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FOREWORD

Almost 20 years ago, F, L. Whipple announced the broad scientific goals that
comprise the subject of this publication. These goals encompassed the use of arti-
ficial earth satellites for geodesy, that is, the study of both the earth's figure (its
geopotential) and its shape (its geometric surface). Although an astronomer rather
than a geodesist, Whipple had the vision to see that these scientific opportunities would
flow naturally from the Baker-Nunn camera network, then under construction. Approxi-
mately 10 years later, Whipple's ambitious geodetic goals were crystallized into the
National Geodetic Satellite Program (NGSP). The NGSP focused on the determination
of the gravity field of the earth represented by spherical harmonics to degree and order
15 and the determination of geocentric station coordinates to 10 m. Smithsonian Astro-
physical Observatory's (SAO) pioneering work in satellite geodesy complemented the
other main research efforts supporting the NGSP. '

When the first artificial earth satellite was launched, geodesists had tentatively
estimated only three or four coefficients of the gravity field, global geocentric coor-
dinates were known to perhaps 500 m, and the earth was assumed to be in hydrostatic
equilibrium. The subject of physical geodesy at that time was concerned with obtain-
ing the earth's fiattening or principal-oblateness term from a limited sample of local
measurements. With the launch of numerous satellites dedicated to research, geodesy
as a study has become completely changed. Now, from satellite measurements, the
principal parts of the gravity field are known far more accurately than previously
imagined. The nonhydrostatic figure of the earth, deduced from satellite observations,
was a revelation to geodesist and geophysicist alike. Intercontinental distances have
been determined to 5 or 10 m, and terrestrial geodesy now fits into a more comprehen-
sive framework, Global properties of the earth are obtained from satellite data; local
properties, from terrestrial data, Thls report presents a blending of both satellite
and terrestrial methods.

Through the last decade, several groups have heen pursuing studies in satellite
- geodesy, using many different methods and types of data. SAO has employed analytical

sclutions for the equations of motion, as described in Lundquist and Veis (1966) and
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Kaula (1966a) (see also Part III of this Report). Alternatively, numerical methods

have been used (Anderle, 1966; Martin, 1972). Both geometrical and dynamical methods
have been employed in studying data obtained from satellites, From simultaneous
satellite observations, we can determine site coordinates without precise knowledge of
the satellite's orbit, while with knowledge of satellite motion, we can determine the

geopotential in addition fo site coordinates.

Satellite observations have been made by many agencies with different camera
systems. SAOQ has obtained both Baker-Nunn camera and laser observations. Others
include observations by the National Ocean Survey BC-4 cameras, the National Aero-
nautics and Space Administration's (NASA) MOTs cameras, PC-1000 cameras, and a
number of individual systems. Laser range daia have been obtained by NASA /Goddard
Space Flight Center (GSFC) and by Centre National d'Etudes Spatiales, and doppler data
have been taken in abundance by the TRANSIT system. Additional ranging systems,
such as SECOR, have also been employed. Survey data and surface-gravity data are
examples of ground-based data that have heen added to the solutions.

Comprehensive gravity-field solutions using numerical—integration methode with
doppler data have been undertaken at the Applied Physics Laboratory (Yionoulis,
Heuring, and Guier, 1972; Guier and Newton, 1965). Similar analyses at the Naval
Weapons Laboratory have led to global gravity-field determinations (Anderle, 1965a, b,
1967a, b; Anderle and Smith, 1967). A combination of doppler and camera data with
analytical techniques has been employed by Kaula (see especially Kaula, 1966¢). Kaula
(1966b) also used surface-gravity data to verify satellite-determined gravity fields and
attempted a combination of surface-gravity and satellite data. At NASA/ GSFC, numer-
ical methods combining camera and laser data with surface-gravity data have resulted
in geopotential models (Smith, Lerch, and Wagner, 1973).

These studies express the geopotential in spherical harmonice. Alternative
representations that use numerical methods and doppler tracking data have also been
explored (sce, e.g., Koch, 1968; Koch and Morrison, 1970; Koch and Witte, 1971),
A number of these methods have combined surface-gravity data with satellite data.
At Ohio State University, Rapp (1968, 1971, 1973) has obtained comprehensive solu-
tions from surface-gravity data, while Arnold (1965, 1966, 1972) has determined
gravity anomalies directly from satellite data,



Resonance between the satellite orbit and the gravity field allows selected
spherical-harmonics coefficients to be established. Zonal harmonics are a specific
example of such resonance, and a number of determinations have been made
(Cazenave and Forestier, 1971; King-Hele, Cook,' and Scott, 1969; King-Hele and Cook,
1973a,b). Resonance with selected tesseral and sectorial harmonics has been considered
in all comprehensive gravity~field determinations. In addition, other selected reson-
ances have been studied (Anderle, 1965b; Anderle and Smith, 1968; Hiller and King-
Hele, 1972; King-Hele, 1973a,b; Pieplu and Lefebvre, 1973; Wagner, 1968a, b;

Yionoulis, 1963; Douglas and Marsh, 1970)

The methods employed in the determination of station coordinates have been as
diverse as those for studying the geopotential. Geometrical methods have been
utilized at the .National Oceanic and Atmospheric Administration, Analyzing the BC-4
data, Mueller (1974) has combined geometrical camera data from the BC-4 and the
SAO networks with simultaneous range observations from the SECOR system. Semi-
dynamical methods, using satellite orbits as an intermediary, have beén successful
(Cazenave and Dargnies, 1971; Holland, 1973; Krakiwsky, Wells, and Kirkham, 1972;
Smith, Kolenkiewicz, and Dunn, 1972). Dynamical determinations of site coordinates
have been made by Anderle (19652, 1974), Anderle and Smith (1967), Marsh, Douglas,
and Martin (1971), Marsh, Douglas, and Klosko (1973), and Smith et al. (1973). In
another approach, station coordinates have been determined by the Jet Propulsion
Laboratory (JPL) from deep-space-probe data (Mottinger, 1965). More recently,
lunar laser range data have begun to provide station coordinates (Williams, Mulholland,
and Bender, 1972).

With such a diversity of approaches and data, a comparison of ali these results
and contributions is far beyond the scope of the present publication. Our specific
cbjective here is to deseribe the process used to obtain the 1973 Smithsonian Standard
Earth (If)) (SE IIN). With similar documentation from other groups, a careful com-
parlson of all the results can be made; such a comparison is in preparatwn.

The geodetic parameters for SE III were first 'presenterd at the Spring meeting of
the American Geophysical Union (Gaposchkin, 1973) and at the First International
Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics (see Parts



V and V). These resuits are the continuation of work at SAO on the determination of
fundamental geodetic parameters. Major calculations were published in 1966 (SE I)
(Lundquist and Veis, 1966) and again in 1969 (SE II) (Gaposchkin and Lambeck, 1970).
These, in turn, were sequels to earlier results (Izsak, 1963a, 1964, 1966; Kozai,
1963a, b, 1964; Kohnlein, 1965; Veis, 1961, 1965). |

The parameters that define | Standard Earth consgist of 1) a set of cartesian
coordinates for satellite-tracking stations and 2) a set of spherical-harmonic coeffi-
cients representing the earth's gravitational potential., Both sets of data are expressed
in an orthogonal geocentric coordinate system defined by the Conventional International
Origin (CIO) and by the Mean Greenwich Ohservatory, which determines the zero-degree
meridian. The CIO is intended to be the mean pole of 1900 fo 1905 as established by the
International Association of Geodesy in 1967. The practical realization of this refer-
ence system is the use of pole-position data provided by the Infernational Polar Motion
Service and of Universal Time (UT1) as defined by the International Bureau de 1'Heure.
These data provide the transformation between terrestrial and celestial reference
frames. Camera observations are expressed in the celestial system with precession
and nutation through the Smithsonian Astrophysical Observatory Star Catalog (Staff,

Smithsonian Astrophysical Observatory, 19686).

The calculation of a Standard Earth begins with five data types:

A, Individual satellites observations.
B. Simultaneous satellite observations,
C. Observations of deep-space probes.
D. Burface-gravity data,

E. Burface-triangulation data.

The individual and the simultaneous satellite observations from the SAO Baker-Nunn
and laser network, described in Part II of this Report, serve as the foundation of
SAO's analysis. The deep-space-probe data were provided by JPL in the form of
normal equations, A compilation of surface-gravity data was obtained and statistical
methods developed to transform these data into a form suitable for combination with
satellite data (Part IV). Surface-triangulation data, expressed as geodetic coordinates,



are used as observations. The calculation begins with a determination of zonal har-
monics from the long-period and secular perturbations, and these values are employed

throughout the remaining analysis.

Individual satellite observations are combined with Surface—gravity data to dét_er—
mine the gravity field, while individual observations, simultaneous observations,
deep-space-probe observations; and surfaee—triangulation data all contribute to the
determination of station coordinates. The solution for potential coefficients depends
on the 'accuracy of station coordinates, and vice versa. If imperfections exist in the
modeling of the gravity field, inaccurate orbits will result; and, of coui'se, orbital
errors limit the usefulness of individual observations in the determination of station
coordinates in the dynamic:,a.l mode. Conversely, inaccuracies in station position
limit the determination of gravity-field parameters. This interdependency has led
SAO to seek both station coordinates and gravity-field coefficients in the same calcula-

tion.

In previous work (Lundquist and Veis, 1966; Gaposchkin and Lambeck, 1970, 1971),
solutions have been obtained for both coordinates and gré,vity-field coefficients in the
same process. In this volume, however, these calculations are separated, Such a
separation allows an optimum selection of orbits for each method. For example, orbits
corrupted by large gravity-field errors — €. g., resonances, which must be included in
the determination of potential coefficients — are eliminated from the determination of

coordinates.

For SE M, computations are performed in parallel for each iteration, and the
separate solutions are used as the initial values for the subsequent iteration. Each
iteration starts with an adopted set of coordinates and potential coefficients. Refer-
ence orbits are calculated for each arc of an individual observation that was used.
Then, in parallel, the system of normal equations is caleulated for both potential
coefficients and station coordinates. Each normal system is then combined with the
other relevant ones, The combination of normal equations allows the use of different
relative weights for each type of data. Since the absolute a priori weights for each
set of data may he incorrect for a number of reasons, we have determined the
optimum relative weight for each set of normal equations, It is reas suring that the
relative weights determined in this way are reasonably close to the a priori values,

xiii



Establishing absolute uncertainties is very difficult since we have poor estimates
of the systematic errors involved. Therefore, we do not rely on formal statistical
quantities to establish errors but use intercomparison of several estimates (e.g.,
4comparing the observed direction between two stations with the solution). The esti-
mates arrived at in this way have proved quite reliable. The formal statistics are

used to propagate the uncertainties once the overall uncertainty is known.

The details of each solution and the comparisons made are given here. A number
of other computations are becoming available, and further comparisons are certainly
of interest. New techniques and data are also going to supersede these results. The
continued comparison of these results with the latest information will allow further

assessment of the methods and tests used here.

E. M. Gaposchkin
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ABSTRACT

The origins of the satellite geodesy program at the Smithsonian Astrophysical
Observatory are described, starting wifh the International Geophysical Year, continu-
ing through a number of international programs, and culminating with the National Geo-
detic Satellite Program and the results described in this publication. The philosophical
basis for the Bakér-Nunn camera and the laser ranging system, the evolution of inter-

national scientific cooperation, and the significance of the results are discussed.

RESUME

Description des origines du programme de géodésie par satellite du
"Smithsonian Astrophysical Observatory," de 1'Année Géophysique Interna-
tionale a 1'apogée que représente le Programme National de Satellites
Géodésiques, en passant par un certain nombre de programmes internationaux;
les résultats en sont décrits dans cette publication. Egalement discutés:
le fondement philosophique de 1'appareil photographique Baker-Nunn et du
systeme Taser de repérage, 1'évolution de la coopération scientifique in-
ternationale et la signification des résultats.

KOHCIIEKT

OMUCHBAWTCA TNMPCUCXOKNEHUST [IPOTPaMMEH TeCle3Nld CIYTHMKOE B
Cmutconuan Acrpodpusuueckon OGcepraTopnuu, HauwHad ¢ MeXIyHapomHCOTO
Tecfuzwvyecroro I'cma, NPONCIXAACE B TeUSHUE UYNUCHE MEXIVHADODHLX
nporpaMM # HoCcTUTANW EhHclued Toukwm mpw TocymapcTeeHHoii [eomesuuec—
ko CHyTHUKCOBOR UporpaMMe M DPe3ynhrTaTaxX ONUCHBAEMHX B 3T0% cTarTbe.
OGeyxpmawrca $unocoficKar OCHOBZ Kamepw Loxep-IyHH u nazeproff pac-—
CTOANNEG UIMEPALIel CUCTeMH, 3BOMKLWY MeXLYHAPONHODO HAYUYHOTC COT—
NYOHUYeCTRa M 3HAUEeHUdA pesyanaToé.

nT ANY AT T :Wf‘)

oRPCENING PACT



PART I

HISTORICAL INTRODUCTION

C. A, Lundquist and F. L. Whipple

1. INITIAL OBJECTIVES OF THE SAO SATELLITE-TRACKING PROGRAM

As the principal objective of its participation in the International Geophysical Year
(IGY), the Smithsonian Astrophysical Ohservatory (SAQO) conceived of and established
a systematic program to observe positions of artificial satellites and to derive geo-
physical information from these observations (Whipple and Hynek, 1956, 1958a, b).

The fundamental concepts for this program existed in the minds and studies of SAO
Director Fred L. Whipple and his colleagues (see Ryan, 1952) well before President
Eisenhower announced in 1955 that the United States would launch a scientific satellite
during the IGY. These plans originated with Project Orbiter, followed by Project
Vanguard, which in turn was superseded by the Army program that launched Explorer 1
(5800101), the first United States satellite (Hayes, 1968). When this satellite attained
its orbit on January 30, 1958, the SAO observation network and analytical apparatus
were ready with partial operational status.

As stated in 1957, the principal objectives of this early SAO activity were as fol-
lows: 1) "to tie together the observing stations and the center of the geoid to a precision
of the order of 10 m," 2) "to add appreciably to our knowledge of the density distribu-
tion of the earth, particularly in crustal volumes,' and 3) to provide "the value of the
[atmoépheric] density a few kilometers above the initial perigee distance, and periodic
effects or predictable cyclic effects that may occur in the earth's high atmosphere'
(Whipple and Hynek, 1958a). The first two objectives evolved into similar, but more
demanding, ones for subsequent programs, such as the National Geodetic Satellite
Program (NGSP) (Rosenberg, 1968).

PRECEDING PAGE BLANK NOT FILMED
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2. ESTABLISHMENT OF THE BAKER-NUNN NETWORK

To establish the required satellite-observation capability, SAO initially developed
a photographic system (Whipple and Hynek, 1958b). The basic tracking camera,
named Baker-Nunn after its optical and mechanieal designers, has f/1 Schmidt optics.
During the first several years of field operation, a Normann time standard, also
named for its de éig'ner, provided epoch measurements. The Baker-Nunn tracking
system has accuracies in the arcsecond and millisecond range. Twelve stations with

this equipment went into operation as a global network during the IGY.

With the passage of time, the Baker-Nunn network continued operation with only
small changes (Whipple and Lundquist, 1967). The modes of camera operation required
slight modification to accommodate a variety of satellite characteristics. A few sta-
tions were moved to higher latitudes because many satellites were launched into high-
inelination orbits. A new, more accurate, time standard replaced the Normann
standard.

It is a tribute to the designers of the Baker-Nunn system that for nearly a decade,
the acecuracy of the Baker-Nunn data exceeded those of the analytical treatment of
these data and of the geodetic parameters derived from them. Indeed, Baker-Nunn
observations contributed appreciably to the NGSP results reported here. By about
1966, however, the accuracy of the derived geodetic parameters began to approach
~ that of the observations, thus motivating significant moves toward deployment of new
tracking systems of superior accuracy.



3. INTRODUCTION OF LASER SYSTEMS

When the aceuracy of photographic methods began to pose a serious limit on
future geodetic investigations, laser systems to measure earth-to-satellite ranges
offered the best prospect for substantial reduction of measurement uncertainties.
Range measurements with pulsed laser systems became possible in 1964 after the
BE-B satellite (6406401), which carried an array of optical retroreflectors, was
launched (Plotkin, 1964). In 1965, SAO and the General Electric Company began
laser ranging experiments in conjunction with the Baker-Nunn system at Organ Pass,
New Mexico {Anderson, Lehr, Maestre, Halsey, and Snyder, 1966).

Experience with the equipment at Organ Pass led to the specification and develop-
ment of a greatly improved instrument, and the prototype model of this ruby-laser
system began operating in late 1967 at Mt. Hopkins Observatory, Arizona (Lehr,
Maestre, and Downer, 1968). After appropriate tests of this prototype and after
identification of design modifications indicated by them, SAO procured three additional
laser ranging systems. In late 1970, these three units began operating at the SAO -
sites in Arequipa, Peru; Natal, Brazil; and Olifantsfontein, South Africa. The proto-

type remained at Mt. Hopkins.

These SAO instruments, and similar laser systems deployed by other groups,
contributed the major data base used in the final NGSP results presented here. It is
the improved acecuracy of these data, relative to earlier observations, that allows

further refinements of geodetic parameters.



4, EVOLUTION OF INTERNATIONAL COOPERATION

The network of Baker-Nunn satellite-tracking stations was conceived by SAO as
a cooperative international enterprise under the aegis of the IGY. Its implementa-
tion depended crucially on agreements between SAO and appropriate scientific organi-
zations in the nations hosting the stations. Many of these agreements have continued
to the present, with occasional renewals and modifications as needed. The viability
and success of such a network stem from a recognition that little can be accomplished
on global problems by a single station working in isolation, whereas a well-coordinated
global network can achieve much.

The cooperative aspects of the efforts coordinated by SAQ naturally extend to the
analysis and interpretation of the data, TFirst, it has been a policy that data generated
by the network are available to all network participants. Also, SAO data are even-
tually published or otherwise made available to the general scientific community,
Second, several visiting scientists from host countries have been deeply involved at
SAOQ in geodetic investigations that employ the nefwork data. In particular, G. Veis
of the National Technical University in Athens and Y. Kozai of the Tokyo Astronomical
Observatory have contributed to the success of the network; some of their principal
works are given in the References and Bibliography, at the end of this Report. K.
Lambeck, 8. Hamid, L. Aardoom, and G. Giacaglia all made contributions to the pro-
gram during their stay at the Observatory.

In recent years, cooperative efforts have increased further through various inter-
national observing campaigns. These campaigns involve a concerted effort among the
several existing networks, as well as between individual stations. Such campaigns
have been responsible for some of the most valuable data used in the analyses reported
here. Thus, credit for the basic support behind these results must go to many nations,
organizations, and individuals.



5. COOPERATIVE OBSERVING PROGRAMS

The first of the internetwork cooperative observing programs occurred in the
spring of 1967 (Lundquist, 1967). The timing of this campaign followed the launch of
Diademe ] (D1C, 6701101) and Diademe 2 (D1D, 6701401), which carried retroreflec—
tors for laser ranging. The major participants, Centre National d'Etudes Spatiales
(CNES), Goddard Space Flight Center (GSFC), and SAO, arranged an observing schedule
to be followed by the stations of these three organizations. The arrangements
emphasized the need to coordinate observations taken by the small number of laser
instruments in operation at that time. Lasers were located at three CNES stations,
in Haute Provence, France; Colomb-Bechir, Algeria; and Stephanion, Greece; at a
GSFC station in Greenbelt, Maryland; and at the SAO station in Organ Pass, The

Baker-Numn and other camera systems also participated.

For this observation campaign, intervals of favorable satellite visiblity lasting
several weeks were selected for the five satellites with laser retroreflectors. During
each selected interval, all participating stations were dedicated to obtaining maximum
tracking coverage of the designated satellite. This became known as the saturation-
tracking mode. Such periods of high-density data are particularly valuable in deter-
minations of longitude-dependent coefficients in the gravity field of the earth,

SAO took the initiative in organizing a second international geodetic-satellite
tracking effort in 1968, following the launch of Geos 2 (6800201), Geos 2 was the
second satellite launched under the aegis of the NGSP equipped with retroreflectors,
Again, intervals of several weeks were designated for saturation tracking of the six
retroreflector satellites. By 1968, a few more laser instruments were operational,
and they participated in this observation campaign. The two CNES lasers were
located at Haute Provence and at the SAO station in San Fernando, Spain; two NASA
lasers were at Greenbelt and at Rosmund, North Carolina; and an SAO laser was

'loéated at Organ Pass.



A two-laser collocation experiment was conducted at the SAO Mt, Hopkins Obser-
vatory in 1969. A GSFC mobile laser system and the S8AO prototype obtained simul-
taneous observations on Geos 2, enabling an evaluation of system performance to be
made.

The next observation campaign in this series was the Infernational Satellite
Geodesy Experiment, organized by CNES in conjunction with the launch of Peocle
(7010901), a new retroreflector satellite in a low-inclination orbit (Brachet, 1970).
This effort extended from January 5 to August 31, 1971.

10



6. EVOLUTION OF RESULTS

The results presented here by SAQ, corresponding to the completion of the NGSP,
are but the latest in a sequence of advances in the determination of geodetic param-
eters. This sequence started with the early works of Izsak (1963a, 1964, 1966), Kozai -
(1963a, b, 1964), and Veis (1965).

A major effort in 1966 resulted in the first Smithsonian Institution Standard Earth
(Lundquist and Veis, 1966), the combined work of many authors. This was the first
solution for geodetic parameters based on a combination of dynamical and geometrical
data and analyses. The 1969 Smithsonian Standard Earth (II) (Gaposchkin and Lambeck,
1970) was the next milestone in the SAO series. This solution for geodetic p-arameters
not only combined dynamical and geometric data, but also incorporated surface-gravity
information and results from Jet Propulsion Laboratory's Deep Space Net. This was
also the first solution to employ some laser range data, resulting from the 1967 and
1968 observation campaigns. Finally, the solution presented here is again a combina-
tion of all the varieties of data used in the 1969 solution, with laser range data playing
a dominant role. The available surface-gravity data are more complete than they were

in 1969 and, hence, bear strongly on the final results. Survey data are also included.

11
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ABSTRACT

The SAO optical satellite-tracking network that supported the National Geodetic
Satellite Program is described, Particular attention is given to the instrumentation of
the lagsers, the Baker-Nunn cameras, and ‘the station timing systems in use during the
program. Network operations and data-reduction techniques are also discussed, along

with a history of network site locations.

RESUME

Description du réseau optique de poursuite de satellite du SAO a la base
du programme national de satellites géodésiques. Attention particuligre
donnée 3 1'instrumentation des lasers, des appareils photographigues Baker-
Nunn et aux systémes de synchronisation de la station utilisés au cours du
programme. Egalement discutées: T1'exploitation du réseau et les techniques
de dépouillement des données, ainsi que 1'historique des sites d'implantation
du réseau.

KOHCIIFKT

OMucHBAETCHA CE&TE OINTUUYECKOTO CJHeXeHWHA 3a CHYTHMKaMM NPOBCOLU—
‘moro ® CMUTCOHEWAH ACTDORSHUECHOH OﬁcepBaTopMﬁ, I KOTOpPOS OKA3&JO0
nonnepxky l'ocymapcTBeHHol I'éopuzuuecroit CnyrHmxoroi [porpamme.
O6pamaerca ocoboe BHuMakUe Ha 0fOpPYNOBAHUE JIazeDOB, kKaMep Bakep-—
‘Hyun n cucTewm CHEHXDOHMSHDPOBAHMHE CTAHNWM B TeueHHe Oporpavuve. Takxe
06CYRIANTCH PAGCTa CeTH U METONH OOPAGOTHN . IaHHHX COBMECTHO ¢
neTOPHeR MecTONONOXeHNA CTAaHLKY BXONALUX B CeTh.
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PART I1

SAQ NETWORK: INSTRUMENTATION AND DATA REDUCTION

M. R. Pearlman, J. M., Thorp, C. R. H, Tsiang, D. A. Arnold,
C. G. Lehr, and J. Wohn

1. INSTRUMENTATION

1.1 Baker-Nunn Camera

1.1.1 Description of technique

The Baker-Numn camera photographs satellites against a star background. It can
~photograph either passive sun-illuminated satellites or active satellite flashss under
night-sky conditions. The Smithsonian Astrophysical Observatory Star Catalog (SAQOC)

has an average standard deviation in star position of 02'5 (epoch of 1963. 5) (Stafi,
Smithsonian Astrophysical Observatory, 1966). The SAOQ field timing system is

kept within 100 psec or better of Universal Time Coordinated (UTC) as maintained by
and referred to the United States Naval Observatory (USNO); hereafter, we shall
express' such time as UTC({U SNO)'. Withr the use of the Catalog and the timing system,
the reduction technique can provi_ds an accuracy of 2. Observations are routinely

reduced st the observing station to an accuracy of 40 to 60".

The camera was originally intended to photograph very small satellites in poorly
known orbits without the aid of active systems on the satellites themselves. For this
reason, 1t combines a fast optlcal system with a wide field of view. - Pointing predlchons

need an accuracy of only several degrees.

Also 1ncluded in this Part is material originally prepared by G. Veis, K. Lambeck,
and K. L. Haramundanis (see, in particular, Lambeck, 1968a; Haramundanis and
Veis, 1971). We are grateful to them for thelr contributions.

PRECEDING PAGE BLANS NOT Fillakd
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1.1.2 Instrument description

The Baker-Nunn is a three-axis camera designed according to the specifications
of SAO for satellite tracking — the optical system by James G. Baker, and the mount-
ing and mechanical system by Joseph Nunn. The camera is approximately 2.5 m high
and 3 m wide and weighs about 9000 kg. It combines an extremely fast i/1 optical
system with a sophisticated film transport, and currently uses 55.6-mm Royal X
extended red film (Kodak S0-338). It is best known for its light-gathering power and
can photograph stars 3 X 104 fainter than those visible to the naked eye. The camera,
which operates only at night, can photograph sun-illuminated satellites as well as
satellites with flashing lights.

1.1.2.1 Camera operation

The Baker-Nunn camera (Figure 1) is basically a Schmidt telescope with refine-
ments designed to improve its optical performance. The focal ratio of the system is
£/1 with an aperture of 508 mm (20 inches). This focal length gives a film scale of

406" mm L.

Light enters the camera through the three-element lens assembly (two positive
and one negative), which corrects for spherical and chromatic aberrations, and is
reflected from the 787-mm (31-inch) diameter spherical pyrex mirror onto the photo-
graphic film. During exposure, tension is applied to the film to force it to conform to
the shape of the backup plate, which is configured to the required aspherical focal

surface.

A clamshell~type focal-plane shutter begins and ends the exposure, which is
preset for 0.2, 0.4, 0.8, 1.6, or 3.2 sec. A barrel-type shutter rotating in front of
the focal surface chops the star trails or satellite trail (depending on the operating
mode) and provides five reference breaks for measurement. The chopping shutter is
coupled to a set of timing points that close at the third break and trigger a time presen-
tation, readable to 0.1 msec, which is recorded on the film. When the exposure is
completed, the film is advanced until the next frame is positioned against the backup
plate. For a 15° X 5° field, including time presentation, one frame is 152 mm of film,
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Figure 1. Cross séction of the Baker-Nunn camera.

The film-transport mechanism, chopper shutter, and clamshell shutter are mechan-

ically synchronized.

The camera is supported on a massive altitude-azimuth mount, with a third
mechanized tracking axis normal to the altitude axis. Both altitude and azimuth are
manually set, normally fo 20° 2, and clamped into position during photography. The
camera then tracks along a great circle about the tracking axis at a prescribed rate.

This motion approximates the apparent satellite motion over a short arc. Movement
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about the azimuth axis (see Figure 2) is limited only by the length of the power and
slave-clock cables, which permits approximately 400° of freedom. Altitude is limited
by stops at 20° and 160°, and track angle is limited by microswitches at 27° and 153°.

Continuously variable angular velocities of 0 to 7000" sec-l are available.

1.1.2.2 Optics

The modified Schmidt optical system was chosen because it has a fast speed and a
wide field of view and it yvields good images over the entire field of view. To com-
pensate for aberrations introduced by the spherical primary mirror, the camera has
a three-element lens assembly, or corrector cell, mounted at the aperture stop. The
cell has little focusing power but a strong spherical aberration approximately equal to
and opﬁosite that of the mirror. This permits large field, fast speed, and good images.
In the Baker-Nunn, no attempt has been made to ﬂattén the focal surface: Instead, the
film is ﬁade to conform to the curved focal surface. Chromatic aberration is minimized
in the corrector cell by the use of two types of glass: Schott K2FS-2 glass on the two
outer elements and Schott SK-14 glass on the inner element. The outer glass is subject
to etching in the presence of water, and care must be taken in the field to keep the

outer surface dry.

The mirror is very accurately supported by 12 counterweights and a center col-
limating post to position the mirror at the correct distance from the film. This
supporting system was designed to minimize image degradation due to temperature

change and mechanical flexure.
1.1.2.3 Mechanics

The operation of the camera depends on the synchronous operation of a gross .
(clamshell) shutter and a fast (chopping) shutter. These shutters and the film transport
are mechanically linked and driven by a synchronous motor and a cycle-speed-selector
transmission. Speeds of 2, 4, 8, 16, or 32 sec per cycle can be selected. There are
two exposures per cycle with an effective exposure time of one-tenth the cycle. .The.
system was originally designed to have both a tracking and a stationary exposure on .

each frame. However, this complicated the problems of reduction, and the camera is
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now operated either in the stationary mode or in the tracking mode for the entire arc
photographed. The latter is used for faint satellites, and the former, for the brighter

(visual) satellites,

The film is transported from a supply reel to a takeup reel by means of two drums
and a system of idler rollers, The drums are powered by a system that applies
tension, transports, and holds to the film dﬁring the camera's operation cycle. The
drive that operates the shutters also operates the film transport in such a way that as
the cycle period is decreased, the speed of transport increases. For example, for a

2-gec cycle, the film is exposed and transported at 1 frame sec-l.

Timing of an event on the Baker-Nunn camera requires exact knowledge of the
position of the chopping shutter at the moment the time display is triggered. The
camera timing points are adjusted so that an epoch corresponding to the third passage
of the shutter through the field of view is recorded on the film. The break in the image
caused by the passage of the shutter is called a "chop." TFigure 3 is a Baker-Numn
photograph in which the satellite, shown by the arrow, is being tracked by the camera
and the star trails are chopped five times. During the third passage of the shutier, a
strobe lamp with a collimating lens, located in the body of the camera, illuminates the
chopping shutter, whose shadow is recorded on the film. The length of this shadow on
the film is measured and used in the reduction process to calculate the angular position
of the chopper.

The track-angle axis of the Baker-Nunn camera mount is driven by a reversible
synchronous motor, a Graham variable-speed drive, and a multiplier transmission.
The Grzham drive allows a variation in speed from 0 to 70" sec_l. The transmission
has three gearing ranges of 1, 10, and 100, allowing a total variation of 0 to 7000" sec_l.

The lower the gear range, the more accurately the angular velocity can be set.

1.1.2.4 Electronics

For proper sequencing of events, accurate exposure times, and accurate angular
velocity, the camera must operate on precise 60-Hz power. Since this frequency is

not available in many countries, the camera is operated on an amplified 60-Hz
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Figure 3. Baker-Nunn photograph of satellite 6506301 (EGRS-5). The satellite is indicated by the arrow, and
the chopped star-image trails are in the background.



phase-shiftable reference signal from the station clock. By instantanecusly increasing
or decreasing the phase, the camera motors can be speeded up or slowed down. This
allows the center (third) chop to occur at a preset firing time and the camera to be

synchronized for satellite-flash photography.

A display of the station clock (see Section 1.38) is mounted on each camera at the
point where film leaves the camera tube. On 2 demand pulse from the timing points,
epoch is displayed and photographed by the camera. With the EECo clock, manufac-
tured by the Electronic Engineering Company (EECo) of Santa Apa, California, time

is displayed on the film in hours, minutes, seconds, and fractions to 0.0001 sec.
1.1.3 Accuracy and error budget

The accuracy of a gatellite-posgition measurement with the Baker-Nunn camera is
dictated primarily by 1) the film measurement and reduction procedure, 2) the
accuracy of star positions; 3) atmospheric influences, and 4) the accuracy of timing
maintained by the station clocks (see Section 1. 3 for details on the station clocks). In
those cases where the great-circle approximation is an accurate representation of the
satellite's apparent motion, the instrumentation introduces very minor errors in meas~
urement. In those cases where the great-cirecle approximation may no longer be accu-~
rate, the accuracy of the observation is degraded because the satellite image may be
spread, This condition may occur when long exposure times are required to obtain

images of very faint satellites, or when the satellite angular velocity is very large.

A summary of the principal error sources in the determination of star positions
and an estimate of the total influence are given below (Lambeck, 1968b):

Measuring errors 112 {6 measurements)

Calibration of comparator 0v2

Film distortion and emulsion ous

Atmospheric re_fraction 171 {image motion for tracking camera)

0v8 (differential refraction)
0V'3 (wandering)
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Approximations in reduction
method

Star positions from SAQO Catalog

Total standard deviation
of each star position

ov2

05 (random)

0U2 (systematic)

1V'8 (stationary mode)
211 (tracking mode) '

The principal error sources in the determination of satellite position and an
estimate of the total influence are summarized below (Lambeck, 1968b):

Measuring errors
Calibration of comparator

Film distortion and emulsion
shifts '

Atmospheric refraction

Contribution of standard
deviation of 8 stars

Total standard deviation
of satellite position

08 (12 measurements)
ouz
ovs

11 (image motion along track, or flash images)
05 (image motion across track)

03 (wandering)

01 {parallactic refraction)

0v8 (stationary)

09 {tracking) .

1V8 (stationary — along track) .

1v5 {stationary — across track)

1v6 (tracking) '

Before 1965, time was maintained at the stations by the Norrman clock and by the
~ monitoring of WWV broadecasts at HF and VHF, The root-mean-square (rms) accuracy

of an observation epoch was about 1 msec, with excursions of several milliseconds in

some cases.

'Installation of the EECo clock system in 1964 and use of frequency broadcasts on
VLF and of portable clocks improved the timing situation. All the stations had

+100-psec clock accuracies by 1967.

A summary of the overall accuracy of a single Baker-Nunn observation for different
topocentric velocities of a satellite is given in Table 1.
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Table 1. Accuracy of an observation as a function of topocentric velocity.

Associated
topocentric velocity  With VLF
Cycle rate of object_ and portable
(sec) {arcsec sec ) clocks With VHF
Along Across Along Across
track track track track
32 0— 250 U8 s 173 V8
16 250— 500 1.8 1.8 ‘2.1 1.8
8 5001000 1.9 1.8 2.3 1.8
4 1000—2000 1.9 1.8 2.7 1.8
2 > 2000 2.0 1.8 3.7 1.8

Before the installation of the EECo clocks, the average accuracy of the synthetic
observations was about 1V'1 in each component., Now, with the improved timekeeping
procedures, the average accuracy of the synthetic observation is about 01'9 along track

and 07 across track.

1.2 Laser Ranging System

1.2.1 Description of technique

A laser ranging system is an optical radar used to measure the distance from a
ground station fo a satellite. When accurate timing and appropriate corrections for
range bias caused by the atmosphere are incorporated, this is one of the most accurate
satellite-tracking techniques available.

The technique is made possible by the availability of Q-switched lasers that produce

sharply defined pulses of nearly monochromatic high energy in a beam with a very low

angle of divergence. Equally important is the availability of nanosecond-risetime
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electronics instrumentation to handie these optical signals. The fast-risetime, short-
width pulses make time-interval measurements at nanosecond resolution possible on
the basis of a single observation. The high degree of collimation enables the laser
system to hit the satellite with a significant amount of radiant energy. Finally, the
technique requires optical retroreflectors on the satellite to ensure measurable return
signals. The monochromatic nature of the laser output allows for efficient filtering to

improve the signal-to-noise ratio.

The basic ranging system consists of a laser transmitter, a photoreceiver, a
mount for the transmitter and receiver, and a time-interval counter. The observed
range time is the two-way time of flight of the laser pulse, measured by the time-

interval counter.

In operation, the laser system is pointed to the predicted satellite position and is
pulsed at specified times. During a n’ofmal satellite pass, the laser makes many range
measuremenis in order to také, advantage of the satellite geometry and to permit
accumulation of data for analysis. '

1.2.2 Instrument description
1.2.2.1 Smithsonian Astrophysical Observatory laser system

The SAQ laser systém {See Figures 4 and 5) was designed for the particular
requirements and needs of the Observatory's program in satellite geodesy. The sys-
tem has a static-pointing mount {(or pedestal) that is aimed by means of computed
predictions of satellite azimuth and altitude. This method of steering permits the
system to operate when the station is in daylight or the satellite is in the earth's
shadow, i.e., 24 hours per day. The Static—pointing mount was selected because it
is economical and operationally simple. The system operates routinely at 4 pulses

min" ! and is capable of operating at rates as high as 10 pulses min L.

The laser, built in an oscillator-amplifier configuration, generates an output of

5 to 7 joules in a 20-nsec pulse (half-power, full width). The laser transmitter system
was produced by Spacerays, Inc., of Englewood, Colorado. The system uses a
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Figure 4. Stylized view of SAO laser tracking system.

Pockels cell and a Brewster stack for a Q-switch and can maintain a pulse repetition
rate of 10 ppm. Both the 0.95-cm (3/8-inch) diameter oscillator ruby rod and the
1.59-cm (5/8-inch) diameter amplifier rod are mounted in 15. 24-cm (6-inch) double
elliptical cavities, each containing two linear flashlamps. The optical cavity of the
oscillator is formed by a flat rear mirror, with a reflectivity of 99. 9%, and the

uncoated front of the oscillator rod.
The oscillator output of 1 to 2 joules is coupled into the amplifier through a small

beam-expanding telescope. The amplifier has a single-pass gain of about 4. Both

ends of the amplifier rod are antireflective-coated.

28



Ge

PHOTORECEIVER

—

X

MOTORIZED
MOUNT

VARIABLE

304 - 167

--------

SCOPE &
CAMERA

i

START

STOP

TIME INTERVAL

-] CLOCK

L

4 INTERCOUPLER

ATTENUATOR

LASER ELECTRONICS

@

GATE
RANGE GATE TELETYPE &
TAPE PERFORATGR

.

" MOUNT ELECTRONICS

s

LASER CONTROL

—

]

1

TAPE CONTROL

TAPE

READER

Figure 5. Block diagram of the laser system.



The amplifier output is expanded to fill the 12. 7-cm (5-inch) objective lens of a
Galilean telescope. The telescope optics allows adjustment of the output beam diver-
gence from a diameter of 0.5 to 5.0 mrad. Mounted at the output of the laser,

ITT FW128 photodiodes pick up atmospherically scattered light from the outgoing

pulse and send an electrical start signal to the time-interval counter.

The optical elements of the laser are mounted on the machined upper surface of an
aluminum I-beam so that dimensional stability between the optical components will be
maintained for all pointing orientations. Separate water-cooling systems are provided
for the ruby rods and for the flashlamps. The coolant for the ruby rods is maintained
at a temperature of 10° + 1° by thermostatically controlled cooling or heating elements.
The lamp coolant is maintained within 10°C of the ambient air temperature. There
is provision for applying nitrogen under pressure to the cavities, but experience has
shown that this is not necessary. A cover over the I-beam is sealed, and desiccated

air under slight pressure is circulated through the system,

The electronics of the laser transmitter are basically power supplies and pulse
trigger circuits. The 1875-uf capacitor bank for the oscillator and amplifier lamps
can be operated from 2000 to 4000 volts DC. Serial triggering of the lamps begins the
discharge, which lasts slightly over 1 msec. Approximately 800 psec after the lamp
pulse beging, the system is Q-switched by quickly switching to ground the high-voltage
input to the Pockels cell.

The ranging-system electronics consists of a clock, a firing control, a range-gate
control, and a time-interval counter. The clock is synchronized to within +1 psec of
the station master clock, controls the firing time of the laser, and provides the epoch
of observation. The firing rate and the time of the laser firing are controlled by the
lager control unit. The laser firing time can be shifted by a multiple of 0,001 sec,
with a maximum of +10 sec, fo account for the early or late arrival of a satellite at a
predicted point in its orbit. The range-gate control unit sends a delayed pulse of
adjustable width to the counter so that the counter can be stopped only during a small
interval of time about the predicted range time. The range gate provides protection
against triggering by sky-background noise. The Eldorado 796 range counter is a time-

interval counter with 1-nsec resolution. Tt uses leading-edge voltage threshold
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discriminators on the start- and stop-signal lines. A start signal ranging from 5 to

20 volts is produced by the photodiode at the laser output. - This signal is not processed
nor amplified before it reaches the start channel of the counter. The photomultiplier
tube (PMT) output passes through a 0~ to 50-db variahble-step attenuator and a 32-db

fixed-gain pulse amplifier before it reaches the stop-channel discriminator.

Stepping motors that point the mount are driven by position-control electronics
manufactured by Zehntel, Ine., Berkeley, California. Position information is main-
tained in the control units, which generate the appropriate number of drive pulses for

the motors once a new azimuth or altitude position is demanded of the system.

The laser ranging system has a data subsystem that reads predicted satellite
positions from punched paper tape and sends the information to the mount and laser
control electronics and to the range gate. Azimuth and altitude pointing angles are
given in thousandths of a degree; the range-gate setting is specified in microseconds.
The epoch for a predicted observation is displayed. Once the predictions start, opera-
tion continues automatically until the satellite pass is completed, Operation of the
punched paper—tapé reader is synchronized with the rest of the system by the laser
control unit. Output data are also handled automatically by the data subsystem. The
hinary-coded-decimal (BCD) form of the epoch of firing and the range~time interval
~in nanoseconds is serialized, converted to Baudot code, and printed by an ASR32 tele-
type machine. ASR32 punched tape can be*fed directly into the radio communications
system once a heading is put on each data pass. The input/ output, clock, and control

systems were designed and constructed by SAO. -

The receiving telescope, made by Tinsley Laboratories, Inc., Berkeley,
California, is a 50.8-em {20-inch) Cassegrain system with additional optics designed
to focus an image of the primary mirror on the photocathode of the PMT., The optics
following the flat secondary mirror pass the collimated return signal through a 7 A
filter that is both tilt- and temperatureﬂdepéndent. A micrometer tilt adjustment
tunes the filter to compensate for effects of age and temperature. Adjustable field

stops and a provision to insert combinations of neutral-density filters are available.
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The photodetector, an RCA 7265, was chosen for its quantum efficiency of 4% or
greater at 6943 :55 This PMT has a gain of 5X 1(}7 and a risetime of approximately
3 nsec as operated in the SAO system.

The azimuth-altitude static-pointing mount, also built by Tinsley, has a pointing
accuracy of better than +30'". Verification of the mount position is made by viewing a
goniometer in the mount; but under normal operations, the system is driven in a open-
loop fashion from the electronic control unit. The stepping-motor drive-system gearing
allows for slewing speeds of 2° E.ec_l and positioning inecrements of 02001. The unit can
be hand-cranked, but this limits the pulse repetition rate to 2 ppm, whereas the laser
and the data subsystem have the capability to go to 10 ppm.

1.2.2.2 Athens laser system

The laser system in Athens was built as a cooperative project between the
National Technical University (NTU) and SAO and began operation in 1968.

The laser transmitter is a Q-switched ruby laser, manufactured by the TRG
Company, now Hadron, Inc., Westbury, Long Island. The laser transmitter has
a 1-joule, 24-nsec (hali-power, full width) output pulse. The Q-switch is a rotating
roof prism with a bleachable dye. The roof prism is driven by a synchronous motor
at a speed of 30,000 rpm (500 rps). The bleachable dye is Kodak Cryptocyanine, a
metal pthalocyanine, in an alcohol solution. The laser beam divergence of 5 mrad is

reduced to 1 to 2 mrad with a 5-cm-diameter Galilean telescope.

The flashlamp power supply has a 900-pf capacitor bank with a maximum charging
voltage of 975 volts (960 joules). A typical threshold is 560 joules when all optical

components are in good condition and accurately aligned.

Photosensitive monitors are used both to start the ranging counter when the laser
beam leaves the transmitter and to monitor the output power. An RCA 931 PMT senses
the light reflected from a glass plate oriented 45° to the beam. Iis output is used to
start the range counter, The power monitor ig an EG&G SGD-100 semiconductor
photodiode that senses the laser light scattered from the back of the rotating-prism
Q-switch. The output of the photodiode is monitored on a high-speed oscilloscope.
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The receiver of the system is a Cassegrain telescope with a 40, 6-cm (16-inch)
parabolic primary and a hyperholic secondary. The system has a focal length of
6.55 m and a focal ratio of 16. Incoming light first passes through a 10 field stop at
the foeal plane and through a 20 A interference filter and then falls directly on the
PMT (RCA 7265), which is uncooled and operates at an anode voltage of 2400
volts.

The laser and photoreceiver are mounted on a modified surplus 3-inch gun mount,
which is hand-cranked in alfitude and azimuth by two observers. One cbserver tracks
in azimuth and the other in altitude by observing the sun-iliuminated satellite in the
illuminated reticle of a 2. 7-cm (5-inch) elbow telescope. Both observers sit directly
on the mount and move with it as a system. This method of aiming the laser limits
operatirons to times when the satellite is in sunlight and the station in darkness. Pulse

detection is by leading-edge fixed-threshold discriminators.

The outgoing laser pulse starts a counter with l-nsec resolution. The light pulse
reflected from the satellite enters the receiving telescope and goes through the optical
chain to the PMT, whose output is amplified and used to stop the counter. A range
gate between the pulse amplifier and the ranging counter reduces the possibility of

erroneous range measurements due to sky-background noise.

During operation, the laser fires every 30 sec — on the even minute and at 30 sec
after the minute. Both the exact firing time of the laser and the range measurement

are recorded with a camera system that automatically photographs the counter readings.
1.2.3 Accuracy and error budget

The accuracy of the laser systems can be discussed in terms of random and
systematic error components, The former are those that are uncorrelated and appear

as range scatter on a point-to-point basis, while systematic errors are correlated

and vary regularly over a single pass or longer,
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The random noise level of the systeins has been computed from data on short-arc
analyses taken during the International Satellite Geodesy Experiment (1971} and the
Earth Physics Satellite Observation Campaign (1971 to 1973). This type of analysis
generally detects only random errors, because systematic errors tend to be absorbed
into the orbit parameters when they are adjusted in the least-squares-fitting procedures.
The best-fitting curves for single transits were obtained by varying the mean anomaly,
its first derivative, and the right ascension of the node. The standard deviation of the
data varied from 30 to 120 c¢m, with a median of less than 60 cm. The dominant
random-error component is due to the variation in size and shape of the return signals.
The fixed-threshold, leading-edge pulse-detection system we are now using is very
susceptible to such irregularities in return pulses. The return signals from the PMT
may contain as few as 1 to 10 photoelectrons. They also may vary widely in size and
shape during a single transit, owing primarily to scintillation from the satellite retro-
reflector array, irregularities in the lager beam pattern, and the statistical nature of
the PMT detector. The expected random variation in the triggering times of the
leading-edge threshold is a few nanoseconds (50 cm) for our transmitted pulse width of
20 nsec. Other random influences in the data, such as the least-count error in the

counter and the random variability of the atmosphere, have smaller effects.

Systematic errors are considerably more difficult to grasp. However, the size
of the systematic errors, per pass, has been estimated from performance and field
tests. The +50-psec uncertainty in epoch timing could be responsible for a systematic
error of as much as 35 ecm for some satellite-pass geometries. The models used by
SAQ and others compute the optical range correction due to tropospheric refraction
from ground-based data. These models have an estimated sysiematic error of a few
centimeters at zenith, with an approximate secant dependence for zenith angles down
to about 70°. The residual error in current tropospheric—propagation-correction

-models is, on the a&erage, probably about 4 cm per pass. The geometry of the satel-
lite and the placement of the retroreflectors relative to the satellite's cenfer of mass
are responsible for a systematic contribution of about 10 cm. This error is the result
of the following uncertainties: 1) in satellite attitude, 2) in retroreflector optical
properties and placement, and 3) in the resultant return-signal shape and size from

the entire satellite retroreflector array. The fixed-threshold, leading-edge detection
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system is probably responsible for systematic errors of about 3 nsec (50 cm) for a
20-nsec pulse width. This is in addition to the random variations and arises from
systematic differences in the triggering point on the outgoing and the return pulses.
Calibration on a fixed target is also an area where systematic influences are introduced
through survey error and inaccuracies in the time-interval measurement. It is esti-
mated that systematic errors of about 10 cm may be introduced during calibration.

If the sources of these errors are assumed to be independent, the total estimated

influence, or root sum squared, is about 57 cm.

A two-laser collocation test was performed on satellite 6800201 (Geos 2) at SAQ's
Mt. Hopkins Observatory, Arizona, from QOctober 1969 to J anuary 1970, SAOQ's laser
there and a mobile laser system operated hy National Aeronautics and Space Adminis-
tration (NASA) -participated-. The objective was to determine the relative accuracy of
two laser systems that were being used in the routine collection of satellite geodetic data.
Since the two systems were built, calibrated, and operated by 1ndependent groups and
since the instrumentation designs were different, the experiment gave a good estimate
of the system-induced bias errors that can be expected. During the experiment, the
two systems demonstrated a relative ranging accuracy of 1to 2 m. In half the satellite
passes, the difference in the range measurements of the two systems had a bias of
less than 1.2 m (see Figure 6). The sign of the bias changed several tlmes during the
4-month experiment, At the time, it was felt that these bias components were pri-
marily introduced into one or both of the systems ‘during the calibration procedure,
which involved a determination of the system delay by Amng:ing‘ on a target at a known
distance from each 1aser. Both systems have undergone significant modifications
since the time of the collocation, and the systematic error in each has been substantially‘

reduced.

1.3 Timing System

1.3.1 Station clock

Each station has a timekeeping system to provide precise epoch data for each
observation. The station clock is basically a crystal oscillator, a time accumulator,
and a system of time and frequency monitoring aids. The clock has a dual-channel

redundancy and a battery-backed power system to guard against loss of time continuity.
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Figure 6. Distribution of relative system biases.

The Norrman clocks, which were used in the Baker-Numn network until the mid-
1960s, relied on a WWV-emitted time pulse and tone reference for both time and
frequency settings. The active electronic components were vacuum tubes, and the
time readout was in the form of rotating mechanical indicators and a rotating spot on
an oscilloscope. Limitations on the stability and reading accuracy of the oscilloscope
display led to the use of 2 fully electronic system featuring solid-state digital circuitry
and a high-stability frequency standard.

10 day—l
of UTC(USNO). It can be adjusted to 1X 10710,

The frequency of the oscillator is maintained through frequency and phase comparisons

The present clock has a Sulzer 5-MHz crystal oscillator stable to 1X 10~
and is generally kept within 5 X 10710

with stable VLF transmissions from stations such as NAA and NLF.
A locally generated 100-kHz signal is phase-locked to the VLF signal and then
compared in phase to a 100-kHz reference signal from the clock. A relative phase

position record is kept, which helps maintain station time to greater accuracies than
is possible with the HF timing pulses.
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The components of the EECo timing system are the clock's accumulator, the
Sulzer oscillator, a VLF tracking receiver, a WWV receiver, a chart recorder to
display the VLF/clock phase relationship, an oscilloscope (Tektronix 561A), and an
AC-DC-~AC battery-backed power system. Some stations have a secondary timing
system, made up by duplicating mosf of these same chassis. Other stations have a

backup clock, consisting simply of an oscillator and a miniaturized digital counter.

The accumulator of the master-clock system is a 100-kHz digital counter that
offers a visual display of time in hours, minutes, seconds, and fractions of seconds fo
10-psec resolution, ag well as a BCD digital presentation of time. A digital phase-
shifting circuit allows the clock to be adjusted in 0. 1-psec steps for precise timing

control,

Timing at the stations is checked primarily by means of portable-clock trips (see
Section 1.3.2). Although the VLT tracking receiver does not give epoch information,
it does provide an accurate method of maintaining a record of time position relative
to the setting obtained from the portable-clock comparison. Maintenance of accurate
time between t.rips is facilitated in some locations by using the time tick of WWV and
time sources of other agencies. The HF time signals offer the station a convenient
) time reference, but accuracies are limited to 0.5 msec at best, owing to variations

occurring over the long propagation paths to the stations.

At the laser stations, clocks routinely provide epoch to £50 psec (U TC) by means
of portable-clock trips, which are conducted once a year on the average. During
specific experimental periods, time has been corrected to +25 psec through extra
care in VLF monitoring, more frequent checks by portable clocks, or other means
of reference. The less stringent timing requirements at the camera stations

(+100 psec) are achieved through less frequent portable-clock trips.
1.3.2 Station-clock synchronization
Synchronization of the station clocks throughout the network is achieved by relating

all the time and frequency references to UTC as maintained by USNO. The field sta-

tions steer their clock frequencies with VLF transmissions from stations NAA and
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NLK, and in some cases, WWVL or WWVB. Crude epoch checks are made at many

of the stations by monitoring HF/VHF time signals. The USNO and the National Bureau
of Standards (NBS) timing bulletins, which give the relative phase values of VLF sta-
tions and time intercomparisons with other timing services, are used to relate all

field timing values to UTC(USNO).

Use of a portable clock is the principal method of epoch synchronizing with a source
of reliable timing. The comparison of the portable clock with the clock at the station
gives a correction relating the station time to the source time, and published compari-
son values relate the source time to UTC(USNO). Therefore, each field-station clock
is referred to a common time scale with an accuracy dependent on the reliability of the

portable-clock comparison and on the accuracy of the published comparison value.

The clock trips to the field stations have been conducted with a Sulzer Ab portable
crystal clock that carries time related to UTC(USNQ). These trips have been run by
SAO or, in some instances, by other agencies (such as NASA, USNO, Naval Research
Laboratory, and NBS) who have either carried an SAO clock or been in the vicinity of
an SAO field station with a clock of their own. Portable-clock comparisons are made
with each station on a biennial basis. However, to maintain higher levels of accuracy
and reliability, a portable-clock comparison is made at least once a year at the laser
gtations. Time corrections, determined to be necessary by portable~clock compari-
sons or intercomparison between station-clock and VLF-monitor readings, are
documented and applied directly to the station clocks. Corrections for the difference
between the VLF stations and USNO are applied in Cambridge during data preprocess-

ing.
1.3.3 Accuracy and error budget

The accuracy of station timing depends on 1} the success of the portable-clock
trips, 2) the ability to trace the relationship of the time references back to USNO, -
3) the ability of the station to maintain the time setting with the aid of the VLF track-
ing receiver, and 4) the uncontrollable variations in propagation path of the VLF
signal. The requirements for system timing originally called for the station clocks
to be within +1 msec of WWV-emitted (rnis of net deviation from UTC{NBS) over a
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month)., This requirement was tightened to +100 psec UTC(USNO) for the camera
stations and +50 psec for the laser stations. This improvement was made possible by
the installation of the EECo timing systems in the mid-1960s and was realized by
1967. 'In practice, many of the camera stations have been operating within +50 psec
of UTC(USNO). ‘

The synchronization accuracy by use of a portable clock depends on the amount of
unpredictable time drift experienced during the period spent traveling to and from the
field station. Most of the clock trips to the field stations use a crystal clock and
provide an epoch time set accurately to within 5 to 25 psec of USNO. The least
reliable results have been in India and South America, where the stations are fairly

remote and long travel times are involved.

USNO publishes a weekly bulletin, "Daily Phase Values, Series 4, giving the
emitted phase values of the major VLF transmitting stations to 1 ysec. The time
differences between UTC as maintained by USNO, NBS, and the Bureau International
de I'Heure {BIH) are well documented by each agency to microsecond accuracy. The
relationships between the HF time broadclasts of foreign countries and UTC(USNO) are
generally less precisely known.

Timing accuracy at the field station is maintained by controlling the clock drift
with the aid of VLF monitoring equipment. In cases of minor clock failures, time has
often been recovered with fair accuracy by referring to Backup clocks and to VLF and
HF monitor references. The clock time drift is a product of oscillator frequency
- offset and is generally controlled to keep the station epoch within 50 psec of the VLF

reference position.

The accuracy of VLF-derived time is a function of receiver and propagation-path
stability, The uncertainties of the day~io~day and seasonal path variations added to
the error contribution of the receiver amount to less than 5 psec in epoch uncertainty.
The system timing accuracy is a composite figure encompassing setting accuracy,.

uncorrected drift of the clock, and inaccuracy of the VLF monitor.
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The degree of accuracy in setting a portable clock gives the initial accuracy of the
station epoch, and VLF monitoring permits the clock to maintain time. When subsequent
incidents of minor clock failure that affect time and frequency increase the epoch's
uncertainty to +50 psec, another portable-clock comparison is considered. When
requirements are stringent, additional efforts are made to obtain more accurate time
comparisons, to reduce the oscillator's drift, and to minimize the accrual of uncer-
tainty due to repeated clock resets. This extra effort is the key to maintaining station

epochs at the +50~-psec level with a minimum of clock trips.
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2. DATA REDUCTION
2.1 Baker-Nunn Data Reduction
2.1.1 SAQ Star Catalog

The Smithsonian Astrophysical Observatory Star Catalog was compiled in the

early 1960s to meet the needs of computer-oriented reduction of photographic plates
of artificial earth satellites. The Catalog covers the entire sky uniformly, contains
proper mofions for all the stars given, and provides an average density of four stars
per square degree. All the catalogs used were reduced to a homogeneoﬁs reference
frame, that of the FK4. The final Catalog contains close to 260, 000 stars.” The
SAQC contains the following data: ' |

Right ascension and declination for equator, equinox, and epoch 1950.0 and for
epoch of observation.

Standard deviation of the position at epoch 1950.0.

Mean epochs of the original observations, given separately for each coordinate.
Standard deviation of each ‘coord:inate at epoch of observation. _
Annual proper motion in right ascension and declination.
Standard deviation for each proper motion.

Visual nﬁagnitudé (fof 99% of the entIl'ies)..

Photographic magnitude (for 50% of the stars).

Spectral fype (for 83% of the stars).

Durchmusterung humber (BD, CD, CPD).

Reference to the source catalog.

Star number from the source catalog,.

Special notes.
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The SAOC is available in three forms: magnetic tapes, a printed version, and a
set of star charts.

A. All the Catalog data have been stored in a blocked binary format on magnetic
tapes compatible with IBM 729 II tape units. The data have been sorted at epoch
1950. 0 by right ascension in 10° bands of declination. A description of the tape format
and the means for obtaining copies are available from
Star Catalog
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, Massachusetts 02138
B. A four-volume printed version contains virtually all the data available on the
magnetic tapes. Owing to space limitations, some of the magnitudes have been rounded
to one less sipnificant digit than is given on the magnetic tapes. The book is organized
in the same way as the magnetic tapes (by right ascension in 10° bands of declination at
epoch 1950.0). Its introduction describes in detail the preparation of the Catalog. The
set of four volumes can be obtained from
Superintendent of Documents
U.S. Government Printing Office
Washington, D.C. 20402
C. A set of 152 star charts has been reproduced at a scale of 6195 mm_1 {the
scale of the films of the Baker-Nunn cameras). In addition to the stars of the SAOC,
the charts contain special symbols for galaxies brighter than 13th magnitude, globular
s, planetary nebulae, all objects listed in the New General Catalogue (NGC) and
Index Catalog (IC) of Dreyer, and a small number of stars close to the south celestial
pole for which the proper motions were not known. The introduction to the boxed set
of charts describes their preparation and the projections used; it also includes several
useful indices and complete lists of the constellations and of the 198 stars with names.
The star charts can be obtained from

The MIT Press
28 Carleton Street
Cambridge, Massachusetts 02139
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Table 2 lists the catalogs used in the compilation of the SAOC, along with the
original system of each and the zone it covers. Since the FK4 was not originally
available, a catalog not in the FK3 system (except the FK4) was initially reduced to
the FK3 system before its data were combined with those from the other catalogs.
When data from all the catalogs were combined, duplicate entries for the same star

were eliminated.

Table 2. Catalogs used in the SAO Star Catalog.

Declin:a.f,ionl}'= Catalog Original system
+85 to +90 Yale Instrumental system
+60 to +85 AGK2T FK3
+50 to +60 Yale : Instrumental system
+30 to +50 AGKZT FK3
+20 to +30 Yale FK3
-30 to +20 Yale Instrumental system
-40 to -30 Cape Amals FK3
-52 to ~40 Cape Zone Instrumental system
-64 to -52 Cape Amnals FK3
-90 to -64 Melbourne Instrumental system

*
Positions from the GC, FK3, and FK4 occur in all sky
areas.

i

For this catalog, proper motions have been computed by
SAO,
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The order of preference in the choice of data from the catalogs was the following:
1) FK4, 2) FK3, 3) GC, and 4) Cape, Yale, AGK2, Cape Zone, Me 4, and Me 3,
according to epoch of observation. Each catalog in the last group covers only a seg-
ment of the sky and therefore overlaps only marginally with another; where overlaps
do occur, the more modern position has been taken. The GC is older than the three
fundamental source catalogs (Cape, Yale, AGK2), but because its positions and motions
were derived by the combination of many sources, it appears to represent the posgitions
and motions for the stars better than do the zone catalogs. With respect to the standard
deviations of the positions when dated to a modern epoch (say, 1965.0), this proved 1o
be the case in only about one-third of the GC positions. A small number of stars

missing from the SAOC in the range of visual magnitude m_,
6.5 < rr'1V < 7.5 (where < stands for fainter than) ,

were apparently too faint to be included in the GC and too bright to be in the zone
catalogs. Figure 7 illustrates the number of stars of each visual magnitude retained
in the final SAOC.

After all the catalogs were combined into a unified list at epoch, equator, and

equinox 1950.0, the positions and motions were reduced to the FK4 system.

The positional aceuracies of the SAOC can be divided into either random errors

{standard deviations} or systematic errors.

The first has been evaluated in three ways in the Catalog itself: 1) by tabulation

of O the standard deviation of the position at epoch 19850.0, for every entry in

1950°

the Catalog, with errors in both position and proper motion taken into account;

2) by calculation of the average standard deviation for the entire Catalog at epoch
= " - 3 s N

1963.5 (0 g0 5> +01'49; and 3) by a histogram of 0,0, o and 04,5 o, 0 which

the number of stars within each 0!'1 of standard deviation are given (Figure 8).
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All computations were performed with the simplified formula given in the Catalog.
It has been criticized (Eichhorn and Googe, 1968) as giving standard errors that are
somewhat too large. Ancther evaluation of the Catalog standard deviation (Haramundanis,
1967), comparing the standard deviation at 1964.5 with the epoch of observation (see
Figure 9), illustrates that a large part of the cumulative error is-a direct result of

errors in the proper motions.

Any evaluation of the random errors of the SAOC by means of the data given in it
' depends naturally oii the fact that the original errors have been correctly assigned; it
should be realized that, in general, the errors in the SAOC were assigned en bhloc.
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The graph for 1964.5 shows that in the far southern hemisphere, there are some

serious deficiencies in the existing SAOC positions and motions.

Evaluation of the systematic errors of the SAOC requires an independent check of
the positions and motions by comparison with a catalog not used in the SAOC compila-

tion. Two such studies have been carried out: one (Scott and Smith, 1967) north of

+60°, the other (Haramundanis, 1970) south of -63°. These studies attempted to deter-

mine the deviation of the SAOC system from that of the newer observations, both sets

of data purporting to be in the FK4 system. Both studies indicated that a source-

dependent systematic error exists in the SAOC at certain declinations. In the northern
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sector under comparison, the systematic error was not more than 0V2 on the average.
In the southern hemisphere, the errors were similar when the comparison was made
with the GC stars, but they were substantially larger (1 to 2") when compared with
stars in the Melbourne catalogs (see Figure 10). In the preparation of the SAOC, no
systematic corrections were applied to the Melbourne motions, because none were
available, Further, the Melbourne catalogs were the only ones at that time that con-

tained accurate positions and proper motions in that zone.

Both comparisons are of positions in the FK4 system and are affected not only by
the intrinsic errors of each catalog but also, possibly, by the errors of the FK4 sys-
tem itself.

The SAOC has been extensively used in plate reductions over the past 11 years.
For reduction purposes, a single tape is prepared for the appropriate year, and the
data are recorded in an order and form most efficient for computerized random-access
searching. In the thousands of plate reductions obtained using the SAOC, no significant
errors have been encountered. By taking the rms average of the residuals of the star
positions {observed - computed) in a sample of plate reductions, an upper bound can
be obtained for the error in the positions. This value is close to 270, With the available
films and equipment, this is as good as can be expected, although it cannot be used for
testing the star positions themselves, since their intrinsic accuracy is better than
210,

2.1.2 Precise reductions

2.1.2.1 Methods and rationale

The reduction procedure of SAO's Baker-Nunn observations has been discussed by
Haefner (1967) and Haefner and Martin (1966); the latter presents, with some minor
modifications, the standard reduction procedures now in use at SAQ, Our reduction

procedure is based on astrometric principles, which differ significantly from the

photogrammetric methods, widely used in conjunction with ballistic cameras.
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Because of the differences in the data-acquisition and reduction techniques, a
direct comparison of the astrometric and photogrammetric methods is not valid, A
brief generalization, however, can be made: Astrometric methods are most suitable
where narrow fields (<5° are used; the photogrammetric methods are most applicable
to wide fields (20° to 30°); and in the intervening range, a compromise between the
two methods will often provide the most practical sclution. The reduction procedure
to be employed is the one that is most economical yet commensurate with the physical
characteristics of the camera and with the external phenomena atfecting the observa-
tions. This economic requirement is particularly important because a total of over

200, 000 Baker-Nunn observations have been reduced during the program.

The chief advantage of the astrometric, or Turner's, method is that a variety of
phenomena affecting the relative positions of the satellite and the star images need not
be corrected for explicitly. The method describes an affine transformation between
the standard coordinates and the plate coordinates. It assumes that 1) the two
coordinate planes are parallel and 2} a small field is vsed. This first requirement
is adequately satisfied by the design of the camera, the principal ray at any point being
normal to the backup plate. The second requirement is met by using only those
reference stars that lie within 2° to 235 of the satellite image. The reductions are
valid for any small area away from the physical film center, although residual distor-
tions at the outer parts of the field mean that the satellite image ghould lie within about
10° of the center.

2.1.2.2 Transformations

The relationship between the stellar coordinates and the standard coordinates is
expressed by the azimuthal equidistant projection. Let DO and AO’ respectively,
denote the declination and right ascension of the adopted film center, and & and a, the

declination and right ascension of the satellite position. Then

vy 1 0 0 ~sin AO cos AO 0 Cco8 q co8 §
Vo | = 0 sin I)0 cos DO -cos AO -sin AO 0 sina cos & ,
Vg 0 -cos D0 sin D0 0 0 1 sin &
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and the standard coordinates (g, n) of a reference point become

v
g: —ll%. f
Vo
and
2.8
n VB D ’

where f is the camera focal length and 8 is the angle between the plate center and

the star; that is,

[S I )

2
_ VitV
0 = tan

and

D=tan 6

Such a projection is valid for any region of the film. The adopted choice for the
film "center' is the geometric center of the selected images of reference stars. With
well-distributed reference points, the separation between this center and the satellite
image is less than 035. The projection preserves the azimuth and scale in the radial
direction from the adopted film center, but distortions in other directions will occur,
These distortions, however, are small, and the average distortion over the small

field used is less than 0.5 p, which is equivalent to 0V2.
2.1.2.3 Corrections

In the process of precise reductions, a number of corrections must be applied to
the data.

~A. Shutter corrections. During the exposure of the Baker-Nunn film, the.satel-'

lite image and the star images trail along the film. These trails are periodically
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broken into six segments by the two diametrically opposite staves of a rotating barrel
shutter. The third break corresponds to the satellite position to be measured, and its
time is not directly recorded; the other breaks are not currently used. At some
instant during the stave passage, its position and time are recorded on the film. The
time of the image and the time of the stave passage are related by the shutter-sweep
correction. Thus, if B is the angle of rotation of the shutter about its axis between the

two events, the sweep correction At is given in the first instance by

H

Gl

w being the angular velocity of the shutter.

The situation is somewhat complicated because the time is not necessarily dis-
played when the stave passes over the film center. However, if the stave displace-

ment A is not excessive, the camera has a device for measuring Ap, and the total

sweep correction becomes

At= B-28

w

Zadunaisky (1960) gives the equations necessary to compute the angles f and AB.
These formulations are based on a number of simplifying assumptions whose effects

on the accuracy of the time determination can be investigated.

B. Aberration corrections. The film reduction is carried out in the epoch of

1950. 0, and the only aberration correction applied at this stage is for annual aberra-
tion. Owing to the small field, the correction is applied to the satellite position,

rather than to each star position individually. The formulas used are the closed expres-
sions:

_ 20v47 sing sin © + 1887 cos a cos ©
AO. = -
cos § ’

Ab = - [20U'47 sin & cos o sin © + 1887 (0.4336661 cos § - sin § sin a) cos O]

H
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where @ is the geocentric longitude of the sun. Though not rigorous, these expressions
will always be correct to better than 01 {Scott, 1964).

C. Atmospheric-refraction corrections. In the film-reduction process, atmos-

pheric-refraction corrections are not applied to individual star positions, since it is
assumed that the atmospheric-refraction correction varies linearly over the 4° to 5°
field used in the reduction. This condition is nearly always satisfied because observa-
tions are seldom made at zenith distances of greater than 70°. At this zenith distance,
the average departure of the differential refraction from linearity is about 1", and with
eight well-distributed starg, the uncertainty in the satellite position (all other factors

being ignoved) will be at most 0V'4.

A parallactic-refraction correction is applied to the satellite position during
analysis. The value for the refractivity constant in this correction is based not on the
atmospheric conditions at the time of observation, but rather on the average year-
round, nighttime conditions for the station from which the chservations are made.

For the present Baker-Numn camera locations, the error in the refraction correction
is less than 20% of the value of the correction itself. As this correction is already

small, the error is minimal,

Of greater importance than uncertainties in the parallactic-refraction correction
is the random-image displacement caused by microturbulence in the atmosphere.
When the Baker-Nunn camera is used in the stationary mode, this image motion will
exist in both the along-track and the across-track directions, with the greater devia-
tions occurring in the former because of the different time-integration effects. The
satellite position will not be seriously affected when the camera is used in the tracking
mode, but each star image may be displaced. The average one-dimensional deviation

from the mean, o 57 can be approximately formulated (Lambeck, 19685) as follows:

H

J 2 secl‘/2 21/
0, = l(o.os) ¥ [4. 5—71-3—g (1 - 0.35 log Atﬂ ,  At< 1000 msec

where D is the aperture in centimeters and At, the exposure time in milliseconds.
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D. Geos flash corrections. The star and satellite images of Baker-Numn films
of passive objects refer to the same instant of time. This is not the case for obgerva-

tions of flashing satellites, so a correction must be applied to the observed position to

ensure that both the star images and the satellite image refer to the same time instant.
For operational reasons, the star-trail exposure is offset by =0. 1 sec from the flash
time. The correction is computed by precessing the satellite position to the date of

observation, adding the correction
Aa = 1.0027 X (time difference between satellite and star exposure) ,

and precessing the corrected position back to the epoch of 1950.0. Because of the
small time interval between the star exposures and the flash observation, nutation

need not be considered.
2.1.3 Synthetic observations

The arcs formed by several successive observations can be used to create synthetic
observations at some intermediate time by interpelation. Simultaneous observations
used in the geometrical satellite solution rely almost entirely on such synthetic obser-
vations, and they are also used in the dynamical solution whenever four or more suc-

cegsive frames are available.

Since it is virtually impossible fo observe a passive satellite at exactly the same
time instant from two or more distant stations, the only practical way of ohtaining
simultaneous observations is to observe the satellite from the participating stations
for approximately the same time interval and to interpolate for a fictitious simultan-
eous instant. In orbital analysis, use of synthetic observations reduces the amount
of data to be handled without any significant loss of accuracy and resolution. But
probably the most cogent reason for using synthetic observations is that a better
accuracy or reliahility estimate can be associated with the synthetic observation than
with a single ohservation. Only average values can be assigned to the errors in a
gingle observation. Some of thege errors vary more or less randomly from exposure
to exposure and will be reflected in the residuals resulting from a least-squares

interpelation procedure for a synthetic observation.
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A second-degree polynomial is adeguate for the majority of observations. Since
a seven—frame arc generally subtends less than 10° of arc, the object's orbit can be
adequately approximated by quadratic functions. When there are more than seven or
eight frames in a sequence, a third-degree polynomial may be required, bt proper
cohstraints must be placed on the coefficients tc_) ensure that the curve approximates
the orbit and does not reflect characteristies of the image-forming process for the
‘points in the sequence. I higher degree polynomials are used without sach constraints,
the accuracy estimates of the interpolated positions become optimisti¢, although the

mean position of the satellite is not seriously affected.

The interpolation procedure is based on several assumptions: 1) that the errors-
in successive positions in the arc are uhcorrelated, 2) that the along- and across-
track errérs for each position are uncorrelated, 3) that the along-track wicertainties
are equal for-all frames, and 4) that the across-track uncertainties are equal for all
frames. Since systematic errors in timing would destroy the first assumption, timing
uncertainties are not included in the uncertainty of each position. Other correlations
between guccessive Baker-Nunn images are much smaller than with ballistic cameras,
where images lie on a single frame. For the Bake r-Nunn, plate constants are derived
independently for each frame, so that the influence of such factors as meaSu‘riﬂg uncer-
tainties, nonlinear lens and film distortions, and short-period atmospheric effects (on
each satellite position) will be random from frame to frame. Since the same reference
stars may be used in two or even three successive franije%,. errors in stellar ecordindtes

could introduce some correlated errors hétween successive frames.

Synthetic simultaneous directions are corrected for parallactic refraction, diurnal
aberration, and light travel time between the station and the éatellite ‘(see Haefiier and
Martin (1966) for the corrections used) and refer to the terrestrial system defired by
the mean pole of 1900-1905 and by the meridian plane at 75°03'551194 east of the mean
meridian of the USNO. The time of the observations is expriassed, ih Smithsonian
Atomic Time (see Appendix A). The directions are given as direction cosines, ahnd
their standard deviations are given in the along- and across-track components. Timing

‘uncertainties have been introduced in the former. The angle the satellite trdil makes
with the right-ascension axis is also computed so that the accuracy of the direction in

the right-ascension and declination components can be determined.
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2.2 Laser Data Reduction

2.2.1 Calibration

The laser systems are calibrated by ranging on a fixed land-based target situated
at a known distance from the laser. The system delay or system-calibration constant
is the difference between the raw target range time measured by the laser, Tn? and
the range time {o the target, Ty computed from the surveyed distance befween the
laser and the target and corrected for local atmospheric refraction. The fargets,
which are 8 ft X 8 ft wooden surfaces painted flat white, are 0.5 to 2.0 km distant

from the laser. The exact placement is usually dictated by local terrain.

The routine calibration of the system is performed nightly and consists of 20
measurements on the target. For these measurements, the return-pulse intensity is
controlled by use of neutral-density filters to produce signal levels similar to satellite
echoes.

Computation of a calibration correction factor T o which must be added (algebra-
ically) to all satellite range-time observations, is obtained from

where Tm is the average of the 20 range-time measurements. The computed range
time to the target is given by

d

S
s 0.15

[1+@®x107% + 6. 917x 107H]

where d s is the surveyed distance to the target and N is the local atmospheric refrac-
tivity

N=80.29+-11.9

i
Wi
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ih which P is the measured barometric pressure in millibars, e is the partial pressure

of water vapor, and T is the temperature in degrees Kelvin.

The effect of local variations in barometric pressure on the value of T for dis-
tarices of less than 1 km was found to be small enough so that a constant value of the
atmospheric refractivity could be defined for each station. This value was taken from
a chart prepared to give a direct conversion from station altitude in kilometers to
values of N (Gaposchkin, 1972a, Figure 1, p: 26).

During individual nightly (or daily) calibration sequences, the range scatter from
ohe measurement to the niext is seldom more than a few nanoseconds. The variation
in the target-range averages is rarely more than a few tenths of a nanosecond from
calibration to calibration, giving a stability of better than 10 em. The target surveys

at the stations currently have an estimated accuracy of about 10 cm.
2.2.2 Atmospheric corrections

Laser ranges determined by using thé vacuum velocity of light must be corrected
for the fact that the laser pulse travels at a lower velocity in the earth's atmosphere.
We used the foliowing correction during this program (G. Thayer, 1967, private
communication):

2.238 + 0.0414 PT"1 - 0.238 1:1S

sina + 1072 cot a

where r_ is the uncorrected range in meters, T is the corrected range in meters,
- P is the atmospheric pressure at the laser station, T is the temperature af the
lager station, hS is the laser's height above mean sea level in kilometers, and a is
the elevation angle of the satellite. The formula holds for a ruby laser, which

operates at 694 nm.
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The formula was derived from a regression analysis based on a large sample of
radiosonde balloon flights from a number of locations that were chosen to give a
reasonable sampling of anticipated atmospheric conditions. The error in range cor-

rection is estimated to be about 2 to 3 cm at zenith.
2. 2.3 Satellite—retroreflector-array transfer functions

Range errors now present in routine laser fracking are actualiy smaller than the
satellite's dimensions. Since we must relate all observations to the satellite's center
of mass (both for dynamic and for purely geometric analyses), it is necessary to derive
some means for reducing each range observation to the distance from the ground-based
laser to the satellite's center of mass, which, in all cases, is displaced from the
reflecting elements. For this purpose, we have developed and applied in our geodetic
analyses a set of retroreflector-array transfer functions for each of the United
States satellites with laser cube corners now in orbit. These transfer functions are
computed from the geometric and optical parameters of each retroreflector array and
take into account the satellite geometry and position. The functions for 6508901
(Geos 1), Geos 2, 6406401 (BE-B), 6503201 (BE-C), 6701101 (D1C), 6701401 (D1D},
and 7010901 (Peole) are given in Appendix B.

The computer model includes both incoherent and coherent return signals for
arrays of retroreflectors whose faces are cut in the form of a circle, triangle, or
even-sided polygon (such as a hexagon). Diffraction, including changes in amplitude
and polarization of the reflected laser beam, and influences of dihedral-angle errors
can also be accounted for. The model accommodates obscuration of retroreflectors
by satellite and subsystem structure, a particular problem with the two Geos space-
craft and with Peole. When the position of each reflector is being computed, the
model accounts for the dielectric properties of the retroreflectors in ferms of ray
bending and propagation velocity. Once the return signal has been constructed, the
relationship of the centroid of the signal to the satellite’'s center of mass is determined

and then applied as a range correction to the laser data used in the geodetic analyses.
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The major limitation on the accuracy with which transfer functions can be deter-
mined for the existing laser satellites is the lack of precise information on the beam
patterns of the cube corners in relation to the large size of the arrays. With the exist-
ing uncertainties in retroreflector optical characteristics, geometric placement, and
satellite attitude, we estimate that the range corrections for these satellites have an

accuracy of about 10 em. It should be noted that this error is quite systematic.

2.3 Timing-System Data Reduction

During data reduction, observation epochs are corrected for 1} phase drift in the
transmitted VLT signal and 2) clock jumps, which can be recovered by the redundant
hardware at the station. Epochs are then converted to Smithsonian Atomic Time (see

Appendix A) for use in analysis.

Initial phase relationships between station clocks and the received VLF signals
are established during routine portable-clock trips. The station-clock oscillators are
subsequently steered to maintain phase with VLF transmissions. The epoch correc-
tions due to drift in the phase of the transmitted signal are determined from the values
published in USNO's ''Daily Phase Values, Series 4." Even with clock steering, the
phase relationship with VLF has periodic variations, which are reported monthly and
used fo estimate the timing uncertainty at each station.

Before September 20, 1967, the station clocks were feferred to WWV-emitted
and were steered to track WWV. The propagation times to the stations were computed
and published (Haefner and Martin, 1966). Any deviations were reported and applied
as a correction to observation epochs.
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3. SAQ SATELLITE-TRACKING NETWORK
3.1 Sites

The first Baker-Nunn camera was sent to Organ Pass, New Mexico, at the
observing site of the Harvard Meteor Program. The first successtul observation
was made November 26, 1957, just a month and a half after the launch of the first
artificial earth satellite. The network had expanded by the following August to
12 operating Baker-Numn stations. Table 3 shows the history of the Baker-Numn sites
to date.

After 8 years, it became apparent that higher accuracies were needed for future
scientific projects. By March 1966, SAO had assembled, tested, and operated its
first laser tracking system. It consisted of a rented General Electric laser mounted
on a 3-inch gun mount with a searchlipht receiver. This system operated success-
fully for over a year at the New Mexico site, during which time plans were formulated
for a prototype laser tracking systerri with components designed and built specifically
for that purpose.

The prototype system was operating at Mt. Hopkins in December 1967. Three
production laser systems, based on the design and experience gained with the proto-
type, were fielded in late 1970. In 1972, the Mt. Hopkins prototype was reworked to
make it similar to the three production systeins. Table 4 shows the history of the
lasers to date. Figure 11 shows the present global distribution of Smithsonian stations,

including the laser sites.

The present SAQ gites that contain both a laser and a Baker-Nunn camera are
Mt. Hopkins, South Africa, Peru, and Brazil. The last three stations are staffed
and operated by SAO personnel with logistic support provided by cooperating agencies
in each country: the Council for Scientific and Industrial Research in South Africa,
the Instituto Geofisico del Peru and the Universidad Nacional de San Agustin in Peru,

and the Instituto Nacional de Pesquisas Espaciais in Brazil.
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Table 3.

History of the SAO Baker-Nunn satellite-tracking cameras.

Satellice -

camera COSPAR oumber First £ Last ful Transferred to First ful last ful Translerred o Firat sucoennful Laat puccesaful
numher and slation location cheervition observation number and atation obsetvation observatinn number gnd station obaervation obse rvation
5C-) 2001 (Irgen Pass, New Mexico November 26, 1957 March 1B, 196B pd21 Mt, Hopking, Arizomna March 11, 1968 -

3C-2 9002 Olifantsfontein, South Afmca March 18, 1953 December 17, 1970 9022 Olifantsfontein, South Africa Jamary & 1871 -

tnew butldingt

5C-3 2003 Woomera, Austratia Mearch L1, 1963 June 1964 3023 Ialand Lagoon, Austrzlia July 1984 April 13, 1973 5043 Qrroral Valley, Australia Jummary 1574 ealy -
SC-4 9004 San Fernando, Spain March 1B, 1958 -

5C-3 9045 Tokyo, Jepan April 5, 1378 Moy 24, 1048 9025 Dodaira, Japan May 24, LBGE -

SC-6 06 Haini Tal, India Apgust 29, 1858 -

sC-7 3007 ATequips, Pern July 4, 185R May 30, 1970 9027 Arequipn, Peru Juoe L, 1370 -

) focw building)
SC-4 908 Shiraz, Iran May 20, 1958 July 15, 1966 9088 Addis Absbe, Ethiopia Augusl 15, 1966 -
5C-9 ' 9009 Curaguo, Netherlands Antilies Juna 32, 1958 July 19, 1988 9129 Natal, Brazil September 27, 1968 May 5, 1870 9038 Natal, Brazil May 7, 1870 -
(mew building)
SC-10 5018 Jupiter, Florida Jure 10, 1BSE Octaber 12, 1967 4091 DMenyacs, Greece December 7, 1967 June 25, L9R9 9020 Dionysos, Greece July 3, 196G -
fmew buildingd

SC-41 B Villa Dolores, Argenlina July ip, 1358 October 28, 1966 9031 Comodoro Rivadavil, Argentina Nevember 14, 1966 January 1970 See SC-1)a

se-1:a’ 5040 Daker, Senegal December 1970 September 1571 9040 Cuagadmugou, Upper Volta May 1972 -

SC-12 9012 Maui, Hawaii -

July 4, 1958

On lean to CNES.
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Tahle 4, Laser sites.

Station : : : S ,
number Station location Period of operation
7901 Organ Pass, New Mexico . March 1966 to July 1967
7912 Maui, Hawaii May 24, 1968, to March 27, 1969
7902 Olifantsfontein, South Africa February 1971 to present
7907 Arequipa, Peru December 1970 to present
7921 Mt. Hopkins, Arizona (prototype) December 1967 to June 20, 1972
7921 Mt. Hopkjhs, Arizona (rebuilt system) - November 1972 to present
7929 Natal, Brazil November 1570 to present
7991 Athens, Greece September 1968 to June 1969
7930 Dionysos, Greece July 1969 to present
7925 Tokyo, Japan November 1972 to present

The Baker-Nunn site in Maui, Hawaii, is staffed and operated by SAO personnel

in coﬁjunction with the Uhiversity of Hawaii. The camera in Australia is operated by

the Department of Supply of the Australian government; The.Stations in Spain, Ethiopia,

and Greece are supported and operated jointly by the Smithsonian and cooperating

agencies: the Spanish Naval Observatory in Spain, the Haile Selassie I University in

Ethiopia, and the NTU in Greece.

NTU also operates a laser system. A laser sySfem

belonging to the Centre National detudes Spatiales (CNES) is currently located at Addis
Ababa, Ethiopia.

The tracking station in Japan is operated by the Tokyo Astronomical Observatory

and has, in addition to the Baker-Nunn camera, a laser system designed and built in

Japan. The Baker~Nunn camera in India is operated by the Uttar Pradesh State

Observatory,

A Baker-Nunn camera on loan to CNES has been used at several locations in

Africa; it is currently in operation in Ouagadougou, Upper Volta,
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Beginning in 1964, several Baker-Nunn cameras operated by the 7th Aerospace

Squadron at ENT Air Force Base have participated in SAO satellite-tracking programs.

The sites are listed in Table 5. SAO scheduled observing times and provided predic-

tions for simulitaneocus observations.

analysis and are incorporated in the SAQ data file,

These data have been included in the SAG

Table 5. Air Force Baker-Nunn sites.

Station

number Station location Period of operation
9113 Edwards AFB, California (Rosamund) December 1960 to present
9114 Cold Lake, Canada () January 1963 to June 1971
9115 Harestua, Norway December 1959 to July 1967
9116 Santiago, Chile September 1960 to May 1964
9117 Sand Island (Johnston Island), Pacific September 1963 fo present
9118 Kwajalein Island Not operational for satellite

~ photography

9119 Mt. John, New Zealand October 1969 to present
9120 San Vito, Italy March 1971 to present
9124 Cold Lake, Canada (II) July 1971 to present
90 10* Jupiter, Florida {(AF) June 1968 to July 1971

T ;
Site previously occupied by SAO Baker-Nunn camera (see Figure 11).

3.2 Operations

The SAO Baker-Nunn cameras and laser systems receive new satellite predictions

each week. The predictions are computed from up-to-date observations provided by

the SAO network and by camera, minitrack, and laser observations made by other
agencies (see Table 6).

The predictions for the Baker-Nunn camera consist of azimuth- and altitude-

pointing angles, which need be accurate fo only a few degrees, and tracking-angle
rates to simulate the satellite motion (Cherniack and Gaposchkin, 1963). These pre-

field. The short-perjodic terms due fo J
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Table 6. Sources of data used in the orbit-genierdtion program.

Agency Ingtriment

SAO Baker-Nunn camerag
Lasers
Moonwatch

NASA/GSFC Prime Minitrack
Lasers

U.8. Air Force - Bdker-Nunn cameras

CNES CNES cameras
Lasers

zonal harmonics are included. The secular rate of the apsidal line and the argumetit
of perigee dre detetmined from the data for each orbit; The orbits are génherated with
thie Smiithgonian's Differential Orbit Improvement (DOI) program (Gaposchkin, 1964)

from obgervations covering a period of about 2 weeks.

The laser, on the other hand, requires azimuth- and'altitude—p”redicted pointing
anigles accurate to within severdl minutes of arc and a predicted range propagation
time accirate to within 20 psec for a given epoch. Orbits for laser tracking predictions
are also generated with the DOI program by usi'ng a gravity field with most of the
tesseral harrionies through degree and order 16 and with a mimber of higlier resonance
terms. Lunar perturbations are also included. Again, orbits are computed from data
cévering g perjod of about 2 weeks. Predictions for satellites equipped with retro-

reflectors are made for passes that reach altitudes greater than 25°,

The success of the network has depended on the timely flow of data from the field,
the development of pointing predictions from up-to-date data, and the use of these
fresh predictions at the field stations. The rapid data-prediction cyele is most critical
for the laser, which has stringent pointing requirements; however, it is also an
important factor in the Baker-Nunn operation, especially for simultaneous observations

between stations for geometric geodesy.
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Until 1968, direct links by teletype between the field stations and Cambridge
provided real-time communications. Since then, a combination of means has been
used to give real-time or near real-time communijcations at each site. Peru and
Brazil receive predictions and send their camera and laser data by direct radio~
teletype link operated by SAQ personnel. These stations have prearranged contact
times for data transmission. Atmospheric disturbances severe enough to affect the
link are infrequent. The fracking sites in Hawaii, Japan, Spain, Greece, and
Arizona use facilities of the United States military communications network for trans-
mission and receipt of data. The first three stations have direct access to this net-
work, while those in Greece and Arizona must pick up and deliver messages at local
military bases. The stations in Australia and South Africa use the NASA data network
(teletype). Predictions for the Ethiopia station are sent via NASA teletype link to
CNES in France and are retransmitted on their lines to Ethiopia. CNES generates
and sends predictions for their laser, located in Ethiopia, as well as predictions for
the 12th Baker-Nunn camera, now in Upper Volta. Data are currently returned fo
Cambridge by Embassy mail. The site in India receives predictions from SAO via
the United States Embassy in New Delhi and sends its data back by way of commercial
cable.

For the Baker-Nunn camera, predictions cover a period of 1 week, with an extra
day in case of transmission delays. At present, an average of 10 arcs is predicted
per station per night. In the past, as many as 50 arcs were predicted for each station.
Observations are reduced in the field to an accuracy of 40 to 60" and sent to Cambridge
immediately for use in the prediction cycle. The camera film is sent by commercial

mail for subsequent precise reduction (photoreduction).

Predictions for the laser system are in the form of punched paper tape, which is
used direetly to point the laser mount. Each predicted arc contains from 10 to 90
separate points (4 min_l), depending on the geometry of the pass. Stations receive
40 to 100 predicted arcs per week for three satellifes currently being tracked — Geos 1,
Geos 2, and BE-C. All seven retroreflector-equipped satellites have been tracked.
Satellite ranging data, system calibration data, and ground-based meteorological data
are sent to SAQ.
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4, INFORMATION FLOW

In the analysis described here, satellite-tracking data are combined with other
types of data to determine geodetic para.meters. Camera tracking data are given in
the system of right ascension and declination. The transformation of directions in
- right ascension to the terrestrial system, and vice versa, requires observation of
pole position and sidereal angle. These observed quantities are published by BIH,
USNOQO, and the International Polar Motion Sexrvice. The conversion formulas are
given in Volume 1, Part III. The numerical values used in converting ‘frorn one sys-
tem to another, together with the formulas, constitute the definition of the terrestrial
reference System. The values for pole position and UT1 are given in Appendices C
and D.

Surface-gravity measurements supplement satellite data in the determination of
the geopotential. Surface triangulation data, in the form of geodetic coordinates,

provide useful information about stations separated by less than 100 km.
Observations of deep-space probes by the five globally distributed radio antennas
of the Jet Propulsion Laboratory's Deep Space Net provide additional data relatiing the

relative longitudes and spin-axis distances of these antennas.

Figure 12 indicates how these data types are used, Subsequent parts of this
report discuss the analysis and results,
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APPENDIX A

SMITHSONIAN ATOMIC TIME

Since Septeﬁlber 20, 1967, SAO's satellite observations have been referred to
UTC({USNO). Before that date, observations were referred to time of emission of
WWYV signals (WWV-emitted), Both timing systems are readily available for use in -
the field, yet both have occasional discontinuities, which make them inappropriate
for analysis.

When the satellite-tracking program began in the late 1950s, uniform time stand-
ards such as Al and their differences from WWV-emitted (and later UTC) were not
" available in a timely fashion, However, the intended relations between WWV (and
later UTC) and the uniform time standard A}l were published regularly. SAOQ has
used these intended relations to generate a facsimile of Al from WWV and UTC data.

Smithsonian Atomic Time (A.S) is defined with respect to WWV-emitted before
September 20, 1967, and with respect to UTC(UUSNQ) after that date. Tables A-1 and
A-2 list the coefficients of the linear expression used for defining the difference between
A.S and the reference time system. ‘
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Table A-1, (A.S-WWV)=A+ B (T - TO), where A is in seconds, B is in seconds
per day, and T and T, are ini Modified Julian Days.

Interval A B T 0

1961 Jan. 01.0—1961 Jul. 01.0 15458 858 + 07001 296 000 (T ~ 37300.0)
1961 Jul. 01.0-1961 Jul. 13.0 1.693 434 + 0.001 292 000 (T - 37480.0)
1961 Jul. 13.0-1961 Aug. 01.0 1.694 215 + 0.001 245 000 (T - 37480.0}
1961 Aug. 01.0—1961 Sep., 21.0 1.643 160 -- 0. 001 280 000 (T - 37480.0)
1961 Sep. 21.0-1961 Oct. 01.0 1.641 500 + 0.001 300 000 (T - 37480. 0)
1961 Oct. 01.0-1961 Nov, 01.0 1.642 184 + 0.001 290 764 (T - 37480.0)
1961 Nov. 01.0-1962 Jan. 01.0 1.643 272 + 0. 001 289 444 (T - 37480.0)
1962 Jan. 01.0-1962 Apr. 01.0 1. 865 000 + 0.001 123 200 (T - 37650.90)
1962 Apr. 01.0—1962 Jul. 01.0 1.864 620 + 0.00] 126 800 (T - 37650.0)
1962 Jul. 01.0—1963 Jan. 01.0 1. 864 704 + 0,001 126 370 (T - 37650.0)
1963 Jan. 01.0—1963 Nov. 01. 2.292 725 + 0.001 118 458 (T - 38030.0)
1963 Nov. 01.0—1964 Jan. 01, 2.392 725 + 0.001 118 458 (T - 38030.0)
1964 Jan. 01.0-1964 Apr. 01. 2. 800 962 + 0.001 293 560 (T - 38395.0)
1964 Apr. 01,0—1964 Jul. 01. 2.900 766 + 0,001 295 716 (T ~ 38395.0)
1964 Jul. 01.0—1964 Sep. O1. 2.901 518 + 0.001 292 659 (T - 38395.0)
1964 Sep. 01.0—1964 Oct. 01. 3.001 518 + 0,001 292 659 (T ~ 38395.0)
1964 Oct. 01.0—1965 Jan, 01. 3.001 589 + 0,001 296 048 (T - 38395.0)
1965 Jan. 01.0—1965 Mar. 01. 3.575 732 + 0,001 296 000 (T - 38761.0)
1965 Mar, 01.0—1965 Jul, Ol. 3.675 732 + 0,001 296 000 (T - 38761.0)
1965 Jul. 01.0-1965 Sep. O0l. 3.775 732 + 0. 001 296 000 (T - 38761.0)
1965 Sep. 01.0—1966 Jan, 01. 3.875 732 + 0. 001 296 000 (T - 38761.0)
1966 Jan. 01.0-1967 Jan. O0l. 4.348 772 + 0,002 592 000 (T - 39126. 0)
1967 Jan. 01,0-1967 Sep. 20. 5.294 852 + 0,002 592 000 (T - 39491. 0)

[T = T - T — T — D — R = D - R < R o~ R = = N -}
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Table A-2. [A.8 - UTC({USNO)] = A+ B (T - T,), where A is in secondé, Bis in
geconds per day, and T and TO are in Modified Julian Days.

Interval A B T 0

1967 Sep. 20.0-1968 Jan. 01.0 5294 688 + 07002 592 000 (T ~ 39491.0)
1968 Jan, 01.0-1968 Feb. 01.0 6.240 768 + 0.002 592 000 (T - 39856, 0)
1968 Feb, 01.0~1989 Jan, 01.0 6. 140 768 + 0..002 592 000 (T - 39856. 0)
1969 Jan. 01.0-1970 Jan. 01.0 7.089 440 + 0.002 592 000 (T - 40222.0)
1970 Jan. 01.0-~1971 Jan. 01.0 8.085 520 + 0.002 592 000 (T - 40587.0)
1971 Jan. 01.0~1972 Jan. 01,0 8.981 600 + 0.002 592 000 (T - 40952.0)
0

1972 Jan. 01.0~1972 Jul. 01. 10. 035 280 + 0,000 000 000 (T - 41317.0)
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APPENDIX B

SATELLITE CENTER OF MASS

Laser range measurements are extrapolated to the satellite's center of mass by
means of the following formulas. These formulas relate the range correction Ain
meters to ¢, the angle in degrees between the satellite's axis of symmetry and the line

of sight to the observing station.

BE-B and BE-C

A= 0.3493 - 1.09183 X 10 ° X ¢ + 2.9222 X 1078 % % - 1.5338 % 1077 x ¢3

(A= 0 for & > 120°)

D1C and DID

A= 0. 164612 - 2.824% 103X & + 2.0639 X 10 2 X ¢2 + 8. 1214 X 107 X ¢

- 5.81302X 1079 x ¢*

(A= 0 for ¢ > 1207
Geos 1
A=0,3972 cos ¢
Geos 2
A= 0.4298 cos ¢

Peole

A=0.48 - 1.108X 10 2 X & + 4. 19267 X 104X ¢% - 3.619% 1078 x ¢°
-9 .4

+8.12885 KX 10 "X ¢

(A= 0,768 for ¢ > 96°)
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APPENDIX C

POLAR MOTION

Polar-motion data for dates before January 1, 1962, were obtained from the
Bureau Central des Telegrammes Astronomiques Circulaire No, 1804, of August 15,
1962 (coordinates supplied by G. Cecchini Torino), and were compﬂed and distributed
by the International Latitude Service (ILS).

Data for 1962 through 1971 were taken from the Annual Reports of the IPMS, and
since 1972, from their Monthly Notes, published by the Central Bureau of the Inter-
national Polar Motion Service, Mizusawa-shi, Japan. All data ave referred to the
mean pole of 1900 to 1905 (Conventional International Origin, CIO). Since December 1,
1967, the BIH has published polar-motion data referred to the same origin {Circular D
monthly and annual reports), The rms difference between BIH and IPMS pole positions

is 1.5 m.

Table C-1 gives the instantaneous pole coordinates referred to the CIO. The
“sources of the data are listed in the last column. Those labeled ILS 180462 have been
taken from Bureau Central des Telegrammes Astronomiques Circulaire No. 1804 of
1962, Data from IPMS are from their Annual Reports, labeled IPMS ARPT64 through
ARPT73, where the last two digits indicate the year of the Report, or from their
Monthly Notes, IPMS MN(0272 through MNQ873, where the last four digits represent
the month and the year, | .
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Table C~1. Instantanecus pole coordinates.
X y
Date MJD (arcsec) (arcsec) Source
1960 01 01 36934, 0135 L0443 ILS 180462
1960 01 19 36952, «073 L0Q7 ILS 180462
1960 02 €7 36971, «046 =,012 ILS 180462
1960 02 25 36989, «035 «,007 ILS 180462
1960 03 14 37007, o013 4025 ILS 180462
1960 D4 0Ol 37025, -4,027 4059 ILS 180462
1960 04 20 37044, o074 L0094 ILS 180462
1960 05 08 37062, =2 097 ol24 ILS 180462
1960 05 26 37080, =e107 153 ILS 180462
1960 06 13 37098, ~oal04&4 L1183 ILS 180462
1960 07 02 37117, - 088 ,209 ILS 180462
1960 07 20 37135, -e040 4238 ILS 180462
1960 08 07 37153, +003 L263 ILS 180462
1960 08 25 37171. +D4l o2B8 ILS 1804862
1960 09 13 37190, « 070 o300 ILS 180462
1960 10 01 37208, 091 4305 ILS 180462
1960 10 19 37226, o107 301 ILS 180462
1960 11 06 37244, ell6 o288 ILS 180462
1960 11 25 37263, 2116 4270 ILS 180462
1960 12 13 37261 «109 o248 ILS 180462
i96el 01 Ol 37300, «092 ,220 ILS 180462
1g61 Ol 19 37318, «s074 .188 I1.S 180462
1961 02 07 37337. 2065 o161 ILS 180462
1961 02 2% 37355, «064% L1149 ILS 180462
1961 03 15 37373, «063 150 ILS 180462
1961 04 02 37391, 0056 o157 ILS 180462
1961 04 21 371410, 2045 161 ILS 180462
1961 05 09 37428, »035 L159 ILS 180462
1961 05 27 37446, +030 ;154 ILS 180462
lgbl 06 14 37464, 2032 4151 ILS 180462
1961 07 03 37483, « 040 4149 ILS 180462
1961 07 21 37501, o044 4150 11.S 180462
1961 08 08 37519, s 044 152 118 180462
1961 08 26 37537. e 042 4157 ILS 180462
1961 09 14 37556, «038 165 1LS 180462
1961 10 02 37574, +028 173 ILS 180462
1961 10 20 37592. «019 o191 ILS 180462
1961 11 07 37610, »as01ll o212 ILS 180462
1961 11 26 37629, ~e 028 4243 ILS 180462
1961 12 14 37647, =s023 o275 ILS 180462
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Table C-1. (Cont.)

X

y
Date MJD (arcsec){arcsec) Source
1962 01 01 37665, ~o009 297 IPMS ARPTE4
1962 01 19 37683, +008B 4309 IPMS ARFT64
1962 02 07 37702. +027 o314 1PMS ARPT64
1962 02 25 3772C. «047 4312 IPMS ARPTG4
1962 03 15 377318, «071 o304 [PMS ARPTO4
1962 04 (G2 37754, «095 L2900 IPMS ARPT&4
1962 04 21 37175, e 120 L271 IPMS ARPT64
1362 05 09 37793, alé2 L246 IPMS ARPTSH4
leoéz 05 27 37811, 162 214 IPHS ARPTé4
1962 06 14 37829, o173 L1175 [PMS ARFTS4
1962 07 03 37848, w171 o132 IPMS ARFTO64
1962 CT 21 37B6és, 157  L092 IPMS ARPTH4
1962 08 08 37884, el28 068 IPMS ARFPT64
1962 08 26 37902, «094 L060 IPMS ARPTé4
1962 09 14 37921, «056 L0867 IPMS ARPT64
1962 10 02 37939, «017 .083 IPMS ARPT 64
1962 10 20 37957, =019 L1104 IPMS ARPTE4
1962 11 07 37975, ~-.054 128 IPMS ARPTé4
1962 11 26 37954, -.086 4160 IPMS ARPTG4
1962 12 14 38012, ~«110 200 IPMS ARPTHG
1963 01 01 38030, =el21 J248 IPMS ARFT6S
1963 01 19 380483, =119 4295 1PMS ARPTS5
1963 02 07 38067, -«10% 4329 IPMS ARPT65
1963 02 25 3B0BS, =076 o356 IPMS ARPTSS
1963 03 15 38103, -o038 4376 IPMS ARPT6S
1963 04 02 3B121, 2009 L3885 IPMS ARPT6S
1563 04 21 38140, «07T0 ,387 IPMS ARFT6ES
1963 05 (09 38154, o134 4375 IPMS ARPTES
1963 05 27 38176, «191 4349 IPMS ARPT65
1963 06 14 2Bl9a4, e239 L307 IPMS ARPTS&5
1963 07 03 38213, « 274 L251 IPMS ARPTES
1963 07 21 3823). «301 L193 IPMS ARPTES
1963 08 08 38249, +281 139 IPMS ARPTES
1963 08 26 38267. «237 L0911 IPMS AKFTSH5
1963 D9 14 3828u. 176 L0486 IPMS ARPT6ES
1963 10 02 38304, «112 L0088 IPMS ARPTES
1963 10 20 38322, «048 »,020 - IPMS ARPTES
1963 11 07 38340, -.011 ,L005 IPMS ARPTES
1963 11 26 383549, -a069 L0411 IPMS ARPTES
1963 12 14 38377, =e122 L0778 IPMS ARPTES
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Table C-1. (Cont.)

X ¥
Date MJID (arcsec) (arcsec) Source
1964 01 Ul 383595, ~slTl 120 IPMS ARPTES
1964 01 19 38413, =e206 168 I1PMS ARPTOS
1964 02 07 38432, ~e 134 o230 IPMS ARPTé66
1964 02 25 38450, o l69 4294 IPMS ARPTOGS
1964 03 14 38468, ~o139 4353 IPMS ARPT6S
1964 04 01 3848¢, wol0l 412 IPMS ARPTOS
1964 04 20 38505, -e055 +455 1PMS ARPTES
1964 05 08 38523, 2004 o467 IPMS ARPTé&6
1964 (05 26 38541, « 074 4459 IPMS ARPTO6
1964 06 13 38559, o164 o436 IPMS ARPTES
1964 Q7 02 38578 e2lé o394 IPMS ARPTES
1964 07 20 38536, 22640 4339 IPMS ARPT66
1964 08 07 386l4. e2&4l o275 IPM5 ARPTGE6
1964 08 25 38632, «239 W219 IPMS ARPT66
1964 09 13 38651, 0255 L168 1PMS ARPT66
1964 10 01 38665, 0250 L1223 IPMS ARPTES
1964 10 19 38687, «219 o085 IPMS ARPTE6
1964 11 06 38705, 2161 L0860 IPMS ARPTG6
1964 11 25 38724, « 099 o046 IPMS ARPTG6
1964 12 13 38742, o042 o043 IPMS ARPTES
1965 Q1 01 38761, ~,012 4049 1PMS ARPTEY
1965 01 19 38779, »e 067 2069 1PMS ARPTET?
1965 02 07 3879, ~e120 4103 IPMS ARPT&T
1965 02 25 388le,. o160 o153 IPMS ARPTSY
1965 03 15 38834, ~o185 L22 iPMS ARPTE7
1965 04 02 38852, o196 o286 IPMS ARFT67
1965 04 21 38871, =el94 334 IPMS ARPTET
1965 05 09 38889, “ol74 o374 IPMS ARPTE7
1965 05 27 38907. =-s130 L4408 IP¥S ARPTET
1965 06 14 38925 »e072 J434 IPMS ARPTET
1965 07 G3 38944, -o003 L444 IPMS ARPT67
1965 07 21 38962. « 071 L4433 IPmS ARPTB7
1965 08 08 38980, o127 4399 IPMS ARPTET
1965 (0B 26 3B99%8. a168 4349 1PMS ARPTET
1965 09 16 39017, «201 4303 IPNMS ARPTET
1965 10 02 39035, «221 o259 IPMS ARPT6T
1965 10 20 39053, 2227 4221 [PMS ARPTOT
1965 11 U7 39071. 0220 186 IPMS ARPTET
1965 11 26 39090, 2194 4156 IPMS ARPTET
1965 12 14 39108, »138 L1131 1PMS ARPTSET
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Table C-1. (Cont.)

X v . ‘

Date MJID (arcsec) {arcsec) Source
1966 01 Gl 39126, <075 114 IPMS ARFTSES
1966 01 19 39144, «033 L1023 IPMS ARPT6S
1966 02 GT 39163, 000 098 IPMS AKPTEB
1966 02 2% 39161, -,029 4100 IPMS AKPT6B
1966 03 15 39199, -.058 4108 IPMS ARPTGS
1966 04 02 39217, - 086 4124 IPMS ARPTESB
1966 04 21 39236, -s105 4149 IPMS ARPT6S
1966 05 09 39254, -.l16 .181 IPMS AKPY6B
1966 Q5 27 39272, ~al19 4215 IPMS ARPTES
1966 06 l4 392%(0. ~ell5 4255 IPMS ARPT6S8
1966 07 G3 39309, -.104 ,298 IPMS ARFPTS68B
1966 07 21 39327. -.086 4330 IPMS ARFTéS8
1966 08 0B 393435, ~o 057  W344 IPMS ARPTSS
1966 0B 26 39363, =010 o345 IPMS ARFT6SB
1966 09 14 39382, «052 4337 IPMS ARPTSSB
1966 10 02 39400, 096 L3224 IPMS ARPTS&S8
1966 10 20 39418, «117 4308 IPMS ARPT6S8
1966 11 07 39436, 125,291 IPMS ARPT68
1966 11 26 39455, «123 2273 IPM5 ARPT&SB
1966 12 14 39473, 115 4253 IPMS ARPT68
1967 01 01 39491, 2098 L2334 IPMS ARPT69
1967 01 19 39509, 075 W214 I1PMS ARPT69
1967 G2 G7 39526, «053 L193 IPMS ARPT69
1967 02 25 39546, 2032 .176 IPMS ARPT69

1967 03 15 39564, 013 4164 IPKS ARFT69
1667 04 02 39562, 000 L1586 IPMS ARFT69
1967 04 21 39601, . -.006 4153 IPMS ARPTE9
1967 05 09 39619, -+007 4153 IPMS ARPTE9
1967 05 27 39637, =002 4155 IPMS ARPTSE9
1567 06 14 39655, 2011 ,L159 IPMS AKPT69
1967 07 G3 39674, «037. J166 IPMS ARPTE9
1967 07 21 39692, <055 4174 IPMS ARPTSE9
1967 08 UB 39710, «047 L4184 IPMS ARPTE9S
1967 08 26 39728, 026 L195 IPMS ARPT6S
1967 0% 14 39747, «Q06 ,207 IPMS ARPT6E9
1967 10 02 39765, -.013 L,221 IPMS ARPTES
1967 10 20 39783, -e031 4237 IPM5 ARPT&9
1967 11 07 39801, ~a049 ,253 IPMS AKPT69
1967 11 26 39820, -s062 L2273 IPMS ARFPT6S
1967 12 24 39838, ~e0b4 4292 IPNMS ARPT69
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Table C-1. (Cont.)

X
Date MJD (arcsec) (arcyse c) Source

1968 01 01 39856, =055 4305 [PMS ARPTT70
1968 01 19 239874, =037 ,L310 IPMS ARPTTO
1968 02 07 39893, -.014 4309 IPMS ARPTTO
1968 02 25 39911, 2009 <302 IPMS ARPTT0
1968 03 la 39925, «030 ,290 IPMS ARPTTO
1968 04 U1l 39947, 048 L2774 IPMS ARPTTO
1968 04 20 39966, 2057 5259 IPMS ARPTTO
1968 05 08 39984, « 059 4244 IPMS ARPTTO
1968 05 26 40002, 20861 +229 iPMS ARPT70
1968 06 13 40020, 067 o214 IPMS ARPTTO
1968 07 02 40039, «089 4198 1PMS ARPTTO
1968 07 20 40057, 104 4183 IPMS ARPTT0
1968 0B 07 4007s, «095 L4169 IPMS ARFTT70
1968 08 25 40093, « 060 L160 IPMS ARPTTO
1968 09 13 40ll2, «016 L1158 IPKS ARFTTO
1968 10 Cl1 40130, -e022 4162 IPMS ARPTTO
1968 10 19 40l4s, ~+083 L1755 IPMS ARPTTO
1968 11 06 40lb66. -,084 201 IPNMS ARPTTC
1968 11 2% 4OlEB5, ~slll 236 IPMS ARPTTO
1968 12 13 40203 =el27T o268 IPMNS ARPTTO
1963 01 01 40222, =123 4290 IPM3 ARPTT?]
1563 01 19 40240, -, 106 4306 IPMS ARFTTL
1969 02 G7 40259, -~ 099 4323 IPMS ARPTTL
1969 02 25 40277. =085 o344 IPMS ARPTT1
1969 03 15 40295, ~a0306 372 IPM5 ARPTT]
1969 04 G2 40313, +015 392 IPMS ARFT71
1969 04 21 40332, 2052 4396 IP¥S ARPTT1
1969 0% 09 40350, o090 4387 IPMS ARFTTL
1963 05 27 40368, o126 o366 1PMS ARPTT1
1963 06 14 4036¢, o158 337 1PMS ARFTT1
1969 07 03 40405, «180 ,L,302 IPMS ARPTT
1969 07 21 40423, «188 257 IPMS ARPTTL
1969 08 08 40441, o184 L2111 IPMS ARPT71
1969 08 26 40459, o165 Ll67 IPMS ARPTTL
1969 09 14 40478, e125 4135 IPMS ARPTTL
1969 10 02 40436, «079 L1ll4 1PKS ARPTT71
1969 10 20 40514, e036 L1086 I1PMS ARFT71
1969 11 07 40532, -o01l4 4106 IPMS ARPT71
1969 11 26 40551, ~o069 L1113 IPMS ARFTTL
1965 12 14 40589, -e116 <133 IPMS ARPTTL
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Table C-1. (Cont.)

X y
Date MJD (arcsec) (arcsec) Source
1970 01 Ol 40587, =+157 <169 1PMS ARPTT2
1870 01 19 40605, ~a180 L,219 IPMS ARPT72
1670 02 07 40624, ~a 180 4276 IPMS ARFT72
1970 02 25 40642, =elbl 4332 I1PMS ARPTTZ2
1970 03 15 4Q&6k0, ~s131 382 IPMS ARPTT2
1970 04 02 40678, ~o098 4422 [PMS ARPTT?2
1970 04 21 40697, =s0863 4450 IPMS ARPTT2
1970 0% 0%  4071%, o026 447 IPMS ARPT72
1970 05 27 40733, «021 o463 IPMS ARPTT2
1970 06 14 40753, «092 4436 IPMS ARPTTZ2
1970 07 03 40770 2159 4395, IPMS ARPTT2
1970 07 21 40QT7&s8, « 209 350 IPMS ARPTT2
1970 0B 08 4080s, w2h] «302 IPMS ARPTT2
1970 0B 26 40824, 269 4252 - IPMS ARPTTZ
1970 09 14 40843, 2234 L1988 IPMS ARPT72
1970 10 2  408B6], 2204 4150 iPMS ARPTT2
1970 10 20 40879, 166 L1113 IPM5 ARPTT72
1970 11 07 40897, «121 079 IPMS ARPTYT2
1970 11 26 40916, 2072 o045 IPMS ARPT7T2
1970 12 14 . 40934, « 024 L0114 IPMS ARFPT7T2
1971 01 01 40952, ~e045 L0019 IPMS ARPTT73
1971 01 19 40970, ~el28 L0851 IPMS ARPTT3
1971 02 G7 40989, =e203 L092 IPMS ARPTT73
1971 02 25 41007, =e203 o143 IPMS ARPTT3
1971 03 15 41025, o228 4204 IPMS ARPTT73
1971 04 02 41043, e 189 o272 IPMS ARPTT73
1971 04 21 41062, -el36 o340 IPMS ARPTT2
1971 05 09 4]080, =075 L399 IPMS ARPT73
1971 05 27 41098, =018 o447 IPM5 ARPTT3
1971 06 14 41llé,. 2024 ™79 IPKS ARPTTS
1971 07 3 4ll3s, «07T o485 IPNMS ARPTT3
1971 07 21 41153, 2l42 o468 - IPMS ARPTT73
1971 OB 08 41171. 221% 4445 IPMS ARPTT73
1971 OB 26 4llbo, « 266 4404 IPMS ARPT?3
1971 09 14 41208, +277 «337 IPMS ARPTT73
1971 10 €2 4l2Z6. +255 o278 IPMS ARFTT73
1971 .10 20 41244, o212 4235 IPMS ARPTT3
1971 11 U7 41262, «1l74 4203 IPKS ARPT73
1971 11 26 41281, +139 L1867 IPMS ARPTT73
1971 12 14 41299, «110 L1120 1PMS ARPTT73
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Table C-1. {Cont.)

X y
Date MdJD (arcsec) (arcsec) Source
1672 01 Ul 41317 +071 070 IPMS MNQO2T72
1972 01 19 41335, «015 033 IPMS MNO472
1972 02 (6 41353, -+015 4030 IPMS MNO472
1972 02 25 41372, -.042 L4053 IPMS MNO472
1472 03 14 413%0, -+068l L1109 IPMS MNO572
1972 04 G2 41409, ~al25 W174 IPMS MNO572
1972 04 20 4l4i7, ~al39 <242 IPMS MNOTT2
1972 05 09 4l44s, -¢120 +308 IPMS MNOTT2
1972 05 27 4lébs, ~s073 4358 1PMS MNOTT2
1972 06 14 4l4B2, ~,017 <384 IPMS MNQT72
1972 07 G2 41500, «033 ,398 IPMS MNO8TZ2
1972 07 21 41519, 2065 L4404 IPMS MNGG72
1972 08 08B 416537, 0B84 L4404 IPMS MNOS72
1972 08 26 41555, «105 +398 IPM5 MNL1QT72
1972 09 13 41573, « 142 o383 IPMS MNL1QT2
1972 10 02 41592, 180 L3360 IPKS MN11T2
1972 10 20 41610, 206 «334 1PLS MN12T2
1972 11 07 41628, 219 310 IPMS MN1272
1972 11 25 4lé64s,. «223 4278 IPMS MNOLT3
1972 12 14 416865, 0220 L4212 IPMS MNQ273
1973 01 U1 4léB3, «205 4137 IPMS MNO3T3
1973 01 19 41701, 177 Lllb I1PMS MNO3T3
173 02 07 41720, o149 123 I1PMS MNU4T3
1973 02 25 41738, «120 L2134 IPMS MNO&73
1973 03 15 41754, +079 L1232 IPMS MNOST3
1973 04 02 41774, «045 4120 IPMS MNOS73
1973 04 21 41793, «019 .138 IPMS MNOST3
1973 05 09 41811, -2 005 4176 IPFS MNDST3
1973 0% 27 41829, ~+029 <228 IPKS MNDTT3
1973 06 14 4lB4T, -4043 265 IPMS MNOTT2
1973 07 03 41866, -.037 .288 IPMS MNOB73
1973 07 21 418684, -2019 «306 1PMS MNOBT3
1373 08 (B 41902, « 006 .325 IPMS MNGBT3
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APPENDIX D

UNIVERSAL TIME (UT1)

Before January 5, 1962, SAO used UT1 values referred to UTC(USNO) as published
by USNO. Since that date, SAO has used UT1 values from Circular D provided by BIH,
referred to International Atomic Time {AT). IAT and Smithsonian Atomic Time (A.S)
(see Appendix A) are related through published differences with A1(UBNO).

The differences between A. S and UT]1, tabulated in Table D-1, are expressed in
25~ or 50-day intervals as a second-degree polynomial of the form
= 2
A8 -UTI=A;+A (T-Ty+A4A, (T-T)" ,

where A.8-UT] is in seconds, T is in Modified Julian Days, and T, is the beginning
of the interval in MJD, Table D-1 gives T0 in MJD, year, month, and day; the inter-
val {25 or 50 days); and the coefficients Agy £, and A,

The polynomial fit determined for the last interval (August 2, 1970) was used to

extrapolate UT1 values for subsequent observations,’
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Table D-1. (A.S-UT1)= Ag+ Aj(T -Tg) + Ag(T - Tg)%, Where Ag is in seconds, Ay

is in seconds per day, Ao is in seconds per day squared, and T and T
are in Modified Julian Days.

MJD Year AO A1 Az

36204 1958 1 3,3419436E=02 1,7413966E=-03 =1,9653803E~06
36254 1958 2 1,1579783E=01 1,6564313E=03 2,3026866E-06
36304 1958 &4 2.037664TE~01  1,9724053E=03 -6,4075849E-06
36354 1558 5 2.,863496TE=0Ll 1,1769024E=03 -647556608E-08
36404 1958 7 3,2915559E=01 ,7403947E-04 2,985446BE=06
36454 1958 9 3.6300644E=01 F.,8815046E~04% 7:54137T63E=-08
36504 1958 10 4,3150837E=01 1,6881441E-03 =7,0276712E~07
36554 19%8 12 S.141220BE-D1 1.63528B6E-03 =1,4187507€£-06
36604 1959 2 5,9269873E-01 1,3389B52E=-03 5,3305095E~07
36654 1959 3 6.6077901E-01 1,4851055E~03 -1,4231052E=06
36704 1959 5 7e3101019E-01 1,2950031E=03 =-5.4199867E~06
36754 19%9 7 7.82564341E=01 6,5357649E=04 9,70183T71E~07
36804 1959 8 B,1781323E=01 B,9608601E-04 7.8326401E=-06
36854 1959 10 B.Bl81973E=D1 1.,7266513E=03 5,4035308E-07
36904 1959 12 9.6965913F-01 1,6164842E=03 -44208849T7E=06
36954 1960 1 ‘1,0403734E+00 1,.,2334624E-03 3,6669612E~06
37004 1960 3 141111673E+00 1,6275209E=03 ~2,299176BE~D7
37054 1960 4 1.1915729E+00 1,5900046E=03 ~7.8592544E~08
37104 1960 [ 142514738E+00 7,5151427E~-04 ~9,0206712E-06
37149 1960 T 1,266T636E+00 3,1729027E-04 1.T7171124E~06
37154 1960 8 1427392B7TE+00 3,9334216E-064 B4B466494E-06
37204 1980 9 1,315T101E+00 1,29792076-~03 2,2318567E-06
37254 1940 1 1.3859456E+00 1,504048BE~03 =2,3808790E-06
37304 1961 1 1o454597BE+00 1,3634637E~03 =1,1360556E~05
37329 19¢1 1 l,4Bl6626E+00 7,1469680E-04 B.637T8757E-06
37354 1961 2 1.,5049539E+00 1,2979237E-03 1,1227052E-05
37379 1961 3 1,5441614E+00 1,8519622E=03 =14,2927014E-0D5
37404 1961 4 1,5811533E+400 1,2896141E-03 =2,5516547E~006
37454 1961 1 1,6391211E+00 1,0192945E=03 =5,1144989E~06
37504 1961 T 1,6TH6B58E+00 44,0909512k=-04 4,.7788l42E=06
37554 1961l 9 1a7091307E+00 9,7682976E-04 5.6015027E~06
37604 1981 11 1aT717014E+00 1452368953E=03 ~1.9881058E-06
37654 1961 12 1,8430139E+00 1,2295078E~-03 -2,8505878E~07
37704 1962 2 19044 T70E+00 1,3384595E~03 2,7442956E-06
37754 1962 3 1o9780244E+00 1.674246TE=03 =1.B8004766E=06
37804 1962 S 2.,0582739E+00 1,3325185E-03 ~ls1249T769E~DD
37829 1962 & 2.0B846350E+00 7T,6860070E=04 =5,1197803E~06
37854 1962 7 24101053TE+00 4,41305649E-04 4,9204879E~06
37904 1962 8 24135442E+00 1,0523506E~03 641131265E=06
37954 1962 10 2,2031026E+00 1,7030925E~03 1.4501712E~06
38004 1962 12 2,2G16445E+00 1,7995139E~03 ~5.4912033E~06
38030 1963 1 2.3269576E+00 1,5368569E~03 =T7,518905]E~06
38080 1963 2 2.3B58924E+00 7,9361B84E-04 9.5144150E=06
38130 1963 4 2.4505509E+00 1,9460152E-03 =-1.2050727E=06
38180 1963 5 2.5443493E+00 1,7242581E-03 -=1.056168TE~05
38230 1963 7 2,6043955E400 2,3185199F=04 141552844E-~05
38280 1963 g 2,b6446542E+00 1,8522630E-03 7,3695482E~06
38330 1963 10 2.7531461E+00 2,2768322E~D3 ~2,6890519E~06
38380 1963 12 2.8602283E+00 1,9983618E-03 ~-5.,2916922E=~06
3181395 1964 i 2.8866372E+400 1,9522648E-03 249715617E~06
38445 1964 2 2.,9915075E+D0 2,1117754E-03 «3,3204T4TE~Q7
38495 19464 4 3,0981172E+00 2,20664573E=03 =3,0462964E~06
38545 1964 5 3,2005684E+00 1,9919421&-03 =8.0343568E~06
38595 los4 7 3.2502299E+00 5,.2400395E-04 1,2772361E-05
38645 1964 ] 3,3387022E+00 1,6493401E=-03 1.0265087E-05
38695 1964 10 3,4491442E+00 2,7563918E-03 =-8,5611800E-06
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Table D~1. {Cont.)

MJD Inferval Year M D AO A i A2

38745 50 1964 12 16 345655665E+00 2,1287401€E~03 5,8758603E-07
iR79s 50 1965 2 4 3,6T18494E+00 1,8453748E~03 &,7325927E=-06
38845 50 1965 3 26 34TT50TISE+00 3,06769T4E«D3 =be2T14T11E~D6
38895 50 1965 5 1% 3,9102900E+00 2,2125419E=03 «3,2115184E=06
38945 50 1965 7 4 440125T64E+00 " 1,0852979E~03 B,8935871E=06
38995 50 1965 8 23 4,0885572E+00 1,7553996E~-03 1,1832432E-05
3904y 50 1965 10 12 442072461E+00 2,9223026E-03 ~3,6010971E=06
33095 50 1965 12 1 - 4.344171BE+Q0 2,7868B66TE~03 ~1,16B82098E=05
39145 25 1966 1 z2c 444535446E+00 1,8592217E=03 1,7107806E=~05
39170 25 19¢6 2 14 4951 14650E+00 2,7014006E=03 =b6,6244354E=06
39195 50 1966 3011 445742014E+00 2,2465772E=03 7,3111285FE-06
39245 50 1966 4 a0 4e TO3GBSTESO0 2,7923520-03 =3,2345506E=06
319298 ap 1966 6 19 44B351114E+00 2,3118914E~03 «1,7B69077E=05
393¢s5 25 19686 7 19 4,BB8B9083E+00 1,2456T7044E=03 6,0010529E~06
319350 25 19686 B 13 4,F236500E+00 1,7664349E=03 1,6217865E-05
3937% 25 1966 9 7 4e9T7TB342E+D0  2,5195217E=03 5,7495114E~06
39400 25 1966 10 2 5.0440874E+00 2,86231788=03 7,4753583E~06
319425 25 1966 10 27 541203506E+00 3,1954189E=03 =8,5663248E~06
39450 25 1966 11 21 5¢1947TB7E+00 2,6966650E=03 2,8393821E~06
39475 25 1966 12 la 542637328E+00 2,9598943E-03 ~2,0632503E~05
39500 25 1967 1 10 54325721BE+00 1,2855956E-03 l.4117794E-05
A9525 25 1967 2 4 5¢366422TE+0QD0 " 2,02B6361E=03 1,5512874E~Q5
39550 50 1967 3 1 5442584366400 2,8546333E~03 =9,4031774E=07
39400 50 1967 4 20 545664568E+00 2,7318431E-03 «1,6141669E=06
395650 25 1567 & g 5.6990115E+00 2,6875036E-03 =2,2352390E=05
39875 25 1667 7 4 5,7524250E+00 1,3222263E~03 =5,5641305E=06
39700 50 1967 7T 29 S, TB231TBE+00 1,4590736E~03 1,0329558E=-05
39750 50 1967 9 17 S.8817508E+00 2,3572726E-03 3,58B0216E-D6
39800 25 1967 11 & 6,0095601E+00 2,8367568E~03 =1,0950763E~06
39625 3l 1967 12 1 6,0794995E+00 3,01577126~03 =-1,6686241E~05
39856 44 1968 i 1 6,1621671E+00 2,5326990E=03 1,3150000E=06
39900 50 1968 2 14 64255644BE+00 2,8169932E~03 -4,8698554E~D6
39950 25 1968 4 4 623836121E+00 3,4455413E=03 =1,6231575E=05
39975 25 1968 4 29 645939556400 2,47565T8E=03 =1,68B7416E-07
46000 50 1948 5 24 6e5211747E+00 2,6430618kE-03 =1,0778385E=05
40050 50 1968 7 13 6,627T6017E+00 1,8369700E=-03 5,4185294E=06
40100 50 1968 9 l 64 7330783E+00 2,43137468-03 2,7533980E-06
40150 50 1968 10 21 6.B60BB6LE+00 2,6823980E-03 1,6945720E-06
40200 50 1968 12 10 6¢9992317TE+00 2,5587021E=03 =21,256231TE=D6
40250 50 1969 1 29 Tel24LlTL5E+00 2,6096955E-03 6,4258524E=-06
40300 50 1969 3 20 T+2698556E+00 3,1022034E-03 1,1934881E-08
40350 50 1969 5 9 Te4240364E+00 2,8990167E~03 =6,6505806E-06
40400 50 1969 & 28 Te55229T0E+00 1,9273908BE-03 S,7887906E-07
40450 50 1969 B 17 Teb5017T18BE+00 2,1390599E=03 9,7481B87FE~06
40500 50 1969 10 6 7« TBOSTESE+00 2,8622157E=03 6,6903742E=07
40550 50 1969 11 25 Te9247163E+00 2,94453T76FE=03 «3,52821T0E=07
40600 50 1970 1 14 Be0TL1926E+D0 2,7371500E«03 4,145147BE=06
40650 50 1970 3 5 8.2187073E+00 3,2240917E«D3 =7,2612965E-07
40700 50 1970 4 24 Be377908IE+D0  3,2458833E-03 ~9,23636808E-06
40750 50 1970 6 13 Bo51T1191E+00 2,3386116E-03 ~5,B8353263E£~06
40800 50 1970 8 2 BeGl9TBTTE+DD 1,7498399E=03 7,56171554E~06
40850 50 1970 3 21 BoT261389E+00 2,7079800E=03 4,6054737E=06
40900 50 1970 11 10 BoBT26H6BTE+D0 3,0954253E=03 ~4,549944%E=06
40950 50 1970 12 30 9,015923BE+00 2,5853853E=03 =3,949325TE~07
41000 25 1971 2 18 e l441356E+00 2,5118515E«03 7.9534503E-06
41025 25 1971 3 158 Fe211265TE+0D  3,5479501E-03 =9,1074737E-06
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Table D-1. (Cont.)

MJID Interval Year M D AD A 1 A2
" 41050 50 1971 4 9 9,2932T40E+00 32,17134T1E-03 3,9504943E~07
41100 25 1971 5 29 9,451 TBLLE+00 3,0035859E=03 =1,2618819E=0Q5
41125 25 1971 6 23 9,5190T44E+00 2,2190693E~03 5,2932524E-06
41150 25 1971 T 18 G45TTBEL42E+00 245574090E=03 «5,4158487E~06
41175 25 1971 8 12 9.63853G6E+00 2,1791598E~03 1,3574835E~05
41200 50 1971 9 & 9,7018485E+00 2,7342531£=03 9,0682T1TE=-06
41250 s 1971 10 26 9.8405108E+00 3,8720920E~03 ~8,4939023E~06
41300 50 1971 12 15 1,0032261E+01 2,5273203E~03 7,1118106E~06
41350 50 1972 2 3 1.0181630E+01 3,3%20633E-03 1,0581663E~06
41400 50 1972 3 24 1,0351935€+0) 3,560830BE-03 =1,1697178E~D6
41450 S50 1972 S 13 1.0526966E+01 3,5474932E-03 =1,0218234E~05
41500 50 1972 7T 2 1.067924TE+01l 2,.36B5534E=03 3,7023648E-06
4155Q 50 1972 B 21 140B06706E+01 2.3625545E=03 1,1719805E=05
41600 50 1972 10 10 1,0953845E+01 3,1689969E=03 1.,6692998E=06
41650 50 1972 11 &9 1el116B56E+01 3,2993442E-03 ~]1,8889984E=06
41700 50 1973 l1 18 1e1277005E+01 3,15691B4E=-03 2,7673671E-06
41750 50 1973 3 9 lel441101E+0l 3,5979081E~03 =1,5604452E~006
41800 50 1973 4 28 1.,1616B09E+01 3,4529641E=03 =6,2582473E=06
41850 50 1973 6 17 14 1774TL3E+01 2,4511068E=03 ~1,0821043E=06
41900 50 1973 8 [ 141895333E+01 2,3851799t=03 6,6039045E=06
41950 25 1973 9 25 1+2031231E+01l 2,9611480E=03 B8,868968lE=06
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ABSTRACT

The perturbations of an artificial close-earth satellite are developed in analytical
form. Gravitational perturbations due to the geopotential, the sun, the moon, the
body tide, and the ocean tides are treated; and nongravitational perturbations due to
atmospheric drag and radiation pressure are developed. Also discussed are applica-

‘tions of the devélopment for orbit determination and computation.

RESUME

Les pertubations d'un sateliite artificiel proche de Ta terre sont
développées sous forme analytique. Les perturbations de gravitation
dles au géopotentiel, au soleil, & Ta Tune, & Ta marée du corps et aux
marées océaniques sont traitées; et les perturbations ne tenant pas
a la gravitation mafs & 1a résistance atmosphérique et i Ta pression
des radjations sont développées. Sont également discutées les
applications du développement pour la détermination et le calcul de
1'orbite.

KOHCIIEKRT

PagpatoTann B ananuTUyecKod GopMe BOBMYULEHMA McﬁyCTBeHHoro
Cnu3b—8eMHOTO CHYTHHKA. PaccMaTpPUBANTCH TPEABUTALMCHHHE BO3NYUMEHUA
PH3HBAEMHE TeONCTEeHINAaNOM, COIBUEM, JIYHOW, UPUIKBOM Tela U
OKEQHCKUMY TIPpWINBAMU ] PA3DPACATHBINTCH HeI'DaBUTALUMOHHNE EQRMYMeHMUA
BHSHBEEMNE ATMOCHEeDHHM NPATOM W DAaBIeHNEM H3dydenuma. Taxke O6CYH-

ZJawTcHd NpUMeHeHUWA Pas3BHRTHA OllpeleleHNA W BHUMCISHUA Op{jHT.

TLMED
PRECEDING PAGE BLANK NOT ¥
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" PARTIII

SATELLITE DYNAMICS

E. M. Gaposchkin

1. INTRODUCTION

The general results of analytical mechanics are dece‘ptively simple {o stste.
They have been refined for ovér 250 years and are pre_sented with a c_Iarity and a
directness that are captivating..‘ Celestial mechanics, as s,part of analytical mechanics,
has received considerable ‘attention, and many of the general results came from topics
in celestial mechanics. There are a number of excellent modern treatments of
mechanics (see, e.g., Lanczos, 1966; Goldstein, 1959): This article vﬁll draw the
necessary background from these sources and attempt to present a coherent view of
the tools necessary for deahng with the problem of the close—earth satelhtes. A
number of general treatments of celestial mechanics already exist (see, e.g., )
Plummer, 1918; Smart, 1953; Brouwer and Clemence, -"1961; Kaula, 1966a; Hagihara,
1970, 1972). | | :

For any one problem the more general view may not be necessary For example,
the original papers on satelllte geodesy did not use the full power of analytical mechanics.
There are three reasons for the following overall view. First, a unified treatment
allows comparison and blending of results, with consequent efficiency. Seoond; future
work requiring essentially more accurate analysis will need the greater capability
offered by this approach. Third, there is benefit in the greater insight provided when
these results are applied.

The subject to be discussed is formally quite mathematical. However, to make
any practical headway, one must make use of the physical realities of the earth. For
example, its dominant anomalous potential feature is its oblateness, which is 1000 times
the size of the remaining anomalous field and 1/1000 the central-force part. We are

PRECEDING PAGE BLANK NOT FILMED

89

304-246



led to consider the physics of the solid earth, of the atmosphere, and of the ocean.
There are sizable effects from all these. In order to proceed, we must have a model,
even though, for example, the radiation-pressure effect is difficult to take into account
because of our imperfect knowledge of the solar constant, the earth's albedo, the satel-

lite's reflectivity, and the satellite's orientation.

There is the question of approach. With modern computers, direct numerical
integration of the equations of motion is feasible. Numerical-integration techniques
have advanced considerably, in both accuracy and efficiency: What is lost in insight is
compensated for by the simpler mathematics. After all, we are interested in the
numbers to compare with observations. The question of efficiency hinges on technique,
the particular computer, and the particular problem. A subsequent study will contrast
numerical, semianalytical, and formal developments. Here we consider analytical
technigues only, although some of the results can be used in purely numerical treat-
ments.

Exact solutions of the equations of motion, except for the two-body problem, have
eluded analysts. We are thus led fo approximate solutions by use of a perturbation
method: A reference orbit is obtained by some means, and corrections or perturba-
tions are determined that include an effect absent from the reference orbit. This
process can be iterated so long as the eorrected orbit does not change enough to
invalidate its use as a reference. We therefore wish to include the largest effects
first, and then proceed to smaller ones. Table 1 gives the orbital effects considered,
in decreasing importance for geodetic satellites, i.e., satellites with mean heights
between 700 and 4000 km.

>// 20
4



: *
Table 1. Size and character of orbital perturbations.

"~ Intermediate
Short period, period, Long period,
Force - . <lday 1 to 30 days >30 days Secular
—
J 9 : 2.5 km 10 yes
. -3

dJ on-1 50 m 10 | no

J 21 50 m yes
Solar ~1m 800 m yes
Lunar ' N1lm 120 m . : yes
Tesseral harmonics = 200 m 2-km resonances >2-km resonances 1o
Air drag | <lm : ' o yesT
Radiation pressure <lm : - 1072 no
Body tides 15m 90 m ’ no
Ocean tides 5m? ? no

Atmospheric tides ' ‘ - - ' : no

These orbital sizes are meant to be characteristic.

TF or air drag, we have a monotonic decrease in the energy. The distinction between
periodic and secular effects is not clear, as it is in the case for gravitational per-
turbations, s ‘ ' :

3:The radiation-pressure effects, in principle, can have no true secular effects. In
fact, however, one would have to wait very long for that to be true.
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2, DYNAMICAL SYSTEMS

We are concerned with a system of differential equations resulting from Newton's
law: Mass times acceleration equals force; that is,

mE=F . 8]

For n particles, 3n coordinates and 3n velocities need to be determined. A solution
is found when we can determine these 6n quantities for some arbitrary time. A set

of formulas is said to be a theory. In satellite geodesy, we are concerned with deter—
mining the orbit of a single point, and thus the number of equations or independent

variables is reduced to 6.

The classical form of (1) in cartesian coordinates is not particularly tractable.
We obtain alternate, and completely equivalent, coordinates or variables. To show
how this is done, a review of some fundamental ideas from analytical dynamics is
given. Elaborate proofs can be found in Goldstein ( 1959) or Whittaker (1964) .'

The use of generalized coordinates is very important. The first step is to realize
that velocities and coordinates are on an equal footing. Hamilton's canonical equations
(Goldstein, 1959, p. 217) illustrate this. F'ollowing the customary practice of labeling
the coordinates q = X; and the momenta p; = mégi, we can write the equivalent of (1)
in terms of the Hamiltonian, where

A= T U= Hayprp - @)

C._p‘
Here </ is the kinetic energy, and 2{ is the potential energy. The differential equations
equivalent to (1) are

_ @)
p, = - 870,
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these are known as the canonical equations of Hamilton. All variables appear in
pairs — a coordinate 49 and a conjugate momenta p — and have equal importance in the
- system of differential equatlons

We observe immediately that if a q; or a p; does not occur explicitly in % then
the conjugate variable is a constant of the motion. A missing coordinate is called
ignorable. This leads to our searching for coordinate systems with ignorable coor-
dinates. For example, in the two-body problem, the Hamiltonian is

ﬁ— (X +Y)-—Tg)17g

_ l( +P2) 1
= om F 3 21/3
m STy

expressed in cartesian coordinates; whereas in polar coordinates, it is
pz
] 2 v

5?_7— 5 (Pr + *r'g) -

where P, = mr and P, = mr2v. 2I-n polar coordinates, v is an ignorable coordinate
leading immediately to p,=mrv= N, a constant (see Se_ction 4 for a complete dis-
cussion}). In general, coordinate systems are suggested by the problem rather than
resulting from analysis.

4 |

The transformation from one set of variables to another is done through a canonical
transformation, which leaves the transformed equations in the form (3). The vehicle
used for the transformation is a generating function F. In order for this to be a trans-
formation between 2n old variables and 2n new variableé, F must be a function of the
4n variables. However, only 2n of these variables are independent. Therefore, the
generating function can be written in only four forms;'

FI(Q;Q,U » 'Fz(q:P:t) 2 Fs(p,Q:t) ) F4(p,P,t) 3
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where, following Whittaker (1264), we use capital letters for the new variables.
Depending on the transformation chosen, the 2n variables are

p; = 9F (4, Q, 1)/

‘ (4a)
P,= - 8F)/%Q; ,
or
pi= an(q: P) t)/aql ? '
(4b)
Q;= 8F2/8Pi ,
or
qi= - 8F3(p,Q,t)/8pi ’
(4c)
Pi: - anf&gi E]
or
qi = = 8F4(p,P,t)/8pi »
| (4d)

Q;= oF,/oP, ;
and the new Hamiltonian is always
* % '
j{ =L + (3F/8t) . | _ (5)
From equations (4), we can obtain
qi = qi(Qj’ Pj’ ty
(6)

pi = pi(Qi’ Pi’ H

which can be substituted in {5) to obtain the equations in new variables.
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The success of canonical transformation hinges on our finding a determining
function F, and the usefulness of the formal development may therefore not be so great.
However, Poincaré (1893) considered other expressions that would be invariant under
a canonical transformation. He showed that in the 2n-dimensional space, the n surface

integrals
i
) =ffff qui dp; dqy dp,
ik

(7

5, fj S mw,

a.re invariant. These are very powerful in determining invariants, as well as the
constants of motion. They play a vital role in the discussion of action and angle
variables in the theory of Hamilton and Jacobi, although that topic is beyond the scope
of this article. These JIl are equivalent to saying that the _volume in phase space is

invariant under a canonical transformation.

- The main interest here is an alternate statement of invariance in terms of Lagrange
and Poisson brackets. Consider the relations

p; = p;(u, V)

The Lagrange bracket is defined as

od; op; Op; 3C1) ,
Z(Bu v Bu ov JL—u’v}q,p ; (8)

i
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obviously,

{u’ V}q,Ap = - {V: u}q’ p - ‘ (9}

The invariance of J 1 means that the Jacobian

. S ./ 8u
8(‘:1]'_) pi, aql' 3p1

B, v) (10)
Bay/ov  apy/av

must also be invariant. Therefore,

3R 8@y P
Z a(u, v) = (u, v) (11)
i k '
or
{us V}q, p = {u’ V}Q,P . A (12)

Accordingly, we can use any set of canonical variables to evaluate the Lagrange
ri

y §
brackets and we can drop the subscripts. With the use of socme algebra, we can also

show that
{qi’ qj} =0 ,
{Pi: PJ} =0 , {13)

these are sometimes known as the fundamental Lagrange brackets.

We are led to consider another quantity, the Poisson bracket, which is defined
as
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= fu v Bu Bv ‘
[u,V]q,p_ Z (8‘:1. ap. ap‘ a:li> oy . . . (14:)

where we have

ju, v]q p= - v, u]q,P . (15)

3

Considering the Lagrange and Poisson brackets as purely mathematical objects, we
can show that

2n
Z_ 1 oy tlg p B Wlg p = 8y
_e:

In fact? for the mat_rice.s [L)= {ui, u.j}q,_p and [P] = [ui’uj]q,,p’ we can show that

p=1"" . | (18)

Therefore, we can compute the set of Poisson brackets from the set of 'Lé,grénge
brackets, and vice versa. Relation (16) holds even if the coordinates are not canonical.
Since the Lagrange brackets are invariant, so are the Poisson brackets. TFurther, we

can write the fundamental Poisson brackets as

[pi’ pj] = 0 3
lapal=0 , | | o an

Since the fundamental Lagrange and Poisson brac'kefs must hold for céndnical .

variables, (13) or (17) provides a test for canonical variables.
Consider the canonical equations

. (18)

p;, = - Bwaxi s
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and a transformation to the variables éi" that is,

X = Xi(é ]) 3

(19)
P = pi(gj)
Now
ox., d€,
1
Zm—?; &
i
(20)
op, d€.
1
Z 'a@'] dat
j

Multiplying the first part of (20) by aici/ agk and the second by axi/ aé’k and then sub-
tracting, we have

ax. ox, ox, op dé.
Zg o - 185 L=, 1)
—\3g, BE, ~ g, €

]

where the Hamiltonian is

f=%v2+’2{

Now (21) can be written with Lagrange brackets

Z{ék, 83.} déj/dt= - a?}aik , | (222)
J
or

[Ligl d€/dt = - YA (22b)
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in the notation of (16). By inverting the matrix of Lagrange brackets, we can write
~ the equations of motion

déj/dt: - [Py agf’/aék : T2y

Equation (23) is equivalent to (18). This development uses only the mathematical
properties of the Poisson and Lagrange brackets; it does not depend on the new
variables being canonical. Therefore, we have reduced obtaining equations of motion
in any variables to obtaining Poisson brackets and expressing the Hamiltonian in the
chosen variables.

If we have succeeded in finding a set of variables Ei that are constants of the
motion, and if we can write

xi = Xi(gj’ t) L

(24)
Xi = Xl( 8]? t) ’
then the Poisson and Lagrange brackets must be constants; that is,
8 s _d rg _
Bt {g/iy ‘(:’]}" dt {Qi’ 83} =0 .- 7 . . _ (25)

For canonical variables, this of course follows from (13) and (17). This can be true
for any variables — for example, Kepler elements in a potential field. This can be

shown by our taking

”=_ﬂ ) .
Xy E!/BX:.L :
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now

3 =8 i i i
E{P’Q}’atZ(ap 5q  op g

— —— e ——

8_(8 ai>,8_(§Z;°f‘_1) %6
bq \ex, Bp )~ @p \ox; &1/ (28)

Using

and

we have the desired result:
5 .
ot {éi, éj} =0 . @7

In fact, (27) is true for any potential for which a solution of the form (24) can be found.
Expression (27) says that once expressions (24), which involve time, are used in the
Lagrange brackets, the result is independent of time and must be a constant of the
motion. This property facilitates our obtaining Lagrange brackets, since they can be
evaluated at any convenient time. Proving (27) for Lagrange brackets immediately

proves the same for Poisson brackets from (16), giving

(£, £1=0 . (28)
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Consider the problem

) _ (29
pf—M%mi,

with
?{'—‘ %)—‘-fl )

and assume that we ean solve (27) with % = %’ 0 and obtain the 2n constants Qg We can

write the solution

0 0
4 =9 tap

30)
0_ .0 (
pi = pl (ta u])
We hope to write the complete solution,
=4 It,a.()]
ql ql 3 U-J( ) bJ
(31

pi: P:? [t, Qj(t)] »

and look for an expression for O’j (t). We proceed by writing

. d 0
a4 =g 9 foy®l

and
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Now

I

dqd/dt = oa/2t from (30) ,

Bfo/api s from (29)

Therefore, we have

.

-
i
Z B %" % (32)
!

and similarly

ok

op, . 1
- E: . & B (33)
P ] 1
J
1f we multiply (32) by api/ &, and let

o,

oD,

1

=ZE_7§.3"3 ,
2, op,
T k i

then multiply (33) by aqi/ da, and let

a'jfl ) 3’7{1 oo
- )
By fay 04,
k
where
0
M %
&1 2
! £ a=a(t)

and finally sum over all variables, we obtain
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Z{%"lj} 0 O‘E’Lj:'agq/% - | (34)

i q,p

We have explicitly written the subscripts qo,p0 on the Lagrange bracket to emphasize

that the variables to be used are those of the solved problem (with Sin¢e for

0"
the solved problem, the a,’s are constant, the Lagrange brackets are constant from
(27) and are much easier to obtain. Equation (34) and its inverse in terms of Poisson
brackets are the basis for the method of variation of parameters and will be used to

derive the Lagrangé Planetary Equations (LPE).

We will make some use of elements of the Hamilton-Jacobi theory. The basic
idea is as follows. Say we have a dynamical system

a = :’:vf/a‘pi ,
. . (35)
pi = = 8%/ ali ]

and suppose we look for a new set of variables 'Qi’ Pi so that the new Hamiltonian does
not depend on some of the new variables. In general, one tries to remove all the

variables, which would be the case if the new Hamiltonian was identi¢ally zero. That

is,
. W
Q; = 81%/813i =0 , .". Q= constant ,
Pi == Bg(f /8@2i =0 , L Pi: constant
For example, let the generating function be S= Fz(q, P,t). Then we _have
p; = o8(d, P, t)/aqi . (37)

Putting this into % gives

#*
Y 85 85 _
%qi’ pis t) - f (qi’ aqi! t) + 'a‘i':' =0 , (38)
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Known as the Hamilton-Jacobi equation, (38) is a partial differential equation inn + 1
variables for the generating function S. In general, it is not possible to find S. The
method of Von Zeipel, to be introduced in Section 10, assumes that éi and S can be

written in convergent series and that each term of S can be found under rather general
conditions.
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3. TRANSFORMATIONS AND COORDINATE SYSTEMS

Consider the coordinate system Xp¥is%ys 2 point

ahd 4 second coordinate system rotated abott the 2 axis by an anglé Q, ag shown in
Figure 1.

)(I X2

Figure 1. Geomeétry of rotation transformation.

Theé coordinates of p it the Xps Yo Zg system can be expre sséd_ with the matrix opera-
tion
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where
cos 2 sin 2 0
R,= |-8inf2 cos 2 0 . (39}

3
0 0 1

In an analogous way, we can define rotation around any axis with

1 0 0
Rl =0 cosl =-sinl about the x axis , (40)
0 sinl cosl
and
cos$ 0 -sind
R2 =1 0 1 0 ahout the y axis . 4

sing ¢ cos¢

Here, R 1 R2, and R3 are matrices, and their mathematical properties are the subject
of linear algebra. We need know only that these quantities have the following proper-

ties:
A. The length of a vector is unchénged by rotation.

B. Multiplication of matrices does not commute; that is,
R, @) Rj(h) # R, R, ()

C. Multiplication does gatisfy the associative rule; that is,
Ri(R;Ry) = By Ry} By,

D. Rotation about the same axis is additive; that is,
R;(6) By () = Ry(o+))

E. For rotation matrices, the inverse and transpose are related by

-1, _ ST, . _
Ri (q)) - Ri (¢') - Rl(_¢)
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F. We also have

~1_ _-1_-1
(R;R,)"" = R;" Ry

G. Differentiation and integration are performed on each element.

Although multiplication does not commute, for small rotations around the %, y, and

7z axes — that is, €yr €y €5~ We Can define the infinitesimal rotation matyix

1 € -¢ .
Z ¥y
R(ex,ey,ez) ol 1 € . s (42)
€y - ey 1

In satellite geodesy, dynamical astronomy, and astrometry, we are concerned

with four reference frames:
A, The terrestrial system.
B. The inertial system,
C. The celestial (sidereal) system.
D. The orhital system.

Since a systematic account of these systems and of their relétionships to oné another
can be found in Veis (1960a, 1963a), we confine ourselves to a descriptive summary,
A number of texts are present classical geodesy (e.g., Bomford, 1962; Heiskanen and
Vening-Meinesz, 1958). |

The terrestrial system is fixed to the earth. Positions on the surface can be
considered invariant in time if we ignore tides and crustal motiong for the moment.
The materialization of the terrestrial system can be in terms of geocentric coordinates
or datum coordinates, The datum can be defined in a geocentric system with the
following seven parameters: the three datum origin coordinates, the three orientation
parameters, and a scale factor. Datum coordinates can be determined from precise
knowledge of the geocentric coordinates. One of the objectives of satellite geodesy is
to determine coordinates in a geocentric system. Through coordinates common to
geocentric and datum systems, the relation of the datuxﬁ to the geocentric system is

determined.
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The inertial system is fundamental to dynamics, and all orbit theory is ultimately
developed in this system. We hope to materialize the inertial through the celestial
system. The latter is defined by the stars and, it is hoped, with respect to the distant
galaxies. By Mach's principle, the distant galaxies define an inertial reference frame.

The celestial system is materialized with coordinates of stars insofar as we can
treat proper motion accurately. Individual star catalogs are similar to geodetic
datums in that the positions are relative. Positions can be combined into a uniform
system by use of common stars to any two catalogs. This technique was used to
compile the SAO Star Catalog (Staff, Smithsonian Astrophysical Observatory, 1966),
which is in computer-accessible form, covers the whole sky, and contains about
250, 000 stars with their positions and proper motions reduced to the FK4 system.

The equations of motion are most easily given in an inertial reference frame,
However, in this system, the earth is moving in an irregular manner, and the gravity
field, assumed static in an earth-fixed system, has an irrvegular time dependence.

This irregular temporal variation will give rise to perturbations.

For this reason, we have adopted an intermediate, quasi-inertial reference frame.
This orbital system bas a fixed epoch (the mean equinox of 1950.0) and a moving
equator (the instantaneous equator of date), and the gravity field is rotating about the
z axis at a constant rate. This orbital system has been shown by Kozai (1960) and
Kozai and Kinoshita (1973) to be optimum for our work. That is to say, short-period
terms are unaffected by the change, and the effects of being noninertial and those of
variations of the gravity field are minimized. We can then proceed with the theory
for periodic perturbations as if we had an inertial reference frame and make some
corrections (see Section 9), A further result of this choice is that the earth is rotating
uniformly in this system, thus giving a particularly simple expression for the sidereal
angle.

The relation between the celestial system and the terrestrial is established in two
steps. A general theory of precession and nutation deals with the secular and periodic
parts, respectively, of the forced motion due to the gravitational attraction of the sun
and moon. A general reference for these effects is Chapter 2 of the Explanatory

Sunnlement {o the Astroncinical Ephemeris and the American Ephemeris and Nautical
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Almanac (1961) (hereafter called ESAENA). The instantaneous position (orientation) of
the earth is described to 2% 10_6 rad with these formulas., The irregular fluctuations of
the earth's position with respect to this computed position are routinely measured as
three angles and published by the Bureau International de I'Heure. The free nutation
of the earth is the motion of the adopted reference point of the z axis about the spin
axis in the terrestrial system. The spin axis, of course, moves owing to precession
and nutation, and that axis defines the astronomical equator. The rotation rate has
small fluctuations, resulting in irregular fluctuations in the true sidereal angle. The
coordinates of the reference pole (x,y) and the change in the sidereal angle (AUTI)

are observed quantities and provide the relationship between the celestial and the

- terrestrial systems.

The variations of pole position are not strictly periodic. There is considerable
uncertainty about the actual properties of the polar motion, As a result, an arbitrary
reference point was adopted by the International Union of Geodesy in 1967. This point
was the mean pole for the time 1900. 0 to 1905.0, and all pole coordinates are now given

with respect to it. The mean pole today is about 10 m west of the adopted pole.

In summary, we now give the relations between the orbital system and the others.
If XO is the position of a’'station in an earth-fixed system, then X is the position in the

orbital system:
X= R3(_Q) R{y, x, 0) XO ’ ' _ (43)
- where 6 is the sidereal angle computed from

6 = 0.277987616 + 1.00273781191 (T - 33282. 0) + AUT1 (rev) , (44)

and X and y are the observed coordihates of the pole.

In general, camera observations provide directions in a celestial system at some
epoch T o ‘To express this direction in the adopted orbital system, we must apply
- precession k, w, v from TO to 1950. 0, and then apply k, », v to the motion of the equator,
thﬁs preserving the origin of 1950.0. If (b, a) is the amount of precession in right

ascension from dates a to b, and if similar expressions are given for w and v, then

109



(2] = R(-Ac, ¥ sin ¢, 0) Rylk(T, 1950)] Ry[W(T, 1950)] Ryl-x(T, 1950)]
X Ryl (1950, T)l Ry[-u(1950, T}l Rg[-k(1950, T )] [ﬁo] (45)

expresses the direction in the orbital system. The nutation (Ae, ¥ sin ¢) must also
be applied to the original direction if the true coordinates are given. The reader is
referred to the ESAENA for numerical values. It has been found satisfactory to use
the quadratic expressions for precession and to retain all terms in nutation such that

the total neglected part is less than 0.5 m.
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4. TWO-BODY MOTION

7 The first approximation for satellite motion is two-body motion, which forms the
reference for all subsequent analysis. Two-body motion can he completely solved.

We start in the context of Hamilton's canonical equations (3).

We have to determine the coordinates and momenta of both bodies. We ean write
the equations for M2 with respect to the center of gravitjz of M 1 By using the reduced
mass M’[{1/m’) = (l/ml) + (l/mz)] in the kinetic energy (Goldstein, 1959, p. 59), we

obtain the same equations for M, that would result from holding M, fixed. The

2 1

Hamiltonian becomes

¥ - 1;—' s wevd + U . (46)

Two~body motion occurs, with Ury = -GM 1 Mz/ r. The force derived from this potential
is toward the center of gravity and is known as a central force. - Since no torque is
applied, the angular momentum

L=FTXp ' o (47)

is co’ﬁserved, and ¥ must always be perpendicular to L and lie in a plane. Therefore,

we can limit the discussion to two dimensions in a plane. The Hamiltonian becomes

, GM, M
F- 2PtV - ——2 . (48)

For an earth satellite, m” = Mz; and (48) can be written for a unit~-mass test particle.

Hereafter, we will drop the prime and subscript and consider the Hamiltonian per unit

mass, which now becomes
p2
1) 2 GM
#-3 {Pr +"§} T (49)
T

with the momenta conjugate to r and v
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(50)

(51)

Since v does not appear in the Hamiltonian, it is an ignorable coordinate. There-
fore,

p =0 ‘ (52a)
and

pP.= (a constant)

=N
=%y . (52b)

We immediately have one constant of integration. We can obtain an equation for r from
the Hamiltonian itself by substituting (52) into (49) to give

21/2
-r:é_lzz(z%&i N) , (53)

dt r _F
where p= GM.

Formula (53) can be integrated, but only with difficulty. We proceed instead to
obtain an equation for r in texms of v by assuming

r{t) = rlvit)l , (54)

and we find



" Equation {53) becomes

V-2 |
v (3)- (z?ﬁ’_H ) , a NGE

which suggests the substitution x = 1/r. Equation (55) can be integrated; the result
is of the form |

,x=%=A+Bcos_(v—v {56)

0

By substituting (56) into (55), we find that

(z?& )”2

We see-that (56) is the equation of an ellipse centered at a focus, which is equiva-
lent to Kepler's first law The general form for the equatlon of an ellipse is

a(l-e2) -
= — = a{l - - 57
T 1+ecos(v—v0) a(l-ecos E EO) ! (57)
with
2.1/2 ' _ .
T 8in v= a(l- e) sinkE T co8 vv—a_(cosE-e) H
the angles are defined in Figure 2. By comparing the constants, we find that
‘ 2 1/2
es= (l + 29/{%—) ).
M
(58)
NZ

2%7 p(l - e2)

Hyperbolic orbits occur when % > 0, giving a < 0.
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Figure 2. Geometry of an ellipse.

Returning to (52), we see that %r[r(dv/ dt)] is an element of area. Equation (52b)
says that it takes equal time to sweep out equal areas, which is Kepler's second law.

If we integrate (52) with respect to time for one full revolution, we have

¢ ?
2 dv |
J- r a?dt=J Nat (59a)
0 0
or
2
j rzdv=NT . (590)
0

The left side of (59b) is twice the area of the ellipse (2wab), giving

NT = 2va2 (1-e2y /2 . (60)
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1/2

Now the average rate of mean motion n will be 21 /T. By using N = [pa(l = ez)] from
(58) and (60), we have
na=y | | | (61)
which is equivalent to Kepler's third law.
We proceed to find v(t) by differentiating (57):
dr _ g6 sii Eg_I_E__ a(l-ee_z)esinv_@ (62)
at MR T TIvecosv  at o
By using (52) for dv/dt and (57), this eguation reduces to
g_Ez(u)m L ikl (63)
t o \a ¥ a (1-e cos E)
which integrates to
E-esinkE =n(t—t0)sM R . A . o (64)

which is Kepler's equation.

We have formally solved the two-hody problein and obtained the conserved quanti=
ties. Given a time, (64) must be solved by iteration. Using (57), we obtain the true

anomaly v and the radius vector ¥r. The position is calculated from

X CO8 v cos E, -0 .
yl=r|sinv|=a (1-92)1/2 sinE| . : (65)
z 0 0 '

The velocity is obtained directly by differentiation and by use of (52), (58), and (61):

X - 8in v - ginE

-l _na o I na__ 2,1/2 :

y = mﬁ e+cos v| = o=  |(1-¢%) cos E . (66)
7 0 : 0
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To reverse the process, we compute the Kepler elements a, e, and M=n(t ~t,),
given X, X. First, we derive the vis viva integral obtained from the Hamiltonian (50)
with (58):

Yy 1

th=-éi—a=-z-v2-11§ . (67)
The total velocity squared is

vieixty 3}2 e
and the radius vector squared is

rz = xz + yz e

We compute a from

Pz

known as the vis viva integral. Then we compute %from (67) and determine N from
(52b) by using

p=Xyoyx (69)
I

With N,fjd and, of course, ji, we compute e from (58). With a, r, e, x, and y, either
E or v can be obtained from (57), giving M from (64). Use can also be made of

1/2
__cosv+e . _ (1 —ez) sin v
cos B =1  ccosv ? e TR ’
2.1/2 .
__cosE-e . _(1-e7)y" " sin E
oS Y =T _ecosE ! Sy =1 ecos E ? (70)
1/2 2 2
v_(l+re E 2 u(1+2ecosv+ed) p(l+ecosE}
tan2 (l—e) ta,n2 » V= 5 = T

N
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We have given the analysis of two-body Keplerian motion in a plane. To refer

X
the position l:y:l to the orbital system, we perform the coordinate transformation
0
X -
X1 = Ry(-2) R (-]) Ro(~w) |¥]| - (71)
0

The angle w corresponds to A

in (56). The angles Q and I specify the orientation of
the orbital plane, as indicated in Figure 2. o ‘

Given the position and velocity, we use the constancy of the angular momentum

to determine the angles 2, I, w. The direction of the angular momentum is computed
from

L= X x X/ || , 72)

and the inclination is obtained from

A
cos I=([L] X|0]|| . {73)
1

A :
If LZ is negative, the convention is to take w -1 for the inclination. The node is defined

by a unit vector in the direction of the node;:

cos 2 0
eq=|sina|=|o|xf] . S | (74)
0 1

To find w, we must determine the satellite's position in the orbital plane referred to

the node. Using

X']=R,@ Ry XI
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we have

cos (Vv+w)= X}’{/r ,

sin (v + w) = X;’/r ,
which determine v + w. With v from (57), we immediately have w.
We give here the equafions for a hyperbolic orbit. The position is

x=rcos v=-afe -coshF) ,

y=1r8inv= —a(e2 - l)l/2 sinh F ,

2_
caeoh) a(e cosh F - 1)

r“T+ecosv 3

where a < 0. We still have
2 3

no(-ay =p o
Kepler's equation becomes

nit-tg)=esinh F - F ;
r2v = N is still a constant of the motion; and (48) and (58) still hold.

The final question in the discussion of two-body motion concerns the development

of (57) and its generalization in series. Kepler's equation, (64}, is transcendental,
and closed expressions are not possible. However, rapidly converging series are

available. They are needed for the development of perturbations, a topic that will be
treated by itself in Section 8.
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5. EQUATIONS OF MOTION

We noted in equation (18) that for conservative forces, rectangular coordinates

are canonical, and that the Poisson brackets have the values
Ix;,x]=0 , : : A (75)

Further, we noted that the equations of motion can be written in any set of variables

by using Poisson brackets (21):

dei/dt=—z 1€, €, agf/afk . . (78)

k
In addition, if S - 750 ¥ g{l and if we can obtain a solution
0_ .0
X, = X (ays ty
‘0

-0
X, =% (al., t)

(a4 being constant for %0), then by selecting éi to be a;, we can write
2
déi/dt = - z [€,€,] 0 -0 agfl/afk , )
" x',x :

where [éii ék] 0 -0
X,X

use only variables that are the solution of the two~body prc;blem {Section 4). This

are evaluated for the solvable problem. In what follows, we will

choice is not unique, for one could select any combination of  that had a solution.
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For example, there is a separable solution for a potential:

--4 [1 * Z (?e) (-3)" Py, (stn 4”] ’ (78)
n=1

which is due to Vinti (1959) and has been explored by 1zsak (1963b).

The Kepler elements a, e, I, M, w, 2 developed in Section 4 are the most commonly

used. Directly using (71) in (8) and employing the time independence of {6 6} 0 0
we obtain for the Lagrange brackets

2,0 = - {0 = - @2 1-e3"% sin1
(9,8} = - {a, 2t = (1-e12 [cos @/20 Wa)’?

2,et = -{e, 0} = [~ (;.xa)l/2 cos 1} /(1 —e2}1/2

?

1/2 (79)

172 91 /)2,

{w,a} = - {a, w} = [(1-€2)

1/2 1/2

H

{w,e} = - {e, w} = - (ua)'“ e/(1-€?)

fa,M} = - M, a} = -3 a2

the other combinations being zero. By inverting the matrix implied by {16), we obtain
for the Poisson brackets

[, M] = - M, a] = 2(a/p %,
fey l = - [0y 0] = - 1-e2Y2/qa) 2
1,91 = - (2,11 = -1/[ga)1/2 1-e3 % singy (80)

e, M) = - M, e} = (1-e%)/quy'/? e

2

I, w] = - [w,I] = {cos I)/(pa)l/2 (l-~£-2)1/2 sin I
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Equations (80) inserted into (77) can be integrated mumerically. They remain a sét
of coupled differential equations. Analytical solutions are obtained by approximate
methods. A particular difficulty arises if these equations are used in a straightforward
manner.

It is customary to express the Hamiltonian

1 _1 B ,
JZ)—zV +tu=5V° -2-R , 9 (81)

where R < p/a and is called the disturbing function. Then R is expressed in a trigo-

nometric series of the form

ZA(a,e D, [aM +Pw+yR+ oM,

with M = M, + nt from the two-body motion. Straightforward use of (80) introduces

0
a — A@,e,T) | sin | M+ Bo + v+ o]
giving
%:li 22; fa M+[3w+yﬂ+¢(t)]+Acos [aM +Bm+yﬂ+¢(t)](1——-t ,

since n2a% = const. The occurrence of t outside a trlgonometmc argument leads to
terms that are not strictly periodic. ’ i

If we consider all occurrences of a in coefficients of trigonometric terms and

all occurrences of n in the trigonometric argument, then the differential equation for
M becomes

) 'al/z
i- ()

N o H dM dn{ 1-¢? 8‘%
aM dn da( | Iz,
n=const (



Now

_ a 1/2 s K
T (p) oM

and

dM

@ -t
giving

f’xj
8/ _ B _OR
= ~ A ¥
a 2a  oa n=const
de ge ?
‘ ok _ R

oM aMm
that is,

. 1/2

R R
M=n- t-——- 2 ———-—T—- R
dt (’J 23 n=¢onst (pa)l 2 £
which formally integrates to
f J’ al/“'3 l-ez
M=af -nt+ ndt-2 (—) R dt-f—T
M a n=const (pa)l 2 e

where n = ()

1/2/33/2

"

and is not constant.
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With the previously described separation of a and n, we can write the Lagrange

Planetary equations in their usual form:

2
at naze M2, Bw
_d_w_i _ cos I oR 1-¢2 1/2 oR
b

dt na (l—ez)l/2 sinl & nale %
dar _ cos 1 R _ 1 dR
@ 20-09 2 gin1 % na2-e3Y2 sinr
s _ 1 R

3
d naz(l-ez)lfz sinl &
aM_ __1-¢® R _ 2 3R

]
dt naze e na fa
2.3
n“a"=p

(82)

Kepler elements are used extensively. They have the advantage over cartesian

coordinates in that five of the elements are constant for two-body motion and the sixth

(M) increases linearly with time. In addition, each element has a geometrical inter—

pretation. However, any five constants could be chosen, as long as they lead to a

unique calculation of position and velocity.

As e — 0, the element w ceases to have any geometrical meaning, Since the

position of the satellite depends on v + w, Wwe can consider the new variables

A=M+o e=e |,
b=+, Q= ,
a=a , I=1,
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with the Poisson brackets

2N = - Dyal =

2,1/2 1/2
[)L,e]s—[e,;\]_—.(l'e) [l—(l—ez) ] ,

naze

1 = - I,] = —2n A7),

naz(l -ez)l’[2 ’
(84)
. N 1 _62: 1/2
[e’w]’:"[‘—o’e]:_ ’
na“e
(2,11 = - I, ) = .
- - - ?
’ ’ naz(l —.92)1/2 sin1
[17 a] == [:J,I] = [I,}\]
It has also been found useful to eliminate e and w by use of the variables
h=esinw ,
k=ecosw ,
A=A,
(85)
a=a |,
Q=Q ,
I=1
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These variables have the following Poisson brackets, written for convenience in terms

Of 2
91/2
[h,k] = - {k, h] :.(1‘_921____ ,
na
1/2
- __-h(-€%"'%
[hya]l = -I\,h] = .
’ naZ(1 + (1-e’2)1/2]
_ _ k tan (I/2)
[h,1} = - [, h] = ,
naz(l - 62)1/2
. y (86)
_ a2 1/2
kNl = - I, k] = zk“ e?) 7
na” [1+(1-e2)* <
_ _ -htan 1/2)
[k,T] —-[I,k]— R
’ na(1 - e2)1/2

with la,x], I\,Il, [€,]] as given in (84). Of course, these equations hold for all eccen-

tricities.
A further modification would be to use the variables

p=tanlsin 2 ,
g=tanlcos Q ,
h=h ,
(87)
k=k ,
A=X o,

a=a .
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These have the following Poisson brackets, written for convenience in terms of e and
I:

cosl

[p,al = -lg,p] =
1 e na,z(l—ez)l/2 ’
1 | 1 21
[p,A] = -, pl =5 [0, h] = - ¢ fh,p] = “% [p, k]l =3 k,pl ,

pcosl
Znaz(l - e2)1/2 0052(1/2)

(88)
g, = - I\ al = 5 [, B = - & Byal = - 3 (g0 = ¢ [gal

qcos]
2na2(1 - 92)1/2

0052(1/2)

cos I

il

naz(l -6

where [h,k], [hA], [k,1] are the same as (86) and where we take [a,\] from (84). The .
variables p and ¢ should not be confused with generalized coordinates. These expres-
sions are valid for all e and I but are especially valuable for small e and I — for
example, in the planetary theory.

It is possible to construct other combinations. For example, one could use

XKe M+ w |,
i=esinw

n=ecos w ,

(89)
a=a |,
Q=0
I=1
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We now turn to sets of canonical variables that have the simplest form of Poisson
brackets. We have observed that cartesian coordinates are canonical. We give two
other sets, the Delaunay and the Hill.

The combination of coordinates and conjugate momenta for Delaunay variables
are the following:

Coordinates Momenta
£=M L= (ua)?
g=w G = [pa(l -e2) /2 (50)
h=Q H= {ua(l -~ e2)] 172 cos 1 |

Now, £, g, h are new labels for three familiar Kepler elements, in order to provide
a symmetric notation. We see that G is the angular-momentum constant N in the
two-body motion given by (58) and that H is the projection of the angular momentum
on the z axis.

Another set of canonical variables introduced into satellite theory by Izsak (1962)
and used to great advantage by Aksnes (1970) consists of the Hill variables, as follows:

Coordinates Momenta
r=a(l-e sin E} r= (¢/T) L sin E
u=v+uw G=G (81)

h=g H=H
These are natural coordinates, with the important advantage that there is no singularity
for small eccentricify — in contrast to the situation with Delaunay variables, which

complicates their use.

Finally, we consider the equations of LPE type, which contain the forces explicitly.
Consider the forces with components S, T, and W, which are, respectively, along the
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radius vector, in the orbital plane normal to the radius vector (along track), and per-

pendicular to the orbital plane (cross track). The direction cosines of the satellite

position are

1
A
74=Rg(~2) R (-I) By(-u) |0 (92)
0
We can define the direction cosines along track and cross track with
x /
. .2 .21/2
£= Ry R (D Ry(-D) |y | [ & +¥) " (93)
0
N N N
Ly=Lp Xlg (94)
where X, y are obtained from (66). 1f we let él be any variable, then
gR__ QI_{_ . 9R R az
EZ;— 2%4_ Bz 8%
R OR OR .
But = By’ o are the components of force along X, y, z given by
r_aﬁ-w — —
o S
R | _| A AA
By |- €g ep ey T {95)
oR ‘
| 9z | L 4 ¥

With expressions X = X( éi), say (71), we can form ox/ 5€ and substitute the result in

This could be done for any set of variables. We give here the results for the

(77).
We have

Kepler elements, since they are widely used.
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da__ 2 : P_] ’
dt—m[8e51nv+Tr ,

%?z_(l_—efﬂz_ {Ssinv+-'l’.[c;osv+—( "“):’} )

na a

=—‘ﬁ—w cos(v+ w)

na(l- e?

(96)
de _ 1 '

na (1 -e?)

‘ T .
W = sin (v+ w) ,
172 sinl 2 ‘

L 21/2 R |
%".: SI%TQ+EII'_‘;L_ I:—.S‘cosv+T(l+-Ir;)sinv:| s

dM _ 2 g 2l/2fde @_)
ﬁt_—n_n'a 3 {1- e) (dt+cosldt )

p = a(l-e?)

These expressiohs are known as the LPE in gé_ussian form. They ha‘ve'beén cal-
culated by using a force derived from a potential. However, the equations would have
the same form for any force, and they can be so used. These expressions are
especially useful in numerical integ_faﬁon and with nonconservative forces such as air
drag and radiation pressure. |
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6. SPHERICAL HARMONICS

Legendre functions and associated Legendre functions arise naturally' in the solu-
tion of Laplace's equations in spherical coordinates. They also constitute a set of
orthogonal base functions for mapping arbitrary functions in spherieal coordinates. In
dynamical astronomy and satellite geodesy, spherical coordinates are the natural
ones. We find that much of the subsequent analysis is facilitated by use of these func-
tions, and we give here a short summary of their properties. Hobson (1955) is an
excellent reference for mathematical proofs, and texts on mathematical physics (e.g.,
Jeffreys and Jeffreys, 1956; Morse and Feshback, 1953) provide many useful formulas.
Legendre functions are extensively used in quantum mechanies, and its literature is

recommended for the transformation properties.
First, we consider the conventional Legendre polynomials, which can be defined as
P, ()= /2t i (- Z2y0/2 (A g femy 2l (97)

For computational and analytical purposes, we can use

K
_@-zAE (1° @ -2kt 2-m-2k
Prm® N Z K-8 ( -m-2K) ° 2 (98)
k=0 |

where we take {x} to be the greatest integer in x.

These polynomials are orthogonal such that

sin sin _ 2w (£ +m)!
f Pom® Py () I:cos] Tar [cos] m'h cos ¢ & A= G N o my
sphere m

1=¢, m=m’

= s

2+#4’, m#m’, or both,

(99)
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where

{l m=0 ,
E -
m

2 m # 0

Each P Izlm(z) can have a scale factor, called the normalization. We can choose this
scale factor such that

= 2 sin 2
f [me(z)} [co mi cos & dp A\ = 4w ; (100)
sphere :
that is,
B, (7)= e @0+1) (£ -m):/(fém)z]l/z P (1) (101)
im m {m i

these are called fully normalized Legendre polynomials. For statistical analysis,
this normalization has the advantage that the mean square of the spherical harmonic
is unity and the degree variance is just the sum of the fully normalized spherical-

harmonic coefficients squared. We note that the Jeffreys and Jeffreys text uses
pz) = [ -m)t/el] P, (z) (102)
1 YR T dm ’

For numerical computation, (98) can be used. This expression can have large
roundoff errors, and direct use of (98) may require multiple-precision computation.
One alternative device is to employ the recurrence relationship

P 2)1/2

+2m+ 1) [z/(1-z 1P

E,m+1(z) + @ -m)tm+1) Py (2) = o,

¢, m+2(?)

(103)

where z = sin¢, and use

7 £
P,, (2= [(22):/272%) cos &, P£’£_1(2)= zPM(z)
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For each degree ¢, we compute all the Pﬂm(z) from (103). In general, we require
all the P ﬁm(z), and this device will be efficient as well as accurate.

Because of the orthogonality and completeness of the Legendre functions, we can

express any function on the surface of a sphere by

w
Fib,)) = ? P, (sin¢) (Cpy cos mh + 5y sinmy) (104)
£=0 m=0

or by a similar expression in terms of conventional harmonics.

As a solution of Laplace's equation for the potential outside a sphere of radius
a, containing all the mass, we have

4{(1‘ By A) = E Z (sm ¢) (Cﬂm Ccos ma + ngm sin m\) ,

£=0 m=

(105)

or a similar expression in terms of conventional harmonics.

We can write (105) in the equivalent complex notation
oo § aﬂ .
_ e S - im)
Uesorn=-To 3 3 \551) B By Gn ey ™, (106)
T
=0 m=0
where

©pn=Cpm 15, (107)

and%{ } designates the real part of { }; this has some theoretical advantages.

If the coefficients éﬂm = C,Qm -1 Sﬁm are given, we can compute Zﬂm from
e (@0+1) (-m)7] /2
Z -|m C 108
2m {¢+m)! m (108)
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Fully normalized spherical harmonics are particularly useful for expressing the
reciprocal distance between two points. Consider points x,x’ as in Figure 3, with 7

r<r':

Figure 3. Geometry of the third-body potential function.

Then we can write

o 2
_15 -Je E Z 21%;1 ;+1 Py ) By sine) O 109)

man in a coordinate system rotated

We will need to find the expression for 'ffm(z) "
by the Euler angles I, ©2, w. The rotation formula is used in quantum mechanics. It
was introduced into satellite geodesy by Izsak (1964). The results given here are taken

from Jeffreys (1965). We can write

: f
P o (5in®) oIIA _ Z T E, @ f_\'ﬂs (E.;in ") B0 +0) + ma] .

£
: =L (110)
“with
min‘ﬂns
£-m
: _ _pi-m-r/ f4m \dd-mY 2rim+s  2(0-r)-m-s
Eﬂms @ mes Z =D m+s+r)( r )Y 9 ’
_ 0
r=max '-(m+s)
(111}
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where

v = cos (I/2) , g = sin (1/2) ,

5 £-8)l (£+8)! €
N =
fms  {#-m)! (£+m)! e

Further, if ¢’ = 0, we can write this in a more compact form as

£
= . imx _ M -m i[(f - 2p) (\'+u') + mE2] _ -y
me(SIIldp) e = E {1) Dfmp(l) e , = m )
p=0
(112)
where
min |£2——;n
D 1y = 1 (f+m)! E : -1 f -m- r( )(.‘Zp)(Zi' 2p) Z+m+2r-2p Ui—m—2r+2p
ﬂmp( h Nﬂm 2,? g1 o f-m-r1 Y ?
r=max ‘213-!2 -m
(113)
where
r=cos (I/2) , o= sin {1/2) ,
N (¢-+1m)!
im em(2£+l) (£ -mj!
We note that
— B m —
Py @ =GO Py @) (114)
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If we make the association v= %, we see that (112) is a natural expression of
spherical harmonics in Kepler elements. The development has been carried out by
 Kaula {1966a) on other considerations for conventional harmonics. The D (I) here

are related to the inclination functions of Kéula by

t-my/el) . N
Dymp® = [('1){( ™ }/Nﬂm] Fpomp® - o 13

The two developments are equivalent. We give here the expressions for calculating
'F fmp (I) as derived by Kaula, since they are extensively-used:

min ({tﬂ —r;)/z}

_ (24 - 2t)1 f-m-2t
F =
fxmp Z t! (ﬂ ty (@ -m -2ty 22472 -

t=0
x D (BT T () e, e
5=0 ' C . _ :

1

where S= sinI and C= cosI. Kaula gives tables of F (I) through 4,4, 4. Smce
(118) has three summations, whereas (113) has only one, the latter is somewhat more
economical for computing numerical values. '
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7. ELLIPTIC EXPANSIONS

In Section 4, we found the relation between the mean anomaly M, the eccentric

anomaly E, and the true anomaly v. Whereas E and v have geometric significance and
are related by

tan (v/2) = [(l+e)/(l—e)]1/2 tan (E/2) , (117)

the mean anomaly has dynamical significance, increasing proportionally with time; that

is,

M=M,+nt . (118)

The connection between M and E and hence v is made through Kepler's equation (64):

M = n(t—to) =E -esinE . (119)

Equations (117) to (119) are sufficient for all computations in two-body motion. Equa-
tion (119) is transcendental for E in terms of M and can easily be solved numerically
by iteration. The obvious iteration is

Ej=M ,

En+1=M+es1nEn ’

(120)

which converges very quickly for small eccentricity. Typical geodetic satellites have
e < 0.1, for which (120) is quite sufficient. There are numerical methods to speed

convergence, and in cases where efficiency is important, methods like Newton's have
been successiul.

In developing complete solutions by use of, for example, LPE, we are faced with
integrals of the form

ff(v) dt or ff(E) dat . (121)
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It is therefore useful to be able to express functions of v and E in terms of t or M.-

These expressions generally involve infinite series in powers of eccentricity.

A particularly useful device for transforming (121) is to use (52) with (58) and with
(61) or (63). We have in the first case

dv = (E:l/r)2 (1~e2)1/2 dM = (a,/r')2 (1-(32)1/2 n dt

s o 122)
and in the second
dE = (a/1) dM = (a/r) n dt

By use of (122), intégrals int can be converted to integrals in v or E. Where neces-

sary, ‘a/r can be expressed in v or E by (57), repeated here for convenience:

a/r= (l+e cos v)/a({l-e2)= 1/(l-e cos E) . (123)

Transformation (122) is useful when M is absent from ‘the integral. Generally,
this is not the case, and we must explicitly make the conversion. More general expres- -
sions are used, complete developments being carried out on computers either

numerically or algebraically. In the following, we develop some of these formulas.

If, following many authors (e.g., Plummer, 1918), we define the variable f(e) by

(1+B)/(1-B) = [(1+e)/(1-e V2 | (124)
we have

, 2 | , |

e = 28/(1+p") (125)
or -

p=e/l1+ (1-62)1/2] : o - (126)

We see that p = e/2.
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By using the Bessel function J o), we can write

=)

E-M=2 E

5=

=

Js(se) sin sM
and

v-M= ﬁP [Js—p (se) + JS+p (seil} sin sM

™
M-

1
s {Js(se) +
1

wm
i

—

=1
I

The first few terms of (127) and (128) are
1 3 .
E-M=(e-—§e +...)smM

(... simam

3.3 X
+§e +-o-)Sln3M

and

V-M=(28—%83+.“) sin M

+(§ez+ ) sin 2M
13 3

+(l—2~e +. . 8in 3M

{127)

(128)

(129)

(130)

Brouwer and Clemence (1961) give these expressions to 7th order in eccentricity.

We have need of similar expressions when v or E occurs in the argument of a

trigonometric function. There are several methods to obtain such expressions. We
give two here. The first is due to Kaula (1966a) and taken from Tisserand (1960).

Kaula investigates the conversion of

&) Gmwe-wvea
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where 3 does not depend on v, and gives it in the form

2+1 S “
) (‘;’fj’) [@-2p)v + zﬁ] Z G g @ (‘;‘i"rf)_[(f-zmq)m+ g (131)

'_"'DO

This form is natural for the computation of perturbations due to tesseral harmonics.
The formulas have two forms. The first is for "long-period" terms, i.e., those
terms in (131) independent of M — that is, q = 2p-£. These can be obtained by inte-

grating (131) with respect to M from 0 to 2w. Using the transformation (122), we
obtain

Pl 2d+¢-2p’ ,
GEP; 2p- ﬂ{) (1- ez)f (1/2)2 (2d+£ Zp) (2d+ﬂ 2p)(2) , (132)

' in which
p’=p for p=1/2 ,
p’'=4-p for p=4£/2

For thé short-period terms, ¢ -2p+q # 0, we have

ot - 3 | o _
Gy @ = 0 gy 6 D0 a6, (133)
k=0

where

p=o/ll+(1-e2)?

2p’ —22 {-1) jﬂ—zp’+q’)e1r
P ipak ™ Z ) [ 26 1 (134)

h=k+q" |, a’>0 ; h=k , Q<0 ;
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and

(135)

p=p , 4q=qforp=s/2 ; p'=2-p , q'=-qforp>1L/2

The transformation (131) is a doubly infinite sum over q. However, it is important

to note that

Gypq © 51l ~ (/21!

We can choose a desired accuracy and select a finite number of terms. For small e,

the number can be very limited. This selection can be made numerically or analytically.

A second and more general method for this development, given in Plummer (1918,

p. 44), involves the Hansen coefficients Xgm, defined by

/2t e™V= N xohe e (136)
g==c

where the Xq (e) ave polynomials in eccentricity. We have
XM ey = (1+ 2'(”1)2J e) X0 1
q &= 1+87 p(q)qp ’ (137)
p

and
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X0 (3P (BT

ap 4rp-m) Fd-p-n-1, -m=-n-1, q-p-m+ L% ,

for g-p-m >0 ,

qu = (_m-q+p+m (jlq++1p++n;1 F{-q+p-n-1, m-n-1, —q+p+m+1,p2) , (-138')

forq~-p-m< 0 ,

.qup1m= Fm-n~1, -m-n-~1, 1, [32) s forq-p-m=10

We have the Bessel function

| o ) o
3 @ = @/ Z ('_%22) / ki (n+K)1] - (139)
k=0 ' . . .

and the hypergeometric function

[#.0]

F(a,b,c,2) = z: {(a)n (b)n/(c)n] (Zn/n'l) ’ o (140) :
=0

where Pochha:mmer‘s symbol is
(), =a@+]) (a+2) ... (a+n-1) o | (141a) -

and

@,=1 - ' (141b)
We see by coinparing coefficients that

X-(‘E +1), 1- ?p (€)

Gﬂpq(e) =%y -2p+q (142)
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However, formulas (133) to (135) are valid only for £ + 1 > 0, whereas (136) to (142)
are valid for any n= ~({ +1). Both forms have been used. With recent developments
in the computing of elementary functions, the latter seems more economieal for
numerical ealculation. For use with computer algebra, one would prefer to obtain
polynomials in eccentricity with rational fractions as coefficients. This has been
done through a recurrence relation originated by Andoyer (1903) and introduced into
satellite work by Izsak, Gerard, Efimba, and Barnett (1964). The method starts with
the observation that

(r/ay=" GHEMY) _ 0 km ot 1, 0)n (Xﬂ,i 1)ml

We compute xt 1 0, XO’ +1 by any method, and all other combinations are determined
by simple polynomial multiplication. Cherniack (1872) gives these polynomials to 12th
order in e. Kaula (1966a) gives a table through 4, 4, 2. Cayley (196]) gives more exten-

sive tables.
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8. FIRST-ORDER PERTURBATIONS DUE TO THE GEOPOTENTIAL

We have seen that the geopotential, an arbitrary function, can be expressed in
terms of associated Legendre functions (Section 6) and a set of numerical constants,

o 4
U=-96 (C’rﬂ) 1+ Z Z aﬂm (%“:)f B, (sing) ™ (43

£=2 m=(

where ¢, \, r are the coordinates of a point in the terrestrial or earth-fixed system.
The terms 61, 0’ 61, 1 62 | are missing owing to the orientation and origin of the
system chosen. In fact, the élastic earth introduces the termsgz’ 1» Which will be
discussed along with other questions relating to the earth's elasticity in Section 9.
Selecting Kepler elements, we now use (143) in (82) for the disturbing function r,
omitting, of conrse, GM/r.

The conversion of R(r,d,\) to R(a, e,I,v, w, 2-0) is accomplished as follows. We
express R(r, ¢, ) in the orbital system by rotating by -6. This introduces \-8 in place ’
of X in (143). From the rotation theorem (112), we have

R=‘?Z" (ggl—) Zoo: ZE: _ﬂm (ffe;) mﬂ—m Zi: Dﬂmpa) ei[(ﬂ—-Zp)(v+m)+m(Q—€_j)]
N _ | | Ry _

(144)

where i=+-T and Dﬂmpa) are polynomials in cos (I/2), sin (I/2). This is further con-
verted to the mean anomaly with (133) or (136), giving

R=Taamy > 5: ) (%;"’-)j2 @' ™D, G, @, )
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where
= (£ -2p)w+ (£ -2p+Q)M + m(2-8)
equation (145) can also be writien in terms of Hansen coefficients with (142},

The first-order secular rates can he determined by selecting terms in R indepen-
dent of w, §2, M, 6. These arise for m = 0 — that is, only zonal harmonics and
£-2p=gqg= 0. By use of algebra, we find secular terms only in v, 2, M. A corollary
is that the size a of the orbit, its shape e, and its orientation can have only periodic
perturbations. We have shown it to first order only, but it is true for any order
(Kozai, 1959a). We obfain for the first~order secular rates

w = 1 (3v5/4) [62 0/’(l—ez)z] (a.e/'al)2 (1-5 cos2 I ,
>

2= n(3v5/2) [T, /(1 ~e%?] (a /2 cos1 (146)

3/2

M = n{l - BV5/4) [T, o/ (12> %) (a,/2)° (3 cos’1 - 1)}

First-order periodic perturbations are easily obtained by assuming that a,e, I are
relatively constant on the right-hand side of (82) and that «, Q, M, 6 have linear
rates; that is,
w= @ + (:.)t .
Q= QO + 8t
(147)
M= MO +nt ,
0= eo + 8t
The equations are integrated as a linear harmonic oscillator for those terms contain-
ing any of the variables in (147). In actual computation, we would use the observed values

of &, 2, n, 6.
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Letting éi be a generic element, we have the following: ) - oredv

o0 ! £ - oa g;; - . . ¢ .'f; ~ .
A€, - Z A@ B o iz N = pgany?
! fmpq * } >
(809R1) sieet To srodd fthw a0ty eslizmiot saedd (011) lo nobmitiadue sdi railh

£ . f-m .
A 0 2 D, MG, (€)¢-2p+q) (& Hompg
a, = —2_ D, €) (£ -2p+q e
LmP%:; Totinduisipgd b8 taﬁpﬁfz ni odMPrateobtPei vreensoen dofMuslso (nait i
oot

sl ot g af golindypdieg & evad ow U5 0+g8- L vol indl asa oW .(88) of puibronus

B& ) | . . .
' M ! . f-m aved ow MDD = g oy (BB To melisups e it
a
Ae =% e DG, (l-e3y/?
fmpq naj£+3 ezﬁ fmp " Ipq
s : £mpq T o IENEY w o= ”
(B&1) pam {(£\a1) (8NE) mﬁmm

1/2 - 1y
X (1-e%Z @ -2prq) - @ -2p) G, e TP .
rryed aild bbe Seum S ISRLY 3o roitsups ael adt o  exolovadT

£ . h-m
oo GM @ m‘ PR .
- Ry ¢ fk\ué-‘i} FRLF N .rl!“ ‘l WD A = MY ] &.'\ A!&‘Q-rn‘-pq
Aempn ™/ T [~ 172, Pamp Cipd 17 heant ! Fraea®
tmpe
a0 _ paeed’ N . . .
{(‘hl) . 9 fiI'\_‘L“‘J {_[ZP": q.(_ 1} pqi‘xﬁ quﬁ.{}' ~
: . f-m-1 (148)
. GM a, i)
Aw = Zé
4mpq naﬂ +3 (1 ez)l/ 2 sin I %mm sigddo bre atreg Diod siidoms aen oW
!ni‘p’?-fﬂ’&" 81 0w & N 1/2 8(;\::» N oF . G"\ . - - '
« (1-¢e2) D fm cos1 fmp aDﬂmp Z elwﬂmpq
e Imp Be sinT (l_ez)l/§ ol fm !
' ¢ . 8-m-1 _ ,
GM a_ (d G 18]
an, =JG e & £p9 pmp 7 Pempg ,
fmpq e (1_62)1/2 sin g ol £m |
g, M2l @t
e
mpd £+3
na P
fmpq
1/2 8G — iy
1-e? i i
w |- {l-e) " _"Ipg mpq
1: S 5 + 20+ 1) Glpq}Dfmp éfme ,
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where

lf;ﬂmpqz (E—Zp)dwr (2-2p+q)n+m(§z—é)

After the substitution of (110), these formulas agree with those of Kaula (1966a).
The final calculation necessary is to determine f n dt for the perturbation in M

according to (82). We see that for £ -2p+q#0, we have a perturbation in a from the
first equation of (148). From n2a® = GM, we have

Anﬂmpq = - (3/2) (n/2) Aa, g | (149)

Therefore, to the last equation of (148), we must add the term

_ £ . 4-m-1 fz+3 2
ﬂmpq f any e dt —% {—3 GM & (i) (¢£mpq) ]

iy
£mpg
X Dyrp Gopg € -20790 Go @ . (150)

We can combine both parts and obtain

‘%GM ae pmp | (1-62)1/2 Gy e 3Gy pql -2p+0)

£+3 2pq 2
ne l‘bﬂmpq nwﬂmpq wﬁmpq)
e o i z,b
7 shrmle A7 fm pq Ve o
A""*.:. ST LXML’- s ‘—.;"‘ .; Em - - ./.rf-nh " Jj“;‘_ + .?:(‘g::; )_ G ik :E I
. - f SR i) H} (Zpﬁ ; “t_)‘
N lee) Iwmpg \‘r’,o mrd

This completes the first-order thecry. If we take as our goal an accuracy of 10

then it is qu1te satls}facterquleas 'ng ig larger than 10 or zp trpy 5. is very smaﬂ

From observations, we find that C2 0= 107 and that all the remaining [@ £m| = 1075,

Therefore this theory is 1nadequate for the effects of 02 0= -9 2/4'_ , and so other
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If we consider the rate .

¥ympq = (f~2p) e + (£ -2p+q)n +m (2-6) | (151)
and o, Q from (146), we see that (c:), Q) o 10_3 n. The rotation rate of the earth 6
1s once per day, and n for geodetic satellites is 12 + 2 revolutions per day. Therefore,

ine period of a perturbation is primarily determined by

2n/P= ({ -2p+q)n - md . . o - (152)

We see that in general the largest pertﬁrbations — that is, the smallest divisors — are
for ¢ - 2p+q=0, and we have periodic terms with frequency mé. Resonance occurs
with the near-commensurability of (¢ -2p+q)n and m8. That means that when the
mean motion of the satellite is approximately equal to the order of the tesseral har-
monics, we can have arbitrary long periods and large amplitudes. When analyzing
terms with small divisors, we must include the effects of & and {2 to obtain meaning-
ful results. Resonance has yet to be treated completely. For a single resonant term,
a solution in terms of elliptic functions can be obtained, and these have played an
important role in the study of synchronous satellites. For close-earth satellites, the
problems are more difficult, since the satellite will be resonant with the whole set
of harmonics of order m. In addition, if the drag changes n appreciably during one
resonant oscillation, the theory is not even approximately correct. Fortunately,
geodetic satellites have had relatively short resonant periods (= 10 days), and the

linear theory seems to work well enough.

A second class of long-period perturbations is due to the zonal harmonics {m= 0,
£ -2p+q= 0). These have the principal period of the rotation of perigee, as given by
(146). The period of these terms can go to zero for the so-called critical inclination —
" that is, when (1 - 5 cos2 I}=0orl =6324. The theory given here is not valid near
that region of inclination. It has variously been viewed as a resonant phenomenon and
as a physically important effect. Izsak (1963c), Garfinkle (1963), and others have

discussed this question,

Table 2 gives here for a typical geodetic satellite a short table of amplitudes of the
perturbations due fo the earth's gravity field,
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Tabhle 2,

1C, .1 x 10%.

Sensitivity coefficients for satellite 6701401 (in units of meters, with

e= 0.0843130 A = 7614 km
I = 39245459 perigee = 594 Kkm
n= 13.064356 apogee = 1878 ki
Z
N 11 12 13 14 15 16 17 18 19 20
1 154 229 121 75 139 160 66 69 118 67
2 113 43 | 61 94 58 35 59 46 0 33
3 52 78 65 25 54 43 12 18 39 26
4 66 34 19 39 38 14 10 27 0 0
5 38 28 51 29 0 23 10 0 0 18
6 65 48 42 14 27 19 0 17 0 0
7 68 62 61 45 io 0 | 18 16 0 0
8 46 62 45 37 18 12 0 0 18 0
9 21 30 46 64 55 53 23 0 0 0
10 0 0 29 44 43 58 37 32 0 0
11 0 0 8 16 27 48 47 a7 48 44
12 0 0 21 44 64 89 101 75 99
13 425 1203 2987 4758 8014 9531 12277 11613
14 0 0 20 47 7 111 145
15 0 0 0 ¢ 16 20
16 0 0 0 1 0
17 0 0 0 0
18 0 0 0
19 0 0
20 0
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9. THIRD-BODY PERTURBATIONS, ELASTICITY, AND TIDES

There is an extensive literature on third~body perturbations. The principal effect
of the moon is a perturbation = 120 m, and that of the sun, about 6 times that amount,

Continuous analysis has been necessary because of three factors:

~A. The moon's motion is itself complicated, making integration of the equations
of motion difficult. The inclination of ttie moon's orbit is not constant in the adopted

~orbital system. There is a rich spectrum of periodic terms in the lunar longitude.

B. The moon and sun deform the eldstic earth. This variation in mass distribu-
tion has significant orbital effects. Impréved geophysical information is needed in

order to account for them.

C. The sun and moon cause precession and nutation. These motions are the
reason for our adopting a quasi-inertial reference system. We must include in the
theory terms to compensate for the noninertialness. These terms can be viewed as an

indirect effect of the lunisolar perturbations.

There are two avenues to be taken. The first is to eliminate periodic perturbations
with periods commensurate with the length of orbit we wish to determine — that is,
périods < 20 days. We take an analytical approach by assuming linear variation of the
orbital elements of the disturbing body. The second avenue is for long-period analysis,
in which we obtain averaged equations — that is, ones not depending on the mean anomaly
of the satellite. These can be integrated numerically and are used for study of all long-

- period effects.

In the following, we develop the disturbing function for the moon; that for the sun
has the same form. We assume that the semimajor axis of the satellite is small with
respect to that of the sun or the moon. This disturbing function can be averaged and
then numerically infegrated with (82), or if a’, e’, I’ of the moon are assumed con-

stant, it can be integrated approximately.
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We introduce the elastic deformation of the earth at this point, as it is most easily
incorporated into the theory from the beginning. Following A. E. H. Love (Munk and
MacDonald, 1960, Chap. 5), the additional potential due to the deformation from a
potential of degree n, ﬂn’ is

U=k, /o™ Y, (153)

where k'n are numerical constants depending on the elastic properties of the earth.
The total potential acting on the satellite is then

[1 +k_(a /™ 1]1/ . (154)

n

Now the direct potential acting on the satellite due to the moon (or sun) can be written

U= am [(1/&) - (T- ?’/lr'IS)] , (155)

where T and ¥ are the positions of the satellite and of the disturbing body, respec-
tively, M’ is the mass of the disturbing body, and A is the distance between r and r'.
From (109), we can write 1/A in spherical harmonics. To calculate orbital pertur-
bations, we use the gradient of U with respect to the satellite position, and we can
drop the £ = 0 term in 1/A. The £ = I term just cancels T - ?’/}r’l?’. Thus, we have
for the third-body potential, including the tidal deformation,

o £ E Kk a21(Z+1
. r
ﬂ GM’ 2 E L Le P, (sing) P, (sind’) AN
Lt Lt 2£+1 ,£+l (r’r)‘“l fm im

(196)
To include the effects of tidal phase lag, we introduce a fictitious moon lagging the
real moon by At and separate (156) into two parts. In this case, the disturbing poten-
tial cannot be written in such a compact form. We proceed by assuming At= 0, the
revision of the theory being straightforward if the effect of lag is desired.
tation operation {111) and Hansen coeificients (i36), we can

write the disturbing function as
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(=] oo

© &2
R:%‘Z Z Z Z Z Rempprag’ (157)

=2 m=0 p=0 p'=0 g=-» (g=-«

where
£+
Rﬂmpp'qq_' - GMfzéuj)l ' - Dﬂmp @ Dﬂ,-m,p’a’)
2l tm o o-t-1m kyay d-lm, o4-1,m, | iy
ped —1+1 % (e) Xq, (e’) +-—(—aw Xq (e) Xq’ (ehle
(158)
in which

p=aqM +q'M’ + {£ - 2p)w + (£ ~ 2p")w’ + m(Q2- Q)

We can integrate the LPE (82) by utilizing the disturbing funetion (157) and the same
techniques used for the tesseral harmonics. Considerable simplification is achieved

by the following steps:

A. We delete all terms containing M — that is, =0, These short-period effects

are about 1 m and can be ignored for some problems. A consequénee is that Aa = 0.

B. For the second-degree terms, we can use, for the moon,

23
GMQ-— n(a( (159a)
and
' — . 23 _
M’ = GMg (M(/M‘B} = (MK/ME) nea; M(/M@— 1/81.53 ; (159b)
and for the sun,
GM' = néag . | {159¢)

C. The third-degree terms fi'om the sun are negligible, and those from the moon
are ® 1 m and can be ignored for some problems. However, the third-degree

terms and the short-period terms in the second-degree development must be included
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for future work. The interaction between J 5 and the lunar perturbations is the same

size and must also be added, that is, the contributions to  and 2 from

da ds2 as

deAe+_5fM ’ d2erqg A
dv dmt
T deta A

where @, 2, and M are given by (146).

A number of formulas have been used (e.g., Kozai, 1973; Gaposchkin, 1966).

(160)

We give here just the secular rates in w, 2, and M and a representative periodic term.

The complete expressions for lunar perturbations are developed by computer algebra

and are described in Section 13. We have

2

°.°L-S=?3L'Eﬁ— ?1—e7_ (2- sinZ 1+% 2)(1——5111 I)(1+

2] |

o L (L33 Fout) (0o )[wz(%)z],uw

where for the moon
’ —_ —
m M(/M(B 1/81.53 ,

and for the sun,
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and where

sin? I’ =% sin2J {1+ cosze) + sinze cosZJ +% gin 2¢ sin 2J cos N - % sin® J sinze cos 2N
(162)

here, J is the lunar inclination, N is the lunar longitude referred to the ecliptic, and

€ is the obliquity. Although I’ is not constant, it is a reasonable approximation for a

year or so. We note that J = 57145396. The other elements can be taken from the

ESAENA. For the sun, of course, m’= J= 0. For the periodic perturbation, we give

as an example, for the second degree, A '

n’2 (-llm

Al = '
2,m,p,p’,d,q’ 5 2m,pa) 9 @)

, -, p

: A5 ]
X [X§’m(e) X" @) +ly (‘f‘) X @ X (e')]
X [2(1 -p)cosl - m] cos ¢ , . _ (163)

where

d=2(1-p)o + 2(1-pHe’ + qn+g'n’ + m(Q - )

We note that the secular rates depend on k2’ which corresponds to that part of
the oblateness resulting from the permanent tidal deformation. Conventionally, this
term is omitted from the lunar theory and is effectively included in the numerical
' value of J2 A slight error will arise since, 1n the lunar theory, k oceurs multiplied
by (a, /2)®, whereas Jg is multiplied by (a, /a} Furthermore, the secular term in
M must be included in the definition of the semimajor axis.

The adopted reference system for orbit computation is the equinex of 1950. 0 and
the equator of date. - The equations of motion must be modified to include the motion
of the reference system. There is no need to modify the short-period perturbations
in the linear theory described above. However, the complete set of LPE for long-period
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perturbations should include the following factors (Kozai and Kinoshita, 1973):

di/dt= .. .+di/8t
do/dt= .. .+8w/dt ’

de/dt= .. .+982/8t

where
"
8i_ _d(B cosa) cos Q - d(® sina) sin Q
at dt dt
Bw _ . | d{0 sin a) d(® cos a) _.
ke cosec i [ It cos 2 - I sin 2
> , (164)
gt—Q= -coti [_L_____)d@;tina cos &2 —4———)-d 9 S?S %) gin Q]
+—é— l:J———Jde (Si;n“ 8 cosa --—(—-———-)de g;)Sa 0 sin ujl
p,
9 sina = (0.3979 + €1~ eo) sin
’ (165)
8 cosa = 0.3651 (1 ~cos §) - T
= -1724 gin N + 01'21 sin 2N - 1V27 sin 2LO + 01112 sin ‘QO
-0V'20 sin ZL(( + 007 sin 1( + 011379146 t
and

€y~ €p= 921 cos N - 0109 cos ZN + 0U5D cos 2Lo + 0V'09 cos ZL(( - 0001281t .

OJ
the moon, respectively;t is the number of days from 1950.0; and N is the lunar ascend-

ing node referred to the ecliptic. We have

Here, £, £ o L., and L@ are the mean anomalies and mean longitudes of the sun and
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C ' die , ~¢,.)
i(e’—;%n—""?:o.sal'.*ssinzp---—I‘F—O-+o.39'.r9cc.szp%%’i

d(e, ~ €,)
gﬁe%fs—“l ~ (0.1583 + 0. 8418 cos ) —r—2 + 0.3651 sin P %;2

dt

and

%;E-—' -1724 N cos N + 0142 N cos- 2N - 2U54 no €08 2Lo + 01'13 no cos £o

- 040 8 2L+ 007 £_+0v1379148
n(( co ¢ 1] n( cos ¢ .

die) - ¢p)

dt

-D\'18 n( sin 2L( -.01001281

where N = dN/dt, n

moon.

¢

= -9v21 N sin N + 0118 N sin 2N - 1910 n sin 2L

o is the mean motion of the sun, and n_ is the mea_h motion of the

> (166)

>, (167)

-

The effects of body tides on satellite motion have been developed. There ‘remain

to be included ocean and atmospheric tides. The former, expressed in spherical

harmonics, are not yet very well known and so we give only a qualitative analysis.
The M tide has been studied by Pekeris and Accad (1969) and by Hendershott (1972).

If we develop the tide in an earth-fixed gsystem as

VAN ﬁm. (sin gy 1N+ OO
fm )

(168)

then the tide will appear static in the inertial reference frame of the satellite, The

external potential due to this tide, including the loading effect, is

+2

£
(L+kl)4w G p_a
ﬂ:% E £ 7 :Vl e aﬂm ﬂm (sin ¢) e™
fm

22+ r
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where ké is the loading Love number (Munk and MacDonald, 1960) and Py is the density
of ocean water. This can be developed in terms of orbital elements along the lines
of the tesseral harmonics; we have

U= Uprnp >

imp
in which
_ 0+2, 0+1 i[(2 - 2p)(v+w) + M(Q -V - w’ = 2]
/Mﬂmp' rﬂm (ae /Y ) Dfmp @) e )
(170)
where
— 7
T, =47 Gp_(1+k) Cﬂm/(zf +1) . (171)

We can develop equation (170) into perturbations, giving, for example,

Kot = 1r

2+2, 4+3
Zm /na” ")

(al ) 1Dy 041 X 1@ TP x5 (01

AL mpaq’ q

X[ -2p)cosI-m] e ¥ (172)

where

d=daM + g'M’ + (£ - 2p)w + m(2 - 2/ - w’)

H

z,Ev= gn+g'n’ + (£ -2p)w’+ m(f'z- Q- )

It iz useful to note characteristics of lunar and solar perturbations in addition to
the secular terms given in (161). The principal periodic terms from the moon have
a 14-day period and an amplitude of about 120 m. The principal solar term is of
6-month period and about 800 m. The tidal effects are of the order of 10% of the
direct effect, or about 15 m for the lunar tides, Therefore, it is essential
to compute lunar effects when orbits are being determined for more than a few days.
The solar effects can be absorbed in the orbital elements. There are also very
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. important long-period perturbations from the moon. Of greater difficulty in the treat-
ment of long-period perturbations is the solar radiation pressure, which is yet to be
satisfactorily computed (Section 11).

It is instructive to determine the ocean-tide equivalent of the Elody tide. We can
do this only approximately. The correspondence is made by comparing the potentials
in (158) and (172) for a particular fmp combination. We have -

£+m k a£+l

body _ GM’ (-1) Z i | |
fmp 20+1 A +1 WES! mp® Dycmypr @V € > (173)
. 0
where
b= (& -2p) (v+w)+ (£ -2p) (V;'+w’) +m(2-0)
and
LY
e % W' D, aye?
fmp 20+1 rle+1 Im fmp ’
where

p=(f-2p){(vtw) -mv +'+Q -Q) . _ (174)

We note that the lunar inclination is I’ = 23° + 5° and that D ~ 0.925, D L = 0.160,
| | 2,-2,0 2,~2,1

and Dz’_2’
¢ -2p=2, p=0, and p’ =0, giving

o = 0.0036. So for the principal semidiurnal term, we cantake £=2, m=2,

r——

K, anGp C -
_ w 2,2
1+k7 2, D . . (175)

2, Dy o0
or

— k 22 D @)
_ S M P9 2,0 |
2,2~ 1+ inGp_ ’ (176)
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where k2 would have a complex value. Using nominal values, we have

k, = 0.0114 aﬁm/D2,—2,0 a . (177)

From K. Lambeck (1972, private communication), the Pekeris and Accad (1969)
solution with dissipation gives

Cz , = 4.4 o 1330/180 _ o 19 3,814 (cm)
2
We then have kg o1 = =0.026 - 0.047 i. Adding this to the bod;lg téde, we obtain the
effective Love number that a satellite would sense. Choosing k2° ¥ = 0.29 with no

dissipation, we have

keffective _ kbody + kgcean

9 =k, =0.264-0.0471 .

Therefore, a satellite would sense a Love number of 0. 268 with a phase lag of 1009

or 40 m. Conversely, by adopting a value for kg()dy and determining kgffectlve from

satellite observations, the height of the ocean tide could be calculated.

We have analyzed perturbations due to the 52 9
’

note that they have the same dependence on the satellite inclination as does the body

tide. Therefore, it is not possible to separate the second-degree hody and ocean tide

component of the ocean tide and

with satellite perturbation analysis, The ocean tides have a much richer spectrum

in spherical harmonics than do the body tides (Hendershott, 1973). Selected terms

of equation (168) are important, principally, P 4. o and ﬁﬁ o+ Although they result in
H H

orbital perturbations with the same frequency spectrum as does P, the inclination

2,2
dependence allows the determination of these coefficients by use of several satellites,

in an analogous way to the geopotential.

Finally, we consider another effect of the earth's elasticity. The orbital system

we have adopted is not precisely a system of the principal axis of inertia. Rather, we
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use a mean pole. There is a free nutation of the earth called polar motion, which

i i ) =C -3i8 . that
introduces the tesseral harmonics cﬂm €y ~18,,,+ There are two effects tha
to some extent cancel each other: The first is the motion of the axis of the principal
moment of inertia; the second, the deformation due to the rotation about a moving
axis. If we let £, be the coordinates of the principal moments with respect to the

mean pole and let ¢ 1? 15 be the coordinates of the instantaneous rotation axis, then
we can write

—

@2’ 12‘32,0 VB (~in) -k, (2 al VTS GM) (0, -12y)

where Wy = 8. This harmonic is a slowly varying function of time with a 14-month
period. If we assume ¢ =£,, = £, — that is, that we know where the principal axes
are — then we have

ﬁz,f [‘ T,y o V3 -k (vl 32/”5“‘31\4)] (&-in)

?

Using these values, we know

cz’f(o. 838 - k, X 0.893) (£-in) ,

the elasticity reducing the effect by about 1/3. The perturbations for the seven retro-
reflector satellites are all about 1 m.
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10. HIGHER ORDER PERTURBATIONS DUE TO OBLATENESS; THE METHODS
OF VON ZEIPEL AND LIE-HORI

Although a linear first-order approximation to the equations of motion proved
adequate to obtain 1-m accuracy for the tesseral harmonics and the zonal harmonics
excluding J 9 and Jo, we must have a more thorough treatment for the oblateness per-
turbations. Various solutions and formulas have been used (Brouwer, 1959; Kozai,
1959a, 1962a, 1966a; Gaposchkin, Cherniack, Briggs, and Benima, 1971 Izsak, 1963b;
Aksnes, 1970), but only the last has proved completely satisfactory. Except for
Kozai's (1959a), the methods depend on a canonical transformation. We sketch the
basic ideas here. There are two equivalent approaches. The first, based on a device
employed by Von Zeipel (1916) and known by his name, utilizes expansionsg in the
form of Taylor series. It was introduced into the satellite problem by Brouwer (1959).
The second, from a transformation due to Hori (1966), is based on expansions in Lie

series and is known as the Lie-Hoxi method.

In both developments, we use canonical variables,

1/2
=M, L= gyl?
o1
g=w , G=1@-eHY2 | (178)
h=8 , H=Gcosl

In the Aksnes theory, use is also made of the Hill variables introduced into satellite
theory by Izsak (1963d):

r,v+tw, b T, G H . (179)

In the mathematical problem we are discussing, the Hamiltonian is

%z uz ) ut J?é ai {[_ %+§ (%)2](%)3 . [-2?1 --g- (%ﬂ @)3 cos (2g + 2v)}

2L L

(180)
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Since t and h are both absent from 7@ , we therefore have immediately

H= G cosI= const |, (181)

and % = const from (5). We have limited this discussion to J2 , and all the develop-
ments mentioned above have carried the analysis to higher orders,

The method of Von Zeipel (1916) Awas proposed by Poincaré (1893). The latter
showed that a transformation was always possible, but he was not convinced that the
expansion would converge; Barrar (1970) has discussed this question further. The
basic idea of the Von Zeipel method comes from (25). We look for a determining
function S(1’ , G, H, 2, g, )= F, relating the new momenta and old coordinates, such

that the new Hamiltonian does not depend on £; that is,

* |
%L,G,H,ﬂ,g)=% (L, G Hyg) - (182)

From (4), we then have

= 88/8L/ L= 88/a¢

H
= 98/8G’ , G= 88/8g , _ - (183)
= 8S/8H’ H = 88/6h |

Since this is a canonical transformation, we have

sk
dL’/dt = oK VZT I e’ /dt = ~a% Y5 U (184)

and four similar equations. Having solved this problem, we can perform a second
transformation to climinate g” and obtain a third set of variables, L% G”, H”, ¢ ", 8" 1

where the Hamiltonian is

ok

(LH’ GH H-’!) _% (L! G! ,g)
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We proceed by expressing Z{f and 8§ in a Taylor series in terms of a small parameter
a, which will be proportional to J of

X- 760 +‘17{1

5 =8, +aS; + a8, + . (185)

% %y +a?lf +agf ..

We want an identity transformation for a = 0; thexefore,

S,=L'2+G'g+Hh . (188)

0 =
We proceed by using expression (183) in (182) to give
88 85 85 as ¢ o oy OS
%ﬁ (BL) + % (aﬂ 2 agi ah} ) % % (L $G H H » aGf * (187)

If we expand (187) into a Taylor series and equate equal powers of a, we have

2

?f(L)-gffo(L’)——“—;g ,
2L/
8% BS % % (188)
s F, os, ) 2?5’ ( ) aﬁﬂl o3, oA, oS, o 39{8: 88,
2 o) T

5L ol 28L’ TR Y ag 2" 8g  9G

Kozai (1962a) correctly gives the third-order expression.

We now separate gﬁ’ into a part independent of £ (called % ) and a part
dependent on £ (called gf 1p ) and then make the association
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8%0 -B_S—];

ETIEEY, +%;1 =0,
n
%sec:%l

(189)

The expression for S 1 obtained from (189) can be used in the last line of equation (188),
again separating parts dependent on # or not. We obtain a solution for SZ’ and so oh.
Through equations (183), we obtain

£=2"(L, G, W\ L,g) , L= LL/,G', /', 4,8 ,

and four similar expressions for g’,h’, L., H. These expressions must be inverted
~ to obtain

£=4LG,H,0,8) L= LG, H,tg) , T (190)

which is accomplished by Taylor expansion to the desired order and is very tedious.

The Lie-Hori method is developed along somewhat different lines. Hori (1966)
considered a transformation from p, q to P,Q given by

_ ss  1[es |
.pi_Pi+E+2[@i’s+‘.'

(191)
- 88 1[88 ]
9=9; - 55, 'E[?)’P'.’S T
i i
where [2,b] are Poisson brackets. In this notation, any function can be written
. )
f(p,q) = £(P,Q) + [f, 8] + 5 [i,81,8] +... . (192)
The canonical equations are
% L S
dp/dt = 8?8 /f:)Qi ) in/dt= - 8% /BPi . (193)
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We further assume that S and gg can be written in terms of a small parameter
8=8;+8,+... ,
= 9 T R
If a parameter v defined by

dp/dr = a%/a@i s dQ,/dr = - a%/api (195)

*
is eliminated from% , we have

5
%0 = const
(1986)
gf: const .

This development led Hori to the following formulas:

X -F

o~ JLg >

%ﬁ 1sec ?

Sl=f 1pd’r s (197)

* % . *
_ 1 [
%2_ 2sec+§l:£+%l’sl] ’

Sa :J‘(%gzp * % [ggl * gf:’ ?Jp) ar -

Here we designate the subscripts sec and p fo mean the parts independent of and

dependent on £, respectively, as in the Von Zeipel method. These formulas are given
by Aksnes (1970).
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The Lie-Hori method has a number of advantages. The transformation is com-
pletely in terms of the new variables, and no inversion of series is necessary. The
formulas are all canonically invariant, so they hold for any canonical variables.
Aksnes could then make two fundamental advances in the treatment of oblateness per-
turbations. First, he chose as an intermediate orbit a precessing ellipse that incor-
porated all the first-order secular terms and most of the periodic terms. That is to

say, in the analogous process of finding (32), he discovered another solutlon, q , pO,
that included a part of the disturbing function instead of a Kepler elhpse. Second, with
a canonically invariant formulation, he employed appropriate variables. For long-
period and seculax effects, Delaunay variables were used. The results agree with the
Von Zeipel method. For short-period peﬁurbations, Hill variables were used, a

procedure that eliminates the difficulty with small eccentricities.

The first-order determining functions for the Lie-Hori and the Von Zeipel
methods are the same, as can be seen by comparing the defining equations or the
‘results (Kozai, 1962a; Aksnes, 1970). In fact, this must be so because both formula-
tions work for Delaunay variables and have been shown to be equivalent. Therefore,

the first-order perturbations are the same.

Space does not permit us to give a more detailed account of this beautiful theory
or the detailed formulas, for which we refer the reader to Aksnes (1970).

We summarize the status of oblateness perturbations:

A. Two complete second-order developments, one by the Von Zeipel method
(Kozai, 1962a; verified by Gaposchkin et al., 1971) and the other by the Lie-Hori
- method, have been compared. For short-periodic perturbations, the agreement is
10 em. The secular rates predicted by the two theories can be reconciled to within
theif given accuracy (Aksnes, 1972).

B. The second-order development of Aksnes has the advantages of compactness
and efficiency of computation, and no singularity for small eccentricity. The small-

ecbentricity problem is avoided by the use of Hill variables.

C. For long-period and secular perturbations to 10 cm, further work is ﬁec'essary.
Terms inJ,dg, Jgd,, etc. must be included, as well as interaction with all other
forces — lunar and solar effects, tesseral harmonics, drag, and radiation pressure.
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We cannot give the complete set of formulas, but we present the first~order

periodic and second-order secular perturbations as developed by Aksnes (1970),
although we have dropped the primes:

Ar = {—yG3/2pr2) [sz sin 2u —%D = e sin (Zu-v)] »

Ar= (y G2/4)) [l - 3c2 + 6% cos 2u - ;]i- D e cos (ZU'V)] ’
AG = {yG/4) [352 ecos (2u-v) + sz e cos (2u+v) - % D s2 ez cos (2u—2v)] s

Au = {(-vy/4) {(2 - 12(:2) esinv —% (4 + Dez) s2 sin 2u - (2 - 5(:2 +-;-Ds2)

Xesin 2u-v) + 2

esin{2u+v) - -‘% [D —D(l)sz] o2 e‘2 gin (2u ~ 2V)} s

Ah = (-ye/4) {Ge sin v - 3e sin(2u-v) - e sin(2u+v) + :—i—-[D—D(D'.s:;“]e2 sin (2u—v)} s

where
D=(1-15¢?)/(1 - 5¢2) ,
pM = apsac?

and

2 4 2 2

c=cosl , s=pinl , y=J2/an , n=1-e" .

The secular rates can be obtained from letting

3 1 .2
€917 -7 Y (1-592) -GV (41+3002~135c4)

?

3
80 = -5 ¢ I8y + v (7-33¢c2)] ,
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with

_ 2
Y4 - J4/Jz L]

M=n+Z=ny? g 81-6c2+5ch - 5(5- 182+ 5c%)e’

- 15 y4(3~3002+35c4)e21' s
‘-‘-’:g'*'gz]_(g-"' M)

=- "1';5 ny? [44 - 300c* + (75 - 378 2 + 135 c4je” + 60 v, (3-36c2 + 49 c%)

+ 135y, (1-14c% + 21 che?]
Q=h + g32(@+ M) ,

. 3 2T, 4 ' 2
h =<5 ney [2—1002-(9—502)8 —5v4(3*702)(2+362)] .

As discussed in Section 7, periodic perturbations for J2 were developed by using

computer algebra. The expressions were employed in orbit computation, and the
orbital fits were identical. This agreement validates both sets of formulas since they

are based on quite different methods. The mean elements in the two developments

are different by factors of order Jz. Aksnes (1970) has given the formulas relating

the two theories and a numerical verification. If we let a subscript 0 designate the

Von Zeipel element, then the elements of a, e, I are related by

1 ‘ 2 1 2 2
1/a= (l/ao) {l -3 n0y0(1-3 cos _IO) + 33 My Yo [l +6ng - (6+36n0) cos IO

‘ + (45+ 5470) cos Ip) + . . } ,
1 2
G=G0 [l+zy0(l—3cos IO)]+... s -

- _ .3 2
cosI-—cosIO—[l+Zy0(l—cos IO)]+"_' 5

) .
n° = 1-e? GZ=n?pa Y=J2/a2n4
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11. ATMOSPHERIC DRAG AND RADIATION PRESSURE

For several reasons, atmospheric drag and radiation pressure are treated by
different methods than are gravitational perturbations. First, they are not conservative
forces derivable from a potential function. Second, they involve considerably more
unknowns. Whereas the geopotential may be considered unknown and require improve-
ment, we can assume that the main field is constant in time, that tidal variations are
known, and that the geopotential has a known mathematical and physical form. Similarly,
for lunar and solar perturbations, we assume sufficient knowledge of the mass and posi-
tion of the moon and the sun. With drag and radiation pressure, we are in a much less
favorable position. In drag perturbations, the atmospheric density is critical; it has
been studied extensively from its orbital effects. The parameters controlling density
variations are becoming known, and one can probably predict a posteriori the mean-~
density structure to within a factor of 2. However, the satellite aspect and the drag
coefficient must also be known. Radiation-pressure effects involve similar problems:
What is the value of the solar constant and is it constant? How much is diffuse and
how much specular reflection? How do the reflective properties change with time?

How variable is the albedo radiation? How does the satellite aspect change? And how
is the boundary of the earth's shadow defined? For some satellites, this information
is available, though difficult tc obtain. Some of these questions are subjects of current
research.

The following treatment of radiation pressure developed by Kozai (1963¢c) and
extended by Lila (1968, 1971) and L4la and Sehnal (1969) assumes, for one revolution,
the following:

A. The satellite is spherical, with constant reflective properties.
B. The solar parallax can be neglected.
C. The solar flux is constant.

D. There is no albedo radiation.
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A

The natural vehicle for treating forces directly is the Lagrange planetary equa-
tions in gaussian form (96). The forces are expressed as

s=n22° Fsw)

T=n’a> F T(v)

W=n2a®FW ,

*

s . (198)
where
F = (A/M) (K/GM) = 0.5X 1074 A/M) ,
with A/M in em? g—l. We have
2 2 ' .2 .2
S(v) = - ecos” (1/2) cos” (e/2) c08 (A~ L - §2) - sin @/2) sin” (¢/2) cos (\y+ Q- 1)
1 . , s 2 2 o
-5 sin I sin ¢ [cos (hg-L) ~ cos (A~ L)] - sin” {1/2) cos” (¢/2) cos (S2-A5-1)
- cos® 1/2) sinZ (¢/2) cos (-hy-L-9) (199)
2 2 . 2 2 . :
T(v) = - cos” (I/2) cos” (¢/2) sin (\y - L -£2) - sin @/2) cos” (¢/2) sin (v 5+ 2-1)
1 . . R : . 2 2 .
-5 sinlsine [sm (\p-1) - sin (—RO—L)] - sin” (I/2) cos™ (¢/2) sin(Q-\5- L)

_ cos® (1/2) sin® (¢/2) sin(-Ay-L-Q) (200)

W= sinl cos® (e/2) sin (A=) - sinl sin’ (e/2) sin Mo+ ) - cos Isine sinig, ,

(201)
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where

L=v+uw ,
A = the longitude of the sun
e = the obliquity

We have the LPE

3
da 2na
aa _ F |S(v) e sinv+T(V)‘E ’
dE (1_92)1;2 [ I‘]
de

= naz (1 _92)1/2 F {S(v) sin v + T{v) [cos v +-€l: (1 - g):l} ’
di_ _ ma’ Wr 2 cos L
(202)

o dS2 na ro_.
sin 1 at—_m WF a'SIIJ.L ’

_ 21/2
dw _ -COSISTQJrnaziL—%)‘— F[—- 8(v) cos v + T(v) (1+%>sinv] s

dt

dM 2 r 1/2 {d dg
a—t—=n-2a FS(v)a-n—(l—ez)/ a—;—J+cosI¥) ’
p=a(l—e2)

Since radiation pressure is a discontinuous force, it is difficult to obtain analytical
solutions for it. Two approaches have been used successfully. The first, by Kozai
(1963c), is to determine numerically the time of shadow exit E 1 and shadow entry E 9
in terms of the eccentric anomaly. Then, by assuming everything else constant for
one revolution, Kozai obtains the following first-order perturbations after one revolu-

tion, where 8= 5(0), T = T(0) are written for their values at L = w:
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Ey

fa= 2a° F [S cosE -T (Ll.--ez)l/2 sin E]I »
By
2 | ‘ F2 |
se = a’F (1-e2yl/2 [% S (16212 oo5 28 +T(-2e sinE +£-sin 2E) +-g—fT dE} ,
Ey
o 2 W 2. . e
&1 = - -8 g
=g FW { [(1+e ) sin E 431n.‘2E] cos w
EZ
+(1-e2)1/2 (cos E - % cos 2E) sin w —%efcosQ)dE} )
E
1
. -2 w . e
sinl §@2=a"F [(l+e2)smE ~=35in 2E] sin w
(1-e%/2 { *
E2 |
- (1—62)1/2 (cos E -%cos 2E) cos w -—%e jsin de} , (203)
E

1

2,1/2
5m=-cosléﬂ+azF.(l__Ee_)__[

S(@ siﬁ E + % sin ZE)
e e T - . - .- ’ - ‘1. e P
+m (e cos E -ZCOS ZE)

( —-Z-deE , T
E

' 1

2w
f 82 ant - (1-e2)M2 6 - (1-e2)1/2 cos T 60
0

bojce

M= - Y

'-28.217{
3
--z-efS dE}

If the satellite does not enfer the shadow, then the terms evaluated at E 1 and E2
vanish. How the perturbations after part of a revolution can be computed is obvious.

E

2
S[(l +e2) gin E —72' sin ZE] - T(l—ez)l’/2 (cos E - % cos 2E) .

1

These expressions provide the differential equations to be integrated for mean elements —
that is, da/dt= &a/6t=n 6a, and so on. This is the method used to calculate the long-
term effects due to radiation pressure in the determination of zonal harmonics and tidal
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parameters. In addition, one can determine quite reasonable mean reflectivities for
the satellites.

An alternative approach was taken by Léla (1968, 1971) and LAla and Sehnal (1969).
They developed the shadow function in Fourier series in E and found solutions for the
periodic perturbations. They required 36 terms in the development to obtain agree-
ment with the above special perturbation formulas. These periodic perturbations were
formally integrated. For further details, the reader is referred to the Lala and

Sehnal papers.

The development of drag perturbations by Sterne (1959) follows the same lines,
Assuming a rotating atmosphere with an oblate planet, he considers the drag force per
unit mass

2

C eV, (204)

D

D3| bt
g

where Cp, is a drag coefficient, A/M is the area-to-mass ratio, p is the atmospheric
density, and V is the satellite velocity with respect to the atmosphere. Now, CD’ A/M,
and p are all difficult to know. Sterne adopts CD ~ 2.2, If precise values of A/M are
not known, then the average A is taken as one-fourth the total surface area. He then

gives the forces acting on the satellite as

S r
T|={rv-6rcosl . (205)
w Or sinl cos (V+ w)

After some calculations, the velocity is given by

V= El/z l+e cos E 1/2 |- gl-ecoskE (206)
a l-e cos E l+ecos E ?
where

d= % (1 ~-e2)1/2 cos I (207)

H

and the forces per unit mass are
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S 7 esinE]é

_ 1 A 1/2 gl ecosE)
T|=5C,5 raV (1 e? {1 d ; ] . (208)
‘ - e?
W

'"ﬁ {l1-e cos E)2 sin I cos (v+ w) E

With these equations, the LPE can be integrated numerically. Alternatively, if we can
specify how C , A/M, and p vary, we could attempt a formal solution. We make the
analogous solutmn to that for radiation pressure, assuming C and A/M constant, and

obtain formal quadrature formulas for the perturbations after one revolution, We have

3/2 2
- A 2 (1+e cos E) _ql-ecosE
ba=-Cp 2 fp(E) 1/2 (l dl+ecosE) &,
0 (1-e cos E) ‘

A (1-e2 1/2,a21r 1+e sE‘l/2 l-ecos E
fe=-C -—ML—)—-—fp(E)( co ) (1.-d e

am l-ecos E l+tecos E
0
X[cosEm——--d——z—(l ecos E) (2 cos E-e-e cos E)] s
2(1-e7)
2m
__d Aoa. . 1 _ 1/2 1/2
ol = -S'I'TCD Mo 3] smlm f p(E) (1-e cos E) {1+e cos E)
0
l-e cos E (2-e2) cos® E ~ 1+ 262 - 2¢ cos E ' '
X(l—dm 1+ cos 2w ) dE , (209)
(1-e cos E)
. 2 .
_ 1 A a B sin 20 .2 9 1/2(_ l-ecosE)
0= -5% CpM n 12172 I p(E) (1 -e% cos® E) "\l - d 132 5%

>
——t

262~ 1-2¢ cos E + (2 - e2) cos? E] dE

i

bw= -cos I 68

2

M = - (1-e2)1/2 4, +f6n dt
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We see from the last two expressions of (209) that the direct perturbation in M + w is

quite small, the major change in M coming from

én= (- 3n/2a) éa

These expressions are used with numerical guadrature to obtain the evolution of
mean elements. The implementation is dons by Slowey (1973} for studying drag.
Alternatively, taking Jacchia's (1960, 1964) density model, Sehnal and Mills (1966)
have developed p in harmonic functions and obtained formulas for the periodic
terms. These are sometimes used in analyses of satellite orbits, However,
since for geodetic satellites the short-period drag terms are always less than 1 m,
we can ignore them. The secular part is more conveniently absorbed in some con-
stants of our orbital model. Therefore, the principal use of these formulas is in the
analysis of long-period effects by numerical integration of these mean elements, along
the same lines as those used for radiation pressure. In this case, we are able to
make a reliable determination of drag factors, which could be systematic errors in the
density model, or an estimate of CD or A/M. These factors are generally between
0.5 and 1.5, which is less than the uncertainty of these parameters.
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12, COMPUTER ALGEBRA

A great deal of the analysis used for satellite-pertﬁrbation theory involves consider-
able tedious algebra. One is led to do some of this work on a computer. A major support
of the development of analytical theories has been the computer program Smithsonian
Package for Algebra and Symbolic Manipulation (SPASM), described by Hall and
Cherniack (1969), and Cherniack (1973) has contrasted it with other algebra systems.
Since the subject of computer algebra is beyond the scope of this article, we confine

ourselves to a few remarks and the description of two problems in satellite theory

Algebra programs perforni the elementary operations of addition, multiplication,
subtraction, division, differentiation, and integration of a certain class of functions.
We can define functions, make substitutions, and truncate on powers of designated
parameters. ' We can traverse expressions term by term and parenthesize and expand
them. Nuﬁlexicai coefficients are kept as rational numbers where possible. One can
read expressions in, print them out, or punch them as FORTRAN cards for Subsequeﬁt'
numerical computation. We have two forms of internal representation — expressions
and Poisson series. Each has its advantages. An expression may be

(ETA**2 - R)/E .

The Poisson series are of the form

ZA (cos

where Ai and Bi are any expressions. All the operations described- apply to both

expressions and Poisson series.

Poiéson' series have three advantages:
A. All trigonometric identities are automatically applied.

B. Because of the highly structured nature of Poisson series, multiplication and
addition can be optimized. Further, we can use secondary computer storage for long

Poisson series.

I

1756



C. The bulk of problems in celestial mechanics is solved by developing the dis-
turbing function in Poisson series and integrating term by term.

In addition to the operations described above, we can convert from expressions
to Poisson series, and then back. Great efficiency is gained hy judiciously choosing
the form. Consider

(cos20 X)SO - (00530 x)20_

As a trigonometric polynomial, this operation is trivial; as a Poisson series, it

is not. We have here two very important features of computer algebra: the non-
commutativity of operations with respect to time, and intermediate swell. The above -
expression is obviously zero, but one has two 50-term Poisson series along the way.

Neither of these problems occurs in numerical work.

SPASM is 99% in FORTRAN; storage management is accomplished with SLIP, which
is accessible from FORTRAN programs. We are concerned with the efficiency of
SPASM and with the size and speed of the FORTRAN code generated. These are part
of the more general problem of expression simplification.

Although general simplification seems to be very difficult, we have had some suc-
cess with the following approach. We assume that the coefficienis of Poisson series can
be factored as the product of polynomials. Further, we want to consider the choice of
variables. In developing perturbation theories, we convert to Poisson series all angle
variables except the inclination. Therefore, we have the side relations

'nz + 62 =1
2

?

2

st? + c1? = sp? + CIP?= 1

H

where we have substituted SI for sin (), CI for cos (I), SIP for sin {IP), and CIP for
cos (IP). The P designates the primed variables — in this case, the elements of the
disturbing body (see Section 9). We try each substitution, as indicated. It would be

more direct to convert each coefficient of the Poisson series to a Poisson series,

using e = sin ¢, = cos ¢, in order to obtain all simplifications, and then to convert
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back to an expression. However, the substitution and the test for length of expres-
sion are easily done. We retain the expression that has the fewest terms and remove

all common factors, Next, we assume that the remaining expression can be written

(s 1 b cap) ” P() (SI;) . er(cu»

where P, is just a polynomial. In turn, by setting all the variables but one equal to
zero, we obtain each polynomial. The results of factorization are then verified by
expanding and subtracting. We have found that in this way we obtain all the simplifica-
tions that would have beer obtained by hand.

SPASM has been used for a wide variety of problems. We describe here two of
pai‘ticular relevance to satellite theory: development of oblateness perturbations in
Delaunay variables by the method of Von Zeipel and thlrdvbody perturbations in
Kepler elements by use of LPE.-

Von Zeipel's method is described in Section 10. Two features can be pointed out.
First, once the determining function S is known, the perturbations are obtained by
dlfferentlatlon Second, the first- and second order determining functions can be
obtained in closed form, as was done by Koza1 (19628.) by a change of vamable using

' 3 3
dv= (1/7") (a/7)" as
Both these operatioris are within the scope of SPASM, and the problem proved tractable.

The_necéssity of an accurate theory for J o Was discussed in Section 10. The develop-
ment by Kozai (1962a) had been used, but with such complication that further verifica~
tion was necessary. The details of the work are recounted in Gaposchkin et al. (1971},
The important results are the following; '

A. The problem proved tractable with an algebra program.

B. The determining function of Kozai (19622a) has been verified, and the problem

solved to second order.
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C. The accuracy of the theory and the inversion have been verified against
numerical integration. The inversion was checked by use of the numerical inverse
from (190).

D. The difficulty with the small eccentricity remains. The third-order periodic
perturbations were developed and were shown to contain 1/e terms. Numerical tests
~indicate 1/ e2 terms in the fourth order., We conclude that this is due to the Delaunay

variables we had selected.

E. The development of computer algebra enabled us to obtain the third-order per-
turbations in 3 weeks; we would probably not have attempted it by hand.

F. The perturbation theory was used in the orbit-computation program. The
theory of Aksnes (1970) (see Section 10) was also used; it gave identical results for
orbital position, thus verifying both developments.

The second problem attempted is the perturbation due to a third body. In this
case, we start with equation (155) (Section 9 analytically develops that expression).
Using the algebra program, we now determine 1/A by analytical inversion. The basic
idea, due to Broucke (1971), allows the inversion of invertible expressions; that is,

An iterative scheme is developed, with each iferant

_ _ b/a )
n+1-zn_AZn_'" (Ezn -1)2

ol

n

This is enormously powerful. Since we can invert any expression without division, it
is applicable to computers without a divide instruction. In the case of lunar pertur-
bations, we have a/b= 1/2, where

E=X-T)' -9

Here, X is the position of the satellite, and Y is the positidn of the moon. We have

[cos ucos @2 -~ sinu sin Q cos 1]
X =1 |cosusin Q@+ sinu cos Q cost .

sinusini
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A gimilar expression for Y uses r/, v/, @', I’. With this expression, we perform the
analytical mversmn, starting with Z = 1/r! and truncating on r3. We have a simple
check: The r/r'% are all canceled by the XY/ 1¥|3 term. The effects of body tides are
easily introduced at this point by the substitution

a2n+1
e

n n

r—-1r +k
n+l
T

Next, the expressions are expanded with use of Hansen coefficients as described in
Section 7. The resulting expressions are then put in the LPE and integrated on the
assumption that the angular variables, except the inclinations, have a linear change
with time. The resulting expressions are simplified as described above. Figures 4a
and 4b give the first part of the SPASM printed output and the FORTRAN program for
calculating the perturbation in L | "

In conclusion, we can say that computer algebra has been a succes sful tool for
satellite-dynamics problems. It balances efficiency and expediency. The lunar pertur-
bations were being used in the orbit computation program a month after the work started
with SPASM, and we developed the third-order perturbation due to J, in 3 weeks. We

can develop even more efficient programs by careful analysis (cf. formulas of Kozai
(1962a) and Aksnes (1970)). '
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Figure 4a, Part of SPASM ouiput for the perturbation in L.
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Figure 4b, Part of the FORTRAN program produced by SPASM for calculating the
perturbation in L :
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13. OREBIT COMPUTATION AND PARAMETER ESTIMATION

The elaboration of an orbital theory, the main objective of the preceding sections,
is but one of the four aspects of using satellite-tracking data to obtain ephemerides
and other information. We also have the data reduction, the relation between the obser-
vations and the parameters sought, and the estimation procedure.

We adopt Kepler elements as the orbital parameters to be determined. However,
we choose to determine n, the mean motion, rather than a, as n is the best known of
the orbital parameters. In addition, we recognize that the coefficients of the gravity
field and the nongravitational forces are imperfectly known, thus introducing model
errors. We can mitigate these errors to some extent by determining secular rates
for each of the elemenis. Therefore, the uncertainty in the orbital model will be
limited to the short-period perturhations.

The polynomial representations of the elements account for the bhulk of the non-
gravitational forces, including the long-period effect of gravitational perturbations.
The polynomials (mean elements) can be analyzed to cbtain the zonal harmonics of the

gravity field, some long-term resonant terms, and the reflective and drag properties
of the satellites.

The basic relation used here is

ol
Il
=

]

L os (210)
r - R ]

Il
&P. =l

P

o

where p is the topocentric station-to-satellite vector, T is the satellite position, and
R is the station position. It is convenient to use this equation in the orbital system;

therefore, R is given by (44) and T by (71). We generally observe Ap, where A is a
transformation matrix. So we have

= ohservation= AT = AT - AR . @11)
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In principle, any parameter that enters (211) can be determined from the observations,
but they may not be unique.

There are basically four distinct types of observation to be considered:

A. Optical directions given in 2 celestial reference frame (e.g., Baker-Nunn
data).

B. Direction observations in a topocentric reference frame (e.g., minitrack).
C. Range observations (e.g., iaser). :
D. Range-rate observations (e.g., TRANET doppler).
The transformations for each type are as follows: -
A. Right ascensioﬁ and declinafion:

l: Ab jlz [—-cos asind -sinasind cos 6:1 AT
cos & Aol -sina CoS q, 0

B. Altitude (a), azimuth (Az), range (p):.

da

. -sin Az sina  -cosAzsina cosa — ain (A +8) cos (\+8)y 0
-cos a d{hz)| = ' ) |:- cos (X+8) sing -8in (\+9) sing cos ¢:| Ap
de cos Az sin Az o sin (L +0) cos -, sin (\+8) cos ¢ sin ¢ ’
P P/ P Py/p p,/P

where ¢, \ are.the latitude and longitude of the observer, and ‘px,' Py? p, are the com-
ponents of p.

C. Range:
Ap=P- Dpo=/[p)) Bp -
D. Range rate:

ap=9- Ap

The domain of parameters to be determined can be expanded to include gravity-
field coefficients, station coordinates, GM, a scale factor for all stations, and the

position of the earth's pole of rotation. For unique and meaningful results to be
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obtained, several orbits may have to be combined. This is most conveniently done by
dealing with normal equations, which will be discussed later,

If we wish to determine any parameter p; from ohservations, we use our elabhorated
theory for T and our initial estimate for p? and compute

=45 . (212)

In general, the dependence of G on p; is nonlinear and we must linearize. We
want to find a correction to P; that will reduce the difference between Fand a : that

is,

Cﬁv— G= (8/8p;) Ap Ap; - (213)

Now if A can be determined from the observation, we need obtain only Jp/ op;. For
range rate, A depends on P;» and the expressions are more involved. For those

parameters influencing through the orhit, we obtain

T 9T 8w  or g2  or ol L drde , or OM _2 a Or an

; ﬁapi 36513; aM op, 3 n 8a op

Now, from Izsak (1962) and Gaposchkin (1966, p. 107), we have

— A
gr/ol=rsinue

dr/oe = (Snx?) (a/r) [sin E/(1 --ez)]‘/2

] _E )
8r/aM = 2w r/n

or/oa=T/a
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where

u=v+auw s

ginI sin Q
A
e = |-sinlcos Q| ,
n

cos 1

0
A
e =(0] ,

1

expressed in the orbital system. For example, if P; = ws the constant of perigee is
then

du/op =1

the others being zero. If b, = Cﬂm’ then, with Zﬂm =1,

8w2/8C, = Z Z Aoy s
- q

p

aﬂ/acﬂm=z Z ARy
P q.

and so on. If p; = GM, then

91/8(GM) = = T/GM

O =

If we want to determine station coordinates, we have

R=Ry(-9) Ry, %, 0 X,

giving
- o 100
2ol |- g (- '
[BX][E%} [az] Ro(~8) R(y,%,0) [0 1 0
001
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If we want a scale factor o for all stations — that is, AR = a R, — we have

dp/8a = - Ra(-6) R(y,%,0) S'(O

To determine the polar motion, we have

cosez"

7R

=|sin 6 ZOJ
_XO

smeZ0
= |-¢co8 6 ZO

Yo

2

X
If we have the instantaneous coordinate R =| Y| of the station, then
Z
X0=Xcose+Ysin9 ’

Y0=—Xsin6+Ycose ,

ZOz 4

The data reduction falls into two parts: those reductions necessary for all data,
and those related to particular data types.

All data must be expressed in the same time system. For orbital computation,
we need a uniform timo system, and so we have chosen AS, an atomic time system, as
a standard. The differences between AS and A3 and between AS and Al are

AS - Al =0.8983 msec

»

AS - A3=35.4 msec .

Although these values change slowly, the adopted constants are sufficient for data
taken between 1965 and 1971, Numerical values of AS - UTC are given in the form of
polynomials and are published {e.g., Gapeschkin, 1972b; see also Part I of this

Report).
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We must also know the physical point to be associated with each time. For optical
daté, the time detected is that of receiving the light. The orbital position corresponds
to an earlier time, the difference being the travel time of light. For a flashing-light
satellite, the flash times are given at the satellite. Nominal values of range are suffi-
cient for correcting the time associated with the satellite position. With ranging data,
we often have the time of firing of the laser — that is, the time of transmission — and
therefore the satellite time is later by the travel time. In all cases, we must know

precisely what the satellite time is.

We have a similar situation with the station pogition. The position of the earth
is a measured quantity given in terms of UT1. We must use the actual value of UT1 to
compute the sidereal angle in (44). The time associated with the station is the received
time for optical observations, but it is the satellite time for range observations. The
satellite time corresponds to the average position of the station during the round trip
of the signal.

Optical data must be reduced to the adopted reference system by use of (45).
In addition, we must apply annual aberration and parallactic refraction. The first is

usually applied during film reduction, and parallactic refraction is computed from

AR = [(0.435 X 0.484813 X 10_5)/p] (tan z/cos z) [1-exp (-138.5p cos z)] ,

where p is the topocentric range in megameters, z is the zenith angle, and AR is the
correction in radians. Now we have

Adb=-ARcosq ,

Aa = - AR sin q/cos §

where ¢ is the parallactic anglé measured in a positive clockwise direction from the
object to the pole great circle (Veis, 1960a, p. 119). This correction is based on-
standard pressure and temperature. If measured values are available, a better value
can be obtained by taking mean nighttime data. A table of corrections is given in
Gaposchkin (1972b). |
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For laser range observations, we make a correction for the tropospheric refrac-
tion and for the geometry of the satellite. The refraction correction becomes (Lehr,
1972)

2.238 + 0.0414 (P/T) - 0.238 h
Ar= -

mna+1f3cma

where P is the atmospheric pressure (mb) at the laser station, T is the temperature
(K), hS is the elevation above mean sea level (km), and a is the elevation angle of the
satellite. This formula holds true for a ruby laser at 694 nm when the apparent eleva-

tion angle is greater than 5°.

The accuracy of laser data is commensurate with the physical size of the satellite
equipped with corner reflectors. Arnold (1372) gives in tabular form a correction to
reduce the observed range to the center of mass of the satellite as a function of angle
of incidence. By use of these data, all laser observations can be reduced to the center

of mass.

Equation (213) will, in general, be overdetermined, and so we use the method of
least squares to obtain an estimate of the unknowns. The general references are
Arley and Buch (1950) and Limnik (1961). By collecting normal equations, we can

merge the observations from many orbital arcs.

In the least-squares estimate, the weight or accuracy of each observation must
be established a priori. For the estimation process, only the relative accuracy is
important; however, one can have greater confidence if the standard error of unit
weight comes to be unity.

For the weighting, we assume that the errors are uncorrelated, probably not a
had assumption with data taken over several years. We have given each observation
an individual weight, as described in Table 3.

In addition, where there were more than 30 points in a pass of laser data, 30

points were chosen, evenly distributed through the pass. Some numerical tests indi-

cate this was no worse than if we had averaged the points.
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Table 3. Assumed accuracy for Standard Earth III.

Data : Weight Remarks
Baker-Nunn 4"
Smoothed Baker-Nunn VA : ‘
SAQ laser 5m Taken before 1970, observed before 1970
CNES laser . 10 m Taken before 1970, observed before 1970
GSFC laser 5m Taken before 1970, observed before 1970

ISAGEX laser 2m - 1971 International Campaign

Finally, the process of parameter estimation must be iterative, for two reasons:
The model is nonlinear, and gross observation errors must be discarded. On each

iteration, the computation diseards data on a 3¢ criterion; that is, a point is discarded
if | |

(ﬁ?’—@)/v‘w 8¢,

where w is the weight, and ¢ is the standard deviation of the last iteration. Every
observation is reconsidered on each iteration. The process is said to converge or
stabilize when '

o, -0, _1)/o,]<0.01
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14. THE SYSTEM OF CONSTANTS AND UNITS

We measure days from Julian Day (JD) 2400000.5, called the Modified Julian
Day (MJDj); that is,

MJD = JD ~ 2400000.5
The day changes at midnight in this system.

The natural length scale and the time scale for dynamics come from GM, which

has units length® time 2. The preferred value seems to be
GM = 3. 986013 X 1020 cm® sec™? .

If we were to choose the length scale and the time scale appropriately, then GM could
be unity. A natural length scale is the mean radius of the earth,

a_=6.378140X 10° cm .
If the time unit is chosen to be
806. 8108 sec |,
then GM = 1. With these units, all subprograms for orbit computation can be written

uniformly and do not require revision as these constants change. For the velocity of

light, we have adopted

e =2.997925 X 1010 cm sec™!

= 2.590207 X 10 Mm day"l .
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Some other constants are given here for easy reference:

G=6.67X10"% em®g ! sec
Cp=2.2 ,
f=1/298.256

b= 0.7292115085 X 10~ ¢ sec

-2

-1

?
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the universal constant of gravitation,
the drag coefficient,
the earth's flattening,

the rotation rate of the earth.
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ABSTRACT

The method of obtaining 5° X 5° mean gravity anomalies from 1° X 1° mean free-
air gravimetry data is discussed, and various estimate procedures are considered.
The assumption of the stationarity of the gravity data is also investigated. We con-
clude that a simplified estimate procedure is thé best one fdr obtaining the 5° X 5°

mean anomalies,

RESUME

. On discute la méthode destinée & obtenir les anomalies moyennes de
gravité de 5° X 5° & partir de la gravimétrie moyenne en air libre dé
1° X 1° et 1'on considére les diverses procédures d'évaluation. On examine
également 1a supposition selon laquelle les données de gravita sefaient
stationnaires. On en conclut qu'une procédure d'évaluation simplifige est
la meilleure facon d'obtenir les anomalies moyennes de 5° X 5°.

KOHCIIEKT

OfcyxmalTcAd MEeTOL HOAVYEHHA CPeLHHUX SHOMANHH NOPHTAXEHHH
5° X 5%, HWCXOHOA M3 HaHHBIX CPEeLHEH I'DABUMETDHH CBOGOLHOTO
Bo3OgyXa 1° x 1°, M paccMaTpUBalTCH pas3yikuyHbHe MeTONHKH _
onpeﬁeﬂeﬁxﬁ. Takxe HceNeOyeTcd NPennclIOXeBHe C CTaUUCOHAPHOCTH
VﬂaHHHX anTHﬂeHHH. Mel BaKJNUAEM UTO YNPOUEHHAad METOLWKE
onpereyiIeHUA SABJAETCHA HgHNIyUWeHr IOJIA [NOJYYEHHA CpelHHMX aHOMaJHH#

5° x 50_
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PART 1

ESTIMATE OF GRAVITY ANOMALIES

M. R. Williamson and E. M. Gaposchkin

1, ESTIMATE OF GRAVITY BY COVARIANCE METHODS. BACKGROUND

The approach used here is based on covariance analysis, following the ideas of
Wiener (1966) and Kolmogoroff. It is sometimes known as filtering theory owing to
its extensive use in communications engineering. Many of the terms come from that
discipline, e.g., power spectrum and lag. The ideas given here are the extension
by Kaula (1967) of a one-dimensional time series to the two-dimensional surface of

a sphere,

The primary objective of this analysis is to obtain mean anomalies for regions
550 km X 550 km. These data are to be combined with satellite-perturbation analysis
to determine a spherical-harmonic representation of the geopotential. A set of
gravity data with known, and preferably simple, statistical properties is needed. A
second objective is to find the geophysical information contained in those average

properties of gravity represented by the covariance function,

To obtain these mean anomalies, an estimate of each 1° X 1° free-air gravity
anomaly in the 550 km X 550 km region is necessary. For the unobserved 1° X 1°
units, an estimate is made by using the neighboring observed data, A linear estimate
that depends only on the covariance can be derived when stationarity and isotropy are
assumed. That is, the expected value of the gravity anomaly g can be expressed as

‘the linear transformation of the measurements f,,

N
(g) == Z ot
i=1
MED
PRECEDING PAGE BLANK NOT FiL
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When the coefficients of the estimate qij are chosen so as to minimize the mean-

square error {(g; -Ei)z), we obtain
Z -1
ij <gi fk> K‘jk :
k

Here, Kjk ig the covariance matrix with elements (fj f, )+ We assume that (fj £,

depends only on the distance Tjk between the two points; we then write
<f fk> Kd, T, k) ’

where K(f, 7) is the covariance function. Further, we assume that f and g have the

same statistical properties, so that

N N
B= D D Ky Kyl L, M
j=1 k=1 |

11
— 4

and the standard error is

212
o) = ((g -§) >J
_ K(f 0-D > Ky Kud K le) : @)

In addition, the accuracy of the estimate depends on those of the observed gravity and
of the covariance function,

To calculate an estimate of the covariance function from observations, .t hecomes
a discrete variable. The estimate is

AN
K, 1) = E AjAkfifk/ E AjAk (3)
ik ik
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The measurements fi represent mean values over an area Ai' The sums include all
measurements with

Ax
T- e T, €T+

The estimation of gravity by covariance methods hinges on the stationarity of
gravity data. Stationarity means that the statistical properties of the data are the
same no matter where the data are taken. There is some evidence that gravity data
are not stationary. However, if there are subsets of the total gravity population that
are stationary, then intergravity and intragravity covariance functions.can be defined.
Equation {1) needs the covariance hetween each pair of points. These covariancés
can be derived from different functions.
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2, THE 1° X 1° DATA AVAILABLE

We obtained a set of 1° X 1° mean free-air anomalies compiled by the Aeronautical
Chart and Information Center (ACIC, 1971). These data contained 19,115 measured
means., In addition, a set of 1454 1° X 1° means for Australia was obtained from
Mather (1970). The two sets of data were combined, the Mather data being used for
regions where they were available. The combined data set contained 19, 328 points,
out of the 64, 800 1° X 1° areas. A complete set of 1° X 1° mean topographic height data
was obtained from Kaula (Kaula and Lee, 1967). Topographic height was used to define
oceanic and continental areas, A 0-km depth and a 1-km depth were used to define the
ocean—continent boundary. The distribution of 1° X 1° mean gravity data is summarized
in Table 1. Figure 1 is a map showing the distribution of the data.

Table 1. Distribution of 1° X 1° mean surface-gravity anomalies.

Ocean Continent
Boundary
(km) Measured Total Measured Total
0 9213 42918 10115 21882
-1 7015 | 36199 12313 28601

The estimated uncertainty is given for each gravity anomaly. The uncertainties
of 99. 9% of the anomalies are less than 25 mgal, Comparison of the Mather data with
the ACIC data at the 1241 common points indicates that the average difference is

1.7 mgal and that the root-mean-square (rms) difference is 20 mgal.
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Figure 1. Distribution of 1° X I° mean surface-gravity data.



3. USE OF BLOCK COVARIANCE

Kaula has developed a modified procedure that greatly simplifies the calculation
of the covariance function and the gravity estimates. The earth is divided into blocks
of approximately equal area. Their boundaries are adjusted to lie on integral degrees
of latitude and longitude. Each block is subdivided into 25 units, the boundaries of
which are also adjusted to lie on integral degrees of latitude and longitude. There are
1654 blocks of approximately 550 km X 550 km. At the equator, a block is 5° X 5° and
a unit is 1° X 1°. The unit mean gravity anomalies are taken to be the average of the
observed 1°X 1° mean gravity anomalies within the unit. The data set used here has
14, 640 observed unit anomalies. The estimate for the gravity anomaly of an
unobserved unit is assumed to depend on only the observed unit anomalies within the
same block. The block covariance function is caleculated from equation (3} by using
pairs of observed unit anomalies fi and fj from the same hlock. Then a block
covariance matrix can be defined as the covariance between the ith and jth unit
anomalies within a block, because the ith and jth units are approximately the same
distance apart in all blocks. The elements of the block covariance matrix are
obtained from linear estimates of the calculated block covariance function. The esti-
mated gravity anomalies are calculated from equation (1), where the sums over j and
k include only the measured anomalies in the same block and where the covariances

K are the elements of the block covariance matrix.

This method has two disadvantages:

A, The estimate of gravity does not make use of all the gravity information; i.e.,

the estimates axe not so good as possible.

B. The covariance function to be employed must be determined by using only the
combinations of anomalies within blocks and therefore does not employ all possible

combinations of the data.

The method has three advantages:

A. Tt greatly simplifies the calculation of the covariance function and the gravity

estimates.
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B. It produces 550 km X 550 km mean anomalies that have uncorrelated errors.

C. The statistical properties of data within a2 block may be closer to stationarity

since the method involves primarily the short-distance covariance.

The block covariance function is given in Figure 2 and Table 2, and the block

covariance matrix, in Tahle 3.

Table 2. The block covariance function of unit gravity anomalies.

Average angular Covariance function
distance (mgalz)
0° 1078
0.29 604
0.93 662
1,21 505
1.78 420
2.18 329
2.80 278
3. 17 251
3.70 : 246
4,19 211
4.75 | 179
5.22 168
5.69 ' 200
6.20 -2
6.69 : 575
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Tahble 3.

The block covariance matrix,

ED bSO BY BS DS b b e bt b e e
[ R T R = T T S

25

E=T- s R R O S

—
P

15
16
i7
18
i9
20
21

25
24

25 7

—
L= R R e LR R

1. 07856E+03
6. 2i04F+ 02
J. 6983E+02
2, G329E+02
2. 2470E+02
8, 21)1E+02
4. T352E 02
3, 2475E+02
2, 5119E+02
2. 1619E+02
J.6983E+02
3. 2478E+02
2.758TE+02
2.4649E+02
1, 9535E 02
2.6329E +02
2, 513DE+02
2. 4660E +02
2. 0845E+02
L 7319E+02
2.24T0E+02
2. 1619E+02
1. 9535E+02
1, 7319E-+02
1, 9839E402

14

2. 464 0E +02
2, T58TE+02
3. 2475E +02
3.B983E 102
3. 2475E+02
2, 5[39E+¢2
3.2475E102
4., 7352E+02
6, 2104F32 92
4. 7352E+02
2.8329E+02
3.8983E+02
6, 2104E+02
L O785E+03
G, 2104E+02
2, 5139E+02
3, 2475E+02
4. 7352E+02
6. 2104E+02
4, 7352E+02
2. 4680E+02
2, TH8TE+02
3. 2475E+02
3. 6283E+02
3. 2ETHE02

Gu 2104E=02
LOTEBE 0l
6. 21041, 02
JLGORAE 02
2.6329E+02
4. 7352E+42
6, 2104E +02
S TIR2E (2
3. 2475E02
2. R139E+G2
3, 2475E+02
3.6983E+02
3. 2175E+02
2. T587TE+H2
2, 4BE0E 02
2, 5109E+ 02
2. 6329E +02
2. h139E+02
2. 46H0EA B2
2, 084 9E+02
2. 1619E+02
2. 2470E+02
2. 1619E+02
1, 9535E+02
1. 7319E+02

1. 9535E 102
2, 4660F 142
2, 7587E+ (2
3. 2475E+02
3. 6983E-+02
2, 1619E +g2
2. 5139E+(2
3. Z4THE+02
4,7352F402
6. 2104402
2, 2470E+02
2.6329E+02
3, 6983E+ 02
6. 2104F4 02
1. 0785E+00
2. 161 9E+02
2, 5139E 102
3, 2475E+02
4.7302E+D2
B.21G4E+02
1. 9535E+02
2, 46605+ G2
2, 7587E+02
3. 24THE+02
3. BIB3E+02

3.GY¥IE+02
G 210E 02
1. G745k 03
G, 2ID4E+02
GL.GHEREOE
i 2 175E+02
3. T352E w02
6. 21048102
4, T352E02
3. 2475E402
2, 7587E+02
3. 2475E402
3. ROBNE+02
2. 2475E+02
2. TH8TE+D2
2, 4660E+ 02
2. 51H9E+Q2
2. GI29E+02
2.3139F 02
2. 4B60E+ 02
L 453RE+02
2, 1619E+02
2, 24T0E+02
2. 1819E+02
L. 965RE+02

18

2. 6349E102
2. 5139E+02
2, 4660E+02
2. 0819E+02
L 7319E+G2
3. 6993E 102
3. 2475F+02
2, 758TE+02
2, 46G0E+02
1, 9535E+02
6. 2104 E+02
4. 7352E+02
3, 2475E+(2
2, 531398+02
2, 1619E+02
1. U785E+03
6. 2104F 102
3. 6983E+02
2,8328E+02
2.2470E+02
6. 2104E+02
4, 7352E+02
3. 24T5E+02
2.51339E+02
2. 1619+ 02

2. 6520E G2
3. 6983k 02
6. 210 E 02
1. 0785E+03
Go 2104 E+02
2.53139E 402
3 2475E+02
4, TA52E 02
6, 2104E 102
4. 73528102
2. 16G0E+02
2. TORTE+ 02
F.2475Er 02
3. 6983E-+02
1,2475E--02
2,0849E+02
2. 4G60E+02
2. 5139E+02
2. 68320E+02
2, 5139E+02
1.7318E+02
1. 8535E+02
2. 161985 +02
2. 2470E+02
2. IG[9E+02

17

2. 5I39E+02
2. 6329E 102
2.5135E+02
2. 4GB0E+02
Z.Q840E 02
3. 24756102
3, 6983E+02
4. 2475E+02
2,758TE+02
2, 468DE+02
4. 7352E+02
6. 2104E+02
4. T352E+G2
3, 2375E+02
2. 5119E+02
6. 2104E+02
1. 0T85E+03
6, 2104 E+02
3. G983E+02
2.6329E+02
4. TI52E+02
6, 2104E-+02
4,1352E+02
1L 2473E+02
2. 5130E+02

ot

2. 2470F 02
2.6329E+02
3. 69BIE+02
G, 21 E4 02
1. O785E4 03
2, 1616T402
2. 5139E+02
3. 24T EE+02
4. 7352E 02
8. 2104E 102
1. 9535E402
2.4660E+02
2. 7587E+02
3. 2475E402
J.6983E+02

L.7319E00%

2, 0549E+02
2. 4660E+(2
2. 5135E+02
2,6320E+02
1. §839E+02
1.7319E+02
1. 4535E+02
2, 1619E+02
2, 2470E+02

15

2, 4660E+02
2.5139E402
2, 6329E-+)2
2. 5139E+02
2. 4660E+02
2. T587TE+02
3. 24T5E+02
3, 6483E 02
3, 2475E 02
2.71587E+02
3.2475E+02
4. 7352E+02
6. 2104E r02
4,7352E+02
3. 2475E+02
3.69B3E+02
6. 2104E+02
1, 0785E+03
6, 2104E+D2
3. 69B3E+(2
3. 247RE+02
4. 7352E1 02
6. 2104 E+02
4. TA2E+02
3. 2475E+02

B 2104E 08
4. TA52E D2
5.247HEF02
2, 6139k 02
2, 16105 +02
1. A785F =03
6. 21045+ 02
3. 6985E+G2
2. 6329E+02
2, 2470+ 02
6. 2104E+02
4. 7ER2R+02
34 2475E+02
2. 5109E+02

2. 1619E+02

3. 6983E+02
3. 2475E+Q2
2. 758TE+02
2, 4G60E+02
1, 953558102
2. 8420E+ 02
2.5139E+02
2.4680E+02
2, 0849E+02
1. 1319E +2

1%

2, 08493E+02
2.4660E+02
2.5139E+02
2. 6329E02
2, 5130E+02
2, 4660E+02
2. 75487E+02
3, 2475E+02
3. BOBIE+02

- 3. 2475E1 02

2, 5138E+02
3.2475E+02
4, 7352E+1 02
6, 2104E+02
4, 7352E+02
Z2.6329E+02

3.8953E+02

5, 2104E+02
1, 0785E+D3
6. 21045402
2, 3118E+02
3. 247 5E+02
4. T352E ry2
6.2 IME+02
4. 7352E+02

1 TREZE+ 02
G. 2104E+02
+. T352E+02
3. 2475E+D2
2. 5139E+02
6. 2104E+02
1, 0735E +03
6. 2104E+02
3.G983E+02
2, G328E+02
4, 73532E+02
6. 2104E+02
4. 7352E1 02
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4, THE COVARIANCE FUNCTION

The global covariance function, calculated from equation (3) by using the 1°X 1°

mean gravity anomalies, is given in Figure 3 and Table 4.

Table 4. The covariance function of 1° X 1° mean gravity anomalies.

Average angular Covariance function
distance (mgal“)
0° 1150
0.92 656
1,62 431
2,52 326
3.50 266
4. 50 ' 234
5.49 208
6.47 185
T.47 180
8.48 183
9,48 145
10,48 | ' 131
11.47 124
12.48 124
13.48 111
14.48 105
15.47 92
16.48 95
17.48 86
18.48 84
15, 48 78
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If gravity were a stationary process, then it would have the same statistical
properties everywhere. Possible nonstationarity was investigated by determining
the covariance function for subsets of the gravity data. A separation of oceanic and
continental gravity was used. The ocean—continent boundary was determined from
topographic data by using a zero depth in one case and a depth of 1 km in a second. In
such an analysis, one also obtains the covariance of oceanic gravity with continental

gravity. The results are given in Figures 4 and 5 and in Tables 5 and 6.

Isotropy has been assumed; that is, the covariance between two gravity andmalies
is independent of azimuth. Two anomalies on an ocean—continent boundai-y separated
by T will not necessarily be characteristically oceanic or continental. Therefore,
the boundary between ocean and continent was expanded to a width of 400 km. ’fhe
covariance functions were computed without the gravity data in that region; the results

are digplayed in Figure 6 and Table 7.

Another separation was made that wag arbitrary. The gravity data were divided
into an equatorial set with latitudes || < 45° and 2 polar set with latitudes |¢] > 45°.

These covarianres are ﬂisplg.ved in Fipures 7 and 8 and Tahles 5 aid 5.

The differences hetween the covariances are significant, and one must conclude
that gravity is not stationary., Any estimation procedure that assumes stationarity

must be carefully examined.
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Figure 4. The covariance functions of 1° X 1° mean gravity anomalies for a -1-km ocean—continent boundary.
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Figure 5. The covariance functions of 1° X 1° mean gravity anomalies for a 0-km ocean-—continent boundary.



Table 5, The covariance functions of 1° X 1° mean gravity anomalies for a ~1-km
- ocean-—continent boundary.

Ocean—ocean Ocean—continent Continent— continent
Average o C ovariance ‘Average - Covariance Average Covariance
angular function angular function - angular function
distance (mgal?) distance {mgal?) distance (mgal?2)

0° 1174 : 0° 1133
0. 94 667 0296 948 0.91 - 629
1.64 473 1.68 382 - 1,61 418
2.53 408 2. 56 176 2.52 314
3.49 384 3.51 106 3.50 247
4.51 - 360 . 4.53 131 4.49 . 206
5.50 356 552 112 5.49 176
6.47 337 6.48 94 6.47 155
7.46 350 7.48 98 7.47 143
8.47 335 8.49 91 8.47 124
9.49 315 - 9.50 82 9.48 105
10.48 288 . 10.49 81 10. 47 95
11.46 273 C 11,48 . 74 . 11.47 91
12,48 268 - 12,48 78 12.47 89
13,48 244 . 13.49 71 18.47 80
14.48 231 14.48 65 14.47 78
15.48 204 15,48 59 15,47 68
. 16.48 193 16.48 74 " 16,47 69
17.48 171 17,48 68 17.48 64
18,48 155 18.48 65 18.47 69
19,48 143 19.48 64 19,47 63
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Table 6. The covariance functions of 1° X 1° mean gravity anomalies for a 0-km
ocean—continent boundary.

Ocean—ocean Ocean-confinent Continent— continent
Average Covariance Average Covariance Average Covariance
angular function angular function angular function
distance {mgal?) distance (mgal?)  distance (mgal?)
0° 1225 0° 1068
0.94 696 0793 858 ‘ 0.91 602
1.63 461 1.66 483 1.61 403
2.53 373 2, 56 318 2.52 296
3.49 334 3.51 237 3.50 228
4.51 316 4,52 194 4,49 190
5. 50 299 5. 5l 163 5,48 164
6.47 284 6.49 134 6.47 142
7,46 293 7.48 131 T.47 127
8.47 288 8.48 - 107 8. 47 107
9.49 272 9.49 94 9. 47 86
Tahle 7. The covariance functions of 1° X 1° mean gravily anomaliies for a -1-km

ocean —continent boundary of width 400 km,

Ocean—ocean Ocean—continent Continent — continent

Average Covariance Average Covariance Average Covariance

qngular f-unctign a_ngular- functiigfl _:‘a..ngu{ar f_unct_ign

distance {mgal®) distance {ingal”) distance {mgal=)
0° 756 0° 888
0.94 494 0.91 510
1,64 413 1. 81 345
2,53 373 3200 -534 2.52 250
3.50 361 . 3.69 -359 3.49 188
4.51 354 4.64 ~102 4,49 157
5.50 351 5.56 21 5,48 131
6,47 313 6.52 63 6.47 111
7.46 301 7.51 78 7.47 96
8.47 T 284 8.51 76 8.47 77
9. 49 269 9.51 68 9, 47 b8
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Table 8, The covariance functions of 1° X 1° mean gravity anomalies for a -1-km
ocean~—continent boundary in the polar region Tlatitude[ > 45°,

Qcean—ocean Ocean—continent Continent— continent

Average Covariance Average Covariance Average Covariance

angular functign angular functign a:ngular functi gn

distance (mgal<) distance (mgal“) distance (mgal“)
0° 1308 0° 689
0.73 637 0283 278 0.77 458
1,47 343 1.535 -34 1.51 329
2.46 218 2.50 27 2.48 265
3.46 193 3.48 94 3. 48 231
4,44 195 4. 47 97 4,47 211
5,44 184 5. 46 102 5. 47 185
6.44 146 6. 46 111 6.47 173
7.44 141 7.45 105 7.47 164
8.44 106 8. 45 96 8.47 157
9,43 115 9.45 121 9.47 148

Table 9. The covariance functions of 1° X 1° mean gravity anomalies for a -1-km
ocean—continent boundary in the equatorial region |latitude| < 45°,

Ocean—oacean Ocean—continent Continent — continent
Average Covariance Average Covariance Average Covariance
a.ngular function apg‘aiar function apgular functign
distance (mgal2) distance (mga.lz} distance (mgal“)
0° 1167 0° 1234
0.95 670 0297 1001 0.95 676
1. 66 486 1.70 449 1,65 455
2.54 423 2.57 204 2.53 333
3. 50 400 3. 52 115 3. 50 254
4,52 369 4,54 146 4. 50 207
5. 51 365 5. 52 122 5.49 172
6,47 345 6.49 7 99 6.47 145
7.46 357 7.48 105 7.47 130
8.47 340 8.49 99 8.48 104
9.49 316 9, 50 82 9.48 82
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5. ESTIMATION OF GRAVITY

For this analysis, we want to know how much variation in the estimates of gravity

is due to the lack of stationarity and to the use of the block covariance estimator.

Estimates of 1° X 1° mean gravity anomalies were obtained from equation (1} by
using: 1) the global covariance function, 2) the covariance functions with a 0-lem
boundar'y, and 8} the covariance functions with a -1-km boundary. A linear estimate
was used to obtain values of the covariance functions between the calculated points.

' To reduce the computer time involved, the five closest data points were used whenever
the error of the estiméte given by equation (2) was less than 30 mgal. If the covariance
_matrix was singular or ill conditioned, the number of points was reduced. The three
estimates of gravity were the same except at a few points. Estimates of unit mean
gravity anomalies were also obtained by using the block covariance estimator. Some

unit means do differ significantly from the 1° X 1° means.

At the equator, units coincide with 1° X 1° boundaries so that the four estimates
can be compared directly. Figure 9 shows a few blocks at the equator. The large
" differences are in blocks with few observed points. In the combination with satellite
data, these points will have a smail effect due to the weighting, which is proportional

to the number of units contributing to the average.

Therefore, by means of the block covariance estimator, a statistically indepen-
dent set of 5° X 5° mean gravity anomalies can be obtained with no loss of accuracy.
We conclude that the block covariance estimator provides the optimum set of gravity .
anomalies to be used for combination with satellite observations. Of course, for
detailed gravity predictions of 1° X 1° means, the other covariance estimators may be

preferable.
In Table 10, the computed 5° X 5° mean anomalies and the number of observed

units contributing to each mean are given. Finally, we calculate the covariance func-
tions of the 5° X 5° means. These are shown in Figures 10 and 11 and Tables 11 and 12,
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Table 10. Estimated block gravity anomaly.
Gravity Gravity Gravity

Lat. Long. Arer appmaly Lat, Long. Area anomaly Lat, Long. Avea anomaly
(deg.) (deg.) (dep.sq) (mgrl) No. ideg.}) (deg.) (deg.sq)  (mgall Ne. (deg,) (deg.) ideg.sq) {mgal} No.
8745 61,0 26,163 8,012 3 £7,5 148,5 24.867 18,800 25 57,5 k53,5 24,171 22,103 3
87,5 181,0 26,163 16,393 13 67,5 161,5 24,867 -~ 22,933 25 B7+5 162.5 24,171 1A, 139 5
8745 301,0 26,163 14,452 8 67a5 176,524,867 20,756 21 57.5 L1810 26,858 Ba153 &

6745 1B7,5 24.867 T.380 21 57.5 L90,5 24,171 21,262 lé
82,5 21,0 26,097 20,629 7 67,5 200.5 24,867 R.,&TD 22 57.5 E99.5 4,171 38,137 14
B2e5 61,0 26,007 41,744 1 67a5 213.,5 24,887 27,575F 23 57,5 &GBeS 24,1TL  l4,1% 23
8245 181,0 26,097 8,532 16 67,5 226,0 22,954 4o B4T © 57.5 218,0C 26,856 14,394 15
82,5 221,0 26,097 16,527 20 67.5 51,3 24,867 ~-10,187 1 5Ta5 227.5 24,171 20,274 13
82,5 261,0 26,097 a.552 3 6745 264,53 24,867 -1B4,355 4 57,5 236,5 24,171 Ba120 8
82,5 301,0 26,097 4,212 3 8745 277.5 26,867 =14,170 1 57,5 288,524,171 14467 4
B2,5 34k,0 28,097 26,732 5 67,5 290.5 26,867 3792 2 5745 273.5 24,171 «22.6465 4

675 303,5 24,867 #1150 11 ET.5 282.5 24,1TL =38,3B61 T
7745 12,5 24,883 4,270 9 67.5 318,00 22,954 be753 2 5745 291.5 24,171 ~2.423 8
77.5 35,0 23,801 3,711 2 675 328.5 264,867 364607 3 57.5 3D1,0 26,856 11.%50 4
TTe5 5745 24,883 «l,911 7 6Te5 34Ll,5 244867 38,350 11 575 310,5 24,171 =4,725 2
TTe5 80,0 23,801 5,477 & 67,5 354,5 264,867 14,388 3 7.5 319.5 24,171  12.098 5
T7e5 125,0 23,80 ~14.5%2 1 : 57«5 338,0 26,856 3,880 2
TTe5 147,5 24,883 =33,85 1 6245 6.5 25.388 17,560 25 5T«% 347.5 24,171 18,492 1I
775 170.0 23,803 24617 7 62,5 L7.5 25,388 =1.3T6 23 57.5 356,5 24,171 19.382 24
T7.5 192.5 24,883 15,380 24 62.5 28,5 25,288 24296 21
TTe5 215,0 23,801 al,.744 25 6245 39,5 25,388 10,852 1% 5245 5,0 24,343 3,580 25
TTe5 237.,5 24,883 6.811 1& 62,5 50,5 25,388 9.998 20 5245 13,0 24,343 15,060 25
775 260.,0 23,801 542586 & 625 61,0 23,080 3,379 3 5245 2145 27,388 5,909 23
TTe5 2B2,5 24,883 =5,510 4 625 Tl,5 25,388 =12,621 2 5245 30,0 24,343 8,604 24
7.5 305,0 23,801 23,289 10 62,5 B2.5 25,388 ~-9.885 22 5245 38,0 24,343 6,902 22
T7e5 27,5 24,883 5,287 7 625 93,5 25,388 24,680 25 52.5 66,0 24,343 3,057 22
7745 350,0 23,801 34,593 5 62.5 104,5 25,388 =27,447 25 5245 54,0 24,343 1,020 25

62,5 115.,5 25,388 18,073 25 52.5 62,0 24,343 B.600° 25 .
T2e5 9.0 24,049 26,005 12 6245 126.5 25,388 ~13,700 25 52,5 70,5 27.386 4,072 1%
TZe5 25,5 25,552 7.806 18 62,5 137,5 25,288 9.6487 25 52.5  T9.0 24,343 15,320 25
T2,5 42,0 24,049 4,590 2 62,5 14B.5 25,388 29,247 25 52,5 87,0 24,343 -1,880 25
T2e5 58,0 24,049 1781 14 62,5 159,5 25,388 26,905 20 52.5 95,0 24,343 -19,080 25
T245 T4,5 25,552 2268 4 625 191,% 25,3868 8,670 20 525 103,00 26,343 20,954 20
T2e5 FLe0 24,04% -.187 8 62,5 202,5 2%.386 26,432 18 52,5 111,55 27,386 ~-6.2B7 8
T2e5 107,5 25,552 #3591 22 62,5 213,5 25,388 30,940 25 52,5 120,00 24,343 10,89 3
T245 124,0 24,049 17,327 25 62,5 224,5 25,388 28,811 10 52.5 128,0 24,343 11,895 7
T2:5 173,00 24,049 1.633 1 62,5 235,5 2%.388 3,267 1 52,5 160,5 27,386 26.80% %
7245 1B9,0 24,049 5,518 18 62,5 290,5 25,388 «1,915 1 5245 177.0 24,343 30,145 3
T245 205.5 25,552 =5.650 25 6245 311,5 25.388 =23,013 9 52e5 185.0 24,243 =16.,471 1B
7245 22240 26,049 4,533 25 b2,5 322.5 25,388 13.64l 3 52,5 193,0 24,343 " 11.977 17
T2.5 238.0 24,049 -.984 B 62,5 333,5 25,388 39,325 9 52,5 201,5 27,386 =lé.402 11
72,5 25445 25,552 1.1886 1 62,5 44,5 25,388 31,628 12 5245 21040 26,343 14,884 4
T2+5 2710 24,049 12,110 5 B2¢5 355,5 25,388 19.935 13 52,5 21B.0 24,343 9,595 10
T245 28745 25,552 «989 1 . 52s5 226.0 24,343 =12,411 13
72,5 3040 24,049 578 9 5745 5,5 24,17k 10,100 25 5245 234,0 24,243 11,205 &
7245 20,0 24,049 29,975 8 5745 14,5 24,171 3,680 25 52,5 242,0 24,343 B.498 &
T2.5 233645 25,552 iB.948 7 57.5 24,0 26,856 =4.188 20 5245 2%0,5 27,386 =3,977 4
72,5 353,0 24,049 24,010 2 5745 33,5 24,171 9,171 22 5245 275.0 24,343  =5.843 1

575 4245 244171 4314 17 52,5 291.5 27,386 «2.966 1
67,5 Teb 24,867 214220 25 5Tab  S)leS 24,171  12.996 22 52,5 2300,0 24,343 10,528 3
6745 20,5 24,8867 T.250 22 5745  &L.0 264856 14,1000 25 52.5 208,0 24,343 5,073 L&
6745 33,5 24,847 7,368 8 57,5 70,5 264,171 -10,300 2§ 52,5 324,0 24,343 11,582 1
67.5 46,0 22,954 -a222 & 575 7945 24,171  =9,340 25 52,5 2332,0 24,343 20,611 5
67.5 5B,5 24,B6T =2,781 7 5745 88,5 24,171 =13,300 25 52,5 340,5 27,388 74251 1
67¢5 TLa5 24,867 8,329 3 57.5 98,0 26,856 20,500 2% 52,5 349,00 24,343  2Ll.426 17
67¢5  B4.5 24,867 2,752 19 57,5 107,5 244171 <ll.280 2% 52,5 357.0 24,343 16,307 22
6745 9745 24,867 =heB4T 25 57,5 11645 24,171 =30,740 25
67.5 110,45 24,867 =12,880 25 5745 l25,5 2hll71 =22,940 2§ 47,5 4,5 23,638 16.320 25
67,5 12345 24,867 «T.607 25 5745 134,5 244171 .280 25 47.5 12,0 27,015 18,940 25
61,5 136,0 22,954 13,067 25 57¢5 l%4,0 26,856 9,761 5 4745  19.5 23,638 26,484 23
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Table

10. (Cont.)

Gravity Gravity Gravity

Lat. Long. Area anomaly Lat, Long. Area anomaly Lat. Long. Aren anomaly
ideg.) (deg.) (deg.sq) {mgRl) No. (deg.) (deg.) (deg.sq)  (mgall No. {deg.) (deg.) ({deg.eq.) (mgal} No.
47.5 2605 23,638 18,192 19 42,5 119,5 2%,797 1,232 B 37,5 206,0 23,793 W56k 13
TS5 34,0 27,015 10,680 25 42,5 12645 25,797 27.285 18 37,5 212.5 27.759 o023 11
4Te5 41,5 23,038 o258 22 42,5 133,5 25,797 18,679 2 375 219.0 23,793 -17.343 21
47.5 4805 23,638 =12,1%4 17 42,5 10,5 25,797 48,137 13 3745 22540 23,793 =15.869 17
4745 56,0 27,015 ~-la,2le 15 42.5 1l47,0 22,111 =15.626 9 37,5 23145 2T.T59 =22.%40 2%
4Te5 63,5 23,638 =T«188 18 42,5 1B7.5 25,797 -TaT1l% 3 37,5 238,0 23,793 =10.940 25
4745 705 23,638 =9,080 25 42,5 201.5 25,797 $&TT 11 37.5 244,0 23,793 2.985 24
4745 T80 27,015 =23,460 25 42,5 20B.5 25,797 -o228 5 3T.5 25045 27,7%9 16.2360 25
47.5 85,5 23,638 -26.240 25 42,5 215.0 22,111 3,893 2 37.5 257,0 23,793 6. T31 24
475 93,0 27,015 =11.,440 25 42,5 221.5 25,797 =9.996 11 37,5 2630 23,793 -8.860 25
47,5 100,55 23,638 =12,000 25 42,5 22845 25,797 =2,956 23 37,5 28945 27.759 ~1e232 24
47,5 107,5 23,638 3,732 5 &245 235,5 25,797 580 25 37,5 27640 23,793  =5,4B0 25
“7.5 L15,0 27,015 2402 5 42,5 242,5 25.797 6,400 2% 37,5 28B2,0 23,793 3.620 25
47,5 122,5 23,638 17,238 16 42,5 R249,0 22,111 20,580 25 37.5% 2B8,5 27,759 =18.920 25
47,5 129,5 23,638 14,685 12 42,5 255,5 25,797 21.020 25 37,5 295,0 23,793 =19,095 1%
4745 137,0 27,015 16,098 2 42,5 262.,5 25.797 1,560 2% 37,5 301,0 23,793 -11,935 15
#T7,5 l44,5 23,8638 14,6562 2 42,5 269,5 25.7T97 =B.6b60 25 37,5 307,00 23,793 =7.971 20
47,5 18kl,0 27,015 la,042 3 42,5 2Tea0 22,111 =4, 540 25 3745 3135 27,759 4,810 21
47,5 188,5 23,638 23.21¢ a 42,5 282,5 25,797 =6 805 24 37,5 30,0 23,793 2laT40 25
4T.5 195,55 23,638 17,917 5 42,5 2B9.,5 25,797 Tel20 25 A7.5 326,0 23,793 39,420 25
47,5 203,0 21,018 11,457 @ 42,5 2G6,5 25.797 =2.53B 1& 37,5 332,5 27,759 39,50 2§
47,5 210,5 23,638 325 3 42,5 303,5 25,797 -lG.T723 22 37,5 33%.0 23,793 1l 447 21
4725 217.5 23,638 -4e101 2 42,5 310,0 22,111 23,679 18 375 345.,0 23,793 14,005 14
4745 225,0 21,016 -o 082 11 42,5 316,5 25.797 6.B6h 24 37,5 351,5 27,759 12,933 19
4T,5 232,5 23,638 8,338 23 42,5 323,5 25,797 19,840 25 37,5 368,0 23,793 15,174 22
47,5 239.5 23,438 1,556 21 42,5 330,5 25,797 33,840 25
4Te5 247,00 27,015 15,43z 23 42,5 337,5 25,797 25,980 25 32,5 4,0 25,294 =l.760 25
47,5 254,5 23,638 L7.862 1% “2,5 34,0 22,111 8,020 24 32.5 10.0 25,294 =-.880 1&
47,5 261,55 23,638 10,710 22 «2,5 350,5 25,797 12.989 ls 32,5 16,0 25,294 3,822 18
725 269a0 27,015 5,376 21 42,5 357.5 25.797 11,300 25 32.5 22,0 25,294 Aa.lle 15
4745 2THeS 23,628 -G, 27TT B 32.5 2820 25,294 =32,065 17
4T.5 284,0 27,015 ~5,625 7 17,5 4,0 23,793 24,337 19 32,5 33.5 21.078 852 L&
7.5 291.5 23,638 =5.400 17 1,5 10,5 27,159 21,369 21 32,5 39,0 25,294 27.318 15
4745 298,5 23,638 lalb2 L) 3T.5 17.0 23,793 9,843 20 32.5 45,0 25,294 =5,310 T
47,5 306,0 27,005 25,753 15 37,5 23,0 23,793 4559 i 3245 510 25,294 L. 660 25
47.% 213,5 23,638 17,716 20 37,5 29,5 27,759 6,805 7T 32,5 57,0 25,294 220340 2%
4725 3205 23,438 12,349 22 375 3640 24,793 £Lo%bb ) ErrYS B30 £3.E9% 3ig1¥F3 ii
47,5 328,0 27,015 31,351 22 3Te5 42,0 23.793 13,583 & 32,5 69,0 25,296  =b,827 17
4Te5 335,5 23,6368  38.421 17 3T.5 48,5 27,759 H52.137 L& 3245  T5.9 25,294  <8.536 24
4745 342,55 23,638 18,663 19 37,5 55.0 23,793 L.635 20 32,5 Bl,0 25,294 36,740 25
4745 350,0 27,015 4 428 20 3Te5 81,0 23,793 =la,040 25 32,5  87.0 25.294% 23,100 25
4745 35T.5 2Z3a.638 6,160 25 37.5 &7.0 23.793 -29,370 22 32.5 92,5 21.078 11,200 25

3745 73,5 27.759 6,200 2% 32.5 98,0 25.29% V11.280 25
4245 #e5 25,797 17.424 22 37.5 BO.0 23,793  =4,220 25 32,5 104,0 25,294 <B.424 15
425 11.5 25.797 15,249 22 37«5  BheD 23.793 2240 25 3245 110,00 25,294 =29.849 11
4245 18.0 22,111 33,907 16 37,5 52,5 27,7159 12,640 25 32,5 116,00 25.29% =15,304 1%
4225 24,5 25,797 28,354 12 17.5 99,0 23.793 14,320 25 32.5 122,0 25,294 14734 7
42.5 31.5 25.797 =11,%06 17 37.5 105,0 23,792 9,249 15 32.5 128.0 25.294 26,259 13
42,5 38,5 25,797 -1iT.176 L7 3745 111,5 27,759 ~18.962 7 3245 134,0 25,294 Zl.732 12
4245 45,5 25,797 7.513 1% 37,5 118.0 23,793 =B8,571 10 32,5 la0.0 25,29% 37,237 14
4245 52.0 22.il11 54581 F 37,5 124,0 23,793 142602 11 32,5 L46,0 25.29% TesTL 5
hZel B,5 254797 =4,200 25 3745 1305 27,759  2B.931 12 32,5 151.5 21,078 -6.093 9
42,5 65,5 25,797 «19.,800 25 37,5 137,0 23,793 43,596 14 32,5 15740 25,294 =6.9B7 9§
42.%  T2.5 25,797 =2l.,220 25 37,5 143,0 23,793 44,774 11 32,5 163,0 25,294 -13,0l9 5
42a5  T9e3 25,797 =10,480 25 3745 182.0 23,793 =1l.876 3 3245 169.0 25,294 -l8.827 7
4245 B6.0 22,111 =19,100 25 37,5 1t8,5 27,759 74953 5 32,5 17540 25,294 =10,740 &
4245 9245 25,797 ~25.700 25 37,5 L175,0 23,793 -6.853 7 32,5 1gl,0 25,294 ~-18.247 3
4245 99,5 25,797 1,720 25 375 L1Bl.,0 23,7193 =-3,200 3 32.5 193.0 25.294 =14,493 4
4245 10645 25,797 T«T66 10 37.5 193,55 27.759 ~10,23« 5 32,5 199.,0 25,294 1436 &
43,5 113,99 22,111 ~24253 2 37.5 200,00 23,793 4,725 9 32.5 205,0 25,294 ~l.Tls 7
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Table

10. (Cont.)

Gravity Grevity Gravity

Lat, Lonbg. Area anomaly Lat, Long, Area anomaly Lat, Long. Ares anomaly
fdeg.) (deg.) {deg.sq)  (mgrh No. teg.) (deg.) (deg.sq) mgal) Mo {deg.) (deg.) (deg.sq) (mgal} No.
32,5 Z10.5 21,078 4,129 12 275 1B9.5 224168 64534 5 22,5 170,5 23,090 330 1
32.5 216.0 25,294 <ll,941 8 2745 195.,0 26,602 6,759 8 22,5 175,5 23,090 =9,547 &
32,5 22240 25,294 =7,428 18 2745 201.0 26,802 11,870 5 22,5 18l,0 27,708 =T,099 12
32,5 228,0 25,294 -l&,l36 22 27,5 206.5 224168 =2.37¢ 9 22,5 186,5 23,090 24Te4 i1
32,5 234,0 25,204 22,521 17 2725 21240 26,602 -3,406 16 22,5 1%91,5 23,090 20,087 ¢
32,5 240,0 25,294 19,175 22 27+5 217.5 22,188 =o200 15 22,5 197.0 27.T0B 12,114 14
3245 246,0 25,294 -8,080 25 27.5 223,0 26,402 =13.i30 8 2245 202,% 23,090 28,256 19
32,5 252,0 25,294 . 4,100 25 2T+5 229.0 26,602 «l7.,445 B8 22,5 208,0 27,708 =e4l0 lé
32,5 25B.0 25,294 =3,232 23 2745 234,5 22,168 =21,641 &8 22.% 213,5% 23,090 ~7,222 10
32,5 264.0 25,294 5,579 23 27+5 240,00 264602 -24,2%4 16 22,5 218,5 22,090 5,783 Il
32,% 269.5 21,078 1,455 23 2745 266.0 20,802 ~17.4186 20 22,5 224,0 27,708 =10.,465 11
3245 275,0 25,294 1,840 25 275  251.,5 22.168 4,105 24 22,5 229.% 23,090 ~12,001 12
32,5 28l.D 25,294 =4.541 21 2745 257,0 26,602 12,440 25 22,5 234,5 23,090 ~10,31T7 4
32,5 287,00 25,294 =28,%9861 15 27+5 262,.5 22,168 =10,680 25 22,5 240,0 27,708 =12,%0% S
32.5 293,00 25.294 =18.809 15 2745 268,0 264,802 =1,9T9 22 22.5 24%5,% 23,090 2.0T9
32,5 299,00 25,294 ~10,942 11 275 274,0 20,602 «3.,740 15 22,5 251,0 27,708 =7,997 17
3245 30540 25,294 =13,469 )8 2Te5 279.5 22,168 G408 24 22,5 256,5 23,090 18,122 23
32,5 31140 25,294 -s505 16 2745 285,0 26,602 =27,445 14 22,5 261,% 23,090 Lla.alz 23
32,5 317.0 25.204 17,217 21 2745 291,00 264,602 25,256 7 22,5 267.0 27.708 2,460 25
32,5 323.0 25,294 28.654 23 2745 298,5 22,168 =2,6B1 1 22.5 27v2,5 23,090  17.B85 21
32.5 328,5 21,078 20,253 9 2745 3D2,0 26,602 -24,495% le 22,5 27T.5 23,000 fT01 .24
32,5 334,0 25,294 4,532 % 275 307,5 22,188 ~16,313 21 22,5 283,0 27,708 74338 21
32.5 2340,0 25,294 2.5%5% 9 2745 313,0 26,602 1,498 17 22,5 28B.5 23,090 «l0.849 &
32,5 346,0 25,294 8,015 14 2Ta5  319,0 264602 3,523 13 22,5 294,0 27,708 «1b,852 9§
32,5 352,0 25,296 42,795 20 275 324,5 22,188 618 24 22,5 29925 23.090 =1lé&.494 10
325 35840 25,294 35,700 25 2745 2330,0 256,802 -.058 20 22,5 306,5 723,090 L23.5%4 21

2745 336.0 264602 ~9.958 20 2245 310,0 27,708 ~23.233 18
27,45 4e0 26,602 ~-3,900 25 275 341,5 22,168 20,733 13 22,5 315,5 23,090 . 4e431 9
27,5 9.5 22,188 2,745 19 2745 347,0 26,602 64655 11 22,5 320,5 23,090 -«T51 14
27«5 15,0 26,602 10,719 & 2745 352.5 22.188 8,775 1% 22.% 326.0 27,708 597 13
2745 21,0 286,802 8.068 7 27.5 358,0 24,602 =4,785 14 22.5 331,5 23,090 3.57% 15
2745 2645 22,168 831 T 22,5 337.,0 27,708 -s 745 17
2745 32.0 26,802 7.804 13 22,5 3,5 23,090 24,720 25 22,5 342,5 23,090 1.768 13
2T+5 375 22,168 La9ly 7 22,5 9.0 27,708  21,4D0 25 2245 347.5 22,090 .4 T26 20
27.% 43,0 28,802 Be222 15 22,5 14,5 23,090 3,930 24 22,5 353,0 27,708 =13,58&6 1§
27+5 49,0 26,602 =17,550 23 22,5 19,5 23,090 =8.,569 1 22,5 3%58.,5 23,090 2.287 17
2745 54,5 22,168 «B,080 25 22,5 30,5 23,090 B.581 3
27,5 60,0 26,402 15,640 25 22,5 36,0 27,708 2ebkt 10 17.5 3,5 23,835 5.800 2%
2745 66,0 26,802 2.358 24 2245 41,5 23,090 23,047 7% 17,5 8.5 23,835 T.120 2%
27¢5  T1le5 224168 ~B,550 25 22,5 46,5 23,090 =12.120 10 17.5 14,0 28,802 =7,151 21
2745  TT,0 26,602 =24,983° 24 22.5 52,0 27,708 - =3L,853 19 7.5 19,5 23,835 =10,951 13
2745 82,5 22,1868 =69,261 24 2245 57,5 23,090 =15,820 1 17.5 24,5 23,835 5,682 a
27+%  8B.D 26,802 =11,540 25 22,5 6B.0 27,708 -a944 1% 175 35,0 28,602 11,865 &
27+5 94,0 26,502 32,480 25 22,5 73,5 23,090 12698 24 17,5 48,5 23,835 9,647 15
2745 99,5 22,168 ~£,320 25 2245 79,0 27,708 500 25 17.5 45,5 23,835 1,338 11
2745 105,00 26,602 =25.814 21 22,5 84,5 23,090 854 24 175 5045 23,835 =1B.320- Il
27.5 111,00 26,602 -19,230 12 22.5 89,5 23,090 «11.798 20, 17,5 55,5 23,835 B.335 5
2745 116,5 22,168 =3,088 11 22,5 95,0 27,708 24,000 25 17.5 6laD 28,807 =B.343 2
2745 122.0 26,802 6,931 7 225 100.5 23,090 ~21,920 25 L1745 6645 23,835 -10,43% 7
27:5 127.5 22,168 20.744 10 22,5 105,5 23.090 «14,763 16 1745 71,5 23,835 a2a,llg 13
2745 133,0 26,602 =8,830 3 2245 11,0 27,708 =1Z2.675 le 17.5 785 23,835 «21,835 21
2745 139,00 26,602 27,968 7 2245 116.5 23,090 =3.431 § 1745 Ble5 23,835 ~l.698 z1
2745 144,5 22,168 -10,762 6 2245 12,0 27,708 =l.TO% 12 17.5 B7.,0 28,802 =l6,889 Lo
2745 150,80 26,602 584 1 2245 127.5 23,090 03¢ 10 7.5 92,5 23,835 =2l.873 |1
27.5 156.0 264602 2,079 1 22,5 132,5 23,090 =2,219 5 17,5 97,5 23,835 =11,847 22
2Te5 161,5 22,168 =T,876 3 2245 143,5 3,090 2,016 & 17.5 102.,5 23,835 «15.411 24
2745 167,00 26,602 «13,724 3 22,5 148.5 23,090 204492 | 17,5 108,D 28,602 =Bo346 |1
27,5 172.5 22,168 ={3.,008 5§ 22,5 154,0 27,708 =2,571 5 L1745 103.5 Z3,835 2,673 1
27«5 178,0 28,602 -3 635 5 22,5 159,5 23,090 -15,757 b 17.% 118.5 23.835 38,8%4] 3
2795 1B4,0 264602  =é4.blé 1 22,5 165,0 27,708 =10,984 & - 17,5 123,5 23,835 26.661 I¢
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Table

10. (Cont,)

Gravity Gravity Gravity

Lat, Leng. Aren anomaly Lat. Long. Aren anomaly Lat. Long. Ares anmmaly
(deg.) (deg.) (deg.sq)  {mgal} No., (deg.} (deg.) (deg.sq)  (mgzly Wo, (Geg.) (deg.) (deg.sq)  {mesh) No.
1745 128.% 23,635 1,321 2 12,5 75,5 26,400 =32,596 1@ To5 Tha§ 24,778 =43,102 17
17,5 134.,0 28,602 54831 & 12,5 60,5 26.400 =256,50¢ 11 Te5 79,5 24.7T8 =24,526 22
17,5 139,9 23,835 12,230 7 12,5 91,0 29,280 ~23,737 7 Tab  B4o5 24,778 =4Bo402 1%
17.5 14,5 23,835 23,339 @ 1245 9645 24,400 ~2,787 21 To5  B945 J4.TTB -B,1%7 1S5
17.5 149.5 23,835 21,259 % 12,5 LD1,5 24,400 «~10,314 19 TaB  Dh4e5 24,778 24,269 24
1745 155,0 28,602 =l6,680 2 1245 106,55 24,400 &40 25 TS 99.5 24,778 9,033 22
17.% 160,5 23,835 =~llub44 5 12,5 111,99 26,400 =6,382 9 7.5 106,55 26,718 <l,l4& 4
17.5 185.5 23,835 =3,574 & 1245 116,5 24,400 Beh4B 12 7.5 1100 29,734 4,180 11
175 170.5 23,835 =l4oéle 12 12,5 L21.5 24,400 38,081 17 Tof 115,5 24,778 BeB21 16
17,5 175.5 23,835 =10.051 10 12,5 127.0 29.280 33,149 13 TeS 120,5 26,778 53,542 4
17,5 181.0 28.602 1251 ii 1Ze5 132,5 244,400 891 i Te5 125.5 24,778 34,820 13
17.5 18&,5 23,825 2ebb4 5 12.5 137.5 24,400 7.089 2 Te5 130,5 24,778 20,759 8
17,5 191,5 223,835 =3.,076 & 12.5 182,% 24,400 23,284 10 745 135,5 24,778 22,3%6 1D
1745 159645 23,835 <=l,179 & 1245 147.5 24,400 =6,104 ¢ Te5 140,5 24,778 15,922 4
17,5 201,5 23,825 7.899 10 1245 15245 244400 <=l.968 10 Te5 145.5 24,778 4,707 13
17,5 207.0 28,602 25,814 ¢ 12,5 157,5 24,400 =5,099 & Te5 150,5 24,778 2336 12
17,5 212.,5 23,835 5,880 & 12,5 163,0 29,280 »10,044 5 T45 155.5 24,778 Te425
1745 217,5 23,835 =B.1&61 3 12,5 16B,5 24,400 =B,490 2 7,5 170,5 24,778 T4,369 1
175 222.5 23,835 ~l11,922 & 12,5 178,5 24,400 26,378 7 7.5 181,0 29,734 bekOp 7T
17,5 228.0 28,602 =12,074 2 12,5 188,55 24,400 1.782 1 To5 18645 24,7768 =13,212 6
175 233,5 23.835 =14,532 4 1245 193.5 24,400 s TRO 7 7.5 191,9 24,718 =3,122 10
17,5 238,5 23,835 =l8,863 3 12,5 199,0 29,280 §.451 12 Te5 196,5 24,778 =2.,970 |
17,5 243.5 23,835 =1%,6l8 9 12,5 209,5 24,400 ~a 851 1 Te5 201,5 26,778 23,280 7
17.5 248,5 23,835 =15,457 10 12,5 14,5 24,400 1,293 7 Teb 241,95 28,778 =9.624 5
17,5 254.0 28,602 =15,07¢ 22 1245 219.,5 24,400 - 4Bl 2 T 2648,5 24,778 =TellR 5
17+5 29925 23,835 =8,370 15 12,5 240,5 24,400 =12,434 5 Teb 25240 29,734 =4y46D 5
17,5 264,5 23,835 16,954 15 12e5 255.5 2644400 «2.,8%58 5 7.5 257,55 24,778 -220% &
17.5 269,5 23,835 22.787 23 1245 26B0,5 244400 1,476 & Tah 262.5 Z4.TTH 2,903 5
1745 275.0 28,802 19,296 12 12,5 265,55 24,400 2.979 12 7.5 267.5 24,7718 3,012 7
17,5 280.,5 23,835 4. 214 17 1245 271,0 29.280 10,933 19 Te5 27245 24,778 14,875 15
17.5 285,5 23,835 18,139 12 1245 276,5 24,400 28,110 13 1.5 277,5 24,778 18,089 23
17«5 290,5 23,835 22,25 l&8 12,5 281,5 244,400 <=l4,649 12 Te5 202.5 24,778 34,30 19
17,5 295.5 23,835 27,373 19 12,5 286,5 24,400 ~13.152 18 TS 2875 24,778  1&6,117 20
17.5 301,0 284,602 =51.823 9 1245 29135 29.400 =38,.809 16 Teb 92,5 24,178  <=B.b4B &
17+5 3065 23,835 «16.,073 3 12,5 296,5 2Z4.400 o=28,872 17 Teb 297,5 24,7780 «1B.865 5
1745 31be5 23,835 =l14,523 7 12,5 303.% 24,400 =%51,337 20 7o5 02,5 26,718 =24.655 5
1745 31645 23,835 «l6.527 5 12.5 307.0 29.2R0 =3AN.ée1 1T T_E ANT E 24 778 25,474 10
175 3215 23,835 =22,278 4% 12,5 312,5 24,400 =28,131 9 Te5 312,5 24,778 =35.362 15
1745 327.0 28,602 =5.346 1 12,5 317.5 244400 17,224 18& Te5 31T.5 26,778 =19,054 13
1745 33245 23,835 3,642 2 1245 322.5 24,400 9,316 2 7.5 323,00 29,734 =lé.bSe 12
175 337,5 23,835 19,459 5 12,5 327,95 24,400 =14,729 & Te5 328,5 24,778 Te280 9
175 342,5 23,835 4,871 15 1245 332,55 24,400 =3,31F 9 Te5 333,585 24.778 —ehht 10
1745 234B.0 2ZBa602  13,1B0 19 1245 337.5 24,400 =12.754 10 TeS k345 24.TTB 12,547 12
17,5 353.5 23,83% 3,336 11 1245 263,00 29.280 12,717 13 Ta5 48,5 24,778 34,032 13
17.5 358,5 232,835 7.011 24 12,5 348.5 24,400 10234 15 TeS 353,5 24,718 20,520 25

125 2535 24,400 8.520 25 Te5 358,55 24,778 14,380 25
1245 3,5 264,400 wle404 19 12,5 358,5 24.400 =400 2§
1245 8.5 24,400 10,796 17 245 BeS 4,968 16,366 9
12,5  13.5 24:400 T.106 15 TS 3¢5 Z4aTT6 164281 il ZeB 13,5 Za,968  1l.94T 4
12.5 19,0 29,280 o795 & Teb B,5 24.778 29.811 15 245 1Bo,5 24,568 17,784 9
1245 2445 24,400 a8.612 2 TS5 13,5 24,778 15.582 B 2,5 23,5 24,988 =28,735 l&
125 2945 244400 4,239 b Te5  1B,5 244778 ~11,503 3 2.5 28,5 26,968 2,524 11
125 3645 24,400 =16,513 3 Ta5 23,5 24,778 ~e98% 1 2e5 33,5 20,968 =1,824 18
1245 39,5 24,400 23,836 18 75 39,0 29,734 264724 13 Za5  B8.5 20,968 ~1.909 2
1245  44.5 24,400 14695 1b Teb  wh,5 24,778 3.669 2 2o5 43,5 24,968 =l4,520 &
12e5 4945 24,400 =1,885 17 Te5 49,5 24,778 =3T7.806 4 2.5 #B,5 24,968 -37,729° 15
12,5 5%.0 29.280 ~2.774 20 Te5 54,5 Z4,TTB =25.621 19 2e5 53,5 26,968 =28.233 19
1245 6045 24,400 -13,282 14 Te5 59,5 24,778 =l4.626 l& 245 GB.5 24,968 =23,9B0 19
1Ze5  65.5 24,400 =15,875 3 Te5 64,5 24,778 =31,264 17 2.5 63,5 24,968 22,755 19
125 70,5 264,400 =38.628 16 Te5 69,5 24,778 =45,421 17 205  6Be5 24,968 -3B.951 9
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Table 10. {Cont.)
Gravity Gravity Gravity
Lat. Long. Area anomaly Lat. Long. Area anomaly Lat. Long. Area anomaly
(deg.) (deg.) ideg.sq.) (mgml} Na. (deg.) {deg.) (deg.sq)  ¢mgal) No. @eg.) {deg.) {deg.sg.) (mgal) No.
245 73,5 24,968 =43,730 15 =2,5 118,5 24.968 15.853 1lé =7«5 160,5 24,778 3IB.B3IC 12
245  TBe5 24,968 =51,962 14 2.5 123,5 24,968 =64425 17 =Te5 170.5 24,7TTE «12.902 &
245 83,5 24,958 =39,937 B w2e5 172825 24,968 5,539 22 «Te5 1785,5 24,776 =1.307 8
2.5 BB.5 24,968 ~20.385 9 =245 133,55 24,968 12,320 14 =7.5 1Bl,0 29,734 -2524 9
2,5 93,5 24,968 -16,189 23 =2,5 138,5 24,968 62852 12 «7s5 lB&L5S 264,776 =B,019 1
o5 9B.5 24,968  =4,216 1b w245 143,5 24,968 24,280 25 «Te5 201,5 24,778  21.180 &
2.5 103,5 24,968 14,314 9 wZ,5 L4B.5 24,968 239,795 23 aT.5 221,5 24,778 1l&.502 1
2,5 108,5 24,968 16,834 13 =2,5 153,5 24,968 22.087 14 wTe5 27Ta5 24,778 =8.911 5
245 113.5 24,968 13,864 & «245 158.5 24,968 14,876 5 wTe5 2B2.5 24,778 «i0.434 &
2,5 118,5 24,968 F.692 2 =2e5 173.5 24,968 =12.641 1 7.5 287.5 24,778 =11,808 7
25 123,5 24,968 15,716 11 w2.5 178.5 24,968 Le834 12 =TeS 292,5 24,778 6.500 2
2,5 128,5 24,968 20,713 11 -2e5 183,5 24,568 10,306 2 =TeS5 297.5 24,778 2.226 1
2,5 133,5 24,968 15,1861 1 =2.5 188,5 24,968 =3,894 2 wTeS 312.5 24,778 =31.498 22
245 43,5 24,968 10,360 1lé m2e5 19Be5 24,968 22,451 6 =Te5 317,55 24,778 =2T7.720 25
225 14845 24,968 3,894 9 2Z2e5 27345 24,068 =2,037 1 =75 2323,0 29,734 675 21
245 153,5 24,968 1.50% & =2,5 278.5 244968 =677 8 =Ts5 378.5 24,778 =24,126 11
2,5 1%8.5 24,968 862 4 =245 2B3.5 24,968 18,736 10 =Te5 333,55 24.TTB  =4.959 3
25 1TBeS 244968 22909 & wZe5 2BBeH 24,968 36,665 T =7.5 2338,5 24,718 =8,228 1l
2o 183,5 24,968 5.25%2 13 =2,5 298,5 24,968 ~B.350 2 =Te5 343,5 24,778 =l,202 19
245 188.5 2h,968 =5.817 9§ w245 3DI.5 24,968 =T.24% 2 =Te5 348,5 24,778 1.915 14
245 19B8,5 24,968 20.046 S =245 3DH.5 24,968 «~13.T84 7 ~T.5 353,5 24,778 =ll.186 2
245 248,5 26,968 2,707} =2,5 313,5 24,968 =36.606 22 aTeb 35845 24,778 #3364 2
245 27345 24,988 954 3 =2,5 318.5 24,968 =17,034 15
245 Z78,5 24,968 -s068 14 2.5 323.5 24,968 “22l & w1225 13,5 24,800 12,034 3
2.5 28B3,5 24,968 32,640 25 =2,5 328,5 24,568 =T.542 15 =125 24,5 24,400 1.072 &
245 2B8.,5 24,968 18,844 21 =2.5 333,5 24,968 =5,591 18 alZ,5 29,5 24,400 =14.394 12
2.5 303.5 24,968 22,399 3 w2eS 338,5 24,968 =ll.856 14 =12.5 34,5 24,400 =10,281 12
2.5 308,5 24,968 ~3,098 3 =2e5 343,5 24,968 ~9,872 9 wl2.5 39,5 24,400 22,606 &
245 313.,5 24,968 =l1,648 2 =2,5 34B,5 24,968 4,045 3 al2,5 44,5 20,400 =2T7.ll6 12
2¢5 18,5 24,968 9,196 8 =245 353,5 24,948 3,462 23 212,55 49,5 24,400 9,853 12
ZeS 323,56 24,968 -4.127 14 =12¢5 55,0 29.280 ~6.300 11
245 328,5 24,968 9,909 18 =7,5 B.5 24,718  =9,43%9 & 21245 50,5 24,400 -33.435 5
245 333,5 24,968 2,486 B ~Te5 13,5 24,778 21,014 3 =12.5 65,5 24.400 6s266 10
2.5 343,5 24,968 =9,763 9 aTe5 1845 24,778 =T4426 3 212.5  TO,5 24,400 =2,645 3
245 348,5 24,968 18,940 2 —Te5 23,5 24,778 -~15.282 1s =12e5  B0.5 24,400 =21,535 &
2,5 353,5 24,968 13,537 3 aTe5  2B,5 24,778 =9,624 20 alZ2,5 91,0 29,280 =24.245 5
2.5 358,5 24,968 4,415 1 =7Te5 33,5 24,778 2.922 24 rl72e5 96,5 2h 400 12,7386 b4
=75 39,0 29.734 =9.979 19 w1245 §01e5 2k 400  =44876 16
=245 8.5 24,958 13,370 5 =T7e5  4h,5 24,778 =34,675 18- =12.5 1D6e,5 26,400 8,505 13
2.5 13,5 24,968 <13,306 4 ~Ts5 49,5 244778 =11,957 13 =125 111.5 24,400 =10,129 22
=265  1B.5 24,968 -2B.943 21 ~Te§ 54,5 24,778  =3.941 10 =12,5 11645 264.400 =20,489 20
2,5 2345 24,968 =36,6B% 24 =725 59,5 24,778 =10,570 & “12,5 12145 24,400 6,849 24
~Z2e5  2B,5 24,908 g.202 21 wTe5  bhe§ 24,778 =haB42 T =12.5 127.0 29,280 17.720 25
~2e5 33,5 24,968 =9,115 22 =Ta5 69,5 24,77 =G.77T 10 =l2,5 132,5 24,400 25,930 23
=245  3Be5 264,968 15,188 14 aTe5  T4,5 2447768 =3,7T10 5 “12.5 137,5 24,400 17,015 22
~2e5 42,5 24,968 =20,196 20 »TeS 79,5 24,778 ~28,105 7 =125 142,5 24,400 22,560 25
~225 4845 24,968 13,733 W0 =Te5  BO.T 26,778 =14.255 L =12,5 147.5 24,400 124120 25
=245 53,5 24,968 =11,514 22 =7.5  9he5 T 24,778 =10.,598 5 wl2.5 152.5 2h,400 24,850 21
=2.5 S8,5 24,968 -21.095 23 =TaS 9945 24,178 =lal4s 13 =1225 157.5 24,400 24,180 9
=2+5 63,5 24,968 21,198 13 =Te5 10445 264,778  =5.725 2% =12,5 16340 29,280 S04086 1&
=2,5 6B.5 24,968 =31,l26 9 =7,5 110,0 29,734 16,111 22 w125 L1BB,5 24,400 14,160 15
aZeB5  T3,5 24,968 -&#,473 13 =7¢5 115.5 24,778 19.249 20 =12.5 1T8.5 24,400 =20 7T
=245  TB.5 24,968 -55,083 13 ~Te5 120.5 24,778 295 22 a12,5 183.5 24,400 15,270 &
-2,5 B3.5 24,948 =51,39% 20 aT.5 125,5 24,7780 =18,224 24 “12.5 188,5 24,400 31,729 4@
—Z2a5 BB,S 24,968 =22,670 13 -7.5 130,5 24,778 =26.800 25 =12.5 193,5 24,400 3.856 8
=2.5 93,5 24,968 -l4,404 10 ~7+5 135,85 26,778 13,330 13 al2,5 199.0 29,280 13,372 3
=245 98,5 24,968 =4.68T7 19 =Te5 14045 20,778  20.482 2% a12,5 2B1.5 24,400 =14.079 7
~2,5 103.,5 24,968 40,894 7 7.5 145,5 24,778 23,440 25 =12.5 286,5 24,400 3,6Bl1 b
~Z2.5 108,55 24,968 25,538 17 ~Te5 150.5 24,778 16,440 25 “1245 291,5 26,400 16.763 5
113,5 24,968 9,633 2 —T7e5  AB5.5 24,778 43,493 23 21245 296.5 24,400 35,801 5

7 =245
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Table

10. (Cont.)

Grevity Gravity Gravity
Lat. Long, Area anomaly Lat, long. - Area anomaly Lat. . Area anomaly
(deg.) (deg.) {deg.8q.) (mgal) No. (deg.) (deg.) (deg.sq}  (mgal) No. (deg.) (deg.) (deg.sq.) (mgal) Ro.
=12¢% 2307.0 29,280 =31,921 1 «17.,5 353,5 23.83% -e330 | =27.5 5445 22,188 11,861 23
=12.5 12,5 24,400 4a916 20 =17.% 38B,5 23,835 0391 & a2Ts5 60,0 264602 <l.154 10
=12s5 317.5 264,400 7,800 25 =2745 66,0 26,602 16,978 5
=12,5 322.5 24400 =5,206 16 -22,5 3.5 23,090 2.97% & =275 Tla5 22,168 37,801 8
=125 3I2Te5 24,400 =10,802 8 =22.5 9.0 27,708 -7.821 2 =27e3 7,0 26,602 9.082 2
«12:5 343,0 29,280 4,075 8 =225 14,5 23,090 15.062 4 =2TeS B2.5 22,168 «B,008 S
=12.%5 34845 244400 «T,306 10 2245 19,5 23,090 laléé 4 =275 88,0 246,602 =244T4 3
=125 352,55 24,400 =&, 7T0 2 =22,% 25,0 27.708 8,290 10 =27:5 94,0 26,602 =11.,078 5
=12s5 35B,5 24,400 =3.853 2 =22,5 30,5 23,090 2,687 18 27,5 99,5 22,168 =11,218 5

=22.5 3640 27,708 =5:662 & #2745 10540 28,0602 <2l.%0% &

~1745 3,5 23,835 13,958 1 =22,% 41,5 23,080 =8.375 21 =2745 11140 26,602 =17.837 10
=17.5 B,5 22,835 =T 422 1 =22,5 46,5 23,090 29,488 19 22745 116.5 22,188 1,299 23
=175 14,0 20,602 6,796 2 =22,5 52,0 27,708 2,990 10 w2765 122,0 26,602 =T,351 17T
«17s5 19,5 23,835 4,534 1 =225 57,5 23,090 Te109 22 =275 127.5 22,168 <i0.660 22
=17e5 24,5 23,835 1,555 7 22245 52,5 23,090 24,575 15 =275 133,0 26,602 =lb.48¢ 23
~l7:5 2945 23,835 8,143 12 22,5 6B.0 27,708 260512 15 «2Te5 139,0 26,0602 =T,600 25
=17+5 35,0 28,602 =11.134 9 =22,5 73,5 23,090 12,843 1§ =2Te5 1445 22,148 =l.bé0 25
=17+5 40.5 23.83% =15,263 12 22,5  79.0 27.708 l.788 5 «27.5 150,00 26,602 17,580 25
»1l7.5 45,5 23,835 8,262 20 =22,5 84,5 23,090 -1l.Blé 4 w275 186,0 26,602 26,062 &8
=1745 50,5 23,835 13,040 ¥ =22s5  B9.5 23.090 =15,7ls 5 =27.5 181.5 22,168 10,026 S
«17.5 55,5 23,835 3,940 4 =225 95,0 27.708 <22,9%6% & w275 167.0 26,602 20,928 3
~17e5 61,0 28,602 18.287 15 =22,5 100,5 23,090 =29,38B A& =27.5 172,5 22,188 Be569 1
=175 65,5 23,8383 .1,092 7 =22,5 10%,5 23,090 5,182 2 «27:5 17840 26,602 8,322 %
«17.5 Tl.5 23,835 -1,l88 1 =22,5 111,0 27,708 6e657 11 ~2705 186,0 26,602 34,426 4
=175 76,5 23,835 B.516 & =22,5 1ll6,5 23,090 24465 17 =27¢5 246,0 26,602 W69 4
=1Te5 81,5 23,835 al4.863 12 e22s5 122.0 27.708 =2.560 25 «27.5 251,5 22.158 -sB56 8
«17.5 7.0 28,602 -20,553 11 =22,5 127,5 23.090 =T.640 25 =27+5 291,0 26,602 54,388 23
«1Te5 92,5 23,835 =21,077 13 =22,5 132,5 23,090 =7,400 25 =275 296,5 22,168 6,735 24
=175 97,5 23,835 =19,937 12 -22,5 138,0 27,708 14,8620 25 =27.5 302.0 28,602 10,505 1¢
=17,5 102,% 23,03% =13,004 &8 ~22,5 163.5 23,090 3,560 25 =2745 307.5 22,168 =1,413 20
~1Te5 108s0 28,6028 =14,904 7 =22+5 14B.5 23,090 25.161 23 ~2T7e5 313,0 26,602 =19.275 17
~17e5 113,5 23,835 =21,595 15 -22,5 154,00 27,708 9,715 o =27.5 319.0 26.602 =10.402 3
=17+5 11B,5 23,835 2.726 22 ~22,5 159,5 23,090 5,248 3 =275 2324,5 22,168 7,075 &
=17.5 123,5% 23,835 10,200 25 =22,5 165,0 27,708 55,006 ¢ «ZT.5 3I52,5 22,168 =5.643 |
=1745 128,5 23,835 12,720 25 =22,5 170,5 23,090 18,574 &
«1745 134,0 28,602 4,660 25 =22,5 175.5 23,090 27,852 3 =32,5 40 25.294 8.285 1
wlTed 13%.5% Z3,B3% T+440 25 =22,5 181.,0 27.708 41,331 3 =32,5 10,0 25,294 Te42l 9
=17,5 144,58 23,835 23,880 25 =22.5 186,5 23,090 =1.,998 & =32,5 16,0 25,294 244186 17
=1Te5 14945 23,835 14,640 25 =22,5 260,00 27,708 4o 10T & =32:5 220 25.294% 24,920 25
=17.5 155,0 28,602 9,080 25 ~22.5 245.5 23,090 44897 & 32,5 28,0 25,294 11.290 21
=17.5 160.5 23,835 -+108 13 =22,5 2B3.0 27,708 1,878 | =3245 33,5 Z1.078 29,045 10
~17:5 186525 23,835  la.sly 3 =2245 2BB.5 23,080 11,143 )2 =3Z.5 39.0 254294 «~l2.681 7
=175 170.5 23,835 26.919 & =22.5 294.0 27,708 50,881 1& =3245 45,0 25,204  40.892 7
=175 175,5 23,835 33.870 8 =22:5 29%.5 23.090 10,104 5 »32,5 51,0 25,294 9.488 3
=175 181,0 28,802 10.188 7 =22,5 304,5 23,090 =T.737 8 =325 63,0 25.294 =8,376 &
«17:5 201.5 23,835 16,979 1 =22.5 310,00 27,708 =lé,Te3 22 a3245 7540 25,294 23.630 5
=17:5 207,0 28,602 37,108 1 =22.5 315,5 22,090 =4,580 19 «32.5 92,5 21,078 11.293 2
~17+5 212.5 22.825 28.865 1 =22,5 320.5 23,090 <9.89% 7 ~32,8 OR.0 23E.20& -13,817 &
~17+5 21745 23,835 lalB4 1 =22.5 326.0 27,708 =18,49]1 & =32.,5 104.0 25,294 -19,971 3
=175 269,5 23,835 la113 1 22,5 358.5 23,090 2:047 3 «3245 110.0 25,294 =21.511 11
=17e5 280.5 22,835 =2lokés 1 =32:5 11640 25,294 -e900 24
=175 285.5 23,825 8.016 & =275 4,0 264602 2:1710 5 *3245 12240 25,294 =13,688 24 .
=17+5 290.5 23,835 61,825 13 =275 9.5 22.188 2,199 5 =32,5 12840 25.294 =14,334 12
~17e5 295.5 23,835 32,567 15 =2Te5 15,0 26,602 13,64s 15 3245 134,0 25,294 =0.299 20
=175 301.,0 28,4602 17,191 10 =2T45 2140 26,602 17.090 23 =32,5 140,00 25.294 44820 25
=17.5 306,5 23,835 4,592 1 =2TFe5 2645 22,168 27,600 25 =32,5 lab.0 25,296 b6 24
=1Te5 311.5 23,835 =21,122 18 =275 32,0 26,802 25,801 17 =32.5 15L.5 21,078 26,407 22
=1745 316,5 23,835 =25,200 25 =2T,5 3745 22.l68 =16,830 12 =32,5 157.0 25.294 24387 &
~1745 321.5 23,835 =17,521 17 =27.5 43,0 26.602 15,210 12 =32.5 175.0 25,204 32,4264 2
w1Teb 3270 ZB,602 =17,618 7 =27.5 49,0 26,402 9,626 18 =325 181,00 25,29 =21,087 5
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Table 10. (Cont.)

Gravity Gravity
Lat. Long,. Area Lat. Long. Area anomaly Lat. Arca anomaly
(deg.)  (deg.) (deg. 8q.) (deg.) {deg.) (deg. sq.) {mgal) No. ideg.) (deg. 8q.)  {mgad)
~32,5 187,0 25,294 ~4Tab  T04%  23.636% 24,069 5 =775 23.801 24559
- ~3245  252.0 25,294 =4745 16645 23.538 49,71 & =775 24,883 7,921
=325 258.0 25,294 ~47.5 173,5 23,638 16.8l6 3 2?75 23,801  -7,406
=32,5 26%,0 25,294 47,5 188,523,638 L.782 1 ~T745 24,883 5,369
~32.5 287.0 25,294 =47,5 269,0 27.01% 9.129 2 =7746 23,801  -14197
32,5 293,0 25,294 47,5 278,5 23,838 13,083 & 7745 24,4883 15,695
-32.5 299,08 25,204 4748 2Ba,0 27,015 11,696 3 ~7745 23,601 94217
=32,5 305,00 25,294 =4T45 291,5 23.638 =3,243 13 =7Teb 24,883 wh. 844
=32,5 311.0 25,294 =4745 29B,5 23,638 8,655 7
~32.5 317,0 25,294 4 4745 " 306,0 27,015  =h,645 15 ~82,5 26,097 43,711
=3245 32340 25,294 % ~8245 26,097 =25,305
=32,% 328,5 21,078 3 =52.5 70.5 27,386 22,384 3 -82,5 26,087 17,744
3245 334,0° 25,294 El =5245 180,5 27,386 24,719 1 =82,% 26,097 -b,052
.=32.5 352.0 25,294 3 =52.5 169,0 24,343 ° 18,802 2 =B2,5 26,097 7.337
=32+% 358,0 25,294 3 =852e5 275,0 24,343 7.128 | -82.5 26,097 2,349
=~52.5 283,0 24.343 | 5.317 9
=37.5  10.5 . 27,759 4 =52,5 291,5 27.38&6 10.538 11 -87,5 26,163 -11,254
=375 23,0 23,793 9 =52.5 300,0 24,343 10,639 17 ~87.5 26,163  =5,175
=375 29,5 27,159 2 =52.5 308.0 244343 ~15.98% 2
=3745 3640 23,793 4 =52+5 324,0 24.343 35,131 2
=37,5 42,0 23,792 3
-37.5 41,0 23,793 3 5745 2B2.5 244171 =12.,770 1
=27e5 73,5 27,759 7 =575 291,5 24.E71  i8,871 7
-37,5 BQ.0 23,792 7 =57a5 3D1.0 2&.85&  29.860 8
"-37.5 Bél.0 23,793 3 =57.5 310,5 244371 17,135 13
=37.5 92,5 27,759 4 =575 319,5 24,171 5,049 1
=375 99,0 23,793 6 =575 32B.5 24,171 32,736 3
«3745 105.0 23,793 4 =57¢5 338,0 26,856 168.979 1
=37.5% 137.0 23,793 8 .
=375 143,0 23,793 20 =62,5 301,0 23,080 46,673 19
«37.5 14945 27,759 Ie =62,5 311,5 25,388 35,603 . 5
=37+5 15,0 23,793 5
=37.5 162.0 23,793 ? ~67.5 33,5 24,867 36,547 &
=37.5 168.5 27,759 5 =67,5 46,0 22,954  3B,B94 H
3745 175.0 23,793 14 =6Te5 58,5 24,467 35,643 5
=37.5 181,0 23,793 7 “67.5  Tl.5 Z4.6T 21,231 13
3745 257.0 23,793 1 =67,5 B4,5 264,867 19,8622 &
=37,5 2463,0 23,793 7 67,5 7.5 26,687 31,134 2
~3745 Z8B,5 2T.759 16 ~6745 110,5 24.667 21,734 11
=37,5 295,0 23,793 20 -67,5 23,5 24,867 12.617 1
-37.5 20l,0 23,793 21 -67,5 136,06 22,954 28,087 7
=37.5 307,0 23,793 10 ~67.5 26k.5 24,667 7.581 1
=375 313,58 21,759 6 ~6745 290,5 24,867 ' 27.971 7
~37+5 339,0 23,793
=3745 3a5,0 23,793 =-T2.:5 25,5 25,552 17411% 4
-37.5 351,% 27,759 =72,5 91,0 24,049 18,121 12
~72+5 107,5 25.552 -27.781 &
=42,5  72.5 25.797 7245 140,0 24,0649 «3,875 8
—4Z2,5 147.,0 22,111 =72,5% 156.5 25,552 =9,214 4
4245 L8755 25,797 =72.5% 173.0 24,049 13,404 1
=42.5 L74,5 25,797 ~T2s5 20%,% 25.%52 -13.372 2
-42e5 206245 25,797 72,5 23840 24,049 -14%,1D05 2
=42,5 289.,5 25,797 72,5 25445 25,552 =l.184 I -
wh2,5 282,35 25,797 «7245 271.0 24,049 17,756 &
—42.5 289.,5 25,797 =T2,5 2B745 29,552 38,943 B
62,5 296,5 25,797
-62,% 303,5 25,797 *T7a5  BOWU 23,501 24,472 5
-42,5 310,0 22,111 =7Te5 102.5 24,683 =5,598 1l
=42,5 357,5 25,797 =T7e%  125.0 23,801 ~s455 2
. =775 1475 26,883 =23,413 14
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Figure 10. The covariance function of 5° X 5° mean block gravity anomalies.
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Table 11. The covariance function of 5° X 5° mean block gravity anomalies.

Average angular

Covariance function

distance (mgal?)

0° 314
4,85 192
7.32 141
12,23 g7
17.25 65
22,32 43
27.33 22
32,29

37.33

Table 12. The covariance functions of 5° X 5° mean block gravity anomalies for a
~1-km ocean—continent boundary.

Ocean—ocean

QOcean—continent

Continent— continent

Average Covariance Average Covariance Ave raée Covariance

angular function angular function angular function

distance {mgal?) distance (mgal?) distance (mgal?)
0° 325 0° 302
4,84 233 4287 192 4,85 150
7.31 175 7,556 143 T.22 107
12,27 141 12,36 100 12.18 50
17.256 94 17.32 72 17.19 29
22,31 59 22.38 52 22.25 16
27,32 32 27.36 25 27.29 9
32.28 9 32.30 8 32.30
37.34 4 37.34 37.31 5
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ABSTRACT

Laser and optical satellite-tracking data are combined with surface-gravity data
to determine spherical harmonics representing the geopotential to 18th degree and
order. The resuliing generalized gravity field has an accuracy of 64 mgalz, i.e., a
generalized geoid with an accuracy of 2.5 m. Satellite orbits are computed to an
accuracy of 5 to 10 m.

RESUME

Les données laser et optiques de poursuite de satellites sont combinées
3 celles de'gravité de surface, de manigre 3 déterminer les harmoniques
sphériques représentant le géopotentiel au 18 &me degré. Le champ de
gravité généralisé qui en résulte a une précision de 64 mga]?, c'est-
i-dire un géoTde généralisé ayant une précision de 2,5m. Le§ﬂorbites de
satellites sont calculées avec une précision de 5 3 10 m.

KOHCIIEKT

CoBMEnAaNTCA IAaHHHE Ja3epHOTO Mlonfmqecmoro creXeHunil 3a
COYTHEKAMU C NAaHHHNMU NIomsnu-TPaBUTALNK OIA onpeleleHus cepuuec—
KUX TAPMOHUK IpPeNCcTaBNARINX reONOTEeHIUAN, IO 18-0if CTemeHN U
nopsinka. lexozHoe oCmee nole rpaBMTauﬁM uMeaT TOYHOCTE B &4 Mrang,
t.e. OOOBmMEeHHHI TeOMJ ¢ TOUHOCTHW B 2,5 M. CPOUTH CHOYTHUKOE BHUNC-

1A©OTCA ¢ TOUHOCTEW ¢T 5 mc 10 M.
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SMITHSONIAN INSTITUTION STANDARD- EARTH III (GEOPOTENTIAL)

E. M. Gaposchkin, M. R. Williamson, Y. Kozai, and G. Mendes

1. INTRODUCTION

The Smithsonian Astrophysical Observatory (SAO) has published a series of
Standard Earth models based on satellite-tracking and other data {Kozai, 1964, 1969;
Gaposchkin, 1967, 1970a; Kohnlein, 1967; Veis, 1967a,b; Whipple, 1967; Lundquist
and Veis, 1966; Lambeck, 1969, 1970; Gaposchkin and Lambeck, 1970). There has
been a steady advance in the accuracy of the analytical treatment, the accuracy and

completeness of the data, and the significance of the results,

' Each Standard Earth model consists of 1) a set of geocentric coordinates for
stations observing satellites and 2} a set of spherical harmonics representing the
.geopotentia.l. These two sets of unknowns can be correlated, and both sets of param-
eters have been determined in the same computation. This led, for example in
Gaposchkin and Lambeck (1970), fo solving a system with 428 unknov&_rns —i.e., for
39 stations and gravity-field coefficients complete through degree and order 16. Eval-
uation of the Gaposchkin and Lambeck (1970) results indicated that the remaining errors
in these parameters were small; that is, the -correctioné to the parameters would be
small. Therefore; the effect of errors in the adopted station coordinates on the deter-
mination of the gravity field, and vice versa, would be small, and the two sets of

parameters could be computed separately.

A general revision of the parameters for Standard Earth II (SE III) was undertaken
because of new and improved data for almost all types of obgervations. Optical satel-
lite observations have been augmented by a large body of laser data with global coverage
from the International Satellite Geodesjr Experiment (ISAGEX). Two satellites with
inclinations significantly lower (5° and 15°) than previously available have been launched
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since 1970. Available surface-gravity data have been significantly improved by the
distribution of a cbmpilation of gravity anomalies by the Aeronautical Chart and
Information Center {ACIC). Determinations of station coordinates have been improved
by data from the worldwide BC-4 geometrical network. Finally, information on site
locations from the Deep Space Net (DSN) of the Jet Propulsion Laboratory (JPL) has

been revised with the addition of new data and improved processing techniques.

The analysis was divided inte two parts because of the initial high accuracy of the
geodetic parameters, the good coverage of all types of ohservational material, and
the result from Gaposchkin and Lambeck (1970) indicating that the interaction between
the gravity field and the station coordinates is relatively small. The determinations
of the gravity field and of station coordinates were carried out in parallel; the latter
is described in Gaposchkin, Latimer, and Veis (1973). In an iterative process, the
improved coordinates were used in the next iteration for the gravity field, and then
the improved gravity field was used in the subsequent iteration for the station coor-
dinates. This process, known as the block Gauss—Seidel iteration, will rigorously

converge,

Gaposchkin (1970a) has shown that, except for isolated harmonics, the gravity
field beyond 18th or 20th degree has a negligible effect on a satellite. The only
exceptions are some zonal harmonies that give rise to secular and long-pe riod effects,
and the resonant harmonics., Therefore, one cannot hope to obtain from analysis of
satellite perturbations much more detail beyond 16th degree and order than is already
available, Greater detail will have to come from other methods, such as terrestrial
gravimetry {see Section 7). The purpose here is to improve those harmonics to which
satellite orbits are sensitive. Many of the harmonics between 10th and 18th degree
are not very well determined from satellite-perturbation analysis, but terrestrial
gravimetry, when combined with satellite data, provides a good determination of these
coefficients. So, the objectives are to improve the low-degree and low~order harmonics
from satellite data and the higher degree and order harmonics from terrestrial data.
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Sinece the gravity field beyond 18th degree does not give rise to an observable |
change in satellite position, the satellite observations could be modeled with the use
of a gravity field complete through'degree and order 18, including, of course, some
additional resonant and zonal harmonics. 'fherefore, there is no model error due to
neglected higher harmonics. However, the surface-gravity data are given in area
means of 550 km X 550 km squares. This surface distribution of gravity would require
a spherical harmonic development to £ = m = 36, Therefore, using a gravity field
through degree and order 18 will have a significant model error that must be taken
into account in establishing weights and making ‘comparisons with surface-gravity data.
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2. TERRESTRIAL GRAVITY DATA

The primary objective of the analysis of terrestrial gravity data is to obtain
mean anomalies for regions 550 km X 550 km, When these data are combined with
the satellite-perturbation analysis, the spherical harmonics representing the geopo-
tential can be determined. A set of gravity data with known (and preferably simple)
statistical properties is needed. Our approach is based on covariance analysis, follow-
ing the ideas of Wiener (1966) and Kolmogoroff. When this technique is used in com-
munications engineering, it is sometimes known as filtering theory. The ideas here
are an extension of a one-dimensional time series to the two-dimensional surface of
a sphere (Kaula, 1967).

Estimation of gravity by covariance methods hinges on the stationarity of gravity
data; that is, the statistical properties of the data are the same no matter where the
data are taken. There is some evidence that gravity data are not stationary; however,
if some subsets of the total gravity population are stationary, then gravity covariance
functions between sets and within each set can be defined.

2.1 The 1° X 1° Data Available

A get of 1° X 1° mean free-air anomalies, containing 19, 115 measured means,
was obtained from ACIC (1971), and another set, of 1454 1° X 1° means for Australia,
from Mather (1970). The two sets were combined, with the Mather data being used
for all areas they covered. Figure 1 shows the geographical coverage of all the data.
The combined data set contained 19,328 means. A complete set of 1° X 1° mean topo~
graphic heights, used to define oceanic and continental areas, was obtained from
Kaula (Kaula and Lee, 1967). The distribution of 1° X 1° mean gravity data is sum-
marized in Table 1,

236



LET

i
l:!\ll"

\!iul,
N

Figure 1. Distribution of 1° X 1° mean surface-gravity data.




Table 1, Distribution of 1° X 1° mean gravity anomalies.

Ocean Continent
Boundary
(km) Measured Total Measured Total
0 9213 42918 10115 21882
-1 7015 36199 12313 28601

The estimated uncertainty given with each gravity anomaly for 99. 9% of the data
is less than 25 mgal. Comparing the Mather data with the ACIC data at the 1241
common points, we find that the average difference is 1.7 mgal and the root-mean-
square difference is 20 mgal. At a number of points, the discrepancy between the
two sets exceeds 100 mgal.

2.2 The Estimate Procedure

Kaula (1967) has developed a procedure that greatly simplies the calculation of the
covariance function, which is ecalled the block covariance function, and the gravity esti-
mates. This method has both advantages and disadvantages. The disadvantages follow:

A. The estimate of gravity does not make use of all the gravity information;
i.e., the estimates are not so good as possible,

B. The covariance function must be determined by using only the combinations
of anomalies within blocks and therefore does not employ all possible combinations of
the data.

The advantages of Kaula's method are as follows;

A. It greatly simplifies calculation of the covariance function and the gravity
estimates.

B. It produces mean anomalies 550 km X 550 km with uncorrelated errors.

C. The statistical properties of data within a block may be closer to stationarity
since the method involves primarily the short-distance covariance.
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If the gra_vify signal were a stationary process, then it would have the same statis-
ical properties everywhere. Possible nonstationarity was investigated by determining
the covariance function for subsets of gravity data. A separation of oceanic from con-
tinental gravity was used. A 0- and a 1-km depth were used to define the ocean—
continent boundary, which was determined from topographic data. The boundary was
also expanded fo a width of 400 km for the 1-km depth, and the covariance functions
were computed without the gravity data in that region. Finally, gravify data were
divided into an equatorial set, |¢| < m/4, and a polar set, |¢|> w/4. The covariance
functions for all fhe gravity data and for the four sets of split data and the block co-
variance function are plotted in Figures 2a to 2g. Detailed numerical values are given
in Part IV of this Report. Since the differences between the covariance functions are
significant, we conclude that gravity is not stationary. Any estimation procedure that

‘makes that assumption must be carefully examined,

The different estimates of gravity from the global covariance estimator, from the
split covariance estimators with a 0- and a -1-km ocean—continent boundary, and from
the Kaula estimator were obtained and compared. At the equatbr, the.Kaula—type units
and the 1° X 1° areas coincide, so that the four estimates can be compared directly.
Figure 3 shows a few blocks at the equator. Large differences are in blocks with few
observed points. In the combination with satellite data, these points will have a small
effect due to the weighting, which is proportional to the number of units contributing
to the average. Therefore, by using the block covariance estimator of Kaula, we
obtained a statistically independent set of 550 km X 550 km averages with no loss of
aceuracy. Block covariance provides the optimum set of gravity anomalies to be used
in combination with satellite observations. Of course, of all the methods used here,

a split covariance estimator is preferable for the prediction of 1° X 1° mean gravity

anomalies.,

The gravity anomalies are given with respect to the international gravity formula
(Heiskanen and Moritz, 1967, p. 79) and must be corrected to refer to the best-fitting
ellipsoid defined by J 9 and the adopted values of 2, GM, and w,. We must also

“include the Potsdam correction of ~14 mgal. Using the following initial values:
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J, = 1082.637

2

a = 6.378140X 10° em

20

GM = 3. 886013 X 1020 om® sec™2 ,

and

g = 7.292115085 X 107° sec™ !

we have
1/f=208.256 ,
and the correction

. 2
E‘gSAO - agint: 1,3 - 13.8 sin™ $ mgal
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Figure 2a. The covariance function of 1° X 1° mean gravity anomalies.
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Comparison of the four estimate procedures,
measured mean free-air gravity anomalies.

Lower right: the Kaula estimator.

1° X 1° squares with single numbers represent the
1° X 1° squares with four numbers represent estimates
as follows, Upper left: the split covariance estimator with a 0-km ocean—continent boundary.
Lower left: the global covariance estimator, Upper right: the split covariance estimator with a
-1-km ocean—continent boundary.




3. SATELLITE DATA

3.1 Analysis of Satellite Orbital Data

The external potential of the earth is represented by a set of orthogonal functions:

. %0 i _ : '
M:%%M“ Z Z (%_3_)2 ﬂm ﬂm(mnq)) e ’ A

£=0 m=0

where M is the mass of the earth, including the atmosphere; G is the universal con-

~ stant of gravity; Zﬁm Com isﬂ : C = —J N2l + I-%{ } designates the real
“part of { }; P (5i0 ) are fully normahzed assoclated Legendre polynomials; and
T, db, A are the coordmates of the test particle. It is possible to choose a coordinate

system such that

gz,o:_él,l: G, =040,

and we assume that the instantaneous spin axis as defined by the International Polar
Motion Serviee and the center of gravity of the earth are that system. This assumption -
is not strictly true, but the departures are small and are ignored in this analysis (see
Part III of this Report).

It is observed that for the earth the amplitude of E 6 @ ﬁ.m') decreases uniformly

according to
(61111)‘_ . —_— (2)

Although for theoretical reasons E (l @ ﬂml) must decrease more rapidly than equa- .
tion (2) at some point, and individual coefficients can be arbitrarily large, this rule

seems valid throughout the range of ¢ used in this investigation.
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We use two types of data on the earth's gravity field: those derived from gra-
vimeters and those obtained from the motion of artificial satellites. The gravity

calculated from the gradient of equation (1) is
oo f a i
e 5 . imx
Ag:Y%— E : E : (ﬂ'l)(?) Cﬂm Pﬂm(smwe ? @)
£=2 m=0

where y = GM/r” and G;Zm are 6ﬂm modified to accommodate those__effecti_cﬁ the
reference ellipsoid (or gravity formula) that change the definition of C;‘ 2,0? c 4,07
and 6, 0° By comparing equations (1) and (3), it is apparent that Ag is relatlvely
more mﬂuenced by Q /m of high degree and order than is /l{ because of the £ - 1
multiplier and that measurements of Ag are more useful for determining these high-

degree and high-order coefficients.

Determination of c Im from analysis of satellite observations requires a theory
for satellite motion. General solutions for the motion in an arbitrary potential field
have not yet been found. We must therefore restrict curselves to apnrovimate solu-
tions, which are quite sufficient for the following reasons. It is observed that for the
earth, the second-degree zonal harmonic C. 2,0 makes the largest contribution to the
ano:malous potential and is 10 -3 of the main term The remaining anomalous potential
is 10~ of Z-z o OF 10 -6 of the main term. Therefore, to calculate the tra]ectory
to 10 (our ob]egtwe), we require at least a second-order theory for 62 o+ (i.e.,
one including erz 0), but only a first-order linear theory for the remammg CZ mt
Although there are notable exceptions — resonances and some zonal harmonics — these

considerations provide a workable base.

The earth's motion is complicated because of Precession, nutation, polar motion,
and rotation, A convenient reference frame is defined by the stars and, in practice,
is defined (imperfectly) in terms of a star catalog at some epoch, On the other hand,
in an inertial frame, the earth's gravity field has a temporal variation that significanily
complicates the construction of an analytical theory. For this reason, a compromise
quasi-inertial reference frame referred to an equinox {epoch 1950. 0) and an equator
(epoch of date) has been adopted. Veis (19602a) knew, Kozai {1960) proved, and we have
used the fact that this coordinate system minimizes the addilional effects required to
account for the temporal variations of the gravity field and the noninertial property of
the coordinate system.
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Accordingly, the determination of a frﬁ f:om analysis of satellite observations
uses the elaboration of a satellite perturbation theory. This elaboration is too lengthy
to detail here, so we confine ourselves to a few remarks. The perturbation theory is
developed by expressing equation (1) in terms of satellite coordinates {(a, the semi-
major axis; e, the eccentricity; I, the inclination; w, the argument of perigee; 2, the
right ascension of the ascending node; and M, the mean anomaly). If we express‘

equation (1) as

E o
e

Wﬁmzﬂz Z @gmAfmpq(ase:I) &' s (5a)

p=0 g=-wx
where
M {2 Y |
e .
A,gmpq(a’e’l):—a_ _a') Dﬂmpm G',ﬂpq(e) 3 B L (5b)
and
$= (2 -2p)w + (ﬂ-2p+q)M+m(Q—0)4_-(£-m)1§T . : ‘ - (5e) 7

Thesg four equations are the exact equivalent of equation (1), Expressed in this way,
the variables with large secular changes (w, 2, M) are separated from those with only
periodic changes (a,e,I). Therefore, the functions A ﬂmpq(a’ e, I)' can, with sufficienj;
acecuracy, be considered constant. In addition, Ggpq(e) = Ofe d )+ Since satellites

of interest have small or modest eccentricity, only a few terms in the sum over q are
necessary. The number of terms is selected automatically for each satellite by means.
of a numerical test; typically, |q| < 5 is sufficient. -

- The differential equations relating the disturbing potential and the changes in

orbital elements are known as the Lagrange Planetary Equations, a set of simul-

taneous ordinary differential equai:ions of the form
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K K
%E, _Z a,e, U | (6)

where 2;: is a generic element, :Zf (a,e,1) is a linear differential operator, and 7{
is the disturbing potential, If we assume that the interaction of perfurbations can be

ignored, then we can write

& g Z:Zﬁggm’ (7)

=2 m=

where 6, is the unperturbed element. This is an excellent assumption except for
Q’Z 0 The secular changes in w, &, and M due to 62 Olnteract significantly with all
the perturbatlons, and so for these angles variables, we use

£k= €E+ékt+i Z 65,1;1 . (8)

£
£=2 m=0

Substituting equations (4), (5), (7), and (8) into equation (6), formally expanding the
resulting equation, and discarding all interactions on the right-hand side, we obtain

k iy
dtﬁgﬂm %—_j (@ €05 O)Z Z @m Apmpa®er0 10 ¢

(9a)
where

¥ = (£ = 2p) (w+ Gt) + (2 - 2p+q) (M +nt) + m(S2, + ﬁt—9)+(ﬂ-m)% . (9b)

Here, &, n, and Q are the secular rates of w, M, and 2. The rotation of the earth is

sufficiently uniform so that we can write

8=10,+6t . (10)
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s k
Finally, & ‘tm is the perturbation in element & due to the potential coefficient

C’ m - Equations (9) are now uncoupled differential equations, which can be 1ntegrated

immed1ately to

iy, - (1/2)]
sk k e 0
Sé %i (@gr s 1) Z Z fm ﬂmpq(aO’ egr 1) —_—.d)_—_
goeo 0
(11a)
by = (L-2P)&+ (¢ ~2p+qn + m(©2-6) . , - | (11b)

The general properties of the solution are now apparent. We see that ;!.; can be
exactly zero only when m=0. Therefore, only even zonal harmonics C pp ©an cause
secular perturbations. The period of the periodic terms is given by equation (11b),
and we see from equation {11a) that the longer the period is, the larger the perturba-
tion, Thus, when m=0, long-period terms with argument «, 2w, 3w, ... occur when

?

q=-1, -2, -3, ... . For nonzonal harmomcs long-period, large- amphtude pertur- -

bations arise when z;i = 0, Since n(=13 rev day ])> 8{=1 rev day ])>> @, Q o« 2, on= 10
this resonance condition occurs when n = md — that is, when the mean motion n is

approximately an integral number (the order m) of revolutions per day. In fact,

resonant conditions always exist to some extent. Resonant terms occur in both satel- -

lite theory and planetary theory, and there is extensive literature on the subject (e.g.,
Kaula, 1966a; Hagihara, 1961), but as yet there is no completely satisfactory treat-
ment., It is true, for example, that a solution such as that employed here by using
linearized equations can be invalid for some cases, since the series are not uniformly
convergent; fortunately, this does not occur here. The occurrence of resonances
between the gravity field of the earth and a satellite has been viewed as an opportunity
to determine particular harmonics to high precision. In fact, some of the low-degree
harmonics have been studied extensively with synchronous satellites, and many
harmenics of orders 12, 13, and 14 have been determined by SAO and others. Long-
period terms in m; 2w, 3w, ... from the zonal harmonics are resonant perturbations
~ in the sense of the term as discussed here. Satellites with strong resonances interact
with the gravity field to £ = 35 and higher. Finally, we have seen that the largest
perturbations result when equation (11b) is smailest. With m = 0, the largest terms
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are for £ -2p+q = 0— that is, there is no dependence on M. Therefore, long-period
terms can be analyzed. For m x 0, the largest effects are also without M. In this
case, the frequency is m oscillations per day, and the first-order term will be the
largest. Terms for m = 8 — that is, eight oscillations per day — become very difficult
to determine, and reliable values for m = 10 can be obtained only by the study of

resonances or from terrestrial gravimetry.

The formal theory, equation (11), accounts for both resonances and short-period
terms, For example, the resonant perturbation in mean anomaly for satellite 5900701

is

= 2 2
M=T)) | %-1. 387 X 10° cos [EETE (t—to):|
5 2
-~ 1,798 X 10" cos [Tm (t-—to)j| t e % ) (12)
with similar terms for S C ees » The 1124-day term is much longer

11,11° Yi12,11°
than any span of data for onhe orhit. Because we have imperfect knowledge of the

coefficient Ell, 117 the empirically determined orbit will absorb the residual 1124-day
term into the mean elements. The mean elements can be analyzed for improvements
to the gravity field in the same way as is done for zonal harmonics.

Because most of the zonal harmonics give rise to short-period perturbations,
the residuals of individual observations are analyzed to determine these gravity-field
coefficients. Since we are dealing with instantaneous observations of position, the
observation equation is of the form

= _ [ 6T 80M T 8bw =
AX (8M ————BE t 50 ——-8.6 + "')Acfm s (13)
fm fm

where &M would be computed from equation (12). Therefore, when we use equation
(13}, terms in &M and 6w with periods longer than the span of data must he detected.

With the theory developed in harmonic functions, the deleting of specific pertur-

bations is quite trivial. The analogous operation with a numerical-integration tech-

nique would be much more difficult.
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As an example, the perturbations in M for satellite D1D (6701401) are given
pelow for only the principal terms, withm = 1,2; 2 = 3,4,5,6,7,8. For this satellite,
a= 7614 km, e= 0,0843, and I = 392455.

6M=f:—3’1[-7.1 gin (w+ 0 —e)’+ 0.8 sin (w+ 2M + 2 -8) - 63.3 8in (~w + ﬁ- B) + aasl
?”63, 2{—42.5 cos [w + 2(Q2 - 8)] + 1.0'5 cos [w+2M + g(n - 8)] - 13.6 cos [-w+ 2(2 - 6)} + weet
+E4"1[7.o cos (-M + 2 - 8) -'8.2 cos (MI+ 2 -08)+ 5.1cos (~2w + 2-0) + ]
+ 64’2{—10.3 ein [-M + 2(2 - 8)] + 14.2 sin [M + 2(Q2 - 8)] + eer}
+(_3'5,1[-87.4 sin (w + 2 -6) + 6.9 sin (0 + 2M + @ =€) + 87. 9 5in (~w + 2 - 9) -‘r vesd
+'65’ 518.6 cos [L + 2(2 - B)) - 1.4 cos [+ 2M + 2(Q - 8)] + 43.9 cos [-w + 2(2 - )] .+ «..}
+-C-6’l[5.1cos (-M + €2 - 8) - 6.0 cos (M + 2 - 8) - 16.2 co8 (~2w + 2 =8) +...]
+?3’6, 2«[5.4 sin [-M +l2{§2 @) - 7.4 sin [M + 2(2 - 0)] + ..0}
+'('3—7,1[33.1 sin (w+ 2 - 9) + 0,0 sin (0 +2M + 2 - 8) + 1.4 sin (~w + Q -.e) + ..7.]
+ ';:'7!2{40.9 cog fw + 2(S ~ 8)] - 5.5 cos [w+ 2M + 2(2 - é)] - 40,3 cos [-w +72m -9 .+‘...} :
. +§8,1[-6.B cr;':s (-M + @ -0)+ 7.9 cos {1\“.11 + 8 -95+ 19.l’cos (~2w + 2 -e)‘+ eas]

+ Ty ot L sin [-M + 262 - 8)] - 5.7 sin [M + 22 ~ 0)] + ...} . - ‘(14)‘

We can rearrange this expression in terms of the Same freguency (ﬁrith,the" period P -
of each term in days given in parentheses): :

&M = (7.1 03’ 1 87.4 CS, 1t 33.; 07, Pt ) sin (w+ 2 -0) (—1..001< days)

+(0.8Cy 1+ 6.9C; ;+ 0.0G, 4 +...) sin (@ 2M + 2~ 0) (0'040).-

+(~63.3C. . +87.9C_ . +1.,4C,  +...)sin(~u+82-6 -0.971"'
( 3,17 5, 1 7,1 Freedsimor -6 )
+(7.DC4,1+5.106,1_60808,l+'o.) cOos (_M+Q-e) ; ' (—0.071)
+(-8.ZC4,1—6.OC6,1+?.‘9 8,1+...)cos(‘M+Q-8) (0. 083)
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4-(5.1?3‘4 -16.2C +19.168 +...)C08 (=20 + Q2 - 0) {-0. 958 day)
3 2

1 6,1 1

+ (-42.5'63’2 + 8.6 65,2+ 40.0'67,2 + ...} cos fw+ 2(2 -8)]  (-0,497)
+ (1«).563’2 - 1.465,2 - 5.5'67’2 +...) COS [w+ 2M + 2(2 - B)] (0. 041)
+ (—13.663,2 + 43, 965,2 - 40.3 67,2 + .00) €08 [-w + 2(Q2 - 8)] (-0.327)
+('10'364,2+5'466,2+4'168,2+“')Sin [-M + 2(22 -]  (-0.066)
+ (14.264,2 - 7.4 66’2 - 5.7 Es,z* oo} sin M+ 2(2 - 9)] (0.091)
Fane . (15)

Even if we assume the satellite to be a perfect filter, uncontaminated by other
model errors, and the tracking data and analysis process to be perfect, we see that
with one satellite, we can determine only spectral components that are linear com-
binations of the gravity field (_e—ﬁm) and functions of orbital elements [A ﬁmpq(a’e’I)L
From each satellite, we obtain one or two linear combinations of harmonics for £ odd
and for £ even. With additional data, we can only refine the numerical value of these
linear combinations. The ccefficients of the relations will depend on the orbitail
elements, so that other linear combinations can be determined only from additional
distinet orbits, Generally, this is achieved by selecting satellites with different
inclinations, but independent linear relations can also be obtained with changes in

eccentricity or semimajor axis.

As the degree increases, the perturbations become negligible, and so the linear
relation does not involve an infinite number of parameters., Of course, the spectrum
analysis gives both amplitude and phase, or, as generally written, G im’

3,10 5,10 G710 +--

can be determined from the -1, 001-day period term and another of equal size from
the ~0.971-day term. The third term is a factor of 10 smaller and will not contribute

From equation (15), we see that one linear combination of C
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significantly as an observation equation; there are also many smaller terms. The

linear combination of C3’ 9 CS, o 07, g0 **

. has only one significant spectral com-
ponent for the -0.327-day period. | ' |
The linear relations are not determined with equal accuracy; for example, the
resonant harmonics have a very large effect and the spectral component is strongly
determined. However, the resonant period is commensurate with the arc length,
which will cover only a small number of eycles. This makes it difficult to separate

nearly commensurate periods.

If we consider equations (11) as expressing the spectral decomposition of the
perturbation, we see that each harmonic sz of order m causes the same spectrum
of perturbations. Further, the spectrum has several lines close together. With a
short span of data, these spectral components are difficult to sepafé.te._ '

The large number of harmonics affecting a satellite is related by a linear equa-
tion similar to equation (15). Tor one satellite, only a linear combination of coeffi-
cients can be determined. In those cases where an insufficient number of satellites
is observed, additional assumptions are necessary in order to obtain indépendent
equations. The usual assumption is to set some of the higher degree terms to zero,
leading to lumped coefficients that are useful for orbit determination but that may bhe
unrelated to the actual gravity field. ' '

In summary, the process of gravity-field determination begins with the evaluation
of the secular and long-period perturbations to determine the Jn. The perturbétidns
accumulate for weeks and months, and the effects are very large. The mean orbital
elements, determined from overlapping 4-day arcs, constitute the basic data used
in the analysis. Data and reference orbits of moderate accuracy are adequate for the
d n determination, The unbiased recovery of the Jn requires painstaking evaluation of
the long-period and secular perturbations from other sources, principally solar radia-
tion pressure, atmospheric drag, and lunar and solar attraction. This phase of the
analysis is accomplished first. The tesseral harmonics are determined from the
short-period (1-revolution to 1-day) changes in the orbit. The detailed structure of

the orbit must be observed, and each observation provides an observation equation.
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Data of the highest possible precision are needed. The unbiased recovery of “e;m
requires the evaluation of the periodic terms from other sources that have periods
similar to those arising from the gravity-field coefficients. The most important are
the short-period terms due to J][1 and the lunar attraction, Because they are smaller
than 1 m for the satellites used in this analysis, the periodic effects of air drag and
radiation pressure can be ignored. The nonperiodic terms are empirically determined
and hence accounted for. The short-period terms due to J o must be carried to second

order.

3.2 Satellite Data Used

Laser data from ISAGEX provide global coverage with 2-m accuracy for the first
time. Table 2 lists all the satellites used in the analysis, and Figure 4 shows their
distribution in inclination and height. Separation of the station-coordinate and the
gravity-field determinations allowed a better selection of satellite data. Tor the
former, high satellites less affected by the anomalous gravity field were emphasized,
while for the latter, lower satellites, with a better distribution, were stressed. Cer-
tain satellites with unmanageable long-perind resonances (e. g.; 5900701} were used
only for the determination of station coordinates; they have such a rich body of data

that relatively shori-arc orbits (4 days) could be derived for this purpose.

Each observation was given an a priori weight (detailed in Table 3), so that when
the normal equations were combined, each type of data could be scaled. The scale
factor for surface-gravity data (see Section 2) was arrived at by experiment. The
scale factors for the 550 ki X 550 km anomalies and for the zero anomalies were
chosen so that the resulting solution improved the satellite orbit, the surface-gravity
residuals, and the errors in the surface-gravity comparison (see Table 19 of Section
6. 1), and did not introduce spurious short-wavelength detail where no surface-gravity

data were available.
All available optical data were used for the orbital arcs chosen. For each pass

of laser data containing more than 30 points, approximately 30 uniformly distributed
observations were selected.
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Table 2." Dynamical data used in SE IIT.

6507801

@0
5 2 @
. sk B3 =2 28 23
Satellite a Perigee g % ..:_é' 8 g g g S 5:_."_‘.
Number Name Inclination Eccentricity (lan) m) HeEe ®S WA RS 2@
7001701 Dial 5° 0.088 7344 301
7010901  Peole 15 0.017 7070 635 4
6001301 Caourier 1B
1960 v1 28 0.018 7465 965 7
5900101  Vanguard 2
1959 al 33 0. 165 8300 55T 7
5900701 1959 5l 33 0. 188 8483 515 18
6100401 1961 81 39 0.119 7960 700 4
6701401 D1D 39 0.053 7337 569 10
G?QllOl DIC 40 0.052 7336 579 9
6503201 Explorer 24
BE-C 41 0.026 7.311 941 13
6202901 Telstar 1 ‘
: 1962 ael 44 0.241 9672 962 4
6000902 1960 12 4?7 0.011 7971 1512 10
6206001 Amma 1B
1962 pul 50 0. 007 7508 1077 12
6302601  Geophysical '
Research a0 (0.062 7237 424 6
6508901  Explorer 29
Geos 1 59 0.073 8074 1121 o6
6101501 Transit 4A ‘
6101 87 0.008 7318 885 10
6101502 Injun 1
6102 67 0.008 7316 896 9
6506301 Secor 5 69 0.079 8159 1137
6400101 70 0. 002 7301 921 X 4
6406401 Explorer 22
BE-B - 80 06.012 7362 912 X 6
6508101 0GO 2 87 G. 075 7344 420 X 5
6600501 QOscar 07 89 0.023 7417 868 X 1
6304902 5BN-2 a0 0. 005 7473 1070 X 5
6102801 Midas 4
. 1961 a0l 96 0.013 10005 3503 6
6800201 Explorer 36 '
Geos 2 106 0.031 7709 1101 13
ov1-2 144 0. 182 8306 416 4
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Figure 4, Distribution of perigee heights and inclinations of the satellites used in SE III.



‘Table 3. Assumed accuracy for SE i1,

Data Weight . 4 Remarks
Baker-Nunn 41
Smoothed Baker-Nunn an
SAQ laser 5m ' Taken before 1970, observed before 1970
CNES laser 10 m Taken before 1970, observed before 1970
GSFC laser - 5 m Taken before 1970, observed before 1970
ISAGEX laser | 2 m 1971 International Campaign
. . 13.5 |
Gravity anomalies <A>. nA mgal n is the number of 1° X 1° squares in each
‘ o 27 5° X' 5° mean
Model (zero) (A} 5~ mgal .
anomalies A : A is the area
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4, COEFFICIENTS OF ZONAL SPHERICAL HARMONICS
IN THE GEOPOTENTIAL

4,1 Introduction

Coefficients of zonal spherical harmonics in the geopotential defermined from
secular motions of angular variables and from amplitudes of long-periodic terms with
the argument of perigee w in the orbits of artificial satellites are more accurate than
are coefficients derived by classical terrestrial methods. The reason is that the com-
ponent of geoid height represented by the zonal harmonics is amplified by a factor of
1000 when they appear as secular and long-periodic perturbations of satellites. How-
ever, because these perturbations are averaged effects, contributions from the har-
monics in each are not very different from one satellite to another unless their orbital
elements are quite different. Also, few satellites with inclinations below 30° have been
employed in the determination of the coefficients, since accurate observations of such
satellites have been secarce. It was also found that many more terms than expected
were necessary to represent the geopotential, Therefore, it has usually been very
difficult to separate the contributions from each harmonie in the observed values of the
secular motions and of the amplitudes of the long-periodic terms. In ofther words,
different sets of coefficients could represent these cbhservations within observed accu-

racies for satellites with inclinations larger than 30°.

Now, however, data for two low-inclination satellites — Dial (7001701; I= 524,
e= 0.09, a=1,15) and Peole (7010901; I = 1520, e = 0,02, a = 1, 10) — have become
available since our last determination of zonal harmonics (Kozai, 1969), We expect
the data from them will significantly improve the coefficients of the zonal harmonics
in the geopotential.

The values of (O - C) for the secular motions and the amplitudes of ig; w terms
based on 1964 values (Kozai, 1964) follow:
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oday 0 day ™1 A A A A

tw 2 I e
Dial -0701806 0201012 - =-02070 -02019 020043 -9,1X 10_5
+9 +7 15 +3 +3 +6
Peoole ~0.0022 0. 00516 0. 045 -0, 002 -0.0017 2.8 X 10"5
8 +10 +30 45 +30 +2.0

The large values of (O - C) for these two satellites show that the previous sets of

zonal-harmonic coefficients were inadequate.

The data for Dial were derived from orbital elements from March 18 to July 18,

- 1970; during that period, the argument of perigee made four revolutions. The orbital
elements for Peole were obtained for January 9 to March 13, 1971, and for March 28
to August 30, 1971. These data are not so accurate as those for Dial, since there
were not enough observations and there was a period during which no orbital elements

were available.

In this new determination, the (O -C) values for satellite 6000902 are a revision
by Gaposchkin for February '10, 1961, to April 21, 1963.

The other sateilites included in this determination are 6001301, 5900101, 6202901,
6302601, 6206001, 6508901, 6101501, 6400101, 6406401, 6508101, and 6102801, The
data for these satellites are the same ag those given by Kozai (1964). The (O-C)
values were computed from the 1964 values of coefficients as piven in Table 4. Correc-

tions to the values in Table 4 are solved in Section 4. 3.

Table 4. Coefficients of J. based on Kozai's (1964) values (in units of 10'6).

= -2, 546

J, = 1082.639 Jg

Jy= ~-1.649 J = -0.210
Jg=  0.646 J- = -0.333
Jg= -0.270 Jg=-0.053
Ji= 0054 = 0.302
Jo=  -0-357 Jy5= -0. 114
J=  0.179
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The following values have been used for the geocentric gravitational constant and

the equatorial radius of the earth;

CM = 3.98601 X 100 em? sec™? ,
8 {16)
a, = 6.37816 X 10" em .

4,Z Equations of Condition

A computer program has been developed to calculate coefficients of J, @ £ 55)

in expressions of secular motion and of the amplitudes of gﬁf 2w and gﬂ?

Numerical values for n £ 37 are given in Tables 5 to 7 for the 14 satellites, Since

w termas.

secondary effects due to the interaction with the J 2 secular terms were not included,
the values here for the coefficients of the amplitudes of the long-periodic terms in the
argument of perigee and the longitude of the ascending node are slightly different from

those we gave previously.

For the two angular variables w and 2, the secular and long-periodic perturhations

have heen derived from

Qiﬂdztﬂ): (J.s, f'z) + A gin w+ Beos 2w (17)
where & and (2, the secular parts, are functions of the semimajor axis, inclination,
and eccentricity, which are not constant and, e‘xcept for the semimajor axis, have
long-periodic terms. The inclination and the eccentricity cannot be assumed constant
in expressions for &, ! in equation (17) but must include long-period terms, The
effects of these long-period terms are of the same order as A and B and produce
secondary effects. Therefore, if constant values for secular motions are adopted in
order to analyze the data, the secondary effects in expressions for the long-period
terms must be included in equation (17). In earlier papers by Kozai, the secular
motions were determined from observation by assuming they were constant. Correc-
tions to the secular motions and the amplitudes of the long-periodic terms were derived
in recent papers by fitting the observed orbital elements with the integrated resulis

of equation (17) by using assumed values of J n and the instaneous observed mean values
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3¢ 14

Table 5. Coefficients of Jn in expressions of secular motion (in degrees per day).
Satellite 1q L g g Y10 Tig T14 I1g Iia T30 Iya Jou 0 dag dag a0 T Ty g
7001701 & 11308 -2136% 28188  -31767 32678 -31593 29139 -25835 22082 18218 14437 -10903 7717 -4936 2585 -665 -842 1968
1 -5691 10807  -148]17 16932 -18043 18285  -17685 1664%  -15288 13667  -11950 10197  -B473 6828  -5299 3913  -26a8 163z
7010901 o 12165 -20770 21325  -~14509 3882 6305  ~12812 14276  -1i1222 5463 756 -5538 7823 -7H00 5223 -2048 -967 3043
1 -6414 11751 -13867 12620 -8295 4414 -194 -2781 4171 -4117 3065 -1574 144 85t  -1393 1397 -1052 547
6001301 o 7625  -5479 -2224 6043 -3260  -1675 3731 -2045 -T44 1979 -1218 -223 952 =671 -17 - 434 -348 38
i -4b71 5169 -2137 -845 1924 -1071 -157 703 -4R7 17 249 -211 37 84 -88 26 27 =36
5800100 o 4888 -1560 -2711 2473 409 -1902 "928 685 - 1045 244 535 -517 ~14 357 230 -87 214 -85
@ -3236 2540 -200 -1095 787 106 -522 274 141 -264 45 114 -131 13 78 -81 -11 48
6202900 W 1836 1040 -823 -845 400 242 ~204 -478 107 94 -57 -50 31 27 -17 -14 9 8
& -1717 301 512 -127 -208, 60 a7 -31 -48 16 24 -4 -13 5 7 -3 ~d 1
6000002 o 2753 2685 -1224 -2302 317 1425 39 -763 -121 373 106 -171 =71 73 42 -30 -23 11
93 -2B64 261 1168 -15 -480 -37 1947 34 -76 -2 29 12 ~11 -6 4 3 -1 -1
6302601 & 3245 5104 ~765 -6141 -1782 4990 3273 -3127 -3578 1374 3334 -2 -2612 =717 1794 1073 -1055 -1i22
t  -3855 -145 2333 645 -1331 -761 877 685 -272 -540 41 385 77 -250 -124 144 128 -68
6206001 2741 4130 -334 =4085 -1359 2597 1845 ~1190 -1593 289 1095 139 -832  -264 305 243 -112 -179
? -3334 -187 1667 489 -747 -441 278 301 -69 -174 -9 89 27 -39 -24 14 16 -8
6508901 W 605 2454 2144 39 -1392 -1096 -1 504 438 -12 -240 -161 12 92 57 -7 -34 -20
1 -2076 -076 260 562 239 C-92 -163 -64 32 50 ie -12 ~16 -5 4 3 2 -2
6101501 o -641 1893 4419 4327 1628 -1619 -3360 . -2743 -816 1016 1750 1305 285 -544 908  -548 -82 264
@t -2240 -2037 -809 331 811 657 219 -150 -284 -211 ~57 &2 93 &7 14 -25 -34 -21
8400101 «1176 T4 3506 4737 3659 1074 -1486 -2816 ~2596 -1330 132 1095 1294 884 237 -202 518 -449
o -1 2004 -1205 -210 457 653 495 198 -B0 -184 -179 -102 -14 43 58 43 16 -5
6406401 < -2341  -2483 -1458 12 1376 2310 2708 2622 2189 1576 531 363 -68 -342 -471 -487  -a27 -326
] -996  -1298 -1252 -1026 -735 -455 -224 -5 14 96 110 101 79 55 33 5 2 -5
6508100  w -2014  -3984 -4371 -4289 -3969 -3508 ~2998 -249] -2016 -1588 -1213 -893 -626  -4406 -229 -90 18 -9%
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Table 7. Coefficients of Jy in expxessmns of amplitudes of $ sm w terms (in units of 10° degrees for w, 10 degrees

 for &2, 10 degrees forI, and 108 for e, per day).

Satellite Iy Ia I T I 13 s Jp Mg Ta Tz s Iy dm dyp Ty gy dyr
0NN w -5 12 -z | -50 63 -3 B -90 9 93 @ -85 71 -8 50 -50 w
g -esl 381 -471 484 . -436 347 -235 116 Sl -0 190 -Z38 307 -337 350 -348 33 -319

Lt 203 -3asy 507 -578 592 -5%G 637  -484 421 -360 288  -241 180 -l44 105 Tz 45 -2

e’ -38 72 ls 07 -lle 07 -100 g -8 57 ~58 5 -3 37 20 1B -8 1

01080 w  -378 668 763 644 -410 141 BT -220 275 -241 15T 5% -5 70 -9 8 -5T 22
2 -12 12 5 -5l 54 -66 60 -40 12 16 -35 a3 -3 % -8 7w -z

I 18 -68 % -6 " -13 -3 23 -27 23 -5 5 3 -8 g -3 5 -z

e -9 18z -z6 183 -1I5 38 26 -66 T 6T a2 -5 -8 22 .26 @ -8 H
6001301 @ 647 560 A7 -280  2EG T T A a9 -85 -7 18 -3z -1 1 -5
@ -2 iz 22 -z -8 W -1l ) 9 ) 1 4 1 2 -2 1 1

T 23 -39 a 15 -1 4 5 -6 2 1 -2 1 0 - 1 0 o b

. e -187 164 -18 -84 B2 -2l -28 3 -1a -8 14 T -2 5 - 0 2 -1
5800101 -7 59 - 24 15 -26 8 12 -4 1 3 -7 -1 8 3 2 3
02 9 -1e8 122 13 -l08 65 25 62 25 24 -3a 7 B -1 -1 12 - -3

L 290 -3 11 14 33 -38 39 4 -19 1 2 -9 5 -1 1 2 -2

e -193 85 PR 22 25 -26 3 12 -3 -1 4 -2 -2 1 a1 - 1

6202901 -4 .13 5 6 -25 - 13 1 -7 -1 4 " -2 0 1 v -1 o
0 103 -150  -B6 96 33 -5z -8 28 8 -15 -4 8 2 -5 -1 2 1 -1

1 313 98 -l24 . -Bl 15 1 -8 -4 8 2 -3 -3 2 0 -1 o 0 0

e -2l a6 83 21 -3¢ -7 12 3 5 -1 z 1 -1 0 0 o o 0

6000002 w  -)365  -826 688 451 269  -22l 8¢ w3 -z9 48 8 0 -1 -9 0 4 0 -1
o 7 -9 -3 7 7 -4 -4 z 2 21 -1 0 1 0 0 0 a o

I 16 0 -a -5 3 3 -1 -1 a 1 0 0 0 0 0 ¢ o o

e -2l -185 193 88 -53 -4 16 20 -5 -9 2 4 ¢ -3 0 1 0 0

6302601 = -305 . -325 18 293 -8l -z27  -17 158 55 100 -~Aa 55 & =22 -55 1 4 1u
2 52 &7 108 0 526 -1 -nz o - 54 0 -2 54 25 49 -5 -ay -7 I

1 i 97 52 -a2 14 58 8 -7 -l4 21 15 -1 -12 3 9 0 -6 -2

e -1 -3z 179 283 -4 200 20 126 a7 -7l 50 4 4 -1 -3l a1om &

§20800] w  -2466  -2550 1113 1808  -3aB ' -1083  -175 508 2@ . -21% -1 & 109 8 w58 -1 13
Q 6 -l 1 10 1 -7 -a 4 3 -2 -2 ¢ 2 0 -1 0 o

1 ® 10 -5 - 1 4 i -2 -1 1 1 o o 0 o 0 o o

e -1 -311 136 220  -20  -1g8  -2) 62 87 -z ~2) § 13 a1 T -1 3 2

6508901 @ 268 -862  -417 160 ang 125 -66  -106 -39 26 37 12 - 13 4 5 1
2 213 80 -186  -z1z 32 108 97 8 -47  -a7 -1 44 v -7 -3 0 3

i 7 248 s - - -2z 2 2 8 -5 -7 -2 2 2 1 -1 -l °

e -31&  -10Ld  -48D 164 320 e -5? .93 -34 19 27 s -6 5 -2 z 2 1

BI0IS0L  w*  -265 T4 1046 652 48 -345 -3 -2I5 6 136  13T. 61 -0 -50 -4 20 5 18
o ~30 -a0 g 4 52 a8 2 -26 -3z -18 L PRt T 2 a2 3

1 7 -0 -29 -1 -1 3 n 6 0 -4 -4 -2 0 1 1 1 ) o

e -am 1037 1458 09 68 -da0  -B31 ° -209 s 185 190 R & 25

6400101 w1447 1210 2666 2438 lzaa -17 o771 B8 -598  -170 154 380 23/ 114 -6 T4 B3 54
w -3 -5 -3 1 4 5 a 1 pe -3 -2 -1 D 1 1 1 o 0

1 1 -1 -2 -2 -1 0 1 1 0 0 0 0 0 0 a o 0 o

e -8 317 698 §aE 326 -4 -20%  -235  -15T  -45 10 73 62 W -z -8 -2z -4

5406201 w  -I730  -112%  -578 183 477 585 557 454 333 197 %4 20 .26 -48 -54  -4@ -3@ 25
‘0 ) O R T | -12 -5 © 4 [ 7 s 5 3 2 1 0 -1

T 5 1 1 -1 - 2 -2 -1 -1 -1 0 0 0 0 0 0 0 o

e -3m4 -8z 8% 3% 07 130 12a 10t 71 B3 o 4 -6 -0 -1 1o -8 -

8308101 «  ~318  -307  -261  -214 -3 . -138  -109 -85  <-65  -49  -36 -2 -7 -1 -5 -1 2 4
2 - 2z -35  -45  -53 57 -5 -5  -57  -54  -5¢  -46 -4¢  -37 ~33  -29 5 -2

H 3 7 6 5 1 . a 2 1 i 1 1 0 0 0 0 0 0 °

e  -401 877 -9  -242 -85 -1 -104 -76  -55  -ad  -2T . -16 -1l a3 - 1 2

6102801 @  -1388 A3 -242  <BL 23 -5 Y 1 1 a 0 0 ] o o 0 0 o
Q 2 3 3 2 1 o o o 0 0 0 0 0 0 o 0 0 0

1 -2 -1 0 0 o o 0 0 0 0 0 0 0 0 0 0 o 0

e -2 -135  -81  -IT -5 -1 o 0 ] o 0 v 8 o o 0 0 o

"For thase sateilites, wls in units of 10% degrees,
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of the semimajor axis, inclination, and eccentricity. Thus; it is not necessary to
incorporate the interaction terms, as they have already been included mumerically

and subtracted from the observed data.

As Tables 5 to 7 show, the convergence of the coefficients with orders of the
harmonics is slow, particularly for low-altitude and for low-inclination satellites,
For Dial and Peole, the coefficients of the secular motions for lower harmonics are

not independent, as w is almost twice as large as -%.

For low-inclination satellites, the signs of the coefficients chailge continually as
the order of the harmonics is increased, while for high-inclination satellites, they
change only rarely. Therefore, to reduce correlations between the coefficients in
the determination of zonal spherical harmonics, it is necessary to use data for satel-
lites with well-distributed orbital elements. However, such data are usually not

available.

Table 8 gives the orbital elements for the 14 satellites of this analysis. Gaps
still exist in inclinations arocund 20° and 40°. Table 9 lists the values of (O-C),
based on the coefficients from Kozai (1964), for the secular motions of the 14 satellites
and their standard deviations. The latiter are used to compute weights assigned to the
data. The columns headed I and I represent the residuals computed by 12 unknowns
and 11 unknowns, respectively (discussed in Section 4.3), and the dates refer to pre-
vious Kozai solutions (see specifically Kozai, 1959b, 1961a, 1963a, 1969). Kozai
(1969) intentionally increased some of the standard deviations, since he thought that
neglect of higher order terms would cause errors larger than the standard deviations
of the observed values. For the same reason, we have increased the standard devia-
tion (10"6 degree per day) to 3 X 1078 degree per day for o of satellite 5900101 and £
of satellites 5900101, 6000902, 6302601, 6206001, 6101501, and 6508101. The standard
deviation assigned to the secular motions of 6508901 was erroneously given in the pre-

vious paper.

In the determination of even-order harmonic coefficients, we have used the
secular motions and the amplitudes of ggf’ 2w terms for selected orbital elements of
those satellites for which the eccentricities are small. We could not use data from
the other satellites, since the orbital elements available for them were not of sufficient
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~ accuracy. The (O-C) values and their standard deviations fof the ampliitudes of the
long-periodic terms are given in Tables 10 and 11. The longitude of the ascending
node and the inclination have been omitted for some of the satellites in Tables 10 and
11 because their amplitudes are extremely small. The residuals for w of 6508901
and 6101501 and for € of 6400101 computed after the determination were found to be
much larger than their standard deviations computed from observations. Also, since
.the inclinations of these satellites are near the critical inclination, higher degree
interaction terms neglected in the computations — such as Jg /3 2 and JSJ 3 /J e mighﬁ
have affected the data reduction. For these reasons, we increased the standard
deviations assigned to these data from 1.5, 2, and 1to 4, 5, and 3, respectively;
the increased values are given in Table 11. One misprint appeared in Table 2b of

Kozai (1969): (O-C) for w of 6508901 should be (6 + 2} X 10"3 instead of (6 i‘ 2} X 10-4.

Tahle 8. Orbital elements of adopted satellites.

Satellite (rev élay"l) ' | I e
7001701 13. 800 52410 0. 0880
7610901 14,811 15,040 0. 0165
6001301 13. 454 28. 330 0.0166
5900101 11,460 32, 880 0. 1650
6202901, 9.126 44, 800 0.2428
6000902 12.197 47,230 - 0.0114
6302601 14,108 49,740 0. 0600
6206001 13. 345 50. 140 0. 0070
6508901 11. 968 59. 380 0.0717
6101501 13. 870 86. 820 0. 0080
6400101 13. 920 $9.910 - .0.0015
6406401 . 13.746 79,700 0.0129
6508101 13. 805 87.370 0.0743
6102801 8. 677 95.850 0.0121

4.‘ 3 Solutions

The equations of condition were solved by least squares for both the evén—order

and the odd-order harmonics. They were solved first with 11 'unknowns,- Jn (n s 23y,
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and then with 12, the twelfth being Jn (24 £ n £ 49), Seven solutions were obtained.
The solutions, given in Tables 12 and 13, include the sums of the squared residuais,
The values for coefficients of degrees lower than 14 express corrections to those in
Table 4.

Table 9. (O-C) for secular motion and their residuals (in units of 1()_6 degrees per

day).
Satellite (0~ Q) I II 1969 1963 1961 1959
7001701 & -18060 <+ 90 ~57 271 29090 9540 18250 18840
Q 10120 + 70 -51 258 -17400 -5390 -9950  -10240
7010901 & -2200 + 800 -1530 -857 -4700 100 6200 6900
Q 5160 + 100 -83 99 -2160 -1450 -5560 -5900
6001301 & 170 + 100 43 61 40 -300 -670 -90
& -125 +5 -4 -10 -1 59 -611 -928
5900101 & 32 +3 1 3 1 18 -129 278
Q -9 +3 2 7 0 10 -248 -488
6202901 o 40 +£6 11 10 2 300 827 1013
Q2 7 £3 5 8 2 -39 -247 -395
6000902 & 170 + 50 0 21 47 -287 770 1070
Q -1 +3 i 5 4 -43 -342 -594
6302601 & 920 + 10 -1 -6 -52 2650 4900 5290
2 1 +3 0 -2 19 261 -2 -352
6206001 & 600 + 60 16 84 60 2230 4180 4500
& -42 +3 1 2 8 -56 -437 -740
6508901 & =110 + 10 -1 -29 -26 1480 3180 3285
&2 -70 +3 0 -6 -7 -670 -1465 -1670
6101501 & -300 + 80 14 97 65 ~81 1900 2500
Q 22 +3 -1 -1 3 -1252 -2815 -3057
8400101 & 600 <+ 800 729 718 620 -600 580 -500
0 5 <+ 8 10 6 9 -1073 ~2703 -2921
6406401 & -400 + 100 -95 -231 -110 -2000 -4000 -4300
& 90 =+ 10 9 9 15 -220 ~-1351 -1467
6508101 & 620 + 30 15 100 -8 300 -3290 -3630
Q 50 +3 -2 -9 -27 35 -308 -337
6102801 & -35 =+ BO -47 -47 -47 -340 -915 -1008
Q -2.9+ 0.5 0.6 0.7 0.6 62.7 192.3 212.6
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Tables 12 and 13 show that the solutions are quite stable, especially for lower
order coefficients, and that the data can be expressed quite nicely by including J 35
6* The sum of the squared residuals drops from 114 to 39 when J 36 is included
for the even order and from 53.7 to 40.6 when J35 igs incorporated for the odd order.

and J3

Although there is some uncertainty as to whether J,,. and J g a0 have such large

35
values, the 12-unknown solutions that include them are regarded as the best. The
sum of squared residuals cannot be reduced much further even if the number of

unknowns were increased beyond 12,

Table 10. (O-C) for amplitudes of $85 2. termg and their residuals (in units of 103
degrees for w, 10% degrees for @ 10° degrees for 1, and 108 for e, per

day).
Satellite © - C) 1 I 1969 1963 1961 1959
5900101 0.3+0.5 -0.2  -0.2  -0.3 -0.6 L5 1.4
Q 212 -1 -2 -2 -1 -4 -4
1 ~3+6 -4 -4 -5 -4 3 3
e 0+1 1 1 1 1 -4 -4
6202901 w  -0.1+0.3 ~0.2  -0.2  —0.2 ~0.8 ~2.5 2.7
Q “1+1 i 1 i -8 -14 -14
I 4+4 5 4 4 -3 14 -15
e 011 0 0 0 5 12 12
6000902 o 344 2 2 2 -6 -10 . ~10
e 0+1 0 0 0 0 1 1
6302601 62 -1 0 0 ~14 —23 93
Q 2+ 2 3 3 3 -2 -3 ~3
1 “1+3 1 1 1 -4 -8 -6
e 342 -3 -3 -3 12 20 20
6206001 w 316 7 5 6 -5 13 -13
e 1+1 1 1 0 9 3 3
6508901 w 6+2 i 2 2 -22 -49 50
Q 4412 2 9 0 9 10 10
I 545 4 4 4 -3 -11 11
e 41 2 1 1 30 62 63
6101501 142 -1 0 0 -3 0 0
o 142 0 0 -1 3 -1 -1
6406401 0+2 0 0 0 -1 -1 -1
e 4+4 3 4 3 5 7 7
6508101 743 3 4 3 12 0 0
Q 1+1 1 0 0 2 2 2
1 218 2 -2 -2 -2 -2 -2
e -6 %2 -1 -2 -1 11 3 3

"For these satellites, wis in units of 102 degrees.
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Table 11. (O - C) for amplitudes of o m w terms and their residuals (in units of 103
degrees for w, 104 degrees for £, 10° degrees for I, and 106 for e, per day).

Satellite {0 - 0 I I 1969 1963 1961 1959
7001701 70 £+ 5 -2 0 -126 -104 -85 -87
Q  -19%0 + 30 0 -28 ~248° -570 ~168 -237
I 430 = 30 -34 -31 740 900 480 550
e 9l + 6 -5 -5 ~149 ~179 -99 -112
7010901 45 + 30 g 41 160 411 232 112
Q -18 + 45 -44 -48 0 10 9 7
I -170 % 300 166 ~170 ~181 -120 -190 -177
e 28 + 20 18 27 61 -102 83 49
6001301 4z 1 0 0 0 46 314 241
Q 0 + 3 2 2 0 3 ~10 -7
I 0 + 30 0 0 0 -2 -18 .12
e 1.6+ 1.0 0.5 0.5 0.6 13.5 90.7 69.8
5900101 ~1.7+ 0.3 0.0 0.3 0.0 4.8 22. 4 17.2
Q 2+ 2 2 1 2 -7 -87 -58
I 1 + 5 -3 -3 -4 -8 64 57
e _Soli 00 5 "'00 3 "0- 7 _0. ]. 3. 2 4’0- 0 35. 6
6202901 ~0.1+ 0.2 0.0 0.0 -0.1 -1.2 -4.0 6.1
Q 2 + 3 2 3 3 16 5 31
1 -2+ 3 -5 -4 -4 -11 -26 78
e ~1.5¢ 0.8 0.2 0.0 0.2 4.2 15.2 49.7
6000902 «w -19 + 3 -4 -4 ~10 42 1 315
2 1+ 1 1 1 0 3 4 6
I 2 + 6 -2 -2 -6 -3 =2 -6
e "2-0:1: 00 6 ll O ]... 0 0- 3 ].0- 5 2- 4 64- 8
6302601 w “17 £ 2 0 -4 -1 9 -17 86
Q 6 + 1 0 0 1 20 52 60
I 14 1+ 15 10 11 10 6 12 -19
e -12 £+ 1 0 -1 2 16 -6 99
6206001 -59 1 4 0 5 0 187 122 931
Q 2 3+ 2 -2 -2 -2 0 3 4
I 0 + 10 0 0 0 -1 0 -4
e -8 + 1 -1 0 -1 92 14 113
8508901 o 3 + 4 7 7 0 119 264 486
Q 10+ 2 3 3 2 -10 8 29
I -8 + 8 -9 -9 -7 -40 ~80 ~144
o 4 0+ 1 0 0 -2 127 292 555
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Table 11. (Cont.)

Satellite © - ©) I IT 1969 1963 1961 1959
6101501 «»  -19 % 5 -1l -11 -8 ~46 -265 ~413
Q ~3 0+ 4. . 2 2 0 7 17 . 29

1 0 x5 0 0 0 1 7 11

e -1 £ 1 0 0 4 ~48 354 ©  -560

6400101 «  -200 + 10 6 3 1 72 -445 593
e 58 + 3 -4 -5 =9 ~24 -122  -161

6406401 «  ~-110 + 20 23 36 30 23 510 930
e 6o+ 3 1T 1 1 5 11 16

1 0 £ 8 0 0o 0 0 -2 -3

e 34 & 5 -4 -2 -2 -4 106 199
6508101 60 + 2 1 -1 3 . 64 197 296
Q 2 + 1 0 2 2 16 26 32

I -10 £10 -9 -9 -10 -10 -13 -16

e 60 + 3 4 -5 ~2 67 231 354

6102801 «  -30 x50 -48 ~47 ~40 15 390 663
Q -2 % 2 -2 ) -2 -2 -3 -4

I -6 £ 7 -6 -6 -6 -6 -6 -5

e 3.0+ L5 - -0.7 -0.6 0.0 12.5 91.8  149.

*
For these satellites, wis in units of 102 degrees.

_ In Tables 9, 10, and 11, the residuals computed by the 12 unknowns and by the
11 unknowns are given under the headings I and iI, respectively. Solution I for even
orders can express the secular motions of all the satellites except 7010901 and 6202901.
Since only in Table 9 is the difference between residual I and residual II much larger
than the standard deviation for the data on 7001701, 6508901, and 6508101, it can be
said that J 6
accurate data become available for 7010901, so that the standard deviations for this

is determined essentially from the data on these three satellites, If more

satellite become smaller than the differences, a more definite conclusion regarding
J 36 Can be obtained, In Table 11, there is no essential difference between residuals I
and II. Thus, for odd orders, it is not yet definite that the i2-unknown solution is

much better than the 1l-unknown one.
For comparison, five previous solutions (Kozai, 1959b, 1961a, 1963a, 1964, 1969)

are given in Table 14. These solutions were derived from the following numbers of
gatellites with inclinations ranging from 28° to 96°:
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1959 1961 1963 1964 1969

Number of satellites 1 3 i3 9 12

Inclination range 34° 33°-50° 32°—-65° 33°-96° 28°—96°

Except for some of the 1963 determination, the standard deviations in the first three
determinations are more than 10 times larger than the present ones; therefore, the
residuals computed by these solutions are very large even for satellites within the
indicated inclination ranges. The residuals from the 1964 solution are listed as (0-C)
in Tables 9, 10, and 11. Both the 1964 and the 1969 solutions give very large residuals
for Peole and Djal. Table 14 also includes a solution by Cazenave, Forestier, Nouel,
and Pieplu (1971), who incorporated data for Peole, Dial, and SAS (7010701; I = 3°)

in addition to the satellites used by Kozai (1969). Their solution agrees quite well with
ours except for the odd higher order coefficients.
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Table 12. Solutions for even-order harmonics (it units of 10™%). Corrections are
given for n = 14,
' - Residual
Ja 4 9 Jg Iy J1p Iy 16 18 J20 J2 Iy B Residu
-3 30 -94 66 -178 161 -78 43 -77 -l08 75 114 -
+l 12 3 4 +4 +3 8 37 +9 £5 <13
-3 31 -97 68 -178 155 -74 30 -75 -104 72 31 06
£l 2 43 4 +4 +5 7 £10 46 +9 12 17
-3 30 -94 67 -177 161 -76 43 -74 -108 73 -9 . 113
£l £2 3 14 3 48 47 +9 +9 13 20
-2 30 -89 61 -181 162 -80 35 -83 -132 80 94 o8 -
1 2 3 13 #3 £2 6 +6 +5 +8  +9 +17 .
-3 28 -92 61 -178 167 -80 44 -75 -104 97 -61 o 103 .
i 2 13 +4 . 7 x7 16 9 15 28 :
1 £2 3 4 +4 EX T - +6 ¥ 12 125
-3 30 -94 66 -178 162 -78 40 -78 -107 74 14 115
+1 22 +3 x4 +H3 17 39 +7 9 12 £33 -
-2 31 -94 65 -183 165 -74 34 -102 -~119 92 199 36 39
+1 1 2 12 2 2 4 4 35 B 7 222
Table 13. Solutions for odd-order harmonies (in units of 10~ ) Corrections are
given for n= 13.
JS J5 J7 J9 "Jll J13 J15 J‘17 _Jl9 ' J21 J23 Jn n  Residual
6 ~-20 -12 -109 15 -222 104 -227 83 -70 111 53.7
+3 5 7 ¥ =7 7 %1l &1l x12 214 321 !
g8 -23 -8 -106 10 -210 88 -210 78 -83 137 -41 25 49. 4
3 x4 47 7 7 10 £13 © £13 #1113 118 20 T
3 -15 -18 -98 1% -226 121 -237 101 -78 101 -58 27 44,7
3 4 7 8 6 27 11 %11 412 11 £13  £20 *
5 =19 -12 -107 17 -222 107 -227 84 -64 103 -1l6 29 53.0
+3 +5 7 +8 X7 7 +11  +11  £12° 214 17 323 -
6 -20 -11 -109 15 -220 106 -227 87 -72 115 -23 31  s59.8
3 4 7 8 +7 +8  +10 11 12 12 +14 128 :
7 -22 -11 -109 13 -219 102 ' -218 78 -89 124 -47 33 51,1
+3 x4 &7 8 17 8 210 £12 12 12 116 132 ’
5 =18 -19 -101 10 -225 105 -220 99 -83 145 -134 35 40
+3 #2727 #6479 10 11 +11 115 +36 -6
6 -21 -11 -109 15 -222 102 -225 86 -66 110 -30 37
13 44 47 28 27 27 £11  £11  £13 13 £13 444 53,1
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Table 14. Comparigon of results (in units of 10-6).

Solution  J, Iy Js T8 10 12 Yia e Ui Yoo Iz gg
1959 1082.1 -2.15
1961  1082.19  -2.18
+3 +5
1963 1082. 48 -1, 84 0.39 ~0,02
+4 5 +9 +7
1964 1082,639 -1.649 0. 646 ~0,270 -0, 054 -0.367 0.179
46 +16 +30 +50 +50 +44 +63
1565 i0B2.628 =~-1.593 0. 502 ~0.118 ~0,354°  ~0.042 -0. 072 0,187 -0. 231 =0.005
2 +7 +iq 20 +25 +27 +28 26 +22 +22
1973717  1082.637 -1.618 0. 552 ~0.205 -0, 237 -0, 192 0.105 0.034 -0, 102 -0. 119 0. 092 G¢.199
£ 1 +2 +2 +2 +2 *4 4 +5 +5 +7 £22
1973 1 1082.636 -1.619 0. 552 -0.204 -0, 232 -0, 196 0.101 0.043 «0. 077 -0, 108 0.075
+1 12 3 +4 +4 +3 +8 £7 +9 +9 +13
Cazenave 1052, 637 -1.618 0.5508 -0.209 -~0,233 «0. 188 0. 085 - 0. D48 -0, 137 -0, 087
et al. +4 +10 +17 124 +26 287 +34 +3 +44 +52
(1971)
Solution
I3 5 17 ) Iy I3 Iis I e 9o I23 I35
1959 2. 29
+8
1961 -2.29 -0,23
+2 +2
1963 -2,562 -0.064  -0.470 o 117
£7 47 +10 +11
1954 -2, 546 -0,210 ~0, 333 -{}. 053 0.302 -0, 114
+20 +25 +39 +B0 +35 +84
1969 -2,538  -0.230 -0,361 -0.160 0.202 -0,123 -0.174 0.085 -0.216 0. 145
+4 +7 +15 +13 +35 +49 161 +65 +53 +29
19731 -2.541 -0.228 -0.352 -0.154 0.312 -0.339 0.106 -0.220 0.090 -0.083 0.146 -0.134
+3 +4 +7 £7 16 +7 +9 +10 +11 411 +i5 +36
197310 -2,540 -0.230 -0,2345 -0.162 0,317 -0,336 0.104 -0.227 0.083% -0,070 0.111
ﬂ, +3 +7 B +7 +7 +l1 +11 +12 %17 221
Cazenave -2.543 -0.226 -0.365 -0.118 0.236 ~0.202 -0.081 -0.027 -0,112 0.106
atgz?ul.) +5 37 +12 +13 12 +14 +21 +23 +23 +15
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5. DETERMINATION OF TESSERAL HARMONICS

Tesseral harmonics are computed by combining \sat_ellite pertufbations and
terrestrial gravimetry. In the computation of the normal system, terms with small
contributions have been omitted. Therefore, the normal system determined from
satellite analysis is complete through ¢ = m = 12. In each higher order, terms have
been omitted — for example, 13,6 through 13; 9 and 14, 5 through 14, 11. Resonant
harmonics through 23, 14 have been incorporated. Of course, all terms were included
in the computation of the residuals, Inthe same way, for surface gravity all available
geopotential coefficients have been used, But no partial derivatives for the zonal har-
monics or tesseral harmonies less than 9th degree were computed, since they are
negligibly small. -

For each orbital are, a set of six mean elements, é, is deteﬁnined. The linear
rates are derived empirically, as is the mean anomaly. In addition, higher polynomials
in the mean anomaly are employed, where appropriate, to account for fhe nonperiodic,
yet nonsecular, effects of air drag and radiation pressure. Twelve or more orbital,l.:
elements are determined for each are, and the arcs range in length from 4 to 30 dayé;
Therefore, with the more than 100 orbital ares used in this solution, over 1500 additional
parameters need to be determined. By use of a device'de‘scribed in Part IV of this
Report for reducing the normal equations, this can be accomplished without dealing with
2000 X 2000 matrices. For systems of 2000 unknowns, the time required to compute
reduced normal equations is much greater than that for the adoptéd method, which is
a block Gauss-Seidel iteration. Reduced normal equations are used with more limited
problems —e.g., in a solution for reéonant harmonics — because they rigorously account
for the interaction of the elements and unknowns. ‘ |

The determination of orbital elements and that of geodetic parameters (gravity
field and station coordinates) are separated and iterations are performed alternately;
this method improves first one set and then the other. As -the iterations broceed, the
- choice of unknowns is modified: Satellites are either deleted or augmented, depending
on whether gravity-field coefficients (and station coordinates) appear to be ill déter—

mined or significant,
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Equations (11) lead us to the method of selecting those gravity-field coefficients
that affect the orbit and that therefore can be determined fiom observing the orbit,
We know that _Ctjem’ a, e, and I determine the size of & é

— {mpy’
puted by using an estimate of ]@ Eml and the value of the mean elements. We esti-

which can be com-

mate |—é—£m| =P to test for significance, and only terms greater than af B are
retained. All the 6 are calculated and combined into a shift of position vdp - dp;
they are given in Table 15 for satellite 6701401 with £ = 11, 12, ..., 20. The units

are adjusted so that with am expressed in units of 1078 {e.g., CZ, 9= 2.4), the per-
turbation in position is in meters. Conservative values for o and § are used, and
more terms are carried than are perhaps necessary. For example, for £ = 11, m = 5,
and C, = 107/2% = 0,083, the perturbation is 0.083 X 38 = 3 m, TFrom Such tabula-
tions for each satellite, we can choose the coefficients that affect the motion of the
satellite and ascertain how many satellites contribute to the determination of a
coefficient. In addition, the accuracy of the available data controls the size of the
effect that can be detected. The choice of coefficients is made by balancing the
amount and precision of the data available for a particular satellite against the sen-
sitivity of that satellite to particular coefficients. Further, it is apparent that the
surface-gravity data are stronger than the satellite information for some coefficients,
and for that reason some higher coefficients have been dropped from the satellite
solution,

Table 15 illustrates two points referred to earlier, The amplitudes for m = 13
are quite large because of the resonance; the large size of the effects continues well
into the 20th-degree terms. The m = 12 and m = 14 harmonics also have sizable
effects because they are adjacent to a resonant harmonic. Tables for the other satel-
lites used are given in Gaposchkin (1970b).

Apart from the resonant harmonics, terms higher than £ = 12, m = 12 are weakly
determined by the satellite data, but it had been demonstrated in earlier iterations
that the surface gravity could determine these higher harmonies. The satellite solu~
tion was limited to those harmonics that have an effect greater than 3 to 4 m on the
orbit. The resulting terms were complete through £ = 12, m = 12. The higher order
terms selected were C/S(¢, 1) 13 =1 =< 16; C/S(¢, 2) 13 =4 = 15; C/S(14, 3); C/8(, 12)
13=1=19; C/S(, 13) 13 =£ = 2; and C/S(¢, 14) 14 =1 =24,
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Table 15. Sens1t1v1ty COBfflC:lentS for satellite 6701401 (in units of meters, with
|@ﬂm| x 109).
e= 0.0843130 A = 7614 km
I = 39245459 perigee = 594 km
n = 13. 064356 apogee = 1878 km
2 ,
- R 11 12 13 14 15 6 17 18 19 20
1 154 229 121 75 139 160 66 69 118 67
2 113 43 61 94 58 35 59 46 0 33
3 52 78 65 25 54 43 12 18 39 26
4 66 34 .19 39 38 14 10 27 0 0
5 38 28 51 29 0 23 - 10 0 0 18
6 65 48 42 14 27 19 0 17 0 0
7 68 62 6l 45 10 0 18 16 0 0
8 46 62 45 37 18 12 0 0 18 0
9 21 30 46 64 55 53 23 0 0 0
10 0 0 29 44 43 58 37 32 0 0
11 0 0 8 16 27 48 47 57 48 44
12 0 0 21 44 64 89 101 75 99
13 425 1203 2987 4758 8014 9531 12277 11613
14 0 0 20 47 77 111 145
15 0 0 0 0 16 20
16 0 0 0 0 0
17 0 0 0 0
18 0 0 0
19 0 0
20 0
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The m = 9, 12, 13, 14 terms are resonant with some satellites, which are listed
in Table 16 along with their resonant periods. Several satellites are resonant with
more than one order. For example, 6701101 has a 1. 6-day period with the 13th order
and a 2.6-day period with the 14th, the latter being the principal effect. Other
resonances have several periods, as illustrated by equation (12) for 5900701 (which
was not used in the final solution) and in Table 16 for 6701401. The multiple periods

are due to the nonzero ecceniricity, which causes the frequency splitting.

Table 16. Resonant periods.

Resonant
with order Peried
(m) Satellite Inclination (days)

9 6102801 95° 2,90

12 6100401 39 15.0

12 6000902 47 15.5

i2 6508901 59 7.2

12 6506301 69 3.3

12 6507801 144 2.3

13 6701401 39 9.4,10.9,13.1,...

13 6503201 41 5.6

13 6701101 40 1.6

13 6206001 50 5.3

13 6800201 105 8.3

13 6600501 89 1.8

13 6304901 90 2.5

14 6701101 40 2.6

14 6302601 50 12,2

14 6101501 67 3.84

14 6101502 67 3.76

14 6400101 70 4.9

14 6406401 80 2,9

14 6408101 87 3.8

14 6600501 89 2.2
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The results of the dynamical solution must be discussed in the context of the
combination solutions. A summary of the data is given in Table 2. ‘The selection
of data and unknowns evolved through the analysis. The number of satellites used
ranged from 21 to 25, and the number of arcs in the largest solution was 203. Arcs
were added or rejected on the basis of their contribution to the normal equations,
the number of observations for a particular station, the improvement of distribution
for a resonant harmonic, and the quality of the orbital fit,

Two iterations were performed for the gravity field. The first employed the
gravity field and station coordinates determined by Gaposchkin and Lambeck (1970) as
initial values; and the second used the results of the first iteration for the gravity
field plus the station coordinates determined in Part VI of this Report, Other basic’

constants adopted are as follows:

GM = 3. 986013 X 1020 cm? sec™2

¢ = 2.997925 X 1010 em sec™! (velocity of light)
k2 = (.30 (Love number)
E.e = 6.378140 Mm .

For each iteration, several solutions were obtained. Orbital arcs were added or

deleted to improve the satellite distribution and the variance-covariance matrix.

Several weights for the surface gravity were used. For areas without surface~

gravity data, we had four choices of treatment:
A. We could make no assumptions about unobserved areas.

B. We could use a zero anomaly with a very large variance; that is, the expected

value of gravity would be zero.

. C. We could use a reference gravity field with a very large variance; that is,

only the higher harmonics would have an expected value of zero.
D. We could use a model anomaly, for example, one determined from topography.

Adoption of method A would introduce very large short-wavelength features into those
regions where no gravity is measured. In addition, the statistical comparisons dis-
cugsed later are very poor, although the (O - €) values and the satellite orbits are good,
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Therefore, A had to be discarded. Gaposchkin and Lambeck tried methods B and D
and found them equivalent. Choice C is an improvement over B hecause the low-degree
and low-order terms are well determined by means of satellite data, Therefore, C
was adopted, with the weight given in Table 3. Comparing the results of choices A
and C, we found that satellite comparisons are identical, the (O - C) for the surface
gravity is marginally improved, and the statistical comparisons of the surface gravity

are quite acceptable,

The fully normalized spherical-harmonic coefficients for the zonal harmonics
and the tesseral harmonics are given in Tables 17 and 18, Figure 5 shows the mean
potential coefficient by degree and the 1()_5/i!2 rule. The mean potential coefficient
for degrees 2 through 36 is determined by numerical quadrature of surface-gravity
data (see Section 7) and is also plotted in Figure 5. Figure 6 plots the geoid heights
and gravity anomalies: Figures 6a and 6b are calculated from the coefficients in
Tables 17 and 18 with respect to the best-fitting ellipsoid; Figures 6¢ and 6d, with
respect to the hydrostatic ellipsoid; and Figures 6e and 6f, with respect to the 5th-
degree and order reference surface defined by the 5th-degree and order coefficients
from Tahles 17 and 18.

Table 17. Zonal harmonics in fully normalized form. Eﬂ 0" ~d, N2+ T,
J, is from solution 1973 I, Table 14. ?

Harmonic Value Harmonic Value

-4, 84170E-04 -1, 94980E-08

Cs,0 Ci4,0

Ts,0 9. 60408E-07 Tis.0 ~1,88586E-08
Sy 0 5. 39323E-07 Cig.0 _5.91864E~09
Cs 0 6. 87446E-08 Ch70 3.71868E-08
T o ~1. 53097E-07 Cis.0 1. 67687E-08
;o 9. 08860E-08 Cio,0 -1.58527E-08
(ST 4. 97198E-08 0.0 1, 85847E~08
.0 3. 53200E-08 Co10 1,26574E-08
Clo,0 5. 17176E-08 Cas,0 _1.37146E-08
Cis,0 ~6. 50565E-08 Cas,0 _2. 11504E-08
Cis, 0 3. 84000E-08 Cys, 0 1. 59029E~08
C13, 0 6. 52406E-08 Ca6.0 _2.32912E-08
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Figure 5. Mean potential coefficient bﬁr degree.
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Figure

6a. SE II geoid heights in meters éalculated'with respect to the best-fitting egllipso‘id,_ f=1/298. 256.




Figure 6b. SE II gravity anomalies in milligals calculated with respect to the best-fitting ellipsoid, f = 1/298.256.
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Figure 6d. SE III gravity anomalies in milligals calculated with respect to the hydrostatic ellipsoid, f = 1/299,67.
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Figure 6e.

i

SE OI geoid heights in meters calculated with respect to the 5th-degree and order reference sur-

face, Com ™ Sﬂm ="0,if £=5andm = 5.
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Figure 6f, SE .III gravity anomalies in milligals calculated with respect to the 5th-degree and order reference sur-

face,'C'm=§£m=0ifﬂs5andms-5. _ :
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Table 18. Fully normalized tesseral-harmonic coefficients for the geopotential.

06¢

10,3

Harmoﬁic Value Harmonic Value Harmonic Value Harmonic Value
2, 3799E-06 §2 5 -1, 3656E-06 63 1 1,9977E-06 "§3 1 2, 2337E-07
- —_— g |
7. 7830E-07 53 9 -7.5519E-07 . Cy 5 4,9011E-07 83 5 1. 5283E-06
-5, 1748E-07 §4’ . ~4,8140E-07 64’ X 3. 4296E-07 '3"4’ , 6. 7174E-07
P _— )
1. 0390E-06 §4,3 -1.1923E-07 54’4 -1, 0512E-07 24,4 3. 566 1E-07
-5, 3667E-08 8 | -7.9973E-08 Ce 5. 9869E-07 St 5 -3. 9910E-07
Y . . — . —_—
-5, 8429E-07 S -1.6338E-07 C -1. 1583E-07 ’ -4,5393E-08
°5,3 5,4 °5,4
1. 3956E-07 S5 & -8.6841E-07 Ce 4 -7.2166E-08 Sg 1 1.7756E~08
9, 4670E-08 'S'B’ X -4, 0654E-07 66’ q 4.4139E-09 §6’ q 2. 9055E—08
—d ” —_— . )
-1, 0003E-07 Se 4 -3.0297E-07 Cq s -1, 3504E-07 8¢ 5 -6. 0964E-07
-2, 9136E-08 §6’ 6 -2.6327E-07 ET’ 1 2.3532E-07 §7’ 1 5. 5634E-08
2, 0425E-07 5 1.7321E-07 B 2. 1994E-07 3’ -3, 4644E-07
>7,2 - 7,3 S7,3
-2.8617E-07 S -2.7738E-07 C. . 3.4727E~08 S 8.7014E-08
7,4 ~1,5 >1,5
-2, 7496E-07 5. & 8. 5865E-08 C, - -2,4856E-08 8, 4 -8,8968E-09
' 1, 0946E-08 '§8’ 1. 4.8429E-08 A 68’2 1, 1084E-07 §8’ 2 1. 0359E-07
-8, 8578E-08 S, -5.0715E-08 T -2.2315E-07 5. 2. 6511E-07
©8,3 . ~'8,4 , 8, 4 ,
1. 5318E-07 Sg 5 8. 1158E-08 Cs 6 " -9,7542E-08 S5 6 2. BOS2E-07
2. 0498E~07 §8’ , 2. 4592E-07 68’ ) 1. 6967E~07 §8’ . 9. 3261E-08
1. 8099E-07 '3'9’ . 4. 1091E-08 ng ,  -2.2013E-08 §9’ , . 2.4215E-08
-9, 9252E-08 S,  -2.3085E-08 Ty 4 -4.087E-08° B, , ~3.8525E-08
: o — : s | ’ v :
-5.8957E-08 59’5- 3. 6834E-09 Cy 6 4.8812E-08 S9. 6 1. 1115E-07
R R i | R ) vl
-1, 9880E-07 Sg 7 -1,4978E-07 Co g 2.3523E-07 8¢ g 9. 6355E-09
-— — -
-3.4533E-08 . sg’g 5.9502E~08 01; 1 8. 9008E-08 S -6. 0157E~08
Y - . 1 —
-3,7256E-08 S -6.3676E-08 C -1.3307E-07 ]

-7.2728E-08
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Table 18. (Cont.)

Harmonic © Value Harmonic Value Harmonic Value Harmonic Value
Cipq  ~2.1887E-08 S10,4 ~7.8408E~08 Cig,5  ~6-1509E-09 ‘_s"1 0,5 _1. 1904E-07
Em’ 6 -9.4142E-08 _S_IO, 8 -1, 1728E~08 Sm’ 2 1. 8525E-07 EI‘O, 2 2. 1656E-08
Cio,8 1. 0887E-09 50,8 7.0781E-09 10,9 7.8473E-08 51,9 5. 6381E-09
€10, 10 1,3321E-07 510, 10 9. 8839E-08 Ci,1 ~1.2194E-08 S11,1 7. 5463E-08
Ty, ~2. 0255E-08 51,2 ~6.2998E-08 11,3 ~1. 0988E-09 8113 ~3. 8098E-08
211’4 1. 5676E-08 §11,4 -1.9551E-Q7 ?_ll, 5 ~1.8591E-09 _S_ll, 5 6. 1113E-08
Ell, 6 6. 3601E--08 ﬁll, 'y -2. 6457}3—08 _(_:_ll, = ~3.3761E-08 _S_ll, - -1, 2825E-07
Ell, 3 -1. 3634E-08 Ell, 3 4, 5222E-08 Ell, 9 2. 1256 E-08 _S_ll, 9 6.6721E-08
C11, 10 5. 2555E -08 Siy10  -Te7401E-08 11 8.6996E-08 Si1,11.  ~2-5691E-08
Cla,1 -5, 6935E-08 B1o, 1 ~6.6159E~08 €122 -9.7424E-08 515, 2 4.6341E-08
Cla,3 1, 1555E-07 52,3 -4, 8666E-08 C12,4 -5, 0379E-08 51,4 5. 3568E-08
Cia,5 8, 1834E-08 52,5 2.7932E~08 Ci2,6 -2, 1177E~08 S19,6 3. 5034E-08
Cis,7 2. 9751E-08 81,7 3. 1783E-08 Cla,8 4.0190E-08 5158 5. 6877TE-08
Ci2,9 -1. 1503E-07 S12,9 1, 4508E-08 Cip 10  ~%-5921E-08 819,10 -4, 3264E-08
9_12, 1 -7.8443E-09 _S_lé, 11 -4,7858E-08 Elz, 12 -2.7617E-08 512, 12 -1.6808E-08
Ci3,1 8.6136E-05 S5, -3.2401E-08 C13,2  ~1.0679E-08 53,2 ~9. 0670E-08
Cis,3  ~3-2961E-08 S13,3 4, 9286E-08 Cis,a 3.9852E-08 By , 1. 0608E-07
313’ 5 4, 0047E-08 _S_13:.5 3. 8114E-708 _(:.1-13, 6 -2.1906E-08 513, 8 -1, 1321E-08
Cis,7 ~7.6933E-08 S13,7 1. 1140E-08 Cia, 8 ~2.7448E-09 S13,8 1. 4309E-08
13,9 ~1. 1588E-08 513, 9 7.2989E-08 - T3, 10 4,1979E-08 513, 10 7. 6769E-09
Cpg gy -5-4381E-08 . B3, 1. 3450E-08 Cis 1  -%6633E-08 Sis, 12 7. 9963E-08
Ty g3  -6-8944E-08 513, 13 7. 1891E-08 Cpa,; - ~l-4359E-08 Sle1 5. 2390E-08
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Table 18. (Cont.)

Harmonic Value Harmonic Value Harmonic Value Harmonic Value
?14’ 9 -1, 5908E-08 ?14, 9 2.7374E-08 E'M, 3 9.6315E-08 ?14: 3 -2. 5631E-08
‘ 314’ 4 -2, 9864E-08 ?14’ 4 -3.8189E-09 214, 5 -1, 3828E-09 314’ 5 -5. 8680E-08
514, 6 ~1.3872E-08 EM, 8 -2, 7976E—OE% 314’ 7 7. 1056E-08 _8_14, - 2. 4043E-09
214’ 8 -1.8779E-08 §14’ 8 -5.8750E-08 ?_14, 9 -2.4322E-08 _S_14, 9 6. 046 1E-08
514: 10 2. 8985E-08 _8-14, 10 -3.4224E-08 314: 11 8.2611E-08 El‘i, 1 ~1. 9627E-09
_C_14, 19 1.1751E-09 EM, 12 -3. 0967E-08 ?_14: 13 3.0793E-08 514, 13 4,7620E-08
9_14: 14 -6. 5969E-08 El4’ 14 3. 3030E-09 _(_3-15’ 1 2.9358E~08 E15, 1 ~1. 6691E-08
EIS, 9 ~1,2291E-08 _S_ls, 5 -6.8963E-08 El 5, 3 -5.8921E-08 515, 3 4,4772E-08
215,4 1,4876E-08 -9215, 4 7.0359E-09 515, 5 3.6806E~08 515’ 5 -8, 4051E-09
Els, 6 1. 0081E-08 fls, 6 -3.0473E~08 315, - 3.0439E-08 515’ . 1. 5775E-08
215’ g -6. 8884E-08 315, 8 6. 0808E-08 315, 9 ~4.5169E-08 _5‘315, g 5. 5556E-08
215, 1o 6. 2126E-08 _S:l5, 10 -7. 1799E~09 Els, 11 -4,4724E-08 _S_ls, T -3.4391E-09
515’ 12 -4, 2025E-08 E15’ 19 5, 9072E-09 9_15, 13 -4. 1654E-08 Els, 13 ~5. 5892E -09
515’ 14 9. 5654E-09 515, 14 ~2.7145E-08 315, 15 -5. 6358E~-08 ?_15, 15 3. 4895E-08
_(316’ ] -9, 9588E-09 §16, 1 5.4160E-08 ElB, 9 5.5086E-09 fls, . 4. 9455E-08
Els, 3 5.4189E-08 EIG, 3 5,4887E-09 9_16, 4 4,8176E-08 _S_le, 4 3. 6270E-08
_(_3_16, 5 ~2.4432E-08 Elﬁa 5 2.9671E-08 9_16, 8 -3.7203E-09 §16, 6 ~2. 0786E-08
_(_3_16,7 -2.2794E-09 Elﬁ,? 3. 0609E-09 9_16, 8 -1, 0459E-07 Elﬁ, 3 -4,4731E-08
316, 9 2.4845E-08 Elﬁ, 9 -8.6262E-08 ?_16: 10 -3. 9928E~-08 EIG, 10 -4.5058E-09
515: 11 -2, 0848E-08 516, 11 2.9738E~08 Elﬁ, 12 1. 5930E~08 '8_16, 12 ~1.2703E-08
Elﬁs 13 2, 5280E-08 §16, 13 6.6240E-09 216: 14 ~1.4852E-08 _S_lﬁ, 14 -8, 1713E-09
016’ is ~7.7425E-08 Sls, 15 -2.6491E-08 016, 16 -1.8538E-08 slﬁ’ 16 -9, 2310E-08
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Table 18. (Cont.)

Harmonic Vajue Harmonic Value Harmonic Value Harmonic Value
El’f', 1 8. 6593E-09 | 57’ 1 -4, 1093@-08 ?17,'2 -9. 0769E-09 ?17’2 -2.7205E-08
517,3 -7.7864E~09 - _8_17,-3 -1,7913E-08 317,4 ~4.3231E-08 El?,4 6. 8203E-08
317, . 4, 1.513E-08 : ?17, 5 -2.5453E-08 E”, 6 -4, 5453E-08 _S_l?, 6 ~1.7273E-08
517,7 1. 6938E-08 "5_17,7 -3.3752E~08 ) 517» 5 4.1231E-08 El?, g 5. 8792E -09
517,9 -4, 3119E-08 _Sil?, 9 -1.5974E-08 ElT, 1o ~l.0844E-08 EIT, 10 5. 5628E-08
E”’ 11 -4.4136E~08 fl’!, 11 4. 3123E-09 El?, 12 3. 16§1E-08 ﬁl?, 12 6. 2982E -09
217, 13 2.5147E-08 517, 13 9,7728E-09 317, 14 -5, 5945E-09 fl?, 14 7. 2604E-09
217, Is 4.9113E-08 517’15 3. 1958E-~08 . 217,16' -2. 3540E-08 _S_l?,le -1.5882E-08
Sl’r', 17 -9,0191E-08 . §17, 1 -9.4775E-09 7 318,1 ._ -27-35571::-08 _S_’ls,l -7.4536E-08
218,2 -9.4249E-09 §18,2 3. 0353E~08 ‘ 218’3 -3, 5003E-08 §18,3 -2, 0464E-08
318’4 2. 9433E-08 . 518,4 -474672}::-08 _ 318;5 ~ 1,7511E-09 §18,5 ~6. 0367E-09
Cis,6 2.3931E-08 854 ~4. 4966E-09 Cig,7 ~ 77-8040E-10 Sig,7 ~8. 2010E-09
218’ g 5. 3819E-08 518, 8 -2, 2106E-08 318, g  -3.6120E-10 518’ 9 -5. 0562E-09
Cig,10  4:2146E-08 518, 10 7.8924E-09 Clg,11  2-4981E-08 Sig, 11 2. 3183E-08
318, 19 ~6-2242E-09 fis, 12 6.6025E~09 318’ 13. _—2.6685E—08 _S_IB, 13 -4.2500E-08
C18,14 9. 1191E~09 . Sy4 1 -3.3129E-08 Clg, 15 % 1521E-08 Sig, 15 L 7610E-08
_C_lS, 16 2, 4850E-08 .' 518’ 16 -4.8182E-09 318’ 17 3.5357E-08 Els, 17 -4,7166E-08
EIS, 18 -3, 4701E-10° f’ls, 18 5. 0554E-08 519, 12 - 3.6058E’—0$ §19, 12 -3. 4421E-09
319, 13 9. 6876E-09 519’.13 -6. 6095E-08 21'9,- y 7.6389E-09 E19, 11 ~2.7649E-08
Ezo, 13 2,7630E-08 520, 13 3. 2389E-~08 320’ 14 3.3687E’—08' fzo, 14  -6.5741E-08
_0_21, 13 ~l9799E-08 521’13 -3,0711E-08 321’ 1 1,6623E-08 _?21, 14 8.7215E-09
322, 13 ~7.9435E-09 . 5-22, 13 4. 1452E-09 Ezz, " 2.8516E-09 §22, u —4.2148E-08
_(_:23’ 13 -1.3236E-08 523, 13 -:l—4.8892E—09 Cos, 14 -2.1148E-08 323’ 1 2. 2010E-08
Co4, 14 3. 4668E-09 524’ 14 © 2,2983E-08 \




6. EVALUATION OF RESULTS

6.1 Orhit Determination by Use of SE ITI

A detailed evaluation of SE III results with satellite orbits is difficult. Although
other effects — such as lunar and solar perturbations, body tides, radiation pressure,
and air drag — are all included in the orbit computation, none of these is known without
error, and each, in itself, provides a number of problems. Also, the coordinates
of the tracking stations are not known without error. Furthermore, incomplete orbital
coverage can result in overoptimistic estimates of orbital accuracy from formal
statistics. Finally, the tracking data contain errors. A few comparisons are given
here to indicate approximately the accuracy of the total orbit-computation system.

The gravity field is certainly one of the larger contributors to the error budget.

From ISAGEX data, consecutive orbits were computed every 2 days, by using
4 days of data {except for 6800201, where 6 days of data were employed). This type
of analysis is especially valuable for

A. Detection of bad observations, since each observation is used in two orbits.

B. Evaluation of the reliability of the orbital elements by comparison of adjacent

orbits,

Results for 6508901, 6800201, and 6701401 are given in Table 19, together with
the number of chserved points used in the final iteration. All calculations were per-
formed by using the final station coordinates and the tidal parameter k2 = 0,303

radiation-pressure perturbations were calculated with a fixed area-to-mass ratio.

We see that with good orbital coverage, we can expect to have root-mean-square
(rms) residuals of between 4 and 10 m, Satellite 6701401 has a relatively low perigee,
and the poorer orbits from MJD 41072 to 41078 coincide with an increase in solar

activity that resulted in increased drag.
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Table 19. Comparison of SE IIl with satellite observations.

Epoch (MJD) - om) = n- Epoch (MJD)  o(m) n

6508901 (Geos A), A/M = 0.05 cgs

41000 4.1 289 - 41010 7.7 523
41002 5.5 367 41012 9.8 577
41004 3.2 314 41014 - 9.2 715
41006 8.9 601 - 14016 - 4.1 425

41008 10.6 696 41018 3.6 221

6800201 (Geos B), A/M = 0. 05 cgs

41038 2.4 249 41046 2.7 441
41040 - 6.5 533 41048 3.8 304
41042 7.8 . 681 41052 2.8 388
41044 6.3 651 41054 6.6 602

6701401 (DI1D), A/M = 0.1 cgs

41072 10.3 . 467 41080 7.4 821

41074 2.9 332 41082 6.9 64
41976 16.3 341 41084 4.9 427
41078 . 17.0 254 41086 3.6 . .519 .

Ot the 4- to 10-m rms residuals, 2 to 3 m come from: station coordinates and 1 to
4 m could be attributed to the orbital theory. Therefore, the accuracy of the gravity
field for orbit computation may actually be somewhat better than indicated by Table 19.-

6.2 Comparison with Surface Gravity

To compare a geopotential model (gS) with observed values of surface gravity (gt) ,
the following quantities defined by Kaula (1966b) can be computed:
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(gf>

o

(g8

(g, - gs)z)
E (c3)
E.(Ef)
E (6g%)

(gtgs) if gt were free from error and known everywhere. Then, «

The mean value of gf , where g is the mean free-air
gravity anomaly based on surface gravity, indicating the
amount of information contained in the surface-~gravity

anomaties,

The mean value of gz, where gq is the mean free-air
gravity anomaly computed from the geopotential model,
indicating the amount of information in the computed

gravity anomalies,

An estimate of 8y~ i.e., the true value of the contribution
to the gravity anomaly of the geopotential model and the
amount of information common to both g and Bge

The mean-square difference of g and Bge
The mean-square error in the geopotential model,
The mean-square error of the observed gravity.

The mean square of the error of omission ~ that is, the
difference hetween true gravity and By, this term is then
the model error.

If the geopotential model were perfect, then (gz) = (gﬁ), which in turn would equal

s would be zero

even though g would not contain all the information necessary to describe the total
field. The information not contained in the model field — i.e., the error of omission,
bg — then consists of the higher order coefficients. The quantity ((gt - gs)z) isa
measure of the agreement between the two estimates gt and g s and is equal to

(g, - 80 = BeD) + E(e) + E(sg®)

variance 0‘? (Kaula, 1966h):

Another estimate of g, can be obtained from the gravimetric estimates of degree

2. % 9
E(gh)“D—E 5 +1 %
2
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where nﬂ is the number of coefficients of degree £ included in gh, and
9 IV =2 =2
R )
m
We also have
2 2
E(e) = (gy) - (8,8
and

E(D) = (eD)/(n) .

Table 20 summarizes the above quantities for SE HI. The improvement. over
SE T in the coverage of surface-gravity data is evident. . The more limited gravity
coverage used for SE II resulted in accuracy estimates that were consistently -
optimistic. The revised set of gravity anomalies has greater coverage and is more
independent of the geopotential model. Even so, line 2 represents an estimate of the
accuracy, E(e ) = 52 mgal that is moro opti_mistic than that based on independent
gravity data for SE IO, which was 99 mga.l (Gaposchkin and Lambeck, 1970).

We used the 306 gravity anomalies with more than 19 observed units in each
average for the comparison. There is very good a,greement between (gtg p (g Ds
and D, which would be equal for a perfect solution. In E(E-g ), we have a measure of
the information remaining in the higher harmonies. The formal statistics give an
error in the combination reference field of E(ez) = 15 mgalz. ‘

An alternative approach is to eliminate &g by use of

Aﬁﬂm 1 cos mi
&, |TTmvE-D f (gt Eref) <£m‘sm ) [sm mh]> do ,
sphere ,
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Table 20. Comparison of SE IOI combination solution with surface gravity (in mgalz).

. 2 2 2 2 2 *
Solution  2,m  ((g,-g,)") (88&) (g D (g )  Elel E(e E{5g") n

SE ]:[T 16 75 184 186 163 233 2 11 63 =20

SE O 16 187 177 229 203 311 52 13 122 (306 anomalies)

SE I 18 105 221 236 237 311 15 13 77

SE I 10 185 150 192 163 302 42 24 129 =1
14 174 174 220 198 302 47 24 103 {1183 anomalies)
18 158 202 258 237 302 56 24 75

SE II 10 184 183 205 1683 345 22 19 143 = 10
14 151 215 236 198 345 20 19 111 {659 anomalies)
18 117 255 281 237 345 26 19 63

SE 01 10 186 151 176 183 311 25 (24) 13 148 = 20
14 146 182 200 198 311 17 21 13 116 (306 anomalies)
18 105 221 236 237 311 15 (18) 13 77

>|zn is the number of 1° X 1° mean gravity anomalies used to obtain the 5° X 5° mean gravily anomalies,
TFrom the available data, there were 935, 369, and 136 gravity anomalies withn = 1, 10, and 20 1°X 1°

anomalies.



where

= ; COS mi . = : €OS MmN
éﬂm(sm &) [sin m)‘b is the mean of me(sm b} [sin m)\]_ _

over the area defined for the gravity anomaly. We can compute any harmonic with
respect to a reference gravity field, but care must be used in treating areas where
no observed gravity is available. A gravity field defined by g, and the ac ) AS

im
will have an error of

(€, -9)") = E(e2) + Ble) + B(g™) + E(e2,0)

where E(e 2) is the error in the composite field and E(e?lua g 18 the error due to the
inexact quadrature and imperfect distribution of the data.

Table 21 gives the results of this numerical quadrature with reference fields defined
by the first £ degrees of SE III. Computing all the geopotential coefficients to

£=m= 36, i.e., the null reference field, we get E(ei) =0, and -

2 2 2 2
Efe,) + E(g™) + E(Equa,d)= 29 mgal”® .

Using an increasingly detailed reference field, we obtain an estimate of E(ei) as a
function of degree. As expected, the mean-square error for the low-degree and low-
order harmonics estimated from a comparison with terrestrial gravimetry is quite
small. The satellite data provide accurate values, and the low harmonics have a
émaller effect on gravity ahomalies. The mean-square error for the 8th fo 18th
degrees is relatively constant, as expected, since these harmonics are determined
largely by surface-gravity data. The mean-square error E (e 2) estimated from the
quadrature is in good agreement with that obtained from statistical analysis. For

comparison, the values are given in Table 20.

The estimate of E(ei) assumes that g and g, are independent; i, e., they have
uncorrelated errors. Since the terrestrial gravity (gt) was used to determine the
combination solution (gs) , this assumption is certainly incorrect, and therefore, the
estimaie of E(e 2) = 15 mga12 is definitely optimistic. A better test could be made with

299



independent data for By Since the mean gravity anomalies used in the combination
solution were computed, two compilations of 1° X 1° anomalies have been published:
for North America and the North Atlantic (Talwani, Poppe, and Rabinowitz, 1972) and
for the Indian Ocean (Kahle and Talwani, 1973). These compilations were published
after the set of mean anomalies used here became available, but some basic data are
probably common to both; furthermore, these two new compilations may not be com-
pletely independent of the data used in the SAOQ combination solution. The processing
methods used by Talwani and his coworkers were different from those of ACIC, and

additional data were included.

Table 21. Surface-gravity residuals for an f = m = 36 potential from mumerical
guadrature (in mgalz).

Degros of (@, - gs)z) (Cy gref)2> )
reference field n=1} n=20 n=0 E(e S)
28 29 12
38 39 12 10
53 54 20 25
10 ) 56 53 21 24
14 61 50 19 21
18 70 48 16 18
Anomalies
used: 1i83 . 306 471

Two comparisons are nevertheless instructive. A simple 5° X 5° average was
computed for these data since all 1° X 1° areas had values given in the region of
interest, These 5°X 5° averages, with the mean of the whole region subtracted, were
used to compute the same statistical quantities as in Table 20 and are given in
Table 22. The number n is the number of points, centered in a 1° X 1° area, for which
a 5° X 5° mean was computed, Therefore, we have a moving 5° X 5° mean calculated
every 1°. Most of the gravity data in these ancillary compilations were taken at sea,
and the estimate of their uncertainty E(ef y may be optimistic. The weighted mean of
E{ei) is 65 mgalz, equivalent to 3.1 m in geoid height. The remaining gravity infor-
mation in the higher harmonics, 9g, equals 68 mgalz_. We notice that 8g for the
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Tahble 22. Comparison with independent surface-gravity data (in mgalz).

Comparison Maximum 2 9 2 9 2 9
field, g_ £,m n (-89 (&8y (8 D (&) Ely Elg) E(5) Region
SE IT1 18 3726 147 209 284 237 282 75 13 59 North Atlantic
SE I 18 1794 145 188 232 237 290 44 13 88 Indian Ocean
Averages 64= 3 m 68




Indian QOcean is larger than 8g for North America and the Atlantic and is probably due
to the very sharp low below the Indian subcontinent, which cannot be modeled very
well by the generalized geoid. Further confidence in this comparison comes from
(g, - gs)z), (gz), (g?), and {(g,g_), which are all in good agreement with the global
values from Table 20. Therefore, we feel reasonably certain that for comparison
purposes, both the North America and North Atlantic region and the Indian Ocean
region are typical. Thus, we conclude that the generalized geoid has an accuracy of
+ 3 m in geoid height and + 8 mgal for the whole earth. TFigures 7 to 11 give north—

south and east—west profiles for both North America and the Indian Ocean.

Figure 11 was selected because of the large change in the values at the India Low
from those given in SE II. However, the terrestrial gravity and the combination solu-
tion are in good agreement there. A further point is the disagreement, east of Borneo,

between the observed gravity from the ACIC compilation and the anomalies used in 1969.
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- 7. CONCLUSIONS

The results described above, the procedures, the tests and comparisons, and the
experience of carrying out the work have led to the following conclusions about the use

of artificial satellites for the determination of the geopotential:

A, Satellite-tracking data from 25 satellites have been combined with terrestrial
gravity data to determine the spherical-harmonic representation of the geopotential
complete through degree and order 18, plus several higher harmonics to which satel-

lite orbits are sensitive.

B. The zonal harmonics are successfully determined from analysis of long-
period and secular perturbations, while the tesseral and sectorial harmonics are
obtained from short-periodic satellite perturbations and terrestrial gravimetry. Low-
degree and low-order £, m = 8 are primarily determined from satellite perturbations,

and the short-wavelength {, m = 8, primarily from terrestrial gravity data.

C. The principal improvements over Gaposchkin and Lambeck (1970) are due to
1) the addition of two low-inclination satellites for the determination of the zonal
harmonics, 2) the use of a sizable number of precise laser observations, and 3) the

use of an improved set of terrestrial gravity anomalies,

D. In the combination of satellite and surface-gravity measurements, some atten-

tion must be given to the unobserved areas.

E. The unobserved areas are treated by using anomalies computed from a satellite-~
determined reference field and by taking the expecied value of this residual field as

zero, with a large variance.

F. The accuracy of the selution is established by comparison with satellite orbits

and with terrestrial gravity data not used in the solution.

G. The lower harmonics have been improved such that the total orbit-computing
system has an rms error of between 5 and 10 m for 4-day arcs.

H. The accuracy of the generalized geoid is = 64 mgalz, or 3 m,
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I. The geoid is very similar to that found by Gaposchkin and Lambeck (1970); no
new features have been found, and none has disappeared. Therefore, geophysical
analyses from these results remain valid (see, e.g., Kaula, 1970, 1972; Gaposchkin,
Kaula, and Lambeck, 1970).
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PART VI

DETERMINATION OF STATION COORDINATES
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ABSTRACT

The analysis of satellite data combined with surface measurements has resulted
in the determination of the coordinates of 90 satellite-tracking sites. The tracking

data used for determining these station locations come from the following:

SAO camera and laser network,

BC-4 camera network,

Goddard Space Flight Center laser stations,
Centre National d'Etudes Spatialt;s laser stations,
Jet Propulsion Laboratory Deep Space Net,

Individual cooperating cbservatories.

The camera systems provided all the simultaneous observations, while both camera
and laser stations made routine observations. JPL reduced the DSN tracking data
and provided SAO with a solution and its covariance matrix. In some cases, geodetic
coordinates were used as observations with a priori variances to relate a set of

stations in a loeal datum.

Combination of these data results in an accuracy of 2 to 4 m for the fundamental
laser stations and 5 to 10 m for the fundamental optical network.

PRECEDING PAGE BLANK N OT FILMED
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RESUME

L'analyse des données du satellite, en conjonction avec les mesures de
surface, a permis de déterminer les coordonnées de 90 sites de poursuite
de satellites. Les donnfes de poursuite utilisées pour déterminer
1'emplacement de ces stations sont d'origine suivante:

Réseau photographique et laser du SAQ (Smithsonian Astrophysical

Qbservatory),

Réseau photographique BC-4,

Stations laser du Centre de Vols Spatiaux Goddard,

Stations Tlaser du Centre National d'Etudes Spatiales,

Réseau Spatial Interplanetaire du Laboratoire de Propulsion &

Réaction,

Autres observatoires ayant offert leur concours.

Les syst@mes photographiques ont fourni toutes Tes observations simultanées,
alors que les stations photographiques et laser ont effectué les
observations de routine. Le Laboratoire de Propulsion a Réaction a

résumé Tes données de poursuite du Réseau Interplanétaire et fourni, au

SAQ, une solution et sa matrice de covariance. Dans certains cas, on a
utilisé les coordonnées géodésiques, en guise d'observations, avec des
variances a priori, de manidre a rattacher un ensemble de stations a

une référence locale.

En combiant ces données, on obtient une précision de 2 3 3 m pour les

stations laser fondamentales, et de 4 @ 8 m pour le réseau optique
fondamental.
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HOHCIIEKT

Ananus DAHHEX CHYTHHHOB'COQ@T&HHHﬁ ¢ B¢MHHMUW KM3MeDeHWAMM
OpUBell K CIPEeRENIeHN KOODPIMHAT 90 TOYeK CHEeXeHUA 34 CIOYTHUKAMU.
HaHuNe CIHEXEHIs KOTOpHE UCTCNEROBANVCE IJIA ONIpeneleHHA M&CTCIIO-

NOKeHUN 2TUX CTAHUWI MNONYUYAJUCH OT CIelyouNX:

Cetu wranep mn nazepa CAO (Cuurcouwman Actpedusmuecxoi
CGcepBaTOpUM)

ACQTM KamMep bC-4 .

Tlazsepuux craxunit Lenrpa Hocumuecrnx Ionetos Tonmapi

Haaepﬁmx crarunii- 'ocynapereerroro Henrpa ne liccnemopaxHun
IpocTpane TRA

Ceru I'myGokoro llpceTpancTea JlaGoparopun PeakTURHOTC
leuxenysa

OTZENEHHX COTPYIHHUAKMUX OO6CEepBATOpPUNR

Cucremn Kamep ofbeclIeUlNy COIOHCRPEMEHHHE HalNKleHus B TO Bpemﬁ Kax
06e cTaHUUN Na3epa ¥ KaMep NPOBCIUIM Tekymue HaGnwzenws. Jlaftopa-
TOPpUA PeaKTUBHOTC [IBuXeHwdA obpaboTana I&aEHHe conexeHrda CeTH
I'my6orecre llpocTpaHcTsa K cHabpuna CAOC ﬁemeHmeM W ee MATpULEel
KOBapualu. B HEEOTOPHX CIyUAAX yHOTPeONRANCh Treflel3MUcCHKMe KO-
CPOUHATH YUXTHBAA IOUCIEPCHH nnﬁ YCTE&HOBNEHUS OTHONEHWHA TPYIIH

CcTauUKY B MeCcTEOM €a3uce.

Coueranne 3THX IAHHHX NPUBENO K TOYHOCTH OT 2 IO 3 M LIS
OCHOBHHX JaZePHHX CTaHUM n OoT 4 no & M IJX CCHOBHGOH OnTHuecKOH

Helik.
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PART III

DETERMINATION OF STATION COORDINATES

E. M. Gaposchkin, J. Latimer, and G. Veis

1. INTRODUCTION

The results of the station-coordinate determination of the Smithsonian Standard
Earth ITI {SE III) are given here. The work is a continuation of St.andard'Earth II (SE II) .
- (Gaposchkin and Lambeck, 1970). '

A number of approaches can be used to determine the position of points on the
earth's surface. Of these, we have chosen tracking of close-earth satellites, deep-
space probes, and surface-triangulation measurements for this ‘anaiysis. The data
and the method of analysis have been selected to optimize the results for a global net-

work of reference points.

‘The satellite methods separate nicely into two distinct types of analysis: geo-
metrical and dynamical. The former hinges on making simultaneous observations of
a gatellite from two or more points on the earth's surface. When these are camera
obéervations, the vector connecting the two stations must le in the plﬁne defined by
the two observed directions. A number of independent siﬁmltaneous observétions '
will define the direction between the two stations. The Smithsonian Astrophysical
Observatory {(SAQO) has obtained a sufficient number of simultaneous observations to
determine a network fdr.. the SAQO stations. The National Ocean Survey (NOS) of the
National Oceanic and Atmospheric Administration has carried out a program of obser-
vations with the BC-4 camera to establish a global geometrical network. Figure 1

shows the distribution of observing stations included in SE 0TI,

PRECEDING PAGE BLANK NOT FILMED
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Alternatively, the dynamical analysis assumes that the satellite's orbit is known,
and computes the location of the observing station from individual observations. In
practice, the orbit is determined from the same observations.: The orbital mode has
been used by SAO to analyze tracking data on close-earth satellites and by the Jet
Propulsion Laboratory (JPL) to analyze tracking data on deep-space probes,

Surface-triangulation measurements are reduced by organizations such as NOS
and the Defense Mapping Agency, who publish coordinates of given points referred to
a datum that, in general, has an arbitrary origin, orientation, and scale. The relative

positions of stations are determined from these data.

The main objectives of this analysis are the following:

A. To improve the accuracy of the fundamental stations. Heretofore (SE In), the

accuracy was estimated as 5 to 10 m.

B. To improve the distribution of reference points or tracking sites. In SE 1II,
coordinates were obtained for 39 independent sites. ' ‘

C. To use the latest available data. New data include the complete BC-4 network
and all the laser tracking data taken during the International Satellite Geodesy Experi-
ment (ISAGEX) program. Surface-triangulation data were used as observations rather
than as constraints.

The analysis assumes that the stations form a fixed system (i.e., there is no
relative motion), that the pole position and the instantaneous posiﬁoﬁ of the earth are
known without error from numeﬁcal values ﬁublished by the International Polar Motion
Service (IPMS) and the Bureau International de 1'Heure (BIH), that the error in observ-
ing time is random, and that atomic time is a satisfactory system for ephemeris
calculations. ‘
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2. GEOMETRICAL SOLUTION

In deriving a geometrical solution, the objective was to produce a system of normal
equations for use in combination with other data. The data consisted of direction obser-
vations only, and there is no scale information in the geometric net. Nor is there any
information to locate the origin of a geometrical network. Hence, any purely geometrical
solution with these data would require an arbitrary scale and origin. The combination
of normal systems avoids this problem, as other data sets contain scale and origin
information. The result of an unscaled, purely geometrical solution is a set of
interstation divections, independent of the arbitrary scale and oxigin iniroduced.

The geometrical solution included two networks: 27 stations of the S8AO network,
including the U.S. Air Force Baker-Nunn cameras and several European stations;
and 48 stations of the NOS BC -4 network. Of the SAQ group, 21 stations were also
included in the dynamical solution. The SAO data block consisted of 5200 pairs of
synthetic simultaneous observations, or about 50, 000 individual direction observations
processed at SAO. The satellites observed were 6102801 (Midas 4), 6303004, 6508501
(Geos 1), 6605601 (Pageos), 6800201 (Geos 2), and 6305501. The BC-4 data congisted
of 2157 pairs of simultaneous events of Pageos. Each event generally consisted of
seven directions and a covariance matrix from each of two stations. When more than
two stations observed the satellite simultaneously, we treated each station pair
separately, The BC-4 data were obtained from the National Space Sciences Data
Center at the National Aeronautics and Space Administration/Goddard Space Flight
Center (NASA/GSFC), The data were acquired, reduced, and processed by the NOS.

In geometric work, SAO observations refer to the equator and equinox of 1950.0.
They are corrected for the effects of annual aberration, diurnal aberration, parallactic
refraction, and planetary aberration and then converted to the terrestrial system of
SAQ, which is fundamentally defined by the mean pole of 1900—1905 of the IPMS and by
the meridian of the Mean Observatory and UT1 of the BIH. The BC-4 data are in the
same reference system.
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The computation was divided into two stages. First, all data between pairs of
stations were used to determine, by least squares, the interstation direction and its
covariance matrix for each pair. The mathematical model for determining this direc-
tion uses the condition that the interstation direction (u3) and the two directions from
the stations to the satellite '(ul, uz) must be coplanar: '

A

4
1° Y%

x%:o. (1)

A system of first-order Taylor expansion approximations to equation (1) is solved by -
least squares to determine Uy and its 2 X 2 covariance matrix. In order for truly
simultaneous points (u 1? u2) to be obtained, synthetic observations were computed by
interpolation from a series of observations overlapping in time from two stations
(Aardoom, Girnius, and Veis, 1966). The synthetic observations (g, Uy) ave weighted
according to the quadratic fit of the individual observations used to determine the
synthetic ones. The weight is modified according to SE I (p. 8) to account for the
possibility of systematic errors, principally in station timing. Separate synthetic
observations are considered to be uncorrelated. For BC-4 data, the NOS has derived
seven simultaneous observations from each photographic plate (event) with the associated
14 X 14 covariance matrix for each set of directions. These are the data provided and
used to determine Ug- '
The data were then sereened. When the adjustments.tou 1 and u, (corrections to

_ the observations) were judged to be too large with respect to the remaining data for that -
interstation direction, those points were deleted and the direction redetermined. For .
the SAO block, 68 directions were determined, and for the BC~4 group, 152.-

The second stage consisted of a network adjustment for each data block. The.

mathematical model for stage two is that of variation of coordinates:

where ﬁl is the vector from station 1 to the satellite, ﬁz is that from station 2 to the

satellite, and 63 is the interstation vector, Satellite positions are eliminated, and we
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obtain a solution for station coordinates, thus deriving adjusted interstation directions.
This is equivalent to adjusting the directions directly by using the coplanarity condition
for each triangle formed by observed directions between three stations. The advantage
of this normal system is that it refers to coordinates, not directions, and can be

readily combined with other normal systems for station coordinates. These directions

are given in Table 1.

We have available for comparison the interstation directions and their accuracy
estimates 0? resulting from simultaneous-observation data and also the new directions
and accuracy estimates Gg resulting from the network adjustment. Table 2 gives

accuracy estimates for interstation vectors.
We expect that, on the average, for the interstation direction adjustment 5,
2 2 2
87 = (0 + 02)/2

To satisfy this condition, we must multiply the variance estimates by a factor

2
k2_ o)

T2 2
(o7 + 02)/2

From Table 2a, the average value for 12 is 2. 65, and the accuracy estimates for the
geometrical sclution are scaled by this number, A similar analysis of the BC~-4 network

(see Table 2b) gives an average value for k2 of 2.60.
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Table 1. Intersiation directions resulting from geometrical network adjustment. 3 is
in the direction of increasing declination, and i is in the direction of increas-
ing right ascension. The variances are in units of square microradians.

Interstation Direction cosines 02 0‘3 O'PP No.
direction X ¥ z (prad)  (prad) {prad) obs.
) 5A0 Network
8015 gol9 +00B8286TH «FL5668R =o)l2929509 43T70,25 3682.33 409.04 29
8015 9004 040388817 =, 77573675 =e4B8504489 29.21 17.80 Te03 122
8015 9006 «,69623798 «308TEA5T o66B01012 552,99 20451 =61420 132
8015 9074 =,T2313248 49965276 4THBIZEY 54,60 2155 =18.85 = 25
8015 9080 a=,6121426]1 =,551268%2 « 56690741 90,07 42032 18481 - &7
8015 9091 «01016406 035506210 we29623140 24496 25.68 +97 - 30
8019 9004 237570250 481539914 =o44042238 8,99 Sekb 2427 301
8019 9091 «01026410 « 35067922 .=431000584 234,46 12.23 wloB7 61
900) 9007 255330312, =,10133483 =482679290 Tel9 He9l ~lelb a5
9001 9009 aBOTIBIEE «,14B82984 wcaT49l82] 5,08 6260 =3413 182
9001 90140 06543598 =,16694659 =e20015543 12,00 14431 «TeTh 156
9001 9012 «,79529606& e 55903140 =o23449537 2.01 Feb3 be2b 187
9001 9113 «,83988557  L49841557 21499985 119,75 227.49 110469 20
9001 $114 10926314 W 68564626 « 71966892 %#1,57 18451 el Th
9001 9117 «~.716786203 «56569994862 =,2525058] B.54 - 19.81 Te90 16
9002 9008 =,26248098 26476812 »92761825 23,08 145,74 =3T«9% 7
3002 9028 =,03862703 031 bhTETA +94T781343 52,37 119.71 21le28 z25
9004 9006 =,55902919 eB2421914 w~o09027272 B.87 8.85 3497 14
9004 9008 =,32678915 233748122 =411974060 13,50 B.84 wbe96 139
9004 9009 =,44142633 <,B6l388096 «437781025 ° 25,76 27496 20426 43
9004 9010 =ob2T48532 =,T76680791 =413515844 26,73 28414 1857 4l
9004 9028 =,03791383 +849029B8 52898274 18,85 15441 ~1s99 3%
9004 9029 oD149TE95 we5736272) =o81897956 68,03 2979 2105 &2
9004 3051 =,18921279 «98062132 $O50T9T07 2160,68 2169411~13T75,13 &7
9004 9086 =,47567265 +59555278 534690231 22,93 10.64 =5e24 1952
9004 9074 «~,60731721 262469601 e49083673 18,11 Teb3 =483 &5
9004 G0B0 =~,5470323878 e 23778534 e 702925386 29,78 692 il 164
3004 9091 =,19273902 297976341 «05399383 3,29 3455 =1e53 442
9004 9115 -=,68904482 239859375 + 60526049 Th,58 2834 wBele 60
9005 9006 91523602 «38800215 «+10861564 44,80 34,23 32436 -
9005 9UL2 =,24T735306 =¢93945540 =e23T14914 106,27 176,50 ~Liheé5 25
9005 9117 =439077014 ~,B4919096 =435519942 182,41 189,44 =154.07 16
9006 9008 «91104375 =441218149 «01028102 37444 20,76 16435 172
9008 9028 +B2B97555 =,32128T702 w+45779273 22,465 23459 10,19 28
9008 9091 » 71232515 =,48338819 «15991701 20,83 36431 14,13 10
9006 g¢l115 +36069012 =,83568648 »41213877 16,89 16471, Tell 19
5007 9009 «09844323 =,0040849] » 99513428 b4e0% Q465 217 263
9007 901G =,20218439 04240331 297842906 4,88 Ce9h le92 86
007 9011 18500571 +48T713975 =~485350322 17,465 9.35 Sell “37
9007 9029 275974013 e 53014621 «28171037 l4a15 32467 S 56 T4
9007 5031 =.07668654 « 52108904 =o85005022 21,70 22.18 1.86 32
9008 9028 +56T732900 =,16303812 =480719042 69,25 59,45 15459 25
9008 9051 +442138286 ~oB85347528 «2T585087 T168,06 £510427 61024506 13
9008 9080 +10994643 «=,91853130 +37975259 38,24 25.92 =B453 8
G008 G115 =o056B191% «484Ti9143 «52824073 30,433 16442 8.31 38
9009 9010 =,63105797 + 10662728 « 76837260 10,73 18.06 6043 248
9009 9011 +00803303 «18921650 «4981916886 Te28 2ek7 «50 201
9009 5029 s TOT26024 « 52130413 ».47751959 39,98 35,77 2.00 12
9009 9114 =.61426156 « 41048104 a 67393476 Beta7 10.52 3.09 - 13
9010 9029 «T2192397 233394856 =+60605622 22419 2040 2aTH [
50L0 gllé «,5B073758 259310520 | 59734287 19,62 15.65 554 38
9011 9029 +69805266 +3028585%53 264884450 52,36 41e72 m13,65 7
9Oll 9031 =u375633408 (51454022 ~&77046T07 198,44 140.4] 27.09 9
gple 9021 o 77402122 w 58631909 23900017 75.78 18483 =l2a.52 29
9012 9113 o TE4B2345 =~,55563145 34859037 23.64 21.19 =lb6424 14
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Table 1. (Cont.)
Direction cosines 0’2 Uz a
Interstation P K " Na.
direction x y Z (prady {prad) {urad) obs,
9012 9ll4 «80198513 =o20284607 «561084814 22,01} 1731 «yl7 24
9012 9117 =,3703300] 288413537 =,28488652 49417 bbe Bk 27.96 216
9021 9113 =,68537088 «60532001 2« 40478973 175,96 21l.l% 924 57
9021 9l1l7 w~.b9236228 «6T453906 w=a2561865] 50,43 25494 1965 8
9028 909) = 08727958 «~.56670402 283407422 105,87 284064 «3490 3T
G029 9031 #4H6437001 =~,08721396 woT4229793 23464 25410 =2478 26
9066 5074 <=472259368 «53TTTT49 v43434289 94227 33.43 =29.12 13
9064 90BU ,45TBE996 =,TB206608 242276205 120,67 109,92 2605 27
3074 9077 2 77632565 19416554 «oS5996BLTT 453,01 147030 =165.47 42
9074 5091 «BT75T71606 «29589128 ~eb67517121 45,42 22462 6425 43
9077 9091 58362963 ¢3TOBTIBE weT72237838 187,65 121407 53,33 30
9113 9ll4 «52234001 «51015375 «68330379 126,10 108470 38412 30
9113 9117 «.58510596 «660ETI02 =o34031014 16,21 29422 10495 16
BC-4 Network
6001 6002 2LA1BETST =4B8355TB6S =¢530T3T14 4,B8B Zel? w12
6001 8003 ~,6B501365 ~4,b01420886 =¢359074468 5455 2403 bl
4001 6004 =4,90136380 36609055 =,23134007 T.88 2247 le52
600) 6008 159118324 +B02)1453 =,0843484] 10468 2a9 =150
6001 6007 ¢BS3LELTE  =,192741T70 -=448475012 bef3 227 =437
6001 6018 e 77326954 «4BlOTE40 =o4]1306140 2,81 W81 -ty
6001 6085 + 80955820 2 4BBOB094 432617860 3.99 le22 =1.02
6001 6123 =.97085420 +230905462 ~406422396 19.08 bak? ~lel2
6002 6003 =,93493656 129981654 + 18974636 3,10 295 1448
6002 &007 « 79005949 «61300538 =.00551394 Telb 6425 ~1.91
6002 5008 «58956410 =,09068902 =.80261427 o3l 3476 2332
6002 6009 +03528776 =¢33395182 =494192938 59.39 410 W51
6002 6038 =~,B4062618 =-,20733306 =.50036051 4,85 hell lall
6002 £l11 =,99243015 v04514765 =411421070 6,70 6252 2e33
6002 5134 =,99242207 204511901 =.l1l429219 6.19 5.00 l.27
6003 6004 =,27965043 +92302495 +QBTO5420 10444 359 N-F
6003 5011 =~,76820781 «31794094 =.55554688 4480 3485 2elb
6003 6012 =,542340606 275307857 w=437247721 3,33 1.88 59
6003 6038 =,0l032205 «,5781Q0031 «.815%90041 5450 2ebé e 78
6003 6111 =422514091 =~,61B865234 =4752715645 34,64 18,717 12.08
6003 6123 « 07500212 + 90641974 v415645066 11,48 8439 156
6003 6136 ~o2251314&6 =,51859094 w~eT5276894 il.12 17464 nhab2
6004 6012 =o54078378 +28B965L4 = 79700104 18,71 5013 =283
6004 6013 «069233048 190307862 =,42384230 958 8425 3,02
6004 6123 +T8613200 ~,48239372 038638423 35,88 8.81 ~he98
6006 6007 54457114 =,89857302 =.46415300 Ta50 340 s 04
60046 6015 « 11508563 #B5437921 =e50674595 5.03 3,21 slte
6006 6016 o TBTBOGGZ e 16THL050 =,59266406 b.18 l.88 «10
6006 6065 «B5875749 o04034530 wa51079105 Tub0 .14 19
6007 6016 «12T9T6E] 099126729 =»03179892 5.87 4aT6 -1.86
6007 6055 032513421 «13439975 =,93406862 2437 2418 =+ 80
6007 8063 «51812769 « 14808201 =oB423B674 Telb 3439 =2:96
6007 4064 «32053602 aTB3539BT =¢53227994 LabB 2e70 ~s 75
6007 6065 w=e06316360 «3T078414 022977066 13449 6415 =288
6007 6067 #15402110 =,2B354T61 =e94650848 3,36 286 leléd
6008 6009 =~.8B8938239 =~=,39362T48 =~.23250028 10.72 17.99 Be22
6008 6019 =.32069121 207153574 =a94454646 3,.83 3,77 =125
6008 6087 061525290 061412014 «o4942BT69 15,83 20435 le79
6009 6019 e 26767201 35752569 =,B89478160 6.28 Se31 334
6009 6020 =~,72386736 ¢ 20445056 =2658B8BLD 10.08 1165 «1s01
6009 6038 =484982114 15017873 50522310 Tat0 99 3.01
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Table 1. (Cont.)
Direction cosines 0’2 02 a

Interstation ¥ g

direction X ¥ z (arad} (prad) {prad)
4009 6043 «01590271 e46305232 ~.88518827 he27 1eb3 «70
6011 4012 =o10269751 299395429 =,03883406 TelO 6e36 210
6011 6022 =e1541B669 34223300 =e92687811 2436 4e39 1]
6011 4038 271357102 «969915790 =e04466129 4293 4ell =1e83
4011 6059 =~e20314666 =402128930 =.97091685 12,93 389 1:67
6011 6111 e 75372727 =o56546517 +»33487959 8al% Bsl? w2e05
601l 8134 75372993 =,58550225 33481098 565 5450 2471
4012 6013 260945015 « 724469218 »32154590 13,41 8.85 4480
6012 6022 =405510845 =454597412 =s83598776 2.57 4e53 +3b
6012 4023 e21639964 «5864T164 «4TBOS52688 #,0] 7430 «90
6012 6059 400626811 <,89897636 ~a43795229 daal 3097 mlebe
6013 6015 +95602691 «0522}1203 07214017 .28 3e62 «01
6013 6040 s 4B5LTZ28 +3560244]1 ~e79835397 2408 3,88 «BT
6013 6047 « 07190480 +439043T3 =.89558262 8,33 T.00 4450
6013 6072 «T60880B2 52545913 w~a36652953 be3b 8455 leB1l
6013 6078 =o3T095605 =.44904419 =.81286587 94 12.01 »3.04
6015 8016 +590837T46 =,B0632468 «D2741557 2495 2.82 1404
6015 6040 =a52814299 27566607 =a80316449 lsb% 2408 =-s 07
6015 6042 63085574 =413074205 ~4T64BOS5Y 2abth 2482 60
6015 6045 «10310295 »10012056 =49B8961894 1,27 +81 «32
6015 6064 «67671319 =4,55938010 ~e47B69944 174 1.85 53
60l5 6065 « 39466649 =,88863525 «23359313 557 2435 -s2l
6015 6072 meB3996571 « 38082497 w=a40529387 .98 4019 =ledé
6015 6073 =.14328286 232563415 w~o93464573 2472 1.85 =69
6015 6075 222622676 ¢ 17832399 =.95808257 2.84 1486 81
6016 6042 «0011092% 267608254 =,736082506 4438 3.04 et}
6016 6043 «24657417T =479099005 «,55994279 .04 299 le33
6016 65064 « 40518193 2 10B4BYTZ «e907T7618 5.65 3407 «89
6016 6065 =o5T150T1¢6 w~a41458908 »TOB1&345 25462 Bab?2 le65
6019 8020 =,98B5446] =,10440602 ¢ 10899057 8,63 Sell 4407
6019 6043 «439099019 55892898 =,73124897 balb 2442 -e23
6019 6061 w218667072 +81186039 =,54215911 T.88 3a4b +5%
4019 8067 «69803894 «3028272]1 »64BBT369 3,70 6455 243%
5019 6044 «5T7324908 081333071 =409939140 la,67 10.84 558
6020 6038 «,055058486 =,058]18222 e 998788652 %75 3.90¢ ~lels
6020 5039 ~,08679899 2450925646 «10126101 46424 Bhe3s w4B8,70
6020 K043 o T6160348 + 40653267 wo50466951 12,13 Te22 277
6022 8023 022939844 + 94994445 «08111630C 3.97 he22 «22
6022 6031 «46751200 047320310 «,758822606 6,38 3496 =le71
6022 £039 255053948 =,T7936081] =4259022]11 Fe48 15445 6¢00
6022 6059 09273248 =,62694587 « 77352412 3,29 617 =y lb
6022 5060 »31064087 e87304183 =~,37589920 4,53 5¢01 =595
6022 s078 «06525885 +38528947 =415794284 70,31 78.59 53,19
6023 6031 016030720 =,64535919 =,T5088309 l.B4 1+15 1]
6023 46032 » 73022042 129245945 =461745090 LeT1 2eb2 -+ 99
6023 6040 »87290005 48655480 =403619295 3,22 4eb9 =30
4023 8047 «54413175 «52027413 «65B20467 7.08 1172 1.73
6023 6060 «0BB5TIS0 =,4565598]1 =,88527297 2449 2e26 1,09
6023 8072 « 12220386 «38240025 . 57636068 2,75 3,73 < le3s
6023 6078 =424421395 =~,90126678 =e263212535 38,04 Sa.b5 =32.36
6031 6032 «42101231 «B6534395 «27189794 2421 Ze25 ~a 79
4031 6039 «10377002 =~,9358B355 «336468052 7.68 G408 3.79
6031 6051 «34877386 ¢22348934 =,22333985 3413 lel8 -e29
6031 6052 +BL84TO4S »30651964 31042176 5,11 2eb5 =1.05
6031 5053 «86812023 =,16769187 =o%6716882 6,20 229 ob2
6031 6060 -,1B248401 «79222053 «58231110 5.04 2487 =lsb%
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Table 1. (Cont.)

2

2

Inte retation Direction cosines o UP U#’}J

direction X ¥ z (urad)  (prad) (prad)

6031 4078 ~=,51978753 2160804239 « 84743600 16,50 Te33 le37
6032 6040 + 56273804 +45312081 »6913808] 4,56 10a49 mke02
4032 6044 o85409802 «,29345246 w=p62541960 11,72 9«87 =lebb
6032 6045 +3789944] «029689027 v20171374 2466 3.32 =96
6032 4047 =,23190326 e1152446% ¢96588796 Iy 5e19 le81
6032 8052 «3B8LOTIL  «465082451 =,65218202 T8l 2:97 «0&
6032 6080 ~475111354 =,65857502 « 045904650 3,72 .86 159
6038 6039 =~,305327]1 «23850297 <«.92189239 3,38 1038 =lalb
6038 6055 =.7ii%6730 261064826 =424671488 3,44 3,433 1+80
6038 46l34 =,15555027 +52653755 +83580041 Tabh 3.15 1.93
6039 6059 =,%23T8088 24 TBZ2T7300 ¢ T0491T739 Te29 1be49 TR
6040 6045 294082858 my27177048 «,20244109 Cabtel 2292 =1.07
6040 4047 «,75745932 -,23851117 e&QTT563T 6,92 Gate2 -ek8
6040 6060 =,719063T73 = 60950287 =»33384648 2487 3.23 a b9
4040 6072 «,05B89596 =,0658462]14 « 994608908 8,00 9457 +10
6040 &073 « 97900793 =,05662546 + 19520896 8,03 11.93 w2438
6040 6075 296051205 =~421058346 »18185489 3,21 Gebd =]la2%
G042 6045 <oh4GiZTEE +2BB406TS s B4563925 2a23 2436 o135
6042 606% 242683435 -,89359514 «13892502 Tel? .16 =e32
6042 6068 04651008 =,32793556 «,94355449 2a02 3455 -sl%
6042 6073 =.73989712 «50980226 =e43892358 2479 351 ~232
6042 6075 =455370869 +56178904 =~,63235380 5,24 FeBé 147
6043 6050 «,13089108 285241541 =,50621684 39,52 lbe49 =6,23
6043 6061 « 75855997 054995305 04626024 21433 11.80 1.07
4044 5045 « 55487831 «315538518 « 75220438 l4g61l 15453 2469
5044 6051 200725312 = 88371318 «=,46797266 67,30 23,18 -2408
6045 605] «,4]118965] =,56088405 w—.T71B157641 4,08 2ald =29
6045 6068 2805691270 =,77309759 <.1875897& “a 79 503 ~1le35
6045 6073 =461337205 «45920180 64257951 Tal? TaTé 2edé
6045 6075 221941894 »11156529 296923089 13,52 T7.81 =-2445
6047 6072 «86399341 221477650 « 45539701 8,25 Jall 3404
6050 4053 «,66436022 073523119 =,12409338 26,19 5¢54 3,75
50%0 6061 « 94337293 ¢120%91400 +30891311 L4 e 80 21402 ~11e51
6051 6052 «=,99255605 211841241 « 02847798 20,63 11le42 bdelb
6051 6053 ~,78860268 =,60492010 =411035164 770 3.72 10
6051 6061 « 35088548 «,90832749 « 14882780 12,32 4036 w77
6051 &0s8 « 78397660 +0FBBL404 + 61284751 3,95 137 neb?
6052 4053 =,18777583 =,9651l26]1 =,18247711 1218 573 1.0%
6052 6040 =,82424287 «0Bl91608 36027980 hyld le63 «39
6053 6060 =,566129678 «4T7679155 «57909964 2.98 1.20 wy 4B
6055 6063 ~,09286860 =411188265 + 98937237 6,33 6e52 112
6055 6064 =~,02445913 82169272 56940567 2434 458 w72
6055 6067 =,40655949 ~, 90836802 «09786177 Ta36 8480 vo4
6055 6069 ~,35683386 «151782B9 «.92175460 32,27 18.85 3.97
6061 6067 042003359 & ,27558772 2864465207 5497 453 1+70
6061 6068 «35779794 oB3Q]36TH 40967078 Ta5% 3,33 91
6061 6069 e 749334562 242891657 50450789 53,39 28el4 16+96
6063 6064 + 03985527 299594504 =,08065384 3,07 3e81 ~1le0%
6063 4087 =al3440311 =~,60457106 w,76128l16 bel? TeT6 e b4
6064 6068 =421648233 #202T73719 =,945628%2 2417 Ge03 1.7}
6068 4069 =~o02725314 w, 96240153 =,27026018 26,89 19,09 =425
6068 6075 =,3980416% «5896930] «50488545 5,43 559 «88
6072 6073 « TOBELT35E 201609177 =,70741287 hyb3 6429 leb3
6072 6075 +B6325760 «,40i3851763 =,48538560 2a9h 3.8%9 Y1
&073 6075 «B89481633 «,41852378 +15537564 14,38 1776 98
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Table 2a.

Accuracy estim
observations; 0y

%tes for SAO geometrical network interstation vectors.

and 0’2 are accuracy estimates before and after network adjustment; &
is the scaling factor.

square of the a.ngular difference between the two estimates; and

n ig the number of

Ui "3 82 5 "? °§ 52 .
Line n {prad) {prad) {urad) Kk Line n (rady {prad} {urad) )

8015-6019 29 1514. 4 4034, 7 31148 1.12 069091 10 30.0 28.6 38,6 1.32
80159004 122 7.2 23.4 44,9 2.93 069115 19 59 16.8 201.5 17.75
8015-9066 133 79.2 378.5 258.9 1.13 90075009 263 1.1 6.9 1.5 0.38
BOL5—0074 26 37.2 BT 487.9 12,96 90079010 36 2.3 5.5 a9.6 0. 15
£015-9080 67 20,8 66.2 217.4 5. 00 90079011 437 1.7 13.5 0.1 0.01
' B015-9091 30 10,6 25.3 0.01  4.00 90074029 74 L2 24,1 10.6 0,84
80199004 301 0.9 7.2 0.6 0.15 075031 32 3.5 27.0 0.4 0.03
80158091 61 4.0 17.9 2.3 6.21 90089028 25 16.7 64,3 6.4 0. 16
900 1-0009 183 1.0 5.8 1.3 0.38 039080 3 233.1 32.1 453, 1 3.42
900 1-9010 154 2.1 13.1 6.8 0.99 0089115 38 6.4 23.3 3.4 2.25
900 1-9012 187 1.6 9.4 0.3 0.15 90029010 248 2.2 4.4 0.1 0.01
90019113 20 32.3 174.1 195.2 1.89 90039611 201 1.3 4.9 0.2 0.06
95001-9114 74 5.8 30.0 1.7 .65 90099114 13 215 9.5 13.8 0.89
9001-9117 16 11.7 14.4 85.3 B.54 90109029 6 50.6 24.9 79.9 1.88
- 900290485 7 19.3 B4.3 36%. 4 7.13 30109114 38 7.4 17.6 146. 4 11.71
9002-9028 25 11.0 B6.D 40.6 0.84 90115029 7 7340 47.9 6252.8 15. 949
90049006 14 43.2 8.9 4.9 1.72 9011-5031 9  14L1 169.9 78.5 @.50
90049008 139 2.8 11.2 20,8 2,97 90120021 29 12.5 47.4 l0.8 0.35
90049009 43 8.0 27,0 0.5 0.03 9012-9113 14 8.2 22,8 8.0 0,52
9004-5010 41 6.9 27.5 1.8 0,10 9012-9114 24 9.8 19,7 31.8 2,16
90049028 35 8.2 1.2 83.5 6.57 9012-9117 216 5.8 48.2 3.3 0,12
9004-5029 42 18.0 49.7 0.7 0.02 90219413 57 23,1 103.3 1.9 0.05
90049066 192 3.3 16.8 24.2 2.41 9021-9117 8 126.0 39.1 800. 1 9,69
90040074 65 7.3 12.8 90,0 8.96 9028-9091 37 i3.3 §7.1 290. 4 7.22
| 9004-0080 164 3.4 19,8 7.2 0.62 90299031 26 12.6 24.8 2.6 0. 14
90049001 442 0.6 3.4 0.7 0.35 9066—9074 13 9.9 . 63.9 461.7 6. 00
90049115 60 7.7 5L 4 21.0 0.71 9066—9080 27 34.1 115.3 T 68.3. 0.91
900650005 Bl 4.8 B9.5 0.0l 0.00 90749077 42 4190 299,48 15.6 0,09
90059012 25 . 35.0 141.6 98.0 111 90749091 43 1.7 34,0 204.3 8.94
90059117 16 45.5 186.4 108.2 0.93 907179091 30 22,6 154.1 1.9 a, 13
9006—9008 172 4.2 29.1 0.9 0.05 95139114 30 45.0 116.7 424.6 5.25
: K ave= 2,65

is the -



Table 2b. Accuracy estimates for BC-4 geometrical network interstation vectors.

cr“f and 0§ are accuracy estimates before and after network adjustment; 6
is the square of the difference between the estimates; and k2 is the scaling
factor.

c? Ug 52 ) a? 0‘3 52 2

Line (prad) (prad) (prad) k Line (prad) {wrad) (prad) k
60026003 3.0 36.73 26,52 1.34 6011-6059 5.0 8.41 1.17 0. 16
60026007 14,8 6.70 51.48 4,73 60116111 86.6 B.16 - R.05 0.17
6002-6008 3.8 4.07 4,03 1.02 © 6011-6134 9.3 5.57 0.83 0,11
60026009 15.4 6.74 . 7.68 0.69 60126013 23.3 5.09 4.10 0.29
6002-6038 12.0 4,48 10,71 1.30 6012-6022 7.1 3. 55 9.71 1.82
6002-6111 12.0 6.61 7.63 0.78 60126023 8.0 5. 86 9. 95 1.46
60036004 15.1 7.01 112,086 10, 14 8012-6059 4.0 3.19 10.43 2,90
6003~6011 6.9 4,33 6.83 1.22 6013-6015 195. 8 3.45 17415 1,78
8003~6012 298.0 2.61 62,48 0.42 60136040 17.3 Z.98 53.68 5.29
6003—6038 5.3 4.07 7.99 1.71 60136047 7.3 7.66 7.18 0,96
60036111 17.1 26.70 1. 38 .06 60136072 8.0 G. 46 2.09 0.29
60036123 10.0 9.94 0, 45 0.05 60136078 25.1 8. 48 46,25 2.93
6003~6134 1956, 7 24,38 232.13 2.11 60156016 5.3 2.88 9,40 2.30
60046012 31.0 11.92 104.81 4.88 60156040 9.8 1.87 3.89 0.67
6004—6013 8.8 8,92 15.37 1.73 60156042 2.7 2.63 3.56 1.34
6004—6123 37.9 22.34 88.76 2.95 60156045 1.1 1.04 2,47 0.41
6006—6007 27.9 5.45 41,13 2,47 60156064 8.9 l 1.79 49, 22 2,21
60066015 13.7 4,12 15,36 1.72 60156065 6.6 3.96 34,65 6. 56
6006—6016 6.4 3.33 52.79 10.85 60156072 3.3 3,59 3.29 2.4}
60066065 4.5 5,37 4.49 0.91 60156073 4.3 2.28 2,00 0.861
60076016 14,4 5.32 24.89 2.52 60156075 7.0 2.35 32.89 7.04
60076055 77.9 2.27 21.76 ¢.54 60166042 84,3 3.71 247.16 5. 62
60076063 5.2 5.62 4.86 0. 90 60166063 17,2 3.42 © 90,14 8.74
6007-5064 38.5 2.69 178,65 8.67 60166064 3.9 4. 36 1.47 0. 36
60076065 33.2 9.92 31.07 1.44 60166065 14.8 17.12 30. 86 i.93
60076067 17.7 3.11 61. 90 5. 95 60196020 31.4 8.87 159,21 7,91
60086009 16.5 14. 36 12.03 0.78 80196043 2.8 4. 29 3.84 1.08
60086019 2.7 3.80 4,78 1.47 60196061 5.3 5.67 6.77 1.23
6008—6067 21,0 18,09 0,82 0.04 60196067 6.8 5.12 13.95 2,34
60096019 10,3 5.79 2.96 0.37 60196064 82.0 12.76 6.34 0.13
60096020 17.3 10. 87 32.65 2,32 6020—6033 11.0 6.82 30.71 3. 45
60096038 16.0 8.45 20,84 1.70 60206039 113.8 65.29 11.62 0.13
60056043 20.6 2.95 28.89 2.45 6020—6043 11.9 9. 68 1.02 0. 08
60116012 12.5 6.73 54,35 5.66 5022—6023 17.5 4.09 83. 06 7.69
60116022 165.8 3. 38 2.70 0.03 6022-6031 12.5 5,17 18,13 2,06
60116038

20.5 4.52 22.72 1.82 60226039 29.0 12. 46 15.01 0.72
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Table 2b. (Cont.)

2

o2 o2 2 ¢ o2 2
1 2 § 1 2 5
Line (ad  (urad)  (urad) K2 Line prad  @rad  pred K
60226059 3.1 4.73 0.72 0.18 60426073  162.0 3.15 720.92 8,73
6022-6060 16.3 4.77 36. 84 3,50 6042~6075 15,5 7.54 23.07  2.00
8022-6078 08,0  74.45  2970.60 8.73 60436050 19.1 27,00 58.35  2.53
60236031 11.1 1.49 11,13 177 60436061 29.9  18.37 78.65  3.38
60236032 4.9 3.66 52.75 12.32 6044~6045 4.5  15.07 19.43  0.43
6023~6040 30.2 3.96 65.25 3.76 60446051 38.3  45.24 0.16 0,00
60236047 17.8 9. 40 63. 17 4.64 60456051 8.2 3.11 14 0,20
60236060 1.8 2.38 2.09 1.05 6045-6068 5.0 4,91 0.50 0,10
80236072 94.9 3.24 268,78 5.48 60456073 6.5 7,46 0.53 0,08
60236078  663.6  46.34 152111 4.29 60456075 7.6  10.67. 6.83  0.75
6031~6032 4,2 2.23 4.71 1.47 60476072 8.2 8,68 13.27  L57
6031-6039  122.9 8.38 153.07 2.53 60506053 51.3  15.86 512.41  15.26
6031-6051  139.4 2,16 136.70 1.98 60506061 32,7  32.91 174.32 . 5.31
6031-6052 8.9 3.88 4,46 0.70 6051-6052 22,2 16.02 11,87 0.62
6031-6053 4.6 4,25 3,86 0.87 6051-6053 4.8 5.71 6.28  1.20
6031~6060 3.3 3,96 2.36 0.65 6051-6061 20,4 8.34 32.94  2.29
80316078 13.3  11.97 0.10 0.01 60516068 2,5 2,86 8.3  3.24
60326040 3.0 12.53 20.85 0. 96 60526053 7.1 8. 96 1.5 0.20
60326044 10,1 10.79 0.52 0.05 60526060 6.2 2,88 3.66  0.81
60326045 41.8 2.99 233,71 10. 55 6053-6060 27.8 2,09 6.33  0.42
6032-6047 7.1 3.81 3.72 0.68 8055-6063 6.0 6.42 2.28  0.37
60326052 21.4 5.29 191. 15 14,82 B8055-6064 4.8 3.46  11.38  2.82
80326060 5.6 3,79 9,99 2.13 60556067 5.9 8,08 0.71 0,10
60386039 9.2 6,88 2,18 0.27 80556069 23.5 25,56 4.41  0.18
6038—6059 19.6 3,33 205.25 17,86 6061-6067  238.0 5.25  1099.08  8.04
6038—6134 3.6 5.40 - 0.82 0.18 60616068 29.9 5,44 51.15  2.89
60396059 26.4 11,89 4.27 0.22 6061-6069 53,0  40.76 40,50 0,86
6040-6045 3.8 3,16 1.67 0,48 6063-6064 8.8 3.4 1,29 0.38
60406047 18.2 8.17 21.08 1.60 6063~6067 10.8 5,97 0.86  0.30
6040—6060 73,8 3.05 12,64 0.33 80646068 18.8 3,40 35,10  3.16
60406072 21.3 8,79 25.05 1. 87 60688069 297.5 22.99 27.68 0,17
60406073 22.5 9.98 37.66 2.32 6068~6075  128.7 5.51 339.50 5,08
60406075 17.6 3.83 31.92 2,98 60726073 27,8 5. 41 61.70  3.72
80426045 2.7 2,30 0.53 0.21 60726075  240.5 3.41 397.15  3.26
80426064 9.6 7,67 8.74 1.01 6073-6075 3.7 16.07 16,28 __ 0.68
6042-6068 2.8 2.78 1.55 0.56 K ave= 2,60
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3. DYNAMICAL SOLUTION

An observation @ of direction (right ascension and declination) or range can be

related to the satellite position T(t) and to the station position X by
o=IAl[TH - RO, 5,7V X1 . (@)

In general, A is an easily computed transformation matrix. Further, the orbit
r(t) depends on the orbital elements, the gravity field, the atmospheric density, solar
and lunar gravitational attraction, and radiation pressure. Finally, equation (2)
depends on UT1 —i.e., the sidereal angle 6 — and on the pole position x and y. None
of these quantities is known without error and each, in itself, provides a number of

difficult problems. For a certain class of satellites, the earth's gravity field presents

the major source of error but is improved as part of the analysis described here.

Two types of data have been used in the dynamical solution. Observations of
direction are made by photographing the satellite against a star background. The star
positions then define the direction from the observing station to the satellite in the
coordinates of right ascension and declination. The star positions are taken from a
catalog and refer to its epoch. PreCes gion and nutation are therefore applied to refer
the observation to the reference system desired. For reasons related to the orbital
theory for r{t), we have chosen to work in the quasi-inertial reference system defined
by the equinox of 1950.0 and the equator of date, In addition, UT1 and pole positions
are applied to bring the terrestrial reference frame, defined by the Conventional
International Origin and the zero meridian of the BIH, into this system. Therefore,
orbital clements and station positions are expressed in this quasi-inertial reference
system when determined with direction observations, Specifically, the right ascension
of the ascending node of the satellite (hereafter called the node) is unambiguously
defined.
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Observations (ﬁ range relate the relative position of the satellite to the observer
and not to the reference system; i.e., the observation is unchanged if the reference
system is transformed by translation or rotation. Specifically, the node is defined
only relative to the adopted value of +UT1. Therefore, when only observations of
range (and velocity) are used, a correction for the longitade must be allowed for in
each orbit. This is accomplished with the following device. In general, the normal
system for each orbit has the form

EHIEEEE

where AX are the corrections to the station coordinates, and Ap are the corrections

to the orbital elements.

It has heen observed that with direction observations, B = 0, and so the inter-
actions between orbital elements and station coordinates can he ignored. For obser-

vations of range, we form the set of reduced normal equations
T. —— = —
IN-BCB'] AX=a-BCb . (4)

These equations eliminate the corrections Ap while preserving the interactions

between Ap and AX. This set of reduced normal equations can be added to another,

and the solution for AX can be used to determine Ap if 50 desired. The complete set

of Ap was computed and found to be very small. The same device is used in procesging
simultaneous observations to eliminate the satellite pogition from each simultaneous
obser_vatioﬁ. In summary, orbits determined by direction observations were processed
directly by assuming B = 0. Those orbits based primarily on range data were reduced

by means of equation (4}.

The observations used are from the satellites listed in Table 3. Satellite arcs
were chosen from satellites whose orbits were relatively uncorrupted by errors.
Specifically, we eliminated satellites with drag model errors (large area-to-mass
ratio and low perigee height), particular sensitivity to gravity-field model errors

(resonances), or poor orbital distribution (less than six stations observing the satellite),
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Table 3. Dynamical data used in SE II.

n
1= n
o @ ] /1]
i § 38 3% .
=
H g g?g =2 28 2 o
. B =
Satellite a Perigee gé Z g g g @ E 5?:
Number Name Inclination Eccentricity (km) (km) HT %o NG &= 28
7001701 Dial 5° 0.088 7344 301
7010901 Peole 15 0.017 7070 635 X X X 4
6001301 Courier 1B
1960 v1 28 0.016 7465 965 x X b 7
5900101 Vanguard 2
1959 al 33 0. 165 8300 557 X x 7
5900701 1959 51 33 0.1838 3483 515 18
6100401 1961 b1 39 0.119 7960 700 4
6701401 DI1D 39 0.053 7337 569 10
6701101 DIC 40 0.052 7336 579 x 9
6503201 Explorer 24
BE-C 41 0.026 7311 941 X X X 13
6202901 Telstar 1
1962 pel 44 0.241 9572 952 4
6000902 1960 L2 47 0.011 7971 1512 X X 10
6206001 Anna 1B
1962 ppl 50 0. 007 7508 1077 X X X 12
6302601 Geophysical
Research 50 0. 062 7237 424 X 6
6508901 Explorer 29
Geos 1 59 0.073 8074 1121 X X X X 56
6101501 Transit 4A _
6101 87 0.008 7318 885 X X 10
6101502 Injun 1 '
6102 67 0. 008 7316 B96 b3
6506301 Secor 5 69 0.079 8159 1137 x
6400101 70 0.002 7301 921 X X 4
6406401 Explorer 22
BE-B 80 0.012 7362 912 X x X X 6
5508101 OGO 2 87 0.075 7344 420 X 5
6600501  Oscar 67 89 0.023 7417 868 x 1
6304902 5BN-2 90 0.005 7473 1070 X 5
6102801 Midas 4
1961 a bl 96 0.013 106005 3503 X X x 6
6800201 Explorer 36
Geos 2 108 0.031 7709 1101 x 13
6507801 ov1-2 144 0. 182 8306 416 4
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The data were kept in two parts, Before 1970, most of the observations were direc-
tions. A number of laser ranges were made, and where it was possible fo do so,

they were included in the orbits. In 1971, the cooperative tracking program ISAGEX,
with 10 laser stations, provided for the first time relatively complete orbital and
geographical coverage with laser data. From these ISAGEX data, 15 orbits were used

in the dynamical determination of station coordinates.

Optical data were assigned an assumed accuracy of 4", In these instances in
which five or more observations were made within a few minutes —e. g., of Geos
flashes — a smoothed or synthetic observation was determined. The same calculation
was used to generate simultaneous observations, because one cannot, in general, make
exactly simultaneous observations. These synthetic observations were assigned an
accuracy determined from the polynomial fit. If the compﬁted uncertainty was less
than 2'", then 2" was used. In the reduction of optical data, we applied annual aberrd-
tion, parallactic refraction determined from mean nighttime temperature and pressufé

for each station, and precession and nutation.

The distance measurement in range data used in this analysis has a precision of
1to 2 m. The accuracy will not be so good when timing errors are included. In ‘
addition, other errors —e.g., those due to the gravity field ~are also that large.
Therefore, the assumed aceuracy of the lager data was taken to be 5 m. Certain laser
data taken in 1967 appear to have errors of 1 msec in epoch timing; these data were
given an assumed accuracy of 10 m. Some laser systems provide a larger volume of
data (e.g., more than 400 points per pass) than is useful here. Therefore, from passes
of laser data containing more than 25 points, approximately 25 evenly distributed
ohservations were selected. Numerical experiments indicated no improvement in the 7

results by smoothing the laser points or by calculating synthetic observations.

The laser data were corrected for tropospheric refraction by using observed _
values of pressure, temperature, and relative bumidity. In addition, the.laser observa-
tions were reduced to the center of mass of the satellite; this correction is relatively
small but systematic. The tropospheric correction is 2. 1 m at zenith, and the reduc-

tion to the center of gravity is 80 cm for Geos 1.
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Table 4 gives the number of observatioﬁs gelected both from pre-ISAGEX data
and from ISAGEX data. Table 5 summarizes the adopted uncertainties.

Table 4. Observations included in the dynamical solution.

Pre-ISAGEX Data ISAGEX Data
15 satellites 140 arcs 3 satellites 15 arcs
Station Number of Station Number of Station Number of
number observations number observations number observations
7050 274 9011 1637 7050 1425
7818 1223 5012 3088 7060 1514
8015 812 2028 525 7804 625
7815 1970 9029 261 7809 1178
9001 4357 9031 467 7820 296
9002 2120 2021 81 7902 1484
9003 349 2066 809 7907 746
9023 2630 9025 9 7921 225
9004 3343 5080 477 7929 213
9005 945 9091 143 7930 89
9006 3170 7921 9 9030 172
9007 1646 7816 2382 9021 29
9008 2301 7804 200
9009 1825 7901 761
9010 2424

The dynamical solution was based on 140 ares of 15 satellites from the pre-ISAGEX
data taken between 1962 and 1969, and 15 arcs of 3 satellites from the ISAGEX data taken
in 1970. These two sources of data were kept separate, and several solutions were
made. Since ISAGEX data are of a new type, we examined the origin of the node and the
relative weighting in order to find the best treatment. Two iterations were performed
as part of the larger computation of station coordinates. The pre~ISAGEX data were
in ares of from 4 to 30 days long, as appropriate, and the ISAGEX data were in lO—daj

arcs.
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_Table 5. Assumed accuracy for data used in SE III.

Data Weight . Remarks
Baker~Nunn 4"
Smoothed Baker-Nunn an
SAO laser 5m Ohserved before 1970
Centre National d'Efudes Spatiales laser lom - Ohserved before 1970
GSFC laser ASm o Observed bhefore 1970
ISAGEX laser ' 5m 1971 International Campaign

For all practical purposes, the length scale iﬁ a dynamical solution is fixed by

the value of GM, which directly enters the calculations of the radius vector through

oM 1/8
r= {— (1 + e cos E)(1 + perturbations)

n

With optical directions, no further information in scale is available. With range data,
both scale and GM can, in principle, be determined. The unit of distance is then
defined by the speed of light and becomes the "light second." In this analysis, GM
wag assumed to have the value given in Table 6, and our dynamical scale is therefore
defined by GM. If this value of GM is far from the exact one, some deterioration

of the coordinates will occur. .We return to this question in Section 7.

Table 6. Adopted constants.

GM = 3, 986013 X 10%° om® sec™
c=2.997926 X 10 10 cm sec_l : (velocity of light)
k2 = 0.30 (Love number)
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4, INFORMATION FROM DEEP-SPACE PROBES

JPL operates the Deep Space Net (DSN), eight stations for tracking deep-space
probes. Data from the DSN have been used to obtain, among other parameters, the
Iongitudes (relative and absolute) of each station and the distance of its antenna to
the earth's instantanecus axis of rotation (Vegos and Trask, 1967; Trask and Vegos,
1968). The DSN data are particularly interesting because 1) they constitute a unique,
complementary, and independent determination of geccentric locations, and 2) they

provide a very strong determination of scale.

Comparisons of the JPL and SAO results were made by Veis (1966a) and Vegos and
Trask (1967) from data from the Ranger missions and from SE I (Lundquist and Veis,
1966). More refined JPL solutions were combined with satellite-tracking data in the
determination of SE II. The combination was made with Location Set {LS) 25, as deter-
mined by Mottinger (1969), by using data from the Mariner 4 and 5 missions. Continued
refinement of the DSN data has provided LS 37, which is used in the present analysis
(Mottinger, 1973).

Each DSN site is located near other stations whose coordinates were determined
in the analysis presented here. Surface-triangulation data, in the form of geodetic

coordinates, can be used to relate the DSN coordinates to the SAO coordinates (see
Section 5).

The ephemeris r of a deep-space probe is assumed known. For a distant space-
craft, the observed range rate p can be expressed approximately as

S . )
P=T+wr, cc.sfnsm(ns aO) 5

where w is the earth's rotation rate, rg is the spin-axis distance of the observer, § and
a, are the declination and right ascension of the spacecraft, and ag is the right ascen-
sion of the observer. Each station observes a diurnal variation in p, the amplitude

and phase depending on ro and a, respectively.
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Generally, any data can be analyzed. However, cruise data seem less reliable
than close-encounter data for determining a (Mottinger, 1973), and they are used only
for the determination of r . Inany case, ltefraction (tropospheric and ionospheric)
and orbit computation must be done with great care, and recent improvements come
from refinements in the treatment of refraction. The ephemeris r (8, a 0) will be-
determined in the system of the JPL planetary ephemeris. We can expect to find a
systematic difference in the definition of longitude between the planetary ephemeris
and the astronomical reference system (¥FK4) used for analysis of close-earth satellites.
The DSN data reduction used numerical values for pole position and UT1 from BIH, as
was done for the close-earth-satellite analyses. ' o

The data for LS 37 are summarized in Table 7. The main improvements
over LS 25 are as follows:

Better treatment of refraction, particularly ionospheric.
Inclusion of more data because of A. |
Inclusion of Mariner 6 encounter data.

Revision of the planetary ephemeris.

Use of BIH polar motion and UT1.

Hoawk

Realistic estimates of accuracy are 2 m for re 4 m for absolute longitude, and 2 m
for relative longitude (Mottinger, 1972).

Mdttinger (1972) provided a solution and covariance matrix for T A, in addition to
the masses of Venus, Mars, and the moon and the oblateness of Mars. This system
was transformed by SAO for corrections in coordinates X, Y of the station. These
converted equations were then added to the larger system of normal equations, which
included the other stations sought.

The LS 37 coordinates for the DSN stations are given in Table 8. In LS 37, the

relative coordinates of 4711, 4712, and 4714 and of 4761 and 4762 were constrained to
agree with the survey data.
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Table 7. DSN data used in LS 37.

Flight Tracking time period )

Mariner 4 July 10—21, 1965 -3°
encounter

Mariner 5 July 28—September 16, 1967 -8° to +8°
cruise

Mariner 5 Ociober 14-25, 1967 6°
ehcounter

Mariner 5 October 28 —November 21, 1967 +2° to -2°
post encounter )

Mariner 6 July 26—31, 1969 -24°

Table 8. LS 37 coordinates, from Mottinger (1973},

T X Y
Station (Mm) X (Mm) (M)
4711 5. 2063409 243° 15059 ~2.3514288 ~4. 6450800
4712 5.2120525 243. 19452 -2. 3504424 ~4. 6519794
4714 5.2039978 243. 11047 -2.3536211 -4. 6413425
4741 5. 4502019 136. 88749 -3.9787186 3.7248488
4742 5.2053494 148. 98126 -4.4609782 2. 6824124
4751 5.7429399 27. 68542 5.0854415 2. 6682659
4761 4. 8626083 355.75097 4.8492431 -0, 3602785
4762 4, 8608181 355.63217 4. 8467007 -0. 3701960
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5. INFORMATION FROM SURFACE TRIANGULATION

Extensive surface-triangulation data exist that relate station positions. These
data are generally given in terms of datum coordinates and occasionally in terms of
interstation vectors for collocated stations. We have used this information in four

ways:

A. For stations in the same datum, the geodetic coordinates are used as obser-

vations relating the positions of the stations in the general combination adjustment.

B. For collocated instruments, these datum coordinates are used as a constraint

relating the two sites. These cases could be treated as in A above.

C. The geodetic coordinates are utilized as a check on the accuracy of the final

coordinates.

D. The geodetic coordinates are employed to determine the relation of each datum

to a geocentric reference system.

Evaluating geodetic coordinates is the most difficult aspect of this analysis. When
reliable, they are very accurate; but problems often exist in relating the local survey at
the station to the datum.

In A, B, and C above, care must be taken to ensure that datum tilts, distortions,'

" and seale differences do not corrupt the results. For most uses, limiting the applicai—
tion of geodetic coordinates to lengths of 100 km or less is satisfactory. Otherwise,
the datum orientation must be determined and applied before the geodetic coordinates

can be used with geocentric satellite-based coordinates.

The use of datum coordinates as observations of relative station positions assumes
no cqrrelatioh between X, Y, and Z. If we have datum coordinates for station i, X?,
Y(ii, Z(ii, and initial values for the geocentric coordinates that are to be corrected,
X‘;’r, Y%, Z?, we can write observation equations for each component of the vector-

between two stations:

xd_-x%-xB_x8+ A% - aX,
S B S 177
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with similar expressions for Y and Z. If these are given weights Wij’ we can immed-

iately write the normal system asg

[ ax, | Zc’ij [(X;i - X]d) ) (X1g - Xﬂ

i

-
rZ:"ij cer 0y
i

—

L
[ Ve W

1

I P
227 [ - %

(g \l
- A‘ -

j 1).' !

where Uij = (l/Wij)z. This system can augment a normal system for determining

AX, AY, AZ.

The accuracy Wij of the geodetic ties chosen is given in Table 9. Table 10 presents
the geodetic coordinates for all the stations used in SE TII.

Table 9. The stations related by survey.

1/ o2 1/c”
Location Stations pairs (m_z} Location Station pairs (m_z)
Maryland 70506002 1.0 California 4714~4712 5.0
. 4714-4711 5.0
Hawaii 9012-6011 1.0 9113-4714 0.7
Argentina 90116019 1.0 91136111 2.0
Japan 90056013 0.1 6111-613¢ 5.0
Spain 4761-4762 5.0 Fthiopia 202586042 2.0
9004—47681 0. 20 Australia 6060—4741 1.0
Central Europe 90668015 0.25 80034741 L0
9003-9023 1.0
9066-6065 0,0025 4741—4742 0. 04
7816—9030 0.01 :
. South Africa 0002—6068 - 1.0
1 .
Brazi 90256067 1.0 9009—475 | 0.1
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Table 10. Geodetic coordinates used in SE II.

AGEN- 5TA LATITURE LONGITUDE H MSL H ELL DATUM N NAME u ¥ W
Y NO. (DEG) {DEG}) (M) (M) (M) { MEGAMETERS )
A = & 378 388,0 M 1/F = 297,0G00
JPL 4761 «4D 25 4T.T17 355 45 0B,278  TBB.4  Thé.4 EUS0 =22,0 MADRI1 4.B849332D1 ~e36017192 4.11500579
JPL 4762 440 27 15,273 355 38 00,572 73843  T16,.3 EUSD w22,0 MADRIZ 4,84676968 -4 37009030 4,11702898
NOAA 6006 469 3§ 44,228 018 56 33,868  10&,4]1 119,01 EUSO +12,6 TROMSO 2,10303510 «72178299 5.95830091
NOAA 5012 +19 17 23,227 166 36 34,780 245 3,5 ASTR 0O, WAKEIS =5,85882851 1,39457585 2.053679489
NOAA 5015 436 14 29,527 D059 37 42,729 991.0 959,0 EUS0 -32,0 MASMAD 2,6044675% G 44l 7723 3,75046544
NOAA 6016 437 26 42,320 015 DZ 4B,3T6 Deh3  =7,17 EUSO =1646 SICILY 4.89649250 1431629618 3,856T78510
NOAA 6020 =27 10 39,213 250 34 17,495 230.,8 230,8 FEIST 0,0 FEASTER =1.8BB79616 ~5,35503180 ~24895871721
NOAA  &03)1 46 25 03,491 168 19 31,155 0.9 . NZ&% . IRVERC ~4431388656 +89137493 4 e 55745823
NOAA 5039 »25 04 07.166 229 53 11,882 33944 339,4 PITC 0.0 PITCAN ~3,72493290 i at2140620 -2,686l44b4
NOAA 6043 =52 46 52,468 290 46 29,573 80,7 . CH&3 +« SOMBRO 1.3T137597 =3,61494594 ~5,05602037
NOAA - 60644 =53 01 12,031 QT3 23 27,415 3,8 3,8 HR6% 0,0 HERDIS 1,09907948 3,6B466262 =5.,07198740
NOARA 8050 =b4 46 33,98 295 56 37,04 16,44 . PLMR « PALMER 1,19246038 =2,45102627 ~547472604Q
NOAA 4053 «77 S0 46,2487 166 38 07,5845 19,0 . CAb2 e MCMURD «1,31074080 +21140586 “6421351412
NOAA 4055 =07 58 14,634 345 35 32,764 T0L9¢ « AS58 e ASCENS 6,11856151 ~1,57184078 ~eBTEE548]
NOAA 4085 +47 48 07,011 011 01 29,378 943,5 942,9 EUS0 « 0,6 PEISEN 4,.,21366502 282094851 4,70289934
NOAA 6069 <237 03 26,2572 347 40 53,5548 24,8 24,8 TR&8 0a0 DACUNA 4.97907544 =1,08729430 =3,82254543
NOAA 4073 <07 20 58,5270 (72 28 32,1554 3.9 + GRAC « CHAGOS 1490493520 6403272280 - 81050273
NOAA 6078 =17 41 46,956 168 17 57,921 15,2 . EFAT ¢+ NWHBRD «5,95216390 1523269645 -1.9264252%
CNES 7804 #3656 27 50,1191 353 47 41,2862 25,40 =~ 9,6 EUS0 =35,0 SFRLAS 5410570263 w3 55512550 3,769TE9TL
CNES 7809 43 56 DD,190 005 42 4B,7BB 657,82 649,4 EUS0 wBe4 HTPRYL 4,57843482 + 458082230 4,%0329178
CNES 7809 +43 56 00,190 005 42 4B,788 &57,82 547,08 EUS0 «10,0 HTPRVL 457843596 1458082642 4s40329289
CNES 7815 +43 55 59,183 Q05 42 48,382 657,83 649,44 EUS0 8.4 HTPRVL 4,57845832 +#5B07555 4440327050
CNES 78186 +37 45 17,043 022 49 43,313 803,11 788.7 EUSO wléeé4 STPHNL 4465442139 1295928240 3,B88450187
CNES 7818 431 43 19,25 357 34 54,08 855,65 813,7 FEUS0 42,0 BECHRL S.42641914 -~y 22917216 3,33472858
SAQ 7930 438 04 46,147 023 55 59,991 473,02 466,52 EUS0 «6,40 DIOSLS 4,59530376 2203955734 3,91274397
CNES 8015 43 56 01,142 005 42 49,277 658,85 650,4 EUS0 =B,4 HTPROV 4.57841531 + 45809132 4e40331474
CNES 8019 443 43 36,496 00T 18 03,309 37T.42 369,44 EUSO - B, NICEFR 4,57955755 «58672953 4.,38653888
S5A0 9004 436 27 51,3668 353 47 42,0891 26,00 = 9,0 EUSD «35,0 S5.FERN 5,10568254 ~455510320 3476980100
SA0 5006 29 21 3B.%T 079 27 25,5t - 1927, 1827, EU50-100, NA,TAL 1.01824970 S5.4T7121880 3,10975910Q
SA0 9008 +29 38 18,112 052 31 11,445 159T.4 1549.4 EUS0 48,0 OSHIRAZ 2,37696353 4,40410229 3413640545
SAD 9028 +0B 44 56,39 038 57 33,61 1925,2 1820,2 EUS0=105, ETHIOP 4,90385504 3,9653042) +96402118
SAD 9030 438 04 46,564 (23 5& 00,130  &T2.6% G6b,24 EUSO «b.40 DIOSBN 4,59529486 2403955710 3,91275385
SAD 9051  +37 58 40.31% 023 46 42,89 187.9 180,99 EUSD = 7.0 ATHENG 4,60694919 2,0298497T5 3,90368223
INTe 9066 446 52 40,318 007 27 58,238 903,44 900,32 EUSD ~3,1 ZIMMAL 4433139150 ¢ 56763749 4,63323685
INTs 9074 456 56 54,98 024 03 37,81 8,0 224 EUSO =5.6 RIGALT 3,18399849 1e42163806 5432289386
INTs Q077 48 38 04,56 022 17 57.88 189,0 187,5 EUSD =1,5 U2GROD 3,90749264 1,60253261 T IYVETLTS
INTs 9080 52 08 39,116 356 01 59,492 113,19 10B¢6 EUS0 ~iteb MALVRN 3492026942 ~e 13462434 5,01285024
SAD 9091 438 04 48,215 023 56 01,587 466,25 660,85 EUSC =&.40 DIONBN &4.59524788 2.03957510 3,91279060
AF G115 60 12 40,38 010 45 08,74 §75.92 B5B1,7 EUSD +5,8 HAREST 3,12136836 59276733 551282959
AF 9117 +lb 44 45,39 190 29 05,59 5.0 5.0 JI61 0.0 JOHNST =6,00756942 «la1l1B0181 1482595115
_ A= b 377 397,2 M 1/F = 299,1528

NOAA 6013 31 23 30,1397 130 52 24,8595 45,9 46,9 TKYD =19, KANDYA ~3,56571019 4,12020706 3,30274197
SAD 9005 435 40 11,078 13y 32 28,222 59,77 59,8 TKYD ¢ 0,0 TOKYO) =3,94655504 3,3657747T1 3.69815201
S5A0 9025 +30 00 08,8086 139 11 43,159 B55,8% 855,4 TKYD 0,5 DODRAJ »3,91029661 3,37583640 31,7285388]
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Table 10. (Cont.)

AGEN~ STA LATITUDE LONG] TUDE H MSL H ELL DATUM N NAME u ¥ "
cy NO, (DEG) (DEG} ™) (M} (M) { MEGAMETERS )

Az & 3TE 20644 M 1/F 294,9787
GSFC 1021 +38 25 49,628 282 5S4 6§,225 SeTh GeT NAZ2T + 0,9 1BPOIN 1,11806122 = BT54T215 3,94279354
JPL 4711 +35 23 22,346 243 09 05,262 103643 10l4a,.3 NAZT =22,0 GOLDS1 -2,35141501 =b o b4522810 1,67358242
JPL 4712 +35 17 59,854 243 11 43,414 9B8,9 66,9 NA2T =22,0 OGOLDSZ -2,35042827 b 65212755 366544704
JPL 4714 ¢35 25 33,340 243 06 40,850 1031.8 1009,8 NA27 =22,0 GOLDS4 2435360704 -6, 54149095 3.,67687068
NOAA  400)1 #76 30 03,4106 291 27 51,6867 206,0 238, NAZT «32, THULEG 254658065 ~1,39010720 6418005957
NDAA  $002 39 01 39,003 283 L0 26,942 4443 43,9 NAZ7 = D.% BELTVL 1413079867 -4 o,83098741 3,99452058
NOAA 6003 #47 11 07,132 240 39 48,118 368,74 356,22 NAZT =1Z2,5 MOSELK «2,1277964% =%, TBE0I&63 4yb5584B03
NOAA 46004 52 42 54,89 174 07 37.87 3648 =542 NAZ27 =4b,0 SHEMYA =3,85174500 +39619209 5.05119936
NOAA 6011 +20 42 38,561 203 44 28,529 3049,27 3041,.3 OHAW = B, HAVAIIL =5,46606254 -i440412970 2424240761
NOAA  $022 =14 20 12,216 189 17 13,242 Seldt 5.3 AS62 D0 PAGOGD «6,09984241 -399746771 =1,56900883
NGAA &038 418 43 44,93 249 02 39,28 23,2 23,2 150C 0,0 GIGEDD ~2,16111455 B 64291648 Z.0348842%9
NOAA 6047 +086 55 26,132 122 04 D4,B3B 94,39 10,1 LZ11 + 0.7 ZAMBOA =3,36182692 S,36586413 «T6373596
NOAA 4111 #3464 22 54,537 242 19 09,484 2284.,41 2258,1l1 NA27 =26,3 WRWDBA -2,44881518 -4, 66812578 3,58256864
NCAA 6123 +71 LB 49,882 203 21 20,720 Be3 - b MA2T wlé, PTBRRW =1,BB175624 »s81258399 6401940356
NOAA 41346 34 22 44,444 242 19 09,259 219B,37 2172,07 NA27 -26.3 WRWDBB ~2,4488668%9 mt o 66821579 3,56226330
GSFC 7050 +«39 0@ 13,676 283 10 18,035 54,812 St,1 NAZT « 1,3 GDDLAS 1.,13070428 -4,83152429 3,99292150
GSFC 7080 «13 18 28,6138 144 44 05,3744 85,873 @a5,9 GUAM D, GUAMLS =5,06886706 3,568433432 1.4585095%
SAQ 7901 32 25 24,56 253 26 51,17 1651433 1848,93 NA27 =2.4 ORGN P =1,53572%37 «S,167145655 3,40088741
SAD 7912 20 42 37,73 203 44 24,03 3034,14 3026,14 QHAW - 8, MAUIHL =5,46611028 =2, 40400840 2,24237834
5A0 7921 ¢31 41 02,87 249 07 21,35 2383,14 2370,4 NA2T7 =12,7 MHSAOL »1,934675026 -5,07785596 3.33174402
SAD 9001l +32 25 24,56 253 26 51417 1651433 1648,9 MNA2T « 2,4 ORGN P =),53572537 w5, 16714655 3,40086741
SAD 9010 27 01 12,882 279 53 13,008 15.13 26,5 NA27 +1l.,4 JUPITE 376312186 ~5,60155092 2.,86008423
SAQD 9012 420 42 37,50 203 44 24,08 3034,1% 3026.1 OHAW = B, MAUL yH =5446611195 «Z2,40401072 2024237170
SAQ 021 431 41 02,47 249 07 21,35 2383,12 2370.,4 NA27 12,7 MTHPBN «1.93675141 =5,07785898 3.,33173878
AF 9113 34 ST 50,742 242 0% 11,584  TB4,231 T60,4 NAZT =23.8 ROSMND -2,44997502 -4 ,62657236 3,63485119
AF 9ll4  +54 44 33,858 249 ST 26,389 TO4eb  TO1,7 NAZT = 2.9 CLALBC -1,26482581 =3, 46704642 5,18527510

A = 6 378 249,145 M 1/F = 2934465
JPL 475) =25 53 21,15 D27 41 08,53 1391,0 1399,0 ARCC « 8, JOHANG 5,0B855B0D65 2.6683T092 =2470840899
NOAA $042 +08 46 08,501 038 59 49,164 18B6,46 1857,5 ADON -29,.0 ADDABA 4,900G1236 3,96825430 96611839
NOAA 8063 +14 44 44,228 342 30 55,594 2643 2be,3 YOQ&T Da SENGAL 5.88452266 wla85363929 1,61276005
NOAA 6064 +12 07 51,750 015 02 06,151 29544 3164 ADDN 21,0 FTLAMY 6402355450 L+61L795570 le3315262¢
NOAA &H0D68 =25 52 54,98 027 42 25.17 1523,8 1531,8 AR(CC + 8, JOHANS 5,0B49H216 2,6T046691 2, THTT9TLE
NOAA 6075 =D& 4D 07,23 055 28 50,38 588,598 . SEIL . MAHEIS 3.60287532 5.23B842744 -e51567627
CHES 71820 #14 46 D4,B878 342 35 22,482 28448 28,5 YO&T 0.0 DAKARL 5.88631560 =1,84583600 1,61515750
SAD 7902 =25 57 334,851 O02B 14 53,909 1543,88 1551,9 ARCC + 8, OLIFTL 5.05626003 2,71663410 -2 77547114
SAQ 9002 =25 57 33,85 028 14 53,91 1544,1 1%52,1 ARCC + 8, OLFSFT 5.05626019 24aTl0HA427 2o 77547120
CNES 9020 414 46 05,975 342 35 22,936 24,59 24,6 YO&T 0.0 DAKARS 5,88630B05 -1,84581878 1,61518911
SAD 9022 =25 57 33,815 028 14 54,351 1543.34 1551,3 ARCC « B, DLIFTS 5,05825416 2,Ti664491 -2, 77546988
SAOD 9028 +0B 44 47,23 03B 57 30.48 1925.2 189&.2 ADDN =29, ETHIOP 4,903%90476 3,96522135 « 96365608

A s 6 378 lelL.C ¥ I/F = 298025
JPL 4741 w31 22 59,4305 136 53 10,1244 148,28 147,33 AUGD =1,0 WOOMAU =3.97B856194 3, 72489603 «3,3023238%




- Table 10. {Cont.)

e

AGEN~ STA LATITUDE LONGITUDE "H MSL  H ELL DATUM N NAME U ¥ W
cY NO, (DE@) (DEG) (M) (M) (M} { MEGAMETERS )
JPL 4742 =35 24 OB,0381 148 58 48,2057 656,08 664.5 AUGD +8.4 TIDBIN -4,46084800 268264157 ~3.6T4T294T
NOAA 6008 +05 26 55,325 304 47 42,832 18,38 +8,7 SA6% =9,7 SURNAM 3,562333539 -5.21022241 «8U159957
NOAA 5009 =00 05 50,468 281 34 49,212 26B2,1 2706.7 SALY +24,6 ECUADR 1.28090438 -6425097009 ~s0l078G928
NOAA 6019 w3l 56 33,9540 294 53 41,3415 608,18 521.2 5A69 +13,0 DLORES 2.28071297 -4431453950 ~3435538784
NOAA 6023 =10 35 08,0374 laz 12 35,4955 50,5 61,7 AUGD v 1,2 THURIS =4,95523608 3,84230946 «1a16399061
NOAA 8032 .31 50 28,992 115 58 26,618 264,30 32,5 AUGD +6,2 PERTHA =2,37525720 4,B871559999 =3,34553}90
NOAA 4040 =30 18 39,4182 149 33 36,8921 211,08 211,8 AUGD + 0.7 CULGOR w&,75150046 2.79212183 -3,20029697
NOAA 6047 =05 55 37,414 324 50 06,200 404,63 66,7 SAL9 2641 BRAZIL 5,18849484 ~3 65391932 -y 65424453
SAD 7907 el6 27 55,085 288 30 26,81% 2452,27426486.5 SA6F +34,2 ARGUPL 1,94285944 -5,80408719 =14T79687689
SAQ 7929 =05 55 3B,61& 324 S0 08,660 4546 Tla7 S5AB9 +28,1 NATALL 5,18853940 ~3,65385815 265428178
SA0 9003 <31 06 07,2608 136 46 58,6988 159,2]1 158,11 AUGD = 1,1 WOOMER =3,96365792 3,74313237 3427567647
SAQ 9007 «l& 27 S5,085 28B 30 26,814 2451,86 24Bb.l 5A69 +3&4,2 AREOUI 1.942B85932 ~5,80408683 ~l e 7TPHBTHTT
5A0 9009 12 05 25,912 291 09 446,078 Tebt w3,4 SABY 10,8 CURACA Z.25189008 ~5.81691837 1432720069
SAD 9011 <31 56 33,228 294 53 38,949 408, 621.,0 5A69 +13.0 VeDLOR 2.28066087 =4,91457654 ~3,35534B76
S5A0 9023 =31 23 30,8163 136 52 39,0156 137,91 .1386.9 .AUGD = 1.0 LAGOON =3,97764616 3472514580 «3,30314365
SAD 9027 ~16 27 54,3465 288 3D 26,578 2450,23 24B4,4 SALT +34,2 AREQUZ 1.94285416 =54B0409348 ~1.79685506
540 9029 05 55 38,416 324 50 08,640 65,34  7Tl.% 5A69 +264.1 NATLBR 5.,188%53918 ~3,653857%98 ~e6542B1 TG
S5A0 9031 =45 53 11,028 292 23 12,215 186,56 172,5 SA6Y =l%,0 CMORVD 1,49386960 -h,a11233951 ~4 55660680
SAD 9039 «05 55 38,616 324 50 09,401 41,6 677 SA69 «26,1 NATALZ .5,18654928 =3,65383723 -e65428138
A= & 378 140.0 M L/F = 29B+258
NOAA 6007 38 &5 36,725 322 54 21,086 53,3 53,3 GRAC 0,0 AZDRES 4,43355344 -2426819774 3497162906
NOAA 6040 12 11 57,91 096 49 47,08 bok 4.4 ASTR 0,0 COCOIS =,T@las810 &.19080089 =1¢3389744]
NOAA 8045 20 13 50, 057 25 15, 169, 4 . NSPC . MAURIT 3,22389500 5.04510482 ~2s 190171644
NOAA 4051 =67 36 03,08 062 S2 24,41 11,3 1i.3 ASTR 0.0 MAWSON 1,1113598% 2416930795 ~5,87428599
NDAA 6052 =66 16 45,12 110 32 04,61 16.0 18.0 ASTR 0.0 WILKES =a90255177 2440954573 -5,81656060
NOAA 6059 +02 00 35,622 202 35 21,982 2,75 . XM&7 « .XMAS5]S5 -5,8B521981 w2 444850730 +22219823
NOAA 6061 54 16 39,515 323 30 42,531 4,2 . SGRG N SOGEQR  3.00059110 «2,21936327 ~5+154B5386
NDAA 6072 +18 46 10, 098 58 15, 319.2 . NSPC . TILAND =,94203816 5.96745408 2.03930654




6. COMBINATION SOLUTION

The six sources of data to be combhined are the following:

SAO dynamical network (pre-ISAGEX),
SAO dynamical network (ISAGEX),
SAO geometrical network,

BC-4 geometrical network,

JPL dynamical network (DSN),

Geodetic coordinates.

As described above, each subset of data was processed individually, with certain
internal checks being allowed. Each subset was reduced with its own a priori weight-
ing scheme, which wag internally consistent. The greatest difficulty in combining these
six sets of data was to establish realistic relative weights for each system. Relative
weighting is derived by experiment tempered with some notion of the accuracy and by
comparison with datum coordinates and heights (see Section 7). Only the SAO dynamical

network and certain geodetic coordinates could not be taken at their given weight.

The geodetie coordinates provided the greatest source of concern and uncertainty
in the analysis. Except for the SAO networks, the geodetic coordinates provide the
only link between networks, and within networks the link between collocated stations
(e.g., 4761-4762, 6111-6134). Geodetic coordinates were used as observations between
relatively close stations —i.e., separated by less than 100 km —because the accuracy
may not be so good for greater distances and because the use of geodetic coordinates

as described above assumes no datum tilt nor scale difference.

Each subset of data was treated to provide a system of normal equations and
normal residuals, The systems are combined with their relative weights. In addition,
each system may have a different origin, orientation, and scale, but these differences
should not occur if each system had been referred to the defined system without error.:
In the combination, additional parameters as necessary were introduced into the com-~

bined normal system to account for possible systematic errors. The SAO dynamical
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pre~ISAGEX data were taken as the reference. Since the geometrical networks have
no scale, only translation and rotation parameters were infroduced. For practical
purposes, the SAO geometrical network covers only one hemisphere in an east-west
orientation, so only the rotation about the z axis () may be meaningful.. This corre-
sponds to a correction to UT1. The polar orientation for the SAO geometrical network
(ex, ey) turned out to be smaller than the formal uncertainty. The JPL net had only a
scale and €, parameter as it is not sensitive to S €y or to the origin. Experiments
with determining corrections to the node {AQ) for each arc of ISAGEX data indicated
that 1) the corrections were small, generally less than 1 prad, and 2) they were satis-
factorily included through the reduced normal equations. Therefore, formally, the
combination solution contained 14 additional parameters, the final values of which are
given in Table 11. The translation of the two geometrical networks is the correction
to the station used as the origin. Excellent agreement occurs between these transla-
tions and the coordinates determined from an a posteriori geometric adjustment. The
formal uncertainty for the translation of the SAG geometrical network is not given,
because the origin station 9051 has very few 'observations and is not determined very
well,

Two iterations were completed, the first starting with the coordinates given in
Gaposchkin and Lambeck (1970). Examination of the solutions indicated problem

stations; in particular, the peodetic coordinates were sometimes seriously in error.

The strategy used to determine the relative wéighfs and the formal uncertainty
was based on the geometrical solutions, and all other solutions were referred to them.
Geometrical solutions are relatively uncomplicated and free from assumptions.

‘Furthermore, the statistics are straightforward.

The accuracy of each station-to-station direction was computed. This estimate
can be verified by coinparison with the direction determined in the network adjustment.
The adjustment essentially enforces the coplanarity condition for any three directions
that connect three stations. By comparing these estimates of the direction, we can
compute a scale factor that is a measure of the agreement between the formal statistics

_of the adjustment and the actual errors. This scale factor turned out to be K = 2.65
for the SAQO geometrical network and k2 = 2.60 for the BC-4. Since the difference

between these estimates of k2 is not significant, we adopted an overall scale factor of
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Table 11. Additional parameters determined.

Relation to the
dynamical system

Translation
parameters

(m)

Rotation

parameters
about the axis

{prad)

Scale parameter

SAO geometrical

BC-4 geometrical

JPL

X=- 6.66
= "'14.088

Z = -gl 90

X=-1L25%+ 9.60
=-16.63 & 9.58

Z=-6.79% 13.74

I

Il

0.70 + 1. 56
0.84 + 1.24

-0.40 + 1.43

1.76 £ 0. 96
"0- 65 i’ 00 65

-2.20 £ 0. 82

~-3.43 £ 1. 02

0.18X% 10~

6

+0.55% 10"

6




k2 = 2,625 for the geometrical networks. It is interesting to note that when only thg

12 SAO Baker-Nunn cameras are used, the scale factor becomes k2 = 1.03, indicating

excellent control of systematic errors.

In the combination of the six types of data, the geometrical networks, the JPL
network, and the geodetic survey data were used with a priori variances. The pre-
ISAGEX dynamical data were given a weight of 0. 25 for the combination of the normal
equations, which effectively doubles the assumed accuracy. In addition, the assumed
accuracy of the pre-ISAGEX laser data was further multiplied by a factor of 1/V10,
and thus the assumed accuracy of the laser data was multiplied by 6. The ISAGEX

data were given an overall weight of 0.0625; i.e,, the assumed accuracy was multiplied

. by 4. Thus, the reference orbits were computed by using the assumed accuracy in
Table 5, but the normal system was scaled by these factors. These adjustments were
necessary in order to accommodate the enormous volume of data used for the dynam-
ical solutions, Large volumes of well-distributed data lead to cancellation of errors,
which is desirable, but give optimistic estimates of variance. The balance of weights
presented here leads to an internally consistent solution, which has acceptable‘agree—
ment with independent data.

Table 12 lists the geocentric coordinates for the stations determined in SE III,

together with their uncertainties scaled by kz = 2,625, Station 7820 (Dakar, Senegal)

is not given, the poor agreement and paucity of data precluding reliable results.
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Table 12,

Geocentric coordinates.

Station X (Mm) Y (Mm) Z (Mm) o (m) Location

7050 11306739 w4,8313735 3:9941010 1.8] GREENBELT +USA

lo21 1,1180308 w4 87463213 3.9429730 1e81 BLOSSOM POINT+USA

TOb0 =5,0668964] 3,584]061 leb587T443 2:88 GUAM.USA

Tgl6 426543389 149591790 348843585 2.26 STEPHANION.GREECE

TalB S5.4263281 ~,2293246 3,3346064 b.0F7 COLOMB~BECHAR+ALGERIA
Bals 4,5783277 579748 4s4031797 2,07 HAUTE PROVENCE+FRANCE
7815 4,5783707 4579591 4¢4031355 2:07 HAUTE PROVENCEFRANCE
Ta0e9 4,5T83484 e 4579659 4.4031579 2,07 HAUTE PROVENCE FRANCE
9001 =1,5357686 =5,16469890 3,4010425 244 ORGAN PASS,USA

TRl =1le53576886 «5,160%890 3.4010425 Za%4  ORGAN PASS,USA

9002 S.0541287 2eT165136 w2,7757883 1679 OLIFANTSFONTEINWREP,.54AFR
7902 5+0561265 2aTLA5135 =2,7757883 1:79 OLIFANTSFONTEINJREP,%.AFR,
022 S5.0581207 2eT165243 «2,7757870 1479 OLIFARTSFONTEINWREP,S5.AFR,
9003 =3,9837783 3.,7430939 «=3,2755610 2:49 WOOMERAJAUSTRALIA

9023 «3,9777668 3,T251061 =3,.,3030283 2a16 ISLAND LAGOON,AUSTRALIA
9004 5.1055919 ~+5552300 3,7696625 3,06 SAN FERNANDO+SPAIN

7804 5.1056120 =y 5552523 3.7696312 3,06 SAN FERNANDOLSPAIN

9005 ~3,54566906 3,3662957 346988334 6+26 TOKYOWJAPAN

9025 =3,5104352 3,376357% 347292202 &el2& DODAIRAYJAPAN

9008 1.0182044% 5.4711045 3,1098219 2e77 NAINI TAL.INDIA

90C7 149427769 «5,8040894 «l,7969311 2:11 AREQUIPA.PERU

7907 149427770 =5,B040B898 ~147969312 2.11 AREQUIPAPERU

9027 1s9427718 «5,804096]1 =1.7969094 2all AREQUIPA+PERU

9008 3,37408929 “on039823 351362578 S.08 SHIRAZ+IRAN

9009 2,2518237 w5,8169157 le3271635 Gatt2 CURACADJANTILLES

%010 9762870 =5,6013947 2.8802347 2.86 JUPITERUSA

aQll 242805913 «4,9145735 =3,3554230 3,19 VILLA DOLORES.ARGENTINA
F012 ~5,4660598 =2,4042788 242421805 2a72 HMAUISUSA

T9l2 =5:48660630 «2,4042787 262421727 272 MAUIUSA

9021 =1,9367738 «5,0777083 303319024 3alb MTa HOPKINSUSA

7921 =1,9367727 «5,0777053 3,3319076 3416 MT, HOPKINS.LSA

9028 4eQ03TH52 3,9652160 +963B680 4e85 ADDIS ABABAETHIDPIA
9029 521866597 «3,85386460 we5543347 3,86 NATALWBRAZIL

7929 5.1864599 «3,6538662 web543348 3,86 NATALWBRAZIL

9039 51864698 «3,6538452 “e55623344 3a86 NATALBRAZIL

9031 lab93B054 w6,1123326 ~4,556653] Se2% COMODORD RIVADAVIAsARGENTINA
9091 445951675 2,03948660 349126587 4ell DIONYSOS.GREECE

7930 4e¢5952234 2.03594482 3e9l26121 %ell CIGNYSOS¢GREECE

9330 4,5952145 2+0394480 3,9126220 4ell DIONYSOS.GREECE

BO19 4,5794767 + 5866188 443864127 10,40 NICEWFRANCE

9046 443313047 «5675218 496331012 3,67 ZIMMERWALDSWITZERLAND
9074 3,1838845 1,4214753 5+322802] 20e57 RIGA4LATVIA

5077 3,9074366 1e6024417 4haTHIBBGA 83,31 USHGORODWUSSR

Q80 3,9201&689 -21347323 50127143 13,26 MALVERNsUK,

FL13  =2,4500089 «=b4,6244149 3.,6350288 3,70 ROSAMDND USA

GLllb «l,264B45]1 =w3,4668797 5.1864541] 10487 COLD LAKECANADA

9115 3.1212780 05926423 545127109 12,63 HARESTUAWNORWAY

FLIT =6,0074079 =»1,1118591 18257369 7:25% JOHNSTON [S5.+U54

4711 =243514471 =4,4450706 3467374600 3,80 CALIFORNIA JPL+USA

4T12 «2,3504606 w4,6519699 3.4656247 3,80 CALIFDRNIA JPL+USA

4714 «2,3536393 a4 ,44133372 346770483 3,77 CALIFORNIA JPLsUSA

4741 =3,9787021 3,72485B7 =3,202208) 2e78 AUSTRALIA JPL

4742 <haub09669 2,8B24284 =3,6T746138 6.05 AUSTRALIA JPL

4751 5.0854475 2,6682502 =2,768T261 4,73 50, AFRICA JPL

4761 4sB8492411 =y3602972 4elleB673 3,64 SPAIN JPL

4762 4.B466987 3702149 41168505 i, 66 SPAIN JPL

6001 «5465862 ~1,3899730 belBR2329 11,15 THULEGREENLAND

6002 11307688 «4,8308360 329947002 2038 BELTSVILLEUSA

6003 =2,1278251 =3,7858474 4o 6560279 Te52 MOSES LAKELUSA
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Table 12. {Cont.)

Station X (Mm) Y (Mm) Z (Mm) o (m) Location -
6004 =3,8517699 + 3964305 5,0513354 19,38 SHEMYAWUSA
6006 221029482 27216791 549581765 13,56 TROMSO«NORWAY
6007 4,4336546 =2,2681407 329716410 ° 12,86 AZORES+PORTUGAL
6008 3,6232536 =5,2142311 26015174 12,95 PARAMARIBOJNETHERLAND
8009 142808455 »5,2509435 = 0108277 15,17 QUITO+ECUADOR
BOl]l =5.,46501046 «2,4043979 242422163 3,12 MAUILUSA
6012 =5,8585251 143945295 240937902 13.96 WAKE I5,.U5A
6013 =3,5658470 4412072863 3,3034218 T.56 KANOYAyJAPAN
6015 246043788  4,444166T7 3:7503171 10,37 MASHHAD,IRAN
6018 448964136 ls3161788 3.8566662 16,87 CATANIALITALY
6019 242806429 =4,3145366 =3,3554419 3454 VILLA DOLORES ¢ ARGENTINA
6020 ~1.BBBAD0E =5,3548647 =248957716 19,81 EASTER [S.yCHILE
6022 =6,0999438 =«9973208 =1.5685982 12,65 TUTUILA.AM,SAMOA )
6023 =4,95535]18 3,8422666 =141638598 8.96 THURSDAY [5.+AUSTRALIA
6031 «4,3138010 «B913646 =4,5972827 .29 INVERCARGILL «NEW ZEALAND
6032 -2,3753707 4,8755672 =3,3454056 10,59 CAVERSHAM,AUSTRALIA
L6038 =2415609779 =5,56426947 2.0353523 8,65 REVILLA GIGEDD.MEXICO
6039 «3,T7247525 ~4,4211985 «2.6861050 22,12 PITCAIRN 1SevUsKe
6040 ~e T4 19364 641908105 ~]1.3385578 13,24 COCLOS 15«+AUSTRALIA
6042 449007728 3,9682490 « 5663303 4,93 ADD1S5 ABABAGETHIOPIA
6043 103713935 w3,6147358 =5,0559691 172,76 CERRQ SOMBREROCHILE
L0446 1,0986265 3,6B46465 =5.,0718835 23,43 HEARD 1S4+AUSTRALIA
6045 342234594 5,0453453 =2,1918119 .30 MAURITIUS UKo
6047 =3,3619221 5.3658261 e 7636214 12,76 ZAMBOANGALPHILIPPINES
6050 1,1926676 =2,6500877 «5,T7470744 19,81 PALMER STA4ANTARCYIC
6051 1,1113619 2,169282] «5,8743530 13,95 MAWSON STA++ANTARCTIC
6052 -29025718 2.%4095500 ~5,8165695 13.80 WILKES STA+ ANTARCTIC
6053 =1,3108218 3112860 wbHe2132992 13,45 MCMURDO STA.+ANTARCTIC
6055 6,1183495 ~1,5717384 =sB8T786181 1lslé4 ASCENSION IS.sUeKs
6059 «5,8853237 =2.%4483377F 02214584 10463 CHRISTMAS [544U.K.
6060 =4,75186206 2.7920847T =~3.2001812 3,19 CULGOORA4AUSTRALIA
6061 249999396 «2,2193526 ~5,1552794 15,33 50. GEORGIA.U.K,
6063 5.8844839 <1,8534891 leb128432 11,17 DAKARSENEGAL
6064 6,0234113 la6179373 143317254 9489 FORT LAMY,CHAD
6065  4,2135852 +8208359 47027662 12,59 HOHENPEISSENBERGWeGERMANY
6067 BelB864154 ~3,56539275 s 6542977 4,13 NATALWBRAZIL
t068 5,084B489 246703463 . =2,768L144 2,38 JOHANNESBURGWREP.S.AFR.
6069 449784430 ~1,0868607 =3,8231816 26.56 TRISTAN DA CUNHA+U+K.
&07v2 e 9416635 59674515 2.0363072 13,65 CHIANG MAT+THAILAND
6073 1,9051653 640322878 ~eB10T7365 12,02 CHAGOS+ARCHIPELG
6075 3.6028471 Se2382448 =~e5159507 1le39 SEYCHELLESsUeK.
6078 ~549523041 12319412 =149259390 22.93 NEW HEBRIDES UK
6111 =244488692 «4,66T3685 345827461 3483 WRIGHTWOODUSA
5123 =1.8817815 -o81264227 60195886 17.73 POINT BARROW.USA
6134 =2,4489029 =4,6680586 35824408 3.89 WRIGHTWOOD+USA
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7. COMPARISONS

The combination solution for coordinates scaled by k2 = 2.625 gave estimates of
variance of 2 m for the best stations. Since no comparison exists that ean verify this
accuracy for geocentric coordinates, we are limited to consistency checks. The
coordinates should agree with the standard at least as well as the accuracy of the
standard. A number of internal checks (e.g., between geometrical and dynamical
solutions) can be performed. Comparisons can be made with surface data, but they
test only the relative position and not the geoceniric position of the coordinates.
Nevertheless, these comparisons are instructive and indicate that the computed
variances (uncertainties) are realistic estimates. Further, the general agreement
internally in the satellite data — and externally with the terrestrial data — indicates
that, as a rule, discrepancies are within the expected uncertainties. The large dis-
crepancies are probably due to errors in the survey data, and further analysis is

needed.

Comparisons with satellite orbits are inconclusive at best, because of the large
number of error sources. In Part V of this Report, numerical results are given for
orhit computations with laser data by using the latest gravity field and station coor-
dinates. This comparison indicates that the orbit computing system (data, theory,
physical parameters, and station coordinates) has an accuracy of 5 to 10 m, which is

not inconsistent with a 2- fo 5-m accuracy for the station coordinates.

The typical direction is determined with an accuracy of 5 prad, equivalent to a
relative position of 10 m. For selected sets of stations, Figure 2 compares the
determined direction (both before and after the coplanarity condition is applied), the
dynamical solution, and the combination solution. In some cases, a direction from the
SAO geometrical net and another from the BC-4 geometrical net are available. These
comparisons are perhaps unfavorable in that the errors of both stations are reflected

in the figures. The error ellipses for all the directions are scaled by the factor
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309-068

7050-9113
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0O DYNAMICAL
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o BC-4(2)

® COMBINATION

Figure 2. Comparisons of interstation directions from the combination, dynamical,
and geometrical solutions. Each of the two geometrical solutions yields
two directions, BC-4 (2) and geometrical (2) are the directions obtained
from the network adjustment. ¥ is in the direction of increasing declination,
and p is in the direction of increasing right ascension. '
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K2 = 2.625. In order to express all the directions in the same coordinate system, the

plotted directions are rotated by the parameters given in Table 11.

When the origin and scale are provided, the BC-4 network of 48 stations gives a
geometric solution that can be compared with the combination solution. Table 13
gives the results of such a comparison, with residuals in X, Y, and Z and north, east,
and height. The geometrical solution has an average uncertainty of 5 m for each
coordinate, while the combined solution has the uncertainty given in Table 12. The
adjustment uses a weight computed from the two solutions, The root mean square
(rmg) of 12 m and the standard error of unit weight Og = 0. 8 indicate the excellent
agreement in the coordinates and the estimated uncertainties. A number of individual
coordinates are too large. The northsouth residual of -25 m for station 6068, which
is tied geodetically to 7902 and 4751, is the most troublesome.

The JPL coordinates given by the LS 37 solutions, rotated and scaled by the results
in Tahle 11, are compared in Table 14 with the coordinates determined in the combina~

tion solution.

Comparisons within each datum are possible. The four major datums where this

was done are as follows:

North American datum (NA27),

South American datum (SA69),

Australian datum (AUGD),

European datum (EU50).

As described earlier, the use of datum coordinates in the combination solution

has been restricted to nearby stations, primarily in order to relate different types of
observations. Therefore, datum coordinates constitute a relatively independent set
of data. However, each datum has an arbitrary origin, orientation, and scale, and the
relation between each datum and the geocentric system must be determined, One can
therefore determine up to seven parameters, but depending on the size of the datum and
the distribution of stations on the datum, some of these transformation parameters may
not be significant, The seven transformation parameters are three translations, threé
rotations, and one scale. We have elected to express the rotations as rotations of the

datum origin about the normal to the ellipsoid and around two axes in the tangent plane
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Table 13. Comparison of BC-4 geometrical solution with the combination solution (in
units of meters). The standard error of unit weight, o, is 0.823.

Residual
North East Helght

Station Weight

2
7
R

6001 12,22 0 0 4 0 0 4
6002 5,54 12 -13 9 1 -15 13 .
6003 9.03 0 ~ 4 0 -2 2 2
6004 20.01 2 -9 1 3 9 0
6006 14,45 -6 -12 4 11 -10 Q
6007 13, 8¢ - 6 -~ 5 -1 1 -7 -3
6005 13.88 2 - 4 -4 -5 0 4
6009 15.97 5 - 5 ~1 -1 4 6
6011 5.89 15 4 4 9 2 -13
6012 14,83 T -2 1 4 i} -6
6013 9.086 -1 - 8 12 i3 G i
6015 11.51 -5 -4 7 12 i} -4
G016 11,96 -5 -11 a 8 -10 -4
6019 6. 13 13 3 -5 -3 13 5
6020 20,43 3 5 -6 -8 1 -2
6022 15.60 7 6 -1 -3 -4 - 8
6023 10. 26 -2 3 0 1 -1 4
6031 10.55 -2 4 -9 -4 - 4 9
6032 11.7} 1 T -4 0 -4 6
6038 9. 09 4 5 -1 0 2 - 6
6039 22,068 4 T -4 -1 -2 -5
6040 14.15 -1 0 0 0 1 0
6042 7.02 -3 -7 a 6 -3 -6
6043 13.70 11 8 -8 -8 13 4
G044 23. 96 4 ra -3 3 -2 10
G045 . 10. 56 -5 -1 -1 -8 3 -1
6047 13.70 0 0 5 5 0 1
60560 20,43 10 2 -6 0 10 [
© 6051 14.82 5 4 =10 1 -2 12
G052 14. 68 4 5 -8 0 -5 10
6053 14, 36 3 B] -12 -5 - -5 11
6055 12,21 -9 0 11 10 -1 ~11
68059 11,75 9 5 -2 -2 -1 -1
6060 5.93 -3 3 -8 -5 -1 8
6061 16. 12 8 3 - 4 i ] G
6063 12.24 - 8 -2 4] 2 - 4 -1
6064 11.08 . -4 -12 5 7 -0 -7
60G5 .13.55 -6 -12 4 9 -11 -2
6067 6.49 -5 13 ‘10 9 7 ~13
6068 5. 94 - 4 -3 ~-24 -34 1] ]
6069 27,03 -8 2 5 0. 0 -10
6072 14, 54 -3 -1 9 9 4 L1
6073 13,02 -7 - 2 -0 [} 6 ~ 4
GOTS 12. 44 -4 - 2 1 1 1 ~ 4
6075 23. 47 - 8 3 9 12 -1 5
6111 6,30 3 2 T g 2 1
. 6123 18,42 1 -13 2 -3 12 3
f134 6.33 4 12 3 12 -1 -7
rms: 1.35 6,38 7.10
Total rms: 12,02
Parameters Determined
X : ’ Y ' oz

Translation (m) 16.32 + 1.22 23,21 +1.22 -4,68 + 1.22 -
Rotation - 0101 £ 005D 0'086 4 OV0B0 1388 = 0l'046

Scale (ppm)= 1. 17 £ 0. 19
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oriented north—south and east—west. These rotations have a physical interpretation
since they express an error in the azimuth of orientation of the datum and a tilf of the

datum ellipsoid. Accordingly, the transformation will be given by

—— ——

Xeat = Fgat T+{A+K R &y, ~ Xy

where is ot 20d X 3,4 2re the coordinates from the satellite solution and the datum,

respectively, T is the vector of the three translation parameters, K is the scale

correction, XO are the coordinates of the datum origin, and R is a rotation matrix
dependent on the three rotational parameters and the latitude and longitude of the

datum origin.

Table 14. JPL-—-SAO residuals.

Rotation: -3.438 + 1.02 prad

Scale: 1.8% 1077 £5.5X 10

R A

Station (m) (m)
4711 -0.81 2.69
4712 -0.66 2.63
4714 -0. 86 2.57
4741 4,31 -0.21
4742 0.51 1.66
4751 0. 96 -3.03
4761 -0.26 2. 10
4762 -0.31 2.31

Table 15 gives the translation, rotation, and scale parameters for four major
datums as computed from the adjustment of the datum coordinates to the satellite
solution. A positive scale here means that the datum =scale has to be increased in
order to agree with the satellite scale. The table also gives the number of stations
used in each datum. In the computation of datum shifts, each station was assigned a
weight computed from the standard deviation of the satellite solution and the standard

deviation of the datum coordinates, which was taken as o= 5X (8 X 10"6)2/3 (m),
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Table i5.

Translation, rotation, and scale parameters for the four major datums.

Number

Translation (m) Rotation Scale.
of correction
Datum stations X Y Z Azimuth E-W N-8 (bpm) 0, O (m)
NAZ7 10 - 3l.4 154,0 176.3 0:'09 =012 -01123 1.78 0. 67 3
+ L2 £+ 2.2 'z L9 +0, 24 +0.69 10, 24 +1.13
EU50 17 - 85.4 ~-111.1 -131.9 0.56 ~0.51 -0,22 2.60 0. 59 I8
+ 2.0 + 1.9 + 2.0 *0.21 +0.35 10, 22 10,92
SA69 ~75.3 -~ 3.3 ~-52.2  -0.33  -0.13 -0, ~1.39
8 75 3 5 3 | 33 0.61 14
+ 2.6 + 2.6 + 2.5 40,21 +0.27 +0.33 - +0,99
AUGD 7 -118. 2 - 38.6 +119.6 0.23 0.82 -0. 22 2.33 0.35 _
L] D
+ L. + L4 + 1.4 +0. 26 +0.41 10.31 +1.22




where S is the distance of the station from the datum origin in meters. In all cases,
the standard deviation of unit weight ¢ 0 (given in Table 15) after the adjustment is
smaller than 1, which means that the weights are somewhat pessimistic. The root
mean squares ¢ (m) of the final residuals for each datum in Table 15 are between

5 and 16 m. It is apparent that the European and the South American datum coordi~
nates do not agree very well with the satellite solution. The European datum is

rather unhomogeneous, and its extension into Africa and Asia — which we used — makes

it rather weal:.

Further checks with datum information ean be obtained with station heights. The
height above the reference ellipsoid (heu) should be equal to the mean height above sea
level (hmsl)’ which is approximately the height above the geoid, plus the geoid height

N; i.e,, the disagreement between these two estimates, Ah, is

If we use the satellite geoid to calculate N, we can make this comparison for all stations
but we lose the detailed variation in geoid height. The computation does provide a

value for the semimajor axis of the best-fitting ellipsoid used to calculate h 1l We get
ae = 6378140.4 + 1.2 m .

To employ the detailed geoid-height information given for each datum in Table 10, we
must refer the coordinates to the datum origin by using the datum shifts in Table 15,
Table 16 lists the standard deviations of the heights calculated for each datum. The
average of 3. 98 m must be considered excellent in view of all the uncertainties in

calculating Ah. Figure 3 plots these residual heights as a function of latitude.

The results by Gaposchkin and Lambeck (1970) were derived in the same manner,
by combining several types of data, establishing relative weights, and verifying the
accuracy by intercomparison, Their accuraey was 7 to 10 m for the fundamental
stations, In Table 17, we give the corrections derived in this analysis for selected
stations. The overall rms of ¢ = 10 m and a standard error of unit weight 0o = 0. 662_
indicate excellent agreement in the derived coordinates and the accuracy estimates; if
anything, the accuracy estimates are pessimistic. The very small shift in origin indi-

cates that the whole reference system has not changed.
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Table 16.' Standard deviations of datum-height comparisons,

o
Datum (m)
NA27 3.07
SA69 2.69
AUGD 1.25
EU50 8. 90
Average: 3.98

Williams, Mulholland, and Bender {1972) have deterinined the spin-axis distance
of McDeonald Observatory from lunar laser observations. We compare this distance
with that deduced by means of the coordinates of station 9001 from survey data in the

following. The agreement of -3.51 m must be considered acceptable,

Using SAO station 9001 and geodetic tie 5492412,489%9 m
Using McDonald lunar laser 5492416.0+ 3 m
Difference . -3.51m

The scale of the combination solution is defined by the value of GM adopted in the
dynamical solution, given in Table 6. We found a scale difference of 0.18 £ 0. 55 ppm
between the JPL and the SAO coordinates, the JPL ones being slightly larger. If the
discrepancy with the lunar laser is attributed to scale, then the scale difference would
be 0.7 ppm. The scale obtained from the four major datums is given in Table 15. It
appears from the NA27, EU50, and AUGD datums that the datum scale is smaller than
the satellite scale by approximately 2 + 1 ppm, while from the SA69 datum, it is larger
by 1+ 1 ppm. Since the survey scales are not expected to be established to better than
a few ppm, the weighted mean of 1.6 + 1 ppm is not considered to be significantly dif-

ferent from zero.

Each geometrical network has an arbitrary origin specified by the initial coordi~
nates of one station, a station not explicitly determined in the combination solution.
The translation parameters in Table 11 correspond to the correction to the origin

of the network, i.e., the correction to the initial coordinates of the reference station.
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Table 17, Comparison of coordinates determined in both SE II and SE III. The sys-
tematic translation, rotation, and scale differences were removed before
the residuals were computed (in units of meters) The standard error of
unit weight, o, is 0,662,

Residual
Station Weight AX AY AZ North East Height
7050 7.23 1 -6 -9 -12 0 0
8015 5.41 0 7 0 0 7 0
9001 5. 58 - 8 4 0 1 -9 -1
9002 7.23 1 0 - 3 -2 -1 2
9003 6. 50 0 0 4 3 0 -1
9004 5. 86 3 -3 - 4 - b -3 0
9005 11.80 3 - 8 -1 3 4 -7
9006 9,42 0 - 2 -2 -1 -1 -3
9007 7.31 5 =10 3 6 1 10
9608 10. 33 -1 2 6 5 2 4
5009 8. 28 - 2 1 4 5 -1 -1
9010 5.76 -1 1 - 4 -3 -1 -3
9011 9.55 5 -2 5 T 3 1
8012 7.51 -3 -1 8 6 0 6
anz1 15.33 11 -6 -13 -13 12 -5
9023 6.38 1 -2 5 3 0 - 5
9028 12.94 14 11 - 4 -6 0 17
9029 12.61 0 -11 -7 -7 - 9 7
9031 15.89 5 -7 -1 5} 2 7
9066 7.90 -5 8 7 B 9 2.
9030 16.03 -9 4 5 11 3 -1
9113 7.92 4 3 - B -2 2 - 8 -
9114 16. 19 -5 2 -13 -7 - 5 ~11
91156 21.18 - 4 - 2 8 8 ~1 5
9117 16.66 -2 - 4 5 4 4 4
rms: 6.62 5.02 6.37
Total rms: 10.47
Parameters Determined
X _ Y Z
Translation (m) -1.69 + 1.19 3.76 + 1,18 . 0.04 +1.18
Rotation ~0Y039 + 0047 -0V 043 + 09049 -0v059 + 0044

Scale {ppm) = -0.26 + 0. 18
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In principle, the orientation of the two geometrical systems and that of the
dynamical system .should be identical. Orientation parameters (e X €y’ €,) are deter-
mined to accommodate possible systematic differences in the actual representation
of the three systems. B8ince the SAO geometrical network covers only one hemisphere

in an easi~west orientation, the orientation of its pole (sx, ey) may be poorly determined.

The polar orientation of the BC~4 system with respect to the SAQ dynamical sys-

tom is 1,88 = 3/ 1.?62 + 0.65° & 1. 16 prad. This systematic difference is obtained

by comparing the observed BC-4 directions with directions determined from 11
stations in the combination solution with characteristic interstation distances of 2 to

3 Mm. In metric terms, the orientation difference is 1,88 X 1078 x 2 % 109~ 4 m. The
accuracy of the mean station for the 11 stations is approximately 4 m, It is assumed
that the value of 1,88 pyrad results from differences in pole-position data or in process-

ing methods.

The rotation in longitude (ez) corresponds to a correction in UT1. Figure 4 indicates
the relative position of the zero meridian of each system. We note almost the same
relation between the SAO and the JPL systems that we found in SE T, which was
4,0 prad, The difference between the SAO geometrical and the SAO dynamical systems
is -0.40 + 1.43, and that between BC-4 and the SAO dynamical is -2.20 + 0.82. The
relative rotation in longitude between the JPL and the SAO systems is probably due to
a difference between the JPL's planetary ephemeris and the FK4 system used by SAQ,
while that between the geometrical and dynamical nets most likely results from differ-

ences in the UT1 data or in the processing methods.

BC-4 SAO SAQ
JPL GEOMETRICAL GEOMETRICAL DYNAMICAL
«—WEST 0.40 prad=—r — EAST
*———— 2.20 prad

- 343 ’_chd

Figure 4. The relative zero meridians of the different systems.
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8. CONCLUSIONS

The results described above, the procedures, the tests and comparisons, and the
experience of carrying out the work have led to the following conclusions about the use

of artificial satellites for the determination of station coordinates:

A. Observations of close-earth satellites have been successfully combined with
observations of deep-space probes and surface triangulation, enabling us to determine

the coordinates of 90 satellite-tracking sites in a uniform homogeneous system.

B. The combinatioﬁ of these data provides a better solution than we can obtain
from each set of data separately, because more complete coverage results and because

the combination enables us to overcome weaknesses in each system.

C. The methods of processing each type of data are sufficiently understood to

make a rational combination.

D. Succeésive golutions have resﬁlted in improvements. When compared with
the previous solution, each new one has agreed to within the estimated uncertainty,
and that uncertainty has steadily decreased from 10 to 20 m in 1966, to 5 to 10 m in
1969, to 2 to 8 m in 1973. '

E. TFormal statistics are generally optimistic, and therefore the uncertainty in

coordinates is established by intercomparison, a method that has proved reliable.

¥. A comparison between coordinates indicates an accuracy of 2to 4 m for

fundamental stations and 5 to 10 m for most others.

G. The body of laser data available, though small, has made a gignificant con-
tribution. The laser data dominate the solution through the relatively great weight
assigned and thereby essentially establish the reference frame for the station coordi-
nates.

H. The use of a variety of satellite orbits spanning a considerable period of time
is very important. Such data average over error sources with a slow variation such

as UT] or epoch timing and eliminate poor orhital geometry. The laser data suffered

from both problems.
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I. Geometrical data require a minimum of assumptions, and geometrical solu-
tions have relatively straightforward statistics. Geometrical data are more difficult
to obtain owing to the necessity of simultaneous observations. Dynamical data are
more plentiful, but their processing requires an elaborate orbit-computation program
that may introduce model errors. The well-behaved statistical properties of the
‘geometrical data allowed the use of the geometrical networks to establish the uncer-

tainties.

Jd. Small but significant systematic differences in scale and orientation are found
between satellite coordinate systems. These differences may result from variations
in data-processing methods or from fundamental and obscure differences in the defini-
tion of reference systems, e.g., the FK4 gystem and the JPL planetary ephemeris.

K. Satellite determinations of sile location are now sufficiently accurate to verify
terrestrial survey data. The most troublesome part of the analysis was finding the
erroneous survey coordinates. Considerable effort remains in providing global geodetic

coordinates with sufficient reliability.

L. Scale obtained for the four major datums is systematically smaller than the
satellite results by 1.6 + 1 ppm. Since survey scales are not expected to be established
to better than a few ppm, this result is not considered to be significantly different from

zero.
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NOTICE

This series of Special Reports was instituted under the supervision
of Dr, F. L. Whipple, Director of the Astrophysical Observatory of the
Smithsonian Institution, shortly after the launching of the first artificial
earth satellite on Octcber 4, 1957. Contributions come from the Staff
of the Ohservatory.

First issued to ensure the immediate dissemination of data for satel-
lite tracking, the reports have continued to provide a rapid distribution
of catalogs of satellite observations, orbital information, and prelimi-
nary results of data analyses before formal publication in the appro-
priate journals. The Reporis are also used extensively for the rapid
publication of preliminary or special results in other fields of astro-
physics. '

The Reports are regularly distributed to all institutions partici-
pating in the U.S. space research program and to individual scientists
who request them from the Publications Division, Distribution Section,
Smithsonian Astrophysical Observatory, Cambridge, Massachusetts
02138.
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