serve as a counterexample

to the conjecture of the previous section.

Let the variables x
1
(t), x

2
(t), u(t), w

0
(t), w

1
(t), v(t) take their

values in the set {0,1}. Suppose that

x
1
(0), w

0
(1), w

1
(1), w

0 
(T+1), w

1
(T+1)

is a sequence of independent random variables. Assume that x1(0), wo(t),

w1(t) take the value 1 with respective probabilities Xi, 
p0,

 pl and

let
0 
=1-X

1, 
q
0 
=1-p

o' 
and q

1 
= 1 - pl. Moreover, x

2
(0) = 0 and

m(0) = O.

Let state equations

x
1
(t) = x

1 
(t-1) (6.4.1)

x
2
(t) = (1 - x

1
(t-1)) w

0 
(t-1) + x

1 
(t-1) w

1
(t-1) (6.4.2)

m(t) = v(t) (6.4.3)

be defined. Then x
2
(t), t = 1, 2, ..., T+1 is a sequence of independent

zero-one random variables with probability p of one and probability q of

zero. With probability X0, p = p0, and with probability p = p
1, 1.

The memory is updated by
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v(t) = t(m(t-1), x2(t-1))

for T = 1, 2, ..., T+1 and u(T+2) is specified by

u(T+2) = yT+2 (m(T+1)).

The cost is

J = (x
1
(T+1) - u(T+2))

2 
•

(6.4.4)

(6.4.5)

(6.4.6)

Since x (T+1),u
1
(T+2) {0,1}, the expectation of J under the distribution

defined by nl, n2, 114.1 and Y
T+2 

is simply the probability of error.

Figure 6.4.1 illustrates the sequence of events.

When the appropriate identifications are made, the preceeding

problem can be shown to be equivalent to a FSFM problem. However, it is

straightforward to write down the equivalent deterministic problem from

the equations above.

Notice that the state set is {0,1} x {0,1} x {0,1}. This is

equivalent to the state set X. = {1, 2, 3, 4, 5, 6, 7, 8} when the

identifications of Figure 6.4.2 are made. Let V. = {0,1}. Then the

restriction on flt : X. + V. is thatU.0e constant on the sets of the

partition

{{1,5}, {2,6}, {3,7}, {4,8}} (6.4.7)

of X. (This corresponds to the fact that fl in (6.4.4) cannot depend on

x
1
(t).) Similarly, 

YT+2 
: X. + U. = {OM must be constant on the sets

of the partition

{{1,2,5,6}, {3,4,7,8}} (6.4.8)
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t=0: *transition to x
1
(0),

•observation of x
2
(0)

x
2
(0)

(no information)

•memory update v(1) (arbitrary)

t=1: •transition to x
1 
(1),

•observation of x
2
(1)

x
2
(1)

(observation 1)

•memory update v(2)

t=T-1: 'transition to x
1
(T-1), x

2
(T-1)

'observation of x
2
(T-1)

'memory update v(T)

t=T: 'transition to x
1
(T), x

2
(T)

•observation of x
2
(T)

'memory update v(T+1)

t=T+1: .transition to x
1
(T+1), x

2
(T+1)

•choice of control u(T+2)

.observation of x
2
(T+1)

.memory update v(T+2) (arbitrary)

Figure 6.4.1 Sequence of Events

(observation T-1)

(observation T)



Ater .4%.44%%•4..
m(t)=0 m(t)=1 m(t)=0 m(t)=1

/\ /\ /\ /\
x
2
(t)=0 x

2
(t)=1 x

2
(t)=0 x

2
(t)=1 x

2
(t)=0 x2(t)=1 x2

(t)=0 x2(t)-1

X 1 2 3 4 5 6 7 8

Figure 6.4.2 Definition of the State Set X for the FSFM Problem

rn
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of X..

From Figure 6.4.2 and the problem specification, it is easy to

compute the parameters of the equivalent deterministic problem. Let P..
v

17

be the probability of a transition from state i to state j when the

memory update function is identically equal to v.

q
0 
p
0 
0 0 0000 0 0 q0

 
p
0 
0000

p
0 
0 0 0 0 0 0 0 0 q0

 
p
0 
0000

q
0 
p
0 
000 000 0 0 q0

 
p
0 
0000

P 
0 
=

q
0 
p
0 
0 0 000 0

P 
1 
=

0 0 q0
 
p
0 
0000

0 0 0 0 q1 p
1 
0 0 00000 0

0 0 0 0 q
1 

p
1 
0 0 000000

0 0 0 0 q
1 
p
1 
0 0 0 0 0 0 0 0

0 0 0 0 q
1 
p
1 
0 0 o o o o o o

.•••••

Similarly,

0 1

0 1

0 1

h 
o

T+2
=

0
h
T+2

1 =
1

1

1

1 0

1

71
0 
= [A

0 
000 A

1 
0 0 0]

(A11 other terms in the cost are zero.)

q
1 
p
1

ql p1

q1 
p
1

q1 p
1



- 164 -

At this point, attention is restricted to the special case T = 3,

3 1
P1 4 = p0 :p and X0 = Xi =

Y 5* 
: {1,2,5,6} 0,

1
The optimality of the trial solution

{3,4,7,8} 1

TI
4
* : {1,2,3,5,6,7} 9. 0, {4,8} 9- 1

n *
3
 :{1,2,3,5,6,7} 0, {4,8} 9- 1

n *2  
:{1,3,5,7} 0, {2,4,6,8} 1

will be tested by the FSFM minimum principle.

The condition

T1
3
* n3

w*(2) P O*(3) W*(2) P $*(3)

will be tested first. (Arbitrarily assume nl* E O.)

7*(o) = [À0 000 X1 oo o]

n*
1

w*(1) = w*(0)P = [X
0
q
0 10

p
0 
00/

1
q
1 
1
1
p
1
0 0]

fl
2* 2 2 , 2 ,n*(2) = 7*(1)1) = [X0cl0 "0I0p0 X0cle XOPO Alq1 Alqlpl0

Y5
h =

X
1
q
1
p
1 
1
1
p
1
2
]

1
1
1
1
0
0

4)*(5) = 0

n,* y * y *

.*(4) = P (01(5) + h 5 = h 5
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0

0

0

n4*
1

(I)*(3) = P (1*(4) =
1

1

1

O

-

Substituting p
0
 =

1*(2) is obtained.

7*(2)

1 3
p_
1 41 
=

9 
3 3 

A
0 
=

1

=
)1

1

1
— the following
2'

3 3 9

expression for

[ 
32 32 32 32 32 32 32 32

Notice that

1
Po 4

0 Po 4

1
Po 4

1

P
o 

(1)*(3) =
1

pl.*(3) po

q1

4
1
4

1 q1
1
4

1
q1

1
4

1
q1— —

1
4 _

03
The minimizing n3 for 7*(2) P (1)*(3) is obtained as follows. Since

1
32 - 

< ti N 
'64' " 

A 
3 =

(c)A 
3"'" = 

n Since
3—
6 4

<
32'

< 3
64 32'

5
64 <

9 p

32' "3

III

'

fi
3
(3) = PI

3
(4) =

3
(6) = 63(7) = 6

3
(6) = 1. Since 6

3 3
* the sequence



ni*, n2*, n3*, n4*, ys*

that 
n2*, fi3, 114*,
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cannot be optimal. However, it can be verified

y
5
* does satisfy the necessary conditions.

The interpretation of this result is obtained with the aid of

Figure 6.4.2. The map ni* E 0 is arbitrarily chosen since the first

observation contains no information. n2* simply transmits the first

observation. n
3
*, n

4
* put a 1 in memory if the observation is 1 and the

previous memory state is 1. The net result is a memory structure

that tests for the observation of three l's. Thus

{(1,1,1) } =
3 

(1)

114*

is the event realized.

In contrast, n
3 
puts a zero in the memory if the previous memory

state was zero and the observation was zero. The net effect is a memory

structure n
4 
formed from (n1* n

2
* fl3, n4*). The memory structure places

a zero in memory if the first two observations were zeros. Otherwise, a

zero or one is placed in memory according to whether the last observation

is zero or one. Thus the non-rectangular event realized is

ii3 1(1) = {(1,1,1), (0,1,1), (1,0,1)}.

A3 1(1) is a considerably closer to the (unrealizable) optimum event

{(1,1,1), (0,1,1), (1.0.1). (1,1,0)} than ii3*-1(1): only the event

(1,1,0) is misclassified.

There are two noteworthy features of the preceeding analysis. First

application of the minimum principle has resulted in a counterexample to

the conjecture of the previous section. This is impressive since the
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problem certainl y revolves around the determination of signaling control

laws in both the formal and informal meanings of the term. As was

pointed out in Chapter 3, the presence of signaling control laws

indicates the absence of a universal extremal so that the minimum

principle is not necessarily very helpful for this class of problems.

Second, the preceeding example for T=3 suggests more general memory

structures for T > 3. For example, consider the event E C X0 x Xi x

x X6,

E ={{1} {1} x {1} x {0,1} x {0,1} x {I}}UMO x {1} x {1} x

{o} x 101 x{1}1

1 3 1
where A is the complement of the set A. For p = 

p1 
X = X = —

0 4  4 0 1 2

as before detection of this event results in a probability of error

832
where

2048

case T=3.

791 832
P -e 2048 2048

is the probability of error the event constructed for the

Thus a sequence of events of decreasing probability of error can

be constructed for T 4- 00. However, verification of the optimality of

these events requires the application of a sufficient condition of

optimality such as the dynamic programming algorithm discussed in the

next section.
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6.5 Application of Dynamic Programming 

In section 2.5, it was stated that the equivalent deterministic

problem to the FSFM problem was not always the most efficient such

problem. In this section, this statement is justified by demonstrating

that the hypothesis testing problem of this chapter is a fact equivalent

to a deterministic problem with a two dimensional state space.
1 

Although

the dynamic programming equations for the two dimensional problem are

considerably simplified, the analysis is still too difficult to be

completed by hand.

Define the quantities

[
ct(t) = Prob(memory = 1 I H0)

S(t) = Prob(memory = 1 Hi)

(6.5.1)

(6.5.2)

for t = 0, 1, ..., T. Let 6..
ij
(t) = k mean that if m(t-1) = i, x(t-1)

then m(t) = k, where i, j, k E {0,1}. Then the state equations

[a(t)

= f
t
(a(t-1), a(t-1); O(t)) (6.5.3)

a(t)

can be written where

1
This fact was pointed out to the author by Dr. H. S. Witsenhausen.
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f
t
(a(t-1), f3(t-1); 0(t)) =

elimPeelomgo-eol(t)Po-eoomg 0o

0 811(t)P1+010(t)c11-001(t)P1-000
(t)g0

[a(t-1)] 
%IMP() 000(t)c10

S(t-1) 01
(t)p

1 
+ e00(t)q1

(6.5.4)

Minimizing the probability of error is equivalent to minimizing VT(a.S),

where

- a + a) a s

- a + (i) a<S

(6.5.5)

The state equations (6.5.4) with the cost function (6.5.5) define a

deterministic optimal control problem equivalent to the prcblem of

hypothesis testing with 1-bit memory.

The dynamic programming backward algorithm for the optimal control

problem is

v
t-1 

(a,13) = min Vt 
(f
t 
(a, (3; 8)) (6.5.6)

where VT is given by (6.5.5). The optimal memory update functions are

determined as follows. Let el (t) be the minimizing control for (a,S)

E R 
'

(t) where R (t) is a convex region with piecewise linear boundary.
1

Then the minimizing control law for (a,S) E Rk(t) is defined by

1
such a region Rk(t) for which the minimizing 0 is constant exists by
analysis similar to that of Chapter 4.
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nt (id) = k

where 0k(i,j) = k.

(6.5.7)

1 3 1
For the case p

0
 = 

p1 
= = AI = -2-, the dynamic programming

algorithm has been carried for t = T and t = T-1. The results are

illustrated in Figures 6.5.1 and 6.5.2. Notice the functions V
T
, V

T-1

are piecewise linear and concave, as might be expected from the analysis

in Chapter 4.

Although obtaining a 2-dimensional equivalent deterministic optimal

control problem simplifies application of the dynamic programming

algorithm, the computation of V
T-2

is still too complicated to be computed

by hand. Solution by digital computer is required.
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R1 (T)

VT
1
(a,f3) = 

1 
- (1 + a - a)2

YT1 : {1} + 1

{0} + 0 R2(T)

VT
2
(a.8) = i (1 + S - a)

YT
2 
: {1} ± 0

{0} + 1

r I 
÷Figure 6.5.1 The Function V

T 
(Note y

T
1 
: 11/ 1 means

yT 

1
(1) = 1)

a(T)



B(T-1)

1

2
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R2 (T-1)
R (T-1)1 1 1 3

1.77_1
2 (ct,13)= 7 [i+ict- TS]

vT_I1 (ct,S)=
1 
[1+a-fi]

rit
2:
{11}

: {11,10} 1 177- 0

(00,01) 0

VT_ (a,$) = 4
1 1 3 1 

VT_I (a,a) =

ET+la-I13

o
T foo} 4-o
77.1

oT4 : 
{oi,n} 4,

0

(10,00 4- o

0.0) 4

R7(T -1)

1

a T-1)

Figure 6.5.2 The Function VT_
I 
(Note n : 1111 -÷ 0 means n(1,1) -o

11 fol,lo,00l is the complement of {ll})
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CHAPTER VII

SUMMARY, CONCLUSIONS, AND SUGGESTIONS

FOR FURTHER INVESTIGATION

This chapter summarizes the results of the thesis, with a

brief discussion of the conclusions that can be drawn from the

research. A list of possible topics for future investigation

is included.

7.1 Summary 

The thesis began in Chapter I with the formulation of a

rather general problem in the design of engineering control systems.

The formulation was intended to motivate the FSFM model studied in

the remainder of the thesis. The FSFM problem is a non-classical

stochastic control problem, and so the existing literature on this

and other closely related topics was briefly surveyed. The chapter

closed with a brief summary of the remaining chapters.

The FSFM model was introduced in Chapter II. It was demon-

strated that a number of apparently more general problems

can be reduced to FSFM models, so that most of the features of the

general ergineering control system of Chapter I can be incorporated

in the FSFM formulation. Then an example was given to illustrate

the important signaling strategies that must be considered in
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non-classical stochastic control problems. Finally, a deterministic

optimal control problem equivalent to the FSFM problem was derived.

In Chapter III, the FSFM minimum principle was stated and

proved. A Kuhn extensive game model equivalent to the FSFM problem

was obtained so that the notion of a signaling strategy could be

precisely defined. The importance of this concept was established

by proving the existence of a universal extremal for problems without 

signaling strategies (i.e., with perfect recall). A numerical

optimization algorithm, the person-by-person min-H algorithm, was

derived based on the minimum principle.

In Chapter IV dynamic programming was considered. As might be

expected, dynamic programming is not a practical procedure for

numerical optimization except for simple special cases.

In Chapter V, the infinite horizon version of the FSFM model

was formulated. The discounted cost criterion was considered since

this criterion led to a well-defined equivalent deterministic

problem. The Value and Policy Iteration methods were extended to

the FSFM problem, as were algorithms of sondik implementing these

methods.

A problem of hypothesis testing with 1-bit memory was considered

in Chapter VI. Although an optimal solution was not obtained, use

of the minimum principle suggested an interesting class of memory

updates. This result provides some indication that control
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theoretic methods can be useful for design of information-handling

systems.
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7.2 Conclusions

The fundamental difficulty in non-classical stochastic control

problems in general, and the FSFM problem in particular, is the

occurrence of signaling strategies. This phenomenon, which does

not occur in classical stochastic control, complicates the analysis

in an essential way, since the choice of control laws at different

time instants is tightly coupled. As a consequence, the min-H

algorithm proposed for the numerical solution of FSFM models is

not guaranteed to converge to the globally optimal solution. However,

as illustrated in Chapter 6, the min-H algorithm in conjunction

with some engineering judgement in the choice of the initial

guess can be an effective tool.

The applicability of the algorithms implementing dynamic

programming is more limited. The basic difficulty here is classical;

it is necessary to solve a high dimensional functional equation to

implement dynamic programming. In spite of the large amount of

work devoted to this problem, no generally applicable satisfactory

procedure is available. Thus, the dynamic programming approach is

appropriate only for problems with a rather small state set (around

10 states at most).

Even the min-H algorithm is not adequate to handle large scale

engineering systems directly. The problem is basically combinatorial:

all the observation, memory, and communication sets are lumped with



- 177 -

the state set so that the state set becomes very large. For

example, a system with 100 physical states, and two controllers

each with a 10 state memory set and each observing an output

that takes 10 values requires a FSFM model with 1 million states!

A number of techniques must be employed to handle such a

problem. One generally applicable approach is to remove some of

the redundancy associated with the FSFM representation of the

problem by taking advantage of the factorization of the state set

into the physical and memory sets. For example, notice that with

the memory updates at a particular instant fixed in the above

problem, transition to 990,000 of the states (those corresponding

to memory states not chosen) is impossible. Thus, for computational

work, it is better to retain the factorization of the state set

into the physical state set and the memory set. Other factorizations

may be possible in specific instances.

An important technique in large scale systems theory is

aggregation. As applied to the FSFM model, this technique con-

sists of grouping states together into aggregate states and only

considering transitions between the aggregate states. The resulting

model may closely approximate the original model if the aggregate

states are well chosen, and will be more tractable computationally.

Another possibility involves utilizing any special structure

that occurs in a particular large scale problem. Generally speaking,
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the special structure of the problem will be reflected in the fact

that many state transitions will not be allowed. Thus, the

associated state transition matrices will be sparse. A particular

example of this situation has already been mentioned above in

connection with the memory sets. Exploitation of the structural

properties of the transition matrices requires a flexible representa-

tion. One possibility might be to store the transition matrices

as a PL/1 data structure.

To summarize, study of the FSFM model was motivated by the

problems of control and information in large scale systems. The

FSFM model does provide a vehicle for the study of phenomena that

occur in such systems. However, direct solution of large scale

system problems by the algorithms of this thesis will not be possible,

in general, due to limitations on the size of the state set for which

the algorithms are computationally feasible. Techniques such as

aggregation can be used to reduce a large scale system problem to

a computationally feasible size, and any special structure of the

problem should be exploited to mitigate the computational burden.
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7.3 Suggestions for Future Research 

The study of non-classical stochastic control problems is still

at an early stage. Therefore, there are many possibilities for

further investigation. Some of these are listed below.

(1) Further study and refinement of the FSFM model.

(a) Study of the interaction of communication and control

in the FSFM context

(b) Study of the tradeoff between employing signaling

strategies and providing additional communication

channels.

(c) Extension of the analysis of Chapter VI to problems

with larger memories.

(d) Specialization of the FSFM problem to the case in

which the sets involved have an algebraic structure.

(e) Determination of upper and lower bounds for the

optimal cost without computing the optimal control

laws.

(2) Studies aimed at reducing the computational burden.

(a) Exploitation of the structure of the FSFM state

space as the product of the physical state set

with other sets.

(b) Replacement of the matrix representation of the FSFM

model with one more suited for computational purposes

(e.g., a PL/1 data structure).
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(c) Examination of the possibility of parallel computation

in the min-H algorithm.

(3) Application of the theory to specific problems.

(a) Traffic networks [Houl].

(b) Computer communication networks [Kal].

(4) Extensions of the theory

(a) To non-sequential stochastic control problems.

(b) To FSFM games.

(c) Generalization of the signaling strategy notion to

continuous state spaces.

(d) Study of linear designs for linear, quadratic,

Gaussian problems by techniques similar to those

developed for the FSFM problem.
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